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ABSTRACT

Quantum stochastic radiation reaction and electron-positron pair pro-

duction influence the dynamics of plasmas created by laser pulses with

high-intensity ≥ 1023Wcm−2. Experimental evidence of quantum ef-

fects has proven challenging to obtain so far and crucially depend on

maximising the electron’s Lorentz invariant non-linearity parameter,

χe = ERF/Ecrit , the ratio of the laser electric field observed by the

electron in its rest frame ERF to the critical field Ecrit of quantum

electrodynamics (QED).

By deriving the average χe ab initio, we find the initial electron en-

ergy is crucial as radiation reaction discourages maximum χe before the

electrons reach the peak intensity. In the following, we use a QED-PIC

code to simulate the collision of a counter-propagating 5× 1021Wcm−2

laser pulse with a 1.5GeV electron-beam. Simulating both symmetric

and skewed Gaussian pulses, where the leading edge of the temporal

intensity envelope has a fast rise time, leads to an undesirable reduction

to the peak intensity I0.

Contrary to the widely accepted result, we show that the optimum

temporal envelope to enhance pair production is a short and com-

pressed Gaussian pulse. A skewed Gaussian results in approximately

1.5× 10−6 pairs produced per electron and is enhanced by a factor of

∼ 10 to an improvement of 2.0× 10−5. To this end, we consider an alter-

native approach using plasma optics to reach maximum χe to enhance

electron-positron pair production.
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1
INTRODUCTION

1.1 motivation

Near-future multi-PW laser facilities such as Vulcan 20PW [1], Extreme

Light Infrastructure [2] and Apollon [3] are expected to reach focused

intensities of ≥ 1023Wcm−2. Reaching this intensity will enable us to ex-

plore new plasma physics in the relativistic regime in which strong-field

quantum electrodynamics (QED) can significantly alter the dynamics

of a plasma [4]. One important dominant effect at play is the radia-

tion reaction (RR) effect due to the conservation of energy as charged

particles in a strong laser field emit electromagnetic radiation. The ef-

fect of RR can lead to nearly complete absorption of the laser pulse in

the classical picture [5]. Deepening our understanding of the transition

between classical and quantum radiation reaction has been at the fore-

front of theoretical research [6, 7, 8] with recent experimental progress

[9, 10, 11].

Experimental techniques such as chirped-pulse amplification (CPA)

have enabled ultrashort lasers with femtosecond (fs) durations [12, 13]

to become a reality [14]. A feature of the development of high-intensity

lasers has been the rapid increase in laser intensity as new generation

facilities come online, as illustrated in fig 1.1 [15]. Current laser systems

have reached a record peak intensity of I0 ∼ 0.7 × 1022Wcm−2 [16],

an order of magnitude less than the intensity expected at the next

generation laser facilities.
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1.1 motivation

Experiments at these facilities will be investigating plasmas in the

highly non-linear regime, in which the particles exhibit stochastic ef-

fects. One such effect is quantum stochastic RR, where the emission

of highly energetic photons is discrete and unpredictable. If the hard

photons reach an energy threshold then non-linear Breit-Wheeler (BW)

pair processes can arise.

This process is the effect of an emitted high energy photon from the

electrons that interact with the laser pulse photons, annihilate thus

creating an electron-positron pair. If the electromagnetic field produced

by the laser is strong enough, a pair cascade involving multiple pairs

can be initiated producing a so-called QED-plasma. The importance of

quantum effects on the electron is measured by the Lorentz-invariant

non-linearity parameter χe. It is determined by calculating the ratio of

the electric field of the electron observed in its rest frame ERF to the

critical or Schwinger field [17] Ecrit

χe =
ERF
Ecrit

(1.1)

where the value of Ecrit is the strength of the electric field required to

break down the vaccum into spontaneous electron-positron pairs and

has a value

Ecrit =
m2
ec

3

qe h̄
' 1.32× 1018Vm−1

However, this electric field magnitude is unattainable with current and

near-future laser systems. We may overcome this constraint by acceler-

ating the electrons externally to an energy γ ∼ a0. The laser strength

parameter a0, or normalised vector potential a0 is defined as the elec-

tron energy gained over a distance of the laser wavelength in units of

its rest energy mec
2. The value of the electron’s χe scales linearly with

the strength parameter a0 showing the dependence of laser intensity to

2



1.1 motivation
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Figure 1.1: Rapid increase in laser intensity from 1960 to modern day.

observe quantum effects at (χe ≥ 0.1). A convenient approximation to

the strength parameter a0 is given by

a0 ≈ 0.85
√

Iλ2

1018Wcm−2µm2

where λ is the laser wavelength. A laser with a wavelength 1µm and

intensity 1× 1021Wcm−2 such that a0 ≈ 27 and since a0 � 1 would

produce electrons that are influenced by strong-field QED effects. Illus-

trated in fig. 1.2 shows how the magnitude of a0 has increased over years

with increasing laser intensities. We can find that multi-PW lasers such

as Vulcan 20PW and the Extreme Light Infrastructure will be reach-

ing in excess of a0 ∼ 100, in a regime that produces sufficiently strong

electromagnetic fields to frequently observe quantum effects.

Bula et al [18] reports on the non-linear Compton scattering exper-

iments performed at the SLAC facility. Using a 7ps laser with a mod-

erate intensity of 1.3× 1018Wcm−2 (a0 = 0.5) with a 46.6GeV beam,

electrons colliding with a χe = 0.36 were measured from the scattered

electrons. In these experiments, highly energetic gamma rays were emit-

ted reaching an energy high enough to decay into electron-positron

3



1.1 motivation

pairs. The experiment observed 101 real e−e+ pairs and 69± 14 for

electrons with a value χe > 0.216 [19]. The increases of the electron’s

χe only have to be small in order to have a significant effect on pair

yields, showing the importance of maximising χe if we wish to observe

pair cascades in the intense laser field.
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Figure 1.2: Laser strength parameter a0 increasing proportionally with laser
intensity reaching new limits. Shown in red are current laser sys-
tems while near-future facilities are indicated in blue.

The purpose of this thesis is to consider the dependency the temporal

shape of the laser pulse has on maximising magnitudes of the electron’s

non-linearity parameter χe. Understanding the parameters and opti-

mum temporal shape of the laser pulse to increase χe and therefore the

electron-positron pair yields will be crucial in experiments performed

at next generation laser facilities [20].

This research has applications to, most evidently, the creation of real

laboratory electron-positron pairs [21] and quantum effects in extreme

astronomical contexts [22]. The following will identify the experimental

constraints of modifying the pulse and if pair enhancement is achieved

with a laser pulse that propagates with an asymmetric temporal inten-

sity envelope.
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1.1 motivation

A variety of experimental schemes [23, 24] and simulation methods

[25, 26, 27] to maximise electron-positron pair yields have previously

been proposed. Asymmetric [28] and supergaussian envelopes [29] in

particular have been suggested to encourage a variety of enhancements.

Most notable of these are the Leemans experiments, employing both

Gaussian and skewed Gaussian pulse shapes. Leemans et al [30] discov-

ered that modifying the shape of a short 76fs laser pulse to an asymmet-

ric temporal pulse enhanced the electron yield in a plasma wakefield.

This is due to larger amplitude wakes forming at the fast rising leading

edge of the pulse. These results were the first experimentally achieved

enhancement using a non-linear laser chirp.

In this thesis, the collision of a counter-propagating circularly po-

larised laser - electron-beam is considered. Simulations using the particle-

in-cell (PIC) code EPOCH-1D will be employed to produce symmetric,

asymmetric and supergaussian temporal envelopes. We will further use

realistic Gaussian temporal envelopes from optical phase offsetting and

data from a Laser Wakefield Acceleration (LWFA) simulation in the

Fourier-Bessel PIC (FBPIC) code [31]. The analytical forms for the

evolution of the electron’s average γ(t) and χe(t) are derived ab initio

and compared with results from PIC code simulations. A scheme that

uses plasma optics will be proposed in order to suggest an effective

method for producing pulses with a sharp fast rising edge at the front

of the laser pulse.

5



1.1 motivation

1.1.1 Notation & units

Covariant relativistic four-momentum of a particle with mass m and

Lorentz factor γ

pµ = (γmc, pi)

contravariant form of the four-momentum is

pµ = (γmc,−pi)

Four-gradient in covariant form

∂µ =

(1
c

∂

∂t
,∇
)

and contravariant form

∂µ =

(1
c

∂

∂t
,−∇

)

Covariant electromagnetic field tensor in component form

Fµν = ∂µAν − ∂νAµ

where A is the four-potential Aα = (φ/c, A), φ the electric potential.

The matrix form of the electromagnetic field tensor is

Fµν =



0 Ex/c Ey/c Ez/c

−Ex/c 0 −Bz By

−Ey/c Bz 0 −Bx

−Ez/c −By Bx 0



6



1.2 classical electrodynamics

Contravariant electromagnetic field tensor

Fµν =



0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0



Name Notation Value SI Units
Speed of light in vacuum c 2.998×108 ms−1

Electron mass me 9.11×10−31 kg
Charge of Electron qe 1.6×10−19 C
Compton wavelength ( h̄/mc) λc 2.426310×10−12 m
Fine structure constant a0 7.30×10−3 1
Critical field (mec

3/qe h̄) Es 1.32×1018 Vm−1

Vacuum permittivity ε0 8.85× 10−12 Fm−1

Reduced Plank constant h̄ 1.06× 10−34 Js−1

Compton time (λc/c) τc 1.29×10−21 s

Table 1.1: Definition of fundamental constants

1.2 classical electrodynamics

1.2.1 Forces on charged particles

The Abraham-Lorentz force is the effect of a charged particle emitting

electromagnetic radiation as the particle with charge q accelerates. It

is a recoil force that occurs under the assumption that the velocity of

the particle is much less than the speed of light c. It can be derived

simply by following [32], consider the work done on the particle, which

is equal to integrating the negative Larmor power, where P ∝ q2a2 [33]

between periodic times t1 and t2

∫ t2

t1
F · v dt =

∫ t2

t1
−P dt = −

∫ t2

t1

µ0q
2

6πc a2 dt = −µ0q
2

6πc

∫ t2

t1
v̇ · v̇ dt

7



1.2 classical electrodynamics

Using the method of integration by parts

∫ t2

t1
F · v dt = −µq

2

6πc v̇ · v
∣∣∣∣∣
t2

t1

+
µ0q

2

6πc

∫ t2

t1
v̈ · v dt

=
µ0q

2

6πc

∫ t2

t1
ȧ · v dt

comparing the integrands, the damping force on the particle is

F =
µ0q

2

6πc ȧ

where µ0 is the permittivity of free space. This result is the most funda-

mental form of radiation reaction. This equation suggests that the force

on a particle is proportional to the square of its charge and the deriva-

tive of the particles acceleration. From Newton’s second law |F| = m|a|

F =
µ0q

2

6πc ȧ = ma

We can see the solution to the acceleration has an exponential form,

namely a(t) = a0e
t/τ . A solution of this type is called a runaway so-

lution since it produces unphysical results in which the particles accel-

eration exponentially increases. This seemingly unavoidable solution

has been fixed with the self-consistent Landau-Lifshitz equation, tak-

ing into account the classical recoil from radiation and has been solved

exactly for a plane electromagnetic wave [34, 35].

1.2.2 Generalised Lorentz force on a particle

A particle with charge q and velocity v will experience a force in the

presence of an external electric E and magnetic field B. This is the

8



1.2 classical electrodynamics

Lorentz force and acts perpendicular to E×B, in tensorial form the

Lorentz force law reads

dpµ

dτ
= qFµνUν (1.2)

where pµ = (γmc, pi) is the four-momentum, q is the charge of the

particle, Uν = γ(c,−vi) is its four-velocity and Fµν is the rank-2 anti-

symmetric electromagnetic field tensor

Fµν =



0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0


The vector form of eqn 1.2 can be derived simply by considering the

force in the x-direction as follows

dp1

dτ
= qF 1νUν = q(U0F

10 + U1F
11 + U2F

12 + U3F
13)

Substituting the elements of Fµν

dp1

dτ
= q

(
U0

(
Ex
c

)
+ U1(0) + U2(−Bz) + U3(By)

)

Now substituting the components of the four-velocity noticing the fac-

tor γ that appears yields

dp1

dτ
= qγ

(
c

(
Ex
c

)
+ (−vx)(0) + (−vy)(−Bz) + (−vz)(By)

)
= qγ(Ex + vxBz − vzBy)

= qγ(Ex + v×Bx)

9



1.2 classical electrodynamics

Identical procedure can be performed in both the yz-directions respec-

tively to give
dP
dτ

= qγ(E + v×B)

where P is the relativistic momentum P = γmv. The particles proper

time dτ is related to coordinate time dt via the inverse Lorentz factor γ

where dτ = dt/γ. The relativistic Lorentz force law in coordinate time

then becomes
dP
dt

= q(E + v×B)

Arriving at the familiar result of the Lorentz force on a particle with

charge q, electric field E and magnetic field B, namely

F = q(E + v×B)

The radiation reaction force on an electron is negligible in weak fields

but becomes comparable to the Lorentz force as γEL approaches Ecrit ,

the critical electric field strength of quantum electrodynamics. We shall

see radiation reaction is highly dependent on the laser field EL amongst

other parameters such as the initial energy of the electrons.

1.2.3 Non-linear Compton Scattering

Synchrotron radiation or non-linear Compton scattering for a0 � 1 is

the effect of photon emission as the charge is accelerated in an electro-

magnetic field. However, if the magnetic field is static, the radiation

is described as magnetic bremstrahlung [36]. The synchrotron emission

below is described for a0 � 1 and the laser field in the lab frame

EL � Ecrit

The emission process of an electron e−(p,χe) with momentum p and

non-linearity parameter χe emits a gamma-ray hard photon γ(k,χγ)

with a wave vector k and photon non-linearity parameter χγ , which is

10



1.2 classical electrodynamics

e−(p,χe)

e−(p′,χ′e)

γ(k,χγ)

Figure 1.3: A dressed state electron e−(p,χe) with momentum p and non-
linearity parameter χe emits a gamma-ray photon γ(k,χγ) with
wave vector k and analogous photon parameter χγ . After the emis-
sion, the electron recoils and changing in motion, loosing momen-
tum to p′ and a reduced χ′e to e−(p′,χ′e).

analogous to χe but for a photon. As the photon is emitted, a fraction

of the electron’s energy is lost and from the conservation of energy the

electron changes its motion to a new reduced energy and momentum

state e−(p′,χ′e). The rate of gamma-ray photon emission is determined

by the rate of emission equation following V. N. Baier et al [37]

d2Nγ

dχγdt
=

√
3αfc
λc

cB

Ecrit

F (χe,χγ)
χγ

(1.3)

where αf is the fine structure constant, λc = 2.4263× 10−12m is the

Compton wavelength, B is the magnitude of the magnetic field. Now

allowing χe = γcB/Ecrit from |E| = c|B|, multiplying by the electron’s

γ and integrating over the photon non-linearity parameter χγ

∫
γ
d2Nγ

dχγdt
dχγ =

∫ √3αfc
λc

χe
γ
γ
F (χe,χγ)

χγ
dχγ

γ
dNγ

dt
=

√
3αfc
λc

χe

∫
F (χe,χγ)

χγ
dχγ

thus
dNγ

dt
=

√
3αfc
λc

χe
γ
h(χe) = λγ(χe) (1.4)

11



1.2 classical electrodynamics

is the photon emission rate parameterised by χe, where h(χe) is an

integral over the synchrotron function F (χe,χγ)

h(χe) =
∫ χe/2

0

F (χe,χγ)
χγ

dχγ

where Baier et al [37] gives the following lower and upper χe limits

h(χe) =


5.236(1− 0.345χe + 3.5χ2

e) χe � 1,

5.298χ−0.333
e χe � 1

(1.5)

We can show the rate of photon synchrotron emission by electron’s at

χe ≥ 1 which is plotted in fig 1.4.

1 10 100

10
5

10
6

Figure 1.4: Rate of photon emission given in eqn 1.4 for electrons with Loretnz
factor γ and non-linearity parameter χe ≥ 1.
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1.3 strong-field qed

1.3 strong-field qed

Next-generation lasers with multi-PW capability are expected to reach

the highly non-linear quantum dominated regime a0 � 1 resulting in

a so-called QED-plasma [38, 39]. Allowing us to measure extreme non-

linear effects in the laboratory, such as a QED-plasma are similar to

those found to exist in extreme astronomical environments in the mag-

netosphere of pulsars [40], crab nebula due to its magnetic field strength

[41] and black holes [42]. The electrons in the focus of a strong laser

pulse EL ∼ 1013 Vm−1 with Lorentz factor γ accelerated to ultrarel-

ativistic energies emit gamma-ray photons probabilistically and their

motion becomes highly stochastic and unpredictable. Unlike the clas-

sical description of radiation reaction in which the electrons emit elec-

tromagnetic radiation continuously as described by the self-consistent

Landau-Lifshitz (LL) formalism [43].

Understanding the interactions of electrons in strong electromagnetic

fields classically is insightful although incomplete as it predicts pho-

tons with higher energies than the emitting electrons. Therefore, a fully

quantum framework is crucial in order to model the complete descrip-

tion of the photon emission and motion of the electrons, as they interact

in the regime of strong-field quantum electrodynamics. As a result, the

emission process is described using the Furry picture [44] capturing the

discrete nature of the emission.

As we have discovered so far, an electron reaching a magnitude com-

parable to that of Ecrit is unavailable [45] . It would require a laser

intensity called the Schwinger intensity Is = 0.5ε0cE2
s ∼ 1029Wcm−2,

χe then becomes χe ≈ γ(1 + cos θ)(I/Is)0.5 where θ is a geometrical

factor of the propagation angle of the laser to the electron bunch. To

overcome the intensity constraint, via a Lorentz boost as the ultra-

relativistic electrons counter-propagate, corresponding to θ = 0 to the

13



1.3 strong-field qed

laser pulse, electrons can reach χe ∼ 1 with much lower laser fields

EL ∼ 1013Vm−1, where the ratio EL/Ecrit ∼ 10−4. It is also important

to mention that the geometry of the collision plays an important part

in reaching high χe as an electron accelerated to c along the direction

of the pulse, E⊥ is canceled by the v×B term whereas in an over-

dense plasma the term does not cancel. As we will see, in the counter-

propagation in the geometry of θ = 0 the two terms add producing an

overall factor of two in eqn 1.1 for χe . As the value of the electron’s χe

approaches unity, χe ∼ 1, a substantial fraction of the electron’s energy

(≈ 0.44) is given to the emitted photons. An estimation for χe which

shows an energy dependency is

χe ∼ 0.1 E0
500MeV

√
I

1021Wcm−2

where E0 is the initial electron-beam energy illustrates that if the elec-

trons are accelerated externally to energy E0 ≥ 500MeV with current

petawatt laser intensity I ≥ 1021Wcm−2, the electrons would be accel-

erated to the non-linear regime of χ ≥ 0.1. In fact, much work has been

performed [46, 47] in using long pulses to accelerate electrons to GeV

energies using laser wakefield acceleration (LWFA) [48]. A wakefield

is most suitable to accelerate electrons to ∼GeV energies due to the

electrons in a created plasma bubble which are exerted under strong

electromagnetic fields.
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1.4 outline

1.4 outline

In Chapter 2, the classical description of radiation reaction is provided.

I will consider the collision of a Gaussian laser pulse with a counter-

propagating electron-beam. I will derive ab initio the analytical solution

for the evolution of the average electron Lorentz factor as a function

of time. This is transformed to the average non-linearity parameter for

an electron in a Gaussian temporal envelope. I will also consider other

pulse shapes such as pulses with a supergaussian form. I will extend

a previous solution for 〈γ〉 but will now depend on the supergaussian

order n. I will discuss how the laser pulse duration can influence the

magnitude of the non-linearity parameter.

Chapter 3 explores the ideas of quantum effects at χe ≥ 0.1 that

changes the electrons motion as the bunch interacts with the electro-

magnetic field of the laser pulse a0 � 1. I will show using the classi-

cal, modified-classical and quantum radiation reaction models that χe

exhibits identical characteristics to the electron’s Lorentz factor. The

operations of the particle-in-cell code EPOCH are detailed along with

explanation of computing the average χe of the electron bunch.

At the end of Chapter 3 we turn to asymmetric Gaussian laser

pulses to maximise the electron’s non-linearity parameter and electron-

positron pair yields. I will show that the fast rising edge of a skewed

Gaussian is compensated by the reduction in the peak of the laser in-

tensity. Consequently, I will show how a compressed Gaussian pulse

is more conducive to enhancing QED effects over a skewed pulse. The

experimental constraints of skewing the temporal envelope of the laser

pulse optically or otherwise are considered and results compared with

realistic pulses. Lastly, a plasma optics scheme using a plasma mirror to

produce a fast rising edge on the leading edge of the pulse is considered.
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2
MODELL ING CLASS ICAL RADIAT ION REACTION

2.1 counter-propagating laser - electron-beam

collisions

Accelerating charges radiate electromagnetic radiation. The law of con-

servation of energy dictates that a fraction of energy of the electron is

taken by an emitted photon. Classically, the electrons radiate continu-

ously along its classical wordline. As a result of a continuous radiation

reaction, the momentum p of the electron changes, where the expecta-

tion value of this momentum 〈p〉 has been derived previously by N. V.

Elkina et al [49]. An electron with energy mec
2 and Lorentz factor γ

evolves in time according to the equation

mec
2dγ

dt
= −Pc (2.1)

where Pc is the classical power

P(χe) =
2αfc
3λc

mec
2χ2

eg(χe) = Pcg(χe) (2.2)

where λc is the reduced Compton wavelength. Observing that the clas-

sical power Pc scales quadratically with χe, thus Pc ∝ χ2
e. Furthermore,

the generalised power includes the corrective Gaunt factor g(χe) which

will be explained in detail in the modified-classical model 2.2. The χe

of the electrons scales differently as g(χe) deviates from unity, as clas-

sically the scaling is χ2
e but eventually becoming χ2/3

e for a0 � 1. The

laser pulse is counter-propagating to the electron-beam, therefore with
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a Lorentz boost into the electron’s rest frame, the components of the

electric E and magnetic field B add thus χe gains a factor of two

χe = 2γ EL
Ecrit

(2.3)

If we substitute χe into the power equation and using the result that

in the classical model we assume g(χe) = 1 simplifies the equation to

Pc(γ) =
2αfc
3λc

mec
2
(

2γ EL
Ecrit

)2

=
8αfc
3λc

mec
2γ2 E2

L

E2
crit

(2.4)

Eqn 2.1 can be solved by substituting the classical power and denoting

the variable τR = 3λcEcrit/8αfcEL.

dγ

dt
= −γ

2

τR

Separating variables and integrating both sides

∫
dγ

γ2 = −
∫
dt

τR

−γ−1 +C = − t

τR

Letting γ(t = 0) = γ0, the constant C = 1/γ0 and solving for γ yields

the solution

γ(t) =
γ0

1 + γ0t/τR
(2.5)

This is the most simple form of the evolution of the electron’s γ(t)

and is only valid for a constant laser intensity. We have reproduced

the result found by M. Vranic et al after integrating eqn (8) in [50].

The reduction of the electron’s Lorentz factor can be seen in fig 2.1

for a 1GeV electron-beam. At the time t = 0, the initial point of the

collision, the electrons begin to reduce in energy immediately at this
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point, loosing >75% of energy over 100fs. As we observe in this figure,

the reduction to the electron’s Lorentz factor γ is very rapid and this

rate depends on the initial energy of the electrons γ0 and τR which

ultimately depends on the electromagnetic field or specifically the ratio

EL/Ecrit . This solution is only valid for t > 0 as γ0 →∞ for negative

values of t. This result will now be extended to a Gaussian laser pulse

in which the intensity profile is not constant but is a varying function

of time. As we will discover, the solution using a Gaussian envelope is

valid for both negative and positive values of t.

0 20 40 60 80 100
0

500

1000

1500

2000

Figure 2.1: Reduction in the electron’s Lorentz factor γ in the collision of a
1GeV electron-beam and a constant intensity plane wave using
classical radiation reaction.

2.1.1 Gaussian temporal intensity envelope

Instead of a constant plane wave, consider the profile of the laser inten-

sity to have a Gaussian form, namely I(x, t) = I0e
−(x−x0)2/L2 , which

has displacement from the origin at position x0 at t = 0. The laser

pulse is counter-propagating in the negative x direction at speed c to

the electron-beam so therefore

I(x, t) = I0e
−(x+ct−x0)2/L2

18



2.1 counter-propagating laser - electron-beam

collisions

The position of the election is xe, thus xe = −x0 + ct = −(x0 − ct),

L

Laser PulseElectron Beam

x0
−x0

γ0mec
2

O

I(x; t) = I0e
−(x+ct−x0)

2=L2

Figure 2.2: A 1D laser pulse that is counter-propagating to an electron-beam.
The Laser pulse has a Gaussian intensity envelope and travels at
velocity c in the −x direction, while the electron-beam travels in
the positive x-direction. The electrons at −x0 are assumed to be
monoenergetic, thus with an energy E0 = γ0mec

2 prior to the
collision.

hence the intensity profile at the position of an electron is as follows

I(xe, t) = I0e
−(xe+ct−x0)2/L2

= I0e
−(2ct−2x0)2/L2

Therefore we find

I(xe, t) = I0e
−4(ct−x0)2/L2

Introducing the term L′ = L/2 and ct′ = ct− x0 then the intensity

profile becomes I(xe, t) = I0e
(−ct′)2/L′2

= I0e
t′2/τ ′2

L . One can define the

intensity profile in terms of the laser electric field simply as follows

E2
L =

I

ε0c
=

I0
ε0c

e−t
′2/τ ′2

L

E2
L = E2

0e
−t′2/τ ′2

L (2.6)

where the peak electric field E0 is defined as

E0 =

√
I0
ε0c

which includes I0, the peak laser intensity, ε0 is the permittivity of free

space and c is the speed of light in vacuum. Depending on the polari-
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sation of the electric field E, a factor of two is necessary for a linearly

polarisered wave in the definition of E0, such that E0 = (2I0/ε0c)0.5.

Eqn 2.6 can be substituted into eqn 2.4, where the power radiated by

the electron becomes

Pc(γ) =
8αfc
3λc

mec
2γ2 E2

0
E2
crit

e−t
′2/τ ′2

L

Defining the instantaneous power as a function of the Lorentz factor γ

Pc(γ) = −
γ2mec

2

τR
e−t

′2/τ ′2
L (2.7)

where τR denotes the constant with typical order τR ∼ 10−11 for a peak

electric field of E0 ≈ 1.37× 1014Vm−1

τR =
3λ

8αfc

(
Ecrit
E0

)2
(2.8)

Substituting eqn 2.7 into 2.1 gives the first-order differential equation

dγ

dt
= −γ

2

τR
e−t

′2/τ ′2
L

Separating variables and integrating

−
∫ γ

γ0

dγ

γ2 =
1
τR

∫ t′

−∞
dte−t

′2/τ ′2
L

Letting t′′ = t′/τ ′L gives dt′′ = dt′/τ ′L and integrating the left-hand-side

1
γ
− 1
γ0

=
τ ′L
τR

∫ t′/τ ′
L

−∞
dt′′e−t

′′′2 (2.9)

This integral takes the form of the error function erf(x), which has the

formal integral definition

erf(x) = 2√
π

∫ x

0
e−t

2
dt (2.10)
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We can split the integral up as follows and use eqn 2.10

∫ t′/τ ′
L

−∞
dt′′e−t

′′′2
=
∫ 0

−∞
dt′′e−t

′′′2
+
∫ t′/τ ′

L

0
dt′′e−t

′′′2

=

√
π

2 +

√
π

2 erf
(
t′

τ ′L

)

Using this result along with the left-hand-side of eqn 2.9, we may solve

for the Lorentz factor γ giving

1
γ
− 1
γ0

=
τ ′L
τR

√
π

2

[
1 + erf

(
t′

τ ′L

)]

γ0
γ

= 1 +
√
πτ ′Lγ0
2τR

[
1 + erf

(
t′

τ ′L

)]

Therefore we find that our solution for the average Lorentz factor of

the electron bunch is

γ

γ0
=

1
1 +

√
πτ ′
Lγ0

2τR

[
1 + erf

(
t′

τ ′
L

)]

〈γ(t)〉 = γ0

1 + δ
[
1 + erf

(
t
τL

)] (2.11)

where δ is a parameter dependent on the peak electric field E0, half of

the pulse duration τL = 0.5τp and initial γ factor given by

δ =

√
πτLγ0
2τR

Now we may discover how the electron’s energy evolves after entering

the Gaussian laser pulse. Eqn 2.11 is shown in fig 2.3 where the effects

of classical radiation reaction becomes noticeable. In this figure, the

electrons enter the laser pulse at time t = −60fs and loose an average

of 75% of energy to continuous photon emission and resulting classical

radiation reaction. At the time t = 0, the electrons are at the peak

of the envelope, with no longer enough energy to emit and therefore

radiation reaction is no longer altering the electrons dynamics. It can
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Figure 2.3: Evolution of a 1GeV, where γ = 1957 electron bunch entering a
Gaussian laser pulse. The average Lorentz factor γ of the electron’s
derived in eqn 2.11 for pulse durations τp = 40fs. Noting this
solution approximates eqn 2.5 for large values of τp.

be seen in this figure that this occurs at 20fs at which point the elec-

trons average Lorentz factor is 〈γ〉 ≈ 400 or 208MeV. The continuous

loss of energy of the electrons to each emitted photon, as described

in section 1.2.3 can be as much as 0.44χeγmc2 [51]. Although, we will

shortly discover that this classical description is an over estimate of the

emission by electrons and a scaling factor is introduced leading to the

modified-classical model. In this figure, we gain insight into the sym-

metry of the laser pulse as the electrons enter the pulse with γ0 and

leave the pulse having lost significant energy due to classical radiation

reaction. Taking the derivative of eqn 2.11 we find

d
dt〈γ〉 = −

γ2
0 exp(−t2/τ2

L)

τR(1 + δ(1 + erf(t/τ2
L)))

2 = − (γ(t))
2

τR
× E2

L

E2
0

(2.12)

We find that this expression is simply the instantaneous power radiated

−P/mec
2, arriving back at the original eqn 2.1 showing the validity of

eqn 2.11 as a Gaussian pulse is employed.

We have plotted the derivative of the electron’s Lorentz factor in

fig. 2.4 which highlights two effects. Namely, that higher energy elec-
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Figure 2.4: Equation 2.12 showing the derivative of the Lorentz factor of the
electrons for different electron energies E0 and three laser pulse
durations τp.

trons in the pulse will emit higher energy photons and therefore lose

energy more rapidly using the classical radiation reaction model. Sec-

ondly, compressing the laser pulse to shorter pulse durations our model

predicts that the electron’s 〈γ〉 reduction becomes more significant.

The average non-linearity parameter 〈χe〉 may be derived simply

from the relation χe = γEL/Ecrit and from multiplying 〈γ〉 in eqn

2.11 by the factor 2E0 exp(−t2/2τ2
L)/(Ecrit) to find the average χe of

the electron bunch for a Gaussian pulse

〈χe〉 =
χ0 exp(−t2/2τ2

L)

1 + δ(1 + erf(t/τL))
(2.13)

where χ0 is the electron’s initial non-linearity parameter before entering

the pulse (at t = −∞). This result is plotted in fig 2.5 along with the

energy of the electron bunch for a short 40fs laser pulse with intensity

2× 1021Wcm−2 colliding with a GeV electron beam. This result for χe

also agrees with that found in equation (7) in [52], although in terms

of phase of the pulse χe(φ). Similarly, we can take the derivative of the

average χe.
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Figure 2.5: Evolution of a GeV electron bunch showing (a) the energy in MeV
and (b) average non-linearity parameter χe of the electrons for an
ultra-short 40fs pulse.

The derivative is important because it provides the time in which

the average χe of the electrons is maximised in the laser pulse

d
dt〈χe〉 =

χ0
ξ2

(
ξt

τ2
L

exp(−t2/2τ2
L) +

γ0
τR

exp(−3t2/2τ2
L)

)
(2.14)

where we are denoting ξ = 1 + δ(1 + erf(t/τL)). The derivative has

been plotted in fig 2.6 for three initial electron energies E0 from 1GeV-

2GeV. We can deduce from this result that the initial energy of the

electron beam (initial γ0) plays a crucial role in maximum 〈χe〉 and

also shifts the time in which χe is maximised, d〈χe〉/dt = 0. This is

due to the electrons loosing energy to radiation reaction at different

rates. This can be seen in the definition of χe in eqn 2.3, as χe is

proportional to both the magnitude of the laser electric field and the

electron’s initial Lorentz factor, γ0.

Our analytical model shows that the maximum peak 〈χe〉 for a GeV

electron beam is 〈χe〉 ≈ 0.12 and increases to in excess of 〈χe〉 ≈ 0.18 for

a 2GeV beam. Those electrons which have a high γ and are at the peak

of the pulse would therefore be influenced by quantum effects as the
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Figure 2.6: Evolution of the non-linearity parameter. (c) peak average χe for
an electron bunch with three initial energies. E0 (d) eqn 2.14 show-
ing the derivative of 〈χe〉 parameter. We observe χe is maximised
for higher initial energy of the electron beam, the derivative shows
the time in which χe is maximum which is before the peak.

electrons have a χe ≥ 0.1. To describe what we have found, consider an

impossible situation in which the radiation reaction effect was turned

off, the peak would indeed be the point at which χe is a maximum as

this is the point of maximum field strength. However, as the electrons

are losing energy in the pulse to radiation, the center is therefore not

the point of maximum χe.

We have considered laser and electron-beam parameters that are

realised with current laser systems and future facilities. As mentioned

previously, the classical description of radiation reaction overestimates

the photon emission at high values of χe. Therefore, these results show

only the approximate evolution of the electrons and may be improved

on by using a modified-classical model.

Now that we have derived a solution for the average electron’s χe,

consider a solution in which the envelope is skewed. If the peak intensity

of the pulse I0 is constant, we would expect the curves in fig. 2.6 to shift

as the time in which the electrons reach the peak would be shorter. If

the peak intensity I0 was reduced to I1 after skewing the laser envelope,
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the electrons would therefore have a higher 〈γ〉 but would observe a

lower laser field. The influence on χe therefore will be determined by

the competition between the average γ and the laser intensity.

2.1.2 Extending our solution to a supergaussian laser pulse

Suppose we now extend our solution given by eqn 2.13 to a generalised

supergaussian laser pulse. The laser electric field takes the general form

EL(t) = E0 exp(−((t− t0)/τp)n), where n is the order of the supergaus-

sian at an arbitrary initial time t0. The supergaussian pulse shape has

the characteristic in which the peak is less smooth and boxed for larger

values of the positive integer constant n as shown in fig. 2.7. Follow-

ing the derivation of section 2.1.1, however now with the generalised

n-th order laser electric field, we arrive at the general solution for the

average Lorentz factor of the electrons

〈γn(t)〉 = γ0

(
1 + 2τLγ0

τR

[
Γ
(
n+ 1
n

)
− t

2nτL
(2.15)

E((n− 1)/n)

(
t

τL

)n])−1

where Γ(n) denotes the gamma function and En(t/τL) is the exponen-

tial integral with a non-integer order. This solution is plotted for the

Gaussian pulse n = 2 in fig. 2.8 showing that this equation predicts

the result of equation 2.11. However, eqn 2.15 produces undesired re-

sults for odd n and suggests the electron’s leave the pulse having lost

all energy to radiation reaction, γ = 0 for t > 0 shown in fig 2.8.

This may be because this solution does not take the modulus inside

E((t− t0)/τL) as (t− t0)3 where t < t0, would cause the exponential

integral to diverge.
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Figure 2.7: Laser intensity profile I(t) of a supergaussian shape for integer
values of the order n. For n > 2, a Gaussian, the profile becomes
a top hat function for increasing values of the order parameter n.

Using the particle-in-cell code, we may choose any value of n. How-

ever, we will only focus on even values for n. We can use the PIC code

to determine the maximum non-linearity parameter the electrons reach

inside the supergaussian envelope.

PIC 〈χe〉 = 〈γn(t)〉
EL(n, t)
Ecrit

The maximum value of the electron’s 〈χe〉 for different values of the

order parameter n is provided in table 2.1. The number of electron-

positron pairs produced per electron N±/Ne after the collision with

the laser has also been measured. Enhancement in the pair density has

been considered using a supergaussian n = 5 characteristic envelope

[53]. N. Abdukerim finds that as the supergaussian order changes from

1-5, pair numbers change from 7.21× 10−3 to 9.36× 10−3. Although a

small increase, it is mentioned that a shorter pulse length can encourage

higher pair yields. This will be tested in section 2.1.4, where we will see

the effect that the pulse duration has on the non-linearity parameter.

As we have discovered so far in this chapter, the time in which the

electrons reach the peak is important in maximising χe. Since χe de-
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Figure 2.8: Lorentz factor of the electrons predicted by eqn 2.15 using a Gaus-
sian n = 2 laser pulse with intensity 2× 1021Wcm−2 and pulse
duration 60fs colliding with a 1GeV electron-beam.

n Rs 〈χe〉 N±/Ne(10−5)

2 1 0.402 2.1609
4 0.822179 0.4660 1.9554
6 0.758202 0.4952 2.9788
8 0.725649 0.5054 2.8920
10 0.705980 0.5073 2.8850
12 0.6928 0.5063 2.8418

Table 2.1: Simulating a 5× 1021Wcm−2 supergaussian laser pulse with param-
eter n measuring the e−e+ pairs produced per electron as the order
n is increased. The amplitude I0 of the intensity envelope is reduced
to conserve the total energy in the pulse.

pends of γ, the supergaussian intensity profile may reduce the loss of

energy to radiation reaction due to the increase in the rising edge of the

pulse. We have used the PIC code to calculate the number of electron-

positron pairs produced after the collision of a 1.5GeV electron-beam

with a 40fs, 5× 1021Wcm−2 supergaussian envelope. The parameter n

was varied from a Gaussian to essentially a flat-top intensity envelope

a maximum for n = 12.

The results of these simulations are provided in table 2.1 showing

maximum average χe and pair yields. Discovering that maximum aver-
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Figure 2.9: Number of electron-positron pair yields per electron as a func-
tion of the supergaussian order parameter n. The inset gives an
indication of how the peak In is reduced as n is increased and
the envelope becomes further modified as the pulse energy is con-
served.

age χ is increased by ≈ 0.1 as the envelope becomes increasing steeper.

Fig. 2.9 shows how the pair yields are influenced as a function of the

supergaussian order. We find a small but increasing pair yield per elec-

tron for increasing values of n. This increase however, does not continue

above a maximum of n = 6 with pair yields of 2.9788× 10−5 and slowly

tails off as the envelope becomes a ‘top-hat’ function n = 12, giving

electron-positron pair yields per electron of 2.8418× 10−5. The number

of pairs produced per electron in these simulations are small overall

therefore indicating that the leading edge of the supergaussian enve-

lope does not play a significant role in pair enhancement. In section 3.4

we will see if these results hold by applying a significantly faster rising

edge at the front leading edge of the laser pulse.
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2.1.3 Normalising the electric field

If we wish to conserve the total energy of the pulse, i.e the integral

of I(t) or E(t)2 over all times, we need to consider the normalisation

constant. Let In be the peak amplitude of the intensity of the laser

field with a supergaussian temporal envelope of the general form I(t) =

In exp(−(t/τp)n), the total energy in the pulse is therefore

E ∝
∫ ∞
−∞

I(t) dt =
∫ ∞
−∞

E2(t) dt

Following the full derivation given in appendix A.1, we find that the

peak intensity In varies with the order n according to

In =
21/nn

√
π

23/2Γ(1/n)
I0 = RsI0

In order to test this relation, letting n = 2 gives

I2 =
21/22

√
π

23/2Γ(1/2)I0 =
21/2√π
21/2√π

I0 = I0

Therefore, the energy in the supergaussian is conserved by the temporal

envelope defined by

I(t) = RsI0 exp(−(t/τp)n) (2.16)

Figure 2.7 shows the intensity spectrum I(t) for a Gaussian, n = 2,

n = 4 and n = 10 supergaussian envelopes. It is important to note that

the energy in the three envelopes are conserved. This is the formalism

that is used in our PIC code simulations in order to produce the results

of the previous section.
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2.1.4 A look at parameters to influence the non-linearity parameter

Laser parameters play a crucial role in producing electrons with high

magnitudes of χe. We observe this by considering the dependency χe

has on the laser full-width at half-maximum (FWHM). This is achieved

by comparing maximum peak average χe of the electron bunch with our

analytical result 2.13 to simulation results. We will explain the particle-

in-cell code EPOCH used in these simulations in section 3.3. We find

that reducing the FWHM by compressing the laser pulse duration pro-

duces electrons with higher magnitudes of χe. Simulating a variety of

short and longer pulse durations, fig 2.10 shows the change in peak

average χe. The laser pulses with a longer pulse duration of 150fs are

similar to the long pulses that will be used on the L4 ELI beam line

[54].
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Figure 2.10: Peak average χe of a 1.5GeV electron bunch with γ0 = 2931 as
a function of laser pulse duration τp using the classical radia-
tion reaction model, eqn 2.13 (blue) and simulation (red). (inset)
The corresponding reduction in the normalised vector potential
parameter a0 as a change in laser pulse duration τp.

We have seen previously that the non-linearity parameter depends

on the intensity profile and the position of the electron’s in the pulse.
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Therefore, χe is maximised for electron’s at regions of the highest inten-

sity. Increasing the FWHM of the laser pulse and therefore the intensity

profile is reduced, the magnitude of χe decreases. It is thus important

to use a short pulse duration and compress the laser pulse to reach high

magnitudes of χe. Let us now justify why this is indeed true.

Firstly, consider a generalised Gaussian beam described by the inten-

sity profile

I(r) = r0 exp
(
−2 r

2

w2

)

where r0 is the peak amplitude and 2w is the full width and related to

the FWHM by

2w =

√
2FWHM√

ln 2

This relation shows the linear proportionality w ∝ FWHM between

our laser pulse duration and the width of a generalised profile I(r).

Therefore, the width of I(r) is proportional to w2, in the limit as w →

∞ the pulse becomes shorter.
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Figure 2.11: Peak average χe of a 1.5GeV electron bunch with a γ0 = 2931 as
a function of laser strength parameter a0.

We can also observe this in the inset of fig 2.10 which shows how

the value of a0 changes as a function of laser pulse duration τp from
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2.1 counter-propagating laser - electron-beam

collisions

our PIC code simulation. This shows clearly the laser strength param-

eter reduction if we increase our laser pulse duration. The relationship

between a0 and laser intensity is a0 ∝ I0.5 given by

a0 =
eE

mecω
= 0.85

√
I

1018Wcm−2

(
λ

µm

)

where e is the electron charge, ω is the laser frequency, E is the electric

field,me is the mass of the electron and c is the speed of light in vacuum.

A drop in the laser intensity because of an increase in τp will also result

in a smaller a0. As we have seen previously, χe scales linearly with the

strength of the laser field a0, so fig 2.10 is an intuitive illustration of how

χe varies with τp, the laser pulse duration. We see in this plot that both

our analytical model and PIC agree reasonably within errors between

the two models. Illustrated in fig 2.11 is the corresponding linear scaling

of χe with a0 from the results provided in fig 2.10. Finding a factor

of 2 increase in average χe from a strength parameter of a0 = 4 to

a0 = 10, highlighting the importance of high a0 through reducing the

pulse duration. This result found follows that observed by Harvey et al

[55] with electron straggling, whereby the electron’s χe is not reduced

in the focus of shorter laser pulses attributed to electrons reaching the

centre of the pulse without radiating away energy.

Another important consideration is the geometry of the collision to

maximise χe. For an electromagnetic wave at an angle θ to the electron-

beam χe = γ(t)EL(1+ cos θ)/Ecrit . T. G. Blackburn et al [56] suggests

that contrary to intuition where χe is maximum for θ = 0 in the factor

1 + cos θ, in fact in certain conditions the optimum angle to observe

certain QED effects is at normal incidence to the electron-beam.

33



2.2 modified-classical emission equations

2.2 modified-classical emission equations

The modified-classical equations of motion for large Lorentz factor γ,

conserves the energy of the electrons which the classical model fails to

do. As the electrons in the intense external laser field are influenced

by stochastic emission, i.e emission that can no longer be well pre-

dicted by deterministic equations such as 2.11 and 2.13, corrections to

the synchrotron spectrum are therefore crucial to avoid overestimat-

ing the emission process. Accounting for corrections to the emission

spectrum in particle-in-cell codes have also been widely adopted. The

crystals experiment at CERN measured the transition between clas-

sical and quantum synchrotron theory finding electrons with energies

> 100GeV (γ ∼ 105). The experiment, at the CERN SPS H4 beamline

used a Germanium crystal because they provide strong electric fields

∼ 1011Vcm−1, where quantum synchrotron emission can be measured.

As a result of this experiment the Gaunt factor [57] for synchrotron

radiation was measured [58] and is given by

g(χe) =

∫ χ/2

0
F (χe,χγ)dχγ∫ ∞

0
Fc

(4χγ
3χ2

e

)
dχγ

=
3
√

3
2πχ2

e

∫ χe/2

0
F (χe,χγ)dχγ (2.17)

where the function F (χe,χγ) is the quantum synchrotron function

F (χe,χγ) provided by A. A. Sokolov and I. M Ternoc [59]

F (χe,χγ) =
4χ2

γ

χ2
e

yK0.66(y) +

(
1− 2χγ

χe

)
y

∫ ∞
y

K1.66(t)dt (2.18)

where y = 4χγ/(3χe(χe − 2χγ)) and Kn are modified Bessel functions

of the second kind. In the classical limit as g(χe) and h(χe) are ex-

actly unity, F (χe,χγ) reduces to the classical synchrotron function

Fc(χe,χγ)

Fc(χe,χγ) = yc

∫ ∞
yc

K1.66(u)du
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2.2 modified-classical emission equations

where the term yc is 4χγ/3χ2
e including χγ and χe which are the usual

non-linearity parameters for the photon and electron respectively.
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Figure 2.12: Estimate of quantum mechanical correction to the synchrotron
power given by eqn 2.19 on a logarithmic scale.

For χe � 1, g(χe) is approximated by the polynomial [60]

g(χe) ≈ 1− 55
√

3
16 χe + 4.8χ2

e

and for values χe � 1, g(χe) ≈ 0.5564χ−4/3
e [36]. An estimation over

the whole range of χe values is the following V. N. Baier et al [61]

g(χe) = [1 + 4.8(1 + χe) ln(1 + 1.7χe) + 2.44χ2
e]
−2/3 (2.19)

This fit function g(χe) is plotted in fig 2.12 over the full range of χe

values 10−2 ≤ χe ≤ 101. Note that the two expressions of g(χe) in the

limits for χ � 1 and χ � 1 arise from eqn 2.19, however for χ � 1

the coefficient on the χe term is only an approximation not derived

from 2.19. The incorporation of g(χe) in the equation of motion eqn

2.1 for classical radiation reaction corrects the instantaneous power

function as P ∝ χ2
e is unbounded. As the non-linearity parameter χe

approaches unity, g(χe) = 0.2, therefore the instantaneous radiated
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2.2 modified-classical emission equations

power is reduced by a factor of 5. The correction of g(χe) to the photon

emission spectrum assuming a constant crossed field, where the weak-

field approximation is valid may be applied to our model.

E0 I(1021)Wcm−2 τp (fs) Peak 〈χe〉 Facility
1 3 30 0.2677 Gemini
50 0.1 100 2.5322 SLAC
4 100 10 3.2386 ELI
4 20 15 2.2649 APOLLON

Table 2.2: Comparing the peak average χe for laser parameters found at cur-
rent and next-generation multi-PW laser facilities.

In order to model the quantum corrected 〈χe〉 in eqn 2.13, we would

need to integrate the power of the electrons in eqn 2.2 but with the

inclusion of g(χe) from eqn 2.19. Although this has not been derived

analytically, we may use our PIC code to see the difference between χe

classically (g(χe) = 1) and χe with quantum corrections (g(χ) < 1),

shown in fig. 3.6. It can be seen that the peak 〈χe〉 is increased by

χe ∼ 0.05 using the modified-classical and quantum models compared

to the classical solution.

-50 0 50
0

0.1

0.2

0.3

-100 0 100 -100 0 100
0

1

2

3

-200 -100 0 100 200
0

1

2

3

4

-200 -100 0 100 200
0

0.5

1

1.5

2

2.5

Figure 2.13: Comparing quantum corrected 〈χe〉 with current experimental
parameters (a) Gemini and (b) SLAC and next-generation ELI
(c) and (d) APOLLON, Laboratoire d’Utilisation des Lasers In-
tenses (LULI). Results are provided in table 2.2
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2.2 modified-classical emission equations

We can now use the quantum corrected average χe to predict the

behaviour in the evolution of the electrons at current and upcoming

laser facilities. These results can be seen in table 2.2 and are plotted

in fig 2.13. The SLAC parameters are taken from the SLAC 50 GeV

linac, the Final Focus Test Beam (FFTB). We are assuming that the

laser is linearly polarised, with wavelength of 1µm and FWHM given by

τp. The interplay between initial electron energy E0 and laser intensity

is seen in these results, highlighting that both are equally crucial in

miximising 〈χe〉. The values of 〈χe〉 presented here are in agreement

with the simulation results in T. G. Blackburn et al [52].
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3
QED EFFECTS FOR a 0 � 1

3.1 modelling quantum radiation reaction

Deciding which radiation reaction model is most suitable to describing

the electrons after the collision with the laser pulse is crucial. As we

have discovered the classical radiation reaction model is a determinis-

tic process, becoming probabilistic at a0 � 1. Equations 2.11 and 2.13

derived earlier are therefore only approximations and assumes that the

photon emission is continuous. The modified-classical model corrects

the emitted photon spectrum by scaling the amount of energy a pho-

ton may take from an electron, while conserving the electron energy.

The quantum radiation reaction model we will consider includes the

discontinuous nature of the photon emission. This is achieved using

the quasi-static weak-field approximations along with the Monte-Carlo

algorithm described in section 3.3. The choice of using the quantum

radiation reaction model in this research is primarily due to the spread

in the electron χe distributions in the collision with the pulse. This

means that the photon emission is no longer continuous and As we will

shortly discover, the evolution of the electrons drastically change as the

quantum radiation reaction model is considered.

3.1.1 Quasi-static weak-field approximations

In order to model QED processes for a0 � 1, we adopt the quasi-static

weak-field approximations described by V. I. Ritus [62]. We use the
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3.1 modelling quantum radiation reaction

quasi-static approximation for synchrotron-like emission in both the

classical and modified-classical models. Firstly, the weak-field approxi-

mation assumes that our electromagnetic laser field is less than the crit-

ical field EL < Ecrit , which is a valid assumption since EL ≤ 10−3Ecrit

is limited by current generation laser systems. We also assume the prob-

abilistic emission rates depend only on χe and not the field invariants

F and G, where

χe =
e h̄

m2
ec

4 |Fµνp
ν | χγ =

e h̄2

2m3
ec

3 |F
µνkν |

F = −FµνF
µν

2E2
crit

G = −
F ∗µνF

µν

4E2
crit

(3.1)

provided that both F ,G � 1 and also that χ2
e � Max(F ,G) [63]. The

corresponding vector forms of the four invariants are given by

χe =
γ|E⊥ + v×B|

Ecrit
χγ =

h̄|ωE⊥ + c2k×B|
2mec2Ecrit

F =
E2 − c2B2

E2
crit

G =
E · cB
E2
crit

(3.2)

where v is the velocity of the electron with Lorentz factor γ, Ecrit is

the critical field Ecrit = m2
ec

3/qe h̄, E and B are the external electric

and magnetic fields with E⊥ the electric field perpendicular to v. The

invariant χγ is analogous to χe, however the non-linearity parameter

for a photon with wave vector k, frequency ω and energy h̄ω. If the

electron is in its rest frame v = 0, γ = 1 and χe = 1 then the electron

will observe the critical field Ecrit . The quasi-static approximation is

used to ensure that the formation length of the emitted hard photons

are smaller than the external background field, such that the fields in

which the emission occurs are considered as constant.
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3.1 modelling quantum radiation reaction

3.1.2 Moment equations

The emission operators for classical and quantum radiation reaction are

defined by C. P. Ridgers et al [64]. For classical emission continuously

which is analogous to (2.1)

∂f

∂t
=

1
p2

∂

∂p

(
p2Pcl

c
f

)
(3.3)

where f is the electron distribution function, p is the momentum of the

electron and Pcl is the classical instantaneous power. For a stochastic

radiation reaction, this result becomes

∂f

∂t
= −λγ(χe)f +

b

2mec

∫ ∞
p

dp′λγ(χ
′
e)ρχγ (χ

′
e,χγ)

p′2

p2 f(p
′) (3.4)

Assuming χe = γb, where b = |E⊥ + v×B|/Ecrit given f is the distri-

bution of the electrons, λγ is the rate of photon emission with proba-

bility that an electron emits a photon ρχγdχγ with parameter χγ .

The first and second moments of (3.3) for classical radiation reaction

and (3.4) for quantum radiation reaction describe how the electron’s

energy distribution evolves in time. These are found by multiplying ei-

ther equation by γ or γ2 respectively and integrating. Building on work

previously undertaken using an electron-beam with Gaussian distribu-

tion colliding with a plane electromagnetic wave in [64], it is shown

that from the first moment the electron’s 〈γ〉 decreases most rapidly

for classical RR and evolves identically for the modified-classical and

quantum RR models. The second moment shows that the width of the

energy distribution narrows for both classical and modified classical,

with the former model narrowing most rapidly. This is intuitive be-

cause higher energy electrons can emit photons with higher energies.

However, the quantum model shows that the width of the electron en-

ergy distribution can decrease but also increase in time, a characteristic
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3.1 modelling quantum radiation reaction

that is impossible with the other radiation reaction models. This is a

direct consequence of the stochastic nature of quantum radiation reac-

tion at a0 � 1 with electrons that have a χe ≥ 0.1. We may reproduce

these results now with the non-linearity parameter 〈χe〉.
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Figure 3.1: Average Lorentz factor as a function of time using the three radi-
ation reaction models. Results are identical to those in [64], how-
ever by changing the pulse from a plane electromagnetic wave to
a Gaussian pulse profile.

Indeed, fig. 3.1 reproduces the behaviour found in [64] identically

for the electron’s Lorentz factor 〈γ〉 but with a Gaussian laser elec-

tric field profile. Furthermore, fig. 3.2 shows the standard deviation on

the electron’s χe distribution for classical, modified-classical and quan-

tum radiation reaction models. As expected, σ in the quantum case

increases, reaching maximum χe ≈ 0.13 and then decreases, whereas

for classical and modified-classical, the electron’s σ tends to zero. This

is because of the stochasticity observed in the quantum RR model that

is not possible for classical or modified-classical RR.

These results have been plotted using both the prediction from our

model in eqn 2.11 and also compared with PIC code simulation which

are both in agreement for classical RR. The PIC code uses the Monte-
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3.1 modelling quantum radiation reaction
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Figure 3.2: Standard deviation σ in the non-linearity parameter χe for clas-
sical, modified-classical and quantum RR models, agreeing with
previous results found for the electron’s Lorentz factor γ in [64].

Carlo algorithm to model the emission and is described in section 3.3.

They are important because they detail the regimes of radiation reac-

tion and that maximising the electron’s χe will truly depend on how

stochastic the electrons become as they approach χe ∼ 1. Modelling

this stochasticity is detailed in the competition between the two terms

produced from the moment equations in [64]

T+ =
〈S〉
m2
ec

4 T− = 2〈∆γg(χe)Pc〉
mec2

where, S is an integral over χ4
e, Pc is the classical radiated power and

∆γ = γ − 〈γ〉. The ratio of these two terms ξ = T+/T− at the be-

ginning of the collision enables us to determine the stochasticity of

the electrons and therefore the characteristic signatures of quantum

radiation reaction. The first experimental signatures of radiation re-

action in an all-optical experiment has recently been performed using

the Gemini laser system conducted by J. M. Cole et al [9]. In simu-

lations performed in their set-up, signatures of quantum effects would
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3.2 breit-wheeler pair production

be visible at χe ≈ 0.25. Measuring the electron and photon spectra,

experimental data indicates signatures of quantum RR. It is clear from

these results that current laser systems are on the edge of measuring

quantum radiation reaction.

3.2 breit-wheeler pair production

The Breit-Wheeler process is the production of an electron-positron

pair from the collision of two photons, γγ′ → e−e+ [65]. This pro-

cess can be seen in fig. 3.3, in which a photon with wavevector k and

non-linearity parameter χγ decays into an electron-positron pair with

momentum p and non-linearity parameter χ− and χ+ respectively.

γ(k,χγ)
e+(p,χ+)

e−(p,χ−)

Figure 3.3: Diagram of Breit-Wheeler electron-positron pair production. A
photon with wave vector k and efficiency parameter χγ interacts
with the background laser field to produce an electron-positron
pair with momentum p and non-linearity parameter χ− and χ+
respectively.

Consider the differential probability rate that a photon with χγ decays

into an electron-positron pair with efficiency parameters χ±

dW±
dχ+

=
αf
τc

mec
2

h̄ω
χγ

dT (χγ)
dχ+

where αf is the fine structure constant, τc is the Compton time and hω

is the photon energy for photons with χγ . Integrating over the positron

efficiency parameter χ+ gives our probability rate

W± =
α

τc

mec
2

h̄ω
χγT (χγ) (3.5)
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3.2 breit-wheeler pair production

where the function T (χγ) has been defined by Erber et al [36]

T (χγ) =


3
√

3
8
√

2 exp
(
− 4

3χγ

)
χγ � 1

0.60χ−1/3
γ χγ � 1

(3.6)
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Figure 3.4: Predicting the probability rate W± that a photon with energy
Eγ decays into an e−e+ pair from (3.5) and using T (χγ) from
(3.6) for values of the photon efficiency parameter over the range
0 ≤ χγ ≤ 100.

The pair probability rate is plotted in fig 3.4 for a given photon

efficiency parameter. We find that the pair rate drastically increases as

χγ approaches unity, χγ ∼ 1 with copious pairs ∼ 105 at χγ � 10 .
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3.3 simulating laser - electron-beam collisions

3.3 simulating laser - electron-beam collisions

This research employs the particle-in-cell (PIC) code EPOCH [66] to

simulate the interaction of the colliding laser - electron-beam. EPOCH

1D is used for simplicity but can be extended to 2D or 3D simula-

tions by including extra dimensions to the simulation domain and laser

pulse. However, constraining the simulations to only 1D removes any

instabilities that can arise in higher dimensions. PIC codes are ubiqui-

tous to simulate plasma physics and comprise of essentially two solvers.

The first solver calculates the electromagnetic fields and currents due

to the charged particles as they move in space. This process is nu-

merically solving Maxwell’s equations on a spacial grid using a finite-

difference time-domain (FDTD) scheme on a Yee staggered grid. The

FDTD scheme uses a leapfrog scheme in which the fields E and B are

updated at half n+ 1/2 time-steps, namely

En+1/2 = En +
∆t
2

(
c2∇×Bn − Jn

ε0

)
(3.7)

Bn+1/2 = Bn − ∆t
2
(
∇×En+1/2

)
(3.8)

and then at full time-steps n+ 1

En+1 = En+1/2 +
∆t
2

(
c2∇×Bn+1 − Jn+1

ε0

)
(3.9)

Bn+1 = Bn+1/2 − ∆t
2
(
∇×En+1/2

)
(3.10)

Meanwhile the current Jn is updated between the half and full time

steps ∆t. The particle pusher solves the particles relativistic equation

of motion under the relativistic Lorentz force law. The PIC code oper-

ations are illustrated in fig 3.5 below. In the following simulations the

laser is circularly polarised with wavelength of λ = 1µm and enters the

domain from the left-hand-side boundary. The polarisation is achieved
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3.3 simulating laser - electron-beam collisions

by using two lasers in which the phase of one of the lasers is displaced

by π/2. The electron-beam is monoenergetic and propagates from the

right-hand-side boundary of the simulation box.

The radiation reaction module takes the positions and momenta of

the particles as well as the local values of the electromagnetic fields and

calculates the radiation reaction on the electrons (and positrons) using

various models described previously: classical in chapter 2, modified-

classical in section 2.2 or full QED in chapter 3. The placement of this

module within the PIC loop shown in fig 3.5 determines the accuracy of

the solution. For simplicity the module is currently placed at the start

of the time loop. This is found to be adequate in convergence testing

of our results, as discussed later. This is still an active area of research

as inclusion and accuracy of classical radiation reaction models a PIC

code has been compared by M. Vranic et al [67]. The simulation model

that this research is concerned with however is primarily the QED-PIC

in order to simulate pair production and quantum radiation reaction.

QED effects in the PIC code are simplified by assuming the weak field

approximation, 3.1.1. Namely, the low frequency fields are treated as

constant during emission and the fields are weaker than the critical field

Ecrit . The probabilistic nature of the emission process is coupled to the

PIC code and works self-consistently as the QED-PIC, employing the

Monte-Carlo algorithm.

The extended PIC code that uses the Monte-Carlo algorithm is de-

scribed in depth by C. P. Ridgers et al [68] and has been used to

study QED effects in [69]. Similar numerical QED simulations have

been performed without the use of a Monte-Carlo algorithm [70] to

simulate multiple pair production. The Monte-Carlo algorithm uses

the theory of Poisson statistics by assigning an optical depth τ to each

particle emitted with probability P = 1− exp(−τ ). The pseudoparticle

is given a final optical depth in the probability range P = [0, 1] and is

46



3.3 simulating laser - electron-beam collisions

Figure 3.5: Core operations involved in a particle-in-cell (PIC) code as de-
scribed in T. D. Arber et al [66]. The finite difference time domain
(FDTD) is the technique used to solving Maxwell’s equations nu-
merically as the fields are advanced.

integrated along the electron’s trajectory until the final optical depth

is reached. The electron emits a photon at the final optical depth when

the condition τ ≡ τfinal is satisfied.

We now consider the simple algorithm used to calculate the value

of the electron’s χe. The magnitude of χe is calculated from eqn 2.3.

The components of the electric field are calculated from evaluating

|E| = (Ex + Ey + Ez)1/2. This is the local magnitude of the electric

field produced by the laser and experienced by the electron for each

grid cell. The following operations are performed:

• From the total laser field |E|, each component of laser electric

field, Ex, Ey and Ez is calculated.

• We assume the electron bunch is monoenergetic therefore all the

electrons enter the pulse with γ0,χ0 and momentum p0 where,

γ0 =

√
1 +

(
p0
mec

)2
, χ0 = γ0

E0
Ecrit
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3.3 simulating laser - electron-beam collisions
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Figure 3.6: Average χe of an electron bunch using energies 1.0, 1.5 and 2.0GeV
using a 60fs Gaussian laser pulse (a). Comparing 〈χe〉 using the ra-
diation reaction models, classical, modified-classical and quantum
described in section 3.1.2 (b).

• The calculation is simplified since the electrons can be found in

the same cell and therefore an average of the electron’s χe can be

calculated from the position of the electrons in each grid cell.

• If however, the electrons enter the pulse with different γ0,χ0, the

electron bunch will be displaced on the simulation grid. The av-

erage of the electron’s χe will vary depending on which radiation

reaction model is considered.

Employing this method to calculate the average χe of the electron

bunch, we are able to verify the validity of our model in eqn 2.13 with

the PIC code. Both the analytical solution along with our simulation

evolution of the electron’s 〈χe〉 are compared in fig. 3.7. Both models

agree with each other, therefore showing that our analytical model is

a valid prediction of the evolution of the electron’s average χe in a

Gaussian pulse.

Plotted in fig 3.6 shows how the radiation reaction models, classical,

modified-classical and quantum can be used to determine how 〈χe〉
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3.3 simulating laser - electron-beam collisions
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Figure 3.7: Comparing eqn 2.13 with particle-in-cell code simulations using
the classical radiation reaction model for a 40fs laser pulse colliding
with 1GeV electrons.

evolves. This figure also confirms the identical average behavior in 〈χe〉

for the modified-classical and quantum RR models as expected from

3.1 shown in section 3.1.2.
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3.3 simulating laser - electron-beam collisions

3.3.1 QED-PIC method

In turn, we will consider two methodologies for simulating the collision

of the electron-beam with an asymmetric Gaussian laser pulse with

both a fast rising edge at the front of the pulse and a slowly rising edge

at the back of the pulse corresponding to a negative and positive skew

respectively.

Method 1: exploits the symmetric shape of the Gaussian laser pulse.

Essentially, this method changes the temporal pulse duration on either

side of t0 in order to create a positively or negatively rising laser pulse.

Applying this difference in the pulse duration τp allows one to produce

a sharp leading rise at the front (or a slow rising front and a sharp

trailing end) of the laser pulse. Consider the laser intensity profile as a

piecewise defined Gaussian function

I(t) =


I1 exp(−(t− t0)2/τ2

r ) τr > t0

I1 exp(−(t− t0)2/τ2
f ) τf < t0

(3.11)

where I1 is related to the peak electric field by

I1 ∝ cε0E2
1 (3.12)

Assuming that the laser pulse propagates counter to the electron-beam

from the left-hand boundary. If τr < τf , we find that the pulse has a

sharp fast rising leading edge. Once both are equal, namely by setting

τr ≡ τf in eqn 3.11, the laser envelope resolves to a symmetric Gaussian.

Figure 3.8 shows this method employed for a Gaussian envelope with

energy E1 and a negatively skewed envelope with energy E2. The values

of the rise and fall time were τr = 10fs and τf = 160fs giving a reduction

to the peak intensity by 53%.
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Figure 3.8: Applying method one to the particle-in-cell code. Temporal inten-
sity envelopes for a compressed 5×1021Wcm−2 40fs Gaussian laser
pulse with energy E1 along with a negatively skewed envelope with
energy E2.

The energy in both the asymmetric and Gaussian laser envelopes

need to remain constant. We therefore assume that optically skewing

the pulse will always result in a reduction to the peak intensity in order

to conserve energy in the pulses. This approach is used in our PIC

code simulations, namely, we scale the intensity profile of the skewed

envelope accordingly by a dimensionless ratio R, which is derived as

follows. The energy in the pulse is given by

E ∝
∫ ∞
−∞

I0 exp (−(t/τp)2) dt = I0τp
√
π

From the general relation

∫ ∞
−∞

exp (−x2) dx =
√
π
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3.3 simulating laser - electron-beam collisions

Consider now splitting the integral into two separate integrals in terms

of τr and τf , the energy now becomes

E =
∫ 0

−∞
I1 exp(−(t/τr)2) +

∫ ∞
0

I1 exp(−(t/τf )2)

=
1
2

(∫ ∞
−∞

I1 exp(−(t/τr)2) +
∫ ∞
−∞

I1 exp(−(t/τf )2)

)
=

1
2
√
π(τr + τf )

Setting the two energies equal for a Gaussian and skewed Gaussian

gives

I0τp
√
π =

1
2I1
√
π(τr + τf )

Rearranging to find the ratio of intensities gives

R =
I1
I0

=
2τp

(τr + τf )

Giving a new reduced peak, I1 = RI0. Including the reduction factor R

is necessary as it ensures that the total energy in a skewed laser pulse

for arbitrary values of τr and τf is conserved, i.e satisfying the relation

∫ ∞
−∞

I(t)dt−
∫ ∞
−∞

I1(t)dt = 0 (3.13)

If the reduction R was omitted and the temporal envelope remained

identical for the skewed envelope, the energy of the laser photons would

be unequal to the Gaussian laser photons, thus changing pair yields. We

also impose the following condition in the choice of values for the rise

time τr and fall time τf such that

2τp < τr + τf (3.14)

in order to ensure that R < 1 to give I1 < I0 avoiding large values

R � 1. Figure 3.8 shows that after scaling by R as the rising edge

becomes further skewed, the energies remain equal, thus E1 ≡ E2 and
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3.3 simulating laser - electron-beam collisions

both conditions in 3.14 and 3.13 are satisfied. In order to accurately

model this reduction, experimental data would need to be measured

and compared with the PIC code. We may understand how rapidly the

factorR reduces the peak of the pulse for given values of the parameters

τr and τf in figure 3.9. This modelling of the peak shows that, in the

extreme case of a maximum skew, the peak intensity I0 is reduced by

more than half of the initial compressed envelope, namely 1−R = 56%.
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Figure 3.9: Conserving the energy in the modified pulse. The peak temporal
intensity envelope is reduced for given values for the rise time τr
and fall time τf respectively.

The QED-PIC simulations that have been performed use the simu-

lation parameters: a domain which is −100µm ≤ x ≤ 100µm with 103

global number of grid points. The laser which has a wavelength of 1µm

(50 cells per wavelength) with intensity 5× 1021Wcm−2 and is circularly

polarised. The pulse duration used in the simulations is the e-folding

time which is defined by τL = 0.5τp, half the total pulse duration. The

number of pseudo particles used is 103 (20 particles per cell) and the

total simulation time is 600fs with a timestep of 2.5fs using simple laser

boundary conditions. The electron-beam is monoenergetic with initial

beam energy of 1.5GeV and initial density ne0 = 1.8× 1018m−3.
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3.3 simulating laser - electron-beam collisions

Method 2: arbitrarily modifies the intensity profile of the laser by a

different skew parameter, β. The skewed Gaussian is well fitted to the

experimental temporal intensity profile in [71] given by

I(β, t) = I0 exp {−t2/(2τ2
p )[1 + βt/(t2 + τ2

p )
0.5]−1} (3.15)

where I0 is the peak intensity and the range of the skew parameter

β ∈ [−1, 1]. For a Gaussian pulse β = 0 i.e no skew. A value of β =

−1 produces a fast rise at the leading front edge of the pulse and

slow trailing edge at the back of the pulse. β = 1 corresponds to the

inverse profile in which the leading edge has a slow rise and the trailing

edge has a fast rise. The advantage of this method is that we have an

analytical form for the asymmetric intensity temporal envelope of the

pulse, although this method omits the reduction in the peak intensity.

The respective shapes of the laser pulse can be seen in fig 3.10 using

eqn 3.15 but for the normalised laser electric field EL.

-200 -100 0 100 200
0

0.2

0.4

0.6

0.8

1

-200 -100 0 100
0

0.2

0.4

0.6

0.8

1

Figure 3.10: Skewing the laser pulse using eqn 3.15 but with the electric field
of the laser EL with positive skew β = 0.7 in (a) and negative
skew in (b) where β = −0.7. N.B the electron-beam propagates
from the right-hand boundary counter to the laser pulse.

The electric field lines are also plotted in fig 3.11, where we observe

the higher gradient field lines of the laser field. Observing this figure,

we see that the electrons entering the pulse from the right-hand bound-

ary of β = −1 would reach the highest field gradient and then lower
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Figure 3.11: Normalised temporal envelope of the electric field EL(t) of a 45fs
Gaussian, β = 0, positive skewed, β = 1 and negative skewed,
β = −1 laser pulse used in the particle-in-cell code simulations.

electric field lines after reaching the peak of the pulse. This explains

the behavior of the electron’s 〈χe〉 in fig 2.6 for β = 0 as the electrons

reach the peak of the pulse and decrease smoothly reducing in energy.
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3.4 the effect of pulse skewing

3.4.1 Maximising the electron non-linearity parameter

Values of the electron’s χe are dependent on the strength of the laser

field given by the definition of χe in the weak field approximation in

section 3.1.1. This is justified since χe scales linearly with the nor-

malised vector potential a0 and the electric field by a0 ∝ E, using

I(t) = ε0cE(t)2 one deduces that χe ∝ C
√
I, where C is a constant.

This result is plotted in fig 3.12 as predicted by our classical equation

using 2.0GeV electrons and a 40fs laser pulse with given intensities in

2.13, agreeing with the result found in fig 2. of [69] for a continuous ra-

diation reaction. Furthermore, χe becomes linearly proportional to the

laser intensity if the electrons are subject to a discontinuous emission

under quantum RR due to hardening of the photon spectrum.
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Figure 3.12: Average χe as a function of given laser intensity using eqn 2.13, χe
scales as the square root of the intensity with classical radiation
reaction, peak 〈χe〉 ∝

√
I(t), becoming 〈χe〉 ∝ I(t) for quantum

radiation reaction (χe ≥ 0.1).

We have seen that the gradient of the laser pule profile becomes

important in maximising the non-linearity parameter χe. So far, in sec-
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3.4 the effect of pulse skewing

tion 2.1.4 it has been shown that the laser pulse duration can also

influence magnitudes of the non-linearity parameter. Now we will de-

termine whether the electron’s χe can be increased if an asymmetric

Gaussian intensity envelope is simulated. Using method 1 described in

the previous section, we can understand the dependency that χe has

on the temporal envelope of the laser pulse.

In a similar manner to deriving eqn 2.13 for a Gaussian laser pulse

in Chapter 2, one could determine the exact analytical form of 〈χe〉 for

our asymmetric intensity profile by integrating eqn 3.15, namely

∫ t

−∞
I(β, t) dt

where,

I(β, t) = exp {−t2/(2τ2
p )[1 + βt/(t2 + τ2

p )
0.5]−1}

However, this integration is troublesome and cannot be performed using

standard mathematical functions. This is because we are integrating

a complicated variant of the Gaussian function which does not exist.

However, this can be overcome by either using a numerical integration

scheme or our numerical PIC code to simulate the asymmetric pulse

and calculate the electron’s χe as described in section 3.3.

If we assume that our laser temporal intensity envelope has a con-

stant peak, then our simulations indicate that skewing the laser pulse

encourages higher values of χe. Since we are arbitrarily modifying the

laser intensity profile, the peak of the pulse is also displaced moving

further toward the point at which the electrons enter the pulse. By

applying laser pulse skewness, in effect, allowing the electrons to reach

the peak of the intensity profile I0 before the electrons lose significant

energy to radiation reaction. This effect can be clearly observed in fig

3.13 which shows how the 1.5GeV electrons evolve in the collision with
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Figure 3.13: PIC code results using the quantum radiation reaction model.
(a) The average electron’s Lorentz factor 〈γ〉 and (b) electron’s
non-linearity parameter 〈χe〉 and (c) derivatives using a 5 ×
1021Wcm−2 40fs Gaussian (blue) and Skewed Gaussian (green)
pulse. Inset: laser intensity spectrum for the respective temporal
envelopes.

a short 40fs 5× 1021Wcm−2 Gaussian and skewed Gaussian envelope.

The three subplots are the average electrons Lorentz factor γ(t) (a),

average χe (b) and corresponding derivative in time (c). The electrons

in the skewed envelope loose energy at some time t′ after the electrons

begin to loose energy in the Gaussian pulse. This indeed changes the av-

erage χe of the electron bunch in the skewed Gaussian giving electrons

with higher maximum χe. If however, the short Gaussian envelope had a

faster rising leading edge, the envelope without a skew would have elec-

trons with maximum χe. One can see in (c) that maximum χe, where

the derivative passes through 0 is at 40fs for the Gaussian and approxi-

mately 45fs for the skewed Gaussian. Therefore, radiation reaction and

energy loss through emission of hard photons is highly dependant on
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3.4 the effect of pulse skewing

the time the electrons travel in the pulse. This result is in agreement

with our previous finding in fig 2.6, showing that higher initial energy

electrons maintain a higher average χe.

The effect to consider is electron straggling or quenching, this effect

in the laser pulse plays an important role in the number of electrons

with a high non-linearity parameter. This phenomenon is a consequence

of the probabilistic nature of the emission process, whereby electrons

can travel through the laser pulse without emitting any or very little

high-energy photons [72]. Therefore, observing straggling in a sufficient

number of electrons may be advantageous in observing electrons with

reasonably high values of χe. Particularly this effect could play an im-

portant role for those straggling electrons that reach the peak of the

pulse without loss of energy to radiation reaction.

For instance, a 5×1021Wcm−2 pulse colliding with a 1.5GeV electron-

beam in theory could possibly have straggling electrons at the peak

of the pulse with a χe ≈ 0.6. Although, the effect of straggling on

the temporal envelope of the pulse has to our knowledge not been

considered previously. We would expect the following to occur if a skew

is added to the envelope. A faster rising leading edge of the pulse could

improve the number of straggling electrons due to the shorter time in

reaching the centre of the pulse as demonstrated in fig 3.13. However,

with the reduction of the peak intensity, the number of high energy laser

photons would be reduced and therefore produce lower pair yields. This

curtailing of pair yields will be considered in section 3.4.3.

59



3.4 the effect of pulse skewing

3.4.2 Effect of skewing on the electron distributions

The quantum model using the Monte-Carlo algorithm of radiation reac-

tion incorporates the stochastic nature of the emission and the electrons

trajectory after the collision with the laser pulse. Therefore, the distri-

bution in the electron’s non-linearity parameter χe, f(χe) allows one

to determine how many electrons have lost significant energy, or those

electrons which have radiated a higher number of photons and those

which have not. The loss of energy of an electron with χe � 1 goes

from 0.44χe to 1− 4/(3χe), therefore showing that at χ ≥ 1 the elec-

tron can lose a much higher fraction of its energy to radiation reaction.

Clear differences are observed between the electron χe distributions as

we compare a Gaussian temporal envelope and a pulse which has a no-

ticeable asymmetry caused by a fast or slow rising leading edge of the

laser pulse. In this section, we will determine the differences in the elec-

tron non-linearity parameter distributions for a Gaussian and skewed

Gaussian envelope.

Consider the peak laser electric field as held constant such that E0

does not reduce with non-zero values of the skew parameter β of the

laser pulse, we observe a significant increase in the electron’s χe demon-

strated in fig. 3.14. Using the quantum model of radiation reaction, we

have simulated a 1000 electron bunch with three electron-beam energies

E0 for both skewed β = −1 and non-skewed Gaussian profiles β = 0.

In all three initial electron-beam energies in fig. 3.14, a skewed Gaus-

sian pulse produces electrons with higher average χe. If we consider

the average electron energy loss for a 2.0GeV electron-beam for β = 0

and β = −1 respectively, we find the following: the average χe for a

2× 1021Wcm−2 with peak electric field E0 = 8.6822× 1013Vm−1 Gaus-

sian pulse is 〈χe〉 = 0.2785, thus the Lorentz factor of these electrons

is γ = 2117 with energy 1081MeV, (1.081GeV). Similarly, for the neg-
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Figure 3.14: A constant peak: comparing the electron χe distribution for an
electron bunch with different initial energies E0, namely (a) 1GeV
(b) 1.5GeV and (c) 2.0GeV for both Gaussian β = 0 and nega-
tively skewed Gaussian β = −1 by applying method 2.

atively skewed Gaussian 〈χe〉 = 0.2805, where γ = 2132 therefore an

energy of 1089 (1.089GeV). The highest energy electrons are produced

using a 2.0GeV electron-beam reaching a non-linearity parameter in

excess of χe ∼ 0.5. Calculating the electron’s energy for a χe > 0.5,

the Lorentz factor of these electrons is γ = 3801, thus an energy of

1.574GeV. Therefore, the few electrons at high χe have lost 40% of

their initial energy to radiation reaction as χe ≥ 0.1.

Now consider the effect that experimentally skewing the temporal

envelope gives a reduction in the peak intensity of the laser I0 and the

consequences this has on the electron χe distributions. The electron

distribution in χe has been measured at the same instance in time

as the electrons are at the center of the Gaussian pulse and at the

leading rising edge of the skewed pulse, shown in fig 3.15. Comparing
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3.4 the effect of pulse skewing

Figure 3.15: Comparing the distribution in the electron non-linearity param-
eter for negatively skewed and Gaussian temporal intensity en-
velops. (a)-(b) Gaussian envelope when the electron-beam is at
the peak. (c)-(d) Skewed Gaussian envelope when the electron-
beam is at the peak. (e)-(f) 8fs after the electrons reach the peak.

the distributions in (b) and (d), it can be observed that the average

electron χe is significantly higher for the Gaussian which has a faster

rise time, 〈χe〉 ≈ 0.25 whereas it is 〈χe〉 ≈ 0.1 without a skew. The

sharp edge of the distribution in (d) shows the electrons that have not

yet started to loose energy. We have also plotted the distributions for

the two pulses in (f) which is measured 8fs after the collision with the

skewed envelope and 8fs from the peak of the Gaussian pulse. This

shows the electrons in the Gaussian pulse have lost considerable energy

to photon emission as 〈χe〉 < 0.1. The χe distributions for the skewed

envelope appears to still have a reasonably high average χe ≈ 0.1 and

maximum χe ≈ 0.3.

As χe depends on both the Lorentz factor of the electrons γ(t) and

the external laser field, suggesting that the skewed envelope gives higher
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maximum χe, the external field of the intensity envelope will be in com-

petition with 〈γ〉 in the increase and probability of electron-positron

pair production via Breit-Wheeler, shown in fig. 3.4.

3.4.3 Enhancing electron-positron pair yields

Our simulation results show an increase to the electron’s non-linearity

parameter if we apply a skew to the leading rising edge of the pulse.

Previously, the dependency on pulse duration and pulse shape to en-

hance pairs have been considered by N. Neitz and A. Di Piazza [73],

finding that a laser profile with a shorter pulse duration encourages

the improvement of pair yields. Similar results performed by O. Oluk

et al [74] also shows numerically that the pair number density monoton-

ically decreases as the ratio of longer to fixed pulse lengths increases.

We shall now determine the effect that skewing the laser pulse has on

electron-positron pair yields from our QED-PIC simulations.

This has been achieved by measuring the number of positrons created

after the collision of the pulse with the electron-beam. Following the

skewing method outlined in method 1, a short 40fs Gaussian pulse is

employed and a negatively skewed temporal envelope is simulated using

a variety of different values of τr and τf provided in table 3.1. The

number of pairs produced in which the edge of the laser pulse sharply

increases are shown in fig 3.16 for a given scaled peak intensity I1 =

RI0.

E0 (GeV) τr (fs) τf (fs) RI0 (1021Wcm−2) N±/Ne

1.5 40 40 5.0 1.9554× 10−5

1.5 20 120 2.86 2.7637× 10−6

1.5 10 160 2.35 1.4944× 10−6

Table 3.1: Simulation results giving the number of electron-positron pair
yields per electron after the collision of a 1.5GeV electron-beam
with a 5× 1021Wcm−2 Gaussian and skewed Gaussian pulse.
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Figure 3.16: PIC code results showing the electron-positron pair yields per
electron N±/Ne for initial peak intensity I0 = 5× 1021Wcm−2.
As the rising edge becomes faster, the peak is reduced byR giving
a new peak I1 = RI0. The right-hand axis gives the amount that
the intensity spectrum is reduced by.

We use method 1 to simulate using a τr = 10fs at the leading edge

and a longer 160fs as the falling time to produce the skew. We dis-

cover that a pulse which has a Gaussian envelope gives pair yields of

N±/Ne ≈ 1.9554× 10−5 while a significant skew reduces the yields by

an order of magnitude to 1.4944×10−6. This corresponds to a scaling of

the intensity by as much as 53% to 2.35× 1021Wcm−2 . This indicates

that pair yields are curtailed as the sharp rise of a skewed Gaussian

pulse is increased, dependent on the drop in the peak intensity, I1.

Shown in fig 3.17 is the convergence testing performed on the number

of pair yields as the simulation grid and particles number is increased.

Considering the simulation grid first, the convergence testing shows

that the Gaussian gives a mean of 〈N±/Ne〉 ≈ 1.67× 10−5 with a stan-

dard deviation of σ ≈ 6.43× 10−6. The skewed Gaussian has a mean

〈N±/Ne〉 ≈ 2.14× 10−6 and σ ≈ 2.38× 10−6, an order of magnitude

lower than the Gaussian envelope. These tests show that convergence
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is improved on as the grid size increases. Although convergence at a

given value has not been achieved in these tests, it does show that the

results do not deviate from the 10−5 order and are consistent with the

overall result in number of pairs between the two envelopes. Namely,

the skewed Gaussian produces a lower order of pairs per electron than

the Gaussian envelope. The convergence testing as the number of macro

particles increases is fluctuating but does increase with a higher number

of particles. The average number of pairs is 〈N±/Ne〉 ≈ 1.7× 10−5 with

standard deviation σ ≈ 2.3× 10−6. We find that the skewed Gaussian

gives 〈N±/Ne〉 ≈ 1.4× 10−6 and a σ ≈ 7.1× 10−7. This demonstrates

that the convergence using the number of particles is more sensitive

to statistical noise, however by determining the mean value we can see

that baseline simulation parameters (red point in fig 3.17) is a reason-

able parameter set to use.
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Figure 3.17: Convergence testing on the number of e−e+ pairs per electron
produced for Gaussian and skewed Gaussian envelopes as the
simulation global grid and particle size is increased. The red point
indicates the baseline parameters used in this work.
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Further simulations were performed by varying the intensity of the

laser and measuring the pair yields per electron N±/Ne at the end of

the simulation. Provided in fig 3.18, for intensities from 2× 1021 to 20×

1021Wcm−2, it is shown that pair yields are significantly curtailed at

lower intensities for the skewed Gaussian envelope N±/Ne ∼ 10−10 and

increase by a factor ∼ 100 with a short compressed Gaussian envelope.

The number of pairs produced for both Gaussian and skewed Gaussian

envelopes at higher intensities begin to approach each other. This may

be due to numerical error in the PIC code rather than a physical effect

at higher intensities.
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Figure 3.18: Comparing the electron-positron pair yields per electron N±/Ne
for a Gaussian and skewed Gaussian envelope. The laser wave-
length is 1µm and initial electron-beam energy E0 is 1.5GeV.

These results show the high dependency on laser parameters, specif-

ically the peak intensity in enhancing electron-positron pair yields. Al-

though the energy in the two pulses are equal, the higher pair yield

in the Gaussian envelope is due to the higher peak intensity (higher

energy laser photons) of the external laser field. We will now consider

experimental constraints and simulate realistic temporal envelopes to

determine compare the results found in this section.
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3.5 experimental considerations

3.5.1 In optically skewing the laser pulse envelope

The parameters in these simulation results are available with current

PW lasers, as we must also consider the validity of these results against

experimental and physical constraints. Since active mode-locking, at

moderate dispersion, the shape of a typical laser pulse is approximately

Gaussian with more complicated shapes posing a challenging optical

feat. The pulse shape used in the Leemans experiments [30], in order

to modify the shape, changed the laser frequency spectrum by detuning

the compressor of the pulse in the compression stage of Chirped-pulse-

amplification (CPA). The detuning using an optical grating offsets the

third order phase [75], therefore producing a fast rising edge of the pulse.

Although insightful theoretically, the temporal asymmetry of the laser

pulses in [28] appear unphysical with a large unbounded peak and do

not account for experimentally tested pulse shapes and the effect that

the reduction in the peak laser intensity I0 has on the number of BW

e−e+ pairs produced.

Now we will consider experimental pulse shapes that can be pro-

duced through optical modification. The temporal envelopes in fig 3.19

are realistic laser pulses1. The Gaussian pulse in (a) of fig 3.19 is a

compressed 1.5× 1022Wcm−2 50fs pulse, an asymmetric pulse in (b) is

the result of modifying the pulse phase and (c) is a LWFA simulation

where a pulse is driven through a 20mm plasma with electron density

ne = 2× 1018cm−3. Inspection of the respective pulses, we observe that

(c) has the highest peak E0 followed by (a) and lastly (b) shown in table

3.2. However in (c), the peak E0 of this pulse drops immediately. The

asymmetric pulse in (b) has the lowest peak electric field and therefore

1 Temporal electric field envelopes provided by M. J. V. Streeter, Blackett Laboratory,
Imperial College London, London SW7 2AZ, UK
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Figure 3.19: Comparing experimental and theoretical peak electric field of
the temporal laser pulse. (a) a 50fs Gaussian laser pulse with
peak E0 = 2.3931 × 1014Vm−1. (b) Peak laser electric field
for a skewed Gaussian pulse with E0 = 1.6104× 1014Vm−1 (c)
skewed pulse produced from a LWFA simulation E0 = 2.7919×
1014Vm−1.

lowest peak intensity I0. The short compressed Gaussian pulse has both

a high E0 and over a longer duration.

By adding two Gaussian functions ζ(t) = φ(t) + ψ(t), where φ(t) is

an envelope with peak E0, pulse duration τp and ψ(t) has a different

peak and duration, E′0 and τ ′p respectively. We have fitted these pulse

shapes shown in fig 3.19 accordingly. As can be seen, these fits are

within good approximations to the pulse shapes and therefore can be

used to simulate realistic pulse shapes in our QED-PIC. The fit in (c) of

fig 3.19 however may be an overestimate of the true pulse shape due to

the varying laser amplitude produced by the wakefield. The results of
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Pulse shape E0 (1014Vm−1) N±/Ne

50fs Gaussian 2.3931 1.90× 10−2

Asymmetric Gaussian 1.6104 8.8575× 10−5

LWFA 2.7919 7.90× 10−2

Table 3.2: Simulating realistic pulse shapes to determine pair yields for a 50fs
compressed Gaussian, a Gaussian with a negative chirp and a tem-
poral envelope produced from a LWFA simulation in FBPIC.

these simulations are shown in table 3.2, as expected the pair yields per

electron is maximum at 7.90× 10−2 for the pulse generated in by the

LWFA, secondly is the compressed Gaussian pulse at 1.90× 10−2 and

lastly with the lowest produced pairs is the asymmetric Gaussian with

8.8575× 10−5. Indeed, these results are consistent to the reduction to

the number of pairs produced with temporal envelopes in our PIC code

provided in table 3.1. The three orders of magnitude difference in pair

yields for the two tables using the Gaussian is a consequence of simu-

lating a higher initial peak electric field, namely 2.3931× 1014Vm−1.
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3.5.2 In plasma optics: employing a plasma target

Plasma-based focusing optics have been suggested to increase the laser

intensity by an order of magnitude [76] as well as curved shaped plasma

targets [77] to study QED effects. As we discovered in the previous

section, a pulse generated via laser wakefield acceleration had a high

electric field peak E0 and higher pair yield over the asymmetric pulse.

Driving the laser pulse into a plasma mirror may be the optimum way

in order to create the fast rise at the front of the laser pulse as it is

reflected back on itself without reducing the peak intensity I0. The

principle of the plasma mirror is that once the electron density ne of

the plasma exceeds the critical density nc in which case the plasma is

overdense, reflection of the incoming laser pulse is achieved producing a

chirp [78]. Similar plasma mirrors on the Gemini system at Rutherford

Appleton Laboratory, STFC have been used previously [79].

The method of pulse shaping is in relativistic self-phase-modulation

(SPM) in which photons in a plasma at the leading front edge decelerate

and cause the fast rising chirp [80]. The refractive index η of the pulse

varies longitudinally as a function of time in the plasma ensuing a shift

in the phase and broadening of the frequency spectrum. The pulse is

red shifted at the front of the pulse as η increases causing a sharp rise

in the peak intensity. The frequency at the rear side of the pulse is

blue shifted attributed to a decrease in η, it is this change in η and the

group velocity vg that causes an asymmetry in the temporal envelope.

Our PIC code model described in method 1 in section 3.3.1 is not an

unrealistic scenario in modeling the temporal asymmetry on the pulse

since pulse duration shortening in a plasma by modulation [81] and

compression [82] can be achieved and is experimentally feasible. How-

ever, the main challenge is in modifying the envelope on an ultrashort
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3.5 experimental considerations

gas jet

LANNEX plasma

mirror

γ-rays ne
B

f / 2 opticf / 20 optic

Figure 3.20: Proposed experimental set up of a plasma optical scheme. (a)
an f/2 laser is driven towards a plasma mirror at time t. (b)
Some delayed time t′ after the first laser shot, a second f/20
optic is used as a laser wakefield to accelerate the electrons from
a helium gas jet to GeV energy in the direction of the plasma
mirror separated by a distance zm. (c) the leading edge of the
short 40fs 1021Wcm−2 f/2 pulse is reflected back on itself where
the peak of the laser Ipeak reverses creating an increase in peak
intensity as the electrons enter the reflected skewed pulse.

femto-second timescale as longer nanosecond temporal pulse shaping

has been demonstrated [83].

The proposed experimental scheme is illustrated in fig. 3.20 which

shows an f/2 short 40fs pulse optic incident at time t on a plasma mir-

ror with electron density ne. A second f/20 laser propagates through

a pin hole of the f/2 optic to reach the interaction area. This laser

pulse is used as the wakefield to accelerate an electron bunch from

a supersonic helium gas jet to ∼GeV energies in the direction of the

mirror. The mirror reflects the first pulse creating the fast rise at the

leading edge and propagates counter to the electron-beam. Further 2D

plasma PIC code simulations could be performed in order to further

understand the challenges and feasibility of this scheme.
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4
CONCLUS ION

The purpose of this thesis has been to understand if the electron’s non-

linearity parameter is maximised in a Gaussian laser pulse with a fast

rising edge. As the electrons reach the peak of the laser intensity tem-

poral envelope having lost less energy to quantum radiation reaction,

electron-positron pair enhancement could be possible.

In Chapter 2, our analytical model for 〈χe〉 derived ab initio found

that maximum χe is not at the peak and depends on the initial energy

E0 of the electrons before entering the pulse. We further discovered that

sensitivity in the pulse duration can increase χe finding a factor of two

increase in going from a long 150fs pulse to short 30fs pulse durations,

corresponding to a higher strength parameter a0.

In Chapter 3 we simulated QED effects at a0 � 1, showing that the

average behavior of the electrons χe in a Gaussian pulse is identical to

average γ, discovered by C. P. Ridgers et al [64], using the classical,

modified-classical and quantum RR models. Namely, a broadening of

the electrons χe distribution for stochastic quantum RR and a narrow-

ing in both classical and modified-classical models as the electrons emit

radiation.

We proposed two methodologies to model asymmetric Gaussian tem-

poral envelopes in a QED-PIC code. One which uses the symmetry of a

Gaussian pulse to change the pulse duration on either side of the peak.

A second method which gives the explicit analytical form of the inten-

sity profile with a skew parameter β, approximated from the Leemans

experiment [30].
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conclusion

Contrary to previous PIC simulation results in C. Hojbota et al [28],

we find that a combination of maximum peak intensity I0 and a fast

rising edge at the front of a skewed Gaussian pulse is unattainable. The

pulses used in these simulations have an unphysical shape in which

the peak intensity is unbounded. We have shown, by correcting the

peak intensity with a scaling factor (I1 = RI0), a negatively skewed

5× 1021Wcm−2 Gaussian pulse in the head-on collision with 1.5GeV

electrons produces 1.5× 10−6 BW electron-positron pairs. Simulating

identical parameters and keeping the energy in the two pulses conserved

but instead with an unmodified compressed 40fs Gaussian pulse, the

number of pairs produced is enhanced to 2.0× 10−5, a factor of ∼ 10

improvement. Comparing with temporal envelopes from realistic pulses

of a 50fs 1.5× 1022Wcm−2 Gaussian and skewed Gaussian by phase

offsetting, pair yields are 1.9 × 10−2 (Gaussian), 8.9 × 10−5 (skewed

Gaussian) and 7.9× 10−2 (pulse from LWFA) respectively.

In summary, a Gaussian intensity temporal envelope with a fast rising

leading edge is not the optimum pulse shape to enhance observation of

QED effects. Optimum electron-positron pair enhancement is achieved

with a short compressed Gaussian pulse. A plasma optics scheme em-

ploying a plasma mirror to reflect the pulse back on itself, creating a fast

rising edge, while maximising the peak intensity I0 has been considered.

As optically modifying the pulse produces an undesirable reduction to

the peak intensity, a novel scheme which introduces a plasma may be

a future route to enhance pair production at next-generation laser fa-

cilities.
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4.1 outlook

4.1 outlook

The recent signatures of quantum radiation reaction demonstrates that

current optical laser systems are moving closer towards experimental

probing of quantum effects observed at a0 � 1. Simulating laser - elec-

tron beam collisions that employ numerical methods such as a PIC code

are invaluable tools. However, in the case of modifying the temporal en-

velope of the pulse optically or with the LWFA simulation, comparison

to real experiment is of fundamental importance.

An analytical form for N+, the number of positrons produced from

an electron-beam has been derived previously by T. G. Blackburn et al

[52]. This result could be compared to the PIC code results realised here

by derivingN+ for a laser pulse intensity profile with a skewed temporal

envelope. This would provide a more rigorous analytical description of

pair production for a skewed Gaussian pulse.

Furthermore, the analytical form of both eqn 2.11 and 2.13 assume

g(χe) = 1, failing to include quantum corrections to the synchrotron

emission. Deriving a modified-classical version of these two equations

would yield accurate results on the electrons evolution in a Gaussian

envelope.

While it has been shown that adding a skew to the laser temporal

envelope reduces the pair yields, our plasma scheme to a create fast

rising envelope while maintaining I0 would need to be tested using a

suitable particle-in-cell code.
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A
APPENDIX

a.1 energy in the supergaussian pulse

Starting with the supergaussian of order n temporal envelope with peak

field En and pulse duration τp

E(t) = Ene
−(t/τp)n

The energy in the pulse is therefore given by integrating over the square

of E(t)

E ∝
∫ ∞
−∞

E2(t) dt

Consider integrating for t > 0

E ∝
∫ ∞

0
E2
ne
−2(t/τp)n dt =

∫ ∞
0

E2
ne
−(2(1/n)t/τp)n dt

=
∫ ∞

0
E2
ne
−(t/τ ′

p)
n
dt (A.1)

where the substitution τ ′p = τp/21/n has been made and changing vari-

ables by letting x = (t/τ ′p)n with derivative given by

dx =
ntn−1

τ ‘n
p

dt

Now changing variables by substituting t = τ ′px
1/n

dx =
n

τ ′p
x1−1/ndt
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A.1 energy in the supergaussian pulse

and therefore dt = (τp/n)x1/n−1dx can be substituted into A.1

E ∝
E2
nτ
′
p

n

∫ ∞
0

x(1/n−1)e−x dx =
E2
nτ
′
p

n
Γ(1/n) (A.2)

Since we know the energy in a Gaussian (n = 2) pulse, we may equate

this with the energy in the n-th order as we wish the two energies to

be equal E2 = En
E2
nτp

21/nn
Γ(1/n) =

E2
0τ
′
p

√
π

23/2

Simplifying and rearranging gives the result

(
En
E0

)2
=
In
I0

=
21/nn

√
π

23/2Γ(1/n)

76



A.2 simulation results from qed-pic code

a.2 simulation results from qed-pic code

Below are the PIC code results showing the number of electron-positron

pairs per electron used to produce fig 3.18.

E0 (GeV) I0 (1021Wcm−2) N±/Ne

1.5 1.0 0
1.5 2.0 4.20× 10−8

1.5 3.0 7.30× 10−7

1.5 5.0 1.96× 10−5

1.5 7.0 9.83× 10−5

1.5 10.0 4.57× 10−4

1.5 15.0 2.3× 10−3

1.5 20.0 6.1× 10−3

Table A.1: PIC code simulation results giving the number of electron-positron
pair yields per electron for a given Gaussian laser intensity.

E0 (GeV) I0 (1021Wcm−2) N±/Ne

1.5 1.0 0
1.5 2.0 1.54× 10−10

1.5 3.0 4.33× 10−8

1.5 5.0 1.49× 10−6

1.5 7.0 1.61× 10−5

1.5 10.0 1.21× 10−4

1.5 15.0 8.33× 10−4

1.5 20.0 3.1× 10−3

Table A.2: PIC code simulation results giving the number of electron-positron
pair yields per electron for a given Skewed Gaussian laser intensity.
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