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suggested I look at the problem of Erdős-Selfridge curves. Throughout my thesis,

Siksek’s papers have been a great inspiration. Additionally I would like to thank

Michael Bennett, for pointing out an error in one of my papers and suggesting a

method to fix it.

Of my friends, all of whom have been important, James Kilbane has been the most

important. Without James I would still be writing in LyX and indenting all of my

paragraphs. Finally, I would like to thank Chen Wang, for being able to distract me

from Maths, when it was all getting a bit too much.



Abstract

In this thesis we will consider the problems that occur at the intersection

of arithmetic progressions and perfect powers. In particular we will study

the Erdős-Selfridge curves, By` = x(x + d) . . . (x + (k − 1)d), and sums of

powers of arithmetic progressions, in particular y` = (x−d)3 +x3 +(x+d)3.

We shall study these curves using aspects of algebraic and analytic number

theory. To all the equations studied we shall show that a putative solution

gives rise to solutions of (potentially many) Fermat equations. In the case

of Erdős-Selfridge curves we will use the modular method to understand the

prime divisors of d for large `. Then we shall attach Dirichlet characters to

such solutions, which allows us to use analytic methods regarding bounds

on the value of sums of characters. These bounds will allow us to show that

there can’t be too many simultaneous solutions to the Fermat equations

we described. This leads to a contradiction for large k, as the number of

Fermat equations generated will grow faster than the possible number of

simultaneous solutions.

We study the arithmetic progression curves by attaching Fermat equations

of signature (`, `, 2). We then use the classical modular method to attach

Frey-Hellegouarch curves and level lowered modular forms. It is possible to

show that the Frey-Hellegouarch curves that associate to modular forms in

a non-trivial cuspidal newspace are all quadratic twists of each other. It is

then possible to compute if there are modular forms of the right level that

could associate to such a twist of an elliptic curve.
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5 Erdős-Selfridge Curves for General d 50

5.1 Attaching Frey-Hellegouarch Curves . . . . . . . . . . . . . . . . . . . . 52

5.1.1 Fermat Equations of Signature (`, `, `) . . . . . . . . . . . . . . . 53

5.1.2 Fermat Equations of Signature (`, `, 2). . . . . . . . . . . . . . . . 57

5.1.3 Further properties of Ea . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.4 Results regarding d . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Attaching Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Classifying Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.1 Super Smooth Characters . . . . . . . . . . . . . . . . . . . . . . 69

5.3.2 Smooth Characters . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3.3 Non-Smooth Characters . . . . . . . . . . . . . . . . . . . . . . . 73

5.4 Sieving and Generating enough χa . . . . . . . . . . . . . . . . . . . . . 80

5.5 Proof of Theorem 5.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.6 Applications of Theorem 5.2.1 . . . . . . . . . . . . . . . . . . . . . . . . 86
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Chapter 1

Introduction

§ 1.1 Introduction to the Thesis

Number theory is one of the oldest areas of mathematical research, with core ideas in

number theory dating back over two millennia to the time of the Greek mathematicians.

The original aim was to find integral solutions to given equations, including examples

such as Pell’s equations.

1.1.1. For M a positive non-square integer, do there exist integers x and y such that

x2 −My2 = 1?

In fact this equation is known to have been studied, in the M = 2 case, as far back

as 400BC in India and Greece [27]. They were interested in the solutions because of

the connection between solutions and rational approximations to
√

2. The first general

method for solving this equation for any M was found in the 12th century by Bhāskara

II. Since then the questions asked, and the methods developed, in number theory have

grown increasingly complex.

Number theory is now split into at least two distinct but overlapping branches, that of

algebraic number theory and analytic number theory, each with their own methods and

sets of problems. A more modern view on number theory is that it aims to understand

the properties of numbers more generally. While integral solutions to equations might

have been the starting point for algebraic number theory, it now encapsulates a much

greater area of study with algebraic solutions of points on algebraic varieties just being

one of many areas. Similarly, analytic number theory mostly arose as a way to study

1
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distributions of primes using analytic methods, but has developed into a very large body

of work. In this thesis we will be using a combination of both areas to understand points

on curves.

We start the thesis with a chapter on analytic number theory. This will cover only

three topics, that of primes, arithmetic progressions and Dirichlet characters. In the

section concerning primes we will mostly be interested in what is known about primes

in given intervals, more specifically the generalizations of Bertrand’s Postulate.

Postulate 1.1.2. For n > 1 there exists a prime in the interval [n, 2n).

Additionally, we will also briefly touch upon the Prime Number Theorem and some

bounds for series involving functions of primes. This will be required in sections re-

garding the Erdős-Selfridge curves, as we will need to understand the distribution of

primes arising in the arithmetic progressions. Next we shall discuss arithmetic progres-

sions in general, from an analytic standpoint. We will be interested in the Chebyshev

function. This function is useful as it allows us to study the distribution of primes in a

given congruence class in intervals. Roth’s theorem will also be stated here, as it will

be needed in Chapter 5 (for a sieving argument in Theorem 5.4.1). Finally we will talk

about Dirichlet characters, define them in the usual manner and give the method of

attaching an L-function, as is classically given in the literature. We will then state some

theorems about sums of characters, in particular an estimate for the sum of characters

multiplied with the Von Mangoldt function, and additionally a bound of the sum of the

product of characters. These theorems will be crucial in Chapter 5, as they will allow

us to bound the number of potential solutions to a given Erdős-Selfridge curve.

In Chapter 3 we will give a very brief introduction to the theory of elliptic curves,

modular forms and Galois representations. This chapter will be aimed purely at the

developments of algebraic number theory in its applications to Fermat equations. We

shall discuss Fermat equations separately a little later in the introduction, as they are

so important in this thesis. We will start by defining a Frey-Hellegouarch curve and

then turn our attention to what is known regarding modular forms attached to such

curves. This includes modularity, Ribet’s Level Lowering Theorem and bounds on the

modulus of level lowered forms coming from Kraus’s Theorem. We additionally will

look at the method of studying Fermat equations of signature (`, `, 2) as developed by

Bennett and Skinner [8], and Ivorra and Kraus [26]. We will need these in Chapter 6 as

these are exactly the Fermat equations that we will attach to the equations we study

in that chapter.
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It is quite often the case in number theory that easy to understand problems have

fiendishly difficult solutions that are non-obvious and require traversing through what

look to be unrelated abstract areas. However by utilising the relations between these

different areas, which are of great importance to number theory, it is possible to trans-

form the question from an obvious to state, difficult to answer question, to one which

is normally harder to state but easier to answer. We will see some examples of this

further in this introduction.

§ 1.2 Congruent Numbers

We begin by asking the following question.

1.2.1. Does there exist a method that will calculate in finite time if a given positive

integer n is the area of a right angled triangle with rational side lengths?

This question was first discussed by the Greek mathematicians, however they were only

interested in its relation to special cases of n. It was the Arab scholars of the tenth

century that started systematically studying this problem. Almost no progress was

made on the problem, apart from giving examples of some n for which it is known to

be congruent. The next main breakthrough came from Fermat, who showed using a

descent method that 1 is not a congruent number. This is equivalent to the fact that

there are no nontrivial integer solutions to X4 + Y 4 = Z2. In the 16th century, Euler

[28, pg. 2] showed that n = 7 is a congruent number.

This motivates the following definition,

Definition 1.2.2. A non-zero rational number n is called congruent if it is the area of

a right angled triangle with rational side lengths.

After the work of Euler there was very little progress on the congruent number problem,

until in 1983 Tunnell proved the following theorem [58].

Theorem 1.2.3. If n is a square-free and odd (respectively, even) positive integer and

n is the area of a right triangle with rational sides, then

2|{x, y, z ∈ Z | n = 2x2 + y2 + 32z2}| = |{x, y, z ∈ Z | n = 2x2 + y2 + 8z2}|

respectively,

2|{x, y, z ∈ Z | n2 = 2x2 + y2 + 32z2}| = |{x, y, z ∈ Z | n2 = 2x2 + y2 + 8z2}|.
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If the weak Birch-Swinnerton-Dyer conjecture is true for the elliptic curves

En : y2 = x3 − n2x,

then conversely, these equalities imply that n is a congruent number.

This is a great example of where modern number theory can be used to solve ancient

problems. The maths that Tunnell used was new at the time and could not have been

replicated using more classical techniques. We will give a brief explanation of Tunnell’s

method. For each n it is possible to attach an elliptic curve

En : y2 = x3 − n2x.

This curve has the property that n is a congruent number if and only if En has infinitely

many rational points on it. Using a theorem of Coates and Wiles on elliptic curves with

complex multiplication [13], it is possible to see that if n is congruent, then the critical

value of the L-function attached to En is zero. Now applying modularity of ellitpic

curves with complex multiplication, it is possible to change the problem from that of

elliptic curves to one of modular forms. Using work of Shimura on half integral modular

forms and the Shimura lift [50], [51], Tunnell showed that the L-function of En could

be calculated from the coefficients of a ternary theta form. In fact, the difference of

the two terms in the equalities given in Theorem 1.2.3 are the coefficients of the theta

forms, hence up to scaling are the critical L values. The above theorem now follows.

During the production of this thesis the author considered the problem of congruent

numbers over real quadratic number fields with trivial narrow class number. In [17]

a congruence field is defined, and it is shown that there is a finite time method to

determine congruent numbers in a congruence field (assuming the Birch-Swinnerton-

Dyer conjecture for that field). It is worth noting that it is not shown that a non-

congruence field does not have a finite time method to determine congruent numbers,

e.g. Q is not a congruence field. Additionally it is shown that there is a finite time

method for determining if a real quadratic number fields with trivial narrow class

number is a congruence field, in particular Q(
√

2) is a congruence field, and if so

how to determine the method. This work follows Tunnell’s closely and replicates his

arguments as closely as possible. However, as this work requires a detailed explanation

of Hilbert modular forms and quaternionic modular forms, it has not been included

here as it is too different from the rest of the work presented.
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§ 1.3 Fermat Equations

Fermat’s Last Theorem is another problem that is easy to state but difficult to answer.

In the 17th century Fermat wrote that he had a proof of the following fact:

Theorem 1.3.1. For a, b and c positive integers and n ≥ 3 there are no solutions to

an + bn = cn.

This is clearly a very easy to understand problem, however the solution took several

hundred years. In fact many famous mathematicians, and amateurs, have attempted

solutions to this problem over the years, and in doing so have created new areas of

maths. For example, Kummer’s development of the ideal class group grew from his

proof of Fermat’s last theorem for odd regular primes.

The statement in its entirety is now known to be correct, and was contributed to

by a lot of mathematicians, but most importantly Andrew Wiles in [59], for showing

the modularity of rational semi-stable elliptic curves. Wiles’s Theorem has now been

extended to all elliptic curves over many papers by many mathematicians, this is now

known as the Modularity Theorem.

Theorem 1.3.2. If E is a rational elliptic curve, then there is a cuspidal newform

with the same Galois representation.

The outline of the solution to Fermat’s Last Theorem goes as follows; assume that

there is a co-prime triple of integers (a, b, c) such that an + bn = cn for n > 2. Then we

consider the elliptic curve

E : y2 = x(x− an)(x+ bn).

This elliptic curve has discriminant ∆ = 16(abc)2n. However, once modularity of E

was shown in [59], then by using Ribet’s Level Lowering Theorem it would follow that

there is a newform of level 2 and weight 2, which was known not to exist. So, it follows

that a proof of modularity demonstrated the non-existence of a solution to Fermat’s

equation. It is this argument that motivated Wiles to pursue a proof of modularity.

Since then, many more equations in a similar style have been studied and called Fermat

equations. It is standard in the literature to call an equation of the form

AXp +BY q + CZr = 0,
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a Fermat equation of signature (p, q, r).

The literature on these equations is now both deep and wide, and it is impossible to

explain all the methods that people have used to treat such equations in a constantly

evolving field. However, almost all attempts at solving these equations using the mod-

ular method will start by attaching a Frey-Hellegouarch curve. That is to say, to the

equation

u+ v + w = 0 and uvw 6= 0,

for u, v and w coprime we consider the elliptic curve

E : y2 = x(x− u)(x+ v).

Currently equations of the signature (`, `, 2) and (`, `, 3) are quite well understood for

coefficients divisible only by small primes. For example in [55], Siksek studies the

equation

x2 = y` + 2kz`, (1.1)

where the following theorem is proven:

Theorem 1.3.3. Suppose k ≥ 2 and ` ≥ 7 is a prime. Then the only non-trivial

primitive solutions of equation (1.1) are k = 3, x = ±3, y = z = 1 and ` arbitrary.

As the theory around Fermat equations has developed, they too have become almost a

method in themselves. It is increasingly common to try to find a way to attach Fermat

equations to a Diophantine equation, with the hope that the theory surrounding those

Fermat equations will be easier to study than the original equation. For example this

is seen in [11], where the authors use the work regarding Fermat equations of signature

(`, `, 2) in their proofs of the following two theorems.

Theorem 1.3.4. Let Fn be the n-th term in the Fibonacci sequence. The only perfect

powers in the sequence are F0 = 0, F1 = 1, F2 = 1, F6 = 8 and F12 = 144.

Theorem 1.3.5. Let Ln be the n-th term in the Lucas sequence. The only perfect

powers in the sequence are L1 = 1 and L3 = 4.

This idea of passing from the original equation to a Fermat equation attached to the

original equation has also been developed in the literature regarding Erdős-Selfridge

curves, which form the main topic of this thesis.
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§ 1.4 Erdős-Selfridge Curves

Perfect powers and arithmetic progressions are two main areas of study in number

theory. For example, the Fermat equations we just discussed are part of the study on

perfect powers. While it is clear that problems concerning perfect powers can be very

difficult to answer, problems concerning arithmetic progressions can be just as hard.

However it is not impossible to derive results about problems concerning both of them.

In 1975 Erdős and Selfridge [20] showed that the product of two or more consecutive

positive integers cannot be a perfect power. Algebraically this is the following theorem:

Theorem 1.4.1. For x, y, k and ` positive integers with k and ` ≥ 2, then there is no

solution to the equation
i=k−1∏
i=0

(x+ i) = y`. (1.2)

This was proved using ideas in combinatorics and graph theory, which we shall not see

in this thesis.

The question of rational solutions to this problem is a lot harder however. For any

fixed pair of integers (k, `) such that ` + k > 6 with k and ` > 2, then it follows that

the equation given by (1.2) is a super-elliptic curve. Hence by Faltings’s theorem there

are only finitely many rational points on the curve. However, showing that there are

only finitely many points on the family of curves for all pairs of (k, `) with k+ ` > 6 is

an even harder problem.

These curves admit the obvious rational solutions with y = 0, and there are known

families of rational solutions for some small values of k.

(x, y, k, `) =

(
a2

b2 − a2
,

ab

b2 − a2
, 2, 2

)
, a 6= ±b (1.3)

and

(x, y, k, `) =

(
1− 2j

2
,
±1

2j

j∏
i=1

(2i− 1), 2j, 2

)
, (1.4)

for a, b and j integers with j positive. There are two more known rational solutions,(
−4

3
,
2

3
, 3, 3

)
and

(
−2

3
,
−2

3
, 3, 3

)
. (1.5)
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Sander [47] proposed that these are the only rational solutions in the following conjec-

ture, with corrections made in [2].

Conjecture 1.4.2. If k ≥ 2 and ` ≥ 2 are integers, then the only rational points on

the curve given by (1.2) are the solutions given in 1.3, 1.4, 1.5 or by y = 0.

This conjecture is known to be true for small values of k, in particular for k ≤ 34. The

conjecture for k ≤ 4 was proven by Sander in [47] and the case of k = 5 was dealt with

in [34]. In [2] Bennett, Bruin, Győry and Hajdu extended this result to k ≤ 11, and

Győry, Hajdu and Pintér [24] then further extended it to k ≤ 34.

The first case of a result in this conjecture for a general k, is that of bounding the size

of the exponent `, for a prime `.

Theorem 1.4.3. Let k ≥ 2 be a positive integer. Then the equation

x(x+ 1) . . . (x+ k − 1) = y` (1.6)

has at most finitely many solutions in rational numbers x and y and integers ` ≥ 2,

with (k, `) 6= (2, 2) and y 6= 0. If additionally ` is prime, then all solutions satisfy

log(`) < 3k.

This result was proven by Bennett and Siksek in 2015 [7]. The main idea in this

paper is to create Fermat equations by creating identities out of combinations of the

factors on the left hand side. The size of the prime factors in the coefficients of these

Fermat equations can be controlled and even shown to be bounded in terms of k. Using

modularity it is then possible to bound the exponent ` as we can bound the level lowered

conductor of the elliptic curve attached to our Fermat equation.

As well as the original Erdős-Selfridge curve, it is possible to write down many variants

that are equally as interesting. It is these variants that will make up the bulk of this

thesis.

In 2016 Das, Laishram and Saradha considered the following situation.

For 1 ≤ i ≤ k let

∆i = (x+ 1) . . . (x+ i− 1)(x+ i+ 1) . . . (x+ k).

Let p be the smallest prime greater than or equal to k/2.
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Theorem 1.4.4. If there is a rational solution (x, y) to

y` = ∆i,

with 2 ≤ i ≤ k − p or p < i < k, ` > 2 a prime, y non zero then log(`) ≤ 3k.

Further, they study the above curves for small values of k. For values of k less than

26 it is possible to find more identities on products of two terms without losing control

over the primes in the coefficients. In particular they show the following result.

Theorem 1.4.5. If there is a rational solution (x, y) to

y` = ∆i,

3 ≤ k ≤ 26, ` > 2 a prime and y non zero, then it follows that log(`) ≤ 3k.

These are Theorem 1.1 and Corollary 1.5 in [14].

A further generalization of this problem is to consider the equation

∏
i∈[0,k−1]\S

(x+ i) = y`, (1.7)

for S a subset of [0, k − 1], x, y, k and ` integers and y non-zero.

We will prove the following results in Chapter 4.

Theorem 1.4.6. For k ≥ 27 and S a subset of [1, k] that satisfies one of the following

conditions

(1) S ⊂ [s, t] ⊂ [1, k] and t− s < k
18 − 1;

(2) |S| < 3
2 + 0.37

√
k

log k .

Then any non-trivial rational solution to equation (1.7) satisfies log(`) < 3k.

This is the first original work of the author, published in 2019 [18].

Corollary 1.4.7. For k ≥ 3 and S a set with a single element, then any rational

solution to equation (1.7) satisfies log(`) < 3k.
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This removes the hypothesis on p in Theorem 1.4.4.

Another way to generalize equation (1.2) is to move from products of consecutive in-

tegers to products of arithmetic progressions. This is a much more difficult problem

than the original, but Erdős allegedly conjectured the following:

Conjecture 1.4.8. There is a constant k0 such that

k−1∏
i=0

(n+ id) = y` with gcd(n, d) = 1, (1.8)

has no solutions for n, d, k, y and ` positive integers with ` ≥ 2 and k ≥ k0.

While Erdős is believed to be the first person to state this conjecture, work on this

equation started considerably before Erdős. One of the first results goes back to Euler,

showing that there are no non-trivial solutions for k = 4 and ` = 2.

There are two main categories of work in the literature on this problem; those that use

elementary or combinatorial arguments, and the more modern approach using Frey-

Hellegouarch curves to create Fermat equations.

Shorey, in particular, produced many results using elementary methods. For example in

[52] he showed that if the greatest prime divisor of d is fixed and ` ≥ 3 then Conjecture

1.4.8 is true. Additionally in [53] he showed that if n is fixed and ` ≥ 7 then the

conjecture still holds.

Using more modern methods of Galois representations and modular methods there

have been slightly stronger results that do not require fixing variables other than k.

For example in [2] it is shown that there are no non-trivial solutions for 6 ≤ k ≤ 11

and further that there are at most finitely many non-trivial solutions for all k ≤ 82.

The first result to work for a general k without limiting the possibilities of the other

variables was given by Bennett and Siksek in Theorem 2 of [6] and is the following

theorem:

Theorem 1.4.9. There is an effectively computable absolute constant k0 such that if

k ≥ k0 is a positive integer, then any solution in integers to equation (1.8) with prime

exponent ` satisfies either y = 0 or d = 0 or ` ≤ exp(10k).

This method starts by using the same ideas as in previous modern studies of the

Erdős-Selfridge curves, that is, to attach many Fermat equations to a putative solution.
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However, unlike in the d = 1 case this does not allow us to bound `. It does, however,

allow us to show that d must be divisible by all primes in a large interval.

Further, Bennett and Siksek showed how to attach Dirichlet characters to such a given

Fermat equation. Then, using analytic methods it is possible to show that there is a

bound on the number of characters with given properties, i.e. smooth conductor, or

bound on the largest prime in the conductor. Finally, they show that if one sieves off

all characters that are not those that they have previously studied, one will always be

left with too many given their previous bounds on the number of possible characters.

In this thesis we will study these methods and develop them further. In particular we

will take the hypothesis and the results of Bennett and Siksek regarding the number

of possible characters and produce lower bounds. This then means that at the sieving

stage of the argument, we have far fewer characters needed to reach a contradiction.

This allows us to prove the following theorem:

Theorem 1.4.10. For k sufficiently large and ` a prime, if there is a non-trivial

integral solution to

By` =
k−1∏
i=0

(x+ id) (1.9)

such that

(1) p - B for all primes in [k/2, k],

(2) fewer than k/4 primes greater than k divide B,

then it follows that ` < exp(10max(k,P (B))), where P (B) is the largest prime dividing B.

In particular we will also be able to generalise some of our work in the case of d = 1

showing the following:

Theorem 1.4.11. For k sufficiently large and ` a prime, if there is a non-trivial

rational solution to

By` =

k−1∏
i=0

(x+ i) (1.10)

such that

(1) p - B for all primes in [k/2, k],

(2) fewer than k/4 primes greater than k divide B,
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then it follows that ` < exp(10max(k,P (B))), where P (B) is the largest prime dividing B.

Further, with some conditions on d we can study these curves with coefficient and

omitted terms.

Theorem 1.4.12. For k sufficiently large and ` a prime, if there is a non-trivial

integral solution to

By` =
k−1∏
i=0
i 6=j

(x+ i) (1.11)

such that

(1) p - B for all primes in [k/3, k/2];

(2) fewer than k/4− 1 primes greater than k divide B;

(3) vp(d) ≡ 0 (mod `) for all primes p greater than k;

then it follows that ` < exp(10max(k,P (B))).

§ 1.5 Sums of Powers of Arithmetic Progressions

An alternative way of looking at the relation between arithmetic progression and per-

fect powers would be to consider powers of arithmetic progressions. In particular the

understanding of forms of sums of such expressions has been growing in recent years.

More precisely, let ai = n + id for n and d coprime integers and consider equations of

the form

y` =

m∑
i=1

aki , (1.12)

for m and k integers. Then it is relevant to ask if it possible to find a bound on k or `

or even d.

There are two distinct areas of study in the literature regarding equation (1.12). There

are those that study when m is a general integer, or when m is fixed, in particular

m = 3, with the latter being much better understood. We will first discuss some of

what is known regarding the general case.
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The study of such equations goes back all the way to Euler who noted the relation

63 = 53 + 43 + 33. It should be noted that it is possible to construct a sequence of

consecutive integers of any length, such that the sum of their cubes is a square. This

follows from the well known identity that

(
d(d+ 1)

2

)2

=
d∑
i=1

i3. (1.13)

It is even possible to create other parametric solutions that are less obvious. Pagliani

[40] showed that

(
v5 + v3 − 2v

6

)6

=

v3∑
i=1

(
v4 − 3v3 − 2v2 − 2

6
+ i

)3

, (1.14)

where v is chosen to be either 2 or 4 modulo 6.

A more modern result in the study of powers of consecutive integers for a large number

of terms can be found in [4] by Bennett, Patel and Siksek.

Theorem 1.5.1. Let 2 ≤ d ≤ 50 and ` be a prime. There are only finitely many

integral solutions to the equation

(x+ 1)3 + (x+ 2)3 + . . .+ (x+ d)3 = y` (1.15)

with x ≥ 1, and given in Table 1 in [4].

We shall now focus on the case when m = 3. This problem was originally solved in

cases where k, ` and d are all fixed. For example Cassels [12] showed that

(x− 1)3 + x3 + (x+ 1)3 = y2, (1.16)

for x and y integers has only finitely many solutions, in-particular x = 0, 1, 2, 24.

The more general form of this equation

(x− 1)k + xk + (x+ 1)k = yn, (1.17)

for x, y, k and n integers with k and n both greater than or equal to 2, was stud-

ied by Zhang in [61]. Zhang attached Fermat equations to a putative solution of

equation (1.17) in the case that k ∈ {2, 3, 4}. Using modular methods and level
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lowering techniques he managed to show that the only solutions are (x, y, k, n) =

(1,±3, 3, 2), (2,±6, 3, 2), (24,±204, 3, 2), (±4,±6, 3, 3), (0, 0, 3, n).

In [5] Bennett, Patel and Siksek extended this result to the case of k ∈ {5, 6}. In

particular they prove the following two theorems.

Theorem 1.5.2. The only solutions to the equation

(x− 1)5 + x5 + (x+ 1)5 = yn, (1.18)

for x and y integers and n ≥ 2 a positive integer, satisfy x = y = 0.

Theorem 1.5.3. There are no solutions to the equation

(x− 1)6 + x6 + (x+ 1)6 = yn, (1.19)

for x and y integers and n ≥ 2 a positive integer.

There has also been work in the cases of a more general arithmetic progression. For

example in [29], Koutsianas studies the equation

(x− d)2 + x2 + (x+ d)2 = yn (1.20)

for d = pb for b a non-negative integer and p a prime less than 104. In particular he

shows that there are only finitely many solutions in this case and determines all of

them, given in Table 1 of [29].

Additionally, Koutsianas with Patel studied the same equation where d is any positive

integer less than 5000. In [30] they showed that for n a prime exponent then there are

only finitely many solutions and calculated all of them.

In Chapter 6 we shall consider a similar equation. In particular we will look at the

solutions of the equation

y` = (x− d)3 + x3 + (x+ d)3, (1.21)

for x, y and d integers. We shall do this using the modular method. It is possible to

attach Fermat equations to a putative solution of Equation (1.21). There will in fact

be four Fermat equations that we attach depending upon the greatest common divisor

of 3x and x2 + 2d2. We then use the modular method and level lowering to show that

there are modular forms of small level for a given solution; in particular we will see that



CHAPTER 1. INTRODUCTION 15

if x is even then there are no solutions, as this would give rise to a level 6 newform.

In the odd case, the level lowered form does not come from a trivial space of modular

forms.

In 2017 Garcia and Patel studied the same equation, at the same time as this author.

In [22] they prove the following theorem.

Theorem 1.5.4. Let p ≥ 5 be a prime. The only integer solutions to the equation

(x− r)3 + x3 + (x+ r)3 = yp (1.22)

with x and r coprime and 0 < r ≤ 106, are the trivial ones satisfying xy = 0.

In particular in this paper they independently showed our result regarding the case

that x is even; this is Lemma 5.1 in [22]. While they used the modular method in the

even case, the rest of their work relied on bounds for sums of logarithms.

We will also be able to deal with the case where x is odd for all r, improving the work

of Garcia and Patel. This is possible, as we note that all the Frey-Hellegouarch curves

are twists of one particular elliptic curve. This means that when we study the space

of level lowered modular forms, we do not have to look at all the newforms, but only

those that could come from a twist of the given curve. We then use Magma to study

this problem and show that no such modular form exists.



Chapter 2

Analytic Number Theory

To develop our understanding of the Erdős-Selfridge curves in later chapters, we will

first have to state some well known theorems and functions used in analytic number

theory.

In the first section we will deal with classical ideas about primes, although we will need

the modern developments of these ideas as well. In particular we will be looking at the

idea of primes in intervals and primes in arithmetic progressions. Both are questions

that started in the 18th century, but even now we are seeing developments in the theory.

This will be relevant in Chapter 4 as well as Section 5.1.

In the second section we will deal with characters, functions from abelian groups to

the complex numbers, and in particular we will show how to attach an L-function

and results about summing characters over short intervals. These are very important

questions in analytic number theory. We will need these ideas when we are attaching

characters to our Erdős-Selfridge curves in Section 5.2.

§ 2.1 Primes

2.1.1 Primes in Intervals

A well known problem in the area of analytic number theory is that of showing that

primes exist in given intervals. The first result in this area was conjectured by Bertrand

in 1845, stating that for n ≥ 1 there is always a prime in the interval [n, 2n], with the

first proof being provided by Chebyshev in 1852. Since then there have been many

proofs provided for this statement.

16
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Theorem 2.1.1 (Bertrand’s Postulate). For every n > 1 there is always at least one

prime p such that n < p < 2n.

A generalization of this problem is to consider intervals that are comparatively shorter.

In particular there are effective bounds for sizes of intervals that are of orderO(n/ log2(n))

and bounds for distances that are of order O(n21/40). This is very close to the absolute

best that would be permitted under the Riemann hypothesis.

Theorem 2.1.2. For every n ≥ 25 there is always a prime between n and (1 + 1
5)n.

Proof. This is due to Nagura [38].

We now present an easy corollary that we will need in Subsection 4.2.

Corollary 2.1.3. For all n ≥ 22, there exists a prime p such that n
3 ≤ p ≤

n
2 .

Proof. From Theorem 2.1.2 we know that there is always a prime p such that

p ∈
(
n, (1 + 1

5)n
)
, for n ≥ 25.

Hence for n ≥ 75 the result now follows. For 22 ≤ n ≤ 75 we can explicitly calculate

the primes in the given interval, hence the result follows.

We will not need the following three theorems, however as they are the most advanced

theorems in this area, we have included them to show the depth of this branch of maths.

Theorem 2.1.4. For all n ≥ 468991632 there is at least one prime in[
n,
(

1 + 1
5000 log2(n)

)
n
]
.

Proof. This result is due to Dusart [15].

The following is an incredibly strong theorem in this area; however, unlike all previous

results it does not provide a lower bound on n from which we know the result holds.

Theorem 2.1.5. For all sufficiently large n there is a prime in the interval[
n, n+ n21/40

]
.

Proof. This was shown by Baker, Harman and Pintz [1].
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The following theorem is conditional on the Riemann hypothesis. Under that assump-

tion it gives the best bound for the intervals that will contain primes. Compared to the

above theorem we see just how close the current best result is to the theoretical best.

Theorem 2.1.6. Assuming the Riemann hypothesis to be true then the interval

[
n−K

√
n log n, n

]
contains a prime, for K an effective large constant and n sufficiently large.

Proof. This is due to work of Wolke [60].

2.1.2 The Prime Number Theorem

Ever since the proof of the infinitude of primes, the question of determining the rate

of growth of the number of primes has been of pressing importance in analytic number

theory. The Prime Number Theorem gave the first answer to this question, showing that

the rate of growth is of order O(x/ log(x)). The Prime Number Theorem is strongly

related to the first Chebyshev function. The Chebyshev function makes it easier to

study not only the distribution of primes but also primes in arithmetic progressions.

We will outline all of these functions and theorems in the current section.

Definition 2.1.7. We define the prime counting function as

π(x) =
∑
p≤x

p prime

1. (2.1)

The Prime Number Theorem is the statement that

π(x) ∼ x

log(x)
,

proven independently by Hadamard and de la Vallée Poussin.

Definition 2.1.8. For x a real positive number we define the Chebyshev function θ(x)

as

θ(x) =
∑
p≤x

p prime

log(p).

The Prime Number Theorem is also equivalent to the following statement [25, pg. 31];
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θ(x) ∼ x. (2.2)

The Chebyshev function plays a vital role in analytic number theory and is interesting

in its own right. However, in this thesis we shall only scratch the surface of what is

known, and limit ourselves to only what is useful to our aims. The following bound for

θ(x) will be very important in later chapters.

Theorem 2.1.9. For all x > 0

θ(x) =
∑
p≤x

p prime

log(p) < 1.000081x. (2.3)

Proof. Note in Schoenfeld [49, pg. 360].

A consequence of the Prime Number Theorem is that for all ε > 0 there exists an N

such that for all x > N the following inequality holds

x

log(x)
(1− ε) < π(x) <

x

log(x)
(1 + ε).

However we can normally do a lot better than for a fixed ε as given by the following

theorem.

Theorem 2.1.10. If x ≥ 59 then

x

log(x)

(
1 +

1

2 log(x)

)
< π(x) <

x

log(x)

(
1 +

3

2 log(x)

)
.

Proof. This was proven by Rosser and Schoenfeld [45].

Just like in the previous section, the Riemann hypothesis determines the best possible

bound on π(x).

Definition 2.1.11. For x ≥ 0 we define the following function to be the logarithmic

integral

li(x) =

x∫
0

dt

log(t)
,

interpreted as a Cauchy principal value for x > 1.
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Theorem 2.1.12. Assuming the Riemann hypothesis is correct, then for x ≥ 2657

|π(x)− li(x)| <
√
x log(x)

8π
.

Proof. See [49].

Not only can we understand the rate of growth of the number of primes, but we can also

accurately understand the rate of growth of the sum of functions of primes, including

the functions

f(x) =
1

x
and f(x) =

log(x)

x
.

Theorem 2.1.13. For x ≥ 286 and τ an explicit constant the following inequality

holds, ∣∣∣∣∣∣
∑
p≤x

1

p
− log log x− τ

∣∣∣∣∣∣ < 1

2 log2(x)
.

Proof. See [45].

Theorem 2.1.14. For x ≥ 319 and E an explicit constant,∣∣∣∣∣∣
∑
p≤x

log(p)

p
− log(x)− E

∣∣∣∣∣∣ < 1

2 log(x)
.

Proof. Theorem 6 of [45].

§ 2.2 Arithmetic Progressions

Arithmetic progressions are sequences of integers of the form an = a+ nd for n either

in a finite interval of the positive integers or the whole set of positive integers. They

have been of much interest in analytic number theory for their deep connection with

prime numbers. It is one of the aims of this thesis to highlight the connection between

arithmetic progressions and perfect powers.

Another problem related to that of the Prime Number Theorem is whether there exists

an infinite number of primes in every infinite arithmetic progression? This is trivially

false if the starting value of the sequence and the common difference are not coprime.

In the alternate case one would expect the answer to be yes, and for the number of

primes to be equally distributed among the classes of a (mod d) for d the common
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difference and a coprime to d. In this case, Dirichlet answered in the affirmative that

there are infinitely many primes, and de la Vallée Poussin proved that the primes are

equally distributed among the congruence classes.

Theorem 2.2.1 (Dirichlet’s Theorem on Primes in Arithmetic Progression). If a and

d are coprime integers, then the arithmetic progression an = a+ nd contains infinitely

many primes.

We might also want to know whether, given a d is it possible to know a bound on n

such that we know a1, . . . an contains a prime. To understand this we are going to have

to define some machinery first. We will define the arithmetic progression equivalent of

the θ(x) function defined in the previous section.

Definition 2.2.2. For x a real variable, a and d coprime integers, we set

θ(x; a, d) =
∑
p≤x

p≡a (mod d)

log(p).

We call this the first Chebyshev function associated to the arithmetic progression a (mod d).

A classical result in the literature from [43] is the following theorem.

Theorem 2.2.3. If d ≤ 13, x ≥ 1010, ε = 0.004560 and a an integer coprime to d then

(1− ε) x

ϕ(d)
≤ θ(x; a, d) ≤ (1 + ε)

x

ϕ(d)

Remark 2.2.4. The paper [43] contains more results; for example, for greater values

of x we may take a smaller ε.

We now state and prove the following simple corollary as it will be needed later in 5.2.

Corollary 2.2.5. For x ≥ 1010 there exists a prime in the interval (x, 1.06x] for each

odd (mod 8) class.

Proof. It is clear that we just have to show that∑
x<p≤1.06x
p≡a (mod 8)

log(p) 6= 0.
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It follows from Theorem 2.2.3 that

(1− ε)1.06x

ϕ(8)
− (1 + ε)

x

ϕ(8)
≤ θ(1.06x; a, 8)− θ(x; a, 8) =

∑
x<p≤1.06x
p≡a (mod 8)

log(p). (2.4)

Factorising the left hand side and checking that it is positive now gives the result.

Very recently there has been a major generalization of the work above, due to Bennett,

Martin, O’Bryant and Rechnitzer [3]. While the previous theorem about θ(x) will be

more than sufficient for most of our work, we will require this more accurate formulation

in Subsection 5.3.1.

Theorem 2.2.6. Let d ≥ 3 be an integer and let a be an integer that is coprime to d.

Then there exist explicit constants cθ(d) and xθ(d) such that

∣∣∣∣θ(x; a, d)− x

ϕ(d)

∣∣∣∣ < cθ(d)
x

log(x)
for all x ≥ xθ(d).

Moreover, cθ(d) and xθ(d) satisfy cθ(d) ≤ c0(d) and xθ(d) ≤ x0(d), where

c0(d) =

 1
840 , if 3 ≤ d ≤ 104,

1
160 , if d > 104,

(2.5)

and

x0(d) =

8 · 109, if 3 ≤ d ≤ 105,

exp(0.03
√
d log3(d)), if d > 105.

(2.6)

Proof. This is Theorem 1.1 and 1.2 in [3].

The connection between primes and arithmetic progression is even deeper still. It is

possible to create a finite arithmetic progression of any given length such that all terms

in the progression are primes. This is the celebrated Green-Tao Theorem [23].

Theorem 2.2.7. For every natural number k, there exist arithmetic progressions of

primes with k terms.

The following theorem, Roth’s theorem, will be vital to our work in Section 5.4. This

theorem answers the question of whether a subset of an interval can contain a 3-term

arithmetic progression.
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Theorem 2.2.8. Let 0 < δ < 1. Then there exists a positive constant K0(δ) such

that if k ≥ K0(δ) and J ⊂ {0, 1, . . . , k − 1} with |J | ≥ δk, then there is at least one

non-trivial 3-term arithmetic progression in J .

Proof. See [46].

It is worthwhile noting that K0(δ) can be explicitly described; for example

K0(δ) = exp(exp(132 log(2) · δ−1)),

follows from [41], however we will not be using such an explicit version.

§ 2.3 Characters

Characters are an important aspect in all areas of number theory. They were first

defined by Dirichlet to explain the ideas in the previous section, such as primes in

arithmetic progression. As we were only giving a recollection of theorems we will

need in the later sections and not their proofs we delayed defining them until now.

In later sections we will use solutions of superelliptic curves to construct characters,

then analyse their analytic properties. In this section we will define characters and the

aspects of them that we will need later, such as L-functions.

2.3.1 Characters and L-functions

Here we will define characters and attach L-functions to them in the usual way, in line

with [25]. Further we will explain the nature of the zeros of the L-functions.

Definition 2.3.1. Let G be a finite abelian group. A homomorphism χ : G → C? is

called a character.

We call χ real if χ(g) ∈ R for all g ∈ G.

Definition 2.3.2. For m an integer, let χ be a character on (Z/mZ)?,

χ : (Z/mZ)? → C.

Extend this character to all integers by setting χ(n) = 0 for n not coprime to m. We

call this χ a Dirichlet character of modulus m.
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Example 2.3.3. For p a prime number, then

χ(n) =

(
n

p

)
is a Dirichlet character mod p.

Definition 2.3.4. The Dirichlet character (mod m) that corresponds to the trivial

character

χ0(a) = 1, for all a coprime to m,

is called the trivial character of modulus m.

If χ is a Dirichlet character such that χ2 = χ0, we say it is a quadratic character.

Remark 2.3.5. We will sometimes use the phrase principal character interchangeably

with trivial character.

Definition 2.3.6. For χ a character of modulus m, we define m?, the conductor of χ,

to be the smallest divisor of m such that χ = χ0χ
?, where χ0 is the principal character

to modulus m and χ? is a character of modulus m?. We call a character primitive, if

its modulus is equal to its conductor. We also define the function N(χ), which is the

conductor of the character χ.

Remark 2.3.7. In fact all quadratic characters of a given modulus m can be easily

determined. If m = p for an odd prime, there is exactly one such character and it is

the one given in Example 2.3.3. For m = 4, we have exactly one primitive character

defined by

χ4(n) = (−1)
n−1

2 if 2 - n.

If m = 8, there are two primitive characters defined by

χ8(n) = (−1)
(n−1)(n+1)

8 if 2 - n, (2.7)

χ4(n)χ8(n) = (−1)
(n−1)(n+5)

8 if 2 - n. (2.8)

Other than those listed above, there are no quadratic primitive characters for m a prime

power. Every real primitive character of conductor m is a product of the above types.

We can attach a Dirichlet series to a Dirichlet character. These are very important in

analytic number theory and also for our results on the Erdős-Selfridge curves.
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Definition 2.3.8. For χ a Dirichlet character, we define a Dirichlet L-function L(s, χ)

by the following:

L(s, χ) =
∑
n≥1

χ(n)n−s =
∏

p prime

(1− χ(p)p−s)−1.

The series and the Euler product are absolutely convergent for <(s) > 1. Moreover

they can be analytically continued to C.

We now state the Prime Number Theorem for Dirichlet characters as it will be vital

for understanding characters with small conductor. The following combines Theorems

5.26 and 5.28 of [25]:

Theorem 2.3.9. There exists an effectively computable absolute constant c∗ > 0 such

that the following holds.

(I) If χ is any primitive, quadratic character of conductor N , then L(s, χ) has at

most a single real zero βχ with

1− c∗

log(N)
< βχ < 1. (2.9)

If such a zero exists, the χ is necessarily real and βχ is a simple zero. We call

βχ an exceptional zero and N an exceptional conductor.

(II) If χ1 and χ2 are distinct real, primitive quadratic characters of conductor N1

and N2 respectively, with associated L-functions L(s, χ1) and L(s, χ2) having

real zeros βχ1 and βχ2, respectively, then

min{βχ1 , βχ2} < 1− 3c∗

log(N1N2)
. (2.10)

The combination of (2.10) and (2.9) causes the conductors for exceptional characters

to, in some sense, repel each other. This is often described as “Landau’s repulsion

principle”.

Corollary 2.3.10. If N1 < N2 are two exceptional conductors then N2 > N2
1 .

Remark 2.3.11. A proof of this can be found in section 7 of [6], which we have restated

here.
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Proof. Let βχ1 and βχ2 be the zeros of the characters with conductor N1 and N2

respectively. Then applying (2.10) and (2.9) we see that,

1− c∗

log(N1)
< min{βχ1 , βχ2} < 1− 3c∗

log(N1N2)
.

Simplifying this and collecting like terms gives the result.

As in [6] we will define the function P (N) to be the largest prime factor of N . We will

then bound P (N), where N is the conductor of a quadratic character, in terms of N .

Lemma 2.3.12. Let N be the conductor of a quadratic character, and let P (N) be the

largest prime factor of N . Then P (N) > 0.94 log(N).

Proof. This is Lemma 7.3 in [6].

Definition 2.3.13. We denote by Λ(n) the Von Mangoldt function as defined below,

Λ(n) =

log(p), if n = pk for some prime p and integer k ≥ 1;

0, otherwise.
(2.11)

Definition 2.3.14. We denote by ψ(x) the second Chebyshev functions as defined

below,

ψ(x) =
∑
n≤x

Λ(n). (2.12)

The following theorem, from [15], is another form of the Prime Number Theorem.

Theorem 2.3.15. For x ≥ 1010,

|ψ(x)− x| ≤ 0.001
x

log x
. (2.13)

The following theorem, which is Theorem 5.27 of [25], is an explicit version of the Prime

Number Theorem for Dirichlet characters.

Theorem 2.3.16. Let χ be a non-trivial primitive Dirichlet character of conductor N .

Then

∑
m≤X

χ(m)Λ(m) = −X
βχ

βχ
+O

(
X exp

(
−c logX√

logX + log(N)

)
log4(N)

)
.
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Moreover, c > 0 is an absolute effective constant, and the implied constant is absolute.

Also βχ denotes the exceptional zero if present, otherwise the term −X
βχ

βχ
is omitted.

It is important to point out that for N small enough, the error term is genuinely smaller

than the length of summation. Only when logN � logκX for κ < 1 can we apply this

theorem. Further the existence of possible exceptional zeros complicates matters.

Definition 2.3.17. We denote by τ(n) the number of divisors function for a positive

integer n.

We now deal with character sums over short intervals, in particular a theorem of Gra-

ham and Ringrose.

Theorem 2.3.18. For r ≥ 3, let χi (mod qi) be characters for 1 ≤ i < r and χ (mod q)

be a primitive character of conductor q > 1, q square-free with (q, q1 . . . qr−1) = 1. Then

for N ≥ N0 = max{q1, . . . , qr−1}q1+2−r we have∣∣∣∣∣∣
∑

M<m≤M+N

χ1χ2 . . . χr−1χ(n)

∣∣∣∣∣∣ ≤ 4N

(
τ(q)r

2

q

)2−r

.

Proof. This is found in [25, pg. 333], except that because we are making the assumption

that r ≥ 3 we can modify line 15 of p.333 to get the result.



Chapter 3

Elliptic Curves, Modular Forms

and Galois Representations

In this chapter we will give a brief account of the algebraic number theory that will be

required to achieve our results.

§ 3.1 Frey-Hellegouarch Curves and Modular Forms

In this section we are going to explain the idea of Frey-Hellegouarch curves, a type

of elliptic curve that capture very well the arithmetic information of equations of the

form u+v+w = 0, modular forms, and how combined they can be used to understand

solutions of these equations. In our later chapters we will reduce our problems to

solving many simultaneous equations of the form

Ax` +By` + Cz` = 0 or (3.1)

Ax` +By` + Cz2 = 0, (3.2)

so our understanding of the Frey-Hellegouarch curves attached to these equations will

be vital.

We will do this using four powerful and important ideas in number theory these are

modularity, level-lowering, Kraus’s lemma and exponent bounding. The modularity

theorem tells us that to an elliptic curve defined over the rationals there is a unique

modular form that can be attached to it, such that their Galois representations agree.

This was first proven in the semi-stable case by Wiles in his proof of Fermat’s Last

28
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Theorem [59]. It is now known entirely over the rationals by the work of Wiles, Breuil,

Conrad, Diamond and Taylor [10], and even known in the real quadratic case thanks

to Freitas, Le Hung and Siksek [16].

Level lowering of modular forms attached to elliptic curves was first done by Ribet

[44]. The theorem shows that if a modular form comes from an elliptic curve, and

under certain hypotheses on the elliptic curve and modular form, then it is possible to

find another modular form of smaller level such that the modular forms agree (mod `)

for some prime `. These two very powerful theorems combined are enough to prove

Fermat’s Last Theorem; this is the case that A = B = C = 1 in Equation (3.1), which

we shall use as an example. This proof of Fermat’s Last Theorem relies on the fact that

when the modular forms attached to these Frey-Hellegouarch curves are level lowered

they belong to a space having no non-trivial elements.

However for more general A,B and C we will not always get so lucky that the space we

are interested in is non-trivial. In particular we will not always be able to show that

there are no solutions, but instead show that ` is bounded.

Kraus’s lemma allows us to show that provided that ` is sufficiently bigger than the

conductor of the elliptic curve, then the level lowered modular form is also coming

from an elliptic curve. We will need this in later chapters as it allows us to retain much

of the arithmetic information of the original elliptic curve, which we will later use to

construct characters.

We now start with the definition of a Frey-Hellegouarch curve.

Definition 3.1.1. Let u, v and w be integers such that uvw 6= 0 and u + v + w = 0,

and define

E : y2 = x(x− u)(x+ v). (3.3)

Then E is an elliptic curve with discriminant ∆ = 16u2v2w2, which we shall call a

Frey-Hellegouarch curve.

The terms defined below will be used liberally throughout this thesis.

Definition 3.1.2. For N an integer, Rad(N) is the product of all distinct primes

dividing N . Also, we write Rad2(N) for the product of all distinct odd primes dividing

N .

We first define the following notation so that we may soon state Ribet’s Level Lowering

Theorem.
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Let E be an elliptic curve defined over Q, with minimal discriminant ∆ and conductor

M . For a rational prime ` ≥ 3, we denote by

ρE,` : GQ → Aut(E[`]) ∼= GL2(F`)

the representation describing the action of GQ := Gal(Q/Q) on the `-torsion subgroup

E[`].

Set

M0 = M/
∏

q||M, q prime
`|ordq(∆)

q, (3.4)

where ordq(x), as usual, is the largest power of the prime q that divides a non-zero

integer x.

Remark 3.1.3. We note here that these Frey-Hellegouarch curves have full 2-torsion,

so for ` ≥ 7 E[`] is irreducible by [37].

The following theorem is a well known consequence of Ribet’s Level Lowering Theorem

[44]. In the original formulation, the hypothesis required that E is modular over Q.

However, this is now known for all elliptic curves over Q by Wiles, Breuil, Conrad,

Diamond and Taylor [10], [59].

Theorem 3.1.4. If E[`] is irreducible then there is a cuspidal newform f =
∑
n≥1

cnq
n

of weight 2 and level M0 such that ρE,` ∼ ρf,λ where λ | ` is a prime of the totally real

field K = Q(c1, c2, . . .).

Definition 3.1.5. For f a weight 2 cuspidal newform f =
∑
n≥1

cnq
n we call Qf =

Q(c1, c2, . . .) the field of coefficients of f . Further, we shall say f is rational if K = Q
and irrational if K 6= Q.

We explain what we mean by ρE,` ∼ ρf,λ in the following standard lemma which can

be found stated in [6].

Lemma 3.1.6. With notation as in Theorem 3.1.4, let p be a rational prime. Then

(I) if p - `MM0 then ap(E) ≡ cp (mod λ);

(II) if p - `M0 and p ||M then p+ 1 ≡ ±cp (mod λ).
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In the case that f is rational we may actually do slightly better than the above lemma.

If f is a rational newform, then we know that f corresponds to some elliptic curve,

which we denote by F . If E arises (mod `) from f then we shall also say that E arises

modulo ` from F , written in the usual way as E ∼` F .

Lemma 3.1.7. Let E and F be elliptic curves over Q with conductors N and N ′

respectively. Suppose that E arises modulo ` from F . Then for all primes p

(I) if p - NN ′ then ap(E) ≡ ap(F ) (mod `);

(II) if p - N ′ and p || N then p+ 1 ≡ ±ap(F ) (mod `).

Proof. This strengthening is due to Kraus and Oesterlé [33].

We now want to highlight for the reader just how powerful these theorems are with the

following example.

Example 3.1.8 (Fermat’s Last Theorem). Assume for contradiction that a, b and c

are non-zero co-prime integers and ` ≥ 7 a prime such that

a` + b` + c` = 0.

Without loss of generality we can reorder the integers such that a ≡ −1 (mod 4) and

b is even. We attach the following Frey-Hellegouarch curve

E : y2 = x(x− a`)(x+ b`),

as explained in Definition 3.1.1.

It is a simple computation using Tate’s algorithm to compute that the minimal dis-

criminant is 2−8(abc)2` and conductor 2 Rad2(abc). Using the notation as above we

conclude that M0 = 2. Remembering Remark 3.1.3, we see we are now in a position to

apply Ribet’s Level Lowering Theorem 3.1.4. However this would imply the existence

of a non-trivial modular form of weight 2 and level 2, but this is known not to exist,

contradicting our assumption.

This example highlights the combined strength of the modularity theorem and Ribet’s

Level Lowering Theorem in the application of determining if solutions exist to gener-

alized Fermat equations.
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However in more complicated examples it is not possible to completely eliminate all

possible solutions. This can happen when the space S2(M0) of cuspidal modular forms

of weight 2 and level M0, for the calculated M0 is non-trivial. In this case there are

possible remedies. In the following few pages we will see one of them. In some situations

it is possible to bound an exponent in the equation, for example the ` in the Fermat

equation. The bounding of exponents in generalized Fermat equations will be of great

importance to us to prove our theorems.

The following is Lemma 2.2 in [6] and is crucial in Chapters 4 and 5.

Lemma 3.1.9. With notation as above, suppose that p 6= ` is a prime with p ‖M and,

` | ordp(∆). Then

` ≤ (
√
p+ 1)

M0+1
6 .

We now state a theorem of Kraus that shows that if the residual characteristic ` is suffi-

ciently large compared to the level of a modular form f , then f has rational eigenvalues,

and hence corresponds to an elliptic curve over Q.

For a positive integer n let

µ(n) = n
∏
q|n

q prime

(
1 +

1

q

)
and g+

0 (n) = Dim(Snew2 (n)). (3.5)

Define

F (n) =

(√
µ(n)

6
+ 1

)2g+0 (n)

, G(n) =

(√
µ(lcm(n, 4))

6
+ 1

)2

and set

H(n) = max(F (n), G(n)).

Then the following is Théorème 4 of [31].

Theorem 3.1.10. With notation as in Theorem 3.1.4, suppose that E has full 2-torsion

and that ` > H(M0). Then there exists an elliptic curve F/Q having full 2-torsion of

conductor M0, such that ρE,` ∼ ρF,`.

It is clear that results in Chapter 2 will allow us to understand the µ function. Ad-

ditionally, Theorem 2 of Martin [36] gives us the following bound for g+
0 (M0), which

allows us to completely understand the H function.
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Lemma 3.1.11. For all positive integers n, we have g+
0 (n) ≤ n+ 1

12
.

This lemma will be vital to bounding H(M0) in Chapters 4 and 5.

§ 3.2 Equations with Signature (`, `, 2)

In Chapter 6 we are going to transform solutions of our original equation into solutions

of Fermat equations of signature (`, `, 2). There it will be important that we understand

all of the properties of these Fermat equations, so we have dedicated a section to

discussing them. This all follows the work of Bennett and Skinner [8], and Ivorra and

Kraus [26].

Consider the equation

Ax` +By` = Cz2, (3.6)

for ` ≥ 7 a prime and under the condition that

Ax,By and Cz are non-zero and pairwise coprime.

Further we shall assume that A and B are `-th power free and C is square free. Without

loss of generality we may suppose that we are in one of the following situations:

(I) ABCxy ≡ 1 (mod 2) and y ≡ BC (mod 4);

(II) xy ≡ 1 (mod 2) and either ord2(B) = 1 or ord2(C) = 1;

(III) xy ≡ 1 (mod 2), ord2(B) = 2 and z ≡ By/4 (mod 4);

(IV) xy ≡ 1 (mod 2), ord2(B) ∈ {3, 4, 5} and z ≡ C (mod 4);

(V) ord2(By`) ≥ 6 and z ≡ C (mod 4).

In cases (I) and (II) we consider the curve

E1 : Y 2 = X3 + 2CzX2 +BCy`X.

In cases (III) and (IV) we consider

E2 : Y 2 = X3 + CzX2 +
BCy`

4
X,
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and in case (V) we consider

E3 : Y 2 +XY = X3 +
Cz − 1

4
X2 +

BCy`

64
X.

Theorem 3.2.1. (Bennett and Skinner [2]) With assumptions and notation as above,

we have:

(a) The minimal discriminant of Ei is given by

∆i = 2δiC3B2A(xy2)`,

where

δ1 = 6, δ2 = 0, δ3 = 12.

(b) The conductor of the curve Ei is given by

N = 2αC2 Rad(ABxy),

where

α =



5 if i = 1, case (I);

6 if i = 1, case (II);

1 if i = 2, case (III), ord2(B) = 2 and y ≡ −BC/4 (mod 4);

2 if i = 2, case (III), ord2(B) = 2 and y ≡ BC/4 (mod 4);

4 if i = 2, case (IV ) and ord2(B) = 3;

2 if i = 2, case (IV ) and ord2(B) = 4 or 5;

1 if i = 3, case (V ) and ord2(By7) = 6;

0 if i = 3, case (V ) and ord2(By7) ≥ 7.

(c) Suppose that Ei does not have complex multiplication (this would follow if we as-

sume that xy 6= ±1). Then Ei ∼` f for some newform f of level N` = 2βC2 Rad(AB)

where

β =



α cases (I)− (IV );

0 case (V) and ord2(B) 6= 0, 6;

1 case (V) and ord2(B) = 0;

−1 case (V) and ord2(B) = 6.
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(d) The curves Ei have non-trivial 2-torsion.

(e) Suppose E = Ei is a curve associated to some solution (x, y, z) of Equation (3.6)

satisfying the above conditions. Suppose that F is another curve defined over Q
such that E ∼` F . Then the denominator of the j-invariant j(F ) is not divisible

by any odd prime q 6= ` dividing C.

The following is a theorem that we will need for bounding exponents in Chapter 6.

Theorem 3.2.2. Let E/Q be an elliptic curve of conductor N , and suppose that t |
|E(Q)tors| (N.B. t does not have to be prime). Suppose that f is a newform of level N ′.

Let p be a prime such that p - N ′ and p2 - N . Let

Sp = {a ∈ Z such that − 2
√
p ≤ a ≤ 2

√
p, a ≡ p+ 1 (mod t)}.

Let cp be the p-th coefficient of f and define

B′p(f) = NormQf/Q
(
(p+ 1)2 − c2

p

) ∏
a∈Sp

NormQf/Q(a− cp)

and

Bp(f) =

p ·B′p(f) if f is irrational,

B′p(f) if f is rational.

If E ∼` f then ` | Bp(f).

Proof. As p - N ′ and p2 - N it follows that p is either a prime of good reduction or of

multiplicative reduction for E. If p is a prime of good reduction it follows that

p+ 1− ap(E) = |E(Fp)| ≡ 0 (mod t),

with the (mod t) equality coming from the fact that t | |E(Q)tors|. Hence it follows

that ap(E) ∈ Sp, once we account for the Hasse bound.

If f is irrational then we may apply Theorem 3.1.6. If ` = p then the result follows

obviously from the definition of Bp(f). If however p - `N ′ and p || N then p + 1 ≡
±cp (mod λ) for λ being some prime lying over `, hence ` divides the first term in

B′p(f). The only remaining case is p - `NN ′, in which case it follows from Theorem

3.1.6 that ap(E) ≡ cp (mod λ). Hence if we take the product of the norms over all

elements in Sp, it has to be divisible by `.
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If f is rational then we apply the same argument but using Lemma 3.1.7, however we

do not need to consider the case that p | `.



Chapter 4

The Consecutive Erdős-Selfridge

Curves

In this chapter we will explain what superelliptic curves are, show that several open

problems in number theory can be written in terms of them and provide two examples

of families that will be studied. Both of these families will be made up of arithmetic

progressions. The Erdős-Selfridge curves will be constructed by taking products of

terms in an arithmetic progression and asking if these products can ever be a perfect `-

th power. We will also consider curves that are made by summing powers of consecutive

terms in arithmetic progression and determining if these can be perfect `-th powers.

In this chapter we will also completely study the simplest case of the Erdős-Selfridge

curves, in particular when the terms in the arithmetic progression are consecutive

numbers. Our main result will be to improve that of Bennett and Siksek in [7], by

proving it is possible to bound the exponent ` in terms of the number of terms in the

arithmetic progression, even when some terms in the product are missing.

We shall do this by attaching Fermat equations to our curve, showing that it is possible

to find one with a sufficiently nice radical. It is then a matter of applying Ribet’s Level

Lowering Theorem 3.1.4 to bound ` in terms of the radical.

§ 4.1 Introduction

In this section we will be interested in bounds of the exponent of superelliptic curves.

Definition 4.1.1 (Superelliptic curves). A superelliptic curve is an equation of the

37
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following form

y` = f(x) (4.1)

for ` a fixed constant integer and f a polynomial of degree k with ` and k greater than

2.

Definition 4.1.2. For an equation of the form

By` = f(x),

we call ` the exponent of the equation.

For a fixed pair of integers (k, `) and f a separable polynomial, such an equation defines

a rational curve with genus at least

(k − 2)(`− 1)

2
.

It follows that for k+ ` > 6, such a curve has genus greater than 1. Hence by Faltings’s

theorem there are only finitely many rational solutions for a fixed f and `.

Theorem 4.1.3 (Faltings). If C is a non-singular algebraic curve over Q with genus

greater than 1, then C has only finitely many rational points.

Proof. See [21].

While Faltings’s theorem is very strong, when we restrict ourselves to just the integer

points of superelliptic curves, we can get the following much stronger statement.

Theorem 4.1.4 (Schinzel and Tijdeman). If f(x) ∈ Z[x] is a polynomial with at least

2 distinct roots, then the integer solutions to y` = f(x) satisfy either y ∈ {0,±1} or

` 6 `0 for some effectively computable constant `0 = `0(f).

Proof. See [48].

Remark 4.1.5. When we considered applying Faltings’s theorem to superelliptic curves,

we had to fix both ` and f , however the above theorem allows us to be a lot more gen-

eral. Consider a superelliptic curve of the form y` = f(x). First consider the case

when y ∈ {0,±1}; then it is clear there are only finitely many x that can satisfy our

superelliptic curve. It is also clear for any ` 6 `0 by Faltings’s theorem there are only

finitely many rational (hence integral) solutions to y` = f(x), showing that for a fixed

f there are only finitely many integer pairs (x, y) such that y` = f(x).
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It now follows that one might ask if it is possible to generalize this work to rational

points.

4.1.6 (A question on the exponent bound for rational points on superelliptic curves).

Does there exist a large set F of polynomials inside Z[x] such that the rational solutions

of y` = f(x) satisfy either y ∈ {0,±1} or ` 6 `0 for some effectively computable constant

`0 = `0(f)?

This is a very difficult problem, and one that will not be solved in this thesis, however

it is worthwhile thinking about as we proceed.

The bulk of this thesis is going to consider three different curves: two variants of the

Erdős-Selfridge curves and the arithmetic progression curves. We will now define them

below.

Definition 4.1.7 (The family of AP curves). An AP curve for k and d is an equation

of the form

y` = (x− d)k + xk + (x+ d)k, (4.2)

for k and d fixed integers.

Definition 4.1.8 (The family of Erdős-Selfridge curves). An Erdős-Selfridge curve of

k and d is an equation of the form

y` = x(x+ d) . . . (x+ (k − 1)d), (4.3)

for k and d fixed integers.

Definition 4.1.9 (The family of Erdős-Selfridge Curve with a missing set and coef-

ficient). Let k, d and B be fixed integers. Further, let S be a subset of [0, k − 1].

Set

f(x) =
∏

i∈[0,k−1]\S

(x+ id), (4.4)

then we call equations of the following type over Q:

By` = f(x) (4.5)

the family of Erdős-Selfridge curves of k and d with missing set S and coefficient B.

We shall write ES(`, k, d,B, S) for the equation

By` =
∏

i∈[0,k−1]\S

(x+ id), (4.6)
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and write I = [0, k − 1] \ S.

Remark 4.1.10. While is it possible to study the Erdős-Selfridge curves for any posi-

tive integer `, we shall always restrict to the case that ` is a prime. From here onwards,

unless explicitly stated otherwise, we shall always assume ` to be a prime number.

§ 4.2 The Erdős-Selfridge Curves for d = 1

We start our work by first considering the easiest of these curves, the Erdős-Selfridge

curve with d = 1. The main theorem in this section is Theorem 4.2.2, improving

Theorem 1.4.3 of Bennett, Siksek [7] and Theorem 1.4.4 of Das, Laishram and Saradha

[14]. The sketch of this theorem is as follows. Using the perfect power structure of

each factor in the product of the Erdős-Selfridge curve it is possible to attach many

generalised Fermat equations to this superelliptic curve. In particular it is possible to

attach Fermat equations of the form

au` + bv` + cw` = 0,

such that the largest prime dividing abc is bounded by k. Additionally, it is shown

that a prime p in a certain interval will divide exactly one of u, v or w, but none of

the coefficients of the Fermat equation. This allows us to use Ribet’s Level Lowering

Theorem 3.1.4, Kraus’s Lemma 3.1.10 and Lemma 3.1.11 to bound `.

Definition 4.2.1. A pair (x, y) ∈ Q2 that lies on the curve ES(`, k, 1, 1, S) is non

trivial if xy 6= 0.

We now state our first theorem regarding the d = 1 case of the Erdős-Selfridge curve

with missing terms.

Theorem 4.2.2. Suppose k ≥ 27 and S is a subset of [0, k − 1] that satisfies one of

the following conditions

(1) S ⊂ [s, t] ⊂ [0, k − 1] and t− s < k
18 − 1;

(2) |S| < 1
2 + 0.37

√
k

log k .

Then any non-trivial rational solution to ES(`, k, 1, 1, S) satisfies log(`) < 3k.

Corollary 4.2.3. Suppose k ≥ 3 and S is a set with a single element, then any rational

solution to ES(`, k, 1, 1, S) satisfies log(`) < 3k.
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Proof. If k ≥ 27 this follows from Theorem 4.2.2 in case (2). If k ≤ 26, then this is

covered by [14].

Remark 4.2.4. The case of k ≤ 26 is dealt with in [14]. This relies on being able to

create more Fermat identities and get stricter properties, in these more specific cases.

From these stronger properties it is possible to prove the result using only identities

with a maximum of two term products.

Remark 4.2.5. This corollary is the author’s generalisation [18] of Theorem 1.1 of

[14]. Further, this corollary will be generalised in Chapter 5 to a version that allows

for a y coefficient B; this is the content of Remark 5.6.3.

In this section we will prove Theorem 4.2.2 and Corollary 4.2.3 following the method

presented in [7]. We start this section by proving a result about Erdős-Selfridge curves

in general, as we will need it in the following chapters. We demonstrate how a rational

point on an Erdős-Selfridge curve gives rise to an integral solution on a different Erdős-

Selfridge curve.

Lemma 4.2.6. Let (x, y) be a rational solution of ES(`, k, d, 1, S) with exponent ` > k.

Then there exists a d′ such that d′/d is an `-th power and ES(`, k, d′, 1, S) has an

integral solution.

Proof. Write x = m/a and y = n/b for a, b,m and n integers, such that m, a are

coprime and n, b are coprime.

Then we may rewrite our solution to ES(`, k, d, 1, S) as the following:

n`

b`
=

1

ak−|S|

∏
i∈[0,k−1]\S

(m+ iad). (4.7)

By our assumption about coprimeness it then follows that ak−|S| = b`. As ` > k and `

is prime, this implies that a is an `-th power. We shall write a = c` for some integer c.

We now further simplify our equation to:

n` =
∏

i∈[0,k−1]\S

(m+ ic`d). (4.8)

Hence we now have an integral solution (m,n) with exponent ` of ES(`, k, c`d, 1, S).

Hence to show that there is a bound for the exponent of the Erdős-Selfridge curve for

rational points, we need to show there is a bound for each d, that does not depend on
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d. We will apply two different methods depending on whether d = 1 or d is another

integer.

The Erdős-Selfridge Curves for d = 1

Assume we have a putative rational solution to ES(`, k, 1, 1, S). Then applying Lemma

4.2.6, we know that we have an integral solution (m,n) to ES(`, k, c`, 1, S) for some

integer c, where m and c must be coprime.

We now write each term in the product of the Erdős-Selfridge curve as

m+ ic` = aix
`
i , (4.9)

for i ∈ I such that xi is an integer and ai is an `-th power free integer.

Lemma 4.2.7. If p is a prime that divides ai as given by Equation (4.9) for some i,

then p ≤ k.

Proof. Let p be a prime that divides ai. Then as p must appear to an `-th power in

the product, but does not in the ai term, it follows that there is a j 6= i such that p

also divides aj for some j ∈ I. It now follows that p divides their difference, (i− j)c`.
If p divides c, then it must also divide m, contradicting them being co-prime. Hence p

divides i− j, and therefore p is bounded by k. It now follows that all prime factors of

ai are bounded above by k.

This is a really important observation, as when we construct Fermat equations later on,

it is the primes dividing the ai’s that will make up the radical we see in the conductor

of the Frey-Hellegouarch curves.

Lemma 4.2.8. Suppose (m,n) is an integral solution of ES(`, k, c`, 1, S) with

|S| < 1

2
+ 0.37

√
k

log k
and k ≥ 22.

Then there exists a prime 1
3k ≤ p ≤

1
2k such that p divides either c or n.

Proof. Assume that no prime p in the range [k/3, k/2], which is known to exist by

Corollary 2.1.3, divides c, otherwise the result follows obviously. Such a prime must

divide at least two and at most three of the terms m + ic` for i ∈ [0, k − 1]. If p does
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not divide n, then there are at least 2 values of i such that i ∈ S. We will label these

as ip and ip + p. It is then clear that p is in the set of differences of the elements in S.

If we label the elements in S = {i1, . . . , iL}, then it is easily seen that

|{iα − iβ : 1 ≤ α < β ≤ L}| ≤
L−1∑
m=1

m =
|S|2 − |S|

2
. (4.10)

It then follows that if
|S|2 − |S|

2
< π(k/2)− π(k/3), (4.11)

then there must be such a prime p as specified by the lemma.

For k < 181000 we can explicitly calculate, using Code 7.1, the following bound

0.07
k

log(k)
< π(k/2)− π(k/3). (4.12)

For k ≥ 181000 we use the following bounds in [15]:

x

log(x)− 1
< π(x) for x ≥ 5393, (4.13)

and

π(x) <
x

log(x)− 1.1
for x ≥ 60184. (4.14)

It is then simple algebraic manipulation to see that for k ≥ 181000

k

log(k)

 1/2

1− 1+log(2)
log(k)

− 1/3

1− 1.1+log(3)
log(k)

 < π(k/2)− π(k/3). (4.15)

Elementary calculus shows that each of the two functions in k inside of the brackets

is a decreasing function for k > 9000, which in particular is less than our bound for k

and tends to their numerator.

Putting k = 181000 into inequality (4.15) we see that,

0.17
k

log(k)
< π(k/2)− π(k/3). (4.16)

We can therefore always use the bound given by inequality (4.12). It is now clear that

if
|S|2 − |S|

2
< 0.07

k

log(k)
, (4.17)
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then inequality (4.11) follows obviously.

It follows from solving the above quadratic equation, that if

|S| < 1

2
+ 0.37

√
k

log k
,

inequality (4.11) is true, completing the lemma.

We will now present a lemma that will be required later to show that we have enough

equations.

Lemma 4.2.9. For t a fixed integer, α an integer, and p a prime greater than 3, let

Aα =

{
t+ α, t+

2(p+ α)

3
, t+ p+ α, t+ 2p− 2α

}
.

If α and α′ are distinct integers both in (0, p/2) and congruent to −p (mod 3), then

Aα ∩Aα′ = ∅.

Remark 4.2.10. The condition that α ≡ −p (mod 3) is so that all the elements in Aα

are integers.

Proof. Assume that Aα∩Aα′ 6= ∅. Label the elements in the set Aα as ai for i = 1, . . . , 4.

Do similarly for Aα′ , labelling these elements as a′i. For i = 1, 3, 4 we can work (mod 3)

and see that

a1 ≡ t− p (mod 3), a3 ≡ t (mod 3), a4 ≡ t+ p (mod 3).

As p > 3, it follows that if ai = a′j for i, j 6= 2, then i = j. If ai = a′j for i, j 6= 2, it

follows that α = α′, giving a contradiction. Hence, after possibly swapping α and α′,

we can assume that either a1 = a′2, a3 = a′2 or a4 = a′2.

Case (1) : a1 = a′2.

It follows that 3α = 2p+ 2α′, hence α > 2p/3, contradicting α ∈ (0, p/2).

Case (2) : a3 = a′2.

It follows that p+ 3α = 2α′, hence α′ > p/2, contradicting α′ ∈ (0, p/2).

Case (3) : a4 = a′2.
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It follows that 2p = α′ + 3α, which would imply that 2p < p/2 + 3p/2, giving a

contradiction.

We will now use this lemma to construct Fermat equations that come from the solution

of ES(`, k, c`, 1, S) superelliptic curves.

Lemma 4.2.11. For k ≥ 27 and S a subset of [0, k − 1] that satisfies one of the

following

(1) S ⊂ [s, t] ⊂ [1, k] and t− s < k
18 − 1;

(2) |S| < 1
2 + 0.37

√
k

log k ,

suppose that ES(`, k, 1, 1, S) has a non-trivial rational point (x, y). Then there exists a

prime 1
3k ≤ p ≤

1
2k such that there are non-zero integers a, b, c, u, v, w satisfying

au` + bv` + cw` = 0 (4.18)

such that

(I) a, b, c are `-th power free integers;

(II) all prime factors of abc are less than or equal to k;

(III) p - abc;

(IV) p divides precisely one of u, v, w.

Proof. Under the hypotheses of the lemma, we can apply Lemma 4.2.6 to find an

integral solution (m,n) of ES(`, k, d`, 1, S). There exists a prime p in the interval

[k/3, k/2] such that p divides either d or n.

In case (1), if p does not divide d then there are atleast two terms in the arithmetic

progression that are divisible by p. They are atleast k/3 terms apart, which is bigger

than |S|, hence atleast one of them appears in the product. Hence either at least one

of the terms in (4.9) is divisible by p or p divides d. In case (2) it follows from Lemma

4.2.8.

It is clear that if p does not divide d, then p can divide at most 3 distinct factors of

(4.8). We will deal with the cases of p dividing exactly 0, 1, 2 and 3 terms individually.
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We first deal with the case that p divides d. Noting that in every case |S| < k/2, it

follows that there is an i such that i and i+1 /∈ S. Hence, by subtracting two identities

given in equation (4.9) we see that

aix
`
i − ai+1x

`
i+1 + d` = 0.

The lemma now follows.

We now deal with the case that p divides exactly one factor, which we take to be n+id`.

We consider the identity

(n+ id`)− (n+ jd`) = (i− j)d`,

for j a positive integer less than k such that |i− j| < p. Because |S| < p− 1, it follows

that there exists a j /∈ S, hence (n+ jd`) appears as a factor in (4.8). As p must divide

n+ id` to an `-th power, applying (4.9), we then get an equation satisfying the lemma,

i.e.

aix
`
i − ajx`j − (i− j)d` = 0.

We now consider the case that p divides exactly two factors, n+ id` and n+ (i+ p)d`.

We consider a similar identity as before,

(n+ id`)(n+ (i+ p)d`)− (n+ (i+ α)d`)(n+ (i+ p− α)d`) = α(α− p)d2`,

for α a positive integer less than p.

It is clear that for distinct α and α′ ≤ p/2, then {i+α, i+p−α}∩{i+α′, i+p−α′} = ∅.
Hence, as |S| < p/2−1 there exists α such that both n+ (i+α)d` and n+ (i+p−α)d`

appear as factors in (4.8). Hence the result now follows from (4.9) and the same

finishing argument as above.

We are left to deal with the case that p divides exactly three factors, n+id`, n+(i+p)d`

and n+ (i+ 2p)d`.

We point out the following identity:

3α(α− p)(n+ (i+ 2(p+α)
3 )d`)d2l = (n+ id`)(n+ (i+ p)d`)(n+ (i+ 2p)d`)

− (n+ (i+ α)d`)(n+ (i+ p+ α)d`)(n+ (i+ 2p− 2α)d`), (4.19)
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defined for α a positive integer less than p with α ≡ −p (mod 3).

From Lemma 4.2.9 we know that for α and α′ in the interval (0, p/2), then

{t+α, t+ 2(p+α)
3 , t+p+α, t+ 2p−2α}∩{t+α′, t+ 2(p+α′)

3 , t+p+α′, t+ 2p−2α′} = ∅.

Hence it follows that there are more than p
6−1 distinct values of α with α ≡ −p (mod 3),

such that the terms in (4.19) involving α don’t coincide with the terms involving i. So

we see from the size of S that we have more choices of α than terms deleted, hence at

least one α will give us such an equation with all terms defined.

We now state a lemma which follows from [7].

Remark 4.2.12. The following proof is not materially different from the one given by

Bennett and Siksek in [7], but has been included here for completeness.

Lemma 4.2.13. If a, b, c, u, v, w are non-zero integers satisfying

au` + bv` + cw` = 0, (4.20)

k ≥ 27 is a fixed integer and 1
3k ≤ p ≤

1
2k is a prime such that

(1) a, b, c are `-th power free integers;

(2) all prime factors of abc are less than or equal to k;

(3) p - abc;

(4) p divides precisely one of u, v, w;

(5) ` > k is prime.

Then

log ` ≤ (N ′ + 1)

6
log(
√
p+ 1),

where N ′ = 24 Rad2(abc).

Proof. Without loss of generality we permute the three terms and change signs so that

au` ≡ −1 (mod 4) and bv` ≡ 0 (mod 2).
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We now attach the Frey-Hellegouarch curve

E : Y 2 = X(X − au`)(X + bv`).

Using Ribet’s Level Lowering Theorem 3.1.4 it follows that there exists a level lowered

modular form f of level N ′, with

N ′ | 25 Rad2(abc).

It follows from Properties (2) and (3) that

Rad2(abc) |
∏

q≤k,q 6=p
q,

taken over primes q.

As E has multiplicative reduction at p, but p does not divide abc, we may use Lemma

3.1.6 (2). It follows that p + 1 ≡ ±cp (mod λ), for cp the p-th coefficient of f and λ

a prime lying over ` in K = Qf . It is now clear that ` divides NormK/Q(p + 1 ± cp).
Using the bound for cp < 2

√
p in all real embeddings it follows that

` < (p+ 1 + 2
√
p)[K:Q].

It is an elementary fact that [Qf : Q] is less than or equal to the dimension of the space

of cuspidal newforms containing f .

We now apply Lemma 3.1.11 to see that

[K : Q] ≤ N ′ + 1

12
.

Taking logs of the expression bounding `, the result now follows.

Proof of Theorem 4.2.2. It follows immediately from Lemma 4.2.11 and Lemma 4.2.13

that

log ` ≤ (N ′+1)
6 log(

√
p+ 1),

where

N ′ < 25
∏

q≤k,q 6=p
q.
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Using Theorem 2.1.9 we can now bound N ′,

N ′ < 25 exp(1.000081k).

It now follows that

log ` ≤ 25

3
log(
√
k − 1 + 1) exp(1.000081k).

We can bound the non-exponential part of the above product by exp(βk) for some β.

Using the standard fact that exponentials grow slower than logarithms, we can find the

β that works for k = 27. In this case we can take β = 0.084. It now follows that

log ` ≤ exp((1.000081 + 0.084)k) < 3k,

finishing the theorem.



Chapter 5

Erdős-Selfridge Curves for

General d

In this chapter we will consider the Erdős-Selfridge curves for a general d. The ideas

in this chapter are generalizations of those given by Bennett and Siksek in [6]. The

case of general d, while seeming very similar to that seen in the previous chapter, has

to be handled entirely differently. This is because if we try copying the methods in

the previous section exactly for a general d, we would no longer be able to guarantee

a bound on the prime factors of the coefficients in the Fermat equations. In particular

as we change the d, the prime factors that would appear change as well.

We generalize the work in [6] by considering curves where elements in the product are

missing or there is a coefficient in front of the power. The broad outline of the method

is to start by attaching many Fermat equations to our Erdős-Selfridge curves. Us-

ing standard techniques in the study of Fermat equations we attach Frey-Hellegouarch

curves to these. These will allow us to show that either ` is bounded or d must have

specific divisibility properties. Further we will show that it is possible to attach char-

acters to these Frey-Hellegouarch curves. We will then classify the characters into one

of four categories. It is then possible to show that there are bounds on the number of

characters in three of these classifications. Finally we show that in all cases we violate

one of these bounds on our conductors, contradicting the assumption of a solution.

There will be six sections in this chapter. In Section 5.1 we will show how to attach

Frey-Hellegouarch curves to our Erdős-Selfridge curves. This is very similar to the

previous chapter, however we will need slightly different identities, so that the d in our

50
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curve does not appear in the coefficients of our Fermat equations. Further we shall

show that provided that k is sufficiently large and ` sufficiently large depending on

k, then there will be a level-lowered rational elliptic curve with full 2-torsion and a

predetermined bounded conductor. This will follow from applications of Lemma 4.2.13

and Kraus’s Theorem 3.1.10.

In Section 5.2 we develop the idea in [6], showing how to attach characters to the

curves given in Section 5.1. These will be vital for further study, as they allow us

to transform the problem from one of algebraic number theory into a more analytical

analogue. In particular we will show that the absolute value of the inner product sum

of a character and the Von-Mangoldt function can be bounded below linearly in k;

this is Theorem 5.2.5. This will become very important in Section 5.4 when we are

calculating properties of non-smooth characters.

In Section 5.3 we distinguish three subsets of the set of all characters, developed for an

Erdős-Selfridge curve, these classes are non necessarily disjoint. The desired outcome

of this section is to show that there can’t be too many characters with prescribed

properties on their conductors. The three classes will be labelled as the super smooth

set, the smooth set and the non-smooth set. The super smooth set will be the set of

characters whose conductors are bounded by log(k)2. In Lemma 5.3.2, it will be shown

that they do not exist for k sufficiently large; while this is not useful in itself, it will be

required when studying smooth characters. The smooth characters will be those with

largest prime divisor of their conductor bounded by log(k). In the smooth characters

subsection we measure the number of characters that we have by looking at the sum of

the inverse of the largest prime in the conductor. We will show that for k sufficiently

large, we can make this sum as small as we want to; in the proof of this we will have to

apply the non-existence of super smooth characters from the previous subsection (this

is Theorem 5.3.4). Finally we shall consider the non-smooth characters. These will be

characters such that the largest prime dividing their conductor is bounded by a power

of k and whose conductor is bounded by a power of k. We will show that the size of

the set of such characters grows with k at a rate of order log(k). This is Theorem 5.3.6.

In Section 5.4 we prove Theorem 5.4.1. This theorem shows that for k sufficiently

large and S a subset of primes with a bounded harmonic sum, then we can find a

character with sufficiently nice properties, including bounded conductor, bounding the

largest prime in the conductor and such that no primes that divide the conductor are

in the set S. The proof of this follows from sieving off characters that violate the given

properties and then showing combinatorially that there is a non-empty subset with size
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that grows at least as fast as a multiple of k.

In Section 5.5 we create a subset of all characters that can be found using what we know

from Section 5.4. We then apply the results from Section 5.3 regarding the number of

“nice” characters that we can have. It is a straightforward argument to show that our

produced subset violates one of the theorems in Section 5.3, allowing us to conclude by

contradiction that k is bounded.

In Section 5.6 we explicitly consider different variations of Erdős-Selfridge curves al-

lowing us to prove our main theorem.

§ 5.1 Attaching Frey-Hellegouarch Curves

In this section we will consider the integral solutions of ES(`, k, d,B, S). More specifi-

cally we will attach Fermat equations to

By` =
∏

i∈[0,k−1]\S

(x+ id),

and study the properties of d as k and ` get large. Recall the earlier definition:

Definition 5.1.1. We say that a pair of integers (n,m) are a non-trivial integral solu-

tion to ES(`, k, d,B, S) if mn 6= 0, gcd(n, d) = 1 and

Bm` =
∏

i∈[0,k−1]\S

(n+ id). (5.1)

Remark 5.1.2. For the rest of this chapter we will only be interested in non-trivial

integral solutions, and will assume throughout that if not specifically mentioned we are

referring to non-trivial integral solutions. Further recall our convention that [0, k− 1] \
S = I.

Lemma 5.1.3. Suppose there is a non-trivial integral solution (n,m) to ES(`, k, d,B, S)

with ` prime, then

(I) for 0 ≤ i < j ≤ k − 1, gcd(n+ id, n+ jd) | (j − i);

(II) let i ∈ I and q ≥ k be prime such that q - B, then ` | ordq(n+ id).

Thus we may write

n+ id = aiy
`
i for i ∈ I, (5.2)
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where the ai are positive integers divisible only by primes < k or primes dividing B,

whereas the yi are divisible only by primes ≥ k.

Proof. For part (I), let g be a the greatest common divisor of n+ id and n+ jd, then it

follows that g also divides (i− j)d. If gcd(g, d) = h > 1, then h must also divide n, but

this contradicts the assumption that the solution is non-trivial, hence g divides i− j.

For part (II), let q be such a prime. Then from part (I), it is clear that there is at most

one i such that ordq(n+ id) 6= 0 and as q - B, it follows that q | y.

It now follows simply that the only prime factors that divide n+ id but not to an `-th

power must be either less than k or dividing B.

5.1.1 Fermat Equations of Signature (`, `, `)

In this subsection we will show that by picking triples of (i, j, k) ∈ I3 we can construct

Fermat equations of signature (`, `, `). We will further show that there is a mod ` level

lowered modular form attached to these Fermat equations. In particular the level of

these modular forms can be bounded depending only on k and B, but not on d. These

bounds will be vital in proving that the prime factors of d will have special properties.

We will construct two different Fermat equations; the first is applicable in the case that

S = ∅ and is the same as in [6]. In the case that S 6= ∅ we will use the same identity

as in the previous chapter, however we will require some condition on d to make it

applicable to our needs.

We will use the arithmetic information given to us by Equation (5.2), with the following

identity.

Given any integers 0 ≤ i1 < i2 < i3 ≤ k − 1, we have the following identity

(i3 − i2)(n+ i1d) + (i1 − i3)(n+ i2d) + (i2 − i1)(n+ i3d) = 0, (5.3)

which combined with (5.2) gives rise to a Fermat equation of signature (`, `, `) as we

will show below.

Let A = {(i, j, 2j− i) s.t. i, j, 2j− i ∈ I and i < j} denote the set of non-trivial 3-term

arithmetic progressions in the set I. Associated to any such tuple a = (i, j, 2j − i) ∈ A
is the identity

(n+ id)− 2(n+ jd) + (n+ (2j − i)d) = 0.
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From Lemma 5.1.3 and the above identity, we see that (r, s, t) = (yi, yj , y2j−i) is a

solution of the following generalized Fermat equation of signature (`, `, `):

air
` − 2ajs

` + a2j−it
` = 0.

We may now attach a Frey-Hellegouarch curve as in Kraus [31]. If we take

g = gcd(n+ id, n+ jd, n+ (2j − i)d)

and

aa =
n+ id

g
, ba =

−2(n+ jd)

g
, ca =

n+ (2j − i)d
g

,

then we can associate the following Frey-Hellegouarch curve, Ea, to a by

Ea : Y 2 = X(X − aa)(X + ca).

Remark 5.1.4. It is worthwhile pointing out here that by any mention of a we always

mean a non-trivial 3 term arithmetic progression with its terms in I. It is important

to note that this is different from [6], where the terms in the arithmetic progression are

in the more general interval [0, k − 1].

Lemma 5.1.5. The model Ea is minimal and semistable at all odd primes. Its dis-

criminant is

∆a = 16(aabaca)2.

In particular for any prime p ≥ k and p - B, we have `| ordp(∆a).

Proof. This follows from applying Tate’s algorithm. We calculate the b invariants of

Ea:

b2 = 4(ca − aa), b4 = −2aaca, b6 = 0, b8 = −(aaca)2.

From this we calculate the discriminant of Ea to be,

∆a = 16(aabaca)2.

Let p be an odd prime that divides aaca. Then p divides the X and constant coefficient

of Ea. As gcd(aa, ca) | 2, it follows p - b2. Hence we apply the first two steps of Tate’s

algorithm to show that p is semistable.
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If p | ba, then we use the change of variable

X → X + aa.

Repeating the above argument implies that Ea is semistable at all odd primes.

The final part of this lemma now follows from applying Lemma 5.1.3.

Definition 5.1.6. For a positive integer M we will define P (M) to be the largest prime

dividing M .

Lemma 5.1.7. Let ` ≥ 7. Then ρEa,` ∼ ρf,` where f is a newform of weight 2 and

level Ma, with

Ma|28aiaja2j−i. (5.4)

It then follows that

Ma ≤ 27 · exp(1.000081 max(k, P (B))). (5.5)

Proof. As Ea has full 2-torsion and ` ≥ 7, it follows Ea[`] is irreducible. We apply

Theorem 3.1.4, giving a modular form f of weight 2 and level M0 such that ρE,` ∼ ρf,λ,

for

M0 = M/
∏

q||M, q prime
`|ordq(∆)

q.

Equation (5.4) follows immediately from the discriminant of Ea.

We can explicitly bound M0 by applying Lemma 5.1.5. It follows that

M0 | 27
∏

q≤max(k,P (B))
q prime

q.

We now apply Theorem 2.1.9 to bound this product, giving the result.

We now state the three term identities we used in the previous chapter. We will not

be able to apply these for all d, as we will not be able to bound the radical of the

coefficients. However, if we write d = d1d
`
2 with d1 being an `-th power free integer,

then it will become clear that if P (d1) < k, then we can apply the usual methods.

These equations will be useful when we deal with the case that S is non-empty.

We now construct a different Fermat equation of signature (`, `, `) via the product of

three terms. Let p be a prime in the domain (k/3, k/2], and let γ be an integer in
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(0, p/2] such that γ ≡ −p (mod 3). Then we have the following identity:

(n+ id)(n+ (i+ p)d)(n+ (i+ 2p)d)

− (n+ (i+ γ)d)(n+ (i+ p+ γ)d)(n+ (i+ 2p− 2γ)d)

= 3γ(γ − p)
(
n+

(
i+

2(p+ γ)

3

)
d

)
d2. (5.6)

Remark 5.1.8. This identity is essentially the same as Identity (4.19) in Chapter 4,

except it picks up a factor of d2 on the right hand side.

Using Equation (5.2) this can be simplified to a solution of

aiai+pai+2px
` − ai+γai+p+γai+2p−2γy

` = 3γ(γ − p)d2
1ai+ 2(p+γ)

3

z`,

where (x, y, z) = (yiyi+pyi+2p, yi+γyi+p+γyi+2p−2γ , d
2
2yi+ 2(p+γ)

3

).

We may now attach a Frey-Hellegouarch curve as in Kraus [31] and above. If we take

g = gcd(aiai+pai+2px
`, ai+γai+p+γai+2p−2γy

`, 3γ(γ − p)d2
1ai+ 2(p+γ)

3

z`), (5.7)

ζ = (i, i+ p, i+ 2p, i+ γ, i+ p+ γ, i+ 2p− 2γ), (5.8)

aζ =
(n+ id)(n+ (i+ p)d)(n+ (i+ 2p)d)

g
, (5.9)

bζ =
(n+ (i+ γ)d)(n+ (i+ p+ γ)d)(n+ (i+ 2p− 2γ)d)

g
and (5.10)

cζ =
3γ(γ − p)(n+ (i+ 2(p+γ)

3 )d)d2

g
, (5.11)

then we can associate the following Frey-Hellegouarch curve, Eζ , to ζ by

Eζ : Y 2 = X(X − aζ)(X − cζ).

Lemma 5.1.9. The model Eζ is minimal and semistable at all odd primes. Its dis-

criminant is

∆ζ = 16(aζbζcζ)
2.

It follows that for any prime p ≥ k that doesn’t divide d1B, we have `| ordp(∆ζ).

Proof. This proof is the same as for Lemma 5.1.5, except primes dividing d1 appear in
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the coefficients of the attached Fermat equation.

Lemma 5.1.10. Let ` ≥ 7. Then ρEζ ,` ∼ ρf,` where f is a newform of weight 2 and

level Mζ , with

Mζ |28aiai+pai+2pai+γai+p+γai+2p−2γ3γ(γ − p)a
i+

2(p+γ)
3

d1. (5.12)

Let q be the largest prime dividing aiai+pai+2pai+γai+p+γai+2p−2γ3γ(γ − p)a
i+

2(p+γ)
3

d1.

Then

Mζ ≤ 27 · exp(1.000081q). (5.13)

In particular, if the greatest prime factor of d1 is less than k then we have the bound

Mζ ≤ 27 · exp(1.000081 max(k, P (B))).

Proof. This proof is the same as the one given for Lemma 5.1.7.

Remark 5.1.11. As in the previous chapter we have k/18−1 choices for ζ, as implied

by Lemma 4.2.9.

5.1.2 Fermat Equations of Signature (`, `, 2).

Using the arithmetic information given by Equation (5.2) we will construct Fermat

equations of signature (`, `, 2). Let

I = {(j1, i1, i2, j2) ∈ I4 s.t. no pair of terms are equal and i1 + i2 = j1 + j2}. (5.14)

Then in Section 3.2 of [6] it is shown how to attach to each i ∈ I a Frey-Hellegouarch

elliptic curve Ei in the following way.

For any fixed quadruple i ∈ I, we see that the following identity holds:

(n+ j1d)(n+ j2d)− (n+ i1d)(n+ i2d) = (j1j2 − i1i2)d2.

It follows that (r, s, t) = (yj1yj2 , yi1yi2 , d) is a solution to the following generalized

Fermat equation with signature (`, `, 2):

aj1aj2r
` − ai1ai2s` = (j1j2 − i1i2)t2.
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In [8], Bennett and Skinner showed how to attach Frey-Hellegouarch elliptic curves to

such equations over Q. We set the following notation

C = (n+ j1d)(n+ j2d), D = (n+ i1d)(n+ i2d) and κ = j1j2 − i1i2. (5.15)

With this notation we have

C −D = κd2. (5.16)

We now define the following elliptic curve:

Ei : Y 2 = X(X2 + 2κdX + κC).

Lemma 5.1.12. The model Ei is minimal and semistable at all primes p ≥ k that also

satisfy p - κ. It has discriminant

∆i = −64κ3C2D.

In particular, for any prime p ≥ k with p - κB, we have ` | ordp(∆i).

Proof. The first statement is a short application of Tate’s algorithm. We start by

calculating the b invariants of the elliptic curve Ei:

b2 = 8κd, b4 = 2κC, b6 = 0, b8 = −(κC)2.

It follows that the discriminant is

∆i = −64κ3C2D.

Let p ≥ k be a prime that does not divide κ, then if p does not divide C or D it follows

that p is a prime of good reduction for Ei. We now deal with the two cases that p | C
or p | D.

We will re-write our elliptic curve in the standard notation

Ei : Y 2 = X3 + α2X
2 + α4X,

with α2 = 2κd and α4 = κC.
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Case (1) : p | C. In this case p | α4, so we may apply step (2) of Tate’s algorithm.

As d and C are coprime, and p - 8κ, it follows that p - b2. Hence, Tate’s algorithm

terminates on the second step, showing that p is a semistable prime.

Case (2) : p | D. We may assume that p - C, as otherwise we could apply case (1). It

follows that p - α4, so we must change coordinates to apply Tate’s algorithm. By using

the change of coordinates

X → X − κd,

we find another model for Ei given by:

Ei : Y 2 = X3 − κdX2 + κDX − κ2dD.

In this model p | α4, so we may apply step (2) of Tate’s algorithm. In these coordinates

b2 = −4κd. As D and d are coprime, it follows that p - b2, hence by Tate’s algorithm,

p is a prime of semistable reduction.

The final line of the lemma now follows from applying Lemma 5.1.3.

Lemma 5.1.13. Let ` ≥ 11. Then ρEi,` ∼ ρf,λ where f is a newform of weight 2 and

level Mi satisfying

Mi ≤ 27 · 35 · k4 · exp(2.000162 max(k, P (B))).

Proof. As Ei has a rational 2-torsion point and ` ≥ 11, it follows Ei[`] is irreducible.

We apply Theorem 3.1.4, giving a modular form f of weight 2 and level M0 such that

ρE,` ∼ ρf,λ, for

M0 = M/
∏

q||M, q prime
`|ordq(∆)

q.

We may now bound M0 by applying Lemma 5.1.12. It follows that

M0 | 27 · 35 · κ2 ·
∏

q≤max(k,P (B))
q prime

q2.

As |κ| < k2, applying Theorem 2.1.9, the result now follows.
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5.1.3 Further properties of Ea

We now use bound (5.5), Theorem 3.1.10 and Lemma 3.1.11, to find level lowered

elliptic curves attached to our Frey-Hellegouarch curves.

Lemma 5.1.14. Suppose that there exists a non-trivial solution of ES(`, k, d,B, S).

Let a ∈ A. Then for k > 1010 and ` > exp(10max(k,P (B))) there is an elliptic curve

Fa/Q having full rational 2-torsion and conductor Ma such that ρEa,` ∼ ρFa,`.

Proof. By Theorem 3.1.10, it is sufficient to show that ` > H(Ma) for Ma the level of

the modular form attached to Ea in Lemma 5.1.7. It is seen from Theorem 9 of [57]

that ∏
q≤k

q prime

(
1 +

1

q

)
≤ exp

(
0.27 +

5

log(k)

)
log(k).

For k > 1010 we see that ∏
q≤k

q prime

(
1 +

1

q

)
≤ 2 log(k).

Combining this with Lemma 5.1.7 we now get that µ(Ma) and µ(lcm(Ma, 4)) are

bounded by

28 log(max(k, P (B))) exp(1.000081 max(k, P (B))),

which we shall denote as U .

Using Lemma 3.1.11 it then follows that to calculate an upper bound for H(Ma) we

only need to calculate F (U) using the exponent Ma+1
12 instead of g+

0 , for F as given in

Lemma 3.1.10.

Taking logs it then follows that

log(H(Ma)) ≤ Ma + 1

6
log

(√
U

6
+ 1

)
.

Using log(1 + x) < x it then immediately follows that

log(H(Ma)) ≤ Ma + 1

6

√
U

6

< 221/2 · 3−1/2 exp(1.000081 · 1.5 max(k, P (B)))
√

log(max(k, P (B)))
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It now follows for k > 1010 that ` > H(Ma), and applying Theorem 3.1.10, this

completes the proof.

5.1.4 Results regarding d

Here we show that under certain hypotheses all primes in a specified interval must

divide d.

Lemma 5.1.15. For k > 1010, suppose that (n,m) is a non-trivial integral solution to

ES(`, k, d,B, ∅),

Bm` =
k−1∏
i=0

(n+ id), (5.17)

such that p - B for all primes in [k/2, k].

Then for ` > exp(10max(k,P (B))) it follows that all primes p ∈ (k/2, k] divide d.

Proof. Let p be such a prime and assume that p - d. Then p must divide at least one

of the terms n+ id and at most two of the terms. Suppose that p divides exactly one

such term, n+ ipd say. Let a be any a ∈ A which contains the term ip. It follows from

the fact that p - B that

` | ordp(n+ id).

Now let Ea be the elliptic curve attached to a by Lemma 5.1.5. It follows from Lemma

5.1.5 that Ea is semistable at p with multiplicative reduction, and that ` | ordp(∆a).

We are now in a position to apply Lemma 4.2.13, from which it follows that

` ≤ (
√
p+ 1)

Ma+1

6 .

Now using Lemma 5.1.7 to bound

Ma ≤ 27 exp(1.000081 max(k, P (B))),

it follows simply that for k sufficiently large

log ` < 3max(k,P (B)).

Now suppose that p divides exactly 2 terms, n+ ipd and n+ (ip + p)d. Choose an i ∈ I
that contains both ip and ip + p as one of the pairs. Attach the elliptic curve Ei as
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given by Lemma 5.1.12. It is clear that p - κ and so it follows that Ei has multiplicative

reduction at p.

Similarly to above, but using Lemma 5.1.13 it follows that,

log ` < 10max(k,P (B)),

completing the lemma.

We have now shown that if the exponent ` is large enough then we have some control

over the primes that divide d, in particular all primes in the range (k/2, k] divide d.

We have also seen that for ` sufficiently large we cannot only level lower each elliptic

curve attached to an arithmetic progression in A to a modular form, but further to

an elliptic curve with full 2-torsion. Both of these properties will be vital in the next

section where we use them to attach characters to our arithmetic progression.

Lemma 5.1.16. For k sufficiently large, suppose that (n,m) is a non-trivial integral

solution to ES(`, k, d,B, S), and that

(1) B not divisible by any prime in the domain (k/3, k/2];

(2) S = {j} a singleton;

(3) vp(d) ≡ 0 (mod `) for all primes p greater than k.

Then for ` > exp(10max(k,P (B))) it follows that any prime p ∈ [k/3, k/2] divides d.

Remark 5.1.17. It is clear from the work in Chapter 4 that this theorem also applies

when dealing with the rational solutions of Erdős-Selfridge curves with d = 1.

Proof. Let p be a prime in the interval (k/3, k/2] and assume that p does not divide d.

From condition (2) it follows that there is an i ∈ I such that p | (n + id). If p divides

exactly one term in the right hand side of

Bm` =
∏
i 6=j

(n+ id),

it follows from condition (1) that

` | ordp(n+ id).
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Let a be any triple of indices in A containing i. It follows from Lemma 5.1.5 that Ea is

semistable at p with multiplicative reduction, and that ` | ordp(∆a). Applying Lemma

4.2.13, we see that

` ≤ (
√
p+ 1)

Ma+1
6 .

Applying the bound for Ma given by Lemma 5.1.7 contradicts our assumption that

` > exp(10max(k,P (B))).

We now deal with the case that p divides exactly two terms. Assume that p divides

n+ id and n+ (i+ p)d, then let i = (j1, i, i+ p, j2) be any quadruple in I. Then from

Lemma 5.1.12 and Lemma 5.1.13 we see that this contradicts our bound on `.

Now assume that p divides exactly 3 terms n+ id, n+ (i+ p)d and n+ (i+ 2p)d. Let

γ be an integer in (0, p/2) such that γ ≡ −p (mod 3) and ζ ∈ I6 as given by Equation

(5.8). Using condition (3) we now construct Eζ as given in Lemma 5.1.9. Now applying

Lemma 5.1.10 and the same arguments as above we conclude

` ≤ (
√
p+ 1)

Ma+1
6 .

However this contradicts our assumption that ` > exp(10max(k,P (B))).

§ 5.2 Attaching Characters

To understand the Erdős-Selfridge curves we will prove the following statement about

arithmetic progressions.

Theorem 5.2.1. Let S ⊂ [0, k − 1] with |S| < 0.25k. Further, let d be an integer

divisible by all primes p in the interval (k/t′, k/t] for fixed t′ > 1.06t and t ≥ 1. Let

B be a positive constant not divisible by any primes in the interval (k/t′, k/t]. If k is

larger than a constant that depends only on t and t′ and there is a non-trivial solution

to ES(`, k, d,B, S), then

` < exp(10k).

Remark 5.2.2. The value of 1.06 appearing in the theorem is so that bounds later are

positive. In particular we will need to use this number in Theorem 5.2.5 and 5.3.2. It

is in fact possible to pick an even better bound of t′ > 1.012t.

Lemma 5.2.3. Under the same conditions as Lemma 5.1.14, with the hypothesis of

Theorem 5.2.1 and k > 1010, let p be a prime in the interval (k/t′, k/t]. If p -Ma then
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p is a prime of good reduction for both Ea and Fa, and we have ap(Ea) = ap(Fa). If,

moreover, p ≡ 3 (mod 4), then ap(Fa) = 0 and hence p is a prime of supersingular

reduction for Fa.

Remark 5.2.4. The following proof is not substantially different from that given for

Lemma 5.2 in [6], with no real changes apart from the interval of primes considered,

however it has been included here for clarity and ease of reading.

Proof. By the hypothesis of 5.2.1 it follows that every prime p in (k/t′, k/t] divides d.

As n and d are coprime it follows that p doesn’t divide any of the Ai. It hence follows

by Lemma 5.1.5 that Ea has good reduction at p and it also follows that p is a prime

of good reduction for Fa given by Lemma 5.1.14. Hence by Lemma 3.1.6 it follows that

ap(Ea) ≡ ap(Fa) (mod `). Applying the Hasse-Weil bounds we see that

|ap(Ea)− ap(Fa)| ≤ 4p ≤ 4k.

It now follows that ap(Ea) = ap(Fa), as by the hypothesis of Lemma 5.1.14 ` is bigger

than 4k.

From our definition of the Frey-Hellegouarch curves Ea it is clear that (mod p) the

curve becomes

Y 2 = X(X − n/g)(X + n/g).

If p ≡ 3 (mod 4) then it follows that ap(Ea) = 0 and hence also ap(Fa) = 0.

From now on we shall take Fa to be the elliptic curve over Q associated to a by Lemma

5.1.14. For a positive integer N , we shall take Nodd = N · 2− ord2(N) for the odd part of

N . Further we will take Λ to be the usual von Mangoldt function as given in Definition

2.3.13.

Theorem 5.2.5. Let k ≥ t′ × 1010 and suppose that equation (??) holds. Let a ∈ A
and assume ` > exp(10k). Then there exists a quadratic character χa that is primitive

of conductor Na such that∣∣∣∣∣∣
∑

k/t′<m≤k/t

χa(m)Λ(m)

∣∣∣∣∣∣ ≥ (t′ − t− ε(t+ t′))

ϕ(8)tt′
k > βk, (5.18)

for β > 0 and ε = 0.002811. Moreover, we have that Nodd
a |Ma and Nodd

a 6= 1.
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Further the character χa is constant on the set of primes of some (mod 8) congruence

class in the interval (k/t′, k/t].

Remark 5.2.6. This theorem is identical to Proposition 6.1 in [6]. The only differences

are cosmetic, being the change in the interval of summation, which leads to a change

in bound. Additionally the final statement in the theorem is new; however it requires

no changes to the original proof to achieve.

Definition 5.2.7. For every λ ∈ Q \ {0, 1}, the elliptic curve

Gλ : Y 2 = X(X − 1)(X − λ),

is called a Legendre elliptic curve.

Remark 5.2.8. It is important to note that λ is not unique and there are 6 possible

choices for λ. In particular if λ is one of the invariants, define the following three values

λ1 = λ, λ2 = (1− λ) and λ3 =
λ− 1

λ
; (5.19)

then all of the λ invariants can be given as one of {λ±1
1 , λ±1

2 , λ±1
3 }, [54, pg. 50].

Remark 5.2.9. Further, as both Gλ and Fa have full 2-torsion, it follows that Fa is a

quadratic twist of some Gλ.

Definition 5.2.10 (Subsets of A). Define the following set

G = {−t2 : t ∈ Q} ∪ {2t2 : t ∈ Q}.

We partition the set A into two disjoint subsets, A(I) and A(II).

A(I) is the subset of a ∈ A such that at least one of the λ-invariants of Fa lies outside

G.

A(II) is the complement of A(I), hence contains the a ∈ A such that all λ-invariants of

Fa lie inside G.

Lemma 5.2.11. Let F/Q be an elliptic curve of conductor M , semistable away from

2, having full rational 2-torsion. Let λ ∈ Q be any of the six λ-invariants of F . Then

the following hold.

(1) ordp(λ) = ordp(1− λ) = 0 for all odd primes p of good reduction for F .
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(2) Let ω ∈ {±1,±2} and let χ be the unique primitive quadratic character of conductor

N which satisfies

χ(p) =

(
ωλ

p

)
for odd primes p with ordp(λ) = 0. Then Nodd |M .

Proof. Lemma 6.2 in [6].

Lemma 5.2.12. Let p ≡ 3 (mod 4) be prime and suppose that F/Fp is an elliptic curve

of the form

F : Y 2 = X(X − 1)(X − η2)

for some η ∈ Fp \ {0, 1,−1}. Then F (Fp) contains a subgroup isomorphic to Z/2Z ×
Z/4Z.

Proof. Lemma 6.3 in [6].

Lemma 5.2.13. Let k ≥ 1010 and suppose that ` > exp(10k) is a prime. Assume that

there is a non-trivial solution to the curve given in Theorem 5.2.1. Let a ∈ A and let λ

be any of the λ-invariants of Fa. If p ≡ 3 (mod 8) is a prime in the interval (k/t′, k/t]

then (
λ

p

)
= −1

Proof. From Lemma 5.2.3 we know that p is a good prime of supersingular reduction.

The proof now follows identically to Lemma 6.4 in [6].

Attaching the character for a ∈ A(I)

For a ∈ A(I), let λ be any of the associated λ-invariants that isn’t in G. Assume for

contradiction that λ is either t2 or −2t2 for t ∈ Q×. Then it follows that(
λ

p

)
= 1

for all primes p ≡ 3 (mod 8) in the interval (k/t′, k/t]. Lemma 5.2.13 therefore implies

that there are no primes in the interval (k/t′, k/t] that are congruent to 3 (mod 8). How-

ever applying Lemma 2.2.5, we see that as k ≥ t′ ·1010 we have reached a contradiction,

so

λ /∈ {±t2 : t ∈ Q} ∪ {±2t2 : t ∈ Q}.
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Using Lemma 5.2.13 and Equation (2.4) it follows that

∑
k/t′<p≤k/t
p≡3 (mod 8)

−
(
λ

p

)
log(p) ≥ (t′ − t− ε(t+ t′))

ϕ(8)tt′
k. (5.20)

Let µi be the primitive quadratic Dirichlet characters which on odd primes p - λ satisfy

µ1(p) =

(
λ

p

)
, µ2(p) =

(
−λ
p

)
, µ3(p) =

(
2λ

p

)
and µ4(p) =

(
−2λ

p

)
.

As shown in [6],

µ1(p)− µ2(p)− µ3(p) + µ4(p) =

4

(
λ

p

)
if p ≡ 3 (mod 8)

0 otherwise.

Rewrite inequality (5.20) as

∑
k/t′<p≤k/t
p≡3 (mod 8)

(−µ1(p) + µ2(p) + µ3(p)− µ4(p)) log(p) ≥ 4(t′ − t− ε(t+ t′))

ϕ(8)tt′
k.

It follows that for some i, there is a µi such that

∣∣∣∣∣∣
∑

k/t′<p≤k/t

µi(p) log(p)

∣∣∣∣∣∣ ≥ (t′ − t− ε(t+ t′))

ϕ(8)tt′
k.

We then take the character χa = µi as the character required for Theorem 5.2.5.

As each term (
1

p

)
,

(
−1

p

)
,

(
2

p

)
and

(
−2

p

)
,

is determined by the congruence class of p (mod 8), it follows using Lemma 5.2.13 that

χa(p) is constant on the set of primes p ≡ 3 (mod 8) in the interval (k/t′, k/t].
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Attaching the character for a ∈ A(II)

In this subsubsection we will show how to attach characters when a ∈ A(II) such that

they satisfy Theorem 5.2.5. This is similar to the case a ∈ A(I), except with some

additional complications. This too was first explained in [6] and is here to improve

understanding in this document.

Let a ∈ A(II), then by definition every λ-invariant of Fa lies in G. If λ = −w2, then it

follows simply that λ2 = 2v2 for some rational v. If λ = 2w2 for some rational value w

then it follows that one of λ2 or λ3 can be written as 2v2 for a rational v. Hence after

possibly relabelling we see that

λ = 2w2 and 1− λ = 2v2. (5.21)

Lemma 5.2.14. Let k ≥ 1010 and suppose that ` > exp(10k) is prime. Assume that

there is a non-trivial integral solution to the curve given in Theorem 5.2.1. Let a ∈ A
and λ be one of the λ-invariants of Fa. Suppose further that λ satisfies (5.21) for

positive rational numbers w and v. If p ≡ 5 (mod 8) is prime with k/t′ < p ≤ k/t, then

ordp(w) = ordp(v) = 0 and (
wv

p

)
= 1.

Proof. This is Lemma 6.6 in [6].

We are now in a position to describe the character constructed. We take χa to be a

primitive quadratic character which for odd primes away from the support of wv is

given by

χa =

(
ωwv

p

)
,

for some ω ∈ {±1,±2} that depends only on a. This ω is chosen similar to in the

previous subsection; it is the character that gives us the largest absolute value sum.

It is now clear that for primes p ≡ 5 (mod 8) in (k/t′, k/t] that χa(p) is constant.

The proof of Theorem 5.2.5 now follows similarly to the case of a ∈ A(I) except it

involves slightly more details. See [6, pg. 15–16], but will not be repeated here, as we

only wanted to highlight the construction of the characters and the final statement in

Theorem 5.2.5.



CHAPTER 5. ERDŐS-SELFRIDGE CURVES FOR GENERAL d 69

§ 5.3 Classifying Characters

In this section we will study three subsets of all of the characters. These are in some

sense separated by the smoothness of the conductor of the characters.

The first are what we will call super smooth characters, whose conductor is bounded

by log(k)2. These characters would have much smaller conductor compared to the

others that arise. In fact we will show that if one does exist then this bounds k.

While we cannot show that one will always be created, allowing us to prove Theorem

5.2.1 immediately, we will use them in the next subsection to complete a proof by

contradiction.

The second are characters such that the largest prime in the conductor is bounded by

log(k). Here we show that if there are too many of them, then k must be bounded.

The third are characters with conductor and largest prime factor bounded by a power

of k. Again we show that if there are too many, then k must also be bounded.

The purpose of this section is to show that the three subsets that we consider cannot

be too large.

5.3.1 Super Smooth Characters

Definition 5.3.1. For χ a character as given by Theorem 5.2.5, we call it super smooth

if P (N(χ)) < (log log k)λ
′

for λ′ < 1, with N as given by Definition 2.3.6.

Lemma 5.3.2. Let χ be a super smooth character given by Theorem 5.2.5, then k is

bounded in terms of t and t′.

Proof. As χ is given by Theorem 5.2.5 it follows that there is an i such that for all

primes p in the interval (k/t′, k/t] with p ≡ i (mod 8), then

χ(p) =

(
µ

p

)
is constant on such primes in the interval (k/t′, k/t].

Writing µ as a product of even and odd parts µ = µevenµodd it follows simply from

quadratic reciprocity and that quadratic residues of ±1 and ±2 are determined (mod 8)

that
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(
p

µodd

)
is constant. For all p in the interval congruent to i (mod 8), write(

p

µodd

)
= j.

Then it follows from Equation (2.4) and the above explanation of j that

k(t′ − t− ε(t+ t′))

ϕ(8)tt′
≤ θ(k/t; i, 8)− θ(k/t′; i, 8) (5.22)

=
∑

a (mod 8µodd) s.t.
a≡i (mod 8),(

a
µodd

)
=j

θ(k/t; a, 8µodd)− θ(k/t′; a, 8µodd). (5.23)

Hence it follows that there exists an a such that

|θ(k/t; a, 8µodd)− θ(k/t′; a, 8µodd)| ≥ 2k(t′ − t− ε(t+ t′))

ϕ(8µodd)tt′
, (5.24)

as there are ϕ(µodd)/2 many classes (mod µodd) for a given quadratic residue, and 4

(mod 8) residues.

From Theorem 2.2.6 we see that

θ(k/t; a, 8µodd)− θ(k/t′; a, 8µodd) ≤ k(t′ − t)
tt′ϕ(8µodd)

(5.25)

+
k

840

(
1

t log(k/t)
− 1

t′ log(k/t′)

)
.

Combing Equations (5.24) and (5.25) and cancelling the k terms we see that

t′ − t− 2ε(t+ t′)

tt′ϕ(8µodd)
≤ 1

840

(
1

t log(k/t)
− 1

t′ log(k/t′)

)
.

From the bound on t and t′ it follows that the numerator is positive. We now want to

bound ϕ(µodd). It follows from elementary considerations that ϕ(µodd) ≤ µodd. As χ

is primitive it follows that µodd = Nodd(χ). Using the condition that χ is super smooth
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and applying Theorem 2.1.9 it now follows that

N(χ) ≤ exp(1.000081(log log k)λ).

It now follows that ϕ(µodd) < (log k)λ
′
, for λ′ < 1.

It is clear that the left hand side tends to 0 more slowly than the right hand side. This

contradicts the inequality, hence k is bounded in terms of t and t′.

5.3.2 Smooth Characters

In this part we are going to show that there cannot be too many characters such that the

largest prime in their conductor is bounded by log(k)1−ε for ε > 0. We will not however

count the number of characters with this property in the usual manner; instead, we

will consider the sum of the reciprocal of the largest prime in the conductor of the

characters. This might not immediately seem like the obvious thing to take, however

it has its advantages, namely it is more amenable to the analytic methods that we

developed earlier in Section 2.3. It also makes sense as we would expect characters

with smaller conductors to be more likely to violate our bounds, in particular as seen

in the previous subsection, so they should receive a greater weight in our sum.

Definition 5.3.3. For χ a character as given by Theorem 5.2.5, we call it smooth if

P (N(χ)) < log(k)λ
′

for λ′ < 1.

Theorem 5.3.4. Fix 0 < c1 < 1 and ε0 > 0. Suppose that there is a subset D of A
such that the following hold:

(I) P (Na) 6= P (Na′) for all a 6= a′ ∈ D;

(II) P (Na) < log(k)1−c1 for all a ∈ D;

(III) ∑
a∈D

1

P (Na)
≥ ε0.

Then there exists an effectively computable constant k1, depending only on c1 and ε0,

such that k ≤ k1.

Remark 5.3.5. The above theorem is a generalisation of Proposition 7.2 in [6]. Our

proofs start in the same way, however whereas [6] uses a geometric sum and work of
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Platt [39] to bound the sum of reciprocals of primes; we instead bound the size of D
and using bounds for the harmonic sum of primes are able to achieve a lower bound.

In [6] the bound on the harmonic sum is 0.166, here it is lowered to any non-negative

number.

Proof. Suppose that there is some a ∈ D such that the character χa is non-exceptional

(as defined in Theorem 2.3.9). Then it follows by Lemma 2.3.12 and condition (II) that

log(Na) < 1.07(log(k))1−c1 . We now apply Theorem 2.3.16 to see that∑
k/t′<m≤k/t

χa(m)Λ(m) = O((k/t) exp(−c′(log(k/t))c1)(log(k/t))4),

for some effectively computable positive constant c′, contradicting Theorem 5.2.5 for k

large enough.

We therefore assume that χa is exceptional for every a in D. Hence, we obtain a

sequence of exceptional conductors

N1 < N2 < . . . < Ns,

where s = |D|. From Corollary 2.3.10 we get that Nj > N2j−1

1 . Taking logs of both

sides when j = s, applying Lemma 2.3.12 and condition (II), we see that

1.07 log k > 1.07P (Ns) > logNs > 2s−1 logN1.

Hence it follows that s < 2 log log k.

Let p be the minimal prime in the set {P (Na) s.t. a ∈ D}. Let pj be the sequence of

all prime numbers, p1 = 2, p2 = 3, and so on, and let i be such that pi = p. Then it is

clear that
i+s∑
m=i

1

pm
≥
∑
a∈D

1

P (Na)
≥ ε0.

We can now bound this left hand side using Theorem 2.1.13.

It now follows that

log

(
log(pi+s)

log(pi)

)
> ε0 −

2

log2(pi)
.

If
ε0
2
> ε0 −

2

log2(pi)
,
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then it follows that

pi < exp

(
2
√
ε0

)
.

Note that this bound is independent of k.

We now assume that

ε0 −
1

log2(pi)
≥ ε0

2
,

hence it follows that pi+s ≥ pexp(ε0/2)
i .

It is now seen that 2 log log k > s = π(pi+s) − π (pi) ≥ π(p
exp(ε0/2)
i ) − π(pi). Using

Theorem 2.1.10, we have

π(p
exp(ε0/2)
i )− π(pi) >

p
exp(ε0/2)
i

exp(ε0/2) log(pi)

(
1 +

1

2 exp(ε0/2) log(pi)

)
− pi

log(pi)

(
1 +

3

2 log(pi)

)
.

It follows that if pi > (log log k)λ where λ > 1/ exp(ε0/2), then k is bounded. Hence

we can assume that pi < (log log k)λ where λ < 1. However by applying Lemma 5.3.2

we see that k is bounded.

5.3.3 Non-Smooth Characters

In the last two sections we showed that if we have suitably many a with a very small

Na or P (Na), then k is effectively bounded. In this section we show that with more a

we can loosen the condition on how smooth the conductor of χa can be and still get a

bound on k.

Theorem 5.3.6. Suppose that c2 > 10 is a constant and that there exists a subset

B ⊂ A such that

(I) |B| > 2β−2 log(k) (N.B. this is the same β as in Theorem 5.2.5);

(II) for every distinct pair a,a′ ∈ B we have χa 6= χa′;

(III) for all a ∈ B we have P (Na) ≤ k47/99;

(IV) for all a ∈ B we have Na < kc2.
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Then there is an effectively computable constant k2, depending only upon c2, such that

k ≤ k2.

This theorem is a generalisation of Proposition 8.1 in [6]. We have increased the

exponent in condition (III) from 7/16 to 47/99, at a cost of increasing the size of |B|.

Theorem 5.3.7. Let c2 > 0 be a constant. Then there exist effectively computable

positive constants k3 and c3, each depending only on c2, such that the following holds.

Let k ≥ k3 be an integer and suppose that χ1 and χ2 are distinct primitive quadratic

characters modulo N1 and N2 respectively, where the Ni satisfy

P (Ni) ≤ k47/99, Ni ≤ kc2 , N1N2 6= p1p2p3 for distinct primes pj .

Then ∣∣∣∣∣∣
∑

k/t′<m≤k/t

χ1(m)χ2(m)

∣∣∣∣∣∣ ≤ k1−c3 .

Remark 5.3.8. The proof of this theorem involves two cases, one where the conductor

of the product of characters is small enough to be bounded by a trivial sum. The other

is to apply Theorem 2.3.18 when the conductor has sufficiently many prime factors.

While the condition on N1N2 may seem contrived, it is required as it is the situation

that is not covered by these two cases. However it will not have any major effect on

our proof of Theorem 5.3.6 as there is a simple way to avoid all such characters.

Proof. Let χ = χ1χ2 and write M for the conductor of χ, which divides lcm(N1, N2)

and inparticular M ≤ lcm(N1, N2). We can thus rewrite χ = ηψ where η is primitive of

conductor M1 and ψ is principal of conductor M2 with M = M1M2 and gcd(M1,M2) =

1. As η is quadratic, we see that Modd
1 is square free. Clearly, M2 | gcd(N1, N2), and

so Modd
2 is also square free. The following two inequalities follow:

P (M) ≤ k47/99 and M ≤ k2c2 . (5.26)

We split this problem up into three distinct cases as discussed in the above remark.

Case (1): There are exactly 2 primes dividing M .

M either equals 2ap or p · q for p and q distinct odd primes. Using that P (Ni) ≤ k47/99
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for i = 1, 2 and a ≤ 3, then it follows that M < P (N1)P (N2) < k98/99. Hence∣∣∣∣∣∣
∑

k/t′<m≤k/t

χ1(m)χ2(m)

∣∣∣∣∣∣ ≤M < k98/99,

for k sufficiently large, because the sum of values of a character of given conductor can

at most be that conductor.

Case (2): There are exactly 3 primes dividing M .

As M1 and M2 are coprime and the odd parts of M1 and M2 are squarefree, it follows

M either equals 2apq or pqr for p, q and r distinct odd primes. If M = 2apq then it

follows that M < 2aP (N1)P (N2) < 2ak98/99, and for k large enough that M < k98.5/99,

and so the theorem follows by the above argument. So, suppose that M = pqr. If

M2 = 1 then it is clear that N1N2 = pqr contradicting our assumptions. So we now

assume that M2 6= 1, hence M1 is at most a product of 2 primes, and it follows that

M1 ≤ k98/99.

∑
k/t′<m≤k/t

χ1(m)χ2(m) =
∑

k/t′<m≤k/t

η(m)ψ(m)

=
∑

k/t′<m≤k/t
gcd(m,M2)=1

η(m)

=
∑

k/t′<m≤k/t

η(m)
∑

d|gcd(m,M2)

µ(d)

=
∑
d|M2

∑
k/t′<nd≤k/t

η(nd)µ(d)

=
∑
d|M2

η(d)µ(d)
∑

k/(t′d)<n≤k/td

η(n).

As η is non-principal and has conductor M1 < k98/99, we have∣∣∣∣∣∣
∑

k/(t′d)<m≤k/(td)

η(m)

∣∣∣∣∣∣ < M1 < k98/99.

Thus ∣∣∣∣∣∣
∑

k/t′<m≤k/t

χ1(m)χ2(m)

∣∣∣∣∣∣ ≤ τ(M2)k98/99 ≤ 8k98/99,
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where τ denotes the usual number of divisor function.

Case (3): There are 4 or more primes dividing M .

We will deal with this case using a slight modification of the proof of Theorem 8.2 in

[6]. We will split this case into two subcases, M1 ≥ 8k47/198 or M1 < 8k47/198.

Case (3.1) M1 ≥ 8k47/198.

It follows that Modd
1 ≥ k47/198. We factorise the characters η and ψ as

η = π1 . . . πs and ψ = πs+1 . . . πr,

where πi is primitive of conductor qi for i ∈ [1, s] and principal of conductor qi for

i ∈ [s+ 1, r]. We choose the qi (which are not necessarily primes) such that

(a) q1 . . . qs = M1 and qs+1 . . . qr = M2;

(b) q1 |Modd
1 and so gcd(q1, q2 . . . qr) = 1;

(c) k47/198 ≤ qi ≤ k47/99 for i 6= s, r;

(d) 1 < qr ≤ k47/99 and

(e) s ≥ 1, and if s > 1 then 1 ≤ qs ≤ k47/99.

We will now explain why it is possible to choose qi with these properties. Property (a)

follows from the definition of the qi. We first factorise η and ψ into a product of π′j of

conductor q′j , where each character is either of even or prime conductor. We then group

the π′j together to form the πi. If q′j satisfies condition (c), it follows from inequality

(5.26) that all other q′j < k47/198. We group these π′j together until they satisfy either

property (c), or bundle the remaining factors together into πr or πs. Additionally we

re-order the πi such that q1 is odd. As Modd
1 is squarefree and not 1, it follows that

gcd(q1, q2 . . . qr) = 1.

From property (c) and inequality (5.26) it follows that

(k47/198)r−2 ≤M ≤ k2c2 .

So, we deduce

r − 2 ≤ log(M)

log(k47/198)
≤ 2c2

log(k)

log(k47/198)
.
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Hence it follows that

r ≤ 2 + 8.5c2.

We now calculate N0 as given in Theorem 2.3.18, using r = 4;

N0 ≤ k47/99 · (k47/99)1+2−4
= k47/48 < k/t− k/t′.

We now apply Theorem 2.3.18 with q = q1. We appeal to the inequality

τ(q) ≤ q1/ log(log(q)), (5.27)

given in [25, pg. 334]. As q ≥ k47/198 and r is bounded, it follows for k sufficiently large

τ(q)r
2
< q1/2.

Applying the inequality in Theorem 2.3.18 we see∣∣∣∣∣∣
∑

k/t′<m≤k/t

χ1(m)χ2(m)

∣∣∣∣∣∣ ≤ 4k

q(1/2)r+1 .

The result now follows from r ≤ 2 + 8.5c2 and q ≥ k47/198.

Case (3.2) M1 < 8k47/198.

As χ1 and χ2 are distinct it follows χ = χ1χ2 is not principal, so

∣∣∣∣∣∣
∑

k/t′<m≤k/t

χ1(m)χ2(m)

∣∣∣∣∣∣ < M = M1M2.

If M2 < k24/33 then the result follows by multiplying M1 and M2 together. So, we shall

assume M2 ≥ k24/33.
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∑
k/t′<m≤k/t

χ1(m)χ2(m) =
∑

k/t′<m≤k/t

η(m)ψ(m)

=
∑

k/t′<m≤k/t
gcd(m,M2)=1

η(m)

=
∑

k/t′<m≤k/t

η(m)
∑

d|gcd(m,M2)

µ(d)

=
∑
d|M2

∑
k/t′<nd≤k/t

η(nd)µ(d)

=
∑
d|M2

η(d)µ(d)
∑

k/(t′d)<n≤k/td

η(n).

As η is non-principal and has conductor M1 < 8k47/198, we have∣∣∣∣∣∣
∑

k/(t′d)<m≤k/(td)

η(m)

∣∣∣∣∣∣ < M1 < 8k47/198.

Thus ∣∣∣∣∣∣
∑

k/t′<m≤k/t

χ1(m)χ2(m)

∣∣∣∣∣∣ ≤ τ(M2) · 8k47/198 ≤M1/ log log(M2)
2 · 8k47/198,

with the last inequality following from Inequality (5.27).

Because M2 is bounded k24/33 < M2 < kc2 , the result now follows.

We now state a theorem of Bombieri, Proposition 1 in [9], attributed to Selberg.

Theorem 5.3.9. If x,y1, . . . ,ym are vectors in an inner product space then

m∑
i=1

|x · yi|2 ≤ ||x|| · max
1≤i≤m


m∑
j=1

|yi · yj |

 .

Proof of Theorem 5.3.6. We write B = B1 ∪B2 ∪B≥3, where Bi is the subset of B such

that the conductors of χa have exactly i prime factors, and B≥i is the subset of B such

that the conductors of χa have i or more prime factors. It is clear that one of |B1∪B≥3|
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or |B2 ∪ B≥3| is greater than β−2 log(k); call such a set C. It is now clear that the

product of the conductors of any two characters in C is not a product of 3 distinct odd

primes.

We now recreate the proof of Proposition 8.1 in [6], making minor change where nec-

essary. From Theorem 5.2.5 to prove Theorem 5.3.6 it is enough to show that

1

|C|
∑
a∈C

∣∣∣∣∣∣
∑

k/t′<m≤k/t

χa(m) · Λ(m)

∣∣∣∣∣∣
2

≤ β2k2. (5.28)

Let x = (Λ(m))k/t′<m≤k/t and for each a ∈ C, write ya = (χa(m))k/t′<m≤k/t. Hence we

can re-write inequality (5.28) as

1

|C|
∑
a∈C
|x · ya|2 ≤ β2k2. (5.29)

After applying Theorem 5.3.9, we have

1

|C|
∑
a∈C
|x · ya|2 ≤ ||x||2 ·max

a∈C

{
1

|C|
∑
a′∈C
|ya · ya′ |

}
. (5.30)

We first calculate ||x||2:

||x||2 =
∑

k/t′<m≤k/t

Λ(m)2

≤ log(k)(ψ(k/t)− ψ(k/t′))

≤ (
k

t
− k

t′
) log k +O(k),

where the last line follows from the Prime Number Theorem 2.3.15.

We can now apply the proof of Proposition 8.1 in [6], replacing $ = 0.12392 by $ = β2

to get the result.

For each a ∈ C, it follows that

|ya · ya| ≤
k

t
− k

t′
≤ k + 1.
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As |C| > (β−2) log(k), it follows that

|ya · ya|2

|C|
≤ β2(k + 1)

log(k)
.

From Properties (II), (III) and (IV) it follows we may apply Theorem 5.3.7. This gives

|ya · ya′ | =

∣∣∣∣∣∣
∑

k/t′<m≤k/t

χa · χa′

∣∣∣∣∣∣ ≤ k1−c3 .

It now follows from inequality (5.30) that

1

|C|
∑
a∈C
|x · ya|2 ≤

((
k

t
− k

t′

)
log k +O(k)

)
·
(
β2(k + 1)

log(k)
+ k1−c3

)
=

(
1

t
− 1

t′

)
β2k2(1 + o(1)),

for k sufficiently large.

§ 5.4 Sieving and Generating enough χa

We now know that if we have enough characters of the forms described in the previous

section we can bound k. We now sieve through the set A, so that we can generate

enough χa with conductors small and smooth enough so that we can apply either

Theorem 5.3.6 or Theorem 5.3.4 to bound k. Explicitly this will be the proof of Theorem

5.4.1, which is a generalisation of Proposition 9.1 in [6].

We now define the following subsets of I, where I is as usual the set of integers that

are not missing in the Erdős-Selfridge product. For p a prime we define

Ip = {i ∈ I s.t. p | (n+ id)}

and it is clear that

|Ip| ≤
k

p
+ 1. (5.31)

We now sieve through the set I removing such Ip for p large, leaving a small set that is

still large enough to apply Theorem 2.2.8. The remaining a in our sieved A will then



CHAPTER 5. ERDŐS-SELFRIDGE CURVES FOR GENERAL d 81

all have small, smooth conductors, leaving us in a position to apply Theorem 5.3.6 or

Theorem 5.3.4.

We define α to be 1− |I|/k, to ease notation.

Theorem 5.4.1. Suppose that k is sufficiently large, ε0 < 0.00001, c1 > 0 is a constant

such that log(1/(1− c1)) + ε0 < 0.001, and S ⊂ [1, k] is a set of primes such that

∑
p∈S

1

p
< ε0. (5.32)

Then there exists an a ∈ A satisfying the following:

(I) p - Na for p ∈ S;

(II) Na is not divisible by primes in the range ((log k)1−c1 , A log k] with A > 3 a

constant;

(III) P (Na) < k47/99;

(IV) Na < k
3

2(0.2505−α)+1
.

Proof. Let us define T to be the set of primes in the interval (k47/99, k], U to be the

set of primes in the interval ((log k)1−c1 , A log k] and set

J = I \
⋃

p∈S∪T∪U
Ip.

We start by showing that the size of J grows linearly with k. Note that∣∣∣∣∣∣
⋃

p∈S∪T∪U
Ip

∣∣∣∣∣∣ ≤
∑
p∈S

∣∣Ip∣∣+
∑
p∈T

∣∣Ip∣∣+
∑
p∈U

∣∣Ip∣∣.
From Equation (5.32) and (5.31) we clearly have that∑

p∈S
|Ip| ≤ ε0k + π(k).

From the definition of T we see that∑
p∈T
|Ip| ≤ k

∑
k47/99<p<k

1

p
+ π(k). (5.33)
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Applying the bound from Theorem 2.1.13, we have

∑
k47/99<p<k

1

p
< log(99/47) +

992

472 log2(k)
.

From (5.33) and an application of the Prime Number Theorem, we now see that

∑
p∈T
|Ip| ≤ log(99/47)k +

1.1k

log(k)
,

for sufficiently large k.

Using the same method we see that

∑
p∈U

1

p
< log(log(A log(k)))− log(log(log1−c1(k)))

+
1

2

(
1

log2(A log(k))
+

1

log2(log1−c1(k))

)
= log

(
1

1− c1

)
+ log

(
1 +

log(A)

log log k

)
+

1

2

(
1

log2(A log(k))
+

1

log2(log1−c1(k))

)

Using the well known bound log(1+x) < x for x > 0 the above inequality can be easily

transformed into

∑
p∈U

1

p
< log

(
1

1− c1

)
+

1

log log k

(
log(A) +

1

(1− c1)2

)
.

Hence,

∑
p∈U
|Ip| < k log

(
1

1− c1

)
+

k

log log k

(
log(A) +

1

(1− c1)2

)
+A log k.

From the definition of c1 it follows that

1 <
1

1− c1
< exp(0.001)

and as A > 3 we can naively combine the two terms together to simplify
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∑
p∈U
|Ip| < k log

(
1

1− c1

)
+

2 log(A)k

log log k
+A log k.

Combining these three estimates, we see that∣∣∣∣∣∣
⋃

p∈S∪T∪U
Ip

∣∣∣∣∣∣ ≤
(

log

(
99

47

)
+ log

(
1

1− c1

)
+ ε0

)
k +

Ck

log log k
+D log(d),

for some constants C and D depending only on A.

Now calculating the k coefficient we see that∣∣∣∣∣∣
⋃

p∈S∪T∪U
Ip

∣∣∣∣∣∣ ≤ 0.746k,

for k sufficiently large.

It now follows that |J | > (0.254− α)k, so in particular J is non-empty.

We now apply the same argument as in [6], which is a classic argument of Erdős [19]

by defining a set J1 ⊂ J , obtained from J by deleting, for each p ≤ k, an index ip with

the property that ordp(Aip) is maximal. It follows that

|J1| > (0.254− α)k − π(k) > (0.253− α)k

for k sufficiently large and further that∏
i∈J1

Ai | k!.

The following uses the same methods as the proof of Proposition 9.1 in [6].

Noting that no prime p ≥ k47/99 divides
∏
i∈J1

Ai, we use Stirling’s formula [56]

∏
i∈J1

Ai ≤
√

2πk

(
k

e

)k−1

e1/12k
∏

k47/99<p≤k

p− ordp(k!). (5.34)

Using Theorem 2.1.14, we see that for k sufficiently large
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log

 ∏
k47/99<p≤k

pordp(k!)

 ≥ ∑
k47/99<p≤k

(
k

p
− 1

)
log(p) >

52

99
k log(k)− 2k.

From elementary comparisons of both sides of inequality (5.34) it now follows that∏
i∈J1

Ai ≤ kk/2. (5.35)

We now define J2 ⊂ J1 to be the set of indices i ∈ J1 such that Ai ≤ k
1

2(0.2505−α) . We

will shortly provide a bound for the size of J2. Suppose that x = |J1 \ J2|. Then it

follows that

∏
i∈J1

Ai =
∏
i∈J2

Ai
∏

i∈J1\J2

Ai

>
∏

i∈J1\J2

Ai

> k
x

2(0.2505−α) .

Comparing this with (5.35), it then follows immediately that x < (0.2505−α)k, giving

the result that |J2| ≥ 0.0005k.

We now apply Roth’s Theorem 2.2.8 to find a non-trivial 3-term arithmetic progression

a in J2 for k sufficiently large.

By (5.4) it now follows that

Na ≤ 28AiAjA2j−i ≤ 28(k
1

2(0.2505−α) )3 < k
3

2(0.2505−α)+1
.

Hence the result now follows.

§ 5.5 Proof of Theorem 5.2.1

Let B ⊂ A be a non-empty subset satisfying

(I) P (Na) 6= P (Na′) whenever a 6= a′ ∈ B;

(II) P (Na) ≤ k47/99 for all a ∈ B;
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(III) Na is not divisible by primes in the range [log(k)1−c1 , A log(k)] for all a ∈ B ;

(IV) Na < k
3

2(0.2505−α)+1
for all a ∈ B.

We first explain why such a B should exist; this essentially follows from applying

Theorem 5.4.1 when S = ∅. Then for ` ≥ exp(10k) and k sufficiently large, we can

apply Theorem 5.2.5 to attach to each a ∈ A a character χa . We then pick ε0 and c1

such that − log(1 − c1) + ε0 < 0.00001 and A = 4/(ε0β
−2) (N.B. this β is the same β

as in Theorem 5.3.6). Now we can generate such a B by applying Theorem 5.4.1 with

S = ∅.

Now let B be the maximal such subset ofA satisfying (I)-(IV). If |B| > 2β−2 log(k), then

k is effectively bounded by Theorem 5.3.6. We may thus suppose that |B| ≤ 2β−2 log(k).

Assume first that ∑
a∈B

1

P (Na)
< ε0.

If we take S = {P (Na) such that a ∈ B}, then S satisfies (5.32). Theorem 5.4.1 thus

yields another a ∈ A satisfying (II), (III), (IV), and Na is not divisible by any primes

in S. Thus B′ = B ∪ {a} is a strictly larger subset with the same properties as B. We

may thus assume that ∑
a∈B

1

P (Na)
≥ ε0.

Let

C = {a ∈ B such that P (Na) > A log(k)}

and

D = {a ∈ B such that P (Na) < log(k)1−c1}.

Then it follows from condition (III) that B is the disjoint union of C and D. It follows

that ∑
a∈C

1

P (Na)
≤ |C|
A log(k)

≤ |B|
A log(k)

≤ 2β−2 log(k)

A log(k)
,

hence it follows that ∑
a∈D

1

P (Na)
≥ ε0 −

2β−2

A
> ε0/2.

We now apply Theorem 5.3.4 to deduce that k is bounded, completing the proof of

Theorem 5.2.1.
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§ 5.6 Applications of Theorem 5.2.1

In this section we will study two families of equations and show that they lead to

situations like that found in Theorem 5.2.1.

5.6.1 Erdős-Selfridge curves

Corollary 5.6.1. For k sufficiently large, if there is a non-trivial integral solution to

ES(`, k, d,B, ∅) such that

(1) p - B for all primes in [k/2, k];

(2) fewer than k/4 primes greater than k divide B;

then it follows that ` < exp(10max(k,P (B))).

Proof. Assume that there is a putative solution for ` > exp(10max(k,P (B))). Then it

follows from Lemma 5.1.15 that all primes p ∈ [k/2, k] divide d.

Now for each prime q greater than k that divides B, let iq denote the unique i such that

q|(n + id), further let U = {iq such that q|B and q is a prime greater than k}. Then

we can divide these terms out, cancelling the prime factors of B greater than k, leaving

a solution to the equation

B′y` =
∏
i/∈U

(n+ id).

B′ by construction is not divisible by any primes greater than k. Further, it is not

divisible by any primes in the interval [k/2, k]. This follows as B was not divisible by

any such primes, and neither are any of the deleted terms, because d is divisible by all

such primes. Hence B′ is divisible only by primes less than k/2.

By condition (2) it follows that there are over 0.75k of the terms left in the product,

so we can now apply Theorem 5.2.1.

Corollary 5.6.2. For k sufficiently large, if there is a non-trivial integral solution to

ES(`, k, d,B, {j}) such that

(1) p - B for all primes in [k/3, k/2];

(2) fewer than k/4− 1 primes greater than k divide B;
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(3) vp(d) ≡ 0 (mod `) for all primes p greater than k;

then it follows that ` < exp(10max(k,P (B))).

Proof. Assume that there is a putative solution for ` > exp(10max(k,P (B))), then it

follows from Lemma 5.1.16 that all primes p ∈ [k/3, k/2] divide d.

Now for each prime q greater than k that divides B, let iq denote the unique i such that

q|(n + id), further let U = {iq such that q|B and q is a prime greater than k}. Then

we can divide these terms out, cancelling the prime factors of B greater than k, leaving

a solution to the equation

B′y` =
∏

i/∈U∪{j}

(n+ id),

with B′ divisible only by primes less than k and not divisible by any primes in the

interval [k/3, k/2].

By condition (2) it follows that there are over 0.75k of the terms are left in the product,

so we can now apply Theorem 5.2.1.

Remark 5.6.3. It is clear that the above corollary is applicable in the case that all the

primes of d are bounded by k. Furthermore it applies in the case of rational solutions

for d = 1.



Chapter 6

Arithmetic Progression Curves

§ 6.1 Introduction

In this chapter we consider the AP curves, which are the equations of the form

y` = (x− d)k + xk + (x+ d)k, (6.1)

for k, d, x and y integers and ` a prime. We require that x 6= 0 otherwise we get the

trivial solution (0, 0) for odd k. We also require that x and d are coprime, otherwise it

is possible to generate artificial solutions via scaling. A general solution for all k and d

is still currently unsolved, however there are results depending on k and d.

We are going to focus on the case where k = 3. This allows us to attach Fermat

equations of signature (`, `, 2) to a putative solution, that we may then study using the

modular method.

Theorem 6.1.1. For ` > 7 a prime, the equation

y` = (x− d)3 + x3 + (x+ d)3, (6.2)

has no solutions for x, y and d integers with x and d coprime.

§ 6.2 Preliminaries

In this section we attach a solution to one of 4 possible Fermat equations to a putative

solution of Equation (6.2). These equations however have already been discussed in the

88
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literature, so we will attach Frey-Hellegouarch curves to them in the traditional way.

Lemma 6.2.1. An integer solution (x, y) to Equation (6.2), with x 6= 0, gives rise to

an integer solution of a Fermat equation with coefficients derived from the divisors of

x and d. These equations are given in Table 6.1.

Excluding the case that d = ±2 and ` = 3, these equations further satisfy XY 6= ±1.

Additionally in cases (2) and (4) it follows that if we write the given equation in the

usual form of AX` +BY ` = CZ2, then ord2(BY 7) > 7.

Case x (mod 2) xd (mod 3) Equation

1 1 0 X` + 3`−2Y ` = 2Z2

2 0 0 X` + 2`−33`−2Y ` = Z2

3 1 ±1 3`−1X` + Y ` = 2Z2

4 0 ±1 3`−1X` + 2`−3Y ` = Z2

Table 6.1: Fermat equations attached to putative solutions of Equation (6.2).

Further, in cases (1) and (3) if we write the equations in the standard notation

AX` +BY ` = CZ2,

it follows that BCY ` = −2α2 for some odd integer α.

Proof. Expanding out the cubes and simplifying in Equation (6.2), we see that a pu-

tative solution (x, y) satisfies

3x(x2 + 2d2) = y`. (6.3)

We calculate the greatest common divisor of 3x and x2 +2d2 to be a divisor of 6, simply

because

3(x2 + 2d2)− x(3x) = 6d2, (6.4)

and we know that x and d are coprime.

We define g = gcd(3x, x2 + 2d2). It follows simply that 2 divides g if and only if 2

divides x. It also follows that 3 divides g if and only if x2 + 2d2 ≡ 0 (mod 3). As x and

d are coprime they both can’t be divisible by 3, hence this is only possible if they are

both not divisible by 3.

Case (1) : g = 1.

In the case that 3x and x2 + 2d2 are coprime then it is clear that
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3x = y`1 and x2 + 2d2 = y`2,

for some integers y1 and y2. It then follows that

x = 3`−1z`,

for some odd integer z, and substituting this into x2 + 2d2 = y`2 we therefore see that

y`2 − 3`−2(3z2)` = 2d2.

This gives a solution of the equation

X` + 3`−2Y ` = 2Z2

and it is clear that XY 6= ±1. Writing this equation in the form

AX` +BY ` = CZ2,

it also follows that BCY ` = −2 · 32(`−1)z2` = −2α2, where α = 3`−1z`.

Case (2) : g = 2.

In this case, 2 divides x and as d is coprime to x, we see

3x = 2`−1y`1 and x2 + 2d2 = 2y`2,

for some integers y1 and y2. It is now clear after combining these two equations that

d2 = y`2 − 2`−33`−2(6z2)`,

for some integral z. Hence it follows we have a solution of

X` + 2`−33`−2Y ` = Z2

and it is clear that XY 6= ±1. Additionally it is seen that 2 divides Y , giving the final

result for case (2).

Case (3) : g = 3.
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In this case, it is clear that 3 does not divide x, hence

3x = 3y`1 and x2 + 2d2 = 3`−1y`2,

for some integers y1 and y2. Substituting as above, we see that this gives rise to an

equation of the form

2d2 = 3`−1y`2 − y2`
1 .

We will now show that y1y2 6= ±1. Assume the opposite for contradiction. It follows

from the definition of y2 that it would have to be positive.

So we have to consider the case

2d2 = 3`−1 − 1.

Factorizing this as

2d2 = (3(`−1)/2 − 1)(3(`−1)/2 + 1),

and noting that each factor is even, with the greatest common divisor between the two

terms being 2 then it follows that either 3(`−1)/2 + 1 or 3(`−1)/2 − 1 is a perfect square.

Considering 3(`−1)/2 − 1 (mod 3), it follows that the second case cannot occur. Hence

we are left to consider if it is possible for 3(`−1)/2 + 1 = m2. Now factorizing this we see

that 3(`−1)/2 = (m− 1)(m+ 1).

It follows similarly to above that these factors must be coprime. We can now just try

all possible cases. It then follows that ` = 3 and m = ±2, but this contradicts ` ≥ 7.

Hence it follows we have a solution of

3`−1X` + Y ` = 2Z2,

and provided that d 6= ±2 and ` 6= 3, then XY 6= ±1. Again, it follows simply that

BCY ` = −2α2, where α = y`1, and as y1 divides x it follows that α is odd.

Case (4) : g = 6.

In this case it is clear that 3 does not divide x but 2 does, hence

3x = 3 · 2`−1y`1 and x2 + 2d2 = 2 · 3`−1y`2,

for some y1 and y2. Substituting as above, we see that this gives rise to an equation of
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the form

d2 = 3`−1y`2 − 2`−3(2y1)`,

for some y1 and y2.

Hence it follows we have a solution of

3`−1X` + 2`−3Y ` = Z2

and it is clear that XY 6= ±1. Here it is also clear that 2 divides Y , finishing the

lemma.

§ 6.3 Modularity

In this section we use the modular method. This means that we attach an elliptic curve

to our putative solution, and by modularity this allows us to further attach a modular

form to this solution. We can then use Ribet’s Level Lowering Theorem, to lower the

level of these forms (mod `). This then allows us to compute all mod modular forms

at this smaller level.

Theorem 6.3.1. A putative solution (x, y, z) of the Fermat equations in Table 6.1 give

rise to an elliptic curve E and a newform f of level N`, such that E ∼` f as described

in the following table.

Case E N`

1 Y 2 = X3 + 4zX2 + 2 · 3`−2y`X 28 · 3

2 Y 2 +XY = X3 +
z − 1

4
X2 +

2`−2 · 3`−3y`

64
X 6

3 Y 2 = X3 + 4zX2 + 2 · 3`−1y`X 28 · 3

4 Y 2 +XY = X3 +
z − 1

4
X2 +

2`−3y`

64
X 6

Table 6.2: The attached Frey-Hellegouarch curves and level lowered conductors for each
equation given in Table 6.1

Proof. We will consider the four cases as given by Lemma 6.2.1. It is then mostly just
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an application of Theorem 3.2.1, as we shall show below. It is important to remember

from Lemma 6.2.1 that xy 6= ±1.

Case (1) : X` + 3`−2Y ` = 2Z2.

It follows from the Z coefficient being even that we are in case (II) of Theorem 3.2.1.

So we attach the elliptic curve

E : Y 2 = X3 + 4zX2 + 2 · 3`−2y`X.

It follows from parts (b) and (c) of Theorem 3.2.1 that that conductor of E is given by

N = 28 Rad(3`−2xy),

and there is a modular form f attached to E such that E ∼` f of level

N` = 28 Rad(AB) = 28 · 3.

Case (2) : X` + 2`−33`−2Y ` = Z2.

As above we apply Theorem 3.2.1; here by the final remark in Lemma 6.2.1 we are in

case (V). Hence we attach the elliptic curve

E : Y 2 +XY = X3 +
z − 1

4
X2 +

2`−3 · 3`−2y`

64
X.

We now apply part (c) of Theorem 3.2.1 to see that there is a modular form f such

that E ∼` f , and as E does not have complex multiplication, following from part (c)

of Theorem 3.2.1 and that xy 6= ±1,, we have

N` = Rad(AB) = 6.

Case (3) : X` + 3`−1Y ` = 2Z2.

As in case (1) it follows that we are in case (II) of Theorem 3.2.1. We attach the elliptic

curve

E : Y 2 = X3 + 4zX2 + 2 · 3`−1y`X.

It follows from parts (b) and (c) of Theorem 3.2.1 that there is a modular form f such
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that E ∼` f for some newform f of level

N` = 28 Rad(AB) = 28 · 3.

Case (4) : 3`−1X` + 2`−3Y ` = Z2.

This follows similarly to case (2); as ord2(BY `) > 7 we are in case (V) of Theorem

3.2.1. Hence we attach the elliptic curve

E : Y 2 +XY = X3 +
z − 1

4
X2 +

2`−3y`

64
X.

And as E does not have complex multiplication, following from part (c) of Theorem

3.2.1 and that xy 6= ±1, there is a modular form f such that E ∼` f with

N` = Rad(AB) = 6.

Theorem 6.3.2. There are no integral solutions (x, y) to Equation (6.1) with x even

and k = 3.

Proof. To a given putative solution with x even, we may attach a Fermat equation of

signature (`, `, 2) as given by Lemma 6.2.1. This will correspond to either case (2) or (4)

in Table 6.1. We may now apply Theorem 6.3.1 to derive a modular form f of weight

2 and level 6. However there are no level 6 newforms, contradicting the assumption of

a solution.

Remark 6.3.3. From the above theorem, it follows we only need to consider the

remaining case of i = 1 or i = 3. We know from Theorem 6.2.1 that BCY ` = −2α2.

This means that the elliptic curves in the previous theorem can be written as

E : Y 2 = X3 + 4zX2 − 2α2X.

This implies that our curves E are all quadratic twists of some curve

Fm : Y 2 = X3 +mX2 − 2X,

for some m.
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Remark 6.3.4. It is well known that if E is a quadratic twist of F , for E and F elliptic

curves, aq(E)2 = aq(F )2 for q a prime of good reduction.

§ 6.4 Computation

In this section we use our Frey-Hellegouarch curves and Magma computation to com-

plete Theorem 6.1.1.

Lemma 6.4.1. For E an elliptic curve as in case (1) or (3) from Theorem 6.3.1, we

have E �` f for f newform at a level N`.

Proof. Assume for contradiction that E ∼` f , for some f and `. For q a prime that

doesn’t divide 6, we define

Bq(α) =

Norm(aq(Fm)2 − aq(f)2), if q - ∆m

Norm(aq(Fm)2 − (q + 1)2), if q | ∆m

and

Bq = q
∏

0≤α≤q−1

Bq(α). (6.5)

Using the remark above that our E is a quadratic twist of some Fm, so that aq(E)2 =

aq(Fm)2 for some m, the fact that (mod q) there are only q such curves, determined

by m (mod q) and applying Lemma 3.1.6, we see that ` divides G(f) = gcd({Bq | q ≤
100, q - 6}).

We compute G(f) for every f of level 28 · 3 using Code 7.2. The calculation shows that

` = 2, 3, 5 or 7 are the only possible exponents.

Proof of Theorem 6.1.1. We see from Lemma 6.4.1 that for x odd there are no solutions

for ` > 7, and from Theorem 6.3.2 that there are no even solutions for ` > 7. The

result now follows.



Chapter 7

Code

Here are the Magma programs that have needed to be run during the writing of this

thesis.

Listing 7.1: Magma Code: Prime Bound

N:=1;

f o r k:=22 to 181000 do

M:=(Log ( k )/ k)∗(#PrimesUpTo ( Floor ( k/2))−#PrimesUpTo ( Floor ( k / 3 ) ) ) ;

i f M l t N then

N:=M;

end i f ;

end f o r ;

N;

Listing 7.2: Magma Code: Calculating G(f)

S:=CuspForms ( ( 2 ˆ 8 ) ∗ 3 ) ;

Snew:=Newforms (S ) ;

// Here we c a l c u l a t e the newforms in our space .

G:=1;

B : = [ ] ;

s : = [ ] ;

G: = [ ] ;

f o r j :=1 to #Snew do

f :=Newform(S , j ) ;
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//We now i t e r a t e through each modular form .

f o r i :=4 to 50 do

//We w i l l now i t e r a t e through the f i r s t 50 primes ,

// exc lud ing the s m a l l e s t few .

a :=1;

l :=NthPrime ( i ) ;

//We now compute Bl , note that the curve Ea

// has good reduct i on at l

// i f and only i f aˆ2+8 mod l i sn ’ t 0

Bl := l ;

f o r a :=1 to l do

Ea:= E l l i p t i c C u r v e ( [ 0 , 0 , a , −2 , 0 ] ) ;

//We now d e f i n e each e l l i p t i c curve that needs to be cons ide r ed

i f aˆ2+8 mod l ne 0 then

Bla := Floor (Norm( TraceOfFrobenius (Ea , l )ˆ2−C o e f f i c i e n t ( f , l ) ˆ 2 ) ) ;

e l s e

Bla := Floor (Norm( ( l +1)ˆ2−C o e f f i c i e n t ( f , l ) ˆ 2 ) ) ;

end i f ;

Bl :=Bl∗Bla ;

end f o r ;

s :=Append( s , Bl ) ;

//We now c r e a t e a vec to r o f a l l the Bl ’ s we have c a l c u l a t e d

end f o r ;

G:=Append(G, Gcd( s ) ) ;

end f o r ;

G:=LeastCommonMultiple (G) ;

p r i n t ( Pr imeDiv i sors (G) ) ;

//We now compute the prime f a c t o r s o f G( f )
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curve of fifth degree Mathematika 50, 113124, 2003.

[35] J. Liouville, Jour. de Math.(2), 2, 227, 1857.

[36] G. Martin, Dimensions of the spaces of cuspforms and newforms on Γ0(N) and

Γ1(N), J. Number Theory. 112, 298-331, 2005.

[37] B. Mazur, Rational isogenies of prime degree, Invent. Math. 44, 129162, 1978.

[38] J. Nagura, On the interval containing at least one prime number, Proc. Japan

Acad Vol. 28 (4), 177-181, 1952.

[39] D.J. Platt, Numerical computations concerning the GRH, Math. Comp. 85,

3009-3027, 2016.

[40] C. Pagliani, Solution du problème d’analyse indéterminée énoncé à la pag. 212,
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