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Abstract 

Fibroblast growth factor (FGF) signalling is critical for the initiation and regulation of multiple 

developmental processes including gastrulation, mesoderm induction and limb development. 

Despite extensive understanding of FGF signal transduction via tyrosine kinase receptors (RTKs), 

the specific mechanism responsible for regulation of target gene transcription is still not fully 

understood.  

The protein Capicua (CIC) has been linked to transcriptional regulation in RTK signalling via the ERK 

pathway in multiple organisms. ERK signalling cascades also mediate wound signal transduction and 

transcription of associated genes. We hypothesise that transcription of a subset of FGF target 

genes, and genes involved in the wound response, rely on ERK mediated relief of CIC transcriptional 

repression. 

The aims of this project were to establish if CIC operates downstream of FGF signalling through 

analysis and validation of RNA-seq data, and to investigate the relationship between CIC and ERK in 

FGF signalling and wound healing in Xenopus embryos.  

The work in this thesis shows that CIC knockdown and FGF overexpressing embryos exhibit similar 

phenotypes and transcriptomes. Immunostaining for myc-tagged CIC indicates that CIC expression 

is reduced following activation of FGF signalling or the wound response. 75% of the putative CIC 

and FGF regulated genes analysed have enriched CIC binding sites and 75% were upregulated in RT-

PCR analysis of CIC knockdown and FGF overexpressing embryos. Additionally, genes associated 

with wound healing (fos and gadd45a) are upregulated in CIC knockdown embryos. These data 

support the notion that CIC has a transcriptional regulatory role for a subset of FGF target genes 

and genes involved in the wound response.  

Misregulation of the FGF signalling pathway and/or CIC repression is associated with a range of 

disorders and cancers. Consequently, understanding the molecular mechanisms involved in these 

pathways may allow development of more effective treatments for injury, neurodegenerative and 

developmental disorders, and cancer. 
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Chapter 1: Introduction 

1.1 The fibroblast growth factor family 

Fibroblast growth factor (FGF) signalling is critical for the initiation and regulation of multiple 

developmental processes including gastrulation, mesoderm induction and limb development 

(Rossant et al., 1997; Slack et al., 1996; ten Berge et al., 2008). FGFs also play essential roles in injury 

and tissue repair and regeneration in the adult (Maddaluno et al., 2017). In vertebrates, the FGF 

ligand family has 22 members which can be categorised into 7 phylogenetic subfamilies (Ornitz, 

2000). These subfamilies can also be further classified into 3 groups: intracellular (FGF11-14), 

endocrine (FGF19, 21 and 23) and canonical (FGF1-10, 16-18, 20 and 22) (Itoh, 2010). Intracellular 

FGFs have high sequence homology with the FGF family but are not secreted and do not activate 

FGF receptors (FGFRs) (Beenken and Mohammadi, 2009). The canonical FGFs share a conserved 

core of 140 amino acids, have a strong affinity for heparin sulphate proteoglycans (HSPGs), and 

signal through the FGFR family of tyrosine kinase receptors (Dorey and Amaya, 2010). Endocrine 

FGF ligands target cells through the bloodstream and bind Klotho molecules as co-factors for 

receptor binding rather than HSPGs (Ornitz and Itoh, 2015). 

1.2 The fibroblast growth factor receptor family 

FGFR1, 2, 3 and 4 are composed of a single transmembrane domain, an intracellular domain with 

tyrosine kinase activity, and an extracellular ligand binding region (Böttcher and Niehrs, 2005). 

Immunoglobulin-like domains Ig1, Ig2 and Ig3 in the extracellular region are important for ligand 

and co-factor binding, receptor dimerisation, and ligand specificity as different isoforms of FGFR1-

3 are generated through alternate splicing of Ig3 (Table 1) (Johnson et al., 1991). Binding specificity 

is primarily regulated by alternative splicing of exons IIIb and IIIc of the C-terminal half of Ig3. For 

example, FGFR2 and FGFR3 exclusively express the IIIb exon in epithelial cells and IIIc in 

mesenchymal lineages (Scotet and Houssaint, 1998; Wuechner et al., 1996). Ig2 also contributes to 

FGF ligand and receptor specificity as it rotates to form a greater number of contacts with ligands 

such as FGF10 in a ligand-induced conformation change (Yeh et al., 2003). In this manner, FGF 

signalling is tightly regulated in order to ensure correct embryonic development and adult tissue 

homeostasis. Misregulation of the FGF signalling pathway can lead to a wide range of disorders 

including skeletal abnormalities, hypophosphatemic rickets and deafness (Beenken and 

Mohammadi, 2009). FGFR mutations in particular are associated with a number of cancers as FGF 

signalling is important in regulating cell proliferation and angiogenesis (Turner and Grose, 2010).  
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In addition to the 4 classical tyrosine kinase receptors, FGFR-like (FGFRL) also has a strong affinity 

for FGF ligands but lacks a tyrosine kinase domain (Trueb et al., 2003). The receptor is otherwise 

structurally similar to FGFR1-4 and was initially thought to function only as a decoy receptor to 

further modulate FGF signalling (Steinberg et al., 2010). However, overexpression of FGFRL leads to 

increased ERK signalling, thus suggesting that the receptor may also act as a non-tyrosine kinase 

signalling molecule (Ornitz and Itoh, 2015).  

FGFR isoform Ligand specificity 

FGFR1b FGF1, 2, 3, 10, 22 

FGFR1c FGF1, 2, 4, 5, 6, 19, 20, 21 

FGFR2b FGF1, 3, 4, 6, 7, 10, 22 

FGFR2c FGF1, 2, 4, 5, 6, 8, 9, 17, 18, 19, 21, 23 

FGFR3b FGF1, 9 

FGFR3c FGF1, 2, 4, 8, 9, 17, 18 19, 21, 23 

FGFR4 FGF1, 2, 4, 6, 8, 9, 16, 17, 18, 19 

FGFRL FGF2, 3, 4, 8, 10, 22 

Table 1: Ligand specificity of the fibroblast growth factor receptor family (Tiong et al., 2013; 
Steinberg et al., 2010)  

1.3 Canonical fibroblast growth factor signal transduction 

Binding of FGF and accessory molecule HSPG to FGFR1-4 leads to receptor dimerisation and 

autophosphorylation of intracellular tyrosine kinase domains (Schlessinger, 2000). This leads to 

further tyrosine phosphorylation within the receptor to create docking sites for secondary 

messengers. Phosphotyrosine residues bind Src homology 2 (SH2) domains found in various 

signalling proteins, allowing recruitment and activation of signalling complexes (Pawson et al., 

1993). FGF signal transduction proceeds via 3 main pathways: the phospholipase Cγ (PLCγ), 

phosphoinositide-3 (PI3) kinase or extracellular signal-regulated kinase (ERK) pathway (Figure 1).  

Binding of PLCγ to an FGFR phosphotyrosine residue at position 766, activates the enzyme leading 

to hydrolysis of phosphotidylinositol-4,5-diphosphate to inositol-1,4,5-trisphosphate (IP3) and 

diacylglycerol (DAG) (Peters et al., 1992). IP3 stimulates intracellular calcium release and DAG 

activates protein kinase C. This FGF signal transduction pathway is required for the modulation of 

planar cell polarity needed for cell movements during gastrulation (Sivak et al., 2005). 

FGF signalling can also activate the PI3 kinase pathway through Frs2 (FGFR substrate 2) binding 

Gab1 (growth factor receptor bound protein 2-associated-binding protein 1) indirectly via Grb2 

(growth factor receptor bound protein 2). Phosphorylation of Gab1 leads to the subsequent 
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recruitment and activation of PI3 kinase and downstream effector proteins (Ong et al., 2001). 

AKT/protein kinase B is an important downstream mediator of this pathway and is a proto-

oncogene involved in regulating cell survival and growth (Nicholson and Anderson, 2002).  

The most common FGF signalling pathway in development involves association of Frs2 with the 

activated receptor (Kouhara et al., 1997). This allows assembly of the protein complex required for 

initiation of the ERK signalling cascade (Hadari et al., 2001). Frs2 recruits the adaptor protein Grb2 

which in turn binds the guanine nucleotide exchange factor son of sevenless (Sos) via its Src 

homology 3 (SH3) domain (Ong et al., 2000). Sos promotes dissociation of GDP from small GTP 

binding protein Ras to allow its conversion to the active GTP-bound form. Activation of Ras leads to 

a cascade of sequential phosphorylation of transducing proteins Raf, Mek and ERK (also known as 

MAPK) (Schlessinger, 2000). Activated serine/threonine kinase ERK induces expression of target 

genes by directly phosphorylating transcription factors or by phosphorylating and activating other 

kinases to do so.  

 

Figure 1: Schematic representation of FGF signal transduction via the PLCγ, PI3 kinase and ERK 
signalling pathways. Binding of extracellular fibroblast growth factors (FGFs) and accessory 
molecule heparin sulphate proteoglycan (HSPG) causes dimerisation of FGF receptors and 
autophosphorylation of intracellular tyrosine kinase domains. FGF signal transduction proceeds via 
3 main pathways: the phospholipase Cγ (PLCγ), phosphoinositide-3 kinase (PI3K) or extracellular 
signal-regulated kinase (ERK) pathway.  

1.4 Transcriptional regulation in the FGF signalling pathway 

Many FGF target genes have been identified through transcriptomic screens involving the 

comparison of wild type Xenopus with those in which FGF signalling had been impaired. For 

example, a microarray screen of Xenopus explants treated with SU5402, a specific FGFR1 inhibitor, 
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highlighted 38 genes positively regulated and 5 genes negatively regulated by FGF signalling (Chung 

et al., 2004). Inhibition of FGF signalling by dominant negative mutants of FGFR1 and FGFR4a led to 

the identification of 67 genes significantly upregulated and 16 genes significantly downregulated 

by FGF signalling in normal Xenopus laevis development (Branney et al., 2009).  

The caudal-related (Cdx) group of ParaHox genes are among the FGF targets downregulated in the 

presence of dominant negative FGFRs (Pownall et al., 1996; Isaacs et al., 1998; Branney et al., 2009). 

In vertebrates, the Cdx genes are required for normal antero-posterior patterning, and the 

specification and differentiation of gut endoderm (Beck and Stringer, 2010). Cdx1, Cdx2 and Cdx4 

are initially expressed in the early mesoderm surrounding the blastopore region in Xenopus 

gastrulation (Pillemer et al., 1998). Normal mesodermal Cdx gene expression requires FGF signal 

transduction via activation of ERK, in addition to FGF dependent wnt8 expression (Keenan et al., 

2006). Overexpressing FGF4 in late gastrula to late neurula Xenopus leads to an anterior extension 

of the Cdx4 domain and a subset of homeobox (Hox) genes resulting in a posteriorised phenotype 

(Pownall et al., 1996). 

Brachyury (Xbra) is another well-established target whose expression is upregulated when FGF4 is 

overexpressed (Isaacs et al., 1994). The T-box transcription factor is crucial for mesoderm and 

notochord development in vertebrates, as homozygous mice mutants fail to form these along with 

all posterior structures (Chesley, 1935). Xbra expression is also reduced in Xenopus embryos treated 

with SU5402 (Chung et al., 2004) or expressing dominant negative FGFRs (Isaacs et al., 1994). Xbra 

is part of a closed autocatalytic regulatory loop in the early mesoderm where FGF4 induced Xbra 

expression maintains FGF4 expression via positive feedback (Isaacs et al., 1994).  

FGF signalling is also mediated by E26 transformation-specific (ETS) transcription factors. The 

polyoma enhancer activator 3 (PEA3) subfamily (also known as ETS variant transcription factor 4 

(Etv4)) includes PEA3, Etv5 and Etv1. Members of this subfamily act as downstream effectors of 

FGF-Ras-ERK signalling (Garg et al., 2018). Transcription of PEA3 ETS factors is repressed by the 

protein Capicua (CIC) in the absence of modulation by activated ERK, p90RSK (p90 ribosomal S6 

kinase) and 14-3-3 proteins (Dissanayake et al., 2011). PEA3 and Etv5 expression closely correlates 

with that of FGF8 and FGF3, is lost in zebrafish embryos treated with SU5402 and is ectopically 

expressed in the presence of FGF8/3 coated beads (Raible and Brand, 2001). Additionally, 

knockdown of the PEA3 subfamily in zebrafish produced phenotypes resembling FGF deficient 

embryos and significantly decreased FGF target gene expression (Znosko et al., 2010). PEA3 and 

Ets2 have also been shown to mediate FGF signalling in a negative feedback loop by directly binding 
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Dusp6 (dual-specificity phosphatase 6) promoters to inactivate ERK (Ekerot et al., 2008; Znosko et 

al., 2010).  

MyoD (myoblast determination protein 1), another well-documented FGF target gene, encodes a 

basic-helix-loop-helix transcription factor able to induce differentiation of skeletal muscle cells 

through direct regulation of muscle-specific genes (Tapscott, 2005). Previous work has shown that 

treatment of Xenopus laevis animal caps with eFGF (also known as FGF4) directly activates Xenopus 

myoD (XmyoD) even in the presence of translational inhibitor cycloheximide (CHX) (Fisher, 2002). 

This indicates that activation of XmyoD by FGF is an immediate early response not requiring 

translation or transcription. CHX treatment alone activates some transcription of XmyoD suggesting 

that FGF target gene expression involves inhibition of a labile transcriptional repressor, the levels 

of which rapidly decay in the absence of protein synthesis. Expression of Cdx genes is also increased 

following CHX treatment of animal caps indicating that XmyoD is not the only FGF target likely to 

be regulated in this manner (Keenan et al., 2006). 

Other evidence for an unstable protein repressing FGF transcriptional target XmyoD includes the 

fact that following the midblastula transition, XmyoD is transiently expressed at a low level 

ubiquitously throughout the embryo (Rupp and Weintraub, 1991). This is quickly silenced, possibly 

due to zygotic gene activation and translation of a transcriptional repressor. The high levels of 

XmyoD necessary for myogenic development could then be achieved in specific cells through 

inactivation of the repressor by modification via FGF signalling. Furthermore, transfection of the 

myoD enhancer sequence fused to the chloramphenicol acetyltransferase (CAT) reporter gene into 

multiple cell lines significantly increases myoD expression. However, expression of the human myoD 

enhancer upstream of a lacZ reporter in transgenic mice results in intense staining of only skeletal 

muscle-forming regions. Transgene activation and endogenous myoD expression is restricted to 

limb buds and the myotomal compartments of somites in vivo. The difference between the myoD 

expression pattern in tissue culture and in vivo may be due to the presence of a transcriptional 

repressor necessary for silencing myoD in non-muscle cells within the embryo which is not present 

in derived cell lines (Goldhamer et al., 1992).  

1.5 The transcriptional repressor Capicua and ERK signalling 

High mobility group box protein Capicua (CIC) has been identified as a transcriptional repressor 

potentially involved in regulating expression of FGF gene targets.  

CIC has been linked to transcriptional regulation in receptor tyrosine kinase (RTK) signalling via the 

ERK pathway in multiple organisms including mice and humans (Jimenez et al., 2012). In all cases 
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studied, binding of CIC to target protein promoters and enhancers leads to transcriptional 

repression in the absence of RTK signalling. For example, Torso is a tyrosine kinase receptor 

activated at the anterior and posterior poles of the Drosophila melanogaster syncytial embryo, 

where its ligand Trunk is produced. This creates a gradient of ERK activity at each embryonic pole. 

Phosphorylation of CIC by activated ERK (diphosphorylated ERK (dpERK)) leads to degradation of 

CIC, thus creating an opposing gradient of CIC protein levels decreasing towards the pole (Jimenez 

et al., 2000). This allows transcription of huckebein (hkb) and tailless (tll). CIC represses hkb more 

effectively than tll, leading to a narrower, nested hkb expression profile required for the 

differentiation of terminal region structures (Duffy and Perrimon, 1994). At the anterior terminus, 

CIC is also involved in establishing posterior boundaries of Bicoid target genes through binding of 

Bicoid responsive enhancers (Löhr et al., 2009) 

CIC has also been shown to act as a vital regulatory switch in RTK signalling in the Drosophila ovarian 

follicle where EGFR signalling induces nuclear export and partial relocalisation of CIC to the 

cytoplasm following phosphorylation by ERK. CIC is important in establishing the dorsoventral axis 

as it represses homeodomain transcription factor Mirror in ventral follicle cells, thus allowing pipe 

transcription (Andreu, González-Pérez et al., 2012). EGFR-mediated relocalisation of nuclear CIC 

therefore contributes to defining the pipe expression border position by affecting the spatial 

distribution of Mirror in follicle cells. Loss of maternal CIC function therefore leads to dorsalisation 

of the embryo due to absence of pipe expression (Andreu, Ajuria et al., 2012).  

Increasing evidence regarding the involvement of CIC in RTK signalling and the fact that CIC fits the 

MyoD model for a transcriptional repressor led to our hypothesis that FGF regulated gene 

transcription is mediated, at least in part, by CIC. FGF has been shown to be the sole activator of 

ERK signalling in early development in Xenopus tropicalis (Christen and Slack, 1999), so CIC was 

identified as a potential component of the FGF pathway downstream of ERK.  

1.6 Relief of Capicua transcriptional repression via interactions with dpERK 

Capicua exists in 2 main isoforms with different sizes and N-terminal regions. In Xenopus tropicalis, 

CIC-long (CIC-L) contains N-terminal exon 1 (2812bp), whereas CIC-short (CIC-S) contains exon 2 

(49bp) instead (King, 2019). The remaining CIC exons (3-22) are common to both isoforms in 

Xenopus tropicalis and Mus musculus (Figure 2A). Xenopus tropicalis and Mus musculus CIC proteins 

both contain 7 functional domains: N1, ATXN-1, 14-3-3. HMG-box, C2, NLS and C1 (Astigarraga et 

al., 2007). The N1 domain is only present in the CIC-L isoform and not the shorter CIC-S protein 

(Figure 2B).  
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Figure 2: Schematic diagram of CIC exon structure and functional domains. A Capicua (CIC) 
consists of 22 exons. Exon 1 is specific to the CIC-long (CIC-L) isoform and exon 2 to the CIC-short 
(CIC-S) isoform. Both CIC-L and CIC-S share the common exons 3-22. B The CIC protein contains 7 
functional domains, 6 of which are found in both the CIC-L and CIC-S isoforms. The N1 domain is 
only present in the CIC-L protein 2. The HMG domain is a high mobility group-box domain and the 
NLS encodes a nuclear localisation sequence. 

Activated ERK acts via several mechanisms involving different functional domains to reduce nuclear 

levels or activity of CIC. For example, in Drosophila, dpERK binds to the C2 docking motif and directly 

phosphorylates CIC to induce degradation of the protein (Jimenez et al., 2012). dpERK binding of 

the C2 domain in fly and human model systems also mediates further phosphorylation of CIC in 

response to signalling. CICΔC2 mutant flies lacking the C2 domain exhibit a similar phenotype to 

Torso KO (Astigarraga et al., 2007). Without a functional C2 motif, CIC is insensitive to relief of 

repression by Torso signalling. This suggests that the C2 domain is essential for relief of CIC 

repression. 

CIC binds DNA via its High Mobility Group-box (HMG-box) domain, which recognises octameric 

T(G/C)AATG(A/G)A sites in target gene enhancers and promoters (Jimenez et al., 2012). The 14-3-3 

domain contains a serine or threonine residue which, once phosphorylated, recruits members of 

the 14-3-3 phosphoserine family of binding proteins. In human HEK-293 cell studies, ERK signal 

transduction activates p90 ribosomal S6 kinase (p90RSK) expression. p90RSK phosphorylates the 

serine at the 14-3-3 motif to create a docking site for 14-3-3 regulatory proteins (Dissanayake et al. 

2011). This blocks or reduces optimal binding efficiency of the neighbouring HMG-box domain to 

DNA leading to relief of repression by CIC.  

Human CIC contains a common nuclear localisation sequence (NLS) at the C-terminal. This allows 

binding of Importin α4 (KPNA3) leading to import of CIC into the nucleus. Activated ERK 

phosphorylates the NLS site at Ser1382 and Ser1409 and/or KPNA3 to prevent binding of KPNA3 to CIC 

and subsequent nuclear import (Astigarraga et al., 2007). 
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1.7 ERK signalling and the wound response 

ERK is also activated in response to injury. It has been demonstrated that 2 minutes after 

mechanical wounding of intestinal epithelial cell (IEC-6) monolayers, cells at the wound edge 

strongly express cytoplasmic dpERK. ERK signalling cascades then lead to further phosphorylation 

and transcription of genes needed for tissue repair such as early growth response-1 (Egr-1) and c-

Fos, peaking at 20 minutes post-wounding (Dieckgraefe et al., 1997). Active ERK1/2 expression is 

also upregulated in tissue repair following wounding of lens epithelial cell (LEC) monolayers (Wang 

et al., 2003). Additionally, healing is inhibited in LEC monolayer wounds treated with U0126, a 

specific inhibitor of ERK1/2 activation, thus indicating that ERK activity is required for the wound 

response.  

Pre-metamorphic Xenopus are able to heal epidermal wounds without scarring, as well as 

regenerate limbs, tails and lens’ as required (Beck et al., 2009). This makes them an excellent model 

for the investigation of wound healing and regenerative mechanisms. ERK is activated rapidly and 

transiently in response to wounding or dissection of a Xenopus embryo (Christen and Slack, 1999; 

LaBonne and Whitman, 1997). Xenopus embryonic wound healing has 2 phases (Li et al., 2013). The 

first of which involves activated ERK suppressing PI3 kinase activity to allow the subsequent 

activation of Rho and myosin-2. This leads to assembly of a contractile actomyosin cable in epithelial 

cells surrounding the wound (Martin and Lewis, 1992). This cable, along with the contraction and 

ingression of exposed deep mesenchymal cells, draws the wound together like a ‘purse string’ 

(Bement et al., 1999). Actomyosin cables have also been observed in the healing of adult tissues 

such as the intestinal and cornea epithelia so this mechanism may not be restricted only to the 

embryonic wound response (Bement et al., 1993; Danjo and Gipson, 1998). ERK signalling decreases 

after phase 1 to allow PI3 kinase signalling to resume, thus leading to increased Rac and Cdc42 

activity (Li et al., 2013). This allows filopodia formation at the wound leading edge to promote 

migration and wound closure. Unlike endogenous activation of ERK in Xenopus embryos, ERK 

activation in the wound response occurs independently of FGF and is unaffected by the presence 

of dominant negative FGF receptors (Christen and Slack, 1999). 

Activation of ERK has been shown to relieve transcriptional repression by CIC in several signalling 

pathways (Jimenez et al., 2012). As ERK is also involved in the wound response, this may be another 

mechanism through which target gene expression is regulated by ERK and CIC. We hypothesise that 

CIC functions in transcriptional regulation of genes involved in the wound response, in addition to 

FGF pathway target genes (Figure 3). 
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Figure 3: Hypothesised model for transcriptional regulation of FGF and wound response activated 
target genes. ERK (extracellular signal-regulated kinase) is phosphorylated when an injury is 
sustained or the FGF signalling pathway is activated. Phosphorylation of transcriptional repressor 
protein Capicua by diphosphorylated ERK leads to degradation or relocalisation of Capicua to the 
cytoplasm, thus allowing transcription of target genes. 

1.8 Capicua expression in Xenopus development 

CIC-L is maternally expressed at the 8-cell stage (stage 4) with enriched expression in the animal 

pole (Figure 4). CIC-S expression is initially lower but increases following the midblastula transition 

when zygotic gene transcription is activated. Both CIC isoforms are expressed in the marginal zone, 

at the dorsal blastopore lip, during early gastrulation (stage 10) (King, 2019). FGF3 and FGF8 are 

first expressed in early gastrula stage Xenopus around the blastopore in order to induce mesoderm 

in this CIC-expressing region (Lombardo et al., 1998; Christen and Slack, 1997).  As development 

continues, expression of CIC-L and CIC-S becomes more widespread and is particularly enriched in 

the otic vesicles, branchial arches, neural tube, notochord, somites, forebrain, midbrain and 

hindbrain (King, 2019), all known regions of FGF signalling (Lea et al., 2009). Widespread CIC 

expression would be necessary at early tailbud stage (stage 25) to prevent non-specific transcription 

of FGF dependent genes if CIC is the downstream repressor in this signalling pathway.  

 

Figure 4: The spatial expression pattern of CIC-L and CIC-S in Xenopus tropicalis analysed using in 
situ hybridisation (King, 2019). 8-cell stage 4 (animal view), early gastrula stage 10 (vegetal view) 
and early tailbud stage 25 (lateral view). Both Capicua isoforms (CIC-long and CIC-short) are 
enriched at the dorsal blastopore lip (dbl) during gastrulation and later in the otic vesicles (ov), 
branchial arches (ba) and neural tube (nt). Embryos staged according to Nieuwkoop and Faber 
(1994) stages of Xenopus development.  
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1.9 Project aims 

Although lots is known about the FGF transcriptome, the specific mechanism responsible for 

regulation of target gene transcription is still not fully understood. Evidence suggesting involvement 

of a labile transcriptional repressor (Fisher et al., 2002) led to identification of CIC as a strong 

candidate for this role, as the protein has been shown to function as a transcriptional repressor 

relieved by RTK signalling via ERK activation in multiple species (Jimenez et al., 2012). CIC is 

expressed in known regions of FGF activity, where activation of ERK in FGF signal transduction may 

lead to relief of target gene repression by CIC (King, 2019). ERK signalling cascades also mediate 

wound signal transduction and transcription of genes relevant to wound repair (Christen and Slack, 

1999; Li et al., 2013). Consequently, CIC may also regulate transcription of genes involved in the 

wound response independently of FGF. 

Hypothesis: Transcription of a subset of FGF target genes, and genes involved in the wound 

response, rely on ERK mediated relief of CIC transcriptional repression. 

The overall aims of this project are: 

 To establish if CIC operates downstream of FGF signalling through analysis and validation 

of RNA-seq data 

 To investigate the relationship between CIC and ERK in FGF signalling and embryonic wound 

healing 
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Chapter 2: Materials and methods 

2.1 Embryological methods 

2.1.1 Xenopus embryo culture 

Fertilised Xenopus tropicalis embryos were cultured in 1/9 strength Modified Ringers Solution 

(MRS)/9 (11.11mM NaCl. 0.2mM KCl, 0.22mM CaCl2, 0.11mM MgCl2, 5mM HEPES/NaOH (Tindall et 

al. 2007)) and staged according to Nieuwkoop and Faber (1994). Embryos were transferred to 

MRS/20 (5mM NaCl, 0.09mM KCl, 0.1mM CaCl2, 0.05mM MgCl2, 5mM HEPES) before gastrulation. 

Fertilised Xenopus laevis embryos were cultured in 1/3 strength Normal Amphibian Medium 

(NAM)/3 (3.7mM NaCl, 0.067mM KCl, 0.033mM Ca(NO3)2, 0.33mM MgSO4, 3.3µM EDTA, 5mM 

HEPES pH7.4, 1mM NAHCO3 (Slack and Forman, 1980)) and staged according to Nieuwkoop and 

Faber (1994). Embryos were transferred to NAM/10 (1.1mM NaCl, 0.02mM KCl, 0.01mM Ca(NO3)2, 

0.01mM MgSO4, 1µM EDTA, 5mM HEPES pH 7.4 (Slack and Forman, 1980)) before gastrulation. 

2.1.2 Microinjection 

Xenopus tropicalis injections were carried out in MRS/9 + 3% ficoll using the gas PM 1000 Cell 

Microinjector with pulled needles (Narishige). Xenopus laevis injections were carried out in NAM/3 

+ 5% ficoll using the Drummond Microinjector with pulled needles (Drummond). Injected embryos 

were cultured in the ficoll solutions to allow healing before transfer to MRS/20 and NAM/10 

respectively. Embryos were flash frozen on dry ice for RNA extraction and reverse transcription 

polymerase chain reaction (RT-PCR) or western blots, or fixed in MEMFA (0.1M MOPS pH 7.4, 2mM 

EGTA, 1mM MgSO4, 3.7% formaldehyde (Guille, 1999)) for in situ hybridisation (after removal of 

the vitelline membrane) or immunostaining. 

2.1.3 Wounding 

The vitelline membranes of late neurula stage 20 Xenopus laevis embryos were removed before 

creating a wound on one side of each embryo using a tungsten needle. Embryos were cultured in 

NAM/10 at 21°C and fixed at a range of time points post-wounding. 

The vitelline membranes of myc-CIC microinjected gastrula stage 10.5 Xenopus laevis embryos were 

removed from the vegetal pole to avoid unintentional damage to the animal pole. Embryos were 

then wounded at the microinjection site on the animal pole using a tungsten needle. The embryos 

were cultured in NAM/10 at 21°C for 30 minutes post-wounding before being fixed in MEMFA. 
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2.1.4 Photography  

Images of embryos were taken using the SPOT 14.2 Colour Mosaic camera (Diagnostic Instruments 

Inc.) and SPOT Advanced software with a Leica MZ FLIII microscope. Adobe Photoshop CS3 was 

used to process images.  

2.2 Molecular biology methods 

2.2.1 Extraction of total RNA 

In order to extract RNA, frozen Xenopus tropicalis embryos were homogenised in 1ml Tri-Reagent 

(Sigma-Aldrich) and left on ice for 1 minute. Samples were centrifuged at 13,000rpm for 10 minutes 

at 4°C and the supernatant placed at room temperature for 5 minutes. 200µl chloroform was added 

to the supernatant and left at room temperature for 5 minutes before being centrifuged at 

13,000rpm for 15 minutes at 4°C.  The aqueous phase was transferred to a new Eppendorf and 

200µl chloroform added before being centrifuged at 13,000rpm for 5 minutes at 4°C. 500µl 

isopropanol was added to the aqueous phase, vortexed and placed at -20°C for 29 minutes. Samples 

were centrifuged at 13,000rpm for 15 minutes at 4°C and the supernatant discarded. 200µl ice cold 

70% ethanol was added to the RNA pellet, vortexed and centrifuged at 13,000rpm for 10 minutes 

at 4°C. The supernatant was discarded and the pellet dried by desiccation. RNA was resuspended 

in 50µl 2.5M LiCl and placed at -20°C overnight to precipitate. Samples were then centrifuged at 

13,000rpm for 20 minutes at 4°C. 200µl ice cold 70% ethanol was added to the RNA pellet, vortexed 

and centrifuged at 13,000rpm for 5 minutes at 4°C. The pellet was dried by desiccation and 

resuspended in 20µl dH2O. 

2.2.2 cDNA synthesis 

cDNA was synthesised from 0.5μg RNA with 0.2µg random hexamers (Thermo Scientific) and 1µl 

10mM dNTP (Roche) made up to 13µl with dH2O. Reaction mixture was heated to 65°C for 5 

minutes then placed on ice for 1 minute before addition of 4µl 5x SSIV buffer (Invitrogen), 1µl 

100mM DTT (Invitrogen), 1µl 200U/µl SuperScript IV Reverse Transcriptase (Invitrogen) and 1µl 

dH2O. The mixture was then incubated at 23°C for 10 minutes, 55°C for 10 minutes and then 80°C 

for 10 minutes. 

IDT PrimerQuest (https://eu.idtdna.com/primerquest/home/index) was used to design gene 

specific primers with forward and reverse primers in different exons with amplicon sizes between 

400bp and 800bp (Table 2). 
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Gene Forward primer sequence 5’-3’ Reverse primer sequence 5’-3’ 

fos CCAGATCTTCAGTGGCTTGT CTATACAGTGGCTCCCATTCTG 

fosl1 TCGCAAGGAGCTAACAGATTAC CATGGACTTTGCTCTCCACTAC 

frzb GGCTGGTGCTCCTATCATTAC CCTTCATGGGCTTGCATTTAC 

rasl11b ATCTTGCCATCCAGGTTCAG CCTGCATGTTTGGTGACTTTG 

Table 2: Forward and reverse gene specific primer sequences for amplification of fos, fosl1, frzb 
and rasl11b. 

12.5µl PCR Master Mix 100rxn (Promega), 1.5µl 100µM forward and 1.5µl 100µM reverse gene 

specific primers and 7.5µl dH2O were used to amplify 2µl cDNA via PCR. The reaction mixture was 

heated to 95°C for 2 minutes before 30 cycles of 95°C for 30 seconds, 58°C for 50 seconds and 72°C 

for 30 seconds before a final elongation at 72°C for 10 minutes.  

PCR products were purified using the Quick-Start MinElute PCR Purification Kit (Qiagen) as per 

manufacturer’s protocol. 

2.2.3 Agarose gel electrophoresis 

DNA and RNA samples were separated on 1.5% agarose gels in Tris-Acetate-EDTA buffer (40mM 

Tris pH7.6, 20mM acetic acid, 1mM EDTA) stained with ethidium bromide. The 1kb plus DNA ladder 

(New England BioLabs) was run alongside to predict product sizes.  

2.2.4 Cloning of in situ hybridisation probe template 

PCR products were ligated into the pGEM-T Easy vector and transformed into E. coli competent 

cells (DH5α, Invitrogen). Transformations were grown overnight at 37°C on LB agar plates 

containing 100μg/ml ampicillin. 5-10 colonies were selected from each bacterial plate and each 

subjected to PCR with gene specific primers (Table 2) to determine which colonies had taken up the 

insert successfully. For each gene, 3 colonies that had successfully taken up the insert were selected 

and cultured overnight in 3ml LB-broth containing 100μg/ml ampicillin, in a shaker at 37°C, 250rpm. 

Plasmids were isolated from the bacterial cultures using the QIAprep Spin Miniprep Kit as per 

manufacturer’s protocol. DNA concentration was determined using the Nanodrop-8000 and an 

EcoR1 digest was carried out to confirm presence of the insert in the purified plasmids. Samples of 

the undigested plasmids were sequenced using the Eurofins Genomics postal sequencing service. 

Sequencing was analysed using SeqMan software from the Lasergene Genomics Suite (DNA Star) 

to confirm that the correct region had been amplified and identify in which orientation the insert 

had been incorporated into the plasmid. This determined which restriction enzyme and polymerase 

was used for each gene to produce antisense RNA probes.  
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2.2.5 In situ hybridisation probe synthesis 

1µg of plasmid DNA was linearised by 2µl of the appropriate enzyme (Table 3) with 10µl buffer and 

85µl dH2O at 37°C for 1.5-2 hours. 

Table 3: Enzymes, buffers and polymerases used for in situ hybridisation probe synthesis.  
Enzymes and buffers used to linearise fos, fosl1, frzb and rasl11b cDNA ligated into pGEM-T Easy 
plasmids. Polymerases used to generate RNA probes following linear plasmid purification. 

Linear plasmids were made up to 400µl with dH2O and 400µl phenol chloroform added. Samples 

were vortexed for 15 seconds then centrifuged at 13,000rpm for 5 minutes. The aqueous phase 

was transferred to a new Eppendorf and an equal volume of chloroform added. Samples were 

vortexed for 15 seconds, centrifuged at 13,000rpm for 5 minutes and the aqueous phase 

transferred to a new tube. DNA was precipitated with 30µl 3M sodium acetate, 600µl ethanol and 

1µl GlycoBlue (Invitrogen) at -20°C overnight. Samples were centrifuged at 13,000rpm for 20 

minutes at 4°C. 200µl ice cold 70% ethanol was added to the pellet before being vortexed and 

centrifuged at 13,000rpm for 5 minutes at 4°C. The pellet was dried by desiccation and resuspended 

in 23µl dH2O. 

Digoxigenin (DIG) labelled antisense RNA probes for in situ hybridisation (Table 4) were synthesised 

using 4µl 5x transcription buffer (NEB), 2µl 10x DIG NTP mix (Roche), 2µl 100mM DTT (Invitrogen), 

1µl polymerase (Ambion), 3µl DNA, 7µl dH2O at 37°C overnight. Plasmid DNA was degraded by 

incubating the reaction mixture with 1µl RNase-free DNase I (Promega) at 30°C for 20 minutes. 

Probes were precipitated overnight at -20°C with 50µl 5M ammonium acetate, 300µl ethanol, 50µl 

dH2O and 1µl GlycoBlue (Invitrogen). Samples were centrifuged at 13,000rpm for 15 minutes at 4°C. 

100µl ice cold 70% ethanol was added to the pellet before being vortexed and centrifuged at 

13,000rpm for 5 minutes at 4°C. The pellet was dried by desiccation and resuspended in 50µl dH2O. 

Plasmid Linearisation enzyme Buffer Polymerase 

pGEM-T Easy fos Nco1 H SP6  

pGEM-T Easy fosl1 Sal1 H T7  

pGEM-T Easy frzb Apa1 A SP6  

pGEM-T Easy rasl11b Nco1 H SP6  
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Table 4: Digoxigenin labelled antisense RNA probe sequences for in situ hybridisation of fos, fosl1, 
frzb and rasl11b. 

2.2.6 In situ hybridisation 

For in situ hybridisation (Harland, 1991), MEMFA fixed de-membraned embryos stored in ethanol 

at -20°C were rehydrated through a graded series of ethanols and washed in PBS with 0.1% Tween 

(PBSAT). Embryos were then treated with 10μg/ml proteinase K at room temperature for 2-13 

minutes depending on stage of development. They were then washed for 5 minutes in 0.1M 

triethanolamine pH 7.8 twice before two additions of 12.5µl acetic anhydride. Embryos were 

washed in PBSAT, re-fixed in 10% formaldehyde in PBSAT for 20 minutes, and washed in PBSAT 

again. Incubation in pre-hybridisation buffer (50% formamide, 5x SSC pH7, 100µg/ml heparin, 1x 

Denhart’s, 0.1% Tween, 0.1% CHAPS, 10mM EDTA) at 60°C on a horizontal tube rocker for 2 hours 

was carried out before hybridisation with 3µl/ml DIG labelled antisense RNA probes at 60°C 

overnight. Embryos were kept above 60°C and washed in hybridisation buffer twice for 10 minutes, 

2x SSC + 0.1% Tween three times for 20 minutes and 0.2x SSC + 0.1% Tween three times for 30 

minutes. Two 15 minute MABT (100mM maleic acid, 150mM NaCl, pH 7.8, 0.1% Tween) washes 

were then carried out at room temperature. Embryos were pre-incubated in 1ml MAB + 2% BMB + 

20% heat treated lamb serum at 60°C on a horizontal tube rocker for 2 hours. The solution was 

Gene Probe sequence

bmp7.2

CTTATCGGCGCTCAGTAGATGCTTGCACTGAGGACAGAACATTATTCTGCAACTGTTTTGCTGCACATGGACAGGAGCCTCCATC

CTTTTTGGAAAGAAGACTTCAATTTGTAAACCTTCCTCATACTCCATGCCTTCAAATTGCATAAACATGTTATATTAACTTTATATTGA

AAAAAAAACATCCACTATTTTATCTAAGTGGTTTGTAAACTCAAGGGATCTGGACGTAACATGAATCAAATGTTTCTGTTTGGATTC

GGCAGCAGTCAAGATATCAAGGATTATCTGTATAATTATCTTTAGTGTTTCATCATCCCCCTGTGCTCGGAAAATATCTTTGACAAA

ATGAATGCTTTGATAGTAAAGAGAAGATTGCCAGTGCTGCTTTTTCTTTTTTACATTTCCCTGAGTTCCATCTCA

fos

CCAGATCTTCAGTGGCTTGTACAGCCAACCCTTATTTCTTCTGTAGCCCCATCACAGTCTCGGGCACACCCTTATGGGTCCACACC

AGCTTACAGCCGATCTAGCGTTATGAAAGGATCTGCTGGAAGAGGTCAGAGCCTGGGAAGAAGAGGAAAAATGGAGCAGCTTT

CTCCagaagaagaagaaaaaaggaaagtaagacgagaaaggaataagaTGGCAGCTGCCAAGTGTCGTAACCGCCGTCGGGAGTTAA

CAGACACCCTTCAAGCGGAGACTGATGACCTGGAGGACCAGAAATCTGCCCTGCAGGCAGAGATTGCCGGCCTTCTAAAGGAG

AAGGAAAAGCTGGAGTTTATACTTGCAGCTCACAAACCAGCTTGCAAAATTCCACATGATCTTGATGGAGCTTTTCAAGACTTGAC

CTCATCTCTTGATCTGGGTCTGATTTCAGAGACCCCTTGTTCTTCCAGCTCTCAGGAGCCTGTAGCAGAGCCTCTGTTTCCCATTG

GCCTTTCTCAGTCTTCCATGCCTGAAAAGGAGAACACCCACTGCAAGTCTCTATGGAACTCAAATCTGAACCACTGGATGATTTTC

TGTTTAACTCTTCTCACACAGGTGTAACTGATGCAGCACGTTCTGTGCCAGATGTAGATCTTACTAGCTCTCTTTACACATCAGAAT

GGGAGCCACTGTATAG

fosl1

TCGCAAGGAGCTAACAGATTACCTGCAGGCAGAGACAGACAAACTTGAAGAAGAGAAGTCATCCCTCCAGAAAGAAATTGCTGA

GCTGCAGAAGCAGAAGGATAAGCTGGAACTCATCCTTGAGGCTCACCAGCCTATATGCAAGTTTCCTGACTCCCATCACAACATG

CAGCAAGTGGACTCCTCCAGGCTGGTTAAGAAGGAACCACATGAAGAGTCACCCAGGGGACCTAAAGTCAACCTTCCCAGGATA

GAGCTGAGCGACACAATCCTAGAGCCAGAGGCCCTTCACACCCCAACACTCATGAAGACACCATCCATTACTCCTTTTACGCCAA

ATTTGATATTCACTTATCCTGGTCCACAAGAATCATGTTCTACAGCGCACCGAAGGCTGAGCAGAAGCAGCAGCAGTGGTAGTAG

TGGAGAGCAAAGTCCATG

frzb

GGCTGGTGCTCCTATCATTACCCAACGCTCACTGTGCTTCATGTGAGCCTGTGCGGATTCCCATGTGCAAATCTATGCCATGGAAC

ATGACTAAAATGCCCAACCATCTCCACCACAGCACTCAAGCCAATGCCATTTTGGCAATTGAACAGTTTGAAGGTTTGCTGACCAC

TGAATGTAGCCAGGACCTTCTGTTCTTTCTGTGTGCTATGTATGCCCCCATTTGTACCATCGATTTCCAGCACGAGCCAATTAAGCC

TTGCAAATCTGTATGTGAAAGGGCCAGGGCCGGCTGTGAGCCCATTCTCATCAAGTACCGGCACACTTGGCCAGAGAGCCTGGC

ATGTGAGGAGCTCCCCGTATATGACAGAGGAGTCTGCATCTCCCCAGAGGCTATCATCACGGTGGAACAAGGAACAGATTCGAT

GCCAGACTTCCCCATGGATTCAAACAACGGAAATTGTGGAAGCACGGCAGGGGAGCACTGTAAATGCAAGCCCATGAAGG

rasl11b

ATCTTGCCATCCAGGTTCAGGACACACCAGGAGTACAGATAAATGATCAGAATCTGGACTCTAATGAGCAGCTCAACAAATCCCT

GAGATGGGCCGATGCTGTTGTGATCGTGTTCTCCATCACAGACTGTAAAAGCTTTGATCTTATCAGTCGCCTGCACCAGCACGCC

CGGCAGCTTCACCCCGATAACAGAATCCCTATTGTCATTGTCGCCAATAAAGCAGATCTGCTGCACCTGAAACAGGTGGAACCAC

AGCATGGACTTCAGCTGGCCAACATGTTGGGTTGCACTTTCTATGAAGTGAGTGTTAGCGAGAACTATATCGATGTGTACAATGC

TTTCCAGGTACTGTGTAAAGAAATCAGCAAGCAGCAGAACACAGGAACCCCTGAAAGGCGGAAAAACTCGCTTATTCCACGTCCA

AAGTCACCAAACATGCAGGA

Gene Probe sequence

bmp7.2

CTTATCGGCGCTCAGTAGATGCTTGCACTGAGGACAGAACATTATTCTGCAACTGTTTTGCTGCACATGGACAGGAGCCTCCATC

CTTTTTGGAAAGAAGACTTCAATTTGTAAACCTTCCTCATACTCCATGCCTTCAAATTGCATAAACATGTTATATTAACTTTATATTGA

AAAAAAAACATCCACTATTTTATCTAAGTGGTTTGTAAACTCAAGGGATCTGGACGTAACATGAATCAAATGTTTCTGTTTGGATTC

GGCAGCAGTCAAGATATCAAGGATTATCTGTATAATTATCTTTAGTGTTTCATCATCCCCCTGTGCTCGGAAAATATCTTTGACAAA

ATGAATGCTTTGATAGTAAAGAGAAGATTGCCAGTGCTGCTTTTTCTTTTTTACATTTCCCTGAGTTCCATCTCA

fos

CCAGATCTTCAGTGGCTTGTACAGCCAACCCTTATTTCTTCTGTAGCCCCATCACAGTCTCGGGCACACCCTTATGGGTCCACACC

AGCTTACAGCCGATCTAGCGTTATGAAAGGATCTGCTGGAAGAGGTCAGAGCCTGGGAAGAAGAGGAAAAATGGAGCAGCTTT

CTCCagaagaagaagaaaaaaggaaagtaagacgagaaaggaataagaTGGCAGCTGCCAAGTGTCGTAACCGCCGTCGGGAGTTAA

CAGACACCCTTCAAGCGGAGACTGATGACCTGGAGGACCAGAAATCTGCCCTGCAGGCAGAGATTGCCGGCCTTCTAAAGGAG

AAGGAAAAGCTGGAGTTTATACTTGCAGCTCACAAACCAGCTTGCAAAATTCCACATGATCTTGATGGAGCTTTTCAAGACTTGAC

CTCATCTCTTGATCTGGGTCTGATTTCAGAGACCCCTTGTTCTTCCAGCTCTCAGGAGCCTGTAGCAGAGCCTCTGTTTCCCATTG

GCCTTTCTCAGTCTTCCATGCCTGAAAAGGAGAACACCCACTGCAAGTCTCTATGGAACTCAAATCTGAACCACTGGATGATTTTC

TGTTTAACTCTTCTCACACAGGTGTAACTGATGCAGCACGTTCTGTGCCAGATGTAGATCTTACTAGCTCTCTTTACACATCAGAAT

GGGAGCCACTGTATAG

fosl1

TCGCAAGGAGCTAACAGATTACCTGCAGGCAGAGACAGACAAACTTGAAGAAGAGAAGTCATCCCTCCAGAAAGAAATTGCTGA

GCTGCAGAAGCAGAAGGATAAGCTGGAACTCATCCTTGAGGCTCACCAGCCTATATGCAAGTTTCCTGACTCCCATCACAACATG

CAGCAAGTGGACTCCTCCAGGCTGGTTAAGAAGGAACCACATGAAGAGTCACCCAGGGGACCTAAAGTCAACCTTCCCAGGATA

GAGCTGAGCGACACAATCCTAGAGCCAGAGGCCCTTCACACCCCAACACTCATGAAGACACCATCCATTACTCCTTTTACGCCAA

ATTTGATATTCACTTATCCTGGTCCACAAGAATCATGTTCTACAGCGCACCGAAGGCTGAGCAGAAGCAGCAGCAGTGGTAGTAG

TGGAGAGCAAAGTCCATG

frzb

GGCTGGTGCTCCTATCATTACCCAACGCTCACTGTGCTTCATGTGAGCCTGTGCGGATTCCCATGTGCAAATCTATGCCATGGAAC

ATGACTAAAATGCCCAACCATCTCCACCACAGCACTCAAGCCAATGCCATTTTGGCAATTGAACAGTTTGAAGGTTTGCTGACCAC

TGAATGTAGCCAGGACCTTCTGTTCTTTCTGTGTGCTATGTATGCCCCCATTTGTACCATCGATTTCCAGCACGAGCCAATTAAGCC

TTGCAAATCTGTATGTGAAAGGGCCAGGGCCGGCTGTGAGCCCATTCTCATCAAGTACCGGCACACTTGGCCAGAGAGCCTGGC

ATGTGAGGAGCTCCCCGTATATGACAGAGGAGTCTGCATCTCCCCAGAGGCTATCATCACGGTGGAACAAGGAACAGATTCGAT

GCCAGACTTCCCCATGGATTCAAACAACGGAAATTGTGGAAGCACGGCAGGGGAGCACTGTAAATGCAAGCCCATGAAGG

rasl11b

ATCTTGCCATCCAGGTTCAGGACACACCAGGAGTACAGATAAATGATCAGAATCTGGACTCTAATGAGCAGCTCAACAAATCCCT

GAGATGGGCCGATGCTGTTGTGATCGTGTTCTCCATCACAGACTGTAAAAGCTTTGATCTTATCAGTCGCCTGCACCAGCACGCC

CGGCAGCTTCACCCCGATAACAGAATCCCTATTGTCATTGTCGCCAATAAAGCAGATCTGCTGCACCTGAAACAGGTGGAACCAC

AGCATGGACTTCAGCTGGCCAACATGTTGGGTTGCACTTTCTATGAAGTGAGTGTTAGCGAGAACTATATCGATGTGTACAATGC

TTTCCAGGTACTGTGTAAAGAAATCAGCAAGCAGCAGAACACAGGAACCCCTGAAAGGCGGAAAAACTCGCTTATTCCACGTCCA

AAGTCACCAAACATGCAGGA
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replaced with fresh solution with the addition of a 1/2,000 dilution of anti-DIG antibody coupled to 

alkaline phosphatase (Roche) and rolled at 4°C overnight. Embryos were washed in MABT before a 

3 minute and 10 minute wash in alkaline phosphatase buffer (100mM Tris pH 9.5, 50mM MgCl2, 

100mM NaCl, 0.1% Tween). Staining was visualised by addition of BM purple (Roche). Embryos were 

bleached in 5% H2O2 in PBSAT to aid gene expression pattern visualisation.  

2.2.7 Immunostaining 

For immunostaining (Christen and Slack, 1999), MEMFA fixed embryos stored in ethanol at -20°C 

were rehydrated through a graded series of ethanols and washed in PBS. Embryos were then 

treated with K2Cr2O7 in 5% acetic acid at room temperature for 40 minutes. They were then washed 

in PBS before being bleached for 45 minutes in 5% H2O2 in PBS and washed in PBS again. Embryos 

were blocked in BBT (PBS, 1% BSA, 0.1% Triton X-100) + 5% horse serum for 1 hour before 

incubation in a 1/10,000 dilution of dpERK1+2 monoclonal mouse antibody (Sigma) or 1/5,000 

dilution of αmyc 9E-10a monoclonal mouse antibody (Cell Signaling Technology) at 4°C overnight. 

Embryos were washed in BBT then BBT + 5% horse serum for 1 hour before incubation with BBT + 

5% horse serum with a 1/1000 dilution of horse anti-mouse igG-AP conjugated secondary 

(VectorLab) overnight at 4°C. Immunostaining was visualised by addition of BM purple (Roche). If 

necessary, embryos were bleached in 5% H2O2 in PBS again to better visualise staining.  

2.2.8 Western blots 

Five Xenopus laevis embryos collected at gastrula stage 10.5, flash frozen and stored at -80°C were 

homogenised in 50µl Phosphosafe buffer (Novagen) and centrifuged at 13,000 rpm for 1 minute. 

The supernatant was added to 50µl of sample buffer (120mM Tris/Cl pH6.8, 20% glycerol, 4% SDS, 

0.04% bromophenol blue, 10% β-mercaptoethanol) and heated at 90°C for 5 minutes. 20µl of 

sample was loaded per lane of 10% SDS-PAGE gel in addition to 10µl PageRuler prestained protein 

ladder (ThermoScientific) and run at 180V for 2 hours. Proteins were transferred to Immobilon-P 

Transfer Membrane (Millipore) by electroblotting wet transfer in 10% methanol transfer buffer at 

85V for 2 hours. Membranes were washed in PBSAT and blocked in PBSAT + 5% milk powder 

(blocking solution) for 1 hour at room temperature. Membranes were then transferred to fresh 

blocking solution containing primary antibodies (dpERK at a 1:4,000 dilution) and left overnight at 

4°C. Membranes were washed in PBSAT and blocked for 30 minutes at room temperature before 

transfer to blocking solution containing secondary antibody (anti-mouse diluted to 1:4,000) for 1 

hour at room temperature. After further PBSAT washes, BM Chemiluminescence Blotting Substrate 

kit (Roche) and ECL Hyperfilm (Amersham) were used to detect proteins. Membranes were stripped 
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twice for 5 minutes in stripping buffer (137mM NaCl, 20mM glycine, pH2.5) and re-probed for total 

ERK (1:500,000) with secondary anti-rabbit antibody (1:2,000). 

2.3 Data analysis 

2.3.1 Differential expression analysis of RNA-seq data 

Xenopus tropicalis mRNA samples of CIC knockdown by TALENs, water injected and FGF4 

overexpressing embryos were collected in triplicate by Michael King, a PhD student in the Isaacs’ 

lab (King, 2019). RNA was analysed using the bioanalyzer to confirm RNA quality. Library 

preparation and Illumina sequencing was carried out by Bioscience Technology Facility staff at the 

University of York. A single lane of the Illumina HiSeq 2000 platform was utilised for sequencing 

samples. First strand cDNA synthesis was carried out using random hexamers and reverse 

transcriptase to construct the cDNA library. Each cDNA was then sequenced in a high-throughput 

manner to obtain a read count. The number of reads found for each transcript was used to calculate 

transcripts per million (TPM). TPM is a measure of the abundance of each transcript in each sample 

adjusted to take into account the varying number of reads sequenced for each sample, and the 

varying expression of transcripts of the whole transcriptome. For example, the TPM value for 

‘transcript A’ should represent the number of transcripts of A that would be observed if one million 

transcripts were sequenced from the whole transcriptome.   

2.3.2 Gene ontology analysis of RNA-seq data 

Initial RNA-seq bioinformatics analysis was performed at the University of York Bioscience 

Technology Facility. Raw reads for each sample were aligned to the Xenopus tropicalis reference 

transcriptome (genome v9.1) (http://www.xenbase.org/common/displayJBrowse.do?data= 

data/xt9_1) using Salmon (http://salmon.readthedocs.io) to produce estimated read counts for 

each transcript for each sample. Sleuth (http://pachterlab.github.io/sleuth/) was then used to 

calculate differential expression (Q values and effect sizes) by fitting a statistical model to the 

estimated read counts.  

43,558 transcripts were found for 23,635 genes. Transcripts with a q value < 0.05 and effect size > 

1.5 in CIC knockdown and/or FGF4 overexpression were selected for gene ontology (GO) analysis 

using the Protein ANalysis THrough Evolutionary Relationships (PANTHER) classification tool (Mi et 

al., 2013) (http://www.pantherdb.org/). Genes were classified according to the PANTHER GO-Slim 

subset of GO terms. The PANTHER GO-Slims are GO terms identified by GO phylogenetic annotation 

and expert review as both informative of function and evolutionarily conserved (Mi et al., 2019). 
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2.3.3 Motif enrichment 

MEME suite 5.0.5 was used to determine whether CIC binding sites were enriched at the genomic 

locus of genes potentially regulated by CIC and FGF (http://meme-suite.org/tools/ame). Analysis of 

motif enrichment was carried out using Fisher’s exact test with the average odds score used for 

sequence scoring.  1004 control sequences were generated by randomly shuffling the input 

sequences conserving frequencies of word size 1. The E value threshold for reporting enriched 

motifs used was E ≤ 10. 

2.3.4 ImageJ analysis of myc immunostaining 

Stained areas of equal size for 5 embryos per treatment were converted to 16-bit grayscale and 

each image duplicated to create an identical copy. The threshold in the copy was adjusted to create 

a binary image with stained areas to be measured highlighted. Measurements were set to redirect 

to the un-thresholded version and highlighted particles of the binary image analysed.  

2.3.5 ImageJ analysis of western blots 

Western blot lanes were selected and profile plots of each generated using ImageJ. A straight line 

was drawn along the base of each peak to enclose the peak and exclude background noise. The 

area of each peak was then measured and the relative density calculated by dividing each by the 

corresponding loading control peak area and then normalised un-injected control peak area.  
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Chapter 3: Transcriptomic analysis of FGF4 overexpression and 

Capicua knockdown in Xenopus tropicalis  
 

3.1 Introduction 

As discussed in the introduction (Chapter 1), we hypothesise that transcription of a subset of FGF 

target genes relies on ERK mediated relief of CIC transcriptional repression. If CIC is responsible for 

repressing gene transcription in the absence of FGF signalling, disruption of the CIC gene should 

have a similar effect on the resulting transcriptome as an overexpression of FGF4. Consequently, 

an RNA-seq experiment was carried out by a PhD student in the Isaacs’ lab (King, 2019) in triplicate 

on control, FGF4 overexpressing, and CIC knockdown (via transcription activator-like effector 

nucleases (TALENs)) Xenopus tropicalis embryos.  

TALENs are composed of a non-specific DNA-cleaving nuclease (Fokl) fused to a TAL effector DNA-

binding domain capable of being engineered to target a specific sequence (Lei et al., 2012). A pair 

of forward and reverse TALENs sequences are used to bind effector binding element upstream and 

downstream of the target region. This can be utilised for genome editing by inducing double-strand 

breaks in target DNA sequences, which cells respond to with error-prone repair mechanisms such 

as non-homologous end joining (NHEJ) (Moore and Haber, 1996) leading to production of non-

functional gene products or nonsense mediated decay of the mRNA. In this case, TALENs were 

designed to target the HMG-box domain of CIC as this is the site responsible for binding octameric 

T(G/C)AATG(A/G)A sequences in target gene enhancers and promoters (Jimenez et al., 2012). 

Chromosomal rearrangement or introduction of nucleotide insertions or deletions following NHEJ 

in this region should result in any CIC protein produced being unable to function. In Xenopus, the 

HMG-box coding region spans exon 6 and 7. Consequently, the forward and reverse TALENs used 

were designed to flank and target exon 6 in order to induce double-strand breaks in this region. 

91.8% (74/81) of Xenopus tropicalis embryos injected with a total of 1ng forward and reverse 

TALENs mRNA exhibited a mutant phenotype ranging in severity from reduced head/eye 

pigmentation or cyclopia (50.8%) to total head loss (16.1%) (King, 2019). Most embryos also 

displayed an enlarged proctodaeum. Sequencing of DNA extracted from 8 of the TALENs injected 

embryos at late tailbud stage (40-41) revealed a 100% targeting efficiency with indels successfully 

introduced adjacent to the target site (King, 2019). The range of severity of phenotype is due to the 

mosaicism associated with TALENs targeting. The TALENs system requires production of the TALEN 

proteins from injected mRNA to target and knockdown CIC. Although the TALEN mRNAs are 

translated as soon as they are injected, the protein levels take a while to accumulate to the level 
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necessary for targeting to occur. As the protein is accumulating, cell division is already occurring so 

multiple independent targeting events may occur in different cells leading to a mosaicism of 

daughter cells within the embryo. Additionally, TALENs can disrupt both alleles of a gene leading to 

production of 2 different mutations following NHEJ in somatic cells. Indel mutations are usually 

located in the spacer region between the TALENs effector binding elements so the TALENs pair may 

bind again, thus introducing additional mutations during development (Lei et al., 2012).  

Until the midblastula transition (MBT), the zygotic genome is quiescent, and development is 

controlled by maternal factors within the cytoplasm (Lee et al., 2014). Consequently, there is no 

transcription of TALENs targeted loci until after the MBT, and any maternally deposited CIC mRNA 

is wild type. To ensure that very early development was not affected in either set of embryos, FGF4 

was injected into embryos in a CSKA plasmid construct with a β-actin promoter which does not 

become active until after the MBT (Isaacs et al., 1994). Embryos were collected at neurula stage 14 

for RNA-seq analysis using Illumina hi-seq. The abundance of 43,558 transcripts for 23,635 genes 

was analysed for 3 batches of FGF4 injected, CIC knockdown and water injected embryos.  

The aims of this chapter are: 

 Analyse RNA-seq data to identify genes upregulated and downregulated by FGF4 

overexpression and CIC inhibition 

 Undertake gene ontology enrichment analysis in order to identify biological processes 

associated with upregulated genes 

 Establish the statistical significance of the overlap in genes upregulated and downregulated 

by both FGF4 overexpression and CIC inhibition 

 Select putative FGF and CIC regulated target genes for validation of RNA-seq data 

 Determine if target genes are expressed in regions of CIC and FGF expression 

 Validate RNA-seq data using RT-PCR with primers specific to target genes 

 Analyse level of enrichment of CIC binding sites around the genomic loci of target genes 

3.2 Results 

3.2.1 Changes in gene expression as a result of CIC inhibition and FGF4 overexpression 

Initial quality control of the RNA-seq data and mapping of sequences to the Xenopus tropicalis 

transcriptome was undertaken by John Davey at the University of York Technology Facility. Data 

was then sorted to identify annotated transcripts with statistically significant changes in expression 
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by assessing calculated q value and effect size for each transcript. A q value is a measure of 

statistical significance of differential expression which allows for false positives. The smaller the 

value, the more significant the change in expression and the fewer genes expected to be false 

positives. Effect sizes are calculated by linear models representing the relative change in expression 

between treated and control samples. An effect size of 1 indicates no change in gene expression 

compared to the control group after any batch effects have been taken into account. An effect size 

greater than 1 indicates an upregulation of gene expression and an effect size less than 1 represents 

a downregulation of gene expression.  For example, an effect size of 2 represents a 2 times change 

in gene expression and an effect size of 0.5 indicates a 0.5 times change in gene expression. Gene 

transcripts with a q value < 0.05 and an effect size > 1.5 (for upregulated genes) or < 0.75 (for 

downregulated genes) were identified. Out of 43,558 transcripts, 331 and 81 fit these criteria for 

upregulated genes in CIC knockdown and FGF4 overexpressing embryos respectively (Table 5). 100 

transcripts had a q value > 0.05 and an effect size < 0.75 in CIC knockdown embryos and 92 in FGF4 

overexpressing embryos (Table 6). The complete gene transcript list from this RNA-seq experiment 

is available on Google Drive 

(https://drive.google.com/open?id=13gbNFwAbD00BSEWvahELt1lYPjyTGHv7). 
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Table 5: Gene transcripts upregulated in both CIC knockdown and FGF4 injected Xenopus 
tropicalis embryos.  Gene transcripts with an RNA-seq q value < 0.05 and effect size > 1.5 are 
classed as upregulated. Embryos collected at neurula stage 14 for RNA-seq analysis. 

 

 

Transcript ID Gene 
CIC knockdown FGF4 injection 

q value Effect size q value Effect size 

NM_001078836.1 apold1 0.004 4.69 0.002 5.45 

NM_001079231.1 arrdc2 5.75x10-7 2.56 3.10x10-6 2.47 

XM_012965809.2 arrdc2 2.17x10-4 2.05 2.50x10-6 2.44 

XM_002934698.4 atf3 3.91x10-4 1.96 0.014 1.76 

XM_018091031.1 b4galt1.1 0.030 2.21 0.018 2.44 

XM_012970501.2 bmp7.2 2.16x10-5 25.23 0.001 15.07 

XM_012964062.2 c4bpa 0.041 2.17 0.008 2.63 

NM_001102857.1 cbx4 0.028 2.22 0.001 2.87 

XM_004916833.3 chic1 0.003 1.83 0.041 1.67 

NM_203542.1 cldn6.1 0.003 1.85 0.015 1.78 

XM_002931681.4 exoc3l1 0.005 5.81 8.94x10-5 9.97 

XM_012952528.1 fam83c 0.007 1.89 0.001 2.12 

NM_001045662.1 fam83c 0.040 1.80 0.026 1.93 

XM_004911187.3 fat1 1.41x10-4 1.96 0.036 1.63 

XM_004914180.3 fgd3 0.024 20.40 0.045 20.21 

NM_001016200.2 fos 1.42x10-12 4.43 7.15x10-17 5.38 

XM_002939331.4 fosl1 0.005 3.09 0.015 3.00 

NM_001005438.1 frzb 0.001 4.49 0.045 3.21 

XM_012961068.2 gadd45a 0.003 1.58 0.027 1.51 

NM_001142145.1 gpcpd1 0.007 2.49 0.018 2.45 

XM_002936205.4 htr1b 5.14x10-6 24.11 0.027 7.75 

XM_004919807.3 ier3 4.83x10-5 2.63 0.001 2.33 

XM_002932276.4 LOC100485153 0.041 11.79 0.004 24.59 

XM_012962310.2 LOC100486038 0.019 2.24 0.003 2.66 

XR_001924462.1 LOC101730746 0.041 1.80 0.017 1.99 

XM_012953285.1 LOC101731310 7.19x10-5 28.53 0.025 11.53 

XM_004914317.3 LOC101732940 5.75x10-7 4.61 0.001 3.24 

XM_018090681.1 LOC101733948 0.008 2.22 0.001 2.68 

XM_018090141.1 LOC105945708 0.048 1.96 0.001 2.75 

XR_001170914.1 LOC105947461 0.001 2.11 7.13x10-5 2.44 

NM_001030330.1 mmp1 2.65x10-4 8.19 0.043 4.65 

XM_004915576.3 mst1 0.040 1.68 0.009 1.89 

NM_001130266.1 nfkbiz 0.006 2.13 0.027 2.02 

NM_001015693.1 pnpla3 0.002 1.64 0.008 1.60 

NM_001015774.1 rasl11b 3.45x10-7 2.60 0.001 1.99 

XM_018091191.1 sat1 0.032 1.73 0.017 1.86 

NM_001007996.1 sat1 1.44x10-4 1.64 0.001 1.59 

XM_012963073.2 sgk1 2.26x10-4 2.45 7.13x10-5 2.66 

NM_001030422.1 sgk1 0.002 2.04 1.86x10-5 2.51 

NM_001097368.1 sox17b.2 6.00x10-4 1.66 0.016 1.53 

XM_012960662.2 tmcc1 0.005319 14.59 0.032 11.36 

NM_001142914.1 tmcc1 0.014 1.59 0.018 1.62 

NM_001142050.1 usp2 1.74x10-5 3.48 0.045 2.22 

NM_001017208.2 wnt8a 0.041 1.83 0.004 2.20 
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Transcript ID Gene 
CIC knockdown FGF4 injection 

q value Effect size q value Effect size 

XM_018095307.1 atp2a2 0.047 0.741 0.006 0.680 

NM_001127035.1 axl 0.014 0.567 0.030 0.571 

NM_001006762.1 cebpa 0.017 0.363 0.001 0.277 

XM_012960859.1 celsr2 0.004 0.653 0.025 0.677 

NM_001011044.1 cygb 0.024 0.545 0.005 0.481 

NM_001126689.1 dpysl3 0.011 0.588 0.043 0.609 

NM_001006869.1 efnb3 0.011 0.682 0.017 0.678 

NM_001079128.1 irx3 1.71x10-5 0.599 0.042 0.717 

NM_001097188.1 LOC100485697 0.001 0.603 0.042 0.670 

XM_002934275.4 msi1 1.82x10-4 0.503 0.020 0.587 

XM_012961432.2 nkain1 0.027 0.554 0.041 0.545 

NM_001005637.1 notch3 6.86x10-5 0.617 0.023 0.701 

XM_004917080.2 pax6 0.018 0.316 0.009 0.273 

XM_002939393.4 pax6 0.033 0.300 0.030 0.274 

XM_002933915.4 ripply2.2 0.004 0.639 0.030 0.671 

XM_002932136.4 s1pr5 0.016 0.702 0.020 0.691 

NM_001113010.1 serpina1 0.016 0.670 0.030 0.668 

XR_001923782.1 slc23a2 0.011 0.586 2.41x10-5 0.459 

NM_001127068.1 spib 0.005 0.183 0.001 0.137 

XM_018092518.1 unc13d 2.98x10-4 0.205 0.013 0.269 

NM_001001216.1 znf219 0.001 0.493 0.045 0.583 

Table 6: Gene transcripts downregulated in both CIC knockdown and FGF4 injected Xenopus 
tropicalis embryos.  Gene transcripts with an RNA-seq q value < 0.05 and effect size < 0.75 are 
classed as downregulated. Embryos collected at neurula stage 14 for RNA-seq analysis. 

3.2.2 Gene ontology enrichment analysis to aid identification of potential CIC and FGF 

regulated target genes 

In order to investigate which biological processes genes upregulated in the RNA-seq data set are 

involved in, gene ontology (GO) enrichment analysis was carried out to allow classification of genes 

according to their functional characteristics. The PANTHER classification system (Mi et al., 2013) 

(www.pantherdb.org) was used to perform Fisher’s exact statistical overrepresentation tests and 

calculation of false discovery rate (FDR). This analysis was carried out on all genes identified as 

significantly upregulated in the FGF4 overexpressing (Table 7) and CIC knockdown embryos (Table 

8) respectively. Genes were classified according to the PANTHER GO-Slim biological process subset 

of GO terms which have been previously identified as both informative of function and 

evolutionarily conserved (Mi et al., 2019).  
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PANTHER GO-Slim 
Biological Process 

Number 
of genes 

Expected 
Fold 

enrichment 
+/- 

Raw P 
value 

FDR 

Transmembrane 
receptor protein 
tyrosine kinase 
signalling pathway 5 0.31 16.35 + 1.59x10-5 1.27x10-3 

ERK/MAPK cascade 8 0.81 9.9 + 1.49x10-6 1.79x10-4 

Intracellular signal 
transduction 13 2.6 4.99 + 1.28x10-6 3.06x10-4 

Developmental 
process 10 3.29 3.04 + 1.39x10-3 4.18x10-2 

Signal transduction 16 5.63 2.84 + 7.98x10-5 4.79x10-3 

Cell communication 16 6.42 2.49 + 3.70x10-4 1.48x10-2 

Cellular process 32 18.38 1.74 + 1.16x10-4 5.58x10-3 

Unclassified 13 25.69 0.51 - 3.76x10-4 1.29x10-2 

Table 7: Biological processes associated with gene transcripts upregulated in FGF4 overexpressing 
Xenopus tropicalis embryos.  Gene ontology processes identified using PANTHER Fisher’s exact 
statistical overrepresentation test with false discovery rate (FDR). GO-Slim biological processes are 
a subset of gene ontology terms identified by the PANTHER classification system indicating the 
biological systems to which a protein contributes.  

 

Figure 5: Bar chart showing fold enrichment for biological processes associated with gene 
transcripts upregulated in FGF4 overexpressing Xenopus tropicalis embryos.  Gene ontology 
processes identified using PANTHER Fisher’s exact statistical overrepresentation test with false 
discovery rate (FDR). GO-Slim biological processes are a subset of gene ontology terms identified 
by the PANTHER classification system indicating the biological systems to which a protein 
contributes. 

PANTHER GO analysis identified 7 biological processes associated with genes significantly 

upregulated in FGF4 overexpressing embryos (Figure 5). The GO terms with the highest fold 

enrichment were the transmembrane receptor protein tyrosine kinase signalling pathway, 

ERK/MAPK cascade, intracellular signal transduction and developmental process. This further 
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supports the hypothesis that these genes are regulated by FGF as FGF4 typically acts via tyrosine 

kinase receptors to activate ERK cascades intracellularly to regulate multiple developmental 

processes. 

PANTHER GO-Slim 
Biological Process 

Number 
of genes 

Expected 
Fold 

enrichment 
+/- 

Raw P 
value 

FDR 

Cell proliferation 8 0.66 12.21 + 6.39x10-7 1.53x10-4 

Regulation of cell 
cycle 11 2.22 4.95 + 2.18x10-5 1.31x10-3 

Mitosis 8 2.16 3.71 + 1.78x10-3 3.89x10-2 

Response to stress 17 5.00 3.40 + 1.69x10-5 1.35x10-3 

Response to external 
stimulus 9 2.77 3.25 + 2.24x10-3 4.48x10-2 

Cell death 10 3.39 2.95 + 2.62x10-3 4.50x10-2 

Death 10 3.39 2.95 + 2.62x10-3 4.84x10-2 

Cell adhesion 10 3.46 2.89 + 2.98x10-3 4.77x10-2 

Biological adhesion 10 3.46 2.89 + 2.98x10-3 4.48x10-2 

ERK/MAPK cascade 10 3.49 2.87 + 3.15x10-3 4.45x10-2 

Regulation of 
phosphate metabolic 
process 14 5.37 2.61 + 1.24x10-3 3.30x10-2 

Organelle 
organization 26 11.70 2.22 + 2.10x10-4 8.39x10-3 

Intracellular signal 
transduction 24 11.23 2.14 + 5.59x10-4 1.92x10-2 

Phosphate-
containing 
compound metabolic 
process 31 16.32 1.90 + 6.70x10-4 2.01x10-2 

Metabolic process 82 56.05 1.46 + 1.30x10-4 6.24x10-3 

Cellular process 112 79.28 1.41 + 7.87x10-6 9.45x10-4 

Unclassified 87 110.82 0.79 - 1.43x10-3 3.42x10-2 

Table 8: Biological processes associated with gene transcripts upregulated in CIC knockdown 
Xenopus tropicalis embryos.  Gene ontology processes identified using PANTHER Fisher’s exact 
statistical overrepresentation test with false discovery rate (FDR). GO-Slim biological processes are 
a subset of gene ontology terms identified by the PANTHER classification system indicating the 
biological systems to which a protein contributes. 
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Figure 6: Bar chart showing fold enrichment for biological processes associated with gene 
transcripts upregulated in CIC knockdown Xenopus tropicalis embryos. Gene ontology processes 
identified using PANTHER Fisher’s exact statistical overrepresentation test with false discovery rate 
(FDR). GO-Slim biological processes are a subset of gene ontology terms identified by the PANTHER 
classification system indicating the biological systems to which a protein contributes. 

PANTHER GO analysis identified 16 biological processes associated with genes significantly 

upregulated in CIC knockdown embryos (Figure 6). The GO term with the highest fold enrichment 

was cell proliferation. This is encouraging as FGF is important in regulation of cell proliferation. 

Other genes were involved in the same processes as those upregulated in the FGF overexpression 

such as ERK/MAPK cascade, intracellular signal transduction and cellular process.  

A strong overlap between significantly upregulated and downregulated gene transcripts was 

observed in CIC knockdown and FGF overexpressing embryos with 44 upregulated and 21 

downregulated in both (Figure 7). 
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Figure 7: Venn diagrams showing the overlap between significantly upregulated and 
downregulated gene transcripts in CIC knockdown and FGF4 overexpressing Xenopus tropicalis 
embryos.  (A) Upregulated genes: RNA-seq q value < 0.05 and effect size > 1.5 (B) Downregulated 
genes: RNA-seq q value < 0.05 and effect size < 0.75. Embryos collected at neurula stage 14. 

3.2.3 Establishing the statistical significance of observed gene overlaps 

In order to investigate the probability of the observed overlaps, Python was used to randomly 

sample sets of the number of upregulated genes (331 and 81) from numbers between 1 and 23,635 

(number of genes in the Xenopus tropicalis genome) and the size of the overlap between the 2 sets 

recorded (Figure 8a). The highest number of overlaps in 100,000 runs was 8 so the probability of 

getting an overlap of size 9 or greater is p < 0.00001. Consequently, an overlap of 44 upregulated 

genes is statistically significant. 

Sets of 100 and 92 numbers were randomly sampled for downregulated genes (Figure 8b). The 

highest number of overlaps in 100,000 runs was 5 so the probability of getting an overlap of size 6 

or greater is p < 0.00001. Consequently, an overlap of 21 significantly downregulated genes is 

statistically significant. 

 

 

A  Upregulated gene B  Downregulated genes 
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Figure 8: Histograms showing expected size of overlaps modelling RNA-seq data using Python.  
(A) Upregulated genes: 331 gene transcripts had an RNA-seq q value < 0.05 and an effect size > 1.5 
in Xenopus tropicalis embryos injected with FGF4, and 81 gene transcripts in CIC knockdown 
embryos with an overlap of 44. Histogram shows size of overlaps generated by random sampling of 
sets of 331 and 81 numbers between 1 and 23,635 (number of genes in the Xenopus tropicalis 
genome). (B) Downregulated genes: 100 gene transcripts had an RNA-seq q value < 0.05 and an 
effect size < 0.75 in Xenopus tropicalis embryos injected with FGF4, and 92 gene transcripts in CIC 
knockdown embryos with an overlap of 21. Histogram shows size of overlaps generated by random 
sampling of sets of 100 and 92 numbers between 1 and 23,635 (number of genes in the Xenopus 
tropicalis genome). 

 

3.2.4 Putative CIC and FGF regulated target genes selected for validation of RNA-seq data 

Putative CIC and FGF regulated target genes were selected from those upregulated in both the CIC 

knockdown and FGF4 overexpressing embryos for use in validation of the RNA-seq data. To select 

candidate genes, the 44 genes were sorted by decreasing effect size and 4 genes involved in 

relevant processes selected working down from the top of this list (Table 9).  

frzb was selected because of a high effect size, low q value and the fact that it is an antagonist for 

wnt (Kawano and Kypta, 2003), a gene crucial in many developmental processes. frzb is also known 

to be positively regulated by FGF signalling (Branney et al., 2009). fos and fosl1 were identified as 

genes of interest due to high effect sizes and the fact that they encode transcription factors that 

bind Jun family members to form activator protein-1 (AP-1) heterodimers (Angel and Karin, 1991). 

AP-1 mediates FGF and BMP signalling during Xenopus development (Lee et al., 2011). rasl11b was 

chosen as a candidate gene due to a relatively high effect size and low q value out of those identified 

by gene ontology analysis to be involved in the ERK/MAPK cascade. 
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Gene Description 
CIC knockdown FGF4 injection 

q value Effect size q value Effect size 

frzb wnt antagonist 8.35x10-4 4.49 0.0447 3.21 

fos Transcription factor that binds Jun 
family members to form AP-1 
heterodimers which mediate FGF 
and BMP signalling 

1.42x10-12 4.43 7.15x10-17 5.38 

fosl1 Transcription factor that binds Jun 
family members to form AP-1 
heterodimers which mediate FGF 
and BMP signalling 

0.00532 3.09 0.0154 3.00 

rasl11b GTPase involved in MAPK cascade 3.45x10-7 2.60 0.00145 1.99 

Table 9: Candidate genes selected from 44 gene transcripts upregulated in both FGF4 
overexpressing and CIC knockdown Xenopus tropicalis embryos for use in validation of the RNA-
seq data set. Genes selected due to relatively high effect sizes, low q values and involvement in 
relevant biological processes. Genes ordered by CIC knockdown effect size. 

3.2.5 Candidate gene expression in wild type Xenopus tropicalis embryos 

Having identified genes potentially regulated by both CIC and FGF, gene specific in situ hybridisation 

probes were designed and synthesised to determine if the genes are expressed in regions relevant 

to CIC expression and FGF signalling in normal Xenopus tropicalis development. 

FGF is the sole activator of ERK in early Xenopus development (Branney et al., 2009). dpERK can 

therefore be used to indicate the presence of FGF signalling. For example, dpERK is present in the 

early mesoderm surrounding the blastopore at gastrula stage and is particularly enriched dorsally 

(Figure 9a). ERK is also later activated along the dorsal midline in neural tube formation (Figure 9b). 

  

Figure 9: The spatial expression pattern of dpERK in Xenopus analysed using whole mount 
immunohistochemistry with an antibody against dpERK.  (a) gastrula stage 10.5 Xenopus tropicalis, 
vegetal view, (b) neurula stage 18 Xenopus laevis, dorsal view, anterior to left. Black arrow indicates 
early mesoderm and red arrow indicates the neural folds fusing together during neural tube 
formation. 

In situ hybridisation for frzb, fos, rasl11b and fosl1 was carried out at a range of stages of Xenopus 

tropicalis development (Figures 10-13) to visualise their spatial expression patterns. 
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Distinct dots of frzb expression can be seen at one side of the vegetal pole at late blastula stage 

(Figure 10). frzb expression then expands to form a ring around the blastopore during early 

gastrulation with higher levels of expression dorsally. By gastrula stage 11, frzb is only expressed in 

the involuting prechordal mesoderm. At early neurula stage 14, frzb is expressed in the posterior 

presomitic mesoderm on both sides of the dorsal midline.  

 

Figure 10: The spatial expression pattern of frzb during early Xenopus tropicalis development 
analysed using in situ hybridisation. (a) late blastula stage 9, vegetal view (b) early gastrula stage 
10, vegetal view (c) gastrula stage 10.5, vegetal view (d) gastrula stage 11, vegetal to right, (e) early 
neurula stage 14, lateral view, anterior to left. Black arrows indicate dorsal early mesoderm, red 
arrow indicates prechordal mesoderm, and white arrow indicates presomitic mesoderm. Embryos 
staged according to Nieuwkoop and Faber (1994) stages of Xenopus development. 

At late blastula stage, fos is expressed in a ring around the equator of the embryo when viewed 

from the animal hemisphere (Figure 11). During gastrulation, fos is only expressed in the vegetal 

pole in early mesoderm around the blastopore. Expression increases during early gastrulation in a 

ring around the blastopore with particularly enriched expression dorsally. By gastrula stage 11, fos 

expression has become restricted to the dorsal blastopore. At early neurula stage 14, fos is 

expressed along the dorsal midline where the neural tube is forming. 

 

Figure 11: The spatial expression pattern of fos during early Xenopus tropicalis development 
analysed using in situ hybridisation.  (a) late blastula stage 9, animal view, (b) early gastrula stage 
10, vegetal view (c) gastrula stage 10.5, vegetal view, (d) gastrula stage 11, vegetal view, (e) early 
neurula stage 14, dorsal view, anterior to top. Black arrows indicate dorsal early mesoderm, yellow 
arrow indicates the dorsal blastopore and red arrow indicates forming neural tube. Embryos staged 
according to Nieuwkoop and Faber (1994) stages of Xenopus development. 

At late blastula stage, rasl11b is weakly expressed in a ring around the equator of the embryo when 

viewed from the animal hemisphere (Figure 12). Rasl11b is then expressed dorsally in the vegetal 

pole. At gastrula stage 10.5, expression becomes more widespread but remains highest at the 

dorsal blastopore. By stage 11, rasl11b expression forms a neat ring around the blastopore in the 
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early mesoderm. From neurula stage, rasl11b is expressed in the otic vesicles, posterior presomitic 

mesoderm and proctodaeum.  

 

Figure 12: The spatial expression pattern of rasl11b during Xenopus tropicalis development 
analysed using in situ hybridisation.  (a) late blastula stage 9, animal view, (b) early gastrula stage 
10, vegetal view, (c) gastrula stage 10.5, vegetal view, (d) gastrula stage 11, vegetal view, (e) early 
neurula stage 15, dorsal view, anterior to left, (f) early tailbud stage 25, lateral view, anterior to left. 
Black arrows indicate early mesoderm, yellow arrows indicate otic vesicles, white arrows indicate 
presomitic mesoderm and red arrow indicates proctodaeum. Embryos staged according to 
Nieuwkoop and Faber (1994) stages of Xenopus development. 

fosl1 is weakly expressed in the animal pole at stage 9 and 10 (Figure 13). At gastrula stage 10.5, 

fosl1 expression can be seen in the early mesoderm at the dorsal blastopore before becoming more 

widespread around the blastopore region. At early neurula stage 14, fosl1 is expressed in the neural 

plate. 

 

Figure 13: The spatial expression pattern of fosl1 during early Xenopus tropicalis development 
analysed using in situ hybridisation.  (a) late blastula stage 9, animal view, (b) early gastrula stage 
10, animal view, (c) gastrula stage 10.5, vegetal view, (d) gastrula stage 11, vegetal view, (e) early 
neurula stage 14, lateral view, anterior to left. Black arrow indicates dorsal early mesoderm and 
white arrow indicates neural plate. Embryos staged according to Nieuwkoop and Faber (1994) 
stages of Xenopus development. 

As predicted, in situ hybridisation for frzb, fos, rasl11b and fosl1 indicates that the four candidate 

genes are expressed in known regions of FGF activity and CIC expression. 
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3.2.6 CIC knockdown and FGF overexpressing embryos exhibit a similar phenotype 

Having shown that candidate genes are expressed in known regions of FGF signalling in keeping 

with our hypothesis, Xenopus tropicalis embryos were injected with 1ng CIC targeted TALENs 

mRNA, 5pg CSKA-FGF4 or 1nl H2O, for use in validation of the RNA-seq data set.  

 

Figure 14: Wild type, FGF4 overexpresssing and CIC knockdown Xenopus tropicalis embryo 
phenotypes. Late tailbud stage embryos, lateral view, anterior to left. (a) wild type, un-injected 
embryo, (b) embryo injected with 5pg CSKA-FGF4 at the one-cell stage showing FGF4 
overexpression phenotype of loss of head structures and an enlarged proctodaeum, (c) embryo 
injected with 1ng CIC targeted TALENs mRNA at the one-cell stage exhibiting CIC knockdown 
phenotype of reduced eye pigmentation and an enlarged proctodaeum, (d) embryo injected with 
1ng CIC targeted TALENs mRNA at the one-cell stage displaying a more severe CIC knockdown 
phenotype with loss of head structures and an enlarged proctodaeum. Arrows indicate enlarged 
proctodaeum.  

CIC knockdown via TALENs produced phenotypes with varying degrees of severity. CIC knockdown 

embryos exhibited phenotypes ranging from reduced eye pigmentation, a reduction in eye size, eye 

loss, and a reduction or total loss of head structures, in addition to an enlarged proctodaeum. FGF4 

overexpressing embryos appeared similar with an enlarged proctodaeum and a reduction or total 

loss of head structures leading to a posteriorised phenotype (Figure 14). Not all CIC knockdown or 

FGF4 overexpressing embryos successfully completed gastrulation. CIC knockdown embryos had a 

death rate of 32.3% (21/65) which was higher than FGF4 overexpressing embryos at 20.7% (24/116) 

and un-injected embryos at 7.1% (5/70) (Table 10). 

Xenopus tropicalis embryos Alive Dead 

CIC knockdown 44 21 

FGF4 overexpression 92 24 

Un-injected 65 5 

Table 10: Death rates of injected Xenopus tropicalis embryos. Death rates of un-injected embryos 
and embryos injected with 1ng CIC targeted TALENs mRNA or 5pg CSKA-FGF4 at the one-cell stage. 
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3.2.7 Validation of RNA-seq data 

In order to validate the RNA-seq data set, RT-PCR was carried out using primers for the target genes 

on RNA extracted from CIC knockdown, FGF4 overexpressing, H2O injected and un-injected control 

embryos flash frozen at neurula stage 14. 

Fos, fosl1 and rasl11b bands appeared more intense for CIC knockdown and FGF4 injected embryo 

cDNA compared to H2O injected and un-injected controls (Figure 15). However RT-PCR bands for 

frzb were not more intense in CIC knockdown and FGF4 overexpressing embryos compared to 

controls.  

 

Figure 15: RT-PCR for target gene expression in CIC knockdown, FGF4 injected, H2O injected and 
un-injected Xenopus tropicalis embryos. RT-PCR carried out using gene specific primers for fos, 

fosl1, frzb, rasl11b and L8 (as a loading control) on RNA extracted from neurula stage 14 Xenopus 

tropicalis embryos injected with 1ng CIC targeted TALENs RNA, 5pg CSKA-FGF4 or 1nl H2O, and un-

injected embryos.  

3.2.8 Enrichment of CIC binding sites 

CIC binds octameric T(G/C)AATG(A/G)A sites in promoters and enhancers via its HMG-box domain 

to repress target gene transcription. In order to determine whether CIC binding sites are enriched 

around the genomic loci of target genes, MEME suite 5.0.5 (http://meme-suite.org/tools/ame) was 

used to analyse motif enrichment for the target genes and 1004 shuffled control sequences using 

Fisher’s exact test (Table 10). Enrichment of CIC binding sites was analysed within 100 and 200 base 

pairs upstream and downstream of each target gene’s transcribed sequence. The input sequence 

was then expanded to include DNA sequences upstream and downstream up to adjacent genes, as 

regulatory units can be distant from target transcriptional units.  
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CIC binding sites were enriched within 200 base pairs of the transcribed region for fos, fosl1 and 

frzb. When a greater region of DNA sequence up to adjacent genes was included, only fos and frzb 

were identified as genes with enriched CIC binding sites and the number of randomly shuffled 

control sequences with enriched CIC binding sites (false positives) was also lower. Putative CIC 

binding sites are located upstream of the transcribed region for fos and within the first intron 

(Figure 16). Binding motifs were more spread out throughout the gene sequence for fosl1 and frzb. 

Input sequences True Positives False Positives 

Transcribed sequence + 100bp 
upstream and downstream 

3/4 – fos, fosl1 and frzb (75%) 87/1004 (8.7%) 

Transcribed sequence + 200bp 
upstream and downstream 

3/4 – fos, fosl1 and frzb (75%) 
 

87/1004 (8.7%) 

Sequence up to adjacent gene 
sequences 

2/4 – fos and frzb (50%) 31/1004 (3.1%) 

Table 11: Motif enrichment analysis of CIC binding sites. Enrichment of the T(G/C)AATG(A/G)A 
motif for fos, fosl1, frzb and rasl11b and 1004 control sequences using Fisher’s exact test.  

 

 
Figure 16: Schematic representation of putative CIC binding site locations within the fos, fosl1 
and frzb genes.  Orange circles indicate locations of CIC binding motif (T(G/C)AATG(A/G)A). Light 

blue rectangles indicate 5’ and 3’ UTRs and dark blue rectangles represent coding sequences. 

3.3 Discussion 

3.3.1 CIC knockdown and FGF overexpressing embryos possess similar transcriptomes  

RNA-seq data showed a statistically significant overlap between changes in gene expression in 

Xenopus tropicalis embryos injected with FGF4 and CIC targeted TALENs with the probability of 

observed overlaps occurring by chance p < 0.00001. Not all genes were significantly upregulated or 

downregulated in both sets of embryos as CIC may also function in other pathways independently 

of FGF. For example, ERK is activated in the wound response (Dieckgraefe et al., 1997) and may 

relieve CIC transcriptional repression of genes required for this FGF independent process following 

injury. Additionally, out of 88 genes significantly upregulated in FGF4 overexpressing embryos, 37 

were not upregulated in CIC knockdown embryos. This may be due to the fact that FGF signal 
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transduction occurs via 3 main pathways, only one of which involves the ERK/MAPK cascade 

(Schlessinger, 2000). Consequently, we would expect the transcriptome for the two sets of embryos 

to be similar but not identical. The statistically significant overlap observed supports the notion that 

CIC operates in the same pathway as FGF.  

3.3.2 Gene ontology enrichment analysis  

PANTHER gene ontology enrichment analysis revealed that genes significantly upregulated in FGF4 

injected embryos are involved in very relevant biological processes such as the transmembrane 

receptor protein tyrosine kinase signalling pathway, cellular process, ERK/MAPK cascade, 

intracellular signal transduction and developmental process. Genes significantly upregulated in CIC 

knockdown embryos were associated with a greater number of biological processes though many 

were also involved in cellular process, ERK/MAPK cascade and intracellular signal transduction. The 

most enriched gene ontology process for CIC knockdown transcripts was cell proliferation. This 

further supports our hypothesis as FGFs are growth factors which control cell proliferation and 

migration via different signal transduction pathways. Cell migration usually involves pathways such 

as Src and p38 MAPK whereas cell proliferation tends to upregulate ERK (Boilly et al., 2000). We 

would expect FGF target genes associated with cell proliferation to be expressed following relief of 

CIC repression via ERK (or in this case inhibited by TALENs knockdown).  

3.3.3 Target genes are expressed in known regions of CIC expression and FGF signalling 

In situ hybridisation for these genes at various stages of Xenopus tropicalis development showed 

that they are expressed in regions of known CIC and FGF activity. All 4 genes selected as candidate 

genes potentially regulated by both CIC and FGF signalling were expressed in the early mesoderm 

surrounding the blastopore during gastrulation. FGF2, FGF3, FGF4, FGF8 and FGF20 are expressed 

in this ring of early mesoderm around the blastopore during gastrulation (Christen and Slack, 1997; 

Lombardo et al., 1998; Lea et al., 2009). The target genes, both isoforms of CIC, and FGF4 are all 

particularly enriched at the dorsal blastopore lip during gastrulation (King, 2019; Isaacs et al., 1995). 

As the sole activator of ERK in early Xenopus development (Branney et al., 2009), FGF signalling in 

the early mesoderm may lead to relief of CIC transcriptional repression of FGF target genes in this 

region via dpERK-CIC interactions. Other genes previously established to be upregulated by FGF 

signalling such as Cdx4 (Keenan et al., 2006), MyoD (Fisher et. al, 2002) and brachyury (Smith et al., 

1991) are also expressed in this region in gastrula stage 10.5 Xenopus embryos.  

Candidate genes frzb and rasl11b are expressed in the presomitic mesoderm on both sides of the 

dorsal midline from early neurula stage. Presomitic mesoderm gives rise to somites and expresses 
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high levels of FGF8 to maintain the cells in an immature state posteriorly (Delfini et al., 2005). FGF 

signalling in this region may prevent CIC inhibiting rasl11b and frzb expression at this point in 

development. Both CIC-L and CIC-S show striated expression at tailbud stage indicating expression 

within somites (King, 2019). In situ hybridisation of rasl11b also showed staining on the ventral side 

in the proctodaeum, which gives rise to the anus. Overexpression of FGF4 in Xenopus laevis 

embryos leads to loss of anterior structures and an enlarged proctodaeum (Isaacs et al., 1994) so 

FGF signalling may regulate transcription of genes such as rasl11b in this region. rasl11b is also 

expressed in the developing otic vesicles where CIC-L, CIC-S, FGF2 and FGF10 and FGF2 are 

expressed (King, 2019; Lea et al., 2009; Branney et al., 2009). fosl1, CIC-L and CIC-S are all expressed 

in the neural plate where FGFR activity is required for neural induction (Delaune et al., 2005).  

If FGF is responsible for regulation of CIC expression, FGF and CIC must be expressed at the same 

time in FGF responsive cells. FGF1, FGF2, FGF13, FGF22 and CIC-L are maternally expressed in early 

development (Lea et al., 2009). Both CIC isoforms are expressed at the marginal zone in the early 

mesoderm during early gastrulation (King, 2019), as are FGF4 and FGF8 (Lea et al., 2009). CIC 

expression becomes more widespread during development to include regions of known FGF 

signalling such as the dorsal somites, neural tissue, otic vesicles and branchial arches (King, 2019). 

Candidate genes upregulated in CIC knockdown and FGF4 overexpressing embryos are expressed 

in regions of both CIC and FGF expression. Consequently, signalling pathways involving both FGF 

and CIC may well regulate their expression.  

3.3.4 CIC knockdown and FGF overexpressing embryos exhibit similar phenotypes 

Targeting of the CIC gene by TALENs results in loss of head structures ranging from complete head 

loss to reduced eye pigmentation in Xenopus tropicalis embryos. These phenotypes are in keeping 

with previous observations by Michael King (2019) due to the mosaic nature of TALENs (Lei et al., 

2012). CIC knockdown embryos resembled the posteriorised phenotype with an enlarged 

proctadaeum previously observed in FGF4 and FGF8 overexpressing embryos (Isaacs et al., 1994). 

The fact that CIC knockdown and FGF overexpressing embryos exhibit similar phenotypes supports 

our hypothesis that CIC operates in the same pathway as FGF.  

3.3.4 Validation of RNA-seq data 

RT-PCR on RNA extracted from CIC knockdown, FGF4 overexpressing and water injected Xenopus 

tropicalis embryos produced more intense bands for fos, fosl1 and rasl11b in both CIC knockdown 

and FGF4 injected embryos. However the intensity of bands may not directly relate to input 

quantity due to the fact that a non-quantitative endpoint PCR was carried out. This experiment was 
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only carried out once and more quantitative results could be obtained in the future through repeats 

using q-PCR. Whole-mount in situ hybridisation could also be utilised to visualise changes in gene 

expression following FGF4 overexpression or CIC knockdown.  

Many of the genes identified as being significantly upregulated in both CIC knockdown and FGF 

overexpressing embryos have previously been linked to positive regulation by FGF signalling. 

Consequently, it was expected that the candidate genes would show differential expression in FGF 

overexpressing embryos compared to water-injected controls in RT-PCR. For example, the spatial 

expression of frzb is dramatically reduced by the presence of dominant negative FGFR4 (Branney et 

al., 2009), and expression of both fos and fosl1 were shown to be increased in microarray analysis 

of bovine ovarian granulosa cells treated with FGF8 (Jiang et al., 2013). During mesoderm induction, 

FGF2 treatment of Xenopus animal cap explants lead to increased AP-1 (c-Fos and c-Jun 

heterodimer) activity (Kim et al., 1998). Although AP-1 activity has been associated with FGF 

signalling, this is the first time linking FGF to the transcriptional regulation of fos. This is also the 

first study to show localised expression of fos in the developing amphibian embryo.  

Other genes upregulated in the RNA-seq for both conditions but not selected for RT-PCR analysis 

have also been previously associated with FGF signalling. For example, FGF23 induces phosphaturia 

in proximal tubular epithelial cells by activating SGK1 via ERK (Andrukhova et al., 2012); FGF2 and 

Wnt3a have been shown to modulate expression of Rho activator fgd3 in rat chondrosarcoma 

chondrocytes (Buchtova et al., 2015); and treatment with FGF2 increases mmp1 expression in 

primary human osteoarthritis chondrocytes (Nummenmaa et al., 2015). This suggests that the 

genes highlighted in the RNA-seq were upregulated as described. 

3.3.5 CIC binding site enrichment 

CIC binding sites are enriched within 200bp of the transcribed sequence for fos, fosl1 and frzb. This 

indicates that there are a greater number of sites available for CIC binding around the genomic 

locus for these genes compared to control sequences. CIC may bind enhancers or promoters in 

these regions in order to repress transcription of these FGF target genes. Inclusion of DNA 

sequences up to adjacent genes led to identification of only fos and frzb as genes with enriched the 

CIC binding motif and fewer false positives suggesting that binding sites are definitely enriched in 

these regions.  

CIC binding sites were not found to be enriched around the genomic locus for rasl11b using MEME 

suite 5.0.5. Rasl11b had the lowest effect size out of selected candidate genes from the CIC 

knockdown RNA-seq data at 2.60, though this was still relatively high. It was predicted that rasl11b 
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would show enriched binding sites due to the gene being identified from the RNA-seq, expressed 

in regions of known CIC activity and upregulated in CIC knockdown embryos via RT-PCR. CIC may 

bind enhancers further away from the transcribed rasl11b sequence to regulate its expression.  

The fact that the CIC knockdown phenotype resembles that of FGF overexpression, along with the 

statistically significant overlap between genes upregulated or downregulated in the 2 sets of 

embryos, and that genes are expressed in known regions of CIC and FGF activity supports the 

hypothesis that CIC and FGF do function in the same pathway, though further experiments are 

required to solidify this link. 
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Chapter 4: Manipulation of FGF and ERK signalling pathways in 

Xenopus laevis 

4.1 Introduction 

As discussed in the introduction (Chapter 1), we hypothesise that transcription of a subset of FGF 

target genes, and genes involved in the wound response, rely on ERK mediated relief of CIC 

transcriptional repression. In Drosophila, relief of CIC repression is carried out via different 

mechanisms depending on the RTK signalling pathway activated. Activation of ERK by Torso 

signalling in the embryonic poles leads to degradation of CIC whereas EGFR signal transduction via 

ERK in the ovarian follicle induces nuclear export and partial relocalisation of CIC to the cytoplasm 

(Jimenez et al., 2000; Andreu, Ajuria et al., 2012). Consequently, one of these mechanisms may also 

be utilised in the ERK mediated wound response and FGF signal transduction. 

The first intracellular event associated with wounding is a rapid influx of calcium ions (Ca2+) which 

radiates out from the site of injury through several rows of cells depending on the severity of the 

wound (Drumheller and Hubbell, 1991). Calcium activates Rho as well as MAPKs such as ERKs, c‐

jun‐N‐terminal protein kinases (JNKs) and the p38 kinases via Ras (Whitmarsh and Davis, 1996; 

Benink and Bement, 2005; Sosnowski et al., 1993). Activation of ERK leads to repression of 

phosphoinositide 3-kinase (PI3K) and subsequently further activation of Rho, which phosphorylates 

myosin-2 (Li et al., 2013; Kimura et al., 1996). The influx of extracellular calcium and Rho GTPase 

activity are required for assembly of a contractile actomyosin cable around the wound site, which 

aids closure by drawing the edges together like a ‘purse string’ (Figure 17) (Bement et al., 1999; 

Martin and Lewis, 1992). Healing of lens epithelial monolayers is inhibited by the presence of U0126 

(MAPKK/MEK inhibitor that prevents activation of ERK1/2) indicating that ERK activation is also 

crucial for initiation of the wound response (Wang et al., 2003).  

In addition to Rho activation in the wound response, dpERK has also been linked to transcription of 

immediate early response gene fos (Dieckgraefe and Weems, 1999). Immediate early response 

genes (IEGs) such as fos and early growth response (Egr)-1 can be transcribed within minutes of 

stimulation (Bahrami and Drablos, 2016). This rapid response is possible due to the fact that IEG 

transcription does not require protein synthesis as the proteins and transcription factors needed 

are already available in the cell (Herschman, 1991). Expression of fos has been reported in 

epidermal wound edge cells and superficial exposed wound mesenchymal cells in chick and rodent 

model organisms within 15 minutes of wounding (Martin et al., 1994), and fos expression in IEC-6 

monolayers peaks 20 minutes after mechanical wounding (Dieckgraefe et al., 1997). Fos binds Jun 
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transcription factors to form AP-1 heterodimers which have been associated with cell motility, 

wound re-epithelialisation and regulation of wound healing genes when induced in the wound 

response (Figure 17) (Tran et al., 1999; Yates and Rayner, 2002; Martin et al., 1994). ERK activation, 

fos and Egr-1 expression, and wound healing is reduced or completely inhibited by MAPKK inhibitor 

PD-98059 (Dieckgraefe and Weems, 1999). CIC may therefore play a role in the transcriptional 

aspect of the wound response downstream of dpERK.  

 

Figure 17: Schematic diagram of the hypothesised role of CIC within phase 1 of the wound 
response. 

The aims of this chapter are: 

 Determine if CIC is degraded or relocated to the cytoplasm following activation of FGF 

signalling 

 Investigate ERK activation and fos transcription in the wound response over time in 

Xenopus  

 Determine if CIC is degraded or relocated to the cytoplasm in the wound response 
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4.2 Results 

4.2.1 Capicua expression and ERK activation in the presence and absence of FGF signalling 

In order to determine whether CIC is degraded or relocated to the cytoplasm in the presence of 

FGF, Xenopus laevis embryos were unilaterally injected at the 2-cell stage with 50pg or 100pg amino 

terminus myc-tagged Mus musculus CIC-S mRNA (Kim et al., 2013; King, 2019), with or without 10pg 

FGF4 mRNA. Immunostaining for dpERK was carried out to indicate ERK activation, and 

immunostaining for myc undertaken to show presence of myc-CIC. 

 

Figure 18: Immunostaining for dpERK and myc on Xenopus laevis embryos injected with myc-CIC 
mRNA or myc-CIC + FGF4 mRNA.  Early gastrula stage 10.5 Xenopus laevis embryos unilaterally 
microinjected at the 2-cell stage with (a) 50pg myc-CIC mRNA (b) 50pg myc-CIC + 10pg FGF4 mRNA 
(c) 100pg myc-CIC mRNA (d) 100pg myc-CIC + 10pg FGF4 mRNA, arrows indicate 2 significantly more 
stained embryos. 10 embryos per treatment. Animal view.  
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ERK was activated in the animal pole of embryos overexpressing FGF due to activation of the FGF 

signalling pathway (Figure 18b and 18d).  

Staining for myc appears more intense in 10 embryos injected with 50pg myc-CIC + 10pg FGF4 

(Figure 18b) than 50pg myc-CIC alone (Figure 18a). 2 out of 10 embryos injected with 100pg myc-

CIC + 10pg FGF4 and immunostained for myc (Figure 18d) were clearly more stained than 100pg 

myc-CIC alone (Figure 18c). There was no notable difference in staining between the other 8 

embryos (Table 12). 

 Number of embryos 

More intense staining when  

co-injected with 10pg FGF 

No difference in staining with or 

without co-injection of 10pg FGF 

50pg myc-CIC  10 0 

100pg myc-CIC 2 8 

Table 12: Difference in myc immunostaining between embryos injected with myc-CIC or myc-CIC 
and FGF. Number of embryos showing more intense or no difference in staining when co-injected 
with 10pg FGF alongside 50pg or 100pg myc-CIC. 10 embryos per treatment. 

In order to see if higher quantities of CIC and FGF4 had the same effect, a similar experiment was 

carried out with 10 Xenopus laevis embryos injected with 500pg myc-CIC mRNA and 10 co-injected 

with 500pg myc-CIC mRNA + 20pg CKSA-FGF4. The CSKA plasmid construct was used as it was 

hypothesised that not enough FGF was being translated for a level of ERK activation sufficient to 

degrade or relocate the high level of myc-CIC being expressed. Use of the plasmid meant that new 

mRNA continued to be made while injected FGF mRNA would have decayed away.  

ERK was activated in a small region where FGF was overexpressed in myc-CIC and CSKA-FGF4 

injected embryos (Figure 19c).  

Myc staining looks nuclear in embryos injected with and without CSKA-FGF4 (Figure 19).  

Myc staining was less intense in embryos co-injected with CSKA-FGF4 compared to myc-CIC alone. 

ImageJ was utilised to determine percentage area stained with a mean of 13.71% for FGF expressing 

embryos compared to 35.39% for those injected with only myc-CIC (Table 13, n=5). An un-paired T 

test showed that the reduction in percentage staining was statistically significant with a p value < 

0.000001 (Figure 20) 
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Figure 19: Immunostaining for dpERK and myc on Xenopus laevis embryos injected with myc-CIC 
mRNA or myc-CIC mRNA + CSKA-FGF4.  Early gastrula stage 10.5 Xenopus laevis embryos 
unilaterally microinjected at the 2-cell stage with (a, b) 500pg myc-CIC mRNA (c, d) 500pg myc-CIC 
mRNA + 20pg CSKA-FGF4. 10 embryos per treatment. Animal view.  
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Percentage area stained 

Myc-CIC Myc-CIC + FGF 

1 38.14 11.19 

2 33.69 12.01 

3 36.70 14.54 

4 36.93 14.87 

5 31.47 15.96 

Mean 35.39 (SEM= 1.22)  13.71 (SEM= 0.90) 

Table 13: Percentage area stained in myc-CIC and myc-CIC + FGF injected embryos. 500pg myc-
CIC mRNA and 500pg myc-CIC mRNA + 20pg CSKA-FGF4 injected embryos immunostained for myc 
at gastrula stage 10.5 and analysed using ImageJ. n=5 per treatment. SEM= standard error of the 
mean. 

 

Figure 20: Percentage area stained in myc-CIC and myc-CIC + FGF injected embryos. 500pg myc-
CIC mRNA and 500pg myc-CIC mRNA + 20pg CSKA-FGF4 injected embryos immunostained for myc 
at gastrula stage 10.5 and analysed using ImageJ. n=5 per treatment. p= 0.0000006. Error bars 
indicate standard error of the mean. 

4.2.2 Western blot analysis of myc-CIC and FGF expressing embryos  

A western blot for dpERK and total ERK was carried out on 500pg myc-CIC, 500pg myc-CIC + 20pg 

CSKA-FGF4 and un-injected Xenopus laevis embryos in order to show activation of ERK by FGF 

(Figure 21). 

dpERK is present in injected and un-injected embryos as ERK is activated by endogenous FGF 

signalling in the early mesoderm surrounding the blastopore at the vegetal pole at this stage of 

development. Higher levels of dpERK are seen in FGF overexpressing embryos compared to un-

injected and myc-CIC injected embryos. ImageJ analysis showed that the relative density of dpERK 

bands for myc-CIC and myc-CIC + CSKA-FGF4 injected embryos are 2.08 and 3.81 respectively when 

normalised to loading control and un-injected embryos. 

 

*** 
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Figure 21: Western blot detecting dpERK and total ERK in Xenopus laevis.  Embryos unilaterally 
injected with 500pg myc-CIC mRNA or 500pg myc-CIC mRNA + 20pg CSKA-FGF4 at the 2-cell stage, 
or un-injected. 5 embryos were collected at gastrula stage 10.5 for each condition and protein for 
approximately 1 embryo loaded for each.  

In order to obtain a more quantitative result than immunostaining, western blots were carried out 

with the aim of determining if there was a reduction of overall levels or size shift in myc-CIC protein. 

A change in protein size would indicate partial degradation or proteolytic cleavage of CIC following 

FGF signalling. Due to the fact that CIC is a large protein with a molecular weight of 250kDa, various 

conditions were tested to optimise transfer of the protein. SDS-PAGE gels were made with 7.5% 

and 7% acrylamide, various concentrations of sample protein loaded, and gels run for increased 

lengths of time. Transfer buffer was altered to include 0.05% SDS instead of 10% methanol and 

proteins transferred overnight at 30V at 4°C. Anti-myc antibodies were used at a 1:4000 and 1:5000 

dilution and 2 different antibodies tested. Unfortunately, no clear bands were observed using any 

of these conditions. Ponceau S staining of the membrane and Coommassie blue staining of the gel 

also revealed no bands.  

4.2.3 ERK activation and fos transcription in the wound response 

In order to investigate ERK activation and gene transcription in the wound response, wild type 

Xenopus laevis embryos were wounded at late neurula stage 20 with a tungsten needle. 

Immunostaining for dpERK was carried out to indicate ERK activation and in situ hybridisation 

undertaken to show fos expression.  

ERK is activated extremely rapidly post-wounding with dpERK expression radiating across the 

embryo from the wound site after 5 minutes (Figure 22A). The presence of dpERK is transient with 

no staining at the wound site after 60 minutes. 

fos is rapidly and transiently expressed following activation of ERK at the wound site (Figure 22). 

Transcription of fos takes longer than ERK activation post-wounding with expression beginning to 

show at 10 minutes post-wounding and strong expression at 30 minutes. fos is no longer expressed 

at the wound site 120 minutes after wounding and the embryo appears completely healed and scar-

free. 
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Figure 22: Xenopus laevis embryos wounded at late neurula stage 20 and fixed at a range of time 
points post-wounding for immunostaining for dpERK and in situ hybridisation of fos. (A) 
Immunostaining with an antibody against dpERK, 6 embryos per time point (B) In situ hybridisation 
of fos, 10 embryos per time point. Lateral view, anterior to left. 
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4.2.4 Capicua expression and fos transcription in the wound response 

In order to determine if CIC is degraded or relocated to the cytoplasm following ERK activation in 

the wound response, Xenopus laevis embryos were unilaterally injected at the 2-cell stage with 

500pg myc-CIC mRNA. 14 embryos were wounded at the site of injection at early gastrula stage 

10.5 and fixed 30 minutes post-wounding. Early gastrula stage was chosen so that results would be 

comparable to those obtained in Figure 19. Immunostaining for myc was carried out to visualise 

myc-CIC expression in 7 wounded and 10 control embryos. In situ hybridisation for fos was also 

carried out to see if there was a difference in fos expression between 7 myc-CIC expressing and 7 

un-injected embryos in the wound response. 

Myc staining was less intense in wounded myc-CIC injected embryos (Figure 23b) compared to 

controls (Figure 23a). ImageJ was utilised to determine percentage area stained with a mean of 

9.19% for wounded myc-CIC injected embryos compared to 35.39% for control myc-CIC embryos 

(Table 14, n=5). An un-paired T test showed that the reduction in percentage staining was 

statistically significant with a p value < 0.00001 (Figure 24) 

Two out of six un-injected embryos showed stronger fos expression at the wound site (Figure 23c) 

compared to six myc-CIC injected embryos (Figure 23d). However, there was not a detectable 

difference in the other embryos, and they did not all remain intact during the in situ hybridisation 

process.  
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Figure 23: Immunostaining for myc and in situ hybridisation for fos in wounded and control myc-
CIC expressing or un-injected Xenopus laevis embryos.  (a) Immunostaining for myc in early 

gastrula stage Xenopus laevis embryos unilaterally injected at the 2-cell stage with 500pg myc-CIC 

mRNA (b) Immunostaining for myc in Xenopus laevis embryos unilaterally injected at the 2-cell stage 

with 500pg myc-CIC mRNA then wounded at the site of injection at early gastrula stage 10.5 and 

fixed 30 minutes post-wounding (c) in situ hybridisation for fos in un-injected Xenopus laevis 

embryos wounded at early gastrula stage 10.5 and fixed 30 minutes post-wounding (d) in situ 

hybridisation for fos in Xenopus laevis embryos unilaterally injected at the 2-cell stage with 500pg 

myc-CIC then wounded at the site of injection at early gastrula stage 10.5 and fixed 30 minutes 

post-wounding. Animal view. 
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 Percentage area stained 

Myc-CIC Wounded myc-CIC 

1 38.14 12.40 

2 33.69 8.61 

3 36.70 6.78 

4 36.93 13.16 

5 31.47 5.00 

Mean 35.39 (SEM= 1.22) 9.19 (SEM= 1.58) 

Table 14: Percentage area stained in wounded and control myc-CIC injected embryos. 500pg myc-
CIC mRNA injected embryos immunostained for myc at gastrula stage 10.5 and analysed using 
ImageJ. n=5 per treatment. SEM= standard error of the mean. 

 

Figure 24: Percentage area stained in wounded and control myc-CIC injected embryos. 500pg 
myc-CIC mRNA injected embryos immunostained for myc at gastrula stage 10.5 and analysed using 
ImageJ. n=5 per treatment. p= 0.000001. Error bars indicate standard error of the mean.  

4.3 Discussion 

4.3.1 CIC expression is reduced following FGF signalling 

It was predicted that myc-CIC would be degraded in embryos co-injected with FGF4 mRNA however 

Xenopus laevis embryos injected with 50pg and 100pg myc-CIC, with and without 10pg FGF4 mRNA 

did not conclusively show this result. This may be due to the fact that insufficient levels of FGF were 

present to activate enough ERK to completely degrade or relocate non-endogenous myc-CIC. 

Embryos injected with 500pg myc-CIC and 20pg CSKA-FGF4 did however show a reduction in 

staining compared to 500pg myc-CIC injected embryos and staining in both sets of embryos 

appeared nuclear. This suggests that myc-CIC was degraded by activation of ERK in FGF signal 

transduction when a greater amount of FGF4 was expressed for a longer period of time, in a similar 

manner to ERK mediated CIC degradation in the Drosophila Torso pathway (Jimenez et al., 2000). 

However, not all embryos showed the same level of staining indicating that unequal amounts of 

*** 
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FGF4 may have been produced. Mosaic expression is common in amphibians with injection of DNA 

constructs giving rise to some variation in the proportion of expressing cells between individual 

embryos. It is unlikely that the biological effects of FGF4 would be restricted due to the fact that 

FGF4 is a secreted molecule (Isaacs et al., 1994) but it may be worth repeating this experiment in 

the future with a larger number of embryos. In spite of the slight variation between levels of staining 

between embryos, ImageJ analysis and T test results indicate that the FGF4 induced reduction in 

staining was statistically significant. 

Western blots carried out to quantitatively determine whether myc-CIC was partially degraded or 

proteolytically cleaved following activation of FGF signalling did not produce any bands. However, 

the 250kDa CIC protein has been previously observed in western blots for GFP tagged Homo sapiens 

CIC-S mRNA injected Xenopus laevis embryos and is not present in embryos co-injected with FGF8 

mRNA (King, 2019). Embryos injected with GFP-CIC-S mRNA and FGF4 mRNA produced no 250kDa 

protein but instead revealed an 85kDa protein which could be a product of CIC protein degradation 

(King, 2019). This suggests that FGF signalling may be linked to the initiation of CIC protein 

degradation with FGF8 possessing a greater potency than FGF4.  

RTK signalling in Drosophila has also been shown to lead to downregulation of CIC expression so it 

is logical that a similar mechanism may be employed in the FGF RTK pathway. For example, Torso 

signalling in the embryonic poles and EGFR signal transduction in the imaginal wing and eye discs 

both lead to reduced levels of CIC (Jimenez et al., 2000; Tseng et al., 2007). The fact that embryos 

overexpressing FGF show decreased immunostaining for CIC-S and CIC-S protein degradation in 

western blots is in keeping with mechanisms observed in other RTK pathways. This suggests a role 

for FGF mediated regulation of CIC expression levels.  

4.3.2 Fos is expressed rapidly and transiently following ERK activation in the wound 

response 

Activation of ERK at the wound site was rapid and transient with dpERK expressed within 5 minutes 

but gone within the hour. This is in line with previous findings that ERK activation is detectable in 

both superficial and deep wounds by western blot analysis from 2 minutes post-wounding with 

phosphorylation decreased by 1 hour (Li et al., 2013).  

Ca2+ influx and ERK activation have been established as critical components of the first phase of 

wound closure for Rho activation and assembly of the actomyosin cable (Stanistreet, 1982; Wang 

et al., 2003). fos has also been strongly associated with wound healing in multiple species and cell 

cultures. In this study, immediate early response gene fos was expressed at the wound site 
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following activation of ERK with the strongest expression at 30 minutes post-wounding. Previous 

experiments have reported a greater than 30-fold increase in c-Fos mRNA by northern blot analysis 

of wounded IEC-6 cell monolayers peaking at 20 minutes (Dieckgraefe et al., 1997). fos expressed 

at the wound site may play a role in regulating transcription of genes involved in the healing 

process. For example, cells that express c-fos during the wound response subsequently upregulate 

transforming growth factor beta-1 (TGFβ1) mRNA 1 hour post-wounding and secrete TGFβ1 protein 

into the wound mesenchyme (Martin et al., 1994). c-fos may upregulate TGFβ1 at the wound site 

in order to initiate connective tissue contraction of the wound mesenchyme.  

In contrast to this, it has been shown that Xenopus embryos injected with α-amanitin 

(Xenopus polymerase II transcription inhibitor) do not show a significant healing defect indicating 

that transcription is not important for the initial response to wounding (Li et al., 2013). However, 

bioinformatic analysis of four epidermal wound enhancers rapidly activated at Drosophila wound 

sites revealed evolutionarily conserved sequences matching binding sites for Jun/Fos and Grainy 

head (Grh) transcription factors in each (Pearson et al., 2009). Fos, Jun and Grh have been linked to 

epidermal wound repair, barrier development and differentiation in Xenopus and mammals (Ting 

et al., 2005; Yates and Rayner, 2002; Tao et al., 2005) The combination of Fos and Grh may be part 

of an ancient wound-response pathway conserved in both vertebrates and invertebrates, however 

other additional mechanisms have evolved alongside this to result in a similar output.  

Additionally, interference with proteins upstream of wound-induced transcription lead to an 

inhibition of fos transcription. For example, calcium is required for wound-induced transcriptional 

activation of AP-1 via Ras and ERK activation (Tran et al., 1999). c-fos expression, cell motility and 

DNA synthesis are all inhibited by microinjection of a dominant-negative Ras mutant protein 

(Sosnowski et al., 1993). Treatment of wounded keratinocytes with ERK and p38 MAPK inhibitors 

reduces the activity of a response element controlled by AP-1 (Jaakkola et al., 1998).  

4.3.3 CIC expression is reduced in wounded embryos 

As ERK is activated rapidly in the wound response, it was predicted that wounding would lead to a 

decrease in CIC expression as activated ERK has been shown to relieve CIC transcriptional repression 

in multiple species (Jimenez et al., 2012). Myc-CIC-S expression was reduced in wounded embryos 

compared to control embryos injected with the same amount of myc-CIC-S. ImageJ analysis and T 

test results indicate that the wound induced reduction in staining was statistically significant. This 

is in keeping with our hypothesis that CIC is sent for degradation in the ERK mediated wound 

response.  
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As fos is expressed following ERK activation in the wound response (Dieckgraefe et al., 1997) and 

may be transcriptionally regulated by CIC in the FGF signalling pathway (Chapter 3), it was predicted 

that fos expression may also be regulated by CIC in the wound response. It was thought that 

overexpression of CIC may reduce fos transcription at the wound site, however only 2 un-injected 

embryos showed higher fos expression than myc-CIC-S injected embryos. No detectable difference 

in fos expression was observed between the other 5 myc-CIC-S injected and un-injected wounded 

embryos at gastrula stage 10.5. This could be due to the fact that dpERK at the wound site was 

sufficient to relieve CIC repression in the majority of the embryos in spite of the higher level of CIC 

protein expression. 

Another gene strongly activated at wound sites in Drosophila and murine models is growth arrest 

and DNA damage inducible gadd45 (Stramer et al., 2008). Gadd45 mediates activation of the 

p38/JNK pathway via MTK1/MEKK4 kinase following exposure to physiological and environmental 

stressors (Salerno et al., 2012). A cluster of Fos and Grh consensus sites are located upstream of 

the gadd45 transcription start site indicating that fos expression may be important for regulation 

of other wound healing genes (Pearson et al., 2009). Both fos and gadd45a were upregulated in CIC 

knockdown and FGF overexpressing embryos (Chapter 3). As CIC expression is reduced in wounded 

embryos following rapid activation of ERK, and wound-associated genes have been identified as 

potential targets of CIC regulation, ERK mediated relief of CIC repression via wounding may allow 

transcription of fos and subsequently other wound healing enhancers such as gadd45a.  
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Chapter 5: General discussion 

5.1 Summary 

Despite extensive understanding of FGF signal transduction, the specific mechanism responsible for 

regulation of target gene transcription is still not fully understood. We hypothesise that 

transcription of a subset of FGF target genes, and genes involved in the wound response, rely on 

ERK mediated relief of CIC transcriptional repression.  

Findings in this study support the notion that CIC operates in the same pathway as FGF, as CIC 

knockdown and FGF overexpressing embryos exhibit similar phenotypes and possess similar 

transcriptomes. CIC expression is reduced following activation of FGF signalling, and previous data 

indicates that CIC protein is partially degraded by injection of FGF4 mRNA and completely degraded 

by FGF8 (King, 2019). Additionally, 75% of the putative CIC and FGF regulated genes further 

analysed have enriched CIC binding sites around their genomic locus. 

In keeping with our hypothesis, CIC expression is also reduced in wounded embryos. fos and 

gadd45a are both expressed in the wound response (Martin et al., 1994; Dieckgraefe et al., 1997; 

Stramer et al., 2008) and were also upregulated in CIC knockdown embryos. Consequently, wound-

induced ERK mediated relief of CIC repression may allow transcription of fos and subsequently 

other wound healing enhancers such as gadd45a.  

5.2 The role of Capicua in development and disease 

5.2.1 Fibroblast growth factor signalling 

FGF signalling is crucial for the initiation and regulation of multiple developmental processes 

including gastrulation, neural and mesoderm induction, limb development and anteroposterior 

patterning (Rossant et al., 1997; Slack et al., 1996; ten Berge et al., 2008). Correct regulation of this 

signalling pathway is extremely important for normal development as several FGFR mutations lead 

to cancer or skeletal abnormalities such as craniosynostosis, achondroplasia and Crouzon syndrome 

(Teven et al., 2014). Misregulation of FGF ligands can also lead to a range of disorders including 

hypophosphatemic rickets, lacrimo-auriculo-dento-digital syndrome and Kallmann syndrome 

(White et al., 2000; Milunsky et al., 2006; Falardeau et al., 2008). Furthering our understanding of 

the molecular mechanisms involved in FGF dependent transcription will be a significant benefit in 

fields such as stem cell research, regenerative medicine and treatment of cancers associated with 

misregulated FGF signalling. If CIC functions as a transcriptional repressor downstream of FGF, 

Torso and EGFR, it may also be an important component of other RTK signalling pathways. 
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5.2.2 Capicua and cancer 

FGFR mutations are associated with a number of cancers due to the fact that correct FGF signalling 

is important for appropriate cell proliferation and angiogenesis (Turner and Grose, 2010). CIC is a 

known tumour suppressor gene as it is a critical regulator of cell proliferation.  

Most cancer-causing CIC mutations identified so far are missense mutations in the HMG-box 

domain which is responsible for DNA binding (Tanaka et al., 2017). Missense and insertion/deletion 

mutations in the C1 motif are the next most common as the C1 domain normally interacts with the 

HMG-box to stabilise DNA binding (Fores et al., 2017). Loss of function mutations such as these are 

frequently observed in human neoplasms such as oligodendroglioma as loss of repression of target 

genes such as the PEA3 family promotes cell proliferation and migration (Tanaka et al., 2017). 

Alternatively, if CIC fuses with DUX4, the chimera is a potent transcriptional activator which 

significantly upregulates PEA3 family transcription factors (such as Etv1, Etv4 and Etv5) and 

Ccnd1/d2 resulting in Ewing-like sarcoma development (Kawamura-Saito et al., 2006; Yoshimoto et 

al., 2017). Chromosomal translocation of PEA3 transcription factors is also associated with 

development of Ewing and prostate tumours through the upregulation of matrix metalloproteases 

and other targets involved in extracellular matrix remodelling and metastatic behaviour (de Launoit 

et al., 2006; Oh et al., 2012). As PEA3 genes are known mediators of FGF signalling and their 

transcription is repressed by CIC in the absence of ERK signalling (Garg et al., 2018; Dissanayake et 

al., 2011), furthering our understanding of this pathway may allow development of improved 

cancer treatments in the future.  

A common target of molecular targeted therapy is the RTK-Ras-ERK/MAPK pathway. Unfortunately, 

acquired resistance for these therapies occurs frequently so downstream modifiers such as CIC have 

the potential to be utilised as effective alternative targets (Schmitt et al., 2016).  

5.2.3 Capicua and neurodegenerative disease 

In vertebrates, the CIC ATXN1 binding domain enables binding of ATAXIN-1 (ATXN1) or ATAXIN-1-

LIKE (ATXN1L) proteins to form a protein repressor complex (Lam et al., 2006). In spinocerebellar 

ataxia type 1 (SCA1) patients, a polyglutamine expansion-induced gain of function in ATXN1 results 

in loss of motor co-ordination, slurred speech and cognitive impairments (Zoghbi and Orr, 2009). 

Neurotoxic glutamine expanded ATXN1 binds CIC less efficiently leading to a significantly increased 

level of expression of CIC targets such as Etv1, Etv5 and Ccnd1 due to a reduction in CIC-ATXN1 co-

repressive activity (Crespo-Barreto et al., 2010; Lim et al., 2008). In addition to this, glutamine 

expanded ATXN1 also causes stronger binding of CIC to promoters of certain genes leading to hyper-
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repression of those targets (Fryer et al., 2011). A genetic reduction of CIC levels substantially 

improves the neuropathy, learning and memory of mice expressing glutamine expanded ATXN1. 

Physical exercise also improves the SCA1 phenotype as enhanced EGFR signalling in brainstem 

downregulates CIC in the tissue (Fryer et al., 2011). It has been hypothesised that SCA1, along with 

other neurodegenerative diseases including Huntington, prion and Alzheimer disease, involve both 

increased function of a specific endogenous protein complex, in addition to loss of function of 

another (Lim et al., 2008; Crespo-Barreto et al., 2010). Therefore, understanding the role of ATXN1-

CIC protein complexes and mutations leading to simultaneous loss and gain of function mutations 

may allow discovery of critical pathways involved in polyglutamine expanded neurodegenerative 

pathologies. 

Additionally, in mouse models, the progressive pathogenesis of SCA1 has been shown to require 

the continuous expression of glutamine expanded ATXN1 (Zu et al., 2004). This suggests that 

identification of drugs able to target the mutant ATXN1-CIC complexes in the correct manner may 

allow some degree of functional recovery for SCA1 patients (Zoghbi and Orr, 2009). Consequently, 

it is important that we understand how CIC functions and interacts with other proteins and 

promoters both in normal development and disease conditions to be able to develop effective 

therapeutics. 

5.3 Future work 

This study presents evidence towards a transcriptional regulatory role for CIC for a subset of FGF 

target genes and genes involved in the wound response. Further validation of the RNA-seq data 

using qPCR would provide more quantitative results but could not be carried out within the scope 

of this project. Alternatively, in situ hybridisation for transcripts identified in the RNA-seq could be 

carried out at a range of developmental stages in wild type, CIC knockdown and FGF overexpressing 

embryos, and gene expression compared. 

Repeating the experiment in which immunostaining against myc was carried out on myc-CIC, myc-

CIC + CSKA-FGF4 and wounded myc-CIC expressing embryos to obtain higher numbers of replicates 

would be advantageous in strengthening the reliability of statistics. Additionally, dry transfer of the 

western blot using the iBlot 2 dry blotting system (Thermo Fisher Scientific) with a higher 

concentration of antibody may allow quantitative determination of whether myc-CIC is partially 

degraded or proteolytically cleaved following activation of ERK by FGF signalling or wounding. 

Following on from the encouraging MEME analysis carried out on the 4 genes investigated in this 

study, chromatin immunoprecipitation sequencing (ChIP-seq) with tagged constructs could be 
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utilised to identify global binding sites for CIC to aid identification of other CIC target genes. 

Comparison to the RNA-seq data set could be carried out to determine whether the other 

upregulated transcripts also possess enriched binding sites around their genomic locus. An 

additional approach would be identification of direct binding targets of CIC through electrophoretic 

mobility shift assays (EMSA). 

In this study, wound-induced dpERK and fos expression was investigated following wounding at late 

neurula stage 20 with clear results. Unfortunately, fos expression at the wound site at gastrula stage 

10.5 was not as easily detectable. Consequently, expression of wound-associated genes such as fos 

could be analysed by in situ hybridisation with a greater number of embryos at a later stage of 

development in myc-CIC injected and wild type embryos to contribute to determining whether CIC 

overexpression affects transcription. Use of an additional model such as Zebrafish may further 

confirm these wound healing results. 

5.4 Conclusions and implications 

Evidence presented in this thesis supports the hypothesis that transcription of a subset of FGF 

target genes, and genes involved in the wound response, rely on ERK mediated relief of CIC 

transcriptional repression. Tight regulation of these target genes is essential for normal 

development as misregulation of the FGF signalling pathway and/or CIC repression is associated 

with a range of disorders and cancers. Understanding the molecular mechanisms involved in CIC 

regulated pathways may allow more effective approaches to treatment of developmental 

disorders, neurodegenerative diseases and cancer. Expanding our knowledge of the wound healing 

process may also ultimately lead to the development of new, more effective therapeutics and 

procedures to promote accelerated wound healing. 
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Abbreviations 

AP-1 Activator protein-1 

ATXN1 Ataxin-1 

Xbra Brachyury 

CIC Capicua 

CIC-L Capicua-long isoform 

CIC-S Capicua-short isoform 

Cdx Caudal type homeobox 

Cdc42 Cell division cycle 42 

ChIP-seq Chromatin immunoprecipitation sequencing 

Ccnd1/d2 Cyclin d1/d2 

DAG Diacylglycerol 

DIG Digoxigenin 

dpERK Diphosphorylated ERK 

DUX4 Double homeobox 4 

Dusp6 Dual-specificity phosphatase 6 

ETS E26 transformation-specific transcription factors 

Etv ETS variant transcription factor 

Egr-1 Early growth response-1 

EMSA Electrophoretic mobility shift assay 

EGFR Epidermal growth factor receptor 

ERK extracellular signal-regulated kinase 

FGF Fibroblast growth factor 

FGFR Fibroblast growth factor receptor 

Frs2 Fibroblast growth factor receptor substrate 2 

FGFRL Fibroblast growth factor receptor-like 

GO Gene ontology 

Grb2 Growth factor receptor bound protein 2 

Gab1 Growth factor receptor bound protein 2-associated-binding protein 1 

GDP Guanosine diphosphate 

GTP Guanosine triphosphate 

HSPG Heparin sulphate proteoglycan 

HMG-box High Mobility Group-box 
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Hox Homeobox 

Hkb Huckebein 

JNK c-Jun N-terminal kinases 

KPNA3 Importin α4 

IP3 Inositol-1,4,5-trisphosphate  

IEC Intestinal epithelial cells 

LEC Lens epithelial cells 

MMP Matrix metalloprotease 

MBT Midblastula transition 

MAPK Mitogen-activated protein kinase 

Mek/MAPKK Mitogen-activated protein kinase kinase 

MRS Modified Ringers Solution 

MyoD Myoblast determination protein 1 

NHEJ Non-homologous end joining 

NAM Normal Amphibian Medium 

NLS Nuclear localisation sequence 

p90RSK p90 ribosomal S6 kinase 

PEA3 Polyoma enhancer activator 3 

PI3 Phosphoinositide-3 

PLCγ Phospholipase Cγ 

PCR Polymerase chain reaction 

PANTHER Protein analysis through evolutionary relationships 

AKT/PKB Protein kinase B 

PKC Protein kinase C 

RTK Receptor tyrosine kinase 

SGK1 Serum/Glucocorticoid Regulated Kinase 1 

Sos Son of sevenless 

SCA1 Spinocerebellar ataxia type 1 

SH2 Src homology 2 

SH3 Src homology 3 

Tll Tailless 

TPM Transcripts per million 



Page | 69  
 

References 

ADHR Consortium. (2000). Autosomal dominant hypophosphataemic rickets is associated with 

mutations in FGF23. Nature genetics, 26 (3), pp.345–348. 

Andreu, M. J. et al. (2012a). EGFR-dependent downregulation of Capicua and the establishment of 

Drosophila dorsoventral polarity. Fly, 6 (4), pp.234–239. 

Andreu, M. J. et al. (2012b). Mirror represses pipe expression in follicle cells to initiate 

dorsoventral axis formation in Drosophila. Development , 139 (6), pp.1110–1114. 

Andrukhova, O. et al. (2012). FGF23 acts directly on renal proximal tubules to induce phosphaturia 

through activation of the ERK1/2-SGK1 signaling pathway. Bone, 51 (3), pp.621–628. 

Angel, P. and Karin, M. (1991). The role of Jun, Fos and the AP-1 complex in cell-proliferation and 

transformation. Biochimica et biophysica acta, 1072 (2-3), pp.129–157. 

Astigarraga, S. et al. (2007). A MAPK docking site is critical for downregulation of Capicua by Torso 

and EGFR RTK signaling. The EMBO journal, 26 (3), pp.668–677. 

Bahrami, S. and Drabløs, F. (2016). Gene regulation in the immediate-early response process. 

Advances in biological regulation, 62, pp.37–49. 

Beck, C. W., Izpisúa Belmonte, J. C. and Christen, B. (2009). Beyond early development: Xenopus 

as an emerging model for the study of regenerative mechanisms. Developmental dynamics: an 

official publication of the American Association of Anatomists, 238 (6), pp.1226–1248. 

Beck, F. and Stringer, E. J. (2010). The role of Cdx genes in the gut and in axial development. 

Biochemical Society transactions, 38 (2), pp.353–357. 

Beenken, A. and Mohammadi, M. (2009). The FGF family: biology, pathophysiology and therapy. 

Nature reviews. Drug discovery, 8 (3), pp.235–253. 

Bement, W. M., Forscher, P. and Mooseker, M. S. (1993). A novel cytoskeletal structure involved 

in purse string wound closure and cell polarity maintenance. The Journal of cell biology, 121 (3), 

pp.565–578. 

Bement, W. M., Mandato, C. A. and Kirsch, M. N. (1999). Wound-induced assembly and closure of 

an actomyosin purse string in Xenopus oocytes. Current biology: CB, 9 (11), pp.579–587. 

Benink, H. A. and Bement, W. M. (2005). Concentric zones of active RhoA and Cdc42 around single 

cell wounds. The Journal of cell biology, 168 (3), pp.429–439. 

ten Berge, D. et al. (2008). Wnt and FGF signals interact to coordinate growth with cell fate 

specification during limb development. Development , 135 (19), pp.3247–3257. 

Boilly, B. et al. (2000). FGF signals for cell proliferation and migration through different pathways. 

Cytokine & growth factor reviews, 11 (4), pp.295–302. 

Böttcher, R. T. and Niehrs, C. (2005). Fibroblast growth factor signaling during early vertebrate 

development. Endocrine reviews, 26 (1), pp.63–77. 

Branney, P. A. et al. (2009). Characterisation of the fibroblast growth factor dependent 

transcriptome in early development. PloS one, 4 (3), p.e4951. 



Page | 70  
 

Buchtova, M. et al. (2015). Fibroblast growth factor and canonical WNT/β-catenin signaling 

cooperate in suppression of chondrocyte differentiation in experimental models of FGFR signaling 

in cartilage. Biochimica et biophysica acta, 1852 (5), pp.839–850. 

Chesley, P. (1935). Development of the short-tailed mutant in the house mouse. The Journal of 

experimental zoology, 70 (3), pp.429–459. 

Christen, B. and Slack, J. M. (1997). FGF-8 is associated with anteroposterior patterning and limb 

regeneration in Xenopus. Developmental biology, 192 (2), pp.455–466. 

Christen, B. and Slack, J. M. (1999). Spatial response to fibroblast growth factor signalling in 

Xenopus embryos. Development , 126 (1), pp.119–125. 

Chung, H. A. et al. (2004). Screening of FGF target genes in Xenopus by microarray: temporal 

dissection of the signalling pathway using a chemical inhibitor. Genes to cells: devoted to 

molecular & cellular mechanisms, 9 (8), pp.749–761. 

Crespo-Barreto, J. et al. (2010). Partial loss of ataxin-1 function contributes to transcriptional 

dysregulation in spinocerebellar ataxia type 1 pathogenesis. PLoS genetics, 6 (7), p.e1001021. 

Danjo, Y. and Gipson, I. K. (1998). Actin ‘purse string’ filaments are anchored by E-cadherin-

mediated adherens junctions at the leading edge of the epithelial wound, providing coordinated 

cell movement. Journal of cell science, 111 ( Pt 22), pp.3323–3332. 

Delaune, E., Lemaire, P. and Kodjabachian, L. (2005). Neural induction in Xenopus requires early 

FGF signalling in addition to BMP inhibition. Development , 132 (2), pp.299–310. 

Delfini, M.-C. et al. (2005). Control of the segmentation process by graded MAPK/ERK activation in 

the chick embryo. Proceedings of the National Academy of Sciences of the United States of 

America, 102 (32), pp.11343–11348. 

Dieckgraefe, B. K. et al. (1997). ERK and p38 MAP kinase pathways are mediators of intestinal 

epithelial wound-induced signal transduction. Biochemical and biophysical research 

communications, 233 (2), pp.389–394. 

Dieckgraefe, B. K. and Weems, D. M. (1999). Epithelial injury induces egr-1 and fos expression by a 

pathway involving protein kinase C and ERK. The American journal of physiology, 276 (2), 

pp.G322–G330. 

Dissanayake, K. et al. (2011). ERK/p90(RSK)/14-3-3 signalling has an impact on expression of PEA3 

Ets transcription factors via the transcriptional repressor capicúa. Biochemical Journal, 433 (3), 

pp.515–525. 

Dorey, K. and Amaya, E. (2010). FGF signalling: diverse roles during early vertebrate 

embryogenesis. Development , 137 (22), pp.3731–3742. 

Drumheller PD, H. J. A. (1991). Local modulation of intracellular calcium levels near a single‐cell 

wound in human endothelial monolayers. Arterioscler Thromb, 11, pp.1258–1265. 

Duffy, J. B. and Perrimon, N. (1994). The torso pathway in Drosophila: lessons on receptor 

tyrosine kinase signaling and pattern formation. Developmental biology, 166 (2), pp.380–395. 



Page | 71  
 

Ekerot, M. et al. (2008). Negative-feedback regulation of FGF signalling by DUSP6/MKP-3 is driven 

by ERK1/2 and mediated by Ets factor binding to a conserved site within the DUSP6/MKP-3 gene 

promoter. Biochemical Journal, 412 (2), pp.287–298. 

Falardeau, J. et al. (2008). Decreased FGF8 signaling causes deficiency of gonadotropin-releasing 

hormone in humans and mice. The Journal of clinical investigation, 118 (8), pp.2822–2831. 

Fisher, M. E., Isaacs, H. V. and Pownall, M. E. (2002). eFGF is required for activation of XmyoD 

expression in the myogenic cell lineage of Xenopus laevis. Development , 129 (6), pp.1307–1315. 

Forés, M. et al. (2017). A new mode of DNA binding distinguishes Capicua from other HMG-box 

factors and explains its mutation patterns in cancer. PLoS genetics, 13 (3), p.e1006622. 

Fryer, J. D. et al. (2011). Exercise and genetic rescue of SCA1 via the transcriptional repressor 

Capicua. Science, 334 (6056), pp.690–693. 

Garg, A. et al. (2018). FGF-induced Pea3 transcription factors program the genetic landscape for 

cell fate determination. PLoS genetics, 14 (9), p.e1007660. 

Goldhamer, D. J. et al. (1992). Regulatory elements that control the lineage-specific expression of 

myoD. Science, 256 (5056), pp.538–542. 

Guille, M. (Ed). (1999). Molecular Methods in Developmental Biology: Xenopus and Zebrafish. 

Humana Press. 

Hadari, Y. R. et al. (2001). Critical role for the docking-protein FRS2 alpha in FGF receptor-

mediated signal transduction pathways. Proceedings of the National Academy of Sciences of the 

United States of America, 98 (15), pp.8578–8583. 

Herschman, H. R. (1991). Primary response genes induced by growth factors and tumor 

promoters. Annual review of biochemistry, 60, pp.281–319. 

Isaacs, H. V., Pownall, M. E. and Slack, J. M. (1994). eFGF regulates Xbra expression during 

Xenopus gastrulation. The EMBO journal, 13 (19), pp.4469–4481. 

Isaacs, H. V., Pownall, M. E. and Slack, J. M. (1995). eFGF is expressed in the dorsal midline of 

Xenopus laevis. The International journal of developmental biology, 39 (4), pp.575–579. 

Isaacs, H. V., Pownall, M. E. and Slack, J. M. (1998). Regulation of Hox gene expression and 

posterior development by the Xenopus caudal homologue Xcad3. The EMBO journal, 17 (12), 

pp.3413–3427. 

Itoh, N. (2010). Hormone-like (endocrine) Fgfs: their evolutionary history and roles in 

development, metabolism, and disease. Cell and tissue research, 342 (1), pp.1–11. 

Jaakkola, P. et al. (1998). Wound reepithelialization activates a growth factor-responsive enhancer 

in migrating keratinocytes. FASEB journal: official publication of the Federation of American 

Societies for Experimental Biology, 12 (11), pp.959–969. 

Jiménez, G. et al. (2000). Relief of gene repression by torso RTK signaling: role of capicua in 

Drosophila terminal and dorsoventral patterning. Genes & development, 14 (2), pp.224–231. 

Jiménez, G., Shvartsman, S. Y. and Paroush, Z. ’ev. (2012). The Capicua repressor--a general sensor 

of RTK signaling in development and disease. Journal of cell science, 125 (Pt 6), pp.1383–1391. 



Page | 72  
 

Johnson, D. E. et al. (1991). The human fibroblast growth factor receptor genes: a common 

structural arrangement underlies the mechanisms for generating receptor forms that differ in 

their third immunoglobulin domain. Molecular and cellular biology, 11 (9), pp.4627–4634. 

Kawamura-Saito, M. et al. (2006). Fusion between CIC and DUX4 up-regulates PEA3 family genes 

in Ewing-like sarcomas with t(4;19)(q35;q13) translocation. Human molecular genetics, 15 (13), 

pp.2125–2137. 

Kawano, Y. and Kypta, R. (2003). Secreted antagonists of the Wnt signalling pathway. Journal of 

cell science, 116 (Pt 13), pp.2627–2634. 

Keenan, I. D., Sharrard, R. M. and Isaacs, H. V. (2006). FGF signal transduction and the regulation 

of Cdx gene expression. Developmental biology, 299 (2), pp.478–488. 

Kim, E. et al. (2013). Structural basis of protein complex formation and reconfiguration by 

polyglutamine disease protein Ataxin-1 and Capicua. Genes & development, 27 (6), pp.590–595. 

Kim, J. et al. (1998). Mesoderm induction by heterodimeric AP-1 (c-Jun and c-Fos) and its 

involvement in mesoderm formation through the embryonic fibroblast growth factor/Xbra 

autocatalytic loop during the early development of Xenopus embryos. The Journal of biological 

chemistry, 273 (3), pp.1542–1550. 

Kimura, K. et al. (1996). Regulation of myosin phosphatase by Rho and Rho-associated kinase 

(Rho-kinase). Science, 273 (5272), pp.245–248. 

King, M. G. (2019) Investigating the role of Capicua in mediating FGF transcriptional regulation in 

X. tropicalis. PhD thesis, University of York. 

Kouhara, H. et al. (1997). A lipid-anchored Grb2-binding protein that links FGF-receptor activation 

to the Ras/MAPK signaling pathway. Cell, 89 (5), pp.693–702. 

LaBonne, C. and Whitman, M. (1997). Localization of MAP kinase activity in early Xenopus 

embryos: implications for endogenous FGF signaling. Developmental biology, 183 (1), pp.9–20. 

Lam, Y. C. et al. (2006). ATAXIN-1 interacts with the repressor Capicua in its native complex to 

cause SCA1 neuropathology. Cell, 127 (7), pp.1335–1347. 

de Launoit, Y. et al. (2006). The Ets transcription factors of the PEA3 group: transcriptional 

regulators in metastasis. Biochimica et biophysica acta, 1766 (1), pp.79–87. 

Lea, R. et al. (2009). Temporal and spatial expression of FGF ligands and receptors during Xenopus 

development. Developmental dynamics: an official publication of the American Association of 

Anatomists, 238 (6), pp.1467–1479. 

Lee, M. T., Bonneau, A. R. and Giraldez, A. J. (2014). Zygotic genome activation during the 

maternal-to-zygotic transition. Annual review of cell and developmental biology, 30, pp.581–613. 

Lee, S.-Y. et al. (2011). The function of heterodimeric AP-1 comprised of c-Jun and c-Fos in activin 

mediated Spemann organizer gene expression. PloS one, 6 (7), p.e21796. 

Lei, Y. et al. (2012). Efficient targeted gene disruption in Xenopus embryos using engineered 

transcription activator-like effector nucleases (TALENs). Proceedings of the National Academy of 

Sciences of the United States of America, 109 (43), pp.17484–17489. 



Page | 73  
 

Li, J. et al. (2013). ERK and phosphoinositide 3-kinase temporally coordinate different modes of 

actin-based motility during embryonic wound healing. Journal of cell science, 126 (Pt 21), 

pp.5005–5017. 

Lim, J. et al. (2008). Opposing effects of polyglutamine expansion on native protein complexes 

contribute to SCA1. Nature, 452 (7188), pp.713–718. 

Löhr, U. et al. (2009). Antagonistic action of Bicoid and the repressor Capicua determines the 

spatial limits of Drosophila head gene expression domains. Proceedings of the National Academy 

of Sciences of the United States of America, 106 (51), pp.21695–21700. 

Lombardo, A., Isaacs, H. V. and Slack, J. M. (1998). Expression and functions of FGF-3 in Xenopus 

development. The International journal of developmental biology, 42 (8), pp.1101–1107. 

Maddaluno, L., Urwyler, C. and Werner, S. (2017). Fibroblast growth factors: key players in 

regeneration and tissue repair. Development , 144 (22), pp.4047–4060. 

Martin, P. et al. (1994). Repair of excisional wounds in the embryo. Eye , 8 ( Pt 2), pp.155–160. 

Martin, P. and Lewis, J. (1992). Actin cables and epidermal movement in embryonic wound 

healing. Nature, 360 (6400), pp.179–183. 

Mi, H. et al. (2013). Large-scale gene function analysis with the PANTHER classification system. 

Nature protocols, 8 (8), pp.1551–1566. 

Mi, H. et al. (2019). PANTHER Version 14: More Genomes, a New PANTHER GO-Slim and 

Improvements in Enrichment Analysis Tools. Nucleic Acids Research, 47 (D1): pp.D419–26. 

Milunsky, J. M. et al. (2006). LADD syndrome is caused by FGF10 mutations. Clinical genetics, 69 

(4), pp.349–354. 

Moore, J. K. and Haber, J. E. (1996). Cell cycle and genetic requirements of two pathways of 

nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. 

Molecular and cellular biology, 16 (5), pp.2164–2173. 

Nicholson, K. M. and Anderson, N. G. (2002). The protein kinase B/Akt signalling pathway in 

human malignancy. Cellular signalling, 14 (5), pp.381–395. 

Nieuwkoop, P. D. and Faber, J. (Eds). (1994). Normal Table of Xenopus Laevis (Daudin) (Daudin : A 

Systematical and Chronological Survey of the Development from the Fertilized Egg Till the End of 

Metamorp). 1 edition. Routledge. 

Nummenmaa, E. et al. (2015). Effects of FGF-2 and FGF receptor antagonists on MMP enzymes, 

aggrecan, and type II collagen in primary human OA chondrocytes. Scandinavian journal of 

rheumatology, 44 (4), pp.321–330. 

Oh, S., Shin, S. and Janknecht, R. (2012). ETV1, 4 and 5: an oncogenic subfamily of ETS 

transcription factors. Biochimica et biophysica acta, 1826 (1), pp.1–12. 

Ong, S. H. et al. (2000). FRS2 proteins recruit intracellular signaling pathways by binding to diverse 

targets on fibroblast growth factor and nerve growth factor receptors. Molecular and cellular 

biology, 20 (3), pp.979–989. 



Page | 74  
 

Ong, S. H. et al. (2001). Stimulation of phosphatidylinositol 3-kinase by fibroblast growth factor 

receptors is mediated by coordinated recruitment of multiple docking proteins. Proceedings of 

the National Academy of Sciences of the United States of America, 98 (11), pp.6074–6079. 

Ornitz, D. M. (2000). FGFs, heparan sulfate and FGFRs: complex interactions essential for 

development. BioEssays: news and reviews in molecular, cellular and developmental biology, 22 

(2), pp.108–112. 

Ornitz, D. M. and Itoh, N. (2015). The Fibroblast Growth Factor signaling pathway. Wiley 

interdisciplinary reviews. Developmental biology, 4 (3), pp.215–266. 

Pawson, T. et al. (1993). Proteins with SH2 and SH3 domains couple receptor tyrosine kinases to 

intracellular signalling pathways. Philosophical transactions of the Royal Society of London. Series 

B, Biological sciences, 340 (1293), pp.279–285. 

Pearson, J. C. et al. (2009). Multiple transcription factor codes activate epidermal wound-response 

genes in Drosophila. Proceedings of the National Academy of Sciences of the United States of 

America, 106 (7), pp.2224–2229. 

Peters, K. G. et al. (1992). Point mutation of an FGF receptor abolishes phosphatidylinositol 

turnover and Ca2+ flux but not mitogenesis. Nature, 358 (6388), pp.678–681. 

Pillemer, G. et al. (1998). Nested expression and sequential downregulation of the Xenopus 

caudal genes along the anterior-posterior axis. Mechanisms of development, 71 (1-2), pp.193–

196. 

Pownall, M. E. et al. (1996). eFGF, Xcad3 and Hox genes form a molecular pathway that 

establishes the anteroposterior axis in Xenopus. Development , 122 (12), pp.3881–3892. 

Raible, F. and Brand, M. (2001). Tight transcriptional control of the ETS domain factors Erm and 

Pea3 by Fgf signaling during early zebrafish development. Mechanisms of development, 107 (1-2), 

pp.105–117. 

Rossant, J., Ciruna, B. and Partanen, J. (1997). FGF signaling in mouse gastrulation and 

anteroposterior patterning. Cold Spring Harbor symposia on quantitative biology, 62, pp.127–133. 

Rupp, R. A. and Weintraub, H. (1991). Ubiquitous MyoD transcription at the midblastula transition 

precedes induction-dependent MyoD expression in presumptive mesoderm of X. laevis. Cell, 65 

(6), pp.927–937. 

Salerno, D. M. et al. (2012). Gadd45a and Gadd45b modulate innate immune functions of 

granulocytes and macrophages by differential regulation of p38 and JNK signaling. Journal of 

cellular physiology, 227 (11), pp.3613–3620. 

Schlessinger, J. (2000). Cell signaling by receptor tyrosine kinases. Cell, 103 (2), pp.211–225. 

Schmitt, M. W., Loeb, L. A. and Salk, J. J. (2016). The influence of subclonal resistance mutations 

on targeted cancer therapy. Nature reviews. Clinical oncology, 13 (6), pp.335–347. 

Scotet, E. and Houssaint, E. (1998). Exon III splicing switch of fibroblast growth factor (FGF) 

receptor-2 and -3 can be induced by FGF-1 or FGF-2. Oncogene, 17 (1), pp.67–76. 

Sivak, J. M., Petersen, L. F. and Amaya, E. (2005). FGF signal interpretation is directed by Sprouty 

and Spred proteins during mesoderm formation. Developmental cell, 8 (5), pp.689–701. 



Page | 75  
 

Slack, J. M. et al. (1996). The role of fibroblast growth factors in early Xenopus development. 

Biochemical Society symposium, 62, pp.1–12. 

Slack, J. M. and Forman, D. (1980). An interaction between dorsal and ventral regions of the 

marginal zone in early amphibian embryos. Journal of embryology and experimental morphology, 

56, pp.283–299. 

Smith, J. C. et al. (1991). Expression of a Xenopus homolog of Brachyury (T) is an immediate-early 

response to mesoderm induction. Cell, 67 (1), pp.79–87. 

Sosnowski, R. G., Feldman, S. and Feramisco, J. R. (1993). Interference with endogenous ras 

function inhibits cellular responses to wounding. The Journal of cell biology, 121 (1), pp.113–119. 

Stanisstreet, M. (1982). Calcium and wound healing in Xenopus early embryos. Journal of 

embryology and experimental morphology, 67, pp.195–205. 

Steinberg, F. et al. (2010). The FGFRL1 receptor is shed from cell membranes, binds fibroblast 

growth factors (FGFs), and antagonizes FGF signaling in Xenopus embryos. The Journal of 

biological chemistry, 285 (3), pp.2193–2202. 

Stramer, B. et al. (2008). Gene induction following wounding of wild-type versus macrophage-

deficient Drosophila embryos. EMBO reports, 9 (5), pp.465–471. 

Tanaka, M., Yoshimoto, T. and Nakamura, T. (2017). A double-edged sword: The world according 

to Capicua in cancer. Cancer science, 108 (12), pp.2319–2325. 

Tao, J. et al. (2005). BMP4-dependent expression of Xenopus Grainyhead-like 1 is essential for 

epidermal differentiation. Development , 132 (5), pp.1021–1034. 

Tapscott, S. J. (2005). The circuitry of a master switch: Myod and the regulation of skeletal muscle 

gene transcription. Development , 132 (12), pp.2685–2695. 

Teven, C. M. et al. (2014). Fibroblast growth factor (FGF) signaling in development and skeletal 

diseases. Genes & diseases, 1 (2), pp.199–213. 

Tindall, A. J. et al. (2007). Expression of enzymes involved in thyroid hormone metabolism during 

the early development of Xenopus tropicalis. Biology of the cell / under the auspices of the 

European Cell Biology Organization, 99 (3), pp.151–163. 

Ting, S. B. et al. (2005). A homolog of Drosophila grainy head is essential for epidermal integrity in 

mice. Science, 308 (5720), pp.411–413. 

Tiong, K. H., Mah, L. Y. and Leong, C.-O. (2013). Functional roles of fibroblast growth factor 

receptors (FGFRs) signaling in human cancers. Apoptosis: an international journal on programmed 

cell death, 18 (12), pp.1447–1468. 

Tran, P. O. et al. (1999). A wound-induced [Ca2+]i increase and its transcriptional activation of 

immediate early genes is important in the regulation of motility. Experimental cell research, 246 

(2), pp.319–326. 

Trueb, B. et al. (2003). Characterization of FGFRL1, a novel fibroblast growth factor (FGF) receptor 

preferentially expressed in skeletal tissues. The Journal of biological chemistry, 278 (36), 

pp.33857–33865. 



Page | 76  
 

Tseng, A.-S. K. et al. (2007). Capicua regulates cell proliferation downstream of the receptor 

tyrosine kinase/ras signaling pathway. Current biology: CB, 17 (8), pp.728–733. 

Turner, N. and Grose, R. (2010). Fibroblast growth factor signalling: from development to cancer. 

Nature reviews. Cancer, 10 (2), pp.116–129. 

Wang, E. et al. (2003). Electric fields and MAP kinase signaling can regulate early wound healing in 

lens epithelium. Investigative ophthalmology & visual science, 44 (1), pp.244–249. 

White, K. E. et al. (2000). Autosomal dominant hypophosphataemic rickets is associated with 

mutations in FGF23. Nature Genetics, 26, pp.345–348 

Whitmarsh, A. J. and Davis, R. J. (1996). Transcription factor AP-1 regulation by mitogen-activated 

protein kinase signal transduction pathways. Journal of molecular medicine , 74 (10), pp.589–607. 

Wuechner, C. et al. (1996). Developmental expression of splicing variants of fibroblast growth 

factor receptor 3 (FGFR3) in mouse. The International journal of developmental biology, 40 (6), 

pp.1185–1188. 

Yates, S. and Rayner, T. E. (2002). Transcription factor activation in response to cutaneous injury: 

role of AP-1 in reepithelialization. Wound repair and regeneration: official publication of the 

Wound Healing Society [and] the European Tissue Repair Society, 10 (1), pp.5–15. 

Yeh, B. K. et al. (2003). Structural basis by which alternative splicing confers specificity in 

fibroblast growth factor receptors. Proceedings of the National Academy of Sciences of the United 

States of America, 100 (5), pp.2266–2271. 

Yoshimoto, T. et al. (2017). CIC-DUX4 Induces Small Round Cell Sarcomas Distinct from Ewing 

Sarcoma. Cancer research, 77 (11), pp.2927–2937. 

Znosko, W. A. et al. (2010). Overlapping functions of Pea3 ETS transcription factors in FGF 

signaling during zebrafish development. Developmental biology, 342 (1), pp.11–25. 

Zoghbi, H. Y. and Orr, H. T. (2009). Pathogenic mechanisms of a polyglutamine-mediated 

neurodegenerative disease, spinocerebellar ataxia type 1. The Journal of biological chemistry, 284 

(12), pp.7425–7429. 

Zu, T. et al. (2004). Recovery from polyglutamine-induced neurodegeneration in conditional SCA1 

transgenic mice. The Journal of neuroscience: the official journal of the Society for Neuroscience, 

24 (40), pp.8853–8861. 


