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Abstract 
 

 

With economic and health care improvements, the number of elderly 

people demanding failed tissue replacement growing rapidly due to aged 

population increases in representative countries. To date, people at the age of 65 

have a life expectance of 17.9 years and implants have on average 15 years of 

durability. It has been given focus on the use of titanium in biomaterials owing to 

its properties, such as low density, high corrosion resistance and biocompatibility. 

The chemical stability as well as corrosion resistance and fast repassivation in a 

wide range of environments are due to the formation of a protective passive film. 

Furthermore, titanium alloys are free of toxic elements in their composition. 

Nevertheless, titanium–based alloys show poor tribological properties and the 

failures have been related to that characteristic. The failure rate of replacements 

is a consequence of the poor knowledge of the degradation mechanism. While 

wear and corrosion have long been identified as the problem limiting the long–

term endurance of orthopaedic implants there remains a lack of understanding 

about the fundamental mechanisms and effects of tribocorrosion.  

The aim of this work is to analyse four different titanium–based alloys Ti–

13Nb–13Zr (αβ alloy), Ti–12Mo–6Zr–2Fe (Near β alloy), Ti–35Nb–13Ta–4.6Zr 

aged at 400oC (β alloy) and Ti–35Nb–13Ta–4.6Zr aged at 300oC (βω alloy) over 

wear tests at cathodic potential (–1 V vs OCP), open circuit potential and anodic 

potential (0.3 V vs OCP) at 0.5N, 1N and 2N normal load to understand the 

mechanisms and phenomena that occur when composition and production 

procedures change as a result of wear in a body simulated fluid approaching 

factors not well investigated in the literature.  

This work is divided in two parts. The first part characterizes the 

tribocorrosion behaviour of those four titanium alloys at 0.5N and the second part 

compares these results to the effect of increasing normal load to 1N and 2N as 

well as the synergistic and mechanistic approach to analyse the material loss. 

All alloys present a good corrosion resistance, but they become more 

active with rubbing contact. At 0.5N, 1N and 2N the COF does vary with 

electrochemical condition and material composition. All alloys show similar wear 

behaviour that changes only with applied potential, namely, the material loss, 

specific wear rate and wear rate increase with load and are lower at anodic 
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potential than at OCP or cathodic conditions. This suggests the formation of a 

tribofilm that acts as a lubricant reducing friction. The worn surface presented the 

same ploughing characteristics with no debris, reflecting abrasive wear as the 

main wear mechanism and a rougher surface at anodic potential. The organic 

layer was identified by backscattered electron images and confirmed by Raman 

spectroscopy in all electrochemical conditions and normal loads. 

The mechanistic approach identified that mechanical wear was the 

dominant material removal mechanism in all of these alloys, with the 

electrochemical contribution irrelevant at all applied potentials. The 

electrochemical and mechanical contributions increased with normal load. In 

addition, the synergistic approach identified that wear enhanced corrosion rates 

and corrosion has a positive effect of reducing wear rate on these alloys and for 

this these alloys present an antagonistic effect. The synergistic approach 

confirms that mechanical wear is the predominant factor on material loss. 

The reduced elastic modulus and nanohardness of the unworn and worn 

surfaces were measured by nanoindentation. Worn surfaces present higher 

values of these mechanical properties due to the formation of a nanocrystalline 

area at the subsurface. All alloys experienced minor α’’ and ω phase induced 

transformation due to strain hardening, except the αβ alloy. 
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Chapter 1 – Introduction 
 

With economic and health care improvements, the number of elderly 

people demanding failed tissue replacement is growing rapidly due to aged 

population increases, as can be seen in Fig. 1.1 [1-3]. To date, people at the age 

of 65 have a life expectance of 17.9 years and implants have 15 years of durability 

[4-6]. 

Human joints suffer from degenerative problems such as osteoarthritis and 

osteoporosis. These degenerative problems bring degradation of the mechanical 

properties of the bone [1, 2]. However, 30% of all replacement surgical 

procedures are required by people aged below 65 years old. Not only elderly 

people need bone replacement, athletes and people that have suffered accident 

and trauma often require surgical procedure. In such cases, the prosthesis should 

have a longer lifetime [3, 4]. Although the failure percentage is low (10%), surgical 

revision procedure is difficult to perform and less likely to be successful in 

comparison to the initial surgical procedure, which adds to trauma and health 

care costs [5, 6]. Artificial biomaterials provide solutions for many of these issues. 

The application of biomaterials for orthopaedics include: hip, knee, shoulders, 

spinal fixation devices, cardiovascular stents and spinal discs [7, 8]. 

 

 

Fig. 1.1 – Growth of aged people in countries with large population [9]. 
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 The 16th National Joint Registry (NJR) Annual Report provides outcome 

data in relation to hip, knee, ankle, shoulder and elbow replacements in the 

United Kingdom. It describes activity between 1 April 2003 and 31 December 

2018. There were 2,766,764 procedures entered into the NJR across all joint 

types, performed up to 31 December 2018. After removing procedures without 

linkage identifiers and those procedures where the linkage was not sufficiently 

clear to allow their use, there remained 2,332,798 primary cases and 66,248 

linked revisions. This represents over a quarter of a million new cases being 

registered during the year. There were 1,091,892 primary total hip replacements, 

1,193,830 knee replacements, 5,587 ankle replacements, 37,916 shoulder 

replacements and 3,573 elbow replacements, Fig. 1.2 [10]. 

 

 

Fig. 1.2 – Joint replacements registered by NJR from 2003 to 2018 [10]. 

 

The causes for revision surgical procedure include the stress shielding 

effect between bone and prosthesis, which is the most common [6]; and necrosis 

caused by corrosion and wear debris around the prosthesis. Necrosis is often 

related to loaded replacements [11]. The revision operation percentage is low is 

comparison to the number of patients with only one primary joint operation, Table 

1.1 [10]. 

Introduction 
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Table 1.1 – Comparison of number of patients with only one primary joint 

operation and revision operation from 2003 to 2018 [10]. 

 

 

Table 1.2 shows the breakdown of cases by the method of fixation and 

within each fixation sub-group, by bearing surfaces. The most commonly used 

operation type overall cemented metal-on-polyethylene (88.0% of all cemented 

primaries, 28.5% of all primaries) between 2003 and 2019 in UK [10]. 

 

Table 1.2 - Number and percentage of primary hip replacements by fixation and 

bearing [10]. 

 

 

The biomaterials used for prosthesis include metals such as Cobalt 

Chromium alloys and Titanium alloys, polymer such as UHMWPE and ceramics 

such as alumina. None of them are free of concerns. Metals are linked to the toxic 

nature of some elements. Polymeric materials show good biocompatibility; 
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however, the lifetime is short and ceramics lack good mechanical proprieties [12, 

13].  

The most used metallic materials for joint replacement are Cobalt 

Chromium based alloys, stainless steel and Titanium alloys [3]. However, 

Titanium and its alloys are emerging as the optimum choice because of their 

qualities and benefits: elastic modulus lower than Cobalt Chromium alloy or 

stainless steel; exceptional biocompatibility and corrosion resistance. 

Nevertheless, these alloys were originally developed for aerospace use [14].  

The focus of biomaterials development are to develop a lower elastic 

modulus material with more acceptable biocompatibility and better corrosion 

resistance than those materials found in the market such as CoCr alloys and 

stainless steel. β Titanium alloys already have these properties, but the poor wear 

resistance of these alloys is a drawback. Ti alloys are not used for tribological 

interface (joints) due to their inherent bad properties, they are used normally as 

stem. Pins, bone plates, screws, fracture plates, expandable rib cages, 

intramedullary rods and dental prosthetics are common applications for Ti alloys. 

CoCr alloys are often used in combination with Ti alloys to significantly lower 

micro-motions and fretting corrosion. 

Then, developing new Titanium alloys with improved wear resistance 

could be a solution. Moreover, the tribocorrosion processes and mechanisms of 

titanium alloys are not fully understood. Thus, this project aims to contribute and 

to understand the tribocorrosion behaviour of Titanium alloys in simulated body 

solution, important for future alloy developments. 

The ASTM F1108 alloy (Ti–6Al–4V) is the most used Titanium alloy in the 

biomedical field and it has been a central long-standing biomedical Titanium alloy. 

This alloy is an αβ type alloy and has toxic alloying elements: Vanadium (V) and 

Aluminium (Al). That can bring problems associated with inflammatory cell 

reaction and the progress of Alzheimer’s disease [15, 16]. Ti–6Al–4V alloy has 

an elastic modulus of 110 GPa, much higher than the elastic modulus of bone, 

20 GPa. Lately, alloying elements like Niobium, Tantalum, Zirconium, Tin and 

Molybdenum have been widely used to produce new beta Titanium alloys 

because of their β stabilizer features, better biocompatibility and mechanical 

properties, and outstanding corrosion resistance [5, 17]. 

CP Ti was initially used as dental and orthopaedic application and no 

toxicity was observed [14, 18]. However, this alloy did not have appropriated wear 

Introduction 
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resistance and high strength [19]. This is the reason for the development of new 

alloys for this application. The most used Titanium alloy (TI64) is composed of 

two toxic elements (Al and V), has high elastic modulus and poor wear resistance. 

The presence of Al and V also might cause neurological disorder and can delay 

osseointegration [19, 20]. Sahu [21] reported that corrosion rate of Ti alloys with 

more than one phase is higher than a single phase alloy.  

There is limited work which is focused on the tribocorrosion behaviour of 

Ti alloys and that relates to the microstructure. However, tribocorrosion is a 

crucial factor oin biomedical applications such as joints and generally all types of 

Ti alloys are subjected to tribocorrosion when implanted [22, 23]. Also, retrieved 

materials studies revealed that all implants containing metals suffer degradation 

due to tribocorrosion effect. It causes implant loosening, fatigue failures and 

adverse reactions on the interfaces. The market growth rate of this area is 20% 

– 25% because of life span growth that will keep increasing. This can stimulate 

the market, but there is still a gap between the supply and demand related to 

undeveloped medical technology. Researchers in materials science and 

engineering are looking for development of β–titanium alloys for different 

applications with improved properties. The significance of the theme, growing 

research concern and enormous unexplored potential are the motivating factors 

for development and design of new β–titanium alloys for biomedical application 

[2]. The biomaterial investigation has a clear aim and likely applications. 

Implantation materials, comprehensive properties of low elastic modulus, high 

strength, outstanding wear and corrosion resistance, and enhanced 

biocompatibility are features that scientists have been pursuing [4, 17]. 

It is not clear yet what is the optimum composition and optimum 

microstructure for resistance to tribocorrosion. There has not been clear 

investigations into whether a single β phase alloy or an αβ alloy is preferable. Is 

a metastable β phase alloy better or worse than a fully stabilised β phase alloy. 

The effect of the presence of ω phase on tribocorrosion has not been considered 

at all. Also, corrosion and wear are not normally considered in synergy and are 

usually studied separately [23, 24].  Ti can be alloyed with Nb, Mo, Ta and Zr and 

produce β phase alloys with wide range of composition and microstructure. On 

the basis of these unknowns, this study aims to understand four different Titanium 

alloys with systematic differences in microstructure and with different 

Introduction 
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compositions to understand the effect of these key variables on the tribocorrosion 

behaviour. 

Reproducing in–vivo conditions using in–vitro tests is not an easy task. 

However, it is essential to understand the material behaviour. One of the 

drawbacks is the use of lubricant ideal to mimic synovial fluid. In this study, new-

born bovine serum was used because it gives a comparable protein response. In 

order to compare to other studies, it was used a concentration of 25% volume of 

new–born calf serum solution that gives a protein concentration of 15.5 g/L. This 

study focused on the reciprocating sliding wear behaviour of Titanium alloys in 

that solution. This project has the following main aims related to the Titanium 

alloys studied:  

 

1. To understand the effects of microstructure and composition on tribology, 

corrosion and tribocorrosion behaviour in bovine serum and generate 

recommendations for the ideal microstructure and composition. 

2. To understand the synergism of corrosion and wear of Titanium alloys in bovine 

serum when normal load and potential change. 

3. To analyse the tribofilm formation and nanocrystalline formation and their 

relationship with tribocorrosion performance.  

 

In the current study, reciprocating sliding wear tests of titanium alloys were 

carried out in the above lubricant using a ball–on–flat configuration. Loads used 

were 0.5N, 1N and 2N and the reciprocating frequency was 5 Hz over a stroke 

length of 2 mm. The worn surfaces were characterised in detail using Scanning 

Electron Microscopy (SEM) and Focused Ion Beam (FIB) cross–section milling. 

Transmission Electron Microscopy (TEM) was used to identify the modifications 

on subsurface. 3D microscope (ContourGT) was used to analyse the morphology 

of the wear track and finally Raman spectroscopy to identify the presence of the 

organic layer.  

The thesis has been structured in the following way: 

Chapter 2: gives the necessary literature to this project. It contains details 

about hip replacement surgery, the current status of biomaterials, 

biocompatibility, metallic materials used as biomaterials, the metallurgy of 

Titanium, tribocorrosion proprieties and biocompatibility of titanium and its alloys, 

limitation of titanium alloys, basics of corrosion, tribology and tribocorrosion. 

Introduction 
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Chapter 3: gives details about sample composition and sample 

preparation by arc melting, heat treatment and rolling and details of experimental 

procedures, equipment and techniques used in this project such as tribocorrosion 

machine and electrochemical parameters, XRD, Raman spectroscopy, 3D 

microscope, scanning electron microscopy, nanoindentation, focus ion beam and 

transmission electron microscopy for structure analysis, as well as the 

preparation of the electrolyte (bovine serum) used. 

Chapter 4: gives the characteristics and proprieties of the materials used 

in this project. It details the microstructure by backscattered electrons image as 

well as XRD and the polarization behaviour by Tafel curves of the alloys. 

Chapter 5: this chapter shows the results and discussion and it is divided 

in two parts. The first part studies the tribocorrosion behaviour of the titanium 

alloys at 0.5N using data from tribocorrosion test, 3D microscope, SEM and 

Raman spectroscopy. Also, it presents the mechanical proprieties 

(nanoindentation) and TEM images from the worn surface and subsurface 

respectively. The second part is focused on the effect of normal load on 

tribocorrosion behaviour of Titanium alloys. It is focused on a comparison of 

results from 1N and 2N using data from tribocorrosion test, 3D microscope, SEM 

and Raman spectroscopy. The synergism of wear and corrosion is also studied 

by mechanistic and synergistic approach. Finally, an analysis of the tribolayer 

formed at 2N at anodic potential is made by TEM and EDX. 

Chapter 6: discusses the tribocorrosion process as well as its 

characterization of the studied alloys presented on chapter 5. 

Chapter 7: summarises all the chapters and gives conclusions and new 

finding for this project. 

Chapter 8: recommendations and suggestions for future work is 

presented. 
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Chapter 2 – Literature Review 

 

2.2 Introduction 

 

This chapter presents the literature review. First it presents the 

background of total hip replacement surgery, biocompatibility, corrosion and the 

wear resistance of metals, their use as biomaterials and in Total Hip 

Replacement. The background to Titanium and its alloys is then presented, 

including the physical metallurgy of Titanium, types of Titanium alloys, tribological 

properties, biocompatibility and corrosion properties and the limitations. Finally, 

basic theories of corrosion and its principles are presented, including corrosion 

of biomaterials, tribology, principles and mechanisms and current status of 

Titanium alloys as orthopaedic implants are reviewed.  

  

2.3 Total hip replacement 

 

2.3.1 Background of hip replacement surgery 

 

 

Osteoarthritis is the cause health issues for around 15% of adults [25]. A 

medical procedure where the whole joint is replaced by a prothesis is called a 

total joint replacement [26, 27]. The most common procedures are Total Hip 

Replacement (THR) and Total Knee Replacement (TKR) with around £2 billion a 

year is spent globally on THR. Currently about 50,000 hip replacements are 

performed in the United Kingdom annually while worldwide the number is over 

300,000. [28, 29]. According to the Swedish National Hip Arthroplasty Register, 

91% of this cost is new surgery and 9% is revision [26].  

The main group receiving prosthesis in the UK are people aged from 45 to 

70 years old, in the early period of joint issues. However, the group of young 

people is growing due to accidental damage and health issues such as arthritis. 

This group need a safer prothesis that lasts longer [30-32]. It means the number 

of people who have hip joint issues is rising. According to the National Joint 

Registry UK the most common material used as femoral head replacements are 

metals (76%) [25]. Moreover, metallic prothesis release metallic ions to the body 

and it is an area of concern [33]. Also, 10% of the prothesis need a revision before 
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5 years for several factors [25, 32]. Wear is the main reason connected to these 

revisions and corrosion is another issue since it is a cause of ion release. These 

two factors are the focus of the research to improve wear behaviour and 

biocompatibility of alloys used as biomaterials [34]. 

THR is a well-developed and successful procedure, with the procedure 

and material science developed in synchrony. The first THR took place in 1891 

in Berlin by Gluck that used an Ivory ball in socket [35, 36]. The following 50 years 

showed a slow development where several materials were tested but there were 

many failures. [37, 38]. Reports concluded that those materials had a poor wear 

behaviour. After 1950, metal on metal, metal on polymer and ceramic on ceramic 

prostheses were developed and lasted longer [39-41]. Polymers are still used 

now because they show low wear [42]. However, combination of metals and 

polymers are linked to loosening effect. It is now possible to find materials 

combination that last 15 or more years. Although these combinations suit elder 

people, these materials do not suit young people because this group of people 

will need to change the replacement at least once during life which brings pain, 

high costs and the chance of success is low [43]. 

Mechanical proprieties of the prothesis are important, such as toughness 

and ductility, due to constant movement and gravity [44].  The other important 

mechanical proprieties of prothesis will be discussed later. During walking, the 

relative movement of the joint prothesis causes wear [36]. The femoral head, 

which is in contact with the bone, needs appropriate material selection, polished 

surface, low friction, low wear and be compatible to reduce material degradation 

such as corrosion and wear [44].  

Also very important is that the implant should have capacity to integrate 

with nearby bone. Also, the implant should not suffer micromotions because it 

may cause implant failure. In addition, fibrous tissue will appear on contact with 

bone and the implant, if it is not incorporated into the bone. Thus, biomaterials 

with a suitable surface are vital for the replacement to incorporate to nearby bone. 

Proprieties related to development of acceptable osseointegration are: surface 

chemistry, surface roughness and surface morphology. In addition, Titanium 

based alloys and ceramic materials like Alumina and Zirconia are inert materials 

to the body environment [45]. 
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2.3.2 Metals used as biomaterials 

 

 

Biomaterials can be defined by all materials that can replace a failed 

biological structure. Biomaterials can be natural or artificial [12]. Not all parts of 

the body can be replaced by natural biomaterials to date [14]. In addition, the 

characteristics of a biomaterial rely on the application [46]. 

The properties that materials for bio–application should have are 

biomechanical properties (stiffness, strength, fracture toughness, wear 

resistance and low friction, fatigue strength, low elastic modulus, dimensional 

stability and processability or workability) and biomedical properties (no toxicity, 

corrosion resistance and good osseointegration) [12]. In addition, the elastic 

modulus should be closer to bone to avoid the stress shielding effect and it should 

support tissue and blood growth (compatibility) [14]. Several reactions occur 

when materials are inserted in human body and the tolerability of these materials 

by our body relies on these reactions. Concerns relating to biocompatibility are 

thrombosis and the fibrous tissue encapsulation [46]. 

The issues caused by toxicity of metals is called metallosis. It is usually 

defined as aseptic fibrosis, local necrosis, or loosening of a device secondary to 

metallic corrosion and release of wear debris and only 2% to 5% of patients 

present metallosis. However, metallosis leads to several issues such as heart 

problems, depression, anxiety, visual impairment, cognitive impairment, nerve 

problems, thyroid problem, auditory impairment, infection and implant loosening. 

It is normally associated to CoCr alloys [47-52]. The mechanical properties are 

important factors to select the type of material for a particular use. The fatigue 

strength of the material is a reaction to the repetitive cyclic loads or strains. The 

durable success of the replacement subjected to cyclic loading relies on this 

property [12]. Biomechanical incompatibility is defined as a fracture due to 

incompatibility in the mechanical properties between bone and the replacement 

device. In particular the elastic modulus of the replacement and the bone should 

be as close as possible. If there is no stress being transferred to surrounding 

bone because of the higher stiffness of the implant than bone, implant loosening 

will occur. The effect that promotes death of bone cells is named stress shielding. 

Healthy bone needs to be mechanically stimulated to promote cell growth and if 

Literature review 
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this does not happen, atrophy will occur [18]. The elastic modulus of biometallic 

materials is about 20 times higher than of bone, see in Fig. 2.1 [53]. 

 

 

Fig. 2.1 – Comparison of elastic modulus: bone and other biomaterials [9]. 

 

In comparison to adult bones, youthful bones have higher elasticity and 

lower strength and hardness [12]. The bones of elderly people show lower 

elasticity, plasticity and strength in comparison to adults. In addition, there is no 

difference on mechanical properties among male and female samples [18, 53]. 

The tensile strength can be adjusted by the addition alloying elements or 

via heat treatment. It leads to solid solution strengthening or precipitation of 

phases. However, the elastic modulus is quite different. This propriety is not 

sensitive to grain size [18] and an important way to reduce the elastic modulus is 

introducing porosity into material. At about 30% of porosity, Titanium’s elastic 

modulus is close to human bone, as can be seen in Fig. 2.2. However, porosity 

severely reduces all the mechanical properties [54]. 

The elastic modulus for a material that contains two phases is dependent 

upon the elastic modulus of the microconstituents of the alloys and it is calculated 

by equation 1 [18, 54]. 

 

E = V1 x E1 + (1–V1) x E2           Eq. 1 

 

Where: 

 

V1 = Volume fraction of phase 1 

E1 = Elastic modulus of phase 1 

E2 = Elastic modulus of phase 2      

Literature review 
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Fig. 2.2 – Relationship between elastic modulus and porosity [54]. 

 

Artificial implant materials can be made of metallic materials, ceramic 

materials and polymeric materials. New generation of biomaterials have been 

developed such as carbon–carbon and carbon polymer composites because their 

elastic modulus is nearer to bone. However, they are prone to degradation on the 

human body [14, 55]. 

Metallic biomaterials have the largest history among biomedical materials 

and approximately 80% of biomedical replacements are made of metallic 

materials. To date, the metallic materials used for biomedical application are 316L 

stainless steel, Cobalt Chromium alloys and Titanium alloys [4]. Stainless steel 

was the first one to be successfully used as an implant. After this, Cobalt–based 

alloys were introduced with the trademark Vitallium alloy. Titanium was the last 

metal to be used as a biomaterial and it is the most popular biometalic alloy to 

date [6]. These materials tend to fail after long–term implantation due to reasons 

already cited, such as the elastic modulus being higher than bone and problems 

with biocompatibility related to corrosion and wear resistance [9]. 

Where implants have been introduced, Nickel (Ni), Chromium (Cr) and 

Cobalt (Co) are usually found in the body due to ion release from stainless steel 

and CoCr alloys from corrosion. Co is a carcinogenic element. Moreover, both 

elements are found in alloys which have a higher elastic modulus than bone [9]. 
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The elastic modulus of different alloys is shown in Fig. 2.3. CoCr alloys are an 

important group of alloys in the biomedical field because they have a wear 

resistance better than stainless steel and Titanium alloys [56]. New CoCr alloys 

have been developed free from Nickel. They are usually used as the head of hip 

prosthesis [57]. 

 

Fig. 2.3 – Comparison of elastic modulus among different alloys and bone [12]. 

 

The elastic modulus of Titanium alloys is lower than other alloys used as 

biomaterial like stainless steel and Cobalt chromium alloys. Likewise, the elastic 

modulus of β–titanium alloys is lower than α–titanium alloys and αβ –titanium 

alloys. However, the elastic modulus of β–titanium alloys is still higher than 

human bone [58]. Some publications report that the elastic deformation behaviour 

depends on crystal orientation. Therefore a low modulus single crystal of Titanium 

alloy may present an elastic modulus less than the lowest elastic modulus of β–

titanium alloys and therefore this single crystal alloy may be appropriate as a 

biomaterial. The elastic modulus of β titanium alloys increases with precipitation 

of α on aging treatment, with the strength also increasing from heat treatment. In 

addition, elastic modulus cannot be controlled by aging treatment [18]. 

Cobalt based alloys for biomedical uses are in two groups: cast and 

wrought. Cast alloys may have a significant quantity of nickel to enhance the 

process of casting. Also, another group is the low nickel Cobalt–based alloys. 

Wrought Cobalt based biomedical alloys, the amount of Nickel is minimised due 

the Nickel allergy problems. The same occurs in stainless steel for biomedical 
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application. The quantity of carbon is also minimised due to its effect on the 

workability. The development of these kinds of alloys have not yet been 

concluded. The wear resistance is usually enhanced by the dispersed carbides 

and the reason is the existence of a low quantity of carbon. The wear resistance 

can be enhanced by deformation–induced conversion of the metastable phases 

of these alloys [45]. The CoCr alloys for this application are: ASMT F 75, ASTM 

F 799 and ASTM F 1537. The composition of these alloys are Co (bal.), Cr (19-

35%), Mo (0-10%) and Ni (0-37%). They are particularly useful due to the superior 

wear resistance, corrosion resistance and fatigue strength [14].  

Stainless steels are valuable biomaterials. The austenitic 316L stainless 

steel is the only stainless steel used as a biomaterial [45]. The 316L stainless 

steel have a large quantity of Nickel and therefore there is a risk of the Nickel 

sensitivity. Problems related to pitting corrosion and crevice corrosion on 

prosthesis made of this alloy have been reported [56]. A stainless steel containing 

no Nickel was created at an initial step pursuing a significant quantity of Nitrogen 

and Manganese [57]. Ni is used because it is the most effective austenite 

stabilizer. Given that the biocompatibility of Manganese is not fully known, a 

methodology to produce a large quantity of Nitrogen stainless steel by the 

pressurized electron spin resonance (ESR) technique has been established. 

Nevertheless, it is challenging to produce final goods of high–N stainless steel 

given the difficulty in mechanically working them [59]. The ASTM F 138 alloy is 

the only stainless steel applied as a biomaterial. Its composition is Fe (bal.), Cr 

(17-20%), Ni (12-14%) and Mo (2-4%). They are particularly useful due to the 

cost, availability and processing [14]. 

Tantalum and Niobium are candidates for biomaterial use because of their 

good electrochemical performance and biocompatibility. However, they have 

poor mechanical strength. Other candidates for biomedical application are 

amorphous alloys because their strength, corrosion resistance and low elastic 

modulus. Nevertheless, they contain a high quantity of toxic elements [9]. 

The first attempt to use Titanium as a biomaterial was in the 1930s in cat 

femurs. However, it was chosen for biomaterial application due to its corrosion 

resistance [9, 56]. The strength of Titanium alloys and 316L stainless steel are 

very similar, but Titanium has a density 55% lower than that stainless steel. The 

Titanium alloys used for biomedical application are: ASTM F 67, ASTM F 136 

and ASTM F 1295. Their composition are: Ti (bal.), Al (6%), V (4%) and Nb (7%). 
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They are used particularly due to the acceptable biocompatibility, corrosion 

resistance, lower elastic modulus and fatigue strength. Table 2.1 gives a 

comparison of some features on metallic biomaterials [57]. 

 

Table 2.1 – Advantages, disadvantages and main characteristics of stainless 

steel, cobalt base alloys and titanium alloys [14].
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2.3.3 Biocompatibility, corrosion and wear resistance of metals 

 

 

A material is biocompatible if no allergic and inflammatory reaction occurs 

between the material and the body. An ideal material should be inert to the body 

environment, but all metals will be toxic to the human body at certain levels, but 

it is not certain which level may be acceptable. Reactions and deterioration due 

to the material implanted are important factors for biocompatibility. The 

consequence of each alloying element should be understood due to its 

importance in wear, corrosion resistance and toxicity [60]. The elements that are 

related to acceptable biocompatibility are: Titanium, Boron, Magnesium, Silicon, 

Phosphorus, Calcium, Strontium, Zirconium, Niobium, Molybdenum, Indium, Tin, 

Tantalum, Platinum and Gold. However, the acceptable level of these elements 

in the human body is still unclear. The elements that are related to reported 

toxicity: Beryllium, Aluminium, Vanadium, Chromium, Manganese, Cobalt, 

Nickel, Copper, Zinc and Silver. Some researchers have reported that Iron is a 

harmful element and other has reported that it is not [61]. 

The human body is a complex electrochemical structure and strong 

corrosion environment for implants. Body liquids have aggressive substances 

and implants are in contact with them. Therefore, corrosion resistance is an 

important propriety to investigate. Poor corrosion resistance will generate the 

release of non–compatible ions from implants to body and it is a cause of toxic 

reactions [62]. The lifetime of a replacement is determined by wear resistance. In 

addition, the effect of a poor wear resistance is implant loosening and wear debris 

[63]. Natural joints have great tribological properties due to the intrinsic properties 

of cartilage and superior lubrication of synovial fluid [64]. 

Looking to solve problems related to wear debris, alumina was adopted in 

the biomedical field. This material presents higher wear resistance than CoCr on 

polymers and metal on metal. In addition, alumina has lower toxicity than CoCr 

alloys. In contrast, this material does not have good mechanical properties in 

particular toughness. To achieve better properties than alumina, zirconia was 

introduced and to date more 600,000 head prosthesis have been undertaken in 

United States and Europe. However, all these materials mentioned tend to fail 

early [12, 14]. Due to problem regarding to wear and ion release into the body by 

stainless steel and titanium alloys, CoCrMo alloys are still the first choice for this 
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kind of application. Ti6A14V is reported to be >15% softer than CoCrMo which 

have better wear resistance but its elastic modulus and presence of Cr (toxic 

element to human body) is a drawback [65, 66]. 

 

2.3.4 Metals used as THR. 

 

 

Modern total hip replacements comprise primarily of three components: 

stem, head and socket. The first generations of alloys THR were not successful 

because the rate of revision procedures was high [67]. Stainless steels were first 

used in total hip replacements by Philip Wiles in 1938, and a CoCr alloy was 

chosen by Austin Moore in the 1950s. The issues associated with the poor 

corrosion, fatigue and wear resistances of stainless steels and the consequent 

issue of heavy metal toxicity have since barred them from applications in 

permanent implants, and stainless steels are rarely used in permanent implant 

devices anymore. Nowadays, the stem portions of most hip implants are made of 

Orthinox, CoCr or Ti alloys. CoCr alloys or ceramic materials (aluminium oxide or 

zirconium oxide) are used in making the ball portions, which are polished smooth 

to allow easy rotation within the acetabular socket. This can be made of metal, 

UHMWPE, or a combination of polyethylene backed by metal [68].  

Although these three metals are not perfect implant materials, they 

predominate in current orthopaedics. Each alloy has advantages and 

disadvantages. The ideal alloy should have the modulus of bone, the strength of 

CoCr alloys, the corrosion resistance and biocompatibility of Ti alloys, and the 

fabrication cost of stainless steels [68]. 

The developments were only concentrated on CoCr–based alloys and 

these alloys are still the first choice for this kind of application because they have 

good wear and corrosion proprieties [14]. Titanium was introduced as counterpart 

with metal on polymer or metal on ceramic due to the good corrosion proprieties, 

but its alloys presents poor wear resistance and some have toxic elements. Ti 

alloys are largely involved with bone-cemented or cementless femoral head 

stems [69, 70].  

Titanium alloys are applied as modular neck and femoral stem and the use 

of these alloys as acetabular cup is avoided because of their poor wear 

resistance. Although Ti-based alloy heads function well under clean articulating 
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conditions, they have fallen into disuse because of their low wear resistance to 

bone or cement particles. These features can lead to the formation of fragments 

and inflammatory reaction, Fig. 2.4. In order to improve the wear resistance of 

titanium alloys, surface treatments and coatings are generally undertaken such 

as ion implantation and plasma spray coating, nitriding, carburization and 

boriding [23, 71-75].  

It is essential to understand how coatings perform under different 

tribocorrosion conditions, in order to predict the service life of the equipment and 

to explore ways to enhance it. Manhabosco [76] studied the tribocorrosion 

behaviour of DLC coated Ti-6Al-4V alloy and bare Ti-6Al-4V in a phosphate 

buffered solution. The DLC coated materials presented better wear resistance 

under dry conditions. Moreover, the coated film life is decreased by between 2 

and 10 times during tribocorrosion tests. There is still scope for new approaches. 

Mallia [77] studied three coating compositions, Cr–13 at.% Ti, Cr–33 at.% Ti and 

Cr–48 at.%Ti, that were synthesised by unbalanced magnetron sputter 

deposition and applied to Ti-6Al-4V substrates. All the coated materials were 

more tribocorrosion resistant than uncoated Ti-6Al-4V. 

Hill [78] studied Ti-6Al-4V with nanostructured diamond (NSD) coatings 

deposited with via microwave plasma-assisted CVD, with hydrogen-rich (H-NSD) 

and helium-rich (He-NSD) feed gas mix. Pin-on-disc wear tests of polyethylene 

against NSD and CoCr alloy were carried out in serum lubrication (electrolyte) at 

37oC. No differences in wear coefficients were observed on polyethylene on H-

NSD, He-NSD and CoCr. However, higher roughness and coefficients of friction 

were observed for the He-NSD and H-NSD coatings compared with CoCr. 

Therefore, as counter face to polyethylene, the NSD coatings produced wear 

coefficients comparable to CoCr. Then, NSD-coated Ti-6Al-4V is considered 

promising for use in total hip joint bearing applications. The tribocorrosion 

performance of nanostructured coatings has also been recently studied for 

biomedical applications. Basak [79] studied the corrosion and tribocorrosion 

behaviour of a thermal sprayed nanostructured FeCu/WC–Co coating in Hank’s 

solution and compared to 304 stainless steel and nanostructured WC–Co 

coatings. The multiphase structure of the FeCu/WC–Co coating induced complex 

corrosion processes but exhibited a depassivation/repassivation behaviour 

comparable to that of 304 stainless steel and the nanostructured WC–Co 

coatings.  
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During wear, metallic particles are detached and these particles enhance 

the wear process. These particles are nanometric in the size range and normally 

uniform in shape. In contact with polymers, the degradation will be higher than 

compared to contact with metals, which is the cause of loosening [28]. High levels 

of metal ions and wear debris have been found in synovial fluid of patients with 

badly functioning joint replacements [66] and this may also be harmful for human 

health [80]. This can be controlled by a better understanding of the material 

behaviour related to wear and corrosion [34]. 

Nowadays hip joint prostheses are made with metals, ceramics and plastic 

materials. Most used are titanium alloys, stainless steel, special high-strength 

alloys, alumina, zirconia, zirconia toughened alumina (ZTA), and UHMWPE. 

Usually, stems and necks are composed of metals, whereas femoral heads can 

be both metal and ceramic, and the acetabulum can be made of metals, ceramics 

or polymers. There are several combinations that can be realized by using these 

materials with the aim of coupling with the fewest concerns and the highest long-

term success odds [81]. 

 

 

Fig. 2.4 – Wear process of hip replacement [12]. 

 

The most common used hip joint type is a femoral head articulating against 

an ultra-high-molecular weight polyethylene (UHMWPE) acetabular cup. From 

the implant retrieval studies of femoral head of CoCrMo, 316L stainless steel and 

Ti–6Al–4V that suffered aseptic loosening, it was noted that Ti64 femoral heads 

consistently had the maximum wear averaging 74.3% against high molecular 

weight polyethylene acetabular component. CoCr alloy was found to wear the 

least and wear of 316L stainless steel was in between CoCr and Ti alloy. Further, 
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high metal concentrations were found in tissue around Ti alloy prostheses and 

the debris level were low in the tissues around the CoCr and 316L that were 

articulating against polyethylene. In order to overcome this issue, efforts have 

been made to change the use of cup material from polymer to metal or ceramic. 

Therefore, the long-term problems associated with UHMWPE wear debris have 

led to explore the possibility of the use of metal on metal prostheses. Also, 

Ti64/UHMWPE combination is used in TJR prosthesis, the wear rate of 

UHMWPE for Ti64 is found to be 35% greater than for Co–Cr–Mo in hip simulator 

testing [12].  

Titanium alloys form a passive film mainly composed of TiO2 when in 

contact with oxygen and their corrosion resistance relies on its formation [13]. 

The passive layer formed on titanium alloys is an important factor in 

biocompatibility as well. Although this film is stable, the wear resistance and 

corrosion activated by mechanical removal on these alloys relies on mechanical 

and electrochemical conditions [82, 83].  

Ti alloys are considered to have a poor oxidative wear resistance when 

submitted to tribocorrosion system. Tribology studies of Ti64 show the presence 

of martensite around the worn area and particle detachment is related to plastic 

deformation of the surface and subsurface [84] and high levels of Ti were reported 

in serum from some patients [85].  

Studies focus on the formation of the oxide layer and the effect of heat 

treatment on wear properties of Ti alloys [86, 87].  Also, different Titanium alloys 

have been studied at different load and speed conditions and these alloys 

presented similar wear behaviour at different conditions [88]. It has also been 

reported that the main wear mechanism for Titanium alloys is abrasive wear [89-

92]. However, studies of corrosion and wear of titanium alloys are still lacking in 

the literature [93]. 

 

 

2.4 Titanium and its alloys 

 

 

Titanium, a metal was discovered in 1791 by a British mineralogist called 

William Gregor in Cornwall. Its alloys are widely used in the medical field and 

have been extensively used in THRs [94, 95].  
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Titanium alloys have a wide range of applications in engineering due to 

their high strength, low density in comparison to steel and excellent corrosion 

resistance so have been subject to much research [96-99]. Also, Titanium can 

resist corrosion up to 600ºC and is resistant to corrosion in seawater [100]. The 

most successful application for these alloys are in aerospace, automotive, 

petrochemical, naval and medical industries [101]. Aerospace and naval 

industries were the first industries to be concerned about material degradation in 

their facilities and developed materials resistant to corrosion [102, 103]. 

The most used alloy is Ti64 (Ti–6Al–4V), which is an α and β phase alloy 

developed by the aerospace industry [104]. However, this alloy shows problems 

related to cytotoxicity due to the presence of Vanadium and Aluminium which is 

related to Alzheimer’s disease when used as biomaterial [105]. Moreover, the 

high elastic modulus of the αβ  alloys and the problems associated with toxicity 

were the reason for the researcher to focus on β–titanium alloys for that 

application [106]. Titanium alloys have a good corrosion resistance imparted by 

stable oxide passive film (TiO2) formed on the surface [107]. Also, β–titanium 

alloys show better corrosion resistance in comparison to αβ  alloys and have a 

good biocompatibility [108, 109].  

There is concern about the poor wear resistance demonstrated by these 

Titanium alloys [19, 110]. The poor wear resistance results in the release of debris 

into human body [100, 111]. The debris of metal and ions are spread throughout 

the body via body fluid, and acts as a corrosive fluid [102, 110], which results in 

prosthesis loosening and resultant pain in the joint. A proper joint prosthesis must 

also be low friction, which is a challenge for titanium alloys [112-114]. 

 

 

2.4.1 Physical metallurgy of Titanium 

 

 

Titanium exhibits two allotropic forms: alpha (α), which has an hcp 

structure and beta (β) that has a bcc structure. α–titanium exists up to 883ºC and 

transforms to β–titanium above this ‘transus β temperature’. Titanium alloys are 

usually classified as α, αβ  or β, arising from the microstructure at room 

temperature [115, 116]. 
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The transus temperature can be modified with adding alloying elements 

because some elements can stabilize α or β phases. These elements are called 

α stabilizers: Aluminium, Oxygen, Nitrogen and Carbon. β stabilizers are: 

Molybdenum, Vanadium, Niobium, Tantalum (Isomorphous), Iron, Tungsten, 

Chromium, Silicon, Nickel, Cobalt and Manganese. In addition, there are two 

elements neutral to Titanium allotropic transformation: Zirconium and Tin, as can 

be seen in Fig. 2.5 [14]. For β–titanium alloys for biomedical application, the 

quantity of alloying elements must be up to 20% of the weight because above this 

value, phase precipitation can be raised, which increases the strength and elastic 

modulus of β–titanium alloys [12]. 

 

 

Fig. 2.5 – Influence of alloying elements on phase diagrams of Ti alloys [94]. 

 

Zirconium and Niobium have been receiving attention from researchers in 

biomedicine. Zirconium presents good features for biomedical application, tensile 

strength, good biocompatibility and corrosion resistance and osseointegration. In 

addition, Zirconium, like Titanium, is a transitional element and both form solid 

solutions. Recent research has found that Niobium, Zirconium, Molybdenum and 

Tantalum are the most appropriate elements to use to design new β–titanium 

alloys due to the reduction in the elastic modulus of this phase and they are 

nontoxic [117]. 

 α–titanium alloys offer good corrosion resistance. However, while α and 

β phases in αβ titanium alloys improve the strength they also lower corrosion 

resistance due to risk of galvanic corrosion. In addition, β titanium presents good 

strength and formability and good hardenability. This alloy is the only one to 

combine lower Young’s modulus and high corrosion resistance. Titanium β–alloy 
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has enough stabilizers to retain 100% β when quenching from over the β transus 

temperature, as can be seen in Fig. 2.6 [14]. 

 

 

Fig. 2.6 – Effect of β stabilizers elements on formation of β phases during 

cooling [14]. 

 

Different processes are applied to control the microstructure and enhance 

properties such as ductility, strength, fatigue and toughness. Other important 

phases (metastable phases) can be found in Titanium alloys are α′ (hexagonal 

martensitic structure), α″ (orthorhombic martensitic structure) and ω (hexagonal 

structure) [18]. Alloys with low content of β–stabilizer elements form α′ hexagonal 

martensite and, while higher content allows for the formation of α″ orthorhombic 

martensite and this phase is required for shape memory application. They are 

formed either by nucleation and growth during aging or plane collapse of the bcc 

structure upon quenching. These phases usually appear after heat treatment, 

such as annealing, solution treatment, quenching or aging treatment [118]. 

The ω phase was discovered in 1954 and has the greatest elastic modulus 

among the other phases in Titanium alloys and can be formed by cold plastic 

deformation [18, 119]. The transformations of ω phase are: athermal or 

deformation process, which is formed by quenching and there is no diffusion, and 

isothermal which is precipitated by atomic diffusion during aging. Both processes 

lead to the same crystal structure of ellipsoid–like [120-122]. This phase cause 

ductility and embrittlement [84, 123, 124].  

Literature review 



32 

 Two methods are used to reinforce the β phase: alloy additions and 

decreasing grain size.  Through the Hall–Petch effect, a reduction of grain size to 

the nanometre scale gives a significant rise in strength [18, 125]. 

The activation energy for β–titanium alloys for deformation was found to 

be about 130–175 kJ mol–1. This energy is close to the energy of activation for 

self–diffusion (153 kJ mol–1) in β alloys. The process of recrystallization in β 

phase is not usually dynamic recrystallization where the nucleation and the 

growth of the new recrystallized grains are happening through hot working. 

Controlling the grain size, and homogeneity is very important to the secondary 

processing to enhance the final mechanical properties [126]. 

Working in the β phase area occasionally leads to the development of a 

mixed grain structure of large and small grains. The reason for this is that there 

is selective recrystallization in regions of high strain at grain boundaries in the β 

phase, whereas there is a lower driving force for recrystallization in the core grain, 

which is dominated by dynamic recovery. If a mixed grain structure is formed, it 

is difficult to eliminate by heat treatment as reheating times can change 

microstructure by grain growth [127]. 

 

2.4.2 The αβ–titanium alloys 

 

 

Commercial purity Titanium (CP Ti) has been applied as a biomaterial on 

stents and spinal fixation replacements [128]. However, this material has not got 

sufficient mechanical strength for joint prosthesis. Thus, Ti64 was introduced and 

extensively used in this application [129]. In order to use a Vanadium free 

biomedical alloy, another αβ-titanium alloy, Ti–6Al–7Nb has been introduced, 

which has similar properties to Ti64. Another alloy introduced on this field was 

Ti–13Nb–13Zr because it has strength properties that are also similar than Ti64 

[130-132]. 

Three microstructures can be found in Ti64, as can be seen in Fig. 2.7. 

These microstructures can be achieved by controlling different parameters on 

heat treatment and cooling rate [130, 131]. 
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Fig. 2.7 – (a) Lamellar microstructure, (b) Equiaxed microstructure and (c) 

Bimodal microstructure [131]. 

 

The lamellar microstructure can be achieved by solution treatment, air 

cooling and aging. This microstructure brings excellent fracture toughness. The 

equiaxed microstructure can be obtained by solution annealing. This 

microstructure provides excellent strength and ductility but low facture toughness. 

The bimodal microstructure can be achieved by solution treatment, air cooling 

and aging. This microstructure has a good fatigue resistance. Generally, the finer 

the microstructure the higher the fatigue resistance [130, 131]. 

 

2.4.3 The β–titanium alloys 

 

 

As noted in the last section, CP titanium and αβ-titanium alloys were the 

first generation of titanium alloys applied in the biomedical field. However, in the 

last 20 years, β titanium alloys have received attention by researches and 

scientists. These alloys were developed to achieve lower elastic modulus in 

comparison to αβ  titanium alloys [3]. Examples of the first alloys created are Ti–

29Nb–13Ta–4.6Zr (TNTZ), Ti–12Mo–6Zr–2Fe (TMZF) and Ti–35Nb–7Zr–5Ta. 

TNTZ alloys have 65 GPa, TMTF has 82 GPa and Ti–35Nb–7Zr–5Ta has 55 GPa 

of Young’s modulus [133]. 

The β–titanium alloys have enhanced corrosion resistance in comparison 

to αβ-titanium alloys, because on αβ–titanium alloys there is a risk of galvanic 

corrosion. Also, β–titanium alloys exhibit improved ductility and lower elastic 

modulus than CP Titanium, α–titanium alloy and αβ–titanium alloy. The reason 

for that is that plastic deformation of hexagonal closed packed structures is more 

difficult than on body cantered cubic. Thus, β–titanium alloys show improved 

formability and ductility [12, 18]. 
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Niobium, Tantalum, Zirconium, Molybdenum and Tin are the safest 

alloying elements to use to develop β–titanium alloys. Hence, the Titanium alloys 

with potential as biomaterials are: Ti–Ta system, Ti–Ta–Zr system, Ti–Nb–Hf 

system, Ti–Nb–Zr system, Ti–Nb–Sn system, Ti–Nb–Ta–Zr system, Ti–Fe–Ta 

system, Ti– Mo–Zr–Sn system, Ti–Sn–Nb–Ta system, Ti–Mo–Zr– Fe system, Ti–

Mo–Nb–Si system, Ti–Mo–Ga system, Ti–Mo–Ge system and Ti–Mo–Al system 

[134, 135]. 

The most recent alloys developed for biomedical application are based on 

Ti–Mo, Ti–Nb, Ti–Zr, Ti–Ta alloys. Comparison of proprieties of α, αβ  and β 

Titanium alloys are given in Table 2.2  [136]. 

 

Table 2.2 – Mechanical proprieties of different generations of Titanium–based 

alloys [12]. 

 

 

The parameter to evaluate the stability of β phase is called molybdenum 

equivalent and it is found by equation 2 [126]. 

 

Mo Eq = 1.0Mo + 0.67V + 0.44W + 0.28Nb + 0.22Ta + 1.6Cr + 1.0Al    Eq. 2 

 

Generally, the β transus temperature goes down if the Mo equivalent 

increases, as can be seen in Fig. 2.8. A large Mo equivalent gives a stable alloy. 

For instance: Ti–13V–11Cr–3Al – B120VCA alloy or Ti–35V–15Cr – alloy C. 

Expansion of the number of β–titanium alloys started in the 1950s when the 

B120VCA alloy was created. After this, β titanium alloys like Ti–1Al–8V–5Fe 

(Ti185), Ti–8V– 8Mo–2Fe–3Al (Ti8823), and Ti–11.5Mo–6Zr– 4.5Sn (β 3) were 

created. Three significant β–titanium alloys were fabricated between 1969 and 

1978. For instance: Ti–3Al–8V–4Mo–4Zr (β C), Ti–10V– 2Fe–3Al (Ti1023) and 
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Ti–15V–3Cr–3Sn–3Al (Ti153). The β–titanium alloys, Timetal alloys 21 and LCB, 

β CEZ, SP 700 and Ti–13Nb–13Zr were created 20 years ago [126]. 

 

 

Fig. 2.8 – The β transus temperature vs Mo equivalent of commercial titanium 

alloys [126]. 

 

The necessity to hot work all these materials at low temperatures due 

microstructure controlling and desired properties frequently necessitates the use 

of isothermal or near–isothermal deformation processing. The classic hot working 

method for treating β–titanium alloys includes principally ingot breakdown in the 

β phase area by finishing it frequently at temperatures under the β transus 

temperature to acquire a final product, and secondary employing to create a 

precise form by hot rolling or hot forging exceeding or under the β transus 

temperature [126]. 
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2.4.4 Tribological properties and elastic modulus of β titanium alloys 

 

 

A layer of TiO2 is formed when Titanium–based alloys are in contact with 

oxygen such as in air, (equation below). The layer is very hard and it is formed 

due to the diffusion of O2 [5]. Oxygen is an α stabilizer and the existence of this 

phase on the surface enhances the hardness of Titanium–based alloys [137]. 

 

Ti + 2H2O = TiO2 + 4H+ + 4e– 

 

One important factor that influence the performance of the oxide layer is 

the kinetic of repassivation of the oxide. Tantalum, a β stabilizer repassivates 

faster (96 ms) than Titanium (172 ms) and slower than CoCrMo (77 ms) [14, 138, 

139]. 

Data from the wear behaviour on α–titanium alloys and β–titanium alloys 

is limited. β–titanium alloys exhibit strain hardening and this property is the reason 

for low resistance to deformation in the subsurface region on αβ-titanium based 

alloys. Thus, β–titanium alloys might offer the prospective for improved wear 

resistance [14]. 

The wear development is followed by these steps: debris generation and 

detachment by any wear mechanism (adhesion, abrasion, corrosion or fatigue); 

change of surface morphology and composition by third body effect, and finally 

the removal of these debris. Researchers found changes in the material’s 

microstructure of Ti–based alloys after frictional contact. Those changes were the 

formation of β phase and growth of the ultra–fine grained of α phase [14]. 

For the β-titanium alloy Ti–13Nb–13Zr, the formation of ZrO2 on the 

surface occurs and it results in an enhanced wear resistance. Thus, it suggests 

that the composition of the oxide layer may be made by the composition control 

of the alloy and enhancement of the wear resistance. Some researchers have 

found that the wear resistance of β–titanium alloys present improvements in 

comparison to αβ–titanium alloys, due to strain hardening [140, 141]. It is 

necessary for more improvements in the wear resistance of β–titanium alloys that 

will develop a better understanding of the tribological properties of these alloys 

[14]. 
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2.4.5 Biocompatibility and corrosion of β–titanium alloys 

 

 

There is no study that has shown a material totally free of adverse reaction 

in the human body related to implants. Titanium is a good choice for bio–

application because it is well accepted in the body. Also, in some situations, 

Titanium can osseointegrate with the bone and the passive layer of Titanium can 

rebuild very fast [12]. 

Biocompatibility and corrosion resistance are two proprieties of biometallic 

materials that are closely related. Usually, β–titanium alloys exhibit good 

corrosion resistance and this characteristic relies on its composition and 

environment applied. Researchers have shown using the polarization test that 

Ti–12Mo–6Zr–2Fe (β) has the same corrosion resistance that Ti64 (α+ β). Also, 

Titanium, Niobium, and Zirconium develop extremely protecting passive layers 

and showing a lower potential electrochemical interaction than Ti64. Niobium and 

Zirconium show ideal passivity and these two elements form a protective passive 

film on titanium alloys  [14]. 

 

2.4.6 Limitations of β–titanium alloys 

 

 

The limitations of β–titanium alloys are: 1) There is still large gap between 

elastic modulus of β type and bone. The ω phase and α phase are important 

factors in controlling the elastic modulus. 2) The main β stabilizers alloying 

elements are Nb, Ta and neutral elements are Zr and Sn. Ti, Ta, Zr and Nb are 

problematic to melt in a homogeneous way because of large differences in 

melting point and specific gravity. It is common to observe coarse grain and 

macrosegregation on alloys made by traditional melting process, this degrades 

biocompatibility and mechanical properties  [12]. 3) It is problematic to produce 

totally single β phase alloys. Usually, thermomechanical processing is used to 

enhance the microstructure. If β phase alloys are mechanically treated under the 

β transus and heat treated in the αβ  region, the microstructure will be a mix of α 

and β phases in equiaxed form [12]. 

The best combination of high strength and low Young’s modulus is seen 

from equiaxed grain structures in β alloys, which is superior to that from acicular 
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and lamellar structures. New β–titanium alloy having low elastic modulus, high 

strength and only a fine, equiaxed, single phase β phase alloy is a major research 

objective. This may be achieved through suitable alloy design and correct choice 

of production techniques [12]. 

 

 

2.5 Basic theories of corrosion and tribology 

 
2.5.1 Corrosion principles and corrosion reactions 

 

 

All materials are prone to aging and degradation when in use in different 

types of applications. These processes lead to time–dependent deterioration of 

their functionality. Material degradation in their surroundings can take place via 

different mechanisms such as thermal destruction, chemical dissolution, 

electrochemical corrosion processes, or mechanical wear [138]. 

The interaction of a material such as metals, ceramics and polymers, with 

the environment (liquids and gas) causes a degradation called corrosion [142]. 

Three factors are important to study corrosion: the metal, the environment and 

the interface metal–environment. This study focuses on the material degradation 

caused by the corrosion and wear of a material under tribological contact. The 

tendency for a material to corrode is studied by electrochemistry. To analyse 

equilibrium of a system, thermodynamics is used [143]. Metal in a form of ore has 

a low state energy and to get a pure metal (eliminate oxides), external energy is 

used to do it. So, they will have a state of high energy. The trend will be for the 

metal to return to a low state energy mode and will occur by corrosion [142]. Free 

energy (ΔG) is used to analyse the tendency of chemical reaction. If it is <0 there 

will be a high tendency to corrode, if it is >0 the metal is stable and if it is 0 the 

system is at equilibrium [144].  

The relationship between free energy and potential is given by the 

following equation, where n is the number of electrons in the reaction and F is 

Faraday’s constant: 

 

ΔG = -nFE         Eq. 3 
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Large negative free-energy changes give rise to large positive potential 

differences, and large positive free-energy changes give rise to large negative 

potential differences. These terms are equivalent in that they both describe the 

magnitude of the driving force for a reaction to occur. Furthermore, at equilibrium, 

where there is no driving force for the reaction, both the free-energy change (ΔG) 

and the driving force in terms of potential (E) are equal to zero [145]. 

The corrosion process is based in two reactions called anodic and 

cathodic. Anodic reaction is the metal will dissolve and cathodic reaction the 

metal will reduce [146]. Corrosion equation can be generalised by  

 

M → Mn++ne-: oxidation 

Mn++ne → M: reduction 

  

 For example following equations are the anodic reactions for iron: 

 

 Fe → Fe2+ + 2e- 

 Fe2+ 
→ Fe3+ + 2e- 

 

In case of passive metals, the oxidation reaction of the metal M results in 

the formation on the metal surface of an oxide film usually few nm thin (passive 

film) according to the reaction: 

 

M + nH2O → MOn + 2nH+ + 2e- 

 

The oxygen reduction process is a cathodic reaction and it is expressed 

by the following equation: 

 

O2 + 2H2O + 4e- → 4OH- 

 

The hydrogen evolution occurs when a metal is in acidic condition. 

Electrons and Hydrogen ions form atomic Hydrogen at metal surface. Then a 

concentration of molecular hydrogen gas might be found.  

 

2H+ + 2e → H2 
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These reactions form corrosion products and passive films. The difference 

between them is that passive films are adherent to the metal surface and may 

promote protection [147]. 

The atoms from a metal in an electrolyte shows certain propensity to leave 

the metal lattice as a cation or to become part of the metal lattice. This propensity 

may be high or low and it depends on the nature of that metal and the electrolyte. 

When one of each process happens the surface will have some negative or 

positive space charge regions and this difference is compensated by the 

accumulation of ions with a opposite charge. Thus, a potential difference in the 

metal–electrolyte is seen and it is of great importance for the electrochemical 

reaction kinetics [148, 149]. 

The corrosion electrochemical reaction for Zn can be split into the two half-

cell reactions of: 

Zn = Zn2+ + 2e- (Oxidation) 

2H+ + 2e- = H2 (Reduction) 

The two half-cell reactions often occur at separate locations on the metal 

and, because the metal is conductive, the electrons flow through the metal from 

the anodic to the cathodic region. The presence of water, a thin film of moisture 

or an electrolyte is all what is required to facilitate the movement of the ions [145]. 

The propensity of a metal to oxidise or reduce is given by the standard 

electrode potential of that metal (Eo). The standard electrode potential for 

hydrogen at standard conditions (pH2 = 1, aH+ = 1, T = 25 °C) is zero, and other 

standard electrode potentials are given in reference to this electrode (SHE). 

Negative potentials show the tendency for the oxidation of the metal [147].  

Oxidized species may be present in the system as solvated cations or in 

the form of corrosion product layers. An example is the formation of stable oxides 

of the passive metals; oxides form protective film on the surface, reducing the 

dissolution of the metal. The formation of the metal oxide may be a chemical 

reaction (2Fe3+ + 3H2O → Fe2O3 + 6H+) or an electrochemical reaction (3Fe2+ + 

4H2O → Fe3O4 + 8H+ + 2e–). For a thermodynamic analysis of the corrosion 

behaviour, it is not sufficient to consider only the electrode potentials of metals in 

the system, but the existence of different species in a system must be considered 

[138]. 

For a complete analysis of equilibrium reactions of a given metal and H2O 

interface, thermodynamic calculations are summarized in potential–pH diagrams 
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or Pourbaix diagrams which were introduced by Pourbaix in 1963. These 

diagrams show the thermodynamic stability regions of metals in water in metallic 

state, dissolved species, or solid oxides. If the reaction product of metal oxidation 

is a stable oxide, the rate of the oxidation reaction decrease because a thin oxide 

film forms on the surface and the metal becomes passive. This is called passive 

potential region and the state of the metal under these conditions is called 

passivity [138].  

The exact position of the lines and region depends on the concentrations 

of dissolved species in the equilibrium reactions according to the Nernst for 

electrochemical reactions and also according to the law of mass action for 

chemical equilibria for chemical reactions [138]. 

Metals and alloys form a film when in contact with air. This film is called 

passive film and it presents normally in the nanometrically range at room 

temperature. However, at high temperatures it is formed by thicker films. This 

passive film is not homogeneous for alloys and the passivity ability is not shown 

in all conditions. The oxidation reaction happens at the interface metal–oxide and 

the reduction reaction of oxygen occurs at the outer oxide surface. It means that 

the conductivity of the oxide layer has an important role in the kinetics of the oxide 

film development. The passive film can be broken uniformly or localized under 

specific conditions [142, 150].  

Passivity is the state where the metal surface is covered by a protective 

layer, which decreases the metal dissolution. Generally, passive films consist of 

oxides of the alloying elements. The passive current is a measure of the 

protective quality of the passive film. The passive current densities are orders of 

magnitude lower than corrosion current densities. The passivation current density 

and the passivation potential are measures of the passivation ability of the metal 

[138]. Passivation occurs when its potential is more negative than the equilibrium 

potential of the coupled cathodic reaction. Thus, for metals that show 

spontaneous passivity in the absence of strong oxidizing species in the solution, 

the passivation potential should be as cathodic as possible. The presence of 

oxygen or other oxidizing species is required for passivation to occur [138].  

Only when the passivation current is smaller than the absolute value of the 

cathodic current does spontaneous passivity occur. This is also a self-healing 

system where the mechanical destruction of the passive film leads to 

spontaneous repassivation. The smaller the passivation current, the fewer the 
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oxidizing species needed for spontaneous passivation. The passivation current 

density and passivation potential rely on the material and the environment [138].  

Alloying elements also have an effect on passivation, such as the effect of 

Cr to Fe alloys. Cr content positively affects the passivation potential, the 

passivation current, and the passive current. So, high Cr-content in the alloy 

promotes spontaneous passivation in the absence of strong oxidizing agents in 

the solution and a protective film is formed on the metal surface. This is the basis 

of the high corrosion resistance of stainless steels [138]. 

For oxide growth, diffusion of metal cations or oxygen anions through the 

oxide layer is required. The ion movement in solid oxides depends on the non-

stoichiometry of the oxide since diffusion through the defects requires lower 

activation energy than diffusion from lattice site to lattice site. Preferential ion 

transportation occurs by grain boundary diffusion. During oxide growth on the 

surface, the oxidation reaction occurs at the metal/oxide interface, while the 

oxygen reduction occurs at the outer oxide surface. Clearly, the electronic 

conductivity of the oxide layer is an important factor in the oxide growth [138]. 

Passivating layers are formed in aqueous solutions or in humid 

atmospheres, and that is why the layers may contain hydroxides. It is now 

believed that the barrier properties of passive films is due to the inner oxide layer, 

and the presence of hydroxide precipitate layers on top of the oxide film does not 

influence passivity. Also, it is known that amorphous passive films are less prone 

to breakdown with defects, such as chloride incorporation. Normally, the 

presence of grain boundaries is considered not good for passivation [138]. 

Surface analysis such as X-ray Photoelectron Spectroscopy (XPS) have 

been carried out to characterise the oxide films of biomedical alloys such as CoCr 

alloys. The outer layer of these alloys are mainly rich in Cr203 and CoO and MoO3 

and have a thickness of the order of a few nm.  The total thickness of the passive 

film is about 4-5 nm. The inner layer of the passive film is rich in Cr203 and Co 

and Mo metal species [151].  

The driving force for this corrosion reaction is the free-energy change or 

the overpotential. The rate of the reaction can be expressed as a current or the 

number of electrons generated per unit time [145]. 

𝑖 = 𝐴(exp (
𝛥𝐺

𝑅𝑇
))        Eq. 4 

An electrochemical reaction that behaves as described is referred to as 

being under the control of activation polarization. Activation polarization simply 
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means that the driving force for the reaction (overpotential) is proportional to the 

log of the reaction rate (current). The relationships for anodic and cathodic 

processes under activation polarization are as follows: 

𝜂𝑎 = 𝛼𝑎 +  𝛽𝑎 log 𝑖 (anodic)      Eq. 5 

𝜂𝑐 = 𝛼𝑐 +  𝛽𝑐 log 𝑖 (cathodic)      Eq. 6 

Where ηa is the anodic over potential and ηc is the cathodic over potential. 

The constants α and β are the anodic and cathodic Tafel constants, respectively. 

Over the potential range where these equations describe the relationships 

between potential and current, reaction is under activation control [145]. 

The corrosion rate can be plotted versus potential and it is called a Tafel 

or polarization curve. The Tafel curve represented in Fig. 2.9. The current is 

obtained from from the Butler-Volmer equation:  

 

𝑖 = 𝑖𝑐𝑜𝑟𝑟(exp (
2.3(𝐸−𝐸𝑐𝑜𝑟𝑟

𝛽𝑎
) − exp(

2.3(𝐸−𝐸𝑐𝑜𝑟𝑟

𝛽𝑐
))     Eq. 7 

 

Where i is the measured cell current density, i, is the corrosion current 

density from Figure 2.9. E is the electrode potential and Ecorr is the free corrosion 

potential. βa is the anodic Beta Tafel constant while βc is the cathodic Tafel 

constant [34]. 

From this plot, corrosion potential, corrosion rate and corrosion current can 

be found by extrapolating the linear portions of a log current versus potential plot 

back to their intersection. The positive side represents anodic reaction where 

corrosion happens and the negative side represents cathodic reaction where the 

cathodic current has a higher rate of flow  [142].   
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Fig. 2.9 – Hypothetical polarization curve and its relevant parameters [34]. 

 

The most common technique to find the corrosion resistance is called 

potentiodynamic polarization. In this technique the potential of the electrode is 

varied by applying a current through the electrolyte. Fig. 2.10 shows a Tafel curve 

for a metal and its different regions [34]. The polarization resistance (Rp) of a 

material is defined as the slope of the potential current density plot. 

 

𝑅𝑝 =
𝛥𝐸

𝛥𝑖
=  

𝛽𝑎 𝑥 𝛽𝑐

2.3 𝑥 (𝛽𝑎+ 𝛽𝑐) 𝑥 𝑖𝑐𝑜𝑟𝑟
      Eq. 8 

 

 

Fig. 2.10 – Hypothetical polarization curve for a passive metal and its regions. 
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Since the passive films from metals and alloys may show a breakdown, 

corrosion will occur, and it can be in different modes. The common characteristic 

of localized corrosion is the existence of an anodic area. The anodic area will 

couple with the cathodic area. If the anodic area is much smaller than the cathodic 

area, the corrosion rate is increased, and fast corrosion propagation is seen. 

Localized corrosion is normally linked to the presence of aggressive anions such 

as halide ions. Another important factor is the galvanic effect between dissimilar 

metals in contact. The driving force for galvanic corrosion is the difference of the 

corrosion potentials of the metals or alloys in contact. The corrosion potential of 

metals and alloys change as the environment is changed [152]. Localized 

corrosion mechanisms are identified as follows [142, 144, 146].  

• Pitting Corrosion: localised corrosion happens when there is a 

heterogeneity such as a scratch and produces sharply defined holes. 

These holes may be small or large in diameter, but in most cases, they are 

relatively small. Pits may be isolated from each other on the surface or so 

close together that they resemble a roughened surface. The passivation 

in the pit is weak because ions migrate to the pit to balance the charges. 

Then the environment inside the pit will become aggressive and occurs 

when one area of a metal becomes anodic with respect to the rest of the 

surface or when highly localized changes in the corrodent in contact with 

the metal, as in crevices, cause accelerated localized attack. The 

penetration is high and the failure happens suddenly [153]. 

• Galvanic Corrosion: this corrosion happens when two dissimilar materials 

are in contact with an electrolyte. The difference of potential is the driving 

force to initiate the corrosion of the more active metal [153]. During 

galvanic coupling, corrosion of the less corrosion-resistant metal 

increases, and the surface becomes anodic, while corrosion of the more 

corrosion-resistant metal decreases, and the surface becomes cathodic. 

When a passive metal is submitted to mechanical depassivation, the 

passive film is removed and galvanic coupling occur between the 

depassivated area (anodic area) and the unworn area (cathodic area) 

[154, 155]. Another case of galvanic corrosion is the presence of different 

phases in an alloy. If the phases have different potentials, anodic and 

cathodic areas will be formed and the galvanic coupling occurs [156].  
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• Crevice Corrosion: this is a form of localized attack and happens when 

there are grooves or other kind of open spaces between metals surfaces. 

It occurs at narrow spaces between metal-to-metal or nonmetal-to-metal 

components. This type of attack results from a concentration cell formed 

between the electrolyte within the crevice, which is oxygen starved, and 

the electrolyte outside the crevice, where oxygen is more plentiful. The 

material within the crevice acts as the anode, and the exterior material 

becomes the cathode. Crevices may be produced by design or accident. 

Although crevice corrosion affects both active and passive metals, the 

attack is often more severe for passive alloys, particularly those in the 

stainless steel group [32, 144, 146]. 

• Fretting Corrosion: is a combined wear and corrosion process in which 

material is removed from contacting surfaces when motion between the 

surfaces is restricted to very small amplitude oscillations (often, the relative 

movement is barely discernible - micromotions). Usually, the condition 

exists in machine components that are considered fixed and not expected 

to wear. Oxidation is the most common element in the fretting process. 

[157, 158]. Example of this is rubbing bone to screw head [71]. When the 

motion is higher than fretting, the process is called wear corrosion [159, 

160]. 

 

Since corrosion is a surface interaction, some techniques to protect the 

surface have been developed. They are: Coatings: one of the most common ways 

to protect the surface. They separate reactive elements from environmental 

corrosives [161]. Cathodic protection: this technique applies a cathodic current to 

the surface to minimize the anodic dissolution, which makes the surface cathodic. 

Another possibility is to connect another metal (sacrifice) which will act as an 

anode in a galvanic cell. Also, an external power can be applied to the current 

source. Anodic protection: this is less common than cathodic protection. It 

consists of an application of a anodic current on a metal in order to create a 

passive film [146].  
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2.5.1.1 Corrosion of metallic biomaterials 

 

 

Corrosion has been considered as one of the major problems for metallic 

materials and when implanted in the human body they are not free of corrosion 

[162]. The biological fluid is not as aggressive as industrial fluids, but the 

presence of oxygenated saline solution and organic species make it corrosive to 

the implanted devices [163]. 

Metals with a high standard electrode potential are called noble metals. 

They are expensive in comparison to the other metals and lack of good 

mechanical proprieties. Due to this, those metals are rarely used for technical 

application. Gold and Iridium are examples of noble metals. Stainless materials 

have their resistance due to the formation of the oxide layer that is thin, dense 

and adhesive. The potential and rate of formation and repassivation important 

factors about the passive layer. Metals which show good passivation are Al, Ti 

and Cr. Metals such as Fe and Co do not show good passivation, but they can 

be alloyed with metals with good passivation such as Cr and Mo. The term 

corrosion resistance is more precise than stainless because depending of the 

circumstances all metals will show some corrosion [164]. 

Corrosion has a significance in material degradation [157] and it is not 

different for implants. The body fluids are corrosive to metals due to oxygen 

present in the organic species. The study of corrosion has great importance for 

biomaterials. Failure and surgery revision are the cause of non–adequate 

material used and that failure may be caused by corrosion and its products [163, 

165]. One of the drawbacks of corrosion in a biomedical material is ion release. 

However, metals used as biomaterials form a passive film that may protect the 

surface to further corrosion and reduce the release of corrosion products [157, 

166].  

Mechanical depassivation such as wear removes the passive layer and 

releases debris in to the system. This event may also form localised corrosion 

such as pitting [167].  Cobalt Chromium Molybdenum alloys present a high 

corrosion resistance and stainless–steel presents a susceptibility to crevice and 

pitting corrosion. Both alloys are cytotoxic to the human body [168].  

Metallic materials used for bearing surfaces in hip arthroplasties normally 

depend on the stability of the passive film, which forms spontaneously in air, for 
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their biocompatibility. The passive film can form a barrier which can efficiently the 

metal from further corrosion processes. The passive film inhibits corrosion and 

keeps current flow and the release of corrosion products at a very low level [142]. 

The link between the amount of metallic debris concentration in a human 

body and health issues are still topics of many studies [70] and it is certain that 

high level of ion concentration generated over the years, such as Co and Cr could 

be found in serum and urine, but It is not clear what level of these elements are 

acceptable [169-175].  

Corrosion studies by electrochemical techniques are performed to better 

understand metallic biomaterials and their compatibility to the human body, and 

correlate to metallic levels [158, 160, 176]. Protein adsorption may imply 

corrosion behaviour of implanted materials. Thus, more research about the effect 

of an implanted material must be gained.  

The Ti and CoCr alloys are known for their corrosion resistance while 

stainless steel suffers crevice and pitting corrosion. Hanawa [167] examined the 

surfaces of stainless steel, CoCrMo alloys and Titanium and the release of Co 

ion was observed for CoCrMo alloys and Fe ion for the stainless steel 316L. Also, 

an insignificant release of Mo in CoCrMo was identified [177]. Jacobs [178] found 

out that the Co released from the cast CoCrMo alloys was very small in the 

biological solution and it was found that Ni release from 316L decreased with 

increasing pH while Cr and Mo ions from CoCrMo were smaller at a pH of 4 or 

higher. Calcium phosphate was observed as precipitates on implant metals and 

on metal surfaces [179]. 

Brondner [169] studied retrieved CoCrMo metal-on-metal and observed 

that the Co and Cr concentration in blood serum and urine were high but 

decreased after 1 year. Black [172] showed that it is still unclear what constitutes 

a normal level for levels of these elements in an individual patient and what the 

consequences are of deviations from that level. This is clearly an important 

question for MoM implantation. 

Visuri [173] showed that there was no increase in the risk of cancer in 

patients with CoCrMo MoM THR. Willert [174] found no proof that the release of 

metal is teratogenic but did show possibility of hypersensitivity to metals. Koegel 

[175] disagreed. An increased incidence of the heart muscle disease and tumours 

was found in animal tests. Because of the increase of the numbers of patients 

with a MoM TJR for 20 or longer years, it suggests that long-term studies are still 
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required to fully understand the relationship between ion release and associated 

diseases. Investigations to clarify the importance of toxicology are currently being 

carried out by scientist [168]. 

 

 

2.5.1.2 Corrosion of Titanium alloys 

 

 

Titanium and its alloys naturally form a passive layer which has around a 

3nm thickness and inputs good corrosion resistance in different environments. 

[180]. The passive film of Titanium alloys have good adherence to the bulk 

material and it repassivates when removed [181]. However, Titanium and its 

alloys are not corrosion resistant in the presence of fluoride ions [182].  

In aqueous solution, Titanium behaves in 4 different ways: it can form Ti 

ions where the corrosion rate is high, it can form passive layer where the 

corrosion rate is low, it can show active–passive state and finally Titanium is 

corroded by hydrogen evolution [183]. 

Alloying elements used in Titanium alloys in order to improve corrosion 

resistance are Nb, Mo, Ta, and Zr. These elements form oxide layers such as 

Nb2O5, Ta2O5, and ZrO2. Studies have demonstrated that these alloy elements 

form strong and adherent passive films [184-188]. However, it is not just the 

alloying elements that are important in order to improve corrosion resistance of 

Titanium alloys. The presence of α and β phases are an issue because it may 

reduce the corrosion resistance due to galvanic coupling between these two 

phases [156, 189, 190]. According to some studies, heat treatment plays an 

important role on corrosion resistance of these alloys. Water quenched samples 

were reported to have greater corrosion resistance than the sample submitted to 

solution treatment due to a less α–phase in the microstructure  [191-196]. Geetha 

[190] studied Ti-13Nb-13Zr and showed that this alloy has a better corrosion 

resistance when submitted to sub transus heat treatment than that submitted to 

solution heat treatment.  

Mohammed [195] studied the electrochemical behaviour of Ti-20Nb-

13.6Zr-0.5V in Rigers solution at 37oC and found that the small amount of α phase 

present in this alloy after water quenching was the reason for the better corrosion 

resistance.  
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According to some studies, β phase alloys show better corrosion 

resistance than αβ –titanium alloys [156]. It is reported that the composition of the 

microstructure and the stability of the passive film are the main factors influencing 

the electrochemical behaviour of test alloys. Also, the corrosion resistance of 

these alloys may change in different electrolytes  [197, 198].  

In aqueous solution, Titanium shows four types of response, according to 

Kelly [183]: a) active response and high oxidation rate where Ti (III) is formed; b) 

Passive state where the passive film is formed; c) Passive/active state where the 

passive film only covers part of the surface; d) Finally, corrosion of Titanium due 

to Hydrogen evolution in negative potentials. According to some researches [184] 

Ti alloys has a higher corrosion resistance than CoCr alloys and 316L stainless 

steel. 

Studies show that the lower ratio of α and β phases the higher corrosion 

resistance for Ti-6Al-4V. This is due to the galvanic coupling between these two 

phases [156]. Also, β phase alloys (Ti-12Mo-20Nb and Ti-12Mo-13Nb) are shown 

to be more corrosion resistant than Ti-6Al-4V in Riger’s solution [197] and 

Atapour [156] found that β phase has better corrosion resistance than αβ 

microstructures and that composition and passive film stability are the main 

factors that influence the electrochemical behaviour of Ti-13Mo-27Zr-3Fe, Ti-

35Nb-7Zr-5Ta and Ti-6Al-4V. 

Chelariu [198] found that Nb addition plays an important role on corrosion 

resistance of Ti alloys. The best corrosion behaviour was observed in high Nb 

content alloys. Nb improves passivation and decrease dissolution of passive film 

formed. 

Studies with Ti-60Ta, Ti-12Mo and CP Ti show that Ti-60Ta (β phase alloy) 

has a better corrosion resistance in fluoridated artificial saliva due to the presence 

of Ta [187]. Zhou [110] showed that the presence of Ta improves the corrosion 

resistance in Ti-Ta alloys in comparison to Ti-6Al-4V and Cp Ti. This was 

attributed to the formation of Ta2O5 oxide film which is more stable than TiO2. 

Also, Mareci [187] showed that the passivation is improved by the presence of 

Ta.  

The electrochemical resistance of the passive film depends on its 

composition, according to Nakagawa [139]. Potentiodynamic polarization test 

were carried out to study Ti-8Mo-6Nb-4Zr, Ti-8Mo-6Nb-3Zr, Ti-8Mo-4Nb-2Zr, and 
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Ti-8Mo-4Nb-5Zr in Hanks solution at 37°C. It was shown that the higher Nb 

content the better corrosion resistance.  

 

 

2.5.2 Tribology 

 

 

Tribology is defined as the area of science and technology interested with 

interacting surfaces in sliding contact. Sliding is characterized as the constant 

movement of two surfaces in contact when surfaces move against each other[93]. 

Even surfaces that have a mirror finish have imperfections larger than atomic 

scale and it is an important point for friction [138, 199]. Thus, lubrification, wear 

and friction are part of tribology [200]. Friction is the resistance to the movement 

between the two surfaces in contact [200].  

Lubricants are used to reduce the friction by promoting a thin film between 

the surfaces [201].  

 
The ratio of friction force and normal load is called coefficient of friction 

and it is the usual measure of the friction. Its range is from 0.001 to 10 that also 

depends on the system [202, 203].  

Low values of coefficient of friction such as 0.01 are produced by the 

development of a thin film at the interface of the motion between the materials in 

contact and acts as a lubricant. If the film between the materials in motion are not 

homogeneous (in a mixed lubrication regime) over the contact area then the 

coefficient of friction will range from 0.01 to 0.1 [204]. 

The calculation of Hertzian contact theory for MoM THR shows that the 

elastic deformation is in the order of several micrometres. Also, the theoretical 

minimum film thickness is reported to be in order of nanometres. Then, the elastic 

deformation of the prothesis is larger than film thickness and water, serum, and 

synovial fluid are little affected by pressure. Therefore, it is concluded that MOM 

joints would work in elastohydrodynamic isoviscous regime [205]. 

The mixed lubrication regime in MOM THR is achieved by increasing the 

diameter and making the clearance low. It was observed that the lambda 

increases from less than unity for smaller diameter to up to 3 for the larger 
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diameter. This increment includes the transition from boundary lubrication to 

elastohydrodynamic EHL regime [205]. 

Lambda ratio (or film thickness ratio) is the minimum thickness and defines 

lubrication regime. Three lubricating regimes are know: boundary (λ<1), mixed 

(1<λ<5), and hydrodynamic or full film lubrication regime (λ>5). In animal or 

human joints and some hip replacements, the lubrication regime is in the 

boundary lubrication. However, for other hip replacements, the lubrication regime 

can be mixed lubrication. Fluid film lubrication is the most desirable form of 

lubrication. In this case the surfaces are not in contact and mixed regime 

lubrication is a mix of full film lubrication and some asperity contact [34]. 

 

𝜆 =  
ℎ𝑚𝑖𝑛

√Ra12+Ra22
2         Eq. 9 

 

Where hmin is the minimum film thickness in relation to the composite 

surface roughness (Ra1 and Ra2). There are three regimes as defined from the 

Stribeck curve, Fig. 2.11: boundary lubrication, mixed lubrication and 

hydrodynamic lubrication. The coefficient of friction is directly proportional to the 

viscosity of the lubricant and the difference in speed is inversely proportional to 

the pressure which is exerted on the contact surfaces [34]. 

 

 

Fig. 2.11 - Stribeck curve and the lubrication regimes [206]. 

 

The surface oxide film formed on metals, polymers and ceramics acts by 

reducing the adhesion between the interfaces which leads to lower COF. Also, if 
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a material is brittle it will impact these values. Now, if a ductile material is in a 

vacuum or an inert gas atmosphere the coefficient of friction will range from 1 to 

10 [207]. The values of coefficient of friction are due to the growth of the contact 

area due to the plastic deformation of the contact areas [138].  

Friction and wear are responses to the system which relative motion, 

geometry, presence of contaminants, surface forces, load and its type, materials 

properties and environment [200]. Wear will be discussed in the next paragraphs.  

Fig. 2.12 shows the conditions in which material degradation can happen, 

known as the wear processes. If the bodies slide over each other, the wear 

process is called sliding wear. If they roll over the other the wear process is called 

rolling wear and it is common for ball bearings. Fretting wear occurs when a 

reciprocating sliding wear is a small amplitude (smaller than sliding). When the 

surfaces have hard particles abrading the soft surface, it is called abrasion wear 

[208]. When a fluid carries those hard particles the wear process is called erosion 

and this process is characterized by a particle impact where combined 

mechanical and chemical attack occurs  [209]. The movement of the surfaces 

can be unidirectional (pin–on–disk test) or it can be reciprocating. Nevertheless, 

the term tribocorrosion is normally attributed to sliding contacts [210]. 

 

 

Fig. 2.12 – Tribological contact modes [210]. 

Literature review 



54 

The relative motion will generate damage on the surface called wear [200]. 

Wear happens on both or one surface and loss of material can be see [93]. It 

often involves multiple wear mechanisms, the greatest of which is termed the 

dominant wear mechanism. It causes material transfer by producing surface 

plastic flow, scraping off soft surface fragments or breaking up and removing the 

surface layer due to the strong adhesive forces in the real contact area.  

The equation below shows Archard’s law, where V is the total material 

loss, A the real contact area and L is sliding distance, K is the Archard coefficient 

and it is measure wear severity. It was developed for adhesive wear. 

 
              V = K x A x L                 Eq. 10 

 

Another important factor is called specific wear rate (SWR) which is given 

by the volume loss / normal load multiplied by the sliding distance and its range 

is from 10–10 to about 10–2 mm3/N m [211, 212]. The specific wear rate is around 

10–9 mm3/Nm when there is a thin film at the interface of the motion between the 

materials in contact and is irrelevant in practice when the film is well developed. 

If the film in mixed lubrication between the materials in motion is not 

homogeneous over the contact area then the specific wear rate will range from 

10–8 to 10–2 mm3/Nm [204] and if a ductile material is in a vacuum or in an inert 

gas atmosphere the specific wear rate will be above 10–3 mm3/Nm [207]. 

The characteristics of the relative movement between two surfaces in 

contact express the wear processes. During sliding between two materials, three 

stages are seen: running in stage, steady stage and wear transition. The running 

in stage is discussed in the next paragraph. The steady stage is characterized by 

a steady wear rate and coefficient of friction. The last step occurs just when an 

increase or decrease in wear rate. This is caused by a change in the wear 

mechanism and coefficient of friction. This wear mechanism happens because of 

the surface temperature. If this temperature is about 50% of the melting 

temperature, a thermal softening at the contacting asperities is seen. Thus, the 

material is not able to support the oxide layer anymore [213]. 

The ‘’running in’’ period in a point sliding contact has been seen in many 

metals [205]. The running in period in a point sliding contact relies on the tests 

system and geometry of contact [177, 214]. It can be 1 million cycles in in vitro 

test or 1 year in vivo. This phase is characterized by small wear debris and 

abrasive wear. The wear rate after reaching running in increases and failure may 
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occur [171, 177, 215].  Calcium phosphate is formed on Titanium surfaces in the 

steady state, after the running in period. It is not clear if calcium phosphate can 

reduce the wear rate [159, 216, 217]. This transition from running in period to 

steady state is associated to smother surface and change of mechanical 

proprieties [216]. 

 

 

2.5.2.1 Wear mechanisms 

 

 

There are several wear processes in practice, but there are four central 

wear mechanisms: adhesive wear, abrasive wear, tribo–oxidative wear and 

fatigue wear. An understanding of these wear mechanisms is vital to correctly 

control each wear process. [204, 218-220].  

Adhesive wear occurs when asperities from the worn surface bond to each 

other due to plastic deformation. The adhesive forces between the asperities on 

the surface have an important role in the formation of wear fragments. This 

mechanism is described by Archard’s theory. After a few cycles, bonds break and 

cavities are seen, which can act as wear particles. The electron transfer makes 

the adhesion of those surfaces strong. Normally it happens with metal–on–metal 

[218, 221]. In ductile materials, plastic junctions form at the contact asperities 

when sliding. Adhesion occurs at the junctions that in some scenarios may be 

more resistant than the bulk material. Thus, the dislocation at some asperities 

may be due to fracture in the asperity bulk than by shearing at the interfaces. 

Such a fracture marks the development of loose wear debris [222]. Stopping the 

plastic deformation is a way to avoid adhesive wear. Metals with a hexagonal or 

body centred cubic crystal structure are more wear resistant than metals with a 

face centred cubic (FCC) crystal, since the FCC have a greater number of slip 

systems which make it more ductile. Other two ways to avoid this wear 

mechanism are improving the hardness, because it reduces the plasticity of the 

surface, and the presence of hard particles. [138]. 

The repeated plastic deformation at the asperities may induce local fatigue 

damage or a growth of plastic deformation. These processes include wide zones 

in the sub–surface contact regions and contribute to the material weakening. 
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Hereafter, it brings the formation of a wear debris once critical damage is attained 

[223, 224] 

Tribo–oxidative wear is due to the interaction of the surfaces with an 

environment containing oxygen. Tribo–oxidative wear is thus given by a 

combination of oxidative and mechanical actions at the contacting asperities 

[204]. In general, it is accompanied by the formation of a surface oxide scale, 

which avoids the metal to metal contact at the asperities and may act as a sort of 

solid lubricant, thus reducing friction and wear. There are different situations that 

may lead to tribo–oxidative wear. Tribo–oxidative wear commonly occurs at high 

temperatures. The high temperature is reached by the environmental 

temperature or at high sliding speed [221]. The oxide grows at the asperity tips 

and detached once a critical thickness is reached. The oxide breaking thus 

produces wear fragments and generates a fresh surface that can oxidize again, 

thus continuing the process [218]. 

This wear process also occurs at low sliding speed and its steps are: at 

the contacting asperities, metallic fragments are generated by adhesive wear. 

Some may leave the tribological system and some may remain trapped between 

the mating surfaces. Such fragments are strain–hardened, fractured, oxidized 

(oxidation is activated by the very high surface area and the high density of 

surface defects) and agglomerated. If the load and sliding conditions are intense, 

a tribological layer made of compacted scales is formed. If the contact 

temperature is sufficiently high, the scales sinter and form a protective glaze layer 

on the top. Possible brittle fracture of the scales (orthogonally to the sliding 

direction) leads to the generation of fragments that may remain in the contact 

region or leave the tribological system [204, 225]. 

Abrasive wear happens when two materials are rubbed against each other 

and they have a similar hardness [204]. It is characterised by the indentation and 

grooving of a surface by a counter–body. This occurs only in cases when the 

counter–body, abrasive, have higher hardness than the rubbed material. It 

happens by microcutting, facture, ploughing or grain pull out.  This wear 

mechanism also has two modes: two body and three body abrasive wear [204]. 

The existence of wear debris is inevitable, and they may come from the 

surrounding environment or from one of the materials involved, even if the 

surfaces are lubricated or not. The removal of those particles leaves grooves on 

the surface. The grooves are a result of plastic deformation due to contact from 
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the asperities on the counterpart. Plastic deformation and brittle fracture are 

present together in abrasive wear. The main way to avoid abrasion is to increase 

the surface hardness of the material and reinforce introducing hard phase is a 

solution for metals [93]. 

Also, several other minor mechanisms may occur. The table below 

summaries all wear processes [226]. 

 

 

Table 2.3 – Common observed wear mechanisms and descriptions [43].  

 

 

 

If all the plastically deformed material is removed, wear mode is by 

microcutting. If all the plastically deformed material flows to the sides of the 
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groove, wear is by microploughing. Conversely, in the presence of lubrication, 

flowing water included, the lubricant can remove the wear fragments of the 

abraded material, avoiding their accumulation that would block the abrasive 

action of the particles. In addition, lubricant reduces friction between the hard 

particle and the abraded surface, and this favours wear by microcutting [227]. 

The two–body abrasion mode is caused by the asperities of the 

counterpart. Three body abrasion mode is caused by the presence of free wear 

debris rolling between the surfaces in contact. If this particle is small or smooth 

the surface damage is small. This is similar to erosion wear, but in this later the 

particles need to be carried by liquid or gas [93].  

Wear by contact fatigue is a typical fatigue failure: with the application of 

cyclic loading, a crack is nucleated and then it propagates up to the final fracture. 

This means that a wear fragment is produced after some cycles that correspond 

to the fatigue life of the loaded part. In addition, in most cases and depending on 

the intensity of the applied load, the overall damaging process takes place under 

small–scale plastic deformation, and the worn region appears macroscopically 

free from large plastic deformations [204, 221]. 

 The wear rate is given by the ratio between the wear volume and the 

sliding distance. Archard’s law is used to analyse the wear damage of worn 

surfaces and was developed by considering a single asperity deformation  for 

adhesive wear [93, 228].   

 

 

2.5.2.2 Mild wear severe wear 

 

 

Wear is classified by two conditions: mild and severe. Large values of wear 

rate (> 5 x 10–3 mm3/m) and specific wear rate (> 10–4 m2/N) wear is severe. 

Adhesion and abrasive wear are classified by severe while tribo oxidation is mild. 

Cracks and extremely rough surfaces are observed on severe wear. The 

transition between these two conditions is not clear and an intermediate region 

with a mix transitional behaviour exists. In this case it is useful to analyse a 

material by the so–called wear map which load and sliding speed varies in 

laboratory tests and plotted in a graph range to determine each condition. In 

metals, the higher the hardness the lower the specific wear rate because when 
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hardness is increased the capacity of a metal to support the oxide layer also 

increases. Also the presence of a lubricant film between two contact surface 

prevents the direct contact between the asperities reducing the sheer stress 

[213].  

The wear material loss process has been investigated widely. However, 

this process in vivo is complex since not only wear exists but also corrosion is an 

important factor on material degradation [229]. 

 

 

2.5.2.3 Tribology of metallic biomaterials 

 

 

While wear refers to material loss and it is a mechanical process; wear 

rate is the material loss volume over time. In the real implanted prothesis sliding 

wear is the process and wear and corrosion coexist. Materials with high wear rate 

in experiments such as ball on disk test are expected to have the same behaviour 

in replacements [143, 230]. 

Corrosion resistance and wear resistance are proprieties that do not rely 

only to the material. They depend on the dominating deuteriation mechanism and 

to the tribological system (counterpart, lubricant, load and electrolyte). It is not 

possible to improve the resistance of a material to one of the wear mechanisms 

in general but suitable materials have to be selected based on the information 

available of the conditions. 

 

 

2.5.3 Tribocorrosion 

 

 

The wear process has its own mechanisms as well as corrosion. However, when 

both occur at the same time, specific mechanisms are seen such as 

tribocorrosion, corrosion fatigue and fretting corrosion  [231, 232]. 

The material loss in a tribological contact in a corrosive environment is 

called tribocorrosion (degradation due to the simultaneous action of chemical and 

mechanical effects) [210, 233]. In other words, tribocorrosion is the interaction of 

electrochemical and mechanical wear or a study of two different scientific 
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domains: tribology and corrosion. The degradation of materials used as implants 

were believed to degrade by only mechanically action due to tribological contact. 

Nevertheless, these materials are in a biological fluid that is a corrosive 

environment. Corrosion resistance in this case is not the only important propriety, 

since the passive film may be removed and the corrosion process accelerated. 

This process happen in several conditions and this transformation is permanent 

[234-236].  

A common situation in a sliding condition is the wear due to two or three 

bodies. It is observed in fretting corrosion and also in ball bearing under contact. 

Another case that may results in tribocorrosion is particle impact that causes 

mechanical removal and chemical attack on the surface. A passive metal forms 

a protective layer that works as a shield from corrosion. However, this layer can 

be removed by mechanical repassivation. Normally, metals under this system 

show a corrosion acceleration, where wear enhances corrosion rate [160, 210].  

In order to control the surface chemistry, it is necessary to understand the 

electrochemistry of the system in tribological contact. The connection between 

friction and electrochemistry processes is subject of many researches.  The 

passive film has an important role on mechanical degradation and friction can 

change the corrosion resistance of metals [233, 237]. Corrosion is also enhanced 

due to the galvanic coupling between worn and unworn surfaces [199]. 

A passivated metal forms a layer who acts as a protection against the 

corrosive environment and corrosion. However, if there is a rubbing (real situation 

of a prosthesis) that removes partially or totally the passive layer, the corrosion 

rate will be enhanced (wear–accelerated corrosion), because the metal will 

depassivate leading to metal ion release, even if it subsequently re–passivates. 

Normally the degradation due to the mutual action of corrosion and wear are 

higher (synergetic effect) or lower (antagonistic effect or negative synergism) than 

that of adding separately the corrosion and wear. Many mechanisms of 

tribocorrosion are not yet fully understood. Fig. 2.13 shows tribocorrosion of 

passive metals [100, 238]. 
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Fig. 2.13 – Tribocorrosion process of passive metals [232]. 

 

In the late 1970s and early 1980s several groups simultaneously studied 

the effect of wear on corrosion in abrasion-corrosion, erosion-corrosion and 

sliding-corrosion systems in different industrial applications. The open circuit 

potential (OCP), potentiostatic or potentiodynamic electrochemical techniques 

were used in an attempt to determine the synergies between wear and corrosion 

of Iron based alloys. Although similar trends in the synergistic effect of wear on 

corrosion rates were found, no systematic approach or model was proposed for 

understanding wear-corrosion (tribocorrosion) interactions [138].  

Later, between the mid-1980s and early 1990s a group in the US Bureau 

of Mines proposed the first model for describing the interaction between wear and 

corrosion by elaborating a series of equations able to determine the extent of 

synergism existing in mining and mineral processing equipments. They based 

their experiments which determined the synergism between wear and corrosion 

of a high carbon steel using a jet impingement system by subtracting the pure 

abrasion rate and the electrochemical corrosion rate from the total material loss. 

The approach proposed by the US Bureau of Mines was later published in a 

standard guide for the determination of the synergism between wear and 

corrosion of metallic materials in liquid solutions or slurries [149]. 

The experiments proposed in the standard consist of measuring the 

individual contribution of corrosion (Co) in a separate test where the mechanical 

part is eliminated; the individual contribution of wear (Wo) by applying a cathodic 

potential of 1 V versus OCP during wear to eliminate the corrosion component; 

and the concurrence of wear-corrosion by the total material loss (T). Thus the 

total material loss due to tribocorrosion can be expressed as the sum of the 

material loss due to pure wear, the material loss due to corrosion in absence of 

wear and the synergistic factor (S), which is the combined effect of wear and 
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corrosion [149]. Friction is highly dependent of potential applied due to the metal 

sensitivity to hydrogen embrittlement, that is why the standard fixes these 

potential values. 

The synergism between corrosion and wear on tribocorrosion is 

mathematically expressed by equation 11 and it is known as the synergistic 

approach, proposed by ASTM G119.09 standard  [22, 239, 240]: 

 

T = Wo + Co + S               Eq. 11 

 

T:  Total material loss  

Wo:  Material loss rate due to wear  

Co:   Material loss rate due to corrosion  

S:  Material loss rate due to corrosion and wear 

 

The synergistic term (S) is defined as the sum of the change in corrosion 

rate due to wear (wear-accelerated corrosion, ΔCw) and the change in wear rate 

due to corrosion (corrosion-accelerated wear, ΔWc). S is expressed by equation 

9: 

 

S = ΔWc + ΔCw                Eq. 12 

 

ΔWc: The increase of wear due to corrosion. 

ΔCw: The increase of corrosion due to wear. 

 

The effect of wear on corrosion (ΔCw) is referred to in the standard as the 

‘additive effect’. The ‘synergistic effect’ is defined as the enhancement of wear 

due to corrosion (ΔWc) and the ‘negative synergism’ or ‘antagonistic effect’ is the 

protection of the surface against further wear due to the electrochemical 

formation of a protective layer [149]. 

 

Then, the equation 11 can be expressed: 

 

T = Wo + Co + ΔWc + ΔCw             Eq. 13 

In addition, the total contribution of corrosion is given by Cw and the total 

contribuition of wear is given by Wc. 
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Cw = Co + ΔCw                Eq. 14 

 

Wc = Wo + ΔWc                Eq. 15 

 

According to ASTM G119.09 standard [240], material loss rate is 

expressed by the following equation: 

 

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑙𝑜𝑠𝑠 𝑟𝑎𝑡𝑒 =  
8760 𝑥 𝑊𝑒𝑎𝑟 𝑡𝑟𝑎𝑐𝑘 𝑣𝑜𝑙𝑢𝑚𝑒

𝑊𝑒𝑎𝑟 𝑡𝑟𝑎𝑐𝑘 𝑎𝑟𝑒𝑎
        Eq. 16 

 

It is expressed by mm/year [145, 240]. 

 

Yan [241] used this approach to identify the components of volume loss 

for high and low Carbon CoCrMo alloys and 316L stainless steel in 50% serum, 

Dulbecco’s Modified Eagle’s Medium (DMEM) and 0.36% NaCl solution; and 

identified that material loss in 50% serum is predominately due to wear and it 

changes with other electrolytes used.  

Martin [242] studied the tribocorrosion behaviour of Ti-6Al-4V in NaCl 

solution and found that corrosion increased during wear and it was atribuited to 

the removal of the passive film. Mechanical wear was also increased when the 

surface was subjected to corrosive solution. It was atribuited to the formation of 

harder wear debris during anodic wear, which acts as an abrasive during sliding, 

and thus increases the mechanical wear. Other studies can also be found 

elsewhere [243, 244]. 

It is not possible to make a mechanistic interpretation of the tribocorrosion 

process using the synergistic approach because the current techniques are 

limited. The techniques measure separatedly the mechanical and corrosion 

contributions. Because of this limitation, the synergy is evaluated using external 

references such as application a cathodic potential to avoid metal dissolution and 

then determine the materal loss due to wear (Wo). Moreover, according to 

Akonko [245] and Espallargas [246] this method is dependent on the cathodic 

potential  and electrolyte applied. Wear varies up to 1 order of magnitude when 

cathodic potential is changed to other values due to the metal sensitivity to 

hydrogen embrittlement [245]. Another important approach is called the 
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mechanistic approach. The mechanistic approach distinguishes two main 

contributions: anodic dissolution (wear-accelerated corrosion) and mechanical 

removal of metal particles (mechanical wear). A mechanistic approach for 

fretting-corrosion systems was first proposed by Uhlig in 1954, stating that the 

mechanism of fretting corrosion includes a chemical factor and a mechanical 

factor, with observed damage, in general, resulting from both. A methodology for 

quantifying the two contributions was developed at the Ecole Polytechnique 

Fédérale de Lausanne (EPFL, Switzerland) in the early 1990s. They observed on 

one hand that the electrochemical material removal rate is strongly influenced by 

mechanical parameters and, on the other hand, that the mechanical material 

removal rate depends on the prevailing electrochemical conditions [138]. This 

approach extensively used in erosion and abrasion-corrosion has been also 

applied to sliding systems of passive materials and coatings. 

This approach is expressed by the equation [247, 248].  

 

Vt = Vm + Vc                 Eq. 16 

 

Where Vt is the total material loss, Vm is the material loss due to 

mechanical wear and Vc is the material loss due to corrosion in mm3. Using 

Faraday’s law, the materials loss due to corrosion is found using the following 

equation. The excess current can be related to the material loss through 

Faraday’s law, 

 

𝑉𝑐ℎ𝑒𝑚 =  
𝑄 𝑥 𝑀

𝑛 𝑥 𝐹 𝑥 𝜌
               Eq. 17 

 

𝑄 =  ∫ 𝑖𝑑𝑡
𝑡

0
                          Eq. 18 

 

𝑉𝑐ℎ𝑒𝑚 =
𝑖 𝑥 𝑡 𝑥 𝑀

𝑛 𝑥 𝐹 𝑥 𝜌
               Eq. 19 

 

Q is the electric charge flowing in the wear track (C), i is the average 

current (A) during rubbing for polarization tests (cathodic and anodic potentials) 

and for the OCP test i is the corrosion current (A) found by potentiodynamic test, 

t is the time (s) of rubbing, n is the charge number for oxidation reaction, F is the 

Faraday constant (96500 C/mol), ρ is density of alloy (g/mm3), M is the atomic 
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mass of alloy (g/mol). This is the only way to analyse the tribocorrosion behaviour 

of a material and it is important to consider that material loss volume due to 

corrosion is related only to the worn surface [24, 249, 250].  

Mischler [22] published a critical appraisal of the main electrochemical 

techniques and evaluation methods used in tribocorrosion research with special 

emphasis on sliding and fretting situations involving passive metals. They showed 

that the synergetic approach and mechanistic approach are one of the main 

methods used to quantitatively describe the synergistic effect between corrosion 

and wear. 

Even though this approach has been used [210, 249, 250] there are some 

issues that still need to be considered. The volume is a result of the whole 

process, and there is no information generated as to differing electrochemical or 

chemical states on the surface of the material over the time during the progress 

of the process [22]. 

Many studies for investigations of wear and corrosion have used those 

equations [233, 251, 252] and their interactions in an environment where active 

biological solutions or saline solutions are used [70, 233]. Marques [253] studied 

the synergism biofunctional titanium oxide films and concluded wear as dominant 

mechanism. The contribution of wear and corrosion and their synergistic effect 

on the tribocorrosion process of TiCxOy thin films for decorative applications were 

analysed by Mathew [254]. It was observed that tribocorrosion process is 

dominated by wear process. 

Khan [255] studied the synergism of corrosion and wear of Ti alloys for 

biomedical use. An increase weight loss due to the presence of corrosion is found 

in wear tests. However, with proteins, a weight gain was observed. 

Tribocorrosion can be studied using different experimental procedures to 

control mechanical and electrochemical settings. Tafel test (polarization) can be 

applied to obtain an anodic environment and test a material under corrosion and 

rubbing. Normally, when a material is under anodic environment, its anodic 

current increases when rubbing starts due the removal of the passive film [256, 

257]. Moreover, wear–accelerated corrosion relies on the material used, 

environment, force applied and the potential range. The manifestation of 

tribocorrosion is most common in industries such as marine, mining, aerospace, 

food, nuclear, chemical, and petrochemical. The fundamental mechanism and 

their overwhelming factors are not well understood. Examples of tribocorrosion 
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problems in industry are: the accelerated corrosion of steel conveyors exposed 

to ambient air of high relative humidity, the fall out of electrical connectors in the 

automotive industry, the degradation of orthopaedic prosthesis and dental fillings 

and the erosion wear of turbine blades. Finally, some researchers have realized 

a modification on surface proprieties of materials after tribocorrosion process 

[208, 210]. 

Tribocorrosion is an important factor in the damage caused to biomaterials 

used as joints and it is the principal contributor to the early deterioration of 

implants. Therefore, it is of extreme importance to understand the tribocorrosion 

behaviour of the materials used as replacements to avoid problems. The long–

term durability of Metal–On–Metal (MOM) joints relies on control of both their 

corrosion resistance (relating to ion release) and wear behaviour (relating to 

creation of nanometre scale wear debris). A THR is illustrated on Fig. 2.14 where 

three interfaces are illustrated and it shows the femoral head and stem 

experience micromovements between the prosthesis and bone [210, 234]. 

The metals are used for femoral part of the implant are CoCr or Ti alloys. 

Usually, the anatomic medullary locking (AML) stem is made of CoCr alloys and 

the socket is made of Ti alloy. MoM hip implants were introduced in 2002 and are 

popular because they have a low wear rate. Ceramic-on-ceramic (CoC) implants 

are newer and a metal oxide is used as the ceramic for both the ball and socket. 

Although the release of wear debris is decreased, the concern with metal ions 

accumulating in the body from the MoM implants and the risk of the ceramic 

implants fracturing are design relevance to these types of implants. The 

metallurgy, diametric bearing clearance, sphericity, and surface finish of MoM 

implants may be the most important engineering factors for the success of the 

implants [258]. 

Current concerns regarding MoM implants are the higher release of CoCr 

as compared to their release in metal-on-polyethylene (MoP) articulation. 

Electrochemical issues MoM implants may present a problem because they 

release metal ions into the body. It has been well documented that patients with 

MoM hip replacements have increased the level of metal ions in blood and urine 

studies [259]. 

A difference in the cellular response to different types of metal-alloy 

particles of the same size has been demonstrated in several analysis. Even 

though CoCr particles are the most toxic to the body, particles from less toxic 
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alloys may be worse because of their ability to cause the release of inflammatory 

mediators. Although many studies have shown potentially adverse 

pathophysiological effects related to metal ions including Co, Cr, Ti, Al, and Ni in 

the human body, the definite effects have yet to be determined. Toxicity, 

carcinogenicity, and metal allergy are the most significant concerns. Compared 

to the other types of bearings, ceramics bearing surfaces have the lowest wear 

rates. Because of these low wear rates and the improvement in the quality of the 

ceramic material to reduce the risk of fracture, the use of ceramics in hip 

arthroplasties, especially for younger and more active patients, may provide the 

best opportunity for the long-term success of hip implants. CoC implants can be 

expected to last twenty years. Despite continuing research and improvements in 

components of hip implants, an ideal hip prosthesis has yet to be created [63]. 

The deposition of proteins on a surface under rubbing can form a layer 

called a tribolayer. Some researchers have found that it can enhance wear for 

some alloys. However, other researchers have found that the tribolayer can 

reduce the wear rate for other materials [209]. Raman spectroscopy is used to 

study the presence and nature of the tribolayer. Lindquist [260] studied the 

tribofilm formation of TiC and TiAlC coatings. The lower friction was attributed to 

the presence of only disordered amorphous Carbon on TiAlC surface. Namus 

[261] studied proteinaceous surface film formation of CoCrMo alloys in several 

normal loads. The lowest specific wear rates were found at 40N and 60N which 

is associated to the formation of proteinaceous film. 

 

 

Fig. 2.14 – A total hip replacement and its interfaces [234]. 
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The techniques that involve the study of corrosion and tribology have been 

developed recently and allow the study of tribocorrosion systems. One of the 

most common is the use of a potentiostat. It permits the control of the potential of 

the system and study the behaviour of a material over different conditions. It 

works by imposing a potential on a sample and then monitoring the current as a 

response of the sample during rubbing. When rubbing is taking place the system 

is perturbed which leads to the removal of the passive film which affects the 

corrosion rate. Also, the potentiodynamic test is used to measure the corrosion 

potential and corrosion current or a specific potential can be applied to analyse 

the behaviour of a material during rubbing. Potentiostatic and potentiodynamic 

tests combined with wear are common techniques used to study tribocorrosion 

[236, 238]. 

When OCP and wear tests are combined, the material shift to active from 

passive state because of the disturbance of wear on the surface [262]. This leads 

to galvanic coupling. If the passive film is removed during this test, a drop of the 

potential to the cathodic area is seen, called cathodic shift [263]. This change is 

only seen on passive metals and active metals show similar performance in OCP 

with or without rubbing [264]. 

The potentiostatic technique is characterized by the application of friction 

at just one potential. It records the material response to the current density and 

friction. It gives information about a material tested in the condition chosen such 

as passive or active areas [210]. The difference between potentiostatic technique 

and potentiodynamic technique in the latter potentiodynamic sweeps are applied. 

Current is also measured, but this test gives the chemical and electrochemical 

change during rubbing, and friction is also affected  [183, 199].   

A tribocorrosion cell set up is shown in Fig. 2.15. The corrosion cell has 3 

electrodes: the reference electrode, working electrode (sample) and counter 

electrode in a solution that normally mimics the synovial fluid. This last is a 

complex body fluid that has proteins, organic molecules, cells and salt. It acts as 

a lubricant and as a corrosive fluid. In general, a tribometer measures the 

response of the material tested by applying frictional forces in an electrochemical 

environment and monitors the corrosion of the system [238]. It measures the 

current, potential and coefficient of friction and is useful for subsequent analysis 

and correlation with other information from the worn area. It can be used to test 

samples for orthopaedic and dental application, for example. Wear tests are 
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normally performed with electrochemical methods in order to test the 

tribocorrosion behaviour of a material. [8, 210]. 

 

  

Fig. 2.15 – Tribocell and potentiostat [236]. 

 

It is important to understand the tribocorrosion behaviour of materials used 

as medical devices to avoid further revisions. Hip and knee simulators in 

laboratories are widely used to test materials and designs before they go to 

clinical trials. Such simulator tests and simple wear tests are always referred to 

as in vitro tests, while in vivo tests are experiments performed in the living 

organism. 

Tribocorrosion experiments are used to study different conditions and their 

effects of parameters on passive film formation [265, 266]. Human synovial fluid 

is complex and the stability of the passive film may be modified by its action and 

the relative motion of implanted devices. 

Another layer may be formed when two surfaces are in relative motion. 

This layer is called tribolayer (or tribofilm) a kind of fluid that contains proteins 

and it may be constituted by the debris generated, organic species and ions from 

the destroyed passive layer. The tribofilm has an important role on the 

performance of joints. However, its formation and proprieties are lacking studies 

[21, 267, 268].  

The organic components may affect the wear performance of alloys used 

for hip replacement. The proteins in synovial fluid can form a proteinaceous film 

on the biomaterial surfaces immediately upon implantation. During the wearing 

process, there may be some kind of organic-metallic composite formed on the 
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surface. The tribofilm is carbonaceous its nature is specific to the sliding 

mechanisms [269]. 

Hallab [270] discussed the interfacial kinetics of the adsorbed biofilm 

composition and the released metal-protein complexes. The hypothesis that 

some interfacial properties such as metal-protein interactions are alloy and 

element-specific was demonstrated. These interfacial properties may influence 

long-term biological interactions of metallic biomaterials.   

Wimmer [271] remarked that the carbonaceous film contains graphite. As 

graphite is a standard solid lubricant that is known to perform well in the presence 

of water, the existence of graphite has an important role in reducing friction as 

well as corrosion and wear. The detail of its formation is not fully understood. It 

could arise as a result of very high temperatures and shear stresses that are 

generated by the contacting asperities roughness in the artificial joints or the 

tribological effects of friction, lubrication and wear on the joint. 

Liao [272] used several advanced techniques, such as FIB, SEM and 

Raman Spectroscopy to characterize the tribofilm on the surface of retrieved hip 

implants. They found that the tribofilm in MoM hip replacements is primarily 

graphitic carbon, which can reduce friction as well as wear and corrosion. 

Yan [273] observed the surface of a retrieved hip implant as  well  as  a  

hip  components from a  hip  simulator  by scanning electron microscopy (SEM), 

and found a tribofilm of about 15-80 nm thickness. It was reported that the 

formation of this tribofilm was attributed to the chemical reaction between organic 

species (proteins) and metal ions, and the tribofilm contains organometallic 

formations. 

Electrochemical experiments showed the effect that the tribofilm has on 

the electrochemical character during the process of wearing. The total material 

loss and ion concentration after testing in serum and in NaCl were also measured. 

It was shown that due to the presence of the tribofilm, the total material loss and 

ion release in serum were less than that in NaCl. So the tribofilm can effectively 

limit the wear of MoM bearings. It can be concluded that a protective tribofilm can 

be formed by the interaction between proteins and released ions during the 

wearing process both in vitro and in vivo, and in turn reduces metal ion release. 

By applying a positive potential, under tribological contact with proteins, the 

tribofilm can form more quickly. The exact mechanism is still unknown and needs 

further investigation [274]. 
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The studies of tribocorrosion focus on wear, corrosion and wear–corrosion 

of the most used metallic biomaterials alloys. These studies face challenges since 

simulating real conditions such as sliding movements, chemical environment, 

presence of proteins, contact conditions, pH and temperature is not an easy task, 

and the role of the proteins are not well understood. Another issue is the lack of 

standard test procedures because it is a relatively new field [275, 276].  

Even though reciprocating wear tests cannot perfectly represent the real 

tribological contact of hip prosthesis in vivo, it has been accepted as a standard 

testing technique to describe the surface performance under simulated conditions 

[257]. 

  

 

2.6 Current status of tribocorrosion of Titanium 

 

Surface treatment developments, performance and wear mechanisms and 

the effect of variables such as temperature, mechanical load, nature of electrolyte 

and speed are the main focus of recent studies of tribocorrosion of Titanium alloys 

[277, 278]. The repassivation capacity of a material under a wear process, 

microstructure, tribological and electrochemical proprieties have great 

importance in tribocorrosion proprieties of titanium alloys. Therefore, authors 

believe that this is a complex subject, but tribocorrosion plays the most important 

factor. 

S.J. Li tested the wear behaviour of Ti–29Nb–13Ta–4.6Zr and Ti–6Al–4V 

in NaCl solution and concluded that oxidation treatment improves wear resistance 

of Ti–29Nb–13Ta–4.6Zr due to the formation of a hard, lubricating Nb2O5 oxide 

layer on the surface of the alloy during sliding wear test, whereas such a 

treatment has no effect on Ti–6Al–4V. In addition the increase of Nb content 

improves wear resistance of Ti–29Nb–13Ta–4.6Zr alloy [114] and Geetha found 

that low levels of Nb leads to high amount of alpha phase and inferior corrosion 

behaviour on Ti–13Nb–13Zr alloy in Ringer’s solution [109]. Ti–29Nb–13Ta–

4.6Zr showed COF of 0.4 in reciprocating sliding condition in Riger’s solution 

[279] and Niinomi observed that Ti–29Nb–13Ta–4.6Zr presented lower material 

loss in Riger’s solution than in air during wear test [280]. Diomidis tested Ti–

29Nb–13Ta–4.6Zr in Hank’s balanced salt solution and observed that the 

material loss is higher at passive potential than at OCP [236]. 

Literature review 



72 

Buciumeanu found that the wear resistance of Ti64 tested in a Phosphate 

Buffered Saline (PBS) fluid relies on its manufacturing process, microstructure 

and hardness. This test presented COF 0.4 and the specific wear rate changed 

with manufacturing process where the cast material presented specific wear rate 

of 9x10-4 mm3N-1m-1. Abrasive wear was identified as the main wear mechanism 

[129].  

Abrasive wear was also identified as the main wear mechanism on Ti-

13Nb-13Zr tested in Hank’s solution and COF of 0.46 [83]. Ti–13Nb–13Zr alloy 

in Ringer’s solution presented wear rate of 0.035 mm3/m and wear resistance 

lower than Ti64 which is harder. The both alloys exhibit spontaneous passivity in 

naturally aerated Ringer’s solution at 37oC [193]. 

Yang observed that the dominant wear mechanisms of Ti-12Mo-6Zr-2Fe 

in simulated body fluid are abrasive wear and tribo-chemical d and the COF in 

dry condition and in SBF was 0.8 [104]. Hacisalihoglu also used SBF to test Ti–

13Nb–13Zr and found this alloy becomes more active when rubbed at OCP due 

to the removal of oxide layer and has a lower volume loss than other Titanium 

alloys such as Ti64 [281]. 

In 2002, Stryker developed two products called ABG II Modular and 

Rejuvenate Modular. These products were recalled by the US Food & Drug 

Administration (FDA) in 2011 due to the high levels of wear debris generated by 

the movement of the stem and neck at the contact point where they fit together. 

These products have a separated stem (Ti-12Mo-6Zr-2Fe) and a modular neck 

(CoCr alloy) and are made of alloys with different hardness, where CoCr alloy is 

harder and the wear debris are generated from the stem material under the 

conditions of articulating surfaces within the environment of the body [104]. 

However, Ti-12Mo-6Zr-2Fe alloy is a β alloy with low elastic modulus and has 

nontoxic elements.  

The passivation and repassivation during rubbing, microstructure and 

alloying elements have an important role on tribological, electrochemical and 

tribocorrosion behaviour on Ti alloys. Understanding the tribocorrosion behaviour 

of Ti alloys for biomedical applications in body simulated fluid is vital for future 

alloys development because long lasting biomaterials are required. It includes 

synergy studies and identifying any link between tribocorrosion resistance, 

passivity and subsurface phase transformation. A study with this approach must 
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be performed since knowledge in this area is limited and Titanium alloys are 

promising biomaterials (low density, corrosion resistant and low elastic modulus). 

This project studies wear and tribocorrosion behaviour of Ti–13Nb–13Zr, 

Ti-12Mo-6Zr-2Fe, Ti–29Nb–13Ta–4.6Zr aged at 300oC and Ti–29Nb–13Ta–

4.6Zr aged at 400oC in bovine serum solution at 37oC in order to obtain a better 

understanding of the effect of alloying elements and microstructure on these 

phenomena by analysing parameters such as COF, specific wear rate, volume 

loss, roughness, tribofilm formation, synergism and phase transformation. 

 

2.7 Summary 

 

This chapter gives an overview of biomaterials, wear, corrosion, 

tribocorrosion and synergism. Issues that led to surgery revision such as stress 

shielding effect and toxicity were discussed. Also an overview of current 

biomaterials used as biomaterials such as stainless steel, CoCr alloys and 

Titanium as well as their limitations was discussed.  

The focus of this chapter was particularly Titanium alloys where their 

characteristics and properties were discussed as well as their use as 

biomaterials. β  Titanium alloy show lower density and lower elastic modulus than 

stainless steel and CoCr alloys which makes them a good candidate for 

biomaterials application. However, Titanium alloy have poor wear resistance 

which leads to high ion realise to human body. Moreover, the tribocorrosion 

phenomena and mechanisms of titanium alloys in different electrolytes are not 

fully understood and studies are needed to contribute to this topic and for future 

alloys development. 

The question then arises: what is the effect of microstructure and 

electrochemical condition on tribocorrosion behaviour of Ti alloys? Do they affect 

synergy? Up to now the synergistic and antagonistic effects between the effects 

of chemical and mechanical wear have not been properly investigated for 

different microstructures of titanium alloys in bovine serum solution. 
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Chapter 3 – Experiment methods and surface analysis techniques 

 

3.1 Introduction 

 
This chapter describes the main features of the experimental work. It 

presents the material preparation, alloy composition and processing, including 

melting, heating and rolling. Also it presents test conditions of tribocorrosion test 

and the electrochemical measurements. Finally surface analysis techniques are 

described such as XRD, nanoindentation, SEM, FIB, TEM, Raman spectroscopy 

and interferometry.  

Figure 3.1 summarises the experiments used in this study to give the 

reader an overview of everything that was undertaken. 

 
3.2 Materials preparation 

 

The current investigation focused on the reciprocating sliding 

tribocorrosion testing and characterization of four different microstructures of 

Titanium alloys for artificial femoral head and stem hip–joint applications to 

compare their performance as a function of microstructure. Tribocorrosion tests 

were carried out at anodic potential, open circuit potential and cathodic potential 

for comparison. Section 5.1 focuses on tribocorrosion behaviour of the Titanium 

alloys chosen submitted to 0.5N normal load and Section 5.2 compares these 

results to 1N and 2N. The microstructure of each alloy will be detailed, and each 

alloy will be referred to by its microstructure. The Fig. 3.1 summarizes the 

processing and characterisation methods used on this project and the table 3.1 

shows the composition of the samples (in % weight) used in this study. 
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Fig. 3.1 – Summary of procedures of this project. 

 

Table 3.1 – Composition of the alloys used in this study. 

 

Alloys Microstructure Nb Ta Zr Mo Fe Ti 

1  Αβ 13 – 11 – – bal 

2  Nβ – – 4 11 2 bal 

3  Β 30 13 3 – – bal 

4  Βω 30 13 3 – – bal 

 

 

These alloys were chosen in order to compare different microstructures 

and are based upon publication data for these materials for biomedical 

applications: ASTM F 1713, ASTM F 1813 and TNTZ alloy  [5, 9, 12, 14, 18, 282]. 

The Titanium alloys were produced by a vacuum arc melting furnace using an 

Arc 200 arc melter supplied by Arcast. They were melted with DC transferred arc 

as the heat source. 100 grams of material was melted for each composition. The 

Arc Melt

Homogenazation

Rolling

Heat 
treatment

Sample preparation

Characterization Tribocorrosion test

0.5N 1N

-1 V OCP

Interferometry Raman SEM FIB TEM Nanoindentation

0.3 V

2N
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machine was evacuated and flooded with argon. The machine was equipped with 

a water–cooled hemispherical bowl Copper crucible. The temperature of the 

electric arc is typically 3000oC (to guarantee complete dissolution of the Nb, Ta 

or Mo). All materials were melted for around 25 seconds, in order to obtain cast 

samples of optimal chemical and structural homogeneity. All specimens were 

remelted three times. After melting and stirring, each sample was completely 

solidified in the crucible, then turned about its cross axis using the in–furnace 

manipulator and subsequently reheated to remelt.  

After the fourth remelting step the sample was finally cast into a round 

copper mould (6 mm of diameter). The Copper mould was at 25oC, which led to 

fast cooling, minimising segregation and suppressing dendrite development. 

Since Ti alloys undergo very strong chemical reactions with Oxygen, the samples 

were melted under an Argon atmosphere.  

After melting and casting, all samples were heat treated at 1000oC (above 

the β transus temperature) for 4 hours in an Argon tubular furnace in order to 

homogenise to remove micro–scale concentration gradients and to obtain a 

uniform composition throughout the ingot. The ingots were immediately 

quenched in cold water at the end of the annealing period to avoid ω phase 

precipitation, which is formed at intermediate and slow cooling rates. The 

samples then subjected to different deformation process and heat treatments. 

The αβ alloy was subjected to a reduction of 67% by hot rolling at 680oC. After 

that, it was solution treated at 760oC for 1 hour and water quenched. The aim of 

this procedure was to get an αβ phase alloy. The β transus temperature of this 

alloy is 735oC, Fig. 3.2. 

 

Fig. 3.2 – αβ alloy processing: rolling and heat treatment. 
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Nβ alloy was hot rolled (65% reduction), then aged at 600oC for 4 hours 

and air cooled, as can be seen in Figure 3.3. The β transus temperature of this 

alloy is 743oC. The aim of this procedure was to get a near β phase alloy. 

 

 

 

Fig. 3.3 – Nβ alloy processing: rolling and heat treatment. 

 

β alloy was cold rolled to 87% of reduction. Then, it was solution treated 

at 790oC for 1 hour, water quenched, aged at 400oC for 72 hours and finally water 

quenched, to get the β phase alloy. The β transus temperature of this alloy is 

740oC, Fig. 3.4. 

βω alloy was cold rolled to 87% of reduction. Then, it was solution treated 

at 790oC for 1 hour, water quenched, aged at 300oC for 72 hours and finally water 

quenched, to produce a βω phases alloy. The β transus temperature of this alloy 

is 740oC, Fig. 3.5. 

All samples were prepared by traditional metallography methods and 

washed in alcohol for 10 mins with ultrasonic agitation and blow–dried under 

compressed air immediately. The roughness of the samples was less than 20 nm 

for all starting surfaces. 
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Fig. 3.4 – β alloy processing: rolling and heat treatment. 

 

 

 

 

 

 

Fig.3.5 – βω alloy processing: rolling and heat treatment.  
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3.3 Test conditions  

 

3.3.1 Surface processing 

 

All samples were cut into 20x20 cm cubes using Struers Secotom 50 

cutting machine. The samples were cold mounted in an EpoxicureTm – Epoxy 

Resin 20-3430-064 mix with Epoxicure 2 Hardener 20-3430-064 to avoid any 

transformation which might occur during hot mounting. 

The exposed planar face was mechanically ground using SiC papers 

(P800, P1200, P2500 and P4000 grit for 60 seconds each), rotation 100 rpm and 

water (Buehler AUTO Met 250 Grinder-Polisher machine), and then followed by 

polishing using diamond suspensions (6 μm, 3 μm, and 1 μm for 5 mins each). 

Finally, polishing was carried out for 6 mins with colloidal silica suspension. Then 

washing with water for 2 min, and cleaned in ultrasonically bath in ethanol for 5 

min.  

 

3.3.2 Tribocorrosion tests 

 

Reciprocating sliding wear tests were carried out using a Bruker UMT Multi 

Specimen Test System (Bruker, UK) connected to the CETR UMT software. A 

ball on plate configuration, which conformed to ASTM G133 and tribocorrosion 

synergistic approach conformed to a ASTM G119.09 standard.  

The counterpart was an alumina ball with 4 mm diameter, 99% purity and 

roughness 5 – 8nm (Oakwase). An alumina ball was used as an inert counter 

face and to be able to compare the current tests with previous published work. 

This simulates the use of Titanium as tribological interface (Metal on Ceramic – 

MoC). The counter ball was installed in the upper holder, which is connected to 

a vertical linear motion system, which can take measurements to an accuracy of 

50 nm. The test specimen was mounted in the lower liquid chamber, the tribocell. 

A precision spindle at the bottom rotates the lower tribocell at the chosen speed.  

To simulate body fluids, new born calf serum (First Link) was diluted to 25 

vol% in an aqueous solution of Phosphate buffer saline (Sigma–Aldrich). Ultra–

pure water (Alfa Aesar) was used in the preparation of the solution. 1 wt% Sodium 

Azide (99% extra pure, ArcosOrganics) was added to the solution to avoid 

bacterial growth. This gave a solution a protein content of 15.5 g/L.  
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For reciprocating testing, a 2 mm stroke length and constant reciprocating 

speed of 5 Hz (0.02 m/s) was used. Although this speed is faster than in normal 

hip articulation it was chosen on the basis of previous Stribeck curve studies 

which showed that this speed allowed optimal lubrication conditions for this test 

rig. Also this speed was chosen to find out the possibility of enhancing the 

performance of these Ti alloys by simply changing the design. The test duration 

was 3h in all cases (equivalent to 54,000 cycles and 216 m sliding distance). The 

normal loads used were 0.5N, 1N and 2N. These parameters were chosen 

because this work aims to look at the worst scenario in the application and it has 

been reported that local contact pressure in the hips could reach different 

expected values [283]. 

The friction coefficients were measured by the ratio of tangential friction 

force and normal force in every second together with sliding time were recorded 

automatically by the machine during running. Tribocorrosion tests were 

performed under cathodic potential (–1 V vs OCP), open circuit potential and 

anodic potential (0.3 V vs OCP), according to ASTM G119.09 standard (Standard 

Guide for Determining Synergism Between Wear and Corrosion). Finally, the 

Tafel test was performed while rubbing. All samples were polished on colloidal 

silica and cleaned with alcohol for 10 min in ultrasonic bath 1 hour before the test. 

In order to guarantee reproducibility, these tests were repeated once and the 

results were consistent. 

 

 

3.3.3 Specific wear and COF calculation 

 

The wear rates of the materials in different lubricants were also studied. 

By using interferometry traces, the average cross–sectional wear loss area, A, 

can be calculated and it is possible to define the total wear volume loss, V, with 

the equation below:  

 

𝑉=𝐴 x 𝐷                          Eq. 20 

 

The volume was also estimated by interferometry (Contour GT 3D Optical 

Microscope, vision64 software, Bruker, UK) and no difference was found. D, the 
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stroke length of the wear track. The average cross–sectional area of each wear 

track profile was achieved by taking five measurements at different locations.  

According to the Archard theory [27, 284] for sliding wear of homogeneous 

materials, wear volume, V, can be assumed proportional to the normal load, Fn, 

and sliding distance, L. Therefore, the specific wear rate, (mm3/Nm), was 

evaluated using:  

 

𝑆𝑊𝑅 =
𝑉

𝐹𝑛 𝑥 𝐿
                Eq. 21 

 

The coefficient of friction (COF) is the ratio of tangential force and normal 

force and is measured by CETR UMT software. The normal force is a process 

input and the tangential force is measured.  

 

 

3.4 Electrochemical measurements 

 

The electrochemical properties (polarization behaviour) were measured in 

an electrochemical cell consisting of a container with a Ag/AgCl 1M KCl reference 

electrode (potential with respect to the standard hydrogen electrode is 0.235V) 

and a platinum wire as a counter electrode. This is known as a three-electrode 

cell. The Ag/AgCl 1M KCl was chosen due to its stability. The exposed areas 

were 1.54 cm2. Polarization curves were measured using a VersaSTAT 3F 

Ametek potentiostat connected to the VersaStudio software. The potential 

scanning range was from –0.25V to 0.25V vs OCP at a sweep rate of 0.5 mV/s. 

After potential stabilization, the testing was ready to start. Corrosion potential and 

corrosion current were found and analysed by the extrapolation of the anodic and 

cathodic slopes of the potential dynamic test curve, dotted lines on Fig. 3.6, using 

the CView Software (Ametek Scientific Instruments). All samples were polished 

on colloidal silica and cleaned with alcohol for 10 min in ultrasonic bath 1 hour 

before the test. 
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Fig. 3.6 - Determination of icorr from a log|i| vs E curve [138]. 

 

 

3.5 Surface analysis techniques 

 

In order to fully understand the wear mechanisms of the materials under 

investigation, the characterisation of unworn and worn surfaces is important. In 

this project, various surface characterisation techniques were employed, e.g. 

Scanning Electron Microscopy and Focused Ion Beam. 

 

3.5.1 X–ray Diffraction Measurements 

 

Structural characterization was performed, before tribocorrosion test by X–

ray Diffraction Measurements (XRD) using a KristalloFlex 710D X–ray generator, 

Siemens Diffraktometer D5000 (Cu, GAXRD), with Cu Kα radiation (1.54178 Å 

wavelength), long, fine focus sealed tube source. The working conditions were: 

40kV, 40mA. Data was collected using steps of 0.02o, ranging between 30o and 

100o, and in fixed times of 2 s. The software used to obtain the data was 

DIFFRAC Plus measurement software. DIFFRAC.EVA phase analysis software 

package was used to index the peaks and analysis. The peaks were indexed by 

first selecting alloying elements and then indexing to the software data base 

available. 
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3.5.2 Nanoindentation 

 

The reduced elastic modulus and nanohardness were measured by 

nanoindentation as a function of load and contact depth. Nanoindentation has 

become a common tool for surface mechanical properties measurement at 

extremely small scale. Nanoindentation was performed on a Hysitron, TI Premier, 

USA. A Berkovich three–sided pyramidal indenter was selected to examine the 

sample material in a wet environment. Calibration and determination of the tip 

area function was undertaken using a reference sample, fused silica (Hysitron, 

US), before and after the measurements on the test specimen surfaces. This 

material and the polished Titanium alloys samples were individually washed in 

alcohol for 10 mins ultrasonically and blow–dried under compressed air 

immediately.  

Fig. 3.7 shows a typical curve for nanoindentation, a controlled loading-

unloading cycle. Kick’s law describes the the relation between P and h [285]. 

 

 

Fig. 3.7 – Nanoindentation curve [286]. 

 

P = C x h2                Eq. 22 
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C is material constant that is independent on the indentation depth. The 

following equation shows how the contact is found [287]. 

ℎ𝑐 = ℎ𝑚𝑎𝑥 − 𝜔
𝑃𝑚𝑎𝑥

𝑆
              Eq. 23 

Where ω is geometrical parameter, it is 1 for flat punch, 0.75 for cone and 

Berkovich tip. The hardness of the material can be found as [288]: 

𝐻 =
𝑃𝑚𝑎𝑥

𝐴
                   Eq. 24 

A is the projected area which is function of contact depth. For a Berkovich 

tip it is: 

A = 24.5hc2                Eq. 25 

The stiffness of the material S is extracted from loading-unloading curve 

as the initial slope of the unloading curve. Having both A and S one can determine 

the reduced modulus Er depending on the elastic part of deformation as following 

[288]: 

𝐸𝑟 =  
√𝜋 𝑥 𝑆

2𝛽√𝐴
             Eq. 26 

Where β is constant depends on the indenter geometry, it is 1.034 for a 

Berkovich tip. Detailed calculations for elasto-plastic properties of the material by 

using nanoindentation can be found elsewhere [289]. 

Each indent had a load of 10,000 μN. 15 points were chosen on the central 

line of each wear track. Individual indent results were analysed, but also the 

average of all 15 indents were used to present the mechanical properties of the 

worn surface. The distance between each two indents were 5 μm to cover 75 μm 

of distance in total for each wear track. The software automatically calculates the 

relevant values after fitting the tip area function. 

 

 
3.5.3 Scanning Electron Microscopy (SEM) 

 

The general morphology of the wear track was characterised by SEM (FEI, 

InspectF, Netherlands) equiped with a Field Emission Gun (FEG) emitter using 5 

kV, 10 kV and 20 kV for ordinary imaging as a balance between minimising the 

interaction volume (low voltage) and maximising resolution (high voltage). The 

samples were prepared by traditional micropreparation methods (section 3.3.1) 
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and were examined in the as–polished condition (control images) and after 

tribocorrosion test. The BSE images were used to quantify the grain structure 

(size and phase fraction) by ImageJ software. 

 

 

3.5.4 Focused Ion Beam (FIB) 

 

FIB system has the basic components similar to that of a SEM with the 

major difference being the additional use of a Gallium ions. Ions can strike the 

target with greater energy density, so can write milling patterns directly on hard 

materials. The use of dual beam FIB enables the area of interest to be determined 

using SEM and then the site–specific ion milling undertaken using the Ga+ beam. 

FIB was undertaken to acquire images from the worn surfaces and to 

produce TEM samples, all samples and images were taken from the centre of 

wear track because it is where the maximum pressure is applied. FIB milling was 

undertaken using a FEI Quanta 200 3D (FEI, Netherlands). Carbon deposition 

was applied on the region of interest to prevent Ga+ implantation and sputter 

erosion of the top portion of the surface. the sample stage was tilted to 52° from 

the horizontal position to become perpendicular to the ion beam column. The 

Carbon deposit protection layers were 20 μm × 8 μm × 8 μm (length × width × 

thickness) and then two trenches (depths > 15 μm) were milled at one side of the 

deposition. The trench was milled using a range ion current from 5nA to 0.1nA of 

Ga+ ion beam for rough milling and with a 50 pA Ga+ ion beam finishing with a 

52° angle between the electron beam and the sub surface cross–sectional 

planes. Then the sample was tilted back to 0o. The FIB cross section image 

(chanelling contrast image) was taken with 50pA Ga+ ion beam and at 1ms scan 

rate. FIB was undertaken to investigate the damage accumulation mechanisms 

below the worn surface for channelling contrast image. The FIB column was 

operated at 30kV and SEM at 10kV. 

FIB can also provide a means to generate site–specific TEM samples, 

which is complicated using standard TEM foil preparation techniques. In this 

microscope, the sample stage was tilted to 52° from the horizontal position to 

become perpendicular to the ion beam column. The Carbon deposit protection 

layers were 15 μm × 2 μm × 2 μm (length × width × thickness) and then two 

trenches (depths > 7 μm) were milled at each side of the deposition. The trenches 
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were initially milled using a high ion current (5 nA), then reduced the current step 

by step (to 1 or 3 nA) as the regular cleaning steps moved closer to the deposition 

strap until sample material foil achieved with a thickness around 1μm. Then the 

sample was tilted back to 7 ° to allow the ion beam (current around 3 or 1NA) to 

cut the foil through at 45 ° and leave the other side visible with SEM. A little bit of 

material bridge was left on the right top corner position for holding the foil in place. 

Omniprobe (Omniprobe, US) was inserted into the microscope and driven to 

approach to the coincident point on the material foil until touching after the stage 

was tilted back to 0°. A small area (2 μm × 2 μm) of Carbon deposition was then 

sputtered at the connect point as glue to stick them together.  

The remaining sample bridge was then cut through and then the 

Omniprobe was retracted so that sample foil was lifted out by the Omniprobe 

micromanipulator. A particular TEM Copper grid was placed in the chamber and 

the sample foil was then attached to the TEM grid by driving the Omniprobe to 

the coincident point and glued with Carbon and Platinum deposition layer. After 

that, the connecting point of the Omniprobe and the sample foil were milled by 

ion beam, in order to retract the Omniprobe. Final thinning was done using 

progressively smaller FIB currents, to slice the outer parts of the sample material 

until electron transparency was achieved. This final cleaning cross section was 

started with FIB current of 1000 pA for the front trench and then the back trench. 

The current was gradually decreased; 50 pA was selected for the final stage 

polishing. On the other hand, the stage had to be tilted to 53.2° for front trench 

cleaning and 50.8° for back trench cleaning to reduce the beam angle effect on 

the sample foil thickness. After the final thinning process, sample foil had a 

thickness of about 100 nm. 

 

3.5.5 Transmission electron microscopy (TEM) 

 

The Transmission Electron Microscope (TEM) uses a high energy electron 

beam transmitted through a very thin sample to image and analyse the 

microstructure of materials, such morphology, crystal structure, crystal phases 

and defects. with atomic scale resolution. TEM was performed using a Philips 

EM420 TEM operating at 120kV and a JEOL JEM-F200 Multi-purpose Electron 

Microscope operating at 200 kV accelerating voltage equipped with an Oxford 

Instruments Energy Dispersive X-ray spectrometer (EDX) with Aztec software 
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version 3.1, which was used for subsurface chemical analysis. Bright field, dark 

field and selected area diffraction patterns (SAED) were obtained. The images 

were obtained by software DigitalMicrograph (Gatan Inc.). The SAED were 

indexed using the following steps: software imageJ to measure the distance of 

each spot to the central spot to calculate d spacing values. d spacing is given by 

Bragg’s equation (nλ = 2dsin θ) and then compared with the standard 

crystallographic diffraction patterns. 

 

3.5.6 Raman spectroscopy  

 

Light interacts with matter in different ways, transmitting through some 

materials, while reflecting or scattering off others. Both the material and the colour 

(wavelength) of the light affect this interaction. Spectroscopy is the study of this 

light. The Raman scattering process measures a very small fraction of the 

scattered light (frequency change). When light is scattered by matter, almost all 

of the scattering is an elastic process (Rayleigh scattering) and there is no change 

in energy. However, a very small percentage of scattering is an inelastic process, 

thus a scattered light has different energy from incident light. The frequency 

changes during the scattering process, its energy changed by interacting with 

molecular vibrations.  

In this study Raman spectroscopy (inVia Renishaw, UK) with an exciting 

laser wavelength of 514 nm at a power of 20 mW was carried out on the wear 

tracks after wear tests. Raman spectra with a focused spot diameter of 

approximately 1 µm were performed from 1000 to 2000 cm−1. Raman 

spectroscopy was used to identify the presence of a proteinaceous layer on the 

wear track. The measurements were repeated 5 times in different points of the 

worn area. A traditional fitting method was used: baseline correction, data 

smoothing, curve normalisation and Gaussian peak fitting, as recommended by 

Renishaw. 

 

3.5.7 Interferometry 

 

The wear track cross–sectional profile after reciprocating wear was 

assessed using an optical interferometry (Contour GT 3D Optical Microscope, 

Bruker, UK). This machine measured the surface roughness and wear track 
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profile of the samples. This profilometer permits accurate two–dimensional 

surface profiler measurements in a wide range of measurements using vertical 

scanning interferometry (VSI).  

VSI uses a broadband (normally white) light source. It is effective for 

measuring objects with rough surfaces. VSI uses interferometric objectives 

consisting of an objective lens, a reference mirror and a beam-splitter. A source 

directs a light beam onto the sample surface through the interferometric objective, 

where the beam-splitter separates the light into two beams. One beam is reflected 

back by the reference mirror, while the other travels along the optical axis and 

interacts with the sample. This latter beam is reflected by the sample’s surface. 

This results in an optical path difference between the two light beams and a 

pattern of interference fringes forms when the beams are recombined. This 

interference pattern is composed of light and dark bands: when the two beams 

are in phase their amplitudes are summed and a light band forms, whereas when 

the beams are out of phase their amplitudes are subtracted and a dark band of 

zero amplitude results. The interference fringes are sampled by a CCD (charge-

coupled device) sensor and the signal is digitized and processed to obtain 3D 

topographical maps of the sample’s surface [290]. 

VSI with 5X, 10X, and 50X objective lenses with 1x and 2x optical multiplier 

was used to measure the wear track profiles. The length, width, depth and volume 

loss of the wear track were measured using Vision64 software. Roughness 

values of the wear track of all alloys was found by the same software. Before the 

measurement, the sample surfaces were cleaned with methanol ultrasonically for 

5 mins and dry the sample surfaces with compressed air. Five cross–section 

measurements were taken on each wear track. 

 

3.6 Summary 

 

The selected techniques used in this project makes possible to have a 

better analysis of corrosion behaviour, effect of wear on corrosion behaviour, 

effect of corrosion on tribological behaviour, synergism, wear mechanisms, 

surface analysis and tribofilm formation, subsurface deformation and phase 

transformation of Titanium alloys approaching factors not well investigated in the 

literature. 
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Chapter 4 – Materials characterization  

 

4.1 Introduction 

 

The Titanium alloys used in this project were characterized were carried 

in detail after melting, rolling and heat treatment.  To identify the microstructure, 

backscattered electron images and X-ray diffraction were taken from the unworn 

surface to identify the nature of grains and phases. To investigate the 

electrochemical behaviour of the Titanium alloys, potentiodynamic tests were 

carried out in static conditions in bovine serum solution at 37oC in a three 

electrode cell as an attempt to understand the corrosion behaviour in absence of 

wear.  

 

4.2 Starting surface 

 

Backscattered electrons images were used to characterize the 

microstructure of the Titanium alloys of this study. Fig. 4.1 shows an SEM image 

of the αβ alloy. Grains of β phase and needles of a martensitic phase, α’’ were 

observed and the average grain size was 140 µm. α phase was present in 47.2% 

and β phase 52.8% of this alloy. This microstructure is typical of an alloy heat 

treated in the β domain and water quenched.  

Fig. 4.2 shows an SEM image of the Nβ alloy which consist of fine grains 

and average grain size 1.6 µm of α and β phases. The volume fraction of the 

phases was α: 39.1% and β: 60.9%. This microstructure resulted from the high 

reduction rolling process.  

Fig. 4.3 shows an SEM image of the β alloy which has the average grain 

size of 20 µm, while Fig. 4.4 shows an SEM image of the βω alloy which has the 

average grain size of 12.8 µm, both of which had an equiaxed β grain structure. 

The small dark spots on the surface of the β and βω alloy are dislocation etch 

pits commonly detected on β phase alloys after metallographic sample 

preparation. The equiaxed grains are a product of heat treatment in the β domain, 

recrystallization and grain growth. Both alloys were 100% β phase. ω phase was 

not observed by BSE. ω phase transformation is induced by aging heat treatment 
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at low temperature and maybe present in a small volume fraction only visible in 

the TEM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The microstructure was confirmed by XRD, Fig. 4.5, where α, α’’ and β 

phases were identified in the αβ alloy. For the Nβ alloy, β phase was identified as 

well as a low intensity (110) peak from the α phase. Only β phase was identified 

from the β alloy. For the βω alloy β phase was indentified as well as low intensity 

Fig. 4.3 – SEM backscatter electron 
image of the β alloy microstructure. 

Fig. 4.4 – SEM backscatter electron 
image of the βω alloy microstructure. 

Fig. 4.1 - SEM backscatter electron 
image of the αβ alloy microstructure. The 

α phase is the lighter contrast and the 
needle like phase is martensite. 

Fig. 4.2 - SEM backscatter electron 
image of the Nβ alloy microstructure. 
The α phase is the lighter contrast.  
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(112) peak from the ω phase . The low intensity of ω phase is expected, since 

this phase appears in small fractions and after aging heat treatments. β phase is 

stabilized by elements such as Mo, Zr, Ta and Nb.  

 

 

 

Fig. 4.5 – X–rays diffraction of the alloys studied in this project. 

 

4.3 Corrosion proprieties of starting surface 

 

To obtain further information on the influence of the phase composition 

and alloy additions on the electrochemical responses and the characteristics of 

the passive films of the titanium-based alloys, potentiodynamic polarization 

experiments were completed. 

The potentiodynamic curves, also known as polarization curves, are 

presented in Fig. 4.6. These curves can give information about the effect of 

microstructure on the electrochemical behaviour and characteristics of the 

passive films. The curves are qualitatively similar in characteristic but with 
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different values to those from conventional Titanium alloys where the passive film 

is formed when these alloys are immersed in bovine serum solution.  

These curves show three main domains: 1) the cathodic domain, which is 

below the corrosion potential and the rate of cathodic current is higher and the 

current is determined by the reduction of water and oxygen; 2) the domain where 

there is a transition between cathodic and anodic current where the cathodic and 

anodic current are equal; 3) the anodic domain where the passive film is created 

and the rate of anodic current is higher and it leads to metal dissolution.  

The values of corrosion potential and corrosion current were found by Tafel 

extrapolation using both anodic and cathodic branches of the polarization curves, 

as explained in Fig. 2.9 and Fig. 3.6, and are presented in Fig. 4.7. The 

polarization curves for all alloys show corrosion characteristics, and essentially 

show a response that is characteristic of Titanium alloys. This is related to the 

natural passive film of titanium oxide which formed on the surface after immersion 

in the electrolyte at 37°C. 

Nβ and βω show similar electrochemical behaviour with low corrosion 

current (3nA/cm2 and 2.5nA/cm2) and higher corrosion potential (-0.52V and -

0.51V). The βω alloy has the lowest corrosion current (2.5nA/cm2) while the αβ 

alloy has the highest value (8.2nA/cm2). The αβ is the noblest alloy, highest 

potential (-0.46V), and has highest corrosion current (8.2nA/cm2). β alloy has the 

most active potential (-0.7V) and an intermediate corrosion current value 

(4.1nA/cm2). 
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Fig. 4.6 – Polarization curves in bovine serum solution. 

 

Fig. 4.7 – Corrosion potential and corrosion current extracted from polarization 

curves. 
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4.4 Summary 

 

In this chapter, characterization of microstructure by image and X-ray 

diffraction in order to identify the crystal structure and potentiodynamic test to 

identify the corrosion behaviour in static conditions have been assessed. They 

are summarized as follow: 

 

• Alloy 1 is an α and β phase alloy and show presence of martensite 

which is identified by α’’ and has a grain size of 140 µm with 47.2% 

of α phase and 52.8% of β phase. 

• Alloy 2 is an α and β phase alloy with fine grains of 1.6 µm and has 

39.1% of α phase and 60.9% of β phase. 

• Alloy 3 is a β phase alloy. The alloy was nearly 100% β phase 

although XRD identified a low intensity peak from the α phase. This 

alloy had a fine equiaxed grains of 20 µm. 

• Alloy 4 is a β and ω phase alloy with fine equiaxed grains of 12.8 

µm. XRD indicated 100% β phase ratio, with the volume fraction of 

ω phase too small to measure by XRD. 

• αβ alloy has the lowest corrosion potential and therefore is the 

noblest alloy in this study 

• β alloy has the highest corrosion potential and therefore is the most 

active alloy in this study. 

 

These results show that these Titanium alloys are homogeneous and are 

good candidates for analysis to understand the tribological, electrochemical and 

tribocorrosion behaviour for biomedical applications. The next chapter shows 

their tribocorrosion behaviour and characterization of worn surface and 

subsurface. 
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Chapter 5 – Result: Tribocorrosion behaviour of Ti alloys 

 

5.1 Introduction 

 

The last chapter presented the characterization of the starting structure of 

the alloys. A better understanding of tribocorrosion phenomena and mechanisms 

are necessary for materials selection and development in biomedical 

applications. 

In this chapter, the results are divided in two parts. The first part (section 

5.2) shows the tribocorrosion behaviour of Titanium alloys at 0.5N analysing the 

effect of wear on polarization behaviour, current, potential and COF evolution 

during wear test, wear track morphology and its characterization, specific wear 

rate and changes in the subsurface structure. The second part (section 5.3) 

compares these results to tests at 1N and 2N and analyses the subsurface of all 

samples tested at 2N at anodic potential. 

 
5.2 Tribocorrosion behaviour under 0.5N 

 

5.2.1 Polarization during wear test 

 

 To characterize the electrochemical behaviour of the alloys in a solution 

that simulated the physiological media during rubbing, the Tafel extrapolation 

analysis method using both anodic and cathodic branches of the polarization 

curves was carried out over potential ranges relative to the OCP of -0.25mV vs 

OCP to 0.25mV vs OCP. 

Figs. 5.1 to 5.4 show the polarization curve during wear (sliding) compared 

to the polarization curve from the starting surface (static) presented in the last 

section. This procedure reveals a combination of mechanical and electrochemical 

activities where the effect of wear on corrosion can be seen where the oxide film 

is removed and then repassivates. In other words, it represents the effect of wear 

on corrosion rate. The dotted lines in the graph represent the static condition 

potentiodynamic test and the red lines in the graph represent the potentiodynamic 

test taken when the sample was rubbed against alumina ball in bovine serum at 

37oC. 

Compared with static corrosion, the Tafel curves during rubbing had 

distinct and major fluctuations. A potential drop (more active) and an increase of 
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the corrosion current was observed for all alloys suggesting all alloys become 

more active to corrosion due to the constant mechanical wear. The constant 

depassivation enhanced the corrosion rate because of the repetitive 

depassivation and repassivation processes. 

These results indicate that the wear accelerated the corrosion due to 

depassivation of worn areas, and friction was not stable. The passive layer acts 

as charge transfer and a diffusion barrier influencing the corrosion potentials. 

The values of corrosion potential and corrosion current were found by Tafel 

extrapolation analysis using both anodic and cathodic branches of the 

polarization curves, as explained in Fig. 2.9 and 3.6. Fig. 5.5 and 5.6 compare 

corrosion current and corrosion potential respectively. 

αβ alloy experienced a decrease of potential from -0.46V to -0.96 V and 

an increase of corrosion current from 8.2 10-9 A/cm2 to 6.66 10-7 A/cm2. Nβ alloy 

experienced a decrease of potential from -0.52V to -1.11 V and an increase of 

corrosion current from 3 10-9 A/cm2 to 6.22 10-7 A/cm2. The β alloy experienced a 

decrease of potential from -0.7V to -1.18 V and an increase of corrosion current 

from 4.1 10-9 A/cm2 to 1.14 10-6 A/cm2. Finally, the βω alloy experienced a 

decrease of potential from -0.51V to -0.97V and an increase of corrosion current 

from 2.5 10-9 A/cm2 to 9.72 10-7 A/cm2. 

In order to compare these alloys, the β alloy shows the highest corrosion 

current (1.14 10-6 A/cm2) and Nβ alloy shows the lowest corrosion current (6.22 

10-7 A/cm2), while αβ and βω alloys show intermediate corrosion current of 6.66 

10-7 A/cm2 and 9.72 10-7 A/cm2. The αβ alloy show the highest corrosion potential 

(-0.96 V) during rubbing and the β alloy the most active potential (-1.18 V), while 

intermediate values are found for Nβ alloy -1.11 V and βω -0.97V. 

Tribological contacts may enhance the charge transfer and increase the 

corrosion current density because the corrosion current reflexes the material loss 

caused by corrosion, therefore the current in this section can be used to observe 

of the tribology effect on corrosion. 
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Fig. 5.1 – Polarization curves: static and during sliding of the αβ alloy. 

 

 

  

Fig. 5.2 – Polarization curves: static and during sliding of the Nβ alloy. 
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Fig. 5.3 – Polarization curves: static and during sliding of the β alloy. 

 

 

  

Fig. 5.4 – Polarization curves: static and during sliding of the βω alloy. 
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Fig. 5.5 – Corrosion current extracted from polarization curves static and during 

sliding. 

 

 

 

Fig. 5.6 – Corrosion potential extracted from polarization curves static and 
during sliding. 
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5.2.2 Current, potential and COF evolution. 

 

5.1.2.1 Cathodic potential 
 

Cathodic protection (CP) is a widely used technique to control corrosion 

and in this study sliding wear tests under CP enabled the wear material loss to 

be determined. This is an effective way of achieving isolation of the wear 

component to degradation and to stop any charge transfer at the working 

electrode surface. 

The coefficient of friction and current evolution is presented as a function 

of time in Fig. 5.7 to Fig. 5.10 for cathodic potential (-1V vs OCP) in 25%vol bovine 

calf serum at 37°C under rubbing conditions. The graphs could be subdivided into 

three main zones. The first region is the waiting time under cathodic potential, 

with the expected negative current. The second zone corresponds to when 

rubbing was started. Finally, rubbing was stopped in the third region. 

The current measured at cathodic potential dropped after applying normal 

load and motion. All alloys recorded negative current before, during and after 

wear tests. The current is negative because of the reduction of oxygen and water 

(oxidizing species) in the electrolyte and indicates no corrosion occurred. 

Depassivation promotes changes in the current. Theoretically, corrosion is not 

observed at cathodic potentials. However, the phenomenon is still not fully 

understood.  

The αβ alloy showed an initial cathodic current -110µA which dropped to -

170 µA when rubbing started, Fig. 5.7. The cathodic current kept dropping with 

fluctuations and the lowest value (-260µA ) was measured just before rubbing 

stopped. When rubbing was stopped, the current increased to similar values that 

were observed before rubbing (-110µA). The COF was also measured and it 

showed values of 0.71 at the start of rubbing, but dropped until the end of the test 

to reach a value of 0.38. 

The initial cathodic current measured for Nβ alloy was -95µA, but it 

dropped to -130µA when rubbing started, Fig. 5.8. A slight current increase was 

observed in the first minutes, but it continuously dropped until the end of the test 

where the lowest current was measured (-360µA). Then, the current increased (-

200 µA), but to values lower than before rubbing. The COF was 0.45 at the 

Results 



101 

beginning of the test, but it increased at 2000 seconds to values of 0.57 and then 

it slightly decreased with fluctuations until the end of the test to values of 0.43. 

The same behaviour was observed for the β alloy, Fig. 5.9. The initial 

current was -0.25 µA and dropped to -0.75 µA when rubbing started. It kept 

dropping with time and the lowest value of -130 µA was measured at the end of 

rubbing. The current increased again to -80 µA, lower than at the initial stage. At 

the same time, the COF measured showed initial values of 0.6 but it dropped with 

time to 0.4 with some oscillations observed. 

The βω alloy showed an initial current of -0.27 µA and then a drop to -0.34 

µA when rubbing started, Fig. 5.10. The current experienced an increase up to -

20 µA but it dropped again up to the end of the test where the lowest value was 

registered (-0.54 µA). When rubbing stopped, the current increased to -0.42 µA. 

The COF evolution was higher at the beginning of the test (0.55) and dropped to 

0.37 at the end of the test.  

All alloys show an unstable behaviour since no steady state was observed 

and the current keeps dropping with time. These alloys do not recover passivity 

during the wear tests. At the end of rubbing the current increased to the initial 

value. The main cathodic reactions proposed at this potential may be the oxygen 

reduction: 

O2 + 2H2O + 4e- → 4OH- 

At the beginning of the COF measurements, a running in and subsequent 

a steady state is seen, except for the Nβ alloy. However, the running in period 

changes as the microstructure and potential change. The Nβ alloy has the highest 

average COF (0.46), but the average COF are in the same range of 0.4 and the 

lowest average COF is for the βω alloy (0.4), αβ alloy (0.41) and then β alloy 

(0.42), Fig. 5.11 which also presents the standard deviation of 10,816 COF 

measurements. 
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Fig. 5.7 – Current and COF evolution αβ alloy at cathodic potential at 0.5N. 

 

 

Fig. 5.8 – Current and COF evolution Nβ alloy at cathodic potential at 0.5N. 
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Fig. 5.9 – Current and COF evolution β alloy at cathodic potential at 0.5N. 

 

 

 

Fig. 5.10 – Current and COF evolution βω alloy at cathodic potential at 0.5N. 
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Fig. 5.11 – Average COF measured during wear test at cathodic potential at 

0.5N. 

 

 

 

5.1.2.2 Open circuit potential 
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lower than that before rubbing, indicating repassivation. Higher values of COF 

(0.45) were observed when rubbing started and it kept dropping with fluctuations 

up to 0.27 when rubbing stopped.  

The potential also dropped for the Nβ alloy when rubbing started, 

indicating depassivation, to -0.9V (ΔE = -0.8V) and shows slightly fluctuations 

until the end of rubbing which the potential registered was -1.05V. The potential 

rose again to -0.8V when rubbing stopped. The initial values of COF were around 

0.5 and increased to 0.6 when at 2000 seconds it suddenly dropped to 0.35 and 

then remained steady until the end of the test.  

The β alloy showed a potential drop to -1V (ΔE = -0.45V), Fig. 5.13. The 

potential remained steady and isolated peaks were seen. Then, when rubbing 

stopped the potential rose (-0.65V) , but to values lower than measured before 

rubbing. The COF evolution showed an initial value of 0.47 and final values of 

0.27. 

The potential dropped to -1V for the βω alloy (ΔE = -0.8V) due to the 

depassivation caused by rubbing, Fig. 5.14. The potential evolution was steady 

and decreased slightly to -1.1V at the end of rubbing. This alloy also experienced 

a potential increase to -0.6V when rubbing was stopped. The COF evolution 

started at 0.47 and was 0.3 at the end of the test. 

The Nβ alloy shows the highest and β alloy the smallest cathodic drop. 

The potential dropped to around –1V for all alloys. After dropping, the potential 

does not recover during rubbing and it remained stable. 

The constant value of OCP with slight fluctuations indicates that those 

alloys did not repassivate. The least transient curve is seen for the βω alloy. The 

αβ alloy was the noblest during rubbing and the Nβ was the most active during 

the same period. When rubbing stops, the potential rose again but to values lower 

than before rubbing. In addition, the potential evolution showed different variation 

for all alloys, which may suggest that microstructure does influence this condition. 

Also, the ionic species released due to the charge transfer at the interface may 

interact with the bovine serum constituents and affect the friction and wear 

response of that interface.  

The COF has values around 0.3, with the lowest value found for the αβ 

alloy (0.29), β alloy (0.31), βω (0.32) and Nβ (0.36), Fig. 5.16, which also presents 

the standard deviation of 10,816 COF measurements. These values are lower 

than those from cathodic potential test. 
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The reproducibility of these tests is presented from Fig.5.17 to Fig. 5.19, 

which shows the wear test at OCP of αβ alloy at 0.5N. Test 1 showed an initial 

OCP of -0.25V and a cathodic drop to -0.85V (ΔE = -0.6V) and an OCP increase 

to -0.4V. Test 2 showed an initial OCP of -0.21 and a cathodic drop to -0.78 (ΔE 

= -0.57V) and an OCP increase to -0.35V. Also, the COF evolution started at 0.47 

and ended around 0.27 for both curves.  

 

 

 

 

 

Fig. 5.12 – Potential and COF evolution αβ alloy at OCP at 0.5N. 
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Fig. 5.13 – Potential and COF evolution Nβ alloy at OCP at 0.5N. 

 

 

Fig. 5.14 – Potential and COF evolution β alloy at OCP at 0.5N. 
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Fig. 5.15 – Potential and COF evolution βω alloy at OCP at 0.5N. 

 

 

Fig. 5.16 – Average COF measured during wear test at OCP at 0.5N. 
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Fig. 5.19 – Reproducibility of average COF of αβ alloy at 0.5N. 
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the initial current measurement was 1 x 10-7 A. The current shifts to more positive 

values when rubbing starts. The continuous metal ion release was due to the 

tribological contacts and the electrochemical driving force. The charge transfer 

rate is controlled by activation energy since the passive film is removing during 

rubbing, and it acts a barrier for charge transfer. It leads to a release of ions which 

start the interaction with the bovine serum. 

The reactions for all Titanium alloys were suggested as follows: 

Ti = Ti2+ + 2e- 

In addition, for the Nβ alloy the Fe loses electrons through Fe2+/Fe3+ reactions.  

αβ and Nβ alloys showed an increase in current up to 70µA when rubbing 

started and a current peak of 50µA was seen up to the end of the test. Similarly, 

the β and βω alloys show an increase of current up to 60 µA and 50 µA when 

rubbing started and the current peaks at the end of the test. Some current peaks 

occurred at the same position as the peak in COF which might be due to the 

release of entrapped debris and the high values of COF and current at the 

beginning of the test represents the removal of the passive layer.  

All alloys presented a stabilization of the anodic current after 4,000 s, 

although fluctuations were seen throughout the test. This may be due to the 

reaction of proteins and released Ti+, as the wear process accelerated ion 

release. Then it may form a layer which acts to block charge transfer at the 

metal/solution interface. Also, this layer acts reducing friction and indicates that 

this layer is an efficacious solid lubricant. 

The current drops to 1 x 10-6 A when rubbing stopped indicating the 

restoration of passivity where the passive film is a barrier to charge transfer.  

The COF evolution of αβ alloy and β alloy was high (0.6) at the beginning 

of the test and after 3000 s, it dropped to 0.3 and remained constant with few 

isolated peaks. The Nβ alloy also showed a high COF at the beginning of the test 

(0.45) and then dropped to 0.3 after 3000 s and then remained constant with a 

few isolated peaks. Finally, the COF evolution of βω alloy was 0.55 at the 

beginning of the test and after 6000 s, the COF remained stable around 0.3. 

The COF curves at anodic potential are less transient and the average 

COF is the lowest at that potential, around 0.29, for all alloys. The αβ alloy 

recorded the lowest average COF, 0.28, Fig. 5.24 which also presents the 

standard deviation of 10,816 COF measurements. Overall, these alloys will 

experience wear accelerated corrosion if the passive film is damaged.  
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It is important to remember that these alloys might have different oxides 

such as TiO2, Nb2O5, Ta2O5, MO3 and ZrO2 on their surface, which may affect the 

repassivation and mechanical proprieties. 

It has been reported that corrosion accelerates wear for passive metals, 

but wear is not always enhanced by corrosion because corrosion may change 

friction and contact stress fields. Also, COF is higher at cathodic potential and 

lower at anodic potential, indicating that it is affected by the composition and 

potential. 

 

Fig. 5.20 – Current and COF evolution αβ alloy at anodic potential at 0.5N. 
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Fig. 5.21 – Current and COF evolution Nβ alloy at anodic potential at 0.5N. 

 

 

Fig. 5.22 – Current and COF evolution β alloy at anodic potential at 0.5N. 
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Fig. 5.23 – Current and COF evolution βω alloy at anodic potential at 0.5N. 

 

 

 

 

Fig. 5.24 – Average COF measured during wear test at anodic potential  

at 0.5N. 
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5.2.3 Wear track profile 

 

The wear track profile is seen from Fig. 5.25 to Fig. 5.28 and the 3D image 

of each wear track is presented in Table 5.1. It is clear that the αβ alloy has a 

shallower wear track than the other alloys.  

The αβ alloy had a depth of 35µm and a width of 0.71mm at anodic 

potential, a depth of 49µm and a width of 0.8 at OCP and a depth of 60µm and a 

width of 0.95mm at cathodic potential.  

The Nβ alloy had a depth of 40µm and a width of 0.89mm at anodic 

potential, a depth of 45µm and a width of 0.8 at OCP and a depth of 67µm and a 

width of 1mm at cathodic potential. 

The β alloy had a depth of 45µm and a width of 0.95mm at anodic potential 

and OCP and a depth of 68µm and a width of 1mm at cathodic potential. 

The βω alloy showed a depth of 41µm and a width of 0.8mm at anodic 

potential, a depth of 55µm and a width of 0.9 at OCP and a depth of 59µm and a 

width of 0.95 at cathodic potential. 

The wear track was shallower for all alloys at anodic potential. Comparing 

alloys, the αβ alloy had the shallowest wear track in all electrochemical 

conditions. The αβ alloy had a depth of 35µm and a width of 0.71mm at anodic 

potential which is the shallowest wear track and Nβ alloy show the deepest wear 

track with depth of 67µm and a width of 1mm at cathodic potential. This indicates 

that the wear track depth depends on the potential and it is lower when anodic 

potential is applied. 
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Fig. 5.25 – Comparison of wear track 

profile of αβ alloy at anodic potential, 

OCP and cathodic potential at 0.5N. 

 

Fig. 5.26 – Comparison of wear track 

profile of Nβ alloy at anodic potential, 

OCP and cathodic potential at 0.5N. 

Fig. 5.27 – Comparison of wear track 

profile of β alloy at anodic potential, 

OCP and cathodic potential at 0.5N. 

Fig. 5.28 – Comparison of wear track 

profile of βω alloy at anodic potential, 

OCP and cathodic potential at 0.5N. 

Results 



116 

Table 5.1 – 3D wear track images at 0.5N. 

 

Alloys Cathodic OCP Anodic 

αβ 

   

Nβ 

   

β 

   

βω 

   

 

 

5.2.4 Wear track volume, surface roughness and specific wear rate 

 

The wear track volume is presented in Fig. 5.29. The wear track volume is 

the total material loss during the tribocorrosion test due to mechanical wear and 

corrosion. 

The αβ alloy had a wear track volume of 5.37x10-2 mm3 at cathodic 

potential, 3.67x10-2 mm3 at OCP and 2.47x10-2 mm3 at anodic potential. The Nβ 

alloy had a wear track volume of 5.85x10-2 mm3 at cathodic potential, 4.27x10-2 

mm3 at OCP and 3.2x10-2 mm3 at anodic potential. The β alloy had a wear track 

volume of 7.24 10-2 mm3 at cathodic potential, 4.33x10-2 mm3 at OCP and 

4.17x10-2 mm3 at anodic potential. The βω alloy had a wear track volume of 

6.16x10-2 mm3 at cathodic potential, 4.58x10-2 mm3 at OCP and 3.22x10-2 mm3 

at anodic potential.  

 The lowest values of wear volume were observed at anodic potential and 

highest values observed at cathodic potential. The β alloy exhibited the highest 

volume loss and the αβ presented the lowest values in all electrochemical 
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conditions. The smallest material loss was found for the αβ alloy at anodic 

potential (2.47x10-2 mm3) and the highest material loss was found for the β at 

cathodic potential (7.24x10-2 mm3).  

Therefore, the material loss depends of the potential, and it is smaller when 

anodic potential is applied. The highest material removal was found at cathodic 

potential, and the lowest at anodic condition and the wear track volume increases 

by the following order: anodic potential, OCP and cathodic potential. 

The surface roughness of the centre of the wear track is shown in Fig. 

5.30. It is clear that the potential had an influence on roughness.  

The αβ alloy had a surface roughness of 0.85µm at cathodic potential, 1.13 

µm at OCP and 1.17µm at anodic potential. Nβ alloy had a surface roughness of 

1.09µm at cathodic potential, 1.15µm at OCP and 1.3µm at anodic potential. The 

β alloy had surface roughness of 1.06µm at cathodic potential, 1.11µm at OCP 

and 1.35µm at anodic potential. The βω alloy had a surface roughness of 1.08µm 

at cathodic potential, 1.15µm at OCP and 1.18µm at anodic potential. 

Overall, the roughness was slightly lower at cathodic potential and higher 

at anodic potential. The αβ alloy at cathodic potential exhibited the lowest surface 

roughness (0.85µm) and the β alloy at anodic potential the highest value 

(1.35µm).  

The specific wear rates are presented on Fig. 5.31. The αβ alloy had a 

specific wear rate of 4.97x10-4 mm3/Nm at cathodic potential, 3.4x10-4 mm3/Nm 

at OCP and 2.29x10-4 mm3/Nm at anodic potential. The Nβ alloy had a specific 

wear rate of 5.42x10-4 mm3/Nm at cathodic potential, 3.96x10-4 mm3/Nm at OCP 

and 2.96x10-4 mm3/Nm at anodic potential. The β alloy had a specific wear rate 

of 6.7x10-4 mm3/Nm at cathodic potential, 4.01x10-4 mm3/Nm at OCP and 

3.86x10-4 mm3/Nm at anodic potential. The βω alloy had a specific wear rate of 

5.7x10-4 mm3/Nm at cathodic potential, 4.24x10-4 mm3/Nm at OCP and 2.98x10-

4 mm3/Nm at anodic potential. 

The β alloy had the highest specific wear rate (6.7x10-4 mm3/Nm at 

cathodic potential) with the αβ alloy exhibiting the lowest values (2.29x10-4 

mm3/Nm at anodic potential). The wear rate and specific wear rate varied with 

the applied potential. When anodic potential is applied, the wear rate and specific 

wear rate reduce. In addition, the αβ alloy had lower specific wear rate than the 

other alloys.  
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Fig. 5.29 – Comparison of wear track volume at cathodic potential, OCP and 

anodic potential at 0.5N.  

 

 

Fig. 5.30 – Comparison of roughness at cathodic potential, OCP and anodic 

potential at 0.5N. 
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Fig. 5.31 – Comparison of specific wear rate at cathodic potential, OCP and 

anodic potential at 0.5N. 

 

5.2.5 Surface characterization 

 

Details of the topography of the materials tested on backscattered and 
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Cracks were not found, but isolated debris, wide grooves, scratches were 

observed, which is characteristic of ploughing and delamination. The ploughing 

appearance on the worn surface indicates poor resistance of these alloys to 

plastic deformation. There is no difference among all surfaces when the 

electrochemical conditions change and the surfaces are free of corrosion product.  

 Delamination is higher at cathodic potential with the Nβ alloy being less 

rough surface. The β and βω alloys are the roughest surfaces at OCP and 

cathodic potentials. 

Dark areas were observed on backscattered images in all alloys, which 

are an indication of the presence of an organic layer, which must be confirmed 

by Raman spectroscopy.  

Overall, worn surfaces at cathodic potential are less rough than OCP and 

anodic potential which are rougher. All Titanium alloys show the same wear 

mechanism despite variation of electrochemical conditions. 
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• αβ alloy at 0.5N 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 5.32 – BSE image of the worn surface 
of αβ alloy at anodic potential at 0.5N. 

Fig 5.33 - SE image of the worn surface 
of αβ alloy at anodic potential at 0.5N 

Fig. 5.34 – BSE image of the worn 
surface of αβ alloy at OCP at 0.5N. 

Fig. 5.35 – SE image of the worn 
surface of αβ alloy at OCP at 0.5N. 

Fig. 5.37 – SE image of the worn 
surface of αβ alloy at cathodic 

potential at 0.5N. 

Fig. 5.36 – BSE image of the worn 
surface of αβ alloy at cathodic potential 

at 0.5N. 
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• Nβ alloy at 0.5N 

  

Fig. 5.38– BSE image of the worn surface 
of Nβ alloy at anodic potential at 0.5N. 

Fig 5.39 - SE image of the worn surface 
of Nβ alloy at anodic potential at 0.5N 

Fig. 5.40 – BSE image of the worn 
surface of Nβ alloy at OCP at 0.5N. 

Fig. 5.41 – SE image of the worn 
surface of Nβ alloy at OCP at 0.5N. 

Fig. 5.43 – SE image of the worn 
surface of Nβ alloy at cathodic potential 

at 0.5N. 

Fig. 5.42 – BSE image of the worn 
surface of Nβ alloy at cathodic potential 

at 0.5N. 
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• β alloy at 0.5N 

•   

Fig. 5.44 – BSE image of the worn surface 
of β alloy at anodic potential at 0.5N. 

Fig 5.45 - SE image of the worn surface 
of β alloy at anodic potential at 0.5N 

Fig. 5.46 – BSE image of the worn 
surface of β alloy at OCP at 0.5N. 

Fig. 5.47 – SE image of the worn 
surface of β alloy at OCP at 0.5N. 

Fig. 5.49 – SE image of the worn 
surface of β alloy at cathodic potential 

at 0.5N. 

Fig. 5.48 – BSE image of the worn 
surface of β alloy at cathodic potential 

at 0.5N. 
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• βω alloy at 0.5N 

•  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 5.50 – BSE image of the worn surface 
of βω alloy at anodic potential at 0.5N. 

Fig. 5.51 - SE image of the worn surface 
of βω alloy at anodic potential at 0.5N 

Fig. 5.52 – BSE image of the worn 
surface of βω alloy at OCP at 0.5N. 

Fig. 5.53 – SE image of the worn 
surface of βω alloy at OCP at 0.5N. 

Fig. 5.55 – SE image of the worn 
surface of βω alloy at cathodic potential 

at 0.5N. 

Fig. 5.54 – BSE image of the worn 
surface of βω alloy at cathodic potential 

at 0.5N. 
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5.2.6 Presence of tribolayer and mechanical properties of the surface 

 

Raman spectra with Gaussian peak fitting, presented in Fig. 5.56 to 5.59, 

have peaks at 1332 cm-1 and 1545 cm-1. Carbon has two crystalline forms, 

graphite and diamond. For both structures the Raman spectra are well known. 

Thus, these peaks can be related to the spectra of disordered graphite or disorder 

mode (D band) and single crystalline graphite or tangential stretch mode (G 

band), which relates to the presence of Carbon, with all alloys tested having these 

peaks.  

In the D band the bond-angle disorder in the sp2 graphite-like 

microdomains, induced by linking with sp3 atoms, as well as the finite crystalline 

sizes of sp2 microdomains, while the G band is ascribed to sp2 trigonal bonding 

related to the graphite phase [291]. In this sense, the results from the Raman 

spectra show that the worn area was composed of sp2-carbon and sp3-carbon.  

In general, the intensity ratio of D and G peaks is related to the relative 

content of sp2 and sp3 bonds. The sp2 bond could effectively reduce the shearing 

resistance on the contact surface and the sp3 bond with diamond-structure could 

enhance the hardness of material. 

The αβ and βω alloys show higher and lower peaks at cathodic potential 

(175.05 and 150.43) and anodic potential (114.54 and 106.33). G peaks are 

always more intense than the D peak, exept for βω at OCP, where the D peak is 

113.07 and G peak is 107.73. 

The Raman curves are similimar for Nβ alloy despite the electrochemical 

condition, where G peaks are higher than D peak. β alloy show higher and lower 

peaks at anodic potential (D = 142.03 and G = 127.26) and cathodic potential (D 

= 30.31 and G = 42.22) where G peak is lower at cathodic potential and D peak 

is higher at OCP and anodic potential. 

The highest G band (175.05) intensity was observed for the αβ alloy at 

cathodic potential. The lowest D band (30.31) intensity was observed for the β 

alloy at cathodic potential.  

Raman shift defines the vibration modes of the chemical bond as a result 

of the laser beam. Any change of the Raman shift position will indicate a change 

in the physical or chemical structure of the molecule being analysed. These peaks 

confirm the presence of tribolayer being generated during the motion of the 

surfaces in contact.The tribolayer is rich in protein and it may be beneficial for the 
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tribocorrosion process which is formed by the interaction of ions released by the 

passive film and proteins. However, published data on this it is scarce.  

Of the five measurements taken per wear track not all of them registered 

the presence of a tribolayer and it is presented only the results that show the 

presence of C. This indicates the tribolayer is present in all alloys, but it is not 

continuous or uniform on the whole surface.  

Fig. 5.60 and Fig. 5.61 show the reduced elastic modulus and 

nanohardness of the worn surfaces in comparison to the unworn surface as 

function of the contact depth. The αβ and β alloys exhibited the highest (96.6 

GPa) and lowest (70.3 GPA) reduced elastic modulus of the unworn surface 

respectively. β also had the highest material loss (7.24 10-2 mm3 at cathodic 

potential). There could be a relationship between the material loss volume and 

mechanical proprieties of the worn surfaces, however, it must be investigated 

further on other normal loads. The depth of penetration ranged from 201 nm to 

355 nm. 

αβ alloy experienced an increase of reduced elastic modulus after wear 

test and higher elastic modulus at cathodic polarized surface than anodic 

polarized surface (unworn surface: 96.6 GPa; cathodic potential: 101 GPa; OCP: 

99.1GPa and anodic: 98GPa). Similar observations were made for the βω alloy 

for which the cathodic polarized surface had the highest reduced elastic modulus 

(104 GPa) and OCP surface had the lowest reduced elastic modulus (87.2 GPa). 

The Nβ alloy and β alloy show the highest elastic modulus for the anodic polarized 

surfaces (104 GPa) and the lowest elastic modulus at cathodic polarized surfaces 

(88.7 GPa and 93.1 GPa). 

All alloys showed an increase of nanohardness of the surfaces after the 

wear test where αβ alloy showed the highest values (unworn surface: 3.5 GPa; 

cathodic potential: 4.3 GPa; OCP: 4.4 GPa and anodic: 4.6GPa) and βω alloy 

showed the lowest values (unworn surface: 2.8 GPa; cathodic potential: 3.3 GPa; 

OCP: 3.1 GPa and anodic: 3.3GPa). 

Fig. 5.62 show the force, displacement and reduced nanohardness for the 

unworn Nβ alloy. With the exception of the αβ alloy, all other alloys show an 

increase in the reduced elastic modulus after rubbing, although there was a high 

degree of scatter in the results.  All alloys exhibited an increase in the 

nanohardness of the worn surfaces after rubbing, but again the degree of scatter 

was large making it difficult to discern statistically meaningful differences. The 
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worn surfaces at anodic potential were slightly harder. These results can be 

correlated with the subsurface analysis, presented in section 5.2.10. 
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Fig. 5.56 – Raman spectroscopy 

of worn surface of αβ alloy at 0.5N. 

Fig 5.57 – Raman spectroscopy of 

worn surface of Nβ alloy at 0.5N. 

Fig 5.58 – Raman spectroscopy of 

worn surface of β alloy at 0.5N. 

Fig. 5.59 – Raman spectroscopy of 

worn surface of βω alloy at 0.5N. 

Fig. 5.60 – Reduced elastic modulus  Fig. 5.61 – Nanohardness 
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Fig. 5.62 – Force, displacement and reduced nanohardness of Nβ unworn 

surface nanoindentation test. 
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5.2.7 Subsurface deformation 

 

Tribocorrosion resulted in changes in the structure at the worn surface 

when compared to the unworn surfaces in section 4.1. This changed the 

mechanical proprieties of the surface and induces surface hardening.   

The worn surface structure was investigated using FIB. Figs. 5.63 to 5.74 

show the subsurface area of the wear track imaged using ion channelling 

contrast. Generally, 3 regions were observed at the subsurface deformed area: 

the bulk material, the plastically deformed area and a nanocrystalline layer. These 

images show the presence of a refined grain area close to the surface, with the 

grains becoming larger with depth.  

Comparing the subsurface to the bulk material, the αβ and βω alloys 

present a thin layer of refined grain at all potentials, which is clearer at OCP and 

cathodic potentials. However, the β and βω alloys do not show the presence of 

refined grains and there is no evidence of twinning. The boundary between the 

nanocrystalline and microcrystalline zone was not clear.  

The presence of deformed areas in the subsurface is influenced by 

constant movement and load of tribological systems and by the presence of any 

lubricant.  

The formation of the subsurface areas depended on the electrochemical 

conditions, with different behaviour seen for different alloys. For the β alloy, the 

greatest depth of deformation was seen under anodic conditions. For the αβ alloy, 

the least deformation was observed for the anodic condition, with similar 

deformation seen for the OCP and cathodic conditions. Virtually no deformation 

was observed for the βω alloy under all conditions. It should be noted that the 

depth of deformation may well have varied from one place on the surface to 

another and so these results need to be considered in that context.  

However, comparing the grain size of this images to those from Fig. 4.1 to 

4.4 (BSE images of unworn surface) the subsurface damage was identified.  

Large grains were observed in the bulk material by channelling contrast images 

of β and βω alloys which cannot be measured due to the area shown. However, 

the grains for αβ (2µm) and Nβ (1µm) alloys were smaller than those presented 

at BSE images of unworn surface (140 µm average grain size of αβ alloy and 

1.6µm average grain size of Nβ alloy). Therefore, Fig. 5.63 to 5.68 are in the 

subsurface damaged area.  
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5 μm 3 μm 

3 μm 3 μm 

3 μm 

3 μm 

Fig. 5.69 – Subsurface 
image of the worn surface 

of β alloy at anodic 
potential at 0.5N. 

Fig. 5.70 – Subsurface 
image of the worn 

surface of β alloy at OCP 
at 0.5N. 

Fig. 5.71 – Subsurface 
image of the worn surface 

of β alloy at cathodic 
potential at 0.5N. 

Fig. 5.72 – Subsurface 
image of the worn 

surface of βω alloy at 
anodic potential at 0.5N. 

Fig. 5.73 – Subsurface 
image of the worn 

surface of βω alloy at 
OCP at 0.5N. 

Fig. 5.74 – Subsurface 
image of the worn surface 

of βω alloy at cathodic 
potential at 0.5N. 

4 μm 

3 μm 3 μm 

3 μm 5 μm 

3 μm 

Fig. 5.63 – Subsurface 
image of the worn 

surface of αβ alloy at 
anodic potential at 0.5N. 

Fig. 5.64 – Subsurface 
image of the worn 

surface of αβ alloy at 
OCP at 0.5N. 

Fig. 5.65 – Subsurface 
image of the worn surface 

of αβ alloy at cathodic 
potential at 0.5N. 

Fig. 5.66 – Subsurface 
image of the worn 

surface of Nβ alloy at 
anodic potential at 0.5N. 

Fig. 5.67 – Subsurface 
image of the worn 

surface of Nβ alloy at 
OCP at 0.5N. 

Fig. 5.68 – Subsurface 
image of the worn surface 

of Nβ alloy at cathodic 
potential at 0.5N. 
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5.2.8 Transmission Electron Microscopy  

 

Bright field TEM micrographs and associated diffraction patterns taken 

from FIB specimens of the subsurface of the worn areas tested at 0.5N are given 

in Figs. 5.75 to 5.82.  Figs. 5.75 to 5.77 show the αβ alloy at anodic potential, 

OCP and cathodic potential respectively. Figs. 5.78 to 5.80 show the Nβ alloy at 

anodic potential, OCP and cathodic potential respectively, while Fig. 5.81 shows 

the β alloy at OCP and Fig. 5.82 shows βω alloy at OCP.  

The presence of α and β phases was observed in αβ alloy for all 

electrochemical conditions, as expected. For anodic conditions, there was 

evidence of surface deformation, consistent with the ion channelling image in Fig. 

5.63. Under OCP conditions, there was evidence of a nanocrystalline layer 

formed, again consistent with the ion channelling image in Fig. 5.64. Under 

cathodic conditions, TEM showed little evidence of surface microstructure 

change, which is consistent with the ion channelling images.  

For the Nβ alloy, there was major microstructural change at the worn 

surface. Under anodic conditions, Fig. 5.78, a nanocrystalline surface layer was 

observed. Moreover, phase transformations had occurred with the presence of α, 

α’’ and ω phases observed. Similar observations were made under OCP 

conditions, although the nanocrystalline layer was very thin at the surface, Fig. 

5.79. Major changes were observed under cathodic conditions, where there was 

extensive precipitation of a second phase, Fig. 5.80, which was believed to be α 

phase. The transformation to ω could have occurred through the deformation 

mechanism, but also may have been derived from frictional heating leading to 

precipitation.  

Fig. 5.81 shows the near surface structure of the β alloy under OCP 

conditions. The TEM image shows that a phase changed had occurred and what 

appears to be α and ω phases precipitated out.  

The surface of the βω alloy at OCP is shown in Fig. 5.82. The ω appears 

to have partly transformed to α phase, but the structure was difficult to image. 
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αβ alloy at 0.5N load 

 

 

Fig. 5.75 – TEM image and difraction pattern of the worn area of αβ alloy at 

anodic potential at 0.5N load. 

 

 

 

 

 

 

 

Fig. 5.76 – TEM image and difraction pattern of the worn area of αβ alloy at 

OCP at 0.5N load.  

100 nm 

0.1 μm 

[111] β 

[111] β 

[5143] α  

Results 

[1213] α 

Surface 

Surface 



132 

 

Fig. 5.77 – TEM image and difraction pattern of the worn area of αβ alloy at 

cathodic potetial at 0.5N load. 

 

 

 

 

 

 

• Nβ alloy at 0.5N load 

 

 

Fig. 5.78 – TEM image and difraction pattern of the worn area of Nβ alloy at 

anodic potential at 0.5N load.  
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Fig. 5.79 – TEM image and difraction pattern of the worn area of Nβ alloy at 

OCP at 0.5N load.  

 

 

 

 

 

 

 

 

Fig. 5.80 – TEM image and difraction pattern of the worn area of Nβ alloy at 

cathodic potetial at 0.5N load.  
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• β alloy at 0.5N load 

 

 

Fig. 5.81 – TEM image and difraction pattern of the worn area of β alloy at OCP 

at 0.5N load. 

 

 

 

• βω alloy at 0.5N load 

 

 

Fig. 5.82 – TEM image and difraction pattern of the worn area of βω alloy at 

OCP at 0.5N load. 
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5.3  Influence of normal load on tribocorrosion properties   

 

The last section presented the effect of microstructure on tribocorrosion 

behaviour of Ti alloys at 0.5N in bovine serum solution. This section aims to study 

the effect of normal load (1N and 2N) on tribocorrosion behaviour of Ti alloys and 

compare these results to those from the last section. The tests were also carried 

out in bovine serum at 37oC. 

 

5.3.1 Tribocorrosion behaviour 

  

5.3.1.1 Cathodic potential 

 

Figs. 5.83 and 5.84 show the current evolution of Titanium alloys versus 

time at cathodic potential (-1V vs OCP) for 1N and 2N respectively. All alloys 

show a decrease in current after rubbing started.  

The αβ alloy had a similar behaviour at both loads showing a current drop 

and after 600 seconds a steady state was observed. The initial cathodic current 

measured was -60µA for 1N. Then it dropped to -95 µA and experienced an 

increase to -80µA and remained stable until the end of the rubbing where the 

current increased to -40µA at 1N. Similar behaviour was observed at 2N, where 

the initial cathodic current was -50µA and when rubbing started the current 

dropped to -75µA and decreased up to -100µA at the end of rubbing where the 

current increased to -55 µA. 

Similar behaviour was seen in the β alloy. However, the current drop was 

not as large as in αβ alloy. The initial cathodic current measured for β alloy at 1N 

was -30µA then it dropped to -60 µA when rubbing started. An increase of current 

was observed at 1000s to -35 µA and remained stable up to the end of test where 

the current increased to -25 µA. At 2N the initial cathodic current measured was 

-30µA then it dropped to -50 µA when rubbing started. An increase in current was 

observed at 1000s to -40 µA and remained stable up to the end of test where the 

current increased to -30 µA. 

The current evolution for the Nβ alloy during rubbing decreased at both 

loads. The initial cathodic current measured was -50 µA at 1N. It decreased when 

rubbing started to -65 µA and kept decreasing until -165 µA when the test was 

ended. Then an increase of current to -123 µA was observed. The similar 
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behaviour was observed at 2N, however the current drop was higher. The initial 

cathodic current measured was -60 µA and it decreased when rubbing started to 

-50 µA and kept dropping until -440 µA when the test was ended. Then an 

increase of current to -180 µA was observed. It showed that wear and normal 

load enhance the cathodic reaction. 

Finally, the βω alloy showed different behaviour at each load. At 1N this 

alloy showed a current drop to -50 µA after rubbing started and then an increase 

to -30 µA. However, at 100s the current started to decrease again until the end 

of the test where the current was -80 µA and increased to -70 µA. This alloy at 

2N showed the steady state showing a current of -50 µA during rubbing. 

After rubbing, all alloys showed an increase in the current. The lowest 

current recorded was for Nβ (-123 µA and -440 µA) and the highest was for the 

β alloy (-25 µA  and -30 µA) during rubbing at both loads. The current and COF 

evolution show a clear link. In fact they are influenced by the removal of the 

passive film at the beginning of the test, by the formation for tribolayer and by the 

plastic deformation that occurred at the sample surface. The isolated peaks may 

be the removal of entrapped debris. Wear enhanced by cathodic reaction due to 

the removal of original oxide layer (ceramic) and exposure of bare metal. 

The COF is shown in Fig. 5.85 and Fig. 5.86 at 1N and 2N respectively. A 

high COF was recorded for the αβ (0.7), β (0.82) and βω (0.81) alloys at 1N at 

the start of the test. However, the COF reduced and a steady state was reached 

after 7000 seconds for αβ (COF 4.4) and βω (3.2) alloys and after 9000 seconds 

for the β alloy (COF 0.4). A different behaviour was observed for the Nβ alloy 

which did not show large variations of COF (0.49). The average COF is presented 

on Fig. 5.87 and Fig. 5.88 for 1N and 2N respectively. The lowest COF was 

observed for the αβ alloy (0.44) and the highest for the β alloy (0.53). However, 

they are in the same range as the Nβ (0.49) and βω (0.47) alloys. At 2N, the 

steady state was seen for the αβ (COF 0.7 to 0.5), β (COF 0.84 to 0.4) and βω 

(0.8 to 0.43) alloys from 7000 seconds and these alloys show a similar behaviour 

to 1N. However, the Nβ alloy showed an increase of COF up to 7,000 seconds 

from 0.48 to 0.6 and then steady state was observed. This alloy also shows the 

least transient curve at both loads.  

The average COF at cathodic potential increased with load for all alloys, 

except the β alloy, Fig. 5.87 and 5.88 which also present the standard deviation 
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of 10,816 COF measurements. In comparison to 0.5N, the COF increased with 

load. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 5.83 - Current evolution all 
alloys at cathodic potential on 1N. 

Fig. 5.84 - Current evolution all 
alloys at cathodic potential on 2N. 

Fig. 5.85 - COF evolution all 
alloys at cathodic potential on 1N. 

Fig. 5.87 – Average COF of all 
alloys at cathodic potential on 1N. 

Fig. 5.86 - COF evolution all 
alloys at cathodic potential on 2N. 

Fig. 5.88 – Average COF of all 
alloys at cathodic potential on 2N. 
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5.3.1.2 Open circuit potential 

 

Figs. 5.89 and 5.90 show the potential evolution of these alloys versus time 

for 1N and 2N respectively.  

The Nβ alloy was the noblest alloy (-0.09V) and the β alloy was the most 

active (-0.52V) before rubbing, but all alloys showed a cathodic drop as expected 

when there is a removal of the charge transfer barrier. Also, plastic deformation 

occurred on the sample surface, which may contribute to the shift in the potential.  

The βω alloy showed the highest (ΔE = -1.1V and -0.8V) and the β alloy 

the lowest cathodic drop (ΔE = -0.5V both loads). The potential evolution for all 

alloys was not transient and constant. The βω alloy recorded the lowest (-1.1V) 

and β alloy the highest (-0.97V) value of OCP during rubbing for 1N load and the 

β alloy recorded the lowest (-1.1V) and the αβ alloy the highest (-0.98V) value of 

OCP during rubbing for 2N. The OCP increased again when rubbing was stopped 

to values lower than those of starting surface. 

The ionic species released due to the charge transfer at the interface may 

interact with the bovine serum constituents and affect the friction and wear 

response of that interface. 

Figs. 5.91 and 5.92 show the COF evolution of these alloys versus time 

for 1N and 2N respectively. The COF at OCP exhibited similar behaviour to that 

at 0.5N. All alloys registered high COF during the start of the test (αβ: 0.69 at 1N 

and 0.7 at 2N; β: 0.72 a 1N and 0.76 at 2N; βω: 0.75 at 1N and 0.8 at 2N), except 

Nβ alloy (0.45) that showed a steady and not transient curve. The αβ alloy shows 

a steady curve from 2,000 seconds and 4,000 seconds at 1N and 2N respectively. 

The β alloy and βω alloy achieved steady state after 3,000 seconds and 

4,000 seconds at 1N and 2N respectively. The average COF is presented in Fig. 

5.93 and 5.94 which also present the standard deviation of 10,816 COF 

measurements. The lowest COF registered was 0.32 for the αβ alloy, while the 

highest was 0.45 for the Nβ alloy at 1N; 0.36 for the αβ alloy and 0.48 for the β 

alloy at 2N. However, the values are all in the same range. The reproducibility of 

these tests is presented in Figs. 5.95 to 5.100, which show a ΔE = -0.9V and -

0.85V. Also, COF is 0.45 and 0.4 for Nβ alloy and ΔE = -0.55V for both tests. 

Also, COF is 0.48 and 0.1 for β, which show good reproducibility of the wear tests 

at OCP of Nβ and β alloys at 1N and 2N respectively. 
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Fig. 5.89 - Potential evolution all 
alloys at OCP at 1N. 

Fig. 5.90 - Potential evolution all 
alloys at OCP at 2N. 

 

Fig. 5.91 - COF evolution all 
alloys at OCP at 1N. 

Fig. 5.93 – Average COF of 
all alloys at OCP at 1N. 

Fig. 5.92 - COF evolution all 
alloys at OCP at 2N. 

Fig. 5.94 – Average COF of 
all alloys at OCP at 2N. 
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Fig. 5.95 – Reproducibility of the 

OCP test of the Nβ alloy at 1N. 

Fig. 5.96 – Reproducibility of the 

COF evolution of the Nβ alloy at 1N. 

Fig. 5.97 – Reproducibility of average 

the COF of the Nβ alloy at 1N. 

Fig. 5.99 – Reproducibility of the 

COF evolution of the β alloy at 2N. 

Fig. 5.99 – Reproducibility of the 

COF evolution of the β alloy at 2N. 

Fig. 5.100 – Reproducibility of 

average the COF of the β alloy at 2N. 
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5.3.1.3 Anodic potential 

 

 

Fig. 5.101 and 5.102 show the evolution of the anodic current versus time 

for 1N and 2N respectively at anodic potential (0.3V vs OCP). Before running, all 

the measured currents were 1 x 10-7 A and they increased when rubbing started. 

The βω alloy showed the highest corrosion current (185µA at 1N and 284 µA) 

when rubbing started due to the increase in the worn area. 

The continuous metal ion release was due to the tribological contacts and 

the electrochemical driving force. The charge transfer rate is controlled by 

activation energy since the passive film is removed during rubbing, and it acts a 

barrier for charge transfer. It leads to a release of ions which starts the interaction 

with the bovine serum. 

The curves were similar for all alloys at 1N and 2N. After an initial increase, 

the current drops and stays stable at ~5,000 seconds and 4,000 seconds for 1N 

and 2N respectively. This may be due to the reaction of proteins and released 

Ti+, as the wear process accelerates release ions. Then it may form a layer which 

blocks charge transfer at the metal/solution interface. Also this layer reduces 

friction and indicates that this layer is an efficacious solid lubricant. 

Steady state was observed earlier at 2N than at 1N. The current remained 

low and stayed the same after the conclusion of rubbing indicating the restoration 

of passivity where the passive film is a barrier to charge transfer. When rubbing 

ended, the current measured was 1x 10-7 A. The observed peaks in the current 

evolution and COF were due to wear debris generation. 

The COF evolution is presented on Fig. 5.103 and Fig. 5.104 for 1N and 

2N respectively. αβ, β and βω alloys show a high COF (0.7) at the beginning of 

the test and then a dropped to 0.28 at 1000s and a steady curve up to the end of 

the test. Nβ alloy also show high values (0.4) when the test started and a drop to 

0.29 for 1N and 2N. 

The average COF is presented on Fig. 5.105 and Fig. 5.106 which also 

presents the standard deviation of 10,816 COF measurements. The αβ alloy had 

the lowest COF for both 1N and 2N of 0.26 and 0.24 respectively. The β alloy had 

the highest COF of 0.29 and 0.31 for 1N and 2N respectively. It is clear that the 
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COF was higher at the cathodic potential and lower at the anodic potential. The 

COF was similar for all alloys in each electrochemical condition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 5.101 - Current evolution all 
alloys at anodic potential at 1N. 

Fig. 5.102 - Current evolution all 
alloys at anodic potential at 2N. 

Fig. 5.103 - COF evolution all 
alloys at anodic potential at 1N. 

Fig. 5.105 – Average COF of all 
alloys at anodic potential at 1N. 

Fig. 5.104 - COF evolution all 
alloys at anodic potential at 2N. 

Fig. 5.106 – Average COF of all 
alloys at anodic potential at 2N. 
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5.3.2 Wear track profile 

 

Fig. 5.107 to 5.112 gives the wear track profile for cathodic potential, OCP 

and anodic potential at 1N and 2N. The 3D images from the wear tracks are 

presented on table 5.2.   

At cathodic potential, the αβ alloy has the shallowest (90µm and 130µm) 

and the Nβ alloy the deepest (145µm and 195µm) wear track for both loads. In 

addition, the wear tracks at 2N are deeper than those at 1N. The αβ alloy has the 

width of 1.2mm, Nβ alloy 1.25mm, β alloy 1.45mm and βω alloy 1.4mm at 1N; 

and αβ alloy 1.5mm, Nβ alloy 1.65mm, β alloy 1.66mm and βω alloy 1.5mm at 

2N. 

For OCP, the αβ alloy again has the shallowest wear track (50µm and 

110µm) for both loads but at 1N the Nβ alloy has the deepest (107µm) and at 2N 

the βω alloy has the deepest (165µm). The αβ alloy presents the width of 1.1mm, 

Nβ alloy 1.2mm, β alloy 1.3mm and βω alloy 1.3mm at 1N; and αβ alloy 1.5mm, 

Nβ alloy 1.6mm, β alloy 1.5mm and βω alloy 1.5mm at 2N. 

At anodic potential, the αβ alloy has the shallowest (50µm) and the β alloy 

the deepest (81µm and 100µm) wear track for both normal loads. αβ alloy shows 

the width of 0.9mm, Nβ alloy 1.1mm, β alloy 1.15mm and βω alloy 1.25mm at 1N; 

and αβ alloy 0.95mm, Nβ alloy 1.2mm, β alloy 1.3mm and βω alloy 1.5mm at 2N. 

These results show that the αβ alloy had the shallowest wear track for all 

electrochemical conditions at both loads. The same trend at 0.5N was seen: the 

wear tracks at cathodic potential were the deepest and those at anodic potential 

were the shallowest. Also, the depth of the wear track for each alloy follows 

different trends, for instance, at OCP, the Nβ alloy presents the deepest wear 

track at 1N (107µm) but when the load is increased to 2N, the βω alloy produces 

the deepest wear track (165µm) followed by the β alloy (150µm). 
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Fig. 5.107 – Comparison of wear 

track profile of all alloys at 

cathodic potential at 1N. 

Fig. 5.108 – Comparison of wear 

track profile of all alloys at 

cathodic potential at 2N. 

Fig. 5.109 – Comparison of wear 

track profile of all alloys at OCP 

at 1N. 

Fig. 5.110 – Comparison of wear 

track profile of all alloys at OCP 

at 2N. 

Fig. 5.111 – Comparison of wear 

track profile of all alloys at anodic 

potential at 1N. 

Fig. 5.112 – Comparison of wear 

track profile of all alloys at anodic 

potential at 2N. 
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Table 5.2 – 3D wear track images at 1N and 2N. 

 

Alloys Load Cathodic OCP Anodic 

αβ 

1N 

   

2N 

   

Nβ 

1N 

   

2N 

   

β 

1N 

   

2N 

   

βω 

1N 

   

2N 
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µm 

49 

-56 

µm 
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-48.2 
µm 

23.9 

-33.3 

µm 
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-114 
µm 
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-63 

µm 

52.8 

-33.6 

µm 
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µm 
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µm 
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µm 
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µm 
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µm 
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µm 
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µm 
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µm 
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µm 
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µm 
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µm 
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-65 

µm 
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µm 
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µm 

57 

-54 

µm 

72 

-112 
µm 

70 

-107 
µm 

53 
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5.3.3 Wear track volume, surface roughness and specific wear rate 

 

The wear track volume is presented in Fig. 5.113 and Fig. 5.114 for 1N 

and 2N respectively. The wear track volume was higher for all alloys at 2N.  

At cathodic potential and OCP at 1N, the Nβ alloy presented the highest 

volume loss (1.95 10-1 mm3 and 1.54 10-1 mm3) and the αβ alloy the lowest (1.28 

10-1 mm3 and 8.91 10-2 mm3). The αβ alloy was also the smallest material loss at 

anodic potential but the highest material loss in this case was exhibited by the β 

alloy (1.09 10-1 mm3 and 1.2 10-1 mm3) for both load. The wear track volume at 

OCP show intermediate values, where αβ has 8.9 10-1 mm3, Nβ 1.5410-1 mm3, 

β1.35 10-1 mm3 and βω 1.49 10-1 mm3. 

At 2N, the αβ alloy had the lowest (2.23 10-1 mm3) and the Nβ alloy the 

highest (3.05 10-1 mm3) material loss at cathodic potential, which was similar to 

at 1N. However, the Nβ alloy presented the lowest (1.59 10-1 mm3) and the βω 

alloy the highest (2.3 10-1 mm3) material loss at OCP. Finally, similar to 1N, the 

αβ alloy had the lowest (5.14 10-1 mm3) and the β alloy the highest (1.21 10-1 

mm3) material loss at anodic potential.  

The same trend was observed regarding the effect of the electrochemical 

condition on material loss. At anodic potential the material loss was lower than at 

cathodic potential and OCP exhibited intermediary values. At 0.5N, the αβ alloy 

presents a better performance than the other alloys. When the load was 

increased to 1N and 2N, the same trend was observed.  

The specific wear rates are presented in Figs. 5.115 and 5.116 for loads 

of 1N and 2N. At both loads the specific wear rate decreased in the order 

cathodic, OCP and anodic for all alloys.  

The specific wear rate for αβ alloy increased from anodic (2.09 10-4 

mm3/Nm) to cathodic (5.93 10-4 mm3/Nm), for the Nβ alloy it increased from 

anodic (3.44 10-4 mm3/Nm) to cathodic (9.03 10-4 mm3/Nm), for the β alloy it 

increased from anodic (5.07 10-4 mm3/Nm) to cathodic (7.92 10-4 mm3/Nm) and 

for the βω alloy it increased from anodic (3.92 10-4 mm3/Nm) to cathodic (8.35 10-

4 mm3/Nm) at 1N. 

For 2N, the specific wear rate for the αβ alloy increased from anodic (1.5 

10-4 mm3/Nm) to cathodic (5.16 10-4 mm3/Nm), for the Nβ alloy it increased from 

anodic (2.33 10-4 mm3/Nm) to cathodic (7.05 10-4 mm3/Nm), for the β alloy it 

increased from anodic (2.8 10-4 mm3/Nm) to cathodic (6.9 10-4 mm3/Nm) and for 
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the βω alloy it increased from anodic (2.610-4 mm3/Nm) to cathodic (6.39 10-4 

mm3/Nm) and intermediate values were observed at OCP. 

The αβ alloy exhibited the lowest and Nβ alloy and the β alloy the highest 

values specific wear rates. These values are high when compared to other metals 

for biomedical applications, such as CoCr and stainless steel. 

The surface roughness of the centre of each wear track is shown in Fig. 

5.117 and Fig. 5.118. The effect of potential and normal load on roughness was 

the same as observed at 0.5N.  

At 1N and 2N, the surface roughness was higher at anodic potential, lower 

at cathodic potential and intermediate values were seen at OCP. At cathodic 

potential, the αβ alloy showed the lowest roughness (0.95 and 0.88) and the βω 

alloy (1.55 and 2) showed the highest roughness at both loads. At OCP, the β 

alloy showed the lowest roughness (1.18) and the βω alloy (1.66) showed the 

highest roughness at 1N and the Nβ alloy showed the lowest roughness (1.34) 

and the βω alloy (2.5) showed the highest roughness at 2N. Finally, at anodic 

potential, the Nβ alloy showed the lowest roughness (1.3 and 1.52) and the βω 

alloy (1.95 and 2.54) showed the highest roughness at both loads. 

The roughness increases with load for all alloys. This property has higher 

values at anodic potential and lower values at cathodic potential. In general, the 

αβ alloy exhibited lower values and βω alloy higher values of roughness. 
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Fig. 5.113 – Comparison of wear track volume of all alloys in all electrochemical 

conditions at 1N. 

 

 

  

Fig. 5.114 – Comparison of wear track volume of all alloys in all electrochemical 

conditions at 2N. 
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Fig. 5.115 – Comparison of specific wear rate at cathodic potential, OCP and 
anodic potential at 1N. 

 

 

Fig. 5.116 – Comparison of specific wear rate at cathodic potential, OCP and 

anodic potential at 2N. 
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Fig. 5.117 – Comparison of roughness at cathodic potential, OCP and anodic 

potential at 1N. 

  

Fig. 5.118– Comparison of roughness at cathodic potential, OCP and anodic 

potential at 2N. 
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5.3.4 Surface characterization 

 

The topography of the worn surfaces are presented in Figs. 5.133 to 5.180, 

using both backscattered and secondary electrons images in the following order: 

αβ alloy at 1N, αβ alloy at 2N, Nβ alloy at 1N, Nβ alloy at 2N, β alloy at 1N, β alloy 

at 2N, βω alloy at 1N and βω alloy at 2N.  

Extensive surface roughening had occurred with isolated debris but no 

cracking was identified. These isolated debris might have acted as a third body. 

Features of ploughing and delamination such as wide grooves and scratches 

were observed throughout the worn surface. These are features of abrasive wear, 

similar to that at 0.5N. 

There was no difference among all surfaces when the electrochemical 

condition was changed and the surfaces were free of corrosion product. The 

same features were also observed when the normal load and electrochemical 

conditions were changed. However, the surface roughness was higher when the 

load was increased. 

The surface features is also similar to other ductile metals, which suggests 

that the electrochemical condition does not affect the wear mechanism. 

An observation in all alloys was a dark area in backscattered images which 

indicates the presence of tribolayer (for 0.5N as well) which was not 

homogeneously distributed and later confirmed by Raman.   

  

Results 



152 

• αβ alloy at 1N 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
αβ microstructure – 2N 
 

Fig. 5.119 – BSE image of the worn surface 
of αβ alloy at anodic potential at 1N. 

Fig. 5.120 - SE image of the worn surface 
of αβ alloy at anodic potential at 1N. 

Fig. 5.121 – BSE image of the worn 
surface of αβ alloy at OCP at 1N. 

Fig. 5.122 – SE image of the worn 
surface of αβ alloy at OCP at 1N. 

Fig. 5.124 – SE image of the worn 
surface of αβ alloy at cathodic 

potential at 1N. 

Fig. 5.123 – BSE image of the worn 
surface of αβ alloy at cathodic potential 

at 1N. 
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• αβ alloy at 2N 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.126 - SE image of the worn 
surface of αβ alloy at anodic potential 

at 2N. 

Fig. 5.125 – BSE image of the worn 
surface of αβ alloy at anodic potential 

at 2N. 

Fig. 5.127 – BSE image of the worn 
surface of αβ alloy at OCP at 2N. 

Fig. 5.128 – SE image of the worn 
surface of αβ alloy at OCP at 2N. 

Fig. 5.130 – SE image of the worn 
surface of αβ alloy at cathodic 

potential at 2N. 

Fig. 5.129 – BSE image of the worn 
surface of αβ alloy at cathodic potential 

at 2N. 
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• Nβ alloy at 1N 

6  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 5.131 – BSE image of the worn surface 
of Nβ alloy at anodic potential at 1N. 

Fig. 5.132 - SE image of the worn surface 
of Nβ alloy at anodic potential at 1N. 

Fig. 5.133 – BSE image of the worn 
surface of Nβ alloy at OCP at 1N. 

Fig. 5.134 – SE image of the worn 
surface of Nβ alloy at OCP at 1N. 

Fig. 5.136 – SE image of the worn 
surface of Nβ alloy at cathodic 

potential at 1N. 

Fig. 5.135– BSE image of the worn 
surface of Nβ alloy at cathodic potential 

at 1N. 
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• Nβ alloy at 2N 

7  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 5.137 – BSE image of the worn surface 
of Nβ alloy at anodic potential at 2N. 

Fig. 5.138 - SE image of the worn surface 
of Nβ alloy at anodic potential at 2N. 

Fig. 5.139 – BSE image of the worn 
surface of Nβ alloy at OCP at 2N. 

Fig. 5.140 – SE image of the worn 
surface of Nβ alloy at OCP at 2N. 

Fig. 5.142 – SE image of the worn 
surface of Nβ alloy at cathodic 

potential at 2N. 

Fig. 5.141 – BSE image of the worn 
surface of Nβ alloy at cathodic potential 

at 2N. 
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• β alloy at 1N 

8  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 5.143 – BSE image of the worn surface 
of β alloy at anodic potential at 1N. 

Fig. 5.144 - SE image of the worn surface 
of β alloy at anodic potential at 1N. 

Fig. 5.145 – BSE image of the worn 
surface of β alloy at OCP at 1N. 

Fig. 5.146 – SE image of the worn 
surface of β alloy at OCP at 1N. 

Fig. 5.148 – SE image of the worn 
surface of β alloy at cathodic potential 

at 1N. 

Fig. 5.147 – BSE image of the worn 
surface of β alloy at cathodic potential 

at 1N. 
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• β alloy at 2N 

9   

Fig. 5.149 – BSE image of the worn surface 
of β alloy at anodic potential at 2N. 

Fig. 5.150 - SE image of the worn surface 
of β alloy at anodic potential at 2N. 

Fig. 5.151 – BSE image of the worn 
surface of β alloy at OCP at 2N. 

Fig. 5.152 – SE image of the worn 
surface of β alloy at OCP at 2N. 

Fig. 5.154– SE image of the worn 
surface of β alloy at cathodic potential 

at 2N. 

Fig. 5.153 – BSE image of the worn 
surface of β alloy at cathodic potential 

at 2N. 
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• βω alloy at 1N  

Fig. 5.155 – BSE image of the worn surface 
of βω alloy at anodic potential at 1N. 

Fig. 5.156 - SE image of the worn surface 
of βω alloy at anodic potential at 1N. 

Fig. 5.157 – BSE image of the worn 
surface of βω alloy at OCP at 1N. 

Fig. 5.158 – SE image of the worn 
surface of βω alloy at OCP at 1N. 

Fig. 5.160 – SE image of the worn 
surface of βω alloy at cathodic 

potential at 1N. 

Fig. 5.159 – BSE image of the worn 
surface of βω alloy at cathodic potential 

at 1N. 
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• βω alloy at 2N 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 5.161 – BSE image of the worn surface 
of βω alloy at anodic potential at 2N. 

Fig. 5.162 - SE image of the worn surface 
of βω alloy at anodic potential at 2N. 

Fig. 5.163 – BSE image of the worn 
surface of βω alloy at OCP at 2N. 

Fig. 5.164 – SE image of the worn 
surface of βω alloy at OCP at 2N. 

Fig. 5.166 – SE image of the worn 
surface of βω alloy at cathodic 

potential at 2N. 

Fig. 5.165 – BSE image of the worn 
surface of βω alloy at cathodic potential 

at 2N. 
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5.2.10 Presence of tribolayer 

 

Raman spectra with Gaussian peak fitting, presented in Figs. 5.167 to 

5.172, for 1N and 2N have peaks at 1332 cm-1 and 1545 cm-1, similar to that 

observed at 0.5N.  These peaks are related to graphite and diamond. These 

peaks arise from disordered graphite or disorder mode (D band) and single 

crystalline graphite or tangential stretch mode (G band), which relates to the 

presence of Carbon, with all alloys tested having these peaks.  

In the D band the bond-angle disorder in the sp2 graphite-like 

microdomains, induced by linking with sp3 atoms, as well as the finite crystalline 

sizes of sp2 microdomains, while the G band is ascribed to sp2 trigonal bonding 

related to the graphite phase [291]. In this sense, the results from the Raman 

spectrum show that the worn area was composed of sp2-carbon and sp3-carbon.  

In general, the intensity ratio of D and G peaks is related to the relative 

content of sp2 and sp3 bonds. The sp2 bond could effectively reduce the shearing 

resistance on the contact surface and the sp3 bond with diamond-structure could 

enhance the hardness of material. 

The G peak was higher in all conditions, except for Nβ alloy at 1N and at 

anodic potential (159.34) and at 2N at anodic (156.57) and cathodic (123.42) 

potentials. At anodic potential the intensity of the peaks was higher with the 

highest intensity observed on the αβ alloy at this potential for G band (145.42 and 

134.04 for 1N and 2N). The lowest intensity was seen on αβ at OCP (D band: 

46.63) at 1N and the highest intensity observed was at anodic potential at 1N and 

Nβ alloy (D band: 159.34). The presence of high intensity G peak may have 

influenced wear due to the lubricating properties.  

These peaks confirm the presence of tribolayer being generated during the 

motion of the surfaces in contact. The tribolayer is rich in protein and it may be 

beneficial for the tribocorrosion process which is formed by the interaction of ions 

released by the passive film and proteins. However, published data on this it is 

contradictory.  

The same number of measurements were taken from these samples as 

0.5N (5 measurements). Not all of them registered the presence of a tribolayer; 

the results shown here are only from where C was detected. This indicates the 

tribolayer was present in all alloys, but it was not continuous and was not uniform 

across the whole surface. At 0.5N the intensity of the peaks was higher but for 

Results 
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1N and 2N this trend was not observed. However, the αβ alloy showed the most 

intense peaks at cathodic potential at 1N, similar to 0.5N. This alloy shows the 

lowest material loss at 1N and 2N in all electrochemical conditions.  
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Fig 5.167 – Raman spectroscopy 
of worn surface of all alloys at 

cathodic potential at 1N. 

Fig 5.168 – Raman spectroscopy 
of worn surface of all alloys at 

cathodic potential at 2N. 

Fig 5.169 – Raman spectroscopy of 
worn surface of all alloys at OCP at 

1N. 

Fig 5.170 – Raman spectroscopy 
of worn surface of all alloys at OCP 

at 2N. 

Fig 5.171 – Raman spectroscopy 
of worn surface of all alloys at 

anodic potential at 1N. 

Fig 5.172 – Raman spectroscopy 
of worn surface of all alloys at 

anodic potential at 2N. 
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5.2.11 Characterization of subsurface at anodic potential 

 

The subsurface of the alloys tested at 2N with an anodic potential were 

analysed by TEM from FIB specimens to characterize the tribolayer and surface 

deformation. This potential was chosen since it showed the lowest material loss. 

Figs. 5.173 to 5.175 show TEM and STEM cross section images, EDX 

spectra and diffraction pattern from the αβ alloy. Figs. 5.176 to 5.178 show TEM 

and STEM cross section images, EDX spectra and diffraction patterns from the 

Nβ alloy. Figs. 5.179 to 5.181 show TEM and STEM cross section images, EDX 

spectra and diffraction patterns from the β alloy. Figs. 5.182 to 5.184 show TEM 

and STEM cross section images, EDX spectra and diffraction patterns from the 

αβ alloy. In all cases the worn surface was protected by Pt deposition, which also 

served to label the original worn surface.  

Surface deformation was observed with flow of material following the 

sliding direction for all cases. For the αβ alloy, Fig. 5.173, the surface strained 

layer was around 200nm thick and contained a fine nanocrystalline layer. EDX 

showed the presence of a thin oxide layer, Fig. 5.174.   Diffraction of the surface 

strained layer suggested it was predominantly β phase, Fig. 5.175.  

The Nβ alloy exhibited a thick (300nm) relatively uniform nanocrystalline 

surface layer in comparison to the αβ alloy, Fig. 5.176. Some oxide was present 

on the surface, but impacted wear debris was clearly an oxide, Fig. 5.177. 

Electron diffraction suggested the surface was predominantly β phase, Fig. 

5.178.  

The β alloy exhibited a variable nanocrystalline layer at the surface, with 

the depth ranging from about 100 to 600nm, Fig. 5.179. There was also evidence 

of surface wear debris, which was nanocrystalline in structure. EDX again 

showed an oxide layer on the surface and that the wear debris had become 

oxidised, Fig. 5.180. Electron diffraction of the surface region indicated that it had 

remained β phase, Fig. 5.181.  

The surface of the the βω alloy was largely featureless, Fig. 5.182. Again, 

a surface oxide layer was present, Fig. 5.183. Electron diffraction indicated that 

the surface was predominantly β phase, but some faint circular diffraction 

suggested some amorphous phase might be present, Fig. 5.184.  
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Fig. 5.173 – TEM and STEM cross section images of worn surface of the αβ 

alloy. 
 
 
 

 
Fig. 5.174 – EDX spectra of cross section inside worn surface of the αβ alloy. 

 
 

  
Fig. 5. 175 – Diffraction pattern of cross section inside worn surface of the αβ 

alloy. 
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Fig. 5.176 – TEM and STEM cross section images of worn surface of the Nβ 

alloy. 
 
 
 

 
Fig. 5.177 – EDX spectra of cross section inside worn surface of the Nβ alloy. 

 
 

 
Fig. 5. 178 – Diffraction pattern of cross section inside worn surface of the Nβ 

 alloy. 
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Fig. 5.179 – TEM and STEM cross section images of worn surface of the β 
alloy. 

  
 

 
Fig. 5.180 – EDX spectra of cross section inside worn surface of the β alloy. 

 
 

 
Fig. 5. 181 – Diffraction pattern of cross section inside worn surface of the β 

alloy. 
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Fig. 5.182– TEM and STEM cross section images of worn surface of the βω 
alloy. 

 

 
 

Fig. 5.183 – EDX spectra of cross section inside worn surface of the βω alloy. 
 
 

 

Fig. 5. 184 – Diffraction pattern of cross section inside worn surface of the βω 
alloy. 
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5.2.12 Summary  

 

In this chapter, the tribocorrosion behaviour of αβ, Nβ, β and βω alloys 

were analysed.  Some major points can be summarized: 

 

• All alloys become more active when subjected to mechanical wear, 

characterized by the drop of the polarization curves to a more negative 

potential and higher current. 

• COF evolution curves show a running in and steady state for all alloys, 

except for Nβ alloy. 

• The cathodic current drops during the wear test but rose again when the 

sliding movement stopped for all conditions. 

• A cathodic drop is observed on potential when wear test starts and an 

anodic shift is observed on potential when wear test stops. However, the 

potential reaches lower values than before the wear test. 

• Anodic current increases during the wear test and drops when it is 

stopped. 

• Charge transfer occurs at OCP due to the removal of the passive layer 

which acts as a barrier of ion movement. 

• At anodic potential, charge transfer occurs due to the continuous metal ion 

release due to the tribological contacts and the electrochemical driving 

force. The charge transfer leads to a layer formation due to the reaction of 

the released ions and bovine serum components, which act as charge 

transfer barrier and solid lubricant. 

• COF, wear track volume and specific wear rate increase with normal load 

and are lower at anodic potential and higher at cathodic potential. Thus, 

corrosion played an important role and affected wear extensively. 

• Roughness is higher at anodic potential and lower at cathodic potential. 

• The αβ alloy shows the lowest COF, wear track volume and specific wear 

rate. 

• The worn surfaces are characterized by wide grooves, scratches, isolated 

debris and there is no difference on the worn surfaces when potential, load 

and microstructure is changed. Cracks were not observed. 

• An organic film is detected on the worn surfaces in all electrochemical and 

normal load conditions. 
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• Nanohardness and reduced elastic modulus are higher for all worn 

surfaces with a high degree of scatter in the results.  

• Channelling contrast images identified subsurface deformation in all 

alloys, except β alloy, but TEM results show the presence of α’’ and ω on 

its subsurface. 

• The presence of α, α’’, β and ω phases was observed in worn subsurface. 

• Analysis of the subsurface of the alloys tested at 2N at anodic potential 

show material flowing on the sliding direction, the presence of 

nanocrystalline layer, the presence of a thin oxide layer and presence of β 

phase. 

Results 
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Chapter 6 – Discussion 

6.1 Introduction 
 

It is possible to conclude from the literature review, chapter 2, that the 

tribocorrosion mechanisms and phenomena of Titanium alloys are not fully 

understood and a contribution in this topic is needed.  

This discussion chapter brings together the results presented in the last 

chapter: the tribocorrosion behaviour at cathodic potential, OCP and anodic 

potential, the wear track morphology and properties, the wear rate, the presence 

of a tribofilm, surface and subsurface characterization and the effect of normal 

load on these properties. This summarises the main findings and discusses their 

relevance in relation to the key contribution made by this thesis. 

Firstly the effect of electrochemical condition is analysed, then the effect 

of normal load, the microstructure and chemical composition effect and finally the 

interaction between wear and corrosion. 

  

6.2 Effect of electrochemical condition  
 
 

All alloys in this study present a qualitatively similar polarization behaviour, 

although the values differed, where αβ alloy is the noblest alloy. There are 

differences among polarization curves, such as the corrosion current and 

corrosion potential, which defines the best corrosion resistance. These alloys 

present good corrosion resistance, which is due to the presence of alloying 

elements such as Nb, Zr, Ta and Mo. These alloying elements form stable oxides 

on Titanium alloys such as MoO3, ZrO2, Ta2O3 and Nb2O5 [156]. Gnanavel [292] 

studied the corrosion behaviour of Ti64 and Ti-13Nb-13Zr in Hank’s solution at 

37oC and compared these alloys with coated surfaces. The results show Ti-13Nb-

13Zr has a better corrosion resistance. In the study of More [24], Ti–29Nb–13Ta–

4.6Zr alloy showed a better corrosion resistance than Ti-13Nb-13Zr alloy and 

Ti64. Also, Wang [293] compared the corrosion behaviour Ti64 in different 

electrolytes and show that in bovine serum Ti64 showed the noblest behaviour 

due to the presence of protein Contu [294] found that the higher concentration of 

serum, the higher corrosion resistance of Ti alloys. 
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The orthopaedic implants suffer of local removal of the protective layer and 

this process leads to a polarization of the surface depending on the extent of 

scratching. These alloys become more active when subjected to rubbing due to 

the effect of wear on corrosion, i.e. the capability of repassivation of these alloys 

is affected by friction. It shows that rubbing plays an important role on corrosion 

behaviour of these alloys. The depassivated areas (worn areas) react with the 

passivated areas and form a galvanic couple leading to an increase of metal 

dissolution and material loss [232].  

The rubbed areas experience an increase in metal oxidation rate because 

of the loss of passivity. Therefore, their theoretical corrosion potential is expected 

to move towards more cathodic values, Fig. 6.1. Rubbing affects the metal anodic 

reaction, which increases the current and decreases the potential [232].  

Huang [295] studied the effect of wear on potentiodynamical behaviour of 

Ti–25Nb–3Mo–3Zr–2Sn Alloy in Simulated Physiological Solution and observed 

that this alloy became more active when rubbing.   

Titanium alloys corrode easily under the synergy of corrosion and wear, 

and the passive film is easily damaged which removes the protection for the alloy 

and accelerates the corrosion rate. This suggests that wear enhanced the 

thermodynamic corrosion potential. 

 

 

Fig. 6.1 – Effect of wear on potentiodynamical test (adapted) [232]. 
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All alloys are expected to have a passive film on their surfaces and the 

composition of each film relies on the composition of the respective alloys. High 

COF is observed when the wear test starts and the contact between these alloys 

with the counterpart, alumina, leads to damage or removal of the passive film. 

Steady state is reached when a tribofilm is formed and repassivation of the 

surface occurs. The COF does depend on the potential applied, being lower at 

anodic potential and higher at cathodic potential. This is explained due to the 

formation of a thicker tribolayer at anodic potential, which changes the contact 

mechanism and acts as lubricant. Wear debris were generated, possibly removed 

as oxide, and the peaks observed on the COF evolution are a result of debris 

entrapped between the surfaces.  

Wimmer [296] studied the effect of contact load on tribofilm formation on 

CoCr alloys and concluded that the tribofilm formation was beneficial in reducing 

wear because it is linked to the wear rate plateau observed when normal load 

increased. 

The reason for the higher COF at the beginning of the test is because a 

tangential force is required to start the motion between the two bodies in contact. 

It occurs because, before starting the motion, a large stress relaxation at the 

junctions may occur due to increase in temperature, which leads to an increase 

of the real area of contact [213]. In addition, the wear rate is very high because 

the surfaces in contact are unlikely to be nonconformal, and so the local Herztian 

contact pressure is high leading to high wear rates. As the contact becomes more 

conformal through wear, the Hertzian contact stress decreases and the wear rate 

decreases.  The wear mechanism may change at this stage. 

At cathodic potential the current drops after rubbing starts due to proton 

reduction. This is caused by mechanical action and the enhancement of the 

cathodic reaction rate caused by the stirring of the electrolyte in the tribocell which 

affects the kinetics of mass transport. The current increases after rubbing stops, 

due to the stirring effect of the alumina counterpart, which enhances mass 

transport and the mechanical removal of the passive film, which is known to inhibit 

the cathodic reaction [231]. Friction is highly dependent on the potential applied 

due to the metal sensitivity to hydrogen embrittlement, that is why the synergism 

standard fixes these potential values for tests. 

A cathodic drop is observed when rubbing starts due to the removal of the 

passive film and exposure of bare metal to the electrolyte. A potential difference 
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is stabilised between the worn (anodic area) and unworn (cathodic area) areas 

and it reflects the galvanic coupling of these two distinct surfaces states. This 

enhances the active dissolution of the metal and modifies the potential of the 

passive area [297].   

All alloys show a constant value of OCP with slight fluctuations, which is 

attributed to a dynamic equilibrium achieved between mechanical depassivation 

(passive film removed) and electrochemical passivation (recovery mechanism) 

[229].  

The parabolic anodic shift (increase) to values lower than before rubbing 

that was observed at all applied loads is due to the modified surface, which 

suggests that all alloys show the ability to regrow the passive film but not 

instantaneously. Finally, the potential evolution varies for each alloy and it may 

suggest that microstructure influences it. Again, the COF changes with load and 

electrochemical condition. 

Zavieh [298] studied the effect of friction on tribocorrosion behaviour of 

stainless steel. It was found that at OCP, the potential drops when rubbing starts 

suggesting high depassivation rate and galvanic coupling between the unworn 

(passivated) area outside the wear track and the fresh (depassivated) area due 

to rubbing of the counterpart. This is a typical behaviour of passive alloys.  

 At anodic potential, the current shifts to more positive values when 

rubbing starts due to the oxidation of the exposed bare material to the electrolyte 

with progressive wear. It indicates that wear enhances corrosion rate. This 

change is due to the removal of the passive film and exposure of bare and active 

material to the media in the contact region. It leads to a reaction between the 

active exposed surface and the electrolyte accelerating the electrochemical 

reaction and anodic metal oxidation. The initial current shift increases with normal 

load. All alloys present a stable current and the isolated peaks represent a local 

repassivation that rapidly depassivated. This is due to the repassivation of all 

alloys during rubbing. This steady state indicates that all alloys have the ability to 

regain they passivation even under sliding at anodic potential and depassivation 

has ceased. Overall, these alloys experience wear accelerated corrosion when 

the passive film is damaged, confirmed by the synergistic approach. This 

indicates that the tribofilm is formed more effectivity at anodic potential, it acts as 

a lubricant and changes the contact mechanism reducing friction. 
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Guadalupe [299] applied anodic polarization on CoCr alloys with different 

carbide content and observed that the wear test at anodic potential showed an 

increase of current when rubbing started. Guadalupe attributed it to enlargement 

of the wear track with progressing wear. The lowest values of COF is observed 

at anodic potential, but it increased at OCP and cathodic potential. The only 

reason for this is that the anodic condition had the thickest oxide layer which 

appears to have affected the friction coefficient. In addition, the formation of a 

thicker tribofilm at anodic potential may have acted as a solid lubricant and 

changes the contact mechanism, reducing friction. Diomidis [300] studied the 

surface state behaviour of complex metallic alloys in sliding contacts and 

observed the dependence of COF to electrochemical condition in PBS. Also, it 

has been reported that COF is lower at anodic potentials than at cathodic 

potentials for CoCrMo and 316L stainless steel in bovine serum and H2SO4 [301, 

302].  

The lower values of specific wear rate at anodic potential show the role of 

the passive film reducing friction and material loss. This is the first indication of 

the positive effect of corrosion on wear rate. This is confirmed by the synergistic 

approach. Also, it may be explained by the formation of a thicker tribofilm at this 

potential.   

The poor wear resistance of these alloys is the reason for the highest 

material removal found at cathodic potential where the bare metal is exposed to 

wear, while the wear volume was lower at anodic condition at all applied normal 

loads because the material surface was protected by a stable and adherent 

corrosion film that reduces the contact stresses. The exact adhesion strength of 

proteins on metallic surface is not known to date [303] and the film formation is 

affected by ion release. This suggests that the potential applied in the system has 

an effect on the tribological properties. All alloys suffer from wear–accelerated 

corrosion but benefit from corrosion–decelerated wear. This is called antagonistic 

or negative synergy effect (beneficial effect). Khan [255] shows that the material 

loss of Ti alloys from wear test is lower in the presence of protein. It suggests that 

the presence of protein and released ions form a stable and adherent tribofilm 

that acts as solid lubricant and reduces the contact stress field.  

This shows that the passivation performance of all alloys has a positive 

effect on the tribocorrosion behaviour at passive applied potentials. The alloys 

have the ability to recover their passivity (even in a short period of time) on the 
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worn area even under mechanical disturbance and they show a wear–

accelerated corrosion resistance. The recovery of the passive state is effective in 

reducing material loss with the formation of tribofilm which changes the contact 

mechanisms and acts as a barrier to friction. The mechanical wear seems to be 

dominant in material loss and the capacity of passivity recovery during sliding 

contact is a key characteristic when developing new alloys for THR, as it can 

reduce friction.  

Delamination was extensive and at anodic potential the surfaces were 

rougher. The high roughness at this potential is also attributed to the formation 

and presence of a thicker tribolayer. Raman spectra identified an organic layer in 

all alloys for all conditions. However, the intensity was higher at anodic potential 

in most cases and it is consistent with the smaller material loss and higher 

roughness at anodic potential due to a thicker tribolayer. The effect of the applied 

potential is also observed where the refined area is clearer at cathodic potential. 

The load applied might have an effect too. It suggests that the subsurface 

transformation in this system is dependent of the alloy composition and 

electrochemical condition applied. Several workers have reported the subsurface 

modification due to the wear test at anodic potential for CoCr alloys [299, 304] 

and at OCP for stainless steel [298]. 

Under cathodic potential, corrosion was prevented by an imposed current. 

No ions were released from the surface. The material loss was totally controlled 

by mechanical factors. At anodic potential, a passive film and organic layer was 

forced to form and due to its protective characteristics, the release of ions was 

prevented. Therefore, the material degradation mechanism was influenced by 

both mechanical and electrochemical conditions. It clearly shows that by forcing 

the passive film and organic film to form the tribocorrosion behaviour of Ti alloys 

can be improved. 

The applied potential plays a crucial role on corrosion behaviour of Ti 

alloys in bovine serum solution. All alloys become active when the surface is 

rubbed due to the galvanic coupling between the unworn and worn areas. This 

indicates why material loss is lower at anodic potential. The lowest properties 

values are observed at anodic potential which is attributed to the formation of a 

thicker tribofilm which changes and contact stress field and act as solid lubricant.  
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6.3 Effect of normal load applied 
 

Fig. 6.2 and table 6.1 show the material volume loss for each alloy at 0.5N, 

1N and 2N with the volume loss increasing with load. In general, material loss 

was lower at anodic potential and higher at cathodic potential. The αβ alloy had 

the lowest and Nβ alloy the highest material loss. Normally, the studies show 

higher material loss at cathodic potential, which is attributed to the synergism 

between wear and corrosion.  

The same comparison is made for specific wear rate, Fig. 6.3 and table 

6.2 with 0.5N displaying the lowest values and 1N the highest values. In addition, 

the highest and lowest values of this propriety were seen at cathodic and anodic 

potentials. In general, the lowest and highest values were seen on the αβ and Nβ 

alloys. The enhancement of the specific wear rate of cathodic polarized surfaces 

compared to surfaces tested at OCP and at anodic potential was quite noticeable. 

For instance, the specific wear rate of αβ alloy at cathodic potential (5x10-4 

mm3/Nm) is more than twice higher than that at anodic potential (2x10-4 

mm3/Nm). This clearly shows the role of oxide layer on the worn surfaces. 

Finally, the COF is shown in Fig. 6.4 and table 6.3 at cathodic potential 

and OCP, which increases slightly with load, but for the anodic potential it 

remained stable when the normal load was increased. The αβ alloy had the 

lowest COF for all conditions, and the β alloy had the highest at 0.5N and Nβ 

alloy at 1N and 2N respectively. 

In fact, the lower COF at anodic potential has also been identified in an 

study of tribocorrosion behaviour of Ti6Al4V in artificial seawater at low contact 

pressures [305] and for stainless steel in H2SO4 solution [306]. 
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Fig. 6.2 – Comparison of wear track volume at cathodic potential, OCP and 
anodic potential at 0.5N, 1N and 2N. 

 
 

Table 6.1 – Comparison of wear track volume (mm3) at cathodic potential, OCP 
and anodic potential at 0.5N, 1N and 2N. 

 
Alloy Load Cathodic OCP Anodic 

Αβ 

0.5N 0.05 0.04 0.02 

1N 0.13 0.09 0.05 

2N 0.22 0.17 0.05 

Nβ 

0.5N 0.06 0.04 0.03 

1N 0.2 0.15 0.07 

2N 0.3 0.16 0.1 

Β 

0.5N 0.07 0.04 0.04 

1N 0.17 0.14 0.11 

2N 0.3 0.21 0.12 

βω 

0.5N 0.06 0.05 0.03 

1N 0.17 0.14 0.11 

2N 0.28 0.23 0.11 
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Fig. 6.3 – Comparison of specific wear rate at cathodic potential, OCP and 

anodic potential at 0.5N, 1N and 2N. 

 

Table 6.2 – Comparison of specific wear rate (mm3/Nm) at cathodic potential, 

OCP and anodic potential at 0.5N, 1N and 2N. 

Alloy Load Cathodic OCP Anodic 

Αβ 

0.5N 4.97E–04 3.40E–04 2.29E–04 
1N 5.93E–04 4.13E–04 2.09E–04 
2N 5.16E–04 4.01E–04 1.19E–04 

Nβ 

0.5N 5.42E–04 3.96E–04 2.96E–04 
1N 9.03E–04 7.12E–04 3.44E–04 
2N 7.05E–04 3.69E–04 2.33E–04 

Β 

0.5N 6.70E–04 4.01E–04 3.86E–04 
1N 7.92E–04 6.27E–04 5.07E–04 
2N 6.90E–04 4.79E–04 2.80E–04 

Βω 

0.5N 5.70E–04 4.24E–04 2.98E–04 
1N 8.35E–04 6.90E–04 3.92E–04 
2N 6.39E–04 5.32E–04 2.60E–04 
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Fig. 6.4 – Comparison of the average coefficient of friction at cathodic potential, 

OCP and anodic potential at 0.5N, 1N and 2N. 

 

 

Table 6.3 – Comparison of the average coefficient of friction at cathodic 

potential, OCP and anodic potential at 0.5N, 1N and 2N. 

Alloy Load Cathodic OCP Anodic 

Αβ 

0.5N 0.41 0.29 0.28 

1N 0.44 0.32 0.26 

2N 0.52 0.36 0.24 

Nβ 

0.5N 0.46 0.36 0.3 

1N 0.49 0.45 0.31 

2N 0.56 0.45 0.3 

Β 

0.5N 0.42 0.31 0.31 

1N 0.53 0.38 0.32 

2N 0.51 0.48 0.31 

Βω 

0.5N 0.4 0.32 0.29 

1N 0.47 0.41 0.29 

2N 0.53 0.46 0.29 

 

The specific wear rate increases from 0.5N to 1N and then slightly 

decreases from 1N to 2N, which may suggest a change of the wear mechanism. 

The αβ alloy presents the lowest and Nβ alloy and β alloy the highest values of 

specific wear rate, due to the presence of α phase.  
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The normal load also shows an effect on the current and potential 

evolution of wear test. The higher the contact pressure the higher is the cathodic 

drop at OCP due to a larger exposed generated area. The higher the contact 

pressure the higher is the current increase at anodic potential also due to the 

exposed generated area by higher normal load and it suggests that wear 

enhances the anodic current. The increase of normal load leads also to an 

increase of the ploughing effect and this is reason why the surface roughness 

increases with normal load. 

As expected, normal load increase leads to higher COF, specific wear rate 

and volume loss. This is attributed to the enhancement of the ploughing effect. It 

shows that the higher normal load the higher is the material degradation. The 

process of ion release is accelerated by tribological contact and the polarization 

resistance decreases, which indicates that the protective film in the wear scar is 

influenced by tribology and tribocorrosion. 

 
 

6.4 Microstructure and chemical composition effect  
 

Preferential corrosion of α or β phase was not observed, despite the fact 

that β phases normally have better corrosion resistance due to the presence of 

high corrosion resistant alloying elements. Also, other electrochemical tests are 

required to fully assess the corrosion behaviour of these alloys and point out 

which alloy has the best corrosion resistance. 

Steady state is observed on COF evolution at cathodic potential for the αβ, 

βω and β alloys. The Nβ alloy does not show any large variations on COF 

evolution, which shows a good stability of this alloy and it might be explained by 

the presence of Fe which does not promote passivation.  

The αβ alloy experienced the least material loss at all electrochemical 

conditions, due to the presence of α phase. This indicates that the material loss 

depends of material composition, normal load and electrochemical condition. 

The low COF of the αβ alloy is attributed to the presence of α phase which 

is harder than the β phase. The limited plastic deformability of α phase is 

explained by its number of slip systems. In fact, α phase is a hexagonal close 

packed phase and it has only 3 slip systems, while β phase (bcc) has 12 slip 

systems [297]. According to von–Misses criterion, at least 5 slip systems is 
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required for homogeneous plastic deformation [298]. A larger number of slip 

planes are energetically most favourable for plastic deformation. 

Wear occurred in these alloys because alumina counterpart (harder) 

penetrated their softer surface and grooved it. The material is mainly removed by 

microploughing because the particles of the wear track flowed to the sides of the 

track and the surface is severely damaged, but microcutting may also have 

occurred simultaneously in lower intensity because it is favoured by the presence 

of a lubricant.  

That ploughing appearance on the worn surface indicates the poor 

resistance of these alloys to plastic deformation [213]. Every abrasive interaction 

is characterized by an intense plastic deformation that is accumulated by 

repeated interactions. This indicates that abrasive wear with delamination is the 

dominant wear mechanism and it started in the steady state stage, but tribo–

oxidative wear may have occurred due to the repassivation of these alloys in the 

running in period. This is a typical two body abrasion, which is a severe form of 

wear [138]. The same wear mechanism occurred in all alloys despite the variation 

of the electrochemical condition, composition and microstructure. 

Studies show that abrasive and adhesive wear have been seen in artificial 

joint replacements and they may cause failure of TJR [36, 214].  

The wear resistance of an alloy relies on the mechanical properties of the 

passive film and contact pressure [277]. The contact pressure is the same for 

each condition, but the mechanical proprieties of the passive film is different for 

each alloy because it depends on the alloy composition and microstructure. This 

microstructure may change with mechanical wear and electrochemical action on 

the active area.  

All alloys exhibited the formation of a tribolayer on the surface in all 

conditions. Wimmer [91, 296] observed that the tribolayer formation only occurred 

at high loads for CoCr alloys and that the dissolution of Mo is crucial for tribofilm 

formation. Liao [272] studied the graphitic tribological layers and concluded that 

transition metals remove water and ammonia from albumin which leads to a 

formation of a tribofilm which reduces friction. Thus, the oxide layer must be 

removed for the formation of a tribofilm. Liao [229] and Yan [302] suggested that 

the tribofilm is composed of a mix of released metal and protein.  

The αβ alloy presented the highest Raman peaks intensity from the 

organic layer, which may be linked to the low wear rate, demonstrating the 
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effectiveness of the tribolayer of reducing the friction. The high intensity indicates 

a thicker film. The intensity of the organic layer signal was higher at a load of 

0.5N. The tribofilm may be formed by the released ions from the passive layer 

and proteins from the bovine serum. However, information about this is scarce 

[229]. The presence of the tribolayer was not homogeneous as shown by the 

variation in five measurements from each surface, which is agreement with the 

literature [307]. The presence of the tribolayer does not seem to be linked with 

the microstructure, but potential and normal load influence its formation. Other 

metallic alloys only form tribolayer in specific loads and potentials. 

Table 6.4 shows the ratio of D and G bands and the graphite size domain 

(Lα). Raman spectroscopy results showed that the tribofilm formed on the worn 

surfaces at all electrochemical conditions is a composed of amorphous and 

nanocrystalline carbon. It is possible to roughly correlate the relative intensity 

(ID/IG) to the graphite cluster, where the relative intensity is equal to Cλ/Lα [308]. 

Cλ is 4.4nm for the used laser (515.5nm). It shows that the graphite domain size 

ranges from 3.9nm (β alloy at 0.5N at anodic potential) to 8.7nm (Nβ at 0.5N at 

anodic potential). Results from other researches show that the graphite domain 

size is 4.5nm [272]. Studies with CoCr show that the formation of an organic 

nanostructure composite may occur in the outermost layer of the surface [309]. 
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Table 6.4 – Ratio of D and G bands. 

Alloy Load (N) Potential I(D)/I(G) Lα (nm) 

ab 0.5 Anodic 0.8 5.7 

ab 0.5 OCP 1.0 4.6 

ab 0.5 Cathodic 0.9 4.8 

ab 1 Anodic 0.9 5.0 

ab 1 OCP 0.6 7.8 

ab 1 Cathodic 0.7 6.3 

ab 2 Anodic 0.9 5.0 

ab 2 OCP 0.7 6.1 

ab 2 Cathodic 0.7 6.2 

b 0.5 Anodic 1.1 3.9 

b 0.5 OCP 1.1 4.0 

b 0.5 Cathodic 0.7 6.4 

b 1 Anodic 0.9 5.0 

b 1 OCP 0.7 6.0 

b 1 Cathodic 0.7 6.5 

b 2 Anodic 0.9 4.9 

b 2 OCP 0.8 5.6 

b 2 Cathodic 0.9 5.0 

bw 0.5 Anodic 0.7 5.9 

bw 0.5 OCP 1.0 4.2 

bw 0.5 Cathodic 0.8 5.6 

bw 1 Anodic 0.8 5.5 

bw 1 OCP 0.8 5.8 

bw 1 Cathodic 0.7 6.5 

bw 2 Anodic 0.9 4.8 

bw 2 OCP 0.8 5.8 

bw 2 Cathodic 0.7 5.9 

Nb 0.5 Anodic 0.5 8.7 

Nb 0.5 OCP 0.6 6.9 

Nb 0.5 Cathodic 0.7 6.7 

Nb 1 Anodic 1.1 4.2 

Nb 1 OCP 0.8 5.5 

Nb 1 Cathodic 1.0 4.4 

Nb 2 Anodic 1.1 4.1 

Nb 2 OCP 0.8 5.6 

Nb 2 Cathodic 1.0 4.3 

 

The αβ alloy had the lowest material loss which could be linked to the 

highest nanohardness and reduced elastic modulus of this alloy. Interestingly, at 

anodic potential, the nanohardness showed its highest values, the volume loss 

exhibited its lowest values and roughness its highest values, which suggests a 

hard and wear resistant surface and rougher due to the thicker tribolayer. 
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The increase in the mechanical properties of the worn surfaces occurred 

due to the subsurface change during the wear test. This is due to the applied 

stress that is larger than the elastic shakedown limit and the materials 

experienced strain hardening due to the steady state cyclic plasticity that leads 

to an accumulation of plastic strain. Plastic yielding was achieved at the asperities 

contact points. These asperities experienced a cyclic load due to the repeated 

contact and with the continuous accumulation of plastic deformation and local 

compressive state of stress, which leads to plastic deformation [213]. It may 

influence hardness due to strain hardening and it may increase with load. 

However, this relationship has not yet been proved.  

Studies shows that small grains of CP Ti leads to an increase of 

mechanical properties but no effect on wear properties was observed [310]. In 

addition, ultra fine grains have been reported to reduce wear properties [311]. 

Also, it is an indication that ductility of these alloys reduces after wear test since 

it is inversely proportional to hardness. However, other studies concluded that 

fine grain size enhance the wear resistance of CP Ti [312].  

The elastic modulus for the body centre cubic phase is lower than 

hexagonal and orthorhombic phases, but it is also affected by the volume fraction 

of each phase. HCP phase has a low ability to deform plastically. Thus, during 

sliding the asperity junctions deform with lower intensity and the adhesion forces 

at the junctions are not able to develop fully [93]. 

The subsurface characterization by FIB and TEM demonstrate that 

microstructural changes occurred during the wear test and it changes with the 

electrochemical condition. These are signs of dynamic recrystallization since the 

constant flow of electrolyte at 37oC and the smooth surface finishing reduce the 

probability of reaching high temperatures necessary for a recrystallization 

process by heat treatment. This may be started during running in stage since the 

wear rate is higher. Therefore, the mechanical effect is more dominant in grain 

size reduction than thermally induced recrystallization.  

The formation mechanisms of this microstructural subsurface change is 

not yet clear, but it is formed by strain accumulation at the contact subsurface 

due to repetitive loading (cyclic nature of friction) during sliding, which leads to 

dislocation cell formation and its movement (severe plastic deformation) 

evidenced by mechanical milling and dynamic recrystallization [138].  
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The presence of a surface strain region indicates that the oxide layer was 

continuously broken by the asperities. This allows ion release, such as Ti, that 

was sufficient promote the formation of this layer. 

Studies with stainless steel NaCl electrolyte show that subsurface 

deformation was observed at all electrochemical conditions (cathodic, OCP and 

anodic potential). It was attributed to due to shear strain in the contact. High shear 

stress resulted in a very fine grain structure. The reduction in grain size is 

attributed to dynamic recrystallization. Interestingly there was no difference in 

grain refinement at the different potential applied [313], which is different in this 

project and is in agreement with other authors [314]. 

The presence of a tribofilm may be the reason for a clearer area of refined 

grains at some potentials, since it may act as a barrier leading to an accumulation 

of dislocation favouring dynamic recrystallization or promoting dislocation 

annihilation [315]. This refined grain area might explain changes in mechanical 

properties since the increase of hardness might be a result from the mix of hard 

particles and chemical changes. Also, it may affect the COF. 

The changes in contact mechanism and contact stress field inside the 

wear track, due to the formation of a tribofilm from the higher protein absorption 

at anodic potential, affects the changes in microstructure because these changes 

in the contact mechanisms affects the compression stress where the contact 

begins and a tensile stress at the end of contact. It will affect sub-surface shear 

stresses, Fig. 6.5, and the formation of subsurface strain and dislocation 

accumulation due to repetitive loading, which is needed for dynamic 

recrystallization. The contact mechanics is also affected by these factors at OCP 

because there is metal dissolution and at cathodic potential the contact 

mechanics is not affected by metal dissolution. 

 

Fig. 6.5 - Stress distribution on the flat surface in the area of contact [213]. 
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The analysis of subsurface area for alloys tests at 2N at anodic potential 

show the presence of tribolayer but not homogeneously distributed. Grain 

refinement took place and β phase was found near to the surface. 

Martensitic transformation (α’ and α’’) and ω phase were not found in the 

αβ alloy indicating this alloy only exhibited grain refinement. However, the Nβ 

alloy experienced limited transformation to α’’ phase in all electrochemical 

conditions and ω phase transformation at anodic potential and OCP. Martensitic 

α’’ and ω phase transformation were identified in the β and βω alloys at OCP. 

The formation of α’’ phase can be linked to the presence of Ta in these alloys 

[94]. Also, it suggests that α'’ and ω transformation may occur simultaneously 

[118]. Therefore, it is clear that the tribocorrosion process in Nβ, β and βω alloys 

induces ω phase transformation.  

The ω phase is formed by the collapse of one pair of (111)bcc planes while 

keeping the neighbouring one (111)bcc plane not modified in the bcc lattice [121, 

122]. In fact, ω phase is found is many β titanium alloys due to the presence of 

high concentration of β stabilizers which affect its formation. This phase has high 

elastic modulus and this is the reason that this phase is not desired in biomaterials 

applications [12]. However, no difference in mechanical proprieties was found for 

these alloys when compared to the unworn surface. It is important to note that 

the reflections of ω phase on diffraction pattern are not strong and it indicates low 

phase volume fraction of this phase. Also, the ω phase found on the worn surface 

is athermal and has the same crystal structure than that formed during aging. 

Correa [316] observed that the β alloy Ti-15Zr-7.5Mo experienced the same ω 

phase transformation in the subsurface after wear test at OCP. 

In conclusion, the αβ alloy has the lowest and the Nβ alloy has the highest 

material loss. It has been discussed why the αβ alloy presents a better 

tribocorrosion performance. This alloy presented a better performance regarding 

material loss than the other alloys in all electrochemical conditions. The presence 

of α phase plays the most important factor in this regard and it is attributed to the 

nature of HCP crystal. 
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6.5 The Interaction between wear and corrosion 
 
Mechanistic approach 

 

It is possible to roughly estimate the electrochemical and mechanical 

contributions of material loss using Faraday’s law (equation 17). These 

contributions are presented in Figs. 6.6 to 6.8 and Table 6.5 and represent the 

material loss only of the worn area. The material volume loss due to mechanical 

wear was identified by the difference between total volume loss and chemical 

wear. The material loss volume due to corrosion was low in comparison to the 

material loss due to pure wear and it slightly changed with load. At anodic 

potential, the difference between Vchem and Vmech is up to two order of 

magnitude, such as αβ at 0.5N which Vchem is 2.0 10-3 mm3 and Vmech is 2.3 

10-2 mm3. However, this difference at OCP rises up to four orders of magnitude, 

such as Nβ alloy at 1N which Vchem is 7.5 10-5 and Vmec is 1.5 10-1. 

In all conditions, the αβ alloy presented the highest and the β alloy the 

lowest material loss due to corrosion. In addition, material loss increased with 

load and in the following order anodic potential (0.3V vs OCP), OCP and cathodic 

potential (-1 V vc OCP) 

.  

Fig. 6.6 – Electrochemical and mechanical contribution on material loss at 0.5N. 
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Fig. 6.7 – Electrochemical and mechanical contribution on material loss  

at 1N. 

 

 
 

 
Fig. 6.8 – Electrochemical and mechanical contribution on material loss  

at 2N. 
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Table 6.5 – Electrochemical and mechanical contribution on material loss at 
0.5N, 1N and 2N. 

 
 

Alloy  Load (N) Potential Vchem Vmech 

Αβ 0.5 Anodic 2.0E–03 2.3E–02 

Nβ 0.5 Anodic 2.0E–03 3.0E–02 

Β 0.5 Anodic 2.0E–03 4.0E–02 

Βω 0.5 Anodic 1.6E–03 3.1E–02 

Αβ 1 Anodic 3.3E–03 4.2E–02 

Nβ 1 Anodic 3.0E–03 7.1E–02 

Β 1 Anodic 2.8E–03 1.1E–01 

Βω 1 Anodic 4.4E–03 8.0E–02 

Αβ 2 Anodic 3.6E–03 4.8E–02 

Nβ 2 Anodic 6.2E–03 9.4E–02 

Β 2 Anodic 3.9E–03 1.2E–01 

Βω 2 Anodic 4.6E–03 1.1E–01 

Αβ 0.5 OCP 8.9E–05 3.7E–02 

Nβ 0.5 OCP 7.5E–05 4.3E–02 

Β 0.5 OCP 1.1E–04 4.3E–02 

Βω 0.5 OCP 9.6E–05 4.6E–02 

Αβ 1 OCP 8.9E–05 8.9E–02 

Nβ 1 OCP 7.5E–05 1.5E–01 

Β 1 OCP 1.1E–04 1.4E–01 

Βω 1 OCP 9.6E–05 1.5E–01 

Αβ 2 OCP 8.9E–05 1.7E–01 

Nβ 2 OCP 7.5E–05 1.6E–01 

Β 2 OCP 1.1E–04 2.1E–01 

Βω 2 OCP 9.6E–05 2.3E–01 

Αβ 0.5 Cathodic 0 5.4E–02 

Nβ 0.5 Cathodic 0 5.9E–02 

Β 0.5 Cathodic 0 7.2E–02 

Βω 0.5 Cathodic 0 6.2E–02 

Αβ 1 Cathodic 0 1.3E–01 

Nβ 1 Cathodic 0 2.0E–01 

Β 1 Cathodic 0 1.7E–01 

Βω 1 Cathodic 0 1.8E–01 

Αβ 2 Cathodic 0 2.2E–01 

Nβ 2 Cathodic 0 3.0E–01 

Β 2 Cathodic 0 3.0E–01 

Βω 2 Cathodic 0 2.8E–01 

 
 

 
This identified the material loss was predominantly due to mechanical 

wear for all alloys in all conditions. Vchem corresponds to the amount of oxidized 

metal during the process of repassivation – depassivation during rubbing. In fact, 
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Vchem increases with load, but the overall percentage of material loss does not 

show any variation. In addition, Vchem is zero at cathodic potential and it has low 

values at OCP. The electrochemical contribution is also low at anodic potential. 

Overall, the Nβ and β alloys suffer more from the mechanical contribution. In all 

conditions the αβ alloy presents the highest and β alloy the lowest material loss 

due to corrosion. The reason for the high material loss due to corrosion of αβ 

alloy is the effect of galvanic coupling due the two phase structure. Mechanical 

contributions to material loss only depend on the normal load, material 

composition and microstructure. In addition, material loss increases with load and 

in the order of anodic potential, OCP and cathodic potential. 

 
Synergistic approach 

 
 

The experimental way to find components of equation 13 is: 

 

T = material loss rate from OCP test 

 Wo = material loss rate from cathodic potential test (-1V vs OCP) 

Co = Penetration corrosion rate from potentiodynamical test 

ΔCw = Penetration corrosion rate from potentiodynamical test during wear 

test 

ΔWc = Difference.   

 

Material loss rate for T and Wo is obtained by equation 10.3; and corrosion 

rate from ΔCw is obtained by the extrapolation of potentiodynamical test during 

wear test. ΔWc is the difference, according to ASTM G119.09 standard [217]. 

Fig. 6.9 and table 6.6 show each component of equation 13 related to the 

synergistic approach. It is clear that material loss due to pure wear (Wo) was 

larger than total material loss (T). In addition, the material loss due to pure 

corrosion (Co) was nearly zero; in fact, all the alloys studied in this project are 

passive and show a very low passive dissolution rate. The effect of wear on 

corrosion (ΔCw) was larger than the material loss due to pure corrosion, but still 

not comparable to the total material loss (T) and material loss due to pure wear 

(Wo). Finally, the effect of corrosion on wear (ΔWc) had a negative value. Each 

component increased with normal load.  
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The total contribution of corrosion (Cw) and wear (Wc) are presented in 

Fig. 6.10 and table 6.7. There is a contribution of corrosion to material loss, but it 

is irrelevant when compared to the contribution of wear. The total contribution of 

corrosion (Cw) does not change with normal load, but the total contribution of 

wear (Wc) increases with normal load.  

 
Fig. 6.9 – Total and synergism material loss rate. 

 
 

Table 6.6 – Total and synergism material loss rate in mm/year. 
 

Alloy  Load (N) T Wo Co ΔCw ΔWc 

αβ 0.5 212 262 1.1E–04 0.70 –51 

Nβ 0.5 234 294 1.7E–05 0.58 –61 

β 0.5 237 335 3.4E–05 0.73 –99 

βω 0.5 244 321 1.8E–05 0.40 –78 

αβ 1 378 469 1.1E–04 0.63 –91 

Nβ 1 560 656 1.7E–05 0.60 –96 

β 1 507 578 3.4E–05 0.74 –72 

βω 1 531 584 1.8E–05 0.45 –53 

αβ 2 573 671 1.1E–04 0.68 –100 

Nβ 2 573 876 1.7E–05 0.59 –304 

β 2 642 848 3.4E–05 0.77 –207 

βω 2 679 727 1.8E–05 0.44 –48 
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Fig. 6.10 – Total contribution of corrosion (Cw) and wear (Wc) on material loss. 

 
 
 
 

Table 6.7 – Total corrosion (Cw) and wear (Wc) on material loss. 
 

Alloy  Load (N) Cw Wc 

αβ 0.5 0.7 212 

Nβ 0.5 0.58 233 

β 0.5 0.73 236 

βω 0.5 0.4 244 

αβ 1 0.63 378 

Nβ 1 0.6 560 

β 1 0.74 507 

βω 1 0.45 531 

αβ 2 0.68 572 

Nβ 2 0.59 572 

β 2 0.77 642 

βω 2 0.44 678 

 

This approach confirms that the main cause of material loss is due to 

mechanical wear. The corrosion rate enhanced by wear (ΔCw) is bigger than 

material loss due to pure corrosion, but still not comparable to the total material 

loss (T) and material loss due to pure wear (Wo). The effect of corrosion on wear 

rate (ΔWc) has a negative value, which confirms that corrosion does not enhance 

wear rate, but also it reduces wear rate. It is in an erosive dominated regime. 
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Thus, corrosion has a positive effect on reducing wear rate, antagonistic effect. 

Overall, each component increases with normal load. It is explained by the good 

corrosion resistance of these alloys, but also by the formation of tribofilm on all 

alloys during tribocorrosion process that acts as lubricant and changes the 

contact field. The total contribution of corrosion (Cw) is much lower than the total 

contribution of wear (Wc) and that does not change with load, but Wc does 

change with load. This confirms that mechanical wear is the main cause of 

material loss on these Titanium alloys. The reason for this behaviour might be the 

excellent corrosion resistance of these alloys, the presence of tribofilm acting as 

a lubricant, poor mechanical properties of the passive film which is removed 

easily and poor wear resistance of Titanium alloys. 

Numerous studies have found systems to have negative synergistic 

effects or antagonistic effect even under a relatively small set of parameters. This 

could be a result of wear particles embedding themselves in the surface of the 

material where corrosion has etched away the binder, effectively creating a self-

healing surface. Protein may also play a role on lubrication and protein absorption 

may be different at each potential applied. 

Mathew [317] compared the tribocorrosion behaviour of CP Ti and Ti64 in 

artificial saliva (pH 6.5) with different concentration of lipopolysaccharide (LPS). 

It was observed that only Ti64 in 150μg/ml LPS concentration show the 

antagonistic behaviour.  

Albayrak [264] compared the tribocorrosion behaviour of CP titanium to 

duplex treated CP titanium and nitrided CP titanium in simulated body fluid. It was 

found that all alloys tested have an antagonistic effect behaviour and it was 

stronger on the nitride specimens. It was attributed to solution formed oxide layer 

on the surface of the alloys.  

Sadiq [318] studied the behaviour of CoCrMo alloy in calf serum solution 

in a wide range of normal load and potentials.  It is observed that CoCr alloys 

show an antagonistic effect when SiC particles are present in the electrolyte. The 

antagonistic effect was attributed to the accumulation of organic material on the 

alloy surface. Also, it was pointed out that the antagonistic effect may result from 

an increased solution viscosity, which improves the lubrication regime and thus 

inhibits corrosion–wear due to the mixed protein molecules and particles. Also, 

the hard SiC particles are likely to have embedded on the surface of the softer 

UHMWPE ball. 
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Hodge [319] studied the tribo-corrosion mechanisms of 316L stainless 

steel in soft drinks. It was observed that medium loads and higher viscosities 

produce synergistic conditions whilst combinations of either high loads and low 

viscosities or low loads and high viscosities produce antagonistic conditions. It 

was stated that 316L stainless steel in both milk and soda experience 

antagonistic and transition regimes for the majority of loads tested due to the 

formation of protective passive films in the anodic regime. Also, it was noted that 

corroded metals ions may alter the solution viscosity which will in turn have an 

effect on the contact friction coefficient. 

Purandare [320] studied the effect of velocity on erosion–corrosion 

behaviour of uncoated M2 H.S.S tool steel and M2 H.S.S tool steel coated with 

CrN/NbN superlattice coating in buffer solution. It was found that uncoated steel 

shows a synergistic effect and the coated material shows an antagonistic effect 

at +400 mV. Tests under cathodic, passive and anodic potentials showed an 

antagonistic effect for passive +300 mV and to a lesser extent for anodic +700 

mV attributed to the protective nature of the passive layers of Cr and Nb at +300 

mV and a cushioning effect due to preferential dissolution of Cr phase. It was 

concluded that this behaviour depends on the electrochemical potential and 

impact velocity.  

Bozzini [321] showed that annealed carbon steel has a more active 

corrosion potential before it was work hardened and shows a reduction in overall 

corrosion rate (antagonistic effect) with erosion present. 

Bello [322] found out that UNS S31603 and S32760 stainless steels have 

an antagonistic effect while S30403 does not in NaCl solution. It was attributed 

to a reflection of the differences in repassivation kinetics or composition of the 

passive films reducing the overall level of two-body abrasion with S30403 having 

weaker repassivation/passive oxide film structure. Sinnett-Jones [323] analysed 

the micro-abrasion–corrosion of a CoCrMo alloy in Ringer’s solution and 

antagonistic effects were also observed for the MoM and anodically polarised 

contacts. 

The antagonistic effect observed in this study can be characterized as 

corrosion inhibited abrasion and not abrasion inhibited corrosion. In fact, wear 

enhances corrosion rate. The mechanism for this effect is explained by the 

creation of an oxide layer which acts as a solid lubricant, increases surface 

compliance and decreases point stresses due to the metal dissolution, thus 
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reducing mechanical wear. The formation of a tribofilm due to the absorption of 

protein may also act as a solid lubricant and may change the fluid viscosity due 

to the ion release, which will change the lubrication regime. These effects may 

have changed the contact mechanisms and real contact area/contact stress field 

inside the wear track, leading to a different tribology and corrosion response at 

anodic potential. The tribofilm will have accommodated most if not all shear in the 

contact and protects the surface from wear. 
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Chapter 7 – Conclusions 

 
Understanding the tribocorrosion behaviour of Titanium alloys and other 

metallic materials in biological environments is complex because many physical, 

chemical and electrochemical processes occur. However, this project has 

identified important aspects such as: 

Microstructure does have an effect on tribocorrosion behaviour of Titanium 

alloys since the presence of α phase is linked to lower material loss. However, 

the electrochemical condition plays the most important role since at anodic 

potential Titanium alloys show an improvement of wear properties and lower 

material loss due to the lubricating behaviour of oxide layer and tribofilm. It 

suggests that the development of new Titanium alloys must be concentrated on 

β phase alloys, since it has a lower elastic modulus and nontoxic elements; and 

on surface engineering properties of their oxide films which has been 

demonstrated that the lubricating effect of proteins reduce wear rate. 

These Titanium alloys show that strain hardening is an important factor for 

developing new alloys since it reduces friction and material loss and promising 

characteristics. However, CoCr alloy are still a better choice to these Titanium 

alloys due to their higher wear resistance.  

The most important findings are: 

• The ion release at anodic potential enhances protein absorption. 

• Proteins act as solid lubricant which reduces the contact stress and 

reduces friction. 

• Titanium alloys have lowest material loss at anodic potential. 

• The presence of a hard phase, such as α, results in a lower material loss. 

 

 

Important findings are summarized below: 

 

• The passive film is influenced by tribocorrosion. 

• β alloy is the most active and the αβ alloy is the noblest alloy at sliding 

potentiodynamic test. 

• When subjected to rubbing, all alloys experienced an increase in corrosion 

current and a drop of the potential (more active) due to the constant 

exposure of the bare metal during depassivation and repassivation.  
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• The COF is around 0.29 at anodic potential; 0.3 at OCP and 0.4 at cathodic 

potential 0.5N for all alloys, where the αβ alloy exhibited the lowest values. 

• The Nβ alloy showed the most stable COF evolution. 

• The COF and wear track volume increased with load, and it increased at 

cathodic potential and OCP. At anodic potential, the COF remained 

approximately constant. This is due to the formation of a thicker tribofilm 

at anodic potential. Also, it varies with alloy composition. 

• The COF and wear track volume are lower at anodic potential and higher 

at cathodic potential and increases with normal load. 

• At cathodic potential, all alloys show a current drop when rubbing starts at 

all normal loads and it remained negative during rubbing. 

• At OCP, all alloys presented a potential drop, representing the removal of 

the passive layer. The Nβ alloy show the highest and β the lowest drop at 

all normal applied loads. The lowest values of OCP were obtained for the 

αβ alloy at 0.5N, Nβ alloy at 1N and αβ alloy at 2N, indicating these are 

the noblest alloys during sliding OCP test. 

• At anodic potential, all alloys have the ability to repassivate during rubbing 

indicating they are resistant to wear accelerated corrosion. 

• All alloys show a running in stage, except the Nβ alloy. 

• The tribocorrosion behaviour is dependent of the microstructure, normal 

load and tribofilm formation. At OCP, all alloys show similar behaviour 

where a cathodic drop up to –1 V is seen after rubbing starts for all alloys 

on all normal loads. 

• At 0.5N load, the αβ alloy showed the lowest and β the highest volume 

loss. However, with the increase of normal load to 1N and 2N, the αβ alloy 

still presented the lowest and Nβ alloy presented the highest volume loss. 

The Nβ alloy exhibited an increase of volume loss as the load was 

increased. 

• The αβ alloy presented the lowest material loss at all normal loads in all 

electrochemical conditions, due to the α phase present in this alloy. 

• The total material loss is higher at cathodic potential than OCP and anodic 

potential respectively. This indicates that the presence of oxides and 

tribofilm reduce friction due to the high corrosion resistance of these alloys. 

Also, the total material loss increases with normal load. 

Conclusions 
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• The specific wear rate is high at cathodic potential and lower at anodic 

potential. This is another indication of the positive effect of the oxide on 

tribocorrosion behaviour of these alloys. However, it increases from 0.5N 

to 1N and slightly reduced at 2N. 

• The αβ alloy exhibited the lowest specific wear rate at all normal loads in 

all electrochemical conditions. 

• The mechanical wear is dominant by material removal. It increases with 

normal load and it is higher at cathodic potential. The material loss in 

titanium alloys is due to the poor wear resistance. 

• The mechanistic approach identified that the material loss for all alloys at 

all normal loads at cathodic potential and OCP is due to pure wear. 

• There is an increase of electrochemical contribution at anodic potential for 

all alloys at all loads. However, this contribution is still low in comparison 

to mechanical contribution where the αβ alloy at 0.5N at anodic potential 

show the highest electrochemical contribution (8%). 

• The electrochemical contribution as well as the mechanical contribution 

increases with normal load.  

• The percentage of electrochemical and mechanical contribution on 

material loss do not change with load. 

• The synergistic approach identified that the material loss due to pure wear 

(Wo) is higher than the total material loss (T). The material loss due to pure 

corrosion is negligible since the alloys of this study are passive metals. 

However, it increases with wear (ΔCw). Finally, the effect of corrosion on 

wear (ΔWc) has a negative value which suggest that corrosion does not 

have effect of enhancing wear rate and it has a positive effect of reducing 

friction. That is why the material loss volume is lower at anodic potential. 

• All components of synergistic approach increase with normal load. 

• The percentage of total contribution of corrosion (Cw) on total material loss 

is zero. This confirms that mechanical wear (Wc) is main caused by 

material loss of these Titanium alloys on tribocorrosion. Wc increases with 

normal load. 

• The αβ alloy has a higher effect of wear on corrosion, consequently a 

higher material loss due to corrosion enhanced by wear, than the β alloy 

and it may be linked to the galvanic coupling due to two different phases. 

However, the total material loss on all alloys are predominantly due to 
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mechanical wear, and the presence of α phase on the αβ alloy makes this 

alloy more resistant to mechanical wear. This is the reason for the αβ alloy 

presenting the lowest material loss. 

• The backscattered and secondary electrons images of the worn surfaces 

show a less transient surface at anodic potential than at cathodic and 

OCP. The surfaces are characterized by the presence of grooves and 

scratches (ploughing surface). Areas with dark contrast are seen in all 

alloys, which indicates the formation of tribofilm. Isolated debris were 

identified. The roughness was high for all alloys and it increased with 

normal load, but it was not found relationship with potential applied. 

• The surface roughness increased with normal load. It is higher at anodic 

potential and lower at cathodic potential. This is due the presence of 

oxides formed on the anodic tested surfaces, confirmed by SEM images. 

• The tribofilm was formed on the worn surface of all alloys in all conditions 

but it is not homogeneously distributed. It had a greater intensity in the αβ 

alloy and is O and C rich. The tribofilm formation seems to be beneficial 

reducing friction and its formation is not related to the material 

composition, but with electrochemical and load conditions. This film has 

the ability to act as a lubricant and it has an important role preventing wear. 

• The dominant wear mechanism was abrasive wear in all alloys and it does 

not change with normal load or composition. 

• A slight increase of the mechanical proprieties is seen on the worn 

surfaces when compared to the unworn surface. However, it is not clear 

what the relationship is between material loss and these proprieties.  

• The presence of refined grains area in all electrochemical conditions was 

observed on all alloys. The presence of α, α’’, β and ω phase were also 

identified but no cracks or twinning was observed. 

• The Nβ, β and βω alloys present the minor formation of α’’ and in the β an 

amount of ω phases in the subsurface in the anodic condition. It suggests 

that tribocorrosion process induce α’’ and ω transformation on these alloys 

and those transformation occur simultaneously.  
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Chapter 8 – Future work 

 
It is suggested the following topics in order to obtain a clearer 

understanding of the tribocorrosion behaviour of the titanium alloys. 

 

• Further investigation must be made by other electrochemical 

techniques such as EIS in order to fully understand the behaviour 

of the oxides formed on these alloys. 

• The effect of heat treatment as well as the grain size on 

tribocorrosion behaviour.  

• The effect of the sliding speed on the tribocorrosion behaviour. 

• Build a wear map and Stribeck curve for a better understanding of 

the lubricating regime of these alloys. 

• The effect of protein concentration and effect of biological species 

on wear, corrosion and tribocorrosion behaviour. 

• Analysis of the used counterpart (alumina ball) to identify any 

material transfer. 

• Analysis of the electrolyte (bovine serum) to identify the nature of 

the formed ions. 

• Identify the nature of tribofilm and how it changes with normal load 

and potential applied. 

• Influence of different cathodic and anodic potentials on tribofilm 

formation. 

• Time dependence of corrosion and wear and transition point. 

• The relationship between normal load and the extension of the 

refined grain area on the subsurface of the worn area. 

• Effect of corrosion, tribology and tribocorrosion on material 

degradation. 

• Perform a comparison study with CP Ti and Ti64 and dry test. 

• Tests in a range up to 50oC. 

• Tribocorrosion test in different potentials and for a longer period. 

• Influence of pH 

• Chemical composition analysis at worn surfaces. 
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