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Abstract 

 

Epigenetic factors can contribute to phenotypic diversity and to ecological processes.  For 

instance, DNA methylation can influence gene regulation, and thus phenotypic plasticity. 

However, little is yet known about how and why methylation varies in the wild. In this 

dissertation, I build on this knowledge by combining ecological, genetic and DNA 

methylation data from natural and experimental populations of the stick insect Timema 

cristinae. This species is an important system to ecological genetics studies, which provides 

good starting point for the investigation of the patterns, drivers, and the possible ecological 

consequences of natural methylation variation. I obtained methylation data using whole-

genome bisulfite sequencing (BS-seq) and genetic data from restriction site associated DNA 

sequencing (RAD-seq). From a population survey, I found natural methylation variation in 

T. cristinae (1) is characteristic of “Hemimetabola” insects; (2) is structured in geographical 

space; and (3) is strongly correlated to genetic variation. In addition, an experiment 

simulating a host shift was carried out to test for the direct effects of host plant species on 

T. cristinae methylation levels. In both the population survey and in the experiment, 

binomial mixed models were used to perform a methylome scan in search of candidate 

single methylation polymorphisms (SMPs) associated with host plant use. This analysis is 

analogous to genome-wide analysis studies, but applied to methylation levels. They use 

genetic data to estimate random effects arising from relatedness.  The results suggest (4) an 

association between methylation levels and host plant in specific regions and that (5) some 

of them could be responsive to host shift treatment. Finally, the model suggested (6) 

significant mean heritability of methylation status, estimated based on the genetic 

relatedness. My results collectively indicate methylation variation could be ecologically 

relevant to T. cristinae, and adds to the general understanding of the importance of 

epigenetic variation. 
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Chapter 1 

General introduction 

 

In his seminal book, The Origin of Species, Darwin described the perfect fit between 

organisms and their environment (Darwin, 1859). When the theory of natural selection and 

the struggle for life was developed, he did not have an idea of how variation is inherited. 

With the advent of genetics and the rediscovery of Mendelian laws, biologists identified the 

genes as a heritable basis of phenotype (Morgan, 1915). Following this, geneticists and 

statisticians built the foundation for much of the research in evolutionary biology today (i.e. 

the Modern Synthesis), establishing rigorous quantitative methods to understand 

adaptation and evolutionary processes as changes in gene frequencies in populations over 

time (Fisher, 1930; Dobzhansky, 1937; Waddington, 1939). Since then, the majority of 

evolutionary biology studies has used a quantitative genetics approach to understand 

phenotypic variation, partitioning it into genetic, environmental and genotype-

environment variance.  More recently, molecular and developmental sciences started to 

depict the mechanisms behind the relationship between genotype and environment, 

revealing the mechanisms of epigenetic effects (Richards et al., 2010).   

The term “epigenetics” was coined by Conrad Waddington to describe “the branch of 

biology which studies the causal interactions between genes and their products, which 

bring the phenotype into being” (Waddington, 1942). Although Waddington’s definition is 

very broad, encompassing all gene activity during the development that causes the 

phenotype to emerge, it was the first effort to describe events that could not be explained 

by existing genetic principles (Waddington, 1953; Goldberg et al., 2007). Epigenetics can be 

better defined as the study of molecular processes that can affect gene expression and its 

function without a change in the underlying DNA sequence (Richards, 2006; Bird, 2007). 
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That is, it assumes there are multiple layers of molecular regulation of genetic information 

before it is expressed as a phenotype (Niederhuth and Schmitz, 2017).  

In general, the research labelled epigenetics was marginalised and/or rarely carried 

out until the 2000s, when an increased number of studies in DNA methylation and histone 

modifications were published using this label (Deichmann, 2016a). This led to several 

conceptual and theoretical papers discussing the potential effects that epigenetic 

modifications could have on adaptation and speciation (Jablonka and Lamb, 1998; Pál and 

Miklós, 1999), although the proposed mechanisms have always been difficult to empirically 

test. In addition, the field often faces some suspicion, as the use of the term “epigenetics” is 

sometimes employed loosely and inconsistently. For example, the “epigenetics hype” in 

science and in popular culture (Maderspacher, 2010) sometimes falsely claims victory over 

the genes and defends a shift of paradigm in evolutionary biology to re-habilitate 

Lamarckian inheritance (Laland et al., 2014; Deichmann, 2016b). These currents of thought 

are misleading for many reasons, including the fact they ignore epigenetic changes are not 

directed as depicted by Lamarckian theory (Deichmann, 2016b).  Epigenetics is essentially 

a field in its infancy, which makes it open to misunderstanding and controversy. However, 

with the next generation sequencing revolution and associated technological advances, the 

last ten years have seen a growing number of studies providing evidence of epigenetic 

processes underlying biological patterns. Because there is still a lot of debate and many gaps 

to be filled, this is a very exciting time to study epigenetics.  

 

1.1. DNA methylation: the most investigated epigenetic mechanism 

Epigenetic mechanisms can involve methylation of cytosine residues in the DNA, 

remodelling of chromatin structure through histone modifications, and regulatory 

processes mediated by small RNAs (Bird, 2007; Law and Jacobsen, 2010). These epigenetic 

modifications directly shape the structure of the genome by defining regions of euchromatin 

and heterochromatin, and by mediating and facilitating gene expression. Among these 
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mechanisms, DNA methylation is by far the best-studied one. DNA methylation is a covalent 

base modification, which involves the addition of a methyl group (CH3) normally at the fifth 

carbon (C-5) of the cytosine’s pyrimidine ring to form 5-methyl-cytosine (Fig. 1). In animals, 

methylation occurs almost exclusively in cytosine followed by guanine residues in a 

symmetric conformation in the DNA (i.e. CpG context), although it can be found in other 

contexts (i.e. in symmetric CHG or asymmetric CHH, where H stands for non-G nucleotides; 

Feng et al., 2010). In animals, DNA methylation in CpG context is typically mediated by two 

enzymes (Goll and Bestor, 2005). The de novo DNA methyltransferase (DNMT3) adds 

methyl groups in specific DNA sites, and has particular importance during embryogenesis 

(Law and Jacobsen, 2010). The established methylation patterns across the genome are 

maintained by DMNT1 at mitosis, adding methyl groups at the newly synthesized strand 

based on the symmetrical information present in the original strand (Goll and Bestor, 2005).  

 

Figure 1: Chromatin modifications mediated by DNA methylation, the addition of a methyl group 

(CH3) on the fifth carbon of cytosine residues. It can determine the structure and activity of the 

genome by defining regions of euchromatin and heterochromatin, and by mediating and 
facilitating gene expression (Law and Jacobsen, 2010). DNA methylation patterns, functions and 

molecular pathways vary taxonomically (Suzuki and Bird, 2008; Feng et al., 2010; Zemach et al., 

2010). DNA methylation is mainly found on cytosines followed by guanines context (CpG), which 
is symmetric between strands. Other contexts include CHG and CHH, where H corresponds to non-

guanine nucleotides. Figure adapted from Mukherjee et al. (2015).  
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DNA methylation is present in most major eukaryotic groups (Zemach et al., 2010), and 

it is known to play roles in modulating gene expression, in genomic imprinting, in 

alternative splicing, and in maintaining genome integrity by supressing transposable 

element activity (Law and Jacobsen, 2010; Schübeler, 2015). Many studies have 

demonstrated that these properties of DNA methylation can be translated into phenotypic 

variation (Cubas et al., 1999; Manning et al., 2006). In addition, it is known DNA methylation 

can change in response to environmental triggers and ultimately affect the phenotype, 

making it a possible mechanism behind phenotypic plasticity (Kucharski et al., 2008; 

Bossdorf et al., 2010; Parrott et al., 2013). DNA methylation is intimately linked with cell 

differentiation during embryogenesis, which may determine which genes will be 

transcriptionally active in different tissues (Reik, 2007). For this to occur, extensive 

demethylation happens in the genome between generations to assure the pluripotency of 

the embryo and its correct development in plants and mammals (Reik, 2007; Crevillén et 

al., 2014). This is why DNA methylation patterns tend to be reset during gametogenesis. 

However, there is accumulating evidence of incomplete erasure of DNA methylation marks, 

which could be inherited at least for a few generations (Waterland and Jirtle, 2003; 

Hagmann et al., 2015; van der Graaf et al., 2015). That is, if inherited epigenetic variants can 

cause phenotypic diversity and possibly lead to fitness differences, there can be a 

background for natural selection to act upon. At the same time, given DNA methylation 

variation can be affected by environmental cues, it could provide an additional pathway for 

evolutionary change (Bossdorf et al., 2008).   
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1.2. Ecological epigenetics1 

The ways that DNA methylation can potentially contribute to ecological and 

evolutionary processes were the focus of several recent literature reviews (Bossdorf et al., 

2008; Jablonka and Raz, 2009; Richards et al., 2010; Smith and Ritchie, 2013; Hu and 

Barrett, 2017; Richards et al., 2017). However, empirical evidence underlying these 

processes remains scarce. With this in mind, some key topics should be addressed to 

understand the importance of DNA methylation in an ecological and evolutionary context 

(Bossdorf et al., 2008; Richards et al., 2017). They concern: (A) the patterns and diversity of 

natural DNA methylation; (B) the origins and drivers of this variation; and (C) the ecological 

and evolutionary consequences of natural DNA methylation variation (Fig. 2). 

 

A) Patterns and diversity of natural DNA methylation 

How do patterns of DNA methylation vary between species? Even though DNA 

methylation is widespread among eukaryotes, its patterns and functions vary taxonomically 

(Feng et al., 2010; Zemach et al., 2010). For example, the type and number of DNA 

methyltransferases vary between species, which reflects the establishment of methylation 

during mitosis and meiosis (Goll and Bestor, 2005). While vertebrate genomes are globally 

methylated (except for regions where methylation status changes dynamically, affecting 

gene activity; Jones, 2012), many invertebrates lack DNA methylation or it is sparsely 

distributed in the genome. While transposable elements (TEs) are silenced by being highly 

methylated in vertebrates and in plants, this is not always the case in invertebrates (Suzuki 

and Bird, 2008; Cortijo et al., 2014). Differences in the methylation setting of individual sites 

 
 

 

1 Ecological epigenetics: study of epigenetic processes in an ecological context, focusing in 
understanding the epigenetic contributions to ecological and evolutionary processes in nature 
(Bossdorf et al., 2008). 
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are likely to be established, maintained and interpreted by different molecular pathways 

(Niederhuth and Schmitz, 2017). Thus, across taxa, there is great variation in the function 

and importance of DNA methylation in biological processes. Because the literature is biased 

towards model organisms, it is important to expand investigations to non-model systems.  

Ultimately, by comparing the patterns between different clades, one can hypothesize about 

the different functions of DNA methylation and their evolution and then test the predictions 

that arise.  

In addition, one can explore how DNA methylation patterns vary in natural populations 

of the same species. Although research of DNA methylation  under a laboratory setting (e.g. 

Johannes et al., 2009; Verhoeven et al., 2010; Foret et al., 2012) is valuable when trying to 

find the mechanisms underlying DNA methylation changes and the molecular pathways 

leading to them, it is also desirable to place the studies into a natural context, in the complex 

environments where organisms live and evolve. By studying the extent and spatial structure 

of natural DNA methylation, one can capture the effects of forces that are possibly acting 

cumulatively over many generations (Herrera et al., 2016). With this, one can obtain a more 

comprehensive understanding of the role DNA methylation variation might play in 

ecological and evolutionary processes (Richards 2008, 2011; Richards et al. 2010; Herrera 

et al. 2014).  

 

B) Origins and drivers of natural DNA methylation variation 

Natural DNA methylation variation can result from many factors. It can arise by 

stochastic changes, by response to environment, and by genetic control, and possibly be 

further shaped by forces of natural selection and drift (Bossdorf et al., 2008; Richards et al., 

2017). Some studies have assessed the effect of these factors in laboratory conditions, 

suggesting: (i) that epimutations rates are elevated compared to genetic mutations (Becker 

et al., 2011; van der Graaf et al., 2015); (ii) that there is genetic control over methylation 
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variation (see Taudt et al., 2016); (iii) that a responsiveness to environmental variation can 

trigger changes in ecologically relevant traits (see Feil and Fraga, 2012; Duncan et al., 2014). 

These questions can be extended to natural environments, to ask specifically about the 

extent to which genetic variation can explain natural DNA methylation variation, and about 

whether environmental change can influence epigenetic variation. As part of this 

investigation, it is useful to try to understand the heritability of DNA methylation variation 

(Richards et al., 2010). As such, one can determine how DNA methylation patterns vary in 

space, which factors influence that variation, and whether adaptive changes in methylation 

are likely to accumulate over time (i.e. estimates of its heritability can be used to determine 

if it will evolve).  

 

C) Ecological and evolutionary consequences of natural DNA methylation variation 

The importance of DNA methylation variation on ecological and evolutionary 

processes might be considered from its influence on phenotypes. Investigating how much 

DNA methylation affects ecologically relevant traits and whether they respond to 

environmental change will shed light on its contribution to phenotypic plasticity, and from 

there to numerous ecological processes. For example, if DNA methylation mediates 

phenotypic plasticity in response to environmental shifts, it could be an important 

facilitator for responding to new threats (Herrera and Bazaga, 2011) and to climate change 

(Dimond and Roberts, 2016), at colonization of new habitats (Herrera et al., 2012), and at 

biological invasions (Richards et al., 2012; Xie et al., 2015; Ardura et al., 2017; Huang et al., 

2017). Over a longer timescale, the evolutionary consequences of DNA methylation 

variation will depend on the extent of inheritance and stability of the epigenetic variation 

across generations. Addressing this point requires the long term evaluation of ecological 

processes outlined above (Richards et al., 2017). 

In this thesis, I have developed a body of work addressing some of the outstanding 

questions described above. I considered natural DNA methylation variation, its patterns, 
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drivers, and its ecological and evolutionary consequences. To this end, I have combined 

ecological, genetic and DNA methylation data from natural populations to investigate 

outstanding issues regarding: (A1) DNA methylation patterns at the between-species level; 

(A2) DNA methylation variation and spatial structure in different populations of the same 

species; (B1) the extent to which within-species variation is associated with genetic 

variation, and (B2) with environmental variation; (B3) the heritability of DNA methylation 

variation; and (C) the ecological consequences of DNA methylation variation (Fig. 2). Below 

I introduce the organism used to conduct this study, an overview of the methods applied, 

and a brief summary of the issues explored in each chapter.  

 

Figure 2: Outstanding questions in the study of DNA methylation from an ecological perspective. 

This thesis is focused on the following issues: (A1) DNA methylation patterns at species level; (A2) 

DNA methylation variation and spatial structure in different populations of the same species; (B1) 

the extent the within-species variation is associated with genetic variation, and (B2) with 

environmental variation; (B3) the heritability of DNA methylation variation; and (C) the ecological 

consequences of DNA methylation variation. Figure adapted from Richards et al. (2017). 

 

1.3. Study system: Timema cristinae stick insects 

To address the questions outlined above (Fig. 2), I have used Timema cristinae stick 

insects (Phasmatodea: Timematodea; Vickery, 1993) as a model. Timema are plant-feeding 

insects native to the chaparral in Santa Ynez Mountains, in Southern California (Sandoval, 
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1994a). Like other stick insects, T. cristinae is hemimetabolous and does not undergo 

metamorphosis. After hatching, individuals go through a series of moults during their 

nymphal instars until they reach adulthood, lacking a pupal stage. They are univoltine and 

their life cycle lasts for approximately 16 weeks (Sandoval, 2000), hatching in February and 

reaching adulthood in April (personal observation). Both nymphs and adults are wingless, 

and they rest on their host plants during the day, and feed on leaves at night. They can 

disperse very little, with a mean distance of travel of 2 metres per week and maximum of 8 

metres per week (Sandoval, 2000). This suggests that individuals can travel to up to 128 

metres during their 16-week lifetime (assuming a constant linear travel rate; Sandoval, 

2000). 

 Although T. cristinae can feed on a variety of plant species, it is primarily found on 

two species of host plant: Ceanothus spinosus: Rhamnaceae and Adenostoma fasciculatum: 

Rosaceae, which define the Timema’s ecotypes. These two host plant species differ 

considerably in their leaf morphology, with Ceanothus plants presenting broad leaves and 

Adenostoma plants exhibiting thin needle-like leaves (Fig. 3). Timema rely on crypsis to 

escape detection by visual predators, having evolved body colouration that matches the 

leaves and stems of the host plants they rest on (Sandoval, 1994a). A green morph bearing 

a dorsal white stripe is more frequently found on Adenostoma plants, and a green and 

unstriped morph on Ceanothus plants (Fig. 3; Sandoval, 1994a). Manipulative field 

experiments have shown predation is a key factor determining differential survival rates of 

these two morphs depending on the host plant species they are resting on (i.e. survival rates 

do not differ when predators are precluded to access the experimental sites; Nosil, 2004). 

The striped morph is more cryptic and suffers less predation on the needle-like leaves of 

Adenostoma, whereas the green unstriped one is more cryptic and suffers less predation on 

the broad leaves of Ceanothus plants (Sandoval, 1994a; Nosil and Crespi, 2006). In other 

words, divergent selection promoted by differential predation between the two host plant 
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species contributes to ecological isolation between the two Timema ecotypes (Sandoval, 

1994a; Nosil and Crespi, 2006).  

 

Figure 3: The two main T. cristinae ecotypes, characterized by the host plants (A) Adenostoma 

fasciculatum and (B) Ceanothus spinosus. Individuals from the Adenostoma ecotype typically have 

a longitudinal white dorsal stripe and dark green body colouration, which makes them cryptic on 

their host plant needle-like leaves. Individuals from the Ceanothus ecotype normally have a plain 

light green body, matching the broad leaves of their host plant (Nosil and Crespi, 2006). Photo on 

the left by Marc Kummel, and on the right by Aaron Comeault.  

 

Individuals with dark body colouration (i.e. melanistic morph) are often found on 

both host plants, but at much lower frequencies (~10% frequency; Sandoval, 1994a,b). 

They are cryptic at stems of both hosts, but are conspicuous in leaves (Sandoval, 1994a; 

Comeault et al., 2015). The three morphs segregate as a highly heritable polymorphism with 

strong genetic dominance: melanistic body coloration is recessive to green (either striped 

or unstriped), and stripe pattern is recessive to unstriped (Comeault et al., 2015). Green 

versus brown morphs of T. cristinae are distinguished by a major locus on linkage group 

eight, named Mel-Stripe (Nosil et al. 2018). This locus exhibits two major features. First, it 

spans ~10 mega-bases of sequence and exhibits suppressed recombination (putatively due 

to an inversion, Lindtke et al., 2017). Second, one edge of the locus exhibits a large-scale (~1 
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mega base pair) insertion/deletion (indel) polymorphism. Whether one, few, or many loci 

within Mel-Stripe affect colour is still unknown. Mel-Stripe exhibits three core haplotypes 

(i.e., alleles), one corresponding to each morph, designated s, u, and m for green-striped, 

green-unstriped, and melanistic, respectively (Lindtke et al., 2017). That is, in terms of 

diploid genotypes, uu, us, and um are green-unstriped; ss and sm are green-striped, and mm 

is melanistic.   

The Adenostoma and Ceanothus ecotypes differ not only in morph frequencies, but 

also in a suite of other traits. For example, there are significant differences in body size 

(individuals form Ceanothus ecotype tend to be larger; Nosil and Crespi, 2006) and in host 

plant preference, as individuals from different ecotypes exhibit greater differences in host 

preference compared to individuals from the same ecotype, independently of geographical 

distances (Nosil, 2007). In addition, the ecotypes exhibit mate choice and partial sexual 

isolation (Nosil, 2007; Nosil and Sandoval, 2008), which is associated with differences in 

cuticular hydrocarbons (CHCs, molecules with roles in anti-desiccation and in insect 

communication; Chung et al., 2014; Riesch et al., 2017). Previous studies have shown the 

Adenostoma environment presents some physiological challenges to T. cristinae individuals 

compared to Ceanothus, as lifetime fecundity is significantly reduced when they are reared 

on this host species (Sandoval and Nosil, 2005; Nosil and Sandoval, 2008). However, 

Timema seem to have a good molecular machinery for coping with different plant chemical 

defences, given that they can feed on a variety of host plants species (Larose et al., 2019). 

The landscape where T. cristinae is found is characterized by a mosaic distribution of 

patches of the two different hosts, varying in patch size and abundance of each plant species. 

Previous studies have shown that T. cristinae has probably gone through many episodes of 

colonization and local extinction of different patches in a metapopulation dynamic 

(Sandoval, 1994b; Farkas et al., 2013). Gene flow between patches of different selection 

regimes occurs despite the risk of maladaptation. Allele frequencies (including at Mel-Stripe 

locus) in this species are thus determined by a balance between selection and gene flow 
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(Sandoval, 1994b). In addition, limited dispersal between non-adjacent patches (i.e. 

allopatric populations) contributes to low gene flow and to the accumulation of genetic 

differentiation by neutral processes, resulting in patterns of isolation by distance (Sandoval, 

1994b). The clear understanding about evolutionary ecology in T. cristinae in terms of 

interplay between genotype, phenotype and the surrounding environment (Nosil and 

Crespi, 2006; Gompert et al., 2014; Comeault et al., 2015) provides a good opportunity to 

test some of the aims of the thesis (Fig. 2).  

The estimate genome size in T. cristinae is 1.3 gigabases, comprising 13 linkage 

groups (i.e. chromosomes; Soria-Carrasco et al., 2014). The most recent genome assembly 

(version 1.3c2) presents a total length of 953.3 megabases (73.3% of the estimate genome 

size; Nosil et al., 2018). It was generated using Chicago libraries, which are produced by 

reconstructing the chromatin in vitro followed by chemical stabilization with histones, 

digestion with restriction enzymes, and ligation. As a result, it generated longer scaffolds 

(4,068 scaffolds, N50=16.4 megabases, N90=1.1 megabases, L50=16, L90=135). Analyses 

performed in this dissertation showed the quality of the current version of T. cristinae 

genome assembly is reasonably good in terms of gene completeness (using Benchmarking 

Universal Single-Copy Orthologs tools; Waterhouse et al., 2017; Appendix A, Chapter 2). 

 

1.4. An ecological epigenetics study in T. cristinae 

This thesis focuses on investigating natural DNA methylation variation in an 

ecological context. Some of the issues addressed here are analogous to those addressed in 

genetics, which means there is an initial framework, which can be modified to study 

epigenetics (Bossdorf et al., 2008; Herrera et al., 2016).  At the same time, DNA methylation 

has specific attributes that mean the data must be processed and interpreted accordingly, 

such as being more prone to spontaneous changes (i.e. it is less stable than DNA), its 

sensitivity to environmental conditions, and the general reprogramming between 
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generations (Richards et al., 2017). As Timema is a non-model organism, a good first step is 

to depict and to describe the methylation patterns, and to compare them to patterns 

observed in other species in order to understand its typical genomic context and molecular 

functions (A1, Fig. 2). Then, one can move to a within-species approach to investigate the 

DNA methylation variation in nature (A2, Fig. 2), and the drivers influencing it (B1-B3, Fig. 

2). As multiple factors can underlie this variation, it is of key importance to identify and 

isolate them in order to understand their individual effects and ecological consequences (C, 

Fig. 2). 

 

Figure 4: Map detailing geographic position of T. cristinae populations included in the sampling 

plan. (A) Location in Southern California where the species is found (Santa Ynez Mountains, Los 

Padres National Forest). (B) Representation of the two main host plants characterizing T. cristinae 

ecotypes (Adenostoma fasciculatum and Ceanothus spinosus). (C) Populations selected for the 

survey. 

 

With this in mind, a sampling strategy was designed aiming to capture substantial 

variation in DNA methylation in wild T. cristinae and to disentangle some of the factors that 

could be shaping this variation. Throughout this thesis, a ‘population’ was defined as all 

insects collected within a homogeneous patch of a single host species (i.e. a locality), as has 

been done in previous Timema studies (e.g. Sandoval 1994a,b; Nosil et al., 2002; Sandoval 

and Nosil, 2005). Some key factors were selected to be studied in this population survey: 
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abundance of host plants, elevation, climatic variables and geographical distance. 

Considering all these factors, 12 localities were chosen (Fig. 4): four with only Adenostoma, 

two with only Ceanothus (i.e. pure populations), and six with a mixed landscape where 

patches of the two host plants are side-by-side (Table 1). Each selected locality presents a 

different combination of the factors cited above2. In addition, given methylation variation 

can be under genetic control (Dubin et al., 2015; Taudt et al., 2016), genetic variation was 

assessed in each population by using previously published sequencing data, and by 

performing new additional genotyping by sequencing.  

To obtain genome-wide information on methylation levels, two similarly sized and 

large females from each selected population had their whole-genome sequenced after 

bisulfite treatment (BS-seq). This treatment consists of a reaction between sodium bisulfite 

and DNA, which leaves methylated cytosines unaffected, and converts non-methylated 

cytosines into uracil residues (subsequently amplified as thymines, Cokus et al., 2008). 

Ultimately, estimates of DNA methylation levels can be obtained at individual cytosines by 

comparing the number of non-converted cytosines (i.e. methylated bases) and the number 

of thymines (i.e. non-methylated bases) at a specific position. Thus, these datasets have 

properties that differ in fundamental ways from other high-throughput sequencing genomic 

data (Lea et al., 2017); these properties are addressed throughout the research described 

in this thesis. Differences in methylation status can be obtained by analysing single loci (i.e. 

single methylation polymorphisms; SMPs), or by investigating larger genomic regions, the 

so called differently methylated regions (DMRs). The DMRs span close sites that have 

different methylation patterns between samples and are regarded as possible functional 

regions (Lea et al. 2017). Studies in plants and mammals have extensively worked with  

 
 

 

2 Complete information about the sampling design and about each factor is described in full details 
in Chapter 3 of this dissertation. 
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Table 1: Localities selected in the population survey and details of the 24 individuals used in the 

studies presented throughout the thesis.  

Locality Host Latitude Longitude Description Ind. Morph BL BW HW 

N1 A 34.517 -119.797 Network 1 
17_0003 G 2.1 0.4 0.2 

17_0005 G 2.0 0.4 0.2 

N1 C 34.517 -119.797 Network 1 
17_0006 G 2.1 0.4 0.2 

17_0009 M 1.9 0.4 0.2 

FH A 34.518 -119.801 Far Hill 
17_0012 S 1.9 0.4 0.2 

17_0015 S 1.9 0.4 0.2 

L A 34.509 -119.796 
Laurel 

Springs 

17_0018 S 1.8 0.4 0.2 

17_0019 S 1.8 0.4 0.2 

HV A 34.488 -119.787 
Hidden 
Valley 

17_0043 G 2.1 0.4 0.2 

17_0045 S 2.1 0.4 0.2 

HV C 34.488 -119.786 
Hidden 

Valley 

17_0049 S 2.2 0.4 0.2 

17_0051 M 2.0 0.4 0.2 

SCN A 34.521 -119.83 
Stagecoach 

North 

17_0057 S 1.9 0.4 0.2 

17_0058 S 2.1 0.4 0.2 

SC C 34.523 -119.832 Stagecoach 
17_0062 G 2.1 0.5 0.2 

17_0065 G 2.0 0.4 0.2 

OUT A 34.532 -119.843 Outlook 
17_0067 G 2.1 0.4 0.2 

17_0070 G 2.1 0.4 0.2 

OUT C 34.532 -119.844 Outlook 
17_0074 G 1.9 0.4 0.2 

17_0075 S 1.8 0.4 0.2 

PR C 34.533 -119.857 
Paradise 

road 

17_0077 G 2.1 0.4 0.2 

17_0081 G 2.0 0.4 0.2 

BT A 34.536 -119.862 Bottom 
17_0082 G 2.0 0.4 0.2 

17_0086 G 1.9 0.4 0.2 

Morph abbreviations: G=green, S=striped, and M=melanistic. BL= body length, BW=body width, HW= 

head width. Morphometric measurements were performed in ImageJ 1.4.882 (Abràmoff et al., 2004), 

following previous works on T. cristinae (Comeault et al., 2014; Riesch et al., 2017). All individuals 

used in this work were female.  

DMRs, as DNA methylation levels are spatially correlated in promoters, transposable 

elements and regulatory regions (Suzuki and Bird, 2008; Lea et al., 2017). In insects, the 

studies are usually conducted based on SMPs (e.g. Bonasio et al., 2012; Glastad et al., 2016; 

Libbrecht et al., 2016). Considering the gaps in the knowledge of the genomic distribution 

of DNA methylation in insects, and the limitations in the use of DMRs (e.g. it tends to 

extrapolate or ignore the variation between the samples; it faces statistical limitations 

dealing with the binomial nature of methylation data; Gaspar and Hart, 2017), I focused at 
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investigating SMPs in this dissertation. Although one single methylation polymorphism 

might not be enough to affect genomic activity, identifying these sites can be a good first 

step to understand the patterns and variation of DNA methylation between samples. 

Limitations using this approach are discussed throughout the thesis when appropriate.  

Previously published sequencing data (Soria-Carrasco et al., 2014; Comeault et al., 

2015; Lindtke et al., 2017; Riesch et al., 2017) were used to identify the regions where some 

single nucleotide polymorphisms (SNPs) could have been confounded with single 

methylation polymorphisms (SMPs). Finally, to estimate genetic variation among the 

samples, each individual with methylation information had its genome sequenced partially 

using RAD-seq.   

 

1.5. Outline of thesis chapters 

Chapter 2 of this thesis addresses the status of DNA methylation in T. cristinae stick 

insects, characterizing its genomic methylation profile for the first time and comparing the 

emerging patterns to the state-of-the-art in other insect species (A1, Fig. 2). To this end, the 

population survey BS-seq dataset was used to estimate variation in the species’ methylation 

profile. Chapter 2 thoroughly describes the details of the BS-sequencing steps and 

generation of this dataset (Fig. 5). The results revealed a highly methylated genome 

compared to other insects, targeted mostly to gene bodies (i.e. exons and introns). Overall, 

DNA methylation patterns in T. cristinae resemble the ones found in other hemimetabolous 

insects, and show some similarities and differences to vertebrate methylome profiles 

(Glastad et al., 2016).  

Chapter 3 addresses DNA methylation patterns at the population level to capture the 

within-species variation, and to investigate the possible factors underlying it (Fig. 5). The 

population survey data were used to test the hypotheses that natural DNA methylation 

variation: is structured in geographical space (A2, Fig. 2); is associated with genetic 
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variation (B1, Fig. 2); and is correlated with environmental factors such as climate and host 

plant species (B2, Fig. 2). This chapter details how the sampling strategy was designed, 

aiming to disentangle some variables that could be underlying methylation variation. Here, 

multiple datasets were used, including methylation variation (using the population survey 

BS-seq data), genetic variation (using newly acquired genetic data and reanalysis of 

previously published data), and ecological information about the population localities (e.g. 

abundance of host plants, elevation, climatic variables and geographical distance). This 

chapter revealed that genome-wide DNA methylation variation in T. cristinae tends to 

cluster following the geographical distribution of populations. Multivariate analyses 

revealed this trend in DNA methylation variation was better explained by its association 

with genetic variation than by its association with geographical distance. Although there 

was not a noticeable correlation between general DNA methylation variation and climate or 

host plants, the results do not exclude the possibility of such associations in specific regions 

of the genome. Binomial mixed models (Lea et al., 2015) revealed that some similarity in 

DNA methylation variation was correlated with similarity in genetic kinship, suggesting 

some heritability of methylation status (i.e. specific sites show the same methylation levels 

over generations). Taken together, these results indicate genetic differences explain DNA 

methylation variation and suggest that differentiation between populations can accumulate 

given limited dispersal in space. 

Chapter 4 focuses on the interactions between T. cristinae and their host plants. Here, 

studies of natural variation, combined with a rearing experiment, were used to test for a 

host plant effect on DNA methylation variation (B2, Fig. 2; Fig. 5). The work considers how 

DNA methylation variation can be implicated in host shifts and colonization of new 

environments (C, Fig. 2). The experiment involved rearing adult T. cristinae on different host 

plants in controlled conditions to test for a response to host shift in methylation levels. BS-

seq from the population survey and from six individuals used in the experiment were used 

to obtain information about methylation variation. Methylome scans using binomial mixed 
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models performed independently on the different datasets suggested some potential single 

methylation polymorphisms (SMPs) associated with host plant. In particular, SMPs located 

in the coding region of an insect allergen gene were identified in the outputs of both analyses 

of natural and experimental populations. In other insects this gene is related to digestion 

and nutrient uptake (Randall et al., 2013). This region was differently methylated between 

the ecotypes in natural populations. The rearing experiment suggested it responded to the 

host shift in the opposite direction as expected from the natural population survey, so that 

the response to the environmental change could be interpreted as ‘non-adaptive’. Although 

there was not any measurement of gene expression or of fitness more analyses are needed 

to support these results, this study suggested not only that methylation can respond to an 

environmental change, but also that it does not necessarily happen towards the ‘optimum 

state’. Copies of this gene domain are found in other regions of the genome, but they showed 

no traces of methylation. In summary, these first results suggest some good candidate genes 

for investigating the role of methylation in the interaction between T. cristinae and their 

host plants. 

Finally, Chapter 5 concludes the findings of this dissertation and outlines some 

unresolved issues and directions for future work in the field of ecological epigenetics. 

Collectively, these studies represent analyses of T. cristinae DNA methylation patterns at 

different scales: from a broad species level, through to the factors underlying within-species 

variation, and closing with a focused study of whether DNA methylation status can affect 

insect-plant interactions. Overall, this thesis highlights the importance of studying this 

molecular feature to better understand complex organismal life. 
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1.6. A note on contributions made to this thesis 

In the proceeding chapters of this dissertation, I have used ‘I’ instead of ‘we’ when 

describing the research. Although I was the one to lead the work, I had support from my 

colleagues and mentors. For example, Dr. Romain Villoutreix initiated the work on DNA 

methylation in T. cristinae and developed some of the first scripts to process BS-seq data. In 

addition, together we designed and performed the rearing experiment (Chapter 4). Dr. 

Víctor Soria-Carrasco developed the pipelines to process genetic data, and was constantly 

advising me not only on bioinformatics jobs and analyses, but also during the entire thesis 

writing process. Finally, my two supervisors Dr. Patrik Nosil and Dr. Jon Slate have always 

provided great support in the interpretation of results and in critical discussions. Although 

these four researchers were not represented at the beginning of each chapter, they will be 

acknowledged in the manuscripts for publication, following the conventions of authorships. 

 

1.7. Note on contribution to appendix D 

Appendix D comprises a manuscript submitted for publication, titled Ecology helps 

explain whether genes for cryptic coloration form a supergene or recombine, on which I am a 

co-author. I included this piece of work as part of my thesis because I have significantly 

contributed to it, having led some of the experiments and analyses detailed in the 

manuscript. This manuscript describes the ecological aspects involved in polygenic 

adaptation in Timema stick insects. By combining studies in ecological, experimental and 

genomic datasets, we identified multiple, recombining loci affecting cryptic colouration in 

different Timema species. Briefly, we found high recombination among colour genes is 

associated with use of host plants that favour continuous colour variation. Conversely, the 

use of host plants with discrete colours (i.e. green leaves versus brown stems) is associated 

with strong disruptive selection and suppressed recombination – involving a structural 

variation that formed a supergene. In this manuscript, I led the analyses about crypsis, 



20 

investigating the colour variation on the insects and on their host plants: the phenotypic 

measurements from photographs, the differentiation, overlap, and correlation analyses 

between morphs. In addition, Patrik Nosil and I designed the manipulative field experiment 

to test the hypothesis regarding colour variation in Timema (i.e. continuous versus discrete 

colour polymorphisms) and adaptation to their host plants. I presented the preliminary 

results about genome-wide analysis studies (GWAS) and camouflage in Timema chumash 

from this study in my confirmation evaluation at University of Sheffield.  
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Figure 5:  Flow chart describing the contents of each chapter in this thesis. Diagrams depict the steps used to manipulate the data acquired from natural 

populations. Details about the BS-sequencing steps and generation of methylation variation are thoroughly described in Chapter 2, and about acquiring and 

processing genetic data in Chapter 3. ‘Methylation variation (1)’ and ‘Genetic variation (1)’ correspond to data generated from the population survey, while 

‘Methylation variation (2)’ and ‘Genetic variation (2)’ correspond to the rearing experiment data (i.e. these datasets were obtained independently). Asterisk in 

‘Natural populations*’ represent different population sampling events from the initial population survey of 24 individuals.  
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Chapter 2 

Function and evolution of DNA methylation in Timema cristinae 

stick insects 

 

2.1. Summary 

DNA methylation is involved in gene expression, genomic imprinting, alternative splicing, 

and in silencing transposable elements. Although DNA methylation is widespread among 

eukaryotes, it differs considerably among taxa, which can affect its role and importance. The 

variable patterns among different insect species denotes an evolutionarily flexible role of 

DNA methylation. However, little is known about its function and evolution in the group as 

most studies are focused in eusocial insects. Thus, investigating different clades can expand 

the knowledge of patterns and functions of DNA methylation in insects. Here, whole-

genome bisulfite sequencing was used to describe the DNA methylation profile in Timema 

cristinae stick insects. The results suggest the DNA methyltransferase 3 (DNMT3) has been 

lost in this species, relying only on DNMT1. Timema presents elevated global DNA 

methylation levels compared to other insects (14% mCpG), targeting mainly the gene body 

(i.e. both exons and introns) increasing towards the 3’ end, in patterns that resemble other 

“Hemimetabola” insects. Methylated genes generally play housekeeping functions, while 

non-methylated genes play signalling and transduction functions. Similar to other insects, 

transposable elements were impoverished in methylation. With this work, I highlight the 

importance of investigating different insect taxa to obtain a better understanding of some 

specific and general roles of DNA methylation.  
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2.2. Introduction 

DNA methylation is a covalent base modification, which normally happens at the fifth 

carbon (C-5) of the base cytosine’s pyrimidine ring to form 5-methyl-cytosine. It is 

ubiquitous in eukaryotes (Feng et al., 2010), and it is known to affect gene expression 

(switching genes on and off by influencing transcription factor binding, Schübeler, 2015), 

alternative splicing (Foret et al., 2012; Sati et al., 2012), and transcriptional elongation 

(Lorincz et al., 2004). In animals, methylation occurs almost exclusively in cytosines (C) 

followed by guanines (G) in a symmetric conformation in the DNA (i.e. CpG context), 

although it can be found in other contexts (i.e. in symmetric CHG or asymmetric CHH, where 

H stands for non-G nucleotides; Feng et al., 2010). The DNA methylation activity in CpG 

context is evolutionarily well conserved, and it is typically mediated by two enzymes in 

animals (Goll and Bestor, 2005). The de novo DNA methyltransferase (DNMT3) adds methyl 

groups in specific DNA sites, and has particular importance during embryogenesis and 

tissue differentiation (Law and Jacobsen, 2010). The established methylation patterns 

across the genome are then maintained by DMNT1 at mitosis, adding methyl groups at the 

newly synthesized strand based on the symmetrical information present in the original 

strand (Goll and Bestor, 2005). The DNMT2 is not involved in DNA methylation, but it is 

rather a tRNA methyltransferase (Goll et al., 2006). A number of enzymes is responsible for 

the demethylation activity, and it varies in different taxa (Law and Jacobsen, 2010). Thus, 

the balance between methyltransferase and demethylation enzymes activities culminates 

with a characteristic DNA methylation pattern in tissues, individuals, populations and 

species.  

Although CpG methylation is widespread across the tree of life, the proportion of 

methylated cytosines in the genome, its distribution, and genomic targets vary across 

different taxa (Suzuki and Bird, 2008). In vertebrates, the genome is globally methylated, 

except promoter regions which are generally non-methylated (Jones, 2012). These regions 

are the so called CpG islands, and their methylation state is known to be dynamic, which 
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influences whether a transcription factor will bind to the region and initiate the 

transcription or not (i.e. respectively the non-methylated and methylated state; Yin et al. 

2017; Onuchic et al. 2018). This role of methylation is well described in vertebrates (Jones, 

2012; Schübeler, 2015), and a number of studies has shown associations between 

environmental variables and changes in methylation state and in gene expression (Duncan 

et al., 2014). In invertebrates, DNA methylation levels are much reduced and distributed in 

sparse patterns across the genome (Suzuki and Bird, 2008). In addition, in invertebrates 

DNA methylation is mainly found in gene bodies, which suggests that methylation may have 

different properties in invertebrates and vertebrates (Zemach et al., 2010).  

For many years, it was speculated that insects underwent very little or no DNA 

methylation in their genomes, as the model organism Drosophila melanogaster exhibits 

insignificant methylation levels (Goll and Bestor, 2005). In fact, DNA methylation levels in 

insects generally follow the mosaic distribution found in other invertebrates (Xiang et al., 

2010). However, it seems to vary widely across the group, being absent in many clades. Of 

the six investigated insect orders in a large phylogenetic comparison, each one exhibits at 

least one loss of DNA methylation, with no evidence to date of it in dipterans (Bewick et al., 

2017). On the other hand, it has been proposed DNA methylation is involved in 

developmental plasticity and social behaviour. For instance, in honeybees (Apis mellifera), 

the development of larva into queens or workers depends on differential feeding with royal 

jelly, a process that involves variation in DNA methylation modifications (Kucharski et al., 

2008; Foret et al., 2012).  These observations gathered great attention, and led to a large 

focus on studies about DNA methylation in Hymenoptera, which include many examples of 

social insects, such as ants, bees and wasps  (e.g. Bonasio et al., 2012; Wang et al., 2013; 

Patalano et al., 2015). As a result, studies about DNA methylation in other orders are 

generally underrepresented. Thus, studies should be conducted in different clades for a 

better understanding of patterns, function and evolutionary importance of DNA 

methylation in insects. For example, DNA methylation tends to happen more extensively in 
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insects that undergo incomplete metamorphosis (i.e. passing through egg, nymph and adult 

stages; “Hemimetabola”) and is reduced in those that face complete metamorphosis (i.e. 

passing through egg, larva, pupa, and adult stages; Holometabola), where it is occasionally 

absent (Bewick et al., 2017; Provataris et al. 2018). When it is present, DNA methylation 

normally occurs in genes that are broadly expressed across tissues (Glastad et al. 2016; 

Glastad et al. 2017), it tends to be depleted in transposable elements (Wang et al., 2013; 

Glastad et al., 2017), and it does not necessarily depend on DNMT3 activity to be established, 

as this enzyme is lacking in some taxa (Bewick et al. 2017).  

These circumstances challenge the understanding of the role of DNA methylation in 

insects, which is still widely debated. Even the hypothesis that it plays a general function in 

the development plasticity of social insect caste systems has been questioned recently 

(Bewick et al., 2017). In fact, recent empirical evidence indicates there is not a clear 

relationship between methylation levels and eusociality or reproductive division of labour 

(Libbrecht et al., 2016; Standage et al., 2016; Glastad et al., 2017). Moreover, the functional 

role of DNA methylation in gene bodies, as is commonly observed in insects and other 

invertebrates (Zemach et al., 2010), is not well understood (Hunt et al., 2013). A recent 

study revealed changes in methylation levels in response to presence or absence of 

maternal care in a subsocial bee (Ceratina calcarata), but those changes were not linked to 

the changes observed in gene expression or to alternative splicing (Arsenault et al., 2018). 

In addition, a knockdown of DNMT1 (and its consequential depletion for DNA methylation) 

in the hemipteran Oncopeltus fasciatus resulted in inviable eggs and reproductive failure. 

However, it did not result in changes in genes or transposable element expression, 

suggesting DNMT1 and DNA methylation present biological functions that are independent 

of gene expression (Bewick et al., 2019).  

In this work, the levels and patterns of DNA methylation in the Timema cristinae stick 

insect were investigated (Phasmatodea: Timematodea; Vickery, 1993). T. cristinae are 

plant-feeding wingless insects native to the chaparral in Santa Ynez Mountains, in Southern 
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California (Sandoval, 1994). Although this species is likely to be found in a broad range of 

host plants, it is typically found in two ecotypes, characterized by the host plants 

Adenostoma fasciculatum and Ceanothus spinosus (Fig. 3 in Chapter 1). Like other stick 

insects, this species is hemimetabolous and develops gradually. That is, it goes through the 

egg stage, proceeding through a series of nymphal instars, and reaches adulthood after 

many molts. Although “Hemimetabola” is a paraphyletic group, here this classification is 

applied to emphasize different metamorphosis processes, contrasting this group with those 

with complete metamorphosis (i.e. Holometabola or Endopterygota). The objectives of this 

study were: (1) to first describe the general methylation profile in T. cristinae and (2) to 

compare the patterns with what is known in other insect species. For this, DNA methylation 

information was obtained from samples collected in different populations in the wild by 

using bisulfite sequencing (BS-seq). To my knowledge, this work used the largest sample 

size in the study of DNA methylation in insects, which enabled to obtain statistically reliable 

results. The analyses focused on the CpG context as it is the main context targeted by 

methylation in animals, but some additional results are reported in CHG and CHH contexts. 

The results show the genome is highly methylated in T. cristinae compared to other insects, 

and that methylation targets both exons and introns in the gene body. Similar to other 

insects, the methylated genes were enriched in functions related to fundamental cellular 

processes, and transposable elements were mostly depleted in methylation. By studying 

this non-Holometabola species, this work aimed to contribute to the knowledge of different 

forms, functions and evolution of DNA methylation levels in insects.   

 

2.3. Material and Methods 

2.3.1. DNA methyltransferases (DNMTs) 

To identify and characterize the DMNT genes, I first used the T. cristinae functional 

annotation (version 1.3c2; Villoutreix et al. in prep). Briefly, this functional annotation was 

obtained using T. cristinae RNA sequencing data (Comeault et al., 2012; Misof et al., 2014), 
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used to generate gene predictions in the reference genome and its respective putative 

proteins. The functions from the putative proteins were estimated by aligning their 

sequences to multiple databases, and stored in the T. cristinae functional annotation dataset 

(methods at Villoutreix et al. in prep). In this study, putative proteins with C-5 cytosine 

methyltransferase function were selected from the functional annotation dataset, as this 

activity is characteristic of eukaryotic DNMT enzymes (Goll and Bestor, 2005). The amino 

acid sequence from all selected T. cristinae putative proteins were input into the BLASTp 

tool (Altschul et al., 1997) at National Center for Biotechnology Information (NCBI) 

platform, and aligned  to NCBI’s non-redundant protein sequence database. The BLASTp 

analyses returned the most similar protein sequences in the database along with its 

described function. This similarity is estimated by a matching score and by the Expect value 

(E-value). The E-value describes the number of hits that are expected to be retrieved by 

chance when searching a database of a particular size. It decreases exponentially as the 

score of the match increases, so that the lower the E-value the more significant the match is 

(Altschul et al., 1997). The best hits were selected, and all the accompanying information 

reported here.  

In addition, I aligned DNMT proteins from a few species of insects to the T. cristinae 

reference genome assembly (see Table A1 for estimate of quality of genome assembly). To 

this end, I downloaded the protein sequences of DNMTs 1 and 3 and its different isoforms 

from: Apis melifera (Hymenoptera: Apidae; Elsik et al., 2014), Nasonia vitripensis 

(Hymenoptera: Pteromalidae; Werren et al., 2010), and Zootermopsis nevadendis (Isoptera: 

Termopsidae; Terrapon et al., 2014) using GenBank (National Center for Biotechnology 

Information, NCBI). N. vitripensis and A. melifera were used because their DNMTs toolkit is 

well characterized (Werren et al., 2010; Provataris et al., 2018). I generated a database on 

T. cristinae reference genome (version 1.3c2; Nosil et al., 2018) using the ‘makeblastdb’ tool 

in BLAST+ (Camacho et al., 2009). The DNMTs amino acid sequence were then aligned to 

this database using tBLASTn (2.8.1+; Altschul et al., 1997). 
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2.3.2. Sampling 

I collected individuals from 12 different locations around Santa Ynez Mountains 

(Table 1 in Chapter 1). These localities (i.e. populations) were chosen based on the different 

factors, including different genus of host plant (i.e. either Adenostoma or Ceanothus), and 

varying in geographical distance and climatic variables.  Given methylation is expected to 

vary according to different ecological factors and genetic background, this design aimed to 

obtain a comprehensive dataset of DNA methylation information in T. cristinae. For this, 

individuals from the different localities were all sampled on the same day (25 April 2017) 

in the Californian spring. Specimens were collected using sweep nets and kept in plastic 

containers at room temperature overnight and fed with leaves from the same plant on 

which they were collected.  

Photographs of every specimen were recorded using a Canon EOS 70D digital camera 

equipped with a macro lens (Canon EF 100 mm f/2.8 L Macro IS USM) and two external 

flashes (Yongnuo YN560-II speedlights). The pictures were taken with the camera set on 

manual, an aperture of f/14, a shutter speed of 1/250 s and flashes adjusted to 1/4 power 

in S2 mode. The selected individuals were then flash frozen using liquid nitrogen one day 

after sampling (26 April 2017) and preserved at -80OC temperature. Thus, the sampling was 

immediately followed by preservation. All procedures were performed to assure the 

methylation status was minimally affected by changing conditions after sampling. This way, 

one can assume the methylation levels likely match the patterns present in the wild. 

Individuals were measured using ImageJ 1.4.882 (Abràmoff et al., 2004) following previous 

work on T. cristinae (Comeault et al., 2014; Riesch et al., 2017). Two similar-sized adult 

females were chosen for BS-seq of each population (Table 1 in Chapter 1).  
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2.3.3. Generating DNA methylation data 

2.3.3.1. Whole genome bisulfite sequencing (BS-seq) 

I used whole-genome bisulfite sequencing to obtain genome-wide information on 

methylation levels in T. cristinae. This technique consists of Illumina sequencing preceded 

by a bisulfite (BS) treatment of the DNA, which involves a reaction between sodium bisulfite 

and DNA. This treatment converts non-methylated cytosine residues into uracil 

(subsequently amplified as thymines [T] following polymerase chain reaction [PCR]), but 

leaves 5-methyl-cytosines unaffected (Fig. 1; Cokus et al., 2008). Thus, only methylated 

cytosines are retained after this treatment. For every genomic locus, BS treatment and 

subsequent PCR amplification give rise to four possible different DNA strands, which all 

have the potential to be sequenced (Fig. 1). Ultimately, estimates of DNA methylation levels 

can be obtained by comparing the number of methylated bases and the number of non-

methylated bases at a specific position. This provides genome-wide information to be 

processed in silico to assess methylation levels at base-pair resolution.  This technique has 

been widely used to estimate DNA methylation  information (Lea et al., 2017; Richards et 

al., 2017) .  

I used half of the whole body (cut longitudinally) of each specimen to isolate its 

genomic DNA using DNeasy Blood and Tissue Kits (Qiagen). Although this implies a mix of 

DNA from different tissues, this procedure has been used in a number of other studies of 

insects (e.g. Bonasio et al., 2012; Wang et al., 2013; Patalano et al., 2015; Glastad et al., 2016, 

2017). In addition, methylation seems to be preferentially targeted to genes that are broadly 

expressed across tissues (Glastad et al., 2018). A small amount of non-methylated cl857 

Sam7 Lambda phage DNA (Promega Corporation) was added to all samples, equivalent to 

1% of the final volume to be processed. This strain lacks methylase activity (Arraj and 

Marinus, 1983), thus all cytosines are non-methylated and are expected to be converted into 

thymines after BS-treatment (i.e. 0% methylated cytosines in the phage sample).  Hence, 
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here the efficiency of BS-conversion was used in the phage as a proxy to determine the 

conversion efficiency in each sample. In addition, genomic DNA of one T. cristinae sample 

(individual 17_0015) was submitted not only for BS-seq, but also as a control for the BS-

treatment (i.e. was sequenced without sodium bisulfite treatment).  

 

Figure 1: DNA strands generated by bisulfite treatment. Methylated cytosines (grey) remain 

unaffected after BS treatment, while non-methylated cytosines are converted into uracil and 

amplified as thymines (red). Adenines (blue) are amplified when new thymines (originally non-

methylated cytosines) are used as template. Thus, bisulfite conversion followed by PCR 

amplification can result in four different DNA strands, and consequently four different states at a 

specific locus. This figure was adapted from Krueger & Andrews (2011).  

The BS-treatment and sequencing were performed by Biomedicum Functional 

Genomics Unit (FuGU, Helsinki). To perform the sodium bisulfite reaction the DNA was 

treated with Zymo EZ DNA Methylation-GoldTM kit (Zymo Research).  The converted single-

stranded DNA generated in this process was used for the non-directional library 

preparation using TruSeq DNA Methylation Kits. The converted DNA was synthesized using 

random primers, selectively tagging the 3’ end with unique indexes for each sample. After 

amplification and following purification using AMPure XP beads (0.7x ratio), the libraries 

were sequenced using the Illumina NextSeq 500 system, with High Output 2 x 150 bp runs. 

In total, three flow cells with four lanes were run (i.e. total of 12 lanes). 
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2.3.3.2.  Filtering reads 

Filtering was done using Trimmomatic (0.36; Bolger, Lohse, & Usadel, 2014), and read 

quality assessed using FASTQC v0.11.5 (https://www.bioinformatics. 

babraham.ac.uk/projects/fastqc/). Briefly, reads with the minimum length of 36bp 

(MINLEN=36) were selected. Given all reads had maximum length of 150bp, I performed 

the step of removing reads longer than 150bp (CROP=150) only as a convention, as this step 

did not effectively filter any reads. The first 10bp from each read’s start always presented 

increased cytosine content, and were thus removed (HEADCROP=10). The reads were 

scanned with 4bp sliding windows, and cut when the mean Phred quality per base dropped 

below 20 (SLIDINGWINDOW=20).  In addition, bases at the start and end of a read were 

removed if below Phred 20 (LEADING=20, TRAILING=20).  Finally, the Illumina specific 

sequences were all removed from the reads using a custom file 

(ILLUMINACLIP='2:30:8:1:true'). Phred +33 quality score was used during the filtering. The 

filtering removed around 1-1.5 million reads in each sample’s lane; leaving 8.5-9 million 

reads to be used for mapping. The reads from different lanes were then merged by sample 

id. The mean number of reads was 33,634,576 [31,569,755 – 35,699,397] (mean [95% 

confidence interval] across all 24 samples; Table A2). There were some differences in 

coverage and in read counts between the flow cells, which were evidenced in downstream 

studies such as the clustering analyses used in Chapter 3 (data not shown in this 

dissertation). These batch effects were minimized after standardizing the number of reads 

between all the samples. After subsampling the reads of each individual to a maximum of 

24 million reads (the minimum read count), randomly sampled from the .fastq files before 

mapping (Table  A3). 

 

2.3.3.3. Read mapping and methylation calls 

The reads were mapped using Bismark (0.16.1; Krueger & Andrews, 2011). This 

software processes the four reads from the sequencing libraries by converting them in silico 
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into C-to-T and G-to-A versions (i.e. the reverse strand of C-to-T; A stands for adenine; Fig. 

2). Then, Bismark aligns each one of them to the BS-transformed version of a genome of 

interest using bowtie2 (Langmead and Salzberg, 2012).  This allows the software to 

determine the strand origin of a BS-seq read and the unique best alignment (Krueger and 

Andrews, 2011). Finally, Bismark uses the best alignment to do the methylation calls, 

determining the methylation state of each cytosine on the read (Fig. 3). Here, Bismark’s 

‘bismark_genome_preparation’ tool was used to convert the Lambda phage DNA (GenBank 

– EMBL Accession Number: J02459) and the most recent T. cristinae’s reference genome 

(1.3c2; Nosil et al., 2018) into their BS-transformed version. The mapping was performed 

using the ‘bismark’ tool, using the paired-end and non-directional options to use all four 

different strands generated at PCR amplification. The ambiguously mapped reads were 

always discarded. 

I first mapped the good quality reads to the BS-transformed Lambda phage genome 

to isolate the data from this strain, and to obtain estimates of BS conversion. The mapping 

yielded a mean of 737,086 [626,125 – 848,047] reads across samples mapped uniquely to 

Lambda phage (mapping efficiency of 3.1% [2.6% – 3.6%]). The proportion of methylated 

cytosines in the phage was 0.3% in CpG context, 0.4% in CHG, and 0.3% in CHH (Table  A2). 

This means 0.3% of non-methylated cytosines in CpG context, for example, were not 

properly converted by the bisulfite treatment, as this strain does not contain any methylated 

cytosine. Thus, the mean conversion efficiency was 99.7%, in CpG context across all 

samples. The reads that were not mapped to the phage (23,262,914 [23,151,953 – 

23,373,875]) were then aligned to T. cristinae BS-converted reference genome, yielding a 

mean of 10,232,740 [9,803,341 – 10,662,139] reads uniquely mapped (mapping efficiency 

of 44.0% [43.3% – 44.7%]; Table A3).  
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  The BS-control sample showed 98.0% methylation for CpG context, 99.4% on CHG 

and 99.2% on CHH. That is, Bismark detected a high percentage of the cytosines as 

methylated in different contexts because they were not modified by the BS-treatment, 

implying the software was sensitive to detect cytosines in methylated state. The 

‘bismark_methylation_extractor’ tool and its ‘–-cytosine_report’ option from Bismark were 

used to extract the methylation call for every single cytosine in each context from the 

mapped files, generating a table with methylated and non-methylated counts for every 

genomic site for each individual. The values are reported in the Results section.  

 

 

 

Figure 2:  Methylation call used by Bismark (Krueger and Andrews, 2011). Reads from BS-seq are 

first converted in silico to its C-to-T and G-to-A versions to obtain the four possible strand versions. 

The four outputs are simultaneously aligned to the BS-converted reference genome to determine 

the best unique alignment (here, it corresponds to alignment 1). Note that the reference genome 

sequence illustrated here does not fully mirror the genomic fragment of interest (see Fig. 3). This 

figure was adapted from Krueger & Andrews (2011).  
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2.3.3.4. Controlling for genetic polymorphisms (SNPs) in methylation calls 

The nature of BS-seq data offers some difficulties to its processing, as misleading 

methylation calls can arise due to the transformation from C/T (or G/A in the reverse 

strand) and subsequent alignment to reference genome. That is, a natural single nucleotide 

polymorphism (SNP) could be assigned as a differently methylated position and confound 

the results of this work (Fig. 3). To investigate this effect, the BS-treatment control sample 

(i.e. individual 17_0015) was first used to identify C/T and G/A SNPs, and then compared 

this list of sites to its BS-treated equivalent. The genetic data was processed following a 

pipeline often used in previous Timema sp. studies (e.g. Comeault et al., 2016; Riesch et al., 

2017). Briefly, the good quality reads were aligned to the T. cristinae reference genome 

(1.3c2; Nosil et al. 2018) using bowtie 2.3.4.1 (Langmead & Salzberg, 2012), applying the 

paired-end argument. The mapped reads were sorted and indexed using SAMTOOLS 1.8 (Li 

et al., 2009). SNPs were called following a custom Perl script (Comeault et al., 2014), which 

uses SAMTOOLS mpileup and BCFTOOLS using the full prior, calling a variant only if the 

probability of the data was less than 0.5 under the null hypothesis that all samples were 

homozygous for the reference allele. Every SNP that presented Phred quality score equal to 

or greater than 20 (i.e. QUAL≥20) was retained. The filtering retained 3,487,275 SNPs, of 

which 12.1% were C/T SNPs and 12.2% corresponded to G/A SNPs, giving 846,998 

potential genetic polymorphisms that could be confounders to the methylation counts. 

However, only 0.5% of all CpG sites called in the 17_0015 BS-treated sample overlapped 

with the list of C/T and G/A polymorphisms obtained from the BS-control. 

Following this, to obtain a list of SNPs for the other individuals, newly acquired 

restriction site associated DNA sequencing (RAD-seq) data were used, as well as similar 

RAD-seq data from previous studies (Comeault et al., 2014; Lindtke et al., 2017; Riesch et 

al., 2017). Complete information about samples and about the data processing will be 

detailed in Chapter 3 (section 3.3.5). After calling the SNPs using the same custom Perl script 
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cited above (Comeault et al., 2014), only the genetic variants with Phred quality score equal 

to or higher than 20 were retained, where 460,757 C/T and  459,480 G/A transitions were 

listed. In addition, whole-genome accessions from 20 individuals from five populations 

included in this study (Soria-Carrasco et al., 2014; Riesch et al., 2017, Table A4) were 

retrieved from NCBI database (https://www.ncbi.nlm.nih.gov/). The data were processed 

similarly to the proceedings described above for the BS-treatment control sample, listing 

7,547,750 C/T and 7,549,895 G/A SNPs. Merging the lists from RAD-seq and from whole-

genome sequencing, 15,534,254 sites identified as C/T or G/A SNPs were obtained. From 

this list, 10.5% [10.4% – 10.6%] SNPs overlapped with CpG sites in the BS-treated samples, 

including the sample 17_0015, 4.8% in CHG, and 4.4% in CHH. These values are 

considerably higher than the proportion of SNPs overlapping in the comparison between 

BS and non-BS treatment sample (0.5%). As such, there was likely an overestimation of 

SNPs present in the methylation tables, but this conservative approach ensures most 

methylation polymorphisms (SMPs) were not genetic polymorphisms (SNPs). All the SNPs 

overlapping with methylation sites were removed aiming to reduce these confounding 

effects. 

 

Figure 3: After determining the unique best alignment (Fig. 2), Bismark (Krueger and Andrews, 

2011) calls the methylation variants for each locus. In this study, T. cristinae reference genome 

was used to do the alignments. Hence, misleading non-methylation calls might arise when C/T or 

G/A genetic polymorphisms are present in the individual’s genomic sequence compared to the 

reference genome. In the example given here, a C/T SNP was interpreted as a non-methylated 

cytosine in CpG context. This figure was adapted from Krueger & Andrews (2011) and contains 

some alterations compared to the original one. 

 

 

https://www.ncbi.nlm.nih.gov/
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2.3.3.5. Final methylation tables 

The final tables without the potential SNPs had mean coverage of 2.7 [2.5 – 2.9] reads 

per site, where 60.0% [57.9% – 62.1%] of the sites had coverage greater or equal to 2x; 

dropping to 36.1% [33.0% – 39.2%] for greater or equal to 3x ; and then 13.2% [10.3% – 

16.2%] for coverage greater or equal to 5x per site. That is, the final read coverage was much 

reduced after all the processing steps: filtering low quality reads; subsampling the reads to 

a maximum of 24 million reads each sample to minimize batch effects (see section 2.3.3.2); 

mapping to the reference genome (mapping efficiency of 44.0%); and removing the 

potential C/T and G/A SNPs. The low coverage could compromise some of the analyses 

using methylation data, as they depend on comparisons between methylated and non-

methylated cytosine counts in a specific locus (Lea et al., 2017). On the other hand, despite 

the low coverage and the reduced number of covered sites (and the errors arising from 

these numbers), the processing steps cited above circumvented some potential confounders 

to the interpretation of the data patterns (e.g. low-quality reads, sequencing batch effects, 

SNPs, etc.). The data was analysed throughout this dissertation considering the limitations 

in the data coverage, and the best possible approaches to handle these data. The individual 

tables with methylation information were filtered using a minimum threshold of 5 reads 

covering the sites, which is higher than the threshold used in some other studies (e.g. 

Cunningham et al., 2015; Glastad et al., 2016). Sites with coverage outliers above the 99.9th 

percentile were removed to avoid PCR bias (i.e. above 60 reads). After all the filtering, the 

mean number of sites with cytosines in CpG context was 2,193,306 [2,128,581 – 2,258,031], 

2,839,901 [2,761,571 – 2,918,231] in CHG context, and 12,801,094 [12,518,520 – 

13,083,668] in CHH context, averaged across all 24 individuals.  

For each sample, the methylation levels were calculated for each site as the total 

number of unconverted C (i.e. methylated cytosines) divided by the total number of reads 

mapped to the site. The methylation levels were estimated separately for each cytosine 

context (i.e. for CpG, CHG, and CHH independently). The methylation status (i.e. methylated 
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versus non-methylated) was estimated at each site by comparing the proportion of 

methylated reads (i.e. unconverted cytosines) to a binomial distribution. For this, the 

number of unconverted cytosines at each site was used as successes and the coverage as 

trials. The non-conversion rates of unmodified cytosines obtained from the non-methylated 

lambda phage were used as probability of success. In other words, a site would be 

considered methylated if the proportion of unconverted cytosines could not be expected by 

chance (p-value < 0.01, using a Benjamini–Hochberg FDR correction at 1%). If the 

proportion could be expected by chance (i.e. similar to the proportions found at the non-

methylated phage), it would be considered non-methylated (Glastad et al., 2016; Libbrecht 

et al., 2016; Standage et al., 2016). The results found using this method were very similar to 

those obtained when a threshold was used to determine methylation status. A site was 

considered as significantly methylated if the percentage of methylated cytosine was higher 

than 20% (mC > 20%). This definition requires at least two unconverted C containing reads 

to call a site methylated in the minimum coverage of five reads. This way, a single T → C 

Illumina sequence error would not result in a spurious methylated site. This approach has 

been used in previous studies (e.g. Wang et al., 2013), and in this work it was consistent 

with the binomial approach. All the reported statistics were performed using R (3.3.1; R 

Core Team 2016). 

 

2.3.4. Annotation 

I used the T. cristinae genomic annotation table (Villoutreix et al. in prep) to obtain 

information about DNA methylation levels in different genomic features. Only the genes 

with InterPro or GO accessions (InterPro EMBL-EBI; Gene Onthology, UniProt) were 

selected, retaining 19,383 genes. In the annotation tables, the genes begin at the start codon 

and finish at the stop codon. Thus, information about untranslated regions (UTRs) is not 

represented in the present data. The upstream and downstream regions around the gene 

were defined as 1kb 5’ and 3’ from the gene, following rules that are widely used in the 
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literature (Wang et al., 2013; Cunningham et al., 2015).  The remaining regions were 

considered intergenic. For some analyses, the mean methylation percentage across sites 

and across samples were considered for each annotated element.  

To identify “methylated” and “non-methylated” genes, first the probability of a mCpG 

occurring within a gene was calculated. This was done by dividing the total number of mCpG 

sites within all genes by the sum of all reads covering sites within genes (i.e. including non-

converted and converted cytosines). Then, a binomial test was performed using the number 

of mCpGs at a specific site and its coverage, using the probability estimated above. These 

results were then corrected for multiple testing using a Benjamini–Hochberg FDR 

correction at 1%. Only genes with at least five mapped cytosine sites were reported 

(Cunningham et al., 2015; Glastad et al., 2016).  

 

2.3.5. Methylation enrichment on genomic features  

Enrichment analyses were performed to estimate the likelihood a genomic feature 

(e.g. exons, introns, etc.) presents higher or lower methylation levels compared to 

background genome-wide levels. In summary, the analyses used the mean levels of 

methylation in single CpGs sites found in at least 12 samples to estimate (1) the number of 

methylated sites found in a certain genomic feature and (2) its enrichment in methylated 

sites, calculated using:  

(𝑁𝑟𝑎𝑛𝑑/𝑚𝐶𝑝𝐺)

(𝑁𝑏𝑔/𝑛𝐶𝑝𝐺)
                                                                     (1) 

For example, to calculate the methylation enrichment in exons, one estimate the proportion 

of methylated sites within exons using the number of methylated CpGs site within exons 

(Nrand ) and the total number of methylated CpGs in the genome (mCpG). Then, one divides 

it over the proportion of CpG sites in exons, using the total number of CpGs sites found 

within exons (Nbg) and the total number of CpG sites across the genome (nCpG). A p-value 

for the enrichment can then be estimated using the Fisher’s Exact Test to statistically 
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compare the number of methylated CpGs in each genomic feature with the background 

values in the genome. For comparison, I estimated a null distribution of the expected 

number of mCpGs in a genomic feature by randomizing their position on the genome, then 

computing how many of those were found in each genomic feature at each iteration. The 

null distribution was generated after 10,000 iterations of randomization. All analyses were 

performed using R (3.3.1; R Core Team 2016). 

 

2.3.6. Gene Ontology (GO) enrichments 

I generated a list of GO terms that were over-represented in genes with methylation 

information using the R package TopGO (v 2.34.0). This analysis used 8,472 genes, as they 

presented information about methylation across all 24 samples. The analysis was 

performed using genes that were consistently methylated across all individuals compared 

to the remaining genes, and using genes that were consistently non-methylated. Fisher’s 

Exact Test was used to calculate the significance of the enrichment, coupled with a weight 

algorithm. This algorithm uses a hierarchical approach to compute the p-value of a GO term, 

conditioning the process based on the neighbouring terms (i.e. it accounts for GO topology). 

Hence, the tests are not independent from each other, which means the multiple testing 

theory does not apply. Given this, the authors of the R package attest the p-values are 

internally corrected and do not need further correction for multiple testing (Alexa and 

Rahnenfuhrer, 2019).   

 

2.3.7. Transposable elements (TEs) 

I used the T. cristinae RepeatMasker database (Villoutreix et al. in prep) to extract 

information about transposable elements. The analyses were focused on families of 

transposable elements that contained more than 400 copies across the T. cristinae genome 

(following the method in Libbrecht et al., 2016), including DNA transposons; long terminal 
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repeats (LTR) retrotransposons; non-LTR retrotransposons; and Penelope-like elements 

(PLE; Table A5). The mean methylation across TEs was estimated in sites that were present 

in at least 12 samples and its enrichment, following the same procedures described at 

section 2.3.5. These estimates were performed using all transposons, but also in those found 

within genes and in the intergenic regions separately. In addition, the analyses were 

repeated for each TE family considered here. Some of the families cited in Table A5 were 

not used in the analyses because they were not represented in the table with CpG sites 

present in at least 12 samples, or they presented a very low number of CpG sites (e.g. SINE 

presented only 26 CpG sites). All analyses were performed using R (3.3.1; R Core Team 

2016). 

 

2.4. Results 

2.4.1.  Identification of T. cristinae DNA methyltransferases  

The T. cristinae genomic annotation presented a DNMT1 replication foci domain, and 

three genes with predicted proteins characterized by C-5 cytosine methyltransferase 

(GO:0008168; IPR001525). Two of these queries were identified as DNMT1-like proteins 

(Table 1). One of them existing in LG3 (gene g34132.t1) encodes a protein with 465 amino 

acids, and it is composed by the Dcm domain, which is a site-specific DNA-cytosine 

methylase.  It shared strong similarity with the DNMT1 of a termite species Zootermopsis 

nevadensis [Isoptera: Termopsidae], which is also a hemimetabolous insect (Table 1). The 

second one (g25566.t1) encodes a protein with 200 amino acids, presenting the Dcm and 

the BAH domains (bromo-adjacent-domain). It had a lower BLASTp score, with the best 

matches corresponding to DNMT1-like proteins in more distantly related organisms, such 

as a wasp species (Trichogramma pretiosum [Hymenoptera: Trichogrammatidae]) or to a 

spider (Parasteatoda tepidariorum [Aranae: Theridiidae]). The third query had the best 

match to the DNMT2 enzyme, which does not present DNA methyltransferase activity (Goll 
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et al., 2006). Thus, none of the candidate queries was matched to the de novo 

methyltransferase (i.e. DNMT3) in the T. cristinae annotation. 

Following these results, the tBLASTn analyses using DNMTs of a few insect species 

and T. cristinae database on its reference genome revealed consistent results for the DNMT1 

enzyme (Table 2). The three analyses pointed the same genomic region in linkage group 3 

(LG3) with very significant BLAST scores (e.g. low E-value). On the other hand, the analyses 

using the de novo DNA methyltransferase (DNMT3) from other insects had very high low 

matching scores, and output different genomic regions. In other words, there was not a 

significant match between the DNMT3 and a specific region in the T. cristinae genome. These 

results, added to the finding regarding the reasonably good quality of the T. cristinae 

genome assembly, suggest T. cristinae does not have this enzyme.  

Table 1: Best results from BLASTp using the putative proteins related to C-5 methyltransferase 

activity in T. cristinae genome annotation. None of the putative proteins had a result related to the de 

novo DNMT3.  

Gene 
Genomic 

region 
Description 

Max 

score 
E-value Ident Organism 

g34132.t1 LG3_scaf715 DNMT1 778 0 79% 

Zootermopsis 

nevadensis  

[Isoptera: 

Termopsidae] 

g25566.t1 LGNA_scaf2537 DNMT1-like 176 7e-49 
42-

47% 

Parasteatoda 

tepidariorum  

[Aranae: 

Theridiidae]; 

Trichogramma 

pretiosum 

[Hymenoptera: 

Trichogrammatidae] 

g3428.t1 LG7_scaf763 DNMT2 436 1e-149 58% 

Zootermopsis 

nevadensis  

[Isoptera: 

Termopsidae] 

The E-value describes the number of hits that are expected to be retrieved by chance when searching 
a database of a particular size. It decreases exponentially as the score of the match increases, so that 
the lower the E-value the more significant the match is (Altschul et al., 1997). 
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Table 2: Best results from tBLASTn using the described DNA methyltransferase proteins in a few 

representatives of Insecta clade: Apis melifera, Nasonia vitripensis, and Zootermopsis nevadendis. The 
lower E-value score the higher is the match between the query protein and the genomic database (T. 

cristinae reference genome).  

Protein Organism Score E-value Ident Genomic region 

DNMT1 

A. melifera 231 1e-87 58% 

lg3_scaf715 N. vitripensis 224 3e-57 69% 

Z. nevadensis 778 0 79% 

DNMT3 

A. melifera 35 6.6 26% lg9_scaf527 

N. vitripensis 37 1.8 34% lg12_scaf2191 

Z. nevadensis 37 1.5 34% lgNA_scaf1772 

 

2.4.2. General patterns 

The mean proportion of methylated cytosines across the 24 samples was 2.1% [2.0% 

– 2.2%] (mean [95% CI]).  Methylation was found primarily on CpG dinucleotides, as 80.2% 

[79.0% – 81.4%] of methylated cytosines were on CpG context, 3.8% [3.6% – 4.0%] on CHG, 

and 16.0% [15.0% – 17.0%] on CHH context (Fig. 4). Considering each context separately, 

the mean proportion of cytosines that were methylated across the genome was 14.0% 

[13.3% – 14.7%] in CpG, 0.5% on CHG and 0.5% on CHH (Table A3). The predominance of 

methylation in CpG context was expected, as this is the most prevalent DNA methylation 

context found among animals (Suzuki and Bird, 2008). Thus, the main results reported here 

refer to CpG context, unless the other contexts are mentioned. Among the methylated CpGs, 

82.3% [81.8% – 82.8%] had methylation levels above or equal to 50%. The numbers cited 

above were estimated independently for each individual, and then the mean was obtained 

across samples with its corresponding 95% confidence interval to estimate the general 

pattern.  
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Figure 4: Mean proportion of methylated cytosines in each context across the 24 samples. 

Methylation is found primarily in CpG context, corresponding to 80% of all methylated cytosines.  

 

2.4.3. Distribution of DNA methylation across genome 

As mentioned in the previous section, a mean of 14.0% of genomic CpGs were 

methylated across the samples. However, these methylated sites were not evenly 

distributed throughout the genome. Among the mCpGs, 19.3% [18.8% – 19.8%] were 

located in exonic sites, and 32.7% [32.4% – 33.0%] were in intronic sites (whereas 7.0% 

[6.8% –7.2%] and 12.9% [12.7% – 13.1%] of all CpGs are exonic and intronic, respectively), 

which shows a preferential target of DNA methylation in gene bodies (Fig. 5, Table A6). Half 

of the genes in T. cristinae were methylated, where 50.2% were methylated in at least half 

of the samples and 45.6% were methylated in all samples (Table 3).  

Both exons and introns had a significant enrichment of methylation levels compared 

to genomic background levels (p-value < 2.2e-16, Fisher’s exact test; Table 4, Fig. 5-6). In 

particular, exons showed considerable proportion of methylated sites, with 49.5% [48.0% 

– 51.0%] of CpGs being methylated (Fig. 6A), and had mean methylation levels of 39.4% 

[38.0% – 40.8%] (Fig. 6B). In comparison to exons, introns showed a marginally lower 

proportion of CpGs that were methylated (44.6% – 47.0%), with mean methylation levels 

of 35.8% [34.7% – 36.9%]. In fact, the difference in methylation levels between exons and 

their surrounding introns was not very pronounced (Fig. 7). Although a higher proportion 
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of CpGs are methylated in exons, introns generally presented more mCpGs than exons, 

around 1.7x as many (129,319 [121,319 – 137,319] mCpGs in introns and 76,675 [70,417 – 

82,933] in exons). This is possibly due to the fact introns are normally larger than exons in 

T. cristinae (mean 2,305bp [2,285bp – 2,325bp] and 231bp [229bp – 233bp], respectively, 

considering all genes used in this study).  The regions flanking the genes (i.e. up to 1kbp at 

5’ and at 3’ of the genes, respectively the upstream and downstream regions) also tended to 

be enriched in DNA methylation, although in lower levels compared to the gene body values 

(p-value < 2.2e-16, Fisher’s exact test; Table 4, Fig. 6). 

  

 

Figure 5: Proportion of sites in genomic features. Numbers of sites were estimated independently for 

each individual, and then averaged (see Table A6). (A) Proportion of features across all genome; (B) 

proportion of CpGs present in the genomic features using the raw data; (C) after selecting for minimum 

of 5 and maximum of 60 reads per site; (D) and proportion of CpGs in each feature considering only 

methylated cytosines. 
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Table 3: Number of genes and their methylation status covered by a minimum of 5 reads and 

maximum of 60 reads per site. Methylation status (i.e. methylated or non-methylated) was estimated 

averaging the percentage of methylated CpG in the gene body (i.e. using both exons and introns), 

using sites found in at least one sample, in at least in 12 samples, or in all samples. The total number 

of annotated genes used in this study was 19,383.   

 1 sample 12 samples 24 samples 

Total number 

of genes 
17,929 14,656 8,554 

Methylated 

genes 

9,997 7,364 3,897 

(55.8%) (50.2%) (45.6%) 

 

Table 4: Enrichment in methylation status in the genomic features in CpG sites found in at least 12 

samples. All genomic features studied here were found to be more frequently methylated than 

background levels (p-values estimated using Fisher’s exact test). Levels of methylation were averaged 

between individuals for each site (895,343 sites analysed). Similar results are found when the 

individuals are analysed separately (Tables A7-A10). 

Genetic 

feature 

Number 

of sites 

95% Quantiles 

(null dist.) 
Enrichment p-value  

exon 34,291 [14,446–14,846] 2.3 <2.2e-16 *** 

intron 52,292 [23,081–23,568] 2.2 <2.2e-16 *** 

upstream 6,731 [5,385–5,639] 1.2 <2.2e-16 *** 

downstream 7,031 [4,706–4,944] 1.5 <2.2e-16 *** 

 

There was a noticeable trend of increasing methylation levels from 5’→ 3’, especially 

within the gene body (Fig. 7). That is, when all genes are considered, exons and introns tend 

to have higher methylation levels at features that are more distant from the initiation site. 

The same pattern is found in the 1kbp around the genes, as the genic downstream region 

was generally more methylated than the upstream region (Fig. 6-7).  However, this trend is 

not as substantial when the genes are separated according to their number of exons (Fig. 8). 

Genes with more than five exons (i.e. long genes) were more methylated those with up to 

four exons (p-value< 2.2e-16; unpaired t-test; Table A11). Thus, the considerable increase 

in methylation from 5’→ 3’ is confounded with the general high methylation levels in genes 

with more exons. Finally, outside the genes, the DNA methylation levels were generally 

lower the more distant the regions are from genes (Fig. 9).  
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Figure 7: DNA methylation levels in genes and their flanking regions. The graph represents the 5’ 
downstream flanking region, the multiple exons and introns, and the 3’ downstream region. The 
graph shows mean methylation levels estimated at CpG sites found in at least 12 samples, in both 
methylated and non-methylated genes (n=14,656 genes, see Table 3). The x-axis represents 
nucleotide position from the beginning or from the end of the genomic feature. To compare exons 
and introns of different genes, I used the mean methylation in the first 100bp at 5’ and the last 
100bp 3’ of each exon and each intron (following Hunt et al., 2013; Glastad et al., 2016) A blue line 
was drawn to connect the means in each position, and a black smooth line was plotted to represent 
the overall trend using the method ‘loess’ (standard error shown in grey).  

 

Figure 6: CpG methylation in each genomic feature across the 24 samples. (A) Proportion of 
methylated CpGs in covered sites in different genomic features, and (B) mean methylation levels at 
covered CpGs. Error bars represent 95% confidence interval.  
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Figure 8: DNA methylation levels in the 5’ downstream flanking region, in the multiple exons and 

introns, and in the 3’ downstream region, using both methylated and non-methylated genes. The 

graph shows mean methylation levels estimated at CpG sites found in at least 12 samples 

(n=14,656 genes, Table 3), with a smooth line plotted to represent the overall trend using the 

method ‘loess’ (standard error shown in grey). The x-axis represents nucleotide position from the 

beginning or from end of each feature. To be able to compare exons and introns of different genes, 

I used the mean methylation in the first 100bp at 5’ and the last 100bp 3’ of each exon and each 

intron (following Hunt et al., 2013; Glastad et al., 2016). Differently sized genes were represented 

in separated graphs, divided in (A) smaller genes with up to four exons (n=7,529), and (B) longer 

genes, with five or more exons (n=7,127). Longer genes present higher methylation levels, and 

more contrasting difference between exons and introns (see Table A11 for unpaired t-tests on the 

data used to generate this graph).  
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2.4.4. GO terms enriched in methylated and in non-methylated genes 

The enrichment analyses in consistently methylated genes across all samples 

(n=3,866) showed an over-representation of functional terms related to fundamental 

cellular processes (e.g. involved in protein metabolic processes, RNA binding and RNA 

metabolic processes, biosynthesis of nucleotides, and protein folding; Tables A12-A13). 

Some GO terms were related to methylation activity, including the one responsible for 

methyltransferase (GO:0008168). In addition, some functional terms were related to gene 

expression and transcription. Meanwhile, non-methylated genes (n=3,176) were generally 

associated with terms related to dynamic functions, especially related to signalling and 

reception pathways. For example, there were some GO related to olfaction and perception 

of smell. In fact, many of those GO terms are related to nervous system processes and the 

components associated to it, such as neurotransmitters’ receptor activity and processes 

related to ions channel transport (i.e. possibly related to membrane potential difference). In 

addition, some GO functions were related to metabolism of the chitin and development of 

the cuticle.  

 

2.4.5. Transposable elements 

The mean methylation levels of all transposable elements used in this study was 

15.0% [14.9% – 15.1%] (Table 5). TEs were found to be less methylated than the genomic 

background levels, especially when only regions within the genes are analysed (Table 5). 

That is, although transposons tend to be more methylated within genes (24.5% [24.2% – 

24.8%]), they are impoverished in methylation compared to other genic CpGs. On the other 

hand, TEs seem to be relatively enriched in methylation in intergenic regions (Table 5). 

Thus, transposons seem to have basal methylation levels, although it is significantly higher 

in intergenic regions and lower compared to those located within genes, which tend to be 

enriched in DNA methylation.  
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Figure 9: Mean methylation levels in intergenic regions according to distance to the closest gene 

across 24 samples. Error bars represent 95% confidence intervals. Methylation levels tend to be 

lowered the more distant the sites are from the gene (R2=0.07, p-value < 2.2e-16, linear models). 

 

I analysed each transposon family separately to investigate the differences in 

methylation patterns between them, both within genes and in intergenic regions. Some DNA 

transposons were impoverished in methylation independently of the genomic context, such 

as Helitron, MuDr, Polinton (Tables A14-A15). However, some of them seemed to be 

preferentially targeted for methylation in both genic and intergenic regions, such as 

PiggyBac, Mariner, and Sola (Tables A14- A15).  A Penelope-like element (PLE) was also 

enriched in methylation in T. cristinae compared to its background levels in any genomic 

context. Curiously, retrotransposons were found to either always be impoverished in 

methylation (e.g. HERV, an LTR retrotransposon; Jockey a non-LTR retrotransposon), or 

were enriched only when compared to the intergenic baseline levels.  
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Table 5: Transposable elements and methylation enrichment in all genomic contexts, or only in genic 

or intergenic regions using at least 12 samples. Enrichment was estimated comparing the number of 

methylated CpG sites compared to the expected null distribution estimated based on randomizations 

(section 2.3.5).  P-values were calculated using Fisher’s exact test.  

 CpG 

sites 

mean mCpG 

sites 

95%Quantiles 

(null dist.) 

Enrich. p-value 
 

All TEs 132,089 
15.0% 

[0.1%] 
27,402 [27,967–28,506] 0.97 1.2e-09 *** 

TEs genic 30,465 
24.5% 

[0.3%] 
10,001 [14,573–14,890] 0.68 <2.2e-16 *** 

TEs intergenic 101,624 
12.1% 

[0.1%] 
17,401 [13,253–13,635] 1.29 <2.2e-16 *** 

 

2.5. Discussion 

2.5.1. Two copies of DNMT1 and absence of DNMT3 in T. cristinae 

Among the enzymes with C-5 cytosine methyltransferase activity in T. cristinae 

functional annotation, two copies of the maintenance DNMT1 gene were found: one with 

high identity to the same enzyme in Z. nevadensis; and the other with a lower identity score 

to more distantly related individuals. However, the latter presented one domain, the bromo-

adjacent homology domain, that is characteristic of DNMT1 enzymes, which is absent in the 

other form. Gene duplication can be a source of gene novelty in genomic evolution (Lynch, 

2002). Thus, it is possible these DNMT1 paralogs exert different activities, maintaining 

methylation differently in space and time. Duplicates of DNMT1 were also found in pea 

aphid (Walsh et al., 2010), and in the Hymenoptera clade, and the different forms seem to 

face weak divergent selection (Bewick et al., 2017).  Alternatively, it is possible the DNMT1-

like enzyme was degenerated and lost its function in T. cristinae, although more studies are 

required to depict the functional role of those two DNMT1 enzymes.  

Curiously, an enzyme matching the de novo DNMT3 in T. cristinae was not found. This 

pattern was also found in other insects, with comparative analyses showing DNMT3 was 

possibly lost numerous times during the evolutionary history of insects (Bewick et al., 2017; 
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Provataris et al., 2018). These evidences suggest that DNMT3 might be dispensable for DNA 

methylation in some clades, including Timema. This implies that either DNMT1 has acquired 

some de novo methyltransferase functionality in insects, or that the loss of DNMT3 enzyme 

activity is compensated by DNMT1 or by other molecular pathways. However, DNMT1 lacks 

protein domains associated with de novo methyltransferase activity, such as the PWWD 

domain (Qiu et al., 2002; Bewick et al., 2017).  Indeed, Mitsudome et al. (2015) showed 

DNMT1 in Bombyx mori preferentially methylated the hemimethylated DNA, suggesting it 

functions primarily as a maintenance methyltransferase. Alternatively, there is the 

speculation about the maintenance of DNA methylation status being sufficient for it to 

persist across generations (Glastad et al., 2018).  The latter hypothesis contradicts the 

overall demethylation and reset of parental methylation levels during gametogenesis 

observed in vertebrates (Law and Jacobsen, 2010). Whether DNA methylation 

reprogramming exists in insects is largely unknown, but some evidence suggests there is 

stable inheritance of methylation status between generations in Nasonia wasps (Wang et 

al., 2016). The enzymatic functions of methyltransferases are not known in insects, but 

rather inferred from studies in vertebrates and plants. The fact that vertebrates and insects 

differ in the number and types of methyltransferases points to the possibility of novel roles 

in the insects’ DNMTs (Wang et al., 2016). In any case, further investigations in insects 

should be carried to elucidate the mechanisms by which some insects can establish DNA 

methylation in the absence of DNMT3.  

 

2.5.2. Majority of methylated cytosines is in CpG context 

A great proportion of the methylated cytosines in T. cristinae was found in the 

symmetric context of cytosines followed by guanines (i.e. CpG context). This pattern is 

ubiquitous in animals, which is generated by the action of DNMT1 (Suzuki and Bird, 2008; 

Feng et al., 2010). It has been suggested that non-CpG methylation in animals is mainly 

found in embryonic cells, but not somatic ones, and is generated as a by-product of the de 
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novo DNA methyltransferase 3a (DNMT3a) activity (Ramsahoye et al., 2000). Thus, it is 

curious there was some methylation found in CHG and CHH contexts in adult T. cristinae, 

given this species does not produce the de novo DNMT3 enzyme. This suggests a different 

molecular pathway culminating in non-CpG methylation. Very few studies in insects report 

non-CpG methylated sites because either they were not detected or they were not given 

attention. When they are reported, they tend to be much reduced in numbers compared to 

CpG methylation (e.g. Bonasio et al., 2012; Cunningham et al., 2015). However, the 

distribution patterns and particular functions for methylation in these contexts remain 

largely unexplored. 

  

2.5.3. DNA methylation levels are high in T. cristinae genome and differentially distributed 

On average, 14.0% of the CpGs were methylated across the T. cristinae samples. This 

proportion is relatively high when compared to the great majority of insect species 

described in the literature (Bewick et al., 2017). In fact, the majority of DNA methylation 

studies in insects have focused on understanding the role of this epigenetic mechanism in 

the development of castes and division of labour in eusocial insects (e.g. Kucharski et al., 

2008; Standage et al., 2016; Bewick et al., 2017; Glastad et al., 2017). This way, the literature 

tends to be biased towards the Holometabola superorder of insects, which includes the 

Hymenoptera clade. When representatives of this superorder exhibit any trace of DNA 

methylation, it is normally at very low levels (Bewick et al., 2017). Here, I showed T. cristinae 

mean methylation levels in CpG were much higher than has been reported in Holometabola 

insects (Table 6).  On the other hand, the results presented here are consistent with  studies 

of other “Hemimetabola”, which tend to describe higher methylation levels (Provataris et 

al., 2018).  

 

Following the same trend as in other insects (Zemach et al., 2010; Bewick et al., 2017), 

DNA methylation in T. cristinae seems to target the gene body, where methylation is 

considerably enriched compared to intragenic levels. Both exons and introns are highly 
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methylated in T. cristinae, contrasting the pattern found in Holometabola insects where 

exons are the main genomic target for DNA methylation (Wang et al., 2013; Libbrecht et al., 

2016; Standage et al., 2016; Glastad et al., 2017). Thus, although exons are generally more 

methylated than introns, this trend is less pronounced in T. cristinae compared to 

Holometabola insects (Fig. A1). Another difference is the increased methylation from 5’→ 3’ 

in the gene body, with more elevated DNA methylation levels the longer the gene is (i.e. 

genes with more exons are more methylated). A classic explanation of gene body 

methylation is that it reduces transcriptional noise by preventing initiation of transcription 

outside transcription start sites (Bird, 1995). As longer genes are likely more prone to this 

noise, it is possible their high methylation levels are acting to supress spurious transcription 

in Timema, assuring the integrity of the genes’ function. A similar trend to increase 

methylation levels from 5’→ 3’ was found in termites, suggesting a generality among 

“Hemimetabola” insects (Fig. A2, Glastad et al., 2016). However, the steep increase shown 

in the study might be due to the high general methylation levels in longer genes, as observed 

in this present study. Differences between “Hemi” and Holometabola were shown to be 

consistent by a study that used normalized CpG content on 53 arthropod species  

(Provataris et al., 2018). These results collectively suggest that the T. cristinae methylome 

profile, as well as that of other hemimetabolous insects, is relatively underived during the 

evolution of insects and could point to an ancestral loss of DNA methylation occurring in 

Holometabola (Provataris et al., 2018).  In general, Timema’s methylation is more similar to 

the tunicate Ciona intestinalis methylation patterns (31.1% CpG methylated;  Feng et al., 

2010; Zemach et al., 2010) than to the reduced and restricted to exons DNA methylation 

shown in holometabolous insects. In some aspects, such as the generalized methylation in 

both exons and introns and the increased methylation towards the 3’ end of the gene, where 

the gene is methylated Timema methylation patterns resemble those of vertebrates (Table 

6, Fig. A2 B; Glastad et al., 2016).   
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Table 6: List of animal organisms and their respective proportion of methylated cytosines in CpG 

context (mCpG). Timema cristinae shows mCpGs at 14%. The clade Polyneoptera have incomplete 

metamorphosis, previously called “Hemimetabola”.  

Clade   Organism mCpG Reference 

Insecta 

(Holometabola) 

Coleoptera 
Tribolium castaneum 

(flour beetle) 
0.0% Schulz et al., 2018 

Diptera 
Drosophila melanogaster 

(fruit fly) 
0.0% Zemach et al., 2010 

Hymenoptera 

 

Apis melifera 

(honeybee) 
0.9% Feng et al., 2010 

Camponotus floridanus 

(carpenter ant) 
0.3% Bonasio et al., 2012 

Cerapachys biroi 

(clonal raider ant) 
2.1% 

Libbrecht et al., 

2016 

Harpegnathos saltator 

(jumping ant) 
0.2%  Bonasio et al., 2012 

Nasonia vitripensis 

(parasitoid wasp) 
1.6% Wang et al., 2013 

Lepidoptera 
Bombyx mori 

(silkworm) 
0.1% Xiang et al., 2010 

Insecta 

(Polyneoptera) 

Orthoptera 
Locusta migratoria 

(migratory locust) 
11% Wang et al., 2014 

Phasmatodea 
Medauroidea extradentata  

(Annam stick insect) 
12% Krauss et al., 2009 

Isoptera 
Zootermopsis nevadensis 

(Nevada termite) 
12% Glastad et al., 2016 

Ascidiaceae  
Ciona intestinalis 

(sea squirt) 
31% Feng et al., 2010 

Actinopterygii  
Danio rerio 

(zebrafish) 
80% Feng et al., 2010 

Mammalia  
Mus musculus 

(house mouse) 
74% Feng et al., 2010 

 
 

 

2.5.4. Enriched GO terms are generally similar to those in other insects 

Although the individuals studied here came from different populations and different 

environmental contexts, some genes were consistently methylated or consistently non-

methylated across all samples. While methylated genes are normally associated with 

housekeeping functions and activities inside the cell, the non-methylated genes were 

related to dynamic functions, generally involving the cells’ external environment (especially 

receptor and signalling pathways). A similar pattern was discovered in other insects, with 
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methylation being preferentially targeted to genes broadly expressed across tissues 

(Glastad et al., 2016; Glastad et al., 2018). Thus, despite the differences in methylation 

patterns across insects, the methylation targets in functional terms seem to be conserved. 

The non-methylated genes in the termite Z. nevadensis were also enriched in GO terms 

related to signalling receptor activities, although not necessarily related to 

neurotransmission or olfactory functions, but with circadian behaviour (Glastad et al., 

2016). However, few studies reported the GO terms that are over-represented in non-

methylated genes. 

 

2.5.5. TEs are normally depleted in methylation 

Our results revealed a general impoverishment of methylation in transposable 

elements in T. cristinae, close to baseline levels (15.0% and 17.0% respectively, in sites 

present in at least 12 samples), as previously shown in other insects (e.g. Bonasio et al., 

2012; Wang et al., 2013; Cunningham et al., 2015; Libbrecht et al., 2016; Glastad et al., 2018). 

However, this study showed different methylation patterns depending on the TE family. 

Interestingly, some families exhibited a higher percentage of methylated CpGs when only 

the intergenic regions were considered. That is, these transposons seem to display a basal 

methylation level that is higher than the intergenic background levels. In addition, some 

DNA transposons (i.e. sequences that do not require an RNA intermediate) are enriched in 

methylation in both intergenic and genic regions. One of them, the Mariner element, was 

hyper-methylated in the ant C. floridanus. This transposable element is widespread in 

insects and it is commonly used to mutate genes and transfer foreign DNA sequences into 

the genome (Lidholm et al., 1993). In this species and in some other Hymenoptera, the rare 

hyper-methylated TE are positively correlated with their expression levels (Bonasio et al., 

2012; Wang et al., 2013). These results suggest higher methylation is associated with active 

TEs. This hypothesis is yet to be tested in T. cristinae, and future work could estimate the 

relationship between hyper-methylated TEs and their expression. Overall, this evidence and 
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the extensive methylation depletion in insect TEs contrasts markedly with the typical 

patterns in plants and in mammals, where methylation is linked with suppression of 

transposons and plays a role in maintaining genomic stability (Yoder et al., 1997; Suzuki 

and Bird, 2008; Jones, 2012).  

 

2.6. Conclusion 

This study contributed to the understanding of DNA methylation patterns in insects. 

It showed there are many similarities between T. cristinae stick insects’ methylation profile 

and other hemimetabolous insects in the literature. With this, it is possible to highlight the 

particularities of insects and differences in their methylomes: a group with such diverse 

forms and functions and disparate patterns in DNA methylation. Given the potential roles 

DNA methylation performs during development and in adaptation to natural environments, 

it is possible such differences could have had a role in the diversification of insects. The role 

of DNA methylation in insects remains controversial and largely unexplored. Although there 

are many marked differences in the methylation patterns between groups of insects, little 

is known about its molecular role and its functional consequences. In this context, the 

investigation of different taxa will help shed light on the understanding of some specific and 

general roles of these epigenetic mechanisms in insects.  

  



58 

Appendix A: Supplementary Tables and Figures – Chapter 2 

Quality of T. cristinae genome assembly 

To assess the quality of the current Timema genome assembly (version 1.3c2), I used 

the Benchmarking Universal Single-Copy Orthologs (BUSCO; Waterhouse et al., 2017) tools. 

Genes that compose the BUSCO datasets for each major lineage are selected from 

orthologous groups with genes present as single-copy orthologs in at least 90% of the 

species. The BUSCO software provides quantitative measures to assess the completeness of 

the genome based on evolutionary-informed expectations of gene content from OrthoDB v9 

(Zdobnov et al., 2017). It identifies BUSCO gene ortoholog group (‘BUSCOs’) matches using 

Hidden Markov Models (HMMER; Johnson et al., 2010) and de novo gene predictions using 

Augustus (Stanke et al., 2008). The matches are then classified according to the orthologs 

database. The recovered matches are classified as: ‘complete’ if their lengths correspond to 

BUSCO profile match lengths; ‘duplicated’ if are found more than once; ‘fragmented’ if are 

partially recovered; and ‘missing’ if no matches are recovered. I used the Insecta lineage 

from OrthoDB v9 as database, and the default species Drosophila melanogaster gene finding 

parameters to be used by Augustus. The analyses output 95.3% of the gene ortholog groups 

to be complete in length in T. cristinae genome assembly v1.3c2 (Table A1). This result 

suggests a good level of completeness in terms of the expected gene content, and therefore 

on the quality of the genome assembly, especially comparing to other insect models. For 

example, D. serrata presents 94.1% of BUSCO completeness, and Heliconius melpomene 

presents 81.6% (Waterhouse et al., 2019).  Thus, it is possible to conclude the current 

version of T. cristinae genome assembly is reasonably good.  

Table A1: Output table from BUSCO analyses, using the Insecta lineage and D. melanogaster gene 

ortholog groups, which presented 1,658 BUSCOs. 

 N BUSCOs Perc. 

Complete 1579 95.3% 

Complete and single-copy 1573 94.9% 

Fragmented 40 2.4% 

Missing 39 2.3% 
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Table A2: Details about bisulfite sequencing data from the 24 individuals used in the population 

survey when mapped to Lambda phage.  

Ind. Pop. 

Code  

Flow 
cell  

Reads 
parsed* 

Reads 
mapped 

Mapping 
efficiency  

Number 
mCpG 

mCpG mCHG mCHH 

17_0003 N1.A 1 34168604 855943 3.6% 45261 0.3% 0.3% 0.3% 

17_0005 N1.A 2 26972768 773449 3.2% 42749 0.3% 0.4% 0.3% 

17_0006 N1.C 1 39084659 715644 3.0% 32586 0.3% 0.3% 0.3% 

17_0009 N1.C 1 41538867 789980 3.3% 48231 0.3% 0.4% 0.4% 

17_0012 FH.A 1 39058299 639604 2.7% 29695 0.3% 0.3% 0.3% 

17_0015 FH.A 2 28605951 701599 2.9% 43430 0.4% 0.4% 0.4% 

17_0018 L.A 1 28164953 741842 3.1% 44757 0.4% 0.4% 0.4% 

17_0019 L.A 1 38153090 557688 2.3% 28155 0.3% 0.3% 0.3% 

17_0043 HV.A 2 27926464 879418 3.7% 56195 0.4% 0.4% 0.4% 

17_0045 HV.A 1 40963899 857479 3.6% 51307 0.3% 0.4% 0.4% 

17_0049 HV.C 2 31688742 884972 3.7% 46816 0.3% 0.4% 0.3% 

17_0051 HV.C 2 26277649 568375 2.4% 31528 0.3% 0.4% 0.3% 

17_0057 SCN.A 2 33803298 644683 2.7% 35239 0.3% 0.4% 0.3% 

17_0058 SCN.A 3 30211263 602447 2.5% 28159 0.3% 0.3% 0.3% 

17_0062 SC.C 2 30774916 527677 2.2% 28750 0.3% 0.4% 0.4% 

17_0065 SC.C 2 27550463 892349 3.7% 50861 0.3% 0.4% 0.4% 

17_0067 OUT.A 3 33570295 669363 2.8% 30939 0.3% 0.3% 0.3% 

17_0070 OUT.A 2 26509336 746317 3.1% 42062 0.3% 0.4% 0.4% 

17_0074 OUT.C 3 38641548 751502 3.1% 39647 0.3% 0.3% 0.3% 

17_0075 OUT.C 3 34971845 862776 3.6% 41707 0.3% 0.3% 0.3% 

17_0077 PR.C 3 35172047 803637 3.3% 36049 0.3% 0.3% 0.3% 

17_0081 PR.C 3 35313802 671131 2.8% 30435 0.3% 0.3% 0.3% 

17_0082 BT.A 3 37679020 844279 3.5% 41296 0.3% 0.3% 0.3% 

17_0086 BT.A 3 40428034 707912 2.9% 35245 0.3% 0.3% 0.3% 

Pop. code= Population where the individual was collected. Locality and host are separated by a dot. 

Flow cell= Information about the flow cell that each individual was sequenced. Reads parsed= 

Represents the total number of reads retained after filtering. This step was followed by a random 

subsampling of 24 million reads in each sample before mapping. Reads mapped= Number of reads 

uniquely mapped to the unmethylated Lambda phage BS-converted genome, starting from the 24 

million reads. Mapping efficiency= Percentage of reads uniquely mapped to Lambda phage. Number 

mCpG= number of methylated cytosines in CpG context. mCpG, mCHG, and mCHH correspond to the 

proportion of methylated cytosines in each one of those contexts. 
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Table A3: Details about BS-seq data from the 24 individuals used in the population survey when 

mapped to T. cristinae BS-converted reference genome 1.3c2. Mapping was performed using the 

reads that were not mapped to the phage.  

Ind. Pop. 
code  

Flow 
cell  

Non-map. 
reads  

Reads 
mapped  

Mapping 
efficiency  

Number 
mCpG 

mCpG mCHG mCHH 

17_0003 N1.A 1 23144057 10224621 44.2% 8651643 14.2% 0.4% 0.4% 

17_0005 N1.A 2 23226551 9849254 42.4% 7371433 12.6% 0.5% 0.5% 

17_0006 N1.C 1 23284356 10244423 44.0% 8460007 14.0% 0.5% 0.5% 

17_0009 N1.C 1 23210020 9768192 42.1% 8226048 14.5% 0.4% 0.4% 

17_0012 FH.A 1 23360396 10618466 45.5% 8848849 14.3% 0.4% 0.4% 

17_0015 FH.A 2 23298401 10523150 45.2% 7967329 13.0% 0.4% 0.4% 

17_0018 L.A 1 23258158 10362239 44.6% 8759187 15.0% 0.4% 0.4% 

17_0019 L.A 1 23442312 10306326 44.0% 8826738 14.4% 0.4% 0.4% 

17_0043 HV.A 2 23120582 10430206 45.1% 7254779 12.3% 0.5% 0.5% 

17_0045 HV.A 1 23142521 10007169 43.2% 8729881 14.9% 0.7% 0.6% 

17_0049 HV.C 2 23115028 10349562 44.8% 7077714 11.9% 0.5% 0.5% 

17_0051 HV.C 2 23431625 10750822 45.9% 7602182 12.3% 0.6% 0.7% 

17_0057 SCN.A 2 23355317 10608031 45.4% 7465945 12.3% 0.9% 0.9% 

17_0058 SCN.A 3 23397553 9095218 38.9% 7742320 14.1% 0.7% 0.7% 

17_0062 SC.C 2 23472323 11068668 47.2% 7788747 12.7% 0.5% 0.5% 

17_0065 SC.C 2 23107651 10191423 44.1% 6932999 11.8% 0.9% 0.9% 

17_0067 OUT.A 3 23330637 10479511 44.9% 8004357 13.5% 0.4% 0.4% 

17_0070 OUT.A 2 23253683 10717584 46.1% 7632506 12.8% 0.6% 0.6% 

17_0074 OUT.C 3 23248498 10172910 43.8% 7737917 13.6% 0.5% 0.5% 

17_0075 OUT.C 3 23137224 10460090 45.2% 7828798 13.3% 0.5% 0.5% 

17_0077 PR.C 3 23196363 9814177 42.3% 7010376 12.4% 0.7% 0.6% 

17_0081 PR.C 3 23328869 9829352 42.1% 7584060 12.9% 1.0% 1.0% 

17_0082 BT.A 3 23155721 10125500 43.7% 7299680 12.9% 0.4% 0.4% 

17_0086 BT.A 3 23292088 9588872 41.2% 6831541 12.4% 0.5% 0.5% 

Non-map. reads= Number of reads that were not uniquely mapped to the Lambda phage. Reads 

mapped= Number of reads uniquely mapped to T. cristinae BS-converted reference genome starting 

from the reads that were not mapped to the Lambda phage. Mapping efficiency= Percentage of reads 

uniquely mapped to T. cristinae. Number mCpG= number of methylated cytosines in CpG context. 

mCpG, mCHG, and mCHH correspond to the proportion of methylated cytosines in each one of those 

contexts.  
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Table A4: Details about whole-genome sequencing data re-analysed to estimate a list of single 

nucleotide polymorphism (SNPs) in T. cristinae. Accessions were downloaded from NCBI database 

(https://www.ncbi.nlm.nih.gov/) and a subsample of 20 accessions was randomly selected for 

downstream analysis. Sites identified as C/T and G/A polymorphisms were selected and added to the 

list of SNPs to be removed from methylation datasets. 

Location Host N Publication 

HV A 20 Soria-Carrasco et al. 2014 

HV C 20 Soria-Carrasco et al. 2014 

L A 19 Soria-Carrasco et al. 2014 

PR C 19 Soria-Carrasco et al. 2014 

FH A 20 Riesch et al. 2017 

 

Table A5: Frequency of transposable elements (TEs) found in the T. cristinae genome. Only TEs 

found in frequency higher than 400 copies across T. cristinae RepeatMasker database (Villoutreix et 

al. in prep) were considered in this study, following the procedures from Libbrecht et al. (2016). I 

tested whether TEs were enriched in methylation levels, and the results are reported in Tables A8-

A9. 

TE class TE family Frequency 

DNA Transposon 

Academ 7,088 

Chapaev 1,073 

EnSpm 3,066 

Harbinger 10,340 

HAT 64,998 

Helitron 8,809 

Mariner 15,728 

MuDr 3,238 

PiggyBac 987 

Polinton 22,029 

Sola 1,762 

LTR Retrotransposon 

BEL 3,127 

Copia 14,016 

Ginger 540 

Gypsy 14,225 

HERV 3,683 

Non-LTR 

retrotransposon 

CR1 4,543 

Crack 7,070 

Jockey 4,062 

Kiri/L2 1,632 

R1 2,727 

RTE 12,354 

SINE 971 

PLE Penelope 4,888 

 

https://www.ncbi.nlm.nih.gov/
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Table A6: Number of sites distributed in different genomic features across T. cristinae. Numbers 

regarding the genomic distribution (A) were estimated based on the reference genome. Number of 

CpG sites (B-D) were estimated for each individual, then averaged (95% CI in brackets). (B) Average 

number of CpG sites present in the datasets prior filtering for minimum coverage, and after removal 

of potential genetic polymorphisms. (C) Number of CpGs after filtering for minimum 5 reads and 

maximum of 60 reads covering each site. (D) Number of methylated CpGs at the covered datasets.  

Genomic 

feature 

(A) Genome (B) CpG raw data (C) Covered CpGs (D) Methylated CpGs 

exon 21,771,317 759,261 [8,129] 154,476 [10,869] 76,675 [6,258] 

intron 172,540,652 1,560,284 [31,695] 282,149 [15,830] 129,319 [8,000] 

upstream 19,315,665 246,537 [4,456] 49,149 [2,462] 11,333 [691] 

downstream 19,298,682 198,583 [3,879] 40,833 [1,866] 13,459 [797] 

Intergenic 720,405,671 9,951,002 [193,945] 1,666,514 [103,158] 164,880 [9,642] 

 

  



63 

Table A7: Enrichment in exons across all individuals (low5_high60) 

Ind. Number 

sites 

95% Quantiles Enrich. p-value 
 

17_0003 88285 [31730 - 32339] 2.76 <2.2e-16 *** 

17_0005 91358 [31009 - 31628] 2.92 <2.2e-16 *** 

17_0006 81109 [29675 - 30262] 2.71 <2.2e-16 *** 

17_0009 68859 [25968 - 26513] 2.62 <2.2e-16 *** 

17_0012 88447 [32712 - 33330] 2.68 <2.2e-16 *** 

17_0015 98252 [33509 - 34136] 2.91 <2.2e-16 *** 

17_0018 79613 [29739 - 30317] 2.65 <2.2e-16 *** 

17_0019 90496 [33967 - 34594] 2.64 <2.2e-16 *** 

17_0043 54873 [19282 - 19761] 2.81 <2.2e-16 *** 

17_0045 79072 [30109 - 30689] 2.6 <2.2e-16 *** 

17_0049 57223 [19851 - 20347] 2.85 <2.2e-16 *** 

17_0051 66187 [22622 - 23149] 2.89 <2.2e-16 *** 

17_0057 65663 [22488 - 23019] 2.89 <2.2e-16 *** 

17_0058 106481 [37739 - 38400] 2.8 <2.2e-16 *** 

17_0062 66796 [22751 - 23281] 2.9 <2.2e-16 *** 

17_0065 59590 [21085 - 21591] 2.79 <2.2e-16 *** 

17_0067 74702 [26621 - 27181] 2.78 <2.2e-16 *** 

17_0070 59531 [21083 - 21587] 2.79 <2.2e-16 *** 

17_0074 63333 [23268 - 23794] 2.69 <2.2e-16 *** 

17_0075 69341 [25020 - 25567] 2.74 <2.2e-16 *** 

17_0077 68155 [23965 - 24487] 2.81 <2.2e-16 *** 

17_0081 103284 [35813 - 36463] 2.86 <2.2e-16 *** 

17_0082 62736 [22564 - 23079] 2.75 <2.2e-16 *** 

17_0086 62310 [22426 - 22948] 2.75 <2.2e-16 *** 
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Table A8: Enrichment in introns across all individuals (low5_high60) 

Ind. Number 

sites 

95% Quantiles Enrich. p-value 
 

17_0003 137463 [55075 - 55850] 2.48 <2.2e-16 *** 

17_0005 145285 [54005 - 54782] 2.67 <2.2e-16 *** 

17_0006 132033 [53175 - 53930] 2.47 <2.2e-16 *** 

17_0009 115104 [47326 - 48043] 2.41 <2.2e-16 *** 

17_0012 150671 [61223 - 62042] 2.44 <2.2e-16 *** 

17_0015 166105 [61749 - 62581] 2.67 <2.2e-16 *** 

17_0018 153612 [62468 - 63287] 2.44 <2.2e-16 *** 

17_0019 140884 [57792 - 58574] 2.42 <2.2e-16 *** 

17_0043 102262 [37723 - 38380] 2.69 <2.2e-16 *** 

17_0045 128692 [53376 - 54126] 2.39 <2.2e-16 *** 

17_0049 102969 [37422 - 38075] 2.73 <2.2e-16 *** 

17_0051 117833 [42683 - 43384] 2.74 <2.2e-16 *** 

17_0057 115784 [42055 - 42736] 2.73 <2.2e-16 *** 

17_0058 153575 [59843 - 60662] 2.55 <2.2e-16 *** 

17_0062 135546 [49160 - 49900] 2.74 <2.2e-16 *** 

17_0065 103471 [38401 - 39065] 2.67 <2.2e-16 *** 

17_0067 130263 [49950 - 50710] 2.59 <2.2e-16 *** 

17_0070 117152 [43154 - 43854] 2.69 <2.2e-16 *** 

17_0074 114243 [44092 - 44779] 2.57 <2.2e-16 *** 

17_0075 121728 [46409 - 47135] 2.6 <2.2e-16 *** 

17_0077 110874 [42282 - 42970] 2.6 <2.2e-16 *** 

17_0081 155074 [58857 - 59671] 2.62 <2.2e-16 *** 

17_0082 116802 [44040 - 44741] 2.63 <2.2e-16 *** 

17_0086 98244 [37995 - 38648] 2.56 <2.2e-16 *** 
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Table A9: Enrichment in upstream region 1kb at 5’ from the gene across all individuals 

(low5_high60) 

Ind. Number 

sites 

95% Quantiles Enrich. p-value 
 

17_0003 14863 [10736 - 11101] 1.36 <2.2e-16 *** 

17_0005 15041 [10672 - 11045] 1.39 <2.2e-16 *** 

17_0006 14190 [10575 - 10938] 1.32 <2.2e-16 *** 

17_0009 12208 [9205 - 9540] 1.3 <2.2e-16 *** 

17_0012 15651 [11394 - 11768] 1.35 <2.2e-16 *** 

17_0015 16363 [11446 - 11828] 1.41 <2.2e-16 *** 

17_0018 15626 [11274 - 11639] 1.36 <2.2e-16 *** 

17_0019 15403 [11317 - 11687] 1.34 <2.2e-16 *** 

17_0043 10212 [7545 - 7858] 1.33 <2.2e-16 *** 

17_0045 13426 [10193 - 10544] 1.29 <2.2e-16 *** 

17_0049 10786 [7816 - 8127] 1.35 <2.2e-16 *** 

17_0051 12077 [8468 - 8797] 1.4 <2.2e-16 *** 

17_0057 11442 [8356 - 8686] 1.34 <2.2e-16 *** 

17_0058 16087 [11528 - 11902] 1.37 <2.2e-16 *** 

17_0062 13050 [9455 - 9797] 1.36 <2.2e-16 *** 

17_0065 10853 [8079 - 8403] 1.32 <2.2e-16 *** 

17_0067 13636 [9715 - 10068] 1.38 <2.2e-16 *** 

17_0070 11606 [8455 - 8786] 1.35 <2.2e-16 *** 

17_0074 11707 [8712 - 9046] 1.32 <2.2e-16 *** 

17_0075 12391 [9125 - 9465] 1.33 <2.2e-16 *** 

17_0077 11151 [8156 - 8480] 1.34 <2.2e-16 *** 

17_0081 15748 [11305 - 11674] 1.37 <2.2e-16 *** 

17_0082 11861 [8696 - 9024] 1.34 <2.2e-16 *** 

17_0086 10392 [7617 - 7933] 1.34 <2.2e-16 *** 
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Table A10: Enrichment in downstream region 1kb at 3’ from the gene across all individuals 

(low5_high60) 

Ind. Number 

sites 

95% Quantiles Enrich. p-value 
 

17_0003 16922 [9225 - 9560] 1.8 <2.2e-16 *** 

17_0005 17242 [8605 - 8937] 1.97 <2.2e-16 *** 

17_0006 16629 [9013 - 9348] 1.81 <2.2e-16 *** 

17_0009 14127 [7878 - 8192] 1.76 <2.2e-16 *** 

17_0012 18147 [9678 - 10024] 1.84 <2.2e-16 *** 

17_0015 19331 [9484 - 9837] 2.0 <2.2e-16 *** 

17_0018 18075 [9658 - 9999] 1.84 <2.2e-16 *** 

17_0019 17113 [9507 - 9846] 1.77 <2.2e-16 *** 

17_0043 11967 [6310 - 6596] 1.85 <2.2e-16 *** 

17_0045 15637 [8639 - 8961] 1.78 <2.2e-16 *** 

17_0049 12778 [6550 - 6841] 1.91 <2.2e-16 *** 

17_0051 13604 [6878 - 7179] 1.94 <2.2e-16 *** 

17_0057 13790 [6995 - 7295] 1.93 <2.2e-16 *** 

17_0058 18489 [9504 - 9850] 1.91 <2.2e-16 *** 

17_0062 15442 [7722 - 8034] 1.96 <2.2e-16 *** 

17_0065 12609 [6678 - 6968] 1.85 <2.2e-16 *** 

17_0067 15781 [8206 - 8526] 1.89 <2.2e-16 *** 

17_0070 13878 [7075 - 7373] 1.92 <2.2e-16 *** 

17_0074 13660 [7340 - 7644] 1.82 <2.2e-16 *** 

17_0075 14458 [7671 - 7983] 1.85 <2.2e-16 *** 

17_0077 13460 [7030 - 7324] 1.88 <2.2e-16 *** 

17_0081 18441 [9278 - 9623] 1.95 <2.2e-16 *** 

17_0082 13819 [7425 - 7730] 1.82 <2.2e-16 *** 

17_0086 11814 [6350 - 6630] 1.82 <2.2e-16 *** 
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Table A11: Unpaired t-test comparing methylation levels (%) of short genes (up to four exons, 

n=7,529) and long genes (with five or more exons, n=7,127), and between their first exons and 
introns. The choice of number of exons to classify short or long genes was arbitrary. 

 
mean t df p-value  

short long 

all gene 32.68 50.69 32.59 2442.30 < 2.2E-16 

all exons 33.98 54.67 32.23 1416.20 < 2.2E-16 

exon 1 22.07 40.37 20.37 292.38 < 2.2E-16 

exon2 31.08 51.24 21.04 370.99 < 2.2E-16 

Exon 3 38.05 57.76 18.44 361.46 < 2.2E-16 

Exon 4 44.88 57.28 7.69 283.66 2.4E-13 

all introns 30.87 45.84 15.95 937.29 < 2.2E-16 

Intron 1 22.96 35.56 10.20 377.88 < 2.2E-16 

Intron 2 30.96 47.06 10.39 374.78 < 2.2E-16 

Intron 3 39.47 48.83 4.41 265.97 1.5E-05 
 

exons introns 

   

Short genes 33.98 30.87 3.16 1046.30 1.6E-03 

Long genes 54.67 45.84 15.45 1920.00 < 2.2E-16 
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Table A12: List of Gene Ontology (GO) terms significantly enriched in genes that were methylated in 

all 24 samples (n =3,866) compared to the remaining genes (n=4,606). Information about 8,472 

genes were present in all 24 samples and presented GO annotation. Fisher’s exact test was used with 

the weight algorithm, which accounts for GO topology using R package TopGO. The 30 most 

significant terms were represented here.  

GO term Category Description 
Fold 

enrich. 
p-value 

GO:0043227 CC membrane-bounded organelle 1.7 < 1e-30 

GO:0005622 CC intracellular 1.6 < 1e-30 

GO:0010467 BP gene expression 1.6 2.0e-29 

GO:0044267 BP cellular protein metabolic process 1.6 5.8e-26 

GO:0035639 MF purine ribonucleoside triphosphate binding 1.4 1.3e-23 

GO:0032555 MF purine ribonucleotide binding 1.4 1.8e-23 

GO:0032991 CC protein-containing complex 1.7 6.2e-23 

GO:0005488 MF binding 1.1 3.0e-18 

GO:0016070 BP RNA metabolic process 1.6 3.4e-16 

GO:0043043 BP peptide biosynthetic process 1.9 1.1e-12 

GO:0003723 MF RNA binding 1.8 5.9e-11 

GO:0006886 BP intracellular protein transport 2.0 1.0e-09 

GO:0016192 BP vesicle-mediated transport 1.9 4.0e-08 

GO:0006457 BP protein folding 2.1 9.2e-07 

GO:0008026 MF ATP-dependent helicase activity 2.2 4.0e-06 

GO:0008168 MF methyltransferase activity 1.9 8.0e-06 

GO:0097659 BP nucleic acid-templated transcription 1.4 1.6e-05 

GO:0022613 BP ribonucleoprotein complex biogenesis 2.1 1.4e-04 

GO:0016310 BP phosphorylation 1.4 1.5e-04 

GO:0005694 CC chromosome 1.9 1.6e-04 

GO:0004842 MF ubiquitin-protein transferase activity 1.8 2.8e-04 

GO:0140101 MF catalytic activity, acting on a tRNA 1.7 3.3e-04 

GO:0016301 MF kinase activity 1.3 4.1e-04 

GO:0003735 MF structural constituent of ribosome 1.7 6.6e-04 

GO:0000287 MF magnesium ion binding 1.9 7.6e-04 

GO:0032259 BP methylation 2.2 8.3e-04 

GO:0005543 MF phospholipid binding 1.8 4.3e-03 

GO:0005815 CC microtubule organizing center 1.9 8.3e-03 
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Table A13: List of Gene Ontology (GO) terms significantly enriched in genes that consistently non-

methylated in all 24 samples (n=3,176) compared to the remaining genes (n=5,296). Information 

about 8,472 genes were present in all 24 samples and presented GO annotation. Fisher’s exact test 

was used with the weight algorithm, which accounts for GO topology using R package TopGO. The 30 

most significant terms were represented here. ‘BP’ represents biological process, ‘CC’ category 

represents cellular component, and ‘MF’ represents molecular function.  

GO term Category Description 
Fold 
enrich. 

p-value 

GO:0016020 CC membrane 1.4 < 1e-30 

GO:0004930 MF G protein-coupled receptor activity 2.4 2.1e-25 

GO:0031224 CC intrinsic component of membrane 1.4 1.3e-23 

GO:0007186 BP G protein-coupled receptor signaling 
pathway 

2.1 2.2e-19 

GO:0004252 MF serine-type endopeptidase activity 2.0 1.8e-13 

GO:0015074 BP DNA integration 1.9 1.8e-13 

GO:0055085 BP transmembrane transport 1.5 2.5e-12 

GO:0008408 MF 3'-5' exonuclease activity 2.3 1.6e-11 

GO:0005576 CC extracellular region 1.8 1.2e-09 

GO:0016705 MF oxidoreductase activity 2.1 2.8e-09 

GO:0003887 MF DNA-directed DNA polymerase activity 2.1 1.1e-08 

GO:0042302 MF structural constituent of cuticle 2.6 1.8e-08 

GO:0046906 MF tetrapyrrole binding 1.9 3.2e-08 

GO:0005506 MF iron ion binding 2.0 1.5e-07 

GO:0005549 MF odorant binding 2.5 1.7e-06 

GO:0004970 MF ionotropic glutamate receptor activity 2.0 2.6e-06 

GO:0022843 MF voltage-gated cation channel activity 2.6 3.1e-06 

GO:0006508 BP proteolysis 1.3 6.8e-06 

GO:0050877 BP nervous system process 2.3 1.6e-05 

GO:0008061 MF chitin binding 2.2 2.0e-05 

GO:0005102 MF signaling receptor binding 2.1 4.1e-05 

GO:0006030 BP chitin metabolic process 2.0 6.5e-05 

GO:0005230 MF extracellular ligand-gated ion channel a... 2.0 7.6e-05 

GO:0030001 BP metal ion transport 1.7 2.7e-04 

GO:0005272 MF sodium channel activity 2.2 4.4e-04 

GO:0030594 MF neurotransmitter receptor activity 2.1 5.1e-04 

GO:0005215 MF transporter activity 1.6 6.5e-04 

GO:0015672 BP monovalent inorganic cation transport 1.6 9.3e-04 

GO:0016917 MF GABA receptor activity 2.5 1.2e-03 

GO:0004984 MF olfactory receptor activity 2.5 1.2e-03 
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Table A14: Numbers and methylation enrichments in each transposable element family in intergenic 

regions using at least 12 samples Enrichment was estimated comparing the number of methylated 

CpGs compared to the expected null distribution, which was estimated based on randomizations 

(section 2.3.5).  P-values were calculated using Fisher’s exact test.   

TE class TE 

family 

CpG 

sites 

Mean mCpG 

sites 

95%Quantiles 

(null dist.) 

Enrich. p-value  

DNA Transposon 

Academ 1475 
17.8% 

[0.7%]  
385 [165–215] 2.0 <2.2e-16 *** 

Chapaev 257 
25.6% 

[1.9%] 
79 [23–43] 2.4 4.2e-14 *** 

EnSpm 2275 
13.1% 

[0.4%] 
488 [267–329] 1.6 <2.2e-16 *** 

Harbinger 1549 
13.2% 

[0.6%] 
279 [174–226] 1.4 6.2e-09 *** 

HAT 13455 
15.2% 

[0.2%] 
3185 [1676–1827] 1.8 <2.2e-16 *** 

Helitron 3269 
7.4% 

[0.3%] 
265 [385–460] 0.6 1.7e-18 *** 

Mariner 4505 
29.3% 

[0.5%] 
1768 [546–634] 3 <2.2e-16 *** 

MuDr 582 
4.1% 

[0.5%] 
25 [59–90] 0.3 2.4e-12 *** 

PiggyBac 155 
35.1% 

[2.6%] 
62 [12–28] 3.1 2.1e-17 *** 

Polinton 25487 
1.3% 

[0.0%] 
281 [3399–3612] 0.1 <2.2e-16 *** 

Sola 258 
39.0% 

[2.1%] 
122 [23–44] 3.7 <2.2e-16 *** 

LTR 

Retrotransposon 

BEL 3487 
11.3% 

[0.3%] 
661 [434–512] 1.4 3.0e-19 *** 

Copia 5585 
25.5% 

[0.4%] 
1945 [675–774] 2.7 <2.2e-16 *** 

Gypsy 12976 
16.7% 

[0.2%] 
3519 [1639–1790] 2.1 <2.2e-16 *** 

HERV 420 
4.0% 

[0.7%] 
24 [42–68] 0.4 7.0e-07 *** 

Non-LTR 

Retrotransposon 

CR1 313 
21.5% 

[1.4%] 
106 [29–52] 2.6 1.6e-21 *** 

Crack 537 
15.2% 

[1.1%] 
130 [55–86] 1.9 1.3e-12 *** 

Jockey 7659 
3.2% 

[0.1%] 
207 [952–1066] 0.2 <2.2e-16 *** 

R1 5548 
10.4% 

[0.3%] 
847 [666–765] 1.2 1.1e-07 *** 

RTE 5843 
14.8% 

[0.4%] 
1036 [705–805] 1.4 <2.2e-16 *** 

PLE Penelope 885 
45.5% 

[1.1%] 
528 [94–134] 4.7 <2.2e-16 *** 
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Table A15: Numbers and methylation enrichments in each transposable element family within 

genes using at least 12 samples Enrichment was estimated comparing the number of methylated 

CpGs compared to the expected null distribution which was estimated based on randomizations 

(section 2.3.5). P-values were calculated using Fisher’s exact test.   

TE class 
TE 

family 

CpG 

sites 
Mean 

mCpG 

sites 

95%Quantiles 

(null dist.) 
Enrich. p-value  

DNA Transposon 

Academ 160 
35.2% 

[2.7%] 
75 [68–93] 0.9 0.21  

Chapaev 36 
51.5% 

[5.2%] 
19 [11–23] 1.1 0.31  

EnSpm 480 
29.5% 

[1.3%] 
189 [208–250] 0.8 1.5e-04 *** 

Harbinger 573 
26.1% 

[1.3%] 
195 [249–296] 0.7 3.2e-11 *** 

HAT 2,959 
38.7% 

[0.6%] 
1465 [1,360–1,468] 1.0 0.03 * 

Helitron 1,186 
13.2% 

[0.7%] 
179 [544–612] 0.3 <2.2e-16 *** 

Mariner 2,235 
49.9% 

[0.6%] 
1458 [1,022–1,112] 1.4 <2.2e-16 *** 

MuDr 151 
20.9% 

[2.6%] 
34 [59–83] 0.5 3.0e-10 *** 

PiggyBac 92 
42.3% 

[3.1%] 
60 [34–53] 1.4 3.8e-04 *** 

Polinton 4,873 
4.9% 

[0.2%] 
256 [2,311–2,445] 0.1 <2.2e-16 *** 

Sola 110 
48.6% 

[2.9%] 
80 [42–63] 1.5 4.9e-08 *** 

LTR 

Retrotransposon 

BEL 1,657 
12.4% 

[0.5%] 
379 [777–859] 0.5 <2.2e-16 *** 

Copia 3,686 
29.7% 

[0.5%] 
1585 [1,721–1,839] 0.9 7.5e-11 *** 

Gypsy 4,119 
23.6% 

[0.4%] 
1426 [1,924–2,051] 0.7 <2.2e-16 *** 

HERV 66 
31.6% 

[4.5%] 
19 [23–39] 0.6 1.7e-03 ** 

Non-LTR 

Retrotransposon 

CR1 31 
33.4% 

[3.8%] 
31 [24–41] 1.0 0.40 * 

Crack 25 
38.5% 

[4.2%] 
25 [23–39] 0.8 0.08 *** 

Jockey 148 
5.1% 

[0.3%] 
148 [1,039–1,132] 0.1 <2.2e-16 *** 

R1 373 
14.3% 

[0.6%] 
373 [741–819] 0.5 <2.2e-16 * 

RTE 756 
38.1% 

[0.9%] 
756 [762–843] 0.9 0.01 *** 

PLE Penelope 414 
65.3% 

[1.1%] 
414 [217–261] 1.7 <2.2e-16  

 

  



72 

 

Figure A1: Methylation patterns in CpG context in Nasonia vitripensis (Hymenoptera), used to 

illustrate typical patterns in Holometabola.  (A) Methylation levels at different genomic features, 

at 1 kbp upstream, 1 kbp UTR, first 2 kbp coding regions, 1 kbp 3’ UTR and 1 kbp downstream 

regions for transposable element genes (TE genes) and non-TE genes. Methylation levels are 

enhanced at 5’ side of the coding regions. (B) Averaged methylation levels represented at first four 

exons and introns. Methylation is mainly targeted at exons, while introns are not considerably 

methylated. Figure taken from Wang et al. (2013). 
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Figure A2: Methylation patterns in CpG context in Zootermopsis nevadensis (Isoptera), used to 

illustrate typical patterns in “Hemimetabola”. (A) Average fractional methylation (i.e. proportion 

of methylated cytosines) at multi-exon genes, at 1.5 kbp upstream, exons and introns, and 1.5 kbp 

downstream. Methylation levels tend to increase from 5’→ 3’, with less accentuated difference 

between exons and introns. A similar pattern is found in T. cristinae. (B) Comparative fractional 

methylation within the first and last 4 kb of gene bodies (exons + introns): Z. nevadensis (black), in 

C. floridanus (Hymenoptera; blue), a non-insect invertebrate (Ciona intestinalis; purple), and 

mammal (Homo sapiens; grey). Methylation levels in both Z. nevadensis and in T. cristinae are more 

similar to the patterns in these Chordata organisms than to Holometabola insects.  
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Chapter 3 

Patterns and drivers of DNA methylation variation in natural 

populations of Timema cristinae stick insects 

 

3.1. Summary 

Epigenetic factors can contribute to phenotypic diversity. For instance, DNA methylation 

can influence gene regulation, and thus phenotypic plasticity. However, little is yet known 

about how and why methylation varies in wild populations. Here, I investigated whole-

genome methylation profiles in natural populations of the Timema cristinae stick insects, 

depicting the factors shaping genome-wide methylation patterns. I tested the hypotheses 

that natural methylation variation is structured in geographical space and correlated with 

environmental factors such as host-plant and climate. We further tested for association 

between genetic and methylation variation. Using data obtained from whole-genome 

bisulfite sequencing, I found that methylation variation in CpG context tends to cluster 

following the geographical distribution of populations. Multivariate analysis revealed this 

pattern is better explained by genetic variation than by geographical distance only. 

Environmental factors were not significantly correlated with genome-wide methylation 

patterns. Binomial mixed models revealed moderate heritability in methylation status (0.67 

[0.15 – 1.0 95%CI] across all sites), suggesting variation can accumulate given limited 

dispersal in space.   
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3.2. Introduction 

Organisms often vary phenotypically within and between populations. These 

differences might result from genetic variation, shaped by the balance between natural 

selection and random neutral processes. In addition, the phenotype might arise as a direct 

interaction with the surrounding conditions, varying according to either an internal or 

external environmental signal (West–Eberhard, 2003). Together, the individuals’ ability to 

tune in to their environment and genetic variation allow populations to persist and evolve, 

a process that can happen very rapidly (Reznick & Ghalambor, 2001; Prentis et al., 2008; 

Scoville & Pfrender, 2010). Yet there are many gaps in the understanding of how the 

environment directly influences the phenotype, so that it is still debatable how organisms 

can adjust to environmental changes (Forsman, 2015; Foust et al., 2016). Currently, there is 

mounting evidence that phenotypic diversity can also be caused by variation in epigenetic 

modifications, which could play a role in the response to complex environments (Schlichting 

and Smith, 2002; Hu and Barrett, 2017; Richards et al., 2017). 

Epigenetic mechanisms describe molecular processes that can affect gene expression 

and its function without a change in the underlying DNA sequence. These processes can 

involve: methylation of cytosine residues in the DNA, remodelling of chromatin structure 

through histone modifications, and  gene regulation mediated by small RNAs (Bird, 2007; 

Law and Jacobsen, 2010). Among these epigenetic mechanisms, DNA methylation is by far 

the most studied one. DNA methylation describes the reversible addition of a methyl group 

when a cytosine is followed by a guanine residue in the genome (i.e. CpG sites). The 

symmetric conformation of CpG dinucleotides allows the methyltransferase to transmit the 

epigenetic information to newly generated DNA strands during mitosis (Goll and Bestor, 

2005; Richards, 2006). DNA methylation is present in most major eukaryotic groups (Feng 

et al., 2010; Zemach et al., 2010), and it is known to play roles in: modulating gene 

expression; genomic imprinting; alternative splicing; and maintaining genome integrity by 

supressing transposable elements’ activity (Law and Jacobsen, 2010; Schübeler, 2015). Not 
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surprisingly, these epigenetic mechanisms are intimately linked with cell differentiation 

during embryogenesis, and they may determine which genes will be transcriptionally active 

in different tissues (Reik, 2007). For this to occur, extensive demethylation happens in the 

genome between generations to assure the pluripotency of the embryo and its correct 

development in plants and mammals (Reik, 2007; Crevillén et al., 2014). This is why DNA 

methylation variation does not tend to be meiotically transmitted, although exceptions to 

this rule are being discovered each day (Verhoeven et al., 2010; Jiang et al., 2013; Wang et 

al., 2016; Richards et al., 2017).  

The role that DNA methylation plays at the genomic and cellular levels can have an 

effect on the phenotype, and ultimately influence evolutionary processes. One of the most 

celebrated examples is the toadflax (Linaria vulgaris). Its natural floral polymorphisms are 

associated with methylation changes of the cis-regulatory region of the gene responsible for 

the dorsal-ventral asymmetry (Lcyc; Cubas et al. 1999). This epigenetic allele (i.e. epiallele) 

is heritably stable and co-segregates with the phenotype. Some other examples have been 

described, although only a few have been shown to be stably transmitted over generations 

independently from the genetic background (see Manning et al., 2006; Paszkowski and 

Grossniklaus, 2011).  

Changes in DNA methylation status may occur in response to environmental triggers. 

Internal cues, such as hormones, can act to affect short and long-term methylation 

modifications (Stevenson, 2017).  For example, oestrogen is known to regulate the de novo 

DNA methyltransferase (DNMT3) expression and to affect several tissues during cell 

differentiation (e.g. regulating sex-specific gene isoform expression in mice; Nugent et al., 

2015). In addition, DNA methylation may respond to external environmental triggers 

(Johnson and Tricker, 2010; Feil and Fraga, 2012). Change in diet affects coat colour in mice, 

a process related to DNA methylation modifications on the Agouti gene (Morgan et al., 1999; 

Waterland and Jirtle, 2003). In honeybees, DNA methylation changes in response to 

differential feeding with royal jelly, and ultimately influences the development of larva into 
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queens or workers (Kucharski et al., 2008; Lyko et al., 2010; Foret et al., 2012). DNA 

methylation’s property to be environmentally-sensitive along with its role in many 

biological processes suggest this epigenetic mechanism could be involved in phenotypic 

plasticity, acting as a mediator between the external environment and genome regulation 

(Bossdorf et al., 2008; Verhoeven et al., 2016). Although knowledge about DNA 

methylation’s role in molecular pathways and in cell signalling is rapidly improving, the 

ecological and evolutionary consequences of epigenetic mechanisms remain largely 

unknown.  

To obtain a comprehensive understanding of the role DNA methylation variation 

might play in facilitating phenotypic plasticity and evolution, it is essential to place these 

processes in an ecological perspective and study their patterns, drivers and consequences 

in natural populations (Bossdorf et al., 2008; Richards, 2008; Hu and Barrett, 2017; 

Richards et al., 2017). Usually, the significance of DNA methylation is evaluated using 

genetically identical organisms (e.g. inbred lines) and their response to stress in laboratory 

settings (e.g. Johannes et al., 2009; Verhoeven et al., 2010). Although these studies are 

valuable to unveil the mechanisms underlying DNA methylation changes and the molecular 

pathways leading to them, an imperative next step is to explore these processes in natural 

conditions, in the complex environments where organisms live and evolve (Richards 2008, 

2011; Richards et al. 2010; Herrera et al. 2014). By studying realistic scenarios with 

genetically and environmentally heterogeneous populations, one can investigate the 

intertwined factors acting simultaneously on natural methylation variation, which are 

possibly missed in laboratory experiments (Herrera and Bazaga, 2011; Ledón-Rettig, 2013; 

Herrera et al., 2014).  

To begin with, it is important to investigate the magnitude and structure of 

methylation variation in different populations in order to depict its patterns in nature. Then, 

one can estimate the origin and the forces driving this variation (Bossdorf et al., 2008). 

Namely, DNA methylation variation can result from: (1) stochastic changes, (2) 
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environmental effect, and (3) genetic control (Fig. 2 in Chapter 1); and possibly be further 

shaped by forces of natural selection and drift (Bossdor et al., 2008; Richards et al., 2017). 

Stochastic changes in the methylation status often occur due to a failure of enzymes called 

methyltransferases to faithfully maintain genome-wide methylation patterns (Law and 

Jacobsen, 2010). As a consequence, variation can arise from spontaneous epimutations, 

which tend to happen at a much higher rate compared to genetic mutations (Becker et al., 

2011; Schmitz et al., 2011; van der Graaf et al., 2015). In addition, as outlined above, DNA 

methylation can respond to environmental triggers. As such, methylation variation could 

emerge from the interaction with the environment, which ultimately affect the phenotype 

(Johnson and Tricker, 2010; Herrera et al., 2012; Zhang et al., 2013; Duncan et al., 2014). 

However, it is still controversial whether the environment can promote heritable 

methylation modifications, and it if can, to what extent it is transmitted (i.e. inheritance can 

be restricted to only a few subsequent generations; Richards et al., 2017). Lastly, 

methylation variation can arise from genetic control, which can act via cis or trans 

regulation (Taudt et al., 2016). This genetic control over methylation variation has been 

demonstrated in Arabidopsis thaliana. Not only the genetic background could partially 

explain DNA methylation variation, but also where changes specific in genetic sequence are 

related to changes in methylation (Becker et al., 2011; Dubin et al., 2015). These findings 

fuelled the debate about the dependency of DNA methylation variation on the underlying 

genetic variability, on whether the epigenetic variation can exist and perpetuate in the 

absence of genetic control (Richards, 2006; Dubin et al., 2015).  

To date, it has been shown that high levels of methylation variation exist in the wild, 

often exceeding estimates of genetic variation (Platt et al., 2015; Groot et al., 2018), and that 

epigenetic variation can be structured in space (Herrera and Bazaga, 2010; Herrera et al., 

2016; Smith et al., 2016). Moreover, some studies have revealed significant correlations 

between DNA methylation variation and phenotypic diversity in different habitats (Lira-

Medeiros et al., 2010; Herrera and Bazaga, 2011; Foust et al., 2016), even in the absence of 



80 

genetic variability (Richards et al., 2012; Liebl et al., 2013; Medrano et al., 2014). Finally, 

there is evidence DNA methylation differentiation might persist after gametogenesis 

(Herrera et al., 2013; Hagmann et al., 2015; van der Graaf et al., 2015), and that changes 

arisen from the interaction with the environment might be inherited at least to the 

subsequent generation (Johannes et al., 2009; Verhoeven et al., 2010; Preite et al., 2018). 

Yet the great majority of studies have been performed in plant populations, with very few 

examples in vertebrates  (e.g. Liebl et al., 2013; Skinner et al., 2014; Lea et al., 2016; Carja et 

al., 2017) and even fewer in invertebrates (e.g. Kille et al., 2013; Ardura et al., 2017). Surveys 

in non-model organisms have been reliant on techniques like amplified fragment length 

polymorphism (AFLPs) and its methylation sensitive version (methylation sensitive 

amplified polymorphisms; MSAPs) to capture genetic and epigenetic variation in the wild. 

These methods screen anonymous loci, and thus cannot specify the genomic region tagged 

by DNA methylation. Hence, they offer limited information content other than general 

variation defined by methylated or non-methylated state (Schrey et al., 2013; Trucchi et al., 

2016). 

A new cost-effective method is sodium bisulfite sequencing (BS-seq), which allows 

the estimation of genome-wide methylation at base pair resolution (Cokus et al., 2008). This 

is a promising technique for ecological and evolutionary studies of DNA methylation, as it 

provides a much higher resolution in the investigation of methylation variation and a 

genomic context behind it (e.g. Becker et al., 2011; Dubin et al., 2015; Platt et al., 2015; Lea 

et al., 2017). In addition to this technique, research in DNA methylation can make use of 

some methodological approaches developed in population genetics to investigate natural 

variation. In fact, the questions raised in the process of understanding the magnitude, 

patterns and implications of methylation variation resemble the ones addressed in 

population genetics (Richards, 2006; Bossdorf et al., 2008).  Furthermore, genetic models 

can be used as a proxy while studying methylation variation, in order to capture the aspects 
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that are inherent only to epigenetics (e.g. being capable of changing with environmental 

change and the reset of methylation marks between generations;  Herrera et al., 2016). 

In this context, insects are a promising group to study natural methylation variation. 

This clade contains well-known examples of plasticity, including caste differentiation and 

seasonal polyphenisms (Simpson et al., 2011). Studying insects and their ability to encode 

multiple and diverse phenotypes might help to understand their great ecological success 

(Moczek, 2010; Lo et al., 2018). Although DNA methylation is conserved among eukaryotes, 

its genomic patterns vary across taxa (Feng et al., 2010; Zemach et al., 2010). This means 

some of the conclusions raised in one taxonomic group cannot necessarily be extrapolated 

to others (Lea et al., 2017). In insects, methylation occurs at much lower levels than in 

vertebrates; it is sparsely distributed across the genome and mainly targeting the gene 

bodies (Suzuki and Bird, 2008). Although DNA methylation functions are not well 

understood in insects, they are possibly different from the roles played in vertebrates, and 

perhaps even more from the ones played in plants (Chapter 2). As such, studying natural 

DNA methylation variation in this group of organisms could bring novel insights into the 

ecological and evolutionary importance of this epigenetic mechanism. 

This study used Timema cristinae (Phasmatodea: Timematodea; Vickery, 1993), a 

species of stick insect native to South California, to address some of these topics. Extensive 

population genetics work has been performed in this species (e.g. Sandoval, 1994b; Nosil 

and Crespi, 2006; Nosil et al;, 2008; Gompert et al., 2014), which provides a good starting 

point to investigate similar questions using DNA methylation instead of genetic variation.  

In particular, this work aimed to investigate how the T. cristinae DNA methylation profile 

varies across different populations, and which mechanisms are underlying its diversity. A 

population survey was conducted to test the hypothesis that (1) methylation variation is 

structured in geographical space. This led to the non-mutually exclusive predictions that (a) 

methylation variation is correlated with genetic variation, and that (b) it is associated with 

the environment. Finally, this study also tested the hypothesis that (2) there is some 
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heritability of methylation levels. In other words, the more closely related the individuals 

are, the more similar the methylation patterns will tend to be. To this end, a multifaceted 

dataset on T. cristinae natural populations was generated, including information about: 

methylation variation (using BS-seq); genetic variation (using newly acquired genetic data 

and reanalysis of some previously published data); environmental variables (e.g. abundance 

of host plants, elevation, and climatic variables); and geographical distance. This study 

revealed that natural DNA methylation variation tended to group in geographical space, and 

that the differentiation between populations increased with spatial distance. Underlying 

this pattern was the considerable correlation between DNA methylation and genetic 

variation, which was stronger than the association with geographical distance or with 

environmental variables. Binomial mixed models revealed a considerable relatedness of 

methylation patterns, mirroring the matrix of pairwise kinship estimated using genetic 

variation (i.e. kinship matrix).  This result suggests there is some heritability of methylation 

variation, although the drivers could not be identified. Taken together, the findings from 

this study show the general patterns in natural methylation variation are strongly 

associated with its genetic background.  

 

3.3. Materials and Methods 

3.3.1. Study system 

T. cristinae are plant-feeding and wingless stick insects native to the chaparral in the 

Santa Ynez Mountains, in Southern California. These insects rely on crypsis to escape 

detection by visual predators, and have evolved body colouration that matches the leaves 

and stems of the host plants they rest on (Sandoval, 1994a). Although T. cristinae can feed 

on a variety of plants, it is primarily found on two host species: Ceanothus spinosus 

(Rhamnaceae) and Adenostoma fasciculatum (Rosaceae). These two species of plant differ 

considerably in their leaf morphology, with Ceanothus plants presenting broad flat leaves, 

and Adenostoma plants exhibiting thin needle-like leaves (Fig. 1; Fig. 3 in Chapter 1). The 
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ecotypes in T. cristinae are characterized by the host plants they are found on, which 

determines the ‘Ceanothus ecotype’ and the ‘Adenostoma ecotype’ (Nosil et al., 2006; Nosil, 

2007). The most obvious difference between the ecotypes is the frequency of the typical T. 

cristinae morphs, characterized by presence or absence of a dorsal white stripe in their 

green body (respectively the ‘striped’ and ‘green’ morphs; Fig. 3 in Chapter 1). The striped 

morph is more frequently found in Adenostoma, and the green morph in Ceanothus plants 

(Sandoval, 1994a). Previous experiments showed the striped morph is more cryptic and 

suffers less predation on the needle-like leaves of Adenostoma, whereas the green unstriped 

morph is more cryptic and suffers less predation on the broad leaves of Ceanothus plants 

(Sandoval, 1994a; Nosil and Crespi, 2006). That is, divergent selection promoted by 

differential predation between the two host species has contributed to ecological isolation 

between the two ecotypes (Sandoval, 1994a; Nosil and Crespi, 2006). The third morph has 

a dark body colour (i.e. melanistic) and is often found on both host plant species, but in much 

rarer frequencies (Sandoval 1994a,b). The morphs segregate as a polymorphism controlled 

by a major locus, which means the frequencies of green, striped and melanistic alleles vary 

between the ecotypes (Comeault et al., 2015; Lindtke et al., 2017). Besides colour and 

pattern, these two ecotypes differ in a suite of other traits, including size, host plant 

preference, mate choice, and cuticular hydrocarbons (CHCs), molecules with roles in anti-

desiccation and in insect communication (Nosil et al., 2006; Nosil, 2007; Chung et al., 2014; 

Riesch et al., 2017). 

The landscape where T. cristinae is found is characterized by a mosaic distribution of 

patches, which vary in size and abundance of the two host plant species. In this context, gene 

flow between patches with different selection regimes can occur despite the effects of 

maladaptation, creating a balance between natural selection and gene flow that affects the 

allele frequencies in T. crisitinae (Sandoval, 1994b). In addition, the limited dispersal 

between non-adjacent patches (i.e. allopatric populations) contributes to low gene flow and 

to the accumulation of genetic differentiation by neutral processes, resulting in patterns of 
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isolation by distance (Sandoval, 1994b). This clear understanding about population 

genetics in T. cristinae in terms of the interplay between genotype, phenotype and the 

surrounding environment (Nosil and Crespi, 2006; Gompert, Comeault, et al., 2014; 

Comeault et al., 2015) provides a good opportunity to test the key questions raised in this 

study.  

 

3.3.2. Sampling design 

A sampling strategy was designed to select T. cristinae populations with different 

combinations of factors that could be shaping methylation variation (Bossdorf et al., 2008; 

Richards et al., 2017). The aim of this sampling design was not only to capture substantial 

representation of natural DNA methylation variation, but also to disentangle some of the co-

varying factors. Here,  a ‘population’ is defined as all insects collected within a homogeneous 

patch of a single host species (i.e. a locality), as has been done in previous Timema studies 

(e.g. Sandoval 1994a,b; Nosil et al., 2002; Sandoval and Nosil, 2005). This work focused on 

 

Figure 1: Map detailing geographic position of T. cristinae populations included in the sampling 

plan. (A) Location in Southern California where the species is found (Santa Ynez Mountains, Los 

Padres National Forest). (B) Representation of the two main host plants where T. cristinae is found, 

which characterizes the two ecotypes: ‘Adenostoma ecotype’ and ‘Ceanothus ecotype’ (Nosil et al., 

2006). (C) Selected populations for the survey. This figure is the same as Fig. 4 in Chapter 1. 
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the following key factors as criteria in the selection of populations: abundance of host plants, 

elevation, climatic variables and geographical distance between populations. 

 

3.3.2.1. Abundance of host plants 

To be able to test the association between T. cristinae ecotypes and methylation 

variation, I selected localities with different abundances of the two host plant species (i.e. 

Adenostoma and Ceanothus). T. cristinae distribution follows an altitudinal cline, where high 

elevations are dominated by Adenostoma plants while lower elevations are dominated by 

Ceanothus plants. As such, when selecting populations, I considered not only the host plant 

species at the locality, but also its surroundings: whether the landscape was dominated by 

Adenostoma, Ceanothus or if it comprised mixed patches of both plant species (Fig. 2). To 

obtain this information about abundance of host plants at landscape level, I compared the 

relative numbers of the two most frequent T. cristinae morphs (i.e. striped and green). This 

was based on the fact that in areas where Adenostoma is dominant there is a higher 

frequency of striped individuals as result of local adaptation, whereas more individuals with 

the green morph are expected in areas dominated by Ceanothus (Nosil, 2007; Nosil et al., 

2008). Thus, even though a locality is characterized by Adenostoma plants, the green allele 

will probably be more prevalent at a larger scale if the surroundings are dominated by 

Ceanothus patches. Constant migration from the surroundings and gene flow most likely 

result in a higher frequency of green morphs compared to striped ones in such Adenostoma 

populations (Fig. 2). The database containing information about T. cristinae sampling 

records from previous years (Nosil et al., 2018) was accessed to obtain the relative morph 

frequencies for each population. The percentage of striped individuals (the ‘% striped’ 

variable hereafter) was calculated in each population by dividing the total number of striped 

specimens over the sum of striped plus green individuals, then the mean was generated 

over the years of sampling. Populations with different levels of ‘% striped’ were chosen from 
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both Adenostoma and Ceanothus patches. This design aimed to disentangle effects that are 

associated with host-plant adaptation from effects originating from migration and gene 

flow. 

 

Figure 2: Distribution of host plants and morph frequency along the altitudinal cline in Santa Ynez 

Mountains. Patches of Adenostoma are represented in orange and of Ceanothus are represented in 

blue. There is a growing number of Adenostoma patches with increasing elevation, followed by a 

higher percentage of striped morphs. Thus, the percentage of striped morph in a population tends 

to represent the surrounding environment in abundance of host plants. Populations of Adenostoma 

and Ceanothus ecotypes were selected from different points along this cline for this study. Figure 

made by Patrik Nosil. 

 

3.3.2.2. Elevation and climatic variables 

Based on the evidence in the literature of an association between climate and/or 

elevation and differential DNA methylation status (e.g. Richards et al., 2012; Nicotra et al., 

2015), I selected localities that differed in these two environmental factors. Climate 

information was obtained using the WorldClim database at resolution of 1km2 for each 

locality (http://www.bioclim.org). Because the bioclimatic variables were highly 

correlated, a principal component analysis (PCA) was performed to summarise the total 

variance between the different localities and reveal the strongest patterns (following 
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Comeault et al., 2015) using R (3.3.1; R Core Team). All recorded T. cristinae localities (Nosil 

et al., 2018) were used to obtain principal components that represented the general 

information across the species distribution. Only the first two principal components were 

retained as they together explained around 92% of the variance (PC1=66.4% and 

PC2=25.5%). PC1 represents annual temperatures and the temperatures in the coldest and 

wettest periods of the year. This axis also represents how constant the temperatures are 

across different seasons (e.g. isothermality, minimum temperature in annual range, 

seasonality), and amount plus seasonality of precipitation. Meanwhile, PC2 represents 

temperatures in the warmest month, and in the warmest and driest quarters (Fig. 3; Table 

1). Elevation was estimated based on the GPS coordinates from the localities using QGIS 

2.16.2 (QGIS Development Team 2016).  

 
Figure 3: First two principal components on bioclimatic variables (bioclim) represented only on 

the T. cristinae localities used in this study. PCA was performed using all recorded sites (Nosil et 

al., 2018). Both PC1 and PC2 are strongly correlated with elevation. Correlation between each 

variable and the main two PCs can be found on Table B1.  

A strong correlation between the bioclimatic variables and elevation was found at the 

candidate localities (PC1 and elevation: adjusted r2=0.97, P < 2.2e-16; PC2 and elevation: 
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adjusted r2=-0.84, P < 2.2e-16, linear models).  Thus, elevation was not used in the 

subsequent analyses, and the first two PCs from bioclimatic variables were used instead. 

 

3.3.2.3. Geographical distance 

The localities were also chosen based on the geographic distance between them. 

Populations tend to be more genetically differentiated the greater the geographic distance 

between them and the lower the species’ dispersal capacity (Jenkins et al., 2010; Shafer & 

Wolf, 2013). That is, limited gene exchange between populations allows them to accumulate 

differences arising by drift (Sexton et al., 2014). This rationale applies to genetic differences 

between populations, because genetic variation is inherited, and so differences accumulate 

over time particularly between populations with limited gene flow/migration. However, the 

same logic is challenged when studying DNA methylation variation, given methylation 

marks are expected to be reset between generations or are imperfectly transmitted 

(Richards, 2006; Herrera et al., 2014; van der Graaf et al., 2015). In this study, I inquired 

whether a pattern of isolation by distance, similar to that seen for genetic variation, was 

present in T. cristinae methylation variation, and further investigated the mechanisms that 

could explain such a pattern. For instance, if methylation variation does not follow an 

isolation by distance pattern, one can assume there is little heritability of this epigenetic 

mechanism. On the other hand, if it does, that will point to some heritability of methylation 

marks (i.e. either via epigenetic inheritance, or as a result of genetic control; Herrera et al., 

2016). To investigate this, I selected localities that ensured there was variation in 

geographical distance in the dataset. Distance between localities was estimated based on 

the GPS coordinates from candidate localities using QGIS 2.16.2 (QGIS Development Team 

2016).  I selected sites varying from adjacent patches of the two host species in geographic 

contact with one another (i.e. ‘parapatric’ populations) to patches that were geographically 

separated by up to 11km (i.e. ‘allopatric’ populations; Fig. 1C).  
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3.3.2.4. Final selection of localities 

Considering all the criteria, 12 localities were selected (Fig. 1C; Table 1). Each locality 

contains a different combination of the criteria cited above. Here, the ‘% striped’ variable 

was not significantly correlated with elevation or with either of the climate PCs (elevation: 

adjusted r2=0.15, P=0.12; climate PC1: r2=0.05, P=0.05; PC2: r2=0.02, P=0.05, linear models). 

Although there was a noticeable association between ‘% stripe’ and host plant species 

among the chosen localities (r2=0.27, P=0.05, linear models), it was much lower compared 

to when all locations in the Nosil et al. (2018) dataset were considered (r2=0.59; P=5.07e-

11, linear models).   

Table 1: Populations selected in the sampling plan, including the location code, host plant (‘A’ for 

Adenostoma and ‘C’ for Ceanothus), geographic coordinates and elevation (metres). Percentage of 

striped individuals was estimated based on the average relative number of striped individuals within 

a population in the T. cristinae database, which contains sampling records from previous years (Nosil 

et al., 2018). Climate information was obtained from the first two principal components from the 

bioclim variables.  

Locality Host Latitude Longitude Elevation % striped 

 

Climate 

PC1 

 

Climate 

PC2 

BT A 34.536 -119.862 306 5.9% -4.11 1.78 

FH A 34.518 -119.801 813 87.3% 2.30 1.12 

HV A 34.488 -119.787 376 77.9% -2.79 1.93 

HV C 34.488 -119.787 374 63.4% -2.79 1.93 

L A 34.509 -119.796 820 90.0% 3.88 -0.28 

N1 A 34.517 -119.797 893 70.3% 5.02 -1.32 

N1 C 34.517 -119.797 893 39.0% 5.02 -1.32 

OUT A 34.532 -119.843 464 50.8% -1.44 2.43 

OUT C 34.532 -119.843 462 30.6% -1.44 2.43 

PR C 34.533 -119.857 364 2.9% -0.71 1.98 

SC C 34.523 -119.832 570 3.9% 0.24 2.07 

SCN A 34.521 -119.830 585 71.0% 0.24 2.07 
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3.3.3. Sampling 

Individuals from the selected T. cristinae populations were all sampled on the same 

date (25th April 2017) in the Californian spring. The sampling methods and manipulation of 

the samples were described in Chapter 2. Briefly, specimens were collected using sweep 

nets and kept in plastic containers at room temperature. The following day, individuals 

were digitally photographed under standard conditions (Riesch et al., 2017), flash frozen 

using liquid nitrogen and preserved at -80OC temperature. All procedures were performed 

to assure the methylation status was not considerably affected by variation in sampling 

conditions. This way, one can assume the methylation levels match the patterns present in 

the wild. 

  

3.3.4. DNA methylation variation 

DNA methylation variation was estimated for two female individuals from each 

population using whole-genome BS-seq (24 individuals in total; Table 1 in Chapter 1). As 

mentioned before, this high-throughput protocol generates genome-wide information 

about methylation at a base resolution. Methylation information was estimated for each 

individual, following the methods detailed in Chapter 2. This workflow involved the removal 

of potential single nucleotide polymorphisms (SNPs) that could confound the estimate of 

DNA methylation variation at a specific site (i.e. single methylation polymorphisms; SMPs). 

The final tables for each individual contained information about: number of reads with 

methylated cytosines (i.e. unconverted cytosines), number of reads with non-methylated 

cytosines (i.e. number of thymines), and the proportion of reads with methylated cytosines 

for each genomic position. This work focused at methylation in CpG dinucleotides because 

methylation most often targeted this context not only in T. cristinae, but also in other 

animals (Suzuki and Bird, 2008; Feng et al., 2010; Zemach et al., 2010). The final individual 

tables for CpG sites without the potentially confounding SNPs, had a mean coverage of 2.7 
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reads per site. 60% of the sites had coverage greater or equal to 2x, dropping to 36% for 

greater or equal to 3x and then 13% for coverage greater or equal to 5x per site (statistics 

averaged among all individuals; see Chapter 2). 

 

The function unite in the R package methylKit (v1.0.0; Akalin et al., 2012) was used to 

generate a single table containing methylation information at each site in all 24 individuals 

(i.e. SMPs). That is, information was only retained at sites that were covered in all 

individuals simultaneously.  I removed sites with coverage outliers above the 99.9th 

percentile to avoid PCR bias (i.e. above 60 reads). Very few sites provided methylation 

information simultaneously among all samples. For example, only 2% of the sites were 

retained when the minimum coverage of two reads per site was used, and only 0.2% with 

the minimum of five reads (296,732 and 36,896 SMPs respectively, compared to the number 

of sites in the final individual tables). Thus, I applied the minimum coverage of two reads 

(i.e. ‘less stringent coverage’) for analyses using the general genome-wide patterns, to be 

able to represent a higher methylation variability. For more refined analyses comparing 

each site individually, I applied the minimum coverage of five reads (i.e. ‘more stringent 

coverage’) aiming to preserve more information at each SMP. All the reported statistics 

were generated using R (3.3.1; R Core Team 2016). 

 

3.3.5. Genetic variation 

Restriction site associated DNA sequencing (RAD-seq) was used to generate genome-

wide single nucleotide polymorphism (SNP) data, following previous studies in the system 

(Comeault et al., 2015, 2016). For this, I used DNA from the exact same individuals used to 

generate the methylomes (Table 1 in Chapter 1). This way, information about DNA 

methylation and genetic variation was available for each individual.  To obtain a better 

estimation of genetic diversity at population level, I expanded the sample size by 

reanalysing RAD-seq datasets from previous studies in T. cristinae (Comeault et al., 2015; 

Lindtke et al., 2017; Riesch et al., 2017).  Around 15 accessions were randomly selected from 
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each population with previously published data (Table B2), and new RAD-seq data were 

acquired from the populations that had not been previously sequenced (i.e. BT, OUT, SC, and 

SCN populations; Table B2). The latter were collected along with the individuals used to 

obtain the methylomes (sampled in 25th April 2017), and preserved in 100% ethanol at -

20OC. Finally, genetic data for the six individuals used in the rearing experiment (Chapter 4) 

were also processed with these other datasets. Details about how these data were processed 

were described below. In the end, SNPs from all datasets were called together, which 

ensured there were enough samples from different populations to reliably calculate the 

genotypic probabilities. 

 

3.3.5.1. Library preparation and sequencing 

DNA from the 24 individuals used for BS-seq was extracted following the procedures 

described in Chapter 2. A subsample of this extraction was used in RAD-seq protocol to 

produce genetic variation data. As mentioned above, around 15 individuals from each 

population that had not been previously sequenced (Table B2) were used to obtain 

population level genetic variation. Genomic DNA was isolated using DNeasy Blood and 

Tissue Kits (Qiagen). Library preparation was done using a combination of Parchman et al.’s 

(2012) protocol designed for Illumina sequencing, which has been successfully 

implemented in Timema stick-insects (Comeault et al., 2015; Riesch et al., 2017) and the 

protocol of Peterson et al. (2012), modified to produce paired-ended libraries. Following 

these protocols, genomic DNA was first digested with the restriction endonucleases EcoRI 

and MseI (New England Biolabs). The samples were then incubated with T4 DNA ligase 

(New England Biolabs) and with the following oligonucleotides: (1) Illumina adapter 

sequences followed by custom barcodes with 8-10 base pairs plus some extra base pairs to 

adjust to EcoRI cut sites; and (2) adapters to the MseI cut site with standard Illumina 

multiplexing read index (adapted from Peterson et al., 2012). The resulting fragments were 

amplified by polymerase chain reaction (PCR) using 20 cycles, and then pooled, resulting in 
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an individually barcoded restriction-site associated DNA library. This library was 

sequenced using an Illumina HiSeq2000 platform with V3 reagents at the National Center 

for Genome Research (Santa Fe, New Mexico, USA).  After retrieving the Illumina sequencing 

reads, I removed the barcodes and the EcoRI cut site base pairs from the reads (following a 

Perl script developed in Nosil et al., 2012) and split the reads by individual. 

 

3.3.5.2. Variant calling and genotypic probabilities  

RAD-seq datasets from previously published studies  (Comeault et al., 2015; Lindtke 

et al., 2017; Riesch et al., 2017; Table B2) were re-analysed to estimate genetic diversity at 

population level; and they were processed along with the newly acquired data from this 

step onwards. In summary, the good quality reads were aligned to the most recent T. 

cristinae reference genome (Nosil et al. 2018) using bowtie 2.3.4.1 (Langmead and Salzberg, 

2012) with the single-end or paired-end argument depending on the library type. The 

mapped reads were sorted and indexed using SAMTOOLS 1.8 (Li et al., 2009). Variants were 

called following a custom Perl script (Comeault et al., 2015), which uses SAMTOOLS mpileup 

and BCFTOOLS using the full prior, and requiring the probability of an allele to be lower 

than 0.5 to call a variant, under the null hypothesis that all samples were homozygous for 

the reference allele. The insertion and deletion polymorphisms were not included in the 

final table. For each variant, the posterior mean genotype was estimated for each individual 

at each locus as two times the probability of the homozygous minor allele genotype plus the 

probability of the heterozygous genotype. These steps led to 3,870,412 SNPs in total. From 

those, only 533,420 were retained after discarding SNPs for which there were sequence 

data for less than 50% of the individuals, low confidence calls with a phred-scale quality 

score lower than 20, SNPs with more than two alleles, and filtering for a minor allele 

frequency of 0.01. Custom Perl scripts were used along with a custom C++ program 

(alleleEst 0.1b) to estimate the genotypic probabilities using a Bayesian model (Gompert et 
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al., 2013). The values were stored in BIMBAM format with values ranging from 0 to 2 

representing the minor allele dosage. 

 
Figure 4: Hypothetical example of differences in DNA methylation levels between two samples, 
here represented by indA and indB and in the loci 1 and 2. Levels of methylation in each locus are 
estimated based on the proportion of read counts with methylated cytosines (i.e. number of non-
converted cytosines in BSseq data) over the total coverage (i,e, 5 reads in this example). 

 
 
3.3.6. General patterns of geographical structure 

3.3.6.1. Clustering analyses 

Hierarchical clustering analyses were used to estimate general patterns of DNA 

methylation variation. For this analysis, the methylation levels were estimated using the 

proportion of read counts with methylated cytosines over the total coverage in every 

genomic position (Fig. 4). Euclidean distances were then calculated to estimate the 

dissimilarity between pairs of samples (Eq. 1, Fig. 5) using the function dist in R (3.3.1; R 

Core Team 2016):  
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𝑑(𝐴, 𝐵) = √∑( 𝐴𝑖 − 𝐵𝑖)2

𝑛

𝑖=1

 

 

(1) 

where A and B represent two hypothetical individuals to have the Euclidean distance d 

estimated based on methylation levels of n sites (see Fig. 4 for the example using two loci). 

Here, this operation was done pairwise among the 24 individuals in the methylation levels 

of 296,732 sites. The resultant distance matrix was used as input for the agglomerative 

hierarchical clustering analysis. Analyses were performed using hclust function in R using 

the ‘Ward D’ agglomerative criterion. In addition, a principal components analysis (prcomp 

function in R) and k-means were used to evaluate the grouping trend (kmeans function). 

 

 
Figure 5: Euclidean distance between individuals A and B from Fig. 4 The distances are estimated 
at each locus, then summed to obtain the squared distance. The Euclidean distance in this example 
is 0.82, considering percentage using decimals. The same method can be used for n loci.    

 

3.3.6.2. Regression analysis 

Distances between methylation levels were estimated for every pair of individuals 

using the Euclidean distance function dist in R (Figs. 4-5). These distances were compared 

with other distances for every pair of individuals, namely climatic, genetic, host plant 

species, and geographical distances. The climatic distances were also estimated using 

Euclidean distances, based on the first two principal component axes. The genetic distances 

were obtained using the RAD-seq data. The aligned reads from the 24 individuals were used 
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to obtain the genetic distance matrix from RapidNJ (2.3.0.2; Simonsen et al., 2008). This 

software calculates pairwise evolutionary distances between individuals to ultimately 

generate a neighbour-joining tree that represents the given distance matrix as well as 

possible. Its algorithm takes multiple alignment nucleotide sequences as input and counts 

the observed number of purine-transitions (A and G), of pyrimidine-transitions (C and T) 

and of transversions (purine to pyrimidine or vice versa). Once these observed mutational 

events have been counted, the most likely (ML) estimate of the distance between two 

sequences s1 and s2 is computed based on Kimura’s two-parameter model of sequence 

evolution (Kimura, 1980; Elias and Lagergren, 2007; Simonsen and Pedersen, 2011): 

𝑑(𝑠1,𝑠2) =  
1

2
𝑙𝑛 (

1

1 − 2𝑃 −  𝑄
) +

1

4
𝑙𝑛 (

1

1 − 2𝑄
) 

(2) 

where P and Q are the rate of transitions and transversions respectively. The resultant 

pairwise distances are all compiled in the genetic distance matrix (Simonsen et al., 2008). 

Host plant differences were coded for each pair of individuals as ‘0’ if they were collected in 

the same host plant species or as ‘1’ if they were different ecotypes.  Finally, geographical 

distances were estimated in metres using QGIS “Point Distance" tool from the “Vector... 

Analysis Tools” menu. The logarithm of the pairwise geographical distances (in metres) was 

calculated to perform the regression between genetic and methylation distances and 

geographical distances (following Rousset, 1997). To avoid calculating logarithm of 0, 

individuals from the same population (i.e. geographic distance of 0 metres) were considered 

to be 128 metres apart, as this is the maximum dispersal ability within their lifetime 

(Sandoval, 2000). The statistical tests between different matrices were estimated using 

linear models in R.  

To complement the linear models’ regressions, the correlation between elements in 

the distance matrices was assessed by a Mantel randomization test. This test randomizes 

the n individuals rather than using the pairwise observations of different variables (Mantel, 

1967). That is, it computes the significance of the correlation through permutations of the 
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rows and columns of one of the input distance matrices. The statistic test is the Pearson 

correlation coefficient r. This analysis provides a test of the null hypothesis of no linear 

relationship between two distance matrices. The tests were performed using mantel 

function from vegan R package (Oksanen et al. 2018), using 10,000 permutations.  

 

3.3.6.3. Bayesian regression 

In addition, a multivariate analysis using Bayesian regressions was performed to 

determine whether methylation differences between individuals were better explained by 

genetic variation, geographical distance, climatic distances, ecotype, or combinations 

between the variables. It was used to correct for any bias in the data introduced by 

dependency among the pairwise data points. The model was based on Clarke et al. (2002) 

and Gompert et al. (2014), and follows the equation: 

Logit (Yij) =  β0 + βgenXij
gen

+ βgeoXij
geo

+ βclimXij
clim + βhostXij

host + λi + λj + Єij      (2) 

where the dependent variable (Yij) was the methylation distances between individuals i and 

j. The variables Xijgen, Xijgeo, Xijclim, Xijhost are the pairwise distances in genetic variation, 

geographical distance, climatic distances and host plant species, respectively, and the β 

denote the fixed effect regression coefficients. The model includes λi, which is a random 

effect representing the average deviation of the pairwise Y values (i.e. methylation 

distances) involving individual i from what is expected from its X distances to the other 

individuals. In other words, the λ terms represent the dependency in the data, accounting 

for the pairwise comparisons by allowing each individual to have its own deviation from the 

baseline expectation (Clarke et al., 2002; Gompert et al., 2014). Єij represents the residual 

errors, and 𝜆𝑖  and Єij are assumed to be independent. All variables were centred and 

standardized. The model uses Bayesian framework and Markov Chain Monte Carlo to 

estimate the regression, and a deviance information criterion (DIC) to evaluate model fit via 

rjags R package (Plummer, 2003). Three parallel chains with 10,000 iterations and a burn-
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in of 2,000 iterations were used. The equation above represents the full model, but the 

analyses were also performed using different combinations of the variables.  

 

3.3.7. Binomial Mixed Models  

To estimate the heritability of methylation levels at each site, I used the Mixed model 

Association for Count data via data AUgmentation (MACAU) method, developed by Lea et 

al. (2015). Briefly, this model tests whether a variable (predictor) has effect on methylation 

levels at a specific site, and allows us to control for relatedness (i.e. kinship) in the samples. 

I tested for a relationship between ecotype and DNA methylation levels at each site using 

the 24 individuals from the population survey. In this Chapter, I interpret the model’s 

outputs to estimate mean heritability of methylation levels. In Chapter 4, I evaluate the 

associations between the SMPs and ecotype arising from the same analysis. This separation 

was done to avoid overlap between the two Chapters.    

 

3.3.7.1. MACAU 

The model tests whether a variable (predictor) has an effect on methylation levels at 

a specific site. For instance, the predictor of interest can be a phenotype, an environmental 

factor or genotypic values. Its binomial model can handle methylation count data, modelling 

the number of reads with methylated cytosine (yi) and the total coverage (ri) to estimate the 

level of methylation (πi) for each site: 

yi = Bin (ri, πi)     (3) 

Thus, here the variability in coverage is used to estimate the methylation levels. Given that 

the coverage may differ considerably across sites and individuals, this approach offers many 

advantages compared to other models, which tend to ignore this issue by using proportion 

of methylated cytosines to estimate the methylation status. Using the same example 

provided by the developers: if only the methylation proportion is considered, a site where 
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5 out of 10 reads are designated as methylated is treated identically to a site where 50 out 

of 100 reads are designated as methylated, even though the accuracy of the estimated 

proportion will be worse when there are fewer reads. This assumption reduces the power 

to detect true associations between a predictor and the variation in methylation levels (Lea 

et al., 2015). 

In addition, MACAU can control for population structure when testing for the 

relationship between methylation variation and the predictor. DNA methylation levels are 

often heritable. In humans, for example, the average estimated heritability levels are 18-

20% in the whole blood (Taudt et al., 2016). As such, closely related individuals will tend to 

exhibit more similar methylation patterns than non-related individuals will. The similarity 

in methylation levels in SMPs or genomic regions (i.e. methylation ‘relatedness’) can arise 

from the genetic control determining methylation patterns, or via pure epigenetic 

inheritance, where methylation patterns are not reset and are transmitted to the next 

generation (Jablonka and Raz, 2009; Taudt et al., 2016). As such, analyses that do not 

consider relatedness can lead to spurious conclusions if the predictor in question co-varies 

with kinship. To control for this, MACAU incorporates a matrix of pairwise genetic kinship, 

which is treated as the variance-covariance matrix for the heritable component of the 

random effects’ variable. The kinship matrix contributes to the value of the response 

variable, but does not affect the non-heritable part of the response variable (Lea et al., 2015; 

Lea et al., 2017). The kinship matrix can be estimated using the genetic variation in the 

dataset, and modelled as the ‘genetic random effects’. 

 The methylation levels at each site are modelled in MACAU using a logit link linear 

function based on the following variables: 

log (
πi

1− πi
) = wi

Tα + xiβ +  gi + ei    (4) 

g = (g1, … , gn)T~ MVN(0, σ2h2K)    (4) 

e = (e1, … , en)T ~ MVN(0, σ2(1 − h2)I)   (6) 
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In equation 5, wi corresponds to c-vector of covariates, and α corresponds to its coefficients; 

xi is the predictor of interest for individual i and β is its coefficient. Variable g is an n-vector 

of genetic random effects due to population structure or kinship, and e is an n-vector of 

environmental independent noise.  As mentioned above, the genetic random effects g are 

estimated using a relatedness matrix K, which can be calculated based on genotypic data 

following tools described in Zhou et al. (2013). Its σ2h2 element corresponds to the genetic 

variance component, where h2 is the heritability of logit(π) at each site. K has been 

standardized in the model to ensure tr(K)/n = 1, so that h2 lies between 0 and 1 and can be 

interpreted as heritability of the methylation levels (Zhou et al. 2013).  MVN represents the 

multivariate normal distribution applied when g and e are estimated. Ultimately, MACAU 

tests the null hypothesis H0 : β = 0 for every site, using a MCMC algorithm based approach 

to determine an approximate maximum likelihood estimate β̂, its standard error se(β̂) and 

its corresponding p-value. The MCMC sampling steps are also used to produce 

uninformative priors to estimate the heritability h2 and its standard error se(h2). 

 

3.3.7.2. Estimating heritability 

To run MACAU, I used the table with the most stringent coverage (i.e. minimum of five 

reads per site) to assure a higher power analysis at each SMP locus. To assure the SMPs 

were variable enough to run the model, I selected sites where at least two individuals had 

methylation levels above 25% (> 0.25) or below 75% (< 0.75). This step excluded the sites 

that were consistently hypomethylated or consistently hypermethylated (following Lea et 

al. 2016, see rationale at Appendix B ‘Testing MACAU’ section). This step retained 35% of 

the CpG sites with the selected coverage (yielding 13,050 SMPs in total).  

The first two principal component axes of climatic variation were used as covariates 

along with bisulfite conversion efficiency estimated for each sample (using the non-

methylated Lambda phage; see Chapter 2, Table A1). The genotypic probabilities were 
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extracted from the same 24 individuals from the BIMBAM file to calculate the kinship matrix 

following Zhou et al. (2013). To obtain an estimate of genome-wide heritability of 

methylation variation, I calculated the mean of the outputted parameter h and its 

corresponding standard error (used to estimate the 95% confidence intervals). The 

analyses were performed with 100,000 sampling steps and burn-in of 50,000 iterations, 

with the filtering ratio threshold equal 1.   

 

3.4. Results 

3.4.1. General patterns of methylation in natural populations  

3.4.1.1. Clustering analyses 

The hierarchical clustering analyses showed considerable differences between the 

individuals, represented in the dendrograms by the height of dissimilarities between the 

tips (Fig. 6A), suggesting a considerable intraspecific variability in the methylation levels. 

These findings are supported by the principal components analysis, as each PC axis almost 

equally explains the variance in the data around 4.5% [4.0% – 5.0%] (mean [95% 

confidence interval]; Fig. B2). At first sight, the dendrograms appear to group individuals 

according to their position in geographical space (Fig. 6). The k-means analyses (using k=2) 

separate two outlier individuals (i.e. 17_0077 and 17_0086) from the others. If these two 

samples are excluded, the k-means analysis groups specimens coming from eastern and 

western parts of the distribution (Fig. B3). This pattern supports the hypothesis the 

methylation variation is structured in geographical space. 

 

3.4.1.2. Regressions 

The regression analyses indicated genetic diversity is associated with geographic 

distance (r2=0.29, P < 2.2e-16, linear models; Fig. 7A), as has been previously shown 

(Sandoval, 1994; Nosil et al., 2008). Following the results from clustering analyses, the 
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regressions revealed methylation distances are also positively correlated with geographical 

distances (r2=0.09, P = 1.2e-12, linear models; Fig. 7B). That is to say methylation and  

 

Figure 6: Hierarchical clustering in the population survey using Euclidean distances to estimate 

dissimilarity and ‘Ward.D’ algorithm of clustering. The table with the less stringent coverage was 

used to include more sites in the analysis (i.e. minimum coverage of 2 reads, 296,732 sites in total). 

Dendrogram height represents the Euclidean distance between individuals (Eq. 1, Fig. 5). The mean 

pairwise Euclidean distance was 90.1 [89.9 – 90.4]. Individuals do not tend to cluster by ecotype, 

but by geographical position. Blue line colour corresponds to the western side of the distribution 

and red to the eastern side. In the dendrograms, the last letter of the population code corresponds 

to ecotype (e.g. BTA represents the Adenostoma ecotype and PRC the Ceanothus ecotype). 
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genetic distances tend to co-vary, with a pattern following isolation-by-distance premises 

(r2=0.42, P < 2.2e-16, linear models; Fig. 8). Accordingly, the Mantel tests revealed a 

strong significant correlation between methylation and geographic distances (r=0.30, P = 

1.0e-06), between genetic and geographic distances (r=0.45, P = 1.0e-06), and between 

methylation and genetic distances (r=0.65, P = 1.0e-06). This pattern could also be 

associated with the climatic characteristics in geographical space. The results show the 

relationship between geographic distance and climatic distances is significant (r2=0.23, 

P<2.2e-16, linear models; r=0.4, P=1.0e-06 Mantel test). However, regarding the 

correlations with climatic variation, neither genetic variation (r2=0.02, P=4.3e-02, linear 

models; r=0.12, P=0.11, Mantel test) or DNA methylation differences seem to be 

associated with climatic distances (r2=0.0, P=0.65, linear models; r=0.02, P=0.41, Mantel 

test).  

 

 

Figure 7: Relationship between (A) genetic differences and the logarithm of geographic distances 

(r2=0.29, P < 2.2e-16, linear models), and between (B) methylation levels and the logarithm of 

geographic distances (r2=0.09, P < 1.2e-12, linear models). Methylation distances were estimated 

from Euclidean distances based on methylation levels, and genetic ones from neighbour joining tree 

built based on RAD-seq alignments.   
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Figure 8: Relationship between methylation differences and genetic distance. Methylation 

distances were estimated from Euclidean distances based on methylation levels, and genetic ones 

from neighbour joining tree built based on RAD-seq alignments.  r2=0.42 (P < 2.2e-16, linear 

models).   

 

3.4.1.3. Bayesian regression  

Results from the Bayesian regression analyses showed the model with genetic 

variation and host differences together received the best support explaining methylation 

variation, according to the lowest DIC (325.4; Table 2). However, the DIC values were 

always reduced whenever genetic variation was included in the model, suggesting it had a 

significant explanatory power in defining the underlying general differences in DNA 

methylation patterns. Thus, although there was a marked correlation between genetic 

variation and geographical distance, the reduced model with only genetic distances 

(DIC=325.7) was better than the one with logarithm of geographical distances only 

(DIC=523.0).  

 

3.4.2. Heritability of methylation variation 

The MACAU analysis returned a high estimate of genome-wide heritability of 

methylation levels, with a mean heritability of 0.67 across all sites and mean standard error 
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of 0.26 (i.e. 95% confidence interval of 0.15 – 1.0). The large confidence intervals are 

expected given a relatively small number of individuals was used in the analyses (Lea et al., 

2015). The model estimates the heritability of methylation levels based on the kinship 

matrix obtained from the genetic differences between individuals. Thus, the similarity in 

methylation variation seems to mirror the genetic kinship, supporting the hypothesis of 

genetic background explaining DNA methylation variation. However, it is possible that part 

of this relatedness is due to the non-erasure of epigenetic marks between generations (i.e. 

pure epigenetic inheritance). In other words, MACAU might not be able to distinguish the 

heritability derived from the genetic control from pure epigenetic inheritance. Therefore, 

further experiments are required to disentangle the drivers of the heritability in T. cristinae. 

Table 2: Bayesian regression using differences in genetic variation, geographical distance, climate 

and host plants to explain methylation variation. Full model uses all variables simultaneously. 

Deviance information criterion (DIC) was used to compare the models. Models including genetic 

variation had a better support (lowest DIC) than when it is not considered.  

  Mean 

deviance 
Penalty DIC 

Full model 299.1 29.1 328.2 

Genetic + geography + climate 300.7 28.2 328.8 

Genetic + geography + host 298.2 28.0 326.2 

Genetic + climate + host 299.5 29.6 329.1 

Geography + climate + host 490.4 28.1 518.5 

Genetic + geography 300.0 27.3 327.3 

Genetic + climate 298.8 26.7 325.5 

Genetic + host 297.8 27.6 325.4 

Geography + climate 491.6 27.0 518.6 

Geography + host 495.5 27.6 522.8 

Climate + host 595.1 26.8 621.9 

Genetics 299.1 26.6 325.7 

Geography 496.8 26.2 523.0 

Climate 596.6 26.4 623.0 

Host 621.2 26.4 647.6 

 

 



106 

3.5. Discussion 

Although there is mounting evidence of the molecular mechanisms and biological 

processes involved in DNA methylation (Bird, 2007; Law and Jacobsen, 2010; Schübeler, 

2015), how these processes happen in nature remains largely unknown. Studies exploring 

DNA methylation from an ecological and evolutionary perspective have started to elucidate 

how it varies in natural populations and to identify some of the drivers underlying this 

diversity (Richards, 2008; Nicotra et al., 2015; Platt et al., 2015; Foust et al., 2016; 

Verhoeven et al., 2016). However, the great majority of these studies were performed in 

plants. This work assessed the general aspects of genetic and epigenetic diversity in natural 

populations of T. cristinae (i.e. a genome-wide comparison). To my knowledge, this was the 

first investigation on patterns of methylation in natural populations of insects.  

 

3.5.1. DNA methylation is structured in geographical space 

The population survey showed substantial intra-specific DNA methylation variation 

in T. cristinae. The marked differences between individuals indicate each one of them has a 

very specific methylation background. These findings suggest DNA methylation varies 

within population. In this work, only two individuals were used to represent a population, 

hence future studies with a larger sample size should be carried out to determine the extent 

of this diversity. This study focused at investigating how DNA methylation variation is 

distributed in geographical space to capture the effects of forces that are acting on it, 

possibly cumulatively over many generations (Herrera et al., 2016). The results showed 

DNA methylation variation was spatially structured, and revealed a marginal trend to group 

according to the geographical distribution. In addition, DNA methylation differences 

increased with geographical distance. This pattern is similar to previous works in T. 

cristinae, which showed that genetic divergence is consistently and significantly greater 

between allopatric populations than between adjacent populations (Sandoval, 1994b; Nosil 
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and Crespi, 2004). In other words, the results suggested that spatial structure in DNA 

methylation variation could be driven, to some extent, by the same factors driving genetic 

variation. That is to say differences tend to accumulate the more distantly the populations 

are separated, due to the effect of limited dispersal and reduced gene exchange (Jenkins et 

al., 2010; Herrera et al., 2016). 

 

3.5.2. DNA methylation is strongly associated with genetic background 

This resemblance between DNA methylation and genetic patterns in geographical 

space was reflected by the strong correlation between them. Although genetic 

differentiation and geographical distance are intimately interconnected, the multivariate 

analyses revealed the models with genetic variation were always preferred over the models 

with geographical distances. In other words, this result suggests DNA methylation variation 

in T. cristinae varies in space mostly because of its genetic basis, and not simply because 

stochastic epigenetic differences accumulated between further apart populations. It is 

challenging to disentangle genetic variation from physical geographic distance with a 

sampling design such as the one used in this study. To this end, one of the factors should be 

controlled for to test the strength of this association. For example, by further sampling from 

one single population to ensure there is no geographical variation, but that genetic variation 

is present.  

The strong correlation between methylation and genetic variation suggests a 

substantial amount of DNA methylation variation in T. cristinae is determined by its genetic 

basis. In other words, that some of the methylation patterns could be under genetic control, 

either by factors that cis or trans-regulate methylation state. That is, even though 

methylation differences might result in important changes in the phenotype, if it is strictly 

under genetic control, it would represent a proximate cause of these changes, and not the 

ultimate cause (Richards, 2006). In plants, for example, the association between genetic and 

methylation variation is due to SNP alleles in structural variants, such as transposable 
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elements (TEs) insertions, repeats or inversions, which tend to be highly methylated 

(Pecinka et al., 2013; Taudt et al., 2016). In addition, methylation variation associated with 

ecologically relevant traits and local adaptation has been shown to be strongly associated 

with a few genetic variants, including one plant-specific methyltransferase. In mammals, 

some SMPs have been reported to be sequence dependent, and this is normally related to 

differential transcription factor binding in enhancers or promoters – regions that are 

regulated according to the methylation state (Taudt et al., 2016; Onuchic et al., 2018).  

However, there might be cases where the associated genetic background facilitates 

the epigenetic change. That is, when a genetic mutation or a transposable element insertion 

on a regulator gene occurs and creates a facilitating change to be modulated by the 

methylation state. A good example is the already cited case in mice about diet and coat 

colour changes that involves a TE that is inserted upstream of the Agouti gene (Waterland 

and Jirtle, 2003). The methylation state of this transposon leads to different expression 

levels of Agouti, which means that there can be no epigenetic variation if this TE is absent. 

Thus, in this case methylation variation is associated with genetic variation, but the 

genotype alone cannot explain the phenotype (Richards, 2006). Therefore, future analyses 

should be conducted in T. cristinae to deepen the understanding of this association between 

DNA methylation and genetic variation.  

Investigating the relationships between methylation and genetic variation in T. 

cristinae could elucidate how they are likely to occur in insects. This study revealed a strong 

association between genetic and methylation variation at genome-wide levels. Further 

investigations should estimate this association at a finer scale, such as to look for a co-

variation between specific SNPs and SMPs. With these analyses, it will be possible to identify 

the genetic bases of DNA methylation patterns and the regulatory mechanisms determining 

them (i.e. cis or trans regulatory pathways affecting methylation levels), and to investigate 

its contribution to phenotype – how much it depends on genetic variants to generate 

phenotypic variation.  
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3.5.3. Genome-wide methylation variation is not strongly associated with climate or host plant 

This study showed there was not a significant correlation between the pairwise 

differences in methylation and in climatic variables or host plant. Hence, these 

environmental factors do not explain the genome-wide variation in DNA methylation as 

much as genetic variation. However, it can be difficult to distinguish whether the association 

between epigenetic and genetic variation is a direct effect of genetic control, or if there are 

common factors shaping DNA methylation and genetic variation simultaneously, such as an 

environmental factor (Richards et al., 2017). For example, some genetic and epigenetic 

variation could be jointly affected by natural selection, and thus be significantly correlated 

because of local adaptation.  Studies have dealt with this issue by using reproductive inbred 

lines or asexual populations. In the absence of genetic variation, researchers could estimate 

the significance of the correlation between environment and methylation variation 

(Massicotte et al., 2011; Herrera et al., 2012; Yu et al., 2013; Preite et al., 2015). Others have 

evaluated populations with low levels of genetic variation, such as following a recent 

bottleneck (e.g. invasive species; Richards et al., 2012; Liebl et al., 2013), or without any 

association between genetics and the environmental gradient (Foust et al., 2016).   

This present work focused on exploring the genome-wide associations between DNA 

methylation and environment. Thus, although the association between DNA methylation 

and environmental variables was low, the results here did not discard the possibility that 

some regions in the methylome were associated with environment. Chapter 4 explores the 

association between DNA methylation variation and ecotype in natural populations at a 

finer scale (i.e. at each SMP), where the results from MACAU were interpreted. In addition, 

it details an experiment where specimens sampled from one population were reared either 

on Ceanothus or on Adenostoma under controlled conditions. This provided the opportunity 

to directly test the effects of an environmental factor on DNA methylation variation.   
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3.5.4. There is some heritability of DNA methylation patterns 

We estimated heritability of DNA methylation patterns using MACAU (Lea et al., 

2015), which models methylation levels at each site and tests for an association with a 

predictor of interest. It uses genetic information to estimate the kinship matrix, which is 

included in the model as a random effect used to estimate the heritability parameter (Lea et 

al., 2015).  The analyses returned a significant mean heritability value. This result aligns 

with the finding DNA methylation is structured in space, and supports the idea that DNA 

methylation variation can accumulate over generations and tends to be more differentiated 

the more isolated the populations are (Herrera et al., 2016). At the same time, this result 

follows the strong correlation between methylation variation and genetic variation, 

suggesting heritability of methylation patterns could be elevated because it is associated 

and/or determined by genetic variants. On the other hand, MACAU statistically estimates 

the heritability of methylation status by comparing the relatedness in methylation variation 

between samples to the genetic kinship matrix. This means the model does not identify the 

drivers underlying this heritability, whether it was the result of genetic control or via an 

incomplete erasure of methylation marks, and consequent transmission across generations. 

That is, although this pure epigenetic inheritance is independent of genetic control, it could 

lead to the accumulation of differences at the population level (Verhoeven et al., 2010; 

Herrera et al., 2013; Jiang et al., 2013). 

Very little is understood about epigenetic inheritance in insects. In fact, it is not known 

whether DNA methylation reprogramming occurs in insects’ gametogenesis. Wang et al. 

(2016) showed stable inheritance of methylation status between generations in Nasonia 

wasps. They revealed that F1 hybrids retained patterns of DNA methylation on alleles that 

are specific of each parental Nasonia species with near “100% fidelity”. With this, the 

authors suggested that either DNA sequence elements in cis determined these differential 

methylation patterns, or they were transmitted across generations via pure epigenetic 

inheritance. Moreover, Chapter 2 discusses the fact T. cristinae and other insect species do 
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not present the de novo DNA methyltransferase. As such, one of the hypotheses that can be 

raised is that DNA methylation patterns are not erased during gametogenesis, implying 

maintenance of methylation status across generations and evolutionary time. However, this 

hypothesis is still speculative, and thus future investigations should be carried to elucidate 

the molecular mechanisms of epigenetic inheritance in insects. In any case, the heritability 

of DNA methylation variation in Timema suggests it might provide background for 

evolutionary processes to act on.  

 

3.6. Conclusion 

Besides its taxonomically different methylation profile from plants and vertebrates, 

T. cristinae methylation patterns are spatially structured in nature, varying with 

geographical distance in a very similar trend to that exhibited by genetic variation. Added 

to the finding that methylation variation is significantly heritable, these results indicate DNA 

methylation follows a pattern analogous to isolation by distance, accumulating differences 

with reduced dispersal and gene flow. The results presented here suggest this structure is 

mainly explained by the genetic variation underlying DNA methylation patterns, which 

could also account for the heritability of methylation status. Future investigations should be 

carried to explore the associations between DNA methylation and genetic variations at a 

more refined scale. In this study, I did not find a strong association between DNA 

methylation variation and environmental factors, such as host plant or climatic variables. It 

is possible to conclude that the environmental factors studied here are not a very significant 

driver of general patterns of methylation variation (i.e. genome-wide patterns), without 

discarding their relevance to specific regions in the methylome.  
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Appendix B: Supplementary Tables and Figures – Chapter 3 

Table B1 describes the relationship among each climatic variable from bioclim database and 

the first two principal components used in this study.  The principal components analysis 

was performed based on climatic data from all recorded T. cristinae populations (Nosil et 

al., 2018).  

Table B1: Principal component analysis on climatic variables from bioclim database. Here are 

represented the correlation between the variable and the first two principal component and the 
contribution of each variable to them (in percentage).  

Climatic variable 
Correlation Contribution 

PC1 PC2 PC1 PC2 

Annual mean temperature 
0.97 0.24 8.3% 1.3% 

Annual precipitation 
-0.95 0.12 8.0% 0.3% 

Isothermality 
0.93 -0.32 7.6% 2.3% 

Max temp warmest month 
-0.04 0.99 0.0% 22.6% 

Mean diurnal range 
0.35 0.86 1.1% 17.2% 

Mean temp. coldest quarter 
1.00 -0.04 8.8% 0.0% 

Mean temp. driest quarter 
0.54 0.81 2.6% 15.0% 

Mean temp. warmest quarter 
0.54 0.81 2.6% 15.1% 

Mean temp. wettest quarter 
1.00 0.02 8.8% 0.0% 

Min temp coldest month 
0.99 -0.13 8.6% 0.4% 

Precipitation coldest quarter 
-0.82 -0.16 5.9% 0.6% 

Precipitation driest quarter 
0.65 0.53 3.8% 6.4% 

Precipitation seasonality 
-0.99 -0.06 8.6% 0.1% 

Precipitation warmest quarter 
-0.87 0.31 6.7% 2.2% 

Precipitation wettest month 
-0.90 0.23 7.2% 1.2% 

Precipitation wettest quarter 
-0.72 0.68 4.6% 10.6% 

Temperature annual range 
-0.88 0.44 6.8% 4.5% 

Temperature seasonality 
0.97 0.24 8.3% 1.3% 

Contribution corresponds to the squared cosine (cos2) of the variable divided by total cosine of the 
component. Squared cosine represents the quality of representation of the variables on factor map. 

This analysis was performed only for the selected sites using the R packages FactoMineR and 

factoextra (Lê, et al., 2008). 
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Table B2 describes the different genetic datasets used in this study. Accessions from 

previously published data and newly acquired genomic sequences were obtained to 

estimate genetic diversity at population level. With this, more genetic variants were 

obtained to estimate genotypic probabilities. Sites identified as C/T and G/A 

polymorphisms were identified and added to the list of SNPs to be removed from 

methylation datasets (see Chapter 2). 

Table B2: Details about data used to estimate population genetic diversity. Genetic data was 

generated following a RAD-seq protocol, but type of sequencing varied between single and paired-

ended.  

Location Host N Sequencing Publication 

BT A 15 paired-end newly acquired 

FH A 15 single-end Comeault et al. 2015 

HV A 15 paired-end newly acquired 

HV C 15 paired-end newly acquired 

L A 15 single-end Riesch et al. 2017 

N1 A 15 single-end Lindtke et al. 2017 

N1 C 15 single-end Lindtke et al. 2017 

OUT A 7 paired-end newly acquired 

OUT C 6 paired-end newly acquired 

PR C 13 single-end Riesch et al. 2017 

SC C 15 paired-end newly acquired 

SCN A  15 paired-end newly acquired 
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Testing MACAU 

To test for the consistency and repeatability of MACAU’s outputs, two independent 

analyses were run in parallel and the values of the beta were compared (Eq. 4), as this 

coefficient describes the effect size of the predictor in the methylation levels (Lea et al., 

2015). To this end, the table with more stringent coverage was used (i.e. minimum coverage 

of five reads covering all 24 individuals), with 36,896 SMPs. The parameters applied were 

the same as described in section 3.3.7.2, regarding the predictor, the covariates, the kinship 

matrix, MCMC samplings and burn-ins.  

As a result, there was not a correlation between the beta outputs (r2= 0.0, P=0.11, 

linear models). That is, there was not a convergence between the effect sizes of the predictor 

on the methylation levels, implying the output is not repeatable (Fig. B1A). The SMPs with 

highest beta were mainly those which presented very low methylation levels, bordering 

zero. This suggests MACAU requires a minimum variance at each SMP to generate consistent 

outputs. 

 
Figure B1: Correlation between output beta values (i.e. denotes the predictor effect size) from two 
independent MACAU runs using the same dataset: (A) the dataset with 38,896 SMPs not filtered 
for its variability; (B) the dataset after selecting at least two individuals with methylation levels > 
0.25 or < 0.75. This step removed consistently hypomethylated and consistently hypermethylated 
positions, as it has at least two individuals that fall outside these levels, yielding 13,050 SMPs. 
Output from (A) show very different values for beta (r2= 0.0, P=0.11), while the outputs converge 

in (B), suggesting a better consistency and reliability of the results.  
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In the main empirical work applying MACAU (Lea et al.; 2016), sites with low variance 

were removed from the SMPs dataset. All sites that were consistently hypomethylated 

(average DNA methylation level < 0.10) and consistently hypermethylated (average DNA 

methylation level > 0.90) were excluded, as well as sites in which the standard deviation 

was below 0.05. After a few attempts, I obtained SMPs with standard deviation above 0.05 

(i.e. higher variance at each SMP) by selecting sites that had methylation levels ≥ 0.25 or ≤ 

0.75 in at least two samples. With this subset dataset, the correlation between betas from 

two independent runs was high (r2=0.86, P=2.2e-16; Fig. B1B), suggesting a good 

convergence between the outputs. This step retained only 35% of the CpG sites with the 

selected coverage (yielding 13,050 SMPs in total), but it retained more sites than when 

applying the threshold used in Lea et al. (2016; yielding 12,858 SMPs). In summary, this 

filtering step was applied as it improved the repeatability of the outputs. Future works could 

test the application of other filtering strategies to obtain consistent outputs in MACAU.  

 

Figure B2 refers to the PCA performed on methylation variation in each individual from the 

population survey. This graph suggests a great variation surrounding each individual. 

Figure B3 represents the first two PCs associated with k-means analyses.  

 

Figure B2: Sum of squares within every possible group in the first batch of data. In general, 
clustering methods aim to define clusters such that the total intra-cluster variation (known as total 

within-cluster variation or total within-cluster sum of square) is minimized.  For this data, the 

elbow method cannot define which total within-cluster sum is the smallest, suggesting the 
variation in each sample is larger compared to every possible grouping.  
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Figure B3: First two principal components from a PCA on the first batch of sequencing using the 

least stringent coverage (minimum 2 and maximum of 60 reads per site, yielding 296,732 sites in 

total). A. K-means analysis (k=2) groups the two outlier samples (17_0077_PRC and 17_0086_BTA 
in blue font; see Fig. 6). B. When these two samples are excluded from the analysis, k-means divides 

the samples according to their geographical position. Blue font and line colour correspond to the 

western side of the distribution and red to the eastern side. 

 

Figure B4 represents the distances within all variables considered in this study, on: 

methylation, genetic, geographical space, climate, and host plant. Methylation differences 

were obtained based on the Euclidean distances between individuals, estimated from 

methylation levels in each position from the joint table (with minimum coverage of 2 and 

maximum of 60 reads per site). Genetic distances were estimated using the neighbour 

joining tree between each individual (Simonsen et al., 2008); the geographical distance 

using QGIS tools; the climatic distances using Euclidean distances on the first PC2 loadings; 

and the host plants using “0” as same host and “1” as different hosts.    
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Figure B4: Dendrograms representing the distances used in this study. The algorithm 

used was ‘Ward.D’ on R function hclust.  

 

Figure B5, B5 and B6 were estimated using methylation distances (Fig. B4) and genetic 

distances estimated using Euclidean distances on genotypic probabilities. This was 

performed to allow comparisons between the slopes from methylation and genetic 

distances, given that they were estimated using the same method (i.e. Euclidean distances). 

The dendrogram generated using this method (Fig. B5) differs slightly from the one using a 

neighbour joining tree (Fig. B4). The genetic differences seem to be less associated with 

methylation (Fig. B6) and less associated to geographical distance (Fig. B7). Comparison 

between the slopes suggests a higher accumulation of differences in methylation with 

geographical distance (Herrera et al., 2016).   
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Figure B5: Genetic distances estimated using Euclidean distances on genotypic probabilities. 

Dendrogram estimated using algorithm ‘Ward.D’.  

 

  

Figure B6: Relationship between methylation and genetic distances between the 24 populations 

used in this study. The methylation distances were estimated using Euclidean distance on the 

proportion of methylated cytosines over total coverage. The genetic distances were also estimated 

using Euclidean distances, here on the genotypic probabilities obtained from RAD-seq data. The 

association between these two variables is smaller using this method to estimate genetic distances 

(r2=0.19, P< 2.2e-16, linear models).  
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Figure B7: Comparison between the slopes on the methylation and genetic distances over 

geographical distance. The distances in methylation and genetic were estimated as described in 

(Fig B4). Here the distances were scaled for comparison. Association between methylation 

variation and geographical distance is r2=0.09, P= 1.2e-12; and between genetic variation and 

geographical distance is r2=0.04, P< 3.8e-07. 
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Chapter 4 

Differential DNA methylation patterns and host plant use in 

Timema cristinae stick insects 

 

4.1. Summary  

Herbivore insects cope with a set of nutrients and chemical defences from the host plant 

they use. This interaction becomes challenging in a host shift, which likely involves new 

selective pressures. Insects’ dietary requirements and performance at metabolization of 

species-specific chemical compounds may determine the success of colonization. As 

phenotypic plasticity might help organisms to tolerate the new conditions, DNA methylation 

could be a mechanism involved in host shift. However, evidence of this process remains 

elusive. Here, I combined a population survey and a rearing experiment in Timema cristinae 

stick insects to test the hypotheses that DNA methylation variation (1) is associated with 

different host plants and (2) changes following a host shift. Methylome scans using binomial 

mixed models were performed independently in each dataset to estimate candidate regions 

associated with plant use. One gene with functions in digestion and nutrient uptake was 

output in both analyses. The rearing experiment suggested methylation levels responded to 

host shift in a ‘non-adaptive’ way. Despite a few limitations to claim statistical significance 

of some of the results, this work highlights the possible effects host shift exert in 

methylation patterns in T. cristinae.  
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4.2. Introduction 

Interactions between different species have always been a major interest of ecologists 

and evolutionary biologists (Darwin, 1859; Ehrlich and Raven, 1964; Brown and Kodric-

Brown, 1979; Elton, 2001). By studying the inter-related dynamics between species, it is 

possible to shed light on the different factors shaping these associations and on how they 

can affect each other's evolution. In particular, insect-plant interactions are ubiquitous, and 

it is extensively acknowledged that these interactions have contributed to the great 

diversity of extant species in both groups (Bernays and Graham, 1988; Janz et al., 2001; 

Agosta, 2006). Plant-feeding insects are extremely species-rich, corresponding to one 

quarter of all described species in the world3 (May, 1990; Schoonhoven et al. 2005). A 

process that could explain this great diversity is the formation of new species driven by 

adaptation to a new plant species (Nylin and Janz, 2009). However, speciation can only 

occur if the insects are able to persist on the novel host, raising questions regarding the 

mechanisms that generate, maintain and constrain new associations between insects and 

plants (Ehrlich and Raven, 1964; Janz et al., 2001; Agosta, 2006; Janz et al., 2006).  

The insect-plant interactions are described as a constant arms race between the 

plants evolving new defence mechanisms against herbivory, including chemical and 

physical barriers, and the insects counteracting these barriers with detoxification schemes, 

sequestration of poison and alteration of their gene expression patterns (Silva et al., 2001; 

Mello and Silva-Filho, 2002; Schoonhoven et al. 2005). As such, any interaction with a 

specific plant involves not only facing a set of nutrients and water content, but also coping 

with specific chemical defences and toxins (Nylin & Janz 2009). These multiple constraints 

are one possible explanation as to why herbivorous insects are generally host specific 

 
 

 

3 If microbes, fungi and algae are excluded from the calculation.   
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(Bernays and Graham, 1988). The interaction becomes more challenging in the context of 

colonization of a new plant species, which likely involves a very different set of conditions 

and new selective pressures with which adults and their larvae must cope to preserve life 

cycle regulation (Agosta, 2006; Savković et al., 2016). That is, insects’ dietary requirements 

and performance at metabolization of species-specific chemical compounds in the new host 

may determine the success of its colonization (Nylin and Janz, 2009).  In this context, plastic 

responses could help organisms to tolerate the new conditions and allow enough time for a 

population to become established (i.e. where standing genetic variation and/or new 

mutations can provide heritable phenotypes to respond to the novel selection pressures; 

Pigliucci, 2005; Ghalambor et al., 2007). Insects with a broader niche width in host plant use 

(i.e. capable of exploring a variety of plant species) can be considered more plastic 

compared to those with a more specialized diet, as they can respond to a wider set of 

environments and probably handle physiological adjustments (Agosta, 2006). However, the 

mechanisms that allow the colonization of new host plants and niche expansion are still 

largely unknown.   

Epigenetics, particularly changes in DNA methylation status, could be a molecular 

mechanism involved in the colonization of new environments (Richards et al., 2012; Ardura 

et al., 2017). DNA methylation affects processes that can ultimately influence phenotypic 

variation, such as gene expression, alternative splicing and transposable element silencing 

(Law and Jacobsen, 2010). Changes in DNA methylation patterns can change in response to 

biotic or abiotic triggers, and thus can sometimes lead to changes in the phenotype 

(Bossdorf et al., 2008). It has been proposed that DNA methylation could be involved in 

phenotypic plasticity and contribute to an organism’s ability to acclimatize to new 

conditions, acting as a mediator between external environment and internal molecular 

machinery and gene expression (Duncan et al., 2014; Verhoeven et al., 2016; Richards et al., 

2017). In other words, changes in DNA methylation that are sensitive to environmental 

triggers could provide a rapid source of phenotypic variation within an individual’s lifetime. 
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Indeed, manipulation of methylation has been shown to affect patterns of plasticity, such as 

in caste formation in bees (Kucharski et al., 2008; Foret et al., 2012), in resource use of 

nectar-living yeasts (Herrera et al., 2012), and in plant reaction norms (i.e. changes in the 

average phenotype as a function of the environment; Lande, 2009; Bossdorf et al., 2010; 

Zhang et al., 2013). This ability to finely adjust to environmental cues could be especially 

important when faced with novel environments (Herrera et al., 2012; Richards et al., 2012). 

In addition, studies of invasive species report an excess of DNA methylation variation 

relative to genetic variation, suggesting this epigenetic mechanism could facilitate 

establishment on a new habitat by compensating for bottlenecks and founder effects 

(Richards et al., 2012; Liebl et al., 2013; Ardura et al., 2017).  

Despite the potential implications of the effects of DNA methylation on phenotypic 

plasticity and on colonization of new habitats, empirical examples remain scarce. In 

addition, knowledge about DNA methylation patterns and function in insects is quite 

limited, with studies being considerably biased towards investigations of the evolution of 

eusociality (Bewick et al., 2017; Glastad et al., 2018). Hence, whether DNA methylation is 

involved in the process of host plant use by insects and in adjusting to a new plant species 

is unknown. To address some of these topics, I used Timema cristinae (Phasmatodea: 

Timematodea; Vickery, 1993), a species of stick insect native to South California. These 

herbivorous insects live in patchy environments in the Californian chaparral, feeding and 

mating on their host plants (Sandoval et al., 1994a). The species is found in patches of two 

main host plant species: Adenostoma fasciculatum and Ceanothus spinosus (Sandoval, 

1994b). Previous studies have shown that T. cristinae metapopulations probably go through 

many episodes of colonization and local extinction on different patches of these host plant 

species (Sandoval, 1994b; Farkas et al., 2013).  

I used natural populations to first test the hypothesis that (1) there is an association 

between methylation variation and environment. I predicted T. cristinae individuals would 

have different methylation patterns depending on the host plant they feed on in the wild 
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(i.e. ecotype). To this end, a population survey was conducted to investigate the natural state 

of methylation variation in the established populations. In addition, an experiment was 

performed to test the hypothesis that (2) DNA methylation is sensitive to the environment. 

To this end, adult insects were collected from a population where Ceanothus is the dominant 

plant, and reared on the same ‘home’ host, and on Adenostoma, to simulate a host shift (Fig. 

1). I predicted the specimens reared in the home host would present similar methylation 

patterns found in the Ceanothus natural populations. In addition, I predicted the individuals 

reared in Adenostoma would respond to the environmental change by altering the 

methylation status resembling the patterns found in Adenostoma natural populations (Fig. 

2). In both studies, binomial mixed models were used to test for associations between 

methylation variation and host plants, with genetic variation fitted as a random effect (see 

Chapter 3). This approach is analogous to genome scans used in population genetics, and 

tests for regions in the genome that are associated with a specific environmental factor (e.g. 

Hohenlohe et al., 2010). There was an association between methylation variation and 

ecotype in natural populations, and there was an indication that some methylomic regions 

were sensitive to host shift. A gene with functions related to digestion and nutrient uptake 

was output in both analyses. The results suggest that if a true methylation change occurred 

in the experiment, it happened in the opposite direction from the presumed local optimum. 

Despite the study’s limitations on not being able to correct for multiple testing in the 

binomial mixed models analyses and regarding the low statistical power arising from the 

small sample size in the transplant experiment, this work highlights the possible effects host 

shift exert in methylation patterns. 
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D  
Figure 2: Hypothetical scenario of a methylation change in response to host shift. Individuals from 

a dominant Ceanothus population were reared in Adenostoma (A) and Ceanothus cuttings (C). The 

points represent the methylation levels found in Adenostoma and Ceanothus ecotypes in natural 

populations. Assuming the insects reared in Ceanothus would present the same levels found in the 

source natural population, there are three possible directions of response to the host shift 

treatment. If the methylation levels in each native habitat are optimal, then the change could play 

a beneficial role if the direction of the change goes in the same direction as the optimum state (blue 

arrow). On the other hand, it could be detrimental if it goes in an opposite direction (red arrow), 

as it results in a response that is far from the optimum (i.e. a ‘non-adaptive’ response). The grey 

arrow represents a lack of reaction to the host plant environment. Dashed line is represented for 

a reference of an ‘optimal response’. Figure inspired by Ghalambor et al. (2007). 

 

Figure 1: Rearing experiment performed in adult female T. cristinae of Ceanothus ecotype, from a 

population where Ceanothus is the dominant plant (SC locality). Two specimens were flash frozen 

right after collection to be used as the experimental control. Two females were reared in Ceanothus, 

and two in Adenostoma for 10 days, and then preserved. These six females had their methylome 

sequenced to test the lability of DNA methylation status after shifting to a different host plant. I 

tested the association between methylation levels and the host plant species the insects last fed on. 

Insect pictures are only examples and do not represent the individuals used in this study.  
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4.3. Material and Methods 

4.3.1. Study system 

T. cristinae stick insects are normally found on two morphologically distinct species 

of plant: Ceanothus spinosus (Rhamnaceae) and Adenostoma fasciculatum (Rosaceae). As 

described in Chapter 3, T. cristinae ecotypes are defined by the host plants they are found 

on, characterizing the ‘Ceanothus ecotype’ and the ‘Adenostoma ecotype’ (Nosil, 2007). The 

ecotypes differ in characteristics related to host plant use, with the most evident one being 

the presence or absence of a highly heritable dorsal white stripe, which characterizes the 

‘striped’ and ‘green’ morphs (Fig. 3 in Chapter 1). The striped morph is more frequently 

found in Adenostoma, and the green morph in Ceanothus plants (Sandoval, 1994a). Previous 

experiments showed the striped morph is more cryptic and suffers less predation on the 

needle-like leaves of Adenostoma, whereas the green unstriped morph is more cryptic and 

suffers less predation on the broad leaves of Ceanothus plants (Sandoval, 1994a). That is, 

divergent selection promoted by differential predation between the two host species 

contributes to ecological isolation between the two ecotypes (Sandoval, 1994a; Nosil and 

Crespi, 2006). Previous studies showed these two ecotypes differ in a suite of other traits, 

including size, host plant preference, mate choice, and cuticular hydrocarbons (CHCs), 

molecules with roles in anti-desiccation and in insect communication (Nosil et al., 2006; 

Nosil, 2007; Chung et al., 2014; Riesch et al., 2017).  

 

4.3.2. Sampling 

Specimens used in the population survey were sampled as described in Chapter 3. 

Previous studies have shown that the Adenostoma environment likely offers some 

physiological challenges to T. cristinae individuals compared to Ceanothus, as lifetime 

fecundity is significantly reduced when they are reared on this host species (Sandoval and 

Nosil, 2005; Nosil and Sandoval, 2008). Thus, for this work, the consequences of a host shift 
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from Ceanothus to Adenostoma were evaluated on DNA methylation. To this end, samples 

were collected at Stagecoach (SC; latitude 34.523, longitude -119.832), a locality where 

Ceanothus is the dominant plant.  Specimens were sampled on 6th May 2016, by shaking 

bushes of Ceanothus plants and collecting insects falling onto sweep nets.  

 

4.3.3. Rearing experiment 

A rearing experiment was performed to test the effects of host plant on T. cristinae 

DNA methylation.  The experiment consisted of three treatments (Fig. 1). The first one was 

the experimental control, where the individuals were flash frozen one day after sampling to 

represent the natural DNA methylation status in the population. The second treatment 

involved rearing the specimens on the same host plant they were collected on (i.e. Ceanothus 

plants) for ten days. Finally, for the third treatment the samples were reared in Adenostoma 

plants for ten days to simulate a host shift. Similarly-sized adult females were used for each 

treatment (i.e. six individuals in total; Table 1). Individuals were digitally photographed 

under the same standard conditions used for the population survey (Riesch et al., 2017). 

The samples were flash frozen using liquid nitrogen immediately after their designated 

rearing time, then preserved at -80OC temperature.  

Table 1: Details about individuals used in the rearing experiment. All individuals were collected from 

the same population (SC - Ceanothus) on the same date (6th May 2016). Natural population treatment 

involved flash freezing the individuals one day after sampling, while other treatments involved 

rearing the specimens on the designated host plant.  

Ind. Morph BL BW HW Treatment 

16_0116 green 2.2 0.4 0.2 natural pop. 

16_0122 green 2.2 0.4 0.2 Adenostoma 

16_0137 green 2.2 0.4 0.2 Ceanothus 

16_0138 green 2.3 0.4 0.2 Adenostoma 

16_0142 striped 2.2 0.4 0.2 natural pop. 

16_0182 green 2.2 0.4 0.2 Ceanothus 

Morphometric measurements (in centimetres) body length (BL), body width (BW) and head width 

(HW) were estimated using in ImageJ 1.4.882 (Abràmoff et al., 2004), following previous works in T. 

cristinae (Comeault et al., 2014). 
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4.3.4. DNA methylation variation 

DNA methylation variation was estimated using whole-genome bisulfite sequencing 

(BS-seq). The methods used to obtain and process BS-seq data for the population survey 

were described in detail in Chapter 2. The same procedures were used to obtain DNA 

methylation variation for the samples used in the experiment. Specific results obtained 

while processing the rearing experiment data are described in the following sections.  

 

4.3.4.1. Whole genome bisulfite sequencing (BS-seq) 

The BS-treatment and sequencing were performed by Biomedicum Functional 

Genomics Unit (FuGU, Helsinki) in February 2018. The libraries were sequenced using the 

Illumina NextSeq 500 system, with High Output 2 x 150 bp runs. The samples were 

processed in three flow cells (i.e. two samples per flow cell) with four lanes each.  

 

4.3.4.2. Read mapping and methylation calls 

Filtering was done using Trimmomatic (0.36; Bolger, Lohse, & Usadel, 2014) 

following the same steps described in Chapter 2. The mean [95% confidence interval] 

number of reads across the six samples, after filtering, was 31,385,445 [23,882,505 – 

38,888,385] (Table C1). Following the steps used in the population survey protocol, samples 

were subsampled to a maximum of 24 million reads randomly sampled from the .fastq files 

before mapping. This step was performed to minimize differences between the three flow 

cells.   

The reads were mapped using Bismark (0.16.1; Krueger and Andrews, 2011). First, 

the good quality reads were mapped to the BS-transformed Lambda phage genome to 

isolate the data from this strain, and to obtain the estimates of BS conversion. This mapping 

step yielded a mean across samples of 726,076 [383,617 – 1,068,535] reads mapped 

uniquely to the Lambda phage (mapping efficiency of 3.0% [2.6% – 3.4%]; Table C1). The 

proportion of methylated cytosines in the phage was 0.4% in CpG context, which means the 
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mean mapping efficiency was 99.6% across the six samples. The reads that were not 

mapped to the phage (23,138,640 [22,775,084 – 23,502,196]) were then aligned to T. 

cristinae BS-converted reference genome, yielding 9,819,082 [9,535,164 – 10,103,000] 

uniquely mapped reads (mapping efficiency of 42.4% [41.9% – 42.9%]; Table C2). The ‘–-

cytosine_report’ option from the ‘bismark_methylation_extractor’ tool was used to extract 

the methylation call for every single cytosine in each context from the mapped files. In this 

work, I focused on methylation in CpG dinucleotides because this is the context most often 

targeted by methylation in Timema and in other animals (Suzuki and Bird, 2008).  

 

I removed potential single nucleotide polymorphisms (SNPs) that could confound the 

estimate of methylation variation at a specific site (i.e. single methylation polymorphisms 

or SMPs; see Chapter 3). Similar to the population survey (Chapter 3), at the end of these 

steps tables of each individual, at each genomic position were obtained with information 

on: the number of reads with methylated cytosines (i.e. unconverted cytosines), the number 

of reads with non-methylated cytosines (i.e. number of thymines), and the proportion of 

reads with methylated cytosines (i.e. methylation levels).  

The function unite in the R package methylKit (v1.0.0; Akalin et al., 2012) was used to 

generate a single joint table with variable methylation information at sites that were 

present across all 6 samples. That is, this function only retained information at sites that 

were covered in all individuals.  The sites with coverage outliers above the 99.9th percentile 

were removed to avoid PCR bias (i.e. above 60 reads). The most stringent cut-off of at least 

five reads covering a site was used at this analysis, aiming to preserve more information at 

each SMP. This joint table comprised 103,873 sites.  All the reported statistics were 

performed using R (3.3.1; R Core Team 2016). 

 

4.3.5. Genetic variation 

A restriction site associated DNA sequencing (RAD-seq) was used to generate 

genome-wide single nucleotide polymorphism (SNP) data, following previous studies in the 
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system (Comeault et al., 2015, 2016). Description of the methods to obtain genetic variation 

are detailed in Chapter 3 (section 3.3.5), where the genotypic data for both the population 

survey and experiment were processed together. 

  

4.3.6. Clustering analyses  

Hierarchical clustering analyses were performed on the six samples used in the 

experiment to obtain general patterns of methylation variation. The methylation levels 

were used to calculate the pairwise Euclidean distances between all individuals at each site 

(see section 3.3.5.2 in Chapter 3). The outputted distance matrix was used in the hierarchical 

clustering analysis, applying the ‘Ward D’ agglomerative criterion. Analyses were 

performed using hclust function in R (3.3.1; R Core Team 2016). In addition, I performed the 

same analyses using the genetic data, for comparison. For this, I used the genotypic 

probabilities stored in BIMBAM format, and calculated the pairwise Euclidean distances 

between the six individuals.  

 

4.3.7. Methylome scan: binomial mixed models 

To determine the effects of host plant on methylation levels I used the approach Mixed 

model Association for Count data via data AUgmentation (MACAU), developed by Lea et al. 

(2015). For each site, the model estimates the host plant effect on the methylation level, 

while controlling for relatedness in the samples. It does so by incorporating a matrix of 

pairwise kinship, which is treated as the variance-covariance matrix for the heritable 

component of the random effects (Lea et al., 2015; Lea et al., 2017). The kinship matrix can 

be estimated using the genetic variation in the dataset, and modelled as the ‘genetic random 

effect’. In addition, MACAU works directly with count data, which maximises power in 

analyses of bisulfite sequencing datasets (see Chapter 3).  

 



132 

4.3.7.1. Methylome scan in the population survey 

To perform the methylome scan on the population survey, I used the joint table with 

single methylation polymorphisms (SMPs) from the 24 samples with minimum coverage of 

five reads per site (see section 3.3.5 in Chapter 3). MACAU does not generate consistent 

outputs with SMPs that have methylation levels around 0% or 100% in all samples. These 

sites that are consistently hypomethylated or consistently hypermethylated, respectively, 

tend to return spurious outputs in MACAU, in a way that the values for the beta coefficient 

(i.e. the effect size of the predictor ‘host plant’ in the methylation levels, Eq. 4 in Chapter 3) 

were not repeatable (see Appendix B ‘Testing MACAU’ in Chapter 3). To assure the SMPs 

were sufficiently variable to run the model, I selected sites where at least two individuals 

had methylation levels above 25% (> 0.25) or below 75% (< 0.75). This step excluded the 

sites that were consistently hypomethylated or consistently hypermethylated (following 

Lea et al. 2016), retaining 13,050 sites. With this table, the effect of ecotype was modelled 

on methylation levels. That is, whether the host plant that the specimens were collected on 

could explain methylation variation in specific genomic regions. With this analysis, I could 

test the association between methylation variation and ecotype in the natural state. The 

bisulfite conversion rates were used at each sample as a covariate, as well as the climatic 

variables first principal component (see Chapter 3). The kinship matrix was calculated using 

the genotypic probabilities obtained from RAD-seq data, and was modelled as the genetic 

random effects.  

 

4.3.7.2. Methylome scan in the rearing experiment 

I performed the methylome scan to test for a host shift effect on methylation variation 

in the samples used in the rearing experiment. As a predictor, I considered the host plant a 

specimen last fed on. That is, the two specimens that were reared in Adenostoma were 

compared to the ones that were reared in Ceanothus and to the ones that were preserved 

right after collection in their natural habitat (Fig. 1). The joint table with SMPs in the six 
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samples was used, selecting sites where at least two individuals had methylation levels 

above 25% (to deviate from consistently hypomethylated sites) or below 75% (to deviate 

from the consistently hypermethylated sites; yielding 10,540 sites in total). The bisulfite 

conversion was used as a covariate, and added the rearing treatment as the other covariate 

(i.e. whether the insects were reared in laboratory conditions, or not). The genotypic 

probabilities obtained from the RAD-seq data were used to estimate a kinship matrix, which 

was modelled as a random genetic effect. Because it was not possible to correct the outputs 

for the multiple testing problem (see section 4.4.2.1), I carried on with the investigations 

using the SMPs with an output p-value lower than 0.01, which were considered as 

‘putatively significant SMPs’. 

 

4.3.7.3. Triangulation 

In the search for candidate sites with effect in both population survey and in the 

experiment, I overlapped the putatively significant SMPs coming from the two MACAU 

outputs (i.e. SMPs with p-value < 0.01, but not corrected for multiple testing). This was 

obtained by calculating the minimum physical distance in base pairs between the putatively 

significant sites using R (3.3.1; R Core Team 2016) and then finding those that had an 

overlap of 10kbp or less. The overlap of randomized sites was not estimated in this study, 

and thus the expectations for the triangulation were not known to determine if the results 

are truly valid (i.e. to test whether the pattern was expected by chance or not). Thus, results 

from the triangulation analyses were interpreted and discussed, but they do not represent 

a statistically significant pattern. 

 

4.3.8. Annotation 

The genomic features at the putatively significant sites were obtained using the T. 

cristinae genomic annotation table (Villoutreix et al. in prep). Only genes with InterPro or 

GO accessions were analysed (InterPro EMBL-EBI; Gene Onthology, UniProt), and 
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considered upstream and downstream regions as 1kb at 5’ and 3’ from the genes (see 

Chapter 2). In addition, I also used the T. cristinae repeatmasker database (Villoutreix et al. 

in prep) to extract information about transposable elements (TEs), focusing only on TEs 

families that contained more than 400 repeats across the T. cristinae genome (Chapter 2). 

 

4.3.9. Transcriptome 

To evaluate expression at these different regions, I accessed an available 

transcriptome, previously published (1KITE project; Misof et al., 2014). Briefly, the reads 

from these datasets were filtered using Trimmomatic (0.36; Bolger, Lohse, & Usadel, 2014)  

using default parameters and subsequently aligned to the T. cristinae reference genome 

1.3c2 (Nosil et al., 2018) using STAR (Dobin et al., 2012). The basic two-pass mapping was 

used, and all reads were mapped in the first step, discarding alignments with a ratio of 

mismatches greater than the 5% of the mapped length (--twopassMode Basic --

twopass1readsN -1 --outFilterMismatchNmax 999 –outFilterMismatch-NoverLmax 0.05). 

The aligned reads were then summarized into transcripts read counts and normalized read 

counts (FPKM) using TopHat and Cufflinks (Trapnell et al., 2013).  

 

4.4. Results 

4.4.1. Clustering analyses 

Results from the clustering analysis on the population survey were reported in 

Chapter 3. I showed DNA methylation variation does not cluster according to ecotype, but 

that it has a tendency to group in geographical space following the distance between 

populations. This is because DNA methylation variation was significantly associated with 

genetic variation, which is known to be more differentiated the more geographically distant 

two populations are from each other (Sandoval et al., 1994; Jenkins et al., 2010), implying 

there is an isolation-by-distance pattern in methylation variation. On the other hand, the 

dendrograms estimated from methylation differences on the rearing experiment samples 
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did not seem to reflect the ones generated with genetic variation (Fig. 3). Instead, 

individuals that were reared in Adenostoma, seemed to share similarities in the methylation 

patterns that are related to the host shift treatment. There was no correlation between DNA 

methylation variation and genetic variation (adjusted r2=0.00, P= 0.93, linear models), and 

a low correlation between DNA methylation variation and host plant (r2=0.14, P=0.18, linear 

models).  

 

Figure 3: Hierarchical clustering using the samples from the experiment on (A) DNA methylation 

variation, estimated using methylation levels; and (B) on genetic variation, estimated using 

genotypic probabilities between the samples. Euclidean distances were used to estimate 

dissimilarity and ‘Ward.D’ algorithm of clustering. All individuals are from Ceanothus ecotype, and 

here they were represented according to the experimental treatment: ‘natural pop’ as the 

individuals representing the natural population methylation status (i.e. no rearing treatment),                  

C -> C as those reared in the same host plant of origin, and C -> A as reared in the shifted host 

Adenostoma. The dendrograms differ between the two datasets, suggesting there can be some 

disentanglement between epigenetic and genetic variation. Despite the small sample size, these 

results suggest the individuals reared on the shifted host (C -> A) seem to share some similarities in 

methylation patterns, which is not expected from the genetic dendrogram.  

 

4.4.2. Methylome scans 

4.4.2.1. Association between methylation variation and host plants 

In the population survey, differences in methylation levels between ecotypes were 

found across the genome. In total, 62 sites were identified as putatively significant (i.e. p-

value < 0.01), and the results are represented in Fig. 4. The distribution of p-values was 

conservative, with relatively few sites with a p-value < 0.01 (Fig C1). This suggests this data 
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may be prone to type II error, or false negative findings. Thus, the corrections and false 

discovery rates that are normally used for this model (Lea et al., 2015) might not be 

applicable to this data. Thus, different corrections should be applied to attest the validity of 

the results despite multiple testing. Although these corrections were not applied in this 

study, the further investigations were conducted using SMPs with p-value < 0.01 

considering them as ‘putatively significant SMPs’. In any case, MACAU seems to have 

effectively identified sites displaying differential methylation levels between the two 

ecotypes (Fig C2). This suggests the model is retrieving at least some of the sites where 

differences in methylation levels are associated with ecotype. Similar patterns were found 

for the rearing experiment, where 98 sites were putatively significant (Fig. 4). 

 

4.4.2.2. Triangulation 

To search for candidate sites with effect in both population survey and in the 

experiment, the putatively significant SMPs coming from the two MACAU outputs were 

overlapped. Given the very small sample of SMPs for the datasets with minimum coverage 

of five reads, very few regions overlapped in this trial (the closest proximity between the 

putatively significant sites was around 3kbp; Table 2). To expand the analyses, I used 

datasets with minimum coverage of three reads per site, which were modelled in MACAU 

with the same parameters as reported earlier in this Chapter (section 4.3.7). The outputs 

from the population survey and rearing experiment analyses returned 220 and 827 

putatively significant sites, respectively, out of 37,934 and 51,888 sites in total (Tables C3-

C4 for gene ontology enrichment test on putatively significant sites). I found 13 putatively 

significant regions output in both analyses, separated by a distance up to 10kbp (Table 2). 

Because there were not clear expectations for the triangulation tests, this analysis does not 

validate these putatively significant SMPs, but identify some regions for some discussion. 

Among those, one gene was of particular interest, with only 20bp separating the 

differentially methylated cytosines from the two outputs (located in the same exon). This 
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gene (code IPR010629 from InterPro database, EMBL-EBI) was predicted to produce an 

insect allergen protein, and is widespread among Insecta clade (Randall et al., 2013). This 

site was output as putatively significant in the methylome scan using the population survey, 

even with the most stringent coverage (Fig. 4), but was filtered out from the equivalent table 

in the rearing experiment because one sample presented maximum coverage of three reads 

at this site (i.e. 16_0116_natural pop).  

 

 
Figure 4: Manhattan plots representing the results from MACAU methylome scan. (A) Results from 

the population survey, testing for association between methylation levels and ecotype, controlling 

for bisulfite conversion, climatic variables, and using the kinship matrix obtained using RAD-seq as 

random effects. 62 sites (out of 13,501 sites) were returned as significantly associated with ecotype 

(i.e. putatively significant), scattered across the genome. (B) Results using the rearing experiment, 

testing for association between methylation levels and the plant the insects last fed (i.e. natural 

populations and Ceanothus treatment versus Adenostoma treatment), controlling for bisulfite 

conversion, rearing factor (i.e. reared individuals versus natural populations) and using the kinship 

matrix obtained from RAD-seq. 98 sites were identified as associated with the plants (out of 10,540 

sites). The mean heritability (h2) of SMPs was putatively significant in both analyses, with a mean 

of 0.67 [0.15 – 1.0] in the population survey (Chapter 3) and of 0.62 [0.08 – 1.0] in the rearing 

experiment. 

 

I focused on the insect allergen gene because it was the one with the lowest physical 

distance between the two putatively significant sites (i.e. it had the best overlap), and 
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because I could draw a biological explanation linking this result with the interaction 

between T. cristinae and its host plants. In the population survey, the methylation levels are 

higher in individuals from Ceanothus ecotype in this site compared to the ones from 

Adenostoma (Fig. 5A). In the rearing experiment, where the insects were collected on a 

Ceanothus population, the specimens used for the control without rearing and those reared 

in Ceanothus presented similar levels of methylation, mirroring the pattern found in the 

population survey. However, the insects reared on the shifted host, Adenostoma, seemed to 

present a hyper-methylated status at this site (Fig. 5B).  

 

4.4.3. Characterization of the insect allergen gene 

In T. cristinae, this insect allergen gene was found at a single location on linkage group 

7 (LG7), and is composed of three exons. In addition to this gene, other accessions on the T. 

cristinae annotation were found matching the major insect allergen function; relatives of 

this gene family were found as three locations in tandem at linkage group 11 (LG11; Table 

3, Table C5).  However, I found some key differences between the accessions on the different 

linkage groups (Table C6). While the major allergen gene in LG7 had differential 

methylation between the two ecotypes in natural populations, the complex at LG11 was 

generally non-methylated in all 24 samples.  

Although I did not obtain expression data for any of the samples studied, in this study, 

I performed  preliminary analyses by comparing the transcription levels between the two 

regions using previously published transcriptomes (Misof et al., 2014)..In contrast with the 

methylation results, the major allergen gene in LG7 did not have  any transcripts aligned to 

it, or only showed very marginal transcript counts (1KITE; Misof et al., 2014). While there 

is no significant trace of transcription in this region in the datasets, the genes in LG11 have 

more transcripts in both datasets (Table 3). Although these results do not directly represent 

transcription levels in the natural population samples or in the rearing experiment, they 

highlight differences in these genes’ patterns of expression.
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Table 2: Triangulation of putatively significant sites between population survey and rearing experiment testing for association between methylation levels and host 

plant MACAU.  

Scaffold Pos1 Pos2 
Dist. 
(bp) 

Genom. 
feature 

Gene id Gene function 
TEs  
family 

LG7 scaf2404 109093 109073 20 exon 
g3176.t1 
exon2 

Insect allergen (IPR010629) - 

LGNA scaf2744 53520 53441 79 intron 
g26797.t1 
intron10 

Chitin synthase (IPR004835) - 

LGNA scaf1756 246431 246339 92 - - - Gypsy 

LG11 scaf883 1280194 1280436 242 intron 
g15247.t1 
intron2 

Dynein heavy chain (IPR026983);  
Molecular microtubule motor activity (GO:0003777);  
Microtubule-based movement (GO:0007018) 

- 

LG9 scaf157 3295336 3295653 317 exon 
g7990.t1 
exon1 

- 
Helitron 
HRC 

LGNA scaf2537 864606 863490 1116 - - - - 

LGNA scaf3324 334110 336032 1922 
intron/ 
upstream  

g28030.t1 
intron1 

Molecular nucleic acid binding (GO:0003676) Gypsy 

LGNA scaf3384 154160 156607 2447 intron 
g28492.t1 
intron2 

Exonuclease, phage-type (IPR011604);  
Molecular DNA binding (GO:0003677);  
Molecular nuclease activity (GO:0004518) 

RTE / - 

LG2 scaf4016* 
11383 8600 2783 intron / - 

g31109.t1 
intron1 

Peptidase aspartic (IPR008737) BEL / - 

LG7 scaf3745 28703044 28707516 4472 intron 
g55987.t1 
intron6 

Ankyrin repeat (IPR002110);  
Molecular protein binding (GO:0005515) 

- 

LG2 scaf1827 2517557 2523326 5769 - - - - 

LGNA scaf3914 663596 670710 7114 exon 
g29522.t1 
exon1 

Domain of unknown function (IPR025398) - 

LG8 scaf2963 4414172 4404463 9709 intron 

g5289.t1 
intron1/  
g5290.t1 
intron1 

Ribosomal protein (IPR001141); 
Constituent of ribosome (GO:0003735);   
Ribosome (GO:0005840); Translation (GO:0006412) / 
BCP1 family (IPR025602)  

- 

This overlap was obtained by estimating the genomic physical distance in base pairs (Dist. [bp]) between the putatively significant sites in population survey (Pos1) 

and rearing experiment (Pos2). The table is ordered according to the minimum distance (bp) up to 10kbp. Sites in different genomic features are separated by “/”.  

Gene function represent the genes function obtained from InterPro and GeneOntology databases. *This site overlapped between the outputs using tables with 

minimum reads covering each site.  
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Figure 5: Methylation levels at the sites located in the exon from insect major allergen gene at linkage 

group 7. (A) Putatively significant site outputted from MACAU using the population survey (LG7 

scaf2404 position 109093). Differential methylation between ecotypes in natural populations, where 

Adenostoma types [A] generally present lower methylation levels compared to Ceanothus [C]. (B) 

Putatively significant site outputted from MACAU using the rearing experiment (LG7 scaf2404 position 

109073). Individuals representing natural Ceanothus populations [nat] and reared in the same plant 

Ceanothus [C] exhibited similar methylation levels to what was found in the population survey at this 

site. In contrast, individuals reared in Adenostoma [A] were hyper-methylated in this locus, not 

reflecting the pattern found in natural populations.  

 

Table 3: Details of insect major allergen genes locations in T. cristinae genome. Methylation levels are 

the average methylation in exons with minimum coverage of 5 and maximum of 60 reads per site in at 

least one sample in the population survey. 95% CI are represented in brackets. Transcription counts 

reported here correspond to the values found in the 1KITE transcriptome (Misof et al., 2014). 
 

Scaffold Range Gene 
Number 
exons 

Methylation 
levels (%) 

Transcription 
counts 

lg7 scaf2404 107,470 - 110,769 g3176.t1 3 64.4 [7.7] 6.2 

lg11 scaf2779 

75,914 - 76,752 g13444.t1 3 0.0 [0.1] 313.4 

81,099 - 84,449 g13445.t1 4 0.6 [1.0] 2634.1 

99,971 - 100,629 g13446.t1 3 1.0 [1.0] 4247.2 

 

4.5. Discussion 

In this work, I combined a population survey with a rearing experiment to investigate the 

association between methylation variation and environment. The methylome scan output a few 

single methylation polymorphisms (SMPs) that putatively varied with ecotype. Although these 
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results do not imply DNA methylation variation is adaptive in different ecotypes, they suggest 

it might be involved in some aspects of the interaction between T. cristinae and their host plants. 

With the rearing experiment, I tested the property of DNA methylation to change in response 

to host shift. The individuals that were host shifted seemed to share some similarities in the 

methylation patterns, a trend that did not directly mirror genetic variation patterns. Methylome 

scan analyses in both datasets independently output putatively significant SMPs located in an 

exon from a gene belonging to the insect major allergen family, generally known for its role in 

nutrient uptake and for its role in detoxifying functions. In this study, the number of samples 

used in the experiment were very small to obtain a good statistical power in the analyses, and 

the outputs from the binomial mixed models could not be corrected for multiple testing. 

Nonetheless, the results collectively suggest DNA methylation differences could be involved in 

the interaction between Timema and their host plants. 

 

4.5.1. Association between methylation variation and host plant 

As described in Chapter 3, multivariate analyses in the population survey did not 

highlight ecotype as a major clustering factor among samples. Instead, genetic variation was 

the factor that better explained methylation variation between populations. These tests were 

performed using all individual methylation variation at once (i.e. genome-wide variation), not 

discarding the possibility that some specific regions could be significantly associated with 

ecotype. In contrast, the analyses in the rearing experiment suggested some similarities in 

methylation status in the individuals nurtured on the host plant of a different species from the 

one they were collected on (i.e. the shifted host). Considering this pattern seemed not reflect 

the one when only genetic variation was evaluated (Fig. 3), and that all the samples were likely 

exposed to the same environmental conditions, this result suggests a potential direct effect of 

host plant on the methylation levels. Although a better support for the relationships between 
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individuals is required for a clearer interpretation of the patterns (i.e. a larger sample size for 

more statistical power and more elaborate analysis to estimate comparable trees based on 

methylation and on genetics), the results highlight a possible disentanglement between 

methylation and genetic variation in response to host shift.  

MACAU was used to perform the methylome scan in the population survey, for a fine-

scaled evaluation of the association between ecotype and methylation variation at each site. 

The output pointed putatively significant sites spread across the genome, denoting potential 

candidates correlated with ecotype. These results could represent the methylation differences 

existing in the natural state. In other words, one could assume these differences represent the 

local optimum in each ecotype, as they were likely on a stable state that could have arisen from 

a combination of forces that would affect methylation variation (Herrera et al., 2016). On the 

other hand, methylation differences found in the rearing experiment would most likely reflect 

the host plant effect only, given other conditions were standardized. In the rearing experiment, 

I found differentially methylated sites associated with the host plant they last fed on: either on 

the home Ceanothus plants (from the natural population or reared on the same home host 

plant), or on Adenostoma. A triangulation was performed between both analyses’ outputs to 

look for common regions that were putatively significant for differences in methylation 

associated with ecotype. It is important to point that, in this study, one could not estimate 

whether any overlap between SMPs was expected by chance, and thus the validity of the results 

is yet to be confirmed. In any case, this analysis pointed some putatively significant regions 

located within the gene body with particularly interesting functions to raise some discussion. 

One of them was located in a chitin synthase gene (IPR004835, InterPro database). Chitin is 

known to be the main component of insects exoskeletons and inner structures, such as the 

tracheal cuticles and the peritrophic membrane in the guts surface (Merzendorfer, 2006). This 

membrane surrounds the food bolus, and it is responsible for enhancing the efficiency of food 
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digestion and absorption (Cardoso et al., 2019). Another interesting overlap was present in an 

exon belonging to an insect major allergen family. I focused on this specific region in the next 

section not only because it was the one with smallest physical distance in the genome with only 

20bp apart, but also because it was one of the few candidates that allowed a biological 

interpretation about the observed patterns.  

 

4.5.2. Insect allergen gene and ecological context 

The independent results in both the natural population survey and in the experiment 

pointing putatively significant SMPs in the insect allergen gene suggests this region would be 

an interesting candidate to explore the role of methylation in the interaction between Timema 

and their host plants. Insect major allergen genes are widespread in insects (Randall et al., 

2013). Although the roles of major allergen proteins have not yet been characterized, they are 

related to digestion and nutrient uptake (Gore and Schal, 2004; Suazo et al., 2009), and their 

genes’ activity is upregulated after feeding (Dostálová et al., 2011; Nolan et al., 2011). Thus, this 

gene could somehow be involved in the digestion of the plants ingested by T. cristinae. 

Interestingly, the nitrile-specifier protein (NSP) gene belongs to the major allergen gene family, 

which in the cabbage white butterfly and its relatives (Pieridae family) produces a detoxifying 

enzyme to counteract Brassicales’ glucosinolate defensive compounds (Fischer et al., 2008). It 

was described as a key innovation in the evolution of these butterflies, as it had a single 

evolutionary origin, and it allowed the colonization of Brassicales followed by significantly 

increased diversification rates (Wheat et al., 2007). This is the best described gene in the family; 

albeit it is thought to be more derived compared to other insect allergen genes in the literature 

(Fischer et al., 2008).  

 

I predicted the methylation status on individuals reared in Ceanothus and Adenostoma 

would mirror the patterns found in the natural populations. This was based on the notion that 
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plastic responses that happen in the direction of the optimal phenotype in the new habitat can 

be advantageous, as they provide broader tolerance and hence higher fitness in the new 

environmental conditions (Ghalambor et al., 2007; Nicotra et al., 2015). Following this, it was 

expected the individuals shifted to Adenostoma would respond to the new conditions by 

changing the methylation status in the same direction observed in the Adenostoma natural 

populations. However, I found that the differential methylation patterns in the candidate on the 

insect allergen gene were distinct between the two results.  

Although the levels of methylation at the insect allergen gene in the individuals from the 

home host reflected the patterns found in the wild, the reaction to the Adenostoma rearing 

environment did not follow the expected direction of methylation change. That is, instead of a 

reduction in the methylation levels, I observed a hypermethylated status (Fig. 5). This result 

can be interpreted as a response in the opposite direction from the optimum (i.e. as a non-

adaptive response). When populations experience new environments, it is likely they respond 

in a non-adaptive way, because they bring traits and responses evolved elsewhere (i.e. selection 

has not had an opportunity to act on the basis for plasticity; Agosta, 2006; Ghalambor et al., 

2015). Although it drives the trait further away from the presumably adaptive peak, this non-

adaptive response could also influence evolutionary trajectory in the novel environment. It is 

predicted to increase the strength of directional selection as it reduces relative fitness in the 

new environment (Conover et al., 2009). In their study with guppies, Ghalambor et al. (2015) 

showed the main changes in gene expression reacting to a novel environmental cue in the 

laboratory was contrary to the pattern found in the transplanted populations in the wild.  In 

other words, the controlled conditions in the laboratory allowed individuals to express the non-

adaptive plastic response, while those with the same reaction in the natural transplant were 

possibly removed by strong directional selection – leaving just the ones with a more 

constrained plastic response. Some authors argue non-adaptive plasticity can increase the 
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phenotypic variance around the mean due to expression of cryptic genetic variation (Conover 

et al.; Pfennig et al., 2010). In other words, whereas beneficial plastic responses can buffer 

genetic variants and facilitate their accumulation, a change in the environment followed by a 

non-adaptive plastic response might release this variation and allow the populations to 

respond rapidly to the new selective pressures.  

 

Given the above, it is possible the insect allergen methylation levels could respond in a 

‘non-adaptive’ way to a host shift, which would compromise the activity of this gene and 

consequently performance in the new habitat. In this study, it was not possible to evaluate the 

consequences of this differential methylation on the insect allergen gene. That is, differential 

gene expression was not evaluated in this study, and neither did I estimate phenotypic or fitness 

differences associated with host shift to extrapolate the conclusions about non-adaptive 

response. In addition, it is important to note the plastic response in methylation reported here 

could be under genetic control, although more analyses are required to test it. In their work, 

Dubin et al. (2015) showed a significant association between DNA methylation variation and 

temperature in Arabidopsis thaliana. Using several genome-wide analyses, they found a marked 

association between this variation and the genetic background, suggesting the epigenetic 

response was under genetic control. A similar approach could be applied to T. cristinae, 

although a bigger sample size would be required, preferably from fewer populations to reduce 

the genetic structure.  

 

Results from this study suggest methylation patterns could change following an 

environmental change, a phenomenon that may be linked to rapid and reversible phenotypic 

plasticity (Huang et al., 2017; Metzger and Schulte, 2018). Previous studies revealed T. cristinae 

performs fairly well on both host plants (e.g. Nosil, 2007). In fact, Timema species seems to have 

retained plasticity in host use, being able to process and metabolize a series of host plants 

(Larose et al., 2019). This suggests Timema stick insects possess a diverse molecular machinery 
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to cope with host shifts, likely involving plastic responses. To expand our knowledge of how 

methylation is associated with host plant use and how it responds to a host shift, future work 

should increase the sample size and the methylome coverage to be able to explore a greater 

number of regions present in all individuals, and to obtain substantial statistical power to 

validate what in this study was considered ‘putatively significant SMPs’. In other words, to 

validate these results (obtained using ‘putatively significant SMPs’) future studies should 

correct for multiple testing to consider the SMPs that are truly significantly associated with 

ecotype differences in downstream analyses. In addition, not only could careful assessment of 

phenotypic traits such as gain of body mass and reproductive performance be evaluated, but 

also the question of whether the changes in methylation following host shift are linked to 

differences in expression could be investigated. 

 

In this work, I focused on adjustments to new environmental conditions in adult 

individuals, a process that can be called ‘acclimation’. That is, the experiments did not evaluate 

changes during development, which tend to result in stable phenotypic changes that remain 

throughout an organism’s lifetime (Metzger and Schulte, 2018). Future experiments could 

perform a host shift in early stages of development to assess how methylation could vary with 

this process. Such an experiment, coupled with measures of weight gain, survival, and fecundity 

would provide a good opportunity to find links between methylation variation, phenotype and 

fitness, and help generate a clearer picture of the relevance of methylation variation to 

ecological processes in T. cristinae. 

 

4.5.3. Evolution of insect major allergen genes 

The major allergen gene is normally found in many copies in insect genomes. They can 

either be found in tandem as part of a major gene complex or isolated as a single major domain. 
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In Timema cristinae, this gene was found as a single locus in LG7 and as three loci in tandem at 

LG11 (Table 3). While the major allergen gene in LG7 has differential methylation in different 

ecotypes in natural populations, the complex at LG11 was generally non-methylated in all 

samples. In contrast with the methylation results, the major allergen gene in LG7 showed no 

signal, or very marginal read counts in the available transcriptome datasets (Comeault et al., 

2012; Misof et al., 2014). There was not a substantial trace of transcription in this region in 

either of the datasets, whereas the genes in LG11 seemed to be highly transcribed in both of 

them (Table 3). Although these results do not directly represent the gene expression patterns 

in the natural population samples or in the rearing experiment, they shed light on the evolution 

of these genes and setup a direction for future investigations. 

Rodin and Riggs (2003) proposed DNA methylation as a mechanism that facilitates the 

conversion of duplicate genes into pseudogenes or towards functional diversification. Their 

models show DNA methylation could alter the roles of duplicated genes and prevent them from 

becoming pseudogenes by partitioning the functions performed by the ancestral gene between 

the duplicates, a process called sub-functionalization. That is, the divergence in gene-body 

methylation could play a functional role in influencing evolution and divergence of paralogs. 

Indeed, the frequency of functional young gene duplicates is higher in organisms with high 

levels of DNA methylation (e.g.  mammals and plants), compared to those with little or no 

methylation (e.g. insects and nematodes; Lynch, 2000). Studies have shown divergence in 

methylation levels and patterns in paralog genes correlates with their sequence and expression 

divergences – in the great majority of duplicate pairs, one pair is always hyper-methylated 

compared to the other one (Keller and Yi, 2014; Wang et al., 2014). Kucharski et al. (2016) 

studied honeybees’ odorant binding proteins (obp), molecules that facilitate the delivering of 

external particles to the odorant receptors. The genes for these proteins are found in many 

copies across the genome, and they showed DNA methylation could have been the mechanism 
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driving functional diversification of one of these genes (opb11) from its non-methylated tandem 

partner opb10 by affecting alternative splicing. 

 

Hence, it is possible methylation is related to the evolution of the major allergen genes in 

T. cristinae. For a better understanding of the context of this divergence, future studies could 

investigate the genetic differences between the copies of the insect allergen genes and their 

evolution. The divergence between the different copies of the genes could be estimated, and 

classical diversification tools could be used to determine the rate of evolution of these paralogs. 

Signatures of selection (e.g. dN/dS ratios or Macdonald Kreitman tests) could be used in the 

future within the Timema radiation to look for non-neutral evolution of these gene families, and 

help elucidate their role in host plant use.  

 

4.6. Conclusion 

My findings suggest there can be an association between host plant use in T. cristinae and 

DNA methylation variation in some regions. In addition, they point putatively significant SMPs 

in a gene that could be relevant to processing food resources (i.e. the major insect allergen 

gene), and hypothesised that some of this variation could be subject to rapid change following 

an environmental shift. That is, it is possible DNA methylation could be associated to the 

relationship between these stick insects and their native host plant, even though the 

modification following the environmental change happened in the opposite direction from the 

expected pattern in nature, suggesting host shift could trigger ‘non-adaptive’ responses. 

Multiple copies of the major allergen gene, with different methylation patterns, were found in 

T. cristinae genome, which could imply a history of sub-functionalization and function 

diversification. This work highlights the importance of using data acquired from natural 

populations, combined with a controlled-conditions experiment in the understanding of DNA 
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methylation’s ecological relevance. Although more studies are required to support these 

conclusions, this work gave a first step towards understanding the importance of DNA 

methylation and insect-plant interactions and host shift.  
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Appendix C: Supplementary Tables and Figures – Chapter 4 

Table C1: Details about bisulfite sequencing data from the 6 individuals used in the rearing experiment 

when mapped to Lambda phage.  

Ind. Treat. Flow 
cell 

Reads 
parsed* 

Reads 
mapped 

Mapping 
efficiency 

Number 
mCpG 

mCpG mCHG mCHH 

16_0116 nat. 4 42963472 1398462 5.8% 77139 0.3% 0.4% 0.4% 

16_0122 A 5 43202411 433013 1.8% 25298 0.4% 0.5% 0.4% 

16_0137 C 6 24809873 359913 1.5% 19499 0.3% 0.4% 0.4% 

16_0138 A 4 26399313 628230 2.6% 36563 0.4% 0.4% 0.4% 

16_0142 nat. 5 23188300 456682 2.0% 29624 0.4% 0.5% 0.5% 

16_0182 C 6 27749302 1080158 4.5% 58438 0.3% 0.4% 0.4% 

Treat= Experimental treatment, where ‘nat’ corresponds to experimental control (flash frozen right after 

sampling), ‘A’ corresponds to rearing treatment in Adenostoma, and ‘C’ to rearing treatment in Ceanothus. 

Flow cell= Information about the flow cell that each individual was sequenced. Details about flow cells 1-

3 are described in Chapter 3. Reads parsed= Represents the total number of reads retained after filtering. 

This step was followed by a random subsampling of 24 million reads in each sample before mapping. 

Reads mapped= Number of reads uniquely mapped to the unmethylated Lambda phage BS-converted 

genome, starting from the 24 million reads. Mapping efficiency= Percentage of reads uniquely mapped 

to Lambda phage. Number mCpG= number of methylated cytosines in CpG context. mCpG, mCHG, and 

mCHH correspond to the proportion of methylated cytosines in each one of those contexts. 

 

Table C2: Details about BS-seq data from the 6 individuals used in the rearing experiment when mapped 

to T. cristinae BS-converted reference genome 1.3c2. Mapping was performed using the reads that were 

not mapped to the phage. 

Ind. Treat. Flow 
cell 

Non-map. 
reads 

Reads 
mapped 

Mapping 
efficiency  

Number 
mCpG 

mCpG* mCHG mCHH 

16_0116 nat. 4 22601538 9588269 42.4% 4659828 9.2% 0.4% 0.4% 

16_0122 A 5 23566987 9601128 40.7% 5093721 10.2% 0.5% 0.5% 

16_0137 C 6 23640087 10352246 43.8% 6581194 11.3% 0.5% 0.5% 

16_0138 A 4 23371770 9935347 42.5% 5115671 9.3% 0.5% 0.5% 

16_0142 nat. 5 22731618 9416473 41.4% 5208409 10.4% 0.5% 0.5% 

16_0182 C 6 22919842 10021163 43.7% 6146275 11.1% 0.5% 0.5% 

Non-map. reads= Number of reads that were not uniquely mapped to the Lambda phage. Reads mapped= 

Number of reads uniquely mapped to T. cristinae BS-converted reference genome starting from the reads 

that were not mapped to the Lambda phage. Mapping efficiency= Percentage of reads uniquely mapped 

to T. cristinae. Number mCpG= number of methylated cytosines in CpG context. mCpG, mCHG, and mCHH 

correspond to the proportion of methylated cytosines in each one of those contexts. 

* Proportion of methylated CpG is lower than the mean from population survey. The causes of that difference 
are not understood, but are likely a result of differences in the manipulation of the samples.    
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Gene Ontology (GO) of putatively significant sites outputted at MACAU 

I generated a list of GO terms that were over-represented in genes with differently 

methylated sites varying with host plant, output from analyses using MACAU (Lea et al., 2015). 

The number of putatively significant sites in each gene were counted, and their enrichment in 

certain GO terms were estimated using the R package TopGO (v 2.34.0). This analysis was 

performed independently for the population survey (Table C3) and for the rearing experiment 

outputs (Table C4), using the minimum coverage of three reads per site. I performed the 

analysis using genes that presented at least one differently methylated site versus the genes 

without any hits. Fisher’s Exact Tests were used to calculate the significance of the enrichment, 

coupled with a weight algorithm. This algorithm uses a hierarchical approach to compute the 

p-value of a GO term, conditioning the process based on the neighbouring terms (i.e. it accounts 

for GO topology). Hence, the tests are not independent from each other, which means the 

multiple testing theory does not apply. Given this, the authors of the R package attest the p-

values are internally corrected and do not need further correction for multiple testing.  
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Table C3: List of Gene Ontology (GO) terms significantly enriched in sites associated with host plant in 

the population survey (minimum of three reads per site). I tested for genes containing at least one 

putatively significant site (i.e. with p-value < 0.01; n=101 genes) compared to genes without putatively 

significant sites (n=4,540). Fisher’s exact test was used with the weight algorithm, which accounts for GO 

topology using R package TopGO. Few terms were significant, and here I represented those with p-value 

< 0.05.  

GO term Category Description Annot. Signif. 
Fold  

enrich 
p-value 

GO:0005198 MF Structural molecule activity 45 5 4.9 0.0032 

GO:0004601 MF Peroxidase activity 6 2 14.3 0.0072 

GO:0006979 BP Response to oxidative stress 7 2 14.3 0.0075 

GO:0020037 MF Heme binding 19 3 7 0.0084 

GO:0000214 CC 
tRNA-intron endonuclease 
complex 

1 1 50 0.015 

GO:0030130 CC 
Clathrin coat of trans-Golgi 
network vesicule 

1 1 50 0.015 

GO:0030132 CC Clathrin coat of coated pit 1 1 50 0.015 

GO:0000379 BP 
tRNA-type intron splice site 
recognition and cleavage 

1 1 50 0.0198 

GO:0006857 BP Oligopeptide transport 1 1 50 0.0198 

GO:0043461 BP 
Proton-transporting ATP 
synthase complex assembly 

1 1 50 0.0198 

GO:0000213 MF 
tRNA-intron endonuclease 
activity 

1 1 50 0.0228 

GO:0004385 MF Guanylate kinase activity 1 1 50 0.0228 

GO:0004719 MF 
Protein-L-isoaspartate (D-
aspartate) O-
methyltransferase activity 

1 1 50 0.0228 

GO:0008889 MF 
Glycerophosphodiester 
phosphodiesterase activity 

1 1 50 0.0228 

GO:0031072 MF Heat shock protein binding 1 1 50 0.0228 

GO:0009408 BP Response to heat 2 1 25 0.0392 

GO:0051090 BP 
Regulation of DNA-binding 
transcription factor activity 

2 1 25 0.0392 

GO:0005858 CC Axonemal dynein complex 3 1 20 0.045 

‘BP’ represents biological process, ‘CC’ category represents cellular component, and ‘MF’ represents 

molecular function. Annot=number of genes with the annotated GO term; Signif=how many genes with 

the GO term contained putatively significant sites.    
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Table C4: List of Gene Ontology (GO) terms significantly enriched in sites associated with host plant in 

the rearing experiment (minimum of three reads per site). I tested only for putatively significant sites 

(i.e. p-value < 0.01; n=427) compared to the remaining sites (n=6,953), within the gene body. Fisher’s 

exact test was used with the weight algorithm, which accounts for GO topology using R package TopGO. 

Few terms were significant, and here I represented those with p-value < 0.05.  

GO term Category Description 
 

Annot. Signif. 
Fold 
enrich. 

p-value 

GO:0007018 BP 
Microtubule-based 
movement 

 
75 13 2.6 0.002 

GO:0003777 MF 
Microtubule motor  

activity 

 
71 11 2.5 0.004 

GO:0005509 MF Calcium ion binding  107 14 2.1 0.006 

GO:0005615 CC Extracellular space  14 4 4.5 0.010 

GO:0046578 BP 
Regulation of Ras 
protein signal 
transduction 

 

29 6 3.1 0.011 

GO:0017048 MF Rho GTPase binding  26 5 3.1 0.020 

GO:0004725 MF 
Protein tyrosine 
phosphatase activity 

 
27 5 3.0 0.023 

GO:0016311 BP Dephosphorylation  37 6 2.4 0.034 

GO:0008138 MF 
Protein tyrosine / 
serine / threonine 
phosphatase activity 

 

5 2 6.5 0.034 

GO:0008173 MF 
RNA methyl-
transferase activity 

 
12 3 4.0 0.034 

GO:0001539 BP 
Cilium or flagellum-
dependent cell 
motility 

 

5 2 6.1 0.039 

GO:0005977 BP 
Glycogen metabolic 
process 

 
6 2 5.0 0.041 

GO:0004930 MF 
G protein-coupled 
receptor activity 

 
22 4 2.9 0.044 

‘BP’ represents biological process, ‘CC’ category represents cellular component, and ‘MF’ represents 

molecular function. Annot=number of genes with the annotated GO term; Signif=how many genes with 

the GO term contained putatively significant sites.    
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BLASTp on insect major allergen genes 

To characterize the major allergen genes, I searched for genes annotated in T. cristinae 

(version 1.3c2; Villoutreix et al. in prep) that presented the same protein function (InterPro: 

IPR010629).  I then retrieved the putative protein sequences and performed a BLASTp 

alignment (Altschul et al., 1997) at National Center for Biotechnology Information website 

(NCBI). I aligned all the protein sequences to its non-redundant protein sequence database 

(Table C5), and against each other (Table C6). The best hits were selected, and all the 

accompanying information reported here.  
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Table C5: BLASTp output between the putative proteins with major insect allergen function IPR010629 
InterPro database) in T. cristinae and NCBI’s non-redundant protein sequences database.  

Gene Description 
Max 
score 

Total 
score 

Query 
cover 

E value Ident 

g3176.t1 

 

LG7 
scaf2404 

allergen  

[Periplaneta americana] 
114 114 73% 4.0e-27 36.1% 

putative Per a 1 allergen variant 
[Periplaneta americana] 

112 112 73% 1.0e-26 35.5% 

major allergen Per a 1.0101 
[Periplaneta americana] 

111 111 73% 4.0e-26 35.5% 

major allergen Bla g 1.0101 
[Blattella germanica] 

107 107 73% 4.0e-25 36.0% 

major allergen Cr-PII 
[Periplaneta americana] 

111 218 74% 7.0e-25 35.6% 

g13444.t1 

 

LG11 

scaf2779 

major allergen Bla g 1.0101 
[Blattella germanica] 

167 167 94% 6.0e-49 45.7% 

protein G12 isoform X2  

[Aedes aegypti] 
166 166 95% 3.0e-48 40.5% 

major allergen Bla g 1.0101 
[Blattella germanica] 

169 338 95% 2.0e-47 45.7% 

protein G12  

[Aedes aegypti] 
162 162 95% 7.0e-47 40.9% 

AAEL010435-PA  

[Aedes aegypti] 
163 163 98% 8.0e-47 40.1% 

g13445.t1 

 

LG11 

scaf2779 

major allergen Bla g 1.0101 
[Blattella germanica] 

159 159 76% 3.0e-45 42.5% 

protein G12 isoform X2 

[Aedes aegypti] 
158 158 76% 2.0e-44 39.5% 

major allergen Bla g 1.0101 
[Blattella germanica] 

162 323 81% 6.0e-44 41.5% 

AAEL010435-PA  

[Aedes aegypti] 
157 157 85% 7.0e-44 36.2% 

protein G12 isoform X2  

[Aedes aegypti] 
154 154 76% 3.0e-43 39.1% 

g13446.t1 

 

LG11 

scaf2779 

major allergen Bla g 1.0101 
[Blattella germanica] 

164 164 94% 6.0e-48 45.7% 

Bla g 1.02 variant allergen 
[Blattella germanica] 

172 425 97% 1.0e-47 47.6% 

major allergen Bla g 1.02 
[Blattella germanica] 

172 424 97% 1.0e-47 47.6% 

major allergen Bla g 1.0101 
[Blattella germanica] 

167 333 95% 2.0e-46 45.7% 

G12 [Culex quinquefasciatus] 160 160 97% 4.0e-46 41.1% 
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The majority of genes were related to major allergen genes in cockroaches (Periplaneta 

americana,Blattella germanica) and in mosquitoes, also called G12 (Aedes aegypti, Culex 
quinquefasciatus). 

 

Table C6: BLASTp output comparing the putative proteins with major insect allergen function 

(IPR010629 InterPro database). Gene g3176.t1 is located on linkage group 7, while g13444.t1, g13445.t1 

and g13446.t1 are located on linkage group 11 in tandem. Based on the lowest E-values and highest 

identity score, the genes on LG11 are more similar to each other than when compared to the gene on LG7. 

Gene1 Gene2 Max 
score 

Total 
score 

Query 
cover 

E value Ident 

g3176.t1 g13444.t1 79 79 73% 8.0e-23 30.27% 

g3176.t1 g13445.t1 81.3 81.3 73% 4.0e-23 28.80% 

g3176.t1 g13446.t1 81.6 81.6 73% 7.0e-24 32.80% 

g13444.t1 g13445.t1 321 342 100% 2.0e-117 77.32% 

g13444.t1 g13446.t1 318 318 100% 3.0e-117 79.90% 

g13445.t1 g13446.t1 295 310 80% 2.0e-107 69.07% 

 

 

Figure C1: Distribution of p-values outputted from MACAU (Lea et al., 2015) using the example dataset 

on baboons provided by the developers (left), and on T. cristinae’s population survey (right). The 
distribution of p-values in baboons is anti-conservative, showing a very high frequency of values below 

0.01. This inflated frequency of significant sites can emerge from multiple testing, which can result in 

false positives. The authors suggest applying false discovery rates corrections to control for this effect. 
However, T. cristinae is conservative, with a depletion of p-value < 0.01, below what is expected at a 

null hypothesis (i.e. same frequency of p-values). Thus, it is possible the model is returning less 

significant sites that are expected by chance, characterizing a type II error, or false negatives. Thus, the 

corrections suggested by the developers do not apply.  Because could not find an adequate test to 
correct for the multiple testing, the investigations in this study were carried with the sites showing p-

value < 0.01, considering them ‘putatively significant SMPs’. 
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Figure C2. Heatmap using the methylation levels at the 62 sites that were putatively significantly 
associated with ecotype on the population survey (p-value < 0.01). This graph suggests the model 

managed to detect the regions that were differently methylated between the individuals collected on 

each host plant. Indeed, the samples cluster by ecotype when only these sites are considered.   
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Chapter 5 

Conclusions and future directions 

 

5.1. General discussion 

This thesis encompasses three studies focused on understanding the patterns and the 

functionality of DNA methylation in Timema cristinae stick insects. The aim of this dissertation 

was to investigate natural DNA methylation variation in realistic scenarios with genetically and 

environmentally heterogeneous populations. With this, it was possible to explore the 

intertwined factors acting in natural methylation variation, which are generally missed in 

laboratory experiments (Bossdorf et al., 2008; Herrera and Bazaga, 2011; Ledón-Rettig, 2013; 

Herrera et al., 2014). This was done by investigating different scales of DNA methylation 

variability. First on a species-level context, then on genome-wide differences within-species, 

and lastly focusing on the relationship between ecotype and methylation differences at single 

base resolution. Overall, this dissertation has characterized natural DNA methylation variation 

in T. cristinae and its covariance with genetic and environmental factors. In the next section, I 

discuss the main findings of this work, with a focus on how the results provide insights into our 

understanding of the importance of DNA methylation in ecological processes. The sections are 

divided according to the outstanding questions highlighted at Chapter 1 (see Fig. 2 in Chapter 

1). To my knowledge, this is the first study to investigate DNA methylation through an 

ecological perspective in insects.   

 

5.1.1. How does DNA methylation vary between insect species? 

DNA methylation is sparsely studied in insects and is mainly focused on clades with 

labour division and social systems, mostly Hymenoptera (Holometabola). In Chapter 2 of this 
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dissertation, I depicted the methylation profile in T. cristinae stick insects. This study 

highlighted the similarities and especially the differences between this system and the normally 

studied ones. In T. cristinae, such as in other insects with DNA methylation, it was found 

sparsely distributed across the genome, and enriched in coding regions (Xiang et al., 2010; 

Zemach et al., 2010; Bonasio et al., 2012; Libbrecht et al., 2016). Among those, methylation 

seems to  preferentially target genes with housekeeping functions, while non-methylated genes 

are related to more dynamic and changeable processes, such as signalling and transduction 

pathways (Glastad et al., 2016). This common pattern in insects suggests DNA methylation is 

important to maintain the integrity of these fundamental cellular processes. Another pattern in 

insects is the general methylation impoverishment on transposable elements (TEs). This is 

known to be one of the main targets of DNA methylation in plants and vertebrates, as it silences 

this activity (Zhang et al., 2006; Suzuki and Bird, 2008). This was normally the case in T. 

cristinae, although some TEs families were always enriched in methylation. One explanation for 

this is that these families could be very active, and thus the organisms’ genome integrity would 

benefit from the methylation repression on them. As such, future studies interested on the role 

of DNA methylation in repressing TEs in insects could estimate the relationship between the 

hypermethylated TEs and their expression in T. cristinae.  

At the same time, I found patterns that were contrasting between groups of insects. The 

methylation patterns in T. cristinae generally resembled those found in insect species that have 

incomplete metamorphosis (i.e “Hemimetabola” group; Krauss et al., 2009; Wang et al., 2014; 

Glastad et al., 2016). Differently to the widely studied Holometabola insects (Xiang et al., 2010; 

Bonasio et al., 2012; Wang et al., 2013; Cunningham et al., 2015; Libbrecht et al., 2016), T. 

cristinae presented elevated levels of DNA methylation, enriched in both exons and introns. As 

“Hemimetabola” are underrepresented in the literature about DNA methylation, these insights 

from T. cristinae contribute to reinforce the patterns contrasting these two groups. Given that 
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DNA methylation is more widely distributed among genes, it is possible DNA methylation plays 

a more important role in “Hemimetabola”.  In effect, to some extent these patterns are more 

similar to those found in vertebrates than those in Holometabola insects (Glastad et al., 2016). 

Thus, the T. cristinae methylation profile, as well as that of other “Hemimetabola”, could be 

relatively underived during the evolution of insects.  

Together, the results presented here underline the relevance of studying species from 

different taxonomic groups in order to raise patterns, generalities and differences. Future 

studies should continue the effort in analysing representatives of different clades to shed light 

on the mechanisms by which DNA methylation variation arises in insects. More importantly, 

valuable insights will emerge from investigating the molecular functions of DNA methylation in 

different insect species, which remain largely unknown. An experiment to directly test the 

importance of DNA methylation in T. cristinae could be via administering RNA interference 

(RNAi), a conserved cellular mechanism used to inactivate the expression of specific genes. 

Targeting the maintenance DNA methyltransferase (DNMT1) in juveniles would knock down 

its activity and result in demethylation of targeted tissues during development. This could be 

administered using the method developed by Li-Byarlay et al. (2013), which can treat large 

numbers of insects in a non-invasive way via aerosol application. With the appropriate controls, 

it would be possible to investigate the consequences of demethylation on gene expression, on 

alternative splicing, and, ultimately, on the phenotype.  

This method has been applied in other insects and provided compelling results. The study 

silencing the DNMT3 enzyme in honeybees using RNAi was the first to shed light on the 

relationship between DNA methylation and royal jelly effect on caste differentiation (Kucharski 

et al., 2008). More recently, Bewick et al. (2019) demonstrated the knockdown of DMNT1 and 

reduction of DNA methylation compromised the reproduction and the egg viability in milkweed 

bugs (Oncopeltus fasciatus) without any effect on gene expression. That is, DNA methylation in 
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milkweed bugs could be more important for genome structure, integrity or other cellular 

processes than it is for the regulation of somatic gene expression. These examples emphasize 

the relevance of using manipulative analyses and experimental tests to understand the DNA 

methylation functions in insects. Examining the effects of DNA methylation on expression, on 

suppression of transposable elements and on regulatory pathways will help us understand its 

importance to holo and to hemimetabolous insects. 

 

5.1.2. What is the extent and structure of DNA methylation variation in natural populations? 

By studying the extent and spatial structure of natural DNA methylation, one can capture 

the effects of forces that are possibly acting cumulatively over many generations (Herrera et al., 

2016). With this in mind, in Chapter 3, I studied natural populations of T. cristinae varying in 

geographical distance and environmental factors such as climatic differences and ecotype. The 

extensive work on population genetics in T. cristinae offered a unique set up to approach these 

questions at epigenetic level. The results suggested considerable genome-wide DNA 

methylation variation between individuals, both within and between populations. My study 

pointed this variation is structured in geographical space, and that differences between 

individuals tend to increase the more distantly separated they are in physical space – a pattern 

that is parallel to what is found in genetic variation. In fact, genetic variation had a better power 

to explain DNA methylation variation than physical geographical distance, suggesting there 

might be some genetic control over it. There was not a significant association between genome-

wide methylation variation and environment: neither with climatic variables or with ecotype. 

However, this result did not discard the possibility of an environmental effect in only a few 

localized genomic regions. The next sections provide an in-depth discussion about the effects 

of those factors driving methylation variation.  
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The results cited together indicate DNA methylation variation could accumulate in 

geographical space following a pattern of isolation by distance (Herrera et al., 2016; Richards 

et al., 2017), mirroring the genetic variation patterns in T. cristinae. To strengthen these 

findings, future studies should expand the number of individuals sampled from each locality to 

obtain a better estimate of the methylation variation within-populations and to reinforce the 

spatial structure patterns. Moreover, including more localities in the population survey varying 

in environmental factors and separated by different distances will allow us to better 

disentangle the effects of gene flow and environment in genome-wide patterns of methylation 

and in its genetic background.  

 

5.1.3. To what extent does DNA methylation variation depend on genetic variation? 

As mentioned above, I found a strong correlation between DNA methylation and genetic 

variation in T. cristinae. This was also manifested in the results from the binomial mixed models 

(Lea et al., 2015), which suggested a significant mean heritability of methylation patterns 

mirroring the estimates of pairwise kinship using genetic variation (see below the discussion 

about heritability). This association suggests a substantial amount of DNA methylation 

variation in T. cristinae can be determined by its genetic basis. In other words, that genetic 

variation could control some of the methylation patterns, either by factors that cis or trans-

regulate methylation state. This high correlation has been extensively reported in plants and in 

vertebrates (Liebl et al., 2013; Schmitz et al., 2013; Dubin et al., 2015; Taudt et al., 2016; Carja 

et al., 2017). This finding in T. cristinae indicates this trend could be prevalent across 

eukaryotes. At the same time, it is important to note that the correlation between DNA 

methylation variation and genetic variation does not imply causation, and that there might be 

other factors covarying with both. 
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These conclusions were based on results from analyses considering general patterns in 

methylation and genetic variation (genome-wide patterns). Thus, a next step for further 

understanding of this association must be obtained at a finer scale, identifying the direct links 

between genetic variants and variation in methylation levels. Identifying these specific 

associations will allow us to investigate the interdependence between both parts. For example, 

in mammals, proximate links between methylation and genetic variation (i.e. cis-acting 

variants) are normally related to differential transcription factor binding in enhancers and/or 

promoters in mammals (Taudt et al., 2016). In plants, these associations result from 

transposable elements insertions or repeats, which tend to be largely methylated (Pecinka et 

al., 2013). Thus, such investigation in T. cristinae could elucidate how these associations are 

likely to occur in insects. This way, a study similar to the one performed at Dubin et al. (2015) 

could be performed. With a greater sample size and reduced population structure (e.g. using 

samples from the same population), genome-wide analyses (GWA) could be carried out using 

each SMP as a ‘phenotype’ to be correlated with single nucleotide polymorphisms (SNPs). As 

DNA methylation is present in only 2% of cytosine residues in T. cristinae (Chapter 2), whole-

genome sequencing and an increased depth in the bisulfite sequencing would increase the 

probability of finding direct links between epigenetic and genetic variation (Lea et al., 2017). 

With these analyses, one could identify some of the genetic bases of DNA methylation patterns 

in T. cristinae and the regulatory mechanisms underlying them. 

 

5.1.4. What is the heritability of methylation variation? 

Linked to the significant association between genetic and DNA methylation variation, 

binomial mixed models pointed to significant heritability of methylation patterns in T. cristinae 

(Lea et al., 2015). This method uses a Bayesian approach to model SMPs according to a predictor 
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of interest, estimating heritability of methylation patterns based on the genetic random effects 

(estimated using pairwise genetic kinship between the samples). My results suggest the 

relatedness in methylation variation mirrors the genetic kinship, supporting the hypothesis 

about genetic control over methylation levels in T. cristinae. Assuming methylation variation is 

reset during meiosis, the results presented here imply heritability of methylation levels arise 

from re-establishment of the patterns in the next generation because they tag specific genetic 

variants (a one-to-one correspondence). It is possible that some SMPs exhibit high heritability 

of the patterns because of pure epigenetic inheritance, which would imply an incomplete 

erasure of epigenetic marks between generations One could hypothesise that if SMPs were 

inherited and changed in frequency in different populations, they would be behaving like SNPs 

– resulting in patterns that would be comparable to the pairwise genetic kinship matrix.  

To date, very little is understood about epigenetic inheritance in insects. For example, it 

is not known whether DNA methylation reprogramming occurs in insects’ gametogenesis. In 

Chapter 2, I discuss the finding T. cristinae and other insect species do not present the de novo 

DNA methyltransferase (DNMT3), which adds methyl groups to non-methylated DNA sites, only 

the maintenance DNA methyltransferase (DMNT1), which acts on hemi-methylated sites during 

DNA duplication. As such, one of the hypotheses that could be raised is that DNA methylation 

patterns are not erased during gametogenesis, implying maintenance of methylation status 

across generations. In effect, Wang et al. (2016) showed stable inheritance of methylation 

status between generations in Nasonia wasps, suggesting they could have been transmitted 

across generations via pure epigenetic inheritance. To test these hypotheses, future 

investigations should be carried out to elucidate the molecular mechanisms of epigenetic 

inheritance in insects (Fig. 1).  

 



 

166 

5.1.5. To what extent is DNA methylation variation sensitive to environmental changes? 

Although there was not a significant correlation between genome-wide DNA methylation 

variation and environmental factors in natural populations (Chapter 3), my findings in Chapter 

4 suggested this association could exist at some specific SMPs. This was obtained using binomial 

mixed models (Lea et al., 2015), scanning for candidate SMPs that were correlated with ecotype 

in natural populations of T. cristinae. Coupled with this study, a rearing experiment simulating 

host shift suggested there was an association between SMPs and host plant use (i.e. 

environmental effects of host shift). The low coverage and the small sample sizes, especially in 

the experiment, offered some limitations to the obtention of results that had a confident 

statistical power using binomial mixed models. Nonetheless, my study led to some results that 

pointed to future perspectives to the investigation of host shift and changes in DNA methylation 

levels. For example, some of the putatively significant SMPs were found to be in the same 

genomic region in the population survey and in the experiment. In particular, one of those 

common regions was an exon from a major insect allergen gene, with functions associated with 

digestion and nutrient uptake (Randall et al., 2013). I found methylation levels in this gene 

could be changing with host shift treatment towards the opposite direction from expected, 

based on the natural populations’ status. With this, I suggested the environmental change could 

have triggered a ‘non-adaptive’ reaction in the insect allergen methylation levels (see Fig. 2 in 

Chapter 4; Ghalambor et al., 2007; Nicotra et al., 2015).  

Overall, my research suggests there could be a significant association between DNA 

methylation and ecotype. In addition, it highlights the potential ability methylation has to react 

to an environmental change, and that it may not necessarily happen towards the ‘optimum 

state’. In these studies, I focused on adjustments to host shift in adult individuals, a process that 

can be called ‘acclimation’ – a rapid and reversible response to environmental change. That is, 

my experiments did not evaluate methylation changes during development, which tend to be 
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stable and remain throughout an organism’s lifetime (Metzger and Schulte, 2018). As such, 

future experiments could perform a host shift in early stages of development to assess its effect 

on methylation levels. In addition, these environmental effects on methylation signals should 

be measured across generations to determine its inheritance (Fig. 1).  

 

 

Figure 1: Design of a potential rearing and crossing experiment to be carried out in T. cristinae. With 

this design, one can evaluate (1) SMPs heritability; (2) direct effects of host shift on methylation levels 

in early stages of development; (3) and heritability of methylation patterns arising from the host shift 

effects. The procedure can be performed by collecting juveniles from natural populations where 

Ceanothus is dominant, then rearing half in the same host and the other half in Adenostoma. F1 eggs 

can be collected from each couple and split between the different host plants species. Initial Ceanothus 

natural population is an example, and can be switched to Adenostoma. Pictures from Rosa Marin Ribas.  
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5.1.6. What are the consequences of DNA methylation variation in T. cristinae? 

Throughout this dissertation, I have demonstrated some evidences to the following 

aspects about DNA methylation variation in natural populations of T. cristinae:  

➢ The patterns at species-level are characteristic of “Hemimetabola” insects; 

➢ It is strongly correlated to genetic variation;  

➢ There is a moderate mean heritability of methylation patterns, likely associated 

to their genetic background;  

➢ It is structured in geography, likely due to its genetic background and heritability; 

➢ It could be associated with ecotype in specific regions; 

➢ Host shift could potentially lead to changes in some of those ecotype-associated 

regions. 

Even though there was not any measurement of phenotype or fitness to ultimately argue 

about the importance of DNA methylation variation, the findings outlined above set ground to 

some discussion about its consequences in T. cristinae.  

For example, one can debate about the contribution of DNA methylation effects to 

phenotype. My results in T. cristinae suggest DNA methylation variation in T. cristinae may not 

explain phenotype independently from genetic variation, given there is a strong correlation 

between methylation and genetic variation. That is, they imply DNA methylation variation 

would arise as a manifestation of the genotype, such as a phenotype. This assumption does not 

disregard the importance of DNA methylation variation to biological processes and to relevant 

changes on the phenotype. However, if it is strictly under genetic control, it would represent a 

proximate cause of those changes, and not the ultimate cause  (Richards, 2006). However, as 

discussed in the previous section, the association between genetic and methylation variation 

was estimated only at genome-wide levels, and thus more refined analyses will be able to 
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elucidate to which extent SMPs depend on genetic variation. In fact, there could be regions of 

partial genetic control over methylation variation. In those cases, the associated genetic 

background would facilitate the epigenetic change (Richards, 2006): for instance, when a 

genetic mutation, a TE insertion, or any other structural variant occurs and creates a facilitating 

change to be modulated by the methylation state (Waterland and Jirtle, 2003; Pecinka et al., 

2013). In summary, identifying the associations between SNPs and SMPs will allow us to 

determine the epigenetic effects on gene expression and on the phenotype independently from 

genetic variation.  

Moreover, by mediating phenotypic plasticity, DNA methylation might facilitate the 

colonization of new environments by adjusting to the new conditions (Bossdorf et al., 2008). In 

Chapter 4, I performed an experimental host shift and measured the differences in DNA 

methylation variation. Although differences in the phenotype were not measured, the results 

suggest host shift could have resulted in DNA methylation change in T. cristinae. This putative 

change happened in the opposite direction from the ‘optimal state’ (i.e. defined by the 

methylation status found in the nature), which could imply the response might not necessarily 

happen in a fine adjustment to the new environment, but rather in a desynchronized way 

(Ghalambor et al., 2007). It has been shown that T. cristinae has lower fitness when fed with 

Adenostoma (Sandoval and Nosil, 2005; Nosil and Sandoval, 2008). This way, it is possible some 

of the maladapted physiological reactions involved in this host shift were triggered by the 

changes in methylation. To test this hypothesis, future studies should not only investigate the 

methylation changes associated with host shift, but also assess differences in gene expression 

and on phenotype. In my study, I chose a natural T. cristinae host plant species to simulate the 

host shift. An interesting investigation could involve a similar experiment, but involving a plant 

species on which T. cristinae performs poorly (Larose et al., 2019), and estimate the 
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methylation and genetic variation underlying individual’s performance (e.g. weight gain, 

survival, fecundity).  

 

5.2. Future perspectives in ecological studies in DNA methylation 

Throughout this thesis, I highlighted the importance of investigating DNA methylation 

through an ecological lens in order to gain a holistic understanding of the functions and the 

evolutionary consequences of this epigenetic mechanism. With this in mind, some key issues 

were outlined here for future research.  

DNA methylation is a complex feature, intertwined with many factors at scales that vary 

from molecular to ecological processes. It has been studied mainly by molecular biologists and, 

recently, by ecologists and evolutionary ecologists. To date, at one hand, genomic sequencing 

tools and molecular experiments have been applied to model organisms in the laboratory (e.g. 

van der Graaf et al., 2015; Onuchic et al., 2018; but see Schmitz et al., 2013; Schmid et al., 2018). 

At the other hand, DNA methylation variation has been explored at broad range in non-model 

organisms in their natural environment (e.g. Herrera and Bazaga, 2011; Richards et al., 2012; 

Liebl et al., 2013; Platt et al., 2015). However, very few studies have been performed combining 

investigations in the common environment and in the wild (see Dubin et al., 2015; Nicotra et 

al., 2015; Groot et al., 2018). By coupling both approaches (i.e. applying high-resolution tools in 

both natural population surveys and in controlled condition experiments), one can estimate 

natural DNA methylation variation in the wild and test the effects of some of its potential drivers 

in controlled conditions (e.g. environmental effects).  

While theoretical models show DNA methylation variation has the potential to influence 

evolutionary dynamics (Pál and Miklós, 1999; Jablonka and Raz, 2009), its adaptive potential 

has rarely been empirically tested (Bossdorf et al., 2008; Verhoeven et al., 2016; Richards et al., 
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2017). For example, the role DNA methylation can play in phenotypic plasticity suggests it may 

facilitate the response to environmental change and allow the organisms’ persistence (Bossdorf 

et al., 2010; Herrera et al., 2012; Nicotra et al., 2015; Foust et al., 2016). Whether this 

phenomenon can have a meaningful ecological effect being temporally transient or if it can 

persist across multiple generations via a constant environmental stimulus (i.e. an ecological 

memory) or via epigenetic inheritance is still very debatable (Hagmann et al., 2015). To address 

these questions, future studies should estimate the key role DNA methylation plays during the 

process of adjusting to environmental change. To this end, the DNA methylation change in 

response to the environmental variation must be decomposed determine how much of it arises 

(1) from genetic control, (2) from direct effects caused by the environment, and (3) from 

natural selection on methylation variation. To determine the causal links between genetic 

variation and DNA methylation, one could use quantitative trait locus studies in model 

organisms (i.e. both genetic, QTL, and methylation meQTL mapping) or genome-wide 

association studies, modelling SMPs according to genetic variation (GWAS; Taudt et al., 2016). 

This will provide not only an estimate of the extent to which DNA methylation changes rely on 

the genetic background, but also to identify regions that are independent from it and their 

importance – which could be further analysed using targeted bisulfite sequencing or expression 

of candidate loci (Richards et al., 2017). After this, the environmental effects on methylation 

can be estimated, as well as the sole contribution of methylation variation to phenotype. These 

SMPs must be followed for consecutive generations to estimate natural selection effects, and 

whether the environmental signal is associated with changes in frequency. Using laboratory-

controlled conditions, one could discriminate between environmental effects and epigenetic 

inheritance during this process (i.e. if variation remains in the absence of environmental 

triggers). If these changes lead to phenotypic variation and influence the individuals’ 

performance, one can finally determine whether the response to environmental change was 
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adaptive or non-adaptive. Ultimately, long-term evaluation of these processes in species from 

different ecological contexts will likely provide material to estimate the importance of DNA 

methylation to evolutionary processes.   

Studies carried out in A. thaliana illustrate experiments following this framework. For 

example, Dubin et al. (2015) have identified SMPs associated with local adaptation to different 

temperatures; but using genome-wide association studies they have discovered these effects 

were largely due to genetic variants (many of which showing evidence of local adaptation 

themselves). Recently, Schmid et al. (2018) reported results from an experiment simulating 

rapidly changing environments in recombinant inbred lines. A reduction in methylation 

variation and phenotypic variation has associated with changes in SMPs frequency in 

consecutive generations – without significant genetic changes compared to the ancestors. This 

study suggests DNA methylation was subject to selection and contributed to rapid adaptive 

responses, although the authors could not identify the extent to which epigenetics played a role 

in adaptation. Studies such as these ones performed in a variety of organisms will significantly 

contribute to our understanding of the importance of DNA methylation to ecological and 

evolutionary processes.  

Finally, studies should not always attempt to find an adaptive plot to DNA methylation. 

There is a possibility DNA methylation variation does not play a role in adaptation, but still be 

able to influence evolution in a neutral manner (Guerrero-Bosagna, 2017). For instance, it is 

known the methyl group makes a cytosine more prone to mutating into a thymine, creating a 

mutation bias. These transitions occur in much higher frequencies than other point mutations, 

and are assumed to be responsible for the CpG deficiency observed in vertebrate genomes 

(which are highly methylated; Simmen, 2008). In fact, biased mutations on methylated CpG 

sites appear to be even higher in the germ line (Kong et al., 2012). Summing this fact with the 

enhanced epi-mutability status and lability responding to environmental triggers collectively 
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make DNA methylation a factor that could promote genetic variability, fuelling evolutionary 

processes. Empirical evidence for these phenomena are very limiting, but underline an 

interesting perspective on methylation variation and evolutionary potential (Feinberg and 

Irizarry, 2010).  

Studying DNA methylation and other epigenetic mechanisms can ultimately reveal 

another basis underlying the organisms struggle for survival. They might shed light on missing 

pieces composing the phenotype (e.g. “the missing heritability” of complex traits; Cortijo et al., 

2014) and on phenomena that cannot be explained by genetic variation only. In practical 

senses, it might help us understand global challenges such as spread of invasive species and 

pests, and finally how organisms can cope with global change.   
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Abstract 

 

Adaptation often involves traits that are controlled by multiple genes, with specific gene 

combinations conferring high fitness. However, recombination breaks down favorable gene 

combinations. Thus, genomic regions that exhibit tight linkage and suppressed recombination 

among adaptive genes (i.e., ‘supergenes’) can promote adaptation. Putative examples of 

supergenes are accumulating in many organisms, hinting at taxonomic generality. However, 

alternatives to supergenes, such as pleiotropic effects of single loci, have rarely been assessed. 

Moreover, the factors favoring supergenes are often obscure. Here we address these issues by 

studying a supergene for cryptic coloration in Timema stick insects. We demonstrate that a 

single genetic region associated with coloration contains multiple, recombining color loci in one 

species, but exhibits supergene architecture in others likely due to structural changes that 

suppress recombination. High recombination among color genes is associated with use of host 

plants that exhibit fairly continuous color variation, whereas supergene architecture is 

associated with hosts exhibiting discontinuous colors (i.e., uniformly green leaves versus brown 

stems). These results led us to speculate that genetic architecture is ecologically influenced by 

variation in the strength of disruptive selection, a hypothesis supported by a field-transplant 

experiment. Our results help to explain how multi-genic variation is packaged into discrete 

units of diversity, such as morphs, ecotypes, and species. 

 

 

Author summary 

 

Adaptation often involves traits that are controlled by multiple genes, but recombination breaks 

down favorable gene combinations. Thus, genomic regions that exhibit tight linkage and 

suppressed recombination among adaptive genes (i.e., ‘supergenes’) promote adaptation. Here 

mailto:p.nosil@sheffield.ac.uk
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we elucidate ecological factors that explain a supergene for cryptic coloration. We demonstrate 

that multiple, linked loci affect coloration in stick insects. We then use natural history, 

experimental, and genomic data to show that recombination between these loci is suppressed in 

some ecological circumstances (i.e., strong differences in the colors of leaves versus stems of 

host plants), but not in others (i.e., more continuous coloration exhibited by host plants). Our 

results illustrate how ecological discontinuities help package multi-genic variation into discrete 

units of diversity, such as morphs, ecotypes, and species. 

 

Keywords: polygenic adaptation; chromosomal inversion; disruptive selection; structural genomic 

changes; ecological genomics 

  

Introduction 

 

It remains unclear how and why variation in polygenic traits is regularly packaged into divergent 

forms with few intermediates, such as discrete morphs or species [1-5]. Specifically, even if selection 

favors specific combinations of genes (generating linkage disequilibrium, LD, among them), 

recombination breaks down these combinations. Thus, discontinuous variation in polygenic traits can 

be difficult to evolve, at least when gene flow and recombination occurs between populations [6]. 

Sharp, discontinuous transitions in ecological variables are predicted to help resolve this antagonism 

between selection and recombination, via two complementary mechanisms [2-4]. First, such 

transitions may generate strong divergent selection [7-9], which maintains adaptive gene 

combinations more readily than weak selection. Second, such transitions could favor reduced 

recombination and the evolution of ‘supergenes’ (i.e., linked complexes of genes that segregate as 

major loci), for example via structural changes such as chromosomal inversions [3,4,10-14].  

 

Evidence consistent with supergenes is accumulating in a range of organisms, largely based on 

multiple traits mapping to one genetic region [3,11,12,15,16]. However, this evidence is incomplete 

and indirect such that further studies of supergene evolution are required (Table S1 for literature 

review). For example, putative supergenes are often assumed to harbor multiple genetic variants that 

causally affect trait variation, rather than shown to do so (e.g., an alternative hypothesis is that a single 

gene or developmental switch has pleiotropic effects on trait variation)[12,17]. Moreover, the 

ecological drivers of selection are sometimes unknown, direct evidence that they favor supergene 

architecture is lacking, and selection strength has been inferred rather than quantified [3,11,12,18]. 

This is problematic because supergenes can also hinder adaptation via reduced flexibility in creating 

novel gene combinations, and the accumulation of deleterious mutations in regions of reduced 

recombination [3,11,12,15,16]. Direct estimates of the number of genetic variants affecting traits, 

relevant ecological variables, and selection strength are difficult to obtain [1,3,18], but are required 

to distinguish alternative hypotheses and to quantitatively understand the process of adaptation. We 

provide such estimates here using genomic data, natural history observations, and a manipulative 

field experiment, thereby elucidating the mechanisms underlying multi-genic adaptation and 

supergene evolution. 

 

Specifically, we study wingless, herbivorous Timema stick insects, which rely on crypsis for 

protection against visual predators while resting on their host plants [19-23]. Timema body coloration 
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has thus evolved to approximate the colors of the stems and leaves of their hosts, and most species 

exhibit color polymorphisms that have been linked to fitness variation [19-21](e.g., green versus 

brown morphs that appear cryptic on leaves versus stems, respectively)(Fig. 1). It is known that color 

variation in T. cristinae segregates as a major locus on linkage group (LG hereafter) 8, named Mel-

Stripe [23,24]. This locus spans ~10 mega-bases of sequence and exhibits suppressed recombination 

[24]. Although this is consistent with a supergene, this evidence alone does not rule out the alternative 

of a single locus with pleiotropic effects [17], nor does it indicate the number of genetic changes that 

contribute to trait variation or how and why recombination is suppressed [3,11,12]. Interestingly, we 

find here that color variation maps to a genetic region without suppressed recombination in one 

related species, T. chumash, which allowed us to quantify the number of genetic variants contributing 

to color variation. We then explore how and why other Timema species, including T. cristinae, exhibit 

suppressed recombination and supergene architecture. Although our focus is on morphs, similar 

processes should apply to other recognizable units of diversity, such as ecotypes or species. 

 

Results  

 

Variable differentiation between Timema color morphs. We began by studying phenotypic 

variation in T. cristinae, as well as three other species from southern California (T. podura, T. 

bartmani and T. chumash). All these species exhibit individuals that are green in color and others 

which are shades of brown, grey, or red (Figs.1c, S1-3; Table S4), and are thus known to exhibit green 

versus more darkly colored (‘melanistic’ hereafter) morphs. However, the degree of discontinuity 

between morphs has not been previously quantified. We used standardized photos of 1545 individuals 

to quantify body color in the green to blue color spectrum (a trait referred to as ‘GB’ hereafter), and 

in the red to green color spectrum (a trait referred to as ‘RG’ hereafter; note that Timema do not reflect 

strongly outside of the visible spectrum, OSM, Figs. S2-4, Table S6). We found that, relative to the 

other species and populations studied here, T. chumash exhibited a wider and more continuous range 

of color, and weaker association between GB and RG values (r2 = 0.04, versus ~ 0.40 in the other 

species, Table S5). Thus, GB and RG are largely independent traits in T. chumash, potentially 

reflecting high recombination among color genes, which facilitates fine-scale genetic mapping. We 

thus focused our initial analyses of genotyping-by-sequencing (GBS) data on T. chumash (Tables S7-

8), predicting that multiple genetic regions would associate with RG and GB color variation in genetic 

mapping analyses, with low LD among the regions. 

 

Color variation is under multi-genic control in T. chumash. As predicted and in contrast to past 

work in T. cristinae, we found evidence for multi-genic control of color in T. chumash (Figs. 2, S5-

6). We first employed a Bayesian multi-locus genome-wide association (GWA) mapping approach 

that accounts for LD among single-nucleotide polymorphisms (SNPs)(see Fig. 1 for details). This 

revealed that color maps to a ~1000 kilo-base region within the 10 mega-base Mel-Stripe locus of the 

T. cristinae reference genome. Notably, this region contains multiple, distinct peaks of phenotype-

genotype association, generally separated from each other by several kilo-bases. Some peaks were 

associated with variation in only one trait (RG or GB), and accordingly the genetic correlation 

between RG and GB was modest (r2 = -0.09). This provides initial evidence that a contiguous region 

controls color, but that multiple loci within it are involved such that control is multi-genic. 
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Our mapping approach further allowed us to explicitly quantify the number of genetic variants (i.e., 

quantitative trait nucleotides, QTN) controlling each trait, by considering how often SNPs were 

retained as trait-associated across different Markov chain Monte Carlo (MCMC) steps in the GWA 

(the proportion of such steps is termed the posterior inclusion probability, PIP hereafter, Figs. 1-2). 

In the case of multi-genic control with recombination among loci, the one or few SNPs that best tag 

each causal variant are expected to consistently be trait-associated across MCMC steps (i.e., exhibit 

high PIP values). Thus, PIP values across such SNPs sum to the number of total causal variants (i.e., 

even if causal variants are not unambiguously identified, the number of such variants can be 

estimated). This revealed that ~4-5 genetic variants control GB and ~3-5 control RG (Fig. 3). Thus, 

color is multi-genic, but not strongly so.  

 

Also consistent with a multi-genic model rather than a single pleiotropic major effect locus, effect 

sizes were moderate and fairly uniformly distributed among the most strongly color-associated SNPs 

(Fig. 1, S5). Moreover, phenotypic color scores increasingly became more melanistic (defined by 

high scores for RG and low scores for GB) as the number of melanic-associated alleles an individual 

harbored increased (across the ten most strongly color-associated SNPs), and we did not detect 

evidence for strong epistasis (Figs. 2, S6). Finally, linkage disequilibrium (LD) among the top color-

associated SNPs was low, indicative of recombination between them (Fig. 2). Thus, as predicted by 

the polygenic hypothesis, multiple linked but recombining variants affect GB and RG coloration in 

T. chumash.  

 

The identities of the genes causally affecting color remain to be resolved. However, several genes are 

promising candidates (Table S9). For example, a homolog of the ‘st’ gene, which causes red eye 

coloration in Drosophila [25], lies ~116 kilo-bases from a peak affecting RG. A gene with a cysteine 

rich flanking domain is also found near this peak, and this type of element affects yellow ‘eye spot’ 

coloration in cichlid fish [26]. Finally, another association peak is found within a protein with an 

UBX domain (in fact, a SNP in the third exon of this gene is unambiguously correlated with GB 

variation, PIP = 1). This domain is typical of ubiquitin-regulatory proteins, which are involved in the 

pathways causing melanic coloration in the peppered moth Biston betularia [27], Heliconius 

butterflies [28], and felids [29].  

 

With our discovery of multi-genic control of color in T. chumash, our results suggest that the Mel-

stripe major effect locus in T. cristinae represents multiple linked variants in a supergene [11,12]. 

Our evidence parallels that for a mimicry supergene in Heliconius butterflies, where multi-locus 

architecture in H. melpomene and H. erato segregates as a major locus in H. numata, due to 

chromosomal inversions that suppress recombination among mimicry genes [30,31]. Here, we 

advance understanding of supergene evolution by determining the likely cause for recombination 

suppression in T. cristinae, and then testing whether and why other Timema species exhibit supergene 

architecture. 

 

Reduced recombination is likely due to chromosomal inversion.  Analyses using population 

genetics and comparison of de novo genome assemblies of different morphs in T. cristinae revealed 

that suppressed recombination is likely due to structural genomic changes in the Mel-Stripe region, 

including a putative ~10 mega-base inversion (Fig. S7). The sizeable ~1000kb region to which color 
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maps in T. chumash coincides with one of the putative breakpoints of the inversion in T. cristinae. 

Although further cytogenetic or genomic analyses are required to definitively infer an inversion, our 

collective results are consistent with an inversion. Moreover, in terms of the evolutionary processes 

studied here, suppression of recombination is relevant no matter the precise mechanism for it. 

 

Multiple Timema species exhibit suppressed recombination. We found that suppressed 

recombination previously reported in T. cristinae is also evident in T. bartmani and T. podura. For 

example, in these species we observed ‘block-like’ patterns of association on LG8 in single-locus 

GWA mapping, high genetic correlations between RG and GB, and strong LD in the Mel-Stripe 

region (Figs. 3-4, S8-11). These patterns are indicative of reduced recombination. Further supporting 

suppressed recombination, principal components analyses (PCA) of genetic variation in the ~1000kb 

region harboring color loci revealed distinct and color-morph-associated genetic clusters (i.e., 

chromosomal forms) in T. bartmani and T. podura (Fig. 4), as previously reported in T. cristinae [24]. 

In strong contrast, PCA in T. chumash revealed a dispersed cloud of points, rather than genetic 

clusters. Finally, phased genomic data revealed morph-associated haplotype blocks in T. bartmani 

and T. podura, again supporting reduced recombination (Fig. 4). 

 

Although the phylogeny of Timema does not allow us to distinguish whether T. chumash lost an 

ancestral supergene or other species gained it [32], under either scenario our results are consistent 

with structural features enhancing discontinuity between color morphs. We note that phylogenetic 

relationships for T. podura, T. bartmani, and T. chumash inferred from GBS and new whole genome 

re-sequencing data revealed that the ~1000kb region harboring color loci tends to reflect the species 

tree, not grouping by the same color morph across different species (Fig. 5). This suggests the 

supergene alleles are not of recent origin, as reported for T. cristinae [24], and that they were not 

recently transferred between species by hybridization. We next turned to possible explanations for 

variation in genetic architecture and morph differentiation among species. 

 

Host-plant coloration is associated with morph differentiation. Although the morphs of T. 

chumash form two recognizable and statistically supported clusters, they are less distinct than those 

in T. cristinae and T. bartmani (Fig. S1). Specifically, the color distance between morphs is T. 

chumash < T. bartmani < T. cristinae (mean Kullback Leibler distance between morphs, T. chumash 

= 14.0, T. bartmani = 17.4, T. cristinae = 29.2; posterior probabilities, T. bartmani > T. chumash = 

0.87, T. cristinae > T. bartmani = 0.98, T. cristinae > T. chumash ~1.0, Fig. 6). We suspected that 

increased color discontinuity between morphs was associated with the use of hosts that exhibit highly 

discontinuous color variation [21,33]. This ecological hypothesis predicts that greater discontinuity 

in the colors offered by the leaves versus stems of Timema hosts will correspond to increased 

phenotypic discontinuity in color between Timema morphs [7-9]. We tested this prediction using 

standardized photos of main hosts of three Timema species for which we were able to collect host 

data (Table S10).  

 

Consistent with the ecological hypothesis, the hosts of T. chumash (oak and mountain mahogany) 

express a wide and fairly continuous range of variation in their leaves and stems, including shades of 

blue, green, yellow, tan, beige, brown, and red (Fig. 6). As a result, the oak and mountain mahogany 

hosts of T. chumash displayed the lowest color difference between their leaves and stems (mean 
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Kullback Leibler distance = 10.1), compared to the white pine and white fir hosts of T. bartmani 

(21.8), and chamise and California lilac hosts of T. cristinae (39.3; posterior probabilities, T. bartmani 

> T. chumash hosts = 0.99, T. cristinae > T. bartmani hosts = 0.97, T. cristinae > T. chumash hosts 

~1.0). These results led us to speculate that the hosts of T. chumash select only weakly for specific 

combinations of green versus melanistic coloration alleles, providing an ultimate explanation for why 

‘morphs’ of T. chumash are less discrete. In contrast, the hosts of T. bartmani and T. cristinae exhibit 

increasingly greater color distance between their leaves and stems. These hosts could thus offer a 

more bi-modal and discontinuous range of colors, i.e., primarily green or brown, which could select 

more strongly for specific combinations of coloration alleles [7-9]. 

 

The strength of disruptive selection varies among hosts. We experimentally tested the prediction 

of stronger disruptive selection against intermediate coloration on hosts with greater color 

discontinuity, using a field-based recapture study (note that even if two morphs exist some individuals 

can be more intermediate in coloration than others, i.e., those nearer the center of phenotype space, 

and we here found classification of intermediates to be statistically repeatable, see Methods). We did 

so by marking and transplanting equal numbers of green, melanistic, and intermediately colored T. 

chumash to host plants comprising two treatments: (1) chamise and California lilac (hosts offering 

highly discrete coloration) and, (2) mountain mahogany (a host offering more continuous color 

variation). Consistent with prediction, we recaptured a lower proportion of intermediates in the 

chamise and California lilac treatment (posterior probability that survival of intermediates is greater 

in the mountain mahogany treatment > 0.99, multinomial-Dirichlet model, Fig. 7). Thus, we detected 

strong disruptive selection in the chamise and California lilac treatment (s = -2.73, posterior 

probability, pp, that s < 0 = 0.97; t = -1.84, pp t < 0 = 0.92, where fitness is defined as green = 1-s, 

intermediate = 1, and melanistic = 1-t, i.e., s or t < 0 implies disruptive selection, and s or t > 0 implies 

intermediate advantage). In contrast, selection was not disruptive on mountain mahogany (s = 0.38, 

pp s < 0 = 0.14; t = 0.60, pp t < 0 = 0.03), consistent with the wide range of color exhibited by this 

host. Nonetheless, selection may be weakly disruptive on other common hosts of T. chumash (e.g., 

oak), or at time periods and locations other than which our experiment was conducted. Indeed, morph 

differentiation, or even genetic architecture, might vary within species. In any case, for the 

populations studied here our results provide concordant observational and experimental support for 

the hypothesis that discontinuity between morphs is mediated by ecological discontinuity. 

 

 

Discussion 

 

Our results are consistent with ecological factors explaining not only trait evolution, but also the 

degree to which traits are packaged into discrete units of diversity. They add to other major studies 

in Darwin’s finches where seed size distributions drive beak evolution [34,35], in stickleback where 

predator regimes drive bony armor evolution [36,37], and in apple maggot flies where divergent 

fruiting times drive differences in diapause timing between host races [38]. Our results further show 

how the genetic architecture of traits can change between recombining, polygenic variation and major 

locus (i.e., supergene) control. 
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Our findings help advance understanding of evolution because the plausibility and mechanisms of 

large or sudden evolutionary changes remains unclear [39,40]. Developmental biology provides one 

possible mechanism: developmental switches involving gene regulation [17,39,40]. Our results 

illustrate another: the conversion of polygenic variation, gradually accumulated by selection, into 

discrete phenotypic categories by supergene evolution. Thus, supergenes may help reconcile large 

evolutionary shifts and ideas concerning macro-mutation (i.e., ‘hopeful monsters’) with polygenic 

adaptation and Darwinian gradualism. 

 

Materials and Methods 

 

Timema sampling. Timema were collected by shaking the branches of host plants while holding a 

sweep net underneath them, as in past work [21,24]. Adult (i.e., sexually mature) specimens were 

stored in plastic containers for immediate photographing (details below). Juvenile individuals were 

reared on Ceanothus spinosus cuttings in plastic containers until they reached adulthood, as in past 

work [21], and then photographed. We took digital photographs of every adult Timema, and then 

stored each specimen in an individual vial in pure ethanol for subsequent molecular work. 

 

The data presented in this manuscript are primarily newly acquired. Specifically, new data was 

collected for all four species studied here: T. bartmani, T. chumash, T. cristinae, and T. podura. We 

also reanalyzed some data for T. cristinae and T. podura, from [21,33](Table S2). Tables S2-4 and 

S6-8 contain details of the Timema populations and samples used in the different analyses of this 

study. 

 

Phenotypic measurements of Timema coloration from photographs. Standardized digital 

photographs of adult Timema were taken, with the exception of T. bartmani that develop later in the 

season than other species and were thus photographed at juvenile stage (note that our core conclusions 

are unaffected by this as they do not rely on T. bartmani alone, and current and past work shows color 

morph is highly heritable such that it persists across life history stages)[21,24,33].  

 

All individuals were photographed with a digital Canon EOS 70D camera equipped with a macro lens 

(Canon EF 100mm f/2.8L Macro IS USM) and two external flashes (Yongnuo YN560-II speedlights). 

The images were taken with the camera set on manual, an aperture of f/14, a shutter speed of 1/250 

s, a sensitivity of 100 ISO, and flashes adjusted to 1/4 power in S2 mode in an output angle 

corresponding to 24-mm focal length on full frame (~84° diagonal). To avoid shadows and reduce 

external luminosity interference, LumiQuest SoftBox LTp softboxes were attached to the flashes. In 

addition to the Timema specimens, the pictures included a ruler and a standard color chip (Colorgauge 

Micro, Image Science Associates LLC, Williamson, NY, USA). 

 Each specimen was photographed at least twice in different perpendicular positions to capture the 

body color without gleam or shade. The pictures were linearized and corrected for white balance, 

adjusting the temperature and the tint 1 based on the values obtained from the color chip neutral grey 

color (target #10), using ADOBE PHOTOSHOP LIGHTROOM 5.7 software (Adobe Systems Software 

Ireland Ltd). Due to the standardization, measurements did not vary appreciably among pictures and 

only minor corrections were necessary (similar procedures in past work have shown color 
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measurements to be highly repeatable)[21,41,42]. The pictures were adjusted for the temperature to 

5950 and for the tint to +2, and exported as TIFF files.  

 

From the standardized images we collected phenotypic measurements using the software IMAGE J 

1.4.882 [43]. To quantify variation in color, we recorded mean RGB (Red, Green, Blue) values using 

the polygon section tool and color histogram plugin in ImageJ. For every Timema specimen, we 

measured a small area in the lateral margin of the insect’s dorsal region both on thoracic and 

abdominal parts, and analysed the mean values between these body parts 

 

For best interpretation of the RGB information, we processed the values as the relative difference 

between red and green (RG), and between green and blue (GB)[following 44]. RG channel was 

obtained using the relationship (R-G)/(R+G), and GB by (G-B)/(G+B), as described in the literature 

[44], and previously used to measure Timema color [33]. Although this method does not take into 

consideration how color is sensed by a predator, it does yield an objective quantification of color to 

be used in a comparative context. Thus, we obtained and analyzed two different color variables 

available for each insect: lateral RG and lateral GB (RG and GB hereafter). Further justifying our 

approach based on photos, our independent analysis of spectral reflectance finds that Timema 

specimens reflect only marginal levels of ultraviolet light, with very weak effects on stimulating 

photoreceptors in avian (i.e., predator) ultraviolet-sensitive systems as described in detail in the 

Supplementary Data (Spectra reflectance data). 

 

Differentiation and overlap between Timema morphs. We used the UPGMA algorithm in hclust 

(from R 3.2.3)[45] to cluster Timema into two groups (i.e., morphs), using the Euclidean distance 

between every individual based on RG and GB color measurements. We then used a Bayesian 

approach to fit the color data for each morph to a bivariate normal distribution. We placed relatively 

uninformative priors on the mean vectors (normal with mu = 0 and tau = 1e-3 for both means) and 

for the precision matrix (Wishart with 2 degrees of freedom and a diagonal scale matrix = 0.001 I, 

where I is the identity matrix). We used Markov chain Monte Carlo (MCMC) to obtain samples from 

the posterior distribution via the rjags (version 4.6) interface with JAGS (version 4.1.0)(1000 iteration 

burn-in, 5000 sampling iterations and a thinning interval of 4). We then estimated the Kullback-

Leibler distances (that is, the Kullback-Leibler divergence in both directions, e.g., from morph 1 to 

morph 2 and morph 2 to morph 1). This was calculated over the posterior distribution of the bivariate 

normal parameters, and thus accounts for uncertainty in these parameters. The main text shows these 

results for the three Timema species for which we also obtained data on host-plant coloration. In all 

instances, the morphs of T. chumash are less differentiated than those of other Timema species (Fig. 

S1). 

 

Correlation between phenotypic variables in Timema. The correlation between the variables RG 

and GB was estimated for each species. Values from individuals from different populations were 

pooled to obtain larger sample sizes for the analysis. Coefficient of determination (R2) was estimated 

using linear models in R [45]. R2 was also estimated using data from 2013, published in previous 

studies [21,33]. The statistics show a consistently high association between RG and GB in most 

species (Table S5). Statistics were estimated using R [45]. 
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Genotyping-by-sequencing, alignment, and variant calling. We genotyped by sequencing a total 

of 1529 individuals from T. chumash and T. bartmani (deposited as NCBI BioProject XXX, Dryad 

repository xxx). We extracted genomic DNA of each individual from three to five legs using DNeasy 

Blood and Tissue Kit (Qiagen). We then generated barcoded single end DNA libraries for each 

individual following standard restriction-site protocols [46], as applied in several previous Timema 

studies [21,24,32,33,47-49]. These individual libraries were then distributed into pools (containing 

sets of different individuals). These pools were size selected for fragments of size 300-500 base pairs 

(including adaptors) and sequenced (one pool per lane) on a Illumina HiSeq2000 platform with V3 

reagents at the National Center for Genome Research (Santa Fe, New Mexico, USA). For downstream 

analyses, we also used datasets of T. cristinae and T. podura from previous studies [21,33](NCBI 

BioProjects PRJNA284835 and PRJNA318846, Table S2 for a summary of data new to this study 

versus previously published data). The complete dataset used hereafter comprised the genotypes of 

2181 individuals across the four Timema species (1529 samples new to this study plus 652 previously 

published samples, Table S7). Note that this number is higher than the sum of samples used for 

GWAS (Table S8), because it includes additional samples used for generating the consensus 

sequences (described in detail in the Supplementary Data). The generated sequences were used to 

obtain allele frequencies and genotype probabilities as described in detail in the SI (Genotyping-by-

sequencing, alignment, and variant calling). Posterior genotype probabilities we obtained were used 

for all multi-locus GWA mapping analyses in GEMMA [50]. GENABEL [51], which was used for single-

locus GWA, cannot handle genotype posterior probabilities and requires called genotypes. Thus, for 

analyses using GENABEL we called genotypes from genotype probabilities (GP) using the following 

thresholds: GP <=0.5: homozygote for reference allele; 0.5 < GP <1.5: heterozygote; GP >= 1.5: 

homozygote for alternate allele. Posterior genotype probabilities we obtained were used for all multi-

locus GWA mapping analyses in GEMMA 0.94 [50]. GENABEL v1.8.0 [51], which was used for single-

locus GWA, cannot handle genotype posterior probabilities and requires called genotypes. Thus, for 

analyses using GENABEL we called genotypes from genotype probabilities (GP) using the following 

thresholds: GP <=0.5: homozygote for reference allele; 0.5 < GP <1.5: heterozygote; GP >= 1.5: 

homozygote for alternate allele.  

 

Detection of chromosomal inversion in T. cristinae. Several lines of evidence were used to delineate 

the approximate breakpoints for a putative large inversion in T. cristinae that is associated with green 

versus melanistic color morphs (Fig. S7). We focused on two scaffolds on LG8 (702.1 and 128) where 

a large number of contiguous SNPs were associated with color, suggestive of an inversion or a region 

of otherwise reduced recombination [24,49].  

 

We started by using a comparative alignment of de novo genome assemblies from melanistic and 

green T. cristinae morphs to constrain the possible bounds of the putative inversion. Both genome 

assemblies combined data from standard fragment libraries, mate-pair libraries, and Dovetail Chicago 

libraries. These assemblies, along with the comparative alignment, were described in detail in [49]. 

The alignment between melanistic morph scaffold 702.1 and green morph scaffold 1575 indicated 

that these genomes were co-linear along scaffold 702.1 up to base pair 10,032,025 (the end of the 

alignment between these two scaffolds). Likewise, we found that scaffold 128 from the melanistic 

genome aligned to scaffold 4214 from the green genome, and that these two scaffolds were co-linear 

beyond the boundary of the GWA signal in T. cristinae at ~6 megabases on scaffold 128. Thus, we 
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fixed the breakpoints for the putative inversion between ~10 megabases on melanistic scaffold 702.1 

and ~6 megabases on melanistic scaffold 128. This region corresponds to, but is slightly narrower 

than, the broad region of elevated GWA signal for color from the single SNP GWA analysis (see Fig. 

S7). Within this region, the green morph genome comprises many small scaffolds, preventing clear 

identification of the inversion based on these data alone. We think that the reason for poorer assembly 

in this region for the green morph was that the individual used for the de novo assembly was 

heterozygous for the green and melanistic haplotypes (and thus for the inversion), creating difficulty 

with the assembly. Our approach moving forward was thus as follows. 

 

We fit a hidden Markov model (HMM) based on patterns of LD across scaffolds 702.1 and 128 to 

explicitly test for and better resolve the bounds of the putative inversion, using the R (version 3.4.2) 

package HiddenMarkov (version 1.8.11)[52]. In T. cristinae individuals homozygous for the brown 

morph haplotype, we would expect normal/high LD for SNPs on either side of the breakpoint when 

sequences are aligned to the melanistic morph reference genome. In contrast, for individuals 

homozygous for the green haplotype, LD should be lower when SNPs span the inversion breakpoint, 

as such SNPs are not actually physically near each other and thus have a greater opportunity for 

recombination to reduce LD. The pattern described above is the specific signal we thus next searched 

for, as described in detail in the Supplementary Data (Detection of putative chromosomal inversion 

in T. cristinae).  

 

Multi-locus genome-wide association mapping in T. chumash with GEMMA. As in previous work 

[21,24,32] we used the software GEMMA 0.94 [50] for multi-locus GWA mapping in T. chumash. 

This method accounts for linkage disequilibrium among SNPs and is thus well suited for localizing 

genotype-phenotype associations within the genome, as was the goal in T. chumash. Briefly, we used 

GEMMA to implement Bayesian sparse linear mixed models (BSLMMs) using a multiple-SNP 

Bayesian approach to model the genetic architecture of color variation while accounting for genetic 

relatedness among individuals. In this method, the effects of SNPs are modeled as a mixture of two 

distributions: (1) those that individually have infinitesimal effects (‘polygenic distribution’) and, (2) 

those with measurable (i.e., ‘sparse’) effects. This approach provides posterior inclusion probabilities 

(PIPs, also called γ parameter) for each SNP, which represent the fraction of MCMC iterations that 

the SNP was retained as having a measurable effect. PIPs thus reflect the weight of evidence that an 

individual SNP is associated with the trait of interest. As described in detail below, PIPs also form 

the basis for quantitatively estimating the number of causal variants affecting a trait. 

 

We estimated PIP values for BSLMMs applied separately to RG and GB values, calculated across 5 

independent MCMC runs per trait (prior to GWAS, we corrected the color measurements for 

differences between sexes by extracting the residuals using sex as an independent variable in linear 

models). For each chain, we ran 3,000,000 iterations with a recording pace of one record state in 

every 100 steps and discarded the first 1,000,000 iterations as burn-in. We excluded SNPs with a 

minor allele frequency (MAF) less than one percent.  

 

Estimating number of variants affecting color from the GEMMA model. We obtained Bayesian 

estimates of the number of genetic loci (i.e., quantitative trait nucleotides, or QTN) within Mel-Stripe 

that were associated with GB and with RG color traits for T. bartmani, T. chumash and T. podura. 
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This number represents the number of causal variants affecting each trait, and is estimated via the 

sum of PIPs in a region [50](Fig. 1). In the case of multi-genic control with recombination among 

loci, the one or few SNPs that best tag each causal variant are expected to consistently be trait 

associated across MCMC steps (i.e., exhibit high PIP values). Thus, PIPs across such SNPs sum to 

the number of total causal variants. In contrast, in the case of suppressed recombination for example 

via inversion, many SNPs with very low (but non-zero) PIPs are expected because different SNPs 

can readily tag the causal variants (i.e., many SNPs carry redundant information). This will lead to 

PIP values of multiple SNPs across a genetic region that sum near one. 

 

We estimated the number of QTN in a way that accounted for uncertainty in individual SNP-trait 

associations as measured by the PIPs from GEMMA [53]. For each species and color trait, we drew 

samples from the posterior distribution of the number of QTN in Mel-Stripe by sampling a binary 

indicator variable (1 = QTN for color, 0 = not QTN for color) for each SNP in that region based on 

its PIP. The sum of SNPs in the region sampled as QTN was then taken as a posterior sample for the 

number of QTN in Mel-Stripe. We repeated this procedure 10,000 times for each species and color 

trait to obtain posterior distributions for the number of QTN, which we summarized based on their 

medians and 95% ETPIs (i.e., the 2.5th and 97.5th quantiles of the distribution). We also estimated 

the genetic correlations between GB and RG as described in the Supplementary Data (Genetic 

correlation between GB and RG). 

 

Linkage disequilibrium between color-associated SNPs in T. chumash multi-locus GWA. We 

quantified linkage disequilibrium (LD) among the SNPs most strongly associated with color in T. 

chumash based on the multi-locus GWA mapping results from GEMMA (see above). Pairwise LD was 

quantified as the squared Pearson correlation between genotypes at each pair of SNPs with high 

posterior inclusion probabilities (PIPs)[as in 54]. Specifically, we considered SNPs with PIPs greater 

than 0.4 in the region showing strong associations (5-6 mega-base region on scaffold 128). This 

revealed that LD was generally low in this region, and was not accentuated for trait-associated SNPs 

(Fig. 2). 

 

Distribution of effect sizes, dominance, and epistasis. To further characterize how closely the 

genetic architecture of color in T. chumash is polygenic and predominantly additive we considered 

the distribution of phenotypic effect sizes across the most strongly color-associated SNPs from the 

multi-locus mapping, and tested for epistasis between these SNPs. A polygenic model predicts a fairly 

uniform distribution of effect sizes (small to moderate effects for most SNPs), and little or no 

epistasis. Our results are largely consistent with these predictions (Figs. 2, 3, S5-6, and details below), 

as described in detail in the Supplementary Data (Distribution of effect sizes, dominance, and 

epistasis). 

 

Single locus genome-wide association (GWA) mapping with GENABEL. Following past work 

[21,33] we used GENABEL v1.8.0 [51] to perform single locus GWA mapping analysis in T. bartmani, 

T. chumash, and T. podura. This method does not account for LD among SNPs and is thus well suited 

for visualizing larger ‘blocks’ of genotype-phenotype association within the genome, as might occur 

in regions of reduced recombination. 
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Briefly, transformed genetic probabilities were filtered using the GENABEL quality control function. 

Excluded from analysis were SNPs with MAF less than or equal to 1%, individuals with extreme 

heterozygosity at a false discovery rate <1%, and individuals with identity by state (IBS) >= 0.95, 

(calculated on a randomly selected subset of 2000 SNPs). Analyses were run both with and without 

control for population structure, and gave qualitatively comparable results. We stress that we largely 

analyzed samples collected in the same locality, and that the core point of the single locus mapping 

was to visualize block-like patterns of association, not to detect causal loci affecting color. Thus, for 

our purposes potential population structure is less problematic than in studies aiming to find casual 

variants.  

 

Association results taking population structure into account were obtained using the GENABEL egscore 

function. This function implements the method of [55] and extracts principal components of a kinship 

matrix (here IBS indices) calculated using a randomly selected subset of 2000 SNPs (excluding those 

from LG8 and SNPs not associated to a linkage group). The principal components are then used as 

covariates in the GWA linear models. Results are displayed in the form of Manhattan plots. These 

graphics show the association score (expressed as –log10 (pvalue)) of every SNP tested along their 

physical position in the T. cristinae genome. Gaps between scaffolds are not represented in these 

graphics. 

 

Our results revealed that at the scale of LG8, T. chumash exhibits a peak of association (which 

actually represents several distinct peaks when zoomed in further on scaffold 128), T. bartmani a 

narrow ‘block’ of association, and T. podura a wide block of association (Figs. S8-S11). Accordingly, 

T. chumash exhibits much lower LD in the Mel-Stripe region than do the other species (Fig. 3). 

 

Linkage disequilibrium between color-associated SNPs in single-locus GWA. We calculated LD 

among all SNPs in the Mel-Stripe locus [following 49] for the three Timema species. Pairwise LD 

was quantified as the squared Pearson correlation between genotypes at each pair of SNPs in this 

region for each species. We then summarized the distribution of LD across the region by the median 

and 95% quantile across all pairwise LD estimates. 

 

Principal component analysis (PCA) on genotypes. Posterior genotypes probabilities were 

obtained and used for all PCA analysis. PCA was run on all SNPs located between position 5Mbp 

and 6Mbp on scaffold 128 with the prcomp function in R [45].  The position of individual’s on 

principal component axes was extracted and plotted using custom scripts.  

 

Structure based on phased genomic data. We obtained phased haplotypes for T. bartmani, T. 

chumash and T. podura using fastPHASE 1.4.8 [56]. We used the same GBS data that was also used 

for GWA mapping for these species. Following past work [24], we computed phred-scaled genotypes 

likelihoods for SNPs with a maximum of 15% missing values (85% of samples need to have at least 

a read to estimate a genotype likelihood) using a custom perl script (bcf2gl.pl) and we formatted these 

genotype likelihoods into a fastPHASE input file using another custom per script (mkfastphaseinp.pl). 

We ran fastPHASE allowing for 20 random starts (-T 20 option), a maximum of 35 EM iterations (-

C35 option), a lower limit for K detection of 10, an upper limit of K detection of 20 and an interval 

for K detection of 2 (-KL 10 -KU20 -Ki 2 options), scanning for genotype errors using a 4 parameter 
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model (-em4 option) and bracketing genotypes with a posterior probability below 0.9 (-q 0.9 option). 

fastPHASE output consisted of 2 haplotype files, one for each DNA strand.  

 

We then used the linkage model in structure (version 2.3.4)[57] to test for haplotype blocks in the 5-

6 megabase pair region of scaffold 128 associated with color in T. chumash. Haplotype blocks in this 

region would provide evidence of chromosomal variants with restricted recombination associated 

with distinct color pattern alleles in T. bartmani and T. podura. As in past work with T. cristinae [24], 

we fit the linkage admixture model for the phased genotype data from fastPHASE for all SNPs on 

linkage group 8 (see the preceding section). We used the correlated allele frequencies model with the 

number of groups (source populations) set to k = 2 (to reflect two putative chromosomal variants). 

We ran five MCMC chains for each species, each with a burnin of 200,000 iterations followed by 

200,000 sampling iterations. We used the local ancestry probabilities from the site-by-site (linkage) 

analysis to identify SNPs that were likely homozygous for ancestry from the same source population 

(chromosomal variant) or heterozygous for ancestry. We called ancestry/source in cases where the 

posterior probability of ancestry of a given type was > 0.5 (other cases were considered ambiguous). 

We only expect these ancestry assignments to be meaningful/informative in the putative 

chromosomal variants.  

 

Phylogenetics. We used variants from both GBS and whole genome re-sequencing (WGS) data to 

infer genome-wide and color-associated genetic region (on LG8) trees. We subsampled our extensive 

GBS dataset to include the ten individuals with the highest number of mapped reads per species (T. 

bartmani, T. chumash and T. podura) and morph (green and melanistic), resulting in a dataset of 60 

individuals. Because the GBS dataset did not include numerous SNPs that overlapped between 

species in the color-associated region, we generated WGS data to confirm the results from the GBS 

data. Specifically, WGS data was obtained for a total of 48 individuals from T. bartmani (green and 

melanistic), T. chumash (green) and T. podura (melanistic, all deposited as NCBI BioProject XXX). 

Details on the used samples, DNA extraction, sequencing, alignment, and variant calling are provided 

in the Supplementary Data. We used a custom Perl script to generate multiple alignments from the 

genotypes with the highest likelihood and coding heterozygotes as IUPAC ambiguities. For the 

genome-wide inferences, we produced alignments concatenating 25,000 variants randomly taken 

from across all scaffolds assigned to linkage groups. The alignments for the region associated with 

color (5 Mbp to 6 Mbp on scaffold 128 of LG8) comprised 305 (GBS) and 1923 variants (WGS). 

RAxML implements the Lewis ascertainment bias correction [58], but it requires at least one 

unambiguous sample (i.e. homozygote) for each allele for a position to be recognized as variable. 

Thus, a number of positions were excluded, resulting in alignments of size 151 (GBS, color region), 

12,498 (GBS, genome wide), 1173 (WGS, color region), and 13,682 (WGS, genome wide). For each 

alignment, we inferred maximum-likelihood (ML) trees using RAxML 8.2.11 [59] from a randomized 

stepwise addition order parsimony starting tree. We used a GTR substitution model with a GAMMA 

model of rate heterogeneity and the Lewis ascertainment bias correction (“-m ASC_GTRGAMMA -

-asc_corr=lewis”). We used the rapid bootstrapping approach (“-f a”)[60] with the number of 

bootstrap replicates automatically determined using the extended majority-rule consensus tree 

bootstrapping criterion (“-N autoMRE”)[61]. Plots were generated using R packages ape 5.1 [62], 

phytools 0.6-60 [63] and phangorn [64]. Alignments, trees, and code are available in Dryad repository 

XXX. 
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Phenotypic measurements of plant coloration from photographs. We quantified the coloration of 

the main host plants of T. chumash, T. bartmani, and T. cristinae using digital photographs of the 

hosts (we were unable to get photographs of the hosts of T. podura), using the same photographic 

procedures described above for Timema specimens. Host-plant cuttings were collected in 2015 from 

the localities listed in Table S10, and kept in a cooler until they were photographed. For the plant 

tissues, we measured a standard area of a circle with 1-millimeter diameter. This area was chosen 

because it fits the lateral margin size of all specimens studied (including the T. bartmani nymphs). In 

addition, this allowed us to measure samples of broad leaves and individual needles using the same 

standard. For samples with broad leaves (i.e., C (California lilac): Ceanothus spinosus; MM 

(Mountain Mahogany): Cercocarpus sp.; Q (Oak): Quercus sp.), we recorded the RGB values for the 

upper (adaxial) and lower (abaxial) leaf surfaces in different samples, and for the stem. For plants 

with needle-like leaves (i.e., A (Chamise): Adenostoma fasciculatum; WF (White Fir): Abies 

concolor; P (Pine): Pinus sp.), we recorded one measurement if the surface was uniform in color (i.e., 

P), or two if the colors varied in the upper and lower surfaces (i.e., WF). Host plant parts were 

categorized as stems or leaves. As we did for estimating differentiation between Timema morphs, we 

then estimated the Kullback-Leibler distance between plant parts in both directions (e.g., from stems 

to leaves and leaves to stems). See Table S10 in the Supplementary Data (Phenotypic measurements 

of plant coloration from photographs) for details about the host plant samples used in this study. 

 

Manipulative field experiment. We tested experimentally the prediction of stronger disruptive 

selection (i.e., stronger selection against intermediate coloration) on hosts associated with greater 

differentiation of Timema morphs. We did so by marking and transplanting green, melanistic, and 

intermediately colored T. chumash to two treatments: (1) hosts associated with highly discrete morphs 

(Adenostoma and Ceanothus respectively, A/C hereafter) versus, (2) a host associated with less 

discrete morphs (mountain mahogany, MM hereafter). We used T. chumash because this species 

exhibits the most continuous range of color such that reasonable numbers of intermediately colored 

individuals could be collected to have their survival assayed (alongside with clearly green or 

melanistic individuals). The rationale for the choice of these hosts / treatments is provided in the 

Supplementary Data (Manipulative field experiment – host and treatment rationale).  

 

The experimental T. chumash were collected from Cercocarpus in the vicinity of the locality Horse 

Flats 5 (HF5, N 34 15.584, W 118 6.254). A total of 602 individuals were collected between May 9 

and May 11, 2018. These were kept alive in plastic containers and moved to laboratory space on the 

campus of the University of California, Santa Barbara.  

 

On May 12, 2018 we scored 120 of these individuals into three phenotypic categories as follows. To 

represent the green category, forty of the brightest and darkest green specimens were selected to 

represent one extreme of the green-melanistic continuum. Thus, the colors of these chosen individuals 

resemble the discrete variation found in green morphs of T. cristinae and the other polymorphic 

species analyzed in this study. To represent the intermediate category, we selected forty individuals 

with green-yellow, yellow, brown-yellow tones, and green-blue tones, as these collectively depict the 

transition from green to brown (melanistic) colors. For this category, green-yellow coloration was 

present in the majority of individuals. To represent the melanistic category, we chose forty individuals 

with the darkest brown and red coloration.  
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We estimated the repeatability of this scoring to be 96% (95% ETPIs from a Bayesian beta-binomial 

model with a Jeffreys prior = 88-99%, this model has an analytical solution), by scoring 50 individuals 

twice, where only two scoring errors were made (21 individuals scored green both times, 15 

individuals scored intermediate both times, 12 individuals scored melanistic both times, 2 individuals 

scored as intermediate once and as green once). Representative specimens of each category are shown 

in Figure 7 of the main text. 

 

To ensure we could distinguish our experimental animals from naturally occurring ones, we marked 

each individual on the abdomen with a fine-tipped sharpie pen, as in past work [19,41]. The marks 

were thus not visible when the insects were naturally resting on their host plants. Each category of 

color (green, intermediate, melanistic) received a differently colored mark, facilitating accurate 

rescoring of color in recaptured specimens. As our experimental design involved two blocks (details 

below) we alternated which color mark was assigned to which category (block 1: greens marked with 

a blue pen, intermediates marked with a green pen, melanistics marked with a red pen; block 2: greens 

marked with a green pen, intermediates marked with a red pen, melanistics marked with a blue pen). 

 

On May 13th, 2018 we transplanted the marked specimens back onto host plant individuals at the 

locality they were collected from. This was done in two blocks, where each block contained each 

treatment (MM and A/C), using a single plant individual of each host species. Equal numbers of 

green, intermediate, and melanistic individuals were released on each treatment and block (i.e., 20 

individuals of each category on each treatment and block, total n = 120). The location of each 

experimental plant was as follows: block 1, MM N 34 15.584, W 118 6.254, A/C N 34 15.599 W 118 

6.256; block 2 MM N 34 15.682 W 118 6.127, A/C N 34 15.631 W 118 6.216). Experimental plants 

were chosen to be separated from other plants by ‘bare ground’ (sandy or gravelly regions not 

containing plants), forming an ‘experimental island’. Past has shown that dispersal across such bare 

ground is near absent [41,65-68]. 

 

We were interested in rapid changes in the frequency of each color category because past studies in 

Timema have documented adaptive divergence between experimental populations within a week upon 

transplantation to new environments, and because adult and penultimate instar Timema tend to live 

for only one to three weeks in the field, with bird predation being a major source of selective mortality 

[41,65,66,68]. Thus, on May 15th, 2018 we recaptured the surviving individuals using visual surveys 

and sweep nets. In total, the number of recaptured individuals of each category and treatment was as 

follows (see also Fig. 7). On MM we recaptured 8, 13, and 5 individuals that were green, intermediate, 

and melanistic, respectively. On A/C we recaptured 8, 2, and 6 individuals that were green, 

intermediate, and melanistic, respectively. Past mark-recapture work has shown this protocol is highly 

effective at recapturing the overwhelming majority of surviving individuals [41,65-68]. 

 

The recapture data were analyzed as follows. We fit a Bayesian multinomial-Dirichlet model to these 

data using the rjags interface with JAGS (JAGS version 4.1.0, rjags version 4.6, R version 3.2.3)[69]. 

Specifically, recapture counts were assumed to follow a multinomial distribution with a vector w of 

length three, that gives the relative fitnesses of the three color-categories. These relative fitnesses can 

be rescaled (e.g., relative to the fitness of any one color category) to aid interpretation of the results. 
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We placed an uninformative Jeffreys Dirichlet prior on this vector (all shape parameters set to 0.5). 

We considered two models, one where the two blocks had independent w vectors and one where they 

were constrained to be the same. Posterior distributions were obtained by running three MCMC 

chains each with a 1000 iteration burnin, 9000 sampling iterations and thinning intervals of 3. The 

constrained model was preferred by DIC (DIC = 36.81 for the constrained model versus 54.99 for the 

unconstrained model), and thus we focus on results from that model. With that said, for both models 

the posterior probability (pp) that intermediate morphs had a higher relative fitness on MM than C/A 

was > 0.99. We defined the relative fitnesses (w) of the color morphs as: wgreen = 1-s, wintermediate = 1, 

and wmelanistic = 1-t (as in Eq. 1.25c in [70]), with details provided in the Supplementary Data 

(Manipulative field experiment – relative fitnesses estimation).  
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Figure 1. Predicted and observed patterns for multi-genic versus major (e.g., single non-recombining 

locus) genetic control of color. Red dots in (a) and (b) represent causal variants affecting color. 

Asterisks represent single nucleotide substitutions (SNPs) that are retained as trait-associated in each 

different Markov chain Monte Carlo (MCMC) step in multi-locus genome-wide association (GWA) 

mapping (this controls for linkage disequilibrium (LD) among SNPs). The proportion of steps that a 

SNP is retained is the posterior inclusion probability (PIP). In the case of multi-genic control with 

recombination among loci, the one or few SNPs that best tag each causal variant are expected to 

consistently be trait-associated across MCMC steps (i.e., exhibit high PIP values). Thus, PIP values 

across such SNPs sum to the number of total causal variants (i.e., provide an estimate of the number 

of quantitative trait nucleotides (QTN) contributing to trait variation). In contrast, in the case of 

suppressed recombination, many SNPs with low (but non-zero) PIPs are expected because different 

SNPs can readily tag the causal variants (i.e., SNPs carry redundant information). This leads to PIP 

values summing near one. Also shown are expected patterns for single SNP GWA that does not 

account for LD. Photographs of representative samples of the four Timema species studied here are 

shown in (c). These are the same types of photos from which color data was collected for GWA 

mapping. 
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Figure 2. Evidence for multi-genic control of color variation in T. chumash. (a) Photographs of 

representative samples of T. chumash. Panels (b) to (e) show results from multi-locus genome wide 

association (GWA) mapping in GEMMA at two different genomic scales (genome wide and for the 

scaffold showing the bulk of strong associations, i.e., scaffold 128 on LG8). PIP = posterior inclusion 

probability (see Fig. 1 for further explanation). Red-green (RG) color variation is shown with red dots 

and green-blue (GB) color variation by blue dots. pos = position, where bp = base pair. Panel (f) 

shows linkage disequilibrium (LD, measured as the squared correlation coefficient, r2) between color-

associated single nucleotide polymorphisms (SNPs) in T. chumash, shown as a function of the base 

pair (bp) distances between such SNPs. Orange dots are SNPs with PIPs > 0.4. LD between these 

(a) T. chumash color variation
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SNPs is low, and no higher than between other SNPs (i.e., those with PIPs < 0.4, grey dots) in this 

genomic region. Panel (g) depicts phenotypic scores for RG as a function of melanic allele dosage 

across the ten top color-associated SNPs. The results use rounded melanic dosages (to the nearest 

integer), with boxplots showing the distribution of phenotypic scores for each melanic allele dosage 

bin. Here, the color of the boxes is the mean color in hexadecimal code (for further results see Figs. 

S5-6). 

 

Figure 3. Evidence for variation in genetic architecture of color among Timema species, including 
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(a) T. podurae Genome−wide GWA, RG
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(f) T. chumash  LG 8 GWA, RG
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major locus control in species other than T. chumash. Panels (a)-(d) show results of single-locus 

genome wide association (GWA) mapping of red-green (RG) color variation in three Timema species 

at two genomic scales (genome wide and for the single linkage group (LG8) showing the bulk of 

associations), without correction for population structure in GENABLE. For analogous results with 

correction for population structure, and for the green-blue (GB) trait see Figures S9-10. The y-axis 

shows the negative log10 P-value (Neg. log p) for each test that a single-nucleotide polymorphism 

(SNP) is associated with color variation. At the scale of LG8, T. chumash exhibits a peak of 

association (which actually represents several distinct peaks when zoomed in further on scaffold 128, 

see Fig. 2), T. bartmani a narrow block of association, and T. podura a wide block of association. For 

details on linkage disequilibrium see Figure S11. Panel (e) shows the number of genetic variants (i.e., 

quantitative trait nucleotides, QTN) estimated to affect RG and GB in each species. Bars are medians 

and vertical lines show the 95% ETPIs. Panel (f) shows estimates of the genetic correlation between 

RG and GB in each species. Bars are Pearson correlation coefficients and vertical lines show the 95% 

confidence intervals. 
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Figure 4. Statistical summary of genetic variation in T. podura (a), T. bartmani (c) and T. chumash 

(e) based on principal component analysis of SNPs on genome scaffold 128 between 5 and 6 

megabase (Mbps). Each point represents an individual stick insect, and points are colored green or 

brown to denote cluster membership from hierarchical clustering based on RG and GB color scores. 

Panels (b), (d), and (f) summarize haplotype ancestry/blocks across linkage group (LG) 8 for each of 

these species. Each row corresponds with an individual and columns denote SNPs along LG 8. Black 

boxes delineate the 5-6 Mbps pair region of scaffold 128 associated with color in T. chumash. Plots 

are colored to reflect homozygous green chromosomal variants (green), homozygous melanic 

chromosomal variants (brown), heterozgyous for chromosomal variants (gray) or uncertain (posterior 

probability of an ancestry/chromosomal variant less than 0.5; white). These assignments are only 

meaningful within chromosomal variants and for species that have them (i.e., T. bartmani and T. 

podura). 
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Figure 5. Phylogenetic trees for T. podura, T. bartmani, and T. chumash color morphs. Trees were 

estimated based on  SNPs in the color-associated region of LG 8 (5-6 megabases on scaffold 128) (a, 
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b) or concatenated SNPs from across the genome (c, d). Trees are shown for SNPs from either GBS 

data (a, c) or from whole genome sequence data (WGS; b, d). Colored dots denote color morphs 

(green versus melanic = brown). Trees are rooted with T. chumash. Black points on internal nodes 

denote >70% bootstrap support. In all cases, stick insects group by species rather than by color morph 

across species (there is evidence of grouping by morph within species in the trees from the scaffold 

128, 5-6 megabases SNP data set). 

 

 

 
Figure 6. Overlap in coloration between green and melanistic Timema morphs, and the leaves versus 

stems of the host plants they are found upon; for T. chumash this is oak (Quercus sp.) and mountain 

mahogany (Arctostaphylos sp.), for T. bartmani this is white pine (Pinus flexilis) and white fir (Abies 

concolor), for T. cristinae this is California lilac (Ceanothus spinosus) and chamise (Adenostoma 

fasciculatum), and we were unable to obtain data for T. podura. Panel (a) shows representative 

(a) Timema color variation
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(c) T. bartmani
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(d) T. cristinae
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(f) T. chumash hosts
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(g) T. bartmani hosts
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(h) T. cristinae hosts

RG

G
B

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●
●

●●

●●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●●

●

● ●

● ●

●

● ●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●
●

T. chumash

T. bartmani

T. cr ist inae

(e) Plant color variation

Quercus sp.

Abies concolor

Adenostoma fasciculatum



 

198 

Timema photos and panels (b) to (d) empirical data, where the green and brown dots are clusters 

corresponding to green versus melanistic morphs. Panel (e) shows representative photos of the latter 

host pair listed above for each species. Note that the plant coloration data depicted in panels (f) to (h) 

is from all the hosts listed above, not just those illustrated in panel (e). For host plants, the green and 

brown dots are data from leaves versus stems, respectively. The bottom two panels (i) and (j) show 

the mean Kullback Leibler (KL) distance between morphs and host tissues as bars, with vertical lines 

representing 95% ETPIs. RG = red-green spectrum, GB = green-blue spectrum. 

 

 

Figure 7. Results of the transplant experiment in T. chumash testing for stronger disruptive selection 

on chamise and California lilac (Adenostoma and Ceanothus, respectively, abbreviated A/C) than on 

mountain mahogany (MM). Panel (a) shows representatives of the green, melanistic, and intermediate 

coloration in T. chumash. Panels (b) and (c) show relative fitness in each treatment. Bars are means 

and standard deviations of the posterior (analogous to standard errors). The raw number of individuals 

released and recaptured are shown in panels (d) to (g), where the horizontal line in each bar 

distinguishes numbers of individuals from each of the two experimental blocks. 
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Literature review of the effects of selection and reduced recombination in the evolution of multi-genic 

adaptation 

 

A literature review of the effects of selection and reduced recombination in the evolution of multi-

genic adaptation was conducted. However, it was not represented in this dissertation for simplicity 

(Table S1 was not included here). 

 

Study design and samples used 

 

Table S2 details whether the data from Timema specimens used in this study were newly acquired, or 

re-analysis of previously published data [56-58].  

 

Table S2. General description of the sampling and study design. 

Species Phenotypic 

overlap 

Spectral 

reflectance 

GWAS and 

genetic structure 

Whole genome 

phylogenetics 

T. cristinae New data New and 

published data 

Published data N/A 

T. podura New data  New data Published data  New data 

T. bartmani New data  New data New data New data 

T. chumash New data New data New data New data 

‘Published data’ refers to data collected in 2013 and reported in references [56-58]. ‘New data’ is 

novel to the current study, where in the case of phenotypic measurements all data were collected in a 

standardized fashion in 2015. For details on individual components, including populations used, 

sample sizes, etc. see Tables S4, S5, and S7. 
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Sampling locations 

 

Table S3 contains details of the sampling localities, where samples of Timema sp. and plants were 

collected. Abbreviations of these population codes were used throughout this text. 

 

Table S3. Details about the Timema populations used in this study and host plants found in the 

sites.  

Popcode Host 

plant 

Latitude Longitude Altitude Description 

BALD C, Q 34.22108 -117.668 1172 Mount Baldy 

BC Q 36.06 -121.57 614 Big Creek 

BM WF 33.837 -116.75 2288 Black Mountain 

BMCG3 WF, Q 33.83124 -116.741 2261 Black Mountain Camp 

Ground 3 

BMTB Q 33.83 -116.78 1857 Black Mountain Trailside 

Boulder 

BS C 33.82 -116.79 1614 Bay Spring 

DZR A 33.86 -116.84 1306 Diamond Zen Ranch 

FH A 34.52 -119.8 742 Far Hill 

GR10.43 MM, Q 34.22505 -117.68 1332 Glendora Ridge Mile 10.43 

GR8.06 Q, MM 34.22 -117.71 1370 Glendora Ridge Mile 8.06 

HF4 C, Q 34.26536 -118.098 1429 Horse Flats 4 

HF6 Q 34.26695 -118.117 1262 Horse Flats 6 

HFDPD M,Q 34.34081 -118.016 1819 Horse Flats Daniel Paul 

Duran 

HFRB Q 34.25822 -118.105 1407 Horse Flats Red Box Picnic 

Area 

HFRS MM 34.35558 -118.012 1793 Horse Flats Rosenita Saddle 

HFTP C 34.34355 -117.983 1808 Horse Flats Three Points 

Parking 

JL IC, P, 

WF, WP 

34.16 -116.9 1974 Jenk's Lake 

NH C 34.515 -119.8 825 Near Hill 

PCT WF 33.83944 -116.738 2372 Pacific Coast Trail 

SM Q SM 37.019 561 Summit Mt. Madonna 

Host-plant abbreviations are as follows. A: Adenostoma fasciculatum, C: Ceanothus spinosus, IC: 

Calocedrus decurrens, M: Arctostaphylos sp., MM: Cercocarpus sp., P: Pinus sp., Q: Quercus sp., 

WF: Abies concolor, WP:  Pinus flexilis. Popcode. = population code. N-ind= number of individuals 

used in the study. 
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Timema sampling 

 

Table S4 presents details about the samples used for acquisition of phenotypic data. Digital 

photographs of these samples were taken and color variables were measured. See appropriate 

Materials and Methods section for detailed information.  

 

Table S4. Details of the Timema samples used to extract color variables for phenotyping.  

Species Popcode. Host 

plant 

N-ind Year 

T. bartmani JL IC, P, 

WF, WP 

150 2015 

T. chumash GR8.06 Q, MM 541 2015 

T. cristinae FH A 602 2013* 

T. cristinae FH A 190 2015 

T. podura BS C 42  2013* 

T. podura BS C 4 2015 

T. podura BMTB Q 6 2015 

T. podura DZR A 10 2015 

Host-plant abbreviations are as follows. A: Adenostoma fasciculatum, C: Ceanothus spinosus, IC: 

Calocedrus decurrens, MM: Cercocarpus sp., P: Pinus sp., Q: Quercus sp., WF: Abies concolor, WP:  

Pinus flexilis. Lat. = latitude. Long. = longitude. Popcode. = population code. N-ind= number of 

individuals used in the study.Year = year when the samples were collected. *Samples from 2013 refer 

to the data from [57,58], and individuals collected 2015 are new to this study. 

 

Correlation between phenotypic variables in Timema 

 

Table S5 presents the correlation between the variables RG and GB, estimated for each species. A 

linear model was used to estimate the coefficient of determination (r²). See appropriate Materials and 

Methods section for further information. 

 

Table S5. Correlation between RG and GB values per species.  

Species Popcode N-ind Year r2 Pearson 

T. bartmani JL 150 2015 0.44 -0.66 

T. chumash GR8.06 541 2015 0.04 -0.15 

T. cristinae FH 602 2013* 0.61 -0.78 

T. cristinae FH 190 2015 0.56 -0.75 

T. podura  BS 42 2013* 0.60 -0.78 

T. podura  BS, DZR, BMTB 20 2015 0.20 -0.45 

Statistics were estimated using R [59]. Popcode = population codes from each species. N-ind= total 

number of individuals used in the analysis. Year = year when the samples were collected; * values 

from 2013 samples correspond to already published data [57,58], and are represented here for 

comparison. r2 = coefficient of determination. Pearson= Pearson correlation coefficient.  
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Differentiation and overlap between Timema morphs 

 

Figure S1 presents the results of UPGMA algorithm in hclust (from R 3.2.3)[59] to cluster Timema 

into two groups (i.e., morphs) based on the RG and GB color measurements on samples collected in 

2015. See appropriate Materials and Methods section for information on clustering method. 

 Figure S1. Overlap in coloration between green and melanistic Timema morphs (green and 

brown dots, respectively), for all four polymorphic species studied here. 

The bottom panel shows the mean Kullback-Leibler (KL) distance between morphs as bars, with 

vertical lines representing 95% ETPIs. RG = red-green spectrum, GB = green-blue spectrum.  
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Spectra reflectance data  

 

We focused the core analyses in the main text on two traits (RG and GB) that represent color variation 

within the human visible spectrum. This was done under the assumption that these variables 

accurately represent color variation in Timema, and the perception of it by their avian predators. We 

thus directly tested this assumption, including quantification of ultra-violet reflectance, by recording 

the spectral reflectance of several individuals from the Timema species we studied (Table S6). Our 

results, described below in detail, largely validate our assumption, justifying the use of RG and GB 

values quantified from photographs. 

 

We collected spectral data using a USB2000 Fibre Optic Spectrometer (Ocean Optics Inc.) equipped 

with a 400-micron reflection probe (R400-7-SR) and a pulsed Xenon lamp (PX-2) with an output 

spectrum of 220-750nm. The spectra were measured at a 45o angle with an integration time of 50 

milliseconds, the boxcar width adjusted to 5, and averaging across 20 scans. These measurements 

then were corrected for nonlinearity, stray light, and electric dark using the OceanView software 

(Ocean Optics). The reflectance was measured relative to a Spectralon >99% white reflectance 

standard provided by the manufacturer (WS-1). For each individual, we recorded two reflectance 

spectra: one from the dorsal anterior part of the body (comprising thorax and head) and the second 

from the dorsal posterior part (abdomen). We interpolated the raw reflectance in the light spectrum 

between 300-700nm, corrected the negative values to zero and applied triangular smoothing with a 

distance of 10 nm using the software AVICOL [60]. Finally, we estimated the mean reflectance as 

that averaged between the dorsal and abdominal measurements in R.  

 

We assigned individuals to different morphs as described in detail above. We then estimated the mean 

reflectance across the measured spectrum for each species and morph. As there were only two 

individuals from T. cristinae (both green, Table S6), here we used spectra from 10 individuals from 

a previous study [58] to generate spectra curves for comparison. The raw spectra was processed using 

the same procedures cited above. The green morph presents a clear peak of reflectance at medium 

wavelengths (i.e., between 495–570 nm, green spectra)(Fig. S2). In contrast, the melanistic morph 

exhibits growing reflectance values towards higher wavelengths in the visible spectrum, being richer 

from long to middle wavelengths (i.e., brown)[61](Fig. S3). All specimens presented low reflectance 

at ultraviolet wavelengths (between 300-400 nm), with average reflectance below 6%. In the 

literature, authors tend to disregard ultraviolet spectra with less than 10% reflectance [61-64]. Thus, 

Timema reflect mainly in the visible spectrum, as do leaves and bark [61], rather than in the ultraviolet 

spectrum.  
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Figure S2. Reflectance curves per species for green morphs. 

 
Figure S3. Reflectance curves per species for melanistic morphs. 
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Aluminous stimuli are apprehended by different photoreceptors based on their different sensitivities 

(termed ‘quantum catch’). Here, the avian visual system was used because birds are a major predator 

of Timema, and likely the main predator of Timema during late life-history stages [65]. Birds present 

four types of photoreceptors: cones that capture long-wave stimuli (LW, red); mediumwave (MW, 

green); shortwave (SW, blue); and ultraviolet (UV)[66]. Therefore, colors seen by birds are a result 

of the interaction of three primary colors plus ultraviolet, stimulating different types of cells in the 

retina. 

 

Quantum catch for the four photoreceptors was calculated using the file provided by Endler & Mielke 

[67], with average photoreceptors’ sensitivities of birds with ultraviolet-sensitive type of 

photoreceptor (UVS), given most passerines exhibit this system [68,69]. We used the mean 

reflectance for each nanometer on specimens of the green morph and melanistic individuals, which 

were analysed separately. The analyses were conducted using the pavo R package [70]. The results 

showed MW is the most stimulated cone when green individuals are the object and LW is the most 

stimulated for the melanistic morph (Fig. S4). The UV cone was very marginally stimulated in 

comparison, suggesting that the UV wavelength range does not contribute strongly the the image 

perceived by birds.  

 

In summary, our results show that Timema mostly reflect colors in the visible spectrum, and that this 

range is what is seen by birds, their predators. There is marginal reflectance in the ultraviolet range, 

but it is low enough to likely be largely biologically insignificant for the final color perceived. Hence, 

our work focused on analyses of digital photographs is justified and biologically relevant. 

Figure S4. Quantum catch of colors at each photoreceptor of average avian ultraviolet-

sensitivity system (UVS)[67]. The different morphs of Timema were analysed separately, with their 

reflectance values averaged at each nanometer. The analysis was conducted at pavo R package [70]. 



 

210 

u – ultraviolet photoreceptor, s – small wavelength photoreceptor (blue), m – medium wavelength 

photoreceptor (green), and l – long wavelength photoreceptor (red).  

 

Table S6. Details about specimens used for spectra reflectance measurements per population 

and per morph.  

Species Location Host Year Morph N-ind 

T. bartmani JL WF, WP 2015 

 

green 4 

melanistic 5 

T. chumash GR8.06 MM, Q 2015 green 4 

2015 melanistic 6 

T. cristinae FH A 2013* green 5 

melanistic 5 

2015 green 2 

T. podura BMTB Q 2015 green 2 

BS C melanistic 2 

Year = year when the measurements were collected. *Spectra information from 2013 refer to the data 

from [57,58]; and individuals collected 2015 are new to this study. 

 

Genotyping-by-sequencing, alignment, and variant calling.  

 

See appropriate Materials and Methods section for information on DNA extraction, library 

preparation and sequencing. Following sequencing, we first quality-filtered the reads with a custom 

Perl script that removed reads with a minimum average phred-scale quality score below 20, trimmed 

bases with a phred quality score below 20 from the end of the reads, and removed reads with a length 

of less than 25 bp after trimming. As in previous studies [71,72], we demultiplexed the data using 

custom Perl scripts that identify and remove the in-line barcodes, including those that were 1 bp away 

due to synthesizing or sequencing errors, and remove the following six base pairs of the EcoRI cut 

site and the adapters at the 3' end when present. These scripts then relabel the sequences with the 

corresponding individual identifiers, and save the reads to separate files for each individual. 

Sequences lacking barcodes, or those shorter than 16 bp after parsing, were discarded. After these 

steps, we obtained a total of 1,952,524,371 DNA sequences with an average length of 84 bp (95% 

equal-tail confidence interval (ETCI)=82-85 bp). The mean number of reads per individual was 

895,243 (95% ETCI=389,082-1,896,058), with some differences among species: T. bartmani: 

622,512 (95% ETCI=331,156-854,020), T. chumash: 694,491 (95% ETCI=210,901 1,146,745), T. 

cristinae: 1,365,174 (95% ETCI=617,454-2,140,699), T. podura: 2,434,359 (95% ETCI=1,291,065-

3,178,544)(see Table S7 for details). 

 

In order to enhance the alignment of reads for species other than T. cristinae and, most importantly, 

avoid discarding in downstream steps variants tagged as multi-allelic when compared to the T. 

cristinae genome (e.g., variants with only two alleles in a population, but both different from the 

reference allele on the T. cristinae genome), a multi-step process was followed to create a consensus 

reference sequence for each species. This involved the following steps. First, we aligned all reads to 

the T. cristinae reference genome 1.3c2 (NCBI WGS PGFK01000000), with BOWTIE2 version 2.2.9 
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[73] with the local model and the ‘--very-sensitive-local’ preset (-D 20 -R 3 -N 0 -L 20 -i S,1,0.50). 

SAMTOOLS version 1.3.1 [74] was used to sort and index alignments. Second, we called variants 

using SAMTOOLS mpileup and BCFTOOLS call version 1.3.1 using the original consensus caller, 

excluding all alignments with a phred-scale mapping quality score below 20, and requiring the 

probability of the data to be less than 0.05 under the null hypothesis that all samples were homozygous 

for the reference allele to call a variant. Variants with reads for fewer than 25% of the individuals, a 

quality score of less than 20, or a depth of more than 10 times the number of individuals were 

excluded. We generated a consensus fasta sequence for each species using BCFTOOLS consensus 

with the species-specific bcf files, with variants produced in the previous step and the T. cristinae 

reference genome. 

 

Subsequently, we aligned the reads of each species to its specific consensus reference (or the T. 

cristinae genome in the case of T. cristinae) and called variants and estimated genotype likelihoods 

using SAMTOOLS and BCFTOOLS as above. The raw files with all the variants were then subset to 

include only the individuals phenotyped (i.e., those to be used for downstream GWA analyses, see 

Tables S4, S7, S8). We then discarded individuals with fewer than 100,000 mapped reads and filtered 

out variants that had reads for fewer than 50% of the individuals, a quality score below 20, a depth 

greater than 10 times the number of individuals, more than two alleles, or a minor allele frequency 

lower than 1%. This generated datasets with a mean number of SNPs of 72,144 (range=19,236-

104,955), a mean depth across samples of XXXx (range=XX-XXXx), a mean depth per individual 

and SNP of 4x (range=3.6-5.4x), and a mean gappiness of 19.1% (range=9.8-25.8%) (Table S8 for 

details). These numbers are for all SNPs, including those not assigned to one of the 13 linkage groups 

used for GWA mapping. 

 

We used a hierarchical Bayesian method implemented in the program alleleEst version 0.1 (deposited 

on bitbucket/Dryad DOI XXX) to co-estimate allele frequencies, genotype probabilities, and genetic 

diversity from the genotype likelihoods previously inferred with BCFTOOLS [75,76]. This model 

assumes Hardy-Weinberg and linkage equilibrium and accounts for uncertainty due to low-coverage 

data and sequencing errors. For each dataset we obtained three independent MCMC chains of 10,000 

steps, saving samples every 10th step. We then removed the first 5,000 steps as burnin, concatenated 

the runs, and estimated mean genotype posterior probabilities from the joint distributions of 1500 

samples. 

 

Table S7. Summary of individuals and reads used for building consensus reference sequences.  

Species Population No 

samples 

No reads No mapped Percent 

mapped 

T. bartmani PCT, BMCG3, JL 735 457,545,991 339,644,687 74.23 

T. chumash BS, HF6, GR8.06, 

BALD, HFDPD, 

HFRS, HFRB, HF4, 

GR10.43, HFTP 

794 551,425,570 384,475,844 69.72 

T. cristinae * FH 602 821,834,860 789,388,267 96.05 

T. podura BS 50 121,717,950 86,768,833 71.29 

*T. cristinae is included for reference (57).  
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Table S8. Summary of the genetic data used for GWA analyses.  

Species Pop 

code 

No. 

ind. 

No SNP Depth SNP Depth ind Depth 

SNP and 

ind 

Gap 

T. bartmani JL 132 19236 481.2 

[215.0-1053.0] 

70127 

[42557-96087] 

3.6 

[0.0-10.0] 

9.8 

T. chumash GR8.06 531 92242 1628.4 

[527.0-3688.0] 

282868 

[93596-465666] 

3.1 

[0.0-11.0] 

25.8 

T. podura BS 42 104955 227.4 

[42.0-411.0] 

568292 

[428989-687106] 

5.4 

[0.0-17.0] 

21.7 

The following information is showed: Species, Pop code=population code, No. ind= number of 

individuals, No.  SNP= number of variants, Depth SNP= mean depth per variant across all individuals, 

Depth ind=mean depth per individual across all variants (i.e. number of aligned reads), Depth SNP 

and ind=mean depth per variant and individual, and Gap= proportion of missing genotypes (i.e. 

gappiness). 95% ETCI is represented in brackets for each mean in the depth statistics. Data form T. 

bartmani and T. chumash are newly acquired; T. podura data were reanalyzed from [57].  

 

Genetic correlations between GB and RG 

 

We estimated genetic correlations between RG and GB color traits for the three newly studied species 

here, namely T. bartmani, T. chumash, and T. podura. For each species, we first obtained genomic 

estimated breeding values (GEBVs) from the BSLMM in GEMMA (version 0.94.1)[77]. We did this 

for the same GBS data sets described above. We obtained posterior distributions of the BSLMM 

parameters (e.g., PIPs and regression coefficients) by running five MCMC simulations, each with a 

1 million step burn-in, 5 million sampling steps and a thinning interval of 100. We then generated 

GEBVs using the -predict 1 option, which generates predictions based on the inferred polygenic 

effects and the SNP-trait associations (i.e., from the PIPs and regression coefficients). Genetic 

correlations, along with the 95% confidence intervals for these, were then calculated for each species 

in R as the Pearson correlation between RG and GB GEBVs.  

 

Distribution of effect sizes, dominance, and epistasis 

 

We generated two summaries of the effect size distribution for the RG and GB color traits in T. 

chumash. We based our results on the output from the GEMMA analysis. First, we simply plotted the 

distribution of effect sizes for the 10 SNPs with the highest PIP within the indel region that harbors 

the top color-associated SNPs (see below for details on the indel). While simple, this approach 

neglects uncertainty in SNP-color associations. Thus, as a complementary approach, we repeatedly 

sampled sets of SNPs based on their PIPs and used the sets of SNPs to compute an effect size 

distribution. This was done based on 1000 vectors of sampled SNPs. Results from both approaches 

were similar and suggest that multiple SNPs had similar and non-trivial effect sizes. Thus, genetic 

control of these traits is not dominated by single variants of large effect (Fig. S5). With that said, 

there was a single variant with approximately twice the effect of any other variant for the GB trait. 
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Figure S5. Histograms show the effect size distribution for RG and GB traits based on the 

GEMMA analyses. Results in A and B are based on the 10 SNPs with the highest PIPs, whereas 

results in C and D are based on 1000 samples of SNPs based on the PIPs. Absolute values of effect 

sizes are shown. 

 

We used two approaches to test for epistasis among the SNPs most associated with color in T. 

chumash. We first took a heuristic approach where we examined the relationship between genotype 

and phenotype (RG and GB color traits) at the SNPs most associated with color.  Specifically, we 

focused on the 10 SNPs from scaffold 128 with the highest PIPs from the GEMMA analysis for RG 

and GB. For both traits, the top 10 SNPs fell within the indel region discussed below. We used the 

phenotypic mean of individuals with each genotype at each of the 10 loci to identify the allele with a 

positive effect on the melanistic coloration (i.e., higher phenotypic scores for RG and lower scores 

for GB). We then computed the melanic allele dosage for each individual and color trait, which we 

defined as the sum of the number of melanic alleles across the 10 loci. We did this both based on the 
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posterior mean genotype at these loci (resulting in a continuous melanic allele dosage score) and with 

rounded mean genotype scores (resulting in integer valued melanic allele dosage scores). A value of 

0 means an individual was homozygous for green alleles at the 10 SNPs and a value of 20 means the 

individual was homozygous for melanic alleles at the 10 SNPs. 

   

Plots of RG or GB color scores as a function of melanic allele dosage were visually consistent with 

mostly additive effects across the 10 loci most associated with each trait (Fig. S6). That is, there was 

a roughly linear increase in color score with an increasing number of melanic alleles (i.e., strong 

epistasis would cause marked departures from linearity). Quantitatively, linear models of RG or GB 

color versus melanic allele dosage explained 19.6% and 26.6% of the variation in the color scores, 

respectively. 

 

As a complementary and more formal approach, we used the program MAPIT [78] to test whether 

any of the SNPs in the color-associated region (~5-6Mbp on LG8) for either color trait exhibited non-

zero marginal epistatic interactions summed across all other SNPs. This approach does not identify 

specific pairwise or higher order epistatic interactions, but rather tests the null hypothesis that each 

SNP only exhibits additive effects by testing for a non-zero epistasis variance component (i.e., no 

epistasis). Thus, there is only one result per SNP. We used the standard model (i.e. without any 

covariates) with the 199 SNPs in the color-associated region. We used the Hybrid approach for 

computing p-values, which uses an approximate method based on a normal test followed by the 

Davies exact method for p-values below the threshold of 0.05. Thus, we identified 7 SNPs for RG 

and 9 SNPs for GB with p-values < 0.05. However, when we applied Bonferroni correction to account 

for multiple comparisons (i.e. using a p-value threshold below 2.5x10-4), we did not find any evidence 

of significant epistasis. Collectively, the results are consistent with a fairly additive, polygenic model, 

where dominance and epistasis do not strongly contribute to either color trait. 
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Figure S6. Plots depict phenotypic scores for RG (A, B) and GB (C, D) as a function of melanic 

allele dosage. Panels A and B show scatterplots with melanic allele dosage as a continuous metric 

based on the posterior mean genotype estimates. Colored points denote individuals and are colored 

based on the observed colors of individuals converted to hexadecimal code. Solid lines are from linear 

regression models (RG, β melanic_dosage = 0.16, P < 0.0001, r2 = 0.196; GB, β melanic_dosage = -

0.23, P < 0.0001, r2 = 0.267). Panels C and D used rounded melanic dosages (to the nearest integer) 

with boxplots showing the distribution of phenotypic scores for each melanic allele dosage bin.  Here, 

the color of the boxes is the mean of the real color also in hexadecimal code. 

 

Functional annotation 

 

We performed structural annotation with Braker1 version 1.9 [79], a pipeline for unsupervised 

genome annotation that only requires RNA-Seq data aligned to a genome assembly. Braker1 uses 

GeneMark-ET version 4.32 [80] to generate ab initio gene predictions from unsupervised training 

using RNA-Seq data, which are then used by AUGUSTUS version 3.2.2 [81] along with RNA-Seq 

reads to generate final, more accurate predictions. Repetitive and low complexity regions can cause 

the prediction of false positive gene structures. Thus, prior to annotating genes, we annotated and 

masked the genome for repeats and Transposable Elements (TEs). We built a de novo library of 

repeats using RepeatModeler version 1.0.8 [82] with the T. cristinae genome draft 1.3c2 and 
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combined it with a curated library of TEs developed from the previous genome draft 0.1 [83]. We 

used vsearch version 2.3.0 [84] to merge both libraries, clustering sequences after sorting by length 

(--cluster_fast), searching both strands (--strand both), rejecting clusters when identity was below 0.8 

(--id 0.8), and using the identity definition of CD-HIT (--iddef 0).  

 

Next, we soft-masked the T. cristinae genome draft 1.3c2 with RepeatMasker version 4.0.6 [85] using 

the slow search with the NCBI search engine (‘-xsmall -s -e ncbi’). Subsequently, we aligned the 454 

RNA reads from [86] to the masked genome using STAR version 020201 [87] with the basic 2-pass 

mapping, mapping all reads in the first step, and discarding alignments with a ratio of mismatches 

greater than the 5% of the mapped length (--twopassMode Basic --twopass1readsN -1 --

outFilterMismatchNmax 999 --outFilterMismatchNoverLmax 0.05). Finally, we used Braker1 to 

generate gene predictions from the soft-masked genome T cristinae genome draft 1.3b2 and the RNA-

Seq alignments. This resulted in 57,039 predicted genes (including 790 splice forms) and 164,290 

coding DNA sequences (CDS). The mean quality score was 0.61 (95% interval = 0.1-1.0), and 35,315 

genes had a quality score equal or greater than 0.5 (61.9%). 

 

Functional annotation was carried out with InterProScan version 5.20-59.0 [88]. We scanned Braker1 

predicted proteins against 15 signature databases: CDD 3.14, Coils 2.2.1, Gene3D 3.5.0, HAMAP 

201605.11, PANTHER 10.0, Pfam 30.0, PRINTS 42.0, PIRSF 3.01, ProDom 2006.1, ProSiteProfiles 

20.119, ProSitePatterns 20.119, SFLD 1, SMART 7.1, SUPERFAMILY 1.75, and TIGRFAM 15.0. 

The scan of the 57,039 proteins yielded 188,374 hits distributed as follows: 7,754 for CDD, 7,248 for 

Coils, 24,668 for Gene3D, 260 for HAMAP, 42,355 for PANTHER, 25,745 for Pfam, 11,991 for 

PRINTS, 494 for PIRSF, 158 for ProDom, 17,227 for ProSiteProfiles, 7960 for ProSitePatterns, 60 

for SFLD, 18084 for SMART, 23,689 for SUPERFAMILY, and 681 for TIGRFAM. We found 

25,529 predicted proteins had at least one match to any of the databases, 20,340 had matches with at 

least one InterPro accession, and 14,008 had matches with at least one Gene Ontology (GO) term 

associated. We found 2218 unique GO terms: 938 for biological process, 315 for cellular component, 

and 965 for molecular function. 

 

All annotations have been deposited in Dryad DOI:XXX and are also available from the Nosil Lab 

website (http://nosil-lab.group.shef.ac.uk). Functional info for the genes found in region harboring 

color-associated loci in T. chumash is provided in Table S9. 

http://nosil-lab.group.shef.ac.uk/
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Table S9. Genes in the color-associated region on scaffold 128, and predicted functions with 

expanded text. 

Start End Strand Attributes Expanded function 

4976413 4980950 - ID=g6221;    

4987216 4987551 + ID=g6222;    

4987677 4988048 + ID=g6223;    

5016443 5018622 - ID=g6224;    

5114755 5115141 + ID=g6225;    

5116798 5119312 - ID=g6226;    

5121576 5121953 + ID=g6227;    

5122679 5122975 + ID=g6228;    

5126950 5136425 - 

ID=g6229; 

Dbxref=Gene3D:G3DSA:3.80.10.10

, InterPro:IPR000483, 

InterPro:IPR001611, 

InterPro:IPR003591, 

InterPro:IPR026906, 

InterPro:IPR032675, 

PANTHER:PTHR24373, 

Pfam:PF13306, Pfam:PF13855, 

Prosite:PS51450, 

SMART:SM00082, 

SMART:SM00365, 

SMART:SM00369, 

Superfamily:SSF52058; 

Ontology_term=GO:0005515;  

Leucine-rich repeat domain superfamily; 

Cysteine-rich flanking region, C-terminal; 

Leucine-rich repeat; Leucine-rich repeat, 

typical subtype; Leucine rich repeat 5; 

Leucine-rich repeat domain superfamily; Slit 

related leucine-rich repeat neuronal protein; 

Leucine rich repeats; Leucine-rich repeat; 

Leucine rich repeat profile; Leucine rich 

repeat C-terminal domain; Leucine-rich 

repeat, SDS22-like subfamily; Leucine-rich 

repeats, typical (most populated) subfamily; 

protein binding 

5152428 5157256 - ID=g6230; Dbxref=Coils:Coil;  coiled-coil conformation; 

5157774 5158319 - 

ID=g6231; 

Dbxref=InterPro:IPR006111, 

PANTHER:PTHR10773, 

PANTHER:PTHR10773:SF13; 

Ontology_term=GO:0003677, 

GO:0003899, GO:0006351;  

Archaeal RpoK/eukaryotic RPB6 RNA 

polymerase subunit; DNA-Directed RNA 

polymerases  I, II, and III subunit RPABC2; 

DNA binding; DNA-directed 5'-3' RNA 

polymerase activity; transcription, DNA-

templated; 

5184661 5185176 - 

ID=g6232; 

Dbxref=PANTHER:PTHR24559, 

PANTHER:PTHR24559:SF174, 

Superfamily:SSF56672;  

DNA/RNA polymerases; 

5185658 5185972 - 

ID=g6233; 

Dbxref=Gene3D:G3DSA:3.10.10.10

, PANTHER:PTHR10178, 

PANTHER:PTHR10178:SF302, 

Superfamily:SSF56672;  

DNA/RNA polymerases; DNA/RNA 

polymerases superfamily; 

5197448 5197771 + ID=g6234;    

5225248 5225613 + ID=g6235;    

5243884 5245011 + ID=g6236; Dbxref=Coils:Coil;  coiled-coil conformation; 

5250750 5251898 + ID=g6237; Dbxref=Coils:Coil;  coiled-coil conformation; 

5276588 5276926 + ID=g6238;    

5293645 5303045 - 

ID=g6239; 

Dbxref=InterPro:IPR013525, 

PANTHER:PTHR19241, 

PANTHER:PTHR19241:SF305, 

Pfam:PF01061; 

Ontology_term=GO:0016020;  

ABC-2 type transporter; ABC transporter-

like; ATP-binding cassette transporter; 

membrane; 

5324713 5325243 - 
ID=g6240; 

Dbxref=PANTHER:PTHR10492;  
Uncharacterized; 

5333918 5334813 + ID=g6241;    

5358947 5359237 + ID=g6242;    

5359360 5362923 - ID=g6243;    
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5381021 5400431 - 

ID=g6244; 

Dbxref=Gene3D:G3DSA:3.40.50.30

0, InterPro:IPR003439, 

InterPro:IPR003593, 

InterPro:IPR017871, 

InterPro:IPR027417, 

PANTHER:PTHR19241, 

PANTHER:PTHR19241:SF305, 

Pfam:PF00005, Prosite:PS00211, 

Prosite:PS50893, 

SMART:SM00382, 

Superfamily:SSF52540; 

Ontology_term=GO:0005524, 

GO:0016887;  

P-loop containing nucleotide triphosphate 

hydrolases; ABC transporter-like; AAA+ 

ATPase domain; ABC transporter, 

conserved site; P-loop containing nucleoside 

triphosphate hydrolase; ABC transporter, 

G1; ABC transporter; ABC transporters 

family signature; ATP-binding cassette, 

ABC transporter-type domain profile; AAA 

- ATPases associated with a variety of 

cellular activities; P-loop containing 

nucleoside triphosphate hydrolases 

superfamily; ATP binding; ATPase activity; 

5407757 5414160 - ID=g6245;    

5416724 5417032 + ID=g6246;    

5465238 5465549 + ID=g6247;    

5465758 5466078 + ID=g6248;    

5489905 5490357 - ID=g6249;    

5518960 5520639 + ID=g6250;    

5534243 5537814 - 

ID=g6251; 

Dbxref=PANTHER:PTHR11697, 

PANTHER:PTHR11697:SF102;  

General transcription factor 2-related zinc 

finger protein;  

5555794 5558984 - ID=g6252;    

5568346 5580271 - 

ID=g6253; 

Dbxref=InterPro:IPR013525, 

PANTHER:PTHR19241, 

PANTHER:PTHR19241:SF305, 

Pfam:PF01061; 

Ontology_term=GO:0016020;  

PiggyBac transposable element-derived 

protein; ATP-Binding cassette transporter; 

ABC-2 type transporter; membrane; 

5580783 5582827 - 

ID=g6254; 

Dbxref=InterPro:IPR029526, 

PANTHER:PTHR28576, 

Pfam:PF13843;  

PiggyBac transposable element-derived 

protein; Transposase IS4; 

5584921 5586256 + 

ID=g6255; 

Dbxref=Gene3D:G3DSA:3.40.50.30

0, InterPro:IPR027417, 

PANTHER:PTHR19241, 

PANTHER:PTHR19241:SF305, 

Superfamily:SSF52540;  

P-loop containing nucleotide triphosphate 

hydrolases; P-loop containing nucleoside 

triphosphate hydrolase; ATP-Binding 

cassette transporter; P-loop containing 

nucleoside triphosphate hydrolase; 

5588391 5591849 - 

ID=g6256; 

Dbxref=Gene3D:G3DSA:3.40.50.30

0, InterPro:IPR003439, 

InterPro:IPR027417, 

PANTHER:PTHR19241, 

PANTHER:PTHR19241:SF305, 

Pfam:PF00005, 

Superfamily:SSF52540; 

Ontology_term=GO:0005524, 

GO:0016887;  

P-loop containing nucleotide triphosphate 

hydrolases; ABC transporter-like; P-loop 

containing nucleoside triphosphate 

hydrolase; ATP-Binding cassette 

transporter; ABC transporter; P-loop 

containing nucleoside triphosphate 

hydrolases superfamily; ATP binding; 

ATPase activity; 

5601973 5603314 + 

ID=g6257; 

Dbxref=InterPro:IPR025476, 

PANTHER:PTHR10492, 

Pfam:PF14214;  

Helitron helicase-like domain; Helitron 

helicase-like domain at N-terminus; 

5603705 5603995 + 

ID=g6258; 

Dbxref=Gene3D:G3DSA:3.40.50.30

0, InterPro:IPR010285, 

InterPro:IPR027417, 

PANTHER:PTHR10492, 

Pfam:PF05970, 

Superfamily:SSF52540; 

Ontology_term=GO:0000723, 

GO:0003678, GO:0006281;  

P-loop containing nucleotide triphosphate 

hydrolases; DNA helicase Pif1-like; P-loop 

containing nucleoside triphosphate 

hydrolase; PIF1-like helicase; P-loop 

containing nucleoside triphosphate 

hydrolases superfamily; telomere 

maintenance; DNA helicase activity; DNA 

repair; 
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5610883 5611272 + ID=g6259;    

5611885 5612193 + ID=g6260;    

5614232 5618783 + 
ID=g6261; 

Dbxref=PANTHER:PTHR19446;  
Reverse transcriptases;  

5619302 5620456 + ID=g6262;    

5620969 5621256 - 

ID=g6263; 

Dbxref=InterPro:IPR000477, 

Pfam:PF00078, Prosite:PS50878;  

Reverse transcriptase domain; Reverse 

transcriptase (RNA-dependent DNA 

polymerase); Reverse transcriptase (RT) 

catalytic domain; 

5622187 5622810 + ID=g6264;    

5622898 5623449 - ID=g6265;    

5623511 5628401 - ID=g6266;    

5640809 5642490 - ID=g6267;    

5656256 5657291 - ID=g6268;    

5658190 5667389 - ID=g6269;    

5689220 5716135 - 

ID=g6270; 

Dbxref=Gene3D:G3DSA:1.10.1070.

11, Gene3D:G3DSA:1.25.40.70, 

Gene3D:G3DSA:2.60.40.150, 

Gene3D:G3DSA:3.10.20.90, 

Gene3D:G3DSA:3.30.1010.10, 

InterPro:IPR000008, 

InterPro:IPR000341, 

InterPro:IPR000403, 

InterPro:IPR001263, 

InterPro:IPR002420, 

InterPro:IPR011009, 

InterPro:IPR015433, 

InterPro:IPR016024, 

InterPro:IPR018936, 

InterPro:IPR029071, 

PANTHER:PTHR10048, 

PANTHER:PTHR10048:SF14, 

Pfam:PF00454, Pfam:PF00613, 

Pfam:PF00792, Pfam:PF00794, 

Prosite:PS00915, Prosite:PS00916, 

Prosite:PS50290, Prosite:PS51545, 

Prosite:PS51546, Prosite:PS51547, 

SMART:SM00142, 

SMART:SM00145, 

SMART:SM00146, 

Superfamily:SSF48371, 

Superfamily:SSF49562, 

Superfamily:SSF54236, 

Superfamily:SSF56112; 

Ontology_term=GO:0005488, 

GO:0005515, GO:0016301, 

GO:0046854, GO:0048015;  

Phosphatidylinositol 3-/4-kinase, catalytic 

domain superfamily; C2 domain 

superfamily; Phosphatidylinositol 3-kinase 

Catalytic Subunit; Chain A, domain 1; 

Phosphatidylinositol 3-kinase Catalytic 

Subunit; Chain A, domain 4; C2 domain; 

Phosphatidylinositol 3-kinase Ras-binding 

(PI3K RBD) domain; Phosphatidylinositol 

3-/4-kinase, catalytic domain; 

Phosphoinositide 3-kinase, accessory (PIK) 

domain; Phosphatidylinositol 3-kinase, C2 

domain; Protein kinase-like domain 

superfamily; Phosphatidylinositol kinase; 

Armadillo-type fold; Phosphatidylinositol 

3/4-kinase, conserved site; Ubiquitin-like 

domain superfamily; Phosphatidynositol 

kinase; Phosphatidynositol 3-kinase 1; 

Phosphatidylinositol 3- and 4-kinase; 

Phosphoinositide 3-kinase family, accessory 

domain (PIK domain); Phosphoinositide 3-

kinase C2; PI3-kinase family, ras-binding 

domain; Phosphatidylinositol 3- and 4-

kinases signature1; Phosphatidylinositol 3- 

and 4-kinases signature 2; 

Phosphatidylinositol 3- and 4-kinases 

family; PIK helical domain; 

Phosphatidylinositol 3-kinase Ras-binding 

(PI3K RBD) domain; Phosphatidylinositol 

3-kinase C2 (PI3K C2) domain; 

Phosphatidylinositol 3-kinase, C2 domain; 

Phosphoinositide 3-kinase, accessory (PIK) 

domain; Phosphatidylinositol 3-/4-kinase, 

catalytic domain; Armadillo-type fold; C2 

domain (Calcium/lipid-binding domain, 

CaLB) superfamily; Ubiquitin-like domain 

superfamily; Protein kinase-like domain 

superfamily; binding; protein binding; 

kinase activity; Phosphatidylinositol 

phosphorylation; Phosphatidylinositol-

mediated signaling; 

5721107 5721613 + ID=g6271;    
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5725166 5735216 - 

ID=g6272; 

Dbxref=Gene3D:G3DSA:3.10.20.90

, InterPro:IPR003113, 

InterPro:IPR015433, 

InterPro:IPR029071, 

PANTHER:PTHR10048, 

PANTHER:PTHR10048:SF14, 

Pfam:PF02192, Prosite:PS51544, 

SMART:SM00143, 

Superfamily:SSF54236; 

Ontology_term=GO:0046854, 

GO:0048015;  

Phosphatidylinositol 3-kinase Catalytic 

Subunit; Chain A, domain 1; 

Phosphatidylinositol 3-kinase adaptor-

binding (PI3K ABD) domain; 

Phosphatidylinositol kinase; Ubiquitin-like 

domain superfamily; Phos[hatidynositol 

kinase; Phosphatidylinositol 3-kinase 1; PI3-

kinase family, p85-binding domain; 

Phosphatidylinositol 3-kinase adaptor-

binding (PI3K ABD) domain; 

Phosphatidylinositol 3-kinase adaptor-

binding (PI3K ABD) domain; Ubiquitin-like 

domain superfamily; phosphatidylinositol 

phosphorylation; phosphatidylinositol-

mediated signaling; 

5743180 5743479 - ID=g6273;    

5747533 5749772 + ID=g6274;    

5757211 5780398 + 

ID=g6275; 

Dbxref=Gene3D:G3DSA:1.25.10.10

, Gene3D:G3DSA:3.10.20.90, 

InterPro:IPR001012, 

InterPro:IPR011989, 

InterPro:IPR018997, 

InterPro:IPR029071, 

PANTHER:PTHR23153, 

PANTHER:PTHR23153:SF38, 

Pfam:PF00789, Pfam:PF09409, 

Prosite:PS50033, 

SMART:SM00166, 

SMART:SM00580, 

Superfamily:SSF143503, 

Superfamily:SSF54236; 

Ontology_term=GO:0005515;  

Leucine-rich Repeat Variant; 

Phosphatidylinositol 3-kinase Catalytic 

Subunit; Chain A, domain 1; UBX domain; 

Armadillo-like helical; PUB domain; 

Ubiquitin-like domain superfamily; UBX 

domain; PUB; UBX ; UBX; PUG; PUG 

domain-like superfamily; Ubiquitin-like 

domain superfamily; protein binding; 

5783737 5805427 - 

ID=g6276; 

Dbxref=InterPro:IPR008806, 

InterPro:IPR013197, 

PANTHER:PTHR12949, 

Pfam:PF05645, Pfam:PF08221; 

Ontology_term=GO:0003677, 

GO:0003899, GO:0006351;  

RNA polymerase III Rpc82, C -terminal; 

RNA polymerase III subunit RPC82-related, 

helix-turn-helix; DNA binding; DNA-

directed 5'-3' RNA polymerase activity; 

transcription, DNA-templated; 

5818284 5823210 + 

ID=g6277; 

Dbxref=InterPro:IPR004307, 

PANTHER:PTHR10057, 

Pfam:PF03073; 

Ontology_term=GO:0016021;  

TspO/MBR-related protein; integral 

component of membrane; 

5849032 5849349 + 

ID=g6278; 

Dbxref=InterPro:IPR009057, 

Superfamily:SSF46689; 

Ontology_term=GO:0003677;  

Homeobox-like domain superfamily; 

Homeodomain-like superfamily; DNA 

binding; 

5882354 5882695 - ID=g6279;    

5908379 5909206 + ID=g6280;    

5999700 6008081 + ID=g6281;    

6014155 6014883 + ID=g6282;    

6038833 6039150 - ID=g6283;    

6094553 6095044 - ID=g6284;    

6144534 6145832 + ID=g6285;    

6146817 6147110 - ID=g6286;    

6171844 6172125 - ID=g6287;    

6183805 6184326 - ID=g6288;    

6184413 6185135 - ID=g6289;    
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Detection of putative chromosomal inversion in T. cristinae. 

 

The following paragraphs describe the selection of homozygous individuals and detailed methods 

for inversion break points detection. See appropriate Materials and Methods section for further 

details on the detection of chromosomal inversion in T. cristinae. 

Specifically, as in [56] we used PCA and K-means clustering to assign color genotypes to each 

individual. PCA was performed on the centered and standardized genotype matrix for each 

species; we standardized genotypes by dividing by √[pi (1-pi)], where pi is a Bayesian estimate 

of the allele frequency given a binomial sampling distribution and a beta prior with α and β equal 

to 1. We next used k-means clustering to group individuals based on their scores for the first two 

PCs. We assumed six clusters (which assumes three haplotypes/alleles found in all homozygous 

and heterozygous combinations) and used the Hartigan-Wong algorithm with 100 starts and a 

maximum of 100 iterations for clustering [89]. This was done with the kmeans function in the R 

MASS package (version 7.3.47)[90]. 

  

We then divided scaffolds 702.1 and 128 into non-overlapping 10 kilo-base (kb) windows. We 

took sets of seven 10 kb windows at a time, and for each group (i.e., melanistic homozygotes and 

green homozygotes) we calculated the mean LD between all the SNPs in the first three and last 

three windows in the set of seven (i.e., two 30 kb windows separated by a 10 kb window). We 

measured LD as the coefficient of determination calculated from the genotype estimates. Again, 

we would expect mean LD to be lower in the green homozygotes if the breakpoint occurred within 

the set of seven 10 kb windows, and particularly so if it was in the middle 10 kb window. To 

capture this, we calculated what we refer to as the standardized difference in LD between 

melanistic and green homozygotes at ΔLDi = (LDmel
i - LDgreen

i)/(LDmel
i + LDgreen

i), where LDmel
i  

and LDgreen
i are the mean LD for window set i for melanistic and green homozygotes, respectively. 

Note that this metric is analogous to a signed coefficient of variation in LD between groups. We 

then computed this statistic in sliding sets of seven 10 kb windows with 10 kb window shifts. 

 

We fit a HMM to the ΔLDi metrics using the R package HiddenMarkov, version 1.8.11 [91] to 

fit the models, but modified the Mstep function to allow for these fixed parameter values. Doing 

so allowed us to focus on hidden states of interest for detecting the inversion. We assumed a 

Gaussian error distribution with means set to the empirical mean of the ΔLDi vector (‘normal’ 

state) and to the 95th quantile of the ΔLDi distribution (‘high’ or breakpoint state). Standard 

deviations for both states were set at 80% of the empirical standard deviation. We used the Baum-

Welch algorithm with 500 iterations and a tolerance of 0.0001 to estimate the transition matrix 

between hidden states and the Viterbi algorithm to estimate the hidden states themselves [92]. 

 

We found several clustered regions of the high LD state on scaffold 702.1, within the possible 

bounds of the inversion given by the comparative alignment (a smaller region of the high LD state 

was found outside of this region, and was ignored). We used the combination of these clustered 

regions to define the likely location of the ‘left’ breakpoint of the putative inversion between 

11.69 and 12.90 mb on scaffold 702.1. The ‘right’ bound was similarly defined on scaffold 128 

between 4.98 and 6.19 mb. 
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Figure S7. Evidence for chromosomal inversion. Panel (a) shows a standardized metric of the 

difference in linkage disequilibrium (LD) between T. cristinae individuals homozygous for the 

melanistic or green haplotype. The position of the putative inversion is bounded by information 

from a comparative whole genome alignment (vertical red line). Orange points denote regions of 

elevated differences in LD within this region based on a two-state Hidden Markov model and 

define the breakpoints for the putative inversion. The breakpoints are included in a region of the 

genome that is highly associated with color variation in single SNP GWA analyses (panel (b); 

results are shown for RG).  
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Single locus genome-wide association mapping with GENABEL 

 

Figures S8-S11 present GWA results for the three newly studied Timema species. See the 

appropriate Materials and Methods section for details on GENABEL analyses. 

Figure S8. Single-locus genome wide association (GWA) mapping of red-green (RG) color 

variation in three Timema species, at two genomic scales (genome wide and for the single 

linkage group (LG8) showing the bulk of associations), with correction for population structure. 

The y-axis shows the negative log10 P-value (Neg. log p) for each test that a single-nucleotide 

polymorphism (SNP) is associated with color variation. At the scale of LG8, T. chumash exhibits 

a peak of association (which actually represents several distinct peaks when zoomed in further on 

scaffold 128, see Fig. 2), T. bartmani a narrow ‘block’ of association, and T. podura a wide block 

of association. For details on linkage disequilibrium, genetic correlations between traits, etc. see 

Figures of the main text. 
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Figure S9. Single-locus genome wide association (GWA) mapping of green-blue (GB) color 

variation in three Timema species, at two genomic scales (genome wide and for the single 

linkage group (LG8) showing the bulk of associations), without correction for population 

structure. The y-axis shows the negative log10 P-value (Neg. log p) for each test that a single-

nucleotide polymorphism (SNP) is associated with color variation. At the scale of LG8, T. 

chumash exhibits a peak of association (which actually represents several distinct peaks when 

zoomed in further on scaffold 128, see Fig. 2), T. bartmani a narrow ‘block’ of association, and 

T. podura a wide block of association. For details on linkage disequilibrium, genetic correlations 

between traits, etc. see Figures of the main text.  
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Figure S10. Single-locus genome wide association (GWA) mapping of green-blue (GB) color 

variation in three Timema species, at two genomic scales (genome wide and for the single 

linkage group (LG8) showing the bulk of associations), without correction for population 

structure. The y-axis shows the negative log10 P-value (Neg. log p) for each test that a single-

nucleotide polymorphism (SNP) is associated with color variation. At the scale of LG8, T. 

chumash exhibits a peak of association (which actually represents several distinct peaks when 

zoomed in further on scaffold 128, see Fig. 2), T. bartmani a narrow ‘block’ of association, and 

T. podura a wide block of association. For details on linkage disequilibrium, genetic correlations 

between traits, etc. see Figures 2 and 5 of the main text. 
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Figure S11. Results of single-locus genome wide association (GWA) mapping of red-green 

(RG) color variation in the three polymorphic Timema species used in this study (left-hand 

panel of each row), and linkage disequilibrium (LD) analyses (right-hand panel of each 

row). Results shown do correct for population structure. The y-axis in the left-hand panel shows 

the negative log10 P-value (Neg. log p) for each test that a single-nucleotide polymorphism (SNP) 

is associated with color variation. The right-hand panels show density plots of the distribution of 

pairwise LD (measured as r2) within the Mel-Stripe locus for the 5% of pairs of SNPs with the 

highest LD. Median LD for all pairs of SNPs within Mel-Stripe are given above each density plot.  

 

 

Phylogenetics. We used both GBS and whole genome re-sequencing (WGS) data to infer trees. 

For GBS analyses, we aligned reads of a subset of 60 individuals of T. bartmani, T. chumash and 

T. podura (10 of each morph for each species, see main text) to the T. cristinae reference genome 

1.3c2 using BOWTIE2 and called variants with SAMTOOLS mpileup and BCFTOOLS (see 

‘Genotyping-by-sequencing, alignment, and variant calling’ above for details). As before, we 

filtered out variants that had reads for fewer than 50% of the individuals, a quality score below 

20, a depth greater than 10 times the number of individuals, more than two alleles, or a minor 

allele frequency lower than 1%. This resulted in 208,770 variants, which were subsequently 

subsampled for downstream analyses (see main text). 

 

Whole genome re-sequencing data was obtained for a total of 48 individuals from T. bartmani, T. 

chumash and T. podura sampled in 2015 (8 melanistic T. bartmani from populations JL, PCT and 

hosts IC, JP, WF, WP; 19 green T. bartmani from populations JL, PCT and hosts IC, JP, PP, WF, 

WP; 15 green T. chumash from populations BS, GR8.06 and hosts C, MM, Q; 6 melanistic T. 

podura from populations BS, PCT and hosts C,WF, WP; Host-plant abbreviations are as follows. 

C: Ceanothus spinosus, IC: Calocedrus decurrens, M: Arctostaphylos sp., MM: Cercocarpus sp., 
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P: Pinus sp., Q: Quercus sp., WF: Abies concolor, WP:  Pinus flexilis). We extracted genomic 

DNA for these individuals from 3 to 5 legs using Quiagen’s DNeasy Blood and Tissue Kit. We 

shipped the genomic DNA on dry ice to the Welcome Trust for Human Genetics at the University 

of Oxford, who prepared multiplexed whole genome resequencing libraries from it (allowing one 

to assign reads to a particular individual even after pooling libraries on a lane). Libraries were 

pooled and sequenced along with samples for another project on three lanes of a HiSeq 4000. We 

obtained de-multiplexed paired-reads for every individual from Oxford genomics.  

 

We aligned the DNA sequence reads to version 1.3c2 of T. cristinae genome using the bwa mem 

algorithm (version 0.7.10-r789)[93]. For the alignments, we set the minimum seed length to 20, 

the band width to 100, and the internal seed search option (-k) to 1.3. We used a minimum score 

for output of 30. We then compressed, sorted and indexed the alignments with samtools (version 

1.5)[74,93]. Next, we removed PCR duplicates from the alignments using PicardTools 

MakrDuplicates (version 2.1.1)(http://broadinstitute.github.io/picard). We used GATK’s 

HaplotypeCaller (GATK version 3.5-0-g36282e4) for variant calling [94]. We did this in two 

steps by first generating individual g.vcf files and then performing joint variant calling with the 

GenotypeGVCFs command. We ran the HaplotypeCaller with a prior probability of 

heterozygosity of 0.001, a minimum mapping base quality of 30, and with the ‘aggressive’ PCR-

error correction model. We filtered the initial set of SNP variants identified by GATK using a 

series of custom perl scripts. Specifically, we removed SNPs with a mean coverage of <1X per 

individual, with fewer than four reads supporting the non-reference allele, with mapping qualities 

<40, Phred-scaled p-values from Fisher’s Exact Test for strand bias of > 60, and with rank-sum 

test statistics (absolute values) more extreme than 8, 12.5 and 8, for the mapping quality, read 

position, and ratio of variant confidence tests, respectively. This left us with 3,297,072 SNPs for 

downstream analyses. 

 

Phenotypic measurements of plant coloration from photographs 

 

Table S10 presents the host-plant samples used in this study. See appropriate Materials and 

Methods section for details. 

   

Table S10. Details about the host plant samples used in this study.   

Host 

code 

Host plant Population 

code 

No 

samples 

A Adenostoma  DZR 102 

C Ceanothus NH 86 

MM Cercocarpus GR 98 

Q Quercus SM 99 

Q Quercus GR 89 

Q Quercus  BC 99 

WF Abies  BM 101 

WP Pinus JL 87 

 

 

 

 

 

http://broadinstitute.github.io/picard
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Manipulative field experiment 

 

The following paragraphs provide further details on aspects of the manipulative field experiment. 

For an overall description of the experiment, see the appropriate Materials and Methods section. 

Host and treatment rationale: 

The rationale for the choice of hosts is as follows. C. spinosus is a core host of T. cristinae, and 

is thought to impose strong disruptive selection between leaves and stems [58]. However, we 

could not use this plant species because it is not found within the T. chumash species range. T. 

chumash is found in southern California, at times in sympatry or parapatry with T. podura [71]. 

The first treatment thus specifically focused on two hosts that are found in southern California 

(Ceanothus leucodermis and Adenostoma fasciculatum), the combination of which is thought to 

impose strong divergent selection for green versus melanistic coloration in T. podura (but fitness 

of intermediates was not measured)[57]. Accordingly, each replicate in this treatment used one 

plant individual of each of these plant species, where the individuals were touching each other. 

Note that T. chumash regularly uses Ceanothus leucodermis in the wild [57,71], and can survive 

on Adenostoma fasciculatum [95].  

The second treatment of Cercocarpus was chosen because it exhibits relatively weak 

differentiation in plant coloration between stems and leaves (see main text), and it’s use by T. 

chumash is associated with weak differentiation between morphs. Moreover, the moderate, 

shrubby size of Cercocarpus individuals mirrors that of Ceanothus and Adenostoma, and is 

amenable to mark-recapture experimentation. In contrast, large oak trees (Quercus spp.) are not 

amenable to such experimentation. 

Relative fitnesses estimation: 

 

We defined the relative fitnesses (w) of the color morphs as: w_green = 1-s, w_intermediate = 1, 

and w_melanistic = 1-t (as in Eq. 1.25c in [96]). We then computed posterior estimates of s and t 

from the relative fitness data. Thus, s or t < 0 implies disruptive selection, whereas s or t > 0 

implies intermediate advantage. Note that as the relative fitnesses are ratios and must be >= 0, 

positive values of s and t must be less than 1, but negative values can be much, much larger. The 

results for the mountain mahogany treatment were s = 0.3827, 95% ETPIs = -0.4555, 0.7543, pp 

s < 0 = 0.1367 and t = 0.6039, 95% ETPIs = -0.0017, 0.8711, pp t < 0 = 0.0253. The results for 

the chamise and California lilac treatment were s = -2.7363, 95% ETPIs = -20.3366, 0.0130, pp s 

< 0 = 0.9740 and t = -1.8357, 95% ETPIs = -15.6886, 0.3212, pp t < 0 = 0.9248). 
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