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SUMMARY

The mathematical statement of the eigenproblem is 
deceptively simple and, although the basic theory has been 
well established for a long time, obtaining an accurate 
solution still remains far from trivial. The eigenproblem 
arises in many branches of science. In this study, however, 
it is considered only in the context of dynamic and buckling 
analysis.

The genesis of the eigenproblem in dynamic and 
buckling analysis is considered and a brief survey of popular 
solution techniques is presented. A most powerful solution 
technique, namely subspace iteration, which forms the kernal 
of this study is discussed in some detail.

Various ideas which may accelerate the subspace 
iteration method are investigated theoretically. These 
ideas are subsequently converted into algorithms, which are 
implemented in the form of FORTRAN computer programmes.

The validity and accuracy of the results obtained 
is tested against known solutions with a satisfactory outcome. 
The various modifications are then presented with a menu of 
problems for comparison purposes. This process identifies 
the 'best' modification and also yields new ideas and 
insights.

The subsequent investigations lead to the conception 
of the 'hybrid technique', which employs the best modification 
in conjunction with the original subspace iteration. .The 
convergence rate and solution time of the hybrid technique 
compare favourably with those of the original subspace 
iteration. . In fact, for the problem considered, the hybrid 
technique is always superior to the original subspace iteration.
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NOTATION

All the symbols used in the text are defined as 
they appear. However, for convenient reference, a 
list of the principal symbols is presented below. The 
necessity of requiring additional symbols in a minor 
context has, on occasion, led to non-uniqueness. However, 
in such cases, explanatory text is available in order to 
avoid confusion.

Matrices are denoted by square brackets, e.g. [K] ,
and column vectors by an underscore, e.g. v. The inverse

-1 Tand transpose of [K] are denoted by [K] and [K] 
respectively. Differentiation with respect to time is 
denoted by dots, e.g. = t, = etc.

A
b
tC]
[D]
E
En
h
I
[I]

ku
[K ]

[K]

tK1G

Length
Cross-sectional area 
Width
Damping matrix 
Diagonal matrix 
Young's modulus 
Space of dimension, n 
Thickness 
Moment of inertia 
Identity matrix 
(i,j)th element of K 
Stiffness matrix
Projected (reduced) stiffness matrix 
Non-linear strain stiffness matrix



(x)

lfZ' Eigenvalue ratio
[L] Lower triangular matrix

V Half bandwidth of K

[M]
(i,j)th element of M 
Mass matrix

[M] Projected (reduced) mass matrix
N,n Dimension of full space
N U T , SL

«

Number of [K] 1 [M] operations for 
iteration (Method 1)
Power to which eigenproblem is

NITE
raised (Method 1A).
Iteration number

NITEc Number of iterations for convergence
NMOD Number of iterations ;in which the 

modification is applied
NROOT,r Number of required eigenvalues
q Dimension of subspace
[Q] Eigenvector matrix of projected 

eigenproblem
R Load vector
RTOL Relative convergence tolerance

5' V sr Shift
t General time variable

Time taken for convergence
Time taken for an iteration

tm Time taken for the modification
te Time taken for solving the projected 

eigenproblem
TOL Convergence tolerance



(xi)

V Eigenvector
[V] Eigenvector matrix
u,x,y,z Vectors as specified
[U] , [X] , [Y] , [Z] Matrices as specified
a Optimising factor (Methods 2 and 2A)

6i} Kroneker delta
V Poisson's ratio
P Density
X , p Eigenvalue
[A],[P] Eigenvalue matrix
w Angular frequency
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CHAPTER 1

INTRODUCTION

The solution of the eigenproblem has been a constant 
source of interest for the mathematicians and a source of 
annoyance for practical scientists and engineers. The 
latter being more interested in the results and not the 
mechanics of obtaining them. The formulation of the 
eigenproblem is deceptively simple and the background theory 
has been known for years yet the challange of obtaining an 
accurate solution is not easily overcome. The accurate 
solution of the eigenproblem is an ideal illustration of 
bridging the gap between classical mathematics and numerical 
analysis.

The generalised eigenproblem arises in many fields of 
scientific study. However, this work is only concerned with 
the solution in the context of dynamic and buckling analysis. 
Clearly, the discipline in which the eigenproblem is posed, 
governs the properties of the operators in the formulation.

The ability to carry out structural analysis has
improved dramatically in recent years. This has led to a
better understanding of the strengths and weaknesses of
structures. Consequently, the undertaking of ambitious
engineering projects has become possible, since in this age
of ever increasing costs an optimal use of materials is
required. . The 'finite element method' used in conjunction
with high speed computers makes possible the dynamic, buckling

1 2and earthquake analysis of large and complicated structures '.
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The solution of the eigenproblem is also of
importance in the design of dynamic components. The
analysis of such a component will yield the natural
frequency spectrum. It can then be ensured that the
working frequency is not in the neighbourhood of a natural
frequency. Consider the following problem: the lowest
natural frequency of a structure is required to fall within
a prescribed range. The structure is then analysed and,
if the condition is not satisfied, the system matrices are
varied until it is satisfied. In practice, the mass of a
structure is far easier to vary than the stiffness.

Generally, in the solution of the eigenproblem, only
the few lowest eigenpairs are required. Therefore, the
solution methods, which take no advantage of the special
properties of the operators or which solve for the complete
eigensystem instead of the required few eigenpairs, are
inefficient and uneconomical.

When the order of the operators in the eigenproblem
is large and only the few lowest eigenpairs are required,

3approximate solution.techniques are employed. Recently,
a most powerful numerical tool has been provided for the
finite element analyst, namely "the subspace iteration
method" for the solution of the large generalised eigen- 

4 5problem ' . The object of the work is to obtain a practical 
algorithm by modifying the subspace iteration algorithm and 
may be stated as follows:

(i) Test the original algorithm
(ii) Look for possible modifications in 

the original algorithm
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(iii) Justify the modifications theoretically
(iv) Programme the modified algorithms
(v) Test the modified algorithms

(vi) Compare the results with the original 
algorithm.

The following is a general outline of the thesis. 
The chapter immediately following this introduction gives 
the mathematical statement of the eigenproblem. A 
discussion of how the eigenproblem arises in dynamic and 
buckling analysis is presented and solution methods prior 
to the subspace iteration method are discussed critically.

The basic groundwork for this study is laid out in 
Chapter 3, where the original subspace iteration algorithm 
is presented. The detailed discussion here is a necessary 
requirement for the subsequent chapter.

In Chapter 4, the theoretical aspects of the 
modifications to the subspace iteration algorithm are 
discussed. Two basic modifications are considered along 
with a few variations on these. The numerical aspects, 
e.g. stability and convergence of each modification are 
discussed. The various difficulties arising in the 
implementation of the modified algorithms are mentioned.

Chapter 5 initially contains a comparison of the 
results obtained from the original subspace algorithm and 
known solutions. Subsequently, general and detailed 
comparisons between the various modifications available 
are made. The discussion of the results obtained from 
these lead to the formulation and testing of the 'hybrid



4

technique'. Finally, the results from the hybrid technique 
are presented and discussed.

The tolerances used in the original algorithm and 
the modifications are the same. This allows the results 
obtained and the times used in the solution to be compared 
directly.

Chapter 6 contains the overall conclusions and 
implications drawn from this study along with possible 
avenues of further research.
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CHAPTER 2

THE LARGE GENERALISED EIGENPROBLEM

2.1 Introduction
In this Chapter, a discussion of how and where the 

eigenproblem arises in dynamic and buckling analysis is 
presented. The properties of the operators are observed 
and the solution techniques prior to subspace iteration 
method are discussed.

2.2 Dynamic analysis
For a finite element system in equilibrium the 

equations of motion may be written as
[M]x* + [C]± + [K]£ = R .. .. .. (2.1)

where [M],[C] and [K] are the mass, damping and stiffness 
matrices of order n respectively, and R is the load vector. 
The displacement, velocity and the acceleration of the finite 
element assemblage are denoted by £ and y  respectively. 
Clearly, if the inertia, [M]^, and the damping, [C]£ are 
neglected, equation (2.1) reduces to

[K]£ = R .. .. .. .. (2.2)
which is the equation to be solved in a static analysis.
Thus, dynamic analysis involves carrying out static analysis 
at time, t, and taking into account the inertia and damping 
forces.

For a n-degree-of-freedom system, the equations of 
motion are a set of n coupled equations which must be solved 
simultaneously. It is, however, possible to express this 
set of equations in terms of a different coordinate system

i
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for which they become uncoupled, by employing a linear 
transformation. An uncoupled system of equations is, 
in fact, a set of independent equations each of which 
resembles in structure the equation of motion of a single- 
degree-of-freedora system. The advantage of uncoupling 
the equations is that an uncoupled system of equations is 
considerably easier to solve than a coupled system of 
equations^.

If the normal modes of vibration for a multi-degree 
system are used as generalised coordinates, the equations 
of undamped motion become uncoupled. This approach requires 
the solution of

[M]£ + [K]y = 0  ........... (2.3)
which is the expression obtained from equation (2.1) when 
the damping forces are neglected. This is the free vibration 
problem and has solutions of the form

y = v sin a) (t - tQ) ........... (2.4)
where v is a vector of order, n, t and t are the time 
variable and constant respectively, and w represents the 
frequency of vibration in rad/sec of the vector v.

Substituting equation (2.4) into equation (2.3) leads 
to the mathematical statement of the generalised eigenproblem, 
namely

[K] v = a2 [M] v ........... (2.5)
The solution of this yields the eigenpairs i^2,w22)*’
where the eigenvectors are [M] -orthonormalised such that

{ i : $  •• •• •• <2-6>
and
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0 K o)ĵ   ̂ «2  ̂  ̂ ••••••••••  ̂ • • •• •• (2.7)
The ith mode shape is given by and u^2 is the corresponding 
frequency of vibration.

Consider now the following definitions.

[V] = (vlf v2 ..........  Vn>
[A] = diag (a). 2), i = 1, .... n)X

The n solution of equation (2.5) may now be written as

(2 .8 )

IK] [V] = [M] [V] [A] . .
Thus, equations (2.6) and (2.9) yield

[V]T [M] [V] = [I]
' • • •

[V]T [K] [V] = (A]

(2.9)

( 2 . 10)

where [I] is the identity matrix. Hence, a suitable linear 
transformation to uncouple the equations is

£(t) = [V]x(t) ............... . .. (2.11)
Substituting from equations (2.10) and (2.11) in equation 
(2.1) leads to

(x) (t) + [V]T [C] tV]x(t) + [A]x (t) = [V]TR (t) .. (2.12)
The initial conditions on x(t) are obtained from equation 
(2.11), i.e. at time, t = 0,

xQ = vT [M3 Zq » *0 = ** ** (2.13)
It is clearly seen from equation (2.12) that if the damping 
term is neglected, the finite element equilibrium equations 
are uncoupled.

Generally, the damping matrix cannot be derived 
explicitly and the damping effects are only included 
approximately. It is thus reasonable to construct a 
damping matrix which will include all the required effects, 
i.e. the overall energy dissipation during the system
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response and also allow an effective solution of the 
equilibrium equations.

In practice, [V]T [C][V] is assumed to be diagonal,
i«e. damping is proportional. Thus, the total damping 
in the structure is the sum of individual dampings in 
each mode. Therefore,

where e^ is the modal damping parameter. Hence, the 
eigenvectors v^ are also [C] - orthogonal and under the 
transformation given in equation (2.11), equation (2.1) 
reduces to a system of uncoupled equations.

The main computational effort in dynamic analysis 
is in the solution of the eigenproblem. If the system 
matrices are large, it becomes prohibitively expensive 
to solve for all the eigenpairs. However, experience has 
shown that generally only the few lowest eigenpairs are 
required and that the higher eigenpairs may be neglected.
The number of eigenpairs sought depends upon the structure, 
loading conditions and the required accuracy of the analysis. 
If the required eigenpairs can be obtained with a justifiable 
amount of effort then the analysis of large structures 
becomes feasible.

Consider now the operators [K] and [M] from equation 
(2.5), an important property of these is bandedness, i.e.

where (2m^ +1) is the bandwidth of [K]. Also, at least one

(2.14)

k±j = 0 , j > i + m k (2.15)
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of the operators [K] and [M] is positive definite. In
practice, [K] can always be taken positive definite since
by shifting5 rigid body modes may be removed. In finite element
analysis, if a consistent mass formulation is used, then
[M] conforms to equation (2.15) and is also positive
definite with m = m, ; here m denotes the half-bandwidthm k m
°f [M]. However, often good accuracy can be obtained by 
using a lumped mass formulation. In this case [M] is a 
diagonal, non-negative definite matrix.

2.3 Solution techniques
Since the order of the system matrices is large, 

the exact solution of the eigenproblem using conventional 
techniques becomes generally impossible. This is due to 
the fact that the'solution requires more high speed core 
storage than is available in a reasonable size computer.
Thus the use of conventional solution techniques is generally 
not possible for large systems. Consequently, approximate 
solution techniques have been developed.

In the following sub-sections, brief, critical 
summaries of the frequently used conventional and approximate 
solution techniques is presented.

2.3.1 Vector iteration methods
Vector iteration methods^ are very effective in 

solving the eigenproblem. However, the eigenvectors are 
only calculated one at a time. Also, to preserve numerical 
stability, the eigenvectors must be calculated to high 
precision. Vector iteration techniques are effectively 
employed in subspace iteration.
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2.3.2. Transformation methods
These methods7-23 generally suffer from one or more 

of the following:
(i) Transformation of the eigenproblem to standard

form is required. This is not always possible.
(ii) All the eigenpairs are calculated instead of 

the required few.
(iii) No advantage is taken of the bandedness of the 

operators.
Consider now briefly a few of the frequently used

transformation methods.
(a) The Jacobi method

7-13This method was proposed over a century ago
for the solution of the standard eigenproblem. Clearly, 
a detrimental feature of this method is the necessary 
transformation to the standard eigenproblem. Another 
undesirable feature is the calculation of all the eigen­
pairs; apart from this, it is a particularly simple and 
stable method.

The method basically consists of carrying out a 
finite number of congruance transformations to diagonalise 
[K] . This diagonal then contains the eigenvalues and the 
eigenvectors are the columns of the product of the trans­
formation matrices.

5The Jacobi method has been further developed to 
take into account the generalised eigenproblem. The 
generalised Jacobi method has been effectively implemented 
for solving the reduced generalised eigenproblem generated 
by subspace iteration, see section (3.3).
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(b) The Householder - QR - Inverse Iteration (HQRI) method
7-10 19-23As in (a), the HQRI ' method requires

initially a transformation to the standard eigenproblem.
Once this has been achieved, the method proceeds as 
follows.

(i) Householder transformations to reduce [K] to 
tridiagonal form.

(ii) QR iterations to obtain the eigenvalues.
(iii) Inverse iteration to obtain the eigenvectors 

of the tridiagonal matrix. These are then 
transformed to obtain the eigenvectors of [K].

Note that all the eigenvalues are calculated. However, 
only the required eigenvectors need to be calculated.
(c) The Lanczos method

A particularly elegant method from a mathematical
viewpoint is that due to Lanczos^ ^  It transforms
an arbitrary matrix [A] of order n into tridiagonal form.
The idea basically is to employ two arbitrary but not
orthogonal vectors in generating two sets of bi-orthogonal
vectors using [A]. The conclusion of these sequences
leads to a tridiagonal matrix which is similar to [A].
The eigenvalues of the resulting tridiagonal matrix may
be obtained in a variety of ways. Note that if [A] is
symmetric, only one bi-orthogonal set need be generated.

This method was neglected for many years after it 
14was first proposed due to several numerical instabilities 

associated with it. Despite the simplicity of the method 
in exact arithmetic, it was found to be wanting in finite 
arithmetic where round-off errors caused problems.
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Recently, however, this method has gained favour 
due to the following:
(i) The reinterpretation of the nature of numerical 

instabilities^ ' ^7.
(ii) Procedures to minimise the effect of numerical 

instabilities7' 15.
Thus, the Lanczos method is considered as a possible 
candidate for the solution of the large generalised eigen- 
problem.

There still remains the problem of equal or closely 
clustered eigenvalues; in this case the eigenpair is not 
accurately approximated. In general, the accuracy of an 
eigenpair approximation depends largely upon the spreading 
of the eigenvalue spectrum. The accuracy of the predicted 
eigenpair depends also upon the starting vector. If this 
is orthogonal to some required eigenvector than the corres­
ponding eigenvalue is missed in the eigensolution.

If the truncated Lanczos method is used then the
18accuracy of the solution improves as the number of 

generated vectors is increased.
2.3.3 Characteristic polynomial Iteration techniques 

It should be noted that polynomial iteration 
techniques7 ^0/ 24 yield only the eigenvalues, the eigen­
vectors have to be calculated separately. Explicit 
polynomial iteration requires the expansion of a determinant 
which, for a matrix of order n, means about nl operations 
and is, therefore, impractical. Implicit polynomial 
iteration requires several triangular factorisations^ for 
each eigenvalue, each triangular factorisation of [K] say, 
consists of about }nmk operations. Therefore, the time
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taken for triangular factorisation increases rapidly 
with the order of the operators.. This technique is 
useful, however, when used in conjunction with inverse 
iteration.

2.3.4 Sturm sequence property
7—10 25-27This technique'” ' suffers from the same

defects that were mentioned with regard to implicit 
polynomial iteration. When used in conjunction with 
other techniques, this is a very useful property.
2.3.5 Rayleigh-Ritz analysis

The Rayleigh-Ritz5'7 10/28 approach is the basis 
of a lot of approximate solution techniques. The two 
methods discussed subsequently can be shown to be Ritz 
analyses. For a general discussion, consider the following

[A] v = X [B] v ................ (2.16)

The operators [A] and [B] are assumed to be positive definite 
and defined in an n-dimensional space En . The Rayleigh
minimum principal states that/

X1 = min p( v) .. .. .. .. (2.17)

where p(v) is the Rayleigh quotient and the minimum is taken 
over all possible vectors v

VT [A] V
p(v) = -7n.... ................ (2.18)v [B]v

Define now a set of vectors, v, which are linear combinations 
of the Ritz basis vectors,’ u^, i = 1, ...... , q and are
given by
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q
v = l x.u. .. .. .. .. (2.19)

i=l 1

where the are the Ritz coordinates. Clearly, the v 
must be in the subspace, E^, spanned by the Ritz basis 
vectors. The vectors, must be linearly independent 
so that the subspace, E , has dimension q, also we haveq
that E is contained in Ew.q n
Substituting equation (2.19) in equation (2.18) gives

q q

P (v) =
I l xixj 1 1
q q
I ll i
I l V i  bij

a
b (2.20)

where

aij = Hi [A] Ej 

bij ‘ h / ibIEj j
( 2 . 21)

The necessary condition for a minimum of p(v) is 
3P(v)/3xi =0, i = 1, ....  q. This yields

[A]x - p [B ] x (2 .22)

where [A] and [B] are symmetric matrices of order q with 
typical elements defined in equation (2.21) and x is the 
vector containing the Ritz coordinates. The solution of 
equation (2.22) yields the eigenvalues P^, i = 1, ...., q 
and the corresponding eigenvectors, x^, i = 1, ...., q. 
These x^ are then used in equation (2.19) to obtain 
v^, i = 1, ...., q. The obtained, are upper bounds 
to the X^, i.e.
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i P1' X2 - '2' X <q -
The first inequality follows from the fact that is 
contained in En , the second inequality may be proved 
as follows:

X2 = min p(v) ...........  (2.23)
The minimum is taken over all vectors v in En that satisfy 
the orthogonality condition

vT (b ]Vi = 0  ...........  (2.24)

Also from the Rayleigh-Ritz analysis,

P2 = min p(v) .. .. .. (2.25)

the minimum here is taken over all possible vectors, v 
in Eg that satisfy the orthogonality condition,

£T [b ]Vi = 0 ...........  (2.26)

Consider now an auxiliary problem,

P2 = min p(v) ...........  (2.27)

where the minimum is taken over all vectors v which satisfy 
the following condition

vT [B]Vi = 0 .. ... .. (2.28)

Now X, < p_ since E is contained in E , also p_ < p since 
the most severe constraint on v inequation (2.28)is v^, therefore

*2 5 ?2 i »2
The third and subsequent inequalities may be proved 
similarly. Note that in the evaluation of p^ and v^,
_P (v) has to be minimised with the orthogonality condition,
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_T _vtBlVj = 0, j =1, ....  , i - 1 .  This indicates that
less accuracy is obtained in the approximation of the 
higher eigenvalues since (i - 1) constraint equations 
have to be satisfied in the evaluation of p^.

2.3.6 Static condensation
5 29-31In static condensation ' those degrees of

freedom which are not required to appear in the global 
finite element assemblage are eliminated. The assumption 
that the mass of the structure can be lumped at some 
specific degrees of freedom without having much effect on 
the eigenpairs of interest is inherent to this approach. 
Once the mass lumping has been carried out, then by static 
condensation the original n degree-of-freedom becomes a nm
degree-of-freedom problem, where n^ are the allowed mass 
degrees of freedom. Typically, the ratio of the nm to n 
is between ^ and It should be noted, however, that n
must be significantly larger than the required number of 
eigenpairs in order to keep an adequate mass distribution 
in the system. Clearly, the accuracy of.the solution 
obtained depends upon the engineering.judgment of the 
analyst.

2.3.7 Component mode synthesis
c o o — o cThis method ' is appropriate if a large

complex structure is to be analysed. Such a structure 
is partitioned into substructures and each substructure 
is analysed separately. Once the preliminary analyses 
has been carried out, the mode shape characteristic of 
each component is know. These are then combined to
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estimate the mode shape characteristic of the complete 
structure.

2.3.8 Discussion
Note that both Static condensation, section (2.3.6), 

and Component mode synthesis, section (2.3.7), can be
5understood 'as- variations of Ritz analyses .

Consider now the Rayleigh-Ritz analysis, section 
(2.3.5)., in practical dynamic analysis, the Ritz basis 
vectors are calculated from the static solution, i.e. 
solution of equation (2.2). This is done by specifying 
q load vectors in the matrix R so that,

[K] [U] = [R] .. .. . . . . (2.29)
where [U] is a n x q matrix containing the Ritz basis vectors,
tU] = [u1# u2, ...  , Hql • The next step in the analysis
is the evaluation of the projections of [K] and [M] onto the 
subspace, E , which is spanned by the vectors, u ., i = 1,...., q.

[K] = [U]T [K][U] .. .. .. (2.30)
[M] = [U]T [M][U] .. . . . .  (2.31)

This leads to the reduced eigenproblem
[K]x = p[M]x ... .. .. .. (2.32)

The solution of which can be written as
[K] [X] = [M] [X] [P] .. .. .. (2.33)

where [P] is a diagonal matrix containing the eigenvalue 
approximation p̂  ̂and the columns of the matrix [X] are the 
[M]-orthogonal eigenvectors of equation (2.32) . The approxi­
mations to the eigenvectors of the original problem are then 
given by ,

[V] = [U] [X] (2.34)
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In the discussion of the Rayleigh-Ritz analysis 
the operators [A] and [B] were assumed to be positive 
definite. This is always true for [K] since, as mentioned 
previously, a shift can be introduced to obtain a shifted 
[K] which satisfies this conditions. The case, where [M] 
is non-negative definite can be dealt with by ensuring that 
the Ritz basis vectors lie in the subspace corresponding to 
the finite eigenvectors. The error in the eigenvalue 
approximations depends upon the Ritz basis vectors chosen. 
Thus, good results are only obtained if these basis vectors 
span a subspace which is close to the least dominant 
q-dimensional subspace of [K] and [M].

The paramount problem in a Ritz analysis is the 
selection of 'good' basis vectors. The repetition of the 
analysis with a larger set of basis vectors is not necessarily 
a check on the first analysis. Since a large discrepancy 
in the results of the two analyses only indicates that either 
one or both analyses are giving inaccurate eigenpair approxi­
mations. Such a situation necessarily commits the problem 
to further analyses.

In a Ritz-type analysis, two major points of 
uncertainty exist. Firstly, the accuracy of the approxi­
mations to the required eigenpairs is not known. Secondly, 
the possibility that an approximation to an eigenpair may 
have been missed altogether is present. The uncertainty 
due to these points leads to a large number of repetitions 
of the analysis, involving high cost, without, however, 
removing all uncertainty. The question then arises,
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whether it would have been more efficient to solve the 
full eigenproblem, provided a solution is possible.

2.4 Buckling analysis
One other generalised eigenproblem merits brief 

discussion. Consider the equations governing the 
bifurcation buckling of a structure.

[K] v = X[K]qv ...........  (2.35)

where [K] is'the linear strain, stiffness matrix and [K]_(j
3 6is the non-linear strain (geometric) stiffness matrix.

The buckling load and the corresponding buckling mode are 
given by X and v respectively. [K)G a ^anded matrix 
with the same bandwidth as [K] and is, in general, indefinite. 
In this case, the problem to be solved is

[K]gv = X [K] v ................  (2.36)

where X = ^ and may be positive or negative.
Equation (2.36) is solved for the largest value of 

X which corresponds to the smallest buckling load. In 
practical analyses, it is desirable to find the lowest ’few' 
buckling loads since, if they are very close, preventing the 
lowest buckling mode becomes inconsequential.

Note that here static condensation cannot be used. 
However, a Ritz analysis is applicable.
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CHAPTER 3

SUBSPACE ITERATION 

3•1 Introduction
In this Chapter, a subspace iteration algorithm 

is presented3. In the past, a number of subspace iteration 
algorithms have been proposed by various authors3  ̂ A
primary advantage of subspace iteration over other methods 
is that high precision in the calculation of eigenvalues 
and eigenvectors is not required to preserve numerical 
stability.

The subspace iteration method is largely based on 
various techniques mentioned earlier, namely simultaneous 
vector iteration, Sturm sequence property and the Rayleigh- 
Ritz analysis. It uses primarily vector inverse iteration 
with a few triangular factorisations. The projections of 
the operators [K] and [M] onto a subspace are formed and the 
reduced eigenproblem is solved by the generalised Jacobi 
method.

The main difficulty encountered in this method is 
the selection of the initial subspace. The scheme used is 
a simple one, However, experience has shown that it is 
successful.

3.2 Algorithm
The basic idea is iterating simultaneously with a 

number of vectors. The number of iterations to convergence 
depends primarily upon how rich the individual initial 
iteration vectors are in their corresponding final eigen­
vectors.
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Suppose the initial iteration vectors, [X]^ span 
the r .'-dimensional least dominant subspace but are not 
eigenvectors. An effective iteration scheme would, in 
this case, find the eigenvectors in a single step.

Let [X]k be the iteration vectors after (k - 1) 
iterations which span the subspace E^. The aim is to 
find the subspace Ek+ ,̂ the basis vectors of which,
[X]k+1 are a better approximation to the eigenvectors 
than [X]k .

The solution algorithm proceeds as follows:
let [Y] be the initial iteration vectors, then iterating
from E, to E. ' for k = 1,2 ....k k+1 '

[KJ[X]k+1 = [Y]k .. . . . .  .. (3.1)

[Y]k+1 = [MHx]k+1 ...........  0 .2)

Obtain the projections of [K] and [M] onto Ek+1

[K] = [X]k+1 [K] [X]k + 1 ...........  (3.3)

[M] = EX]k+1 [Ml[X]k+1 .. .. .. (3.4)

Solve the projected eigenproblem

tK][Qlk+1 = iMHQ]k+1[A]k+1 -  .. (3.5)

where [QJk+1 and [A]k+1 are the eigenvectors and eigenvalues 
respectively of the projected problem.
Calculate an improved approximation to the eigenvectors.

[Y]k+1 lYlk+ltQ1k+l (3.6)
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Then provided the vectors in [Y]^ are not orthogonal to 
one of the required eigenvectors,

[A]k+l [A] and [Y]k+l ^ [Vl as k 00 •

.22

Note that the projected eigenproblem is solved in the 
r-dimensional least dominant subspace.

The convergence analysis given by Rutishauser' 
is applicable to the above algorithm, although he uses a
different subspace iteration. The convergence is

oasymptotic and the convergence rate of the ith iteration 
vector to an eigenvector can be shown to be X^/Xr+ ,̂ where 
the iteration is performed with r vectors. This asymptotic 
convergence rate indicates that the eigenvectors corresponding 
to the lowest eigenvalues converge fastest. A higher con­
vergence' rate can be obtained by using q iteration vectors 
when r eigenvectors are required with, q > r. Provided 

< X multiple eigenvalues do not have a detrimental 
effect on the convergence rate.

Consider equations (3.3) - (3.5), these represent 
a Ritz analysis as described in section (2.2) , with 
as the Ritz basis vectors. As with all Ritz type analysis, 
[A]k+]_ contains upperbounds to the eigenvalues, X^, .... , Xr 
and the lower eigenvalues will be approximated best.

3.3 Generalised Jacobi iterations
For a general discussion, consider the symmetric 

operators [A] and [B] of order q with [B] positive definite. 
The problem to be solved is:

[A] v = p [B] v ................  (3.7)
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Note that in this case there are no restrictions on the 
eigenvalues, p^, which may be positive, negative or zero.

The method is best demonstrated by a general 
example; for ease of calculation consider the case n = 2.

[A] =
a . . a . .ii 13
a . . a . .Di DD

; [B] =
b b , . ii ij
b . . b . . Di DD

The aim is to obtain the two [B]-orthonormal vectors which 
also diagonalise [A]. The directions of these vectors are 
determined completely by the columns in [V], where

V
1 s 
t 1

The condition governing the choice of s and t is that a ^  and
Tb ^  shall be zero simultaneously. Hence, by forming [V] [A][V]

Tand [V] [B][V] two equations for s and t are obtained.

s ai± * (1 + st) a . . + t a . . =0 iD DD • • (3.8)

s b1A +. (1 + st) b.. + t b .. =0 iD DD • • (3.9)
Equations (3.8) and (3.9) are linear equations which in the
general case are solved by defining the following

a . . DD bii ' bj j a, . iD

5ii ■H•H

il bij - bii aij
a = aii b. . -DD aj j bii

s . ! u
X

t = - fit
X

(3.10)

The value of x required to calculate s and t is then obtained 
by solving

xa - ax - a., a.. = 0  ...........  (3.11)
J  J  H
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The solution of which is given by

x a
2 + * 4 a-i-iau (3.12)

where the absolutely larger value of x is employed.
It is generally known that this congruence trans­

formation is possible^ provided one of the operators is 
positive definite. Therefore, when considering [K] and 
[M], this effectively allows[M]to be non-negative definite.

Physically, the aim in the diagonalisation is to 
reduce the coupling between the degrees of freedom i and j. 
The coupling factors are, ,

/ a'ij/aü ajj » / b!tj/bii/Bji •• •• •• <3-

For efficiency, first the most significant and then the 
smaller couplings are annihilated. The method proceeds 
as follows:

(i) Initiatise the threshold for sweep, l.

(ii) Calculate the coupling factors for all (i,j) with
i < j, and apply a transformation if either of
the factors is larger than the current threshold.

(iii) Obtain current eigenvalue estimates.
(iv) Check for convergence of eigenvalues, if

convergence has not occurred start a new sweep.
The tolerance used on the eigenvalues is 10 ,

—22,consequently the threshold used in step (i) is 10 ,
so that the coupling factors can be expected to be smaller 

“8than 10 after about four iterations. This is quite
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important since, even if the eigenvalues have converged,
convergence is not accepted until the coupling factors

—8are also smaller than 10
The reasons for preferring this method over 

others for solving the projected eigenproblem are the
following:
(a) There is no initial transformation to the standard 

form. This has two implications:
(i) If the matrices are ill-conditioned, then 

the solution of the standard eigenproblem 
with ill-conditioned matrices is avoided.

(ii) If the off-diagonal terms in [K] and [M] 
are already small or only a few non-zero 
off-diagonal terms are present, then zeroing 
a few or small terms will not change the 
diagonal terms drastically. Since the 
ratios of the diagonal terms are the eigen­
values, the eigenproblem is nearly solved.

(b) Advantage is taken of the fact that, as the number of 
iterations increases, CX1̂ +^ tend to the eigenvectors and, 
therefore, [K] and [M] tend to diagonal form.

3.4 Initial Iteration Vectors
The most critical aspect of subspace iteration is 

the choice of the initial iteration vectors in [Y]^. If 
the initial iteration vectors span the least dominant 
subspace, then convergence is almost immediate.

Consider the case when there are only r non-zero 
terms in the diagonal mass matrix. The initial iteration
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vectors in this case are unit vectors with the +1 entries 
corresponding to the mass degrees of freedom. One sub­
space iteration in this case is, in fact, a static 
condensation analysis and convergence is immediate.
Similarly, component mode synthesis and other related 
methods can all lead to good initial iteration vectors. 
Another case when convergence is immediate is when [K] 
and [M] are both diagonal matrices. The initial iteration 
vectors in this case are unit vectors with the +1 entries 
corresponding to those degrees of freedom where the smallest 
kii/mii ratios occur. The k ^  and m ^  being the diagonal 
elements of [K] and [M] respectively. The initial iteration 
vectors obtained by this method are effective because they 
are actually the eigenvectors corresponding to the smallest 
eigenvalues.

Considering the above discussion, the initial 
iteration vectors for a general problem are chosen as 
follows. The first column in [Y]^ is the diagonal of [M]. 
This ensures that all the mass degrees of freedom are excited 
The subsequent columns of [Y]^ are unit vectors-with the +1 
entries corresponding to those degrees of freedom which have 
the smallest k ^ / m ^  ratios. Thus, apart from the first 
vector, all the other vectors are linearly independent and 
excite points of maximum mass and flexibility. Note that 
the unit entries in the second to last vector should not be 
clustered together too much.

It should be noted that, since subspace iteration 
Way be interpreted as a repeated application of the Ritz 
analysis, all the characteristics of the Ritz analysis
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pertain also to subspace iteration. Recall that in 
particular, good results are only obtained if the Ritz 
basis vectors span a subspace sufficiently close to the 
least dominant subspace. Thus, the choice of the 
initial iteration vectors is of paramount importance.

3.5 Numerical considerations
There are several numerical aspects which should 

be considered separately.

3.5.1 Dimension of the subspace
It was mentioned in section (3.2) that the ultimate 

rate of convergence of an iteration could be increased by 
increasing the dimension of the iterating subspace.
Increasing the dimension of the iterating subspace, however, 
increases the cost of solutions. Therefore, an optimum for 
the dimensionality of the iterating subspace is required. 
Clearly, the number of iteration vectors q, need to be 
greater than the eigenvalue sought, r in order to allow 
for multiple roots and to obtain a better convergence rate. 
Experience has shown that a reasonable number of iteration 
vectors are given by**,

q = min {2 r ,. 8 + r} .. .. .. (3.14)

This allows for multiple roots and the dimension of the 
subspace is large enough to expect monotonie convergence 
without employing an eccessive number of iteration vectors.

3.5.2 Convergence

The criteria used for convergence is:
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. (k+1) _ , k
l Ai

. (k+1) < TOL (3.15)

/ V 4-1 \ ]rwhere X^ and X^ are the estimates for the ith eigen­
value after k and (k-1) iterations respectively, and TOL 
is the prescribed tolerance. Clearly, TOL is dependent 
upon the accuracy sought, type of problem being analysed 
and word length of the computer used.

The tolerance used in the case studies was 10-4

which means that X^ differs from X ^ +^  by less than 1%
When convergence is accepted. The program stops once the 
required r eigenvalues have converged or the specified 
maximum number of iterations is reached. If the required 
r eigenvalues do not converge, then either the number of 
iteration vectors or the maximum number of iterations 
allowed must be increased.

It should be noted that equation (3.15) represents 
only a necessary condition for convergence. The necessary 
and sufficient conditions are satisfied if and only if the 
eigenvalue and thé corresponding eigenvector estimates 
satisfy the eigenproblem.

3.5.3 Check calculations
Another important aspect of this solution procedure 

is the verification of the fact that the required eigenpairs 
have been calculated and none of the required eigenvalues 
have been missed. In.this phase use is made of the sturm 
sequency property of the characteristic polynomial of the 
eigenproblem.
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A triangular factorisation of [K]' = ([K] - s[M]) 
is carried out, where s is just greater than the largest 
eigenvalue calculated, Xr , i.e.

[K] - s [M] = [L] [D] [L]T ................  (3.16)
Twhere [L] and [L] are lower and upper unit triangular 

matrices respectively, and [D] is a diagonal matrix.
The number of negative elements in [D] is equal to the 
number of eigenvalues smaller than s, thus, in this case, 
there should be r negative terms in [D]. There remains 
the problem, however, of obtaining a meaningful value for 
s. The fact that the X^ are only approximations, should 
be taken into account here.

The criteria for obtaining a value for s should 
be less stringent than the eigenvalue convergence criteria 
since inaccuracy in the eigenvalue approximation should be 
bracketed by the bounds for the eigenvalue. Experience 
has shown that a reasonable estimate for the region within 
which the exact eigenvalue lies is given by ,

0.99 Xi (k+1) £  \ ^< 1.01 X (ktl).......... . (3.17)

where X ^ k+1  ̂ is the• approximation of the ith eigenvalue 
after k iterations. Here, only those eigenvalues which 
have converged are used, thus bounds on all converged 
eigenvalues can be established. This leads to a 
reasonable estimate for s and consequently a realistic 
sturm sequence check may be performed.
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The overall advantage of such checks is that if 
an eigenvalue approximation is missing, then the interval 
it is missing from can be identified.

3.5.4 Shifting
Since the lowest eigenvalues converge first, it 

would seem natural to use shifting as a method of speeding 
up convergence. However, the difficulty here is that if 
the shift is 'too large' then convergence to the lower 
eigenvalue is lost. Alternatively, if the shift is 'too 
small' then the increase in convergence is not significant.
A good value for the shift may be obtained once the eigen­
value spectrum is known approximately, but then the additional 
triangular factorisation becomes uneconomical since subspace 
iteration is close to converging.

Shifting becomes important if a significant eigen­
value approximation has been missed. First the interval 
which contains the missing eigenvalue is identified, then 
the eigenproblem is shifted to

([K] - s’[M])v = X[M]v ...........  (3.18)

where s' is the upper bound for the eigenvalue directly 
prior to the missing eigenvalue. The missing eigenvalue 
approximation may now be obtained by performing subspace 
iteration on the shifted eigenproblem, i.e. equation (3.18) .

A similar approach can be used to obtain the eigen­
values in a given interval. The procedure in this case 
is to set the shift equal to the lower bound of the interval 
and perform subspace iteration on the shifted problem.
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Triangular factorisation can be used here to determine 
the number of eigenvalues in the specified interval.

3.6 Operation counts
An operation is defined by a multiplication 

which is nearly always followed by an addition. There 
are two cases to be considered:

(i) Consistent Mass formulation, m^ = m^

(ii) Lumped Mass formululation, mm = 0

where m^ and m^ are the half-bandwidths of the stiffness 
and mass matrices respectively. The number of operations 
required in subspace iteration for the two cases mentioned 
are given in Table (3.1) , a detailed discussion is given 
elsewhere .

Note that operation counts are very useful for 
comparison purposes. Also, an operation count for any 
modification will give an indication of how much extra 
work is required when that modification is employed.

In Table (3.1), (X^1, v^') is the final approxi­
mation of the ith eigenpair and the norm used is the 
Euchilean vector norm.



Operation
Number of Operations

wCix̂ uxci uxuii
m = m. = m k m m = m^; mm = 0

Factorisation of [K] [K] = [L][D][L]T j nma + j nm 2  nm2 + ^ nm

Subspace Iteration tK] m k+1 = m k nq(2m + 1) nq{2m + 1
nq(2m + 1) nq

[k ] m £ +1m k \ nq(q + 1) 2  nq(q + 1)
[M] = [x]£tlm k+1 j nq(q + 1) \ nq(q + 1)
[K] [Qlk+1 = tMHQ]k+1[A]k+1 of order (q3)
lY]k+l = [Y]k+l[Qlk+l nq2 nq2

Sturm Sequence Check [K]’ = ([K] - s [M] ) n(m + 1) n
IK] ’ = [L] [D] [L]T ~ 2  nm2 + j nm 1 2 32  nm2 + 2  nm

Check Calculations ||. [Rlv^ - [Mlv^ II
,11 [K]^' ¡1

2 nm + 4 n 5 nm + 2 n

LO
.N)

TABLE 3.1. OPERATION COUNTS FOR SUBSPACE ITERATION SOLUTION
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CHAPTER 4

MODIFICATIONS TO SUBSPACE ITERATION

4.1 Introduction
In this chapter, various techniques which may

accelerate the subspace iteration algorithm are considered.
42-45There exists a number of ideas which may be employed

to modify particular parts of the subspace iteration 
algorithm. It is not difficult to dream up modifications 
of high complexity which may converge in fewer iterations42'4"* 
but which, however, use more computer time due to the 
complexity of the modification. It is easy to lose 
perspective and become too involved with the modifications. 
Therefore, in order to design modifications which best 
optimise the algorithm, a clear overview of the prime 
objectives is necessary. This follows from the fact that 
the algorithm is a modular entity, with each module contri­
buting to the total time taken for an iteration. Clearly, 
since these contributions cannot be of the same order, it. 
would be prudent to neglect those steps which use relatively 
little time and concentrate on those which are the prime 
contributors to the total time.

Two methods of modifying the subspace iteration 
algorithm and the variations arising from these have been 
studied. The two basic methods are:

(1) Repeatedly operating upon the iterating subspace 
with the operators [K] and [M]

(2) Taking a linear combination of the previous two 
estimates of the subspace to form the current
subspace.
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These are referred to as Method 1 and Method 2 respectively 
throughout.

Consider now the objectives of the modifications:
(a) Faster solution without loss of accuracy
(b) Higher convergence raté
(c) Fewer iterations for convergence.

It is with the above objectives in mind that the various 
modifications have been designed. Here, the theory is 
presented and the primary numerical aspects of the modifi­
cations are discussed.

4.2 Method 1

4.2.1 Theoretical considerations
The calculation of a few lowest eigenvalues and 

the corresponding eigenvectors of the problem

[K]-i = Xi [Ml^i (4.1)

is required. Where the [K] and [M] are the system matrices, 
and are the eigenvalues and the corresponding eigen­

vectors respectively. Let q be the number of iteration 
vectors, with q £ n, and be the iteration vectors with 
i * 1, .... , q , then:

aij^j (4.2)

where the aij are constant coefficients and are defined by

' Ord(l) , i = j
.

Ord(e) i f j

and e is small
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Consider now the implications of operating upon 
the x± with the operators [K] and [M]. Two possibilities 
are available here, i.e. operating with [M]“1[K] or 
[K]’"1[M], both cases are investigated separately.
(a) Suppose is formed in the following manner

= [M]“1[K]xi ................  (4.3)

substituting for x^ from equation (4.2)
-1 n= [M] [K] I a..v.

Z± j=l (4.4)

Re-arranging equation (4.1) yields

([M]"1[K])vi = (4.5)

Substituting from equation (4.5) into equation (4.4)

5i = jii •' ; ..........
Let f be the normalising factor for y ., also letcl “1

(4.6)

fa " faXl (4.7)

Let y^ be the normalised iteration vectors, then
substituting from equation (4.7) into equation (4.6)leads to

n
a<< T* £a aij 2

J
V  .“3 (4.8)

(b) In this case let 5^ be formed as follows

z± = IK] ”1 lM]aci (4.9)
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Substituting for from equation (4.2)
, n

z, = [K] [M] l a,.v.............  (4.10)-i j=1 U  J

Re-arranging equation (4.1) yields

v± = ([K]"1^ ] ) ^  ' ...........  (4.11)

Substituting from equation (4.11) into equation (4.10) gives

It - 1  rr zj ............ (4-12>3=1 3

Let fb be the normalising factor for 2̂ , also let

•• •• ...........  (4-13>

Let zi be the normalised iteration vectors, then 
substituting from equation (4.13) into equation (4.12) 
leads to

zi
n

(4.14)

Let in the following discussion, then
clearly X,/X. =.1/A.. In both (a) and (b) , f and f, are 1 3 J a b
formed from the approrpriate normalising factors in order 
to obtain 1L and 1/)L in equations (4.8) and (4.14) 
respectively. The presence of and 1/iL clarifies the 
convergence behaviour of y^ and z^ respectively.

Consider case (a), the minimum value of l  ̂ is 
clearly unity and since X^'£■ Xj £ X^ £ £ XR , the
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values of Ij form an increasing sequence. Therefore, it 
follows that the higher modes are enhanced in the vectors 
[Y] , in fact as j ■+ n the higher modes become progressively 
more dominant in the vectors [Y]. Note that the columns 
of [ Y ]  are the iteration vectors . The effect of 
operating in this manner upon the iteration vectors is an 
enhancement of the higher modes and thus a divergence away 
from the least dominant subspace. This is obvious from 
the fact that converges linearly to provided ^  is 
rich in v^.

Consider now case (b) , here, l/iL forms a decreasing 
sequence and, therefore, the higher modes are suppressed. 
This suppression becomes stronger as j n, i.e. 1/1^ gets 
smaller. It follows from equation (4.14) that the vectors 
in [Z] will be rich in the lower modes while the higher 
modes become progressively less significant. Hence, in 
this case, the overall effect is a convergence towards the 
least dominant subspace. In fact, if this operation is 
carried out repeatedly, the effect is a convergence to the 
least dominant vector, i.e. all the iteration vectors 
converge to the lowest mode.

From the above discussion, it is clear that case (b) 
is appropriate since the lowest eigenvalue and the corres­
ponding eigenvectors are required.

4.2.2 Algorithm
The subspace spanned by the vectors in [Y]^ is 

operated upon by [K]“1 [M] ,X times where % is obtained
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through experience. Suppose [Y]^ = [M][X]^ and [X] is
given, then the algorithm proceeds as follows:

[K1[xlk*i = [Y’k •• ••..........  (4.15)

[Y]k+i = [“HXIk,! ............  (4.16)

m m kt2 = m ktl ..........  (4.17)

m kt2 = [M][xik+2 (4.18)

m i a w  = r a k ( W  .. (4.19)

tY>k+* = [MJ[XW  ..

Now the algorithm proceeds as in the original algorithm with 
the vectors in [Y]. g spanning the initial subspace.
Back substitution and forward reduction to obtain txlk+£+1

[K] [X] k+ ¿+i lc+Jl

Matrix multiplication to obtain

[Xlk+Jl+l [M1 iXlk+f+l •*

form the projected operators.

*  = ™ ^ +i [Ylk + l .. .. .. (4.23)

[M] - [X]k + A+1 iY]k + Jl + 1 ..

Solve the projected eigenproblem

IK] [Q] = [M] [Q] [A] .. .. (4.25]

where [Q] and [A] are as defined in the previous chapter.
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Vector multiplication to form

'YW i  - [YW i I Q 1 ...........  (4-26>

Now [Y] replaces [Y], in the next iteration.

4.2.3 Numerical considerations

4.2.3.1 Numerical stability
It is seen from equation (4.14) that, if the 

iteration vectors are operated upon by [K] 1[M], the 
higher modes are suppressed and thus the lower modes 
are dominant in the resulting vectors. This effect 
becomes more and more pronounced as the iteration 
vectors are repeatedly operated upon by [K] ^[M].
The overall effect is to make the iteration vector more 
and more parallel to each other and thereby making them 
a poorer basis for the subspace. In order to counteract 
this and preserve numerical stability, Gram-Schmidt 
orthogonalisation and normalisation with respect to [M] 
are employed.

It is difficult to decide how often the.numerical 
stability preserving procedure should be applied. Clearly, 
the number of [K] ^[M] operations after which thé numerical 
stabilities become irreversible due to finite precision 
arithmetic in the computer are problem and machine dependent. 
Therefore, it appears prudent to apply Gram-Schmidt ortho­
gonalisation and normalisation after each operation of 
[K] [M]. Although this takes into account the worse case,
it is inefficient if the numerical instabilities in the
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iteration vectors do not occur after each operation of 
[K]_1[M].

4.2.3.2 Convergence
Here there are two convergence rates to consider,

i.e.
(i) The convergence rate due to the [K] ^[M] 

operations
(ii) The convergence rate due to the original 

subspace iteration algorithm.
The remarks made on the convergence of subspace iteration 
in section (3.5.2) are directly applicable for (ii). This 
follows from the fact that the [Y]k+jl in equation (4.2.1) 
are the initial iteration vectors for subspace iteration. 
Thus, the modification is applied at the level of obtaining 
a better initial subspace.

Consider now the convergence rate from (i). This 
clearly depends upon the number of [K] ^[M] operations.
This is obvious from equation (4.14) since £, [K] ^[M] 
operations will lead to a factor of (l/I)5, in the equation. 
Therefore, although the convergence rate is asymptotic, it 
may be increased by operating upon the iteration vectors 
by '

4.2.4 Implementation
The modification to the subspace iteration 

algorithm has been programmed in modular form. Equations
s'

(4.15) to (4.20) are programmed in a subroutine which may 
be inserted into any working subspace iteration programme.
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4 6Two subroutines containing the in-core and the out-
of-core versions of the modification are available. The
programmes contain Gram-Schmidt orthogonalisation and
normalisation with respect to [M]. The parameter, A,
i.e. the number of [K]-1[M] operations, is a variable
in the input data. For details of the FORTRAN computer

46programme and how to use it, see departmental report

4.2.5 Operation counts
Take an operation as defined in section (3.6).

Let n be the order of the operators [K] and [M], m^ and mm 
the half-bandwidths of [K] and [M] respectively and q the 
dimensionality of the subspace. The number of operations 
required for the modification are given in table (3.2).

Operation
Number of Operations

m = m. = m K m

o»aa?hs

Form [X]̂ +  ̂in équation (4.15) nq(2m+l) nq(2m+l)
Form Î ljç+i k* e<3uati°n (4.16) nq(2m+l) nq
Gram-Schmidt Ortho-normalisation 3n(2q-l) 3n(2q-l)
Total for each operation of [K] [̂M] n(4mq+8q-3) n(2mq+8q-3)

TABLE 4.1. OPERATION COUNT FOR METHOD 1

Thus, if the iteration vectors are operated upon 
A times by [Kj“1[M], then the appropriate total number of 
operations is multiplied by A. Hence, the total number of



42

operations in comparison to the original subspace iteration 
algorithm is increased £n(4mq + 8q - 3) or n£(2mq + 8q - 3) 
per iteration depending upon whether m = m^ = m^ or m^ = 0 
respectively.

4.2.6 Variation of the Basic Method
The basic method consists of operating upon the 

iteration vectors with the operators [K] and [M]. Consider 
now a similar scheme using [K]2 and [M]2. Clearly, if the 
bandwidth of the system’, matrices is large, then forming 
[K]2 and [M]2 is expensive and time consuming. However, 
the actual squares of the system matrices are never 
required; consider the square of the eigenproblem given 
in equation (4.1).

[K]2vi = X2 [M]2v± ...........  (4.27)

The problem in equations (4.1) and (4.27) have the same 
eigenvectors but the eigenvalues of equation (4.27) are the 
squares of the eigenvalues of equation (4.1). Note that 
this method is referred to as method 1A throughout.
4.2.6.1 Algorithm

The requirement of the squared operators is made 
unnecessary by employing double back-substitution and 
forward reduction followed by double matrix multiplication.
As in section (4.2.2) let [Y]^ = [M][X]^ where [X]^ is 
given, then the algorithm proceeds as follows:
Double back-substitution and forward reduction

k+1 = m k .. .. .. (4.28)[K] CK| IX]
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Double matrix multiplication

[Y]k+i = [M][M][X]k+1 .. (4.29)

From this point onwards the original subspace iteration 
algorithm is used with [Y]k+1 as the initial subspace.

4.2.6.2 Implementation
The implementation of the above algorithm presents 

no difficulty since [K]2 and [M]2 are never required. The 
following approach was adopted in writing the programmes

[K] [W]k = [Y]k 

[K][X]ktl = [W]k

!W]k+i = W]tx]kti 

[ïlktl = [M][W]k+1

(4.30)

(4.31)

Note that the above approach allows the consideration of

[K]Äv± = [M] ̂ v± (4.32)

without any difficulties. The only requirement is to add 
the appropriate number of steps to equations (4.30) and 
(4.31). The programmes have been written so that the 
number of steps to be taken in equations (4.30) and (4.31), 
i.e. the value of l in equation (4.32), is an input 
parameter.

46This algorithm has been programmed in both 
in-core and out-of-core forms.
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4.2.6.3 Convergence
Consider now the convergence of this approach. 

Let xi be an iteration vector as defined by equation 
(4.2). Equation (4.27) may be rewritten as

v± = [K]"2 *[M]2vi ................  (4.33)
Xi

Let z_i be the iteration vector formed when x^ is operated 
upon by [K]-2[M]2, then

I± = [K]"2[M]2xi .. .. . . . .  (4.34)

Substituting for x̂ ' and using equation (4.33) in equation 
(4.34) yields

i-i ~ \  aij 7? -i ................. <4-35»3 “•*- A j

Let f be the normalising factor for z^, also let
f

f = —
c X2 A1

so that the normalised iteration vector z  ̂ is given by

zi fc

2Note that the factor (X./X.) in equation (4.36) is _-2 _ 3
equivalent to A where I is the factor defined in 
section (4.2.1).

(4.36)

Recall now the discussion in section (4.2.3.2) 
a similar situation exists here with two convergence

9
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rates to consider. The main point of interest is the 
convergence rate due to equations (4.28) and (4.29) , since 
the remainder of the algorithm is the original subspace 
iteration algorithm. The convergence rate of interest is 
clearly related to the factors 1/1L since it is these that 
govern the presence of the eigenvectors in any iteration 
vector.

Recall that in section (4.2.3.2) it was stated 
^that l, [K] [M] operations would lead to a factor of
(1/&) in equationv(4.14), which is analogous to equation
(4.36) . In the present case the iteration vectors have

-2 2been operated upon [K] [M] . It can be seen from equation
(4.36) that this gives rise to a factor of (l/I)2. Thus, 
it follows that this is equivalent to carrying out two 
[K] ^[M] operations.

Hence,' the conclusion here is that raising the 
problem to the power i has the same effect on the conver­
gence rate as operating upon the iteration vectors A times 
[K]-1 [M] .
4.2.6.4 Numerical stability

The discussion in section (4.2.3.1) is directly 
applicable here, all the points made there are relevant 
here. As in the basic method, Gram-Schmidt ortho- 
gonalisation and normalisation with respect to [M] are 
incorporated into the programmes.

An important point to note is that, although 
theoretically, methods 1 and 1A have the same overall effect 
the numerical stability requires further consideration
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in this case. There is an intuitive feeling here that 
this case is more likely to suffer from numerical 
instability than method 1. The basis for this is that 
in method 1, a [K]-1 operation is followed by an [M] 
operation which acts as a balancing device in numerical 
terms. However, in method lA, a [K]operation is 
followed by another [K]”  ̂operation before the two [M] 
operations. Hence, the numerical stress in method 1A 
appears to be far greater than in method 1. Due to 
this, the threat of numerical instability will be realised 
far quicker in method 1A than in method 1, as the power 
of the problem and the number of [K] "̂[M] operations are 
increased respectively.

4.2.6.5 Operation counts
The remarks made in section (4.2.5) as*directly 

applicable here. The number of operations due to this 
method is approximately the same as that given in 
section (4.2.5).

4.3... Method 2

4.3.1 Theoretical considerations
Let [Y]k_^ and [Y)k k® the iteration vectors after 

the (k-2) and (k-1) iterations respectively. Then the 
basic idea is to form Yk+1 as a linear combination of 
[Y]k_1 and [Y]k in an optimum manner. Thus, the required 
expression is of the form

m k * i = m k * «  tY>k-i •• •• <4-37>
where a, the coefficient to be determined is the optimising
factor
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The necessary requirements are some criteria for 
determining the optimising factor, a. Consider the 
following argument, a necessary condition for the itera­
tion vectors to be eigenvectors is that they diagonalise 
the system matrices. Therefore, a reasonable criterion 
is to require to zero the off-diagonal terms in
the system': matrices. The matrix considered is [K] , the 
stiffness matrix, since the mass matrix, [M], may be a 
diagonal matrix, and the expression to be formed is

where the superscript indicates the ith and jth iteration 
vectors. The condition that diagonalise [K] leads
to the following expression

I. . = K,'. 6. .iD ij iD (4.39)

where 6^^ is the Kronecker delta defined by

1 , i “ j 
0 , i * j

and-K^j is.the appropriate diagonal term.

Substituting for from equation (4.37) into equation
(4.38) gives

Iij a *k-l [K] + a (4.40)

Considering only the upper or lower triangle since the 
system' matrices are symmetric,
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’ i T  f  O  j ^ T  . ^ j  a T  . i

2k [K] *k + a *k [K] *k-l + a? *k-l [K] 2k-lJ J \  J V .V J /

(4.41)

which may be written as

= aij + a bij + a* cij (4.42)

Summing all such I^j gives
n

X = l i . 1 i=l ij 
i>j

(4.43)

Substituting equation (4.42) into equation (4.43) yields

I = a + a b + a c (4.44)

where

a = £ a^j , b = £ b^j , c = ][ c^j .. .. (4.45)

Consider equation (4.44), Ï is a function of a and clearly 
needs to be minimised in order to obtain the required value 
of a. This follows from the fact that the eigenvectors 
diagonalise the system, matrices. There exists a problem 
however, concerning the coefficients a, b and c, namely 
that if the negative and positive weighting of the off- 
diagonal terms is similar, then summing the j, b^j and 

would lead to zero without the individual terms being 
zero. The following two strategies were considered 
in order to overcome this problem.
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Case (a):
The idea here is to try and set up an analogue 

problem in which the moduli of a^j, and are summed. 
Clearly, if the sum of the moduli is zero, then the 
individual terms must also be zero. Let

’ij ij
+ a + a4 (4.46)

Summing all such gives

n
5 = I Jiji=l 13

i>j
(4.47)

Substituting equation (4.46) into equation (4.47) leads to

J = A + a B + a2C ................  . . (4.48)
where

A = I a l j |,  B == J |bij , C =-*l' 'ij (4.49)
Clearly, in equation (4.48), A, B and C are greater than or 
equal to zero by construction. The requirement now is to 
minimise J, the condition for that is

dJ = 0do, —  ........................... <4-50>
differentiating equation (4.48) with respect .to o gives

= B + 2 ctC .. ... .. .. .. (4.51)

Equations(4.50) and (4.51) now yield the value of a which 
minimises J, namely

5 “ - ¿r •• ............ .. (4.52)
' Now, in practice, the values ± a and zero are

substituted for a in equation (4.44) and the optimising
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factor is taken to be the value which minimises. I.
The reason for trying three values for a in equation 
(4.44) is that, a minimises J, which is defined in 
terms of moduli. Therefore, by construction a is 
always negative. However, the coefficient b in 
equation (4.44) may be positive or negative. Hence, 
in some cases, -a will be applicable in equation (4.44). 
Finally, the value a = 0 is employed if the parabola 
defined by equation (4.44) is symmetric about the I axis.

Case (b) :
In this case, instead of moduli, the squares of 

the off-diagonal terms are considered. Thus, squaring 
equation (4.42) yields

(Ii;.)a = (a±j )2 + 2a (a± jb± j ) + a2 [2 ( a ^ ^  ̂ ) + (b±j)2]

+ 2a3(bijCij) + a1* (c^j)2 (4.53)

Summing all such 

I' =

(I^)2 gives 
n
l Ui=l ij

2

i>j
(4.54)

Substituting from equation (4.53) into equation (4.54) leads to 

I’ * A + aB + a2C + a3D + a^E .. .. (4.55)
where
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A = I(a±j)2; B = 2£(aijbij)2; c = (aijC±j) + (b±j)a}

D = 2^(bijcij)2; E = î(Cii)ij
;

(4.56)

The required value of a is obtained by minimising equation 
(4.55). The condition for this is,

dl ' dx = 0 (4.57)

differentiating equation (4.55) with respect to a gives,

dl*
dx = B + 2aC + 3a2D + 4a3E (4.58)

Cardano's formula for the roots of a cubic equation 
was employed to solve equation (4.58), see Appendix A. Note 
that since the coefficients B, C, D and E in equation (4.58) 
are real, there will be at least one real root. The 
optimising factor is then taken to be the value which minimises 
I'. Note that cases (a) and (b) will be referred to as Method 
2 and Method 2A, respectively, throughout. •

4.3.2 Algorithm

The notation of section (4.2.2) is employed in this 
section. In this method two initial estimates of the( 
iteration vectors are required. Therefore, the original 
subspace iteration algorithm is employed for the first two 
iterations. In the course of these iterations, three
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vector arrays are stored, namely [Y]1# the initial itera­
tion vectors, [Y]2, the iteration vectors after the first 
iteration and [Y]3, the iteration vectors after the second 
iteration, then the subsequent iterations proceed as follows: 
For k = 3,4, ....  form [Y]k'+1 as an optional linear combina­
tion of [Y]k and [Yjj^,

>Yy ti * [Ylk + “[YJk-i ..........  <4-59>
forward reduction and back substitution

[K]lX]k+1 = [Yy+1 .. .. .. .. (4.60)

Matrix multiplication

[Y]k+i = I“][Xlk+l ** •* ** *• (4*61)

form the protections of [K] and [M] onto the subspace.

' IK] = ixlk+iiylk+l ................  (4.62)

¿Ml = [X]J+1[Y]k+1 .. .. .. .. (4.63)

Solve the eigensystem of subspace operators,

[K] [Q] = [Ml [Q] EM .. .. .. .. (4.64)

Update the iteration vector estimate

i Yi k * i  -  'Y>k+i [Q> (4.65)

Update the previous generations of the iteration vectors 
for use in equation (4.59)

[Y1k-i - [YIk 
'Y>k • tY1k+i

(4.66)
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4.3.3 Numerical Considerations

4.3.3.1 Numerical Stability

This method becomes unstable when the [Y]k and 
[Y]k_1 in equation (4.59) are very close to the least 
dominant subspace. The reason for this is that the ith 
columns in [Y] k and [Y]Jc_1 are converging to the ith 
eigenvector and the ith column of [Y]k+  ̂is formed by 
linearly combining the ith columns of [Y]k and [Y3 k—1 *
Now, when the ith columns of [Y]k and [Y]k_^ are both 
reasonable approximations to the ith eigenvector, then 
any linear combination of these will also be a reasonable 
approximation to the eigenvector, irrespective of the value 
of a.

Thus, for a stable process [Y]k and [Ylk_^ are 
required to differ significantly from each other. A 
consequence of this is that convergence is required to 
occur before [Y]k and [Y]k_^ become too similar. Hence, 
the convergence criterion should be strict enough to obtain 
the - required accuracy but not too strict so that [Y]k and 
[Y]k-1 are not allowed to become too similar. Experience 
has shown that stability is lost when |a| £ 0.05. This 
clearly represents very little change in the iteration 
vectors from iteration to iteration. It also suggests 
that the convergence tolerance is too strict. In practice, 
best results were achieved when |a| £ 0.35. This verifies 
the intuitive feeling that once convergence has set-in and 
£Y]k and [Y]k_^ are not to° similar, then |a|is bounded by
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unity. Thus, the iteration vectors in [Y]k are 'trimmed' 
by a small amount using the iteration vectors in

If the convergence rate in practice is fast then 
this method is stable, i.e. there is no, or very little, 
similarity between the [Y]^ and IY]^_^. However, if the 
convergence rate is slow, then this method should be used 
with care, since the degree of similarity between the [YJ^ 
and [Y]̂ __̂  will be high. This clearly indicates that 
this method loses its potency as the iteration vectors tend 
to the eigenvectors. An important conclusion may be drawn 
here, namely that there exists a 'useful' range in which 
this method may be applied.

Note that the preceding discussion is only applicable 
provided subspace iteration is converging. The effects of 
this method are not clear if subspace iteration is not 
converging.

4.3.3.2 Convergence

As in section (4.2.3.2) it is necessary to take 
into account: two convergence rates. This follows from 
the fact that the technique described here is applied at 
the level of forming the initial subspace iteration. The 
two rates of convergence to be considered are:
(i) The rate of convergence due to equation (4.37)

(ii) The rate of convergence due to the original 
subspace iteration algorithm.

The discussion in section (3.5.2) on the convergence of 
subspace iteration, is clearly relevant for (ii).
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Consider now the convergence rate due to (i).
This clearly depends upon the state of [YJ^ and [Y]̂ ..̂ .
A necessary requirement for equation (4.39) to yield a 
'good' [Y]^+  ̂is that [Y]^ is a better estimate of the 
initial subspace than [Y]k-1. The worst case occurs
when a = 0 in equation (4.37). In this case, [Y]^+  ̂ -̂s
not an improvement on £Y]^. In all other cases, provided
[Y]^ is a better approximation of the initial subspace than 
[Y]^_^, [Y]^+  ̂will be an improvement on [Y]^.

The degree of improvement depends upon how close 
[Y]^ is to [Y ] • As [Y]^ gets closer to iY]^_^, the 
degree of improvement decreases. In other words, when 
the iteration vectors have nearly converged, the work done 
in calculating a offers little or no return in accelerating 
convergence. In fact, as was mentioned in section (4.3.3.1), 
a high degree of similarity between [Y]^ and [Y]k-1 leads 
to numerical suitability.

The expectation is that this method will converge 
faster than the original subspace iteration algorithm in 
the first few iterations. It would then be reasonable to 
expect a higher convergence rate than the original algorithm 
when the iteration vectors are 'far* from convergence, i.e. 
when the iteration vectors are not good approximations of 
the eigenvectors. The convergence rate will then approach 
that of the original algorithm as the iteration vectors 
approach the eigenvectors.
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4.3.4 Implementation

The two cases considered in section (4.3.1) have 
been programmed in such a way that either may be inserted 
into a working subspace iteration programme. Subroutines 
for running an in-core or out-of-core solution are 
available.

The subspace iteration algorithm is such that, 
given [Y)k, ^ k + l  obtained from the following 
expression:

[K] [X]k+1 = m k .• .. .. .. (4.67)

Consider now equations (4.38) - (4.41). It is clear that 
forming [X]T [K][X] type products is vital in this method.
The required expressions are of the following form:

[X]£[K][X]k 
[X] k [K] [ X ] ^ (4.68)

Substituting from equation (4.67) into equation (4.68) 
leads to

K m k-i

1XIk m k-2
w j-im w

(4.69)

Hence, by storing [Ylk_2 anc* ^ e  product in
equation (4.67) need not be formed again. At the end 
of each iteration, the vectors in [YJk_2 and [Y)k_^, are 
updated, as given by equation (4.66).
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The approach described above has been adapted 
4 6in the programmes . In the out-of-core version of 

this programme, two working tapes are specified to 
store [Y] k_2 and [Ylj^.

4.3.5 Operation counts

Let the definition of an operation be as given 
in section (3.6). Also let n be the order of the system 
matrices, [K] and [M], and m^ the half-bandwidths of 
[K] and [M] respectively, and q the dimension of the 
iterating subspace. Consider the two cases described 
in section (4.3.1) separately.

Operations
Number of Operations

Case (a) Case (b)

Operations due to equation (4.37) 
Operations due to equation (4.69) 
Total number of operations/iterations

nq
3n

n(3 + q)

nq
6n

n(6 + q)

TABLE 4.2. OPERATION COUNT FOR METHOD 2 AND METHOD 2A

Therefore, the'increase in the number of operations 
per iteration relative to the original subspace iteration 
algorithm is approximately n(3 + q) and n (6 + q) for cases 
(a) and (b) respectively.
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CHAPTER 5

NUMERICAL INVESTIGATION

5.1 Introduction

The ideas pursued theoretically in the previous 
chapter are investigated numerically in this chapter.
The primary concern here is to validate the methodology 
and de-bug the coding.

Initially, a discussion of the course the numerical
investigation may follow is presented. This is followed
by an outline of the basic strategy. The results obtained
by solving simple problems are then compared with known
solutions. Two such cases are considered, namely problems
modelled by using beam and plate elements. The insights
gained from these comparisons are then discussed.

The purpose of this chapter is to give an indication
of the efficiency of the modified algorithm when presented
with a variety of problems. These problems are also
solved using the original subspace iteration algorithm in
order to gauge the relative merit of the modified algorithm.

In order to run the solution algorithms, the
stiffness, [K] and mass, [M] matrices are required. These

2are generated by FINEL-. It was, therefore, necessary to 
46couple this general purpose finite element package to 

the solution algorithms.
Initially, a general comparison of the original 

and modified algorithms is carried out in two dimensional 
The problems considered are:space.
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(i) A cantilevered beam, modelled by two noded 
beam elements with three degrees of freedom 
per node. This type of element was also 
used to model a plane frame.

(ii) A cantilevered plate of constant thickness, 
modelled by eight noded plate elements with 
three degrees of freedom per node.

The results of these comparisons are presented and discussed.
A detailed comparison of the original and modified 

algorithms is then carried out. Here, selected problems 
from the general comparison are used along with a three 
dimensional problem. This consists of modelling an off­
shore structure using two noded beam elements with six 
degrees of freedom per node. The'results of these comparisons 
are presented and discussed.

The insights gained and ideas generated from the 
aforementioned comparisons are put into practice. Selected 
problems from those solved previously are solved again with 
regard to the new ideas. The results obtained are presented 
and conclusions are drawn from them.

In all cases, the initial subspace was generated
as described in section (3.4) and the convergence tolerance

-4for the eigenvalues was, TOL = 10 throughout, see section 
(3.5.2). The times taken for the initial matrix factorisa­
tion, solution of the subspace eigensystem, t , and theC
modification, tm , were all part of the iteration time, tj. 
However, tg and tm were also timed separately.
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All the work was carried out on the Sheffield 
University ICL 1906S computer with a maximum core space 
of 875K words and a 39 bit mantissa for reals. The 
frequencies and times are given in Hertz and CPU seconds 
respectively throughout.

5.2. Philosophical considerations

It is very difficult, if not impossible, to predict 
the course an investigation may take, since initial findings 
may lead to the pursuit of ideas previously not considered. 
Contrary to that, however, is the fact that it is similarly 
very difficult to carry out an investigation without an 
overall work plan, a general framework for the investigation, 
say. Such a framework is a necessary requirement in order 
to give coherence to the investigation. However, flexi­
bility in the framework is of paramount importance so as 
not to discard interesting avenues of investigation by rigid 
devotion to the initial plan.

The primary aim of this investigation is to verify 
the methodology and the coding for the general case and not 
just to solve a large problem. The order of the problems 
considered could have been larger ,'̂ but this would only have 
increased the solution time without changing the solution 
characteristic. This would also have caused inconvenience 
due to certain restrictions in the system.

A parameter which is very important in this 
46investigation is N U T  . This indicates the number of 

[K]”1[M] operations in method 1, see section (4.2.3.2) or
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the power to which the eigenproblem is raised, see
section (4.2.6). Another important parameter is NROOT . 
This specifies the number of required eigenpairs and 
governs the size of the iterating subspace. A secondary 
aim of this investigation is a parameter survey concerning 
the two aforementioned parameters.. Note, however, that, 
although it is preferable for a parameter survey to take 
into account the general case, it may not be practical.
This is due to the resources available. For example, time, 
finance, facilities, etc.

Consider now the size of a test problem, the order 
of a 'real problem' will be large, clearly this is not the 
ideal type of problem for testing the methodology and coding 
A desirable quality in a test problem is simplicity, so that 
each stage may be worked by hand if required. Another 
important point to consider is that carrying out a parameter 
survey, using a 'real problem' without first establishing 
some ground rules, is not practical. Such an exercise will 
be a long drawn process fraught with computing difficulties, 
expensive-in terms of computer time.and may be altogether 
impossible. .

From the preceding discussion, it follows that 
trying to run before the art of walking has been mastered 
is rarely rewarding and always dangerous. Therefore, with 
regard to this investigation, it would appear prudent to 
begin at a very basic level and progressively increase the 
order of complexity as confidence in the methodology and 
coding increases.

46

*
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A tentative framework for the investigation
follows:

(i) Initially, choose a simple problem to verify the
methodology and the coding. The simplest element 
available in finite element analysis is the two 
noded beam element with three degrees of freedom 
per node. Therefore, it is natural to use it in 
formulating a simple problem, namely a canti-

Klevered beam.
(ii) Test the validity of the results obtained when 

the above problem is presented to the original
algorithm by comparison with results obtained

2 6 from FINEL and simple beam theory .
(iii) Use a different element to test the original

algorithm in order to rule out any element
dependence. The element intended for use
here is the eight noded plate bending element
with three degrees.of freedom per node.

(iv) The validity of the results obtained when the
original algorithm is used may be tested by

Ocomparison with results obtained from FINEL
47and an alternative solution

(v) The modified algorithms are then presented 
with a number of problems using the two 
previously mentioned element types. The

«J

reliability of the modified algorithms may 
then be established by comparison with the 
original algorithm.
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(vi) There remains then to test the reliability of
the modified algorithms under adverse numerical 
conditions which may arise in a 'real problem*. 
It is, therefore, necessary to obtain a simple 
model of a 'real problem* without destroying 
the characteristics of the 'real problem'.
Since the system matrices are generated by 
FINEL , a working programme, the characteristics 
of a 'real problem', such as bandedness, 
positive definiteness, etc., are assumed to 

r be present.
(vii) The intention is to model and off-shore (Rig) 

structure using two noded beam elements with 
six degrees of freedom per node.

5.3 Comparison with known solutions 

5.3.1 Beams

. A comparison is made of the lowest five natural 
frequencies when:

(i) Calculated using the subspace, iteration algorithm, 
(ii) Calculated using simple beam theory.

(iii) Calculated using FINEL2.

Young's Modulus, E 
Moment of inertia, I 
Density, p 
Poisson's ratio, v 
Cross-sectional area, A 
length, a

-1.59 x 10n NM"2 
- 7.854 x 10“9M4
7.7
0.3

x 10“3KgM”3

- 3.142 x 10“4M2 
» 1 M

FIG. 5.1. CANTILEVERED BEAM
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The results obtained from (i), (ii) and (iii), 
are presented in Table 5.1.

Frequency
Number (i) (ii) (iii)

1 12.71 12.71 12.71
2 79.68 . 79.67 79.77
3 223.23 223.10 224.80
4 438.15 437.21 443.53
5 726.85 722.65 824.85

TABLE 5.1. COMPARISON WITH FINEL AND SIMPLE
BEAM THEORY FOR A CANTILEVERED BEAM

The beam in figure 5.1 was modelled by four, two 
moded beam elements with three degrees of freedom per mode.

5.3.2 Plates

As in section (5.3.1) a comparison is made of the 
lowest five natural frequencies when:

(i) Calculated using the subspace iteration 
algorithm.

(ii) Calculated from an approximate formula 
derived from the Rayleigh-Ritz method 
assuming waveforms similar to those 
of beams^.

(iii) Calculated using FINEL^.
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» 1 • f* 9

♦ 9
9 ♦1 ■l

Young's Modulus, 

Density,- p 

Poisson's ratio, 

Length, a 

Width, b 

thickness, h

E = 3 x 107 lb/in2 
= 0.283 lb/in3 

V = 0.3 
= 15 in 
= 6 in
= 0.236 in

FIG. 5.2. CANTILEVERED PLATE

The results obtained from (i), (ii) and (iii), 
are presented in Table 5.2.

Frequency
Number (i) (ii) (iii)

1 35.05 35.57 35.07

2 183.63 222.77 183.68
3 218.74 226.23 218.86

4 584.72 623.79 584.56
5 614.43 630.59 614.55

TABLE 5.2. COMPARISON WITH FINEL AND AN ALTERNATIVE 
SOLUTION FOR A CANTILEVERED PLATE

The plate in Fig. 5.2 was modelled by sixteen, 
eight noded plate elements with three degrees of freedom 
per node. The mesh is shown in Fig. 5.2.

5.3.3 Discussion

In sections (5.3.1) and (5.3.2), two independent 
problems have been presented to the original subspace
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iteration algorithm. The results along with those 
obtained from FINEL and the known approximate solutions 
are given in Tables 5.1 and 5.2.

Consider first Table 5.1. Here/ the discrepancy 
between (i) and (ii) is less than 0.6%. The discrepancy 
between (i) and (iii) is less than 1.3% for the first 
four natural frequencies. However, there is a discrepancy 
of approximately 12% in the fifth natural frequency. A 
possible explanation for this is that the FINEL solution 
routine employs an iterative process, which is terminated 
once the percentage change in the eigenvalue estimate 
satisfies some arbitrary criterion. Clearly, this is a 
necessary condition for convergence. However, the 
sufficiency part of the convergence criteria is not tested. 
This casts doubt on the integrity of the solution and thus, 
in this case, subspace iteration is an improvement on FINEL.

Consider now Table 5.2. Here the agreement 
between (i) and (iii) is satisfactory throughout. The 
disagreement between (i) and (iii) is less than 6.4% with., 
the exception of the second natural frequency, where the 
discrepancy is large, however, this is the expected result^.

Thus,, the methodology and the coding are validated.' 
This enables the original subspace iteration to be used as 
a 'bench mark1 when compared with the modified algorithms. 
Note, however, that coding can rarely be purged completely 
of errors and even coding de-bugged to the highest standards 
can run into trouble if some infrequently occurring set of 
circumstances arise.
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5.4 The available options

Consider now the available modifications: basically 
there are methods 1, 1A, 2 and 2A. In addition to these, 
a number of modifications may be constructed by combining 
the four basic modifications.

Clearly, since method 1A is a variation of method 1, 
combining these is of no interest. Similar remarks apply 
to method 2 and method 2A. Thus, a further four modifica­
tions are available if the basic modifications are combined.

46The following definitions are employed throughout the 
thesis when referring to any particular algorithm.

The original algorithm = SSP .. .. .. (5.1)
Method 1 = XXSS
Method 1A = XSSP
Method 2 = ZSSP
Method 2A = YSSP
Method 1 and Method 2 = XXZSS
Method 1 and Method 2A = XXYSS
Method 1A and Method 2 • = XZSS
Method 1A and Method 2A = ' XYSS

(5.2)

(5.3)

Thus, a total of nine solution options are available
in analysing any given data set. Note that combining the
basic options presents.no difficulty since each modification

46is contained in a subroutine and may be inserted into the 
subspace iteration programme at the appropriate point.

The intuitive feeling here is that the options 
defined by equation (5.2) would be the closest rivals to
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the original algorithm since, in the combinations, the 
extra workload per iteration is being increased to a high 
degree. Clearly, if the increase in the workload cannot 
be justified, then the offending option must be neglected 
since it is defeating the purpose of this work.

5.5 General comparison of modifications

The purpose of this general comparison is to 
discard those options which offer no advantage and concen­
trate on those which show the most potential. The 
following two sections are concerned with beam and plate 
type problems, respectively. In each of these, a table 
containing the order of the problem, N, number of iterations
N and time, t , for the convergence of the required eigen- c c
values are given for each option. This is followed by 
another table giving the solution characteristic in more 
detail. This table contains the relative tolerance, RTOL 
reached after each iteration for the lowest five eigenvalues 
RTOL is defined as follows:

RTOL - x1-1
i

X
(5.4)

where X1 is the eigenvalue approximation after the ith 
iteration and A° is taken as zero.

The problems selected for detailed observation are 
generally those of the highest order from the relevant 
problem types. Note that, in the beams section, two



w
vw

w
xw

w
69

problems are considered in detail since both the canti­
levered beam and plane frame are analysed in this section.

The number of eigenvalues required, NROOT = 5 and 
RTOL = 10-4 throughout in the following analyses unless 
stated otherwise.

5.5.1 Beams

A cantilevered beam was modelled using a varying 
number of two noded beam elements with three degrees of 
freedom per node. The results obtained are given in 
Table 5.3. In problems 1 and 2, NROOT was specified as 
1 and 2 respectively, due to the small size of these 
problems. Note that, in problem 3, numerical difficulties 
were encountered whenever the XSSP option was used.

A cantilevered plane frame was modelled, see 
Pig. 5.3, using two noded beam elements with three degrees 
of freedom per node.

(a) a = 1 m; b = 0.5 m.
All other physical

(b) properties are as in
the cantilevered beam

------------------  case.(c)

FIG. 5.3. CANTILEVERED PLANE FRAME

A number of problems were formulated by varying 
the number of elements used in modelling (a), (b) and (c). 
The results obtained are given in Table 5.4.



PROBLEM
NUMBER

PROBLEM
SIZE

, N
V

NUMBER OF ITERATIONS FOR LOWEST FIVE EIGENVALUES TO CONVERGE, NITE
TIME TAKEN FOR LOWEST FIVE EIGENVALUES TO CONVERGE, t Cc

SSP XXSS XSSP ZSSP YSSP XXZSS XXYSS XZSS XYSS

1 3 3
0.019

2
0.021

2
0.020

3
0.021

3
0.023

2
0.021

2
0.019

2
0.020

2
0.021

2 6 3
0.030

2
0,083

2
0.087

3
0.079

3
0.080 .

2
0.082

2 ' 
0.083

2
0.086

2
0.085

* 3 12 2
0.492

2
0.561 -

2
0.492

2
0.492

2
0.560

2
0.559 - -

4 24 3
0.928

2
0.975

2
1.071

3
1.007

3
1.009

2
0.975

2
0.975

2
1.071

2
1.070

TABLE 5.3. GENERÄL COMPARISON OF THE SSP OPTIONS AND MODIFICATIONS FOR A CANTILEVERED' BEAM



NUMBER OF ITERATIONS FOR LOWEST FIVE EIGENVALUES TO CONVERGE, NITE
PROBLEM PROBLEM TIME TAKEN FOR LOWEST FIVE EIGENVALUES TO CONVERGE, tc
NUMBER CT71?

N SSP XXSS XSSP ZSSP YSSP XXZSS XXYSS XZSS XYSS

c CL 3 2 2 3 3 2 2 2 2
0.069 0.082 0.088 0.073 0.075 0.080 0.080 0.086 0.086

CL 12 3 2 4 3 3 2 - 2 4 4
0.617 0.541 1.537 0.658 0.665 0.540 0.540 1.614 1.615

7 15 • 3 2 3 3 3 2 2 3 3
0.704 0.640 1.218 0.754 0.755 0.641 0.639 1.267 1.265

8 24 3 . 2 2 3 3 2 2 2 2
0.944 0.955 1.101 1.023 1.023 0.955 0.955 1.101 1.101

Q 27 3 2 2 3 3 2 2 • 2 2
0.981 1.052 1.167 1.069 1.070 1.053 1.053 1.169 1.169

10 33 4 2 3 4 4 2 2 3 3
1.521 1.320 2.120 1.736 1.733 1.321 1.321 2.224 2.226

11 48 4 2 2 4 4 2 2 2 2
1.902 1.786 1.898 2.204 2.208 1.788 1.788 . 1.901 1.900

12 51 4 2 3 4 4 2 2 3 3
1.988 1.906 2.949 2.307 2.314 1.909 1.910 3.110 3.111

13 57 4 2 2 4 4 2 2 2 2
2.128 2.114 2.188 2.485 2.488 2.11? 2.118 2.190 2.189

TABLE 5.4. GENERAL COMPARISON OF THE SSP OPTION AND MODIFICATIONS FOR A PLANE FRAME
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Consider now problems 4 and 13 in more detail: 
the relative tolerances reached after each iteration 
are given in Tables 5.5 and 5.6 respectively for the 
five lowest eigenvalues. All the available options 
were taken into account. However, it was found that 
the options defined by equation (5.3), the combinations, 
reproduced the results obtained by the XXSS and XSSP 
options. Thus, the XXSS and XSSP options were completely 
overwhelming the YSSP and ZSSP options. Note that NITE 
denotes the iteration number.

5.5.2 Plates

A cantilevered plate is modelled using eight nodeo
plate elements with three degrees of freedom per node.
A number of problems are generated by varying the number 
of elements used in the model. The results obtained 
are given in Table 5.7.

Consider now problem 17 in more detail. Table 
5.8.contains the relative tolerances reached after each 
iteration for the lowest five eigenvalues. As in 
section (5.5.1) , it was found that the options defined 
by equation (5.3), the combinations reproduced the 
results obtained by the XXSS and XSSP options.

5.5.3 Discussion

An inspection of Tables 5.3 to 5.8 lead to the 
following conclusions:

(i) Tables 5.3, 5.4 and 5.7 verify the intuitive
feeling that no advantage is gained by combining 
the basic modifications. In fact, in the



EIGEN- RELATIVE TOLERANCE, RTOL
VALUE MTTO

SSP xxss XSSP ZSSP YSSP XXYSZ XXYSS xzss XYSSNUMBER
1 1*° -6 -1-0 -u 9.3 xlO 1*° -11 5.6 xlO

1.0 6 1*0 81 2 5.6 xlO 2.9 xlO 2.86x10
3 0.0 0.0 9.34x10
1 1.0 -u 1*° -11 3.8 xlO

• i.o 9 i.° u i.o
2 2 1.07x10 1.1 xlO 1.1 xlO 

7.6 xlO"
1.07x10
1.52x10"3 0.0

1 1.0 u i.O i.O i.O i.O w CO 0«
3 2 9.27x10" 3.87.10" 2.1 xlO 9.3 xlO" 9.27x10" WX CO><: COCO ww

3 4.16x10"9 4.2 xlO 4.19x10" X X X X
1 1.0 -3 1*° -ll4.03x10

1.0 1*° -3 1.0 c c•H c c
4 2 4.25x10 3.7 xlO" 4.25x10 4.25x10" 1 [0 CO w in

3 3.35x10" 3.35x10- 3.35x10" < < < <
1 i.O _ 1*° -, 1.23x10 1*° -6 i.o i.°5 2 1.23x10 3.1 xlO 1.23x10 1.23x10
3 1.04x10 1.04x10 1.04x10

TABLE 5.5. SOLUTION CHARACTERISTIC OF PROBLEM 4

,y.)



EIGEN- RELATIVE TOLERANCE, RTOL
VALUE
NUMBER

KTTTT?
SSP XXSS XSSP ZSSP YSSP XXZSS XXYSS zxss XYSS

l 1.0 1.0 1.0 1.0 1.0
I 2 6.8 xlO"1* 2.8 xlO~11 2.9 xlO“10 6.8 xlO-1* 6.8 xlO“1*X 3 2.1 xlO"10 2.1 xlO"10 1.9 x10t1°4 2.8' xlO"11 1.4 xlO"11 2.8 xlO"11

1 1.0 1.0 1.0 1.0 1.0
o 2 5.45x10"3 olo 1.5 xlO"7 5.45x10"3 5.45x10"33 7.6 xlO"7 7.6 XlO"7 7.6 xlO"74 1.2 xlO"11 7.0 xlO"u 5.9 xlO"11

1 1.0 1.0 1.0 1.0 1.0
3 2 4.1 xlO"2 2.3 xl9”9 7.3 xlO"0 4.1 xlO"2 4.5 xlO“2

3 2.0 xlO"5 2.0 xlO"5 2.0 xlO“5
4 2.2 xlO-9 2.2 xlO"9 2.2 xlO“9

Vi
P.
Vi1 1*° 2 i.O ' 1.0 1.0 1.0 w« Vi

Vi

A 2 5.3 xlO" 1.4 xlO" 6.6 xlO"6 5.3 xlO"2 5.3 xlO"2 X
X

X
X

Vi
X

Vi
X4 3 5.6 xlO"“ , J 5.6 xlO"1* .5.6 xlO“” c c c G4 1.4 xlO-6 1.4 xlO"6 1.4 xlO"6 tH -A ■ A ■ A

1 1.0 . 1.0 1.0 1.0 1.0 10< VI< (0< CO<2 7.6 xlO"2 8.6 xlO“6 6.5 xlO"5 7.6 xlQ-2 7.6 xlO“2
0 3 1.5 xlO"3 1.5 xlO“3 1.5 xlO“3

4 8.6 xlO"6 8.6 xlO“6 8.6 xlO“6

. SOLUTION CHARACTERISTIC OF PROBLEM 13TABLE 5.6



PROBLEM
NUMBER

PROBLEM
SIZE
N

NUMBER OF ITERATIONS FOR LOWEST FIVE EIGENVALUES TO CONVERGE, NITE u c 
TIME TAKEN FOR LOWEST FIVE EIGENVALUES TO CONVERGE, t

C

SSP XXSS XSSP ZSSP YSSP XXZSS XXYSS XZSS XYSS

14 15 3
0.318

2
0.423

3
0.682

3
0.338

3
0.338

2
0.423

2
0.425

3
0.699

3
0.701

15 . 60 4
4.887

2
6.219

4
12.602

4
5.27

4
5.263

2
6.222

2
6.222

4
12.984

4
12.979

16 96 4
8.466

2
11.362

6
34.222

4
9.080

4
9.07

2
11.396

2
11.368

6
35.434

6
35.414

17 132 4
12.058

2
16.542

6
49.611

4
12.897

4
12.887

2
16.55

2
16.552

6
51.284

6
51.249

18 168
4

15.65
2

21.65
4

43.349
4

16.719
4

16.702
2

21.663
2

21.666
4

44.410
4

44.40

TABLE 5.7 GENERAL COMPARISON OF THE SSP OPTION AND MODIFICATIONS FOR A CANTILEVERED PLATE



EIGEN­
VALUE NITE

RELATIVE TOLERANCE ,  RTOL
SSP XXSS XSSP ZSSP YSSP XXZSS XXYSS ZXSS XYSSNUMBER

1 1.0 1.0 1.0 1.0 1.0
2 1.1 xlO"“ 2.0 xlO"11 2.6 xlO"6 1.1 xlO"“ 1.1 xlO"“

1  •' 3 0.0 1.4 xlQ"6 1.1 xlO"10 3.9 xlO"11
4 2.0 xlO'U 3.7 xlO"7 9.8 xlO"11 2.9 xlO"11
5 1.2 xlO"7
6 4.0 xlO"8
1 1.0 1.0 1.0 1.0 1.0
2 2.6 xlO"2 7.9 xlO"10 1.3 xlO"5 2.6 xlO"2 2.6 xlO"2

n 3 4.8. xlO"6 1.1 xlO"6 4.8 xlO"6 4.8 xlO"6Z 4 7.9 xlO"10 1.2 xlO"7 9.2 xlO"10 7.8 xlO"10
5 1.3 xlO"8
6 1.4 xlO"9
1 1.0 1 * °  6 1.0 1.0 1.0
2 1.6 xlO"2 1.2 xlO" 3.0 xlO"“ 1.6 xlO"2 1.6 xlO"2
3 7.5 xlO“7 5.8 xlO"5 7.5 xlO"7 7.5 xlO"7
4 4.8 xlO"11 6.8 xlO"5 1.5 xlO"10 4.0 xlO"11
5 2.7 xlO-5 Ul

w
w
w

h
w

ft
w

6 9.2 xlO-6 X
X

X
X

w
X

w
X

1 1.0 1.0 1.0 1.0 1.0 c c c G
2 1.6 xlO"1 9.4 xlO-6 1.5 xlO-** 1.6 xlO-1 1.6 xlO“1 •H -H •H •H

A 3 8.0 xlO-1* 1.4 xlO-5 8.0 xlO“1* 8.0 xlO-“ < < < <
*k 4 9.2 xlO-6 1.5 xlO-6 9.2 xlO-6 9.2 xlO-6

5 1.6 xlO-7
6 1.7 xlO-8
1 1 . 0 1 . 0 1 . 0 1 . 0 1 . 0
2 1.4 xlO-1 5.7 xlO-6 1.1 xlO-3 1.4 xlO-1 1.4 xlO-1

c 3 5.9 xlO-“ 1.1 xlO-3 5.9 xlO-“ 5.9. XiO-“
Z) 4 5.6 xlO-6 3.6 xlO-“ 5.6 xlO“6 5.6 xlQ-6

5 1.0 xlO-“
6 3.2 xlO-5

TABLE 5.8. SOLUTION CHARACTERISTIC OF PROBLEM 17
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options defined by equation (5.3), the XXSS and 
XSSP part of the combination appears to completely 
overwhelm the ZSSP and YSSP options.

(ii) The ZSSP and YSSP options appear to be passive 
as far as changing the solution characteristic 
is concerned.

(iii) The XSSP option is behaving 'wildly' in numerical 
terms. In exact arithmetic, this should show 
complete agreement with the XXSS option, see 
section (4.2.6.3). However, in finite arithmetic, 
the XSSP option is more susceptible to numerical 
instability than the XXSS option, see section
(4.2.6.4.). This numerical instability manifested 
itself most pointedly in the case of problem 3 and, 
as can be seen from Table 5.3, no results were 
obtained whenever the XSSP option was employed.
The problem was then re-run with NROOT = 4 and the 
results obtained matched up with established results. 
Problem 4 was then re-run with NROOT = 10, i.e. 
with the same N/NROOT ratio. which caused problem 3 
to fail. In this case, problem 4 also failed; 
similar results were obtained from other such 
experiments. -This indicates that increasing the 
size of the subspace to a significant percentage 
of the whole space causes pronounced numerical 
instabilities in the XSSP option.

(iv) The XXSS option appears to show the most potential.
It can be seen from Tables 5.5, 5.6 and 5.8 that
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the initial convergence rate is very fast 
when compared to that of the SSP option.

With regard to the above-mentioned points, it 
Would appear prudent to discard those options which consist 
of combining the basic modifications, i.e. the options 
defined by equation (5.3). The ZSSP and YSSP options are 
retained in the hope that varying some parameters may cause 
these to prove themselves one way or the other. The XSSP
option is also discarded herewith since it is only an 
unstable variation of the XXSS option.

5.6 Detailed comparison of modifications

In this section, the XXSS, ZSSP and YSSP options 
are compared with the original subspace iteration algorithm 
(SSP option) and with each other in detail. Each iteration 
step in the solution consists of the following:

(i) Modifying the iteration vectors (if the 
modified algorithm is employed).

(ii) Forming the reduced eigenproblem in the subspace,
(iii) --Solving the reduced eigenproblem.
(iv) Obtaining the iteration vectors for the next 

iteration if convergence has not occurred. 
Clearly, the time taken for (ii) and (iv) will be 

identical for a given set of parameters, but for (i) and 
(iii), it will vary according to the solution algorithm, 
smployed. The time taken for the modification, 't is a 
hecessary requirement for comparison purposes and also to 
9ive an indication of the increase in the time taken for 
®ach iteration, t̂. due to the modification. Consider now
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the time taken to solve the reduced eigenproblem, te>
This is very important in appraising the condition of- 
the subspace operators [K] and [M]. Clearly, the 
degree of diagonality of [K] and [M] is indicated by 
the magnitude of tg .

In the following sections, tables are presented
in which t , t and tT are tabulated after each iteration, e' m I
Selected problems from those considered in section (5.5) 
are taken. The iteration number is specified by NITE 
throughout.

5.6.1 Beams

The cantilevered beam in problem 4 was modelled 
by eight, two noded beam elements with three degrees of 
freedom per node. The results obtained are given in 
Table 5.9.

The cantilevered portal frame (see Fig. 5.3) in 
problem 13 was modelled by two-noded beam elements with 
three degrees of freedom per node. A total of twenty 
elements was required, four for section (b).and eight 
each for (a) and (c). The results obtained are given 
in Table 5.10.

5.6.2 Plates -

The cantilevered plate in problem 17 was modelled 
by twelve, eight noded plate elements with three degrees 
of freedom per node. The results obtained are given in 
Table 5.11.



SSP XXSS 2SSP YSSP
NITE

t t tT t t tT t t t t t te m I e m I e m I e m I

1 0.281 0.445 ; 0.141
\

0.234 0.537 0.282 0.0 0.447 0.281 0.0 0.447

2 0.096 - 0.258 0.042 0.233 0.438 0.096 0.0 0.257 0.096 0.0 0.257

3 0.065 - 0.227 f\
1 0.066 0.077 0.303 0.067 0.077 0.305

COMPARISON OF t , t and t FOR PROBLEM 4e m ITABLE 5.9



SSP XXSS ZSSP YSSP

te tm *1 te tm *1 te tm *1 te tm

1 0.269 - 0.654 0.178 0.563 1.121 0.269 0.0 ' 0.659 0.268 0.0 0.659

2 0.160 — 0.538 0.052 0.562 0.993 0.160 0.0 0.538 0.159 0.0 0.538

3 0.109 — 0.487 0.109 0.178 0.665 0.109 0.178 0.665

4 0.071
'

- 0.449 0.070 0.174 0.623 0.070 0.177 0.626

COMPARISON OF t , t and t FOR PROBLEM 13 e m I

ooM

TABLE 5.10



SSP XXSS ZSSP YSSP

te tm te tm fcI te tm *1 te tm V
1 0.272 - 3.139 0.176 5.288 8.328 0.273 0.0 3.151 0.272 0.0 3.151

2 0.150 - 3.013 0.062 5.288 8.214 0.150 0.0 3.013 0.150 0.0 3.012

3 0.102 - 2.963 0.102 0.409 3.373 0.101 0.408 3.372

4 0.080 - 2.943 0.079 0.418 3.360 0.081 0.408 3.352

CD
t o

TABLE 5.11. COMPARISON OF t , t and t, FOR PROBLEM 17e m I
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In problem 18, the cantilevered plate of problem 
17 was again modelled but with sixteen elements. The 
results obtained are presented in Table 5.12.

5.6.3 Rig

In problems 19 and 20, an off-shore structure 
(Rig), was analysed. The two problems differ only in 
the number of elements employed in the model. This is 
a full three-dimensional structure, see Fig. 5.4, and 
was modelled using two-noded beam elements with six 
degrees of freedom per node. All the degrees of 
freedom at the base of the four legs of the structure 
were assumed to be fixed. The results obtained from 
the analyses of problems 19 and 20 are given in Tables

05.13 and 5.14 respectively.

5.6.4 Discussion
%

The following statements may be made after 
inspecting Tables 5.9 to 5.14:

The ZSSP and YSSP options still.remain an enigma. 
The reason for persisting with these is that the 
modification here takes very little time. 
Therefore any improvement will be significant.
The XXSS option still shows the most potential.
It always converges in the least number of 
iterations.
The t for the XXSS option becomes the major m J
contributor to tj as the order of the problem

(i)

di)

(iii)

is increased.
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NITE. .
SSP XXSS ZSSP YSSP

te tm > 1 te tm fcI te tm > te tm *1

1 0.283 - 4.043 0.150 6.961 10.871 0.284 0.0 4.058 0.284 0.0 4.059

2 0.148 - 3.905 0.059 6.962 10.779 0.148 0.0 3.905 0.148 0.0 3.906

3 0.102 - 3.860 0.102 0.520 4.379 0.102 0.518 4.379

4 0.085 - 3.842 0.083 0.531 4.372 0.082 0.518 4.358

00
U1

)

TABLE 5.12. COMPARISON OF t , t and t FOR PROBLEM 18e m I



NITE
SSP xxss ZSSP YSSP

te tm V ■ te tm fcI te tm *1 te tm

1 0.283 - 3.921 0.199 6.658 10.495 0.283 0.0 3.938 0.283 0.0 3.939

2 0.159 - 3.794 0.098 6.658 10.392 0.159 o
•
o 3.793 0.159

-V.

0.0 3.794

3 0.125 - 3.759 0.066 6.658 10.360 0.125 0.576 4.335 0.125 0.573 4.333

4 0.111 - 3.746 0.111 0.588 4.334 0.112 0.574 4.320

5 0.090 - ' 3 . 725 0.090 0.588 4.313 0.091 0.574 4.300

TABLE 5.13. COMPARISON OF t , t and t FOR PROBLEM 19e m I



nite
SSP XXSS ZSSP YSSP

te tm te tm t-I te tm fcI te tm fcI

1 0.207 20.094 0.190 38.360 58.436 0.208 0.0 20.134 0.207 0.0 20.134

2 0.145 ■ - 20.028 0.137 38.360 58.383 0.145 0.0 20.028 0.145 0.0 20.028

3 0.144 - 20.028 0,049 38.361 58.294 0.144 1.330 21.360 0.144 1.329 21.358

4 0.129 - 20.013 0.035 38.361 58.297 0.130 1.301 21.313 0.129 1.329 21.342

5 0.142 - 20.028 0.141 1.361 21.388 0.142 1.329 21.358

6 : 0.076 - 19.960 0.076 1.361 21.321 0.076 1.329 21.289

7 0.065 - 19^947 0.065 1.362 21.309 0.064 1.329 21.277

8 0.048 - 19.930 0.047 1.363 21.293 0.047 1.329 21.259

TABLE 5.14. COMPARISON OF t , t and t, FOR PROBLEM 20e m I
J
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(iv) The SSP option is still the quickest with 
regard to the total iteration time, tc .
It is clear from the above statements that the 

XXSS option appears to be the most promising approach. 
However, the modification here requires a lot of extra 
work. The major requirement from a successful modifica­
tion is that it takes the least time to obtain a solution, 
comparable in accuracy to that obtained by the original 
subspace iteration algorithm. Note that, henceforth, 
the ZSSP and YSSP options will be neglected.

Consider now the XXSS option. It certainly 
fulfils the accuracy criterion. However, the extra 
workload in each iteration causes it to be slower than 
the SSP option. It is, therefore, necessary to:

(a) Try to decrease t . *■* m
(b) Seek an environment in which the modification 

thrives.
(c) Employ the modification selectively.
(d) Optimise the modification.
...Consider now each of (a) to (d) in turn.

(a) The aim here is to decrease t . Most of the workm
in the XXSS option can be attributed to the [K]”^[M]
operation. The following definition is now necessary.

46 -1Let N U T  be the number of [K] [M] operations carried
out on the iteration vectors. Recall the parameter, Z,

ndefined in section (4.2.2). In fact, Z = NIIT. It^ 
is convenient to use Z with regard to the algorithm. 
However, NIIT is used throughout henceforth.
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Clearly, varying N U T  is a possibility. This
will affect t and the convergence characteristic of the m
solution.

(b) The size of the subspace is a major factor which 
governs the solution characteristic in all the options 
available. Recall that the size of the subspace is 
dependent upon the number of required eigenvalues, NROOT. 
Therefore, varying NROOT may provide a favourable change 
in the environment as far as the XXSS option is concerned.

(c) Consider the t from Table 5.9 to 5.14, as the
w

iteration number, NITE increases, t generally decreases. 
Note, however, this decrease is not monotonic. The 
decrease in t may be explained as follows. As NITE 
increases, the iteration vectors become better and better 
approximations to the eigenvectors. Consequently, the 
subspace operators [K] and [Ml become more and more 
diagonal. Let the t for the SSP and XXSS options be 
t s and t x respectively. By comparing these, it can 

‘be seen that for'a given value of1 NITE,’ t x is alwaysC5' *
smaller than t s . Thus, after a given NITE, the XXSS ©
option has approximated the eigensystem more accurately 
than the SSP option. Another observation from Tables 
5.9 to 5.14 is that the XXSS option achieves redundant 
accuracy, that is the lower eigenvalues are approximated 
far more accurately than required. The main point to \  
note is that initially the convergence rate of the XXSS ' 
option is much faster than that of the SSP option.
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However, as convergence is approached, the convergence 
rate decreases and there is no return for the extra 
work per iteration required by the modification.
Clearly, therefore, the conclusion here is that the 
XXSS option should be employed for the 'first few 
iterations'and then revert to the XXSS option.

(d) It may be possible to optimise the subroutine
containing the XXSS modification. Consider the Gram- 
Schmidt orthonormalisation process. If this can be 
neglected, then t may be decreased considerably.
The requirement, therefore, is to discover how necessary 
the Gram-Schmidt process is for numerical stability.

The ideas outlined above are investigated in the 
following sections.

5.7 Varying N U T

Recall now the parmeter NUT, defined in section 
(5.6.4). In this section the effect of varying N U T  on 
the solution characteristics is considered. All the 
results presented in this chapter to date have been 
obtained for N U T  = 2. It is difficult to justify this 
choice of NIIT logically. However, intuitively the 
choice appeared reasonable at the outset of the investi­
gation.

The original idea was to increase the convergence 
rate of the solution. Therefore, to easily observe this 
increase a high enough value for N U T  was required.
Recall now the discussion in section (4.2.1). It was

CV-
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observed that too large a value for NIIT would lead 
to convergence to the least dominant vector. Thus, 
all the modes except the lowest would be suppressed. 
Therefore, it was decided that N U T  = 2 should be 
employed, since N U T  = 1 may not lead to a significant 
change in the convergence rate.

To date, N U T  = 2 has been employed successfully. 
However, since N U T  has a significant effect on the 
iteration time, tj, it is now necessary to investigate 
other possible values for NIIT.

The results obtained when NIIT takes the values 
1 and 2 in the most promising modification, XXSS, are 
presented in Table 5.15. Note that NROOT = 5 throughout 
except in problems 1, 2 and 5, where it is 1, 2 and 2, 
respectively.

Henceforth, let XXSS1 and XXSS2 denote the XXSS 
option when NIIT takes the value 1 and 2, respectively.
It can.be seen from Table 5.15 that when the number of 
iterations for the solution to converge, NITE are equal, 
XXSSlis-faster than XXSS2. In fact; inproblem 20, 
XXSS1 is faster even when it requires more iterations 
to converge than XXSS2. However, it follows from the 
discussion in section ,(4.2.1), that increasing NIIT, 
'focuses' the iteration vectors more and more to the 
least dominant vector. Thus, the higher the value of 
NIIT, the higher the convergence rate. Note also that 
both the XXSSl and XXSS2 options are slower than the 
:SSP; option. Therefore, it appears that the successful
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PROBLEM
NUMBER

PROBLEM
SIZE

XXSS2 XXSS1 PROBLEM
TYPEtc NITEC tc NITEc

1 3 0.021 2 0.017 2 Beam
2 6 0.083 2 0.069 2 II

3 12 0.561 2 0.480 2 II

4 24 0.975 2 .0.834 2 II

5 6 0.082 2 0.068 2 Firatne
6 12 . 0.541 2 0.499 2 II

7 15 0.640 2 0.595 2 II

8 24 0.955* 2 0.843 2 II

9 27 1.052 2 0.915 2 II

10 33 1.320 2 1.611 3 It

11 48 1.786 2 2.174 3 II

12 51 1.906 2 ... 2.305 3 II

13 57 2.114 2 2.565 3 II

14 15 0.432 2 0.336- 2 Plate
15 ; 60 6.219 2 6.687 3 II

16 96 11.362 2 12.020 3 II

17 132 16.542 2 17.322 3 •1

18 168 21.650 2 22.605 3 ••

. 19 186 31.247 ' 3 21.955 3 Rig
20 456 233.392 4 198.297 5 1» .

TABLE 5.15. COMPARISON OF THE XXSS1 and XXSS2 OPTIONS
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modification will be one that incorporates the SSP option.
In this case, as much benefit as possible must be derived 
from the 'first few iterations' while either the XXSSl or 
XXSS2 options are being employed, before reverting to the 
SSP option. With regard to such a hybrid technique, it 
is clearly desirable to obtain a high convergence rate 
initially. Thus, in this respect, it appears that XXSS2 
is preferable to XXSSl.

Consider now the case when N U T  > 2, although 
theoretically the convergence rate increases as N U T  is 
increased, in practice there are several detrimental 
features involved with employing N U T  > 2. The problems 
solved when N U T  takes the values 1 and 2 were presented
to the XXSS option with N U T  = 3, XXSS3 say, in all cases

Jnumerical instabilities were encountered. These were in 
the main due to overflow and may be countered without 
difficulty by employing a scaling factor. However, the 
main ppint of concern was the magnitude of the time used 
for the modification, t.- .It was observed in section 
(5.6.4) that for N U T  = 2, as the order of the problem was 
increased, the contribution of tm to tj became progressively 
more significant. Clearly, this situation will be enhanced 
for N U T  > 2. Therefore, neglecting N U T  > 2 and pursuing
N U T  = 2 was considered a reasonable course of action, thus

\

henceforth, N U T  = 2 throughout.

5.8 Varying NROOT
The number of eigenvalues required in an analysis, 

NROOT is clearly an important parameter since it defines
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the size of the iterating subspace, see section (3.5.1).
In this section the behaviour of the solution characteristic 
is considered when NROOT is varied.

The results presented in this chapter to date, 
have been obtained for NROOT = 5. Numerical difficulties 
were encountered when the size of the iterating space, q, 
became a significant percentage of the size of the full 
space, N. Definite values defining a useful range for 
q/N ratio are not available since these will certainly 
be problem and size dependent. However, experience has 
shown that for the problem considered, the useful values 
of q/N could be as high as ^ 2/3 for the smaller problems, 
but this tended to decrease as the order of the problem 
was increased. Therefore, only problems of the highest 
order will be considered. Thus, each problem may be 
solved for several values of NROOT. The values 
taken by NROOT are 8 and 12. The results obtained from 
the SSP and XXSS options are presented in Tables 5.16 and 
5.17.

------Notice that there is no-result for-problem 4 in
Table 4.17, the q/N ratio here is too large and, due to 
numerical instabilities, the solution was terminated. 
However, the explanation that 'the q/N ratio is too large' 
is not entirely satisfactory and so the manifestation of 
these numerical instabilities must be investigated further. 
Consider, therefore, the basic concept upon which the 
modification is based, recall equation (4.14) from section 
(4.2.1):
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PROBLEM
NUMBER N

SSP XXSS PROBLEM
TYPEtc NITEc tc NITEc

4 24 3.278 4 2.326 2 Beam
13 57 5.399 4 4.697 2 Frame
16 96 16.019 4 19.578 2 Plate
17 132 27.361 5 42.021 3 1«

18 168 34.887 5 54.743 3 tl

19 186 34.523 5 53.415 3 Rig
20 456 334.100 10 382.821 4 II

TABLE 5.16. COMPARISON BETWEEN THE SSP AND XXSS OPTIONS WITH NROOT = 8.

PROBLEM
NUMBER N

SSP XXSS PROBLEM
TYPE

tc NITEc tc NITEC

4 24 5.662 4 - - Beam
13 57 10.513 5 9.711 3 Frame
16 96 27.372 5 38.297 3 Plate
17 132 44.867 6 55.330 3 II

18 168 56.484 , 6 71.260 3 »1

19 186 73.098 8 92.817 4 Rig

20 456 470.669 11 607.826 5 «1

table 5.17. comparison between the ssp and xxss options with nroot « 12
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zi
n

(5.7)

Clearly, the effect of the modification is to suppress the 
higher nodes and focus the iteration vectors, z^, towards 
the lowest node. Recall now the parameter £ defined in 
section (4.2.1). This will henceforth be referred to as 
the eigenvalue ratio:

- Vv = \ ................  <5-8>
3 i

The 'richness' of the jth eigenvector in an iteration 
vector is obviously governed by the inverse of £ ̂ . Therefore, 
if is 'very large' then the jth vector will effectively 
be missing from the iteration vectors. Suppose now that 
the least dominant subspace of interest has dimension q and 
the spectral range of the eigenvalues within this subspace 
is such that \^ << Xg , then will be large. Consequently, 
a few of the highest nodes within the subspace of interest 
may be completely lost. It is due mainly to this that 
numerical instabilities occur in the modification.

Therefore, the statement that 'the numerical 
instabilities occur because the q/N ratio becomes a 
significant percentage of unity' is still valid. However, 
now a deeper meaning is attached to it, namely that the 
increase in q/N leads to an increase in £ which effects 
the 'richness' of eigenvectors in iteration vectors..

It is evident from Tables 5.16 and 5.17 that, 
although the XXSS option is converging in fewer iterations, 
NITEc, the total time taken, tQ is still greater than that
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for the SSP option. This becomes pointedly obvious as 
the order of the problem is increased. Therefore, since 
the object of this work is to obtain a practical algorithm, 
it appears that other avenues must be pursued.

5.9 Hybrid technique

In this section, a method consisting of the XXSS 
and SSP options is considered. Appropriately, it is 
referred to as the'hybrid technique'. Prior to any 
numerical investigation, an important decision must be 
made, namely how and when should the two options be 
employed. Clearly, since the XXSS option has the highest 
initial convergence rate, it should be employed during 
the 'first few iterations'. As the solution approaches 
convergence, the convergence rate of the XXSS option 
decreases and no advantage is gained from the extra work 
due to the modification. Hence, a prudent course of 
action would be to employ the SSP option once the initial 
advantage has been gained from the XXSS option during the 
'first few iterations'.

Although the approach outlined above is the logical 
way to proceed, a further question arises, namely what is 
meant by 'first, few iterations'? An 'a priori' answer 
for this question is very difficult if not impossible to 
find. However, in the present case, an answer may be 
deduced. Consider the following discussion.

As the number of iterations, NITE increases, the 
eigenpairs are better approximated. Consequently, the
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subspace operators [K] and [M] become progressively more 
diagonal and hence t decreases. Note, however, that this 
decrease in t is not always monotonic and fluctuations have 
been observed. It can be seen from Tables 5.9 to 5.14 
that the approximate value of t at which convergence occurs 
is arrived at in considerably fewer iterations by the XXSS 
option in comparison to the SSP option. Let NMOD be the 
number of iterations employing the XXSS option in which t 
decreases quickly and let NSSP be the number of further 
iterations, employing the SSP option,' required for convergence. 
Now, NMOD represents the 'first few iterations' and the 
problem of giving it a quantitative value still remains. 
However, by considering Tables 5.9 to 5.14, it is possible 
to choose a value for NMOD such that the time taken for an 
iteration, t  ̂for NMOD and NSSP iterations is less than the 
tj when only the XXSS or the SSP options are employed. An 
inspection of Tables 5.9 to 5.14 shows that as the order of 
the problem, N increases, the time taken for the modifica­
tion increases, therefore NMOD must be small enough to make 
use of the high convergence rate without becoming a burden on the 
final tj. Another factor which plays an important part in 
the choice of NMOD is the total number of iterations required 
for convergence, NITE when the SSP option is used. This 
is, in fact, the quantifying aspect of the preceding line 
of argument. Experience has shown that the contribution 
of tm to tj, can be as much as ^ 70%, hence provided

NMOD 1
NITES - 3 c

(5.6)
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indications are that the t for the hybrid technique will 
be less than that for the SSP option.

It can be seen from Tables 5.9 to 5.14 that, for 
the problems considered, NMOD can take the vales 1 and 2 
if equation (5.6) is to be satisfied. Note that equation 
(5.6) is only a crude indication by which a value for NMOD 
is obtained. Even this only applies to the type and size 
of problems considered here and is certainly not stated as 
a general rule.

The results obtained for NMOD = 1 and NMOD = 2, 
are given in Tables 5.18 to 5.20, three values of NROOT 
are used, namely 5, 8 and 12. For ease of comparison, 
the results due to the SSP option are reproduced from 
Tables 5.7, 5.16 and 5.17 for NROOT = 5, 8 and 12, 
respectively. Let XXSSH1 and XXSSH2 denote the hybrid 
technique with NMOD = 1 and 2, respectively.

The following statements may be made after inspecting 
Tables (5.18) and (5.19):

(i) The XXSSHl option is always quicker than 
the SSP option.

(ii) The XXSSH2 option is always quickest for 
problem 20.
It appears that NMOD = 1 is a conservative choice 

and the XXSSHl option will generally always converge faster 
then the SSP option, provided the SSP option does not converge 
in one or two iterations. It is observed that the XXSSH2 
option is always slower than the XXSSHl and SSP options 
with the exception of problem 20. The reason for this is



Problem
No.

Order
of

Problem

SSP XXSSH2 XXSSHl
Problem
TypeTime for 

Convergence
No. of Iterations 
for Convergence

Time for 
Convergence

No. of Iterations 
for Convergence

Time for 
Convergence

No. of Iterations 
for Convergence

4 24 0.928 3 0.974 2 0.754 2 Beam

13
•

57 2.128 4 2.114 2 1.571 2 Frame

16 96 8.466 4 11.362 2 7.77 2 Plate

17 132 12.058 4 16.541 2 11.272 2 Plate

18 168 15.650 4 . 21.649 2 14.714 2 Plate

19 186 18.948 5 24.588 3 17.97 3 Rig

20 456 160.028 8 156.713 4 158.324 6 Rig

TABLE 5.18. ' COMPARISON OF SSP, XXSSH2 AND XXSSHl OPTIONS FOR NROOT = 5
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Problem
No.

Order
of

Problem

SSP XXSSH2 XXSSH1
Problem
TypeTime for 

Convergence
No. of Iterations 
for Convergence

Time for 
Convergence

No. of Iterations 
for Convergence

Time for 
Convergence

No. of Iterations 
for Convergence

4 24 3.278 4 2.326 2 1.949
♦

2 Beam

13 57 5.399 4 4.696 2 3.741 2 Frame

16 96 16.019 4 19.577 2 13.666 2 Plate

17 132 27.361 5 33.344 3 24.704 3 Plate

18 168 34.887 5 43.298 3 31.878 3 Plate

19 186 34.523 5 42.420 3 31.510 3 Rig

20 456 334.100 1 0 324.65 6 329.341 8 Rig

TABLE 5.19. COMPARISON OF THE SSP, XXSSH2 and XXSSH1 OPTIONS FOR NROOT = 8
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Problem
No.

Order
of'

Problem

SSP XXSSH2 XXSSH1
Problem
TypeTime for 

Convergence
No. of Iterations 
for Convergence

Time for 
Convergence

No. of Iterations 
for Convergence

Time for 
Convergence

No. of Iterations

. 4 24 5.663 4 - - - - Beam

13 57 10.513 5 8.474 3 7.349 3 Frame

16 96 27.372 5 30.755 3 23.260 3 Plate

17 132 44.867 6 44.209 3 40.006 4 Plate

18 168 56.484 6 56.727 3 51.163 4 Plate

19 186 73.098 8 64.747 4 68.140 6 Rig

20 456 470.669 11 499.523 8 506.662 10 Rig

TABLE 5.20. COMPARISON OF THE SSP, XXSSH2 AND XXSSH1 OPTION FOR NROOT = 12

102
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that the XXSSH1 and SSP options are converging in very 
few iterations and consequently giving the XXSSH2 option 
no chance to shine. This is verified by the fact that 
in problem 20 where the XXSSH1 and SSP options require 
more than a few iterations to converge, the XXSSH2 option 
emerges as the quickest.

Consider now Table 5.20, the following statements 
may be made:

(i) The XXSSH1 option is always quicker than the 
SSP option with the exception of problem 20.

(ii) The XXSSH2 option is comparable with the SSP 
option in problems 17 and 18.

(iii) The XXSSH2 option is the quickest in problem 
19.

(iv) The SSP option is the quickest in problem 20.
With regard to the fact that NMOD = 1 was considered 

a safe choice, statement (i) was slightly disappointing, but 
perhaps to be expected. Statements (ii) and (iii) gave 
indications that the XXSSH2 option was about to come into 
its own, however statement (iv) was bitterly disappointing 
and unexpected.

It is now required to reconsider the application 
of the modification in the hybrid technique. The modifica­
tion is applied at the level of the iterating subspace for 
the first NMOD iterations. Initially, this was thought to 
be a reasonable course of action. However, now it must be 
examined closely for any flaws in the reasoning.
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Operating upon the initial iteration vectors 
is perhaps dubious since, although the [K]"”̂ [M] 
operation enhances the lower modes and suppresses the 
higher modes, the vectors being operated upon are not 
eigenvector approximations. Therefore, it is possible 
to reach a situation in which the iteration vectors

.Jspan the least dominant subspace but are not eigenvectors. 
This implies that, although the subspace has converged 
to the least dominant subspace, more iterations are 
required to convert the orthogonal basis of iteration 
vectors into a basis of eigenvectors.

Consider the discussion in section (5.6.4),
particularly the monitoring of the time taken for solving
the eigensystem of subspace operators, t . Recall that
it was this which gave rise to the idea of the hybrid
technique. Once again, the monitoring of t proves
itself useful, the values of t in each iteration aree
presented in Table 5.21. Only problem 20 is considered 
since it requires more than a few iterations to converge. 
Note that NROOT takes the values 5,8 and 12 for both 
the XXSSH1 and XXSSH2 options.

Inspection of Table 5.21 reveals that the XXSSH1 
option appears to suffer more than the XXSSH2 option from 
these fluctuations. This is clearly due to the fact that 
the enhancing and suppressing of the lower and higher 
modes, respectively, is not as,severe in the XXSSH1 option 
as in the XXSSH2 option.



XXSSH1 XXSSH1
NITE NROOT NROOT

5 8 12 . 5 8 12

1 0.189 0.838 2.242 0.189 0.838 2.242

2 0.129 0.713 1.220 0.137 0.871 1.591

3 0.146 0.762 1.070 0.060 0.352 0.610

4 0.075 0.690 1.233 0.050 0.410 1.062

5 0.064 0.343 0.599 0.369 0.451

6 0.050 0.409 1.069 0.190 0.418

7 0.374 0.451 0.330

8 0.191 0.418 0.317

,9 0.338

10 0.311

TAKLE 5.21. VALUES OF t AFTER EACH ITERATION FOR THE XXSSH1 and XXSSH2 OPTIONSe
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It is now necessary to investigate phenomena 
which give rise to the fluctuations in the value of te.
Thus, consider again the concept which forms the basis 
of the modification, namely equation (5.7), and the 
eigenvalue ratio, defined in equation (5.8). The 
following definition is now necessary for convenience:

= -i- .. ...........  (5.9)
3 * j

Let the least dominant subspace of interest have dimension
q, then if for some j < q, i / becomes small, the components
of the jth mode onwards will be correspondingly small in
the iteration vectors. Suppose now that the r lowest
eigenpairs are required and j < r < q, then components of
the required eigenvectors are almost lost from the iteration
vectors. However, dud to finite arithmetic, these are-
not entirely lost but remain small and are preserved due
to the orthogonalising process. A few iterations are
required for such modes to emerge from dormancy, and it is
this which causes the fluctuations in the values of t .e
This is explained by the fact that initially the subspace
is close to convergence, then a 'missing' mode is pulled
into the subspace necessitating the reorientation of the
basis vectors. Thus* in the next iteration, the diagonality
of [KJ and [M] is degraded and consequently an increase in
the t is observed. The requirement now is to suppress as
much as possible the fluctuations in the sequence formed by
the values of t .e
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Consider now the following idea: suppose the 
first iteration in the solution always employed the SSP 
option and the modification was applied from the second 
iteration onwards. This would have the effect of 
applying the modification at the level of the eigen­
vector approximations. Initially, this procedure was 
not employed due to the fact that it appeared to be a 
'waste' of the first iteration. However, in the present 
circumstances, it is clearly justified.

Let SXXH1 and SXXH2 denote the hybrid techniques 
in which the first iteration employs the SSP option 
followed by NMOD = 1 and NMOD =2, respectively. Tables 
5.18 to 5.20 are reproduced for the SXXH1 and SXXH2 options 
in Tables 5.22 to 5.24. The expectation here is that the 
SXXHl and SXXH2 options will be slower than the XXSSH1 and 
XXSSH2 options when only a few iterations are required. 
However, problem 20 will be the important test.

Observe that, as predicted, the SXXHl and.SXXH2
options are slower than the XXSSH1 and XXSSH2 options,

\respectively. Note, however, that for problem 20, both
the SXXHl and SXXH2 options are quicker than the SSP,
XXSSH1 and XXSSH2 options. This is certainly encouraging
as far as analysing 'real problems' is concerned.

The following Table 5.25 has been reproduced from
Table 5.21 for the SXXHl and SXXH2 options in order to
illustrate the fact that the fluctuations in the values
of t have been suppressed in comparison with the XXSSH1 6
and XXSSH2 options.



Problem
Nb.

Problem
Size

SSP' ' • SXXH2 SXXH1 Problem
TypeTime for 

Convergence
No. of Iterations 
for Convergence

Time for 
Convergence

No. of Iterations 
for Convergence

Time for 
Convergence

No. of Iterations 
for Convergence

4 24 0.928 3
c

1.345 3 1.118 3 Beam

13 57 2.128 4 2.698 3 2.145 3 Frame

16 96 8.466 . 4 13.562 3 9.962 3 Plate

. 17 132 12.058 4 19.601 3 14.328 3 Plate

18 168 15.650 4 25.625 3 18.697 3 Plate

19 186 18.948 5 24.715 3 18.078 3 Rig

20 456 160.028 8 156.818 4 158.393 6 Rig

TABLE 5.22 COMPARISON OF THE SSP, SXXH1 AND SXXH2 OPTIONS FOR NROOT = 5

SO
I



Problem
No.

Problem
Size

SSP SXXH2 SXXH1 Problem
TypeTime for 

Convergence
No. of Iterations 
for Convergence

Time for 
Convergence

No. of Iterations 
for Convergence

Time for 
Convergence

No. of Iterations 
for Convergence

4 24 3.278 4 3.318 3 2.908 3 Beam

13 57 5.399 4 6.087 3 5.110 3 Frame

. 16 96 16.019  ̂4 23.991 3 18.053 3 Plate

17 132 27.361 5 34.087 3 25.393 3 Plate

18 168 34.887 5 44.150 3 32.691 3 Plate

19 186 34.523 5 42.946 3 31.915 3 Rig

20 456 334.100 10 324.601 6 329.381 8 Rig

TABLE 5.23. COMPARISON OF THE SSP, SXXH2 AND SXXH2 OPTIONS FOR NROOT = 8
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Problem Problem SSP SXXH2 SXXH1 Problem
No. Size Time for 

Convergence
No. of Iterations 
for Convergence

Time for 
Convergence

No. of Iterations 
for Convergence

Time for 
Convergence

No. of Iterations 
for Convergence

Type

4 24 5.663 4 - - - - Beam

13 57 10.513 5 9.502 3 8.243 3 Frame

16 96 27;372 5
c

32.465 3 24.882 3 Plate

17 132 44.867 6 52.397 4 41.462 4 Plate

18 168 56.484 6 67.280 4 52.805 4 Plate

19 186 73.098 8 65.752 4 68.958 6 Rig

20 456 470.669 11 457.211 ■7 464.068 9 Rig

TABLE 5.24, COMPARISON OF THE SSP, SXXH1 AND SXXH2 OPTIONS FOR NROOT = 12
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NITE

SXXH1 SXXH2

NROOT NROOT

5 8 12 5 8 12

1 0.208 0.937 1.689 C 0.207 0.937 1.689
2 * 0.173 0.702 1.877 0.173 0.701 1.877

3 0.143 0.770 1.062 0.133 0.549 1.344

4 0.076 0.651 1.247 0.041 0.295 0.541

, 5 0.066 0.512 0.606 0.274 0.504

6 0.046 0.287 0.610 0.213 0.347

7 0.275 0.493 0.313

8 0.208 0.366

9 0.302

TABLE 5.25. VALUES OF t AFTER EACH ITERATION FOR THE SXXH1 AND SXXH2 OPTIONSe
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Although Table 5.25 shows that the fluctuations 
in the values of .t have been suppressed to a certain 
extent, a comparison of Tables 5.18 to 5.20 with Tables 
5.22 to 5.24 shows that this has only been of use in 
problem 20 with NROOT = 12.

Consider now a very interesting investigation; 
only problem 20 with NROOT = 12 is considered in the 
following discussion. Let XXSSH3 and SXXH3 denote the 
appropriate hybrid techniques with NMOD = 3. The idea 
was to observe the behaviour of the solution characteristic 
of the XXSSH3 and SXXH3 options and the results obtained 
were - perhaps not unexpected in retrospect. For ease of 
comparison, the results for the SSP, XXSSH1, XXSSH2,
SXXH1 and SXXH2 options are also reproduced in Table 5.26.

Although the hybrid techniques presented in this 
section have been successful, there remains a problem 
which requires attention, namely the choice of NMOD.
The method used earlier in this section for deducing NMOD 
was applicable only because information about the solution 
characteristic was available...-rIn order,to utilise the 
technique to its full potential; an optimum value of NMOD 
is required and, at present, there appears to be no hard 
and fast rule for obtaining it. Note that even the crude 
indication given by equation (5.6) is not applicable 
without prior knowledge of the solution characteristic. 
Therefore, as the situation stands, analyst"experience 
would appear to be the crucial factor.



/

OPTION SSP XXSSH1 XXSSH2 XXSSH3 SXXH1 SXXH2 SXXH3

t 470.669 506.662 499.523 493.005 464.068 457.211 451.492c

NITE 11 10 8 6 9 7 5C *

TABLE 5.26. COMPARISON OF THE SSP OPTION AND THE HYBRID TECHNIQUES FOR NMOD = 1, 2  AND 3
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5.10 Neglecting Gram-Schmldt Ortho-normalisation

The idea here is to investigate the possibility 
of decreasing the time required for the modification, tm , 
by neglecting the Gram-Schmidt ortho-normalisation. All 
the problems considered in section (5.9) were presented 
to the XXSSG option, where XXSSG denotes the XXSS option without 
the Gram-Schmidt ortho-normalisation. In all cases, the 
algorithm failed due to ill-conditioning of the subspace 
operators [K] and [M], which led to numerical instability.

The ill-conditioning of [K] and [M] arises from 
the basic concept of the modification. Recall once again 
the governing equation of the modification, namely 
equation (5.7) and the eigenvalue ratio, defined in 
equation (5.9). Now since

< X2 S < X. <- D ~ < X

where q is the dimension of the iterating subspace, 
forms a decreasing sequence as j is increased from 1 to q. 
Consequently, the suppression of the higher modes increases 
progressively as j increases; this leads to a deficiency 
of the higher modes in the iteration vectors. The effect 
of this is to progressively make the iteration vectors 
more and more parallel to the least dominant mode. It 
is due to this that ill-conditioning in [K] and [M] is 
encountered.

Suppose that the lowest r eigenpairs are required,
i:with r < q and that £/ is small for some j < r, then

since the higher modes are suppressed according to it

\
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follows that the decision for retaining or discarding 
the Gram-Schmidt ortho-normalisation can only be made 
if prior information about the spread of the eigenvalues 
in the subspace of interest is available.

The modification may, therefore, be interpreted 
in the following manner: The [K] ^[M] operation filters 
out the higher modes indiscriminantly. This is followed 
by the Gram-Schmidt ortho-normalisation which reinstates 
some components of the higher modes, thus preserving 
numerical stability.

It is clear from the above discussion that Gram- 
Schmidt ortho-normalisation or some other device for 
preserving numerical stability is a necessary requirement 
if the modified algorithm is to be functional.

c
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CHAPTER 6

CONCLUDING REMARKS

6.1 Conclusions

The aim of this study was to obtain a practical 
algorithm for the solution of the large generalised eigen- 
problem by modifying the subspace iteration algorithm^.
In the context of the stated aim, the following conclusions 
may be drawn:

(i) Several ideas for modifying the subspace 
iteration algorithm were investigated 
theoretically.

(ii) The original subspace iteration algorithm 
was validated by comparison with know 
solutions and subsequently used as the 
fiducial reference.

(iii) The ideas investigated theoretically were 
converted into computationally efficient 
algorithms and programmed in subroutine 
form.

(iv) After prolonged comparisons the XXSS option 
emerged as the clear rival to the original 
subspace iteration algorithm.
The XXSS option may be basically defined as 
a process which suppresses and enhances the 
higher and lower modes respectively in the 
iteration vectors.

(v)



(vi)

(vii)

(vili)

(ix)

(X)

(Xi)

(Xii)
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The initial convergence rate of the XXSS 
option was considerably superior to that 
of the original subspace iteration algorithm. 
Consequently, it always converged in fewer 
iterations.
In terms of the time taken for convergence 
to occur, the original algorithm was always 
quicker than the XXSS option.
Utilisation of the superior initial convergence 
rate has led to the conception of the XXSSH and 
SXXH options.
Both the XXSSH and SXXH have higher initial 
convergence rates and converge in fewer 
iterations~)in comparison to the original 
subspace iteration algorithm.
The time taken for convergence to occur by 
the modification is always less than that 
for the original subspace iteration algorithm 
provided the correct hybrid technique is 
employed.
The ratio of the lowest to highest eigenvalues 
in the subspace of interest emerges as the 
most important parameter with regard to 
explaining numerical instabilities.
In order to utilise the full potential of 
the hybrid technique, an optimum value for 
NMOD must be chosen.
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(xiii) The experienced analyst will be able to employ 
the hybrid technique far more efficiently than 
the layman.

6.2 Ideas for further research

During the course of this study and particularly 
towards the end of it, various ideas have emerged which 
were either peripheral to the main theme of the study or 
were such that investigation could not be initiated due 
to lack of time. The author feels, however, that these 
should be pointed out in order to stimulate further study 
in this field. Some of the potentially promising ideas 
and interesting speculations* are briefly outlined in the 
following:
(a) The idea of shifting has been proposed in the

43 48 49past ' and implemented recently with the original .
subspace iterations. However, consider the following;
in the course of the study, the hybrid techniques
described in section (5.9) showed a convergence rate
far superior to that of the original subspace iteration..
Utilising this superior convergence rate in conjunction
with shifting would appear to be a logical step towards
improving upon the hybrid technique.

Suppose the r lowest eigenpairs are required,
then a check could be made after each iteration to obtain
the number of eigenvalues which have satisfied the
convergence criterion. Experience has shown that the
lowest few eigenvalues converge fastest and in clusters,
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a shift sr, beyond the last converged eigenvalue could 
then be employed. Thus, 'clusters' of eigenvalues may 
be obtained in between shifting, the advantage being the 
utilisation of the initial high convergence rate of the 
hybrid technique.

Notice, however, that there is also a disadvantage 
associated with this, namely, the fact that [K] must be 
factorised after each shift. Let q, A and m denote the 
size of the iterating subspace, the number of [K]”^[M] 
operations per iterations and the half-bandwidth of [K] 
respectively. Then the number of operations required 
for a triangular factorisation of [K] are:

and those for an iteration in which the modification is 
being employed are:

nq(4m + 2q + 3) + A(4nmq + 8nq - 3)

From these operation counts, it follows that if q is 
comparable to m, then the advantage is clear. It is the 
opinion of the author that the possibility of obtaining an 
efficient algorithm using the hybrid technique in conjunc­
tion with shifting is high. However, only detailed study 
can lend credence, or otherwise, to this idea.

(b) The following idea is again based upon shifting,
but in the opposite direction. Recall that a small A' 
implies a vicious suppression of the higher modes, some 
of which may be required. Suppose now that a shift, s^
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to the left of the origin is employed, this would 
effectively increase £' since

X
X
1
q

+
+

In theory s^ may be made as large as required. However, 
the drawback here is that information about the eigenvalue 
spectrum is required prior to the analysis. The possi­
bility exists, of course, of obtaining a rough approximation 
of the eigenvalue after a few iterations and then employing 
this idea.

Note that a major implication of this would be the 
possibility of neglecting Gram-Schmidt ortho-normalisation. 
Since, in this case, the severity of the suppression will 
be countered and, consequently, the components of the 
required higher modes need not be reinstated in the 
iteration vectors.

(c) Recall section (3.5.1). In the opinion of the
author, this aspect of the analysis requires further study. 
It should be possible with systematic research to form a 
better methodology for choosing the dimension of the 
subspace than that given in section (3.5.1).

(d) An interesting idea is to generate the initial
interation vectors for the hybrid technique using Lanczos
method: This idea has been proposed and implemented

18 43 49with some success ' ' for the original subspace
iteration
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(e) It would be very interesting and instructive to
carry out a systematic parameter survey involving 
N, q, N U T , NROOT and NMOD. This could possibly lead 
to definite guidelines for choosing optimum values for 
the various parameters in a given problem.
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APPENDIX A

CARDANO'S RULE FOR SOLVING CUBIC EQUATIONS

A real cubic equation, after dividing through by 
the coefficient of the leading term, may be written as:

x 3 + a x 2 + b x + c = 0  ...........  (Al)

where a, b and c are real constants.

By employing the transformation
ax = y - 3 

equation (Al) may be re-written as:

y3 = Ay + B
where

A = 3 'a)2 - b

and
f \a 3 f \a
3V 4 + b I3j

now let

B = - 2 ^ + b - c

A , BP = 3 and q =

Then the discriminant, D, is: 

D = q2 - p 3

(A2)

(A3)

(A4)

(A5)

Let Y^t i = 1/3 be the roots of equation (A3) in the following 
discussion. Three cases can arise according to whether D is 
positive, zero or negative.
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(a) D > 0
In this case one root is read, say, where 

Yx = {q + (q2 - p3)*}*-- {q - (q2 - p3)H^

y2 is imaginary and is given by
1 iy2 = 2p7 cosh {| cosh (q/p?)}

and y^ is the complex conjugate of y2*

(b) D = 0
In this case there are two real distinct roots, 

one of these is repeated

Yx = 2q*

y2 = y3 -  -  q*
(C) D < 0

In this case there are three real, distinct roots 
Initially determine an angle, 0, from

-i 30 = cos (q/p?) 

with 0° < 0 < 180°

then
y± = 2p? cos (|)

y2 = 2p^ cos (| + 120°)
1 R 'y3 = 2p2 cos (| + 240°)

The roots of equation (A3) are then transformed 
into the roots of equation (Al) by employing equation 
<A2).
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