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SUMMARY

The mathematical statement of the eigenproblem is
deceptively simple and, although the basic theory has been
well established for a long time, obtaining an accurate
solution still remains far from trivial. The eigenproblem
arises in many branches of science. In this study, however,
it is considered only in the context of dynamic and buckling

analysis.

The genesis of the eigenproblem in dynamic and
buckling analysis is considered and a brief survey of popular
solution techniques is presented. A most powerful solution
technique, namely subspace'iteration, which forms the kernal
of this Study is discussed in some detail.

Various ideas which may accelerate the subspace
iteration method are investigated theoretically. These
ideas are subsequently converted into algorithms, which are
implemented in the form of FORTRAN computer programmes.

The validity and accuracy of the results obtained
is tested against known solutions with a satisfactory outcome.
The various modifications are then presehted with a menu of
problems for comparison purposes. This process identifies
the 'best' modification and also yields new ideas and
insights. | | ‘

The subsequent investigations lead to the conception
of the 'hybrid technique', which employs the best modification
in conjunction with the original subspace iteration. .The
convergence rate and solution time of the hybrid technique
compare favourably with those of the original subspace -
iteration. _Invfact, for the problem considered, the hybrid
technique is always superior to the original subspace iteration.
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NOTATION

All the symbols used in the text are defined as
they appear. However, for convenient reference, a
list of the principal symbols is presented below. The
necessity of requiring additional symbols in a minor
context has, on occasion, led to non-uniqueness. However,
in sﬁch cases, explanatory text is available in order to
avoid confusion.

Matrices are denoted by square brackets, e.g. [K],
’and column vectors by an-underscore, e.g. V. The inverse

1

and transpose of [K] are denoted by [K] ~ and [K]T

respectively. Differentiation with respect to time is

2
~df _ ; d £ - £, etc.

denoted by dots, e.qg. 3t ’ EE;

a Length

A Cross-sectional area

b width

(C] Damping matrix

[D] Diagonal matrix

E Young's modulus .

E, Space of dimension, n

h Thickness

I Moment of inertia

(1] Identity matrix

kij (1,j)th element of K
- [K] ~ Stiffness matrix

[K] Projected (reduced) stiffness matrix
(K] Non-linear strain stiffness matrix



NIIT, %

NITE

NITE
C

NMOD

NROOT, r

[Ql

)

RTOL

8,s,,s
19975,

TOL

{

(x)

Eigenvalue ratio

Lower triangular matrix

Half bandwidth of K

(i,j)th element of M

Mass matrix

Projected (reduced) mass matrix
Dimension of full space

(Number of [K]™ T [M] operations for
iteration (Method 1)

Power to which eigenproblem is

Lraised (Method 1A)

Iteration number

Number of iterations for convergence
Number of iterations :in which the
modification is applied

Number of required eigenvalues
Dimension of subspace

Eigenvector matrix of projécted
eligenproblem

Load vector

Relative convergence tolerance

Shift

General time variable

Time taken‘for convergence

Time taken for an iteration

Time taken for the modification
Time taken for solving the projected
eigenproblem

Convergence tolerance



(xi)

v Eigenvector
NN Eigenvector matrix
Uu,x,¥y,2 Vectors as specified

(U],[X1,1Y],[2] Matrices as specified

o Optimising factor (Methods 2 and 2A)
Gij . Kroneker delta

v Poisson's ratio

P Density

A,p Eigenvalue

[A]l, [P] Eigenvalue matrix

w : Ahgular frequency



CHAPTER 1

INTRODUCTION

The solution of the eigenproblem has been a constant
source of interest for the mathematicians and a source of
annoyance for practical scientists and engineers. The
latter being more interested in the results and not the
mechanics of obtaining them. The formulation of the
eigenproblem is deceptively simple and the background theory
“has been knowh for years yet the challange of obtaining an
accurate solution is not easily overcome. The accurate
solution‘of the eigenproblem is an ideal illustration of
bridging the gap between classical mathematics and numerical
analysis.

The generalised eigenproblem arises in many fields of
scientific study. However, this work is only concerned with
the solution in the context of dynamic and buckling analysis.
Clearly, the discipline in which the éigenproblem is posed,
gbverns the properties of the operators in éhe formulation.

. The ability to carry out structural analysis has
improved dramatically in recent years. This has led tova.
better understanding of the strengths and weaknesses of
structures. Consequently, the undertaking of ambitious
engineering projects'has become possible, since in this age
of ever increasing costs an optimal use of materials is
required. = The 'finite element method' used in conjunction
with high speed computers makes possible the dynamic, buckling

and earthquake analysis of large and complicated structurésl'z.



The solution of the eigenproblem is also of
importance in the design of dynamic components. The
analysis of such é component will yield the natural
. frequency spectrum. It can then be ensured that the
working frequency is not in the neighbourhood of a natural
frequency. Consider the following problem: the lowest
natural frequency of a structure is required to fall within
a prescribed range. The structure is then analysed and,
if the condition is not satisfied, the system matrices are
varied until it is satisfied. In pragﬁice, the mass of a
Structure is far easier to vary than the stiffness.

Generally, in the solution of the eigenproblem, only
the few lowest eigenpairs are required. Therefore, the
solution methods, which take no advantage of the special
properties of the operators or which solve for the complete
eigensystem instead of the required few eigenpairs, are
ineffidient and uneconomical.

When the order of the operators in the eigenproblem
is large and only the few lowest eigenpairs are required,
approximate solution.techniques3:are employed. Recently,
a most powerful numerical tool has been provided for the
finite element anaiyst, namely.“the subspace iteration
method" for the sélut}on of the large generalised eigen-

4,5

problem The object of the work is to obtain a practical

algorithm by modifying the subspace iteration algorithm and
may be stated as follows:
(1) Test the original algorithm
- {11) Look for'possible modifications in.

the original algorithm



(1ii) Justify the modifications theoreticaliy
(iv) Programme the modified algorithms
(V) Test the modified algorithms
(vi) Compare the results with the original
algorithm.
- The following is a general outline of the thesis.
The chapter immediately following this introduction gives
the mathematical statement of the eigenproblem. A
discussion of hoﬁ the eigenproblem arises in dynamic and
buckling analysis is presented and solution methods prior
to the subspace iteration method are discussed critically.

The basic groundwork for this study is laid out in
Chapter 3, where the original subspace iteration algorithm
is presented. The detailed discussion here is a necessary
requirement for the subsequent chapter.

In Chapter 4, the theoretical aspects of the
modifications to the subspace iteration algorithm are
discussed. Two basic modifications are considered along
with a few variations on these. The numerical aspects,
e.g. stability and convergence of each modification are -
discﬁssed. The various difficulties arising invthe
implementation of the modified algorithms are mentioned.

Chapter 5 initially contains a comparison of the
results obtained from the origihal subspace algorithm and
known solutions. Subsequently,'general and detailéd
comparisons between the various modifications available
are made. The discussion of the results obtained from

these lead to the formulation and testing of the 'hybrid



technique’ Finally, the results from the hybrid technique

are presented and discussed.

The tolerances used in the original algorithm and
the modifications are the same. This allows the results

obtained and the times used in the solution to be compared

directly.

Chapter 6 contains the overall conclusions and
implications drawn from this study along with possible

avenues of further research.



CHAPTER 2

THE LARGE GENERALISED EIGENPROBLEM

2.1 Introduction

In this Chapter, a discussion of how and where the
eigenproblem arises in dynamic and buckling analysis is
Presented. The properties of the operators are observed
and the solution techniques prior to subspace iteration

method are discussed.

2.2 Dynamic analysis

For a finite element system in equilibrium the
equations of motion may be written as
| MY + [Clg + [Kly =R .. .. .. (2.1)
where [M],[C] and [K] are the mass, damping and stiffness
matrices of order n respectively,‘and R 1is the load vector.
The displacement, velocity and the acceleration of the finite
element assemblage are denoted by y, y and Y respectively.
Cléarly, if the inertia, [M]Y, and the damping, [Cly are
neglected, equation (2.1) reduces to .
[Kly = R chee e ee (202)
which is the equation to be solved ih a static analysis.
Thus, dynamic analysis involves carrying out static analysis
at time, t, and taking into account the inertia and damping
forces.
Fofva n-degree-of-freedom system, the équations'of
motion aré a set of n coupled equations which must.be solved
simultaneously.‘ It is, however, possible to express this

set of equationé in terms of a different coordinate system

{



for which they become uncoupled, by employing a linear
transformation. An uncoupied system of equations is,

in fact, a set of independent equations each of which
resembles in structure the equation of motion of a single-
degree-of-freedom system. The advantage of uncoupling
the equations is that an uncoupled system of equations is
Considerably easier to solve than a coupled system of

equationss.

If the normal modes of vibration for a multi-degree
‘System are used as generalised coordinates, the equations
0f undamped motion become uncoupled. This approach requires
the solution of
MY + [Kly = 0 .o .o ee  (2.3)
which is the expression obtained from equation (2.1) when
the damping forces are neglected. This is the free vibration
Problem and has solutions of the form
Yy =vsinow (t - to) .o - es (2,4)
where v is a vector of order, n, t and to are the time
variable and constant respectively, and w represents the
freqﬁency of vibration in rad/sec of the vector v.
“'Substituting equation (2.4) into equation (2.3) leads‘
to the mathematical statement of the generalised eigenproblemn,
namely |
'[K]i = w? Mlv oo .o o (2.5)
The solution of this yields the eigenpairs'(!l,wlz),:lgé,wzz)..

where the eigenvectors are [M] ~orthonormalised such that

vy My, = {é:izg N ¢ N3

and



2 2
oiwl -<-.w2 S..'.OOI..‘S * . ® . LR J (2.7)
The ith mode shape is given by v and wiz is the corresponding
frequency of vibration.

Consider now the following definitions.

[V] = (Y‘l' y_z se s s s e Xn) .. (2'8)
[A] = diag (wiz), i=1, .... n)

The n solution of equation (2.5) may now be written as
[K][V] = [M][V]II[A] .. .o .o oo . (2.9)

Thus, equations (2.6) and (2.9) yield

tviTim) vy

(1]

- .. .o .e .o (2.10)
[A] :

tv1T k] (v]

where [I] is the identity matrix. Heﬁce, a suitable linear
transformation to uncouple the equations is

y(t) = [VIx(t) ce ee e e e (201D)
Subétituting from equations (2.10) and (2.11) in equation
(2.1) leads to _

(%) (£) + VITICIIVIZ(E) + [Alx(t) = [VI'R(E) .. (2.12)

The initial conditions on x(t) are obtained from equation |
(2.11), i.e. at time, t = 0,

xo = vy, . &g =¥y, .. .. (2.13)
It’is clearly seen from equation (2.12) that if the damping

-

term is neglected; the finite element equilibrium equations
are uncoupled.

’ - Generally, the damping matrix cannot be derived
explicitly and the damping effects are only‘included
approximately. It is thus reasohable to:construct a
damping matrix which will include all the required effects,

i.e. the overall energy dissipation during the system



response and also allow an effective solution of the

equilibrium equations.
In practice, [V]T[C][V] is assumed to be diagonal,

i.e. damping is proportional. Thus, the total damping
in the structure is the sum of individual dampings in

each mode. Therefore,

: 2w, e i = j
T _ { i1’ . .o (2.14)
¥y [C]Xj = 0 S
where ey is the modal damping parameter. Hence, the

elgenvectors v, are also [C] - orthogonal and under the
transformation given in equation (2.11), equation (2.1)
reduces to a system of uncoupled equations.

The main computational effort in dynamic analysis
is in the solution of the eigenproblem. If the system-
matrices are large, it becomes prohibitively expensive
to solve for all the eigenpairs. However, experience has
shown that generally only the few lowest e;genpairs are .
required and that the higher eigenpairsymay be neglected.
The number of éigenpairs sought depends upon the structure,
loading conditions and the required accuracy of the analysisﬂ
If the required eigenpairs can be obtained with é justifiable
amount of effort then the analyéis of large structures
- becomes feasible.'
Consider now the operators [K] and [M] from equation

(2.5), an important property of thesé is bandedness, i.e.

kyy =0, 3>1 +m e e e (2.15)

where (ka + 1) is the bandwidth of [K]. Also, at least one



of the operators [K] and [M] is positive definite. In
Practice, [K] can always be taken positive definite since

by shifting5

analysis, if a consistent mass formulation is used, then
[M] conforms to equation (2.15) and is also.positive
definite with moo= M here m denotes the half-bandwidth
of [M]. Héwever, often good accuracy can be obtained by
hSing a lumped mass formulation. In this case [M] is a

diagonal, hon-negative definite matrix.

2.3 Solution techniques

kSince the order of the system matrices is large,
the exact solution of the eigenproblem using conventional
techniques becomes generally impossible. This is due to
the fact that the solution requires more high speed core
storage thén is available in a reasonable size computer.
Thus the use of conventional solution techniques is generally
not possible for large systems. Consequently, approximate
Solution techhiques have been developed.

In the following sub-sections, brief, gritical

Summaries of the frequently used conventional and approximéte

Solution techniques is presented.

2.3.1 Vector iteration methods

Vector iteration methods’ 1°

are very effective in
solving the eigenproblem. However, the eigenvectors'ére\
Only calculated one at a time. Also, to preserve numericalr
stability, the eigenvectors must be calculated to high

precision. Vector iteration techniques are effectively

employed in subspace iteration.

rigid body modes may be removed. In finiteelement
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2.3.2. Transformation methods

Thesenethods7—23generally suffer from one or more
of the following:
(i) Transformation of the eigenproblem to standard
form is required. This is not always possible.
(11) All the eigenpairs are calculated instead of
the required few.
(1ii) No advantage is.taken of the bandedness of the

operators.,
Consider now briefly a few of the frequently used
transformation methods.
(a) The Jacobi method

This method 7-13 was proposed over a century ago

for the solution of the standard eigeﬁproblem. Clearly,
a detrimental feature of this method is the necessary
transformation to the standard eigenproblem. Another
undesirable feature is the calculation of all the eigen-
Pa;rs; apart from this, it is a particularly simple and
stable method. |

The method basically consists of carrying out a
finite number of éongruance transformations to diagonalise
[K]. This diagonal then contains the eigenvalues and the
elgenvectors are the columns of the product of the trans-
formation matrices.

The Jacobi method -has been further developedsto
take into account the generalised eigenproblem. The .
generalised Jagobi hethod‘has been éffedtively implemented’
for éolving the reduced generaliSed eigenproblem generated

by subspace iteration, see seétion (3.3).




11

(b) The Householder - QR - Inverse iteration (HQRI) method
7-10, 19-23

As in (a), the HQRI method requires

initially a transformation to the standard eigenproblem.
Once this has been achieved, the method proceeds as
follows. |
(1) Householder transformations to reduce [X] to
tridiagonal form.
(1i) QR iterations to obtain the eigenvalues.
(1i1) Inverse iteration to obtain the eigenvectors
| of the tridiagonal matrix. These are then
transfofmed to obtain the eigenvectors of [K].
Note that all the eigenvalues are calculated. However,
Onlyfﬂuarequired eigenvectors need to be calculated.

(c) The Lanczos method

A particularly elegant method from a mathematical
viewpoint is that due to Lanczos ! 10¢ 14-18 14 4 ansforms
an arbitrary matrix [A] of order n into tridiagonal form.
The idea basically is to employ two arbitrary but not
orthogonal vectors in generating two sets of bi-ofthogonal
Vectors using [A]. The conclusion of these sequenées
leads to a tridiagonal matrix which is similar tbl[A];

The eigenvalues of the resulting tridiagonal matrix may
be obtained in a variety of ways. Note that if [A] is
Symmetric, only one bi-orthogonal set need be generated.

This method was neglected for many years aftér it
was first proposed14 due to several numerical instabilities
associated with it. Despite the simplicity of the method
in exact arithmetic, it was found to be wanting in finite

arithmetic where round-off errors caused problems.



12

t

Recently, however, this method has gained favour

due to the following:
(1) The reinterpretation of the nature of numerical
instabilitieslG' 17.
(11) Procedures to minimise the effect of numerical

instabilities7'15.

Thus, the Lanczos method is considered as a possible
candidate for the solution 6f the large generalised eigen-
problem.

There still remains the problem of.equal or closely
Clustered eigenvalues; in this case the eigenpair is not
accurately approximated. In general, the accuracy of an
eigenpair approximation depends largely upon the spreading
of the eigenvalue spectrum. The accuracy of the predicted
eigenpair depends also upon the starting vector. If this
is orthogonal to some required eigenvector than the corres-
éonding eigenvalue is missed in the eigensolution.

If the truncated Lanczos method is used then the

18

accuracy of the.solution improves as the number of

generated vectors is increased.

2.3.3 Characferistic polynomial iteration téchniques

It should be noted that polynomial iteration

techniques’ 10+ 24

yield'only the eigenvalues, the eigen-
vectors have to be calculated separately. Explicit
Polynomial iteration requires the expansion of a determinant
which, for a matrix of order n, means about nl.operations
‘and 1s, therefore, impractical. Implicit polynomial
iteration requires several triangula; factorisations5 for

each eigenvalue, each triangular factorisation of [K] say,

consists of about }nmk operations. Therefore, the time
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taken for triangular factorisation increases rapidly
with the order of the operators..  This technique is
useful, however, when used in conjunction with inverse

iteration.

2.3.4 Sturm sequence property

This technique7—lo’25-27suffers from the same

defects that were mentioned with regard to implicit
polynomial iteration. When used in conjunction with
other techniques, this is a very useful property.
2.3.5 ' Rayleigh-Ritz analysis

The Rayleigh- Ritzs’7_10'28 approach is the .basis

of a lot of approximate solution techniques. The two
methods discussed subsequently can be shown to be Ritz

analyses. For a general discussion, consider the following
[A]y_ = A[B]z . LK) L3R .e (2.16)

The operators [A] and [B] are assumed to be positive definite
and defined in an n-dimensional space En' The Rayleigh

minimum principal states that

‘A; =minplv) .. ee ee Tes(2.17)
where p(v) is the Rayleigh quotient and the minimum is taken

over all possible vectors v

!T[A]!’ , ‘
p(y) = ——— - .o .o .o (2.18)
v [Bly |

Define now a set of vectors, V, which are linear combinations
of the Ritz basis vectors;'gi, 1 =1, ceeceee ) d'and are

given by
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|1
0

ingi.._ ed eeee e (2.19)

i=1

where the x; are the Ritz coordinates. Clearly, the v
must be in the subspace, Eq, spanned by the Ritz basis
vectors. The vectors, uy must be linearly independent

so that the subspace, Eq, has dimension gq, also we have

that Eq is contained in En'

Substituting equation (2.19) in equation (2.18) gives

q4q
| 73 *i*5 %1y _ .

p(v) = 21 =2 ... (2.20)
3 X X. b b '
%%1;’1 ij

" where
T
a,. = u/[(Alu,
; ij i 3 .. .. .. (2.21)

. _ T
byy = uylBlyy

The neéessary condition for a minimum of p(i) is

3R(¥) /9%, =0, 1 =1, ..... q. This yields
[xlg = p[E]E{_ . e e e o e o e ’ (2.22)

where [A] and [B] are symmetric matrices of order q with
typical elements definéd in equation (2.21) and X is‘the'
Vector containing the Ritz coordinates. | The solution of
equation (2.22) yields the elgenvalues Di, i=1, ..., g
and the corresponding eigénvectors,”gi, i=1, 0., q.
These Xy are'thep used in equation (2.19) to obtain

Ei; i=1, .;.., q. The bi obtained, are upper bounds7

to the Ai,‘i.e.
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Alipl, A2_<—p2’ e s o 0 0 Aqipq
The first inequality follows from the fact that Eq is
contained in En’ the second inequality may be proved

as follows:

xz = min p(v) .o .o .o (2.23)
The minimum is taken over all vectors v in E  that satisfy

the orthogonality condition
T =
Y- [B]"—"l - O LI [ 2N ) L3 (2.24)
Also from the Rayleigh-Ritz analysis,

p, = min p(v) s e ..‘ (2.25)

the minimum here is taken over all possible vectors, v

in Eq that satisfy the orthogonality condition,

-T - _

X [B]!l = 0 L3R L3R ) LI ) (2.26)
Consider now an auxiliary problenmn,

p, = min p(Y) ce e ee (2.27)
where the minimum is taken over all vectors v which satisfy

' the following condition
-7 _ '
z [B]zl - 0 e L) . e (2.28)

Now kz < o, since Eq is contained in En' also Ch < Py since
the most severe constraint on v inequation (2.28)is V,, therefore

Ay £ P2 L

P2
The third and subsequent inequalities may be proved
similarly. Note thét in the evaluation of Py and ii'

B(X) has to be minimised with the orthogonality condition,
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B
XIB]gj =0, =1, ¢eeee , 1 -1. This indicates that
less accuracy is obtained in the approximation of the
higher eigenvalﬁes since (i - 1) constraint equations

have to be satisfied in the evaluation of Py

. 2.3.6 Static condensation

5029731 4 pose degrees of

In static condensation
freedom which are not required to appear in the global.
finite element assemblage are eliminated. The assumption
that the mass of the structure can be lumped at some
Specific degrees of freédom without having much effect on
the eigenpairs of interest is inherent to this approach.
Once the mass lumping has been carried out, then by static
condensation the original n degree-of-freedom becomes a n.
degree-of-freedom problem, where n are the allowed mass
degrees of freedom. Typically, the ratio of the n, ton
is between % and fﬁ. . It should be noted, however, that n,
must be significantly larger than the required number of
elgenpairs in order to keeplan adequate mass distribution
in the system. Clearly, the accuracy of.the solution

obtained depends upon the engineering.judgment of the

analyst.

2.3.7 Component mode synthesis
5,32-35

This method is appropriate if a large

complex structure is to be énalysed. - Such a structure
is partitioned into substructures and eaéh subsfructure
is analysed separately. Once the préliminary analyses

has been carried out, the mode shape characteristic of

each component is know. These are then combined to
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estimate the mode shape characteristic of the complete

structure.

2.3.8 Discussion

Note that both Static condensation, section (2.3.6),
and Component mode synthesis, section (2.3.7), can be
understood"as'variations of Ritz analyseSS.

Consider now the Rayleigh-Ritz analysis, section
(2.3.5), in practical dynamié analysis, the Ritz basis
vVectors are calculated from the static solution, i.e.
solution of equation (2.2). This is doné by specifyiné
d load vectors in the matrix R so that,

[K][U] = [R] ce e e o (2.29)
where [U] is a n x q matrix containing the Ritz basis vectors,
[U] = [31, 22,>..... ' Eq]‘ The next step in the analysis
is the evaluation of the projections of [K] and [M] onto the

Subspace, Eqs which is spanned by the vectors, gi, i=1,.0.., q.

[K] = W1TIK] (U] v e e (2.30)
- IM)
-This leads to the reduced eigenproblem

tw1* (M1 [u] ceeeee (2.31)

[Klx = p[Mlx .. .. .. .. (2.32)
The solution of which can be written as

[RIIX] = MIIXI[P] .. .. .. (2.33)
where [P]‘is‘a diagonal matrix containing the eigenvaiue |
approximation Py and the columns of the matrix [X] are the
HﬂrdtthogonéleigenVectors of equation (2.32). )The,appfoxi-
mations to the éigen&ectors;of the original problem are then
given by ' | o | \

(vl = [U][X] oo oo .o oo (2.34)
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In the discussion of the Rayleigh-Ritz analysis
the operators [A] and [B] were assumed to be positive
definite. This is always true for [K] since, as mentioned
Previously, a shift can be introduced to obtain a shifted
[K]) which satisfies thisconditions. The case.where [M]
is non-negative definite can be dealt with by ensuring that
the Ritz basis vectors lie in the subspace corresponding to
the finite eigenvéctors. The error in the eigenvalue
approxi@ations depends upon the Ritz basis vectors chosen.
Thus, good results are only obtained if these basis vectors
Span a subspace which is close to the least dqminaht
q-dimensional subspace of [K] and [M].

The paramount problem in a Ritz analysis is the
Sselection of 'good' basis vectors. The repetition of the
analysis with a larger set of basis vectors is not necessarily
a check on the first analysis. Since a large discrepancy
in the results of the two analyses 6n1y indicates that either
Oone or both analyses are giving inaccurate eigenpair approxi-
mations. Suéh a situation necessarily}commits the problem
‘to further aﬁalysés.

In a Ritz-type analysis, two major pointé:of
uncertainty exist. Firstly, the écégracy of the approxi-
mations to the required eigenpairs is not known. Secondly,
the possibility that an approximation to an eigenpair may
| have been missed altogéther ls present. The uncertainty
due to these points leads to a large number of repet;tions
of the analysis, involving high cost, without, hdwever, |

~removing all uncertainty. The question then arises,
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whether it would have been more efficient to solve the

full eigenproblem, provided a solution is possible.

2.4 Buckling analysis

One other generalised eigenproblem merits brief
discussion. Consider the equations governing the

bifurcation buckling of a structure.
[Klv = A[K]GX oo .o .o (2.35)

where [K] is the linear strain, stiffness matrix and [K]G

36 stiffness matrix.

is the non-linear strain (geometric)
The buckling load and the corresponding buckling mode are
given by A and v respectively. [K]é is a banded matrix

with the same bandwidth as IK] and is, in genéral, indefinite.

In this case, the problem to be solved is
[Klgv = AKIV o0 oo e .. (2.36)

where X = % and may be positive or negative.

Equation (2.36) is solved for the largest value of
A which corresponds to the smallest buckling load. In
'Practicol.analyses, it is desirable to find. the lowest 'few'
buckling loads since; if they are.very.close, preventing the
lowest buckling mode becomes inconsequential.

Note that here static condensation cannot be used.

However, a Ritz analysis is applicable.
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CHAPTER 3

SUBSPACE ITERATION

3.1 Introduction

In this Chapter, a subspace iteration algorithm
is presented3. In the past, a number of subspace iteration
37-41

algorithms have been proposed by various authors A

Primary advantage of subspace iteration over other methods
is that high precision in the calculation of eigenvalues
and eigeﬁvéctors is not required to preserve numerical
Stabilityf | ,
The subspace itera}ion method is largely based on
Various techniques mentioned earlier, namely simultaneous
Vectorbiteration, Sturm sequenée property and the Rayleigh-’
Ritz analysis. It uses primarily vector inverse iteration
with a few triangular factorisations. The projections of
the operators [K] and [M] onto a subspace are formed and the
Yeduced eigenproblem is solved by the generalised Jacobi
method.

- The main difficultywehcountered in this method is
the selection of the initial subspage. The scheme used is

4 simple one, However, experience has shown that it is

Successful.

3.2 Algorithm
The basic idea is iterating simultaneously with a

humber of vectors. The number of iterations to convergence
depends primarily upon how rich the individual initial
iteration vectors are 1n.£heir corresponding final eigen-

vectors.
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' Suppose'thé initial iteration vectors, [X]1 span
the r~dimensionalleastdominant subspace but are not
eigenvéctors. .An effective iteration scheme would, in
this case, find the eigenvectors in a single step.

Let [X]k be the iteration vectors after (k - 1)
iterations which span the subspace Ek' The aim is to

find the subspace Ek+l' the basis vectors of which,

Ix]k+l are a better approximation to the eigenvéctors
than [x]kf

'The solution algorithm proceeds as follows:
let [Y] be the initial iteration vectors, then iterating

to E ffor‘k = 1,2 ceeee

from E k+1

k
[K] [x1k+1 = [Y]k .o .o .o .o (3.1)

[¥1,, = MK ., .. .. .. (3.2

Obtain the projections of [K] and [M] onto Es

(K]

(X1g,, [KIIX], ., oo .o .. (3.3)

] = (XI5, DIIXD . .o oo oo (3.4)
Solve the projected eigenproblem
[K1[QI, ., = [MI[QI,  [A) i - ..  (3.5)

where [Q]k+l and [A]k+1 are the eigenvectors and eigenvalues
respectively of the projected problem.

Calculate an improved approximation to the eigenvectbrs.

(¥l (3.6)

[Y]k+1 = k+l[Q]k+l . e e LI}
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Then provided the vectors in [Y]1 are not orthogonal to

one of the required eigenvectors,

[A]k+l + [A] and [Y]k+1 > [V] as k + o,

Note that the projected eigenproblem is solved in the
r-dimensional least dominant subspace.

The convergence analysis given by Rutishauser22
is applicable to the above algorithm, although he uses a
different subspace iteration. The convergence is
asymptotic and tl':; convergence rate of the ith iteration
Vector to an eigenvector can be shown to bé li/lr+1' where
the iteration is performed with r vectors. This asymptotic
convergence rate indicates that the eigenvectors corresponding
to the lowest eigenvalues converge fastest. A highef con-
vergence' rate can be obtained by using q iteration vectors
when r eigenvectors are required with, q > r. Provided
AL < A ,1r multiple eigenvalues do not have a detrimental
effect on the convergence ratef

Consider equations (3.3) - (3.5), these represent
a Ritz analysis as described in section (2.2), with [x]k+l".
as the Ritz basis vectors. . As with all Ritz type analysis,
[A]k+l contains upperbounds to the eigenvalues, Ayr eeee o Ay

and the lower eigenvalues will be approximated best.

3.3 Generalised Jacobi iterations

For a general discussion, consider the symmetric
operators [A] and [B] of order g with [B]>positive definite.
The problém to be solved is:

| [Alv = PIBIV  «v  «r e o (3.7)
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Note that in this case there are no restrictions on the
eigenvalues, Py s which may be positive, negative or zero.
The method is best demonstrated by a general

example; for ease of calculation consider the case n = 2,

11 345 by Pij

; [B] = '
a.. a.. |} b.. b..
ji 233 ji 733

[A] =

- The aim ig to obtain the two [B]-orthonormal wvectors which
also diagonalise [A]. The directions of these vectors are

determined completely by the éolumnsixllvl, where

o [or]

The condition governing the choice of s and t is that aij and

bij shall be zero simultaneously. Hence, by forming [V]T[A][V]

and [V]T{B][V] two equations for s and t are obtained.

l t . +ta.. =0 .o R
+ (1 + s ).aiJ aJJ (3.8)

(1L + st) b,. + £t b,. =0 oo .

S a4
s bii
Equations (3.8) and (3.9) are linear equations which in the

general case are solved by defining the following

a.. =a.. b, -b.. a;. )
%33 T %33 P13 T P33 %43
a =La b,. - b a,.
B e ce ee (3.10)
. d
a =agy bjj - ajj bii !
5-- 5 b
[ =._J..J. t:—&..
X x|

The value of x required to calculate s and t is then obtained
by solVing

2 - s = . |
X ax ajj ay 0 .o .o .o (3.11)
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The solution of which is given by

[a* + 4 3,.a '
i/ 4 JJ ii o LY . e L) (3012)

b
il
N

Wwhere the absolutely larger value of x is employed.

It is generally krown that this congruence trans¥
formation is possible4 provided one of the operators is
positive defiinite. Therefore, when considering [K] and
[M], this effectively allows [M]to be ﬁon—negative definite.

Physically, the aim in the diagonalisation is to
reduce the coupling between the degfees of freedom i and j;

The coupling factors are, ' )

/a‘ij/aiiajj ;/b’ij/bii/bji ce e e (3.13)
For effieiency,‘first the most significant and then tﬁe
smaller couplings are annihilated. The method proceeds
as follows: ‘
(i) 1Initiatise the threshold for sweep, 2.
(ii) Calculate the couplihg factors for all (i,3) with:
i <3, and apply a transformation’if either of
the factors is larger than the current threshold.
(iii) Obtain current eigenvalue estimates.
(iv) Check for convergence of eigenvalues, if
| convergence has not occurred start a new sweep.

The tolerance used on the eigenvalues 15 10-8,

;consequently the threshold used in step (1) is 10-22;
so that the coupling factors can be expected to be smaller

than 10-8 after about four iterations. This is quite
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important since, even if the'eigenvalues have converged,
convergence is not accepted until the coupling factors

are also smaller than 10-8.

The reasons for prefefriné this method over
others for solving the projected eigenproblem are the

following:

(a) There is no initial transformation to the standard
form. This has two implications:,
(i) If the matrices are ill-conditioned, then
the solﬁtion of the standard eigenproblem
, with ill-conditioned matrices is avoided.
(ii) 1If the 6ff-diagonal terms in [K] and [M]
are already small or only a few non-zero
off-diagonal terms are present, then zeroing
a few or small terms will not change the
diagonal terms drastically. Since the
ratios of the diagonal terms are the eigen-
valﬁes, the eigénproblem is nearly solved.
(b) Advantage is ﬁaken of the fact that, as the number of
iterationS“increases( [X]k;l tendf£o?the eigenvgctp;sapd,v

therefore, [K] and [M] tend to diagonal form.

3.4 Initial Iteration Véctors

The most criticalzaspect of subspace iteration ié
the choice of the initial iteration vectors in [Y]l. ‘If
the initial iteration vectors span the least dominént |
subspace, then convefgencé is almost immediate.

Consider the case wheh there are only r non-zero

terms in the diagonal mass matrix. The initial iteration
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vectors in this case are unit vectors with the +1 entries
Corresponding to the mass degrees of freedom. One sub-
Space iteration iﬂ this case is, in fact, a static
condensation anelysis and convergence is immediate.
Similarly, component mode synthesis and other related

methods can all lead to good initial iteration vectors.
Another case when convergence is immediate is when [K]

and [M] are both diaéonal matrices. The‘initial iteration
Vectors in this case are unit vectors with the +1 entries
Corresponding to those degrees of freedom where the smallestv
kii/mii ratios occur. The kii’and m, 4 being the diagonal |
elements of [K] and [M] respectively. The initial iteration
Vectors obtained by this method are effective because they
are actually the eigenvectors corresponding to the smallest.
eigenvalues.

Considering the above discussion, the initial
iteration vectors for a general problem are-chosen as
follows. The first column in [Y]l is the diagonal of [M].
This ensures that all the mass degrees of freedom are excited.
"The -subsequent columns of [Y]iware’unit:vectbrs:with;the +1
entries corresponding to those degrees ofﬁfreedom which have
the smallest kii/mii ratios. Thus, apart from the first
Vector, all the other Véctore are linearly‘independent ahd
excite poiﬁts of maximum mass and flexibility. Note that
the unit entries in the second to last vecter should not be
Clustered together‘toormuch. |

It shoﬁid be noted that, since subspace iteration
may be interpreted as a repeated application df the Ritz

analysis, all the characteristics of the Ritz analysis
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pertain also to subspace iteration. Recall that in
particular,~ good results are only obtained if the Ritz
basis vectofsAspaﬁ a subspace sufficiently close to the
least dominant subspace. Thus, the choice of the

initial iteration vectors is of paramount importance.

3.5 Numerical considerations

There are several numerical aspects which should

be considered separately.

3.5.1 Dimension of the subspace

It was mentioned in section (3.2) that the ultimate
rate of convergence of an iteration could be increased by
increasing the dimension of the iterating subspace.r
increasing the dimension of the iteraﬁing subspace, however,
increases the cost of solutions. Therefore, an optimum for
the dimensionality of the iterating subspace is required.
Clearly, the number of iteration vectors q,‘need to be'
greater than the eigenvalue sought, r in order to allow
for multiple roots and to obtain a better convergence rate.
'Experience has shown that a reasonable number of iteration |

vectors are given bYS.

q=min {2, 8 +r) e e .. (3.14)

This allows for multiple roots and the dimension of the
Ssubspace is large enough to expect monotonic'convergence

Without employing an eccessive number of iteration vectors.

3.5.2 Convergence

‘The criteria used for convergence is:
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s (k*1) _, k

i i ,
A (k+l) S TOL o0 oo e e (3015)

i

k
i

value after k and (k-1) iterations respectively, and TOL

where Ai(k+l) and A are the estimates for the ith eigen-
is the prescribed tolerance. Clearly, TOL is dependent
upon the accuracy sought, type of problem being analysed

and word length of the computer used.

The tolerance used in the case studies was 10-4,

which means that AX differs from A(k+;) by less than 1%
when éonvergence is accepted. The program stopg once the
required r eigenvalues have_convergedAor the specified
maximum number of iterations is reached. If the required
r eigenvalues ao not converge, then either the number of |
iteration vectors or the maximum number of iterations
allowed must be increased. |

It should be noted that equation (3.15) represents
only a necessary cdndition_for convergence, The necesséry
andsufficientcohditions are satisfied if and only if the
eigenvalué’énd the corresponding eigenvector estimates

satisfy the eigenproblem.

3.5.3 Check calculations

Another important aspect of this solution procgdure
is the verification of the fact that the required eigenpairs
have been calculated anq none of the required eigénvalues
have been missed. In.this phase use is made of the sturm
Seéuency éropefty of the characteristic polynomial of the

eigenproblem.
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| A triangular factorisation of [K]' = ([K] - s[M])
is carried out, where s is just greater than the largest

eigenvalue calculated, Ar' i.e.

[K] - S[M] = [L][D][L]T v ee ee .. (3.16)

where [L] and [L]T are lower and upper unit triangular
matrices respectively, and [D] is a diagonal matrix.

The number of negative elements in [D] is equal to the
~humber of eigenvalues smallér than E}Vthus, in this case,
there should be r negative'ﬁerms in [D].v There remains
the problem, however; of obtaining é meaningful value for
5.' The fact that the‘)\i are only approximations, should
be taken into account here.

The criteria for obtaining a value for s should
be less stringent than the'eigenvalue convergence criteria
since inaccuracy in’the eiéenvalue épproximation should be
bracketed by the bounds forvthe'eigenvalue. Experience.
has shown that a reasonable estima@e for the region within

which the exact elgenvalue lies 1is given bys,

0.99 2, ) ¢ x crvor a0z

where Xi(k+l) is the.approximation of the ith eigenvalue
after k iterations. - Here; only thosé eigenvalues which
have converged are used, thus bounds on all converged .
elgenvalues can be established. This leads to'é
reasonable estimate for s and consequently a realistic

‘sturm séquence check may be performed.
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The overall advantage of such checks is that if
an eigenvalue approximation is missing, then the interval

it is missing from can be identified.

3.5.4 Shifting

Since the lowest eigenvalues converge first, it
would seem natural té use shifting as a method of speeding
up convergence.  However, the difficulty here is'that if
the shift is 'too larée' then convergence to the lower
eigenvalue is lost. Alternatively, if the shift is 'too
smali' then the increase in convergence is notlﬁignificant.
A good value for the shift may be obtained once the eigen-
value spectrﬁm is known approximately, but then the additional
triangular factoris;tion becomes uneconomical since subspace
iteration is close to converging.

Shiftihg becomes important if a significant eigen-

value app:oximation has been missed. First the interval

" which contains the miSsing eigenvalue is identified, then

the eigenproblem is shifted to
([K]' = s*'[MDyv = A[MIy .. .. ..7"" (3.18)

where s' is the upper bound for tﬁe eigenvalue directly

prior to the missing eigenvalue. Thé missing eigenvalue

approximation may now be obtained by performing subspace

itération on the shifted eigenproblem, i.e. equation (3.18).
A similar approach can be uéed to obtain the eigen-

values in a inen interval. The procedufe in this case

is to set the shift equal to.the lower bound of the interval

and perform subspace iteration on the shifted problem.



31

Triangular factorisation can be used here to determine

the number of eigenvalues in the specified interval.

3.6 Operation counts

An operation is defined by a multiplication
which is hearly always followed by an addition. There

are two cases to be considered:

]
=]

(1) Consistent Mass formulation, m -

(1i) Lumped Mass formululation, m, = 0

where m, and m, are the half-bandwidths of the  stiffness
and mass matrices respectively. The number of opérations
required in subspace iteration for the two cases mentioned

are given in Table (3.1), a detailed discussion is given

elSewhereS.

Note that operationvcbunts are very useful for
comparison purposes. Also, an operation count for any
modification will give an indication of how much extra

work is required when that modification is employed.

In Table (3.1), (Xi', v;') is the final approxi-
mation of the ith eigenpair and the norm used is.the

Euchilean vector norm.



Number of Operations

Operation | Calcuiation.l
m=m = mo m=m; m = 0

Factorisation of [K] [K];= [L][D][L]T % nm? + % nm % nm? + % nm

Subspace Iteration [K][X]k+1 = [Y]k ng(2m + 1) nqg(2m + 1
[§]k+l‘= M) [X]y 4 ~ . ng(2m + 1) ng
[X].= [X],,0¥], - snalg + 1) | 2 nglg + 1)
] =[xy, (91, ,, | znal@+ 1) | 3nglg + 1)
[K] [Q]k+1 = [M] [Q]k"'l[A]k"’l Of Order (qg)
[Y]k+l.= (Y]k+1[Q1k+l ‘ : ' nqg? ng?

Sturm Sequence Check [K]' = ([K] - s[M]) ' n{m + 1) n

, [K]1' = [L1[D]IL1T Sz +32om | Zon? o+ 2 omm
Check Calculations I [Klyg' = A M)y, Il ' 2nm +4n 5nm + 2 n
TRy ™

TABLE 3.1. OPERATION COUNTS FOR SUBSPACE ITERATION SOLUTION

4
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| CHAPTER 4

)

MODIFICATIONS TO SUBSPACE ITERATION

4.1 Introduction

In this chapter, various techniques which may
accelerate the subspace iteration algorithm are considered.
There exists a number of ideas‘lz_45 which may be employed
to modify particular parts of the subspace iteration
algorithm. It is not difficult to dream up modifications
of high complexity which may converge in fewer itérations42'43k
but Which, however, use more computer time due to the
cbmpléxity of the modification. It is easy to lose
perspective and become too involved with the modifications.
Therefore, in order to design modifications which best
Optimise the algorithm, a clear overview of the prime
objectives is necessary. This follows from the fact that
the algorithm is a modular entity, with each module contri-
buting to the total time taken for an iteration. Clearly,
since these contributions cannot be of the same order, it.

- would be.prudent. to ngglect those steps which use.relativeiy.
little time and concentrate on those which are the prime
contributors to the total time. ‘ |

Two methods of modifying the subspace iteration
algorithm and the variations arising from thése have been
- studied. The two basic methods are:

(1) Repeatedly operating upon the iterating sﬁbspace
with the operators [K] and [M]
(2) Taking a linear coﬁbinatiqn of the previous two

‘estimates of the subspace to form the current

subspace.
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These are referred to as Method 1 and Method 2 respectively
throughout.
Consider now the objectives of the modifications:

(a) Faster solution without loss of accuracy

(b) Higher convergence rate-

(c) Fewer iterations for conve;genée.
It is with the above objectives in mind that the various
modifications have been designed. Here, the theory is
Presented and the primary numerical aspects of the modifi-

cations are discussed.

4.2 ‘Method 1

-

4,2.1 Theoretical considerations

" The calculation of a few lowest eigenvalues and

the corresponding eigenvectors of the problem
[K]Xi = Xi[M]y_i o .. T ew L) (4.1)

is réquired. Where the [K] and [M] are the system matrices,
ki'and v, are the eigenvalues and the corresponding eigen-
vectors resbectiveiy.4 Let q be the number of iteration
vVectors, with q < n, énd Xy be’the.iteration vectors_with ;
i=1, .... , q, then:
n : . ‘
Xy = jzl a4y L e .o e (4.2)

where the aij are constant coefficients and are defined by

ord(1) , i =3

A, . .
13 ord(e) i # j

and e is small.
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Consider now the implications of operating upon
the X; with the operators [K] and [M]. Two possibilities
are available here; i.e. operating with [M]-llK] or
[K]-I[M], both cases are investigated separately.

(a) Suppose ii is formed in the following manner

g, = muThRIx, .. .o o0 L. (4.3)

substituting for x; from equation (4.2)

n

_ -1
- [M] [K] .Zlaijy‘j .o .o .e (4.4)

i J
Re-arranging equation (4.1) yields
(1 "tk Y, = Ay . (4.5)
—i i_i o LI LY .

Substituting from equation (4.5) into equation (4.4)

_ n

¥y =’jzl ajqhvy . e e (4.6)
Let Ea be the normalising factor for ii’ also let

fa = fakl | L3N ) . e .0 ‘-- e (4#7)

Let y, be the normalised iteration vectors, then

substituting from equationk(4.7) into equation (4.9%) leads to

B ¢ A
xi = fa jzl aij [X-%l Xj .o e . e (4.8)

(b) In this case let Zi be formed as follows

2= KT Lo oo e L (409)
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Substituting for x, from equation (4.2)

o |
Z, = (k] " -21 a; Vs oo ee .. (4.10)
J:

Re-arranging equation (4.1) yields

%; v (k17 mMby, .. .. .0 (441D

i i

Substituting from equation (4.11) into equation (4.10) gives

z g L | | (4.12)
z = a -_"Xo ) ) . e .
=4 j=1 ij Aj ?
Let Eb be the normalising factor for 51' also let
£ .
£ o= 2 ce ee e e e (413)
b Al _

Let z; be the normalised iteration vectors, then
substituting from equation (4.13) into equation (4.12)
leads to

n Ay
z, = £ jgl a4 % Vgoee ee e (4f1§)

Let A;/A) = Ej in the following discussion, then

clearly Al/lj'=“;/z In both (a) and (b), £, and f, are

i
formed from the apprbrpfiate normalising factors in order
to obtain Ej and 1/2j in equations (4.8) and (4.14)
respectively. The presence of lj andl[ijclarifies ;he
convergence behaviour of Yy and Z4 respectively.

Consider case (a), the minimum value of Ej is

Clearly unity and since A; <A, < A3.< «lene < A,r the
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values of Ij form an increasing sequence. Therefore, it
follows that the higher modes are enhanced in the vectors
(Y], in fact as'j + n the higher modes become progressively
more dominant in the vectors [Y]. Note that the columns
of [Y] are the iteration vectors y;. The effect of
operating in this manner upon the iteration vectors is an
enhancement of the higher modes and thus a divergence away
from the least dominant subspace. This is obvious from
the fact that Yy convergeS‘linéarly to v, provided y, is
riéh in Xi' | |

Consider now case (b), here, l/ij forms a decreasing
sequence and, therefore, the higher modes are suppressed.
This suppreséion becomes stronger'ag j +n, i.e. l/Ej gets
Smaller. It follows from equation (4.14) that the vectors
in [Z] will be rich in the lower modes while the higher
modes become progressively less significant. Hence, in
" this case, the overall effect is a convergehce towards the
least dominant subspaée. In fact, if this operation is
carried out repeatedly,.thé effect is a convergence to the
least dominént vector, i.e. all the iteration vectors
converge to the lowest mode. |

From the above discussion, it is clear that case (b)

is appropriate since the lowest eigenvalue and the corres-

ponding eigenvectors are required.

4.2.2 Algorithm
The subspace spanned by the vectors in IY]kyis,

operated upon by (K1"1[M], 2 times where £ is obtained
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through experience. Suppose [Y], = [M][X]l and [X] is

given,~then the algorithm proceeds as follows:

[KI[X]y,y = [¥D oo oo oo ..

(Y1, = MIDXDy 0 L0 L,
[RK1[X]y ,p = [¥lyp gy e e ..
¥,y = MIIXI ) oo oo .

(K1 [X]y,q = [¥lyypy

[¥], ., = MIIXI,,,

* e . e LN J

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

Now the algorithm proceeds as in the original algorithm with

the vectors in [Y]k+2 spanning the initial subspace.

Back substitution and forward reduction to obtain [X]k+2+1

[KIIXD 00y = [¥lggp oo oo s

Matrix multiplication to obtain [§]k+2+l

- [§]k+2+l = [M] [x]k+2+l LR ] ) oo' ;o

form the projected operators.

[R]’ 1x]:+£+l FY]k+2fJ-;' . .

- T -
Solve the projected:eigenproblem

(R11Q] = [M][Q](A] e ee .

(4.21)

(4.22)

(4.23)

(4.24)

(4.25]

where [Q] and [A] are as defined in the previous chapter.
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Vector multiplication to form [Y]k+z+l

(Y], 001 = [¥lpiger @ oo o oo (4.26)

Now [Y]k+£+1 replaces [Y]k in the next iteration.

4.2.3 Numerical considerations

4.2.3.1 Numerical stability

It‘is seen from equation (4.14) that, if the
iteration vectors are operated upon by [K]_l[M], the
higher modes are suppressed and thus the lower modes
are dominant in the resulting vecto;s. This effect
becomes more and more pronounced as the iteration
Vectors are repeatedly operated upén by k] "M,

The overall effect is to make the iteration vector more
and more parallel to each other and thereby making them
a poorer basis for the subspace. In order to counteract
this and preserve numerical stabilityt Gram—Schﬁidt
orthogonalisation and normalisation with respect to [M]
are employed. )

It is difficult to decide how often the.numerical
stability preserving procedure‘éhould be applied. Clearly,
the number of [K]-l[M]foperations after which the numerical
stabilities become irreversible due to finite precision
arithmetic in the computer are problem and machine dependent.
Therefore;}it4éppears prudent to a§ply Gram-Schmidt ortho-
gonaiisation'aﬁd normélisation after éaéh‘opefation of

‘[K]—I[M]. Although this takes into account the worse case,

it is ihefficient if the numericél instabilities in the
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iteration vectors do not occur after each operation of

(k] "Ly,

4.2.3.2 Convergence

Here there are two convergence rates to consider,

i.e.

1

(1) The convergence rate due to the [K] ~[M]

operations
(ii) The convergence rate due to the original

subspace iteration algorithm.
' The remarks made on the convergence of subspace iteration
"in section (3.5.2) are directly applicable for (11). This
follows from the fact that the [Y]k+2 in eqﬁation (4.2.1)
are the initial iteration vectors for subspace iteration.
Thus, the modification is applied at the level of obtaining
a better initial subspace.

Consider now the convergence rate from (i). This

»yclearly depends upon tﬁe number of [K[-l[M] opefations.

Limg.

This is obvious from equation (4.14) since 2, [K]~
operations Qili‘lead to a factor of (l/'i)2 in theveguatidﬁ;-'
Therefbre, although the convergence raté:is asymptotic; it
may be increased by oéerating upon the iterationrvectors

by (K1 1[mM].

4.2.4 Impiementation

The modification to the subspace iteration
algorithm has been programmed in modular form. Equations
(4.15) to (4.20) are programmed in a subroutine which may

- be insérted into any working subspade iteratibn prbgramme.
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Two subroutines46 containing the in-core and the out-
of-core versions of the modification are available. The
Programmes contain Gram—Schmidf orthogonalisation and
normalisation with respect to [M]. The parameter, £,
i.e. the number of [K]—l[M] operations, is a variable
in the input data. For details of the FORTRAN computer

programme and how to use 1it, see departmental report46.

4.2.5 Operation counts

Take an operation as defined in section (3.6).

Let n be the order of the operators [K] and [M], mk and m.

~the half-bandwidths of [K] and [M] respectively and q the

dimensionality of the subspace. The number of operations

required for the modification are given in table (3.2).

Number of Operations
Operation
m = mk = mm m = mk; mn =0
Form [X]k+l'in equation (4.15) - nq(2m+l) nq(2m+1)
Form [Y]k+l in equation (4.16) nq (2m+1) ngq
Gram-Schmidt Ortho-normalisation 3n(2q-1) 3n(2q-1)
Total for each operation of [K]-l[M] n(4mq+8q-3) n(2mg+8q-3)

TABLE 4.1. OPERATION COUNT FOR METHOD 1

Thus, if the iteration vectors are operated upon

2 times by [K]—l[M], then the appropriate total number of

operations is multiplied by 2. Hence, the total number of

.

CHEEHIELD
\ uNNERS\\IIY

canmi D

|
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operations in comparison to the original subspace iteration
algorithm'is increased &n(4mg + 8q = 3) or n2(2mg + 8g - 3)
per iteration depending upon whether m = m = m, or M = 0

respectively.

4.2.6 Variation of the Basic Method

The basic method consists of operating upon the
iteration vectors with the operators [K] and [M]. Consider
now a similar scheme using [K]; and [M]?. Clearly, if the
bandwidth of the system’ matrices is large, then forming
[K]? and [M]"is ekpensive and time consuming. However,
the actual Sqﬁafes of the system matrices are never
required; consider the square of the eigenproblem given

in equation (4.1). v
[K]zzi = Az [Mlz_‘fj_ o e . .s (4.27)

The problem in equations (4.1) and (4.27) have the same
eigenvectors but the eigenvalues of equation (4.27) are the
squares'of the eigenvaluesvof equation (4.1). Note that
this method is referred to as method 1A throughout.
4.2.6.1 Algorithm |

The requirement of the squared oﬁeratois'is made
unneCessary by employing double back-substitution and
forward reduction followed by double matrix mﬁltiplicatién.
As in section (4.2.2) let [Y]l = [M][X]l where‘[X]1 is
. given, then the algorithm proceeds as follows:
Double back-substitution and for&ard reduction

[RIIKI XD,y = (¥, .. .. .. (4.28)



43 .

Double matrix multiplication
(Y1, ,, = [MIIMIIX], ceee (4.29)
From this point onwards the original subspace iteration

algorithm is used with [§]k+l as the initial subspace.

4.2.6.2 Implementation

The implementation of the above algorithm presents.
no difficulty since [KIz and [M]? are never required. The

following approach was adopted in writing the programmes

“

[K] W], = [¥], o |
EREREE ee .. (4.30)

[K][X],,, = W]y

\

W,y = MIIXD
| C ee .. (4.31)

[¥],,, = [MIIW],

Note that the above approach allows the consideration of
[K] Zzi = xi[M] R‘-Y-i L) e .. (4.32)

" without ény'difficulties; The only requirement is to adé"
the apprdpriate number of steps to equations (4.30) and
(4.31). The programmes. have been written so that the
number of steps to be taken in equations (4.30) and (4.31),
i.e. the value of & in.equation (4.32), iS'aﬁ input

parameter.
46

This algorithm has been programmed™~ in both

in-core and out-of-core forms.
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4.2.6.3 Convergence

Consider now the convergence of this approach.

Letgi be an iteration vector as defined by equation

(4.2). . Equation (4.27) may be rewritten as

v, = x172m %y, ceeeee .. (4.33)

Let éi be the iteration vector formed when Xy is operated

upon by [K]_z[Mlz,'theh

R S ) -
Ei = [K] [M]l‘_i . .o .. . e .o (4.34)
Substituting for x, and using equation (4.33) in equation

(4.34) yields

- n 1
_z..i = .Z aij —-z-zj ) oo .o e (4-35)
j=1 Aj
Let Ec be the normalising factor for gi, also let
fc
fc = —)\—2
1

so that the normalised iteration vector 2z; is given by

Ei - fc Z aij _l Xj B o-‘ o o e (4.36)
j"'l }\o ’
J
Note that the factor ()vl/kj)2 in equation (4.36) 1is

-2 -
equivalent to ¢ where % is the factor defined in

section (4.2.1).

Recall ndw the discussion in section (4.2.3.2),

» a similar situation exists here with two convergence
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rates to consider. The main point of interest is the
convergence rate due to equations (4.28) and (4.29), since
the remaindér of the algorithm is the original subspace
iteration algorithm. The convergence rate of interest is
clearly related to the factors l/f,j since it is these that
govern the presence of the eigenvectors in any iteration
vector.
‘Recall that in section (4.2.3.2) it was stated

.that 2, [K] 1[m] operations would lead to a factor of
(I)E)z in equation. (4.14), which is analogous to equation
(4.36). In the present case the iteration vectors have

“2/M12. It can be seen from equation

beenuoperated upon [K]
(4.36) that this gives rise to a factor of (1/7) 2. Thus,
it follows that this is equivalent to carrying out two
[K]-l[M] operations.

Hence, the conclusionlhere is that raising the
problem to the power & has the same effect on the conver-
génce rate as operating upon the iteration vectors £ times
[k}t
4.2.6.4 Numerical stability

[M].

The discussion in section (4.2.3,1) is directlj
applicable‘here, all the points made there are relevant
here. As in the basic method, Gram-Schmidt ortho-
gonalisation and normalisation with respect to [M] are
incorporated into the programmes. -

An important point to note is that, although
theoretically, methods 1 and 1A have the same overall effect

the numerical stability requires further consideration
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in this case. There is an intuitive feeling here that
this case is more likely to suffer frbm numerical
instability than method 1. The basis for this is that
in method 1, a [K] ! operation is followed by an [M]
operation which acts as a balancing device ;n numerical
terms. However, in method 1a, a [K]_l operation is
followed by another [K]-l operation before the two [M]
operatioﬁs. Hence, the numerical stress in method 1A
appears to be far greater than in method 1. Due to
this, the threat of numerical in/st-ability will be realised
far quicker in method 1A than in method 1, as the power

of the problem and the number of (K] "1 {M] operations are

increased respectively.

4.2.6.5 Operation counts

The remarks made in section (4.2.5) as directly
applicable here.- The number of operations due to this
method is approximately the same as that given in

section (4.2.5).
4.3 . .. Method 2

4.3.1 Theoretical considerations

Let [Y]k_1 and [Y], be the iteration vectors after
the (k-2) and (k-1) iterations respectively. Then the
basic idea is to form Yo, asa linear combination of
[Y]k_l and [Y], in an optimum manner. Thus, the required

expression is of the form

where a, the coefficient to be determined is the.optimising

factor.
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The necessary requirements are some criteria for
determining the optimising factor, a. Consider the
following argument, a necessary condition for the itera-
tion vectors to be eigenvectors is that they diagonalise
the system matriceé. Therefore, a reasonable criterion
is to require [Y]k+l to zero the off-diagonal terms in
the system= matrices. The matrix considered is {[K], the
stiffness.matrix,since the mass matr;x, (M], may be a

diagonal matrix, and the expression to be formed is
: ‘ o . ;
S | J :
Iij - [Xk"'l] [K] (Xk"'l] o e . e o e (4.38)
‘where the superscript indicates the ith and jth iteration

vectors. The condition that [Y]k+1 diagonalise [K] leads

to the following expression

= ' ' .
Iij Kij 61j e e o e

(4.39)
where Gij.is the Kronecker delta defined by

0,133

Gij =

"andagfj is.the appropriate diagonal term.

Substituting for Yk+l from equation (4.37) into equation

(4.38) gives
I = i + 0 i T[K] i + a i - (4.40
15 7 (& Yy-1 Y Y-y - (4.40)

Cdnsidering only the upper or lower triangle since the

system: métrices are symmetric,
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T . T ; i T
Ty =[] wafgd) o) wifudy) o) valel)

ce e e (4.41)

which may be written as

= 2
I [ “aij +(1bij +a cij L 2 ‘.. LS (4.42)

Summing all such'Iij gives
n
I = i:l Iij . LI 1 L2 -ov LN ] (4.43)
1>3 ‘
Substituting equation (4.42) into equation (4.43) yields

-I- = a-l-al-)'l'aza L ) LN ) L LN 2 (4.44)

where

azzaij ' B:Zbij sy C = zcij .0 LI (4.45)

Consider equation (4.44), 'I is a function of o and clearly
needs to be ﬁinimised in order to obtain the required value
of a. This follows from the fact that the eigenveétors i
diagonalise the system. matrices. There exists a problem
however, concerning the coefficients 5,’5 and ¢, namely
that if the negative and positive weighting of the off-
diagohal terms is gimilar, then summing the aij’ bij_and

c would lead to zero without the individual terms being

ij
zero. The following two strategies were considered

in order to overcome this problem.
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Case (a):

The idea here is to try and set up an analogué_
problem in which the moduli of aij’ bij and cij are summed.

Clearly, if the sum of the moduli is zero, then the

individual terms must also be zero. Let

Tig = |24t O Bigl* " (i3] .. .. .. (4.46)
Summing all such Jij gives
n _
3: ZJ N o0 L] .o L3N] LK) . (4.47)
1=1 13

, i>3 _
Substituting equatidn (4.46) into equation (4,47) leads to

T = A+ aB+a2C ee ee ee ee . (4.48)

where ,

A= lfagg]r B = dbgyls c=degy| - oo 429
Clearly, in equation (4.48), A, B and C are greater than or
equal to zero by construction. The requirement now is to

minimise J, the condition for that is

a3y _
-d_.a-—o . .o. .o (Y L) o e L) (4’-50)

»differentiatingequation(4;48)'with'respectuto~a gives

as _ 1 |
a-a—B+2aC ‘ e 'oo .o e o e (4.51)

Equations (4.50) and (4.51) now yield the value of & which

" minimises J, namely

‘B
2C

a'-‘- LI . e e LY o e . e (4.52)
. Now; in practice, the'values t a and zero are

substituted for a in equation (4.44) and the optimising
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factor is taken to be the value which minimises I.

The reason for trying three values for a in equation
(4.44) is that, o minimises J, which is defined in

terms of moduli. Therefore, by construction o is

élways negative. However, the coefficient b in
equation (4.44) may be positive or negative. Hence,

in some cases, -a will be applicable in equationA(4.44).
Finally, the value a =0 is employed if the parabola

defined by equation (4.44) is symmetric about the I axis.

Case (b)é

In this case, instead of moduli, the squares of
the off-diagonal terms are considered. Thus, squaring

equation (4.42) yields

(Iij)z _ (aij)z + za(aijbij) + a=[2(aijcij) + (bij)=]
. 3 * |
+ 203 (bygeyg) *+atle ), o)

Summing all such (Iij)2 gives

. n ’ . ‘
' = ] (1507 e e e a7 (4.54)
> . ' ’

Substituting from equation (4.53) into equation (4.54) leads to

I' = A + aB + a?C + o’D + a“E .o .o (4.55)

where
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)

A= z(aij)=; B = 2J(a,.b,.)%; C Xzf(aijcij) + (bij)’}

ljbij

2, = )2
ijcij) ; E Z(cij)

|w
i

= 2} (b

J
. .o .o .. (4.56)

The required value of a is obtained by minimising equation

(4.55). The condition for this. is,

' . .
%:0 e LI ) o .o L2 (4.57)

differentiating equation (4.55) with respect toa gives,

iﬁ;.= B + 2aC + 30%D + 40’E . ° (4.58)

Cardano's formula for the réots of a cubic equation
was employed to solve equation (4.58), see Appendix A. Note
that since the coefficients B, C, D and E in equation (4.58)
are real, there will be at‘léast one real root. The
optimising factor is then taken to be the value which minimises
I'. Note that cases (a) and (b) will be referred to as Method

"~ 2 and Method 2A;\reépectively,)throdghout;

4.3.2 Algorithm

The notation of section (4.2.2) is employed in this
section. ’In this method two initial estimates of thq
.iteration vectors are réquired. " Therefore, the original
subspace‘iteration algorithm is empioyedbfor ﬁhekfirstktwo

iterations. In the course of these iterations, three
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vector arrays are stored, namely [Y]l, the initial itera-

tion vectors, [Y]Z’ the iteration vectors after the first

iteration and [Y]3, the iteration vectors after the second

iteration, then the subsequent iterations proceed as
For k = 3,4, ..... form [Y1£+l as an optional linear

tion of [Y]k and [Y]k—l’

[Y]]('_'_l = [Y]k + a[Y]k_l L e e . o
forward reduction and back substitution

[K] [X]k+1 = [Y]k""l ) . ® L3 * e L Y
Matrix multiplication ‘ ;

[§]k+l = [M] [X]k+l .0 ‘-o .. .o

follows:

combina-

(4.59)

(4.60)

(4.61)

form the protections of [K] and [M] onto the subspace.

) (K] [x]§+1[¥1£+1 e e e

[M]
Solve the eigensystem of subspace operators,

(R110] = [M][Q][A] T

Update the iteration vector estimate

(¥l ,, = [¥], 10 N T

KL, (8000 e oo e el

(4.62)

(4.63)
(4.64)

(4.65)

Update the previous generations of the iteration vectors

- for use in equation (4.59)

[¥l,_y = [¥]y
[,

[¥1yq

(4.66)
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4,3.3 Numerical Considerations

4.3.3.1 Numerical Stability

- This method becomes unstable when the [Y], and
[Y]k_l in equation (4.59) are very close to the least
dominant subspace. The reason for this is that the ith
columns in [Y]k and [Y]k_1 are converging to the ith
eigenvector and the'ith.column of [Y]k+l is formed by
linearly combining the ith columns of [Y]k and [Y]k_l.
Now, when the ith columns of [Y¥], and [Y], _, are both
reasonable approximations to the ith eigenvector, then
any linear combination of these will also be a reasonable
approximation to the eigenvector, irrespective of the vaiue
of a.

Thus, for a stable process [Y]k and [Y]k_l are
required to differ significantly from each other. A
consequence of this is that convergence is required to
occur befbre‘[Y]k and [Y]k_l become too similar. Hence,
the convergence criterion should be strict enough to obtain
the;required,accuracy but not too strict so that [Y]k and "
[ij_l are not allowed to become tdo'similar. Experience
has shown that stability is lost whén |dl < 0.05, This
clearly represents very little change in the iteration
véctors from iteration to'iteration. It also suggests
that the donvergence tolerance is too strict. In pfactice,
best résults'were achieved when |a| < 0.35. This verifies
the intuitive feeling that once convergence’has set-in and

(Y], and [Y]k;l are not too similar, thgn |alis bounded by
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unity. Thus, the iteration vectors in [Y]k are 'trimmed'
by a small amount using the iteration vectors in [Y], _,.

If the convergence rate in practice is fast then
this method is stable, i.e, there is no, or very little,
similarity between the [Y]k and [Y]k_l. ~ However, if the
convergence rate is slow, then this method should be used
with care, since the degree of similarity betweenothe [Y]k
and [Y]k_l will belhigh.‘ This clearly indicates that
this methodvloses itsfpotency as the iteration vectors tend
to the eigenvectors. An important conclusion ﬁay be drawn
here,vnamely that there exists a !useful' range in which
this method may be applied.

Note that the preceding discussion is only‘appiicable
provided subspace iteration is converging. The effects of

this method are not clear if subspace iteration is not

converging.

4.3.3.2 Convergence

As in section (4.2.3.2) it is necessary to'take
into account-two-convergebce rates. = This folloWs from
the fact that the technique described here is applied at
the level of forming the initial subspace iteration. | The
two rates of convergence to be considered are:

(1) The rate of convergence due to equation (4. 37)
(11) The rate of convergence due to the original
| subspace iteration algorithm. | |
The discussion in section (3.5.2) .on the convercence ofi

subspace iteration, is clearly relevant for (ii).
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Consider now the convergence rate due to (i).
This clearly depends upon the state of [Y]k and [Y]k_l.
A necessary requirement for equation (4.39) to yield a
'good"’ [Y]k+l is that [Y]k is a better estimate of the
initial subspace than [Y]k_l. The worst case occurs
when o = 0 in équation (4.37). In this case, [Y]k+l is
not an improvement on [Y]k; In all other cases, provided
[Y]k is a better approximation of the initial subspace than

[Y]k_l, [¥],,; will be an improvement on [¥],.

vThe degree of improvement depends upon how closa
[Y]k is to [Y], ;. As [Y], gets closer to [Y], ,, the
degree of improvement decreases. In other words, when
the iteration vectors have nearly convergéd, the work done
in calcolating<xofferslittle or no raturn in accelerating
convergence. In fact, as was mentioned in section (4.3.3.1),
a high degree of similarity between [Y]k and [Y]k-l leads
to numerical suitability.

Thé ekpectation is that this method will converge
faster than the original subspace iteration.algorithm in
the first few itarations. It would then be reasonable tol‘
expect a higher convergence rate than the original algorithm
when the iteration vectors are 'far' from convergenca, i.e.
when the iteration vectors are not oood approximations of
the eigenvectors. The convergence rate will then approach
vthat of the original algorithm as the iteration vectors |

A approach the elgenvectors. -
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4.3.4 " Implementation

The two cases considered in section (4.3.1) have
been progfammed in such a way that either hay be inserted
into a working subspace iteration programme. Subroutines
for running an in-core or out-of-core solution are

available.

The subspace iteration algorithm is such that,
given [Y]k, [x]k+l is obtained from the following

expression:

KITKl,, = [¥], .o o oo .. (4.67)

Consider now equations (4.38) - (4.41). It is clear that

forming [X]T[K][x] type products 1is vital in this method.

The required expressions are of the following form:

CIXIGIRIOXD, )
[X1, [K][X], _;
[X]§_) (K1 [X]y_y

b

ce e «e  (4.68)

Substituting from equation (4.67) into equation (4.68)
leads to |
T )
[x]k[Y]k_l
T .
[X]k[Y]k-2 L o e o (4.69)

(Xl ¥y,

4

Hence, by storing [Y]k_2 and [Y]k_l, the product in
equation (4.67) need not be formed again. = At the end
of each iteration, the vectors in [Y]k_2 and [Y]k_l, are

updated, as given by equation (4.66).
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The approach described above has been adapted

in the programmes46. In the out-of-core version of

this programme, two working tapes are specified to

store [Y]k_2 and [Y]k_l.

4.3.5 Operation counts

Let the definition of an operation be as giveh

in section (3.6). Also let n be the order of the system

matrices,‘[K] ‘and [M], m, and mo the half-bandwidths of

[K] and [M] respectively, and q the dimension of the

iterating subspace. Consider the two cases described,

in section (4.3.1) separately.'

Number of Operetiohs
Operetions
Case (a) Case (b)
Operations’due to equation (4.37) | ngq ngq
Operations due to equaticn (4.69) 3n 6n
Total number“of operations/iteratlons 5(3 + q) n(6 + é)

TABLE 4.2. OPERATION COUNT FOR METHOD 2 AND METHOD 2A

Therefore, the increase in the number of operations

per iteration relative to the original subspace iteration

algorithm is approximately n(3 + q) and n(6 + q) for cases

(a) and (b) respectively.
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CHAPTER_5

' NUMERICAL INVESTIGATION

5.1 Introduction

The ideas pursued theoretically in the previous
chapter are investigated numerically in this chapter.

The primary concern here is to validate the methodology

and de-bug the coding.

Initially, a discussion of the course the numerical
invéstigatioh may follow is presented. This is followed
by an outline of the basic strategy. The results obtained
by solving simple problems are then‘compared‘witﬁ known
solutions. Two such cases are considered, namely problems

modelled by using beam and plate elements. The insights

. gained from these comparisons are then discussed.

The purpose of this chapter is to give an indication
of the efficiency of the modified algorithm when presented

with a variety of problems. These problems are also
solved using the original subspace iteraﬁion algorithm in
ordér to gauge the relative merit of the modified algoritﬁm.
In order to run the solution algorithms, the |
stiffness, [K] and mass, [M] matrices are reqﬁired. These
are genera£ed by FINELg. It was, therefore, necessary to
couple46~this general purpose finite eleyent package to
the solution algorithms. |
Initially, a general compafison of the original

and modified algorithms 1is carried out in two dimehsional

space. The problems considered are:
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(1) A cantilevered beam, modelled by two noded
. beam elements with three degrees of freedom
per node. This type of element was also
used to model a plane frame.
(ii) A cantilevered plate of constant thickness,
modelled by eight noded plate elements with
three degrees of freedom per node.
The results of these comparisons are presented and discussed.
A detailed cemparison of the original and modified
algorithmsvis then carried out. Here, selected problems
from the general comparison are used along with a three
. dimensional problem. This consists of modelliné an off-
shore structure using two aoded beam elements with six
degrees of freedom per node. The results of these comparisons
are presented and discussed. | |
The insighﬁs gained"and ideas generated from the
aforementioned comparisens are put into practice. Selected
problems from those solved previously are solved again with
regard to the new ideas. ” The results obtained are presented
and conclusions are drawn from them.
| In all cases, the initial subspace was éeherated
as described in section (3.4) and the coaVergenee teierance

-4 throughout, see section

for the eigenvalues was, TOL = 10
(3.5.2{. ~ The times taken for the initial matrix factorisa-
tion, solution of the subspace eigensystem, te' and the
modification, t , were all part of the iteration time, tI.

However, te and t were also timed separately.
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JAll the work was carried out on the Sheffield
University ICL 1906S computer with a maximum core space
of 875K words and a 39 bit mantissa for reals. The

frequencies and times are given in Hertz and CPU seconds

respectively throughout.

5.2. Philosophical considerations

It is very difficult, if not impossible, to predict
the course an investigation may take, since initial findings
may lead‘to/the pursuit of ideas previously not considered.
Contrary to that, however, is the fact that it is similarly
very difficult to carry out an investigation without an
overall work plan, a general framework for the‘investigation,
say. Such a framework is a necessary requirement in order
to give coherence to the investigation. However, flexi-
bility in the framework is of paramount importance so as
not to discard interesting avenues of investigation by rigid
devotion to the initial plan.

The primary aim oflthis investigation is to verify
- the methodology and‘theecoding“for'the.general case and notk
just to solve a large problem. The order of the problemsAe
considered could have been larger,dbut this would only have
increased the solution time without changing the solution
characteristic. This would also have caused inconvenience
due to certain restrictions in the system.

B A parameter which is very important 1n this
investigation is nrr?e, ' This indicates the number of‘

[K]f [M] operations in method 1, see section (4.2.3.2) or
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the power to which the eigenproblem is raised, see
section (4.2.6). Another iméortant parameter is NROOT46.
This épecifies the number of requirea eigenpairs and
governs the size of the iterating subépace. A secondary
aim of this investigation is a parameter survey concerning
the two aforementioned parameters. 6 Note, however, that,
although it is preferable for a parameter survey to take
into account the general case, it may not be practical.
This is due to the resources available. For example, time,
finance, facilities, etc. |

| Consider now the size of a test problem, the order
of a 'real problem' will be large, clearly this is not the
ideal type of problem for testing the methodology and coding.
A desirable quality in a test problem is simplicity, so éhat
each stage may be worked by hand if required. Another
important point to consider is that carrying out a parameter
survey, using a 'real problem' without first establishing
some ground rules, is not practical. Such an exercise will

be a long drawn process fraught with computing difficulties,

-““i“expehsive—in terms of computer- time and may be -altogether =

impossible. -
From the preceding discussion, it follows that

trying to run before the art of wélking has been masteréq
is rarely rewarding and always dangerous. Therefore, with
regard to this investigation, it would appear prudenf to
begin at a very basic level and progressivelf increase the
' 'oraer of complexity as confidence in the methodélogy'aﬂdb

coding increases.
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A tentative framework for the investigation

Initially, choose a simple'problem to verify the
methodology and the coding. The simplest element
available.in finite element analysis is the two
noded beam element with three degrees of freedom
per node. Therefore, it is natural to use it in
fermulating a simple problem, namely a canti-

v

;evered beam. 7

Teet the Qalidity of the reSults obtained when
the above problem is presented to the original
algorithm by comparisen with resﬁlts oﬁtained
from FINEL2 and simple beam theorys.

Use a different element to test the original
aigorithm.in o;der to rule out any element |
dependence. The element intended for use
here ie £he eight noded plate bending element
with three degrees.of freedom per node.

The validity of the results obtained when the
original élgorithm is usea may be tested by

comparison with results obtained from FINEL2

and an alternative solution47.
The modified algorithms are then presented
with a number of problems using the two

previously mentioned element types. The

~ reliability of the modified'algorithms méfl

then be established by comparison with the

original algorithm.
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(vii)
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There remains then to test the reliability of

the modified algorithms under adverse numerical

conditions which may arise in a 'real problem'.

It is, therefore, neCessary"to obtain a simple

model of a 'real problem' without destroying

the characteristics of the

'real problem'.

Since the system matrices are generated by

2

FINEL®, a working programme, the characteristics

. of a"real'problem', such.as bandedness,

positive definiteness, etc., are assumed to

be present.

The intention is to model and off-shore (Rig)

structure using two noded beam elements with

six degrees of freedom per node.

Comparison with known solutions

Beams

frequencies when:

(1)
(i1)
(114)

. A comparison is made of the lowest five natural

-
»

Calculated using the subspace, iteration algorithm._

Calculated using simple beam theory.

2

Calculated using FINEL™.

Young's Modulus, E
Moment of inertia,. I
Density, p

FIG.

5.1.

Poisson's ratio, Vv

Cross-sectional area,

length, a

CANTILEVERED BEAM

L3

1.59 x 10-1aM

- 7.854 x 10 °M°

7.7 x 10 kgM

= 0.3 »

3.142 x 10 %M2

1M

-2

-3
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The results obtained from (i), (ii) and (iii),

are presented in Table 5.1.

Freduency (1) (11) (111)
1 12.71 12.71 12.71
2 79.68 . 79.67 79.77
3 | 223.23 223.10 224.80
4 438.15 437.21 443.53
5 726.85 722.65 824.85

TABLE 5.1. COMPARISON WITH FINEL AND SIMPLE
BEAM THEORY FOR A CANTILEVERED BEAM

" -

The beam in figure 5.1 was modelled by four, two

nmoded beam elements with three degrees of freedom per mode.

5.3.2 Plates
As in section (5.3.1) a comparison is made of the
lowest five natural frequencies when: |
(1) 'Calculated using-the subspace iteration
" algorithm. | |
(1i) Calculated from an approximate formula
derived from the Rayleigh-Ritz method
assuming Qaveforms similar to those
of beams47.~

‘(iii) Calculated using FINELz. ‘ ’
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:ﬁ Young's Modulus, E = 3 x 107 1b/in
:f' ———————p——e Density, p = 0.283'lb/in3
/)b o . :
/F--’-':——'--:'-'-_L-—f-':. Poisson's ratio, Vv = 0.3
/D-‘--O———o——o—-o—--o-—-‘--—o-—-«

p L] [ 4 ’ 1 =
2 SHRUSD SRS S, Sy Length, a = 15 in-

& é ’ 4 ’

? o 4 width, b = 6 in
/] \ .
A thickness, h = 0.236 in

FIG. 5.2. CANTILEVERED PLATE

The results obtained from (i), (ii) and (iii),

are presented in Table 5.2.

Fﬁiz;i;fy (1) (11) (141)
1 35.05 35.57 35.07
2 183.63 222.77 183.68
3 218.74 226.23 218.86
4 | 584.72 623.79 584.56
5 614.43  630.59 614.55

TABLE 5.2. COMPARISON WITH FINEL AND AN ALTERNATIVE
SOLUTION FOR A CANTILEVERED PLATE

| The plate in Fig. 5.2 was modelled by sixteen,
eight noded plate elements with three degrees of f#eedom

per node. The mesh is shown in Fig. 5.2.

5.3.3 Discussion

In sections (5.3.1) and (5.3.2), two'independeht

problems have been presented to the original subspace

2
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iteration algorithm._ The results along with those
obtained from FINEL and the known approximate solutions
are givén in Tables 5.1 and 5.2.

Consider first Table 5.1. Here, the discrepancy
between (i) and (ii) is less than 0.6%. The discrepancy
between (i) and (iii) is less than 1.3% for the first

four natural frequencies. However, there is a discrepancy

-~

of approximately 12% in the fifth natural frequency. A
possible explanation for this is that the FINEL solu&ion
routine empiofs an iterative process, which is terminated
once the percentage change in the eigenvalue estimate
satisfies some arbitrary ¢riterion. Clearly, this is a
necessary condition for convergence;' However, the
sufficiency part of the convergence criteria is not tested.
This casts doubt on the integrity of the solution and thus,
in this case, subspacé iteration is an improvement on FINEL.
Consider now Table 5.2. Here the agreement
- between (i) and (iii) is satisfactory throuéhdut. "~ The
disagreement between (i) and (iii).is less than 6.4% with.
the exception of'the second natural frequency, where the
discrepancy is large, however, this is the expected resu1t47.}
Thus,. the methodology and the cdding afe validated.
This enables the original subspéce iteration to be used as
a 'bench mark' when compared with the modified algorithms.
Note, however, that éoding can rarely be purged completely
of errors and even_goding de-bugged to the highesﬁlstandardsf‘

cén"run into trouble if some infreqdently occurring set of

circumstances arise.
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5.4 "~ The available options

Consider now the available modifications: basically
there are methods 1, 1A, 2 and 2A.‘ "In addition t§ these,
a number of modifications may be constructed by combining
the four baéic modifications.

- Clearly, since method 1lA is a variation of method 1,
combining these is of no interest.  Similar remarks apply
to method 2 and method 2A. Thus) a further four modifica-
tions are available if the basic mod;ficétions are cémbined.
) 46

The following definitions’® are employed throughout the

thesis when referring to any particular algorithm..

The original algorithm = sSSP .o .o ee  (5.1)
Method 1 = xxss ) -
Method 1A 2 Xssp

Method 2 s gsse |0 (5.2)
Method 2A =  YSSP |

Method 1 and Method 2 =  XXZSS )

Method 1 and Method 2A. =  XXYSS

Method 1A and Method 2 "=  XZSS % (553)
Method 1A and Method 2A = ° XYSS |

Thus, a total of nine solutiop options are availabie
in analysing any given data set. Note that’combining the
‘basic options presents.no difficulty since each modification
is cohtained in a subroutine?® ana may be inserted into the
subspacé iteration prdgramme at the appropriate point.

| The intuitive feeling here is that £ﬂé §p£ions

defined by'equation (5.2) would be the closest ri&als‘td
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the original algorithm since, in:the combinations, the

extfa workload per iteration is being increased to a high
degree. Clearly, if the increase'in the workload cannot
be justified, then the offending option must be neglected

since it is defeating the purpose of this work.

5.5 General comparison of modifications

The purpose of'this general comparison is to
discard those options which offer no édvantage and concen-
trate on those which show the most potential. The
fo%lowing two sections are concérned with beam and plate
type»problems, respectively. In each of>these; a table
containing the order of the problem;.N, number of iterations,
Nc and time, tc, for the convergence of the required eigen-
Values‘are given for each option. This is followed by |
another table giving the solution characteristic in more

detail. This table contains the relative tolerance, RTOL

reached after each iteration for the lowest five eigenvalues.

"RTOL is defined as follows:

RTOL=_—':i_-—— ‘“ . e e “oo (5.4)

where Ai is the eigenvalue approximation after the ith
iteration and 1x° is‘taien as zero. |

The problems selected for detailed observation are
~ generally those of the highest order from the relevant

problem types. Note that, in the beams sectidn, two
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Problems are considered in detail since both the canti-
levered beam and plane frame are analysed in this section.
The number of eigenvalues required, NROOT = 5 and

RTOL = 10-4 throughout in the following analysesvunless

stated otherwise.

5.5.1 Beams

A cantilevered beam was modelled dsing a varying
number of two noded beam elements with three degrees of
freedom per’noée,' The resuits obtained are given in ’
Table 5.3. In problems 1 and 2, NROOT was specified as -
1 and 2 respectively, due to the small size of these
Problems. Note that, in problem 3, nuﬁerical difficulties
were encountered whenever the XSSP option was used.

A cantilevered plane frame was modelled, see

Fig. 5.3, using two noded beam elements with three degrees

of freedom per node.

(a) a=1lm; b=20.5m.

All other physical
(b) Pproperties are as in

the cantilevered bean

case.,

(C).

SAOANNN NN VLY

FIG. 5.3. CANTILEVERED PLANE FRAME

A number of problems were formulated by varying
the number of elements used in modelling (é);'(b) and (c).

The results obtained are given in Table 5.4.



NUMBER OF ITERATIONS FOR LOWEST FIVE EIGENVALUES TO CONVERGE, NITE
PROBLEM PROBLEM o TIME TAKEN FOR LOWEST FIVE EIGENVALUES TO CONVERGE, t
NUMBER‘ SIZE ) c
N SsSp XXSSs XSSP ZSSsP YSSP XXZSSs XXYSss XZSsSs XYsSSs
L 3 3 2 2 3 3 2 2 2 2
0.019 |0.021 [0.020 |0.021 |o0.023 0.021 0.019 | 0.020 {0.021
) 6 3 2 2 3 3 2 2 - 2 2
0.030- |0.083 |0.087 |0.079 - |0.080 . | 0.082 0.083 | 0.086 |0.085
‘3 12 2 2 ) 2 2 2 2 ) )
. 0.492 |o0.561 0.492 |0.492 0.560 0.559
s 0 3 2 2 3 3 2 2 2 2
: 0.928 |0.975 |1.071 |1.007 |1.009 0.975 0.975 | 1.071 | 1.070
GENERAL COMPARISON OF

TABLE 5.3.

THE SSP OPTIONS AND MODIFICATIONS FOR A CANTILEVERED BEAM

oL



NUMBER OF ITERATIONS FOR LOWEST FIVE EIGENVALUES TO CONVERGE, NITEc
PROBLEM | PROBLEM ’ TIME TAKEN FOR LOWEST FIVE EIGENVALUES TO CONVERGE, t
NUMBER SIZE ‘ 7 : \
- N SSP XXSss XSSP ZSsSP YSSP - XXZSS XXYSS XZSS XYSS
- R 3 ) 2 3 3 2 2 2 2
0.069 |0.082 | 0.088 | 0.073 | 0.075 0.080 | 0.080 | 0.086 0.086
. 1 3 2 2 3 3 2 - 2 2 )
| 0.617 |0.541 | 1.537 | 0.658 | 0.665 0.540 | 0.540 | 1.614 1.615
S s 3 2 3 3 3 2 2 3 3
0.704 |0.640 | 1.218 | 0.754 | 0.755 0.641 | 0.639 | 1.267 1.265
5 ” 3 T2 | 2 3 3 2 2 2 2
0.944 |0.955 | 1.101 | 1.023 | 1.023 0.955 | 0.955 | 1.101 1.101
5 o7 3 2 2 3 3 2 2. 2 2
0.981 |1,052 | 1.167 | 1.069 | 1.070 1.053 | 1.053 | 1.169 1.169
0 23 2 2 3 2 2 2 2 3 3
| 1.521 |1.320 | 2.120 | 1.736 | 1.733 1.321 | 1.321 | 2.224 2.226
11 a5 4 2 2 4 2 2 2 2 2
1.902 |1.786 | 1.898 | 2.204 | 2.208 | 1.788 | 1.788 .| 1.901 1.900
1 o1 ) T2 3 3 2 2 2. 3 3
1.988 |1.906 |-2.949 | 2.307 | 2.314 1.909 | 1.91 3.110 3.111
13 . 4 2 2 4 4 2 2 2 2
2.128 | 2.114 | 2.188 | 2.485 | 2.488 2.117 | 2.118 | 2.190 2.189
TABLE 5.4.

GENERAL COMPARISON OF THE SSP OPTION AND

4

MODIFICATIONS FOR A PLANE FRAME

L
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Consider now problems 4 and 13 in more detail:
the relative tolerances reached after each iteration
are given in Tables 5.5 and 5.6 respectively for the
five lowest eigenvalues. All the available options
were taken into account. However, it was found that
the options defined by equation (5.3), the combinations,
reproduced the results obtained by the XXSS and XSSP
options. Thus, the XXSS and XSSP options were completely;
overwhelming the YSSP and ZSSP options. Note that NITE

denotes the iterafion number.

5.5.2 Plates

A cantilevered plate_is modelled using eight que
plate elements with three degrees of freedom per nod;.
A number of problems are generated by varying the number‘
of elements used in the model. The results obtained
are given in Table 5.7.

Consider now problem 17 in more detail. Table
5.8 contains the relative tolerances reached after each
iteration for. the lowest five gigenvalues; As in
section (5.5.1), it was found that the optidns defined
by equation (5.3), the combinations réproduced the

results obtained by the XXSS and XSSP options.

5.5.3 Discussion

An inspection of Tables 5.3 to 5.8 lead to thé
following conclusions: '
(1) Tables 5.3, 5.4 and 5.7 verify the intuitive
feeling that no advantage‘is gained by combining

the basic modifications. In fact, in the



. RELATIVE TOLERANCE, RTOL
VALUE NITE -
NUMBER/ . 8sp - XXS8s XSssp 2SSP YSSP XXYSZ | - -XXYSS XZSS XYSS
1 1.0 1.0 1.0 1.0 1.0
1 2 |s.6 x07% | 9.3 x107* 5.6 x107 | 2.9 x107° 2.86x10-82
3 0.0 0.0 9.34x10° "
1 1.0 _, 1.0 _ 1.0 _, 1.0 . 1.0 _,
2 2 | 1.07x10 3.8 x10 ™t {1.1 x10 1.1 x10_ 1| 1.07x10_ "
3 0.0 7.6 x10 | 1.52x10
1 1.0 _, 1.0 | 1.0_, 1.0 _, 1.0 _, o @ B B
3 2 | 9.27x10_, | 3.87.107 |2.1 x10 9.3 x10_, | 9.27x10 ] 2 2 o a
» 3 {4.16x10 3 4.2 x10 | 4.19x10 ol » » >
1 1.0 _, 1.6 __ | 1.0 _, 10 _ | 10 .1 4 ! 4 4
4 2 4.25x10_7 ’4.03x10 3.7 x10 4.25:-(10_9 4.25x10__7 2 2 &n g:)
3 | 3.35x10 3.35x10 < | 3.35x10 .
1 1.0 _, - 1.0 _, 1.0 _, 1.0 _, 1.0 _,
5 2 [ 1.23x10_. |1.23x10 [3.1 x10 1.23x10_ | 1.23x10_,
3 | 1.04x10 V 1.04x10"° | 1.04x10

TABLE 5.5.

SOLUTION CHARACTERISTIC OF PROBLEM 4

€L



EIGEN-

NITE

" RELATIVE TOLERANCE, RTOL

VALUE ,
NUMBER SSp XXsS XSSP ZSSp YSSP XXZSS XXYSS ZXSS XYss
1 1.0 1.0 1.0 1.0 1.0
L 2 6.8 x10™* | 2.8 x107¥| 2.9 %10~} 6.8 x10~"* | 6.8 x10~"
3 2.1 x107%0 ’ SRR 2.1 x1072%} 1.9 x1071°
4 2.8 x10711 . 1.4 x10711| 2.8 x10712
1 1.0 1.0 . 1.0 1.0 1.0
) 2 5.45x10” 3 0.0 1.5 x1077 | 5.45x107% | 5.45x1073
. 3 7.6 x10”7 7.6 x1077 | 7.6 x1077
4 1.2 x10°8 7.0 x10°¥ | 5,9 x1071
1 1.0 1.0 1.0 1.0 1.0
3 | 2 |4.1x107% | 2.3 x197% | 7.3 x107% | 4.1 x1072 | 4.5 x1072
: 3 2.0 x10°% | - 2.0 x107% | 2.0 x10™%
4 2.2 x10°° 2.2 x107°2 | 2.2 x10™° :
1 .o [ o __ 1.0 1.0 1.0 @ @ % % :
" 2 5.3 x107 1.4 x10~ 6.6 x10~% | 5.3 x1072 | 5.3 x10™2 o] % < %]
3 |s.6 x107% |- ’ 5.6 x10~* | 5.6 x10™" a p o o
4 1.4 x10°"% . 1.4 x10°% | 1.4 x10”¢ - - - b
1 1.0 . 1.0 - | . 1.0 1.0 1.0 & < < b
| 2 7.6 x1072 | 8.6 x107% | 6.5 x107% | 7.6 x107% | 7.6 x1072
5. 3 1.5 x107°? S 1.5 x107% | 1.5 x10™3
4 8.6 x10”° 8.6 x107% | 8.6 x10~°
13

TABLE 5.6. SOLUTION CHARACTERISTIC OF PROBLEM

vL



PROBLEM

NUMBER OF ITERATIONS FOR L

L2

OWEST FIVE EIGENVALUES TO CONVEﬁGE, NITEc

PROBLEM " TIME TAKEN FOR LOWEST FIVE EIGENVALUES TO CONVERGE, t
NUMBER SIZE } — =
N Ssp XXSS XSSP ZSSP YSSP XXZSS XXYSS XZSs XYSs
14 I 3 2 3 3 o3 |2 2 3 3
0.318 0.423 | 0.682 | 0.338 | 0.338 | 0.423 0.425 0.699 | 0.701
15 - 4 2 4 4 4 2 2 4 4
: 4.887 6.219 |12.602 | 5.27 5.263 | 6.222 6.222 |12.984 |12.979
" o 4 2 6 4 4 2 2 6 6
: 8.466 | 11.362 | 34.222 | 9.080 | 9.07 |11.396 | 11.368 | 35.434 | 35.414
17' 132 4. 2 6 4 4 2 2 6 6
. 12.058 | 16.542 | 49.611 | 12.897 |12.887 |16.55 16.552 | 51.284 | 51.249
18 4 2 4 4 4 2 2 4 4
, 168 15.65 | 21.65 |43.349 |16.719 [16.702 |21.663 | 21.666 |44.410 |44.40

TABLE 5;7. GENERAL COMPARISON OF THE SSP OPTION AND MODIFICATIONS FOR A CANTILEVERED PLATE

SL



EIGEN-

RELATIVE TOLERANCE, RTOL
VALUE NITE -
NUMBER Ssp XXsSs XSSP ZSSPp YSSP XXZSS XXYSS ZXSS XYSS
1 1.0 1.0 1.0 1.0 1.0
2 1.1 x107* | 2.0 x1071 | 2.6 %107 | 1.1 x10™* | 1.1 x10™*
1 3 0.0 E 1.4 x107° | 1.1 %1070} 3.9 x10712
4 2.0 x10” 1 3.7 x1077 | 9.8 x107* | 2.9 x10”1}
5 . 1.2 x1077
6 4.0 x10™°
1 1.0 1.0 1.0 1.0 1.0
2 2.6 x1072 | 7.9 x1073%| 1.3 x1075 | 2.6 x1072 | 2.6 x10™2
) 3 4.8 x107° : 1.1 x107° | 4.8 x107% | 4.8 x10”§
4 7.9 x107%° 1.2 x1077 | 9.2 x1071% | 7.8 x10™%0
5 1.3 x1078 : :
6 1.4 x10~°
1 1.0 1.0 1.0 1.0 1.0
2 1.6 x107% | 1.2 x107° | 3.0 x107* | 1.6 x1072 | 1.6 x10~2
3 3 7.5 x1077 5.8 x10~% | 7.5 x1077 | 7.5 x10~7
4 4.8 x10”1? 6.8 x1075 | 1.5 x107¥% | 4.0 x1071
5 2.7 x10-% - 0 0 & &
6 - 9.2 x10-° % % 5 5
"1 1.0 1.0 1.0 1.0 1.0 <) c ol e
2 1.6 x10°! | 9.4 x10-% | 1.5 x10~* | 1.6 x10~! | 1.6 x10-! : : : :
4 3 |8.0 x10-* 1.4 x10~° | 8.0 x10-* | 8.0 x10-* < < g «
- 4 9.2 x10-® 1.5 x10-% |-9.2 x10-® | 9.2 x10-%
5 1.6 x10-7* : .
6 1.7 x10-%
1 1.0 ~ 1.0 1.0 1.0 1.0
2 1.4 x10-! | 5.7 x10- 1.1 x10-% | 1.4 x10°! | 1.4 x10-?
~ 3 5.9 x10°* | - 1.1 x10-¥ | 5.9 x10-* | 5.9 x10-"
3 4 |5.6 x10°° 3.6 x10~* | 5.6 x10-° | 5.6 x10-°
5 1.0 x10-" .
6 3.2 x10-%

TABLE 5.8. SOLUTION CHARACTERISTIC OF PROBLEM 17

9L
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options defined by equation (5.3), the XXSS and
XSSP part of-thé_combination appears to‘completely
overwhelm the ZSSP and YSSﬁ options.

The ZSSP and YSSé options appear to be passive.

as far as changing the solution characteristic

is concerned. |

The XSSP option is behaving 'wildly' in numerical
terms. In exact arithmetic, this should show’
cémpiete agreement with the XXSS option, see
section (4.2.6.3). However, in finite afithﬁetic,
the XSSP option is more suéceptible to numerical
instébility than the XXSS‘option,vsée séétion
(4.2.6.4.). This nﬁmerical instability manifested
itself most pointedly in the case of problem 3 ang,
as can be seen from Table 5.3, no results were
obtained whenever the XSSP option was employed.

The problem was then re-run with NROOT = 4 and the
results obtained matched up with established results.
Problem 4 was then re-run with NROOT = 10, i.e.
with the same ﬁ/NROOT ratio. which caused problem 3‘
to fail. In this case, problem 4 also failed;
similar ;esults were obtained from other such .
experiments. --This indicates that increasing the
size of the subspace'to‘a significant pércéntage

of the Wholg space causes pronounced numerical
ihstabilitie; in the XSSP'option;‘

The XXSS option appears to show the_most.poténtial.

It can be seen from Tables 5.5, 5.6 and 5.8 that
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the initial convergence rate is very fast

when compared to that of the SSP option.

With regard to the above-mentioned points, it
wWould appear prudent to discard those options which consist
°f combining the basic modifications, i.e. the options
defined by equation (5.3). The ZSSP and YSSP options are
Yetained in the hope that varying some parameters may cause °
‘these to prove themselves one way or the other. The XSsSp
Option is also discarded herewith since it ié only an

Unstable variation of the XXSS option.

5.6 Detailed comparison of modifications

In this section, the XXSS, ZSSP and YSSP options
are compared with the origihal subspace iteration algorithm
(SSP.option) and with each other in detail. Each iteration
Step in the solution consists of the following:

(1) Modifying the iteration vectors (if the
modified algorithm is employed),
(ii) Forming the reduced eigenproblem in the subspace.
(iii)‘"-Solving the reduced eigenproblem.
'(iV) Obtaining the iteration vectors for the next
iteration 1if convergence has not occurred.

Clearly, the t}me taken for (ii) and (iv) will be
1dentical for a given set of parameters, but for (i) and
(1i1), it‘will vary according to the solution algorithm 
employed. | The time taken for thé modificatioh,’fh is a
neCessary requirement>fof comparison purposes and élso to
9ive an indication of the increase in the time taken for

€ach jiteration, ts due to the modification. Consider now
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the time taken to solve the reduced eigenproblem, tg.
This is very important in appraising the condition of.
the subspace operators [K] and [ﬁ]; Clearly, the'.
degree of diagonality of [K] and [M] is indicated by

the magnitude of te.

In the following sections, tables are presentéd
in which tor tm andAtI are taﬁhlated after each iteration.
Selected problems from those considered in section (5.5)
are téken. The iteration number is specified by NITE
tiroughout.

5.6.1 - Beams

The cantilevered beam in problem 4 was modelled
by eight, two noded béam elements with three degreés of
freedoﬁ per node. The results obtained are given in
Table 5.9.

The cantilevered portal frame (see Fig. 5.3) in
problem 13 was modelled by‘two-noded beam elements with

three degrees of freedom per node. A total of twenty

- elements was required, four'for.section«(b).and eight

each for (a) and (c). The resulté‘obtained are given'

in Table 5.10.

5.6.2 Plates

The cantilevered plate in problem 17 was modelled
by twelve, eight noded plate elemgnts with three degrees
of freedom per node. The results obtained are given in -

Table 5.11.

3



-SSP

XXSS

zSsp YSSP
NITE , .
t t t t, t t t t t. t, t t,
1 0.281 - | 0.445 |'0.141 { 0.234 | 0.537 | 0.282 | 0.0 | 0.447 | 0.281 | 0.0 0.447
2 0.096 - | 0.258 |'0.042 | 0.233 | 0.438 | 0.096 | 0.0 0.257 | 0.096 | 0.0 0.257
| i
3 0.065 - | 0.227 |! 0.066 | 0.077 | 0.303 | 0.067 | 0.077 { 0.305

TABLE 5.9. COMPARISON OF te, tm and t

I

FOR PROBLEM 4

08
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HSSP XXss ZSSP | YSSP
NITE
te tm tI te tm tI t:e tm tI te tm tI
1 0.269 - 0.654 0.178 0.563 1.121 0.269 0.0 ° 0.659 0.268 0.0 - 0.659
2. 0.160 .- 0.538 0.052 0.562 0.993 0.160 0.0 0.538 0.159 0.0 0.538
3 0.109 - 0.487 0.109 0.178 0.665 0.109 0.178 0.665
4 0.071 - 0.449 0.070 10.174 0.623 0.070 0.177 0.626
TABLE 5.10._ COMPARISON OF te' tm and t_ FOR PROBLEM 13

18



‘ ssp XXSS ZSSP YSSP
NITE - —

£, € £ £, t € £, t £ t, € £
1 0.272 | - 3.139 |0.176 |5.288 |8.328 |0.273 {0.0 - |3.151 [0.272 |0.0 3.151
2 0.150 - 3.013 |0.062 |5.288 {8.214 |0.150 [0.0 3.013 |0.150 {0.0 3.012
3 0.102 - 2.963 . 0.102 |0.409 {3.373 |0.101 [0.408 [3.372
4 0.080 - 2.943 0.079 |0.418 {3.360 |0.081 |0.408 |3.352

TABLE 5.11.

COMPARISON OF te, tm and tI FOR PROBLEM 17

Z8
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In pfoblem 18, the cantilevered plate of problem
17 was again modelled but with sixteen elements. The
results obtained are presented in Table 5.12.
5.6.3 Rig ' ;H

In problems 19 and 20, an off-shore étructure
(Rig) , was analysed. The two problems differ only in
‘the number of elements employed in the model. This is
a full three-dimensional structure, see Fig. 5.4,Aand
" was mddelled using two-noded beam elements with six
degrées of freedom bef nodé. All‘the'degrees of
freedom at the base of the four legs of the étructure
were assumed to be fixed. .The results obtaihed from
the analyseés of problems 19 and 20 are given in Tables

»

5.13 and 5.14 respectiveiy.

5.6.4 Diécuséion

A

The following statements may'be made after
inspecting TébleS‘S.Q to 5.14:

(1) The-ZSSP and YSSP options still: remain an enigma..
The reason for persisting with these is that the |
modification here takes very little time.
Therefore any improvement will be significant.

(1i) The XXSS opfioh still shows the most potential.
It always converges in the least number of
iterations.: » |

(1i1) The fm for the XXSS option becoﬁes the major
contributor to t, as the order 6f the problem

is increased.
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ZSSP

SSP XXSS YSsp
NITE .
te S t te\ t £ te t € te t t
1 0.283 | - 4.043 |0.150 |6.961 {10.871 | 0.284 | 0.0 4.058 | 0.284 | 0.0 4.059
2 0.148 - 3.905 {0.059 [6.962 [10.779 | 0.148 | 0.0 3.905 | 0.148 | 0.0 3.906
3, ]0.102 - 13.860 0.102 | 0.520 | 4.379 | 0.102 | 0.518 | 4.379
4 0.085 - 3.842 0.083 | 0.531 | 4.372 | 0.082 | 0.518 | 4.358

TABLE 5.12. COMPARISON OF te, tIn -and tI FORkPROBLEM 18

68



ZSSP

SSP XXss YSSP
NITE
te _tm tI Ny : te . tm : tI te tm : tI ‘te t:m tI
1 0.283 - 3.921 0.199 6.658 | 10.495 | 0.283 0.0 3.938 0.283 0.0 3.939
2 0.159 - 3.794 | 0.098 6.658 {10.392 { 0.159 0.0 3.793 0.159 0.0 3.794
3 0.125 - 3.759 0.066 6.658 {10.360 | 0.125 0.576 4.335 0.125 0.573 |4.333
4 0.111' - 3.746 . O.lil 0.588 4,334 0.112 0.574 14.320
5 " 0.090 - *(3).725 0.090 {0.588 4.313 0.091 0.574 14.300

TABLE 5.13. COMPARISON OF te, tm and tI FOR PROBLEM 19

¥

g8



SSP

: XXss ZSSP YSSP
NITE ° ‘ ‘ :
te t:m tI t,:e tm 1?I te tm tI te tm tI

1 0.207 | '~ |20.094 | 0.190 |38.360 [58.436 |0.208 | 0.0 [20.134 |0.207 |0.0 [20.134
2 0.145 |- - |20.028 | 0.137 |38.360 [58.383 [0.145 | 0.0 [20.028 |0.145 | 0.0 [20.028
3 0.144 | - |20.028| 0,049 |38.361 |'58.294 [0.144 | 1.33021.360 0.144 | 1.329(21.358
4 0.129 | =~ |20.013| 0.035|38.361 |58.297 [0.130 | 1.301(21.313 | 0.129 | 1.32921.342
5 0.142 | - 20.028 0.141 | 1.361|21.388 | 0.142 | 1.320|21.358
6 0.076 | - 19.960 | 0.076 | 1.361}21.321 | 0.076 | 1.329(21.289
7 | 0.065 | - 19?94f’ 0.065 | 1.362(21.309 | 0.064 | 1.329(21.277
8 0.048 | -~ |19.930 0.047 | 1.363|21.293 | 0.047 | 1.329(21.259

/

TABLE 5.14. COMPARISON OF te, tm and t

Kd

I

'FOR PROBLEM 20

L8
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(iv) The SSP option is still the quickest with
regard to the total iteration time, tc.

It is clear from the above statements that the
XXSS option appears to be the most promising approach.
However, the modification here requires a lot of extra
work. The major requirement from a successful modifica-
tion is that it takes the least time to obtain a solution,
comparable in acéuracy to that obtained by the original
subspace iteration algorithm, Note that, henceforth,
the ZSSP and YSSP options will be negleéted.

Consider now the XXSS option. It certainly
fulfils the accuracy criterion. However, the extra
workload in'éach iteration causes it to be slower than
the SSP option. It is, therefore, necessary to:

(a) Try to decrease tm'

(b) Seek an environment in which the modification

thrives,
(c) Employ the modification selectively.
(d) Optimise the modificgtion.
~--Consider now each-of (a) to (d) in turn.

(a) 2 The aim here is to décrease tm’ _Most of the work
in the XXSS option can be attributed to the (x1 "L m)
opération. The folloying definition is now ngcessafy.

46

Let NIIT?® be the number of [K]™1[M] operations carried

out on the iteration vectors. Recall the parameter, £,
defined in section (4.2.2). In fact, % = NIIT. el
is convenient to use £ with regard to the algorithm.

However, NIIT is used thrpughout henceforth.
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Clearly, varying NIIT is a possibility. This
will affect tm and the convergence characteristic of the

solution.

(b) The size of the subspace is a major’factor which
governs the solution characteristic in all the options
available. Recall that the size of the subspace is
dependent npon the number of required eigenvalues, NROOT.
Therefore,’varying NROOT may provide a favourable'change

in the environment as far as the XXSS option is concerned.

(c)d' 'ConSider the,te from Table 5.9 to 5.14, as the
iteration number, NITE'increases; te generally decreases.
Note, however, this decrease is not monotonic, | The.
decrease in t may be explained as follows; As NITE
increases, the iteration vectors become better and better
approximations to the eigenvectors. ‘Consequently, the
subspace operators [K] and [M] become more and more
diagonal. Let the te tor the SSP and XXSS options he
t;?‘and't;é resoectively.“ By.comparing these, it can
be'seen'that’for“a given-vaiue’offﬁITE; t;‘ is alwaYs
smalierkthanitss.' ‘Thus, after.a givenvNITE; the XXSS’
option has approximated the eigensystem more'accurately
than the SS? option. Another observation from Tables |
5.9 to 5. 14 is that the XXSS option achieves redundant
accuracy; that is the lower eigenvalues are approximatedv
: far more accurately than required The main point to -

note is that initially the convergence rate of" the xxss

option is much faster than that of the SSP option.
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- However, as convergénce is approached, the convergence
rate decreases and there is no return for the extra
work per iteratibn required by théAmodification.
Clearly, therefore, the conclusion here is that the
XXSS option should be employed for the 'first few

iterations'and then revert to the XXSS option.

(d) ~ It may be possible to optimise the subroutine
containingrthe XXSS modification. Consider the Gram-
Schmidt orthonormalisation process. If this can be
neglected, then t, may be decreasedvconéiderably.,

‘'The requirement, therefbré, 1s to discover how‘neééssary
the Gram-Schmidt(érocess is for numerical stability.‘

The ideas outlined above are investigated in the

following sections.

5.7 Varying NIIT

Recall now the parméter NIIT, defined in section
(5;6.4). In this section the effect of varying NIIT on
the,soiution.characteristics is considered. All the
results prgsented in this chapter to'date have been:
obtained for NIIT = 2. Itvis difficult to juséifyythis
cholce of NIIT logically. Howéver, intu;tively the

choice appeared reasonable at the outset of the investi-

gatioh.

The original ‘idea was to increase the convergence

rate of the”solution. Therefore, to eésily observe this
incfeése a high enough value for NIIT was reéuired.  :

Recall now the discussion in section (4.2.1). It was

‘(\4
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observed that too.larée a value for NIIT would lead

to convergence to the least dominant vector. Thus,
all the modes except the lowest would be suppressed.
Therefore, it was decided that NIIT = 2 should be
employed, since NIIT = 1 may not lead to a significant
change in the convergence rate.

To date, NIIT = 2 has been employed successfully.
However, since NIIT has a sigpificant effect on the
iteration time,'tI, it is now necessary to investigate
other possible values for NIIT.

" The results obtained Qhen NIIT takes the values
1l and 2 in the most promising modification, XXSS, are
presented in Table 5.15. Note that NROOT = 5 throughout
except in problems 1, 2 and 5, where it is 1, 2 and 2,
reséectively.

Henceforth, let XXSS1 and XXSS2 denote the XXSS
option when NIIT takes the value 1 and 2, respectively.
It can be seen from Table 5.15 that when the number of
iterafions for the solution to converge, NITEc are eQual,
XXssl is*faster"thén XXss2. . In fact; in-problem 20,
XXssl is faster even when'it requires moreliterétionsA
to converge than XXSS2. However,'it follows from the
discussion in section (4.2.1), that increasing NIIT,
'focuses' the iteration vectors more and more to the 
least_dominant vector. Thus, the higher the valué of
'NIIT, the higher the convergence rate. Noté also that
both the XXSS1 and XXSS2 options are slower than the -

SSP: option. Therefore, it appears that the successful
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PROBLEM PROBLEM XXss2 XXSS1 PRCBLEM
NUMBER S1ZE tc NITEC tc NITEC TYPE
1 3 0.021 2 0.017 2 Beai
2 6 0.083 2 0.069 2 "
3 12 0.561 2 0.480 2 "
4. 24| 0.975 2 .0.834 2 "
5 6 0.082 | 2 0.068 2 Frame
6 12 0.541 2 0.499 2 "
7 15 0.640 2 0.595 2 "
8 24 0.955 2 0.843 2 "
9 27 1.052 2 0.915 2 "
10 33 1.320 2 1.611 3 n
11 48 1.786 | 2 2.174 3 "
12 51 1.906 . 2 2.305 3 "
13 57 2.114 2 2.565 3 "
14 15 0.432 2 0.336. 2 Plate
15 - 60 6.219 2 6.687 3 "
16 96 ©11.362 2 12.020 3 "
17 132 16.542 2 17.322 3 "
18 168 21.650 2 22.605 3 "
19 186 31.247 | 3 21.955 3 Rig
20 456 233,392 4 198.297 5 "

.TABLE 5.15; COMPARISON OF TH54XX581 gnd XXSS2 OPTIONS

AR
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modification will be one that incorporates the SSP option.
In this caée, as much benefit as possible must be derived
from the 'first few iterations' while either the XXSS1l or
XXSS2 options are being employed, before reverting to the
SSP option. With regard to such a hybrid technique, it
is clearly desirable to obtain a high convergence rate
initially. Thus, in this respect, it appears that XXsSS2
is preferable to XXSSl. |

Consider now the éase when NIIT > 2, although
theoretiéally the copvérgence rate increéées as NIIT is
increased, in practice theré are séveral detrimentéi
features invol&ed with émploying NIIT > 2. The problems
solved when NIIT takes the values 1 and 2 were presented
to the XXSS. option with NIIT = 3, XXSS3 Say,>in all cases.
numerical instabilities were encountered. Thes; were in
the main due to overflow and may be countered withouﬁ
difficulty by employing a scaling factor. - waever, the
main poiﬁt 6f{concerh was the magnitude of the time used
for the modification,mtm.Q .It-was observed.in séction ‘
(5.6.4) that for NIIT = 2, as the order of the problem waspf
increased, the contribution of t, to t; became ﬁrogreésivélfk
more'significant.‘ Clearly, this sifuation will be enhanced
for NIIT > 2. Therefore, neglecting NIIT > 2 and pursuing-
NIIT = 2 was considered a reasonable course’of action, thus

\

henceforth, NIIT = 2 throughout.

5.8 Varying NROOT
~ The number of eigenValues required in an analysié,

NROOT is clearly an important parameter since it defines
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the size of the iterating subspace, see'sedtion (3.5.1).
In this section the behaviour of the solution characteristic
is considered when NROOT is varied.

The results presented in this chapter to date,.
have been obtained for NROOT‘= 5. Numerical difficulties
were encountered when the size of the iteratihg space, q,
became a significant percentage of the size of the full
sﬁace, N. Definite values defining a useful range for
q/N ratio are'not available since these will certainly |
~be problem and sizé.dependent; However, expefiénce has
shown that for the problem considered, the useful ValﬁeS‘
of g/N could be as high as ~ 2/3 for ﬁhe smaller problems,-
but this tendea to decrease as the order of the problem
was 1ncréased. Therefore, only problems of the highest
ordef will be considered. Thus, each problem may be
solved for éeveral values of NROOT. The values
taken by NROOT are 8 and 12. .The results obtained from
the SSP and XXSS options are presented in Tables 5.i6 and
5.17. | |

"“‘"“’Nétice*that there”15“n9~result“for"problem 4 in
‘Table 4.17, the gq/N ratio here is too large and; due to
numerical instabilitieg; the sblutioh was tefminated.
Hoﬁever, the ekplanation that 'the gq/N ratio is‘too large'
is not entireiy'satisféctory and so the’manifestation of
" ﬁhese humerical ihstabilities must be investigated further.
_éonsider,5thereforé, the basic concept upon which the~  o
hodificétién is based, recall equation (4.14) from section

(4.2.1):
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PROBLEM N SSP XXSS PROBLEM
NUMBER € NITE_ £ NITE_ | TV
4 24 3.278 4 2.326 2 Beam
13 57 5.399 4 4.697 2 " Frame
16 96 16.019 4 19.578 2 Plate
17 132 27.361 5 42.021 3 n
18 168 34.887 5 54,743 3 "
19 186 34.523 | 5 53.415 3 Rig
20 456 334.100. | 10 382.821 4 "
TABLE 5.16. COMPARISON BETWEEN THE SSP AND XXSS OPTIONS WITH NROOT = 8?
PROBLEM " SsP XXSS PROBLEM
NUMBER : TYPE
Utc NITEC | tc NITEC
4 24 5.662 a - - ‘Beam
13 57 10.513 5 9.711 3 ‘Frame
16 % 27.372 5 38.207 | 3 Plate
17 132 44.867 6 55.330‘  3 "
18 168 56.484 ., | 6 71.260 | 3 "
19 186 73.098 8 92.817 4 Rig
20 456 470.669 | 11 607.826 | 5 "

TABLE 5.17. COMPARISON BETWEEN THE SSP AND XXSS OPTIONS WITH NROOT = 12
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. n 1
Ei = fb 'Zl aij » T._ !j s 0 o0 * (507)

Clearly, the effect of the modification is to suppress thé
higher nodes and focus the iteration vectors,'zi,,towards
the lowest node. Recall now the parameter % defined in

section (4.2.1). This will henceforth be referred to as

the eigenvalue ratio:

zj.%_;% B .o .o .o (5.8)
The 'richness' of the jth'eigenvector in an iteration

vector is obviously governed by the inverée of Ej' Thérefore,

if Ej is 'very large' then the jth vector will effectively

be missing from the iteration véctdrs. Suppose now that

the ieast dominant éubspacé of interest has dimension q and

the spectral range of the eigenvalues within this subspace

is such that 1; << Aq, then Iq will be large. Consequently,

a few of the highest nodes within the subspace of interest

may be completely lost. . It is due mainly to this that

"-.numerical- instabilities oécur-in'the:modification.

Theféfore, the statement that 'the numenical
instabilitieé occur because £hé q/N ratio becomes a
significant pércentage of unity' is still valid. However,
now a deeper meaning is attached to it, namely that the
increasevin q/N leads to an increase in.i which‘effeété
thé 'richnesé' Qf eigenvedtors in -iteration Vectors.,

It is evidént from Tables 5.16 and 5.17'that;'
_althdugh the XXSS option is converging in fewer iterations,

NITEd,the total time taken, t_ is still greater than that



97

for the SSP option. This becomes pointedly obvious as
the order of the problem is increased. Therefore, since
the object of this work is to obtain a practical algorithm,

it appears that other avenues must be pursued.

5.9 Hybrid technique

In this section, a method consisting of the XXSS
and SSP options is considered. Appropriately, it is
referred to as the 'hybrid techpiqueh Prior to any
numerical investigation, an important decision must be
:made, namely how and when should the two options be
‘employed. Clearly, since the XXSS option has the highest
initial convergence rate, it should be employed during
the 'first few iterations'. As the solution approaohesﬁ
convergence, the convergence rate of the XXSS option
decreases and no advantage is gained from the extra work
due to the modification. Hence, a prudent course’of
action would»be to»employ the SSP option once the initial
ad&ahtage‘has beeh.gained from the XXSS option during the
'first few iterations' _ o p

Although the approach outlined above is the logicall‘
way to proceed, a further question arises, namely what is
‘meant by 'first. few iterations'? An 'a priori' answer
for this question is ?éry difficult if not impossibleito_‘
find. However, in the present case, an answer may be |

deduced. Consider the following discussion.’

As the number of iterations, NITE increases, the

elgenpairs are better approximated. Consequently, the

v
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subspacekoperators'[E] and [M] become progressively more

. diagonal and hence te decreases. Note, however, that this
decrease in te is not always monotonic and fluctuations have
been observed. It can be seen from Tables 5.9 to 5.14

that the approximate value of te at which convergence occurs
is arrived at in considerably fewer iterations by the XXss
option in comparison to the SSP option. = Let NMOD be the
number of iterations employing the XXSS option in which te
decreases Quickly‘and let NSSP be the number of further
iteratiohs, employing the SSP option, required for convergence;
Now, NMOD represents the 'first few iterations' and the |
.problem of giving it a quantitative'valhe still remains.
However, by considering Tables 5.9 to 5.14, it is possible
to choose a value for NMOD such that the time taken for an
iteration, t_ for NMOD and NSSP iterations is less than the

I
t, when only the XXSS or the SSP options are employed. An

I

inspection of Tables 5.9 to 5.14 shows that as the order of
the problem,leincreases,.the time taken for the modifica-
tion increases,. therefore NMOD must be small enough to make
use of the high convergence rate without becoming a burden on the ‘
. final tI. Another factor which plays an important part in
the choice of NMOD is the total number of iterations required
for convergence, NITEés when the SSP option is used.,ffhis
is, in fact, the quantifying aspect of the preceding line

of argument. Experience has shown that the contribution

ofitm to tI,,oan be as much as v 70%, hence proVided‘~'

e . R 1- I
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indications are that the tc for the hybrid technique will
be less than that for the SSP option.
It can be seen from Tables 5.9 to 5.14 that, for
the problems considered, NMOD can take the vales 1 and 2
if equation (5.6) 1is to be satisfied. Note that equation
(5.6) is only a crude indication by which a value for NMOD
is obtained. Even this only applies to the type and size
of problems considered here and is certainly not stated as
a general ruie.
| The results obtained for NMOD = 1 -and NMOD = 2,
are given in Tables 5.18 to 5.20, threevvalues of NROOT
are used, namely 5, 8 and 12. For ease of comparison,
the results due to the SSP option ate_reproduced‘from
Tables 5.7, 5.16 and 5.17 for NROOT = 5, 8 and 12,
respectively. Let XXSSH1 and XXSSH2 denote the hybrid
technique with NMOD = 1 aod 2, respectively.
The following statements may be made after. inspecting
Tables (5.18) and (5.19):
(1) The XXSSH1l option is always quicker than
the SSP option.
-(ii) The XXSSH2 option is‘always quickest for
problem 20.
It appears that NMOD =1 is a conservative.choice
end the XXSSHl option will generally always converge faster
then the SSP option, provided the SSP option does not converge
in one or two iterations. ‘ It is observed that the XXSSH2
:option is always slower than the XXSSH1 and'SSP options

with the exception of problem 20. ' The reason for this is



A ’ SSP XXSSH2 XXSSH1
Probl Order ' Problem
No em of |Time for No. of Iterations {Time for No. of Iterations |Time for No. of Iterations Type
° Problem|Convergence |for Convergence Convergence |for Convergence Convergence| for Convergence

4 24 0.928 3 0.974 2 0.754 2 Beam
13 57 2.128 4 2.114 2 1.571 2 Frame
16 9 | 8.466 4 11.362 2 7.77 2 Plate
17 -132 12.058 4 16.541 2 11.272 2 Plate
18 168 15.650 4. 21.649 2 14.714 2 Plate
19 186 18.948 5 24.588 3 17.97 3 Rig
20 456 | 160.028 8 156.713 4 158.324 6 Rig

TABLE 5.18. °

COMPARISON OF SSP, XXSSHZ AND XXSSH1 OPTIONS FOR NROOT = 5

00T



nos SSp XXSSH2 XXSSH1
Problem Order ~ Probl
No of Time for No. of Iterations|Time for No. of Iterations |Time for No. of Iterations| ‘o--&0
* [Problem |Convergence|for Convergence Convergence | for Convergence (Convergence {for Convergence Type
4 24 3.278 4 2.326 2 1.949 2 Beanm
13 57 5.399 a 4.69 2 3.741 2 Frame
16 | 9. | 16.019 4 19.577 2 13.666 2 Plate
17 132 - 27.361 5 33.344 3 24.704 3 Plate
18 168 34.887 5 43.298 3 31.878 3 Plate
19 186 34.523 5 42.420 3 31.510 3 Rig
20 456 334.100 10 324.65 6 329.341 8 Rig

TABLE 5.19. - COMPARISON OF THE SSP, XXSSH2 and XXSSH]. OPTIONS FOR NROOT = 8

10T



- SSP XXSSH2 XXSSH1
Problem| OF3eT ' ' , - Probl
No. of’ Time for No. of Iterations |Time for No. of Iterations |Time for No. of Iterations| fo--°@
T Problem | Convergenceffor Convergence  |Convergence |for Convergence {Convergence Type
.4 - 24 5.663 4 - - - - Beam
13 57 10.513 5 8.474 3 7.349 3 Frame
l6 96 27.372 5 30.755 -3 23.260 3 Plate
17 | 132 44.867 6 44.209 3 40.006 4 Plate
18 168 56.484 6 56.727 3 51.163 4 Plate
19 186 | - 73.098 8 64.747 4 68.140 6 Rig
20 . 456 - 470.669 11 499.523 8 506.662 10 Rig
) TABLE‘5.20_’. . COMPARISON OF THE SSP, XXSSH2 AND XXSSH1 OPTION FOR NROOT = 12

20T
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that the XXSSHl and SSP options are converging in Vefy
few iterations and éonsequently giving‘the XXSSHZ option
no chance to shine. This is verified by the fact that
in problem 20 where the XXSSH1 and SSP options require
more than a few iterations to converge, the XXSSH2 option
emerges as the quickest.
Consider now Table 5.20; the following statements
may be made:
(1) The XXSSH1 option is always quicker than the
o ssp 6ption with the exception of problem 20..
(ii) The XXSSH2 option is comparable with the SSP
option in problems 17 and 18. ﬂk
(iii1) The XXSSH2 option is the quickest in problem
19.
(iv) The SSP option is the quickest in probiem 20.
With regard to the fact that NMOD = 1 was considered -
a safe choice, statement - (i) was~élightly disappointing, but
perhaps to be expected. - . Statements (i1i) andv(iii) gave
indiéations«that the'XXSSHZ option was about to come into
'ité:own, however statemenf‘(iv) was bitterly disappointing .
and unexpected. i | X | | | |
‘It is now required to reconsider -the application
of the modification in the hybrid technique. The modifica-
tion is applied at the level of the iterating subspace for |
the fi;ét NMOD iterations.. - Initially, this was thought to
be # reésonable course of aéﬁidn.  -However, néw it}ﬁusﬁ be

examined closely for any flaws in the reasoning.
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Operating upon the initial iteration vectors
is perhaps dubious since, although the [K] T[M]
operation enhances the lower modes and suppresses the
higher modes, the vectors being operated upon are not
eigenvector approximations. Therefore, it is possible
to reach a situation in which the iteration vectors
span the least dominant subspace but are not eigenvectors.
This implies that, although the subspace has converged
to the least dominant subspace, more iterations are
requiredyto convert the orthogonal basis of iteration
vectors into a basis of eigenvectors. 1.

Consider the discussion in section (5.6. 4),
particularly the monitoring of the time taken for solving
the eigensystem of subspace operators, te‘ Recall that
it uas this which gave rise to the idea of the hybrid
technique. Once again; the monitoring of te proves
itself useful, the values ofvte in each iteration are
presented in Table 5.21. Only problem 20 is considered
- since it requires more than a few iterations to converge.,
Note that NROOT takes the values 5,8 and 12ffor both
the XXSSH1 and XXSSH2 options.‘ |

Inspection of Table 5.21 reveals that the XXSSH1
option‘appears to suffer more than the XXSSH2 option from
these fluctuations. This is clearly due to the fact that
the enhancing and suppressing of the lower and higher
modes, respectively; is not as severe in the XXSSH1 option

as in the XXSSH2 option.



XXSSH1

NITE NROOT © NROOT
5 8 12 'S 8 12
1 0.189 0.838 2.242 0.189 0.838 £ 2.242
2 0.129 0.713 1.220 0.137 0.871 1.591
3 0.146 0.762 1.070 10.060 10.352 0.610
4 0.075 0.690 1.233 0.050 0.410 1.062
5 0.064 £ 0.343 0.599 0.369 0.451
6 0.050 ‘. 0.409 1.069 0.190 0.418
7 0.374 0.451 . 0.330
8 0.191 0.418 0.317
9 0.338
10 0.311

TABLE 5.21. VALUES OF te AFTER'EACH ITERATION FOR THE XXSSH1 and XXSSH2 OPTIONS

50T
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It is now necessary to investigate phenomena
which give rise to the fluctuations in the value of toe
Thus, consider again the concept which forms the basis
of the modification, namely equation (5.7), and the
eigenvalue ratio, Zj defined in equation (5.8). The

following definition is now necessary for convenience:

2y =7Il—- e e e (509
j

Let the least daminant’subspace of interest have dimension

q, thén if for some j < q,lj' becomes small,}the components

of the ﬁth mode onwards will be correspondingly small in

the iteration vectors. | Suppose now that the r lowest

elgenpairs are required and j < r < q; thenrcomponenﬁs of

the réquired eigenvectors arealmostlosf from the iteration

vectors. However, due to finite arithmetic,_these are-

not entirely lost but remain small and are preserved due

to the orthogonalising process. A few iterations are

required fof»such mddes td eﬁerge frtmldormancy,and it is

this which causes the fluctuations in the values of te.

This is explained by the fact that initially the subspace

is close to convergence, then a 'missing' mode is pulled |

into the subspace necessitating the reOrienfation of the

basis vectors. Thus, in the next iteration, the diagonality

of [K] and [M) is degraded and consequently an increase in

the_te'is observed. The requirement now is‘to suppress as .

‘much as prsible the fluctuétionsiinﬂthe‘sequencé formed by

the values of te'



107

Consider now the following idea: suppose the
first iteration in the solution always employed the SSP
option and the modification was applied from the second
iteration onwards. This would have the effect of
applying the modification at the level of the eigen;

- vector approximations. Initially, this procedure was
not employed due to the fact that it appeared to be a
'waste' of the first iteration. However, in the present

circumstances, it is clearly justified.

Let SXXH1 and SXXH2 denote the hybrid techniques
‘in whichrthe first iteration employs the SSP option |
followed by NMOD = 1 and NMOD = 2,'respectively;’ Tables
5.18 to 5.20 are reproduced_for.the SXXH1 and SXXH2 options
in Tables 5.22 to 5.24. The expectation here is that the
SXXH1 and SXXH2 options will be slower than the XXSSHliand’
XXSSsH2 options when‘only a few iterations are required.
HoweVer, problem 20 will be the important test.k

Observe that, as predicted, the SXXH1l and_SXXHZ
. Options are slower than the XXSSH1 and XXSSH2 options,
krespectivelyi‘ Note, however, that for problem 20, both
the SXXH1 and SXXHZ options are quicker than the SSP,
XXSSH1 and XXSSH2 options. This is certainly encouraging
as far as analysing ‘'real problems‘ is concerned.

The following Table 5.25 has been reproduced from
Table 5.21 for the SXXHl and SXXHZ options in order to‘
illustratetthe_fact>that the fluctuations in_the values
of'té have beenlsuppressed in comparisonwwith the XXSSHl

and XXSSH2 options.



?roblem Problem SSP:.j SXXH2 SXXH1 Problem
No.’ | Size Time for No. of Iterations|Time for No. of Iterations|Time for No. of Iterations Type
Convergence| for Convergence Convergence | for Convergence Convergence |for Convergence
4 24 0.928 ) 3‘ 1.345 3 1.118 3 Beam
13 57 2.128 4 2.698 3 2.145 3 Frame
16 | 9 8.466 4 13.562 3 9.962 3 Plate
17‘ 1132 12.058 » : 4 19.601 3 14.328 3 Plate
18 168 ‘15‘.650 4 25.625 3 18.697- 3 Plate
19 186 18.948 | S 24’.715 3 18.078 3 Rig
20 - 4’56 ;60.028 8 156.818 4 158’.393 6 Rig
TABLE 5.22.

COMPARISON OF THE SSP, SXXH1 AND SXXH2 OPTIONS FOR NROOT = 5

80T



Problem [Problem SSP SXXH2 . SXXH1 Problem
No.  Size Time for No. of Iterations |Time for Nb. of Iterations|Time for No. of Iterations Type
Convergence| for Convergence Convergence |for Convergence Convergence |for Convergence
4 24 3.278 4 3.318 3 2.908 3 Beam
13 57 5.399 4 6.087 3 5.110 3 Frame
.16 96 16.019 "4 23.991 3 18.053 3 Plate
17 132 - 27.361 5 34.087 3 25.393 3 Plate
18 168 34.887 5 44.150 3 32.691 3 Plate
‘19 186 34.523 5 42.946 3 31.915 3 Rig
20 456 334.100 10 324.601 6 329.381 8 Rig

TABLE 5.23, COMPARISON OF THE SSP, SXXH2 AND SXXH2 OPTIONS FOR NROOT = 8

60T



| Problem |Problem SSP SXXH2 SXxH1 Problem
No. Size Time for No. of Iterations|Time for |No. of Iterations|Time for No. of Iterations Type
Convergence |for Convergence |Convergence|for Convergence |Convergence|{for Convergence
4 "24 .'5.663 4 - - - - Beam -
13 57 '10.513 5 9.502 3 8.243 3 Frame
¢
16 96 27.372 5 32.465 3 24,882 3 Plate
.17 132 44.867 6 52.391 4 41.462 4 Plate
18 168 56.484 6 67.280 4 52.805 4 Plate
.19 186 .73.098 8 65.752 4. 68.958 6 Rig
20 456 470.669 11 457.211 7 464 .068 9 Rig

" TABLE 5.24, COMPARISON OF THE SSP, SXXH1 'AND SXXH2 - OPTIONS FOR NROOT = 12

0TT



SXXH1 SXXH2
. NITE . NROOT NROOT
5 8 12 5 8 12
1 10.208 0.937 1.689 © 0.207 0.937 1.689
2 ©0.173 0.702 1.877 0.173 0.701 - 1.877
3 0.143 0.770 1.062 0.133 0.549 1.344
a4 0.076 0.651 1.247 0.041 0.295 0.541
5 10.066 0.512 0.606 0.274 " 0.504
6 0.046 0.287 0.610 0.213 0.347
7 0.275 0.493 10.313
8 0.208 0.366
9 0.302

v TABLE 5.25. VALUES OF fe AFTER EACH ITERATION FOR THE SXXH1 AND SXXH2 OPTIONS

TTT
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Although Table 5.25 shows that the fluctuations
" in the values of_te have been suppressed to a certain
extent, a comparison of Tables 5.18 to 5.20 with Tables
5.22 to 5.24 shows that this has only been of use in
problem 20 with NROOT = 12.

Consider now a very interesting investigation;
only problem 20 with NROOT = 12 is considered in the
following discussion. Let XXSSH3 and SXXH3 denote the
appropriate hybrid techniques with NMOD =.3-. The idea
was tvobsefve the behavidur’oflthe,solution chafacteristic
of the XXSSH3 and SXXH3 eptions‘and the results obtained
were - perhaps not unexpected iﬁ %retrospect; For ease of
comparison, the.results for the SSP, XXSSH1l, XXSSH2,

SXXHi and SXXH2 options are also.repredueed in Table 5.26.

Although the hybrid techniques presented in this
section have been successful, there remains a problem
which ‘requires attention, namely the choice of NMOD.

The method used earlier in this section for deducing'NMOD

was . applicable only-becauseﬂinformation about the solution

“no.-characteristic.was available. . -In order.to utilise the

technique to its full potehfial;'anibptimum value“of NMOD
is required and, at presenﬁ, there appeafs to be no hard
and fast rule for obtaining it. Note that even the crude
indication givenkby equation (5.6) is not applicable |
without prior knowledge of the soiution eharacterietic.
Therefore, as the situation stands, analyst experience

would appear to be the crucial factor.



XXSSHZA

OPTION SSp XXSSH1 XXSSH3 SXXH1 SXXH2 SXXH3
tc 470.669 506.662 1 499.523 493.005 464.068 | 457.211 | 451.492
NITEc 11 10 8 6 9 7 5

" TABLE 5.26. COMPARISON OF THE SSP OPTION AND THE HYBRID TECHNIQUES FOR NMOD = 1, 2 AND 3

ETT
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5.10 ' Neglecting Gram-Schmidt Ortho-normalisation

| The idea here is to investigate the possibility
of decreasing the time required fdr the modification, tm’
by neglecting the Gram-Schmidt ortho-normalisation. All
the problems considered in section (5.9) were presented
to the XXSSG option, where XXSSG denotes the XXSS option without
the Gram-Schmidt ortho-normalisation. In all cases, the
algorithm failed due to ill-conditioning of the subspace
operators [K] and [M], which led to numerical_instability.
| The ill-conditioning of [K] and [M] arises from
the basic concept Of the modificatiqn. Recall once again
the governing equation of the modification, namely

equation (5.7) and the eigeqyalue ratio, %', defined in

equation (5.9). Now since

Alﬁlzs...llixji.....ixq

where q is the dimension of the iterating subspace,zj
forms:a'decreasing sequence as j is increased from 1 to q.
Consequeﬁtly, the supéressibn of thé-hiéher modes increases
progressively as j increases; this leads to a deficiency.
of the higher modes in the iteration vectors. The effect
of this is to progressively make the‘iterafion vectors
more and more paralle} to the least dominaﬂ% mode. It
is due to this that ill-conditioning in [K] and [M] is
encountered. , " |
Suppose tbat the lowest f eig;npair; are required,

with r < g and that £;i is small for some;j < r, then

~ ]
since the higher modes are suppressed according to zj , it
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follows thet the decision for retainiﬁg or discarding
 the Gram-Schmidt ortho-normalisation can onlyube made

if prior information about the spfead of the eigenvalues
in the subspace of interest is available.

The modification may, therefore, be interpreted
in the following manner: The [K]—l[M] operation filters
out the higher modes indiscriminantly. This is followed
by the Gram~-Schmidt ortho-normalisationvwhich reinstates
some components of the higher‘modes, thus preserving
numerical stabiiity. 7 _ |

It is clear from the above‘diecussion that Gram-

Schmidt ortho-normalisation or some other device for

preserving numerical stability is a necessary requirement

if the modified algorithm is to be functional.

C
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CHAPTER 6

CONCLUDING REMARKS

6.1 Conclusions

The aim of this study was to obtain a practical
algorithm for the solution of the large generalised eigen-

problem by modifying the subspace iteration algorithms.

In the context of the stated aim, the following conclusions
may be drawn: _

- (1) Several ideas for modifying the subspace
iteration algorithmvwefe investigated
theoretically.

(ii) The original subspace iteration algorithm
was validated by comparison with know
solutions and subsequently used as the
fiducial reference.

(iii) The ideas investigated theoretically were
conﬁerted into computationally efficient
.algorithms and programmed in subroutine
form. | v '

(iv) After prolonged comparisons the XXSS option
emerged as the clear rival to the original
subspace iteration algorithm.

(v) The XXSS option may be basically defined as
a process which suppresses and enhances the
higher and lower modes réépecﬁively in the

iteration vectors,

-



(vi)

(vii)

(viii)

(ix)

(x)

(xi)

(xii) .
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The initial convergence rate of the XXSS
option was considerably superior to that

of the original subspace iteration algorithm.
Consequently, it always converged in fewerY
iterations.

In terms of the time taken for convergence
to occur, the origiﬁal algorithm was always
quicke: than the XXSS option;'

Utilisation of the superior initial convergence

rate has led to the conception of the XXSSH and

SXXH options. |
Both the XXSSH and SXXH have higher initial
convergence rates and converge in fewer |
iterations—~in comparison td the original
subspace iteration algorithm.

The time taken for convergence to occur by
the modification is always less than that

for the original subspace iteration algorithm
provided the correct hybrid technique is |
employed.

The ratio of the lowest to highest eigenvalues
in the subspace of interest emérges as the
most important parameter with regard to
explaining numerical instabilities.

In order to utilise the-full potential of
the‘hybrid technique, an~0ptimﬁmrvalue for

NMOD must be chosen.
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(xiii) ‘The experienced analyst will be able to employ

the hybrid technique far more efficiently than

the layman.

6.2 Ideas for further research

Dﬁring the course of this study and particularly
towards the end q; it, various ideas have emerged which
were eithefperipheralto the main theme ofkthe study or .
were such that investigation could nbt be initiated due
to lack of time. The author feeis, however, that these
should be poihtéd out inkofder to stimulaﬁe further study
- in this field. ’Some 6f the potentially promisiné ideas

and intéresting speculations® are briefly outlined in the

following:
(a) The idea of shifting has been proposed in the
past43'48 and implemented recently49 with the original

subspace iterations. However, consider the following;
in the course of the study, the hybrid techniques
described in section (5.9) showed a convergence rate

far supérior to that of the original subspace itération.v
Utilisihg this superior convérgence :ate-in éonjunction |
with shifting would appear to be a logical step towards
improving upon the hybrid technique.

Suppose the r‘lowest eigenpairs aré required,
then a check could be made after each iteration to obtain
the number of eigenvalues which have satisfied the
~ convergence critefion, Experience has_shownvthat the

lowest few eigenvalues converge fastest and in clusters,
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a shift Er, beyond the last converged eigenvalue could
then be employed. Thus, 'clusters' of eigenvalues may
be obtained in between shifting, the advantage being the
utilisation of the initial high convergence rate of the
hybrid technique.

Notice, however, that there is also a disad&antage
associated with this, namely, the fact that [K] must be
factorised after each shift. Let g, £ and m dendte the
size of the iterating sﬁbspace, the number of [K]—l[M]
6perations per iterations and the half-bandwidth of [K]

respectively. Then the number of operations required

for a triangular factorisation of [K] are:

1 2 3
57 nm” + 5 nm

and those for an iteration in which the modification is

being employéd are:

ng(4m + 2qg + 3) + 2(4nmg + 8ng - 3)

-From these operation counts, it follows that if q is

comparable tb m, then the advantage is clear. It is the
opinion of the author that the possibility of obtaining an:
efficient algorithm using the hybrid technique invconjunc-
tion with shifting is high.} However, only detailed study

can 1end‘credencé, or otherwise, to this idea.

(b) The following idea is again based upon shifting,
but in the opposite direction. ARecail that a small &',
implies a viéious suppression of the:higher modes, some

of which may be required. Suppose now that a shift, 5&



with some success
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to the left of the origin is employed, this would

effectively increase &' since

A. + S A
1 -l s 1

A+ A
a’ %2 ‘g

In theorybgz may be made as large as required. However,
the drawback here is that information about the eigenvalue
spectrum is required prior to the analysis. The possi-
bility exists, of course, of obtaining a rough approximation

of the eigenvalue after a few iterations and then employing

this idea.

‘Note thét a major implication of this would be the
possibility of neglecting Gram-Schmidt ortho-normalisation.
Since, in this case, the severity of the suppressibn will
be countered and, consequently, the components of the

required higher modes need not be reinstated in the -

iteration vectors.

(c) Recall section (3.5.1). In the opinion of the

author, this aspect of the analysis requires further study.

- It should be possible with-systematic research to form a’

better methodology for choosing the dimension of the

subspace than that given in section (3;5.1).

(d) An interesting idea is to generate the initial
interation vectors for the hybrid technique using Lanczos
method: This idea has been proposed and implemented

18,43,49 for the original subspace

iteration.
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(e) It would be very interesting and instructive to
carry out a systematic parameter survey involving

N, g, NIIT, NROOT and NMOD. This could pbssibly lead
to definite guidelines for choosing optimum values for

the various parameters in a given problem.



APPENDIX A

CARDANO'S RULE FOR SOLVING CUBIC EQUATIONS

A real cubic equation, after dividing through by

the coefficient of the leading term, may be written as:
x? + ax? +bx +c =0 .. .. .. (A1)
where a, b and ¢ are real constants.
By employing the tragsformation
X =y - % .- .e .o .o (a2)

equation (Al) may be re-written as:

ys = AY + B .. LY L) (A3)
where
- sy |
A= 3 § - b
| . . .o (A4)
an
B = - 2[-3-] + Db 3 o J
now let
. B
p=%' and q=§' oo o .o T e ' (AS)

Then the discriminant, D, is:

Let Yy i = 1,3 be the roots of equation (A3) in the following
discussion. Three cases can arise according to whether D is

positive, zero or negative.
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(a) D > 0-

In this case one root is read, Yy, say, where

Wi

11 ' : 1
Y, = {q + (@* - p*)2}3 - {q - (q* - p*)Z}3
Yo is imaginary and is given by
1 L - 1
Y, = 2p? cosh {% cosh™ "(q/p?)}

and Y, is the complex conjugate of Yoo

(b)) D = 0"
| In this case there are two real distinct roots,

one of these is repeated

i
N

Q
wl

¥y

Y, Y3 q
(c) D<oO

In this case there are three real, distinct roots.

Initially determine an angle, 0, from
. 3 3
8 = cos ~(q/p2)
with 0° < o < 180°
then
‘ L,
Y, = 2p? cos (3)
1 y
y, = 2p? cos (3 + 120°)
y; = 2p% cos (3 + 240°)
The roots of equation (A3) are then transformed

into the roots of equation (Al) by employing equation
(a2). | | .
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