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ABSTRACT

the existence of a unique local maximal solution to an energy critical stochastic wave equation

with multiplicative noise on a smooth bounded domain D c R? with exponential nonlinearity.
The main ingredients in the proof are appropriate deterministic and stochastic Strichartz inequalities
which are derived in suitable spaces.

I n this thesis we study three problems on stochastic geometric wave equations. First, we prove

In the second part, we verify a large deviation principle for the small noise asymptotic of strong
solutions to stochastic geometric wave equations. The method of proof relies on applying the weak
convergence approach of Budhiraja and Dupuis to SPDEs where solutions are local Sobolev spaces
valued stochastic processes.

The final result contained in this thesis concerns the local well-posedness theory for geometric
wave equations, perturbed by a fractional Gaussian noise, on one dimensional Minkowski space R!*!
when the target manifold M is a compact Riemannian manifold and the initial data is rough. Here,
to achieve the existence and the uniqueness of a local solution we extend the theory of pathwise
stochastic integrals in Besov spaces to two dimensional case.
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CHAPTER

INTRODUCTION

his thesis consists of three parts about different problems on stochastic wave equations whose
solutions take values in Euclidean space or in any compact Riemannian manifold. Since the
motivation to study the stochastic non-linear wave equation and the geometric wave equation
with random perturbation is different, we introduce, motivate, and state the main results, that we

prove in this thesis, in the following two sections.

1.1 Stochastic non-linear wave equation

The nonlinear wave equations subject to random forcing, called the stochastic nonlinear wave
equations (SNLWEs), have been thoroughly studied under the various sets of assumptions due to
their numerous applications to physics, relativistic quantum mechanics and oceanography, see for
example [22, 23, 36, 40, 41, 45, 51, 52, 59, 60, 62, 91, 102, 109, 112-114, 116, 119, 121-124, 127, 130]
and references therein. The case that has attracted the most attention so far seems to be of the
stochastic wave equation with initial data belonging to the energy space H LRY) x L2(RY). For such

equations, the nonlinearities can be of polynomial type, for instance the following SNLIWE
(1.1.1) Oppu—Au=—ululP '+ ulul'W, st u)=ug, 0;u0)=u,

with the suitable exponents p, g € [1,00); see a series of papers by Ondrejat [119, 121-124].

Another extensively studied important case is when the initial data is in L?(R?) x H~1 (R%) (possibly
with weights), see [127, 130] for more details. Similar problems on a bounded domain have been
investigated in [27, 52, 119].

In the case of deterministic nonlinear wave equations, see for instance [151], the question of
solvability of

(1.1.2) Opu—Au=—ulul’, st u0)=uy 0,u0) =,
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CHAPTER 1. INTRODUCTION

when the initial data belongs to H! (R%) x L?(R%), has been investigated in the following three cases:
(i) subcritical, i.e. p < p¢;  (ii) critical, i.e. p = p.;  (iii) supercritical, i.e. p > p,

where

_d+2

1.1.3 =—.
( ) Pc d—2

In the subcritical and the critical cases, the existence and uniqueness of a global solution has been
obtained, see for e.g. [74] and [142, 143], respectively. Notice that the proofs in the latter work are
based on the so-called “Strichartz inequalities” for the solution of the linear inhomogeneous wave
equation, see [75, 150]. Finally, in the supercritical case, the local and global well-posedness of
solutions remains an important open problem except for some partial results, see for e.g. [32, 93, 94,
100] and references therein.

Let us note that for d = 2 any polynomial nonlinearity is subcritical. Thus, an exponential
nonlinearity is a legitimate choice of a critical one. Nonlinearities of exponential type have been
considered in many physical models, e.g. a model of self-trapped beams in plasma, see [102], and
mathematically in [7, 45, 87, 88, 116]. With the help of suitable Strichartz estimates, the global well-
posedness of the Cauchy problem in the energy space H!(D) x L?(D), with Dirichlet boundary
condition on a smooth bounded domain D < R?, has been proved in [88], in the cases when the
initial energy is strictly below or at the threshold given by the sharp Moser-Trudinger inequality.
Moreover, an instability result has been shown when the energy of initial data is strictly above the
threshold. The critical case on a 3-D smooth bounded domain has been considered in [34, 35] where
the authors have proved the existence of a unique global solution to the problem (1.1.2) with Dirichlet
and Neumann boundary conditions when the initial data is in the energy space. It is important to
highlight that in all the works mentioned above regarding the semi-linear wave equation in domain,
the most difficult part in the proof of the local existence result is to establish the required Strichartz
type estimates for the solutions to the wave equation in a smooth bounded domain.

In Chapter 2 we extend the existing studies to the wave equation with exponential nonlinearity
subject to randomness. In this way, we generalise the above mentioned results of Ondrejat for two
dimensional domain, by allowing the exponential nonlinearites, as well as the results of Ibrahim,
Majdoub, and Masmoudi, see [87, 88], and others to allow randomness. To be precise, we prove the
existence of a unique local maximal solution to the following stochastic nonlinear wave equation on

a smooth bounded domain D c R?,

(1.1.4) { Opu+ Au+F(u) = Gw)W  in[0,00) x D

u(0) =up, us(0)=u; ondD,

where A is either —Ap or —Ap, i.e. — A is the Laplace-Beltrami operator with Dirichlet or Neumann
boundary conditions, respectively; (ug, u1) € DAY x L2(D); W ={W():t=0}isa cylindrical

Wiener process on some real separable Hilbert space K such that some orthonormal basis {fj} jen of
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1.1. STOCHASTIC NON-LINEAR WAVE EQUATION

K satisfies
(1.1.5) Y 112y < 00
JjeN
Let H, H, and E be Hilbert and Banach spaces defined as
H:=1*>(D); Hy:= @(AI/Z); Ei= @(Ag;r)/z)’

where g € (1,00); r € [0,1]; B = D,N; Ap 4 and Ay 4, respectively, stand for the Dirichlet or the
Neumann-Laplacian on Banach space L7(D). In (1.1.4), for the nonlinearity F and the diffusion

coefficient G we assume the following hypotheses.

H.1 Assume that
F:HxNnE— H,

is a map such that for every M € (0, 1) there exist a constant Cr > 0 and y € (0, 00) such that the
following inequality holds

lullg  llvig]”
£ lvie

F(u)-F <Cpl|l+
IF(w) - F(W)llg <Cfr ; v;

lu—=vlm,
provided

(1.1.6) u,ve HanEand |lulg, = M, |vig, <M.

H.2 Assume that
G:HynE—vy(K, H),

is a map such that for every M € (0, 1) there exist y € (0,00) and a constant Cg > 0 such that

Y
lu—vlig,,

lule  llvig
+
M M

1G(w) = GW)llyk,m =< Cg |1+

provided u, v satisfy (1.1.6).

In particular, F(u) and G(u) are allowed to be of the form u (e4” u_ 1), see Lemma 2.4.5, and hence
our results cover the recent results obtained in [88].

The strategy to prove the existence of a unique local solution is first to derive the appropriate
deterministic and stochastic Strichartz inequalities in suitable spaces and, then, apply the Banach
Fixed Point Theorem to obtain the local well-posedness. To construct a maximal solution, by using
the obtained local solutions, we rely on the standard methods, see e.g. [22, Theorem 5.4]. In particular,

we prove the following result, refer Theorem 2.4.10 for the proof,

Theorem 1.1.1. Let us assume that (y, p, q, 1) is a quadruple such that0 < 2y < p and (p, q, 1) satisfy

———-—, Iif 2=g=<8,

6 p 3q

2sgsp<oo, and r= 1 2
1-———, if 8=sg=<oo.

p q



CHAPTER 1. INTRODUCTION

Then for every (ug, uy) € 2(AY?) x L2(D) satisfying
||L£0||_@(A1/2) <1,

there exists a unique local maximal mild solution u = {u(t) : t € [0,7)}, to the Problem (1.1.4), in the

sense of Definition 2.4.8 for some accessible bounded stopping time t > 0.

We would like to stress that, to the best of our knowledge, the present work is the first one to
study the wave equations in two dimensional domain with an exponential nonlinearity and an
additive or multiplicative noise. We emphasize that result on the stochastic Strichartz estimates
for the wave equations generalises the corresponding results for the Schrodinger equation given
in [22] and [82]. To underline the significance of the stochastic Strichartz estimates let us mention
results by BrzeZzniak, Hornung and Weis [17, 18], where such estimates were applied to the nonlinear
Schrédinger equation (NLSE). Moreover, our fixed point argument is also similar to Hornung’s paper
[83] which on the one hand was also inspired by [22] but on the other hand was an improvement to

several older NLSE results.

1.2 Geometric wave equation with random perturbation

Many problems in mathematical physics, for example a simplified model for the Einstein equation
of general relativity [50], and the non-linear o-models in particle systems [73], require the target
space of the solutions to be a Riemannian manifold. Wave equations whose solutions take values
in a Riemannian manifold are known as geometric wave equation (GWE) and the solutions to GWE
are called wave maps. We ask the reader to refer [144] for a brilliant introduction of geometric wave
equation with comprehensive references.

In brief, given an m-dimensional Riemannian manifold (M, g), a wave map z : R — M is

critical points of the Lagrangian
n
L(z):= Z (0uz(t,x),0Mz(t, X)) g dt dx,
}120 R1+n

where (-, -) ¢ is the inner product on tangent space T;, M induced by metric g, the domain R*7 s

the Minkowski space equipped with the flat metric & = diag[-1,1,1,---,1], and

(80,01, ,0,) := (04,0y,,,0y,) and (8°,0%,---,0") := (=0;,0yx,,++,0x, ).
An alternative description of the wave map is a function z: R'*"* — M which satisfies the equation
(1.2.1) D;0:z(t, x) = D0, 2(t, x),

where D; and D, are the covariant pull-back derivatives, induced by the Riemannian connection
on M, in the bundle z~! TM. To understand the operators D0, and D,d,, called also “acceleration”

operators, in a friendly manner we ask a reader to see [25]. Since by the Nash Theorem, see [115],
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1.2. GEOMETRIC WAVE EQUATION WITH RANDOM PERTURBATION

every Riemannian manifold can be embedded by an isometric embedding into some Euclidean
space R4, one can identify M with its image in R4, i.e. we can assume that M is a submanifold of R?
with the Riemannian metric induced by the flat metric on R?. Consequently, it is now well known

that the equation (1.2.1) is equivalent to the following classical second order PDE
0112=NAxz2— Az(0x2,0x2) + Az(0;2,0:2),

where A is the second fundamental form of the submanifold M < R<. If we choose a local coordinate
chart (U, ¢) on M, then a smooth wave map satisfies the following system of equations, see Chapter 3

for a complete derivation, with k=1,...,m,

(1.2.2) DZ*(t,x) + i f % (Z(t,x)0,2°%(t, x)0" ZP (£, x) = 0,
a,b=1u=0

where Z = ¢po z, O0:=0;s — A, is the D’Alembertian operator, and F’;b pU)—R,a,bk=1,...,m,
are the Christoffel symbols on M in the chosen local coordinate (U, ¢p). It is important to observe
that, for the purpose of well-posedness theory, the expression (1.2.2) can only be of use if we seek for
continuous solution z but we will see later that it is in fact the case for us, see Sections 4.3 and 4.4.1
in Chapter 4, and Section 5.5 in Chapter 5.

The most natural problem to consider for GWEs (1.2.2) is the Cauchy problem with the initial
data

Z0,x)=Zy(x), and 0;Z(0,x)=7Z;(x).

The question that has attracted the most attention of researchers so far is to find the minimum value
of s such that if the initial data (Zy, Z;) € HS(R™;R™) x H~1(R";R™), then there exist a number T > 0

and a unique Z such that
ZeC(l0, T HS®R™;R™) and 8,Z € C([0, Tl; HHR™;R™)).

The following theorem, which we will use for comparison purposes, summarizes the available local
well-posedness results in the theory of deterministic geometric wave equations, see [92, 96, 98] for

more details.

Theorem 1.2.1 (Local theory for GWE). Ifn =2 and s > %, then the GWE (1.2.2) is locally well-posed
for the initial data in H®(R";R™) x HS Y R™R™). For n = 1 case the result has only been proven if
3
s> 1
Except for some very special cases the ill-posedness of (1.2.2) has been shown for s < g in [56]
and [153]. We do not comment on the critical case s = 4 here because it is much more complicated
and not related to the problems considered in the thesis.
It also turns out that a solution to (1.2.2) can exhibit a very complex behaviour including blow ups,
shrinking and expanding bubbles, see for e.g. [8, 101, 136]. In some cases it has also been proven that

the global solutions to GWE eventually decouples into a solution to the associated linear equation
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CHAPTER 1. INTRODUCTION

and a part which does not disperse i.e. behaves like a soliton, see for e.g. [53, 54, 89]. This phenomena
is known as “Soliton Resolution Conjecture” and it is one of the major open problems in the field
of wave equation/map. Various concepts of stability of these phenomena, including the stability of
soliton solutions, have also been intensely studied. It seems natural to investigate the stability of
solutions to the wave maps by investigating the impact of random perturbations and this idea leads
to the following stochastic geometric wave equation (SGWE)

(1.2.3) 0112= Nz + Az(0:2,0,2) — Az(0x2,0x2) + Y;(0,2,0x2) W,
where Y is assumed to be of the following form, for any p € M,
(124) Yp(',') . TpM X TpMB (I/(), U]) — Yp(l}o, l)l) € TpM

The precise definition of the considered noise and the assumptions on Y are provided in Chapters 4
and 5. Note that the equation (1.2.3) is a particular example of the so-called class “stochastic PDEs
for manifold-valued processes” which has attracted a great deal of attention due to its wide range of
applications in the kinetic theory of phase transitions and the theory of stochastic quantization, see
e.g. [12, 15, 16, 23-26, 42, 71] and references therein.

Another motivation for studying equation (1.2.3) comes from the Hamiltonian structure of
deterministic wave equation. Deterministic Hamiltonian systems may have infinite number of
invariant measures and are not ergodic, see the discussion of this problem in [65]. Characterisation of
such systems is a long standing problem. The main idea, which goes back to Kolmogorov-Eckmann-
Ruelle, is to choose a suitable small random perturbation such that the solution to stochastic system
is a Markov process with the unique invariant measure and then one can select a “physical” invariant
measure of the deterministic system by taking the limit of vanishing noise, see for example [55],
where this idea is applied to wave maps. A finite dimensional toy example was studied in [6].

To compare Theorem 1.2.1 with the existing results in the theory of stochastic wave equations
with values in Riemannian manifolds, let us briefly outline the available results from the literature in
the stochastic setting. To the best of our knowledge, SGWEs Cauchy problem have only been studied
in a series of three papers by Z. BrzeZzniak and M. Ondrejéit, see [23, 24, 26]. The first attempt to
study a manifold valued wave equation with stochastic perturbation was made in [23] where authors
proposed two rigorous formulations of the SGWE and proved the equivalence between them. They
were also able to establish, under some technical assumptions on the coefficients, the existence and
the uniqueness of global strong solutions for SGWEs on the one dimensional Minkowski space R!*!

for the initial data (zg, z;) € H?

Toc X Hll0 -(R; TM), when the target manifold M is an arbitrary compact

Riemannian manifold and the random forcing was modelled by a spatially homogeneous Wiener
process whose spectral measure has finite moment up to order 2.

In the subsequent paper [24] the above mentioned results from [23] were improved in the case
when domain of considered SGWE is restricted to R'*™! but the target manifold is free of any restriction.

Improvement was in the sense that assumptions on the spectral measure of the considered spatially
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1.2. GEOMETRIC WAVE EQUATION WITH RANDOM PERTURBATION

homogeneous Wiener process were weaker than in [23] and the regularity of the initial data was
lowered to Hll0 X leo C([RR; TM).

In the final paper [26] the authors proved the existence of a global weak solution of SGWEs, when
the domain Minkowski space is of arbitrary dimension and the target manifold M is a compact
Riemannian homogeneous space. From the stochastic point of view their method was not standard
since it did not rely on any martingale representation theorem. Compared to [23], the assumptions
on the spectral measure and on the space regularity of initial data were weakened but at the cost of

the solution being only Hﬁ)c x [2 (R T M)-valued weakly continuous process.

loc

Hence, by comparing the above paragraph and Theorem 1.2.1, it is quite visible that there is a
huge gap between the optimal results with respect to well-posedness theory for the deterministic
GWE and the results available for SGWE. In Chapter 5 we take a first modest step to fill this gap, in
one dimensional case, to generalize the pioneering work of Keel and Tao [92] to the stochastic setting.
With respect to [23, 24, 26] we extend the study to the GWEs with low regularity initial data and
fractional (both in time and space) Gaussian noise. To be precise, we consider the Cauchy problem in
the following form

012=0xy2— Az(052,0,2) + Az(0:2,0:2) + Kk (2)E,

(1.2.5)
z(0,x) = z9(x), and 0;z(0,x) = z1(x),

where (z9,21) € H; % HISO‘C1 (®; TM), x : M — TM is any sufficiently smooth vector field, and ¢ is a
suitable stochastic perturbation. In a given local coordinate chart (U, ¢) on M, the SGWE Cauchy
problem (1.2.5) takes the following form
m 1 .
OZ(t,x)=- Y Y [ap(2)0,2%" 2 +a(2)¢,
(1.2.6) a,b=1u=0

Z(0,%) = Zo(x) eR™, and 8,Z(0,x) = Z;(x) € TR™,

where, o (¢) is defined by
a(p(p)) := (dpP) (k(p)) € TpnR™ =R™, peU.

Before delving into more details about the stochastic generalization of [92] that we have achieved,
we would like to highlight that, to the best of our knowledge, there is no literature available on the
stability of wave maps under random excitations. In particular, the effect of a noise on the decoupling
of global solutions to GWE is completely unknown. Hence, in Chapter 4, we take the opportunity to
carry out the first step in this direction and establish the validity of a large deviation principle for the
small noise asymptotic of solutions to SGWE:s.

To introduce the model in a precise manner, that we consider in Chapter 4, let M be a m-
dimensional compact Riemannain manifold and 7T M be the tangent bundle over M whose fibre at
p € M is equal to the tangent space T, M. Let us recall that, due to the celebrated Nash isometric

embedding theorem [115], there exists n € N such that M is a submanifold of R”. We are concerned
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CHAPTER 1. INTRODUCTION

with large deviations principles (LDP) of the solutions to the following one-dimensional stochastic

wave equation, taking values in M,
(1.2.7) 071U =0y U + Aye (0, U, 0,U°) — Aye (0 us,0,u’) +VEY (UE) W,

with the parameter € € (0, 1] approaching zero. Here W is a spatially homogeneous Wiener process

on R with a spectral measure p satisfying
f (1 +1x1%)? u(dx) < oo.
R

The diffusion coefficient Y in the equation (1.2.7) is a smooth vector field such that it has an smooth
extension on R", denote again by Y, which is defined by using [23, Propositon 3.9], and satisfies
D.1 there exists a compact set Ky < R” such that Y(p) =0if p ¢ Ky.

D.2 forge O, Y(Y(g)) =Y'(q)Y (g), where Y is a smooth compactly supported function Y : R” — R”
which satisfies certain properties, see Lemma 4.2.5 for details.

D.3 for some Cy >0

0%y ( )’<C
0piop;j P|=mr

oY
1Y (p)l < Cy(+1pl), ’a—p(p)' < Cy, and ]
1

forpeKy,i,j=1,...,n.

Let (O, .%#,P) be a probability space with an increasing family F := {.#;,0 < ¢ < T} of the sub-o-fields
of .# satistying the usual conditions. Let us set notation X for the following Polish space

Xr:=C([0, T); H2 (®R;R™) x € ([0, T]; HY (R R™)).
The main result of Chapter 4 is as follows.

(R, TM). The

family of laws { £ (z%) : € € (0,11} on X7, where z° := (uf,0:u®) is the unique solution to (1.2.7), with

Theorem 1.2.2. Let (ug, vy) be §o-measurable random variable with values in leo X H 110 .

initial data (uy, vo), satisfies the large deviation principle with rate function J defined in (4.4.1).

Our proof of verifying the LDP relies on the weak convergence method introduced in [30], which
is mainly based on a variational representation formula for certain functionals of the driving infinite
dimensional Brownian motion, and have appeared in [16, 48, 63]. With respect to the available
literature, Zhang’s paper [163], on the LDP for stochastic beam equation, is the nearest to our
work but instead of the weak convergence method he follows the classical approach based on the
fundamental ideas from [2] and [131]. The main technical difficulty that arises here is to follow the
local Sobolev spaces setup, which are only Fréchet spaces but are required given the model and to
prove the conditions required to apply the result of [30].

It is relevant to emphasize that the method we follow here can be used to general beam equations,

as in [21], and nonlinear wave equation with polynomial nonlinearity respectively, with spatially

22



1.2. GEOMETRIC WAVE EQUATION WITH RANDOM PERTURBATION

homogeneous noise in local Sobolev spaces which will generalize the result of [124, 163]. Moreover,
such a generalization should lead to extend the work of Martirosyan [111], which is on bounded
domain, to include the study of large deviations principle for the family of stationary measures
generated by the flow of stochastic wave equation, with multiplicative white noise, in non-local
Sobolev spaces over whole domain R”. It is important to mention that recently in [140] the authors
have established a LDP for a general class of Banach space valued stochastic differential equations
by a different approach but still based on Laplace principle. However, they do not cover our case
because the wave operator does not imply the existence of a compact Cy-semigroup.

Coming back to the well-posedness theory for (1.2.6), in Chapter 5 we strive to study the existence

and uniqueness of local (in time and space) solution to (1.2.6) with the initial data in

loc

3
(Zo, 1) € HY (RR™) x HEVRR™,  se (1,1).

What concerns the method of proving the existence of a solution to (1.2.6), as mentioned by Walsh in
[159], an efficient way to simplify the computations of required estimates, in the use of the Banach
Fixed Point Theorem, is to switch the coordinate-axes of (z, x)-variables to the null coordinates, see
also [92] and [108] for the deterministic counterpart. However, it is not clear at all to us how to use
the Walsh approach to stochastic PDEs (SPDEs), see also [59], in our setting with rough initial data
(i.e. s < 1). On the other hand, from the theory of fractional integrals, see [160, 161], and rough paths,
refer [107], it seems plausible to work with the pathwise approach to achieve our aim. In recent
years, the pathwise approach has become extremely popular in SPDEs community as well due to
the spectacular results of Gubinelli et al. and Hairer, see [70, 77, 78] for more details and recent
advancements.

Moreover, in a few cases for the linear and non-linear wave equation driven by fractional Brownian
motion, the pathwise appraoch has led to optimal results, see [4, 37, 133]. Hence in Chapter 5,
motivated by the above discussion, we consider the fractional (both in time and space) Gaussian
noise as a random perturbation and extend the recently developed theory of pathwise stochastic
integrals in Besov spaces, refer [132], to two dimensional case which allows us to achieve the local
well-posedness (in the sense of Definition 5.5.2) of (1.2.6).

To state assumptions and the main result of Chapter 5, we set the new coordinates to («, 8) and
avoid writing ¢ for simplicity. We consider the following Cauchy problem, written in (a, ) is the

following,

Su=Nw) +ow),

(1.2.8) ~ d ou ou 3
ula,—a)=up(a) an @(a,—a) + @(a,—a) =uy(a).
2

0°u
Here & ,B) =4
ere Oula, B) da0p

and

ou® ou?
Iap(w)

N(u) =4 . oa W

FMs

23



CHAPTER 1. INTRODUCTION

The noise ( is a fractional Brownian sheet (fBs), with Hurst indices greater than %, on R?, and
o€ G%(IRZ). We prove the equivalence between (1.2.6) and (1.2.8) in Section 5.3.
As usual in the SPDE theory, the stochastic geometric wave equation (1.2.8) is understood in the

following integral form
(1.2.9) u=S(uop, u1) + < ' Nw) + O o),

where, for (a, §) € R2,

1 1 [a

(1.2.10) [S(uo, u)l(a, B) := 3 [uo(@) + up(—P) ] + 5[ uy(rydr,
1o B

(1.2.11) [O7'NW)] (e, B) := Zf N(u(a, b)) dbda,

-BJ-a
and
. a rp .

(1.2.12) [0 low)] (e, B) := i[ f o(u(a,b)){(a,b)dbda.

-BJ-a

In Section 5.4, we give a precise meaning (at least locally in some suitable space) to the above
expressions in (1.2.10) - (1.2.12) which are merely some formal notation here. The proof of a local
well-posedness result for a closely related problem to (1.2.9) is given in Section 5.5. Let 1) € CZ5 ., (R)
be a cut-off function which satisfy

1, iflx|=2,
(1.2.13) n(=x) =n(x), 0=nx)=1, n(x) =
0, if|x|=4.

Similarly, we define y. Let us set
H*® := Hy H(R*) n H} H) (R,

where the product Sobolev space H;, HZ([RZ) is defined in Section 5.1. The following theorem is the
main result of Chapter 5 whose proof is based on the Banach Fixed Point Theorem, see the proof of
Theorem 5.5.3 for details.

Theorem 1.2.3. Letn, y as defined in (1.2.13) and v be a bump function which is non zero on the
support of x,n and [y (x) dx = 1. Assume s,6 € (%, 1) such that§ < s and (ug, uy) € H*(R) x HS71(R).
There exista Ry € (0,1) and a Ay := Aol uoll g5, |1 | gs-1, Ro) >> 1 such that for every A = Ay there exists
a unique u:= u(A, Ry) € B, whereBg :={u e H 2 | llggso < R}, which satisfies the following integral

equation
u(a, B) =nAa)n(Ap) ([S(x(/l)(uo —al), y M udl(a, B) + O Nw)(a, B)
+[O ol B),  (a,p)eR?

Here L't(} is defined as

L'téL = [R Uy (%)w(y) dy.
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CHAPTER

ENERGY CRITICAL 2-D STOCHASTIC WAVE EQUATION WITH EXPONENTIAL
NONLINEARITY IN A BOUNDED DOMAIN

prove the existence and uniqueness of a local maximal solution to an energy critical

stochastic wave equation with multiplicative noise on a smooth bounded domain D c R?

with exponential nonlinearity. First, we derive the appropriate deterministic and stochastic

Strichartz inequalities in suitable spaces and, then, we show the local well-posedness result for small
initial data.

The organization of the present chapter is as follows. In Section 2.1, we introduce our notation
and provide the required definitions. In Sections 2.2 and 2.3, we derive the required inhomogeneous
and stochastic Strichartz estimates, respectively, by the methods introduced in [34, 35] and [22].
Section 2.4 is devoted to the estimates which are sufficient to apply the Banach Fixed Point Theorem
in a suitable space and the proof of the existence and uniqueness of a local maximal solution is
given. In Subsection 2.5.1, we provide a rigorous justification of our adopted definition of a local mild
solution. We conclude the chapter with a brief Subsection 2.5.2, in which we state a relation, without
proof, of two natural definitions of a mild solution for the considered SPDE (2.4.4).

2.1 Notation and conventions

In this section we introduce the notation and some basic estimates that we use throughout the
chapter. For any two non-negative quantities a and b, we write a < b if there exists a universal
constant ¢ > 0 such that a < ¢b, and we write a =~ b when a < b and b < a. In case we want to
emphasize the dependence of ¢ on some parameters ay, ..., a, then we write, respectively, <g,, . 4,
and =, 4 . For any two Banach spaces X, Y, we denote by £(X, Y) the space of linear bounded
operators L: X — Y.
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CHAPTER 2. ENERGY CRITICAL 2-D STOCHASTIC WAVE EQUATION

To state the definitions of required spaces here, we denote by E and H a separable Banach and

Hilbert space, respectively. Let T > 0 be a positive real number.

2.1.1 Function spaces and interpolation theory

For the next few basic definitions and remarks, which are included here for the reader’s convenience,
from function spaces and interpolation theory we are borrowing the notation from [155]. We denote
the set of natural numbers {1,2,...} by N and by Ny we mean N U {0}.

By L9(D), for g € [1,00) and a bounded smooth domain D of R?, we denote the classical real
Banach space of all (equivalence classes of) R-valued g-integrable functions on D. The norm in
L9(D) is given by

1

el ooy = (f@ Iu(x)l"dx) ", ueldD).

By L*°(D) we denote the real Banach space of all (equivalence classes of) Lebesgue measurable

essentially bounded R-valued functions defined on D with the norm
2]l Loy := ess sup {|u(x)| : x € D}, ue L= (D).

We set, by € ([0, T']; H), the real Banach space of all H-valued continuous functions u: [0, T] — H

endowed with the norm
lulleqo,m);m := sup lu(®)l g, ueC(0,T; H).

te[0,T]

We also define, for any p € [1,00), L? (0, T; E) as the real Banach space of all (equivalence classes

of) E-valued measurable functions u : [0, T] — E with the norm

1
T »
lullzr,7;8) = (fo ||u(t)llgdt) , ueL”(0, T;E).
For any s € R and g € (1,00), the Sobolev space H%9(R?) is defined as

HY(R?) := {f €8’ R : I fll gae) := ”3"-1 (1+ |x|2)% Ff

L) oo} '

where J stands for the Fourier transform and 8'(R?) denotes the space of tempered distributions,
which is dual to S(R?) (set of all real-valued rapidly decreasing infinitely differentiable functions
defined on R?). The restriction, in the distributional sense, of H%%(R?) to D, is denoted by H*7(D).
With the following norm

I fllgsaey:= inf  lglgsame)y, fe€HY(D),
8|,=f
gEHs‘q(RZ)

H*49(D) is a Banach space. We denote the completion of CK(;’O(D) (set of smooth functions defined
over D with compact support) in H>%(D) by H*>9(D).
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Throughout the whole chapter, we denote by A the Dirichlet or the Neumann—Laplacian on
Hilbert space L%(D) with domains, respectively, defined by

P(-Ap) = H**(D) n H*(D),
P(-An) ={f € H**(D): 0, f| 5 =0}

Here v denotes the outward normal unit vector to 0D. It is well known, see for example [154],
that the Dirichlet Laplacian (—-Ap, Z(—Ap)) is a positive self-adjoint operator on L%(D) and there
exists an orthonormal basis {e;} jeny Of L?(D) which consist of eigenvectors of —Ap. If we denote the
corresponding eigenvalues by {)L?} jeN, then we have

—Apej=Alej; ej€Z(-Ap),Yjzl; 0<AisAzs.. and A ——oco.

In the case of the Neumann Laplacian, (-Ay, Z(—Ay)) is a non-negative self-adjoint operator on
L?(D) and there exists an orthonormal basis {e itjen of L?(D) which consist of eigenvectors of —Ay.
Moreover, if we denote the corresponding eigenvalues by {)L?} jeN, then we have

—Anej=MAej; €€ I(=AN),Vj=1; A, —— oo,

n—oo

_ 12 _ 12 _ _ 12 2 2
and  0=A2=23=...=22, <A% ;<22 ,,<..,

for some my € N. Since we work with both the operators simultaneously, we denote the pair of
operator and its domain by (A4, Z(A)) and make the distinction wherever required.

From the functional calculus of self-adjoint operators, see for instance [162], it is known that, the
power A°® of operator A, for every s € R, is well-defined and self-adjoint. It is also known that, for any
sER, Z(A%'2), where A=—Ap or A= —Ay, with the following norm

1/2
Il geasmy == | Y- A+ 2D Ku ey |
jeN
is a Hilbert space. For s € (0,2) the space Z(A%?) is equal to the following complex interpolating
space, refer [155, 2.5.3/(13)],
DA = [L2(D), 2(A)]

s/2-

To derive the Strichartz estimate in a suitable space, we also need to consider the Dirichlet or
the Neumann-—Laplacian on Banach space L7(D), g € (1,00), denoted by Ap 4 and respectively Ay g,

with domains, respectively,

@2.1.1) P(Ap,q) = H*1(D)n H"(D),
2.1.2) D(An,g) ={f € H*9(D): 0, f|,p = 0} .

Note that Ap» = —Ap and Ay = —Anp.
Under some reasonable assumptions on the regularity of the domain D, one can show that both of

these operators have very nice analytic properties. In particular both have bounded imaginary powers
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with exponent strictly less than 7 (and thus both —Ap 4 and — Ay, 4 generate analytic semigroups on
the space L9(D)). As in [155], one can define the fractional powers (AB,q)r /2 where as below B = D
or B= N.For g € [2,00) and 6 = 0, we define domain .@((AB,q)a) by

P(Apg)") = {ue LID): (d+ Apg)? ue LD},

which is a Banach space with the norm || ull g a, )0 = [Iid + AB,q)g ullpam-
Next, we fix the notation for the subspaces of H¥9(D) which are determined by differential

operators. Fix k € N and let

Bif(x)= Y bja(x)D*f(x),  bjqecC®@D),

lalsm;
for j =1,..., k, be differential operators on dD. Then {B j};?: is said to be a normal system iff
Osmi<mp<---<my,
and for every vector v, which is normal to 0D at x the following holds

Y bja(VE#0, j=1,...,k,

lal=m;
where for @ € N7 and y € R?, y* =11,y

Definition 2.1.1. Let {Bj}j?zl be anormal system as defined above for some k € N. For s >0, g € (1,00),
we set
H{ng}(D) = {fe H>1(D) :Bjﬂaﬂ =0 whenever m; <s- é}
By taking the suitable choice of normal system {B;} in the Definition 2.1.1, for s > 0 and q € (1, 00),
we define
H'(D):= {fe HY(D): f|s3p =0if s> é}

and .
H,s\}q(D)IZ{feHs'q(D):vx-Vf|6D:0ifs>1+E}.

Since the H9(D) spaces can also be defined by using f | ap = 0 condition which appears in (2.1.1)
and the Neumann boundary condition appearing in (2.1.2) can be written as vy -V f | an = 0, we expect
to have some relation between the spaces H;}’q(ﬂ)) and .@((AB,q)S/Z) where A= —Ag with B=D or
B = N. The next stated result from the theory of functions spaces, see [155, Theorem 4.3.3], provides
a suitable range of s for which the function spaces H;’q(D) and 7 ((AB,q)S/ 2) are equivalent.

Lemma 2.1.2. With our notation from this section, we have the following

1
1. Forse(o,z)\{1+q}, . y
H3T(D) = D((An,g)*'2).
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1
2. Forse 0,2\ {1}, s i
Hp'(D) = 2((Ap,)*").

We close this subsection with the following well known identity

9K/-Ap) = HY(D) and 2(H/-AN) = HY?* (D).

2.1.2 Stochastic analysis

Now we state a few required definitions from the theory of stochastic analysis, refer [11] and [29] for
more details. Let (Q,.%,F,P), where F := {.#; : t = 0}, be a filtered probability space which satisfies
the usual assumptions, that is, the filtration F is right continuous and the o-field .%; contains all
P-null sets of .%. As the noise we consider a cylindrical F-Wiener process on a real separable Hilbert
space K, see [29, Definition 4.1]. We denote by L? (Q,.%,P; E), for p € [1,00), the Banach space of all

(equivalence classes of) E-valued random variables equipped with the norm
1
I XN zr @ = ([E[IIXIIZ])” ) XeIl?(Q,7,P;E),
where E is the expectation operator w.r.t [P.

Definition 2.1.3. For any K, a separable Hilbert space, the set of y-radonifying operators, denoted by
Y(K, E), consists of all bounded operators A : K — E such that the series Z‘;‘;l B;iA(f;) converges in
L?(Q,.Z,P; E) for some (and then for every) orthonormal basis { fi}jen of K and some (and then for
every) sequence {f} jen of i.i.d. N(0, 1) real random variables on probability space (Q,.7,P). We set

1
2

1Al = ([E“ %ﬁ;A(ﬁ)”i)
S

One may prove that | - [ly,g) is a norm, and (y(K, E), || - lly(x,r) is a separable Banach space. Note
that if K =R, then y(R, E) can be identified with E. Furthermore, it is known that, see for e.g. [117],
A € y(K, E) iff the cylindrical measure A(yg) is o-additive, where yk is the canonical cylindrical
Gaussian measure on K.

Let I = [0, T], for some T > 0, or R.. A stochastic process ¢ : I x Q — E is called progressively

measurable (with respect to the filtration [) if for every ¢ € I the mapping
[0, 7] x Q23 (s,w) = ¢(s,w) € E,

is A([0, t]) x .#;-measurable, where Z([0, t]) is the g-algebra of Borel subsets of [0, ¢].

A subset I" of I x Q is progressive if the process ¢ = 1r is progressively measurable. The family
of progressive sets is a o-algebra on I x Q which we will denote by #F. To introduce the notion of
progressively measurable local process, it is useful to remember that ¢ is progressive if and only if the
map

IxQ>3(s,0w)—¢(s,w) €E,
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is measurable with respect to AF, see [135, Definition 1.4.7].
An F-stopping time 7 is a map on Q with values in [0,00] such that for every ¢, {t < t} € .%;. For

any given F-stopping time 7, we set
Q@) ={weQ:t<t(w)} and [0,7) xQ:={(t,w) € [0,00) xQ:0<t < T(W)}.
Assume that 7: Q — [0,00) is a random variable. Let us consider the process ¢ = 1o ) defined by

1, ift<t(w),
{(tw):=
0, otherwise.
Then it is easy to see that the process ¢ is F-adapted iff 7 is a F-stopping time. Hence, since for a given
stopping time 7, every sample path of ¢ = 1|9 ) is left continuous, ¢ is progressively measurable with
respect to the filtration . Motivated from above, a local stochastic process ¢ : [0,7) x Q — E is called

F-progressively measurable iff the process ¢1g ;) defined by

(L), ift<t(w),
[(1p0,p)](fw) =
0, otherwise,

is F-progressively measurable.
Stopping time 7 (with respect to filtration [) is called accessible iff there exists a sequence of
F-stopping times {7 ,} ,ery With the following properties:
1. lim 7, =71, P-a.s,,
n—oo

2. forevery n, 7, < Tp41, P-as..

For such sequence we write 7, / 7. Such a sequence {7 ,},en is called an approximating sequence
fort.

To prove the uniqueness of a local solution we need the following criteria of equivalent processes.

Definition 2.1.4. Let 7;,i = 1,2 are stopping times. Two processes ¢; : [0,7;) xQ — E, i = 1,2 are

called equivalent iff 7, = 75, P-a.s. and for any ¢ > 0 the following holds
¢1(,w) =¢&2(,w) on|0,1],
for almost all w € Q;(71) N Q¢ (T2).

For an interval I € R, we say that, an E-valued process {M;};c; is an E-valued martingale iff
M;e L' (Q, Z,P;E) for t € I and

E(M|.F5) = M, P-as., foralls<tel.

To define the It6 type integrals for a Banach space valued stochastic process, we restrict ourselves

to, so called, M-type 2 Banach spaces which are defined as follows.
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Definition 2.1.5. A Banach space E is of M-type 2 iff there exists a constant L:= L(E) > 0 such that
N
n

for every E-valued martingale {M,},_ the following holds:

N
supE(IMpl5) < LY E(IMy—Mu-1l%),
n n=0

where M_; = 0 as usual.

Assume that p € [1,00). If T > 0, then by M” ([0, T], E), we denote the space of all F-progressively

measurable E-valued processes ¢ : [0, T] x Q — E such that

E < 00.

T
fo HOLAT

As usual, see e.g. [135, Definition IV.2.1], by MP ([0, T], E) we denote the space of equivalence
classes of elements of M ([0, T, E), which of course is a Banach space. Let us observe that M? ([0, T], E)
is the usual L” space of E-valued ZF-measurable functions defined on [0, T] x Q with respect to the
measure Leb ® P, where Leb is the Lebesgue measure on R.

We also need the following spaces in the remaining of the chapter. Assume that p € [1,00) and

T>0.1If g € [1,00), by M?P ([0, T], E), we denote the space of all F-progressively measurable E-valued
processes ¢ : [0, T] x Q — E such that
T plq
(fo 12() ||gdt)

If g = oo, then by M?P([0, T], E), we mean the space of all F-progressively measurable E-valued

E < 00.

continuous processes ¢ : [0, T] x Q — E such that

E| sup €| <oo.

te[0,T]

By M%P([0, T1, E) we denote the Banach space of equivalence classes of elements of M%7 ([0, T1, E).

We close our discussion of the conventions here by observing that, for p € [1,00),

MPP (10, T1, E) = MP ([0, T1, E) and MPP([0, T], E) = MP([0, T, E).

2.2 Inhomogeneous Strichartz estimates

In this section we prove the deterministic Strichartz type estimate, see Theorem 2.2.2 below, which is
a generalization of [88, Theorem 1.2] and sufficient to tackle, both, the Dirichlet and the Neumann
boundary case.

Recall that in our setting, the operator (A, Z(A)) possesses a complete orthonormal system
of eigenvectors {e jtjen in L%(D). We have denoted the corresponding eigenvalues by A?. From

the functional calculus of self-adjoint operators, it is known that {(e, 1)} jen is a sequence of the
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associated eigenvector and eigenvalue pair for v/A' For any integer A > 0, I is defined as the spectral
projection of L%(D) onto the subspace spanned by {e;} jen for which A; € [A,1 +1), i.e.

(e8]

H;Lu= ZIl[,l,,ul)(/lj)(u,ej)LZ(D)ej, u(—:LZ(D).

j=1

At this juncture, it is relevant to note that the proof of the Strichartz estimate in deterministic
setting, see e.g. [34] and [35], is based on the following estimate in Lebesgue spaces of the spectral
projector I1y, refer [147] for the proof.

Theorem 2.2.1. For any smooth bounded domainD c R2, the following holds, forall u e L2(D),

”Hﬂ,u”[ﬂ(D) < CAP ” u”LZ(D),

where
(1 1) if 2<g<8
312 ¢ ot ,
p:= (1 1) 1 . -
2(=— -—, if 8=sg=<oo.

Since the below derived Strichartz estimate, for the inhomogeneous wave equation, holds for
both the Dirichlet and the Neumann case, from now onwards, to shorten the notation, we denote
Ap g and Ap,, respectively, by A; and A.

Theorem 2.2.2 (Inhomogeneous Strichartz Estimates). Fix any T > 0. Then there exists a positive
constant Ct, which may also depend on p, q, r, such that the following holds: if u satisfy the following

linear inhomogeneous wave equation

uyr—Au=EF, on (0, T)xD
u(O) ') = uO('); u[(oy') = ul('))

with either boundary condition

Dirichlet : ulo,1yxaD =0,

Neumann : Ovulo,1)xD =0,
where v is the outward normal unit vector to 0D and F € L'(0, T; L*>(D)), then

(2.2.1) ” u”Lp(O,T;_@(A(ql—r)/Z)) = CT [” u()”@(Al/Z) + ” U1 ”LZ(D) + ”F”Ll (O,T;LZ(D))] y

forall (p, q,r) which satisfy
(2.2.2) 2sg=sp<oo and r=

32



2.2. INHOMOGENEOUS STRICHARTZ ESTIMATES

Remark 2.2.3. Let us observe that if for T > 0, C; denotes the smallest constant for which the

inequality (2.2.1) holds for all data 1, u; and F from appropriate spaces, then the function
(0,00)3 T — Cr € (0,00),
is non-decreasing (or weakly increasing as some people call).

Proof of Theorem 2.2.2 Without loss of generality we assume that T = 27. The proofis divided into
two cases. In the first case, we derive the Strichartz estimate for the homogeneous problem (i.e. F = 0)
and then, in second case, we prove the inhomogeneous one (i.e. F # 0) by using the homogeneous
estimate from first case.

First case : Estimate for the homogeneous problem. In this case, the Duhamel’s formula gives

(2.2.3) u(t) = cos(tvVA) g + sin(1v/A) "
VA

(tVA)

where, from the functional calculus for self-adjoint operators, for each ¢, cos(tv/A) and sin Ny are

well-defined bounded operators on L?(D). Moreover, we have

cos(t\/Z) =

eir\/E+ e—itﬁ)

Let £ (Nug := ei”‘/zuo be the solution u of 8;u = +ivAu such that u(0) = ug. In other words,
L1 = (L4() =0 is Co-group with the generator + iv/A'. Using the Minkowski’s inequality we get

224 Nul g g0 S| PIVA toll 0,740
+||e‘”‘/f?u | “ Sin(t\/A)u
Lo A1-1)12 _— .
0l Lr o, ;2045 ") VA 1 1P (0,T;2(AU-)
Therefore, it is enough to estimate, as is done in the following Steps 1-4, the LP(0, T; (AE,I" 1/2y).

norm of e! V4 up and Sin([—\/{m u;. We will write the variables in subscript, wherever required, to avoid

any confusion.

Step 1: Here we show that

itB
(2.2.5) ”elt uO”L?(O,Zﬂ;Lz(D)) = C” uO”_@(Ar/Z)y

where B is the following “modification” of /A operator by considering only the integer eigenvalues
i.e.
B(ej) =[Ajle;j, jeEN.

The notation [-] stands for the integer part and e; is an eigenfunction of A associated to the eigenvalue

A?. Before moving further we prove the boundedness property of the operator B — VA

Lemma 2.2.4. The operator B— /A is bounded on 2(AY?).
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Proof of Lemma 2.2.4 Indeed, observe that by definition of B we have for every u € Z(A'/?),

(B-vVA)u=Y (Aj{uej)zme;,
JjeN

where {4} := A; — [A,] is the fractional part of A;. Then

1B = VA Ul < Y AN Kusep) eyl < Y 1K e ey ? = Nl 3o -
JjeN JjeN

Moreover,

IVAB VA UlT ) = Y AN K e pml” < Y AiKu, e penyl” = IV AUl -
JjeN JjeN

Hence, by the definition of norm in ¥ (AY2) we have

1B = VA U 112y = 1B = VA Ul g, + IVAB = VA Ul ) S Nl -

In continuation of the proof of (2.2.5), since ug € L?(D), we can write

Uy = Z(uo,ej)Lz(D)ej =: Z Up,je;j.
JjeN JjeN

By functional calculus for self-adjoint operators,

ePugxy =Y eMlug je;(x) =: Y ur(t, %),
JjeN keN

where,

ue(t, 0= Y Ligren ) e Fug jej(x) = g ug(x).
JeN

Thanks to the 1-D Sobolev embedding and Lemma 2.1.2, we have

1_1
H27%(0,27) — LP(0,27) forall p=2,

and consequently we argue as follows:

itB. 12 _ itB q r
2
. p [
(2.2.6) S(f le'Bupol?, dx) = | 1e Pl :
D H 77 02m) HE P o2mll 14 o)

. 1_1
Note that since the sequence {e¢/} ¢y is an orthogonal system in H2 »%(0,27) and

. 1_1
le™ | )pe | SR
H} 770,2m)
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due to the Parseval formula we get, for fixed x,

1-2 2
FREE=D M ¢ B k) P NCHoT
(0,2m)  keN

2.2.7) e’ B up) (x) |12
H

= ol
==

Combining the estimate (2.2.7) and (2.2.6) followed by Minkowski’s inequality and Theorem 2.2.1 we

obtain
itB,, 112 < 1-2 2 1-2 2
le uoan(D;L,;(O_zm)N' 2 A+ Pt D m | |, =2 AR N6 D 5000
keN Lz (D) keN
1-2 2 1-2 2 2
S A+k) Ikl (Do S 3 A+ )7k Ikl o,
keN keN
1-242
= Z (1+k) pep Z ]l[k,k+1)()lj)|<u0,€j>L2(‘D)|2
keN JjeN
1-2+42
(2.2.8) =;N(1+mj]) PP Ko, ) 2y P = Mol gy oy = N1 % g2y,
j€

where, from p in Theorem 2.2.1, we have!,

————-—, if 2=g=8,
1 1 6 p 3q
7‘:5——4-‘0 1
p 1-—-=, if 8<g<oo
p

Here it is important to highlight that, the equivalence ||uoll 7 (p) = lltioll 7(arr2) holds in the last
step of (2.2.8), because Z(A) = 2(B?) and the function spaces Hg for r € [0,1] and 2(A"'?), are equal
to the complex interpolation spaces, between L?(D) and, respectively, Z(B?) and Z(A), see for e.g.
[155, Theorem 4.3.3].

Next, since p = g, by the Minkowski inequality we obtain the following desired result

i B
”el uO”Lf(O,Zn;Li(D)} 5 ”uO”_@(AV/Z)y

which also implies that the operator e/ is continuous from 2(A™'?) to L? (0,27; L1(D)).

Step 2 : In this step we extend the inequality (2.2.5) to operator £, i.e. we show that
(229) ||L+ () Ug ”L?(O,ZH;LZ(D)) = C“ Ug ”_@(A”Z)-

Let v(t) = ! WA ug. It is clear that v satisfies

{ @;,—iB)v=(—iB+ivVA)v,

U|t:0 = Uo,

and, therefore, according to the Duhamel’s formula

. [ .
(2.2.10) v(t) = e'Buy +f 9B (_iB+ ivVA)u(s)ds.
0

INote that r < % in the case 2 < g <8 and r < 1 in the complimentary case 8 < g < co.
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If we denote e!“"9B(—iB + iv/A)v(s, x) by z(s,x) and (=iB + iV A) v(s, x) by w(s, x), then using the

Minkowski inequality, followed by estimate (2.2.5) and Lemma 2.2.4, we argue as follows:

2n t p % 2n 2n
(f U |z(s,x)|ds dt) f U |z(s,x)|P dt
0 0 0 0 LZ(D)
21 q %
< (f@ (fo I2(s, )1 27 (0,2m) ds) dx)

27 q 7
< z(s,x dx| ds
[ REEET

2

2m
(2211) < f ”LU(S, X) ”9(14”2) ds < f ||V(S, x) ”@(Ar/Z) ds.
0 0

1
P
ds

=

LI(D)

By putting together (2.2.10) and (2.2.11) we obtain
¢B 2n
” v(t,x) ”Li(D;L’f(O,Zn)) = ”elt Ug (x) ”LZ(D;L?(O,ZH)) +L ” v(s,x) ||@(Ar/2) ds
27
(2.2.12) < lluoll g(ary +[ lv(s, )Ml g(arrzy ds.
0
Now, from the boundedness of elVA on @ (A"'2), we infer that

(2.2.13) sup |eitVA

te[0,2m]

e

4o H D(AT12) = C” Up ”@(Arlz).

Combining (2.2.13) and (2.2.12) we get

2
” v(t, x) ”LZ(D;Lf(O,ZT[)) < || Up ”,OZ(A’/Z) +f0 ” U ”@(AHZ) ds
5 ” Ug ”_@(AHZ).
Hence, again, as an application of the Minkowski inequality we get (2.2.9) and finish with the proof

of Step 2.

Step 3: Here, by using the well known consequence of Agmon-Douglis-Nirenberg regularity results for
the elliptic operators, refer [1], we prove the required estimate of the first term in (2.2.4), in particular,

we show that

(2.214) ||L+ (') Uo ” Lf (0,27‘[}@(1‘1&;7”/2)) S ” Ug ” D(ALI2)-

We start the proof by recalling the following consequence of the Agmon-Douglis-Nirenberg

regularity results for the elliptic operators. The operators
~Ap+1: H*(D)n Hy (D) = H*9(D)n H9(D) — LI(D),
and
~An+1: H*1(D)n Hy (D) — LI(D),
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are isomorphisms. These operators will, respectively, be denoted by Ap ; + I and Ay, 4 + I, or simply
by A4 + 1. Suppose that ug € D(AF) for sufficiently large k € N so that Auge Z(A” /2y Then, since the
operators A and £, commute, we infer that for all ¢ € [0, T],

1L+ (D uoll gzay = 1A+ DL (D ugllpacpy = 15+ (0)((A+ Do)l La(Dy-

Consequently by (2.2.9) we get

(2.2 15) ”L + () LLO || Lf(O,ZT[;HZ‘q(D)) ,S ” (A + I) u() ” @(ArIZ) ~ ” uo ” @(A(HZ)/Z) .
Thus, complex interpolation between (2.2.9) and (2.2.15) with 6 = =L gives the desired following
estimate

1L+ () ug ||Lp(0’2n;@(A;1—r)/2)) 5 luo ”9(A”2)~

Hence we have completed the proof of Step 3.

Step 4: Here we incorporate the term with u;, in (2.2.3), and complete the proof of the homogeneous
Strichartz estimate.

Recall that A1; = 0 for the Neumann condition and A; > 0 in the Dirichlet case. As mentioned
before, we denote by m, the dimension of eigenspace corresponding to zero eigenvalue. It is known
that mo =0 for A= —Ap and a positive finite integer when A = Ay. To proceed with the proof of this
step, as in [35], we single out the contribution of zero eigenvalue and decompose L?(D) into the
direct sum of a finite dimensional space ker A and the space orthogonal to ker A, which we denote by
L>* (D). Let us observe that if D is connected, then ker A is a one dimensional vector space consisting

of constant functions. Mathematically, it means, for all u; € L2(D),

my
Uy = Z(ul,eﬂLZ(D)ej‘*‘ Z (Ui, ex) r2(py ek, =:Mug + (1 —IDu;.
j=1 k>myg

Note that the term ITu; does not exist in the Dirichlet condition. Then we argue as follows:

sin(t\/Z) B sin(t\/z)l_[ sin(t\/Z)

U = uj + (I-THu
va o va VA 1
in(tv A
(2.2.16) = ot + SR
VA
where the last step holds due to the following argument
sin(tv/A) sin(zA ;)
——u1 = ), ——U,ej)2e;j
VA ];N Aj ! !
in(zA;) in(zA;)
=) tﬂ{O}(A])T_]<u»ej>L2(D)ej+ Y ﬂ(o,m)(A])TJ(u ej)2(m)e;]
jeN J jeN J
in(zA;)
=ty L) uepzmej+ ) LooA ]) (u,ej)2(pej
jeN jeN ]
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s sin(tvA)
VA

Now, since (\/Z)_1 is bounded from L?* (D) into Z(A?), we invoke (2.2.14) on (\/Z)_1 (1-w)
and get

(2.2.17) = Iy (I -IT)u,.

-1 -1
1£+0) (VA) (@ =T0mD)ll g priag iy S 1(VA) (@@=l garey

(2.2.18) S IA-IDull 2 ().

We mention that all the computations we have done so far in Steps 1-4 would work if we replace £,
by £_. Combining (2.2.16) and (2.2.18) we obtain

sin(t\/Z) »
N

S [| 1Ty ”Ll’ (0,27[;@(4114)/2)
LP(0,2m2(AY "))

oo (\/Z)_1 (1-TDu)

LP(0,.2m2(AS ")

SJ ” tHUI ||L”(0,27'[;9(A({]1_r)/2)) + ” (ﬂ - H) u ”LZ(D)

S My ”9(,45;*”’2) +lull 2oy S luallp2epy -

This finishes the proof of Step 4 and, in particular, the first case.

Second case: when L!(0,27; L2(D)) 3 F # 0: Due to the Duhamel’s formula

sin(t\/Z)u +ff sin((f — s)VA)
va b VA

Applying the case first and using the calculation of (2.2.12) and (2.2.17) we get

u(r) = cos(tvVA) ug + F(s)ds.

” u”L"(O,ZT[;.@(A(qlir)/Z)) 5 ” Up ”_@(AUZ) + ” u ”LZ(D)

+f2” sin((z — s)VA)
0

ds
VA
27
S uoll parzy + lunll 2 (py +/ IF$) 2y ds
0

LP(0,2m2(AY™""%))

FE(s)

= lluoll gavzy + lurll 2¢py + 1F Nl 10,2522 (D)) -

Hence we have proved the Theorem 2.2.2. |

2.3 Stochastic Strichartz estimates

This section is devoted to prove a stochastic Strichartz inequality, which is sufficient to apply the
Banach Fixed Point Theorem in the proof of a local well-posedness result, see Theorem 2.4.10 in
Section 2.4.
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Let us set

where (p, g, r) is any suitable triple which satisfy (2.2.2) and K is any separable Hilbert space. Let us

define the following two Banach spaces. For fix T > 0, we put
vri=€(10, T 2(A") n 1P (0,T; 245 "),

with norm, which makes it a Banach space,

p

b P
lully, = sup NuOI? o +lul?
Yr £€[0,T] D(AV2) LP(O,T;@(AE} nizy)

To prove the main result of this section we need the following consequence of the Kahane-Khintchin
inequality and the It6-Nisio Theorem, see [86]. For any A € y(K, E), by the It6-Nisio Theorem, the
series Z‘]’.O

1[3]~A(f]~) is P-a.s. convergent in E, where {f} jen and {£}n are as in Definition 2.1.3, and
then, by the Kahane-Khintchin inequality, for any p € [1,00), there exists a positive constant C(p, E)
such that

1

_ p\7

(2.3.1) (Cp, EN" 1Ay p < ([E Y B;A(f) ||E) <C(p, B) IAllyw.p-
JjeN

This inequality tells that the convergence in L2(Q,.%,P; E) can be replaced by a condition of conver-

gence in LP (Q,.%#,P; E) for some (or any) p € [1,00). Furthermore, we need the following version of

Burkholder inequality which holds in our setting, refer [120] for the proof.

Theorem 2.3.1 (Burkholder inequality). Let E be a M -type 2 Banach space. Then for every p € (0,00)
there exists a constant By, (E) > 0 such that for each accessible stopping time t > 0 and y (K, E) -valued

progressively measurable processes  the following holds:

(2.3.2) E[ sup
tel0,7]

t p T g
foé(s)dW(s)HE)sBp(E)[E(fo ||€(t)||§(K,E)dt) .

Moreover, the E-valued process fotf (s)dW(s), t €10,1], has a continuous modification.

Corollary 2.3.2. Let E be a M-type 2 Banach space and p € (1,00). Then there exists a constant Bp (E)
depending on E such that for every T € (0,00] and every LP (0, T; E) -valued progressively measurable
process {((s),s € [0, T)},

T p X T 3
(2.3.3) rE(|| fo {(s) dW(S)“Lp(o,T;E)) <B,(B)E ( fo 1 & 100,735 D
For a y(K, H)-valued process ¢, let us define a y (K, LP (0, T; E))-valued process == {Z,: r € [0, T]}
as follows:
in((t— A
(2.3.4) =, = { 0,T]3 ¢ — ﬂ[,,T](r)%f(r)} €y(K,LP(0,T;E), relo,TI.

Before proving the main result of this section, we prove the following auxiliary lemma.
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Lemma 2.3.3. Assume that T > 0. Let £ € M>P ([0, T1,v(K, H)). Then the y(K,LP(0, T; E)) -valued

process {Z, : r € [0, T} defined by formula (2.3.4), is progressively measurable, i.e.
(2.3.5) Ee M*P([0, T),y(K,LP (0, T; ),

and, foreachr € [0,T],

(2.3.6) 1Erllyx,cro,1:0) < Clp, T, E, H) (N llyk, 1),
whereC(p, T,E, H) :== C7 C(p, H) C(p, E).

Proof of Lemma 2.3.3 Let us consider {§} jen of i.i.d. N(0,1) random variables on probability space
(Q, #,P), and a sequence of orthonormal basis { filjen of the separable Hilbert space K. In the proof
first observe that the random variable =, is well-defined because by Theorem 2.2.2, for each r € [0, T

and x € H, the solution of the following homogeneous wave equation

{ utt—ALL:O, on [r;r+T]r

u(r)=0, wur)=x,
belongs to L”(r,r + T; E). In particular,

sin((- — r)vA)

L, 1) (')Tx € LP(0,T; E),
and the map
N
AriH3x— iy (-)%x € LP(0, T; E),

is linear and continuous. Moreover, Sup,.¢(o 7 Il Ar |l <oo.

By the above argument and (2.3.4), we infer that
Er@) =Aro[{(rnw)], (rnw)el0,T]xQ.

Consequently, we deduce that the process = is progressively measurable by [86, Proposition 1.1.28].
It only remains to prove inequality (2.3.6). For this aim let us fix any r € [0, T]. Invoking the Strichartz

estimates from Theorem 2.2.2 and (2.3.4) gives
(2.3.7) Zr@)=A,0é(r,w): K— LP(0,T; E),

where A, € L(H,LP (0, T; E)) and é(r) € (K, H). Then, by using (2.3.1) we get

» ’
Ar o ; = )E E j Ar j
IAro¢llyx,Lr0,1;E) < C(p, E) ]%:N Bj Ar(S(r)(e;) ”L,,(O'T;E) )
» ’
—c(p, B |E|]A, ~ ;
C(p,E) ” je%ﬁ] 5(r)(e])) DOTE )
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5 5y conep| ])

JjeN

<Cp, B) IAr |l ger,Lr0,1:E) ([E
< C(p,B) C(p, H) IArll g,z 0,780 1§y, 1)

where, by using the inhomogeneous Strichartz inequality (2.2.1), we have

sin((t—r)vVA) L

PP
dat
VA E)

T
Al g, r0,1;:8) = Sup ARl ;5 = sup
heH heH I
lAalg=<1 lhla=<1

< sup Crlhllg=Cr.
heH
lAllg<1

Consequently, since ¢ € M2P([0, T1,v(K, H)), we have Z € M>P(]0, T1,v(K,LP(0, T, E))) because

fT ) g
R dr] _ f
0 y(K,LP(0,T;E)) Q

T
fO ||f(r,a))||)2/(KyH)dl’

14
T 2
E fo IZr @k Lr0,7:6 dr] Pldw)

2
P(dw) < oco.

< (C(p,E)’ (C(p, D) CV. fQ

Hence the Lemma 2.3.3.

Remark 2.3.4. Results related to the previous lemma and the next theorem in the case of the

Schrédinger group have been discussed in detail in the PhD thesis of Fabian Hornung [82], see

Theorem 2.21 and Corollary 2.22.

The following main result of this section is one of the most important ingredient in the proof of

the local existence theorem in Section 2.4. They are called the “stochastic Strichartz estimates”.

Theorem 2.3.5 (Stochastic Strichartz Estimates). Let us assume that T >0 and p € (1,00). Then there

exist constants' K(p, T, H) > 0 and C(p, T, E, H) > 0 such that if € is a progressively measurable process

from the space M>P ([0, T),y(K, H)), then the following assertions hold.

() There exists a separable and H s -valued? continuous and adapted modification ii of the process

u=A{u(t):tel0, T}, defined by the following formula

(2.3.8) u(r) ::ftwf(s) dW(s), tel[0,T].
0 VA
Moreover,
T 5
23.9) E| sup 120}, | <K(p.THDE [RECL

where K(p, T,H) < MlemTBp () for some constants m =0 and M = 1.

IThe constant K depends on T only in the Neumann boundary conditions case.
21 et us recall that Hy = @(Allz).
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(II) There exists an E-valued progressively measurable process ii such that
(2.3.10) j@) =i for Leb®P-almostall (t,w)€[0,T]xQ,

wherei: Hy— H and j: E — H are the natural embeddings. Moreover,

p
2

T
fo HOIrT A

where C(p, T,E, H) := Cr C(p, H) C(p, E) EP(E). In particular, the map

T
(2.3.11) Ef lanlhdt| <Cp,T,E, H)E
0

J:M?>P([0, T1,y(K, H)) — LP (0, T; B),

is linear and bounded where J¢ is a process defined by

f;‘n

(2.3.12) JE =

Proof of Theorem 2.3.5 In what follows we fix the Dirichlet or the Neumann boundary conditions.

To prove the first assertion, let us consider the following stochastic wave problem

U+ Au=EW in [0,T]xD
(u, us)(0) = (0,0).

Then, see Subsection 2.5.2, by writing it as a first order system in space J{ := H4 x H, endowed with

Hilbertian norm, we get

(2.3.13) { du(t) =2Au(r) dt + (AW (1)

u(0) = (0,0),

where

u=(u,u), A= 0 I and E(t)— 0
- y Ut)y - —A 0 - f(t) .

Since A is non-negative and self adjoint in L?(D), one may prove that 2| generate a Cy-group (of
contraction in the Dirichlet case) on J{, which we denote by {S(f)};>¢ in the sequel. Moreover, one

can write the concrete structure of S(¢) as

COS(I\/Z) sin(t\/Z)/\/Z
—VAsin(tVA) cos(tvVA) |

It is known that the solution of (2.3.13) exists, see e.g. [119], and has the following form

S(1) =

t
u(t):f S(t—s) &(s) dW(s), te(0,T].
0

Next, we define the process ii, by
t ~
(e := S(t)f S(=s) &(s) dW(s), tel0, T,
0
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where by fot S(=s) £(s) AW (s), t € [0, T1, we denote the separable, H-valued continuous and adapted
modification of the process denoted by the same symbol. Hence, since {S(f)};>¢ is a Cy-group, the
process il is separable, H{-valued continuous and adapted modification of the process u.

By defining a process i by

(2.3.14) u(t) :=mu(r), tel0,T],

where , : H{ — Hy is the natural projection, it follows that i is separable H4-valued continuous and
adapted modification of u.

Moreover, using the Burkholder inequality (2.3.2) and the bound property of Cy-group, we argue as

follows:
E| sup lla))” <E| sup (@D
tE[O,pT] Z(A12) te[o,Pn H
4 - p
—E| sup ”smf S(=8)&(s) dW(s)”
te[0,T] 0 X
T - £
<K} Bp(H)E fo ||S(—s)5(s)||Y(K,wds]

T 5 T 5
sKTBp(}c)tE[fo ||5(s)||§(mds] :KTB,,(H)E[ | neimas|

where K7 < M;e™! for some constants m = 0 and M; = 1. By substituting K(p, T, H) := Kt B, ()

yields the inequality (2.3.9) and in particular, the assertion I.

We split the proof of assertion II in the following two steps. First we prove the theorem for a
more regular process and then transfer the results to the concerned process by an argument of
approximation.

Step 1: In this step we assume that ¢ is a progressively measurable process from the space
M?P([0, T1,y(K, Z(A%))),

where k is a chosen temporary auxiliary natural number such that the Hilbert space 2(A¥*1/2) is

continuously embedded into the Banach space E = & (Af;_r )2

). By the classical Sobolev embedding,
such a number exists. Thus, by assertion I, we infer that there exists a separable, 2(A**1/2)-valued
continuous and adapted modification i of the process u = {u(?), t € [0, T}, defined by the formula
(2.3.8). Moreover,

4

T
~ p 2
E [2[1;%]||u(t)||@(Ak+1/2) sK(p,T,H)[EUO IS g ary dE| <00

Also, note that, because of our additional assumption in this step, the process i is an E-valued

continuous and adapted. Hence ii is an E-valued progressively measurable process. Furthermore,
~11P
[E[” u”LOO(O,T;E)] < 0o0.
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Next, we define for each r € [0, T] an LP (0, T; E)-valued random variable

sin((r—=r)vVA)
VA

Then by the Burkholder inequality (2.3.3) with (2.3.6) we get

T T
f (f ErdW(r))(t) :[E[
0 0

<B,(B)E

Zr(t,w) = 17(0) ¢(rw).

p

dt
E

p

T
E f Erdw(r)
0

LP(0,T;E)

p
2

T
- 12
fo ”:r”y(K,Lv(o,T;Endr]

4
2

T
<Cr C(p,H) C(p,E) By(E) E fo ||€(r)||$(K,H)dr]

Let us define & to be a representative of the L”(0, T; E)-valued random variable fOT E,dW(r).
Then we have (2.3.11) and j ii is an L2(0, T; H)-valued random variable which is representative of
an L2(0, T; H)-valued Itd integral fOT Jj(E) dW (r). Since the process @ has continuous H4-valued
trajectories, the process i(ii(t)), t € [0, T] determines an L2(0, T; H)-valued random variable denoted
by i(ii) which is a representative of the L?(0, T; H)-valued Ito integral fOT Jj(EHdW (r). Hence, the
H-valued random variables i(7(¢)) and j(L:t(t)), t €10, T], are Leb ® P equal. Since, the former is
H-valued progressively measurable, by the Kuratowski Theorem, see e.g. [126, Corollary 1.3.3], we
infer that process (1), t €0, T],is E-valued progressively measurable. This concludes the proof of

Step 1.

Step 2: Here we transfer the result of Step 1 to the concerned process. Let ¢ be a progressively
measurable process from the space M?2P(]0, T1,y(K, H)), where k is a temporary auxiliary natural
number as in Step 1. We choose a sequence {¢ ;;} ,eny of processes from M?>P (|0, T1,y(K, 2(A%))) such
that

(2315) ”é-n — €||M2'p([0,T],)/(K,H)) -0 SufﬁCienﬂy fast as n — oQ.

We denote the corresponding processes for ¢, which are valid from previous step, as i, and ii,. By
Step 1, for each n, the processes ii, and iy, satisfy the condition (2.3.10), the process i, satisfies
inequality (2.3.9) and the process i, satisfies inequality (2.3.11). Thus, both sequences are Cauchy in
the appropriate Banach spaces M°>? ([0, T], H4) and MP ([0, T, E), respectively. Hence, there exist
unique elements in those spaces, whose representatives, respectively, we denote by i and 7. Because
the convergence (2.3.15) is sufficiently fast, we deduce that P-a.s., i, — iin LP(0, T;E) and @i,, — @
in C([0, T1; Ha). Hence, we infer that i is Hs-valued adapted and continuous process and i is an
E-valued progressively measurable process. Moreover, the processes i and # satisfy the condition
(2.3.10). Hence we are done with the proof of Theorem 2.3.5. |

44



2.4. LOCAL WELL-POSEDNESS

2.4 Local well-posedness

The aim of this section is to formulate a theorem about the existence and uniqueness of solutions to

the stochastic wave equation (1.1.4). Let us recall the notation

(24.1) H=1*D);  Ha=2(A"%;  E=2(A5""),
where g € (1,00) and r € [0, 1]. Let us also recall the definition of the spaces Yr. For any T > 0, we put
Yr=C([0, T); 2(AYH) n LP (o, T; .@(Ag;-ﬂfz)),

with norm

po_
luly, = Sup, (TG A IIuIILp(0 Al

By MP(Y7) we denote the Banach space of [F-progressively measurable processes {u(f) : t € [0, T1}

which are E-valued and have a continuous Z(A!/?)-valued modification which satisfies

(2.4.2) ”é”MV(Y )* =k ”6”6([0 T]; 2(Al2)) ||€||Lp(0 T: j(A(l r)lz)) < 0Q.
We also put
(2.4.3) Xr:=LF(0,T;2(AY ™) and Zr:=€((0,T); 2(AY%),

to shorten the notation during computation.
If T is a bounded F-stopping time, we write M” (Y7) to denote the Banach space of all E-valued
[F-progressively measurable processes

EHtw):we,0<t<T(w)}— HaNE,
which have a continuous Z(A'/?)-valued modification such that for each w € Q, £(-,w) € Yr(,) and

p p
L 14 <oo.

LP(0,T(); 2(AS™""%)
2.4.1 Considered SNLWE model with assumptions

Here we recall the considered SNIWE and state the assumptions on the nonlinear and diffusion terms.
To be precise, we consider the following Cauchy problem of stochastic nonlinear wave equation with

Dirichlet or Neumann boundary condition

(2.4.4) { U+ Au+F(u) =Gw)W  in [0,00) x D

u(0) =up, u;(0)=u; onD,

where A is either —Ap or —A; (ug, u1) € Z(AY?) x L>(D) and W = {W(¢) : t = 0} is a cylindrical
Wiener process on some real separable Hilbert space K such that some orthonormal basis {f;} jen of
K satisfies

(2.4.5) D i1y < 00
JjeN
In (2.4.4), for the nonlinearity F and the diffusion coefficient G we assume the following hypotheses.
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A.1 Let H, Hy and E are Banach spaces. Assume that
F:HynE—H,

is a map such that for every M € (0, 1) there exist a constant Cr > 0 and y € (0,00) such that the
following inequality holds

lule  lvig]”
£ Ivie

F(u)—-F <Cp|1+
IF(w)—F(W)llg<Cr " M

e —vlim,
provided

(2.4.6) w,ve HynEand |ulg, <M, |vlm, <M.

A.2 Let H4 and E are Banach spaces, and K and H are Hilbert spaces, moreover, K is separable.
Assume that
G:HsnE—y(K, H),
is a map such that for every M € (0, 1) there exist y € (0,00) and a constant Cg > 0 such that

lulle  lvle]”
+
M

1G(w) -Gy, m <Cq |1+ lu—vig,,
provided u, v satisfy (2.4.6).

Next two lemmata are straightforward but necessary consequences of Assumptions A.1 and A.2.

Lemma 2.4.1. Let us assume that T >0 and let F: HyN E — H be a map satisfying Assumption A.1
for Banach spaces H, Hy and E. If M € (0,1) and y € (0,00) and Cr are as in Assumption A.1, then for
p > v, the following inequality holds

1-X 1-X
14
IF() = Fuo)lpo,rsm < Cr | T+ o=l + —==luall, |l = ez,
provided
ur, u € € ([0, T1; Ha) N LP (0, T; E),
and

sup llui(Olg, =M, i=1,2.
te[0,T]

Proof of Lemma 2.4.1 Let us choose and fix u;, up € Xy n Zr. Then, by using Assumption A.1, fol-
lowed by the Hélder inequality, we get

luullg | Nu@le]”
+

v v lu1 () —u2 (Dl g, dt

-5 =5 (T 5
(fo ||u2(r)||§dr) ]

1+

T
| F(ur) = F(u)lpo, 1) < CFfO

C r+ L ([ Pd T
< — . ——
= Crlluy —uzlleqo,rimn | T+ 7 (fo ey (D) t) Ly

1-X 1-X
<C T r» Y r» Y
=Cp|T+ Ve ||u1||XT+ Y ||u2||XT lur —uzll z,.
Hence Lemma 2.4.1 follows. |
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Lemma 2.4.2. AssumethatT >0. LetG: HanE — y(K, H) be a map satisfying Assumption A.2 for
Banach spaces Hy, E and Hilbert spaces K, H. If M € (0,1), v € (0,00) and Cg are as in Assumption A.2,
then for p > 2y, the following inequality holds

% Tl‘zl
2
1G (1) = Gu)ll72 g, Tiy (K, H)) = <Co | T+~ Y, ll1 || Y —| M2|| = uzll,,
provided
uy, uz € ([0, T1; HA) N L7 (0, T; E),
and

sup llu;(Olpg, <M, i=1,2.
te(0,T]

Proof of Lemma 2.4.2 Let us use the notation X7 and Zr introduced the previous proof. Let us
choose and fix u;, uy € Xy N Zr. Then, invoking Assumption A.2 and the Hélder inequality, we obtain

T
”G(u]) - G(UZ)”%Z(O,T;]/(K,H)) = L ”G(ul(t)) - G(UZ(I))”?/(K’H) dt

) T
0
2

Y
T "7 T T T p
< Cllur = ualif o, rys11, T+W(fo ||u1(t)||§dt) + (fo ||u2(r)||,’;dt)

lw @Al @l 2y
M M

1+

lua () — w2 (113, dt

2
l_zl 2y

1-2 12
T T 2
<CH|T+—5- T 1 || 2z Il 2 IIXT lur —uzll7,.
Hence the proof of Lemma 2.4.2 is complete. |

To prove the main result of this section we need the following known results. The first one is from
[139].

Theorem 2.4.3. [Moser-Trudinger Inequality]

Let D < R? be a domain (bounded or unbounded), and a < An. Then

(2.4.7) C@)=C(a,D):= sup f (e‘"(”("))2 - 1) dx < +oo.
ue H*(D),
el g2y =<1

Moreover, this result is sharp in the sense that for any a > 47, the supremum in (2.4.7) is infinite.
The next required result is a well known Logarithmic inequality from [125].

Theorem 2.4.4. Let p,q, m e R satisfyl < p <oo,1 < g < oo, and m > n/q. Then there exists a constant
C such that forall u e H%’p(D) N H™4(D), whereD is any domain in R", the following holds,

1-

< =

(2.4.8) lull ey < Cllull g0,

u m,
1+log(1+ Il g qw))

llzell

HPP(D)

47



CHAPTER 2. ENERGY CRITICAL 2-D STOCHASTIC WAVE EQUATION

In the next result we provide an example of functions f and g such that the corresponding maps
F and G, respectively, satisfy the Assumptions A.1 and A.2. The example below has been considered,
in deterministic setting, by [87] and [88], but for the case when E is a suitable Hoélder space. We prove
the next result in detail because we need a slightly general version of the Moser-Trudinger inequality

and the Logarithmic estimate, respectively, see Theorem 2.4.3 and 2.4.4, than used by [87] and [88].

Lemma 2.4.5. Let h: R — R be a function defined by h(x) = x (64’”‘2 - 1) for x € R. Then for every

M €(0,1), there exist a numbery € (0,00), a pair (q, 1) satisfying
. q-2 1
(2.4.9) g>2, 0<r<min I,T and r;él—a,

and a positive constant Cy,y such that

Y

lule lvig
lu—vig,,

M

1+

lhou—hov|y=<Cp,y

provided u, v satisfy (2.4.6) where the spaces H, Hy and E are defined in (2.4.1).
Next result is about the Nemytskii operator G.

Lemma 2.4.6. Assume that condition (2.4.5) holds. Assume that g(x) = x (e‘“’xz - 1), x€R. Let G be

the corresponding generalized Nemytskii operator defined by
G(u):={K>3k—(gou)-ke H}, ue HynE.

Then G satisfies the following inequality

Y

lule lvig
lu—vig,,

M M

I1G(w) = GW) lyx,m < Co |1+

forallu,ve HyN E such that u, v satisfy (2.4.6), where the spaces H, H, and E are defined in (2.4.1)
and

CG = Ch:Y

2
Y i1,

JjeN

Proof of Lemma 2.4.6 By (2.4.5) and Lemma 2.4.5 (applied to i = g) we infer that

=2 lgow fi—(gov)filfapy S lgot=go vz 3 1fjllfmm)
JeN JeN
lule | lvie]|”
M

1+

lu—vig,,

Chy

2
= [Z IIfjlle(D)
JjeN
as desired. |
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Proof of Lemma 2.4.5 Let u,v e Hy N E. Then, by the Mean value theorem, for every x, there exists
0 =0(x) € (0,1) such that

(2.4.10) ule™ ~1) = v (e ~1) = (- v) | (1+87uf) ™ - 1],
with uy(x) = (1 -0(x))u(x) +0(x)v(x). Thus, the triangle inequality and (2.4.6) gives
(2.4.11) lugl g, <M.

Also, by (2.4.10) we get

(2.4.12) lhou—hovlzm) < ”(u— V) [(1 +8mup) e _ 1]

2Dy

Applying the basic inequality,
1
(1+2a)e’—1< 2(1 + —) (e'*99-1), Va,e>0,
€

followed by the Holder inequality with Sobolev embedding, for any ¢ € (0,1) and € > 0, we argue as
follows:

2 2
”(u— v) [(1 +8rul) et — 1] < “(u— v) (64”(”5)”5 - 1)
L2(D)

(D)

2 am(l 2 2
§||u_l/” b2 || (e 7 ( +8)u9_1)
L ¢(D)

LH[(D)
2
<lu—-v 2 (e4n(1+e)u§ _ 1)
~ ” ”@(AIIZ) L1+((@)
<Mu— vl an (4 o) ” an(l+e)u _ ’
(2.4.13) Slhu=vlge e ! ¢ " ey

Moreover, since uy satisfy (2.4.11), the Moser-Trudinger inequality from Theorem 2.4.3 gives

2 1 2
(2.4.14) et 0+ 1 < 100 1y ) < Ci= Clam, D),

provided that € > 0 and { > 0 are chosen such that
1+e)Q+0OM?*<1.

Invoking the log estimate from Theorem 2.4.4, which is possible due to (2.4.9) and Lemma 2.1.2, we

obtain

A (1+e)|ugll

2
e o) < exp

) ) I u@”_o](AE?l—r)lz)
4nC (1 + &) llugllsp, l+log|l+ —— .
HY(D) lugll 2 ep)

Using the fact that for any b > 0, the function x — x? (1 +log(1+ )—Zz)) is non-decreasing, we deduce
that,

47 C%(1+€) M?

2 llugll A=D1
(2.4.15) AT+ toloor, < e(u#)

M
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By setting
y:=2nC*(1+e)M?,

from (2.4.12), (2.4.13), (2.4.14) and (2.4.15), we get

lhou—hovl(p) < ”(u— v) [(1+87:u§)e4’”‘5 —1]

L?(D)
lug ”@(AE;*’VZ) )7

_1_
<el CTo [lze — U”@(A”Z) (1 + M

I u”@(AE?l—r)/Z) | V||%(A5717r)/2) )7
+

_1
<el CT0 [lze — V”@(A”Z) (1 + M M

Hence the Lemma 2.4.5 follows. |

Remark 2.4.7. It is obvious, see e.g. [22], that the previous two lemmata hold for all polynomial

functions.

2.4.2 Definition of a local mild solution

In this subsection we introduce the definitions of local and maximal local solutions that we adopt in

this chapter; they are modifications of definitions used earlier, such as in [21].

Definition 2.4.8. Alocal mild solution to Problem (2.4.4) is a Z(A!'/?)-valued continuous and adapted

process u = {u(t): t €[0,1)}, where
1. 7isan accessible F-stopping time,
2. there exists an approximating sequence {7 ,},>1 of F-stopping times for 7, such that
u belongs to MP (Y, ,) for all £ and every n,

and,

sin((t A T,)VA) )

\/Z 1

+an sin((tAT, - s)VA)
0 VA

for all £ = 0 and n € N, where we define

U(tAnTy,) = COS((I/\Tn)\/Z)uO +

Fu(s)ds+I;,(Gw)(tATy),P-as.,

sin((t—$s)VA)
VA

Alocal mild solution u = {u(¢) : ¢t € [0,7)} to Problem (2.4.4) is called a local maximal mild solution to
Problem (2.4.4) iff for any other local mild solution # = {#i(¢), t € [0, 7)} to Problem (2.4.4) such that

(2.4.16) L (Gw) (1) := fo (Lio,r,) (S)G(u(s)) AW (s).

P >1)>0,
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there exists a measurable set Q c {# > 7} such that P(Q2) > 0 and u(t) # 6i(r) on Q.

In other words, a local mild solution u = {u(¢), t € [0, 7)} to Problem (2.4.4) is not a maximal local
mild solution, iff there exists another local mild solution i@ = {#(t), ¢ € [0, T)} to Problem (2.4.4) such
that

P(T>71,u(t)=1(r)) >0.

If u = {u(t), t € [0,7)} is a local maximal solution to Problem (2.4.4), the stopping time 7 is called the
explosion time of u.

A local mild solution u = {u(¢) : t € [0,7)} to problem (2.4.4) is unique iff for any other local
solution 4 = {#(¢) : t € [0,7)} to problem (2.4.4) the restricted processes ul(g ;n)xq and @l ;44)xq are

equivalent.

Remark 2.4.9. The definition of the process I;, is explained in Lemma 2.5.1 of Subsection 2.5.1. The
use of processes I;, was first introduced for the SPDEs of parabolic type in [14] and [42] and in [21]
for the hyperbolic SPDEs. The definition we use above is only in terms of the process u and thus it is
different from the one used in [21] which is in terms of pair processes (u, u;). In Subsection 2.5.2 we

discuss an equivalence between these two approaches.

2.4.3 Existence and uniqueness result

The main result of the present chapter, i.e. the existence of an unique local maximal solution to the

Problem (2.4.4), will be proved in this subsection.
Theorem 2.4.10. Let us assume that (y, p, q,1) is a quadruple such that
0<2y<p and (p, q,r) satisfy (2.2.2).
Let H, H4 and E be Hilbert and Banach spaces defined in (2.4.1). Let us assume that the maps
F:EnHy—H and G:EnHy— yv(K, H),
where K is a separable Hilbert space, satisfy Assumptions A.1 and A.2. Then for every
(2.4.17) (uo, u1) € Z(AVH) x I2(D)  satisfying  luollgarey <1,

there exists a unique local maximal mild solution u = {u(t) : t € [0, 1)}, to the Problem (2.4.4), in the

sense of Definition 2.4.8 for some accessible bounded stopping timet > 0.

Remark 2.4.11. Itis relevant to note that the solution u = {u(¢) : £ € [0, T)} we construct later on will

satisfy the following,

lu(®ll a2y <1, forrel0,7), P-as.
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Proof of Theorem 2.4.10 We start the proof by remarking that it is enough to prove the existence
of an unique local mild solution. Indeed, once we get such a result, the existence of a unique local
maximal mild solution follows by methods which are standard now, see e.g. [22, Theorem 5.4] and
references therein.

The proof is divided in four steps. First two steps are devoted to prove the existence and unique-
ness of the solution of the truncated evolution equation. In Step III we prove the existence of a local
mild solution, in the sense of Definition 2.4.8, to Problem (2.4.4). We complete the proof in Step IV by
proving a local uniqueness result.

Step I: Here we define the truncated evolution equation, related to Problem (2.4.4), and prove a few
required estimates which allow us to show local well-posedness of truncated equation in Step II.

Since the initial position uy is given and the norm || uo |l 5412 is less than 1, there exist M, M "in

(0,1) such that
luollgearzy < M' < M < 1.

To derive the truncated equation we introduce the following two auxiliary functions. Let 6 : R, — [0, 1]

be a smooth function with compact support such that

1, ifxe]0,1],
0(x) =
0, ifxe[2,00),

and, for n= 1, set 0,,(-) = 0 (). As another cut off function, we take 6 :R, — [0,1], a smooth function

with compact support such that

. 1, ifxefo, M,
0(x) =
0, ifxe[M,o0).

We have the following lemmata about 6/,s and fasa consequence of their description.
Lemma 2.4.12. The maps 0 and
00:R, 3 x — 0(x)0(x) € [0,1],
are Lipschitz and bounded.
Lemma 2.4.13. Ifh:R, — R, is a non decreasing function, then for every x,y € R,

1
0,(xX)h(x) = h(2n), 10,(x)-0,(Y)|=< ;Ix—yl.

To achieve the aim of Step [, for each n € N and T > 0, with the use of auxiliary functions 0, O we

define the map W7 by
(2.4.18) ‘P?:MP(YT)B v— ueMP(Yr),
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if and only if u satisfies the following equation, for all ¢ € [0, T,

sin(t\/Z)u
VA
t . in((t—s)vVA

+f Qn(”U”YS)Q(”V”ZS)M(F(V(S)))dS
0 VA

sin((r—r)vVA)

t A
(2.4.19) +f Onllvily,) 0l z) ——=——(G(v(r) dW(r), P-as..
0 VA

Now we show that, for each n € N, there exists T}, > 0 such that the right hand side of (2.4.19) is a

u(t) =cos(t\/Z)u0+

strict contraction. We divide our argument in a couple of lemmata.

Lemma 2.4.14. Forany T >0, the map

sin(t\/z)

n. 12y, 12 . _
A DAY X LA (D) 3 (o, ur) — {10, T1 > £ — cos(tV A ug + =

ul} e MP(Yr),
is well-defined.

Proof of Lemma 2.4.14 1t is known that, see e.g. [5], w := fl"(uo, u;) is the unique solution of the

following homogeneous wave equation with the Dirichlet or the Neumann boundary condition

{ a”w—Aw:O
LU(O, ') = uO(')) al’w(oy ') =u ('))

and w belongs to C ([0, T1; H4) = Zr. Moreover, due to Theorem 2.2.2, w belongs to Xt and satisfy

lwlix, < Cr[luoll pearzy + llun ll2¢py] -

So, for every w € Q, w € Xt n Zr and (2.4.2) is satisfied. Furthermore, since w is an adapted and

continuous process, it is progressively measurable and, hence, we have proved Lemma 2.4.14. [

Lemma 2.4.15. Forany T >0, the following map

sin((t — s)VA)

t A
AW > v {10,713 1= [ 0uo1)00wl )

(F(v(s))) ds} € MP(Yr)
is well-defined.

Proof of Lemma 2.4.15 Take any v e MP(Y7) and 7 := fzn(v). Then, for fix ¢ € [0, T'], we have

f’ sin((z — s)VA)
0 VA

T A
(2.4.20) < KTfO Onlviiy)OUvIZ)IF(v(s)uds.

10l z, = sup 19()lm, = sup 0 (lvly)0IvlZ)F(v(s) ds

te[0,T] te[0,T]

Ha

53



CHAPTER 2. ENERGY CRITICAL 2-D STOCHASTIC WAVE EQUATION

Note that, in the last step above we have used the following consequence of the bound property of

Co-group {S(0)} =0,

sin(tV'A)
VA

where K7 := M;e™T for some constants m = 0 and M; = 1. Let T and T, be the stopping times

defined by

(2.4.21) <Kr, t€l0,T],

(2.4.22) Ty :==inf{t € [0, T]: vl z, = M},
and
(2.4.23) T, :=inf{t€ [0, T): lvly, =2n}.

If the set in the definition of 7} is empty, then we set T, = T. Now, we define the following F-stopping
time
T* :=min{T}, T,'}.

Returning back to (2.4.20) and by applying (2.4.23) we get

T T*
(2.4.24) fo On(lvily) 0dlviz) I F(v(s) 2y ds Sf() I F(v(s)z2(p) ds= ||F(V)||Ll(o,T*;L2(®))-

In view of (2.4.22) and (2.4.23), we infer that P-a.s. [|v]| z,. <M and ||v|ly,. < 2n. Thus, since F(0) =0,
by Lemma 2.4.1 the following argument holds,

1-X 1-X
T » T ™ »
Combining (2.4.20), (2.4.24) and (2.4.25) we have
"% g
" P P
(2.4.26) E[191, ] < @n? cf K7 (T+ 7 (2n)Y) :

Invoking, the inhomogeneous Strichartz estimates from Theorem 2.2.2 followed by (2.4.25) we get

171 x, < CT/(; 0n(lvly)0UIvl 2) IF W) 12(m) ds

_r
1=

T
T+

< CT”F(U)”LI(O,T*;LZ(D)) <2n CF CT MY

(ZH)Y),

which consequently gives,

1= 14
T »r
T+ (ZH)Y) .

(2.4.27) E1o1%, | < @n? cl c? i

Finally by estimates (2.4.26) and (2.4.27) we have

_Y
1=

p
T
E[1913, | < @ cl (h+ kD) (T+ (2n)Y) ,

MY

and hence we have Lemma 2.4.15. O
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The next result establishes the Lipschitz properties of .#," as a map acting on M? (Y7).

Lemma 2.4.16. Fix any T > 0. There exists a constant L} (T) > 0 such that the following assertions are

true:
* L7(") is non decreasing;
e foreveryneN, %irr})L’g(T) =0;
* forevery vi,v, e MP(Y7), I satisfy

175" (v1) = 25" (W) e vy Sp Ly (1) llvr = vallvr vy

Proof of Lemma 2.4.16 Let vy, v, € MP(Y7). Since ., is well defined, we denote 7 := .#)'(v;) and
Uy := ;' (v2) € MP(YT). As in Lemma 2.4.15, we define the following [F-stopping times

Ti:=inf{t€[0,T]: |villz, =M}, i=1,2,
T :=inf{t€[0,T): lvilly, =2n} i=1,2,

Ty :=min{T}, T,} and T, := min{T?, T5}.

Invoking the inhomogeneous Strichartz estimates from Theorem 2.2.2, followed by Lemma 2.4.1 and

Lemma 2.4.13 with the above defined stopping times, we argue as follows:

p

T
101 5alf, | < CPE| [ [[0uunl)8u112) For(6) = 0utival )0Ivlz) Foa(s)] | ds

T R R p
SpCPE| [ a9 0,0y )00 0112) FCwr (90 =02l B2l ) F(Uz(s))”HdS]

p

T
+CLE fo L1 =17 (9) |01 1700 01112) F(01(5) = Oulvaly )80 v2l 2) Fwa()| dis

p

T
<pChE fo Lirr <1 (00n(l0nlly )0 (Ulr l )N F(01(8)) = F(v2() Il p d ¢

p

T
+ChE fo Liry <1010, (lv1lly)0 1011l 2) = O (llv2ll v )O Ul V2 [ Z)NF (V2 () | H A t

p

T
+ C; E fo Ly <1y (00nlv2lly )0 (lv2 | )N F (01 () = F(v2(O) | m d ¢

T R R p
+C?[Ef0 Ly <1y (D10, (lv1 v )O U011l 2) = Onlv2lly YO U v2l 2N F (01 () d t

TIAT . p
SC’;[EfO Onlv1lly)OU vl Z)NF (1 (D) — F(vo (D)) llpdt

[ T AT R . p
+C?[Ef0 0n(lv1lly,)0U vl Z) = O0nUlv2lly,) Ol vl Z) N F (w2 () d t

[ pTIATS . p
+C?[Ef0 On(lv2lly)0Uv2ll Z) I F (v (0) = F(v2 (D)l g d ¢

[ T AT R . p
+C?[Ef0 0n(lv1lly,)0U vl Z) = O0n(lv2lly)OUl V2l Z) N F (1 () d t
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TV TV ?
<p CLCPE| sup ||ul—v2||y,(T+ loall,, .+ lvall} )]

te[0,T] MY Yeenry — MY Yruary
pop IIATy P TyATS p
+CpCrE ||l/1—1/2||ZTfO IF(ry () lgdt +;[E ||y1—y2||YTf0 IF vy (0) g dt
pop IIATy P TyATS p
+CpCrE ||l/1—1/2||ZTfO IF(va(e)lgdt +;[E ||y1—y2||YTf0 IF(va ()| dt
1-7 P
p P p
<n? Cp Cp |Iv1—v2||M,,(YT) (T+ Ve (gn)Y) .

Next, using the bound property (2.4.21), followed by repeating the calculations as above, we obtain

p

T
E {1912l | SE| [ [10uon1)800112) Flon(s) = 8utlval )01l 2) Froas)] | ds

_Y
1-5

MY

p
<nP CJ’Z K? vy — l/2||,€/ﬂp(YT) (T+ (2n)7’) .

Consequently, we get

_Y
-5

MY

p
151 = B2l v,y Sp 1P CF(CF+KY) (T+ (zmy) o1 = w21l v,
= (L3 (DY N1 =v2l iy,

Since y < p, by definition of LZ(T), it is clear that, foreach n e N, :lrln%) L’21(T) = 0. Thus we have proved
the Lemma 2.4.16. (]

In continuation of the proof of Theorem 2.4.10, we set

&) :=0,lvly)0UIvlZ)Gw(®), t€(0,T],

then by (2.3.12), we write

¢ A in((t— A
fHn(”VHYr)9(”V”Zr)M(G(V(T)))dW(T)
0 VA
Q3 —
(2.4.28) ::f Mé”(r)dwm =: [JE"(0), tel0,T].
0 VA

In the next result, we show that I’ maps M” (Yr) into itself.
Lemma2.4.17. Forany T >0, the map

(2.4.29) ﬂ3" :MP(Yr) 3 v— JE" e MP (Y7),
where J¢" is as (2.4.28), is well-defined.
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Proof of Lemma 2.4.17 First observe that from (2.3.11), we have

T
E[NUE" 10 7 | :[E[ fo ||Ué"1(r)||f;dr

P
(2.4.30) <C(p T E,HE ||5”(t)llyu<m ] )

0

Asin Lemma 2.4.16, define the F-stopping times as
Ty :=1inf{t € [0, T]: |Vl z, = M}, T, :=inf{t € [0, T]: |vlly, = 2n}

and set
T* :=min{T}, T,'}.

In view of the above definition of stopping times 0, (||| y,) =0, ol vlz)=0forall te[T*, T], and
vy, <2n, and lvlz. <M, P-as..

Invoking Lemma 2.4.2, followed by the Holder inequality, we get

T T
[ 0o e de= [ 0,001)80012) 6@y do

2y
T* Tl_*
< IG(w ()2 dt< C3 sup llvl3, |T+—— HVH
fo YU H) G re[OIT) *] Ha M?Y
-
P
(2.4.31) < (2n)* C 5 2™ |
Consequently, by putting (2.4.31) in (2.4.30) we obtain
T 1-Z 2
(2.4.32) E| [ IUE"0ILde| < @n)P CL C(p, T,E, H) 5 2n)*

Next, to estimate E [II Jé ”II
followed by (2.4.31), we get

CO.T:H )] using the stochastic Strichartz estimate from Theorem 2.3.5,

sup [lJ¢" 101},

te(0,T]

P
<1<(p,TH)[EU 1E" I3 k11 ]

SIS

1-%

(2.4.33) < @nP CL K(p, T, H) 2; @n)?Y

Combining (2.4.32) and (2.4.33) we have

(SIS

2

r 2
2y (2n) Y] ,

|18 160 7211, + 10" 101y | S @MP CE (K(p, T, H) + C(p, T, E, H))

and hence the Lemma 2.4.17. O
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The next result establishes the Lipschitz properties of .#;" as a map acting on M” (Y7).

Lemma 2.4.18. Fix any T > 0. There exists a constant L (T) > 0 such that the following assertions are

true:
e L7 (") is non decreasing;
. eN, lim LY(T) =0;
foreveryn lim 2(T)
e forvy, v, e MP(Y7), ,ﬂsn satisfy,

(2.4.34) .75 (1) = 25" (W) e vy Sp L5 (T) w1 — vallve (v

Proof of Lemma 2.4.18 To prove the contraction property (2.4.18), for i = 1,2, we set
f?(t) =0,lv;ll Y,)é(” Vil z,)G(v; (D).

Then, applying (2.3.11) from Theorem 2.3.5 we get

T
B0 = &R, 0 | =E fo IET1 - g1 de

p
T 2
(2.4.35) <C(p, T,E,H) E fo ||6;’(t)—63(t)||$(,<,mdr] :

Next, we define the following F-stopping times by
T} :=inf{t€ [0, T): |vilz, =M},  Ti:=inf{te[0,T): |v;ly,=2n}, i=1,2

and set

Ty :=min{T},T;}  and T, :=min{T?, T5}.
Applying the stochastic Strichartz estimate from Theorem 2.3.5, we get

P
(2.4.36) E| sup U1 -UEDINY,

te[0,T]

T
sK(p,T,H)[EfO €70 = ER (2 gy

Using Lemmata 2.4.2 and 2.4.13 with the above defined stopping times, we argue as follows:

T H
(2.4.37) Efo ||f{l(t)_€g(t)|l)2/(K,H)dt]

14
T 2
5P[Efo Lirp <y (1) Ilé?(t)—fg(t)llim,mdf]

IS

2

T
+E| [ Lipero ||é;lm—£;l(n||§(,<,mdt]

(SIS

T A
SpE fo Ly =751 (00,101 1) OU 011 21 G (8) = G (DI gy it
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[S1hS]

T
+[Ef0 ﬂ{T;q;}(rnen(uv1||y,)0(||vlnzg—en(||vz||n)6<||vz||zl)|2||G(v2(r))||$(K,H)dr]

2

T
+E fo Ly =71 (00 102y 0( 021 )1 G(W1 (1) = Gwa () I g 1y dr]

[SIS]

T A A
+E fo ﬂ{T;g;}(men(uv1||y,)0(||v1||z,)—en(nvzny,)e(uz»z||z[)|2||G(v1(mni(K,H)dr]

P
_Z _Zr 2

T » 2
<CPE|llv;—wl’ | T+ v 12 +——wlY
S CGE [l —vally, l 1”XT1*/\T2* V2T [ 2”XT1*/\T2*

p
M2y

)4
Ty 2
+CoE|llvy—vall, fo Jl{T;sT;}(t)||G(v2(r)>||$(K,H)dr]
p * 14
F Sl — vl [ L erny (OIGwa (DI oy |
P 1 21y, 0 (T <T,} 2 Y(K,H)
, [T , ;
+C(p;[E ”VI_VZ”ZTL ]]-{T*STI*}(t)”G(Vl(t))”y(K’H)dt]
p * 14
+—2E|llvy - 02l ; Ui ey (DN Gor (DI gy dE|
P 1= V2lly, 0 {T,<T}} 1 y(K,H)

2

2 p
(Zn) ¥ ” U1 — UZ”mp(YT)

1-Z

p

2T
sct (T+ Y

. 5
p
PGP - 2y — P
+n" Co | T+ Y, (2n) ) %1 vgllmp(YT)
P
2

_%
P

T
< nPCl (T+ o

2y _ P
(2n) ) o1 = v2lligp v,y

By substituting (2.4.37) into (2.4.35) and (2.4.36) we get,

[SIiS]

s
r 2
e lln -

~ T
187 = IS5 o v,y Sp 1 Cg (K(p, TED+ Cp, T, B, D) | T+ ——7

p
U2l vy
= (L (D)P v = v2llgy,-

Since 2y < p, by definition of L% (T), it is clear that le%) L% (T) = 0 for every n. Thus we have finished
the proof for (2.4.34) and, in particular, for Lemma 2.4.18. O

Step II: In this step, we prove that, for each n € N, there exists T, > 0 such that the map ‘I”T’n defined
by (2.4.18)-(2.4.19) has a unique fixed point in the space M” (Yr,).
Let us fixan n € N. From Lemmata 2.4.14 - 2.4.18, we infer that, for any T > 0, the map ‘I”; is well

defined on M”(Y7) and for every vy, v2 € MP(Yr), we have
1P (v1) =7 (v2) e vy
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Sp Ly(D) vy = vallvwe vy + L3 (1) vy = vallve vy = La(Dlv1 = vallve vy,

where L, () is non decreasing and %m}) L,(T) = 0. Hence, we can choose T, > 0 such that ‘I”;ﬂ isa
strict contraction on MP (Y, ). Thus, by the Banach Fixed Point Theorem there exists a unique fixed

point u, € M”(Yr,) of the map ‘F’;ﬂ.

Step III: Here we prove the existence of a local mild solution, in the sense of Definition 2.4.8, to
Problem (2.4.4).
Fix any n € N. Then, from Step II, there exists a Tj, > 0 and a unique fixed point u,, of map ‘P;ﬁn in

the space M” (Yr,). Using the process u,, we define the following F-stopping time,
(2.4.38) Tp:=Inf{r € [0, Ty] : luplz, = M’} Ainf{t e [0, T, : lunll Y, = n}.

At this juncture it is important to mention that, since || u,(0)llzz, < M’ and the maps ¢ — || u,lly, and
t — |luyl 2z are continuous, the stopping time 7, is strictly positive P-a.s.. Let {7, }xen denote a

sequence of F-stopping times defined by

1
Ty i=Inf{t € [0, Tyl : lunllz 2M’}/\inf{t€ [0, Tyl : lunlly, = n—E}

Then we deduce that 7, is actually an accessible F-stopping time with the approximating sequence
{T nk}keN .
Next, to simplify the notation, we denote u:= u,; 7 := 7, and 7 := 7, in the remaining proof of

Theorem 2.4.10. Since u is the fixed point of map ‘Pnn, u satisfies the following,

in(tv A Isin((t—s)VA .
u(t) — cos(tVA) up - &ﬁ)ul - fo Lﬁs))en(uun )0l 2) Flu(s) ds
Lsin((t—s)VA N
(2.4.39) = f S IVA g )8l 1) Gluls) dW(s), P-as.,
0 VA

for £ = 0. In moving further we set

tain((f— A
1) :=f0 SNV 600l 2) Gluts) AWTS)

VA
Observe that, from the definition of M”(Y7,), the processes on both sides of equality (2.4.39) are
continuous and hence, the equality even holds when the fixed deterministic time is replaced by
the random one, in particular, (2.4.39) holds for ¢ A 7. Since by the definition of 8,,, 6,and T r the
following holds
On(luly,,)=1, é(llullzmk)Zl, vn,keN,

we have

ffwsin((t/\rk—s)ﬁ)
0

N On(llully,)0ullz) Flu(s) ds
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_ff”k sin((t AT — $)VA)
0 VA

F(u(s))ds, P-a.s..

Invoke Lemma 2.5.1 from Section 2.5.1, which is a generalization of [21, Lemma A.1], we obtain

?sin((£—s)VA)
[(tAT) = f smr=9IvA)
(EATE) A N

=L, (Gw)(tATy), P-as,

(052, DO Ul Z,,) 10,0 (DGl ) AW (5

where I, (G(u)) (1) is defined in (2.4.16). This concludes the existence part.

Step IV: In this step we complete the proof of Theorem 2.4.10, by showing the equivalence, in the
sense of Definition 2.1.4, of uplg ;,)xq and uglg ;,)xq forall k,n € Nsuch that n < k.

Let us fix any k, n € N such that n < k. Then obviously, by (2.4.38), 7, < 7, P-a.s.. Moreover, due
to Step III, corresponding to n and k, respectively, {u,(f) : t € [0,7,)} and {u(t) : t € [0,T¢)} denote
the local mild solutions to (2.4.4), in the sense of Definition (2.4.8).

Applying the uniqueness part of Step III, for every (¢, w) € [0,7,) x Q, we argue as follows:

sin((£ A 7,)VA)
va

+ft’\7n sin((tA T, —5)VA)

0 VA

sin(tv/A) ! sin((t—s)VA)

A fo e

_ cos(tv/A) g + sinf/tzx/z) u1+ft sin((t\;zs)\/z)

0

t sin((f — s)VA)
+ 1o, —F— G aw
fo 0,7, () i (Un(s) dW (s)

u,(t,w)=cos((tA Tn)\/Z)uo +

Fup(s))ds+1I; (G)(tATy)

= cos(tVA) ug + Flup(s)ds+ I, (G)(1)

F(up(s)ds

:cos(t\/Z)u0+

. tgj -
VD, [V
0

VA Ny
Q3 —_
:fo Mg(uk(s))dW(s)zuk(t,w).

VA

This implies uylj ;,)xq and Ukl -, xq are equivalent in the sense of Definition 2.1.4. Hence we have
completed Step IV, in particular, the proof of Theorem 2.4.10. |

Remark 2.4.19. The method of proof using the cutoff function is indeed standard nowadays and
in addition to [22] it has been used for the deterministic and stochastic NLS by Burq, Gerard and
Tzvetkov [33], de Bouard and Debussche [58] as well as for parabolic SPDE, see L. Hornung [84] and ]
Hussain [85].
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2.5 Auxiliary results

2.5.1 Stopped processes

In this subsection, we present a detailed justification for the choice of I; process we made in the

Definition 2.4.8. The result below generalises [21, Lemma A.1].

Lemma 2.5.1. Let& € M>P ([0, T),y(K, H)). Set

Lsin((t—s)VA)
(2.5.1) I(t)2=f ————=E()dW(y),
A N é(s S
and
Usin((t—s)VA)
(2.5.2) Ir(t)::/(; SIH(TI:(LOJ)(SK(S)) dW(s).

For any stopping time t and for all t = 0, the following holds
(2.5.3) ItnT)=I1;(tAT), P-a.s..

Proof of Lemma 2.5.1 By the choice of process ¢, both the stochastic convolutions are well defined.

Let us start with a deterministic (stopping) time 1 = fy. There are two cases, (1) If ¢ < £y, then

sin((z — s)VA)
VA

(110, (8)L10,10) ()¢ (5)) AW (5)

fo
I(t/\r):l(t)zfo L0, () &(s)dW(s)

ffo sin((f — s)VA)
0 VA
fo sin((z - s)VA)

=, Lio, () T (L10,1) (S)E(S)) AW (5)

=1,(0) = L(tAT).

) If t = £y, then

t sin((ty — s)VA)
I(t/\T)=I(t/\t)=f 10, 1)(5) —————
0 0 [0,%) \/Z

(€(8) dW (s)

(§(8) dW (s)

_ff]l (Sl = )VA)
, Lo () ——=——
t sin((fp — $)VA)

+f0 Lio,4) (S)ﬂ[to,r)(s)oT (&(8) dW(s)

ffo Lo () sin((fo — $)V/A)

= 0,6))————
VA

t sin((fp — $)V'A)

+ | Lo (8) ————
J, o=

_ffsin((to—S)\/T)
0 VA

(&(s) dW(s)
(&(s)) dW(s)
(110,10 (9)E(5)) AW (s)
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B ft(’ sin((fp — $)V'A)
0 VA

= Ito(tO) =L (tAT).

(L10,6) ()¢ (5)) AW (5)

Thus the equality (2.5.3) holds for any deterministic time. Now let T be any arbitrary stopping time.
Define

271 +1
Tp:i= L, for each n € N.
2}1
That is, 7, = % if zﬁn =7< % Then by straightforward calculation we get that for each w € Q,
T, \. T as n — oo. Since equality (2.5.3) holds for deterministic time Z—kn, we have

o0
I(t A Tn) = Z ]lkZ’”S‘[<(k+1)2’” I(t/\ (k+ I)Z_n)
k=0

(o]
=Y Liko-ner<tksnz—n Lirnzn (EA (k+1)27")
k=0
(2.5.4) =1, (tATy).
Since 7, \\ 7, we infer that, by continuity of trajectories of the process I, for all t =0,
(2.5.5) I(tAnTy)— I(tAT), P-ass.as n— oo.

Furthermore observe that,

E

I, (0= 1)

2
Hy

tsin((f—s)VA)
=E [H fo i SO ICHOREIRICHE) aw(s)|

2
Hp

(2.5.6) =E

tysin((£—s)VA) )
fo ” T (L10,0,)(9) = Lio,1) () € () ||7/(K,H) ds] .

Since 7, \\ 7, P-a.s., as n — oo, 1o ¢,) — 1j0,1), P-a.s., as n — oo. Also, note that since the Cy-group

{S()} =0 on Hu x H is of contraction type, the integrand is bounded by some constant (depending

2

upon ) multiply with 2[|&(s) Iy &,

Moreover, by the choice of ¢, we have

E < 00.

t
[ 1 s

Thus, by using the Lebesgue dominated convergence theorem in (2.5.6), we get

I, (0= 12|

2
lim E =0.
n—oo Hy

Hence, there exists a subsequence of {I;, ()} ,en, Say {ITnk ()} ken, which converges to I;(¢), P-a.s. as

n — oo. So for any fix t = 0, by (2.5.4) and (2.5.5) we have, P-a.s.,
1I(tAT)— I (EAT) 1,
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=HHEAT)—I(EATy,) +ITnk(t/\rnk)—IT(t/\r)||HA
AT = IEATR I E+ Iz, (EATR) = L(EAT)H,

—0as k — oo.

Thus, we get (2.5.3) and this completes the proof of Lemma 2.5.1. |

In particular, it follows that if ¢ =0 on [0, 7), then I(t A7) =0 for all £ = 0, P-a.s.. It is relevant to
mention that the importance of such results goes back to [11], [14], and [42].
2.5.2 About the definition of a solution

Here we state a relation, without proof, between two natural definitions of a mild solution for SPDE

(2.4.4). We begin by recalling the framework from Section 2.4. In particular, we set
H=I*D); Ha=2A"%; E=2A]""),

where (p, g, r) is any suitable triple which satisfy (2.2.2).
We assume that the maps F and G satisfy Assumptions A.1 and A.2, respectively. Let us also recall
that the space MP (Y7) has been defined in (2.4.2).

Proposition 2.5.2. Suppose that ug € 2(AY?%), uy€eH,and T >0. Ifan 2(AY?) x H-valued process
u(r) = (u(e), v(r), tel0,T],

such that u e MP(Yr), is a solution to

t t
(2.5.7) u(t) = 2Dy (0) + f AU Fru(s)l ds + f 209 Glu(s) dW (s),
0 0
where
o I\ . 0 3 0
(2.5.8) 91:( ) G[u]=( ) Flu] = ,
-A 0 G(u) F(u)

then the process u, is a mild solution to Problem (2.4.4), i.e. forall t € [0, T], P-a.s.,

. o
u(t):cos(t\/z)ug+—smfj%/z) " +[ —Sm((t\/;)‘/z)z?(u(s))ds
0
I o3 _
2.5.9) +f MG(u(s))dW(s).
0 VA

The following is a convenient reformulation of the previous result.

Proposition 2.5.3. Suppose that uy € 2(AY?), uy € H, T > 0. Let f be a progressively measurable
process from the space M Lp([o, 71, L*(D)), and & be a progressively measurable process from the space
M?P ([0, T1,y(K, H)). Ifan 2(AY?) x H-valued process

u(®) = (u(n),v(1), tel0,TI,
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such that u € MP (Yr), solves the following equation:

(2.5.10) u(r) = e2Ou(0) + f

" t
em(t_s)F(s)ds+f AI= (51 dW (s),
0

0

where foru(0) = (ug, u1) € 2(AY?) x H, we put

efa) o)
&)’ )

0 I
-A 0

(1]

’

(2.5.11) A= (

then u={u(t),t € [0, T1} is a mild solution to Problem (2.4.4), i.e. forall t € [0, T], P-a.s.,

sin(tvA) ff sin((z — s)VA)
—_— Uyt | —

u(t) =cos(tvA)uy+ i 7x f&)ds
Lsin((t—s)VA)
(2.5.12) +f — &) dW (s).
0o VA oA
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CHAPTER

GEOMETRIC WAVE EQUATION

n this chapter we collect some basic notions from differential geometry required to derive the
wave map equation. We assume that reader is familiar with definitions of a smooth manifold,

tangent space and vector field. We mostly follow [103] and [118] here.

Unless otherwise stated, let M and N be smooth manifolds of dimensions m and n, respectively.
The set of all smooth functions F: M — N is denoted by §(M, N). In case N = R, we just write F(M).
For any nonnegative integer j, by €/ (R”;R") we denote the space of R”-valued continuous functions

whose derivatives up to order j are continuous on R™. Let

C®R™;R™) := () €/ R™;R™),
JjeN

and by eggmp (R;R™) we denote the space of C°(R";R") functions with compact support.

3.1 Basic definitions
Given a (U, ¢) coordinate chart of M and i-th coordinate function on R”, which is defined as
I‘i ‘:R™> (ay,ay,...,ay) — a; €R,

we set
xi:=ri0<p:U—>[R, i=1,...,m,
as coordinate functions of (U, ¢b).
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3.1.1 Tangent space and differential

By T, M, p € M, we denote the tangent space to M at point p. It turns out that T, M is a R-linear

space of dimension m and, for given coordinate chart (U, ¢), such that p € U, the set

o 0
axt|,” " oxm|,|’
forms a basis of T),(M). Here
0 (fop™h 0 .
(3.1.1) — :S(M)Bf»—»fo—(f((p(p))::—.‘ feR, i=1,2,...,m.
ox' |y 0 ox' |,

Thus a tangent vector 9 € T, M can be written uniquely as

. where 9" = 9(x").
p

9 3 9! 9
3.1.2 = =
(3.1.2) ; Py

We call the m-tuple (91,...,9™) as the coordinate representation on 9 under ¢ = (xL,... x™).
Given F € §(M, N) and p € M we define a map d,F : T,,(M) — Tr(;)(N), called the differential of F at

p, by
(3.1.3) dyF: TyM 39— (d,F)(9) = {F(N) 3 f — I(f o F) € R} € Tr(p) N.

In our calculation we need the following local expression for the differential d, F.

Lemma3.1.1. [103, Chapter 3] Let F € §(M, N) and p € M. Let us assume that (U, ¢ = (xL,...,x™) and
(V,w = (y,...,¥™) becoordinate charts about p in M and F(p) in N, respectively. Then relative to bases

m n
] K] . . .
{W p}izl and{a—yj F(p)} for T, M and Tg) N, respectively, the differential d,F : T,M — Ty N

j=1
is represented by the matrix % ( p)] e where F := yJ o F and

axi 71T o P
In particular,
o} " QFJ 0
(dpF) (—i ) =) (P
ox'lp) i=10x 0y | p(p)

3.1.2 Tangent bundle

The tangent bundle of M, denoted by T M, is defined as the disjoint union of the tangent spaces
at all points of M, i.e. TM := Upepip}t x T, M. We write an element of this disjoint union as an
ordered pair (p,?) with 9 € T, M. The tangent bundle is equipped with a natural projection map
m:TM >3 (p,9) — pe M. Observe that given a coordinate chart (U, = (x!,...,x™) of M, the image
set of the map

1 9 £ 191' 0
B U yU — -
T @ap ,:ZI ox!

) — (xN(p),...,x™(p),9,...,9™) e R*™,
p

is open in ¢p(U) x R>™. This leads to the fact that T M is a 2m-dimensional smooth manifold.
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3.1.3 Vector field

A vector field on M is a section of 7 : TM — M. That is, a vector field X on M is amap M — T M that
associates, to each point p € M, a vector denoted by X, € T, (M) with the property that 7o X = Id)y,.
The set of smooth (as map between two manifolds) vector fields on M is denoted by X(M). It is
easy to see that, given any coordinate chart (U, ¢ = (x',..., x™)) for M, the assignment p — % isa
vector field on U. This special vector field is known as the i-th coordinate vector field. Moreover, we

write the value of X at any point p € U in terms of the coordinate basis vectors as

> Xp)
Xy = X (P) Pl
= ax'p
where X’ : U — R s called i-th component function of X in the given chart.

For F € §(M, N), by putting together the differentials of d), F at all points p of M, we define a map
dF:TM — TN, called the global differential. In other words, dF is a map whose restriction to each

tangent space T, M is d,F.

3.1.4 Cotangent bundle

Given the tangent space T, M at p € M, we denote its dual space by T; M and call it the cotangent
space at p. Elements of T,; M are called cotangent or covector at p. The union T* M := Upemip}x Ty M
is called the cotangent bundle of M and it has a natural projection A : T*M 3 (p,¢) — p € M.
Mimicking the construction of the tangent bundle, we can show that T* M is also a 2m-dimensional
smooth manifold.

Similar to vector field, we define a covector field ¢ or 1-form on M as a map that assigns to each
p € M an element of T;Msuch that Ao = Idy;. Now observe that, since x = riogb: U—-R,i=1...m,
where (U, ¢ = (xY...x™)is any given coordinate chart on M, belongs to §(U) and one can identify

T,U with T, M, at each point p, the differential d,,xi is an element of T, M and the set {dpxi i

m

forms a basis for cotangent space T, M dual to the basis {%‘ } for the tangent space T, M. To
give the visibility to basis of contangent space we write (dx'), instead of dj, x'.

3.1.5 Riemannian manifold

A metric g on M is a mapping which assigns to each point p € M a scalar product (i.e. symmetric,
bilinear and non-degenerate) g, on each tangent space T, M, such that for every X,Y € X(M),
g:M>3 p+— gp(Xp,Yy) € R belongs to §(M). If the metric g is positive (indefinite) definite, then it
is called a (semi-)Riemannian metric on M. A (semi-)Riemannian manifold is a smooth manifold,
equipped with a (semi-)Riemannian metric.

Thus for a given coordinate map ¢ = (x!,...,x™) : M > U — R™, a Riemannian metric g is
represented by a positive definite and symmetric m x m-matrix [g;;(p)], i, j = 1,..., m. Hence, for any

given two tangent vectors 9y, 9, € T, M, respectively, with coordinate representation @®1,..., 97" and
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(93,...,95"), the action of g, is

m .
gp(01,92) = Y gij(p)993.
i,j=1

In particular, g;;(p) = gp (% ) In coordinate map ¢ = (x!,..., x™), a Riemannian metric can

be written as

0
0
p 90X |p

m . .
gp= Y. &ij(p)dx"),e®dx))y,
i,j=1
where (dxi)p ® (dxf)p :TyM x Ty M 3 (01,02) — (dxi)p(ﬂl)(dxf)p(f)g) € R is a tensor product in the
sense of functions. Moreover, due to the symmetry property of g we have

|

&= 2

3 |81 () (dx)), © (dx)) ), + gjs(p)(dx)) p © (dx'),
ij=1

m . .
= Y gij(p)dx"),(dx)p,
i,j=1
and in short g = Z;fljzl gijdx'dx!.
One important feature of a (semi-)Riemannian metric is that it provides a natural isomorphism

between the tangent and cotangent bundles.

Lemma3.1.2. [103, Chapter 13] Let (M, g) a (semi-)Riemannian manifold. Ifwe defineg: TM — T*M
by
§:TM> (p,9) — §p(0) ={TyM>3v— g0, v) eR e T, M,

then §p: TyM — T, M is linear and bijective.

Therefore, in any coordinate chart (U, ¢ = (x!,...,x™), for X, Y € X(M) with coordinate functions

(X1,...,X™ and (Y',...,Y™), respectively, we can write the action of §,, p € U as

m . .
&)= ) gi(p)X' (MY (p).
i,j=1

So the covector field §(X) : M3 p— §,(X),") € T, M has the form g(X) = ZZ’].ZI ginidxf. Thus, the
matrix of § : TM — T* M at point p, in coordinate chart U, ¢, is same as [g;j(p)]. Hence, the matrix
corresponds to map &, := ()" : Ty M — T, M is [g;(p)]~". Itis customary to denote [g;;(p)] ' by
[gij (p)] and thus we have, in local coordinates,

m .. m .. .

287 (P)gjk(p) =} 8kj(p)g’" (p) =6},

j=1 Jj=1

where & ;C =lifk=iandé ;C =0 elsewhere.
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3.1.6 Pullback metric

Suppose (M, h) be a semi-Riemannian manifold. Let (V, g) be a Riemannian manifold, which we call

target manifold, and F : M — N is smooth. The pullback metric F* g on M is defined by
(F*8)p(Xp, Yp) := gr(p) (dpF)(Xp), (dpF)(Yp)),  peM, X,Y € X(M).
Let us denote the isomorphism between T*M and TM by £, i.e. for each p € M,
hy:TyM— T,M,
is a linear bijection. Thus, for each p € M,
hyo(F*g)p: TyM 39— hy(g,(dyF)(9),)) € TyM,

is a linear operator. We denote the trace of /1 po (F*g)p by (trp, F* g)(p). By its definition (tr, F* g)(p) is

a smooth R-valued function on M.

3.2 Derivation of geometric wave equation

Here we derive the geometric wave equation (GWE) and define a wave map in terms of local coordi-
nates. Since we are dealing with two dimensional domain in this thesis, we are only deriving GWE for
this setup.

Let (N, g) be a Riemannian manifold of m-dimension. Consider the Euclidean space M := RI*7,
We know that (M, id) is a n + 1-dimensional smooth manifold with identity map as a global chart and

tangent space T, M at point p € M is isomorphic to M itself. If we define the metric 4 on M such that

n . .
hp(v, w) := 9w+ Z viw',
i=1
forv=("Y...,v",w=W",..., w" eR™. Equipped with such metric i, R'*" is called Minkowski
(1+ n)-space.
We define a functional .Z on the set (M, N) by

f(z)::lf trhz*gzlf trp(z* g)(x) dx,
2Jm 2 Jrm

and we are interested in critical points of .Z., i.e. we mean to study compactly supported variations.

For that we need to find a smooth compactly supported map from M — N, say ¢ such that

d
%iﬂ(zg)lg:o =0 where ze =z +e&é.

But z+ e makes no sense as amap from M — N. To overcome this difficulty we work with coordinate
charts and this is sufficient for our work in this thesis because we seek for the solutions which are

continuous.
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Let (U, ¢) as a coordinate chart in N. By definition of a local chart, ¢ is smooth and ¢(U) is an
open subset of R™. Thus, (¢(U),id) is a smooth manifold of m-dimension. Since U has a metric
induced from g and ¢! : ¢(U) — U is smooth, by [103, Proposition 13.9] the pull back ofg| y to ),
which we denote by ¢~!* g, is a Riemannian metric on ¢(U).

Now suppose we consider a smooth function Z: V — ¢(U) where V is domain of coordinate
chartin M such that Z(V) c ¢(U). Such functions are possible to find because for any f € §(M, N),
f~Y(U) is an open subset of M and, then by choosing a coordinate chart domain V < M in such a way
that f(V) c U, we can take Z := o f| v+ lfwelet ¢ : M — R be a smooth function having compact
support in V, then we can talk about Z + ¢ because for small ¢ it takes values in ¢(U), since Z, ¢ are
continuous. Note that since M =R!*", V and M are isomorphic and we can consider the functions
Z € C®(R*™; (1)) for a given local chart (U, ¢) on N.

With above reasoning in mind we define the wave maps as follows. First, we define the required

notion of functional.

Definition 3.2.1. LetR!'*" endowed with a Minkowski metric h, and (N, g) be a Riemannian manifold
with a given local chart (U, ¢). Define a functional £ on CoRI*, ¢)) by

1
Ly(Z) = E[ trp(Z*g)(x)dx, Ze€ eoo(Rl+n;(P(U))-
R1+n
Afunction Z € GOO(IR“”;c/)(U)) is said to be critical point of £y iff, for every ¢ € G‘;gmp([R“";lRm),

d
(3.2.1) £ZU(2+5¢)|E:0 =0.

Definition 3.2.2 (Wave Map). LetR!'*" endowed with a Minkowski metric h, and (N, g) be a Rieman-
nian manifold . We define wave map as a mapping z : (R'*", h) — (N, g) such that, for every coordinate
chart (U, ), the function

pozlyy: Z ' (U) 2 p—Plz(p) € p(U),

is a critical point of £
Now we move to write the Lagrangian density tr(z* g) in local coordinates and derive the system

of partial differential equations for z. To avoid the notation complexity, in the remaining chapter we

will write M instead of R1*". Fix any chart (U, ¢) on N and we write
Z:=¢poz| 1y :M— Z({U)cR",
and its k-th component by Z¥, k=1,..., m.

n
} for a basis of T, M. Since T, M =~ M and we only have
Pli=o0

Let p € z7}'(U) c R'*" and {%

n
identity map as coordinate map on M, we can consider {%‘ } as standard coordinates for R1*"
PJi=0
n

as well but to avoid the confusion we do not take this and write {%| } for standard coordinate.
P)i=0
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m
Moreover, we set, {aiyi 2 )} , where Z(p) = ¢(z(p)), as abasis of T7()p(U) = Tz(,»R™ = R™. Again
p)) j=1

to avoid confusion we write y/ = g/ o idy(v), for some standard coordinate of R™. This implies for

any smooth map f:¢(U) - R,

0

6(foid(;(1U))
o _ U ew)

zp aq’

y

idyn (Z(p))

but to simplify the notation we set the right hand side to g—{';,- ‘Z( .
p
Recall that, since Z: M — ¢(U), by Lemma 3.1.1,
) nogzk 9
P

Z%W(P)W

0

dyZ .
(p)ax’

Z(p)

Consequently, because ¢~* g is a metric on ¢(U), we pullback it on M and have

)

")
Z(p) ay

0
oxJ

0 0

7% —lx — , =
20, o] o @2

xl (dyZ)

) = (¢_1*g)2(p)
p

p

Z(p))

Here, since [Z* (¢7'"g)] ,(,): TpM 39~ [Z* (¢7'"g)] , (8,) € T; M, we denote its matrix form by

mmazk  az! 1 0
=) > Py (P)E(P) (¢ g)Z(p) (6_)/"

=:zjj(p), i,j=0,...,n.

[2ij (P (n+1)x (n+1)-
Next, since h is a semi-Riemannian metric on M, by Lemma 3.1.2, fzp : T;M — T,M is an

isomorphism and we write its matrix form as [2"/ (p)](n41)x (n+1). Thus,
7 * —1x .
hpo[Z(¢7"8),: TpM — T, M,

is well defined and in the matrix form it is given by the following multiplication

) hp) ... K(p)| [200(p)  zor(p) ... zon(p)

() h'p) ... KPP | [z0p@)  zup) ... ziap)

Rp) " p) ... WD) |zeo(P) zZm(P) ... Zan()
20 W (pzjo(p) T B (pzp(p) . T (p)zja(p)]
XYz Xk (pzp(p) . EfohY (P)zjn(p)
oh (D)zjo(p) Ti_ kM (pzji(p) ... X B (p)zia(p)]

Hence the trace of fzp o[Z* (gb_l*g)]p sy, Z;-ZZO hij(p)zji(p). That is,

9
ayk

0

i
Z(p) dy

i,j=0k,1=1 oxt " 0xl Z(p)

),
Z(p)
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where we denote tr;, [ Z* (¢~1*g)] (p) by hipo [Z* (¢71*g)] »- Therefore the actional functional . is

YA
Z Z h”(p)—(p) (p)(gklogb)(p)dp

Ly(Z) =
R™ j j=0k,I=1
Here we set (g}, 0 ¢)(p) := (‘P_l*g)z(p) (% 2 aiyl’z(p)) In other words we write the matrix of

(67'"8) () as (g7, © D) (D) mxm- Then, for ¢ € CFZr, R R™),

moo Z+ep)k  0(Z+ep)
Ly(Z+eg)= 5 > np) ( axf‘p) 2 — D (prigiyo (Z+ep)p)dp.

R+ ,j=0k,l

Consequently, by differentiating w.r.t. to €, we get

d 1 noomo ek A(Z+ep)

—_ - — 12 * °

e LulZrep) =2 fR ; Y h'(p) 57 P (P)g o (Z el (p)dp

1 noomo y(Z+ep)k
+—me Y Y K )((9—‘?"’)( )i(p)(gklo(map))(p)dp

i,j )

1 noomo A Z+ep)k A Z+ep)t I
sy Y hip ( axf"’) % “p) ( )Z (Z+8(,0)(p)(p (p)dp.

Since the metric 1 on R'*" is constant w.r.t. p and 81, = &/, by evaluating above at ¢ = 0 followed by

the integration by parts we obtain

4 g z+e )| ! Z 3 Z()( 2)(p)d
—_— = - o
d&‘ U (p E:O 2 Rl+n l'yj:okl_ p gkl p p
1 n m Zk )
+—f Y Y hi )—(p) ¢ (p)(gkloZ)(p)dp
2 Rl+n i,jZO k=1

1 n m i Zk
+wa-.z > h (p)—(p)—(p)z

n m . aZk ) 1
[ x L Pgio D) dp

k

1 nooz 0Z
+sz1+" PIpY h”(v)—(p)—mz

nomo o8 (ozk i}
:_/Rwi.z )3 hl](’”)@ F(P)(gkzOZ)(p)
k

1 noZ 0Z
*szM.Z )3 h”(v)—(v)—w)z

qDl(p)dp

n m 02 k
__ ij
- walZ: > h (p)a o Z(P)(gkloZ)(p)Z (p)dp

gkl

=
‘fR PUDD h”(n) (mw (mz
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1 zk azl 0g;
+= f Z Z nii ’“’(Z(p))q) (p)dp
2 Jrien i 0=

::;2ﬁ—+;Z§4—;z§.

By setting n*(p) := Y (g0 2)(p)¢l(p), we write £ as

h'l d
W”ZOICZI (p)a . l(p)n (p)dp.

To deal with %3, first note that since ((,b_l* g) is a Riemannian metric on ¢(U), the map ((,b_l* 8z is

invertible and we denote the matrix of inverse by [(g*¥

0 ) (P)l mxm- Thus from above notation we
agkl

have ¢! (p) = Z;”l(g*lsoZ)(p)n (p) and, with notation gkl F= gy

Zl
Z Z h”(p) (p)—(p) ngzr<Z(p))

Rl+n

*”’oZ)(p)n”’(p)] dp

i,j=0k,I=1 g=1
1 m n m aZr !
=3 f ) DINDY 57 (P& (Z(PNE™ e 2)(p) | 0" (p) dp.
2R 421 | i 20 k11
Now to deal with .%5 we use the symmetricity of g** and get
1 n m r
fz———f > o) (p)gklr(Z(p)) Z(g*lqoZ)(p)nq(p)] dp
2R ok et q=1

r

(p)gkl (Z(p) [ > (gt oZ)(p)n"(p)] dp

|
N | =
2 0
+
=
7=
=}
k
N[vjs

r=1 g=1
1 m n m r val
=——f Lr b S P&, ZPNE" " o D)) | n(p)dp
2 RU™ g=1 i,j=0k,l,r=1
1 m n m val
-3 f N PP (P)grlk(Z(p))(g "o 2)(p) | n(p) dp.
2Jmien 430 20k =1
Hence we get
d noom
—Ly(Z+ep)|,_o= ”(p) (p)n (p)dp——
de | ’ ig:og%- 0x ]0 ! q=11i,j= Okg;l

4o 7)(p) {g,’gl,r(Z(p)) +8,1 1 (Z(p) - g,’;,,l(Z(p))}] n(p)dp.

Therefore, since %.ZU(Z + ) | e=o0 = 0, by the Du Bois-Reymond Lemma, see [157, Chapter 4] we get

the wave maps system as, forevery g =1,...,m,

r

(3.2.2) Z h”(p)a o l(p) > ¥ nipr] (P =0.

i,j=0 i,j=0k,r=1

Here
q ._
Fkr'_

N | =
™Mz

xql * Xk
g {gkl,r *t 81k gkr,l}’

=1
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is a Christoffel symbol (of the second kind) associated to the metric g.
We finish this chapter by observing that since (x°, x!,..., x™) = (¢, x) e R'*" and

h0'0=—1; hii =0fori#je{0,...,n}; and hid = lforj=1,...n,

the system (3.2.2) gives (1.2.2) which a smooth wave map satisfies when consider in terms of local

charts.
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LARGE DEVIATIONS FOR STOCHASTIC GEOMETRIC WAVE EQUATION

establish here the validity of a large deviation principle for the small noise asymptotic

of strong solutions to stochastic geometric wave equations with values in a compact

Riemannian manifold. The main novelty of this chapter lies in to be the first ever result

on large deviations for stochastic geometric wave equations. Our proof relies on applying the weak

convergence approach of Budhiraja and Dupuis [30] to SPDEs where solutions are local Sobolev

spaces valued stochastic processes. This is a new approach with respect to the existing literature

on the second order in time stochastic PDEs, see e.g. Zhang’s work [163] on the stochastic beam
equation.

The chapter is organized as follows. In Section 4.1, we introduce our notation and state the
required definitions. In Section 4.2 we write all the preliminaries about the nonlinearity and the
diffusion coefficient which we need to use later in the current chapter. Section 4.3 is to prove the
existence of a unique global strong solution, in PDE sense, to the skeleton equation associated to
(1.2.7). The proof of a large deviations principle (LDP), based on weak convergence approach, is in
Section 4.4. We conclude the chapter with two Auxiliary Subsections 4.5.1 and 4.5.2, respectively,
where we state the slightly modified version of the existing results on global well-posedness of (1.2.7)

and an energy inequality from [23] which we use frequently in the sequel.

4.1 Notation

For any two non-negative quantities a and b, we write a < b if there exists a universal constant
¢ >0 such that a < cb, and we write a = b when a < b and b < a. In case we want to emphasize the
dependence of ¢ on some parameters aj, ..., d, then we write, respectively, g, 4, and =4, 4. We
will denote by Bg(a), for a € R and R > 0, the open ball in R with center at a and we put Bg = Bg(0).
Now we list the notation that we are going to use throughout the whole chapter.
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e N=1{0,1,:--} denotes the set of natural numbers, R; = [0,00), Leb denotes the Lebesgue measure.

e Let I <R be an open interval. By L”(I;R"), p € [1,00), we denote the classical real Banach space of

all (equivalence classes of) R"-valued p-integrable maps on I. The norm on L”(I;R") is given by

1
el op ey 2= (flu(x)lpdx)p, ue LP(LRY),
1

where |- | is the Euclidean norm on R”. For p = oo, we consider the usual modification to essential
supremum.

p

1oc ®;R™) stands for a metrizable topological vector space equipped with a

e Forany p € [1,00], L

natural countable family of seminorms {p |} jen defined by

pjw):=llullrery,  ueLy ®R"), jeN.
o By HYP(I;R™), for p € [1,00] and k € N, we denote the Banach space of all u € L” (I;R") for which

Dliue LP(I;R"), j=0,1,..., k, where D/ is the weak derivative of order j. The norm here is given by

||Dfu||§’,,(,;w)) ., ue HYP(LRY).

k
j=

I u”Hkvp([;[Rn) = (
0

o We write Hl]f)cp (R;R™), for p € [1,00] and k € N, to denote the space of all elements u € Lﬁc([R;IR")

whose weak derivatives up to order k belong to Lll; C(IR; R™). It is relevant to note that Hl]:)’f (R;R™
is a metrizable topological vector space equipped with the following natural countable family of
seminorms {q;} jen,

k, .
q; ) =l gers oy, UE H P(®R;R"), jeN.
The spaces H*?(I;R") and Hl’f)cz (R;R"™) are usually denoted by H*(I;R") and H{(‘)C(IR; R") respectively.
o Weset H:= H*(R;R") x H' (®%;R") and Hyo := HE, (R;R™) x H (R;R™).

» To shorten the notation in calculation we set the following rules:

« if the space where function is taking value, for example R”, is clear then to save the space we
will omit R”, for example H*(I) instead H*(I;R™);

e if I=(0,T) or (—R,R) or B(x, R), for some T, R >0 and x € R, then instead of L?P (I;R") we write,
respectively, LP (0, T;R"), LP (Bg; R™), LP (B(x, R);R™). Similarly for H* and HY _spaces.

o write H(Bg) or Hy for H2((—R, R);R™) x H'((-R, R); R™).

« For any nonnegative integer j, let G/ (R) be the space of real valued continuous functions whose

derivatives up to order j are continuous on R. We also need the family of spaces Gi(R) defined by
€I :={ueC/®;VaeN,ax< j, 3Ky, 1D ull o < Ko}
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e Given T > 0 and Banach space E, we denote by C([0, T]; E) the real Banach space of all E-valued

continuous functions u: [0, T] — E endowed with the norm

lulleqo,m;p) := sup lu(®)llE, ueC(o,T];E).
te

»

By (C([0, T'], E) we mean the set of elements of C([0, T]; E) vanishes at origin, that is,
0C0, T1,E) :={ueC([0, T],E) : u(0) = 0}.

 For given metric space (X, p), by C(R; X) we mean the space of continuous functions from R to X

which is equipped with the metric

x© 1
(f,&+— Y. —min{l, sup p(f(1),8()}.
=2 tel-j,j)

+ We denote the tangent and the normal bundle of a smooth manifold M by TM and N M, respectively.
Let §(M) be the set of all smooth R-valued functions on M.

e Amap u:R— M belongs to Hl’f)C(R; M) provided thatfo u € Hllf)c (R; R) for every 8 € §(M). We equip
Hk

loc

(R; M) with the topology induced by the mappings
HE ®&M)3u—0oue HE ®R), 0eFM).
Since the tangent bundle T M of a manifold M is also a manifold, this definition covers Sobolev

spaces of T'M-valued functions too.

» By.%(H,, H,) we denote the class of Hilbert-Schmidt operators from a separable Hilbert space H;
to another H,. By £(X, Y) we denote the space of all linear continuous operators from a topological

vector space X to Y.

« We denote by S(R) the space of Schwartz functions on R and write 8'(R) for its dual, which is the
space of tempered distributions on R. By L2, we denote the weighted space L?(R, w, dx), where
w(x):= e‘xz, x € R, is an element of S(R). Let H;,(R), s = 0, be the completion of §(R) with respect to

the norm

1
2
el g, ) = (fR” +1x1A5IFw w01 dx|

where F denotes the Fourier transform.

4.2 Preliminaries

In this section we discuss all the required preliminaries about the nonlinearity and the diffusion

coefficient that we need in Section 4.3. We are following Sections 3 to 5 of [23] very closely here.
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4.2.1 The Wiener process

The random forcing we consider is in the form of a spatially homogeneous Wiener process on R with
a spectral measure p satisfying

4.2.1) f(l +1x1%)? p(dx) < 0.
R

Let u be a finite and symmetric measure on R. A 8'(R)-valued process W = {W(t),t = 0}, on
a given stochastic basis (Q,. %, (%) =0,P), is called a spatially homogeneous Wiener process with

spectral measure u provided that
1. for every ¢ € S(R), {W (1) (¢), t = 0} is a real-valued .%;-Wiener process,
2. E{W(D)(@W () ()} = t{@, ¥) 12 holds for every £ =0 and ¢,y € S(R).

It is shown in [129] that the Reproducing Kernel Hilbert Space (RKHS) H,, of the Gaussian measure

W (1) is described as the subspace of tempered distributions
Hy:= {@ ‘e L2R", 1, C),w(x) = y(—x), X € IR}

where L2(R", u,C) is the classical Banach space of equivalence classes of complex-valued and square

integrable functions with respect to measure p. Note that H, endowed with inner-product

(TR, = [ v1 (07200 i),

is a Hilbert space.

Recall from [129, 130] that W can be regarded as a cylindrical Wiener process on Hy, and it takes
values in any Hilbert space E such that the embedding H,, — E is Hilbert-Schmidt. Since we explicitly
know the structure of H,, in the next result, whose proof is based on [127, Lemma 2.2] and discussion
with Szymon Peszat [128], we provide an example of E such that the paths of W can be considered in

C([0, T1; E). Below we also use the notation F(-), along with™, to denote the Fourier transform.

Lemma 4.2.1. Let us assume that the measure i satisfies (4.2.1). Then the identity map from H, into
H ﬁj(R) is a Hilbert-Schmidt operator.

Proof of Lemma 4.2.1 To simplify the notation we set Lfs) (R, 1) to be the space of all f € L?(R, y;C)

such that f(x) = f(—x), x € R. Let {eg} ren < S(R) be an orthonormal basis of L%S) (R, ). Then, by the

definition of Hy,, {F(exu)} ken is an orthonormal basis of H,,. Invoking the convolution theorem of

Fourier transform and followed by the Bessel inequality, see [9], we obtain,
Y ||e/le||iI§) =) fR(l +1x19)1F (w'?F(er)) (0)1* dx
k=1 k=1
= fR(l +1x1%)? (Z 1F (w'*F(erw) ()1 | dx
k=1
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o0 2
=f(1+|x|2)2(z |f3"(w”2) (x—z)ek(z)u(dz)) )dx
R k=1'YR

sf (1+|x|2)2|9’(w1/2)(x—z)lzu(dz)dx

RZ

=f (1+|x+z|2)2|9’(w1/2) (xX)|? u(dz) dx
RZ

S10 iy ) [ A+l .

Hence the Lemma 4.2.1. |

It is relevant to note here that H2,(R) is a subset if leo (R). The next result, whose detailed proof can
be found in [119, Lemma 1], plays very important role in deriving the required estimates for the terms

involving diffusion coefficient.

Lemma 4.2.2. Ifthe measure p satisfies (4.2.1) then Hy, is continuously embedded in Gi(IR). Moreover,
for given any g € HJ(B(x,R);R"), where x e R,R > 0 and j € {0,1,2}, the multiplication operator
H,>¢—g- € H!(B(x,R);R™) is Hilbert-Schmidt and 3 ¢ > 0, independent of R, x, g, & and j, such
that

1€ 8-Sl h,, i B, RyRY) = CNEN i (B, RYRM)-

Remark 4.2.3. Note that the constant of inequality ¢ in Lemma 4.2.2 does not depend on the size
and position of the ball. However, if we consider a cylindrical Wiener process, then ¢ will also depend

on the centre x but will be bounded on bounded sets with respect to x.

4.2.2 Extensions of non-linearity

By definition Ay, : TyM x T,M — N,M, p € M, where T, M < R" and N,M < R" are the tangent
and the normal vector space at p € M respectively. It is well known, see e.g. [81], that Ay, p€ M, is
symmetric bilinear.

Since we are following the approach of [12], [23], and [80], one of the main step in proof of the
existence theorem is to consider the problem (1.2.7) in the ambient space R” with an appropriate
extension of A from their domain (product of tangent bundles) to R”. In this section we discuss two
extensions of A which work fine in the context of stochastic wave map as displayed in [23].

Let us denote by € the exponential function
TR" 3 (p,&) — p+&{eR”,

relative to the Riemannian manifold R” equipped with the standard Euclidean metric. The proof
of the following proposition about the existence of an open set O containing M, which is called a
tubular neighbourhood of M, can be found in [118, Proposition 7.26, p. 200].

Proposition 4.2.4. There exists an R"-open neighbourhood O around M and an N M -open neigh-
bourhood V around the set {(p,0) € NM : p € NM} such that the restriction of the exponential map
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Ely : V — O is a diffeomorphism. Moreover, V can be chosen in such a way that (p, t&) € V. whenever
—-l<t<land(peV.

In case of no ambiguity, we will denote the diffeomorphism €|y : V — O by €. By using the
Proposition 4.2.4, diffeomorphism i : NM 3 (p,¢) — (p,—¢) € NM and the standard argument of
partition of unity, one can obtain a function Y : R” — R” which identifies the manifold M as its fixed

point set. In precise we have the following result.

Lemma 4.2.5. [23, Corollary 3.4 and Remark 3.5] There exists a smooth compactly supported function
Y : R" — R" which has the following properties:

1. restriction of Y on O is a diffeomorpshim,

2. Ylg=E&o0io&™:0— 0 isan involution on the tubular neighborhood O of M,
3. Y(Y(q)) = q foreveryqe O,

4. ifqe O, thenY(q)=q ifandonlyifqe M,

5. ifpe M, then
¢, providedé e T, M,
—¢  provided{ € N,M.

The following result is the first extension of the second fundamental form that we use in this
chapter.

Proposition 4.2.6. [23, Proposition 3.6] If we define

n 62
(4.2.2) Bg(a,b) = (qQ)aib;=Y"(a,b), qeR", abeR"
I iJZ=1 dgioq; 1
and
1
(4.2.3) Agla,b) = EBY(,,) X' (q)a,Y'(q)b), qeR", abeR",

then, for everyp € M,

and

(4.2.4) Ay (Y (@ a,Y'(@)b) =Y'(q9)Aq4(a,b) +By(a,b), g€ O, a,beR".

Along with the extension A, defined by formula (4.2.3), we also need the extension 7, defined by
formula (4.2.5), of the second fundamental form tensor A which will be perpendicular to the tangent

space.
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Proposition 4.2.7. [23, Proposition 3.7] Consider the function
o :R" xR" xR" 3 (q,a,b) — ,(a,b) e R",

defined by formula

n
(4.2.5) g(a,b) = Z a;vij(qQ)bj = Aq(ng(a),my(b)), geR", aeR", beR",
ij=1

wherery, p € M is the orthogonal projection of R" to T, M, and v, for i, j € {1,..., n}, are smooth and
symmetric (i.e. v;j = vj;) extensions of v;j(p) := Ap(ne;, mpe;) to ambient space R". Then </ satisfies
the following:

1. of is smooth in (q, a, b) and symmetric in (a, b) for every q,

2. dy(&,m) =ApE,n) foreverype M, ¢,ne TpyM,

3. @y(a,b) is perpendicular to T, M for every p € M, a,b € R".

4.2.3 The Cy-group and the extension operators

Here we recall some facts on infinitesimal generators of the linear wave equation and on the extension
operators in various Sobolev spaces. Refer [23, Section 5] for details.

Proposition 4.2.8. Assume that k, n € N. The one parameter family of operators defined by

cos[t(-A) 2] u! + (=8 V2sin[t(-0) 2!

S u _ COS[[(-A)I/Z]un + (—A)_llzsin[t(—A)l/z]v"
t | —=MY2sin[r(-M)2]u! cos[t(=A) 2] L
_(_A)l/Zsin[t(_A)I/Z]un + COS[t(—A)I/Z]Un

is a Cy-group on

H* = g R;R™) x HF(R;R™),

and its infinitesimal generator is an operator 3¢ = G defined by

D5 = HF(®R™) x HF (R, R™),
u v

(o) = [
v Au

The following theorem is well known, see for example [104] and [66, Section I1.5.4].
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Proposition 4.2.9. Let k € N. There exists a linear bounded operator
E*: H¥((-1,1;R") — H*®;R"),
such that

(i) E*f = f almost everywhere on (—1,1) whenever f € H*((—1,1);R™),

(ii) E* f vanishes outside of (—2,2) whenever f € H*((~1,1);R™),

(i) E*f e CK®;R™), if f € C*([-1,1;;R™),

(iv) if j eNand j < k, then there exists a unique extension of E* to a bounded linear operator from
H/((-1,1);R™) to H! (R; R™).

Definition 4.2.10. For k € N, r > 0 we define the operators Ef : HI((-r,r);R") — H/(R;R™), JEN,

j <k, called as r-scaled EX operators, by the following formula
k k X
(4.2.6) EEN@ =B y—Foni(Z),  xeR,
forr>0and f € H*((=r, r);R™).
The following remark will be useful in Lemma 4.3.4.
Remark 4.2.11. We can rewrite (4.2.6) as (EX f)(x) = (EX ;) (%), f € H*((~r, 1);R") where
fr:(=1,1)3y— f(yr)eR".

Also, observe that for f € H' ((-r,r);R™)
2 -1 2
”fr”Hl((—l,l);R") = (r + r) ”f”Hl((—r,r);[R”)'

4.2.4 Diffusion coefficient

In this subsection we discuss the assumptions on diffusion coefficient Y which we only need in
Section 4.3. It is relevant to note that due to a technical issue, which is explained in Section 4.4, we
need to consider stricter conditions on Y in establishing the large deviation principle for (1.2.7). Here

Yp: TpyM x TyM — T, M, for p € M, is a mapping satisfying,
Yp&mlr,m < CyQ+Elr,m+Inlr,M),  peEM, {neT,M,

for some constant Cy > 0 which is independent of p. Due to Lemma 4.2.5 and [23, Proposition 3.10],
we can extend the noise coefficient to map Y : R"” x R" x R" 3 (p, a, b) — Yy(a,b) € R” which satisfies

the following:

Y.1 forge Oand a,b e R",
4.2.7) Yy (Y (@) a, Y (@)b)=Y'(q)Y4(a,b),
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Y.2 there exists an compact set Ky < R"” containing M such that Y,(a,b) = 0, for all a,b € R",

whenever p ¢ Ky,

Y.3 Y is of C2-class and there exist positive constants Cy,,i € {1,2,3} such that, with notation
Y(p,a,b):=Yy,(a,b), for every p,a, b e R",

(4.2.8) Yy (a,b)| < Cy, (1 +|al + b)),

oY .
(4.2.9) (p.ab)| <Cr(+lal+1b), i=1,..n

opi
4.2.10) I ab)Ma—Y( ab)‘<C i=1,...n
ol 6@[ p; ) abl pr ’ - Yz) T Ayl

2

(4.2.11) axjayi(p,a,b)|SCy3, x,yeip,a,byandi,je{l,...,n}.

4.3 The skeleton equation

The purpose of this section is to introduce and study the deterministic equation associated to (1.2.7).
Define

oHY(0,T; Hy) :={h € ,C(0,T),E): he L*(0, T; Hy)} .

Note that 0Hl'z(O, T; Hy) is a Hilbert space with norm fOT I h(p) ”ify dt and the map

t
L*(0,T;Hy) 3 h—h= {t-—»f h(s) ds} € HY(0,T; Hy),
0

is an isometric isomorphism. For h € jH 120, T; H,,), let us consider the so called “skeleton equation”

associated to problem (1.2.7).

ws) { Opett = Oxtt+ Ay(@:1,0,11) — Ay(@ytt, Oxtt) + Yy (O, 0x10) r,
4.3.

u(or ) = MO)atu(Or ) = Vo.

Recall that M is a compact Riemannian manifold which is embedded by an isometric embedding
into some Euclidean space R”, and hence, we can assume that M is a submanifold of R". The

following main result of this section is the deterministic version of [23, Theorem 11.1].

Theorem 4.3.1. Let T >0, h € H"*(0, T; H,) and (ug, vo) € Hy, . x H, (R; TM) are given. Then for

everyR> T, thereexistsau: [0, T) x R — M c R" such that the following hold:
1. [0,T) 3 t— u(t,") € H*((-R, R);R™) is continuous,
2. [0,T) 3 t— u(t,”) € H ((~R, R);R") is continuously differentiable,
3. u(t,x)e M foreveryte|0,T),x€R,
4. u(0,x) = up(x) and d;u(0, x) = vo(x) holds for every x € R,
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5. foreveryte [0, T) the following will hold in L>((—R, R); R™),
t
0:u(t) = vy +f0 [0xx1(8) — Ay (Oxu(s), 05 u(s)) + Ay 0 u(s),0,u(s)] ds
[ .
(4.3.2) + fo Yuis) 0su(s), 0 u(s) h(s) ds.

Moreover, if there exists another map U : [0, T) x R — M which also satisfy the above properties then
Ul(t,x) = u(t,x) forevery |xl<R-t and te[0,T).

Proof of Theorem 4.3.1 The proof here is motivated from Sections 7-11 of [23] but presenting with
more details. Since we expect that the solutions of the equation (4.3.1) take values on a compact
Riemannian manifold M, we cannot expect them to belong to the Hilbert space H 2(R; R™) x HY(R; R™).

Indeed, suppose M := $? and u(t, x) € S, then

(I gy = 108, 2 ooy =f |uct, x)|2,dx=f ldx =oo.
’ ’ R R

Hence, in line with the PDE theory, we seek those solutions which will take values in the Fréchet

2
space Hj

is not available. To overcome this problem we localize the problem by a series of non-linear wave

(R; R™) x Hlloc([R; R™) but the theory of Bochner integration for integrand in such spaces

equations.

Letusfixr > R+ T, and k € N. Let ¢ : R — R be a smooth compactly supported function such
that ¢(x) =1 for x € (—r,r) and ¢(x) = 0 for x ¢ (—2r,2r). Next, with the convention z = (u, v) € H, we
define the following maps

0

F, : [0,T]xH>(t,z)— )
Er_t[Au(V, V)_Au(umux)]

)65{,

F,(t, z), if |zlg, <k
For @ [0,TIxH>3(t,2)—~1 (2-1lzly, )Fr(t,2), if k<l|zly, <2k €I,
0, if 2k<lzly,_,
0
G : [0,TIxH>3(52)—~| € % (Hy, 30,
(E,-_[Yu(vyux))'
G:(t,2), if |zlg, , <k
Grr : [0,TIxH3(t,2—1 (2-1lzls, ,)Gr(1,2), if k<lzly, <2k €L (H,H),
0, if 2k<lzly,_,
Y
Q : Haz— @Y e,
¢-Y'(wv

where (E}_tYu(U, uy))- means that, for every (u, v) € K, E}_tYu(v, Uy) € HllOC

(®; R™), and the multipli-
cation operator defined by

(Ey_ Yu(w,ux))-: Hy 3 & (B} Yy(v,uy)) - € € H (R;R™),
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satisfies Lemma 4.2.2.

The following two properties, which we state without proof, of Q, are taken from [23, Section 7].

Lemma4.3.2. Ifz = (u,v) € H is such that u(x) € M and v(x) € TyyM for|x|<r, then Q,(z) = z on

(=r,1).
Lemma 4.3.3. The mappingQ, is of C'-class and its derivative, with z = (u, v) € H, satisfy

@Y (ww!

v ) , , ,w:(wl,wz)eﬂf.
- Y'(W(,w)+Y (ww]

Q.(x)w=

The next lemma is about the locally Lipschitz properties of the localized maps defined above.

Lemma 4.3.4. Foreach k € N the functions¥,, F, i, G, G are continuous and there exists a constant
C, i such that

(4.3.3) IFy i (2, 2) = Fr i (8, wllgc + Gk (£, 2) — G (8, W 1,90 < Crillz— wllge,
holds for every t € [0, T] and every z, w € J{.

Proofof Lemma 4.3.4 Let us fix ¢ € [0, T] and z = (u, v), w = (@, ¥) € H. First, note that due to the
definitions of F,  and G, it is sufficient to prove (4.3.3) in the case | zll5, ,, lwlg, , < k.
Letus set I, := (¢ —r,r — t). Since in the chosen case F,. (¢, z2) = F, (¢, z) and F,. . (f, w) = F,(f, w),

by Proposition 4.2.9 and Remark 4.2.11, there exists Cg(r, t) > 0 such that

1B,k (t,2) = Fr i (£, w)ll3c < Ce(r, O [| A (v, v) = Aa(@, Dl i,
(4.3.4) Ay (g, uy) — Ag iy, Tiy) ”Hl([”)] .

Since Y is smooth and has compact support, see Lemma 4.2.5, from (4.2.3) observe that
A:R"3qg—Aye LR" xR™;R™),

is smooth, compactly supported (in particular bounded) and globally Lipschitz. Recall the following

well-known interpolation inequality, refer [16, (2.12)],
(4.3.5) Nl ooy < kNuill 2 plluel gy, we H' (D),

where [ is any open interval in R and k, = Zmax{l, ﬁ} Note that since r > R+ T and t € [0, T,

1
VIRT
properties of A and the interpolation inequality (4.3.5) we get

|I;¢| = 2(r — t) > 2R and we can choose k, = 2max{1, } Then by using the above mentioned

A, v) = Aa(@, Dl 2, < 1AL, V) = Aa(w, V)l 121,
+1Aa(w, v) = Ag(0, V2, ) + 1AD, V) = Aa(D, Dl 121,

2 - ~ ~
< Lallvlfoo (s, =Tl 2z, + Ba (vllzeocr,y + 1Dl o0 ] 1V = Pll12r,,)
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(4.3.6) < C(Lg,Ba, Rk, ke)llz— wllx

r—t’?

where L, and By are the Lipschitz constants and bound of A, respectively. Next, since A is smooth

and have compact support, if we set L4 and B are the Lipschitz constants and bound of
A'R"3g—dszAe LR" xR" xR RY),

then by adding and subtracting the terms as we did to get (4.3.6) followed by the properties of A" and
the interpolation inequality (4.3.5) we have
ldx [Au(v, v) = Aa(@, D] 12,
< ldu A, v)(ux) = daAD, D) (@)l 121, + 21 AU (Vx, V) = Aa(Dx, D12,
< Lol zo | oo, g 1= 8l 21, + Barll Ul oo, Ntk = Tl 27,
+ By [z, + 10l zeo | 10 = Dl p2r, e 2o,
+2[Lallu—dll o, p vl oo vl 2,y + Ballve = Ol 2, ) 1V 2o,
+Ballv =0l gz, ﬁx”LZ(I”)]
SLaBa Ly Bake [n =l e Nl g2 g, 101y + M= @l 00
o=l ol + 100 g @8 g2+ lie=all g, 1003,
o=l (101, + 101 m0,))]

(4.3.7) Skllz—wllg,_,,

where the last step is due to the case || z|l%, ,, |wll,_, < k. By following similar procedure of (4.3.6)

and (4.3.7) we also get

”-Au(ux; ux) _-Aﬂ(IZXr ax) ”Hl(I”) SJLAvBAvLA’vBA’vkevk ”Z_ w”j‘f,,t'

Hence by substituting the estimates back in (4.3.4) we are done with (4.3.3) for F, ;-term.
Next, we move to the terms of G, ;. As for F, t, it is sufficient to perform the calculations for the

case [ zllx, ,, lwlg,_, < k. By invoking Lemma 4.2.2 followed by Remark 4.2.11 we have

16,k (£,2) = Gk (1, W g7, 30y < N By Yu (0 ) =By Ya(0, 1) W gy iy

< ¢re Ce(, 1) 1 Yu (v, ux) = Ya (0, @01 -

Recall that the 1-D Sobolev embedding gives H HR) = L°(R). Consequently, by the Taylor formula
[43, Theorem 5.6.1] and inequalities (4.2.9)-(4.2.10) we have

1Yu(0,050) = Ya(@, @)z, ) < fl | Yag (0(2), 12(00) = Yao (0(2), 12 (0)I* dx
+f1 | Yoo (0(x), 14 (%)) = Yago (0(%), i (0))1* dx
+ fI | Yae (0(2), () = Yae (9(x), () dx
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2 2 2 ~2
< G} (1410 + Nl | = a2,

2
+ CY2

~ 12 ~n2
” Uy — ux“Hl(In) + ”V— v”Hl(Irt)]

(4.3.8) Skey.cy, 12=wli

For homogeneous part of norm, that is L?-norm of the derivative, we have

s [V, u) = Ya(@, @117,

< 25,

L j=1

i

ax (x)— a—pi(u(x), U(x), ity (x)

dvt oY
|—(u(x) v(x), ux(x)) (x) - a—(u(x),
l

a—Y(() (%) ())dui()_a_Y(() U(x) ())daxai())2 d
3D, u(x), v(x), uy(x X 3D, i(x), U(x), ty(x P X

(4.3.9) = Yl + Yg + Yg.

We will estimate each term separately by using the 1-D Sobolev embedding, the Taylor formula and
inequalities (4.2.9)-(4.2.11) as follows:

i

1 < u (x))d—ul(x) ay(u(x) v(x), i (x))d—u(x)| dx
10 - ; ’ X dx 6 pi X dx
dul oy _ dul 2
< { D), U)o () = 2 (@0, V() 1 () == (1)
Leizt dx O0p; dx
i 2
+ api(Lt(x),lz(x),ux(x) dx —api(u(x),v(x),ux(X)
+ Y(L”t(x) v - 7 2o
opi ’ ’ dx pi
~ % ~i 2 p
+ op; (@(x), 0(x), Uy (X)) —— dx (x)—a—l(u(x) ,0(x), U } X

<2 Ny — 112 2 2 Y

Ncysllu u“LZ(I”)”ux”Hl(I”)+CY1 1+”U”Hl(ln)+”ux”H1(I,t) ”ux ux”Lz([”)
2 ~2 = 12 2 ~ 12 = 12

+ CY3 ” vV— V”LZ(I”) ” ux”Hl(I”) + C’Y3 ” Uy — ux”LZ(I,[) ” ux”Hl(In)

2
(4.3.10) SkCiy oy Cyy 12— w5

Terms Y> and Y3 are quite similar so it is enough to estimate only one. For Y, we have the following
calculation

i

u (x))d (x)—a—(u(x) v(x), (x))d—~(x)| dx
T dx da; M dx

Y, = Z

L j=1

dvt oY
f { —(u(x),v(x) ux(x))—(x)——(u(x), dx
It j=1 Oal

Y i Y
— (t(x), v(x), ux(x)) (x)——(u(x) D(x),
oa; oa;

+

dx
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+]—6Y (@, 500, ur ) 20 - 2 ), 500, a0 2L (x)]2 dx

oa; dx oa; dx

+|—6Y (@), 50, 700 2 00 = 2 (), 500, () 2 (x)]2 dx}
oa; dx oa; dx

<C2 llu—il? 2 2 0 =2 2
~ CY3 ” u u”Hl Irg) ” vx”LZ(I”) + CY3 ” v V”Hl Iry) ” Vx“LZ(I”)
2 ~2 2 2 -2
+ CY3 ” Uy — ux”Hl(I”) ” Ux”LZ(I”) + CY3 Cr,t” Uy — Ux”LZ(I”)

2
(4.3.11) S,k,C,_[Cy3 |z — lU||er7t.
Hence by substituting (4.3.10)-(4.3.11) into (4.3.9) we get

e [Yu (0, ux) = Ya(@, @)1 132 ) Sk CoiCry oy Oy 12— W5,

which together with (4.3.8) gives G, ;. part of (4.3.3). Hence the Lipschitz property Lemma 4.3.4. [

The following result follows directly from Lemma 4.3.4 and the standard theory of PDE via
semigroup approach, refer [5] and [99] for detailed proof.

Corollary 4.3.5. GivenanyéeH andhe OHI'2 (0, T; Hy), there exists a unique z in C([0, T1; () such
that forall t €0, T]

t t .
z(t) =S;€+f0 Sz-sFr,k(s,Z(S))dHfo St-s(Grk(s,2(s) h(s)) ds.

Remark 4.3.6. Here by G, (s, z(s)) i(s) we understand that both components of G, (s, z(s)) are

acting on h(s).

From now on, for each r > R+ T and k € N, the solution from Corollary 4.3.5 will be denoted by
zr,; and called the approximate solution. To proceed further we define the following two auxiliary

functions

For @ [0, TIxH3(t,2)—

0
¢ Y’(u)Ff_k(t, 2) + @By (v, v) — By (uy, Uy) )

0
— eH,
( A@-h(u)+ 2@y - b (u)uy )
and

Grr @ [0,TIxH>(t,2)—

0 eH
@Y (WG (t,2)

Here Ff (S 2k () and Gi (S 21k (8) denote the second components of the vectors F, (s, z, ¢ (s)) and
G k(5,211 (5)), respectively. The following corollary relates the solution z, ; with its transformation

under the map Q, and allow to understand the need of the functions ?,_ r and ér, k-

Corollary 4.3.7. Let us assume that & := (E? uo,E} vo) and that z, i € ([0, T1; H) satisfies
t t )
(4.3.12)  z () =St§+f0 St—sFr,k(s,zr,k(S))dHfo St—s(Gri(s, 2 k() h(s)) ds, tel0,T1.
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Then z, . = Q,(zx) satisfies, for each t € [0, T],
t . t . .
2ok0)= SiQr O+ [ S sFra(s, 259 ds+ [ SueoGrals, 25D h(s) ds.

Proof of Corollary 4.3.7 First observe that by the action of Q) and § on the elements of 3 from
Lemma 4.3.3 and (4.2.8), respectively, we get

Q). (2, 1(5)) (Frx(5, 21 1(8) + Gk (5, 21k () A(S))

0
(4.3.13) = , 5 , ) : .
{0k (DIE2 (5, 21k (D) + Y (1t (DG (5, 20 () R(5)) |
Moreover, since by applying Lemma 4.3.3 and (4.2.8) to z = (u, v) € H{ we have

- Y (W)
@AY W), v) + Y (W) (u")}

- [Y'(Wl(v)
@Y (W) +2¢" - [Y' W) +@- Y @) +¢- 1Y ), u) |

F(z):=Q.5z-3Q,z = (

(4.3.14) -

substitution of z = z, 1.(5) = (U1 (s), U,k (5)) € H in (4.3.14) with (4.3.13) followed by (4.2.2) gives, for
se[0,T],

Q) (21,1 (8) (Fr (s, 21,k (8)) + Gr (8, 21,k (5))) + F (21,1 (5))
0

=| ¢- [Y’(ur,k(S))](nyk(s, Zrk (N + @ Y (U, k(N (W51 (8), v, 1 (5))
Q- [Y"(ur,k(s))] (Ox U,k (8),0xUri(8))

0
~" Yty (8)) + 200" - [Y' (14, 1 ()] @tk (9) + - [Y' (1 k (VG . (5, 27,k (5))

= F k(5,21 1(8) + Gr i (5, 21 £ (5)).

Hence, if we have

T .
(4.3.15) fo (1B (8, 2 ke (DNl 3¢ + 1Gr (8, 21,k () A(S) 3¢ ] d's < 00,
then by invoking [23, Lemma 6.3] with
L=Q,, K=U=%H, A=B=G, g(s)=0, f(s)=F.1(s,2,,k() + Gy, ($, 2,k () Ta(5),

we are done with the proof here. But (4.3.15) follows by Lemma 4.3.4, because h € jH L2, T; Hy) and
the following holds, due to the Hélder inequality with the abuse of notation as mentioned in Remark

4.3.6,

T . T .
fo 1G 1 (5, 2k () () 1o ds = fo 1G2 4 (5, 25k (N ($) | i vy s

1
2

T i(pT .
s( fo ||(Gi,c(s,zr,k(s)))-||E%(HP,HI(R))ds) ( fo Ilh(s)llffudS) :
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Next we prove that the approximate solution z; i stays on the manifold. Define the following three

positive reals: foreach r > R+ T and ke N,

Tp=inf{r€ [0, T]: Iz (D)3, , = kb,

4 :=inf{re [0, T]: |1 Z k(D)5 , = k},
(4.3.16)
Ti =inf{re[0,T]:3x, x| =1 -1, u, (¢, x) € O},

TRI=TLATL AT,

Also, define the following H-valued functions of time ¢ € [0, T]
¢ t )
ai(t) =S¢ +f0 St—sLio,r) (F5 (S, Zy 1 (5)) d3+f0 St—s(L10,00) )Gy k (5, Z1,k () A(8)) ds,
t t
ai(1=58,Q,() +f St—s]l[O,Tk) () Fr i (S, z, k. (8)) d3+f St—s(ﬂ[o,rk)(s)Gr,k(S, Zr,k(S))h(S)) ds.
0 0

Proposition 4.3.8. For each k € N and & := (E2ug, E} vp), the functions ay., Gy, z,x and Z, . coincide
1

on [0,7y). In particular, u,;(t,x) € M for|x| < r—t and t < 1y. Consequently, Ty = T, = T?c < ‘L“Z.
Proof of Proposition 4.3.8 Let us fix k. First note that, due to indicator function,

(4.3.17) ax = 2Zrk and ax =Zrr onl0,7g).

Next, since E}_sf = f on |x| = r — s, see Proposition 4.2.9, and ¢ = 1 on (-r,7), by Lemma 4.3.2

followed by (4.2.4) we infer that

{ IL[O,Tk) (s) [ﬁr,k(sy Zr ()] (x) = :[]-[O,Tk)(s) [Fp (s, zr,k(s))](x),
(4.3.18)

Lio,r) (9 [Gr k(5,21 k() el (x) = Lio,1,) (9)[Grk (5, 2k (8)el(x), e€K,
holds for every |x| = r — s, 0 < s < T. Now we claim that if we denote
1 ~ 2
p(t):= Elldk(t) — a5,

then the map s — p(s A1) is continuous and uniformly bounded. Indeed, since, by Proposition 4.2.9,
&(x) = (up(x), vo(x)) € TM for |x| < r, the uniform boundedness is an easy consequence of bound

property of Cy-group, Lemmata 4.3.2 and 4.3.4. Continuity of s — p(s A7) follows from the following:
1. for every z € J{, the map t — ||z||§{H is continuous;
2. for each t, the map L?(R) > u — fot |u(s)|? ds € Ris locally Lipschitz.
Now observe that by applying Proposition 4.5.2 for
k=1, L=1, T=r, x=0 and z(f) = (u(t),v(r)):= ar(t) — a(t),
we get e(t,z(1)) = p(t), and the following

t
(4.3.19) e(t,z(1)) se(O,z0)+f V(r,z(r))dr.
0
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Here

V(t,2(0) = (), v(D) 25, + WO, F(D) 25, + B2 (0,0 F (D) 125,

+(v(1),8(1) 2(B,_,) +(0xV(1),0x8(D)12(B,_,)

and

0 ~
( £ ):: Li0,1) (D Fr (8, 21, (D) = Fr (5, 2 (D)],

0 o |
( g0 ):: Lio,r (D1Gr k(S 2r e (RO = Gr (s, 2k (D AD).

Since due to operators EZ and E} the initial data ¢ satisfies the assumption of Lemma 4.3.2,
S1Qr(8) = S,

and so e(0, z(0)) = p(0) = 0. Next observe that by the Cauchy-Schwarz inequality we have
1 2 3 2 1 2
V(t; Z(t)) = 5 ” u(t) ”LZ(Brft) + E ” V(t) ”LZ(Brf[) + 5 ”f(t) ||L2(Br7[)
1 1 1
+10xv (D Fog )+ 5 10xf(® 1o+ 5l8® 1225+ 510:8(0) 125,
1 1
= 3p(t) + E”‘f(t)”i[l(Br—z) + E ”g(t)Hél(Brﬂ‘)-

By using above into (4.3.19) and, then, by invoking equalities (4.3.18) and (4.3.17), definition (4.3.16),

Lemma 4.2.2 and Lemma 4.3.4 we have the following calculation, for every ¢ € [0, T],
t 1 t
pn) < fo 3p)ds+ fo L0,m0 (I (5, 20 ()~ F2 (5, () 2 dis
t .
+5 fo Lo (DG7 (5, 21k (8) = 671 (8, 2Dy gy i, 1)y, s
t 1 t
<3| po)ds+ 562, [ LosOzk9 -2l ds
Lo t]l zZ 2 Nhs)I3 d
+ EC”’C A 0,70 ()27, (8) = 2k ()5 17 (s) IIHH N
t
(4.3.20) < (34+ny,€)[0 P+ I17(s)1F) ds.

Consequently by the Gronwall Lemma, for ¢ € [0, 7],

[ .
(4.3.21) p() Sc,, p(0)exp fo(1+||h(s)||fqu)ds .

Note that the right hand side in (4.3.21) is finite because h € oH L2(0, T; H,,). Since we know that
p(0) = 0 we arrive to p(t) =0 on t € [0,T¢] . This further implies that a;(¢,x) = dai(¢,x) hold for
|x| = r—tand ¢ < 7. Consequently, z, x(t,x) = Z,.x (¢, x) hold for |x| = r — f and f < 7. So, because

Zri(t,X) =Qr(z k(1)) and ¢ = 1 on (-1, 1),

(4.3.22) Uri(t,x) =Y (ur (2, x)), for|x|<r—t, t<r1g.
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Since, by definition (4.3.16) of T, u, (¢, x) € O, equality (4.3.22) and Lemma 4.2.5, gives u, i (f, x) € M
for |x] = r —t and t < 7. This suggests that 7} < T?C and hence 7 = T}C A T?C. It remains to show that
T, = T;. But suppose it does not hold and without loss of generality we assume that 7, > 77. Then by

definition (4.3.16) and the continuity of z, ; and Z, ; in time we have

2 ~ 2
lzre@2, Mg, <k but [1Ze@ s, 2k,
k

T*Tz
k
which contradicts the above mentioned consequence of p = 0 on [0, 74]. Hence we conclude that

1

Tk

= Ti and this finishes the proof of Proposition 4.3.8. ([

Next in the ongoing proof of Theorem 4.3.1 we show that the approximate solutions extend each
other. Recall that r > R+ T is fixed for given T > 0.

Lemma 4.3.9. Let k € N and & = (E2ug, E! vg). Then z, j11(t, %) = 2, (£, %) on|x| < r—t, t < 1, and

Tk =Tk+1-
Proof of Lemma 4.3.9 Define

1 2
p(t) = 5” ak+l(t) - ak(t) ”Hl(Br_t)XLZ(Br_;)'

As an application of Proposition 4.5.2, by performing the computation based on (4.3.19) - (4.3.20),

with k = 0 and rest variables the same, we obtain
! I 2 2 2
p(t) < 2/0 p(s)ds+ 5[0 1L 10,701) (VF7 (S, 2 k41 (8)) = Lo,y (VF (8, Zrk (D25 A

1! . .
(4.3.23) +5 fo 1010,2001) (GF(S, 21 k1 (DS = L0, (DGES, 2k (N ()25, .

Then, since F, and G, depends on u,x(s), U, +1(s) and their first partial derivatives, with respect to
time t and space x, which are actually bounded on the interval (—(r — s), r — s) by some constant C,
for every s < Ty41 A Tk, by evaluating (4.3.23) on £ A T4 A Tk following the use of Lemmata 4.3.4 and

4.2.2 we get

t
PUAT1 ATk) Szf PSATE1 ATE)ds
0

1 INT 1 ATk 2 2 2
+ Efo IE7(8, Zr k41 (8)) =B (s, 2rk (D725 ds
1 INT 1 ATk 9 2 . 2
+E[ ”Gr(syzr,k'+1(s))((s) _Gr(s)zr,k(s))h(s)”LZ(B )ds
0 r-s

t .
Sk fo ps AT AT+ (I, ds.

Hence by the Gronwall Lemma we infer that p =0 on [0, Tg4+1 A Tkl
Consequently, we claim that 7 < 744,. We divide the proof of our claim in the following three
exhaustive subcases. Due to (4.3.16), the subcases when [[¢|l5¢, > k+1 and k < [{]l3¢, < k+1 are trivial.

In the last subcase when ||¢[l4;, < k we prove the claim 7 < 7;,; by the method of contradiction, and
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so assume that 7y > 7y is true. Then, because of continuity in time of z, ;. and z, x+1, by (4.3.16) we

have

(4.3.24) IIZr,k(TkJrl)||j{r_Tk+1 <k and |z k+1(Tk+1) N3¢ = k.

T=Tk+1

However, since p(t) = 0for t € [0, Tg4+1 A Tx] and (up(x), vo(x)) € TM for |x| < r, by argument based on
the one made after (4.3.21), in the Proposition 4.3.8, we get z; ;. (£, xX) = 2 ;41 (¢, x) for every £ € [0, T 41]
and |x| < r — t. But this contradicts (4.3.24) and we finish the proof of our claim and, in result, the

proof of Lemma 4.3.9. 0

Since by definition (4.3.16) and Lemma 4.3.9 the sequence of stopping times {7} > is bounded and
non-decreasing, it makes sense to denote by 7 the limit of {74}>1. Now by using [23, Lemma 10.1] we

prove that the approximate solutions do not explode which is same as the following in terms of 7.

Proposition 4.3.10. For 1y defined in (4.3.16), 7 := klim Tr=T.
— 00

Proof of Proposition 4.3.10 We first notice that by a particular case of the Chojnowska-Michalik
Theorem [49], when the diffusion coefficient is absent, we have that for each k the approximate

solution z;, as a function of time ¢, is H L(R;R™) x L2 (R; R™)-valued and satisfies

t

t t
(4.3.25) Zr k(1) =€+f 9Zr,k(5)d5+f Fr,k(s,zr,k(S))dHf Gk (s, 2 k() A(s) ds,
0 0 0

for t < T. In particular,

t
Ur () = ¢1 +j(; Ur, k() ds,

for t < T, where é; = E? up and the integral converges in H 1(R;R"). Hence
Orur (s, X) = vy i (5, %), forall se[0,T], xeR.
Next, by keeping in mind the Proposition 4.3.8, we set
O = Nak s ez, and  q0:=log(1+lax®l3, ).

By applying Proposition 4.5.2, respectively, with k = 0,1 and L(x) = x,log(1 + x), followed by the use
of Lemma 4.3.4 we get

t t
(4.3.26) I(r) < l(0)+f0 l(s)ds+f0 L0, (S0 k (), () 2B, ) dS

t
+fo Lio,701 (U k (8), W (8)) 125, dS,

and

4327 0D < a(0) fr lak ()15,
3. 1)< + _
TE=TT T la@IZ,
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t Uik (8),p(s) t O0xVrx(8),0x[p(5)]
+[ ]l[(),rk](s)< rk P )[2}(3,,5) d5+f ﬂ[o,rk] (S)< xUrk xlQp k )LE(B
0 L+llar$)lge 0 L+llar($)lge

+f[]l (S)(Vr,k(s)»W(S»Lz(BH) ds+ft11 . 0x vy 1(8), 05 [W () 125
o T T la o ™ T+ lag)IZ,

rfx)

rfx)

Here

@(s):= tAu,‘k(s) (V1 (8), v,k (8)) _Aur,k(s) (0x ur,k(s)yax Ur(s)),
W(8) 1= Yo, (5) 0r Uy (8), Ox Uy k() Fa(S).

Since by Proposition 4.3.8 u, (s, x) € M for |x| = r — s and s < 7, we have
uri(s,x) € M and Oty i (8, %) = Uy (8,X) € Ty, (s 00 M,
on the mentioned domains of s and x. Consequently, by Proposition 4.2.6, we get

(4.3.28) A, (5,20 (Ur,k (8, X), U1 (8, X)) = Ay, (5,0 (Ur (8, X), Uy 1 (8, X)),

-Aur,k(s,x) (0x Ur (8, X), Ox Ur (s, x)) = Aur,k(s,x) (0x Ur (8, x), Ox Ur (s, x)),
on|x|<r-sand s < 7. Hence, since v, (s, x) € Ty, (s, x) M, and by definition, Ay, ,(sx) € Nu, (5,0 M,
the L2-inner product on domain B,_; vanishes and, in result, the second integrals in (4.3.26) and
(4.3.27) are equal to zero.

Next, to deal with the integral containing terms v, we follow Lemma 4.3.4, we invoke Lemma

4.2.2, estimate (4.2.8), and Proposition 4.3.8 to get

Wik (8), Yu, (5 (Orr i (8), 0xUp k() h(S»LZ(B,ﬁ)
SNk 25+ 1Yy k0 @ty (8), 0xtr k(A 25
< 10k +CECE(1+ 10k ) +10xUr k(N | MRS,

(4.3.29) S A+ A+ ),
for some C; > 0, and estimates (4.2.9)-(4.2.10) yields

W (8), Y () O Uy, (8), 0xc Uy, k () 2(8)) 125, )
+(0xVrk(8),0x [V, (5) O Uy e (8), Oxc Uy, i () A(S)]) 128, )
SHvne 1 g, + 1 Va9 Orttr i (8), Otk (DR 3 5,
< 10k, + IR, [CF CH (14 10k (s, + 10tk
+C (1 1vrk )12 ) + 10k, )1k,
+C (107 + 1052k

~

(4.3.30) Scncr, L1 L+ lla®)5, JA+1aEI), i=0,1,2.
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By substituting the estimates (4.3.28) and (4.3.29) in the inequality (4.3.26) we get

(4.3.31) I(r) S 1(0) + fot Loz (@A +1(s)) 1+ IIh(s)II%{p) ds.

Now we define S; as the set of initial data whose norm under extension is bounded by j, in precise,
S :=1(ug, vo) € Hioc : €N, < j where & := (EZuo, E} vo)}.

Then, for the initial data belonging to S, the Gronwall Lemma on (4.3.31) yields

(4.3.32) 1+1j(tAT) <Kypj,  t<T, jeN,

where the constant K, j also depends on || kil 120,7;H,) and [; stands to show that (4.3.32) holds under
S; only.
Next to deal with the third integral in (4.3.27), denote by O its integrand, we recall the following

celebrated Gagliardo-Nirenberg inequalities, see e.g. [69],

(4.3.33) Wl ioor—s < Wt +20W1m, o lWlee, ) weH (Bry).

Thus by applying [23, Lemma 10.1] followed by the generalized Holder inequality and (4.3.33) we
infer
fBr—s {10 Ur k| [0 Ur,ll Vr,kl2 +10xx Ur, k| [0x ur,k|2| Urkl+ |0 Ur kl |axur,k|3} dx

2
L+ lag(s)I2,

10(S) < Lpo,r0(9)

1)l ar(s)? B
THlaoZ, Lio,r0 (A +1(s)).
W,

s

(4.3.34) S ]l[(),fk) (S)
So, by substituting (4.3.28), (4.3.29) and (4.3.34) in (4.3.27) we get

[ .
qn s 1+67(0)+f0 Lio,rp ()X +1(s) A+ IIh(S)Ileﬂ)dS-

Consequently, by applying (4.3.32), we obtainon S,

t .
qi(t AT S1+q(0) +f0 [+ AT] L+ ()3, ) ds

(4.3.35) <Cpjlhlzorn,)  JENLE0,TI,

for some C;,j > 0, where in the last step we have used that r > T and on set S; the quantity g;(0) is
bounded by log(1 + j).
To complete the proof let us fix £ < T. Then, by Proposition 4.3.8,

|ak(1'k)|j{r71k = |z"yk(‘[k)|9'fr4k >k whenever Tp<t.
So for every k such that 74 < t we have
log(1+k*) < q(ti) = q(t ATE).
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Thus by restricting us to S; and using inequality (4.3.35), we obtain
(4.3.36) log(1+ k%) < q;(t AT) < Cr Tl 20, 7511,-

In this way, if lim 7 = fy for any 7, < T, then by taking k — oo in (4.3.36) we get C; || h”LZ(O,T;H“) =00
—00

which is absurd. Since this holds for every j € N and ty < T, we infer that T = T. Hence, we are done

with the proof of Proposition 4.3.10. O

Now we have all the machinery required to finish the proof of Theorem 4.3.1 which is for the skeleton
Cauchy problem (4.3.1). Define

Wy k(1) :=

Eg_tur,k(t)
E}—tvr,k(t) ’

and observe that w,; : [0, T) — H is continuous. If we set
(4.3.37) zr(8) = lim w; (1), t<T,
k—oo

then by Lemma 4.3.9 and Proposition 4.3.10 it is straightforward to verify that, for every ¢ < T, the
sequence {wy i (#)}ren is Cauchy in H. But, since H is complete, the limit in (4.3.37) converges in
J. Moreover, since by Proposition 4.3.10 z,(t) = z,, () for every k; = k and ¢ < 7, we have that
zr(t) = wy, k(1) for t < 7¢. In particular, [0, T) 3 £ — z,(£) € H is continuous and z,(t, x) = z, (¢, x) for
x| <r-tift <71y.

Hence, if we write z, (¢) = (u, (1), v-(¢)), then we have shown that u, satisfy the first conclusion of
the Theorem 4.5.1. In the remaining proof of the existence part we will show that the z,, defined in
(4.3.37), will satisfy all the remaining conclusions. Evaluation of (4.3.25) at t A T4 together applying
the result from previous paragraph gives

INT

AT AT )
(4338)  zZp(tATY=E+ f " Sani(9)ds+ f By (5, 2y (5)) ds + f G, (5, 20k (N h(s) ds,
0 0 0

and this equality holds in H'(R;R") x L?(R;R"). Restricting to the interval (R, R), (4.3.38) becomes

tATk ATk tATk

zZr(EATE) =rf+f 9zr(8)ds+/ Fr(s,zr(S))dS+f G (s, 2z, () h(s) ds,
0 0 0

under the action of natural projection from H!(R;R") x L2(R;R") to H((—R, R);R") x L?>((—=R, R); R™).
Here the integrals converge in HY (=R, R);R™ x L*((—R, R);R™). Taking the limit k — oo on both the
sides, the dominated convergence theorem yields

t t t
z, (1) =£+f 9zr(s)ds+f Fr(s,zr(s))ds+f G,(s,zr(s))h(s)ds, t<T
0 0 0

in H'((=R, R); R™) x L?>((—R, R); R"™). In particular, by looking to each component separately we have,
forevery t< T,

t
(4.3.39) ur (1) = ug +f vr(8)ds,
0
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in H'((—R, R);R"), and
t
v, (1) = v0+f0 [axxur(s)+Aur(s)(vr(s), v,(s))—Aur(s)(axur(s),dxur(s))] ds
[ .
(4.3.40) +f0 Y, (5)(vr(8),0xur () h(s) ds,

holds in L?((—R, R); R™). It is relevant to note that in the formula above, we have replaced A by A
which makes sense because due to Proposition 4.3.8 and Proposition 4.3.10, u, (£, x) = u, x(f,x) € M
for |x| = r — tand ¢ < T. Hence we are done with the proof of existence part.

Concerning the uniqueness, define

2
Z(1):= fRU(t) . t<T,
ELO.U(1)

and observe that it is a H-valued continuous function of ¢ € [0, T). Define also
Op: =T NInf{r < T: | Z(D g, , =k},

and the H-valued function, for t < T,

t t

pt) = Sz€+f0 St—sﬂ[o,ak)(S)Fr,k(s,Z(S))d8+f0 St—sLi0,00) ()G i (s, Z()) Ia(s) ds.

In the same vein as in the existence part of the proof, as an application of the Chojnowska-Michalik

Theorem and projection operator, the restriction of f on H{, which we denote by b, satisfies

t t
b(t):€+f 9b(s)ds+[ ( 0
0 0 \ Ay ©0:U($),0:U(s) — Ay 0:U(5),0,U ()

4 0
+f ds, t<oy,
0

Yu(s@0:U(s),0xU () h(s)
where the integrals converge in H!((—R, R); R") x L?>((—R, R); R™). Then since U(t) and 8,U(t) have
similar form, respectively to (4.3.39) and (4.3.40), by direct computation we deduce that function p
defined by

U )

t):=b(t)—
p(1) () (atU(t)

satisfies .
p(z‘):[0 Sp(s)ds, t<0g.

Since above implies that p satisfies the linear homogeneous wave equation with null initial data, by
[23, Remark 6.2], p(t,x) =0for |x| <R-t, t < 0.
Next, we set

a0 := 1B - ar (5, ,
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and apply Proposition 4.5.2, with k=1, T = r, L = I, to obtain

INO | INO |

q(t/\ak)52f0 q(S)ds+f0 I,k (s, Z(8)) = Fri(s, ar ()5 ds

tANO| . .
(4.3.41) +f G,k (s, Z(s) () = Gy ke (5, ar () A(S)II5, ds.
0
But we know that r — ¢ > R — t, and by definition o} < 74 which implies
Fryk(t,Z):FR’k(t,Z), Gr’k(t,Z):GR,k(t,Z) on (t_RyR_t)y

whenever || z||5, , < k. Consequently, the estimate (4.3.41) becomes

tAO | INO

qUEnop) <2 fo q(9) ds+ fo 1B k(5 Z(5)) — Fails, ag(s) 2] ds

INO | . .
+ fo IGR (s, Z()7a(s) = G i (s, ar () () 15 ds.

Invoking Lemmata 4.3.4 and 4.2.2 yields

tANO X
q(tnoy) SCRfO q(S)(1+IIh(S)II§JH)ds.

Therefore, we get g = 0 on [0,0) by the Gronwall Lemma. Since in the limit k — oo, o goes to T as
Tk, by taking k to infinity, by Proposition 4.3.8 we obtain that u, (¢, x) = U(¢, x) for each t < T and
|x| = R — t. The proof of Theorem 4.3.1 completes here. |

4.4 Large deviation principle

In this section we establish a large deviation principle (LDP) for system (1.2.7) via a weak con-
vergence approach developed in [30] and [31] which is based on variational representations of
infinite-dimensional Wiener processes.

First, let us recall the general criteria of LDP obtained in [30]. Let (Q2,.%,P) be a probability space
with an increasing family F := {#,,0 < t < T} of the sub-o-fields of .# satisfying the usual conditions.
Let A(E) denotes the Borel o-field of the Polish space E (i.e. complete separable metric space).
Since we are interested in the large deviations of continuous stochastic processes, we follow [48] and

consider the following definition of large deviations principle which is in terms of random variables.

Definition 4.4.1. The (E, %(E))-valued random family {X*}__, defined on (Q,.%#,P), is said to satisfy

a large deviation principle on E with the good rate function J if the following conditions hold:

>0’

1. Jis agood rate function: The function J: E — [0, 0] is such that for each M € [0,00) the level
set {¢p € E:J(¢p) < M} is a compact subset of E.

2. Large deviation upper bound: For each closed subset F of E

limsup elogP [X® € F] < - inf J(w).
ueF

e—0
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3. Large deviation lower bound: For each open subset G of E
liminf elogP [X® € G| = - inf J(w),

e—0 ueG

where by convention the infimum over an empty set is +oco.

Assume that K, H are separable Hilbert spaces and the embedding K — H is Hilbert-Schmidt.
Let W :={W(t),t € [0, T]} be a cylindrical Wiener process on K. Hence the paths of W take values in
C([0, TT; H). Note that the RKHS linked to W precisely is , H 12(0, T; K). Let . be the class of K-valued
7 -predictable processes ¢ belonging to (H 12(0, T; K), P-almost surely. For M > 0, we set

T
Sy i= {h € HY (0, T;K) :fo 1A% ds < M}.

The set Sy endowed with the weak topology obtained from the following metric
© 1 T . .
v, 0= Y. | [ o)~ ks, s,
i=1

where {e;} ;e is a complete orthonormal basis for L2(0, T; K), is a Polish space, see [31]. Define .%

as the set of bounded stochastic controls by
=P e S p(w) € Sy, P-as.).

Note that Uy is a proper subset of .. Next, consider a family indexed by € € (0,1] of Borel
measurable maps
J¢: €0, T), H) — E.

We denote by uf the “image” measure on E of P by J¢, that is,
pE=JE®), ie p(A=P(UH'A), AecBE).
We have the following result.

Theorem 4.4.2. [30, Theorem 4.4] Suppose that there exists a measurable map J° : ,€([0, T1, H) — E
such that

BD1 : if M > 0 and a family {h.} c . converges in law as Sy -valued random elements to h € . as

€ — 0, then the processes
1 .
C(0, T, H 3w~ g(w+—fh sds)EE,
0C(0,T], H) J NGl £(8)

converges in law, as € \ 0, to the process J° ([, he(s) ds),

{]O(A.h(s)ds):hESM},
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Then the family of measures u® satisfies the large deviation principle (LDP) with the rate function
defined by

T .
(.41 Iw :=inf{% [ Vi ds: o0, 750 and u = 1° ( [ h(s)ds)},
0 0

with the convention inf{@} = +oo.

4.4.1 Main result

It is important to note that in transferring the general theory argument from Theorem 4.4.2 in our
setting we require some information about the difference of solutions at two different times, hence
we need to strengthen the assumptions on diffusion coefficient. In the remaining part of this chapter,
we assume that Y : M 3 p— Y (p) € T, M is a smooth vector field on compact Riemannian manifold
M, which can be considered as a submanifold of R”, such that its extension, denote again by Y, on

the ambient space R” is smooth and satisfies

Y.4 there exists a compact set Ky < R” such that Y(p) =0if p ¢ Ky,
Y.5 forge O, Y(Y(q)=Y'(q9)Y(g),
Y.6 forsome Cy >0

’Y
opiop;

oY
1Y (p)l = Cy (1+pl), |a—p(p)’SCy, and| (p)|scy,
1

forpeKy,i,j=1,...,n.

Remark 4.4.3. 1. Since Ky is compact, there exists a Cx such that |Y (p)| < Cx for p € R".
2. For M =S? case, Y( p) = p x e, p e M, for some fixed vector e € R3 satisfies above assumptions.

Since, due to the above assumptions, Y and its first order partial derivatives are Lipschitz, by 1-D

Sobolev embedding we easily get the next result.

Lemma 4.4.4. There exists Cy g > 0 such that the extension Y defined above satisfy

(1) 1Y (@l iy < Cy,rRA + Nullgipyy), J=0,1,2,
2) 1Y () =Y ()28, < Cy,rllu—vlr2By),

3) 1Y (1) = Y ()l g1y < Cy,rlu— vl sy (1 + 1wl sy + 101 1 (sy) -
Now we state the main result of this section for the following small noise Cauchy problem

0pruf = 0yt + Aye (0,uf,0,u’) — Aye (0 uf,0,u’) + \/EY(UE)W,

(4.4.2)
(uf(0),0,uf(0) = (uo, Vo),
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with the hypothesis that (1, vg) is .-%-measurable leo o X Hlloc([R%, T M)-valued random variable, such
that up(x,w) € M and vy(x,w) € Ty, x,w)M hold for every w € Q and x € R. Since the small noise
problem (4.4.2), with initial data (ug, vg) € F4,c(R; M), is a particular case of Theorem 4.5.1, for
given € > 0 and T > 0, there exists a unique global strong solution to (4.4.2), which we denote by

z% := (uf,0,u®), with values in the Polish space
X7 :=C([0, T); HE . ®RR™) x C([0, T]; Hyy (R R™),

and satisfy the properties mentioned in Section 4.5.1. Thus, there exists a Borel measurable function,
see for example [30] and [120, Theorems 12.1 and 13.2],

(4.4.3) J?:C([0,T1,E) = X,

where space E can be taken as in Lemma 4.2.1, such that z°(-) = J¢(W(-)), P-almost surely.

Recall from Section 4.2 that the random perturbation W we consider is a cylindrical Wiener
process on Hy, and there exists a separable Hilbert space H such that the embedding of H, in H is
Hilbert-Schmidt. Hence we can apply the general theory from previous section with the notations
defined by taking H,, instead of K.

Let us define a Borel map

J°: €0, T, E) — X7
If h € ,C([0, T, E)\ (H"*(0, T; H,,), then we set J°(h) = 0.1f h € (H"*(0, T; Hy,) then by Theorem 4.3.1

there exists a function in X, say zj, that solves

{anu= Ot + Ay(@y14,0,1) — Ay(@xut,0x10) + Y (1) b,
(4.4.4)

u(0) = ug,0:u(0) = vy,
uniquely and we set J°(h) = zj,.

Remark 4.4.5. At some places in the chapter we denote J O(h) by Jo ( fo h(s) ds) to make it clear that
in the differential equation we have control / not A.

The main result of this section is as follows.

Theorem 4.4.6. The family of laws {Z (z%) : € € (0,11} on X, where z° .= (uf,0.u®) is the unique
solution to (4.4.2) satisfies the large deviation principle with rate function J defined in (4.4.1).

Note that, in light of Theorem 4.4.2, in order to prove the Theorem 4.4.6 it is sufficient to show

the following two statements:
Statement 1 : For each M > 0, the set
Kye:= U°(h) : he Sy,

is a compact subset of X1, where Sy OHl'2 (0, T; Hy) is the centred closed ball of radius M
endowed with the weak topology.
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Statement 2 : Assume that M > 0, that {€,,} ,en is an (0, 1]-valued sequence convergent to 0,

that {h,} ,en © S converges in law to h € %) as € — 0. Then the processes

1

e

(4.4.5) oC(0, T, E) 3w+~ J&n (W(~) + f Fin(s) ds) eXr,
0

converges in law on Xt to Jo (fo h(s) ds).

Remark 4.4.7. By combining the proofs of Theorems 4.5.1 and 4.3.1 we infer that the map (4.4.5) is
well-defined and j¢» (W(-) + \/%7 Jo h(s)d s) is the unique solution to the following stochastic control
Cauchy problem

0 U™ = By U™ + Ayen (0,UE™, 01 UE™) — Ayen (0 uE™, 0 uf™) + Y (UE) Iy + VER Y (UMW,
(uf"(0),0,u"(0)) = (uo, vo),

(4.4.6)

where the initial data (u, vo) € HZ . x H[. (R; TM).

loc

Remark 4.4.8. It is clear by now that verification of an LDP comes down to proving two convergence
results, see [19, 20, 28, 48, 149]. As it was shown first in [16] the second convergence result follows
from the first one via the Jakubowski version of the Skorokhod representation theorem. Therefore,
establishing LDP, de facto, reduces to proving one convergence result for deterministic controlled
problem called also the skeleton equation. This convergence result is specific to the stochastic
PDE in question and require techniques related to the considered equation. Thus, for instance, the
proofin [16, Lemma 6.3] for the stochastic Landau-Lifshitz-Gilbert equation, is different from the
proof, for stochastic Navier-Stokes equation, of [48, Proposition 3.5]. On technical level, the proof of

corresponding result, i.e. Statement 1, is the main contribution of our work.

4.4.2 Proof of Statement 1

Let {z, = (Un, Uy) := JO ()} nen e a sequence in the set Ky corresponding to the sequence of controls
{hn}nen < Syvi. Since Sy is a bounded and closed subset of Hilbert space OHI'2 (0, T; Hy), Sy is weakly
compact. Consequently, see [9], there exists a subsequence of {/,},en, still denoted this by {%,,} nen,
which converges weakly to a limit h € ; H L2(0, T; Hy,). But, since Sy is weakly closed, & € Sy¢. Hence
to complete the proof of Statement 1 we need to show that the subsequence of solutions {z,} en
to (4.4.4), corresponding to the subsequence of controls {h,},en, converges to zj, = (uy, v;,) which
solves the skeleton Cauchy problem (4.4.4) for control /. Before delving into the proof of this we
establish the following a priori estimate which is a preliminary step required to prove, Proposition

4.4.14, the main result of this section.

Lemma 4.4.9. Fixany T >0, x € R. There exists a constant B := B (II (ug, Vo) ”fH(B(x,T))er T) >0, such
that

(4.4.7) sup sup e(t,z,(1) < B.
heSy tel0,T/2]
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Here zy, is the unique global strong solution to problem (4.4.4) and

1 2 2 2 2
e(t) Z) = E”Z”g{B(x,T—Z) = E {” u”B(B(x,T—t)) + ||6xu||L2(B(x,T—I)) + ” U”LZ(B()C,T—I))

z=(u,v) € Hjy.

2
102012, 5 p— iy

2
+||axxu”L2(B(x,T—t))

Moreover, if we restrict x on an interval [—a, a) c R, then the constant B := B(M, T, a), which also

depends on ‘a’ now, can be chosen such that

sup sup sup e(t,zp(1)) <B.
x€[~a,al heSy; te[0,T/2]

Proof of Lemma 4.4.9 First note that the last part follows from the first one because by assumptions,

(10, Vo) € Hjoc, in particular, || (1o, Vo) l9¢(—a-T a+ 1) < oo and therefore,

sup | (uo, vo)ll3csx, 1)) = Il (U0, Vo) | 3(—a—T,a+T) < 00.
x€l—a,al

The procedure to prove (4.4.7) is based on the proof of Proposition 4.3.10. Let us fix h in Sy and
denote the corresponding solution zj, := (1, v;) which exists due to Theorem 4.3.1. Since x is fixed

we will avoid writing it explicitly in the norm. Define

1 2
l(t) = E"(uh(t)r Uh(t) ”Hl (BT—t)XLZ(BT—I)’ te [0’ T]~

Thus, invoking Proposition 4.5.2, with k =0 and L = I, implies, for ¢ € [0, T],
t t
I(1) = 1(0) +f0 (Uup(r), vp($) 2B,y ds"‘fo (Wn(8), fu(N 2, ds

t .
(4.4.8) +f0 (VR (8), Y (up () h(s)) 2B, ds,
where
In(r) = Au,y R (1), v () = Ay (r) Ox i (1), 0 up ().

Since vy(r) € Ty, (M and by definition A, - (-,-) € Ny, )M, the second integral in (4.4.8) vanishes.

Because uy(r) € M, invoking Cauchy-Schwartz inequality, Lemmata 4.2.2 and 4.4.4 implies

C3Ch t :
l(t)sl(0)+( = T+2)f L+ 1A+ AN, ds.
0

Consequently, by appying the Gronwall Lemma and using & € Sy we get

(4.4.9) 1O Sopcr L+ LOD | T+ 171220 gy | < (T + 200+ 100D,

(0,T;H,

Next we define
q(t) = log(l + ”Zh(t) ”%{T_t) .

Then Proposition 4.5.2, with k =1 and L(x) =log(1 + x), gives, for t € [0, T /2],

2
lzn (2,

t
(1) =< (0)+[ —_—
A T PARTE
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ECUR(S), fr(N 2,y L{0xVR(8), 0x [ frn()D 128,
+f 5 ds+f 5 ds
o l+llzn(S)I5, 0 L+ llzn(9)15,,
Ep(s), Y (un(9) () 128, {0 VR(8),0x Y (Up(N (D 128,
+f 5 ds+f 5
0 1+llze ()5, 0 L+ lzn (905,

ds.

Since by perpendicularity the second integral in above vanishes, by doing the calculation based on
(4.3.30) and (4.3.34) we deduce

AOIEAOI
GO Sr1+qO)+ | ———
0 T+lzn9)l,

ds

. ft (L+1(9) L+ 125, VA + AT
0

L+ lze (915,
51+qm)+ﬁru+lunu+uhumﬁﬂd&
which further implies, due to (4.4.9) and h € Sy,
q(1) <1+q(0) + (T +M)*(1 +1(0)).
In terms of zj, that is, for each xe Rand ¢ € [0, T/2],
lzn (015, S exp |l (uo, vo)l5, (T +M)?.

Since above holds for every ¢ € [0, T/2], h € Sy, by taking supremum on ¢ and / we get (4.4.7), and
hence the proof of Lemma 4.4.9. |

Remark 4.4.10. Since B(x, T/2) < B(x, T —t) for every t € [0, T/2], Lemma 4.4.9 also implies

1 2 2
sup sup sup = {1un(O1p g0,y + 10001 5y} < BOLT @),
xe[-a,al heSy; t€[0,T/2] 2 ’ ’

forR=T/2.

Now we prove the main result of this subsection which will allow to complete the proof of

Statement 1.

Proposition 4.4.11. Fix T > 0. The sequence of solutions {z,}nen to the skeleton problem (4.4.4)

converges to zy, in the Xo-norm (strong topology). In particular, for every T,M > 0, the mapping
Sy €h— J°(h) € X,
is Borel.

Proof of Proposition 4.4.11 First note that the second conclusion follows from first immediately

because continuous maps are Borel. Towards proving the first conclusion, let us fix any 7 € N. Recall
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that in our notation, by Theorem 4.3.1, zj, = (u, vy) and z,, = (un, v,), respectively, are the unique

global strong solutions to

(4.4.10) { Oretty, = Oxxtty + Ay, (0yUp, 0stip) — Ay, (Oxtp, Oxtip) + Y (up)h,
(up(0), v (0)) = (ug, vg), where v,h:=0,uy,

and

(4.4.11) { Orrttn = Oxxlin + Ay, (Ortn,0¢tn) — Ay, OxUn,0xttn) + Y (up) i,
(Un(0), vn(0)) = (1o, vo), where vy, :=0up.

Hence 3, := (uy,v,) = 25 — 2, is the unique global strong solution to, with null initial data,

Otptty = Oxxlp — Ay, Oxlp, 0xuup) + Ay, (0xUp, 0xUy) + Ay, (Or iy, 0rUip)

(4.4.12) — Au, @1, 0s1in) + Y (up) h— Y (up) iy,

where v, := 0;u,. This implies that

t 0 t 0
2 =1 S d+fS_ ds, t€]0,7].
3n(1) fo ts(fn(s)) N A t s( gn(S)) N €[0,7]

Here

fn(s) = _Auh(s) (Oxup(s),0xupn(s)) + Au,,(s) (0xun(8),0xun(s)) + Auh(s) (Orup(s),0:up(s))
- Aun(s) (atun(s)> atun (s))y
and
gn(8):= Y (up() A(s) = Y (un(8) f1n ().

We aim to show that

3n—0 in  C([0,T), HS (R;R™) x €([0,T], H . (R;R™),

n—o0 (0]¥

that is, for every R >0 and x e R,

2 2
(4.4.13) sup [ (O gy + 100 O 5y | = 08 = o

Without loss of generality we assume x = 0. Since a compact set in R can be convered by a finite
number of any given closed intervals of any non-zero length, it is sufficient to prove above for a fixed
R > 0 whose value will be set later. Let ¢ be a bump function which takes value 1 on Br and vanishes

outside B_zR- Define i1, (t, x) := u, (t, x)¢(x) and iy, (£, x) := uy(t, x)p(x), so
Un(t, X) = @(x)vn(t, 1), Up(t, x) = @(x)vp(t, x),
and with notation u,, := i, — iy,
01Ty — Oxxliy = [Au, (0rUn, 0 ) — Ay, (0xUn,Oxln) — Ay, OrUp,0rup) + Ay, OxUp, Oxup)| @
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—(Up—up)OxxP —2(0x Uy —0xup)Oxp + [Y(un)hn - Y(uh)h] ()

= fu+ &n.
Here
Fn(8) := [Au, ()01 tn($), 01 un($)) — Auyy(s) Ox Un(S), Ox n(8)) — Auy(s) @run(s), 0run(s))
+ Ay (5) 0x U (), 0 up(8) ] @ — (Un(s) = Up(8))0xxp —2(0xUn(s) — Ox p ()0 5P,
and

8n(8) 1= [Y (un($)n(s) = Y (up(s)h(s)] @, se[0,T1.

Next, by direct computation we can find constants C,, C,, > 0, depend upon ¢, ¢’, ", such that, for
te[0,7],

18 (120 gy + 180 D12 ey = Cop [ (12 gy + 100 (D12 e ]

(4.4.19) <Cy

80 (O1 2y + 18O ey |-

Hence, instead of (4.4.13) it is enough to prove the following, for a fixed R,

(4.4.15) SUp [ in(D12p_p gy + 182012 _p )] — 0 s n = 0.
t€[0,7]
Let us set T
T:=47 and R::Z:‘J'.

The reason of such choice is due to the fact that (4.4.15) follows from

. 2 = 2
(4.4.16) ts}(l)%] ”u”(t)”HZ(BT,Z)+”U”(t)”H1(BT,t) —0 as n—oo.

Indeed, because for every t € [0,R], T — t > 2R, and we have

~ 2 o 2 = 2 o 2
”u”(t)”HZ(BR) + ”Un(t)”Hl(BR) = ”un(t) ||H2(BZR) + ”Un(t) ||H1(BZR)

- 2 = 2
< sup |lUn(O)5, + oD N50 .
te[0.R] H?(Br—¢) HY(B7r_y)

Next, we set [(t,z) := %Ilzllifm, for z = (u, v) € Hjoc and £ € [0, R]. Invoking Proposition 4.5.2, with
null diffusion partand k =1,L = I, x = 0, gives, for every ¢ € [0, R],

t
(4.4.17) 1(t,5n (1)) 5f V(r,3n(r)dr,
0
where 3, (1) = (1,(2),0,(8)) and

V(2,3(0) = (@n(8), 5, (D) 128,y + (D), fu (D) 128,
+(0x00(8),0x (D) 128, + On(), §n(D)12(8,_,)

+ <ax6n(t),6xgn(t)>L2(BT_,)
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=:V7(1,5n () + Vg (t,3,(1)).

We estimate V¢ (t,3, (1)) and Vg(2,3, (1)) separately as follows. Since T — ¢ > 2R for every ¢ € [0, R] and
©(),¢'(y) =0 for y ¢ Byg, we have

t t _
fo \/f(r,Z(r))dr=f0 UB {oun(r, NP1, Y) + @0, (1, Y) fr (1, Y)
+¢' ()0, (1, Y)0x (1, Y) + @100, (1, )0 fu(r, Y} dy) dr

¢ ro_
Sowr [ rgatmdrs [N,

and

t
](; (<6n(r)»gn(r)>L2(BT_r) + (axﬁn(r)yaxgn(r»LZ(BT_r)) dr

t
= fo (<5n(r),§n(r)>Lz(32R) + <0xﬁn(r),Gxg'n(r»mgm)) ar.

Let us estimate the terms involving f,, first. Since u,, uj, takes values on manifold M, by using the
properties of ¢ and invoking interpolation inequality (4.3.5), as pursued in Lemma 4.3.4, followed by
Lemma 4.4.9 we deduce that

1 Fn (32,0 S 1 Aunr) Wn (1), v (1) = A1y @ (1), V(D 172,
1| Ay (1) W (1), v (1) = A1y @ (1), v (M) 1,
1l Ay (1) W (1), V(1)) = Ay 1y @i (1), v (M) 1,
+ 1| Ay (r) O (1), O (1)) = Ay (r) @t (1), Ot (M o,
+ 1| A (1) @t (1), B g (1)) = Ay ) @t (1), Bty (D172 5,
1l Ay (1) @ tn (1), Bty (1)) = Auiy () @t (1), Ot PN T2 5,
2t (1) = (N2 5, ) + 210x (1) = Ot (D172,
Sea Bk 1Un (1) = (D 28,0 102 (D 1 oo 5,

10 (1) = v (D 5,0 (0n D 220 + 108 128,10

+ 12t (1) = g (N 2By 10 (D) [ oo 3,

+ 102 tn (1) = xun (N3, ) (190x1n ()| 10(Bygy + 101 (M| 198,

+ 11t (r) = un (NN 3o 5,y + 200 14n (1) = O (N2,

(4.4.18) StaBakke 13055, S 1T 3a0).

Similarly by using the interpolation inequality (4.3.5) and Lemma 4.4.9, based on the computation of
(4.3.7), we get

ra 2
||6xfn(r)||L2(BZR) S,LA,BA,R,ICB,B l(r,ﬁn(r))»
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where constant of inequality is independent of n but depends on the properties of ¢ and its first two

derivatives, consequently, we have, for some C 7> 0,

o t
(4.4.19) follfn(r)llip(BZR)drsCffo I(r,3n(r))dr.

Now we move to the crucial estimate of integral involving g,. It is the part where we follow the
idea of [48, Proposition 3.4] and [63, Proposition 4.4]. Let m be a natural number, whose value will be

set later. Define the following partition of [0, R],

{ 1-R 2-R 2m-R}

, FEERIN om

Tom’ pm

and set
(k+1-R (k+1)-R . . k-R (k+1)-R)

I'm:= 2—m and tks1 = 2—m if r Z—m, om

Now observe that
t t .
fo <6n(r),gn(r)>H1(BzR)dr=/(; (On(r), (Y (un(r) = Y (up(r))hn(r) g s, dr
t . .
+f0 (©On(r) = 0,(rm), @Y (up(r)) (hy (r) = (1)) g s, AT

t . .
+f0 (0n(rm), @Y (up(r)) = Y (up(rm)) (hp(r) = h(r)) g g, dr

t . .
+f0 ©On(rm), @Y (up(rm)) (hp(r) = A(r)) m g, Ar

(4.4.20) =:G1(8) + G2(1) + G3 (1) + G4 (1).

For Gy, since T —r > 2R, Lemmata 4.2.2, 4.4.4 and 4.4.9 followed by (4.4.14) implies
GL (1) <¢f 190, , AT +f 1Y () = ¥ (), V()1 dr

+ fo e () - uh(r)n%{l(BZR) (1 1 2 g+ 120, V(PN i
[ .
4.4.21) ggfo (1+l(r,5n(r)))(1+IIhn(r)II%I“) dr

To estimate G (1) we invoke (h, k) 1 (g, ) < |1 ll 2B, I kIl 12 2y followed by the Holder inequality and
Lemmata 4.2.2,4.4.4,4.4.9 and 4.4.13 to get

|Gz(t)|<R¢f 192(7) = 0 (a2, | Y @D 2 8,00 1 (7) = P 131,

2
S_,R (\/(; ”Un(r)_Un(rm)”Lz(BZR)dr)

1

t 2
2 2 3 3 2
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1

t 2
Sy M, (f lr—r Idr) sup |lup(M) 1+ up ()13
o " rel0,T/2) Hz(B’)[ HE(Br-p)

R\/M R\/M
S——E sup 1, z,(r) [1+1(r,z5(m)] < ——E B +B),
2 rel0,T/2] 2

(4.4.22)

where in the second last step we have used

(fot|r—rm|dr)§ - (foer_rmW) (Z :l

Moreover, in the third last step we have also applied the following: since &, — i weakly in L2(0, T; Hp),
the sequence hn — his bounded in L2(0, T; Hy) i.e. 3M}, > 0 such that

t - .
(4.4.23) follhn(r)—h(r)llilpdrsMy, Vn.

Before moving to Gs(f) note that, since 2R = T/2, due to Remark 4.4.10, for every s, t € [0, T/2],

t
e, (8) = up ()l 11 By Sf lor (M e By AT S VBIE— sl
N

Consequently, by the Holder inequality followed by Lemmata 4.2.2, 4.4.13 and 4.4.4 we obtain

1

|G3(t)|<(p (f [”Vn(rm)”Hl(B )+||Vh(rm)||H1(B )] di‘)

X (/0 1Y (up(r) - Y(Uh(rm))”ip (Bar) ||hn(r) - h(r))”%]“ dr)

1

t 2
2 2 2 ’ ’ 2
St ( fo 2 ) = o) g1 gy |1 10 Iy N ) s g, | W () = ), dr)

1
kR| : :
r = S | W (r) = () ||i,”dr)

t . -
ST,B (‘[0 [F =Tl IIhn(T)—h(r)II%{#dr) (Z
Tk-1

- ‘ > M,
s\/i(f 17n(r) = R(r)I dr) S\/Tj» relo, T].
2™ \Jo . 2"

Finally, we start estimating G4(t) by noting that for every ¢ € [0, R],

(k;—1)-R k;-R
om 7 om |

there exists k; <2 such that te [

Note that on such interval r,, = szmR

“ /_ (k-R k-R
1G4(D)] < |Z <vn(2m),<pY(uh(2 ))(h (r) - h(r))> dr
H'(Bsg)

Ik—1

t 1.
+f <6n((kt 1) R),(py(uh(w))(h (r) — h(r))> dr|
e 2m 2m H'(Bp)

[

k-R b . .
El( o) )|
L1 HY(Bg)
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_1). -1. o .
+ sup sup <6n(w),(pl/(uh(w))f (hn(r)—h(r))dr>
l<k<2m [ <t<fp_ 2m 2m fe-1 H (Byg)
2" (k'R k-R\\ % . :
< n|— Y - () —
<k§1‘ 0 ( 2m )|H1(BZR) ¢ (uh( 2m ))fzk_l(h ) h(r))dr”Hl(BZR)

(k—1)-R (k-1-R ro, .
2m )HH‘(BZR) (py(uh( 2m ))frk1(h”(r)_h(r))dr|’Hl(BzR)

+ sup sup ﬁn(

lsk<2™ tgst=<ly-)

Soa E |y (i 52 [ -,

~-1- ro, .
+ sup sup Y(uh((k#))f (hn(r)—h(r))dr”

l<k<2m fp<t<tp_, 2 tr1 H'(Bzg)

—.cly?
=:G, + Gy,

where the right hand side does not depend on ¢. By invoking Lemmata 4.2.2, 4.4.4, the Hoélder

inequality, and Lemma 4.4.9 we estimate Gi as

(k-1)-R . PR
uh(—zm )) HHI(BZR)( f ||hn(r)—h(r)||der)

ti-1
(k—1)-R ro PRt
S i | vt =i ar)

k-1

Y

Gi SRT Sup  sup
1<k<2m tp<st<l)

SRT Sup  sup
1<k<2m tp<t<l)

1+ || u (
¢ H'(Bzg)

t . . 3
Serp Sup - sup (f ||hn(r)—h(r)||%q”dr)

1<sk<2m tpst<tp_1 \J l

' 2
(4.4.24) < sup Uk ||hn(r)—h(r)||§1”dr) :

1sk=2m \Jtx
For Gﬁ recall that, by Lemma 4.2.2, for every ¢ € H' (B(x, r)) the multiplication operator

Y()-:K3k— Y(p) ke H(B(x,1)),

is y-radonifying and hence compact. So Lemma 4.4.12 implies the following, for every k,

. 14 . .
(4.4.25) HY(uh(k R))f ' (hy(r)—h(r))dr

—_— “ —0asn—0.
2m te H'(Bag)

Hence, for fix m, each term of the sum in Gi goes to 0 as n — co. Consequently, by substituting the
computation between (4.4.21) and (4.4.24) into (4.4.20) we obtain

t t )
fo B (1), a1 By AT SRLA s fo A+ 10,300 1+ 1113, ) dr

\/TM“ (ft Vin(r) = B(PI%, d );
+ — + su r)—n(r r
2m 1sks%m te-1 " By

2" k-R\\ (% . :
+ ZHY(uh(z—m))f (hn(r) = h(r)) dr
k=1

” te[0,T].
t1 H'(Bp)
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Therefore, with (4.4.19) and (4.4.14), from (4.4.17) we have

t .
l(r,an(r))sfo A+ 10,3000 [T+ 1 n ()12, ) dir

\/TM“ (ftk Vi (F) = h(DI2, d );
+ — + Ssu r)—n(r r
2m 1sksg'" -1 " By

&t k-RY\ [& . .
. ”Y(uh(z—m))f ()~ hr)) dr
k=1

| . teiom),
7 H'(Bzp)

and by the Gronwall Lemma, with the observation that all the terms in right hand side except the
first are independent of ¢, and h,, € Sy further we get

1

M, e . 2

sup 1(,3,(6) S "M T + sup (/ ||hn(r)—h(r)||§<dr)
t€[0,R) 2 1<k=<2m Uz

(4.4.26) + :;ml ks (uh (’;_mR)) frk (i (r) = (1) drHHI(BZR) } .

Lk—1

Now by [137, Theorem 6.11], for every @ > 0 we can choose m such that

(ftk Vin() = (D12, d : NP
su r)— h(r rl +1/T— <a
lskspzm -1 " Hy 2m

and for such chosen m, due to (4.4.25) by taking n — oo in (4.4.26) we conclude that, for every a >0,
0< lim sup I(t,3,(1) <a.

=0 te(0,R]

Therefore, due to (4.4.14) we get (4.4.16) and hence the Proposition 4.4.11. [ |

Now we come back to the proof of Statement 1. Previous proposition shows, for fix T > 0, that every
sequence in Kj¢ has a convergent subsequence. Hence K is sequentially relatively compact subset
of Xr. Let {z,} nen © Ky which converges to z € X 7. But Proposition 4.4.11 shows that there exists
a subsequence {z,, } reny Which converges to some element zj, of Ky in the strong topology of Xr.
Hence z = zj and Ky is a closed subset of X 7. This completes the proof of Statement 1.

Below is a basic result that we have used in the proof of previous proposition.

Lemma 4.4.12. Let X,Y be separable Hilbert spaces such that the embeddingi: X — Y is compact. If
gn — g weakly in L[%(0, T; X), then

if.gn(s)ds—i[lg(s)ds—>0asn—>oo in C(0,TLY).
0 0

Proof of Lemma 4.4.12 Define G, : [0,T] 3 t — fOt gn(s)ds € X. Then the sequence of functions
{Gnlnen € C([0, T1; X). Next, since weakly convergence sequence is bounded, the Holder inequality
gives

[2) 1 T 1
”Gn(tz)_Gn(tl)”XSf IIgn(S)IIXdSSIl‘z—t1I2([0 IIgn(S)IlﬁdS)SCgItz—hlz,

5]
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for some Cq > 0. So the sequence {Gp} en is equicontinuous and uniformly bounded on [0, T]. Hence,
{G}nen is a bounded subset of L%(0, T; X) because C([0, T]; X) < L2(0, T; X). Consequently, since
the embedding X iA Y is compact, due to Dubinsky Theorem [158, Theorem 4.1, p. 132], {i G} nen
is relatively compact in C([0, T]; Y), where iG,, : [0, T] 3 t — i(G,(t)) € Y. Therefore, there exists a
subsequence, which we again indexed by n € N, {iG,},en and F € C([0, T1; Y) such that iG, — F, as
n— oo, in C([0, T1; Y). This implies, for each t € [0, T1, G, () — F(f) in Y.

On the other hand, by weak convergence of g, to g, we have, for every x € X and ¢t € [0, T,

T
(Gn(D),x)x =f0 (8n(8), xLjo,1 () x ds={gn» XL10,11) 1200, ;)

(& xLo,m 1200,1:x) = (G(1), X) x.

n—oo

Hence, for each t € [0, T'], {G,()}nen is weakly convergent to G(f) in X. Since X A Y is compact,
{i(Gn(1)}nen strongly converges to i(G(t)) in Y. So by the uniqueness of limit in Y, i(G(¢)) = F(t) for
t €10, T] and we have proved that every weakly convergent sequence {g,},en has a subsequence,
indexed again by n € N, such that i f; g,(s) ds converges to i f, g(s) ds in C([0, T]; Y).

Since the same argument proves that from every weakly convergent subsequence in L2(0,T; X)
we can extract a subsubsequence such that the last statement about convergence holds, we have
proved the Lemma 4.4.12. |

The following Lemma is about the Lipschitz property of the difference of solutions that we have

used in proving Proposition 4.4.11.

Lemma 4.4.13. Let hy,, h € Sy and I = [—a, al. There exists a positive constant C := C(R, B, M, a) such
that for t, s € [0, T/2] the following holds

(4.4.27) leéll) 10,(8) =0, () 12Bx,Ry SC1E— sl2,
for R=T1/2, wherev,, is defined just after (4.4.11).
Proof of Lemma 4.4.13 Due to triangle inequality it is sufficient to show
SUp 0(0) = Un(9) 125 ) <Clt-slz,  t,s€l0,T/2).

From the proof of existence part in Theorem 4.3.1 we have, for t,s € [0, T/2],
t
VR () = v 2B xR 5[ 10xxtun(M)lr2x,R) AT
N

t
(4.4.28) +[ (a2, Ry + 18R (N 2B xR | AT
S

where

Tn(r) = Ay (R (1), v(1) = Ay oy @x (1), 05 up (1)), and () := Y (up (1) A(r).
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But, since h € Sy¢, the Holder inequality followed by Lemmata 4.2.2, 4.4.4 and 4.4.9 yields

1
t t . 2
sup | lgn(rlz2peory dr <1t sl ( f sup | Y (un (M) 72 g oy 108 17, ds)
N

xel Js xel

<pmult—slz, for t,se[0,T/2],

~

and, based on (4.4.18), we also have

t Lt
sup ”fh(r)”LZ(B(x’R)) dr < |t—5|5 (f sup ”Auh(r)(l)h(r),Vh(r))”iZ(B(x’R))dr)
N

xel Js xel

1 ¢ 2
+t—s|2 (f sup || Ay, () @xtn (1), 0xun D123 .y dr)
S

xel

1
. 1
<it—siz| | supllun)l? IS + 1105, ()13 Vds|
~ ; erI) R\ 2 (B, m) WWVRS 12 (B (x, RY) xUn\S) 2B (x, Ry)

<l|t-s|2 B2, for tsel0,T/2].

Finally, by the Holder inequality and Lemma 4.4.9, we obtain, for ¢,s € [0, T/2],

1
t t 3 t 3
sup | 0xxtun(r)lli2,ry dr < (f ldr) (f sup [lup(r) ”?LIZ(B(X,R)) dr)
N N

xel Js xel
1
SVBIt—s|z.

Therefore, by collecting the estimates in (4.4.28) we get the required inequality (4.4.27) and we are
done with the proof of Lemma 4.4.13. |

4.4.3 Proof of Statement 2

It will be useful to introduce the following notation for the processes

1
vVEén

Letus fixany a >0 and T > 0. Then set N a natural number such that

Zy = Uy, V) = J&r (W+ hn) , Zpn = (Up, Vp) = ]O(hﬂ)

N > |[(uo, vo) |5 (B(0,a+T))-

For each n € N we define an .%;-stopping time

(4.4.29) Tpw):=inf{t >0: sup [Z,(t,0) 5B, T7-1)ZNIAT, weQ.

x€l—a,a)

Define, for z = (u, v) € Hige,
1 2 2 Lo 2
(4430) e(t,x,Z):: E{HMHHZ(B(x,T—t))+”y”H1(B(x,T—t))}: E“ZH%(B(X,T—I))’ XER, te [Ov T]-
In this framework we prove the following key result.
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Proposition 4.4.14. Let us define Z,, := Z,, — z,,. For T,, defined in (4.4.29) we have

lim sup E| sup e(tATnX,Zp(tAT,)|=0.
N—=0yel-a,a] |tel0,T/2]

Proof of Proposition 4.4.14 Let us fix any n € N. To avoid complexity of notation we use an abuse of
notation and write all the norms without reference of the centre of the ball x. First note that under
our notation Z;, = (U, V,,) and z,, = (uy, v,), respectively, are the unique global strong solutions to

the Cauchy problem

04Uy =0xxUp + Ay, (0:Uy,0:Uy) - Ay, (0xUn,0xUp) + Y(Un)hn»
+VeE YU W,
(Un(0),0:U,(0)) = (ug, v9), where V,,:=0,U,,

and

OrtUp = OxxUp+ Ay, (01U, 0rliy) — Ay, (OxUpn, 0xUy) + Y(un)hn»
(Un(0),0:un(0) = (ug, vo), where vy :=0;Up.

Hence Z, solves uniquely the Cauchy problem, with null initial data,

01Uy = 0xxUp — Ay, (0xUp,0xUp) + Ay, (0xUp, 0 uy) + Ay, (0:Up,0:Up)
= Aw, ¢, 0rtn) + Y (Up) i — Y (up) in + Ven Y (U)W,

where V,, := d;U,. This is equivalent to say, for all € [0, T'/2],

! 0 t 0
(4.4.31) Zn (1) :[ St—s( ) ds+f St—s( ) dw(s).
0 fn(s) 0 8n(s)

Here

fu(s) = —Ay,(s) 0xUn(8),0,Uy(9) + Ay, (s) (Oxun(s),0xuu(s) + Ay, (5)(Vn(s), Vu(s))
— Ay, () (U (8), U5 (8) + Y (Upn () i (8) = Y (0, (8)) e (5),

and

gn(8) := VEn Y (Un(s).

Invoking Proposition 4.5.2, with k = 1, L = I, implies for every ¢ € [0, T/2] and x € [—a, al,

e(t,x,Z,(1)) Sfot\/(r, Zn(r))dr+fotﬂ?n(r),gn(r)dW(rDLZ(BT_,)
(4.4.32) + fo t<0x\7n(r),Gx[gn(r)dW(r)DLZ(BT,,),
with
V(t,Z2,(0) = Un(8), V(D) 128,y + V), fa(O) 128,
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1 1
+ (0 Va0, 0x fa( D 128, + 5 D Ign(De; 1228, 5 Z 10x[gn(D)ejlFa5,
j:l j=1

for a given sequence {e;} jen of orthonormal basis of H,,. Observe that, for any 7 € [0, T/2], by the
Cauchy-Schwartz inequality

INT,

TAT,
sup \/(r,Zn(r))drS2f e(r,x,Z,(r))dr
0

0<t=<tJ0

1 TATy, 2

where g, (r)- denotes the multiplication operator in the space %> (Hy, H 1(B(x,R))), see Lemma 4.2.2.
Next, we define the process

¢
(4.4.34) Y@ :=f0 (Vu(r), gn(M) AW () gs,_,)-
By taking fot &(r)dW (r) with
§(r): Hy 3 k= (Vu(r), gn(r) (k) s,y ER,
a Hilbert-Schmidt operator, note that
t
(1) :=/ E(r)oé(r)™dr,
0
is quadratic variation of R-valued martingale Y. Thus
¢ ¢ )
(1) Sfo IS 2, (11, R) ||€(r)*”$2(R,HH) dar =[0 ¢ (r) ”ng(Hw[R) ar

t oo t oo
(4.4.35) =f0 Z|5(r)(ej)|2dr=f S KVa(r), gn(N) (€)Y s, pl>dr,  te10,T/2].
j=1

0 j=1

On the other hand by the Cauchy-Schwartz inequality

o0
j; KVn(r), 8n(r) (€ 3y < IV Wi g, )18 Wy 1 b1, -

Therefore,

t
(4.4.36) Q) < fo IV, )18 oy 1y b1 s,y AT LE10,T/2L.

Invoking the Davis inequality with (4.4.36) followed by the Young inequality gives

3E[\VQT ATy ]

IN

sup (Yt ATyl

0<t<t

1
TAT), 2
Sg[E Sup ||vn(t/\77n)||H1(T—t) {L ||gn(r)'||%(H#’H1(BT7Y)) dr} ]

0<I<TAT,

1 TAT,
<3E|e sup IVaOlfp_y+ oo fo ||gn(r)-||g(Hp_Hl(BTr))dr]

0<t<TAT,
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3
+—E

(4.4.37) <6ekE
4¢e

sup e(f,x,Z,(1)

0<I<TAT,

TAT, )
[0 Ign(r): ”$2(Hu;H1(BT—r))dr] '

By choosing € such that 6¢ = % and taking supy,; followed by expectation E on the both sides of

(4.4.32) after evaluating it at T A T, we obtain

E <E +E| sup Y(sATy)

O<s<t

sup e(s, X, Z,(s))
0<S<IAT,

SATp
sup f V(r, Zn(r) dr
0

O<s<t

Consequently, using (4.4.33) and (4.4.37) we infer that

AT, AT,
E| sup e(s,xZ,() S4[E/ e(r,x,Zn(r)dr HE[ VAGIrs )dr]
0<S<IAT, 0 0 _r
ATy, 9
(4.4.38) +19E [ fo 18n(r) W a1, 1087 dr] ‘

Now since the Hilbert-Schmidt operator g,(r)- is defined as
Hy3k— gn(r)-ke H (Br-p),
Lemmata 4.2.2 and 4.4.4 gives,

sup E <rE

x€l—a,al

AT,
fo ||\/EY(Un(r))||§{1(BT_r)dr]

AT, 5
fo 181 e, 108, 47

tAT), 2
STgnE[ﬁ) (1+"Un(r)”H1(BT7r)) dr]

j(;t/\r" (1 +1Z, (1) ||§{T7r) dr]

<rée, (1+N?.

~

<e,E

(4.4.39)

Here we observe that the constant in inequality (4.4.39) does not depend on a due to Lemma 4.2.2.

To estimate the terms involving f;, we have

15,y S 1AU N OxUn(r),0xUn(1) = A, (1) @xttn (1), 0xttn (D) 1 5,
+ 11 Ay, () (Va (1), Va () = A,y 0n (1), tn (M) 5,
1Y Un () en (1) = Y (@n (MY (M1,

(4.4.40) = fl+f24f3.
By doing the computation based on Lemmata 4.3.4 and 4.4.4 we obtain,

2 S 1Aw, ) OxUn(r),0xUn(1) = Au, () @x Un(1), 0:Un (M35, _
+ ”Aun(r) (0xUn(r),05Up (1) — Au,,(r) (axun(r)»axUn(r))||§_11(BT_,)
+ 1 Au, (Oxun(r), 05U (1) — Ay, (Oxun(r),0xun(r)) ”il(BT—r)

St 1 Un(M) = tn (e, (1 +10xUn (M 5,y +10:Un(M 7 (BT_») x
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x (1+ 12, )
+ltn (N, N0 Un(r) = un(MINp g, N0 MGy,

(4.4.41) S 12, (141200, ) (14 12000, )+ 2a N, |,

and, by similar calculations,

(4.4.42) 25 1200, (14120013, ) (141203, ) + 120, -
Furthermore, Lemmata 4.4.4 and 4.2.2 implies

£3 Sl Un®) = un s, |1+ 10RO+ 1) B, [ 1n I,

(4.4.43) SUZaMIBe, (14120, + 1220, 1)1, .
Hence by substituting (4.4.41)-(4.4.43) in (4.4.40) we get

L) s,y S NZa e (1412003, ) (1120, )+ 12arNS,

2B, (14120, + 120, |1,

consequently, the definition of 7,, and Lemma 4.4.9 suggest

INT ),
E <E f 12aI,_ [(1+ N?)(1+8%) + BY]
0 —r

AT, ,
L ”fn(r)”Hl(BT,,) dr

HIZa (B, (14 N2 +B2) (1+B2) 1 (013, } dr

AT, .
(4.4.44) <E f e(r,x, Zn(r) Cy 5 (1 + A1 ) dr],
0 13

for some constant Cy ¢ > 0 depending on N, B, where B is a function of x which is bounded on

compact sets. Thus substitution of (4.4.39) and (4.4.44) in (4.4.38) implies

E| sup e(s,%2,(5)| Srxéen 1+N?)+CypE

0<S<tAT,

IAT, .
|7 supets, 2ol (14 W1, dr] :
0 H®

0<s<raAt,

Therefore, invoking the stochastic Gronwall Lemma, see [63, Lemma 3.9], gives,

(4.4.45) sup E <ta€n (1+N*)exp|[Cyp(T+M)].

x€l—a,al

sup e(s,x,Z,(s))
0<s<tAT,

Since €,, — 0 as n — oo and

E

sup e(SATy, X,Zr(SATRH) |,
0<s<t

sup e(s,x,2,(s) | =E

0<S<IAT,

inequality (4.4.45) give ’}im SUPye[—q,q1 E [sup0<[< r12€E ATy, X, Zp(EA Tn))] = 0. Hence, we are done
—00 4 -

with the proof of Proposition 4.4.14. |
To proceed further we also need the following stochastic analogue of Lemma 4.4.9.
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Lemma 4.4.15. There exists a constant B .= B(N, T, M) > 0 such that

limsup sup E <A.

n—oo xel[-a,al

sup e(tATy X, Zp(tATy))
te[0,T/2]

Proof of Lemma 4.4.15 Let us fix sequence {e;} jen of orthonormal basis of Hy,. Let us also fix any
n € N. With the notation of this subsection, Proposition 4.5.2, with k = 1, L = I, implies, for every
tel0,T/2]and x€ [—a,al,

¢ t
e(t,x,Zn(t))Sfo \/(r,Zn(r))dr+f0 (Vn(r), gn(r)dW (1)) g1 (B,
with
1 [e.o]
V(r, Zu(r)) =Un(r), V(N 128, ) + Va(1), fu(M)) s, ) + > Y lign(re; ”%II(BT,,)’
=1

and

fu(r) = Au, iy (Vp(r), V() — Ay, (0xUn(r),0,Up(r)) + Y(Un(r))hn(r),
gn(r):= Ve Y (Uy(r).

Next, we intent to follow the procedure of Proposition 4.4.14. By the Cauchy-Schwartz inequality, for
7€[0,T/2] and x € [—a, a], we have

AT, TAT,

sup V(r, Z,(r)dr SZf e(r,Z,(r)dr
0<t<tJO 0

1 [TATx ) )
5 Oy #1080 W )

Since the g, here is same as in Proposition 4.4.14, the computation of (4.4.34)-(4.4.39) fits here too

and we have

E sup e(s,x,Z,(s))

0<S<ItAT,

SrE

AT,
f e(r, x, Zn(r))dr]
0

(4.4.46) +E +e,(1+N?).

IAT, )
fo TGl

Invoking Lemmata 4.2.2 and 4.4.4 implies

I s,y S VAU OxUn(1),0:Un (D 55 5, + 1 Av, ) (Va (1), Va (D30 5,
1Y Un () n (D3,
St (VH U, ) [T+ 10000,y + IVa 25, + N (DI,

S 1z, ) [1+12200,, | + 1)1, |-
So from (4.4.46) and the definition (4.4.29) we get

sup E <ra N?E[tAT,) +E,(1+ N?)

x€[—a,al

sup e(s,x,Z,(s)
0<Ss<IAT,
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+(1+N>E

AT, , )
fo (1+N +hn(r)||H“) dr]

<rN2T+(Q+N?)T+M+e,1+N?).

Since r}im €n =0, taking limsup,,_.,, on both the sides we get the required bound, and hence, the
—00
Lemma 4.4.15. |

Lemma 4.4.16. Given T > 0, the sequence of Xq-valued process {Z,} nen converges in probability to 0.

Proof of Lemma 4.4.16 Let us fix T > 0 such that 7= T/2. We aim to show that for every x € R and
R,d, a > 0 there exists a natural number 7y such that

(4.4.47) PlweQ: sup [|Z,(t,w) 19s0m >0

t€(0,7]

<a forall n=ny.

Let us set R = T and x, 6, @ be any arbitrary. As a first step we show that, there exists ny € N (may
depend on x, 7,8, @) such that

(4.4.48) PlweQ: sup ||Zn(t,w)||:}{3(x,m >0|<a forall n=ny.

t€[0,T/2]

Before moving further observe that, since || - ll5¢,,, is increasing in r and for ¢ € [0, T/2] we have
T-t=T=R,

(4.4.49) {weQ: sup 1Z,(t,0)ll5c,,, >0t S{weQ: sup [1Z,(fw)llgcy, ., >0}
t€[0,7/2] t€[0,T/2]

Consequently

(4.4.50) PloeQ: sup 12,0505, >0 <P |lweQ: sup 1Z2,(80)le, ., >06|.
t€[0,T/2] t€[0,T/2]

Since x is fix in the argument now, there exists a > 0 such that x € [—a, a]. Further note that since
0<e(t,Z,(t,w) = %II Zn(t,w) ”Iz}fg( e due to (4.4.50) instead of showing (4.4.48) it is enough to show
that there exists 7y € N such that

(4.4.51) PlweQ: sup e(t,x,Z,(t,w))>5%/2

t€[0,T/2]

<a forall n=nyg.

But since x € [—a, al,

P weQ: sup e(t,x,Z,n(t,w))>52/2 .

te(0,T/2]

weQ: sup e(t,x,Z,n(t,w))>52/2 < sup P
te[0,T/2] x€[—a,al)

Consequently instead of (4.4.51) it is sufficient to show that

(4.4.52) sup P

x€[—a,a)

weQ: sup e(t,x,Zn(t,w))>62/2
1€[0,T/2]

<a forall n=ng.
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Now choose N > ||(ug, vo)ll% ... such that, based on Lemma 4.4.15,

a+T

1
(4.4.53) —sup sup E

sup e(tATy X, Zp(tATy))
N neN xel[—a,al

a
< )
£€[0,T/2] 2

and rng € N, due to Proposition 4.4.14,

2a
(4.4.54) sup E < e for all n = ny.

x€[—a,al

sup e(tATy, X, Zu(tATy))
1€[0,T/2]

Then the Markov inequality followed by using of (4.4.53) and (4.4.54), for n = ny, gives

sup e(t,x,Z,(t) > 5212
t€[0,T/2]

sup P

x€[—a,al)

sup e(t,x,Z,(1) > 52/2 and Tn=T
€[0,T/2]

= sup P

X€[—a,a)

sup e(t,x,Zy,(t) > 62/2 and TnZT
1€[0,T/2)

+ sup P

x€[—a,a)

sup e(t,x,Z,(1) > 52/2 and =T
1€[0,T/2]

= sup P

x€[—a,a)

sup e(t,x,Z,(8) >6%/2and e(t, Z,(1)) = N
te[0,T/2]

+ sup P

x€[—a,a)

sup e(t,x,Z,(1) > 6%/2 and Thn=T
t€[0,T/2]

< sup P

x€[—a,a)

+ sup P

x€[—a,al te[0,T/2]

sup e(t,x,Zy(1) = N]

sup e(t,x,2,(t,w))

2
<— sup E
62 1€[0,T/2]

x€[—a,a)

1
(4.4.55) +— sup E

x€l—a,a)

sup e(f,x,Z,(t,w))| <a.

te[0,T/2]

Now we move to prove (4.4.47) when R is not set to T. Since the closure of B(x, R) is compact and
B(x,R) € Uyep(x,r)B(y, T), we can find finitely many centre {x; ;’il such that B(x,R) c U;’ilB(x,-, T).
Moreover, since B(x,R) is bounded, there exists a > 0 such that B(x,R) € [—a,al. In particular,

x; € [—a,al foralli=1,...,m. Then since || Z,(t,w) l9Ca0 0 < Z?il ||Z,n(t,w)||g{3(xﬂ), we have

m
(4.4.56) weQ: sup 12p(t, )5y, 20 clweQ: sup Y I1Zn(t, )5y, 5 =6}
1€[0,T/2] te[0,T/2] j=1 !

Hence,

m
weQ: sup Z||Zn(t»w)”5fmx,-,n>5

sup PlweQ: sup IIZn(t,w)Ilg{B(va)>6
tel0,T/2] j=1

x€[—a,al te(0,T/2]

< sup P

x€[—a,a)
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m
<) sup PlweQ: sup 120 (8, ) 361, > 6
i=1x€[-a,al te[0,T/2]
=m sup PlweQ: sup [Z,(t,0)l5¢,,, >0
xe[-a,al 1€[0,T/2] '

(4.457) =m sup P

x€l—a,al

weQ: sup e(t,x,Zn(t))>62/2‘.
t€[0,T/2]

Now by taking a as a/m in (4.4.55), of course with new a, we get that there exists an ng € N such that,

for all n = ny,

(4.4.58) sup P

x€[—a,a)

<.

weQ: sup ||Z,(t,w) l9Cs 00 > 0
1€[0,T/2]

Hence the Lemma 4.4.16. |

Now we come back to the proof of Statement 2. Recall that Sy, is a separable metric space. Since,
by the assumptions, the sequence {-Z (hy)} ,en Of laws on Sy converge weakly to the law .2 (h), due to
the Skorokhod representation theorem, see for example [90, Theorem 3.30], there exists a probability
space (Q,.Z,P), and on this probability space, one can construct processes (71,,, i, W) such that the
joint distribution of (fzn, W) is same as that of (%, W), the distribution of h coincide with that of A,
and £, — h, P-a.s. pointwise on Q, in the weak topology of Sy;. By Proposition 4.4.11 this implies
that

fooiln—>]00i:l in Xr l]i’-a.s.pointwiseonfl.

Next, we claim that

L(zn) =L (zy), foralln,

where

zn:=Jch:Q—Xp and Zpi=Jh,:Q— Xr.

To avoid complexity, we will write J°(h) for /%o h. Let B be an arbitrary Borel subset of Xr. Thus,

since from Proposition 4.4.11, J9: Sy — X7 is Borel, (J%~1(B) is Borel in Sy. So, we have
L(z)(B) =P [’ (hp) (@) € B] =P [, (U (B))] = L (hn) (U (B)).

But, since .Z(hy,) = .Z(h,) on X, this implies .Z(z,)(B) = £ (Z,)(B). Hence the claim and by a
similar argument we also have .2 (zj,) = Z(z},).

Before moving forward, note that from Lemma 4.4.16, the sequence of Xr-valued random
variables, defined from Q, Jé(h,,) — J°(hy) converges in measure P to O.~Consequently, because
L(hy) = L(h,) and J&n — J° is measurable, we infer that J&* (f1,,) — J°(f1,,) = 0 as 1 — oo. Hence we
can choose a subsequence {J¢” (fzn) —Jo (fln)}neN, denoting by same, of X r-valued random variables

converges to 0, P-almost surely.
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Now we claim to have the proof of Statement 2. Indeed, for any globally Lipschitz continuous
and bounded function ¥ : X7 — R, see [64, Theorem 11.3.3], we have

‘ fx w(x)dL U (hy)) — fx W(x) dﬁ(ﬂ(h))’
= fx w(x)d.L U (hy)) - fx W(x)di”(]o(fl))’

= fw(ff"(fan)) d@—f_w(f"(ﬁ)) d[ﬁ”
Q Q

IA

fﬂ{w (o (hw) =y (J°(h)} d[ﬁ"

+ fﬁw(ﬂ(ﬁn)) dlf”—fﬁw(lo(fz)) dlﬁ‘.

Since ]O(fzn) — J%Hh), P-a.s. and ¥ is bounded and continuous, we deduce that the 2nd term in
n—oo
right hand side above converges to 0 as n — co. Moreover we claim that the 1st term also goes to 0.

Indeed, it follows from the dominated convergence theorem because the term is bounded by
Ly fQ JE () = J° () | P,

where Ly, is Lipschitz constant of y, and the sequence {Jer (fz,,) - ]O(fzn)}neN converges to 0, P-a.s.

Therefore, Statement 2 holds true and we complete the proof of Theorem 4.4.6.

4.5 Auxiliary results

4.5.1 Existence and uniqueness result

In this part we recall a result about the existence of a uniqueness global solution, in strong sense, to
problem

( ) Ot =0xxu+ Ay(0ru,0:u) — Ay(0xu,0xu) + Y, (0:u,0x1) W;

45.1
u(0) = ug, 0:u(0) = vy.

In this framework, [23, Theorem 11.1] gives the following.

Theorem 4.5.1. Fix T >0 and R > T. For every %-measurable random variable (ugy, vo) with values
in leoc X HZIOC(IR{, T M), there exists a process u: [0, T) x Rx Q — M, which we denote by u = {u(t),t < T},
such that the following hold:

1. u(t,x,):Q— M is %-measurable for every t < T and x € R,

2. [0,T) 3 t— u(t,-,w) € H>((—R, R);R™) is continuous for almost every w € Q,

3. [0,T)3t— u(t,-,w) € H ((-R, R);R") is continuously differentiable for almost every w € Q,
4. u(t,x,w)e M, foreveryt < T, xR, P-almost surely,
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5. u(0,x,w) = up(x,w) and 6;u(0, x,w) = vo(x,w) holds, for every x € R, P-almost surely,

6. foreveryt=0andR >0,
o u(t) = v0+f0t[6xxu(s) — Au(s) @xu(s),0xu(8)) + Ays) (0, u(s),0,u(s)| ds
+f0tYu(s)(atu(s)raxu(s))dW(S),
holds in L?((— R, R);R™), P-almost surely.

Moreover, if there exists another process U = {U(t); t = 0} satisfing the above properties, then, for every

x|l <R—tandte(0,T), U(t,x,w) = u(t,x,w), P-almost surely.

4.5.2 Energy inequality for stochastic wave equation

Recall the following slightly modified version of [23, Proposition 6.1] for a one (spatial) dimensional

linear inhomogeneous stochastic wave equation. For I € N, we use the symbol D!1 to denote the

nx1 d'n' d'n? d'n"
R -Vector(dx,, o |

Proposition 4.5.2. Assume that T >0 and k € N. Let W be a cylindrical Wiener process on a Hilbert
space K. Let f and g be progressively measurable processes with values, respectively, in H l’f} (R;R™) and
(K, Hl]f)c(lR; R™)) such that, for every R > 0,

T
2
jo‘ {”f(s) I % (= r,R);Rm) T+ 118(S) “,SfﬂK,H"((—R,R);R"))} ds < oo,

P-almost surely. Let zg be an %y-measurable random variable with values in
HE = HEW®R™Y) x HE (R;R™).

loc* loc

Assume that an fooc—valued process z = z(t), t € [0, T1, satisfies

t 0 t 0
z(t):Stzo+f S,_s( )ds+f s,_s( )dW(s), 0<t<T.
0 f(s) 0 g(s)

Given x € R, we define the energy function e: [0, T] x fo‘oC —R* by, forz=(u,v) € ?C;;C,

1 2 K 41,2 )
e(trz):§{||”||L2(B(x.T—m+ZZO[”D Ul 2, r-n) t 1D ””LZ(B(x,T—r))] :

Assume that L : [0,00) — R is a non-decreasing C?-smooth function and define the second energy
function E : [0, T x IH;;C —R, by
E(1,2) = L(e(t,2)), z = (u, v) € H},

loc*
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Let {e} be an orthonormal basis of K. We define a function V : [0, T] x ﬂ-fi)c —R, by

k

1, nl
(U, VY 2@ T-m+ 2 D0, D f(O) 2Bx.7-1)
=0

V(t,z) = L'(e(t,2)

1 k
+ L2} Y ID gme)] T 1o *

Jj =0
1 k ’
+ EL"(e(t,z))Z > (D'v, D'ig(t)ejD e r-r) | » (1,2) €10, TI x .
j Li=o

Then E is continuous on [0, T] x .‘J-(;‘oc, and forevery0<t<T,
t

E(t,z(1)) <= E(O,zo)+f V(r,z(r)dr
0

k t
+ Y i L'(e(r, 2D v(r), D' g(r) dW (M) s 7—ry,  P-a.s..
=0
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CHAPTER

STOCHASTIC GEOMETRIC WAVE EQUATION ON R'*! WITH ROUGH DATA

n this chapter we establish the existence of a unique local (both time and space) solution to
geometric wave equation, perturbed by a fractional (both in time and space) Gaussian noise,

on one dimensional Minkowski space R!*!

when the target manifold M is an arbitrary compact
Riemannian manifold and the initial data is rough in the sense that it belongs to a larger space than

x[2 (R, TM).

loc

so-called the energy space H}

loc

The chapter is structured as follows. In Section 5.1, we introduce our notation and provide the
required definitions used later on. In Section 5.2 we rigorously justify that in order to prove the
existence of a unique local solution to Cauchy problem (1.2.5) it is sensible to consider the problem
(1.2.6). Section 5.3 is devoted to formulate the stochastic wave map Cauchy problem (1.2.6) in the null
coordinates and to state all the necessary assumptions in detail. In Section 5.4 we derive the estimates
needed in order to apply the Banach Fixed Point Theorem (in a suitable space). The complete proof of
the existence and uniqueness of a local solution is given in Section 5.5. We conclude the chapter with
two auxiliary results. First one is a useful result on the tensor product of Hilbert-Schmidt operators
whose proof is in Subsection 5.6.1. In the second one, which is in Subsection 5.6.2, we show that the

perturbed wave maps of sufficient regularity are invariant with respect to local charts.

5.1 Notation and function spaces setting

In this section we set the notation and define the function spaces that we use throughout the
chapter. By symbol N we denote the set {0,1,2,...} of natural numbers. If x and y are two quantities
(typically non-negative), we use x < y or y 2 x to denote the statement that x < Cy for some
constant C = 1. More generally, given some parameters a, ..., ay, we use X Sg, a, YOI Y Zay,.oar X

to denote the statement that x < Cy,, . 4,y for some constant Cg, . 4, = 1 which can depend on the
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parameters a, ..., ax. We use x = y to denote the statement x S y < x, and similarly x =4, 4, ¥

denotes x Sa,...a ¥ Say,...ai X-

Definition 5.1.1. For r € N we define C" (R?) as the completion of $(R?) (class of Schwartz functions)

in the norm
I fller@ay:= Y, sup |D*f(x)l,
lal<r xeR4
_ glal _ d - .. _ d .
where D% = PRI a=(aj,...,az) € N® is a multi-index, and |a| = ijl a ;. We define

d

el (RY):= {u: u e C"(R?Y),3 acompact subset K of R? s.t supp u < K}.

comp

Ifr is a positive real number with integer part [r] and fractional part {r} € (0,1), then we set C" (R%) as

the completion of $(R?) w.r.t the norm

D f(x) = D% f(y)l
I fller ey := I fll eir may + E sup .
= R E S

It is straightforward to check that the set CT(R%), for every r = 0, is a separable Banach space.
For simplicity we write C(R?) for °(R%). From now on, by a test function we mean an element of
CRmp (R).

Definition 5.1.2. By LP(R%) for p € [1,00) we denote the classical real Banach space of all (equivalence

classes of) R-valued p-integrable functions on R%. The norm in LP (R%) is given by

1
el p ey == (fw Iu(x)l’”dx)p . ueLPRY).

By L®([R%) we denote the real Banach space of all (equivalence classes of) Lebesgue measurable

essentially bounded R-valued functions defined on R* with the norm
”u”Loo(Rd) 1= ess sup {Iu(x)I:xEIRd}, uELOO(Rd).

Definition 5.1.3. For s € R, we define the Bessel-potential space H*(R%) by
1
H'RY) = { ueS' RY : ull s ey = (fw O 1a”? d€) < oo} ,

where (&) := (1 +|&]2) 2 , 8! (RY) is the set of all tempered distributions on R%, and 0 denotes the Fourier
transform of u. Moreover, for any u € 8'(R%), we write u € Hlsgc(le) ifand only if pu € HS([RY) forall

PeCH (R,

comp

Definition 5.1.4. For me N and p € (1,00), the Sobolev space, denoted by W"P (R%), is defined by,

W™PRY) = (f € LPRYD) : N fllywmpay:= Y. IDfll 1pay < oo},

lal=m

where the partial derivatives are understood in the sense of distributions.
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Definition 5.1.5. For0 < s # integer and p € [1,00), we define the Slobodetski space W*? (R%) by

Ws'p(Rd) = {f € W[s]'p(Rd) : ”f”Wsyp([Rd) = ||f||W[sl,p([de)

N (f |ID*f(x) - D*f(IP
lal=1s] RA xRd |x_y|d+p{s}

1
dxd y) ' <00 } ,
where [s] and {s} are the integral and fractional parts of s, respectively.
Next result is a well known equivalence in the theory of function spaces, see [155].
Lemma 5.1.6. Ifs >0, then WS%(R?) = HS(R?) with equivalent norms.

In the next section we need the following Bessel-potential space of order s € R on domain O c R¢
where we justify the consideration of SGWE Cauchy problem in terms of local coordinate charts on
M.

Definition 5.1.7. For any arbitrary bounded or unbounded domain © c R? we set
H%(0) := {fe D'(O): f=g|O forsomege HS(IRd)},

where D'(O) is the set of all distributions on O and g | O denotes the restriction of g € D'(0) in the

sense of the theory of distributions.

Since H*(0O) is a factor space, it is a Banach space (actually a separable Hilbert space) w.r.t. the
following norm
||f||HS(O) = inf ||g||Hs([Rd)~
geH (RY)
glo=f

Moreover, for any closed set F < R?, the Sobolev space H 7 is defined as
Hj = {ue HS(RY) :supp u;F}.

Note that H}, is a closed subspace of H* (R%), and is therefore a Hilbert space when equipped with
the restriction of the inner product of H*(R%).

For any class of functions .% defined on R4, by Zcomp We denote the set
{f € .# :supp f is a compact subset of RY}.

To capture the dispersive smoothing effect of the nonlinear wave equation we need the following

hyperbolic Sobolev spaces.

Definition 5.1.8. The hyperbolic Sobolev space H? (R?) for 5,6 € R is defined as the closure of $(R?)

w.r.t. the norm:

1

2ell 5o g2y == ( fR AT+ DTl = €0 [Tl (x, ) dE d 2,
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wheret,¢ are the dual variables to t, x, respectively, and

(5.1.1) [Ful(t,$) ::f e T yp x) dr dx,
[RZ

is the space-time Fourier transform for u = u(t,x) € S(R?).

To avoid many notations, from now on we will use the same notation J to denote the Fourier
transform in the space variable, or in the time variable or in the space-time variables unless it is
not clear from the expression. The next result concerns about the continuous embedding of the
space H*? (R?) into C (R; H*(R)) N €' (R; H*~1(R)), which in result provides a motivation to consider

the H%% (R?) space in the analysis of wave equation via an iteration procedure.
Theorem 5.1.9 (Trace Theorem). For everys,d € (%, 1), the following holds
()l sy + 110 (1) ||H;-1(R) < ull yso ey, foreveryteR.

Proof of Theorem 5.1.9 Let us fix u € S(R?). For any ¢ € R, as an application of the Cauchy-Schwartz

inequality, we get

2 2
12O ey +1 @10 ()12

(5.1.2) < f f Rl L1 (P
o ~Ir R

(Tl +1En2s(IT] = 1§20
To move forward we consider the integral

drt

UR<|71I+I€I>25<I11|—|€I>2‘5I(3"u)(n,€)lzdn de.

(E)28 +|7|2(&y26—D)
R (7] +[EN2S(|T| - |€])20

for this which holds uniformly w.r.t. £. On this path we divide the real line in two regions: || < % and

dt and find a suitable estimate

€] = % on which we estimate the integral separately. Due to the conditions s € (0,1) and s+ 6 > %, for

anyéeR: 0= || < 1 we deduce that

25+26-2

dT§f(1+Tz)_ > dr=1.
R

[(6)23+|T|2<€>2“‘” _ [ (219
[R ~Y

(5.1.3) d o
(TI+1ENZs(IT| - 1€20 ! =0} (7| —[€])?0

Next, we fix ¢ in the other complement region such that || = % We separate the estimate in the

following two sub cases: (1) when the domain of 7 is such that |7| < 2|{|. Here, by using 26 > 1, we get

(€25 +|713¢)2 D f 2,-6
1+|1— d
f{mszm} Qe+ 102l — 102 ©T Jorzagy T TIID AT
(5.1.4) 5/(1+|r|2)‘25’2dr=1.
R

In the subcase (2), where the domain of 7 is {7 € R: |7| > 2|¢|}, by invoking the relations s < 1,5+ 6 > %

we obtain
OF +THOY (& Ve
f{lrl>2|€|} (Tl+1EN2s(ITl - 1€1y2° TNf{|r|>2|é|} A+ TPl —1enz "
(5.1.5) ng(1+|r|)‘2“+5‘” dr=1.

130



5.1. NOTATION AND FUNCTION SPACES SETTING

Then by (5.1.3) - (5.1.5) we have

f ©F+rP@* P
R (Tl +1EN2 (T = 1gn2e

which consequently finishes the proof of Theorem 5.1.9 because by using above in (5.1.2) we get
(IOl e [CHRIG] AP fR ATl + DTl = D1 T w) e, I dry dé.
|

To define the integration with respect to paths of the fractional Brownian sheet we need to use
the Besov spaces as well. Let us choose {¢ j}‘]’io c §(R) an arbitrary dyadic partition of unity on R, that

is, a sequence {¢; ‘]’.‘;0 which has the following properties
1. Support property:

supp o < {x: |x| =2},
supp @ < {x:2/ 7 < x| <2/*1}, if jeN\ {0}

2. Bound property: for every n € N there exists a number C, > 0 such that
Zj”(pg.") (x)<C,forall jeNandall x€R,
where <p;.") denotes the n-th derivative of ¢ ;.

3. Unity sum property:
o0

Y @j(x)=1forevery x € R.

j=0

We refer [156, Remark 2.3.1/1] and [3, Proposition 2.10] for the existence of such partitions. It is
relevant to note that the Besov norms, in Definition 5.1.10, corresponds to any two dyadic partitions
of unity are equivalent. Hence, without loss of generality, we fix the dyadic partition of unity, in the

rest of the chapter, as the following system: let ¢p € S(R) be a non-negative function with

1 1
su c xER:—SlxISZ}and (x)>Oif—S|x|S\/5.
pp ¢ { 7 ¢ 7z

Let ~
o)=Y o2 k.

k=-00
Due to support property of ¢, the series in right hand side above is locally finite on the set R\ {0}. Now
with the function

(5.1.6) w(x) := p(x)(P(x) 7,
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we set

(pj(x)::i//(z_jx), forj=1,2,..., and (po(x):zl—Z(pj(x).
j=1

Given h € §'(R), and f € 8'(R?), the 1-index and the 2-index, respectively, the Littlewood-Paley

0, ifj=-1,
A]‘hiz{ /

blocks are defined as

F @ OFh©)], ifj=0,

and

0, ifjs-lork=-1,
Aj’kf:: -1 e
F e @er@©TFNHE,6], ifjk=o0.

By the Paley-Wiener-Schwartz Theorem, see for example [68, Chapter 10], Ajh and A i f are well-
defined entire analytic functions. Based on such Littlewood-Paley blocks we define the Besov spaces

as follows.

Definition 5.1.10. Let {(pj}‘]?io be a dyadic partition of unity. For s € R, (s1,52) € R2, g € (0,00] and
p € (0,00], we define the Besov spaces, denoted by B), ,(R), as,

1/q
B, ,(R) := {f €8'®): I fllgy,m = (Z 2°74 ||Ajf||;’p®) < oo}.

jez
and the Besov spaces of mixed smoothness, denoted by S;iléSZ)B(RZ), as,
Sy B®) = {f e S'®): 1 £ <oof
P.q S gL pre) ’

where

1/q

— (jsi+ksz) q

”f”S(Sl'sz)B(RZ) = ( Z Zq JS1 2 ||Aj,kf||Lp(R2)) .
pa j.kez

It is well known that (B;,,q([R), Il IIB;_q(R)) and (SS},}SZ)B(RZ), -l
restrict to indices p, g € [1,00], see for example [141] and [156].

S612) B([RZ)) are Banach spaces if we
pq

Next, we define the required Sobolev spaces of mixed smoothness which we will denote by
(51,52) 2
Sy 0 HRA).

Definition 5.1.11. Let (s1, s2) € R%. Then, the Sobolev space of mixed smoothness S%’SZ)H (R?) is the
set of all tempered distributions 8' (R?) such that

”f”S;S;Sz)H(RZ) = ([RfR<T>281 <£>252 |[?f](T,f)|2 def 2 ,
is finite.
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Note that by definition the spaces S:(;ESZ) H(R?) are nothing else but the product Sobolev space
H;' Hy?(R?) defined, used in [92, 108], as

{f €8'®) 11 fll o g2 ey = ( fR fR @ HE*2 | [Ff1, &) dr d6)2 <oo},

where J is the space-time Fourier transform defined in (5.1.1). Moreover, for any f € 8'(R?), we write
feH! H? ®)ifand only if p(£)y (x) f € H;' Hy* (R?) for all ¢,y € €5, (R).
To do the required analysis we also need the vector-valued Lebesgue and Sobolev spaces. Let E

be a separable Banach space.

Definition 5.1.12. Let I be an either bounded or unbounded interval of R, and p € [1,00], we define

LP(I;E) as the set of all (equivalence classes of) strongly measurable E-valued functions such that

14
el L1y = ( fI ||u(x)||§dx) <00,

if p<oo, and

ltell poo(r;p) := ess sup {llu(x)|g: x € I} < oo,

ifp=o0.
ForkeNand p € [1,00], the Sobolev space WKEP(I; E) is the space of all u € LP (I; E) whose all weak
derivatives of orders |a| < k exist and belong to LP (I; E). We set

lullwer g = Z ||Dau||LP(I;E)-
|a|=K

Moreover, for s € (0,1), we define the E-valued Slobodetski space WP (I; E) as
WHP(LE) := {u € LP (L E) : lltll s 1.5y < 00}

where

1
lu(x) = uIf, ro
”u”WS‘p(I;E) = (ﬁXI—dedy ’ lf‘p<00,

|x_y|1+ps
and || ullyysp 1. g) := €ss sup {% :x,ye]}, if p=o0.
; X—

It is well known, in the theory of analysis of vector-valued functions, that the spaces L”(I; E),
WkP ([, E), and WSP(I; E) are Banach spaces, respectively, with the norms | - || .» (1;5), |- | wr 1.y, and

I ler ey + 1 Wyse (.-

Definition 5.1.13. Let p € (1,00) and s € R. For a Hilbert space E, we define the vector-valued Bessel-
potential space H>? (R; E) by

HP®E):={ue S ®B): T (1 +16D} Tu©)e PR B,
where 8'(R; E) is the space of E-valued tempered distributions, and put

lulmsrmn = | F7 (A+1EDF TwE)

LP(R;E)
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If p = 2 and E a Hilbert space, we denote H%?(R; E) by H*(R; E). Moreover, in this case, the
vector-valued Plancherel Theorem holds and the norm defined above becomes

1

2l gse ) = ( fR A+1EP N1 Tw 5 dé "

Furthermore, for any s = 0, WS2(R; E) = H'(R; E) with equivalent norms. For an arbitrary domain O,
we define H*(0) in the spirit of Definition 5.1.7.

To do the computation we also use the various embeddings and the equivalences between the
defined functions spaces. Our next theorem provides the equivalence between spaces which are not

included in the literature directly. We will use these equivalences without specifying it explicitly.
Theorem 5.1.14. Fors,0 € (%, 1], the following hold in the sense of equivalent norms

1 WH2R W2 R) = W2 R W ®).

$2 m. 1470,2 — JS(- 10

2. W (R Wi (R) = H; (R; H; (R)).

3. H:(®; H (R) = HS(R; HS (R)).

4. H{ (R HXR) = S5 HR?).

5. Sy5B(R?) = S35 H(R?).

Proof of Theorem 5.1.14 Note that the Claim (5) of the theorem is Remark (ii) in Appendix A.2 of
[145] and the Claim (3) is a direct consequence of points (1) and (2). Hence we only need to prove
assertions (1), (2), and (4).

Before proving (1), recall from [86, Proposition 1.2.24] that the spaces L% (R; Li(IR)) and Li(ﬂ%; L% (R)

are isometrically isomorphic to L%(R?:R). Let us denote the corresponding isomorphisms as

{ i 2R [2[R) — L2(R%R),
(5.1.7)

iy : [2(R; L2(R)) — L*(R%;R).
Let us fix 5,6 € (0,1) and take f € CF,,(R; €5, (Rx)), where we write R; and Ry to show the
variable explicitly. So, f belongs to Wts’2 (R; Wff ’Z(R)) and Li’Z(IR; Lg’Z(IR)). By Definition 5.1.12 and
isomorphisms (5.1.7) followed by the Fubini Theorem we obtain
1 e i (f) ”ii(n&;wﬁzmn = 0 i (D2 2wy

+f f |([(i;10it)(f)](x))(tl)—([(i;loit)(f)l(x))(tznzd
R |JR2

[t — tp|1+28
i f1(t1, %) = [ie f1 (L2, X)|?
:||f||i§(R;L§(R))+fR2fR 1 DL avanar,

hdt|dx

|t1 _ t2|1+23
, If () = fE)I7, ,
— kd < ,
(5.1.8) 1oz fR e Andn S U
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By similar calculations

.—1 . 2
|| (lx o ll’) (f) ” W){&,Z(R;W:,Z(R))

G 0 i (M) =[G o i) (NI (x) 12 g

fRZ |x] — Xp|1+20 X1 4x2
+f II[(i;IOit)(f)J(xl)—[(i;loit)(f)](x2)||§vﬁz(md )
R2 |x1 — Xp|1+20 X1 4x2
i, f1(2, x1) = Liy f1(£, x2) |2
- dx;dx;dt
./IR R2 lx] — xp|1+20 X14X2
I[i, f1(t1, x1) — i f1(E2, x1) = lig (1, X2) + [ig f1(£2, X2)|?
dx dxydn dt.
R* |tl_t2|l+25|x1_x2|1+25 X1axydtydty
I f(t1) = f(E)II?

70,2
— 2 Wy ([R)

2 2
—_ . < .
I f” W;’2 (R;WE'Z(R)) I f I Wts‘2 (IR;Wx&’2 (R))

(5.1.9)
Hence by (5.1.8) and (5.1.9) we proved that the map
Jix : Coomp R Coomp (R)) 3 f — (i o) f € W (R; W (R)),

is continuous. The injectivity and linearity of J; is obvious. Since CZ3,, (R¢; €25y (Ry)) is a dense
subspace of Wts'z([R; Wf 2 (R)), there exists a unique continuous extension of this map, which we will
also denote by I, from W *(®; W22 (®R)) into W22 (R; W2 (®R)).

Similarly, we can prove that the map Jy, := i, 1o, defined by
Coomp R Conp (R 3 f = (i 0 i) f € WP (R; WO (R)),

is continuous, linear and injective. Consequently, there exists a unique continuous extension of J;,
which we will also denote by J,;, from Wf’Z(IR; Wts’z(IR)) into Wf’z(R; Wf’z([R)). Since

1 . 1 . . 1 . 1 . .
(iy eigoliy oiy) =idex, ®iez,,®) and (i oiy)o(i, ol =ideg  ®;e2,,®)

we deduce that

jtxojxt=id and thoj[x=id

W R W (R)) W R WY (R)*
Hence, we are done with the proof of assertion (1) of the Theorem 5.1.14.

To prove the claim (2), let j,: Wff ’Z(R) — H)‘z (R) be an isomorphism, thanks to Lemma 5.1.6. So
for any f € X, Ry W (R) © W2 (®R; WP (R) and £ € R, j(f (1) € HJ(R). Since for ¢ outside a

compact set f(t) =0 and the isomorphism j is linear, the following map

J: Coomp R WP (R) 3 f — jiu f € oo, Ry HY(R)) < Hy (R; HY (R)),

comp

is well-defined, where j f:R3t— j . (f(1) € H)‘Z (R). Observe that the injectivity and linearity of J is
easy to see because j, has both the properties. Invoking Lemma 5.1.6 followed by Sobolev embedding,
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since s > £, gives
(5-110) ”]f”HE‘(RyH)‘Z(R)) S_, igng ”f(t)wavz(R) = ”f”LoO(R;W;Z'Z([R)) = ”f“Wf‘Z(IR;Wf‘Z([R))'

Since eggmp(Rt; W)‘? 2 (R) — W[S’2 (R; W,‘f ’Z(R)) densely, there exists a unique continuous extension

of the map J, which we again denote by J, from Wts’2 (®; W,‘f 2(R)) into H; (R; Hg (R)). This unique
extension satisfies the bound (5.1.10) with the same constant of inequality. By following the similar
steps we can prove that there exists a linear and continuous operator which maps H; (R; HS(R)) into
Wf’z (R; W,f 2(R)). Then we finish the proof of second claim of Theorem 5.1.14 by a similar argument
we made in the last for Assertion (1).

Assertion (3) follows from [145, Theorem 2.1] once we show that Hf (R; Hf([R)) is isomorphic to
H f ®® Hﬁ (R) because all tensor products on Hilbert spaces are equivalent. It is well known that the
Fourier transform F : L2(R) — L?(R) is a linear isomorphism. Let Iy : H — H be identity map for any
separable Hilbert space H. Then [145, Lemma B.1] gives

Fely:L*R)® H— L*R)® H,

alinear isomorphism. But since [2(R)® His isomorphic to L2(R; H), the map F® I gives the following
isomorphism
Fp: 2R, H) — L*(R; H).

Now define, for s > 0, a closed subspace of L?(R; H) by
LA(R; H) := {[f] :f:R— Hand fR(l +|€|2)s|f(€)|§{d<f<oo}-

By taking (R, (1 + 1E12) 3 d¢) measure space in [152, Example E.12] we get that L% (R) ® H is isomorphic
to L2(R; H). Next, let us set E := H2(R) and define

H](R;E) := ?El(Li(R;E)) with inner product
(5.1.11) (8 femp = (L+ A2 F,A+1EP2 Q) p@p = fR A +IE12(f, ) p dE.

It is easy to show that there exists a linear bijection between H f (R; E) and Hts (R; E). But by the proof

of [145, Lemma B.1] we have
H®E) = Felp) "IARE) =F (LZR) e I;'(E) = HR) ® E.
Hence we are done with Assertion (3). |
We also need the following embeddings, whose proof can be found in [146], in our calculation.

Theorem 5.1.15. Fors,0 € (%, 1) and a separable Banach space E, we have the following continuous

embeddings
(1) W R E) — L*(R; E),
2 W2RW2(R) — WY (R L®(R),
3) WP2®R W R) — L®R; L°(R).
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To make use of the H*? space in proving the required estimates which allows one to apply the
Banach fixed point theorem, authors in [92], [108] have taken advantage of the null coordinates.
So let us define these first. We denote the null coordinates and their duals (the Fourier variables),

respectively by,

(5.1.12) (a,B):=(t+x,t—x), (Uv):=

T+¢ 1-¢ )
2 2 )
where (7,¢) denotes the Fourier variable of (z, x). To switch the coordinates, we use the following

convention:

a;ﬁ,aT_ﬁ) = f(t,x) = f*(t+x, - %).

(5.1.13) f (a,p) :=f(

Usage of null coordinates is helpful due to the following isomorphism, which is stated in [92]

without proof, between H*? space and the defined (see below) product Sobolev space H%® which

a,p
allows one to solve the problem in the null coordinates.

Proposition 5.1.16. If's,6 € R which satisfy s = 6, then the following map

HY2 3 u(t,x) — u*(, p) € HYH, N HSHY == HS

B B a,p’
is an isomorphism, where we take the Hilbertian norm on H} Hg NnH E H5 that is,
(7% IIHsHaanHa = /llu* II2 +IIu ||2 e

Hy
In particular,

* *
0™ W g 115 s g S Wl gy S 07 g a9 s -

Proof of Proposition 5.1.16 By invoking the change of variable formula for the following map, with
notation from (5.1.12) and (5.1.13),

(a,p) — (—'B —ﬁ) = (£, %),

we observe that, for u € S(R?),

(?r,xu)(r,6)=%f Ty (a+'6 = ﬁ)d adp
R2

2 2

1 . (a— -V . (a+ +v 1
(5.1.14) =§f TR @ dadp = 5 Foput) ),
RZ

where (i, v) and (7,¢) are related by (5.1.12). Which consequently gives
lull? s Nf (1+20pP + Vi) + 20l + VD (gl = VD) x
6x {(wv):lpl=|v
2 2 6 * 2
(L+20ul”+ V17 =20pl+ vl = VD) | (Fa,pu™) (w, V)I° dpdv

+f (1+20l? + V2 + 20l + VD V] - D) x
(e, V):|pl=lvi}
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(1+ 200 + V1) = 20l + WD (VI = 1)’ 1(Fa p ™) () dpdv
5[R2 (1+|u|2)s(1+|v|2)5|(3"a,,5u*)(u,v)|2dudv

+‘[RZ(1+|v|2)s(1+|p|2)6I(?a'ﬁu*)(/,t,v)lzd,udv
:”uwzy§m§H5

To complete the proof we still need to show that [[u* || Hgn H; w S lull o0+ To prove this note that by
@ 4 t,x
the relation (5.1.14) and by setting, to shorten the notation,

i el2 1= (1+ (€1 +1702)° (1+ (71 = 1€DD)° 1T 1) (1, E)P,

we have
* 1
01 e [, (116472 (141 =83 1 Ga0 o O drdg

o [ Q=) () G s o O dr e

ity ¢|* dT dé

:f (1+1E+712)° (1+17-¢P)°
R (1+ (1€ +17)2)° (1+ (7] - 1€D?)°
+f (1+1E-7P2) (1 +IT+¢EP2)°

R (1+ (1€ +17)2)° (1+ (7] - 1€D2)°

N

|0y ¢? dT dé

2
/S el H;g

Here the last step is due to the following uniform estimates which are based on the relation s = 9,

(1+1E+7P2) (1 +IT-¢P)°

551
(L+3E1+17D2)° (1 + (7] - 1€D?)
and
(1+1E=712)° (14T +ER)° o
(1+ (&l +12D2)* (1+ Azl -1€n2)° ™
in each of the regions (1) {r,¢ = 0}; (2) {7, <0}; (3) {r <0,{ =0}, and (4) {r =0,¢ < 0}. |

It is relevant to note here that the isomorphism proven in the above Proposition 5.1.16 preserves
itself if we restrict ourselves to the Schwartz class in both the considered spaces.

To understand the construction of solution rigorously, we also need the following definitions of
spaces as a subset of manifold valued functions. Let R” be the Euclidean space such that M g

and we can always find such 7 € N due to the celebrated Nash isometric embedding theorem [115].

Definition 5.1.17. For given s =0, by H*(R; M) we mean the set of u € H*(R;R") such that u(x) e M
almost surely. Similarly we define H®(I; M) for any open interval I.

Remark 5.1.18. Let M be a m-dimensional smooth manifold. Then, the following two are equivalent:
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1. u € H’(R; M) as per the above definition,

2. for every local chart (U,¢) on M, (pou)|,, € H (V;R™), where V := u™ (V).

5.2 Justification of computation in local charts

Here we try to justify in a rigorous way that to prove the existence and uniqueness of a local solution to
Cauchy problem (1.2.5) it is sensible to consider problem (1.2.6). Recall that M is an m-dimensional
smooth manifold. First, let us observe that since we seek a solution of problem (1.2.5) that lives on
the manifold M, we cannot expect it to belong to the Hilbert space H*(R;R"), but, instead according
to PDE theory, they will take values rather in the Fréchet space H, (R;R"). Hence it is reasonable to
see our problem in local manner as below.

Before we see the explicit local formulation of problem, we understand the meaning of the initial
data (20, 21) € H} _ x Hlso‘c1 (R; TM) for s € [%, 1). For the case s > 1, by (29, 21) € H} x 117150‘C1 (R; TM), the

meaning is clear, see for e.g. [23]-[26], we mean that for every local chart (U,¢) on M if ] cRis an

open and bounded interval such that zy () c U, then

(5.2.1) {I3x— ¢p(zo(x)) eR™} € H (;R™),
and
(5.2.2) {13 x— (dgy¢) (21 (x) € R} € HSHLR™).

Definition 5.2.1. For s € [3,1), we say (z,z1) € Hj x Hy 1(R; TM) if and only if (5.2.1) holds and
whenever I c R is an open and bounded interval such that zo(I) c Uy N Uy, where (U;,¢;,i =1,2) are

local charts on M, there exist vy, v, € H"1(I;R™) such that
(5.2.3) U2, P = o1, (dgy ) @2007D) s, f e HS(GR™),
where, for each x € I, (d, (z(x) (P20 p71) " is the adjoint of dg, (zy(x) (P20 d7 1) : R™ — R™,

Here note that by following the procedure from [13], we deduce that, for every f € H® (R;R™),

loc

the map
{xH (Ao ot (2007 D) f} € Hyp R:R™).
Now to move further we consider the following countable set {[n,n + 2] : n € Z} of compact
intervals which covers R. Since zg € Hlf) C([R;M) and s > %, zg € C(R; M). Then for given n and any

ay+by
2

element x € [n, n + 2] such that zo(x) € M, there exist ay, by € R such that a, < by, x = and

zo([ay, by]) lies in a single coordinate chart (U, ¢) of M. Let

by,—a, by—a 1. o
x2 L x2 ol =:x+I}C, and ]x:=x+51)1€=:x+])lc,

I,:=x+ |-

where [ denotes the interior of the interval I. The collection {Jx : x € R} forms an open cover of the

compact interval [n, n + 2]. Thus, we can find finitely many points {x;, 1'21 in [n,n + 2] such that
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" in such a

(1, n+2] € U;Jy, . To make our method precise we choose the centres/points from {xp,};%,

way that
1. at most two of the open intervals J X, have non-empty overlap;
2. none of the open interval (i.e. an element of a cover) lies inside other completely;
3. image of zy on the closure of each J X, is in one chart.

Since for every n € Z we have a finite collection of open intervals which cover [n,n + 2] and the
countable union of countable sets is countable, we have a countable open cover of R, which we denote
by J:= {Jy,}ien Oof R (after renumbering), such that the cover satisfies the above three conditions. In
the remaining part of the justification we only need to know that a countable cover of open intervals
exists, without knowledge of their midpoint, which satisfy the above mentioned assumptions, hence
we set J:={J;}ien.

Next, note that for every i € N, zo € H*(J;; M) because z € HlsOc (R; M). Thus, based on J, there

exists a sequence of coordinate charts (U;, ¢;),i € N on M such that zy( J)) < U; and
(piZ() = (pl' 0Zp€ Hs(]l;lRm)

Moreover, since z; € HISO_C1 (R; T M), there exists an ?i z; € HS~1(J;;R"™) which satisfy the condition of
Definition 5.2.1. Hence in order to talk about the solution, which are continuous in time and space,
of SGWE (1.2.5) it is reasonable to work with the following sequence of local Cauchy problems, for

ieN,

m 1
O®iz=— Z Z ‘/’irab(‘/’iz)dﬂ‘/’iz“()“d’izb +Pig®iz)é,
(5.2.4) a,b=1pu=0

(%12(0),0,%2(0)) = (%" 20,% 21) € H Uy R™) x H L (J;;R™).

Here ?z:= ¢p; 0z, PT gy : ;i (U;) — R, Pio : ¢;(U;) — R™. Thus, by Definition 5.1.7, for each i € N,
there exist

®R:R™) and % Z;e HSL (R;R™),

comp

biz,e€ Hiomp

such that ¢/ Z k| = $i Zi, k = 0,1, in the sense of distributions. Therefore, instead of sequence of
problems (5.2.4), in the current chapter we consider the following sequence of Cauchy problems,

m 1
O%iz—_ Z Z (Pirab(¢iZ)6ﬂ¢iZu6“¢iZb +¢io—(¢iZ)é"
(5.2.5) a,b=14=0

(P 20,0, Z(0) = (P Zo, % Z1) € HS(R;R™) x H ™ (R;R™),

with some appropriate extensions, which we denote by the same, ¥ T, : R — R and $i¢ : R™ — R™.
To simplify the exposition follow [92] and assume that the Christoffel symbols I',;, depends
polynomially on u, that is,

(5.2.6) T =Y AL [1'0]" [120)]",
|1]=0
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for some r € Nwhere [ = (Iy, l,...,1,;) € N is multi index variable; Aéb € R™; and u¥(-) € Ris the
kth component of u. This is not a significant constraint on the target manifold M because it covers
the most interesting cases, for example a unit sphere $™, the Euclidean space R™, or any compact
analytic manifold. Moreover, we assume that, which surely holds in the case of compact manifolds,
the value of r is fixed i.e. the degree of polynomial in (5.2.6) does not vary with the choice of local
charts on M. To avoid much more notation complexity, just for the convenience, from now on
we assume that the target manifold M is 2-dimensional. However, the calculation can be directly
extended to an arbitrary m € N.

5.3 SGWE problem in rotated coordinates

In this section we formulate the stochastic wave map Cauchy problem (1.2.6) under the rotation of

the (t, x)-coordinate axes by —7. Recall that, from (5.1.13),

a+tp a-p

u (a,ﬁ):zu( 5 >

) =u(t,x) and u(t,x)=u*(t+x,t—Xx).

Since (a, ) = (t + x,t — x), for each k = 1,..., n, at a formal level we have

ou ou* ou* *u d*u* ’u*  o0*u*
—e—— ., 2 —
0x Oa 0B 0x> 0da®? 0adB 9P
ou ou* +6u* *u  d*u* .\ u* +62u*
ot da ' 0f 022 oa®  “dadp op?’

where to simplify the notation we do not write the superscript k. In particular,

u*
Du=46agﬁ =:ou* and
m n m ou™ o b*
(5.3.1) Y Y Tapdudtu’ =-4 Y 7, w) o T = - N* "),
a,b=1p=0 ab=1 da  0p

for some I'’, having the same regularity of I'yp. So by following [133] and [159] with notation
{(a,B,w):=¢(t, x,w),w € Q a.e., the stochastic wave map Cauchy problem (1.2.6) in (a, §)-coordinate

that we consider is the following

{ Sur =N*(w*)+ow*),
(5.3.2)

u*(a,—a)=up(a) and 0d,u’(a,—a)+dsu*(a,—a)=u(a),

where o € C} (R?), that is, o is bounded and belongs to the space C*(R?) and has bounded derivatives
up to order 3. The noise ( is a fractional Brownian sheet (fBs), with Hurst indices greater than %, on R?,
i.e.for Hy, Hy € (%, 1). That s, refer [159, Chapter 1], { is a centred Gaussian process defined on a given

complete probability spaces (Q2, §,P), whose covariance function is given by, for (a1, 81), (@2, B2) € R2,

E[{(a1,B1) {(a2,B2)] = Ry, (aal, la2l) Re, (B11,182)),
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where Ry(a, b),a, b € R, is the covariance function of a standard fractional Brownian motion (fBm)

with Hurst parameter H:
1
RH(a,b)=5(a2H+b2H—|a—b|2H), a,beR.

Since we will mostly work with the wave map problem (5.3.2) which is in (a, B)-coordinates and
with asterisk (*) notation it becomes very clumsy, we will write the problem (5.3.2) without asterisk
(*) mark in remaining of the chapter unless there is any confusion.

As usual in the SPDE theory, we understand the stochastic geometric wave equation (5.3.2) in the

following integral (called often mild) form
(5.3.3) u=S(ug, u1) + O "Nw) + O o (w),

where, for (a, f) € R2,

1 1 [
(5.3.4) [S(ug, ul(a, p) := > [uo(@) + up(—P)] + Efﬁ ui(r)dr,
1 1o P
(5.3.5) [OT'NwW)] (a,p) := Z[ N(u(a, b)) dbda,
-BJ-a
and

. 1 ra B .
[O7'ow)i] (@, p) = Zfﬁf o(u(a,b){(a,b)dbda

a rp
(5.3.6) =: lf f o(u(a,b)){(da,db).
4 —ﬂ —a

Note that, at present, the expressions in (5.3.4) - (5.3.6) are nothing more than some formal notation
which we write in this manner because in the case of sufficient regular initial data it is of D’Alembert
form in (a, B)-coordinates, see [66, Section 2.4]. In the forthcoming sections we will show that, with
the assumptions we have made on the non-linearity and the noise, each term is well-defined locally

and belongs to a suitable space.
5.4 Estimates
We define the following relation between any three real numbers a, b, c. We say that

c<{a,b}

if and only if
1
a+b=0, c<a, c<bh, csa+b—5,
and

1
c=a+b—§:>a+b>0, c<a, c<bh.
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Let 1 € CZomp (R) be a cut-off function which satisty

[a—

, iflxl=2,
(5.4.1) n(=x) =n(x), 0=nx) =1, n(x) =
0, if|x|=4.

We put 77 (x) :=n (%) forany T > 0.

5.4.1 Some useful known facts

In this subsection we state a few important results from the point of view to our analysis but some of
the results are already proven in the literature. The first result is the following lemma to control the

localized norm of primitive of a function with respect to the function itself.

Lemma5.4.1. [132, Lemma 2.2] For every s > %, there exists a continuous linear map
P HTI®)> f e fo fy)dye H, ®),

such that [P()1(x) = [y f(y)dy is the Riemann integral for every f € Comp[R). Moreover, for any

smooth function y with supp y < (=T, T] for some T >0, we have

Jxea [ ], s av T e i1,

The next two results are standard ones regarding the multiplication of one-dimensional Sobolev
spaces and its extension to the product Sobolev spaces. We ask the reader to refer Lemma 3.2 and

Lemma 3.3 of [92], respectively, for the proof.

Lemma 5.4.2. If's,5€R such that s > % and s € [-s, s, then

1 glas SUFIaslglps.

Lemma 5.4.3. Ifs;, s» > % ands; € [-s;,sil, i=1,2, then

(5.4.2) ||fg||H;1 H‘;Z § ”f”H;I ng ||g||H;1 H;Z ,
and
(5.4.3) ||fg||H;1 H;Z ,S ”f”H;l H;Z ||g||H;1 H;;z .

One straightforward consequence of Lemmata 5.4.2 and 5.4.3 is that the one dimensional and
the product Sobolev spaces are stable under the multiplication by bump functions. We also need the

following estimate which can be easily derived from [108, Lemma 2.4].

Lemma 5.4.4. Let a,b,c € R such that c < {a,b} and a+ b > % Then the following linear estimate
holds

If(e, -l S ||f(06,,3)||HgH§-
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5.4.2 Scaling in inhomogeneous Sobolev and Besov spaces

The following lemma shows the action of P on a scaled function.

Lemma 5.4.5. Given A =1, let X, : 8'(R) — 8'(R) defined by duality as
1
where [Yy9](x) := 1¢ (5), ¢ € S(R). Then for every f € H*"}(R), the following holds

[PXANIAX) =[P(NIx),  xeR

Proof of Lemma 5.4.5 It is easy to see that if we restrict to f € €%, (R), then X f = Y3 f on R and,

consequently, the change of variable gives

Ax 1 y X
(5.4.4) PX2f)(Ax) = f - f(—) dy= f f@dz=P(f)).
o A"\ 0

But this concludes the proof because CZ,,(R) is dense in H5"1(R) and both sides of (5.4.4) are

continuous w.r.t. f € HS~ 1(R). However, we also provide a direct proof as follows.
Let us define
J: H 'R > f—IMyPX,ylf € HISOC(R),

where [M) g](-) := g(1-). Observe that for f € Gcomp(lR{),
(5.4.5) IMAPXH1f(x) =P(f)(x).

By (5.4.12), X; : H"1(R) — H*"!(R) is well-defined and satisfy

1_
(5.4.6) IX28 1 g1y < AZ27° Mg s ).

Next we claim that M) : 10C(IR{) H S (IR) is well-defined. Indeed, let ¢ € Gcomp (R), then by using

Lemma 5.1.6, for every g € H}} (R) we have

Iy (x)g(Ax) —w(y)gAy)?
|x _ y|1+25

[y (x/)gx) —w(y/ N gy)?
12 R2 |x J,|1+23

1y (0 IMAg1 () ey = fR wwgoldxs | dxdy

1+2s

=%f Iw(xlﬂt)g(x)lzdx+ dxdy
R

1
(5.4.7) = I + 1WA (0) g0 g < 00-

/11 2s

Since y € €3, (R) and A is fixed, there exists an m € N such that supp ¥ < [-mA, mA]. Then invoking

(5.4.7) followed by Lemma 5.4.1 and estimate (5.4.6) gives, for any f € €25, (R),

comp

1
Iy CFI N sy = 3 W2 (0 [fPXm 72 + Iy a0 [PXAFIOON ey

ﬂl -2s

Savm?)? lpalEs 1Xaf 1y = AV M2 Iyl 113 -

/11 =25
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So we have proved that the map J : Comp®) 3 f— MyPX, f € Hy (R) is well-defined and (5.4.5)

holds. In particular,
(5.4.8) [3f100) = [PCANIAX) = [PFIX), [ €Copp®).

Next, since €5, (R) is dense in — H5"}(R) and H; (R) is a Fréchet space, there exists a unique
continuous linear extension J : HS™1(R) — Hls0 . (R) and (5.4.8) holds as well. Hence we have proved
Lemma 5.4.5. [ |

In our well-posedness result Theorem 5.5.3 we need the following lemma which allows us to scale
the initial data in such a way that we can make their norm as small as we please. Let y be defined
similar to (5.4.1). Let ¢ be a bump function which is non zero on the support of y and [ @(x) dx =1.

Then, for A=1and f,ge L; (R), we define a scaling,

1
loc

o (. “Y_ fA
(5.4.9) {Tﬂ-f xO[f(7) -1

Sr:g— 1108 (),

where f* is defined as follows

TRES fRf(%) v dy.

Lemma 5.4.6 (Scaling Lemma). Forevery se€ (%, 1) and A = 1, the following inequality holds,
(5.4.10) 128l 1) Sy AT I8l -1 -

Moreover, there exists a constant (1) > 0 such that

(5.4.11) ITAfl i@ Syw AN fllsw,  0<es<e(d).

Proof of Lemma 5.4.6 Fix any arbitrary s € (%, 1) and A = 1. The estimate (5.4.10) is straightforward
due to the Lemma 5.4.2 and properties of Fourier transform. Indeed,

||S/lg||HS’1([R) S ”X”HS([R) .’A_lg(j) | Hs-1(R)

(5.4.12) = lxlmsm ( fR A+ NFgAOPdeE| <, A7 gl -

To prove (5.4.11) we need to work a bit as follows. First, for a fixed € > 0 (value to be set later), define a
map
3
T:H:**R)> f— Ty f € H(R).

Clearly, T is linear. By using the algebra property of H3/2*¢(R) it is easy to check that T is well-defined.

Next, since
I =YeesnI f+ Liga<n s,
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we can define
fi=F MgesnFH  and  for= T Qg I .

Observe that fi, fo € H 2te (R), since f. Next, due to the linearity of Tj € H %”([R),

(5.4.13) ITAflsw < I TAfill pswy + 1 Ta foll 5wy

it is enough to estimate || Ty fill sy, i = 1,2.
To deal with the term involving f>, first note that by [155, Theorem 2.8.1], [155, Remark 2.8.1/3]
and the Definition 5.1.1,
H*(R) — CL(R).

Moreover, since y has compact support, Ty f € Gcomp (R) whenever f € C!(R). Now since the support
of T, f> is subset of support of y and Gcomp([R) — H*(R), to estimate the H*(R)-norm of T} f; it is
enough to bound the Gcomp (R)-norm of T f>. In this line observe that, since Géomp (R) function is
Lipschitz on compact sets with bounded derivative, if we denote the Lipschitz constant and the
L*®-norm of f, by Ly, and B 1,» respectively, the embedding Gcomp([R) — H*(R) and the product rule

gives
1Ty Sl = sup [x@]|fa(7)- B[+ sup (3)-7]]
XESupp y Xesupp x
+ sup ’)((x)/l 1(fz)( )|
Xesupp x
<141yl sup x(x)f\fz B(2) v ay+a7s,
X€ESupp x
X
SLy, sup f ———‘w(y)dy+l ler
xesupp yJsuppy 1A A
e A Le+ B S AT RIo® = AR 1.
<A (f (1+|é|2)5|(?f)(£)|2d6) < ®)-
{:1¢=A}

This consequently gives

1,._
(5.4.14) ITAfoll s Spw A2 I fll @)

To complete the proof we still need to deal with the term involving f;. By invoking definition of
f1, Lemma 5.4.2 and the Plancherel Theorem followed by the Cauchy-Schwartz inequality we get

T S (5], 1= [ niaor a)

H HR)

+] fR EAR GGG

1

OBIFNEPde|

X

<At ( [ g (é)lzdé)z -
{:1¢12 A}

{E:11>A
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X

Fy) (%) '2 dé] :

f (&2
{&:1E1>A)

1
(5.4.15) Su A2 fllasm-

Finally by substituting the estimates of T f> and T} f from, respectively, (5.4.14) and (5.4.15) into
(5.4.13), we get, for every f € Hite,

1 1 1
(5.4.16) ITaAf @ Sy A2 N fls@ + A2 I fllmsm S A2 fllas.

Since s > %, A =1 are fixed, we can choose positive € such that €(A) := s — 1_ cisstill positive and this

2
£(A) gives (5.4.11).

Lastly, since H e (R) — H*(R) densely, there exists a unique continuous extension of T, denoting
again by 7, such that (5.4.16) holds with the same constant and £(A) as in (5.4.16), for every f € H*(R).

Hence we are done with proof of the Lemma 5.4.6. |

Next, to see the required scaling for Besov spaces on R? we define the following scaling operator
I : 8'(R?) — 8'(R?), for any A = 1,

1
5.4.17) Wf = (fiz9y0),  oes@)

where [Y¢](x, y) := %(p ($, %) ,@ € 8(R?). Our next result allows us to scale the considered noise, see
Theorem 5.5.3.

Lemma 5.4.7. Foreveryr,s>0,A=1and f €S, *HR?*) we have
) r+s-1 Cres
||H/1f||32*2ﬂ1-1 <A ||f||32'2v H-

Proof of Lemma 5.4.7 The proof is by replicating the steps of proof of the Lemma 5.4.5. Another
simple proof, which uses the properties of Fourier transform, is by substituting ITy (F f) = F (111 f)
in the definition of IIHAfIIS;:Zu—sH. [

5.4.3 The homogeneous solution term

Recall that, for given a, f € R, by S(uy, ;) we denote the image of initial data (ug, #;) under the

following map
1 1 e
S+ (uo,ur) = 3 [uo(@) + ug(—P)] + 5[ ui (y) dy.
Next we show that the map S is locally well-defined and continuous from H*(R) x H*~'(R) into H°.
Lemma 5.4.8. For everys,d > % which satisfy 6 < s,

(5.4.18) Im (@) x (B)S (1o, un) llygse S,y Il ms + g | s
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Proof of Lemma 5.4.8 Since €, (R) is dense in H*(R) and H S=1(R), it is sufficient to prove (5.4.18)

for the following map,

loc”

1 11
S : Comp ®) x €0 (R) 3 (U, 1) — > [uo(@) + up(—P)] + 5[ up (y) dy € HS?

First observe that, since we are in the one dimensional setting, the image of S(uy, u;) is the unique
solution to the following rotated version, i.e. in (@, §)-coordinate system, of the linear homogeneous

wave equation Cauchy problem
Su(a, f)=0, (a,p)eR?

ou ou
ula,—a)=up(a) and —I(a,—a)+—(a,—a)=u;(a),acR.
oa op

By Lemma 5.4.2 and the embedding H*(R) — H‘S(IR), the terms involving 1y can be estimated locally
as

(@) x (B)uo(@)117,e5 = In(@ g (@)1 1 X (B) ”i;; + (@ uo(@) I, 11X (B) ||§{5
Sy In(@uo (@15 Sy o3

Similarly, we estimate the norm ||n(a) x (8) uo (— ) llyyss, up to a factor, by || gs. Next, since

a a 0
f ul(s)ds:f ul(s)ds+f ui(s)ds,
-B 0

and 7, y are symmetric functions, Lemma 5.4.1 followed by the continuous embedding of H*(R) into
HO(R) gives

2 2 2

a a a
“n(a)x(ﬁ) f w(ds|  =IxBI>, [n@) f w(9)ds|  +I1xBI3s ||n@ f ui(s)ds

-B Hso b 0 HS 6 0 He

0 2 0 2

@ | v f w)ds| +lIn@I2, 1B f () ds
¢ -p H} ‘ - Hj

Sy N %1
Hence we are done with the proof of Lemma 5.4.8. |

5.4.4 The noise term
Recall that for a given f € 8'(R?) the 2-index Littlewood-Paley blocks are defined by
0, ifjs-lork=-1,
Bikl =3 o
F i F N, 91, if j,k=0.

Here {¢ j}c]’.‘;o is the dyadic partition of unity on R constructed in Section 5.1. The first result of this

subsection is a generalization of [132, Lemma 2.2] but very close to [108, Lemma 2.5]. The proof
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presented here is based on the Littlewood-Paley theory which can be generalized to handle the
less regular noise case where one needs to deal with Besov spaces. It is also relevant to remark that
the method of proof below can be modified to include the noise of lower regularity than we are

considering here.

Proposition 5.4.9. Assume thats,0 € (%, 1) Forevery f e H*~ 1,6-1 , there exists a unique F € I]-I] such

that 2L 33255 0 ﬁ = f and which satisfies the following homogeneous boundary conditions

F( )=0 d OF( )+0F( )=0 eR
a,—a) = an aaa,a aﬂa,a—,a .

Moreover, for everyn, y and T > 0, there exists a positive constant C(n, x, T), which is an increasing
function of T, such that

InT@xr(BF (&, Blgss < Cm x, T) | flljgs-1.6-1.

Remark 5.4.10. To maintain the analogy with sufficient regularity cases, in the remaining part of the

chapter, we will denote F by O~ f or
a rp
F(a,B) ::f fla,b)dbda, (a,pB)cR%.
—-BJ-a

Proof of Proposition 5.4.9 Define

a P
(5.4.19) H(a, p) ::fﬁf (Do )y, T)dT dy,
—pJI=Y
and
Gla,p):= ), [ff‘l[ PP FP) (T, 01| (a,p)
i (i1)(i€)
1 (0]
_Z g1 F -
2%1 [( e f)(P](T)(Pk(f)( P, é)] (a,—a)
1 (e.0)
- ! F ,
2,,;:1[ CGoas a<p,(r)<pk(:f)( P, é)] 6.8
1 (e.9)
= - TR @O | 0r -y d
Z[ﬁ]kzzl[ G LD OTO @O (v, -7 dy
1 a (e.0)
5[ Y [3"_1[—(pj(r)tpk(sf)(fw)(r,s‘)] (y,-y)dy
B j k=1
5
(5.4.20) Z G'(a, B),
and,
a oo
It@,p):= | ‘1[ étpo(T)wn(f)(fff)(T |, B dy

149



CHAPTER 5. STOCHASTIC GEOMETRIC WAVE EQUATION ON R'*! WITH ROUGH DATA

a OO
(5.4.21) —f [ 5 YoM ()TN, 8)| (y,~7)dy,
and,
P 11
J(a, B):= > F [i—Two(ﬁ)fpm(T)(S"f)(r,f) (a,y)dy
—am=1
B o 1
(5.4.22) - Y 5! [;tpo(g‘)(ﬂm(r)ﬁf)(r,f) (=7,7)dy.
—am=1

We will prove that
F=H+I+]+G,

is the one which satisfy all the claims of the Proposition 5.4.9. We begin the proof with a few comments
on the term Ag o f. By [138, Theorem 7.23], since

(7,8) = 9o (Mo T N(T,6)

is a distribution of compact support, Agof :=F -1 [tpo(T)(po &OGFN (T,E)] is an analytic function of
polynomial growth. Therefore, H is also an analytic function (also of polynomial growth) and the
integral to define H is in the Riemann sense. In particular, H is a tempered distribution.

Next step is to find the bound for H. Let us fix f,1, ¥, T. Then since H} Hy ! (R?) is continuously
embedded in H) H5 (R?) for 5,6 < 1, we have

||77T(a)XT(,B)H(a’»ﬁ)”H;H5 = IInT(a)XT(ﬁ)H(a, B IIH1H1

(5.4.23) = Il + H

L33 H op lliz12 “6046/3 L2L2

where we write H(a, B) := n7(a)yr(B8) H(a, B). We estimate each term in r.h.s above separately as

follows: by the Holder inequality and the support property of n, ¥, the first term satisfies

”H”L,Z,LIZSS

a rp %
fR nr(@yr(B) @+ > ( f , f |(Ao,of)(y,5)|2d6dy) dadp
2 -BJ-y

S Thdoof Iz (Mn(%)r da);(fﬂ x(g)z

(5.4.24) =TIl Xl 1800 22
For the second term we apply (5.4.24) and the Holder inequality to obtain

)

of p
‘ 2 =@ (5 Hp |, *|rr@xe® | @ooniasras
Oa LRI -a 313
s 2
ST i1z 1800 f 2 2 + T2 [ fR @y PPN @, )17, dadp
(5.4.25) = T 210022 1800 2 2 + TN 22 1800/ 2 2
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Here in the last step we also use |17 ;e = [l re. Similarly by using

a rp B ra
f f (Do,o )y, 6)dddy = f f (Do,0 )y, 6)dydé,
-BJ-y -aJ-6

we have

0H
(5.4.26) ”

B

/
S Thoof Iz (101 + e ) Inllzz.
1313 “r g ’ ¢

For the final term by using (5.4.25) we get

0’H 1, , , 1, @
= — H y 272 — A y d
’aaaﬁ ij = @@ rBH@ P 2+ H(n)r(a)m(ﬁ)f_ﬁ( 00f)y, B dy e
1 B
tT ‘ UT((X)()(’)T(,B)[ (Do,0f)(@,6)dd +[nr@xr(B) (Do @, p) ||L2Lf3
- 1212 a
arp
SNz 022 1800 Nz 2+ DI 2 1800 f 3.2
(5.4.27) Il I8 12 D800/ Nizzz + TNl 122 1800 f N2 2

Hence, substitution of the estimates (5.4.24), (5.4.25), (5.4.26) and (5.4.27) into (5.4.23) gives

In(@xr(B) Hl gy S 1V T1800f a1z [ Il 120 22
(00 + oz ) s + (122 + U )
(5.4.28) (g 0z + a1z + e+ Wz Dz )

But, due to the Theorem 5.1.14, we have

A2 o = 1T @00 T Ny + Y, 22 VIOV T 010, T )2, e
@ P ; 2
(j k)eNZ

2 1F 7 Qoo T DI 72 e, = ||Ao,of||§ﬁL% :

where N2 = {(j, k) e N?: (j, k) # (0,0)}. Consequently from (5.4.23) and (5.4.28) we proved that there
exists C(n, x, T) > 0 such that

(5.4.29) Inr(a@)xr(B)H(a, B) IIH;Hg =Cn,yx, T "f”Hg-ng-l-
Similarly we can prove that

Ilnr(a)xr(ﬁ)H(a,ﬁ)IIHEHg <=Cm,x, T)IIfIIHB-ng-l,
and hence, jointly with (5.4.29) we obtain,
(5.4.30) InT(@x7(B) Hllygss < Ca@, x, DI fllpgs-15-1,
for some Cy(n, x, T) > 0.

151
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Next, we see how the other terms G, I, J are well-defined and satisfy the suitable estimates. We
divide the proof in a sequence of Lemmata and to eliminate the frequent reference of Theorem 5.1.14

we will use it without specifying unless there is any confusion. For each j, k = 1, we observe that,

Gip=9" [%(T)wk(@( > Pm@ P& F N, 5))]

mone1 (0 )( i§)
a1 k+1 j+1 1
(5.4.31) =5 Y Y ——0@00n@er©en© TN,
n=(k-1)vlm=(j-1)v1 (7)) (<)

Lemma5.4.11. Forallj,k=1and f € I]-[Is_m_l, G} K belongs to L2(R?).

Proof of Lemma 5.4.11 Let us choose and fix f € H~9~!, Due to finite sum in (5.4.31), it is sufficient
to prove the following. For any fix j,k =0 and m,n =1insuch awaythatne {(k—1)v1,k, k+1} and
mef{(j-DvLljj+1}

-1

@i DPm@ P Pn©)(F (1,8 | €8 R NL*(R?).

1
(iT)(i¢)

Since f e HS™10~1, Ffe 2 (R?).Indeed, since s— 1,8 —1 <0, for every R > 0 we get

1
F , de_—ff 1 28—11 25—19: , de
ff|5|,|r|<R|[ NEOFdTass s || @rify @ T i o drdg

2
< —— |51 p5o1 < OO
(1 + R2)s+0-2 f HS ng 1

So f € H"19~1 implies that ¢ ; (1) (O)F f € L omp(R?). Since ¢ ; and ¢ vanish at the origin,

2

and consequently,

€ I2(R?) c ' (R?).

PO Pr@)(FN(T,6)

1
51 [
()

By a similar argument for ¢, ¢, with m, n = 1, we get

-1 € L*(R?),

PiOPrQPm@Pn§)F(T,E)

(zr)( §)
and we finish the proof of Lemma 5.4.11. Note that by [138, Theorem 7.19] we can write

Gir= g (Pm(T)(Pn(f)] * A\ kf
Pk n=(k—1)v1 m=(j—)v1 (it )( £3) b

Next we show that ¥ _, G} . is a well-defined element of L*(R?).

Lemma 5.4.12. G

1

1 2 (2
j & converges in L7 (R%).

7[\’]8

Js

152



5.4. ESTIMATES

Proof of Lemma 5.4.12 Observe that by invoking the Cauchy-Schwartz and the Young inequalities

we have
S 3 46k 1
P 16 il = jkz—l o2 G e
1
. - 1
(5.4.32) < z 22T A F13 ey f ]Z - Pm(DPn ) N
jk=1 n=(k=1)v1l m=(j—1)v1 (ZT)(lf) L'(R?)
Consequently, since
3:—1 _2—2m—2n -1
|57 | g enment©] | v ovo|[
where v is defined in (5.1.6), we have
S 2(s=1)j+2(6-1)k
< 27871 A F!
MZ:1| Ll < (]kzl 18 f 12 g [ T )w(rf)]”Ll(Rz)

k+1 j+1 ) 2
% Z Z 2—2m+2]+2k—2n
n=(k-1)vlm=(j-1)v1
1

2
Ll (RZ

o0 o0

So Y G} . converges absolutely in L2(R?). Hence, since L2(R?) is a Banach space, Gl:= Y G} K is
k=1 ! k= ’

a well-defined element of L2 (R?) and we are done with the proof of Lemma 5.4.12. U

) .

Pt [(z )(i6)

(5.4.33) Sﬂ// ||f||S;;1'6_lB = ”f”H;_IHg_l'

Next we will prove that G' belongs to H*® and satisfy the following estimate,
(5.4.34) Inr@xr(B)G (@ B)llyss < Snt | Gl llyges S S I fllpgs-ro-1.

Proof of the estimate 5.4.34 Note that the first inequality in (5.4.34) follows from Lemma 5.4.3. To
prove the second inequality, first observe that since G' is in L?(R?), the terms A i, xG! for j, k = 0 makes
sense and by using the properties of dyadic partition, see Section 5.1, a straightforward calculation
gives

o0

@ @i &) (%ﬂ 0D
OING!
D39

inthecases (1) j=k=0;(2) j=1,k=0; and (3) j =0, k = 1. Consequently,

i

wm(T)(pn(f)(rff)(T,f))

(I =@o(M L —po(E)NITFN(T,8) =0,

o0

Pji(@Pr&) (m;ZI T

Pm(@Pn TN, f))
1
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o0 o0 1
5.4.35 = ; m@ )T T, 8)].
( ) j;owj(r)wk(f) m;ﬂ o’ M) T,

Next, since by Lemma 5.4.12 we know G' e L?(R?), invoking the Fourier-Plancherel Theorem gives,
forall j, k=1,
(4;kGY) (@, B) = G k(@ B).

Hence, using (5.4.35) followed by the calculation of (5.4.32) and (5.4.33) we get

1 2 1,42 2(1 1,2 2 1 1,2
1G gz e = (2 05400 g o G 12, +2205H0) A 4G |2, +2205H1D A9, G2,

oo 1/2

2(sj+0k 1,2
+ Y 226700 G2,
jok=1

1/2

oo .
(5.4.36) = ( 2 2RIG) kI
J k=1

Sv ”f”Hgleg’l'
By interchanging the roles of a, § in the computation of (5.4.36) we get

1
G ”HgH/S; 51[/ ”f”Hg_lHé_l’

and hence, the estimate (5.4.34). 0

Now note that since G! € H%?, G?(a) = G'(a, —a) is a well-defined function of a. Thus, since 7 is

an even bump function, invoking Theorem 5.1.14 and Lemma 5.4.4 gives

||nT(a)xT(ﬁ)Gz(a)||H;Hg Syrnr@nr(-a)GHa, -a) g

Slnr@nr(BG @ Bl -
But this has been estimated in (5.4.34) and consequently, G? satisfies
(5.4.37) Inr@x7(BYG* (@, B)llygss Sy, 1w I lpgs-r-1.

Similarly we can bound the term G° locally which only depends on . Now we find the bound of

terms G* and G°. Since they have similar structures we only work with G*. First note that

a [e¢] 1
Gap=[ 3 [ff—l[.—w;(r)wk@)(&‘(p)(r,a]] . —7) dy
=B j k=1 (i¢)

-/,

and since (l—lf) (1 —¢o(&)) has removable singularity at the origin,

1
?‘1[@(1 —po(M)Q —wo(f))(?cb)(r,c’)]] (y,—y)dy,

% 1 =o)X — o)) (Fep)(t,) isatempered distribution.
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Thus, we use Lemmata 5.4.1 and 5.4.4 to obtain

HnT(a)xT(ﬁ) f — D& (FP) (T, 6)1] (7, -

|

ﬂ

[? ;L O FP) T, )]

SnxTH]%‘, (a, a)”

P

=1

(i¢)

1

+| [? =0 Mer TP, 6)1]( ﬁﬁ)

(i¢)

(a, ﬁ)

J
< 3 1
Sontl Y |1F =m0 @@ FP)(a, )]
i ( E)

—1 76
o Hg

(a, ,B)’

o0
+ FY @ r©)(FP)(1,8)]
M;J G OPO T -
So we conclude that to find the local estimate of G, G?, it is sufficient to estimate

o0

)3

k=1

-1

PiDPrQ)FP) (T, Ol (@, p),

[(E)

which is as follows: for fix j, k = 0, the support property of the dyadic partition we fixed, by replicating
the calculation based on the proof of (5.4.34), we deduce

@) TP (T, | (a,B)
”,kl[ (f)"” POTPw Ol @ P, i
< 92(s-2)j+2(6-Dk | A g [ ]
N(]kzl 18172 e, T )(mw( WO | e,
k+1 j+1 3
x 2—2m+2j+2k—2n)
n=(k-1)vlm=(j-1)vl
92(s=2) j+2(6-1k | A - g1 [ 2
(]kZI 181 F 12 e, g Ove le(Rz)
(5.4.38) Sy/ ”f”S;TZM*lB = ”f”S;TZl'é*lB'

Hence by combining the estimates (5.4.34), (5.4.37) and (5.4.38) in the definition of G we have
(5.4.39) |nr@xr®Gap o STy I s
Recall that

(v, dy

a OO 1
I(a, B):= Z F! [.—étpo(r)wn(f)(?f)(r,f)

ZSF

First we see that due to the choice of dyadic partition

<P0(T)<Pn(f)(3"f)(r f)] (v,-m dy.

o0

Z T §)¢0(T)¢n(6)(?f)(T )= m(ﬂo(ﬂ(l Po(N (T )(T,8).
=1
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Thus, since ¢ is a smooth function and J f € §'(R?), we get

o0

Z m(po @en)Ff)(1,E) isawell-defined tempered distribution.
n=1

Similarly, we can conclude for the corresponding part coming in the definition of J. Our next result

provides the estimate for I and J.

Lemma 5.4.13. The terms I and ] satisfy, respectively, the following estimate

(5.4.40) Inr(@)xt(B) lygse Snp, T I f ligs-16-1,
and
(5.4.41) InT@x7B) s Sy Ty If ligs-15-1.

Proof of Lemma 5.4.13 Due to the similarity in the definition of I and J, it is enough to show the

estimate of I only. Observe that by invoking Lemma 5.4.1 we obtain

@B e S [0 ) 3 5 o f)wo(rﬂpn(f)(&"f)(f O @p)
n=1 ﬁ
—1 -
+ nT(a)n;:f 5PN, a|cpp s

(oo} 1 1 B
+ xT(ﬁ)n;&" % 5)<po(r)<pn(€)(3"f)(r 9| (@, -a) .

P TFf)(, 5) =B,

(i «S) HyHS ™

(5.4.42) +nr@ ). 771
n=1

To handle the first term in the right hand side of (5.4.42), for fix j, k = 0, the choice of dyadic partition,

continuity of F: 8’ (R?) — §'(R?) and convolution theorem for Fourier transform implies

|

*Ajxf.

P n 3"
(6)%(”(’) QEF N,

g1 q)j(r)q)k(f)s"(z 51

n=1

k+1

= Yy 5! [—wo(r)wn(é)
n=(k-1)v1 (E)

Consequently, by invoking Lemmata 5.1.14, 5.4.2 and the Young inequality we get

Jir ¥ 57| G5 PO OENEH| @l
n=1
oo , k+1 , \1/2
NxT( y 22(s—l)j+26k“ Yy oot —(po(r)wn(f)] *Aj,ka 2)
j,k=0 n=(k-1)v1 (i$) L
o . , el 1/2

5( Z ”A]’kf”i222(3—1)1+2(5—1)k||§~ _(PO( )u](é)] Z 22](,'—2}’1)

k=0 (i¢) L'®) = (k=1)v1

(5.4.43) S‘l/ ”f”SS"ZI'ﬁ’lB'
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Now for trace terms in (5.4.42), the tensor product argument used in Theorem 5.1.14 followed by

Lemma 5.4.4 and the computation based on (5.4.43) gives

v g1 L ol
HnT(a)n;&" [(l.{)(Po(T)wn(f)(fFf)(T,f) ( ﬁ,ﬁ))HéHg_l
(o] 1 2
< -1 -
Sor| L9 [ 5 P @enOT N ( ﬁ,ﬁ)(Hg_l
(o] 1 2
< -1
s|2v [ 5 P @nOT N (“’ﬁ)”H;Hg—l
(5.4.44) Sl fllgp o1

Due to the similarity of Terms 3 and 4 with Term 2 in the right hand side of (5.4.42), it is easy to see
that they also follow above estimate. Hence, by using (5.4.43)-(5.4.44) into (5.4.42) we get

17 @1 (B ygg g S 11501

By interchange of the roles of a and 8 we get the estimate as the same local estimate for HS H2-norm
of I. Hence we finish the proof of this Lemma 5.4.13. ]

Now, since s,0 > %, Sg’gB — Cp,(R?), where Cp, (R?) is the space of uniformly continuous and
bounded functions from R? to R. So by (5.4.30), estimate (5.4.39), and Lemma 5.4.13, locally G, H, I
and J belongs to Cpu®?).Since F=H+G+1+],

N1(@x1(B)F € Coomp (R?).
Consequently, by [141, Proposition 2.2.3/4] we have
nr@xr(BF € CuR?) c L°R?) < S BR?).

Hencenr(a)yr(B)F € 8'(R?) and we can calculate the Sg’gB(le) norm. By Lemma 5.4.30, estimate

(5.4.39), and Lemma 5.4.13 we have

(5.4.45) InT(@xr B Fllygss Syt | Flggsr01.

Finally by the properties of Fourier transform, for e.g. [138, Theorem 7.15], and since f € §' (R?),

we obtain
OF -1 S -l
=F @@ OTFNT N+ Y F @@ TFN,8)
0a0f i

+ Y F Hpo@PnOFNT N+ Y. F Hpm@po )T (T,8))
=1 m=1

n
=) Ajkf=F.
j,k=0
Hence we finish the proof of Proposition 5.4.9 since the uniqueness follows from the expression of F.
Indeed, because the constructed F solves the inhomogeneous wave equation with null initial data in

(a, B)-coordinates. |
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The following lemma shows the behaviour of ¢!, see Proposition 5.4.9 for its definition, with

two parameter scaled operator I1,.

Lemma 5.4.14. For every A = 1 the following holds

(5.4.46) (MM Aa, AB) = (7 ), B), feH 7! (a,B) eR?,
where the action of 11 on f is defined in (5.4.17).

Proof of Lemma 5.4.14 First notice that In this proof we use Theorem 5.1.14 recursively without

specifying it. Suppose we take f € €, (R?), then an easy computation based on the change of

variable, as done in (5.4.4), gives (5.4.46). For any fix A = 1, let us define
G HTV s fe (MO I f e WYY,

where [M, g](-,-) := g(A-, A-). Observe that for f € G‘ggmp (R?),

(5.4.47) [MyO™ ' f (@, ) = (07! (@, B

By Lemma 5.4.7, ITj : HS 19~ — H5"19-1 s well-defined and satisfies

(5.4.48) T gllygs-15-1 < AT 570 gllpgs-ro-1.

Next we claim that My : HY® — HS?

loc loc
geHS H® (R?)we have

is well-defined. Indeed, let ¢,y € €, (R), then for every

@Y PRI, o = [ 9@y (B8RP dadp
atlp R2

lp(@)w(B)gAa, AB) — p(@)w(B)g(Aa, Ab)?
R* |a—a|1+25|/3—b|1+25

1
_ ﬁfw p(a/ Dy(BINg(a, ) dadp

12+25+20 lp(a/ )y (BINg(a,B)— @/ Dw(BIA)g(a,b)|?
* Al R |a_a|1+23|ﬁ_b|1+26 dada dﬁdb

dadadBdb

1 1
(5.449) = ﬁ ”(p/l(a)’(l//l(ﬁ)g(ay ﬁ) ”%Z(RZ) + W ”(P/l(a)w/I(,B)g(Q’ ﬁ) ”iI&Hg(RZ) <oo.

Similarly we can show the finiteness of H? H E(RZ)-norm. Since ¢,y € €% 1yp (R) and A is fixed, there
exists an m € N such that supp ¢ x supp ¥ < [-mA, mA]2. Thus (5.4.49) with Proposition 5.4.9 and
estimate (5.4.48) gives, for any f € €33, (R?),

a 1
@Y T L1 Py s = 25 10A@YABIO 1@ P
1
+ 2z 1 @A BT @ Al
1
< C@ ¥ M) 25555 A S Wcses = CO YA s
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So we have proved that the map I Comp®) 3 f—= MpPA,f € ﬂ-l]f(’)‘z(R) is well defined and (5.4.47)

holds. In particular,
(5.4.50) [@1f1(@,B) =107 f10), [ €CompR?).

Next, since eggmp(R) — [H]s_lf_l(l]%) densely and Hf(‘)‘z (R) is a Fréchet space, there exists a unique
continuous linear extension J, : H" 121 — Hls(’)‘z and (5.4.50) holds as well. Hence we have proved
Lemma 5.4.14. [ |

5.4.5 The non-linearity

Now we move to find the estimate for the non-linear term. Recall that, from (5.3.1),

2 ou® ou®
N(u) =- T ap() -,
a,bzzl “ oa 0f

we avoid writing asterisk (*) mark for simplicity. Note that the above implies N(0) = 0. Our next
result gives the required growth and the Lipschitz property for (5.3.5) which involves N(u) with the

assumption (5.2.6) we have made on the structure of T'.

Lemma 5.4.15. Fors,6 € (3,1) such that & < s, there exists a natural numbery = 2 such that

(5.4.51) IN@x (BT N@) s Sy NI,
and
(5.4.52) In(@x (B N@) = N llygss Sy 1= Wliggso [1Pllgse + 19 llgges ]

Proof of Lemma 5.4.15 Observe that in our notation, for some r € N with the index of summation
= (ll, lz), we have

2

N((,b)—N(l//) — Z Z A;b([wl(_)]ll [wz(')]lzaawaaﬁwb_ [¢1(_)]ll [(,bz(')]lzaa(/)aaﬁ(,bb)-

a,b=111|=0

-

For fix a, b and (I3, I»), by adding and subtracting the mixed term we get
h b a L 3 a
[w' O] [w? O] day 0pw” - [¢' O] [¢* ()] 0ap"0p¢”
ll ll 12 11 l2
= ([ 0" = [9'0)") [v20)] " 0ay“apu” + [¢' ()] " {0av " 05y" — 0" 050"} [y ()]
6453 +[¢'0]" {[v?0]" - [¢°0)] "} 9ap ape”.

So for fixed a, b and I = (I, l), we get three terms inside summation and due to the linearity of &1
it is enough to estimate each separately. Note that to avoid the complexity in notation we use the

symbol || - || HS V! for both R? and R valued functions in the remaining calculations of this proof.
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Invoking Proposition 5.4.9 followed by inequalities (5.4.2) and (5.4.3) with appropriate exponents
yields

In@x@o~ (([¥' 01" - [¢'01") W26 dav 0pw’) 1.0
Soal([v' 01" =101 0" 701" 0 050 1
([ 0]" = 10101") W70 0w 05w 1 e
SN VA R O] R AL RG] R e A e vl

Y01 = [0 01 By N [P0 11029 g 1059 Vg

2y >

2 2y+4
SV = Wy s (10 g+ VD)
“p

2y =
_ 2 2y+4
S A (e L RV e

(5.4.54) Sy =@lZs (1w llyges + Ipllysa) T,

for some suitable y; = 2. Note that the existence of 7,y is possible because
190y 10 N pis < Wl pge - and L=l <ri=1,2.

The third term in (5.4.53) can be estimated similarly for some suitable y,. By writing the expression
6,11//”651//17 - aawaﬁ(pb equivalently as

00w 05y’ — 8a a5 + 0,y dpp" — 00 p®dpd?,

followed by the calculations similar to (5.4.54), the second term of (5.4.53) can be estimated similarly
for some y3. Hence we get (5.4.52) since a, b and (I;, I) take only finitely many values. Moreover, we
get (5.4.51) by substituting 0 instead of ¥ in (5.4.52), since N(0) = 0. Hence the Lemma 5.4.15. |

Remark 5.4.16. By repeating the steps of the proof of Lemma 5.4.15 we infer that the map N defined
by

2
N:HY 54— Z Fab(u)aau“()ﬁub e HS~ 101
a,b=1

is well-defined.

Before going into the local well-posedness theory part, let us prove the following generalization
of [133, Lemma 3.1] which specify the property we have on diffusion coefficient. Recall that we are
dealing in the range s,6 € (%, 1)and s<§6.

Proposition 5.4.17. Assume that o € G?}(IRZ). Then oo u € H® for every u € H%® and there exist

constants C;(0) := Ci(llalleéﬂ), i =1,2 such that for u, uy, up € HS?,

(5.4.55) 070 1?5 = Cr @l 1+ 1alys ]
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2
2k
1+ Y luil®,
i,k=1

(5.4.56) lloour —ooullfys < Calo) Uz — 17,5

Proof of Proposition 5.4.17 To shorten the notation we avoid writing explicitly that the Euclidean

norms separately for R? and R valued functions, unless any confusion. Recall that by Definition 5.1.12

(5.4.57) oo ull g @ o ey = 107 Ull 2 @owo ey + 107 © Ul s o iy

where for any separable Banach space E,

1
lu(x) —uy)% 2

By expanding each term of right hand side of (5.4.57) we get

oo ul(a, B1) — [0 ul(a, B2)?
||a°””§{;(R;Hg(R))Sfﬂz”aou](“rﬂ)|2dﬁda+fw |£1_ﬂ2|1+26 b dprdpzda
[0 o ul(ay, B) — [0 o ul(as, B)?
+jw;s lay — ap|1+2s dpden daz

o _ o —_ le) — o 2
+f [looul(ay, B1)—looullayz, B1)—{looullar, B2) — oo ul(az, B2)} dpy dpy day das
R4

la; — a,2|1+23|ﬁ1 _ﬂ2|1+26

(5.4.58) =1 A;+ Ay + A3+ Ay.
Since o : R?2 — R? is continuous and bounded, we estimate the term A; as
2 2 < 2 2
(5459) Al = ”UIILOO([RZ) ” u”L(ZlL%(RZ) ~ ||0-||LOO([R2) ” u”WaS(R,Wg(R))

Since o € (?*Z(IRZ) c G;}([Rz), itis Lipschitz and by denoting the Lipschitz constant as L, we have the

following estimate for A,

o | lua, Br) - ula, B2)I? <22
(5.4.60) AgsLU[RS VR dprdpda S L; el o)

By interchanging the roles of variables we see that the term As satisfies the same estimate as A,. Now

we move to estimate the term Ay. For fix a1, a», B1, B2 € R, let us denote the rectangle by
Q:=[a1,az] x [B1, 2] <R
Our first two claims are elementary which we write without proof.
Lemma 5.4.18. With our notation if we define
Agloou]:=[ooul(ay, f1)+[ooul(az, f2) — [ooul(az, f1) — [0 o ul(ay, B2),
then

1 laZ[an]
AQ[aou]—fofOTa{(T,f)def,
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where a: [0,1]> — R? is defined by, for (1,&) € [0,1]?,
(5.4.61) a(t,§) = u(ay, 1) + tlulaz, f1) — ulay, B1)] + lulay, B2) — ulas, 1)1 +1¢Aqu,

and

Aqu:= u(ay, B1) + ulaz, B2) — ulay, B2) — ulaz, f1).

2 (e} 0 . . .
Next result is about writing g 0[?0 T“] in terms of partial derivatives of o.

Lemma 5.4.19. In our notation for all t,¢ € R, we have

0%[o o al 0%al 2 3g
sear — (1, = lzla(a( 7,8) —— ] (r€)+ljzla o -(a(7,9) 6(76) (TE)

Thus by invoking Lemmata 5.4.18 and 5.4.19 in the expression of A; we get

2
2 )fo Jo | & aw,0) FL .0 drdf‘
Ay S dB,dp>da; d
N;f |061—a2|1+25|ﬁ1—,32|1+25 prap:de da,

o o [ (e, e) % r,6) % 0,0 dv ae|

|a1 _ a,2|1+25|’31 —ﬁ2|1+25

dpidpdaida;

>

i,j=1JR*

2 2
(5.4.62) =Y Aj+ Y A
i= i,j=1

We will estimate each term in the right hand side of (5.4.62) separately but first note that for fixed
rectangle Q = [a1, a2] x [B1, B2] by using (5.4.61), we have gz—g; =Ag u' and consequently we obtain

[—(a(r &) —— (T &) drdé‘
do i i i i
< o lu' (a1, B1) —u (a1, B2) —u (az, B1) + u' (az, B2)l.
Xi L°(R2)

Using above Ai can be estimated as

| aa |2 ul(ay, Br) — ul (@, Bo) — Ul (aa, B1) + i (aa, Bo) 12
Ai<|22 f lu(ay, B1) ( 1ﬁ12+)2 (az ,311126 (az, B2)I B, dBy da, das
0xi || 1o 2) Je lay — az|'+=5|B1 — Bl
2
oo 2
(5.4.63) < ; LOO(RZ) ” ||WS(R W&(R))

Next, since for fixed Q = [a1, a2] x [B1, B2] by (5.4.61) we have

6 i
—(T &) = ul(az, B1) — u'(ay, 1) + EAqut,

6_5(7"5) = u/ (a1, B2) — ul (a1, 1) + TAQU,
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the double integral term in Aflj satisfy the following,

el o%c dal dal
%0 1,1l . . | |
S’ f [ [|u’(a2r,31)—ul(a’1,ﬁl)|x|uf(a1’ﬁ2)_uj(al’ﬁl)|
axjaxi Lo (R2) 0 Jo

+EAqu'| x 1wl (a1, B2) — u! (a1, B + TIAgu! | x |u' (az, B1) — u' (a1, B1)]
+7El AUl x [Aqu!|| dr dg
0o

0x]-6xl-

{Bl+Bg+Bg+B4}.

(5.4.64) =: ‘
L (R?)

By substituting (5.4.64) in terms Aij from (5.4.62) we obtain

ij 620' 2 f B%
A 5’ dﬁldﬁzdaldag
E o 10x70%i | oo ey | St la1 — @2l 251 By — |12
B?_
2 dp,dpsda, da
+ - |a1—a2|1+25|[31—ﬁ2|1+25 1 2 1 2
B2
3 dp1dBoda, da
+ - |C¥1—a2|1+28|,61_,52|1+25 ’61 2 1 2
BZ
4 dpidBrda, da
+ - |a1—a2|1+23|,61—,62|1+25 1 2 1 2
620' .. .. .. ..
(5.4.65) = |8+ By + By + B
axjaxl- L°(R2)

By substituting B; from (5.4.64) and using Theorem 5.1.15, since s,6 > %, term B{j satisfies

lu! (@, B1) — u' (a1, B1)I?

€ss SupPg e

lag — a2|1+23
|u (@1, B) — w! (a1, f1)I?
X | €SS SUpPy g = a2 dprdprda;das

12
I

< in2
(5.4.66) < ey

wowze) I

Similarly, we estimate B;j as follows,

2
Béj,ﬁess supaﬁeRluj(a,ﬁ)lzf |1A2Qul| 5 | APrdfzdardas
’ re | 1 — @2l =516y — Bl
< i2 jin2
(5.4.67) S Ny e @ 1 Tz s -

Interchanging the roles of u! with 1/ and ¢ by 7, we deduce that the term B?’;j is bounded by the right
hand side of (5.4.67). Similar computation gives
|Aqu'l?

|a,1 _ a2|1+25|’31 _ﬂ2|1+25

dprdp.da;da;

B, Sess SUpy ger |4’ (a,ﬁ)|2f
R4
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(5.4.68) S| |2

Wi (R W) (R) Wi R WS R)

By substituting the estimates of B ' k=1,...,4 from (5.4.66)-(5.4.68) into (5.4.65) we get
%0 |
0x jax,-

j
L (R?)

ij <
44 H WS(R W} (R) I

and consequently with estimates of Al i=1,... 4 from (5.4.63) into (5.4.62) we have

Hence by substituting estimates from (5.4.59), (5.4.60), and (5.4.69) into (5.4.58) we obtain

2 2 620 2

5.4.69
( ) Oxjaxi

+ IIuII

Il uel|?

& 0
axl R =1 o) W3 (R Wy (R)) S ®W) R)

oo u”H‘(R HO®) S ||u||W W ®) + ||u||W W ®)
2
do ||? 2 0’c
2
||U||Loo RZ +L + Z
) 0xil| ey 15210705 | o ey
(5.4.70) = Cl(”(f”eZ ([RZ)) | u”W S (R; Ws([R)) 1+ u”W S(R: Wa(R))

Since we have not used any relationship between s and §, by repeating the procedure of (5.4.70), we

also get

1+ ul?

llovoull? S Gulllolle @) luell?

Hy® HS(R) ~ W R W2 (R) Wi ®; W (R)

which consequently allows us to conclude that oo u € H%% and the result (5.4.55) follows.
Now we move to a proof of (5.4.56). As in the first part of the proof it is enough to prove the local
Lipschitz property w.r.t. the || - || ;s g, H ®)-norm. Fix uy, up € H%%. Equivalence of H® and W* spaces,

as (5.4.58), implies

ooy =00 uzlly, g oy szzuaoul](a,ﬁ)—[oouzl(a,ﬁnzdﬁda

+f l[ooul(@, B1) — [0 0 uxl(a, 1) — {lo o ul(a, B2) — [0 0 uzl(a, B2)}? B, dp, da
RS |ﬂ1—,32|1+25
N I[Uouﬂ(alyﬁ)—[oouz](al,ﬁ)—{[aouﬂ(az,ﬁ)—[aouz](az.ﬁ)}|2 dpday das
|a1_a2|1+23
| oo ](ay, 1) [UOuz](ahﬁ] {[Uoul](az,ﬁl)—[gouz](a’z,ﬁl)} 2
([U°u1](a1 Ba)—loousl(ar,B2)—{loour (s, B2)—[oousl(a2,62)})
dpidprdada
f Ial—a2|1+25|[31—ﬁ2|1+25 'Bl ﬂz 1 2

(5.4.71) =:D1+ Dy + D3+ Dy.
Using the Lipschitz property of o, term D, on the similar lines of (5.4.60), is estimated as
(5.4.72) D1<L f lui(a, B) — uz(a, B dﬁda<L2 lur — uz)l?

W (R; W‘s([R)

To estimate D, term we need the following two elementary results whose proofs are straightforward.
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Lemma 5.4.20. For fix a, B1, B2 € R and uy, up € H*® we have

1 162[0. b]
[00ull(a,ﬁﬂ—[Uouzl(mﬁl)—{[UOul](dlyﬁz)—[(follz](a,ﬁz)}=f0f 3ro¢ —— (O dédr,
where
b:[0,11x [0,1]3 (1, &) — b1 (&) + r(b2(&) — b1(€)) € R?,
and fori=1,2

b;(&) = ui(a, B1) +&lui(a, B2) — ui(a, 1)l

Lemma 5.4.21. In our notation, we have

az[aob] 2 9o bt 2 d%0
6= ;E(b( 1) 3e5r O+ El 6x]6x,(b(r’€)) f(r,f) (r,é),
where
9 (r,&) = (1 - M)[u] (@, B2) — ] (@, B1)] + 1) (@, B2) — ) (@, B1)];

—(r &) = ub(a, Br) — ul (@, B1) + Elud(a, B2) — ul (@, B2) + ul (a, B1) — ub(a, f1)];
9L (1,6) = ul(a, Bo) — ul (o, o) + Ul (@, Br) — ub(a, B).

Invoking Lemmata 5.4.20 and 5.4.21, gives

dprdpzda

2 |f01 Jo lud(@, B2) — ul (e, B2) + ud (@, B1) — ul (@, B1)] 3Z (b(r, 6))d6dr|
DZSZ |ﬁ1—ﬁ2|1+25

, . : ; 2
11 {(1=1)[u] (@,B2)—u] (@, f)]+7 (U] (@, B2)— ) (@, B1)]} x b
) : . ) . : r,é)dédr
2 Jo Jo [{u;(a,ﬁl)—ui(a,ﬁ1)+f[u;(a,ﬁg)—ui(a,ﬁz)+u;(a,ﬁl)—u;(a,ﬁl)l 0x; ax( (néndé
+ dp1dp,da
P |'5 _’3 |1+26
i,j=1 3 1 2
R
. 2 l]
— 13
= ZD2+ Z D,
i=1 i,j=1
The term D; satisfies
. oo |? |ul(a, B) — ul(a, Bo) + ul (a, B1) — ul (@, f1)]
D, <||— dﬁldﬁzda
2 Ox; 1+26
Xi |l rom2) Jm3 181 — B2l
(5.4.73) B A 12
o |l 0xi || oo ey s = g W RWI®R)’

To estimate Déj we need to work as follows. First note that by fixing the notation
Ag ' = u (@, B2) — ul (@, B2) + ul (@, B1) — ub(a, B1),
we have
(= (@, B2) — ! (@, B + rlud (@, B2) — 1) (@, f1)} x
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x {ub (@, B1) — ul(a, B1) + E[ub (@, B2) — ul (a, B2) + ul (@, B1) — ub(a, B}
= {u] (@, B2) — u (@, B1)} x {ud (@, B1) — ud (@, B1)} + €A g, u'} x {Ag, u}
+E{u (@, B2) — u (@, 1)} x {Ag, u'} + T{Ag, wl) x (ud(a, 1) — Ul (a, B1)),

consequently from the expression of D;] we get

lj<’
2 ~

i j .12
[ |{u1 (Oé,ﬁz) — U (a’ﬁl)} X {AQI ul}|
+
[R3

dprdpzda

. . i . 2
2 f |2 @, B2) — ud (@, B0} (s (at, B) — (@, )}
Lo (R2) R3 |ﬁl _ﬁ2|1+26

axjaxi

Br— Pal+20 dprdpda
[{Ag, ul} < {uf(a, 1) — uj (a,ﬁl)}|2
o |B1— Pol ¥ dprdfzda

|{Ag,u'} x (A, ul}|”

d,Bl dﬁz da
®3 |,31 _’32|1+25
2
< ’ %o I 12 12
uZ ul WSRWMR ul WSRWMR
020 || oo gy ®W (R) ®W (R)

By substituting Dé and D;j from (5.4.73) and (5.4.74), respectively, back into the expression for D,

we obtain
2 2 020' 2
[|zep — Ll1|| s
g’ axl LR =1 0x;0x; (@) Wi ®&W, ®)
(5.4.75) 1+(lw IIWS(R Wg(R)) + || u2|| Wi Wﬁ(uqe))

Interchanging the roles of a, &, s by $, 7, and J, respectively, we bound D3 by the right hand side of

(5.4.75). Hence, the only term remaining to estimate is D,4. Recall that

—(loow](ar,B2)—[oouzl(ar,B2)—{loous ] (az,2)—[oouz] (az,2)})
la; — a2|1+23|ﬁ1 —,32|1+25

Before proceeding further, by direct computation we infer the following two results.

dp,dB; da; das.

f | [UOul](ahﬁl)_[Uo”Z](alyﬁl)_{[gc’ul](az;ﬁl)_[aolle](aZrﬁl)}

Lemma 5.4.22. In our notation with Q = a1, a2] x [B1, B2] R?, and uy, us € HS® we have

Agloouz —oou]:=[oouzl(ay, B1)—looul(ar, f1) oo ul(az, f1)
+[oouil(az, B1) — oo uzl(a, B2) + oo ugl(ay, B2)

+ [0 0 up) (a2, B2) — [0 0 u1] (a2, B2)
1 p1 pl
- f f f (0-0:0[0 0 al)(r,7,{) didr dr,
0 JO JO
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%looal

where (0,0;0¢[0 0 al) := 0roTo’

ar,) = a1(,) +r(az(,) —ai () €R?
and, fori=1,2,
a;(7,8) := ui(ay, B1) + tlui(az, B1) — ui(ay, 1)l +<Elui(ay, B2) — ui(ay, Bl + 18AqQu;.

Moreover, in our notation the following holds

63[0. (Z] 2 63 i
Svacor D= ,Zla(a(”a) Er(r,r,é)
2 2
Z (a(rr f)) (rr &3 f(” €
ik=
2
Z_ ]Oxl (a(r,7, 6)) (r,r 6) 5 (r,T 3
2 l
+ Z (a(r,T, é)) (r,r &) — (11,8
i,j=1 ]a i 5
2 630' da k
(5.4.76) +iy]§:1W(a(r 7,8)) —(r T, f) (r T, cf) 3¢ (r 1,8).
Using Lemma 5.4.22 and substituting (5.4.76) in the expression of D, we obtain
|f0 fo fo [ - (a(r,7,¢)) 616§ar(r T, (f)] dédrdr)?
Dy < dprdp.da, d
4sz1 R* |C¥1—(X2|1+25|ﬁ1—ﬁ2|1+26 hrdp,da da;
2 ololo (a(r,7,8) % (1,7,8) £ (r,7,0)| dédrdrl®
+ Z 0J0 Jo 6xk6x - 61;626 ] dﬁl dﬁgddlda’z
i=1Jpe lay — az|**=5|p1 — Pol '+
if o Jo Jo |55 9 (a(r,7,8) % (17,8 9% (r,Té)] dédvdr e
+ a a
ij=1Jr |6¥1—6¥2|”23|ﬁ1—,32|“25 hrdp,da da;
2 [ 1o Jo o |28 at T, 8) % (7,8 S (1, 8) | dé drdrl?
' Zf B L = ai"za | dpy s day da
ij=1Jp lay — a2l "*%1p1 — Pal'*
2 [ I o e (@t 8) % (7, % (17,8 % (7, | dE drarf?
+ Z dﬁldﬁzda’ldaz

|Oc1 _az|1+25|ﬁ1 —ﬁ2|1+26

+ZD +ZD”I+ZD”’+ Z Dl]k

i,k=1 i,j=1 i,j=1

To estimate the right hand side terms in above, we observe that the partial derivative terms, by
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using the short notation as in Lemma 5.4.22, satisfy

[0£0:0ral(r,7,8) = Ag(uz — uy);
[0¢al(r,T,$) = [ur(ay, B2) — ua (@, 1)) + rlluz — wl(ay, B2) — [uz — wal(ay, f1)]
+TAQuy + rTAQ (U2 — uy);
[0ral(r,7,&) = i (az, 1) — ur(ay, B1) + rllux — url(az, 1) — [ux — uyl(ay, B1)l
5.477) +E&Aquy +1r§Ag(up — uy);
[0ral(r,7,¢&) = [up — url(aq, B1) + Tllue — w1 (az, B1) — [u2 — w1l (a1, B1)]
+¢[u — url(an, B2) — [uz — ur](ay, P1)1 + 7EAQ (U2 — ur);
[0:0ral(r,7,¢) = [up — url(az, B1) — [uz — url (@, B1) + EAQ (U2 — uy);
[0¢0,al(r,7,8) = [uz (a1, B2) — uz(a, B1) —{ur (a1, B2) — ui(a, B1)} + TAqg(uz — ur);
[0:0¢al(r,7,8) = Aqui + rAq(uz — uy).

Next, by working on similar lines to (5.4.58), as an application of (5.4.77), we have

I o ||? |f01f01f01 [AQ(UE—U{)] dédrdrl?
D; = 1+2s 1+26 dprdpzda; daz
0%; | oo @) R lay — az[1+25| B — Bl
(5.4.78) [ 22| luz - w12,
S <||— Ur —
axl' Lo°(R2;R2) 2 1 (R W(s(R))

Invoking the Theorem 5.1.15 and Definition 5.1.5 with (5.4.77) and following the last few steps of
(5.4.75), we estimate D!/ as

g | [uf — ufl(ay, Br) x Aqul
o f | LA x A 16 dpdpsda, da;
0xx0X; || zomey | Jpe 1@ — @2|1¥25 By — Bo| 112

jq [[uf — ufl(@z, Br) = [ug = uf) (a1, f)] x Aqujl®

11
5|

|a1_a2|1+2$|ﬁ1_’62|1+25 dﬁl dﬁZdal daz

|[us — uf) (@, Bo) — [uf — uf)(ar, f1)] x Aquil”
la; _a2|1+2$|ﬁ1 _ﬁ2|1+26

Ao (uk —u) x A uil2
S 9 sdprdpzda das
Rt (11—a2|1+23|ﬁ1 ,52|1+2

dprdprda;das

— uk)(ay, B1) x (Aq(ud — u))P?

dpi1dpfrda; d
|a1 —a2|1+25|ﬁ1 _ﬂ2|1+25 ﬁl ﬁZ ayaay
Il [u2 - ull((XZ,ﬁl) - [u2 - ul](al,ﬁl)] x (AQ(uz —u ))| 4B dfadar da
I [uz - ul](al’ﬁZ) - [uz - uk](al,ﬁl)] (AQ(L{E — ui))|2 dﬁl dﬂz dal daz

lay — aa|1*25| By — Ba 120
IAQ(u2 —ukyx (Ao(ud - u ))I
lag — a2|1+23|,31 _'3 |1+25

dprdp.da;da;

[ |a1_a2|1+23|ﬁ1_ﬂ2|1+26
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2
saze) <[22 I 12 12 + llugll?
o N 0xk0x; || oo m2sm2) U= iy w W} (R) “llws m; W} (R) “2lws w; Wi R) |’
and D{]I.I as
{[uz—u ](az,ﬁl) [uz—u ](al.ﬁl)}
M (a1, ,32) Uy Ha, ﬁl)}
D’IJH’S‘ f 1+2s 1+26 dprdpzda;da;
6x]axl L[°(R2) |al_a2| |ﬂl_ﬁ2|
{[uz ull(az»ﬁl) ul](alyﬁ
dﬂl dﬁz da1 daz
|a1 _ a’2|1+25|,31 —ﬁ2|1+25
(] —ul1 (@, 1)~ [ud — ! 1@y, B1)}
x{[[ud —ul] (a1, B2)—[ud—ui) (ar, B1)]}
= - dpidpsda, das

lay — ao|1+25| By — Bo|1+20
j_ i j_ i i inl?
((1] - )@z, B1) ~ 11 — ) (@1, B)} x (A ud - )]

|a1 _ a2|1+25|ﬁ1 _ﬁ2|1+26

gl
R4
. , X . 2
f (Ao(ue] - u)} x (w1, B2) — uf (@, B}
+
R4

dﬁl dﬁz docl dag

a1 — @125 By — Ba|1+20 dprdpzdaida;

j_ i i
{Aq(uy —upt x {Aqu;}

R la; _a2|l+28|ﬁ1 _’32|1+25

dﬁl dﬁz d(x1 ddz

, , . . ] . 2
{Aq(uy — u)} x {[lud — ull(ar, B2) — [uh — ull(ar, 1)1}

lay — @z|1*25| By — Ba 120

dprdpzda;da;

j_ i i 0 2
(Bo(us] - u) x (Ao(u — )|

|a1 _ (x2|1+25|ﬁ1 —ﬁ2|1+25

dpr1dpzda; da;

2
0%c

axjaxi

,t e

luz — 113 luzll?

(5.4.80) S ‘
L®(R?)

Wi (R; Wﬁ(R))]

W(RW‘5 W([RWE

By interchanging the role of variables, we deduce that DIIJV is bounded as above. Now we proceed to

estimate the final term D}/j . Which by using the notation from (5.4.77) satisfy

3 Vi
o 2 |Hl lDz]k|
(5.4.81) DY, < ‘ _— dpr1dB.da, das,
ijk axkaxjaxi Lo@) o |a1—a2|1+25|/31—/32|1+25
where

DY = [ub — uF(ay, B1) + [[uh — uF1(az, Br) — [ — ub1(ay, B1)]

ijk-
+[[u2—u1](a1,,62)— _ul](al»ﬁl) +AQ(u2_u1);
Dlvji = u1 (ag,ﬁl) - u1 (al,,Bl) +AQu1
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+ 11w — w1z, B1) - 1) — w1, B1 + Mg - u)),

D/ = lug (e, B2) = g (@1, f)] + Aquy

+[uh - ull @y, Bo) — luh — @y, B)] + Do(udd — ul).

So the integrand consist of 64 terms because it is a mutiplication of 3 brackets and each bracket of
has 4 terms which comes from (5.4.77). To be precise, these 64 terms consist of the terms which can

be estimated as follows in a similar fashion to (5.4.80):

1. first 16 terms which will be bounded from above by some constant multiply with

2
o

= luf — uf |2
axkax]'axi 2 1

L>(R?)

(5.4.82) ' u1 I g — ufl?

Wi R W) (R) I u2 Wi R;W) (R) Wi R;WS R)

2. other 16 terms which will be bounded from above by some constant multiply with

3 2

0°c
||u2 u1 &

k 2
” uz - ul ” S (M- TA70
0xr0x;0x; [o[R?) Wa ®&;Wg ®)

3. next 16 terms which will be bounded from above by some constant multiply with

2
o

5.4.84 e —
( ) ‘ Oxkaxjaxl-

ek — k)2 N u1 I s = ul|?

Wi ®W) (R Wi ®W, R Wi ®&W, ®)’

L®[R?)

4. last 16 terms which will be bounded from above by some constant multiply with

2
o

- lus — uf)?
6xkax]'axi 2 1

(5.4.85) ‘ Jo Wi ®WS (R) I ”1 ”wS(n;e W2 ®) luil Wa R WS (R)’

By using the estimates from (5.4.82) to (5.4.85) into (5.4.81), with the last few steps followed in (5.4.75),

we get

DV < Po |’ k i

Pk S ‘ W - luf - uf IIWA([R THER I u2 u1 IIWA([R wa @) g — uf IIWA([R W ®)
+lu) - ul |2 W R W ®) lui IIWS(R wiwy s — uj IIWS([Re RGN ] 112 W R W ®)
el weay < 1t ”%vm;wgm»]

sas <||—20 | 4

(5.4.86) S ’ W - luz —uq ||WS([R W5([Rz)) [ u2||Ws([R WS ®) + [zl ;(R;Wg(R))]'

Hence by combining the estimates from (5.4.78), (5.4.79), (5.4.80), and (5.4.86) we see that D, satisfies
the following bound

2 2 2 2 B

axkaxj'axi

%o
axj‘axi

2
] .
L (R?)

+
axl Lo®2) k=1

Le[®2)  i,j=1
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(5.4.87)

2
W3R WS R)

2
Wi RWS (R)

2
W3 R WS (R)

4
Wi RWS (R)

4

*llw ”w,;‘(R;Wg(R)) :

lug — urll L+ uzll + lluzll

J+

So by putting the estimates of D; from (5.4.72), D, and D3 from (5.4.75), and D4 from (5.4.87) into
(5.4.71) we have

2
OouUy—0oou
I 1 2”H3(R;H§(R))
2 11 o0 II2 2 2 2 2 3 2
o 0°o oo
S|LE+Y || + + — luz — w112
~ o 2 1 S (-0
i=1 axi L>°(R2) i,j=1 axjaxi [°(R2)  i,j,k=1 axkax]'axl‘ [(R2) W(X(Rrwﬁ (R)
2 2 4 4
B e LT L LT I LA 1)

_. _ 2
=: CZ(”U”ei(RZ)) luo — uq |l Wg([R;Wg([R)) X

2
Wi RW ®)

4
W3 R W (R)

4
x |1+ |u +|lu
Izl Iy sy

2
w2,

swwiwy t ]

By interchange the roles of s, d, similar to above, we get

2
o — (¢]
loro = oo uzls @1y

< _ 2
S Calllolles mey) lluz — "WS(R;W[;(R))X

2
W2 R W, ®)

2
W2 R W ®R)

4

4
x [ 1+ luzll W2 ®W; ®) i ”W3<R;W,§(R)) '

+luall + 2l

Hence, we obtain (5.4.56) and we finish the proof of Proposition 5.4.17. [ |

5.5 Local well-posedness theory

In this section we present the main result related to local theory. Before stating the main theorem we
will prove the following result which allows us to prove later that the localized version of O_lo(u)é

belongs to H%?.

Lemma 5.5.1. Assume that Hy, H, € (0, 1) and Hlf € (0, Hy A Hy), i = 1,2. Then there exists a complete
filtered probability space (Q,§,P) and a map,

(RExQ-R,
such thatP-a.s. {(-,-,w) € HIP2 Jocally, i.e. for every bump functionn,
n(@n(p)(a, p,w) e b,
Moreover, for (a1, B1), (a2, B2) € R?,
(5.5.1) E[{(a1,B1) {(a2,B2)] = Ry, (anl, la2l) Re, (1811, 1B82)).
Here[ is the Expectation operator w.r.t. P and

Ry(a,B) = %(a2H+ﬁ2H— la-B*1),  aBeR
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CHAPTER 5. STOCHASTIC GEOMETRIC WAVE EQUATION ON R'*! WITH ROUGH DATA

Proof of Lemma 5.5.1 Let us choose and fix Hy, H, € (O, ) and Hl’ € (0,H1 A Hy), i=1,2. We will
prove the result only in the more difficult case H;, H, € (0, %) as the other case Hy, Hy € (%, 1) can be
proved analogously but in a simpler manner.

For the time being let us also fix bump function 7. To move forward define, for a,b € (%, 1),

afiy= 19 [T amtp
I"f(x)'_l"(a) A t“7 f(x—-1dt,

and I,Il’ similarly. It is known that, see e.g. [10] or [67, Section 2], the image of L2(R) by I,‘f is a subset of
H%(R). Moreover, by [10] or [67, Theorem 11], if

1 1
0<d'<a-- and O0<b <b--,
2 2
then the map
PR — HY®) and I 1*R)— HY ®),

are Hilbert-Schmidt operators. Therefore, the tensor product of these maps is also a Hilbert-Schmidt

operator, see Lemma 5.6.1 and for a more general result refer [39]. In other words, the map
Ifol): >R L*R) — H* (R) ® H” (R),

is Hilbert-Schmidt whenever the relationship 0 < @’ < a— § and 0 < b’ < b— 3 hold.

Recall that, by a classical result, see e.g. [134], L?(R) ® L?(R) is isometrically isomorphic to L2 (R?).
Since by [145, Theorem 2.1], the space H a R® e H b (R) is isometrically isomorphic to S;’éb ’ (R?), and
Ij® I,l]” is equivalent to I,‘;’b and by the ideal properties of the space of all Hilbert-Schmidt operators,
we infer that the map

¢ 12 ®%) — 557 ®?),

defined as,

X ry
Ir’f’bf(x’y):%fo fo S fe- 1y - 9 dsdr,

is Hilbert-Schmidt. Analogously, if 0 < a’ < b — % andO<b' <a- %, then
b .12 m2 b,d 2
L7 L°(RY) — 855" (RY),
is Hilbert-Schmidt. Hence,
PP 2R — S5 @) n Sy ®RY) =H"Y,
is Hilbert-Schmidt whenever
1 1
a,b'e (O,a— —) A (O,b——).
2 2
In particular, by taking a = Hy + §,b = H, + 3 and a’ = Hj, b’ = H}, we have that the map

Iéfﬁ%’Hﬁ%  I2(R?) — HPH (R2),
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is Hilbert-Schmidt.

Let {en}‘,’f:1 be an orthonormal basis (ONB) of L% (R?) and let {[5n}»‘,’l°:1 be ani.i.d sequence of N(0, 1)
random variables defined on some probability space (Q,§,P). In fact we consider an ONB of L?(R?)
of the form ¢&; ® &;, where {&; }°° is an ONB of L%(R) and we consider i.i.d sequence {,Bi,j}i,jel\lz of
N(0,1) random variables but we use the simple index notation.

Consider the random series

H1+ H2+

(5.5.2) S(w):= Z Br(@)I, 2 (en).

Hi+3,H+3 .
Because the map I, vt is Hilbert-Schmidt, the above series is convergent P-a.s.
Next we choose a sequence of real numbers {R;}72, such that R; /oo and a countable family of
bump functions n*. We put

k(). ¢ 2
nik:n (R_l)y (l)k)EN()-
Because the family 7n;x is countable, we infer that the series

H1+ H2+

(5.5.3) S(w) = Z Br()I,, 2 (en).

is P-a.s. convergent for every (i, k). Hence the series

(o]
(5.5.4) Sw):= Y ful@) ™21 (ey),
n=1
where
b ff (=251t 1,y - 9)dsd,
! F(H1+) (Hz+3 4 .

! !

is P-a.s. convergent in IH]IIZ IC'HZ. Indeed, since u,; — uin I]-[IIIZ . : if and only if for all (i, k)
NikCONik N Un — NN (u  in - KA,

we have, P-a.s.

NNk () Z Bu(@) I3 (e,)](x, 1) = Y 0016 () (@) T 21242 (e,)1(x, )
n=1 n=1

x Hi+1, H+l
Z )Ly, " 2 el (x, ).
But, by (5.5.3), for w € Q, P-a.s. the r.h.s of above converges in HH 22, Hence
HI,H)

{(w):= Z Bu(@) 12753 (6,) € H

n=1

loc ’

will give the Lemma 5.5.1.
Finally, we can prove that the condition (5.5.1) is satisfied by repeating the argument from [67]
and using the special form of the ONB of L?(R?). [ |
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Let us define the (pathwise) local solution that we consider.

Definition 5.5.2. Assume that (u, ) € Hy (R;R™)x Hlso_cl (R;R™) forsomes € (3,1). Leto € G%(RZ; R?)
and { be a fractional Brownian sheet of Hurst indices Hy, H, € (%, 1) defined on a probability space
(Q,5,P). A process u, whose paths are almost surely in IJ-[I%‘Z, is said to be a unique local solution to the

stochastic wave map Cauchy problem

{ Su=Nw) + o),

ula,—a) =upg(a) and oy u(a,—a) +6ﬁu(a,—a) =u;(a),
if and only if, for w € Q, P-a.s., there exist an open set O(w), containing the diagonal
D:={(a,—a): xR}

and a function u(-,-,w) : O — R? such that u(-,-,w) satisfies the integral equation (5.3.3) uniquely in O,

and for every (ag, —ag) € D, there exists r(w) > 0, depending on the point (ag, —ag), such that
(o —2r(w), ag +2r(w)) x (—ag —2r(w), —ap + 2r(w)) < O(w),
and, for every bump function y which satisfy 1j—rw),rw) < X < Li=2rw).2rw)), the following holds
1(a—ag)y(B+ag)ula,p) e HS?,
Next result is the main theorem of the current chapter.

Theorem 5.5.3. Letn,y as defined in (5.4.1) and v be a bump function which is non zero on the
supportof x,n andew(x) dx=1.Assumes,0 € (%, 1) such thaté < s and (uy, u;) € H([R) x H"1(R).
There exist a Ry € (0,1) and a Ay := Aol uoll g5, |ty | -1, Ro) >> 1 such that for every A = Ag there exists
a unique u:= u(A, Ry) € B,, whereBg :={u e H : (| ullyges < R}, which satisfies the following integral

equation
u(a, B) =nAa)n(Ap) ([S(x(/l)(uo —al), y Mudl(a, B + O Nw)(a, B
(5.5.5) +[O ol B),  (a p)eR?

Here the right hand side terms are, respectively, defined in (5.3.4)-(5.3.6) and a(’} is

L't(;)L = fR Uy (%)w(y) dy.

Proof of Theorem 5.5.3 Let us fix s, § satisfying the assumption of the theorem. Since the dependency
of constants on the variables in the estimates below plays an important role in proving the contraction
property, (which in result allows us to apply the Banach Fixed Point Theorem), we write the proven

estimates precisely as follows:

1. from Lemma 5.4.18 there exists Cs := Cs(n) > 0 such that, for every ug € H*(R, u; € HL(R)),
(5.5.6) In(@)n(B)S(uo, un) llygss < Cs (Il uoll s + Nl ll 1),
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2. for the integral term involving the non-linearity of wave map equation in (5.5.5), by Lemma

5.4.15 we know that there exist a natural number y = 2 and a positive constant Cy := Cy (1)

such that
(5.5.7) In(@n(B) O~ IN@lygss < Cx el 55,
and
2 Y
(5.5.8) IN(@n(B) O IN (1) = N(u)]llygss < Cnllug — tz llyges 3 Muillggss |
i=1

for every u, uy, up € HS9;

3. to estimate the integral w.r.t. the noise term in (5.5.5), note that due to Proposition 5.4.17, o (u) €

H%® for any u € H%?. Next, since by Lemma 5.4.3 H% -HS" 191 c HS"19-1 and { € [I-I]lso_cl"s_l,

Proposition 5.4.9 (with T = 1) tells that locally &~ [o(1){] belongs to H*?. In particular,

In(@n(B)O o (wlyss < Cr llo (@) llygss 1€ lygs-1.5-1
(5.5.9) < Cr C1(0) Ntllygss [1+ Nellygss ] 1N pgs16-1,

and
In(@n(B)O ™ (0 (w) = 0 ()5 < Cr o (wr) = 0 (W) lygso 1 g1,

2
k
1+ Y lulk,,
i k=1

(5.5.10) < C; C2(0) lluz — uy llyges 1€ lpgs-16-1,

for some positive constants Ce:=Cc(n,x) and C;(0) := Ci(”U”@ZH)-

To move ahead in the proof we consider a map @ : H%® 3 u— ug: € H% defined by

(5.5.11) Ugr = (@) (P) (S(u{}, uh) + O N + 07! [a(u)éﬁ),
where
(5.5.12) u(}(a) =x(a) [uo (%) - L_l(/}] , u{l(a) = )((a)/l_lul (%), and ("1 = )L_ZHAZ.

From (5.5.6) to (5.5.9), we infer that the map ©% is well-defined. In order to prove that O is a strict
contraction we will use the concept of scaling together with the restriction map method. Let us take
R € (0,1) (to be set later). By invoking Lemma 5.4.1 followed by the scaling Lemma 5.4.6, since § < s
we get

1_
(5.5.13) In@n(B)S (g, ) less = Csn o0 (Aol + A2~ s g )
for some € > 0. Hence, by Lemma 5.4.7 we have
(5.5.14) 1EM pgs-romt < AP gscron
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Next, observe that since RY !

%— 5,—2+3—(s+06)<0,wecanfind Re(0,1) and A := A(||ugll gs, | 1 || g=-1, R) such that

< RforR€ (0,1), € > 0 and for the considered range of s, §, the exponents

- 1_
R = Co(m, ) (A~ Nutoll s + A3ty g ) + CxeRY*!

(5.5.15) + AT CC (@) RA + R o101

Consequently, for every pair (1, R) such that (5.5.15) holds, the map 0 : Bz — By is well-defined
because for any u € Bp, by triangle inequality in (5.5.11) followed by estimates (5.5.7), (5.5.9), (5.5.13),
and (5.5.14) give

- 1_
lttgn o < Cm, 20 (A~ Natoll e + A2yl 1) + O RY ™!

(5.5.16) + A C,Cr )R+ R lgs-romr.

To have the contraction, observe that by using the estimates (5.5.8), (5.5.10), and (5.5.14) in (5.5.11),

for any u, v € Bg, we obtain

ltgr — vor llygse S Cxllt = vllyges RY + Cp Co(0) 1t = vllygss (1+ R+ R?) 1€ llygemr6-1

(5.5.17) < |CNR+ATEC, Cy(0) (1+R) ||('||Hs71,571] = vllygse-

Hence we can choose Ry € (0,1), Ag := Ag(ll uoll 5, | 41 | -1, Ro) in such a way that (5.5.15) is satisfied
and the right hand side of (5.5.17) is bounded by %II U= Ullyss, ie. ©1 is %-contraction as a map from
Bg, into itself. Thus, since Bg, is a closed subset of 1S9, by the Banach Fixed Point Theorem there
exists a unique uleB R, such that ut = 0ruh).

It is relevant to note that because A in the r.h.s. of (5.5.15) and (5.5.17) appear with negative
exponents we infer that (5.5.15) - (5.5.17) holds for the chosen Ry and every A = A,.

To complete the proof we do the inverse-scaling as below and reach back to the map ©. In this
direction, first we see that for any given suitable 1, R and the corresponding fixed point u* of the
map O, by defining

1 A A
(5.5.18) u(a, p) = ﬁnﬂfl u*(a,B)=u"(Aa, 1),

due to the special structure of the null form N we have
1 a B
Nt B) = =N|ul=, =]
(u"(a, ) P (u()L )L))
Consequently due to the choice of exponent -2 to scale the noise in (5.5.12) and since u’ is fixed
point of ©%, from (5.5.11), (5.5.18) followed by Lemmata 5.4.1 and 5.4.7 we deduce

(5.5.19)

ula, B) = ot (u’l) Aa, AB)

Aa

_ L3 ) 1 )
=nAanap) | (uo Aa) + 1] (—/m))+2fw ud(rdr

176



5.5. LOCAL WELL-POSEDNESS THEORY

1 rAa pAp 1 rAa pAp .
+—f N(u’l(a,b))dbdawt—f f oW (a, ) da,db)
4J-2pJ-a 4J-rpJ-a

1 _ _
=nAa)n(Ap) [5 {x(/la) up(a) —y(Aa) o + X(=AB) up(=P) — x(=AP) uol}

1 (@ 1o B 1o B .
+§fﬁx(/lr)u1(r)dr+zf N(u(a,b))dbda+ Zfﬁf o(u(a,b)){(a,b)dbda

—a

=A@ (IS o ~T™), x W unl(a, f) + [0 Nawl(@, ) + [0~ el (@ B))
Hence the Theorem 5.5.3. u

To remove the dependence on " we consider the stochastic wave map system work with
another coordinate chart which is the translation of original one by the value . In precise manner,
since the wave map (in the integral form) is well-defined and A is already fixed now due to the
Theorem 5.5.3, by choosing the local chart (U, ¢') where ¢’ differs from ¢ by the constant o
precisely, ¢'(p) := ¢(p) —u_()’1 , Vp € U, the obtained localized solution u from Theorem 5.5.3 satisfies
the following integral equation

(5.5.20)  u(a, B) =nAa)nAB) (SxM) uo, y M ul(a, B) + (O Nw)l(a, B) + [O o w)il(a, B)).

Now to obtain the pathwise local solution in the sense of Definition 5.5.2, let (@, —a) on the

negative diagonal Dy g := {(r,—r) : r € R}. Next, by setting
Uoy, (@):=ug(a—ap) andO Uiy, (@) := uy (@ — ap),

we get, by change of variable

2[S(uo, u)l(@ — ao, f+ o) = uo,, (@) + uo,, (=) +fﬁ u,, (s)ds.

Similarly by defining
uao (ay ﬂ) = u(a - aO)ﬁ + aO))
we obtain
[O7"NW)] (@ - ao, B+ ao) = [0 N(ug,)] (@, B),
and

[0 o] (a-ao, B+ ap) =[O o (Ugy) | (@, B),

where (g, (@, B) := {(a — ag, B+ ao).
Consider the following integral equation

u(a - ag, B+ ao) =nAa)n(AP) [S(xM uo, ¥ (D) ur) (@ — ag, B+ ao) + (O N(w)) (@ — o, B+ ap)
(5.5.21) +(O7 o w)) (@ - ag, B+ ap)]
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Since the Sobolev spaces H*(R?) are translation invariant and the constants of inequalities in the
estimates (5.5.6) to (5.5.10) depend only on 77 and y, we infer that by repeating the procedure followed
in the proof of Theorem 5.5.3, with the same constants of estimates, and we get a unique uq, € H*?
which satisfies (5.5.21) in some neighbourhood of (@, —ap). Hence, by using the uniqueness of
localized solution we can glue “local” solutions to get a unique pathwise solution u as required in the
sense of Definition 5.5.2.

5.6 Auxiliaryresults

5.6.1 Tensor product of Hilbert-Schmidt operators

The following lemma is a special case of [39].

Lemma 5.6.1. Let E;, F;, i = 1,2, are given separable Hilbert spaces. Assume that A € %> (E, E») and
B e %) (F,, F,), i.e. they are Hilbert-Schmidt operators. Then the tensor product A® B, which is defined

by,
A®BZE1®F13M'—>BOMOA*€E2®F2,

is a Hilbert-Schmidt operator from E1 ® F) into E» ® Fs.

Proof of Lemma 5.6.1 Recall that by definition E; ® F; = % (E}, F;) for i =1,2. Let {e}.}jEN, {eF}ien
and { fkl}N, respectively, are orthonormal basis (ONB) of E}, E», and F;. It is known that

1 1. o= 1 1
ej®fk 1B 3(/>~>ET(¢),ej)Elfk € Fy,

and the sequence {e}. ® fkl}j,kEN forms an ONB of % (E}, F;). Thus, since {e‘l?.‘*} are ONB of E,

18

I(A® B)(e}® [l gk = 2 I g2 AT €] e B BURDIE,

1
gk

| g (€7 Ae)) g, P I BUOIE, = IB(f) 17, 1 Aej Iz,

~
I
—

Hence
= 1 £1y)2 2 2
.kzl I(A® B)e; ® fi)ll 'y, k;,m) = 1 Al k1,50 | BU 5, oy
K=
and we are done with the proof of Lemma 5.6.1. |

5.6.2 Invariance of wave map under local charts

In this section we show that the wave maps, under perturbation, of sufficient regularity are invariant
with respect to local charts. Here again, for simplicity, we restrict the computation to the case when
M is 2-dimensional manifold. Let (U, ¢ = (x!, x2)) and (U = ( yl, yz)) be two local coordinate charts
on M with a common domain U. We will also denote the standard coordinates of R? by the same
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notation in the corresponding cases. Recall that the SGWE (1.2.6) has the following form in local

coordinate (U, ¢), for each k=1, ..., n, we write ¢ to show the dependency explicitly,

2 1
o¢zfe, 0= Y Y 1k 920,029 20 + Yok (P 2)¢,
(5.6.1) a,b=1p=0

$70,x)=%Zy(x)eR?, and 9,22(0,x)=?7,(x) e R?,

where ?Z = po z:R? — R?, 4’1"’; , denote the Christoffel symbols on M in the chosen local coordinate
(U,¢) and
Po(p(p)) = (dpp)x(p) €ER?, peU.

We also assume that £ is sufficiently smooth so that the equation (5.6.1) makes sense in the differential

form.

Theorem 5.6.2. Suppose that (U,¢) and (U,v) are two coordinate charts on M. Let V be an open
subset of R? and z: V — U is of class C2. Define

$Z=¢poz and VZ=wop H(®Z) on V.
Then
(5.6.2) ?Zo(x) = o™ (Yup(x),

and ®Z(t, x) satisfies

92 7k 92b 7k .
_ _ b5k 7

5z bX) == (LX) =Yo7 ( (£, X))¢
(5.6.3) o 30 @) | 222 0 2 (- 2 02 1| o
o Pyt ap'T1H X or M b ox Mo HEITY
ifand only if V Z(t, x) satisfies

aZWZk aZUJZk k .
(5.6.4) o 3T @y | 2 AP A AL o) B
. TR B THR I TR M I T

fork=1,...,n.

Proof of Theorem 5.6.2 Since o™ :R? 3 ¢(p) — w(p) € R? and poy ' :R? 3 y(p) — ¢p(p) € R? are
diffeomorphisms, the equality (5.6.2) holds true because

?Zo(x) = Plz0(x)) = (pow (W (z(x) = [wod™1(Vzo(x).

Now we move to the proof of the second claim in the theorem. Suppose ? Z satisfies (5.6.3). Observe

that by the chain rule for Jacobi matrices we have
a(bza 2 a(¢aow—l)

(t,x) =
ot /12::1 6)”1

(5.6.5)

A/O
(W—IZ)(r,x),

(w(z(t )))a
w(z(t, x 3
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and

¢ 7b 2 b
(5.6.6) 0"z _2—0@ id (w 2

) - t
o (t,x) =T g (y(u(t, x))) (z, x).

For second derivative terms by similar calculations we get

62 (/)Za 2 62((Pu 0,(//—1) 6(11/5 ° Z) a(w/l o Z)
t,x) = —_— t, t, t,
5z (6 “ZZI oyayt WO == (00 = (1)
2 0((/)“01//_1) az(wAOZ)
+}§17(W(2(t’ x))) T(Iy x),
and
62 (pr 2 62((Pb0u/_1) a(wé 02) 6(1///1 02)
e (t’X)_MZ:IW(W(Z“’xm 5 (bX) = —(1,x)
2 5 b~ 52
(5.6.7) +) ((p—;ﬂ)(w(z(t x))) (w—)(t, x).
A=1 oy

It is well known, see [118, Chapter 3], that the Christoffel symbols transform under the change of

coordinate chart as, for each u=1,2,

2 Ot ow™! 2 0%(pH o
K;wrgﬁ(wm,x))%(‘”z(ryxﬂ=MZI %(WZ(r,x))

6(¢>’L o)

ot TV zt,x0) T @ Z(1, %) |

(5.6.8)

5
0@7oW) 74, 9y IL"OW)
y

Since ?o(®Z(t,x)) = (dz,09) (x(2(t, x))), we infer that, foreach k=1,2,

2 a(d)kow_l)
(5.6.9) bk zt,x) =y —
);1 ay¥

Yz, )Y ¥ Z(t, x)).

Then, since ¢ Z(t, x) satisfy (5.6.3), by substituting partial derivatives from (5.6.5)-(5.6.7) followed by
combining the terms to apply the transformation laws (5.6.8) and (5.6.9) we get, for each k=1, 2,

2, 0% (PFoy™) dyloz)  dytoz)
O—AEIW(w(z(Lxm S (LX) == (1,X)
2 0 oy 2(1// 2)
+/12::17(W( 2(t,x))) —=—— (£, %)
2. 2 (pFoy™ oy o2) dytoz)
- T A sA » y t,
MZ:l aypayt WEED) =H (60 a6
2 0 ko - 2
—%%(w(w )))L(r x) —Pok(pa(t, )¢

m
+ Y Tk @ z0,x)
a,b=1

a ag, -1
(Z(‘/’—f)(w( (1, x)) “” D (1,0
A=1 dy
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This implies in matrix form

(o) WO (y(at, 1) 2L (e, 1))
- "“’”‘” )(w(z(t X)) "“”"‘” Ly (2, x)

A1)

(5.6.10) A(2)
2x1

Since 2 x 2 matrix in (5.6.10) is invertible, we infer that A(y) = 0 for each y = 1, 2. Hence proof of the
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Theorem 5.6.2 is complete.
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