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Abstract

The continuous developing of magnetic recording requires to understand the physical proper-
ties of the magnetic media in detail in order to maximise the performance of this application.
In this thesis, we investigated different paradigms of magnetic recording media by using
atomistic spin dynamics model.

The inter-granular exchange is important for maintaining the stability of stored informa-
tion in magnetic recording media. Therefore, we investigated the exchange coupling between
neighbouring magnetic grains where magnetic impurity atoms are assumed to migrate into
the non-magnetic grain boundary. Tri-layer and multi-grain system have been proposed
to be studied where we found that a lower concentration of magnetic impurity reduces
the inter-granular exchange coupling, respectively the exchange energy between the grains.
Different angular dependence of the exchange energy is found for the multi-grain system
compared to the tri-layer system, where an additional term of the exchange energy needs to
be considered in order to describe the angular dependence.

Another problem of magnetic recording particularly to the heat-assisted magnetic record-
ing is given by the design of the recording grains. Exchange-coupled composite media
is found to give optimal performance due to low energy barrier at elevated temperature
demonstrated energetically using Monte-Carlo simulations. Dynamic simulations show an
acceleration of the switching due to spring effect being determined by several factors. One
factor is the Gilbert damping which plays a significant role in magnetic reversal processes
and determines the timescale of the switching. For a bilayer Fe/FePt medium we found an
anomalous increase of the switching time with increasing soft layer damping constant. The
reversal occurs via a high-temperature exchange spring, this phenomenon being delicately
balanced in that the switching time increase occurs only in fields close to the coercivity.

Lastly, we investigated a new model of exchange interaction in L10 FePt following
Ruderman-Kittel-Kasuya-Yosida function. An obvious similarity can be observed between
first principle calculations of the exchange constant as a function of the distance between
neighbours atoms and the function proposed by Ruderman-Kittel-Kasuya-Yosida which
allows us to reproduce the magnetic properties of L10 FePt using the last mentioned function
as first principle calculations require extremely long computational time.
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Chapter 1

Introduction and motivation for research

1.1 Brief History of Recording Media Evolution

Magnetism is a fascinating branch of science and has a long history. First magnetic mate-
rials were discovered in 6th century BC near to the ancient city Magnesia, Greece [4][5].
Nowadays, we cannot imagine the progress of technology without the applications of the
magnetism, having a wide range of applications in industry. One of these applications is
represented by magnetic recording [6] whose purpose is to store information on magnetic
materials such as ferromagnetic materials. The first theoretical studies done on magnetic
recording belong to Oberlin Smith in 1888 [7] and ten years later this idea was applied for
the first Telegraphone [8], the first recording device based on a magnetic memory.

Magnetic recording has been developed significantly in the last decades, massive research
has been done to increase the performance of this application. However, there are significant
physical limitations of this application once the grain sizes must be reduced in order to
achieve a great areal density, the main challenge being to overcome the three physical
limitations of recording media comprised in the trilemma of magnetic recording [9]. These
three limitations are related to increasing the areal density of data, which implies a decrease
in the grain volume whilst maintaining good thermal stability. High anisotropy materials
are needed for recording media, in order to ensure the thermal stability since the rate of
magnetisation decay is given by the Arrhenius-Néel law: τ = τ0 exp(KuV/kBT ), where
Ku is the anisotropy energy, V is the volume, kB is the Boltzmann constant, and T is the
temperature. If the exponential factor is greater than 60, the storage time is estimated
at 10 years[10]. Therefore, reducing the sizes of the grains will affect thermal stability.
Consequently, small grains must have high uniaxial anisotropy, determining a more difficult
writing process as the writing field increases with decreasing the sizes according to Sharrock



2 Introduction and motivation for research

equation [11, 12]: Hwr(t) = Hk

{
1−
[

kBT
KuV ln

(
f0t
ln2

)]n}
, where Hk is the anisotropy field, f0

is the attempt frequency of the material, and n is the shifting exponent. Many techniques and
magnetic materials have been tested and huge progress also has been achieved[13], the limit
of the areal density being estimated around 1Tb/in2 [14] for PMR at that time.

One of the first methods for recording media was longitudinal recording where the media
is magnetised parallelly to the plane. It confers a high areal density (AD) and a good signal
to noise ratio (SNR) as long the layers have high anisotropy, and lower thickness [15]. In
order to minimize the demagnetisation effects and stray fields with respect to increasing
the AD, the longitudinal recording was replaced by perpendicular recording, polarising
the bits in the perpendicular plane. Here, the bits can be parallel or anti-parallel oriented
representing in binary system 1, respectively 0 [16]. A remarkable improvement of PMR
was the introduction of a soft underlayer underneath the recording layer, which generates
larger write fields.

One of the most promising technologies to solve the trilemma of magnetic recording is
heat assisted magnetic recording (HAMR) [17, 18], allowing a decrease in the anisotropy by
heating the bit to the Curie temperature. In this way, the writability problem has been solved
by temporary decrease of the coercivity allowing to write information with a conventional
magnetic field up to 1T which is the maximum that can be achieved with the current technol-
ogy of an electromagnet embedded into a writing head. After the cooling, the anisotropy is
restored back to the ambient temperature value, maintaining long-term stability. Here, the
heating can be performed with a localised laser pulse having two different approaches such
as pulsed spot and continuous spot [19]. Both methods use a laser for heating, positioned
before the writing coil as shown in figure 1.1 allowing to heat prior to applying the field.

An improvement of recording techniques can alternatively be done with microwave-
assisted magnetic recording (MAMR) which was proposed by Zhu et al.[21] representing a
feasible technology for magnetic recording. This technique utilises ferromagnetic resonance
in order to induce a precessional switching of the magnetisation which is predicted to be
achieved at lower fields without involving heat. Besides the switching field applied along
easy axis, an alternating field is applied orthogonally to the easy axis in order to trigger the
precession reducing the coercivity of the grains. In theory, MAMR can achieve a large AD
being in competition with HAMR.

In both techniques, the architecture of the recording medium matters. To increase the AD,
bit patterned media (BPM)[22–24] was proposed to replace the traditional recording medium
where the area necessary for a single bit can be drastically reduced. In BPM, a single bit is
stored on a single nano-dot whose area is much lower than in the continuous media where a
group of grains create a single bit. Prior to improving the AD in BPM, several lithography
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Fig. 1.1 Illustration of heat assisted magnetic recording process. This image is taken from
reference [20]

methods are tested[25]. Here, electron beam (EB) lithography is found suitable to reduce the
spacing between islands [26] due to self-assembling effect of block copolymer. In reference
[27] is shown that BPM can support an AD of 5Tb/in2 if the dispersion is highly controlled
excluding the thermal effects. Despite this promising AD, there are many challenges to
implement this technique. The manufacturing and utilization of patterned media disk drives
require a new understanding of science at the nano-scale level and offer exciting opportunities
to explore this nano-scale world.

1.2 Current Limitations of Magnetic Recording

The HAMR technique reaches high performance in terms of reducing the sizes of the
grains, being able to move the limit beyond 1Tb/in2 as shown in figure 1.2. So far, HAMR
is a very promising technology for the next generation of hard-disk drives (HDD) being
able to push the AD beyond 5Tb/in2. To do that, this technique must solve the trilemma
of recording media where the decreasing of the grain volume requires an increase in the
anisotropy constant K for thermal stability and also sufficient fields are required to achieve
the writability problem. Besides these three requirements, Evans and his co-workers [28]
showed that HAMR comes with an additional problem. This is related to the thermal errors
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Fig. 1.2 The road-map of recording media. This picture has been taken from www.idema.org

which occur due to the heating in the HAMR process. Evans et al.[28] showed a strong
dependence of the error rates with the temperature. Although the writing field is greater
than coercivity, this is not sufficient to ensure the switching due to thermal fluctuation which
affect the writing process. In reference [28] this problem is shown the rate of errors depends
on the temperature following bit error rate (BER), defined as:

BER = exp
(
−2µ0V MsHwr

kBT

)
, (1.1)

where µ0 is the magnetic permeability of free space, Ms is the saturation magnetisation.
Hence, the solution for this is to use high Ms materials which ensure the thermal writability.
Therefore, the problem becomes dependent on four aspects called quadrilemma of magnetic
recording, shown schematically in figure 1.3.

As shown in the road map figure 1.2, the highest performance of magnetic recording that
can be achieved in the next years can be a combination of HAMR with BPM. To do that we
need an innovative design of the magnetic grains capable to achieve the above-mentioned
problem, the quadrilemma of magnetic recording. Multiple designs of the grains have been
tested such as coupled granular continuous (CGC) [29] but the performance of this design
has been demonstrated as being poor, especially for HAMR where the writing field is not
sufficient to ensure a stable switching.

Another design was proposed by Zhou et al. [30] where the grains are supposed to be
aligned with an angle of 45 degrees. In this way, the switching field can be lowered to half of
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Writability requires 
write assist and 
maximum Hwr!

Fig. 1.3 Illustration of quadrilemma of heat-assisted magnetic recording. This picture has
been taken from reference [28].

the anisotropy field. However, these recording films are very hard to be manufactured for
HAMR.

Ultimately, in order to reduce the thermal errors, Suess and Schrefl [31] proposed an
innovative design for recording media. This is a combination of two different materials
such as soft and hard phase with different Curie temperatures. This design is known as
exchange coupled composite (ECC) and it presents considerable advantages over conventional
recording media like high uniaxial anisotropy, small sizes of the grains, lower switching field
and good performance for HAMR.

In any method presented in this chapter, large Ms and high anisotropic materials are
required for magnetic recording. Weller et al. summarized the main candidates for magnetic
recording in reference [32]. A promising solution is CoPt alloy whose magnetic properties are
well balanced with the anisotropy of 2×107 erg/cm3 which is the equivalent of 2×106 J/m3

and a saturation magnetisation of 1100emu/cm3 the equivalent of 1100kA/m but the most
highly anisotropy material is L10 FePt alloy whose anisotropy varies between 6.6×106 J/m3

- 1×107 J/m3. This makes FePt one of the most attractive material for recording media
getting considerable attention of research[33, 34].

1.3 Thesis Outline

In this thesis we investigated a series of problems related to magnetic recording which
gives more insight about reversal mechanisms in magnetic recording. We simulated the
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switching mechanism at the atomistic scale by employing atomistic spin dynamics (ASD).
We investigated three different problems of the reversal mechanism where the exchange
interaction plays a crucial role and having different forms depending on the grain sizes and
material properties.

In the introduction, we presented the main problems of magnetic recording and the current
status of research. The second chapter details the theory and the model used for simulations
throughout this thesis. The atomistic spin dynamics (ASD) model and Langevin dynamics
are discussed in detail to show the mathematical support of this model. This chapter ends-up
with the section of implementation methods where two schemes of numerical integration for
Landau-Lifshitz-Gilbert equation have been proposed and a brief presentation is given of
Monte-Carlo (MC) and Constrained Monte-Carlo (CMC) algorithms.

The third chapter describes calculations of the exchange interaction between nano-grains
being calculated via the CMC method. Two different cases have been analyzed: a system of
two ferromagnets separated by an isolating layer and a granular system comprising seven
grains distributed into a hexagon, each grain being separated by a non-magnetic layer with
magnetic impurities. We study the dependence of inter-granular exchange energy as a
function of temperature, separation and doping density by computing the torque of the
switching grain.

The fourth chapter presents some investigations done on ECC media. The chapter starts
with an introduction where we motivate the utility of this innovative design of the magnetic
grains towards HAMR. A fundamental property, the energy barrier is calculated for different
temperatures and magnetic fields using the CMC method in order to find out whether this
system confers long-term stability. This chapter is continued by dynamical simulations, where
the dependence of the coercive field is determined for different temperatures, thicknesses,
and interface exchange coupling constants. In the final part of this chapter some simulations
related to the switching speed depending on the damping constant of the soft phase at higher
and conventional fields are presented.

The fifth chapter is related to a new model of exchange interaction in L10 FePt based on
an oscillatory dependence of the exchange constant on distance similarly to Ruderman-Kittel-
Kasuya-Yosida (RKKY) function. In this chapter, we present some comparisons of the Curie
temperature distributions between ab-initio calculations for exchange and RKKY mechanism
for different radii of interactions and sizes of the particles. In addition to this, RKKY proved
to reproduce the scaling of anisotropy with temperature according to experimental results.
The chapter ends with some scalability tests for different ranges of truncations showing a
speed-up of the calculations for a specific range with respect to the physical properties of the
L10 FePt material.
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The last chapter summarizes the conclusions of this chapter and the future work that
can be done to extend this research. This is followed by a full list of references and two
appendices.





Chapter 2

Theory and Methods

2.1 Basics of Magnetism

In the classical theory of electromagnetism, the magnetic field is an effect of a current loop
which denotes electrical charge in motion. It can be observed that a distribution of the
electrical currents produce a magnetic field which at large distance from the source can be
considered a dipolar field. In atoms, the motion of electrons gives rise to a magnetic moment
of the atom. Starting with the classical model of the Hidrogen atom, Bohr calculated the
magnetic moment of the electron, known in literature as the Bohr magneton, µB, assuming
that the electron with an elementary electric charge −e has a circular motion around the hy-
drogen nucleus as shown in figure 2.1. By equating the magnitude of the angular momentum
of the electron with the magnetic moment we obtain [35]:

µB =
eℏ

2me
= 9.274×10−24 J/T, (2.1)

where ℏ is the reduced Planck constant, and me is the mass of the electron. Besides the
circular motion around the nucleus, the electron has its own intrinsic rotation, called spin S
which gives a magnetic moment of the electron as:

µ =−g
µB(L+S)

ℏ
, (2.2)

where g is the Landé factor, L is the orbital momentum and S is the spin. In more complicated
isolated atoms with more electrons, the magnetic moment is given by the unpaired electrons.
These unpaired electrons come as a result of different quantum states of the electrons which
have a specific order given by the Hund’s rule[35].
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Fig. 2.1 The electron orbiting around a hydrogen nucleus with the radius r and angular
velocity v.

The macroscopic characterization of a magnetic material is given by the magnetisation,
M representing a summation of the atomic magnetic moments per unit volume. The effect of
the magnetisation is visible in the presence of a magnetic field, H which in many materials
varies linearly with the magnetic field as:

M = χH, (2.3)

where χ is called magnetic susceptibility of the material. As a function of the magnetic
susceptibility, the magnetic materials can be classified as "paramagnetic" if χ > 0, and
"diamagnetic" materials if χ < 0. Some materials cannot be fitted by this classification due
to non-linearly variation of the magnetisation on field. Such categories are:

1. ferromagnetic materials: where the electrons have the magnetic moments aligned to
a certain direction in the absence of an external field.

2. ferrimagnetic materials: where the total magnetisation exists in the absence of an
external field, but unlike ferromagnetic materials within material there are neighbours
pairs of the electron spins with opposite orientation.

3. antiferromagnetic materials: where the atoms are arranged in a way that each spin is
anti-aligned with its neighbour.

Another important quantity is the induction of magnetic field. For a typical ferromagnet for
example, the induction of the magnetic field has two contributions: one from the magnetic
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Fig. 2.2 Schematic representation of the hysteresis loop for a ferromagnetic material, showing
also the virgin curve illustrated by the dashed line. [37].

field H and the other one from magnetisation[36] being defined as:

B = µ0(H+M), (2.4)

where µ0 = 4π ×10−7 H/m is the magnetic permeability of the free space. Particular
to a ferromagnet, when an external field is applied to a sample, the dependence of the
magnetisation is not linear as it is mentioned above. Figure 2.2 shows a characteristic
dependence of the magnetisation M with the magnetic field H specific to a ferromagnet.
A couple of particularities can be observed in a hysteresis loop such as the remanence or
remanent magnetisation representing the spontaneous magnetisation when the applied field
is zero, the saturation magnetisation Ms is the value of the maximum magnetisation when
all magnetic moments are aligned to a magnetic field, and the coercive field Hc corresponds
to the value of the reversing applied field when the magnetisation is zero. The shape of
this loop is indicative of the alignment of the magnetic moments. In particular, a sharp
square hysteresis loop will denote a perfect coherent rotation of the moments where all of
the magnetic moments are aligned to the field, whereas a round shape of the hysteresis loop
will indicate an misalignment between magnetic moments or some reversible component of
magnetisation.

Hysteresis loops measured at increasing temperatures reduce their area and change their
shape as well. Here, at an increased temperature, the hysteresis loop converges to a line
specific to paramagnetic materials. The temperature where beyond this, a ferromagnet
becomes paramagnetic material is called the Curie temperature and the law which describes
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the magnetic susceptibility of a paramagnet as a function of temperature is the Curie-Weiss
law [37]:

χ =
C

T −TC
, (2.5)

where TC is the Curie temperature of the magnetic material, and C is the Curie constant.
Two different temperature regimes can be identified for a typical ferromagnet: above the
Curie temperature, where the material does not posses a spontaneous magnetisation, and
below Curie temperature where the temperature follows the Weiss law: M/Ms = (1−T/Tc)

β ,
where Ms is the saturation magnetisation and β the critical exponent.

2.2 Extended Heisenberg Hamiltonian

In classical mechanics, the energy of the system needs to be found in order to solve the
temporal and spatial evolution of a system. Similarly, in magnetism, the time and spatial
evolution of the magnetic spins can be calculated by evaluating all types of energies caused
by different sorts of magnetic interactions between the magnetic moments. The main types
of magnetic energies have been encapsulated in the Heisenberg Hamiltonian which can be
written as in equation (2.6) if the magnetostatic energy is excluded.

H =−
N

∑
i̸= j

Ji jSi ·S j︸ ︷︷ ︸
Hexch

−ku

N

∑
i
(Si · e)2

︸ ︷︷ ︸
Hani

−
N

∑
i

µ0µsSi ·Happ︸ ︷︷ ︸
Happ

, (2.6)

where N is the total number of magnetic spins in the system. Ji j is the exchange constant
between a pair of spins i and j, ku is the anisotropy constant per atom, e denotes the easy
axis direction and Happ is the applied magnetic field vector. This Hamiltonian has an explicit
dependence of spin direction Si = µ⃗i/µi and contains three different types of interactions
such as: exchange, anisotropy, and Zeeman energy which will be detailed on following.
Another importance of the equation (2.6) is given by the canonical equations which can be
applied successfully. Hence, the effective field of the spin i can be determined from the
partial derivative of the corresponding Heisenberg Hamiltonian with respect to spin as:

Hi
eff =− 1

µ0µs

∂H

∂Si
. (2.7)

This equation is important for the calculation of spin dynamics as the effective field is
required to solve the equation of spin motion described later in this chapter.
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2.2.1 Exchange Energy

The largest interaction of the Heisenberg Hamiltonian in magnetic materials is the exchange
interaction which establishes the order of the spins. It was proposed by Heisenberg [38] in
1928 in order to evaluate the molecular fields which appears in ferromagnetic materials. For
a system of N spins, the exchange energy is:

Hexc =−1
2

N

∑
i̸= j

Ji j,Si ·S j, (2.8)

where Si, j denotes the directions of spin i, respectively spin j. Ji j is the exchange integral
between i-th atom and j-th atom. Here a negative value of the exchange integral will lead
to a lowest energy when the spins align anti-parallel determining the anti-ferromagnetism
behaviour while a positive value will result in a minimum of energy when the spins are
parallel denoting a ferromagnetic state. The magnitude of Ji j is very large for the nearest
neighbours being three orders of magnitude higher than the dipole interaction [39].

The origin of the exchange interaction arises from quantum mechanics of the fermions
where a system of electrons respects the Pauli exclusion principle introduced to explain the
multiplicity of atom spectra. Considering two atoms with unpaired electrons are approaching
each other. If the spins are anti-parallel, then the electrons can share the same orbital
otherwise Coulomb repulsion will appear between the atoms where the magnitude of the
repulsion force depends on the separation distance between the unpaired electrons, r as:

F ∝
e2

4πε0r2 . (2.9)

Following Chikazumi [39], let’s assume an He atom with two electrons whose wave function
are ψ1(r1), respectively ψ2(r2), where r1,2 are the general coordinates of the electrons.
Consequently, the total Hamiltonian of the He atom is

H = H1 +H2 +H12

=− 2e2

4πε0r1
− ℏ

2me
∆1

− 2e2

4πε0r2
− ℏ

2me
∆2 −

e2

4πε0r12
, (2.10)

where r1, r2 are the vector positions of the spins and r12 is the distance between them. Note
that ∆ means Laplace operator and me is the electron’s mass. The corresponding wave
function of the He atom is a combination of both wave functions for each electron. Here,
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we distinguish two states: first is the anti-parallel state, where the wave function must be
anti-symmetric and the other state is the parallel state, where the wave function is symmetric
as:

ψs(r1,r2) =
1√
2
[ψ1(r1)ψ2(r2)+ψ2(r1)ψ1(r2)]

ψa(r1,r2) =
1√
2
[ψ1(r1)ψ2(r2)−ψ2(r1)ψ1(r2)] (2.11)

Respecting the quantum mechanical formalism, the total energy of the system can be written
as:

U =
∫

ψ
∗H ψdV, (2.12)

where ψ = ψs +ψa. By expanding the calculations from equation (2.11), we obtain four
terms of energy: two as an individual energy for each electron, a Coulombian term and
lastly a term which does not have a correspondance in classical physics given by following
expression:

J12 =
∫ ∫

ψ
∗
1 (r1)ψ

∗
2 (r2)H12ψ2(r1)ψ1(r2)dV1dV2 (2.13)

J12 is called the Heisenberg coupling constant or the exchange integral. This treatment has
been applied not only for the He atom and hydrogen molecule (H2), the nature of molecular
field in ferromagnetic materials being well established based on similar calculations. For a
more complex system with a high number of atoms, the exchange integral becomes more
expensive to be calculated as the Schroedinger equation must be solved for an increasing
number of electrons. Therefore, some approximations are assumed in order to solve a large
system of atoms resulting in a theory, called density functional theory [40]. In reference [40]
are presented some of the techniques proposed to solve a complex system. Very often the
exchange integral between two spins becomes a tensor. The first order case is the isotropic
case, where the exchange integral is a scalar. The second order case is a matrix where the
non-diagonal elements are zero and the third order is the case when the exchange integral is
a matrix shown below:

Ji j =

Jxx Jxy Jxz

Jyx Jyy Jyz

Jzx Jzy Jzz

 (2.14)
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The exchange energy is calculated via matrix multiplication shown in following:

Hexc =−1
2

N

∑
i̸= j

[
Si

x Si
y Si

z

]Jxx Jxy Jxz

Jyx Jyy Jyz

Jzx Jzy Jzz


Si

x

Si
y

Si
z

 (2.15)

Depending on the form of the matrix, particularly the relationship between the components
of the matrix, the exchange interaction can exhibit some particular forms such as two-ion
anisotropy contribution [41] where the anisotropy arises purely due to the exchange or
Dzyaloshinskii-Moriya (DM) exchange form.

2.2.2 Anisotropy Energy

The second term of the Heisenberg Hamiltonian is represented by the anisotropy term. The
magnetic anisotropy is a property of a magnetic material which gives a preferential direction
of the spins in space. This gives a rise to a variation of internal energy with the direction of
the spontaneous magnetisation comprised in the anisotropy energy [39]. This preferential
direction arises from spin-orbit coupling resulting in a specific crystalographic symmetries.
In a ferromagnet multiple axes can exist of symmetries, but the most simple case is the
uni-axial anisotropy identified in hexagonal Cobalt and FePt. The expression for uni-axial
anisotropy energy is:

Hani =−ku

N

∑
i
(Si · e)2, (2.16)

where ku is the uniaxial anisotropy constant per atom calculated as dividing the macroscopic
anisotropy to the number of atoms and e is the direction of easy axis.

Another form of the anisotropy is cubic anisotropy which occurs when the ferromagnet
possess three easy axes. The strength of the cubic anisotropy is usually weaker compared
with uni-axial anisotropy due to the existence of three preferential directions where the energy
is:

H cubic
ani =

kc

2

N

∑
i
(S4

i,x +S4
i,y +S4

i,z), (2.17)

where kc is the cubic anisotropy per atom. Such materials which exhibit cubic anisotropies
are: Fe and Ni for example which are not typically relevant for recording media applications.
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2.2.3 Zeeman and magnetostatic energy

A magnetic field can appear naturally in nature as a result of an electrical current variation
shown in Maxwell’s equations[42]. The interaction of the magnetic spins with an external
magnetic field provides a torque which can be used to switch the direction of the magneti-
sation being beneficial for some applications. The energy given by an external field often
called Zeeman energy named after Pieter Zeeman who discovered the effect of the spectral
line splitting in several components during the presence of a static magnetic field[43]. The
expression of Zeeman energy is given by the following equation:

H= −
N

∑
i

µ0µsSi ·Happ, (2.18)

where µ0 is the magnetic permeability of free space, µs is the magnetic moment of the spin,
and Happ is the magnetic field strength measured in J/Tm3

Lastly, the dipole or magnetostatic energy is the energy which occurs between two
magnetic spin moments Si,S j separated by a distance ri j giving a energy expressed in
following equation[35]:

Hdipole =
µ0µs

4πr3
i j

[
Si ·S j −

3
r2

i j
(Si · ri j)(S j · ri j)

]
. (2.19)

According to Blundell [35], the magnetostatic energy of two magnetic moments of 1µB

separated by a distance of 1Åproduces an energy around ≈ 1×10−23 J being weak compared
with the exchange energy in order to create a order among the spins at short range distance.

2.3 Atomistic Spin Model and Langevin Dynamics

The atomistic spin dynamics (ASD) model allows us to write the extended Heisenberg
Hamiltonian, shown in equation (2.6) for each individual atom within the assumption of a
localised atomic moment. Practically, each atom posses an effective magnetic moment given
by the unpaired electrons on the electronic shell. Unlike the micromagnetics approach, the
ASD model uses more realistic parameters provided by DFT calculations or experimental
measurements. Several software packages enable DFT calculations of magnetic materials
such VASP[44], SIESTA[45] etc. These software packages can calculate the ground states of
magnetic materials giving a full description of magnetic parameters such as atomic moment,
anisotropy and exchange constants.
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Fig. 2.3 Schematic representation of time/length scale of multi-scale calculations method.

The importance of the ASD model is given by the utility of the results provided using
this model, acting like a "bridge" between first principles calculations (KKR and DFT) and
micromagnetic model as shown schematically in figure 2.3. This can be embedded into a
multi-scale modelling approach taking the parameters from DFT calculations as an input
and giving results as output for micromagnetic LLB model[46]. The fundamental method of
describing the magnetic properties of a material is given by the first principles calculations
which deals with sub-femtosecond processes where the quantum mechanical effects govern
the behaviour of electronic configurations. This provides estimations of the fundamental
quantities such as magnetic moment length, exchange integrals and anisotropy constants
followed by the ASD which utilises the DFT calculations as inputs to compute at nano-scale,
magnetic processes such as Curie temperature, coercivity, and others. The limitations of
DFT calculations is given by the incapability of taking into account the thermal fluctuations,
whereas ASD can predict the behaviour of magnetic properties by considering the magnetic
spin coupled to a thermal bath. This is described in Langevin dynamics described on
following.



18 Theory and Methods

2.3.1 Equation of Motion

The evolution or the dynamics of the magnetisation for each spin is described by Landau-
Lifshitz-Gilbert (LLG) equation [47]. The LLG equation begins from the assumption of a
precessional motion performed by an electron as shown previously in figure 2.1 where the
classical mechanics of a rotational rigid body can be applied for the electron precession as
[48]:

dL
dt

= T, (2.20)

where L is the angular momentum equivalent of the spin S and T is the torque of the spin,
defined as:

T =−γS×H, (2.21)

where H is the effective field acting on the spin and γ represents the gyromagnetic ratio
calculated with following formula:

γ =
g|e|

2meC
(2.22)

By introducing equation (2.21) in equation (2.20) we can obtain the Landau equation of
precessional motion of the electron without any damping expressed as:

dS
dt

=−γS×H (2.23)

Equation (2.23) shows an undamped precession of the spin, however in reference [48] is
shown that the motion of the spins is not infinite: the precession decays due to damping
mechanisms which are introduced phenomenologically explaining also the energy loss. The
damping force is found to be directly proportional to the time-variation of the magnetisation
as Hdamping = −λ

dS
dt . By introducing this damping field into the effective field the LLG

equation can be derived as detailed in Appendix A. The LLG equation for a single spin is:

dS
dt

=− γ

1+λ 2 [S×H+λS× (S×H)] , (2.24)

where λ is the Gilbert damping parameter for a single atomic spin which includes local
intrinsic effects. The LLG equation shows a finite elliptical motion of the spin unlike equation
(2.23). This equation is composed of two components of the motion: one is the precession
determined by the first part of the equation S×H and the second term describes the alignment
of the spin towards the effective field direction, H determined by the double cross product:
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S×S×H. This is illustrated schematically in figure 2.4 showing the trajectory of a spin
during the alignment along field direction from in-plane starting position.

  

S⃗×H⃗

S⃗×S⃗× H⃗

Fig. 2.4 Schematic representation of a damped precessional motion of a spin in an applied
field. The spin is initially in-plane aligned following a precessional alignment along applied
field direction, H.

The effective field in the equation above (2.24), H can be calculated using equation (2.7)
which can be determined analytically for the zero Kelvin case. Once the applied field is
determined, this equation can be solved for a single non-interacting spin straight forward
in cartesian coordinates by separating the variables and integrating. The solutions are the
following [49]: 

Sx(t) = sech
(

αγH
1+α2 t +A

)
cos
(

γH
1+α2 t +B

)
Sy(t) = sech

(
αγH
1+α2 t +A

)
sin
(

γH
1+α2 t +B

)
Sz(t) = tanh

(
αγH
1+α2 t +A

) (2.25)

A and B are constants of integration. We can find these integration constants for particular
cases when the initial conditions are established. For a switching of the spin from the in-plane
position along x-axis to z-axis, the integration constants are zero. This system of solutions
can help to perform a basic test for a single non-interacting spin at zero Kelvin when we
implement a numerical integration scheme such as Heun scheme for example.
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2.3.2 Langevin dynamics. Noise mechanism

We determined the equation of the spins dynamics in the absence of any temperature being
able to describe the time evolution of the magnetisation. In addition to this, the interest of
our work in this thesis is to study the dynamics of a system at finite temperatures, therefore
a theory to describe the thermal behaviour is necessary to be included in our investigation
model.

Particular to ferromagnetic materials, the dependence on temperature is given by the
Weiss law for a micromagnetic particle. However, at the atomistic scale there is no theory to
claim any temperature dependence for an individual spin until 1979 when Brown [50] derived
a formalism to describe the thermal fluctuation on fine nanoparticles which is applied later to
atomistic temperature simulations. Within this model, called fluctuation-dissipation theorem,
it is assumed a statistical probability for a transition of a particle from a certain energy state
to another which strongly depends on temperature. Hence, there is a stochastic term which
causes fluctuations of the magnetisation at non-zero temperature. This can be transposed for
an individual spin as long it is assumed that the electron is coupled to a thermal bath and
posses a stochastic field which is additive to the effective field as:

Hi
eff =− 1

µ0µs

∂H

∂Si
+ ζi(t)︸︷︷︸

stochastic

, (2.26)

where ζi is the thermal field attributed to each spin, i. Equation (2.26) represents the Langevin
equation of the magnetic field comprising two terms: deterministic and stochastic term. This
can be introduced in LLG equation forming the Langevin equation of spin dynamics known
as the stochastic LLG equation expressed as:

dSi

dt
=− γ

1+λ 2 [Si × (Hi +ζi)+λSi × (Si × (Hi +ζi))] (2.27)

Equation (2.27) is not directly integrable as a continuous function since the fluctuation field
is a stochastic variable. There are two approaches for solving this kind of stochastic equation
such as Itô integral and Stratonovich integral which gives a pseudo-analytical solution of the
sLLG. For a large system, numerical methods to compute these integrals are needed, but
before proceeding to detail the solvers for this equation, we focus on the noise mechanism,
particularly to find the expression and properties of the noise. In reference [51], the main
two properties of the noise are stated shown in following:
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⟨ζi(t)⟩= 0,〈
ζi(t),ζ j(t)

〉
= 2δi jδ (t − s)D

(2.28)

where i, j are the cartesian components of the spins, D represents the strength of noise,
assumed to be isotropic and also it depends on temperature. ⟨⟩ denotes the average of the
thermal field calculated for a transition between two energy states. δi j is the Kronecker
function which ensure two different energy states. and δ (t−s) represents the auto-correlation
function over a time interval t − s. This correlation function is determined within the
mathematical model of Wiener for a Brownian motion which states that over a finite time
interval [0, t − s] the probability of event is a random variable which follows a Gaussian
distribution with zero mean shown in the equation below:

δ (t − s) =
√

t − sN(0,1) (2.29)

where N(0,1) is the standard Gaussian distributed number with zero mean. In this case,
the random number does not depend on the time interval as long as this is enough to reach
equilibrium. This technique is called white noise.

Finally, the strength of the noise, D needs to be determined in order to have a full
depiction of Langevin dynamics. In references [52, 51] it is shown how to calculate the
amplitude of the noise by solving the associated Fokker-Planck (FP) equation. A system
described by a Langevin equation has a corresponding FP equation whose expression for the
sLLG equation is following:

∂P(t)
∂ t

=− ∂

∂S

[(
−S×H−λS× (S×H)+D(1+λ

2)S×
(

S× ∂

∂S

))
P(t)

]
, (2.30)

where P(t) is the probability distribution. When the bath reaches thermodynamic equilibrium,
the time-derivative of probability ditribution vanishes. Again, we deal with an electron bath,

whose probability distribution is given by the Boltzmann distribution, P0 = e−
H

kBT . Hence,
the equation for stationary case can be written as:

∂P0

∂ t
=−∂e−βH (S)

∂S
= βHP0 = 0, (2.31)
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where β is 1/kBT . By expanding the calculations of equations (2.30) and (2.31), the
expression for D can be obtained as:

D =
2λkBT

γµs
, (2.32)

where |γ| is the gyromagnetic factor shown in Table 2.1.
To summarize, by taking into account equations (2.28), (2.29), and (2.32), we obtained

the following expression for the thermal field:

µ0Hth,i
x,y,z =

√
2λkBT
γµs∆t

N(0,1), (2.33)

where ∆t = t − s is the interval time mentioned in equation (2.29). In numerical integration
this represents the time step of the solver. N(0,1) is the Gaussian distribution with zero mean
on x,y,z dimensions.

Following Stratonovich calculus which is consistent with the rules of classical deter-
ministic integration and differentiation it can be obtained pseudo-exact solutions for each
component of the spin[49]:

Sx(t) = Ssech
[

λγ(Ht +µ0Hth)

1+λ 2

]
cos
[

γ(Ht +µ0Hth)

1+λ 2

]
Sy(t) = Ssech

[
λγ(Ht +µ0Hth)

1+λ 2

]
sin
[

γ(Ht +µ0Hth)

1+λ 2

]
Sz(t) = Stanh

[
λγ(Ht +µ0Hth)

1+λ 2

]
(2.34)

2.4 Implementation and integration methods

The ASD model presented in the previous section has been successfully implemented and
tested in the VAMPIRE software package [1] a powerful tool to simulate the magnetic
properties of nano-materials. VAMPIRE is a relatively large C/C++ object-oriented code
using minimal external libraries which makes it more versatile in order to be installed on a
wide range of computer architectures. Despite the minimal external libraries requirement,
it confers multiple features presented in reference [1]. This code runs efficiently and gives
good performance due to ability of running in parallel using Message Passing Interface (MPI)
and General-Purpose Computing on Graphics Processing Units (GPGPU).
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Our simulations presented in this thesis are obtained solely by using VAMPIRE and adding
our contribution. The framework structure of this code is detailed in reference [1] which
follows several steps:

• first step is to create the unit cell type. Priory using VAMPIRE, the information about
the crystal structure of the material is required. After the unit cell is created, this is
replicated with respect to a specific geometry achieving the dimensions desired by the
user.

• the second step is the initialisation of variables imposed by the user followed by the
calculation of exchange interactions and the list of neighbours.

• the third step is to simulate the effective magnetic properties such as: spin fields,
positions, magnetisations etc. Here, there are two approaches. One is dynamically
by integrating the sLLG equation using different integration schemes and the second
approach is represented by the energetic solutions using Monte-Carlo or Constrained
Monte-Carlo.

• the last step is the average and extraction of the results

We note that the magnetic quantities commonly used in VAMPIRE are in agreement with
the International System of Units. However, in there are few quantities we need to set as
inputs which are not in the SI units list. The atomic moments, for example, should be set as
multiple of Bohr magneton µB, whereas the applied magnetic field is defined in Tesla. The
rest of the constants used in VAMPIRE are summarised in the table below.

Quantity Symbol SI value
Bohr magneton µB 9.274×10−24 JT−1

Gyromagnetic ratio γ 1.76×1011 T−1s−1

Permeability of free space µ0 4π ×10−7 T2J−1

Boltzmann constant kB 1.3807×10−23 JK−1

Table 2.1 Table of constants

2.4.1 Heun and Semi-implicit scheme

In this section we will detail the integration methods for sLLG equation presented in the
previous section. Here, we start with the Heun scheme followed by the semi-implicit
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scheme, already implemented in VAMPIRE. Solving the sLLG equation can be done within
the Stratonovich interpretation which allows us to treat the sLLG equation as a Riemann
integral[52]. Therefore, we can treat sLLG as ordinary differential equation using Taylor
expansions.

The simplest integration scheme of sLLG is the Euler method whereas Heun method is the
Euler scheme with an additional step called predictor-corrector. For a generic deterministic
function, f (t,x) = y′(t), with an initial condition, y(t0) = y0, the Euler scheme can be derived
from the Taylor expansion as:

y(t0 +h) = y(t0)+hy′(t0) = y0 +h f (t0), (2.35)

where h is a generic time step. This method retains only the first term of the Taylor expansion.
A more advanced integration scheme will include more Taylor terms such as Runge–Kutta
methods. In addition to Euler method, Heun uses the Euler step as an intermediate step
before calculating the final step. For a single spin described by the sLLG equation, the Heun
step (predictor-corrector step) is following [1]:

S̃n+1 = Sn +∆S∆t, (2.36)

where

∆S =− γ

1+λ 2 [Sn × (Heff +Hth)+

λSn × (Sn × (Heff +Hth))] (2.37)

Final position is calculated as a function of the predictor step. S̃n+1, as:

Sn+1 = Sn +
1
2
(∆S+∆S̃)∆t, (2.38)

where

∆S̃ =− γ

1+λ 2 [S̃n+1 × (Heff +Hth)+

λ S̃n+1 × (S̃n+1 × (Heff +Hth))] (2.39)

This method is based on trapezoidal rule of numerical integration being an explicit
scheme because the unknown quantity Sn+1 appears only on the left side of the equation.
This makes it very simple to implement it, and, despite the simplicity it confers optimal
computational efficiency converging to the Stratonovich solution. However, the length of the
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spin is not preserved, a spin normalisation being mandatory after the calculations of both the
intermediate and final step. Besides the spin normalisation, the effective fields needs to be
re-evaluated.

In order to obtain a stable convergence using Heun method, for each partial step is
important to choose a correct time step depending on the simulation temperature. It is
well known that above and in the vicinity of Curie temperature, the Heun scheme becomes
unstable. In reference [1], Evans et al. performed some tests in order to find the dependence
of the quality of convergence as a function of the ratio between the simulation temperature
and the Curie temperature. In figure 2.5 is shown the mean magnetisation of a generic
ferromagnet as a function of time step at different temperature simulations. We observed a
good convergence for time step lower than 10×10−15 s for a range of temperature below the
Curie point. Above Curie temperature, the material acts like a paramagnet where the spins
are randomly ordered determining the vanishing of mean magnetisation.

Fig. 2.5 The dependence of time step on mean magnetization for different reduced tempera-
tures for the Heun integration scheme. This graph is taken from reference [1].

Two new integration schemes have been proposed by Mentink et al. [53] being more
promising in terms of stability and speed of the calculations. In addition, the second scheme,
called semi-implicit B is supposed to preserve the length of the spin. This scheme has
been previously investigated by Ellis et al.[54] in their investigations on rare-earth doped
permalloy. The methodology of this scheme is similar to the Heun scheme, calculating an
intermediate step following:

S̃n+1 = Sn −
Sn + S̃n+1

2
×A(Sn), (2.40)
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where

A(S) =
γ∆t

(1+λ 2)µs
[Heff(S)+Hth +λS× (Heff(S)+Hth)]. (2.41)

The final step corresponding to the time step, n+1, is calculated via the equation:

Sn+1 = Sn −
Sn +Sn+1

2
×A

(
Sn +Sn+1

2

)
, (2.42)

We identified the presence of the unknown terms S̃n+1 Sn+1 on both sides of the equations
above denoting implicit dependences. The mechanism of solving this kind of equations
includes a Cayley transform [55] corresponding to each implicit equation presented above as:

S̃n+1 = Cay(A(Sn, t))Sn

Sn+1 = Cay
(

A
(

Sn + S̃n+1

2
, t
))

Sn (2.43)

The corresponding Cayley transform for the intermediate step, S̃n+1, is:

Cay(A(Sn, t))Sn = Sn +
A(Sn, t)×S+ 1

2A(Sn, t)×A(Sn, t)×Sn

1+ 1
4 |A(Sn, t)|2

(2.44)

Similarly for the final step, Sn+1, the corresponding Cayley transform can be expressed as:

Cay
(

A
(

Sn + S̃n+1

2
, t
))

Sn = Sn +
A
(

Sn+S̃n+1
2 , t

)
×S

1+ 1
4 |A

(
Sn+S̃n+1

2 , t
)
|2
+

1
2A
(

Sn+S̃n+1
2 , t

)
×A

(
Sn+S̃n+1

2 , t
)
×Sn

1+ 1
4 |A

(
Sn+S̃n+1

2 , t
)
|2

(2.45)

Now we have explicit equations for the semi-implicit integration scheme methodology which
allows us a straight forward process of implementation in VAMPIRE. In order to test the
performance of semi-implicit integration scheme implemented in VAMPIRE, we performed a
series of benchmarks similar to Evans et al. [1] presented in figure 2.5. We chose a generic
ferromagnet whose Curie temperature is 1388K with an hcp structure corresponding to Co.
The exchange constant as input using nearest neighbours approximation can be calculated
via following equation[1]:

Ji j =
3kBTc

εz
, (2.46)



2.4 Implementation and integration methods 27

where ε = 0.79 is a correction factor which arises due to the spin waves in 3D Heisenberg
model [56] and z is the coordination number; for an hcp structure, the coordination number
is 12, for example. We performed, therefore, several time series at different temperatures
as a ratio of Curie temperature. We allowed an total integration of 0.1ns for each timestep
value. The dependence of reduced magnetisation as a function time step at different values
of temperature is shown in figure 2.6.
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Fig. 2.6 The dependence of time step on mean magnetisation for different reduced tempera-
tures for the semi-implicit integration scheme.

Overall, we observed a reasonable performance of the semi-implicit scheme especially at
low temperatures. At zero Kelvin, the magnetisation is preserved at any timestep, ∆t, values
comparing with Heun scheme where the reduced magnetisation beyond a certain value of
∆t breaks which violates the conservation law of the LLG equation. At high temperatures,
in vicinity of Curie point, the Heun scheme, however, confers a better average, but the
semi-implicit scheme is more stable up to a timestep value, ∆t = 1×10−14 s. A time step of
1×10−15 s should be sufficient to obtain a feasible integration of sLLG equation at elevated
temperatures offering better integration compared to the Heun scheme. A time step with an
order higher will lead to a 10 times longer computation time. This is important when we
think a strategy of parallel calculations. Most of the strategies involve spatial decomposition
whereas time parallelisation is not admissible in ASD simulations. Hence, an integration
scheme which is capable of good performance at low values of the timestep is more desirable.
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Therefore, the semi-implicit scheme is a good candidate for an implementation in MPI or
GPGPU algorithms.

2.4.2 Monte-Carlo and Constrained Monte-Carlo methods

The previous integration methods refer to the dynamical approach of ASD by solving the
LLG equation of motion. In this subchapter, we will present few ways to energetically
evolve the dynamics of the spins which takes into account the thermal fluctuations being
faster to simulate the equilibrium properties for a system, such as the Curie temperature, for
example. These methods are based on Monte-Carlo (MC) techniques which are physical
time-independent [57] and the fundamental idea is to make an adjustment to the physical
system and calculate the variation of energy, ∆E, between these two states of the spins. MC
simulations converge rapidly to equilibrium saving the computation time and are relatively
easy to implement.

One efficient algorithm is represented by Metropolis Monte Carlo (MMC) presented on
following. The procedure of MMC respect several steps. The first step is to choose randomly
a spin, Si. In the second step the initial direction of the spin is changed randomly into a new
position, S′

i, called trial move. Finally, the difference of energies between the old and new
position is calculated, ∆E = E(S′

i)−E(Si) and compared with the probability of acceptance
calculated via following equation:

P = exp
(
− ∆E

kBT

)
(2.47)

If the computed probability through equation (2.47) is greater than 1, then the spin adopts the
move otherwise the position is restored back to initial position, Si. This steps are repeated
for each atom in the system, representing a single MC step. In reference [58], Hinzke and
Nowak demonstrated that the performance of MC method is influenced by the type of the
trial move performed depending on the magnetic properties of the system. In figure 2.7 are
shown schematically these three types of moves described in detail in reference [58].

For example a large anisotropy material will be better performed by MC with a spin flip
move illustrated in figure 2.7 (a). This move reverses the spin direction once the move is
accepted similar to an Ising model. A second alternative to simulate nucleation processes
using MC is given by the random move which does not depend on the initial direction shown
schematically in figure 2.7 (c). Unlike the spin-flip move, this trial move does not force the
spin to jump the energy barrier; a uniform random move has been performed. The type of
move which ensures the ergodicity the most is given by the Gaussian move shown in figure
2.7 (b). This move takes in to account the initial move and allows the spin to fluctuate within
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Fig. 2.7 Schematic illustration of the three types of trial moves: (a) spin flip; (b) Gaussian
and (c) random. This picture is reproduced from reference [1].

a cone centred on initial direction following next expression[1]:

S′
i =

Si +σgN
|Si +σgN|

, (2.48)

where N is a Gaussian distributed random number and σg is the width of the cone. The
width of the cone is temperature-dependent similar to the Langevin term given by following
expression:

σg =
2

25

(
kBT
µB

) 1
5

(2.49)

This method properly describes the coherent reversal processes and different methods of
testing have been performed successfully by Evans et al. [1] showing a good agreement
between MC simulations and sLLG equation, both converging to a unique solution of
temperature magnetisation dependence. In some cases the convergence can be very slow,
therefore the cone width can be adaptive depending on the rate of acceptance of MC moves.
This method is called adaptive MC method and the cone width can be expanded for a high
rate of acceptance or lowered for a low rate of acceptance.

Another powerful method used in this thesis is the constrained Monte-Carlo (CMC)
method which allows us to calculate the magnetic properties along a specific direction. This
method was proposed by Asselin et al. [59] in order to calculate the temperature dependence
of anisotropy for bulk and surfaces. This method involves to pick up a pair of spins where
the trial move described above acts on both spins. The CMC method implies several step as:

• first step is to randomly choose a primary spin Si and a compensation spin S j.

• in the second step a trial MC move is applied to the primary spin obtaining a new spin
S′

i.
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• in the third step the x and y components of the compensation spin are adjusted in order
to mantain the magnetisation length of x,y components as:

S′
jx = S jx +Six +S′

ix,

S′
jy = S jy +Siy +S′

iy (2.50)

• the fourth step consists in adjusting the z component,

S′
jz = sgn(S jz)

√
1−S′2

jx −S′2
jy (2.51)

If the value enclosed within the square root is negative the iteration stops and takes a
null move.

• In this step the new magnetisation is computed as:

M′
z = Mz +S′

iz +S′
jz −Siz −S jz. (2.52)

If |Mz| ≤ 0, stop and take null move. This step is followed by the computation of the
energy difference: ∆H = H ′−H

• in the seventh step we compute the acceptance probability, P:

P = min

[
1,

M′
z

Mz

S jz

S′jz
exp
(
−∆H

kBT

)]
. (2.53)

• in the last move the move is accepted with probability P or rejected as null move with
the probability 1−P.

This method proved to achieve the ergodicity and it has been tested successfully in reference
[59] by reproducing the temperature dependence of anisotropy L10 FePt. This allows to
obtain the reversal mechanism by using the Gaussian trial move and it will be used in our
investigations of finding the energy barrier for different magnetic systems.

2.5 Conclusion and further work

To summarise, in this chapter we have covered the fundamental theoretical concepts of
magnetism, particularly relating to ASD model. We also detailed the method we used
throughout this thesis finding Langevin dynamics a good approach to describe the thermal
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fluctuations of the magnetic particles at atomistic scale. We found that sLLG equation can
be written individually for each atom being solved within Stratonovich’s interpretation. Our
integration schemes proved to work reasonably giving good qualitative and quantitative
results. Another method described in this chapter is MC/CMC method which allows the
determination of the static properties of magnetic materials in an efficient way giving results
in good agreement with the experimental measurements.

As further work, a new method to solve the energy barrier and activation volume is under
the progress of developing consisting in a semi-analytical method by applying a constraint
using Lagrange multipliers[60] .





Chapter 3

Investigation model of inter-granular
exchange interaction

It is well known in micro-magnetism that two ferromagnets interact in such a way that each
one of them tries to align the other in its own direction. This is called inter-granular exchange
interaction with respect the micro-scale of the sizes. In this chapter, the interaction between
finite sized grains is studied with regard to understanding the dependence of the inter-granular
exchange on a series of factors such as the distance between the grains, temperature and the
quality of the isolating layer.

We studied CoPt grains with and without anisotropy in different cases which might occur
following the deposition of the magnetic material where inter-granular exchange interactions
can be detrimental for the recording process. An optimal separation between the grains needs
to be found during the sputtering process in order to increase the areal density depending
on the isolating layer which might be partially affected by the migration of the magnetic
atoms into the separation layer, leading to exchange coupling. This exchange can be used,
as part of the recording optimisation process, to give stability to the written bits against the
demagnetisation field. Using an atomistic spin model we reproduced an exponential decay
of the inter-granular exchange with thickness of the isolating layer for a tri-layer system
previously measured by Sokalski et al. [2]. In addition, a hexagonal distribution of CoPt
grains is studied in this chapter to understand which exchange model is more suitable to
depict the interaction between the magnetic grains. Here, we found a limitation of the simple
classical Heisenberg model for higher separations and a better description is provided by
adding a biquadratic term which is detailed later in the following.

In both cases, thickness dependence of the exchange interaction can be modeled with an
exponential power law but the angular dependence differs from direct exchange compared
with the indirect exchange. In other words, we distinguished two regimes where the exchange
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form can fall depending on the distance and doping density rate of the magnetic impurities
into the separation layer.

3.1 Introduction

The areal density of the magnetic grains can be increased in two ways: one is the reduction
of the grain sizes and, secondly is to reduce the separations between the grains. As shown
early in this thesis in the finite sized simulations, the sizes of the grains cannot be decreased
beyond a critical size where the grain can lose its magnetic properties affecting the recording
performance.

The challenge is to fabricate the recording media using the sputtering deposition method,
ideally to obtain an uniform arrangement of isolated grains. The deposition method implies
a growing process of the magnetic grains in such a way the grains do not touch each other.
To do that, a non-magnetic phase is necessary to be created by using a doping process with
non-magnetic elements which migrate to the boundary of the magnetic grains. Here, the
deposition conditions such as annealing temperatures and concentration of non-magnetic
elements dictate the magnetic features of the grains and the segregant layer. This has
been extensively demonstrated for a wide range of magnetic material depositions[61, 62],
particularly for FePt thin films where the annealing temperature can reduce the intergranular
spacing. Shao et al.[63] reported a strong dependence of the magnetic properties of FePt/Ag
thin films where both Ms and Hc increase with higher annealing temperatures. In addition to
this, reference [62] reports a decreased spacing between the FePt grains in combination with
Cu, Ag, and Au as direct effect of the annealing temperature.

The thickness of the segregant layer is observed to decrease the inter-granular exchange
energy following an exponential law. Sokalski and his co-workers [2] measured the coupling
energy density on separation thickness by doping CoPt with Chromium oxide. This is shown
in figure 3.1 where three different oxides have been measured giving a similar decrease with
the thickness of the doping layer following[64]:

σ = Aexp
(
−δox

B

)
+C (3.1)

where δox is the thickness of the oxide layer and A,B,C are some arbitrary fitting constants.
The difficulty is to find the theoretical support for this exponential law of the coupling

exchange decrease. It has been suggested that this can be attributed to the direct exchange
through "pinholes" detailed in references [65–67] caused by a magnetic disorder in the
segregant layer which gives rise to direct ferromagnetic coupling between the grains.
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Fig. 3.1 Measured coupling exchange energy at different thicknesses of the oxide layer for
different doping elements. The solid line stands for an exponential fitting function given by
the equation (3.1). Taken from reference [2].

Slonczewski [68] developed an indirect model of the exchange between two identical
ferromagnets separated by a non-magnetic tunneling barrier. His formalism is based on
quantum penetration of the energy barrier by calculating the density of states corresponding
to each different barrier heights. Besides the angular dependence of the Heisenberg exchange,
Slonczewski found an exponential decrease of the Heisenberg coupling with the barrier’s
height as J ≈ e−2kd , where k is the electron momentum and d is the length of the barrier
which might support the experimental results by Sokalski[2] and others [66, 69, 70].
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3.2 Heisenberg and biquadratic model of the exchange in-
teraction. Theory of the intergranular exchange.

A basic form of the exchange interaction energy is given by the Heisenberg form, often
referred to as bilinear variation. In references [71, 72] a thin film of dispersed particles is
modeled where the exchange between neighbouring particles i and j can be calculated as[71]:

E i j
exch =−Ni jJi jSi ·S j

=−Ni jJi j cos(θ), (3.2)

where Ni j is the number of particles in the contact area between (i, j) and θ is the angle
between the magnetisations of the pair of spins. In the classical model of micromagnetism
the exchange energy can be written in terms of angles θi, j which is always assumed to be
small[73]. Here, the small angles approximation can be used allowing equation (3.2) to be
written for coupled spins as:

E i j
exch ∝ JS ∑

neighbours
θ

2
i, j (3.3)

Experiments done by Rührig et al. [74] on Fe/Cr multilayers reveal unusual domain
formation which gives rise to perpendicular orientation of the Fe magnetisation with respect
to the Cr magnetisation. This can be explained by introducing a new higher order term of the
Heisenberg exchange form called biquadratic transforming equation (3.2) into [74]:

E i j = Ai j(1−mi ·m j)+Bi j[1− (mi ·m j)
2]

= Ai j[1− cos(θ)]︸ ︷︷ ︸
Bilinear

+Bi j[sin(θ)2]︸ ︷︷ ︸
Biquadratic

, (3.4)

where θ is the angle between magnetic vectors, Ai j and Bi j are the bilinear and biquadratic
exchange constants between the grains i and j. These constants are strongly dependent on the
separation distance between the layers giving two regimes of interactions. A short distance
will lead to a stronger Heisenberg form having an exponential decrease as shown by Sokalski
experiments whereas the biquadratic effect is more pronounced at higher distance, greater
than 1.5nm as shown in the reference [74] for this particular multilayer system.
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In addition to this, biquadratic exchange varies with the temperature demonstrated in the
experiments done by Gutierrez et al.[75] on Fe/Al/Fe tri-layer system. Their measurements
on orthogonal magnetic layers shows a power law decay of the intergranular exchange which
can be modeled with the following law:

Bi j = Bi j
0 (1−T/TC)

α (3.5)

For this 90◦ alignment an exponent of α = 2 is found giving a quadratic law as Bi j ∝

(1−T/TC)
2.

The existence of the biquadratic term can be related to three types of theoretical explana-
tions. First evidence is the spatial fluctuation of the spacer thickness in non-ideal specimens
detailed in reference [76]. Here, the appearance of the spin-wave fluctuations whose impact is
to favour perpendicular alignment of the moments. Another mechanism is determined by the
electronic structure of an ideal tri-layer system. This has been demonstrated by experiments
done on Fe/Al/Fe [75].

Slonczewski [77] proposed a theoretical demonstration of the biquadratic term using a
quantum derivation of the indirect exchange between localised spins. Within this model, we
assume a migration of the conduction electrons into the spacer layer where they mediate
the interaction between the ferromagnets. Hence, an indirect exchange such as RKKY
interaction occurs between the magnetic layers due to the concentration of the conduction
electrons in the isolating layer. This migration is likely due to the weak exchange energy of
the ferromagnets or spin currents.

For a system of two identical ferromagnets separated by a nonmagnetic layer with
thickness w shown in figure 3.2, a "loose" spin will possess a local-spin Hamiltonian given
by the vectorial sum of both exchange fields corresponding to each ferromagnet as[77]:

H = (H1 +H2) · êS, (3.6)

where êS is the direction of the spin, and H1,2 are the corresponding magnetic fields defined
via RKKY interaction as:

H1(z) =−J0
cos(2k f z)

z2 m1

H2(z) =−J0
cos[2k f (w− z)]

(w− z)2 m2, (3.7)

where m1,2 are the magnetisations vectors of both ferromagnets, J0 is a constant which
embeds the intrinsic magnetic properties and k f is the Fermi wave vector detailed later in
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Fig. 3.2 Schematic represantion of the cross section for two semi-infinite ferromagnets F1
and F2 with unit moments m1 and m2 separated by a non-magnetic spacer of thickness w.

RKKY chapter. The "loose" spin is situated between the magnetic layers at a distance of z
from the bottom one (F1) and w− z from the top one (F2). Here, the total exchange between
the magnets is expressed as:

H(θ) =
(
H2

1 +H2
2 +2H1H2 cos(θ)

)1/2
. (3.8)

Equation (3.8) will give rise to higher-order exchange of the intergranular exchange
similar to equation (3.4). The effect of the exchange interaction is given by the additive effect
of all spins placed between the ferromagnets. Moreover, the energy per spin at a specific
temperature is given by the following equation[77]:

f (T,θ) =−kBT ln
(

sinh[1+(2s)−1]H(θ)/kBT
sinh[H(θ)/2SkBT ]

)
, (3.9)

where s is the quantum spin number. Equation (3.9) is a fundamental equation for developing
a theory of inter-granular exchange on thermal fluctuations which can be verified by ASD
simulations.
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3.3 Tri-layer system

3.3.1 Model of the tri-layer system

In this section, we focus on a particular case of inter-granular exchange interaction in order
to reproduce the theoretical and experimental prediction done by Sokalski and Slonczewski
aiming to understand atomistically the effects at the nanoscale. To do this, we employed
the atomistic spin model described in the methods section in order to model two identical
ferromagnets separated by a dilute magnetic oxide layer as shown in figure 3.3. Unlike
ECC media, where two ferromagnets are coupled by a direct ferromagnetic coupling, in this
model the coupling is made through a non-magnetic oxide layer. To model the exchange
across the layer, we create a random distribution of magnetic moments in this space with a
ferromagnetic coupling. Hence, we have a disordered magnetic layer which weakly couples
the grains depending on the doping density known as magnetic impurities.

Fig. 3.3 A visualisation of the bilayer system made of two identical ferromagnets separated
by a dilute oxide layer with a doping concentration of 30% of magnetic atoms in this case.
The width and height of each ferromagnet are 5nm.

The approach of the simulations is similar to the calculations done by Evans et al.
presented in reference [78] where the exchange energy of the system has been investigated
as a function of the temperature and inter-layer thickness. In contrast with the Evans model,
we introduced the uniaxial anisotropy energy contribution into the general Hamiltonian of
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the system which is defined as:

H =−∑
i̸= j

Ji jSi ·S j −∑
i

ku(Sz
i )

2, (3.10)

where Ji j = 5.6×10−21 J/link is the exchange interaction between nearest neighbour site i
and j, ku = 5.9×10−23 J/atom is the uniaxial anisotropy constant which gives a macroscopic
anisotropy of 6.26×106 J/m3 which is closer to CoPt bulk anisotropy [32]. The atoms are
arranged in a FCC structure with an individual magnetic moment of µs = 1.44 µB/atom
giving a saturation magnetisation of 6×105 JT−1m−3 (A/m) and a lattice parameter a = 3.54
Å. All these atomistic parameters are summarized in the table 3.1 below.

Parameter value
µs 1.44 µB
Ji j 5.6×10−21J
ku 5.9×10−23 J/atom
TC 1280K

Table 3.1 Atomistic parameters used for the bilayer system which corresponds to CoPt with
an FCC crystal structure. The lattice constant of this structure is a = 3.54Å.

As shown in equation (3.10), we assume the atoms interact directly through the exchange
interaction without taking into account the long-range magnetostatic interaction or the indirect
exchange. The approach of calculating the exchange energy per site is the nearest neighbours
(NN) approximation which preserves the magnetic properties of the exchange interaction.

Although we have a direct exchange between the atoms, the inter-layer coupling is done
by direct exchange coupling between CoPt atoms embedded in the diluted layer as shown
in figure 3.3 where the density of the atoms can be controlled by randomly removing the
desired fraction of atoms from initial FCC crystal structure. In other words, the model of
the inter-layer of the isolating layer is to build a similar grain as CoPt grains but instead of
having a full FCC crystal structure we remove a significant number of atoms which can be
controlled leaving a disordered lattice with vacancies at some atomic sites. This will cause a
broken symmetry of the exchange interactions, giving rise to weak coupling depending on
the number of missing atoms and the thickness of the inter-layer.

We note that the magnetic impurities have the same properties as the atoms contained by
the grains whose magnetic properties have been summarized in the table 3.1.
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3.3.2 Calculations of inter-granular exchange of tri-layer system

In the following, we present some calculations done to determine the effective inter-granular
exchange between two grains presented in the previous subchapter. The method is similar
to that presented in reference [78] which applies a constraint to the bottom grain aiming to
retain the domain wall and to vary the axis of the magnetisation for the second ferromagnet.

The calculations are performed using the hybrid-CMC method presented in the methods
chapter which allows to apply a constraint force only to a specific grain whereas the others
are set to evolve freely. The magnetization of the top ferromagnet is varied sequantally from
+z-axis to −z-axis through 180◦ with a step of 5◦. At each constraint angle, 10,000 CMC
steps are performed to equilibrate the system and another 10,000 CMC are performed to
calculate the average properties of the system.

The main interest of these simulations is to calculate the exchange energy of a grain
during the rotation being in an exchange interaction with its neighbour. Therefore, the bottom
layer is considered fixed throughout the switching process of the top layer while the coupling
layer is free to respond as the angle of the top layer is varied. We performed, therefore,
a series of simulations where the thickness of the interface layer varies from 0.25nm to
2.5nm this being the range where the effective exchange varies the most. A typical set
of calculated torque curves are shown in figure 3.4 for three different thicknesses of the
inter-layer. Here, the y-component of the magnetisation is constrained to be zero throughout
the switching mechanism resulting in a polar angle θ dependence only. This will lead to the
maximum amplitude on y-component of the torque plotted in figure 3.4 where the simulation
temperature is 100K. The torque is normalised to the contact area between the layers.

In the simulations performed by Evans et al. [78] there is a strong dependence of the
torque on the doping density with a strong influence on the exchange energy scaling. Different
doping densities can drastically affect the shape of the dependence of coupling energy on
inter-layer thickness given by the Sokalski law. In our simulations, we fixed the concentration
of the doping at 30% aiming to find a typical angular dependence of the exchange energy.

As defined, the torque can be calculated as the partial derivative of the Hamiltonian with
respect to polar angle θ as:

T =−∂H

∂θ

=−Asin(θ)−2Bsin(θ)cos(θ), (3.11)

where A represents the magnitude of the exchange energy contribution and B is the anisotropy
contribution. This fitting expression works well for higher separations or weak coupling
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Fig. 3.4 In this figure are plotted calculated restoring torque as a function of the angle between
magnetic layers for different inter-layer thicknesses. The simulations are performed at 100K
and the doping density of the interlayer is 30%.The solid lines stand for the fit using equation
3.11.

between the layers given by low impurity doping. However, for short distance between
ferromagnets this expression breaks down due to a non-uniform configuration of the spins in
the top layer at high polar angles.

The non-uniform configuration of the spins leads to nucleation at the interface between
the inter-layer and the top layer where the domain wall formation can be observed in figure
3.5 (a) compared with figure 3.5(b). The spin direction is plotted as a function of the system
height during the switching mechanism of the top layer as presented in figure 3.5 for a
particular inter-layer thickness of 0.15nm shown in figure 3.5(a), respectively 2.5 nm shown
in figure 3.5(b). The reduced magnetisation is calculated as Mz/Ms = ∑

N
i Si

z where N = 450
is the total number of atoms in a single atomic layer (mono-layer) and Si

z is the z-component
of the spin direction. Within the coupling layer (inter-layer), N is a statistical variable but
can be approximated as 30% of a ferromagnetic atomic layer if the doping constant is set at
30%. A non-uniform direction of the spins can be observed within the top layer especially at
higher angles of the magnetisation and low thickness of the inter-layer, where the anti-parallel
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(b)

Fig. 3.5 Profile of the magnetisation by averaging the z-component of spins direction for each
atomic layer as Mz/Ms = ∑

N
i Si

z(N = 450 atoms per atomic layer) as a function of height of
the tri-layer system during the switching mechanism of the top ferromagnet. Each magnetic
layer is 5nm height and the inter-layer has a variable dimension, in these cases (a) 0.15nm
and (b) 2.25nm respectively, with a concentration of 30% of magnetic impurities.

orientation of magnetisation vectors effect the energy in such a way that domain wall appears
induced by the anisotropy of the bottom grain through the exchange interaction.

Clearly, the expression for the torque curve expressed in equation (3.11) cannot be
applicable for strong exchange interaction caused by the small separation. This has great
importance in choosing the deposition parameters in order to obtain an optimal distance
between the grains.
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In non-anisotropy simulations, Evans et al. [78] found the bilinear fit appropriate to
describe the angular dependence of the torque. However, the contribution of the anisotropy
has an impact on the angular dependence which can be described by the additional term
corresponding to the anisotropy expressed in equation (3.10). This is very similar to a
biquadratic expression due to the cos2 dependence but no evidence of biquadratic exchange
can be found in both cases: anisotropic and non-anisotropic. Therefore, we fit the free energy
curves using equation (3.10) in order to find the strength of the exchange energy. Figure 3.6
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Fig. 3.6 This graph shows the calculated dependence of the effective exchange coupling
energy as a function of the inter-layer thickness for a doping density of 30% at 100K. The
solid line represents the fit using the Sokalski law given by equation 3.12.

shows the dependence of the effective exchange coupling as a function of the thickness of
the inter-layer. The simulation points have been fitted using the decay law of Sokalski given
by equation:

J(x) = J0e−x/a, (3.12)

where J0 and a are some arbitrary fitting parameters. For this particular case of 30% doping
density, we found a value for J0 = 13.01×10−21 mJ/m2 and a = 1.85nm−1. These fitting
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parameters can vary significantly with the simulation temperature and the doping density.
We observed a good agreement of our simulations with experimental measurements done
by Sokalski. We note that the angular dependence is well-fitted by the bilinear term only.
However, the model results consider only two interacting grains. The more complicated situ-
ation of multiple interacting grains is considered in the following section where a significant
biquadratic contribution is found.

3.4 Multi-grain system simulations

3.4.1 Model of the hexagonal distribution of CoPt grains

In this section, we propose a more complex model of the granular media to be investigated
by creating a structure of seven grains distributed into a hexagonal shape as shown in figure
3.7. Each grain has a regular hexagonal prism shape with a diameter of 5nm and 5nm height
separated by a non-magnetic layer in the same manner as in the previous section allowing
periodic boundary condition in the z-direction in order to avoid any surface effects. The
atomistic parameters of the grains are the same as in the tri-layer system summarized in
Table 3.1 with a saturation magnetisation of Ms = 6×105 A/m.

Fig. 3.7 A typical configuration system of the hexagonal distribution of the grains with an
inter-layer doping constant of 30%. Each grain is hexagonal-based with a corner-to-corner
diameter of 5nm and 5nm height.
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In this model, we assume a x-z plane rotation of the central grain axis keeping a zero
y-component of the magnetisation while the other grains are constrained to remain unreversed
throughout the rotation process. Our aim is to find out how neighbours affect this process.
Since the distance between the grains and the doping density are important in the decoupling
process we perform a systematic investigation by varying the separation and the doping
density. In reference [79] is demonstrated experimentally that a grain boundary width around
1nm will lead to a high-density of perpendicular media maintaining high performance of the
recording process. Therefore, we set the separation to vary between 0.5nm and 1nm.

3.4.2 Angular dependence of torque

In the following, we present some results of the hexagonal system by computing the torque
during the rotation process of the central grain. In the first instance, we are interested to
see the exchange energy’s behaviour only. Hence, we removed the anisotropy term letting
the exchange interaction to be dominant. Although in reality the grain size and the spatial
distribution randomly vary, generally being modelled by a Voronoi structure, in this model
we assume 7 identical grains placed in such a way they provide a high symmetry as shown in
figure 3.8. Despite the high symmetry, at specific polar angles θ different symmetry breaks
may occur in the spin configurations.

m1
m6m0

z

𝜃
z

x

y

Fig. 3.8 Schematic illustration of a typical rotation process of the central grain. The rotation
of the magnetisation axis occurs in x− z plane.
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We proceed in a similar way as in the previous subchapter, to find the angular depen-
dence of the torque by performing 10,000 CMC steps to equilibrate and another 10,000 for
averaging the magnetic properties at each angle step. Figure 3.9 shows the calculated angular
dependence of the central grain for different thicknesses of the inter-layer (a) 0.50nm, (b)
0.75nm and (c) 1.00nm at 200K, 400K, respectively 600K . The torque is normalised to the
contact area of the grains which is the sum the six side faces of the grain as 6×5×2.5nm3.
In addition to the separation between the grains, we are interested how the temperature
decreases the inter-granular exchange by varying the temperature up to the Curie point.

The angular dependence of the torque can be described by two models of the exchange.
The first one is given by the bilinear form known as Heisenberg equation expressed in
equation 3.2. The bilinear term will give a sin(θ) dependence whereas the second model
given by the biquadratic model comes with an additional quadratic term from the partial
derivative of the biquadratic exchange energy:

Ty =−∂H

∂θ

=−J1 sin(θ)−2J2 sin(θ)cos(θ), (3.13)

where J1 is the strength of the bilinear term and J2 the strength of the biquadratic term.
In figure 3.9 both expressions for the inter-granular exchange interaction have been

used for the fitting of the torque angular dependence for the multi-grain system. At smaller
separations between the grains and low temperatures, where the coupling is stronger, the peak
of the torque is slightly shifted from π/2 to higher angles. The Heisenberg model predicts
the minimum at π/2, whereas the biquadratic model gives a more accurate fit according to
our results presented in figure 3.9 for low temperatures such as 200K represented by the
points with square shape.

Overall, the inclusion of the biquadratic term gives the best fit, although the fit is poor
for the lowest inter-granular layer thickness shown in figure 3.9(a). As it was discussed in
the introduction the origin of biquadratic exchange energy can have multiple reasons but in
this computational model, we relate this behaviour to inhomogeneous rotation of the spins
caused by a random distribution of the impurities in the inter-layer leading to a dispersion of
the local exchange.
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Fig. 3.9 The angular dependence of the torque acting on the central grain for three different
separations of the inter-layer (a) 0.50nm, (b) 0.75 nm, and (c) 1.00nm respectively. The
doping density of the inter-layer is set at 20%. The dashed line is the fit using Heisenberg
model expressed in equation (3.2) whereas the solid lines represent the fit using biquadratic
exchange given by the equation (3.13).

3.4.3 Dependence of inter-granular exchange on separation, doping
rate and temperature

The combination of biquadratic and bilinear terms expressed in equation (3.13) describes very
well the angular dependence of the torque in the low density regime and high temperatures
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above 300K of interest for HAMR. To have a clear dependence of the effective exchange
energy on the temperature at different separations and densities in low regime, we extracted
the bilinear exchange constant J1 and the biquadratic constant J2 through the fitting of the
torque curves using equation (3.13). Figure 3.10 shows the temperature dependence of the
effective exchange which can be expressed in terms of exchange field using

Hexch = Jeff/M0
s V, (3.14)

where Jeff is the effective exchange constant normalised to the contact area of the grains A
and V is the volume. The saturation magnetisation is the same as in the tri-layer system
M0

s = 6×105 A/m.
Although we have a higher-order exchange, there is a clear exponential decay of the

effective exchange with the temperature for both bilinear and biquadratic exchange constants
being consistent with the Slonczewski model for the biquadratic and the calculations of
Evans et al. for the bilinear term. Both bilinear and biquadratic exchange constants follow
the power law shown in equation (3.5) but we noticed a faster decay of the biquadratic term
with the temperature. In addition to this, we found a scaling of the exponent, α , with the
density and the separation distance between the grains suggested by the different shape of
the dependences shown in figure 3.10.

By taking into account the variation of the exponent with density and temperature the
power law of the effective exchange must be re-written as:

Jeff(T,d,s) = J0

(
1− T

TC

)β (d,s)

, (3.15)

where d is the density of the inter-layer magnetic impurities and s is the separation between
the grains. Now the effective exchange is a three-variable function. Besides the thermal
exponential reduction, the separation and density also play a role in the strength of the
exchange. To show this, we plotted the dependence of the effective exchange energy as a
function of the inter-layer thickness shown in figure 3.11.

We studied both cases with and without anisotropy given by the solid and empty symbols
respectively. In both cases, we noted a similar decrease of the exchange energy with an
increased inter-layer thickness at different densities. However, in the low regime of density
such as 20% for example, we identify a difference of the exchange energy with and without
anisotropy. This is related to a preferential direction of the spins to align, however at higher
concentration of the impurities, we cannot identify a notable difference between these two
cases. These calculated points have been plotted using an exponential law similar with
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Fig. 3.10 In this graph is plotted the temperature dependence of the effective inter-granular
exchange for three different separation distances (a) 0.5nm, (b) 0.75nm, and (c) 1.00nm at
lower density of the magnetic impurities. The bilinear exchange constant J1 is shown in
filled points and the biquadratic J2 is shown in open points. J1 points have been fitted using
equation (3.15)

Sokalski law expressed in following equation:

Jeff = J0e−k/s, (3.16)

where k is a fitting constant and s is the separation between the grains. Therefore, we are
entitled to postulate based on our calculation that the exchange energy strongly depends on
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Fig. 3.11 In this graph is plotted the dependence of the inter-granular exchange as a function
of the inter-layer thickness at 300K. The open and closed points represent with and without
anisotropy values. The density varies between 20% and 50% whereas the temperature is
fixed at 300K. The solid lines shows the fit using an exponential law given in equation (3.16).

the temperature, density, and separation. By combining equation (3.15) with equation (3.16)
we can write a unified equation for the inter-granular exchange energy as:

Jeff(T,d,s) = J0

(
1− T

TC

)β (d,s)

e−
k(d)

s . (3.17)

In the following, we simulate a scenario where the central grain is at the boundary
between two written bits of information, by setting 3 neighbours aligned to +z direction and
the other 3 switched to −z direction as shown in the inset of figure 3.12. In this scenario the
bilinear term of the exchange is influenced by two terms which are in opposition where the
biquadratic term is additive. Hence, the energy can be expressed similarly to equation (3.13)
where J1 = Jup

1 −Jdown
1 is a result of the difference between the exchange with the neighbours

aligned "up" and the exchange with the switched neighbours. Again, the torque curves
are fitted using equation (3.13) giving accurate results for low densities. At higher values
of density the fit does not match exactly with the calculated points but it provides a good
qualitative description of the model. A notable effect of high density is the non-minimum
energy at θ = π resulting in an antisymmetric curve of the free energy. This explains
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local dispersion of exchange coupling analoguous to the effect described by Slonczewski in
interface roughness effects.
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Fig. 3.12 The angular dependence of the free energy shown in panel (a) and the torque shown
in panel (b) acting on central grain when it has 3 neighbours constrained with mz =+1 and 3
neighbours with mz =−1 for 15%, 20%, and 25% at 300K.

3.5 Conclusions and further work

To summarise, in this chapter we investigated in detail the inter-granular exchange energy
by employing the Atomistic Spin model using CMC simulations. Our results for a tri-
layer system are in strong agreement with the experimental results done by Sokalski et al.,
demonstrating again an exponential decrease with the separation between the grains. This
has been also demonstrated by Evans et al. for anisotropic simulations but the exchange is
affected in a similar way in the anisotropy case despite the alignment preference given by the
anisotropy field.

In a more complex system the macroscopic Heisenberg exchange model is not sufficient
to describe the angular variation of torque, this being demonstrated atomistically in our
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simulations. A theoretical and experimental support for higher order exchange is given by
Slonczewski by introducing an additional higher order term in the exchange form of the
energy for multi-layers system called biquadratic exchange term. In fact, the Slonczewski
model is an extended Heisenberg model with an additional higher order term, denoted by the
biquadratic term. We identified this term in our calculations shifting the angular dependence
of the torque curves.

Further simulations can be performed to investigate a more complex structure such as
an arrangement of five ECC media grains illustrated in figure 3.13. We consider the ECC
media grain as an improvement of CoPt grain used for current simulations, but this comes
with additional effects such as different modes of nucleations which might be affected by the
inter-granular exchange. The biquadratic and the nucleation effects can effect not only the
recording process performance but also the long-term stability. The way that these can affect
the recording process is unknown for the moment but investigation of energy barrier would
give more information about the long-term stability.

Fig. 3.13 A visualisation of a complex structure of 5 ECC grains coupled by a non-magnetic
layer with a doping density of 15%.





Chapter 4

Atomistic simulations of
exchange-coupled composite (ECC)
media

In the previous chapter the exchange interaction between magnetic grains has been investi-
gated showing the dependence of the inter-granular exchange in different parameters. The
aim of the current chapter is to carry out a detailed study of exchange interactions within a
new design of the grains for recording media. Here, a combination of two magnetic phases
linked by a ferromagnetic coupling generically called exchange coupled composite media
will be simulated in order to understand the role of the exchange within the layers and the
intralayer coupling. A particular aspect of the exchange has been observed in exchange-
coupled composites (ECC) specifically exchange spring behaviour has been investigated
as a function of temperature, applied field strength, exchange coupling at the interface and
the damping constant. We report a faster decrease of the energy barrier of ECC media
than previous theoretical prediction which might be related to the nucleation which strongly
depends on the static properties of the materials such as thickness, anisotropy energy and
exchange stiffness and also the characteristics which determine the dynamics such as the
damping constant, temperature and others. We found an anomalous damping dependence of
the switching time for higher regime damping of the soft phase as a result of the nucleation
which is pinned at the interface. However, at higher values of the applied field, the switching
time dependence is more consistent to theoretical predictions.
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4.1 Introduction

Magnetic recording has been extensively studied in order to increase the areal density of
the grains in the last few decades by reducing the grain size. This problem becomes more
challenging as it is necessary to maintain a high signal-to-noise ratio (SNR) where the grain
dimensions effect the strength of the SNR according to equation (4.1) as shown in reference
[80]

S/N ≈ 1[
< D >3

(
1+
(

σ

D

)2
)] , (4.1)

where D is the grain size and σ is the grain size distribution. Another important aspect of
recording is related to thermal stability which can be achieved with high magneto-crystalline
anisotropy which implies a larger magnetic field to switch the magnetisation. This has been
formalized in the magnetic trilemma according to Richter et al. [81]. Several technologies
have been proposed to solve the trilemma of magnetic recording such as patterned media[82]
and heat assisted magnetic recording (HAMR) [83] with a new perspective of media design.
In addition, by using ECC media design one can anticipate good performance beyond 1Tb/in2

as it is reported in reference [84].
HAMR uses a laser pulse to heat locally the grain in order to reduce the magnetic

anisotropy thereby allowing the magnetisation to switch ensuring optimal thermal stability
after the system is cooled back to ambient temperature. This approach presents some thermal
limits suggested by Suess et al. [85] which consists in thermal errors induced by heating
known as thermal jitter. This problem has been previously theoretically studied by Evans et
al. [86] who identified the quadrilemma of heat assisted magnetic recording to understand
how temperature affects the writing process detailed in the introduction chapter of this thesis.

A solution to this is a combination of hard and soft magnetic phase proposed by Suess
and Schrefl [87] with different Curie temperatures in order to improve the writing process by
avoiding thermal errors which might occur. Here, the relation which describes the rate of
errors during the writing process can be expressed as:

BER = exp
(
−2JS(Twr)V Hwr

kBTwr

)
, (4.2)

where Twr and Hwr are the temperature and the strength of the magnetic field during the
recording process. JS is the magnetic polarization which also depends on temperature and
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Curie temperature as follows:

JS(T ) = JS(T0)

√[
1−
(

T
TC

)α]β

, (4.3)

where JS(T0) = is the polarization at zero Kelvin and TC is the Curie temperature of the
magnetic material. Equation (4.2) shows an exponential decrease of the bit errors rate with
higher writing temperatures, where an increased polarization JS(Twr) and stronger fields Hwr

will result in a more accurate writing process. Therefore, high TC materials are required
for this process in order to increase the polarization at elevated temperatures according
to equation (4.3). L10 FePt, however cannot offer sufficient saturation magnetisation and
high Curie temperature. Consequently, an additional soft phase such as Fe is preferred
to counterbalance the MS needed and to increase the average magnetic polarization of the
composite.

Another major benefit of ECC media is represented by the exchange spring effect [88, 89]
which allows to reduce the writing field according to the following equation [90]:

Hwr =
Ku,hard · thard +Ku,soft · tsoft

MS,hard · thard +MS,soft · tsoft
, (4.4)

where Ku,hard and Ku,soft are the perpendicular anisotropy of hard, respectively soft phase,
MS is the saturation corresponding to each phase, and thard, tsoft are the thickness of hard/soft
layers. Due to a small anisotropy of the soft layer (Ku,soft ≪ Ku,hard), equation (4.4) can be
approximated with:

Hwr ≈
Ku,hard · thard

MS,hard · thard +MS,soft · tsoft
. (4.5)

Equation (4.5) shows a clear reduction of the field required for writing process. This
represents an ideal case when the nucleation effects do not occur and it can be achieved
with graded media. However, the writing field strongly depends on the nucleation field. In
reference [91] is shown that at specific thicknesses of the soft layer the nucleation is formed
in the soft phase, followed by a propagation towards the interface where is pinned. The
equation which predicts the writing field is expressed as [91]:

Hwr = max(Hpin,Hn), (4.6)
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where Hpin and Hn are the pinning field, respectively nucleation field. Here, an optimal
thickness of the soft layer should be equal to hard phase thickness which reduces the writing
field by a factor of 5.

On following, we employed the atomistic spin model in order to simulate the behaviour
of the exchange spring within ECC media. Unlike micromagnetic models, the atomistic
model confers the possibility to understand different behaviours of the exchange spring on
different parameters such as temperature and damping constant of the materials by simulating
the magnetisation at atomistic scale.

4.2 Atomistic properties of ECC media

4.2.1 Theoretical Fe/FePt bilayer model

In this section we present an atomistic model of a new design proposed for heat assisted
magnetic recording (HAMR) in order to extend the thermodynamic limits of recording
media. A bi-layer system which comprises a hard magnetic phase such as FePt with large
perpendicular anisotropy linked by ferromagnetic exchange to an Fe phase with high MS.

H =−∑
i, j

JFe
i j SFe

i ·SFe
j −∑

i
kFe

u (SFe
iz )

2

−∑
i, j

JFePt
i j SFePt

i ·SFePt
j −∑

i
kFePt

u (SFePt
iz )2

−∑
i, j

Jint
i j SFe

i ·SFePt
j −∑

i
µ0µiSi ·Happ. (4.7)

The general form of the Hamiltonian can be seen in equation (4.7) which arises from an
extended Heisenberg Hamiltonian excluding the magnetostatic energy since the behaviour
of the system is dominated by the anisotropy. This includes six terms where three of them
represents the inter-layer and intra-layer exchange energies. The other two represent the
anisotropy energy contribution from Fe and FePt and the last term corresponds to the Zeeman
energy in the presence of an external magnetic field.

In equation (4.7) the spins are represented as unit vectors, Si with the magnitude of the
magnetic moment given by µi and µ0 is the permeability of free space. Ji j represents the
exchange coupling which is restricted to the nearest neighbours in order to speed up the
calculations. Here, the spin index i varies between 1 and N-total number of the spins and j
varies between 1 and total number of NN which are interacting with any given spin i.
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Parameter Fe FePt

Ji j 7.05×10−21 J/link 4.5×10−21 J/link

ku 5.25×10−25 J 2.2×10−22 J

µs 2.22 µB 1.9 µB

a 3.249Å 3.249Å

Lattice bcc bcc

Jint
i j 1.5×10−21 J

Table 4.1 Atomistic parameters of Fe and FePt in both cases isolated and interacting through
the Ji j interface.

We distinguish three types of exchange couplings: JFe
i j which is the exchange constant

between Fe atoms, JFePt
i j representing the exchange constant between hybrid FePt atoms

which represents a single type of atoms which combines both properties of Fe and Pt,
respectively Jint

i j -the exchange between Fe and hybrid FePt atoms at the interface. Most of
the parameters come from experimental results and first principle calculations summarized
in Table 4.1. For Fe the exchange value is JFe

i j = 7.05×10−21 J [92] which corresponds
to high TC of 1050K close to experiment [93] whereas for FePt the exchange constant is
JFePt

i j = 4.5×10−21 J. The interfacial exchange can vary depending on the ferromagnetic
nature of the interfacial layer. In this model we consider a direct coupling between the hybrid
FePt atoms and Fe atoms.

The magnetic moment of Fe is taken as 2.2 µB/atom which gives a macroscopic value
of MS of 1184emu/cc and FePt has been investigated by Aas et al [92] using ab-initio
calculations, finding an effective Fe moment of 2.86 µB/atom and 0.36 µB/atom for Pt for
bulk value. In this chapter the sizes of the simulated grain are relatively small where the
magnitude of Fe moment drops substantially at the margins or at the interface according
to first principle calculations, therefore we restricted FePt moments at 1.9 µB/atom which
corresponds to a macroscopic saturation of 1024emu/cc.

In reference [94] it is found that the large anisotropy of FePt (K ≈ 107 erg/cc [95]) arises
from the hybridization of the Fe and Pt orbitals. Mryasov et al. proposed a spin Hamiltonian
which incorporates long-range exchange interactions and anisotropy contributions from
single- and two-ion terms. For computational efficiency here we use an equivalent nearest
neighbor exchange and a single ion uniaxial form for the anisotropy of FePt with an atomistic
anisotropy constant of kFePt

u = 2.2×10−22 J and kFe
u = 5.65×10−25 J for Fe arranged in a

body-centred cubic (BCC) structure with a lattice parameter equal to 3.249 Å for FePt.
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Fig. 4.1 A 3D image of exchange-coupled composite (ECC) media. Figure (a) shows a profile
picture of the grain which comprises two magnetic phases suggested by different colors. The
magenta color on the bottom of the grain represents FePt with 5nm height and the yellow
color represents the soft Fe phase. On image (b) it is illustrated a top view of the ECC grain.

Figure 4.1 illustrates a 3D picture of the exchange composite having a cylindrical geom-
etry. This has been set at 10nm height with a basal diameter of 5nm. The magenta color
indicates the hard phase (FePt) and yellow the soft phase (Fe). The crystal order of both
phases is (BCC) with a separation distance of 3.249Å giving 185 atoms per each mono layer.

4.2.2 Equilibrium properties of ECC media

In this section we simulated the fundamental magnetic properties of ECC media by using
Monte-Carlo and Constrained Monte-Carlo methods described in the previous chapter.
We started to investigate the dependence of spontaneous magnetisation of the composite
on temperature. Spontaneous magnetisation of ECC media at certain temperature has a
significant importance in simulations, particularly the shape of dependence MS vs. T . The
simplest model which describes this dependence is the classical fit expression M(T ) =
(1−T/TC)

β where β = 1/3 is the classical exponent. This expression works reasonably
well for many magnetic materials demonstrated in reference [96]. However, not all materials
can be described by this equation, Fe for example which is in our consideration for ECC
design. Measurements of the magnetisation of Fe show a difference comparing with classical
Heisenberg function, thus a new function was proposed by Kuz’min [97] expressed as:

M(T )/M0 =

[
1− s

(
T
TC

)3/2

− (1− s)
(

T
TC

)p
]β

, (4.8)
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where M0 is the saturation magnetisation at zero Kelvin, s and p are arbitrary fitting param-
eters. For most materials it was found that p = 5/2 apart from Fe. Both the classical and
Kuz’min functions give the correct form of M(T ) for wide range of materials but unlike
classical Kuz’min gives a correct shape of the dependence. Evans et al. [3] demonstrated that
equation (4.8) can be approximated with equation (4.9) in order to reproduce the experimental
curve of M(T ).

M(T ) = M0 [1− (T/TC)
α ]β (4.9)

where α can be extracted after fitting the experimental results. This simplified function can
ensure a correct form of M(T ). In our simulations this new function has been implemented
by rescaling the temperature using α from experiment as:

Tsim

TC
=

(
Texp

TC

)α

(4.10)

This will result in a rescaling of the magnetisation length in a such way that it will be the same
as in experiment for a certain value of simulation temperature. In other words, for a specific
temeprature in experiment Texp the simulation will use a rescaled temperature according to
equation (4.10). In order to construct a reliable model of the temperature dependence for
Fe we introduce figure 4.2 from reference [3] where the magnetisation has been calculated
using Monte-Carlo calculations and averaging 20,000 integration steps per each simulation
point on the graph.

In figure 4.2 we distinguish two cases of temperature simulation: first corresponding to
classical model where α = 1. The dark points show the simulated points of magnetisation
whereas the line is the fit following equation (4.9) when α = 1.0. The second case corre-
sponds to the rescaled temperature according to equation (4.10) where the solid line is the
experimental data fit and the triangles represents the simulated values of the magnetisation.
The α for Fe is found to be 2.8 for Fe after the fit of the experiment. A discrepancy of the
magnetisation is found between these two cases particularly at conventional temperatures
where HAMR technology works. Therefore, this rescaling function will be used in our
further simulations both for equilibrium properties and dynamics of the ECC media. FePt on
the other hand is more close to classical but a factor of α = 1.5 will be applied in order to
get closer to experiment[98].

Figure 4.3 shows simulated M(T ) curves for Fe, and FePt respetively using the same
approach as in figure 4.2 by averaging 10,000 Monte-Carlo steps per each simulated point.
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Fig. 4.2 Temperature-dependent magnetisation for Fe. The dark line represents the fit for the
classical case when α = 1 whereas the light line is the fit using equation for the experimental
results. The light triangles represent the simulated data after the rescaling law was applied.
The experimental fitting parameter α is found to be 2.86. This graph has been taken from
Evans et al. [3].

Both layers have been simulated in interaction coupled by a ferromagnetic exchange coupling
of Jint = 3×10−21 J with the same parameters presented in table 4.1. We obtained a similar
dependence as in figure 4.2 for Fe. The Curie temperature has been extracted by fitting the
simulation points using equation (4.9) giving a Curie temperature value for Fe of 1050K and
700K for FePt which are in quantitative agreement with experimental measurements which
validates the model for calculations at the atomistic scale.

We can now proceed to calculate static and dynamic properties using the atomistic model.
First we investigate the energy barrier of the ECC medium, and its temperature dependence
using the constrained MC model. Due to the constraint the magnetisation is out of equilibrium
resulting in a torque. By definition the torque can be calculated as a cross product between
the magnetisation and the effective magnetic field as:

T =−µ
i
s ∑

i
Si ×Hi

eff. (4.11)

First, we need to investigate the torque energy of the composite during a rotation of the
magnetisation axis of 180◦ from aligned spins on easy axis to anti-parallel state.
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Fig. 4.3 In this graph is plotted the temperature-dependent magnetisation for Fe and FePt.
The fit is represented by the solid lines using the equation: m(T ) = [1− (T/TC)

α ]β according
to equation (4.9). After the fit a value of Curie temperature of 1050 K for Fe and 700 for
FePt have been extracted. The experimental exponent α is 2.8 for Fe and 1.5 for FePt.

For analysis of the numerical data, it is useful to have a simple analytical benchmark for
the torque assuming coherent rotation. Deviations from the simplified approach will indicate
the onset of non-uniform rotation. Such an expression can be derived from the equation of
the total energy of the system expressed in equation (4.7) as:

|T |=−dHECC

dθ
, (4.12)

where θ is the polar angle of the magnetisation with respect to the easy axis. HECC is
the hamiltonian of ECC media expressed in equation (4.7). Hence, equation (4.12) can be
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expanded as:

|T |= d
dθ

∑
i, j

JFe
i j SFe

i ·SFe
j +∑

i, j
JFePt

i j SFePt
i ·SFePt

j +∑
i, j

Jint
i j SFe

i ·SFePt
j︸ ︷︷ ︸

Hex

+

d
dθ

∑
i

kFe
u (SFe

iz )
2 +∑

i
kFePt

u (SFePt
iz )2

︸ ︷︷ ︸
Hani

+∑
i

µ0µiSi ·Happ

 (4.13)

Since H Fe
ani ≪ H FePt

ani this can be neglected in the total torque. It is possible that under
certain circumstances a domain wall can be introduced, which is not taken into account in
the current analysis. By developing equation (4.13) for an external magnetic field along +z
direction, we can obtain following fit expression for the torque curve as:

|T (θi)|= Aex(θi)+
d

dθi

[
∑

i
kFePt

u (SFePt
i )2 cos(θi)

2 +∑
i

µ0µiSi ·Happ cos(θi)

]
= Aex(θi)−2∑

i
kFePt

u (SFePt
i )2 sin(θi)cos(θi)+∑

i
µ0µiSi ·Happ sin(θi). (4.14)

We can be identify two types of rotation: first when the rotation is coherent without
any nucleation or domain wall formation during the reversal process and the second when
nucleation or domain wall can occur. Within coherent rotation the expression of torque can
be simplified due to a non variation of exchange term Aex with angle as long all the spins
are parallel to magnetisation axis (θi−1 = θi = θi+1 = θ). Here, the exchange term can be
approximated with a constant and the torque equation can be approximated with:

|T (θ)|= A+K sin(2θ)+H sin(θ). (4.15)

Equation (4.15) is consistent with Stoner-Wohlfarth (SW) [99] model taking in account the
contribution from the uniaxial anisotropy and the applied field. With this theoretical insight
in reversal process we performed a series of Constrained Monte-Carlo simulations aiming to
calculate the torque energy as a function of the polar angle. The approach is to vary the polar
angle of the both layers simultaneously from 0◦ where all spins are aligned to easy axis on
+z direction to 180◦ where the spins are oriented anti-parallel to easy axis. We performed
100,000 CMC steps to average the magnetic properties at each value of the angle with an
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increment angle step of 5◦ and keeping fixed the azimuthal angle φ = 0◦. Hence, the torque
has a maximum on y-component due to in-plane rotation. For simplicity we will consider
|T |= Ty for the further numerical integration prior to find the energy barrier of the system.
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Fig. 4.4 In this graph is plotted the torque energy Ty as a function of the polar angle θ at 50K,
100K, and 300K respectively. The applied field is oriented anti-parallel with easy axis and
vary from 0T to 5T. The solid lines stand for the fitting using equation (4.15).

In figure 4.4 is plotted the calculated y-component of the torque at each polar angle θ .
This shows a perfect agreement with equation (4.15) at lower temperatures independently on
the strength of the applied field which denotes a coherent rotation of the spins. Therefore, the
composite behaves similarly with SW particle for zero Kelvin while high temperatures break
this agreement demonstrated by the solid lines which stand for the fitting following equation
(4.15). Figure 4.4 shows an inconsistency of the model for elevated temperatures as the
nucleation might occur due to the spin fluctuations. The applied field plays a role in shifting
the maximum of the torque for each simulation temperature determining an asymmetric
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torque curve with an increased magnetic field. This has been demonstrated in figure 4.4 (d)
comparing with the case of zero field (a).

As an evidence of different mechanisms of rotation depending on temperature, figure
4.5 shows the layer-resolved magnetisation at any given value of θ . Here, the magnetisation
of each atomic layer has been plotted as a function number of atomic layer. Our model of
ECC media contains 60 layers where the first 30 are identified as FePt layers and the layers
between 30-60 are Fe. Each magnetisation layer is a magnetisation sum of 186 atoms, but
there is a discrepancy between saturations of Fe and FePt layers due to different atomic
moments for these two types of atoms at zero Kelvin. Here, the saturation value of FePt layer
is 351.5 µB and 417.3 µB for Fe.
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Fig. 4.5 In this graph is plotted the magnetisation of each atomic layer of ECC media during
the CMC simulations. The color of line denotes the angle of the magnetisation with respect
to the easy axis where light color corresponds to low angles from 0◦ whilst dark color denotes
the high angles up to 180◦.

We find that saturation magnetisation for both Fe and FePt layers does not vary with
height at low temperatures which denotes the absence of domain wall formation in these cases
demonstrated in figure 4.5 (a) and (c). However, with an increased simulation temperature
the spin fluctuations will give rise to a variation of saturation with the height. Figure 4.5 (b)
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and (d) show a nucleation for a temperature of 300K for two values of reversal field. It can
be seen that the presence of nucleation does not depend on the strength of the applied field
but the domain wall formation might have different forms depending on the field at elevated
temperatures. Analytically, it is expected to observe a domain wall when the size of system
is larger than the domain wall width which is calculated as follows[100, 101]:

δ = π

√
A
K
, (4.16)

where A is the exchange energy known as exchange stiffness and K is the macroscopic
exchange. Aharoni[73] found an analytical expression for the exchange computed within
nearest-neighbours approximation as:

A =
2Ji js2

a
c, (4.17)

where a = 3.249Å is the lattice parameter, s represents the lattice vector and c is a fac-
tor which depends on the crystal structure. For a given value of macroscopic KFePt =

1.29×107 J/m3 and Ji j = 4.5×10−21 J the domain wall width for FePt is around ≈ 5.25nm
which is larger than the size of FePt phase (5nm).

Prior to predicting the thermal stability of ECC media, it is necessary to find the energy
barrier of the composite. For a mono-domain particle the energy barrier is predicted by the
SW model as:

∆Emax = KV, (4.18)

where K is the macroscopic anisotropy of the particle and V is the volume. The equation (4.18)
becomes dependent on the anisotropy field in the presence of an external field. Therefore,
different maximum and minimum states of energy appear. Hence, we have different ways
to characterize the energy barrier. Assuming a particle whose magnetisation axis changes
from +z to −z with perpendicular anisotropy and an external magnetic field applied along
the anisotropy direction, the maximum and minimum of energy barrier can be expressed as:

∆Emax = KV
(

1+
H
HK

)2

∆Emin = KV
(

1− H
HK

)2

(4.19)
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where H is the strength of the external field and HK is the anisotropy field. The energy
barrier can be calculated numerically as a difference of maximum and minimum of angular
dependence of free energy, ∆F . The free is obtained integrating the torque curve shown
in figure 4.4 along the angle using the same approach as in reference [102] where ∆F =∫

θ

0 T dθ .
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Fig. 4.6 In this graph is plotted the dependence of free energy ∆F as a function of angle at
different temperatures by integrating the torque curves shown in figure 4.4 along θ . The
reversal magnetic field strength varies from 0T corresponding to case (a) to 5T corresponding
to graph (d).

Figure 4.6 shows the free energy curves for different simulation temperatures computed
numerically using the torque curves presented previously. The strength of the applied field
determines the values of the maximum and minimum of the free energy graph, whereas
the temperature will decrease the amplitude of the maximum for all the field values. This
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can be related to random nucleation which might occur in the system corroborated with the
applied field. Figure 4.6 clearly shows a reduction of the free energy peak with increasing
temperature due to the thermal reduction of the anisotropy while the reversal field makes
the minimum lower. Another effect of the magnetic field consists in the shifting of the peak.
This is demonstrated more accurately if we compare the blue lines corresponding to the
simulation temperature of 50K where clearly the peak is centred at a smaller polar angle θ

for a higher field comparing with the zero field case.
In the following we extracted the maximum of each free energy path in order to determine

the energy barrier ∆E which enables determination of the thermal stability of the magneti-
sation according to Arrhenius-Néel law. Figure 4.7 shows an expected decrease of energy
barrier of ECC media with an increased magnetic field according to SW theory. This shows
a good agreement between theory and CMC simulations at a simulation temperature of 50K
due to the coherent switching of the spins. However, SW theory is not valid anymore for
non-coherent rotation which might occur in some circumstances such as elevated tempera-
ture or domain wall formation. In ECC media, nucleation processes can occur also at low
temperatures demonstrated by the hysteresis loops in the following section. However, this
is happening near to the coercivity zone where the reversal field is closer to the switching
field which is time dependent. In our CMC method the magnetic properties are averaged at
equilibrium which does not allow any field rate dependence.

All these information related to energy barrier can be useful in calculation of the long-
term stability. One option to characterize the thermal stability of a ferromagnet, is to calculate
the so called figure of merit shown in the equation below:

ξ =
2∆E

MV Hs
, (4.20)

where ∆E is the energy barrier, M is the saturation and Hs is the switching field which will be
treated in detail in the following section. It is crucial to have a large energy barrier in order
to confer thermal stability, however the energy barrier is decreased at high reversal fields and
temperatures.

4.3 Coercivity studies

4.3.1 Thermal reduction of the coercivity.

In this section we investigate the coercivity of 10nm height ECC media with an emphasis
on the role of exchange spring on hysteresis loops via a thermal reduction of the coercivity.
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Fig. 4.7 Dependence of the energy barrier on reversal field strength for 10nm height ECC
media. The energy barrier simulation points have been extracted from figure 4.6 as a
maximum of each free energy path at a simulation temperature of 50K. The solid line stands
for the fit using SW energy barrier according to equation (4.19).

We first investigate the temperature dependence of the coercivity by simulating a series of
hysteresis loops at different temperatures. Here, the sLLG equation has been integrated using
the Heun scheme described in the methods chapter. A time of 60ns using an integration
time step of 0.1fs should be sufficient in order to have an accurate integration and good
convergence with regard to a realistic hysteresis loop which depends on the speed of field
strength variation in time known as sweeping rate equal to 1Tns−1. The importance of
sweeping rate is given by the Sharrock equation [11, 12] where a slow variation of the field
leads to a better equilibration at each magnetic field value which implies a lower coercivity
comparing with a high sweeping rate.

Hc(t)
H0

= 1−
[

kBT
∆E(0)

ln
(

t0
ln(2)τ0

)]
(4.21)

Equation (4.21) shows a possible decrease of the coercive field with the time t. Therefore,
we set our simulations of hysteresis loops to perform 100,0000 integration steps per 0.1T
giving a high accuracy, especially at elevated temperatures where the Heun scheme becomes
more sensitive to thermal fluctuations.

The magnetic field has a small deviation from the easy axis and its z-component varies
from +15T to −15T and vice-versa. A typical series of simulated hysteresis loops are shown
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in figure 4.8 (a). At low simulation temperatures it is clear that switching is a two-step
process due to the slow development of the exchange spring. Again, the temperature has
been rescaled in the same way as in CMC simulations but the effective field is given by:

Hi =− 1
µ0µi

∂H

∂Si
+Γ(t)

√
2αkBTsim

γµs∆t
. (4.22)

This equation has been detailed in the methods chapter but again the simulation temperature
Tsim is calculated via equation (4.10). As the the temperature increases there is a transition
from this two-step process to a single step due to the decrease in the FePt anisotropy relative
to the interface exchange. For each value of the coupling exchange, the anisotropy of the
hard phase (FePt) dictates mainly the value of the coercive field. However, the exchange
spring may decrease this value as shown in the following.

In ECC media or hard/soft bi-layer system it is important to understand the nucleation
process defined by Aharoni [73] which can effect the switching mechanism. In the exchange
spring mechanism a domain wall is nucleated and propagates to the interface where is pinned
until the applied field is greater than than the pinning field in order to switch the whole
magnetisation of the system. Kronmüller and Goll [103] derived an expression for the
pinning field within bi-layer system with different magnetic properties of the both phases.
Suess [104] demonstrated a simple formula for the pinning field of a bi-layer system where
the exchange and the saturation magnetisations are the same for both layers as follows:

Hpinning =
1
4

Khard −Ksoft

Js
(4.23)

Where Js is the spontaneous polarization. A strong dependence of the pinning field on the
difference between the anisotropy values can be observed from equation (4.23) which leads
to a decrease at higher temperature due to thermal reduction of the anisotropy demonstrated
in the previous energy barrier simulations.

At each temperature the coercive field is extracted, which is shown in figure 4.8(b). This
shows a clear decrease with increasing temperature which can be modeled using a power law
expression,

HC(T ) = HC(0)
(

1− T
TC

)ε

, (4.24)

where ε is a fitting exponent found to be 1.68, HC(0) represents the coercive value at 0 Kelvin
at 6.45T and TC is the value of Curie temperature determined in figure 4.3 at 700K for FePt.
In particular we note a coercive field of 0.75 Tesla at 500 K which is feasible for switching
with the existing inductive head technology. In reference [104] the coercivity dependence on
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Fig. 4.8 The temperature dependence of coercive field for ECC media. Graph (a) illustrates a
series of hysteresis loops for ECC media at different temperatures below the Curie point for a
exchange coupling constant at the interface of Jint = 1×10−21 J. In graph (b) the points have
been extracted from the hysteresis loop at each temperature value shown on graph (a). The
solid line is a fit using equation (4.24). TC = 700K and the fitted values are HC(0) = 6.45T
and ε = 1.68

the pinning field is given as:

HC = Hpinning
h
δ
, (4.25)

where δ is the domain width defined in equation (4.16) and h is the height of the composite.
Therefore, a smaller anisotropy caused by various factors can lead to a larger domain width
and reduced coercivity.
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Fig. 4.9 In this graph is plotted the resolved-layer magnetisation for ECC media during the
first branch of hysteresis loop when the field varies from 20T to −20T. This is suggested by
the color where yellow indicates the starting value while dark color indicates negative value
of the field. The total height of ECC media grain is 10nm which contains 60 atomic layers.
The first 30 layers correspond to FePt and the layers between 30-60 correspond to Fe.

In order to understand qualitatively how large is the domain wall width, we investigated
the profile of the magnetisation. The results are shown in the figure 4.9, which shows
the evolution of the layer-resolved magnetisation close to the coercivity for a range of
temperatures. It is important to note that at all temperatures the magnetisation proceeds via
an exchange spring mechanism. At very low temperatures the domain wall is strongly pinned
at the interface due to the high anisotropy as expected from the prediction of Kronmüller and



74 Atomistic simulations of exchange-coupled composite (ECC) media

Goll [103]. At elevated temperatures the weaker pinning leads to faster domain wall motion
and reduced switching fields, indicative of a temperature-enhanced exchange spring effect.
The exchange spring effect leads to a reduction in coercivity as shown in figure 4.9.

Figure 4.9 shows the evolution of magnetisation for each atomic layer of the exchange
coupled composite during the first branch of hysteresis loop where the magnetic field strength
varies from 20T to -20T. The magnetisation of each layer has been obtained by summing up
all atomic moments contained by each layer as ∑

N
i µiSi

z. At zero field there is a discontinuity
of the magnetisation at the interface due to the different saturation magnetisation of each
magnetic phase. Both Fe and FePt atomic layers contain N = 185 atoms with different
individual magnetic moments as mentioned in the section above which leads to a discrepancy
between saturation magnetisations of the monolayers. Due to a higher MS of the soft layer an
accentuated spring effect occurs during the switching process. A particular aspect can be
seen in figure 4.9 related to the speed of domain wall propagation depending on temperature.
A slower switching occurs at zero Kelvin as shown in figure 4.9(a). Secondly, the domain
width varies throughout the the hysteresis loops giving larger values close to coercivity zone
for all temperatures cases. Hinzke et al. [105] demonstrated a larger domain wall width
at higher temperatures in good agreement with our simulations. However, in a dynamical
process it is hard to determine with a good accuracy the domain wall width due to a fast
propagation of the nucleation and noise profile of the magnetisation.

4.3.2 Dependence of the coercivity on thickness and interface coupling.
Critical thickness.

Great importance in the design of the recording medium is the thickness of the grains. For
ECC media grains extensive studies have been done [106–110] to find the optimal balance
between quantities of the soft and hard phase with respect to the density requirements. In
reference [108] the FePt/Fe bi-layer is experimentally investigated using a SQUID magne-
tometer for measuring the magnetic properties at room temperature. A remarkable drop of
the coercivity has been found with increasing the thickness of Fe layer at room temperature,
particularly at thicknesses less than FePt thickness. For a thickness of Fe greater the FePt, the
nucleation starts to play an important role in the reversal mechanism. The simple expression
of Thiele et al. [90] given in equation (4.4) predicts a decrease of the coercity to zero with
increasing thickness. However, the numerical results indicate a decrease to a minimum value.
This is consistent with Goll and Breitling who pointed out that the coercivity cannot be
smaller than the nucleation field [103].
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Fig. 4.10 The dependence of the coercive field on thickness of Fe. The thickness of FePt
is kept fixed at 5nm while the thickness of Fe varies from 0.5nm to 5nm. The solid points
represent the value of coercive field extracted from hysteresis loop for each value of Fe
thickness. The dashed line represent the fit using equation (4.5) whereas the solid line is the
fit using the equation (4.26) [106]. The fitting gives a value for the nucleation field of 3.75T.

Atomistically this dependence has been investigated by simulating a series of hysteresis
loops in the same manner presented early in this chapter by extracting the coercive field from
each hysteresis. The thickness of the soft layer has been varied from 0nm to 5nm whereas
the FePt thickness is kept fixed at 5nm. The results are shown in figure 4.10 for ECC media
with a constant at the interface Jint = 3×10−21 J. Here, is observed a decrease of the coercive
field where we can distinguish two regimes of switching: coherent and non-coherent. The
coherent rotation can be fitted well by Thiele dependence (shown in equation 4.4) up to a
specific thickness of the soft layer. In this case we restricted the fit up to 3nm where this
equation provide an excellent agreement. For higher values of the thickness the coherent
equation breaks due to nucleation. A reasonable equation which describe this dependence has
been found experimentally in reference [106] where the coercivity as a function on thickness
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is given by:

µ0HC(tFe) =
c1

tFe +
c2

µ0(HC(0)−Hn)

+µ0Hn, (4.26)

where c1,2 are some arbitrary fitting parameters. After the fitting a nucleation field µ0Hn =

3.75T has been extracted. According to this, for infinite thickness the coercivity achieves a
ninimum value of:

lim
tFe→∞

µ0HC(tFe) = lim
tFe→∞

 c1

tFe +
c2

µ0(HC(0)−Hn)

+µ0Hn

= µ0Hn (4.27)

Further investigations have been done by Y. Liu et al. [108] on FePt/Fe bilayer films
where they measured the coercivity as a function of Fe thickness. They found a variation of
nucleation field with Fe thickness both experimentally and theoretically.

Another important factor in order to decrease the switching field is the exchange coupling
at the interface. For simplicity in this model we assume a direct exchange coupling between
Fe and hybrid FePt atoms. In reality this exchange coupling can vary in a wide range
depending on the qualities of the interface such as roughness, contact surface, crystal defects,
etc. Therefore, several series of hysteresis loops have been performed for 10nm height ECC
media varying the exchange coupling at the interface.

Figure 4.11 shows the temperature dependence of coercivity for three different exchange
coupling values at the interface. There is a slight decrease of the coercivity with an increased
exchange coupling at the interface demonstrated by zero kelvin points in the graph. The
dependences have been fitted using equation (4.24) giving an increase of power exponent ε

from 1.68 for Jint = 1×10−21 J to 2.69 for Jint = 5×10−21 J denoting a lower coercivity for
a stronger coupling at the interface.

4.4 Investigation of dynamical switching

In this section of the chapter, we investigate the switching mechanism process with emphasis
on the role of the damping constant over the reversal mechanism. It is demonstrated that
various damping constants can make the process faster or slower depending on several
magnetic factors such as exchange spring enhanced by temperature. In Atomistic Spin
Dynamics (ASD) model, damping constant is take as Gilbert form [48] where the lost energy
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Fig. 4.11 In this graph is plotted the temperature dependence of the coercivity for three
different exchange coupling at the interface. The simulated points have been extracted from
the hysteresis loops whereas the solid lines stand for the fit using equation (4.24).

of a ferromagnet within a magnetisation process is attributed to a damped magnetic field
which is proportional to the effective field.

4.4.1 Single particle switching and the Kikuchi law.

A single domain particle is the basic model which assumes all spins are parallel being
described by the classical LLG equation. By solving the dynamical equation of a single
domain particle it provides the fundamental insight in recording media. Here, Kikuchi [111]
derived the minimum time needed for a ferromagnetic particle to switch its magnetisation for
a given magnetic field. Here for a spherical particle which changes its magnetisation from
Mzi state to Mz f state, the time is given by following equation:

τ f =
1

2γHeff

1+α2

α
ln

(
Ms +Mz f

)
(Ms −Mzi)(

Ms −Mz f
)
(Ms +Mzi)

, (4.28)
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where Heff is the effective field, α is the damping constant and Ms is the saturation magneti-
sation. For the particular case of switching from oriented along easy axis state to in-plane,
the reversal time can be expressed as:

τ f =
1

2γHeff

1+α2

α
. (4.29)

For most magnetic materials the damping constant α ≪ 1 where equation (4.29) shows a
clear decrease of reversal time τ f on damping constant. In the following, we simulate a
generic Fe particle whose domain wall width is much larger than particle sizes keeping the
same atomistic parameters for Fe as in previous simulations. It is assumed that an isolated Fe
particle with a diameter of 5nm acts like a single domain particle. We have investigated the
reversal time defined by Barker et al. [112] as the time elapsed from aligned magnetisation
on easy axis mz = 1 to plane mz = 0 where equation (4.29) is expected to give reasonable
prediction of the switching time for a single domain particle. Figure 4.12 shows a series of
reversal mechanism processes for Fe by integrating the sLLG equation for 10ns under an
applied field of 0.5T. The trigger process of the reversal mechanism can be achieved with
a minimal torque of the spins, generated by a small thermal fluctuation using a simulation
temperature of 5K. A logarithmic decrease of the reversal time with damping constant λ

has been found as demonstrated in figure 4.12 (b), where we fit the calculated data with the
Kikuchi equation (4.29) showing a good agreement.
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Fig. 4.12 Reversal time dependence on damping constant for a particle of Fe with 5nm diam-
eter. The left graph shows the time evolution of z-component of the reduced magnetisation
for different values of the damping. The right graph shows the dependence of the reversal
time extracted from simulation curves form the left graph.
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These simulations show a great importance of the damping on the speed of the switching.
Particularly, it is noted a reversal time of τ = 5×10−10 s for λ = 0.1 being one order less
than the case of λ = 0.01 where τ = 4.6×10−9 s.

The Kikuchi law can be applied successfully for monodomain particles, however for
different designs of recording medium where nucleation can occur, the reversal time might
not be consistent with minimum reversal time calculated by Kikuchi. One example is ECC
media design where different polarizations and magnetic properties might generate side
effects during the switching process. This has been investigated in detail in the following
section in order to find a quantitative dependence of the reversal time on the damping for
complex structures.

4.4.2 Switching mechanism of ECC media.

An optimal strategy to heat ECC medium is an issue which requires attention. This can be
made by using a laser whose spot can have a spatial and temporal distribution, Gaussian
distribution for example. Two strategies are proposed in reference [113] in order to increase
the capabilities of HAMR. The first method implies a continuous laser spot applied on the
material whereas the second method uses a pulsed laser spot.

In order to construct a realistic model of HAMR process for reversing the magnetisation
via heating and reversal field we consider following profile of temperature:

T (t) = (Tmax −Tmin)exp

[
−
(

t − tp

tc

)2
]
+Tmin, (4.30)

where tc is the cooling time and tp is the time where the temperature reaches its maximum
Tmax. The total time of each simulation is 5ns with the temperature peak at tp = 3ns and
a cooling time of tc = 1ns. The minimum and maximum temperatures used are 300K ,
and 500K respectively. For simplicity, the spatial variation of temperature is ignored as we
assume all spins are exposed to the same temperature. This is based on the time of exposure
to the elevated temperatures around nano-seconds being enough to achieve a thermodynamic
equilibrium.

Beside the temperature another important factor in this process is the strength of the
magnetic field. Due to an engineering limitation of the intensity of electrical current which
passes into the coil, the maximum applied field produced cannot be much larger than 1Tesla.
Hence, in our HAMR model we will consider a reversal field of one Tesla.
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4.4.3 The impact of Gilbert damping on the reversal time. Conven-
tional and high field regime.

We now proceed to investigate the effect of damping constant of the soft layer by simulating
the reversal mechanism in the same approach presented in the previous subsection. Here, a
typical switching process is simulated over 5ns with an integration step of 0.1fs providing
an accurate integration especially at elevated temperatures where the integration scheme is
more sensitive to the thermal fluctuations.

Becker et al. [114] measured experimentally the damping of FePt using ferromagnetic
resonance (FMR) for a wide range of temperatures and magnetic fields. They found a high
damping value for L10 FePt phase around 0.1. For this reason the FePt damping has been kept
fixed in these simulation to 0.1 allowing variation of Fe damping only. In reference [115] has
been demonstrated both experimentally and theoretically that a generic soft ferromagnet such
as Ni80Fe20 can reach high value of damping constant by doping with rare earth elements
(RE) such as: Dy, Tb, Gd, and Ho. Furthermore, a linear increase of damping constant
with the concentration of RE has been noted in experiment where RE doping increase the
relaxation time measured with FMR. A remarkable increase of damping can be done using
Dy doping approaching a value of α ≈ 0.2. We, therefore, will consider a high damping
regime for Fe which presumably will speed-up the switching.

We previously found that for a temperature of 500K and higher, the coercivity zone can
be achieved with a strength of field around 1T. Here we investigate the reversal mechanism
for a range of fields finding an anomalous behaviour of the switching time with damping
constant at fields around the coercivity.

Figure 4.13 (a-c) shows the time evolution of the z-component of reduced magnetisation
for different damping constant of the soft layer (Fe) and different exchange coupling constants
at the interface (a) Jint = 5×10−21 J, (b) Jint = 3×10−21 J, and (c) Jint = 2×10−21 J in a
reversal field of 1T. It is clear faster switching is happening with decreasing damping
constant which is inconsistent with the Kikuchi law. This dependence can be interpreted as
an effect of the exchange spring confirmed in the figure 4.9 where the switching proceeds via
nucleation produced within Fe layer being pinned at the Fe/FePt interface before propagating
into the FePt phase. The switching speed is determined by the strength of the pinning field
enhanced by the interfacial exchange and anisotropy value. Prior to switching, a time is
needed in order to obtain the spring configuration which leads to a faster switching for
smaller damping coupled with a stronger exchange coupling.

Figure 4.13 (d-f) shows the evolution of transverse component of reduced magnetisation

for Fe layer during the reversal mechanism calculated as SFe
transverse =

1
N

∑
N
i

√
(SFe

ix )
2 +(SFe

iy )
2,
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Fig. 4.13 In this graph is plotted the reversal mechanism of 10nm height ECC media for
different damping constant of the soft phase (Fe) at different exchange coupling values at the
interface: (a) Jint = 5×10−21 J, (b) Jint = 3×10−21 J, and (c) Jint = 2×10−21 J. Figures (d-f)
shows the time evolution of transverse component of Fe layer during the reversal mechanism

calculated as: SFe
transverse =

1
N

∑
N
i

√
(SFe

ix )
2 +(SFe

iy )
2. For all these simulations the damping of

the hard phase (FePt) has been set at λ = 0.1 with an reversal field of 1T and the temperature
pulse follows the equation (4.30) where the maximum and minimum temperatures are 500K,
respectively 300K.

where N = 185 is the total number of atoms contained by a single atomic layer of Fe. The
evolution of Fe magnetisation it is important in understanding the switching mechanism as
the magnetisation of Fe needs to be oriented in-plane before magnetisation propagates into
the FePt phase. The exchange spring effect is maximum when the Fe magnetisation aligns
in-plane requiring a certain number of precession cycles depending on the damping. Figures
4.13 (d-f) show the time needed for approaching a plane orientation of the Fe magnetisation.
Here, a higher values of damping constant leads to more precession cycles in order to trigger
the propagation of the magnetisation into FePt.

Figure 4.14 illustrates four cases of reversal mechanism in detail by averaging the z-
component of reduced magnetisation per atomic layer denoted by the color, where red color
represents "up" alignment and blue color is "down". For all cases the switching occurs before
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Fig. 4.14 In this graph is plotted the magnetisation profile during reversal mechanism for
two different exchange coupling and two different Gilbert damping values. The system
contains 60 atomic layers, the first 30 layers ≈ 5nm correspond to FePt and the top layers
correspond to Fe. The colors indicate the value of z-component of magnetisation. Here red
color indicates a positive value of reduced magnetisation on z direction, blue indicates a
negative, respectively white suggests a plane orientation of the reduced magnetisation.

the temperature reaches its maximum (Tmax = 500K) at 3ns. We explored two different
exchange coupling strengths at the interface, and two different cases of damping. A clear
increase of switching time can be seen again for a higher damping constant whereas a
decrease of switching time occurs for an increased Jint. Another interesting observation from
these color maps is related to different modes of switching in Fe compared with FePt. Here,
white color shows a plane orientation giving more precession cycles of the magnetisation.
Therefore, we can identify two modes of switching: one which involves more precession
cycles called precessional switching characteristic to Fe layer where more white lines can be
seen in comparison with FePt where less white lines can be seen.

In order to plot the dependence of reversal time τ on damping, we have extracted the
reversal time from each MZ/MS(t) loops shown in figure 4.13. Here, figure 4.15 (a) shows
the dependence τ(λFe) for two different exchange coupling. A clear increase of reversal time
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Fig. 4.15 In this graph is plotted the dependence of reversal time as a function of damping
parameter for different cases: (a) low field near to the coercivity, µ0Happlied = 1T, and (b)
higher fields.

can be seen which is inconsistent with the Kikuchi law. A more pronounced increase of
averaged reversal time can be seen for stronger exchange coupling as an effect of a weaker
switching field. This has been demonstrated by Vogler et al. [116] using LLB macro-spin
simulations.

On the other side, higher fields will lead to a faster propagation of nucleation here the
speed of switching is not sensitive to the damping. Figure 4.15 (b) shows a change of reversal
time dependence on damping where higher fields will lead to a decrease of the reversal time
with damping.

Finally, we turn our investigation to the dependence of the reversal time on Fe thickness.
It is hard to explore a regime of lower thickness of Fe within conventional fields due to an
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increased coercivity of the system which requires higher reversal magnetic field to obtain the
switching. In the following we performed a series of investigations under a reversal field of
3T by varying the thickness of the soft phase from 1nm to 5nm. Here, figure 4.16 shows the
dependence of the reversal time on Fe thickness at different values of the damping for Fe. The
simulations are performed in the same manner with the previous calculations presented early
by using a temperature profile according to equation (4.30) where the maximum/minimum
temperature is 500K, and 300K respectively.
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Fig. 4.16 In this graph is plotted the dependence of reversal time as a function of Fe thickness
at different values of Fe damping. The strength of the reversal magnetic field is 3T. The
solid lines represents the eye guidance.

The writing field is increasing with increasing thickness of the soft phase demonstrated
early in this chapter. We showed a strong agreement of our atomistic simulation on coercivity
which varies on the thickness with respect to the Thiele law et al. [90] shown in equation
(4.5). For a given reversal field strength, the thickness of the soft phase will influence the
reversal time as a consequence of different writing fields at different number of Fe layers
added into the system. Here, a larger thickness of the soft phase will lead to a shorter reversal
time in the high field regime. In addition to this, for a thickness of 1nm and a damping value
of 0.3, the switching cannot occur due to a larger writing field than 3T.
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Greaves et al. [117] showed that for an increased thickness of the soft phase the nucleation
field decreases. This is important in microwave-assisted magnetic recording (MAMR) where
the switching is performed using a micro-wave generator embedded in the writing head [21].
This will transfer energy to the soft layer determining high precession of the magnetisation
which lead to precessional switching with an applied field less the the coercivity of the
material. In reference [117] it is shown that a good performance of this method is obtained
when they apply a linear pulse with a specific frequency. It is also demonstrated that with
an increased thickness of the soft layer there is an optimal frequency which determines the
lowest switching field [117]. An increased frequency is required for low thickness of the
soft phase which is in agreement with our results where longer reversal time is need for a
low thickness of Fe phase as shown in figure 4.16 for a the value of damping λFe = 0.1 for
example.

4.5 Conclusions

In this chapter we investigated the reversal mechanism of ECC media by employing the
Atomistic Spin Model using two different approaches: static properties using CMC simu-
lations and dinamycal properties using sLLG equation. We dedicated a particular interest
in the benefits of ECC design which is supposed to perform well in HAMR due to the
exchange spring effect. Our simulations show a good qualitative temperature dependence
of the coercivity compared with the experimental results revealing a decrease of the writing
field at elevated temperatures due to the reduction of the energy barrier on high thermal
fluctuations.

CMC simulations show a reduction of the energy barrier with an increased temperature
being feasible for HAMR temperature regime. However, CMC method does not predict a
realistic decrease of the energy barrier with an increased applied field at low-temperature
regime due to a coherent switching of the ECC media. In reality, we expect the nucleation
to occur during the reversal mechanism according to dynamical simulations where the
nucleation field can reduce the energy barrier as well. It has been found that nucleation
appears at elevated temperatures, where the spins are allowed to randomly fluctuate in a
wider angular range of the magnetisation favouring the non-coherent rotation of the system.
An improvement of the field dependence might be obtained if we consider a different method
to simulate the energy barrier where the constrained is done by a Lagrange multiplier field
allowing the the integration of LLG equation. The implementation of this method remains
further work.
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Dynamic simulations give us more insight into the exchange spring behaviour of ECC
media. We found the nucleation of the domain wall during the hysteresis loops which effects
the switching mechanism. Further observations have been done by studying the reversal
mechanism. We observed an anomalous damping dependence in heating/cooling processes in
fields around the coercivity. Here a lower damping of the soft phase is found to accelerate the
switching at low-regime of the fields, whereas higher fields will give an expected dependence
of the reversal time on damping denoting a minimal effects of the nucleation caused by a
faster propagation of the domain wall. We conclude that nucleation in ECC media needs to
be considered, and is determined by several factors including the strength of the applied field,
temperature, exchange coupling at the interface and thickness of the soft layer. Here the
damping constant plays a crucial role in determining the speed of domain wall propagation,
explaining the unexpected results at conventional fields.



Chapter 5

RKKY model of exchange interaction in
FePt

In this chapter a new approximation to exchange interactions for FePt is proposed in order
to describe the magnetic properties under different internal or external factors with a great
importance for heat assisted magnetic recording since L10 FePt exhibits great properties
for recording media. This model is represented by RKKY function which gives a new
perspective into magnetic interaction in the relatation to the magnetisation processes in finite
FePt grains. The aim is to produce an approximate spin Hamiltonian with a reduced number
of neighbours in order to speed up the simulations of HAMR process in FePt media. In
addition, a particular interest has been dedicated to investigate how the number of interactions
per bond can influence the evolution of the magnetization at different temperatures and sizes
of the system. We found this model more optimal to use in Monte-Carlo simulations in terms
of the computational effort than full DFT-based spin Hamiltonian of Mryasov et al. [41].

Another aim of this chapter is to present a fundamental study of the implications of
different lattice properties on finite size effects and how different truncations of the neighbours
list can influence the temperature magnetization dependence at different sizes of the grains
for a better understanding towards improving signal-noise-ratio (SNR).

5.1 Exchange interaction models of FePt.

5.1.1 First principle calculations of exchange interactions in FePt

L10 FePt exhibits good properties for recording media, particularly for heat assisted magnetic
recording (HAMR) due to high magneto-crystalline anisotropy about K ≈ 7×107 erg/m3

[32]. Therefore, a great effort has been dedicated to understand the exchange interaction espe-
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cially at lower dimensions of the particles where the FePt grains can loose their ferromagnetic
properties.

One reasonable approach is the first principle exchange interactions presented in reference
[94] where the exchange coupling constant follows an oscillatory dependence with the
separation distance between atoms as shown in figure below 5.2. The values for the exchange
interactions have been determined by using first principle calculations for each atomic bond
up to a radius of six unit cell sizes. In other words, in this model each atomic exchange
energy is calculated using the interaction of the neighbors within a radius up to 2nm.

L10 FePt phase allows Fe to polarise the Pt moments, bringing in to play the spin-orbit
coupling of the Pt atoms. The configuration of L10 can be seen in figure 5.1 (a) where a
single unit cell contains 4 atoms. The red atoms represents Pt atoms centered on the faces
and blue spheres shows the distribution of Fe atoms.

(a) L10 phase (b) Mryasov phase

Fig. 5.1 Models of crystal structure of FePt. Image (a) shows a face-centered cubic (FCC)
structure which corresponds to L10 phase and image with two sorts of atoms: blue color
illustrates the Fe atoms and red color illustrates the Pt atoms. Image (b) shows a simplified
model used by Mryasov et al. where Pt atoms are not modeled leading to a BCC structure.
The unit cell size for L10 is 3.54 Å, whereas for BCC is 2.50 Å.

For simplicity in the Mryasov spin Hamiltonian determined by the ab-initio data, the Pt
atoms are not modeled but the effects of Pt are taken in account using an average moment
induced by the Fe and exchange. Therefore, from L10 phase which consists in FCC structure
as shown in figure 5.1 (a) the lattice is replaced with a single sort of atoms arranged in a
structure shown in figure 5.1 (b). Within this model the vibrations of the lattice are not
considered which implies a constant separation between atoms. The lattice parameter is
a = 2.50 Å.



5.1 Exchange interaction models of FePt. 89

It is found that the Pt moment within this alloy is directly proportional to the exchange
field from the Fe, which allows for a substitution removing the Pt and leaving the Fe as the
only degrees of freedom. In reality, the Pt atoms are polarised by Fe giving rise to a local
magnetic of moment of Pt which is calculated as:

mPt =
1

Hν
∑

i
JiνSi, (5.1)

where Jiν is the effective exchange parameter between Fe and Pt, Si is the Fe spin moment.
Hν is exchange field induced by the Fe neighbours into Pt sites. Constrained local-spin-
density-approximation (CLSDA) [118] calculations shows a small in-plane anisotropy of Fe
whereas the uniaxial anisotropy is given by the Pt moments which can be calculated as:

Hani =−∑
i

[
k0

Fe + k0
Pt

(
1

Hν

)2

∑
ν

J2
iν

]
(Sz

i )
2 (5.2)

Here both anisotropy contribution can be combined in a single generic constant k0
i = k0

Fe +

k0
Pt/N

(
1

Hν

)2
∑ν J2

iν denoting the single-ion anisotropy constant for each individual hybrid-
atom surrounded by N neighbours.

Finally, the full corresponding Hamiltonian for Mryasov model is expressed in the
equation below:

H =−1
2 ∑

i ̸= j
Ji jSi ·S j︸ ︷︷ ︸

Hexc

−∑
i

k0
i (S

z
i )

2

︸ ︷︷ ︸
Hani

− 1
2 ∑

i ̸= j
d2

i jS
z
i S

z
j︸ ︷︷ ︸

H2-ion

(5.3)

Another term of the exchange H2-ion = ∑i ̸= j d2
i jS

z
i ·S

z
j represents an anisotropy energy be-

tween neighbouring Fe atoms mediated by Pt atoms, called two-ion contribution term. This
is more dominant than uniaxial anisotropy term and depends on the strength of the effective
exchange field induced by Fe calculated as:

d2
i j = k0

Pt

(
1

Hν

)2

∑
ν

JiνJ jν . (5.4)

In reference [119] it is discussed about the model used for the exchange energy calculations
using constrained density functional (CDF) theory. Due to the interaction of 5d Pt and 3d
Fe, the exchange exhibits some particular aspects like oscillatory behavior and a differential
between plane and perpendicular components of the exchange.
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This Hamiltonian gives good agreement with experiment for the Curie temperature and
the magnetisation scaling of the anisotropy (important for HAMR) but it involves many
nearest neighbours (NN) and is computationally intensive. Here, we aim to retain the same
physical features with a simplified Hamiltonian which is faster for computation.

5.1.2 RKKY parametrization based on Mryasov model

In the following section we present a method to evaluate the exchange interaction between
atomic sites using a function derived on a quantum mechanical basis. This is an indirect
method of quantification of the interactions between localized moments such as 3d metals.
This function is known as RKKY interaction summarizing the initial letters of the surnames
who discovered this effect: Ruderman, Kittel, Kasuya and Yosida.

As is presented by Blundell in reference [120], the magnetic susceptibility depends on
the electron density of the gas as follows [120]:

χ(r) =
1

(2π)3

∫
d3qχq,eiq·r (5.5)

where q is the magnon wave vector. By solving the integral (5.5) a function can be obtained
similar to equation (5.6) on the assumption of k−1

f ≪ r. The formalism of obtaining RKKY
function has been detailed in Appendix B giving the following expression:

J(r) = J0
cos(k f r)

r3 , (5.6)

where J0 represents the exchange value with the nearest neighbors (NN), k f strongly
depends on lattice properties of the magnetic material such as: lattice parameter, crys-
tal order and valence. For an fcc structure, the Fermi wavevector can be calculated as:
k f = (12π2/a3)1/3 ≈ 4.90/a as shown in reference [121], where a is the lattice parameter.

Prior to constructing an RKKY model for hybrid FePt atoms, we observed a similarity
between the RKKY function shown in equation (5.6) and the predictions of the Mryasov
model. Both functions are oscillatory and dependent on the separation between atoms,
therefore we used DFT data in order to find an appropriate wave vector k f by fitting the
exchange values from first principle calculations. The Fermi wave vector k f is essential in
order to tune the period of the exchange oscillation as shown in equation (5.6).

The RKKY approach was initially developed to describe the nuclear magnetic moment
[122] and then was expanded to describe the magnetic interaction in metals and non-metals.
As shown in figure 5.2 the exchange values for different separations can be mapped onto the
RKKY function, however it is challenging to find the most accurate value for k f in order to
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have the best fit. Therefore, we present in this work a comparison of the RKKY function
with the full range Mryasov Hamiltonian in order to validate this model of exchange.

We employed the atomistic spin model which is based on the Heisenberg Hamiltonian as
follows:

H = Hex +Hani, (5.7)

Here, Hani represents the anisotropy term of the Hamiltonian which can be calculated as
Hani = −ku ∑i(Si

z · e)2 where ku is the perpendicular anisotropy constant per atom and e
denotes the direction of the anisotropy axis along z direction.

The exchange parameter depends on the separation distance between the atoms, where
the exchange can be ferromagnetic or antiferromagnetic as shown in figure 5.2. The number
of interactions per atomic bond increases with the radius. Therefore, for a radius of one unit
cell size the number of interactions per atomic bond is 26. Second order will generate 130
interactions whilst the 5th order will generate 1978 interactions.

The exchange term per atomic bond i is calculated using equation (5.8) where Ji j(r) is
considered a first order tensor

H i
ex =−∑

j
Ji j(r)Si ·S j

=−∑
j

(
Si

x Si
y Si

z

)Jxx 0 0
0 Jyy 0
0 0 Jzz


S j

x

S j
y

S j
z

 , (5.8)

where j is the number of interaction with the neighbors which depends on the range of the
cut-off r as mentioned above, Jxx,Jyy,Jzz are the elements of the isotropic tensor Ji j(r) which
are calculated according to equation (5.6) as:

Jxx = J0
x

cos(k f r)
r3

Jyy = J0
y

cos(k f r)
r3

Jzz = J0
z

cos(k f r)
r3

. (5.9)

J0
x,y,z represents the exchange value constants with the nearest neighbors (NN) which can

be extracted from Mryasov data by fitting them shown in figure 5.2. We noted a slight
difference between in-plane exchange value J0

x,y comparing with out of plane component

J0
z . Here, J0

x = J0
y < J0

z where
J0

z −J0
x,y

J0
z

= 4.8%. This small difference generates an analogous
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Fig. 5.2 The values of exchange constant as a function of distance for first principle cal-
culations. The solid line represents the fit using equation (1) giving a value for k f around
0.98nm−1. We investigated 5 ranges of truncation for the full DFT-based Hamiltonian . Here
r1,2,5 sweeps 26, 130, and 1978 interactions.

of two-ion contribution given by Mryasov Hamiltonian, which is essentially an exchange
anisotropy. This has a remarkable impact into the anisotropy rescaling shown later in this
chapter. Beside this, Hinzke et al.[100] demonstrated different domain wall widths in-plane
and perpendicular due to this special form of the Hamiltonian.

5.2 Comparison of Tc distributions

We modeled a cylindrical grain of L10 FePt with a lattice parameter of 2.5 Å. The mag-
netic moment has been set at 3.2µB which gives a saturation magnetisation of MS =

2.127×106 JT−1/m3. The simulations have been performed using Constrained Monte-
Carlo method described in reference [59]. We performed 10,000 Monte-Carlo steps to
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equilibrate the system and another 10,000 steps at every 10 Kelvin temperature step in order
to average the magnetic properties.

Our starting point is the determination of the period of the exchange oscillation. This was
done by calculating a series of M vs. T curves varying k f in order to obtain a reliable Curie
temperature according to first principle calculations data. In figure 5.3 is plotted a series
of M vs. T curves for three different values of Fermi wave vector in comparison with DFT
values of the exchange. A reasonable agreement between RKKY function and DFT values is
obtained for a value of k f = 1.0nm−1 which is close to the value obtained from the fit shown
in figure 5.2. An increased value of k f leads to a decrease of TC of FePt. Consequently, we
can find numerically the value of the Fermi wave vector giving the best fit to the DFT results.

Another important topic in creating the neighbour list is to take into account a maximum
cut-off range in order to maintain an optimal balance between accuracy and the speed of the
calculations. Here, an extended list of neighbour implies longer time spent on calculations.
Thus, we can tune the length of neighbours list by selecting a specific maximum range of
interaction as it has been mentioned early in this chapter. Maximum accuracy will be obtained
for a higher range such as 5 u.c. size but at lower ranges the accuracy might oscillate. This is
illustrated in figure 5.4 where a series of M vs. T are plotted at different cut-off radii. There
is a clear deviation of the third range in comparison with the full range whilst the second
range gives more accurate shape of the curve. Another aim of these simulations is to give an
explanation of the different truncations. Third order is an example of reducing the TC due to
the truncation of the neighbours list.

The understanding of how Curie temperature depends on the grain size is fundamental
when we consider a realistic and feasible model of HAMR in simulations due to the require-
ment of small sizes of the grains. Early research by Fisher and Barber [123] demonstrated
for the first time the scaling theory at finite thickness of a ferromagnet. A reduction of the
Curie temperature is expected as the thickness of the film is reduced. A new scaling law is
introduced in reference [123] in order to describe how the Curie temperature varies with the
thickness of the film given by following the equation [123, 124]:

TC(∞)−TC(t)
TC(∞)

= (n/n0)
−λ , (5.10)

where TC(t) is the Curie temperature for a given thickness t of the film and TC(∞) is the
value of the Curie temperature. The shifting exponent λ = 1/ν describes the variation of
TC with the microscopic thickness t. The finite size effects in L10 FePt have been studied
by Hovorka et al. [125] using the nearest neighbours approximation (NN) which implies to
set an isotropic exchange value constant calculated and the full DFT Hamiltonian described
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Fig. 5.3 The M vs. T curves of 10nm height FePt cylinder for different values of k f . The
solid line represents the fit of DFT data using equation (5.11) giving an exponent β ≈ 0.37.

above. The Mryasov Hamiltonian gives more accurate results of the shifting exponential
than the NN approximation as confirmed by the experimental measurements done by Rong
et al. [126].

In the following we describe a series of temperature magnetisation dependences with
emphasis on the distribution of the Curie temperature at different sizes and truncation ranges.
Here we model a 10nm height FePt cylinder varying the basal diameter from 2nm to 11nm
using both exchange interaction models described in the previous section of this chapter.

Figure 5.5 shows a series of temperature magnetisation curves for different diameters
of the cylindrical system at different cut-off ranges using ab-initio values for exchange
interactions. These curves are calculated with the Monte-Carlo (MC) method by performing
50,000 MC steps to equilibrate the system and another 100,000 MC steps in order to average
the magnetic properties at each value of temperature with a step of 10 K. Larger radii of
the particle will lead to an asymptotic decrease of the magnetisation once the temperature
approaches the Curie point. This is demonstrated in figure 5.5(d) where the radius of the
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according to figure 5.2 using RKKY function and DFT values. The solid line represents the
fit of DFT data using equation (5.11).

cylinder has been set 11nm comparing with figure 5.5(a) where the radius of cylinder is
3nm.

For all cases the different ranges of the cut-off give different shapes of M(T) dependence
due to an overestimation or underestimation of the exchange values as a result of the
balance between ferromagnetic and antiferromagnetic interactions. Here, the first order gives
unrealistic shapes of the M(T) independently of the sizes. However, a reasonable agreement
is obtained for the second being closer to the full range which gives a good advantage in
terms of speeding-up the calculations.

Figure 5.6 shows the temperature magnetisation dependences M(T) for different ranges of
cut-off at different sizes of the diameter using RKKY method for the exchange calculations.
The simulations are performed in the same approach as in the previous case by splitting the
interactions list from first range up to the fifth range. Again, the same unrealistic results are
obtained for the first range as we obtained before. However, at an increased radius of the
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Fig. 5.5 Plotts of a series of M(T) curves for different truncations and radii of the 10nm
height FePt cylinder using Mryasov values for the exchange interaction list.

particles, the shape and the value of the Curie temperature converge giving an quantitative
agreement between these two methods: RKKY and DFT case.

An elegant method to extract the Curie temperature is to fit the M(T) curves using classical
fit expression given by following equation:

m(T ) = (1−T/Tc)
β , (5.11)

where β is the classical exponent. This will give an accurate estimation of the Curie
temperature for each M(T) dependence, therefore we performed the fitting for all cases of
different sizes and radii.

Figure 5.7 shows the distribution of the Curie temperature dependence on the system
diameter at different ranges. The distribution of Curie temperature using the DFT-based
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Fig. 5.6 Magnetisation as a function of temperature for different diameters of FePt cylinder
and different cut-off ranges using RKKY model of exchange.

Hamiltonian can be seen in figure 5.7 (a) and for RKKY function is shown in figure 5.7 (b).
Both models exhibit similar size variations of the Curie temperature as previous calculations
done by Hovorka et al. [125].

In order to explore the magnetic behavior at lower sizes we fit each dependence of Curie
temperature on diameter D using the following finite size scaling law [125, 123, 124]:

TC(D) = T bulk
C

[
1−
(

d0

D

)ν]
, (5.12)

where ν is the phenomenological shift exponent and d0 is the parameter related to unit cell
size. For a better fitting we calculated the T bulk

C by simulating a particle with 15nm diameter
using boundary conditions. This will give the bulk value for each range case which can be
introduced in the fitting function (5.12). With this equation we proceed with the fitting of the
size dependence in order to compare the critical exponents for both models. However, later
research done by Waters et al. [127] demonstrated a strong dependence of ν with different
factors such as the applied field for example. Another factor which might affect the size
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distribution of the Curie temperature can be related to the shape of the particle. However,
further work is required in order to find a best fit by introducing new correction factors.
For simplicity, in the absence of the applied field we used the equation (5.12) to extract the
exponents which are summarized in the Table 5.1.
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Fig. 5.7 The size distribution of Curie temperature for different ranges of cut-off. The solid
lines stands for the fitting using equation (5.12). Graph (a) shows the size distribution using
DFT-based Hamiltonian , respectively graph (b) corresponds to RKKY model.

Model DFT-based RKKY
Range r1 r2 r5 r1 r2 r5

T bulk
C (K) 576.27 655.84 661.70 594.55 698.29 682.04

ν 0.62 0.53 0.71 0.37 0.49 0.61
Table 5.1 The bulk TC and critical exponent ν for both model at different ranges of cut-off.
The values have been obtained by fitting the graphs from figure 5.7 using equation (5.10)

We observed reasonable results for both model for higher range of cut-off (e.g. 5u.c.)
giving a T bulk

C close to experimental value of 775 K [126] and the exponent ν which experi-
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mentally has been found around 0.91 while the classical Heisenberg approach will give a
value for the exponent at 0.71. However, the exponent ν and T bulk

C decreases inconsistently
with full range of the Hamiltonian for both cases which is essentially in the understanding
of the demagnetisation processes at lower sizes where different truncations can appear due
to the length of the particles. Therefore, a particle whose dimensions are below 3nm can-
not incorporate the full range Hamiltonian . Hence, the truncation can appear not only in
computational model but also in reality.

5.3 RKKY finite size anisotropy scaling

Crucially in understanding of the highly ordered L10 FePt it is important to know the
temperature behavior of the magnetic properties. Early theoretical studies done by Callen
et al. [128] developed a theoretical framework to calculate the temperature dependence
of different magnetocrystaline anisotropies suggesting a scaling of the anisotropy with the
reduced magnetisation at sufficiently low temperatures following a power law as follows:

K(T )
K(0)

=

[
M(T )
M(0)

]l(l+1)/2

(5.13)

Equation (5.13) clearly shows a faster reduction of the anisotropy energy than the magneti-
sation for a certain temperature given that most of the ferromagnets l(l +1)/2 > 1. Here,
for the uniaxial anisotropy the exponent n = l(l +1)/2 = 3 while for the cubic anisotropy
n = 10.

Extensive studies have been done on FePt thin films [129–131] aiming to understand
the dependence of fundamental magnetic properties on the manufacturing factors such as
temperature, doping, deposition rate and many others. Interestingly, L10 FePt presents some
unexpected anisotropy temperature dependence due to the chemical ordering. Okamoto et
al. [132] measured experimentally the dependence of the first order anisotropy K1 with the
temperature using Hall effect detailed in reference [98]. They reported an exponent for thin
layer L10 FePt about n = 2.1 which it was suggested might be related to chemical ordering,
lattice expansion due to the thermal fluctuations or higher order anisotropy.

Mryasov et al. showed that FePt has a dominant two-ion anisotropy arising from exchange
anisotropy giving a scaling factor n = 2.1 which is close to the expected value from Callen
and Callen of n = 2. Later, Asselin et al.[59] demonstrated the capability of the CMC method
to reproduce the experimental anisotropy scaling results by using Mryasov[119] values for
exchange interaction. The essential part of 2.1 scaling factor is the existence of the two-ion
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anisotropy part into the general Hamiltonian which gives unusual torque curves and free
energy dependence during the switching mechanism.

In the following we investigate the anisotropy temperature scaling using the CMC method
to calculate the restoring torque from 0◦ to 180◦ with a step of 5◦. The torque curves enable
determination of the free energy curves of the system by integrating the curve along the polar
angle. This procedure is similar with the approach presented by Evans et al. in reference
[102] where the free energy can be calculated via following equation:

∆F =
∫

θ

0
T dθ , (5.14)

where T is the restoring torque at a specific polar angle between magnetisation and easy
axis denoted by θ .

A typical series of free energy curves with varying the temperature is illustrated in figure
5.8. Here, the DFT-based Hamiltonian exhibits some anomalies due to the two-ion anisotropy
[119] term as shown in figure 5.8(a) where a deviation from classical sin(2θ) can be observed.
This is likely caused by elliptical domain wall propagation giving a null net torque when the
axis of the magnetisation approaches the hard axis. The same unusual angular dependence of
free energy, also can be accurately reproduced by the RKKY function if we introduce a small
difference between in-plane component of exchange and z-component which brings in the
two-ion contribution part in our Hamiltonian. In figure 5.8 is shown a similar dependence of
the reduced free energy with the polar angle θ due the modified exchange. Here, we set a
vectorial case for the exchange calculation discussed early on this chapter. Therefore, the
z-component is Jzz = 5.82×10−21 J and in plane component Jxx,yy = 5.6×10−21 J. It both
cases DFT and RKKY we can see the flattening of the free energy curve shape which denotes
a lower energy barrier than expected for coherent rotation.

A series of snapshots can be seen in the figure 5.9 at different angles during the switching
process using the RKKY mechanism for the exchange at a simulation temperature of 200K.
We observed a clear nucleation at θ = 90◦ suggested in figure 5.9 (c) by the different colors
of the spins. Here blue color denotes a parallel orientation whereas the red color indicates
an anti-parallel orientation. This behavior of nucleation has been previously identified by
Hinzke et al. [100] using Mryasov data for the exchange. This will lead to incoherent reversal
resulting in a decrease of the energy barrier as shown in figure 5.8.

With these results we can extract the anisotropy at each temperature value by calculating
the energy barrier per volume. Figure 5.10 shows the scaling of the reduced anisotropy K/K0

with reduced magnetisation M/MS, where K0 is the bulk anisotropy. Two cases are studied
using the RKKY mechanism in order to understand the impact of the two-ion anisotropy
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Fig. 5.8 Plot of the free energy curves for a 10nm height FePt cylinder with a basal diameter
of 10nm as a function of the polar angle θ using full (a) DFT-Hamiltonian and (b) RKKY
function up to 5 u.c. range at different temperatures.

on the anisotropy rescaling; the first case corresponds to single-ion anisotropy where all
components of the exchange tensor are have the same value (Jxx = Jyy = Jzz) and in the second
case is taken in account the two-ion anisotropy using the introduction of the anisotropic
exchange mentioned above.

After the linear fitting we found a scaling factor of 2.53±1.67% for RKKY single ion,
respectively 2.2±0.97% for two-ion RKKY which is in a reasonable agreement obtained
experimentally [132] and theoretically [119, 59].
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(a) θ = 0◦ (b) θ = 45◦

(c) θ = 90◦ (d) θ = 180◦

Fig. 5.9 Typical snapshots of the spins configuration during the switching mechanism at
different polar angles θ for a cylindrical grain of FePt with 10nm height and 10nm basal
diameter at a temperature of 200K.

The nucleation and propagation mechanism introduces a systematic error when is found
using the method of extracting the anisotropy from the free energy path due to nucleation.
We can, therefore design a new way of extracting the anisotropy energy of the system in
the maximum torque value before the appearance of strong effects caused by the nucleation.
In the following simulations, the magnetisation angle is set at θ = 45◦ and the temperature
varies in the interesting regime of HAMR from 0K. This is demonstrated in the inset of figure
5.11 where the linear fitting is shown for different diameters of the FePt.

However, the scaling factor can be influenced by the sizes, strength of the two-ion
anisotropy and the shape of the particles will likely give a rise to an increase of the two-ion
anisotropy with small sizes.

Figure 5.11 shows the variation of the scaling factor as a function of diameter. We fitted
each log-log dependence at different diameters of the FePt cylinder extracting the scaling
factor. Lower size will give a significant deviation comparing with bulk value which might
be related to finite size effects.
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Fig. 5.10 In this graph is plotted the calculated temperature dependence of L10 FePt in
log-log plot of the reduced anisotropy and magnetisation using RKKY function for two cases:
single ion contribution and tow-ion contribution. The linear fit gives a slope n = 2.2±0.97%
for two-ion contribution and n = 2.53±1.67% for single ion.

5.4 Computational performance and new perspectives

To find out the benefits of a short range Hamiltonian such as the first or second range the
performance of each truncation at different system sizes has been evaluated. Three ranges
of Hamiltonian have been simulated in figure 5.12 performing 100.000 Monte-Carlo steps
for an arrangement of atoms in a fcc structure for a cubic particle of FePt. Here the 5th
range is closer to full Hamiltonian list in terms of number of neighbouring atoms which
should be similar in terms of calculation speed. A clear increase of time can be observed
with an increased number of atoms for all ranges. However, the time for the fifth range is
considerably longer at larger size of the particle where the second range can be accurate and
fast as well.

For lower number of atoms, the running time converge for all cases due to the reduced
list of interactions for the fifth range. Similar behaviour has been noted at different system
truncations where the system cannot provide enough atoms to fill the entire list of the
interactions.
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Fig. 5.11 In this graph is plotted the scaling factor n as a function of diameter of L10 FePt
cylinder using RKKY function with two-ion contribution. The inset graph shows the scaling
of K with M/MS for three different values of the diameter.

Beside speeding up the calculations the implementation of RKKY function can be an
useful tool to simulate magnetic properties of ferromagnets which exhibit anomalous crystal
structures or oscillatory exchange interaction. This method allows to tune the specific
parameters in order to compensate the lack of insight about the materials. For example, an
expanded investigation can be done to understand how the strength of two-ion anisotropy
which can be controlled by tuning the exchange interaction components can affect the
anisotropy scaling.

5.5 Conclusions and further work

To summarize, we have investigated two models of exchange interactions employing atomistic
spin model. Both model predict a reasonable temperature dependence which might be useful
for developing the new models for magnetic materials aiming to describe the magnetisation
processes involved in recording media. We noted an advantage of DFT model over RKKY
model due to the extra term of anisotropy which gives reliable results in agreement with the
experiment. However, the full Hamiltonian can be painful to use and as an alternative the
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Fig. 5.12 Runtime for different ranges of RKKY function as a function of number of atoms.
The time has been measured for each simulation which perform 100000 Monte-Carlo steps
at each system size.

RKKY model can be used in order to increase the speed of simulations mantaing the accurate
physical properties of FePt.

Secondly, the magnetic behaviour at lower sizes can be related to truncation of the
Hamiltonian. Here, both model predicted a reduction of TC when the range of the interaction
is less than 3 unit cell sizes. We found a good agreement between RKKY two-ion and
DFT-based for calculation of the anisotropy scaling factor which provide a better insight of
L10 FePt toward heat assisted recording media (HAMR). RKKY mechanism of the exchange
interaction provides a reasonable description of the anisotropy scaling with magnetisation
showing a scaling factor close to the experimental measurements in the same way that
Mryasov model works showing the contribution of the two-ion anisotropy term.

We conclude that FePt is a unusual ferromagnet where anisotropic exchange interactions
occur giving a rise to an additional term in the general Hamiltonian called two-ion contri-
bution. Here, we need to explore how the strength of the two-ion anisotropy can affect the
scaling factor remaining as further work.





Chapter 6

Conclusions and further work

Atomistic Spin Dynamics model

In this final chapter of the thesis, we briefly draw the main conclusions of this thesis pointing
out the main results we found. Throughout the three topics we approached in this work we
employed the ASD model to simulate the magnetic properties proved as an useful and reliable
model being successfully implemented in VAMPIRE atomistic package. The importance of
ASD is given by the capability of reproducing thermal bahaviour of magnetic nano-materials
in a strong agreement with the experimental measurements by using Langevin dynamics.
Two techniques of solving the dynamics of the spins have been presented such as: stochastic
LLG equation and MC methods. Both methods give a correct thermal dependence of the
magnetisation under different simulations conditions standing up for the simulations of
HAMR processes.

Inter-granular exchange

In the third chapter, the inter-granular exchange interaction is studied in detail by simulat-
ing two different granular systems: the tri-layer and multi-granular system arranged in a
hexagonal distribution. CMC simulations show an exponential decrease of the inter-granular
exchange constant on separation distance between the grains on both cases according to
Sokalski measurements. In the tri-layer system we observed a decrease of the exchange
interaction energy with the temperature and low magnetic impurities density of the segregant
layer.

The multi-grain simulations reveal a slight different form of the inter-granular exchange
unlike trilayer system where the normal Heisenberg exchange is enough to depict the be-
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haviour of exchange during a switching mechanism of the top grain. On the other hand
in hexagonal distribution of the grains, the switching of the central grain does not respect
the Heisenberg form of the exchange where an additional term must be included in order
to appropriately describe the angular dependence of the exchange energy. This term is a
higher order exchange usually called biquadratic term due to sin2 dependence demonstrated
theoretically and experimentally by Sloncweski et al. The strength of the bilinear and
biquadratic term have been found to decay exponentially on temperature and separation
distance for anisotropy and non-anisotropy grains. Also, the doping concentration affects the
strength of the inter-granular exchange influencing the exponent of power law decreasing
on temperature. All these results can contribute to a better understanding of the long-term
stability of recording media, particularly for heat assisted magnetic recording.

As a further work we are interested to investigate the same inter-granular exchange energy
by replacing the Co grains with ECC grains. This can complicate the simulations and reveal
unexpected effects due to particular nucleation processes which can alter the inter-granular
exchange.

ECC media

In the fourth chapter, a new design of recording medium has been proposed for investigations
being a solution to overcome some thermal limitations of HAMR. ECC media has been
studied both using MC simulations and sLLG equation. Special interest has been dedicated
to find out the benefits of ECC design which suppose to be feasible for HAMR due to the
exchange spring effect which might "help" the switching at conventional parameters. The
atomistic simulations show a good qualitative temperature dependence of the coercivity
compared with the experimental results revealing a decrease of the writing field at elevated
temperatures due to the reduction of the energy barrier at high thermal fluctuations.

The CMC simulations predict a diminution of the energy barrier with an increased
temperature making the ECC media suitable for HAMR temperature regime. However,
CMC simulations do not predict a realistic decrease of the energy barrier with an increased
applied field on the low-temperature regime due to a coherent rotation of the magnetisation
of the atomic layers in the system. We expected the nucleation to occur during the reversal
mechanism according to dynamical simulations where the nucleation field alters energy
barrier. It has been found that the nucleation appears at elevated temperature using CMC
simulations, where the spins are allowed to fluctuate randomly in a wider angular cone of
the magnetisation favouring the non-coherent rotation of the system. As further work, we
can improve the energy barrier calculations by considering a new model of energy barrier
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calculations. This model is a semi-analytical model based on a set of Lagrange constraints
which can be applied on magnetisation components.

The sLLG simulations give us a more detailed description of the exchange spring be-
haviour of ECC media. We found that the domain wall formation during the hysteresis
loops effects the switching mechanism. Further observations have been done by studying the
reversal mechanism. It has been noted an anomalous damping dependence in heating/cooling
processes under external magnetic fields around the coercivity at different damping constant
values of Fe. Here lower damping of the soft phase (Fe) is found to accelerate the switching in
the low-field regime, whereas higher fields will give an expected dependence of the reversal
time on damping denoting minimal effects of the nucleation caused by a faster propagation
of the domain wall. Moreover, the nucleation effects in ECC media need to be considered in
a further implementation of complex HAMR process and are determined by several factors
including the strength of the applied field, temperature, exchange coupling at the interface
and thickness of the soft layer. We conclude that the damping constant plays a crucial role in
determining the speed of the domain wall propagation, explaining the unexpected results at
conventional fields.

RKKY interaction

In the fifth chapter, two ways to parametrize the exchange interaction between the magnetic
spins have been proposed: first principle calculations and RKKY function toward ASD
simulations. Both methods predict a good agreement of the temperature dependence which is
useful for developing new models for the magnetic materials aiming to describe the magneti-
sation processes involved in recording media. However, the full set of DFT calculations can
be painful to use in order to create the interactions list and as an alternative RKKY model
can be used in order to increase the speed of simulations by choosing an optimal range of
truncation which ensures the reliable physical properties of the material.

Secondly, the magnetic behaviour at lower size can be related to natural truncation of the
interactions list. Here, both models predicted a reduction of TC when the range of interaction
is less than three unit cell sizes. We found a good agreement between RKKY two-ion and
DFT-based for calculations of the anisotropy scaling factor giving a better description of L10

FePt with great importance for HAMR as decreasing of the anisotropy on temperature is a
fundamental factor prior to chose writing parameters. RKKY mechanism of the interactions
provides a reasonable description of the anisotropy scaling with magnetisation showing a
scaling factor close to the experimental measurements, 2.1, in the same way that Mryasov
model works showing the influence of the two-ion anisotropy term.
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We conclude that FePt is a complex ferromagnet where the unexpected exchange inter-
actions occur giving rise to an additional term in the general Hamiltonian called two-ion
contribution. Here, we need to explore how the strength of the two-ion anisotropy can affect
the scaling factor remaining as further work.



Nomenclature

AD Areal density

ASD Atomistic spin dynamics

BCC Body centred cubic

BER Bit error rate

BPM Bit patterned media

CDF Constrained density functional

CGC Coupled granular continuous

CLSDA Constrained local-spin-density approximation

CMC Constrained Monte-Carlo

DFT Density functional theory

DM Dzyaloshinskii-Moriya

EB Electron beam

ECC Exchange coupled composite

FCC Faced centred cubic

FMR Ferromagnetic resonance

FP Fokker-Planck

GPGPU General-Purpose Computing on Graphics Processing Units

HAMR Heat-assisted magnetic recording
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HDD Hard disk drive

KKR Korringa-Kohn-Rostoker

LD Langevin dynamics

LLB Landau-Lifshitz-Bloch

LLG Landau-Lifshitz-Gilbert

MAMR Microwave-assisted magnetic recording

MC Monte-Carlo

MMC Metropolis Monte-Carlo

MPI Message-Passing-Interface

NN Nearest neighbours

PMR Perpendicular magnetic recording

RE Rare earth

RKKY Ruderman-Kittel-Kasuya-Yosida

SI International system of units

sLLG stochastic Landau-Lifshitz-Gilbert

SNR Signal noise ratio

SQUID Superconducting quantum interference device

SW Stoner-Wohlfarth
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Appendix A

Landau-Lifshitz-Gilbert equation

For an electron precessing around the nucleu with a radius r0 and an angular speed ω , the
kinetic moment can be written as |⃗L| = m0ωr2

0. Also, the motion of the electron around
the nucleu produces an electrical current having the intensity equal to νe, where ν is the
frequency and e is elementary electrical charge. According to electromagnetism theory, a
loop current creates a magnetic moment following next formula:

|M⃗|= |IS⃗|= eνπr2
0 =

eωr2
0

2
=

e
2m0

L (A.1)

In a general form the equation 1 can be written as:

M⃗ =−g
eωr2

0
2

=
e

2m0
L⃗ =−γ⃗L (A.2)

where γ is called gyromagnetic factor, having two values: 1 for orbital momentum and 2 for
spin. In Electrodynamics the variation of kinetic momentum of the electrical charge in time
it is described by the theory of variation of kinetic momentum:

Γ⃗ =
d⃗L
dt

(A.3)

where Γ is the torque. This one can be expressed like:

Γ⃗ = M⃗× B⃗ (A.4)
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B⃗ is the magnetic field. For simplicity, we introduce a new notation for the direction of the
magnetic moment S⃗, which is equal to S⃗ = M⃗

|M⃗| . Therefore, equation (3) can be written as:

dS⃗
dt

=−γ

(
S⃗× B⃗

)
(A.5)

Experimental measurements reveal a damping magnetic field which is proportional with the
variation of the direction of magnetisation, being always opposite to the magnetic field.

B⃗ f =−α
dS⃗
dt

(A.6)

α coefficient is called Gilbert damping. Introducing the damping magnetic field in equation
(6), we get the first form of LLG equation which describes the variation in time of the
direction of magnetisation:

dS⃗
dt

=−γ

[
S⃗×

(
B⃗−α

dS⃗
dt

)]
(A.7)

Taking into account equation (A.6), in the the equation (A.5), we obtain:

S⃗× dS⃗
dt

=−S⃗×
(

S⃗× B⃗
)
+ γα

[
S⃗×

(
S⃗× dS⃗

dt

)]
(A.8)

S⃗× dS⃗
dt

=−S⃗×
(

S⃗× B⃗
)
+ γα

[
S⃗

(
S⃗ · dS⃗

dt
− S⃗2 dS⃗

dt

)]
(A.9)

Due to the magnitude of S⃗ is constant and |⃗S|2 = 1, equation (A.9) becomes:

dS⃗
dt

=− γ

1+ γ2α2

(
S⃗× B⃗

)
− γ2α

1+ γ2α2

[⃗
S×
(

S⃗× B⃗
)]

(A.10)

If λ = γα , then eq. (7) is:

dS⃗
dt

=− γ

1+λ 2

(
S⃗× B⃗

)
− γλ

1+λ 2

[⃗
S×
(

S⃗× B⃗
)]

(A.11)



Appendix B

The formalism of RKKY interaction

The paramagnetic susceptibility is a q-dependent which can be decomposed into a sum of all
possible spatial frequencies:

H(r) = δ (r)H =
1

(2π)3

∫
Hqeiq·rd3q (B.1)

where Hq = H. Thus delta function can be considered as a sum over all frequencies,
comprising both very long wevelength and short wavelength oscillations. If χq = χ is
inependent of q, then Mq = χH and:

M =
1

(2π)3

∫
Mqeiq·rd3q = χδ (r)H, (B.2)

The real space susceptibility is:

χ(r) =
1

(2π)3

∫
d3qχqeiq·r

=
1

(2π)3

∫
d3 χP

2

(
1+

4k2
f −q2

4k f q
log

|q+2k f |
|q−2k f |

)
eiq·r (B.3)

The integral (B.3) is very hard to evaluate. First we need to show that:∫
d3qχqeiq·r =

2π

ir

∫
∞

−∞

qeiqr
φ(q)dq, (B.4)

where φ(q) = φ(−q) is a function of variable q. Hence equation (B.3) can be expanded as:
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1
(2π)3

∫
d3q

χP
2

(
1+

4k2
f −q2

4k f q
log

|q+2k f |
|q−2k f |

)
eiq·r

=
χPk2

f

iπ2r

∫
∞

−∞

xeiyx f (x)dx, (B.5)

where x = q/2k f , y = 2k f r and f (x) is:

f (x) =
1
2

(
1+

1− x2

2x
log

|x+1|
|x−1|

)
(B.6)

If we consider following integrals:

I1 =
1
ir

∫
∞

−∞

xeiyx

2

(
1+

1− x2

2x
log

|x+1|
|x−1|

)
dx

I2 =
1
ir

∫
∞

−∞

xeiyx

2

(
1+

1− x2

2x
log

x+1
x−1

)
dx. (B.7)

These to integrals are equated when |x|> 1 Prove that I2 is zero by completing the contour
with an infinite semicircle in the upper half of the x plane and using Jordan’s lemma .
Therefore, using this result and a contour for I1 that displaced infinitesimally above the real
axis from x =−1 to x = 1, show that:

I1 =
1
ir

∫
∞

−∞

xeiyx(1− x2)

4

(
log

|x+1|
|x−1|

− log
x+1
x−1

)
dx

=
π

r

∫
∞

−∞

xeiyx(1− x2)

4

=
π

r

[
sinx− ycosy

y3

]
(B.8)

At larger distance k−1
f ≪ r equation (B.8) can be approximated with cos(2k f r)/r3.
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