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Abstract

Moving towards detecting and understanding volcanic unrest prior to eruptions, there
has been significant improvements in understanding the structure and dynamics of
magma plumbing systems. However, deciphering subsurface processes during inter-
eruptive periods often remains challenging, and whether magma is involved or not is an
essential question to be able to assess the degree of activity of a volcano. In this thesis,
I explore the integration of surface deformation and temporal gravity, using the Askja
volcano (Iceland) as a case study.

Magmatic processes are usually closely linked to pressurization-depressurization
mechanisms, which can translate into subsurface volume changes and lead to surface
deformation responses. Because magmatic processes are diverse, integrating tempo-
ral gravity can help narrowing down the list of possible on-going processes. Indeed,
temporal gravity is related to subsurface mass change, and for example, a surface up-
lift associated with a gravity increase could be caused by a magma intrusion, whereas
an uplift with no mass change could be caused by gas pressurization resulting from
temperature increase. Additionally, comparing both signals can help evaluating the
contributions of external processes, such as of hydrothermal or tectonic origin.

The Askja volcano, which is one of the most active volcanoes in Iceland, has erupted
at least 40 times in the last 1,100 years. Some events were very powerful, such as the
1875 VEI-5 caldera-forming Plinian event and the most recent event was a basaltic
fissure eruption, which occurred in 1961. Since at least 1983, the main caldera has
been subsiding and all the previous studies that applied analytical modelling to surface
deformation records at Askja agree that the subsidence can be best explained over
periods of ≤10 years, by a deflating source, located at 3-3.5 km depth beneath the
caldera centre. The constrained linear volume changes have diminished from about
-0.002 km3 yr−1 near 2000 to about -0.001 km3 yr−1 near 2010.

In parallel, gravity measurements, which were recorded between 1988 and 2010,
highlighted a gradual gravity decrease of about 140 microgal up to 2007, centred on
the main caldera, and a gravity increase of about 60 microgal was observed between
2007 and 2009, while the subsidence continued. Due to the lack of spatial coverage,
no analytical model could be performed using the gravity results, hence there were no
constraints on the depth and magnitude of mass changes. Due to the correlation in
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locations, previous studies assumed that mass and volume changes were related to the
same process, occurring at 3-3.5 km depth. Based on this assumption it was suggested
that the main process causing the subsidence was a magma drainage down to deeper
levels with possible additional effects from magma crystallisation. A magma intrusion at
the shallow reservoir and/or mass variations in the hydrothermal system were proposed
to explain the temporary gravity increase. Finally, the likely high contribution of plate
spreading as a cause of subsidence was demonstrated using finite-element modelling,
considering the caldera and shallow chamber as zones of weak materials, embedded in
a two-layer crust model with a visco-elastic lower crust.

In this thesis, I take the analyses of both surface deformation and temporal gravity
at Askja a step further, to clarify the causes of subsidence. I use the Interferometric
Synthetic Aperture Radar (InSAR) technique to investigate the spatial and temporal
signature of the long-term subsidence, considering a 15-year-long time period. This
technique, which was used at Askja in two previous studies, can measure surface de-
formation at the centimetre scale over large areas with spatial resolution of tens to
hundreds of meters. My results show that the caldera is steadily subsiding as a whole,
and can be fitted by an exponential decay with relaxation time of about 42 years. Using
the Bayesian inversion modelling approach paired with the Markov chain Monte Carlo
sampling, and incorporating the exponential behaviour of the subsidence, I refine the
depth of the shallow reservoir with narrower bounds compared with previous studies:
when assuming a point pressure source, which can reproduce well the circular spatial
deformation pattern observed in the caldera, there is 95% chance that the reservoir is
located at 3±0.1 km beneath the caldera centre and the exponential volume decrease
has total amplitude of 0.07±0.01 km3.

In parallel, I investigate the spatial and temporal evolution of gravity changes over
2015-2017, from a larger gravity network and using improved methodologies compared
with previous studies. My results show a spatial-bowl shape signature over 2015-2016,
with maximum decrease of about 100±30 microgal at the caldera centre. Although
this annual change is spatially correlated with the synchronous subsidence, the follow-
ing annual gravity change, showing negligible variations across the caldera, is not. This
suggests that both signals do not relate to the same processes, and the difference in mag-
nitude of gravity changes compared with previous studies is due to the choice of reference
station. I then further investigate the link between gravity changes and deformation,
by performing the first gravity inversion at Askja, and using the Bayesian inversion
modelling approach paired with the Markov chain Monte Carlo sampling. Even though
poorly constrained, the inversion suggests that, when assuming a spherical source, the
gravity changes over 2015-2016 have 95% chance to be due to a mass decrease within
1.5×1012-7.5×1010 kg and located within 2.7-9.9 km. These large confidence intervals
are due to the large uncertainties of the gravity results. Assuming magma drainage, the
mass change derived from the volume decrease constrained from the exponential defor-
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mation is outside the 95% confidence interval of mass change constrained from gravity.
The uncorrelated temporal variations and discrepancy in magnitude between both types
of signals therefore suggest that magma drainage is unlikely to be responsible for the
subsidence at Askja. Alternatively, the steady and gradually decaying subsidence could
be driven by extension due to plate spreading, which would induce pressure decrease at
the shallow reservoir, and crystallisation processes could also participate. On the other
hand, the gravity changes could be due to mass fluctuations in a hydrothermal system
just above the shallow magma reservoir.

To precisely extract gravity changes related to magma movements and/or hydrother-
mal mass variations and fully integrate errors in my gravity analysis, I have developed
a statistical approach that estimates the total error budget associated with temporal
gravity, when using spring relative gravimeters. In this thesis, I present the method in
detail, providing equations for users to estimate case-by-case error budgets, and I also
provide ranges of best-to-worst case scenarios, to guide users on where to focus effort
to minimizing errors, depending on the magnitude of the signal of interest. My results
show that the choice of gravimeter is essential to minimize vibration noise and errors
due to imprecise levelling, which can both reach hundreds of microgals. Similarly, mon-
itoring the temporal evolution of calibration factor should be usual practice, especially
when studying gravity time-series spanning several years. Finally, I demonstrate that
a bulk estimate of errors due to unknown meterological effects, which can reach a few
tens of microgals, can be derived from base station measurements spanning at least a
few days.
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Chapter 1

Introduction

1.1 Overview

One of the biggest challenges in volcanology is to forecast eruptions as precisely as

possible, in order to reduce the impact on local communities. Moving towards this

goal, there has been some significant improvements during the last few decades, in

detecting and understanding volcanic unrest, and consequently, better understanding

the subsurface structure and dynamics of active volcanoes (e.g. Dzurisin, 2007d, Moran

et al., 2011, Sparks et al., 2012, Acocella et al., 2015, Burchardt, 2018).

The extensive development of the Interferometric Synthetic Aperture Radar (In-

SAR) technique, which can monitor surface deformation from space over km-scale ar-

eas, has contributed to better understanding subsurface magmatic processes, especially

before, during and after eruptive events. Indeed, magma movements are usually closely

linked to pressurization-depressurization mechanisms, which commonly lead to mea-

surable upwards-downwards ground movements, often referred to as inflation-deflation

phases (e.g. Dzurisin, 2007c, Biggs et al., 2014). However, apart from the scenario of

a very likely up-coming eruption, where magma is clearly propagating at shallow levels

(e.g Grandin et al., 2010, Sigmundsson et al., 2014), it is often challenging to discrim-

inate between processes causing deformation. For example, a surface uplift, which is

very likely the response of a subsurface volume increase, can be caused by a magma

flow replenishing a reservoir, but also by the degassing of volatile species contained in
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a closed magma reservoir or even water vaporisation in a closed hydrothermal system

(e.g. Dzurisin, 2007c).

In addition to possibly produce surface deformation signatures related to volume

changes, magmatic processes are also likely to produce gravity change signatures, re-

lated to the addition or removal of mass from the reservoir. On the basis that magmatic

processes have specific signatures of mass, density and volume changes, closely moni-

toring temporal variations in surface gravity should contribute to narrow down the list

of possible mechanisms involved at a deforming volcano, and especially, prior to observ-

ing clear signs of upcoming eruption (e.g. Battaglia et al., 2008, Carbone et al., 2017).

Indeed, a surface uplift without any observed gravity change suggests that the pressur-

ized reservoir is a closed thermodynamic system, and a magma intrusion is therefore

unlikely.

An interesting example to study is the gradual subsidence that has been on-going

for at least 35 years at the Askja volcano in central Iceland. Despite extensive analysis

of surface deformation, using analytical and finite-element modelling techniques, as well

as the regular record of gravity changes, the causes of this uniquely long subsidence are

still unclear: magma and/or hydrothermal fluids could be involved, with or without

transport (e.g. de Zeeuw-van Dalfsen et al., 2012, 2013), and, because Askja is located

on a segment of the mid-Atlantic ridge, regional tectonic processes could also participate

(e.g. Pedersen et al., 2009). Due to insufficient coverage of gravity data, it has never

been demonstrated that surface deformation and gravity variations come from the same

source, and this missing information should be a key element in better understanding

the causes of subsidence at Askja.

This thesis provides a fresh perspective on the puzzling Askja subsidence, by ex-

ploiting surface deformation records more deeply from a 15-year InSAR time-series,

and improving the integration of gravity changes, by enlarging the network and refining

methodologies.

In this first chapter, I provide background information on magmatic systems lying

along mid-oceanic ridges, such as does the magmatic system of Askja. I then summarize

the volume-mass-density signatures of common magmatic processes, before presenting
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an overview of the Askja volcano case study, stating my aims and objectives, and

introducing the thesis structure.

1.2 Magmatic systems and processes beneath mid-oceanic

ridges

A mid-oceanic ridge (MOR) consists of a segmented oceanic mountain range, at the

boundary of diverging plates, where new oceanic crust is being produced along a cen-

tral rift valley. This accretion process concentrates ∼90% of the magmatic activity on

Earth, into a succession of magma plumbing systems, which are discrete networks of in-

terconnected magma pockets, having various sizes and shapes (e.g. Galland et al., 2018,

van Wyk de Vries and van Wyk de Vries, 2018). Depending on the storage duration and

local conditions of pressure and temperature, these magma pockets can have different

proportions of melt and crystals, as well as dissolved and exsolved (bubbles) volatiles

(e.g. Francis and Oppenheimer, 2004). When containing at least 55-65% of crystals,

magma can be referred to as mush (e.g. Cashman et al., 2017, Sparks and Cashman,

2017).

1.2.1 Structure of magma plumbing systems beneath MORs

Magma plumbing systems commonly develop beneath fast (>9 cm/yr) to intermediate

(4-9 cm/yr) spreading ridge (FIR) segments, such as beneath the East Pacific rise (e.g.

Tan et al., 2016), but also beneath slow (<4 cm/yr) spreading ridge segments, when

underlain by an upwelling of abnormally hot melt in the upper mantle, so-called man-

tle plume (e.g. Sigmundsson, 2006a, Wright et al., 2012). In such anomalous contexts,

as observed in central Iceland (and therefore at Askja) where the mid-Atlantic ridge

emerges, but also in Afar (Ethiopia) where the main Ethiopian rift emerges, the unusu-

ally thick crust (∼35-40 km) provides suitable pressure and temperature conditions to

preserve molten rock (e.g. Darbyshire et al., 1998, Corti, 2009, van Wyk de Vries and

van Wyk de Vries, 2018). However, especially due to the difference in tectonic settings,

which controls the spreading rate and crustal thickness, these magma-dominated slow-
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spreading ridge (MSR) segments produce magma plumbing systems that have a slightly

different bulk structure than the ones produced by FIR segments (Figure 1.1).

Figure 1.1: Top: Crustal structures beneath magma-dominated slow spreading oceanic ridges
(MSR, left) and fast-to-intermediate oceanic ridges (FIR, right). AML: axial melt lens, SAMLs:
sub-axial melt lenses (Not to scale - adapted from Galland et al. (2018)). Bottom: More detailed
structure of a “magma domain”, commonly encountered in the upper crust beneath MSR ridges
(Not to scale - adopted from Sigmundsson (2016)). In Iceland, magma plumbing systems
are referred to as volcanic systems, the main edifice centred above the magma domain is the
“central volcano”, and ”fissure swarms” usually extend along the rift axis, as illustrated here, in
the bottom figure (e.g. Sigmundsson, 2006a).

Even though each system is unique, MSR magma plumbing systems usually contain

an isolated shallow reservoir, located in the upper crust at ∼3-7 km depth, and often re-

ferred to as a magma chamber, but likely to rather be a concentration of interconnected

magma pockets (e.g. Sigmundsson, 2006a, Wright et al., 2012, Sigmundsson, 2016, Sig-

mundsson et al., 2018). These shallow “magma domains” (Sigmundsson, 2016), tend

to act as main storage regions between the surface and deeper mushy reservoirs, hav-

ing unclear structures, but usually located near the Moho, which defines the boundary

between the upper mantle and the lower ductile crust (Figure 1.1).

On the other hand, FIR magma plumbing systems usually contain an axial melt lens,
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lying at the lower-to-upper crustal boundary (∼1-2 km depth) and overlying a mush

zone, which extends down to the Moho (Figure 1.1). This lower crystal-rich domain

usually contains a series of intrusive horizontal sheets of magma, so-called sills, which

are specifically called sub-axial lenses in these environments (e.g. Dunn et al., 2000,

Marjanović et al., 2014, 2018, Galland et al., 2018).

1.2.2 Accretion and magma transport meachnisms beneath MORs

Accretion and magma transport mechanisms have been mainly studied beneath FIR

segments, from offshore seismic imaging, but it is very likely that similar processes

occur beneath onshore MSR segments, which have been studied mainly using surface

deformation and seismicity (e.g. Wright et al., 2012, Sigmundsson, 2016).

Due to the correlation of pressure-temperature conditions with depth, magma is

generally transported by porous flow, from the upper mantle to the ductile lower crust

(e.g. Wright et al., 2012, Marjanović et al., 2014, Lissenberg et al., 2019, van Wyk de

Vries and van Wyk de Vries, 2018), and by upward focussed channelisation, i.e. dyke

intrusion or rifting episode, from the lower crust to the more brittle upper crust (e.g.

Maclennan et al., 2001, Grandin et al., 2010, Lissenberg et al., 2019, Marjanović et al.,

2014, van Wyk de Vries and van Wyk de Vries, 2018, Sigmundsson et al., 2014).

Porous flow is mostly controlled by (1) lithostatic load on porosity (and perme-

ability), i.e. compaction, which increases crustal density with depth, and (2) buoyancy,

which triggers the rise of less dense and more viscous materials, such as magma (Fig-

ure 1.2). But it can also be controlled by plate spreading decompression, which triggers

the injection of pressurized magma towards the newly created low pressure zones. Dur-

ing porous flow motion, chemical reactions are likely to occur with other magma bodies

and/or with surrounding mushy crustal materials (Figure 1.2).

Dyke intrusions into the upper crust can be triggered by chemical destabilisa-

tion resulting from such mixing. Alternatively, they can also be triggered by over-

pressurization of a magma pocket being replenished or heated up, and by shallower

decompression due to plate-spreading or, more occasionally, extensive ice sheet mass

removal (e.g. Sigmundsson et al., 2010). Once the intrusion has started, the dyke prop-



6 Chapter 1: Introduction

Figure 1.2: Sketch showing transport mechanisms that are occurring in the lower crust beneath
FIR segments, and are very likely to occur, beneath MSR segments (Lissenberg et al., 2019,
Wright et al., 2012). The melt lens (or sill) 1 is being replenished by primitive melt coming up
from the upper mantle. The melt from the crystal-rich crust segregates to form sill 2. Mixing
occurs at the boundaries of sills, by chemical reactions. Transport mechanisms in crystal-rich
zones, are mainly porous flows, facilitated by compaction and buoyancy, whereas more focussed
channelisation is likely to drain sill (3) to the upper-crust, to possibly feed eruptions.

agation, mainly controlled by the regional stress field and local topography, can either

stop or lead to an eruption (e.g. Grandin et al., 2010, Sigmundsson et al., 2014). In

the former case, a shallow magma pocket or a set of interconnected pockets could form

where the state of neutral buoyancy is reached, and in MSR settings, this could con-

tribute to the development of the “magma domain” (Figure 1.1 and e.g. Sparks and

Cashman (2017)). In the second case, the onset of the eruption could drain even more

magma from the plumbing system, leading to more mixing.

Even though magma intrusions tend to go upwards and/or laterally (e.g. Grandin
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et al., 2010, Sigmundsson et al., 2014), downwards or “drain-back” movements have

sometimes been proposed as mechanisms occurring to re-equilibrate pressure and buoy-

ancy (e.g. de Zeeuw-van Dalfsen et al., 2005, Soriano et al., 2008).

1.3 Magmatic processes translated into mass, volume and

density changes

Because magmatic processes are mainly controlled by pressure and buoyancy, as well as

temperature (Section 1.2), they can be classified by specific signatures of mass, volume

and density changes, which might be detected at the Earth’s surface, from surface

deformation and gravity changes. Monitoring these surface parameters can therefore

help to better understand subsurface processes related to volcanic unrest.

Considering magma as a thermodynamic fluid, the ratio between the mass, M , of

a magma body contained in a pressurized pocket, and the volume, V , of the pocket,

provides the bulk density, ρ, of the system, at any time t (e.g. Sigmundsson, 2006b,

Segall, 2010c):

ρ(t) =
M(t)

V (t)
(1.1)

It is worth noting that, regarding pressure conditions, a set of interconnected pockets

can be assimilated to a single larger pocket, and I use the term reservoir to define a

thermodynamic system of any size, containing magma and being surrounded by crustal

materials.

Taken independently, each of these parameters can be expressed as proportions of

changes, k, from an initial state, described by M0, V0 and ρ0:

M(t) = M0 + ∆M = M0(1 + kM ) (1.2)

V (t) = V0 + ∆V = V0(1 + kV ) (1.3)

ρ(t) = ρ0 + ∆ρ = ρ0(1 + kρ) (1.4)

By substituting equations 1.2-1.4 into Equation 1.1, the proportion of density change
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can be expressed depending on the proportions of mass and volume changes:

kρ =
kM − kV
1 + kV

(1.5)

This relationship illustrates the link between the three parameters, which is mainly

controlled by three factors (Figure 1.3 and e.g. Francis and Oppenheimer (2004)):

1. The type of system (open or closed reservoir), which initially depends on the

degree of permeability of the surrounding host rock but can be controlled, in a

latter stage, by internal pressure changes,

2. The degree of compressibility of the system, which depends on the proportion of

exsolved volatiles in the melt, but also on the compressibility of the host rock,

3. The degree of internal pressure equilibrium, which can be destabilised by external

pressure and temperature variations.

Based on these factors, magmatic processes occurring in closed systems should not

generate any mass changes because by definitions, these systems cannot transfer any

matter with the exterior; magmatic processes occurring under pressure equilibrium

should not generate any volume changes; and no density change is expected when the

system is incompressible (Figure 1.3).

As the Earth’s surface is a free surface, a volume change at depth, resulting from

a pressure variation, is likely to generate some ground deformation, which can there-

fore be used to constrain the location, depth and magnitude of the subsurface volume

change (e.g. Sigmundsson, 2006b, Segall, 2010c). However, the relationship between the

amount of volume change at depth and the surface deformation response highly depends

on the reservoir geometry, crustal properties and compressibility. Following the same

reasoning, a subsurface mass change can trigger a variation in the gravitational accel-

eration at the Earth’s surface, and which can then be used to constrain the location,

depth and magnitude of the subsurface mass change (e.g. Kearey et al., 2002, Battaglia

et al., 2008). However, if the reservoir deforms simultaneously as experiencing a mass

change, the gravity change response might be altered by the redistribution of density
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Figure 1.3: Relationship between mass, volume and density variations, quantified as propor-
tions of changes from initial conditions (Equations 1.2-1.4). The dashed line highlights the
scenario of incompressible system (no density change), the green horizontal axis highlights the
scenario of closed system (no mass change) and the orange vertical axis highlights the scenarios
of pressure equilibrium (no volume change). Circled numbers indicate the expected signs of
mass-volume-density change signatures for common magmatic processes (See Sections 1.3.2-
1.3.4 for more details). The placement of these circled numbers is not precise, but the zones
where they have been placed matter. Number 7 appears in to regions as it is a transport process
inducing mass loss to mass gain variations.

field in the crust, resulting from the reservoir volume change, and this effect depends on

the geometry of the reservoir (e.g. Eggers, 1987, Walsh and Rice, 1979, Segall, 2010b).

After providing a clear definition of the compressibility of the system, I translate

the most common magmatic processes, expected beneath MORs (Section 1.2), into

signatures of mass-volume-density changes.

1.3.1 Compressibility of a magmatic reservoir embedded in the crust

By definition, any compressible material can undergo a volume change and an opposite

density change, as a response to pressure, temperature and/or composition variations,
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whereas an incompressible material requires the addition or removal of mass to undergo

a volume change in same proportions, while density remains constant (Figure 1.3).

Due to the principle of mass conservation, any infinitesimal pressure and temper-

ature variations (δP and δT ) imposed on a closed system with constant composition,

triggers infinitesimal volume and density responses (δV and δρ), which depend on the

coefficients of isothermal compressibility, β, and isobaric thermal expansion, ι:

δV =
[
βV0δP

]
T

+
[
ιV0δT

]
P

(1.6)

δρ =
[
βρ0δP

]
T

+
[
− ιρ0δT

]
P

(1.7)

where β and ι, characterise together the degree of compressibility of the material, during

pressure and temperature variations:

β =
−1

V0

(δV
δP

)
T

=
1

ρ0

( δρ
δP

)
T

(1.8)

ι =
1

V0

(δV
δT

)
P

=
−1

ρ0

( δρ
δT

)
P

(1.9)

Magma is likely to have a certain level of compressibility, defined by βm and ιm,

as it usually contains some proportion of exsolved volatiles. However, because magma

reservoirs are embedded in the crust, they interact with the surrounding host rock, itself

having a certain degree of compressibility, defined by βc and ιc. Consequently, whether

a subsurface magma volume change can produce a surface deformation signature not

only depends on the magma compressibility, but it rather depends on the ratio of the

magma to host rock compressibilities (e.g Rivalta and Segall, 2008, Segall, 2010c).

This can be demonstrated assuming a reservoir with compressible magma, being

replenished (or drained). The infinitesimal mass change, δM , caused by any δP and/or

δT , can be expressed as the total differential of Equation 1.1 (e.g. Rivalta and Segall,

2008, Segall, 2010c):

δM = ρ0δV + V0δρ (1.10)

where ρ0δV is the incompressible component with constant density, and V0δρ the com-

pressible component with varying density.
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At constant temperature, this density change initially depends on βm (Equation 1.7):

δM = ρ0δV + V0(βmρ0δP ) (1.11)

and the δP , which is generated by the replenishment (or drainage), then interacts with

the host rock as the volume of the reservoir varies. Substituting δP as a function of

δV from Equation 1.6 into Equation 1.11, provides a measure of the resulting density

change between t0, when the density equals ρ0, and any time t, when the density equals

ρ(t):

ρ(t) = ρ0(1 +
βm

βc
) (1.12)

Following the same reasoning, the density change obtained during replenishment (or

drainage) at constant pressure but with a temperature variation is:

ρ(t) = ρ0(1 +
ιm
ιc

) (1.13)

A compressible magma body can therefore be treated as incompressible when βc

and ιc largely exceed βm and ιm. However, when ignoring a non-negligible degree of

compressibility, the mass change resulting for a replenishment (or drainage) will be

underestimated by a factor of (1 + βm/βc) at constant temperature and by a factor of

(1 + ιm/ιc) at constant pressure (e.g. Rivalta and Segall, 2008, Segall, 2010c). Based

on this overall definition, I use the term “compressibility of the system” to refer to

both the ratios of magma to host rock isothermal compressibilities and isobaric thermal

expansions.

1.3.2 Magmatic processes in a closed system, initially in equilibrium

Some reservoirs contained in a magma plumbing system (Figures 1.1 and 1.2) can be

analogous to closed systems when the surrounding host rock has a degree of permeability

that is low enough to prevent any addition or removal of mass. When in place, these

systems should initially be under pressure and buoyancy equilibrium, and temperature

variations can cause pressure changes, which induce some degree of volume changes
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depending on the compressibility of the system (Section 1.3.1).

When subjected to a temperature increase, the vapor pressure of the volatiles, dis-

solved in the melt, increases because their solubility decreases (e.g. Francis and Oppen-

heimer, 2004, Wallace et al., 2015, Burgisser and Degruyter, 2015). When the vapor

pressure of a given volatile species equals the pressure of the host rock acting on the

reservoir, so-called lithostatic pressure, saturation is reached and bubbles start nucle-

ating, leading to the formation of bubbles in the melt. This degassing process, often

referred to as (first boiling) gas exsolution , or vesiculation, leads to increasing the

volume and decreasing the density of the overall pressurized system (Figure 1.3).

Conversely, when a closed magma reservoir is subjected to a temperature decrease,

the volume of the system decreases while its density increases, due to gas dissolution ,

(so-called devesiculation), as volatiles become more and more soluble (Figure 1.3 and

e.g. Francis and Oppenheimer (2004), Wallace et al. (2015), Burgisser and Degruyter

(2015)).

If the temperature decrease persists, crystallisation can start, leading to further

volume decrease (or thermal contraction) and density increase (Figure 1.3). However,

despite the temperature decrease, a (second boiling) gas exsolution can ensue, as

the crystal-melt separation process increases the saturation of the volatiles dissolved

in the melt (e.g. Francis and Oppenheimer, 2004, Wallace et al., 2015, Burgisser and

Degruyter, 2015). Consequently, the volume of a cooling gas-rich and crystallising

magma reservoir is likely to increase, when embedded in a compressible system, leading

to a density decrease (Section 1.3.2); but if the system is incompressible, pressure will

increase without any volume nor density change.

During any type of gas exsolution, a critical state of rock wall failure can be reached

when the sum of the vapor pressures of the exsolved volatiles largely exceeds the litho-

static pressure, leading to the sudden opening of the system (e.g. Francis and Oppen-

heimer, 2004, Wallace et al., 2015, Burgisser and Degruyter, 2015).
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1.3.3 Magmatic processes in a open system, initially in equilibrium

An open magma reservoir in equilibrium, lies at neutral buoyancy and is surrounded

by a host material, permeable enough to allow addition/removal of material to/from

the system (Figures 1.1 and 1.2). Unlike closed systems, open systems are therefore

subjected to mass changes, but the surface gravity change signature of a deforming

reservoir can be contaminated with the effect of density field variations as the crust is

being displaced (e.g. Eggers, 1987, Walsh and Rice, 1979, Segall, 2010b).

When new magma mixes within an existing open reservoir (Section 1.2.2), more

mass is added to the system and volume increases simultaneously. This process, often

referred to as a magma intrusion , can lead to a density change, depending on the

degree of compressibility of the system (Figure 1.3 and Section 1.3.1). Similarly as for

long-lasting gas exsolution undergoing within gas-rich closed systems (Section 1.3.2),

the pressure of an open system being replenished can exceed the lithostatic pressure,

up to a critical failure stage.

Contrary to magma instrusions, a magma drainage consists of partially or fully

emptying an open system, leading to a mass and volume decrease, and possibly, a density

change depending on the compressibility of the sytem (Figure 1.3 and Section 1.3.1).

An open reservoir can also undergo temperature changes, which can initiate gas

exsolution and crystallisation processes, such as in closed systems (Section 1.3.2). How-

ever, because the system is open, the exsolved volatiles can freely escape from the melt

(e.g. Francis and Oppenheimer, 2004, Wallace et al., 2015, Burgisser and Degruyter,

2015). This process, called outgassing , generates a mass loss but it is unlikely to

produce a volume change as the volume increase caused by gas exsolution should be

compensated by the volume decrease from outgassing. Consequently, the density of the

reservoir should decrease (Figure 1.3). If the reservoir is vertically elongated, outgassing

can trigger a convection process where the gas-rich buoyant portions of the magma rise

up, while the denser degassed portions sink, leading to density homogenisation (e.g.

Shinohara, 2008, Bagnardi et al., 2014). These systems sometimes emerge at the sur-

face as lava lakes (e.g. Shinohara, 2008, Bagnardi et al., 2014), but when buried, the

volatiles can either be trapped at shallower levels or reach the surface as hot springs
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and fumaroles, depending on the permeability of the crust and nature of the released

volatile species (e.g. Francis and Oppenheimer, 2004).

1.3.4 Magmatic processes during transport

Even though not analogous to a static open or closed system, a moving magma body

generates a surface deformation response to pressure changes, depending on the crustal

properties, which usually vary with depth. Indeed, porous flows (Section 1.2.2) are

unlikely to produce a deformation signal, because the induced pressure variations ac-

companying the movement should be accommodated within the viscous and mushy

lower crust. On the other hand, dyke intrusions (Section 1.2.2), which can follow a

sudden decompression, e.g. ensuing gas exsolution or magma intrusion (Sections 1.3.2

and 1.3.3), are more likely to generate some ground deformation while the dyke makes

its way through the brittle upper crust (e.g. Grandin et al., 2010, Sigmundsson et al.,

2014).

Both types of magma transport should generate a traceable mass loss to mass gain

variation when the propagation is lateral and over at least a few kilometers. However,

in practice, this implies that the discrete gravity measurements are recorded at the right

times, and along the right path, and that the possible gravity response of crustal density

field variations is removed (e.g. Eggers, 1987, Walsh and Rice, 1979, Segall, 2010b). At

the end of propagation, a porous flow is likely to become a magma intrusion, whereas

a dyke intrusion can either become a magma intrusion, or the transporting process can

lead to an eruption , which usually has a clear signature of deflation and mass loss, as

a subsequent amount of material leaves the crust (e.g. Dzurisin, 2007d).

Finally, the processes of “magma filling void spaces” and “drain-back movements”

sometimes mentioned in the literature to explain a measured gravity change with little

or no observed deformation (Section 1.2.2 and e.g. Johnson et al. (2010), Vajda et al.

(2012)) are likely due to porous flows, triggered by e.g. tectonic processes such as plate

spreading or earthquakes, inducing high-to-low pressure magma movements.

It is worth noting that even though all these magmatic processes can be classified

based on their expected mass-volume-density signatures, complex responses of surface
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deformation and gravity changes are usually generated, as magma plumbing systems

can be analogous to a set of open and closed reservoirs, between which magma propa-

gates (Section 1.3). Moreover, external processes of hydrothermal or tectonic origin can

further complicate the interpretation, by contaminating the magma-related gravity and

deformation signals (e.g. Hautmann et al., 2010), and alternatively, an assumed volcanic

unrest might not have any direct magmatic origin (e.g. Gottsmann et al., 2006). Despite

these complexities, simple analytical models are widely used to predict the gravity and

deformation responses of magmatic processes, and results have been especially success-

ful when one process dominates among the others (e.g. Grandin et al., 2010, Bagnardi

et al., 2014, Sigmundsson et al., 2014).

1.4 Analytical models to constrain magmatic processes

Analytical equations have been derived to calculate the observed surface displacement

or gravity change that would be produced by a magmatic reservoir, given e.g. its loca-

tion, depth and magnitude of volume or mass change, and assuming simple reservoir

geometries as well as some basic crustal and magmatic properties (e.g. Sigmundsson,

2006b, Lisowski, 2007, Segall, 2010c, Battaglia et al., 2008; and references therein).

Based on these non-linear forward problems, statistical approaches, such as simulated

annealing or the Bayesian inversion (e.g. Tarantola, 2005), have been used to invert for

the most probable set of parameters that would best describe the observations, assum-

ing a reservoir geometry. Even though a model fitting the data does not necessarily

represent the reality, there is 95% chance that they reproduce well the distribution of

pressure and mass changes at depth, and results can be compared with other disci-

plines, such as seismic tomography, which can indicate, to some extent, the position of

large magma bodies in the subsurface. Once satisfied with the deformation and gravity

models, hypotheses on the most probable on-going processes can be suggested based on

Figure 1.3.
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1.4.1 Conceptual representation of the Earth’s crust

Analytical models commonly consider the Earth’s crust as a homogeneous elastic half-

space medium (e.g. Lisowski, 2007, Segall, 2010c). In other words, beneath the bounding

Earth’s surface, which is not subjected to any stress (free-surface), the crust is a solid,

extending to infinity in all directions (half-space), having uniform composition and

properties throughout (homogeneous), and its mechanical properties are constant in

all directions (elastic). The crust elasticity (and isotropy) can therefore be defined

by several moduli, which are linked to the isothermal compressibility coefficient (βc,

Section 1.3.1):

E = 2µ(1 + y) = 3K(1− 2y) =
3(1− 2y)

2βc
(1.14)

where E is the Young’s modulus, describing the material’s response to linear stress, µ

is the shear modulus, describing the material’s response to shear stress, K is the bulk

modulus, which is a measure of resistance to compression, and y is the Poisson’s ratio,

describing the lateral expansion versus longitudinal contraction of a material under

stress (Table 1.1). The common symbol for the Poisson’s ratio is ν, but in this thesis,

this symbol is used for the degree of freedom.

Somewhat fractured to Intact crust Typical value
µ 10-30 ×1010 Pa 20 ×1010

y 0.15-0.3 0.25

Table 1.1: Typical shear modulus (µ) and Poisson’s ratio (y) ranges and values used to describe
the elasticity of the oceanic crust (e.g. Rivalta and Segall, 2008, Lisowski, 2007). From these
two moduli, the rest of the other moduli can be derived (Equation 1.14).

Based on this overall definition of the crust, a pressure change applied anywhere

deforms the material linearly, and this very simplistic conceptual model usually approx-

imates well the conditions of deformation undergone in the shallow brittle crust.

To reproduce the effect of any embedded deforming magma body, the magma is

usually assumed to be an incompressible fluid. This suggests that the crust is more

compliant than the magma (Section 1.3.1), and it also implies that the reservoir can

only deform when mass is added to or removed from the system (Figure 1.3). In these

conditions, the surface deformation and gravity change signatures vary depending on
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the reservoir geometry, and analytical solutions have been derived for e.g. spheroids,

sills and dykes, but I only present here the simplest and most widely used model (e.g.

Sigmundsson, 2006b, Lisowski, 2007, Battaglia et al., 2008, Segall, 2010c)

1.4.2 The “Mogi” reservoir or point pressure source model

The simplest and routinely used magma reservoir model is the so-called “Mogi” model

(Mogi, 1958, McTigue, 1987), which assumes an incompressible magma stored within a

spherical reservoir embedded in a homogeneous elastic half-space medium (Section 1.4.1),

and of which the uniform internal pressure can be concentrated into a central point (Fig-

ure 1.4).

Figure 1.4: Geometry of the conceptual Mogi model, where a pressurized spherical source
of initial radius, a, centered at the depth, z, and embedded in an elastic-half-space medium,
undergoes a volume change, ∆V (positive in this example), induced by an mass change, as the
system is incompressible (Figure 1.3 and Section 1.3.1). The reservoir’s pressure is isotropic and
its depth is much larger than its radius. See Section 1.4.2 for more details on the conceptual
model and related analytical solutions.

When a pressurized magma reservoir, which can be a set of interconnected pockets

(Section 1.2), can be approximated by the Mogi model, its volume change, ∆V , which

results from the addition or removal of mass from the system, translates into horizontal

and vertical displacements, Dh and Dv, at any site on the free-surface, as follows:

Dh =
(1− y)∆V

π

r

(z2 + r2)3/2
(1.15)

Dv =
(1− y)∆V

π

z

(z2 + r2)3/2
(1.16)
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where z is the depth to the centre of the Mogi reservoir, r is the horizontal distance

from the top of the source to the site, and y is usually assumed to equal 0.25, implying

that the crust is compressible to some degree (Table 1.1 and Section 1.3.1). Figure 1.5

simulates gravity changes and surface deformation expected from a magma intrusion,

depending on z and r.

Figure 1.5: Vertical (solid blue) and horizontal (dashed blue) deformation signal, as well as
gravity change signature (solid orange), produced by a Mogi reservoir undergoing a volume
increase of 0.05 km3, which is the order of magnitude expected (Sigmundsson (2006b) and is
equivalent to 20,000 times an Olympic swimming pool). Left: Signals varying with horizontal
distance (r, Figure 1.4) when the reservoir is at 3 km depth, i.e. within the “magma domain”
(Figure 1.1). Right: Signals expected at the top of the reservoir (r=0), depending on depth,
which ranges from the surface to the Moho (Figure 1.1). This example highlights the order of
magnitudes of expected surface deformation and gravity changes induced by a Mogi reservoir
(1 µGal = 10−8 m s−2).

Because ∆V is the integral of radial displacements at the wall of the reservoir, from

initial conditions (Figure 1.4), it correlates with the inner pressure change, ∆P :

∆V =
πa3∆P

µ
(1.17)

where µ is the shear modulus of the host rock (Table 1.1). This relationship highlights

the non-uniqueness of the model where ∆P cannot be separated from the radius: a

small ∆P in a large reservoir produces the same surface deformation as a large ∆P in
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a small reservoir. For this reason, the Mogi model applies only when z � a (Figure 1.4

and e.g. Sigmundsson (2006b), Lisowski (2007), Segall (2010c)).

As the pressure change linearly propagates through the crust (Section 1.4.1), ∆V

also correlates with the volume of surface deformation, [∆V ]surface, which is the integral

of surface vertical displacements:

[∆V ]surface = 2(1− y)∆V (1.18)

In the presence of an incompressible crust (y = 0.5), [∆V ]surface equals ∆V at the

Mogi reservoir, but considering a usual y of 0.25, [∆V ]surface is 1.5 times greater than

∆V , due to the crust dilation response (e.g. Sigmundsson, 2006b, Segall, 2010c; and

references therein). It is worth noting that Equation 1.18 relates to a Mogi geometry

only.

Based on the Newton’s law, the mass change, ∆M , caused by the incompressible

magma, replenishing the deforming Mogi reservoir, equals ρ0∆V (Section 1.3.1), with

∆V being radial. The spatial dependence of ∆M with the gravity change recorded at

the surface, ∆g, is therefore the same as the one between ∆V and Dh (e.g. Battaglia

et al., 2008, Lisowski, 2007, Segall, 2010b):

∆g −∆gelev =
G∆Mz

(z2 + r2)3/2
=

Gρ0∆V z

(z2 + r2)3/2
(1.19)

where G is the universal gravitational constant, ρ0 is the magma density in the spherical

reservoir, and ∆gelev, is the so-called free-air effect, i.e the gravity change induced by the

deforming surface, which varies the distance to the Earth’s gravitational centre. This

analytical solution is also non-unique as it also depends on the inseparable radius and

pressure change (Equation 1.17). Moreover, it is worth noting that, in this special case

of spherical geometry, the variations in crustal density field induced by the deforming

reservoir acting on the surrounding crustal material cancel, whereas a non-negligible

effect becomes involved for other geometries (e.g. Eggers, 1987, Walsh and Rice, 1979,

Segall, 2010b).

Only when the geometry of the reservoir and compressibility of the system approx-
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imate the bulk magmatic and crustal properties well, the constant magma density is

proportional to the ratio of gravity change, corrected for the free-air effects, to vertical

deformation (Equations 1.16 and 1.20):

ρ0 =
∆g −∆gelev

Dv

(1− y)

πG
(1.20)

However, if the magma has a non-negligible degree of compressibility, ρ0 cannot be

constrained, and ∆g is underestimated (Section 1.3.1).

1.5 Case study: Askja volcano, central Iceland

As briefly mentioned in Section 1.1, the physical processes responsible for the subsidence

at Askja are still unclear. Being aware of the processes likely to occur in such magma-

dominated slow-spreading ridge context (Section 1.2), and knowing how their mass-

volume-density signatures (Section 1.3) can relate to surface deformation and gravity

changes (Section 1.4), I aim to exploit more deeply the potential of integrating these

two types of measurable parameters at Askja. Here, I present an overview of the Askja

case study.

The Askja volcanic system, located in central Iceland, to the North of the Vatna-

jökull icecap, lies in a segment of the mid-Atlantic ridge, near the centre of the Icelandic

mantle plume (e.g. Sigmundsson, 2006a). It is the longest volcanic system on the is-

land, with its ∼190-km-long set of fissure swarms, extending from Vatnajökull up to

the North coast of Iceland (Figure 1.6). Its central volcano is composed of at least

three nested calderas, of which the largest one, called Askja and measuring ∼8 km in

diameter, has given its name to both the central volcano and the overall volcanic system

(Figure 1.1).
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Figure 1.6: Map of the Askja volcanic system, located to the North of the Vatnajökull icecap
(Dyngjujökull is an outlet glacier of Vatnajökull). The central volcano (thin plain line) is
composed of a least three nested calderas (thick black lines), and the set of fissure swarms
(dashed line) extends over ∼190 km. The eruptive products resulting from effusive activity
are classified into prehistorical (>1,000 years, purple) and historical (<1,000 years, pink) lavas
(Thordarson and Hartley, 2016).



22 Chapter 1: Introduction

This largest Askja caldera as well as the northernmost ∼4-km-across caldera, named

Kollur, were both created more than 10,000 years ago, during large silicic eruptions

(e.g. Sigvaldason, 2002, Thordarson and Hartley, 2016; and references therein). On

the other hand, the youngest caldera, measuring ∼5 km in diameter and named after

its hosted >260-m-deep Öskjuvatn lake, was formed after the most recent subplininan

silicic eruption, which occurred in 1875 (e.g. Hartley and Thordarson, 2012). In addition

to these large silicic eruptive events, some minor basaltic eruptions occurred in the last

10,000 years along the fissure swarms, and the most recent was in 1961, on the north-east

flank of the Askja caldera (Figure 1.6).

Shortly after this last event, the Askja volcano deformation was monitored using lev-

elling, and more extensive geodetic measurements were then progressively implemented

from GPS and InSAR, but also from temporal gravity, as a subsidence had been de-

tected in the main Askja caldera. Currently, the subsurface processes responsible for

this still on-going subsidence remain unclear, but a recent microseismic tomography,

brought new information on the bulk morphology of the magma plumbing system of

Askja. Here, I summarize the results from all these previous studies.

1.5.1 Surface deformation at Askja

Tryggvason (1989) presented the first optical tilt and levelling results, which had been

planned initially to monitor the post-eruptive behaviour of the 1961 lava flows in the

north-east of the Askja caldera (Table 1.2). The study revealed a subsidence pattern

likely to affect the entire caldera, and unlikely to be linked to the 1875 explosive event,

neither to the 1961 effusive event. Sturkell et al. (2006) then highlighted the expo-

nentially decaying long-term evolution of this subsidence, characterized by a relaxation

time of ∼39 years from 1973 to 2003 (Table 1.2). This overall pattern is still on-going,

and the updated relaxation time is now ∼42 years (Figure 1.7A).

In parallel, GPS (1987-2014) and InSAR (1992-2010) studies highlighted the ap-

proximately concentric shape of the subsidence, and confirmed its center in the middle

of the Askja caldera (Figure 1.7 and Table 1.2). Even though the circular morphology

of the caldera itself does not clearly show that the volcano is affected by the diverg-
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Period Technique Modelling method,
Best-fit geometry

Best-fit
parameters Ref.

1966-1987 Optical tilt,
Levelling

Forward modelling
1 Mogi reservoir

16.83-16.75°W
65.07-65.04°N [1]

1988-1991 Optical tilt,
Levelling

Forward modelling
1 Mogi reservoir

16.77°W,65.05°N
Depth: 3 km [2]

1992-1993 Static GPS Forward modelling
1 Mogi reservoir

Rift: 2.5 cm yr−1 towards N100°E
Fixed location and depth from [2] [3]

1993-1998
Optical tilt,
Levelling,
Static GPS

Forward modelling,
1 Mogi source

16.78°W, 65.04°N
Depth: 3 km
∆V = -0.0017 km3 yr−1

[4]

1992-2000 InSAR
Simulated annealing,
Ellipsoidal reservoir,
Elastic half-space

16.771°W, 65.045°N (fixed)
Depth: 3.5 km
∆V = -0.0021 km3 yr−1

[5]

1993-2003 Static GPS,
Levelling

Forward modelling*,
2 Mogi reservoirs

16.780°W, 65.045°N
Depths: 3 and 16 km
[∆V]3km = -0.0021 km3 yr−1

[∆V]16km = -0.0137 km3 yr−1

[6]

2000-2009 InSAR Bayesian inversion**,
1 Mogi reservoir

16.778°W, 65.050°N
Depth: 3.5 km
∆V = -0.0014 km3 yr−1

[7]

2003-2010 InSAR No modelling Comparison of the subsidence rate
with the gravity change rate [8]

2008-2014 Static GPS Simulated annealing,
1 Mogi reservoir

Fixed location and depth from [7]
∆V = -0.0010 km3 yr−1 [9]

Table 1.2: Summary of previous geodetic studies performed at Askja. (*) Plate spreading
incorporated in the modelling; (**) additional used of finite-element models to demonstrate the
very likely impact of plate spreading on the subsidence; [1]: Tryggvason (1989); [2]: Rymer
and Tryggvason (1993); [3]: Camitz et al. (1995); [4]: Sturkell and Sigmundsson (2000); [5]:
Pagli et al. (2006); [6]: Sturkell et al. (2006); [7]: de Zeeuw-van Dalfsen et al. (2012); [8]:
de Zeeuw-van Dalfsen et al. (2013); [9]: Drouin et al. (2017).

ing plates, such as does e.g. the elongated Erta Ale volcano in Afar, Pedersen et al.

(2009) highlighted some regional subsidence pattern, approximately aligned with the

plate spreading axis.

Using levelling and/or GPS and/or InSAR data, forward and subsequent inversion

models provided the most probable location, depth and magnitude of volume decrease

that could explain the subsidence (Table 1.2). Assuming a homogeneous elastic half-

space medium (Section 1.4.1), all these models suggest that the subsidence can mainly be

explained by a deflating isotropic pressurized reservoir, spherical (Mogi) or ellipsoidal,

located at ∼3-3.5 km depth, in the centre of the Askja caldera (Figure 1.7B). The

constrained volume change rates have decreased from -2 km3 yr−1, before 2000, to -

1 km3 yr−1, more recently (Table 1.2). Even though an additional deeper reservoir
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Figure 1.7: A: Cumulative vertical displacements recorded using precise levelling, at the A406
levelling site (cyan diamond in B) relative to the A429 station (cyan star in B). Erik Sturkell,
from the University of Gothenburg (Sweden) provided the data (Sturkell et al., 2006, de Zeeuw-
van Dalfsen et al., 2013). B: Map of the Askja volcano, locating the levelling stations used in A,
the centre of the spheroid reservoirs constrained in previous studies from surface deformation
data (yellow square and blue triangle, Table 1.2) versus the one I constrained in this thesis (red
triangle), and the approximate location of the primary melt storage reservoir (green circle),
recently imaged from seismic tomography (Section 1.5.4).

was constrained by Sturkell et al. (2006) to account for some contracting horizontal

deformation, outside the caldera, there is a lot of uncertainty is this deeper source,

especially because the horizontal deformation pattern relied on the 2-source model itself.

From now on, I refer to the 3-km-deep reservoir as the “geodetic reservoir”.

1.5.2 Temporal gravity changes at Askja

In parallel with deformation records, regular gravity surveys have been carried out

within the Askja caldera, from 1988 to 2010, by Hazel Rymer et al. (Open University,

UK). The first results were published by Rymer and Tryggvason (1993), but de Zeeuw-

van Dalfsen et al. (2005) presented a revised study of the gravity change evolution from

1988 to 2003, with results averaged over three main zones, called the “centre”, “northern”

and “south-eastern” parts of the Askja caldera. The time-series were then extended to

2010 by Rymer et al. (2010) and de Zeeuw-van Dalfsen et al. (2013) (Figure 1.8A).

Overall, a gradual gravity decrease of ∼140 µGal was observed from 1988 to 2007,

in the same central area of maximum subsidence, and it was followed by an increase
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Figure 1.8: A: Map of the gravity network within the Askja caldera, from 1988 to 2010, high-
lighting the extension performed in 2002 (symbol colors), mentioning the method of elevation
measurement, if any (symbol shapes), and delineating the centre, northern and south-eastern
groups of gravity stations (blue, red and yellow circles) (de Zeeuw-van Dalfsen, 2004, Rymer
et al., 2010). B: Time-series of the gravity changes, from 1988 to 2010, after free-air correction,
at each of the three gravity groups, and relative to the station shown on the map with the white
square (de Zeeuw-van Dalfsen et al., 2013).

of ∼60 µGal, from 2007 to 2009 (Figure 1.8B). Because the data were reduced as

much as possible for unwanted signals, including the free-air effect (Section 1.4.2), these

variations were assumed to be the response of mass changes occurring in a buried

pressurized reservoir, but due to the lack of spatial coverage, inversion modelling could

not be performed. It was rather assumed that these mass changes were occurring at

the geodetic reservoir (Rymer and Tryggvason, 1993, de Zeeuw-van Dalfsen et al., 2005,

2013).

It is worth noting that when looking at Figure 1.8B, the centre gravity increase,

which did not perturb the subsidence, could also be just noise. Moreover, because stan-

dard LaCoste & Romberg gravimeters (i.e. not upgraded with any automated recording

systems, neither electronic tilt sensors) were used to record all these gravity measure-

ments, the error budget associated to each measurement may have been underestimated.

Indeed, despite the high-precision of these instruments, the error budget associated to

magma-related micro-scale gravity changes (Figure 1.5), not only depends on the ex-

treme meticulousness of the operator but also on the unknown level of noise in the area.

The “extreme” meticulousness, because LaCoste & Romberg gravimeters are analog in-
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struments, which need to be levelled using spirit bubble levels and taking a reading

consists of turning a dial to visually fit a beam to a reading line (LaCoste & Romberg,

2004); and the “unknown” noise, because, without any upgrade, these standard instru-

ments are only able to record readings one by one, preventing statistically estimating

the noise (Chapter 4). To optimise the results, two gravimeters were usually used simul-

taneously at Askja, and measurements were usually repeated three times (de Zeeuw-van

Dalfsen, 2004), but this procedure still does not allow statistically estimating the noise.

1.5.3 Previous interpretations for the Askja subsidence

Because the onset of the Askja subsidence (Figure 1.7A) coincided with the start of

the last fissure eruption at the Krafla volcanic system (1975-1984, e.g. Björnsson et al.

(1977)), which is also located along the mid-Atlantic ridge, at ∼70 km North of Askja,

Tryggvason (1989) suggested some pressure links between the two volcanic systems to

explain the Askja subsidence: magma could have been drained from Askja to Krafla by

travelling along the Mid-Atlantic ridge. However, the end of the Krafla fissure eruption

did not affect the subsidence.

Based on the correlation in location between the negative peak values of deformation

and gravity changes (Sections 1.5.1 and 1.5.2), Rymer and Tryggvason (1993) suggested

that the Askja subsidence could be the response of some continuous magma drainage

from the geodetic reservoir (Figure 1.3). But because no deformation signal typical for

vertically upward nor lateral dyke intrusion was detected, they proposed a “drain-back”

magma movement to deeper levels. While supporting this hypothesis as a likely cause,

Sturkell and Sigmundsson (2000) suggested that the main process could rather be some

magma crystallization at the geodetic reservoir (Figure 1.3).

These two main ideas were supported as possible causes of subsidence by the subse-

quent studies (Table 1.2 and de Zeeuw-van Dalfsen et al. (2005)), which also suggested

that the plate spreading could have a non-negligible impact. This additional hypothesis

was first proposed by Sturkell et al. (2006), and then highly supported by Pedersen et al.

(2009) and de Zeeuw-van Dalfsen et al. (2012), who both used finite element modelling

to implement a 2-layer crust model with a visco-elastic lower crust.
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Finally, the “magma intrusion filling void spaces”, initially proposed by Rymer et al.

(2010) to explain the gravity increase recorded over 2007-2009 (Figure 1.8B), was re-

visited by de Zeeuw-van Dalfsen et al. (2013), who suggested a more likely magma

intrusion at the geodetic reservoir and/or some condensation processes within a shal-

lower hydrothermal system.

1.5.4 Local earthquake tomography at Askja

Some recent microseismicity analysis provided a tomography of the magma plumbing

system, beneath the Askja central volcano (Mitchell et al., 2013, Greenfield et al.,

2016, Greenfield, 2016). These studies highlighted a low-velocity zone, which can be

approximated as a 3-km thick cylinder of ∼100 km3, located at the upper-to-lower

crust transition (6-10 km depth below the surface), and likely to have been the primary

mushy-magma reservoir for the large caldera-forming eruptions (Figure 1.9).

As shown on Figure 1.7B, the centre of this large body is slightly offset from the

centre of the geodetic reservoir constrained in previous studies, and of which the size

is unlikely to exceed 15 km3, as it could not be imaged (Figure 1.9). However, beyond

the resolution of the tomography, some velocity attenuation still suggest the presence

of a magma reservoir in this area (Personal communication, T. Greenfield, 2018).

Additionally, the tomography highlighted a high-velocity zone, at ∼3 km depth,

but located on a ring, along the eastern side of the Askja caldera and Öskjuvatn lake

(Figure 1.9). Greenfield et al. (2016) suggested that this area, likely to be made of

intrusive gabbros, hosts an active hydrothermal system, maintained by some residual

local heat and producing some seismicity, possibly due to high pore fluid pressure.

However, as offset from the centre of the Askja caldera, Greenfield et al. (2016) do not

think that the physical processes occurring in this hydrothermal system are related to

the Askja subsidence, but they rather suggest that the hydrothermal system could be

a cooling source for the geodetic reservoir.
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Figure 1.9: Velocity structure of the magma plumbing system beneath the Askja central
volcano, perpendicular to the axis ridge (i.e. along an approximate east-west profile from left
to right). The black circles show the local seismicity within 2 km of the cross-section, the
solid black line highlights the possible primary shallow magma reservoir of the Askja volcanic
system, the dashed line outlines the maximum possible size of the geodetic reservoir, if it exists,
and the red arrows show the likely magma flow between some discrete mushy magma reservoirs
(Greenfield et al., 2016, Greenfield, 2016).

1.6 Aims and objectives

The aim of this thesis is to take the integration of surface deformation with temporal

gravity a step further, and contribute to the clarification of the causes of subsidence

at Askja. More broadly, I aim to shed light on physical processes operating at shallow

volcanic systems located along mid-oceanic ridges, and I also aim to present some new

methodologies, which can be equally applicable to other studies, in order to help the

scientific community to decipher subsurface physical processes.

My objectives are as follows:

1. Explore whether the long-term subsidence of the entire Askja caldera evolves sim-

ilarly as locally highlighted from levelling data, and investigate whether unknown

deformation signals can be extracted from the removal of the long-term subsidence

trend.
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2. Use inversion modelling to solve for the most probable location, depth and mag-

nitude of the volume change associated to each extracted deformation pattern,

including the long-term subsidence.

3. Develop a method to precisely estimate the error budget associated to micro-scale

gravity changes.

4. Record new gravity surveys at Askja, improving methodologies and enlarging the

gravity network to capture a precise gravity change signature across the caldera.

5. Use inversion modelling to solve for the most probable location, depth and mag-

nitude of the mass changes, and compare results with the ones obtained from my

second objective.

1.7 Thesis structure

In Chapter 2, I provide some background information on the InSAR technique, which

I used to measure surface deformation at Askja, and on temporal gravity surveying.

In Chapter 3, I address my first and second objectives by presenting a detailed

analysis of the Askja caldera surface deformation, comparing a 15-year time-series of

new InSAR data (2002-2017) with existing GPS records.

In Chapter 4, I address my third objective by presenting a statistical approach for

estimating the full error budget associated with micro-scale temporal gravity changes,

taking into account the uncertainty associated to the reduction of the usual unwanted

signals.

InChapters 5, I address my fourth and fifth objectives by presenting a 3-year (2015-

2017) study of new gravity changes, which I have recorded over a larger network in the

Askja caldera, and for which I have estimated the full error budget. In this chapter,

I also discuss the likely causes of subsidence, comparing the surface deformation and

gravity results.

In Chapter 6, I summarize the key findings of this thesis, and I discuss their

contributions and limitations, providing suggestions for future work.
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Chapter 2

Methods

In order to measure surface deformation over Askja, I used the Interferometric Syn-

thetic Aperture Radar (InSAR) technique, which can generate deformation maps at the

centimeter scale, with a spatial resolution of tens of meters. In parallel, I carried out

yearly gravity surveys during my PhD to measure temporal gravity changes at Askja.

Here, I provide a brief summary of these two methods, focusing on the key processing

steps and discussing the benefits and limitations in each case. I recommend the reader

to consult e.g. Massonnet and Feigl (1998), Bürgmann et al. (2000), Hanssen (2001),

Ferretti et al. (2007), Hooper et al. (2007) and Dzurisin and Lu (2007), to get an

exhaustive description of the InSAR technique, and e.g. Eggers (1987), Rymer (1996),

Dzurisin (2007a), Battaglia et al. (2008), Williams-Jones et al. (2008), Crossley et al.

(2013), Carbone et al. (2017) and Van Camp et al. (2017), to find more details on the

temporal gravity method.

2.1 Interferometric Synthetic Aperture Radar (InSAR)

The RAdio Detection And Ranging (Radar) technique can be used to determine (1)

the distance to a target, from the time duration needed for the pulsed electromagnetic

microwave, or absolute phase, to be reflected back to the sensor, and (2) the ampli-

tude (or brightness) of the target, from the strength of reflection (e.g. Curlander and

McDonough, 1991, Bürgmann et al., 2000, Dzurisin and Lu, 2007).
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When orientated obliquely downward, satellite-mounted side-looking radar systems

can cover larger regions than conventional radar, with a resolution of ten meters or

less along range, i.e. in the radar beam direction (Figure 2.1A). The moving radar

sensor enables the construction of a larger, synthetic aperture (Figure 2.1B). This tech-

nique, referred to as Synthetic Aperture Radar (SAR), can provide a resolution of a few

tens of meters along the satellite track direction, or azimuth, and therefore improves

the distinction between targets with same range coordinate. Such a side-looking SAR

geometry can measure satellite-to-ground distances (or ranges) with higher resolution

than conventional radar techniques. However, it is highly reliant on the presence of

numerous stable features, or scatterers, which are able to backscatter the radar wave

with high-amplitude (e.g. Ferretti et al., 2001, Hooper et al., 2007).

Rather than measuring distances from the absolute phase of the reflected radar

waves, the InSAR technique can measure deformation at the centimeter-scale, from the

temporal phase shift, between any two SAR acquisitions (e.g. Bürgmann et al., 2000,

Hanssen, 2001, Ferretti et al., 2007).

Figure 2.1: A: Configuration of a right-looking radar. B: Illustration of the Synthetic Aperture
Radar (SAR) technique, where a target can be illuminated continuously from time t1 to t3,
despite the much smaller real length of the antenna aperture. By improving the azimuth
resolution, this technique improves the distinction between targets located at the same range,
as the slight variations in look angle from t1 to t3, causes a frequency shift, so-called Doppler
effect, unique per azimuth position. Both sketches are adapted from Dzurisin and Lu (2007).
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2.1.1 Basic principles of InSAR

In a SAR acquisition, each pixel is defined by a complex number, Z, containing infor-

mation on the amplitude, A, and phase, ϕ, of the returned radar wave (e.g. Massonnet

and Feigl, 1998, Hanssen, 2001, Ferretti et al., 2007):

Z = Aeiϕ (2.1)

When two SAR images have been acquired at different times and over the same

region, the phase difference (∆ϕ), so-called interferometric phase, can be determined

between both SAR acquisitions, per pixel, by multiplying Z1 from the first SAR image,

or master, with the complex conjugate of Z2 from the second SAR image, or slave:

Z1Z̄2 = A2 e
iϕ2A1 e

−iϕ1 = A2 A1 e
i(ϕ2−ϕ1) = A2 A1 e

i∆ϕ (2.2)

A wrapped interferogram plots a map of ∆ϕ, wrapped within [-π;π] and commonly

displayed as color fringe cycles (Figures 2.2 and 2.3), with a full color fringe cycle

corresponding to a ground movement of half the satellite wavelength along the line-

of-site (LOS) direction. The interferometric phase can be integrated between any two

points of the scene, providing an unwrapped interferogram, i.e. a map showing the

continuous unwrapped phase, (∆ϕ)unw, given relative to a reference point (Figures 2.2

and 2.3). LOS deformation can be converted from radians into meters using:

ϕmeters = ϕradians
λ

4π
(2.3)

where λ is the wavelength of the satellite radar sensor.

Satellite-mounted InSAR can provide data from unreachable remote places with

significantly better spatial resolution than, for example, any discrete network of the

Global Navigation Satellite System (GNSS), of which the most famous is the U.S.

Global Positioning System (GPS). Even though the technique mainly relies on the

temporal stability of bright scatterers between SAR acquisitions and on the stability

of the satellite acquisition geometry, statistical approaches have been developed in the
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Figure 2.2: A: Sketch showing how the phase of a sinusoidal radar microwave is wrapped mod-
ulo 2π radians (adapted from Ferretti et al. (2007)). B: Simulation of phase unwrapping along
a profile, where multiples of 2π are added to the wrapped phase to reproduce the continuous
unwrapped phase.

last few decades to optimize results and provide high-resolution deformation time-series,

by lessening areas with no pixel information, i.e. increasing the spatial coherence and

therefore minimizing decorrelation.

2.1.2 From raw data to generating unwrapped time-series

The flow diagram in Figure 2.4 illustrates the main processing steps that I have carried

out to generate the time-series of unwrapped phase over Askja, using several SAR

images, provided at different times, by a given satellite sensor (e.g. Massonnet and

Feigl, 1998, Hanssen, 2001, Ferretti et al., 2007).

First of all, the raw data (Section 2.1.1) are focused into Single Look Complex (SLC)

images using precise orbital information, to extract A and ϕ at each pixel of every SAR

acquisition (Section 2.1.1). The geometric differences between the master, and all the

slaves, are then determined during the co-registration step. Once the slaves have been

resampled to the master geometry, neighbouring pixels are averaged in range and az-

imuth (Figure 2.1A), using given multiples, so-called looks. This multi-looking step

usually improves the signal-to-noise ratio of each SAR image, and provides approxi-

mately square pixel shapes.

Using the principle of Equation 2.2, a wrapped interferogram can then be generated,

either between the master image and any slave (single master approach) or, as I did,

between any pair of images (small baseline approach), to have more chances to form
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Figure 2.3: Interferogram obtained from the Envisat satellite sensor (wavelength = 5.6 cm),
showing the surface deformation at Askja (red region on the right figure), between the 10th of
July 2004 and 24th of July 2010. The deformation is displayed as wrapped within [-π;π] (left),
versus unwrapped with respect to the star (right, positive = ground moving away from the
satellite).

coherent interferograms. At this stage, ∆ϕ, provided along LOS, is the sum of several

contributions:

∆ϕ = W{∆ϕdef + ∆ϕatm + ∆ϕref + ∆ϕtopo + ∆ϕorb + ∆ϕnoise}, (2.4)

where ∆ϕdef is the phase contribution caused by surface displacements, ∆ϕatm is the

phase delay caused by atmospheric property variations, ∆ϕref and ∆ϕtopo are the refer-

ence (or flat-Earth) and topographic phase components, which are both caused by the

difference in the satellite position between acquisitions, ∆ϕorb is the phase component

due to any orbital residual error, ∆ϕnoise comprises all remaining errors, and W{} is

the wrapping operator. Once ∆ϕref and ∆ϕtopo have been reduced, respectively using

orbital information and a Digital Elevation Model (DEM), each wrapped interferogram

is then flattened and topographically-corrected (Figure 2.4).

Among the various processors available to generate wrapped interferograms, I ei-

ther used GAMMA (Werner et al., 2000), ROI_PAC (Rosen et al., 2004) and DORIS

(Kampes and Usai, 1999), or LiCSAR (which uses GAMMA functions, González et al.

(2016)), depending on the satellite sensor and number of SAR images with suitable

coherence at Askja.

These flattened and topographically-corrected interferograms are then unwrapped,
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Figure 2.4: Flow diagram illustrating the key processing steps to generate a time-series of
unwrapped interferometric phase (e.g. Massonnet and Feigl, 1998, Hanssen, 2001, Ferretti et al.,
2007). On the left side of the figure, I have mentioned the names of the numerous software that
I have used (Kampes and Usai, 1999, Werner et al., 2000, Rosen et al., 2004, Hooper et al.,
2010, González et al., 2016). Two examples are shown here: a multi-looked amplitude image
(framed in green), generated using the SAR acquisition of the 6th of July 2002, from the ERS-
2 ascending track 273, and a flattened and topographically-corrected wrapped interferogram
(framed in red), generated using the SAR acquisition framed in green with another from the
15th of July 2006. In these two examples, the black dashed circle locates the Askja volcano.
See Section 2.1.2 for more details on the procedure.

providing ∆ϕunw (Section 2.1.1) as the sum of the following contributions:

∆ϕunw = ∆ϕdef + ∆ϕatm + ∆ϕDEM + ∆ϕorb + ∆ϕnoise + ξunw (2.5)
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where ∆ϕDEM, often called the look angle error (or DEM error), is the phase component

remaining after correcting for ∆ϕref and ∆ϕtopo, i.e. due to DEM residual errors and

any uncertainties in the position of the scatterers within each pixel, and ξunw is the

residual error resulting from the unwrapping (e.g. Hooper et al., 2007).

To achieve the unwrapping, I used StaMPS (e.g. Hooper et al., 2004, Hooper, 2008,

Hooper et al., 2010), because it uses a 3-D unwrapping procedure (2-D in space and 1-D

in time), which evaluates the temporal stability of each pixel in addition to the classic

spatial unwrapping (2-D unwrapping). Moreover, this package selects the stable pixels

to be used in the 3-D unwrapping, by combining an improved version of the Persistent

Scatterer (PS) approach with a Small Baseline (SB) approach.

The improved PS approach qualifies a pixel as stable when the coherent sum of

the interferometric phase of all scatterers within the pixel is likely to remain steady

with a given probability, over long time periods (large temporal baselines) and for large

variations in the satellite position between acquisitions (large perpendicular baselines).

Such stable pixel, so-called PS pixel (Hooper, 2008), usually contains a dominant bright

scatterer (Figure 2.5), and because its coherent phase summation might contribute to

those of the neighbouring pixels, the spatially-correlated total phases of neighbouring

pixels are filtered out.

The SB approach qualifies a pixel as stable when it contains numerous distributed

stable scatterers (Figure 2.5). Such pixel, sometimes called as a Slowly-Decorrelating

Filtered Phase (SDFP) pixel (Hooper, 2008), remains stable for smaller temporal and

perpendicular baselines than a PS pixel. Each of the approaches has limitations, and

the best pixel coverage is achieved by combining the two methods.

2.1.3 Phase contribution due to surface deformation

Once all the interferograms have been unwrapped, ∆ϕdef , which is the parameter of

interest in my case, can be derived by reducing the effect of all the other unwanted

unwrapped phase contributions (Equation 2.5).

StaMPS can estimate and remove a linear ramp across each interferogram, to reduce

the remaining spatially-correlated phase contributions, i.e. ∆ϕorb, a part of ∆ϕDEM and
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Figure 2.5: (a) Distribution of bright scatterers within an Slowly-Decorrelating Filtered Phase
(SDFP) pixel, selected by the Small Baseline (SB) approach; (b) Distribution of bright scatterers
within a Persistent Scatterer (PS) pixel, selected by the Persistent Scatterer (PS) approach
(Adopted from Hooper et al., 2007).

a part of ∆ϕatm (Hooper, 2008). Any residual spatially-uncorrelated ∆ϕDEM is usually

correlated with perpendicular baselines and can therefore also be filtered out, as well as

the spatially-uncorrelated but topographically-correlated part of ∆ϕatm (e.g. Bekaert

et al., 2015a).

The most challenging phase contribution to remove is usually the remaining part

of ∆ϕatm, which can mask small surface deformation signals. Various approaches have

been developed to reduce such random and turbulent atmospheric phase component, us-

ing e.g. spectrometer data, weather models, or empirical methods. I refer to e.g. Bekaert

et al. (2015b) for more details on this phase contribution because, in my case, removing

the SAR images with strong random atmospheric signal turned out to be sufficient to

extract the deformation at the Askja caldera.

2.2 Temporal gravity

Temporal gravity, also referred to as dynamic, time-lapse, time-variable or 4D gravime-

try, is a geophysical technique used to monitor temporal surface variations in the Earth’s

gravitational acceleration (e.g. Dzurisin, 2007a, Battaglia et al., 2008, Williams-Jones

et al., 2008, Van Camp et al., 2017). Gravity measurements are recorded using high-

precision gravimeters, either set up in a continuous mode, with a common frequency of

seconds-to-minutes, or by reiterating campaigns, usually every months-to-years.
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2.2.1 Various types of instruments with benefits and limitations

Thanks to the high-precision gravimeters currently available, gravity changes can be

detected at the microscale (1 µGal = 10−8 m s−2), which is the minimum required to

detect mass changes related to magmatic processes (e.g. Figure 1.5), or even at the

nano-scale (10−11 m s−2). However, the high-sensitivity of these instruments can also

be a disadvantage as any other minute gravity change is captured along with the signal

of interest (e.g. Carbone et al., 2017). In theory, the type of gravimeter should be chosen

based on the magnitude of signal to be detected and on the noise conditions in the area

of study, but the cost, transportation, and installation time are important criteria of

selection, which often prevail.

For this reason, relative gravimeters, which measure gravity relative to a refer-

ence specific to each instrument, are usually preferred in remote volcanic environments,

compared with absolute gravimeters, which directly provide a measure of the Earth’s

gravitational attraction (e.g. Crossley et al., 2013, Carbone et al., 2017, Van Camp

et al., 2017). Indeed, relative gravimeters typically cost US$100,000-300,000, weigh up

to a few tens of kilograms, and can be installed within minutes. On the other hand,

absolute gravimeters typically cost US$500,000, can weight a few hundreds of kilograms

and usually require a few hours of preparation before taking a measurement.

The two main types of relative gravimeters, are the spring-based and superconduct-

ing gravimeters (e.g. Crossley et al., 2013, Carbone et al., 2017, Van Camp et al., 2017).

The former measures the relative gravitational attraction from the length difference

between the reference and released positions of a spring-held proof mass, whereas the

latter, based on the same principle, measures relative gravity by levitating a hollow of

superconducting sphere (the test mass) in an extremely stable magnetic field. Supercon-

ducting gravimeters can reach the nano-scale precision, and due to their stability, they

have the best quality/price ratio to perform continuous recording. However, because of

their high electricity consumption, they are often replaced by a few spring-based relative

instruments, which are less expensive, easier to handle and can work on direct current

power. But in this case, more maintenance is required as spring gravimeters are affected

by a drift of the reference, resulting from variations in the spring elastic properties.
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Even though not ideal for continuous recording, these spring-based gravimeters are

the best quality/price ratio for gravity surveying, which is the mode of measurement

mostly used in remote volcanic environments, and significant progress has been made in

detecting and quantifying unwanted effects (e.g. Carbone et al., 2017, Van Camp et al.,

2017). At Askja, gravity surveying using spring gravimeters has always been preferred,

especially because of the difficult access to the volcano, which is reached after ∼4 hours

of driving on dirt-road, only between May to October each year. Moreover, no car is

allowed in the caldera, and no continuous power supply is available in the area.

2.2.2 Temporal gravity using spring gravimeters

Among the few types of relative spring gravimeters, the analog LaCoste & Romberg

G and D models (LCR, LaCoste & Romberg (2004)), which are not commercialised

anymore, and the digital Scintrex CG-3/CG-3M and CG-5 models (SCG, Scintrex (1995,

2009)), have been widely used in volcanic environments, since the second half of the

21st century (e.g. Carbone et al., 2017). Figure 2.6 highlights the principle behind a

spring gravimeter measurement.

While the reference position of the instrument slowly drifts through time, the re-

leased position of the proof mass mainly varies depending on the time of measurement,

the latitude and altitude of the gravity station, the local subsurface structure and the

local topography (e.g. Kearey et al., 2002). Taking the difference between two gravity

measurements, recorded at the same gravity station, but at two different times, cancels

the gravity effects due to latitude and local topography, as these two parameters do

not vary through time, but new contributions must be taken into account, such as the

gravity changes due to temporal variations in elevation and subsurface water-masses

(e.g. Battaglia et al., 2008). In addition, the gravity effects due to large changes in

e.g. air pressure, air temperature, and variations in the calibration factor, used to con-

vert the record into milligal, can be of the same order of magnitude as or larger than

the temporal signal of interest (e.g. Valliant, 1991, Merriam, 1992, Budetta and Car-

bone, 1997, El Wahabi et al., 2001). Precise estimation of each unwanted contribution

is required to determine this signal of interest, often referred to as the residual gravity
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Figure 2.6: Sketch highlighting the principle of the standard LaCoste & Romberg (LCR)
gravimeters, where the user turn a dial to bring the proof mass back to its reference position
(taken from Kearey et al. (2002)). The spring is inclined to increase the sensitivity. Scintrex
gravimeters are based on the same principle, but the spring is vertical as the mass is precisely
brought back to its initial position by an automatic electronic feedback system. A similar
electronic feedback system can be upgraded on any standard LCR gravimeters, but it needs to
be regularly manually calibrated (LaCoste & Romberg, 2003).

change (e.g. Battaglia et al., 2008). Due to the lack of guidance in the quantification of

uncertainties, I have developed a statistical approach that estimates the full error bud-

get associated to any residual gravity change, recorded from spring gravimeters. This

error analysis relies on estimating the error associated to each unwanted contributions,

which are briefly explained below and presented in more details in the Chapter 4.

2.2.3 Residual gravity change from spring gravimeters

A gravity measurement, recorded, using a spring gravimeter, at any given site and any

given time t, can be represented as follows (e.g. Battaglia et al., 2018; and references

therein):

k(t)
[
gmeas(t)− gET(t)− gOL(t)− gP(t)− gT(t)

]
= g(t) + fD(t) (2.6)

where k(t) is the calibration factor at t (i.e. GCAL2 in the Scintrex’s manual, Scintrex

(1995, 2009)), gmeas is the gravity measurement already converted in milligals using the
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manufactured calibration factor (ie. GCAL1 in the Scintrex’s manual, Scintrex (1995),

LaCoste & Romberg (2004), Scintrex (2009)), gET and gOL are caused by solid Earth

tides and ocean loading, gP and gT are due to atmospheric pressure and temperature, g

is the Earth-fixed gravitational acceleration, at the given station, but taken relative to

the gravimeter’s reference, which drifts through time, according to the function fD(t).

Consequently, when k(t) is precise enough, reducing gmeas for estimates of each

gravity effect external to the Earth body, provides an estimation, ĝ, of the relative

gravitational attraction generated at t, by the local topography and subsurface crustal

structures beneath the given site (Figure 2.7):

ĝ(t) = k(t)
[
gmeas(t)− ĝET(t)− ĝOL(t)− ĝP(t)− ĝT(t)

]
= g(t) + fD(t) + εg (2.7)

where, εg is the residual error or deviation between g and its estimate ĝ. When k(t) is

imprecise, results can be recalibrated using an updated calibration factor.

Figure 2.7: Flow diagram highlighting the key processing steps to determine the residual
gravity change (star) at a given station, between any two surveys, from the record of a gravity
measurement during each survey. The red steps are performed for each survey (Equation 2.8),
whereas the blue steps relate to the temporal changes between the surveys (Equation 2.10).
Refer to Section 2.2.3 for more details.

The parameters of the drift function, fD(t), are usually determined daily, from a

series of tidally-corrected measurements (gmeas(t) − ĝET(t) − ĝOL(t)), reproduced at a

station, often referred to as the base. From the estimated drift function, the tidally-

corrected gravity signature at the base, ĝbase, can be predicted at the same time t of any

given gravity measurement gmeas (e.g. Kearey et al., 2002, Battaglia et al., 2018). In

Chapter 4, I demonstrate that it can be more suitable to estimate the drift parameters
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over a few days, rather than over a single day, as any unknown variations, occurring

simultaneously as the instrumental drift can then be estimated.

Taking the difference between ĝ(t) and ĝbase(t), cancels the unknown drifting refer-

ence of the spring gravimeter, and therefore, provides a drift-corrected gravity estimate,

ĝDC, at the given site:

ĝDC(t) = k(t)
[
gmeas(t)− ĝET(t)− ĝOL(t)− ĝP(t)− ĝT(t)

]
− ĝbase(t) = gDC(t)+εDC (2.8)

where εDC is the residual error or deviation between gDC(t) and its estimate ĝDC(t).

In the literature, gDC(t) is often referred to as the “observed gravity” (e.g. Battaglia

et al., 2008), but, because an observation is synonym to a measurement, I prefer to use

a clearer name to avoid any confusion. To estimate the drift-corrected gravity signature

per station and for each survey that I carried out at Askja, I employed the GTOOLS

software (Battaglia et al., 2012), which I improved to better constrain uncertainties.

Once the drift-corrected gravity signals have been computed at any station, an

estimate of the temporal gravity change, ∆gDC, can be determined at any given site

and between any two surveys, as follows:

∆ĝDC =
[
ĝDC

]
t2
−
[
ĝDC

]
t1

= ∆gDC + ξDC, (2.9)

where t1 and t2 are the times of measurements recorded at a same site, during the first

and second surveys, respectively, and ξDC is the residual error or deviation between the

temporal variation ∆gDC and its estimate ∆ĝDC.

Because ∆gDC is the sum of several contributions, the above equation can be de-

composed as follows:

∆ĝDC =
[
ĝDC

]
t2
−
[
ĝDC

]
t1

= ∆g∆cal + ∆gelev + ∆gwtr + ∆gres + ξDC, (2.10)

where ∆g∆cal reflects the drift-corrected temporal gravity change caused by calibration

variations between surveys, ∆gelev is the gravity change due to vertical surface defor-

mation, ∆gwtr, reflects temporal variations in subsurface water-masses, and ∆gres, is



44 Chapter 2: Methods

the residual gravity change or parameter of interest, in my case. In the literature, a

component related to the redistribution of the crustal density layers, in response to a

deforming source, is sometimes also taken into account (e.g. Battaglia et al., 2008); but

because such gravity component depends on the geometry of the assumed reservoir, it

is more appropriate to quantify it during the modelling, if necessary (Section 1.4.2).

Once all temporal unwanted effects have been estimated, ∆ĝres, which relates to

the mass variation of any magmatic and/or hydrothermal fluids, can be expressed as

follows: (Figure 2.7):

∆ĝres = ∆ĝDC −∆ĝ∆cal −∆ĝelev −∆ĝwtr = ∆gres + ξres, (2.11)

where ξres is the final residual error or deviation between ∆gres and its estimate ∆ĝres.

To determine the residual gravity changes between the three surveys that I carried out

at Askja, I developed my own package, which estimates associated uncertainties.

In summary, spring gravimeters are the most practical types of gravimeters to be

used in volcanic remote places (Section 2.2.1), but as illustrated from all these suc-

cessive equations, precisely estimating the gravity signature of magma-related mass

changes requires meticulous estimation of each of the unwanted contributions. Despite

their similar precision, the SCG models are usually more reliable than the LCR mod-

els, as their automatic processing provides better constraints on measurement errors

(Chapter 4).
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Chapter 3

A 15-year Sample of Subsidence at

the Askja Caldera (2002-2017)

This chapter addresses the first and second objectives of my thesis, by analysing the

long-term subsidence over the entire Askja caldera as well as any possible distinct un-

known deformation pattern. Results are jointly interpreted with gravity in Chapter 5.

3.1 Introduction

The main Askja caldera is likely to have been subsiding continuously since the early

1970s. As summarized in Section 1.5.1, this long-term deformation unrest, or restless

phase (Acocella et al., 2015), has been closely monitored since 1983, using precise lev-

elling, GPS and InSAR. Based on levelling, this subsidence has decayed exponentially

between 1983 to 2006 with a relaxation time of ∼39 years (Sturkell et al., 2006), which

can be updated to ∼42 years when considering the time-series up to 2017 (Figure 1.7).

This overall levelling time-series has been based on the tilt of a 1.2-km-long baseline,

in the north-east of the Askja caldera, ∼2.5 km from the centre of subsidence (Fig-

ure 1.7A).

Using InSAR and/or GPS time-series, spanning various periods of up to 10 years,

between 1992 and 2014, parallel studies highlighted the overall bowl-shape spatial sig-

nature of the subsidence, with highest deflation constantly located in the centre of the
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caldera (Table 1.2, Figure 1.7B and e.g. Sturkell and Sigmundsson (2000), Pagli et al.

(2006), de Zeeuw-van Dalfsen et al. (2012, 2013)). Even though a decay in deformation

rate was observed, it is not clear that the signals measured by GPS and InSAR also

follow the exponential decay locally constrained from levelling. Using linear subsidence

rates, all these deformation studies agreed that the subsidence can be best explained

by a ∼3-3.5-km-deep deflating Mogi or ellipsoidal reservoir, when assuming an elastic

half-space medium (Section 1.5.1 and Table 1.2). From these models, volume change

rates have been gradually decreasing from about −0.002 to −0.001 km3 yr−1 between

1993 and 2014.

Although this shallow reservoir would be consistent with the usual structure of

magma plumbing systems expected beneath the magma-dominated slow-spreading mid-

Atlantic ridge of Iceland (Section 1.2.1 and e.g. Sigmundsson (2006a)), its reliability

can be questioned when comparing these geodetic results with the seismic tomography

recently published by Greenfield et al. (2016) (Section 1.5.4). Indeed, the “magma

domain” (Figure 1.1) of Askja seems to be located between 6-10 km depth, and even

though a shallow reservoir might still be located at ∼3-3.5 km depth, it seems unlikely

that the uniquely long and steady subsidence is mainly controlled by a relatively small

and shallow magma reservoir. Alternatively, the observed surface deformation could be

the cumulative result of several processes, having a combined centre of pressure change

located at ∼3-3.5 km depth.

In this chapter, I test the hypothesis that one process is responsible for the long-

term subsidence, locally constrained from levelling and which I estimate over the entire

caldera, using an InSAR dataset spanning 15 years (2002-2017). Removing this long-

term signal from the measured caldera subsidence might reveal unknown deformation

signals, either due to any non-uniform evolution of the main source of subsidence, or

to other distinct processes. The flow diagram in Figure 3.1 summarizes the overall

procedure that I undertook to characterize the long-term subsidence over the entire

caldera and extract any residual deformation signals. I explain each step in more detail

below, before presenting and analysing results, using inversion modelling.
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Figure 3.1: Flow diagram presenting the procedure that I undertook to estimate the long-
term deformation over the Askja caldera, and extract any unknown residual deformation signals.
Refer to Section 2.1 and 3.2 for symbols and abbreviations.

3.2 InSAR data processing

To capture the long-term caldera subsidence of Askja, I processed InSAR data over 15

years, from six tracks and four different satellites, as follows: an ERS ascending track

covering 2002-2006, an Envisat ascending track covering 2004-2010, a COSMO-SkyMed

(CSK) ascending track covering 2010-2012 and 2014-2015, a CSK descending track

covering 2012-2015, and two Sentinel-1 (S1) tracks, one ascending and one descending,

both covering 2015-2017 (Figure 3.2, Table 3.1 and Figure 3.3).

Figure 3.2: New InSAR dataset used in this thesis (black), in comparison with previous
studies (grey). Refer to table 3.1 for more details on this new dataset.
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Sensor ERS Envisat CSK CSK S1 S1
Geometry A A A D A D
Track 273 273 26550 24670 147 111
Period start Jul02 Jul04 Oct10 Jul14 Aug12 Sep15 Sep15
Period end Jul06 Jul10 Aug12 Sep15 Sep15 Sep17 Sept17
Ifgs software GAMMA1 StaMPS2 GAMMA1 GAMMA1 LiCSAR3 LiCSAR3

SAR images 13 19 15 14 55 48
Created ifgs 78 60 105 91 173 157
Used images 3 19 4 4 6 18 16
Used ifgs 3 37 4 3 11 41 42
Ifg pixel size (m) 100 200 100 100 100 100 100
unwTS software StaMPS2 StaMPS2 StaMPS2 StaMPS2 StaMPS2 StaMPS2 StaMPS2

StaMPS
reductions None ∆ϕsc ∆ϕsc None None ∆ϕsc ∆ϕsc

Further
reductions

∆ϕsc,
∆ϕtc

∆ϕtc ∆ϕtc
∆ϕsc,
∆ϕtc

∆ϕsc,
∆ϕtc

∆ϕtc ∆ϕtc

Table 3.1: Summary of the InSAR data used to cover the period 2002-2017 at the Askja caldera
(CSK: COSMO-SkyMed, S1: Sentinel-1, A: ascending, D: descending, ifgs: interferograms,
SAR: Synthetic Aperture Radar, unwTS: unwrapped time-series, sc: spatially-correlated, tc:
topographically-correlated). Refer to Section 2.1 for an overview on the InSAR technique, and
to Sections 3.2 and 3.3 for more details on data processing and reductions. 1Werner et al.
(2000); 2Hooper et al. (2010), which uses ROI_PAC (Rosen et al., 2004) to create the SLCs
and DORIS (Kampes and Usai, 1999) to generate interferograms; 3González et al. (2016), which
uses GAMMA functions.

I created the wrapped interferograms, per satellite sensor, choosing the most ap-

propriate software (StaMPS was not setup to process S1 interferograms and did not

provide good intergerograms when too few images were available). I refer the reader to

Section 2.1.2 and Figure 2.4 for a summary of the overall processing procedure. For con-

sistency, I always used the same Digital Elevation Model (DEM), namely the Advanced

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) DEM, which has

a resolution of 1 arcsecond, i.e. ∼30 m in latitude and ∼13 m in longitude at Askja;

and I used the StaMPS package to generate the unwrapped time-series for all sensors

(Hooper et al., 2010).

Even though I limited my selection of SAR images to dates between May and Oc-

tober to minimize incoherence due to snow, coherence was still very poor in the Askja

caldera: when using my initial selection of images, no pixels were present in the Askja

caldera. This is mainly because snowfalls can also happen even during the summertime.

To maximize the number of stable pixels in the Askja caldera and to minimize strong

random and turbulent atmospheric signals (Sections 2.1.2 and 2.1.3), I reduced even

more the number of SAR images per sensor, using trial and error: I removed the images
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Figure 3.3: Network of used interferograms (black lines), where each dot corresponds to a
SAR image, and each color to a satellite sensor. Refer to Table 3.1 for abbreviations and for
more details on each dataset.

that seemed to repeatedly affect the coherence and/or show strong atmospheric signals,

on by one. This approach increased the chances of obtaining a good quality unwrap-

ping inversion in space, but it may have reduced the quality of unwrapping inversion in

time. Even though I sometimes had a very low number of retained interferograms (Ta-

ble 3.1), the StaMPS 3-D unwrapping inversion (Section 2.1.2) provided an unwrapped

phase signal, ∆ϕunw, at each pixel and per interferogram, with reasonably low residu-

als (ξunw in Equation 2.5) at Askja and surroundings (Appendix A.1). However, it is

worth keeping in mind that the uncertainties of the ERS unwrapped phase might have

been underestimated, as this dataset is composed of only three dates, of which two are

separated by only one month.

This first step provided the time-series of ∆ϕunw, per satellite sensor, but further

reductions were necessary to isolate the phase component related to surface deformation

only.
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3.3 Post-processing reductions to extract ∆ϕask from ∆ϕunw

After unwrapping, I reduced the unwanted phase contributions to determine the compo-

nent of interest, ∆ϕdef (Equation 2.5 and Section 2.1.3), which I rename here ∆ϕask, as

it represents the surface deformation related to the magma plumbing system of Askja.

I re-write Equation 2.5, grouping the unwanted components depending on whether

they are spatially-correlated (∆ϕsc), topographically-correlated (∆ϕtc), or neither, as

detailed in Section 2.1.3:

∆ϕunw = ∆ϕask + ∆ϕsc + ∆ϕtc + ∆ϕr (3.1)

where ∆ϕr includes the remaining phase components, which are not correlated in space,

nor with topography, but can either be correlated with perpendicular baseline (Hooper,

2008), or are just random, such as due to turbulent atmosphere. This component

therefore also includes ξunw (Equation 2.5) and any other residual errors.

It is worth noting that, at Askja, ∆ϕsc is usually dominated by an additional local

component, due to an ice-melting uplift response, so-called Glacial Isostatic Adjustment

(GIA), from the nearby Vatnajökull icecap (e.g. Auriac, 2014, Drouin et al., 2017).

However, for interferograms spanning 2014-2015, ∆ϕsc is dominated by a much more

significant component, corresponding to the deformation induced by the Holuhraun

dyke intrusion, which propagated south of Askja, along the mid-Atlantic ridge, up to

∼20 km south of the caldera (Sigmundsson et al., 2014, Spaans and Hooper, 2018).

As summarized in Table 3.1, I usually reduced ∆ϕsc, via StaMPS, removing a ramp

across each unwrapped interferogram. However, this approach produced suspiciously

null results when applied to ERS data, and this is most likely due to the low coherence

over the interferometric scene, which might have prevented a precise ramp estimation.

Additionally, when applied to the two CSK datasets covering 2014-2015, the estimated

ramp largely underestimated the Holuhraun dyke deformation signal.

To overcome these problems, I estimated ∆ϕsc for my ERS dataset, by interpolating

the GIA model from Auriac (2014), who estimated velocities over all of Iceland between

2008 and 2010, and I assumed that the predicted uplift velocities over Askja were
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applicable to and linear over 2002-2006 (Figure 3.4). Similarly, I estimated ∆ϕsc for the

CSK interferograms covering 2014-2015 (ascending) and 2012-2015 (descending), using

the Holuhraun dyke deformation model from Spaans and Hooper (2018). However, after

removing this Holuhraun signal, the sign of deformation was flipped in the south-west

of the scene, i.e. closest to the Holuhraun eruption site (Figure 3.4). This indicates that

the dyke deformation model has likely overestimated the Holuhraun signal in this area,

and some discrepancy might be observed at Askja.

Finally, although usually small, I estimated ∆ϕtc for all sensors, by quantifying the

potential linear correlation between (∆ϕunw - ∆ϕsc) in a non-deforming zone, specific

to each sensor scene, and each corresponding topographic pixel height, derived from the

ASTER DEM (Figure 3.4).

Figure 3.4: Top row: Example of GIA reduction on an ERS interferogram, spanning 4 years.
Middle row: Example of Holuhraun dyke effect reduction on a CSK descending interferogram,
spanning 3.1 years. Bottom row: Example of topographically-correlated signal reduction, es-
timated in the non-deforming zone highlighted on the bottom left graph, for an Envisat inter-
ferogram, spanning 3.3 years. Phases are given in radians, and the Askja central volcano is
highlighted with the circles when appropriate.

At this stage, each interferogram shows the reduced unwrapped phase, ∆ϕcorr, com-
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prising the surface deformation signal related to the Askja plumbing system, ∆ϕask, plus

all remaining unknown signals contained in ∆ϕr (Figures 3.5 and 3.6). Equation 3.1

can therefore be re-written as follows:

∆ϕcorr = ∆ϕunw −∆ϕsc −∆ϕtc = ∆ϕask + ∆ϕr (3.2)

Figure 3.5: Reduced unwrapped phase for the longest interferogram of the ERS-A, Envisat-A
and CSK-A datasets (Table 3.1). See Sections 3.2 and 3.3 for more details on data processing.
Colorscales are independent (red = away from satellite), as well as the reference site (star), and
because the sizes of interferometric scenes vary depending on the dataset, I have highlighted
the area of study, shown e.g. on Figure 3.7. The full time-series are presented in Appendix A.2.

3.4 Robustness of ∆ϕcorr ≈ ∆ϕask

As summarized in Figure 3.1, the next step was to compare the time-series of ∆ϕcorr,

obtained after data processing and post-processing reductions, with 3-D GPS summer

time-series, recorded at specific sites within the Askja caldera (Figure 3.7). This would

confirm that ∆ϕr in Equation 3.2 is negligible, and hence, that I captured the deforma-

tion signal of interest (∆ϕcorr ≈ ∆ϕask).

For both types of data to be analogous while remaining independent, I reduced the
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Figure 3.6: Same as Figure 3.5 but for the CSK-D, S1-A and S1-D interferograms.

Figure 3.7: GPS network for summer campaigns at Askja. OLAF and MASK are the most
frequently measured as they are closest to the centre of deflation (Figure 1.7B), while TANN
has been measured only twice over 2002-2017 due to difficult access. DYNG is part of the
continous GPS network of Iceland.

3-D GPS signals for unwanted effects caused by external magmatic intrusions, using

an alternative approach than the one used to reduce similar effects from my InSAR
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time-series (Section 3.3), and which I describe below, in Section 3.4.1. Additionally, I

calibrated both types of signals independently from each other, by choosing a common

reference site. I then projected the 3-D reduced GPS signals, into LOS, per satellite

sensor, in order to obtain a time-series of [∆ϕask]GPS, comparable to ∆ϕcorr, extracted

at each GPS station (See below Sections 3.4.1-3.4.4 for more details of the overall

procedure).

Results show that both LOS time-series are in good agreement with each other, sug-

gesting that ∆ϕcorr ≈ ∆ϕask (Figure 3.8). Indeed, the independent time-series usually

overlap within two standard deviations, providing unweighted root-mean-square errors

(RMSE) below 1.7 cm. The only time-period where a small discrepancy, inducing

RMSEs between 1.7 and 3.2 cm, is sometimes observed is 2014-2015, which corresponds

to the Holuhraun dike intrusion period. This inconsistency is therefore most likely due

to errors in the dyke induced signal reduction (Section 3.3).
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Figure 3.8: Example of InSAR and GPS LOS time-series (positive = away from satellite), at
six stations within the Askja caldera. The InSAR data are the yearly reduced unwrapped phase,
∆ϕcorr, averaged at each GPS station, converted from radians to centimeters (Equation 2.3),
and taken relative to DYNG (Figure 3.7). The GPS data are the line-of-sight (LOS) projections
of the reduced 3-D GPS summer displacements, also taken relative to DYNG, and which can
be expressed as [∆ϕask]GPS, as they are related to the magma plumbing system of Askja. Each
graph refers to a satellite sensor, and results are shown only when GPS and InSAR data were
both available. See Section 3.4 for more details on the procedure and Table 3.1 for satellite
sensor abbreviations.
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3.4.1 Reducing unwanted signals in GPS deformation time-series

Vincent Drouin (University of Iceland) provided the 3-D summer GPS displacements

(east-west, north-south and vertical) at each GPS station within the Askja caldera

(Figure 3.7) and spanning a maximum period between summer 2002 and summer 2017,

which corresponds to my InSAR time-period. He estimated each summer site position

using weighted-least-squares, from daily solutions evaluated in the ITRF14 reference

frame, and reduced ocean loading effects (e.g. Drouin et al., 2017).

As expected from my InSAR results (Section 3.3), the deformation due the 2014-

2015 Holuhraun dyke intrusion also contaminated the GPS time-series. Additionally,

the 2007-2008 Upptyppingar intrusion, which occurred ∼25 km to the west of Askja

(e.g. Hooper et al., 2011), affected the vertical deformation at DYNG. Because these two

short-term contamination emerged as obvious shifts in the GPS time-series (Figure 3.9),

I used weighted least-squares to quantify their effects as offsets, assuming a constant

linear rate over each time-series, as illustrated by the following matrix system:



D1

D2

...

DS−2

DS−1

DS


=



t1 1 0 0

t2 1 1 0

... ... ... ...

tS−2 1 1 0

tS−1 1 1 1

tS 1 1 1





ˆ̇D

D̂0

ôupp

ôhol


(3.3)

where D1 to DS are the GPS displacements measured in a given direction and at a given

station, between the times t1 and tS , and their variances, characterizing the uncertainties

of the GPS measurements, are listed in the diagonal of the variance-covariance matrix;
ˆ̇D is the estimated constant linear deformation rate, D̂0 is the y-intercept, and ôupp and

ôhol are the offsets due to the Upptyppingar and Holuhraun intrusions. The data that

need to be corrected for each offset are indicated with 1 in the third and fourth columns

of the forward matrix operator (Equation 3.3). In this example, the Upptyppingar offset

happened between t1 and t2, and the Holuhraun offset occurred between tS−2 and tS−1.
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Even though these linear models did not always fit the 1-dimension GPS time-series with

95% confidence, this simple procedure is sufficiently reliable to estimate and reduce the

offsets induced by the intrusions (Figure 3.9). Moreover, it is an alternative approach

to using the Holuhraun dyke deformation model (Spaans and Hooper, 2018), which I

applied to my InSAR time-series (Section 3.3); and as mentioned previously, treating

the GPS and InSAR time-series independently from each other was necessary to make

a reliable comparison.

Figure 3.9: Example of deformation time-series, evaluated at four stations, in the ITRF14 ref-
erence frame, along the east-west (top graph), north-south (middle graph) and vertical (bottom
graph) directions, before (black) and after (red) offset removal caused by external intrusions
(Section 3.4.1). Eastward, Northward and upward displacements are positive.
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3.4.2 Choice of reference station to compare InSAR and GPS time-

series

To be comparable, the InSAR and GPS time-series needed to be calibrated to the same

reference frame. It is common practice to transform the InSAR data into the GPS

reference frame (e.g. Hussain et al., 2016), but to preserve the independence of both

types of data, I instead estimated each deformation signals to a common reference site,

while making sure that the signal of interest was well isolated and fully captured.

Because the whole Askja caldera is located on the American side of the rift segment

(e.g. Drouin et al., 2017), choosing a reference station located on this tectonic plate

should reduce the unwanted horizontal deformation effect due to plate-spreading. Even

though close to the area of study, DYNG is an appropriate choice. Indeed, this station

does not seem to be affected by the caldera subsidence because it shows negligible verti-

cal deformation in the ITRF14 reference frame (Figure 3.10A). Moreover, when taking

the caldera centre as the reference, rather than contracting towards the caldera, DYNG

seems to be mostly affected by plate spreading as its residual horizontal deformation of

∼1.8 mm yr−1 is in azimuth direction of ∼280° (Figure 3.10B, e.g. Drouin et al. (2017)).

Consequently, taking DYNG as the reference for deformation will imply assuming no

deformation at this site, and this will reduce the plate spreading effect, while preserv-

ing the subsidence signal. I discarded the measurements from 2006 at DYNG, due to

an anomalous vertical signal, which would have contaminated all other stations in the

referencing procedure (Figure 3.10A).

3.4.3 Conversion of GPS data in LOS direction, per satellite sensor

The next step to reliably compare the GPS and InSAR time-series, was to project

the reduced 3-D summer GPS displacements, taken relative to DYNG (Sections 3.4.1

and 3.4.2), into the LOS direction of each satellite sensor. I carried out the projec-

tion by multiplying the east-west, north-south and vertical reduced GPS components,

[DE , DN , DV ]T, by the respective components of the LOS unit vectors (e.g. Wright
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Figure 3.10: A: Deformation time-series, evaluated at DYNG, in the ITRF14 reference frame,
along the east-west (top graph), north-south (middle graph) and vertical (bottom graph) direc-
tions, before (black) and after (red) offset removal caused by external intrusions (Section 3.4.1).
East, North and uplift displacements are positive, and the 3-D measurements of 2006 were dis-
carded, due to the suspicious vertical component. B: Horizontal linear deformation rates, rela-
tive to DYNG (black) and MASK (purple), after offset reductions. Ellipses show uncertainties
within 95% confidence.

et al., 2004):

[
sin(Θ)cos(α) −sin(Θ)sin(α) −cos(Θ)

]
×


DE

DN

DV


GPS

= [∆ϕask]GPS (3.4)

where Θ and α are the incidence and heading angles of a given satellite sensor (Fig-

ure 2.1A). Because Θ is more likely to vary from pixel-to-pixel than α, I estimated Θ

per GPS station, as the least-squares average of the incidence angles of all pixels located

within a square box centered on each GPS station, whereas I estimated α per satellite

sensor, as the least-squares average of the pixels located on a square box centered on

CASK, i.e. in the middle of the area of interest (Figure 3.7). Depending on the satellite

sensor and the number of pixels available, the side of the boxes varied between 400 and

1200 m.
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3.4.4 Spatial and temporal averages of InSAR data at GPS stations

Because [∆ϕask]GPS (Equation 3.4) reflects the LOS deformation related to the magma

plumbing system of Askja, the last step before verifying that [∆ϕask]GPS ≈ ∆ϕcorr

(Figure 3.8), was to extract ∆ϕcorr at each GPS station, for each interferogram taken

relative to DYNG.

I carried out this extraction by first, estimating the spatial average of ∆ϕcorr com-

bining all pixels located within a square box centred on each GPS station (see above),

and I then combined results per summer, to obtain a single point per summer, and

obtain a time-series analogous to the GPS time-series.

To perform the spatial average, I used weighted least-squares, with the variance-

covariance matrix estimated using an exponential semi-variogram model with single

nugget (e.g. Bagnardi and Hooper, 2018). This approach is based on the assumption

that, in each interferogram, the errors of the LOS displacements covary with distance,

and the covariance, C, between any pair of pixels, follows a negative exponential function

depending on the pixels separating distance, r:

C = (Cs − Cn) e−r/R (3.5)

where Cn is the nugget variance, characterizing the constant error across each inter-

ferogram, analogous to a measurement error; Cs is the sill variance, characterizing the

magnitude of error when r is null, i.e. mostly due to residual atmospheric signals; and R

is the range or distance at which pixels do not covary anymore. Based on this function,

the variance-covariance matrix lists constant variances equalling Cs in the diagonal,

and lists the covariances C, depending on r, elsewhere. I estimated the nugget, sill and

range parameters within a non-deforming zone of each interferogram, using the trial and

error approach of the Geodetic Bayesian Inversion Software package (GBIS, Bagnardi

and Hooper (2018)).

I verified the goodness-of-fit of each weighted spatial average by carrying out a χ2

test, which consists of estimating the reduced Chi-Squared, χ2
ν , equalling the weighted

residual sum of squares divided by the degree of freedom ν (with ν equalling the number
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of data, i.e. the number of pixels in each square box, minus the number of model

parameters, i.e. 1). If χ2
ν is smaller than or equal to the expected χ2

ν,0.95 with given

probability 0.95, χ2
ν-χ2

ν,0.95 ≤ 0, the model lies within the 95% confidence interval (e.g.

Bevington and Robinson, 1992). Otherwise, the model is not representative of the

data within errors, and this usually happens either when the model is wrong or when

errors have been underestimated. Because deformation varies smoothly within the Askja

caldera, estimating a spatial average across hundreds of meters should provide a reliable

mean, and it is likely that a positive χ2
ν-χ2

ν,0.95 would be an indication of underestimated

errors. In such situations, I used the percentile bootstrap method (Efron and Tibshirani,

1986) to re-estimate the spatial averages with more precise associated variances, taking

into account the uncertainty of the model itself. Indeed, the spatial average estimation

is iterated 10,000 times, from unique random selections of data, while preserving the

total number of data considered, and the final spatial average and associated variance

to retain are the mean and variance of the 10,000 iterations. To avoid any bias from the

initial underestimated errors, weights are ignored and, instead, the normal least-squares

approach is used.

To then perform the temporal average per summer, I used weighted least-squares

with the variance-covariance matrix listing the variances resulting from the spatial av-

erage procedure, in the diagonal, and zeros elsewhere. All these estimated summer

averages passed the χ2 test with 95% probability, providing a time-series of ∆ϕcorr

analogous to [∆ϕask]GPS, per GPS station and satellite sensor. As already shown in

Figure 3.8, [∆ϕask]GPS ≈ ∆ϕcorr, meaning that my reduced InSAR time-series reason-

ably reflect the deformation associated to the magma plumbing system of Askja.

3.5 Vertical component of deformation at Askja

After verifying that my InSAR time-series were related to the deformation of Askja,

the next step was to constrain the long-term subsidence signal over the entire caldera

(Figure 3.1). When satellite sensors have different looking directions, they cannot be

compared directly, and I therefore needed to decompose displacements from LOS to
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3-D, to extract a component that I could assemble. To be able to compare my results

with the levelling time-series (Figure 1.7), I focused on the vertical component.

As illustrated by Equation 3.4, decomposing LOS deformation into 3-D per satellite

sensor is an ill-posed problem where three unknown parameters, [DE , DN , DV ]TInSAR,

need to be constrained, per pixel, from a single LOS value, [∆ϕask]InSAR. Because

satellite sensors lie in the same plane approximately, it is usually not possible to decom-

pose LOS data with three tracks. Alternatively, two synchronous InSAR datasets with

different viewing geometries are commonly used, while making an extra assumption

(e.g. Wright et al., 2004, Fuhrmann and Garthwaite, 2019). I was not able to use this

common approach as the first 13 years of my 15-year time-series are mainly covered by

a succession of single tracks (Figure 3.2).

Alternatively, from the long-term GPS time-series (Figures 3.9 and 3.10), I assumed

fixed directions of pixel motions, which I constrained from the two synchronous tracks

spanning the last two years of my time-series (i.e. S1 ascending and S1 descending),

and I extracted the component of interest, D̂V , per satellite sensor, by projecting ∆ϕask

into a displacement, D̂ask, along each pixel direction, in each interferogram:

D̂ask =
∆ϕask

u
=

∆ϕask

los • d
(3.6)

D̂V = D̂askdv (3.7)

where u is the length of the LOS unit vector, los, when projected in the fixed pixel

direction described by the unit vector d, of which dv is the vertical component. u can

be therefore calculated as the dot product between los and d.

3.5.1 Estimation of fixed pixel directions

I estimated the pixel directions d and dv (Equations 3.6 and 3.7), using synchronous S1

LOS velocities, estimated from displacements, resampled onto a common 100-by-100-m

ASTER grid. However, as mentioned above, this implied making an extra assumption,

and to make sure my results were reliable, I tested two different approaches: on one

hand, I assumed negligible north-south motions, and on the other hand, I assumed fixed
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horizontal pixel directions contracting towards the caldera centre.

1. Neglecting north-south motions is a common decomposition approach as displace-

ments along this direction, which is approximately perpendicular to the LOS direc-

tion, are usually poorly constrained by satellite sensors (Figure 2.1 and e.g. Wright

et al. (2004), Fuhrmann and Garthwaite (2019)). In this case, the decomposition

matrix system can be expressed as follows:


[
∆ϕ̇ask

]
A[

∆ϕ̇ask

]
D

 =

sin(ΘA)cos(αA) −cos(ΘA)

sin(ΘD)cos(αD) −cos(ΘD)

×
 ˆ̇DE

ˆ̇DV

 (3.8)

where
[
∆ϕ̇ask

]
A
and

[
∆ϕ̇ask

]
D
are the ascending (A) and descending (D) S1 LOS

velocities at any given grid node; Θ and α are the incidence and heading angles in

each satellite viewing geometry (Figure 2.1A), and ˆ̇DE and ˆ̇DV are the velocities

along east-west and vertical.

2. Assuming fixed horizontal pixel directions contracting towards the caldera centre,

seemed to be a reasonable assumption at Askja due to the steady radial signal

centered on the caldera (Figure 3.10B). In this case, horizontal, ˆ̇DH , and vertical

velocities, can be constrained per pixel, as follows:


[
∆ϕ̇ask

]
A[

∆ϕ̇ask

]
D

 =

uA −cos(ΘA)

uD −cos(ΘD)

×
 ˆ̇DH

ˆ̇DV

 (3.9)

where ˆ̇DH is composed of the east-west, ˆ̇DE , and north-south, ˆ̇DN , velocity com-

ponents, and, similarly as in Equation 3.6, uA and uD are the lengths of the S1

ascending and descending LOS unit vectors, when projected in each fixed hori-

zontal pixel direction.

In Appendix A.3 I explain in more details how I carried out each of these two

approaches, which provided similar results once velocities with largest errors, from the

second approach, had been discarded. Indeed, assuming fixed horizontal pixel directions

implied that radial signals were dominated by north-south motions along the central
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north-south axis, whereas these motions are very poorly constrained by the LOS signals.

Estimates of radial motion in this area were therefore dominated by the error in the

InSAR, and corresponding pixels needed to be discarded (Appendix A.3).

Based on this analysis, I constrained the fixed pixel directions of motion using the

decomposition approach that neglected north-south motions, as this provided a bet-

ter spatial coverage than the other decomposition approach. To maximise even more

the spatial coverage compared with when testing the decomposition approaches (Ap-

pendix A.3), I used the least-squares percentile bootstrap approach with 10,000 iter-

ations (Section 3.4.4) to re-estimate the resampled LOS displacements and velocities

that did not pass the χ2 test. Moreover, I temporarily moved the reference from DYNG

to an arbitrary site, located at ∼10 km south-west from the caldera centre, and which I

referred to as SOUTH (Figure 3.11). This was to ensure that the S1 LOS velocities were

non-negligible everywhere in the caldera and constrain non-negligible pixel directions

in the zone of interest.

Figure 3.11: Top: Magnitudes of the resampled LOS velocities constrained from the S1
ascending (left) and descending (right) tracks, when taken relative to a SOUTH arbitrary
location (star). Bottom: Associated standard deviations. Black squares are the GPS stations
(Figure 3.7). See Section 3.5.1 for more details on the estimation of these velocities.

Indeed, once ˆ̇DE and ˆ̇DV had been constrained, I estimated d per pixel, with two
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non-zero components, de (along east-west) and dv, as follows:

ˆ̇D =

√
ˆ̇D2
E + ˆ̇D2

V (3.10)

dv =
ˆ̇DV

ˆ̇D
(3.11)

de =
ˆ̇DE

ˆ̇D
(3.12)

From these equations, any negligible ˆ̇DE and ˆ̇DV would generate a negligible direc-

tion of motion, which, when implemented in Equation 3.7, would generate negligible

deformation, and this would be wrong in the caldera (Figure 3.12).

Figure 3.12: Map view of pixel directions along east-west (left, blue = towards east) and
vertical (right, blue = upward motion), estimated using S1 velocities taken relative to SOUTH
(cyan star) to constrain direction everywhere in the caldera, neglecting north-south motions to
maximise spatial coverage (Figure 3.11). GPS stations are highlighted with the black squares
(Figure 3.7).

3.5.2 Single-track LOS decomposition

After resampling the LOS displacements of each S1 interferogram onto the common

ASTER grid, and moved the reference site from DYNG to SOUTH (Section 3.5.1), I used

the east-west and vertical directions of motion, derived at each grid node (Figure 3.12),

to constrain the vertical displacements, D̂v, per pixel, in each interferogram and for

each satellite sensor (Equations 3.6 and 3.7).

As shown by Figures 3.13, 3.14 and 3.15, this approach seems to have well pre-

served the Askja subsidence signal, but as expected, the period 2014-2015 has been

contaminated by the Holuhraun dyke intrusion reduction (Section 3.3).
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Figure 3.13: Vertical displacements decomposed for the longest interferograms of the ERS-
A, Envisat-A and CSK-A datasets (Table 3.1), from the reduced unwrapped LOS phases per
pixel (Section 3.5). Colorscales are independent (red = subsidence), while the reference site is
DYNG for all datasets (star). Results are shown at grid nodes with non-negligible S1 velocities,
non-negligible u, and non-negligible LOS displacement.

Figure 3.14: Same as Figure 3.13 but for the CSK-D, S1-A and S1-D longest interferograms.
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Figure 3.15: Example of vertical displacement time-series, comparing InSAR and GPS at
OLAF. I chose this specific station because it is near the centre, and it is the GPS site with the
longest time-series, i.e. spanning all InSAR time periods.

3.6 Long-term subsidence and residual signals at Askja

The main objective for this chapter is to test the hypothesis that the observed surface

deformation could be the cumulative result of several processes. To test this, I needed

to subtract the dominant long-term signal from the data and check the residuals for any

signals that would be correlated spatially and temporally.

In Section 3.5, I have explained how I extracted the vertical displacements, DV (t),

from my 15-year InSAR time-series, and I now present how I used these displacements

to estimate a bulk vertical subsidence trend, which I then converted into LOS and

removed from the full InSAR signal, to determine the residual deformation field over

Askja (Figure 3.1).

3.6.1 Long-term subsidence

It is well-established that, for the last few decades, the deformation field at Askja,

has been largely dominated by a subsidence signal, centered on the main caldera (Sec-

tion 1.5.1). A relaxation time, τ , of ∼42 years since 1983 was locally constrained from
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levelling, in the north-east of the caldera (Section 1.5.1), but this exponential model

has not been tested anywhere else in the caldera.

Assuming that a single process is responsible for the dominating long-term subsi-

dence, all pixels should be subsiding exponentially according to the same relaxation

time, which should then be very close to the one constrained from levelling. Any parts

of the caldera having a different or null decaying time should stand out in the residuals.

From this reasoning and considering the same reference time as taken for the levelling

study, any deformation parameter, W , should evolve according to the following model:

W (t) = −c+W∞ e−(t−1983)/τ (3.13)

where W (t) can be DV (t) at any given pixel, but it can also be the sum or mean of the

DV (t) over a group of pixels or even over the entire Askja caldera, c is a constant and

W∞ is the total amplitude of exponential decay for the parameter W , up to infinity.

To test whether the local exponential decay from levelling could be applicable to the

entire caldera, I used a non-linear least-squares algorithm searching for the combination

of model parameters that would best minimise the residual sum of squares between the

observed and predictedW (t) equalling the means of DV (t) per resampled interferogram

and over the area of study (e.g. Figure 3.7). But to ensure to capture the long-term

trend, I selected only the grid nodes with data available over the full 15-year InSAR time-

series (i.e. >5,000 nodes over 50 dates spanning 2002-2017), and I did not use the CSK

datasets, because they either had been contaminated by the Holuhraun dyke intrusion

reduction (Section 3.3) and/or they would decrease the number of selected nodes in the

caldera due to lower coherence (Figures 3.13 and 3.14). Moreover, in addition to solving

for τ , c and W∞, I simultaneously solved for offsets between the independent InSAR

datasets, following the same approach as described in Equation 3.3.

As illustrated by Figure 3.16, this non-linear inversion approach could not converge

towards a reasonable value for τ , and this is most likely because the InSAR data were

too noisy. However, when solving for the rest of the parameters, while fixing τ to 42.3

years since 1983 (i.e. similarly as obtained from levelling), the best-fitting model seems

to describe well the bulk subsidence trend. This observation supports the hypothesis
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that a single process might be responsible for the long-term subsidence, characterized

by the same relaxation time as constrained from levelling data.

Figure 3.16: Left: Exponential decay model that best-fits the mean of InSAR vertical dis-
placements over the area of study (e.g. Figure 3.7), decomposed from the ERS, Envisat (ENV)
and Sentinel-1 (S1) datasets. RSS is the residual sum of squares between the data and the
model. Middle: Same as left graph, but in this case, I fixed the relaxation time to equal the one
constrained from levelling, i.e. 42.3 years since 1983, as shown to the right. See Section 3.6.1
for more details on calculations and Section 1.5.1 for more details on the levelling study).

Having determined an approximate τ for the entire Askja caldera, I then used normal

least-squares to estimate the time-series of the bulk subsidence trend, per grid node,

for each InSAR dataset. Indeed, when τ is known, Equation 3.13 becomes a linear

problem where c and W∞ can be constrained for each independent InSAR time-series

(including the CSK ones), with the forward matrix operator listing a series of -1 in the

first column, and e−(t−1983)/τ relative to each date in the second column. Because I

had used the resampled series of interferograms, I then projected the estimated vertical

component of subsidence into LOS direction using Equations 3.6 and 3.7, to get a full

constraint of the bulk subsidence field at Askja.

3.6.2 Residual deformation field

Removing this long-term LOS subsidence from the total deformation per resampled

interferogram provided a time-series of residual deformation signals (Figures 3.17, 3.18

and Appendix A.4). Due to the rather low magnitudes of residual deformation, ranging

within ±0 cm for ERS, ±3 cm for Envisat, ±1.5 cm for CSK and ±2 cm for S1, it is

very likely that these time-series mainly reflect noise. The reason why ERS has very
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smooth and negligible residuals is most likely because the data, or unwrapped LOS

deformation, is almost an exact solution: the unwrapping inversion was performed in

StaMPS from three images and three interferograms (Section 3.2).

Figure 3.17: Residual LOS displacements shown for the longest interferograms of the ERS-A,
Envisat-A and CSK-A datasets, after removal of the long-term exponential decaying subsidence
trend. Colorscales are independent (red = away from satellite), while the reference site is DYNG
for all datasets (star). See Figure 3.18 for the other sensors, and Appendix A.4 for the full time-
series.

Even the small pattern that stands out near the GPS station CASK, in the longest

S1-D interferogram (Figure 3.17) as well as in a few others from e.g. Envisat (Ap-

pendix A.4), is very likely to be just noise. Indeed, it correlates well with the atmo-

spheric noise of the S1-D velocities (Figure 3.11), which I used to estimate the vertical

displacements (Section 3.5.2), and therefore the bulk subsidence time-series.

To confirm these negligible residual results, I de-trended the LOS GPS time-series

(Section 3.4) for the deformation modelled using Equation 3.13, estimated at each GPS

station, using the same approach as for the InSAR (see above), and which I projected

from vertical to LOS by extracting the required InSAR parameters around each station

(Equations 3.6 and 3.7). Figure 3.19 shows the residual GPS LOS time-series at some

key stations in comparison with the residual InSAR LOS time-series, extracted at each

of these GPS stations.
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Figure 3.18: Same as Figure 3.17 but for the CSK-D, S1-A and S1-D longest interferograms.

As expected, the GPS and InSAR residual time-series usually agree with each other,

and over 2014-2015, the discrepancy due to the Holuhraun dyke reduction is sometimes

observed. The time-series at CASK fluctuating around zero confirm that the residual

pattern observed in some interfrograms (see above) reflects noise. At OLAF and MASK,

which are very near to the centre of deformation, the GPS residuals seem to show some

signal correlated with time, between 2007 and 2010 (Envisat). However, as it is not

observed in the InSAR residual time-series, this signal could either be noise, or it could

reflect a very localised variation in the subsidence trend, but too small to be detectable

at the InSAR spatial resolution of tens to hundreds of meters.

The absence of any clear residual signal suggests that no other deformation is su-

perimposed on the subsidence, which has a steady temporal evolution. My hypothesis

suggesting that the total deformation observed within the Askja caldera was the cumu-

lative result of several processes, acting at different depths is therefore refuted, and it

is likely that a single and steady process is causing the deformation at Askja.
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Figure 3.19: LOS GPS and InSAR time-series remaining after removal of the long-term
subsidence trend (Section 3.6.1), and shown at key GPS stations, to cover the Askja caldera
(positive = away from satellite). The uncertainties associated with the bulk subsidence time-
series are not considered in the error bars, but the random variations in these residual time-series
provide an estimation of these unknown uncertainties.
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3.7 Modelling the exponential subsidence

As presented in Section 1.5.1 and recalled in the introduction of this chapter, several

studies have explored the location, depth and magnitude of the most likely linear volume

decrease that would be responsible for the Askja subsidence over periods of 10 years or

less. Initially using forward models, but then improving results from statistical inversion

approaches, these studies mainly agree that the subsidence is probably due to a deflating

Mogi (or ellispoidal) reservoir, located at ∼3-3.5 km depth (Table 1.2, Section 1.4.2).

Even though, I had questioned this depth, my analysis in Section 3.6 suggests that a

single and steady process is likely causing the surface deformation at Askja.

In this section, I provide a redefined model for the Askja subsidence, by predicting

the surface deformation, over 2002-2017, taking into account the exponentially decaying

evolution. It is the first time that this many InSAR datasets are taken into account,

and that such a 15-year-long time period is considered (Figure 3.2).

3.7.1 Bayesian approach with Markov Chain Monte Carlo sampling

In order to generate a fully integrated model, providing some constraints on uncertain-

ties, I used the GBIS software package (Bagnardi and Hooper, 2018), which uses the

Bayesian inversion modelling approach and pairs it with the Markov chain Monte Carlo

(MCMC) sampling. Given a reservoir geometry chosen by the user and assuming uni-

form prior probability distributions for the model parameters, GBIS iteratively predicts

the LOS surface displacements (or linear velocities) that would be produced by a given

set of parameters (also called trial), at the data pixels, initially quadtree subsampled

(Bagnardi and Hooper, 2018; and references therein).

The quadtree downsampling approach enables to significantly decrease the number

of pixels, while preserving information in deforming areas, and it therefore improves the

processing speed. The iteration process, controlled by the MCMC sampling approach,

explores the parameter space, by accepting trials with a suitable probability, increasing

the chances to converge around the optimal solution, i.e. the set of parameters with

maximum probability, or in other words the solution at the peak bin of the N-D his-

togram (with N the number of parameters). Because all accepted trials are stored,
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the posterior probability density function of each parameter can be drawn, and once

convergence has been reached these distributions should be Gaussian with the optimal

solution lying within the 95% confidence interval.

For each iteration the probability is computed using the residual sum of squares of

all the provided downsampled interferograms (or velocity maps), which should be inde-

pendent from each other and of which the variance-covariance matrices are generated

using the semi-variogram approach, with sill, nugget and range provided by the user

(Equation 3.5).

Although my InSAR datasets are independent from each other, the interferograms

within any given dataset covary, and these covariances should be taken into account

in the probability estimation. To avoid memory issues, I considered linear velocities

rather than displacements, and this provided a single set of data per InSAR dataset

and which do not covary. Because each of these datasets spans a relatively small time

period, while they cover 2002-2017 between them all, such approach should not perturb

the implementation of the exponentially decaying trend. Indeed, the estimated linear

rates should give the tangents to the exponential subsidence trend at the mid-times of

the datasets, and the gradual decrease should still be observed over the 15-year velocity

time-series.

Using the total unwrapped phases, given in radians (∆ϕcorr ≈ ∆ϕask, Section 3.4),

I estimated these LOS velocities per pixel, by applying weigthed least-squares, with

variance-covariance matrix listing constant variances per interferogram in the diagonal

(Equation 3.5 with r=0). I then re-computed a semi-variogram (Section 3.4.4) for each

estimated velocity field, in order to provide a sill, nugget and range per satellite sensor

for GBIS to estimate the variance-covariance matrix.

3.7.2 Implementation of the exponential decay using a Mogi model

As a first test, I assumed the point pressure source (Mogi, 1958), as it is the sim-

plest approximation but also because, based on previous studies, this model seems to

approximate well the deformation field at Askja (Table 1.2).

Because the Mogi model assumes a homogeneous and elastic crust (Section 1.4.2),
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the volume change of the Mogi reservoir beneath Askja should evolve according to the

same function as the displacements observed at the surface (Equation 3.13):

∆V (t) = −c+ ∆V∞ e−(t−1983)/42.3 (3.14)

where t is given in decimal years.

Incorporating this function into the default Mogi forward problem (Equations 1.15

and 1.16) can predict displacements. To predict velocities, I took the derivative of

Equation 3.14 with respect to time. The forward problem used to estimate surface

velocities caused by a Mogi reservoir experiencing an exponentially decaying volume

change can therefore be expressed, at any pixel, as follows:

ḊH(t) =
−(1− y)∆V∞ e−(t−1983)/42.3

42.3π

r

(z2 + r2)3/2
(3.15)

ḊV (t) =
−(1− y)∆V∞ e−(t−1983)/42.3

42.3π

z

(z2 + r2)3/2
(3.16)

where y equals 0.25 (Poisson’s ratio, Section 1.4.1), and ḊH(t) and ḊV (t) are the

horizontal and vertical components of any LOS velocity, given at the time t, which is

the mid-time of the related InSAR dataset (Section 3.7.1).

By implementing this forward model into GBIS, I solved for the longitude, latitude,

depth and ∆V∞ related to an exponentially deflating Mogi reservoir. I also solved for a

constant per dataset representing the velocity of the reference site, as well as for possible

ramps affecting each velocity field, along longitude and latitude.

Because the CSK datasets spanning 2014-2015 were contaminated by unwanted

deformation signals remaining after reduction of the Holuhraun dyke intrusion effect

(Section 3.3), I performed the MCMC Bayesian inversion, with (Case A) and without

(Case B) these two affected datasets, to check the influence of the imprecise reduction.

I therefore solved for 25 model parameters in Case A and 19 in Case B.
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3.7.3 Modelling results

In both cases, I ran two million iterations, and as shown in Appendix A.5, convergence

was reached after <200,000 iterations. After convergence, the posterior probability den-

sity functions are, as expected, approximately Gaussian (Appendix A.5), and because

the optimal solution lies within the 95% confidence interval, highlighted by the 2.5 and

97.5 percentiles, the inversion has worked well in both cases (Section 3.7.1). However,

because the optimal solutions are not always centered on the Gaussian distributions,

the median solutions provide a better fit (Appendix A.5). As summarized in Table 3.2,

these medians are very close to each other when comparing the two cases, suggesting

that the imprecise reduction of the Holuhraun dyke intrusion effect did not affect the in-

version. Indeed, the ramp estimations have likely contributed to reducing this unwanted

effect.

Case A Case B
2.5 perc. Median 97.5 perc. 2.5 perc. Median 97.5 perc.

Longitude (deg.) -16.775 -16.774 -16.771 -16.775 -16.774 -16.772
Latitude (deg.) 65.045 65.046 65.047 65.045 65.046 65.047
Depth (km) 2.9 3.0 3.1 2.8 3.0 3.1
∆V∞ (km3) 0.063 0.070 0.076 0.061 0.067 0.075

Table 3.2: Medians and 2.5-97.5 percentiles constrained when solving for an exponentially
deflating Mogi reservoir beneath Askja, using the MCMC Bayesian approach provided by the
GBIS software. In Case A, all InSAR datasets were considered, whereas in Case B, the two
CSK datasets spanning the Holuhraun dyke intrusion period were not considered (Sections 3.7.1
and 3.7.2).

3.7.3.1 Models quality

To be able to compare the goodness-of-fit between Case A and Case B, I performed

a χ2 test (Section 3.4.4) with 95% probability and ν equalling the cumulative sum of

quadtree pixels per satellite sensor minus 25 in Case A and minus 19 in Case B (See end

of Section 3.7.2). Additionally, to evaluate the relative contribution of each dataset, I

also performed a χ2 test per satellite sensor, i.e. considering the number of subsampled

pixels per sensor and 7 model parameters (4 Mogi parameters, 1 offset, and 2 ramps,

Section 3.7.2).

As shown in Table 3.3, the reduced chi-squared, χ2
ν , are very similar between the two
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cases, and Case B fits the data sightly better with the ERS velocity field slightly better

approximated (smaller χ2
ν than in Case A). When looking at the difference between

the observed and expected reduced chi-squared with 95% probability (χ2
ν − χ2

ν,0.95,

Table 3.4), even though the Envisat and S1-A predicted maps are the only ones lying

within the 95% confidence interval (χ2
ν −χ2

ν,0.95 ≤ 0), all the other predicted maps have

acceptable near-zero differences, except the ERS one. This implies that a better fit to

the ERS data is not necessarily representative of the Askja deformation, and Case A is

therefore most likely the best-fitting model to predict the long-term deformation field

of Askja (Figure 3.20).

χ2
ν Total ERS Envisat CSK-A

(10-12)
CSK-A
(14-15) CSK-D S1-A S1-D

Case A 1.45 7.73 0.59 1.77 1.76 2.40 1.28 0.44
Case B 1.29 7.71 0.59 1.77 1.28 0.44

Table 3.3: Reduced chi-squared, (χ2
ν , Section 3.4.4), for the median solutions considering

all satellite sensors (Case A) versus all but the ones affected by the imprecise reduction of the
Holuhraun dyke intrusion effect (Case B). The first column provides the χ2

ν of the full inversion,
whereas the other columns provide the χ2

ν per satellite sensor (Section 3.7.3.1).

χ2
ν-χ2

ν,0.95 Total ERS Envisat CSK-A
(10-12)

CSK-A
(14-15) CSK-D S1-A S1-D

Case A 0.41 6.53 -0.66 0.60 0.67 0.93 0.21 -0.64
Case B 0.24 6.51 -0.66 0.60 0.21 -0.64

Table 3.4: Same as Table 3.3 but here, the differences between the estimated and expected
reduced chi-squared (χ2

ν-χ2
ν,0.95, Section 3.4.4) are provided.

Pagli et al. (2006) estimated their best solution as the mean of four independent

simulated annealing inversions, each combining GPS displacements with a distinct in-

terferogram of 2-6 years between 1992 and 2000 (Table 1.2). While fixing the reservoir

location, they obtained a χ2
ν of 0.77, 3.64, 4.03 and 7.99 per interfergoram. More re-

cently, de Zeeuw-van Dalfsen et al. (2012) constrained their best-fit solution using an

MCMC Bayesian algorithm, with ascending and descending velocity maps, both span-

ning 2000-2009, and respectively estimated from 4 and 5 interferograms (Table 3.5). If

the residual standard deviation that they provide is the square root of the weighted

residual sum of squares divided by the degree of freedom, they obtained a χ2
ν of 1.15,

when using only the descending velocity map, and a χ2
ν of 15.62 when using both velocity
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maps.

Figure 3.20: Observed (left) versus predicted (right) LOS velocity maps per satellite sensor
(red = away from satellite). The predicted velocities were constrained using the median solu-
tions, assuming an exponentially deflating Mogi reservoir beneath Askja (Case A, Table 3.2).
The best-fit reservoir location is highlighted with the cyan circle, and the star is the reference
for deformation (DYNG).



3.7 Modelling the exponential subsidence 79

By comparison, the total χ2
ν and χ2

ν-χ2
ν,0.95 obtained in this study and being respec-

tively <1.5 and near zero, suggest that the inversion has well-constrained the long-term

velocity time-series, especially because the larger the number of datasets used, the

harder the fitting and therefore the more likely it is to get a high χ2
ν .

95% confidence intervals longitude latitude depth ∆V∞ ∆V

Case A (this study) 180 m 235 m 200 m 0.013 km3 -
d.Z.v.D. et al. (2012) 400 m 400 m 600 m - -0.0005 km3 yr−1

Table 3.5: Comparison of the 95% confidence intervals constrained in this study (Case A)
with the one provided by de Zeeuw-van Dalfsen et al. (2012). An MCMC Bayesian algorithm
was used in both cases, assuming a Mogi model, but de Zeeuw-van Dalfsen et al. (2012) con-
strained a linear volume change, whereas I constrained the amplitude of an exponential decay
(Section 3.7.2).

3.7.3.2 Comparison of the best solution with previous studies

In addition to having well-constrained the data, my long-term exponential inversion

provided a best-fit solution with same order of magnitude as those estimated in previous

studies (Table 1.2 and Figure 3.21). However, the redefined depth seems to be 3+0.1
−0.1 km

rather than 3.5 km (Case A, Table 3.2), and the corresponding volume change rates are

also lower (Figure 3.21). Assuming that the Mogi model is appropriate to approximate

the pressure change distribution, which is linked to the bowl shape subsidence of the

Askja caldera, these narrower error bounds are likely due to the length of time spanned

in this study: it is the first time such a 15-year long deformation dataset is implemented

in a inversion model at Askja.

Due to the non-uniqueness of deformation models, the depth and magnitude of vol-

ume changes are closely linked: for a given reservoir geometry, a deep and large volume

change produces the same surface deformation as a smaller but shallower volume change

(Section 1.4.2). The greater depths constrained from previous studies can therefore ex-

plain why the associated volume decreases have larger magnitudes. Indeed, the best-fit

solution from de Zeeuw-van Dalfsen et al. (2012), who solved for all parameters using

an MCMC Bayesian algorithm, was a 3.5-km deep Mogi reservoir, deflating at a linear

rate of 0.0014 km3 yr−1 over 2000-2009 (Section 3.7.3.1 and Figure 3.2). According to

Equation 1.16, such scenario should produce a maximum vertical subsidence of ∼2.7
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Figure 3.21: Left: Exponential decay expected at the Mogi source between 1983 and 2017
(Equation 3.14 with c=0), assuming a ∆V∞ of 0.07 km3 with a 95% confidence interval of
0.013 km3 (Table 3.2). Right: Derivation of the rate of decrease at any time t, i.e. equalling
−∆V (t)/42.3, and comparison with the linear volume rates that have been constrained in
previous studies, using inversion modelling (Table 1.2). Note that the best-fit volume change
from Pagli et al. (2006) is the average of several models, for which the average depth is 3.5 km.

cm yr−1, which would also result from a 3-km deep Mogi reservoir, deflating at rate of

∼0.0010 km3 yr−1. Based on my exponential model, this is what we should expect in

2003, i.e. at the mid-time of 2000-2009 (Figure 3.21).

Similarly, among the various single-interferogram inversions tested by Pagli et al.

(2006), the few solutions that provided a depth around 3 km were associated to volume

changes of -0.0012 to 0.0014 km3 yr−1, and, based on my exponential model, this

is approximately what should be expected at the time of their study (Figure 3.21).

Because Pagli et al. (2006) solved for an ellipsoid reservoir, this either suggests that the

constrained aspect ratio, orientation and depth of the ellipsoid produced similar surface

deformation as a Mogi reservoir, or it is just a coincidence.

Finally, based on the results from de Zeeuw-van Dalfsen et al. (2012), Drouin et al.

(2017) assumed a Mogi reservoir at 3.5 km depth and constrained a volume change

of -0.0010±0.00001 km3 yr−1, from a simulated annealing inversion applied to GPS

data over 2008-2014. This scenario should induce a maximum vertical deformation rate
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between -1.94 and -1.96 cm yr−1 if the source would be at 3 rather than 3.5 km depth

(Equation 1.16). From my exponential model, the maximum vertical deformation at

this period should range between -1.98 and -2.52 cm yr−1, which is very close to their

result. In addition to using discrete GPS datapoints (Figure 3.7), the fact that they did

not solve for all parameters simultaneously might the reason why a slight discrepancy

still remains.

Overall, the quasi-systematic offset does not seem to be due to different observed

deformation, neither to the assumed models, which are very similar: ellispoid or Mogi

reservoir, embedded in an elastic half-space, having a Poisson’s ratio of 0.25. It is there-

fore likely that the offsets comes from the different dataset sizes and the use of different

temporal functions might also have induced some discrepancy. The good quality of my

inversion (Section 3.7.3.1), which considers the exponential evolution of the subsidence

using the longest dataset, suggests that the results presented in this study are more

robust. To confirm this, other source geometries could be tested, and the GPS data

could be jointly inverted with the InSAR.

3.7.3.3 Residual velocity maps

Using the median solution from Case A, which I think is the most appropriate to predict

the long-term deformation at Askja (Section 3.7.3.1), I predicted the LOS velocity field

that would be produced by such exponentially deflating Mogi reservoir, considering the

initial pixel distribution of each velocity map.

After removing these predicted velocities from the observed ones, residuals seem to

be mainly dominated by random noise, but two subsidence signals remain (Figure 3.22):

one is approximately centred on the caldera, clearly observed in the CSK-D 2012-2015

map and has a magnitude of ∼1-1.5 cm yr−1 along LOS (away from the satellite),

whereas the other one, observed at least in the ERS, Envisat and S1-A maps, is located

in the north-east of the caldera, near station A404 (Figure 3.7) and has a magnitude

of ∼0.5 cm yr−1 along LOS. de Zeeuw-van Dalfsen et al. (2012) did not detect this

latter quasi-persistent anomaly, and it is not clear whether Pagli et al. (2006) detected

it. Indeed, the only mentioned residual subsidence has a rate of ∼0.8 cm yr−1 and is
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located to the west of the lake Öskjuvatn, while this anomaly is rather located to the

north of the lake (incoherent area in Figure 3.22, see Figure 3.7).

Figure 3.22: Residual LOS velocity maps per satellite sensor (red = away from satellite),
after removing the predicted deformation caused by an exponentially deflating Mogi reservoir
beneath Askja (Case A, Section 3.7). The best-fit reservoir location is highlighted with the
cyan circle, GPS stations are shown with the black squares, DYNG (star) is the reference for
deformation and the location of the profiles presented below are highlighted with the black lines.
Note that scales are independent due to the large residuals in the CSK-A 2014-2015 maps.

When comparing the observed and predicted velocities along a SW-NE profile pass-

ing through the centre of the caldera (Figure 3.23), it is confirmed that the Mogi model

(Case A in Table 3.2) seems to well predict the observed subsidence signature. Moreover,

the overall shape of the CSK-D profile confirms that unwanted effect caused by the im-

precise Holuhraun dyke reduction has mainly been reduced by the ramp estimation (See

beginning of Section 3.7.3). Finally, as expected from Figure 3.22, residuals are mainly

around zero, with a quasi-persistent anomaly on the NE side of the caldera centre, and

the CSK-D anomaly seems to appear as an offset from the modeled subsidence.
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Figure 3.23: Comparison of the observed LOS velocities (blue) with the predicted ones (red,
Case A in Table 3.2), along a SW-NE passing through the best-fit Mogi reservoir location
(Figure 3.22). The 95% confidence interval (yellow) was computed using the 2.5 and 97.5
percentile median solutions, and residuals are shown in grey. Signs have been flipped to provide
the subsidence (positive LOS) as a negative signature.

Based on Figure 3.24, which displays results along a north-south profile passing

through the quasi-persistent residual signal, it seems that this anomaly is due to the

geometry of the Mogi model, which cannot fully reproduce the surface deformation

field, likely to be due to a single and steady process (Section 3.6). But it is worth

noting that such inversion procedure does not primarily aim to determine the geome-

try of the magma reservoir, if any. The aim is rather to reproduce the conditions of

pressure changes in the subsurface, likely to reproduce a surface deformation pattern

(Section 1.4). The Mogi model assumes isotropic inner pressure distribution, surrounded

by a homogeneous and elastic crust. The anomaly therefore suggests that, in this lo-

calised area, either the subsurface pressure cannot be approximated by an isotropic

distribution and/or the property of the host-rock vary too much to be approximated by

the homogeneous and elastic medium. Although it is challenging to determine the exact

reason of such residual anomaly, this area has been overloaded by lavas from the most

recent 1961 fissure eruption and such extra load could have modified the local crustal
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properties enough to increase the subsidence locally, while having re-equilibrated to the

same relaxation time as over the entire caldera (Figure 3.6.2).

Figure 3.24: Same as Figure 3.23, but this profile is north-south orientated (Figure 3.22) and
passes through the persisting residual anomaly observed near the GPS station A404, in the
north-east of the caldera (dashed circle).

Finally, Figure 3.25, which shows results along an east-west profile passing through

the residual subsidence detected in the centre of the caldera, confirms that this anomaly

is only observed on the CSK-D map. Because the imprecise Holuhraun dyke reduction

mostly affected the centre of the caldera (Figure 3.8), is it very likely that the anomaly

results from this remaining deformation signal. Indeed, it seems that the observed

subsidence has been shifted from the predicted one, and this pattern is also noticed

when comparing the imprecisely reduced CSK-D InSAR signal with the more precisely

reduced GPS signal (OLAF in Figure 3.8). Based on this reasoning, the CSK-A map

should also show a similar pattern, but in this case, the ramp estimation might have

reduced most of the unwanted effect.
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Figure 3.25: Same as Figure 3.23, but this profile is east-west orientated (Figure 3.22) and
passes through the residual anomaly observed near the centre of deformation, in the CSK-D
map (dashed circle).

3.8 Conclusions

In this Chapter, I demonstrated that the subsidence, which has been on-going within

the Askja caldera between at least 1983 and 2017, can be modeled by an exponential

decay with a relaxation of ∼42 years since 1983, i.e. similarly as locally constrained

from levelling data. This steady subsidence seems to be the main deformation pattern

affecting the caldera.

Using a 15-year sample of InSAR data spanning 2002-2017, I demonstrated that

the long-term caldera deformation can be robustly predicted by a 3-km deep Mogi

reservoir, centered on the Askja caldera and undergoing an exponential deflation with

total volume change amplitude of 0.07 km3. Based on this model, the rate of volume

decrease has diminished from ∼0.0016 km3 yr−1 in 1983 to ∼0.0008 km3 yr−1 in 2017.

A persisting residual subsidence signal of ∼0.5 cm yr−1 along LOS, remains in the

north-east of the caldera, and it could be due to a wrong approximation of subsurface

pressure distribution assumed by the Mogi model. Alternatively, it could also be due

to some strong crustal heterogeneity, and the possible lava overloads from 1961 might
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be something to explore.

Because I demonstrated several times that the GPS and InSAR data agreed well

over 2002-2017, jointly inverting for these two types of data would very likely provide a

similar solution, but it could still be interesting to verify this. Moreover, even though

the Mogi reservoir provided very good results, testing this new exponential model with

other source geometries may improve the results.

Even though the deformation can be explained by a Mogi model, which is often

used for magma intrusion or magma drainage scenarios, this analysis does not imply

that magma is involved. Moreover, a dominant magma contribution from a 3-km deep

reservoir to produce such a long-term and steady subsidence can be questioned. Before

testing the implication of magma by comparing this detailed deformation study to

some new gravity measurements (Chapter 5), I present, in Chapter 4, an error analysis

of temporal gravity changes.
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Chapter 4

Error Budget Analysis for Residual

Gravity Changes

This chapter addresses the third objective of my thesis, by presenting a statistical

approach I have developed to better estimate uncertainties associated to residual gravity

changes. In Chapter 5, I apply the method to the gravity data that I recorded at Askja.

4.1 Introduction

As summarized in Chapter 1, monitoring temporal gravity changes can be useful to

detect mass movements related to magma processes, and can therefore contribute to

characterizing volcanic unrest (e.g. Crossley et al., 2013, Carbone et al., 2017, Van Camp

et al., 2017). However, the signal of interest, or residual gravity change (Section 2.2), is

emphasized only once all the undesirable signals have been reduced as much as possible

(Section 2.2.2). To be able to detect any magma-related residual gravity changes, which

are typically on the order of tens to hundreds of microgals (Figure 4.1 and Table 4.1),

and which therefore represent variations of only ∼0.1-0.01 ppm around the standard

gravity on Earth, high-precision gravimeters have been designed and thorough surveying

procedures have been implemented (e.g. Rymer, 1996, Battaglia et al., 2008, Carbone

et al., 2017, Van Camp et al., 2017). But, even though equally important, there seem

to be a lack of guidance in the estimation of the errors associated to the reduction of
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unwanted effects.

Figure 4.1: Maximum estimated residual gravity changes at volcanoes versus the vertical dis-
placement measured at the same stations. The gravity data were acquired either with LaCoste
& Romberg G and/or D meters (red squares), or with Scintrex CG-3M or CG-5 meters (blue
triangles). The 1σ error bars are displayed when given. Table 4.1 summarizes the data used in
the figure with corresponding references.

Rymer (1989) presented an overview of all possible error sources involved when

using LaCoste & Romberg (LCR, LaCoste & Romberg (2004)) gravimeters during a

single survey. They came to the conclusion that the error standard deviation of any

drift-corrected gravity signal (ĝDC in Section 2.2.3) should be ≤10 µGal at best, and

∼33 µGal, at worst. Even though this analysis provides some information on where

to focus effort to reduce errors when using LCR gravimeters, it does not provide any

method to quantify errors on a case-by-case basis. Moreover, worst-case errors seem to

have been underestimated, such as, for example, the one associated with the leveling

of the instrument, and this study does not cover errors associated to temporal gravity

changes.

Twenty years later, Lederer (2009) provided an overview of error sources likely to

affect temporal gravity changes, and they highlighted that error standard deviations

of ∼6 and ∼11 µGal can possibly be achieved, in optimal field conditions, when re-

spectively using SCG gravimeters (type CG-5) and LCR gravimeters (type G). Even

though this study provides an exhaustive list of error sources, it lacks information to

precisely quantify errors, especially for groundwater-mass changes and calibration ef-
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fects (∆ĝwtr and ∆ĝ∆cal in Section 2.2.3). Moreover, it wrongly assumes that the use

of the local gravity gradient is the most appropriate to estimate the component due to

surface deformation (∆ĝelev in Section 2.2.3).

In this chapter, I go one step further in the analysis of errors associated to temporal

gravity changes, by presenting a statistical approach providing key information for users

to quantify the full error budget of residual gravity changes, when using SCG (types CG-

3/CG-3M and CG-5) and LCR (types G and D) gravimeters (Section 2.2). In addition

to providing equations for case-by-case calculations, I provide ranges of expected error

standard deviations for each gravity reduction, from best-to-worst case scenarios, to

allow users to decide on where to focus their efforts to minimizing errors, according to

the magnitude of the signal of interest.

I especially shed light on how to precisely estimate (1) the error associated with the

levelling of the instrument, as it can be significant when using standard LCR instru-

ments and has rarely been reported in the past, (2) the error in the drift function, as

I reveal that it can also reflect unexplained “environmental” errors, such as due to air

pressure, air temperature, rainfall and soil moisture, which are usually neglected when

unknown, and (3) the error due to temporal changes in calibration, which has never

been fully estimated in the past, and depends on whether the same gravimeter was

used for all surveys and whether any recalibration was performed. Although I focus

on volcanic applications, this method is equally applicable to other applications, using

relative spring gravimeters.

4.2 Problem Setup

The residual error ξres, which reflects the deviation of the estimated residual gravity

change, ∆ĝres, from the true ∆gres (Section 2.2.3), can be expressed from the residual

errors of each component on the left-hand side of Equation 2.11:

ξres =
[
ξDC

]
t2−t1

+ ξ∆cal + ξelev + ξwtr (4.1)

∴ ξres =
[
εDC

]
t1
−
[
εDC

]
t2

+ ξ∆cal + ξelev + ξwtr (4.2)
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where the residual errors,
[
εDC

]
t1

and
[
εDC

]
t2
, correspond to the deviations of the

estimated drift-corrected gravity signal, ĝDC, from the true gDC, in the first and second

survey, respectively (Section 2.2.3).

Each of these two residual errors is therefore the sum of the residual errors of each

parameter on the left-hand side of Equation 2.8, and because it is reasonable to assume

that, for a single measurement, the calibration factor k(t) equals 1 with negligible asso-

ciated error (e.g. Battaglia et al. (2018) and Appendix B.2), any εDC can be expressed

as follows:

εDC = εmeas + εET + εOL + εP + εT + εbase (4.3)

Moreover, because εmeas can be separated into a vibration noise component, εvib,

and a component due to the levelling of the gravimeter, or instrumental tilt, εtilt, the

above equation can be re-written as follows:

εDC = εvib + ε∆tilt + εET + εOL + εP + εT + εbase (4.4)

where ε∆tilt is the differential error due to tilt at the site of interest, relative to the base

(i.e. equivalent to the error of the drift-corrected tilt component), and εvib only relates

to the measurement at the site, as vibration noise at the base are included in εbase,

which is derived from the drift function (Section 2.2.3).

I go on to show that all the residual errors of Equations 4.2 and 4.4 are independent

and approximately Gaussian. Consequently, each εDC and ξres equal zero on average,

and their respective standard deviations, σDC and σres, can be estimated as the square

roots of the sum of the variances of all of their residual error components, addressed in

turn in this paper:

σDC =
√
σ2

vib + σ2
∆tilt + σ2

ET + σ2
OL + σ2

P + σ2
T + σ2

base (4.5)

σres =

√[
σ2

DC

]
t1

+
[
σ2

DC

]
t2

+ σ2
∆cal + σ2

elev + σ2
wtr (4.6)

It is worth noting that when the site of interest has been occupied several times

during the same survey, such as when doing double-daily loopings (e.g. Bagnardi et al.,
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2014), the final σDC can be determined using the covariance formula from weighted

least-squares:

σ2
DC =

[
GTQdd

−1G
]−1 (4.7)

where Qdd is the variance-covariance matrix listing, in the diagonal, the variances,[
σ2

DC

]
j=1

to
[
σ2

DC

]
j=M

, corresponding to the M occupations at the given site, and G

is the forward matrix operator, which is a vector of ones in this case.

4.3 Vibration noise

Vibration noise results from a combination of noise sources, which, in addition to the

unavoidable internal error caused by imperfect sensors, may be anthrogpogenic (e.g.

due to traffic, pedestrians and unstable ground), natural (e.g. due to wind, heavy rain,

earthquake and microseismic noise resulting from the action of waves in the open-

ocean), and/or caused by the user, when handling and transporting the gravimeter

(e.g. Goncharenko et al., 2018, Boddice et al., 2018; and references therein). This latter

error component makes vibration noise approximately Gaussian, in field conditions.

The magnitude of the internal error depends on the type of spring gravimeter used,

such as the error due to transportation, which can be reduced by allowing recovery time

for the levelled instrument before starting a measurement (e.g. Seigel, 1995, Scintrex,

2009, Van Camp et al., 2017). The anthropogenic errors and most of the natural errors

can be reduced by setting up stations on stable ground, sheltering the gravimeter from

wind and rain and filtering the raw data out for high-frequency noise (e.g. Jacob et al.,

2010, Van Camp et al., 2017, Boddice et al., 2018). Finally, the microseismic noise is

hard to reduce without affecting the signal of interest, but, when necessary, it can be

predicted from e.g. ambient seismic noise (e.g. Goncharenko et al., 2018).

Because temporal gravity signals are often at the micro-scale, it is likely that some

remaining non-negligible vibration noise, σvib, remains despite a careful acquisition. To

lower this σvib to a suitable level with respect to the magnitude of the signal of interest,

it is common practice to successively record N gravity samples, (gs)i=1 to (gs)i=N ,

during any given site occupation and to compute the least-squares mean of these N
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samples. Even though N should be large enough to minimize σvib as much as possible,

it should also be small enough to avoid detecting low-frequency signals such as tidal

effects (e.g. Boddice et al., 2018).

When assuming that the N repeated samples, recorded during a single site occupa-

tion, are independent and randomly drawn from an approximately Gaussian distribu-

tion, the standard error, σvib, of the least-squares gravity measurement, gmeas, equals

the error standard deviation, σp, of the population represented by the N samples, di-

vided by the square root of N (e.g. Bonvalot et al., 1998, Scintrex, 2009, Debeglia and

Dupont, 2002, Boddice et al., 2018):

σvib =
σp√
N

(4.8)

where σp (i.e. SD in the Scintrex user’s manuals, Scintrex (1995, 2009)) can be estimated

using the common formula for variance with a normalization factor of N -1.

When the N gravity samples are acquired with a high-frequency, Z sets of ac-

quisition can be successively recorded during the same site occupation, providing Z

least-squares gravity measurements, (gmeas)k=1 to (gmeas)k=Z , each with an associated

(σvib)k, determined using Equation 4.8 (Figure 4.2). An overall gravity measurement,

(gmeas)j ± (σvib)j can then be computed, for this jth site occupation, using weighted

least-squares, where the variances, (σ2
vib)k=1 to (σ2

vib)k=Z are listed in the diagonal of

the variance-covariance matrix (blue highlight in Figure 4.2). On the other hand, when

the N gravity samples are acquired with a low frequency, only one set of samples can

usually be acquired (Z=1). In this case, the unique least-squares gravity average of the

N samples, (gmeas)k=1, and its associated vibration noise, (σvib)k=1, determined using

Equation 4.8, directly equal (gmeas)j ± (σvib)j (i.e. when Z=1, the green highlight in

Figure 4.2 equals the blue highlight).

When the site has been reoccupied M times during the survey, the M reproduced

gravity measurements, (gmeas)j=1 to (gmeas)j=M , determined either using least-squares

or weighted least-squares, depending on the recording frequency of the samples, can

be averaged using weighted-least squares, where the variances, (σ2
vib)j=1 to (σ2

vib)j=M ,
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Figure 4.2: Flow diagram illustrating the procedure usually undertaken to obtain a gravity
measurement per survey, at any given station. Depending on the samples recording frequency
per site occupation, either a single (Z=1) or several (Z >1) set(s) of N gravity samples are
recorded successively (Figure 4.3); and, depending on the type of gravimeter used and time
constraints, the given station can be either re-occupied once (M=1) or several times (M >1)
during the same survey. Based on the strategy chosen, the gravity measurement of any site, per
survey, can either be the one highlighted in green (Z=1 and M=1), in blue (Z ≥1 and M=1)
or in orange (Z ≥1 and M >1). The larger Z and M , the more minimized the vibration noise.
See Section 4.3 for more details.

are listed in the diagonal of the variance-covariance matrix. This final weighted least-

squares average provides the gravity measurement, gmeas ± σvib, at the given site, for a
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given survey (Figure 4.2). If the site was occupied only once during the survey (M=1),

gmeas ± σvib either equals the least-squares average of the N samples when Z=1, or

it equals the weighted-least average of Z successive sets of acquisition, when Z >1,

(Figure 4.2).

Each time a weighted average is calculated, a χ2 test can be undertaken to ensure

that the mean is representative of the data (Section 3.4.4), and the probability can be

lowered to 50% to be more selective. In the presence of any anomalously high (σvib)k

or (σvib)j , which could be explained by e.g. an earthquake, the site should ideally

be reoccupied. Alternatively, the corresponding gravity measurement, i.e. (gmeas)k or

(gmeas)j , could be dropped by outlier detection, for Z andM large enough, respectively.

4.3.1 σvib for SCG gravimeters

SCG gravimeters directly output gravity measurements as the least-squares averages of

N 1-second samples, along with their associated σp (Equation 4.8). The samples are

automatically recorded for a time duration chosen by the operator and filtered for high-

frequency noise (N = DUR - #Rej in the Scintrex user’s manuals). Due to both the

automated system and the high-frequency samples recording, these instruments offer

the possibility of successively recording Z least-squares gravity measurements, with Z

chosen by the operator. The gravity measurement of any jth site occupation is therefore

commonly determined as the weighted least-squares average of Z successive measure-

ments (blue highlight in Figure 4.2), and when the site has been reoccupied M times, a

further weighted-least-squares can be performed (orange highlight in Figure 4.2). Even

though additional filtering approaches are available to reduce the high-frequency noise

(e.g. Scintrex, 2009, Boddice et al., 2018), repeating (Z >1) and reproducing (M >1)

the acquisitions can already be an efficient approach to minimize the vibration noise

associated to an SCG measurement.

Even though the SCG sensor imperfections are expected to have a negligible con-

tribution to the final σvib (Goncharenko et al., 2018), handling and transportation can

induce some spring relaxation, so-called hysteresis effect, causing high gravity varia-

tions at the beginning of the gravity acquisition (e.g. Flury et al., 2007, Reudink et al.,
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2014, Champollion et al., 2018). Consequently, when fewer than a few tens of minutes

have been given to a levelled SCG gravimeter, to recover from handling and transporta-

tion, a systematic drift can be observed over the Z repeated gravity measurements

(e.g. Champollion et al. (2018) and Figure 4.3). In this case, only the measurements

after convergence to a plateau, if any, should be retained. If the convergence never

happens while the tilt offsets and sensitivities have recently been checked (e.g. Bonvalot

et al., 1998, Scintrex, 2009, Van Camp et al., 2017), the instrument is in need of repair

(Personal communication, M. Poland, 2016). Alternatively, when Z is too small to have

the chance to reach the convergence, a χ2 test (Section 3.4.4) could help discarding any

unrealistic weighted average, (gmeas)j , relative to a given site occupation (Figure 4.3).

Thanks to the high frequency of samples recording and because Z repeated measure-

ments are often recorded successively, reproducingM gravity measurements at each site

does not seem essential when carefully handling SCG gravimeters, but it can still be a

way to check that the instrument is behaving as expected.

Figure 4.3: Examples of systematic drift trend observed from Z=5 consecutive 1-minute
tidally-corrected gravity measurements (ĝTC = gmeas - ĝET - ĝOL, Equation 2.7), recorded at
station VIKR (Askja volcano, Iceland, Chapter 5), on the 17th (left) and 18th (right) of August
2015, using the Scintrex CG-5 No. 968. In each case, the weighted average gravity measurement
is highlighted ((gmeas)j , solid red line), with associated error standard deviation (dashed red
line). The χ2 tests with 50% probability emphasize that (gmeas)j is not representative of the
data on the left graph (χ2

ν-χ2
ν,0.50>0, Section 3.4.4), but it is acceptable on the right graph.

It has already been demonstrated that repeating Z measurements with an SCG

gravimeter, can provide a minimized (σvib)j (Figure 4.2) of ≤10 µGal, in low vibration
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conditions (e.g. Lederer, 2009, Budetta and Carbone, 1997, Bonvalot et al., 1998, Flury

et al., 2007). Even though this low magnitude can still be achieved on volcanoes, such

as at Askja, (Iceland), where, in both 2015 and 2016, I improved (σvib)j from ∼2-12

to ∼<1-4 µGal, by repeating Z=5 records per site occupation, this low level of noise

in not always guaranteed (Figure 4.4). Indeed, in 2017, the level of noise was higher

at Askja, and using the same procedure as in 2015 and 2016, I minimized (σvib)j from

∼5-38 to ∼2-17 µGal. Moreover, during the 2012 gravity survey carried out by Marco

Bagnardi (Jet Propulsion Laboratory, NASA) at Kilauea (Hawaii), the Z=5 recording

procedure lowered (σvib)j from ∼9-151 to ∼5-54 µGal (Figure 4.4). These observations

emphasize that the number Z of repeated records should be planned according to the

level of noise, which can vary from one time to another and from one place to another,

due to e.g. local seismicity.

Figure 4.4: Variations in error standard deviation due to vibration noise, σvib, when varying
the number Z, of consecutive gravity measurements, from 1 to 5, at Askja volcano (i.e. during
the three surveys that I carried out using the Scintrex gravimeter CG-5 No. 968), versus at
Kilauea, during the survey that Marco Bagnardi (Jet Propulsion Laboratory, NASA), carried
out with two Scintrex CG-5 gravimeters (No. 578 and No. 579, Bagnardi et al. (2014)). Both
graphs show the evolution of σvib at the noisiest (dashed curves) and least noisy site occupations,
SO, recorded during each survey.

4.3.2 σvib for LCR gravimeters

“Standard” LCR gravimeters are LCR instruments with initial devices, i.e. not upgraded

with any more precise components. Because these standard models are not able to au-

tomatically measure gravity, the N consecutive samples need to be recorded manually



98 Chapter 4: Error Budget Analysis for Residual Gravity Changes

by the user. Thanks to the analogue system, any single LCR measurement is a low-pass

reading, i.e. with vibration noise filtered out to some degree (e.g. LaCoste & Romberg,

2004). Even though it is likely that readings recorded with standard LCR instruments

are within two standard deviations of SCG measurements, the amount of vibration noise

can hardly been quantified. Indeed, the low frequency of samples recording implies that

the least-squares average (green highlight in Figure 4.2) is directly the gravity measure-

ment, (gmeas)j , of that jth site occupation (i.e. Z=1), and the typically small N , means

that (1) the associated vibration noise error, (σvib)j , is reduced by less than an order

of magnitude (Equation 4.8), and (2) there is no guarantee that (gmeas)j is represen-

tative of the population, neither that the samples distribution can be approximated as

Gaussian. Moreover, the common practice of manually rejecting outlier samples, using

an arbitrary threshold, biased the sampling, just as σp (Equation 4.8). Additionally, if

more than one user made the measurements, different perceptions of the reading line

can induce several tens of microgals of error, and the reading line should always be

approached from the same side, as errors due to backlash can be of a few tens of mi-

crogals (e.g. Rymer, 1989, LaCoste & Romberg, 2004). For all these reasons, caution

is therefore required when interpreting results from standard LCR gravimeters used

for temporal gravity studies, and because any anomalous (gs)i or (gmeas)j are unlikely

to be detected, nor filtered out, reoccupying stations during the survey to reproduce

measurements is essential.

When upgraded with an Aliod electronic feedback system, LCR gravimeters, are

able to continuously record N samples for a duration set by the user (e.g. LaCoste &

Romberg, 2004, Vigouroux et al., 2008, Zurek et al., 2012, Carbone et al., 2017). This

upgrade is necessary to record a sufficiently large amount of samples to be representative

of the population and to better estimate vibration as there is then a higher chance that

the sampling will be Gaussian (Equation 4.8). Moreover, it provides a sufficiently high

samples recording frequency to offer the possibility to record Z sets of acquisitions

(Figure 4.2). I could not determine whether each (σvib)k=1 to (σvib)k=Z are provided

by the instrument, such as when using SCG gravimeters (section 4.3.1). If not, the

final σvib can hardly be quantified, but if possible to retrieve each sample, then the
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record can be filtered out for high-frequency noise (e.g. Boddice et al., 2018), and each

(σvib)k can be estimated, to then determine (σvib)j for the given jth site occupation.

This parameter corresponds to the final σvib when M=1, or, alternatively, σvib can be

determined from the (σvib)j=1 to (σvib)j=M , when M >1 (Figure 4.2).

4.4 Error in differential tilt with respect to the base station

Any tilt of the instrument with respect to the vertical causes a decrease of gtilt in

measured gravity that can be computed using the small angle approximation:

gtilt = g0(cos θx · cos θy) = g0 cos θ ≈ g0

2
θ2 (4.9)

where θx and θy are the tilt angles in radians, in two orthogonal directions, θ is the

overall magnitude of tilt, also in radians, and g0 is the absolute gravity value at the site

of interest, usually approximated to the average gravity value at sea level or Standard

gravity, i.e. 9.806× 108 µGal (e.g. Scintrex, 2009, Crossley et al., 2013, Van Camp et al.,

2017).

The small angle approximation induces an error of <1 µGal compared with using

the non-approximated equation, as long as θ ≤1800 arcsec (Niebauer et al., 2016), and

because the largest possible residual from the Standard gravity is 4.2× 106 µGal (Hirt

et al., 2013), the approximation of any local g0 to the Standard gravity leads to an

error of <2 µGal when θ ≤200 arcsec (Equation 4.9). Because such tilt angles are not

expected to be reached in gravity surveying, the uncertainty of gtilt mainly depends on

the uncertainty of θ, which depends on the uncertainties of θx and θy.

The residual error, εtilt, is always negative, but when considering measurements

relative to the base station, and assuming that θx and θy are equal and drawn from

Gaussian distributions, the residual error, ε∆tilt (Equation 4.4), can be approximated

as Gaussian, with a mean of zero and an error standard deviation, σ∆tilt (Appendix B.1).

σ∆tilt depends on the number, M , of base occupations, but converges to ∼0.024σ2
θx

when the base has been occupied at least 8 times during the survey and σ2
θx

is in arcsec2

(Figure 4.5). The convergence to a plateau after a sufficiently large M is due to the
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probability density function formula of P(ε∆tilt) (Appendix B.1), involving a division

by the gamma function of n: for given tilt error standard deviations in orthogonal

directions, a large n leads to approximately constant P(ε∆tilt) and the associated error

standard deviations are then also approximately constant. Before computing these error

standard deviations for SCG and LCR gravimeters, I define ranges of most probable

orthogonal tilt errors, which depend on the type of tilt sensors used.

Figure 4.5: A-C: Probability density functions (dark green curves) of the spatial difference
in error due to tilt, ε∆tilt, between a station of interest and the base station (Equations B.7
and B.8, in Appendix B.1), and for different numbers of base occupations (M). As a check
on these theoretical distributions, I simulated 100,000 realisations of the errors for each case
and potted the corresponding histograms (light green). The mean and standard deviations,
ε̄∆tilt ± σ∆tilt, are highlighted in solid and dashed vertical brown lines, respectively. In these
examples, both 1-D standard deviations of tilt angle errors equal 60 arcsec, which is that
expected for a standard LCR G gravimeter, when the bubbles are centered within one division
(Section 4.4). D: Dependence of σ∆tilt with M at the base station. Each curve corresponds to
a specific type of tilt sensors (Refer to Table 4.2 for the curve indices).
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Gravimeter,
tilt sensors εθx = εθy

σθx = σθy
(arcsec)

σ∆tilt

(µGal)
Curve indices
in Figure 4.5D

SCG meters 0 1-5 0.02-0.6 X-X
LCR D

Electronic sensors 0.5-2 mm 1.9-7.5 0.1-1.4 X-X

LCR G-meters
Electronic sensors 0.5-2 mm 3.6-15 0.3-5 X-X

Shaded default
LCR D-meters 0.5-2 mm 7.5-30 ∼1.5-21 X-6

Shaded default
LCR G-meters 0.5-2 mm 15-60 ∼5-85 7-5

Unshaded default
LCR D-meters 0.5-2 mm 67.5-90 ∼110-195 4-2

Unshaded default
LCR G-meters 0.5-2 mm 75-120 ∼135-345 3-1

Table 4.2: Range of error standard deviations, σ∆tilt, when the base is occupied at least
8 times. The indices for each sensor/scenario are mentioned when plotted in Figure 4.5D,
otherwise ‘X’ means that the curve was not plotted. For each LCR tilt sensor/scenario, I
have estimated a reasonable range of error standard deviations for the orthogonal tilt angle
components, which I assume to be equal and equivalent to levelling within 0.5-2 mm (see
Section 4.4.1 for more details).

4.4.1 Reasonable ranges for σθx and σθy

SCG gravimeters are able to automatically correct for tilt angles up to ±200 arcsec in

both orthogonal directions, with σθx and σθy being equal to 1-5 arcsec depending on the

reading duration (e.g. Scintrex, 2009, Bonvalot et al., 1998). Because SCG gravimeters

provide real-time magnitudes of tilt angles, I assume that, even though the SCG tripod

is sensitive to the sun’s heat (e.g. Jacob et al., 2010), users are meticulous enough to keep

tilt angles much below the threshold for automatic correction, and I also assume that

tilt offsets and sensitivities are regularly checked (e.g. Bonvalot et al., 1998, Lederer,

2009, Van Camp et al., 2017). Based on these assumptions, σθx and σθy should not

exceed 1-5 arcsec, when using SCG gravimeters (Table 4.2).

Standard LCR gravimeters are equipped with two thermally-sensitive orthogonal

spirit bubble levels (LaCoste & Romberg, 2004) and, because these instruments do

not measure the tilt, tilt errors cannot be corrected on a case-by-case basis, and any

undetected tilt angle becomes part of the tilt error. Assuming that the bubbles can

be centred using the naked eye within 0.5-2 mm, depending on local vibration noise

conditions and surveyor’s meticulousness, σθx and σθy range within 7.5-30 arcsec, when
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using an LCR D meter, and 15-60 arcsec, when using an LCR G meter, as the respective

tilt sensitivities are 30 and 60 arcsec/division (LaCoste & Romberg (2004), Table 4.2).

Note that these tilt sensitivities should regularly be checked to avoid additional error of

a few tens of microgals (e.g. Rymer, 1989, Lederer, 2009). The sun’s heat can further

shift the bubbles by up to 60 arcsec/division in both x and y directions, and σθx and

σθy can therefore be raised up to ∼67.5-90 arcsec, when using a D meter, and ∼75-120

arcsec, when using a G meter (Table 4.2). Even though the tilt error of standard LCR

gravimeters is an unavoidable error, it is clear that the careful operation can minimize

it.

Default LCR gravimeters can be upgraded with pendulum-like electronic tilt sensors,

which are not thermally sensitive and have better tilt sensitivities than the standard

instruments, equivalent to 7.5 and 15 arcsec/division on a spirit level, for D and G

meters, respectively (LaCoste & Romberg, 2004). Assuming a human error of 0.5-2 mm

(as above), the use of such electronic tilt sensors reduces σθx and σθy to ∼1.9-7.5 arcsec,

when using D meters and ∼3.6-15 arcsec, when using G meters (Table 4.2).

Aliod LCR gravimeters (Section 4.3.2) are equipped with digital electronic tilt sen-

sors, which need to be manually adjusted to the maximum gravity before every survey

(LaCoste & Romberg, 2003). These devices record the magnitude of tilt angles in

orthogonal directions, but I was not able to find any information on their precision.

4.4.2 σ∆tilt for SCG and LCR gravimeters

From the reasonable possible ranges of σθx and σθy , detailed in Section 4.4.1, I have

applied my new method, presented at the beginning of this section 4.4, to estimate

the error contribution due to tilt effects relative to the base station: when the base

station has been occupied at least 8 times during the survey, σ∆tilt is systematically

≤0.6, 1.4 and 5 µGal when using SCG, LCR D and LCR G gravimeters, respectively

(Figure 4.5 and Table 4.2), and when the latter two have been upgraded with pendulum-

like electronic sensors (Section 4.4.1). On the other hand, using standard LCR D or G

gravimeters could introduce errors of a few tens to up to a few hundreds of microgals.

This clearly justifies the need to have a precise tilt sensor when performing gravity
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surveying, to secure low magnitudes of σ∆tilt.

4.5 Errors due to solid Earth tides and ocean loading

Solid Earth tides are a response to the interaction between gravitational and centrifugal

forces in the Sun-Moon-Earth system, causing periodical internal mass redistribution

of an ocean-less Earth and consequent gravity site displacement. The gravity signal,

gET, induced by these solid Earth tides during a measurement also includes some direct

gravitational effect on the proof mass of the gravimeter (e.g. Van Camp et al., 2017).

Unlike LCR gravimeters, SCG gravimeters have the capability to automatically reduce

for the estimated ĝET (Equation 2.6), at the time and location of the gravity mea-

surement. However, because this estimation is solely based on the Longman formula

(Longman, 1959), which assumes an elastic and ocean-less Earth, this approach is not

precise enough, when studying gravity changes at the microscale (e.g. Bonvalot et al.,

1998, Van Camp et al., 2017, Boddice et al., 2018).

The anelasticity of the Earth can be accounted for by scaling the Longman calcula-

tion using the appropriate gravimetric factor (e.g. Agnew, 2007, Battaglia et al., 2012,

USNO, 2016), which enables estimating ĝET with a residual error, εET,model, not exceed-

ing 3 µGal (Personal communication, M. Battaglia, 2018). Assuming that εET,model is

drawn from a Gaussian distribution with mean zero, 3 µGal has ∼5% chance of oc-

curring when σET,model ∼1.5 µGal. Alternatively, harmonic methods can also be used

to provide ĝET with εET,model of 0.1 µGal or even to the nanogal scale (e.g. Wenzel,

1996, Van Camp and Vauterin, 2005), leading to negligible σET,model when the signal

of interest is at the microgal scale.

The response of the ocean tides causes periodical redistribution of the ocean loads,

which produces additional internal mass redistribution and a resulting additional gravity

site displacement. The gravity signal, gOL, induced by such ocean loading effect, during

a measurement, is commonly estimated (ĝOL in Equation 2.6) using ocean tide models,

OTMs, and ocean tide programs, OTPs (e.g. Scherneck and Bos, 2011, Battaglia et al.,

2012). Depending on (1) the type of OTM chosen, (2) the method used to extrapolate
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coastlines, (3) the type of Earth model used, (4) the OTP chosen and (4) the site

location, a residual error, εOL,model, of between <1 and 5% usually arises (e.g. Boy

et al., 2003, Bos and Baker, 2005, Petit and Luzum, 2010, Stammer et al., 2014). This

translates to εOL,model ranging from ∼1.2 to 6 µGal, in an extreme case, i.e. when

considering a maximum peak-to-peak ocean loading amplitude of ∼120 µGal. When

assuming that εOL,model is drawn from a Gaussian distribution, with the highest 5%

residual error having ∼5% chance of occurring, this extreme case would lead to σOL,model

∼3 µGal. For lower ocean loading variations, σOL,model could be �1 µGal. When

necessary, the use of more recent OTMs and OTPs tends to reduce σOL,model as well as

when using additional tide gauges data or estimating the overall tidal variations (solid

Earth tides and ocean loading) directly from continuous gravity records, especially along

the coast or on small islands (e.g. Hautmann et al., 2010, Stammer et al., 2014).

In addition to these uncertainties induced by the model chosen to estimate ĝET and

ĝOL, some other errors may arise from the survey procedure. Indeed, the corresponding

error standard deviations, σET,survey and σOL,survey, linearly vary by up to ∼0.6 and

∼0.06 µGal, respectively, per minute of timing residual error (εt), up to ∼1×10−5 and

∼2×10−5 µGal, respectively, per meter of latitude error (εlat), and up to ∼2×10−5

and ∼3×10−5 µGal, respectively, per meter of longitude error (εlon). Based on these

variations, σET,survey and σOL,survey are mostly dependent on timing errors, and εt needs

to be within 1.5-30 min, depending on the location of the area of study, to minimize

σET,survey and σOL,survey to ≤1 µGal (Figure 4.6). In the worst case, recording the time,

10 min before an LCR measurement is carried out, could induce a σET,survey of up to

∼6 µGal, while σOL,survey would still be ≤1 µGal. Making a timing mistake of 1h,

for example due to confusion between UTM (Coordinated Universal Time) and local

time, could introduce in the worst case σET,survey and σOL,survey of ∼36 and ∼3.9 µGal,

respectively.

In summary, when being meticulous with respect to time in the field and when

choosing appropriate models to estimate ĝET and ĝOL, the resulting overall error stan-

dard deviations, σET =
√
σ2

ET,model + σ2
ET,survey, and σOL =

√
σ2

OL,model + σ2
OL,survey

(Equation 4.5) could be less that one microgal, but the use of inaccurate models and/or
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Figure 4.6: Spatial variations in the error standard deviations, σET,survey and σOL,survey,
corresponding to the survey error component of the respective gravity signals due to solid
Earth tides (left column) and ocean loading (right column), calculated, per node, over a 5-by-
5 degree grid globe, from the approximately Gaussian distributions of the respective residual
errors, εET,survey and εOL,survey, which were interpolated for a timing residual error of 1 min
(εt, top row), a latitude residual error of 1 meter (εlat, middle row) and a longitude residual
error of 1 meter (εlon, bottom row), over a year of tidal variations (5-min spacing), against time,
latitude and longitude, respectively. These tidal variations were estimated using the GTOOLS
package, in which I incorporated the ocean harmonics from the FES2012 model (Lyard et al.,
2006; updated), to estimate ocean tides (Petit and Luzum, 2010, Scherneck and Bos, 2011,
Battaglia et al., 2012). Repeating this procedure while varying the magnitudes of εt, εlat and
εlon highlighted linear relationships with σET,survey and σOL,survey (See Section 4.5).

the presence of timing errors, could raise σET and σOL to a few tens of microgals.

4.6 Error related to atmospheric pressure and temperature

During a survey, the gravitational attraction of the atmospheric mass as well as the

consequent deforming Earth’s surface, together induce an overall gravity signal, gP,

affecting any gravity measurement. Even though gP usually remains spatially constant

over areas of ∼50 km-radius around the occupied site, it can vary temporally due to

air pressure changes, with an amplitude of a few millibars for periods of months or

years, up to a few tens of millibars per day (e.g. Merriam, 1992, Bonvalot et al., 1998,

Jousset et al., 2000a, Cigolini et al., 2009). Merriam (1992) demonstrated that ĝP
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(Equation 2.6) can be estimated using a precise admittance value of -0.356±0.1 µGal

mbar−1. Continuously or hourly measuring air pressure at, at least, one station (e.g.

Jacob et al., 2010), provides precise time-series of ĝP, and ĝP ± σP can then be derived

at any time t, using the weighted least-squares, where the variances of the air pressure

measurements are listed on the diagonal of the variance-covariance matrix. When air

pressure variations have not been monitored, I demonstrate in Section 4.7 that the

unknown variations in ĝP can be captured as an error, at the base station, from the

time-series of tidally-corrected base measurements, and due to the wide spatial stability

of air pressure, this error can be constant at all stations.

Even though sealed, spring gravimeters can be affected by atmospheric temperature

(e.g. Bonvalot et al., 1998, Fores et al., 2017). Because it is likely that the air tempera-

ture varies spatially and temporally, by at least a few degrees during a survey, variations

in the resulting gravity effect, gT, can be of a few tens of microgals (e.g. El Wahabi

et al., 2001). Because gT is usually instrument-dependent, no precise admittance value

can be derived for spring gravimeters in general. To overcome this problem, an admit-

tance value (TEMPCO) is determined for every manufactured SCG gravimeter, which

can then automatically correct for internal temperature variations within ±2 mK, but

despite this improvement, this automatic correction might not always be reliable, nei-

ther correlated with air temperature effects (e.g. Fores et al., 2017). Similarly as for

air pressure changes, I demonstrate in Section 4.7 that any possible unknown variation

in ĝT can be captured as an error, at the base station, from the time-series of tidally-

corrected base measurements, and this error might be approximately constant over the

whole area of study if similar temperature variations are observed at different sites.

As good practice, large effects to due thermal shocks can be minimized when keeping

resting gravimeters at a similar temperature to field conditions, and when ensuring

that batteries are always properly charged (e.g. Seigel, 1995, Rymer, 1996, LaCoste &

Romberg, 2004, Scintrex, 2009). Thermal shocks can be detected by, for example, com-

paring the drift curve in the field with the drift curve at rest (Personal communication,

T. Jacob, 2018).
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4.7 Instrumental drift and base component

Spring creep leads to drift of the gravity reference of spring gravimeters with time. How

it drifts depends on the instrument and age of the sensors, but is usually approximately

linear for periods of up to about a week, and quadratic or even cubic for longer periods

(e.g. Budetta and Carbone, 1997, Bonvalot et al., 1998, Debeglia and Dupont, 2002,

Lederer, 2009, Jacob et al., 2009, Battaglia et al., 2018). This instrumental drift needs to

be characterized to be able to predict the gravity value, ĝbase, at the base station, at the

time of any gravity measurement, and reduce this effect to determine the drift-corrected

gravity signal at a given site (ĝDC in Equation 2.8).

The instrumental drift is commonly modelled from the daily time-series of repro-

duced base measurements, after they have been corrected for tidal effects, and possi-

bly for known atmospheric pressure and temperature changes (Sections 4.5 and 4.6).

This approach implies that the drift offsets and sensitivity are regularly checked (e.g.

Van Camp et al., 2017), and that the user is always consistent in the measuring proce-

dure at each site, without changing the clock, to keep any possible timing error constant

throughout the survey. In addition, it assumes that no temporal gravity changes that

could have occurred during the survey, other than due to the instrumental drift, re-

mains at that stage. But this hypothesis might not always be true when, for example,

large unknown variations in air pressure or air temperature have occurred, or when,

for example, heavy precipitations have increased the groundwater-mass content of the

unsaturated zone during the survey (Sections 4.6 and 4.10). Other effects, such as in-

appropriate tidal corrections or technical issues, can also induce extra variations to the

drift, but assuming that users are careful when handling their instrument and perform-

ing the gravity reductions, these effects are likely to have a much smaller impact that

the effects due to pressure, temperature and groundwater-mass changes, identified here

as the meteorological effects.

I go on to show that it is best to estimate the instrumental drift over at least a few

days rather than a single day, in order to take into account these possible non-negligible

meteorological effects in the variances of the drift parameters, and propagate them into

the variance, σ2
base, of ĝbase (Equation 4.5). This procedure includes the meteorological
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effects at the base station only, but the results can be generalised to the entire survey

area when the effects uniformly affect the zone of interest (Sections 4.6 and 4.10).

Alternatively, when meteorological effects are not uniformly distributed, several base

stations can be set up.

4.7.1 Theory

Over up to a week, the reference of the spring gravimeter is likely to vary at a linear

rate (see beginning of Section 4.7), ˆ̇gref ± σref , which can be estimated along with the

y-intercept, ĉ0 ± σc0 , using a weighted least-squares approach, from the time-series

of all the M reproduced tidally-corrected base measurements, gTC, recorded at the

times t = tBi , and possibly corrected for atmospheric pressure and temperature effects.

The variances, σ2
TC, characterizing the vibration noise, tidal errors, and possibly the

pressure and temperature errors (Sections 4.3, 4.5 and 4.6), are listed in the diagonal

of the variance-covariance matrix.

As highlighted by Battaglia et al. (2018), several stations can be used to estimate

the drift. But, rather than estimating ˆ̇gref and ĉ0 from an arbitrary superposition of

the data, considering the first base measurement as the reference, I suggest to instead

estimate a single drift rate, along with as many y-intercepts as the base stations used.

In this case, the forward matrix operator has one column listing the times, and each

other column relative to each y-intercept, are a list of ones and zeros, depending on

what station was measured at what time. For example, if the stations P and Q are

taken into account to estimate the drift parameters, the algebraic system is:



[
(gTC)Bj=1

]
P[

(gTC)B2

]
Q[

(gTC)B3

]
P[

(gTC)B4

]
P[

(gTC)B5

]
Q

...[
(gTC)Bj=M

]
Q



=



tBj=1 1 0

tB2 0 1

tB3 1 0

tB4 1 0

tB5 0 1

... ... ...

tBj=M 0 1




ˆ̇gref

(ĉ0)P

(ĉ0)Q

 (4.10)
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In case of sudden drift offset(s) (or tares), which can easily happen when using LCR

and Scintrex CG-3/CG-3M gravimeters, but are unlikely to occur when using Scintrex

CG-5 instruments (e.g. Rymer, 1989, Seigel, 1995, Scintrex, 2009), the model should be

adapted to estimate these offsets (e.g. Equation 3.3).

The possible error impact of a non-negligible meteorological effect can be detected

by testing the goodness-of-fit of the model, using a χ2 test, with ν equalling M -2

(Section 3.4.4). When the χ2
ν related to any given drift function is smaller or equal to

the expected χ2
ν,0.95, the assumed linear model fits the data within 95% confidence. In

this case, the meteorological errors are either negligible and/or their gravity effects have

been estimated well, and the standard deviation, σbase, associated with any predicted

ĝbase = ˆ̇greft+ ĉ0, can then be determined by propagation of errors:

σbase =
√

(tσref)2 + σ2
c0 + 2t cov(ˆ̇gref , ĉ0) (4.11)

On the other hand, when the obtained χ2
ν exceeds the expected χ2

ν,0.95, either the

linear assumption is wrong or the errors are underestimated. When the linear model

looks appropriate with all (gTC)Bi and all (σ2
TC)Bi precisely estimated, such situation

probably indicates non-negligible meteorological errors. In this case, the residual error,

(εbase)Bi , between any observed (gTC)Bi and its prediction (ĝTC)Bi , equals the data

error, (εTC)Bi plus some possible meteorological error, (εmet)Bi :

(εbase)Bi = (εTC)Bi + (εmet)Bi (4.12)

and, the same relationship applies to variances:

(σ2
met)Bi = (σ2

base)Bi − (σ2
TC)Bi (4.13)

Deriving (σ2
base)Bi at any time t = tBi using the drift rate estimated using weighted

least-squares (Equation 4.10) would not provide an appropriate estimate is this situation

of χ2
ν > χ2

ν,0.95. However, re-estimating the drift parameters using the least-squares

percentile bootstrap approach (Section 3.4.4) would be appropriate as the uncertainty of
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the linear model, likely due to unknown meteorological effects (Equations 4.12 and 4.13),

would be taken into account. These re-estimated errors, resulting from thousands of

iterations, can then be propagated into (σbase)Bi using Equation 4.11. It is worth

noting that when several base stations are considered, all the data should be combined

by superimposing the linear functions, previously estimated from Equation 4.10, to

estimate only one average intercept via the percentile bootstrap approach, and then use

Equation 4.11.

At this stage, the unknown meteorological effects have been included in our estimate

of (σ2
base)Bi , i.e. for any base station measurement. Even though meteorological effects

can be spatially-constant over the area of study (Sections 4.6 and 4.10), it is wrong to

estimate (σ2
met)ti any time t = ti and relative to any given station, using Equation 4.13,

where (σ2
TC)ti would be associated with the tidally-corrected measurement recorded

at the given station, and (σ2
base)ti would have been derived from the drift function.

Indeed, these two error parameters have been estimated by propagation of errors, and

differentiating them will provide a (σ2
met)ti , which will be generally smaller than the

original variance that we are trying to determine.

Nevertheless, because Equation 4.13 also applies to the variances of drift rates, it is

possible to estimate a spatially and temporally constant σ2
met per drift function:

[
σ2

ref

]
met

=
[
σ2

ref

]
LS,boot

−
[
σ2

ref

]
WLS

(4.14)

where
[
σ2

ref

]
met

is the drift rate variance that would be expected using weighted least-

squares, with constant weights, equaling the inverse of the σ2
met that we are looking for,[

σ2
ref

]
LS,boot

is the average drift rate variance obtained from the least-squares percentile

bootstrap approach described above, and
[
σ2

ref

]
WLS

is the drift rate variance obtained

using weighted least-squares on the original tidally-corrected original base measure-

ments, i.e. from Equation 4.10. Using trial and error, it is possible to search for the

smallest constant σ2
met that would provide the expected

[
σ2

ref

]
met

, while satisfying a χ2

test with 95% probability.

To verify that this approach is reliable, a simulation scenario can be tested, where the
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above method is applied using the original errors of the tidally-corrected base measure-

ments, to which random errors, generated from a Gaussian distribution with variance

equaling σ2
met, are added. As mentioned in the next section, the original variance σ2

met

can be retrieved within a few microgals.

When the area of study is too large to reasonably assume spatially-constant meteo-

rological effects, having several scattered base stations, and performing this procedure

per cluster of sites around each base station, could contribute to estimating a tempo-

rally constant σmet per station cluster. Moreover, weekly variations of σmet could be

monitored for long surveys, from weekly drift function estimations.

4.7.2 Applications to Askja

I have applied the overall method described above to the gravity data that I recorded

at the Askja caldera (Iceland), during the summers 2015, 2016 and 2017 (see Chapter 5

for more information on the surveys). In each case, non-negligible unknown temporal

changes, which could possibly be due to meteorological effects, were detected by the χ2

test (Section 4.7.1). To take these effects into account in the drift model, I used the

least-squares percentile bootstrap approach, which increased the drift rate variances by

an order of magnitude compare to when using the usual weighted least-squares approach

(Table 4.3).

Survey
[
ˆ̇gref ± σref

]
WLS

[
ˆ̇gref ± σref

]
LS,boot

2015 -18.56±0.03 µGal -18.70±0.33 µGal
2016 -18.90±0.01 µGal -18.73±0.23 µGal
2017 -24.31±0.08 µGal -24.43±0.61 µGal

Table 4.3: Drift rates and associated error standard deviations (ˆ̇gref ± σref), estimated, at
Askja volcano, from the tidally-corrected reproduced base station measurements that I recorded
during the summer surveys in 2015, 2016 and 2017 (see Chapter 5 for more information on the
surveys). I compare here the linear regression estimations obtained either using weighted least-
squares and the original errors (WLS), or using the least-squares percentile bootstrap approach
(LS,boot). See Section 4.7.1 for more details on the method.

This increase propagated into the estimation of σbase, associated with any predicted

ĝbase at any time t of a site occupation (Figure 4.7 and 4.8). It is worth noting that

one way to minimize σbase is to increase the number of base measurements, and that
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σbase is always smaller in the middle of the time-series when performing the percentile

bootstrap method (Figure 4.8). Taking additional base measurements a few days before

and after the survey could therefore also contribute to minimizing σbase.

Figure 4.7: Drift function estimation combining base measurements recorded at two base
stations, using the Scintrex gravimeter CG-5 No. 968 (Chapter 5). The blue data points are
the tidally-corrected base measurements (TC), with error bars taking into account vibration
noise and tidal errors (Section 4.3 and 4.5), the red line highlights the best fit linear drift rate,
which is very similar when using WLS or LS,boot (Table 4.3), and the black lines highlight
the ±2σ bounds for σbase at any time during the survey, when estimated using LS,boot. This
therefore takes into account the uncertainty of the model, which is assumed to be caused by
unknown meteorological effects (Section 4.7.1).

Because pressure and temperature variations recorded at three weather stations in

the vicinity of Askja showed similar temporal changes (Figure 4.9), I assumed that the

meteorological effects due to pressure and temperature changes are spatially constant at

any time t, over the Askja caldera. In addition, I assumed that the groundwater mass

variations in the unsaturated zone are also spatially constant over the caldera, which

measures ∼8 km across. Even though this assumption might not be true, it might be a

reasonable approximation as precipitations and humidity often vary along with pressure

and temperature. Based on these assumptions, I translated these unknown meteorolog-

ical effects into a spatially and temporally constant error standard deviation, σmet, of
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Figure 4.8: Graph showing the difference in magnitudes of σbase, for the three surveys that
I carried out at Askja volcano (colors), using either the usual weighted least-squares (WLS)
approach or the least-squares percentile bootstrap (LS,boot), which is the right approach to
take into account unknown meteorological effects (Section 4.7.1).

∼22, ∼34 and ∼42 µGal in 2015, 2016 and 2017, respectively (Equation 4.14). To verify

whether these original σmet were reasonably estimated, I performed the simulation test

introduced at the end of Section 4.7.1, and I could retrieve the σmet with less than 2

microgal difference. Because the magnitudes of pressure and temperature changes (Fig-

ure 4.9) should translate into relatively small temporal gravity changes (Section 4.6),

the meteorological effects characterized by σmet at Askja were most likely mainly due

to groundwater-mass variations in the unsaturated zone (Sections 4.7.1 and 4.10).

This overall drift analysis demonstrates the benefits of estimating the drift function

over at least a few days, and even though regularly taking measurements at the base

station is essential to reduce errors and detect any possible jump, the common practice

of systematically taking a base measurement at the beginning and end of each day does

not seem to be strictly necessary anymore.
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Figure 4.9: Variations of atmospheric pressure and temperature recorded at three weather
stations around Askja (colors) during each survey that I carried out in the summers 2015, 2016
and 2017 (Icelandic MET office, 2019).

4.8 Error due to temporal variations in calibration factor

Spring gravimeters require a calibration factor to convert any gravity sample, from

counter units (LCR meters) or volts (SCG meters) to gravity values in milligals (gs in

Section 4.3) (Scintrex, 1995, Valliant, 1991, Scintrex, 2009):

gs(t) = k̂0% (4.15)

where % is the reading before conversion and k̂0, is the calibration factor initially de-

termined at the manufacture (so-called GCAL1 in the Scintrex user’s manual). SCG

gravimeters automatically perform this conversion, but it has to be manually performed

when using LCR gravimeters, with a calibration table provided by the manufacturer,

listing a value of k̂0 for different ranges of milligals (LaCoste & Romberg, 2004).

First of all, the manufacture calibration itself induces some error in k̂0, specific to

each type of gravimeter, and equalling ∼10−4, ∼5×10−4 and ∼5×10−5 µGal when using

SCG, LCR D and LCR G gravimeters (e.g. Valliant, 1991, Scintrex, 2009). Then, it

is common that k̂0 varies with time due to small instabilities in the reading sensors,
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such as stress relaxation, which induces additional error if not estimated (e.g. Valliant,

1991, Budetta and Carbone, 1997, Scintrex, 2009). Here, I present a new approach to

estimate the calibration error of any temporal gravity change.

In theory, any calibration factor k(t) (Equation 2.6), and so-called GCAL2 in the

Scintrex user’s manual, can be computed by multiplying k̂0 by a scale factor f(t), which

describes the variations from k̂0 between the time of manufacture and t:

k(t) = k̂0f(t) (4.16)

Consequently, the residual error, εk(t), of the estimated k̂(t), depends on k̂0 and on

the error, εf(t), of the estimated f̂(t), which can be determined using different methods

described later, in Section 4.8.1:

εk(t) = k̂0εf(t) (4.17)

As demonstrated in Appendix B.2, the calibration residual error, ξ∆cal (Equa-

tion 4.1), of the temporal calibration component relative to the base (∆ĝ∆cal in Equa-

tion 2.11), can be derived from the above equation, as follows:

ξ∆cal = εf(t2)

[
ĝDC

]
t2
− εf(t1)

[
ĝDC

]
t1

(4.18)

where εf(t1) and εf(t2) are the residual errors of the scale factors, estimated for the

respective survey at t1 and t2. These scale factor residual errors lead ξ∆cal to depend

on whether the same or different gravimeters are used between surveys, and on whether

variations in the calibration factor have been monitored (by user recalibrations). It is

worth noting that because ξ∆cal depends on the observed gravity signals, it correlates

somewhat with topography.

4.8.1 Dependence on the number of gravimeters used

When two different instruments are used (I1 6= I2), εf(t1) and εf(t2) are independent,

and the standard deviation, σ∆cal (Equation 4.6), of the residual error, ξ∆cal, is then



116 Chapter 4: Error Budget Analysis for Residual Gravity Changes

determined by propagating the errors from Equation 4.18:

[
σ∆cal

]
I1 6=I2

=

√
σ2
f(t2)

[
ĝ2

DC

]
t2

+ σ2
f(t1)

[
ĝ2

DC

]
t1

(4.19)

On the other hand, when the same instrument is used for the two surveys (I1 = I2),

a potential calibration change implies that εf(t1) and εf(t2) covary:

εf(t2) = εf(t1) + εδf (4.20)

where εδf describes the change in the scale factor between the two surveys. Because

of the correlation between εf(t1) and εf(t2), it is not straightforward to compute σ∆cal

from Equation 4.18. However, by substituting Equation 4.20 into Equation 4.18, ξ∆cal

can be expressed with parameters that do not covary:

[
ξ∆cal

]
I1=I2

= εf(t1)∆ĝDC − εδf
[
ĝDC

]
t2

(4.21)

and, by propagation of errors, σ∆cal, can be computed as:

[
σ∆cal

]
I1=I2

=

√
σ2
f(t1)∆ĝ

2
DC + σ2

δf

[
ĝ2

DC

]
t2

(4.22)

Because the temporal change in gravity signature relative to the base, ∆ĝDC, is

usually much smaller than the relative gravity of a single survey, ĝDC, the above equation

can be approximated as follows:

[
σ∆cal

]
I1=I2

≈
√
σ2
δf

[
ĝ2

DC

]
t2

(4.23)

4.8.2 σ∆cal when gravimeters have been recalibrated by users

The most common method to recalibrate spring gravimeters consists of repeating mea-

surements along a calibration line, where the absolute gravity values are well-known:

the ratio of absolute gravity ties to the corresponding observed gravity ties, i.e. obtained

from spring gravimeter measurements, provides an estimation, f̂cal ± σfcal
, of the scale

factor at the time tcal of recalibration (e.g. Debeglia and Dupont, 2002). The overall
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calibration line should cover, at least, a similar gravity range as the maximum ĝDC value

at the study of interest (e.g. Flury et al., 2007, Jacob et al., 2010, Meurers, 2012), and

therefore, it is better if the calibration line is located within the study area.

Such recalibration procedures can be performed either during or outside the sur-

vey period. In the former case, simultaneously recording absolute or alternatively

super-conducting measurements (Section 2.2.1), with relative measurements (i.e. hy-

brid gravimetry, e.g. Francis and Hendrickx (2001), Bonvalot et al. (2008), Carbone

et al. (2017)) implies that the estimated f̂cal directly equals f̂(t), and the error stan-

dard deviation of the scale factor for this given survey (i.e. σf(t1) or σf(t2), Section 4.8.1)

equals σfcal
. Consequently, σ∆cal is calculated using Equation 4.19, no matter whether

the same or different gravimeters have been used between surveys. Based on published

time-series of recalibrations, we can expect σf(t1) or σf(t2) to range within ∼30-300 ppm

if directly derived from recalibration procedures (Table 4.4), and as an example, σ∆cal

should therefore be ∼4.2-45 µGal when
[
ĝDC

]
t1
≈
[
ĝDC

]
t2

= 100 µGal.

Gravimeter Method of recalibration
Ranges of
recalibration
errors (σcal)

Scale factor rates: ˆ̇
f ± σ ˆ̇

f

(Weighted least-squares)
Ref.

CG-3M
No.9310234

-The residual gravity changes reflect
variations in the calibration scale factor.
-Calibration line near the area of study,
with unknown absolute gravity values.

1. ∼5 ppm/d (∼0-7 mth)
2. ∼2 ppm/d (∼7-12 mth)
3. ∼0.05 ppm/d (≥∼12 mth)

[1],[2]

CG-5
No.40236

-Calibration line, with known absolute
gravity values, ∼150 km away from the
study area.

∼50-65 ppm ∼0.39±0.04 ppm/d (≥∼6-48 mth) [3]

CG-5
No.167

-2 calibration lines with known absolute
gravity values, one at the area of study
and the other ∼50-100 km away.

∼120-350 ppm
1. ∼1.8±0.3 ppm/d (∼0-14 mth)
2. ∼1.8±0.3 ppm/d (∼0*-9 mth)
3. ∼0.07±0.96 ppm/d (≥∼9 mth)

[4],[5]

CG-5
No.578

-3 calibration lines with known absolute
gravity values, at ∼400 km, ∼150 km
and ∼1200 km away from the area of study.

∼30-80 ppm ∼0.06±0.03 ppm/d (≥∼16 mth) [6]**

CG-5
No.579 Same as for the CG-5 No.578 ∼30-80 ppm 1. ∼0.01±0.03 ppm/d (≥∼16 mth)

2. ∼-7.6±1.14 ppm/d (∼0*-3 mth) [6]**

Table 4.4: Summary of error parameters relating to user recalibrations that have been reported
in previous studies, with associated error standard deviations mentioned when provided. (*)
A new k̂0 had been estimated during a new servicing at the manufacture. (**) The rates from
this paper should be treated cautiously as they rely on relatively low numbers of recalibrations.
[1] Budetta and Carbone (1997); [2] Carbone and Rymer (1999); [3] Meurers (2012); [4] Jacob
et al. (2009); [5] Jacob et al. (2010); [6] Battaglia et al. (2018).

When recalibrations are performed outside the survey period, f̂(t) can be inter-

polated from a linear or linear segmented model, based on subsequent recalibration

measurements:

f̂(t) =
ˆ̇
ft+ f̂0 (4.24)
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where ˆ̇
f is the scale factor rate of the weighted least-squares regression line, fitting the

recalibration time-series, f̂0 is the y-intercept and, by propagating the errors,

σf(t) =

√
(tσ ˆ̇

f
)2 + σ2

f̂0
+ 2t cov(

ˆ
ḟ , f̂0) (4.25)

where σ ˆ̇
f
and σf̂0

are the respective error standard deviations of ˆ̇
f and f̂0, estimated by

the weighted least-squares approach. Assuming reasonable values for σf(tcal) of between

30 and 300 ppm (Table 4.4), σf(t) ranges between ∼21 and ∼300 ppm, when recalibra-

tions are performed only at the beginning and end of a 10-year period (Figure 4.10A).

On the other hand, σf(t) is lowered between ∼9 and ∼170 ppm when recalibrations are

performed every year over 10 years (Figure 4.10B). In each case, the smallest errors are

obtained when the survey occurs in the middle of the recalibration time-series, and the

longer the time-series, the more minimized σf(t), for any given survey at t. It is worth

noting that σf(t1) or σf(t2) might be better minimized when interpolated from a user

recalibration time-series, even when these user-recalibrations are performed during the

surveys (see beginning of Section 4.8.2).

Figure 4.10: Error standard deviations of the scale factor at any time (dashed lines), over
10 years, estimated based on the number of user recalibrations (circles) and precisions of these
recalibrations (colors, 30 versus 300 ppm).
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By substituting these ranges of values into Equation 4.19, where σf(t1) = σf(t2) =

σf(t), and into Equation 4.23, where σδf = σ ˆ̇
f
δt,
[
σ∆cal

]
I1 6=I2

is a few tens of microgals

when assuming a recalibration time-series of 10 years, and, for the same 10-year period of

recalibrations,
[
σ∆cal

]
I1=I2

is <5 µGal when δt = 1 year, i.e. per year between surveys

(Figure 4.11). Using the same regularly recalibrated gravimeter is therefore usually

the best option for minimizing calibration errors, especially when looking at temporal

gravity changes over just a few years.

Figure 4.11: Standard deviation of the calibration error in the temporal change of drift-
corrected gravity signal against the magnitude of drift-corrected gravity in the area of study,
when same (right) or different (left) gravimeters are used for the two surveys. Both cases cover
10 years, during which 2 recalibrations (Case A) versus 11 (Case B) have been carried out.
Precision of 30 or 300 ppm are tested in each case.

It is worth noting that recalibration along calibration lines might not be required

when the residual gravity changes (Section 4.1) directly reflect temporal changes in

calibration factor (e.g. Budetta and Carbone, 1997). In this case, the error of the

residual gravity changes represents the calibration error.

4.8.3 σ∆cal when gravimeters have not been recalibrated by users

When no recalibration has been performed, the samples gs are calibrated using only the

initial (or re-initiated, Table 4.4) calibration factor, k̂0, i.e. f(t) = 1 in Equation 4.16.
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Consequently, the error standard deviation, σf(t), of this arbitrary scale factor of 1,

takes into account the unmonitored temporal variations in the scale factor rate, for the

time duration ∆t, between manufacture and t, in addition to the initial error standard

deviation of k̂0 (values provided per gravimeter at the beginning of Section 4.8).

Although it is hard to predict unmonitored variations in the scale factor, I assume

here some rates of change based on studies where gravimeters have been regularly

recalibrated, to get a feeling of magnitudes of calibration error to be expected. From

Table 4.4, I assume an SCG scale factor rate with a mean of zero and error standard

deviation of 3 ppm per day, if the manufacturer calibration occurred less than a year

ago, and 0.5 ppm per day if it was carried out more than a year ago. This illustrates

the usual tendency of SCG scale factor rates to reach a plateau about one year after

manufacture or servicing (Table 4.4). Based on a recorded LCR scale factor rate change

of ∼67 ppm/year (e.g. Budetta and Carbone, 1997; and references therein), I assume

an LCR scale factor rate with mean zero and error standard deviation that increases by

0.1 ppm per day (an error of ±67 ppm has therefore a ∼5% chance of occurring after

one year). This LCR rate should be treated cautiously as discrete jumps of ∼1000 ppm

in the scale factor rate of LCR gravimeters have been observed over a few months (e.g.

Budetta and Carbone, 1997; and references therein).

If the unmonitored temporal change in scale factor always have the same sign (A.

Hugill, personal communication, 2017), σf(t), for each instrument, can be expressed as

follows:

[
σf(t)

]
SCG

=
√

(10−4)2 + [(3× 10−6)∆t]2 for ∆t ≤ 365 days (4.26)[
σf(t)

]
SCG

=
√

(10−4)2 + [(3× 10−6)× 365]2 + [(5× 10−7)(∆t− 365)]2

for ∆t > 365 days (4.27)[
σf(t)

]
LCRD

=
√

(5× 10−4)2 + [10−7∆t]2 (4.28)[
σf(t)

]
LCRG

=
√

(5× 10−5)2 + [10−7∆t]2 (4.29)

By substituting these equations into Equation 4.19, the use of two different unre-

calibrated gravimeters, leads to
[
σ∆cal

]
I1 6=I2

<3 µGal for ∆t ≤10 years and per mGal



4.8 Error due to temporal variations in calibration factor 121

of
[
∆ĝDC

]
t1

=
[
∆ĝDC

]
t2
, i.e. for example

[
σ∆cal

]
I1 6=I2

<300 µGal when
[
∆ĝDC

]
t1

=[
∆ĝDC

]
t2

= 100 mGal (Figure 4.12). Moreover,
[
σ∆cal

]
I1 6=I2

increases with ∆t.

If however, the same unrecalibrated gravimeter is used for the two surveys, σδf =

σf(t) δf in Equation 4.23. Assuming
[
∆ĝDC

]
t2
≤100 mGal and σf(t) = 3, 0.5 and

0.1 ppm per day and per year between surveys (Equations 4.26-4.29),
[
σ∆cal

]
I1=I2

is

up to ∼110 µGal and <20 µGal when using an SCG meter during the first year and

more than one year after manufacturer calibration, respectively, and it is <5 µGal

when using an LCR gravimeter (Figure 4.12). Consequently, for a same magnitude of[
∆ĝDC

]
t1
≈
[
∆ĝDC

]
t2
, it is better to use the same rather than different unrecalibrated

gravimeters, as the calibration error then depends mostly on the time between surveys

(δt) rather than on the time since manufacturer calibration (∆t). But, as mentioned

previously, these results are based on assumed scale factor rates, which might not always

be appropriate, especially when using LCR gravimeters, as scale factor rate jumps can

occur.

Figure 4.12: Same as Figure 4.11, but here, no recalibrations have been performed during the
10-year period, and the variations in scale factor depend on the gravimeter used and either the
time since manufacture, ∆t, when different gravimeters are used, or the time between surveys,
δt, when the same instrument is used (Section 4.8.3).

In conclusion, calibration errors are kept to a minimum when always using the same

regularly recalibrated gravimeter, and, in this case, errors of <5 µGal can be achieved
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with any spring gravimeter, especially when the surveys are ≤1 year apart. However,

using unrecalibrated gravimeters can easily lead to tens or hundreds of microgals of

error.

4.9 Error associated with temporal gravity change due to

elevation change

Any change in surface elevation, ∆h, between two surveys, causes a gravity change

with two components: ∆gelev, due to the change in elevation itself and usually related

to subsurface volumetric strain at the deforming reservoir (Section 1.4), and a possible

∆gdef , due to subsurface displacements of density gradients, from crustal compressibil-

ity around the deforming body (e.g. Walsh and Rice, 1979, Rundle, 1982, Rymer, 1994,

Battaglia et al., 2008, Segall, 2010a, Vajda et al., 2015). Even though the aim is to

isolate residual gravity changes relative to mass changes, other than due to elevation or

groundwater bodies (Section 4.2), the possible ∆gdef signal should, in theory, be cor-

rected. However, because its estimation implies assuming geometries for the deforming

source, this should be part of the modelling and interpretation. Consequently, ∆ĝDC

can only be reduced by an estimate of ∆gelev (Equation 2.10), at this stage (I treat

temporal gravity changes due to groundwater-table fluctuations in Section 4.10).

Any ∆ĝelev is commonly quantified by multiplying the estimated ∆ĥ by a gravity

gradient. In the literature, either a locally measured vertical gravity gradient, V GG,

or the theoretical free-air gravity gradient, FAGtheo, are used (V GG, e.g. Williams-

Jones and Rymer, 2002, Williams-Jones et al., 2003, de Zeeuw-van Dalfsen et al., 2005,

Bonaccorso et al., 2011, Greco et al., 2012) (FAGtheo, e.g. Jousset et al., 2000b, Battaglia

et al., 2003, Johnson et al., 2010, Del Negro et al., 2013, Bagnardi et al., 2014). Before

estimating a reasonable range of error for any ∆ĝelev, I demonstrate that FAGtheo is

the most appropriate and most precise to use, and I provide ranges of expected errors

when using any of these two gravity gradients.
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4.9.1 Most appropriate gravity gradient to estimate ∆ĝelev

By definition, any variations in the V GG depend on the surrounding topography, the

non-uniform static density distribution below the surface, the elevation change ∆h pro-

ducing ∆gelev, and the subsurface variations in density, producing ∆gdef (e.g. LaFehr,

1991, Vajda et al., 2015). Because the V GG not only depends on elevation, it is inap-

propriate to call it a free-air gradient (LaFehr, 1991). On the other hand, the FAGtheo,

equalling -308.3 µGal m−1, is only elevation-dependent, as it describes the gravitational

attraction of the Earth with respect to the distance to its centre of mass, assuming a

spherical Earth, with a radius of 6,371 m, consisting of layers of uniform density, and

having a mass of 5.9722 × 1024 kg (e.g. Chambat and Valette, 2001, Kearey et al., 2002,

USNO, 2016). From these two definitions, the V GG may seem like a better gravity gra-

dient to use than the FAGtheo, as it captures local effects, but actually, the vast majority

of these local effects usually cancel, depending on the source causing deformation (e.g.

LaFehr, 1991, Rymer, 1994, Segall, 2010a).

When the source causing ∆h is at least a few kilometers depth, which is usually the

case for active magma reservoirs (Section 1.2.1), the surrounding topography as well as

the shallower static density contrasts move together with the gravity station undergoing

the elevation change (e.g. LaFehr, 1991, Rymer, 1994, Segall, 2010a). Consequently,

after the elevation change has occurred, the gravity effects of these density contrasts

remain unchanged at the surface, and they therefore do not produce any temporal

gravity change between the two surveys spanning ∆h (Figure 4.13). Using the V GG

to estimate the gravity change due to ∆h, would, in this case, capture the signatures

of the two remaining temporal gravity signals, ∆gelev and ∆gdef ; whereas, using the

FAGtheo, would only capture ∆gelev, as intended (see beginning of Section 4.9).

Unlike the surrounding topography and the shallow static density contrasts, most

of the heterogeneous bodies that are deeper than the active source are not expected

to move with the gravity station (e.g. Rymer, 1994). After the elevation change has

occurred, even though they are static bodies, their depths with respect to the surface

are modified, and taking the difference in ∆ĝDC between the two surveys, captures the

residual gravity signals due to these depth changes, in addition to ∆gelev and ∆gdef
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(Figure 4.13). In theory, this additional unwanted residual effect could be estimated

using the V GG, but, as explained above, this gravity gradient would also capture ∆gelev

and ∆gdef . Even though the FAGtheo would not capture these residual effects, it still

seems more appropriate to use it, to avoid capturing ∆gdef . The residual gravity effects

of the deep static anomalous bodies would then be taken into account in the error of

the FAGtheo (Figure 4.13).

4.9.2 Error of the gravity gradients when estimating ∆ĝelev

As argued in Section 4.9.1, estimating ∆ĝelev by multiplying ∆ĥ by the FAGtheo is

generally more appropriate than using the V GG. Here, I demonstrate that the quan-

tification of the errors associated with the use each of these gravity gradients confirms

this information.

The use of the FAGtheo introduces an error, εFAGtheo
, which has three components:

εRlat
, reflecting the change in the εFAGtheo

with latitude as the Earth’s radius varies

(and local altitude above sea level); (ε∆ρ)crust, reflecting residual gravity signatures of

deep static density contrasts induced by ∆h (Section 4.9.1); and (ε∆ρ)mantle, reflecting

gravity signatures due to any dynamic topography caused by mantle convection:

εFAGtheo
= εRlat

+ (ε∆ρ)crust + (ε∆ρ)mantle (4.30)

εRlat
can reasonably be neglected as the maximum difference of ∼14 km between the

average Earth radius, considered in the FAGtheo calculation (Section 4.9.1), and the

radius at the Poles, induces a variation, εRlat
, of only ∼2.1 µGal m−1. (ε∆ρ)mantle can

also be reasonably neglected anywhere at the Earth’s surface, as any long-wavelength

density contrasts (>50 km) produce maximum absolute variations in the FAGtheo of

∼0.1 µGal m−1 at 225 km above the Earth’s surface (e.g. Bouman et al., 2016). Finally,

batholiths, lacoliths and other plutons are among the largest anomalous bodies that

can be observed in the deep crust, but, because their density contrasts do not usually

exceed 200 kg m−3, their residual gravity signature after ∆h has occurred, should be

(ε∆ρ)crust ≤5 µGal per meter of elevation change, as this value is for an extreme case
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of a spherical body, with a radius of 10 km and an initial depth to centre of 13 km

(Figure 4.14). Even if a void sphere of same radius and same depth would produce a

residual gravity signature of (ε∆ρ)crust ∼70 µGal per meter of elevation change, such

large void spaces are unlikely to be present at such depths, and because void spaces

usually lie within the first few hundreds of meters of crust, they are usually shallow

enough to undergo the deformation and to therefore not produce any temporal signal

(Section 4.9.1). It is worth noting that infinite horizontal cylinders have negligible

residual gravity signatures, as only the 2-D section of the cylinder produces some gravity

signal (Figure 4.14), and because horizontal infinite sheets produce gravity signals that

are independent of depth, their temporal signature is null for the same reason as shallow

density contrasts (Section 4.9.1). From this analysis, it seems reasonable to assume that

εFAGtheo
is always ≤5 µGal m−1.

Figure 4.14: Gravity anomaly per meter of change in depth (dg/dz). I have simulated such
gravity effect considering spheres (left) and infinite horizontal cylinders (right), having approx-
imate density contrasts for void cavities and plutons. In each case, I computed the derivative
dg/dz based on the Newton’s law, and to test a worst-case scenario, I assumed that we are
right above the static anomalous body, of which the top lies at 3 km depth only (deforming
magma chambers can then still lie above these bodies). I have not simulated the case of an
infinite slab, because its gravity signature is independent from depth and therefore cancels out
when computing the temporal gravity change between two surveys (See Section 4.9.2 for more
details.
.

On the other hand, using the V GG to estimate ∆ĝelev, introduces a different error,
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εV GG, composed of the error, εm, due to the measurement procedure, which usually

consists of taking several gravity measurements at different heights along the vertical

(e.g. Rymer, 1996); and εdev, describing the deviation of the V GG from the true gravity

gradient, which can be well-approximated by the FAGtheo when elevation changes are

involved:

εV GG = εm + εdev (4.31)

Assuming that (1) the V GG is determined from two gravity measurements, sep-

arated by a vertical length, ∆L, of 1±0.05 m, (2) the gravity difference
[
ĝDC

]
∆L

=[
ĝDC

]
ground

-
[
ĝDC

]
tripod

, is -330.0 µGal m−1, which is the average expected at most

volcanic sites (see below), and (3) both
[
ĝDC

]
ground

and
[
ĝDC

]
tripod

are determined

within ±5-100 µGal (Sections 4.3-4.7), the standard deviation, σm, of εm, ranges within

∼18-142 µGal m−1, from propagation of errors:

σm =

√√√√√
[
σDC

]
∆L

∆L

2

+

−
[
ĝDC

]
∆L

∆L2
σ∆L

2

(4.32)

This range assumes that the tilt and drift errors can be neglected, which is not always

the case (Sections 4.4 and 4.7).

Based on a meta-analysis of 105 measurements of V GG, recorded at various vol-

canic sites (Figure 4.15), V GG equals ∼-330.0±38.5 µGal m−1, on average at volcanic

sites, except at stratovolcano summits, such as at the top of Merapi, where it is ∼-

508.6±20.0 µGal m−1 on average. It is worth noting that the standard deviations of

these approximately Gaussian distributions take into account variations in topography

and heterogeneous crust at volcanic sites, but also σm. When assuming that these stan-

dard deviations correspond to εm, εV GG equals ∼60 µGal m−1, at most volcanic sites,

and ∼220 µGal m−1, at the top of Merapi. This is because εdev, describing the absolute

deviations of the means from the precise FAGtheo respectively equal ∼21.7 and ∼200.3

µGal m−1 (Equation 4.31).

In conclusion, it is very likely that using the FAGtheo to estimate ∆ĝelev would in-

duce an error standard deviation, σFAGtheo
, of ≤1 µGal m−1 (as εFAGtheo

= 5 µGal m−1
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Figure 4.15: Distribution of the local vertical gravity gradients (FAGlocal or V GG) measured
at volcanic sites with Scintrex CG-3M and CG-5 gravimeters (SCG) and with LaCoste &
Romberg G and D instruments (LCR). The largest Gaussian distribution (purple PDF) includes
75 values measured at Askja, Krafla, Masaya, Etna (foot to flank), Kilauea, Mauna Loa, Laguna
Del Maule and Merapi (foot to flank); whereas the other Gaussian distribution (green PDF)
includes 30 values measured at the summit of the Merapi stratovolcano (Berrino et al., 1984,
Johnson, 1992, Rymer and Tryggvason, 1993, Johnson, 1995, Jousset, 1996, Williams-Jones
et al., 2003, Kauahikaua and Miklius, 2003, de Zeeuw-van Dalfsen et al., 2006, Greco et al.,
2012, 2015, Bonforte et al., 2017, Miller et al., 2017). For comparison, the theoretical free-air
gradient is highlighted in red.

in extreme cases). On the other hand, using the V GG would induce an error standard

deviation, σV GG, unlikely to be smaller than a few tens of microgals. Consequently, in

addition to being more appropriate (Section 4.9.1), the use of the FAGtheo, is also more

precise.

4.9.3 Error of the gravity change due to elevation change

Because I have demonstrated in Section 4.9.2 that in most cases, the error standard

deviation, σFAGtheo
, of the FAGtheo is negligible, the standard deviation, σelev, char-
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acterizing the error of any estimated ∆ĝelev, then depends on the magnitude of the

FAGtheo and on the uncertainty, σ∆h, of the estimated elevation change ∆ĥ:

∆ĝelev = FAGtheo∆ĥ (4.33)

∴ σelev =
√

(FAGtheoσ∆h)2 (4.34)

Assuming that the error standard deviation of any single elevation, h, measured

using precise geodetic techniques, ranges between 3-12 mm (e.g. Wright et al., 2004,

Lagios et al., 2005, Dzurisin, 2007b, Battaglia et al., 2018), σ∆h, then ranges within

4.2-21.2 mm (σ2
∆h = σ2

h + σ2
h), and consequently, σelev should usually range within

∼1.3-6.5 µGal. When one leg of the instrument has not been locked for performing

the survey, with e.g. a brass ring (e.g. Jacob et al., 2010), an additional height error

standard deviation of ≤ 15 mm may arise, which would raise σ∆h to ∼21-34 mm and

σelev to ∼4.6-7.4 µGal, at worst.

On the other hand, the inappropriate use of the V GG to estimate ∆ĝelev, implies

that εV GG (Section 4.9.2) contributes to the error budget of σelev, which would then

range within ∼10-60 µGal, on average at volcanic sites, except at stratovolano summits,

where it could rise to a hundred of microgals:

εelev = εV GG∆ĥ (4.35)

∴ σelev =
√
εV GGσ2

∆h (4.36)

4.10 Error of the gravity change due to groundwater-mass

fluctuations

The gravity change induced by groundwater-mass variations between two surveys, ∆gwtr

(Equation 2.10), can be expressed as follows:

∆gwtr =
[
∆gwtr

]
sat

+
[
∆gwtr

]
unsat

(4.37)
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where
[
∆gwtr

]
sat

and
[
∆gwtr

]
unsat

are the gravity changes due to groundwater-mass

variations, between the two surveys, in the saturated and unsaturated/vadose zones,

respectively.[
∆gwtr

]
sat

is usually estimated using the infinite slab sheet approximation, with the

water density, ρwtr, scaled to an estimation of the effective/open porosity, φ, for the

aquifer slab, to consider only the circulating groundwater (e.g. Battaglia et al., 2008):

[
∆ĝwtr

]
sat

= 2πGρwtrφ̂∆ẑ ≈ 41.91φ̂∆ẑ µGal (4.38)

where G is the gravitational constant and ∆ẑ is the change in groundwater-table level,

estimated in meters. The error standard deviation of the estimated
[
∆ĝwtr

]
sat

, can be

computed by propagating the errors and it therefore depends on φ̂ and ∆ẑ, and their

associated error standard deviations, σφ and σ∆z:

[
σwtr

]
sat

=

√[
∆ẑ41.94σφ

]2
+
[
41.94φ̂σ∆z

]2
(4.39)

The open porosity of volcanic rocks, such as lava, pyroclastic deposits, obsidians,

hyaloclastites and fractured basalts, ranges widely within φ̂ = 2-40% (e.g. Freeze and

Cherry, 1979, Sruoga and Rubinstein, 2006, Pola et al., 2012, 2014, Schaefer et al.,

2015). Because it is hard to determine the precise bulk porosity of the crust, I assume

a wide range of 5-30%, to characterise volcanic areas in general.

Jin and Feng (2013) demonstrated that the maximum amplitude of groundwater-

table variations over the entire globe was 80 mm yr−1 for the period 2002-2012. However,

because local peaks can be much higher (e.g. Harnisch and Harnisch, 2002), I assume

that ∆ẑ can easily range between a few cm up to 4 meters during a gravity survey. And,

even though groundwater-table changes can be determined within a few centimeters

from wells or satellite altimetry on lakes (Nielsen et al., 2015), it is often very challenging

to reach this precision in remote volcanic areas. As a reasonable example, I assume that

σ∆z can reach up to one meter.

Based on these values, I tested the impact of each parameter on the estimation of[
σwtr

]
sat

(Equation 4.39). As illustrated by Figure 4.16, for a given σ∆z,
[
σwtr

]
sat

is
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more dependent on ∆ẑ when σφ is large; whereas the smaller σφ, the more
[
σwtr

]
sat

is

dependent on φ̂. In summary,
[
σwtr

]
sat

can be up to ∼20 µGal, in volcanic areas, when

∆ẑ ∼1 m, but it can be up to ∼50 µGal, when ∆z ∼4 m.

Figure 4.16: Variations in error standard deviations of the gravity changes due to
groundwater-table fluctuations, depending on the magnitudes (colors) and errors (x-axis) of
groundwater-table changes. Each panel is for a certain error in porosity, but the porosity itself
always ranges between 2% (bottom of each triangle) to 40% (top of each triangle).

Unlike
[
∆gwtr

]
sat

, no general model can approximate the temporal gravity change,[
∆gwtr

]
unsat

, as it depends on the local geology, hydrology, climatic conditions (e.g.

Jacob et al., 2010, Champollion et al., 2018). Moreover, the possible presence of a hy-

drothermal system can induce complex scenarios of water-mass changes. Ideally, soil

moisture measurements, e.g. using frequency domain capacitance probes or lysimeters

(e.g. Longuevergne et al., 2009, Creutzfeldt et al., 2010), should be performed during

each gravity survey, in addition to supplementary measurements, such as precipitation

and glacier ice melting, in order to estimate
[
∆gwtr

]
unsat

from hydrological models

(Battaglia et al., 2018). Alternatively, when no measurements are available, the estima-

tion of
[
∆gwtr

]
unsat

is usually part of the interpretation, and performing surveys during
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the same season each year should help to minimize
[
∆gwtr

]
unsat

if the groundwater-table

variations are seasonal (e.g. Harnisch and Harnisch, 2002).

It is worth noting that groundwater mass variations in the unsaturated zone, may

also occur during a single survey. When in-situ measurements of hydrological parame-

ters are available, the resulting short-term gravity change can be modeled, and reduced

before estimating the drift. But when unknown, I demonstrated in Section 4.7 that it

is possible to include these short-term gravity variations into the drift error.

4.11 Total error budget

Once all the errors presented in this chapter have been quantified, the error standard

deviation, σres, associated to the parameter of interest, ∆ĝres, can be determined using

propagation of errors, as demonstrated in Section 4.2.

Table 4.5 summarizes the best-to-worst ranges of error standard deviation, expected

for each parameter, and which I have detailed in each of the above sections. My analysis

shows that, in field conditions, σres is likely to range between ∼10 to 100s of microgals,

and that the errors especially due to vibration noise, tilt, drift, calibration and water-

masses in the unsaturated zone, can have a high impact on the total error budget. It

is worth reminding that LCR gravimeters need to be always orientated in the same

direction during a survey, to minimize the impact of variations in the Earth’s magnetic

field on their metal spring (e.g. Rymer, 1996).

By looking back to Figure 4.1, 60% of the maximum recorded residual gravity

changes have magnitudes ranging within ±100 µGal, and among the 40% which have

an error standard deviation provided, 43% of these provided errors are ≤10 µGal. Even

though there are chances that these errors have been well-estimated, it is also possible

that they have been underestimated.

4.12 Conclusion

In this Chapter, I have presented a detailed statistical approach providing equations

for users to precisely estimate the error budget associated to residual gravity changes,
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Error parameter Expected range (µGal) Influencing factors Section
σvib ∼1 to a few 100s vibrations, automatic/manual recording, N , Z, M 4.3
σ∆tilt <1 to a few 100s level sensitivities, electronic/bubble sensors, sunheat 4.4
σET,survey Up to 0.6 per εt in min clock residual error (εt) 4.5
σET,model �1 to a few Model uncertainty 4.5
σOL,survey up to 0.06 per εt in min clock residual error (εt) 4.5
σOL,model �1 to a few Model uncertainty 4.5

σP <1 to a few 10s Magnitude of variations in air pressure, and
measurement uncertainty, if recorded 4.6

σT <1 to a few 10s Sealing quality, magnitude of variations in air
temperature, and measurement uncertainty, if recorded 4.6

σbase a few to several 10s M at the base, σvib, σET, σOL, presence/absence
of temporal effects external to the drift 4.7

σ∆2cal a few to a few 100s Same/different gravimeters are used,
regular/no recalibrations 4.8

σelev a few to several 10s Elevation measurement uncertainties,
type of free-air gradient used 4.9[

σwtr

]
sat

a few to a few 10s Water-table level, porosity and uncertainties 4.10[
σwtr

]
unsat

a few to several 10s (at least) Variations in soil moisture and groundwater infiltration
during the survey, can be derived from the drift curve 4.10

σres ∼10 to several 100s

Table 4.5: Summary of best-to-worst ranges of error standard deviations to expect when
performing temporal gravity surveys. The green, yellow and red highlights show the error
parameters that respectively need low, medium and high attention to minimize the total error
budget. These colors are just indications as the impact depends on the magnitude of the
parameter of interest.

using spring gravimeters. Even though I focused on volcanic applications, the method

is equally applicable to other applications, in which case some gravity components,

presented here as unwanted signals, could be the parameter of interest.

Additionally, I provided ranges of errors that should be expected in any field condi-

tions. Based on this overall analysis, I suggest three key pieces of advice, which seem

to often left out, but are fundamental to help users to obtain precise results.

1. The choice of the type of spring gravimeter is essential to precisely constrain the

vibration noise component and reduce the error impact due to an imprecise lev-

elling of the instrument. A gravimeter equipped with an automatic recording

system and precise levelling sensors, such as Scintrex gravimeters (SCG) or alter-

natively, LaCoste & Romberg (LRC) gravimeters, upgraded with the appropriate

devices, should therefore be preferred compare to standard LCR gravimeters. In

volcanic studies, LCR gravimeters are widely used (Figure 4.1), but it is rarely

reported whether the instruments have been properly upgraded.

2. Using always the same suitable gravimeter and regularly monitoring the temporal

variations of its calibration factor from recalibrations, is the most suitable ap-
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proach to minimize calibration errors, especially when studying long-term gravity

changes. Over short-term periods (up to a few years) and when the magnitude of

drift-corrected gravity change does not vary much over the area of study, recali-

brations might not be necessary when using a Scintrex instrument that is at least

a few years old.

3. I propose to abandon the traditional method of estimating the drift function per

day, and to rather prefer an estimation over at least a few days. In addition to

minimizing the error of the drift parameters, by providing more data points, this

approach provides a chance to estimate unknown meteorological effects as part

of the drift error. This can provide a first order approximation of, for example,

groundwater-mass variations in the unsaturated zone, which are challenging to

precisely estimate, and which can have a high impact on the error budget.

As suggested in previous studies, I also encourage users to measure air pressure,

air temperature and groundwater-table variations, during each gravity survey, when

possible. Finally, users should always keep in mind that the level of tolerated final error

depends on the magnitude of gravity change to be detected, and surveying strategies

should be planned accordingly.
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Chapter 5

Temporal Gravity at The Askja

Central Volcano

This chapter addresses the fourth and fifth objectives of my thesis, which aim to record

gravity across the Askja caldera using precise methodologies and constrain the related

mass changes. In this chapter, I also investigate the causes of subsidence, by comparing

my gravity results with deformation results from Chapter 3.

5.1 Introduction

Temporal variations in gravity were monitored within the Askja caldera from 1988 to

2010, by Hazel Rymer (Open University, UK), who was successively accompanied by

Geoff Brown (1988-1992), Corinne Locke (1994-1997) and Elske De Zeeuw Van Dalfsen

(2002-2003) (de Zeeuw-van Dalfsen, 2004). As presented in Section 1.5.2, a continuous

decrease of ∼140 µGal was revealed in the centre of the Askja caldera from 1988 to 2007,

followed by an increase of ∼60 µGal from 2007 to 2009 (Figure 1.8). The hypothesis

of magma drainage from the “geodetic reservoir” (Section 1.5.1) down to deeper levels,

to explain the Askja subsidence, originated from the correlation between the gravity

decrease time-series and the centre of subsidence, while no sign of surface deformation,

typical for lateral magma movements, could be observed (e.g. de Zeeuw-van Dalfsen

et al. (2005)). Hypotheses of magma crystallization and plate spreading effects were
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also suggested (Section 1.5.3). Although the observed gravity increase could be within

the noise level (Figure 1.8), it was assumed to be due to a magma inflow at the geodetic

reservoir and/or some mass increase in the hydrothermal system of Askja (Rymer et al.,

2010, de Zeeuw-van Dalfsen et al., 2013).

The main limitation of these previous studies was the lack of spatial coverage, which

prevented the extraction of the spatial gravity signature of the caldera and to use inver-

sion modelling techniques to constrain the location, depth and magnitude of the mass

changes related to the observed gravity changes (e.g. Equation 1.20). I sought to im-

prove this limitation in order to test whether the current subsidence and gravity changes

are related, as this information could help understanding the causes of subsidence, which

are still unclear.

I initially wanted to extend the existing gravity time-series, in collaboration with

Hazel Rymer. Unfortunately, it was not possible to link my measurements to earlier

data, due to insufficient details on calibration and on how corrections had been made in

the past, and I was therefore restricted to my 3-year dataset (2015-2017). Nevertheless,

I took the initiative of starting a new time-series, to adapt the surveying and data pro-

cessing methods with the aim of precisely estimating and minimizing the error budget.

In addition to studying the gravity changes at Askja between 2015 and 2017, this case

study is therefore also a first application of my error analysis approach, presented in

Chapter 4.

5.2 A new gravimeter

Before my PhD, gravity surveys were carried out at Askja, using “standard” LaCoste

& Romberg gravimeters (LCR, Section 4.3.2), and the residual gravity changes were

averaged over three groups of stations (Figure 1.8), after reductions for tides, drift and

elevation changes, from the initial least-squares average of 2-3 gravity samples per site

occupation (Section 1.5.2 and e.g. de Zeeuw-van Dalfsen et al. (2005)). Final uncer-

tainties only considered the vibration noise at each site occupation, and the dispersion

of the data around the final residual gravity average per group of stations.
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Even though recording 2-3 samples per site occupation is the usual methodology

when using standard LCR instruments, the small number of observations does not

guarantee that the least-squares average is representative of the population, neither

that the sampling distribution can be approximated as Gaussian. This can be critical

when studying gravity signals at the microscale (Section 4.3). Carrying out further

successive averages to determine a residual gravity change per group of stations could

be a way of reducing the impact of possible biased least-squares measurements. But it

could also bias the final results even more, and due to the lack of statistical control on

the averages, it is difficult to know which of these two scenarios has been implemented

at Askja.

To better control uncertainties, standard LCR gravimeters need to be upgraded

with an electronic feedback system (Section 4.3). When possible, it is even preferable

to use Scintrex gravimeters, as these models are specifically designed to automatically

compute least-squares gravity measurements from the automatic record of a series of

gravity samples (Section 4.3.1). In collaboration with the University of Iceland, I was

able to use a Scintrex CG-5 (No. 968) for each of my three gravity surveys. In addition

to precisely constrain measurement errors, the use of this particular gravimeter was

ideal because it is stored in the premises of the University of Iceland, in Reykjavik, and

this could facilitate the reproduction of campaigns in the future.

5.3 Data acquisition

I carried out each of the three gravity surveys, over 4-5 days, and during the summer

period, as it is the optimal season to get easy access to Askja and to maximise the

chances of having a suitable weather for measuring gravity.

My collaboration with the University of Iceland, as well as the financial support

from FUTREVOLC, GRSG, COMET and RAS, enabled the realisation of these three

surveys, with the spatial extension of the gravity network and simultaneous elevation

measurements at almost all gravity stations, from GPS. Indeed, Freysteinn Sigmunds-

son and Sveinbjörn Steinþórsson (University of Iceland) installed four new benchmarks
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during the 2015 gravity survey, and each year we jointly planned the gravity and GPS

surveys to be simultaneous, with Vincent Drouin and Freysteinn Sigmundsson (Uni-

versity of Iceland). This latter point was also a significant improvement from previous

studies, when elevation changes were estimated using the two-Mogi-source deformation

model from Sturkell et al. (2006) (Table 1.2), due to the lack of elevation data available

(de Zeeuw-van Dalfsen et al., 2005).

Among the four new benchmarks installed, three contributed to the extension of

the network in the south west and central parts of the caldera (MYV1, MYV2 and

CASK) and one was the redefinition of DYNG as a gravity station: a new benchmark

was installed near the continuous GPS structure, to facilitate the precise reproduction

of gravity measurements at this station in the future (Figure 5.1). In addition, I added

to the gravity network, STAM and VATN, which were set up as GPS stations in 2009,

to extend the profile up to the south-west caldera edge. For consistency and to fa-

cilitate communication, I renamed the old gravity stations that are part of the GPS

network, using their GPS station names, and I also simplified other names when needed

(Appendix C.1).

During each gravity survey, I strictly followed the same approach for the sake of

consistency:

1. The parameters of the CG-5 gravimeter (No. 968) were configured in the same

way each time (Appendix C.1).

2. I was always accompanied by a co-worker to help handling the gravimeter smoothly

(Stephanie Dumont in 2015 and 2016, and Andy Hooper, in 2017).

3. When driving, the gravimeter was safely attached in a specific wooden case,

padded with foam. When walking, the instrument was carried in a rucksack,

and we used walking poles to reduce as much as possible the impact of sudden

shaking due to the uneven ground of the Askja caldera floor.

4. We systematically used an umbrella to shelter the gravimeter from wind and rain-

drops, and no one was moving during any gravity acquisition, to reduce vibration

noise.
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Figure 5.1: A: Gravity network at Askja, since 2015, specifying the method of elevation
measurement at each station, if any. The black line highlights the profile onto which results
have been projected (Section 5.5) and the new station names are mentioned on the map. Refer
to Appendix C.1 to see the old names and location descriptions. B: Photo of the installation
of the new benchmark at DYNG, in 2015.

5. Each site occupation consisted of an automatic succession of Z=5 gravity measure-

ments, each resulting from a 1-minute-long continuous record of 1-second gravity

samples (Section 4.3). Due to an automatic despiking filter (Scintrex, 2009), the

number of observations per measurement was therefore N ≤60.

6. The gravity stations were usually re-occupied twice during the same day, ideally

when looping through a group of stations, but, because the Askja caldera is ∼8

km across and walking is the only way to get around, the two occupations were

sometimes successive. In this situation, I would usually wait ∼10-15 minutes,

before re-doing the overall measuring procedure again. When time permitted, I

sometimes re-occupied a station on a different day, to ensure continuity in mea-

surements.

7. To estimate the drift function (Section 4.7), I used VIKR (2015-2017) and DYNG

(2016-2017) as base stations (Figure 5.1), and we usually re-occupied them twice

per day, once in the morning and once in the evening. However, a single mea-
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surement was sometimes recorded at either one or both base stations, because it

was the easiest way to proceed, and as discussed in Section 4.7, this approach is

unlikely to impact the drift estimation. DYNG could not be re-occupied several

times in 2015, because the new benchmark was installed during this survey (see

above).

8. Finally, I chose station DYNG as the reference for temporal gravity changes,

because it not affected by the Askja subsidence (Chapter 3), and it might therefore

not be affected by the gravity changes of Askja. In the past, the station VIKR

was used (Figure 5.1).

5.4 Data processing

To determine the residual gravity change, ĝres ± σres, at each station, between any pair

of surveys (2015-2016, 2015-2017 and 2016-2017), I followed the general approach illus-

trated by Figure 2.7. Because I could not record air pressure nor temperature variations,

the first stage was to estimate the tidally- and drift-corrected gravity signature, ĝDC,

per station and per survey (Equations 2.10 and 4.5), and the second stage was to reduce

all unwanted temporal contributions from the temporal change ∆ĝDC, between any two

surveys (Equations 2.11 and 4.6). For the first stage, I employed the GTOOLS software

(Battaglia et al., 2012), which I improved to better constrain uncertainties (Chapter 4),

and for the second stage, I wrote my own package, according to the same approach.

5.4.1 First stage: Drift-corrected gravity signal per station and per

survey

My improved version of GTOOLS (Figure 5.2) reduces the tidal effects, before com-

puting the weighted least-squares time, tj , and weighted least-squares tidally-corrected

gravity, (ĝTC)j , for each jth site occupation (figure 4.2), taking into account uncer-

tainties due to vibration noise, earth tides, ocean loading and the possible use of an

imprecise clock. It then estimates the drift parameters, from a linear function over the

whole survey, using given base stations, to predict the tidally-corrected base gravity
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signal, (ĝbase ± σbase)j , at each time tj . A single ĝDC ± σDC is then determined at each

station, per survey, from the (ĝDC)j=1 to (ĝDC)j=M , of the M occupations per station,

using weighted least-squares (Section 4.3). χ2 tests are inserted when necessary, to

verify the robustness of the models, and improve them as appropriate.

Figure 5.2: Comparison of the standard GTOOLS software, which estimates a single drift-
corrected gravity signal, ĝDC, per station and per survey, with the version I have improved.
SO: site occupation, Z: number of repeated measurements, M : number of reproduced mea-
surements, WLS: weighted least-squares, LS: least-squares. Refer to Section 5.4, Figures 2.7
and 4.2 for more details on symbols and procedures, and to Sections 3.4.4 and 4.3 for more
details on the χ2 tests and bootstrapping approaches.
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GTOOLS currently does not enable to reduce for the gravity effects of measured

air pressure and air temperature changes (Section 4.6). However, when estimating

the drift function, the new version enables to estimate these effects, as part of σbase,

along with any other possible unknown temporal changes affecting the instrumental

drift (Section 4.7). If assumed to affect the area of study homogeneously, a constant

meteorological error, σmet, can be derived for the entire survey, from the uncertainty of

the linear model.

Following the improved version of GTOOLS and based on the application at Askja,

Equations 2.8 and 4.5 can be re-written as follows, for any jth site occupation:

(ĝDC)j = (ĝTC)j − (ĝbase)j (5.1)

(σDC)j =
√

(σ2
TC)j + σ2

met + (σ2
base)j (5.2)

where (ĝTC)j is the tidally-corrected signal, equalling (ĝmeas)j - (ĝET)j - (ĝOL)j ; the

error contribution due to instrumental tilt is neglected due to the use of a Scintrex

gravimeter model (Table 4.2); and the calibration factor at the time tj is, at this stage

of processing, assumed to equal one. The uncertainty of such assumption is taken into

account later, in the error budget of the residual gravity change (Section 5.4.2).

Here, I summarize the parameters that I have used to estimate each reduction neces-

sary to determine a ĝDC per station and per survey. Overall, the magnitudes gradually

decrease from 0 mGal at the reference station DYNG, in the north-east, to −55 mGal

at STAM in the south-west (Figures 5.1 and 5.3), and, despite the low level of vibra-

tion noise, the fully integrated error standard deviations, σDC, range within ∼20-30

µGal in 2015, ∼16-29 µGal in 2016, and ∼18-43 µGal in 2017 (Table 5.1). These large

ranges illustrate how meteorological effects, which are often ignored, can impact the

error budget.

5.4.1.1 Reduction for tidal effects

In the improved version of GTOOLS, the gravity signals due to solid Earth tides, ĝET,

and ocean loading, ĝOL, are successively estimated just as in the standard version, but
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the mid-times of each of the Z=5 successive 1-minute gravity measurements are consid-

ered, rather than using the weighted averaged time of each site occupation (Figure 5.2).

Figure 5.3: Drift-corrected gravity signals (left) and associated fully integrated error standard
deviations (right), determined within the Askja caldera, in 2015 (top), 2016 (middle) and 2017
(bottom). See Section 5.4.1 for more details and Figure 5.1 for station names.
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2015 2016 2017
(µGal) (µGal) (µGal) Sections

σET 0.7 0.7 0.7 5.4.1.1
σOL 0.01-0.25 0.04-0.25 0.01-0.23 5.4.1.1
σvib 1-2 1-4 2-17 5.4.1.2
σ∆tilt neglected neglected neglected 5.4.1
σP ∈ σbase & σmet ∈ σbase & σmet ∈ σbase & σmet 5.4.1.3
σT ∈ σbase & σmet ∈ σbase & σmet ∈ σbase & σmet 5.4.1.3
σbase 5-17 8-22 13-29 5.4.1.3
σmet 22 34 42 5.4.1.3
σDC per SO 23-28 35-41 45-50 5.4.1
σDC per survey 20-30 16-29 18-43 5.4.1

Table 5.1: Summary of the error standard deviations contributing to the tidally- and drift-
corrected gravity signal, ĝDC, taken relative to DYNG (Equation 5.2). All error components
are provided per site occupation (SO), except σmet which is a constant estimate per survey, and
in reality, σET and σOL are estimated a step ahead, for each of the Z=5 gravity measurements
(Figure 5.2). The final error σDC is given a each station, per survey, i.e. by averaging the M
site occupations, taken relative to DYNG. See Section 5.4.1 for more details.

In GTOOLS, the Earth tides are estimated using an improved version of the Long-

man formula, taking into account the anelasticity of the Earth, and the ocean tide

estimation requires the use of an ocean tide model to extract the ocean loading con-

stituents at each station location (Section 4.5). Among the various models available,

I used the DTU10 ocean tide model (developed at the Technical University of Den-

mark), as it is the most appropriate model for regions outside ±60° latitude (Cheng

and Andersen, 2011, Stammer et al., 2014).

The error standard deviations, σET and σOL, of ĝET and ĝOL, are estimated de-

pending on timing and model errors, but neglecting latitude and longitude errors (Fig-

ure 5.2). This approach was reasonable in my case because I used latitude and longitude

coordinates with a precision of few tens of meters maximum (Section 4.5). Indeed, I

considered the unique official GPS coordinates of each GPS-gravity station (Drouin and

Sigmundsson, 2013), Erik Sturkell provided the coordinates of the levelling-gravity sta-

tions derived from UTM (Coordinated Universal Time), and I recorded the coordinates

of the remaining four stations (Section 5.3), using a hand-held GPS, with uncertainty of

±10 meters. Additionally, I could reasonably neglect timing errors, as I made sure that,

for each survey, the clock of the gravimeter was correct within a few seconds. Based

on Section 4.5, I therefore assumed that (σET)k and (σOL)k respectively equal 1.5 and
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0.05× (ĝOL)k µGal, for each k=1 to k=Z=5 gravity measurement.

5.4.1.2 Tidally-corrected gravity average per site occupation

After reducing each the Z=5 gravity measurements for tidal effects, the improved version

of GTOOLS, computes a single (ĝTC)j at any jth site occupation using weighted least-

squares, with the sum of the variances due to vibration noise, (σ2
vib)k, Earth tides,

(σ2
ET)k, and ocean loading, (σ2

OL)k, of each of the k=1 to k=Z=5 successive acquisitions,

listed in the diagonal of the variance-covariance matrix (Figure 5.2). Each (σ2
ET)k and

(σ2
OL)k are estimated as explained in Section 5.4.1.1, and each (σ2

vib)k is computed using

Equation 4.8, with σp and N ≤60 provided by the instrument.

I set up the χ2 test, conducted to verify whether (ĝTC)j is representative of the

Z=5 tidally-corrected gravity measurements, using 50% probability rather than 95%,

to make sure that any possible unreliable measurements were discarded (Figure 4.3).

Because I neglected timing errors (Section 5.4.1.1), the averaged time, tj , of each

jth retained site occupation was determined using exactly the same weighting as for the

tidally-corrected gravity average (Figure 5.2).

Finally, rather than estimating the least-squares coordinates of each jth retained

site occupation, such as possible in any of the two versions of GTOOLS, when the GPS

of the gravimeter is used, I considered unique latitude and longitude coordinates per

station, as explained in Section 5.4.1.1.

5.4.1.3 Drift parameters and predicted signal at the base station

The case study application presented in Section 4.7.2, presents the procedure that I

followed to estimate the drift parameters for each of my three surveys, and that I

implemented in the improved version of GTOOLS.

Even though the weighted least-squares drift rates of −18.56±0.03 µGal h−1 in 2015,

−18.90±0.01 µGal h−1 in 2016, and −24.31±0.08 µGal h−1 in 2017, are all in accor-

dance with the theoretical drift of a quartz spring (Scintrex, 2009), none of these linear

models passed the χ2 test with 95% probability. Because the data errors were precisely

estimated, this suggests the presence of unknown gravity variations in addition to the
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instrumental drift. I therefore re-evaluated the parameters using the least-squares per-

centile bootstrap approach, which changed the drift rates to −18.70±0.33, −18.73±0.23

and −24.43±0.61 µGal h−1, respectively (Section 4.7). These re-evaluations raised the

standard deviations (σbase)j , of the predicted base station signals, (ĝbase)j , at any time

tj , from about 0.5-1.1 to 5-17 µGal in 2015, 1-1.3 to 8-22 µGal in 2016, and 1.8-5.5 to

13-29 µGal in 2017 (Figure 4.8 and Table 5.1).

At Askja, these estimates of (σbase)j probably include the unknown gravity vari-

ations of meteorological effects, with a likely high contribution of groundwater-mass

changes in the unsaturated zone, and a likely minor contribution from changes in air

pressure and air temperature. As described in Section 4.7.2, I assumed that these

meteorological effects impacted all stations homogeneously during each survey, and I

therefore derived a constant error standard deviation, σmet, equalling 22 µGal in 2015,

34 µGal in 2016 and 42 µGal in 2017 (Table 5.1). If I had had appropriate devices to

measure meteorological parameters, the uncertainties would have likely been smaller as

most of the effects would have be reduced.

5.4.2 Second stage: Reduction of unwanted temporal gravity changes

Reducing the temporal drift-corrected gravity change, ∆ĝDC for the effects due to sur-

face deformation and groundwater-mass changes, while considering calibration varia-

tions, provides a temporal gravity signature, which could be explained by any other

mass change, such as magma movements and/or mass fluctuations in the hydrothermal

system of Askja (Section 2.2.3). Because snow falls occurred at Askja during the week

before the 2015 gravity survey, another unwanted temporal effect, due to the removal of

snow mass loads, over 2015-2016 and 2015-2017, also needed to be taken into account.

Consequently and based on Equations 2.11 and 4.6, the residual temporal gravity

change, ∆ĝres ± σres, at a given station within the Askja caldera, and between any two

surveys, can be expressed as follows:

∆ĝres = ∆ĝDC −∆ĝelev −
[
∆ĝwtr

]
sat
−∆ĝsnow (5.3)

σres =

√
(σ2

DC)t1 + (σ2
DC)t2 + σ2

elev + σ2
∆cal +

[
σ2

wtr

]
sat
− σ2

snow (5.4)
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where σ2
∆cal is the variance of the neglected gravity change due to variations in calibra-

tion factor (Equation 5.1), and only the gravity component due to groundwater-mass

changes in the saturated zone,
[
∆ĝwtr

]
sat

(Section 4.10), is estimated here, as that due

to groundwater-mass variations in the unsaturated zone has already been taken into

account as part of the meteorological effects, in (σbase)j and σmet (Section 5.4.1).

Below, I summarize the parameters that I have used to estimate each unwanted

temporal gravity contribution and determine ∆ĝres ± σres at each station, for the pe-

riods 2015-2016, 2016-2017 and 2015-2017. As illustrated by Figure 5.4, an expected

approximate bowl shape gravity signature was observed across Askja, between 2015

and 2016, with maximum decrease of about 98±29 µGal at MASK, i.e. in the cen-

tre of the caldera, and minimum decrease of about 34±40 at STAM and 22±31 µGal

at A412, i.e. towards the caldera edges. However, the bowl-shape signature was not

clearly observed over 2016-2017. Indeed, the maximum decrease of 68±40 µGal was

recorded at station A430, whereas negligible variations of about +7±30 and −21±30

µGal were recorded at MASK and OLAF, respectively. Over the full period 2015-

2017, the bowl shape signature still dominates with about −120±38 µGal at D19, and

−90±35 at MASK. Table 5.2 summarizes the error budget of these results, which are

analysed in Section 5.5, i.e. after explaining how I estimated each unwanted parameter

(Equations 5.3 and 5.4).

5.4.2.1 Reduction for elevation changes effects

To estimate ∆ĝelev ± σelev (Equations 5.3 and 5.4), the elevation change, ∆ĥ ± σ∆h,

needs to be determined at each station between each pair of surveys (Section 4.9). At

Askja, eleven gravity stations are now part of the GPS network, three belong to the

levelling network, and four do not have any elevation records (Figure 5.1).

I estimated the time-series of annual elevation changes, ĥ(t), at each GPS-gravity

station taken relative to DYNG, from the vertical GPS time-series, which Vincent

Drouin provided, and I removed deformation signals external to the Askja volcanic

system, as already explained in Section 3.4.1.
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Figure 5.4: Residual gravity changes (left) and associated fully integrated error standard
deviations (right), determined within the Askja caldera, from 2015 to 2016 (top), 2016 to 2017,
(middle) and 2015 to 2017 (bottom). There is no error at DYNG because it is the reference
station: its uncertainty is propagated at all the other stations. See Section 5.4 for more details
on the calculation process, and Section 5.5 for the analysis and Figure 5.1 for station names.
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2015-2016 2016-2017 2015-2017
(µGal) (µGal) (µGal) Sections

σ∆DC 26-38 25-52 28-50 5.4.2
σelev 1-3 1-5 1-7 5.4.2.1
σ∆2cal 4-9 4-9 3-19 5.4.2.2[
σwtr

]
sat

neglected neglected neglected 5.4.2.3[
σwtr

]
unsat

∈ σbase & σmet ∈ σbase & σmet ∈ σbase & σmet 5.4.1.3
σsnow 0.5-14 - 0.5-14 5.4.2.4
σres 27-40 26-53 31-54 5.4.2

Table 5.2: Summary of the error standard deviations contributing to the residual gravity
change, ĝres, between any two surveys, and taken relative to DYNG. See Section 5.4.2 for more
details.

Because station A404 is common to the levelling and GPS networks (Figure 3.7), I

used this station to calibrate the levelling measurements, which Erik Sturkell provided,

into time-series of ĥ(t), at each levelling-gravity station. However, no levelling mea-

surements had been carried out at these stations in 2015, and I therefore extracted the

displacements for this survey, using linear interpolation over 2014-2016, with weighted

least-squares, before doing the calibration.

Finally, I extracted the time-series of ĥ(t) at the remaining gravity stations from the

line-of-sight displacements of the Sentinel-1 ascending and descending InSAR datasets

(Table 3.1), which I had independently decomposed over a 100-by-100 meter grid, as

explained in Section 3.5. I determined a ĥ per satellite sensor, at each required station

and per survey, by estimating a spatial average around each given station and a temporal

average per summer (Section 3.4.4). When pixels were available in both datasets, I

estimated the time-series of ĥ(t) by averaging data from both datasets, which always

agreed well within errors. Otherwise, i.e. for station IV16, which did not have any

information from the ascending dataset, the time-series of ĥ(t) directly equalled the one

extracted from the descending dataset.

As illustrated by Figure 5.5, the expected bowl-shape signature of the subsidence

was observed over 2015-2016, with maximum decreases of about 2.8±0.7 and 2.9±0.7

cm, respectively at OLAF and MASK, while a negligible deformation of +0.2±0.6 cm

was observed at STAM. The decrease of about 2.9 cm observed at RAU2 is likely to be

anomalous due to its large GPS uncertainty of 1.7 cm. Over 2016-2017, even though
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the expected subsidence signature was also observed, magnitudes were smaller than

over 2015-2016, with −1.3±0.7 cm at MASK, −0.4±0.7 cm and −1.5±0.1 cm at D19,

while the deformation was still near to negligible on the caldera edges, with +1.2±0.9

cm at VATN, +1.1±1.6 cm at STAM, and +1.6±0.6 cm at RAU2. Over 2015-2017,

these changes generated maximum decreases in the centre of the caldera, with about

−4.1±0.6, −3.4±0.7 and −3.1±0.1 cm, at MASK, OLAF and D19, respectively, and

minimum variations at the caldera edges, with +1.3±1.6, −1.0±0.9 and −1.2±2.2 cm,

at STAM, VATN and RAU2, respectively.

All these magnitudes of elevation change, which are compared with the residual

gravity changes in Section 5.5.2, produced some ∆ĝelev ranging between about −1 and

+9 µGal over 2015-2016, −10 and +9 µGal over 2016-2017, and −4 and +12 µGal over

2015-2017. The associated σelev never exceeded 10 µGal (Section 4.9.3 and Table 5.2).

5.4.2.2 Uncertainty due to unknown calibration effect

The calibration factor of Scintrex gravimeters, initially determined at manufacture, is

expected to vary at a rate, ḟ , of a few ppm per day during the first year after purchase,

but it usually then reaches a plateau with error standard deviation, σḟ , of ∼0.01-0.5

ppm per day (Section 4.8). Because the Scintrex CG-5 No. 968 (Section 5.3), was

bought in 2012 and had never been recalibrated since purchase (Personal communica-

tion, M.T. Gudmundsson, 2018), it is very likely that the variations in calibration factor

had reached the plateau, and I therefore assumed a σḟ of 0.5 ppm per day between 2015

and 2017.

Based on Equation 4.23 and Section 4.8.3, the resulting error standard deviation,

σ∆cal, caused by such σḟ , can be approximated, at each station, using the time du-

ration between any pair of surveys and the magnitude of ĝDC of the second survey.

Consequently, based on Figure 5.3, a resulting σ∆cal of about 4-9 µGal needed to be

considered for the 1-year periods of 2015-2016 and 2016-2017, and of about 3-19 µGal

over 2015-2017 (Table 5.2).
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Figure 5.5: Elevation changes (left) and associated error standard deviations (right), deter-
mined within the Askja caldera, from 2015 to 2016 (top), 2016 to 2017, (middle) and 2015 to
2017 (bottom). The symbols refer to the elevation measurement method (Figure 5.1), and the
star is station A404, which is not part of the microgravity network, but was used to calibrate the
levelling measurements in deformation relative to DYNG. See Section 5.4.2.1 for more details.
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5.4.2.3 Effects due to groundwater-mass variations

The temporal gravity change due to groundwater-mass variations has two components:[
∆ĝwtr

]
sat

reflecting changes in the saturated zone, i.e. caused by fluctuations in the

water-table level, and
[
∆ĝwtr

]
unsat

reflecting changes in the unsaturated zone, such

as due to influx of rainwater or soil moisture variations (Section 4.10). I used a new

approach to take into account this latter component, which is challenging to precisely

estimate, into the error budget of each drift-corrected gravity signature (Section 5.4.1.3).

To estimate the remaining
[
∆ĝwtr

]
sat

, I used the usual infinite slab sheet approximation

(Equation 4.38), assuming an open porosity, φ ± σφ, of 20±15%, i.e. with a large-

enough uncertainty to characterize the heterogeneity of the volcanic and pumice fillings

of the Askja caldera (Section 4.10). Moreover, I assumed that the water-table changes,

∆ẑ ± σ∆z, vary similarly as the Öskjuvatn lake level, over the entire area of study.

Using a time-series of these lake level variations (Figure 5.6), which Karina Nielsen

(National Space Institute of Denmark) derived from CryoSat-2 satellite altimetry (Nielsen

et al., 2015), I estimated water-level changes as the difference in the weighted least-

squares averages of lake level per summer, between each pair of surveys (Figure 5.6).

From this lake-level time-series, ∆ẑ±σ∆z equalled about +0.98±0.14 m over 2015-2016,

−0.67±0.13 m over 2016-2017, and +0.32±0.10 m over 2015-2017. A resulting gravity

change,
[
∆ĝwtr

]
sat

, of about +8±6, −6±4 and +3±2 µGal, is likely to have affected the

area of study during 2015-2016, 2016-2017 and 2015-2017, respectively (Equation 4.38).

If the water-mass variations at Öskjuvatn reflect the variations of groundwater-

masses beneath Askja, this analysis implies that the temporal gravity changes,
[
∆ĝDC−

∆ĝelev

]
, should all be shifted by a constant of less than ±10 µGal, even at the refer-

ence station DYNG. Because this shifting would not affect the overall residual gravity

anomaly, I decided to neglect
[
∆ĝwtr

]
sat

. Even though groundwater-masses might not

vary homogeneously over the area of study, this discarding should not affect final results

as the lake level variations should still indicate the order of magnitude for
[
∆ĝwtr

]
sat

,

which is very small compare to the error budget of the residual gravity changes (Ta-

ble 5.2).
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Figure 5.6: Time-series of the lake level variations at Öskjuvatn, determined by Karina
Nielsen, using CryoSat-2 satellite altimetry (Nielsen et al., 2015). I am interested in the lake
level variations in summer (blue), between 2015, 2016 and 2017.

5.4.2.4 Effects due to snow-mass variations

The last unwanted temporal component to estimate was the one due snow mass varia-

tions over 2015-2016 and 2015-2017 (∆ĝsnow ± σsnow in Equations 5.3 and 5.4).

From field observations, the levelling-gravity stations as well as CASK were sur-

rounded by about 1.5 to 2 meters of snow in 2015, while, in the centre of the caldera,

I only noticed snow patches of a few centimeters thick, and there was no snow around

VonK, DYNG and MYV2. The site occupations performed at CASK in 2015 could not

be used because they had been discarded from the statistical test, when averaging the

Z=5 gravity measurements (Figure 5.2), and station A412 was the only levelling-gravity

station that could be measured during this survey, because uncovered by snow.

To get an estimation of ∆ĝsnow ± σsnow, at each required station, I used the infinite

slab approximation, similarly as in Equation 4.38, but assuming a bulk snow density

of 400 kg m−3, and providing snow thicknesses from 0.05 to 2 meters, with negative

signs, because mass had been removed. Considering standard deviations equalling 50%

of these approximate thicknesses, a maximum ∆ĝsnow±σsnow of about −25±14 µGal is

likely to have affected station A412, a snow effect of about −3±2 µGal is likely to have
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occurred at MASK, and the effect should be less than one microgal at OLAF, NE2 and

D19 (Table 5.2).

5.5 Analysis of residual gravity changes at Askja

As previously highlighted by Figure 5.4, the spatial pattern of the residual gravity

changes at Askja (Equations 5.3 and 5.4) has a negative bowl-shape signature over

2015-2017, with maximum decrease of about 120±38 µGal, observed at station D19

(Section 5.4.2). This gravity signature mainly occurred between 2015 and 2016, when

the maximum decrease of about 98±29 µGal was observed at MASK (i.e. <1 km away

from D19, Figure 5.1), whereas negligible variations of +7±30 and −21±30 µGal were

recorded at MASK and OLAF, respectively, over 2016-2017.

The negative bowl-shape signature, centered on the Askja caldera, can be more

clearly highlighted for the periods 2015-2016 and 2015-2017, when fitting second degree

polynomial functions to the results, projected along a south-west to north-east profile

(Figure 5.7). The estimated extrema of about −70±16 µGal over 2015-2016 and about

−91±13 µGal over 2015-2017 are respectively near the cluster containing OLAF, NE2,

and D19 and near MASK. On the other hand, the second degree polynomial function

for the period 2016-2017 highlights a negligible decrease at the caldera centre, and an

estimated maximum low of about −41±18 µGal, near A430, i.e. towards the north-east

caldera edge (Figure 5.7). When comparing the polynomial models for the three periods,

variations in residual gravity are irregular from one year to another, but the signals

seem to be confined within the caldera, with negligible (or near-negligible) variations

constantly observed at the caldera edges.

5.5.1 Comparison with previous gravity studies

Due to the use of standard LaCoste & Romberg gravimeters, previous measurements

might have been biased (Section 5.2), but assuming that these measurements were

acquired with extreme caution, the order of magnitude of temporal changes should still

be similar between the two distinct time-series.
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Figure 5.7: A-C: Residual gravity changes relative to DYNG, across Askja, where the station
locations have been projected along a SW-NE profile, passing by VATN and VIKR (Figure 5.1).
D: Superimposition of the second degree polynomial models of each time period, with extreme
estimated values highlighted by the squares.

Based on previous results, I expected to observe a bowl-shape residual gravity change

signature across Askja, such as detected over 2015-2016, with maximum decrease cen-

tered near OLAF, D19, NE2 and MASK; these stations composed the old gravity centre

group, where the long-term gravity decrease had previously been observed (Figure 1.8).

In the past, VIKR was used as reference for gravity changes, whereas I used DYNG,

which is further away from the caldera (Figure 5.1). This is very likely the reason why

I recorded a much larger change over 2015-2016 compared with previous studies: the

weighted least-squares average of the residual gravity change, grouping MASK, OLAF,

NE2 and D19 (such as done in previous studies) equals about −90 µGal over 2015-

2016. Such a variation had previously been recorded over about 12 years (1988-2002),

while absolute yearly fluctuations ranged between <5 and 45 µGal (Figure 1.8B). When

taken relative to VIKR, the −90 µGal decrease spanning 2015-2016 is lowered to about

−40 µGal, which is in agreement with the previous time-series. Similarly, the central
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weighted average over 2016-2017 equals about −10 µGal when taken relative to DYNG,

and +20 µGal when taken relative to VIKR.

This observation emphasizes the importance of choosing an appropriate reference

station for temporal gravity changes, and results from previous studies might have been

underestimated. Choosing DYNG for reference seems more appropriate, especially be-

cause the zero-gravity change level seems to be reached at the caldera edges (Figure 5.7).

However, there is still a risk that my results have been underestimated, as I could not

demonstrate that DYNG was outside the gravity change zone during my surveys (Sec-

tion 5.3). We measured the GPS-gravity station GRAF (N65.287°,W16.090°; Drouin

and Sigmundsson (2013) and Appendix C.1) at the beginning and end of each survey,

i.e. on the way to and back from Askja. As this station is located at ∼40 km to the

north-east of Askja, it is obviously outside the gravity change zone of the caldera, and

one could therefore think that it would be an appropriate reference station to verify

whether DYNG is affected by any mass change. However, GRAF might have been af-

fected by some local residual gravity variations, and additionally, the gravity changes

due to meterologial effects and groundwater-mass variations should have been estimated

specifically for this area (Sections 5.4.1.3 and 5.4.2.3). Assuming that these effects were

the same in both regions, variations of about −57±38 and +40±41 µGal occurred at

GRAF relative to DYNG, over 2015-2016 and 2016-2017, respectively. These results

could equally reflect variations at DYNG and/or GRAF. Extra work would have there-

fore been required to safely use GRAF as the reference station. Although expensive and

not so easy in remote areas, a good and reliable alternative for future surveys would

be to continuously monitor gravity at DYNG, during each survey, using an absolute

gravimeter (e.g. Carbone et al., 2017, Van Camp et al., 2017).

5.5.2 Comparison with simultaneous surface deformation

The spatial signature of surface deformation along the south-west to north-east profile

(Figure 5.8) highlights the bowl-shape more clearly than Figure 5.5. Second degree

polynomial functions are very similar over 2015-2016 and 2016-2017, with respective

estimated lows of about −1.6±0.1 and −1.5±0.1 cm, constantly located near the station
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cluster with OLAF, D19 and NE2. Consequently, twice as much deformation occurred

over 2015-2017, with a maximum estimated decrease of −3.1±0.1 cm in the same central

area. This steady temporal evolution of the subsidence, confined within the caldera,

with constant negligible (or near-negligible) deformation at the caldera edges, is in good

agreement with InSAR results from Chapter 3 (e.g. 3.15).

Figure 5.8: A-C: Elevation changes relative to DYNG, projected along the same SW-NE
gravity profile as the residual gravity changes in Figure 5.7 (as explained in Section 5.4.2.1, the
smallest error bars are underestimated). D: Superimposition of the second degree polynomial
models of each time period, with estimated extrema highlighted by the squares.

On the other hand, the irregular variations of annual residual gravity changes are

only correlated with the subsidence over 2015-2016 (Figure 5.9), with the magnitudes

increasing from maximum lows near MASK and OLAF to approximately negligible

variations at the caldera edges. The independent evolution of both signals over 2016-

2017 (Figure 5.9) suggests that they are caused by distinct processes, which could be

indirectly linked and which induce some temporary similarity in spatial pattern. In the

next section, I further investigate the link between surface deformation and temporal

gravity using inversion modelling.
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Figure 5.9: Residual gravity changes against elevation changes over 2015-2016 (left) and 2016-
2017 (right). The red line highlights the best-fit linear model constrained using Monte Carlo
simulation using 10,000 iterations, and taking into account uncertainties in both signals. The
Pearson correlation coefficient characterizes the degree of correlation between two variables,
with +1 indicating a strong positive correlation and near-zero indicating no linear relationship.
Refer to Figure 5.1 for station locations.

5.6 Modelling residual gravity changes at Askja

In Chapter 3, I demonstrated that the Askja subsidence can be explained by an ex-

ponentially deflating Mogi reservoir, located at 3 km depth beneath the centre of the

main caldera. Using again the MCMC Bayesian modelling approach from GBIS (Sec-

tion 3.7.1), I solved for the location, depth and magnitude of subsurface mass change

that would best predict the non-negligible residual gravity change observed over 2015-

2016 (Figure 5.7). Due to the bowl-shape spatial signature of this annual gravity change,

I assumed a spherical reservoir geometry and I therefore adapted GBIS to implement

Equation 1.20.

5.6.1 Correlated errors of residual gravity changes

Air pressure and air temperature variations as well as water infiltration from rainfall

and soil moisture can all be spatially-correlated over periods of hours to days or even

months (Sections 4.6, 4.10 and e.g. Jacob et al. (2010)). Consequently, errors due to

these “meteorological effects”, εmet (Section 5.4.1.3), are likely to covary during any

survey, between stations that were occupied over a specific time window. Additionally,

the errors, εbase, of the base measurements, predicted from the drift function should
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also covary, because they are estimated from common model parameters: drift rate and

y-intercept (Section 4.7.1).

The final errors, εres, of residual gravity changes between any two stations and any

two surveys, therefore covary in agreement with the covariances, Cbase and Cmet of the

respective εbase and εmet, during each survey:

Cres = (Cbase + Cmet)survey1 + (Cbase + Cmet)survey2 (5.5)

where Cres is the covariance of εres at the given station and between the two surveys.

This assumes negligible contributions from covariance at other errors.

Assuming low correlation favours fitting the overall magnitude, whereas assuming

high correlation favours fitting the shape of the gravity signal. It is therefore important

that covariances are included in the variance-covariance matrix in the inversion.

I estimated Cbase between any pairs of station and per survey, by propagating the

errors of the drift function derived using the least-squares percentile bootstrap approach

(Section 5.4.1.3):

Qd̂d̂ = GQmmGT (5.6)

where G lists the times of base occupations in the first column and ones in the second

columns, and Qmm is the variance-covariance matrix of the drift model parameters,

listing the variances of drift rate and y-intercept in the diagonal, and their covariances

elsewhere. Qd̂d̂ lists the variances σ2
base in the diagonal and all Cbase elsewhere.

Because εbase are mainly due to meteorological contribution, the covariance of the

residuals to the drift function in time reflect the covariance of εmet. Consequently,

the covariance function for εmet can be estimated in time using the semi-variogram of

the residuals, and assuming that it follows an exponential model (Equation 3.5 with r

replaced by separation time, and R being the correlation time for εmet). When assuming

that such model is appropriate and combining the two surveys, residuals from the drift

can be fitted with a semi-variogram having a range R of 2/3 days, which is equivalent

to an effective range of 2 days (e.g. Bagnardi and Hooper (2018) and Figure 5.10).

Using this R, individuals variograms can be generated per survey, and although noisy,
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I estimated the (Cs − Cn) variance parameter to be 200 µGal for 2015 and 600 µGal

for 2016. From all these parameters, I estimated the covariances Cmet for each survey

using Equation 3.5.

Figure 5.10: Semi-variogram computed using residuals from the drift in both 2015 and 2016.
Both surveys were combined to increase the number of datapoints and therefore improve the
semi-variogram model. Because residuals from the drift largely comprise unknown meteroro-
logical effects, the covariance of these effects between any station measurement should evolve
similarly (Section 5.6.1). Refer to Section 3.4.4 and e.g. Bagnardi and Hooper (2018) for more
explanations on the semi-variogram approach.

5.6.2 Modelling results

I performed the MCMC Bayesian inversion with one million iterations, taking into ac-

count the covariances between errors of residual gravity changes (Section 5.6.1). I refer

the reader to Section 3.7.1 for more details on the theory behind the MCMC Bayesian

inversion method. Even though the inversion converged well (Appendix C.2), the pos-

terior probability density functions show that the depth could not be well constrained

(Figure 5.11), and the upper bound is very dependent on the prior.

When assuming that DYNG is an appropriate reference station for temporal grav-

ity and that the spherical geometry is a suitable model, my inversion suggests that

residual gravity changes over 2015-2016 are due to a mass decrease of about 9.5×1010

[−1.5×1012;−7.5×1010] kg located at about 2.8 [2.7;9.9] km beneath MASK (Figure 5.12).

Due to the poorly constrained depth of the gravity source, there is still a probabil-
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Figure 5.11: 1-D marginal posterior probability density functions for the location, depth and
magnitude of mass changes, projected along the profile, with DYNG as reference (Figure 5.7).
The most likely solution is highlighted in blue.

ity that mass and volume changes originate from the same depth. Indeed, the range of

gravity source position, ranging between 2.7 and 9.9 km overlaps with the position of the

deformation source, which ranges within 2.9 to 3.1 km depth (Figure 3.7.3). However,

when assuming an incompressible system (Section 1.3.1) with magma density ranging

between 2100 and 2800 kg m−3 (to account for any possible stage of crystallisation),

the volume change of about −6×106 m3, constrained from deformation over 2015-2016

(Figure 3.21), translates into a mass change of between −1.7×1010 and −2.3×1010 kg.

Because this range is outside the 95% confidence interval of [−1.5×1012;−7.5×1010] kg

constrained from gravity, it is likely that both signals are not related. This discrepancy

remains if assuming a basaltic magma with compressibility, βm, of 10−10 Pa−1, sur-

rounded by a somewhat fractured crust with a shear modulus, µ, of 1010 Pa (Table 1.1)

and a compressibility, βc, of 3/(4µ)=7.5×10−11 Pa−1 (e.g. Rivalta and Segall, 2008).

Indeed, in such scenario the range of mass change derived from deformation results is

between −3.9×1010 and −2.9×1010 kg (Equation 1.12 and Segall (2010c)).

These results are based on assuming a Mogi source geometry, which is a very simple
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Figure 5.12: Prediction of the 2015-2016 non-negligible residual gravity changes projected
along a south-west to north-east profile (Figure 5.1), using an MCMC Bayesian inversion ap-
proach with one million iterations, and taking into account the correlation between data errors.
See Section 5.6 for more details.

approximation, likely to be far off the reproduction of the real geology but equally

likely to reproduce well the physical conditions responsible for the bowl-shape spatial

signatures of deformation and gravity change (Section 1.4.2). Moreover, despite the

large uncertainties in the gravity changes, the MCMC Bayesian inversion approach

provided confidence intervals accounting for the uncertainties. If the Mogi assumption is

appropriate, there is therefore 95% confidence that the deformation and gravity models

presented here reproduce the mass and volume (or pressure) change conditions beneath

Askja.
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5.7 Causes of subsidence at Askja

Previous studies assumed that both the subsidence and gravity decrease, centered on

the Askja caldera, were due to the same process, located at the “geodetic reservoir”

(Section 1.5.3). Based on this assumption, they suggested that magma was continuously

draining from the geodetic reservoir down to deeper levels (e.g. Rymer and Tryggvason,

1993, de Zeeuw-van Dalfsen et al., 2005), and even though not expected to generate any

gravity change, magma thermal contraction due to cooling and cystallisation, within

the reservoir itself, was also proposed to contribute to the subsidence (e.g. Sturkell and

Sigmundsson, 2000). In addition, Pedersen et al. (2009) and de Zeeuw-van Dalfsen

et al. (2012) highlighted the likely high impact of plate spreading using finite-element

modelling.

In this chapter, I have highlighted some discrepancies suggesting that gravity changes

are not directly related to the subsidence:

1. Both signals can be uncorrelated in time;

2. When assuming that both signals originate from the same source and are due to

magma drainage, the mass change derived from deformation is out of the 95%

confidence range of mass change, constrained from gravity.

Moreover, the temporal uncorrelation of both signals was also observed in previous

studies, when a gravity increase was recorded over 2007-2009, while the subsidence

continued (Section 1.5.2).

Assuming that the Mogi model is appropriate to reproduce the distribution of pres-

sure (volume) and mass changes beneath Askja, my analysis therefore suggests that

the hypothesis of magma drainage to explain the subsidence is unlikely. However, the

presence of a shallow magma reservoir is not ruled out, and several observations even

support its existence: a subsiding caldera implies that there is a shallow magma reser-

voir, my deformation analysis precisely redefined the depth of this reservoir linked to

the subsidence at 3-km beneath the caldera centre, in contrast to previous inversion

analyses, which placed it at 3.5 km depth; and Greenfield et al. (2016) observed some

seismic velocity attenuation in this area (Section 1.5.4).
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Magma crystallisation processes from thermal contraction at the 3-km deep reser-

voir and extensional stresses induced by plate spreading could both induce the steady

and gradually decaying subsidence. The solidification of magma from cooling and crys-

tallisation processes usually induces a volume decrease of 10% from the initial volume

of liquid (e.g. Caricchi et al., 2014). If the total decrease of 0.07 km3 constrained from

InSAR (Figure 3.21) would be solely due to this process, the initial volume of magma

that would have had solidified over 1983-2017 would be 0.7 km3. Because the reservoir

beneath the caldera should not exceed 15 km3 (Section 1.5.4), this result does not seem

unrealistic, but further investigations should be carried out to estimate whether this

process would be occurring. For example, the amount of thermal contraction could be

modelled (e.g. Hamlyn et al., 2018), and performing e.g. a magnetotelluric study could

help detecting whether magma is present in this reservoir (e.g. Comeau et al., 2015).

The extension due to plate spreading could be the main driving force. Indeed, crustal

stretching is expected to cause pressure decrease along oceanic ridges. Even though

magma flow from high-to-low pressure zones is the common process known to originate

from such tectonic destabilisation in volcanic environments (Section 1.3.3), subsidence

of weak materials overlying a shallow magma chamber can be another way of accommo-

dating the pressure decrease due to plate spreading or any tectonic event (e.g. Takada

and Fukushima, 2013, Pritchard et al., 2013). If this process is happening at Askja, the

steady pressure decrease induced by stretching the 3-km deep reservoir could induce

similar conditions to the ones that would be generated by a deflating Mogi reservoir,

although no magma is flowing out.

The irregular mass changes could be occurring at the top of the magma chamber

from e.g. outgassing (Section 1.3.3), but because compositions of the fumaroles at Askja

lye within the geothermal range (Personal communication, M. Pfeffer, 2018 - Icelandic

Met office), mass changes could instead be occurring in a hydrothermal system over-

lying the 3-km deep reservoir. Indeed, absolute yearly gravity changes associated with

hydrothermal processes can be of about 70-80 µGal (e.g. Saibi et al., 2010). The in-

direct link between the shallow reservoir and the hydrothermal system could be the

reason why temporal variations in deformation and gravity change can be sometimes
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correlated, but further investigations would be required to verify whether the source of

gravity change is hydrothermal.

5.8 Conclusion

In this chapter I have presented, for the first time, the residual gravity change signa-

ture along a south-west to north-east profile, crossing the entire Askja caldera, with

full integration of the uncertainties. The use of a new type of gravimeter, equipped

with automatic recording and precise electronic sensors facilitated the constraint and

minimisation of vibration noise and errors associated with the instrument levelling. Ad-

ditionally, I used a new reference station, DYNG, which is more appropriate than VIKR,

used in previous studies and lying in the gravity change field.

Between 2015 and 2016, there was a bowl-shape gravity signature centered on the

Askja caldera, with maximum decrease of about 100±30 µGal at MASK and near-

negligible variations at the caldera edges. This signal was spatially correlated with

synchronous subsidence measurements, also showing a bowl-shape signature centered

on the caldera, with a maximum decrease of −1.6±0.1 cm near OLAF, i.e. at <1 km

away from MASK. Between 2016 and 2017, however, a completely different pattern

occurred, with near-negligible to negligible gravity variations over the entire caldera,

while the subsidence continued to evolve steadily.

I further tested the relationship between both signals by performing the first gravity

inversion at Askja: assuming that DYNG is outside the gravity change zone and that a

spherical model is appropriate, the 2015-2016 residual gravity changes are best explained

by a mass decrease of about 9.5×1010 kg located at 2.8 km depth beneath Askja. With

respective 95% confidence intervals of [−1.5×1012;−7.5×1010] kg and [2.7;9.9] km, these

optimal values are poorly constrained, but the confidence intervals indicate the range

where the depth and mass change sit, with 95% chance. Because the volume change

constrained from deformation would imply a mass loss outside the confidence interval

to that predicted from gravity, a magma drainage cannot be responsible for the Askja

subsidence. This analysis is based on the assumption that the Mogi model is appropriate
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to reproduce the physical conditions beneath Askja.

By rejecting the magma drainage hypothesis, this study has reduced the likely causes

of subsidence to extensional stress due to plate spreading and magma crystallisation at

the shallow reservoir. The source causing the irregular gravity changes could reflect

mass fluctuations in a hydrothermal system, situated just above the magma reservoir

and possibly being heated up by the cooling magma. In that case, the processes causing

deformation and gravity changes would be indirectly linked to some degree, but further

investigation are required to verify these remaining hypotheses.

Despite the significant improvements compared with previous gravity studies, more

could be learned about the nature of the source of gravity changes by extending the

new gravity time-series and quantifying to what extent DYNG is affected by gravity

variations. Moreover, measuring air pressure, air temperature and soil moisture varia-

tions during each survey should better constrain residual gravity changes, as final errors

would be reduced. In that case, several model geometries could be tested, and mass

changes could also be simulated using hydrothermal models (e.g. Kipp et al., 2008).

In parallel, the presence of magma at 3-km depth could be investigated using other

geophysical methods such as, for example, magnetotellurics, and thermal contraction

models could be estimated.
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Chapter 6

Discussion and Conclusions

6.1 The Askja subsidence in a wider context

From the Smithsonian Institution database (GVP, 2019), 153 episodes of subsidence

were measured at volcanoes between 1943 and 2017. In terms of duration, 95 of these

episodes lasted <5 years (62.5%) and only 6 episodes lasted ≥20 years (2%), with the

Askja subsidence being the longest episode observed at a contemporary active volcano

(Table 6.1). Here, I briefly summarize these longest subsidence episodes, and compare

them with the Askja subsidence.

Volcano Location Landform Last
eruption

Subsidence
duration (yrs)

Subsidence
location Ref.

Medicine Lake Cascades (U.S.) Caldera 1060 AD* 46** centered on caldera [1,2,3]
Askja Iceland Caldera 1961 34** centered on caldera
Taupo Lake New-Zealand Caldera 260 AD 25** north of caldera [4,5,6]
Asama Japan Complex 2015 24 whole complex [7]
Mt Vesuvius Italy Summit caldera 1944 21** centered on caldera [8,9,10]
Kilauea Hawaii (U.S.) Summit caldera 2018 20 centered on caldera [11]

Table 6.1: List of the longest subsidence epsiodes that have been detected at volcanoes. (*)
radiocarbon datation; (**) is or might still be on-going. [1]: Dzurisin et al. (2002), [2]: Poland
et al. (2006), [3]: Parker et al. (2014), [4] Otway et al. (2002), [5]: Peltier et al. (2009), [6]:
Hamling et al. (2015), [7]: Murase et al. (2007), [8]: Tammaro et al. (2013), [9]: Samsonov et al.
(2014), [10]: Walter et al. (2014), [11]: Johnson et al. (2010).

The Medicine Lake caldera (Table 6.1) has been subsiding at a steady rate of

about −10 mm yr−1 for the entire monitoring time-period (1954-2011), and no update

has been provided since then (e.g. Dzurisin et al., 2002, Poland et al., 2006, Parker et al.,

2014). The spatial signature of the subsidence was circular, with maximum decrease at
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the caldera centre, and mimimum decrease at the edges. Even though this volcano is

located along a volcanic arc resulting from subduction, it is subjected to local extensional

stresses, and the preferred hypotheses to explain the subsidence are crustal stretching

and loading of caldera filling, or magma drainage and/or crystallisation processes (e.g.

Dzurisin et al., 2002, Poland et al., 2006, Parker et al., 2014).

At Lake Taupo (Table 6.1), which is located in a back-arc extensional context, a

subsidence of at least 25 years (1984-2009) was locally observed in the northern part of

the caldera (e.g. Otway et al., 2002, Peltier et al., 2009). The onset of the subsidence

could be an earthquake swarm that occurred in 1983, but, alternatively, the subsidence

could have started before this tectonic event (Peltier et al., 2009). The temporal evolu-

tion of this localised deformation pattern has been decaying exponentially, with linear

rates diminishing from about −11 mm yr−1 in 1984 to about −3 mm yr−1 in 2009 (e.g.

Otway et al., 2002), and no update on the subsidence has been provided since then.

Short-term fluctuations, likely due to seismicity and/or geothermal activity, were ob-

served before and after a steady period spanning 1984-1996. The process responsible for

the subsidence is still unclear, and could involve crustal stretching, with either fluid loss

from a deep hydrothermal system and/or thermal contraction due to magma crystalli-

sation in a deep reservoir (e.g. Otway et al., 2002, Peltier et al., 2009). More recently,

Hamling et al. (2015) observed three local subsiding regions (2003-2011) further to the

North of the caldera, with rates of about -20 mm yr−1. They suggested that the main

process responsible for these discrete subsidence patterns could be thermal contraction

of a large magmatic reservoir at about 6 km depth.

Asama (Table 6.1) is a complex of several volcanoes, situated along a volcanic arc

with no evidence of extensional regime. A long-term subsidence, affecting the overall

complex, occurred between 1943 and 1967, before the deformation reversed to an uplift

period up to 2005 (Murase et al., 2007). A correlation between the unsteady deformation

and eruption frequency was highlighted, suggesting that magma was the main process

controlling deformation at Asama.

The summit caldera of the Mt Vesuvius stratovolcano (Table 6.1) has been sub-

siding at a negative rate of <10 mm yr−1 since the beginning of monitoring, in 1992,
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and at least up to 2013 (e.g. Tammaro et al., 2013, Samsonov et al., 2014, Walter et al.,

2014). Discrete short-term uplifts of less than 2 cm were observed as well as seasonal

fluctuations. Despite the regional context of subduction, Mt Vesuvius is subjected to

some extensional stresses, and its magma plumbing system could be linked to the Campi

Flegrei caldera, which is also in this extensional area: Walter et al. (2014) highlighted

synchronous episodes of deformation and eruption between both volcanoes. However,

the subsidence at Campi Flegrei, monitored since 1992 has reversed to uplift in 2009,

whereas the long-term deformation remained undisturbed at Mt Vesuvius (Samsonov

et al., 2014). At these two volcanoes, the causes of subsidence, which are still unclear,

could be due to crustal stretching, loading of the edifices and/or magma movements

(e.g. Tammaro et al., 2013, Walter et al., 2014).

Finally, the summit caldera of Kilauea (Table 6.1), so-called Halema’uma’u, sub-

sided steadily at a rate of about 75 mm yr−1 between 1983 and 2003, when the de-

formation then reversed to uplift, up to 2007 (Johnson et al., 2010). This long-term

subsidence correlated with magma draining from the lava lake and with an eruption that

occurred along the so-called East rift zone, on the flank on the shield volcano. More

recently, correlations between the Halema’uma’u caldera deformation, its lava lake and

eruptions at the East rift zone were again observed (e.g. Baker and Amelung, 2012,

Bagnardi et al., 2014). Subsidence at Halema’uma’u is therefore very likely controlled

by magma movements.

By comparison, Askja (Table 6.1) has been gradually subsiding following an ex-

ponential decay function over the last 34 years, with maximum rates decreasing from

about−25 mm yr−1 over 2002-2006 to about−15 mm yr−1 over 2015-2017 (Figure 3.15).

With a same order of magnitude as observed at the five other volcanoes, the caldera-

centered spatial signature of this steady subsidence can be analogous to that observed

at Medicine Lake, and an exponential decay was also observed at Lake Taupo. In terms

of tectonic context, Askja is subjected to continuous extensional stresses as it lies within

a segment of the mid-Atlantic ridge.

Overall, it seems that long-term subsidence episodes at volcanoes are either due to

significant magma drainage linked to eruptions, or they occur in extensional contexts. In
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the latter case, the end of the subsidence episodes have not yet been detected (Table 6.1),

and combinations with subsurface magma movements or crystallisation processes are

sometimes proposed, as well as contributions from material loading. Apart from Asama,

all other long-term subsidence episodes occurred at calderas, and all but that at Taupo

affected the entire calderas. These deformation episodes seem to be the most steady at

quiet volcanoes, such as at Medicine Lake and Taupo, but also at Askja, even though

its last eruption was relatively recent. Alternatively, when large amounts of magma are

clearly linked to the subsidence, such as at Kilauea, the subsidence can also be steady.

When put in a wider context, the likely high impact of plate spreading on the Askja

subsidence is clearly supported, as well as the unlikely magma drainage.

6.2 Conclusions

The aim of this thesis was to integrate surface deformation with temporal gravity more

closely at Askja, to clarify the causes of subsidence. In a wider context, I aimed to

contribute to the understanding of physical processes operating at shallow volcanic

systems lying along mid-oceanic ridges, by testing the integration of both methods.

Here I summarize my key findings per chapter.

6.2.1 Chapter 3: The exponentially decaying Askja subsidence

In Chapter 3, I presented a detailed analysis of the long-term caldera subsidence of

Askja, using InSAR datasets from four different satellites, six different tracks and span-

ning 2002-2017. It is the first time such a 15-year-long time period has been covered

using InSAR at Askja. Exploiting the high-spatial resolution of the technique, I anal-

ysed the long-term subsidence trend over the entire caldera, and I tested the hypothesis

that the deflating magma reservoir, previously constrained at 3-3.5 km depth, could be

the combined centre of pressure change of several processes.

My results show that the temporal evolution of the whole Askja subsidence can be

approximated by the exponentially decaying model, previously only locally constrained

from levelling and which is characterised by a relaxation time of about 42 years over
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1983-2017. Assuming a point pressure source, so-called Mogi model, I constrained the

volume change that would best explain the bowl-shape subsidence, implementing the

exponential decaying model in the inversion. My results show that, if the Mogi model

is appropriate, there is 95% chance that the long-term subsidence is explained by a

geodetic source located at 3±0.1 km depth, and undergoing an exponentially decaying

deflation, with volume change rate likely to have diminished from about 0.0016 km3

yr−1 in 1983 to about 0.0008 km3 yr−1 in 2017. Despite its very simplistic conception,

the Mogi model, which likely does not represents well the subsurface geology, is likely to

be appropriate to reproduce the pressure conditions causing the bowl-shape subsidence

at Askja. This new analysis provides a redefined subsidence model compared with pre-

vious studies, with narrower confidence intervals. Even though my results support the

presence of a 3-km deep reservoir centred beneath Askja, this does not demonstrate that

magma, draining from the shallow source, is causing the subsidence. It rather means

that the conditions of pressure decrease related to the subsidence can be approximated

by that produced by a continuous magma outflow from a Mogi reservoir.

A localised residual signal could not be predicted by the Mogi model in the north east

of the caldera. This emphases the limitations of using inversion modelling approaches

that assume very simplistic material properties and reservoir geometries. Strong local

variations in pressure field and/or crustal heterogeneities could be the reason why a

local subsidence signal has remained. For example, lava overloading from the most

recent 1961 eruption could have locally modified material properties in the area where

residuals remain.

6.2.2 Chapter 4: Full integration of uncertainties for temporal gravity

In Chapter 4, I presented a statistical analysis that estimates the total error budget

associated with residual gravity changes, and I focussed on spring gravimeters as these

instruments are mostly used in remote volcanic areas. This work aimed to fill the

lack of guidance and help the scientific community to precisely constrain and minimize

errors: even though the list of error parameters can be found in the literature, no

clear guidance has been provided to quantify case-by-case estimations, and the general
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estimations provided have sometimes been underestimated or lacked information. In

addition to providing equations to estimate the full error budget associated to residual

gravity changes, I also estimated expected ranges of errors, from detailed best-to-worst

case scenarios, so that users can anticipate the minimisation of errors.

My results show that (1) error standard deviations associated with vibration noise,

imprecise levelling and temporal variations in calibration factor can be up to a few

hundreds of microgals; (2) error standard deviations related to air pressure changes, air

temperature changes, elevation changes and subsurface water-mass variations can reach

at least a few tens of microgals; and (3) error standard deviations of Earth tides and

ocean loading effects should not exceed a few microgals.

When using appropriate gravimeters, i.e. equipped with an automatic recording

system and precise electronic sensors, errors due to vibration noise and imprecise level-

ling can be precisely constrained and easily minimized. Despite their similar precision,

Scintrex gravimeters are therefore usually more appropriate than LaCoste & Romberg

gravimeters for studying temporal gravity. Largest errors due to calibration arise when

using different gravimeters and/or when instruments are not recalibrated for long-time

periods. To minimize these effects, users should therefore use the same gravimeter and

regularly monitor temporal variations in calibration factor.

Precisely measuring air pressure, air temperature and elevation at each gravity sta-

tion should be usual practice to reduce their respective gravity contributions and easily

minimize the error budget. The most challenging parameter to estimate is the gravity

effect due to water-mass variations. When wells or lakes are present in the area, the

order of magnitude of water-mass variations in the saturated zone can be determined,

and measuring the amount of rainfall and soil moisture during gravity surveys could

provide an estimate of water-mass variations in the unsaturated zone. Alternatively,

when not possible to measure air pressure, air temperature, or water-mass variations, I

demonstrated that analysing the drift function over a few days can highlight unknown

temporal variations, likely mainly due to these unknown meteorological effects. An es-

timate of these effects can be derived at any time, at the base station, and assuming

that these variations are constant over the area of study, a single bulk estimate can
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be derived per survey, for the area of study. Even though not ideal, this estimation

provides some constraints on unknown temporal effects, which might mask the signal of

interest, and for large areas several base stations can be setup to quantify these effects

per zone.

6.2.3 Chapter 5: Different processes causing deformation and gravity

changes at Askja

In Chapter 5, I investigated the causes of subsidence by analysing a new temporal gravity

time-series I collected, spanning 2015-2017, and comparing results with simultaneous

surface deformation. I carried out each survey using a Scintrex gravimeter, rather than

a LaCoste & Romberg gravimeter to better constrain and minimize instrumental errors,

compared to previous studies. Additionally, the use of this specific instrument should

facilitate the reproduction of future gravity campaigns, as it is stored on the premises

of the University of Iceland. Compared with previous gravity studies, I enlarged the

gravity network to obtain a cross-section across the entire caldera, and I moved the

reference station further away from the caldera to minimize underestimation due to

unknown gravity variations at the reference station.

My results show irregular annual gravity variations: over 2015-2016, I observed a

bowl-shape gravity signal centered on the main caldera, with maximum residual gravity

decrease of about 100±30 µGal, whereas negligible variations occurred over 2016-2017.

Even though the 2015-2016 signature was spatially correlated with the simultaneous

subsidence records (Pearson’s coefficent of 0.9 with 95% confidence interval of 0.6-1),

the gravity changes and deformation were fully uncorrelated over 2016-2017, suggesting

that both signals are not directly linked to the same process.

I confirmed this hypothesis by carrying out the first gravity inversion at Askja. Even

though the data errors were too large to precisely constrain the location, depth and

magnitude of the mass change that would best reproduce the bowl-shape gravity signal,

I could still successfully constrain the most probable solution with reliable confidence

intervals. Assuming a spherical source model and assuming that the reference station

DYNG is outside the gravity change zone, the 2015-2016 residual gravity changes have
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95% chance to be due to a mass decrease of 1.5×1012-7.5×1010 kg, located within 2.7-

9.9 km depth. Even though there would be a chance that both processes occurred

at the same depth, I tested the hypothesis of a magma drainage by comparing the

mass decrease derived from the volume change, which I could precisely constrain from

deformation over 2015-2016, with the mass change constrained from gravity over the

same time period: no matter the magma density assumed, the mass change derived

from InSAR is outside the 95% confidence interval constrained from gravity.

Reviewing the hypotheses from previous studies, my analysis shows that it is unlikely

that a magma drainage from the 3-km deep reservoir is causing the subsidence and, due

to the steadiness of deformation, thermal contraction due magma crystallisation at the

shallow reservoir and extension due to plate spreading could both induce the subsidence.

This latter possibility is supported by other examples of long-term subsidence episodes

at volcanoes (Section 6.1). On the other hand, the irregular and likely shallower gravity

changes could be due to mass variations in a hydrothermal system, heated up by the

underlying shallow magma reservoir, and in that case, deformation and gravity changes

would be indirectly linked. All these remaining hypotheses need further investigations

to be verified.

6.3 Recommendations and Future work

Here I provide some recommendations for future work that would contribute to improv-

ing my work a step further.

Exploring calibration and meteorological effects

My statistical error analysis has been mainly based on the combination of previously

published experimental tests, which provided information on how unwanted gravity con-

tributions usually behave. However, there seems to be a lack of knowledge in temporal

variations of calibration factors and meteorological effects. The main reason for this

gap is that these parameters are usually specific to instruments and study areas. Even

though I provided equations for case-by-case calculations, the best-to-worst range of cal-
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ibration errors could be refined by investigating the temporal evolution of calibration

factors of many spring gravimeters. Additionally, my bulk error estimation for mete-

orological effects, derived from the drift function over a few days, could be compared

with synchronous measurements of air pressure, air temperature, amount of rainfall

and soil moisture. The spatial variations of these effects could also be investigated by

performing the comparison at different sites over a large area.

Future gravity surveys at Askja

For future gravity surveys at Askja, I recommend to:

1. Quantify to what extent DYNG is a suitable reference station by continuously

recording gravity using an absolute gravimeter.

2. Measure air pressure, air temperature, amount of rainfall and soil moisture at

Askja, as constraining these parameters should contribute to minimizing errors

and this will consequently enable better constraint of mass changes. Moreover,

it will provide an opportunity of testing the robustness the bulk meteorological

error derived from the drift function.

3. Start monitoring the variations of the calibration factor of the Scintrex gravimeter

from the University of Iceland, to anticipate minimizing calibration errors when

the time-series will be spanning several years.

Localised deformation signal

The subsidence signal that could not be predicted by the Mogi model in the north-

east part of the caldera could be explored locally by setting up levelling profiles across

the fresh lava flows. Currently, the levelling line in this area is located on the lavas.

Additionally, source geometries other than the Mogi model could be tested.

The 3-km deep magma reservoir

The 3-km deep reservoir has been largely studied using deformation data. The possible

presence of a static cooling and crystallising magma should be investigated using other
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geophysical techniques, and magnetotellurics might be the most appropriate as it is a

passive technique. Thermal contraction models could also be carried out.

The gravity source at Askja

Extending the new gravity time-series should enable better constraints of gravity changes

and mass changes could be simulated testing difference source geometries, but also using

hydrothermal models. Additionally, monitoring gravity chqnges at Askja could also be

a way to detect any future magma inflow as a drastic gravity increase would then be

expected.

6.4 Concluding remarks

In this thesis, I have demonstrated the importance of precisely estimating errors related

to temporal gravity, providing equations and detailed methodologies to help the scien-

tific community. I especially highlighted that the type of spring-gravimeter is essential

as well as simultaneously measuring meteorological effects and monitoring temporal

variations in calibration factor.

Additionally, I have demonstrated that the subsidence and gravity changes are likely

unrelated at Askja. This key finding opens up new perspectives to further understand

the subsurface processes undergoing at Askja. Extending the new gravity time-series

and focusing on imaging the first few kilometers of the crust using alternative techniques

should be the next steps to take towards.

Among others, my work has been a great example to highlight that (1) a spatial

correlation between two signals does not necessarily imply that they are related, (2)

despite its definition, a best-fitting Mogi model does not necessarily imply that magma

is involved, and (3) integrating temporal gravity with deformation can help better un-

derstanding subsurface processes at volcanoes.
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Supplementary material for
Chapter 3

A.1 Unwrapping residuals

Figure A.1: Unwrapping residuals for the full ERS time-series (2002-2006), given in radians.
The star is the reference station DYNG.
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Figure A.2: Unwrapping residuals for the full Envisat time-series (2004-2010), given in radi-
ans. The star is the reference station DYNG.

Figure A.3: Unwrapping residuals for the full CSK-A time-series (2010-2012), given in radians.
The star is the reference station DYNG.
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Figure A.4: Unwrapping residuals for the full CSK-A time-series (2014-2015), given in radians.
The star is the reference station DYNG.

Figure A.5: Unwrapping residuals for the full CSK-D time-series (2012-2015), given in radians.
The star is the reference station DYNG.
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Figure A.6: Unwrapping residuals for the full S1-A time-series (2015-2017), given in radians.
The star is the reference station DYNG.

Figure A.7: Unwrapping residuals for the full S1-D time-series (2015-2017), given in radians.
The star is the reference station DYNG.
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A.2 Fully processed unwrapping InSAR time-series

Figure A.8: ERS time-series of unwrapped phase given in radians along LOS, after data-
processing and post-processing reductions. Red is deformation away from the satellite, the
reference site is highlighted with the star, and the area of study is the black square.
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Figure A.9: Envisat time-series of unwrapped phase given in radians along LOS, after data-
processing and post-processing reductions. Red is deformation away from the satellite, the
reference site is highlighted with the star, and the area of study is the black square.
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Figure A.10: Continuing of the Envisat time-series.
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Figure A.11: End of the Envisat time-series.
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Figure A.12: CSK-A time-series of unwrapped phase spanning 2010-2012, given in radians
along LOS, after data-processing and post-processing reductions. Red is deformation away from
the satellite, the reference site is highlighted with the star, and the area of study is the black
square.
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Figure A.13: CSK-A time-series of unwrapped phase spanning 2014-2015, given in radians
along LOS, after data-processing and post-processing reductions. Red is deformation away from
the satellite, the reference site is highlighted with the star, and the area of study is the black
square.
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Figure A.14: CSK-D time-series of unwrapped phase, given in radians along LOS, after data-
processing and post-processing reductions. Red is deformation away from the satellite, the
reference site is highlighted with the star, and the area of study is the black square.
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Figure A.15: S1-A time-series of unwrapped phase, given in radians along LOS, after data-
processing and post-processing reductions. Red is deformation away from the satellite, the
reference site is highlighted with the star, and the area of study is the black square.
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Figure A.16: Continuing of the S1-A time-series.
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Figure A.17: End of the S1-A time-series.
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Figure A.18: S1-D time-series of unwrapped phase, given in radians along LOS, after data-
processing and post-processing reductions. Red is deformation away from the satellite, the
reference site is highlighted with the star, and the area of study is the black square.



192 Appendix A

Figure A.19: Continuing of the S1-D time-series.
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Figure A.20: End of the S1-D time-series.

A.3 Comparison of decomposition approaches

Here, I explain in detail how I decomposed the LOS S1 velocities (2015-2017) into 2-D
velocities, assuming (1) negligible north-south motion and (2) constant horizontal pixel
directions, contracting towards the caldera centre (Section 3.5.1). I also compare results
from both approaches.

To determine
[
∆ϕ̇ask

]
A
and

[
∆ϕ̇ask

]
D
, I first resampled the S1 ascending and de-

scending LOS displacements, taken relative to DYNG (Section 3.4.2), onto a common
grid of 100-by-100 m, by estimating a spatial average value per grid node in each in-
terferogram. To do this, I used weighted least-squares, considering all pixels located
within a 200-by-200 meter square box centered on each node, and I set up the variance-
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covariance matrix using Equation 3.5 with r=0, due to the negligible distance between
the selected pixels. Selecting only the grid nodes where the spatial averages of all in-
terferograms passed the χ2 test within 95% confidence (Section 3.4.4), I then estimated[
∆ϕ̇ask

]
A
and

[
∆ϕ̇ask

]
D
, using weighted least-squares with the variance-covariance ma-

trix listing the variances obtained from the spatial resampling, in the diagonal. All these
estimated velocities passed the χ2 test within 95% confidence.

I used exactly the same spatial average approach, with the same weights, to resample
the incidence angles, ΘA and ΘD, whereas I estimated a single heading angle per viewing
geometry, αA and αD, at CASK, i.e. in the middle of the area of interest (Figure 3.7
and Section 3.4.3).

Using all these input values, I could constrain ˆ̇DE and ˆ̇DV , neglecting north-south
motions (Equation 3.8). On the other hand, I still needed to determine uA and uD,
to carry out the alternative decomposition approach (Equation 3.9), and I used the
following dot product formula to estimate them per grid node:

u = los • dh =
[
lose losn

]
×

[
de

dn

]
(A.1)

where, lose, equalling sin(Θ)cos(α), and losn, equalling −sin(Θ)sin(α), are the east-
west and north-south components of los in the given satellite viewing geometry (e.g.
Wright et al., 2004, Fuhrmann and Garthwaite, 2019), and de and dn are the east-west
and north-south components of the fixed horizontal node direction of motion, dh.

I determined dh at each grid node, assuming a contraction towards the caldera cen-
tre, which I constrained using grid search, by comparing the azimuth directions of the
observed GPS horizontal displacements taken relative to DYNG (Figure 3.10B), with
the predicted directions from the GPS station locations towards any node. For each
grid node test, I computed the weighted residual sum of squares (WRSS) between the
observed and estimated azimuth directions, with variance-covariance matrix listing the
variances associated with the observed azimuth directions. However, rather than cal-
culating each of these variances considering an ellipse with semi-axes corresponding to
one error standard deviation along east-west and north-south (Figure 3.10B), I instead
assumed a circle with radius equalling the mean error standard deviation of the east-
west and north-south components. Even though not exact, this simpler approach still
provides a reasonable relative weighting to compute reliable WRSS values. The grid
node at which WRSS is the smallest is the approximate centre of deformation (Fig-
ure A.21). Knowing the coordinates of this estimated centre of deformation in distance
units, I determined de and dn, at each grid node, using the usual formulas of unit vec-
tor calculations (e.g. Equation 3.12). Finally, after having decomposed

[
∆ϕ̇ask

]
A

and[
∆ϕ̇ask

]
D

into ˆ̇DH and ˆ̇DV , assuming such constrained horizontal direction of motion

(Equation 3.9), I computed ˆ̇DE by multiplying ˆ̇DH by de.
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Figure A.21: Plot showing the best centre of horizontal deformation (red dot), determined
comparing the observed direction of horizontal motion at the GPS stations, relative to DYNG
(blue arrows) with the estimated direction providing a minimum WRSS (red arrows). Most
of the GPS station names are mentioned here and the centre of deformation is very close to
MASK (Figure 3.7).

When comparing the magnitudes of ˆ̇DE and ˆ̇DV , resulting from the two indepen-
dent decomposition approaches described above, a large discrepancy along the north-
south axis passing through the estimated centre of deformation is clearly noticed (Fig-
ure A.22), and this comes from the use of the dot product formula in the approach
fixing horizontal directions (Equation A.1). Indeed, near this north-south axis, de is
minimum, while dn is close to maximum (i.e. near ±1), leading to uA and uD being
dominated by the north-south component (losndn in Equation A.1). Consequently, in
this critical area, the radial signals are dominated by north-south motions, which are
very poorly constrained by the LOS signals, and estimates of radial motion are therefore
dominated by the error in the InSAR.

Mathematically, this can translate into:

ˆ̇DV =

[
∆ϕ̇ask

]
A
uA −

[
∆ϕ̇ask

]
D
uD

cos(ΘA)uD − cos(ΘD)uA
(A.2)

ˆ̇DH =

[
∆ϕ̇ask

]
A

+ cos(ΘA) ˆ̇DV

uA
(A.3)

where cos(ΘA)uD and cos(ΘD)uA almost cancel each other, providing an unrealistically
large magnitude for ˆ̇DV , which is then implemented into the estimation of ˆ̇DH .

When removing pixels located in the critical zone, i.e. where uD and uA have the
same signs, both decomposition approaches provides very similar results (Figures A.23
and A.24), and they also compare well with the long-term east-west and vertical bulk
linear velocities (Figure A.25).
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Figure A.22: Decomposition results of the S1 velocities into east-west (top row) and verti-
cal (bottom) velocity components, when either neglecting north-south motions (left) or when
assuming horizontal direction of motion towards the caldera centre (middle left). Results are
plotted against longitude to highlight the unrealistically large values along the north-south axis
passing through the centre of deformation, i.e. along -16.76° longitude, or near MASK (Fig-
ures 3.7 and A.21). Residuals are shown against longitude (middle right) and as histograms
(right).

Figure A.23: Same as Figure A.22, but here, results with largest errors have been discarded.
See results in map view in Figure A.24.
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Figure A.24: Same results as in Figure A.23 but displayed in map view. The star is the
reference site (DYNG) for deformation, and the squares are the GPS stations (Figure 3.7).

Figure A.25: Comparisons of the decomposed east-west and vertical S1 velocities at each
GPS station (Figure A.24), with the observed GPS linear velocities, estimated using weighted
least-squares. Each S1 datapoint is the weighted least-squares spatial average of the velocities
surrounding each GPS station, when pixels are present.

A.4 Times-series of residuals after removal of the exponen-
tial trend

Figure A.26: ERS time-series showing residual displacements, in cm along LOS, after removal
of the exponential subsidence trend. Red is deformation away from the satellite, the reference
site is highlighted with the star, and GPS stations are the black squares.
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Figure A.27: Envisat time-series showing residual displacements, in cm along LOS, after
removal of the exponential subsidence trend. Red is deformation away from the satellite, the
reference site is highlighted with the star, and GPS stations are the black squares.
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Figure A.28: Continuing of the Envisat time-series.
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Figure A.29: End of the Envisat time-series.
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Figure A.30: CSK-A time-series over 2010-2012, showing residual displacements, in cm along
LOS, after removal of the exponential subsidence trend. Red is deformation away from the
satellite, the reference site is highlighted with the star, and GPS stations are the black squares.



202 Appendix A

Figure A.31: CSK-A time-series over 2014-2015, showing residual displacements, in cm along
LOS, after removal of the exponential subsidence trend. Red is deformation away from the
satellite, the reference site is highlighted with the star, and GPS stations are the black squares.
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Figure A.32: CSK-D time-series showing residual displacements, in cm along LOS, after
removal of the exponential subsidence trend. Red is deformation away from the satellite, the
reference site is highlighted with the star, and GPS stations are the black squares.



204 Appendix A

Figure A.33: CSK-D time-series showing residual displacements, in cm along LOS, after
removal of the exponential subsidence trend. Red is deformation away from the satellite, the
reference site is highlighted with the star, and GPS stations are the black squares.
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Figure A.34: S1-A time-series showing residual displacements, in cm along LOS, after removal
of the exponential subsidence trend. Red is deformation away from the satellite, the reference
site is highlighted with the star, and GPS stations are the black squares.
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Figure A.35: Continuing of the S1-A time-series.
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Figure A.36: End of the S1-A time-series.
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Figure A.37: S1-D time-series showing residual displacements, in cm along LOS, after removal
of the exponential subsidence trend. Red is deformation away from the satellite, the reference
site is highlighted with the star, and GPS stations are the black squares.
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Figure A.38: Continuing of the S1-D time-series.
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Figure A.39: End of the S1-D time-series.



Appendix A 211

A.5 Supplementary figures related to the deformation model

Figure A.40: Accepted parameter solution (each plot) against iterations, for the inversion
that I carried out using LOS velocities over the 15-year long InSAR time-series, assuming a
Mogi source and solving its location (X,Y), depth, volume change (DV), as well as for constants
estimating the deformation at the reference, and possible ramps along X and Y.
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Figure A.41: 1-D marginal posterior probability functions for each parameter constrained in
the inversion. The most probable or “optimal” solutions are highlighted in blue, the means are
in black, the median are in dashed orange, and the 2.5 and 97.5 percentiles are in dotted red.
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B.1 Derivation of the approximately Gaussian distribution
of ε∆tilt

Based on Equation 4.9, the error, εtilt, of the gravity effect due to tilt at any station
of interest, depends on the errors, εθx and εθy , of the orthogonal tilt angle components,
assumed to be equal and drawn from a Gaussian distribution:

εtilt = g0 (cos εθx · cos εθy) = g0 (cos εθ) '
g0

2
ε2
θ. (B.1)

I explain here how this equation can be derived to demonstrate that the error of the
gravity effect due to tilt, between the station of interest and the base station, is drawn
from a distribution that can be approximated as Gaussian.

Assuming that εθ is drawn from a circular Gaussian distribution with 1-D variance
σ2
θx

= σ2
θy

(given in radians), its amplitude is drawn from a Rayleigh distribution, with
expected value (

√
π/2)σθx :

P(εθ) =
εθ
σ2
θx

e
−θ2

2σ2
θx . (B.2)

The probability distribution function of the square of a Rayleigh-distributed random
variable is an exponential, so combining Equations B.1 and B.2 gives:

P(εtilt) =
1

g0σ2
θx

e

−εtilt
g0σ

2
θx , (B.3)

with expected value g0σ
2
θx

and error standard deviation, σtilt = g0σ
2
θx
.

Assuming that εθ has the same distribution at the base than at the station of
interest, the corresponding spatial difference in εtilt (ε∆tilt = εtilt − εB

tilt), for a single
base occupation, with no contribution from drift, is drawn from a Laplacian distribution
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with expected value zero and error standard deviation, σ∆tilt =
√

2g0σ
2
θx
:

P(ε∆tilt) =
1

2g0σ2
θx

e
− ε∆tilt
g0σ

2
θx for ε∆tilt ≥ 0, (B.4)

=
1

2g0σ2
θx

e

ε∆tilt
g0σ

2
θx for ε∆tilt < 0. (B.5)

To account for the fact that the base component, ĝbase (Equation 2.8), is estimated
from multiple base station occupations (Section 4.7), I assume that the distribution of
εB

tilt is equal to that of the mean of n− 1 base occupations (degrees of freedom reduced
by one due to simultaneous estimation of drift). The probability density function for
the sum of multiple exponentially distributed random variable is a Gamma distribution:

P(εB
tilt) =

(
n−1
g0σ2

θx

)(n−1)

εB
tilt

(n−2)
e
−
(

n−1

g0σ
2
θx

)
εBtilt

Γ(n− 1)
. (B.6)

Consequently, based on Equations B.3 and B.6, ε∆tilt is drawn from the following
distribution, with expected value zero:

P(ε∆tilt) =
(n− 1)nn−(n−1)

Γ(n− 1)g0σ2
θx

e
− ε∆tilt
g0σ

2
θx for ε∆tilt > 0, (B.7)

=
(n− 1)nn−(n−1)

Γ(n− 1)g0σ2
θx

e
− ε∆tilt
g0σ

2
θx Γ

(
n− 1,

−nε∆tilt

g0σ2
θx

)
for ε∆tilt < 0. (B.8)

B.2 Calibration error, relative to the base station

Any jth average gmeas (Section 4.3), relative to the survey carried out at t = ti, is
obtained by multiplying the mean, %̄, of all % from all gravity samples by the calibration
factor, ki, at that specific time. Because the calibration factors of SCG and LCR
gravimeters are not expected to vary by more than a few ppm per day (Section 4.8),
they can be considered as constant throughout a survey, and the drift-corrected gravity
signal, gDC, can therefore be expressed as follows:

gDC = ki (%̄− %̄base). (B.9)

Because ki is usually given as a proportion of the manufacturer-determined calibra-
tion factor, k0 (Valliant, 1991, Scintrex, 1995, 2009), its error, εki , can also be expressed
as a proportion of k0:

ki = k0 f(ti), (B.10)

εki = k0 εf(ti), (B.11)
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where f(ti) is the scale factor at t = ti, i.e. characterizing the calibration drift since the
k0 was determined.

Consequently, the calibration error, ε∆cal, of the drift-corrected gravity signal, can
be computed by multiplying εki by the estimate of the drift-corrected gravity (Equa-
tions B.9-B.11):

ε∆cal = εki (%̄− %̄base), (B.12)

∴ ε∆cal = εf(ti) ĝDC. (B.13)

Following the same reasoning, the calibration error, ε∆2cal, of the temporal change
in drift-corrected gravity, between two surveys carried out at t = t1 and t = t2, is then:

ε∆2cal = εf(t2) (ĝDC)t2 − εf(t1) (ĝDC)t1 . (B.14)
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Supplementary material for
Chapter 5

C.1 Information for gravity surveys at Askja

Table C.2: List of survey parameters setup in the Scintrex gravimeter for each surveys.
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C.2 Supplementary figures related to the deformation model

Figure C.1: Accepted parameter solution (each plot) against iterations, for the inversion that
I carried out using residual gravity changes over 2015-2016, assuming a spherical source and
solving its location (X, along profile, relative to DYNG), depth and mass change (DM).
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