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Abstract 

The last two decades have seen some major breakthrough in developing III-nitride 

semiconductor materials and devices, leading to high efficient III-nitride based 

emitters for solid state lighting represented by InGaN based blue emitters. This also 

led to the award of the Nobel Prize in 2014. III-nitride semiconductors (GaN and its 

alloys such as InGaN) exhibit a wide range of bandgap from 3.4 eV of GaN to 0.69 eV of 

InN, incorporating the whole visible spectral range and thus matching the solar 

spectrum very well.  As a result, III-nitrides can be employed for the fabrication of solar 

energy devices potentially with high conversion efficiency.  Solar-powered water 

splitting would be the most promising approach towards the solar energy conversion 

into renewable and storable energy. However, so far there are only a limited number 

of reports using III-nitrides. My research projects concentrated on a number of 

prototypes of GaN based photoelectrodes featuring nanostructures which have been 

designed and then fabricated, leading to a step-change in conversion efficiency. 

By means of a cost-effective approach, we demonstrate a GaN-based photoelectrode 

decorated with self-organized silver nanoislands employed for solar powered 

hydrogen generation, demonstrating 4 times increase in photocurrent compared with 

a reference sample without using any silver. Our photoelectrode exhibits a 60% 

incident photon-to-electron conversion efficiency. The enhanced hydrogen 

generation is attributed to a significantly increased carrier generation rate as a result 

of strongly localized electric fields induced by surface plasmon coupling effect. The 

silver coating also contributes to the good chemical stability of our photoelectrode in 

a strong alkali electrolyte. This work paves the way for the development of GaN and 
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also InGaN based photoelectrodes with ultra-high solar hydrogen conversion 

efficiency.  

A prototype photoelectrode has been fabricated using a GaN nano-pyramid array 

structure grown on a cost-effective Si (111) substrate, demonstrating a significant 

improvement in performance of solar-powered water splitting compared with any 

planar GaN photoelectrode. Such a nanopyramid structure leads to enhanced optical 

absorption as a result of a multi-scattering process which can effectively produce a 

reduction in reflectance. A simulation based on a finite difference time-domain 

approach indicates that the nano-pyramid architecture enables incident light to be 

concentrated within the nano-pyramids as a result of micro-cavity effects, further 

enhancing optical absorption. Furthermore, the shape of the nano-pyramid further 

facilitates the photo-generated carrier transportation by enhancing a hole-transfer 

efficiency. All these features as a result of the nano-pyramid configuration lead to a 

large photocurrent of 1 mA cm-2 under an illumination density of 200 mW cm-2, with a 

peak incident photon-to-current conversion efficiency of 46.5% at ∼ 365 nm, around 

the band edge emission wavelength of GaN. The results presented are expected to 

pave the way for the fabrication of GaN based photoelectrodes with a high energy 

conversion efficiency of solar powered water splitting. 

Two types of GaN based photoelectrodes using either horizontally aligned or vertically 

aligned nanopores have been fabricated by means of using an electrochemical etching 

approach. The photoelectrodes based on such nanostructures have demonstrated an 

up to 5-fold enhancement in applied bias photon-to-current efficiency and incident 

photon-to-current efficiency in comparison with their planar counterpart, leading to 

a high Faradaic conversion efficiency which approaches 1. The GaN photoelectrodes 
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with these nanopores also show excellent chemical stability in HBr solution as an 

electrolyte. The results presented reveal that the gas diffusion in the nanopores play 

an important role in water splitting processes, which should be taken into account 

when designing a GaN photoelectrode with a nanopore structure. 

A prototype photoelectrode with a unique design has been fabricated using GaN 

microstripes grown on a patterned Si substrate. The photoelectrode has 

demonstrated a record-high photocurrent density of 11 mA/cm2 upon one sun 

illumination and a H2 generation rate of up to 2.67 ml·cm−2·h−1. This performance with 

a step-change has been achieved due to the contribution from both the GaN and the 

silicon substrate, as such a combination covers a wide spectral region (from the 

ultraviolet region due to the GaN bandgap to the infrared region due to the silicon 

bandgap). Unlike conventional GaN grown on a silicon substrate, where a thick AlN 

layer is required to separate GaN from the silicon in order to avoid the well-known Ga 

melt-back issue, a GaN/silicon heterojunction in our photoelectrode can be formed as 

a result of a weak Ga melt-back reaction, which is due to the specially designed 

configuration of our photoelectrode grown using the microstripes. Two reference 

photoelectrodes have been fabricated for comparison in order to support our 

conclusion. The results presented create future prospects for the fabrication of ultra-

energy efficient GaN-on-Si-based photoelectrodes or even photovoltaics devices.  
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CHAPTER 1 
 

 

Traditional energy sources, such as coal, oil, natural gas, fossil fuels, needs to be 

replaced with clean and renewable sources for the viability of our planet and the 

sustainability of economic development. Carbon emissions in the atmosphere are 

increasing at an alarming rate, leading to a number of different types of contamination 

issues across the world, such as smog, changes in climate patterns, the rapid melting 

of glaciers leading to an increase in the sea level from 9-88 cm, and the gradual 

extinction of sea and land animals as their habitation becomes deplorable. The 

temperature rise needs to be limited to 1.5℃ by 2030, which can only be achieved by 

reducing carbon emissions by 85%1. Otherwise, 18-35% of the world species would be 

endangered by 2050, if the global temperature rose by 2-6℃2. It has been reported 

that air pollution has led to 6.5 million pre-mature deaths in 20123. The change in global 

temperature has already occurred in an irreversible way. Therefore, an immediate 

action needs to be taken in order to tackle the most challenging global issue, for which 

joint and multi-national efforts are necessary. Thankfully, 195 countries agreed to take 

action against the accelerated increase in climate change and abide by the regulations 

discussed in COP 21 Paris summit to decarbonise the atmosphere4,5,8.  

Currently, a large proportion of energy is obtained through the combustion of fossil 

fuels, oil, coal or natural gas, which generates a large amount of carbon emissions and 

thus are not clean and sustainable. It is important to develop an efficient substitute of 

Introduction 
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energy source which not only ensures sustainability but also supports the ecosystem.  

 

Figure 1.1: Energy sources of global electricity production6 

The amount of solar energy incident on Earth’s surface is 3 × 1024Joules/year. This is 

sufficient enough to meet the world energy demand. If only 10% of the total solar 

energy can be efficiently stored, it may solve the renewable energy crisis7. 

According to a report published by an international energy agency in 2016, clean 

energy sources, such as solar, wind, tidal and hydrogen, constitute for only 22% of 

electricity production as depicted in Figure 1.1. 73.5% of global electricity is actually 

generated from non-renewable energy resources, while solar photovoltaics which is 

regarded as one of the cleanest and renewable energy resources account for only 

26.5% of the total renewable energy resources and contribute only 1.9% of the total 

electricity generated in 2017. In principal, solar energy is inexhaustible as opposed to 

another type of energy resources such as nuclear, fossil fuels, coal and oil which either 

contribute largely to the increase in carbon levels or have safety concerns. Solar 
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energy can be transformed into electricity by means of solar cells or chemical reaction 

via solar water splitting techniques producing Hydrogen gas.  

1.1 Environmental crisis 

Since the industrial revolution (1860-1880)9, there has been an accelerating increase   

in greenhouse gas emissions of carbon, methane, nitrous oxide and other 

anthropogenic gases, significantly worsening the air quality and climate change. 

Manufacturing industries, factories, transportation industry have been the major 

drivers behind the rapidly accelerating global pollution. In particular, the combustion 

of coal has been the dominant energy resource for engines, thus contributing heavily 

towards air pollution for many years.  

 

Figure 1.2: Constituents in greenhouse gas emissions10. 

The data presented by the Intergovernmental panel as shown in Figure 1.2 indicate 

that CO2 accounts for the largest proportion (75%) of all the greenhouse gas 

emissions, which is then followed by methane (16%), Nitrous oxide (6%) and F-gases 

(2%). CO2 is mainly due to the combustion of coal, oil and natural gases, contributing 
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towards 89% of the entire CO2 production10. The CO2 emission level is currently 30% 

above the pre-industrial era and has approached an alarming situation for our survival. 

It has to be reduced by 75% in order to maintain the temperature rise on a level of 1.5 

degrees. According to a recent UN report, it has predicted that population will 

increase from 6.5Billion to approximately 9.7 Billion in the next 85 years5. As a result, it 

has been forecasted that the usage of oil will increase from 81 million barrels to 121 

million barrels/day by 20252. Eventually, the oil resources will be exhausted by 2050.  

1.2 Energy solutions 

According to the current trends, it is predicted that the global CO2 emissions will reach 

64 Gigatons by 2050 as suggested by the trends in Figure 1.3 and this will further 

extend by 21% (approximately 78 GtCO2) by 21009. Fossil fuels, as the primary source 

of energy, will account for 75% of the overall energy supply by 2050.  

Therefore, it is necessary to develop new technologies in order to significantly 

increase the portion of renewable energy sources, such as solar, tidal, wind and 

biomass. As mentioned above, the amount of energy provided by the sunlight per day 

(4.3x1020J) is more than enough to meet our current energy demand (4.1x1020J) for 

one year. However, approximately only 0.1% of energy is acquired from a solar 

medium11.  

It is good to see that some countries have taken very good action towards the 

replacement of fuel by renewable energy sources. Norway already meets its energy 

demands by hydroelectric power generation while Iceland produces 70% of electricity 

demand through renewable energy12. With the implementation of new energy policies 

in Iceland13, hydrogen powered public transport has been attempted initially to buses 
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and will then extend to fishing vessels12. Nuclear power stations will have to be shut 

down as a result of potential risk to human lives. Furthermore, Uranium reserves are 

now becoming very low, and they are unlikely to be a reliable source of electricity in 

the future7. Therefore, the solar energy which is in principal exhaustible, would be the 

ultimate energy source.  
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Figure 1.3. Forecast of the carbon emissions with time based on the UN annual 

report 20158.  

 

1.3 Solar cells 

Significant research in solar cells have taken place since the 1990s. As a result, the 

utilisation of solar energy through solar cells had increased to 23.5 GW by 2010 from 

an initial 46 MW solar setup, reaching approximately 100 GW globally in 201314. 

However, the solar to electricity conversion is still very low, and thus it has been 

subjected to intensive research around the world.  



 16 

Silicon based solar cells with a conversion efficiency of 20% under 1 Sun condition was 

first reported by the University of New South Wales in 198515.  The first-generation 

silicon solar cells were fabricated from polycrystalline (p-Si) and then single crystalline 

silicon (c-Si), they are subject to the limitation in its conversion efficiency and the 

challenges in further cost reduction16,17 lead to the production of hydrogenated 

amorphous Silicon, Cadmium telluride and Copper Indium Gallium (di) selenide solar 

cells14. Multijunction solar cells have been developed, demonstrating better conversion 

efficiency than single pn junction based solar cell18.   

III-nitrides, which all exhibit direct bandgap structure and whose bandgaps (InGaN) 

cover the full visible spectral region, are expected to be very promising candidates for 

the fabrication of highly efficient solar cells. Figure 1.4 represents the solar spectrum.  

By tuning the Indium growth in GaN, the bandgap can be extended from 0.7 eV to 3.4 

eV, hence exploiting the visible spectrum in addition to the 2% of UV light absorption. 

 

 

Figure 1.4. Basic schematic of solar irradiation incident on Earth’s surface 

showing UV region, visible region and infrared region.19  
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1.4 Hydrogen as fuel 

Figure 1.5 depicts that Electricity and transportation sectors are largely responsible 

for generating a high level of CO2. Therefore, carbon emission will be significantly 

reduced, if solar hydrogen related fuel replaced oil as primary energy sources.  

 

Figure 1.5. Sources of carbon emissions in the USA, 201720 

Hydrogen does not release any harmful by-products in air when it undergoes 

combustion. It releases energy in the form of heat and producing water only. 

2𝐻2 +  𝑂2 → 2𝐻2𝑂 

As opposed to electricity, hydrogen is storable and can be conveniently converted into 

liquid hydrogen, which is particularly important for transport.  

Solar powered hydrogen as an energy carrier was first proposed in 1970s and it soon 

became unattractive because of the high costs of production21,,22. However, the rise in 

carbon emissions leads to the necessity of developing sustainable hydrogen economy 
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with an objective in terms of improving efficiency and storability23. Hydrogen can be 

stored in liquid form at 20k in a well-insulated cryogenic tank. Hydrogen has 

applications similar to any petrol-based fuel cells in many aspects, for example, 

hydrogen powered bikes have an economy rate of 1 km/gram and exhibit an overall 

capability of travelling 3000 km on 2 kg Hydrogen 3,24. If hydrogen fuel cells are used 

for a vehicle, the overall load will be less than the current petrol-based vehicle as a 

result of the lower density of hydrogen than that for petrol. Such vehicle can reach 

60km/h in 8.8 sec24. A hydrogen powered system consists of an internal combustion 

engine for hydrogen generation and a fuel cell to power vehicle, where hydrogen is 

stored in a liquid form in an insulated tank3,27.  

The current challenge arising with the application of hydrogen as a fuel in vehicles is 

the losses in energy involved as a result of the hydrogen boil-off process and 

refrigeration process5. Secondly, an optimum storage of hydrogen is vital for an 

enhanced efficiency for the overall performance of the vehicle.  

There are frameworks and systems in place for hydrogen distribution to drive 

electricity and transportation, consequently decarbonising the atmosphere.25, 26, 27  

In principle, hydrogen can be generated by steam methane reforming (SMR) 

technique, electrolysis and solar photolysis22. The reforming technique is mainly used 

to extract hydrogen from natural gas. Reformers are used to transform natural gas 

into hydrogen and carbon monoxide. A reaction between methane and steam (under 

high pressure) takes place under the influence of a catalyst and requires continuous 

supply of heat.  This is a very expensive for the amount of hydrogen actually produced 

and results in the production of CO2.  
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The electrolysis approach is well-known. Basically, under electricity, water can be split 

into hydrogen and oxygen, namely converting electricity into storable hydrogen. The 

electrolysis approach can also be employed in combination with solar cells.28 This 

means that firstly solar energy can be converted into electricity via solar cells, which 

will then be used to split water into hydrogen and oxygen. The overall process consists 

of a large amount of energy loss: Primarily, in the process from converting solar energy 

into electricity followed by the second stage, during electrolysis induced water 

splitting processes. The solar photolysis (or solar powered water splitting) approach 

is truly green and efficient because it directly converts solar energy into hydrogen 

without involving any intermediate processes.  

1.5 Solar powered water splitting 

The photo-electrolysis phenomenon was first observed by Edmond Becquerel in 

18397,29.  He immersed two metal electrodes in an electrolyte and observed an increase 

in the current once the electrolyte was exposed to light. A photocurrent response 

experiment using Selenium as a photoelectrode was conducted by Willoughby Smith 

and then was published in 1873. Since then, various materials have been employed as 

photoelectrodes, and a number of relevant techniques have been developed in order 

to enhance light absorption and conversion efficiency.  

The redox potential of water is 1.23 eV. In principle, as along as the conduction band 

and valence band of a semiconductor straddle the redox potential of water, water 

splitting will take place. Therefore, the minimal requirement for a semiconductor used 

as a photoelectrode is that the bandgap of the semiconductor is above 1.23 eV. 

However, sometimes, even though the bandgap of a semiconductor is below 1.23 eV, it 
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can be used to drive either hydrogen evolution reaction or oxygen evolution reaction, 

not both simultaneously.  

In this research project, a number of different approaches towards maximising solar 

conversion using III-nitride semiconductor based photoelectrodes have been 

designed, demonstrating significantly enhanced photocurrent and consequently 

hydrogen. Solar-powered water splitting would be the most promising approach 

towards the conversion of solar energy into renewable and storable energy. III-nitride 

semiconductors (GaN and its alloys such as InGaN) exhibit a wide range of bandgap 

from 3.4eV of GaN to 0.69eV of InN63,64, covering the whole visible spectral range and 

thus matching the solar spectrum perfectly. Furthermore, it has been predicted that 

the conduction band minimum and the valence band maximum of InxGa1−xN with a wide 

range of indium content (x<50%) can straddle over the redox potentials of (H+/H2) and 

(O2/H2O) for overall water splitting30. All these unique properties along with their 

chemical stability in acidic or alkaline solutions which is crucial for water splitting make 

III-nitrides be ideal candidates for solar-powered hydrogen generation71,49. In the last 

two decades efforts have been devoted to the development of III-nitride based 

emitters for solid state lighting represented by InGaN based blue emitters, leading to 

the award of the Nobel Prize in 2014. It is good timing to attempt to extend the 

utilisation of GaN and its alloys to the field of solar-powered hydrogen generation in a 

cost-effective manner, given a number of the major advantages mentioned above. 

Current researches on GaN based photoelectrodes are in infancy, and thus the solar-

hydrogen conversion efficiency is not impressive so far. In order to achieve a step-

change in efficiency of solar-powered hydrogen generation, a number of major 

challenges will have to be met, such as enhanced light absorption, rapid migration of 
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the charged photon-generated carriers to the semiconductor/electrolyte junction in 

order to participate in the half-reactions before their recombination. So far, a number 

of ideas using nanostructures have been proposed, such as nanowires or nanorods, 

nanoporous structures31,32,43,55. As a consequence of the increased surface-to-volume 

ratio resulting from nanostructures, optical absorption can be significantly enhanced. 

The migration of photon-generated carriers is mainly determined by the diffusion 

length of minority carriers and the distance they must travel. When diffusion length is 

short or a travelling distance is long, minority carriers will recombine before they 

reach the junction. A nanostructure configuration would lead to a reduction in 

travelling distance for the photon-generated carriers to the 

semiconductor/electrolyte junction, thus potentially enhancing energy conversion 

efficiency. Furthermore, surface plasmon effects can also enhance light absorption.  

Solar power water splitting is not limited to hydrogen generation but have applications 

in emerging applications such as water treatment process and thermochemical water 

splitting. 

1.6 Current status of III-nitrides based photoelectrode for solar 

powered hydrogen generation. 

GaN was first deposited on a c-plane sapphire substrate using hydride vapour phase 

epitaxy in 1969 by Maruska and Tietjen. Akasaki, Amano, and Nakamura’s work between 

the 1980 and 1990’s has led to great achievement in developing III-nitride 

optoelectronics, in particular blue light emitting didoes (LEDs), thus being awarded 

the Noble Prize in Physics 201433-37.  III-nitrides and its alloys are grown in MOCVD 

chamber under the influence of precursor gases such as TMGa, TEGa, TMAl, TMIn and 
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NH3.36,37 Magnesium and Silicon are used for p-type and n-type doping respectively 

while nitrogen and hydrogen gases are the carrier gases.  

III-nitrides exhibit a number of beneficial advantages, for instance, their large 

absorption coefficient of >105 cm-1 and their excellent chemical stability in either acidic 

or alkaline solutions where solar powered hydrogen generation can be performed 

efficiently as listed in some reports71-73.  

The band structure of GaN can also straddle over the redox potential of water (1.23 

eV), which is an important basis for performing an overall water splitting reaction. The 

challenge so far is the conversion efficiency of GaN based photoelectrodes which are 

generally less than 0.1 mA/cm2 in photocurrent density values obtained under AM1.5 

illumination.64,73,74 This may be resolved by adding some Indium content as InGaN alloys 

can cover a wide spectral range from the ultraviolet through the whole visible to the 

infrared region making it an ideal material potentially. However, it is important to 

mention that the growth of a thick InGaN layer is difficult especially the inclusion of 

high Indium content which leads to a poor crystalline quality and generates defects 75 

except the InN/In0.54Ga0.46N quantum dots report38 with Indium content just above 50% 

(maximum Indium content) and straddles the redox potential of water30.  
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Figure 1.6. Published reports on GaN based photoelectrodes and their 

photocurrent density values. Filled symbols represent photocurrent 

measurements under standard conditions while unfilled symbols show 

photocurrent measurements under non-standard conditions. Orange symbols 

represent InGaN photoelectrodes and blue symbols demonstrate GaN based 

photoelectrode. The green symbols represent the research projects 

undertaken during my PhD period. 

 

Figure 1.6 shows the published photocurrent densities of III-nitride photoelectrodes 

measured under a bias of 1.0 V38-69. From Figure 1.6, it is evident that standard 

characterisations of III-nitride photoelectrodes under AM1.5 1 Sun illumination can be 

found in the last 5 years as opposed to reports before 2012 which were measured 

under higher illumination levels. From Figure 1.6, nano and micro structures as well 

as an increase in Indium content contribute towards an enhancement in the 

photocurrent density.  

My research was focused on n-type based GaN photoelectrodes and the different 

fabrication approach employed to study the characteristics and photoelectrochemical 

processes. The projects undertaken in this thesis aims to utilise and develop several 
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novel approaches in the fabrication of GaN based photoelectrodes in order to enhance 

the overall conversion efficiency of the device under standard illumination conditions. 

1.7 Thesis Outline 

 In each of the research chapters (Chapters 4, 5, 6 and 7), growth of GaN samples 

were conducted by the growth team in Professor Tao Wang’s research group. I 

would like to acknowledge Dr Y. Gong, Dr. X. Yu and S. Shen for their expertise and 

contribution in the growth procedures of the photoelectrode and the 

characterisation steps involved in the growth procedure such as van der pauw hall 

measurements.  The FDTD simulations were carried out by Dr. Y. Hou.  

I was responsible for the micro-meter and nano-meter sized fabrication process and 

characterisation steps for the GaN based photoelectrodes. 

Chapter 1: A brief perspective about the necessity to develop sustainable, clean and 

storable energy. Introduction of the current status in the development of GaN based 

solar water splitting techniques 

Chapter 2: Background on semiconductors, III-nitride structures and their properties. 

Fundamental mechanism of photo-electrolysis and III-nitrides as photoelectrodes 

Chapter 3: Experimental techniques utilised to fabricate and characterise III-nitride 

photoelectrodes 

Chapter 4: Develop enhanced solar powered water splitting by means of silver 

decorated GaN photoelectrode based on the surface plasmonic effect. 

Chapter 5: Fabrication of GaN nano-pyramid arrays on silicon as an efficient 

photoelectrode for solar water splitting 
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Chapter 6: Develop nano-porous GaN as a photoelectrode aiming to enhance solar 

powered hydrogen generation. 

Chapter 7: Ultra-energy efficient photoelectrode using micro-striped GaN on Si. The 

specially designed and configured photoelectrode showed success in achieving the 

highest photocurrent density for a GaN based photoelectrode device. 

Chapter 8: Future work and conclusion 

  



 26 

References 

1. IPCC 2014: Climate change 2014. Mitigation of climate change. 

https://www.ipcc.ch/report/ar5/wg3/ 

2. C. Vlek and L. Steg. Journal of Social Issues, 63, 1, 1-19 (2007) 

3. International Energy Agency. 2009 Transport, energy and CO2: moving toward 

sustainability. Paris, France: International Energy Agency. 

4. United Nations. 2016 Framework Convention on Climate Change (COP21) Paris 

Agreement. See http://unfccc.int/paris_agreement/items/9485.php 

5.    N. P. Brandon and Z. Kurban. Phil. Trans. R. Soc. A375 (2017) 

6. IEA. Renewables information 2018: Overview 

7. M. Grätzel, Photoelectrochemical cells, Nature, 414, 338-344 (2001) 

8. Renewable 2015 Global Status Report. Ren21 Renewable energy policy network 

for the 21st century 

9. 2016 Outlook. MIT joint program on the science and policy of global change. 

10. J. G. J. Olivier and J. A. H. W Peters. Trends in global CO2 and total greenhouse 

gas emissions, 2018 report. 

11. N. Lewis and D. Nocera. Proceedings of the National Academy of Sciences, 103, 

43, 15729-15735 (2006) 

12. M. Maack and J. Skulason. Journal of Cleaner Production, 14, 1, 52-64 (2006) 

13. O. Anderson. Int. J. Alternative Propulsion. 1, 4 (2007) 

14. D. V. P. McLaughlin and J. M. Pearce. A 44, 4, 1947-1954 (2013) 

15. US Department of Energy. Energy efficiency and renewable energy. The history 

of solar. https://www1.eere.energy.gov/solar/pdfs/solar_timeline.pdf 

http://unfccc.int/paris_agreement/items/9485.php


 27 

16. M.A. Green: Third Generation Photovoltaics: Advanced Solar Energy Conversion, 

1st ed., Springer, Berlin, 2003. 

17. M.A. Green: Third Generation Photovoltaics: Advanced Solar Energy Conversion, 

2nd ed., Springer, Berlin, pp. 59–69 (2005) 

18. M. Green, K. Emery, Y. Hishikawa, W. Warta and E. Dunlop. Prog. Photovolt: Res. 

Appl. 22, 1, 1-9 (2013) 

19. L. F. Llin, D. J. Paul. Chapter 9: Thermoelectrics, photovoltaics and thermal 

photovoltaics for powering ICT devices and systems. (IntechOpen, 2017).  

20. https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions 

21. R. Shinnar. Technology in Society, 25, 4, 455-476 (2003) 

22. US Department of Energy. The green hydrogen report, NREL (1995) 

23. L. Barreto, A. Makihira and K. Riahi. International Journal of Hydrogen Energy, 

28, 3, 267-284 (2003) 

24. I. P. Jain. International journal of hydrogen energy. 34, 7368-7378 (2009) 

25. Ball M, Wietschel M. 2010 The hydrogen economy: opportunities and challenges. 

Cambridge, UK: Cambridge University Press. 10.  

26. The White House. 2003 Hydrogen economy fact sheet. See 

https://georgewbush-whitehouse. 

archives.gov/news/releases/2003/06/20030625-6.html. 

27. E4tech and Element Energy Hydrogen and Fuel Cells. 2016 Opportunities for 

growth (a roadmap for the UK). London, UK: E4tech and Element Energy. 

28. P. Shukla, R. Karn, A. Singh and O. Srivastava. International Journal of Hydrogen 

Energy, 27, 2, 135-141 (2002) 

29. E. Bequerel. C. R. Acad. Sci. 9, 145-149 (1839) 



 28 

30. P. G. Moses, C. G. Van De Walle. Appl. Phys. Lett. 96, 021908 (2010) 

31. J. Benton, j. Bai, T. Wang. Appl. Phys. Lett. 105, 223902 (2014) 

32. D. Wang, A. Pierre. M. G. Kibria, K. Cui, X. Han, K. H. Bevan, H. Guo, S. Paradis, A. 

R. Hakima, Z. Mi. Nano Lett. 11, 2353 (2011) 

33. I. Akasaki, H. Amano, K. Hiramatsu, N. Sawaki. Proceedings of 14th International 

Symposium on Gallium Arsenide and Related Compounds 1987. 633–636 (1988)  

34. S. Nakamura, T. Mukai, M. Senoh. Jpn. J. Appl. Phys. 30, L1998–L2001 (1991)  

35. S. Nakamura, M. Senoh, T. Mukai. Jpn. J. Appl. Phys. 32, L8–L11 (1993)  

36. S. Nakamura, T. Mukai, M. Senoh. Appl. Phys. Lett. 64, 1687–1689 (1994)  

37. Press release of the The Royal Swedish Academy of Sciences. Retrieved 7 Oct 

2014, www. nobelprize.org/nobel_prizes/physics/laureates/2014/press.html. 

38. N. U. H. Alvi, P. E. D. S. Rodriguez, P. Aseev, V. J. Gómez, A. U. H. Alvi, W. U. Hassan, 

M. Willander, R. Nötzel. Nano Energy. 13, 291-297 (2015). 

39. K. Fujii, K. Ohkawa. Phys. Stat. Sol. (C) 3, 2270-2273 (2006). 

40. K. Fujii, Y, Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck; 

S. P. Denbaars, S. Nakamura, K. Ohkawa. Jpn. J. Appl. Phys. 46, 6573-6578 (2007). 

41. K. Aryal, B. N. Pantha, J. Y. Lin, H. X. Jiang. Appl. Phys. Lett. 96, 052110 (2010). 

42. C. Pendyala, J. B. Jasinski, J. H. Kim, V. K. Vendra, S. Lisenkov, M. Menon, M. K. 

Sunkara.  Nanoscale 4, 6269-6275 (2012). 

43. J. Benton, J. Bai, T. Wang. Appl. Phys. Lett. 103, 133904 (2013). 

44. L. Caccamo, J. Hartmann,  C. Fàbrega, S. Estradé, G. Lilienkamp, J. D. Prades, M. 

W. J. Hoffmann, J. Ledig, A. Wagner, X. Wang, L. Lopez-Conesa; F. Peiró, J. M. 

Rebled, H. H. Wehmann, W. Daum, H. Shen, A. Waag. ACS Appl. Mater Interfaces 

6, 2235-2240 (2014). 



 29 

45. Y. Hou, Z. A. Syed, R. Smith, M.  Athanasiou, Y. Gong, J. Bai, T. Wang. J. Phys. D: 

Appl. Phys. 49, 265601 (2016). 

46. Z. A. Syed, Y. Hou, X. Yu, S. Shen, M. Athanasiou, J. Bai and T. Wang. ACS 

Photonics. 6, 1302-1306 (2019) 

47. J. Li, J. Y. Lin, H. X. Jiang. Appl. Phys. Lett. 93, 162107 (2008). 

48. S. W. Ryu, Y. Zhang, B. Leung, C. Yerino, J. Han. Semicond. Sci. Technol., 27, 

015014 (2012). 

49. I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, S. Nakamura. Appl. Phys. Lett. 

91, 093519 (2007) 

50. K. Fujii, M. Ono, Y. Iwaki, K. Sato, K. Ohkawa, T. Yao. J. Phys. Chem. C 114, 22727-

22735 (2010). 

51. Hwang, Y. J.; Wu, C. H.; Hahn, C.; Jeong, H. E.; Yang, P. Nano Lett. 12, 1678-1682 

(2012). 

52. C. Pendyala, J. B. Jasinski, J. H. Kim, V. K. Vendra, S. Lisenkov, M. Menon, M. K. 

Sunkara. Nanoscale 4, 6269-6275 (2012). 

53. B. AlOtaibi, H. P. T. Nguyen, S. Zhao, M. G. Kibria, S. Fan, Z. Mi. Nano Lett. 13, 4356-

4361 (2013). 

54. B. AlOtaibi, M. Harati, S. Fan, S. Zhao, H. P. T. Nguyen, M. G. Kibria, Z. Mi. 

Nanotechnology 24, 175401 (2013). 

55. J. Benton, J. Bai, T. Wang. Appl. Phys. Lett. 102, 173905 (2013). 

56. R. Dahal, B. N. Pantha, J. Li, J. Y. Lin, H. X. Jiang.  Appl. Phys. Lett. 104, 143901 (2014). 

57. S. H. Kim, M. Ebaid, J. H. Kang, S. W. Ryu. Applied Surface Science. 305, 638-641 

(2014). 



 30 

58. M. Ebaid, J. H. Kang, S. H. Lim, Y. H. Cho, S. W. Ryu. RSC Adv. 5, 23303-23310 

(2015). 

59. T. Tao, T. Zhi, B. Liu, M. Li, Z. Zhuang, J. Dai, Y. Li, F. Jiang, W. Luo, Z. Xie, D. Chen, 

P. Chen, Z. Li, Z. Zou, R. Zhang, Y. Zheng. Sci. Rep. 6, 20218 (2016). 

60. J. Kamimura, P. Bogdanoff, F. F. Abdi, J. Lahnemann, R. V. de Krol, H. Riechert, L. 

Geelhaar. J. Phys. Chem. C 121, 12540−12545 (2017). 

61. Y. Hou, Z. Ahmed Syed, L. Jiu, J. Bai, T. Wang. Appl. Phys. Lett. 111, 203901 (2017). 

62. K. Koike, K. Yamamoto, S. Ohara, T. Kikitsu, K. Ozasa, S. Nakamura, M. Sugiyama, 

Y. Nakano, K. Fujii. International Journal of Hydrogen Energy. 42, 9493-9499 

(2017). 

63. S. Y. Liu, J. K. Sheu, Y. C. Lin, S. J. Tu, F. W. Huang, M. L. Lee, W. C. Lai. Optics 

Express 20, A678 (2012).  

64. J. Juodkazyté, B. Sebeka, I. Savickaja, A. Kadys, E. Jelmakas, T. Grinys, Š. 

Juodkazis, K. Juodkazis, T. Malinauskas. Sol. Energy Mater. Sol. Cells. 130, 36-41 

(2014). 

65. M. Ono, K. Fujii, T. Ito, Y. Iwaki, A. Hirako, T. Yao, K. Ohkawa. J. Chem. Phys. 126, 

054708 (2007). 

66. A. M. Basilio, Y-K. Hsu, W-H. Tu, C-H. Yen, G-M. Hsu, O. Chyan, Y. Chyan, J-S. 

Hwang, Y-T. Chen, L-C. Chen, K-H. Chen. J. Mater. Chem. 20, 8118-8125 (2010). 

67. M. Ebaid; J-H. Kang; S-H. Lim, J-S. Ha, J-K. Lee, Y-H. Cho, S-W. Ryu. Nano Energy, 

12, 215-223 (2015) 

68. M-R. Zhang, S-J. Qin, H-D. Peng, G-B. Pan. Materials Letters, 182, 363-366 (2016) 

69. D. Cao, H. Xao, J. Fang, J. Liu, Q. Gao, X. Liu, J. Ma. Mater. Res. Express 4, 015019 

(2017) 



 31 

70. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop. Progress in 

Photovoltaics: Research and Applications. 20, 606-614 (2012). 

71. K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen. Nature. 

440, 295 (2006) 

72. S. Zhao, H. P. T. Nguyen, M. G. Kibria, Z. Mi. 44, 14-68 (2015). 

73. M. G. Kibria, Z. Mi. J. Mater. Chem. A 4, 2801-2820 (2016). 

74. M. Ebaid, J. H. Kang, S. H. Lim, Y. H. Cho, S. W. Ryu. RSC Adv. 5, 23303-23310 

(2015). 

75. T. Wang. Semicond. Sci. Technol. 31, 093003 (2016) 



 32 

CHAPTER 2 
 

This chapter presents a brief summary of fundamental semiconductor physics and 

solar energy related devices. III-nitride semiconductors are one of the most promising 

candidates for the fabrication of solar cells and photoelectrodes for solar powered 

water splitting. A conceptual study of their operation has been provided along with 

presenting an insight on each chapter. 

2.1 Semiconductor Theory 

 Any element is made up of protons and neutrons that reside within the nucleus while 

electrons orbit around the nucleus. Electrons form different energy levels, known as 

orbitals. Most semiconductors consist of s, p and d orbitals with 2, 8 and 10 electrons 

respectively and bonding occurs either covalently where electrons can be shared or 

bonded ionically where donor or acceptor electrons are injected. The Pauli Exclusion 

principle states that only two electrons of the same energy are allowed in the system. 

Hence, when n number of atoms are in contact only n energy bands are formed. 

Electrons are already present in the lowest energy state of a material, known as the 

valence band at 0 K and are excited to move into higher energy states or the 

conduction band. The energy gap between them is the well-known “forbidden 

Background Information 
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gap”,which is also called a bandgap as indicated in Figure 2.1. 2,3 

Figure 2.1.  Diagram indicating the different band structures in a metal, 

semiconductor and an insulating material. Eg and EF represented in the figure 

are the bandgap energy and fermi level respectively.  

A semiconductor can be composed of either single species of atoms or two or more 

elements. For the former, silicon (Si) and germanium (Ge) in column IV of the periodic 

table of elements are the typical representative examples. For the latter, such a 

semiconductor is called a compound semiconductor, with combinations consisting of 

an element in group III (such as Boron, Gallium, Aluminium and Indium) and an element 

of group VI (such as nitrogen, Phosphorus, Arsenic, Antimony, Bismuth) as shown in 

Table 1. For example, GaN is a binary III-V compound, which is a combination of gallium 

(Ga) from column III and nitrogen (N) from column V. AlGaN is a ternary III-V 

compound, consisting of gallium (Ga) and aluminium (Al) from column III and nitrogen 

(N) from column V. AlGaInN is a quaternary III-V Compound, which is composed of 

gallium (Ga), aluminium (Al) and indium (In) from column III and nitrogen (N) from 

column V1. 
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Table 1: Electronic configuration of semiconductor elements  

Si is commercially used for the fabrication of transistors and other electronic devices, 

as silicon exhibits an indirect band-structure and thus is not ideal for the fabrication 

of emitters2. In contrast, compound semiconductors, such as GaN or GaAs, can be 

used for the fabrication of both electronics and photonics devices as both comprise 

of a direct band structure.  

The electrical properties of a semiconductor can be adjusted by means of adding 

impurities and generating additional free electrons or holes by doping the 

semiconductor. The number of free carriers can be indicated by the change of its 

Fermi level as indicated in Figure 2.2. A Fermi level is defined as the energy state with 

an occupancy of an electron by a probability of 50% at any temperature2. For an 

intrinsic semiconductor, a Fermi level typically lies midway between a valence band 

and a conduction band. For a n-type semiconductor, where electrons are the majority 

charge carriers, the Fermi level shifts towards the conduction band, while the Fermi 

level of a p-type semiconductor, with holes being the majority charge carriers, shifts 

towards the valence band. 
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Two kinds of mechanism are responsible for the generation of electrical current in a 

semiconductor under an external electrical field. Firstly, it is due to the drifting 

charged carriers, where electrical current depends on the charge’s carrier mobility, 

carrier density and electrical field. The drift velocity in a semiconductor can be 

calculated by multiplying the electric field and the mobility of charged carriers1. 

Another mechanism is due to the diffusion of charged carriers, where charged carriers 

diffuse from a high concentration gradient to a lower one. Therefore, total current 

produced is the combination of both drift and diffusion current. 

 

Figure 2.2: Intrinsic and extrinsic semiconductor band diagrams. ND and NA are 

the donor and acceptor levels upon injection of impurities. 

 2.2 Electron-hole generation and recombination 

Once a photon whose energy is greater than the bandgap of a semiconductor is 

incident upon the semiconductor, electrons can be excited from its valence band to 

its conduction band, leaving holes behind. Under an external electrical field, electrons 

and holes transit towards the electrodes in an opposite direction before they 

recombine and then emit photons or transform into heat. This forms the basis of the 

photo current. For an ideal photovoltaic or photoelectrode device, it is important to 

enhance photo current by reducing carrier recombination4. Generally speaking, there 
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VB VB VB

CB CB CB
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are two kinds of recombination processes, namely, radiative recombination and non-

radiative recombination. Radiative recombination leads to emitting photons, while 

non-radiative recombination results in the generation of joule energy in the form of 

heat or phonons2.   

2.3 III-Nitrides and their applications in solar powered hydrogen 

generation  

The III-nitride family consists of AlN, GaN, InN, and their ternary or quaternary alloys. 

They are all direct band gap semiconductors5. GaN is the core III-V semiconductor 

material employed for the fabrication of the solar energy related devices in the 

following research chapters.  

GaN has a band gap of 3.4 eV. With the addition of Indium (In), the band gap of InGaN 

alloys, also shows a direct band structure across their entire composition. It can cover 

a wide spectral region from the ultraviolet through the entire visible domain upto the 

infrared sector. Due to the lack of native substrates, GaN is typically grown on foreign 

substrates6, such as sapphire with a lattice mismatch of ~16%7, SiC with a lattice 

mismatch of ~3.5%8. Furthermore, there is an increasing trend that GaN is grown on 

silicon substrates leading to an integration of GaN and silicon, which is a great 

challenge due to a number of fundamental issues. In addition to the larger lattice 

mismatch between GaN and silicon (17%),9 there exists a huge difference in thermal 

expansion coefficient between GaN and silicon (54%), leading to a severe cracking 

issue during a cooling process as GaN needs to be grown at a high temperature. There 

is another great challenge, which is the so-called Ga melt-back phenomenon10, which 

occurs due to a chemical reaction between Ga and silicon at a high temperature, 
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leading to a growth collapse.  Nevertheless, an integration of GaN and silicon, by taking 

the major merits from the two major kinds of semiconductor, is expected to 

demonstrate greater advantages in terms of efficiently absorbing radiation in the UV 

region as well as the visible region of the solar spectrum due to their complementary 

bandgaps.  

GaN has another excellent advantage compared with other III-V compound 

semiconductors, namely, the water redox potentials which lie between the conduction 

band minimum and valence band maximum, leading to a simultaneous occurrence of 

both oxygen evolving half-reaction (OER) and hydrogen evolving half reaction (HER)11 

as illustrated in Figure 2.3. The conduction band and potential band edges of the 

semiconductors are determined with respect to the vacuum level (reference point 

where energy due to electron is zero). The conduction band potential depends on the 

electron affinity, fermi level, work function and the ionisation energy with respect to 

the vacuum level. In an n-type semiconductor, the fermi level is close to the conduction 

band edge and higher than the fermi level of the electrolyte. The work function is 

amount of energy required to remove an electron from the fermi level of a 

semiconductor and the electron affinity is the measure of energy required to remove 

an electron from the conduction band edge to the vacuum state.2 The contact 

potential is the difference between two energies.  Once the conduction band edge is 

known with respect to the vacuum level, the bandgap value of the semiconductor is 

directly added to mark the valence band edge. The band potential measured with 

respect to the vacuum state are scaled against the normal hydrogen electrode (eV vs 

NHE). The redox potential (eV) of the semiconductors illustrated in Figure 2.3 are 

measured against normal hydrogen electrode (NHE), where the measured redox 
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potential does not change with variation in the pH of the electrolyte. This can be easily 

converted to the reversible hydrogen electrode (RHE) for pH dependence which is a 

type of NHE and has been used to measure the potential difference throughout the 

experimental projects. 

 

Figure 2.3. Valence and conduction band edges of different materials and their 

positions in respect to the water splitting potential.12,13  

GaN is also intrinsically chemically stable in alkaline or acidic solution, which is very 

important for the application of solar powered hydrogen generation. As in most cases 

the electrolyte used for solar powered hydrogen generation is typically either alkaline 

or acidic solution.    

Crystal structure 

GaN exhibits three different kinds of crystal structures, zinc blende, rock salt and 

wurtzite14 as shown in Figure 2.4.  Wurtzite GaN is the most stable form at 

atmospheric temperature. GaN crystal structures are determined by the substrate 
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and the direction of the its growth. GaN is commonly grown on sapphire substrate in 

the c-plane direction (0001) due to its commercial availability and the ability to remain 

stable at high temperature (1000℃), therefore, GaN is widely crystallised in a wurtzite 

structure with tetrahedral bonds.15 The Ga-N bonds are chemically strong and thus 

GaN based semiconductor devices are chemically and thermally robust.16 The Zinc 

blende crystal structure is formed when GaN is grown on a cubic substrate such as 

MgO, SiC and Si (111). The difference between zincblende and wurtzite crystal 

structure is the location of the neighbouring atoms in which the zinc blende crystal 

has a 60° rotation while wurtzite has no degree of rotation.17 Wurtzite structure is 

crystallised in ambient temperature, but under high pressure (30-50GPa) it can get 

transformed into a rock salt structure. The bonding behaviour in the rock salt 

structure between the atoms is ionic whereas the wurtzite structure is partially ionic 

as well as covalent.18 

 

Figure 2.4. A basic schematic of a zinc blende, wurtzite and rocksalt structure 

where the brown and silver circles represent Ga and N atoms respectively 

The hexagonal wurtzite structure has an absence of an inversion symmetry 

perpendicular to c-axis and therefore the surface can either be Ga-face or N-face. This 

leads to a lattice mismatch between III-V alloys thus introducing spontaneous and 
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piezoelectric polarisations as the substrates become strained.19,20 

2.4 Photo-electrochemical solar hydrogen Cell 

Solar hydrogen water splitting undergoes three main essential steps, Firstly, 

absorption of light by the semiconductor photoanode, which is expected to have a 

band energy that has an ability to straddle over the H2O redox potential (1.23 eV) for 

overall water splitting in order to create electron-hole pairs. Secondly, the 

photogenerated electron-hole pairs diffuse through a semiconductor-electrolyte 

junction. Thirdly, the photogenerated carriers travel to the anode to form OER and 

move to the counter-electrode site to form HER. The accumulated electrons on 

counter electrode will react with H+ ions resulting in the production of hydrogen gas. 

Photogenerated holes/electrons move towards counter electrodes and 

photoelectrodes in an appropriate electrolyte to participate in half reactions to 

produce O2/H2. 21,22,23 

An overall water splitting reaction can be expressed as below: 

Overall reaction: 𝐻2𝑂 + 2ℎ𝜐 →  
1

2
𝑂2 +  𝐻2       (1) 

OER: 2𝐻+ + 2𝑒− → 𝐻2                                           (2) 

HER: 𝐻2𝑂 + 2ℎ+ →  
1

2
𝑂2 + 2𝐻+                           (3) 

 The energy released from one molecule of H2O according to Gibbs energy is ∆𝐺 =

237.2𝑘𝐽/𝑚𝑜𝑙 under an electrochemical potential of ∆𝐸𝑜 = 1.23𝑒𝑉23,24,25,26 

Photoelectrodes 

For an electrode fabricated from a n-type semiconductor, photogenerated holes 

diffuse through a semiconductor-electrolyte junction and then a water oxidation takes 
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place around the photoelectrode27,28. In addition to the requirements in terms of 

bandgap and band-diagram, the semiconductor used for the fabrication of a 

photoelectrode needs to withstand corrosion in an electrolyte solution29,30. Figure 2.5 

shows a typical GaN based electrode with an ohmic contact. 

 

Figure 2.5. A typical working photoelectrode based on GaN 

Counter-electrode 

As opposed to a photoelectrode made from a semiconductor, a counter electrode 

passively collects electrons or holes. In order to have a maximum transfer efficiency of 

the carriers from a counter electrode to electrolyte, the junction between 

electrolyte/counter-electrode should be minimized or avoided.  In addition, a counter 

electrode should be chemically inert in an electrolyte, which is an often alkaline or 

acidic solution31. Among all the metals, platinum is an ideal material to work as a 

counter electrode for the reasons mentioned above. 

Electrolyte  

An electrolyte is a medium where solar powered hydrogen generation takes place. It 

should be conductive and also provides ions. Importantly, an electrolyte should have a 

proper chemical potential which together with Fermi level in photoelectrode 

semiconductor should form a proper band-diagram at the interface between the 

Contact	Surface	

Electrode	
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photoelectrode and the electrolyte, facilitating electron/hole transportation. 

In order to generate H2, the photo-electrochemical energy of anions of the electrolyte 

should consist of a higher entropy than that of H+/H2.  Normally, an acidic or alkaline 

solution can be used, such as KOH, HCl, NaOH. It is important to ensure that the 

material used for the fabrication of a working electrode should be chemically stable in 

the electrolyte. For instance, GaN photoelectrode demonstrated enhanced stability 

withstanding corrosion in HCl and NaCl solution but quickly degraded in KOH 

solution.22 In addition, an electrolyte used should have minimal light absorption along 

with minimum ohmic losses. Table 2 shows a number of widely used electrolytes with 

their typical pH values used for solar powered hydrogen generation. 

Electrolyte pH value 

HCl pH = 0.2 

NaOH pH = 12 

KOH pH = 14 

NaCl pH ~ 7 

Water pH ~ 7 

Table 2. Acid, alkaline and neutral solutions used as an electrolyte  
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2.5 Band diagram at an interface between a semiconductor and 

electrolyte 

As soon as a semiconductor is in contact with an electrolyte, a built-in electric field is 

generated at the interface between the semiconductor and the electrolyte as a result 

of carrier diffusion between them due to their different work functions. Finally, the 

diffusion of the charge carriers carries on until the Fermi energy in the semiconductor 

are in equilibrium with the redox potential of the electrolyte. Consequently, an electric 

double layer, which is also called Helmholtz layer, will be formed at the interface 

between the semiconductor and the electrolyte as shown in Figure 2.6, where a layer 

of opposite charge surrounds the photoelectrode (adsorption), consequently leading 

to the construction of two layers of opposite charge at the interface between the 

semiconductor and the electrolyte. The band bending and charge transfer takes place 

in the space charge region due to the built-in electric field. This results in an efficient 

separation of photogenerated carriers where holes advance towards the surface of 

the photoelectrode and electrons travel towards the ohmic contact. The electric 

double layer concept was first introduced by Helmholtz, who emphasized on the flow 

of charge at the interface at the double layer and not extending further into the 

electrolyte solution23,32. Being similar to any p-n junction, where there is a depletion 

layer is formed between a p-type semiconductor layer and a n-type semiconductor 

layer and the thickness of the depletion layer depends on the doping levels of the two 

layers, the thickness of the electric double layer depends on the concentration of ions 

in the electrolyte. 
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Figure 2.6. n-type semiconductor-electrolyte junction after contact   

Normally, there are three scenarios occurring at the interface between a 

semiconductor and an electrolyte, depending on the doping level of the 

semiconductor and the ion concentration of the electrolyte. 

(1) if the Fermi level of a semiconductor photoelectrode is equal to the redox potential 

of the electrolyte, there is no diffusion of charge which results in an absence of a space 

charge layer in the semiconductor resulting in a flat band potential. This is shown in 

Figure 2.7 

(2) If the Fermi level of a semiconductor is lower than the redox potential, electrons 

are accumulated in the semiconductor region, hence pushing the conduction band to 

bend downwards.  

(3) If the Fermi level of the semiconductor is greater than the redox potential of the 

electrolyte, conduction band is pushed upwards by the diffusion of electrons into the 

electrolyte leaving positive charge behind.  



 45 

 

Figure 2.7. An Illustration of the charge carriers at the semiconductor-

electrolyte interface and the subsequent changes in band bending. a) Flat band 

layer, the space charge layer is non-existent and the semiconductor and redox 

potential is at equilibrium b) Electrons are accumulated in the semiconductor 

region, the fermi level of semiconductor is lower than the redox potential, 

hence forming a depletion layer where the valence and conduction bands are 

bending downwards towards the interface c) the depletion layer, the Fermi 

level is greater than the redox potential and electrons move into the electrolyte. 

Guoy and Chapman investigated into the diffusion of ions in an electrolyte and the 

concentration of the electrolyte that influences the compact Helmholtz layer: the 

lower the ion concentration, thicker the diffused layer33,34. 
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CHAPTER 3 

 

A number of techniques have been employed for the project in order to grow and 

fabricate four kinds of nano/micro-structured photoelectrodes based on GaN 

semiconductors. Further detailed material characterisation, structure 

characterisation and device testing have been carried out, where a wide range of 

characterisation techniques have been used.  This chapter presents detailed 

description of all the techniques.  The samples were grown by the MOCVD system in 

the Centre for GaN materials and devices. The characterisation process was 

conducted in the Labs of the Centre for GaN materials and devices.  The 

semiconductor device fabrication steps took place in the device fabrication clean 

room facility in the Nanoscience Building of the University of Sheffield.  

 

 

 

 

 

 

 

Experimental Techniques 
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3.1 MOCVD growth of GaN 

All the samples were grown on (0001) sapphire substrate or silicon substrates. The 

precursors used to grow the GaN epitaxial layers were ammonia (NH3) and 

Trimethylgallium (TMGa), TrimethylAluminium (TMAl) and TrimethylIn(TMIn), 

respectively. Dilute silane is used to provide n-type dopant, while Cp2Mg is employed 

as a p-type dopant. Detailed growth procedures and detailed structures used for the 

project are provided in each chapter from chapter 4 to 7.  

 

Figure 3.1. Image of the MOCVD system 

Our MOCVD system is shown in Figure 3.1. It is a low-pressure system equipped with 

a close-coupled showerhead (CCS) type of gas injection system, which provides an 

excellent uniformity1. It consists of two major gas pipes to separate group VI precursor 

and group III precursors, which are injected from each metal-organic precursor 

bubbles. It then passes through the CCS injection system separately and finally mix on 

a substrate located just above a SiC coated susceptor, where all the precursors 
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including NH3 are cracked at a high temperature and then chemical reactions take 

place in order to form GaN or its alloys2. The susceptor is only 0.11 cm above a three-

zone tungsten heater system, allowing us to achieve a high temperature of above 

12000C.   A dry pump is used to control the growth pressure. A situ monitoring system 

is used to monitor surface temperature and wafer curvature during epitaxial growth. 

All the metal-organic precursors are located in their respective bathes which are 

accurately temperature-controlled.      

3.2 Fabrication technique 

Samples cleaning  

Once epiwafer growth is completed, all the samples are subject to cleaning processes 

before any further device fabrication. This is done by means of immersing them in 

three different solvents; n-butyl acetate, acetone and isopropyl alcohol (IPA) 

respectively. The solvents are each initially heated at 150°C and the particular sample 

is placed in each of the specified solvents for 15-30min depending on the cleanliness 

of the sample which is conducted in advance under an optical microscopic system.  
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Thermal evaporation 

Figure 3.2. Thermal evaporator covered with a bell jar 

Figure 3.2 shows our thermal evaporator system used for the deposition of metal 

contacts, which consists of a sample stage, filament mounter and a crystal thickness 

monitor. The whole system is sealed within a bell jar connected by a cryopump and a 

mechanical pump, which can provide a high vacuum of up to 10-6 Torr.  

A metal coil which will be used for deposition is mounted between two tungsten 

filaments. Once the vacuum conditions are achieved in the chamber, high current is 

applied to the tungsten filaments, which melts the metal coil and performs thermal 

deposition on top of the sample. The thickness of the deposited metal film can be 

controlled by a crystal thickness monitor. Thermal evaporation is mainly employed for 

the metallization of p-type and n-type ohmic contacts for GaN based devices. The 

fabrication of GaN based photoelectrode requires ohmic contact. For n-type GaN, a 

combination of Ti/Al and Ti/Au alloy is commonly used for the formation of ohmic 

contact. A Ti/Au alloy is typically employed for the fabrication of a bond pad3,4. 
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Rapid thermal annealing (RTA) 

 

Figure 3.3. An image of the RTA system 

A Jipelec rapid thermal annealing (RTA) is used for metallisation procedures5 as 

displayed in Figure 3.3. A sample is loaded in an RTA chamber, which is located 

between two silicon susceptors. A high temperature elevation from room temperature 

to 900° under N2 ambient can be achieved within a short time (1-5 mins) via a 

controlled infra-red lamp. A rapid cooling process is maintained by a powerful water-

cooling system. 
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Photolithography  

 

Figure 3.4. Image of a Mask aligner  

A KARL SUSS MJB3 UV365 Mask Aligner which is installed in a yellow room has been 

used for the project in order to transfer mask pattering into epiwafers. A typical 

procedure would be as follows:  after a sample is cleaned, it is then subject to an initial 

soft-baking in order to remove any residual moisture left during the previous cleaning 

process. After 1 minute of soft baking in 100°C, photoresist is then deposited on the 

surface of the sample, followed by spinning at 4000 rpm, which ensures even coverage 

of the photoresist across the surface. Subsequently, the sample is baked at 100 °C in 

order to harden the photoresist. The mask is transferred onto the sample through a 

mask aligner as shown in Figure 3.4, which is equipped with a UV light which reacts 

with the exposed area of the photoresist. This is further developed under a suitable 

developer where the exposed areas of the photoresist are removed in the developer 
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solution. Finally, the patterned mask on the sample surface product is further 

examined under an optical microscope system in order to ensure that the sample can 

continue with the next fabrication steps involving ICP etching or metallisation.   

Plasma enhanced chemical vapor deposition (PECVD) 

 

Figure 3.5. Image of a PECVD system 

Thin dielectric films, such as SiO2 and SiN, are typically prepared by a PECVD 

technique6, which is a chemical vapour deposition process used to deposit thin films 

on a substrate. Chemical reactions take place in the process via the creation of a 

plasma from the reacting gases. This plasma is generally created by radio (RF) 

frequency between two electrodes, filled with the reacting gases. Our PECVD system 

as shown in Figure 3.5, consists of a susceptor, which can be heated at ~300° C. The 

flow rates of the reacting gases are accurately controlled by mass-flow controllers.  
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Reactive-Ion Etching (RIE) 

 

Figure 3.6. Image of a RIE system  

RIE as shown in Figure 3.6 is widely used for the application of dry-etching technique, 

which utilise chemically reactive plasma to etch either a dielectric film or a 

semiconductor. The plasma is generated between two parallel electrodes within a 

chamber under low pressure (vacuum) by an electromagnetic field through a RF 

generator, where a typical frequency of 13.56 megahertz is normally used. High-energy 

ions generated from the plasma bombard the exposed part of a dielectric film or a 

semiconductor and then react with it, forming a dry-etching process. Etchant gases 

are injected into the chamber through mass-flow-controllers which can accurately 

control the flow rates of the etchant gases. The chamber is connected with a pump 

and a pressure gauge which can control the pressure of the chamber.  Standard 

etchant gases (Ar, CHF3, O2, SF6) are utilised for etching dielectric films, such as SiO2. 

The etching rate depends on the flow-rates of etchant gases and RF power used.   
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Inductively Coupled Plasma (ICP) 

 

Figure 3.7. Image of an ICP system 

ICP, as displayed in Figure 3.7 is another kind of major dry-etching technique which is 

based on the use of an inductively coupled plasma source that can generate a high-

density plasma. This leads to greater etch-rates than a normal RIE system shown in 

Figure 3.6, which is particularly important for the fabrication of III-nitride based 

optoelectronics, as III-nitrides are extremely chemically stable semiconductors. Unlike 

RIE, ICP has an additional RF power source which is connected to the cathode that 

generates DC bias and attracts ions to the wafer. Therefore, ICP can decouple ion 

current and ion energy applied to samples.  Another major advantage of ICP in 

comparison with a RIE system is that ICP exhibits better selectivity due to the 

separation of the RF generator and etch chamber. ICP has been widely used for the 

fabrication of III-nitride based optoelectronics7, where a Cl2/Ar gas mixture is a typical 

etchant gas8. An Oxford Instruments Plasma Technology ICP 380 is employed for the 

project. 
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3.3 Characterisation procedure 

Scanning Electron Microscopy (SEM) 

SEM is a very powerful tool for surface morphology characterisation. Its mechanism 

for the formation of images is based on interactions of an electron beam with atoms 

within the sample, generating information about the surface morphology. Different 

kinds of signals are produced including secondary electrons (SE), reflected or back-

scattered electrons (BSE), characteristic X-rays and light (cathodoluminescence), etc. 

The SEM system as illustrated in Figure 3.8 utilised for the project is a field-emission 

gun-based SEM. Once a sample is under vacuum conditions, an electric beam of 1-30kV 

is supplied by a field emission gun (FEG) causing electrons to flow under a strong 

electric field at the focused area of the sample. Electrons flow across a series of 

magnetic lenses allowing electrons from the electron beam to be centered onto the 

surface of the sample. Once electrons have interacted with the sample, secondary 

electrons are emitted and collected and amplified by a secondary electron detector.9,10 

These electrons are then converted into electrical signals and amplified in order to 

create an image of the sample on the computer for further image processing. The 

resolution of the image is dependent on the variation in the emission and intensity of 

the secondary electrons.  
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Figure 3.8. Schematic diagram of a SEM system 

Electron dispersive X-ray scanning (EDX) 

An electron dispersive x-ray is part of the SEM system which is used for the project. 

Once electrons are centered onto the sample surface by magnetic lenses, electrons 

interact with a sample and these electrons are determined by a secondary emissions 

detector which measures the intensity of the electric field emitted by the sample.11 An 

EDX further detects the chemical composition and the intensity of the different 

elements in a semiconducting material.  
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Photoluminescence (PL) measurements 

PL is a very useful tool to characterise optical properties of a semiconductor, which 

can also evaluate the optical performance of semiconductor devices, providing basic 

information on bandgap and the alloy composition. A standard PL measurement has 

been used for the project. The system is equipped with a 325 nm He-Cd laser as an 

excitation source and a monochromator (Horiba SPEX 500M) with an air-cooled 

charge coupled device (CCD) as illustrated in Figure 3.9.  

 

Figure 3.9. Schematic of a PL system 
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Photoelectrochemical (PEC) Cell 

 

Figure 4.0. Basic schematic of a PEC system 

A standard photoelectrochemical cell system consists of an electrode, a counter-

electrode and a reference electrode which are all immersed in an electrolyte.  

Electrical and chemical reactions take place upon irradiation from a proper light 

source. There are two chemical reactions taking place, oxidation and reduction. 

Electron loss takes place when a sample is oxidised, whereas a gain in electrons can 

be obtained during a reduction reaction.  

Various experimental techniques such as 2-electrode and 3-electrode configurations 

were used for the PEC measurements in order to gain extensive information about the 

characteristics of the photoanode12. In order to measure the potential between the 

working electrode and counter-electrode, a reference electrode is added into the 

electrolyte to assess the performance of the photoanode. There are various reference 

electrodes such as Ag/Ag2SO4 and Hg/Hg2Cl2 but Ag/AgCl is the most commonly used 

reference electrode and this has been utilised in the research chapters. Any choice of 

reference electrode can be used provided that the potential remains constant and can 
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be referenced for measurements. It should not get polarised and must be reversible. 

The reference electrode is positioned close to the working electrode to reduce the 

electrolyte resistance.12 The potential difference between the photoelectrode and 

reference electrode is measured at different current value. The reference electrode 

versus the measured potential is transformed into the reversible hydrogen electrode 

(RHE) scale, as shown below using the Nerst equation. 

VRHE =  VAg/AgCl + 0.059 × pH + VAg/AgCl
0      (1) 

Where  VAg/AgCl
0  = 0.197V. 

  

Figure 4.0 shows a basic PEC system with two compartments separating the two 

electrodes (2-electrode configuration).  

 

Figure 4.1. Image of a PEC cell 
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A homemade PEC cell consisting of two compartments is used for the project as seen 

in Figure 4.1.  This home-made system that has a length, height and width of 12 cm, 19 

cm and 5.5 cm respectively, was manufactured from borosilicate glass with three UV 

fused silica optical windows which allow UV light to pass through without generating 

any absorption. A glass frit is used to separate the PEC into two compartments 

(depending on the experiment), effectively reducing the flow of generated gases 

between compartments and thus allowing better quantification of the separate gases.  

In order to maintain the position of our device for long-time measurements and also 

facilitate our measurements, a plastic sample holder is specially designed, and is 

mounted onto one of the compartments. For our measurements, an n-type 

semiconductor is used as a working electrode, where oxygen is generated around the 

sample and hydrogen generated at a counter electrode which is made from platinum.   

 

PEC Measurements 

A home-made system as shown in Figure 4.0 is used for solar power hydrogen 

generation. LOT Oriel Solar simulator powered at 100 mW/cm2 is connected to a 

Keithley 2401 sourcemeter to measure the photocurrent by sweeping voltage within a 

very small range. The solar simulator is positioned directly above the photoelectrode 

in order to ensure that the photoelectrode normally illuminated by the incident light. 

The reflections at the interface was ignored in the current work. Figure 4.2 shows a 

typical spectrum, with an AM 1.5G filter for the conduction of standard measurements.  
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Figure 4.2. Solar spectrum with an AM 1.5G filter incident on the sample surface 

Hydrogen gas collection 

Once basic measurements of the photoanode was completed, hydrogen gas 

generation was evaluated and monitored. The experimental setup was an intricate 

process to obtain a measurable volume of hydrogen gas. The electrolyte solution was 

first purged with nitrogen gas to get rid of oxygen from the solution. The hydrogen gas 

was collected by a burette (connected to a syringe) overturned on top of the counter 

electrode. The burette is submerged in the electrolyte and the electrolytic solution 

begins to displace as hydrogen gas is produced. A sensitive hydrogen detector verifies 

the collection of hydrogen gas. 

3.4 Summary 

All the experimental setup and techniques described in this chapter were accurately 

calibrated and fixated. The measurements were verified by detectors and reference 

samples before investigating the semiconductor device under examination. 

Percentage error was taken into account and accuracy was maintained throughout the 

experimental procedures. 
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CHAPTER 4 
 

 

In this research chapter, a novel approach was undertaken to fabricate GaN based 

photoelectrodes. Self-assembled silver nanoislands were formed on top of a thin SiO2 

layer on n-type GaN. This approach resulted in a photocurrent enhancement of four 

folds as opposed to the reference sample without silver. Our photoelectrode also 

exhibited a 60% incident photon-to-electron conversion efficiency. The increase in the 

hydrogen generation is due to the strongly localised electric fields driven by surface 

plasmon coupling effect.  

The research work presented in this chapter creates a scope of development for GaN 

and InGaN based photoelectrode in the advancement of solar hydrogen conversion 

efficiency. 

4.1 Formation of self-assembled silver (Ag) nano-islands 

In the present study, we report the fabrication of a novel GaN based photoelectrode 

with self-assembled Ag nano-islands on a thin SiO2 layer on n-type GaN, with opening 

windows etched in the SiO2 between Ag nano-islands. Photocurrent density has been 

found to be substantially enhanced by a factor of 4 times compared with a standard 

control device without Ag. This is as a result of significantly enhanced light absorption 

due to the surface plasmon (SP) coupling effect between Ag and GaN (as the silver 

surface plasma energy is close to the bandgap of GaN). The incident photon-to-

Silver decorated GaN nanoislands 
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electron conversion efficiency (IPCE) is increased by 60% at the GaN band edge 

compared with the photoelectrode fabricated from the same wafer but without using 

any Ag. The device exhibits a stable photocurrent under a bias of 0.8V, demonstrating 

a good chemical etching resistance in an alkali solution. 

 

Figure 4.1. (a) and (b) Schematic diagrams of the structure of our 

photoelectrode; (c) Photography of our photoelectrode with Ag nanoislands 

(sample A); (d) Photography of a reference sample without Ag (sample B). 

 

The silicon doped GaN is grown on a c-plane sapphire substrate by metal organic 

chemical vapour deposition (MOCVD) using our high temperature AlN buffer 

technique.1 Following the growth of a high temperature AlN buffer, 300 nm undoped 

GaN and then 1.3 μm n-GaN are grown at 1118oC. The carrier density for the n-GaN layer 

is 1.5×1018 /cm3, determined by Van der Pauw Hall measurements.  
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Figure 4.1 (a) and 4.1 (b) illustrate schematically the structure of our photoelectrode, 

showing Ag nanoislands self-assembled on a very thin SiO2 layer deposited on the 

surface of the n-GaN with opening windows between Ag nanoislands. The detailed 

fabrication procedure is: SiO2 (10 nm) and then Ag (10 nm) are initially deposited on 

the sample by electron-beam evaporation and standard thermal evaporation, 

respectively. The very thin SiO2 dielectric layer is utilized to form a strong SP coupling 

at the Ag/GaN interface.2 The sample then undergoes a rapid thermal annealing 

process in N2 ambient at 600oC for 1 minute in order to form self-organised Ag nano-

islands. Subsequently, windows are opened between the Ag nano-islands by means of 

a standard reactive ion etching (RIE) technique using CHF3 as an etchant gas under 

radio-frequency (RF) power of 90W. The windows created were between 0.5 – 1 𝜇𝑚 

long and the surface area exposed to illumination was 0.5 cm2. Finally, a Ti/Al/Ti/Au 

(15/150/15/100 nm) ohmic contact is fabricated by thermal evaporation. For 

comparison, a reference sample was also prepared under identical conditions but 

without using Ag, SiO2 or the RIE process. Figure 4.1 (c) and 4.1 (d) are the photos of 

the sample with Ag nanoislands (labelled as sample A) and the reference sample 

without Ag (labelled as sample B), respectively. Sample A is an amber colour due to 

light scattering by the silver nano-islands, while sample B is completely transparent. 

4.2 Characterisation of the silver decorated GaN photoelectrode 

The performance of the photoelectrodes have been initially characterised by 

measuring photocurrent density using a source meter (Keithley 2401). The 

illumination source used is a LOT-Oriel solar simulator with a tuneable 300 W ozone 

free Xe arc lamp in combination with an AM 1.5 filter. The incident light intensity is set 

to one sun illumination, which is 100 mW/cm2. The electrolyte used is 1M NaOH (pH=14). 
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Pt wire is employed as a counter electrode in order to collect electrons for H2 

generation. A basic schematic of the PEC process is illustrated in Figure 4.2 

 

Figure. 4.2 Basic schematic of the PEC reaction mechanism 

Current-voltage (I-V) measurements are performed with a range of -1 to 1.5 V versus 

the counter electrode (VCE) with a step size of 0.1 V. Figure 4.3 (a) displays the 

photocurrent density of both Sample A and B as a function of applied bias under 

illumination. In both cases, the turn-on voltage is around -0.6 V, where the 

photocurrent starts to increase. The photocurrent density of sample B exhibits a 

saturation at ~0.1 mA/cm2 above 0 V, which is similar to our previous results.12 In 

remarkable contrast, sample A demonstrates a significantly high photocurrent, which 

grows much faster than that of sample B when the applied bias is above the turn-on 

voltage. The enhancement of photocurrent density increases from 2 times at 0 V to 

more than 4 times at above 1.5 V. No saturation of the photocurrent has been observed 

within the applied bias range.  
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Figure 4.3. (a) Photocurrent density as a function of an applied bias under dark 

and illumination conditions; and (b) IPCE as a function of wavelength. 

 

IPCE 

In order to further demonstrate the step change in performance of our 

photoelectrode as a result of Ag nanoislands, we have performed incident photon-to-

current efficiency (IPCE) measurements. IPCE can be defined by equation 1 below 

IPCE =
1240×𝐽(𝑚𝐴 𝑐𝑚−2)

𝜆(𝑛𝑚)×𝐼 (𝑚𝑊 𝑐𝑚−2)
× 100%                                      (1)                                                                   

where J is the photocurrent density, λ the wavelength of the incident light and I the 

power density of the incident light. Figure 4.3 (b) shows the IPCE as a function of 

wavelength ranging from 330 to 600 nm, measured using a 75 W Xenon lamp as a light 

source dispersed by 0.22 m monochromator. The IPCE shows a peak at ~370 nm in 

both samples, corresponding to the near band edge absorption of the GaN. Sample A 
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demonstrates an IPCE of 60% at the near band edge, which is the highest value so far 

for GaN based photoelectrodes.3-5 The IPCE is greatly enhanced by more than 3 times 

compared with that of sample B (18%), indicating a band edge absorption 

substantially enhanced due to the presence of Ag nanoislands. A weak IPCE was also 

observed with sample A in the visible spectrum, this is possibly due to the presence of 

hot electrons. Since, the response is negligible compared to the response in the UV 

spectra, the characterisation was directed towards the response near the GaN band 

edge.  

 

Figure 4.4. (a)PL spectra of sample A (i.e. the sample coated with Ag nano-

island), Sample B (i.e. the as-grown sample) and the sample coated with Au 

nano-islands measured at room temperature. Electric field distribution 

obtained by a FDTD simulation in sample B (b) and sample A (c). 

 

The existence of SP coupling at the interface has been verified by room temperature 

photoluminescence (PL) characterization, a simple and powerful approach in 

assessing SP coupling which has been widely accepted.6-8 As shown in Figure 4.4 (a), 

the room temperature integrated PL intensity of the samples coated with Ag nano-

islands is enhanced by ~ 3 times compared with a standard sample without any Ag 

coating. In order to further confirm the SP coupling, we have also fabricated an 
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additional sample coated with Au nano-islands for comparison, since it is well-known 

that SP coupling does not exist at the GaN and Au interface as the Au surface plasmonic 

energy does not match the bandgap of GaN. As expected, Figure 4.4 (a) shows that 

the sample coated with the Au islands exhibits a reduced PL intensity as a result of 

optical absorption of the Au islands compared with the as-grown sample, which is 

similar to the previous reports,7,8 further confirming the enhancement of the sample 

coated with Ag as a result of the SP coupling. In order to investigate the enhanced 

photo-response, a lumerical simulation software was employed to investigate the 

finite-difference time-domain (FDTD) simulation in order to obtain the electric field 

distribution as a result of the SP coupling between Ag and the GaN upon light 

irradiation. The refractive index for GaN and SiO2 is posted as 2.5 and 1.46 respectively, 

while the incident light wavelength ranged between 300-400nm.   Measurements of 

the electric field intensity were undertaken in the x-z plane of the sample and this was 

compared to the overall magnitude of the electric field which depends on the factor 

of confinement. The optical confinement factor is determined by the proportion of the 

electric field squared at the specified active region. Figure 4.4 (b) shows the 

distribution of the electric fields due to the SP coupling in sample A in 2D, 

demonstrating strongly localized electric fields at the edge of each Ag nanoisland, 

which is completely different from sample B as shown in Figure 4.4 (c) as expected. 

Consequently, the electron-hole generation rate in these local regions will be 

significantly enhanced as the rate of electron–hole formation is proportional to the 

local intensity of the electric fields, namely |E|2, where E represents the electric field 

intensity upon the incidence of electromagnetic radiation over a period of time. This 
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enhanced electron-hole generation rate leads to an increased response to the incident 

light with photon energy above the band gap.9  

The stability of the photoelectrode has been examined through monitoring the 

photocurrent measured at a bias voltage of 0.8 V under an illumination intensity of 130 

mW/cm2. Figure 4.5 (a) displays the time-dependent photocurrent density, showing 

the photocurrent density of sample A stays stable at ~0.36 mA/cm2 during the whole 

measurement period. There is no degradation in photocurrent density observed after 

60 minutes, indicating the good stability of our device. In order to confirm the stability, 

the sample undergoes a second cycle of measurements where the photocurrent 

initially lowers by 0.05 mA/cm2 compared to the first cycle of measurements but 

becomes stable after 25 minutes, this reduction is possibly due to the accumulation of 

bubbles at the photoelectrode leading to an increase in the electrical resistance.  A 

large amount of H2 bubbles (monitored and examined by a H2 detector) have been 

observed from the work electrode, as demonstrated by the inset of Figure 4.5 (a). 

ABPE 

 The applied bias photon-to-current efficiency (ABPE) is calculated by, 

ABPE =
𝑗𝑝(𝑚𝐴 𝑐𝑚−2)(1.23𝑉−𝑉𝑒𝑥𝑡)

𝐼(mW cm−2)
× 100%                                        (2)                                                                                                                                                   

where jp is the photocurrent density, Vext the external bias, I the intensity of incident 

light. The efficiencies for sample A and B are 0.12% and 0.046%, respectively, at a bias 

of 0.8V.  
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Figure 4.5. (a) Photocurrent of sample A and sample B along with a 2nd cycle of 

sample A (labelled as “A: 2nd cycle”) measurements as a function of time under 

an illumination condition; (b) Hydrogen generation rate of both samples at a 

bias of 0.8V under illumination intensity of 130 mW/cm2.  

 

 

Rate of hydrogen generation 

Figure 4.5 (b) exhibits the H2 generation rates of both sample A and B under 

illumination density of 130 mW/cm2 at a bias of 0.8V. The H2 generation rate of sample 

A is 0.142 ml•h-1•cm-2, close to the ideal value of 0.15 ml•h-1•cm-2, which is estimated by 

using equation 3 below: 13 

𝑑𝑉𝐻2

𝑑𝑡
= 4.032 × 105 ×

𝑖

𝐹
 (ml•h-1•cm-2)                                        (3)                                                         

where i is the photocurrent density and F the Faraday constant.  



 75 

In contrast, the H2 generation rate for sample B is measured to be 0.07 ml•h-1•cm-2 

given in Figure 4.5 (b), which is close to the ideal value of 0.063 ml•h-1•cm-2 calculated 

using above equation (3). Clearly, it is much lower than that of sample A. 

 

Figure 4.6. SEM images of (a) sample B (reference sample) before testing and 

(b) after 3 hours testing; SEM images of (c) sample A with Ag nanoislands before 

testing and (d) after 3 hours testing. 

 

4.3 Photoelectrochemical effects on the photoelectrode 

Accurately speaking, GaN can be photochemically etched only under ultraviolet 

illumination (when photon energy is higher than the band gap of GaN) as a result of 

oxidation due to photo-generated holes. GaN used for the photoelectrode is currently 

hetero-epitaxially grown on sapphire, and thus exhibits a high density of defects, 

leading to an enhancement in etching rate by NaOH, in particular, under an illumination 

of ultraviolet light whose photon energy is larger than the bandgap of GaN.  
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It has been observed the silver/SiO2 coating also facilitates an improvement in the 

longevity of the photoelectrode, which has been studied in detail by comparing the 

surface morphology of both sample A and B before and after 3 hours solar powered 

hydrogen generation experiments. The detailed scanning electron microscopy (SEM) 

images are given in Figure 4.6.  

Sample B shows a typically smooth surface before conducting the experiment as 

shown in Figure 4.6 (a). However, it has been heavily damaged as a result of 

photoelectrochemical etching after three hours testing at a bias of 0.8 V in the 1M 

NaOH electrolyte under illumination density of 130 mW/cm2 as shown in Figure 4.6 

(b).  

In remarkable contrast, Sample A demonstrates significantly enhanced stability. 

Figure 4.6 (c) presents the surface morphology of sample A before the experiment. 

The density of the Ag nanoislands is ~3×1010/cm2 with an occupation ratio of 29.4%, 

analysed with the ImageJ software.10,11 After 3 hours testing, the samples were cleaned 

with HNO3 (69%) and buffered HF (10%) in sequence to remove Ag and SiO2 layer. This 

allows the examination of any damage caused by photoelectrochemical etching. 

Figure 4.6 (d) shows the SEM image after testing, showing that the surface remains 

unetched. (The dark dots are due to the traces of chemically removed Ag nanoislands, 

which can be confirmed by the fact that the density of the dark dots is 2×1010/cm2, 

close to the density of Ag nanoislands). Therefore, Ag nanoislands also serve as an 

interlayer (non-window areas) which separates direct contact between GaN and 

electrolyte, minimising photoelectrochemical etching induced damages. 
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4.4 Summary 

A novel approach was employed in the fabrication of GaN based photoelectrode with 

the application of self-organised Ag nanoislands. These Ag nanoislands proved 

beneficial as they minimised damages that generally occur during the 

photoelectrochemical process. 

Photocurrent value for the GaN based photoelectrode with Ag nanoislands showed 

a four-fold enhancement compared to the GaN photoelectrode without the Ag 

nanoislands coating. IPCE value peaked at 60% near the band edge which is the highest 

reported value for GaN based photoelectrodes.  

The four-fold increase in the I-V performance was achieved by the strong surface 

plasmonic coupling effect between GaN and Ag nanoislands resulting in localised 

electric fields which significantly enhanced the electron-hole generation rate. 
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CHAPTER 5 

 

Photocurrent and hydrogen generation can be increased by maximizing optical 

absorption. In this chapter, GaN nanopyramid array structure was fabricated on Si (1 1 

1) substrate in order to minimize reflection and increase the photocurrent and 

conversion efficiency. 

5.1 Overview of GaN Nanopyramid arrays as an efficient 

photoelectrode  

In order to achieve a step-change in efficiency of solar-powered hydrogen 

generation, a number of major challenges will have to be met, such as enhanced light 

absorption and rapid migration of the charged carriers photon-generated to the 

semiconductor/electrolyte junction in order to participate in the half-reactions 

before their recombination. So far, number of ideas using nanostructures have been 

proposed, such as nanowires or nanorods, nanoporous structures2-5. As a result of 

the increased surface-to-volume ratio resulting from nanostructures, optical 

absorption can be significantly enhanced. The migration of photon-generated 

carriers is mainly determined by the diffusion length of minority carriers and the 

distance they must travel. When diffusion length is short or a travelling distance is 

long, minority carriers will recombine before they reach the junction. A 

nanostructure configuration would lead to a reduction in travelling distance for the 

photon-generated carriers to the semiconductor/electrolyte junction, thus 

potentially enhancing energy conversion efficiency. 

GaN nanopyramid arrays on Si substrate 
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In the present work, we report a prototype photoelectrode fabricated using a GaN 

nano-pyramid array structure, grown on cost-effective Si (111) substrates by metal 

organic chemical vapour deposition (MOCVD). Such a nano-pyramid structure is 

expected to enhance optical absorption as a result of a multi-scattering process which 

can effectively produce a reduction in reflectance6. Furthermore, a simulation based 

on a finite-difference time-domain (FDTD) approach demonstrates that this 

architecture enables incident light to be concentrated inside the nano-pyramids, 

working as nano-concentrators which can further enhance light harvesting. The 

unique shape of the nano-pyramids leads to an enhanced hole-transfer efficiency, 

further enhancing the device performance. 

As a result, our device demonstrates an increase in photocurrent value of ∼ 1 mAcm-2 

under an illumination of 200 mWcm-2, with a peak incident photon-to-current 

conversion efficiency of 46.5% at 365 nm, around the band edge emission wavelength 

of GaN. 

5.2 Fabrication of GaN nano-pyramid arrays on Si 

The GaN nano-pyramid structures were grown on n-type Si (111) substrates by a low 

pressure MOCVD system. The substrates were initially subject to a thermal cleaning 

process at 1145 °C in ambient H2 in order to remove any oxides, and a thin AlN layer 

was then grown as a nucleation layer also at 1145 °C. Afterward, the growth 

temperature was ramped down to 800 ° C for the growth of a nano-pyramid array 

structure.  
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Figure 5.1. (a) SEM of our GaN nano-pyramids grown on Si (111); (b) typical base 

size distribution of our GaN nano-pyramids; (c) room temperature PL 

spectrum of our GaN nano-pyramids; and (d) schematics of our 

photoelectrode structure using the GaN nano-pyramids. 

 

Figure 5.1 (a) presents a typical scanning electron microscopy image of our nano-

pyramid GaN grown on Si (111). The density of the nano-pyramids is ∼ 5 x 108 cm-2, and 

the size (measured from the base of individual pyramid) ranges from 200 nm up to 1 

μm. Figure 5.1 (b) shows a typical base size distribution of our nano-pyramids, 

exhibiting that it is dominated by the nano-pyramids with a base size of 400 nm. X-ray 

diffraction measurements performed in a 2θ/Ω mode confirm that our nano-pyramids 

typically orient along the (0001) direction. Optical properties were characterised by 

standard photoluminescence (PL) measurements performed at room temperature 

using a 325 nm He– Cd laser with a 0.75 m monochromator. A strong band emission 

has been observed at 363 nm as shown in Figure 5.1 (c). In order to fabricate a 
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photoelectrode, an Al/Au (100/100 nm) alloy was deposited onto the back of the Si 

substrate, followed by a rapid thermal annealing process at 600 °C in N2 for 1 min to 

form an ohmic contact. Our device structure is schematically illustrated in Figure 5.1 

(d). For solar-powered water splitting measurements, a copper wire was bonded on 

the ohmic contact with silver epoxy. The whole contact area was covered by an 

insulating epoxy for protection as usual. 

5.3 Characterisation of GaN nano-pyramid structured 

photoelectrode 

Photocurrent measurements have been performed using a source-meter (Keithley 

2401), which connects the working photoelectrode and a Pt counter electrode placed 

inside an electrolyte solution (HCl, 1M). Ag/ AgCl has been applied as a reference 

electrode. The illumination source used in our experiment is a standard LOT-Oriel 

solar simulator with a tuneable 300W ozone free Xe arc lamp in combination with an 

AM 1.5 filter.  
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Figure 5.2. (a) Reflectance of GaN nano-pyramids and Si substrate. The inset 

shows the photographs of a piece of the Si substrate and a piece of the GaN 

nano-pyramid structure grown on Si. (b) Photocurrent density of our 

photoelectrode fabricated from the GaN nano-pyramids, measured under an 

illumination of 200 mWcm−2. 

In order to have a straightforward visual comparison, a piece of Si substrate without 

GaN nano-pyramids is provided as a reference. The reflectance curves of the two 

devices are shown in Figure 5.2 (a). Obviously, the reflectance in the UV region is 

massively reduced due to scattering and absorption by the GaN nano-pyramids. Inset 

of the Figure 5.2 (a) shows the photographs of the two devices for comparison. Due 

to the reduced reflectance as a result of the nano-pyramid configuration, our sample 

exhibits complete dark colour compared to the shining Si substrate. The photocurrent 

density has been measured under a bias ranging from −1.5 to 1.8 V versus the reference 

electrode (versus Ag/AgCl), with a step of 0.1 V under an illumination density of 200 

mWcm-2. The photocurrent starts to appear under a bias at −0.6 V as shown in Figure 

5.2 (b), which is close to the value previously reported on other GaN based 
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photoelectrodes6. When the bias is above −0.6 V, the photocurrent density increases 

quickly with further increasing bias, with a saturation value of ∼1 mAcm-2, which is 

about five times higher than that of a planar GaN photoelectrode on sapphire under a 

same condition.1 

ABPE 

An applied bias photon-to-current conversion efficiency (ABPE) can be calculated 

using the equation (1) below 

𝜂 =  
𝑗𝑝(𝑚𝐴 𝑐𝑚−2)(𝐸𝑟𝑒𝑣

0 −𝑉𝑒𝑥𝑡)

𝐼(𝑚𝑊 𝑐𝑚−2)
× 100%,   (1) 

where Jp, Vext, I and Erev
0

 are the photocurrent density, the external bias, the 

illumination density and the redox potential of the electrolyte used (for 1M HCl, Erev
0  = 

1.4 V), respectively. For simplicity, a case under an external bias of 0.6 V has been 

considered, where the corresponding photocurrent density is 0.68 mA cm-2. 

Consequently, the ABPE is estimated to be 0.27%. Such an ABPE is not low, given that 

only the ultraviolet part with a wavelength shorter than 363 nm (or photon energy > 3.4 

eV, i.e., the GaN bandgap) can be effectively absorbed. This accounts for less than 4% 

of the whole solar spectrum. 

IPCE 

The incident photon-to-current efficiency (IPCE) characterizes the capability of 

converting electrical power from the absorbed light at each corresponding 

wavelength. It can be mathematically described by equation (2) below 

𝐼𝑃𝐶𝐸 =  
1240×𝐽(𝑚𝐴 𝑐𝑚−2)

𝜆(𝑛𝑚)×𝐼(𝑚𝑊 𝑐𝑚−2)
× 100%  (2) where J, λ and I are the photocurrent density, 

the incident light wavelength and the density of incident light.  
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Figure 5.3. IPCE of photoelectrode fabricated from the GaN nanopyramids as a 

function of wavelength at 0 V. 

The IPCE measurements were performed at 0 V using a 75W Xe lamp as an illumination 

source with a 0.22 m monochromator, whilst the photocurrent was recorded by a 

source-metre (Keithley 2401). Figure 5.3 shows a typical IPCE of our nano-pyramid 

GaN photoelectrode as a function of wavelength, demonstrating a peak IPCE of 46.5% 

at 365 nm, around the band edge emission wavelength of GaN. There is no any 

response observed from Si, indicating the photocurrent is contributed by the GaN 

nano-pyramids. However, the slight elevation in IPCE (<5%) observed beyond the GaN 

band edge arises due to the reaction between the GaN nanopyramids and Ga atoms 

through defects forming GaClx and therefore dissolved in the acidic solution. The IPCE 

of 46.5% is much higher than that of any photoelectrode fabricated from any standard 

planar GaN on sapphire (∼15%)6-8 indicating excellent performance of our nano-

pyramid GaN photoelectrode. Compared with the InGaN/GaN nanowires 

photolelectrodes reported by other groups9-10, where the density of the nanowires is 

much higher high than that of our nano-pyramids, the IPCE of our nano-pyramid array 
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photoelectrode is lower but not far away. This means that we have a plenty of scopes 

to further improve the performance of our devices. 

 

 

Figure 5.4. Distribution of the electric field intensity within the nano-pyramids 

with a size ranging from 200 nm (a), 400 nm (b) and 600 nm (c), respectively. 

 

Optical Absorption 

In order to understand the mechanism of the enhanced performance of our nano-

pyramid GaN photoelectrode, a simulation has been performed. The distribution of 

the electric field intensity in our device has been studied by a standard FDTD 

simulation, where the refractive index of GaN and the incident light wavelength are set 

to be 2.5 and 300– 400 nm, respectively. The simulation was plotted in an x-z plane and 

the electric field intensity was compared against electric field magnitude scaled 

linearly. The electric field profiles of the incident light within the nano-pyramids with 

a size of 200, 400 and 600 nm have been calculated, respectively, as shown in Figure 

5.4. In each case, the simulation shows clear microcavity effects, meaning significantly 

enhanced incident light distributed within the nano-pyramid as a result of its 

nanopyramids geometry. Consequently, it leads to a further increase in optical 

absorption in addition to an increased surface-to-volume ratio. In addition, the surface 
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of the nano-pyramids also reduces optical reflectance, further enhancing sunlight 

harvesting.  

PEC reaction mechanism 

In addition to the enhanced light absorption due to the aforementioned reasons, an 

inhomogeneous electric field (nanojunction) is expected to be formed at the GaN 

nanopyramid/electrolyte interface11. Unlike the planar device, the strong static electric 

field distributes along both axial and radial directions of the nano-pyramids. As a result, 

the minority carriers (holes) will be effectively separated from photogenerated 

electron-hole pairs and driven into electrolyte in all directions from the nano-

pyramids with a large speed (v=μhE), generating a high hole transfer efficiency. 

Transient photocurrent measurements have been performed under a periodic 

illumination of 300mWcm−2 in order to further study the carrier transfer efficiency of 

our device. As shown in Figure 5.5 (a), the photocurrent appears a repeatable ‘spike 

and overshoot’ when the illuminating source used is ‘on/ off’. This phenomenon has 

been often observed on both oxide and nitride semiconductor based 

photoelectrodes1,12. However, it has rarely been discussed on GaN based 

photoelectrodes. This is attributed to a complicated carrier transportation process, 

which is mainly related to a hole-transfer efficiency from a photoelectrode to 

electrolyte13. With an empirical equation, the hole-transfer efficiency labelled as ηj can 

be described below:13 

𝜂𝑗 =  
𝐽𝑠

𝐽𝑡=0
× 100%   (3) 

where js and jt = 0 are the steady state photocurrent and the initial photocurrent when 

the light is switched on, respectively. Based on the data provided in Figure 5.5 (a), the 
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hole-transfer efficiency is estimated to be ∼85%. High hole-transfer efficiency 

indicates a short transit time (t) of the photo-generated carriers. In the case of t<τ 

(excess carrier lifetime), which means the carrier can circulate more than once in the 

circuits, likely generating a current gain14. 

 

 

Figure 5.5. (a) Transient photocurrent characterisation as a function of time 

under a 300 mWcm−2 illumination density in a pulsed mode; and (b) 

photocurrent as a function of time under an illumination density of 300 

mWcm−2 in a continuous working mode. 

 

GaN Photoanode stability  

The photocurrent stability of our photoelectrode has been investigated in a 

continuous working mode, measured under an illumination intensity of 300 Wcm−2 

under 0.6 V in 1M HCl. Figure 5.5 (b) exhibits the photocurrent and dark current 

densities as a function of time. The photocurrent density starts with more than 1 A 

cm−2, and then slightly reduces to 0.89 Acm−2 after 30 min, representing a 
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photocurrent degeneration rate of 3.7 μAcm−2min−1. The reduction of the 

photocurrent is likely related to a slow photoelectrochemical corrosion occurring on 

the working electrode, although it is known that defect-free GaN is chemically inert to 

strong acids15. During the photoelectrolysis of HCl, chlorine produced at the working 

electrode will adhere to the surface of GaN nano-pyramids and react with Ga atoms 

through defects4,16. The resultant of halides GaClx could be dissolved in the acidic 

solution, generating Ga vacancies acting as recombination centres. Consequently, the 

associated photocurrent will decrease. It is worth highlighting that further 

optimisation of the growth conditions of the GaN nano-pyramids would lead to 

improvement in crystal quality, thus efficiently reducing or eliminating such defect 

related photoelectrochemical corrosion. 

 

Figure 5.6. H2 generation from three samples under a 200 mWcm−2 illumination 

at 0.8 V, where the measured photocurrent density is 0.73 mAcm−2 for sample 

1 as an example (black columns: the total H2 volumes collected from each 

sample; red columns: H2 generation rates). 
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Hydrogen gas collection 

In order to measure a H2 generation rate, we fabricated three samples with an optical 

active area of 0.8, 0.85 and 1 cm2 (labelled as sample 1, sample 2 and sample 3), 

respectively. All the samples were tested under an illumination intensity of 

200mWcm−2 at 0.8 V for 1 h in 1M HCl. The black columns in figure 5.6 indicate total 

H2 volumes collected from a Pt counter electrode for each sample; whilst the red 

columns are the corresponding H2 generation rates by considering the optical active 

areas. It is observed that all the samples exhibit almost the same H2 generation rate of 

∼ 0.25 ml h−1cm−2, corresponding to a Faradaic efficiency of 0.75– 0.8. The rate is much 

faster than that of any planar GaN-on-Sapphire devices (typically ∼0.1 ml h−1cm−2)4, 

due to the aforementioned unique optical and electrical properties of our nano-

pyramids. 

5.4 Summary 

In summary, we have described the fabrication and characterization of GaN nano-

pyramid array structure on silicon substrate. The GaN nano-pyramid model lead to an 

enhancement in the optical absorption as well as the transition of photogenerated 

holes to the semiconductor/electrolyte interface.  The increased transfer of holes due 

to the microcavity effects resulted in a high photocurrent value of 1 mA/cm2. The 

photoelectrode also demonstrated a comprehensive IPCE value of 46.8% at the GaN 

band edge of 365nm. 

This work creates a scope for further research into GaN based photoelectrodes with 

nano-pyramid structures to enhance the conversion efficiency in the solar 

photoelectrolysis process. 
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CHAPTER 6 
 

 

Nanostructures demonstrate an advantage of maximal light absorption due to 

increased surface-to-volume ratio. This chapter discusses the fabrication of nano-

porous GaN photoelectrodes using an electrochemical etching technique. Horizontally 

and vertically aligned nanopores have been fabricated on GaN photoelectrodes to 

evaluate their conversion efficiency, photocurrent generation and lifetime of such 

devices. 

6.1 Overview of GaN Nanostructures 

GaN exhibits excellent chemical stability in either acidic or alkaline solution, where 

solar powered hydrogen generation can be performed efficiently. Furthermore, the 

band structure of GaN can straddle over the redox potential of water (1.23eV), which 

is essential for performing an overall water splitting reaction.1 However, the energy 

conversion efficiency of GaN-based photoelectrodes reported is far too low, typically 

less than 0.1mA/cm2 in photocurrent density obtained under AM1.5 1 sun illumination.2-

4 It is well-known that the carrier diffusion length of GaN is ~200nm. Ultimately, it is 

expected that GaN nanostructures with a physical dimension of less than 200nm can 

potentially lead to a significant enhancement in solar to hydrogen (STH) conversion 

efficiency.5-16 

Nanoporous GaN may be one of the very promising nanostructures utilised for solar 

powered hydrogen generation, as nanoporous GaN provides a number of advantages 

Nano-porous GaN photoelectrodes  
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in terms of enhanced surface-to-volume ratio and reduced carrier travelling distance, 

maximising the chance for energetic electrons/holes participating in both the oxygen-

evolution half-reaction before their recombination. 

6.2 Electrochemical etching 

Electrochemical (EC) etching technique is emerging as a simple but effective approach 

to the fabrication of nanoporous GaN for a wide range of applications.17-20, 22, 23 The 

electrochemical etching approach was first introduced to the fabrication of porous Si 

and then was transferred to the conventional III-V semiconductors such as InP for 

optoelectronic applications.22 It was worth highlighting that this approach is 

particularly important for chemically inert GaN because it is very difficult to perform 

standard chemical etching of GaN. Although there is increasing interest in applying 

nanoporous GaN in fabricating optoelectronics such as laser diodes including vertical 

cavity surface emitting lasers (VCSELs) and LEDs,17-20, 22, 23 there are only a few reports 

on solar powered hydrogen so far. Very recently, we have demonstrated a significant 

in STH efficiency using a GaN photoelectrode with nanopores, which was fabricated 

using a photo-assisted electrochemical etching approach. In this case, the nanopores 

exhibit a random distribution in terms of size and orientation.14  

The mechanism of EC etching without involving any illumination, which is different 

from the photo-assisted electrochemical etching mention above, is based on a 

combination of an oxidation process and then a dissolution process in acidic solution 

under an anodic bias. Under a positive anodic bias, the injection of holes leads to the 

oxidation of GaN and the oxidised layer is then chemically dissolved in an acidic 

electrolyte. Therefore, EC etching can be performed on n-type GaN with good 
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conductivity only. Otherwise, holes which are necessary for the generation of the 

oxidation process cannot be provided. Note, that if the applied bias is too high or the 

doping concentration of n-type GaN is too high, the whole layer may be etched away, 

and thus, nanoporous GaN cannot be formed either.25  

In theory, if the direction of injection current can be controlled, GaN nanopores can 

be fabricated along any particular direction desired. In this chapter, we have reported 

two kinds of GaN photoelectrodes with nanopores fabricated under different 

conditions, where the nanopores orient along either the vertical direction or the 

horizontal direction. Both devices demonstrate different behaviours in solar powered 

water splitting although both devices show significantly enhanced conversion 

efficiency compared to their planar counterparts. The GaN electrode with vertically 

aligned nanopores exhibit superior performance to that with horizontally aligned 

nanopores.  

6.3 n-type GaN Growth 

There exists two major approaches for the fabrication of GaN nanostructures, for 

instance nano-wire growth by molecular beam epitaxy (MBE) or MOCVD14, 15 and post-

growth fabrication of nanostructures utilised in the present work. The major 

advantage of our GaN nanopores fabricated using the EC approach is due to the fact 

that the diameter and orientation of nanopores can be simply controlled through the 

doping level and applied bias.24,25 

Furthermore, such nanopores can be filled with other materials such as dye or 

colloidal quantum dots with long absorption wavelengths, further enhancing the 

performance. Moreover, the prototype nanoporous GaN devices demonstrated in this 
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work can be easily extended to other III-nitrides such as InGaN which can cover the 

whole solar spectrum.  

All the photoelectrodes used in the present work are fabricated form a standard n-

type GaN wafer grown on (0001) sapphire by MOCVD using our high temperature AlN 

buffer technique.26 After depositing an initial AlN buffer and then a 300 nm nominally 

undoped GaN layer, a Si doped n-type GaN layer with a thickness of about 1.2 m was 

grown. The carrier concentration and mobility of the n-GaN layer are 1.8 x 1019/cm3 and 

191 cm2/V s. respectively, which are determined at room temperature by the standard 

van der Pauw method. The wafer is diced into a number of pieces of samples each with 

a rectangular shape (0.5 x 2 cm2) for further photoelectrode fabrication.  

6.4 Fabrication of nanoporous GaN photoelectrode 

All the nanoporous GaN as photoelectrodes have been fabricated using the n-type GaN 

samples stated above by means of an EC etching method. The EC etching is carried 

out in acidic solution using a Keithley 2401 as a potentiostat. Note that there is no UV 

light illumination involved in the EC etching processes, which is different from the 

photo-assisted electrochemical etching approach. The n-GaN samples with an indium 

contact are used as an anode, while a Pt wire is used as a counter-electrode. SEM 

measurements were carried out on a Raith SEM system.  

For solar powered hydrogen generation measurements, a copper wire is bonded onto 

an indium contact using silver epoxy. The entire contact area is covered by an 

insulating epoxy for protection from acidic conditions.  A Pt wire is used as a counter-

electrode. The illumination source employed is a LOT-Oriel solar simulator equipped 

with a 300 W Ozone-free Xe lamp. 1 M HBr is used as an electrolyte for all the solar 
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powered hydrogen generation measurements. Keithley 2401 was also utilised as a 

sourcemeter. 

In order to fabricate nanoporous GaN along the vertical direction, an Indium contact 

is made on a small corner of the top surface of each piece of the n-GaN sample; the 

rest of the surface can be exposed to an electrolyte during the EC etching process, 

and thus, the etching process will proceed from the top, vertically downwards. The 

sample with vertically aligned nanopores is fabricated in 0.5 M HNO3 (pH = 0.3) under 

a bias of 20V for 30 min without an UV light illumination. 

 

Figure 6.1. SEM images of vertically aligned nanopores at different voltages 

under constant time and electrolyte conditions. 

 

We monitor that the etching drops to a base line level, meaning the n-GaN layer has 

been etched into nanoporous GaN as shown in Figure 6.1. 

Vertically and Horizontally aligned nanopores 

Figure 6.2 (a) shows a cross-sectional SEM image, indicating that the vertically aligned 

nanopores exhibit a diameter of around 40 nm. In addition, there is a very thin un-

etched layer just below the top surface. The formation of this very thin un-etched layer 

is due to a kind of depletion region formed at the interface between n-GaN and the 

5V 10V 15V
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electrolyte (similar to a p-n junction)[reference to chapter 2], where the thin layer is 

highly resistant and thus cannot be etched away. This thin un-etched layer can be 

chemically etched away under UV-light illumination whose energy is higher than the 

bandgap of GaN, where holes can be generated as a result of optical excitation. The 

photo-generated holes then oxidise the thin resistant depletion region, and this thin 

oxidised layer is finally dissolved in the chemical solution. 

 

 
Figure. 6.2. Cross-sectional SEM image (a) and plan-view image (b) of the 

sample with vertically aligned nanopores; Cross-sectional SEM image (c) and 

plan-view image (d) of the sample with horizontally aligned nanopores. 

 

Figure 6.2 (b) shows a plan-view SEM image of the GaN nanopores after the thin un-

etched layer is removed by UV-assisted electrochemical etching performed using a 

low bias of 6 V under a 500 W Xe lamp illumination in 0.35 M KOH for 10 minutes. From 
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Figure 6.2 (b), the porosity is estimated to be > 2.5 x 1010/cm2, leading to a significantly 

increased surface area by a factor of more than 37 times compared to its planar 

counterpart. Note that the morphology of the nanopores is not affected even though 

the electrolyte concentration is further increased up to 1 M. However, with decreasing 

applied bias, the size of the nanopores decreases along with the increasing thickness 

of sidewalls. If the applied bias is further reduced down to 5 V, there is no EC etching 

observed, which is similar to other reports.19, 24 

In order to fabricate horizontally aligned nanopores, an injection current needs to flow 

along the horizontal direction. For this purpose, the surface of the n-GaN sample is 

covered by a 200 nm SiO2 layer deposited by using PECVD but leaving a small corner 

of the top surface of an n-GaN sample uncovered (where the indium contact is made). 

Subsequently, a number of parallel trenches with a period of 2000 m are fabricated 

(defined by photolithography and then dry etching). The trenches will be exposed to 

an electrolyte during an EC etching process. As a result of SiO2 which is insulating, the 

EC etching process will proceed along the horizontal direction.  

Figure 6.2 (c) displays a cross-sectional SEM image, confirming that the horizontally 

aligned nanopores have been formed under identical EC conditions (i.e., 0.5 M HNO3 

for 30 min at 20 V). The nanopores have a diameter of 40-60 nm and a density of ~2.8 

x 1010/cm2. Figure 6.2 (d) shows that the nanopores are formed through the whole 

regions between two adjacent trenches which are 2000m apart.  
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6.5 Sample preparation 

Both the vertically aligned nanopores and the horizontally nanopores do not exhibit 

difference in terms of the diameter of nanopores because the diameter is mainly 

determined by either doping concentration or applied bias.24,25  

For simplicity, the devices with vertically aligned nanopores or horizontally aligned 

nanopores are labelled as Device A and Device B, respectively. Prior to any solar 

powered hydrogen generation experiments, a plasma treatment is implemented in 

order to passivate the samples, aiming to further enhance the chemical stability and 

lifetime. The samples are first cleaned in H2SO4 (98%): H2O (1:1) solution to remove 

any potential contaminates generated during the nanoporous fabrication processes. 

The samples are exposed to RF irradiation with 80 W for 20 min under flowing SF6 with 

a flow rate of 30 standard cubic centimetres (scc) per minute, as sulphite can 

effectively passivate III-nitrides.27  

Fluorine radicals are expected to remove any potential oxides formed during the EC 

fabrication process. Finally, a copper wire is soldered onto the indium ohmic contact, 

and the entire contact is fully covered with insulating epoxy. 
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6.6 GaN Nanoporous photoelectrode characterisation 

1 M HBr solution is used as an electrolyte. The solar power used is 100 mW/cm2, i.e., 1 

sun under AM 1.5 conditions. cm2, i.e., 1 Sun under AM1.5 conditions. 

 

Figure. 6.3. (a) Photocurrent density as a function of applied potential against 

Ag/AgCl as a reference electrode; (b) IPCE as a function of wavelength 

measured under an applied bias of 0.8 V 

Figure 6.3 (a) shows the photocurrent density of the devices as a function of applied 

potential ranging from -1.5 to 1.8V (vs. Ag/AgCl as a reference electrode), where the 

measured potentials vs. Ag/AgCl have been converted to the reversible hydrogen 

electrode (RHE) scale according to the Nernst equation. 

𝑉𝑅𝐻𝐸 =  𝑉𝐴𝑔/𝐴𝑔𝐶𝑙 + 0.059 ×  𝑝𝐻 +  𝑉𝐴𝑔/𝐴𝑔𝐶𝑙
0     (1) 

Where  𝑉𝐴𝑔/𝐴𝑔𝐶𝑙
0 = 0.197 𝑉.  
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Figure 6.3 (a) shows that the planar photoelectrode as a reference exhibits only ~0.1 

mA/cm2, which is a typical value observed in the previous work,2-4,16 while a 6-fold 

enhancement in photocurrent density has been obtained for Device A compared to 

the reference. For Device B, only a 2-fold enhancement in photocurrent density has 

been observed compared to the reference. 

ABPE 

Applied bias photon-to-current efficiency (ABPE), which is generally defined below, 

has also been measured on all the devices. 

𝐴𝐵𝑃𝐸 =  
𝐽(𝑚𝐴𝑐𝑚−2)×(1.23−𝑉𝑏)

𝑃(𝑚𝑊 𝑐𝑚−2)
× 100%,     (2) 

where J is the photocurrent density measured under an applied bias Vb and P is the 

incident solar power density. 

Under an applied bias of 0.8 V, the ABPE values of Devices A and B are 0.3% and 0.13%, 

respectively, while the ABPE of the reference planar photoelectrode is only 0.06% 

measured under identical conditions. 

IPCE 

Incident photon-to-current conversion efficiency (IPCE) measurements have been 

performed on all the devices in 1M HBr at an applied bias of 0.8V under 75W Xe lamp 

illumination. The incident power has been calibrated using a Si enhanced 

photodetector. The expression of IPCE is given below, 

𝐼𝑃𝐶𝐸 =  
1240 ×𝐽(𝑚𝐴𝑐𝑚−2)

𝜆(𝑛𝑚)×𝑃(𝑚𝑊 𝑐𝑚−2)
× 100%,   (3) 

where J, , and P are the photocurrent density, the wavelength, and the incident power 

density, respectively. 
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Figure 6.3 (b) shows the IPCE as a function of wavelength, demonstrating that an IPCE 

of 73% has been achieved on Device A at around 360 nm, (i.e., at the band-edge of 

GaN). This is much higher than the IPCE of Device B (31%). For comparison purposes, 

the IPCE of the reference photoelectrode is only 15%. Clearly, the enhanced ABPE and 

IPCE can be attributed to the increased ratio of surface-area to volume as a result of 

the nanopores. This also indicates that the GaN photoelectrode with vertically aligned 

nanopores is more efficient. 

Device B exhibits much lower IPCE than Device A. In order to understand the physics 

behind this phenomenon, electrochemical impedance spectra (EIS) have been 

measured on these devices under dark conditions using a function generator 

(Digimess FG100) which can provide signals with a frequency ranging from 100 to 1M 

Hz and a dual trace oscilloscope (Hitachi V422). 

GaN nanoporous photoelectrode-electrolyte interface 

Figure 6.4 shows the EIS of all the devices typically expressed in a Nyquist plot,8, 28 

where the inset provides an equivalent circuit diagram. Cse, Rse, and Rs are the 

differential capacitance across the semiconductor-electrolyte interface, the 

resistance of the photocathode or the electrolyte resistance, and the resistance at the 

semiconductor-electrolyte interface, respectively. 
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Figure. 6.4. EIS of all the devices drawn in a Nyquist plot. Inset: Equivalent 

circuit diagram. 

 

It is generally observed that the semicircle in a Nyquist plot at high frequencies 

describes the charge transfer process, and the diameter of the semicircle is equal to 

the charge transfer resistance. Figure 6.4 shows that the planar photoelectrode 

exhibits the largest impedance among all the devices, while the GaN photoelectrodes 

with either vertical aligned nanopores or horizontally aligned nanopores have a 

reduced impedance by a factor of ~1.6–3, demonstrating an enhanced charge transfer. 

The reduced impedance can be attributed to the fact that the dimension of our GaN 

nanopores is far less than the carrier diffusion length of GaN (about 200 nm). 

Consequently, the difference in both photocurrent density and IPCE between Devices 

A and B might be attributed to gaseous diffusion. For Device B, it is likely that the 

generated oxygen on the working electrode cannot efficiently escape from the 

nanopores due to their configuration. As a result, the gaseous oxygen may accumulate 
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at the interface between the electrolyte and GaN, slowing down water splitting 

reactions. It is plausible that the oxygen generated in Device A (i.e., with vertically 

aligned nanopores) experiences a shorter distance to escape from the nanopores than 

that in Device B. (i.e., with horizontally aligned nanopores). 

Photoelectrode Lifetime 

The chemical stability of our devices with nanopores has been studied.  

 
Figure. 6.5. Photocurrent density as a function of time tested under continuous 

100 mW/cm2 illumination at 0.8 V in 1 M HBr for 3 h for Device A, Device B, and 

the reference planar device. 

 

For example, Figure. 6.5 shows the photocurrent densities of Device A and Device B 

(and the reference planar device) as a function of time tested under continuous 100 

mW/cm2 illumination at 0.8 V for 3 h, demonstrating that there is no degradation in 

photocurrent density for both our devices with nanopores and the planar device. 
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Finally, 0.15 ml of H2 has been collected from the counter electrode for Device A, 

indicating a Faradaic efficiency approaching 1. 

This also further confirms a great enhancement in the STH efficiency of Device A 

compared to that of the reference planar device. 

6.7 Summary 

In this report, two nano-porous GaN photoelectrodes were fabricated using the 

electrochemical etching method, one horizontally aligned and the other being a 

vertically aligned nanoporous photoelectrode. Amongst the two GaN nanoporous 

photoelectrodes, the vertically aligned nanopores posed a greater device 

characteristics compared to the horizontally aligned nanopores. 

Enhanced photocurrent and ABPE values were recorded upon PEC measurements. 

Hydrogen gas generation was also increased under solar powered hydrogen gas 

experiment as compared to the planar GaN photoelectrode. GaN nanoporous 

photoelectrode also showed a lower electrochemical impedance compared to the 

planar counterpart.  

Both the nanoporous samples demonstrated extensive stability in acidic conditions. 

These devices create future potential prospects for high-efficiency hybrid 

photoelectrodes.  
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CHAPTER 7 
 

 

GaN based photoelectrodes have demonstrated success with conversion efficiencies 

but the photocurrent density is quite low for practical application. Thus, the 

progression of GaN based photoelectrode has become one of the most challenging 

scientific task. In this research chapter, a uniquely designed prototype photoelectrode 

have been fabricated using micro-striped GaN on a patterned Si substrate.  

The photoelectrode showed an exceptionally high photocurrent density of 11 mA/cm2 

upon one sun illumination with a H2 generation rate of 2.67 ml·cm-2·h-1. This record high 

performance is attributed to the combination of GaN and Si covering a wide spectral 

region. A GaN/silicon heterojunction is formed due to a weak melt-back reaction. 

This work explores the fabrication and characterization of micro-striped GaN on Si 

photoelectrode and presents an opportunity for further research work in photovoltaic 

devices. 

7.1 Overview of Gallium Nitride based photoelectrodes 

Both global climate change and energy storage issues are threatening the viability of 

human beings. Consequently, it has become increasingly important to develop radical 

alternatives in order to achieve renewable and low greenhouse energy. Solar 

photoelectrolysis of water has been regarded as a promising approach towards the 

conversion of solar power into renewable and storable energy in the form of hydrogen. 

Ultra-efficient micro-striped GaN on Si 

photoelectrode 
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So far, III-V semiconductors have demonstrated unparalleled success in terms of 

conversion efficiencies in the field of photovoltaics (PV), leading to a record efficiency.1 

However, the development of solar powered hydrogen generation is far behind.  

Among the III-V semiconductors, III-nitride semiconductors can be potentially one of 

the most promising material systems for such an application due to several major 

advantages, for instance, their large absorption coefficient of >105 cm-1; their excellent 

chemical stability in either acidic or alkaline solution where solar powered hydrogen 

generation can be performed efficiently. III-nitride photoelectrodes have 

demonstrated their excellence in some preliminary works.2-4 More importantly, the 

band structure of GaN can straddle over the redox potential of water (1.23 eV), which 

is vital for performing an overall water splitting reaction. However, the energy 

conversion efficiency of GaN-based photoelectrodes reported so far is far too low, 

typically less than 0.1 mA/cm2 in photocurrent density obtained under AM1.5 

illumination.4-7 The bandgaps of InGaN alloys across their whole compositional range 

can cover a wide spectral range from the ultraviolet through the whole visible to the 

infrared region. Consequently, InGaN alloys with high indium content would be an ideal 

candidate for solar powered hydrogen generation. However, it is well known that it is 

extremely difficult to achieve a thick InGaN layer with high indium content in order to 

meet the above requirements,8 which is also one of the major reasons for the 

generation of the well-known “green/yellow” gap in the field of semiconductor 

optoelectronics.8 Figure 7.1 shows the published photocurrent densities of III-nitride 

photoelectrodes measured under a bias of 1.0 V, against which we benchmark our 

device under similar electrolyte conditions (HCl).5,10-18 Standard characterisations of 

III-nitride photoelectrodes under AM1.5 1 Sun illumination can be found only in the 
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most recent 4 years. Before 2012, it is rather difficult to compare these results due to 

the variations obtained under non-standard experimental conditions, meaning that the 

solar power used is much higher than the AM1.5 1 Sun illumination. As depicted from 

Figure 7.1, it also implies that an increase in indium content and the utilisation of 

nano/micro structures are two effective approaches towards massively enhancing the 

photocurrent. Up until now, a majority of the photoelectrodes fabricated from III-

nitride semiconductors have showed a low photocurrent density response, except for 

the work of exploiting InN/In0.54Ga0.46N quantum dots,6 where the In composition used 

has been pushed to the limit of the theoretical value (~50%) that allows the bandgap 

of InGaN to straddle over the redox potential of water.9 For those pure GaN based 

photoelectrodes, the photocurrent density is typically much lower than 1 mA/cm2, 

which is not ideal for practical applications. 

 

Figure 7.1. Photocurrent density reported in the literature as a function of time 

(years). *Note: Coloured solid symbols represent photocurrent density 

measured under standard conditions (namely, 100 mW/cm2 as used for the 

present study) and unfilled symbols indicate nonstandard conditions (meaning 

that the solar power used is much higher than 100 mW/cm2). 
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A combination of GaN and silicon would be an alternative option, as such a combination 

covers a wide spectral region as a result of their bandgaps (from the ultraviolet region 

due to GaN to the infrared region due to silicon). A metal organic chemical vapour 

deposition (MOCVD) approach is the major technique for the growth of GaN on 

sapphire or silicon and has been widely employed by the III-nitride semiconductor 

industry. The typical approach for the MOCVD growth of GaN on a silicon substrate 

requires a thick AlN layer initially deposited, followed by GaN growth prior to any 

further structure. The fundamental reason for the requirement of the initial AlN layer 

is to stop the well-known Ga melt-back issue,19 as there is a strong reaction between 

GaN and silicon at a high temperature which is required for GaN growth. AlN is typically 

semi-insulating. As a consequence, AlN is expected to stop any photocurrent flowing 

between GaN and silicon. It is therefore impossible to take the merits from both GaN 

and silicon for solar powered hydrogen generation. 

In this work, we present a prototype photoelectrode which is made up of n-type doped 

GaN micro-stripes grown on a n-type Si substrate. Our device (labelled as Sample B) 

exhibits a record high saturated photocurrent density of 11 mA/cm2 under one Sun 

illumination along with a significantly enhanced H2 generation rate of up to 2.67 ml·cm-

2·h-1. This is due to the contribution from both the GaN and the silicon substrate as a 

result of a weak Ga melt-back reaction occurred in the specially designed 

configuration of our photoelectrode grown using the micro-stripes. Silicon is 

commercially cost-effective and abundant on the Earth compared to other available 

substrates (e.g. Sapphire, SiC, etc). Our monolithically integrated photoelectrode may 

open a new direction in the fabrication of GaN-on-Si based photoelectrodes or even 

PV devices. 
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7.2 Fabrication and growth of GaN microstripes on Silicon 

substrate 

The GaN micro-stripes used for the present study are grown on a patterned (113) Si 

substrate as shown in Figure 7.2 (n-type) by a low-pressure metal organic chemical 

vapour deposition (MOCVD) technique. The patterned silicon is fabricated using a 

combination of a dry etching technique and then an anisotropic wet-etching process. 

Initially, a thin SiO2 mask with a thickness of 100 nm is deposited on a (113) Si substrate 

to form 1 μm stripes with a spacing of 2 μm by a conventional photolithography 

technique and then a standard dry-etching process. The SiO2 stripes are fabricated 

along the [21-1] axis of the silicon. Subsequently, the silicon wafer undergoes a KOH 

solution (25 wt%) based wet etching process at 30C for 18 mins, using the SiO2 stripes 

as a second mask. Due to the anisotropic etching nature, grooves formed of two 

parallel facets, i.e., (1-11) and (-11-1), and (011) facet at the bottom are then formed. The 

SiO2 stripe masks remain on the top of the patterned silicon substrate. The patterned 

silicon substrate will be subsequently loaded into our MOCVD chamber, and GaN 

growth will be then performed. Finally, regularly arrayed GaN micro-stripes with a 

triangle shape on the patterned silicon substrate will be formed. 
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Figure 7.2. Basic schematic showing the fabrication of patterned (113) Si 

substrate 

Photoelectrodes are fabricated by depositing Al/Au (100/100 nm) beneath the Si 

substrate, followed by a rapid thermal annealing process conducted at 600°C in N2 in 

order to form an ohmic contact as shown in Figure 7.3. A copper wire is bonded on 

the ohmic contact using silver epoxy, whilst all the contact areas are entirely covered 

with an insulating epoxy to avoid any leakage during the measurements.  

 
Figure 7.3. A schematic illustration to demonstrate this enhanced PEC 

mechanism for the GaN-on-silicon device: Basic schematic of the GaN-on-Si 

device and the reaction mechanism in the PEC cell. At the anode: 2Cl- = Cl2 + 2e-

. At the counter-electrode: 2H++2e- = H2  
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7.3 GaN on Si photoelectrode characterization 

For solar powered hydrogen generation measurements, a photoelectrode is 

connected to a Pt counter-electrode via Keithley 2401 source-meter. The 

photoelectrode and the counter-electrode are immersed in 1M HCl solution. Solar 

illumination is emulated by using a LOT-Oriel solar simulator with a 300 W ozone-free 

Xe lamp with an AM1.5 filter. Solar hydrogen generation experiments have been 

conducted in a two-compartmental cell [see chapter 2], where the photoelectrode and 

a reference electrode (Ag/AgCl) are positioned in the first half cell separated by a glass 

frit with a counter-electrode immersed in the second half-cell connected to the 

source-meter.15,20,21 H2 is collected on the counter-electrode site using a burette 

suspended over the Pt (platinum) electrode. 

 
Figure 7.4. (a) Cross-sectional SEM image of the GaN microstripes (scale bar = 

1 μm), where the boundary between the GaN layer and the patterned Si 

substrate has been marked. Inset shows the top view of the GaN microstripes 

(scale bar = 2 μm). (b) XRD spectrum of the GaN microstripes measured in a 2θ–

ω scanning mode. 
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Figure 7.4 (a) shows the cross-sectional scanning electron microscopy (SEM) image 

of the sample. The carrier density of the n-GaN layer is 5.1 x1018 cm-3, measured by the 

Van der Pauw hall measurement technique on a calibration sample grown under 

identical conditions. The GaN growth on the patterned silicon substrate begins from 

both sidewalls and the bottoms between the trenches as a result of the remained SiO2 

masks. A thin AlN buffer layer is initially deposited at 1180°C with trimethylaluminium 

(TMA1) and NH3 flow rate of 120 and 90 standard-state cubic centimetres per minute 

(sccm) under 65 Torr. Subsequently, GaN is further grown at 1100°C with 

trimethylgallium (TMGa) and NH3 flow rate of 60 and 2400 sccm under 300 Torr. The 

coalescence of GaN clusters grown from the two parallel sidewalls occurs when they 

are in contact with each other, leaving an air void in each trench. Triangular shaped 

GaN stripes are formed between the trenches. 

Inset of Figure 7.4 (a) illustrates the top-view of the GaN micro-stripes with smooth 

sidewalls and uniform sizes. The spotted areas observed from the top-view SEM image 

are due to the Ga meltback reaction during the growth, where the growth conditions 

such as temperature and AlN thickness are crucial to control the formation of Ga melt-

back19 in addition to the specially designed micro-stripe patterns. High resolution X-

ray diffraction (XRD) measurements have been carried out to determine the 

orientation of the GaN stripes. Figure 7.4 (b) shows the XRD data performed in a 2θ-

ɷ mode, demonstrating that the GaN micro-stripes are grown along the c-axis with 

semi-polar (10- 11) sidewalls agreeing well with an angle of 62° between the (11-10) and 

c-plane as shown in Figure 7.4 (b). 

For comparison, three different kinds of photoelectrodes, labelled as Sample A, B and 

C, have been fabricated and then tested under identical conditions. The optical active 
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area of all three samples was 0.5 cm2. Sample A was fabricated from a planar GaN with 

a thick AlN layer on a planar silicon substrate in order to prevent any Ga melt back 

reaction. Sample B was fabricated from the sample (as shown in Figure 7.4a) with weak 

Ga melt-back, where a clear interface between GaN and silicon can be formed as a 

result of the weak Ga melt-back reaction. Sample C was fabricated from a sample 

(shown later in Figure 7.8 (a)) with a strong Ga melt-back reaction. 

Figure 7.5 shows the photocurrent density of Sample B as a function of applied 

potential, demonstrating a photocurrent density of 11 mA/cm2 at 1.1 V bias (vs. Ag/AgCl 

as a reference electrode) upon an illumination of 100 mW/cm2 (1 Sun), which is 30~100 

times higher compared to the values reported so far on any GaN-on-sapphire planar 

counterparts.14,15 

 
Figure 7.5. Photocurrent of sample B as a function of applied potential (vs 

Ag/AgCl as a reference electrode) under dark and illuminated conditions. Inset 

shows the photocurrent measured under identical conditions for sample A and 

sample C for comparison. 
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At a bias of 0.8 V, the photocurrent density obtained is 8.5 mA/cm2. For comparison, 

the photocurrent density measurements as a function of applied bias have been 

performed on Sample A and C under the identical conditions as shown in the inset of 

Figure 7.5. As expected, both Sample A and Sample C show a very low photocurrent 

density, less than 1 mA/cm2. For Sample A, it is clear, that the AlN layer stops 

photocurrent flowing from GaN to Silicon, and thus the photocurrent is due to the 

contribution from GaN only. For Sample C, as a result of the strong Ga melt-back, an 

interface between GaN and silicon cannot be formed, which will be discussed later. 

Hydrogen generation 

The gas generated on the counter-electrode has been collected by means of using a 

burette tightly connected with a syringe to control the solution level, with the 

photoelectrode area of 1.5 cm2 executed at a bias of 0.8 V under 2 Sun illumination. 

The gas has been confirmed by using a sensitive H2 detector. Subsequently, after 3 

minutes, a volume of 0.2 ml has been produced, resulting in a H2 generation rate of 

2.67 ml·cm-2·h-1, which is much higher rate than any existing reports.15, 20, 21 

Photoelectrode Efficiency 

In order to confirm the contribution from both the GaN and the silicon, we have 

performed photocurrent measurements in a two-electrode system on sample B using 

several long pass filters with a cut-off wavelength ranging from 400 nm to 1000 nm. 
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Figure 7.6. (a) Photocurrent density as a function of applied potential (vs CE) 

from −0.5 V to 0.6 V under a number of various long-pass filters with their 

cutoff wavelengths at 400, 425, 436, 466, 485, 530, 610, 715, 780, 860, and 1000 

nm, respectively. (b) ABPE measured as a function of pass filter wavelength 

under a 0.6 V bias (dashed line serves as a guide to the eye only). 

 

 Figure 7.6 (a) shows the photocurrent density as a function of applied potential (vs. 

CE) measured with different filters, showing a very sharp decrease in photocurrent 

density when the wavelength of the filter used is above 800 nm which approaches the 

bandgap of silicon but is much longer than the wavelength of GaN band edge emission 

(365 nm). This phenomenon can be observed even more clearly on applied bias 

photon-to-current efficiency (ABPE) measurements as a function of the cut-off 
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wavelength of the filters used, which is shown in Figure 7.6 (b). The ABPE has been 

measured under an applied bias of 0.6 V and then obtained using the equation below 

𝐴𝐵𝑃𝐸 =  
𝐽𝑝(𝑚𝐴/𝑐𝑚2)(1.4𝑉−𝑉𝑒𝑥𝑡)

𝐼(𝑚𝑊/𝑐𝑚2)
× 100%    (1) 

where Jp, Vext and I are photocurrent density, applied bias and incident power 

respectively; and the redox potential of the electrolyte HCl (Ered
o = 1.4V) is also used. 

Figure 7.6 (b) shows that the ABPE measured is 2 ± 0.2%. Similar to Figure 7.6 (a), 

there is a sharp decrease in ABPE when the wavelength of the filter used is beyond 800 

nm, which once again is much longer than the wavelength of GaN band edge emission 

(365 nm). 

Furthermore, incident photon-to-current conversion efficiency (IPCE) measurements 

have been performed as a function of the wavelength of the filter by using a 75 W Xe 

lamp combined with a monochromator as a light source. The photocurrent was 

recorded by a Keithley 2401 source-meter. The value of IPCE is mathematically 

obtained by, 

𝐼𝑃𝐶𝐸 =  
1240 × 𝐽𝑝(𝑚𝐴/𝑐𝑚2)

𝜆(𝑛𝑚) × 𝐼(𝑚𝑊/𝑐𝑚2)
× 100% 

Where J, λ and I are denoted as photocurrent density, wavelength and incident power, 

respectively. Similar to the ABPE measurements, the IPCE of the photoelectrode also 

exhibits a sharp decrease when the wavelength of the filter is above ~800 nm (not 

shown). 
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Figure 7.7. provides photocurrent density as a function of wavelength for 

sample B (red curve) and a standard Si photodiode (black curve) as a reference.  

Furthermore, Sample B was measured in air to eliminate any possibility of degradation 

under acidic conditions. As observed in Figure 7.7, sample B shows a strong 

absorption at ~375 nm exhibiting GaN response. Silicon photoresponse becomes 

evident as the spectra advances into visible and infrared region also demonstrated by 

the Si photodiode response. 

Si with a bandgap of 1.1eV is not capable of effectively performing water splitting on its 

own since the redox potential for water splitting is 1.23eV. However, with the 

combination of n-GaN (~3.4eV) and further by controlling the AlN layer thickness, an 

interface between GaN and Si can be formed as demonstrated by sample B, and thus 

the situation has changed. ABPE efficiency and IPCE measurements have been 

performed to support the contribution from both GaN and Si as a result of the 
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carefully engineered AlN buffer layer. Furthermore, various long pass filters have been 

used ranging from 400 to 1000 nm and a sharp decrease have been observed in the 

spectral region of above ~800 nm, strongly confirming contribution from both n-GaN 

and Silicon. 

It is worth highlighting that we have never observed the above results on both Sample 

A and Sample C. Although we have achieved unprecedented performance on Sample 

B, we must say that Sample B exhibit shows a short lifetime in an acidic solution at the 

moment. One of the possible reasons may be that the acid destroys the interface 

between GaN and Silicon as a result of the oxidation process. Further study on how to 

improve lifetime of the device is on-going. 

 
Figure 7.8. (a) Plane-view SEM image of the sample with heavy Ga-melt back. (b) 

(i) Zoom-in SEM image of the region with Ga melt-back highlighted by a circle 

in (a); (ii) Ga and Si clusters distinctly observed in EDX mapping; (iii) Ga 

clusters diffusing into the Si regions marked as the dark areas in EDX mapping; 

(iv) Si clusters diffusing into the Ga regions marked as the dark areas in EDX 

mapping. (c) EDX spectrum confirming Ga and Si atoms. 
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7.4 EDX spectroscopy 

Finally, in order to understand the reason why in the sample with strong Ga melt-back 

an interface between GaN and silicon cannot be formed. Figure 7.8 (a) shows a SEM 

image of the sample with strong Ga melt-back, creating a very rough surface. This is 

due to an eutectic reaction between GaN and Si, generating a liquid metal-Si mixture.19 

This can be further confirmed by energy dispersive X-ray (EDX) mapping as shown in 

Figure 7.8 (b), displaying that Si out-diffuses into GaN and then a number of isolated 

Ga-Silicon eutectic are formed. As a result, a GaN/Si heterojunction cannot be formed. 

On an opposite scenario, i.e., when a thick AlN layer completely separate GaN from 

silicon (i.e., Sample A), the interface between GaN and silicon cannot be formed, either. 

Therefore, only in the case that the weak Ga-melt back appears as a result of the 

specially designed configuration in Sample B, a heterojunction between GaN and 

silicon can be formed. 

GaN/Si heterojunction 

A solar conversion efficiency can be significantly improved when a heterojunction is 

formed, where the heterojunction consists of two layers with different bandgaps, in 

particular, in the case where the difference of their bandgaps is very large, such as a 

GaN/Si heterojunction which covers a wide spectral region as a result of their 

bandgaps (from the ultraviolet region due to GaN to the infrared region due to silicon). 

For Sample A, a thick insulating AlN layer has completely separated GaN from silicon, 

and thus such a heterojunction cannot be formed. For Sample C, the Ga melt-back 

reaction has completely destroyed such a heterojunction. Only sample B with a proper 

configuration described above can form such a heterojunction. Therefore, Sample B 
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demonstrates the best performance, where both GaN and silicon can make 

contribution. 

n-GaN/Si reaction mechanism 

 
Figure 7.9. Schematic band diagram of a GaN/Si heterojunction, demonstrating 

light absorption, charge separation, and carrier transport under solar 

illumination, where solar energy with a wide spectral region can be absorbed 

as a result of their bandgaps (from the ultraviolet region due to GaN to the 

infrared region due to silicon). 

 

Figure 7.9  schematically shows a band diagram of such a GaN/Si heterojunction 

based on their band positions and water redox potential,4 which is similar to that for a 

heterojunction TiO2/Si,22 demonstrating light absorption, charge separation, and 

carrier transport under solar illumination, where the solar energy with a wide spectral 

region can be absorbed as a result of their bandgaps (from the ultraviolet region due 

to GaN to the infrared region due to silicon). 
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7.5 Summary 

In this research chapter, a record high photocurrent density of 11 mA/cm2 and an 

enhanced hydrogen generation rate of 2.67 ml·cm-2·h-1 was reported by a uniquely 

designed and fabricated photoelectrode based on micro-striped GaN on patterned Si.  

A GaN/Si heterojunction was formed due to the weak Ga melt-back reaction during 

the growth of GaN micro-stripes. The significantly distinguished performance was 

ascribed to the contribution from both GaN as well as Silicon. This was evident by the 

ABPE and IPCE measurements undertaken with long pass filters showing a cut-off 

wavelength of up to 1000nm, which is far from the GaN band-edge but close to the 

band gap of Silicon.  

Despite the significantly enhanced performance of the GaN-on-Si photoelectrode, the 

device suffers from stability in acidic conditions. Reports20,23 suggest the deposition of 

thin layer of NiO nanoislands for greater lifetime, however, further study in this topic 

will lead to greater prospects for GaN based photoelectrodes. 
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CHAPTER 8 
 

 

8.1 Conclusion 

In conclusion, for the first time, GaN-based photoelectrodes coated with self-

assembled silver nanoislands have been fabricated by a cost-effective approach, 

demonstrating strongly enhanced photocurrent with an enhancement factor of up to 

4 compared to a similar photoelectrode but without using any silver. IPCE reaches as 

high as 60% at the near band edge, the highest value reported in GaN based 

photoelectrodes. The significantly enhanced performance is due to strong SP coupling 

effect between silver nanoislands and GaN, leading to strongly localized electric fields 

and thus enhanced electron-hole generation rate in these local regions. It has also 

been found that the coated silver nanoislands can also contribute to minimising 

photoelectrochemical etching induced damage.  

We have reported a prototype photoelectrode fabricated from a GaN nano-pyramid 

array structure grown on cost-effective silicon substrates. The nano-pyramid 

configuration leads to significant enhancement in not only optical absorption, but also 

the transportation of photogenerated hole to semiconductor/electrolyte interface. A 

high hole transfer efficiency has been observed in our photoelectrode, which 

enhances the photocurrent. Consequently, the photoelectrode demonstrates a high 

photocurrent density of 1 mAcm−2 under a 200 mWcm−2 illumination and a large IPCE 

of 46.8% at 365 nm, the bandgap of GaN. We believe this structure paves way for the 

Conclusion and Future works 
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fabrication of GaN based photoelectrodes with a high energy conversion efficiency for 

solar-powered water splitting. 

The two kinds of GaN photoelectrodes with either vertically aligned or horizontally 

aligned nanopores were reported. They are fabricated by means of using an EC etching 

approach under different conditions. Detailed solar powered hydrogen generation 

experiments including ABPE and IPCE have been performed, demonstrating a 

significant enhancement in photocurrent density compared to their planar 

counterpart. Electrochemical impedance spectra have also been measured, indicating 

lower impedance for the devices with nanopores than their planar counterpart. It is 

worth highlighting that the device with vertically aligned nanopores exhibits much 

superior performance to the device with horizontally aligned nanopores GaN. 

Furthermore, both devices with nanopores exhibit excellent stability in HBr solution as 

an electrolyte. Our results presented could potentially pave the way for the fabrication 

of a high-efficiency hybrid photoelectrode based on III-nitrides. 

A prototype GaN-on-silicon based photoelectrode with a unique design, 

demonstrating a record high photocurrent density of 11 mA/cm2 measured under one 

Sun along with an enhanced H2 generation rate of up to 2.67 ml·cm-2·h-1 was obtained. 

This significantly enhanced performance is due to the contribution from both GaN and 

silicon. This has been confirmed by performing a detailed ABPE and IPCE 

measurements using number of filters with a cut-off wavelength of up to 1000 nm, 

which is far from the band-edge emission wavelength of GaN but approaches the 

bandgap of silicon. Unlike conventional GaN-on-silicon which requires a thick AlN layer 

to separate GaN from the silicon substrate, a GaN/silicon heterojunction in our 

photoelectrode can be formed as a result of a weak Ga melt-back reaction due to the 
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specially designed configuration of our photoelectrode grown using the micro-stripes. 

Although, a major breakthrough of the fabrication of GaN-on-silicon based 

photoelectrodes has been achieved, great efforts are still needed in order to stabilise 

the overall device. As reported in previous papers1,2, an excellent stability of GaN based 

photoelectrodes in an acidic electrolyte can be achieved by depositing a thin NiO nano-

island film. 

8.2 Future Work 

InGaN growth on Silicon substrate using NiO layer as passivation layer 

We achieved a photocurrent density of 11 mA/cm2 under 1 V using n-type GaN on Si 

substrate in Chapter 73. However, the lifetime of the sample was short and this was 

possibly as a result of the disassociation of the interfacial layer in acidic conditions. 

The introduction of a thin NiO nano-island layer will increase the stability of the 

sample4. Upon stabilisation, the hydrogen generation rate can be further increased 

and will be huge breakthrough along with a record photocurrent density. The 

applications are commercially diverse and further modifications can be made by the 

addition of Indium content. 

Introducing MQW in the structure in order to confine electrons and increase the 

efficiency of the overall device. 

InGaN/NiO nanorods with higher In content 

Currently, I am involved in the fabrication of NiO co-catalyst over an n-InGaN 

semiconductor material. As mentioned earlier, the band gap of InGaN can be tuned in 

a range of 0.7eV to 3.4eV by changing the In composition. Band gap gets narrower with 

increasing indium content, lowering the band gap leads to an increased level of 
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photons being absorbed. However, high indium composition affects the crystal quality 

of the semiconductor therefore, causing defects such as band-to-band recombination. 

Nevertheless, absorption of photons will exponentially increase in the deep UV region. 

Further enhancement in the photocurrent density will be done by fabricating 

nanostructures (nanorods, nanowires, nanotubes) as it has a large surface area as 

opposed to the planar devices. Preliminary results shown by GaN nanorods presented 

a positive response5, this will be further tested in 1M HCl solution as corrosion affects 

were seen in the previous results where NaOH solution was used as the electrolyte.  

Enhancement in hydrogen generation using Semipolar GaN  

GaN layer is generally grown on a c-plane sapphire substrate [0001] as mentioned 

above in all the experiments. Recently, semipolar GaN was grown at an m-plane 

sapphire within the III-nitride group and has shown the ability to use the In composition 

more efficiently by emitting green and yellow light. Semipolar GaN is grown via self-

organized nickel mask to form nanorod template4. This technique increases the 

radiative recombination as it effectively inhibits defects (dislocations and voids)6. 

Since, it has displayed some great results, further investigation will be carried out by 

primarily, comparing undoped GaN, n-GaN and semipolar GaN photoelectrodes in HCl 

solution. Semipolar GaN has also been reported to cover a spectral range upto 

560nm7. Secondly, fabrication of an appropriate metal oxide co-catalyst would 

potentially maximise the carrier transportation and thus increase the conversion 

efficiency. Additionally, application of nanostructures has an advantage of increased 

surface area and greater light absorption. Extensive characterization will take place as 

well as semipolar GaN is a very recent discovery. If it shows great results, non-polar 

GaN will also be investigated.  
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Dual co-catalysts on a single photoelectrode 

In order to enhance absorption and minimize the rapid recombination between 

electrons and holes, another layer of co-catalyst could be fabricated on the existent 

co-catalyst. This could either be a metal oxide or a specific surface coating, which 

adheres to the electrolyte. This application assists the enhancement in two known 

ways; primarily it increases the overall potential and absorption of more sunlight to 

produce electron and hole pairs at the photoelectrode site, thereby increasing the 

rate of the oxidation reaction. Also, band gap engineering leads to a longer diffusion 

length and therefore prolonged recombination of electron hole pairs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 133 

References 

1. J. Benton, J. Bai, T. Wang.  Appl. Phys. Lett. 103, 133904 (2013). 

2. S. H. Kim; M. Ebaid; J. H. Kang; S. W. Ryu. Appl. Surf. Sci. 305, 638-641 (2014). 

3. Z. A. Syed, Y. Hou, X. Yu, S. Shen, M. Athanasiou, J. Bai, T. Wang. ACS Photonics. 

6, 1302-1306 (2019) 

4. J.  Benton, J.  Bai and T.  Wang. Appl. Phys. Lett. 103, 133904 (2013). 

5. J.  Benton, J.  Bai and T.  Wang. Appl. Phys. Lett. 102, 173905 (2013). 

6. B. Xu, X. Yu, Y. Gong, K. Xing, J. Bai and T. Wang. Phys. Status Solidi B. 252, 1079-

1083 (2015). 

7. J. Bai, Y. P. Gong, Z. Li, Y. Zhang, T. Wang. Sol. Energy Mater. Sol. Cells. 175, 47-51 

(2018) 

 

 

 

 

 

 

 

 

 

 



 134 

 

 

Hall measurements 

The carrier concentration, resistivity and the electron mobility of the GaN based 

photoelectrode samples were determined using Van der Pauw technique as shown in 

Figure 1 a).  

All samples were rectangular in shape in order to follow a four-point probe symmetry. 

An indium contact was applied on the edge of each corner to form an ohmic contact.1 

The surface of the sample was also thoroughly cleaned prior to measurements to 

minimise any electrical resistance. The samples tested under four-point probing were 

small in size (~0.5cm2). 

The test sample is placed onto a probe stage and contacts are then probed in each of 

the 4 corners labelled A, B, C and D. These probes are connected to two Keithley 

sourcemeters that work as voltmeter and current source as illustrated in Figure 1 b). 

In this particular case, the carrier density of the planar n-GaN sample is being 

determined. The data recorded by the voltmeter and current sources are simulated 

by labVIEW.  

 

Appendix 
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Figure 1. a) sample holder configuration b) Resistance measurements from Van 

der Pauw connections between IAB and VDC 

Primarily, the parameters are inserted such as the current, temperature, magenetic 

field and layer thickness as shown in table 1.  

 

Resistivity is measured both horizontally and vertically. Eight measurements were 

made around the parameter of the sample. Resistivity is measured by making the 

instructed connections as shown in Figure 1 b). Four connections are made in the 

vertical, and four in the  horizontal direction as shown in table 2 and table 3 

respectively. 
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Finally, Hall measurements are conducted under the influence of a magnetic field 

following the different connections as arranged in table 4. Values recorded from the 

voltmeter was inserted in the table for the result simulation. 

 

Calculations were simulated and the results are displayed in table 5 

 

The hall coefficient determines the doping type. If the value is negative, the sample is 

an n-type doped semiconductor (as expected in this example) and vice versa if 

positive. The key characteristic values such as the resistivity, bulk density and mobility 

were acquired through this method. The rest of the samples utilised in this thesis were 

measured in the same manner.  

In order to maintain accuracy, samples were simulated multiple times to confirm the 

resultant characteristics 
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