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Abstract 

The individual components of a biorefinery concept based on a ligno-cellulose 

biomass such as straw have been studied but a complete technical, economic and 

environmental analysis of such an integrated process is lacking. A detailed analysis on 

barley wax was performed as a part of the experiment. In addition to further research in 

wax, the aim of this project is to study the difference, also improvement made, when 

utilising wax extracted and un-extracted straw on thermal pyrolysis products. The 

composition of bio-oil char and biogas as pyrolysis products were also studied and the 

reproducibility of bio-oil using different microwave machines were investigated. The 

effect on product yield and composition when changing pyrolysis reaction temperature 

was also tested. The green chemistry metrics was applied to the whole process to 

measure the environmental impact of the experiment. 

Wax was extracted from various kinds of barley straws by different methods and 

its chemical compositions were analysed using GC-MS and GC. The result indicated that 

components in the extracted wax can be grouped into several categories: fatty acids 

was the most dominating group in wax (32.5%), followed by fatty alcohols (14.6%), 

14,16-hentriacontanedione (11.3%) and β-diketones (8.6%). When comparing to 

previous supercritical carbon dioxide (SC-CO2) extraction results of other straws, barley 

wax has the highest yield. The yield from different variety barley straw also varies; Carat 

barley has a slightly higher yield than Saffron barley.   

Previous studies show that wheat straw wax comprises a similar blend of 

compounds found in ladybird footprints (trace of material found on the path of the 

insect), which is the aphid’s natural enemy and could cause the aphid avoidance.1 In 

order to test whether other straw wax contains the similar semiochemicals and causes 

the same effect, previous column chromatography extracted wheat straw, barley straw, 

and apple peel wax was characterised by GC-MS and GC; and the research was 

particularly focused in branched and long chain alkane regions. The analysis showed 

wax extracts all contain similar long-chain and branched-chain components, which may 

also induce aphid avoidance.  

Pyrolysis was applied on both raw and de-waxed straw to produce bio-oil, char 

and bio-gas. The difference in bio-oil produced using raw and de-waxed straw was 

mainly caused by wax. Through analysis, bio-oil was identified mainly containing 

aromatic compounds, where the high content compound in it was (acetyloxy)-acetic 

acid (7.0%), 3-methyl-1,2-cyclopentanedione(5.2%) and 2,6-dimethoxyphenol(4.6%). 

Bio-oil’s reproducibility was tested on an additional CEM microwave machine. When 

increasing the pyrolysis temperature, bio-oil yield was slightly increased while char yield 
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was dramatically decreased. However the temperature impact on char was disappeared 

when reaction reached to 140°C and above.   

Char and bio-gas were analysed by FTIR. From the spectra, the decrease 

intensity of char compared to straw was obvious and caused by decomposing of the 

chemical groups (e.g. phenolic groups, C-O group) during pyrolysis. The high 

concentrated peak in bio-gas spectrum was caused by the CO2; other peaks were due to 

the exultance of CO, CO2, CH4, C2H4 and C2H6. 

The environmental impact of both wax extraction and pyrolysis were 

investigated by performing calculation of their E-factors. The results showed that 

although the processes were generally environmental benign, there were great 

potential for improvements, such as employ solvent recycling and broaden products 

applications. 
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1 Introduction 

Straw is an agricultural by-product; it is the dry stalks of cereal plants after the 

grain and chaff have been removed. Straw makes up about half of the yield of cereal 

crops such as barley, oats, rice, rye and wheat. However in contrast to mass production 

each year, there has been only a little commercial use. With the help of modern 

technology, straw can be identified as a source of potential high-value chemicals, and a 

sustainable energy resource.  

Straw surface is covered with a layer of plant wax which could be used in wide 

applications such as cosmetics and surface coating. Other sources of natural wax are 

from plants, animals, minerals and fossil fuel. The problems associated with such 

sources have been lack of availability due to regional limitation, unfriendly processes 

due to usage of hazardous chemicals, and unsustainable due to harvesting from non-

renewable sources. 

In addition to traditional application of straw wax, literatures indicated certain 

chemicals in wheat straw wax could be used as semiochemical to cause aphid avoidance. 

When the wax was applied as a spray formulation to wheat plants, the time spent by 

parasitoids on the treated plant was significantly reduced compared to control plants. 

This indicates another potential of being useful for agriculture pest control. 

Nowadays, the excessive use of fossil fuels speeds up the depletion of such 

natural resource dramatically, attempts to move to sustainable consumption has been a 

major focus. Deeper down the surface of straw, the major constituents of straw consist 

of cellulose, hemicelluloses and lignin, which are potentially valuable fuels.   

Barley straw is focused in this project among the straw varieties. As the largest 

barley producer, European Union produces a large amount of straw every year and 

most of this straw is treated as waste. Therefore, in order to add value to wasted barely 

straw, suitable extraction and decomposition techniques with the proper process 

conditions are required, and a detailed analysis on products obtained through processes 

need to be performed.  

Various methods were employed in prior works for straw wax extraction and 

biomass decomposition. SC-CO2 and microwave technology are selected for the 

isolation of wax and pyrolysis products from barely straw due to their environmental 

friendly nature. The feasibility of integration of the two techniques is considered 

undoubted, however a thorough research is necessary in order to broaden the 

http://en.wikipedia.org/wiki/By-product
http://en.wiktionary.org/wiki/stalk
http://en.wikipedia.org/wiki/Cereal
http://en.wikipedia.org/wiki/Grain
http://en.wikipedia.org/wiki/Chaff
http://en.wikipedia.org/wiki/Barley
http://en.wikipedia.org/wiki/Oat
http://en.wikipedia.org/wiki/Rice
http://en.wikipedia.org/wiki/Rye
http://en.wikipedia.org/wiki/Wheat
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understanding of wax SC-CO2 extraction and microwave pyrolysis and allow further 

commercial applications. 

The essential aim of this project is to deliver a straw-utilising model system 

which captures and quantifies added-value products, identifies the downstream 

processes impact of biomass extraction and how by-products can be recycled into the 

bio-refinery. 

In this project, barley (Saffron) straw was used as the primary resource for SC-

CO2 extraction and pyrolysis. A complete technical analysis of combined SC-CO2 

extraction and bio-refinery process was performed and products are analysed by GC-MS, 

GC or FTIR. Wax yield was compared to different variety barley straw and other straws. 

Impact on products from microwave pyrolysis by using raw straw and de-waxed straw 

as starting materials was investigated. Effects on pyrolysis yield and product 

compositions when changing reaction temperature were also studied. 

 

Figure 1 Integrated biorefinery process steps 

1.1 Barley straw 

1.1.1 Production and distribution 

Barley is grown in many regions of the world for cultural as well as economic 

reasons, it is one of the most highly adapted of the cereal grains, with production in 
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climates ranging from sub-Arctic to subtropical.2 Barley is popularly grown as a summer 

crop in temperate areas, and is sown as a winter crop for tropical areas. Barley is the 

fourth most quantity produced cereal grain in the world that has an almost stable 

worldwide output. In 2009/10, the total production was 149 million tonnes3, while the 

average production from 2000-2008 had been 136 million tonnes. The map below 

shows the distribution of production by country in 2005. 

 

Figure 2   Barley output in 20054 

From the above graph, that European Union-27 is the largest barley producer. 

The recent data shows EU-27 has a barley production of 56 million tonnes, out of the 

worldwide production of 135 million tonnes in year 2010/2011, according to the data in 

the global trade website Alibaba5. As one of the main producer, UK’s barley production 

counts for almost 10% within EU and 4% worldwide based on Food and Agriculture 

Organization of the United Nations.4 The following graph and figure represent the UK 

domestic barley distribution and the production from 2000 to 2008. 

http://en.wikipedia.org/wiki/Winter_crop
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Figure 3 UK barley growing areas6 

 

Figure 4 UK barley production from 2000--20084 

1.1.2 Variety of barley plant 

The anatomy of barley shows numerous similarities to other grasses. Fertility 

differences in spikelet introduce two-rowed six-rowed barley classification. For each 

type there are three florets at every node, and in two-rowed barley only the central 

floret is fertile, whereas in six-rowed all florets are fertile.7 Although this causes each 

head of the six-rowed barley to produce more seeds, the two-rowed varieties tend to 

have more tillers per plant and therefore yield similarly. 

The majority barley used in this experiment is the 2-row variety Saffron barley. It 

has the following advantages:8 
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 It is widely grown (25% of the total certified seed production in 2007). 

 Capable of giving yield (81%) similar to older 6-row varieties, such as 

Sequel. 

 High untreated yield. 

 Stiff straw. 

 Good resistance to net blotch but susceptible to mildew. 

1.1.3 Taxonomy 

In Table 1, the classification of wheat in the binomial system is given, and plants 

are grouped using observable morphological characteristics. Cultivated barley is one of 

31 Hordeum species, belonging to the tribe Triticeae, family Poaceae.9  

 

 

Table 1 Taxonomy of barley 

9 

 

Taxonomy 

Kingdom Plantae (Plants) 

Subkingdom Tracheobionta (Vascular plants) 

Superdivision Spermatophyta (Seed plants) 

Phylum Magnoliophyta (Flowering plants) 

Class Liliopsida (Monocotyledons) 

Subclass Commelinidae 

Order Cyperales 

Family Poaceae (Grass family) 

Genus Hordeum (Barley) 

1.2 Utilization of straw 

As an agriculture by-product, straw offers multiple usages since ancient, now 

modern technology offers more ways of straw utilization. 

Traditionally, straw was burnt by farmers for plant disease control, increasing 

next year’s yield, reducing the agrochemical usage et cetera.  However straw is now 
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generally chopped up and ploughed back into the land since the prohibition of burning 

in many countries (e.g. banned in England and Wales in April 1993). 

In addition to being ploughed back to soil. Straw is majorly used as animal 

fodder, and also used as fuel, livestock bedding and fodder, thatching and basket-

making. Furthermore, barley straw can be used for algae control. During decomposition, 

barley straw has the capability to decrease the population of various algae types in 

several situations,10 which the principle is explained in the next section. However due to 

the great amount of barley straw produced annually, only approximately 3% of biomass 

is being utilised.11 

Viewed as a resource rather than a waste material, straw could become a 

chemical feedstock for industry and could be converted into a variety of high-value wax 

products and a number of energy and chemical products. Most straw, including barley, 

is naturally coated by a layer of crystalline-like wax; this wax can be extracted and has 

many uses in beauty industry and daily life. In addition, the energy potential of biomass 

could be well realised using pyrolysis conversion. Being an unconventional technology, 

pyrolysis converts biomass to clean fuel and valuable substance. Nowadays, with the 

excessive use of fossil fuels and the concerns over environmental protection, the 

research in renewable resources start to become a more and more important focus and 

attracted increasing world interest. Biomass including agricultural residues is one of the 

main renewable and carbon-neutral energy resources; the fuels derived from it often 

burn cleaner than fossil fuels. It has been estimated that biomass is capable of providing 

about 25% of global energy requirements.12 The EU is also attempting to reduce CO2 

emissions, its members are required to increase the role of renewable resources for 

total energy production to 12 % by 2010 and ultimately to 20 % by 2020, with 33 % of 

electricity production needed to come from renewable resources.13 If UK is to achieve 

the EU’s objective of a 20% contribution from renewable energy by 2020, it is clear that 

biomass utilisation will have to increase substantially. 

In this project, wax and bio-oil extracted from straw is the main target of interest. 

To understand the complexity of pyrolysis and apply such vital process on biomass,14 it 

is very important to study the fundamentals and mechanisms of barley residues.  

1.3 Key properties and chemicals of barley straw 

1.3.1 Surface properties prevent lake blooms 

Barley straw is used as a biodegradable substance for the inhibition of algae and 

cyanobacteria growth in aquatic reservoirs as mentioned in last section. The surface 

properties of barley straw, in this case, play a critical role. When straw is used for the 

algae growth restrictions, suitable surface properties allow microorganisms and fungi to 

http://www.howtodothings.com/home-garden/uses-of-barley-straw
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adhere and decompose the straw. Accordingly, release the substances that are 

responsible for decreasing lake blooms. Since leaves and stems are the main 

components of barley straw, the multi- layer structure of these plant parts must be 

considered in order to understand these phenomena.10 

The leaf and the stem retain a multi-layered structure; the top layer is a cuticle, 

which lies over the epidermal walls.10 The cuticle is composed of an insoluble cuticular 

membrane impregnated by and covered with soluble wax. As shown below, cuticular 

wax covers only the outer part of a stem and leaves. The cuticle, including the wax layer, 

was believed to be formed in situ by modification of the cellulostic constituents of the 

epidermal cell walls.  

 

Figure 5 Cross-section of barley leaf.10 

1.3.2 Function of cuticle waxes 

The cuticle waxes are formidable barriers through which permeates diffuse with 

extremely low mobility. This property enables the plant to control efficiently the 

exchange of water, solutes, and even gases and vapours.15 Microbial activities including 

adhesion, germination, and penetration were also controlled by the epicuticular 

waxes.16 Another significant role of the epicuticular waxes is the enhancement of 

reflectance which results in the decrease of absorption of visible and infrared radiation 

and thus the leaf temperature and transpirational loss is reduced.17 

Plant waxes are a very complex mixture. Previous report had also shown the 

content of lipid extracts affects the composition content of lignin, carbohydrate, ash 

and protein content in the biomass.18  Generally waxes, also known as plant surface 

lipids, can be subdivided into categories of long-chain alkanes, branched chain alkanes, 

alkenes, esters of fatty acids and primary alcohols (monoesters, diesters, polyesters, 

estolides, and glycerides), free fatty acids and alcohols, aldehydes, ketones (β-diketones, 

substituted β -diketones), terpenoids, and phenolic substances.19 A previous report also 

http://en.wikipedia.org/wiki/Wax
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indicated that the barley early leaves produce mainly alcohols, but for the grown leaves 

and straw, the covering wax is rich in beta-diketones. The alcohols are transformed into 

ketones in the wax layer due to the oxidation process.10  

1.4 Semiochemistry  

As a source of high-value chemicals application in different area (e.g. coating, 

cosmetic, agrochemical), barley straw wax has a great potential to become a source of 

valuable chemicals.20 One of the applications of wax is as semiochemicals to cause 

aphid avoidance. A semiochemical is a generic term used for a chemical substance or 

mixture that carries a message. Semiochemistry is the isolation, chemical 

characterisation, synthesis and bioassay of such chemicals.21 Female aphid avoided 

leaves visited by its main enemy ladybird, Coccinella septempunctate adults and larvae 

during the previous 24 hours. Ethanol extracts of C.septempunctata adults and larvae 

also induced avoidance responses by A.ervi. According to previous literature, after 

hexane extraction, two of the hydrocarbons n-tricosane (C23H48) and n-pentacosane 

(C25H52) were found responsible for A.ervi’s avoidance.1 As semiochemicals are naturally 

occurring, environmentally friendly, and species-specific compounds that do not result 

in the development of insecticide resistance, it offers the potential opportunity to work 

as an alternative to synthetic pesticides.22  As aphids are the major arable crop pest 

throughout western and Northern Europe, the deployment of semiochemicals can 

therefore potentially reduce direct feeding damage and virus transmission in crops.23 

Many studies of their synthesis as the alternative choice for pest management 

programs are going on. Synthetically manufacture of highly pure semiochemicals such 

as some insect pheromones is already possible. 

No studies, however, have been carried out on other straw or fruit waxes. There 

is a great opportunity facilitated by the use of renewable resources,  as the production 

of insect semiochemicals are not just expensive but also difficult and expensive to 

synthesize from oil-based chemicals.24  

1.5 Wax removal 

However, the traditional extraction method of using volatile organic solvents has 

many disadvantages including low selectivity and harmful to environment. Therefore an 

alternative extraction method is needed. In this section, the environmentally friendly 

supercritical carbon dioxide technique and the widely used Soxhlet method were 

employed for wax removal. Hexane was used as solvent for its good wax selectively and 

low environmental impact.   
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1.5.1 SC-CO2 extraction 

A supercritical fluid is a substance above its critical temperature and critical 

pressure.  Under such conditions, the distinction between gases and liquids does not 

apply and the substance can only be described as a fluid.   

Above 304.2K (31.2oC) and 72.8atm carbon dioxide behaves as a supercritical 

fluid and shows properties of both a liquid and a gas.  It fills the container like a gas, and 

dissolves substances like a liquid.  The phase diagram of carbon dioxide is shown below 

in Figure 6.  

 

Figure 6 The Phase diagram of carbon dioxide 

Supercritical carbon dioxide (SC-CO2) is an excellent non-polar solvent for many 

organic compounds.24 It has been likened to a solvent resembling hexane, though with 

some hydrogen-bonding acceptor capability and some dipole selectivity. Alkenes, 

alkanes, aromatics, ketones and alcohols (up to a relative molecular mass of around 400) 

dissolve in SC-CO2. Very polar molecules such as sugars or amino acids and most 

inorganic salts are insoluble. The lipid-laden supercritical SC-CO2 from the extractor is 

passed through a heated metering valve where the SC-CO2 is depressurized and the 

extracted wax collected in a stainless vessel while CO2 is vented out.25  

Table 2 The advantages and disadvantages of using SC-CO2 

Advantages Disadvantages 

Non-toxic Needs high pressures 

Non-flammable Greenhouse gas 

Relatively unreactive 
 

Inexpensive 
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Less solvent residues in products 
 

Lower environmental impact 
 

Penetrating power of a gas, solvent power of a liquid 
 

Smaller solvent disposal costs 
 

 

Literature data indicated the importance of removing wax from biomass prior 

further analysis for obtaining accurate results.26 Previous work that have been done in 

this department demonstrated wheat straw could be used as a source of high value wax 

products through SC-CO2
24 and the best yield is achieved with pressure of 350 bars. 

Considering the similar property shared between wheat straw and barley straw, SC-CO2 

technology and the reaction pressure were adapted in this research for barley wax 

extracting.  

1.5.2 Soxhlet extraction  

Conventionally, the most widely used method for extraction of plant natural 

products is Soxhlet extraction.27 The advantage of this system is that instead of many 

portions of warm solvent being passed through the sample, just one batch of solvent is 

used and recycled. However, the method greatly relies on the solubility characteristics 

of the particular species involved. Therefore, Soxhlet extraction is only required where 

the desired compound has a limited solubility in a solvent, and the impurity is insoluble 

in that solvent.  

Three classified categories solvents can be applied for Soxhlet: polar protic, 

dipolar aprotic and non-polar solvents. Although a previous study indicated increase the 

solvent polarity caused the increase of the extraction yield, the increase was mainly 

caused by the increasing amount of the co-extractives that being extracted out instead 

of wax. Therefore the non-polar solvent hexane, as the most selective solvent that gives 

70% weight yield of wax compared to total extract,24 was chosen and employed in the 

extractions.  

1.6 Constituents of straws 

Cuticle wax only accounts for a small fraction of the weight of the straw, 

generally the major constituents of straw consist of cellulose, hemicelluloses and 

lignin.28   

In straws cellulose and xylan hemicellulose are the predominant components. 

Few pectic compounds and few mannans are also present. Ethanol extracts contain the 

low molecular weight sugars, fructose, glucose, sucrose, arabinitol and mannitol. 

http://en.wikipedia.org/wiki/Solubility
http://en.wikipedia.org/wiki/Solvent
http://en.wikipedia.org/wiki/Insoluble
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Biomass is essentially a composite material constructed from oxygen-containing 

organic polymers. The major constituents of straw consist of cellulose (a polymer 

glucosan), hemicelluloses, lignin, organic extractives, and inorganic minerals,28 and 

these constituents make straw a potential renewable energy source. 

1.6.1 Cellulose 

Cellulose is a high molecular weight (106 or more) linear polymer of β-(1-4)-D-

glucopyranose units in the 4C1 conformation ( 

Figure 7). The fully equatorial conformation of α-linked glucopyranose residues 

stabilises the chair structure with minimised flexibility. After the removal of water from 

glucose, the formed glucose anhydride is polymerized into long cellulose chains that 

contain 5000-10000 glucose units. Two glucose anhydride units constitute the 

cellobiose unit, which is the basic repeating unit of the cellulose polymer.28 

 

Figure 7 Chemical structure of cellulose  

1.6.2 Hemicellulose 

Hemicelluloses, the second most abundant natural polysaccharides after 

cellulose, comprise roughly one-fourth to one-third of most plant materials, and this 

amount will vary according to the particular plant species, such as for barley straw is 33-

36%. The hemicelluloses are usually defined as the polysaccharide part of plant tissue, 

which is accessible to the action of dilute acids and alkalis. They are chemically complex 

and comprise a mixture of sugar monomers. For instance, besides glucose, sugar 

monomers in hemicellulose also including arabinose, galactose, mannose, and xylose, 

etc. Hemicelluloses exhibit lower molecular weights with little strength than cellulose.29 
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Figure 8 Main components of hemicellulose 

1.6.3 Lignin  

Lignin is the third most abundant natural polymer present in nature after 

cellulose and hemicellulose. It is an amorphous cross-linked resin with no exact 

structure. It is the main binder for the agglomeration of fibrous cellulosic components 

while also providing a shield against the rapid microbial or fungal destruction of the 

cellulosic fibres. Lignin is a three-dimensional, highly branched, polyphenolic substance 

that consists of an irregular array of variously bonded “hydroxy-” and “methoxy-

”substituted phenylpropane units. These three general monomeric phenylpropane units 

exhibit the p-coumaryl, coniferyl, and sinapyl structures (Figure 9). In lignin biosynthesis, 

these units undergo radical dimerisation and further oligomerization, and they 

eventually polymerize and cross-link. The resonance hybrids of the radical formed on 

oxidation of coniferyl alcohol illustrates the positions where radicals dimerizations occur 

during lignin formation.28 

 

Figure 9 p-Coumaryl, coniferyl, and sinapyl structures 

A number of studies have been reported in the literature on pyrolysis of lignin. 

The pyrolysis generally leads to the formation of a volatile product and a solid residue, 

i.e. char.30 The relative distribution of products is dependent on pyrolysis conditions. 
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The char was prepared by pyrolyzing lignin at atmospheric pressure and temperatures 

ranging from 150 to 550°C.  

1.7 Pyrolysis 

Pyrolysis is one of the most promising thermo-chemical conversion routes to 

recover energy from biomass.31 Fossil fuel shortage and severe environmental problems 

have attracted great attention on the exploitation of clean renewable energies. The 

utilization of biomass resources will play an increasingly important role in the future.32 

Pyrolysis chemistries are important for thermochemical conversion technologies. 

It is the thermal decomposition of materials in the absence of oxygen or when 

significantly less oxygen is present; less energy is used than required for complete 

combustion, and always results in a better yield. Normally for a lingocellulosic biomass, 

torrefaction happens in the temperature region of 150-300°C, pyrolysis in the region 

300-600°C, and gasification is in the 600°C to greater than 1000°C region.33 

Pyrolysis converts the biomass to liquid, gaseous and solid fractions. However it 

is difficult to precisely define its meaning, especially when applied to biomass. The older 

literature generally equates pyrolysis to carbonization, in which the principal product is 

a solid char. Today, the term pyrolysis often describes processes in which oils are 

preferred products. The time frame for pyrolysis is much faster for the latter process. 

This is also a clean synthesis as bio-oil, char and bio-gas are all valuable fuels.28 Unlike 

fermentation to ethanol, pyrolysis is amenable to a smaller-scale with the potential for 

farm scale operations.34 This could complement an integrated barley-to-ethanol plant 

fed by barley farms with distributed pyrolyzers to convert the straw and hulls to the fuel 

intermediates, and the biocharcoal could be returned to those farms, for use as a soil 

amender and to prevent soil erosion.35  

The process parameters such as pyrolysis temperature, heating rate, holding 

time, particle size, pressure and reactor configuration, as well as addition of catalysts, 

have a great effect on the pyrolysis product yields and their chemical compositions.36 

The main product is bio-oil together with by-product char and gas. 

1.7.1 Microwave pyrolysis  

Additional to the numerous advantages stated for pyrolysis, microwave pyrolysis, 

as a modern technology, has the superiority over the traditional pyrolysis. As one of the 

researches focuses recently, it had obvious advantages over electric heating pyrolysis.36b 

During microwave heating process, energy transfer occurs through the interaction of 

molecules or atoms. Compared with conventional heating methods, more uniform 

temperature distribution can be achieved and the undesired secondary reactions may 

be avoided.37 As a result, better control of the process and more desired products will 
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be obtained such as heating rapid and uniform, more valuable products obtained.36b 

Due to the advantages of microwave pyrolysis mentioned above, it attracts more and 

more attentions. Recent research showed it has been employed to pyrolyze wood block 

and rice straw. 38  

1.7.2 Bio-oil 

Bio-oils, also known under the names of pyrolysis oils, pyrolysis liquids, and 

others, are usually dark brown, free-flowing liquids having an acrid or a distinctive 

smoky odour.31 Bio-oils are corrosive as it contains more or less solid particles and 

hundreds of organic compounds that belong to acids, alcohols, ketones, aldehydes, 

phenols, ethers, esters, sugars, furans, nitrogen compounds and multifunctional 

compounds.39. Till now, over 300 organic compounds have been identified in different 

bio-oils, with molecular weights from 18g/mol(water) to as high as 5000g/mol or 

more(pyrolytic lignins). Most of the compounds are in low concentrations.31,40 Owing to 

their chemical composition, bio-oils show a very wide range of boiling temperature. 

These properties result from the chemical composition of the oils, which is significantly 

different from that of petroleum-derived oils, which will result in the vast difference in 

the fuel properties between them. Bio-oils are multi-component mixtures comprised of 

different size molecules derived primarily from depolymerisation and fragmentation 

reactions of three key biomass building blocks: cellulose, hemicellulose, and lignin. 

Therefore, the elemental composition of bio-oil resembles that of biomass rather than 

that of petroleum oils.41   

The chemical compositions of bio-oils are determined by many factors, such as 

biomass type, feedstock pre-treatment (particle size and shape, moisture and ash 

contents), pyrolysis conditions(temperature, heating rate, residence time, pressure, 

gaseous environment) as well as vapour filtration and condensation (filter type, 

condensing method and medium, cooling rate). Therefore, bio-oils produced from 

different materials and by different pyrolysis reactors may differ greatly from one 

another. As a result, the fuel properties of different bio-oils usually vary in wide 

ranges.31 

The yield of barley bio-oil at the condition of pyrolysis temperature of 500°C is in 

the range of 42-45%. As char and bio-gas are also generated as by-products during 

pyrolysis, bio-oil’s yield cannot reach to 100%. The perfect yield should be in the 70% - 

75%(including water).35   

1.7.3 Char  

Biomass pyrolysis produces tar (pyrolysis oil), char (charcoal) and gaseous 

fractions (fuel gases). Char is the residual solid residue that comprises carbon and 
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mineral ash that is formed in the pyrolysis of most biomass.42
 Char can be a potential 

source of fuel or a valuable co-product. Char residues can be used for physical or 

chemical absorption and as catalyst support or base material for fertilizers.42 

The char is believed to contribute to the formation of polycyclic aromatic 

hydrocarbons (PAHs) during biomass pyrolysis, particularly at low temperature.30 The 

structure of biomass char is complex. Many studies on biomass char structure have 

showed that changing of pyrolysis conditions, for example changing fuel type, 

temperature, heating rate and pressure, have great impact on char’s structure and 

reactivity.43 And it was found that the physical and chemical characteristics of chars 

were governed more by pyrolysis temperature than the nature of the substrate.30 As 

microwave pyrolysis was used in this experiment instead of conventional heating, less 

char material was obtained as product.44   

1.7.4 Bio-gas 

Numerous investigations on biomass pyrolysis have focused on bio-oil and char, 

few detailed studies were found in bio-oil analysis. The product gases from pyrolysis are 

usually burned to generate energy for the pyrolysis process in many designs. Although 

the most valuable product is usually the liquid bio-oil, gaseous product are also valuable. 

Bio-gas contains various gases, such as CO, H2, CO2, CH4, C2H4, C2H6 and C4H10. The 

variations in the percentages of these gases were due to increases in reaction pressure. 

Although bio-gas is the by-product from biomass pyrolysis, it may be useful if the CO 

and H2 content are high.45  

While comparing the components of the pyrolytic gases, it was revealed that the 

microwave pyrolysis gas usually had higher H2 and CO contents and lower CH4 and CO2 

contents than those obtained by conventional pyrolysis at the same temperature.44 

1.8 Analytical technique 

The isolated wax and pyrolysis products need to be analysed for a better 

understanding their chemical composition. GC-MS and GC are good methods for 

examine the chemical components of wax and bio-oil, while FTIR is good for analysing 

structure for char and gas.  

1.8.1 GC and GC-MS 

A mass spectrometer creates charged particles (ions) from molecules. It then 

analyses those ions to provide information about the molecular weight of the 

compound and its chemical structure. There are many types of mass spectrometers and 

sample introduction techniques which allow a wide range of analyses. This discussion 
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will focus on mass spectrometry as it's used in the powerful and widely used method of 

coupling Gas Chromatography (GC) with Mass Spectrometry (MS). 

Gas chromatography and gas chromatograph coupled with mass spectrometer 

are the key techniques for identifying the chemical components in the product. GC 

involves a sample being vaporised and injected onto the head of the chromatographic 

column. The sample is transported through the column by the flow of inert, gaseous 

mobile phase. The column itself contains a liquid stationary phase which is adsorbed 

onto the surface of an inert solid.46 The compounds become separated as they interact 

with the column. The difference in the chemical properties between different molecules 

in a mixture will separate the molecules as the sample travels the length of the column. 

These separated compounds then immediately enter the mass spectrometer after they 

take different retention time to elute from the gas chromatograph. And this allows the 

mass spectrometer downstream to capture, ionize, accelerate, deflect, and detect the 

ionized molecules separately.47 

The mass spectrometer does this by breaking each molecule into ionized 

fragments and detecting these fragments using their mass to charge ratio (m/z).48 

Electron Impact (EI) Ionization was applied to generate the charged particles/ions 

required for mass analysis. The gas molecules exiting the GC are bombarded by a high-

energy electron beam (70 eV). An electron which strikes a molecule may impart enough 

energy to remove another electron from that molecule.49 

EI Ionization usually produces singly charged ions containing one unpaired 

electron. A charged molecule which remains intact is called the molecular ion. Energy 

imparted by the electron impact and, more importantly, instability in a molecular ion 

can cause that ion to break into smaller pieces (fragments). A molecular ion may 

fragment in various ways, with one fragment carrying the charge and one fragment 

remaining uncharged. 

Molecular ions and fragment ions are accelerated by manipulation of the 

charged particles through the mass spectrometer. Uncharged molecules and fragments 

are pumped away. The mass analyser can uses positive and negative voltages to control 

the path of the ions. Ions travel down the path based on their mass to charge ratio 

(m/z). m/z represents mass divided by charge number and the horizontal axis in a mass 

spectrum is expressed in units of m/z. Since z is almost always 1 with GC-MS, because 

the EI ionization always produces singly charged particles, the m/z value is often 

considered to be the mass. 47 

Therefore in GC-MS analysis using EI method, an ion's path will depend on its 

mass. If the (+) and (-) rods were ‘fixed' at a particular voltage ratio, then one particular 

http://en.wikipedia.org/wiki/Gas_chromatograph
http://en.wikipedia.org/wiki/Mass_spectrometer
http://en.wikipedia.org/wiki/Molecule
http://en.wikipedia.org/wiki/Ion
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m/z would travel the successful path shown by the solid line to the detector. However, 

voltages are not fixed but are scanned, so that ever increasing masses can find a 

successful path through the rods to the detector.49 The molecular weight is then 

determined from the molecular ions and structure is determined from the fragment 

ions. The original component in the sample can then be identified by combining the 

mass and structure information. 

In GC-MS, the gas chromatograph utilizes a capillary column which depends on 

the column's dimensions (e.g. length) as well as the phase properties. Recent year, the 

coupling of gas chromatography with mass spectrometry using fused silica capillaries 

has played an important role in achieving a high level of chemical analysis.50 In this 

experiment, one of the products was tested with two different length columns in order 

to capture the different molecules. 

Although GC/GC-MS has great advantages, for example provides a highly 

accuracy when analysing unknown components, it also has disadvantages. The 

application of GC and GC/MS is limited to substances which are volatile enough to be 

analysed by gas chromatography.50 Therefore samples need to be volatile or be made 

volatile for analysis. The samples are also need to be thermally stable to prevent 

degradation when heated during operation. Problems can be encountered when 

injecting such small samples accurately. And when using temperature programming, 

column bleed could happen and results in high background noise from the detector, if 

the vapour pressure of the stationary phase is too high for the oven temperature used 

and cause the stationary phase slowly elute from the column.51 The bleeding 

phenomena were happened in this research and interfered with analysis. 

1.8.2 Kovats indexes KI 

Methods based on relative retention times are inaccurate for reporting 

chromatographic data that is being used later for substance identification. One 

identification process frequently employed in analysing unknown peaks in GC-MS 

spectrum is Kovats indices,52 and is most often applied to hydrocarbons. The standard 

n-alkanes are used as markers, and other hydrocarbons’ retention time are recorded 

and then being assigned an index individually. These indexes are then compared to the 

indexes of nearby standard n-alkanes.  

These indices are independent of column flow rate and column dimensions, but 

must be matched with the same column stationary phase. Originally, Kovats indices 

were limited to isothermal column conditions,  

      
           

             
       52 Equation 1 
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Where 
I =  Kovats retention index, 
n = the number of carbon atoms in the smaller alkane, 
N = the number of carbon atoms in the larger alkane, 
z = the difference of the number of carbon atoms in the smaller and larger 

alkane, 
tr = the retention time. 
 
Modifications have been adopted to the above equation.53 The method is used 

to determine the retention behaviour of substances in temperature-programmed GC. In 

the case of temperature-programmed gas chromatography a similar value can be 

calculated utilizing direct numbers instead of their logarithm. Since both the numerator 

and denominator contain the difference of two values, here we can use the total 

retention volumes (times). The Kovats index equation employed is: 

  [
                 

           
]                   53 Equation 2 

Where symbol I, n, N, z and tr are still present the same. 
 
Compound identifications are made with running a mix of straight chain 

hydrocarbons and comparing the calculated Kovats index of the unknown peaks to the 

standard n-alkanes. 

1.8.3 FTIR 

In the FTIR spectrometer, specific molecular components and structures are 

specified by the corresponding infrared absorption bands, which allow computerized 

data searches to be performed against reference libraries.14a The FTIR spectrometer 

allows to analysis compounds by comparing the wavenumber of each peak to the 

standard, including CH, CO, aromatic ring, OH and carboxylic acid group in the sample 

can therefore be recognized.  

1.8.4 Green chemistry metrics 

Straw as a renewable resource has the potential of becoming the alternative fuel. 

Therefore the extraction process when transferring straw to fuel should not be too 

complex or cause the environmental pollution. Green chemistry metric was used in the 

end of the experiment to calculate how environmental friendly this research is. E-factor 

and effective mass yield were used for this purpose. 

The E-factor reflects the reality of process chemistry much more accurately than 

atom economy. It takes into account the actual mass of reagents and products and 

offers a comparison in mass balance, so makes a qualitative attempt at defining which 

http://en.wikipedia.org/wiki/Alkane
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components of the overall synthetic process are environmentally friendly.54 It is the first 

general metric for green chemistry and it remains one of the best: 

                                     Equation 3 

 

 

2 Experimental procedures 

In order to study the possibility of successful extraction of wax and pyrolysis 

reaction output, experimental and analytical technologies were applied. Initially, straw 

was extracted by SC-CO2 and Soxhlet. As the result, wax was collected and analysed by 

GC-MS and GC. De-waxed straw was collected as by-product. The de-waxed straw 

together with original one was used separately for microwave pyrolysis on Milestone 

microwave. The product bio-oil and the by-product char were characterised by GC, GC-

MS, and FTIR respectively. After analysing the difference between bio-oil from two 

straw types, de-waxed straw was selected as starting material for CEM microwave, the 

reasons behind such decision is discussed in section 4. Different temperature conditions 

were applied to CEM pyrolysis. Closed vessel system is modified to opened vessel to 

enable bio-gas capture, it was employed as soon as prevention of reaction occurred by 

excessive formation of bio-gas. Bio-oil collected from both closed and opened vessel 

system was investigated by GC-MS while char and bio-gas were analysed by FTIR. 

2.1 Barley straw as starting material 

Saffron barley feedstock collected after harvest in Selby in UK in August 2009 

was used as primary raw material throughout wax extraction by both SC-CO2 and 

Soxhlet and later microwave pyrolysis. The extracted wax from Saffron barley was 

tested in difference in compositions against another two wax obtained from separate 

barley sources. Milled straw which contained small amount of grain was extracted by 

Soxhlet provided one of the two wax comparison, and a wax received from Germany 

using large scale SC-CO2 on barley straw provided the second wax comparison. These 

three barley wax’s GC-MS spectra were analysed and discussed in later section.  

To provide another reasonable comparison to Saffron barley wax, Carat barley, 

which had been harvested in 2008 from Selby, was wax-extracted by SC-CO2 under 

same condition as Saffron barley and tested in a different GC-MS machine in previous 

work. Peaks in GC-MS spectrum of Carat barley and Saffron barley were related to each 

other to investigate the wax composition difference of different variety barley.  
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2.2 Yield and semiochemical comparison 

The previous extracted waxes as long as Carat barley wax were used in this 

research for the wax yield comparison. Samples of column chromatography extracted 

wax of Carat barley, wheat and apple peel from previous work were re-analysed by GC-

MS for further examine the semiochemicals in those samples. 

2.3 Methodology 

Different experimental processes and products analysis techniques used for this 

research were described in this section. Supercritical carbon dioxide extraction was 

applied for wax extraction. Soxhlet extraction as the most common technique for 

natural plant extraction was also used, and hexane was used as solvent due to its 

comprehensive selective solvent nature for wax.  Relationship between the differences 

of two extracted product compositions was studied.  

Two microwave machines were used, both the relative big scale Milestone 

microwave (50g) and the small scale CEM microwave (1g). The reason of using for this is 

to prove a more reliable research by comparing results from different microwave 

machines. Bio-oil was collected as main product while char was the by-product. Bio-gas 

was also collected as by-product when the reaction in CEM microwave moved to 

opened vessel system.  Compositions of these products were analysed.  

2.3.1 Pre-treatment 

Straw used in this experiment was stored and dried in standard condition (room 

temperature) and roughly milled.  

2.3.2 Supercritical CO2 extraction  

Milled barley straw (100g) was placed in the extraction vessel, using liquid CO2 

as solvent. Previous study has proven that with steady CO2 flow rate under isothermal, 

wax extraction yield was enhanced by an increase in pressure. Thus this concept is 

applied to SC-CO2 extraction in this research. Consequently, the reaction condition is set 

to isothermal of 50°C, isobaric of 350bar and constant SC-CO2 flow rate of 40g/min. 

These reaction conditions can be monitored by the computer programmed flow sheet 

that is shown in Figure 10.  SC-CO2 was allowed to pass through the extraction vessel for 

4 hours. Therefore the total amount of CO2 for one extraction (100g) is 9.6kg.  
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Figure 10 Control mimic panel showing principle components 

The SC-CO2 program was run for 5 times and 500g straw was consumed  in order 

to collect enough wax, the staring material for the later pyrolysis tests. Therefore, in 

later section, yield calculation was done by using the average yield of 5 wax extractions. 

The product wax was then stored in the sample tube until analysis. The average extract 

yield was determined by weighing the total wax collected and divided by the total 

weight of the starting material.  

2.3.3 Soxhlet extraction 

Wax was not just extracted using SC-CO2 technique; it was as well as being 

extracted from Soxhlet extraction employing hexane as solvent. Hexane as mentioned 

before was the most selective solvent in Soxhlet extraction when apply to straw. Milled 

Saffron barley straw (11g) and unknown variety barley straw (11g) were extracted 

individually with 350 ml hexane in a Soxhlet extraction apparatus for 4 hours. 

Procedures were repeated for 3 times. 

2.3.4 Fatty acid Analysis 

Ester is one of the important compartments in wax. However esters with same 

chain length but different alcohol bindings always elute at the same retention time. In 

order to analyse the carbon number of fatty acid and alcohol ester group, the wax 

needed to be transesterified to free its fatty acids for further analysis of their 

components. 5mg of wax sample were transferred into a reaction vial followed by 

dilution with 1ml hexane. 50μl of sodium methoxide solution were added to the sample 
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in hexane.  The mixture was stirred for 2 hours. 5 minutes of incubation was allowed at 

room temperature before the sample top layer was separated for GC-MS analysis. By 

doing this, these waxes underwent methylation of the carboxylic acid function to form 

fatty acid methyl ester (FAME). This hydrolysis and methylation occurred at room 

temperature when reacted with 1N sodium methoxide. The FAMEs are identified and 

quantified under GC-MS.  

2.3.5 Microwave  

2.3.5.1 Milestone Microwave 

Both extracted (by SC-CO2) and un-extracted straw were used separately for 

microwave pyrolysis, and the impact in product of using two straw was identified. The 

pressurised Milestone system needed to be checked for leaks before the running of the 

experiment. Firstly, the glass vessel was fed with starting material and fit into Milestone 

microwave (illustrates by the right picture in Figure 11). 50g of straw together with 10w% 

water (5g, to reduce the static charge of straw) were used as staring material. After 

sealing the Milestone machine, the glass vessel was set to rotate while the vacuum 

pump was turned on; leaking from the system was check again. After checking the 

system, the cooling water was turned on and the cooler was set to maintain the 

temperature on 3°C. Then the reaction could be started using the program described 

below.  

 

Figure 11 Milestone microwave used for the experiment 

After several attempts, the microwave condition for operation was finally 

decided as, 

 1min, 400W energy, T1: 0°C, T2: 40°C (300mbar) 

 5min, 800W energy, T2: 120°C 

 10min, 1200W energy, T2: 200°C 

 Leave the system to cool down for 30min, and the product can be 

collected 
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Most bio-oil formed during the reaction was transferred to a round bottom flask 

connected to the system (shown at the left part of the left picture in Figure 11). A small 

amount of bio-oil was left in the system and need to be washed off using diethyl ether. 

Bio-oil wash from different parts was collected and analysed separately. Bio-oil was 

identified as main product, char was collected as by-product, and small amount of 

water as waste was also collected. 

2.3.5.2  CEM 

CEM microwave was used to test bio-oil reproducibility which is capable of 

capturing bio-gas. CEM microwave has the advantage of running at a smaller scale and 

required less reaction time than Milestone. During the experiment, tests were carried 

on in both closed vessel and opened vessel to find relationship between the products 

yield and the reaction. 

Unlike in the large scale Milestone microwave, only 1g of straw was used as 

starting material for the small vessel in CEM microwave. The reactions were carried out 

under constant energy input (energy 300W) and constant residence time (10min 

including cooling time). Various temperatures in closed vessel system were performed 

initially, and then experiments were conducted in opened vessel system. 

Different reaction speeds were found at various positions along the reactant 

tube, where the upper part straw reaction had reached completion in contrast to the 

bottom part. In order to provide a more homogeneous heating process, straw was 

further milled to fine powder. Because of the un-equal heating of the straw, each 

sample was run consecutively two times under the same condition before collecting the 

bio-oil. Straw was evenly stirred after the first run and was put to microwave for a 

second run. Experiments were carried out under four different temperatures (100°C, 

120°C, 140°C, 160°C) in the closed vessel system, and diethyl ether was again used to 

wash off the bio-oil. 

When the reaction temperature increased to 160°C in closed vessel, the process 

was stopped soon after the starting. This was due to the large amount of gas being 

produced at higher reaction temperature which had caused a rise in pressure in the 

vessel. The machine was then modified to opened vessel system; gas was collected 

using a syringe with its needle penetrating the sealing rubber of the test tube (Figure 

12). Reaction temperature 200°C and 250°C was performed on the opened vessel 

system, and bio-gas was collected for both temperatures. The gas in the syringe was 

then quickly injected to a transparent glass tube to be analysed by FTIR.  
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Figure 12 Bio-gas collected from CEM in open vessel (picture was taken during reaction process) 

2.4  Chemical composition characterization 

Wax, bio-oil, char and bio-gas were obtained as products by using above 

methods, and were subsequently analysed by using different techniques that explained 

in this section.  

GC-MS: Two program conditions were designed for GC-MS analysis. Firstly, wax 

and bio-oil were analysed by GC-MS using condition 1, peaks were analyse to 

understand the detailed chemical compositions. Due to a heavy ester group in wax was 

retained under condition 1, condition 2 was programmed with a length reduced column 

and a higher temperature, to ensure the required components would elute in wax. Wax 

sample and transesterified wax that formed fatty acid methyl ester (FAME) were 

analysed under condition 2. KI numbers were calculated for peaks in spectrum and 

compared to the standard.  

GC: In order to obtain the percentage of different chemicals existed in wax and a 

bio-oil sample, GC was applied. Areas under the corresponding peaks were calculated as 

percentage.  

FTIR: The chemical composition of char and bio-gas were characterized by FTIR, 

and in order to understand the structure of char, straw and de-waxed straw were also 

analysed by same condition. 

2.4.1 Gas chromatography-mass spectrometry (GC-MS) 

Wax and bio-oil samples were taken for analysis using Shimadzu GC17A gas 

chromatograph fitted with an autosampler and a DB5-HT capillary column 

(30m×0.25mm, film thickness 0.25μm). To perform further analysis, samples were 

prepared by adding toluene and ethyl acetate of ratio 1ml to 0.02g of specimen. The 

chromatographic conditions are set as, 
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Condition 1: 

 Oven temperature 60°C for 1min,  

 Heated  a ramp rate 8°C/min to 300°C,  

 Held for 10min.  

 Carrier gas helium at constant flow rate 1ml/min.   

And then in order to observe the high molecular weight wax ester groups, 

sample were re-processed in a length reduced DB5-HT column (15m×0.25mm, film 

thickness 0.25μm). The GC-MS machine functioned with a split injector and a mass 

detector, working in electron ionization mode. The conditions chromatographic were, 

Condition 2: 

 Oven temperature 60°C for 1min,  

 Heated  a ramp rate 8°C/min to 400°C,  

 Held for 25min.  

 Carrier gas helium at constant flow rate 1ml/min.   

2.4.2 Gas chromatography (GC) 

In order to obtain each corresponding peak area of barley wax and bio-oil, 

product samples were analysed with Gas Chromatography. The condition was set very 

similar to the method employed in GC-MS. 

Wax and the hexane extracts from other straw were performed using an Agilent 

6890N GC model equipped with an autosampler fitted with a DB-5 capillary column 

(30m×0.25mm) and an FID detector. The FID detector was used at 350°C. Then 1μl of 

this solution was injected into a DB-5 capillary column by means of split injection at a 

temperature of 300°C and a split ratio of 1:50. The temperature program was: 

 Oven temperature 60°C for 2min,  

 Heated  a ramp rate 5°C/min to 350°C,  

 Held for 10min.  

 Carrier gas helium at constant flow rate 2.2ml/min.   

KI number can be used to help identifying each peak, based on the retention 

time of each peak from GC/GC-MS. 

Numerous peaks were observed in GC spectrum representing every components 

of the analysed sample. With absorbance shown in Y axis and retention time in X axis in 

GC spectrum, using retention time corresponded peak area table generated by GC 

software enabled correlating peak areas to its component. Thus the concentration of 
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each chemical substance was determined by dividing its peak area with the sum of total 

peak areas. 

2.4.3 Fourier transform infrared spectroscopy (FTIR) 

The structure of the solid residues obtained from pyrolysis (char), the original 

straw and the de-waxed straw were studied by FTIR spectroscopy. It was also used for 

investigating the composition of bio-gas. Fourier transforms infrared spectroscopy (ATR, 

Specac Golden Gate). The FTIR spectra were obtained using the VERTEX 70 FTIR 

spectrometer resolution and 128 scans between 4000 and 600cm−1, with 4cm−1 

resolution for solid sample and 2cm−1 resolution for gas. The solid residue sample was 

compressed to powder before being tested, and the gas sample from the pyrolysis were 

transferred to a transparent glass tube to run the test. 
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3 Results and discussion 

After products have been collected and analysed by methods and analytical 

techniques mentioned above, their spectra were investigated and their chemical 

compositions were analysed and discussed below.  

3.1 Wax from Barley straw 

The wax extracted from both SC-CO2 and Soxhlet extractions exhibited a light 

yellow colour and have a strong and pleasant herbal odour. 

3.1.1 Barley straw yield 

SC-CO2 wax has a slightly higher yield than Soxhlet wax when same variety 

barley (Saffron) was used. 

 SC-CO2 wax - average 1.2g product were collected from 100g starting material 

and the yield is 1.2 %  

 Soxhlet wax - average 0.11g product was collected from 11g starting straw after 

vacuum evaporation, with the yield of 1.05%. 

3.1.2 Chemical composition SC-CO2 extracted wax 

The GC-MS chromatography of the SC-CO2 extracted barley wax suggested a 

great diversity in composition. The GC-MS chromatogram of the SC-CO2 extracted wax is 

shown below in Figure 13. 

 

Figure 13 Barley straw wax (by SC-CO2) 

These peaks were divided into several main groups by their mass spectrum: 

long-chained alkane, aldehyde, free fatty acid, fatty alcohol, β-diketones, sterols and 

wax ester. The results were confirmed by previous studies.25,55 Therefore the mass 

spectrum of each peak can be used to conclude of what chemical group it belongs to, 

rather than the precise chemical formula. 
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From the chromatography, most peaks were found concentrated between 18 to 

36 min, as this is the region that hydrocarbon compounds elute from the GC-MS column; 

a chromatography in this range is shown in Figure 14 with peak details in Table 3.  
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Figure 14 Detailed GC-MS Chromatogram of barley straw wax extracted by SC-CO2  



Dan Han – MSc by Research – Green Chemistry – 2011 

 

40 
 

Table 3 SC-CO2 barley wax components (: standard matched, N/A: not applicable, information cannot be found from literature or chemical database) 

Peak tr KI n N tn tN Compounds 

Confirmed by 

Mass 
spectrum 

Expected 
KI 

Standard 

1 18.66 1755 18 20 19.23 21.75 tetradecanoic acid C14H28O2  1770 N/A 

2 19.83 1848 18 20 19.23 21.75 2-pentadecanone,6,10,14-trimethyl C18H36O  1845 N/A 

3 21.26 1961 18 20 19.23 21.75 hexadecanoic acid C16H32O2  1958 N/A 

4 23.12 2119 20 22 21.75 24.06 phytol C20H40O  2114 N/A 

5 23.32 2136 20 22 21.75 24.06 9,12-octadecadienoic acid C18H32O2  2131 N/A 

6 23.38 2141 20 22 21.75 24.06 9-octadecenoic acid C18H34O2  2143 N/A 

7 23.62 2162 20 22 21.75 24.06 octadecanoic acid C18H36O2  2162 N/A 

8 25.79 2362 22 24 24.06 26.19 eicosanoic acid C20H40O2  2380 N/A 

9 26.5 2431 24 26 26.19 28.16 docosanal C22H44O  2424 N/A 

10 27.19 2502 24 26 26.19 28.16 pentacosane C25H52  2500 N/A 

11 28.49 2636 26 28 28.16 29.98 tetracosanal C24H48O  2627 N/A 

12 28.7 2659 26 28 28.16 29.98 squalane C30H62  2657 

13 29.09 2702 26 28 28.16 29.98 heptacosane C27H56  2700 

14 30.34 2842 28 30 29.98 31.7 hexacosanal C26H52O  2830 N/A 

15 30.87 2903 28 30 29.98 31.7 1-hexacosanol C26H54O  2852 N/A 

16 32.06 3045 30 32 31.7 33.3 octacosanal C28H56O  3032 N/A 

17 32.51 3093 32 36 33.3 36.24 hentriacontane C31H64  3100 

18 33.84 3273 32 36 33.3 36.24 cholesta-3,5-diene C27H44  N/A N/A 

19 34.1 3309 32 36 33.3 36.24 stigmasterol C29H48O  3222 N/A 

20 34.55 3370 32 36 33.3 36.24 beta-sitosterol C29H50O  N/A N/A 

21 34.74 3396 32 36 33.3 36.24 14,16-hentriacontanedione C31H60O2  3357 N/A 

22 35.6 3513 32 36 33.3 36.24 26-(Acetyloxy)-cholest-4-en-3-one C29H46O3  N/A N/A 
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3.1.2.1 Hydrocarbons 

In barley SC-CO2 extracted wax, the hydrocarbons were long chain alkanes. 

Studies showed the principal hydrocarbons of barley straw wax was comprised of 

carbon numbers 25, 27,29, 31 and 33.55 By analysing the GC-MS spectrum of SC-CO2 

wax (Figure 14), the most abundant alkanes isolated were indeed pentacosan (C25H52, 

peak 10), heptacosane (C27H56, peak 13) and hentriacontane (C31H64, peak 17). The last 

two compounds had been confirmed by standard. The odd carbon chain number is a 

characteristic feature of the waxes of higher plants. 

Below is the mass spectrum of peak 17, hentriacontane(C31H64), this is a 

representative mass spectrum of alkane found in plant waxes. 

 

Figure 15 Mass spectrum of hentriacontane (C31H64. Peak 17) 

Alkane peaks are usually easy to identify as the fragment are often spaced by 

intervals of fourteen mass units. For examples in the above spectrum it is obvious to 

observe the fourteen intervals between most significant fragments: 43, 57, 71 and 85, 

corresponding to sequential loss of CH2-groups. However, as alkane has high ionisation 

energy, the molecular ion of its peak is usually weak; the last fragment that can be 

identified for peak 17 in Figure 15 is 281, while C31H64 should have molecular weight of 

436. It is therefore impossible and inaccurate to identify the precise chemical formula of 

the compound by using the m/z of the last fragment in its spectrum. 

For a more accurate result, compounds in the wax are identified by matching 

both their KI and mass spectra to NIST library, standard compounds and published 

spectra. The KI of peak 17 is 3093, with the standard C31H64 has its KI of 3100. Together 

with its mass spectrum, peak 17 can be concluded as C31H64. 
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3.1.2.2 Aldehydes 

Long chain aldehydes of plant were first reported as constituents of sugar cane 

and grape wax. Literatures suggested aldehydes have been detected 

chromatographically in the surface waxes of leaves or fruit of 18 out of 24 species 

investigated.56 Aldehyde appears to be common constituents of plant waxes.  

The GC analysis coupled to mass spectrometry confirmed the presence of four 

aldehydes in barley straw wax, which were decosanal (C22H44O, peak 9), tetracosanal 

(C24H48O, peak 11), hexacosanal (C26H52O, peak 14) and octacosanal (C28H56O, peak 16). 

Literature corroborated that  hexacosanal (C26H52O) and octacosanal (C28H56O) are also 

exist in leaf and stem wax of triticales and wheat.57,24  These two aldehyde are also the 

two  most abundant aldehydes in barley wax. The KI number has the constant interval 

about 205 between the two adjacent aldehydes. (KI included in Table 3) 

As aldehydes are unstable over period and can easily decompose to acids 

through oxidation, it is usually difficult to find their trace in mature plant straw. It was 

therefore surprising to find four aldehydes in barley wax not only survived the long term 

storage and the pressurised, high temperature SC-CO2 extraction process, but two of 

them also generated a fairly strong peaks (peak 14 and 16, caused by hexacosanal (C26) 

and octacosanal (C28)). The reasonably explanation for this could be these aldehydes 

have a very high concentration in barley straw. A typical mass spectrum of aldehyde is 

shown below.  

 

 

Figure 16 Mass spectrum of hexacosanal (C26H52O, peak 14) 

3.1.2.3 Fatty acid 

Fatty acid is commonly found in organic matter. Most naturally occurring fatty 

acids have a chain of 4 to 28 carbons. Previous literatures showed free fatty acid has 

also been found in plant surface wax. For instance, ustilago maydis contained fatty acids 
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ranging in carbon number from C12 through C20
58 , while palmitic acid (C16:0) and stearic 

acid (C18:0) are the two predominant saturated fatty acids in plants.  

Among those fatty acid presence in Figure 14, four of them were saturated fatty 

acid (tetradecanoic acid (C14:0), hexadecanoic acid (C16:0), octadecanoic acid (C18:0) 

and eicosanoic acid (C20:0)) and two of them were unsaturated acid (9, 12-

octadecadienoic acid (18:2) and 9-octadecenoic acid (18:1)). 

Table 4 Retention time and KI number of free fatty acid in barley wax (relate to Figure 15) 

Peak tr KI Compounds 

Confirmed by 

Mass 
spectrum 

Expected 
KI 

Standard 

1 18.66 1755 tetradecanoic acid C14H28O2  1770 N/A 

2 19.83 1848 
2-

pentadecanone,6,10,
14-trimethyl 

C18H36O  1845 N/A 

3 21.26 1961 hexadecanoic acid C16H32O2  1958 N/A 

4 23.32 2136 
9,12-octadecadienoic 

acid 
C18H32O2  2131 N/A 

5 23.38 2141 9-octadecenoic acid C18H34O2 N/A 2143 N/A 

6 23.62 2162 octadecanoic acid C18H36O2  2162 N/A 

7 25.79 2362 eicosanoic acid C20H40O2  2380 N/A 

 

Hexadecanoic acid was identified with the highest concentration among the 

fatty acid and gave a strong peak (peak 3) on GC chromatographically.  

Peak 4 and peak 5 represented 9,12-octadecadienoic acid (C18:2, also known as 

linoleic acid), and  9-octadecenoic acid(C18:1, known as oleic acid). They were the only 

two unsaturated acid presented in the extracted wax59. They are also common in the 

surface wax of other plants.58 

The mass spectra of all the saturated fatty acid indicated the similar trend and 

their KI showed a constant 200 difference.   

3.1.2.4 Fatty alcohol 

Free fatty alcohols in straw waxes were found mainly n-alkanols with chain 

length ranging from C22 to C28, for example in wheat straw wax the predominance 

aliphatic alcohol was 1-octacosanol55. The peak 15 was the second strongest peak in 

Figure 15, and its mass spectrum shown below the represented peaks at m/z 55, 57, 83, 

97, 111 and 125, which are the characteristic peaks of fatty alcohol.60  
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Figure 17 Mass spectrum of hexacosanol (C26H54O, peak 15) 

With the exception of a fragment at m/z=31, caused by (CH3O+), the mass 

spectrum of a long-chain alcohol resembled the spectrum of an n-alkene. However, the 

chemical ionization mass spectrum of a long-chain n-alcohol is more specific. The last 

fragment of fatty alcohol is always caused by the loss of water molecule. Taking the last 

fragment of m/z 363 plus the molecular weight of water 18, the total molecular weight 

of the chemical should be 381, which is very close to molecular weight of 1-hexacosanol 

of 382. The difference may cause by the inaccuracy of the machine. The hexacosanol 

standard was also run and co firmed this peak was C26 alcohol.  

3.1.2.5 β-diketone 

The peak 21 in Figure 14 at 34.74 min with KI of 3396 was predicted to be 

hentriacontan-14,16-dione, also known as  β-diketone.55 Without any related chemicals 

in the wax/standard for comparison, the mass spectrum need to be related to its 

molecular weight and its structure to confirm this is the beta-diketone peak. The 

spectra of this peak showed a peak of 446 m/e (M-18) which is caused by the loss of 

water from the enol. Peaks were observed at m/e 211, 239 and 253, displaying the 

fragmentation shown on the structure (Figure 19). The prominent ion m/z 100 in MS of 

the diketone arises from two McLafferty rearrangements.61 The peak at m/z 296 was 

also accounted by McLafferty rearrangement. 

 

Figure 18 Structure of hentriacontan-14,16-dione 
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Figure 19 Mass spectrum of hentriacontan-14,16-dione 

3.1.2.6 Sterols 

Sterols occur naturally in plants. Plant sterols include campesterol, sitosterol, 

and stigmasterol. NIST library showed the last group of peaks are almost all caused by 

different sterols, and the structure of sterols that appears in the wax sample is listed 

below. 

 

Cholesta-3,5-diene  

Stigmasterol 

 

β-Sitosterol 

 

26-(Acetyloxy)-cholest-4-en-3-one 

Figure 20 Structures of Sterols 

The mass spectrum of peak 22 at retention time 35.6min suggested the peak to 

be cholesta-4-en-3-one. However the peak’s KI is calculated to be 3513, much greater 

http://en.wikipedia.org/wiki/Plant
http://en.wikipedia.org/wiki/Campesterol
http://en.wikipedia.org/wiki/Sitosterol
http://en.wikipedia.org/wiki/Stigmasterol
http://upload.wikimedia.org/wikipedia/commons/6/63/Stigmasterin.svg
http://upload.wikimedia.org/wikipedia/commons/b/be/Sitosterol_structure.svg
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than the cholesta-4-en-3-one published KI 3123. In addition, cholesta-4-en-3-one should 

escape from column before stigmasterol according to its chemical structure. Finally, this 

peaks was identified as 26-(acetyloxy)-cholest-4-en-3-one. 

3.1.2.7 Other wax components 

Majority peaks were analysed above, the remaining ones were peak 2 at 

19.89min, peak 4 at 23.12min and peak 12 at 28.7min. 6,10,14-trimethylpentadecan-2-

one, phytol and squalane were chemicals generating these peaks suggested by NIST 

library. The presence of squalane and phytol were proven by running squalane’s 

standard in the lab, and having the  phytol’s KI and MS compare to the standard 

information in NIST webbook. Further evidence need to be provided to conclude that 

6,10,14-trimethylpentadecan-2-one is the right molecule for peak 2.  

3.1.2.8 Wax ester  

Ester group is an important component of the wax, and wax ester occurs widely 

in nature in a variety of plant and marine species. They are usually found as mixtures of 

esters consisting of saturated or monoenoic fatty acids and alcohols, with the acid and 

alcohol groups varying in chain length from C6 to C34.62 However, the heavy wax ester 

was retained with other wax components in normal GC-MS DB-5 column. A shorter 

column was needed, thus a length reduced DB5-HT column was required with operating 

temperature of 400°C, in order to ensure that the required components would elute. 

The last group of peaks (elute after 30min) represented the wax esters. 

 

Figure 21 Wax ester peaks in GC-MS chromatogram 

Figure 21 shows the fives ester peaks in the GC-MS chromatogram of barley 

straw wax, retention time range was set from 32.62 to 36.60min. The later spectrum 

was seriously interferes with evaporation of the liquid phase from the column, the so-

called “column bleed”, the reason for this was the vapour pressure of the stationary 

phase had gone too high for the oven temperature used and caused the stationary 
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phase slowly eluted from the column. The bleeding is very common in GC-MS, 

particularly in programmed temperature operation,63 and is one of the disadvantages of 

GC-MS.  

A complex molecular ion was suggested by the mass spectrum of the peak at 

32.62min (Figure 22). It contains the typical wax ester ions at m/z 229, 258, 286 and 314. 

These ions represented the four different fatty acid that contain varies carbon chain: 

(C13H27CO2H2
+), (C15H31CO2H2

+), (C17H35CO2H2
+) and (C19H39CO2H2

+). Molecules with the 

equal carbon number were discovered at the same retention time, caused by various 

alcohol bindings of fatty acids that have the identical chain length in total. 

 

Figure 22 MS of the peak at 32.62min from SC-CO2 extracted barley straw wax 

In order to find the correct binding fatty acids, the total carbon number of such 

molecules was required, which could be obtained by comparing the KI of this peak to 

the standard. 

Previous study showed the ester have carbon atoms number of 42 has KI of 4346 

if utilising DB-1 column.64  The first ester peak at 32.62min has the KI of 4381. As the 

DB-5 column is more polar than the DB-1 column, it generated a slightly higher KI, and 

this perfectly explains the first peak’s higher KI of 4381. Therefore this peak is 

concluded contains 42 carbon atoms. As the previous section has been suggested the 

first peak contains tetradecanoic (C13H27CO2H2
+),  hexadecanoic (C15H31CO2H2

+), 

octadecanoic (C17H35CO2H2
+) and eicosanoic(C19H39CO2H2

+) by checking its mass 

spectrum, these fatty acids could combine respectively to octacosanol, hexacosanol, 

tetracosanol and eicosanol to make a 42 carbon atoms chain. 

To support such conclusion, the chain length of the esterified fatty acids were 

determined by hydrolysis (waxes undergo methylation of the carboxylic acid function to 

form fatty acid methyl ester), and further analysed by GC-MS.  



Dan Han – MSc by Research – Green Chemistry – 2011 

 

48 
 

 

Figure 23 GC-MS Chromatogram of SC-CO2 wax after fatty acid hydrolysis 

By analysing Figure 23 using NIST library, peaks at 30.34 and 30.88 were found 

to be alcohols. Finally, octacosanol was discovered to be represented by peak at 

30.88min.  

In the mass spectrometry of methyl ester, the ionisation takes place at one of 

the free electron pairs of carbonylic oxygen. According to McLafferty rearrangement, 

the characterized peak for saturated and monoenoic fatty acids is at m/z 74. Therefore 

all peaks with mass 74 from Figure 23 were displayed at Figure 24 and their KI numbers 

were calculated. By comparing these peaks’ KI to the standard methyl esters’ KI on NIST 

webbook database, these peaks were concluded to cause by methyl undecanoate, 

methyl hexadecanoate, methyl octadecanoate, methyl docosanoate, methyl 

tetracosanoate and methyl hexacosanoate. (Table 5)  

 

Figure 24 GC-MS Chromatogram of methyl ester 
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Table 5 Kovat index number of fatty acid methyl ester 

peaks tunknown KI Corresponding Chemical 

1 18.24 1729 Methyl tetradecanoate 

2 20.85 1922 Methyl hexadecanoate 

3 23.25 2128 Methyl octadecanoate 

4 25.46 2330 Methyl eicosanoate 

5 27.51 2533 Methyl decosanoate 

6 29.4 2734 Methyl tetracosanoate 

7 31.15 2935 Methyl hexacosanoate 

 
According to the calculated KI of the wax ester peaks, together with the wax 

ester part in Figure 21, the 5 different peaks presented a KI interval of 200, which 

represent the 2 –CH4 difference, the wax ester peaks can be concluded as: 

Table 6 Kovat Index number of wax ester 

Peak tr KI Formular 
Confirmed by 

Mass spectrum KI 

1 32.62 4381 C42H84O2  

2 33.68 4588 C44H88O2  N/A 

3 34.69 4788 C46H92O2  N/A 

4 35.67 4982 C48H96O2  N/A 

5 36.6 5189 C50H100O2  N/A 

 

3.1.3 Chemical composition Soxhlet wax 

The wax obtained from performing Soxhlet extraction on barley straw was 

analyzed using GC-MS. The GC-MS chromatogram of the wax is shown below in Figure 

25.  

Peak 10 and 11 at retention time of 30.24min and 30.77min respectively were 

the strongest. They were caused by hexacosanal and 1-octacosanol. Most peaks in 

Soxhlet wax were also found in SC-CO2 waxes, with exceptions of octacosane and 1-

octacosanol. The difference between these two waxes is discussed in later section. 
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Figure 25 GC-MS chromatogram of the sohxlet extraction wax 
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Table 7 Peaks from sohxlet wax GC-MS (:standard matched, N/A: unavailable from 

literature or chemical database) 

Peak tr KI Compounds 

Confirmed by 

Mass 
spectrum 

Expected 
KI 

Standard 

1 19.72 1848 
2-pentadecanone,6,10, 

14-trimethyl 
C18H36O  1845 N/A 

2 21.14 1961 hexadecanoic acid C16H32O2  1958 N/A 

3 23.26 2141 9-octadecenoic acid C18H34O2  2141 N/A 

4 23.5 2161 octadecanoic acid C18H36O2  2162 N/A 

5 25.68 2363 eicosanoic acid C20H40O2  2363 N/A 

6 27.09 2504 Pentacosane C25H52  2500 N/A 

7 28.6 2661 Squalane C30H62  2660  

8 28.98 2702 Heptacosane C27H56  2700  

9 29.88 2800 Octacosane C28H58  2800  

10 30.24 2842 Hexacosanal C26H52O  2830 N/A 

11 30.77 2903 1-hexacosanol C26H54O  2852  

12 31.18 2951 1-octacosanol C28H58O  N/A N/A 

13 31.96 3045 Octacosanal C28H56O  3032 N/A 

14 32.41 3102 hentriacontane C31H64  3100  

15 33.74 3269 cholest-5-en-3-one C27H44O N/A N/A N/A 

16 33.98 3304 Stigmasterol C29H48O  3222 N/A 

17 34.45 3366 beta-sitosterol C29H50O  N/A N/A 

18 34.66 3393 
14,16-

hentriacontanedione 
C31H60O2  3357 N/A 

 

3.1.3.1 Wax composition difference 

The following graph compares straws wax from different extraction technique 

and different origin. The differences in peaks among the spectrums were explained 

below.  

Although the straws from three regions were processed using two techniques of 

Soxhlet and SC-CO2, the resulting GC-MS spectrum possessed great similarities among 

each other. Composition differences between waxes are discussed by extraction 

methods and by origins respectively.  
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Figure 26 GC-MS of difference waxes 

Saffron barley wax, SC-CO2 

Germany barley wax, SC-CO2 

Grains containing barley wax, SC-CO2 
 

Saffron barley wax, Soxhlet 
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3.1.3.1.1 Composition difference by techniques 

SC-CO2 extracted wax was expected to show a profile different from hexane,25 

and this statement is corroborated by the results of this research. This was caused by 

non-polar property of hexane used in Soxhlet, because hexane did not participate in 

hydrogen bonding. In contrast, SC-CO2 had quadrupole moment and thus was able to 

participate in hydrogen bonding. Subsequently, for SC-CO2, there were contributions 

from dispersions, polar, and hydrogen-bonding interactions. 

Although many peaks shared a great similarity in both waxes’ spectrum, there 

were significant differences. For example, SC-CO2 wax contained more diversions of 

fatty acid, aldehydes and greater percentage of sterols, but less alkanes; SC-CO2 wax 

comprised seven different fatty acids and four different aldehydes, but Soxhlet wax only 

consisted of four fatty acids and two aldehydes; SC-CO2 had a strong beta-sitosterol 

peak with KI at 3370, but Soxhlet wax only had a mild peak with the similar KI; In the 

meantime, octacosane and 1-octacosanol were found in Soxhlet wax but not in SC-CO2 

wax. 

From these findings, different techniques can therefore be applied depending on 

the interest in different chemical groups. However the differences in chemical 

composition observed by using different variety barley straw or different extraction 

method were insignificant. 

3.1.3.1.2 Composition difference by region 

The Germany barley wax contained almost identical components to the Saffron 

wax, but the concentrations of each substance were slightly different. The 

concentration of hentriacontane, 1-hentriacontanol, octacosanal and 14,16-

hentriacontanedione were hugely increased .  

The spectrum of the grains containing straw has one unique peak at 25.12min 

which was caused by C23 alkane. And the concentration of beta-sitosterol at 34.74min is 

relatively low compare to other wax samples, makes the highest chemical content 

altered from beta-sitosterol or 1-hexacosanol to hentriacontane.  

3.1.3.2 Relative concentration of chemicals in wax 

The chemical composition of the wax layer is unique and characteristic feature 

of plants, the following figure shows the GC spectrum of the SC-CO2 extracted Saffron 

wax. 



Dan Han – MSc by Research – Green Chemistry – 2011 

 

54 
 

 

Figure 27 GC chromatogram of SC-CO2 wax 

From the figure, the quantities of the substances in the wax were not reflected 

due to the difficulty of calculating the area under each peak directly from the GC-MS 

program. Subsequently the sample was re-analysed using GC, and through which, the 

area under each peak was found using the method stated in section 2.4.2. The 

concentration was calculated by comparing areas under the individual peak to the total 

peak area of the sample. 

Peaks observed at the left of peak 1 were caused by contamination, thus their 

areas were not accounted for the total peak area. It was not possible to determine peak 

5, peak 11 and peak 13 in GC-MS (Figure 14), such that they were omitted from the 

peak percentage calculation. Instead of an appearance of a doublet in GC-MS spectrum, 

Peak 5 and peak 6 were single peaks in GC. Peak 11 and peak 13 were neglected due to 

their small areas. In order to investigate the potential of being as a raw material in 

cosmetic industry, it is necessary to fully understand the property of this SC-CO2 

extracted Saffron wax. The percentages of high concentrated chemical and chemical 

groups are tabulated in Table 8. 
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Table 8 GC-MS wax peak area 

Chemical groups % Peak Chemical compound 
GC Peak 

area 
Percentage% 

Fatty acids 32.5 

1 tetradecanoic acid 1063 1.0 

2 
2-pentadecanone,6,10,14-

trimethyl 
2537 2.3 

3 hexadecanoic acid 10432 9.6 

6 9-octadecenoic acid 17118 15.7 

7 octadecanoic acid 3249 3.0 

8 eicosanoic acid 929 0.9 

Fatty alcohol 14.6 15 1-hexacosanol 3821 14.6 

β-diketone 11.3 21 14,16-hentriacontanedione 12318 11.3 

Sterols 17.3 

18 cholesta-3,5-diene 4098 3.8 

19 stigmasterol 3598 3.3 

20 beta-sitosterol 9391 8.6 

22 
26-(Acetyloxy)-cholest-4-en-3-

one 
1721 1.6 

Aldehydes 6.0 

9 docosanal 1330 1.2 

14 hexacosanal 3821 3.5 

16 octacosanal 1369 1.3 

Alkanes 4.3 
10 pentacosane 1449 1.3 

17 hentriacontane 3209 3.0 

Stigmasterol 11.3 19 stigmasterol 3598 11.3 

Other group 4 phytol 2748 2.5 

Total peak area(all peaks in GC) 108719 100 

 

The compounds listed in Table 8 accounted for 90.1 % of the total peak area in 

GC, this provided the confidence to conclude that most chemical components in the 

wax had been identified.  

It is arguable that whether peak 6 was representing a single compound of 9-

octadecenoic or, more likely, an overlapping result of 9,12-octadecenoic acid and 9-

octadecenoic acid. The latter combination eluted at close retention time such that only 

a single peak was observed in GC spectrum instead of a doublet in GC-MS previously in 

Figure 14. Fatty acids were considered to a dominate group, which contributed to 32.49% 

of the total percentage. In addition, the SC-CO2 wax sample also contained a great 

percentage of sterols (17.3%), followed by fatty alcohol (14.6%), and 14,16-

hentriacontanedione (11.3%). As another constituent, aldehydes were, however, 

unstable and could easily decompose to acids during storage; so that aldehyde and 

alkane were the least in concentration among the groups in wax, only accounted for 



Dan Han – MSc by Research – Green Chemistry – 2011 

 

56 
 

6.0%, and 4.3% respectively. The chemical concentrations in the sample are re-

illustrated graphically in the figure below for a clearer representation. 

 

Figure 28 Percentage of chemicals in wax 

3.2 Comparison of Saffron barley to other straw 

With the aim of investigating the richness of the wax content on the straw 

surface, SC-CO2 extracted Carat barely, oat and rape straw were analysed to evaluate 

their wax yields. The straws were processed using the identical extracting operation 

setting to allow fair comparison to Saffron barley straw. Peaks in Carat barley wax’s GC-

MS spectrum were related to the Saffron barley’s wax in search of similarities in 

components.  

3.2.1 Potential yield 

An average of 1.2g (a yield of 1.2%) wax was collected from 100g Saffron barley. 

A higher yield of 2.1g (2.4%) was obtained from 87.7g Carat barley straw. In contrast, 

the oat straw generated a lower yield of 1.15 g (1.01%); and rape straw was observed to 

have the minimum yield (0.97%), only 3.0 g crude wax was obtained from 308g straw. 

These results are illustrated in Figure 29. 
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Figure 29 Comparison of SC-CO2 wax yield  

3.2.2 Wax components 

The chemical compounds in Saffron barley straw wax were expected to be at 

presence in every variety of barley straw. To support the argument, Saffron wax was 

compared to a readymade variety Carat barley wax which had been previously tested in 

Rothamsted Agriculture Lab (shown in Figure 30). This analysis also offered an 

opportunity to investigate the reproducibility of the wax components from different 

variety. 

 

Figure 30 Carat Barley SC-CO2 crude wax GC-MS spectrum 

The observed peaks was identified and tabulated below. The results are referred 

back to the Saffron GC-MS spectrum. 

 

 

0.00

0.50

1.00

1.50

2.00

2.50

Oat Rape Barley(Carat) Barley(Saffron)

Y
ie

ld
 %

 

http://www.google.com.hk/search?hl=zh-TW&biw=1276&bih=604&sa=X&ei=aaaMTdq4GMLNhAf35vmnCw&ved=0CBYQBSgA&q=Rothamsted+agriculture+lab&spell=1


Dan Han – MSc by Research – Green Chemistry – 2011 

 

58 
 

 

Table 9 Correlate Carat barley peaks with Saffron barley peaks (Figure 14) 

Peak Peak related to Figure 14 Compounds 

a 14 hexacosanal 

b 15 1-hexacosanol 

c 16 octacosanal 

d 17 Hentriacontane 

e 18 cholesta-3,5-diene 

f 19 Stigmasterol 

g 20 beta-sitosterol 

h 21 14,16-hentriacontanedione 

 

From the table, a close correlation of peaks between variety of Carat barley wax 

and Saffron barley wax was found.  Because two sets of wax were analysed using 

separate GC-MS machine under different conditions, there were significant differences 

in peak strength, but all peaks from Carat barley wax spectrum could be related to 

Saffron barley wax spectrum. 

3.3 Semiochemicals 

Literature reported that two of the hydrocarbons n-tricosane (C23H48) and n-

pentacosane (C25H52) in ladybird footprint, are induced aphid avoidance.1 Pentacosane 

was also found in Saffron barley wax, and previous study stated wheat straw wax 

comprises a similar blend of hydrocarbon compounds to ladybird footprint that consist 

of straight-chain and branched hydrocarbons20. No studies, however, have carried on 

other straw or fruit wax. It is therefore interesting to investigate if other straw or fruit 

wax comprises a similar blend of compounds, consequently causing the aphid avoidance. 

Three kinds of wax extracted from wheat, Carat barley and apple peel (supplied 

by NATECO Germany) was analysed using column chromatography to test the existence 

of the valuable semiochemicals. The resultant extracts were retested by GC-MS and 

analysed in the following sections. 

3.3.1 Carat barley extract 

The GC-MS spectrum of the column chromatography extract obtained from 

Carat barley straw wax is shown below. 



Dan Han – MSc by Research – Green Chemistry – 2011 

 

59 
 

 

Figure 31 GC-MS of Carat barley wax hexane extraction 

It should be noted that the peak at 28.13min in Figure 31 was contaminated by 

squalane residues in the GC-MS machine. This peak was also common to previous wax 

spectrum and later bio-oil spectrum. The remaining peaks demonstrated that the Carat 

barley extract mainly consist of heavy alkane compounds. Eight alkanes with carbon 

number ranging from C25 to C33 were identified from the spectrum; subsequently their 

KI were calculated below. 

Table 10 Major components in barley hexane extract 

peak tunknown KI n N tn tN Compounds 

1 26.63 2502 24 26 25.63 27.59 Pentacosane C25 

2 28.52 2702 26 28 27.59 29.42 Heptacosane C27 

3 29.42 2800 26 28 27.59 29.42 Octacosane C28 

4 30.28 2908 28 30 29.42 31.01 Nonacosane C29 

5 31.11 2999 28 30 29.42 31.12 Triacontane C30 

6 31.94 3102 30 32 31.12 32.73 Hentriacontane C31 

7 32.72 3199 30 32 31.12 32.73 Dotriacontane C32 

8 33.48 3301 32 34 32.73 34.22 Tritriacontane C33 

 

Although the presence of n-pentacosane was not seen from Figure 30, it was 

confirm by column chromatography (peak 1). Pentacosane had also been found in 

Saffron barley wax, so did the hentriacontane. This proved again the similarity of wax 

from different barley variety. 

Furthermore, between the retention time 18min and 30min in GC-MS spectrum, 

there were also many long-chain alkanes and branch-chain alkanes represented small 
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peaks with relatively low concentration. Although these peaks had not been reported 

previously, and were not abundant in concentration, they were also being investigated 

for a thorough understanding. 

 

Figure 32 GC-MS of low concentration peaks in barley wax hexane extract 

The KI numbers of these peaks were calculated, their mass spectra were 

investigated and their methyl-branch alkane’s structures were predicted based on their 

KI and their spectra in Table 11.65 

Table 11 Low concentration peaks of barley wax extraction 

Peak tunknown KI n N tn tN Compounds 

1 19.6 1871 18 20 18.71 21.21 6,10-/6,18-dimethyl octadecane 

2 19.83 1890 18 20 18.71 21.21 4,8-/4,16-dimethyl octadecane 

3 23.56 2205 22 24 23.51 25.63 Docosane 

4 24.41 2285 22 24 23.51 25.63 
8,12,16-trimethyl 
tetratetracontane 

5 24.61 2304 22 24 23.51 25.63 Tricosane 

6 25.64 2401 24 26 25.63 27.59 Tetracosane 

7 25.91 2429 24 26 25.63 27.59 
10-/12-/14-/16-methyl 

tetracosane 

 

Some of these small peaks were characterized as C22, C23 and C24 long chain 

alkanes. Other peaks were predicted to be branch chain alkane of 6,10-/6,18-dimethyl 

octadecane, 4,8-/4,16-dimethyl octadecane, 8,12,16-trimethyl tetratetracontane and 

10-/12-/14-/16-methyl tetracosane.65  
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3.3.2 Wheat extract 

Seven alkanes were found in wheat extract, from C27 to C33. C31 was the most 

abundant alkane from the hexane extract. The contaminated squalane peak was 

neglected. 

 

Figure 33 GC-MS of wheat wax hexane extract 

Table 12 Major components in wheat hexane extract 

peak tunknown KI n N tn tN Compounds 

1 28.53 2703 26 28 27.59 29.42 Heptacosane C27 

2 29.43 2801 28 30 29.42 31.01 Octacosane C28 

3 30.3 2911 28 30 29.42 31.01 Nonacosane C29 

4 31.13 3001 30 32 31.12 32.73 Triacontane C30 

5 31.95 3103 30 32 31.12 32.73 Hentriacontane C31 

6 32.73 3200 32 34 32.73 34.22 Dotriacontane C32 

7 33.49 3302 32 34 32.73 34.22 Tritriacontane C33 

 
Unexpectedly, the semiochemicals responsible for the aphid avoidance, n-

tricosane (C23) and n-pentacosane (C25), was not seen as high concentration peaks from 

Figure 33, which indicated that the two compounds were not abundant. However 

previous research had proven that time spent by parasitoids on the wheat wax treated 

plant was reduced compared to normal plants.20 To further prove the semiochemicals’ 

existence, the low concentrated peaks in spectrum region from 20min to 28min were 

studied (Figure 34). It should be noted that peaks at 21.02min, 22.8min, 24.42min, 

27.32min and 27.6min were cause by the contaminated siloxane compounds.   
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Figure 34 GC-MS of wheat wax hexane extract 

Table 13 Low concentration peaks of wheat wax extract 

Peak tunknown KI n N tn tN Compounds 

1 22.41 2104 20 22 21.21 23.51 heneicosane 

2 24.35 2279 22 24 23.51 25.63 
12,16,20-/10,14,18-
trimethyl docosane 

3 24.61 2308 22 24 23.51 25.63 tricosane 

4 25.65 2402 24 26 25.63 27.59 tetracosane 

5 25.91 2429 24 26 25.63 27.59 
10-/12-/14-/16-methyl 

tetracosane 

6 26.64 2502 24 26 25.63 27.59 pentacosane 

 

The C23 and C25 were found as peak 3 and peak 6 respectively with C25 having a 

highest concentration in Figure 34. Wheat wax extract also contained C24 (tetracosane) 

and branch chain alkane 10-/12-/14-/16-methyl tetracosane.  

3.3.3 Apple extract 

As shown in Figure 35, six alkane peaks were included in apple extract, but only 

alkanes C27 and C29 possessed great strength. 
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Figure 35 GC-MS of apple wax extract 

Table 14 Major components in apple hexane extract 

peak tunknown KI n N tn tN Compounds 

1 26.64 2503 24 26 25.63 27.59 Pentacosane C25 

2 28.52 2702 26 28 27.59 29.42 Heptacosane C27 

3 29.41 2799 26 28 27.59 29.42 Octacosane C28 

4 30.32 2913 28 30 29.42 31.01 Nonacosane C29 

5 31.13 3001 30 32 31.12 32.73 Triacontane C30 

6 31.94 3102 30 32 31.12 32.73 Hentriacontane C31 

 

C25 alkane also had a small concentration in apple wax, and C23 peak cannot even 

been seen. So the low concentrated peaks were analysed as indicated below. 

 

Figure 36 GC-MS of apple wax hexane extract 



Dan Han – MSc by Research – Green Chemistry – 2011 

 

64 
 

Table 15 Low concentration peaks of apple wax extraction 

Peak tunknown KI n N tn tN Compounds 

1 23.56 2205 22 24 23.51 25.63 docosane 

2 24.62 2305 22 24 23.51 25.63 tricosane 

3 25.64 2401 24 26 25.63 27.59 tetracosane 

4 25.91 2429 24 26 25.63 27.59 
10-/12-/14-/16-methyl 

tetracosane 

5 26.64 2503 24 26 25.63 27.59 pentacosane 

6 27.6 2601 26 28 27.59 29.42 hexacosane 

7 28.13 2659 26 28 27.59 29.42 4-methyl hexacosane 

 

Peaks at 25.91, 27.31min were caused by siloxane. From Figure 36, C25 and C23 

could be seen clearly. Rest peaks were caused by both C22, C24 and C26 long chain alkane, 

and branch chain alkane of 10-/12-/14-/16-methyl tetracosane and 4-methyl 

hexacosane.  

3.4 Pyrolysis Compounds 

In this section, straw was further processed to explore its potential of being a 

renewable energy source. Bio-oil and char were first collected from Milestone 

microwave machine as products. Both the raw straw (straw without SC-CO2 extraction) 

and the de-waxed straw were used as starting materials separately for pyrolysis 

production. The de-waxed straw after SC-CO2 extraction had been traditionally regarded 

as waste, however, it was able to be used as reagent for pyrolysis. This not only saved 

the disposing costs of the straw but also avoided the expenditure of purchasing new 

reagents. The bio-oil product from both straws were analysed by GC-MS to examine 

their chemical compositions and differences, while the by-products bio-gas and char 

were analysed by FTIR. 

The research was also focused on investigating the effect on product output and 

compositions when varying reaction temperatures. The Milestone microwave machine 

had drawbacks of large amount of starting material were required, long residence time 

and complex cleaning procedures after each pyrolysis. In addition, though 

improvements had been made on Milestone system to increase reaction efficiency, it 

was still unable to collect the bio-gas generated from during the pyrolysis. Another 

microwave machine, CEM, was therefore employed to work on the tasks that had not 

been accomplished by Milestone microwave.  

In contrast to Milestone, CEM microwave has advantages of shorter residence 

time, less starting material required, more convenient when cleaning and, most 

significantly, being capable of collecting the bio-gas generated during the pyrolysis of 

straw. A moderate temperature (140°C) was tested on pyrolysis reaction initially, and 
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the bio-oil collected from CEM microwave was analysed by GC-MS. The comparison of 

two bio-oil spectra from the microwave machines confirmed that the pyrolysis through 

CEM had been successful, as its bio-oil compositions were similar to the Milestone. 

Therefore the effect of changing temperature on pyrolysis products was tested 

confidently using CEM microwave machine. Without any disruption caused by biogas 

during the process, the pyrolysis was repeated with various temperature settings. The 

biogas generated during the reaction was collected and analysed by FTIR.  

3.4.1 Bio-oil 

Bio-oil being the main product of straw pyrolysis, It was collected from 

microwave as a dark brown fluid with a distinctive smoky odour.  

3.4.1.1 Milestone bio-oil 

An improvement was made to the Milestone microwave machine by adding a 

vacuum pump to its system, which increased the yield of the bio-oil from 4.5g bio-oil 

(50g starting material, yield 9%) to 5.5g oil (11%). Redesign the microwave had greatly 

increased the efficiency without having an effect on product quality. The microwave 

produced consistent pyrolysis results before and after the improvement was made. 

3.4.1.1.1 Effect of wax on bio-oil 

Bio-oil was extracted from raw straw and from de-waxed straw. Then oil samples 

form the two straws were separately analysed by GC-MS and the spectra in Figure 37 

showed the differences in the oil produced.  
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Figure 37  Bio-oil GC-MS spectra comparisons (raw straw, wax and de-waxed straw)

Straw surface wax 

De-waxed straw bio-oil 

Raw straw bio-oil 
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In the region between the origin and 18min in the spectra, raw straw oil and de-

waxed oil were observed being alike patterns. Differences only arise after the retention 

time of 19min as seen in Figure 37.  Peaks in raw straw oil began to share considerable 

similarities with the surface wax peak after retention time 19min; peaks with close 

retention times were observed from the two spectra. The de-waxed straw oil’s 

spectrum, however, showed an almost blank region in this area. It was suffice to 

conclude that peaks in raw straw oil after 19min was only caused by the wax presence.  

In the previous wax analysis section of chapter 3, study was mainly focused on 

the alkane peak appearances after retention time 19min (Figure 13). However, for bio-

oil analysis, the majority of the peaks were shown before 18min (Figure 38). This 

represented that peaks in wax and in bio-oil were caused by different chemicals. The 

hydrocarbon compounds in wax elute from GC-MS column at different time to the bio-

oil phenolic compounds.  

The deviation of bio-oil from wax was caused by presence of aromatic organic 

molecules (such as phenol) instead of alkanes and fatty acid as dominating compounds. 

Phenolic compounds in bio-oil eluted quicker than the wax components, so the first 20 

minutes of chromatogram was crucial for bio-oil analysis. The de-waxed bio-oil 

spectrum also presented a clearer pattern than the raw straw. As the difference 

between raw and de-waxed straws was only caused by surface wax, in order to simplify 

the analysis and have a more accurate result, de-waxed straw were decided to be used 

as starting material for the pyrolysis of bio-oil. 

3.4.1.1.2 Peaks analysis 

The de-waxed straw’s bio-oil spectrum in Figure 37 was listed independently in 

Figure 38 for detailed analysis. 

Peak patterns in the bio-oil GC-MS spectrum in Figure 38 were identified and 

tabulated in Table 16. In the de-waxed bio-oil GC-MS spectrum, presented substances 

of phenol and vanillin have been reported for the existence in bio-oil. Additionally, 

some of non-reported compounds as well shared the mentioned structure similarity. In 

this research, only 2-furanmethanol and 2-methoxy-4-vinylphenol were identified. 

According to previous study, the absence of furfural and 2-methoxy-4-methyl phenol35 

is likely to be caused by hydrolysis of bio-oil during the sample collection and storage 

due to its unstable property. 
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Figure 38 GC-MS of de-waxed straw bio-oi



Dan Han – MSc by Research – Green Chemistry – 2011 

 

69 
 

Five compounds (phenol, 2-methoxy phenol, 2-methoxy-4-vinylphenol, 2,6-

dimethoxyphenol, vanillin) were confirmed by matching both the MS and KI to literature, 

online database as well as the standards that had been run in the lab. The majority of 

the substances had matched their MS and KI to the references and the rest had their 

MS matched predictions but no records of KI were found. 

Substances were identified from Figure 38 and tabulated in Table 16. The KI of 

each compound was calculated corresponding to their retention time. The tunknown 

and KI data obtained from the GC-MS spectra was checked against scientific database, 

and results confirmed the majority of the substances. Furthermore, pure chemicals as 

standard references were tested under identical condition and matched to the lab data 

to ensure correct identification of the chemical components in the bio-oil. 
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Table 16 Chemical components of bio-oil from wax extracted straw (: standard matched, 

N/A: unavailable from literature or chemical database) 

Peak tunknown KI Compounds 
Mass 

spectrum 
KI Standard 

1 3.17 828 acetic acid, (acetyloxy)-  N/A N/A 

2 3.31 835 cis-1,4-cyclohexanediamine  N/A N/A 

3 4.12 880 2-furanmethanol  865 N/A 

4 4.96 925 
1h-imidazole,4,5-dihydro-2-

methyl 
 N/A N/A 

5 5.1 933 2-cyclopenten-1-one,2-hydroxy   919 N/A 

6 5.98 981 Phenol  980 

7 6.12 989 Unidentified peak N/A N/A N/A 

8 6.8 1027 
1,2-Cyclopentanedione, 3-

methyl 
 1043 N/A 

9 7.44 1063 
Furan, tetrahydro-2-
(methyoxymethyl)- 

 N/A N/A 

10 7.97 1093 2-methoxy phenol  1090 

11 8.46 1120 
2-cyclopenten-1-one,3-ethyl-2-

hydroxy- 
 1100 N/A 

12 9.82 1197 1,2-benzenediol  1197 N/A 

13 10.18 1218 Benzofuran,2,3-dihydro-  1226 N/A 

14 11.02 1268 1,2-benezenediol,3-methoxy-  1269 N/A 

15 11.33 1286 Phenol, 4-ethyl-2-methoxy  1286 N/A 

16 11.93 1321 2-methoxy-4-vinylphenol  1317 

17 12.53 1356 Phenol,2,6-dimethoxy-  1357 

18 13.35 1405 vanillin  1422 

19 14.09 1453  Benzenamin,2-methoxy-4-nitro   N/A N/A 

20 14.16 1458 
Phenol,2-methoxy-4-(1-

propenyl) 
 1438 N/A 

21 15.91 1572 
4-methyl-2,5-

dimethoxybenzaldehyde 
 N/A N/A 

22 17.88 1711 
Phenol,3,5-dimethoxy-4-(2-

propenyl)- 
 N/A N/A 

 

Discussions were made for substances of significant interest or uncertain 

structure in the ascending order of their respective retention time (RT), connections 

between peaks were also mentioned.  

RT of 6.12min: the substance which caused peak 7 was not identified. It was 

suggested the compound contained nitrogen group, it was likely to be originated from 

an amino acid. However, no exact match could be correlated to its MS.  

RT of 7.97min:  the KI of this substance at peak 10 was calculated to be 1093. 

The closest chemical to this substance was 2-methoxy phenol which had a KI value of 
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1090. The standard 2-methoxy phenol was analysed with GC-MS under the same 

condition as the bio-oil sample. After a same MS spectrum pattern was observed, the 

peak was indeed confirmed to be 2-methoxy phenol. 

RT of 8.01min: the substance was not identified. It had a featureless spectrum 

comprised of m/z 41,43,44,57 which imposed difficulty for its identification. 

RT of 8.46min: the substance at peak 11 was predicted to be 3-ethyl-2-hydroxy-

2-cyclopenten-1-one. The calculated KI of 1120 was similar to its standard value of 1100. 

This chemical had an additional ethyl group compared to peak 5 of 2-hydroxyl-2-

cyclopenten-1-one at 5.1min (KI 933). The ethyl group is a possible cause of shifting the 

KI by 187. 

RT of 9.82min: the substance at peak 12 was identified to be 1,2-benzenediol 

after matching its MS spectrum and KI with standard data. 

RT of 11.02min: the substance at peak 14 was predicted to be 3-methoxy-1,2-

benezenediol by matching its KI of 1268 and MS spectrum to the standard data from 

online database. This chemical had an additional 3-methoxy group compared to peak 12 

of 1,2-benzenediol with a KI of 1197. The methoxy group is a possible cause of shifting 

the KI to 1268. 

RT of 11.33min: the substance at peak 15 was predicted to be 4-ethyl-2-methoxy 

by matching its KI of 1286 and MS spectrum to the standard data from online database. 

This chemical had an additional ethyl group compared to peak 10 of 2-methoxy phenol 

with a KI of 1093. The ethyl group is a possible cause of shifting the KI to 1286. 

RT of 14.16min: the substance at peak 20 was predicted to be Phenol,2-

methoxy-4-(1-propenyl) by matching its KI of 1458 and MS spectrum to the standard 

data from online database. This chemical had an additional 1-propenyl group compared 

to peak 10 of 2-methoxy phenol with a KI of 1093. The ethyl group is a possible cause of 

shifting the KI to 1458. 

RT of 17.88min: the substance  at peak 22 was initially suggested to be 

phenol,2,6-dimethoxy-4-(2-propenyl) which had a lower KI value of 1602 by machine 

program library, but it was determined to be phenol,3,5-dimethoxy-4-(2-propenyl). This 

decision was justified by the shielding effect which was caused by two bulky methoxy 

group at 2, 6 positions. The effect reduced hydrogen bonding formed between OH 

group in phenol and the stationary phase of the column, subsequently resulted in the 

lower KI value of 1602.  
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3.4.1.1.3 Bio-oil substance concentration 

GC was used to determine the concentrations of different chemicals in the bio-

oil, and the result is shown in Figure 39.  

 

Figure 39 GC chromatogram of bio-oil 

The KI values were used to relate the peak patterns to the substances identified 

in the previous GC-MS spectrum (Figure 38). Using the method stated in section 2.4.2, 

the area under the curve for each substance was tabulated in Table 17, and its relative 

concentration was calculated by dividing the substance peak area with the sum. 
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Table 17 Peak area and percentage in bio-oil 

Peak Chemical compound GC Peak area Percentage% 

1 acetic acid, (acetyloxy)- 5828 7.0 

3 2-furanmethanol 1786 2.2 

5 2-cyclopenten-1-one,2-hydroxy 3308 4.0 

6 Phenol 2135 2.6 

8 1,2-Cyclopentanedione, 3-methyl 4327 5.2 

9 furan, tetrahydro-2-(methyoxymethyl)- 2509 3.0 

10 2-methoxy phenol 2815 3.4 

11 2-cyclopenten-1-one,3-ethyl-2-hydroxy- 1342 1.6 

12 1,2-benzenediol 2414 2.9 

13 Benzofuran,2,3-dihydro- 3477 4.2 

14 1,2-benezenediol,3-methoxy- 1860 2.2 

15 Phenol, 4-ethyl-2-methoxy 1379 1.7 

16 2-methoxy-4-vinylphenol 3696 4.5 

17 Phenol,2,6-dimethoxy- 3823 4.6 

18 Vanillin 415 0.5 

19 benzenamin,2-methoxy-4-nitro 565 0.7 

20 Phenol,2-methoxy-4-(1-propenyl) 941 1.1 

21 4-methyl-2,5-dimethoxybenzaldehyde 696 0.8 

22 Phenol,3,5-dimethoxy-4-(2-propenyl)- 433 0.5 

 
The listed peak contributes 52.7% in bio-oil. Literature showed acetic acid were 

the most dominating peak (8.5%) in the bio-oils from barley straw35. In this research, 

acetoxyacetic acid showed the highest concentration in the sample, about 7%, followed 

by 3-methyl-1,2-cyclopentanedione (5.2%), 2,6-dimethoxyphenol(4.6%), 2-methoxy-4-

vinylphenol(4.45%), benzofuran,2,3-dihydro-(4.19%), 2-cyclopenten-1-one, and 2-

hydroxy (3.9%).  

3.4.1.2 Bio-oil from CEM 

To test the bio-oil reproducibility and investigate the effect of changing reaction 

temperature on bio-oil, CEM microwave was employed for its advantages of shorter 

reaction time, less starting material needed and more convenient on cleaning. 

The bio-oil collected from CEM microwave strongly resembled the oil from 

Milestone in odour and colour, their chemical components were analysed. CEM 

machine was then used for testing the effect on pyrolysis production with changing of 

reaction temperature. 
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Reaction was initially tested on CEM microwave at temperature 140°C. The bio-

oil formed in the pyrolysis was tested by GC-MS. In Figure 40, CEM bio-oil spectrum was 

listed with Milestone spectrum, and correlations between them were discussed. 

The two spectra were not very similar from the first impression although they 

were run by the same GC-MS machine. One of the possible reasons for the difference 

was that they were tested at different period of time, and the retention time of the 

same substance was likely to shift by 1 to 2 min. Peaks’ mass spectra were analysed, 

relationship between them was represented in Table 18. 

 

Figure 40 GC-MS spectrum of CEM bio-oil and Milestone bio-oil 

It showed that peaks in CEM bio-oil spectrum had shifted about 1.2 min to the 

left than in the Milestone spectrum. Most peaks that existed in milestone bio-oil could 

be found in CEM bio-oil. The first peak that have been identified in both spectra was 

phenol (peak 6 in Milestone spectrum), appeared at 5.98min in Milestone spectrum and 

4.7min in CEM spectrum in Figure 40. Peak 6 has been proved to be phenol in previous 

analysis (Table 16), and its mass spectrum from both Milestone and CEM GC spectra is 

listed below. The two mass spectra shared a great similarity and both presented a clear 

molecular ion of m/z at 94, demonstrated peak 6 was caused by phenol in both spectra. 
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Figure 41 Mass spectrum of phenol from Milestone and CEM  

Table 18 Relationship between Milestone peaks and CEM peaks in bio-oil 

Peaks Chemicals 
Ret Time in 

Milestone/min 
Ret Time in 
CEM/min 

6 Phenol 5.9 4.7 

8 1,2-Cyclopentanedione, 3-methyl 6.8 5.4 

10 2-methoxy phenol 8.0 6.5 

11 2-cyclopenten-1-one,3-ethyl-2-hydroxy- 8.5 7.0 

12 1,2-benzenediol 9.8 8.4 

13 Benzofuran,2,3-dihydro- 10.2 8.7 

14 1,2-benezenediol,3-methoxy- 11.0 9.4 

15 Phenol, 4-ethyl-2-methoxy 11.3 9.7 

16 2-methoxy-4-vinylphenol 11.9 10.3 

17 Phenol,2,6-dimethoxy- 12.5 10.9 

18 Vanillin 13.4 11.7 

19 benzenamin,2-methoxy-4-nitro 14.1 12.5 

20 Phenol,2-methoxy-4-(1-propenyl) 14.2 12.5 

21 4-methyl-2,5-dimethoxybenzaldehyde 15.9 14.3 

22 Phenol,3,5-dimethoxy-4-(2-propenyl)- 17.9 16.3 

 

However, when more and more peaks eluted, the time difference for the same 

peak appeared in CEM and Milestone spectrum increased from 1.2min to 1.6min, as 

seen in Table 18. To prove peaks related in both spectra were still caused by the same 

chemical, the mass spectra of peak 17 from both Milestone and CEM gas 

chromatograms which have the time shifting difference of 1.6min were selected and 

investigated in Figure 42. 
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Figure 42 Mass spectrum of 2, 6-dimethoxy-phenol from Milestone and CEM 

With the molecular ion of m/z at 154, it is very clear peak 17 was caused by the 

existence of 2, 6-dimethoxy-phenol. The insignificant m/z at 207 was caused by the 

contaminant as it has also been found in phenol mass spectrum. 

Peaks 1 -5 in CEM spectrum before phenol could not correlate to peaks in 

Milestone easily. Peak 1 in Milestone oil was acetyloxyacetic acid, and was the most 

concentrated compound in milestone bio-oil. The same compound cannot be found in 

the CEM spectrum. However, there was a peak at 3.33min in CEM oil and was caused by 

1-(acetyloxy)-2-propanone (confirmed both by KI and MS). Considering the similarity 

between them, it is reasonable to predict that 1-(acetyloxy)-2-propanone in CEM oil was 

the (acetyloxy)-acetic acid in Milestone oil. Conclusion of bio-oil extracted from 

different Microwaves contained similar components can be made. More testes were 

carried out using CEM to investigate the temperature effect on bio-oil chemical 

composition. 

3.4.2 Bio-gas  

Average 45ml gas was collected from 1g of straw under 200°C, and 42ml gas 

between 200°C and 250°C. 
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Figure 43 Isobaric bio-gas compositions 

The bio-gas was collected in a syringe during pyrolysis. It was then injected to a 

glass vessel for FTIR measuring. In the FTIR spectrum, the bands due to the atmospheric 

contributions of water vapour and CO2 have been subtracted in order to improve the 

spectral quality. The spectrum of bio-gas was shown above. 

The two spectra overlapped each other and showed almost identical character. 

Unlike char, gas showed a simple and clear spectrum, only few obvious peaks were 

shown. The most significant and characteristic band at 2240-2402 cm-1 was caused by 

CO2, so did the peak at 3730 cm-1. Peaks at 2183 and 2127 cm-1 indicated the formation 

of CO.  The absorption bands at 2850–3200cm−1 showed the presence of hydrocarbons, 

of which methane(3017 cm-1), was the most abundant.66 There were many tiny peaks in 

the bands between 900 and 1900cm−1, indicated the release of some organics, including 

alcohols, aldehydes, acids, phenols, etc.14a But only -COOH (1789 cm-1) and C=O bonding 

(1760 cm-1) band can be seen clearly in this region.  

The formation of CO below 400°C was mainly caused by the cracking and 

reforming of thermo labile carbonyl and ether groups.14a The evolution of CO started at 

around 230°C, increased significantly with rising temperature. Stronger peak at 2183 

and 2127 cm-1 for 250°C reaction (represents by red line) were expected. However, only 

a slightly increase in intensity can be seen from Figure 43. One possible explanation for 

this might be that due to the unevenly heating, the average reaction temperature inside 

the microwave did not reach to 250°C, but around 230°C, so the evolutions of CO had 

only started, lead to a slightly increased intensity.  
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3.4.3 Char 

Char was a dark solid with no obvious smell. The chemical composition of char 

from Milestone was characterized by Fourier transform infrared spectroscopy (FTIR). 

The bands due to the atmospheric contributions of water vapour and CO2 have been 

subtracted from the spectra in order to improve the spectral quality. Char was the by-

product of straw pyrolysis. In order to understand the structure of char, the structure of 

straw was analysed first.  

3.4.3.1 Straw 

As mentioned in introduction, the major constituents of straw are cellulose, 

hemicelluloses and lignin. A typical straw spectrum was shown below in Figure 44. This 

spectrum presents the pattern of both lignin and cellulose FTIR spectral characters: the 

left part of the spectrum (2500-4000cm-1) resembled the lignin shape and the right part 

(500-2000 cm-1) was more like a cellulose outline.30,67 

 

Figure 44 Raw straw FTIR spectrum 

 

The FTIR spectrum contained several absorption bands that can be assigned to 

individual structural unit in lignin and cellulose as listed in Table 19. 
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Table 19 Absorption of peaks in FTIR straw spectrum 

Region(cm-1) Assigned to 

3100-3600 O-H (stretching) 

3012 CH (aromatic) 

2860-3000 CH (aliphatic) 

2858 symmetric CH3 (methoxyl) 

1739 C=O(carbonyl group) 

1460-1470 CH (deformation and aromatic ring vibrations) 

1310-1360 C-C and C-O (skeletal vibrations) 

1379 Both OH and CH bending 

1236 C-O (stretching in pyranose ring) 

1164 C-O (anti-symmetric bridge stretching of C-O ester group) 

1105 C-OH (skeletal vibrations) 

1041 C–O (stretch for the O–CH3 and C-OH) 

999 C-O (secondary alcohols skeletal vibrations) 

 

The 2858 cm-1 peak could be due to the symmetric CH3 stretch of the methoxyl 

group and the band at 1041 cm-1 represented the C-O stretch for the O-CH3 and C-OH. 

The position of C=O peak (1739 cm-1) was usually used to predict the relationship of C=O 

groups to the aromatic ring. This peak appeared above 1700 cm-1, stated the C=O group 

was conjugated with the aromatic ring. The band at 1379 cm-1 was attributable to both 

C-H in plane bending and CH bending, which the weak absorbance at 676 cm-1 was due 

to the out of plane OH bend. The most characteristic band of lignin peak in this 

spectrum occurred between wavenumber 1460 and 1470 cm-1, because of the CH 

deformation and aromatic ring vibrations. The stretching of pyranose ring existed in 

cellulose also generated a peak at 1236 cm-1. 

The width and intensity of the bands between 1000 and 1100 cm-1 was 

dependent on presence of any sugars in the sample, while the bands for the hydroxyl 

group above 3000cm-1 were due to alcoholic or phenolic components. 

3.4.3.2 De-waxed straw 

De-waxed straw is the straw that had been extracted by SC-CO2 to have their 

surface wax removed. As de-waxed straw was used as starting material for milestone 

pyrolysis, its structure was analysed by FTIR technology and the spectrum was 

overlapped to straws to compare the difference. 
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Figure 45 FTIR spectrum of straw and de-waxed straw 

As investigated in the section before, the main component of wax was 

hydrocarbon, aldehydes, fatty acid, fatty alcohol, beta-diketone and  sterol; therefore 

the lower intensity can be seen in almost all the peaks (expect OH band at 3352 cm-1) 

compared to raw straw. For the lower intensity peak at 1739 cm-1, it was likely to be 

caused by the removal of beta-diketone. As most waxes share similar spectral features25, 

this also happened to other de-waxed straw (like triticale straw), when compared their 

wax extracted FTIR spectrum to original raw straw’s. 

3.4.3.3 Char from Milestone 

The spectrum of char showed a similar trend to de-waxed straw but with much 

lower intensities in many peaks, as illustrates in Figure 46.  

 

Figure 46  FTIR spectra of raw straw, de-waxed straw and char 
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The first indication of difference happened to hydrogen bonded OH stretching 

(3352 cm-1), its intensity was much decreased compared to the de-waxed straw. The 

decrease may be due to the loss of phenolic or alcoholic groups (bio-oil) during the 

pyrolysis. This can be further proved as the band for the OH in plane bend (1379 cm-1) 

was also decreased. The intensity of the peak at 2925 cm-1 for the aliphatic CH strength 

was also declined. Furthermore, the symmetric CH3 stretch of the O-CH3 group in char 

appeared at 2858 cm-1 had a decreased intensity, indicated that some CH3 groups were 

removed from the substituted aromatic rings after the reaction. This was also happened 

to the peak at 1041 cm-1 that caused by the C-O stretch in the methoxyl group.  Some of 

the pyranose structures of cellulose were still preserved, indicated by the C-O stretching 

in pyranose ring at 1236 cm-1. 

3.4.4 Effect of increasing temperature 

3.4.4.1 Closed vessel system 

Pyrolysis were run in closed vessel system using CEM with the same energy input 

and residence time but different temperatures (100°C, 120°C, 140°C and 160°C). As 

illustrated below, reaction residue decreased dramatically (from 82℅ to 27℅) while the 

bio-oil yield increased slightly when increasing pyrolysis temperature. 

Table 20 Bio-oil and reaction residue yield against pyrolysis temperature 

Temperature/°C char/g oil/g Yield of Residue/℅ Yield of Oil/℅ 

100 0.82 0.06 82.2 6.4 

120 0.65 0.10 64.9 10.3 

140 0.27 0.11 27.2 11.3 

160 0.27 0.13 27.1 12.7 

 

 

Figure 47 Bio-oil and char yield vs. reaction temperature 

0

20

40

60

80

80 100 120 140 160 180

Y
ie

ld
 ℅

 

Temperature °C 

Residuce yield

Bio-oil yield



Dan Han – MSc by Research – Green Chemistry – 2011 

 

82 
 

When reaction temperature rose to 140°C to 160°C, the decrease in residuce 
was not sinificant any more. It suggested the formation of char happened at 140°C and 
above temperature.  

 
In order to identify the impact on the bio-oil composition caused by increasing 

pyrolysis temperature, bio-oil collected from different temperature were analysed. The 

bio-oil sample collected at 100°C was very dilute and therefore not included. Bio-oil 

collected from 120°C, 140°C and 160°C were analysed below. 

 

Figure 48  GC-MS of CEM 120°C, 140°C and 160°C bio-oil 

The CEM 120°C and 140°C bio-oil shared a great similarity, but the 160°C 

spectrum showed different ratio of the components to the other two spectra. However, 

all peaks in 160°C spectrum were found in other spectra, represented the same 

chemical composition among all samples. This could lead to the conclusion of when the 

pyrolysis temperature increased, bio-oil being produced had a similar content but 

different concentration. 

More gas was produced while increasing the reaction temperature, especially 

for the reaction temperature rose to over 160°C. The amount of gas being produced 

caused a high pressure in the closed vessel system and forced the reaction to stop after 

the reaction started for 17 seconds. It was therefore necessary to modify the system 

and move from the reaction from closed vessel system to opened vessel system. 
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3.4.4.2 Open vessel system 

An opened system was therefore designed for CEM to allow reaction react 

smoothly and to collect bio-gas formed during the reaction. Reaction temperature of 

200°C and 250°C were applied to reaction and bio-gas was collected at each 

temperature. 

For reaction temperature at 200°C, the yield for char was 56℅ and for bio-oil 

was 6.5℅. When the temperature rose to 250°C, the yield for char was 56℅ and for bio-

oil was 7.1℅.  

The comparisons between CEM bio-oil collected at opened vessel system at 

250°C and 200°C, and at closed vessel system at 140°C together with Milestone bio-oil 

were shown below. 

 

Figure 49  Bio-oil components comparison 

As can be seen from the Figure 49, peak retention times in bio-oil from three 

CEM spectra were almost identical regardless of reaction temperatures. The exception 

was a small peak appeared at 9.85min for CEM 250°C bio-oil (next to peak 15). The peak 

was concluded to be benzoic acid, 2,6,-dimethyl-,methyl ester after analyse. Except of 

this, all other peaks observed from open vessel system existed in previous spectra. 

The strong concentration peak at 8.01min in Milestone was shown again in all 

three CEM spectra at around 6.58min, with the same featureless spectrum of m/z 
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41,43,44,57. This peak also existed in CEM 120°C and 160°C spectrum. It was likely to be 

caused by the contaminated compound left in the GC-MS machine, and further 

investigation is needed for fully understanding of the peak. 

3.5 Processes review and environmental aspects 

The whole barley straw research consisted of two main processes, wax 

extraction by SC-CO2 and thermal processing of microwave pyrolysis. The wax extraction 

was performed on 100g of barley straw each time, pyrolysis by Milestone microwave 

machine used 50g of de-waxed straw, whereas only 1g  was used by the small scale CEM 

microwave every time. Consequently the processes were reviewed and later 

environmental aspects were investigated. This was based on the experimental data 

obtained from Milestone, as the small scale applied for CEM microwave can be 

neglected. 

Scaling the Milestone experimental data from 50g starting de-waxed straw to 

96g, which is the amount of de-waxed straw being produced after each wax extraction, 

the process flow sheet can now be illustrated quantitatively in Figure 50 using Table 21. 

Table 21 Material quantities in experiments(unit: gram) 

 
Stra

w 
CO2 

W
ax 

Wat
er 

De-waxed 
straw 

Water 
added 

Oil Char Water Gas 

Wax 
extraction 

100 9600 1.2 2.8 96 - - - - - 

Microwave 
pyrolysis 

- - - - 50 5 5.5 21 13 
Un-

known 

Microwave 
scale up 

100 9600 1.2 2.8 96 9.6 10.56 40.32 24.96 
Un-

known 
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Figure 50 Integrated biorefinery process steps 

By avoiding any mass usage of hazardous chemicals (only small amount of 

hexane was used for Soxhlet extraction), also applying ‘green’ techniques (SC-CO2 and 

microwave) in the experiments, this research was generally considered as 

environmentally friendly. To quantitatively measure the environmental impact of each 

process, green chemistry metrics was employed. 

Mass of every product/by-product as well as each reagent and none recycled 

solvent need to be known in order to perform the calculation for green chemistry 

metrics. Therefore the only unknown quantity of biogas produced during the microwave 

pyrolysis was now determined by applying mass balance. The stepwise calculation was 

shown below. 

Mass accumulation = sum of mass in - sum of mass out - sum of mass generated 

Material that enters a system must, by conservation of mass, either leave the 

system or accumulate within the system. There was no unreacted reagents, solvent nor 

product left in the neither the microwave machine nor any of the apparatuses, which 

meant no accumulation occurred. Therefore mass balance of this experiment is the 

following, 

Analysis 
GC, GC-MS 

Applications 

Analysis 
FTIR 

Analysis 
GC, GC-MS 

Water 2.8g 

Wax 1.2g 

Char 40.32g 

Biogas 

Bio-oil 10.56g 

Straw 100g 

Extraction 
SC-CO2 

Residue 96g 
Water 9.6g 

Thermal processing 
Microwave pyrolysis 

Water 24.96g 
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0 = (de-waxed straw/96g + water/9.6g) - (bio-oil/10.56g + char/40.32g + biogas + 

water/24.96g) 

Bio-gas = 29.76g 

3.5.1 Environmental factor (E-factor) 

The E-factor calculation is defined by the ratio of the mass of waste per unit of 

product: 

E-Factor = Total Waste (kg) / Product (kg)68 

Although the E-Factor calculation generally excluded water for organic 

experiments (water as solvent), the usage of water for none-solvent purpose in this 

experiment should not be omitted. 

During the wax extraction process, due to the massive consumption of CO2 and 

lack of recycling process, for every 1.2g of wax produced, 9603g of waste was produced, 

which result in a E-factor of 98.8. And if considered extracted wax as the only interest 

product and de-waxed straw as the waste as well, this will cause the E-factor to rise by 

more than 7 times to 8082, which indicated the process as very mass-wise inefficient. 

While bio-oil has potential of becoming fossil fuel substitute, the lack of fluid 

property results in relatively limited utilisation of char. Also difficulties are presented at 

biogas collection and transportation during microwave pyrolysis, such that it is 

necessary to consider the environmental metric on both keeping and discarding char 

and biogas as main products. 

Finally, the E-factor for the combined wax extraction and pyrolysis process was 

determined. If solutions to CO2 recycling, char and biogas problems could be found, the 

environmental impact would be significantly reduced. This could be represented by a 

new calculation of E-factor.  

Every E-factor obtained from different process viewpoints are tabulated in Table 

22 for easy comparison. 
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Table 22 E-factors for various process viewpoints 

Condition Waste  Product  E-factor 

Wax extraction 

De-waxed straw as 
waste 

CO2, water, de-
waxed straw 

9698.8g Wax 1.2g 8082 

De-waxed straw as by-
product 

CO2, water 9602.8g Wax, de-waxed 
straw 

97.2g 98.79 

Microwave pyrolysis 

Char and gas as waste Char, gas, water 95.04g Oil 10.56g 9.000 

Char and gas as by-
product 

Water 24.96g Oil, char, gas 80.64g 0.3095 

Overall process 

CO2, char and gas as 
waste 

CO2, char, gas, 
water 

9697.84g Wax, oil 11.76g 824.6 

CO2 recycled, char and 
gas as by-product 

Water 27.76g Wax, oil, char, 
gas 

80.64g 0.3442 

 

The higher the E-factor, the more negative impact it brings to the environment. 

From the above table, it is clear to conclude that recycling of solvent (CO2) is necessary 

for long term experiments and research. In addition, considerable amount of char and 

biogas was being produced during pyrolysis. In order to discount these from waste, 

wider applications such as coal substitute to power plant should be investigated. 

Therefore, the current processes have a great potential of improving. 
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4 Conclusion 

The research discussed the additional value of the agriculture waste, barley 

straw, and its potential of being a renewable energy source. The straw was processed to 

extract valuable surface wax and was further pyrolysis to produce possible fossil fuel 

substitutes, bio-oil and char. 

Wax was successively isolated from barley straw using SC-CO2 and Soxhlet 

extraction. The SC-CO2 extraction technique was proven to be superior to Soxhlet; it 

provided a product with not only higher yield but also a greater diversity of fatty acid as 

well as aldehydes and a larger percentage of sterols; whereas the Soxhlet product only 

surpassed the former technique in the variety of the alkane compounds.  

The most available variety, Saffron barley straw, were found to provide little 

deviation in wax compositions and only a slightly variation in concentrations compared 

to Carat barley, the Germany originated barley and the grain containing barley.  

90.1 % of the wax components were identified using the GC-MS technique. The 

analysis showed fatty acid was the most dominating group in Saffron barley wax, which 

contributed 32.49% to the wax sample; it was followed by sterols (17.3%), fatty alcohol 

(14.6%), and 14,16-hentriacontanedione (11.3%). The chemical composition in the wax 

layer was found to be unique and characteristic to a specific plant, which therefore can 

be used to identify its botanic species. 

The wax produced from a variety of straws of a single species was differed in the 

yield quantity. Carat Barley had a higher wax yield than Saffron Barley. Between 

different species, the column chromatography extracts of Carat barley wax, wheat wax 

and apple peel wax was observed with little variation in their alkane distributions. 

Previous research showed that two hydrocarbons, C23 and C25, were able to induce 

aphid avoidance. The hydrocarbons were found in extract samples of all three species in 

this study. Consequently, all formerly mentioned wax extracts possessed the potential 

of being used as pesticides. However, only by performing bioassays with aphid can the 

desired property of the wax be confirmed.  

Using de-waxed straw for pyrolysis had great advantages. As de-waxed straw 

was treated as staring material instead of experimental waste, new starting material 

was not needed and disposal cost was reduced. In addition to the above benefits 

without the interference of wax components, a clearer bio-oil GC-MS spectrum was 

generate, demonstrated wax should be extracted from straw before pyrolysis. 

Two microwave machines, Milestone and CEM, were used for pyrolysis and bio-

oil was the main product. Similarities were presented in both bio-oil extracts despite of 
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different temperature settings. This indicated a positive reproducibility of the valuable 

oil. Excluding insignificant small peak patterns due to their lack of strength in Milestone 

bio-oil spectrum, 52.7% of total peaks were analysed. Phenolic chemicals were the 

dominating group, whereas acetoxyacetic acid as a single substance had a highest 

concentration of 7%, followed by 3-methyl-1,2-cyclopentanedione(5.2%) and 2,6-

dimethoxyphenol(4.6%). This study provided a fundamental base for the possibility of 

scaling up into industrial chemical plant. 

Char and bio-gas was produced as by-product in pyrolysis. The decrease in 

absorbance observed in FTIR spectrum when comparing the starting material before the 

pyrolysis and their product char afterwards, indicated the loss of phenolic group. 

Because bio-oil was mainly composed of phenolic substance, it is confident to conclude 

the production and separation of bio-oil was successful.  

The quality of the product produced is dependent on the reaction temperature. 

The bio-gas captured between temperature 200°C and 250°C contained CO2, CO, CH4, -

COOH and C=O bonding. And char was mainly formed at 140°C or above. However, 

increasing temperature did not have significant impact on bio-oil’s chemical 

composition, although its yield was slightly increased. 

The environmental impact was investigated by calculating the environmental E-

factor. The results showed that the processes are environmentally benign, and there are 

great potential for improvements. It is important to implement relative measures, such 

as recycling CO2 during SC-CO2 extraction and extending products applications of char 

and bio-gas into account, when scaling up the laboratory process into industrial plant, 

to minimize the environmental impact.  
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5 Further work 

The results presented in this study suggested a future for producing wax and 

bio-oil product from barley straw. However, further improvements can be made to the 

research. In order to provide a more reliable spectrum for comparison, Carat barley 

straw wax should be collected under the same SC-CO2 setting and run using the 

identical GC-MS condition as Saffron barely wax. Wax column chromatography of 

different straws or fruit peel should be repeated and followed by bioassay testing with 

aphid. 

Thermal pyrolysis should be repeated on both de-waxed and raw straws in order 

to collect more bio-oil. With the aim of understand the bio-oil pyrolysis thoroughly and 

accurately, small peaks as well as the unidentified peaks in its GC-MS chromatogram 

should be investigated. For components in wax and bio-oil spectra with their KI or MS 

information missing from online database, their standards should be run for comparison. 

More analytical techniques, such as NMR and HPLC should also apply to wax and bio-oil 

to provide a better understanding in their composition. 

The bio-oil yield in this experiment was about 11% (excluding water) and 25% 

(including water), but by previous repost the bio-oil yield can reach to 70% (including 

water) ideally at 500°C. The impact of changing temperature on the product of straw 

pyrolysis should be tested not just on CEM microwave, but also on Milestone 

microwave and other microwave machines to confirm the reproducibility of bio-oil. 

More operating conditions will be required, for example, to increase the reaction 

temperature to 500°C for further analysing the effect on products yield. Milestone 

should be re-designed to prevent the loss of bio-gas to the environment, and this will 

further lower the E-factor. GC-MS should be equipped to be able to analyse gas, so a 

more detailed analysis can be performed on bio-gas.  

Other researching areas, like the digestion and fermentation of straw to produce 

ethanol should also be investigated to produce a complete mass and energy efficient 

flow diagram. There is a great economic potential presented in the straw bio-refinery 

processes.  
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6 Abbreviation List 

 

Abbreviation Description 

EI Electron impact ionization 

FTIR Fourier transform infrared spectroscopy 

GC Gas chromatography 

GC-MS Gas chromatography coupled with mass spectrometer 

KI Kovat Index 

m/z Mass-to-charge ratio 

RT Retention time 

SC-CO2 Supercritical carbon dioxide 
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