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Summary

The aim of this works to provide insight into the sinking rate of waste packages in
Deep Borehole Disposal (DBD). An investigation was performed using simplified,

scaled down experimentnalytical modelling ancholecularmodelling.

The experimentsystematically varied range of cylinder parameters to
understand their influences upon the sinking rate of the cylinder. Results showed that
this sinking velocity varied as a function®flinderdiameter, length and density, with

diameter being the predominant fadtodictating the sinking rate.

An analytical model was subsequentfvdloped using the experiment data
validation. The model was developed by solving the NeStekes equations for the
flow within the annular gap, in addition to characterising pressures ajplibéd front
of the cylinder. Results showed good levels of accuracy for low valuésavhoce,

although velocity wasicreasingly ovepredicted as clearance increased.

Molecular dynamics simulations were used as a method of ggisegle
experimentdata and further insight into the fluid flo8inking disc simulations
provided several correlating results with experiments; confirming that sinking velocity
decreases linearly with diameter at sinkentainer ratios greater than 0.6, and that
density apears to increase sinking velocity towards a plateau. Stationary disc
simulationsillustrated that highly turbulent flow regimes occurred at the wake of
objedsin confined boundary systems. Several of these flow regio@sredat
significantly lesser seaming velocity for finite boundary systems as opposed to infinite
boundary systemg hisshows the importance of accounting for turbulence in finite
boundary systems, amovides a logical path for the future developmerd of
predictivesinking velocitymodel.
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1: Introduction

The United Kingdom continues to produce biotiermediate (ILW) and higtevel

waste forms (HLW), which includeoth spent fuel and vitrified reprocessed waste.

These waste inventories have been described in detail during regerisproduced by

the United Kirgdom Department for Business, Energy and Industrial Strategy alongside
the NucleaDecommissioningiuthority [1]. The UK ILW stockpile igeported to be
99,000 ni (or 120,000 tonnek with future projections predictingnincrease t@90,000

m?® (310,000 tonned)y the year 2125The contents of ILW can vary due to the nature

of decommissioninghowever a large portion of the waste (30,10Dimcurrently
immobilized within concrete and placed within a totale®407stainless steel or

concrete containefg].

The UK has a furthet960 n¥ (3,700 tonnesof HLW. Although a relatively
lesser volure of waste in amparison to ILW, HLW contributes to over 95% of the
total radioactivity inUK nuclear wastefl]. Over halfof the HLW has been processed
to date with the majority being Wrified into glass blocks and@ted within steel
containersThis procesegffectively reduces the finablumeof wasteby two thirds and
is one of theeasos behind future HLW projections predicting decrease td,150 ni
(3,000 tonnes) by 2125lowever, the UK has an additional citpile of 113,000 tonnes
of Uranium and 103 tonnes of Plutonium not currently classifietlielear wast3].
This Plutoniuminventory has been produceddbgh spent fualepro@ssing with the
original purpose of fuéng fastbreeder reactors, however, readily available Uranium
has made this fuel cyctgratuitous Although Uranium and Plutoniurstockpilescould
conceivablybe used to create a mixed oxidelfuhere are no current reactors in the
UK which could accept such a fuel. In additidris reasonable to believieat projected
abundancies in availablégraniumwill result inmuch of these stockpilesldingto the

HLW inventories in the coming years.

Such expansive inventories of nuclear waste are not limited to the UK;
following the first civi nuclear power plant in 195#he global number of operational

power plants has grown to overG#4]. This highlights the growing urgency for a

1 1n the United Kingdom spent fuel was historicallgt classified as waste.
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readily available disposal route for both ILW and HL&lthough a operational

solution still remainslasive despite over six decades of accumulated waste.

The disposal of both ILW and HLW waste forms has proven time and again to
be problematic, thanks to both timensityand lifetime @& present radioactive elements.
The current consensus for the letegm disposal of these waste forms is to deposit them
within a mined engineered repository 200000 m undergrounfd]. However, Deep
borehole disposal (DBD) is a potentially safer and more cost effective alternative to
conventional mined repositories for HLW dispogd] [7].

Active near-surface flow
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Figure 1.1: Diagram of the DBD concept, including the disposal zone arrdsnding
groundwater flow regimes. Image taken from external sduice

In DBD waste forms are placed in deep &tkm), geological boreholes. Holes are

drilled vertically into crystlline rock formations with a relatively large diameter in
comparison to those traditionally used in the oil inddstFaroughout the drilling

process the borehole is lined with a rigid steel casing, which is perforated over the depth
range associated witvaste emplacement (the disposal z¢8k)Waste packages are
subsequently deposited into the deepds km region of the borehole, as illustrated in
figure 1.1. Once waste packages are deployed, they are sealecsiage®. Firstly, a

1 The largest proposed diameter for DBD is 0.88Harrison, 2000)
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suitable material is used to fill the annuli between waste packages, bore lining and host
rock. This material is referred to as a sealing and support matrix (SSM), due to its
secondary purpose of providing structural support to the hetagked waste packages.
There are several different variants of DBD developed by different research groups,
particularly at the University of Sheffiel@he disposal zone for the Sheffield concept is
shown in figure 1.2, where two SSM methods are ilaisti[9]. The second stage of

waste package containment occurs above the disposal zone, separating and sealing the
disposal zone from the upper borehole. This is to ensure any escaping wastes are unable
to use the borehole as a means of cinsemting the geologically imposed confinements

and returning to the biosphere.
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Figure 1.2: Schematic diagram of two of the Sheffield SSM concgfi For waste
packages of sufficient heat generation, a fdghsity lead based alloy is proposed (left
image). A hightemperature cement is used as an alternative for loweobgait waste
packages (righimage). Figure after external sou&g.

The greater depth of disposal in DBD takes advantage of natural geological barriers. At
such depths, low bulk hydraulic cordivity retards the movement of groundwater.
Furthermore, salinity gradients provide additional retardation to vertical flow
movement; this counters the convective flow induced by the heat output of waste forms
[11]. These natural containment methods effectively eliminate the need for additional
engineered barriers, but these are included iD[@B a precautionary, additional form

of containment. As a result, there are greater containment requirements specifically



upon the engineered barriers used in mined repositories, giving rise to fewer compatible

waste forms in comparison to DHB), [7].

In addition to a more robust safety case, DBD potentalhyides amore
economial solution & opposed to mined reptwies. The main costs of DBiDclude
an intial investment of a sufficient drilling rig (although this could potentially be
reducedhrough rentalandthe unpredictability of drilling due tdoth economic and
machinery variables. However, drilling rig aside, conservative estimates predict a
drilling cost of$40 million per borehol¢12]. A quantitative comparison with the
Swedish KBS3 concept using spent nuclear fuel estimates DBD to be approximately 5
times cheaper per toarof heavy metdtL3]. Where DBD patrticularly comes into
strength is in th@ature of modularity; the freedom to create as marastaw
boreholes required not only makies a more versatildisposal solution, but makes

DBD orders of magnitudes more econoatiior countries withbsmallwaste inventories

Geologicallytherequirements of DBD are relatively relaxed, needing
reasonably wifractured granite below the depth oki&. This gives DBD a greater
volume of potentially suitable geological locations than its competitors, which would
aidin the location of a suitable disposal site (a proven issue for many countries,
including the United KingdorfiL4]). Furthermore, these relaxgdological
requirements couldotentiallyallow for DBD to be performed esite at a reactor
power station, removingansportation complications aeepenses.

The DBD research grougt the University of Sheffieldave developed several
DBD conceptsdefiningvarious geometries, borehole diameters and waste package
parameterso accommodatdifferent types of nuclear waste. These include (but are not
limited to) concepts that accommnaid complete pressurised water reactor (PWR) fuel
assemblies, boiling water reactor assemblies, consolidated fuel rods and vitrified high
level waste form§6], [7]. These variants accommodate a range of waste package outer
diameters between 0.24 and 0.45 ng eanister heights of 1.394.85m. Other
notable oncepts include a simil&SA canplete PWR assembly concejot which a
single borehole could accommodate 400 PWR assenibs¢Of particular interess
the USA CsSrassembly stockpilat has een reportethat these assemblies atethe
highest risk of catastrophic failufg6], yet the entire stockpile could be dised inside
a singular borehole, without the need for reprocessing.



Despite a wealth of DBD concepts, there @@dain limitations to viable waste
forms. The most obvious limitation is wasgeometry with decommissioningvastes in
particularbeing large thancurrentlyobtainableboreholes. Fortunatelynuch of this
waste is classified dew-level waste, much of whictan be disposed of within
designatedhearsurface disposalites[17]. There are exceptiom®wever such as
reactor core componentghich contain higher levels of radioactivitgimilarly, several
completespent fuel assembliegould not be suitable for DBD disposaind although
consolidating spent fuel rods could alleviate this istheejncrease in costaymake
mined repositoriea moreeconomial solution Despite these limitation®BD should
remain aconsideratiorfor counties requiring a mined repositorgp-disposalcan be
advantageoutr focused problerwastes such as the aforementio@=5r inventories
andpotentiallyhighly fissile materials such as Pu dueséeurity Furthermore, DBD

provides an early disposal gt durirg mined repository construction

The DBD group at the University of Sheffield has been involved with a wide
range of research. This includes the development of rock welding methogitBpgyn
which a finite section of the casing is removed and the hole is backfilled with crushed
granite which is then melted along with part of the host rock. 8¢sentially creates a
containment layer continuous with that of the surroundingtoast, removing the
potential for any escaping waste to circumvent conventional seal designs through micro
fractures located at the interface between host rock anfll9arlhe University of
Sheffield also continues with the development of SSM concepts, including the lead
based alloy and higtemperature cements shown in figure 1.2. The latter in particular
has presented recent advances withermeable grds with specific setting times to

accommodate waste package deployni2oit

Several key component$ the DBD method remain in contention and must be
addressed before the disposal method is ready for implemerigiiofiL2]. The
method of emplacing waste fages into the disposal zone (depths 6f3km) is one
such area of contention. A simple approach is to use the wireline method, where waste
packages are deployed using braided cableaasmmhechanically released. Despite its
simplicity, the wireline métod is restricted in payload weight and provides less control
in comparison to alternativg¢g]. Certain research groups are in favour of the drill pipe
method, in which pipe segments agstematically deployed and attached to one

another[12]. The drill pipe method has long been one of the more common and robust



methods of borehole deployment, however the connection rate of tt2 pipe

segments limits the deployment rate to a maximum of 1008 [T hThe slow rate of
deployment in addition to reliance upon mechanical release mechanisms has resulted in
justifiable opposition to the drill pipe meth@ell]. A promising alternative is to use

coiled tubing, which would be slightly slower than wireline but substantially faster than
drill pipe methods. Coiled tubing providesiglnlevel of control and would

conveniently allow for electrical conductors to be shielded within the hollow tube,
allowing for automated canister release and the use of various electrical §éhsors
Freefall has been considered as a deployment mgg&pdout is unlikely to be given

serious consideration duedadack of control and unnecessary risk.

Irrespective of the deployment methodk free fall velocity of a sinking waste
package does remain an important component of the DBD safety case, as it igreritical
regard to the scenario of a deploymsygtemfailure where gpackages dropped.
Furthermore, understanding the rate of frdledi@ployment will give the upper limit to
the deployment rate @nyof the aforementioned methqdsnone of thesenethods
force waste packages to sink faster than their fresiféting ratelt is still important to
be mirdful of the differendeploymentmethodsvhen considering freefalas their
concurrent deployment capabilitialsodetermine the freefalling deployment objects

parameters (length and mass).

There have been several rotggtimates of the frekall deployment rate for
waste packages study from the Camborne School of Mines noted that for a stoker
bore diameter ratidl( of 0.82, a concrete plug took approximately 15 minutes to
descend to the bottom of a 2225 m deep bordB8le This givesa sinking velocity of
approximately 2.5 ms Similafy, a preliminary estimate from Sandia National
Laboratorieg11] predicted that waste peages withl  1@® uwvould be expected to
sink at approximately 0.6 1.5 ms’. The discrepancgf up to 500% for these
preliminary investigationglustrateshigh sensitivity ofsinking rateto the various
system variables his signifiesthat amore detded study is necessaty accurately

predict the sinking rate fabroadrange of waste packagand boreholes

At a highlevd, theaim of thisprojectis to guideimprovanentsto the estimates
of waste package sinking rat@sboreholesby providing nsight into the phenomena
and a&sociated physics that govehesessinking rats. Several methods are used to

fulfil these aims:



1) Analytical fluid dynamics.
2) Computational fluid dynamics.

3) Laboratory experiments.

Analytical fluid dynamics can theoreticallglused to describe the flow properties
throughout a givesystem by applyinthe NavierStokes equations. The frictional
forces applied to a sinking objetiay then be determined onttee fluid propertie are
known, which in turn cabe used to give thersiing rateof an object The Navier
Stokes equations are therefpresented in chapterf@llowed byexamples of their
applicationto objects sinking through a fluidhese methods are latgsed to construct
atractableanalytical modethat attempts tdefine the correct functional dependencies

of a cylinder sinking through a column of fluMthich ispresentedn chapter 4.

Chapter 2 also describes timethodsof Molecular Dynamics, a computational
method which can be used to silate fluid at a partie level andavoidsthe complex
application of the NavieBtokes equation3his allows for the construction of
simulationsincludinga disc sinking through a fluid and a fixed disc within a streaming
fluid, as presented in chapter 6. The former is us@thtain pseud@xperiment data
which would be dificult to obtain in a laboratory, whilst the later provides a convenient
frame ofreferencehat allowsfor a detailedanalysis of flow regimes and fluid
properties. This information provides a deeper urnideding of fluid flow past objects
in confined boundary systems, and gigeglinginsight into fuure iterations o$inking

velocity prediction models

It is paramount to obtain an extensive collection of experiment data in order to
validate any analytidand computational resulggven in chapters 4 and B chapter 3
the terminal velocity of cylinders sinking through fluid are therefore determined
experimentally in a highly controlled laboratory setting, where parameters are

systematically varied to @untify theireffects upon terminal velocity.

It is also important to obtain the relevant transport coefficients of the Molecular
Dynamics force potential used during simulationshapter 6. These are required in the
calculation ofdimensionless numbetisatdescribe the floywvhich theoretically allow
for comparisonsvith experimentperformed indifferent length scale§ his data is

providedin chapter 5 using neequilibrium Molecular Dynamics simulations



Finally, the key results throughout the prdjace discussenh chapter 1n

addition torecommendations for future work.



2. Background Literature

2.1 Introduction

To betterunderstand howhe sinking rate of a waste package in DBD is determined, an
analytical model is presented in chapter 4 ghaticts the sinking rate of a aydler
through a column of fluid. This aims to providéractable solution which defines the

key functional dependencies of the simplifdindrical objectandcolumn of fluid.

To determine the sinking rate of a cylin@malytically, the friction applied to
the cylinder is first requiredAn accurate description of the fluid surrounding a sinking
cylinder is necessary ttetermine thidriction applied to the cylinderdém the fluid. It
is shown inthis chaptethow theNavierStokes equations for an incompressible fluid
are derived. When supplied with appropriate boundary conditions, these equations are

capable of describing the velocity, pressure, temperature and density of a given fluid.

Following the derivation of thBlavierStokes equationsgveral examples of
their application to sinking objectsegiven Foremost is thapplicationof Stokes
Law, which describes the sinking of a sphere through an infinite boundary fluid. This
illustrates how the NavieBtokes equ#ons may be used to obtain thieking rate ofan
object sinking through a fluid. Other methods are then presented which exparttieipon
many limitations of Stokelsaw, such as accounting for advective flows, finite
boundaries and alternate sinker georastr

Thefluid dynamicssectionof this chapteis concluded with a simple
dimensional analysis of an object sinking through fluid. This determines whether any
preliminary dependencies upon system variables (such as sinker density and length
scales) candobtained, prior to performing a complete numerical study of fluid flow.

It is later shown that the analytical model presented in chapter 4 has several
shortcomings, the origins of which must be identified before the iteration of future
models.Computatbnal methods aravourablefor this causeas they not only allovior
pseudeexperiments to be performed which wobleldifficult in alaboratorybutalso
allow for detailed measurements of fluid propertebe obtained withelativeease
Several poplar methods of computational fluid dynamics are therefore discussed in the
latter part of thishapteyalong withtheir applications irelevant studiet assess their
applicability. Finally, thetheory necessary to perforsimulaions using théMolecula



Dynamicsmethod igpresentedThis allows forthe application of these methods in both

the sinking disc and fixed disc simulations described in chapter 6.
2.2 Huid Dynamics

At a fundamental level, matter consists of particles. Modelling can beasedulate

each and every particle, however, even with the incorporation of state of the art
supercomputers, the magnitude of necessary calculations limits such treatments to the
microscalg24]. It is therefore important to simplify the engineering prob&rhand

whilst maintaning the desired level of accuracy.

Fortunately, at length scales appropriate to engineering, a continuum description
is found to be adequate. Continuum mechanics uses assumed constitutive relations in
conjunction with the laws of continuity to describe 8tate of a continuum using partial

differential equationf25].

Theprinciplesbehind the equations of continuitgn be traced bacdk the
concepts of Da Vindhwhich were notably followed b@astelliin the 17" centuy
[26]. Throughoutthe 18" centurythe fundamental methods of hydrodynamics were
establishedhrough contributions by botBuler and Beatoulli, forming the continuity
lawsin the form of partial differential equatiofa7], [28]. The continuity equations of
fluid mechanics include the equations of mass, momentum and energy conservation,

given as follows respectively:

g » (2.1

Q0

2y (22
i T_'Q Sl ”_ 5 (2.3

where” is fluid densty, o the fluid velocity vectorotime, ||- the pressure tensd®js
the energy per unit mass atdthe vector of heat fluxA detailedderivation of thee

equationss given inappendix A.
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The constitutiverelationsdescribe thealationshifs between the fluxes and
forces within a fluidusing empirically determined coefficien@ne of the most
significant constitutive equationstise law of viscositywhich describes the internal
resistance of fluids anariginatesfrom Newton[29] in the 17" centuy, before being
presentednathematicallypy Cauchy later in the ¥ocentuy [30]. Other important
conrstitutive equations includeourieiGs law of heat conductivityyhich relatesthe rate
of heat flow to temperature differend@d]and Fi ck 0s [32Wheesef di f f
constitutiverelationsare given irgreaterdetail in appendix B.

In thefollowing section it is shown how the continuity and constitutive
equations are used to derive the NaBrkes equatits It is assumed that the fluid is

homogeneous and inghroughout

2.2.1 Linear Irreversible Thermodynamics

When deriving the source strength of entrgpigee appendix A.4), it is clear thae
contributing fluxes are of differe tersoral characterand areherefore uncouple[83].

Entropy may therefore be given as

i 06 (2.4

where is the entropy source strength,is a thermodynamic flux an@ is a
conjugate thermodynamic forc&.postulate of Linear Irreversible Thermodynamics is

Curies principle, which states that all forceslarearly related to fluxes:

(2.5)

where0d are the phenomenological transport coefficieBtsbstitutig equation 2.5

into equation 2 gives:

r Ld L (2.6)

The energy source strehgnay only be positive; it is therefockear from equation 2.6

that the transport coefficients must also be positive.
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Curies principle determines that for an isotropic fluid, the symmetry applied
unto the second rank tensbrcan be decoupled tops@rate linear equations. These
linear equations represent the symmetric, antisymmetric and trace contributions of force
and fluxes. Assuming the fluid is homogenous (diffusivity is unnecessary) and the stress

tensor isnotantisymmetric, the decoupled lisreequations are:

. . Y (2.7a)
IL L —
0 0 5
\ 0 (2.70)
0 & 0 —5
N . 0 (2.7c)
0 & b —3

where ands are the trace and the traceless symmetric components of the non
equilibrium pressure tenser, and"Yis temperatureThe linear relationships &.7

were determined phenomenologically prior to Curies principle. The phenomenological

forms are:
L Y (2.89)
s oo (2.80)
e ™ (2.8)

2.8 i s Famas shosvn ib appehdix B.@&ith Qthe thermal conductivity2.& is
the vector f or misocodityas\sbown in sed@icn Bl@/keve' is the

fluid viscosity. The linear constant is the bulk viscosity, which ian additional
viscosity independent of Newtonbés Law.

result of flow compressibility34].

2.2.1.1 Navier-Stokes Equations

In this section it is shown how the combination of the continuity and constitutive

equaions yield the NavieStokes equations. These Naviiokes equations may be
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considered complete, in the sense that with the appropriate initial and boundary

conditions, they may be solved to yield the continuum flow properties within a system.

Although nd strictly one of the NavieBtokes equations, the previouslyen
mass catinuity equation (equation 2.is often referred to as such, and is necessary

when describing a continuum fluid.

The left hand side of the momentunmtiauity equation (equatio®.2) may be

expressed in terms of the partial derivatives, giving:

, g . T_‘ 03 o (2.9
(@] T o
Inserting guation 2.9 back into 2 gives:
2.1
. | (210

—a

0

The pressure tensor can be decomposed in terms of thestatdr pressurg and the

norrequilibriumpressure tensoy such that
||- nk o (2.11)

As thenonequilibriumpressure tensor is also a secoak tensor, it too may
be decomposed, therefore:

J E o (2.12
Simply substituting equatin 2.12 into 2.13ives the fully decomposed pressure tensor:
Fn ko (213

Equation 2.13 can now be inserted into 2di0ing:

”T— cdo 2R 90 ¢ (2.19

The constitutive r el aiscositymarslthe hulk visotlg Ne wt on

relationship (equations 2.8b and @.8re inserted into equation 2.14
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Finally, equation 2.18an be simplified to give the Navi&tokes momenturaquation,

—a

" — o0do nn o — ‘“n (2.16)
(0] 0)

—a

The final NavierStokes equation is the equation of energy. Analogous to the
momentumNavierStokesequationderivation, the decomposed pressure tensor,
equation 2.13s inserted into the energy minuity equation, equation 2.3he viscaity
constitutive equations, 28nd28c may t hen be inserted wit
conductivity, egation 2.&, giving:

o . :
Tf_ n'Q Y ‘! > ¢ O o dgo (219

whereu is the internal energythevelocity vector of equation 2.1g expanded and
rearranged to give the final form of the Nav&iokes energy equation in vector
Cartesian cardinates,
o . 2.1
l;,— QY n » > ¢ o g (219
The polar ceordinate and cylindrical polar eardinate forms of the NavieBtokes

eguations are stated irppendix C

2.2.2 Objects Sinking Through Fluids

The NavierStokesequations derived in section 2LA givea mathematicadescription
of a mo v contiguurh prapértebgvtich can theoreticallge used to determine
thefrictional forces applied to an object sinking through a flindreality, the

complexity of the NavieStokes equations makes their apgion problematic, and
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assumptions and simplifications aréenrequiredto reach a numerical solutiomall

butthe simplest ofise casés

Althoughnot the first of its kind, Lambrovides several examplesagpling
the Navier Stokes equatiorsdbjects moving through fluids. These applications are
instructive to discusthanks to their simplicity, beginning from a simplified

dimensional frame of reference.

Lamb applied the NavieBtokes equations to a moving object within a fluid to
determine flowdistributions and external pressu[8S]. Lamb investigated a cylinder
travelling perpendicularly to itsfinite length; this effectively reduced the scenari@to
dimensional ceordinates. Th& dimensional disc traverses a continuous plane of fluid,

which is at rest at an infinite distance from the disc.

Fluid

Direction of
cylinder motion

Figure 2.1 An infinite cylinder passing throughcntinuous medium of fluid, in a
direction perpendicular to its longitudinal axis.

Lamb used the continuity arguments of the Na@tokes equations to derive what was

referred to as a O6velocity potxamdy i al 6.

components of the fluid velocity by differentiation with respect to the relevantTdas.
derivedvelocity potential is equal te—® £ | wherea is the radius of the cylinder,

and—are the radial distance and relative angle to theroagdU is the cylinder
velocity. Lamb showed how differentiating the fluid velocity over the cylinder

boundary can give the pressure applied to the cylindef@asction of cylinder velocity,

I Notable examples of complete solutions to the NaSiekes equations inclugmwiseuilleand Couette
flow, both of which are shown, amastgpthers, by Berkgi59].
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which could theoretically be used to derive the objectveglocia s a f uncti on

driving force (such as gravity).

Lamb continued to apply the Nawi8tokes equations in pseudalnensions,
including the flow of an infinite elliptical cylinder and a cylinder traversing in a
spiralling motion. Nevertheless, thecorporation of a finite boundary inddmensions
is notably omitteddespitehe simplified reference framean earlysuggestiorof the
intricaciesinvolved in the application of the Navi&tokes equations to finite boundary

systems.

2.2.2.1 Stokes Lavand Spherical Sinking Objects

One of tle most populaapplications of the NavieBtokes equations is Stokes law,

which gives the relationship between the speed of a spherical object and its radius as it
moves through a viscous medilig®]. DespiteStokedaw only applyingo6 cr eepi ng o6
flow regimesit is instructive to derive Stokéaw in order to understand the

assumptions usdd achieve a numerical solution, and to illustrate how the Navier

Stokes equations can be used to obtain the sinking velocity of-tafirebject This

provides a basifor constructing a numerical solution which predicts the sinking rate of

a cylinderwithin afinite tube, as presented in chapter 4.

Because of the equivalence of inertial frames, the movement of an object
through a stationary fluid imathematicallyequivalent to the flow of a fluid past a
stationary object. This latter viewpoint is simpler to treat and therefore we begin by

considering this case.

-16



Figure 2.2: Flow paths of a fluid with an initial, unperturbed terminal veloCitypast a
stationary sphere. As the radial dista from thespherertends towards infinity, the
fluid velocity is again’Y .

For a fluid in steady state, thel © component of the Navigstokes momentum

T o
equation vanishes. For such aidl in a gravitational field, the NaviStokes equation

becomes
"0 0D nf ‘n o I” (2.18

Under the assumption of creeping flow, Huective term in equation 2.{Be left
hand side) is negligible in comparison to viscous forces. Equati® may therefore be

approximated, such that
nnoono |7 (2.19
Which, in addition to the incompressibility condition:
6 ST 1 (2.20

completes the field equationBhe divergence of equation 2.9 ves Lapl aceds

for pressure,
nn 7 (2.2)

Pressure can be redefined to incorporate hydrostatic contributions, such that
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0 § @ (2.22

Whered is the redefined pressure. This redefinition simplifies the following
derivations, whil st s tAssulmingbeuhdaresayeinoang L a p |
slip, fluid velocity would be identical to that of thehgpical object at the interfaget
uninterrupted at large distances from the object, therefore

n masgo b (2.23
o YasdaO% b (2.24
o masqo i (2.%%)

Where'Y is the unpetturbed fasfield flow velocity, zis the distance from the origin
(centred within the spherical object) antthe object radius. By obtaining a solution for
p, equatior2.19 may be used to derive the velocity distribution.

To apply Laplacebs equation to the fIlu

Cartesiarcoordinates to spherical polar.

W 10 08 —0éi % (2.269
@ 10 Q8 — Q& % (2.269
G 1 wéEi — (2.269

The value of anglé&o.cannot change the disiee of a point in space from the sphere.
Pressure dissipates uniformly from the sphere, therefore pressure cannot be dependent
on %o As a result, the componentofthepatan or di nat e Lapl aceds e

pressure as a function @écan be ignced, giving

th oo hopr Btirh @.27)
Ti iTi 1 1T— 110 Qt —
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Figure 2.3: A point in identical positionvithin a three dimensional space as described
by spherical ceordinates (leftand Cartesian cebrdinates (right Co-ordinate systems
are interchangeable using the relasibips in equations 2.26

Making the substitution to the formgf Yi | — gives
QY "Q'YT v (2.28
"o Y m
Q! G | (2.29
® Tl

Wher¢g is the separatiooonstant between equations 2.28 and ,2l29 solutions in

terms of each arbitrary functidhand' . Equation2.28is the CauchyEulerequation,
whilstequation2.30 s a f or m of LThgpartdderieatvesfrergqu at i on
equation 2.2'have effectively been transformed into ordinary differential equations.

The solutions of theCguehyBulkreguatioreagewaelltknownn and

[37], and therefore the pressure can be written as

(2.30

i 61 61 N Goei —

whered andd are arbitrary constants, and & é i are Legendre polynomials. The
0 component of equation 2.30ust vanish wheneveis greater than zerotherwisep

would be infinity ag reaches infinity. EquatioR.30 therefore expands to
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. . 6 6. . b6p . (2.3
n o - ‘l—(JOEI —I—E oweE + p

The velocitycan be expressed in sphericalardinates, such tha
o Yot ir—lYi QP—Q (2.32
To be compatible with the boundary conditio equation 2.32 must take the form

0 .
hobE i — (233
Equation 2.3%an then be used with the Navigtokes momentum equati¢2.16)to

show trat

ot DY, 2.
n ——WE Il — (239
q |
‘ o0 PO ., . (2.39
) p -~ —— YweEl —
¢l ql
o0 pw . 2.3
0 p - E‘— Yi Q¢ — (2:39
L Tl

With the velocity field determined, the stress elements can be calculateylirdrical

polar ceordinates, these take tifierm [38]

FO (2.37
- Lig P
., .17 0 pT L (2.39
- l— — T
T 11 7T —
Inserting equations 2.34, 2.35 and 2.36 into equations 2.37 angi&B8
0w QO | oy x o, (2.39
- — 0 — Ywel —
Ci
ow . 2.4
- Ei—‘ Yi Q¢ — (240

At the spheefluid boundary, equations 2.39 and 2ktome
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o o .
S 2 Yae i — (249
R
o - .
. Zvi e — (242
R

To get the total stress vector in thdirection equations 2.4d4nd2.42are summed to
give
Y Tt e e 2.4
Lt — ' T e i Pi Qe — (243
W
Farfield velocityU can be expressed as a vector, encompassing the respectoe-

components of equation 2.48ing:

o, (2.44
s T
Themagnitude of the total drag ford@ applied to the surface is obtathby
multiplying equation 2.44y the surface area of a spheréd# .

~

0O ¢ QDY (2.45

The roles of the fluid and spherical object may now be reversed, suchehat t

fluid is stationary and the spherical object is sinking under the effects of gravity.

The sinking ball will lose energy due to friction and eventually move at a
constant velocity, at which point the f ol
inertia. The forces acting upon the sphere can be described by a force balance equation,

such that
OO O O (2.46

where O is the gravitational forceQ the buoyancy force an® the drag force.
Equation 2.4%anbe inserted into equation 2.46 the drag force. Buoyancy and
gravitational forces are expressed as the miadlusinker volume and respective

densities, yielding:
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o - (2.47

which is the terminal velocity of a sphere sinking through fluid under creeping flow
conditions. In theory, the methods used to derive this drag fancksubsequent
terminal velocity) may be applied to any geometry, however these are analytically
unsolvable for all but a limited numbef cases. The-Bimensional dissubmerged in a
fluid is one such case; the same methodology used indiraeéhsionakxample can
givesthe pressure arourible discas:

A (2.48

ne
|

whereq is the Cartesian position veci{@9]. In polar ceordinates, this gives a radial
pressure dependency of:
s o P (2.49

e T

These relations will be used in the analysis-difBensional computational modelling.

It is ingructive to compare the applicability the spherical Stokes law to
preliminary measurements of cylinders sinking through a borehole, el#dsgit
obvious differencesThis helps t@scertainvhether there is a need for incorporating
additional complexitiegsuch asifite boundaries omore canplex object geometries)
to a numerical solution, or if the basic solution of Stokes law is almeadpnably
accurateA hypothetical spheris formulatedwith thesame volume and density as a
wastepackage. For the DBD reference pacKabe diameter of the sphere would be
0.98 m. Stokes law predicts the terminal velocity of this sphere taleésof
magnitudegreater than the preliminagstimategyiven in section 1Thisillustratesthat
Stokes law isn insufficient method fodeterminingthe sinking velocity of cylinders

within a tube and that one, if not all, of the simplifications made ® NavierStokes

The DBD o6reference packagedo refers to the Sheffi
concept sharing the canister geometry of the Sheffield PWR complete assembly Egnddm key

parameters of this package are an outer diameter of 0.36 m, height of 4.81 m andlamsitanf 6749

kg nt3,
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eguations, object geometry or boundary omission mushpeved upon for an

accuratesolution.

One of helimitations of Stokes Law arisérom the assumptions made
regarding the simplification of the Navi&tokes equation. The assumptibat the
advective term of the Navitokes equation can be negligible is true when the
Reynolds numbeiRe of the fluid isless tharD.1[40]. The Reynolds Number is a
dimensionless number that characterizes the magnitude of turbulence in a given system
[41]. The dimensionless natureRémakes it a useful method to reduce the number of
variables that describe a given system, simplifying comparisons between different
systens. TheRecan be used to identify which hydrodynamic methods are applicable to

a given system, and defined by

YQ * (2.50

whereQ is the hydraulic diameter. For an incompressible fluid (therefore of constant
density) it is cleafrom equation 2.5@hat for a low Reynolds number both the velocity
and diameter of the sinking object are required to be relativelyTlbevaforementioned
example of the sinking reference waste package would heeefac p 1T, many

orders of magnitde over the accurate range of Stokes law.

Severaimethods have been developed to extend the Reynolds number range of
the Stokes flow solutiormhese extended methods are not derived from the underlying
physics, but instead rely upon empirical data tosi@am the Stokes equation to that of

large Reynolds number systems. A common such expression takes the form:

] ME 50 (2.5)
Y - — P =
o 0
where0 is thedimensionless drag coefficief#0]:
« S (2.52
(0] — — T®
YQ uyQ

The right hand side of equan 252 contains 3 terms. The first represents Stokes law,
the second represents a thin laminar boundary layer and the third represents a constant
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terminal form drag. This solution is accurate uprt@ p 1. Because equatich52
makesU a function & Re which is already a function &f as shown by equation 2.50
the solution camot be solved analytically andsteadboecomes implicitThe empirical
nature of this solution means that the drag coefficient isdisassociatedith the
theory of hydrodgamics, and thincorporation of anydditional physicbecomes
difficult. Furthermore, the iterative natuwethe solutiomot only makeshe seekingof
solutions more complefand ofterambiguouy, butalsocomplicates the tractability of
sinking velocty dependence osystemvariables

10 ‘\.'
N

Figure 2.4: Drag coefficient as a function &e The straight dashed line represents

Stokes Law. The dots represent experimental data and the curved dashed line represents
the frictional drag given by thaterpolatedunction (equation 2.92This figure is

taken from an external sourpt].

Another omission of Stokes lawhsundary effects, abe surrounding mediuis
assumednfinite at all timesStudies into thisocalledd wal | ef fect & on s
date back to Newton in 16829]. It has beeronsistentlyproven that terminal velocity

is reducedat an increasing raeeswall effects become significgrarguably for diameter

ratios of 0.15 and abovd2].

In an analogous fashion ks works in 2dimensions described el in this

section Lamb applied the Naviebtokes equations to a travelling sphere within a

concentric, finite boundary. The final velocity potentid is wé | —

whereR is the radius of the containen ¢omparison, an analogous application of the

NavierStokes equations in an infinite boundary system yields a velocity potential of
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— ® £ { Lamb made similar assumptions of radvective flow as described in the

derivation of Stokes law, yet the final velocity potentiglarlyincreases in complexity
drastically. Thisundamental exampl#ustratesthe difficulty in incoporating finite

boundaries to analyticainkingsolutions.

Several researchers hamsteadcreated empirical soluti@with variouslevels
of success, many of which are validated against a vast voluexpefimentdata
produced by Fidleris and Whitmoj43]. The authors concluded thaiet most

consstently accuratesolutionis that of Francis, which contains the correction formula:
Yo 'y (2.53

whereY is the sphere velocity derived using conventional Stokes flowl asithe
ratio of sphere to container diamefté4]. This method proved to be accuratewithin
0.5% d experimental data, but becamnereasingly inaccurate whdin 1@ and flow

is norrlaminar.

Francis and Whitmoreoncludedhat finiteboundary effects benzeless
important with an increase Re and alternative solutions showed greater accuracy.
Munroederived a formula to describe the sinking rate of graifigging in the late
19" centuy, after discovering various neésoundary formulas underpredicted the
sinking rate whetf > 0.1[45]. Munroe derived several empirical equations for different
ranges ofl after collection over 600 sinking measurements. The most popular of

Munro& modelsis convenient due to its simplicity, where:

(2.54)

Munroe originally estimated his solution to be accuraigp to 0.3ll, yet Francis and
Whitmore proved the solution to have an accuracy of §¥t8% whenll < 0.6, andto
have the greatest accuracy over various solutions between B@30300Q These
values ofReare likely more applicable to latsinkingexperimentglescribed in chapter

3, and willbe usegrovide aink between apparatus ahtkrature.
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Although morerecent works have investigated wall effects at grdiafé6], the
complexity of the solutions are considerably increaaadflow regimes are again

restricted to smaller Reynolds numbers.

2.2.2.2 Cylindrical Sinking Objects

The sinking of cylindrical objects within a finite container isomeways

mathematically simplethan those of spheres. Bird, Stewart and Lightf88} provide

an analytical solution to the flow between concentrigVeng tubeswhich assumes

end effects to be negligible and flow to be laminar. A velocity gradient is shown to exist
in the annulus as a function of radial positmy. The authors derive the radial fluid
velocity distribution as a function t¢fieradial and axial pressure difference ower
givenlength. This is used to give the average flow rate, total axial thfboghand

friction applied to both cylindrical surfaces. It is important to note that the cylinders
were considered to be stationary irstexample, and flow through the annulus was
imposed by an arbitrary pressure gradiantyia thefluid displacementf a sinking

cylinder.

Finite concentric cylinders hawadsobeen studied in the application of the
falling cylinder viscometer. A studyy Lohrenz Swift and Kurat447] gave a complete
analytical methodology to obtain the viscosity of a fluid by measuring the velocity of a
cylinder sinkingthrough a concentric tube. Thaged a similar methodology to the
infinite concentric cylinder dBird, Stewart and Lightfooin addition toa continuity
argument of fluid flowing through the annulus due to the displacement of fluid at the
front face. The NavieBtokes equations and nshp boundary conditions were used to
give the radial velocity distribution in the annular region, which in turn was used to give
the frictional forceapplied to the cylinder via the fluid'his approach doe®taccount
for any frictional forces apploi eadyrte® meintt |
previous data, but the viscometer consistently over predicted viSc@sitywas

inaccurate when flow became turbulent.

1 Although this study focuses upon the measurement of viscosity to quantify aceisaogityis
interchangeable with sinkingelocity as the two are inversely proportional.
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The research of Lohren3wift and Kuratayave rise to a multitude of further
studies i finite cylindrical flow. Chenl.escarboura and Swif48] focused upon the
observed, and analytical solutions to, eccentricity in cylinder flow path. Their
observations led to the conclusion that the coupling of radial and longith@iedbm
induced an angular dependent shear stress at the cylinder wall. This resulted in cylinder
6tilté. The eccentricity and tilt were s
inversely dependent upon viscosity. It was postulated, therefor@thafinitely long
cylinder would remain concentric. In an attempt to remove these inaccuracies from the
vi scometer, the author states that cylin
efforts to centralise cylinders, the authors still observesttaio degree of oscillation,
which their study attempts to quantify. The study took an analytical approach of
expressing the distance from concentric origin of the radially displaced cylinder edge as

a function of angle and cylinder radius.

| coothe
-ccoth @ ——

Figure 2.5: A cylinder eccentrically positioned within a tube. The radial position of the
inner cylinder is related to the radial distance fromcihrecentricorigin as a function of
angle, cylinder radius and eccentricity magnitude. Figure taken from externa sourc
[48].

The same analytical procedure as described for the concentric viscometer is applied
using the dynamic radii. This resulted in a dimensionless correction tadimithe

original analytical slution:
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(2.55)

o
go)'alye]

whergl andf are the aforementioned dynamic radii, and

p | p & (2.56)
T% p I i @ 1 | Q Q

with %dthe ratio of ecentricity to clearancé he solution showed very good agreement
with experiments, with an accuracy > 9986 Newtonian fluids wheré  T@oand

flow is laminar.

Attempts have been made to apply the sinking cylinder visconoetenmt
Newtonian fluids. Ashex, Bird and Lescarbour9] tried this under the premise that,
at high values off , the annular gapan be simplified to a @imensionaklit. 2 non
Newtonianmodels, thellis (se€[50]) and power lawW51] models are applied to tisdit
region. This resulted in a partially empirical @wation factor, which can be applied to
the viscosity equation given in previous models. Results for both models were
compared with volume flow data froexperiments in polymer fluids, whertewas
concludedhat the Ellis model was consistently more acuthan the power law
model. The work of Eichatt andSwift [52] later criticised this approach, proving that
it was inaccurate at larger scales. These authors postulated that although the slit
approximation at such ranges is reasonable, it is a poor approximation at even the
slightest levels of eccentricity. Theygmosed an alternative analytical solution using
the conventional annular reference frame for both péswerand Bingham fluids that

gave < 1% error for strictly laminar flow within titie> 0.9 range.

It is clear from the research regarding the fallingndgr viscometer thahe
applicability of the various giveanalytical solutions appear to have the following

constraints:

1) Low Re analytical solutions repeatedly become inaccuraiReaiscreases to

beyond the laminar flow range
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2) Largell, analytical saltions sharply decrease in accurasy falls below
0.9.

More recent research this field is that of Park anldvine [53], who expandupon

these limitations by incorporating the frictional forces applied to the front cylindrical
face into the analytical solutiofhis was achieved using frictional values applied to a
disc via work from Brenndb4], which is used to give a dimensionless correction
factor to the terminal velocity equation. The work of Brenngnasvever an empirical
solution thereforethe sinking velocity is no longer relatemthe fundamental
hydrodynamics. The applied work of Brenner is also only performeld forg yiTo
extend his method over a widdr rangethe author applies asymptotic boundary
conditions at ttandll  p, and performs a Taylor expansion over the entire range

of Il. This gives a front face correction factor of:

0 p@rmoyPupepdpadux mkvu ¢ (2.57

Final results agree witexperiments within 0.6% error, howevilese experiments

were performee@xclusivelyin the laminar flow regime. The Taylor expansion &
found to produce unreasonable results at 1@y where he correction coefficient
increasesvelocity. Related research has been limited in recent years, likely due to the
rise of the sphericdlont face variant of the viscometer, referred to as the npetiée
viscometef55].

The flow through concentric cylinders at higliathan those investigated in
viscometry has also been the subject of previovestigation. Much of the work has
been experimental, suets thosef Quarmby[{56] who studiedlow within both
horizontal and vertical concentric cylinders. Tiheer tubeof these experiments
spannedhe enirety of the system. The ar investigated cylindsrofll between 0.11
to 0.35 andrebetween 6,000 and 450,000, using gas as the inlet fluid. Quarmby
notably concluded that the frictional factor is completely independd®é @nd thus
throughput velocity) withinthe availableaccuracy at these flow regim&3uarmby also
noted that the maximum fluid velocity differed to that of laminar flow, with
discrepancies between tAeegimes being a function of boRteand container

diameter.
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Shortly following his experimental investigation, Quarnfby] created a
numerical solution to turbulent flow through concentric annuli defir@lrilpw regions
within the annulus, with sepateturbulent flow solutiongppliedto each of them. The
Deissler turbulence modgi8] is applied to the first flow region neighbouritige inner
tube wall. The Von Karmen turbulence mo¢se[59]) is applied to the outer region.
The solution becomes highly complex; the Deissler model is a function of an empirical
dampening factor, which in turn is a functionReé¢and diameter ratio. The solution
becomes unsolvébd analytically, and relies upon numerical iteration.

For a given set of tube diameters, each model predicted the annular velocity
profile, friction factor andRe This solution not only determined the radial location of
the peak fluid velocity, but alstiscovered that this maximum has an effective radial
width, both of which are a function Beandll. Quarmby confirmed analytically that

the friction applied to the inner cylinder is constariRagreater thaw p Tt

The method of dualurbulent phae regions within concentric annuli has also
been investigated by Lee and PE®] who applied the Deissler diffusivity model to
the inner turbulent region. In contrast to the work of Quarmby, Lee and Park applied the
Reichardt eddy diffusivity mod¢61] to the outer annulus flow region. Usinghouse
experiments to validate the model, the authors noted that the shape of the front face of
the inner concentric object made a substantial difference to the turbulent flowsegime
A rounded, spherical front face to the inner concentric object was proven to give a
laminar flow pattern within the annulus, which progressed to turbulent at a certain
distance along the annulus as shown in figure 1.6. In contrast, disturbing theidlow p

to reaching the concentric object removady laminar flow region within the annulus.

It was also observed that flow in the outer region had minimal radial variance.
The authors concluded that the zeh®ar region wouldot coincide with the velocit
maximum, more so for rough surfaces. In comparison to the analytical solution, there
was O6gooddé agreement in radial velocity |
di ffusivity I engths and dexcell entitd agr e
final form the model is highly complex, validated exclusively for gaseous flaias

omits end effects.
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Outer turbulent boundary layer
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Figure 2.6: Flow diagram of a turbulent du#bw regime at the entrance to an annulus.
Image taken from external soui&®].

Sud and Chaddodk?2] investigated turbulent flow through concentric annuli for the
application of theoretical transport media. Unlike previous studies, these authors created
an analytical solution inclusive of end effects, giving rise to a thitwltant flow

region. This wok was later improved by Kotlow anwhite [63]. Both studies use the

same met hodol ogy for the fully developed
model for the inner r ayhypathesicfar theoutarcate. Ka r m;
This creates a complex numerical solution for the fully developed flow region, which
results in a nesteiterative solution. Both studies assume a smooth initial laminar flow
pattern at the entrance of the annulus, suchase observed by Lee and Park for

rounded frortface concentric objects. Kotloand Whitecriticized the work of Sud,

declaring that the local mass and momentum balances were not adequately satisfied.
Kotlow uses these mass and momentum balances t@ @engew laminar flow regime

at the entrance to the annular region. This results additionalseparate, nested

iterative solution to determine the velocity profile in the entrance region. Velocity

profiles and subsequent frictions observed in eachmeay® smooth functions of bolth

andRe giving excellent agreement with previous experimental data.

The solution of Kotlow and White uses thienplestgeometridorm of the front
face possible, yet &phasemultiple iterative solutioms required to gt a strong
agreement with experiment dakurthermore,iese solutions have mainly been

confined to gaseous, perfectly concentric systéinis clear that extremely complex,
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iterative solutions are necessary to describe friction within Regmnnular fow to a

high degree of accuracy. The complexity of these solutions makes the addition of
additional phenomena, such as complex front face flows and dynamic eccentricity,
likely impossible to implement into a sinking velocity modekimpler approach is
clearly necessary in order to achieve an analytical solution that describes the sinking

rate of a cylinder in terms of its functional dependencies on system variables.

Bates recently studied the terminal velocityswiking cylinders, alséor
application n DBD [22]. Bates used the empirical ColebrdéK] formula to give the
frictional forces applied to the annular surfadehe cylinder. Bates also used an
empiricallookup t abl e to give whédbsisscoeffédiceaen
guantifies energy lost through the displacement of fluid into the annular gap. Although
the empirical solutiois relatively simpe and showgood agreement with the range of
experimental sinkers used, the solution is not directly related to the theory of
hydrodynamics. Furthermore, the Colebrook formula is a function ®¢hehich
relies upon the unknown sinker velocity. Thiskasthe solution implicit, requiring
numercal iteration There is clearly a need to improve upon the model created by Bates
and to develop an explicit solution that provides a link to hydrodynamics and the

associated physics.

2.2.3 Dimensional Analysis

Dimensional analysis may be used to determine the proportional relationship of
terminal velocity and relative variables. This is done by finding the necessary
combination of variables that combine to the same units as the dimension of interest (in
this insaince, terminal velocity). For a cylinder deploying through an infinite fluid, the
dependent variables are cylinder racauforceF, cylinder height, cylinder density

", fluid density and fluid viscosity, which comprise of the following dimensions

Yo §y (2.589
we 0 (2.58H
0 (2.589
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whereL is length,T is time andM is masg65]. From equations 2.58is easy to

identify 2 dimensionless products as a result of identical dependencies for medium
densities and cylinder dimensions. Because thesendiores are identical, velocity

must be dependent on an unknown function of each of these dimensionless products,

such that

o o (2.593

5
R ¢ (2.59H
Yo Qo

The remaining dimensionless product is obtained by combining the dimension of

interestU with four other quantities, seeking the dimensionless product of
Yoo tQ (2.60

wherel ,1 ,[ and] are variables to be determined through dimensional analysis. It is
now possible to create a dimensionless product of each donemighin equations

2.58 Beginning withT and using the dimensional dependency of velogity\ascosity;
YUY om (2.6)
Cr p
Force is dependent on viscosity and gravity therefore

0 "0 T (2.62
VMi M p C p

Mass is dependent on density and gravity, therefore

-33



0 O T (2.63
0miIQ pCI P
Finally, length is dependent on velocity, diameter, density and viscosity, therefore
00 O 0 Tt (2.69
VMITQ poEQR pCl q

Combining the determined exponent values with the dirorless products gives the
dimensional analysis of a cylinder deploying through an infinite fluid:
N ¢\ R O S

L T
‘ ” 'Q

(2.69

As both functions in equation 2.@&fe arbitrary, the relationship between cylinde

velocity with sample density, radius and height may not be exactly determined.
However, the first component in thightt hand side of equation 2.66ows that the
combined dimensionality of length and density are to the power 2 and 1 respectively. It
would therefore be reasonable to assume that the velocity of cylinders will have a
greater dependence on geometry in comparison to density. Furthermore, the
unaccounted for effects of the container size would only increase the geometry

dependence.

This analgis provides a starting point for the selection and variation of cylinder
variables in experiments; if terminal velocity has the greatest dependency on cylinder
geometry, experiment resource glibbe focused on investigating geometric variables
However,because this analysis proves that cylinder geometry is coupled to cylinder
density inthe sinking rate equation, experiments should be repeated across multiple

densities.

2.3 Computational Methods

In section 2.1 it is shown how the continuum $ao¥t hydodynamics are deriveahd
several examples of their applications to objects sintkirgugh fluidsare given
Despite the eventualcorporation of both implicit and empirical methods, the only
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reasonably accurate methods of predicting the sinking rateyfnder using
hydrodynamics are limited to particular rangefetindll . Chapter4 attempts to

further the development of an analytical sinking model, howeivetll later be shown
that a purely analyticahodelis not conclusive, and alternative methods are necessary
to guidefutureefforts. This leads to a computatiomalestgation, which allows for

local fluid parameters such as pressure\aidcity to becloselyanalysed

Computational methods providenvenientalternative approaches $olving
the laws of hydrodynamicg&inite volume methods (FVMgreone of themost popular
computational methods in continuum medbaf66]i [68], where partial dferential
equations arapproximate throughout ayivencontinuum region. The frequenoy
these approximations is determineddiscretizing the domain iata mesh of control
volumes, with the field variable afterestiocated at the centi each control volume
[69]. The partial differential equations which govern the field variable of interest (such
as the NavieStokes equations and fluid velocity) are then interpolétexlighout the

domain.

Turbulence requires carefulmsideration when using FVM to model fluid
dynamics. A turbulence increaseso does the internal rotations within the fluid,
eventually to the extent that localized eddy currents and vortices form. These additional
rotations in the fluidyive rise to a radom and chaotic variance in field variables and

increased amount of energplost due to thdransferof fluid motion to thermal energy

Field variables expeneing turbulence can be quantified as a sum of their
conventional values and turbulentdtuations. This allows for a f@erivation of the
NavierStokes equation® somewhat lengthy process, but a full derivation can be
found in Versteeg and Malalasek7®]. The resulting equations ofotion are
commonly referred to as the Reyncligeraged Navier Stokes equations (RANS)

which include 6 additional stresses.

Various RANS methods exist which are capable of accounting for the effects of
turbulence on the mean flow rate, using modetietermine the additional stresses in
the RANS equations of motion. Turbulence models date back to the e&itgi2ry,
including the popular mixing length model proposed by Prd#dli| which calculates
additional stresses without the use of paditierential equationgOthercommon

turbulence models include thg kmodel,which has been used extensively in a wide
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variety of engineering applications, including wind turlin2], pollution dispersion

[73] and chemical mixingj74]. Theks modelincludes2 additionalpartial differential
equdions (oneo determine the turbulent kinetic energy, and another to determine the
turbulent knetic energy dissipation ratélheky model has been used to simulate
flows past objects in several studies, including a study by RabnthKarim

comparing Bnulations to experiments between 1G08900Re The authors found
good agreement with experiment results when determanriag coefficients and liftin
addition,the k§ model providechdequateisualization ofvortex sheddingalthough
alternative tubulence mdels showed better agreement at greatkres ofRe A study
by Lukes Hart, Potts and Haak@5] applied2 variants of the&k turbulence model to
simulate the flow around a thin disc to determine lift, drag and pitching coefficients.
The authors found good agreement with experiment data for onelof thedels,
which wasalso successfullysed to visualiz8ow detachment bserved in experiments.

However,data from the alternative] model showed a lesser degree of correlation.

Large Eddy Simulations (LES) are an increasingly popular alteeniiRANS
methods that involvéhe spatial filtering of eddigg6]. Large eddies are computed
the time dependesimulation, making the computing time relatively large
Contributions tahe mean flowfrom smaller eddieare incorporated usingariousé s-u b
g r imdd@ls, or even hybrid modelsigh incorporate RAN$77]. NotableLES
applicationgo objects submerged in fluid include a studyRajani Kandasamy and
Majumdar[78] which investigated the flow past a circular cylindeB900Re Results
showed reasonable agreement of flow properties with experiment data at thekear
region, howeverdivergence was observeat greater distances from the cylindera
similar study, Mukramilizuka and OookasedLES for the modelling of flow past a
square cylindef79]. The authorgompared conventional [EEmethal with dynamic
subgrid methods, whiclhadpreviouslybeen proven to greatly improwgon the
accuracy otonventional LS methodsThesedynamic LESmethodswvereultimately
unstable for flowgast thesquarecylinder. The authorsmplementedan improvement
to the dynamic LES methodhvolving the aeraging of trajectories in theagrangian

frame of referencayhich greatly improved thstability of simulations

It is clear from the literaturm regards to flows past objects thathRANS and
LES methodsdfer from the same shaamingsit her e i s cl early no

method of modelling turbulencespecially in regards to flows past submerged objects.
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The common process the distissed literatures to comparesarious methods with
finely tuned experiment data. For many applicationsapfoachacceptable, however,
with the sinking of cylinderghrough a tube, the frame of reference is not consistent
between experiment and modedli The mesh created during yme®cessing means that
the cylinder positions fixed using RANS / LES simulationgnd a@rue comparison

with experiment data isot achievableThere areelativelyrecent methodsat are
somewhat more universairect Nunerical Simulatios (DNS) extenslthe approach
of LENS by incorporatingeddiesdirectly into the timedependent simulationby
incorporatingall eddies of sufficient magnitude to cause energy dissiggBoh The
direct incorporation of such small eddy flows results in extremely fine meshes and
smalltime-scales, drasticallycreasing the computational processing time. This has
resulted inDNS modelling traditionallyeinglimited to the development of models
usedfor simulationvalidation,andselectexperiments which alienpossiblein

conventional laboratorig81].

The computational cost of DNS remains relatively large, despite its increasing
popularity and theontinualadvancesomputational processingurthermoreas with
RANS/LENS methodd)NS is meshdriven,restricting simulatns to a dissimilar

frame of reference to sinking experiments performed in a laboratory.

Meshfreealternatives in continuum mechanics are limited. One method gaining
popularity isSmoothed Paidle Applied Mechanics, or SPAM. SPAM a meskree
method inwhich the partial differential equations of continuum mechanics are replaced
by a finite number of ordinary differential equations. Domains are discretised using
free-to-move particles, each of which are considered as the centre of mass for a
continuum setion of cemoving mattef82]. Continuum variables can be evaluated at
any location using a weighted average of nearby partiElesconvenience of
performing simulations in a @shfree, Lagrangian frame of referenceiginally made
SPAMthe computational methaaf choice for this studyUnfortunatelyflow
instabilitiesoccurringin the wake of sinking objectindered the studyAt the time of
publishing the cause of these mistities isinconclusive andthe SPAMrelated

researchs thereforeomitted from thigroject The SPAM code developed for this

1 The length scales of eddiest at which energy dissipiation occurs is defined by the Kolmogorov
smoothing lengtti160].
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purposds complete and the aforementioned studies have been documented should they

be desired for any futuggrojects

An alternative approach is tgse particle based simulatioas opposed to
continuum mechanics. Molecular dynam{b4D) is a particle basewol for simulating
matter at the atomic levealvoiding the need to solve the continuum equations of
motion The method mtails the numerical solution of the motion equations of classical
mechanics fibcl as 8 et s oh gwhera @thtparticld ¢cafilfee r e n c «
considered as a point of mass. The technique is exact for a givepartiete force law
and therefee MD can be considered to generate pseudo experimental data. Statistical
mechanics provides the link between time ordered sets of potentials and momenta from
simulations and thermodynamic quantitigd has been extensively applied to
hydrodynamics, anddas been used to simulaeveral fundamental flow pattertist
arise from continuum mechanjdéscluding RayleighBénard convectiof83], [84] and
Taylor-Couette flow[85]. This provides an additional method to conventional

experiments to aid in the validatiamd developmerdf continuum theory.

MD has also been previously applied to flows past submerged olifeqtaport
both independsly [86] andco-depemlertly with Clementi[87] used MD to investigate
the flow past an infinite cylinder, which is reduced ®dimensional simulation of
flow past a discRapaport and Clemenised what was at the time a leading edge
simulation size op ¢ p T particles to detect flow patternstime wake of the disc. A
fixed-velocity inlet fluid and external field were used to maintain flow past the disc
object. The pair potentiaised to describe the intparticle forcess the WCA potential,
named after Weeks, Chandler and Ande{8&} a modified form of the Lenard Jones
potential, truncated and shiftat its minimum so that it is exclusiveigpulsive.
Rapaport and Clementi investigated the flow past a disRabhgpproximately 25 and
observed several flow patterns, beginning with the development of a stationary eddy
flow at the wake of the sphere, developing into an oscillatory wweikie vortices
shedding and pr@wating downstream of the digeurthermoretheyobserved a density
drop of 25% at the centre of eddy vortices. These turbulence observations were in
agreement with those observed in experiments and occurred at similar vdRees of
This shows that MD is a quantitatively suitable computational methodhfiataging
turbulent flow schemes that occur in nature, despadimitation of simulations being

performed irthe microscale.
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Figure 2.7: The observed turbulent flow regime of flow past a stationary circle. Eddy
vortices are seen in the wake of cirdiéese vortices develop at both sides of the circle
before shedding, causing the observable oscillatory flow at the wake. Figure taken from
external sourcg87].

Following on from theavork of Rapaport and Clemen@ui and Evan$39] (1992)
investigated@-dimensional flow past a stationary, -Gt plate, again using a WCA

fluid. The authors had success in using significantly fewer particles in comparison to
Rapaport and Clementi when observing turbulent flow regimes, showing that turbulence
observation imotlimited to simulations performed on largeale supercomputers. The
authors observed laminar flow up16 Re As Reincreased, leernating vortices were
observed, shedding from the boundary layer alternativéReaf 307 60. Cui and

Evans observed region of lower fluid velocity before the platedaegion with a

velocity of 23 times that of the inlet at the outer edges of the plate. Density appeared

uniform, with the exception of vortex centres.

Ishiwata andMurakami[90] later compared similar simulations to those
performed by Rapaport & Clementi, flow past an infinite cylinder irden2ensional
frame of reference, with experiments. The authors eeféthe investigation to a wider
range ofReusing a simplified hardphere potential. Symmetrical laminar flow was
observed at Reof 1, and stationary vortices at the wake of the difedtetween 6

and 33. At a greatd®eof 106 they observed osciltaly vortex shedding as observed by
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Rapaport & Clementi and Cui & Evanshlwata,Murakami Yukawa and It¢90] later
compared simulations with experimental dgantitatively using the calculated

friction applied to the infinite cylinder. Simulations were shown to agree within 15% of
experiments; this relatively good agreement with experiments (considering the

simplified potential used) further validates thelagability of turbulent flow studies in

MD. The authors noted that the friction calculations decreased in accuracy when using a
boundary less than 5 times the diameter of the disc, showing that finite boundaries
affectfriction coefficients in MDsimulatons, as they have previously been shown to in

experiments

Due to the computational cost of simulating a fluid using molecular dynamics at
a large enough sca& observe eddy flows, there has been limited research into the
sinking of 3dimensional objest One such study by Satf$1] investigated flow past a
stationary sphere in-@imensions, but was unable to simulate a large enough volume to
completely remove theffects of the boundaries, despiteplementinga simplified

elastic collision model.

Unlike other atomistic simulation tools (such as the Mdaelo method), MD
allows for the calculation of time dependent propef8&3i [94]. In particular, MD can
be used to determine transport properties for use in continuum meclfategair
potential used for MD simulations and the obtaining of transport properties is
consistentsimulationscould potentiallype peformed in the macrosca(esing methods
such as SPAM) that are analogous to MD simulatigakdating any observations to
greater length scale®btaining transport coefficients also allows for the calculation of
dimensionless variables suchRes whichallow for results to be compared with

alternative lengtiscale experiments or simulations.

For the various aforementioned advantages discussed in this chiptsrthe
preferred computational method for tpioject and will be used for the following

simulations

1) To simulate sinking experiments in finite boundaygtems that are ipnactical to
obtain in a laboratory (section 6.1).
2) To obtaindetailed flowinsightfor objects sinking through a fluid in finite

boundaries (section 6.2)
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3) Obtaining transportoefficients for characterising results from section 6, and
potentially allowing fortheir applicationin future continuum methods such as
SPAM (section 5).

The remainder of this section will describe the MD thewgessaryo implementhe

aforementionedimulations.

2.3.1 Molecular Dynamicg&quations of Motion

The equations of motion are used to describe the position and momenta of a particle as a
function of the intesparticle force law. The classical equations of motion for a position
g in arbitrary ©-ordinates can be expressed in both Lagrangian and Hamiltonian forms.
The Lagrangian equation of motierere developed in the ¥&entuy by Lagrange
[95], and describe motion via:

T O 0 (2.69

Q
Qo7 A A n

—a, —a

It can be seen in equation 2@t the Lagrangian is a function of both positwand
the rate of change of positiak The Lagrangian is described by potential and kinetic

energy components, such that
0 0 B (2.67)

whereK represents the kinetic energy dfndepresents the potential energy, as

discussed in further detail in sectidh®.4and 2.2.2espectively.

For Cartesian cordinates using the usual definitionskafetic and potential

energy the Lagrangian equation of motion becomes
a » 3 (2.68

where» is the position of a particiein Cartesian cerdinates. The force acting upon

each particle can be derived in terms of the potential derivative,

o L0 w3 (2.69
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where , is the gradient of particleat positionr. The momentum is also given through
the Lagrangian via:
T o (2.70
=t
wheresm is the momentum in arbitrary ewdinatesThis completes thedgrangian

equations of motion.

An alternativemethod to describéhe equations of motiowas develop by
Hamilton in the early 19 century[96]. The Hamiltonian i) can be relatetb the

Lagrangian via

O Awm 0 (279

Unlike the Lagrangian equation of motion, the Hamiltonian is a direct function of

position and momentum. The Hamiltonian equations of motion are given using

, 1o (2.72

—a

10 2.73

—a

Assuming the potential is independent of velocity and time, in Cartesiardowates

these equations reduce to

, = (2.74
a
- B 3 (2.79

Newt onds equat i edbydfferentiabgequation 2.74n redpeat of v
time andsubstituting into equation 2.7%his gives:

(2.79

» L
o

The Hamiltonian equations of motion are first order differential equations, in contrast to

the second order differentials used in tlagrangian equations of motion. The first
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order derivatives of the Hamiltonian often lead to simpler equations of motion as

opposed to the secomder derivatives of the Lagrangian.

2.3.2 Molecular Potentials

It is shown insection 2.21 that both of tb methods used to determine the equations of
motion use the force applied to each particle given frgotential,5 . This potential is

a function of particle positions, and can be broken down such that

B B » B »h» k  »hehi» 8 (2.77)

[97]. Thefirst component of equation 2..47 , is a function of individual particle
position; this usually represents a boundary condition or external force applied to the
particle. The second compondgt is the pair potential, which is a function of the

separation distande betweerR particles. This is therefore commonly denotetf as

For N number of particles, the double summation required to calculate the dependent
positions would, using thmost basic computational algorithm, result ilNamumber

of operation 5 is the triplet component of the potential, which would similarly
require a computational loop of ordét. Both the second and third components of
potential energy are ded as inteparticle potentialdz is the most important of the
inter-particle potentials, as it accounts for the largest contribution of pateticle
interactions. In reality, the triplebmponent accounts for approximately 10% of
potential energyn the liquid phase, which is relatively low considering the associated
increase in computational tinfi@7]. Instead, pair potentials are often modified to
includem average of triplet effects, sometin
potential. Further summations such as the quadruplet are known to existybulteen

proven to bensignificant in magnitude to the initial 3 potential terj@8].

There are many pair potentials commonly used in computational molecular

dynamics. Although some are more accurate at replicating the behaliear life

I This can be reduced using several algorithms, such as taking advantage of the fact that distances
between particle are equivalent to those betwgeras well as manipulating any potential-ofit
distances to only loop over particles witldafined neighboring aregsee section 2.2.8)
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matter, simple potentials are often used for theoretical or empirical applications in
computational molecular dynamias.key characteristic of any pair potentialthe
maximumseparatiordistancerequiredto evaluate the potentiatany given particle.
Largercut-off distances will result imlarger number oheighbouringparticles located
within each particles ctaff distance. Thisubsequently increases the number of

calculations required to evaluate the potential, and therefore the taiiopal cost.

The most basic potential is the haphere potentialy , which is zero beyond
a cutoff distancell (particle diameter)but infinite everywhere else. This was the
potential used in the first known implementation of computational molecular dynamics,
by Alder and Wainwright in 195[R9].

B i ” .
% > (2.78

‘l ”

cDHS

r

Figure 2.8 The potential energy as a function of distance for the hard sphere potential.

Two years later Alder and Wainright improved upon their initial molecular dynamics
approach usinganewmgon t i al known as [l0DeAltiodghstll t e s q
very mucha simplified potential, the square well potential includes a finite attractive

region before the infinite repulsive force region, such that
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H r, (2.79

%0 - ” l ]

whereUis the depth of the attractive region ani$ a parameter which defines the well

width relative to the hard sphere diameter

(DSW

Figure 29: The finite square well potential as a function of inperticle separatioh |,
as described inquiation 2.79

The soft sphere potential is another simplified potential which has seen widespread use
in MD thanks to its simple form. By omitting the attractive potential region, a simple
eqguation is used to give a gradual potential increase:

" (2.80

%0 - =

wherekmay be an arbitrary constant w8ch de
The potential replicates the hard sphere mod&stb. Although the potential does
not approach absolute zero for a long distance, it is normally truncated at a fhafe cut

distance An example of the potential f{d2 ¢ can be seen in figurelD.
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Figure 2.1Q The softsphere potential as a functiohparticle separation distance.
The steepness of the curve is definedkbwhich is 6 in this example.

A more recent potential, somewhat similarto the-soft her e, i s known as
repul sived potenti al . softremlsive patdentialapprgachesn g t
a given maximumt] at zero. Furthermore, the soépulsive potential has the benefit of

trending exactly toward zero at the given-offtdistance, denoted.

i ‘ (2.8

The softrepulsive potential is again considered a simple potential in the sense that it is

computationally cheap and easy to use.
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Figure 2.11 The softrepulsivepotential as a function of separation distanceBelow
the cutoff ,, the potential gradually trends to the maximum

A more realistic and widely used pair potential is that proposed in 1926 by John
LennardJones:

(2.82

%o  T- - —

The Lennardlones poteral was first used in computational molecular dynamics in
1964 by Rahmafi01], where the potential and relevant parametense developed to
approximate experimental data of an Argon gas. The first-oraaket termn
corresponds to the repulsive part of the potential; this was originally an exponential
term, but was simplified for computational ease. The second-braeket term
corresponds to the attractive well. Despite its relatively high level of accuracy, the
attractive potential gives rise to large-ait distances, making simulations

computationally expensive.
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Figure 2.12 The Lennard Jones potential as a function of separation distanthe
potential exhibits an attractive and repulsive component, which can closely replicate
experiment data using carefully chosen input variables.

2.3.3 Boundary Conditions

A given container, or O6unit ddeuhdarpy of par:
conditions will experience several inconsistencies over time. Most obvious is that of
particles being likely to exit the unit cell as time evolves, altering the density of matter.
Furthermore, molecules near boundaries will experience lessepartecle forces than
molecules at the centre of the unit cell. Boundary conditions must therefore be imposed

onto MD containers to mitigate these inconsistencies.

Several types of boundary conditions exist, some replicating different types of
boundariegound in nature, as well as handling these boundaries at different levels of
complexity. In this section the boundary conditions applicable to this study are

described.

2.3.3.1Periodic Boundaries

The periodic boundary methagla tool used to simulat®ntinuous blocks of matter
created by a given unit cell being replicated in all directidhgs is materialised by

reinserting any particle which exits the given unit cell instantaneously apfuesing
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face. The method is visuatid in figure 2.3 for a finite section of an infinitely

repeating lattice.

O o 19 o 9 0
e e O
- T : " _—
o & e e
©C o 19 o 19 o
O e O
_ //' - P
o &, e e
C o 19 o 19 o
O e O
o ¥ o & 5 ©

Figure 2.13: A repeating periodic boundary waell. The grey particle represents a
particle undergoing a boundary interaction, where it can be seemberethe same
unit cell at the opposingdz.

An example of a particle crossing a periodic boundary is shown in dark grey. The dark
grey circle represents the particle at a given time, whereas the dotted circle represents
the same particle after an iteration of the simulation, which kesteze the given unit

cell at the opposing face.

As with particles themselves, intparticle forces must also transcend across
each periodic boundary, so as not to give rise to pfaaee irregularities and errors in

energy conservation.

Consider a repeatingeriodic cell wher® ¢i (i is the pair potential cut
off distance). In this example, particles cannot interact with the same particle multiple
times. As a result, the nearest image of any given particle must be the only image of
that particle close enoumto interact. Oly particles within a distande/ 2 from the

origin of a particle therefore need to be considered, as illustrated by the solaleparti
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centred square in figure 2.1%his is known as minimum image convention.
Furthermore, the consideradea is even smaller than that of the square, due to the

spherical nature of the pair potential.

The extended boundary forces are viseais figure 2.14showing the inter

particle interaction area of a given particle with 0 7¢.

-----------------------------------------------------------------------------------------------------------
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Figure 2.14 Inter-particle forces extended over a periodic boundary. The blue coloured
particle has a force interaction area as shown by the dotted circle. Each patrticle
interacting with the blue particle is shaded grey.

Each interating particle is shaded grey; it can be seen that one of the interacting
particles is located over a periodic boundary. The incorporation oflcoasslary

particles is achieved using the condition:

|

VB ImEe b O (2.8%)
b

VB ImEe b O (2.8%)
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wherew is the xcomponent of the intgrarticle separation.

2.3.3.2 Elastic Boundaries

Elastic boundaries conserve kinetic enegyd are a simple method of sintuig the
interaction between a neguorous containment barriek particle is reflected from a flat
elastic surface at an angle from the normal equal to the angle ofniceids illustrated
by figure 2.15

Figure 2.15 An elastic boundary condition indlx axis. The grey particle travels from
below to above the boundary during a simulation evolution. The elastic boundary
repositions the final particle position as if an elastic collision occurred, as shown by the
dashed outline particle.

For an interactin with a boundary perpendicular to a Cartesianrcdinate axis, the
angles of incidence-and reflection— are equal. As such, the boundary condition
becomes highly simplified; for a collision with a boundary perpendicular t® dixes,
thecondition becomes:

O » cQ (2.84)

Wherew is the position of a particle after a boundary interactiondsisdhe distance
from the particle to the boundary in thdirection. They component of momentum

must also be inverted, sitypusing:
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n n (2.89

There are several other boundary methods of note; these includevsibbeundaries,
where the normal velocity component of a particle is removed when interacting with the
boundary. Mirror boundaries are anotheundary method, where a particle is created

at an equal distance from a neighbouring boundary at the opposing side. The drawback
of this method is it being computationally expensive (due to additional theoretical
particles) as well as being comparativebmplex. Furthermore, if a finite potential

such as the sofepulsive potential is used, an interaction with a strength exceeding that

of the finite potential will result in particles escaping a boundary.

2.3.4 Temperature Control

In MD temperature isatculated using the thermal kinetic energy,

- (2.89
l!) s
ca
wheresm is the momentum vector of partidleas introduced in section 2.2.1

Temperature is related to the time averaged Kinetic Energy through the Boltzmann

equipartition. For a simulation witkdegrees of freedom per particle, this deduces to

6y (2.87)
C

o

whereQ is the Boltzmann constant, afalOis the average kinetic energy. The

instantaneous temperature is therefore:

0 (2.89

“YO —
U M

Q~| I

It is clear from equation 2.88 that Temperature is directly related to particle momentum.
The Hamiltonian equations of motion conserve total energy, which when used with

energy conserving boundary conditsofsuch as periodic and elastic), create a
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thernodynamically isolated syste(also referred to as microcanonicaénsembl®.
Whenasource of energy iadded to such a systdia throughan external force)

particle momentum (and therefore temperaturd)imgérease continouslylhis is true

for an dject sinking through fluid, where the steady conversion of gravitational
potential energy to kinetic energy would cause the system temperature to increase,
makinga seady stateinobtainable Fortunately, thenostats can be applied to the
simulation to add or remove kinetic energy at such ahatensures the system is kept
at a constant temperature. Several thermostats which have been developed for this
purpose will therefore be presented in the followinlysections, eactvith varying

degres of complexity.

2.3.4.1 Momentum Rescaling

The most intuitive method to control temperature is to simply scale the kinetic energy.

This is achieved by multiplying the momenta of each particle by a scaling coefécient
- - (2.89

It is clear from equation 2.8Bat:
Yo GumO (2.90

The scaling coefficient can therefore be calculated using:

N (2.9
- Ve

Momentum is rescaleaftertemperature is allowed to deviateay from a specific

value, therefore the diabc thermostat does not generate a known canonical ensemble

1 Ensemble is a term used to describe a collection of particle systems with various microscopic states, but
identical macroscopic states. An ensemble can be described as microcanical when the particle count,
volume and energy are kept constant.
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2.3.4.2 Gaussian Thermostat

The Gaussian Thermostat, also referred to as the Gaussian Isokinetic Thermostat, was
created simultaneously and indepentlly by Hoovel[102] and Evan$103]. The

Gaussian thermostkéeps a constant temperatbeforefluctuationsoccur,

maintaining a canonat phasespace distributionThis is achieved by modifying the

eqguation of motion, such that

To satisfy the temperature constraint, the instantaneous scaling parameistrbe

equal to:

B3 Gem (2.93

B ™

A Gaussian thermostat prevents temperature from fluctuatngecessary requirement
for generating the canonical engge. However, Evans has provat the Gaussian
thermostatted linear responsesisiilar toone obtaned using a therostat whichdoes

generate the canonical ensemil@4].

2.3.4.3NoséHoover Thermostat

Noseé developed a form of mechanics more general than Newton, Lagrange, Hamilton
and Gauss. Nosé mechanics allows thermodynamic constraints to be easily incorporated
into the dynamics. A Nosé thermostat was tlgwed by extending the phase space to
include the effect of a thermostat and its coupling. In the extended phase space, the

Hamiltonian becomes:

— A . ' (2.99
O i — % — QY0 Q P a d
ca QU
wherer) is the coupling momentum amds a scaling coefficienf) can be considered
as the associated mass of a fictitious heat sink; this effgctiedihes the strength of

interactions with the molecular ensemfl85]. Nosé suggestad values of @) QY
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The+1in the final right hand side component reflects the additional degree of freedom
associated with the heat bath. Using the Hamiltonian to cal@,ldte momentum is

scaled using
- (2.95

The Hamiltanian in equation 2.9%ads to equations of motion which involve an
awkward time scaling. Hoover later improved the method to replace this scaling with a

friction termg [106]. The NoséHoover Hamiltonian is:

- -0 . ] (2.99
0 —_— %0 —— QYO Q d
ca C
The equations of motion are derived from the Hamiltonian to be
> = (2.97)
a
- . (2.99
~ B C_d_ 0 MY
0

It is clear that-is proportional to particle momentum (and thus velocity), which
has a constant rate of change when kinetic energy is at the required value. High values
of O result in a strongoupling tlermostat, similar to that of the Gaussiarscaling.

Low values ofd give rise to a weakoupling thermostat, which allows for fluctuations

in temperatte and the creation of a canonical ensemble.

2.3.5 Pressure Calculation

In molecular dynamics the ggsure of an ensemble usually refers tartheroscopic
pressure, which is commonly calculated using an average ofsttamtaneoupressure
calculated at each partid&#07]. Expressing this average using a simple arithmetic

mean, the macroscopic pressuris givenby:
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(2.100

whereQis the dimensions of space. The first term orridjet hand side of equation
2.100is the pressure contribution through kinetic energy. The second term is the
residualpressure contributions through particle interactions; assuming there are no

additional external force fields, is simply given through the pair potential.

2.3.6 Initial Conditions

TheHamiltonian equations of motiagiven in section 2.2.4&re acoupled set of first
order ordinary differential equations in positions and momenta. Tfieskegrees of
freedom require initial value&or simplicity, a 2dimensional lattice is described in this

section, although the same principles can be applidditmensions.

For a seHstarting MD algorithm to resemble a flugither the particle positions
or velocities require a randomised initial distributitins advantageous to initialise
particlesin a defined lattice structure with randomized velocitgnthllow the system
to reach an equilibriunThis ensures an even distribution of the pair poterhal
practice, the chaotic nature of fluids makes the particular choice of lattice superfluous,
as particles should hold no resemblance to their initidfigoration afterthe
equilibrium phask In 2 physical dimensions there are only 2 regular lattices, ssquar
and triangular (see figure &) The square lattice is the easiest and most convenient

choice for a fluid.

1 With the asamption that particles are distributed in a consistent manner such that density is continuous
throughait the system

- 56



Figures 2.16 Lattice configurationsn 2-dimensions, including a square lattice (left)
and triangular lattice (right).

The easiest and most convenient method of constructing a square lattice is by placing a
given numbeD of particles in thevdirection. This row of particles can then simply be
repeated) number of times. The spacing of both columns and rows can be adjusted to

the desired fluid density.

Giving each particle in a MD simulation a random stgrtielocity ensures the
molecules quickly equilibrate to a fluid representation. The initial velocity can be given
using a pseudoandom number generator as given by Ho¢¥68]. The function
returns norsequential values between 0 and 1, whightmareplicated exactly using
given starting parameters (the ensures that multiple simulations running on the same
program are on an equal footing). Simply subtracting the initial value by 0.5 before

scaling temperature is an efficient method to randowhizaetion.

A caveat of the random velocity initialization is that there is no guarantee of

eqgual direction distribution. The linear momentum can be made to vanish exactly via

CualeY (2.10))

U

whereGa&)s the average momentum vector prior to the momentum scaling. Once the
net momentum has been zeroed, the velocities of particles may be adjusted to the
desired temperature. This can be easily performed ustngiomentum rescaling

thermostat.
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2.3.7 Integration Methods

The approach to solving the Hamiltonian equations of motion aesl lmasfinite
differences, wheréme is discretised into intervals of durati®a The position of a
particle at timed 3-0can then be written as a Taylor series expansion, where
.. . .. Yo Y (2.109
»O0O Yo »0 »OYOo »PO— PO— 8
CA oA
Numerical methods derived from this Taylor expansion may be used to solve the

Hamiltonian guations of motion, several of which are described in this section.

2.3.7.1 Euler Integration

The simplest method of integration is the Euler algorithm. Euler is-atseting
method of integration, meaning that it is independent of any previous @articl
information. The algorithm uses thaylor expansion (equation 2.1)02uncated after
the Flderivative term, giving an error of ord¥o [109]. For positions and velocity,

these equations of motion become:

»O0 YO » 0 » oY (2.1033
It is clear from equations 2.1@Bat the respective derivatives (velocity and
acceleration) are assumed to be constant throughout the timEmtepmolecular
dynamics simulation this is seldom the case, as a change in particle separation results in
a change in inteparticle forces. The Euler method must therefore be used with low

time steps in order for the acceleration approximation to bemahk/ accurate.

2.3.7.2 Verlet Integration

The Verlet integration algorithm is a recurring algorithm in physics, and one of the most
common algorithms used in Molecular Dynamics following its creation by Loup Verlet
[110], [111] The Verlet algorithm is derived from summing a forwandl backwards

Taylor Expansion for position
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Yo Yo (2.1048)
23]

»0 YO »0 »OY0 »O— »O—
CA oA
.. ‘ .. Y Y (2.104)
» 0O Yo > O »O0OY0 »PO0— P»PO— B
CA oA

The resulting expression is truncated at the terg®in Rearrangement then gives:

Verlet is superior to Euler in that a centred difference approximation is aistef
accelerationwhilst the omission of a velocity calculation results in an insignificant
increase in computational cost compared to the Euler methdihwback of this

velocity omission is that théerlet algorithm is therefore not salfarting, ad each

particle must be assigned a random velocity at the initial step. Furthermore, the velocity
of particles is often required during MD simulations, in this case an additional
calculation is required to derive velocity using previous particle positramese:

»O0 Yo » o Yo (2.109

o 0 > O <
cYo

There are many adaptations and improvements to the Verlet algorithm, including the
leapfrog algorithm which introduces velocity into the equations of motion using an
intermediate calculation of velocity. These algorithms are not covered in detail, as

attention is instead turned to the Ruigédta family of algorithms.

2.3.7.3 RungeKutta Integration

The RungeKutta algorithms ara family of integration methodieveloped ithe early
20" centuryby Rungg112] and Kutta[113], who appliedhovelroot finding techniques
to methods of integratiotunlike the Verletand Eulerlgorithns, the RungeKutta
methods use a series of calculatidasing the time step to perform averaging. This

makes the integration method sslérting.

The RungeKutta algorithms use the Taylor expansion truncated following the
first term tocalculate the intermediate stages of integration. Each intermediate

calculation therefore takes the same form as that of the Euler method. For a second
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order RungeKutta method (RK2), the first of the intermediate stepp ando p

are:
»p >0 »OYO (2.10%)
op o0d6 o oY (2.108

The second stage of the RK2 algorithm repeats the technique of the previous step, but

using the intermediate positian p and velocityo p :
>»C¢ »O0 »pYO (2.109
o¢ o0 opY (2.110
Finally, the2 intermediate steps asemmed using a weighted averaged.

> > o 2.11
p A (2.111

»0 Yo » 0O

. o o . 2.11
o6 Yo oo pccyo (2.112

The fourth order RungKutta (RK4) methods are calculated in a similar manner, using
four intermediate steps. The fistep is calculated identica that of Euler and RK2.
The following steps agairepeat the process using the intermediate particle positions,

using additional steps to calculate positions and velocities at hglf where

: Yo (2.1133
> G »0 »p—
C
S’/‘
¢ o006 op Yo (2.113h
‘ Yo (2.11%)
» O »O0 »C —
C
: Yo (2.1131)
(olNe) o 0 o ¢ —
»T »0 P»oYo (2.113)
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ot o0 o oYo (2.113)
Each intermediate step is again averaged, using

»p »C »o »T . (2.119
Yo
¢ o o ¢

»0 Yo » 0O

o o o 2.11
P ¢ 20 o1 g (2.119
() o o ()

o0 Yo o 0

RK4 algorithms have an associated error deoVo , a significantly greater accuracy

in comparison to thRK2 method ¥o ) and the \érlet method¥o ). This increase in
accuracy comes at a greater computational cost,thetRK2 and RK4 methods

requiringtwo and four evaluations of tleguations of motion per time step,

respectively. This makes the RK2 method twice as computationally expensive as the
Euler and Verlet methodsget similarin accuracy to the latteFor most applications of
computationaphysicstheaccuracy oRK4 provides the best tradaff between

computational cost and accuracy, despite being four times as computationally expensive
as the Verlet method 14], [115]

2.3.8 Simulation Optimisation

For an MD pakwise ptential described in section 2.2tBe force applied to each
particle'Gs given by the sum of contributions from every other pariiefor a
simulation of0 particles, calculating this separation distance would naturally lead to an

0 loop of floating point operations.

The link-cell method is a commonly used aliglom that greatly reduces the
number of pair interactiof&16]. The link-cell method first discretizes a domain into

smaller sectors as sha in figure 2.7.
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Figure 2.17: A 2 dimensional simulation area discretized into smaller cells of width
greater than the pair potential interaction lengch square has 4 neighbouring

squares to calculate particle interactions due to the symmetry of Newtonian mechanics.
Neighbouring cells are illustrated for cell 2.

The width of each sector is greater than the potential interaction length. Eacle particl
therefore only required to search for neighbours in adjacent cells. In molecular
dynamics, the pair potential is equivalent in magnitude between@ams’Q &8s such,
bothinteractions can be determined during one pair iteration, therefdreethés only
required to interact with 4 of the 8 nearest neighbours. Care must also be taken to adapt

and omit relevant neighbour cells for periodic and reflective boundaries.

The link-cell method then loops through each of thparticles. An array is
used to store the single O0headdé particle
checked to see which cell it resides in. Before each pafiiglset to the head of that
given cell, the previous head of cell parti€ls stored ina separafel | hksd 6 arr a
at the position of thdisplacingparticle’QFinally, all particles within a given cell can
be identified by daisghaining through the linked list array using the value stored
within each element to identify the next, starting atpbsition acquired by the heafl

the given cell.

Reducing the number of calculations is just one method for decreasing the time

taken to complete a simulation in MD. A prevalent method to decrease computational
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time is to simultaneously spread @alktions over multiple processor coresferred to

aso padler | p r o Paralled procegsing can be traced back td¢h& O[1LE],

usingmar chitecture commonly r efhesinvovel t 0 as
severaprocessorsimultaneouslyomputingdifferent functions, allowing for data twe

passed from one processor to the h&k8]. The adoption of parallel processing in
computational physics and MD increased following the introduction of commercial
machines, such as the CRAY119], [120]

As processing power increased over the following decades, so did the magnitude
of possible MD simulations and the requirementsicalableparallel processing
algorithms. Several algorithmsgere developedhetre identical functional units could
be simultaneouslyrocessed under a common cohfi@1]. Some of the moswidely
adopted methodserepublished in 199 by the Sandia National Lalaories[122].
The Sandia research outlined thsealablealgorithms for parallel processing; the firs
assigned each process a fixed subset of atoms, the second assigned each processor a
fixed subset of inteatomic forces to compute, and the third assigned each processor a
fixed spatial region.

Parallel algorithms have resulted in large increaséseiachievable magnitude
of MD simulations, howevether implementation increases the complexity of
simulations As a resultJarge propaiions of modern researchpgrformed using
packaged MD software developedeamsNumerous packages have been dewedop
andsuccssfully applied to hydrodynamics; to name a feve, open source GROMACS
packagd123] has been used to simul&euette flow in concentric and ecceatr
cylinders[124], andESPResS§l25] has beemsedto modelelasticobjects flowing
through fluids inthe applicationof bacteria in blood126].

As the complexity ofparallel MD solutions continude increasavith the
incorporation ofgraphical processingnits[127], a decision is often made éither
utilize complex,optimizedsoftware or utilise relativelysimple software that can be
seltdeveloped and maintainethe latter approactives complete control over the
simulation,allowing the developer tatlor the code to the specific problehowever
they seefit. Perhapsomewhat anecdally, this creation process is also likely to aid the

d e v e | ondeestarsdibig ahe methodologyof Molecular Dynamics
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2.3.9 Transport coefficients from Molecular Dynamics

Calculatingthe Reynolds number afMD fluid allows for observed phenomenad®
characterised to a dimensionless paraméteais theoretically allowanyobservations
to be applied to any given fluid or flow scenarldne shear viscosity of the potential
must first be acquired before the Reynolds number can be deterBqmelbrium
statistical mechanics provides a theoretical framework in which shear viscosity (or any
of the NavierStokes transport coefficients) is linked to properties of the force law
which governs the interaction of the constituent atoms of a fluid. The redapois
known as a GreeKubo formula. For the specific case of shear viscosity, the Green
Kubo reldaionship for an isotropic fluids given by:

[ , (2.119

BT B Y

whereP is theviscous stress tensof,is volume,T is temperature and the term in angle
brackets is the equilibrium time correlation function of the stress. The instantaneous
stress tensor ay be calculated from the time averaged virial which is related to
intermolecular forces. The stresgess autocorrelation function which measures
equilibrium fluctuations in the stress must be calculated in a molecular dynamics
simulation. Historicallyhe GreerKubo route to shear viscosity has proven to be
problematic in practice, largely due to poor signal to noise ratio in the calculated time
correlation function of a given property. A second reason is that the autocorrelation
function possesses a ptime tail, making the integral difficult to evaluate due to long
computational timefL04]. Advances in computational power have however somewhat
alleviatedthe issue of longime tails, and recent studies have shown that (for certain

potentials) Gree#Kubo can be a leading method in determining shear visqa&8j.

There is also debate regarding the applicability of the Gkeso relationgor
shear viscosity specifically i-dimensional fluid§129]. For these reasons, rron
equilibrium molecular dynamics (NEMD) methods are often more practical when

calculating shear viscosity.

In direct NEMD, the simulation closely replicates the process as it would occur
in nature. In the case of planar Cteadlow, particulate walls enclosing the fluid are
moved relative to each other to generate a linear velocity profile. The viscous stress is

calculated during the simulation and then the shear viscosity may be calculated using
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Newt onds | awhere &re sevieral probteing wyth thisTmethod. The first
problem arises in the nature of determining viscosity, shear viscosity is inherently an
equilibrium property, therefore viscosity must be calculated at multiple rates of shear
and extrapolated to detemma the zereshear value. The second issue arises when
attempting to remove the viscous heat generated (which if left unchecked, would cause
the fluid temperature to rise indefinitely, preventing a steady state from developing).
Using a thermostat embeddedhe walls only works at low shear rates, beyond which
the heat cannot be removed fast endd@®]. More importantly, with direct NEMD the

fluid is inhomogeneous, due to generated density and temperature peafileg to a

thermodynamic state which varies locally throughout the fluid.

Synthetic field NEMD is an alternative to the boundary driven or direct methods
of generating nowequilibrium flows. The basic principle is to modify the equations of
motion (insome cases this involves abandoning Hamiltonian dynamics) so as to mimic
the usual thermal boundary conditions driving the flows. The result is an algorithm
which is spatially homogeneous, gives bulk transport coefficients directly, and can be
used to stuglthe behaviour of fafrom-equilibrium states. A general transport
coefficient,L, is then obtained using linear response theory:

W DO (2.117)
U IOEI(I) E_lE
Wherel is the conjugate phase variable at timgependent upon the external foFce
In the case of shear viscosity, the variablés the relevant element of the viscous
stress tensor anddtyeneralised forcé, is the strain rate. A thermostat (or ergostat)

must be used otherwise the lii® H>cannot be takefi04].

An important ingredient of synthetic NEMD algorithms is the use oflLees
Edwards boundary conditions. In this scheme, the usual periodic boundaries are
modified to be compatible withgnar Couette @w, as illustrated in figure 2.18
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Figure 2.18: The LeeEdwards periodic boundary conditions. As particles transverse
the displacedaxis boundary, they effectively-enter the periodic lattice at an offset
position, and are also givem offset velocity.

2.3.9.1 The SLLOD algorithm

A modified Hamiltonian for generating planar Coudlibev was proposed by Evarmes
al [131]:

(2.119
‘0 0 A0

whereHo is the standard Hamiltoniangp is thestrain rate tensor arggandp are the
generalised positions and momenta of the fluid atoms. The term involving the
summation represents the coupling of the external field (in this case the transpose of the
strain rate tensor) to the phase variables gsethe dyadié, gp. It was the presence of

this dyadic that lead Hoover to name this algorithm as the DOLLS tensor algorithm

after the Kewpee Doll.

The resulting equations of motion derived from the modified DOLLS tensor

Hamiltonian are:

1 Consisting of two parts (position and momenta)
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Whenn¢ has a single, nediagonal componerof velocity, standard planaroQette

flow is induced. These equations of motion can be used to drive adiabatic flows.
Howe\er, for reasons mentioned earlier, a thermostat must be employed to remove the
heat produced irreversibly through the conversion of work. A thermostat can be
included in the equations ofotion as described in section 2.2.4

Very accurate simulations ofgmar Couette flow revealed that the DOLLS
tensor equations of motion lead to the incorrectlmgar response. A simple remedy
proposed by Evans and Morris involved transposing the external field term in the
momentum equatiof132]. The transposition was the inspiration for the name of this
new algorithmi SLLOD. The SLLOD momentum equation of numnt is:

The SLLOD equations, unliklhe DOLLS tensor equations, cannot be derived from a
Hamiltonian. This lack of a Hamiltonian appears to have no practical consequences and
thus the SLLOD algorithm remains thererobust and popular route to thal@ulation

of shear viscosity.
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3: Experimentaldetermination of terminal velocity

3.1 Introduction

In section2.22.1,a naive calculation of terminal velocity for a nuclear waste container
sinking through a Newtonidiuid yielded a result 6 orders of magnitude greater than
those previously approximated (U.S. Department of Energy, 2013). There are several
reasons for this discrepancy, including: assumption of creeping flow, no account taken
for the shape of the sinlgrobject and failure to include tleéfectsof a confining

boundary. A proper mathematical treatment of the rate of sinking of a confined
cylindrical object requires the solution of the full Nav&okes equations of
hydrodynamic$ a formidable undertakg. One of the aims of this thesis is to develop

a predictive mathematical model for terminal velocity. The approach taken entails
solving a simplified version of the Navi&tokes equation to obtain a baseline model
and then building up the complexity gtey step, avoiding adjustable parameters but
retaining simplicity and insight. To accomplish this, high quality experimeatalid

preemptivelyrequired for validation.

To provide experimental data for validation of the models developed in Chapter
4 this chaptepoutlines arexperimental programmia which terminal velocity is
accurately measured for a series of sinking objebtsth cylinders and spheres. Results
are presented for ats#f experiments in which the relent variables are systematigall
changed, including sinkéength, diameter and densifijhese results will provide a set
of reference datthat describes how sinking velocity is independently related to each
system variableThis allows for a quantitative and qualitative assessmdmiof

accuratelya modelreplicates the same dependencies.

Additional experimentare also presented in this chapter whiclestigate and
guantify interesting phenomena observed during the sinking of cylinders. These
experimentsnclude varying the allongerange of axial tilduring descerdéind

modifying thegeometry of the leadingylinder fae.
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3.2 Methodology

A physical model was constructed comprising of a 6 m long acrylic cylinder (acrylic
being chosen for itsansparency), vertically mountedoseal at the bottom enénd

filled with a fluid (water or glycerine). Metallic cylinders and spheres of varemgghs

and diameters were then released at the top end of this apparatus and allowed to sink.
The time to pass a number of carefully marked rsliwgs electronically determined

and processed with the aid of a computer.

The physical model is highly simplified compared to an actual borehole disposal
scenario. In a real DBD situation, the hole would be filled Wwithe, there would be a
geothermagradient and drill casing would line the inside of the borehole. The
simplifications are necessary to ensure that the resilltbevdirectly releant to
tractable mathematical models. Inclusion of thermal gradients, concentration gradients
and a perforad inner casing are possible, but obtainingyaital solutions of the
NavierStokes equations would then become impossible, leaving only numerical

solutions. Such intricacies are beyondrisource®f the presentesearch

Two different physicaapparéuswere used: one in which the tube inner
diameter was 6.4 cm and one in which it was 1.2 cm. The smaller scafeiset
necessary for testingscous fluids andery long cylinderswhich becomes problematic

for reasons explained later in this chapter.

By measuring the time for the sinking objects to pass a series of known marked
positions on the tube, it was possible to determine the terminal velocity (a point of
mechanical equilibrium) in each case. The dependence of terminal velocity (ihen
ratio between tube inner diameter and sinker diameter), density and length was then

obtained.

3.2.1 Experimental Strategy

For a given tube dianter and fluid, an appreciation of the mechanics of sinking
suggests that the key variables affecting the termrelakity of a sinking (regular)
cylinder are likely to be the length, the radius and its density. For a spherical sinker,

only radius and density are significant.
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A set of sinkers was therefore utilised allowing these variables to be
systematically vari@, one at a time. A range of five cylinder lengths were available
between 5 and 25 cm. Each of these lengths were available with four different diameters
in the range of 4.2 to 6.0 cm. These diameters correspond to diameter ratios (the ratio of
the diameteof the sinker to the I.D. of the wide bore tubing) between 0.66 to 0.94. This
range of values has the added advantage in that it reflects the range of waste package
andinner borehole diameter ratipsoposed in DB0Q7]. All of these cylindical sinkers
were available in both aluminium and steel, givadjfferent densities. In total, 40
different cylindrical samples were obtained for the main group of sinking experiments.

Figures 31 and 3.2show the range othgths and diameters explored.

Figure 3.1 Full range of diameters for cylindrical deployment objects for thedarge
scale apparatus, including the smallest 4.2 cm diameter sample to the left, to the largest
6.0 cm diameter sgoie to the right. £1 coin added for comparing scale.
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Figure 3.2 Full range of lengths for cylindrical deployment objects for the laggde
apparatus, including the largest 25.0 cm high cylinder to the left, to the shortest 5.0 cm
high cylinder orthe right. Metal, 30 cm ruler added for scale.

The length and diameter of each cylindrical sample was measured/esimgr
callipers such that the measurements had a precisio.06 mm. The samples were
weighed using a digital balance with an accyraf + 0.06 g for masses up to 2 kg, and

+ 05 g for samples over 2 kg. The mass range was 5.€ kg.

Density was calculated from the ratio of mass to volume. For cylindrical
samples, the volume was calculated frohs ~ D2L/4. Diameter and length e
measured at several different points on the cylinders and the mean value recorded in

each case. The largest uncertainty in density was therefore 0.3 %.

Steel ball bearings of different diameters were additionally obtained. In addition,
some cylinders ere constructed with different front face geometries, while other sets

of experiments were performed on cylinders employing centralising spacers.

3.2.2 Apparatus Design

The6del i veryd tubes wieardightweightnireexpensiveplastc of ac
which has the advantage of being transparent and easily sourced in convenient lengths
and diameters. The tubing was supplied m 2ngthgthe longest lengths available)

the narrow bore tubing had artemaldiameter (I.D.) of 12 mm and an side
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diameter (O.D.) of 14 mm. The wider bore tubes had an I.D of 64 mm and O.D. of 70
mm. The outer diameter of these tubes were carefully chosgdogely matctihe I.D.

of larger pieces ddvailabletubing. These larger sections were placed around the 2 m
acnylic lengths in order to form joints (see figur&)3.2 of these joints were created fo

each apparatus, making theach have a length of 6. m
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Figure 3.3 Schematic diagram showing narrow and wide bore tubingset
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The joints were packed with silicogeease to both aid assembly and provide a
good seallnitial tests using the wideore appaatus resulted in water leaking from the
joints (this is largely due to the greater pressures placed on the joints when the larger
sinking objects pass bgnd a 2 i discrepacy between joining tubgsTo overcome
this problem, grooves mm in depthwere machined into the end sections of the tubing

and these were fitted with rubberridgs to yield a tighter joint (Fige 3.4).

Figure 3.4: Apparatus tubing corattion for narrow bore (left) and wide bore (right)
apparatus. A length of tubing of similar inner diameter to the main apparatus outer
diameter encloses each connection. The large apparatus includes an additional array of
o-rings to reinforce the conneati.

Both the narrow and wide boBam tubes were mounted vertically in the laboratory
using a system of hose clips (narrow bore) and pipe clamps (wide bore). A measuring
tape was attached to the side of each tube to aid placement of a series of graduated

marks (see later).

The base of each apparatuas closed off usingemovableplastic screw caps
enablingdrainage of the fluid and retrielvaf the sinking object at the conclusion of an
individual experimenti-or thewide boreapparatushe screw mechasin is more
complex; to dain the larger volume of fluid tap(standird hosepipe connectiopwas
fitted to the screw base.damping mehanism was devisdd protect the tap from the
impact of a sinkerThis damping system comprised a large rubber pubkight 1 cm
and diameteb.5 cm with a2 cm diameter hole drilled through its centre. An

aluminium puck of similar dimensions was placed immediately below the rubber puck,
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and attached to the former using waterproof adhekigles were drilled in the od¢re

of the metal puck radiallfigure 3.5)to help distribute fluid pushed through the whole
damping device and facilitate the inflow of fluid upon filling the appesr from the tap
mechanismA scissor jack and tstandwere used to support the bagehz tubing and
prevent the screw cap and damping device being forced down by the impact of large

sinkers

Figure 3.5 Dampng and draining mechanisused in the wide bore apparatus (see
main text for details: agchematic, pactualphotograph.

An overflow devicewas fittedto the top ofboth sets of apparatts catch any fluid
displaced as a sinker is submergéthe start of an experiment. This device comprised
arectangulaplastic containewith a height of 17 cm and a width of 11 chinese
dimensions were chosen to deal with the worst case scenario of a cylinder having the

largest volume and hence displacing the greatest amount of fluid.

With the aid of the tape measure, a totalesfen timing gatassembés were
attached to each tubehd firsttiming gatewas placed around 20 cm from the,ttps
allows for a controlled submersion of each cylinder before release, without triggering
the timing sequencd&he next Avere placed at 1 m intervakso that sinking velocity
could beconvenientlycalculated during experiment® confirmthat cylinders had
reached terminalelocity; thefifth timing gatewastherefordocated 420 cm from the
top of the tule. The sixh and seventh timing gates were adjusted between sets of
experiments depending oretkength of the cylindrical sinkerOn average, these two
gates were at distances of 485 and 550 cm from the top of the appEnatsisategic
position of these latter 2 timirgates was chosen to prevent previously deployed
sinkers from continously tiggering the final timing gate, therefore allowimgpre than
one sinker to be deployed before the need to remove the screw cap and retrieve them at
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the end of an experiment. It also prevented the possibility of bulgisleduced due to
turbulent mixing ashe sinker reaches the closed end) triggeringéventh and final
timing gate prematurely. The timing gate assemblies comprised of a plastic clamp into
which 2 holes were drilledn one hole, an LED was embedded. In the second, facing
hole, a photodiodeas introduced, again held in place with-tdgk. This pairing of

LED and photodiode createdight beam across the tube, which, when interrupted by a
passing nottransparent object, would allow currenflmw around a relay. Fig 3.6

shows a closep d the timing gates used in narrow and wide bore tube assemblies

while Fig 35 shows the relay circuit diagram.

Figure 3.6: Close up images of the smaller bore (left) and larger bore (right) timing
gates.

The electric relagircuit was connected to @rduino which itself was connected to a

laptop computer. The computer code used to drive the Arduino is listgmpandixD.
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Figure 3.7: circuit diagram showing the electrical connections in the relay circuit used
for the timing gates.

3.2.3Timing gae adaptations for spherical sinkers

For the experiments which used ball bearings as the sinking objects, the timing gates
described above were found togreblematic, yielding inconsigté and wildly

inaccurate timingsThis problemarosewhenball bearimgs with a small radius were
deployed the path of the sinker was not typically straight, meaningtiiegtcould

pass through a timing gate without crossingdéetrallight beam.Some different

timing gae designs were trialled but the most coreistesults were obtaed with the

following device:

1) Two identical, 60 frames per second (fps) cameras were mounted on the
wide bore apparatus (all spherical sinking experiments were performed with
thewide bore tubing) One was placed at a distanceld@75 mfrom the top,
the other was placed withiz8.2 cmof the closed end of the tube. The
distance ofL..875m was chosen based on the observationttigamajority
sinkingcylindershad reached terminal \geity far beforethis depth.
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2) Three marks (graduationglere made at each camera location, one at the
central focal point, and one 3 cm either side of this line.

3) The caneras were synchronised using a 60 fps digital clock so that each was
accurate to within 0.02 s ohe another.

4) Viewing the camera footage vitas possible to determine the time at which

the sinkers passed the central graduated lines.

Figure 38 shows a snapshot from the footage takgthle 2" camera of a sphere

passing the markings. The timestamp appears in the lower right portion of ttee figu

> Il B 1« «» »|\ »

Paused [H/W] Timestamp —» | 10:00.882 / 17:35.054

Figure 3.8: A snapshot from theecondmotion camera in which a sinking ball is seen
to descend through the marked scalee filmestamp is shown to a thondéh of a
second.

3.3 Determination of terminal velocity

3.3.1 Calculation of terminal veloty of cylindrical objects

The experimental procedure consisted of filling the tube with water and allowing the
water to reach room temperature for several hdure.Arduino code was initiated.
Then,holding the sinking object so it was just submergeti@top of the tub&aking
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care to ensure it was positioned as centrally as pojdibieas released. As the sinking
object passed through each of the timing gates, the timer recorded the hredtaath
light beam was broken.

An example of the rawxperimenal data is shown ifTable3.1 for a test case
using a25 cm long aluminiuncylinder witha 4.2 cmdiameter (using the wide bore

tube) repeated 5 times.

Table 3.1: Table representing the output data from the Arduino for 5 repeated sinking
experments using an aluminium cylinder of 2 height and 4.2m diameter.

Time (s)

Run Numbe| Gate2 Gate3 Gated4 Gate5 Gate6 Gate7
0.855 1.533 2.184 2.844 3.419 3.663
0.875 1.561 2.209 2.873 3.450 3.697
0.844 1.528 2.180 2.844 3.423 3.670
0.856 1.536 2.189 2.853 3.434 3.675
0.733 1.413 2.065 2.729 3.305 3.552

a b~ wN P

Usingthis data, the sample velocity at each timing gaecalculated using the
difference in position antime between that and the previous timing gate. These
velocities are depted in figure3.9, where it is clear that plateau is reachedter the
secondyate {irst shown velocity) This trend is consistent with timeajority of
cylinders, with the exception okrtainsteel20 & 25 cm length sample$heseare
terminal by thehird timing gate for the sake of continuity, the terminal velocity of all
samples ishereforecalaulated using thiréind final timing gate datd.aking
measurementssing thesdar-aparttiming gategas opposed to multiple readings from
closer timing @tes givesthelargest distance possible when calculating velocity

resultingin the lowestpossiblemargin of error (see equation 3.1).
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Figure 3.9: Local velocity of an aluminium cylinder of 25 cm in height and 4.2 cm in
diameter. Local velocity isatculated using the distance and difference in time between
the previous timing gate. Errors are calculated using measurement errors described in
equation3.1.

3.3.2 Estimation ofuncertainty

The instareineus velocities were calculated from a ratf@istance and time. The

uncertainty in the velocityk U can therefore be estimated from

- <. (31)
Y'Y YQ Yo

Y a3
Whered is the sepration distance antis time taken to reach a timing gate measured
from the previous one. The precision with which the distance could be measured
depended on the accuracy with which the tape measure could beTreacheasuring

tape hd a marking discretation of 0.5 cmgiving a precision of no more than

+ 0.25 cmfor a single measurement. The distance between any two timing gates
requires 2neasurements to be made, giving a 0.5uocertaintyin the distance This
uncertainty was then doubled to take account of any slack {cltite) measuring tape.

A final margin of error okd = 1 cmwas therefore used ftine distancdetweertiming
gatesWhen permanently disrupting a beam path, the time taken for the disruption to be

registered is consistently less than 0.01 s. The uncertainty in measuring the time taken
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to travel betweesuccessive timing gates was therefore taken as the pped i.e. kt
= 0.01s.nserting the values for the fastest travellangker(and thereforé¢heworst
case scenario sample in terms of erhoio equation 3.ave amaximumrelative error

of 1% in the velocity.

Temperature would have ideally been kept constant to isolate any fluctuations in
fluid density and viscosity between experiments. Unfortunatieily was not possible in
the avdable laboratory. Furthermorthe relationship between sink velocity and
viscosity is not precisely known, making temperature fluctuations intractable to a
guantifiable error. Temperature is therefore assumed to be room temperature, and not

recorded during experiments.

To minimize the effect afinaccounte@rrors such as temperatyreach sinking
experiment wa repeatedeExperiments were repeated a total of 5 times due to time
limitations (mostly due to drain and refill timeahda relatively limited spreadA
previously recordedefererce sinking measurementw repeatedeveral timeswer the
apparatus lifetiméo confirm constency The reported velocities are always quoted as
thearithmetic mean athese valués The uncertainty is taken to be onarsiard
deviation from the meanh¢ standard deviatiaof velocity, , , wasthereforeobtained

using

~ - (32)

whereYis the average velocifipr a set of repeated experimental values Miglthe
number of repeat runs (5 in this warkhe standard deviatiowas found to dominate
the error calculatedsingequation 3.In almost all casesherefore that values used as
the uncertaintyor the majority of resultsWhen this was not the case, the systematic
error calculated using equation 3vhs used instead.

For the example velocity measurements showseation 3.3L, the systematic
and random erronserecalculated using equatiosl & 3.2. The example cylinder is

both the longest and narrowest sample, givifg#one of the greatest velocities. This

1A median was dismissed due to the relaataridaldky | ow
of significant outliers, making the averaging resistance provided by a medianeficial
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reailts in a relativelyarge systematic error of 0.00 comparison, the random error
calculated using equati@12 gives an error of 0.004. In this case, the systematic error is
used to give a velocity df.501 + 0.08 ms?. For a full table of cylindricesample data

and respective errpseeAppendixE.

3.3.3Calculation of terminal velcity of spherical sinking objects

Using the 2 camera arrasrgent described in therevioussection, the terminal velocity

was calculated from the ratio of the known sepian of the2 cameras and the

difference in time stamps from frames showing the object passing the central graduation
ateach camera position. Figurd@shows snapshots from both cameras together with

the time stamps. In this example, the bakingtravelled a distance of 3.843 and

took a time 0f18.06s. The terminal velocity was thus recorged 0.213ms?,

Figure 3.10: A snapshot of the top (left) and bottom (right) cameras showing the same
sphere recorded at different positions (admadforetimes) of a descent.

The error in the terminal velocity calculation was given as the maximum of the standard
deviation of a set of 5 repeat experiments and the error calculatecegsiampn3. 1

The uncertainty in the time measuremiarthis cag isqi =+ 0.02 s. The uncertainty in

the distance measurement veassadditionabm of £ 1.5¢cm, making a totatpd of + 2.5

cm. The larger uncertainty in distance (comparedh tne cylindrical samples) arises

from the fact that each frame is 0.02 s long @&y not correspond to an image of the
object passing the graduatidfor an object sinking at 1.5 ms this would result in 3

cm of movement per frame, hence the size of graduations.
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3.4 Resultsfor cylinders

Results are presented for sinking experimantslving cylinders, including ones in
which the front face was modified to give them an angularlprafnes in which
centralising spacemere added and finally a set of experiments involving steel ball
bearingsUnlessstatedotherwise all experimerg shown in the following subection

were performed using theide bore apparatus

3.4.1 Baseline Results

A broad insight into the importance of cylinder parametgrsobtainedoy comparing
a minimal set of sinkes with disparate lengths, densities aimimetersTable 3.2
shows the combinations of these varialgheglored infour pairs of baseline sinkg

experiments (labelled D).

Table 3.2:length and diameters of the baseline set of sinking experiments representing
a combination of large / smaéingth and diameter. Each setA also consists of a
high and low density sinker.

Set Diameter (cm) Length (cm)

A 6.0 10
B 6.0 25
C 4.2 10
D 4.2 25

Terminal velocity ) is given for each of the baseline experiment sinkers in figure

3.11, whereesveral clear observations can be made:

1. The higher densitgteelsamples sink faster than aluminium ones in all cases
2. The sinker diameter has a greater effectiahan length.
3. Sinker density, length and diameter maitcortribute toU.
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Figure 3.11: U for setsof aluminium and steel cylinderSee Table 3.2 for key.

These baseline results were used to plan a more extensive set of sinking experiments,

described in the following sections.

3.4.2 Dependence of terminal velocity onirsker diameter

The baeline results of the previous section outlined the importandrufeter in
determiningU. To further explore this effech, sets of experiments were performed
using aluminium cylinders of different diametart the same length; each set used a

differentlength.

The results from these experiments are shown graphically in FidieTBe
results clearly shown approximate linear dependenc&Jofith the ratio of the sinker

diameter to the wide bore tube I.ID, U decreases with increasitigegardles®f

length, approachingero adl - 1.
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Figure 3.12: U as a function oll for aluminium cylinder®f variouslength The lines
are least squares linear fitsthe dataAs shown, eors are relatively small in
comparison to the variance in ddfaror bars ar@resented for the remaining figures in
this chapter, but are ofteamaller tharthe markeisymbols.

Figure3.12 shows that this linear decrease withpplies for all cylinder lengths.
However, the gradiemtoesdepend on length, becomingeper with increasing length
The data set for the 5 cm length cylinders is noteworthy nfdgntude ofU is
uncharacteristicallyower tharfor the longer samples and the dependence lipsn

also weakerA possible explanation for this comes from aneobation that shorter
cylinderswere observed tmtatk in the axialplane during their descent. This warranted

an additional investigation to quantify this effeghich is presenteh section 34.6.
Figure3.13 shows a plot of thgradients of the leasgjuaes fit lines shown in
figure 3.12(i.e. —), together with data obtained fsteel cylindersData for the 5 cm

sinkers has been omitted due to the reasons given adwygraph showsiore clearly

how the rate of change bfwith Il increases as the cylinder length also increases. This
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dependency of gradient on length is Aimear and seems to be approaching a plateau

more easily seen with the aluminium data set.

The difference between steel and aluminium samples diminishes for shorter
cylinders. To quantifys— is about 1.5imes greatefor a 10 cm steel cylinder than it is

for the same cylinder constructed from aluminium. For cylinders 25 cm in length, the
gradient for steel samples is about twicat ofaluminiumsamples

Mathematically, figure 33 suggests that cylird diameter and length must
appear as a produ@ach raised to some unknown power) in the formul&for
Furthermore, the apparent plateau behaviour suggesth¢hexponent of length is less
than unity.

10 T T T T T T T

i = Aluminium P 1
9 ¢ Steel .

| dU / di |

[
- L
4 " .
L |
3t a .
1 L 1 1 1 L 1
10 15 20 25

Length (cm)

Figure 3.13: Thegradientof the velocity-diameer relationshigor steel and aluminium
sinkers(excluding 5 cm lengtdata st Error bargeflect the uncertainties in the least
squares fits to the data contained in figude3.

Figure 3.8 compares th&- I gradients for wide bore and narrow besgeriments. It
is clear from the graph that the same linearity is preserved using the smaller scale
appar#us though the magnitude Bfis much lower This is evidence that the
mechanisms which determihew diameter affects remain the same throughout

different scales of experiment magnitude.
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Figure 3.14: U-Il relationship for steel and aluminium cylinders in both the large and
smallboreapparatus. Cylinders are of 4.35 and 25engthfor small and large scale
experiments respectively.

3.4.3 Dependence of terminal velocity on sinkézngth

The next setfoexperiments were designed to investigate the effect of lendthadn
fixed ll. Figure3.15 shows the relationship between length Bnfdr aluminium
samplestgivenll.

The results show that increases monotonically with increasing length. Each
dataset appears to show asymptotic behaviour at long cylindehkergarthermore,
the larger thdl , the lower the length required for an asymptbtio be observed.
Figure 3.15 also confirms the hypothesis thhis a greater effect ahthan length.
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Figure 3.15: U plotted as a function of cylinder length. Samples are aluminium, and
include a range df. Plot symbols are the experimental data, |eresadded as a visual

guide usinditsto™Y | p A @DOX ,wherg and are arbitrary fitting
variables

To further investigate the hypothesis afasynptotic U, the data set was extended to
longer lengths. Due to the practicalities of performing a sinking experiment with a
relatively long cylinderanewsinkingexperimentusing a steel cylier with a length
of 45.7 cmwas conducted using tmarrow boreapparatus. The extended set of
sinking data (all withk = 0.79) for this apparatus is plotted in figure@3.The plot
appears to confirrthe existence of an asymptoticfor long cylindersthough there are
too few points to say this conclusiveBxtending the results to still longer cylinders
would require a new, longer apparatus to be constriidbegond theesourcesf this

study
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Figure 3.16: Variation of velocity with cylinder lergth for an extendedengthrange
Experimentsvere performed using thearrowbore apparatus. t8el samples 00.791l
were used

To explore the effect of density updretlength dependence 0f the length tdJ
relationship for samples @.89 and 0.94 are compared between aluminium atekel

density counterparts in figure 3.17.
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Figure 3.17: Relationship betweed and length for aluminium and steel cylindesigh
diameters of 0.8&nd0.941l.
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From the figuret is clear that higher deity results in greatdd. However the change
with lengthas a function of densitig subtle. Aluminium samples have a greater
increase irJ with a change in length than steel greeBve-fold increase in cylinder
length resultsn at least a factor of two increaselrfor steelsamples, regardless of
diameter. For aluminium samples, tlggloser to a factor of three. Thessults are
somewhat skewed by the abnormally lovfound for the 5 cm long aluminium
cylinders. When these are discountaal jncrease in length resuitsa similar change in

U for steeland aluminium cylinders

Figure 3.7 also shows a greater increaséJ) asll decreases for steel cylinders
compared t@luminium.In fact the results for the 0.94 aluminum samples are almost
indistingushable from those of the 0.89%teel sampled/Vhile this is fortuitous, it does
indicatethathydrodynamic brakig at largell is enough tmvercome the density
difference between steel and aluminium. It suggestsktimaitst appear to greater

magnitude opower tharsample density in any expression.

3.4.4 Dependence of terminal velocity on sinker mass

A changen lengthgives rise ta change in mass. To isolate the effect of length from
mass, the following experiment was performed. Tyinders withthe samealiameter
(0.6611) butdifferent densitiesverefabricatedsuch that they both had the same mass of
0.555 kg.Theresulting lengthef these samples were 148 and 5.0 cm for

aluminium and steel respectively. Both samples werdralised to avoid axial tilt (see

section 3.4.6or further details

The results from two sinking experiments are displagetie form of a bar

chart in figure 3.8.
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Figure 3.18: U of two samples witldifferent density, different length, btite samell
andmasg(0.555 kg).The sinkers were centralised using theéhods discussed in
section 3.4.6

Figure 3.B shows a relatively smalincreasg21 %) in U for thedenseisteel sinker.
The far greater length of the aluminium cylinder has increasébstsh that ielmost
outweighs thelecreaseesulting from its comparably lowdensitycompared withthe

shorter, steel sample.

This shows that length cannot appear inWhequation with a higher power than
density, since densitiias a greater efféthan length. This is shown figure 3.18,
wherea 3fold increase in length results in just a 17.5% inaeas). Alternatively,for
the same, 5 cm steel cylieia 3fold decrease idensityresults in a 48.4% decrease in
U).

The dependency aylinder length uponU is compared between the smaller and
larger scale apparatus in figure @.The comparison uses steel samples of almost
identical densityand near consistefitvalues 0f0.79 and 0.81. This results in a sinker
diameter of 0.95 cm for thearrav boreapparatus, and 5.2 cm for thwede bore
apparatus. Results shainilar qualitativebehaviar as a function of sinkdength.U
clearly increases more rapidly with length in Wide bore experiment compared with

the narrowboreone

1 Different grades of Steel are sourced for each scale experiment, with an average density of 7871 and
7903 kgm?for small and wide bore apparatagespectively.
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Figure 3.19: U plotted againsiengthfor narrowandwide boreapparatusSteel
cylindersof 0.79 and 0.81 were usedor the narronandwide boreapparatus
respectively.

3.4.5 Axial Tilt

During the experimentdescribedn the previous sectiona possible disparity in results
appears to occuor shorter cylindes. This is particularly marked for shoramow
cylinders, to the point that sampE&emlong with a4.2 cm diametef0.661l) beame
lodgedin the tubeduring deploymenttlis is truefor both aluminium and steel

cylinder9. This behaviar appears to be due to axidi (figure 320).

Axial tilt is where a cylinder tilts such that its longitudinal axis is rotated. The
degree of this available rotation is limited by the length and diameter of each sample, as
shorter length and lower diameter samples experience a larger range of axial freedom
befare coming into contact with the tube. It is of interest to calculate the maximum tilt
angle for a cylinder of a given length and diameter to quantify the angles at which

jamming may occur.
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Figure 3.20: Schematic diagram illustratingial tilt.

For the purpose of this analysisylindersaresimplified asrectanglesvith heighth and

width a, as shown irigure 3.21.

Figure 3.21: Axially rotated cylinder, with an imposed triangle used to calculated the
angle of axial rotation—

To calculate the aximum angle of rotatigrthe rectangléiagonalz and the anglé
between rectangldiagonaland heightre required. Theseay be calculated using

simple Pythagoras and trigonometry respectively.
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(3.3

& & o (3.4)

A right angledtriangleis constructed using the diameter of the appartatarsd
therectangle diagona as shown in figur8.21. Simpe rigonometry may then be used
to calculate the anglébetween ectangle diagonal and apparatus:

= (39

Q- Sa

Finally, thetilt angle is giverusing

& (36)

— | O ——— ;
3 Mo Q Q

Equation 3.6 is used to calculate the allowed angle of rotation for every cylinder that did
notget jammed during deployment. The heghof these angles is 16.4n comparison,

a similar analysis of theylinders wheh did getjammed resulted in a lowestof 38.5°

- it can therefore be concluded that the critiealt which jamming may occur must be

betweer88.5 and16.4.

Thelimiting tilt angle can be used to determine tieeessargylinder aspect
ratio to avoid jammingTaking the worstasescenarioof critical tilt angle limit to be
16.# for 0.5, thediameterto-length aspect ratiof the cyinder must be lea&:18.

3.4.6 Use of centralising spacers

To quantify the effects of axial rotation on sinker velocity, the rotation must be
controlled independently alylinder geometryThis wasachievedoy usingadjustable
centralising spacerranged as shown in figw8.22 and 3.23. Centralsing spacers
consisting of grub screvase fixed to the cylindeFor sinking experiments whetiee

spacers are not required, the screw can be fully inserted.
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Figure 3.22: Image ofa cylinderwith extendecdtentralisng spacers

Centralisng spacersvereintegrated intall but the largest diameter sampletere

axial rotation is minimal due to thheducedannular clearancd his gavea taal of 30

samples with centralisg spacerseach with specific pin length to give an identical sum
ofspacemnd sampl e radius, referredfigireB2as 0 e'f
This allows a consistent degree of axial freedom whilst investigating dimensional

variables such as diameter and lengthless stated otherwise, thdesfive radus used
hereinwas 30.5cm, measured using Vernieallipers.ll remains defined as previousty

the sample radius divided bybe ILD; t he O6ef fective radiusbod

cleaance.

Cylinder »
Radius, ’

Figure 3.23: Crosssectionalview of a cylindrical samplewith centralsing spacers
including thelabelled orginal sample radius, length of centsadg screws and the
combined effective radius.
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Results comparint of centred and conventional cylinders are showfigure
3.24. The effect of centralisingpaersis to generally lower th&) compared to the nen
centralcounterpartsAn exception is the shortest length (5 cm) cylinders, in which the
centralising spacers result in imereasein U. Another feature of the results displayed
in Figure 3.2 is a divegence inJ between centralised and noantralised samples

with increasing cylinder length.
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Figure 3.24: U comparison betweesxially centred conventionaylindersas a
function of lengthData series are fitted with the exponentrexima function
described previously.

There are several possible explanations fod#weasen U observed for the majority

of centralised cylinders:
(1) The centralising spacers create frictional drag.
(2) The spacers make contact with the tube walls, creatintjaua friction.

(3) Axial tilt motion canaid thedisplacenent oflateralfluid to behind the

cylinder, creating a downward forae a similar manner to aquatic propulsion.

The small size of the spacers effectively rules out refigoReasor2) is a
possibility as is reasofB). To investigat€2), an additional experiment was performed

in which the effective diameter of the centralised cylinders was lowered by adjusting
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the spacer pin# sinking run was conducted using a 25 cm long cylinder with a
diameter of 5.2 cm, with the spacers adjusted so as to gefteative diameteof 5.8

cm. The result from this experiment was then compared wittl tifea non-centralised
sampleof the same physical dimensiofeffective diameter 5.2 cm) and a centralise
cylinder, spacers fully extended (effective diameter 6.1 cm). The results are displayed

as a bar chart in Figure 5.2
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Figure 3.25: U of a cylinder with spacers completely inserted, partially inserted and at
full width of the cylinder.

The resultslisplayed in figure 3.2 show that a partial extension of the spacers yields a
U between that of a fully centralised and conventional cylinder-¢eotralised). This
rules out reason (ecausel is still lower than the unpinned sample. However, it does
provide support for hypothesis (3) since partial extension of the spacellpiws for a

limited range of axial tiltbut not to the extent that having no pins at all does.

If this hypothesis is correcbne mightalsoexpect thaa longer length cylinder
would dsplace a larger volume of fluid during tilt, increasing the magnitude of

propulsion This may explain the divergence in velocity with increasing length.

The relationship betwedd andll for fully centrali®d and standarghon
centralisedylinderswas next investigated. For these sinking experiments, aluminium
samples were used, ranging from 5 cm to 25 cm in length. These results are shown in
figures 3.5a3.26e
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Apart from the 5 cm long samples, the trend is for centralised samples to travel
with a lowerU than noncentralised ones. This difference diminishes wilreasing
clearance (increasink). For a givenl, the diflerence increaseslightly with increasing

length until about 20 cm, afterhich length hasninimal effect.

The vanishing ol difference with increasinty adds further support to thit

propulsionhypothesis, since thét magnitudewill vanish as clearances become tighter.

The increase itJ for centralised 5 cm cylinders may be explained by a limited
range of tilt in which propulsion is generated in a beneficial direction. In biological
systems the tilt angle is controlled by a smifred¢ing shape and / or mechanical
assistance. The form factor of a cylinder is unlikely to inducieaage in tilt direction
therefore a cylinder freefalling through an infinite fluid (andlorger colliding with a
container) would be expecteddontiruoudy rotate. In thisextremenstance, the fluid
displacement would no longer induce propulsion in the longitudinal axis and kinetic
energy would isnply be lost to fluid frictiori if energy is indeed lost to friction in this
extreme instance, at a certaiegdee of rotation the energy losses due to friction must
overpower any gains id through propulsion.
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Figures 3.26 (a-€): Comparisorof U for centralised samples versus ruemtralised
samples as a function bfand cylinder length. All samples weskiminium Each
graph represents a giveglinderlength, between 5 cm (figue26 a) and 25 cm
(figure 3.26 €).

3.4.7 Investigation offront facegeometry

The front face of cylinderwas modified in an attempd quantify the effects of leading

face geometry on sinkéf.

Aluminium samples of 1.1 cm diameter with eesimlined leading edge were

created by machining a smooth cone at the front fHuee samples are used, one with
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a conventional cylinder geometrynaher with a cone of heighwice thediameter

(cone A) and another of cone height equal to that of sample diafcetez B) The

length of each cylinder (not including the conical height) were adjusted so that each
sinker had a mass 82.8 g For pragnatic reasons (cost and speed), these samples were

made from aluminium and designed for the narrow bore apparatus.

Figure 3.27: The 3 aluminium samples used to investigate the effe¢tsediont face

on sinkerUJ. Cone A (top)has aconeof heighttwice its diameter, cone B (centre) has a
cone heighequal to cylinder width, aniihally a generic cylinder of equdiameter

(2.1 cm) and mag82.8 g) is shown at the bottom

To quantify the effects of the sinker front fatkewasrecorded in an analogousanner
to previous samples. Resulte gahown irfigure 3.28, where a streamlined front face is
shown to increas® by up to 12.6%The resultshow thatll sharp edgedamples
attaina higherd compared wh the conventional cylindefhe sharpest angt@ne
(cone A appears to travel at a slightly fastéin comparison to the lesharplyangled
cone(coneB), suggesting that the angleawne further streamlines fluid at the leading
face This difference is minimal howeverhen comparetb the differace between
cone B and the cylindrical sample. This suggés#sé simply removing the
perpendiculasurfaceto the fluid boundary makes the greatest significance.
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Figure 3.28: U for three aluminium cylindrical sinkers of 1.1 cm diameter with
differentleading face geometries.

3.4.8 Effect of fluid viscosity

TheReynolds numbeof a fluid charactegesthe nature of thdlow, which can be
laminar, turbulent, or a minre of these The behaviour of sinkers in alternative flow
regimes was investigatedy repeating the sinking experiments using a fluid with a

considerably higher viscosity than water

Glycerine was choserior the experimentdueto having amuch greater
viscositythanwater,andbeing a readilyavailable low-toxicity, relatively transparent
Newtonian fluid The sourcedlgcerineis 99.5% concentratéhereforehavinga
density of 1260kg m™ anddynamicviscosity of 1.26Pa s[133]. Resultswere
performed usinghe narrowboreapparatuso reduce the requiratlume(and hence

cost)of glycerine.

A complete set ob) results for samples travelling through water and glycerine is
shown in table3.3. It is shown that cylinders travel betweef drders of magnitude

slower throughglycerine. The Reynolds number of annular flow can be calculated using

¢C'UrYp | (3.7

YQ
A
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whereu[ is the average annular fluid velocity in the axial direction, which can be
calculated using sinkéy [63]. The Reynolds number for annuflow past a cylinder in
glycerine is-1 orders of magnitude, @(-1), but O(3) in water It can be concluded that

anO(4) increase in Reynolds number results @(&) increaseof U.

Table 3.3:Dimensions of cylindrical sinkers aigeir U measured in water and
glycerine. All results are reoed using the small bore apparatus.

u(m/s)
Material Diameter Length Water  Glycerine
(cm) (cm)
- 0.586 *
Aluminium 0.79 4.35 0.004 0.01£0.01
Aluminium 0.79 12.7 0.86+0.003 0.01+0.01
Brass 0.79 435 1.327 £ 06 0.07 +0.08
Brass 0.79 12.7 1.97 £0.04 0.05+0.05
Brass 0.95 4.35 0.77 +0.03 0.02 + 0.02
Inconel 0.994 1.5 0.263 +0.003 0.01+0.01
Steel 0.793 441 1.237+0.007 0.1%0.1
Steel 0.793 12.88 1.84 +£0.02 0.07 +0.05
Steel 0.952 3.33 0.68+0.002 0.02 +0.02
Steel 0.952 4.37 0.754 £0.003 0.03 +0.03
Steel 0.952 12.75 1.077 £0.005 0.03 +0.02
Steel 0.952 45.7 1.304 +0.003 0.03 +0.03

U is shown as a function diameteiin figure 3.29. TheU depenlenceupon
diameterappears toeman linear. The Reynolds number associated giyicerine
means that sinking experiments performed in this fluid were ilathmar ¢reeping

flow) regime whilst in water the flow regimerasturbulent. It can therefore be
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concluded (albeivith alarge error) that the observed lingéadl relationship igrue for

both laminar and turbulent flow regimes.
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Figure 3.29: U of sinkers as a function diameter in viscous fluidCylinders are 2.7
cm high andsteel

TheU-Il dependences alsoan order of magnitudgreater than that @fquivdent
sinkersin water ¢€0.18 + 0.0%omparedo -4.7 = 0.7).This is a reasonable observation,

as it suggests that hydraubcaking is a function of the internal friction of a fluid.

The margin of errofor samples descemudi through viscous fluids alarge as
shown in figure3.29 and table3.3. A video analysis of samptieploymentevealedhat
axial rotationis presentasobserved irwater Through watersamples appear to
continuallyrotate Throughglycering samplegotatedintermittently at aseemingly
randomrate. For examplen glycerine samplesare observed tmtate to a position of
maximumaxial rotationthen proceetb deploy through the apparafiseed in this
position After a randonperiod of time, samplesvould thenoscillate from one position

of maximum axial rotation to anothérhissignificanty effect velocity.

Chen Lescarboura and Swifiostulated that eccentricity would decrease with
length due toan increasedesistanceo rotationimposed by fluid viscosity on the
greater cylinder lengtf#8]. Althoughthere isno reason to disagree with the physics
behind the authoépostuate, it has effectively beeshown thoughan altenative
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methodof increasing thisotation resistanctihat thiscanin factincreasethe observel

eccentricity

Figure3.30 quantifiesthe aforementionedilt effect by showingthelocal
velocity of samplesalculated aeachtiming gate, after velocityngomentarily stops
increasinglt is cleara constanvelocity is nonexisent, where velocity varieat a
seemingly random ratét would be difficult toaccount fotthis effect due to the
seemingly random nature of oscillations. One possibility reeat theviscous
experiments large number of times, however the time taken to deploy certain cylinders
and required volume ajflycerine makes this study unobtainable within the available
resourcesAlternatively, the experiments could be repeated indhgekbore apparatus,

where cylinders could be centralised.
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Figure 3.30: Thelocal velocity calculated at each timing géEerors are determined
using the measurement method (equation Eagh data serigspresenta different
sample Sinking ratedoes notappear to reach a constant terminal velocity.

Glycerire of course differs in both viscosity and density to water. To investigate t
dependencies of theselationshipsndividually, additional experimentation aitleof
theavailableresource®f this project would be required. This could include the
repetition of experiments at different temperatures, as the viscosglycdrine has a
greater sensitivity to temperature in comparison to density, providing data sets of

similar density yet variediscosity.
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3.5 Sinking experiments with balbearings

Sinking experiments were performed using spherical shaped objects (ball besrthgs)
the wide bore apparatts determine thé& dependence on diamet&pherical samples
provide an advantager/ercylinders as they amaore easily sourced and no machining
need take placédditionally, they differ markedly in their shape, particularly at the
leading edge, which is expected to result in lower frictional dplerical samples also
providesimplified rekrence data for comparison with computational modeléagyell

asgive alink between experiment and theory (Stokes law).

3.5.1 Results

Figure3.31 showsU plotted against diametdd. initially increases withncreasing

radius passes through a maximutinen decrease¥he maximum must correspond to
thepoint at which the confining boundaries become important and hydraulic braking
significant. A second order polynomial gives a reasonable fit to the data.
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Figure 3.31: U relationship with diameter forest| spherical sampleghesolidline is a
least squares fit to a second order polynoriiaé diameter of containing tube is 6.4
cm.

Sphericakinkerresultswere compared with a variety of analytical and empirical
soluions as discussed in section 2.2.2hduding Stokes law (equation 2.4 &xended

Stokes law (equation 2.5and tle Munroe equation (equation 2)5&ach solution is
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calculated usingvaterviscosityand density reference valueslo®02 x 1¢ mPas and
998.2 kgn respectively{134], [135] The average density of samples used 7850

kg m=. Results are shown in figuB32 for Stokes law and the Munroe equation. Both
solutions are seen to overestimate experialéhthroudiout the diameter spectruoy

up tofour orders of magnitudd he Reynolds number of the smallest sphere is
approximately 2 x 1D As this value is severataers of magnitude greater than the
Reynolds number for creeping flow, the overestimation of Stokes law is unsurprising.
Despite the overestimation dfe Munroe equatigrthe curvature of the trerappears

similar to experiment.
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Figure 3.32: Comparisorof experiment spherical sinkeatd to Stokes law (equation
2.47) and the Munre equation (equation 2.b4

Figure3.33 shows the high Reynolds number extended Stokes law equation compared
to experimental results. Tliegree of fit is considerably imprayevith most

experimerdl data agreeing within an order of magnitudelower diametes

experimental and extended Stokes law results are in excellent agreement, up to the
diameter of 1.6 cm. The accuracy of the extended stokes law equation at low diameter
suggests that it is accurate when boundary effects are negligiddas evidence¢hat

for a sinking sphere with a Reynolds number df b§draulicbrakingdoes not become

significant until0.251l . This isimportant as previous literature suggedtattboundary
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effects are significant from 0.15[42]. The contradiction in results suggestatth

turbulence kifts the pint of boundary influence.
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Figure 3.33: Comparison of experiment spherical sinker dataxtereled Stokes law
(equation 2.51and the extended Munroe equation.

The Munroe equation is simply a correction factoUafalculatedhrough Stokes flow,
Y . It is thereforesuggestdthat as the extend&lokes formula shows good agreement
when boundary effects anegligible thata combination othe Munroe and extended
Stokes law equatiowould giveimprovedresults. This is achievday using the

extended Stokes law to give the reference veldaity This solution is shown in figure

3.33, denoted as the O6Extended Munroed dat e

The extended Munroe equatishows a much greater fit in comparison to
previous solutions, predictirg within 138% accuracy. Results show especially good
agreementor the location of the maximurtd; a peak analysis applied to the
experimental data gives a central peak location at sphere diameter 216& €03.

In comparison, the peak maximum of the Munroeag¢igu occurs at a diameter of 2.60
cm (I = 0.406).

It is of interest to see hoapplicablethese findings are to cylindal sinkers.

This wasinvestigate by compaing U of similar-sized cylinders and spheres
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cylinder geometry with an aspect ratiobof ¢ll 'Y p would give the ideal compiaon
with a sphere. The clogesvailableapproximation of thiss a range of cylinders with
0 5.0 cm an@llRrange betweed.2and6.0 cm(0.66 and 0.94 . It is well known
that e voume of a sphere and cytiardiffer significantly even when diameters and
lengths arequal. For a cylinder of lengdnd diameter equal to the diameter of a
sphere, the cylindrical form factor gives an increased volume of 50%.

Cylinderswerecentralised (excluding the largesarieter) to reduce the effects
of tilt. It may be argued that this is an unfair comparison due to spheres not being
centralised; in reality, collisions for spherical samplesunlikely to induce phenomena

such as progsion as previously discussed.

U asafunction of diameter for steel cylinders and sphé&ehown in figure
3.34 Results show thdahe U-diameterrelationshipis linear for spherewithin the same
diameter region this behaviour was observed for cylin@ptserical and cylindrical
samplesare invery close agreement with one another, to the exterteach data series
is difficult to distinguishTo quantify,the slge of linear least squares fgave values

of 60+ 2 and 63t 1 for cylinders and spheresspectively.

This leads to thénal question relating to the dependence on diameter: why
do spherical and cylindrical samples show such close agreement? It has been shown that
cylinders of equal length and diameter to the diameter of a sphere will have a 50%
larger volume. The volumgerunit-length is therefore different for a sphere and
cylinder. As a result, the ngravitational forc§combined gravity andumyancy) must
also vary differently per unit diameter. The lack of divergence means an additional
counteracting force mustdat play.

1 Omitting the norcentralised, 6.0 cm sinker.
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Figure 3.34: Comparison of spherical and cylindrical samples relationshipWihd
diameter

Onehypothesiss thatgravitational forces are negligible comparedhydraulic braking.
Previous evidencm figures3.23 and3.24 suggest thiss notthe case; for diameter of
4.2 cm, increasingn cylinder volumeby 100 % (fom 5 to 10 crpgives rise to an

increase irJ of 43 %.Additional phenomena to hydraulicakingmust be at play.

Another explanation is the frictional force applied amgples; cylinders have a
large surface area adjacent to higelocity fluid flow within the annulusyhich would
be expected to increase fluid frictidn comparisonan equivalentsphere wil have an
infinitesimally smadl region of surface area at tHecation ofmaximumfluid velocity.
This is unlikelythe cause for discrepcy, considering the limited difference thfor

two samples of the sanmeassbut different lengthdiscussed previously

The most likelyphenomenonis the path of fluid past theinking object
Assuming that the closest movifigid to asinkerclosely followsthe sinkersurface
when tow is laminay a simple analysis of sphere and cylinder geometry can give the
greatest possible flow path. For a sphere, this is simply half ofrtherderence
thereforefor a sphere of volume 1 amddiusof 0.62the greatest flow path &95. For
a cylinder, the longest path would be the radius of both faces and the height of the
cylinder; fora cylinder with the same volume of 1 and raditi8.62, this flow path

would be2.07, a 6.15% increase
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Figure 3.35:Flow patterns for spherical (left) and cylindrical (right) deployment

objects. Fluid can be seen to travel around a sphere using a shorter path in comparison
to cylinder samples, where ftumust transverse around the edges of the cylinder front
face.

An entirevelocity distributionof the surrounding fluigs required to quantitatively
compare the flow paths of spheres and cylindeng has not been achieved in its
entirety for cylindrical objects dlthough simplified, partial solutions are the topic of
section 4. However, in section 2.2.2itlis shown how the NavieBtokes equations are
used to give the velocity distribution of flow past a sphere, and the streamlihes of
surroundig fluid. As distancefrom the objectncreasesthese streamlines gradually
dissipate until the fluid returns to its unperturbed streaming $tateuld be reasonable
to assume that a similar flow pattern would be observed for cylindrical olgedts,
therefore fluid would travel in a similar patteimthe cylinder geometry at close
regions. As a result, a greater proportion of fluid entering the annular gap would be
travelling perpendicular to the sinking direction, and a greater amount of energg will b
lost redirecting this fluid behind éhsinking object. This phenomenawmas proven to be

a factor ofU in section 3.47, despite using significantly smaller samples.
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3.6 Conclusions

Two scales of apparatus were used to investigate the sinking ratéoosveylinders
and spherical objects. All objects were observed to quickly reach terminal velocity
within 2 meters of sinking.

Spherical sinking objects were more readily available, and were therefore used
as a method to investigate a wide rangt,aindlinking apparatus accuracy to previous
literature. The extended Stokes flow equation (which omits the effects of boundaries)
showed excellent agreement to experiments viihel®.25, validating apparatus
legitimacy and indicating that boundaries are rigigle for lesser values df (at the

investigatedRerange).

The Munroe equation was also applied to sphere reamitisalthough the model
overpredictedU, thell at which maximun occurredwas predictedo over 99%
accuracy. The Munroe equation clgsshowed a strong qualitative description of the
boundary effect; this prompted for an amalgamation of the Munroe and extended Stokes
law equations, which proved to be a versatile model of predickiwgh reasonable

accuracy (up to 13.8 % error) ovewale range ofl andRe

When systematically varying the parameters of all cylindédecreased
linearly withll . Both thecylinder sizeandthe mass increase willh thereforethe rate
of increase in friction effects (by reducing annular clearance) outweigh tleasecin

gravity when increasing diametgor | 1@ @

Increasinghe length of a cylinder resulted in an increasd,iseemingly
towards a plateau. An investigation attempted to confirm the theory of a plateau
maximum by sinking long cylinders of up46 cm in length, although an absolute

maximumcould not be identified.

Results indicated that is proportional to density in a similar fashion to length,
with U increasing towards a plateau. This further suggests that a maxinexists,
and thatanyincrease in gravitational force approaches this maximum. The fact that an
increase il reducesany increase ik via lengthor density suggests that this

maximum is imposed by an annular throughput limit
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Future work is recommended to confirm or refute the existence of the
aforementioned maximum sinking velocities; this would simplyiktita sinking of

increasingly long and dense cylinders (a progressively expensive investigation).

Increasingeitherthe length or density also increases the magnitude of the linear
Il -U gradient. It may therefore be concluded that these variables aledcaipd any

equation oU must contairll as a product of length and density to an unknown power.

The magnitude of powers in which these parameters aocud not be

experimentally determined, however several limitations were able to be obtained:

1) Lengthmust appear at a lesser power than 1, because increasing length
causedJ to approach an asymptotic maximum.

2) Density must appear at a lesser power than 1, because increasing density
causedJ to approach an asymptotic maximum.

3) I must appear to a greatmiegnitude ofpower than density, because
decreasing by just 6 % was shown toe equivalent tan almost 300 %
increase in density.

4) Density must appear to a greater power than length, bedanoser samples
were shown to sink faster than longer samplieen mass and were kept

constant.

Observations during sinking experiments indicated that cylinders would undergo
axial rotation during their descent, as identified in previous literature. Furthermore, the
slimmest, shortest cylinders would become lodgethway down the apparatus,
regardless of whether they were aluminium or steel. A geometric analysis of each
cylinderés maxi mum available tilt concl ui
at a diametelength aspect ratio of less thari8. The increnms in ratio used to
identify this critical aspect ratio were admittedly large; it is therefore suggested that
future sinking experiments are performed to gradually reduce the cylinder aspect ratio
and identify the critical ratio with better accuracy.

Sinking experiments were repeated with several centralising spacers to reduce
the axial tilt, and maintain the same level of tilt regardless of cylinder geometry. The
aforementioned trends betwedrandll, length or density remained qualitatively
consistent sing centralised sinkers. All of the 5 cm long cylinders showed a significant

increase irJ as opposed to ueentralised sinkers, showing that reducing large levels of
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tilt increasedJ. Interestingly, an opposite effect was observed for all other cylinders

which exhibited an (albeit minor) decrease in sinking velocity. It was suggested that the
most likely explanation is that small levels of tilt displace fluid in a beneficial,

propulsive manner. This could be a challenging hypothesis to prove; it isssed)tjeat

future work should first attempt to confirm that the observed decreasesinot due to

an unforeseensidef f ect of the stabilising method
annular volume). This could potentially be achieved by alteriagvisight distribution

of a cylinder to be frontoaded, which should potentially reduce the level of tilt without

introducing other sideffects.

Experiments were also performed to quantify the friction assdaidtk the
front geometry of cylinders. Thigas achieved by altering the front face of several
cylinders to cones of increasing size, but keeping the mass of each sinker constant.
Results showed that streamlining the cylinder increased velocity by upto despite
experiments being performedthe smaller apparatus scale (fréate surface area was
relatively small). This highlights the importance of incorporating the front cylinder face
into any mathematical model bf

Fluid viscosity was varied by alternating the fluid to glycerimehighly viscous
fluid. Results showed a decreasaJiof 1 - 2 orders of magnitude. Previously observed
trends betweebl and systematic variables appeared to agree within error, suggesting
that previous empirical findings are applicable to systems of vaRaudowever, error
bars were admittedly large. These large errors were a result of a disorderly rate of
change in tilt, where cylinders would fix to a maximum tilt rotation for seemingly
random periods of time, and sink significantly slower when doing sthétur
investigations would be required to reduce these errors, such as axially centralising
cylinders, or simply performing experiments in slightly less viscous fluids. It should
also be noted that viscosity was eatlusivelyaried, as a change in fluadso gives
rise to a change in density. Truly isolating viscosity would not be straightforward, one
suggestion is to construct an apparatus capable of performing sinking experiments at
different temperatures, using a fluid which has a high viscosity setysio

temperature, but low density sensitivity to temperature.

A fully analytical solution of the sinking rate of a cylinder in a confihdzk is

unknownat this point in timelt can be assumdwweverthat sinking rate is
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proportional to fluid densjtand viscosity in the same manner as Stoke4 [Elis

gives a sinking velocity proportional to «, where” is the sinker density,

the fluid density and thefluid viscosity.Insertingvalues of viscosity and fluid density
for temperatures of 15 and 25a 5l difference from room temperature) into this
formula resuksin asinkingrate differencef up to 13.6%. In reality the variance in
temperature was unlikely this seveas,results were performed in the same season.
Regardlesghis shows thasin implementation of temperature control would add further

legitimacyto resultsand should be considered for any future work.

I This is relatively likely, considering that the fluid density and viscosity contributions to teminal velocity
are acquired entirely from the bouyancy and weight components of the forceebadpration in Stokes
law. A sinking cylinder will experience the forces of bouyancy and weight in a comparable manner.
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4: Analytical Solutions for Cylinder Terminal Velocity

4.1 Introduction

The NavierStokes equations were solved for flow past a statipsphere in section

2.2.2.1 yielding an expression foetminal velocity of a sinking spherical object. This

is one of only a handful of cases which permit an analytical solution of the Navier
Stokes equations. Even this example could only be solved exactly under the assumption
of socalled creeping flow conddns, where the Reynolds number is small, enabling the
advective term to be ignored.

No generalnalytical solution exists for a cylindrical object sinking under
similar flow conditions whether in an infinite medium or confined by a column or pipe.
Neverteless, it is instructive to attempt to build a model capable of predicting the
gualitative dependence of terminal velocity upon length, radius, density and annular

clearance.

The approach taken is pedagogical; a model will be built incrementally,
beginning with an analytical solution of a simple, related flow problem. The model will
be tested for its shortcomings before additional physicsdaieda and the process
repeated. Each additional change will be simple and contain useful insight. Empirical
correction factors are avoided so that the model retains simple, tractable relationships

between key parameters, and remains modular for subsequent improvement.

The main aim is not to obtain quantitative agreement thiglexperiment that
is beyond theesoucesof the presentesearchthough close agreement is desirable.
The goal is rather to yield the correct functional dependencies on key parameters using

a model which may be subsequently improved.

4.2 Model A

The baseline model considers a solid tubeingwith constant spedd through a
wider diameter cylinder filled with a viscous fluid, as shown in figute The moving
tube has a radiuk “Yvhilst the larger tube has a radiusYfil is a dimensionless

guantity ranging from 0O to 1.

-116



Infinite
Cylinder

Fluid

Quter
*= Tube

Figure 4.1: Schematic diagram of an infinite concentric cylinder with radliti$vithin
a tube of radiusy, moving with constant speédlin the positivez direction.

The motion of the inner tube results in Couette flow. At steady statecih@pressible

NavierStokes momenton equatiorin cylindricatpolar ceordinatesbecomes:

|

i1

where the advective term has been discarded, which is true only for low Reynolds
number flow. The pressure is assumed to be corstafitpoins along the fluid.

Outer
tube

Cylinder
edge

........................................................................ Centreline

Figure 4.2: Fluid velocity profile between a emoving concentric cylinder and fixed
outer tube.
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Equation 4.1 can be solved with the boundary conditions:

~

(VI Yoo Y (4.2)
0 i mwo 'Y (4.3)
giving:
Ca L (4.4)
0 Y~
a

For a given clearance (measured heré)gnd cylinder speed, equatidd predicts a

logarithmic dependence of velocity on radial position as shown by fig8re

1.00 .

T

0.75 |

0.50 |

In(x) v, /U

0.25 |

0.00 L L
0.6 0.8 1.0

r/R

Figure 4.3: Variation of nondimensonalised fluid velocityy i as a function of
radial position

The velocity distribution obtained in equation 4.4 is the starting point for deriving a

number of other useful quantities. The average velocity, for example, is given by:
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D1 Q—Qi (4.5)

0o =
I Q—Qi
Y oo
Yo 11w AR
% .
o 1 (PEar

wherei [ i +yis the nordimensionalised radial positioRerforming ie integral on

the right hand side of equatidib gives:

. Y s s
(VN0 a0 p | gl 11 (4.6)

The average annular velocily Omay now be used to determine the volumetric flow

rate0 (speed across annular area) gsin
0 WAY p | (4.7)

The mass flow raté follows trivially fromc ” O The frictional force on the
surface of inner cylinder can be calculated with the radial fluid velocity distribution
using:

o (4.8)

O ‘ I I YQ—Q

whered is the length of a finite patch of surface along the cylinder. Differentiating the

velocity distribution in equatiod.4 with respect td gives:

~
g

oY (4.9)

L rtaegl

—a

Substituting equatiod.9 into equatiord.8 gives:

Y Ty (4.10)
VY ’Qd U
aell ‘ acel

0
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With the magnitude of the drag force determined, it is now possible to obtain an
expression for the terminal velocityfor a fictitiousversion of the sinking cylindeaf
which end effects are ignorethis is achieved by imposing the condition of

mechanical equilibrium. For the cylinder sinking in a gravitational field this gives:
O 0O O m (4.11)

where O, "0, and"O are the zzomponents othe forces of weight, buoyancy drag

respectively. The buoyance and weight is simply given by:
O " CYIDQ (4.12)
O TV DQ (4.13)
Inserting equation 4.10, 4.12 and 4.13 into 4.11 finally gives:

Ly oad (4.14)
Y o

Which is the terminal velocity of a sinking cylinder, as given using model A. It is clear
from equation 4.14 that for model A, terminal velocity depends linearly on the density

difference, is independent l@ingth, but depends of the radius rdtiasll 1 1l , as

shown in figure4.4 where the nonlimensionalised terminal velocity

020 T T T T

0.15 | -

0.05 —

0.00 . I . 1 . I . 1 .
0.0 0.2 0.4 0.6 0.8 1.0

K

Figure 4.4: The nondimensionalised terminal velocitfyas a function of diaeter
ratioll .
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The nondimensionalised velocity first increases with increadinthen passes through

a maximum before decaying at high valued of he initial increase in velocity is due

to the resultant downward force (weight minus buoyancy) domunéte frictional

drag. At small clearances, drag then dominates causing the decrease seen in figure 4.4.
The location of the maximum can be found by differentiating the dimensionless

terminal velocity, where:

T— (. Il p cI T T (4.15)
T
which has the solutions:
I 1 (4.16a)
| 0" (4.16b)

Clearlyll  mtcan not be the maximum, therefore the remaining, physically meaningful

solutionisll  'Q , which gives a maximum #t 1@ 71.)Figure4.5 shows a plot of
actualterminal velocity calculated from model A using parameters relevant to a steel
sinker. This reference examples usésid viscosity' of 1.002 m Pa and fluid

density” of 998.2 kg m?[134], [135] and asinker density of 7903kg nT3 which is
calculated using an average of all (calculated) steel sample densities. The bor¥ radius
is consistent with experiment, at 3.2 cm. The maximum terminal velocity of this
example sinker is approximatefy p 1m s, which is 3 orders of magnitude greater
than comparable data obiad by experiment in sectiord3This is not only true fothe
maximai when comparing model A with experiment ddkagnges between 0.&6d
0.94) model A continues tover predicterminal velocity by 3 orders ohagnitude
Furthermore, the location of the Maxima in model A results in a highlylinear |l -U

relationship within the 0.66 0.94 Il region, again contradicting experiments.
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Figure 4.5: The terminal velocity of the reference cylinder calculated using model A, as
a function of diameter ratib.

4.3 Model B¢ Introduction of a Pressure Gradient

A major omissionn model A was the neglect of any pressure gradients. As a

cylindrical sinker advances, fluid will be pushed away from the leading face and
sqgueezed vertically wupwards (in opposite
throudh the annular gap, as shown in figdté. The NavietStokes equation to be

solved in this case is:

pr 1o pRO (4.17)
iTi T TQa

where the right hand side now contains the pressure gréfélié@tquuatiom.l7 can

now be solved within the annular region using the same boundary conditions as used to
derive model A (eqations 4.2 & 4.3). Again, this assusiinat the cylinder is infinite
and end effects are ignored. The solution is:

| (4.18)
Y I p

ol -

, 9%y p0b

VI — — . | —
T Qq a
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‘ Direction
of Travel

Ap

Figure 4.6: Schenatic diagram showing the displacement of water from the front of the
cylinder to the annular region.

It is instructive to plot a nedimensionalised form of equation 4.18. Using the
following dimensionless variables: 0 TY,ig iTYandd YTty QUQ ¢
eguation 4.18 becomes:

N p I TTg 11g (4.19)
v o018 p — <

Figure 4.7 shows a plot of the dimensionless velocity against scaled radial distance for

various values ob, for a fixed value ofll (0.9).
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Figure 4.7: The dimensionless velocity plot as a function of dimensionless radius for
various values oA.

At low values ofdimensionless variabl (proportonal to the pressure gradiettp
velocity remains positive across taenular gap. However, far ¢ mandd v 1,1

it is negative for large regions, indicating bétdwv.

Equation 4.18 is used to give the average velocity in the annular region in an analogous
manner to model A (equation 4.5); this gives:
Y clh 110 Y Q0 p | (4.20)

VO TWP o1 yanl !

The pressure gradieft 07 Q cmust be removed from equatidri8 to give a
closed solution for the velocity distribution. This is accomplished ubiegostulate of
mass continuity. The quantity of fluid (volume) displaced by the leading face of the

moving cylinder per unit of time is:

O “YITY (4.21)

Since this displaced fluid must be fordemckthrough the annular gap (due to closed
end boundary conditions), the throughput must also be given by eqdatidaquations
4.21 and 4.7 may therefore bquated togethgsee Appendix F for detailed algebta)
give:

-124



?

QL Y (4.22)

.[l
Qa Y p I 11 p |

Q

It is instructive to examine how this pressure gradient depends on clearance (as
4

measured by). Defining a dimensionless pressure gradiénby , this

variation can beketched as shown in figure 4.8.

500 . . . . .

450 |- .
400 b -
350 | -
300 | .

250 B

Yo

200 B

150 -

100 B

50 | B

0 1 L 1 |
0.0 0.2 0.4 0.6 0.8 1.0

K

Figure 4.8: The dimensiordss pressure gradient shown as a functidin of

The plot shows the dramatic rise of the pressure gradient at small clearances (high

values ofl).

With the pressure gradient known, equation 4.22 may be substituted into

equation 4.18 to give:

‘| o & é% I oy (4.23)
L0 Eg oy P T ey
VI Y= T— .
(Il 0 @ da p | p | o
o u Wy

which is the close@xpression analytical form of the velocity profile. Figdr@ shows

a plot of the nordimensional velocity againstaled radial position for several values

of II. For eacHl the fluid velocity begins positive at the surface of the sinker, but
changes sign and goes towards a minimum, indicating back flow. After the minimum,
the velocity goes to the boundary valueefo. The magnitude of backflow increases

significantly for tighter annular clearances (high
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Figure 4.9 The relative velocity distributiorh(7Y) in the annular region as a function
of radial position fotl values of 0.35, 0.55, 0.75 and B.9

Now considering &inite cylinder sinking through stationary fluid, the friction applied
to the annular surface of a cylinder of given lerigth determined using the velocity
distribution given in equation 4.23. Substituting equation 4.23 into equéi8
therefore gives:

B I 4.24
0 o 'Yﬁp P (4.24)

The dimensionless frictioi©® can therefore be given as

"0 ¢ p | (4.25)
TOYp T 1 p |

and is plotted as a function Ibfin figure 4.10below.
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Figure 4.10 Non-dimensional frictional drag force as a function of diameter Hatio
Model A is the red line, whilst model B is the blue line.

The most obvious point to note is the si@d; acts in the opposite direction to the
movement of the cylinder. This is the case for both models A and B. The magnitude has
a weakll dependence for low to intermediate value$ dbut then shows a steep drop
beyondll m@&. This is the saalled hydrodynamic braking affect. A similar effext

present for model A, but the divergent behaviour occurs at a much higher rdnge of

(approximately 0.95).

With the frictional drag force known it is now possible to determine an
expression for the terminal velocity ofiaite cylinder by substitutig equation 4.25

into the previously determined force balance, equation 4.11.

. ey~ 7 o I 1T p | (4.26)
Y
G p |

It should be noted that this terminal velocity is consistent with the basic sadfitiird
et althat was developed for the falling cylinder viscomg®&i, [47]. The functional

dependence of the terminal velocity uglors displayed in figuré.11 below.
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Figure 4.11 Dimensionless terminal velocity of model A and model B, plotted as a 'Y

Y plot as a function of diameteatio ll . The red line represents model A, whilst the blue
line represents model B.

The velocity once again shows a maximum, but compared to model A, the maximum is
located at a lower value éf Maximising the velocity and solving numerically, the
velocity maximum occurs dt 1@ Y YThe region ofl explored experimentally has
become somewhat increasingly lindaanksto thisshift in maximatowardsa lower

value ofll, however substantial notinearity remains.

Substituting in the values for the ee¢énce steel sinker gives the velocity
distribution shown in figure 4.12Z'he velocity of model B is significantly lower than
the prediction of modeA, however, model B still ovapredicts the terminal velocityy
almost 3 orders of magnitude compareth®s experiment results. This indicates that
important physics remain missing from the model.
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Figure 4.12: The terminal velocity for the reference cylinder as predicted by model B,
plotted against diameter ratlo Highlighted in blue is thé region of interest to
experiment.

4.4 Model Cg Accounting for the Additional Retarding Force

The fact that the cylinder will push fluid ahead of it back through the annular space was
taken into account when deriving ned, this resulted in a pressure gradient. The

force required to push this mass of fluid through the gap was not accounted for
however. Such a force clearly arises due to the high pressure at the front face of the

cylinder.

Model Cis constructed from nael B, retaining the same velocity distribution,
but now incorporating the additional opposing foi@ento the force balance, which

reads
O O O O m (4.27)

Figure 4.8 shows 3 regions of interest along the length of the cylinder.
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Region 1  Region 2 Region 3

Figure 4.13: Schematic diagram showing 3 regions of interest used to obtain an
expressiorfor force at the front face. The first is a fictitious region in which the
momentum is postulated to be zero; this is used later in the derivation of model D. The
second region is the entrance to the annulus; this pressure must have a corresponding
frictional force applied to the cylinder front face. Region 3 is the annulus exit.

Ignoring end effects, the pressure gradient along the annular gap must be given by:

l

Qo 0 0 (4.28)
Q¢ 0

Q

Q

whered and0 are the pressures at regsaband3 respetively (as shown in figure
4.13. It is assumed that the pressure at region 3 is negligible. The pressure gradient

may therefore be approximated as:

Q0 (4.29)

Qa

0
=

The total friction applied to the cylinder at region 2 is equal to the pressure in region 2
multiplied by the area of the front face, therefore:

~
g

Qu
0 Y (4.30)
Qa
Inserting the pressure gradiemjuation 4.22 into equation 4.30 gives:
Y (4.31)

O 1Tl D -
aeg " p o0
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Now that all the forces have been obtained, they are substituted into the force balance,

equation 4.27 to give:

. Y ¢roo o I 11 o | (4.32)

The dimensionless terminal velocity is shown in figurel4éd a function ol .
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Figure 4.14: Dimensionless terminal velocity as a function of diameter figtas given
by model C.

The trend in figire 4.14is qualitatively similar to the equivalent model B plot (figure
4.11). The location of the maxima in model C idlat @& p u(determined
numerically), significantly lower than that of model B. The models are compared

guantitativelyin figure 4.15 using the values of the baseline sinker.
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Figure 4.15 Terminal velocity of the reference cylinder as a function of diameter ratio
I, as given by modsIB andC.

It can be seen from figure 4.1%at the maximum velocity magnitude has significantly
deceased in model C. Furthermore, in the diameter regime of interest to experiment
(dp @ I 1807, the value of terminal velocity is reduceddrpund a factor of i

comparison to model B.

Model C is clearly still incorrect; there is no length dependeniceefminal
velocity, and the magnitude is still 2 orders of magnitude too high compared to

experiments.

4.5 Model D¢ Improved Model of Front Face Pressure

Model D improves upon model C, by taking a more detalld/ationof the pressure
within region2 at the leading face of the cylinder. First, a mass balance is performed
between regions 1 and 2 (see figure3i.This is effected by equating the fluid

displaced from the cylinder and the average flow into the annular region:
“YI "™ @0Y p I " = (4.33)

which can be rearranged to give:
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[ (4.34)

A momentum balance over the same region results in the following:
0 0 “Y p | oY p o T (4.35)
which can be rearranged to give:

0 0 "@o (4.36)

Substituting equation 4.34 into 4.36 gives:

"y (4.37)
p

Ca
Ca

However, in model C it is shown that e L— (equatior4.29). Using this to eliminate

0 from equation 4.37 yields:

~. ~.

0 2% I (4.38)
Y p 1101 p 1 p |

Equation 4.38 can be used to give a more accurate sigrder the force associated
with pressure at the front face:

5 (4.39)

& AY [0 Tial —
p
Y Y
p |

Substituting equation 4.39 into the force balance (equation 4.2@$ e implicit

expression for terminal velocity:

- Y .
YNe———F7— Y Iq

o | IYyQ  (440)
“Op p I 17

which is of the general form:

oY 1Yo (4.41)
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where:

Yo
LT
¢p |
L S 1T p
YiQoo

The solution can be obtained immediately using

vy f f T T
Gl

(4.42)

(4.43)

(4.44)

(4.45)

The first thirg of note is that terminal velocity is now a function of length,

unlike models A C. For annfinitely long cylinder, th¢é term can be considered

negligible [ ® -, resulting in a solution to terminal velocity exact to that of model C

(equation 4.3).

By fixing the diameter ratio to 0.9, terminal velocity is plotted as a function of

length. This is shown in figure %1where terminal velocity increases asymptotically
with length.It is also shown in figure 4.1i&at for at a diameter ratio of Ga®d length

of 25 cm, the terminal velocity is approximately 1'nfisr the reference cylinder.
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Figure 4.16 Terminal velocity given by model D as a function of cylinder lerigtor
the reference cylinder at a fixéidvalue of 0.9.

The diameter ratio dependence of nddes also shown in figure 4.1fér the reference
cylinder, where length isow fixed at 25 cm. Figure 4.5hows that model D has a
much lower peak velocitijn comparison to model C (280 rhas opposed to 1150 ms
1). The location of the peak velocity also shifts further to the left in comparison to

model C, appearing at a diameter ratio of approximdtelyr.
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Figure 4.17 Terminal Velocity given by modéD as a function ol for the reference
cylinder at a fixed length of 25 cm.
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The nature of trends shown indicate that model D captures the essential physics

and shows a strorfgydraulicbrakingeffect across a large range of diameter ratios.

4.6 Comparisa of Best Model with Experiment Results

Experimental data gathered in the previous chapter is used to quantify the
accuracy of the most developed analytical solution, model D. Due to experimental
density values being calculated using mass and volume,rmateeal samples may
have marginal differences in calculated density (<1%), yet are considered equivalent, as
these errors will be due to slight inaccuracies in volume (form factor, radius and length
measurements). An average density of each materiarnsftiie used as input for model
D, at 2709 and 7903 kg-#rfor aluminium and steel respectively. Unless otherwise
specified, results from the lardpore apparatus are used for comparison. Both
centralised and conventional cylinders are used when mostaippli

4.6.1 Length

Experimental datavas compared with model or seel and aluminium samples
(two different diameterdp examine how well model D predicts the length dependence
of terminal velocity Figures 4.18a and 4.48how the results of this egarison.

Since model D assumes the sinker does not tilt or rotate as it moves through the
fluid, the centralised samples offiie fairest comparison. Figudel8 shows that while
model D gives the correct qualitative behaviour with length, quantitativeler
predicts terminal velocity by around a factor of 2 in the worst cases (largest clearances).
For the smallest clearances, the comparison is significantly improved for both steel and
aluminium sampledn all cases, the modelerpredictsthe terninal velocity,

suggesting the deficiencies are found in omitted or undervalued frictional terms.
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Figures4.18 (a & b): Model D and experiment terminal velocities plotted as a function
of cylinder length. The larger diameter series samples were makiged. Figurel.18a
is for aluminium samples, figu#e18b is for steel. Dashed lines fitted to experiment
values are for visual aid only.

The quality of fit between model D and experiment data is more specifically quantified
using a regression anaiysThe regression analysis results in afodent of
determination, which describes the quality of fit using a coefficient of determination

between 0 (poor) and 1 (goodgable 4.1 shows that therestatisticallylittle



resemblanceetween model D arall experiment datas a function of lengtiThisis
unsurprising considerinipe consistenbver predictiorof terminal velocity It can
however be concluded thaiodel D more accurately accounts for thectional

dependency of length as density is éased and increased.

Table 4.1:The coefficient of determination for model D as a function of length
individually compared to all experiment data sets with a fll:add density.

¢ Aluminium Steel
0.66 -10.85 -19.16
0.81 -2.32 -5.37
0.90 -4.95 -2.28
0.94 0.22 0.14

4.6.2 Diameter

The ability of model D to predict the correct diameter dependenagt investigated,
Figure 4.1%hows experimental data for aluminium and steel samples. The data sets are
for 10 cm and 25 cm long cylinders withranging from 0.66 to 0.94.

Quantitatively, model D ovezstimates sinking velocity in all cases, with the
maximum discrepancy being around a factor of 2 for the smallest diameter ratios
(largest clearance). The discrepancy diminishes for high diameter(satiaest
clearances). Qualitatively, model D predicts a-tinear dependence on diameter whilst

the experimental data conforms to a linear variation iith

Trends are similar for aluminium and steel though the sinker velocities are

higher for the latter.
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Figures 4.19(a & b): Terminal velocity plotted as a function of the ratio between
sinker and container diameters. Solid lines are predictibnmodel D, plot symbolare
experimental data. Figurel®a is aluminium, whils#.19b s steel. Dashed lines are for

visual guidance only.

Table 4.2showsthe coefficients of determination between model D and experiment

data as a function dif. Once agin the regression analysis indicates thate is

minimal resemblancéetween model D arithe trend oexperimentatg reflectingthe

lack of linearityconsistenbver predictiorof terminal velocityin model D
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Table 4.2: The coefficient of determiniain for model D as a function dif, individually
compared to all experiment data sets with a fixed length and density.

L Aluminium Steel
5 -0.58 -0.36
10 0.44 -0.82
15 0.19 -1.24
20 0.14 0.15
25 -0.47 0.17

4.6.3 Density

Due to a limited number of samples having different depsitly 2 experiment points

are available to plot; one set for cylinders with diameter 4.2 cm and another with 6.0 cm
diameter. Figure 4.19 shows a plot of terminal velocity vetsus” together with the
predictions of model D. The experimentals ul t s have been d6exten
origin as a third point (it is obvious that when T, the cylinder would be

neutrally buoyant and therefore stationary).

Figure 420 shows that model D captures the correct qualitative dependence of

terminal velocity upon density, whichis ” " . The model consistently over

predicts the experiment results but is quantitatively quite good for wider cylidders (
T80 J.
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Figure 4.2Q0 Comparison of model D predictions and experiment fiatthe terminal
velocity of a sinking cylinder through a column of fluid. The length of the cylinalers
25 cm Velocity is expressed as a function of the difference in density between sample

and fluid.

A maximum velocity appears to occur for increaseffuid velocity througheitheran
increase in length or density. This suggests that this is imposed by hybrallitg
effects being a function of fluid througlow within the annulus. It is expected that the
approach to a maximum happens at a fasterfor length, due to the coupled increase

in buoyancy force.

4.6.4 Viscosity

Figure 4.21compared model D and experiment terminal velocity for two different
fluids. Both trends are for the same, 12.7 cm long steel samples. The trends of each
series sggest that model terminal velociimderpredicts expaement for the higher

viscosity dycerine, as opposed to the opeediction shown for water.
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Figure 4.21: Comparison of terminal velocity as a function of fluid viscosity for both
model D and experient results. Samples are steel, with a length of 12.7 cm.

The tilt of cylinders is believed to be the cause of the large errghgaerine sinkng,

as discussed in section 3.4Tis is due to cylinders sinking slower when tilted. If this
eccentric beaviour is indeed the source of discrepancy, model D would be expected to
significantlyoverpredict experimetal results, due to it beingancentric model. It is
therefore unexpected that the opposite of telsaviour is shown in figure 4.2More-

so, ilt has been shown to decreasdl ascreases, yet model D becontessaccurate at

largerll ranges (small clearances).

4.6.5 Scale

Model D is now compared over the two scales used during experimentation. These
results are shown in figure £.2Centrailzed cylinders are not availablerfthe smaller
scale, therefore necentralised sinkers are used throughout. The comparison uses
cylinders of 10 cm length for the large apparatus, and 4.35 cm length for the small

apparatus this results in a similar dege of axial freedom.

In figure 4.2, the accuracy of the model appears similar across both apparatus

scales. Model and experiment velocity converge to similar levels of accuracy dt large
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(small clearance)et velocity is over predicted bygaeatermargin at lower diameters

for the large scale apparatus (up to a factor of 2).

20 T T T T T T T T T T T T

- = — Small Scale

Model D Small Scale
- 4 —Large Scale

Model D Large Scale
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Figure 4.2: Comparison of model D and experiment velocity as a function of
diameter, over both scales. Tlaede scale apparatus uses 10.0 cm samples, whilst the
small scale 4.35 cm.

The model is compared with experiment data as a function of length over the two
apparatus scales in figure 8.2 he diameter ratios used are 0.81 and 0.79 for large and
small appeatus respectively. The trend predicted using model D appears to qualitatively
follow that of experiment fobothscales. The accuracy of model D significantly differs
between the investigated scales; fug larger scale, the model oyeedicts terminal

velocity by up to a thirtl In contrast, the small scale apparatus over predicts this
velocity by up to a factor of two, although this will be exacerbated by the greater range

of investigation at the smaller scale.

1 Excluding the 5 cm sample due to tilt. The 5 centralizedsample is within the aforementioned range,
at 31%.
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Figure 4.23: Comparison of model D arekperiment velocity. Terminal velocity is
investigated for multiple container scales, as a function of diameter.

4.7 Conclusions

A model of a cylinder sinking through a confined tube was constructed by
incrementally incorporating analytically definedctronal forces. The first iteration of

the model accounted for the friction imposed onto the cylinder surface as a result of the
velocity gradient within the annular gap. This velocity gradient was defined using a
simplified version of the Naviebtokes egations which omit advective flows. The

model predicted a terminal velocity 3 orders of magnitude greater than experiments,

depended linearly on density, and was independent of cylinder length.

The second iteration of the model introduced a pressureegtadto the Navier
Stokes equations that was representative of the displacement of fluid from the front face
into the annulus. This slightly lowered the maximum sinking velocity, but significantly

lowered sinking velocity throughout the rangdl aklevant to experiments.

The third iteration of the model determined the frictional forces applied to the

front face as a result of the pressure at this region. This had a similar effect on the
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sinking velocity as model B: slightly lowering the absolute maxinamah significantly

lowering velocity at thdl region relative to experiments.

The fourth and final iteration of the model improves upon the frictional force at
the front face by accounting for the cost of changing the direction of theThed.
solution becomes implicit, although an immediateisoh can be obtained via the
guadratic formula. The model is the first to describe sinking velocity as a function of
length, and correctly predicts an asymptotic relationship for both length and density.
Quantitatively, sinking velocity is accurately pretéd for large values dff, but is over
predicted by a factor of 2 at lesser value$ .ofhis reflects the poor qualitative

dependency between sinking velocity dnd

A regression analysis was used to statistically determine the quality of fit
between the best model and expemnts. The regression analysis showed that the
model became a marginally better fit to experimentsiasreased, but as a whole
proved that the model poorly described the results of experiments. This is a reflection of
the models consistent over preda of sinking velocity, and should not detract from
the models strong qualitative descriptmfrsinking velocity dependence to length and

density.

The over prediction of the analytical model can be seen to exacerbate as the
velocity of reference datadreases (be through a decreask,iimcrease in length, or
increase in densityYhis implies a dependence with Reynolds number, and that the
laminar flow assumptions made in regards to boundary conditions and annular velocity

distribution are insufficient.

The discrepancy of results malgo be due to the experiment not being an exact
reflection of the analytical model. This would likely be due to eccentricity; it is well
documented that even the slightest amounts of eccentricity have a significant effect on
sinking velocity[48]. Eccentricity was observed during experiments, even after
attempts were made to centralize samples and stabilize tilt, yet the analytical model

assumes perfect concentricity.

It is reasonable to conclude thag thnalytical model is undervaluing friction
forces and further improvements are necessary. Phenomena at the trailing face of the
cylinder could potentially improve upon the accuracy of the model; an elongated trail,
or pressure at the annulus exit thasés the annular pressure gradient would likely
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reduce sinking velocity. The method of accounting for flow paths at the front face may

also potentially be improved upon, as the current solution is somewhat crude.

One possible avenue fafture work is tomvestigate whethexxperiment results
could be presentad a nondimensionalised format, similar to those presented
throughout this chapter. Thigould allow for further analyses between the analytical
model and experiments, potentially providing addaicstatistical insight intthe

deficiencies of the analytical model.

It could be argued that the complexity of the model has increased to an extent
that keeping future iterations analytical are neither advantagedeasible. An
empirical correction faor could potentially be a more practical solution. Considering
that model accuracy decreases as a function of Reynolds number, the most logical form
of correction factor would be an empirical description of turbulence, likely as a function

of Reynolds nurner, similar to the extended Stokes law shown in equation 2.52.
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5: Calculation of Shear Viscosity

5.1 Introduction

In chapter 4 an analytical model was constructed to describe the sinking rate of a
cylinder. The model correctly described the functioredehdencies for length and

density, but increasingly over predicted sinking velocity as diameter decreased. There is
clearly scope to improvepon the current moddDetailed insight into the behaviour of

fluid during finiteboundary sinking is thereforequired to better understand and

identify the necessary areas of improvement.

Molecular dynamic¢MD) is aconvenienimethod of investigating fluilow.
The solving of the equations of motion at a particle level removes the need to solve the
NavierStokes equations, and the absence of a mesh allowkdstraightforward
implementation of moving objectsuch as sinkeysMD will therefore be used to
obtain detailed fluid information that is troublesome to obtain in experiments, such as
local pressure,ehsily and velocity vectordt is important toobtain the shear viscosity

of the pair potential used in these simulationgviar reasons:

1) To enable an estimate of the Reynolds number of flows in MD siron&afihis
characterizes turbulence and allowsdomparisons between different length
scales

2) To parametrise the viscous stress tensor in continuum modelling of flow past a

stationary object or sinking simulatioes suggestion for future work)

This chapter will therefore apply the methods of+eguiibrium molecular dynamics
(NEMD) as described in section 2.3.9 to determine shear viscosity sbftfrepulsive
force potential (equation 2.81) that is used in MD simulations. Following a suitable
collection of viscosityata, a modeak derived that decribes viscosity as a function of

fluid density and temperature.

5.2 Methodology
The SLLOD method was used to determine the shear viscosity of fluids described by
the softrepulsive potential-( p 1 min this section the relevant simulation parameters

(such as the magnitude of timestep, number of timesteps to equilibrate, number of
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timesteps to simulate and number of particles) are justified for the execution of SLLOD

simulations.

An equilibrated fluid was prepared at a given density and temperatuuetiyng an
isokinetic molecular dynamics simulation starting from a square lattice. Initial
simulations were conducted using 729 patrticles, which was sufficient to determine the

optimum timestep for the equilibration phase, but this was later increasddtesg.

The time step of the simulation was chosen as the largest value which did not
result in significant drift in total energy during an equilibrium simulation. The threshold
of accuracy is chosen to be consistent with other applications of thegolsive
potential found in literature i.e. five significant figure$108]. Time step accuracy was
investigated by running constant energy (NVE) molecular dynamics simulation of 729
particles for a reduced time= 5,000 (.e. 500,000 stepsof a time step of 0.01). The
maximum divergence from initial total energy at each investigtintee step is shown in
figure 51, where a time step of 0.001 can be seen to maintain an accuracy befiveen 6
significant figures. A time step of 0.001 was therefselected and this value was used

in all simulatons described in this chapter.

T
T BT

1x10" 3
1x10%2 3 E
1x103 3 3

1x10* 3 3

Total Energy Drift

1x10° 3 E

1x10° E E

1x10—7 I 1 u s 1 " 1 s 1 L 1 L 1 "
0.000 0.002 0.004 0.006 0.008 0.010 0.012

Timestep

Figure 5.1 The total energy drift for simulations of 729 safpulsive potential
particles after a reduced times 5,000.

Isokinetic SLLOD dynamics were switched starting with weHequilibrated fluids.

For a given strain rate, the simulation was run until aemprilibrium steady state was

achieved. This was determined by examining the variation of total energy with time.

- 148



The steady state was deemed to be reashed there was no upward/downward drift

in the mean energy (energy is not conserved away from equilibrium but fluctuates about
a mean value). The lower the strain rate, the longer it takes for the simulation to
approach steady state. To avoid determinggtime required to reach steady state for
each specific strain rate, the time taken to reach steady state mvéststrain rate

was used throughout. In practice, a simulation with strain rate of 0.01 appears to reach
steady state afterv p Ttiterations, as shown in figuresfor” pandY p.To

be sure that this number of steps would work for all thermodynamic states (higher

densities require longer), this time was extendad tgp 1ttime steps.

186 T T T T T T T T T T

14 H i

1.3 H —

Energy (E/N)

1.2 H -

1.1 4 -

1.0 F -

0 1000 2000 3000 4000 5000 6000
Time Steps

Figure 5.2 Instantaneous total energy frarSLLOD simulation with an applied shear
rate of 0.01.

Once steady state was attained production runs of 6 million steps (see later) were
conducted over which the values of properties such as the stress tensor elements were
averaged. The (strain rate @eplent) shear viscosity was calculated from the
relationship:

0 O (5.1)

wheregis the applied strain rate aRg, is thexy element of the pressure tensor. It is
well known that transport properties calculated from molecular simulations have a

number dependen¢&36], [137] To ascertain how large this is for two dimensional
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soft sphere fluids, several runs wer@docted at a strain rate of 0.1, time step of 0.001,
run time of 6 million steps using different systems sizes ranging from 625 t0"1521 (
pand”Y p). The viscosity was calculated in each case and plotted as a function of 1 /
N.

Results are shown in figure3 where viscosity can be seen to converge (within
error) when- 18t 1T p A& system size of 1156 particles ( & v p 1T ) was

therefore chosen due to being comfortably within the limits of viscosity convergence,

and having a relatively low margin of error.
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Figure 5.3: Shear viscosity as a function of the reciprocal number of particles. Each
ensemble is iterated usingiae step of 0.001 over 5 million steps, for a shear of 0.1.

To determine the optimum production run length (with due regard for the uncertainty in
calculated shear viscosity), a very long simulation was conducted and the viscosity

calculated after variaustages. According to Gaussian error analysis, the relative error

in the shear stress (and hence the viscasityp "Qa Qi.0 Qn i

Shear viscosity is shown as a functiorpadduction runtime in figure 5.4he
viscosity appears to converge affer p mtwith an uncertainty of about%. This was
deemed to be an acceptable efroeducing this to 26 for instance would require
about 20 times longer simulation time, making it impractical in this project. The

production run length was therefore chose be 6 million steps in all cases.
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Figure 5.4: Shear viscosity as a function of production phase timesteps. Simulations
use a total of 1156 particles and p Ttnumber of equilibrium iterations with an
applied shear rate of 0.02.

5.3 Results

Theshear viscosity was calculated over a range of strain rategies eédensities
between 0.8 antl.4 and a fixed temperature of 1. The range of shear rates included a
limited logarithmic selection of 0.100, 0.219, 0.468 and 1.000, a somewhat lingar ran
equidistant between the logarithmic shears at 0.130, 0.180, 0.260, 0.300, 0.343, 0.645
and 0.822, and a limited range of shears below the suspected signal to noise limit of
0.030, 0.050 and 0.070. The highest strain rate used wag U@tond strainates of

unity, thermostatting becomes problem#tid8].

These results are shown in figlé. It is clear from the results that the soft
sphere fluid is noiNewtonian across the full range of densities, displaying shear
thinning behaviourOnly the zero shear rate viscosity is required. The zero shear rate
viscosity must be obtained by extrapolating the skdependent viscosity.
Unfortunately, there is no agreed upon expression for the limiting shear rateldepe
of viscosity in either 2 or @imensions. Kawasakind Guntorclaimed that the
relationship in Zdimensiongs logarithmic[139]. If correct, this would lead to a

divergent viscosity at the origin. In this work, a pragmatic approach has been taken. An
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empirical expression due to Crd440] is often used by rheologists for fitting the ron

Newtonianviscosity of real fluids

The crosdit function takes the form

o p (5.2

where' is the maximum viscosity, 11 the zero shear viscosity, andandda
adjustable constantghe former having dimensions of time. Treatingt and
* likewise asadjustable conahtsgives a 4parameter equation. Ndimear least
squaesmethods weresed to fit equation 5. each set of viscoskghear rate data.
The best fit arves are displayed in figure 5.Bhe fits were weighted by the error bars

in the shear viscosity.

-152



0.82 T T T T T 1.02 T T T T

= Density 0.8 | | ®  Density 0.9 |

0.80 1.00

0.98
0.96
=Y
0.94
0.92
0.90
1 1 1 1 1
00 0.2 04 0.6 0.8 1.0
v Y
T T T T T 2'00 T T T T T
L ) ) = Density 1.1 | |
140 »  Density 1.0 1.95 - b
1.35
= 1.30
1.25
1.20
0.0
Y T
30 T T T T T 55 T T T T T

29 m Density1.2| 4 \ Density 1.3

0.0 0.2 0.4 06 0.8 1.0 0.0 0.2 04 06 0.8 1.0

- 153



25 - .
m  Density 1.4

1 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

Y
Figures 5.5(a-g): Shear viscosity as a function of strain for a ranggensities from
0.8 (figure 5.5a) to 1.4 (figureh). Lines are no#inear least squares fits to the Cross
equation.

The 4parameter Cross equation fits all the data saite gvell. The shape of the fit

changes with densifiyup tor = 1.2, the curves are convex. Beyond1.2, the curve

changes to concave in shape. At 1.3 the curve fit extrapolates to the origin but

overshoots the data points. At= 1.4 the viscos$y rises very steeply as the origin is
approached, which appears to agree with |
density trends are likely due to the soft sphere fluid freezing at this stateThomis

illustrated in the particle plot shovim figure 5.6, where repeatingiangular unicells

begin to resemblsegments of a solid latticEhe extrapolated zeshear viscosities are
collectively showrin Table5.1.

Figure 5.6. Particle plot of the softepulsive fluid withY pand” p®.
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Viscosity is investigated over a narrower range of temperatures in comparison to

density, theseesults are shown in figure 5.7
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Figure 5.7: Shear viscosity as a function of applied strain rate for a range of
temperature simulations.

The zero straiwiscosity gradually increases in magnitude as a function of temperature.

Each data series also follows a similar trend across the observed range of temperatures.
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Table 51: The extraplated viscosity from figures 5.5, 5.7 and,5rBaddition to other
viscosity measurements takeraatextended divergence from the reference fluid state.

Temperature Density Viscosity
1.0 0.8 0.786 + 0.003
1.0 0.9 1.002 + 0.002
1.0 1.0 1.337 £ 0.003
1.0 11 1.889 + 0.006
1.0 1.2 2.88 £ 0.01
1.0 1.3 5.38 £ 0.07
1.0 1.4 200 £+ 1000
0.8 1.0 1.322 £ 0.004
0.9 1.0 1.330 + 0.003
11 1.0 1.340 + 0.003
1.2 1.0 1.351 + 0.007
0.8 0.8 0.744 £ 0.003
0.8 1.3 0.820 + 0.004
1.2 0.8 14+3
1.2 1.3 4.28 +0.03
0.9 0.9 0.987 £ 0.003
0.9 1.1 1.903 + 0.006
11 0.9 1.020 + 0.005
1.1 1.1 1.863 + 0.007

Additional fluid simulations that differ ibothtemperature and density were also
performed to quantify the coupling effects of density and temperature on shear

viscosity. These are shown in figuse3, in addition to selected previous data.
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Figure 5.8 Viscosity as a function shear rate for three sets of densities and two
alternate temperature fluids.

Figure 58 shows three pairs of alternate temperatures at a fixed density. It caanbe se
that, in contast to figure &, viscosity doesiot consistently increase with temperature.
This is due to the coupling of density. One explanation would be the approach of the
solid phase at high densities; as the fluid density increases and begins to solidify,
additional heat in the fluid resists the change in phase and decreases the viscosity.

Additional simulations at a density of 1.3 supgbi$ theory, as shown in tablel5

5.4 Development of a Bear ViscosityFunction

It is constructive to provide an equatiwhich gives a smoothly varying value of
viscosity as a function of fluid density and temperature. This allows for a convenient
method of determining any vissity within the measured range well as giving a
suitable description of viscosity fany futurecontinuum workThe approach to

developing such a function is as follows:

1) Sets of extrapolated viscosities at a fixed temperature and different densities
were fitted by a power series in the dendigyiationsfrom the reference density

of r =1.
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2) Ses of extrapolated viscosities at a fixed density and different temperatures
were fitted by a different power series in deviations of temperature about the
reference temperature of= 1.

3) The two Xdimensional fitting functions were then combined usingegpdlated
viscosities at deviations in both the reference temperature and dénsityi(

“Y p). This was fitted with a conjugate density and temperature power series,

which includes the-tlimensional fitting coefficients as fixed parameters.

Figure 5.9%shows the extrapolated viscosity as an exclusive function of divergence in

density fom the reference value.
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Figure 5.9 Extrapolated viscosity as a function of density divergence; ap. An
additional data point 4t = 1.4(3” = 0.4)is included in the fitting, but has minimal
influence upon the trend due to its large error. BEradues are a similar size to markers.

Both 2"9and 3¢ order errorweighted power fits were appliesing the reference state
viscosity (  p® o yas a fixed parameter. Th& ®rder power series showed a poor
level of fit. Although the S order fit doe not converge, the fit is acceptable. This gives

viscosity as a function of density to be:

P oXTR wE p @Y q@p” (5.3
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The fixed density coefficients are determined in a similar fashion to those of fixed

temperature, as shownfigure 510.
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Figure 5.1Q Extrapolated viscosity as a function of divergence in temperature from the
reference state for unity density.

Viscosity appears to vary linearly with deviations from the reference temperature. The
magnitude of this relationship significantly smaller in comparison to divergences in
density. A linear, firsbrder power series is therefore applied to the temperature

exclusive viscosity dependence, where:

P oxEed cop TIY (5.9
The previously determined fitting coefficients were used as fixed parameters in

a power series surface fit to determine the conjugate ddpasifyerature coefficients.
Results were fitted to all extrapolated viscosity ddawn in table 3. The
extrapolated viscosities at divergences of 0.8 and 1.3 density showed poor levels of fit
when including up to®order power series terms. Such divergences in both density and
temperature were therefore excluded from the fit, aactansidered beyond the
accuracy of the final viscosity function. The power series surface fit for the remaining

viscaesity data is shown in figure 5.11

-159



Figure 5.11 The surface plot of the conjugate denségnperature power series fitting
function, fitted to deviations in both density and temperature from the reference state.

A first order power series fit showed reasonable accuracy for the small deviations in
both density and temperature from the reference state. Higher order terms were
discarded du# giving rise to urphysical behaviour (such as random oscillations) at

the expense of a marginal increase in convergence. The first order conjugate coefficient

completes the shear viscosity function, where:

PP OoXEB copm3Y TR wE pHY @ p (5.9
P& X Y'Y
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6: Molecular Dynamics Simulation of Sinking Objects

6.1 Introduction

The focus of this chapter is the study of the sinking of a solid object through a viscous

fluid usingmolecular dynamics. The aims a® follows

(1) To gain insight into the pressure, stress and velocity distributions icihey
of the sinking objedn order to better understand the phenomena governing
sinking rates and guide futuneimericalsinkingratesolutions

(2) To generate pseuekxperimental data for use in continuurechanics
simulations of sinking, which will provide reference data for any attempts to
expand simulations beyond the mesoscale.

(3) Corroborate laboratory experiments with simulatiatad

Two different approaches were employed. In the first approach, a large disc is allowed
to sink under the influence of a gravitational field through a fluid. In the second
approach, the disc remains stationary while fluid moves past it at a fixechisigea
velocity. The first approach resembles the sinking experiments but the frame of

reference of the second approach leads to simpler interpretation of the results.

6.2 Sinking Disc Simulations

6.2.1 Methodology

A two-dimensional disc is allowed to sinising a gravitational field through a fluid
comprised of particles interacting through the-sefiulsive pair potential ( p 1,1t

.  P). The first stage of the model involved the generation of an equilibrated fluid.

The initial condition comprised a rectarar column of particles in which the unit cell

had the symmetry of a square lattice. Each of these particles was given a random initial
velocity between0.5 and +0.5, which was scaled to the desired temperature using the
ad-hocthermostat. The mass dfd particles was unity. The bottom boundaraxis)

condition was elastigs werahe lateral boundaries.
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Newt ondés equations of mbBadrdeRongaeta e t he
algorithm with a timestep @ = 0.001. The momenta weresealed using thad-hoc
thermosta(see sectio.3.4.1)in order to maintain the average temperature to the
target value. The simulation was run for a number of timesteps sufficient to remove all
trace of the starting latte and in which properties began to fluctuate about their mean

valuesi an indication that equilibrium had been established.

The sinker, in this case a large disc, was positioned near the top of the column of
fluid but in such a way that the top of thedivas located at the top of the top of the
container. Once the densitys) and radiusR) of the sinker were specified, its mass
(Ms) could be calculated usingpR2. Once the disc was in position beneath the surface
of the fluid, any fluid particles oapying the area inside its circumferencaevdeleted

from thesimulation, as shown in figure’

Figure 6.1: Particle plot near the beginning of a sinking disc simulation, with the
sinking disc placed at the top of the simulation area.

-162



The disc interets with the fluid using an afét version of the sefepulsive potential.
The magnitude of the offset is effectively the radius of the disc, this is achieved by

simply using a modified pair separationavhcomputing the pair potentsiich that:
LY, (6.1)

The force on a fluid particle resulting from its interaction with the sinker can be

obtained from differentiating the extended potential, giving:

10 1 > (6.2)

from which it carbe seen that the force is zero at the point of contact between a fluid
particle and the sinker and has its greatest valueifat pTX. The force on the

sinker resulting from a neighbouring fluid palti¢s obtained from equationZby

reversing e sign.

In addition to the above force, a gravitational force is added to the total force
acting on the sinking disc. The equation of motion for the momentum of the sinker is

therefore:

where thd subscriptrefers to the sinkegis the strength of gravity andis a unit
vector in the positivg direction. The gravitational force has not been applied to the
fluid particles; including such a force results in strong density gradients being
established ithe simulation which would be unphysical at this length scale.

The strength of the gravitational field is givenassarbitrary value ofy = 0.1.
This value was chosen on the basis of exploratory simulations. Using values much
greater lead to the sinkeatrelling faster than the speed of sound. Too low a value lead
to the sinker either not sinking at all, or sinking too slowly. The trajectory of the sinker
was obtained from its motion equations using the same RK4 integration scheme used

for the fluid atomawith a time step of 0.001.
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6.2.1.1 Scoping Studies

The density and temperature of thedldetermine both its behavioand more
importantly, its state. The aim was to find a fluid density and temperature that allows a
sinking object to reach a steadsiacity, whilst also being representative of a

reasonably incompressible fluid.

It is useful to observe the instantaneous velocity for a sinking disc in fluids of
different densities. Equilibrated starting configurations were prepared using fluids with
densities of 0.8, 1.0 and 1.2, and at unit temperature. Sinking simulations were then
performed using discs with a radius of 6.5 and a density of 3.0. The results from these

simulations are shown in figure®

1.4 . . . . , : : :
—— 0.8 Density| -
—— 1.0 Density| 1
1.2 Density| |

1.2

1.0

0.8

Velocity

0.6

0.4

0.2 |-

0.0 s | s | L | s | L
0 200 400 600 800 1000
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Figure 6.2: Instantaneous sinker velocitg a function of time, for fluid densities of

0.8, 1.0 and 1.2. Readings are taken every 10 time steps, or 0.01 reduced time units.
Ball density of 3.0 and radius of 6.5, fluid width of 20 and height of 600, with
temperature of 1.

It is clear in figure 6.2hat the instantaneous velocity trends from high (time, t = 50) to
low (t = 250) at a density of 0.8, despite the large quantity of thermal noise. This is due
to the fluid initially compressing before the fluid density beneath the sinker reaches an

equilibrium, causing the sinker to finally travel at a terminal velocity. In reality, this

equilibration wild/l consist of fluid Owav
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resulting in several peaks as shown. This is clearly evidence of an undesired, highly

compressible fluid.

Increasing the density from 0.8 clearly decreases the compressibility, as
illustrated by the reduction in velocity peaks for densities of 1.0 and 1.2. The 1.2
density series is noisier than the 1.0 density series which we attributgiab pa
solidification of the flud at higher densities. Figure3éshows snapshots of the fluid
particles directly beneath the sinking disc at the three different densities.=Th&
configuration clearly shows long range order indicative of a disdstructure. Based
on these results, fluids of= 0.8 and 1.2 were ruled out and sinking experiments were

confined to densities at or close to unity.

Temperature was the next variable to be explored. Starting configurations were
prepared with the fluid awsity » = 1.0, but temperature set to values ranging ffom
0.25 toT = 1.25. Sinking experiments were then performed in each case. For these
simulations, the distance of the sinking disc from the base boundary were recorded as a

function of time. Figuré&.4 shows these results.

It is clear that as temperature decreases, the time taken for the sinker to reach the
bottom increases. Furthermore, a hump can be seen in the trajectory of lowest

temperature centred on a time of ~ 300.
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L TR

Figure 6.3: The fluid configuration beneath a sinking disc of radius 6.5 within a 20
particle width lattice fofluids of density 0.8 (figure 6.3a, top) 1.0 (figure 6.3b, middle)

and 1.2 (figure €c, bottom).
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Figure 6.4: Sinker distance from base, as a functibelapsed sinking duration.

A higher temperature is therefore desirable to have a greater chance of the sinker
reaching terminal velocity before it hits the bottom of the simulation box (longer
simulation cells greatly add to the computational 3os$ince the curves shown in
figure 64 are largely indistinguishable from each other beybrdl, a range of

temperatures close to unity was selected for future sinking simulations.

The majority of simulations are performed close to the reference statioused

derive the continuum equation of stave; 0.95 and T = 1.05 respectively.

6.2.1.2 Calculation of Sinking Velocity

The velocity of the sinking disc is an important variable to calculate. The velocity
obtained from the equations of motion proved tadmenoisy for practical purposes due

to thermal fluctuationsas shown in figuré.2. This noise coul@ssentiallybe reduced

1 The computational costrefer to the necessary computing power to complete simulations. During this
study the computational resources were limited; any increase in computational costs therefore resulted in
a longer time to complete simulations. The computational costs weedditeedirectly limited by the
corresponding timeframe of this research.
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by reducing the magnitude of diparticlecollisions - this could be achieved through

either:

1) Increasing the ratio of sinker tluid density
2) Decreasing the relative flujghrticle size

The sinketto fluid densityratiois already a systematic varialaethis investigation

and is coupled to the gravitational force on the sinkerkeep the density of the fluid
constantfluid particle masanust be decreaseshdthenumber of particlesicreased
limiting this solutionto the available processing powBwue to the computational time
constraints on this project an alternatimethod of determining sinking velocity was
imposed. Tievelocity of the sinkewas obtained indirectly by first plotting the vertical
separation of the centre of the disc to the bottom boundary, and then extracting the
velocity from the slope of a linear least squares fit to theutipertion of the data.
Figwe65s hows raw experi ment al data from a
portion of the plot is nofinear and therefore ignored. The final part was ignored as it is

in the region where the ball would interact with the bottom boundary.
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Figure 6.5: The separation between disc and fluid base as a function of time for a
sinking disc of 0.14 in a column of fluid with widtl84.2. The red zones indicate
excluded data where velocity is rtarminal due to endffects.
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6.2.2 DiscDensity

The density of discs was systematically varied in order to understand the relationship
between density ahsinking velocity in a finite boundary system. Simulations were
performed using a constahbf 0.65 (ratio of the diameter of the disc to the width of

the simulation box), in a column of fluid with density 1.0, temperature 1.0, with a height

of 600 unis and a width of 20 units. Thesesults are shown in figue6.
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Figure 6.6: Sinking (terminal) velocity as a function of sinker density for a disc with
1@ dl. Error bars are of similar size to the marker box.

The terminal velocity can be seen nariease with increasing sinker density up to a disc
density of around 4.0, after which it appears to plateau towards a maxiotionly is
thisin agreement to the analytical modekection 4putthis alsosupports the

hypothegs made in chapter 3 redang an asymptotic velocity when increasing the
density(or length)of agivencylinder- a difficult trend to prove experimentally due to

the increasingly dense (and expensnagge ofmaterials required.

It is noteworthy thatthe plateau in velocityy®wnin figure 6.6 is not
approached smoothlgespite the very small margins of error. This is believed to be due
to the compression of fluid as density is increased, a phenomenon also shown at lower
fluid densities (see figur@2). This can be visualideby plotting the sinker height

(above the bottom boundary) as a function of time, as shown in Bigurk is clear to
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see that as density increases, greater fluctuations in velocity appear as the fluid
compresses. A low sinker density”’of 2.5is therefore used in the majority of later

simulations m an attempt to avoid this behaviour.
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Figure 6.7: Vertical distance from sinking discs to the base of the simulation as a
function of time. Each series is representative of a differeningjrdensity between 2.0
to 7.0.

6.2.3 Disc Diameter

Several discs with different diameters were allowed to sink through a column of fluid in
order to determine the relationship between sinking velocity and diarRetsults are
shown in figure 8 usinga fluid of ” = 0.95 T = 1.05, with a height of 450 units and a
width of 56.4 units.
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Figure 6.8 The terminal velocity of sinking discs each with a different diameter. The
abscissa is diametetio, Il .

Terminal velocity first increases with until appoachinga maximum at approximately

0.3, then descends tero. In this broad sense, thislocity behaviougualitatively

agrees with observatiomsiring experimentsf the sinking sphereandall analytical
solutions.Quantitatively, this maximum occur&% below sinking sphere experiments
and300% abovethe analyticalmodel D This peak maximuns in relativelyclose

agreemento experiments considering the difference in dimensiemhermore

|l iterature document s t hatmdreiraportast astscale ct i v
decreasefl41], which would explain why a peak would occur at a lekder particle

based simulations

Thelinear decrease of velocityith respect tdl whenll > 0.6 in simulations
alsocorroboratsthe sinkingsphereandcylinderexperiments in section and suggests

that this linear relationship may hold true for a wider rande (op tox 1&).
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6.2.4 Disc Trajectory

By viewing snapshots (and later movies) of the sinking simulations, it became clear that
the sinking objectollowed a tortuous path on its way to the bottom ofsiineulation

box. Figure 6.3 hows a typical snapshot, showing

The trajectory of discs can be studied in greater detail by fitting #mel wco-
ordinates offtte sinker at every 10 time steps to a spline function. This is shown in
figure 6.10 for a range dif discs of constant density sinking through a fluid of 450 units
in height and 56.4 units in widtFor lower values df the discs can be seen to have
corsiderable lateral movement, drifting up to 15 units incbidkérection, despite
external forces applied exclusively to thaxis. In figures 6.10(b) and 6.10(c) the
magnitude of lateral movement can be seen to steadily decrdhsgcesases, even
when the range of lateral nion is normalised to account fre sinker radius (as the
disc size increases, there is less room for lateral movement). At increasingly large
values ofil this lateral movement begins to increase, as illustrated in figure b.To@
magnitude of lateral movement can therefore be seen to follow a similar tdend in

compared to terminal velocity.

The fact that this behaviour was obsel
supporting evidence that the trajectory phenomdasarved during experiments in
chapter 3 were not due to any inconsistencies, such as deviations in the release of the

sample, or minute misalignments of the apparatus.

It was discussed in significant detail throughout section 3 (in particular section
3.5.5) how cylinders would axially rotate during descent, despite efforts for a
controlled, submerged and centralised initial release. This observation of significant
lateral movement during simulatiorsstherefore supporting evidence that such
movement paéirns are an inherent component of narad@arance sinking, especially
considering thadliscs are initially se¢xactlycentral within the container before

descent.
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Figure 6.9: Particle plotfrom a sinking simulation showing tmen-centraldisc and
suroundingfluid particles.
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