
Congruences of Saito-Kurokawa lifts

and divisibility of degree-8 L-values

Angelo Rendina

Submitted for the degree of
Doctor of Philosophy

School of Mathematics and Statistics

July 2019

Supervisor: Prof. Neil Dummigan

University of Sheffield





Abstract

In this thesis, we study the arithmeticity of critical values of degree-8
tensor product L-functions attached to Siegel modular forms of genus
1 and 2. We show that the congruence between the Hecke eigenvalues
of two cuspidal Siegel Hecke eigenforms of genus 2 implies a similar
congruence between certain suitably normalised critical values of the
associated degree-8 L-functions. This phenomenon is predicted by
the Bloch-Kato conjecture, for which we therefore provide further
evidence in this particular setting.

We prove this by employing integral representation formulae, due to
Saha, and Böcherer and Heim, linking critical L-values to iterated Pe-
tersson inner products against diagonally restricted non-holomorphic
Eisenstein series.
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Chapter 1

Introduction

§ 1.1 Why L-functions

Some of the most fascinating results in mathematics involve connecting seemingly
unrelated objects in a surprising way. This is even more striking when one can
apply techniques from different fields to study a common object: L-functions are
an example of this phenomenon. If {an}n is a sequence of numbers encoding
information about some object X, then one can consider the Dirichlet series
LX(s) =

∑
n ann

−s. If {an}n has nice properties (heavily dependent on the
context), the function LX(s) is nice as well (for instance, meromorphic on C,
admits functional equation or an Euler product); hence one may use methods
from analysis to study it, and maybe get new insights on X via the associated
{an}n.

This approach is quite common in number theory, where sometimes the object
we wish to study is the sequence of numbers itself. For instance, let E be an
elliptic curve over Q: we know its rational points form a group (with the induced
chord/tangent sum) whose structure is well understood, as the Mordell-Weil the-
orem states being isomorphic to a finite group plus rE copies of Z. The number
rE is called the rank of E, and (a version of) the Birch and Swinnerton-Dyer
conjecture says that rE equals the order of vanishing of the L-function LE(s) at
s = 1, where LE(s) is constructed in terms of the number of points of the mod
p reduction of E for all primes p. Therefore, LE(s) links analytic and algebraic
aspects of E and one can obtain results about one from information about the
other.

Surprisingly, there is a third point of view on LE(s): Galois representation. One
can consider what happens to the Q-points on E when applying the Galois group
GQ := Gal(Q/Q), since the group operation on E acts in an algebraic way on the
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coordinates. It turns out that there exists a suitable Galois representation asso-
ciated to a modular form f which connects it to E, namely via LE(s) = Lf (s),
where Lf (s) is constructed in terms of the Fourier coefficients of f (or, equiva-
lently, in terms of the image of the Frobenius element via the Galois representation
attached to f - see section (1.3)). Once again, one can see modular forms as an-
alytic, algebraic or arithmetic objects and attack related problems with radically
different tools.

In this thesis, we study arithmetic properties of a degree 8 L-function associated
to a pair of Siegel modular forms. The Bloch-Kato conjecture (a generalisation
of Birch and Swinnerton-Dyer) predicts that a particular value of this L-function
should be divisible by a congruence prime because of Galois representation rea-
sons (namely because it divides the order of some Selmer group), and we prove
this by applying a combination of algebraic and analytic tools within the context
of Siegel modular forms. The next sections first introduce the objects at hand and
a naive explanation for the expected result, and then explain why the Bloch-Kato
conjecture actually predicts it.

§ 1.2 Goal and motivations

Our goal

Let h ∈ S1
2l be an elliptic normalised Hecke cuspidal eigenform of weight 2l and

genus 1, with l odd; its completed L-function Λh(s) := (2π)−sΓ(s)Lh(s) satisfies
the functional equation

Λh(s) = (−1)lΛh(2l − s)

hence Lh has a zero at the central critical value s = l.

Let F ∈ S̆2
2k be the Saito-Kurokawa lift of an elliptic Hecke cuspidal eigenform

f ∈ S1
4k−2, with 2k ≥ 2l; further, its spinor L-function satisfies

ZF (s) = ζ(s− 2k + 1)ζ(s− 2k + 2)Lf (s)

(see proposition (2.5.1)). Because of this, the degree 8 tensor product L-function
ZF⊗h defined in (2.23) factorises as

ZF⊗h(s) = Lh(s− 2k + 1)Lh(s− 2k + 2)Lf⊗h(s)

and in particular ZF⊗h has a zero at s = l+ 2k− 1, the first critical value to the
right of the centre, because of the vanishing of Lh(l).
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Let Q(f) be the smallest algebraic extension of Q containing all the Fourier
coefficients of f . One can fix periods ω±f ∈ C so that

Lalgf (j) :=
Lf (j)

πjω
(−1)j

f

∈ Q(f)

for any integer 1 ≤ j ≤ 4k − 3.

Fix a large prime ideal p of Q(f) dividing Lalgf (2k), for a suitable choice of periods

ω±f ; see theorems (4.1.3) and (6.1.3) for details. Then a theorem of Katsurada

[Kat08, theorem 6.1] ensures that there exists a Hecke eigenform G ∈ (S̆2
2k)
⊥

whose Hecke eigenvalues λT (G) are congruent mod p to those of F for every
Hecke operator T ∈ H2

2k.

The coefficients of the Dirichlet series of ZG⊗h are defined in terms of the Hecke
eigenvalues of G and h. Since λT (G) ≡ λT (F ) mod p by construction, we roughly
expect to see a similar congruence between critical values of ZG⊗h and ZF⊗h: in
particular we would like to observe whether

ZG⊗h(2k + l − 1) ≡ ZF⊗h(2k + l − 1) = 0 mod p

This is quite imprecise, since ZG⊗h(2k + l − 1) is a complex number so the con-
gruence does not make sense as is. Nonetheless, one can fix periods ω±G⊗h so that

ZG⊗h/ω
±
G⊗h takes values in Q up to a power of π, and so what we really expect

to see is that p divides ZG⊗h/ω
±
G⊗h.

To avoid having to make a particular choice for the periods ω±G⊗h, we can instead
study the ratio

ZG⊗h(2k + l − 1)

ZG⊗h(2k + l − 1 + 2m)
∈ π8mQ (1.1)

As there is no particular reason for p to appear in the critical values ZG⊗h(2k +
l − 1 + 2m) for m ≥ 1, we expect to detect a factor of p in this ratio for all
values of m ≥ 1 such that 2k+ l− 1 + 2m is critical; observe that ZG⊗h does not
vanish at these points, as the value there is defined by a convergent Euler product
(see section (2.4) for a more detailed discussion on the analytic and functional
properties of Z functions).

The congruence mod p between F and G is indeed a naive explanation for the
expected divisibility of ZG⊗h(2k + l − 1) by p. However, we explain in the next
section how this fact is actually predicted by a deep conjecture in modern number
theory, namely the Bloch-Kato conjecture.
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Similar results in literature

As explained, Lalgf take values in Q(f) at its critical points: it is therefore natural
to investigate on the nature of the prime factors of this values; in particular,
whether congruences between modular forms correspond to congruences between
L-values.

A century ago, Ramanujan noted that the Fourier coefficients of the weight 12
∆ cusp form and of the Eisenstein series E12 are congruent modulo the large
prime 691, which divides the numerator of ζ(12)/π12. But 691 also divides the
denominator of the rightmost critical value Lalg∆ (11). In terms of the Bloch-Kato
conjecture, the 691 in the numerator is the order of an element of some Selmer
group, whilst the one in the denominator is the order of an element in a global
torsion group.

Similar phenomena of congruences of critical L-values have been observed mul-
tiple times in literature, both experimentally and theoretically. For instance,
Dummigan [Dum01, theorem 14.2] proved that, if g is a normalised cuspidal
Hecke eigenform of weight k with coefficients congruent to those of Ek modulo a
large prime p, then the degree-4 tensor product L-value

Zg⊗g′(k
′/2 + k − 1)

〈g′, g′〉

is divisible by (a suitable prime ideal above) p, where g′ is any cusp form of weight
k′ > k.

Leaving the domain of elliptic modular forms, one can study spinor L-functions
attached to Siegel modular forms: in this thesis we focus only on scalar valued
ones, but there are analogous conjectures about vector valued forms. For instance,
as explained in [BDFK19, section 3.2], we have numerically observed congruences
between the Dirichlet coefficients of degree-8 tensor product L-functions, and
Bloch-Kato does indeed predict a congruence between particular certain L-values.

Using the method presented in this thesis, we have proved in a recent paper
[DHR19] that the large prime q appears in the rightmost critical value of the
tensor product L function Zf⊗F (s), where q divides the rightmost critical value
of the symmetric square L-function of f ∈ S1

k and F ∈ S2
k is congruent modulo q

to the Klingen-Eisenstein series E2,1
k (f) associated to f .

The goal of this thesis is to prove this kind of expectation, at least in the simplest
case of scalar valued Siegel modular forms.
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§ 1.3 Bloch-Kato conjecture

Statement of Bloch-Kato

Let X be a non-singular projective variety of dimension d, defined over Q. For
0 ≤ i ≤ 2d, define the l-adic cohomology Vl by

Tl := lim←−
n

H i
ét(XQ,Z/l

nZ) Vl = H i
l (XQ) := Tl ⊗Zl Ql

where Hét denotes the étale cohomology. Finally, put Al := Vl/Tl and A := ⊕lAl,
and let A(m) be the m-th Tate twist of A.

For a prime p, define the polynomial Pp(t) := det(I −Frob−1
p t|Hi

l (XQ)Ip ), where Ip
is the p-inertia subgroup, and let

LiX(s) :=
∏
p

Pp(p
−s)−1 (1.2)

for <(s) > i
2

+ 1. Conjecturally, this admits meromorphic continuation to C and
a functional equation LiX(s) ∼ LiX(i + 1 − s), where ∼ denotes equality up to
some explicit factors.

Conjecture 1.3.1 (Bloch-Kato, [BK07]). For critical j 6= i+1
2

, or j = i+1
2

with
LiX(j) 6= 0,

LiX(j) =
Ω(j) #H1

f (Q, A(i+ 1− j))
#H0(GQ, A(j)) #H0(GQ, A(i+ 1− j))

∏
p≤∞

cp(j) (1.3)

where Ω(j) is the Deligne period, H1
f (Q, A(i+ 1− j)) a Bloch-Kato Selmer group

and cp(j) the j-th Tamagawa factor (which equals 1 for almost all p).

When X is an elliptic curve, (1.3) reduces to the Birch and Swinnerton-Dyer
conjecture.

Galois representations of modular forms

Conjecturally, to a Siegel Hecke eigenform ϕ ∈ Mn
k one can attach a degree 2n

Galois representation ρϕ so that properties of the Frobenius element are linked
to arithmetic information of ϕ.

For n = 1, this is well known: by a theorem of Deligne [Del71], for any normalised
eigenform ϕ ∈ M1

k(Γ1(N), χ), one can construct a semisimple continuous Galois
representation ρϕ : GQ → GL2(Qp) which is unramified at all primes l 6 | pN and

ch(ρϕ(Frobl)) = X2 − a(l)X + χ(l)lk−1
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where ch(·) denotes the characteristic polynomial and a(l) is the l-th Fourier
coefficient of ϕ.

For n = 2 we have some results. Let ϕ ∈ S2
k be a simultaneous cuspidal eigenform

for all Hecke operators T (n), n ∈ N, with eigenvalue λn. Let E denote the smallest
algebraic extension containing all the eigenvalues λn, and let p be any extension
of a prime p to E. Then, by a theorem of Weissauer [Det01, proposition 3.2],
there exists a continuous representation ρϕ,p : GQ → GL4(Ep), unramified outside
p, such that for every prime l 6= p

ch(ρϕ,p(Frobl)) = Q(l)
ϕ (X) (1.4)

where Q
(l)
ϕ is the Euler factor (2.21) of the spinor L-function Zϕ.

In what follows, we will assume the existence of a suitable representation ρϕ,p
whenever needed.

Critical values of modular forms

This section roughly follows [BDFK19, section 5]. Recall f, F,G, h and p from
section (1.2), and let ρ?,p be the associated Galois representations. In [BDFK19,
section 5.1] it is explained how to make suitable choices for the objects appearing
in conjecture (1.3.1) so that the Tamagawa factors are integral at p. Now, we
follow the argument of [BDFK19, section 5.3].

Because of the congruence between F and G, the mod p reduction ρG,p has com-
position factors ρf,p, Fp(1 − 2k) and Fp(2 − 2k). Assuming the irreducibility of
ρG,p, one can choose a Op-invariant lattice so that Fp(2 − 2k) is a submodule of
ρG,p, hence Fp embeds into ρG,p(2k − 2).

Since the vanishing of Lh(l) is due to the sign of its functional equation, one
has from [Nek13, theorem B] that H1

f (Q, Vh,p(l)) is non-empty, and hence there
exists a non-zero element c ∈ H1

f (Q, ρh,p(l)). After tensoring the embedding Fp →
ρG,p(2k−2) by ρh,p(l), one can see ρh,p(l) as a submodule of ρh,p⊗ρG,p(l+2k−2),
hence c maps to a non-zero c′ ∈ H1

f (Q, ρh,p ⊗ ρG,p(l + 2k − 2)).

In fact, this produces a non-zero element of p-torsion in a Selmer group whose
order appears in the right-hand side of (1.3), while the left-hand side equals
ZG⊗h(l + 2k − 2) because of (1.2) and (1.4).

It follows that we should expect p to divide ZG⊗h(l + 2k − 2), after suitable
normalisation which essentially corresponds to a choice of Deligne period Ω(l +
2k− 2). By the functional equation of ZG⊗h, the same should hold for the paired
critical point s = l + 2k − 1, and hence we expect to detect a factor of p in the
ratio (1.1).
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§ 1.4 Overview of this thesis

The method

For forms ϕ, ψ of weight l and genus n define the Petersson inner product as

〈ϕ, ψ〉 :=

∫
Fn
ϕ(Z)ψ(Z) det(=(Z))l−n−1dZ

whenever convergent, where Fn is a particular subset of the Siegel upper-half
spaceHn, namely its Klingen fundamental domain ([Kli90, definition 3.1]). Recall
f, h, F,G from section (1.2): we employ Saha’s integral representation formula
[Sah10, theorem 6.9]

〈〈E3
2k(Z × τ, 2− k + 2m), ?(Z)h(τ)〉〉 = ξ?

(
1 + 4m

6

)
Z?⊗h(3k − 1 + 2m) (1.5)

where ? = F,G and E3
2k(Z × τ, ·) is a Hermitian Eisenstein series of genus 3

diagonally restricted into H2×H1, and ξ?(x) is an explicit factor depending only
on ? and m. This formula requires the weights of F,G and h be equal, so we
have to make this assumption even though the claimed result should be true for
unequal weights as well.

Using a combination of analytic tools (namely Shimura-Maass differential op-
erator, diagonal restriction and holomorphic projection, see chapter 3) we can
replace the complicated Eisenstein series in the integral with the holomorphic
function Ψm(Z, τ) = B

(m)
F h(τ)F (Z) + B

(m)
G h(τ)G(Z) for some constants B

(m)
? so

that (1.5) yields

ξ?

(
1 + 4m

6

)
Z?⊗h(3k − 1 + 2m) = B(m)

? 〈?, ?〉〈h, h〉 (1.6)

since F and G are orthogonal, hence the arithmetic information we are looking
for is encoded in B

(m)
G .

These constants are obtained via the aforementioned process from the Fourier
coefficients of the Hermitian Eisenstein series E3

4+4m. For m ≥ 1, the defining
series converges absolutely and we know the Fourier coefficients to be rational
numbers whose denominator can be divided only by a finite set of primes (namely
the prime factors of some Dirichlet L-values [NT18, theorem 3.1]). For m =
0, we can regardless define E3

4 by analytic continuation of the non-holomorphic
Hermitian Eisenstein series [Nag96, theorem 2.2] and then employ a generalisation
of the Siegel-Weil formula proven by Ichino [Ich07, theorem 1.1] which expresses
it as a rational linear combination of Hermitian theta series, so that the Fourier
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coefficients of E3
4 are again rational and non-integral only at some explicit finite

set of primes. Assuming that our prime p does not divide all of these Fourier
coefficients, then the final function Ψm has (double) Fourier expansion whose
coefficients are integral at p and not all divisible by p. Additionally, we assume
that the same property holds for F,G, h.

We use this arithmeticity to compare the constants B
(m)
F and B

(m)
G in the equality

Ψm = B
(m)
F hF +B

(m)
G hG (1.7)

Recall that ZF⊗h(3k − 1) = 0 because of the assumption on the weight of l

and its functional equation: then (1.6) shows B
(0)
F = 0, hence B

(0)
G is integral

at p since so are the Fourier coefficients of Ψ0. From (1.6) we also compute

B
(m)
F = ξF (1+4m

6
)ZF⊗h(3k−1 + 2m)〈F, F 〉−1〈h, h〉−1, and use the fact that 〈F, F 〉

can be expressed in terms of 〈f, f〉 and Lf (2k) (since F is the Saito-Kurokawa
lift of f , [Bro07, theorem 1]) to deduce that p actually divides the denominator

of B
(m)
F ; again (1.7) implies that p must divide the denominator of B

(m)
G as well.

Now thanks to formula (1.6) we have

π−6m ξG(1
6
)

ξG(1+4m
6

)

ZG⊗h(3k − 1)

ZG⊗h(3k − 1 + 2m)
=

B
(0)
G

B
(m)
G

and, since the right-hand side is divisible by p, the whole ratio is a multiple of p
for any suitable choice of m > 0 which does not introduce some unrelated factor
p via ξG(1+4m

6
).

Guided content

In chapter 2 we recall some basic definitions about Siegel modular forms, the
Siegel upper-half space and modular group, Hecke operators, L-functions associ-
ated to modular forms (via the Satake parameters and related Euler products)
and a brief overview of the Saito-Kurokawa lift.

In chapter 3 we define nearly holomorphic modular forms as a generalisation of
Siegel modular forms, where we allow the Fourier coefficients to be polynomials
rather than constants. We extend some known facts about Siegel forms to this
generalisation, such as finite dimensionality of the space of forms of fixed weight
and diagonal restriction, and introduce the Shimura-Maass and holomorphic pro-
jection operators. The former acts on nearly holomorphic forms by raising the
weight at the expense of the complexity of the Fourier coefficients (namely, by
raising the degree of the polynomials), notably in the case of Siegel modular forms
(where the coefficients are constant); in particular, the Shimura-Maass operator
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acts on Eisenstein series roughly as Ek(Z, s) 7→ Ek+2(Z, s − 1). This allows to
study the arithmeticity of the non-holomorphic Ek(Z,−v) as it is obtained by
applying this differential operator to the holomorphic Ek−2v(Z, 0), whose Fourier
coefficients are rational with bounded denominator by a classic result of Siegel.
Finally, the holomorphic projection maps nearly holomorphic forms to Siegel
cusp forms in such a way that 〈ϕ,G〉 = 〈Holϕ,G〉 for any cusp form G of suitable
weight; again, this operator respects the arithmeticity of Fourier coefficients.

In chapter 4 we employ the integral representation by Böcherer and Heim

〈E5
2k(τ×Z ×W, s), ∂k−l1,2lh(τ)G(Z)F (W )〉 =

= C�(s)〈ΦF ,ΦG〉Lf (2s+ 4k − 4)ZG⊗h(s+ 3k + l − 3)

and, by employing the tools introduced in chapter 3, we replace E5
2k(τ×Z×W, s)

with a suitable linear combination of cusp forms without changing the overall
value of the inner product. As explained in the previous section, this linear
combination encodes the arithmetic properties of the critical values of Z?⊗h, which
upon further examination reveals that Z?⊗h(s) is holomorphic at s = 2k+l−1+2m
for m ≥ 0, and at least integral at p at s = 2k + l − 1. This is close to what
we want, but not quite enough: the reason why we cannot prove the claimed
divisibility by p is that the integral formula employed involves both F and G
at the same time, and applying a certain family of Hecke operators to obtain
the mentioned linear combination of cusp forms seems to introduce an unwanted
factor of p, due to the congruence between F and G. We conjecture this to be
balanced by the effect of these Hecke operators on the Fourier expansions, but
we could not prove it.

As this appears to be an issue with the integral formula rather than the method,
we have to use a different representation for the critical values: formula (1.5)
works indeed, even though we have to restrict F,G, h to have the same weight.
As E3

2k is a Hermitian modular form, we need to obtain arithmetic information
about its Fourier coefficients: we do this in chapter 5, where we employ Ichino’s
unitary version of the Siegel-Weil formula expressing E3

4+4m(Z, 0) as a linear com-
bination of Hermitian theta series (whose coefficients are rational with bounded
denominators), which then gets mapped to E3

2k(Z,−v) by applying the Hermi-
tian version of the Shimura-Maass differential operator. While there are results
about the arithmeticity of Hermitian Eisenstein series of high weight (for instance
[NT18, theorem 3.1]), to our knowledge this was not known for low weight (i.e.
when the series does not converge absolutely); hence corollary (5.5.4) is a new
result, interesting in its own right. We want to thank Nagaoka who, in a personal
communication, highlighted the connection between some low weight Eisenstein
series and theta series, and pointed us to Ichino’s version of the Siegel-Weil for-
mula.
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At this point, restriction of E3
2k(Z,−v) to the Siegel upper-half space yields a

nearly holomorphic Siegel modular form, and the theory developed in chapter
3 applies. Hence, we detail in chapter 6 the method explained in the previous
section, explaining how the wanted divisibility by p essentially comes from p
dividing Lf (2k), in line with what Bloch-Kato predicts.



Chapter 2

Siegel modular forms

In this chapter we present some classical background material about Siegel mod-
ular forms. We introduce the Siegel fundamental domain, the vector space of
modular and cuspidal forms and the Petersson inner product. Further, we recall
the definition of Hecke operators, spinor L-functions associated to Siegel modular
forms and some basic facts about the Saito-Kurokawa lift.

§ 2.1 Symplectic group and Siegel half space

Let n ∈ N+ be a positive integer and Hn be the Siegel upper half space of genus
n

Hn :=
{
Z ∈ Cn,n : Zt = Z, i(Z − Z) > 0

}
(2.1)

where M ≥ 0 for a symmetric matrix M means positive semi-definite (or definite,
according to the inequality strictness); we systematically write Hn 3 Z = X+ iY
by decomposing into real and imaginary part, and put δ(Z) := det(Y ).

Let

Sn :=

(
0n In
−In 0n

)
(2.2)

and define the Siegel modular group of genus n

Γn := Sp2n(Z) =

{(
A B
C D

)
= γ ∈ GL2n(Z) : γtSnγ = Sn

}
(2.3)

where A,B,C,D ∈ Zn,n are the matrix blocks of γ.

Proposition 2.1.1 ([Kli90, proposition 1.1]). The action of Γn on Hn given by
fractional linear transformations

γ(Z) := (AZ +B)(CZ +D)−1 (2.4)

11
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is well defined. Further, we have

δ(γ(Z)) = | det(CZ +D)|−2δ(Z) (2.5)

for every γ ∈ Γn and Z ∈ Hn.

By defining the automorphy factor

j(γ, Z) := det(CZ +D) (2.6)

we can rewrite (2.5) as δ(γ(Z)) = |j(γ, Z)|−2δ(Z).

Following Klingen [Kli90, defin. 3.1], we define the Siegel fundamental domain

Fn := {Z ∈ Hn : Z satisfies (i)-(iii)} (2.7)

(i) |j(γ, Z)| ≥ 1 for every γ ∈ Γn;

(ii) Y is reduced in the sense of Minkowski [Kli90, defin. 2.1];

(iii) |Xlk| ≤ 1/2 for every entry of X.

Then Fn is a standard representative for Γn\Hn, in the sense that every Z ∈ Hn

is a Γn-translate of points of Fn and every identification inside Fn happens on
its boundary. As a special case, when n = 1 we recover the classic fundamental
domain for Γ1 = SL2(Z) since condition (ii) is vacuous and (i) demands |z| ≥ 1
by taking γ = S1.

§ 2.2 Holomorphic modular forms

A Siegel modular form of genus n and weight k ∈ Z is a function

F : Hn → C satisfying (i)-(iii) (2.8)

(i) F is holomorphic (in each entry of Z);

(ii) F (γ(Z)) = j(γ, Z)kF (Z) for every Z ∈ Hn and γ ∈ Γn;

(iii) F is bounded on vertical strips {Z ∈ Hn : Y > εIn} for every ε > 0.

Hence a Siegel modular form of genus 1 is an elliptic modular form. More gen-
erally, we call weakly modular any function transforming like (2.8-ii); by taking
γ = −I2n we see F (Z) = F (γ(Z)) = (−1)nkF (Z), hence nk must be even.
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Since F (Z + B) = F (Z) for any symmetric B ∈ Zn,n, F admits absolutely
convergent Fourier series of the form

F (Z) =
∑
A

FAe
2πiTr(AZ) (2.9)

on Hn for complex Fourier coefficients FA ∈ C and symmetric half-integral ma-
trices A ∈ Qn,n, i.e. 2Aij ∈ Z and Aii ∈ Z; as is standard, we will often write
e2πiTr(AZ) =: qA.

The Fourier coefficients satisfy the relation FUtAU = FA for any U ∈ GLn(Z)
[Kli90, formula 4.2], and using this one can show that FA = 0 whenever A is
not positive semi-definite [Kli90, proof 4.1]. For n ≥ 2, this implies that F is
bounded on every vertical strip {Z ∈ Hn : Y > εIn} [Kli90, theorem 4.1], showing
that condition (2.8-iii) is implied by (2.8-i) and (2.8-ii). This does not happen for
n = 1, so we require condition (2.8-iii) anyway to include elliptic modular forms
as a special case of Siegel modular forms.

We also observe the following fact about the Fourier indices.

Lemma 2.2.1. Let A be a symmetric half-integral positive semi-definite matrix.
If any of the diagonal entries vanishes, then so does that entire row and column.

Proof. Assume Amm = 0. Fix any l 6= m and consider the vector x ∈ Qn with
xi = 0 for i 6= m, l and xl = 1; hence xtAx = All + 2Almxm.

If Alm = Aml were non-zero, then we could find some xm ∈ Q such that xtAx < 0,
against the assumption of A ≥ 0.

As in the classical case, cusp forms play an important role. We say that a Siegel
modular form F is cuspidal if

lim
t→∞

F

((
Z∗ 0
0 it

))
= 0 (2.10)

for any Z∗ ∈ Hn−1. Looking at the Fourier expansion, by lemma (2.2.1) this is
equivalent to saying that FA = 0 whenever A is non-definite; from this follows

|F (Z)| �ε,c e
−Tr(cY ) (2.11)

on every vertical strip {Z ∈ Hn : Y > εIn} [Kli90, proposition 5.3] for ε, c > 0.
We remark that the fundamental domain Fn is contained in every large enough
vertical strip, i.e. for ε small enough [Kli90, lemma 3.2]; hence every cusp form
decreases exponentially fast on Fn going up i.e. for Tr(Y )→∞.
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We denote

Mn
k := {F : Hn → C modular form of weight k}
Snk := {F : Hn → C cusp form of weight k}

(2.12)

These are obviously complex vector spaces, and Snk ⊆Mn
k . It is well known they

are finite dimensional: this will follow from a more general result in the next
chapter - proposition (3.1.2).

Finally, put

dµ(Z) :=
dXdY

δ(Z)n+1
(2.13)

where dX :=
∏

i≤k dXij and dY :=
∏

i≤k dYij; then dµ is a Γn left-invariant
measure on Hn. The Petersson inner product of modular forms F,G of weight k
and genus n is defined as

〈F,G〉 :=

∫
Γn\Hn

F (Z)G(Z)δ(Z)kdµ(Z) (2.14)

whenever convergent. Observe that the integrand is Γn left-invariant thanks
to (2.5), hence the integration domain is well defined: we will often read Fn for
Γn\Hn, but any other set of representatives can be used as well. Due to (2.11), the
integral does converge if any of the forms is cuspidal; in particular the Petersson
inner product gives Snk the structure of Hilbert space.

§ 2.3 Hecke operators

Following the normalisation of [AS01], define the slash operator [?]k by

F [γ]k(Z) := det(γ)k/2j(γ, Z)−kF (γ(Z)) (2.15)

where F is any function F : Hn → C and γ ∈ Sp2n(R), so that j(γ, Z) 6= 0 - see
proof of [Kli90, proposition 1.1]; in particular, we can rewrite (2.8-ii) as

F [γ]k = F ∀γ ∈ Γn

i.e. weakly modular forms are slash-invariant functions on Hn. Further, we
observe

F [γ1γ2]k = (F [γ1]k) [γ2]k (2.16)

Fix a prime p and let M ∈ GSp2n(Z[p−1])+, i.e. M tSnM = µn(M)Sn for some
µn(M) ∈ Q× and M ∈ GL2n(Z[p−1]) with positive determinant. Decompose the
double coset

ΓnMΓn =
⊔
i

ΓnMi
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and define the weight k Hecke operator T
(k)
M by

T
(k)
M F = F [ΓnMΓn]k :=

∑
i

F [Mi]k (2.17)

If F is weakly modular for weight k, then T
(k)
M F is well defined, i.e. it does not

depend on the choice of representatives for the double coset decomposition: if
{Ni}i is another such choice, then Ni = γiMi for some γi ∈ Γn and∑

i

F [Ni]k =
∑
i

F [γiMi]k =
∑
i

F [γi]k[Mi]k =
∑
i

F [Mi]k

where in the last step we have used F [γ]k = F for every γ ∈ Γn. Further, T
(k)
M F

is weakly modular itself:∑
i

F [Mi]k[γ]k =
∑
i

F [Miγ]k =
∑
i

F [Mσ(i)]k

since right-multiplication by γ ∈ Γn induces a permutation of representatives
{Mi}i, and hence (T

(k)
M F )[γ]k = T

(k)
M F . If F ∈Mn

k , then T
(k)
M F ∈Mn

k .

The local Hecke algebra is the set

Hn
k (p) := {T (k)

M : M ∈ GSp2n(Z[p−1])+} (2.18)

which is indeed a Q-algebra since the slash operator (2.15) is Q-linear and satisfies
(2.16). Define a particular set of (local) Hecke operators by

T (k)
p ∼ Γn diag(1, . . . , 1︸ ︷︷ ︸

n

, p, . . . , p︸ ︷︷ ︸
n

)Γn

T
(k)

p2,i ∼ Γn diag(1, . . . , 1︸ ︷︷ ︸
n−i

, p, . . . , p︸ ︷︷ ︸
i

, p2, . . . , p2︸ ︷︷ ︸
n−i

, p, . . . , p︸ ︷︷ ︸
i

)Γn
(2.19)

for i = 0, . . . , n; then Hn
k (p) is generated by these operators.

More generally, if M ∈ GSp2n(Q)+ then we can write

M =
∏
p

Mp

where Mp = I2n for almost all primes p and Mp ∈ GSp2n(Z[p−1])+, and put

T
(k)
M :=

∏
p T

(k)
Mp

. Define the Hecke algebra by

Hn
k := {T (k)

M : M ∈ GSp2n(Q)+} (2.20)

then Hn
k
∼= ⊗pHn

k (p).
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§ 2.4 L-functions

A modular form F ∈Mn
k is called Hecke eigenform if

TF = λF (T )F

for every T ∈ Hn
k , where λF (T ) ∈ C is the T -th eigenvalue of F . For the rest of

this section, F is assumed to be an eigenform.

Every local Hecke algebra Hn
k (p) is isomorphic via the Satake isomorphism to

Q[x±0 , . . . , x
±
n ]Wn where Wn, is the Weyl group of Sp2n: see [Gro98] for an expos-

itory treatment. Then, for every prime p,

λF : Hn
k (p) ∼= Q[x±0 , . . . , x

±
n ]Wn → C

is an algebra homomorphism, completely determined by a tuple

(αp,0, . . . , αp,n) ∈ (C×)n+1

unique up to the action of the Weyl group. We call these numbers Satake param-
eters of F .

Put

Q
(p)
F (X) := (1− αp,0X)

n∏
r=1

∏
1≤i1<···<ir≤n

(1− αp,0αp,i1 · · ·αp,irX) (2.21)

and define the spinor L-function associated to F by

ZF (s) :=
∏
p

{
Q

(p)
F (p−s)

}−1

(2.22)

If h ∈M1
l is a normalised Hecke eigenform (i.e. the first Fourier coefficient is 1),

define the tensor product L-function associated to F and h by

ZF⊗h(s) :=
∏
p

{
Q

(p)
F (βp,0p

−s)Q
(p)
F (βp,0βp,1p

−s)
}−1

(2.23)

where (βp,0, βp,0βp,1) are the GL2-Satake parameters of h. Finally, the spinor
L-function associated to h is exactly the classical (elliptic) L-function

Zh(s) = Lh(s) :=
∏
p

{
1− hpp−s + pl−1p−2s

}−1
(2.24)

where hp is the p-th Fourier coefficient of h. This is because βp,0 + βp,1 = hp and
βp,0βp,1 = pk−1 for any choice of Satake parameters (up to the action of the Weil
group), so the two definitions coincide.
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All the object that we have defined as Euler products converge for <(s) large
enough, and the abscissa of convergence varies greatly depending on the nature
of the forms in question. Further, these L-functions are conjectured to have
a functional equation, but we currently know this only for a small subset of all
Siegel modular forms. In our particular case, we only deal with spinor L-functions
associated to forms of genus 1 and 2, of which we know more than the general
case: we summarise this in the next propositions.

Proposition 2.4.1. [Bum97, proposition 1.3.6] Let h ∈ S1
l be a normalised Hecke

eigenform, with l ≥ 2 even. Then the Euler product (2.24) converges absolutely
for <(s) > l/2. Further, the completed function

Λh(s) := (2π)−sΓ(s)Lh(s)

extends to an entire function on C and satisfies the functional equation

Λh(s) = (−1)l/2Λh(l − s)

Proposition 2.4.2. [And74, theorem 3.1.1] Let F ∈ S2
k be a Hecke eigenform.

Then the Euler product (2.22) converges absolutely for <(s) large enough, and
the completed function

ΛF (s) := (2π)−2sΓ(s)Γ(s− k + 2)ZF (s)

extends to a meromorphic function on C, with at most simple poles at k − 2 and
k, and satisfies the functional equation

ΛF (s) = (−1)kΛh(2k − 2− s)

Proposition 2.4.3. [BH00, theorem 3.8] Let h ∈ S1
l (normalised) and F ∈ S2

k

be Hecke eigenforms, with k ≥ l ≥ 2 even, and assume that the first Fourier-
Jacobi coefficient of F does not vanish. Then the Euler product (2.23) converges
absolutely at least for <(s) > 3− k/2. Further, the completed function

ΛF⊗h(s) := (2π)−4sΓ̃∆(s)ZF⊗h(s)

(where Γ̃∆ is defined in [BH00, formula 24]) extends to a meromorphic function
on C and satisfies the functional equation

ΛF⊗h(s) = ΛF⊗h(2k + l − 3− s)

Although we do not use it in this thesis, we report for completeness that a similar
result holds in the case k < l by [BH00, theorem 6.1].
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§ 2.5 Saito-Kurokawa lift

Let F ∈M2
k with Fourier expansion

F (Z) =
∑
a,b,c∈Z
a,c≥0
b2≤4ac

F[a,b,c]q
[a,b,c] =

∑
a,b,c∈Z
a,c≥0
b2≤4ac

F[a,b,c]e
2πiaze2πibwe2πicτ (2.25)

where

[a, b, c] :=

(
a b/2
b/2 c

)
Z :=

(
z w
w τ

)
Define the c-th Fourier-Jacobi coefficient Φ

(c)
F associated to F by

F (Z) =:
∑
c≥0

Φ
(c)
F (z, w)e2πicτ =

∑
c≥0


∑
a,b∈Z
a≥0

b2≤4ac

F[a,b,c]e
2πiaze2πibw

 e2πicτ (2.26)

which is a special case of Jacobi forms, functions on H1 × C transforming in a
particular way under the action of the semi-direct product SL2(Z) nZ2. We will

only need the first Fourier-Jacobi coefficient ΦF = Φ
(1)
F in the following chapters;

see [Bro05, section 2.4] for more details about Jacobi forms.

Similarly, we refer to [Bro05, section 2.3] for an overview on half-integral weight
modular forms; all we need to know now is that these function (like the elliptic
forms in M1

k) admit Fourier expansion

g(z) =
∑
n≥0

gnq
n

where gn is the n-th Fourier coefficient of the half-integral weight form g.

Finally, let S̆2
k be the Maass subspace of S2

k , consisting of cusp forms F whose
Fourier coefficients as in (2.25) satisfy the relation

F[a,b,c] =
∑

d|gcd(a,b,c)

dk−1F[ac/d2,b/d,1] (2.27)

Proposition 2.5.1 (Saito-Kurokawa lift). For every k ∈ N, there exists a Hecke-
equivariant isomorphism of vector spaces

S1
4k−2 → S̆2

2k



CHAPTER 2. SIEGEL MODULAR FORMS 19

The isomorphism is the map

f 7→ gf 7→ ΦF 7→ F (2.28)

where gf is a half-integral weight modular form (associated to f via the Shintani
lift [Bro05, section 3.1]), ΦF is a Jacobi form ([Bro05, section 3.2]) which turns out
to be exactly the first Fourier-Jacobi coefficient of F ∈ S̆2

2k [Bro05, section 3.3]:
we call F the Saito-Kurokawa lift of f ∈ S1

4k−2. This lift is Hecke-equivariant,
in the sense that it maps Hecke eigenforms to Hecke eigenforms; further we have
the following relation for the eigenvalues:

λF (T (2k)
p ) = p2k−1 + p2k−2 + λf (T

(4k−2)
p )

= p2k−1 + p2k−2 + fp
(2.29)

assuming that f is normalised, so that the Tp-th eigenvalue of f is exactly its
p-th Fourier coefficient fp. Because of this relation between eigenvalues, the L-
functions of f and its Saito-Kurokawa lift F are connected by

ZF (s) = ζ(s− 2k + 1)ζ(s− 2k − 2)Lf (s) (2.30)

where ζ is the Riemann zeta function.

Remark 2.5.2. While f ∈ S1
4k−2 is assumed normalised so that its first Fourier

coefficient is 1, there is no standard scaling for Siegel forms of higher genus (since
the spinor L-function depends only on the eigenvalues), and in particular for the
Saito-Kurokawa lift F of f . However, if the coefficients of f are in some ring O ⊆
C, then there is a suitable scaling of (2.28) such that also F has Fourier coefficients
in O ([Bro05, theorem III.2], [Bro05, theorem III.3] and [Bro05, theorem III.7]).



Chapter 3

Non-holomorphic Siegel
Eisenstein series

In this chapter, we introduce nearly holomorphic modular forms, together with
some operators that we will need to use in the following chapters, namely diagonal
restriction, Shimura-Maass differential operator and holomorphic projection. We
also prove some technical lemmas and propositions regarding the arithmeticity of
the Fourier coefficients of certain Eisenstein series, which turn out to be examples
of nearly holomorphic modular forms. Further, we show how the arithmetic
information of the Fourier coefficients is preserved when applying the operators
above.

§ 3.1 Nearly holomorphic forms

Nearly holomorphic modular forms were introducted in the 70’s to prove alge-
braicity results for special L-values [Shi78]. Here we follow Mizumoto [Miz97]
and give a more restrictive set of conditions that will simplify working with these
forms.

A nearly holomorphic modular form of genus n, weight k and degree d is a function

F : Hn → C satisfying (i)-(v) (3.1)

(i) F ∈ C∞(Hn) in each entry of Z;

(ii) F (γ(Z)) = j(γ, Z)kF (Z) for every Z ∈ Hn and γ ∈ Γn;

(iii) δ(Z)dF (Z) is a polynomial in the entries of Y with bounded holomorphic
functions in Z as coefficients.

20
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For ease of notation, we write C[Y ] := C[{Yij}i,j]. Any function F satisfying
(3.1-i)-(3.1-iii) admits an absolutely convergent Fourier expansion on Hn of the
form

F (Z) = δ(Z)−d
∑
A≥0

FA(Y )qA (3.2)

where FA(Y ) ∈ C[Y ] is a polynomial in the entries of Y . By the same argument
of [Kli90, formula 4.2] we have

FUtAU(Y ) = FA(UY U t) (3.3)

for any U ∈ GLn(Z). Similarly to the holomorphic case, F is bounded on vertical
strips [Miz97, theorem 1.4(i)]. In addition we require

(iv) δ(Z)dFA(Y −1) is also in C[Y ] for every A ≥ 0;

(v) if A =
(
A(r) 0

0 0

)
for a r× r matrix A(r) and r = 0, . . . , n− 1 then FA(Y ) is a

polynomial in det(Y ) and the entries of the upper left r × r block of Y .

Shimura’s original definition requires only (i), (ii) and (iv). The latter in partic-
ular, demanding the coefficients of F to be polynomials in the inverse of Y , is
quite unwieldy; condition (iii) and hence formula (3.2) are instead more practical
for what we will discuss later in this chapter.

We now introduce the multi-index notation to simplify working with the Fourier
expansion (3.2). For any matrices α ∈ Qn,n and Y ∈ Cn,n, let

Y α :=
n∏

i,j=1

Y
αij
ij ∈ C (3.4)

and also put |α| :=
∑

i,j αij. Then Y α is a (rational) monomial in the entries of
Y of total degree |α|; conversely every such monomial can be written as Y α for
a suitable multi-index α. If Y is symmetric then α is not uniquely determined:
we stipulate to always take the unique multi-index α which is symmetric and
half-integral so that

Y α =
n∏
i=1

Y αii
ii

∏
i<j

Y
αij+αji
ij

is a monomial in C[Y ]. We will write any polynomial p(Y ) ∈ C[Y ] as p(Y ) =∑
α pαY

α for suitable constants pα ∈ C.

Lemma 3.1.1. Let FA(Y ) be as in (3.2). Then the total degree of FA(Y ) is ≤ nd,
and the degree of each of its monomials satisfies αmm + 2

∑n
i=1 αim ≤ d for any

m ≤ n.

Viceversa, any polynomial p(Y ) ∈ C[Y ] with these properties satisfies (3.1-iv).
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Proof. Recall that Y −1 = det(Y )−1(qij(Y ))i,j for polynomials qij(Y ) ∈ C[Y ]
(namely its cofactors) so that the degree of Yml in qij(Y ) is

degYmj(qij(Y )) =

{
1 i 6= m and j 6= l

0 otherwise

hence the degree of Yml in
∏

i,j qij(Y )αij equals

∑
i,j

degYml(qij(Y )αij) =

i 6=m,j 6=l∑
i,j

αij = |α| −
∑
i

αil −
∑
j

αmj + αml

Now, by (3.1-iv)

δ(Z)dFA(Y −1) =
∑
α

FA,α det(Y )d−|α|
∏
i,j

qij(Y )αij

is in C[Y ], and since the degree of Yml in det(Y ) is exactly 1,

0 ≤ degYml(δ(Z)dFA(Y −1)) ≤ d−
∑
i

αil −
∑
j

αmj + αml

By letting m = l we deduce (by the symmetry of α)

0 ≤ d− 2
∑
i 6=m

αim − αmm (3.5)

which proves the second statement. Summing over l = 1, . . . , n instead we see

0 ≤ nd− |α| −
∑
j

αmj +
∑
l

αml = nd− |α|

as claimed.

For the additional statement, write p(Y ) =
∑
|α|≤nd pαY

α. Then

det(Y )dp(Y −1) =
∑
|α|≤nd

pα det(Y )d−|α|
∏
i,j

qij(Y )αij

and the degree of Yml in each of its summands is

degYml(det(Y )dp(Y −1)) = d−
∑
i

αil −
∑
j

αmj + αml

which is non-negative by (3.5).
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Let

N n
k,d := {F : Hn → C nearly holomorphic of weight k and degree ≤ d} (3.6)

Clearly N n
k,d is a complex vector space and N n

k,d ⊆ N n
k,d+1 for every d ≥ 0. By

lemma (3.1.1) we see that N n
k,0 =Mn

k , since the Fourier coefficients of F ∈ N n
k,0

must be polynomials of degree 0 hence constant, making F holomorphic and
modular. Finally, it is known that every N n

k,d is finite dimensional:

Proposition 3.1.2 ([Miz97, proposition 3.2(1)]). There exist a positive constant
cn depending only on n and a positive constant bn,d depending only on n and d
such that

dim(N n
k,d) ≤ cn(d+ 1)(k + bn,d)

n(n+1)
2

for every k ≥ 0.

§ 3.2 Diagonal restriction

For Z ∈ Hn and W ∈ Hm, let

Z ×W :=

(
Z 0
0 W

)
(3.7)

where 0 represents zero matrices of suitable dimension; then Z × W ∈ Hn+m.
Similarly define ⊗iZi ∈ H(

∑
ni) as the block diagonal matrix with Zi ∈ Hni as

blocks.

Vice versa, for Z ∈ Hn+m, let Z∗ be the top left n × n block of Z and Z∗ the
bottom right m×m block of Z, so that

Z =

(
Z∗ ?
? Z∗

)
(3.8)

Then Z∗ ∈ Hn and Z∗ ∈ Hm. More generally, every ni × ni block Zi on the
diagonal of Z is in Hni ; we refer to the map H∑

ni →
∏

iHni given by Z 7→ (Zi)i
as diagonal restriction, and suppress the dimensions ni from the notation when
clear from the context.

Define (
Aγ Bγ

Cγ Dγ

)
×
(
Aη Bη

Cη Dη

)
:=


Aγ 0 Bγ 0
0 Aη 0 Bη

Cγ 0 Dγ 0
0 Cη 0 Dη

 (3.9)
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Then γ × η ∈ Γn+m for γ ∈ Γn and η ∈ Γm. It is immediate to show that the
action of the symplectic group on the Siegel space commutes with the diagonal
restriction, i.e.

(γ × η)(Z ×W ) = γ(Z)× η(W )

j(γ × η, Z ×W ) = j(γ, Z)j(η,W )

δ(Z ×W ) = δ(Z)δ(W )

(3.10)

hence, if F is weakly modular of weight k, then

F (γ(Z)× η(W )) = j(γ, Z)kj(η,W )kF (Z ×W )

This suggests that diagonally restricting a nearly holomorphic modular form
should produce something of the same kind.

Lemma 3.2.1. Let F ∈ N n+m
k,d and

GW (Z) := F (Z ×W ) =: HZ(W )

for Z ∈ Hn and W ∈ Hm. Then GW ∈ N n
k,d and HZ ∈ Nm

k,d for every fixed Z,W .

Proof. We show that GW ∈ N n
k,d; the proof for the other statement is analogous.

Write Z = X + iY and W = U + iV by decomposing in real and imaginary part,
so that by (3.2)

GW (Z) = δ(Z)−dδ(W )−d
∑
A≥0

∑
|α|≤(n+m)d

FA,α(Y × V )αe2πiTr(A(Z×W ))

Observe that Tr(A(Z ×W )) = Tr(A∗Z) + Tr(A∗W ) where A∗ and A∗ are the
top left n × n and bottom right m × m blocks of A. With similar notation
(Y × V )α = Y α∗V α∗ , hence

GW (Z) = δ(Z)−d
∑
B(n)≥0

∑
β

δ(W )−d
A∗=B∑
A≥0

α∗=β∑
|α|≤(n+m)d

FA,αV
α∗e2πiTr(A∗)W

Y βqB

The expression in brackets is constant for fixed W ; further the multi-indices β
have degree ≤ nd and follow (3.5), hence the polynomials in the Fourier expansion
of GW satisfy (3.1-i)-(3.1-iv) by lemma (3.1.1).

To complete the proof, we need to show that GW satisfies (3.1-v). Take B(n) ≥ 0
and assume that B = B′×0n−r for its top left r×r block B′. Fix any A(n+m) ≥ 0
with A∗ = B as above, and take the permutation matrix U ∈ GLn+m(Z) such
that U tAU has a zero bottom right r × r block. By (3.3) we have

FA(Y × V ) = FUtAU(U−1(Y × V )U−t)
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which by (3.1-v) is a polynomial in det(Y ) det(V ) and the top left n + m − r
entries of U−1(Y × V )U−t, which are exactly the entries of V and Y ′. Since
the B-th Fourier coefficient of GW is obtained as a sum of such polynomials, we
deduce that (3.1-v) holds for GW as wanted.

Proposition 3.2.2. The diagonal restriction induces a map

N n+m
k,d → N n

k,d ⊗C Nm
k,d

Proof. This proof is taken from [Fre83, pag. 147], but we present it here as we
are going to generalise it in the following section. Let F ∈ N n+m

k,d and observe
that Z 7→ F (Z×W ) is an element of N n

k,d for every choice of W ∈ Hm by lemma
(3.2.1). This vector space is finite dimensional by proposition (3.1.2), say spanned
by a basis (ϕ1, . . . , ϕR), hence

F (Z ×W ) =
R∑
i=1

ci(W )ϕi(Z)

for some complex coefficients ci(W ). Fix some Z1, . . . , ZR ∈ Hn and write the
system F (Z1 ×W )

...
F (ZR ×W )

 =

ϕ1(Z1) . . . ϕR(Z1)
...

. . .
...

ϕ1(ZR) . . . ϕR(ZR)


c1(W )

...
cR(W )

 (3.11)

If the central matrix is invertible, we can multiple by its inverse and read (say
from the q-th line)

cq(W ) =
R∑
i=1

di(Z1, . . . , ZR)F (Zi ×W )

where the di(Z1, . . . , ZR) are complex coefficients depending on the choice of Zi.
But the map W 7→ F (Zi ×W ) is in Nm

k,d = span(ψ1, . . . , ψS) hence

F (Z ×W ) =

R,S∑
i,j=1

cijϕi(Z)ψj(W ) (3.12)

i.e. an element of N n
k,d ⊗C Nm

k,d.

To complete the proof we need to show that there exist Z1, . . . , ZR such that
the central matrix in (3.11) is invertible. We proceed by induction: the matrix
(ϕ1(Z1)) is invertible if Z1 is not a zero of ϕ1 (which is not vanishing everywhere,
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hence such a Z1 exists). Assume now we found Z1, . . . , Zp (with 1 ≤ p ≤ R − 1)
such that ϕ1(Z1) . . . ϕp(Z1)

...
. . .

...
ϕ1(Zp) . . . ϕp(Zp)


is invertible, hence its columns form a basis for Cp andϕp+1(Z1)

...
ϕp+1(Zp)

 =

p∑
j=1

aj

ϕj(Z1)
...

ϕj(Zp)


But ϕ1, . . . , ϕp+1 are linearly independent, so we can find a Zp+1 ∈ Hn such that
ϕp+1(Zp+1) 6=

∑
j ajϕj(Zp+1), constructing the wanted p + 1-squared invertible

matrix.

Remark 3.2.3. For fixed Z0 ∈ Hn and W0 ∈ Hm, we call sections of F the maps
Z 7→ F (Z ×W0) and W 7→ F (Z0 ×W ) defined respectively on Hn and Hm.

In (3.12), the nearly holomorphic forms ϕi and ψj are themselves (linear combi-
nations of) sections of F . In fact, by choosing suitable points W1, . . . ,Wr ∈ Hm

we can write the systemF (Z ×W1)
...

F (Z ×WR)

 =

µ1(W1) . . . µR(W1)
...

. . .
...

µR(W1) . . . µR(WR)


ϕ1(Z)

...
ϕR(Z)


where µi =

∑S
j=1 cijψj ∈ Nm

k,d, with the notation of (3.12). By the same argument
of the proof, the square matrix is invertible and (after multiplying by its inverse)
we read

ϕi(Z) =
S∑
j=1

ηi(Wj)F (Z ×Wj)

i.e ϕ(Z) is a linear combination of F (Z × ?). The same argument applies in the
variable W .

§ 3.3 Shimura-Maass differential operator

For n, k, r ∈ N+ define the Shimura-Maass operator ∂rn,k by

∂n,k :=(2πi)−nδ(Z)
n−1

2
−k det(∆)δ(Z)k−

n−1
2

∂rn,k :=∂n,k+2r−2 ◦ · · · ◦ ∂n,k+2 ◦ ∂n,k
(3.13)
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where ∆ is the n× n matrix of differential operators

∆ :=

(
1 + δji

2

∂

∂Zij

)
ij

(3.14)

and δji is Kronecker’s delta.

Proposition 3.3.1 ([Miz97, proposition 2.1]). The operator ∂rn,k acts on nearly
holomorphic modular forms as

∂rn,kN n
k,d ⊆ N n

k+2r,d+r

In particular we can construct examples of nearly holomorphic modular forms by
applying ∂rn,k to elements of Mn

k :

Proposition 3.3.2 ([CP91, proposition 3.11]). Let F ∈Mn
k with Fourier expan-

sion
∑

A FAq
A. Then, for any r ≥ 0,

∂rn,kF = δ(4πZ)−r
∑
A≥0

Rn(4πAY ; r,
n− 1

2
− k − r)FAqA

where Rn(T ; r, β) is the polynomial in C[T ] defined by [CP91, formula 3.7]: its
total degree is nr and its term of highest degree is det(T )r.

The elliptic case

In the special case n = 1, we introduce the adjoint of ∂r1,k with respect to the
Petersson inner product given by

∂̂1,k :=− (2πi)−1y2 ∂

∂z

∂̂r1,k := ∂̂1,k−2r+2 ◦ . . . ∂̂1,k−2 ◦ ∂̂1,k

(3.15)

which can be directly computed to satisfy

〈f, ∂r1,kg〉 = 〈∂̂r1,k+2rf, g〉 (3.16)

for any f ∈ N 1
k+2r,d and g ∈ N 1

k,d′ for which the inner products converge.

In the elliptic case it is easy (e.g. [Hid93, pp. 311-312]) to explicitly compute the
effect of the Shimura-Maass operator and its adjoint on the Fourier expansion.
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Proposition 3.3.3. If f =
∑

A fAq
A ∈M1

k then

∂r1,kf =
∞∑
A=0

(
r∑
j=0

(
r

j

)
(−1)j

(k + r − 1)!

(k + r − 1− j)!
Ar

(4πAy)j

)
fAq

A

Proof. We begin by computing

∂1,k[y
sqA] = (2πi)−1y−k

d

dz
[ys+kqA] =

(
−s+ k

4πy
+ A

)
ysqA

for any s ∈ C. Hence by linearity

∂1,kf =
∞∑
A=0

(
− k

4πy
+ A

)
qA

proving the claim for r = 1. We now proceed by induction on r ≥ 1:

∂r+1
1,k f = ∂1,k+2r[∂

r
1,kf ]

=
∞∑
A=0

fA

r∑
j=0

(
r

j

)
(−1)j

(k + r − 1)!

(k + r − 1− j)!
Ar

(4πA)j
∂1,k+2r[y

−jqA]

=
∞∑
A=0

[
r∑
j=0

(
r

j

)
(−1)j

(k + r − 1)!

(k + r − 1− j)!
Ar

(4πAy)j

(
A− −j + k + 2r

4πy

)]
fAq

A

Rearranging the content of the square brackets as a polynomial in (4πyA)−1 yields
the wanted expression.

Proposition 3.3.4. Let f ∈ N 1
k,d with expansion

f =
∞∑
A=0

d∑
j=0

fA,j
(4πy)j

qA

Then

∂̂r1,kf = (4π)−2r

∞∑
A=0

d∑
j=r

(j + r − 1)!

(j − 1)!

fA,j
(4πy)j−r

qA (3.17)

where we mean ∂̂r1,kf = 0 if r > d.

Proof. We begin by computing

∂̂1,k[y
sqA] = −(2πi)−1y2 d

dz
[ysqA] = − s

4π
ys+1qA
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for any s ∈ C hence

∂̂1,kf = (4π)−2

∞∑
A=0

d∑
j=1

j
fA,j

(4πy)j−1
qA

proving the claim for r = 1. Now by induction on r ≥ 1

∂̂r+1
1,k f = ∂̂1,k−2r[∂̂

r
1,kf ]

= (4π)−2r

∞∑
A=0

d∑
j=r

(j + r − 1)!

(j − 1)!
∂̂1,k−2r

[
fA,j

(4πy)j−r
qA
]

= (4π)−2(r+1)

∞∑
A=0

d∑
j=r+1

[
(j − r)(j + r − 1)!

(j − 1)!

]
fA,j

(4πy)j−r−1
qA

which we see immediately to be of the claimed form.

Arithmeticy of the Shimura-Maass operator

From proposition (3.3.2) we see that it is more convenient to write the Fourier
expansion (3.2) of F ∈ N n

k,d as

F (Z) = δ(4πZ)−d
∑
A≥0

FA(4πY )qA (3.18)

for polynomials FA(T ) ∈ C[T ]. More generally, let R be any ring and assume
FA(T ) ∈ R[T ] for every A ≥ 0: denote N n

k,d(R) the R-module of all nearly
holomorphic modular forms with this property.

Proposition 3.3.5. For any ring Z[1/2] ⊆ R ⊆ C,

∂rn,k[N n
k,d(R)] ⊆ N n

k+2r,d+r(R)

Proof. A direct computation shows that, for any s ∈ Z[1/2], half-integral A and
p(T ) ∈ R[T ]

∂

∂Zab

[
δ(4πZ)sp(4πY )qA

]
= (2πi) · δ(4πZ)s−1p′(4πY )qA

for some p′(T ) ∈ R[T ] hence

det(∆)
[
δ(4πZ)sp(4πY )qA

]
= (2πi)n · δ(4πZ)s−np′′(4πY )qA

for some p′′(T ) ∈ R[T ].
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Let F ∈ N n
k,d(R) with Fourier coefficients FA(T ) ∈ R[T ] as in (3.18): by (3.13)

we then have

∂n,k
[
δ(4πZ)−dFA(4πY )qA

]
= δ(4πZ)−d−nF ′A(4πY )qA

with F ′A(T ) ∈ R[T ] for every A ≥ 0, which together with proposition (3.3.1)
finishes the proof.

Proposition 3.3.6. For any ring Z[1/2] ⊆ R ⊆ C,

∂̂r1,k[N 1
k,d(R)] ⊆ π−2r · N 1

k−2r,d−r(R)

Proof. This follows immediately from the explicit Fourier expansion given in
proposition (3.3.4).

The following proposition shows how arithmetic information is preserved by di-
agonal restriction. To keep the same notation as proposition (3.2.2), we write
X ⊗R Y for the set of R-linear combinations of products xy with x ∈ X and
y ∈ Y : if X and Y are R-modules, then X ⊗R Y is indeed (isomorphic to) the
standard tensor product. Nonetheless, in the rest of this thesis we will use this
notation simply as a shorthand for linear combinations of products, even when
this would not make sense algebraically.

Proposition 3.3.7. For any ring Z[1/2] ⊆ R ⊆ C, the diagonal restriction in-
duces a map

N n+m
k,d (R)→ N n

k,d(R)⊗R∗ Nm
k,d(R)

where R∗ is the field of fractions of R.

Proof. Take F ∈ N n+m
k,d (R), X + iY = Z ∈ Hn and U + iV = W ∈ Hm. By

proposition (3.2.2) we have

F (Z ×W ) =

Sn,Sm∑
i,j=1

cijϕi(Z)ψj(W )

for some constants cij ∈ C and bases {ϕ1, . . . , ϕSn} and {ψ1, . . . , ψSm} of N n
k,d

and Nm
k,d respectively. We write explicitly

ϕi(Z) = δ(4πZ)−d
∑
A≥0

∑
α

ϕ
(i)
A,α(4πY )αqA

ψj(W ) = δ(4πW )−d
∑
B≥0

∑
β

ψ
(j)
B,β(4πV )βqB
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with ϕ
(i)
A,α, ψ

(j)
B,β ∈ C. By comparing these with

F (Z ×W ) = δ(4πZ)−dδ(4πW )−d
∑

C(n+m)≥0

∑
γ

FC,γ(4πY )γ
∗
(4πV )γ∗qC

∗

Z qC∗W

we see that

ξB,βA,α :=
∑
i,j

cijϕ
(i)
A,αψ

(j)
B,β =

C∗=A,C∗=B∑
C≥0

γ∗=α,γ∗=β∑
γ

FC,γ ∈ R

for every choice of A,B, α, β, since so are all the FC,γ; we write this as

(
ϕ

(1)
A,α . . . ϕ

(Sn)
A,α

) c1,1 . . . c1,Sm
...

. . .
...

cSn,1 . . . cSn,Sm


 ψ

(1)
B,β
...

ψ
(Sm)
B,β

 = ξB,βA,α

Define Hi(W ) :=
∑Sm

j=1 cijψj(W ) = δ(4πW )−d
∑

B

∑
βH

(i)
B,β(4πV )βqB for H

(i)
B,β ∈

C, hence (
ϕ

(1)
A,α . . . ϕ

(Sn)
A,α

)H
(1)
B,β
...

H
(Sn)
B,β

 = ξB,βA,α (3.19)

Now, since ϕ1, . . . , ϕSn are linearly independent, we can find Sn choices of A,α
such that ϕ

(1)
A1,α1

. . . ϕ
(Sn)
A1,α1

...
. . .

...

ϕ
(1)
ASn ,αSn

. . . ϕ
(Sn)
ASn ,αSn


H

(1)
B,β
...

H
(Sn)
B,β

 =

 ξB,βA1,α1

...

ξB,βASn ,αSn

 ∈ RSn (3.20)

where the matrix on the left is invertible (otherwise reduction by rows would
show a linear dependency between ϕ1, . . . , ϕSn).

Put

Ψj(W ) := δ(4πW )−d
∑
B

∑
β

ξB,βAj ,αj
(4πV )βqB

=: δ(4πW )−d
∑
B

∑
β

Ψ
(j)
B,β(4πV )βqB

then (3.20) says that 2 := spanC(Ψ1, . . . ,ΨSn) = spanC(H1, . . . , HSn) ⊆ Nm
k,d,

which shows at once that Ψj ∈ Nm
k,d(R). Eventually relabelling, assume that
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Ψ1, . . . ,Ψν form a basis for 2 (with ν ≤ Sn), so we can find some constants
c′i,j ∈ C such that (3.19) reads

(
ϕ

(1)
A,α . . . ϕ

(Sn)
A,α

) c′1,1 . . . c′1,ν
...

. . .
...

c′Sn,1 . . . c′Sn,ν


Ψ

(1)
B,β
...

Ψ
(ν)
B,β

 = ξB,βA,α

Repeating the same process for the variable Z, we find Φ1, . . . ,Φη ∈ N n
k,d(R)

which are linearly independent and whose coefficients satisfy

(
Φ

(1)
A,α . . . Φ

(η)
A,α

)d1,1 . . . d1,ν
...

. . .
...

dη,1 . . . dη,ν


Ψ

(1)
B,β
...

Ψ
(ν)
B,β

 = ξB,βA,α ∈ R

with constants di,j ∈ C and

F (Z ×W ) =

η,ν∑
i,j=1

dijΦi(Z)Ψj(W )

Notice that the row/column matrices have entries in R: completing them to R∗-
invertible square matrices (it is possible since {Φi(Z)}i and {Ψj(W )}j are linearly
independent) and multiplying by their inverse shows that the matrix (di,j)i,j is in
R∗ as claimed.

§ 3.4 Holomorphic projection

We give a brief review of the holomorphic projection operator as introduced by
Sturm in [Stu81]. Let

Γn(s) := π
n(n−1)

4

n−1∏
j=0

Γ

(
s− j

2

)
(3.21)

be the generalised Γ function, which admits the integral representation [Kli90,
lemma 6.2]

Γn(k) = det(M)k
∫
Y >0

e−Tr(MY ) det(Y )k−
n+1

2 dY (3.22)

for any integer k > (n − 1)/2 and complex symmetric matrix M with positive
definite real part: notice the independence of the left-hand side of M , which plays
an important role in the following facts, especially (3.26).
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Let ϕ(Z) =
∑

A≥0 ϕA(Y )qA be weakly modular of weight k and genus n, where
every Fourier coefficient ϕA is a C∞ function on =(Hn). Define numbers

ϕ̃A :=
πn(k−n+1

2
)

Γn(k − n+1
2

)
det(4A)k−

n+1
2

∫
Y >0

ϕA(Y )e−4πTr(AY ) det(Y )k−n−1dY (3.23)

for every symmetric half-integral A > 0, and let formally

Holn,kϕ :=
∑
A>0

ϕ̃Aq
A (3.24)

Proposition 3.4.1 ([Stu81, theorem 1]). Assume that the integral in (3.23) is
convergent for every A > 0. If ϕ is of bounded growth, i.e. for every ε > 0∫

Γn,0\Hn
|ϕ(Z)|e−εTr(Y )δ(Z)kdµZ <∞ (3.25)

then Holn,kϕ is a well defined element of Snk and

〈ϕ,G〉 = 〈Holn,kϕ,G〉 (3.26)

for every G ∈ Snk .

Bounded growth

We present in this section some sufficient conditions for (3.25). These results are
a generalisation of [Stu81, corollary 1(C)]: Sturm proves there that a particular
bound holds for non-holomorphic Eisenstein series, and we show how the same is
true for nearly holomorphic modular forms (of which some Eisenstein series are
an example). We begin with a technical lemma, namely a generalisation of the
min-max theorem.

Lemma 3.4.2. Let Y be a symmetric positive definite matrix in Rn,n with eigen-
values 0 < λ1 ≤ · · · ≤ λn. Then

min
Q

det(QtY Q)

det(QtQ)
=

r∏
j=1

λj and max
Q

det(QtY Q)

det(QtQ)
=

n∏
j=n−r

λj

where Q ranges over the set of matrices in Rn,r of rank r ≤ n.

Proof. We prove the first equality, as the second one is analogous. Since Q is of
maximal rank, we can apply the thin QR decomposition and write it as Q = P

(
R
0

)
,

where P ∈ On(R) and R is an upper triangular matrix in GLr(R). Then

det(QtY Q)

det(QtQ)
=

det(Rt(P tY P )∗R)

det(RtR)
= det((P tY P )∗)
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where A∗ denotes the top left r × r block of a matrix A. If P is the orthogonal
matrix that diagonalises Y as diag(λ1, . . . , λn) then

min
Q

det(QtY Q)

det(QtQ)
≤ det((P tY P )∗) =

r∏
j=1

λj

For the opposite inequality, denote {e1, . . . , en} the standard orthonormal basis
of Rn endowed with the inner product 〈ei, ej〉 = δji and extended by linearity.
The space

∧r Rn inherits the standard basis and inner product

〈∧rl=1eil ,∧rl=1ejl〉 :=
r∏
l=1

δjlil

for i1 < · · · < ir and j1 < · · · < jr. Now the bilinear form on
∧r Rn given by

(∧rl=1ul,∧rl=1vl) 7→ det(U tV )

(where U and V are the n × r matrices with (ul)l and (vl)l as columns) is well
defined and coincides with the inner product on the basis {∧rl=1eil}, so they are
actually equal.

Let w1, . . . , wn be the eigenvectors of Y corresponding to λ1, . . . , λn, and since Y
is symmetric and positive definite they form an orthonormal basis for Rn, and
they induce an orthonormal basis on

∧r Rn with respect to the standard inner
product too. We construct the square root of Y as follows: if

Y = P diag(λ1, . . . , λn)P t

for P ∈ On(R), then

√
Y := P diag(

√
λ1, . . . ,

√
λn)P t

is a positive definite symmetric matrix and indeed
√
Y
√
Y = Y . A n× n matrix

defines a linear map on
∧r Rn by component-wise multiplication; if we let v =∑

qi1,...,ir ∧rl=1 wil then

‖
√
Y v‖2 = ‖

∑
qi1,...,ir

(√
Y ∧rl=1 wil

)
‖2

= ‖
∑√

λi1 · · ·λir (qi1,...,ir ∧rl=1 wil) ‖2

≥ ‖v‖2

r∏
l=1

λl
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We observed that 〈∧rl=1ul,∧rl=1vl〉 = det(U tV ). In particular, if v1, . . . , vr are the
columns of the matrix Q, we let v = ∧rl=1vl and

min
Q

det(QtY Q)

det(QtQ)
= min

Q

‖
√
Y v‖2

‖v‖2
≥ min

Q

r∏
l=1

λl =
r∏
l=1

λl

We immediately use this result to obtain a bound for weakly modular forms. We
use from now on the notation

|F (Z)| �F ϑ(Z) on Ω

to mean
|F (Z)| ≤ cFϑ(Z) ∀Z ∈ Ω

where ϑ has image in R+, Ω is a subset of Hn and cF ∈ R+ is a suitable constant
(which we do not need explicitly) depending only on F .

Lemma 3.4.3. Let F : Hn → C be weakly modular of weight k and assume that
|F (Z)| �F δ(Z)−α on the fundamental domain Fn for some α ∈ R.

If 0 ≤ α ≤ k/2, then

|F (Z)| �F

n∏
j=1

(λ−αj + λ−k+α
j )

on Hn, where {λi}i are the eigenvalues of Y .

Proof. Let Z ∈ Hn and take γ ∈ Γn such that γ(Z) ∈ Fn. Then

|F (Z)| = |j(γ, Z)−kF (γZ)|
�F |j(γ, Z)|−kδ(γZ)−α

= |j(γ, Z)|−k+2αδ(Z)−α
(3.27)

Let C denote the bottom left block of γ and let r be its rank. From the compu-
tation in [Maa71, pg. 167], and using the same notation,

|j(γ, Z)|2 = det(C1)2 det(QtY Q)2

r∏
v=1

(h2
v + 1) ≥ det(QtY Q)2

where Q ∈ Zn,r is a matrix that can be completed to an element of GLn(Z) and
Y = =(Z). Since the entries of Q are integers, we see

|j(γ, Z)| ≥ det(QtY Q) ≥ det(QtY Q)

det(QtQ)
≥

r∏
j=1

λj
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by lemma (3.4.2); hence, if −k + 2α ≤ 0, (3.27) becomes

|F (Z)| �F δ(Z)−α
r∏
j=1

λ−k+2α
j

=
n∏
j=1

λ−aj

r∏
j=1

λ−k+2α
j

≤
n∏
j=1

(λ−αj + λ−k+α
j )

uniformly on Hn, provided that 0 ≤ α ≤ k/2.

Lemma 3.4.4. Let F ∈Mn
k . Then

|∂rn,kF (Z)| �F

n∏
j=1

(λ−rj + λ−k−rj )

uniformly on Hn.

Proof. By proposition (3.3.2), we know that

∂rn,kF = δ(4πZ)−r
∑
A≥0

Rn(4πAY ; r,
n− 1

2
− k − r)FAqA

where
∑

β RβT
β := Rn(T ; r, ?) ∈ C[T ] and the term of highest degree is det(T )r.

Notice that T is not assumed symmetric, so we have to consider a generic multi-
index β ∈ Nn,n; on the other hand ∂rn,kF ∈ N n

k,r hence

∂rn,kF = δ(4πZ)−r
∑
A≥0

∑
α

FA,α(4πY )αqA

By comparing the I-th Fourier coefficient we see
∑

α FI,αY
α = FI

∑
β RβY

β hence
by lemma (3.1.1)

βmm +
∑
i 6=m

(βim + βmi) ≤ r (3.28)

for every m ≤ n.
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Fix now any β appearing in Rn(T ; r, ?). Write explicitly

(AY )β =
∏
i,j

(
n∑
l=1

AilYlj

)βij

=
∏
i,j


 n∑
l
(ij)
1 =1

A
il

(ij)
1
Y
l
(ij)
1 j

 · · ·
 n∑
l
(ij)
βij

=1

A
il

(ij)
βij

Y
l
(ij)
βij

j




=
∏
i,j

∑
l
(ij)
1 ,··· ,l(ij)βij

(
A
il

(ij)
1
· · ·A

il
(ij)
βij

)(
Y
l
(ij)
1 j
· · ·Y

l
(ij)
βij

j

)

Let Z ∈ Fn, so that [Kli90, proposition 2.1] applies and |Yij| ≤ Yjj for every
i 6= j, hence

|(AY )β| ≤
∏
i,j

∑
l
(ij)
1 ,··· ,l(ij)βij

∣∣∣∣Ail(ij)1
· · ·A

il
(ij)
βij

∣∣∣∣Y β
(ij)
ij

jj

=
∏
i,j

Y β
(ij)
ij

jj

∑
l
(ij)
1 ,··· ,l(ij)βij

∣∣∣∣Ail(ij)1
· · ·A

il
(ij)
βij

∣∣∣∣


=

 ∑
{
l
(ij)
1 ,··· ,l(ij)βij

}
1≤i,j≤n

∣∣∣∣Ail(ij)1
· · ·A

il
(ij)
βij

∣∣∣∣
Y β

=: C(A, β)Y β

(3.29)

where C(A, β) ∈ C[A] is a polynomial in the entries of A whose coefficients

depend on β, and the last sum is over the mute indices 1 ≤ l
(ij)

ν(ij) ≤ n, one for

each choice of 1 ≤ i, j ≤ n and 1 ≤ ν(ij) ≤ βij.

If Amm = 0 for some m ≤ n, then Aνm = Amν = 0 for every ν ≤ n by lemma
(2.2.1). In this case

(AY )β =
∏
i,j

(
n∑
l=1

AilYlj

)βij

= 0

unless βmν = 0 for every ν ≤ n; also no Ymν appears in (AY )β for any ν ≤ n. This
means that the variables Ymν = Yνm do not appear in (AY )β whenever Amm = 0,



38

hence we can majorise in (3.29) as

|(AY )β| ≤ C(A, β)
∏
m

Amm 6=0

Y β1m+···+βnm
mm ≤ C(A, β)

∏
m

Amm 6=0

Y r
mm (3.30)

where the last inequality follows from (3.28).

We can finally finish the proof. By [Kli90, lemma 2.2] we have δ(Z)�n

∏
l Yl, so

we can write (3.2) as

|∂rn,kF (Z)| �
∑
A≥0

∑
β

C(A, β)

 ∏
m

Amm=0

Y −rmm

 |FA|e−2πTr(AY )

We split the sum over the A whose diagonal entries never vanish, and the remain-
ing ones: we shall show that the first sum decays exponentially in each Yll while
the second one decays as δ(Z)−r on the fundamental domain Fn, so that lemma
(3.4.3) applies.

For the sum over non diagonally vanishing indices, we have∑
A

∑
β

C(A, β)|FA|e−2πTr(AY )

Since Z ∈ Fn, then Y > εI for some ε > 0, and also by [Kli90, lemma 2.2]
Tr(AY )�

∑
lAllYll ≥ Tr(Y ) hence we majorise by(∑

A

∑
β

C(A, β)|FA|e−επTr(A)

)
e−πTr(Y )

and the series in brackets converges since C(A, β) has polynomial behaviour in
the entries of A. The whole expression is then � e−Tr(Y ) � δ(Z)−r.

For the remaining sum, without loss of generality we assume we are only summing
over the matrices A whose only diagonal zero is A11 (the general case follows the
same idea, but with a more cumbersome notation). Then Tr(AY ) ≥ Y22 + · · · +
Ynn, so that we are dealing with∑

A
A11=0

∑
β

C(A, β)|FA|e−επTr(A)

Y −r11 e
−π(Y22+···+Ynn)

Again the series in brackets converges, and we have something decaying polyno-
mially of degree −r in Y11 and exponentially in the other Ymm, hence by [Kli90,
lemma 2.2] the whole expression is � δ(Z)−r.
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Remark 3.4.5. In the proof of lemma (3.4.4) we highlighted how it is the sin-
gular part (i.e. indexed by diagonally vanishing A) of the Fourier expansion that
dictates how fast |∂rn,kF | decays. If n = 1, the singular part is just the constant
term, and by proposition (3.3.3) this equals y−r.

More generally, if ϕ ∈ N 1
k,d, then the asymptotic behaviour for y →∞ is given by

its constant term. Proposition (3.3.3) and (3.3.4) tell us explicitly what happens
when applying the operator ∂1,k and its adjoint ∂̂1,k: in particular, if ϕ = y−d +

O(y−d), then ∂̂v1,kϕ = y−d+v +O(y−d+v) if v ≤ d ≤ k/2, hence

|∂̂v1,kϕ| �ϕ y
−d+v + y−k+d+v

uniformly on H1.

Proposition 3.4.6. If F : Hn → C is weakly modular of weight k and satisfies

|F (Z)| �F

n∏
j=1

(λ−αj + λ−βj )

on Hn for some α, β ∈ R such that max{α, β} < k − n, then F is of bounded
growth i.e. satisfies (3.25).

Proof. We follow the argument of [Stu81, corollary 2]. Let Ω be the vertical strip
{Z ∈ Hn : |Xij| ≤ 1/2, Y > 0}: we need to prove that∫

Ω

|F (Z)|e−εTr(Y )δ(Z)kdµZ <∞

and, because of the hypothesis, we are left with showing∫
Y >0

(
n∏
j=1

(λ−αj + λ−βj )

)
e−εTr(Y ) det(Y )k−n−1dY <∞

The set of matrices Y > 0 with distinct eigenvalues is of full measure in the
space of all positive definite symmetric matrices, so we can integrate over it
instead. Every Y with distinct eigenvalues can be diagonalised as UΛU t, where Λ
is diagonal and Λjj = λj, and U ∈ On(R); further U is unique up to multiplication
by diag(±1, . . . ,±1), and the Jacobian determinant of the change of variables
Y → (Λ, U) is a polynomial J(Λ) in the eigenvalues of Λ independent of U .
Therefore we need to show that∫
{λi<λj}

∫
On(R)

(
n∏
j=1

(λ−αj + λ−βj )

)
e−εTr(Λ) det(Λ)k−n−1J(Λ)dUdλ1 · · · dλn <∞
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The space On(R) is of finite dU -measure, and we can majorize the remaining
integral as the n-th power of∫ ∞

0

(λ−α + λ−β)e−ελλk−n
dλ

λ
�ε Γ(−α + k − n) + Γ(−β + k − n)

which is indeed convergent provided that max{α, β} < k − n.

Arithmeticity of the holomorphic projection

Lemma 3.4.7. Let F ∈ N n
k,d with Fourier expansion

F (Z) = δ(4πZ)−d
∑
A≥0

∑
α

FA,α(4πY )αqA

and define

MA,α :=
πn(k−n+1

2
)

Γn(k − n+1
2

)
det(4A)k−

n+1
2

∫
Y >0

(4πY )αe−4πTr(AY ) det(Y )k−n−d−1dY

Then, under the conditions of proposition (3.4.1),

Holn,kF =
∑
A>0

(∑
α

MA,αFA,α

)
qA

and MA,α ∈ Q is integral at all primes > 2k − n− 4.

Proof. Let (
− d

dA

)α
:=
∏
i≤j

(−1)αij
∂αij

∂A
αij
ij

so that (
− d

dA

)α
e−Tr(AY ) = Y αe−Tr(AY )

hence by (3.22)∫
Y >0

Y αe−Tr(AY ) det(Y )k−n−d−1 =

=

∫
Y >0

(
− d

dA

)α
e−Tr(AY ) det(Y )k−n−d−1

= Γn

(
k − n− d− 1 +

n+ 1

2

)[(
− d

dA

)α (
det(A)k−n−d−1+n+1

2

)]
= Γn

(
k − n− d− 1 +

n+ 1

2

)
cA,α

(3.31)
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with cA,α ∈ Z[1
2
], since so are the entries of A and α. Making a change of variables

Y 7→ 4πY we get

MA,α = 4−|α|−n(k−d−n+1
2

) det(4A)k−
n+1

2
Γn(k − d− (n+ 1)/2)

Γn(k − (n+ 1)/2)
cA,α

Corollary 3.4.8. Let P−1
m = {p−1 : p ≤ m prime} ⊆ Q and Z[1/2] ⊆ R ⊆ C any

ring. Then

N n
k,d(R)bounded

Holk,n−−−→ Snk (R[P−1
2k−n−4])

where N n
k,d(R)bounded is the subset of N n

k,d(R) whose elements satisfy (3.25).

Corollary 3.4.9. Let Z[1/2] ⊆ R ⊆ C be any ring, and

ϕ(Z1, . . . , Zm) :=
∑

j1,...,jm

cj1,...,jmFj1(Z1) · · ·Fjm(Zm)

∈
m⊗
i=1

N ni
ki,di

(R)bounded

for constants cj1,...,jm ∈ C. Then

Holϕ(Z1, . . . , Zm) :=
∑

j1,...,jm

cj1,...,jmHolk1,n1Fj1(Z1) · · ·Holkm,nmFjm(Zm)

∈
m⊗
i=1

Sniki (R[P−1
2ki−ni−4])

obtained by term-wise application of the holomorphic projection operator, is a well
defined linear combination of cusp forms and satisfies

〈ϕ(Z1, . . . , Zm), G1(Z1) · · ·Gm(Zm)〉 = 〈Holϕ(Z1, . . . , Zm), G1(Z1) · · ·Gm(Zm)〉

for every Gi ∈ Sn1
k1

.

In addition, if the multivariate Fourier coefficients of ϕ are in R, then the ones
of Holϕ are in R[P−1

2K−N−4], where K := max{ki} and N := max{ni}.

Proof. The first statement follows immediately from corollary (3.4.8) and propo-
sition (3.4.1).

Write the Fourier expansion of Fji as

Fji(Z) = δ(4πZ)−di
∑
Ai≥0

∑
αi

F ji
Ai,αi

(4πY )αiqAi
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and fix any indices A1, . . . , Am and monomials αi, . . . , αm. The corresponding
(monomial term of) Fourier coefficient of ϕ equals therefore

ξα1,...,αm
A1,...,Am

:=
∑

i1,...,im

cj1,...,jmF
j1
A1,α1

· · ·F jm
Am,αm

which is in R by hypothesis. By lemma (3.4.7), the term-wise application of
holomorphic projection to ϕ acts on its Fourier transform so that the A1, . . . , Am-
th Fourier coefficient of Φ equals∑

α1,...,αm

MA1,α1 · · ·MAm,αmξ
α1,...,αm
A1,...,Am

which is in R[P−1
2K−N−4] since MAi,αi is integral at primes > 2ki − ni − 4.

§ 3.5 Eisenstein series and arithmetic properties

Eisenstein series are the main example of (nearly) holomorphic modular forms due
to their straightforward definition. For s ∈ C and Z ∈ Hn, define the Eisenstein
series of weight k and genus n as

En
k (Z, s) :=

∑
γ∈Γn,0\Γn

j(γ, Z)−kδ(γZ)s

= δ(Z)s
∑

γ∈Γn,0\Γn

j(γ, Z)−k|j(γ, Z)|−2s
(3.32)

where
Γn,0 := {γ ∈ Γn : Cγ = 0} (3.33)

is the Siegel parabolic subgroup of Γn of matrices with vanishing bottom left block.
The series (3.32) converges absolutely and locally uniformly for Z ∈ Hn and
2<(s) > n+1−k, and it admits meromorphic continuation to the whole complex
plane in s [Miz93, introduction]. Formally En

k (Z, s) is weakly modular: at least
when absolutely convergent, En

k (Z, 0) defines a Siegel modular form. Other values
of s give rise to nearly holomorphic modular forms:

Proposition 3.5.1 ([BH06, proposition 3.1]). Assume k > n+1 and let 0 ≤ v <
k−n−1

2
be an integer. Then

En
k (Z,−v) = (−4π)nv

v∏
j=1

n−1∏
l=0

(
k − v − j − l

2

)−1

∂vn,k−2vE
n
k−2v(Z, 0)

and hence En
k (Z,−v) ∈ N n

k,v. If neither n+2
2

nor n+3
2

is congruent to 2 mod 4,

then the statement is valid for 0 ≤ v < 2k−n+1
4

.
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Arithmeticity of Siegel Eisenstein series

For any mod N character χ, the generalised Bernoulli numbers are defined by

N∑
a=1

χ(a)teat

eNt − 1
=:

∞∑
k=0

Bk,χ
tk

k!
(3.34)

and we put Bk := Bk,1 i.e. associated to the character mod 1.

Proposition 3.5.2 (von Staudt-Clausen). For k ∈ N odd, Bk = 0. If k > 0 is
even, then

Bk +
∑

(p−1)|k

p−1 ∈ Z

In particular the denominator of Bk is the product of the primes p such that p−1
divides k.

Proposition 3.5.3. Let χ be a primitive quadratic character of order N , and p
a prime divisor of the denominator of Bk,χ/k for a fixed k ≥ 1.

Then k ≡ (p− 1)/2 mod p, and in particular p ≤ 2k − 1.

Proof. Fix a prime p. It is well known [Gui, proposition 3.12] that

Bχ,k

k
=

1

1− χ(g)gk

∫
Z×p
χ(x)xk−1dE1,g(x)

where the equality takes place in the p-completion Qp of Q, g is a primitive root
mod p, and dE1,g is a certain p-adic measure. The integral is a p-adic integer,
hence Bk,χ/k can have a factor of p−1 if and only if 1− χ(g)gk ≡ 0 (mod p).

Since χ is quadratic, χ(g) = ±1. If χ(g) = 1, then χ(m) = χ(grm) = χ(g)rm = 1
for every m ∈ Z/pZ× = 〈g〉, and χ would be imprimitive against the assumption:
hence χ(g) = −1. Therefore a factor of p−1 can appear in Bk,χ/k if and only if

gk ≡ −1 mod p

Since g generates Z/pZ×, the smallest value of such k is (p− 1)/2 and any other
value differs from it by a multiple of p.

In the next chapter we will make use of Eisenstein series of low weight, i.e.
k ≤ n + 1. For fixed Z ∈ Hn, the function s 7→ En

k (Z, s) admits meromor-
phic continuation to the whole of C, so we try to define a Siegel modular form as
Z 7→ lims→0E

n
k (Z, s): the results of [Shi83, theorem 7.1] and [Har97, theorems

4.4 and 4.9] explain under which conditions this is possible; for our purposes, we
only need the following.
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Proposition 3.5.4 ([Har97, theorem 4.9(i)]). Let 4 ≤ k = n+3
2

. If k ≡ 0 (mod 4)
then lims→0E

n
k (Z, s) is a well defined element ofMn

k with Fourier expansion given
by

n∑
λ=0

∑
0<h∈Λλ

∑
r

ak(h)qrhr
t

(3.35)

where r ranges over Z(n,λ)
prim/GLλ(Z), Z(n,λ)

prim is the set of matrices in Zn,λ which
can be completed to unimodular matrices, Λλ is the set of symmetric half-integral
matrices (i.e. integral quadratic forms) of size λ and

ak(h) =



(−1)
(λ+1)(λ+3)

8 2
3λ+1

2
−k k! det(2h)k−

λ+1
2(

k − λ+1
2

)
!Bk

×

×
λ−1

2∏
j=1

1

B2k−2j

P (k, h)

(λ odd)

(−1)
λ
2 2λ

k!(
k − λ

2

)
!

(
det(2h)

f

)k−λ+1
2 Bk−λ

2
,χ

Bk

×

×
λ
2∏
j=1

1

B2k−2j

P (k, h)

(λ even)

(3.36)

where d(h) := (−1)b
λ
2
c2(λ mod 2)−1 det(2h), f is the conductor of the quadratic

character
(
d(h)
?

)
and χ is the associated primitive character mod f . The factor

P (k, h) is a polynomial in primes which divide d(h), and Bk,χ are the generalised
Bernoulli numbers.

For high weight, the series En
k (Z, 0) converges as is, and we also have formulae

for its Fourier coefficients:

Proposition 3.5.5 ([Har97, theorem 4.14]). If 2k > n + 4, then En
k (Z, 0) has

Fourier expansion as (3.35), with coefficients ak(h) given by (3.36).

In the next chapter we will deal with the Eisenstein series

E5
4+4m(Z) := lim

s→0
E5

4+4m(Z, 0)

which is well defined by proposition (3.5.4) for m = 0, and by proposition (3.5.5)
for m ≥ 1. In particular, by looking at the explicit formulae given by (3.36) we
see:
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Corollary 3.5.6. Let

P−1
m := {p−1 : prime p ≤ m}

B−1
k := {p−1 : prime p | numerator of Bk, B2k−2 or B2k−4}

(3.37)

Then
E5

4+4m ∈M5
4+4m(Z[P−1

8+8m ∪B−1
4+4m])

for every m ∈ N.

Proof. By examining (3.36), we see that the only factors in the denominator of
a4+4m(h) arise from the Bernoulli numbers or from (4 + 4m− λ)!, for 0 ≤ λ ≤ 5.
By proposition (3.5.3), only primes < 8 + 8m− 2λ can divide the denominator of
Bχ,4+4m−λ: hence the only inverse prime factors of ak(h) are in P−1

8+8m, or in the
numerator of the remaining Bernoulli numbers.



Chapter 4

Integral representation I

In this chapter, we prove a weaker version of the announced result. We employ
an integral formula of Böcherer and Heim, expressing L-values as integral against
diagonally restricted non-holomorphic Eisenstein series. For the critical values
we are interested in, these turn out to be nearly holomorphic modular forms and
we can therefore apply the theory developed in the previous chapter to study the
arithmetic information of the L-values. At the end of the proof, we remark why
we are able to obtain only a partial result.

§ 4.1 Main theorem

An integral formula of Böcherer and Heim

The main tool we use in this chapter is the following result providing an integral
representation for the L-functions. Note the change of notation for the weight of
modular forms, which is now explicitly doubled as 2k as we will often have to use
the half weight k.

Proposition 4.1.1 ([BH00, theorem 3.6]). Let h ∈ S1
2l and F,G ∈ S2

2k be Hecke
eigenform, with F being the Saito-Kurokawa lift of f ∈ S1

4k−2 and k ≥ l ∈ N.
Then

〈E5
2k(τ×Z ×W, s), ∂k−l1,2lh(τ)G(Z)F (W )〉 =

= C�(s)〈ΦF ,ΦG〉Lf (2s+ 4k − 4)ZG⊗h(s+ 3k + l − 3)
(4.1)

46
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for <(s) + k > 3, where Φ? denotes the first Jacobi-Fourier coefficient and

C�(s) := a�(s)ζ�(s)Γ�(s)

a�(s) := 2−6s−12k+13π6−s−4k

ζ�(s) := ζ(2s+ 2k)−1ζ(4s+ 4k − 2)−1ζ(4s+ 4k − 4)−1

Γ�(s) :=
Γ(2k + s− 3/2)Γ(2k + s− 2)

Γ(2k + s)Γ(2k + s− 1/2)

Γ(s+ k − l)
Γ(s)

×

× Γ(s+ k + l − 1)Γ(s+ 3k + l − 3)Γ(s+ 3k − l − 2)

Γ(2s+ 4k − 3)

(4.2)

Our goal

Let h ∈ S1
2l be a normalised Hecke eigenform, with l odd; its completed L-function

satisfies the functional equation

Λh(s) = (−1)lΛh(2l − s)

hence Lh has a zero at the central critical value s = l.

Let F ∈ S̆2
2k be the Saito-Kurokawa lift of a normalised cuspidal Hecke eigenform

f ∈ S1
4k−2, with 2k ≥ 2l. Because of (2.29), the tensor product L-function ZF⊗h

factorises as

ZF⊗h(s) = Lh(s− 2k + 1)Lh(s− 2k + 2)Lf⊗h(s) (4.3)

and in particular ZF⊗h has a zero at s = l+ 2k− 1, the first critical value to the
right of the centre.

Let Q(f) be the smallest algebraic extension of Q containing all the Fourier coef-
ficients of f : it is well known that Q(f) is a number field, i.e. a finite extension.
As a consequence of the Eichler-Shimura isomorphism [Koh85, corollary p. 202],
we can fix two constants ω±f ∈ C such that ω+

f ω
−
f = 〈f, f〉 and

Lalgf (j) :=
Lf (j)

πjω
(−1)j

f

∈ Q(f) (4.4)

for any integer 1 ≤ j ≤ 4k − 3. The numbers ω±f are not unique, since we can
rescale them by an algebraic factor; the quantity

Lalgf (j)Lalgf (j′) =
Lf (j)Lf (j

′)

πj+j′〈f, f〉
∈ Q(f) (4.5)

is instead independent of such choice, for any j 6≡ j′ mod 2. We say that a prime
ideal p of Q(f) is a congruence prime of f if there exist another Hecke eigenform
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f ′ ∈ S1
4k−2 such that λq(f) ≡ λq(f

′) mod p for every integer prime q, where
λq denotes the q-th Hecke eigenvalue and the congruence takes place in a large
enough extension of Q.

In what follows, rather than fixing a particular choice of periods, we will consider
ratios of critical L-values. While there are some canonical choices we can make,
dealing with ratios is easier and will suffice for our goal.

Proposition 4.1.2 ([Kat08, theorem 6.1]). Let p be a prime ideal of Q(f,
√
D)

not dividing (4k − 1)! such that

(i) p0 divides πD−1Lf (2k)/Lf (χD; 2k − 1) for some fundamental discriminant
D < 0, where χD is the Kronecker character corresponding to the quadratic
extension Q(

√
D);

(ii) p0 is not a congruence prime of f ;

(iii) p0 does not divide ζ(1 − 2m)Lf (2m + 2k − 2)Lf (2m + 2k − 1)/〈f, f〉 for
some integer 2 ≤ m ≤ k − 2.

Then there exists a Hecke eigenform G ∈ (S̆2
2k)
⊥ such that λT (F ) ≡ λT (G) mod p

for every Hecke operator T ∈ H2
2k, for any prime ideal p of Q(f,G,

√
D) above

p0.

Note that p0 needs not to exist in general. In fact, the first example (by weight)
of this phenomenon is with 2k = 20 [Sko92, tables 1–6].

As noted in remark (2.5.2), it is possible to scale the Fourier coefficients of g (the
Shintani lift of f) and F (the Saito-Kurokawa lift of f) so that they lie in Q(f).
Let p0 be as in proposition (4.1.2); if the |D|-th Fourier coefficient cg(|D|) of g
is non-zero in addition to (i), then the conditions of [DIK11, lemma 6.2(2)] are
satisfied: hence there is a scaling of F and G so that their Fourier coefficients
are integral at p and not all divisible by p for any prime ideal p of Q(f,G,

√
D)

above p0.

Theorem 4.1.3. Let p0 as in proposition (4.1.2), and assume it does not divide
cg(|D|) 6= 0.

Let {hv}v and {Ft}t be orthogonal Hecke eigenforms bases for S1
2l and S2

2k re-
spectively with h1 = h, F1 = F and F2 = G. Assume that no Ft with t ≥ 3
is congruent to either F or G mod p, and that there exists a rational prime `
such that λ`(F ) 6≡ λ`(G) mod p2. Similarly, assume h not congruent mod p
to any hv, for v ≥ 2. Again, p denotes any prime ideal of K above p0, where K
is any large enough number field containing all the fields in this chapter: namely
Q(
√
D), Q(f), Q(Fi) and Q(hv) for all i ≤ dim(S2

2k) and v ≤ dim(S1
2l).
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Let 1 ≤ m < l
2
− 2 be any integer such that

(i) p divides π4mLf (2k)/Lf (2k + 4m);

(ii) p is coprime with B4+4m, B6+8m and B4+8m;

(iii) p is above a rational prime > max{3k + l − 2 + 2m, 4k − 9};

(iv) p does not divide π−2l−4m−1Lh(l + 2m)Lh(l + 2m+ 1)/〈h, h〉;

(v) p does not divide π−4k−4m+1Zf⊗h(2k + l − 1 + 2m)/〈f, f〉.

Then
π8mZG⊗h(l + 2k − 1)

ZG⊗h(l + 2k − 1 + 2m)
(4.6)

is algebraic, and integral at p.

The rest of the chapter is devoted to the proof.

Remark 4.1.4. We have used the expression p is coprime with or divides an
algebraic quantity x: we need to explain precisely what we mean. Since we know
a priori where all these quantities lie, we can work in fixed large enough number
field K containing everything we need: namely Q(

√
D), Q(f), Q(Fi) and Q(hv)

for all i ≤ dim(S2
2k) and v ≤ dim(S1

2l). Then, for any x ∈ K, the ideal xOK
factorises uniquely as

xOK =

g∏
i=1

Leii

for some ei ∈ Z, g ∈ N and prime ideals Li ⊂ OK. If p is a prime ideal of K, put

ordp(x) :=

{
ei if any Li = p

0 otherwise

and say that x is divisible by p if ordp(x) > 0, or coprime with p if ordp(x) = 0.

§ 4.2 L-values as inner products

Diagonal restriction

By proposition (4.1.1), we express ZG⊗h as the inner product of a diagonally
restricted Eisenstein series against h, F and G: put sm := 2 − k + 2m and (4.1)
becomes

〈E5
2k(τ×Z ×W, sm), ∂k−l1,2lh(τ) ? (Z)F (W )〉 =

= C�(sm)〈ΦF ,Φ?〉Lf (2k + 4m)Z?⊗h(2k + l − 1 + 2m)
(4.7)
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where ? is either F or G.

By proposition (3.5.1), if 2k > 6 and −1 < 2m ≤ k − 2 then

E5
2k(·, sm) = (−4π)5(k−2−2m)

k−2−2m∏
j=1

4∏
l=0

(
k + 2 + 2m− j − l

2

)−1

∂k−2−2m
5,4+4m E5

4+4m(·, 0)

With the notation of (3.37), put

Rm := Z[B−1
4+4m ∪P−1

8+8m ∪P−1
k+1+2m]

so that
E5

2k(·, sm) ∈ π5(k−2−2m) · N 5
2k,k−2−2m(Rm)

by corollary (3.5.6) and proposition (3.3.5).

After diagonally restricting E5
2k(·, sm) to H1 × H2 × H2, we see by proposition

(3.3.7) that E5
2k(τ × Z ×W, sm) is an element of

π5(k−2−2m) · N 1
2k,k−2−2m(Rm)⊗Q N 2

2k,k−2−2m(Rm)⊗Q N 2
2k,k−2−2m(Rm) (4.8)

i.e.

E5
2k(τ × Z ×W, sm) = π5(k−2−2m)

∑
r,i,j

c
(m)
rij ϕ

(m)
r (τ)ψ

(m)
i (Z)ψ

(m)
j (W ) (4.9)

for constants c
(m)
rij ∈ Q, and bases {ϕ(m)

r }r and {ψ(m)
i }i of N 1

2k,k−2−2m(Rm) and
N 2

2k,k−2−2m(Rm) respectively.

Plugging (4.9) into the left-hand side of (4.7) we get

〈E5
2k(τ×Z ×W, sm), ∂k−l1,2lh(τ) ? (Z)F (W )〉 =

= π5(k−2−2m)
∑
r,i,j

c
(m)
rij 〈ϕ(m)

r , ∂k−l1,2lh〉〈ψ
(m)
i , ?〉〈ψ(m)

j , F 〉

= π5(k−2−2m)−2(k−l)
∑
r,i,j

c
(m)
rij 〈π2(k−l)∂̂k−l1,2kϕ

(m)
r , h〉〈ψ(m)

i , ?〉〈ψ(m)
j , F 〉

(4.10)

where we have used (3.16) in the last equality, and highlighted the factor π−2(k−l)

of proposition (3.3.6) so that

π2(k−l)∂̂k−l1,2kϕ
(m)
r ∈ N 1

2l,l−2−2m(Rm)

By a similar argument as the proof of corollary (3.4.9), the function

Em(τ, Z,W ) :=
∑
r,i,j

c
(m)
rij

(
π2(k−l)∂̂k−l1,2kϕ

(m)
r (τ)

)
ψ

(m)
i (Z)ψ

(m)
j (W )

∈ N 1
2l,l−2−2m(Rm)⊗Q N 2

2k,k−2−2m(Rm)⊗Q N 2
2k,k−2−2m(Rm)

(4.11)
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still has multivariate Fourier coefficients in Rm: the application of ∂̂k−l1,2k acts on

the monomials of the Fourier coefficients of ϕ
(m)
r by multiplication by a factor

depending only on the degree of the monomial itself, as explicitly computed in
(3.17). Hence (4.10) yields

〈E5
2k(τ×Z ×W, sm), ∂k−l1,2lh(τ) ? (Z)F (W )〉 =

= π5(k−2−2m)−2(k−l)〈Em(τ, Z,W ), h(τ) ? (Z)F (W )〉
(4.12)

Holomorphic projection

If the conditions of proposition (3.4.1) are satisfied, then we can apply holomor-
phic projection to each nearly holomorphic modular form appearing in (4.10)
without changing the value of the inner products. With the notation of theorem
(4.1.3), let {hv}v and {Ft}t be orthogonal cuspidal Hecke eigenform bases of S1

2l

and S2
2k respectively, with h1 = h, F1 = F and F2 = G; then (4.12) yields

〈E5
2k(τ×Z ×W, sm), ∂k−l1,2lh(τ) ? (Z)F (W )〉 =

= π5(k−2−2m)−2(k−l)〈Em(τ, Z,W ), h(τ) ? (Z)F (W )〉
= π5(k−2−2m)−2(k−l)〈HolEm(τ, Z,W ), h(τ) ? (Z)F (W )〉

= π5(k−2−2m)−2(k−l)
∑
r,i,j

d
(m)
r,i,j〈hr, h〉〈Fi, ?〉〈Fj, F 〉

= π5(k−2−2m)−2(k−l)〈h, h〉〈F, F 〉
(
A(m)〈F, ?〉+B(m)〈G, ?〉

)
(4.13)

where we have applied term-wise holomorphic projection to Em as explained in
corollary (3.4.9), the d

(m)
r,i,j are suitable constants in C, and the last equality is due

to orthogonality after putting A(m) := d
(m)
1,1,1 and B(m) = d

(m)
1,2,1. Again, ? denotes

either F or G.

Comparing (4.13) and (4.7) we finally obtain

π5(k−2−2m)−2(k−l)A(m)〈h, h〉〈F, F 〉〈F, F 〉 =

= C�(sm)〈ΦF ,ΦF 〉Lf (2k + 4m)ZF⊗h(2k + l − 1 + 2m)
(4.14)

π5(k−2−2m)−2(k−l)B(m)〈h, h〉〈F, F 〉〈G,G〉 =

= C�(sm)〈ΦF ,ΦG〉Lf (2k + 4m)ZG⊗h(2k + l − 1 + 2m)
(4.15)

Hence, the arithmetic information we are looking for is encoded in B(m), which
we study in the next section; now we verify that the conditions of proposition
(3.4.1) are indeed satisfied by ϕ

(m)
r and ψ

(m)
i .
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By remark (3.2.3), ψ
(m)
i is a section of E5

2k(·, sm), and in particular

|ψ(m)
i (Z)| �τ,W |E5

2k(τ × Z ×W, sm)|

uniformly on Z ∈ H2, for any fixed τ and W . Since E5
2k(·, sm) is obtained by

applying ∂k−2−2m
5,4+4m to an element of M5

4+4m, lemma (3.4.4) applies and

|E5
2k(·, sm)| �

5∏
j=1

(λ−k+2+2m
j + λ−k−2−2m

j )

uniformly on H5, and in particular (with natural labelling)

|ψ(m)
i (Z)| �τ,W

3∏
j=2

(λ−k+2+2m
j + λ−k−2−2m

j )

If k+ 2 + 2m < 2k− 2 (or equivalently 2m < k− 4) then, by proposition (3.4.6),

ψ
(m)
i is of bounded growth as claimed. By the same argument

|ϕ(m)
r (τ)| �Z,W λ−k+2+2m

1 + λ−k−2−2m
1

and then, by remark (3.4.5),

|∂̂k−l1,2kϕ
(m)
r (τ)| �Z,W λ−l+2+2m

1 + λ−l−2−2m
1

so that ∂̂k−l1,2kϕ
(m)
r is of bounded growth by proposition (3.4.6), provided that l+2+

2m < 2l − 1, i.e. 2m < l − 3. Finally, we need to check that (3.23) is convergent
for every A > 0: in the case of nearly holomorphic modular forms, this integral
was computed in (3.31), and is indeed convergent if{

k − 2− 2m < 2k − 2

l − 2− 2m < 2l − 1

which is surely satisfied for any m ≥ 0.

§ 4.3 Arithmeticity of L-values

Isolating A(m) and B(m)

With the notation of (4.11) and (4.13), put

Ξm(τ, Z,W ) := HolEm(τ, Z,W )

=
∑
r,i,j

d
(m)
r,i,jhr(τ)Fi(Z)Fj(W ) (4.16)
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for suitable constants d
(m)
r,i,j ∈ C, with d

(m)
1,1,1 = A(m) and d

(m)
1,2,1 = B(m). We ob-

served that Em has Fourier coefficients in Rm, and therefore Ξm has coefficients
in Rm[P−1

4k−9] by corollary (3.4.9). Then (4.13) states that

〈E5
2k(τ×Z ×W, sm), ∂k−l1,2lh(τ) ? (Z)F (W )〉 =

= π5(k−2−2m)−2(k−l)〈Ξm(τ, Z,W ), h(τ) ? (Z)F (W )〉

and the functions appearing on the right-hand side are holomorphic, hence with
numeric Fourier coefficients. We now derive A(m) and B(m) from the coefficients
of Ξm by applying a certain family of Hecke operators to it.

Recall the basis of orthogonal Hecke eigenforms {hr}r ∈ S1
2l, where h1 = h. By

hypothesis of theorem (4.1.3), we can find primes {qr}r such that

λqr(hr) 6≡ λqr(h) mod p (4.17)

for every r ≥ 2. Put

Tτ :=

dim(S1
2l)∏

r=2

T
(2l)
qr − λqr(hr)

λqr(h)− λqr(hr)

where the subscript τ denotes which variable the operator applies to. Since each
Hecke operator T

(2l)
qr acts as an endomorphism on the space of modular forms with

algebraic integral coefficients [DS05, proposition 5.3.1], and the Hecke eigenvalues
λqr(hr) are algebraic integers themselves, the function TτΞm has algebraic Fourier
coefficients which are still integral at p by (4.17). On the other hand, observe

Tτhu =

{
h u = 1

0 u ≥ 2

hence from (4.16) we get

TτΞm(τ, Z,W ) =
∑
i,j

d
(m)
1,i,jh(τ)Fi(Z)Fj(W )

and

〈Ξm(τ, Z,W ), h(τ) ? (Z)F (W )〉 = 〈TτΞm(τ, Z,W ), h(τ) ? (Z)F (W )〉

Similarly, we get rid of the redundant forms Fi in the variable Z. By hypothesis,
there exist primes {q′i}i such that

λq′i(Fi) 6≡ λq′i(F ) mod p

λq′i(Fi) 6≡ λq′i(G) mod p
(4.18)
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for i ≥ 3, where {Fi}i is a basis of orthogonal Hecke eigenforms for S2
2k. Put

TZ :=

dim(S2
2k)∏

i=3

T
(2k)

q′i
− λq′i(Fi)

λq′i(F )− λq′i(Fi)

and

ϑ :=

dim(S2
2k)∏

i=3

λq′i(G)− λq′i(Fi)
λq′i(F )− λq′i(Fi)

∈ Q (4.19)

so that

TZTτΞm(τ, Z,W ) =
∑
j

d
(m)
1,1,jh(τ)F (Z)Fj(W ) + ϑ

∑
j

d
(m)
1,2,jh(τ)G(Z)Fj(W )

and

〈Ξm(τ, Z,W ), h(τ)F (Z)F (W )〉 = 〈TZTτΞm(τ, Z,W ), h(τ)F (Z)F (W )〉
〈Ξm(τ, Z,W ), h(τ)G(Z)F (W )〉 = ϑ−1〈TZTτΞm(τ, Z,W ), h(τ)G(Z)F (W )〉

Again, the Hecke operators T
(2k)

q′i
act as endomorphisms on the space of Siegel

modular forms with algebraic integral coefficients [Sko92, theorem section 2].
Also, ϑ is coprime with p, so TZTτΞm still has algebraic Fourier coefficients,
integral at p.

Finally, we kill the redundant forms Fj in the variable W . Put

TW :=

dim(S2
2k)∏

j=2

T
(2k)

q′j
− λq′j(Fj)

λq′j(F )− λq′j(Fj)
(4.20)

where q′2 = ` as in the statement of theorem (4.1.3) so that

λ`(F ) ≡ λ`(G) mod p

λ`(F ) 6≡ λ`(G) mod p2

Then

Ψm(τ, Z,W ) := TWTZTτΞm(τ, Z,W )

= d
(m)
1,1,1h(τ)F (Z)F (W ) + ϑd

(m)
1,2,1h(τ)G(Z)F (W )

= A(m)h(τ)F (Z)F (W ) + ϑB(m)h(τ)G(Z)F (W )

(4.21)

and

〈Ξm(τ, Z,W ), h(τ)F (Z)F (W )〉 = 〈Ψm(τ, Z,W ), h(τ)F (Z)F (W )〉
〈Ξm(τ, Z,W ), h(τ)G(Z)F (W )〉 = ϑ−1〈Ψm(τ, Z,W ), h(τ)G(Z)F (W )〉

(4.22)

Due to the congruence between F and G, by applying TZ we introduce a factor
of p in the denominator of Ψm; nonetheless, by the assumption on `, the Fourier
coefficients of Ψm have ordp ≥ −1.
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Arithmetic properties of A(m) and B(m)

We begin by observing that A(0) = 0: this follows immediately from (4.14), since
ZF⊗h(2k + l − 1) = 0 by assumption. Then (4.21) says

Ψ0(τ, Z,W ) = ϑB(0)h(τ)G(Z)F (W )

Fix a Fourier term for each variable such that the corresponding Fourier coeffi-
cients on the right-hand side are coprime with p, hence by comparing the order
at p in each side we deduce ordp(B

(0)) ≥ −1.

Let now m ≥ 1: to study A(m), we rewrite (4.14) as

A(m) =
C�(2− k + 2m)

π5(k−2−2m)−2(k−l)
〈ΦF ,ΦF 〉
〈F, F 〉

Lf (2k + 4m)

〈F, F 〉
ZF⊗h(2k + l − 1 + 2m)

〈h, h〉
(4.23)

From (4.2), C�(2− k + 2m) is the product of

a�(2− k + 2m) = 2−6k+1−12mπ4−2m−3k

ζ�(2− k + 2m) = 8
(4 + 4m)!(8m+ 6)!(8m+ 4)!

(2π)20m+14B4+4mB6+8mB4+8m

Γ�(2− k + 2m) =

∏k−l−1
j=0 (2 + 2m− k + j)

(k + 2m+ 1/2)(k + 2m)(k + 2m+ 1)
×

× (2m+ l)!(2m+ 3k + l − 2)!(2m+ 2k − l − 1)!

(4m+ 2k)!

hence
C�(2− k + 2m)

π5(k−2−2m)−2(k−l) ∈ π
−12m−6k−2lQ (4.24)

which, under the conditions of theorem (4.1.3), is coprime with p (i.e. p is not
above any of its prime divisors).

Next, recall the formulae [Bro07, theorem 4.1 and corollary 6.3]

〈F, F 〉 =
(2k − 1)!Lf (2k)

3 · 24k+1
〈ΦF ,ΦF 〉

〈F, F 〉 =
2k − 1

24 · 32

|cg(|D|)|2Lf (2k)

π|D|2k−3/2Lf (χD; 2k − 1)
〈f, f〉

where g is the half-integral modular form associated to f via the Saito-Kurokawa
correspondence and D is as in proposition (4.1.2). Hence the remaining part of
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the right-hand side of (4.23) equals

〈ΦF ,ΦF 〉
〈F, F 〉

Lf (2k + 4m)

〈F, F 〉
ZF⊗h(2k + l − 1 + 2m)

〈h, h〉
=

=
33 · 24k+3π|D|2k−3/2

(2k − 1)!(2k − 1)|cg(|D|)|2
Lf (2k + 4m)

Lf (2k)

Lf (χD; 2k − 1)

Lf (2k)
×

× Zf⊗h(2k + l − 1 + 2m)

〈f, f〉
Lh(l + 2m)Lh(l + 2m+ 1)

〈h, h〉

(4.25)

where we have factorised ZF⊗h as in (4.3): we proceed to study each ratio indi-
vidually.

The first ratio on the right-hand side of (4.25) is in πQ(f)(
√
|D|) and coprime

with p by the assumptions of proposition (4.1.2). By corollary [Koh85, p. 202],

Lh(l + 2m)Lh(l + 2m+ 1)

〈h, h〉
= π2l+4m+1Lh(l + 2m)

πl+2mω−h

Lh(l + 2m+ 1)

πl+2m+1ω+
h

∈ π2l+4m+1Q(h)

(4.26)

and we have assumed p coprime with this quantity.

By [Shi78, theorem 3],

Zh⊗f (2k + l − 1 + 2m)

〈f, f〉
∈ π4k+4m−1Q(h, f) (4.27)

which is coprime with p by hypothesis.

The ratio

Lf (2k + 4m)

Lf (2k)
= π4mLf (2k + 4m)

π2k+4mω+
f

π2kω+
f

Lf (2k)

∈ π4mQ(f)

(4.28)

has ordp ≤ −1 by the very definition of p.

Lastly

Lf (χD, 2k − 1)

Lf (2k)
∈ π−1Q(f)(

√
|D|) (4.29)

by [Shi77, theorem 1], and we assumed ordp ≤ −1 for this quantity in proposition
(4.1.2).

Combining (4.24), (4.26), (4.27), (4.28) and (4.29) in (4.23), we see that A(m) ∈
Q with ordp ≤ −2. Again comparing Fourier expansions in (4.21), we deduce
ordp(B

(m)) ≤ −2 as well.
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Taking the ratio

By (4.15), we can finally take the ratio

π−10m C�(2− k)

C�(2 + 2m− k)

Lf (2k)

Lf (2k + 4m)

ZG⊗h(2k + l − 1)

ZG⊗h(2k + l − 1 + 2m)
=

B(0)

B(m)
∈ Q

We have established in the previous section that B(0)/B(m) has ordp ≥ 1. For
m ≥ 1 as in theorem (4.1.3),

C�(2 + 2m− k) ∈ π−10−3k−22mQ

is coprime with p. Since π−4mLf (2k)/Lf (2k + 4m) ∈ Q has ordp ≥ 1, we deduce
that

π8mZG⊗h(2k + l − 1)

ZG⊗h(2k + l − 1 + 2m)

is an algebraic number with ordp ≥ 0, completing the proof.

Remark 4.3.1. While ordp(B
(m)) ≤ −2 for m ≥ 1 is due to the presence of

Lf (2k) twice in (4.25), there really is no reason to expect ordp(B
(0)) ≥ −1: in

fact, numerical data support ordp(B
(0)) ≥ 0 instead. If this is indeed the case,

then the ratio B(0)/B(m) has ordp ≥ 2 and therefore

ordp

(
π8mZG⊗h(2k + l − 1)

ZG⊗h(2k + l − 1 + 2m)

)
≥ 1

which is what the Bloch-Kato conjecture actually predicts. We will prove this
stronger result in the following chapters by using a different integral represen-
tation formula for ZG⊗h, but with the additional restriction that the weights of
F,G, h must be equal: this restriction is due to the integral formula itself, as the
result is expected to hold regardless of the weights.

The reason we get ordp(B
(0)) ≥ −1 is that, when applying the Hecke operator

(4.20), we are introducing a factor of p−1 due to the congruence between λq(F ) and
λq(G). We conjecture that this additional factor is balanced by the action of Tq−
λq(G), which should act on F by introducing a factor of p in its Fourier expansion:
we could not prove this, but this would explain the inaccurate inequality for B(0).
Again, this issue is due to the nature of integral formula we employ: in proposition
(4.1.1), we take the inner product of the Eisenstein series against h,G and F to
yield Lf and ZG⊗h, hence F should have no effect on ZG⊗h, but the presence of
F apparently forces p−1 into B(0), when it really should not.



Chapter 5

Non-holomorphic Hermitian
Eisenstein series

In this chapter, we study the arithmetic properties of the Fourier coefficients
of some Hermitian Eisenstein series. We are particularly interested in those of
low weight, i.e. when the defining series does not converge absolutely and we
need to consider the meromorphic continuation. For the low weight Eisenstein
series we need, we show that the process of meromorphic continuation does indeed
produce a holomorphic Hermitian modular form; further, we show that it equals a
particular linear combination of theta series, and therefore its Fourier coefficients
are rational numbers with bounded denominators. We are grateful to Nagaoka,
who pointed out this connection to us in a private communication: this entire
chapter is devoted to showing that the different definitions used by Nagaoka,
Saha and Ichino describe essentially the same Hermitian Eisenstein series, and
Ichino’s version of the Siegel-Weil formula equate it with a linear combination of
theta series.

§ 5.1 Unitary groups

Let L be an imaginary quadratic extension of Q with class number 1 and define
the general unitary group

GU(n, n)(L) :=
{
γ ∈ GL2n(L) : γ†Snγ = µn(γ)Sn, µn(γ) ∈ Q×

}
(5.1)

where † denotes the transpose conjugate, i.e. γ† = γt. It is immediate to show
that, if γ ∈ GU(n, n)(L), then so are γ−1 and γ†. Further define the unitary
group

U(n, n)(L) :=
{
γ ∈ GL2n(L) : γ†Snγ = Sn

}
(5.2)

58
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which is a subgroup of GU(n, n)(L). If γ ∈ U(n, n)(L), from γSnγ
† = Sn we

deduce
AB† = BA† CD† = DC† AD† −BC† = In (5.3)

where A,B,C,D are the blocks of γ, thence

γ−1 =

(
D† −B†
−C† A†

)
(5.4)

Finally, we have the Hermitian modular group

Υn(L) :=
{
γ ∈ GL2n(OL) : γ†Snγ = Sn

}
(5.5)

consisting of the elements of U(n, n)(L) with integral entries, where OL denotes
the ring of integers of L. Indeed, from (5.4) we see that γ−1 belongs to GL2n(OL)
and hence to Υn(L).

If G is any of the groups (5.1), (5.2) or (5.5), then

P (G) :=

{(
A B
C D

)
∈ G : C = 0

}
(5.6)

denotes its standard parabolic subgroup. We shall show that P (G)\G defines
essentially the same object for any of the groups above. As we are fixing n and
L, we often drop them from the notation.

We begin with a characterisation of Υn; this is essentially the content of [Maa71,
chapter 11] generalised to the Hermitian case. We say that (C|D) ∈ On,2nL is a
symmetric pair if CD† = DC†, and coprime if (MC|MD) ∈ On,2nL implies that
M is integral for any M ∈ Ln,n.

Lemma 5.1.1. The matrix (C|D) ∈ On,2nL is the second row of a γ ∈ Υn if and
only if it is a symmetric coprime pair.

Proof. Let γ ∈ Υn; then by (5.3) its second row (C|D) is a symmetric pair. Now
let M be such that (MC|MD) is integral: then by (5.4)

(MC|MD)γ−1 = (MC|MD)

(
D† −B†
−C† A†

)
= (0n|M)

hence M is integral since so are both factors on the left.

Let now (C|D) be any symmetric coprime pair. We first observe that (C|D) is
coprime if and only if so is U1(C|D)U2 for any U1 ∈ GLn(OL) and U2 ∈ GL2n(OL).
Since OL is a PID (as we assume L to have class number 1), by elementary
divisor reduction theory we can find unimodular matrices U1 and U2 such that
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U1(C|D)U2 = (Λ|0n) where Λ is a diagonal matrix. Since (Λ|0n) is coprime, we
deduce that every diagonal entry of Λ must be in O×L , hence Λ ∈ GLn(OL). By
renaming U1, we can therefore assume that

(C|D)U2 = (U−1
1 |0n)

hence (C|D) is of maximal rank. We let(
X

Y

)
:= U2

(
U1

0

)
and by left-multiplying by (C|D) we see that CX+DY = In. Also by assumption
CD† = DC†; we let

γ :=

(
Y † +X†Y C −X† +X†Y D

C D

)
∈ O2n,2n

L

and an immediate computation shows that (5.3) hold for γ i.e. γ†Snγ = Sn.
Thence, from (5.4) we observe that γ−1 ∈ O2n,2n

L , which proves that γ is in
GL2n(OL) and therefore in Υn.

Proposition 5.1.2. The embedding map

P (U)\U→ P (GU)\GU

is a group isomorphism.

Proof. The embedding U → P (GU)\GU sending γ to P (GU)γ is an obvious
group morphism with kernel P (U).

The proof is over once we show it is surjective. Fix any γ ∈ GU with multiplier

µ = µ(γ) ∈ Q×. Put ρ :=

(
In 0n
0n µ−1In

)
∈ P (GU) and α := ργ. It is immediate

to see that α†Snα = Sn, i.e. α ∈ U, and its image under the embedding is
P (GU)γ.

Proposition 5.1.3. The embedding map

P (Υ)\Υ→ P (U)\U

is a group isomorphism.

Proof. Let V := Ln ⊕ Ln and 〈·, ·〉 be the standard alternating Hermitian form
on V , so that if x, y ∈ V then 〈x, y〉 = x†Sny. In this setting, U(n, n) is exactly
the group of endomorphisms of V fixing this alternating Hermitian form.
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A n-dimensional isotropic subspace Ω of V is called a Lagrangian of V , where
isotropic means that 〈x, y〉 = 0 for any x, y ∈ Ω. We shall show that both P (U)\U

and P (Υ)\Υ are in bijection with the set of Lagrangians on V .

We say that a matrix ω ∈ Ln,2n represents a Lagrangian Ω if its rows form a
basis for Ω, and write Ω = [ω]. We define a right action of U(n, n) (hence of Υ)
on the set of Lagrangians by [ω]γ := [ωγ]; we observe in fact that ωγ is of full
rank (since γ is invertible) and (ωγ)Sn(γ†ω†) = ωSnω

† = 02n hence [ωγ] is again
isotropic.

We show that this action is transitive. If ω represents a Lagrangian, we write
ω = (C|D) and observe that (C|D) is a symmetric pair by isotropy of [ω]. Even-
tually rescaling the rows of ω, we may assume that (C|D) ∈ On,2nL . As in the
proof of lemma (5.1.1), by elementary divisors theory we can find unimodular
matrices U1, U2 such that U1(C|D)U2 = (0n|Λ) for a diagonal matrix Λ ∈ On,nL ,
which is non-singular as ω has full rank. By letting Λ′ := U−1

1 Λ−1U1, we have
(0n|In) = U1Λ′ωU2. Since Λ′ is invertible, Λ′ω represents the same Lagrangian as
ω; furthermore, (C ′|D′) := Λ′ω is integral since it equals U−1

1 (0n|In)U−1
2 , and is

a coprime pair since so is (0n|In). Since (C ′|D′) represents a Lagrangian, it is a
symmetric pair by isotropy, hence by lemma (5.1.1) (C ′|D′) is the second row of
a matrix γ ∈ Υn. We have just shown that every Lagrangian [ω] is realised as
[(0n|In)]γω for a suitable γω ∈ Υ, i.e. Υ (hence U(n, n)) acts transitively on the
set of Lagrangians of V .

Denote ω0 := (0n|In). The stabiliser of [ω0] in U(n, n) is the set of γ ∈ U(n, n) such
that ω0γ represents the same Lagrangian, i.e. ω0γ = Pω0 for some P ∈ GLn(L):
if (C|D) is the second row of γ, this means (C|D) = (0n|P ) i.e. γ must lie in
the parabolic subgroup P (U). Analogously, P (Υ) is the stabiliser of [ω0] in Υ.
Therefore the map

P (G)\G→ {Lagrangians of V}

given by P (G)γ 7→ [ω0]γ is a bijection for both G = U(n, n) and G = Υn.

Corollary 5.1.4. The embedding maps

P (Υ)\Υ→ P (U)\U→ P (GU)\GU

are group isomorphisms, and each quotient admits representatives in Υ.

§ 5.2 Hermitian modular forms

Let Hn be the Hermitian upper half space of genus n

Hn :=
{
Z ∈ Cn,n : i(Z† − Z) > 0

}
(5.7)
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which contains the Siegel upper half space Hn of (2.1) as a submanifold. We
systematically write Z = X + iY where

X :=
Z + Z†

2
Y :=

Z − Z†

2i
(5.8)

so that X and Y are Hermitian matrices, and Y > 0 by definition of Hn. If
Z ∈ Hn, then X and Y are the standard real and imaginary parts of Z. We put
δ(Z) := det(Y ), which extends the previous definition given in (2.1).

The Hermitian modular group Υn (after choosing an embedding of L into C,
hence of Υn into C2n,2n) acts on Hn by fractional linear transformations(

A B
C D

)
(Z) := (AZ +B)(CZ +D)−1 (5.9)

and j(γ, Z) := CZ + D is the automorphy factor. Again, the Siegel modular
group Γn of (2.3) is a subgroup of Υn and these definitions extend the ones given
in (2.4) and (2.6).

We call Hermitian modular forms of genus n and weight k ∈ Z a function

F : Hn → C satisfying (i)-(iii) (5.10)

(i) F (Z) is holomorphic (in each entry of Z);

(ii) F (γ(Z)) = j(γ, Z)kF (Z) for every Z ∈ Hn and γ ∈ Υn;

(iii) when n = 1, F is bounded on vertical strips {z ∈ H1 : y > ε} for every
ε > 0.

We see from (ii) that the restriction of F to Hn gives rise to a Siegel (weakly)
modular form, since Hn ⊆ Hn and Γn ⊆ Υn.

Similarly to (2.9), Hermitian modular forms admit Fourier expansions; let IL be
the different ideal of L: the Fourier coefficients are indexed by positive semi-
definite Hermitian matrices A ∈ Ln,n satisfying Ai,i ∈ Z, Aij ∈ I−1

L and the
Fourier expansion is given by ∑

A≥0

FAq
A

where the sum is over such matrices A.

We will not be using the theory of Hermitian modular forms in what follows, as
in the next chapter we will immediately pullback a Hermitian Eisenstein series to
the space of Siegel modular forms, for which the results of the previous chapters
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apply. Nonetheless, one can find a recollection of the main results and properties
of Hermitian forms in [HK09, section 1.2].

The main example of Hermitian modular forms is given by Eisenstein series
(at least, if we relax the holomorphy condition (5.10-i) to smoothness): let
Υn,0 := P (Υn) be the parabolic subgroup (5.6) of Υn, consisting of matrices
whose bottom-left block vanishes, and define the Hermitian Eisenstein series
Ekn : Hn → C of genus n and weight k by

Enk (Z, s) :=
∑

γ∈Υn,0\Υn

j(γ, Z)−kδ(γZ)s

= δ(Z)s
∑

γ∈Υn,0\Υn

j(γ, Z)−k|j(γ, Z)|−2s
(5.11)

which converges absolutely and locally uniformly if 2<(s) + k > 2n [Shi83, p.
417]: under these conditions, the series Enk (Z, 0) is indeed a Hermitian modular
form. Further, for each fixed Z ∈ Hn the function s 7→ Enk (Z, s) admits mero-
morphic continuation to the whole complex plane, so it is sometimes possible to
get holomorphic Eisenstein series of low weight outside of the original domain of
convergence ([Shi83, theorem 7.1], [Shi83, theorem 7.2]).

§ 5.3 Shimura-Maass differential operator

For n, k, r ∈ N+ define the Hermitian Shimura-Maass operator ∂rn,k by

∂n,k :=(2πi)−nδ(Z)n−1−k det(∇)δ(Z)k−n+1

∂rn,k :=∂n,k+2r−2 ◦ · · · ◦ ∂n,k+2 ◦ ∂n,k
(5.12)

where ∇ is the n× n matrix of differential operators

∇ :=

(
∂

∂Zij

)
ij

(5.13)

Notice the similarities with the Siegel Shimura-Maass operator of (3.13): in par-
ticular the factor of 1/2 in the matrix ∆ due to the symmetry of Z ∈ Hn, which
does not appear in ∇ as it applies to Z ∈ Hn. We use the same symbol ∂rn,k for
both versions of the operator as it will be clear from the context (i.e. from its
operand).
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Effect on Eisenstein series

Lemma 5.3.1. For any r ∈ Z+ and γ ∈ Υn,

∂rn,k
[
δ(γ(Z))sj(γ, Z)−k

]
= (−4π)−nr

(
r∏
j=1

cn(k + j − n+ s)

)
δ(γ(Z))s−rj(γ, Z)−k−2r

where, for α ∈ C,

cn(α) :=
n−1∏
l=0

(α + l)

Proof. Assume r = 1. The operator defined in [Shi94, formula 4.2b] is exactly
(2πi)n∂n,k because of our different normalization, hence [Shi94, formula 4.6b]
states

∂n,k(f [γ]k) = (∂n,kf)[γ]k+2 (5.14)

for any function f : H → C. In particular we take f(Z) := δ(Z)s, so that the
left-hand side of (5.14) becomes ∂n,k

[
j(γ, Z)−kδ(γ(Z))s

]
. For the right-hand side,

we compute

∂n,k[δ(Z)s] = (2πi)−nδ(Z)n−1−k det(∇)δ(Z)k+s−n+1

= (−4π)−ncn(k + s− n+ 1)δ(Z)s−1

by [Shi83, lemma 9.1(ii)]. Therefore the right-hand side of (5.14) equals

(−4π)−ncn(k + 1− n+ s)δ(γ(Z))s−1j(γ, Z)−k−2

as claimed. A repeated application of ∂n,? proves the result for r > 1.

Hence, at least formally, ∂n,k maps Eisenstein series to Eisenstein series. In the
next chapter we are going to use E3

2k(Z, s), so we state the following proposition
for this particular case.

Proposition 5.3.2. For m, k ∈ N such that k − 2− 2m ≥ 0,

E3
2k(Z, 2− k + 2m) = c−1

k,m · ∂
k−2−2m
3,4+4m [E3

4+4m(Z, 0)]

where

ck,m = (−4π)−3(k−2−2m)

(
k−2−2m∏
j=1

2∏
l=0

(4m+ 1 + j + l)

)

Further, E3
4+4m(Z, 0) is a well defined Hermitian modular form.
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Proof. Let f(Z, s) be any holomorphic function in s ∈ Ω (with some open Ω ⊆ C)
for every fixed Z ∈ Hn, and smooth in the entries of Z for every fixed s. Then∮

C

∂

∂Zab
f(Z, s)ds =

∂

∂Zab

∮
C
f(Z, s)ds =

∂

∂Zab
0 = 0

for any closed curve C ⊂ Ω. Since the operator ∂n,k is constructed in terms of
∇, we deduce that ∂n,k[f(Z, s)] is again holomorphic in s ∈ Ω for each fixed Z.
In particular we take f to be Enk extended beyond its domain of convergence by
meromorphic continuation, so ∂rn,kEnk is still meromorphic (in s for each fixed Z).
Lemma (5.3.1) shows that, for 2<(s) + k > 2n,

∂rn,k[Enk (Z, s)] = cn,k,r,s · Enk+2r(Z, s− r)

where cn,k,r,s is a constant not depending on Z, by term-wise application of ∂rn,k to
(5.11), since the series converge absolutely. But by the principle of meromorphic
continuation both terms must coincide (for every fixed Z) everywhere they are
extended to.

In particular, we turn to E3
4+4m(Z, 0). For m ≥ 1, the series is convergent as is;

E3
4 (Z, 0) is defined instead by analytic continuation of E3

4 (Z, s) beyond its domain
of convergence, but [Nag96, theorem 2.2(2)] ensures that E3

4 (Z, 0) is a holomorphic
function on H3.

Effect on Fourier expansions

We observe that the work of [CP91, sections 3.3.1-3.3.4] remains valid when
replacing Hn with Hn and ∆ with ∇ in the definitions (3.13) and (5.12) of ∂n,k:
both cases are accounted for by [Shi83, lemma 9.1], from which [CP91, formulae
3.10-3.14] follow in the Hermitian case as well and the proofs of [CP91, lemma 3.9]
and [CP91, lemma 3.10] remain unchanged. We summarize this in the following:

Proposition 5.3.3. Let F be a Hermitian modular form with Fourier expansion∑
A FAq

A, with respect to some imaginary quadratic extension L of Q. Then

∂rn,kF = (2i)nrδ(4πZ)−r
∑
A≥0

FARn(4πAY ; r, n− 1− k − r)qA (5.15)

where Rn(Z; r, β) is defined in [CP91, formula 3.7] by

Rn(Z; r, β) := (−1)nreTr(Z) det(Z)r+β det(∇)r
(
e−Tr(Z) det(Z)−β

)
and is a polynomial of degree nr in the entries of Z whose highest degree term is
det(Z)n.

Additionally, let OL be the ring of integers of L and R ⊇ OL[i, 1/2] any ring: if
F is R-integral in the sense of (3.18), then so is ∂rn,kF .
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Proof. [CP91, lemma 3.10] states

∂rn,k[q
A] = (2i)nrδ(4πZ)−rRn(4πAY ; r, n− 1− k − r)qA

Notice the additional factor (2i)nr in the previous formula due to our different
normalization for ∂n,r from [CP91, formula 3.21]; this proves the first statement.

Similarly to proposition (3.3.5), when β ∈ Z the polynomial Rn(Z; r, β) has
coefficients in Z[1/2] since it is a repeated application of partial derivatives to
det(Z)−βe−Tr(Z). This observation, combined with (5.15), readily implies R-
integrality of ∂rn,kF whenever F has Fourier coefficients in R.

§ 5.4 Unitary Siegel-Weil formula and theta series

Adeles

A valuation on a field F is a map | · | : F → R≥0 such that

(a) |x| = 0 if and only if x = 0

(b) |xy| = |x||y| for every x, y ∈ F

and at least one of

(c) |x+ y| ≤ |x|+ |y| for every x, y ∈ F

(c’) |x+ y| ≤ max{|x|, |y|} for every x, y ∈ F

Observe that (c’) implies (c): the valuation is archimedean if it satisfies only (c),
and non-archimedean otherwise.

Two valuations | · |1 and | · |2 are equivalent if they induce the same metric on
F , i.e. there exist constants a ≤ b ∈ R+ such that a|x|1 ≤ |x|2 ≤ b|x|1 for every
x ∈ F . A place v is a class of equivalent valuations on F , and we denote the
associated valuation | · |v; further, Fv denotes the completion of F with respect
to | · |v.
The (classes of) archimedean valuations are called infinite places, while the non-
archimedean ones are finite places. On Q, there is exactly one infinite place,
corresponding to the usual Euclidian absolute value | · |, and the finite places
correspond to the primes p ∈ Z via

|x|p := p−ordp(x) (5.16)
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For a finite algebraic extension F of Q, the infinite places are indexed by field
embeddings τ : F → C up to conjugation, and

|x|τ :=

{
|τ(x)| if τ(F ) ⊆ R
τ(x)τ(x) if τ(F ) 6⊆ R

(5.17)

For each rational prime p, the ideal (p) in the ring of integers OF of F decomposes
as the product of prime ideals of OF : to each of these corresponds a place v of
F , and we write v|p.

Proposition 5.4.1 (Product formula). For each place v of F , one can fix a
valuation | · |v such that ∏

v≤∞

|x|v = 1

for every x ∈ F×.

For any place v of F , OFv denotes the ring of integers of the v-completion Fv.
Explicitly

OFv := {x ∈ Fv : |x|v ≤ 1} (5.18)

The adeles ring AF of F is the restricted product

AF :=
′∏
v

Fv =

{
(xv)v ∈

∏
v

Fv : xv ∈ OFv for almost all v

}
(5.19)

and F embeds into AF diagonally, i.e. via x 7→ (x)v: this makes AF an F -algebra.
If F = Q, we simply write A := AQ.

Let G be an affine algebraic group over F , thus in particular an affine algebraic
variety over F , i.e. the elements of G are described as the zeroes of polynomials
with coefficients in F . For any F -algebra A, let G(A) be the set of solutions over
A of the polynomials defining G. This applies in particular to G(AF ) and G(Fv),
for a place v of F .

We now turn the attention to automorphic forms arising from Hermitian modular
forms. Let L := Q(

√
−d) be a quadratic imaginary number field, and put G =

U(n, n) as defined in (5.2). The entries of γ ∈ G are in L, and can be written as
xi + yi

√
−d for xi, yi ∈ Q: the condition γ†Snγ = Sn for γ ∈ G turns into a set

of polynomial equations over Q in these components xi, yi, and we can therefore
view G as an affine variety over Q.
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From [Ich04, p. 244] we have

M(Q) :=

{(
a 0n
0n a−†

)
: a ∈ GLn(L)

}
≤ G(Q)

N(Q) :=

{(
In b
0n In

)
: b† = b ∈ Ln,n

}
≤ G(Q)

P (Q) :=

{(
? ?
0n ?

)
∈ G(Q)

}
= M(Q)N(Q) = N(Q)M(Q)

(5.20)

and the Iwasawa decomposition

G(A) = P (A)KG (5.21)

where KG = K∞Kfin :=
∏

p≤∞Kp ⊆ G(A) with

Kp<∞ := G(Zp)
K∞ := G(R) ∩ U2n(R)

(5.22)

In particular we observe K∞ = {g ∈ G(R) : g(iIn) = iIn}, and by [Ich07, p. 724]
any matrix k∞ ∈ K∞ can be written as

k∞ =

(
A B
−B A

)
(5.23)

with A± iB ∈ Un(R) and det(A− iB) = det(A+ iB).

By the strong approximation theorem (which holds in this instance because we
assumed L of class number 1), any x ∈ G(A) can be written (not uniquely) as
γx∞k ∈ G(Q)G(R)Kfin. Let ϕ : G(A) → C be any G(Q)-left and Kfin-right
invariant function; put Z = x∞(iIn) ∈ Hn, then the function

F (Z) := det(x∞)−l/2j(x∞, iIn)lϕ(x∞) (5.24)

is weakly modular of weight l. Viceversa, given such an F , the function

ϕ(x) := det(x∞)l/2j(x∞, iIn)−lF (x∞(iIn)) (5.25)

on G(A) satifies ϕ(γx∞k) = ϕ(x∞). A function transforming like this is a par-
ticular example of automorphic form, together with technical conditions we do
not need to worry about here. We call (5.25) and (5.24) the standard correspon-
dence between modular and automorphic forms. In (5.24) we will often make the
following choice: for Z = X + iY ∈ Hn, put

gZ :=

(
In X
0n In

)(√
Y 0n

0n
√
Y
−1

)
=

(√
Y X

√
Y
−1

0n
√
Y
−1

)
(5.26)
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with
√
Y := P †diag(

√
λ1, . . . ,

√
λn)P , for a suitable P ∈ Un(R) such that Y =

P †diag(λ1, . . . , λn)P , since Y is a positive definite Hermitian matrix (hence its
eigenvalues are real and positive). Then gZ(iIn) = Z and gZ ∈ P (R); any other
x∞ ∈ G(R) such that x∞(iIn) = Z belongs to gZK∞.

Theta series

Let V := Lm. For a Hermitian matrix Q ∈ Lm,m, let 〈·, ·〉Q : V × V → L be the
Hermitian alternating form

〈x, y〉Q := x†Qy (5.27)

Write L ∼= Q(
√
−d) for square-free integer d ∈ N; since we assume that L has

class number 1,
d ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163} (5.28)

A rank m lattice Λ is a subset of V which is a OL-module and satisfies Λ⊗L = V .
Because of our assumption on L, every lattice Λ of rank m is a free OL-module
and there exists a basis {b1, . . . , bm} of V such that Λ = spanOL(b1, . . . , bm).
Define the m×m Gram matrix ΓΛ(Q) of the lattice Λ with respect to the form
〈·, ·〉Q by

ΓΛ(Q)i,j := 〈bi, bj〉Q (5.29)

Proposition 5.4.2 ([HK09, theorem 1.19]). Let Λ be a rank m lattice and 〈·, ·〉Q
a Hermitian form on V such that 〈x, x〉Q ∈ 2Z+ for all x ∈ Λ and det(ΓΛ(Q)) =
2md−m/2. Then

θnm(Z; Λ, Q) :=
∑

G∈Om,nL

eπiTr(G†ΓΛ(Q)GZ) (5.30)

is a Hermitian modular form of weight m and genus n with Fourier expansion∑
A≥0

#
{
G ∈ Om,nL : G†ΓΛ(Q)G = 2A

}
qA

In particular the Fourier coefficients are in Z.

Because of (5.29), we can rewrite (5.30) as

θnm(Z; Λ, Q) =
∑
x∈Λn

eπiTr(〈x,x〉QZ) (5.31)

It is useful to approach theta series from a representation theory perspective. Fix
once and for all a Hermitian form Q on V , and let H be the unitary group of
(V,Q), i.e. the set of automorphisms of V such that 〈hx, hy〉Q = 〈x, y〉Q for all
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x, y ∈ V . H is an algebraic group over Q, so we can consider its adelisation
H(A): for a place v ≤ ∞ of L, the v-th local component of H(A) is the set of
endomorphisms of Vv := V ⊗L Lv fixing the given Hermitian form. Then H(A)
acts on the set of lattices λ on V by (hλ)⊗LOLv = hvλv, where λv := λ⊗LOLv ,
and we denote Oλ(A) the stabiliser of λ.

The H(A)-orbit of λ consists of all lattices λ′ on V such that λ′v is Q-isometric to
λv for every v <∞: this is an equivalence relation on lattices on V , with a finite
number of classes. If Λ is a fixed lattice on V , call genus its H(Afin)-equivalence
class: there are finitely many H(Q)-orbits (classes) in its genus, which we denote
{hiΛ}i. Hence we have

H(A) =
⋃
i

H(Q)hiOΛ(A) (5.32)

Notice that H(Q)hiOΛ(A) does not admit a unique factorisation: put

OhiΛ := H(Q) ∩ hiOΛ(A)h−1
i (5.33)

and then H(Q)hiOΛ(A) = H(Q)OhiΛhiOΛ(A). Observe that OhiΛ is exactly the
set of automorphisms of hiΛ with respect to the form 〈·, ·〉Q.

We fix once and for all the character ψ of A/Q given by

ψ∞(x∞) := eπix

ψp(xp) := e−2πi(xp/2)′
(5.34)

where ′ denotes the polar part embedding Qp/Zp → R, i.e.(
∞∑

j=−N

αjp
j

)′
:=

−1∑
j=−N

αjp
j ∈ R

For ease of notation put G := U(n, n)(L), and let ω = ωψ be the Weil represen-
tation of G(A)×H(A) on the space S(V (A)n) of Schwartz-Bruhat functions on
V (A)n. Its action is completely determined by [Ich04, p. 246] i.e.

ω

((
a 0n
0n a−†

)
, 1H

)
f(x) = | det(a)|m/2AL f(xa)

ω

((
In b
0n In

)
, 1H

)
f(x) = ψ(Tr(〈x, x〉Qb))f(x)

ω

((
0n In
−In 0n

)
, 1H

)
f(x) =

∫
V (An)

f(y)ψ(TrL/QTr〈y, x〉Q)dy

ω(1G, h)f(x) = f(h−1x)

(5.35)
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for any a ∈ GLn(AL), b ∈ Hern(AL) and h ∈ H(A), where dy is the self-dual
measure associated to the character ψ.

For any f ∈ S(V (A)n), define the theta lift θf : G(A)→ C by

Θf (g, h) :=
∑

x∈V (Q)n

[ω(g, h)f ](x) =
∑

x∈V (Q)n

[ω(g, 1H)f ](h−1x)

θf (g) :=

∫
H(Q)\H(A)

Θf (g, h)dh

(5.36)

for g ∈ G(A) and h ∈ H(A), where dh is the Haar measure on H(A) normalised
so that the volume of H(Q)\H(A) is 1.

Proposition 5.4.3. Let Λ be a fixed latticed on V of rank m. Let f(x) ∈
S(V (A)n) be given by

f∞(x∞) := e−πTr(〈x∞,x∞〉Q)

fv(xv) := 1Λnv (xv)

where 1Λnv is the indicator function of Λn
v .

Then its theta lift θf is the automorphic form associated via the correspondence
(5.25-5.24) to the Q-linear combination of classical theta series

θnm(Z) :=
1

mΛ

∑
i

1

#OhiΛ

θnm(Z;hiΛ, Q) (5.37)

where the sum is over all classes in the genus of Λ, OhiΛ is the set (5.33) of
automorphisms of hiΛ and

mΛ :=
∑
i

1

#OhiΛ

(5.38)

is the mass of the lattice Λ.

Proof. Fix Z ∈ Hn and gZ ∈ G(R) as in (5.26). Let g = (gZ , 1, 1, . . . ) ∈ G(A)
and compute in (5.36)

Θf (g, h) =
∑

x∈V (Q)n

{
[ω(g∞, 1H)f∞](h−1

∞ x∞)
∏
v

[ω(gv, 1H)fv](h
−1
v xv)

}

=
∑

x∈V (Q)n

{
[ω(g∞, 1H)f∞](h−1

∞ x∞)
∏
v

1Λnv (h−1
v xv)

}
=

∑
x∈(hΛ)n

[ω(g∞, 1H)f∞](x∞)
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for any h ∈ H(A). The theta lift θf (g) is then

θf (g) =

∫
H(Q)\H(A)

Θf (g, h)dh

=
∑
i

1

#OhiΛ

∫
OΛ(A)

Θf (g, hiu)du

=
∑
i

1

#OhiΛ

∑
x∈(hiΛ)n

(∏
v<∞

∫
OΛ(Qv)

duv

)∫
OΛ(R)

[ω(g∞, 1H)f∞](x∞)du∞

=

(∫
OΛ(A)

du

)∑
i

1

#OhiΛ

∑
x∈(hiΛ)n

[ω(g∞, 1H)f∞](x∞)

where in the first step we have used the double coset decomposition (5.32) and
the observation in (5.33). To compute the factor

∫
OΛ(A)

du, we recall that dh is

normalised so that
∫
H(Q)\H(A)

dh = 1, hence

1 =

∫
H(Q)\H(A)

dh

=
∑
i

1

#OhiΛ

∫
OΛ(A)

du

=

(∫
OΛ(A)

du

)
mΛ

Now g∞ = gZ ∈ P (G(R)), for which we have an explicit description via the Weil
representation by [Ich04, p. 246], hence

θf (g) =
1

mΛ

∑
i

1

#OhiΛ

∑
x∈(hiΛ)n

det(Y )m/2eπiTr(〈x,x〉QX)e−πTr(〈x,x〉QY )

= det(Y )m/2
1

mΛ

∑
i

1

#OhiΛ

∑
x∈(hiΛ)n

eπiTr(〈x,x〉QZ)

= det(Y )m/2
1

mΛ

∑
i

1

#OhiΛ

θnm(Z;hiΛ, Q)

By (5.24) and proposition (5.4.2), the modular form associated to θf is then
θnm(Z) of (5.37) as claimed.
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Siegel-Weil formula

Recall V = Lm, Q and Λ from proposition (5.4.2). In addition to the condition
〈λ, λ〉Q ∈ 2Z+ for all λ ∈ Λ, we require Q be positive, i.e. 〈x, x〉Q > 0 for every
non-zero x ∈ V . Hence, the Witt index (i.e. the dimension of a maximal totally
isotropic subspace) of (V,Q) is 0; we will use this information in proposition
(5.4.4), when specialising [Ich07, theorem 1.1] in our setting.

By the Iwasawa decomposition (5.21), write g = pk ∈ G(A) with

p =

(
a ?
0n a−†

)
∈ P (A) (5.39)

for some a ∈ GLn(AL) and k ∈ KG: with this notation, put a(g) := NL/Q det(a).

For any f ∈ S(V (A)n), define a holomorphic section of Ind
G(A)
P (A)(|det|sAL) by

Φ
(s)
f (g) := |a(g)|s−s0AL [ωQ(g, 1H)f ](0) (5.40)

where s0 := (m − n)/2. As described in [Ich04, section 3], this gives rise to the
adelic Eisenstein series

Ef (g, s) :=
∑

γ∈P (Q)\G(Q)

Φ
(s)
f (γg) (5.41)

which converges absolutely for <(s) > n/2 and has meromorphic continuation to
the whole s-plane if f is KG-finite.

Proposition 5.4.4. [Ich07, theorem 1.1] If n < m ≤ 2n, then

lim
s→s0

Ef (g, s) = θf (g)

where θf is the theta lift of f defined in (5.36).

If m > 2n, then both the theta series and the Eisenstein series converge abso-
lutely, and in particular lims→s0 Ef (g, s) = Ef (g, s0). Weil proved that again they
coincide [Wei65]: we summarise this in the following.

Corollary 5.4.5 (Siegel-Weil formula). Let Λ and f ∈ S(V (A)n) as in proposi-
tion (5.4.3). If n < m, the modular form associated to lims→s0 Ef (g, s) via the
standard correspondence is θnm(Z) of (5.37).
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§ 5.5 Eisenstein series and arithmetic properties

We show that E3
4+4m(Z, 0) equals θ3

4+4m(Z) by virtue of the Siegel-Weil formula
(5.4.5), and has therefore rational Fourier coefficients with bounded denomina-
tors. We first prove that E3

4+4m(Z, 0) corresponds to the adelic Eisenstein series
defined in [Sah10, section 1D], and then relate the latter to the one appearing in
proposition (5.4.4) and (5.4.5).

Lemma 5.5.1. Put G = GU(n, n). Define a holomorphic section Ξ(·, s) of

Ind
G(A)
P (A)(|det|sAL) by

Ξ∞(k∞, s) := det(k∞)m/2j(k∞, iIn)−m

Ξv(kv, s) := 1
(5.42)

for all k ∈ KG, and put

EΞ(g, s) :=
∑

γ∈P (Q)\G(Q)

Ξ(γg, s) (5.43)

Then EΞ is associated via the standard correspondence (5.24) to Enm, and in par-
ticular

det(gZ)−m/2j(gZ , iIn)mEΞ(gZ , s) = Enm(Z, ns+
n−m

2
) (5.44)

where gZ is defined in (5.26).

Proof. By [Sah10, corollary 6.7], the left hand side of (5.44) depends only on Z,
in the sense that replacing gZ by any other g ∈ G(A) such that g(iIn) = Z yields
the same value. Further, by corollary (5.1.4), we can take representatives γ of
P (Q)\G(Q) in Υn ⊆ O2n,2n

L .

We compute the local components of Ξ(γgZ , s) to finish the proof. As gZ ∈ P (R),
(γgZ)v = γv for every finite place v hence

Ξv((γgZ)v, s) = Ξv(γv, s) = |NL/Q det(av)|n(s+1/2)
v = | det(γ)|n(s+1/2)

v = 1

because of Ξ ∈ Ind
G(A)
P (A)(|det|sAL) and (5.42), where nvmv(av)kv = γv is the Iwasawa

decomposition. At the infinite place, by [Sah10, lemma 6.6] we have

Ξ∞((γgZ)∞, s) = det(γgZ)m/2j(γgZ , iIn)−mδ(γ(Z))n(s+1/2)−m/2

= det(gZ)m/2j(gZ , iIn)−mj(γ, Z)−mδ(γ(Z))n(s+1/2)−m/2

from which (5.44) follows immediately.
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Lemma 5.5.2. Let Ef (g, s) as in corollary (5.4.5) and EΞ(g, s) as in lemma
(5.5.1). Then

Ef (gZ , ns+ s0 −m/2) = EΞ(gZ , s− 1/2)

for any H ∈ Hn and gZ as in (5.26).

Proof. Recall from (5.41) and (5.40) that Ef (g, s) is defined in terms of

Φ
(s)
f (g) = |a(g)|s−s0AL [ωQ(g, 1H)f ](0)

We will explicitly compute the action of the Weil representation, and compare it
with the series defining EΞ.

First, let g = k ∈ KG so that Φ
(s)
f (k) = [ωQ(k, 1H)f ](0), and we proceed to

compute the local components. At each place v, kv ∈ Kv is a product of matrices
of the form m(av), n(bv) and S as in (5.35).

If v is a finite place, every generator is in GL2n(OL,v). Let λ denote any lattice
on V , then

[ωQ(n(bv), 1H)1λnv ](x) = ψv(Tr(〈x, x〉Qbv)) · 1λnv (x) = 1λnv (x)

[ωQ(m(av), 1H)1λnv ](x) = | det(av)|m/2v · 1λnv (xav) = 1λnv (x)

[ωQ(S, 1H)1λnv ](x) =

∫
λnv

ψv(TrL/QTr〈y, x〉Q)dy = 1(λ⊥)nv
(x)

since Tr(〈x, x〉Qbv) ∈ OLv ; right multiplication by av ∈ GLn(Lv) is a change of
basis for λnv and det(av) ∈ O×Lv hence of valuation 1; for the last integral we have
studied separately the cases x ∈ λnv and x 6∈ λnv , the latter yielding zero as it
amounts integrating a non-trivial character over a period. Putting all together,
we deduce

[ωQ(kv, 1H)fv](0) = 1Λ′nv (0) = 1 (5.45)

where Λ′ is either Λ or Λ⊥ according to the number of generators S for kv.

At the infinite place, we introduce the function

wh(x) := e−πTr(〈x,x〉Qh)

for x ∈ Cn and h ∈ Cn,n whose eigenvalues have positive real part; observe
that f∞(x) = wI(x). We preliminary compute the Fourier transform ŵh of wh:
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diagonalise h = UDU † with U ∈ Un(R) and D = diag(d1, . . . , dn), so that

ŵh(y) =

∫
Cm,n

wh(x)ψ∞(TrL/QTr〈x, y〉Q)dx =

=

∫
Cm,n

e−πTr(〈x,x〉Qh)e2πi<Tr〈x,y〉Qdx =
∣∣∣
{v=yU}

=
n∏
l=1

∫
Cm

eπ(−Dlx
†Qx+ix†Qvl+ivlQx)dx

∣∣∣
{z=x−iD−1

l vl}

=
n∏
l=1

∫
Cm

e−πDl〈z,z〉Qe−πD
−1
l 〈vl,vl〉Qdz

= det(h)−me−πTr(〈y,y〉Qh−1)

= det(h)−mwh−1(y)

where vl denotes the l-th column of v = yU , and the last integral exists because
Dl has positive real part. Now

[ωQ(n(b∞), 1H)wh](x) = ψ∞(Tr(〈x, x〉Qb∞)) · wh(x) = wh−ib∞(x)

[ωQ(m(a∞), 1H)wh](x) = | det(a∞)|m/2∞ · wh(xa∞) = | det(a∞)|mwa∞ha†∞(x)

[ωQ(S, 1H)wh](x) = det(h)−mwh−1(x)

and observe that the eigenvalues of h− ib∞ and h−1 still have positive real part.
As observed in (5.23),

k∞ =

(
D −C
C D

)
for suitable C,D. Find U1, U2 ∈ Un(R) such that

U1C =:

(
C1 0
0 0n−r

)
U †2 U1D =:

(
D1 0
0 In−r

)
U †2

where r = rank(C) and det(C1) 6= 0. Then one can easily check that C−1
1 D1 is

Hermitian and

k∞ = m(U †1)n

(
D1C

−1
1 0

0 0n−r

)
m

(
C−†1 0

0 In−r

)
×

×
{
n

(
0r 0
0 In−r

)
S

}3

n

(
C−1

1 D1 0
0 0n−r

)
m(U †2)

(5.46)

and use this factorisation to compute

[ωQ(k∞, 1h)f∞](0) = det(I − iC−1
1 D1)−m| det(C1)|−m (5.47)
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Now that we have an explicit description of Φ
(s)
f (k) for k ∈ KG by (5.45) and

(5.47), we compare it with Ξ(k, s) of (5.42). As the finite components are identi-
cally one, we focus on the infinite place only:

Ξ∞(k∞, s) = det(k∞)m/2j(k∞, iIn)−m

= det(k′∞)m/2j(k′∞, iIn)−m

= det(C1)m/2 det(C1 +D1C
−1
1 D1)m/2 det(D1 + iC1)−m

where m(U1)k∞m(U2) =: k′∞ × In−r. Dividing this quantity by the right-hand
side of (5.47) yields 1, showing that

Φ
(s)
f (k) = Ξ(k, s′)

for any s, s′ ∈ C and k ∈ KG.

For a general g ∈ G, write the Iwasawa decomposition g = pk ∈ P (A)KG as in
(5.39) and observe

Φ
(s)
f (g) = |NL/Q det(a)|s−s0AL Φ

(s)
f (k)

Ξ(g, s′) = |NL/Q det(a)|n(s′+1/2)
AL Ξ(k, s′)

achieving equality for s = ns′ + n/2 + s0 as claimed.

Corollary 5.5.3. Under the conditions of corollary (5.4.5),

Enm(·, 0) = θnm

In particular, with the notation of (5.37), put

M−1
m,n := {p−1 : p|mΛ} ∪

⋃
i

{
p−1 : p|#OhiΛ prime

}
(5.48)

if the genus of Λ is not trivial, or ∅ otherwise: then Enm(·, 0) has Fourier coeffi-
cients in Z[M−1

m,n].

Proof. Observe

Enm(Z, 0) = det(gZ)−m/2j(gZ , iIn)−mEΞ(gZ ,
m
2n
− 1

2
)

= det(gZ)−m/2j(gZ , iIn)−mEf (gZ , s0)

= θnm(Z)

where the first equality is by lemma (5.5.1), the second by lemma (5.5.2) and the
last by corollary (5.4.5).

Corollary 5.5.4. The Eisenstein series E3
4+4m(·, 0) is a well defined holomorphic

Hermitian modular form with Fourier coefficients in Z[M−1
4+4m,3].



Chapter 6

Integral representation II

In this chapter, we prove the announced result in full. We employ an integral
formula of Saha, linking L-values with an integral against a diagonally restricted
Hermitian Eisenstein series. After diagonal restriction and Siegel pullback, the
theory of chapter 3 applies and we can study the arithmetic properties of the
critical L-values, which follow from the arithmeticity of the Fourier coefficients
of the Hermitian Eisenstein series, as described in the previous chapter. The
method we use in this proof is essentially the same as the one in chapter 4, only
applied to a different integral formula.

§ 6.1 Main theorem

An integral formula of Saha

To refine the result of theorem (4.1.3), we appeal to a different integral formula
for tensor product L-functions.

Proposition 6.1.1 ([Sah10, theorem 6.9]). Let h ∈ S1
2k and F ∈ S2

2k be Hecke
eigenforms with 2k ≥ 6. Assume that the A-th Fourier coefficient FA of F is
non-zero, for some index A of determinant 4d such that L := Q(

√
−d) has class

number 1. Then

〈E3
2k(Z × τ,−v), F (Z)h(τ)〉 = ξF

(
2k − 3− 2v

6

)
ZF⊗h(4k − 3− v) (6.1)

for v ∈ N, where

ξF (s) =
(−1)k2−6s−1π2(4π)−3s−3k+3/2d−3s−kΓ(3s+ 3k − 3/2)

(6s+ 2k − 1)2ζ(6s+ 1)ζ(6s+ 3)L(χ−d; 6s+ 2)
Fη

78
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η =



(
d 0

0 1

)
4d ≡ 0 mod 4(

4d+1
4

1
2

1
2

1

)
4d ≡ 3 mod 4

Observe that E3
2k(·, s) is the Hermitian Eisenstein series defined in (5.11), which

corresponds via the usual correspondence to the adelic series of [Sah10, section
1D] by lemma (5.5.1); nonetheless, as observed in (5.27), the restriction of E3

2k(·, s)
to the Siegel space H3 induces a (non-holomorphic) Siegel modular form, so that
the left-hand side of (6.1) only involves objects in the Siegel world.

Remark 6.1.2. As explained after (5.11), the Eisenstein series En2k(Z, s) con-
verges absolutely in Z for <(s) + 2k > 2n, and for each fixed Z it admits mero-
morphic continuation as a function of s to the complex plane. Formula (6.1)
holds unconditionally for v < k− 3, but since both E3

2k(Z, s) and ZF⊗h(s) can be
continued to C, by meromorphic continuation we see that the equality remains
true for any value of v ∈ N.

Our goal

Let h, F,G be as in proposition (4.1.2), with the additional restriction that l = k,
i.e. all these forms have equal weight 2k ≥ 6: this is due to the conditions of
proposition (6.1.1). By putting v := k − 2− 2m, (6.1) becomes

〈E3
2k(Z × τ, 2− k + 2m), ?(Z)h(τ)〉 = ξ?

(
1 + 4m

6

)
Z?⊗h(3k − 1 + 2m) (6.2)

where ? is either F or G and

ξ?

(
1 + 4m

6

)
=
−2−4m−2π2(4π)−3k+1−2md−k−2m−1/2Γ(3k − 1 + 2m)

(2k + 4m)2ζ(2 + 4m)ζ(4 + 4m)L(χ−d; 4m+ 3)
?η (6.3)

Observe that, as explained in remark (6.1.2), formula (6.2) holds as is for m ≥
1, and for m ≤ 0 by the principle of meromorphic continuation. This very
same phenomenon happened with the Siegel Eisenstein series of theorem (4.1.3):
the near-central critical value (which contains the information conjectured by
(1.3.1)) corresponds to a non-convergent series, while the other critical values are
associated with unproblematic objects.

Theorem 6.1.3. Let p0 as in proposition (4.1.2), and assume it does not divide
cg(|D|) 6= 0.
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Let {hi}i and {Fj}j be orthogonal Hecke eigenforms bases for S1
2k and S2

2k re-
spectively with h1 = h, F1 = F and F2 = G. Assume that no Fj with j ≥ 3 is
congruent to either F or G mod p, and that there exists a rational prime ` such
that λ`(F ) 6≡ λ`(G) mod p2. Similarly, assume h not congruent mod p to any
hi, for i ≥ 2. Again, p denotes any prime ideal of K above p0, where K is any
large enough number field containing all the fields in this chapter: namely L(Fη),
Q(
√
D), Q(f), Q(Fi) and Q(hv) for all i ≤ dim(S2

2k) and v ≤ dim(S1
2k).

Assume p is not above a prime in M−1
4,3, with the notation of (5.48). Further,

assume that p does not divide Fη.

Let 1 ≤ m < k
2
− 2 be any integer such that

(i) p divides π4mLf (2k)/Lf (2k + 4m);

(ii) p is coprime with B4+4m, B3+4m,χ−d and not in M−1
4+4m,3;

(iii) p is above a rational prime > max{3k − 2 + 2m, 2k + 4m, 4k − 5};

(iv) p does not divide π−2k−4m−1Lh(k + 2m)Lh(k + 2m+ 1)/〈h, h〉;

(v) p does not divide π−4k−4m+1Zf⊗h(3k − 1 + 2m)/〈f, f〉.

Then
π8mZG⊗h(3k − 1)

ZG⊗h(3k − 1 + 2m)
(6.4)

is algebraic, and divisible by p.

The rest of the chapter is devoted to the proof.

Remark 6.1.4. The condition m < k
2
− 2 arises from studying which nearly

holomorphic forms can be holomorphicly projected: see section (6.2).

Assume k even. We cannot say anything about m = k
2
−2, since our method stops

when applying holomorphic projection (as the conditions are not satisfied there).
Instead, when m = k

2
−1 there is no need to emply holomorphic projection as the

Eisenstein series E3
2k(·, 0) appearing in (6.2) is absolutely convergent hence a well

defined holomorphic Hermitian modular forms, and therefore its Siegel-diagonal
restriction E3

2k(τ × Z, 0) is an element of M1
2k ⊗CM2

2k. Since we are taking its
inner product against h(τ)F (Z) or h(τ)G(Z) in (6.2), we can decompose every
modular form into a sum of Eisenstein series and cusp forms, where only the
latters matter. To make sure the remaining cuspidal components are integral at
p we would need to include additional conditions about the order at p of the
Eisenstein eigenvalues; on the other hand, we did not want to complicate further
the list of conditions in theorem (6.1.3) for this one case only.
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Remark 6.1.5. We recall remark (4.1.4) for what we mean by divisibility and
coprimality with p: here the large Galois extension K also contains L(Fη). Also,
note that theorem (6.1.3) is an improvement of theorem (4.1.3): we had previously
showed (6.4) to have ordp ≥ 0, while now we actually deduce that (6.4) has
ordp ≥ 1.

Remark 6.1.6. We are not aware of a way of bounding the primes in M−1
4+4m,3

in general; on the other hand, given a fixed lattice Λ, most CAS applications
can compute this data, which is therefore a mild condition for theorem (6.1.3)
that can be checked on a case-by-case basis. Further, as we are free to (suitably)
choose the field L and the lattice Λ for every m, it could be the case that we can
pick a Λ so that its genus has a single class: in this case M−1

4+4m,3 = ∅ and the
condition is therefore vacuous.

§ 6.2 L-values as inner products

Siegel-diagonal restriction

By proposition (5.3.2) and (5.3.3), for 0 ≤ m ≤ k/2− 1

E3
2k(W ,2− k + 2m) =

= c−1
k,m · ∂

k−2−2m
3,4+4m [E3

4+4m(W , 0)]

= c−1
k,mδ(2πW)2−k+2m

∑
A≥0

E (m)
A R3(2πAV ; k − 2− 2m, 4− 2k + 2m)qA

where W = U + iV ∈ H3 and E (m)
A is the A-th Fourier coefficient of E3

4+4m(W , 0).

When restricting to W ∈ H3, observe

Tr(AW ) =
n∑

i,j=1

AijWji =
n∑
i=1

AiiWii +
∑
i<j

(Aij +Aji)Wij

and Aii ∈ Z and Aij +Aji ∈ 1
2
Z. For a symmetric half-integral positive semidef-

inite n × n matrix A we say that A ∼ A if Aii = Aii and Aij = Aij + Aji, so
that Tr(AW ) = Tr(AW ) whenever A ∼ A (and we observe that for each A there
exist finitely many A with A ∼ A). Hence the Siegel pullback Hn → C given
by W 7→ E3

2k(W, 2 − k + 2m) is a Siegel (non-holomorphic) form with Fourier
expansion

δ(2πW )2−k+2m
∑
A≥0

(∑
A∼A

E (m)
A R3(2πAV ; k − 2− 2m, 4− 2k + 2m)

)
qA (6.5)
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i.e. an element of π3(k−2−2m) · N 3
2k,k−2−2m.

Now, by lemma (3.2.2) the diagonal restriction Em(Z, τ) of E3
2k(W, 2− k+ 2m) to

H2 ×H1 is

Em(Z, τ) := E3
2k(Z × τ, 2− k + 2m)

= π3(k−2−2m)
∑
i,j

c
(m)
i,j Φ

(m)
i (Z)ϕ

(m)
j (τ)

∈ π3(k−2−2m) · N 2
2k,k−2−2m ⊗C N 1

2k,k−2−2m

(6.6)

for constants c
(m)
i,j ∈ C.

Holomorphic projection

By corollary (3.4.9), we can rewrite the left-hand side of (6.2) as

〈E3
2k(Z × τ,2− k + 2m), ?(Z)h(τ)〉 =

= π3(k−2−2m)
∑
i,j

c
(m)
i,j 〈Φ

(m)
i , ?〉〈ϕ(m)

j , h〉

= 〈Em(Z, τ), ?(Z)h(τ)〉
= 〈HolEm(Z, τ), ?(Z)h(τ)〉

= π3(k−2−2m)
∑
i,j

d
(m)
i,j 〈Fi, ?〉〈hj, h〉

= π3(k−2−2m)〈h, h〉
(
A(m)〈F, ?〉+B(m)〈G, ?〉

)
(6.7)

where {Fi}i and {hj}j are orthogonal Hecke eigenforms bases of S2
2k and S1

2k

respectively, with h1 = h, F1 = F and F2 = G; the d
(m)
i,j are suitable constants in C

with A(m) := d
(m)
1,1 and B(m) := d

(m)
2,1 , and the last equality follows by orthogonality.

Again, recall that ? is either F or G.

Combining (6.7) into (6.2) we get

π3(k−2−2m)〈h, h〉〈F, F 〉A(m) = ξF

(
1 + 4m

6

)
ZF⊗h(3k − 1 + 2m) (6.8)

π3(k−2−2m)〈h, h〉〈G,G〉B(m) = ξG

(
1 + 4m

6

)
ZG⊗h(3k − 1 + 2m) (6.9)

so that again the arithmetic information we want is encoded in B(m).

To justify the holomorphic projection, we need to check the conditions of propo-
sition (3.4.1). From (6.5), every A-th Fourier coefficient of E3

2k(W, 2 − k + 2m)



CHAPTER 6. INTEGRAL REPRESENTATION II 83

is a finite sum of polynomials in the entries of V with the same structure but
different coefficients: therefore the proof of lemma (3.4.4) applies unchanged to
deduce

|E3
2k(W, 2− k + 2m)| �

3∏
j=1

(λ2+2m−k
j + λ−2−2m−k

j )

Since Φ
(m)
i and ϕ

(m)
j are sections of E3

2k(W, 2 − k + 2m) by remark (3.2.3), they
satisfy the same bound and hence are of bounded growth by proposition (3.4.6)
provided that 2m < k − 4.

§ 6.3 Arithmeticity of L-values

Isolating A(m) and B(m)

Under the assumptions of theorem (6.1.3), the Eisenstein series E3
4+4m(·, 0) is

holomorphic for any m ≥ 0. By corollary (5.5.4) we have a complete description
of the arithmeticity of its Fourier coefficients: with the notation of (5.48), the
coefficients of E3

4+4m(·, 0) are in Z[M−1
4+4m,3].

By proposition (5.3.2), E3
2k(·, 2 + 2m − k) is obtained by applying ∂k−2−2m

3,4+4m to
E3

4+4m(·, 0), and in particular the Fourier coefficients of E3
2k(·, 2 + 2m − k) are

(polynomials with coefficients) in π3(k−2−2m) ·R′m where

R′m := Z[i,M−1
4+4m,3 ∪P−1

k+1+2m]

with the notation of (3.37). Hence by proposition (3.3.7) the function Em(Z, τ)
of (6.6) is an element of

π3(k−2−2m) · N 2
2k,k−2−2m(R′m)⊗Q N 1

2k,k−2−2m(R′m)

and has Fourier coefficients in R′m.

With the notation of (6.7), put

Ξm(Z, τ) := HolEm(Z, τ)

=:
∑
i,j

d
(m)
i,j Fi(Z)hj(τ) (6.10)

Since Ξm is obtained from holomorphic projection of Em(Z, τ), it is an element of

S2
2k(R

′
m[P−1

4k−6])⊗Q S1
2k(R

′
m[P−1

4k−5])

with Fourier coefficients in R′m[P−1
4k−5] by corollary (3.4.8) and satisfies

〈E3
2k(Z × τ, 2− k + 2m), ?(Z)h(τ)〉 = π3(k−2−2m)〈Ξm(Z, τ), ?(Z)h(τ)〉
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for ? = F or ? = G.

By the assumptions of theorem (6.1.3), find rational primes {qi}i and {q′j}j such
that

λqi(h) 6≡ λqi(hi) mod p, ∀i ≥ 2

λq′j(F ) 6≡ λq′j(Fj) mod p, ∀j ≥ 3

λq′j(G) 6≡ λq′j(Fj) mod p, ∀j ≥ 3

Define operators

TZ :=
∏
j=3

Tq′j − λq′j(Fj)
λq′j(F )− λq′j(Fj)

Tτ :=
∏
i=2

Tqi − λqi(hi)
λqi(h)− λqi(hi)

where the subscript denotes which variable it applies to. Then

Ψm(Z, τ) := TZTτΞm(Z, τ)

= A(m)h(τ)F (Z) + ϑB(m)h(τ)G(Z)
(6.11)

has Fourier coefficients integral at p, since

ϑ :=
∏
j=3

λq′j(G)− λq′j(Fj)
λq′j(F )− λq′j(Fj)

is coprime with p.

Arithmetic properties of A(m) and B(m)

By (6.8), A(0) = 0 since so is ZF⊗h(3k − 1). Then from (6.11)

Ψ0(Z, τ) = ϑB(0)h(τ)G(Z)

Fixing on both sides a choice of Fourier coefficients integral at p but not divisible
by it, we see that ordp(B

0)) = 0.

For m ≥ 1, employ (6.8) to get

A(m) = ξF

(
1 + 4m

6

)
ZF⊗h(3k − 1 + 2m)

π3(k−2−2m)〈h, h〉〈F, F 〉

= ξF

(
1 + 4m

6

)
24 · 32π−3k+7+6m|D|2k−3/2

(2k − 1)|cg(|D|)|2
Lh(k + 2m)Lh(k + 2m+ 1)

〈h, h〉
×

× Zf⊗h(3k − 1 + 2m)

〈f, f〉
Lf (χD, 2k − 1)

Lf (2k)
(6.12)
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where we have used [Bro07, corollary 6.3] for 〈F, F 〉.

We proceed to study each ratio individually. We have

Lh(k + 2m)Lh(k + 2m+ 1)

〈h, h〉
∈ π2k+4m+1Q(h) (6.13)

and we have assumed p coprime with this quantity.

Also

Zh⊗f (3k − 1 + 2m)

〈f, f〉
∈ π4k+4m−1Q(h, f) (6.14)

is coprime with p by hypothesis.

Furthermore

Lf (χD, 2k − 1)

Lf (2k)
∈ π−1Q(f)(

√
|D|) (6.15)

by [Shi77, theorem 1], and we assumed ordp ≤ −1 for this quantity in proposition
(4.1.2).

Lastly, from (6.3), ξF (1+4m
6

) equals

π−3−10m−3k 2−12m−4−6kd−k−2m−1/2(3k − 2 + 2m)!(2 + 4m)!(4 + 4m)!

(2k + 4m)2B2+4mB4+4mL(χ−d; 3 + 4m)
Fη

and, by [Neu99, p. 443, corollary]

Lχ−d(3 + 4m) = −iτ(χ−d)

2

(
2π

d

)3+4m B3+4m,χ−d

(3 + 4m)!

where

τ(χ−d) :=
d−1∑
j=0

χ−d(j)e
2πi
d
j =

{
±
√
d d ≡ 1 mod 4

±i
√
d d ≡ 3 mod 4

hence

ξF (1+4m
6

) ∈ π−3k−6−14mQ(
√
d) (6.16)

is coprime with p.

Combining (6.13), (6.14), (6.15) and (6.16) into (6.12) we deduce A(m) ∈ Q and
ordp(A

(m)) ≤ −1. Comparing Fourier coefficients on both sides in (6.11), we see
that B(m) ∈ Q with ordp ≤ −1.
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Taking the ratio

Using (6.9) write the ratio

π−6m ξG(1
6
)

ξG(1+4m
6

)

ZG⊗h(3k − 1)

ZG⊗h(3k − 1 + 2m)
=

B(0)

B(m)
∈ Q

and the right-hand side has ordp ≥ 1, for every m ≥ 1 as in theorem (6.1.3).
Since ξG(1+4m

6
) ∈ π−3k−6−14mQ is coprime with p, we deduce that

π8mZG⊗h(3k − 1)

ZG⊗h(3k − 1 + 2m)
∈ Q

with ordp ≥ 1 as claimed.

§ 6.4 Remarks on some conditions

As highlighted in remark (6.1.5), the result of theorem (6.1.3) improves theorem
(4.1.3) at the expense of generality: we managed to prove that the congruence
suggested by conjecture (1.3.1) holds for ZG⊗h(2k + l − 1) when the weights 2k
and 2l of (respectively) G and h are equal. As this is due to the very nature of
Saha’s integral formula (6.1), we do not see any immediate way of generalising
the result to unequal weights.

On the other hand, under the assumption of equal weights, Saha’s work [Sah10]
can be employed in the case of modular forms of higher level (whereas we only
focused on full level). This is by no means a trivial task, as the Eisenstein series
appearing in (6.1) would be a non-converging series with level, whose coefficients’
arithmeticity to our knowledge is not clear.

Finally, we could lift the condition that the quadratic extension L be of class
number 1. While Saha’s result covers any class number, [Sah10, theorem 6.9]
expresses the wanted critical values as sum (over the classes) of inner products
against various Eisenstein series: again, the main obstacle here is getting arith-
metic information about their Fourier coefficients.
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