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Abstract

Parkinson’s disease (PD) is treated using drugs with powerful side-

effects, and has similar symptoms to a range of other diseases. It

is therefore important to diagnose PD accurately, and then to

monitor its progression, to avoid mis-prescribing and under- and

over-prescription of these drugs. Although diagnosis by experts in

PD is fairly accurate, there is certainly room for improvement, and

most initial diagnoses are carried out by non-expert medical staff

with a much lower degree of accuracy. It is therefore desirable that

automatic methods of diagnosis and monitoring be developed, and

this Thesis examines the use of wavelets like those used in the Con-

tinuous Wavelet Transform (CWT), using wavelets extracted from

the data itself, to try and detect features in the data pertaining

to PD patients and controls.

We believe that we have successfully automatically detected dis-

tinct features, with the proviso that this has been done with very

little data, opening up the possibility of tracking the development

of the disease as different characteristics alter in importance, or of

distinguishing subtypes of PD (analyses of the genome have deter-

mined that such subtypes exist). However, the CWTs generated

by wavelets corresponding to individual features, do not suffice as

a basis for diagnosis, as the features may only be intermittently

present. In combination, either with other wavelets of the same

type, or other methods entirely, diagnosis remains a possibility.

We used Neural Acquisition Tracker (NAT) devices to obtain tri-

axial accelerometer data as input to these methods, and will anal-

yse the effect of finite bandwidth on their performance.

We believe the following list sums up the main novelty of our

techniques: Libraries of motion shapes: at least within the

field of the analysis of the motion of PD subjects; Representing

motion shapes: by equivalence classes of piecewise polynomial

wavelet triplets, which are invariant under rotations and reflec-

tions; Distance functions: working out the form of a distance

based on the L2 distance between individual functions, but which

works on the equivalence classes mentioned above; hierarchical

k-medoids: an approximation to k-medoids, using the clustering

of cluster centres, which runs faster than k-medoids.
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Chapter 1

Introduction

This research attempts to develop tools for the diagnosis and monitoring of PD (Parkinson’s

Disease).

More precisely, the aim of the research detailed here is to find methods of automati-

cally analysing accelerometer data obtained by the patient wearing a NAT (Neural Activity

Tracker) device (described below), so as to assist the reliable diagnosis of PD. The NAT is

designed to be unobtrusive, and the initial idea is that the patient goes about their normal

life while they wear the device.

If this work is successful, the same techniques can be used for monitoring patients to see

the effect of treatment and to track the progression of the disease.

The NAT may also be used to gather other information, and an automatic analysis of the

NAT accelerometer data will enable this information to be put into context.

1.1 Parkinson’s Disease

PD is characterised (for this, and the rest of the section, see Wikipedia[1], [2]) by movement

disorders which are collectively called parkinsonism, and include shaking, rigidity, slowness

of movement and difficulties with gait.

1.1.1 Movement symptoms

The four main movement symptoms of PD are, according to Swinn et al [3], paucity of move-

ment, rigidity, tremor and postural instability.

Paucity of movement is divided into three components: bradykinesia (slowness of move-

ment), hypokinesia (reduced movement) and akinesia (inability to initiate movement).

Rigidity is resistance to movement about a joint, and is divided into “lead-pipe” and

“cogwheeling” rigidity. In the former, the resistance is smooth, and in the latter it oscillates

so that it feels as if movement is achieved through a mechanism involving cogs. It has been

argued that rigidity is mainly due to bradykinesia, with a component of tremor in the case

of cogwheeling rigidity.

19
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Tremor is seen in about 75% of patients, and is characterised by shaking at 4-6Hz when

the affected body parts are at rest. The tremor diminishes or vanishes when the body parts

are in voluntary motion. Frequently, when the body part involved is the hand, the tremor

appears to involve an invisible pill being rolled between forefinger and thumb.

Postural instability usually appears as the disease progresses, and has been used by some

to signal the transition from mild to moderate PD. It, and problems connected with it, is

described as the most disabling of the main movement symptoms of PD.

Although obvious abnormal patterns of movement at a small scale and disregarding their

speed of execution seem to be characteristic of tremor, even being perceptible in “pill-rolling”

tremor, and also of cogwheeeling rigidity, it is also possible that they are present in akine-

sia, postural instability and even bradykinesis, even though the latter is also likely to be

characterised by patterns of motion which would be normal were it not for their speed of

execution.

1.1.2 Other topics

In PD, a further characterisation is the presence of Lewy bodies in the neurons of the brain

— these bodies consist of accumulations of the alpha-synuclein protein — and the death

of dopamine-producing neurons in the midbrain region know as the substantia nigra. The

term Parkinson’s disease was initially reserved for cases where the cause of cell-death in

the substantia nigra was unknown, but more links between PD and the genome are being

discovered nowadays.

Dopamine is a chemical with a variety of roles in the body, but most importantly in this

context it functions as a neuro-transmitter. In the brain, it is synthesised near to where it is

used. Dopamine is unable to cross the blood-brain barrier, but its precursor, L-DOPA, can

cross this barrier and is used to treat PD.

Nevertheless, only 5-10% of L-DOPA crosses the blood-brain barrier, which leads to over-

production of dopamine in other areas of the body and the production of side-effects such as

an irregular heart-beat, nausea and joint stiffness. Prolonged use of L-DOPA also leads to

involuntary movements differing from those of PD itself, and can produce punding (stereo-

typical movements which are compulsive rather than involuntary), and a compulsion, on the

part of the patient, to overuse L-DOPA by exceeding the prescribed dosage.

In the long run, the use of L-DOPA therapy can suppress the body’s own production of

L-DOPA.

L-DOPA is transformed by the body to dopamine using a chemical called dopa decar-

boxylase, and agents such as carbidopa and benserazide, which inhibit dopa decarboxylase

but are unable to cross the blood-brain barrier, are often given alongside L-DOPA. When

this is done, the metabolism of L-DOPA outside the brain is reduced. Without reduction in

dosage, this both

1. increases the amount of L-DOPA available for the transport across the blood-brain

barrier; and
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2. decreases the symptoms due to an excess of dopamine being present in processes utilising

it elsewhere in the body.

In addition, 1 enables the reduction of the dosage of L-DOPA, and so the beneficial effect

2 is heightened.

The use of dopa decarboxylase inhibitors is intended to reduce the side-effects of L-DOPA,

but they do persist at a reduced level, and, in some cases the combination of L-DOPA and

carbidopa, or L-DOPA and benserazide, merely transforms the set of side effects associated

with L-DOPA alone, reducing some, but even producing new side effects such as hallucinations

or suicidal feelings.

Another characteristic of prolonged use of L-DOPA is the development of a rapid alter-

nation of “on” and “off” phases in the patient’s response to the therapy. In the “on” phase,

the patient responds well to the drug and has much reduced motor symptoms, and in the

“off” phase the response is low and the motor symptoms strong.

As the side effects of L-DOPA treatment, even alleviated with dopa decarboxylase in-

hibitors, are so onerous, medical practice is to delay its use by employing alternative drugs

in the first few years after diagnosis.

The main alternative drugs are dopamine agonists and and MAO-B inhibitors.

Agonists are capable of performing at least one of the roles played the substance they

are the agonist of — in this case, dopamine agonists like bromocriptine and pergolide act

as neuro-transmitters — but possibly with reduced levels of effectiveness. In fact, dopamine

agonists tend to be less effective at controlling PD motor symptoms than L-DOPA, but their

side effects are milder (but may include hallucinations, drowsiness, insomnia, nausea and

constipation) in the long term. However, in the short term, the side effects may actually be

more serious than those of L-DOPA. There is also a tendency for the agonists to cause fewer

side effects in younger patients, so they are more often felt to be useful for such patients than

for older ones.

MAO-B is an enzyme which breaks down dopamine in the brain, and so its inhibitors

elevate the concentration of dopamine there. Again, the replacement drugs are not as effective

as L-DOPA in controlling PD motor symptoms, and have their own side effects.

As the disease progresses, both the dopamine agonists and MAO-B inhitiors’ effects are

not sufficient to alleviate the symptoms, and patients are moved to dopatherapy. However,

both these drug classes have a role (which varies, depending on the patient response to them

and L-DOPA) in managing the alternation between “on” and “off” phases.

There are several other diseases or conditions such that typical cases of these diseases and

of PD have distinct symptoms, but atypical cases have a great overlap in symptoms. These

diseases and conditions include essential tremor, several drug-induced conditions, defective

copper metabolism and withdrawal, including alcohol withdrawal.

Given all this, it is important that diagnosis is accurate and rapid. However, most initial

diagnosis is done by by front-line professionals, and is fairly inaccurate ( 75%), although

expert diagnosis is much more accurate (92-4% — see Michael Lones et al [4] for diagnosis

accuracy).
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1.2 The NAT data

1.2.1 The NAT

The NAT miniaturised bio-signal data recorder is fully described in Austin et al.[5]. It is

intended to be attached to a human or an animal, recording their movement through an

accelerometer, as well as other data stemming from the analogue devices attached to its

other channels.

The NAT measures 18 × 22 × 10mm (an idea of how small this is can be gleaned from

Figure 1.1), and weighs less than 2.3g, including the single zinc-air battery cell. This compares

to, e.g., a mouse length of 7.5-10cm (excluding the tail) and weight of 10-25g.

Figure 1.1: NAT with 50 eurocent coin (picture taken from Austin et al.[5])

Further specifications of the NAT are summarised in Table 1.1. As can be seen there, the

accelerometer can be set to have a range of 2 or 8G (the 2G range is the one appropriate for

mice studies).

The NAT can sample at rates between 100Hz and 2kHz, and both its recording capacity

and the maximum length of a single recording session (dictated by battery life) increase as

the sampling rate is reduced — from 24 hours to many days1, and from 12 hours to 24 hours

respectively.

The devices which may be attached to its four analogue channels include EEG (elec-

troencephalography), ECG (electrocardiography) and EMG (electromyography) electrodes.

In addition, one of the acceleration channels may be sacrificed to allow the attachment of an

infra-red detector which can be used to pick up codes denoting events or for the determination

of the zone occupied by an animal within its enclosure.

In Table 1.2 we present some comparision data for the devices whose use is discussed

below. The UWE-PD2G, W-190L-PD2GT and M190-D2GT devices are manufactured by

the Little Leonardo Co. Ltd of Tokyo. In addition, we include the Shimmer Platform,

manufactured by Realtime Technologies Ltd.

Although this is partially masked by the reduced pressure for miniaturisation (which is

sometimes expensive) when the devices are used on large animals, there is a discernible trend

1With the full specification version of the NAT
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NAT Specifications

Parameter Limits Units

Analogue inputs 4 channels

Bits per channel 11 bits

Accelerometer 3 axis

Bits per Acc. Axis 8 bits

Sample rate (max) 2000 Sa/Sec x 4 ch

Power at 2KHz 2.4 mA

Data Capacity 4 Gbits

Recording Time 2KSa/Sec 12 Hours

Analogue Range ±1000 uV

Accelerometer range 2 or 8 G (G-force)

Accelerometer sensitivity 18 mG at 2G range

Table 1.1: The specification of the NAT — taken from Austin et al.[5]

towards smaller devices as time passes. The NAT, at 13.9% of the mass of the lightest of the

other devices (and with a “typical” length, as defined in the Table, of 63.5% of that of its

nearest rival), exemplifies this trend.

1.2.2 Accelerometer data

In Figure 1.2 we show the directions of the heave, sway and surge accelerations. These are

defined with respect to the tetrapod body plan, and the same definitions are used in the

papers reviewed below.

When the NAT accelerometer is attached to the animal, it is clear that its axes correspond

to the animal’s body axes, and will register a combination of its linear and angular acceler-

ation, in addition to the static acceleration of gravity. As it takes five independent variables

(three for its path in space, two for its rotation as it follows that path) to fully describe the

motion of a body, and the rotations affect the angles between the body and the space axes,

it seems unlikely that the accelerations recorded by the NAT could be integrated to track

the position of the animal, even if the constraints of anatomy compelled these variables to

remain within a three-dimensional subspace of the full five-dimensional one.

Nevertheless, such an integration would be of little interest, and the body axes appear

to be the appropriate ones to use as an animal’s orientation in the horizontal plane will

not affect either its behaviour nor the interpretation of it (in the absence of sensitivity to

magnetic fields, at any rate).

An important characteristic of an accelerometer is the bandwidth of its response. Being

made of some material, it cannot respond to extremely rapid vibrations, and its response in

reaction to some excitation falls off as the characteristic frequency of the excitation increases.

In general, the point at which the response is half the full response is called the bandwidth

of the accelerometer.

The bandwidth of the NAT is 80Hz in all directions, and that of the Shimmer device
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Comparison of NAT with other devices

Device Where de-

scribed

Date

of use

Geometric mean

of known dimen-

sions (cm)

Mass
(g)

Capabilities [Relevant species]

UWE-PD2G Yoda et al.[6] 1998 3.37 60 Biaxial accelerometry, speed, depth
[penguins]

W-190L-
PD2GT

Tanaka,
Takagi and
Naito[7]

1999 3.72 60 Biaxial accelerometry, barometry,
thermometry [salmon]

M190-D2GT Watanuki et
al.[8]

2003 2.49 16 Biaxial accelerometry, depth [shags]

Fleck2 Guo et al.[9] 2006 8.49∗∗ ?∗∗ Triaxial accelerometry and magne-
tometry, GPS [cows]

HOBO R© Pen-
dant G

Moreau et
al.[10]

2007 3.53 18 Triaxial accelerometry [goats]

Daily diary Wilson
et al [11],
Shepard et
al.[12]

2008† 2.91-4.81 [3.30]∗ 48-90
[21]∗

(Not all used for all applications) Tri-
axial accelerometry and magnetome-
try, pressure, speed, internal and ex-
ternal temperature, 2 light intensity
measurements, humidity, GPS [vari-
ous, mostly megafauna]

Unnamed Pastell et
al.[13]

2009† 26.38 19 Triaxial accelerometry, radio trans-
mission of data [cows]

Portable Gait
Rhythmogram
(PGR)

Terashi et
al.[14]

2012† 4.58 80 Triaxial accelerometry [humans]

Shimmer Plat-
form

‡ present 2.94 22 Triaxial accelerometry, various expan-
sion modules available [humans]

NAT here present 1.58 2.3 Triaxial accelerometry and 4 analogue
channels OR biaxial accelerometry, 1
IR detector and 4 analogue channels
[mice]

Table 1.2: Comparison of the NAT with other devices. ∗Dimensions of the Daily
Diary’s (DD’s) triaxial accelerometer and the rest of the device are given separately:
range of box volume/weight for remainder of DD is outside square brackets, for triax-
ial accelerometer inside. ∗∗ No depth or weight information given. †Date of pa-
per, not date of experiment. ‡http://www.shimmersensing.com/images/uploads/docs /Shim-
mer Wireless Sensor Platform Spec Sheet.pdf (accessed 6th December 2013)

is 150Hz in one direction, and 350Hz in each of the two remaining directions [15].

The NAT accelerometer data itself consists of a stream of values with constant separation

in time (determined by the NAT sampling rate). The values themselves consist of multiples

of 1
18G, between −2 5

18 and 2 5
18 (cf the nominal range of -2 to 2G), represented by signed

11-bit numbers.

The data we use in this Theses is collected from NATs sampling at 500Hz, attached to

either the right or left wrist of our subjects. This represents an oversampling by a factor of

3.125, given that we know that the bandwidth of the accelerometer is 80Hz. We regard the

accelerometer as a physical low-pass filter, so spectral content of its output at frequencies
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Figure 1.2: Left: schematic of NAT on rodent, aerial view; right: schematic of NAT on rodent, side

view. The blue arrow is in the direction of heave, the red, of sway and the green, of surge — see, e.g.,

Wilson, Shepard and Liebsch[11] for the definitions

above 250Hz would be virtually zero. But a signal with no frequency content above 250Hz is

perfectly reconstructible using a sampling rate of 500Hz by the well-known Shannon Sampling

Theorem, with no aliassing.

1.2.3 Sample Fourier transforms of data

In Figure 1.3 we show the mean Fourier transform of data stemming from NATs attached to

a PD subject’s wrists.

For both attachment sites, the traces show the peaks of activity characteristic of PD at

roughly 6Hz, although this is slightly reduced in frequency for the subject’s left-hand. This

is probably a real effect, as the data was collected over a reasonable length of time, although

this is not certain (the data was not collected simultaneously).

In Figure 1.4, which displays the Fourier transform of similar data from two control

subjects, the peak near 6Hz is absent, as would be expected.

In both Figures 1.3 and 1.4, we see that at least two of the accelerometer channels for each

subject and each wrist detect a peak in the region of 2Hz, which we believe to be associated

with walking.
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Figure 1.3: The left-hand diagram shows the amplitude spectra for the accelerometer data stemming

from a NAT attached to a PD subject’s left (respectively right) wrist (top row) (respectively bottom

row) for the three channels, averaged over 385 five-minute epochs (respectively 527 epochs). The

right-hand diagram shows the power spectra summed over the three channels (left-hand attachment

blue, right-hand red)
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Figure 1.4: The left-hand diagram shows the amplitude spectra for the accelerometer data stemming

from a NAT attached to two control subjects’ left (respectively right) wrists (top row) (respectively

bottom row) for the three channels, averaged over 350 (control subject 1) and 105 (cs 2) five-minute

epochs (respectively 441 and 427 epochs). The right-hand diagram shows the power spectra summed

over the three channels and averaged over the two subjects
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1.2.4 Other data

The other data that it possible for the NAT to collect consists of (up to four) streams of

real numbers (again represented by 11-bit numbers, and again evenly spaced according to

the NAT sampling rate), stemming from the attached device, which might, for example, be

EMG electrodes.

If an infra-red detector is added as a daughterboard, perhaps to detect signals specifying

the varying location of the device at the times when data is collected, then its output is a

stream of evenly spaced integer codes.

None of this other data is used in this Thesis, although it could be used in conjunction

with the data that is used in future applications.

1.3 The Continuous Wavelet Transform

The initial attempt will be to use CWTs (Continuous Wavelet Transforms) to characterise

accelerometer data from PD patients and controls, where the wavelet is derived from the PD

patients’ data itself.

With this in mind, we will construct a library of wavelet triplets (one for each accelerome-

ter axis), matching all the windows in the data of a range of lengths in the data.2 As this will

result in an enormous library, it will be pruned to yield a much smaller one. Then, given new

data, the scaleograms (the collections of inner products of the new data with the wavelets

at each point in scale-time space) can be used to recognise behaviours similar to the ones

present in the data used to generate the library.

The first step here, the construction of the library may be executed offline (so long as this

is done in reasonable time), but it would be advantageous for the generalisation to monitoring

if the second step could be done in real time.

In the context of a CWT, a wavelet ψ is simply an element of the set of square-integrable

complex functions over R, L2(R), s.t.

‖ψ‖2 =

∫ ∞
−∞
|ψ(x)|2dx = 1 (1.1)

and ∫ ∞
−∞

ψ(x)dx = 0 (1.2)

(the first condition implies that ψ is not identically zero, the second condition that both the

real and imaginary parts of ψ are either identically zero a.e., or are sometimes positive and

sometimes negative (so at most one part is identically zero a.e.) — it is a wave, and then

the first condition implies that ψ, unlike the cosine or sine, doesn’t “go on forever” — it is

a wavelet, and either has compact support, or dies off faster than |x|−1 as x → ±∞). In

2An alternative to this unsupervised learning is to find wavelet triplets matching examples of labelled data
(supervised learning)
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particular, in this context, there is no need for ψ and its translates and dilations to satisfy

any orthonormality conditions.

Given such a ψ, and f ∈ L2(R), the CWT W [f ](a, b) of f is

W [f ](a, b) = 〈f, ψa,b〉 =

∫ ∞
−∞

f(x)ψa,b(x)dx =
1

|a|
1
2

∫ ∞
−∞

f(x)ψ

(
x− b
a

)
dx, (1.3)

for (a, b) ∈ (R − {0}) × R, where ψa,b(x) = 1

|a|
1
2
ψ
(
x−b
a

)
. Clearly, ψa,b also satisfies the

conditions given in the previous paragraph, and thus is equally a wavelet, so ψ is called the

mother wavelet where confusion might arise.

Such a ψ is called admissible if

Cψ =

∫ ∞
−∞

|ψ̂(ξ)|2

|ξ|
dξ <∞, (1.4)

where ψ̂(ξ) = 1√
2π

∫∞
−∞ e−ixξψ(x)dx is the Fourier transform of ψ.

For an admissible wavelet, f can be reconstructed from its CWT via f(x) =
1

2π

∫∞
−∞

∫∞
−∞W [f ](a, b)ψa,b(x)dbda

a2
.

However, we do not require our wavelets to be admissible, as we merely wish to use

wavelets to characterise our data, not provide an alternative representation of it.

For details about the definition of the CWT, see Rao and Bopardikar[16].
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Chapter 2

Literature review

2.1 The Discrete Wavelet Transform

Hernández and Weiss[17] are the source for the material here.

The DWT (Discrete Wavelet Transform) is defined similarly to CWT in equation (1.3),

with the restriction of (a, b) ∈ {(2−j , 2−jk) : (j, k) ∈ Z2} and different conditions on ψ.

Relabelling ψ2−j ,2−jk by ψj,k, ψ must be such that

I 〈ψj,k, ψ`,m〉 = δj`δkm;

II [{ψj,k : (j, k) ∈ Z2}] = L2(R), i.e., the closure of the span of {ψj,k : (j, k) ∈ Z2} is

L2(R).

Clearly, condition I implies equation (1.1) and, if ψ is not badly behaved, it turns out that

conditions I and II together imply equation (1.2), so ψ is suitable for a CWT if it is suitable

for a DWT.

For the rest of this section, a wavelet will mean a ψ such that conditions I and II hold.

It also turns out that well-behaved wavelets can be derived from an MRA (Multi-Resolution

Analysis).

An MRA is a sequence of subspaces {Vj : j ∈ Z} of L2(R) s.t.

I Vj ⊂ Vj+1;

II f(x) ∈ Vj ⇔ f(2x) ∈ Vj+1 ∀j ∈ Z;

III ∩j∈ZVj = {0};

IV ∪j∈ZVj = L2(R);

V ∃φ ∈ V0 s.t. {φ(x− k) : k ∈ Z} is an orthonormal basis for V0.

The function φ, whose dyadic scalings and shifts are denoted φj,k(x) = 2
j
2φ(2jx−k), is called

the scaling function for the MRA.

That such MRAs exist is demonstrated by the Haar function, φH(x) =

{
1, x ∈

[
−1

2 ,
1
2

]
;

0, otherwise :

the subspaces are then Vj = [{φjk : k ∈ Z}].

31
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Given an MRA, a wavelet ψ can be derived s.t. {ψj,k : j, k ∈ Z} is an orthonormal set

and Vj+1 = Vj ⊕Wj and
⊕

j∈ZWj = L2(R) for Wj = [{ψj,k : k ∈ Z}] (called the detail space

at level j).

This wavelet is given by

ψ̂(ξ) = e
1
2
iξν(ξ)m0

(
1

2
ξ + π

)
φ̂

(
1

2
ξ

)
, (2.1)

where ν(ξ) is an arbitrary 2π-periodic measurable function s.t. |ν(ξ)| and m0(ξ) = φ̂(2ξ)

φ̂(ξ)
is

the low-pass filter associated with φ.

In the case of the MRA with scaling function φH , the usual Haar wavelet ψH(x) =
1, x ∈

[
−1

2 , 0
)

;

−1, x ∈
[
0, 1

2

)
;

0, otherwise :

is obtained by taking ν(ξ) = 1; alternative versions can be obtained

by making other choices.

The advantage of using a DWT over a CWT is that there exist algorithms analogous to

the fast Fourier transform for calculating {〈f, ψj,k〉 : k ∈ Z} and {〈f, φj,k〉 : k ∈ Z}, given

{〈f, ψj+1,k〉 : k ∈ Z} and {〈f, φj+1,k〉 : k ∈ Z}, providing that φ (and consequently ψ) has

compact support. If φ has sufficiently good decay, the fast algorithms may still be used, at

the cost of introducing some error.

The disadvantage of using a DWT in our context is that the conditions I and II are much

more difficult to integrate into a pattern matching context than are the conditions given by

equations (1.1) and (1.2).

The situation is similar when {ψj,k : j, k ∈ Z} is not an orthonormal system, but we

know a dual basis {ψ̃j,k : j, k ∈ Z} 〈 ˜ψj,k, ψ`,m〉 = δj`δkm: compact support leads to fast

algorithms (but with a more complicated derivation), rapid decay leads to approximate fast

algorithms.

2.2 Parkinson’s Disease

The purpose of reviewing some papers concerning the diagnosis of Parkinson’s disease is that

the NAT, or an assembly of NATs, could be used to monitor patients in their daily life in

order to diagnose, and assess changes in, PD. The methods discussed in these papers could

be compared with methods derived by using the approach described here, or combined with

them.

2.2.1 Cartesian Genetic Programming and its Application to Medical Di-

agnosis, Smith[18]

The author describes various types of CGP (Cartesian Genetic Programming).

The simplest version deals with the application of an EA (Evolutionary Algorithm) to

a population of sets of input nodes, intermediate processing nodes arranged in a grid and
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a final output node, where the processing is controlled by a chromosome. The nodes are

numbered from 0, starting with the input nodes, then the intermediate processing nodes

and finally the output node. Each processing node has two inputs, equal to the outputs of

two preceding nodes (if the grid is one-dimensional, each processing node has one immediate

predecessor, and, if it is higher dimensional it has a whole layer of immediate predecessor

nodes, but, in both cases, all predecessor nodes are candidates for providing the input, not

just the immediate predecessor(s)) and an associated function from a finite, indexed, function

table. Each function has (at least formally) two arguments. Each node is controlled by a gene

of three integers, the first two indexing into the set of nodes, and the third into the function

table. The node output is the result of applying the function specified by the third number

to the inputs specified (in order) by the first two numbers in the gene. The chromosome

consists of the set of genes for each processing node, plus the index of the processing node

whose output is presented at the output node.

Evolution is achieved by cloning a grid with a randomly generated chromosome and

mutating the numbers defining the chromosomes of the clones at a given rate. At each

generation of the evolution process, the outputs of each clone given a set of inputs are

compared to a set of desired outputs using some objective function, and the grid with the

best value of this objective function is kept, while the remaining grids are discarded. The

winning grid is then cloned and the next evolutionary step is carried out.

When some terminating condition (a target value of the objective function is achieved, or

a number of generations have passed, for example), the process is terminated and the winning

grid is used to classify new examples.

A variation of CGP is ICRCGP (Implicit Context Representation CGP). “Ordinary”

CGP suffers from the defect that the evolution of programs is affected by the order in which

genetic information is stored, thus potentially hiding the effect of the genes. ICRCGP seeks

to avoid this by interpreting each node as an enzyme which binds to similar enzymes in the

network.

Each enzyme (node) has two binding sites consisting of vectors of integers (for example, in

the range 0-255) which are randomly assigned initially, and randomly mutated, as is the node’s

(enzyme’s) function. If there are n node functions available, then the last n of the binding

site vectors’ entries correspond to these. The node’s shape is a convex linear combination of

its binding site vectors. For example, if the binding site vectors have m components, and the

node’s function is the kth, then s, the vector specifying the shape is given by

s = a1b1 + a2b2 + (1− a1 − a2)



0
...

0

255

0
...

0


, (2.2)
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where the b’s are binding site vectors, fixed a1 and a2 satisfy 0 < a1, a2, 1− a1 − a2 < 1 and

the 255 in the last vector is in the (m − k + 1)th place. Of course, rounding is employed to

keep the components of s integral.

The node bindings are found by calculating the Euclidean distance between each enzyme

shape and every binding site belonging to a node ahead of it in the grid. The enzyme pair

with the smallest distance between the shape and binding site are bound, the binding site is

deleted from a list of available sites, and the enzyme pair with the smallest distance between

the shape and an available binding site is then selected for binding. This process proceeds

until all binding sites are used up.

This node binding process replaces that of ordinary CGP, and everything proceeds as

before1.

The paper applies CGP to two areas of medicine, the diagnosis of PD, and the detection

of breast cancer.

According to the paper, there is an initial misdiagnosis rate of 25% for Parkinson’s, which

underlines the need for new diagnostic tools.

Two tests were used to generate data from Parkinson’s patients and controls: in the first,

the patients had to trace out, on a digitalising tablet, a piecewise linear spiral with 5 turns

per twist, and, in the second they had to tap the index finger and thumb together on alternate

hands for 30s, while connected to electromagnetic sensors.

In both cases, an acceleration profile was derived from the measuring devices and a

sequence of windows of ten successive values presented to the ten inputs of an ICRCGP

with 30 processing nodes.

The results clearly show that the ICRCGP detected many more artefacts in the Parkin-

son’s patients performance on these tests than in that of the controls, but, it is unclear

whether the presented results relate to the re-presentation of the data on which the ICRCGP

was trained, or to some test data.

The work on breast cancer concentrated on a subproblem, the classification of microcal-

cifications (small calcium-containing deposits). Some geometries of microcalcifications are

indicative of malignancy, although most are benign.

ROIs (Regions Of Interest) containing microcalcifications were segmented from mammo-

grams, and subjected to three procedures involving CGPs:

i) a 10-dimensional vector of statistical features of the ROI was presented to an ICRCGP

with 10× 3 intermediate processing nodes;

ii) the raw pixel values of the ROI were presented to an ICRCGP;

iii) the raw pixel values of 8× 8 non-overlapping parts of a ROI were presented to a corre-

sponding number of ICRCGPs, and their chromosomes were swapped, or one replaced

by another, at a mutational rate, in addition to the usual evolution.

1From the diagrams it appears that the output node has two inputs and also processes these for the final
result, although this is a small detail
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Method i) produced an overall classification accuracy of 70% with an AUROC of 0.69,

and method ii) an AUROC of 0.78. (The Area Under the ROC — AUROC — is equal to

the probability that a subject with a malignant condition would score more highly than one

with a benign condition. The ROC — Receiver Operating Characteristic — is a plot of

the true positive rate vs the false negative rate, parameterised by the threshold defining the

classification boundary).

2.2.2 Characterising neurological time series data using biologically moti-

vated networks of coupled discrete maps, Michael Lones et al[4]

This paper describes evolved ABNs (Artificial Biological Networks), in particular AMNs (Ar-

tificial Metabolic Networks) and AGNs (Artificial Genetic Networks), and their application

to the task of detecting the signs of PD. The data used in the study stemmed from 49 PD

and 41 control subjects.

An AMN consists of the five element set {C,E,LC , IC , OC} where

C is the set of chemical concentrations, {c0, . . . , cn} ⊂ Rn+1;

E is the set of enzymes, {e0, . . . , eq}, ei = {Si, Pi,mi}, where:

Si ⊆ C is the set of enzyme substrates;

Pi ⊆ C is the set of enzyme products;

mi : R|Si| → R|Pi| is the substrate-product mapping;

LC is an indexed set of initial concentrations, with |LC | = |C|;

IC ⊂ C is the set of chemicals used as external inputs;

OC ⊂ C is the set of chemicals used as external outputs.

The AMN is executed by synchronously updating the elements of C, by taking the outputs of

the elements of E when each is applied to its range (if a product belongs to the intersection

of a set of Pi, its mean value over that set is taken). If necessary, the values of the ci are

uniformly scaled so that
∑

ci∈C ci = 1
2 |C|, to mimic mass conservation. After a given number

of steps, the values of the ci in OC are taken to be the network’s output.

The enzymes are selected from the following set of functions:

logistic map: [0, 1]→ [0, 1], x 7→ rx(1− x), r ∈ [0, 4];

Chirikov’s standard map: [0, 1]2 → [0, 1]2,

[
x

y

]
7→

[
x+ y − k

2π sin(2πx)

y − k
2π sin(2πx)

]
mod 1, k ∈

[0, 10];

baker’s map: [0, 1]2 → [0, 1]2,

[
x

y

]
7→



[
2x
y
2

]
, x ∈

[
0, 1

2

]
;[

2− 2x

1− y
2

]
, x ∈

[
1
2 , 1
]

;
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Arnold’s cat map: [0, 1]2 → [0, 1]2,

[
x

y

]
7→

[
2x+ y

x+ y

]
mod 1,

all of which (when iterated) have both regions with ordered and regions with chaotic be-

haviour, or the

logistic function [0, 1]→ [0, 1], x 7→ 1
1+eax .

An AGN consists of the four element set {G,LG, IG, OG} where

G is the set of genes, {g0, . . . , gn}, gi = {λi, Ri, fi}, where:

λi ∈ R is the gene’s expression level;

Ri ⊆ G is the set of the gene’s regulatory inputs;

fi : R|Ri| → R is the gene’s regulatory function;

LG is an indexed set of initial expression levels, with |LG| = |G|;

IG ⊂ G is the set of genes used as external inputs;

OG ⊂ G is the set of genes used as external outputs.

The AGN is executed by synchronously updating the expression levels of the elements of G,

by applying each gene’s regulatory function to the expression levels of its inputs. After a

given number of steps, the values of the expression levels of the genes in OG are taken to be

the network’s output.

The regulatory functions are selected from the logistic map, Chirikov’s map, the baker’s

map, Arnold’s cat map and the logistic function.

Both types of ABN are applied to a time series of acceleration data in the same way: the

concentration level/expression level of the single member of IC/IG is set to the value of a

datum, the ABN is iterated for tb steps, and another datum is presented. After all data has

been presented, the ABN is iterated for another ta, and then the value of the single member

of OC/OG is read as the output.

In the EA for the ABNs, the connections between the enzymes/genes, the parameters of

the functions, ta and tb are all encoded in a chromosome, and these chromosomes are evolved

with a point mutation rate of 6% and crossover rate of 15%. Fitness was assessed by finding

the AUROC over a set of training data.

The results for the best-performing ABN, when evaluated by the AUROC performance

statistic, fall between the diagnostic performance of non-expert secondary carers (75%) and

that of experts (92-4%), being only a few percent below the latter.

Thus, there seems to be great scope for the algorithms to be used at the stage of initial

diagnosis.

The best-performing network is an AMN, and the rest of the paper consists of an analysis

of the evolved AMNs.
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The worst AMNs, in terms of the AUROC over the test data have short chromosomes, but

the best ones have a mixture of short and long chromosomes. (This contrasts with the usual

situation, where long chromosomes correspond to overtraining and poor generalisation.)

For ease of analysis, the best performing AMN with a short chromosome is chosen. It has

an AUROC of 0.91 on the test data and four enzymes, three of which are chaotic. Knocking

out any single enzyme reduces the AUROC substantially. The output chemical concentration

is not directly manipulated by the enzymes, but is set by the changing concentrations of the

other chemicals through the operation of the conservation law. When applied to the real

acceleration data in the test set, the output concentration eventually falls when the data

comes from PD subjects, but may remain high or even have a temporary increasing trend

during the presentation of the data. Similarly, when the data comes from controls, the final

concentration is high, but may fall below the optimal decision threshold for its final value

during the processing of the data. This indicates that this trained AMN integrates the

succession of abnormal features present across the trace.

Replacing real subject data with possibly perturbed sine waves shows that the system has

sensitivity to frequencies falling below the normal2, amplitudes falling below the normal3 and

to noise4. In particular, one of the internal (i.e., not the input nor the output) concentrations

shows spikes in response to noise, which are presumably propagated through the AMN to

lower the output concentration.

The impulse response of the network is very sensitive to the magnitude of the input. When

there is no input, the network settles into a state with constant values of the concentrations,

when the impulse has magnitude 0.4 the network settles into a state with different constant

values of the concentrations, and when the magnitude is 0.5 or 0.6, the network settles to

periodic behaviours of the concentrations (qualitatively different in each case).

Finally, if the conservation law is removed, the response to real data is chaotic.

The authors conclude that the chaotic behaviour is necessary to obtain the sensitivity of

the AMN to the differing inputs stemming from PD patients and controls, but this behaviour

needs to be damped by the conservation law.

2.2.3 Evolving computational dynamic systems to recognise abnormal hu-

man motor function, Lones et al[19]

This is primarily a results paper, summarising Lones et al [4]).

2.2.4 Evolving classifiers to recognise the movement characteristics of Par-

kinson’s disease patients, Lones et al.[20]

This paper also describes ABNs as applied to the data in Lones et al.[4], but in more detail.

This data was also processed using the CGPs (for brevity — they were actually the ICRCGPs)

2Obviously relating to bradykenesis — slow execution of movement
3Relating to movement fatigue
4Relating to tremor
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described in Smith[18]. Data measuring rest movement from the same subjects was also

gathered, to assess the presence of tremor.

The AUROCs corresponding to the ABNs and the CGPs were much higher than those

based on extracting gross features, such as the mean amplitude or mean speed from the

movement data time series, and the presence of tremor was not very consistent, so this would

be of limited diagnostic value.

The study also found that the AUROCS associated with data from the subjects’ dominant

hands were higher, which tends to confirm that PD signs are stronger on the dominant side.

Finally, the paper finds that, although the AUROCs for ABNs tend to be higher than for

CGPs, there is mileage in combining the two types of classifier.

2.2.5 Deficits in scaling of gait force and cycle in Parkinsonian gait identi-

fied by long-term monitoring of acceleration with the portable gait

rhythmogram, Terashi et al[14]

The authors here discuss the use of their recently developed PRG (Portable Gait Rythmo-

gram) in the detection of gait abnormality due to PD.

The PGR is a three-axis accelerometer and recording device which weighs 80g (cf NAT

weight of <2.3g) and measures 80×60×20mm (cf 18×22×10mm for the NAT). It has a

sampling rate of 100Hz (cf the NAT’s range of 100-2000Hz), and can record 40 hours of data

(cf the NAT’s recording duration of 24 hours at this rate). In use, the PGR is attached to

the patient’s waist.

The authors starting point was that the variation in gait in response to changing circum-

stances is attenuated in PD patients, and they wished to investigate the manifestation of this

attenuation in the acceleration traces.

The subjects were 40 PD patients able to walk unaided and with no dyskenesia while

taking their medicine at peak dose (the PD patients were on a regime with “on” and “off”

— no medication — phases), and 17 age- and height-matched controls.

Data was then collected as the subjects went about their normal daily life.

Step cycles in the data were detected by using a template from the triaxial ac-

celerometer data (ax, ay, az), consisting of a series of p consecutive readings denoted

(ax(1), ay(1), az(1)), (ax(2), ay(2), az(2)), . . . , (ax(p), ay(p), az(p)) (with a relabelling of the

data if necessary) corresponding to an instance of a cycle, and then finding the cross-

correlation

CC(t) =

∑p
i=1(ax(i)ax(i+ t) + ay(i)ay(i+ t) + az(i)az(i+ t))√

{
∑p

i=1(ax(i+ t)2 + ay(i+ t)2 + az(i+ t)2)}{
∑p

i=1(ax(i)2 + ay(i)2 + az(i)2)}

(where t may be negative if the relabelling is not trivial). The step cycles were then identified

by finding the large peaks in the CC.

Then the mean scalar acceleration and cycle length were extracted from each gait cycle

and then the mean of these quantities was taken over each period of ten minutes (or excluded
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if there were fewer than 20 cycles in an hour). Each data pair averaged over ten minutes

represented a data point in the further analysis.

The logarithms of the mean scalar acceleration and of the cycle length were found to

have an approximately normal scatter for each subject, so a linear regression was carried out

between these quantities (resulting in a power law between the raw quantities).

For both the mean acceleration and the cycle length, the standard deviations across the

data points relating to each control subject were calculated, and then the mean of these stan-

dard deviations was calculated across the controls. These means (of the standard deviation

for both the mean acceleration and cycle length) were defined to be the alteration ranges of

the control subjects.

If the hypothesis that gait variability is attenuated in PD is correct, the standard deviation

of the mean acceleration and of the cycle length for PD subjects would be expected to be

lower, so 75% of the alteration range of these quantities calculated for control subjects was

adopted as a threshold.

The authors found that the mean acceleration over a step cycle was significantly lower

in PD patients, although there was no significant difference in the length of step cycle. For

the mean acceleration, 16 out of 40 PD patients had a standard deviation below 75% of the

alteration range, for the cycle length, 12 out of 40 PD patients fell below 75% of the alteration

range, and 4 patients were below 75% of the alteration range for both quantities.

An analysis of the individual patient scattergrams of mean scalar acceleration and cycle

length showed that these reflected the reduced variability of the patients with regard to one

or both measures in a fairly simple way.

The authors are aware that the results may reflect the reduced physical activity of PD

patients, and, as the patients were capable of attending their hospital on foot, they were

asked to do so wearing the PGR, so as to provide data covering periods of at least moderately

strenuous activity.

However, it is not clear whether the patients who fell into the 4 categories defined by

the thresholds on the percentage alteration range for the two measures were suffering from

different underlying impairments, or merely adopted different strategies for dealing with

impairment.

2.2.6 EMG and acceleration signal analysis for quantifying the effects of

medication in Parkinson’s Disease, Rissanen et al.[21]

In this paper, Rissanen et al.[21] sought to evaluate the time profile of the effectiveness of

various treatments for PD.

Nine patients, taking 2 or 3 drugs in various proportions from the list Madopar, Eldepryl,

Stalevo, Sifrol, Sinemet, Ipsatol and Efexor were asked to undergo a test while in various

conditions: 24 hours after the last medication (medicine “off”) and 1, 2 and 3 hours after

taking medication.

The test consisted of holding the elbow at 90◦ with the palm upwards for 30s. While this
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was done, 1kHz tri-axal accelerometer and EMG (from the biceps) recordings were taken.

The data was divided into overlapping epochs of 2048ms, overlap 1536ms, and, after some

filtering to remove artefacts, four features were extracted (giving 8 features when divided into

left and right-hand versions). These features were:

1) EMG kurtosis5, k = E[(x−µ)4]
σ2 ;

2) %REC (PERCENTAGE RECurrence rate) of the EMG signal, which is a measure of the

number of recurring structures in the data;

3) RMS (Root-Mean Square) of scalar acceleration;

4) SampEn (SAMPle ENtropy) of scalar acceleration,

− ln
{(k, `) : max{|ak − a`|, |ak+1 − a`+1|, |ak+2 − a`+2|} < r, 1 ≤ k < ` ≤ 2046}

{(k, `) : max{|ak − a`|, |ak+1 − a`+1|} < r, 1 ≤ k < ` ≤ 2047}
,

where a is the scalar acceleration, r is some given constant and S is the cardinality of

S.

The authors quote in papers in which features 1) and 2) were higher for PD patients than

for controls, and feature 4) was higher for controls than for PD patients.

The extracted 8-component feature vectors were subjected to a PCA (Principal Compo-

nent Analysis) and PC1 (the first Principal Component) was found to explain 71% of the

variation. Adding in further components did not increase the discrimination power of the

method, so the authors made further analysis using PC1 alone.

If the components of the feature vector are (kr, k`,%RECr,%REC`,RMSr,

RMS`,SampEnr,SampEn`) (r and ` subscripts stand for right and left hand here),

then the signature of the inner products of PC1 with its components is + + + + + + −−,

which is what would be expected given the correlations between the features and the

presence or absence of PD mentioned above.

The patients where also assessed by using the section of the UPDRS (Unified Parkinson’s

Disease Rating Scale)6 for motor function, and it was found that their score fell from its

5“For this measure, higher kurtosis means more of the variance is the result of infrequent extreme deviations,
as opposed to frequent modestly sized deviations”, or, to put it another way, higher kurtosis means the
distribution is more heavy-tailed, Wikipedia[22]

6“The UPDRS is made up of the following sections:
Part I: evaluation of Mentation, behavior, and mood;
Part II: self-evaluation of the ADLs (Activities of Daily Life) including speech, swallowing, handwriting,
dressing, hygiene, falling, salivating, turning in bed, walking, cutting food;
Part III: clinician-scored motor evaluation;
Part IV: Hoehn and Yahr staging of severity of Parkinson disease.
Part V: Schwab and England ADL scale,”
Wikipedia[23].
Part III includes assessments of speech, facial expression, tremor at rest, action tremor, rigidity, finger taps,
hand movements, rotation of the hands and forearms so that the palms face downward, rotation of the hands
and forearms so that the palms face upward, leg agility, rising from chair, posture, gait, postural stability and
bradykinesia, European Parkinson’s Disease Association[24]
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high level in the “off” condition to a minimum two or three hours after medication, and then

began to rise.

For all patients bar two, the PC1 values also fell then rose, although the timings were

slightly different, so the PC1 value measures something different to UPDRS. In one of the

two exceptions, the initial fall in the UPDRS score was reflected in the PC1 value; however,

the latter continued to fall, which leaves open the possibility that the PC1 value could rise

later. Thus it seems the method is a step towards an objective method for measuring the

severity of the signs of PD.

One obvious question is what the handedness of the patients was, and, if they did not all

have the same handedness, would the results have been any different had the features been

split along dominant/non-dominant rather than left/right lines.

2.2.7 Work involving the author

Two papers, Austin et al.[5] and Bailey et al.[25] have been produced featuring Fourier

analyses of data stemming from NATs attached to a PD and several non-PD subjects. Similar

data is analysed below, but a feature of the Fourier analyses is that the PD subject has a

peak in their trace around 6Hz, in line with expectations of heightened activity in the range

4-6Hz (see, e.g. National Parkinson Foundation[26]), and this will be relevant below.

2.3 Animal behaviour

Animal behaviour can be investigated through motion sensors, including accelerometers, and

so papers recounting such investigations form an important thread in our literature survey.

The techniques involved may, at least in principle, be transferred to the analysis of human

motion, and we concentrate on those techniques here.

2.3.1 Prying into the intimate details of animal lives: use of a daily di-

ary on animals, Wilson, Shepard and Liebsch[11] ; Identification of

animal movement patterns using tri-axial accelerometry, Shepard et

al.[12]

Here, Wilson, Shepard and Liebsch[11] and Shepard et al.[12] discuss the use of a daily

diary, a device which is attached to 37 species, mostly megafauna, and includes a triaxial

accelerometer, as well as GPS location, magnometers and other measuring hardware. Their

treatment of the outputs is consists of picking out by eye of patterns of acceleration consistent

with various behaviours.

The authors point out that it is important in their methodology to separate the static

acceleration due to gravity, and the dynamic acceleration due to the animals’ movements. The

static acceleration is useful for making deductions about animal posture from its distribution

across the three axes. However, there is little detail on how this separation is achieved,
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beyond saying that it is derived from a running mean of the sway and surge accelerometer

readings.

A classifier may not require an explicit separation of static and dynamic acceleration to

distinguish between behaviours, but it would be interesting to see what effect preprocessing

the data in this way has on classification performance.

2.3.2 A wireless accelerometer system with wavelet analysis for assessing

lameness in cattle, Pastell et al.[13]

To try to develop automatic methods to detect lameness in cattle, Pastell et al.[13] use

the MODWT (Maximal Overlap DWT) to analyse accelerometer data. The MODWT is

synonymous with the RDWT (Redundant DWT, Wikipedia[27]). The RDWT is “essentially

an undecimated version of the DWT” (Fowler[28]), and consequently, the “details” and the

“smooths” at each level have the same length as the original signal.

The authors attached a transmitting tri-axial accelerometer to each leg of a walking cow

to obtain their data.

In order to remove the static acceleration due to gravity (to first order, at least), the

authors transformed the trace from each channel by subtracting its mean.

Given the variances σ2
L, σ

2
R for the data stemming from paired legs, the authors define the

symmetry of variance thus: Svar =
min{σ2

L,σ
2
R}

max{σ2
L,σ

2
R}

.

The use of MODWT enables the variance of the acceleration data to be split into parts

which relate to different scales on which the signal can be considered. If Wj,t is the tth

component of the jth level “detail”, then σ2
j = 1

N

∑N−1
t=0 W 2

j,t is the variance associated with

that detail, and SDj =
min{σ2

Lj ,σ
2
Rj}

max{σ2
Lj ,σ

2
Rj}

is the corresponding symmetry of variance.

The analysis was carried to the fourth level, and, given the experimental parameters, this

meant that the time scales of the four levels were 40, 80, 160 and 320ms. The analysis was

applied to each component of the acceleration, and to the scalar acceleration.

The authors found that there was a significant difference (p < 0.001 on the Wilcoxon7

signed rank test) between Svar for sound and lame cows when this was calculated for forward

acceleration of the hind legs.

The differences in Svar for the other channels and the scalar acceleration for the hind legs,

and for all channels and scalar acceleration for the fore legs were not significant.

A finer analysis of the data was enabled by using the SDj ; it was found that there were no

significant differences for any combination of channels (or scalar acceleration), detail levels

and paired legs, except for forward acceleration at detail level 1 for the hind legs, where again

p < 0.001. Detail level 1 corresponds to a time-scale of 40ms, and this is around the duration

of the gait stage in which the foot hits the ground.

7See [29] for the Wilcoxon rank sum test. We will use this test quite a lot later in the Thesis
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2.3.3 Animal behaviour understanding using wireless sensor networks, Guo

et al.[9]

Here, the authors examine the use of the Fleck2 hardware device, which can store and transmit

data derived from its sensors — GPS, tri-axial accelerometer, tri-axial magnetometer and

thermometer — for the understanding of cattle behaviour. The device is attached to cows

using a collar which also carries GPS and RF antennæ, and batteries.

The authors use a moving mean of the acceleration as an approximation to the static

acceleration caused by gravity, and then use this information to derive the dynamic acceler-

ation.

Through a visual inspection of the traces of

1 the dynamic acceleration components;

2 the pitch and roll angles, derived from the static acceleration components, and the

heading angle, derived from the pitch and roll and the magnetometer data;

3 the rate of change of the heading angle,

the authors were able to distinguish various behaviours. In 1, greater variance was visible

during grooming and grazing; in 2, small rapid oscillations are seen in the pitch and roll

angles during grooming and grazing; and, in 3, the magnitude of the trace is much higher in

grooming and grazing.

The authors show that the classification of behaviours by eye from traces derived from

their three data sets (GPS information; accelerometer and magnetometer information; navi-

gation solution information) is feasible, but they do not automate this classification.

2.3.4 Cow behaviour pattern recognition using a three-dimensional ac-

celerometer and Support Vector Machines, Martiskainen et al.[30]

Here, an attempt is made to classify cow behaviour using data from a collar-borne tri-axial

accelerometer with an 8-bit AD converter which transmits data.

The accelerometers and associated apparatus were attached to the collars of these cows

while they were housed in a barn with free access to a pasture. Ground truth was obtained

via video recordings.

The data was windowed, resulting in samples of length 10s, consisting of 100 three-

dimensional data points.

A 28-component feature vector was generated from these samples, including the mean,

standard deviation, skew, maximum, minimum and energy for each accelerometer channel,

plus the correlations between the channels. Each component of the feature vector was rescaled

to lie in the range [0, 1], and the result of these procedures was a set of 104 of these nor-

malised 28-component feature vectors.

70% of these feature vectors were used to train a set of SVMs (Support Vector Ma-

chines), one for each of the behaviours to be identified. For each behaviour, the SVM is
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trained to classify the feature vector into those appertaining to the behaviour or not ap-

pertaining to the behaviour. These binary classifiers were combined into a multiclass clas-

sifier using the “one-against-all” method (however, it is not clear which measure of con-

fidence they used to determine the joint classification when a feature vector F was such

that {i : classifier for behaviour Bi classes F as Bi} 6= 1 — such a measure is necessary for

the ’one-against-all” method. One such measure would be the distance from the decision

boundary wTx = b.).

The remaining 30% of the feature vectors were used to assess the performance of the

trained SVMs.

A “basic” SVM is a binary classifier which is trained on a linearly separable set of data,

and consists of a hyperplane in the p-dimensional space in which the data lie. The data in

one class lie on one side of the hyperplane and those in the other class lie on the other side.

Previously unseen data points are then classified according to which side of the hyperplane

they fall. The hyperplane itself is placed to maximise its minimum perpendicular distance to

any training set data point.

The hyperplane is found by finding w ∈ Rp, b ∈ R s.t. w minimises 1
2‖w‖

2 subject to

yi(w
T
i − b) ≥ 1 for all N data points xi, where yi ∈ {−1, 1} has a value dependent on the

class to which xi belongs. Then wTx = b gives the hyperplane.

This constrained problem is equivalent to its dual: finding

arg min
(w,b)

max
α1≥0,...,αN≥0

{
1

2
‖w‖2 −

N∑
i=1

αi[yi(w
Txi − b)− 1]

}
,

where the αi are Lagrange multipliers.

It can be shown that w =
∑N

i=1 yiαixi, and then the problem becomes that of finding

arg max
{k1,...,kN′}⊂{1,...,N},αk1≥0,...,αkN′

≥0


N ′∑
i=1

αki −
1

2

N ′∑
i=1

N ′∑
j=1

αkiαkjykiykjx
T
ki
xkj

 ,

where any solution ({k1, . . . , k`−1, k`, k`+1, . . . , kN ′}, αk1 , . . . , αk`−1
, αk` , αk`+1

, . . . , αkN′ ) such

that (αk1 , . . . , αk`−1
, αk` , αk`+1

, . . . , αkN′ ) = (αk1 , . . . , αk`−1
, 0, αk`+1

, . . . , αkN′ ) is disregarded

(as it is equivalent to ({k1, . . . , k`−1, k`+1, . . . , kN ′}, αk1 , . . . , αk`−1
, αk`+1

, . . . , αkN′ )). Thus the

problem reduces to a finite discrete maximisation.

Given a solution ({k1, . . . , . . . , kN ′}, αk1 , . . . , αkN′ ), the points xk1 , . . . , xkN′ are called the

support points, and b = wTxki − yki for i = 1, . . . , N ′, or b = 1
N ′
∑N ′

i=1[wTxki − yki ]. The two

hyperplanes parallel to wTx = b which pass through the support points form the boundary

of the margin.

The “basic” SVM can be modified in two ways to cope with training sets which are not

linearly separable.

The first is to use Cortes and Vapnik’s soft margin, allowing some points to be misclassified

and introducing a penalisation for this misclassification.

If a linear penalty is used, this is done by relaxing the constraints to yi(w
Txi−b) ≥ 1−ξi,
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ξi ≥ 0 and changing the minimisation to that of 1
2‖w‖

2 + C
∑

i ξi.

With a linear penalty, the problem reduces to

arg max
{k1,...,kN′}⊂{1,...,N},C≥αk1≥0,...,C≥αkN′≥0


N ′∑
i=1

αki −
1

2

N ′∑
i=1

N ′∑
j=1

αkiαkjykiykjx
T
ki
xkj

 ,

so we again obtain a finite discrete maximisation.

The second modification to enable SVMs to deal with non-linearly separable training sets

is to use the “kernel trick”. This uses a map φ from the space in which the data lies to some

higher dimensional space where the two classes are linearly separated (or, at least, closer to

being so). The procedure for the “basic” SVM, or Cortes and Vapnik’s modification, is then

carried out in this higher dimensional subspace.8

The “kernel trick” consists of using K(xi, xj) = φ(xi)
Tφ(xj) to carry out the SVM min-

imisations in the original space: because of Mercer’s Theorem, which states that a symmetric

function K(x, y) can be expressed as an inner product if and only if K is positive semi-

definite, i.e.,
∫
K(x, y)g(x)g(y)dxdy ≥ 0 ∀g, the mapping φ to the higher space need not be

known for symmetric positive semi-definite K.

(Information about SVM taken from Jordan[31], Wikipedia[32]).

Martiskainen et al. use SVMs with both soft margins and the kernel trick, with Gaussian

kernel K(x, y) = exp(−γ‖x − y‖2). They selected C and γ to maximise Cohen’s κ = Pa−Pc
1−Pc

over the training set, where Pa is the proportion of cases where two classifiers agree and Pc is

the proportion where they would agree by chance, which measures the degree of agreement

between between classifiers, in this case between ground truth and the joint decision of their

classifiers.

The authors report good (over 80%) accuracy (ratio of the number of correct predictions

to the total) for all the behaviours. However, in the case of rare behaviours (the acts of

standing up or of sitting down), accuracy is dominated by predictions of the behaviour not

occurring.

When we look at sensitivity (ratio of true positives to sum of true and false positives), and

precision (ratio of true positives to sum of true positives and false negatives), the performance

drops for the act of standing up (to 0.67 and 0.33 respectively — there appears to be a mistake

in Table 4 of Martiskainen et al.) and for the act of sitting down (to 0 for both measures).

The sensitivity for the other behaviours ranged from 0.65-0.80, and the precision from 0.66-

0.86, so there appears to be scope for improvement on these figures.

2.3.5 Use of a tri-axial accelerometer for automated recording and classi-

fication of goats’ grazing behaviour, Moreau et al.[10]

The authors of this paper attempt to classify goat behaviour using triaxial accelerometry

readings. To this end, they used a HOBO R© Pendant G triaxial accelerometer (58×33×23mm

8The kernel trick also makes the SVM a nonlinear classifier
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weighing 18g including battery), attached to goats by i) a belt around the animal’s chest; ii)

a dog harness; iii) a collar around its neck. The weight of the attachments was in the range

242-264g.

In addition, a GPS tracker was attached to the goats’ necks by a collar, and this assembly

weighed 610g. The tracker played no role in the classification, but was intended to show

where the goats’ activities occurred.

The behaviours to be classified were: resting; eating; and walking. Eating was to be

separated into grazing (with the head down) and browsing (with the head up).

The experiments took place in Germany (two goats), in mostly flat pasture, and in Oman

(one goat), on mountainous terrain. Browsing activity was absent in the German experiments.

Ground truth was supplied by video recordings, and the accelerometer data was sampled

at 1Hz (Germany) or 0.5Hz (Oman).

It is somewhat difficult to determine whether the raw data discussed in this paper is

dynamic acceleration or total acceleration (it is labelled dynamic, but the derivation of the

head position makes no sense if it is not total acceleration).

The method for distinguishing the top level activities was to transform the readings avj

from each accelerometer channel (v ∈ {x, y, z}, j the index into the time-series) into dvj =

|avj − av,j−1| and define the moving average µvj =
dv,j−mv+dv,j−mv+1+...+dvj+...+dw,j+mv

2mv+1 . The

activity at the time indexed by j is classed (according to channel v) as resting if µvj < θrev,

eating if θrev ≤ µvj < θewv and walking if θrwv ≤ µvj , for thresholds θrev and θewv with

0 < θrev < θewv. The quality of the method for arbitrary mv, θrev and θewv is assessed by

Sv =
∑

j Svj where

Svj =


1− Nr

N , the jth time is correctly classified as resting;

1− Ne
N , the jth time is correctly classified as eating;

1− Nw
N , the jth time is correctly classified as walking;

0, the jth time is incorrectly classified,

where N is the total number of observations, and Nr,e,w are the number of observations of

resting, eating and walking, respectively. This weighting gives each behaviour equal impor-

tance, compensating for their different degrees of representation in the data. Then, for each

v, mv, θrev and θewv are chosen to maximise Sv.

The overall classification is arrived at by taking the majority classification (over the

classifications according to x, y and z). If there is no majority, the classification with the

largest value of Sv is taken as the overall classification.

Clearly, this method relies on there being more, or larger, or both more and larger, changes

of acceleration (on the time scale of the sampling) as the animal’s activity moves from resting

to eating to walking.

The discrimination between grazing and browsing, for those times where the higher-level

classification is “eating”, depends on the position of the animal’s head, and the accelerometer

is attached to the animal in such a way that the x-component of the acceleration is most
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affected by the head position. The method for automatically distinguishing these behaviours

consequently uses just this channel.

A moving average of the raw values, νj =
ax,j−m+ax,j−m+1+...+axj+...+ax,j+m

2m+1 is thresholded:

if νj < θgb the classification is “grazing”; if θgb ≤ νj , “browsing”. For arbitrary m, θgb,

classification success is measured by S =
∑
{j:the jth moment is classified as eating} Sj , where

Sj =


1− Ng

Ne
, the jth time is correctly classified as grazing;

1− Nb
Ne
, the jth time is correctly classified as browsing;

0, the jth time is incorrectly classified,

where Ng,b are the number of instances of browsing and grazing, respectively, in the ground

truth.

m and θgb are then chosen to maximise S over the training set (generated solely from the

Oman data, due to the absence of browsing in the German data).

The authors examined the effect of various factors:

Fixation: the true recognition rate
(

number of correctly classified examples
number of examples of a behaviour

)
for walking

was best (∼ 55− 58%) for the belt fixation; for eating it was best (∼ 98− 9%) for the

collar; and for resting there was an overlap between the performances with the collar

and with the harness, with the belt being not far behind (∼ 85 − 98% over all three

fixations);

Generalisation across individuals: when data from one German goat was used to train

and data from the same goat was used to test, the overall true recognition rate was 83%;

when the training set and test set came from different German goats, the overall true

recognition rate increased to 85%, which seems to be an indication of good generalisa-

tion. However, the increase was entirely due to an increased true recognition rate for

resting, which masked a substantial fall in the same rate for walking, which suggests

goats at rest are similar, but they have different walking styles;

Effect of sampling interval: the authors examined this by deleting samples from their

datasets and found that the overall true recognition rate fell from 85% to 75% as

the sampling frequency decreased from 1Hz to 0.05Hz. Also, the underestimation of

the number of observations of resting increased, the overestimation of the number of

walking observations became an underestimation and the overestimation of the number

of eating observations increased; that is, the behaviour which might be expected to be

intermediate in terms of the summed magnitude of changes in acceleration was predicted

more frequently as the sampling became coarser and less information was available;

Generalisation across fixations: unsurprisingly, training on data from one method of fix-

ation and testing on data from a different one resulted in a significant degradation in

performance when compared to training and testing on the same method;
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Generalisation across husbandry systems: when the training was done using the com-

bined data from both German goats and the testing done with data from the Oman

goat, the overall true recognition rate was 83%, the incidences of resting and walking

behaviours were greatly underestimated and eating was greatly overestimated. When

the training and test sets were exchanged, the overall true recognition rate was 87% and

the only large over- or underestimation was that of the incidence of walking behaviour,

which was greatly underestimated.

For grazing and browsing, the authors investigated three different splits into training and

test sets of the data stemming from the Oman goat when it was fitted with the dog harness.

The true recognition rate for grazing and browsing(
i.e.

number of correctly classified examples of grazing or browsing

number of examples of grazing or browsing

)
was 70-75%, whereas the estimate of the number of moments of grazing was 79-88%. The

corresponding figure was 95-111% for browsing.

The authors discuss several sources of error. Firstly, goats change their behaviour quite

abruptly, so the 10s intervals over which the animals’ behaviour is manually classified to

provide ground truth may miss some episodes of behaviour. Secondly, the use of moving

averages blurs the boundary between behaviours. In particular, if a goat changes from resting

to walking, the method may erroneously place a period of eating between the two behaviours

actually present. Nevertheless, from practical considerations, the authors rule out a more-

finely granulated ground truth and they also conclude that a reliable enough classification

can be based on sampling at 0.2Hz, subject to further investigation.

A third source is the optimisation of the quantities Sw and S, which is an overall measure

of the classification success, rather than of classification for each behaviour separately.

The authors finally discuss the use of these methods in combination with GPS to deter-

mine the exploitation of the terrain by the animals, and conclude that this is feasible.

2.3.6 A new technique for monitoring the behaviour of free-ranging Adélie

penguins, Yoda et al.[6]

The authors here used biaxial accelerometry in conjunction with speed and depth measure-

ments to compare the foraging behaviour of breeding Adélie penguins in regions with fast

sea-ice and those without sea-ice. As an intermediate step in doing this, it was desired to

identify the behaviours walking, tobogganing (the penguin lying flat on its belly and pushing

itself forward by alternating thrusts by one foot and the other), standing on land, lying on

land, resting at the water surface, porpoising (jumping out of the water) and diving (swim-

ming more than one 1m below the surface).

The authors attached a device containing a logger, an biaxial accelerometer. a speedome-

ter and a means for measuring depth to nesting penguins and sampled speed and depth

measurements at 1Hz,and the acceleration channels at either 3.3Hz or 16Hz. The device
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had a diameter of 20mm, a length of 122mm and a mass of 60g (cf Adélie penguin mass of

∼ 4.5kg).. The device was aligned with the animals’ body axes so as to either measure surge

and heave, or surge and sway.

The static acceleration in the surge direction was estimated by taking a moving mean

over 111 points according to the paper (although this seems to ignore the effect of the different

sampling rates), and this was used to determine the posture of the bird (clearly, if the surge

accelerometer channel registers 1g when the surge axis is stationary and vertical, it will

register sin θ×g when the surge axis is at a stationary angle of θ to the horizontal — i.e.

π − θ to the vertical).

Calibration experiments on captive birds and observation of birds travelling between

nesting sites and the sea enabled the acceleration/depth profiles to be established for various

behaviours.

The static surge acceleration enabled the authors to distinguish between the two sets of

behaviour where this is roughly constant: when the value is around 1g, the bird is standing

or walking, and when it is around 0g, the bird is lying on land on or resting at the sea surface,

or is tobogganning. These sets were also distinguishable from the set containing diving and

porpoising, in which the static surge acceleration is not constant. This division into sets was

automated.

Standing on land and walking were distinguished by the strong frequency component

corresponding to stride frequency in the surge and sway acceleration trace for the latter,

lying on land and resting at the sea surface were distinguished by the effect of sea waves on

the traces for the latter, and tobogganing was distinguished by the presence of a frequency

component corresponding to the alternate pushing by the feet. Diving was detected by the

depth information, and porpoising has a distinctive acceleration profile of its own. These

classifications were done by eye.

The authors found that Adélie penguins have a significantly (on the Mann-Whitney U -

test, P < 0.05) different activity profile during foraging trips when sea ice is present to that

when it is absent: although the time spent diving is not significantly different, the penguins

in the sea-ice free area preferred to rest on water, those in the area with sea-ice rest (i.e.,

stand or lie) on land, and porpoising is an activity restricted to the ice-free area.

2.3.7 Regulation of stroke and glide in an foot-propelled avian glider,

Watanuki et al.[8]

To understand how European shags (Phalacocorax aristoteles) regulate the thrusting and

gliding phases of their dives, Watanuki et al. attached M190-D2GT data loggers (containing

biaxial accelerometers and a barometer for depth measurement, with length 60mm, diameter

16mm and weight 16g) to the backs of the birds.

The M190-D2GT loggers sampled depth information at 1Hz, and accelerometry data

at 64Hz. To ensure that the alignment of the logger to measure surge and heave accelerations

was the appropriate one, four birds had the devices attached with the alternative orientation
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measuring the surge and sway components, and it was found that the sway component had

negligible variation during the ascent and descent portions of the dives.

Hence, the remaining ten shags had the logger attached in the surge/heave position.

The authors determined the static acceleration by using a low-pass two-band filter with a

pass frequency (below which frequency components were passed) and a stop frequency (above

which frequency components were stopped), with a transition between pass and stop between.

They considered the stop-start pairs (0.1Hz, 0.5Hz), (1Hz, 1.5Hz), (2Hz, 3Hz), finding that

the (0.1Hz, 0.5Hz) and the (2Hz,3Hz) pair risked confusing thrust and the changes in body

orientation at the start of a dive (when body orientation changes rapidly), and in the middle

of the dive (when body orientation changes slowly) respectively. Thus, they used a low-pass

filter with pass frequency 1Hz and stop frequency 1.5Hz to obtain the static acceleration, and

got the dynamic acceleration by subtracting this from the total acceleration.

The authors also made corrections to compensate for logger fixings which were at angles

to the animals’ body axes.

During the course of 100 dives spread over 9 of the birds, the rate of change of depth fell

into three ranges: ≤ −0.6ms−1, [−0.3, 0.3]ms−1 and ≥ 1ms−1, interpreted as relating to birds

in the ascendent, bottom and descendent parts of the dive respectively.

The authors found that there was a significant (on the Mann-Whitney U -test, P ¡0.01)

difference between the weights of the male (mean: ∼ 1.9kg) and female birds (mean ∼ 1.6kg),

but this was not reflected in significant sex differences in the median dive depth (10.2-43.3m,

medians for different individuals) or dive duration (43-97s), nor in the maximum values of

these quantities.

They also found an empirical means of detecting surge thrusts — these were said to occur

if there was more than 0.16ms−2 change in values measured at 1
64s intervals. During the

ascendent and descendent phases of the dive, there is a thrust cycle, consisting of a series of

thrusts, each followed by a glide.

Using their ability to identify body position, thrusts and thrust cycles, the authors are

able to conclude that shags dive almost vertically (to minimise the time taken to get to the

ocean floor and the food in its vicinity), and that in the descendent phase they decrease the

average thrust with depth (as their buoyancy decreases with depth) by increasing the duration

of the glide portion of the thrust cycle and keeping the thrust portion roughly constant in

duration and magnitude (so that they continue to thrust with maximum efficiency).

2.3.8 Swimming speeds and buoyancy compensation of migrating adult

chum salmon Oncorhyncus keta revealed by speed/depth/accele-

ration data logger, Tanaka, Takagi and Naito[7]

The authors here investigate the dives of salmon migrating towards their natal rivers for

breeding. As these salmon do not feed in this phase of their life, the dives are for purposes

other than feeding. These are believed to be thermoregulation and/or the acquisition of

navigational clues.
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The salmon were fitted with loggers for this investigation. In 1997, they were fitted with

UWE-200PDT loggers, which record speed, depth and water temperature, and, in 1999, with

W-190L-PD2GT loggers which record speed, depth, biaxial acceleration and temperature. It

is the second experiment which is of most interest here.

The W-190L-PD2GT has a diameter of 21mm and a length of 117mm, and weighs 60g

(the salmon used in the experiment weigh ∼2.5-∼4kg and are of length 58-70.5cm). It was

attached to the fish in an orientation which enabled it to measure surge and sway acceleration.

The sampling rates were 16Hz for the acceleration and 1Hz for the other variables.

To determine the static acceleration, the authors applied a low-pass filter with a cut-off of

0.8Hz — this cut-off was sufficiently low to enable the tailbeats to be assigned to the dynamic

acceleration. Then the static acceleration could be used to determine the body-angle of the

animal, as in other papers quoted here.

Tailbeats were recognised in the sway acceleration trace as having peaks and troughs of

magnitude greater than 1ms−2 and an inter-trough separation less than 1s.

Using these tools, the authors were able to determine that the salmon do not appear to

use their swim bladders to any great extent to maintain neutral or negative buoyancy during

their dives, as they need to actively swim in the descent and ascent. The main function of

the swim bladder appears to be to maintain neutral buoyancy in surface waters.

2.4 PD and CWT

It appears to be quite difficult to find references to PD and CWT (if we exclude cases where

CWT means ”Curved Walking Therapy”), presumably because DWT is considerably more

efficient (especially if the CWT mother wavelet does not have a special form, like piecewise

polynomial).

However, we have found three, plus one which could easily be extended to PD.

Muthuraman et al.[33] use the CWT with a scaled and shifted versions of a single mother

wavelet to analyse PD accelerometry and EMG, alongside multitaper (i.e., with different

filtering functions on the windows into the data) spectral analysis to determine whether the

appearance of “first harmonics” (i.e., at twice the characteristic PD tremor frequency) with

elevated amplitudes is correlated with the amplitude at the fundamental tremor frequency.

Their answer is that it is not, and the first fundamental therefore appears to separately

generated.

Sello et al.[34] examine the CWT of phonograms stemming from the respiratory sounds

of various subjects, transforming the phonogram into a scaleogram. They believe that they

have found clinically useful interpretations of this scaleogram, although they, too suffer from

a lack of sufficient subjects! Although none of their subjects has PD, this research could

easily be extended to encompass an investigation into the effects of PD on breathing.

Strambi et al.[35] use the correlation between two scaleograms, derived from the CWT

of EMG data to examine the coherence of motion, while performing specific exercises, of PD

subjects at different points in their medication cycle, and of control subjects. They note that
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the coherence of the PD subjects’ motion is reduced in comparison to controls, but to a lesser

extent when the PD subjects are on medication. All of this is interpreted in terms of changes

in the physiology of the PD subjects’ muscles.

Revanian and Lockhart[36] investigate the use of CWTs to detect episodes of freezing of

gait. By creating a scaleogram and summing across two ranges of scales, they obtain a pair

of functions of time, one of which is believed to be high relative to the other during episodes

of freezing of gait. By thresholding the ratio of these functions, each time in the trace can

be classified as an episode, or not an episode, of freezing of gait. Ground truth was supplied

by physiotherapists observing the subjects during the authors’ experiments, and fairly good

results were obtained.

These examples all use either a fixed mother wavelet, or one with just one parameter,

which is not adjusted to fit any training data.

2.5 Summary

We have learnt from our review that there are a wealth of techniques that can be applied

to the analysis human motion, including some that have already been used in this way, and

some that have been developed in animal studies.

We have also learnt that there is a gap in the exploration of the range of possible techniques

— using CWT-type wavelets to develop libraries of motion shapes which are independent of

rotation, reflection and time dilation. We decided to investigate this gap as it relates to PD.

Although there is the danger that bradykinesis will not be dealt with by these techniques,

it can be dealt with by appending scales to the shape library members. We can consider

this as a factorisation of the problems of analysing PD patterns of motion: one factor is the

timescale, the other, the shape information. We investigate the latter here.

2.6 Hypothesis

We end this section with our hypothesis.

We hypothesise that:

1 it is possible, using the techniques to be developed, to distinguish between data stem-

ming from PD patients and controls on the basis of patterns of motion;

2 these patterns of motion can be captured sufficiently well by the NAT and CWT analysis

of the resultant data;

3 these patterns of motion are diverse enough to be easily distinguished from each other

and frequently occur in the data.

Item 1 means that the methods here can be used to help diagnose PD, and item 3 opens up

the possibility of using a changing balance of different patterns to monitor the development
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of the disease and the effects of various treatments. We do not explore these possibilities

here, as this would require a mass of data not currently available to us.

Although the limitations of the available data also make it impossible to prove this hy-

pothesis, we will at least attempt to show that the hypothesis is feasible, by distinguishing

between data stemming from a PD patient and controls.
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Chapter 3

The Wavelets and Libraries

The purpose of this Chapter is to describe our method and provide the mathematical ma-

chinery behind it. More or less in parallel, we develop examples showing how this machinery

works in practice.

In a simplified version of this method, we fit a wavelet1 to data of one type (e.g., PD or

control), recording the goodness of fit. We then identify an equivalence class2 of wavelets

to which this wavelet belongs. This equivalence class is then inserted into a library of such

equivalence classes. After a large number of operations like this, we obtain a large library of

equivalence classes, which we reduce

1 by putting a lower threshold on the goodness of fit to the data and removing those

equivalence classes with a poor fit;

2 by removing members which are “too” close to other members3.

After this trimming, we order the members of the library by their distance from the

equivalence classes of wavelets fitted to a second class of data, with the most distant being

preferred.

The process so far can be considered training.

In a classification context, the distance between the top-ranked members of the library

and unseen data can be used as the basis for classifying it as the first or second type above.4

In a characterisation context, once we have a set of patterns of motion, represented by

members of our library of equivalence classes, which are typical of the movement of the source

of the first set of data, but atypical of the source of the second set, we can track the evolution

of the strength with which the patterns are represented in future data collected from the first

source.

Note that “source” here can mean one subject, but, in most contexts, it would be better

if it meant “class of subjects”.

1Actually, a wavelet triplet
2As defined below
3In terms of a distance also defined below
4The idea of a library of data and using a distance from its members and new data for classification, is, of

course not new — see, e.g. the Profi trademark recognition project, [37]

55
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3.1 Implementation

Our original implementation was in largely unvectorised Matlab R©, but we vectorised5 our

code (making great use of the Matlab R©built-in function filter), and, as a result the code

for building a library of wavelet triplets now runs in hours rather than in days, and that for

finding the activation of a three-dimensional acceleration time series with 2000 samples with

respect to a given wavelet triplet with a fixed window length is about 6s, or roughly real time

plus 50% with a sampling rate of 500Hz.

3.2 The CWT and accelerometer data

We wish to fit to our data a wavelet defined by

ψ(x) =
n∑
k=0

akfk(x), (3.1)

where

fk(x) =

{
xk, x ∈

[
−1

2 ,
1
2

)
;

0, otherwise.
(3.2)

For such a wavelet, conditions (1.1) and (1.2) become

aTHa = 1, (3.3)

bTa = 0, (3.4)

where a ∈ Rn+1 is a vector whose kth component is ak−1, and

b =

∫ 1
2

− 1
2

 f0(x)
f1(x)

...
fn(x)

dx =


1
0
1
12

...
1+(−1)n

2n+1(n+1)

 ∈ Rn+1 and (3.5)

H =

∫ 1
2

− 1
2

 f0(x)2 f0(x)f1(x) ··· f0(x)fn(x)

f0(x)f1(x) f1(x)2 ··· f1(x)fn(x)

...
...

. . .
...

f0(x)fn(x) f1(x)fn(x) ··· fn(x)2

dx

=



1 0 1
12

··· 1+(−1)n

2n+1(n+1)

0 1
12

0 ··· 1−(−1)n

2n+2(n+2)

1
12

0 1
80

··· 1+(−1)n

2n+3(n+3)

...
...

...
. . .

...
1+(−1)n

2n+1(n+1)

1−(−1)n

2n+2(n+2)

1+(−1)n

2n+3(n+3)
··· 1

22n(2n+1)

 ∈ R(n+1)×(n+1). (3.6)

As an aside (at this point we are not very interested in the reconstruction

property of admissible wavelets), because
∫
xkexdx = (−1)kk!ex

∑k
r=0

(−1)rxr

r! =

5However, Mathworks have now built their JIT compiler into Matlab R©, which they claim makes vectori-
sation rather than using loop constructions merely a matter of style, and not efficiency
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(−1)kk!
[
1− ex

∑∞
r=k+1

(−1)rxr

r!

]
(which can be proven by integration by parts and induc-

tion), we have

f̂k(ξ) =
1√
2π

∫ 1
2

− 1
2

xke−ixξdx

=
k!(−i)k+1

√
2πξk+1

[
−e

1
2
iξ

∞∑
r=k+1

(−i)rξr

2rr!
+ e−

1
2
iξ

∞∑
r=k+1

irξr

2r!

]

=
k!(−i)k+1

√
2πξk+1

(cos ξ2 + i sin ξ
2)


∞∑

r=d 1
2

(k+1)e

(−1)rξ2r

22r(2r)!
− i

∞∑
r=d 1

2
ke

(−1)rξ2r+1

22r+1(2r + 1)!

 −
(cos ξ2 − i sin ξ

2)


∞∑

r=d 1
2

(k+1)e

(−1)rξ2r

22r(2r)!
+ i

∞∑
r=d 1

2
ke

(−1)rξ2r+1

22r+1(2r + 1)!




=
2k!(−i)k+1

√
2πξk+1

cos ξ2

∞∑
r=d 1

2
(k+1)e

(−1)rξ2r

22r(2r)!
+ sin ξ

2

∞∑
r=d 1

2
ke

(−1)rξ2r+1

22r+1(2r + 1)!



=


2k!(−i)k+1

2k+1
√

2π

[
cos ξ2

∑∞
r=0

(−1)r+
1
2 k+1ξ2r+1

22r+1(2r+k+2)!
+ sin ξ

2

∑∞
r=0

(−1)r+
1
2 kξ2r

22r(2r+k+1)!

]
, k even;

2k!(−i)k+1

2k+1
√

2π

[
cos ξ2

∑∞
r=0

(−1)r+
1
2 (k+1)ξ2r

22r(2r+k+1)!
+ sin ξ

2

∑∞
r=0

(−1)r+
1
2 (k+1)ξ2r+1

22r+1(2r+k+2)!

]
, k odd

(3.7)

=

 −i
[

1
2k+1(k+2)

√
2π
ξ + O(ξ3)

]
, k even;

1
2k(k+1)

√
2π

+ O(ξ2), k odd.
(3.8)

Then, near ξ = 0, ψ̂(ξ) =
∑n

k=0 akf̂k(ξ) =
∑b 1

2
nc

k=0 a2kf̂2k(ξ) +
∑b 1

2
(n−1)c

k=0 a2k+1f̂2k+1(ξ) =

1√
2π

{
−i
[∑b 1

2
nc

k=0 a2k
1

2k+1(k+2)
ξ + O(ξ3)

]
+
∑b 1

2
(n−1)c

k=0 a2k+1
1

2k(k+1)
+ O(ξ2)

}
, so

|ψ̂(ξ)|2 =
1

2π


b 12nc∑
k=0

a2k
1

2k+1(k + 2)
ξ + O(ξ3)

2

+

b 12 (n−1)c∑
k=0

a2k+1
1

2k(k + 1)
+ O(ξ2)

2


=
1

2π

b 12 (n−1)c∑
k=0

a2k+1
1

2k(k + 1)

2

+ O(ξ2) =
(bTa)2

2π
+ O(ξ2) = O(ξ2). (3.9)

by the zi condition as given by equation (3.4).

If ψ is to be admissible, we need
∫∞
−∞

|ψ̂(ξ)|2
|ξ| dξ < ∞. But

∫∞
−∞

|ψ̂(ξ)|2
|ξ| dξ =(∫ −1

−∞+
∫ 1
−1 +

∫∞
1

)
|ψ̂(ξ)|2
|ξ| dξ ≤

(∫ −1
−∞+

∫∞
1

)
|ψ̂(ξ)|2dξ +

∫ 1
−1
|ψ̂(ξ)|2
|ξ| dξ ≤

∫∞
−∞ |ψ̂(ξ)|2dξ +∫ 1

−1
|ψ̂(ξ)|2
|ξ| dξ = 1 +

∫ 1
−1
|ψ̂(ξ)|2
|ξ| dξ < ∞ by equation (3.9) and the ue condition given by equa-

tion (1.1), so our ψs are admissible.
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3.2.1 Additional conditions

We can impose additional conditions on ψ(x), such as

wrapped continuity (wc): ψ is continuous if the endpoints of its support are identified:

ψ
(
−1

2

)
= limx→ 1

2
ψ(x);

endpoint continuity (ec): ψ is continuous: ψ
(
−1

2

)
= limx→ 1

2
ψ(x) = 0;

wrapped differentiability (wd): ψ is differentiable if the endpoints of its support are

identified: ψ
(
−1

2

)
= limx→ 1

2
ψ(x) and d

dx ψ(x)|x=− 1
2

= limx→ 1
2

d
dxψ(x);

endpoint continuity and wrapped differentiability (ec+wd): ψ is continuous, and

differentiable if the endpoints of its support are identified: ψ
(
−1

2

)
= limx→ 1

2
ψ(x) = 0

and d
dx ψ(x)|x=− 1

2
= limx→ 1

2

d
dxψ(x);

endpoint differentiability (ed): ψ is differentiable: ψ
(
−1

2

)
= limx→ 1

2
ψ(x) = 0 and

d
dx ψ(x)|x=− 1

2
= limx→ 1

2

d
dxψ(x) = 0.

All of these conditions can be written as one or more equations of the form cTa = 0:

wc: cT
c−a = 0;

ec: cT
c−a = cT

c+a = 0;

wd: cT
c−a = cT

d−a = 0;

ec+wd: cT
c−a = cT

c+a = cT
d−a = 0;

ed: cT
c−a = cT

c+a = cT
d−a = cT

d+a = 0,

where

cc± =


f0(− 1

2)

f1(− 1
2)

...
fn(− 1

2)

± lim
x→ 1

2
−

 f0(x)
f1(x)

...
fn(x)

 =


1±1
−1±1

2

...
(−1)n±1

2n

 , (3.10)

cd± = lim
x→− 1

2
+

d

dx

 f0(x)
f1(x)

...
fn(x)


∣∣∣∣∣∣∣
x=− 1

2

± lim
x→ 1

2
−

d

dx

 f0(x)
f1(x)

...
fn(x)

 =


0

1±1
...

(−1)n−1±1

2n−1 n

 . (3.11)

We will collect cs of the conditions of the form cTa = 0 we are applying in a matrix B, so

they can be expressed in the single condition BTa = 0. For example, if we are applying wd

to ψ, B = [ b cc− cd− ].

We note that, for the condition sets we consider, if B ∈ R(n+1)×p′ and n ≥ p′, then the

columns of B are linearly independent (shown by demonstrating that B has a non-singular

p′ × p′ submatrix in Maple R©).
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3.2.2 Model function

We wish to represent the data (xk, yk), k = 1, 2, . . . , N , shifted so that x1 = −1
2 and xN = 1

2 .

Assuming that the xk are evenly spaced, xk = (k−1)∆− 1
2 with ∆ = 1

N−1 , we define x′0 = −1
2 ,

x′k =
(
k − 1

2

)
∆− 1

2 , k = 1, 2, . . . , N − 1, t′N = 1
2 and

f(x) =

{
yk, x ∈ [x′k−1, x

′
k], k = 1, 2, . . . , N

0 otherwise.
(3.12)

Obviously, this piecewise constant function is L2, and we use it to model our data.

3.2.3 Fitting a wavelet to data

We attempt to maximise the inner product 〈f, ψ〉 (which is real as f and ψ are real) with

respect to a, subject to conditions (3.3) and (3.4), and possibly p′− 1 other conditions of the

form cTa = 0, collected together with (3.4) in BTa = 0.

As

J(a) = 〈f, ψ〉

=

∫ ∞
−∞

f(t)ψ(t)dt =
n∑
k=0

ak

∫ 1
2

− 1
2

fk(t)f(t)dt =
n∑
k=0

N∑
`=1

aky`

∫ x′`

x′`−1

fk(t)dt

= zTa, (3.13)

where

z = Ry ∈ Rn+1 (3.14)

for R ∈ R(n+1)×N with elements

Rk` =

∫ x′`

x′`−1

fk(t)dt =
(x′`)

k+1 − (x′`−1)k+1

k + 1
(3.15)

for k = 0, 1, . . . , n, ` = 1, 2, . . . , N , y = [y1, y2, . . . , yN ]T ∈ RN , this conditional maximisation

is equivalent to finding the turning points of

Q(a, λ, µ) = J(a) + λ(aTHa− 1) + µTBTa

= λaTHa+ (Bµ+ z)Ta− λ (3.16)

with respect to a and the Lagrange multipliers6 λ ∈ R and µ ∈ Rp′ , s.t. J(a) has the largest

value. As J(a) is identically zero if z = Bd for some nonzero vector d, we assume that this

is not the case.

Solving ∂
∂aT

Q(a, λ, µ) = 2λHa+ z +Bµ = 0 yields

a = a∗(λ, µ) = − 1

2λ
H−1(z +Bµ),

6For the method of Langrange multipliers see Goldstein[38]
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so (on the assumption that λ 6= 0; but, if λ = 0, z = −Bµ for some µ, contrary to our

assumption above)

Q(a∗(λ, µ), λ, µ) = − 1

4λ
(z +Bµ)TH−1(z +Bµ)− λ,

and then ∂
∂µQ(a∗(λ, µT), λ, µ) = − 1

2λB
TH−1(z +Bµ) so ∂

∂µQ(a∗(λ, µT), λ, µ) = 0, implies7

µ = µ∗ = −(BTH−1B)−1BTH−1z,

and

Q(a∗(λ, µ∗), λ, µ∗) = −λ− 1

4λ
zT
[
I−B(BTH−1B)−1BTH−1

]T
H−1 ×[

I−B(BTH−1B)−1BTH−1
]
z

= −λ− 1

4λ

[
zTH−1z − zTH−1B(BTH−1B)−1BTH−1z

]
,

and finally,

∂

∂λ
Q(a∗(λ, µ∗), λ, µ∗) = 0⇒ λ = λ∗ = ±1

2

√
zTH−1z − zTH−1B(BTH−1B)−1BTH−1z.

Consequently, a = a∗(λ∗, µ∗) = ∓ H−1[z−B(BTH−1B)−1BTH−1z]√
zTH−1z−zTH−1B(BTH−1B)−1BTH−1z

and then J(a) =

J(a∗(λ∗, µ∗)) = ∓
√
zTH−1z − zTH−1B(BTH−1B)−1BTH−1z, so we need to take ± = −,

and then we have8

a = a∗ = a∗(λ∗, µ∗)) =
H−1

[
z −B(BTH−1B)−1BTH−1z

]√
zTH−1z − zTH−1B(BTH−1B)−1BTH−1z

. (3.17)

and

J(a) = J(a∗(λ∗, µ∗)) =
√
zTH−1z − zTH−1B(BTH−1B)−1BTH−1z. (3.18)

Equations (3.17) and (3.18) simplify considerably if we impose no further conditions like,

for example, wc, on ψ, so B = b. Note that b is the first column of H, so H−1b = e0 ∈ Rn+1,

the vector with 1 in the first place and zeros elsewhere.

7B is of full rank, so Bz = 0⇔ z = 0, which means that BTH−1B is positive definite and hence invertible
for n ≥ p′, where p′ is the number of columns of B. Maple R©calculations show that, for n ≥ p′, n ≤ 12, the
inverse 1-norm condition number of BTH−1B is always greater than 109εM , where εM = 2.2204×10−16 is the
machine epsilon for the machine used in our calculations, so the worst of them is not near-singular, even if it is
far from being excellently conditioned. (for a discussion of the condition number, see Burden and Faires[39])

8Maple R©calculations show that, for n ≥ p′, n ≤ 12 and our Bs, H−1 − H−1B(BTH−1B)−1BTH−1

is positive semi-definite and of rank n − p′ + 1. But the subspace imB = {z : z = Bd, d ∈ Rp
′
} of

Rn+1 is of dimension p′ for all B of full rank (and all the Bs we consider are of full rank), [H−1 −
H−1B(BTH−1B)−1BTH−1]Bd = 0 and H−1 − H−1B(BTH−1B)−1BTH−1 ∈ R(n+1)×(n+1), so imB =
ker(H−1 − H−1B(BTH−1B)−1BTH−1). This all means that z 6∈ imB (in line with our assumption) im-
plies zTH−1z − zTH−1B(BTH−1B)−1BTH−1z > 0, at least for the conditions under consideration
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Hence, in this special case,

a =
1√

zTH−1z − z2
0

[H−1z − z0e0], (3.19)

and

J(a) =
√
zTH−1z − z2

0 , (3.20)

where we have assumed that zT[H−1−e0e
T
0 ]z 6= 0 throughout. If H−1−e0e

T
0 is positive semi-

definite (which it is for n ≤ 10), zT[H−1−e0e
T
0 ]z = 0⇔ [H−1−e0e

T
0 ]z = H−1[I−He0e

T
0 ]z =

0 ⇔ [I − beT
0 ]z = z − z0b = 0. But then either z = 0, or a ⊥ b ⇒ a ⊥ z, and, in both these

cases, J(a) = 0 for all a satisfying the constraints.

The advantage of maximising 〈f, ψ〉 over minimising
∑N

k=1(yk−ψ(xk))
2 is that the solution

to the latter optimisation involves the inversion of a matrix dependent on the positions of the

xk for each sample, whereas the former requires the inversion of a matrix which is constant

for each value of n. Even if the xk are evenly spaced as they are here, in the minimisation a

matrix inversion would have to be carried out for each pair (n,N).

In addition, fitting to an interval I over which f is constant rather than to a point x ∈ I
will have a minor regularising effect, as, if the fitted curve changes too rapidly in an interval

around x, the contributions to the error at points of I − {x} will be large.

Although H−1 can be calculated exactly, and its entries are all integers, the ratio between

the smallest and largest magnitudes of its nonzero entries decreases fairly rapidly with n, re-

sulting in a poorly conditioned matrix and restricting its use in double precision floating-point

calculations when n exceeds about 8. We can use Matlab R©’s variable precision arithmetic to

push the practically usable n to higher values, about 14, at the cost of increased processing

time.

3.2.4 Fitting wavelet triplets to the data

As our data at each time point consists of three components, yk = [ yk1 yk2 yk3 ], giving

the acceleration for each accelerometer axis, we are naturally interested in fitting a three-

dimensional entity to it, or rather the function f = [ f1 f2 f3 ] representing it. We use

wavelet triplets ψ = [ ψ1 ψ2 ψ3 ]T, where each component satisfies the condition of equa-

tion (1.2),
∫∞
−∞ ψj(x)dx = bTaj = 0, but we replace the condition of equation (1.1) by

‖ψ1‖2 + ‖ψ2‖2 + ‖ψ3‖2 = aT
1 Ha1 + aT

2 Ha2 + aT
3 Ha3 = 1, (3.21)

where, of course, ψj(x) =
∑n

k=0 ajkx
k.

We adapt the method of the previous section to fit ψ to f .

The analogue of equation (3.13) is J(a1, a2, a3) = zT
1 a1+zT

2 a2+zT
3 a3, where each zj = Ryj

for the sameR as previously, and the analogue of equation (3.16) isQ(a1, a2, a3, λ, µ1, µ2, µ3) =

λ
∑3

j=1 a
T
j Haj +

∑3
j=1(Bµj + zj)

Taj − λ.
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We quickly obtain

µj = µ∗j = −(BTH−1B)−1BTH−1zj ,

and

aj = a∗∗j (λ) = a∗j (λ, µ
∗
j ) = − 1

2λ
H−1(zj +Bµ∗j ) = − 1

2λ
H−1[I−B(BTH−1B)−1BTH−1]zj ,

so

Q∗(λ) = Q(a∗∗1 (λ), a∗∗2 (λ), a∗∗3 (λ), λ, µ∗1, µ
∗
2, µ
∗
3)

= − 1

4λ

3∑
j=1

zT
j [H−1 −H−1B(BTH−1B)−1BTH−1]zj − λ.

The equation d
dλQ

∗(λ) = 0 and the fact that we are maximising J(a1, a2, a3) then deter-

mine

λ = −1

2

√√√√ 3∑
k=1

zT
k [H−1 −H−1B(BTH−1B)−1BTH−1]zk,

so

aj =
H−1[I−B(BTH−1B)−1BTH−1]√∑3

k=1 z
T
k [H−1 −H−1B(BTH−1B)−1BTH−1]zk

zj , (3.22)

zT
j aj =

zT
j [H−1 −H−1B(BTH−1B)−1BTH−1]zj√∑3
k=1 z

T
k [H−1 −H−1B(BTH−1B)−1BTH−1]zk

, (3.23)

and

J(a1, a2, a3) =

√√√√ 3∑
k=1

zT
k [H−1 −H−1B(BTH−1B)−1BTH−1]zk. (3.24)

As in the case of fitting a single wavelet to data, when there are no additional constraints

and B = b, these simplify and

aj =
1√∑3

k=1[zT
kH

−1zk − z2
k0]

[H−1zj − zj0e0], (3.25)

zT
j aj =

zT
j H

−1zj − z2
j0√∑3

k=1[zT
kH

−1zk − z2
k0]
, (3.26)

and

J(a1, a2, a3) =

√√√√ 3∑
k=1

[zT
kH

−1zk − z2
k0]. (3.27)
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3.3 Using the fitted wavelet — ECWT libraries

3.3.1 Distance between equivalence classes

As we are primarily interested in the shape of motions characteristic of PD, rather than their

orientation in space, our libraries will actually consist of Equivalence Classes of Wavelet

Triplets, or ECWTs. Given a wavelet triplet, ψ = [ ψ1 ψ2 ψ3 ]T, its equivalence class in

the present sense is the set of all ψ′ related to ψ by a rotation (not necessarily a proper

rotation, as reflections will also be allowed):

[ψ] =


3∑
j=1

[
O1jψj O2jψj O3jψj

]T
, O ∈ O(3)

 , (3.28)

where O(3) is the set of orthogonal matrices operating on R3.

An appropriate distance between these equivalence classes is

D([ψ], [ψ′]) = min
ψ′′∈[ψ],ψ′′′∈[ψ′]

‖ψ′′ −ψ′′′‖ = min
O′′,O′′′∈O(3)

‖O′′ψ −O′′′ψ′‖

= min
O′′,O′′′∈O(3)

√√√√ 3∑
j=1

‖(O′′ψ)j − (O′′′ψ′)j‖2

= min
O′′,O′′′∈O(3)

√√√√ 3∑
j,k,`=1

(O′′jkO
′′
j`〈ψk, ψ`〉 − 2O′′jkO

′′′
j`〈ψk, ψ′`〉+O′′′jkO

′′′
j`〈ψ′k, ψ′`〉)

= min
O′′,O′′′∈O(3)

√√√√√ 3∑
j=1

‖ψj‖2 − 2
3∑

k,`=1

〈O′′jkO′′′j`ψk, ψ′`〉+ ‖ψ′j‖2



= min
O′′,O′′′∈O(3)

√√√√√2

1−
3∑

j,k,`=1

〈O′′jkO′′′j`ψk, ψ′`〉


= min

O′′,O′′′∈O(3)
‖O′′′TO′′ψ −ψ′‖ = min

O∈O(3)
‖Oψ −ψ′‖. (3.29)

As the minimisation of ‖Oψ − ψ′‖ is equivalent to the minimisation of ‖Oψ − ψ′‖2 =

2[1 − 〈Oψ,ψ′〉] = 2[1 − 〈Oψ,ψ′〉], so it is equivalent to the maximisation of 〈Oψ,ψ′〉, all

extremisations here being with respect to O and subject to O being orthogonal.

But 〈Oψ,ψ′〉 =
∑3

j,k=1Ojk〈ψk, ψ′j〉 =
∑3

j,k=1Ojka
T
kHa

′
j (where ψj(x) =

∑n
k=0 ajkfk(x),

ψ′j(x) =
∑n

k=0 a
′
jkfk(x)), so, writing Kjk = aT

j Ha
′
k, we wish to maximise Tr(OTK), subject

to O being orthogonal.

We first consider KKT. If c ∈ R3, then cTKKTc =∑3
i,`,p=1

∑n
j,k,m,q=0 ciaijHjka

′
`ka
′
`mHmqapqcp =

[∑3
p=1 cpap

]T
H
[∑3

p=1 a
′
pa
′
p

T
]
H
[∑3

p=1 cpap

]
,

so cTKKTc = 0 implies

1 c = 0;
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2 or ∃c 6= 0 such that H
[∑3

p=1 cpap

]
= 0. In this case, as H is nonsingular, we must

have the linear dependence of the vectors ap;

3 or ∃c such that H
∑3

p=1 cpap 6= 0 but
[
H
∑3

p=1 cpap

]T [∑3
p=1 a

′
pa
′
p

T
] [
H
∑3

p=1 cpap

]
=

0. In this case, the vectors a′p must be linearly dependent.

If both sets of vectors ap and a′p are linearly independent (and they almost always will be in

practice), then neither 2 nor 3 holds, and KKT will be nonsingular. Even if this is not the

case, as the vectors ap and a′p are all nonzero, KKT will be of rank at least 1. Moreover, as

K has the same rank as KKT, it will be of rank at least 1, and will be nonsingular if both

the ap and the a′p are linearly independent.

Let K = UKDKV
T
K be a singular-value decomposition of K. Then UK and VK are

orthogonal matrices and DK is a diagonal matrix which can be chosen to have descending

non-negative values along its diagonal (such a decomposition exists — see []). If K is of rank

r, DK will have r non-zero entries.

Then, as Tr(OTK) = Tr(OTUKDKV
T
K ) = Tr(V T

KO
TUKDK) = Tr(OT

KDK), where OK =

UT
KOVK is orthogonal if and only if O is, maximising Tr(OTK) subject to the orthogonality

of O is equivalent to finding the turning points of

Q(OK , L) = Tr(OT
KDK)+Tr(L(OT

KOK− I)) =
3∑
j=1

OKjjDKjj +
3∑

j,k,`=1

LjkOK`kOK`j−
3∑
j=1

Ljj

(3.30)

with respect to OK and L, where L is a matrix of Lagrange multipliers.

Now ∂
∂OKrs

Q(OK , L) = DKrs −
∑3

j=1 LjsOKrj +
∑3

k=1 LskOKrk, so ∂
∂OKrs

Q(OK , L) = 0

implies

DK +OK(L+ LT) = 0, (3.31)

At this point we assume that DK is of full rank, so L+ LT = −OT
KDK is invertible, and

OK = −DK(L+ LT)−1. (3.32)

Instead of continuing down the Lagrangian path, we impose orthogonality on the OK of

equation (3.32), in the form OT
KOK = I: (L+LT)−1D2

K(L+LT)−1 = I or L+LT = (D2
K)

1
2 ,

where (D2
K)

1
2 is one of the square roots of the diagonal positive definite matrix D2

K (we

will use (D2
K)−

1
2 for the inverse of (D2

K)
1
2 ). This means that OK = −DK(D2

K)−
1
2 and

Tr(OT
KDK) = −Tr((D2

K)−
1
2D2

K) = −Tr((D2
K)

1
2 ). Obviously, Tr(OT

KDK) is now maximised

by choosing (D2
K)

1
2 = −DK , so OK = I, O = UKV

T
K and Tr(OT

KDK) = Tr(DK). But the

diagonal elements of DK are the square roots of the eigenvalues of KKT, so

D([ψ], [ψ′]) =

√√√√2

[
1−

3∑
k=1

µ
1
2
k

]
, (3.33)

where the µk are the 3 eigenvalues of KKT.
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If we do not assume thatDK is of full rank, then it is of rank 1 or 2, and, by equation (3.31),

L+ LT will have the same rank.

If DK and L + LT are of rank 2, we can write DK =
[
DK1 0

0 0

]
, OK =

[
O1 p

qT o0

]
, where

DK1 is non-singular and DK1, O1 ∈ R2×2, p, q ∈ R2 and o0 ∈ R. We can also replace

L + LT by a spectral decomposition ULDLU
T
L , where UL is orthogonal and DL is diagonal,

with the eigenvalues of L + LT along its diagonal. These decompositions exist as L + LT

is symmetric (see any good book on linear algebra, or, for a proof including the infinite-

dimensional analogue, Bachman and Narici[40]), and ULDLU
T
L may chosen such that DL =[

DL1 0
0 0

]
, and then we can put UL =

[
U1 u
vT u0

]
, for non-singular DL1, where DL1, U1 ∈ R2×2,

u, v ∈ R2 and u0 ∈ R.

Equation (3.31) becomes DK +OKULDLU
T
L = 0 and leads to[

O1 p

qT o0

][
U1 u

vT u0

][
DL1 0

0 0

]
= −

[
DK1 0

0 0

][
U1 u

vT u0

]

or [
O1U1DL1 + pvTDL1 0

qTU1DL1 + o0v
TDL1 0

]
= −

[
DK1U1 DK1u

0 0

]
, (3.34)

which means that

u = 0 (as DK1 is non-singular),

qTU1 + o0v
T = 0 (as DL1 is non-singular) (3.35)

and O1U1DL1 + pvTDL1 = −DK1U1.

Then the orthogonality of UL means that

UT
LUL =

[
UT

1 v

0 u0

][
U1 0

vT u0

]
=

[
UT

1 U1 + vvT u0v

u0v
T u2

0

]
=

[
I 0

0 1

]
(3.36)

and we can conclude that v = 0, u0 = ±1 and U1 is orthogonal (and hence non-singular).

Using these facts in equations (3.35) leads to q = 0 and O1U1DL1 = −DK1U1. But

q = 0 and the orthogonality of OK leads to the conclusion that p = 0, o0 = ±11 and O1 is

orthogonal (by the same argument used for the sub-components of UL — we add suffixes to

±, ∓ to indicate independent instances, but, of course ∓k1 = −(±k1)).

As we have O1 = −DK1U1D
−1
L1U

T
1 , the orthogonality of O1 requires DK1U1D

−2
L1U

T
1 DK1 =

I, which implies U1D
−2
L1U

T
1 = D−2

K1. We may write U1 =
[

cos θ sin θ
∓2 sin θ ±2 cos θ

]
, θ ∈ [0, 2π) (such

an expression holds for any member of O(2)), D−2
L1 =

[
ν1 0
0 ν2

]
and D−2

K1 =
[
κ1 0
0 κ2

]
, and then

U1D
−2
L1U

T
1 =

[
cos θ sin θ
∓2 sin θ ±2 cos θ

] [
ν1 0
0 ν2

] [
cos θ ∓2 sin θ
sin θ ±2 cos θ

]
=
[

ν1 cos2 θ+ν2 sin2 θ (∓2ν1±2ν2) sin θ cos θ

(∓2ν1±2ν2) sin θ cos θ ν1 sin2 θ+ν2 cos2 θ

]
=[

κ1 0
0 κ2

]
= D−2

K1, and this can only hold if

1 ν2 = ν1, and then κ1 = κ2 = ν1, DL1 = ±3ν
− 1

2
1 I, DK1 = ±4ν

− 1
2

1 I, so O1 = ∓3 ±4 I and

Tr(OT
KDK) = ∓3 ±4 Tr(DK);
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2 or sin θ = 0, so cos θ = ±31, U1 = ±3

[
1 0
0 ±21

]
and

[
ν1 0
0 ν2

]
=
[
κ1 0
0 κ2

]
, which means

DK1 =

[
±4κ

− 1
2

1 0

0 ±5κ
− 1

2
2

]
, DL1 =

[
±6κ

− 1
2

1 0

0 ±7κ
− 1

2
2

]
, and O1 =

[∓4±61 0
0 ∓5±71

]
. Conse-

quently, Tr(OT
KDK) = ∓6κ

− 1
2

1 ∓7 κ
− 1

2
2 ;

3 or cos θ = 0, so sin θ = ±31, U1 = ±3

[
0 1
∓21 0

]
and

[
ν2 0
0 ν1

]
=
[
κ1 0
0 κ2

]
. We then

have DK1 =

[
±4κ

− 1
2

1 0

0 ±5κ
− 1

2
2

]
, DL1 =

[
±6κ

− 1
2

2 0

0 ±7κ
− 1

2
1

]
, O1 =

[∓4±71 0
0 ∓5±61

]
and

Tr(OT
KDK) = ∓7κ

− 1
2

1 ∓8 κ
− 1

2
2 .

Clearly, Tr(OT
KDK) = Tr(DK) is among the values of Tr(OT

KDK) that can be obtained here

by choice of the ±s, and is maximal among these values, so equation (3.33) also holds when

the rank of K is 2.

By an analogous argument, we will not be presented here, equation (3.33) also holds when

that rank is 1.

Before continuing, we first check that D is a distance; that, is, for all equivalence classes

[ψ1], [ψ2], [ψ3] we have

1 D([ψ1], [ψ2]) ≥ 0, and D([ψ1], [ψ2]) = 0⇔ [ψ1] = [ψ2];

2 D([ψ1], [ψ2]) = D([ψ2], [ψ1]);

3 D([ψ1], [ψ2]) +D([ψ2], [ψ3]) ≥ D([ψ1], [ψ3]).

1 and 2 are trivial consequences of the definitions of D and our equivalence classes, and we

have

‖ψ1 −ψ2‖+ ‖ψ2 −ψ3‖ ≥ ‖ψ1 −ψ3‖ ≥ D([ψ1], [ψ3]) ∀ψ1,ψ2,ψ3

⇒ ‖ψ1 −ψ2‖+ ‖ψ2 −O3ψ3‖ ≥ D([ψ1], [O3ψ3]) = D([ψ1], [ψ3]) ∀ψ1,ψ2,ψ3;O3 ∈ O(3)

⇒ ‖O1ψ1 −ψ2‖+ ‖ψ2 −O3ψ3‖ ≥ D([O1ψ1], [ψ3]) = D([ψ1], [ψ3])

∀ψ1,ψ2,ψ3;O1, O3 ∈ O(3)

⇒ D([ψ1], [ψ2]) +D([ψ2], [ψ3]) ≥ D([ψ1], [ψ3]) ∀ψ1,ψ2,ψ3.

3.3.2 L2 distance between offset triplets, and a further distance between

equivalence classes

It is trivial to extend our distance D and equivalence classes from triplets of mother wavelets

to triplets of child wavelets at scale 1 and non-zero shifts: using ψj;x0(x) = ψj(x− x0), etc.,

equation (3.28) becomes

[ψ;x0 ] =


3∑
j=1

[
O1jψj;x0 O2jψj;x0 O3jψj;x0

]T
, O ∈ O(3)
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(we note that [ψ′;x′0
] = [ψ;x0 ]⇒ x′0 = x0 — consider the supports of the functions involved),

and equation (3.29) becomes

D([ψ;x0 ], [ψ′;x′0
]) = min

ψ′′;x0∈[ψ;x0
],ψ′′′

;x′0
∈[ψ′

;x′0
]
‖ψ′′;x0 −ψ

′′′
;x′0
‖.

Of course, the extension of these things to triplets of child wavelets at different scales is

just as trivial, but we are not interested in this extension at this point.

Because of the way that shifts combine we have D([ψ1;x0 ], [ψ2;x′0
]) = D([ψ1], [ψ2;x′0−x0 ]),

and, if x0 ∈ [0, 1], we have

〈ψ1j , ψ2j;x0〉 =

n∑
k,`=0

a1jka2j`

∫ 1
2

− 1
2

+x0

xk(x− x0)`dx

= aT
1jH1(x0)a2j . (3.37)

A similar expression holds for x0 outside of [0, 1], and we have

H1k`(x0) =


∫ 1

2

− 1
2

+x0
xk(x− x0)`dx, x0 ∈ [−1, 0];∫ 1

2
+x0

− 1
2

xk(x− x0)`dx, x0 ∈ [0, 1];

0, otherwise.

(3.38)

Thus,

‖ψ1 −ψ2;x0‖
2 = ‖ψ1‖2 + ‖ψ2;x0‖

2 − 2
3∑
j=0

aT
1jH1(x0)a2j = 2

1−
3∑
j=0

aT
1jH1(x0)a2j


(3.39)

By argument completely analogous that leading to equation (3.33), except that H1(x0)

plays the role of H, we obtain

D([ψ1], [ψ2;x0 ]) =

√√√√2

[
1−

3∑
k=1

νk(x0)
1
2

]
, (3.40)

where the νk(x0) are the 3 eigenvalues of K1(x0)K1(x0)T, K1k` = aT
1kH1(x0)a2`.

We now show that it is not necessarily the case that minx0 D([ψ1;x0 ], [ψ2]) = D([ψ1], [ψ2]).



68 CHAPTER 3. THE WAVELETS AND LIBRARIES

In Figure 3.1 a), left-hand column of three diagrams, we display the triplets ψ1 (blue)

ψ11(x) =

{
2x, x ∈

[
−1

2 ,
1
2

)
;

0, otherwise,

ψ12(x) =

 1
2

√
5
3(12x2 − 1), x ∈

[
−1

2 ,
1
2

)
;

0, otherwise,

ψ13(x) =


√

7
3x(20x2 − 3), x ∈

[
−1

2 ,
1
2

)
;

0, otherwise,

and ψ2 (red)

ψ21(x) =

{
1

8
√

3
(−1680x4 + 360x2 − 9), x ∈

[
−1

2 ,
1
2

)
;

0, otherwise,

ψ22(x) =

 1
4

√
11
3 x(−1008x4 + 280x2 − 15), x ∈

[
−1

2 ,
1
2

)
;

0, otherwise,

ψ23(x) =

 1
16

√
13
3 (−14784x6 + 5040x4 − 420x2 − 5), x ∈

[
−1

2 ,
1
2

)
;

0, otherwise.

In the right-hand column, we show the squared pointwise differences between the compo-

nents of these triplets. These differences are to be integrated and summed to yield ‖ψ1−ψ2‖2.

As the set of component wavelets of these triplets is mutually orthogonal, ‖ψ1 − ψ2‖2 = 2,

and we also have ‖Oψ1 −ψ2‖2 = 2 for any O ∈ O(3), so D([ψ1], [ψ2])2 = ‖ψ1 −ψ2‖2.

In Figure 3.1 b), first column, we show ψ2;x0(x) (red), and ψ1(x)′ = Oψ1(x), where

O ∈ O(3) is arg minO′∈O3 ‖O′ψ1 − ψ2;x0‖ (blue), for x0 = 0.1. We also show ψ1(x) (blue,

dashed).

In the second column of Figure 3.1 b), we show [ψ′1j(x) − ψ2j;x0(x)]2 (magenta) and

[ψ1j(x)− ψ2j;x0(x)]2 (cyan).

Figures 3.2 c) and 3.2 d) are repeats of Figure 3.1 b), but with x0 = 0.2 and 0.3.

It may be possible to discern by inspection of Figure 3.1 b) and Figures 3.2 c) and d)

that the area under the cyan curves is greater than that under the magenta curves in the

right-hand columns of diagrams, but this is certainly the case.

In Table 3.1 we present the sums of the areas under the cyan curves (‖ψ1 −ψ2;x0‖
2) and

of those under the magenta curves (D([ψ1], [ψ2;x0 ])2), for x0 = 0, 0.1, 0.2 and 0.3, and we can

see, as would be expected, that D([ψ1], [ψ2;x0 ])2 ≤ ‖ψ1 − ψ2;x0‖
2. Moreover, as promised,

we can see that the minimum value of D([ψ1], [ψ2;x0 ]) is not obtained by putting x0 = 0.

In fact, as we can see from Figure 3.3, which plots D([ψ1], [ψ2;x0 ])2 and ‖ψ1 − ψ2;x0‖
2

against x0, the global minimum of D([ψ1], [ψ2;x0 ]) is attained near x0 = ±2. More accurate

values of the positions of this minimum are given in Table 3.1.

Leaving behind these particular examples of [ψ1] and [ψ2], for arbitrary ECWTs we can
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Figure 3.1: a) x0 = 0 — first column: component wavelets of the first triplet are in blue, those of

the second are in red; second column: squared pointwise difference of wavelets in the first column;

b) x0 = 0.1 — first column: original wavelets of first triplet are dashed, the red wavelets are moved 0.1

to the right, and the solid blue curves represent the member of the equivalence class of the first triplet

which is closest to the shifted second triplet; second column: squared pointwise differences between

the red and blue dashed curves (cyan) and between the red and solid blue curves of the first column

(magenta) (or blue where curves are coincident)
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Figure 3.2: c) and d) are analogous to Figure 3.1 b) for x0 = 0.2, 0.3
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Offset

Square distance 0 0.1 0.2 0.3 ±0.2067

‖ψ1 −ψ2;x0‖
2 2 1.7685 2.2921 2.3588 2.3152

D([ψ1], [ψ2;x0 ])2 2 1.5233 1.4659 1.5038 1.4655

Table 3.1: ‖ψ1 − ψ2;x0
‖2 and D([ψ1], [ψ2;x0

])2 for the values of x0 of Figures 3.1 and 3.2, and for

x0 = arg minx0 D([ψ1], [ψ2;x0
])2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x
0

0

0.5

1

1.5

2

Figure 3.3: Plots of D([ψ1], [ψ2;x0
])2 (blue) and ‖ψ1 −ψ2;x0

‖2 (red) against x0

define

D∗([ψ1], [ψ2]) = min
x0

D([ψ1], [ψ2;x0 ]) (3.41)

(we can use min instead of inf here, as we know x0 is in the compact set [−1, 1]).

We will discuss the motivation for this definition at a later point, but here we will satisfy

ourselves that D∗ is, in fact, a distance function.

Obviously, D([ψ1], [ψ2;x0 ]) ≥ 0 ∀x0 ⇒ D∗([ψ1], [ψ2]) ≥ 0. Moreover, if for a particular

x0, D([ψ1], [ψ2;x0 ]) = 0, then [ψ1] = [ψ2;x0 ]. But this is impossible for x0 = 0, as it would
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imply that a non-zero polynomial was zero on a non-trivial interval. Hence, D∗([ψ1], [ψ2]) =

0 ⇒ ∃x0 : D([ψ1], [ψ2;x0 ]) = 0 ⇒ D([ψ1], [ψ2]) = 0 ⇒ [ψ1] = [ψ2]. That D∗([ψ1], [ψ2]) =

D∗([ψ2], [ψ1]) follows almost by definition.

We now need only prove D∗([ψ1], [ψ2]) +D∗([ψ2], [ψ3]) ≥ D∗([ψ1], [ψ3]). But

D([ψ1], [ψ2;x0 ]) +D([ψ2], [ψ3;x′0
]) = D([ψ1;−x0 ], [ψ2]) +D([ψ2], [ψ3;x′0

]) ∀x0, x
′
0 ⇒

D([ψ1], [ψ2;x0 ]) +D([ψ2], [ψ3;x′0
]) ≥ D([ψ1;−x0 ], [ψ3;x′0

]) ∀x0, x
′
0 ⇒

D([ψ1], [ψ2;x0 ]) +D([ψ2], [ψ3;x′0
]) ≥ D([ψ1], [ψ3;x0+x′0

]) ∀x0, x
′
0 ⇒

D([ψ1], [ψ2;x0 ]) +D([ψ2], [ψ3;x′0
]) ≥ D∗([ψ1], [ψ3]) ∀x0, x

′
0 ⇒

D∗([ψ1], [ψ2]) +D∗([ψ2], [ψ3]) ≥ D∗([ψ1], [ψ3]).

3.3.3 A canonical representative of the equivalence class

As different representatives of the same equivalence class can look very different, comparisons

of the ECWT will be difficult, unless we pick out a special representative of each class which

depends continuously (in some sense) on the classes.

In order to make our definition of this canonical representative, we first need a reference

wavelet, ψref . We choose ψref to be the wavelet (of our form) with underlying polynomial of

least degree, and such that ψref(x) is nonnegative on some interval
[
−1

2 ,−
1
2 + ε

)
. The zi and

ue conditions suffice to determine ψref(x) =

{
−2
√

3x, x ∈
[
−1

2 ,
1
2

)
;

0, otherwise.

Given a wavelet triplet ψ, we will find ψ′ ∈ [ψ] which maximises ‖ψ′1‖2, as well as

maximising ‖ψ′2‖2 subject to ‖ψ′1‖2 = maxψ′′∈[ψ] ‖ψ′′1‖2. Then ‖ψ′3‖2 will be fixed at 1 −
‖ψ′1‖2 − ‖ψ′2‖2. As the ψ′ will only be determined up to the signs of its components, we will

use ψref to determine these signs.

First, let ψ′ ∈ [ψ]. Then there exists O ∈ O(3) such that ψ′k =
∑3

j=1Okjψj , so ‖ψ′1‖2 =∑3
k,j=1O1kO1ja

T
kHaj . Writing Rjk = aT

kHaj and letting O1 be the first row of O, we wish

to find O1 maximising O1RO
T
1 , subject to O1O

T
1 = 1. Obviously, O1 = ±1r

T
3 will maximise

‖ψ′1‖2, where r3 is a unit eigenvector of symmetric and positive semi-definite R corresponding

to a maximal eigenvalue of R.

But there exists a unit eigenvector r2 of R orthogonal to r3, whose eigenvalue is either

also maximal or is the largest among the submaximal eigenvalues. Setting the second row

of O, O2 = ±2r
T
2 , where ±2 is independent of ±1, will maximise ‖ψ′2‖2, under the condition

that ‖ψ′1‖2 is maximal.

Specifying the first two rows of O ∈ O(3) determines the third row up to sign, but it will

be the case that O3 = ±3r1, with the obvious notation.

Consequently, ψ′j = ±j
∑3

k=1 r4−j,kψk, and we now determine

the signs by maximising 〈ψj , ψref〉 = ±j
∑3

k=1 r4−j,k〈ψk, ψref〉 =

±j
∑3

k=1 r4−j,ka
T
kHaref = ∓j2

√
3
∑3

k=1 r4−j,ka
T
kH[ 0 1 0 0 · · · ]T =

∓j2
√

3
∑3

k=1 r4−j,ka
T
k [ 0 1

12 0 1
80 0 · · · ]T = ∓j2

√
3
∑3

k=1 r4−j,kd
T
refak so we

require ∓jdTr4−j ≥ 0, where dref =
[

0 1
12 0 1

80 0 · · · 1−(−1)n

2n+2(n+2)

]T
,
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d = [ dT
refa1 dT

refa2 dT
refa3 ]T. Hence, we set ±j = − sgn dTr4−j .

3.3.4 Generating the library

At this point, as we are finding the equivalence class containing the triplet closest to a function

representing the data, we can allow that triplet to stand in for its class in our calculations.

We will suppose we are given a set of training data (t1,v1), (t2,v2), . . . , (tM ,vM ) from

which we are to derive a library. As our data consists of three traces, one for each channel

of our tri-axial accelerometer, we will fit a wavelet, in the fashion described above, to each

channel independently.

In the case of unsupervised learning, every window Wwk of length w in the training data,

(tk−w+1,vk−w+1), (tk−w+2,vk−w+2), . . . , (tk,vk), k = w,w + 1, . . . ,M , for w in some set Sw,

has a wavelet triplet ψ(wk) fitted to it. Of course, this would result in the production of a

vast library if some pruning was not undertaken during the library construction process.

We first choose the desired size of our library, Nlib, and some Nsuper � Nlib. A third

parameter of the library generation process is the positive integer, peak half-width, hpeak.

We then consider the quantity Gfit(w, `) =

[∑3
j=1

∣∣∣〈f (w`)j ,ψ
(w`)
j

〉∣∣∣]2∑3
j=1

∥∥∥f (w`)j −f̄ (w`)j

∥∥∥2 for the wavelet triplet

ψ(w`) =
[
ψ

(w`)
1 , ψ

(w`)
2 , ψ

(w`)
3

]T
fitted to Ww,`, the `th data window of width w, where f

(w`)
j is

the function modelling that data and f̄
(w`)
j is the mean of f

(w`)
j .

ψ0 = [ψ01, ψ02, ψ03]T, where ψ0j(x) =
fj(x)−f̄j√∑3

k=1 ‖fk(x)−f̄k‖2
is a wavelet triplet, although

not of our form, and maxψ′is a wavelet triplet

∑3
j=1〈fj , ψ′j〉 = maxψ′is a wavelet triplet

∑3
j=1〈fj −

f̄j , ψ
′
j〉 =

∑3
j=1〈fj − f̄j , ψ0j〉 =

√∑3
j=1 ‖fj − f̄j‖2. This is an upper bound for

∑3
j=1〈fj , ψj〉

for ψ of our form satisfying the conditions for a CWT, equations (1.1) and (1.2), so Gfit is a

measure of the GoF (goodness of fit) of ψ to f .

Using equation (3.24), we can write Gfit in terms of the transformed data z:

Gfit(w, `) =

∑3
j=1 z

T
j [H−1 −H−1B(BTH−1B)−1BTH−1]zj∑3

j=1

∥∥∥f (w`)
j − f̄ (w`)

j

∥∥∥2 . (3.42)

If B = b, we can use equation (3.27) and obtain the simpler expression

Gfit(w, `) =

∑3
j=1[zT

j H
−1zj − z2

j0]∑3
j=1

∥∥∥f (w`)
j − f̄ (w`)

j

∥∥∥2 . (3.43)

instead.

We first wish to find the wavelet triplets which are a reasonable fit to the data. A

secondary aim is to avoid selecting near-identical triplets.
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To this end, for each w, we initialise the set of candidate indices Cw by

Cw = {` : (` = w and Gfit(w, `) ≥ Gfit(w, `+ 1))} ∪

{` : (` = M and Gfit(w, `) ≥ Gfit(w, `− 1))} ∪

{` : (w < ` < M and Gfit(w, `) ≥ Gfit(w, `− 1) and Gfit(w, `) ≥ Gfit(w, `+ 1))},

and A and D to ∅ where A is the set of accepted indices, and D the set of indices to be

deleted.

Let rw(`) be the rank of Gfit(w, `) when the Gfit(w, `
′) are sorted in decreasing order9.

Then, until Cw − D = ∅, find `0 = arg min`∈Cw−D{rw(`)} and set A := A ∪ {`0} and

D := D ∪ {` : `0 − hpeak ≤ ` ≤ `0 + hpeak}.
When this process has been completed, we set Cw := A. In this way, for each w we have

selected the highest peaks in Gfit(w, `) that are separated by at least hpeak steps in `, and thus

avoided choosing near identical wavelet triplets derived from data in neighbouring windows.

On the completion of similar processes for all w, set C =
⋃
w∈Sw{(w, `) : ` ∈ Cw},

and Lsuper = {ψ(w`) : (w, `) ∈ C}. We then order and relabel Lsuper according to de-

creasing Gfit(ψ
(w`)), so Gfit(ψ1) = Gfit(ψ

(w1`1)) ≥ Gfit(ψ2) = Gfit(ψ
(w2`2)) ≥ . . ., where

each (wk, `k) ∈ C. The final step in constructing Lsuper is to discard any ψk such that

Gfit(ψk) < Gfit(ψNsuper), leaving Lsuper = {ψ1,ψ2, . . . ,ψN ′super
}. It is not necessarily the

case that N ′super = Nsuper (if, before this discard stage, Lsuper < Nsuper, then N ′super < Nsuper

and, if Gfit(ψNsuper+1) = Gfit(ψNsuper), then N ′super > Nsuper), but, if the two quantities dif-

fer greatly, there is either insufficient data to build the full Lsuper or there are a pathological

number of ties between values of Gfit(ψk).

In practice, because of memory considerations, we divide the input into epochs of a length

which is much greater than our window lengths, but much shorter than the entire data series.

For each window length, w, we process each epoch, adding the resultant triplets to Lsuper,

until it is of size Nsuper. Thereafter, each new ψ replaces ψ′ = arg minψ′′∈Lsuper Gfit(ψ
′′) in

Lsuper if Gfit(ψ) > minψ′′∈Lsuper Gfit(ψ
′′).

In its simplest form, this division of the data into epochs leads to some loss of data, as

if a data series contains L points, there are L − w + 1 windows of length w into it, so, if

Lepoch is the length of an epoch and Nepoch is the number epochs in the data (assumed to

be an integer), then the number of windows into all the epochs is Nepoch(Lepoch − w + 1) =

L − Nepoch(w − 1) < L − w + 1 if Nepoch > 1. Although this loss can be circumvented by

carrying information from one epoch to its successor, we estimate that the data loss will only

rarely be significant (at least if Lepoch � w), and do not do this.

There is also a tiny bias in this procedure towards ψ derived from the epochs and window

lengths that are first processed, as they may find themselves in Lsuper before others with the

same value of Gfit, which will not be able to displace them, but this bias is not likely to

realised in practice.

9We accept the order returned by whichever sorting algorithm we choose when there are ties
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Note that in the determination of the members of Lsuper we have not needed to calculate

the component wavelets of the member triplets.

3.3.5 Reducing Lsuper to L

We now wish to further prune Lsuper to produce our final library L while ensuring that the

ECWTs in L are reasonably distinct from one another10, and also representative of Lsuper.

One way of doing this is to use a clustering algorithm on Lsuper, and select the cluster centres

as L, as the points close to the centres will be in their cluster and will be automatically

excluded from L. As this selection depends on the distances between members of Lsuper, and

not their Goodness of Fit, we call this stage of the process selection on distance.

We do not expect that the results of our method will depend critically on the goodness

of the clustering here, so we regard it as permissible to set the number of centres in advance

to the desired size of L.

Of course, to be consistent with our implicit definition of similarity, we will need to cluster

based on the distance given by equation (3.33).

But, to use equation (3.33), we need to explicitly calculate the wavelet triplets in Lsuper

which are fitted to the data, as in the previous section, 3.3.4. In order to exploit the advan-

tages listed in section 3.3.3, we then transform this wavelet triplet to the canonical represen-

tative of its equivalence class.

We would now like to use the k-medoids algorithm (Jin and Han[41]) on these equivalence

classes, as this algorithm produces cluster centres which lie in the set being clustered, in line

with our aim of producing a subset of Lsuper to use as L.

Given a set of vectors V, a distance measure d between them and the integer k, this

attempts to find the subset K of V of cardinality K = k such that
∑

w∈K
∑

v∈Vw d(v, w) is

minimised, where Vw = Vw< ∪ Vw=, Vw< = {v ∈ V : d(v, w) < d(v, w′)∀w′ ∈ K − {w}},
Vw= = {v ∈ V : d(v, w) ≤ d(v, w′), dt(v, w) < dt(v, w

′)∀w′ ∈ K − {w}} − Vw< for some

algorithm-dependent tie-breaking function dt.

The input to the k-medoids algorithm would be the canonical representatives of the mem-

bers of Lsuper, the distance measure would be D∗ (of equation (3.41)), and the k parameter

would be be Nlib. The output would be the indices of L in Lsuper, i.e., we would use the

medoids as L.

If V were reasonably small, an exhaustive search for K could be carried out, but, with sets

of larger cardinality, algorithms, such as those supplied in Matlab R©’s Statistics and Machine

Learning Toolbox, which return a possibly sub-optimal K, will need to be employed.

However, when using these approximate algorithms, Nsuper and Nlib are too large in

combination for k-medoids to finish in a reasonable time, so we have had to employ a “divide

and rule” strategy — we initially divide Lsuper into much smaller sets of neighbouring ECWTs,

apply k-medoids to each of these sets in turn, and then unite the resulting medoids into a set

10The hope is that the movement patterns are also distinct, but this needs to be one of the things which
are evaluated at a later stage



76 CHAPTER 3. THE WAVELETS AND LIBRARIES

to which we apply a variant of k-medoids, so obtaining medoids of medoids. In other words,

we achieve an hierarchical clustering.

The reason we use a variant of k-medoids for the higher-level clustering is that we need to

take the cluster sizes after the lower-level clustering into account, in order to ensure that the

higher-level centres reflect the lower-level clustering. For example, we do not wish to choose

low-level medoids whose clusters are both small and isolated as high-level ones.

For this purpose, we use a tiling technique, similar to that employed in the SIVIA (Set

I nversion V ia I nterval Analysis) algorithm (see, e.g. Jaulin and Walter[42]).

Given a set of points P ⊂ Rnp such that P = Np, and a target length Ntar = target the

algorithm is, in pseudo-code,

1 define a one-element list, Tiles = [Tiles(1)] containing a tile structure with fields

Min consisting of a vector in Rnp such that Min(i) = minx∈P xi;

Max consisting of a vector in Rnp such that Max(i) = maxx∈P xi;

members consisting of a vector in NNp with elements 1, 2, 3, . . . , Np, representing the

members of P;

dims consisting of a vector in Nnp with elements 1, 2, 3, . . . , np, representing the dimen-

sions of Rnp .

2 while max(length(Tiles(1).members), length(Tiles(2).members),...)) >

target

(a) find the first index, i, such that length(Tiles(i).members) =

max(length(Tiles(1).members), length(Tiles(2).members),...));

(b) set Tiles = [Tiles(1), Tiles(2),..., Tiles(i-1), Tiles(i+1),...,

Tiles(length(Tiles)), split(Tiles(i))].

Here split is the function newTiles = split(Tile) which does the following:

1 for each i find div(i) = (Tile.Min(i) + Tile.Max(i))/2;

2 for each i find {x ∈ P : Tile.Min(i) ≤ xi < div(i)} and set lMems(i) to this;

3 for each i find {x ∈ P : div(i) ≤ xi < Tile.Max(i)} and set uMems(i) to this;

4 find the first i0 such that abs(uMems(Tile.dims(i0))-lMems(Tile.dims(i0))) =

min(abs(uMems-lMems));

5 (a) if {x ∈ P : Tile.Min(Tile.dims(i0)) ≤ xi < div(Tile.dims(i0)} = ∅ then

i. set
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Tile1.Min := Tile.Min,

Tile1.Max := Tile.Max,

Tile1.Min(Tile.dims(i0)) := div(Tile.dims(i0)),

Tile1.members := Tile.members,

Tile1.dims := [Tile.dims(1), Tile.dims(2),...,

Tile.dims(i0-1),...

Tile.dims(i0+1),...,

Tile.dims(i0)];

ii. set newTiles = [Tile1];

(b) else if {x ∈ P : div(Tile.dims(i0)) ≤ xi < Tile.Max(Tile.dims(i0)} = ∅

i. set
Tile1.Min := Tile.Min,

Tile1.Max := Tile.Max,

Tile1.Max(Tile.dims(i0)) := div(Tile.dims(i0)),

Tile1.members := Tile.members,

Tile1.dims := [Tile.dims(1), Tile.dims(2),...,

Tile.dims(i0-1),...

Tile.dims(i0+1),...,

Tile.dims(i0)];

ii. set newTiles = [Tile1];

(c) else

i. set
Tile1.Min := Tile.Min,

Tile1.Max := Tile.Max,

Tile1.Max(Tile.dims(i0)) := div(Tile.dims(i0)),

Tile1.members := Tile.members,

Tile1.dims := [Tile.dims(1), Tile.dims(2),...,

Tile.dims(i0-1),...

Tile.dims(i0+1),...,

Tile.dims(i0)];

Also, set Tile1.members to the indices in Tile.members of {x ∈ P :

Tile.Min(Tile.dims(i0)) ≤ xi < div(Tile.dims(i0)};
ii. set

Tile2.Min := Tile.Min,

Tile2.Max := Tile.Max,

Tile2.Min(Tile.dims(i0)) := div(Tile.dims(i0)),

Tile2.members := Tile.members,

Tile2.dims := [Tile.dims(1), Tile.dims(2),...,

Tile.dims(i0-1),...

Tile.dims(i0+1),...,

Tile.dims(i0)];
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Also set Tile2.members to the set difference of Tile.members and

Tile1.members;

iii. set newTiles = [Tile1, Tile2]

(we have used Matlab R©-like syntax in which, if u is a vector, u(i) is the ith component of

the vector, and functions like abs and min operate over the components of any vector they

are applied to).

Basically, this algorithm iteratively splits boxes (“tiles”) containing points of a set into

halves, choosing the (axis-parallel) hyperplane of division so that the two halves each contain

as close to half the points as possible.

At each step, the box containing the most points is chosen for division. The purpose

of the dims field is to (at least minimally) reduce the number of times that the divisions

occur parallel to any particular hyperplane, as we suspect that thin slices of space will be

undesirable.

The algorithm halts when the maximal number of points in a tile is sufficiently small, less

than, say, Tmax. For our purposes, a number of the order of 150 appears to suffice11.

An illustration of the tiling algorithm is given in Figure 3.4.

We now have obtained much smaller sets on which to use k-medoids with the distance

D∗, the intersections of the set of ECWTs in Lsuper with the “boxes” resulting from the tiling

algorithm, and we now apply that algorithm to these sets.

We first choose k0 such that k0nt > Nlib, where nt is our final number of tiles (= number

of subsets of Lsuper we are applying k-medoids to) by a factor > 1, and apply k-medoids with

k = k0 to each of our subsets. The resulting centres (bottom-level centres in our eventual two-

level hierarchical clustering), will be placed into a set L′super, and a corresponding weighting

will be assigned to each centre, equal to the number of equivalence classes in it12.

When our algorithm is run with reasonable values of Tmax and k0, and calls kmedoids

with Matlab R©’s default parameters, it results in an execution time of a couple of hours over

all of our subsets.

Our weighted version of k-medoids is simply Partition Around Medoids (see

Jin and Han[41]) with the target for reduction,
∑

w∈K
∑

v∈Vw d(v, w) replaced by∑
w∈K

∑
v∈Vw µvd(v, w), where µv is the weight assigned to v. We implemented this with

a similarly modified version of k-means++ (for improved initialisation; — for the original

algorithm, see Arthur and Vassilvitskii[43]), and the only options we provided are the number

of replicates (runs with independently selected random starting centres — obviously not uni-

formly random — that’s the point of k-means++!) and the maximum number of iterations

for each replicate.

Both modified algorithms are equivalent to the originals run with a number of duplicates

for each point equal to its weight here, except that the computational complexity depends

11Although this tiling technique seems more compatible with Euclidean distances than the distance D∗ of
equation (3.41), we believe the subsequent use of variants of k-medoids will overcome any problems caused by
this

12If any subset has cardinality less than k0, we simply place all its points into Lsuper, each with weighting 1
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Figure 3.4: Tiling algorithm: top left: original space to be split up, with possible split planes; top

right: initial tiling, chosen for the most numerically even division. The posssible split planes are

shown for the tile with the most members; bottom left: new tiling, chosen for the most even split. The

possible split planes are shown for the tile with the most members; bottom right: final tiling. Although

the possible split planes would have resulted in equally even divisions of the split tile, one was chosen

on the basis of being orthogonal to the previous split plane

on the number of unique points rather than the sum of their weights, which is much greater.

It seems plausible that the final use of the modified algorithm will frequently reunite

clusters rent asunder by the initial tiling.
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3.3.6 Example13: 1) fitting the triplets

As an example of this procedure, we carry it out on some data in the nominal ±2g range

(so actually in
(
−2 5

18 , 2
5
18

)
g), sampled at 500Hz, and stemming from a NAT attached to the

right wrist of a PD subject, PD1, going about their normal daily activity for 6 hours (so the

data consists of 6 × 60 × 60 × 500 = 1.08 × 107 triplets of accelerations). The particular 6

hours was chosen to avoid saturation (readings equal to ±2 5
18g). We used window lengths

76, 80, 84, . . . , 140, 144 (corresponding to 6.58, 6.25, 5.95, . . . , 3.57, 3.47Hz, and therefore in-

cluding the ∼4-6Hz region which Fourier analysis has been shown to be important for this

PD subject). We use wavelets without any further conditions beyond ue and zi, and set n

to 5, Nlib to 100, and Nsuper to 104. Finally, we choose an hpeak of 10, roughly a tenth of the

width of the windows, and an epoch length of ten minutes or 3× 105 samples.

As the windows into the data move along the input, the components of z may be obtained

by using the components of R (of equation 3.15) as a filter. In Figure 3.5, we show the filters

for each component of z when the window length is 108. The filters for z2 and z4 are fairly

similar in shape, and this similarity between those for z3 and z5 is even greater.
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Figure 3.5: Filter components, for n = 5, window length 108

Figure 3.6 depicts sample input traces for the three acceleration channels (this sample is

actually near where the best Gfit was obtained for windows of length 108, but we are getting

ahead of ourselves here).

13The example has been developed in parallel with the software used to generate it. There may be minor
discrepancies in the illustrative data as a result of this, but the purpose of the example is to illustrate, not
to prove anything about the efficacy of the procedures, so these discrepancies are of no major importance.
Nevertheless, it is only pressure of time that has prevented the reworking of the example from the start
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Figure 3.6: Traces of the input near where the best Gfit for window length 108 was obtained. The

green part of the traces contributes to the first values of zj in Figure 3.7, the red part contributes to

the values of zj involved in the best Gfit

Now we can derive our zs, by applying the filters of Figure 3.5 to the data of Figure 3.6.

When we do so, we obtain Figure 3.7. Note that we drop the first 107 points of these traces,

as they are derived from incomplete windows whose start point precedes that of the data; in

other words, they are derived from a mixture of padding and actual input.

We can immediately see that the curves for z2 and z4 have a similar shape, reflecting the

similarity in shape of the filters for these quantities, and that the same is true of the z3 and

z5 curves, with the same explanation.

With the zs at our disposal, we can now find Gfit(108, `), using equation (3.43). This

is shown in Figure 3.8. The largest peak is actually the greatest value achieved by Gfit for

window length 108 within our 6 hours of data. (For illustrative purposes, we have used

hpeak = 27, a quarter of the window length, in the Figure, rather than hpeak = 10, which

we have used in the example itself. The trace of Gfit is what was derived in the example,

however.)

All of this can be done without actually calculating the wavelet triplet ψ, but here, in

Figure 3.9, we show the as for the wavelet triplet of best fit, and for the wavelet triplets

derived from neighbouring windows, obtained via equation (3.25).

We note that the magnitude of the values of a3j (gold) are large for even j at the triplet

of best fit, compared to the other as at this point, and the as at most other points.
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Figure 3.7: zj, j = 0-5. The zs for Channel 1 are drawn in blue, those for Channel 2 in red, and the

gold traces relate to Channel 3. The dotted vertical line shows the location of the best value of Gfit for

window length 108

We can now plot the wavelet triplets themselves, and we have done this for the best-

fitting wavelet triplet and its eight neighbours in time in Figure 3.10. In this Figure, we

have vertically scaled the triplets to bring them closer to the data, which is legitimate, as

our interest is in the wavelet content in the data, and such scaling is consistent with the

approach. The vertical shifting for the same purpose is also permissible, as the mean of the

data plays no role in the analysis of its shape.

It can be seen that the third component of the best fitting triplet (shown in magenta) is

larger than the other components and we believe that it is visibly dominated by the component

which is even about its midpoint, which is consistent with what has just been said regarding

the values of the as at the best-fitted wavelet triplet.

Figure 3.10 confirms that triplets generated by data in neighbouring windows can be very

similar, and supports our decision to drop triplets at maxima in the Gfit trace which are in

the neighbourhood of larger maxima.

The similarity between the equivalence classes represented by the triplets of Figure 3.10

may be even greater, as the freedom to rotate the triplets will almost certainly remove some

of their difference, although this is not particularly apparent in Figure 3.11, which displays

the canonical representative triplets of the equivalence classes. Despite the fact that these

representatives are now horizontally aligned, are vertically centred and have the same vertical

scale, the curves are not appreciably closer together.

One thing is revealed by the use of the canonical representation is that most of the
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Figure 3.8: Gfit(108, `), near the the maximum value for window length 108, Gfit(108, 401) = 0.9510.

Peaks which are not too near higher peaks (within a quarter of the window length 108 of them in this

case) are ringed, and the curve in the region they “dominate” is in the same colour as the ring (the

small “undominated” region is in black). The ringed peaks correspond to wavelets which are candidates

for the initial library, Lsuper

acceleration, apparently especially at the best-fitted wavelet triplet (magenta), is in a plane,

as ‖ψ′3‖2 = 0.0022, compared to ‖ψ′1‖2 = 0.6985 and ‖ψ′2‖2 = 0.2993, for the best-fitting

triplet.

For the neighbouring triplets, these numbers obey 0.0017 ≤ ‖ψ′3‖2 ≤ 0.0081, compared to

0.6583 ≤ ‖ψ′1‖2 ≤ 0.7159 and 0.2818 ≤ ‖ψ′2‖2 ≤ 0.3336 (so there are cyan curves in the lower

diagram that are even flatter than the magenta one, so the motion is even more dominated

by its components in a particular plane).
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Figure 3.9: a·j, j = 0-5. The as for Channel 1 are drawn in blue, those for Channel 2 in red, and

the gold traces relate to Channel 3. The dotted vertical line shows the location of the best value of Gfit

for window length 108
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Figure 3.10: The best-fitted (child) wavelet triplet for window length 108. The data supporting this

triplet is represented by horizontal red lines, and the triplet itself is shown in magenta. Also shown are

neighbouring triplets (cyan), and the data (blue) which supports these, but not the best-fitted triplet.

Note that the triplets (not the individual wavelets) have been scaled and the individual wavelets have

been shifted vertically to obtain the best visual match to the data, so zi and ue are apparently not

obeyed. They are also aligned horizontally to the data which supports them. The vertical axes are to

the same scale for each channel
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wavelet triplets of Figure 3.10
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3.3.7 Example: 2) Building Lsuper

Now that we have Gfit(ψ) for our candidate members of Lsuper, we can slim down the can-

didate list by choosing the local maxima of that quantity, and then removing such maxima

dominated by neighbouring ones, as described above and depicted in Figure 3.8. Then we

select from the remaining candidates by thresholding the actual value of Gfit to form the

membership list of Lsuper.

The next step is to actually calculate the members of Lsuper, as the ψ will be needed to

determine L ⊂ Lsuper.

The results of this process, L, will then have some of its characteristics compared to those

of Lsuper later.

3.3.8 Example: 3) Selecting L

We have three stages in our reduction of Lsuper to L:

1 the tiling of Lsuper to yield tiles each containing at most Ntar members of Lsuper. We

call the intersection of the sth tile and Lsuper, Ts. Of course, Lsuper =
⋃
s Ts and

Ts ∩ Tr = ∅, r 6= s;

2 the use of k-medoids on each of the Ts of sufficiently large cardinality, to produce (at

most) k0 low-level centres for each subset. We call these centres µlow,q, and together

they form L′super ⊂ Lsuper;

3 and the use of a variant, weighted, k-medoid algorithm to produce the Nlib higher-level

centres, called µhigh,i, which constitute L ⊂ L′super ⊂ Lsuper.

We select Ntar = 150, k0 = 3, the number of replicates for the variant version of k-medoids

to be 5, and the maximum number of iterations per replicate to be 10.

The tiling phase produces 96 tiles, none of which contain fewer than four members, so we

apply Matlab R©’s default k-medoids algorithm to all 96 of these subsets. This produces 288

lower-level centres for the weighted k-medoids algorithm to work on to produce Nlib = 100

clusters of lower-level centres.

Let Clow,q be the cluster of points of Lsuper associated with µlow,q by the application of

k-medoids in stage 2 above, and let C′high,i be the cluster of the µlow,qs associated with µhigh,i

by the weighted k-medoids algorithm in stage 3. Then we can define the higher-level clusters

of points by Chigh,i =
⋃
{q:µlow,q∈C′high,i}

Clow,q.

In Figure 3.12 we present histograms of the cardinality of the Tss, the Clow,qs and the

Chigh,is. The number of members in the Tss is in the range 54–150, with a peak at 130,

with 5 of the 96 Tss having this many members. From a visual inspection, Ts has no obvious

underlying approximate distribution. Its median value is 102.5, with first and third quartiles

at 82.5 and 129.

Although k-means clustering as we apply it to a Ts only produces three centres, the

clusters, Clow,qs, belonging to these centres do not have to be of equal cardinality, and the
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Figure 3.12: Histograms of the cardinality of the various subsets of Lsuper (each bin in the histograms

covers one value)

central histogram of Figure 3.12 displays the distribution of these cardinalities. We can just

about characterise this distribution as very roughly normal, with mean 34.72 and standard

deviation 20.09, but with significant skewing (its skewness is 0.91). It is, of course, necessarily

also truncated, as the minimum cardinality of a Clow,q is 1, and its theoretical maximum

(achieved when its containing Ts has its maximum theoretical cardinality of 150 and the

clusters found in it include two one-member clusters) cardinality is 148. In this case, the

maximum cardinality of Ts is 150, but the cardinality of Clow,q is in the range 3-110.

The weighted version of k-means as applied to L′super produces 100 high-level clusters as

a by-product of the construction of L. The empirical distribution of the cardinality of these

high-level clusters, the Chigh,is, is shown in the bottom diagram in Figure 3.12. Again, this

is very roughly normal, with mean 100 (=
Nsuper
Nlib

) and standard deviation 95.60, but with

significant distortions (e.g., truncated to the range 10-507, skewness 1.098).

The final phase, using our weighted k-medoids algorithm, only takes at most four iter-

ations in each of the five replicates we allowed, indicating that, in this case anyway, the

low-level centres naturally fall into well-defined clusters (at least, in so far as “well-defined”

is equivalent to “easily computable”) at the higher level.

3.3.9 Example: 4) Characteristics of L and Lsuper

In what follows, remember that Lsuper is selected only on a criterion derived from the GoF

traces for each fixed window length, and L is selected from Lsuper only on the basis of
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clustering.

In Figure 3.13, we show the regions in the trace from which the wavelets in Lsuper and L
stem: the upper histogram refers to Lsuper, the lower to L. Interestingly, the upper diagram

shows that the best-fitting wavelet triplets originate from four fairly well-defined regions in the

trace (possibly where signal to noise is high?), around epochs 2, 17, 24 and 32, and the lower

diagram shows that selection on distance only has a limited effect on these concentrations.

The empirical distribution of the originating epoch is more concentrated around epochs 2,

26 and 32 for L (with most of the extra concentration coming from the epochs away from 2,

17, 24 and 32, plus a little from the epochs around 17). A possible explanation is that the

ECWTs stemming from the epochs away from 2, 24 and 32 tend to be away from the centre

of real clusters in the data, whereas those near 2, 24 and 32 are more centrally located in

these real clusters, and tend to be selected as centres and thus make it into Lsuper, and the

other changes in the histograms have similar causes.14.
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Figure 3.13: Histogram of the window positions in the trace giving rise to the triplets in the library.

Top: before selection on distance; bottom: after selection on distance

In Figure 3.14, we show the window lengths giving rise to our triplets at the two stages

of the process. The empirical selection probability for Lsuper (upper diagram) is roughly

constant with respect to increasing window length over the first few lengths, and around a

half of the triplets are associated with window lengths 76–98. The selection probability starts

a steady decline from length 86. Except for minor details, the shorter the window length, the

more likely it is to give rise to a triplet (and, in more detail, the selection probability15 declines

14There is no bias towards any part of the interior — i.e., (one window length - 1) samples away from the
start — of the trace in the algorithm

15The fact that there are marginally more ECWTs to be selected from for shorter window lengths is very
likely of minor importance
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roughly linearly with window length, after the initial roughly flat part of the histogram). This

is probably due to the fitting process being easier if there are fewer values in the data to be

fitted.
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Figure 3.14: Histograms of window lengths

In L, this pattern of a short rise, followed by a steady decline in selection probability with

window length is apparently broken. In this particular data set, at least, there is peak for the

smallest windows, then a sharp drop, followed by the ECWTs with windows in the second

quarter of the range mostly having boosted empirical selection probabilities, so ECWTs

generated on windows of length around 92-108 are more likely to be in the centre of high-

level clusters. However, we cannot rule out the possibility that the boosting of these selection

probabilities at the expense of the others is merely an artefact of a particular uniformly

random selection of L from Lsuper.

Figure 3.15 displays the GoF for the various triplets in the library. For Lsuper, the fre-

quency of the values of GoF decreases almost linearly with the value, becoming quite small

for the rightmost bin, 0.9786-0.9806, although this does contain 0.6% of the ECWTs of Lsuper.

But, for L, the relative frequencies of the bins in the second and fourth quarters of the range

seem to be augmented at the expense of the others, in comparison to the histogram for

Lsuper. The median GoF for L is 0.9546, almost identical to that for Lsuper, 0.9536, and the

interquartile ranges are 0.0152 and 0.0153, respectively, showing that the GoF for L is very

marginally more highly concentrated around its median that it is for Lsuper.

These results show that, in this case at least, discarding ECWTs on the edge of our

clusters neither substantially improves GoF, nor damages it.

However, without further investigation, it would be mere speculation to assert that this

happens in general.
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Figure 3.15: Histograms of Goodness of Fit

Figure 3.16 consists of scatter diagrams of the components of the canonical representatives

of a sample of 1000 of the 105 member ECWTs of Lsuper.
16 Because ‖ψ1‖2 ≥ ‖ψ2‖2 ≥ ‖ψ3‖2

by definition, the points in Figure 3.16 have to lie on or below (left-hand two diagrams), or on

or above (right-hand diagram) the black dotted lines, and because ‖ψ1‖2 + ‖ψ2‖2 ≤ 1, they

lie below the red dashed line in the leftmost diagram (and these restrictions on the possible

placement of points will also be true of Figure 3.17).

As we maximise ‖ψ1‖2 among the members of the equivalence class, and ‖ψ2‖2 among

the members for ‖ψ1‖2 fixed at its maximum, and this suffices to fix ‖ψ3‖2, if ‖ψ3‖2 is close

to 0, then the accelerations corresponding to [ψ] lie mostly in some plane, with respect to the

axes of the NAT. Similarly, if both ‖ψ2‖2 and ‖ψ3‖2 are close to 0, the acceleration mostly

lies along a line, again with respect to the NAT axes.

If the NAT rotates only a small amount over the duration of the relevant window into the

data, then the acceleration will also mostly be in a plane (respectively, a line) with respect

to co-ordinates in space.

We can see from Figure 3.16 that there are a lot of these “planar” equivalence classes in

Lsuper, and more than a negligible number of “linear” ones.

The analogue of Figure 3.16 for L is Figure 3.17, and we can see that the members of L
appear to be representative of those of Lsuper, in the sense of the ratios of the ‖ψj‖2.

We can generalise from the preceding and define three measures on [ψ]: if ψ′ is the

canonical representative of [ψ], then

linearity: D1([ψ]) := ‖ψ′1‖2.

16Note that all pictures in Figure 3.16, and those in Figure 3.17, are to the same scale, and this is common
to the horizontal and vertical axes



92 CHAPTER 3. THE WAVELETS AND LIBRARIES

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1 0 0.5 1

Figure 3.16: Scatter diagrams for ‖ψ1‖2 and ‖ψ2‖2; ‖ψ2‖2 and ‖ψ3‖2; and ‖ψ3‖2 and ‖ψ1‖2, respec-

tively, for the canonical representatives of a sample of members of Lsuper. The black dotted lines are

‖ψj‖2 = ‖ψk‖2 for appropriate j and k, and the red dotted line is ‖ψ1‖2 + ‖ψ2‖2 = 1

planarity: D2([ψ]) := ‖ψ′2‖2;

fullness (of dimensionality): D3([ψ]) := ‖ψ′3‖2;

As D1([ψ]) ≥ D2([ψ]) ≥ D3([ψ]) ≥ 0 and D1([ψ]) +D2([ψ]) +D3([ψ]) = 1, values of D1([ψ])

close to its maximum, 1, force D2([ψ]) and D3([ψ]) to be close to zero, values of D2([ψ]) close

to its maximum, 1
2 , reduce D1([ψ]) to around 1

2 and force D3([ψ]) to be close to zero, and

values of D3([ψ]) close to its maximum, 1
3 , force D1([ψ]) +D2([ψ]) to be close to 2

3 .

Given all this, we can classify [ψ] as

near linear if D1([ψ]) ≥ 2D2([ψ]), 3D3([ψ]);

near planar if 2D2([ψ]) > D1([ψ]), 2D2([ψ]) ≥ 3D3([ψ]);

(dimensionally) full if 3D3([ψ]) > D1([ψ]), 2D2([ψ]).

Figure 3.18 displays four pseudo-colour plots of the squared distances between ECWTs.

The top left-hand diagram uses the distances in L, and the other plots use distances within

three different, uniformly randomly selected subsets of 100 members of Lsuper.

In order to try and reveal any structure in the diagram, the members of of L are ordered:

given a member of L, we find the sum of its squared distances to the other members, and

order the members in increasing values of this quantity. We order the subsets of Lsuper in a

similar way.

In fact, there does seem to be some structure in the L diagram — for example, there

are clearly two square regions along the main diagonal which are bluer than the remaining

rectangular regions. The square regions are given by both indices in the range 43–62, and

both indices in the range 67–75. Although this is consistent with the presence of at least two

clusters in the high-level cluster centres (note that a different ordering of L might reveal dif-

ferent apparent clusters), a glance at the similar diagrams for the randomly selected members
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Figure 3.17: ]
Analogue of Figure 3.16 for all of L
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Figure 3.18: Pseudocolour plots of the matrices of the squared distances between triplets. Upper left:

for L; remaining plots: for uniformly randomly selected subsets of 100 members of Lsuper. The colour

scale (given by the colour bar in the upper left picture) is the same for each plot

of Lsuper shows that the impression of structure given by any of the diagrams is probably

accidental, as the latter diagrams show “structures” which appear just as well-defined but

are in fact different.
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However, despite some smaller square regions along the main diagonal of the Lsuper di-

agrams, any consistent structure across these is restricted to the drift, and even this is less

prominent than in the L diagram.

The squaredD∗ distances between distinct ECWTs in L are in the range 0.0282-1.2096 (cf.

the theoretical maximum of 2), and these ranges for each of the subsets of Lsuper are 0.0025-

1.0622, 0.0002-1.1037 and 0.0188-1.1433. The median square distance in L is 0.4209, and this

quantity is 0.4455, 0.4073 and 0.4441 in the Lsuper samples. The interquartile distance of the

squared distances is 0.3504 for L, and 0.3433, 0.3253 and 0.3613 for the samples.

Without actually doing a statistical analysis, there appears to be no significant difference

between the distribution of the distances within L and those within the samples of Lsuper.

We might have expected that outliers would be eliminated from Lsuper when L was se-

lected, and that cluster centres would not be too close together. These effects would have

resulted in the distribution of the distances in L being narrower than the same distribution for

Lsuper. However, if such a narrowing effect exists, it is too small to be visible on a superficial

examination.
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Figure 3.19: Histograms of the squared distances between triplets. Upper left: for L; remaining plots:

for samples of Lsuper

To sum up, L appears to be representative of Lsuper in terms of the joint distribution

of the squared magnitude of the three components of the canonical representatives and the

relative importance of the parts of the trace giving rise to the members of Lsuper and L.

It appears that the pattern of window lengths relevant to L is different to that relevant to

Lsuper, with central window lengths being more prominent in the latter, and it is also true
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that the central values of the GoF distribution seem boosted in L in comparison to those

in the samples of Lsuper. Also, contrary to expectation, the distribution of inter-member

distances of L does not seem to be more peaked vis-à-vis that of Lsuper.

We now turn to examining some members of L more closely, for illustrative purposes.

In Figure 3.20, we show the two members of the library which are the farthest apart, in

terms of the distance D∗, which turn out to be the 58th and 99th members of L, [ψ58] and

[ψ99], using the representatives of the equivalence classes which were derived from the data.
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Figure 3.20: The data-fitted representatives of the two ECWTs in the final library with the greatest

separation, with data supporting their derivation (the wavelets are time-scaled to fit the window, and

vertically shifted and scaled to be as close as possible to the data, and the difference between the

minimum and maximal values on the vertical axis is constant for diagrams in the same column)

In Figure 3.21, we use the canonical representatives, ψ′58 and ψ′99 (so [ψ′58] = [ψ58] and

[ψ′99] = [ψ99]) to show the same two members of the library.

In Figure 3.22, we observe that the areas between the horizontal axis and the curve

ψ′58,1(x)ψ′99,1(x) make positive and negative contributions of roughly equal magnitude to the

integral over this products’ support, and so the integral is small. The products ψ′58,2(x)ψ′99,2(x)

and ψ′58,2(x)ψ′99,2(x) are relatively small in magnitude, so the integral in 〈ψ′58,j , ψ
′
99,j〉 =∫ 1

2

− 1
2

ψ′58,j(x)ψ′99,j(x)dx is also close to 0 for j = 2, 3. Therefore, ψ′58 and ψ′99, are near-

orthogonal, and the squared L2 distance between the canonical representatives of 1.8987

(note this is not the same as the D∗ distance between the ECWTs, which we know is 1.2096

from the range of distances in L given above) comes as no surprise. The L2 distance between

the data-fitted representatives is 2.6664, which is again no surprise, as the canonical represen-

tatives of the ECWTs are, in general, closer together than the effectively randomly-selected

representatives which are “chosen” by the original accelerometry data.
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Figure 3.21: The canonical representatives of the two ECWTs of Figure 3.20

-1.5
-1

-0.5
0

0.5

-1.5
-1

-0.5
0

0.5

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

x

-1.5
-1

-0.5
0

0.5

Figure 3.22: Products of the components of the canonical representatives the two ECWTs of Fig-

ure 3.20

We collect some properties of [ψ58] and [ψ99] in Table 3.2.

We see that [ψ58] comes from an epoch in the the trace from whence 4% of ECWTs in L
originate (and 16% originate from this epoch or its immediate neighbours — see Figure 3.13)
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[ψj ]

Property [ψ58] [ψ99] [ψ54]

epoch 17 25 31

window length 116 108 128

GoF 0.9814 0.9551 0.9488

‖ψ′j,1‖2 0.9837 0.6589 0.7494

‖ψ′j,2‖2 0.0160 0.3372 0.1694

‖ψ′j,3‖2 0.0003 0.0038 0.0811

Table 3.2: Some properties of of [ψ58], [ψ99] and [ψ54]. The values in bold are maximised by their

[ψj ]

but [ψ99] is extracted from a data epoch which yields over four times as many ECWTs (17%,

23% with its neighbouring epochs). The window length giving rise to [ψ58] is of low-medium

“popularity” in L, at (3%, and 7% with the two neighbouring window lengths), while that

giving rise to [ψ58] is of maximal popularity (8%, 15% with neighbours). The two values of

GoF are of low-mid (for ECWT 58) and mid-high (for ECWT 99) “popularity”, while the

values themselves are high and mid-high.

Finally, [ψ58] has a high linearity score (D1 = ‖ψ′·1‖2), and [ψ99] a high planarity score.

In fact, they have the highest such scores in L, as shall see very shortly.

The major differences between [ψ58] and [ψ99] are in their dimensionality measures and

their GoF, as neither emerges from a rare epoch, nor is extracted using an exceptional window

length.

We now find the ECWTs with the maximum values in L of D1([ψ]), D2([ψ]) and D3([ψ]).

These are in fact [ψ58], [ψ99] and [ψ54] respectively, so we needed only to extend Table 3.2

to include details of [ψ54].

We display the data-fitted and canonical representatives of [ψ54] in Figure 3.23. This

ECWT does not stem from an unproductive epoch, nor is the window giving rise to it of a

length which is isolated among the lengths giving rise to other ECWTs. However, its GoF is

near the low end of the range for L.

We have D∗([ψ58], [ψ99])2 = 1.2096, D∗([ψ99], [ψ54])2 = 0.4821 and D∗([ψ54], [ψ58])2 =

0.9287, so, with this distance, the most “linear” of the three is closest to the “fullest”,

which is contrary to what might be expected if “planarity” is mid-way between “linearity”

and “fullness”. In other words, the ECWTs are capturing more than the dimensionality

characteristics of the motion.

Some of the advantages of using the canonical representative are illustrated by comparing

the two Figures 3.20 and 3.21, and the left and right columns of Figure 3.23. It would take

very careful consideration of the data-fitted representatives of [ψ58], [ψ99] and [ψ54] to decide

that they stood for motion in a line, in a plane and neither, respectively (at least with respect

to the NAT axes).

It is virtually impossible to deduce by merely looking at the data-fitted representatives
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Figure 3.23: The representatives of the ECWT in the final library with the greatest value of D3. On

the left-hand side, we present the data-fitted representatives, with data supporting their derivation (the

wavelets are time-scaled to fit the window, and vertically shifted and scaled to be as close as possible

to the data; the vertical scaling of the diagrams is the same in all three diagrams), and on the right

we have the canonical representatives (same axes in all cases on the right)

that [ψ46] can be be reduced to acceleration mostly in a single plane, or that [ψ82] cannot

be so reduced, but this can be done easily by looking at the canonical representatives.

In order to put the “dimensional” properties of Table 3.2 into context, we present the

median, first and third quartile values in Table 3.3.

Property Median 1st quartile 3rd quartile
Interquartile
distance

‖ψ′·,1‖2 0.8913 0.8095 0.9390 0.1294

‖ψ′·,2‖2 0.0902 0.0516 0.1684 0.1168

‖ψ′·,3‖2 0.0101 0.0050 0.0223 0.0173

Table 3.3: Some statistics for the Dj(= ‖ψ′·,j‖2) over L

Thus, we see that D1 exceeds its 3rd-quartile value for [ψ58] by about 0.42 times the

interquartile distance, while it is below its 1st-quartile value for [ψ99] (by 1.80 iqr) and [ψ54]

(0.46 iqr). D2 is 0.30 iqr below its 1st-quartile value for [ψ58], while it is above its 3rd-quartile

value for [ψ99] (by 1.45 iqr). It is also very slightly above its 3rd quartile for [ψ54]. Finally,

D3 is below its 1st-quartile value for [ψ58] (0.27 iqr) and [ψ99] (0.07 iqr), while it is above its

3rd-quartile level for [ψ54] (3.40 iqr).
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Therefore, [ψ58], [ψ99] and [ψ54] have comparatively large or very large values of the

dimensionality quantities they were selected for, and low values of the quantities they were

not selected for, with the exception of [ψ54] for D2 and [ψ99] for D3.

According to our earlier definitions, 99% of the members of L are near linear, 0% are

dimensionally full and the sole near planar member is [ψ99]. Note that the maximally full

[ψ54], which is closer (in terms of D∗) to near-linear [ψ58] than it is to near-planar [ψ99], is

itself actually near linear.
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3.3.10 Using the library

The activation

We define the activation at x of the ECWT [ψ] with respect to the window length w by

A
(0)
T,[ψ](x) :=

maxψ′∈[ψ]

{∑3
j=1|〈fj ,ψ′T,x,j〉|

2
}

∑3
j=1 ‖fj−f̄j‖2

, where f models the data in the window of length

(in time) T = w/S, centred on x (S is the sample rate). As [±ψ′1 ±′ψ′2 ±′′ψ′3 ] ∈ [ψ] if

[ ψ′1 ψ′2 ψ′3 ] ∈ [ψ], we can drop the absolute value here. Also, because of the way that the

mother wavelets ψ′j = ψ′1,0,j scale to give ψ′T,x,j , if the independent variable in f is linearly

transformed to yield fx,T , (necessarily) zero outside of
[
−1

2 ,
1
2

)
, we can write A

(0)
T,[ψ](x) =

maxψ′∈[ψ]

{
[
∑3
j=1〈fx,T,j ,ψ′j〉]

2
}

∑3
j=1 ‖fx,T,j−f̄x,T,j‖2

:= Aw,[ψ](x).

Thus, if ψ was fitted to the data over a window of length w centred on x, then Gfit(ψ) =

Aw,[ψ](x). In other words, Gfit is the activation of [ψ] on its own data.

As multiplying the magnitude of the data in our interval by c multiplies both

[
∑3

j=1〈fx,T,j , ψ′j〉|2 and
∑3

j=1 ‖fx,T,j − f̄x,T,j‖2 by c2, Aw,[ψ](x) can be interpreted as a mono-

tonically increasing function of the relative content of [ψ] in f at scale T .

Now maxψ′∈[ψ]

{[∑3
j=1〈fx,T,j , ψ′j〉

]2
}

= maxO∈O(3)

{[∑3
j=1

∑3
k=1Ojk〈fx,T,j , ψk〉

]2
}

,

where, if fx,T,j(u) =

{
yj`, u ∈ [x`−1, x`], ` = 1, 2, . . . , N ;

0, otherwise
(for x0 = −1

2 , xN = 1
2),

〈fx,T,j , ψk〉 =
∫ 1

2

− 1
2

fx,T,j(u)ψk(u)du =
∑n

q=0

∑N
`=1 ajkyj`

xq+1
` −xq+1

`−1

q+1 = zT
j ak, for zj = Ryj ,

where R is given by equation (3.15).

This means maximising
[∑3

j=1

∑3
k=1Ojk〈fx,T,j , ψk〉

]2
with respect to O, subject to O ∈

O(3) is a problem equivalent to finding the extrema of
∑3

j=1

∑3
k=1Ojkz

T
j ak under the same

conditions. But this is the problem of section 3.3.1, with Kjk = aT
j Ha

′
k replaced by Kjk =

zT
j ak.

Consequently, we have

Aw,[ψ](x) =
1∑3

j=1 ‖fx,T,j − f̄x,T,j‖2

3∑
k=1

µ
1
2
k , (3.44)

where the µk are the eigenvalues of KKT for Kjk = zT
j ak.

Selecting distinguishing library members

Reviewing our overall aim, we wish to find patterns of acceleration which are relatively fre-

quent in the movement of PD subjects compared to non-PD ones. Constructing a library in

the manner described above will, it is hoped, capture the movement patterns of PD subjects,

including those which also occur in non-PD subjects. If we have captured patterns character-

istic of PD, these and very similar patterns will occur much less frequently in data stemming

from non-PD subjects.

In terms relating to our library, an ECWT which has high activations on new data (i.e.,
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data different to the data it was extracted from) from PD patients, compared to the ac-

tivations on data from non-PD subjects, is likely to be picking up an acceleration pattern

characteristic of PD.

We quantify this criterion for picking distinguishing ECWTs as follows:

1 pick a window tolerance W ;

2 for each ECWT [ψ] in the library, set w[ψ] to the window length that gave rise

to the data-fitted representative of [ψ] and set S[ψ] = {w[ψ] − W,w[ψ] − W +

1, . . . , w[ψ], . . . , w[ψ] +W − 1, w[ψ] +W};

3 for each ECWT [ψ] and each w ∈ S[ψ], calculate Aw,[ψ](x) for each x that is a centre

of a (complete) window of length w into the new PD data;

4 repeat 3 for the windows into the non-PD data;

5 find the maximum MA = Aw,[ψ](x) over w ∈ S[ψ] and x in both data sets;

6 for each θ ∈ T , where T ⊂ (0,MA) is a discrete set of reasonably large cardinality, find

the number of (w, x) pairs with x in the new PD data for which Aw,[ψ](x) > θ and find

the ratio, ρ(θ; PD) of this number to the total number of (w, x) pairs considered;

7 repeat 6 for the non-PD data, to find ρ(θ; non-PD) analogous to ρ(θ; PD);

8 find M∆ρ = maxθ∈T [ρ(θ; PD) − ρ(θ; non-PD)] and θ0 = arg maxθ∈T [ρ(θ; PD) −
ρ(θ; non-PD)];

9 find the ECWTs with the largest values of M∆ρ as candidates to distinguish PD data

from non-PD data.

Alternatively, the last two steps can be replaced by:

8 find M ′∆ρ = max{θ∈T :max{ρ(θ;PD),ρ(θ;non-PD)}≥ερ}
ρ(θ;PD)−ρ(θ;non-PD)

ρ(θ;PD)+ρ(θ;non-PD)
and θ′0 =

arg max{θ∈T :max{ρ(θ;PD),ρ(θ;non-PD)}≥ερ}
ρ(θ;PD)−ρ(θ;non-PD)

ρ(θ;PD)+ρ(θ;non-PD)
;

9 find the ECWTs with the largest values of M ′∆ρ as candidates to distinguish PD data

from non-PD data,

that is, we basically use the difference of ρ(θ; PD) and ρ(θ; non-PD) relative to their sum,

instead of the raw difference.

The parameter W ensures that scales neighbouring the one which gave rise to an ECWT

in the first place are considered, so that slower or faster versions of the relevant acceleration

“shape” will be detected — necessary as a single subject may differ in the speed at which

they execute such a shape, depending on how they feel, and also necessary for generalisations

across subjects.
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The parameter ερ ensures that relative differences are not based on too few windows, as

small random changes in a small denominator of a ratio can dramatically affect that ratio.

The outputs of these algorithms are library members and the corresponding thresholds

for calculating the ρs.

We may also use Θ = 1
2(ρ(θ0; PD)+ρ(θ0; non-PD)) and Θ′ = 1

2(ρ(θ′0; PD)+ρ(θ′0; non-PD))

as the starting point for finding classification boundaries.

Classifying on the activation

Once we have found the distinguishing members of our library, we can attempt to use them

to classify sets of data.

Given further sets of data, we can calculate ρ on them in a manner completely analogous

to the calculation of ρ(θ0; PD) and ρ(θ0; non-PD) in the previous section. Then this quantity

can be thresholded to give a classification into PD and non-PD data. The quality of this

classification will depend on the threshold and the empirical distribution of the ρ.

The later point — motivation for D∗

At the end of section 3.3.2, we said we would provide a motivation for the definition of D∗.

Consider [ψ1], [ψ2] such that D∗([ψ1], [ψ2]) = D([ψ1], [ψ2;x0 ]) ≈ 0. Then, if [ψ1] has a

high activation on a particular window into the data, centred on x1 and at a scale s, say, then

[ψ2] is likely to have a high activation at the same scale on a neighbouring window, centred

on x1 + sx0.

Consequently, the number of high activations of [ψ1] over a stretch of data is likely to be

similar to the number of high activations of [ψ2] over the same stretch and scale, reflecting

the similarity of the shapes of [ψ1] and the shifted version of [ψ2]. This redundancy is not

what we want, so we will interpret the similarity of [ψ1] and of [ψ2;x0 ] as a similarity of [ψ1]

and of [ψ2]. The mathematical expression of this interpretation is the use of D∗ as a distance

between ECWTs.

3.3.11 Example: 5) Activation, member selection and classification

In order to proceed with our example, we need 4 more data sets in addition to the six hours of

data from the PD1 subject we have used so far. We will refer to that data as the library data.

We have a further four hours of saturation-free data with the same characteristics (right-wrist

attachment, nominal ±2g, sample rate 500Hz) from PD1, and eight hours of such data from

a control subject, C2, which will will call PD- and non-PD-selection data. Finally, we have

two hours of other saturation-free data from each of these subjects to serve as test data.

We set the parameter W = 4 and use several values of θ, tailored to the particular ECWT

and selected in the following way: let MA be the maximum value of the activation with respect

to the particular ECWT being considered, over both selection-data sets and all the window

lengths considered. MA will not attain its upper bound of 1, as we are fitting polynomials to

(in general, non-constant) piecewise constant functions — how close it gets depends on the
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ECWT. Then we use θ0.85 = 0.85MA, θ0.9 = 0.9MA, θ0.95 = 0.95MA and θ0.99 = 0.8MA as

the thresholds.

Activation

It turns out that when we evaluate the activations on our PD- and non-PD-selection data

with respect to our library members, the greatest activation we find is 0.9395, with respect to

[ψ60] at a scale corresponding to 72 samples (and so to 6.94Hz), despite this ECWT originally

being derived from a window of 80 samples (6.25Hz), on a stretch of PD-selection data.

Figure 3.24 shows this activation at the scales considered with respect to ψ60 over a

section of the PD-selection data surrounding the stretch of greatest activation.
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Figure 3.24: The activations with respect to the 60th ECWT of our library, over the 0.4s surrounding

the greatest activation. The blue line is for the scale 72 samples, the smallest considered for this

ECWT, the magenta line is for the 80 sample scale, the scale on which this ECWT was originally

derived, and the red line for the 88 sample scale, the largest scale we consider. The green lines

correspond to the intermediate values

Selection

In Figure 3.24 we also draw the horizontal lines corresponding to thresholds θ = θ0.85 =

0.85MA, θ0.9 = 0.9MA, θ0.95 = 0.95MA and θ0.99 = 0.9MA. For a particular θ, ρ(θ; PD) is

the count of all the windows corresponding to the points on all the curves which are above

the θ-line divided by the total number of such windows (where, of course the diagram is

extended to the whole of the trace). ρ(θ; non-PD) is calculated in a similar fashion, using the
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non-PD-selection data.

We then select the library members which yield the greatest maxθ[ρ(θ; PD)−ρ(θ; non-PD)]

or its relative version, and these are presented in Table 3.4.

Best library members,
M∆ρ criterion

Best library members,
M ′∆ρ criterion

Rank
Member
number

M∆ρ θ0 Θ
Member
number

M ′∆ρ θ′0 Θ′

1st 86 0.0059 0.2271 0.0178 62 0.4925 0.5370 0.0090

2nd 53 0.0052 0.2119 0.0022 16 0.4838 0.4594 6.8395×10−4

3rd 47 0.0051 0.2368 0.0159 35 0.4625 0.5964 6.9589×10−4

4th 88 0.0051 0.2260 0.0162 70 0.4542 0.3516 7.2113×10−4

5th 13 0.0048 0.2222 0.0164 21 0.4523 0.3384 7.0453×10−4

Table 3.4: The best library members, in the sense that ρ(θ0; PD) − ρ(θ0; non-PD) or
ρ(θ′0;PD)−ρ(θ′0;non-PD)

ρ(θ′0;PD)+ρ(θ′0;non-PD)

is as large as possible (Coloured text corresponds to the disc colours in Fig-

ure 3.25)

We see that using the M ′∆ρ criterion pushes θ′0 upwards in comparison to θ0, which is what

we might have expected, as higher θs cause M∆ρ to be the difference of smaller numbers, and

therefore it naturally tends to be smaller, and consequently disadvantaged in the selection of

the maximum.

To get some idea of the relation between ρ(θ; PD) and ρ(θ,non-PD) for our chosen θs

and our selected library members, and the same quantities for the remaining members, we

present scatter diagrams of ρ(θ,PD) versus ρ(θ,non-PD) in Figure 3.25.

We first note that, with the lower values of θ0 that the first version of our algorithm

produces, most of the crosses are on the “wrong” side of the dotted line, in that ρ(θ0; PD) <

ρ(θ0; non-PD) for the corresponding library member. In particular, the crosses corresponding

to the optimal members according to the second version are above the line. On the other hand,

the θ0s for the alternative version have almost all (for θ = 0.58MA) or all (for θ = 0.61MA)

the crosses on the “right” side of the line.

We also note that the diagrams in the top row are very similar to each other, as are the

ones in the bottom row, reflecting the fact that the θs are close to one another within a row.

Finally, in each case, the optimum library members are not too far from others, indicating

that there may be other worthy candidates for distinguishing members.

In Figure 3.26 we show the empirical ρ(θ; PD) and ρ(θ; non-PD), their difference and

their difference relative to their sum, for the most optimal and second most optimal library

members for each criterion, members 86, 62, 53 and 16. We also show the median and first

and third quartiles of these quantities over all the library members. For comparison, we also

show the theoretical curve for ρ for a uniform distribution of activations over [0,MA].

The first thing we notice is that all the empirical curves for the library members drop

much faster than the theoretical curve for a uniform distribution, on both the PD and non-
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Figure 3.25: Scatter diagrams for ρ for our values of θ. Each cross represents a library member, the

crosses on discs correspond to members 86, 62, 53 and 16, with the colours of the discs matching the

text in Table 3.4. The upper row corresponds to thresholds which optimise ρ(θ; PD)−ρ(θ; non-PD) for

the member of the same colour as the title, the lower to thresholds that optimise the relative version

of these quantities for the relevant member. The dotted line separates, of course, the region where

ρ(θ,PD) > ρ(θ; non-PD) (below the line) from that where ρ(θ; PD) < ρ(θ; non-PD)

PD data, as shown by the course of the dashed blue maximum line in the left-hand diagrams

in comparison to the black curve. This is entirely in line with expectation if high activations

correlate with particular patterns of movement, as there will be many such patterns (whether

or not they are picked up by the techniques here), and individual patterns will be rare except

in very pathological cases.

We also notice that all the curves corresponding to our selected library members (i.e., the

red, green, magenta and cyan lines) are well below the maximum ρ curve in both left-hand

diagrams, so none of them has a particularly large number of high activations on either data

set.
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Figure 3.26: Curves showing the empirical relation between the threshold θ and ρ(θ; PD) and

ρ(θ; non-PD). In the two left-hand diagrams, ρ(θ; PD) and ρ(θ; non-PD) are shown for library mem-

bers 86 (red), 62 (green), 53 (magenta) and 16 (cyan). Also shown (in blue) are the median (solid),

the second and third quartiles (both dotted), and the maximum (dashed) of the ρs for all the library

members. The black curve corresponds to a uniform distribution of the ρs (and would be a straight

line if both axes were linear), and the dotted black line is ρ = ερ. The four right-hand diagrams

show ρ(θ; PD)− ρ(θ; non-PD), ρ(θ; non-PD)− ρ(θ; PD), ρ(θ;PD)−ρ(θ;non-PD)

ρ(θ;PD)+ρ(θ;non-PD)

and ρ(θ;non-PD)−ρ(θ;PD)

ρ(θ;PD)+ρ(θ;non-PD)

as

functions of θ (because of the log scale, negative values are not plotted)

The red and green curves (corresponding to library members 86 and 62, selected according

to the M∆ρ criterion) follow almost the same course through each of the two left-hand dia-

grams, and these courses are also similar across the diagrams. Initially, the courses fall below

the third quartile line, and then recover to pass successively that line and the median. In the

non-PD diagram, they even overtake the first quartile line, before falling back to approach it

from above. In the PD diagram, they merely approach the first quartile line from below.

As can be seen from the upper left-hand diagram in the right-hand side of the Figure,

these library members achieve the maximum of the criterion on which they were selected

when the relevant values of ρ(θ; PD) are near to the PD first-quartile value, but the values

of ρ(θ; non-PD) are somewhat below the non-PD first-quartile value, i.e., when neither value

of ρ is particularly large (in comparison to the values for other library members at the same

values of θ).

The magenta and cyan traces (for the ρs for member 53 and for 16, selected according to

the M ′∆ρ criterion) also follow courses which are quite similar, between themselves and across

the two right-hand diagrams, although these courses are quite different to ones followed by
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the red and green curves.

As the M ′∆ρ criterion excludes θs for a member for which both the ρ(θ; PD) and

ρ(θ; non-PD) curves are below the dotted black line, we follow the magenta and cyan curves

as θ increases only until they reach that line in both diagrams.

In both diagrams, the magenta and cyan start off above the 3rd quartile line, and then

cross it, staying below it until they reach the dotted black line. In the ρ(θ; PD) diagram, the

divergence between them and the third quartile is not as great as it is in the ρ(θ; non-PD) one.

In the region just before the curves cross the dotted black line, ρ(θ;PD)−ρ(θ;non-PD)

ρ(θ;PD)+ρ(θ;non-PD)
reaches its

maximum for both members 53 and 16, so again the maxima are reached where ρ(θ; PD) and

ρ(θ; non-PD) are not that great for the the members concerned in comparison to their values

for other members.

In Figure 3.27 we show the canonical representatives of the best two ECWTs under each

criteria.
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Figure 3.27: The canonical representatives of the selected ECWTs, 86 (top left), 62 (top right), 53

(bottom left) and 16 (bottom right)

Although member 86 and member 62 are fairly similar subjectively, they are far from
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identical, and the same is true of member 53 and member 16. However, the pair selected

according to the M∆ρ criterion are fairly different from the pair selected using the M ′∆ρ, again

subjectively.

However, this subjective impression is confirmed by Table 3.5 (remember, the maximum

squared distance between ECWTs is 2), which shows that the distances within the pairs 86

and 62, and 53 and 16, are much smaller than those between the pairs.

Member number

Member
number

86 62 53 16

86 0 0.1633 1.1382 1.0387

62 0.1633 0 1.2971 1.0864

53 1.1382 1.2971 0 0.1851

16 1.0387 1.0864 0.1851 0

Table 3.5: Squared distances between selected members

Table 3.6 is the analogue of Table 3.2, but for [ψ86], [ψ62], [ψ53] and [ψ16].

[ψj ]

Property [ψ86] [ψ62] [ψ53] [ψ16]

epoch 25 24 1 17

window length 136 140 104 132

GoF 0.7855 0.7195 0.6954 0.6725

‖ψ′j,1‖2 0.8097 0.8983 0.9732 0.8671

‖ψ′j,2‖2 0.1690 0.0758 0.0164 0.0888

‖ψ′j,3‖2 0.0213 0.0259 0.0104 0.0440

Table 3.6: Some properties of [ψ86], [ψ62], [ψ53] and [ψ16]

We see that [ψ86] and [ψ62] stem from data in neighbouring epochs of the library data,

and so may relate to an episode of similar behaviour. The originating epochs of [ψ53] and

[ψ16] are more widely separated, however.

The originating window lengths of [ψ86] (136; corresponding to 3.68Hz), and [ψ62] (140;

3.57Hz) are also quite similar, again pointing at the possibility that the same episode lies

behind them, whereas the window lengths giving rise to [ψ53] and [ψ16] do not have this

similarity.

From this point onwards we rebaptise ρ(θ0; PD), ρselect(θ0; PD), and ρ(θ0; non-PD),

ρselect(θ0; non-PD).

Classification

We find the activation on windows into the two sets of test data of each of the top five library

members according to one or other of the criteria of the previous section, and find the fraction
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of windows where this activation exceeds the threshold, θ0 or θ′0 found there. The ranges of

window lengths considered are also the same as in the previous section.

That is, we calculate ρtest(θ0; PD) and ρtest(θ0; non-PD) in exactly the same way as we

did ρselect(θ0; PD) and ρselect(θ0; non-PD), but we use the PD and non-PD test data instead

of the PD and non-PD selection data.

The results are presented in Table 3.7.

Fraction of activations above
threshold for library member

On data set 86 53 47 88 13

PD test 0.0700 0.1754 0.0623 0.0682 0.0627

Non-PD test 0.0299 0.0703 0.0262 0.0273 0.0280

Fraction of activations above
threshold for library member

On data set 62 16 35 70 21

PD test 0.0032 0.0185 0.0155 0.0186 0.0137

Non-PD test 0.0029 0.0006 0.0006 0.0006 0.0005

Table 3.7: Fraction of windows with exceeding the thresholds θ0 or θ′0. The values on the correct side

of the initial decision boundaries Θ or Θ′ are shown in bold

As we hoped, we have ρtest(θ0; PD) > ρtest(θ0; non-PD) (or ρtest(θ′0; PD) > ρtest(θ′0; non-PD))

for every library member we selected.

However, the use of Θ (or Θ′) (see Table 3.4) as a decision boundary for the classification

into PD and non-PD data is a complete failure — we do not have ρtest(θ0; PD) > Θ >

ρtest(θ0; non-PD) (or ρtest(θ′0; PD) > Θ′ > ρtest(θ′0; )) in any case.

Although this example does not have any statistical significance in isolation from others,

it does suggest that, given a better method of selecting decision boundaries (at any rate,

choosing an analogue Θ closer to ρselect(θ0,PD) than to ρselect(θ0; non-PD)), there is mileage

in the method.

3.4 A better Θ?

In an attempt to find a better way of separating PD and non-PD data on the basis of a

threshold Θ on the proportion of activations above a given θ, we will make an excursion into

the statistics of confidence intervals on percentiles.

Given a sample of real numbers, S, with N members drawn (with each member having

the same probability of being drawn) from some population P, a confidence interval at level

γ for the 100pth percentile is given by [ri, rj ], where ri and rj are the ith and jth ranked

members of S arranged in increasing order, and i and j satisfy

BN,p(j − 1)−BN,p(i− 1) =

j−1∑
k=i

(
N

k

)
pk(1− p)n−k ≥ γ, (3.45)
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where BN,p is the cumulative binomial distribution function (Boudec[29]).

We assume that
i

N
≤ p ≤ j

N
, (3.46)

which will certainly be the case if γ is large enough.

Although symmetric confidence intervals are usually used, here we employ maximally

asymmetric confidence intervals at level γ, given by [r1, rj1 ] and [riN , rN ], where

BN,p(j1 − 1)−BN,p(0) =

j1−1∑
k=1

(
N

k

)
pk(1− p)n−k ≥ γ (3.47)

and

BN,p(N − 1)−BN,p(iN − 1) =

N−1∑
k=iN

(
N

k

)
pk(1− p)n−k ≥ γ, (3.48)

provided
1

N
,
iN
N
≤ p ≤ j1

N
, 1− 1

N
, (3.49)

and these become the minimal lower maximally asymmetric confidence interval at level γ if

j1 = min

{
j ∈ {dNpe, dNpe+ 1, . . . , N} :

j−1∑
k=1

(
N

k

)
pk(1− p)N−k ≥ γ

}
(3.50)

and the minimal upper maximally asymmetric confidence interval at level γ if

iN = max

{
i ∈ {1, 2, . . . , bNpc} :

N−1∑
k=i

(
N

k

)
pk(1− p)N−k ≥ γ

}
, (3.51)

as appropriate.

Given a fixed γ and samples of real numbers, S1, with N1 members drawn from a popula-

tion P1, and S2, with N2 members drawn from a possibly different population P2, where the

medians m1 of S1 and m2 of S2 obey m1 < m2, we would like to maximise q ∈
[
0, 1

2

]
such that

the minimal lower maximally asymmetric confidence interval at level γ for the (50 + 100q)th

percentile of P1 has a upper endpoint equal to the lower endpoint of the minimal upper

maximally asymmetric confidence interval at level γ for the (50− 100q)th percentile of P2.

That is, we wish to find the largest q such that
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j1(q) = min

{
j ∈

{⌈
N1

(
q + 1

2

) ⌉
,
⌈
N1

(
q + 1

2

) ⌉
+ 1, . . . , N1

}
:

j−1∑
k=1

(
N1

k

)(
1
2 + q

)k (1
2 − q

)N1−k ≥ γ

}
, (3.52)

iN2(q) = max

{
i ∈
{

1, 2, . . . ,
⌊
N2

(
q − 1

2

) ⌋}
:

N2−1∑
k=i

(
N2

k

)(
1
2 − q

)k (1
2 + q

)N2−k ≥ γ

}
, (3.53)

and r
(1)
j1(q) = r

(2)
iN1

(q), where r
(1)
j and r

(2)
i are the jth and ith members of S1 and S2 ranked in

increasing order.

However, there is no guarantee that S1 and S2 have any members in common, so the best

we can do is maximise q subject to r
(1)
j1(q) ≤ r

(2)
iN1

(q).

Moreover, neither of our confidence intervals at level γ necessarily exist, although we

assume they both do.

Consider fN1(q, j) =
∑j−1

k=1

(
N1

k

) (
1
2 + q

)k (1
2 − q

)N1−k, q ∈
[
0, 1

2

]
, j ∈ {2, 3, . . . , N1}. For

all fixed q, fN1(q, j) is obviously an increasing function of j.

We have fN1(q,N1) = 1 −
(

1
2 + q

)N1 −
(

1
2 − q

)N1 , so f ′N1
(q,N1) =

−N1

[(
1
2 + q

)N1−1 −
(

1
2 − q

)N1−1
]

< 0, ∀q ∈
(
0, 1

2

]
, and, consequently, continuous

fN1(q,N1) is a decreasing function of q ∈
[
0, 1

2

]
.

Also, f ′N1
(q, j) =

∑j−1
k=1

(
N1

k

) (
1
2 + q

)k−1 (1
2 − q

)N1−k−1 [
k
(

1
2 − q

)
− (N1 − k)

(
1
2 + q

)]
=∑j−1

k=1

(
N1

k

) (
1
2 + q

)k−1 (1
2 − q

)N1−k−1 [
k − 1

2N1 −N1q
]
. If j < 1

2N1 + 1, or q ∈
(
j−1
N1
− 1

2 ,
1
2

]
and j ≥ 1

2N1 + 1, all the terms in this sum are negative, and so the sum itself is nega-

tive. In the remaining case, j ≥ 1
2N1 + 1 and q ∈

[
0, j−1

N1
− 1

2

]
, f ′N1

(q, j) = f ′N1
(q,N1) −∑N1−1

k=j

(
N1

k

) (
1
2 + q

)k−1 (1
2 − q

)N1−k−1 [
k − 1

2N1 −N1q
]
≤ f ′N1

(q,N1) < 0.

Consequently, fN1(q, j) is a decreasing function of q ∈
[
0, 1

2

]
for j = 2, 3 . . . , N1, so j1(q)

is a nondecreasing function of q (where it exists).

Suppose there exists a least j0 ∈
{⌈

1
2N1

⌉
,
⌈

1
2N1

⌉
+ 1, . . . , N1

}
such that∑j0−1

k=1

(
N1

k

) (
1
2 + q

)k (1
2 − q

)N1−k
∣∣∣
q=0

= 1
2N1

∑j0−1
k=1

(
N1

k

)
≥ γ. A necessary and sufficient con-

dition for such a j0 to exist is that
∑N1−1

k=1

(
N1

k

) (
1
2 + q

)k (1
2 − q

)N1−k
∣∣∣
q=0

= 1− 1
2N1−1 ≥ γ or

N1 ≥ 1− log2(1− γ).

If 1
2N1

∑j0−1
k=1

(
N1

k

)
= γ, then we can write j−1

1 (j0) = {0} and put q
(1)
1 = 0, and, if

1
2N1

∑j0−1
k=1

(
N1

k

)
> γ, then, as fN1(q, j0) is a continuous decreasing function of q and fN1

(
1
2 , j0

)
>

0, there exists q
(1)
1 ∈

(
0, 1

2

)
such that fN1

(
q

(1)
1 , j0

)
= γ and we can write j−1

1 (j0) =
[
0, q

(1)
1

]
.

In the former case,
[
r

(1)
1 , r

(1)
j0

]
is a confidence interval at level γ for the median of P1, and, in

the latter case, the same interval is a confidence interval at level γ for all the (50 + 100q)th

percentiles of P1 for all q ∈
[
0, q

(1)
1

]
.
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If j0 = N1, we have finished, but otherwise we have fN1

(
q

(1)
1 , j0 + 1

)
> γ, and we can

find q
(1)
2 ∈

(
q

(1)
1 , 1

2

)
such that j−1

1 (j0 + 1) =
(
q

(1)
1 , q

(1)
2

]
, and then

[
r

(1)
1 , r

(1)
j0+1

]
is a confidence

interval at level γ for all the (50 + 100q)th percentiles of P1 for all q ∈
[
q

(1)
1 , q

(1)
2

]
.

Continuing in this fashion, we find that either

j−1
1 (j) =



{0}, j = j0;(
0, q

(1)
2

]
; j = j0 + 1;(

q
(1)
` , q

(1)
`+1

]
; j = j0 + `, ` = 2, . . . , N1 − j0;

∅, otherwise,

or

j−1
1 (j) =


[
0, q

(1)
1

]
; j = j0;(

q
(1)
` , q

(1)
`+1

]
; j = j0 + `, ` = 1, . . . , N1 − j0;

∅, otherwise,

where 0 ≤ q
(1)
1 < q

(1)
2 < · · · < q

(1)
N1−j0+1 <

1
2 , for some j0 ∈

{⌈
1
2N1

⌉
,
⌈

1
2N1

⌉
+ 1, . . . , N1

}
,

provided N1 ≥ 1 − log2(1 − γ), and dependent on whether N1 = 1 − log2(1 − γ) or N1 >

1 − log2(1 − γ). Obviously,
[
r

(1)
1 , r

(1)
j0+`−1

]
will be a confidence interval at level γ for all the

(50 + 100q)th percentiles of P1 for all q ∈
[
q

(1)
` , q

(1)
`+1

]
.

Similarly, either

i−1
N2

(i) =



{0}, i = i0;(
0, q

(2)
2

]
; i = i0 − 1;(

q
(2)
` , q

(2)
`+1

]
; i = i0 − `, ` = 2, . . . , i0 − 1;

∅, otherwise,

or

i−1
N2

(i) =


[
0, q

(2)
1

]
; i = i0;(

q
(2)
` , q

(2)
`+1

]
; i = i0 − `, ` = 2, . . . , i0 − 1;

∅, otherwise,

where 0 ≤ q
(2)
1 < q

(2)
2 < · · · < q

(2)
i0

< 1
2 , for some i0 ∈

{
1, 2, . . . ,

⌊
1
2N2

⌋}
, provided N2 ≥

1− log2(1− γ), and dependent on whether N2 = 1− log2(1− γ) or N2 > 1− log2(1− γ), and[
r

(2)
i0−`+1, r

(2)
N2

]
will be a confidence interval at level γ for the (50 − 100q)th percentiles of P2

for all q ∈
[
q

(2)
` , q

(2)
`+1

]
.

If r
(1)
j0

> r
(2)
i0

, all our confidence intervals at level γ for the 50+100qth percentile of P1 will

overlap with the corresponding confidence interval at level γ for the 50 − 100qth percentile

of P2 in more than a point, so we assume r
(1)
j0
≤ r(2)

i0
.

If r
(1)
j0

= r
(2)
i0

, the confidence interval at level γ for the median of P1 will overlap with the

corresponding confidence interval at level γ for the median of P2 in a single point, but the
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confidence intervals at level γ for positive q will overlap in more than a point, so we assume

r
(1)
j0

< r
(2)
i0

.

For simplicity, we will also assume that N1, N2 > log2(1 − γ),

the q
(1)
1 , q

(1)
2 , . . . , q

(1)
N1−j0+1, q

(2)
1 , q

(2)
2 , . . . , q

(2)
i0

are all distinct, as are the

r
(1)
j0
, r

(1)
j0+1, . . . , r

(1)
N1
, r

(2)
i0
, r

(2)
i0−1, . . . , r

(2)
1 . If we do not make these latter assumptions,

similar results will be obtained (differing mainly in the substitution of the word “disjoint”

by the phrase “overlapping in at most a point”).

As q increases from 0, initially we still have
∑j0−1

k=1

(
N1

k

) (
1
2 + q

)k (1
2 − q

)N1−k,∑N2−1
k=i0

(
N2

k

) (
1
2 − q

)k (1
2 + q

)N2−k > γ, so
[
r

(1)
1 , r

(1)
j0

]
remains a confidence interval at level

γ for the (50 + 100q)th percentiles of P1 and
[
r

(2)
i0
, r

(2)
N2

]
remains a confidence interval at level

γ for the (50− 100q)th percentiles of P2.

Eventually, however, q will reach either q
(1)
1 , and then

∑j0−1
k=1

(
N1

k

) (
1
2 + q

)k (1
2 − q

)N1−k =∑j0−1
k=1

(
N1

k

) (
1
2 + q

(1)
1

)k (
1
2 − q

(1)
1

)N1−k
= γ, or it will reach q

(2)
1 , and then∑N2−1

k=i0

(
N2

k

) (
1
2 − q

)k (1
2 + q

)N2−k =
∑N2−1

k=i0

(
N2

k

) (
1
2 − q

(2)
1

)k (
1
2 + q

(2)
1

)N2−k
= γ. For

definiteness, assume that q
(1)
1 < q

(2)
1 . Then

[
r

(1)
1 , r

(1)
j0+1

]
becomes a confidence interval at

level γ for the (50 + 100q)th percentiles of P1 and, initially,
[
r

(2)
i0
, r

(2)
N2

]
remains a confidence

interval at level γ for the (50 − 100q)th percentiles of P2, and this continues until either q

exceeds q
(1)
2 or it exceeds q

(2)
1 . If r

(1)
j0+1 < r

(2)
i0

, we continue to have confidence intervals which

overlap in no more than a point.

Unless r
(1)
N1

< r
(2)
1 , which would contradict our assumption that m1 < m2, we will reach

a situation where, for some `1 and `2, q ∈
[
q

(1)
`1
, q

(1)
`1+1

]
∩
[
q

(2)
`2
, q

(2)
`2+1

]
,
[
r

(1)
1 , r

(1)
j0+`1−1

]
is

a confidence interval at level γ for the (50 + 100q)th percentile of P1,
[
r

(2)
i0−`2+1, r

(2)
N2

]
is

a confidence interval at level γ for the (50 − 100q)th percentile of P2,
[
r

(1)
1 , r

(1)
j0+`1−1

]
∩[

r
(2)
i0−`2+1, r

(2)
N2

]
= ∅ and, if q

(1)
`1+1 < q

(2)
`2+1 (resp. q

(1)
`1+1 > q

(2)
`2+1),

[
r

(1)
1 , r

(1)
j0+`1

]
∩
[
r

(2)
i0−`2+1, r

(2)
N2

]
6=

∅ (resp.
[
r

(1)
1 , r

(1)
j0+`1−1

]
∩
[
r

(2)
i0−`2 , r

(2)
N2

]
6= ∅). Thus, q = q∗ = q

(1)
`1+1 (resp. q = q∗ = q

(2)
`2+1)

is the largest q for which our confidence intervals are disjoint; these are
[
r

(1)
1 , r

(1)
j0+`1−1

]
and[

r
(2)
i0−`2+1, r

(2)
N2

]
.

We can now define Θ by

Θ =


1
2

(
r

(1)
N1

+ r
(2)
1

)
, r

(1)
N1

< r
(2)
1 ;

1
2

(
r

(1)
j0+`1−1 + r

(2)
i0−`2+1

)
, r

(1)
N1

> r
(2)
1 .

(3.54)

Θ is a threshold which separates intervals which contain the (50 + q∗)th percentile of

the population with the lower median with probability of at least γ, and the (50 − q∗)th

percentile of the population with the upper median with probability of at least γ. Bearing in

mind that, as Boudec[29, page 36] says, “it is the confidence interval that is random, not the

unknown parameter”, if we assume that the samples of the two populations are independent,

the probability that both these percentiles find themselves in their confidence intervals is at
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least γ2. In other words, we have a probability of γ2 of having a classifier which labels at

least 1
2 + q∗ of each class correctly.

The derivation of Θ is illustrated in Figure 3.28; the “particular percentiles” mentioned

in the caption are the median, the
⌊
50 ± 100

3 q∗ + 1
2

⌋
th, the

⌊
50 ± 200

3 q∗ + 1
2

⌋
th and the

(50± 100q∗)th percentiles (where ± = + corresponds to the population P1 and its sample S1

and ± = − to the population P2 and its sample S2).

Population 1: median

Sample 1, its median and confidence interval at level 0.95 for population median

Sample 2, its median and confidence interval at level 0.95 for population median

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5

Population 2: median

Population 1: median and percentile 57

Sample 1, its percentile 57 and confidence interval at level 0.95 for population percentile 57

Sample 2, its percentile 43 and confidence interval at level 0.95 for population percentile 43

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5

Population 2: percentile 43 and median

Population 1: median and percentile 65

Sample 1, its percentile 65 and confidence interval at level 0.95 for population percentile 65

Sample 2, its percentile 35 and confidence interval at level 0.95 for population percentile 35

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5

Population 2: percentile 35 and median

Population 1: median and percentile 71.8277

Sample 1, its percentile 71.8277 and confidence interval at level 0.95 for population percentile 71.8277

Sample 2, its percentile 28.1723 and confidence interval at level 0.95 for population percentile 28.1723

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5

Population 2: percentile 28.1723 and median

Figure 3.28: The derivation of Θ when S1 consists of N1 = 20 samples drawn from a normal popu-

lation P1 with distribution N (0, 1), S2 consists of N2 = 25 samples drawn from a normal population

P2 with distribution N (2, 1) and γ = 0.95. In each of the four diagrams, the top subdiagram shows

the population median and a particular percentile for P1 — the former is shown dashed except where

it coincides with the latter, and the latter is solid. The bottom subdiagram is the same, but for P2,

and the “reflected” percentile. The subdiagram which is second from the top (resp., bottom) shows the

members of S1 (resp., S2) and, shaded in cyan (resp., magenta), the lower (resp., upper) confidence

interval at level 0.99 for the particular percentile of P1 (resp., P2). Θ is represented by the vertical

black line appearing in all the subdiagrams of the bottom right diagram

3.4.1 Using the better Θ

We will use the material of the first part of this section to change the procedure of page 101

for using contrast data to select distinguishing ECWTs. Here, we will assume that the data

for both the PD and control data is separated into epochs of contiguous data of fixed length,

e.g., 5 minutes.
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1 pick a window tolerance W ;

2 for each ECWT [ψ] in the library, set w[ψ] to the window length that gave rise

to the data-fitted representative of [ψ] and set S[ψ] = {w[ψ] − W,w[ψ] − W +

1, . . . , w[ψ], . . . , w[ψ] +W − 1, w[ψ] +W};

3 for each ECWT [ψ] and each w ∈ S[ψ], calculate Aw,[ψ](x) for each x that is a centre

of a (complete) window of length w into an epoch of the new PD data;

4 repeat 3 for the windows into the non-PD data;

5 find the maximum MA = Aw,[ψ](x) over w ∈ S[ψ] and x in both data sets;

6 for each θ ∈ T , where T ⊂ (0,MA) is a discrete set of reasonably large cardinality, and

k up to the number of epochs, find the number of (w, x) pairs with x in the kth epoch of

the new PD data for which Aw,[ψ](x) > θ and find the ratio, ρ(θ, k; PD) of this number

to the total number of (w, x) pairs considered per epoch;

7 repeat 6 for the non-PD data, to find ρ(θ, k; non-PD) analogous to ρ(θ, k; PD);

8 for each fixed θ and library member m, attempt17 to find q∗ = q∗(m, θ), as above,

using ρ(θ, k; non-PD) in the role of S1 and ρ(θ, k; PD) in the role of S2 (assuming

median(ρ(θ, k; non-PD)) < median(ρ(θ, k; PD)); if this is not the case, reverse the roles

of ρ(θ, k; non-PD) and S1 and ρ(θ, k; PD)). γ is fixed in advanced, and is a parameter

of the method;

9 for each library member, find q∗∗(m) = maxθ q
∗(θ,m), where the maximum is taken over

θ such that median(ρ(θ, k; non-PD)) < median(ρ(θ, k; PD)) and q∗(m, θ) is defined. If

the set of such θ is empty, find the maximum over θ such that median(ρ(θ, k; non-PD)) >

median(ρ(θ, k; PD)) and q∗(m, θ) is defined. If this set is also empty, do not define

q∗∗(m);

10 if M library members are desired, we take the M members m of the subset of the library

with {θ ∈ median(ρ(θ, k; non-PD)) < median(ρ(θ, k; PD)), q∗(m, θ) defined} 6= ∅ with

the greatest values of q∗∗(m), and, if this yields insufficiently many members, we take

the remaining library members such that q∗∗(m) is defined and is as large as possible.

Finally, if we still do not have enough library members, we run the procedure again,

but with a reduced value of γ, for the remaining members of the library. We continue

in this fashion, until we have enough members for our purposes, or we have reduced γ

below a value we think is useful.

(In the case that the median of S1 exceeded that of S2, we exchanged the roles of S1

and S2. A provisional interpretation of this case is that a normal pattern of activity has

been picked up from the PD data, but that this is actually attenuated with respect to its

occurrence in the control data.)

17as noted above, it is not always possible to do this — when it is not, drop the particular θ from consideration
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3.5 Summary

In this Chapter, we have developed the machinery for creating an enormous library of

ECWTs, representing patterns of motion typical of PD subjects (not excluding normal pat-

terns which may be present). This includes the definition of a distance between ECWTs

which is not dependent on rotations or reflections of the data to which the original represen-

tatives of the ECWTs were fitted. This independence is obviously necessary, as the ECWTs

are also independent of rotation and reflection. In addition, where there are large parts of

pairs of ECWTs which would nearly coincide if one was shifted in time, this is taken into

account and the distance is reduced18.

Once we have this enormous library, we need to trim it down to a manageable size. We

do not wish to have a library containing too many equivalence classes as representatives of

patterns of motion which are nearly the same, so, ideally, we would obtain a smaller library

with members which represented clusters19 in the larger, original one (with respect to our

distance).

Obtaining this directly would be computationally prohibitively expensive, requiring many

evaluations of our distance function (which is not that cheap, for a fairly atomic function), so

we tried to use the k-medoids20 function built into Matlab R©, letting the centres this function

returns constitute the smaller library.

As this also turned out to be computationally too expensive, we devised an hierarchical

version of k-medoids, which weights cluster centres returned at each stage according to the

number of members of the original set in its cluster at the previous stage, before clustering

these. (At every stage, a member of the original set is said to be in a cluster of clusters if it

is in one of the lower level clusters.)

(In this process, we took no account of the quality of the clustering, and we set the number

of clusters on an ad hoc basis, so as to produce roughly the required number of members of

the final library, also chosen on an ad hoc basis. If the work of this Thesis is continued, it may

be worthwhile to look at the cluster quality. If work on an hierarchical version of k-medoids

is pursued, the same thing applies.)

Finally, we ranked the members of the smaller library according to their distances to a

contrast set and to further data from the original set, using a criterion based on the p-level

that would have been returned from a Wilcoxon ranked-sum test, producing a way to conduct

classification experiments later in the Thesis.

18This is a slight simplification: the similarity concerns representatives of the equivalence classes, and an
extremisation over choice of these representatives and the time shift

19In the sense that the intra-cluster distance sums were minimised
20Mediods, not means, as we wished the centres to be members of the larger library



Chapter 4

Effect of accelerometer bandwidth

As our accelerometer has a bandwidth of 80Hz, we wish to explore the effect of this on the task

of distinguishing different continuous wavelets. We also propose a strategy for ameliorating

this effect: as a lack of smoothness in a function implies that it has a higher high frequency

content, we impose smoothness constraints on our wavelets.

We consider (and define) wec (wrapped endpoint continuity, given by equation 4.67)

and wed (wrapped endpoint differentiability, wec and equation 4.68) constraints in detail

below, but actually work with ec (endpoint continuity, equation 4.119) and ed (endpoint

differentiability, ec and equation 4.120) in subsequent chapters. There are two chain of

implication for these conditions: ed ⇒ ec ⇒ wec and ed ⇒ wed ⇒ wec.

We refer to the conditions ue and zi alone as the plain condition set.

As a subsidiary hypothesis, we propose:

increasing the strictness of the conditions set on smoothness improves the results of applying

the method,

or, more specifically:

1 results under the ec condition set will be an improvement on those under the plain

condition set;

2 results under the ed condition set will be an improvement on those under the ec condi-

tion set;

4.1 Model of bandwidth limitations

We will model the effect of using a limited bandwidth (2β) accelerometer on a one-component

wavelet ψ by replacing ψ by ψβ, where

ψβ(x) =
1√
2π

∫ β

−β
eiξxψ̂(y) dξ =

1

2π

∫ β

−β
eiξx

∫ 1
2

− 1
2

e−iξyψ(y) dy dξ, (4.1)

that is, we simply truncate the Fourier transform of ψ at ±β before applying the inverse

transform, to remove the higher frequency components.

117
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If ψ(x) =
∑n

k=0 akx
k, ψ′(x) =

∑n
k=0 a

′
kx

k on
[
−1

2 ,
1
2

)
and ψ,ψ′ are zero elsewhere, then

ψβ(x) =
1

2π

n∑
k=0

ak

∫ β

−β
eiξx

∫ 1
2

− 1
2

e−iξyyk dy dξ

=
1

2π

n∑
k=0

ak

∫ 1
2

− 1
2

∫ β

−β
eiξ(x−y)yk dξ dy

=
1

π

n∑
k=0

ak

∫ 1
2

− 1
2

yk
sinβ(x− y)

x− y
dy, (4.2)

where the interchange of the order of integration is justified by the uniform convergence of

the double integral of the absolute value of the integrand over the given region of integration

(see, e.g., Copson[44]).

Also

〈ψβ, ψ′β〉 = 〈ψ̂β, ψ̂′β〉 =

∫ ∞
−∞

ψ̂β(ξ)ψ̂′β(ξ)dξ =

∫ β

−β
ψ̂β(ξ)ψ̂′β(ξ)dξ =

∫ β

−β
ψ̂β(ξ)ψ̂′(ξ)dξ

= 〈ψ̂β, ψ̂′〉 = 〈ψβ, ψ′〉

=
1

π

n∑
k=0

ak

∫ 1
2

− 1
2

xk
n∑
`=0

a′`

∫ 1
2

− 1
2

u`
sinβ(x− u)

x− u
du dx

=
1

π

n∑
k=0

n∑
`=0

aka
′
`

∫ 1
2

− 1
2

∫ 1
2

− 1
2

xku`
sinβ(x− u)

x− u
du dx = aTP (β)a′, (4.3)

where P is given by

Pk`(β) =
1

π

∫ 1
2

− 1
2

∫ 1
2

− 1
2

xku`
sinβ(x− u)

x− u
du dx, (4.4)

and 〈ψ̂, ψ̂′〉 = 〈ψ,ψ′〉 is just Parseval’s Theorem.

4.2 Value for small k, `

Clearly, Pk`(β) = P`k(β) and Pk`(β) = 0 unless k and ` are either both even or are both odd,

so we assume that k + ` is even.
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By Maple R©calculations

P00(β) =
2

π

(
Si(β)− 1

β
+

1

β
cosβ

)
,

P02(β) =
1

6π

[
Si(β)−

(
3

β
− 8

β3

)
+

(
1− 8

β2

)
cosβ

β
− 2

β

sinβ

β

]
,

P11(β) =
1

6π

[
Si(β)−

(
3

β
+

4

β3

)
+

(
1 +

4

β2

)
cosβ

β
+

4

β

sinβ

β

]
,

P04(β) =
1

40π

[
Si(β)−

(
5

β
− 80

β3
+

384

β5

)
+

(
1− 32

β2
+

384

β4

)
cosβ

β
−
(

4

β
− 144

β3

)
sinβ

β

]
,

P13(β) =
1

40π

[
Si(β)−

(
5

β
− 20

β3
− 96

β5

)
+

(
1 +

28

β2
− 96

β4

)
cosβ

β
+

(
6

β
− 96

β3

)
sinβ

β

]
,

P22(β) =
1

40π

[
Si(β)−

(
5

β
+

64

β5

)
+

(
1− 32

β2
+

64

β4

)
cosβ

β
−
(

4

β
− 64

β3

)
sinβ

β

]
. (4.5)

4.3 Iterative relation

As

Pk`(β) =
1

π

∫ 1
2

− 1
2

∫ 1
2

− 1
2

xk−1(x− u+ u)u`
sinβ(x− u)

x− u
du dx

= Pk−1,`+1(β) +
1

π

∫ 1
2

− 1
2

∫ 1
2

− 1
2

xk−1u` sinβ(x− u) du dx, (4.6)

evaluating ∆k`(β) = 1
π

∫ 1
2

− 1
2

∫ 1
2

− 1
2

xk−1u` sinβ(x − u) du dx will enable us to evaluate Pk`(β)

via

Pk`(β) = Pk−1,`+1(β) + ∆k`(β)

= Pk−2,`+2(β) + ∆k`(β) + ∆k−1,`+1(β)

= P0,k+`(β) +
k−1∑
s=0

∆k−s,`+s(β), (4.7)

provided we know P0,k+`(β).

But

∆k`(β) =
1

π

∫ 1
2

− 1
2

xk−1 sinβx dx

∫ 1
2

− 1
2

u` cosβu du− 1

π

∫ 1
2

− 1
2

xk−1 cosβx dx

∫ 1
2

− 1
2

u` sinβu du

=


1
π

∫ 1
2

− 1
2

xk−1 sinβx dx
∫ 1

2

− 1
2

u` cosβu du, k, ` both even;

− 1
π

∫ 1
2

− 1
2

xk−1 cosβx dx
∫ 1

2

− 1
2

u` sinβu du, k, ` both odd,
(4.8)

where we assume that k and ` are both even or both odd, as Pk−s,`+s, ∆k−s,`+s all vanish

otherwise.
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By Gradshteyn and Ryzhik[45],

∫ 1
2

− 1
2

um sinβu du = m!

− cosβu

1
2

(m−1)∑
p=0

(−1)pum−2p

(m− 2p)!β2p+1
+

sinβu

1
2

(m−1)∑
p=0

(−1)pum−2p−1

(m− 2p− 1)!β2p+2


1
2

− 1
2

=
m!

2m−1

− cos 1
2β

1
2

(m−1)∑
p=0

22p(−1)p

(m− 2p)!β2p+1
+

sin 1
2β

1
2

(m−1)∑
p=0

22p+1(−1)p

(m− 2p− 1)!β2p+2


= Cm(β) cosβ + Sm(β) sinβ (4.9)

for m odd, and

∫ 1
2

− 1
2

um cosβu du = m!

cosβu

1
2
m−1∑
p=0

(−1)pum−2p−1

(m− 2p− 1)!β2p+2
+

sinβu

1
2
m∑

p=0

(−1)pum−2p

(m− 2p)!β2p+1


1
2

− 1
2

=
m!

2m−1

cos 1
2β

1
2
m−1∑
p=0

22p+1(−1)p

(m− 2p− 1)!β2p+2
+

sin 1
2β

1
2
m∑

p=0

22p(−1)p

(m− 2p)!β2p+1


= Cm(β) cosβ + Sm(β) sinβ (4.10)

for m > 0 even, where

Cm(β) =


0, m = 0;

m!
2m−1

∑ 1
2
m−1

p=0
22p+1(−1)p

(m−2p−1)!β2p+2 , m > 0 even;

− m!
2m−1

∑ 1
2

(m−1)

p=0
22p(−1)p

(m−2p)!β2p+1 , m odd,

(4.11)

and

Sm(β) =

 m!
2m−1

∑ 1
2
m

p=0
22p(−1)p

(m−2p)!β2p+1 m even;

m!
2m−1

∑ 1
2

(m−1)

p=0
22p+1(−1)p

(m−2p−1)!β2p+2 m odd,
(4.12)

where C0 and S0 are such that
∫ 1

2

− 1
2

cosβu du = C0(β) cosβ + S0(β) sinβ.
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Then, if k and ` are both even, equation (4.8) shows that

∆k`(β) = 1
π [Ck−1(β) cos 1

2β + Sk−1(β) sin 1
2β][C`(β) cos 1

2β + S`(β) sin 1
2β]

= ∆
(u)
k` (β) + ∆

(c)
k` (β) cosβ + ∆

(s)
k` (β) sinβ (4.13)

where

∆
(u)
k` (β) = 1

2π [Ck−1(β)C`(β) + Sk−1(β)S`(β)],

∆
(c)
k` (β) = 1

2π [Ck−1(β)C`(β)− Sk−1(β)S`(β)],

∆
(s)
k` (β) = 1

2π [Ck−1(β)S`(β) + Sk−1(β)C`(β)]. (4.14)

If k and ` are both odd, we have

∆k`(β) = −∆
(u)
k` (β)−∆

(c)
k` (β) cosβ −∆

(s)
k` (β) sinβ (4.15)

instead.

We now need Pk0 to use equation (4.7), and

Pk0(β) =
1

π

∫ 1
2

− 1
2

∫ 1
2

− 1
2

xk
sinβ(x− u)

x− u
du dx =

1

π

∫ 1
2

− 1
2

∫ x+ 1
2

x− 1
2

xk
sinβv

v
dv dx

=
1

π

(∫ 0

−1

∫ v+ 1
2

− 1
2

+

∫ 1

0

∫ 1
2

v− 1
2

)
xk

sinβv

v
dx dv

=
1 + (−1)k

π

∫ 1

0

∫ 1
2

v− 1
2

xk
sinβv

v
dx dv (4.16)

where we have made the substitution u = v−x, changed the order of integration, and reflected

x and v under one of the double integrals. Since Pk0(β) = 0 if k is odd, we assume that k is

even. As we already have the expression in equation (4.5) for P00, we may also assume that

k > 0. Then, we have

Pk0(β) =
2

(k + 1)π

∫ 1

0

{(
1

2

)k+1

−
(
v − 1

2

)k+1
}

sinβv

v
dv

=
2

(k + 1)π

∫ 1

0

{(
1

2

)k+1

−
k+1∑
s=0

(
k + 1

s

)
(−1)s+1vs

2k+1−s

}
sinβv

v
dv

= P
(0)
k0 (β) + P

(1)
k0 (β), (4.17)

where

P
(0)
k0 (β) =

1

2k−1(k + 1)π

∫ 1

0

sinβv

v
dv =

Si(β)

2k−1(k + 1)π
(4.18)
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and

P
(1)
k0 (β) = − 2

(k + 1)π

k∑
s=0

(
k + 1

s+ 1

)
(−1)s

2k−s

∫ 1

0
vs sinβv dv

=
2

(k + 1)π

− 1
2
k∑

s=0

(
k + 1

2s+ 1

)
1

2k−2s

∫ 1

0
v2s sinβv dv +

1
2
k−1∑
s=0

(
k + 1

2s+ 2

)
1

2k−2s−1

∫ 1

0
v2s+1 sinβv dv


= P

(e)
k0 (β) + P

(o)
k0 (β). (4.19)

The definition of P
(o)
k0 (β) is obvious given

P
(e)
k0 (β) = − 2

(k + 1)π

1
2
k∑

s=0

(
k + 1

2s+ 1

)
1

2k−2s

∫ 1

0
v2s sinβv dv

= − 2

(k + 1)π

1
2
k∑

s=0

(
k + 1

2s+ 1

)
(2s)!

2k−2s

cosβv

s∑
p=0

(−1)p+1v2(s−p)

β2p+1(2s− 2p)!
+

sinβv
s−1∑
p=0

(−1)pv2(s−p)−1

β2p+2(2s− 2p− 1)!

1

0

= − k!

2k−1π

1
2
k∑

s=0

22s

(2s+ 1)(k − 2s)!

cosβ
s∑

p=0

(−1)p+1

β2p+1(2s− 2p)!
+

sinβ
s−1∑
p=0

(−1)p

β2p+2(2s− 2p− 1)!
+

(−1)s

β2s+1


= P

(u)
k0 (β) + P

(ec)
k0 (β) cosβ + P

(es)
k0 (β) sinβ, (4.20)

where we have used Gradshteyn and Ryzhik[45] for
∫
v2s sinβv dv, P

(1ec)
k0 and P

(1es)
k0 will be

defined in due course, and

P
(u)
k0 (β) = − k!

2k−1πβ

1
2
k∑

s=0

1

(2s+ 1)(k − 2s)!

(
− 4

β2

)s
. (4.21)

Then,

P
(ec)
k0 (β) =

k!

2k−1π

1
2
k∑

s=0

s∑
p=0

22s(−1)p

(2s+ 1)(k − 2s)!(2s− 2p)!β2p+1

=
k!

2k−1πβ

1
2
k∑

p=0

 1
2
k−p∑
s=0

22s

(2s+ 2p+ 1)(k − 2s− 2p)!(2s)!

(− 4

β2

)p
(4.22)
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and

P
(es)
k0 (β) = − k!

2k−1π

1
2
k∑

s=0

s−1∑
p=0

22s(−1)p

(2s+ 1)(k − 2s)!(2s− 2p− 1)!β2p+2

= − k!

2k−3πβ2

1
2
k−1∑
p=0

 1
2
k−1−p∑
s=0

22s

(2s+ 2p+ 3)(k − 2s− 2p− 2)!(2s+ 1)!

(− 4

β2

)p
.

(4.23)

Also

P
(o)
k0 (β) =

2

(k + 1)π

1
2
k−1∑
s=0

(
k + 1

2s+ 2

)
1

2k−2s−1

∫ 1

0
v2s+1 sinβv dv

=
2

(k + 1)π

1
2
k−1∑
s=0

(
k + 1

2s+ 2

)
(2s+ 1)!

2k−2s−1

cosβv
s∑

p=0

(−1)p+1v2(s−p)+1

β2p+1(2(s− p) + 1)!
+

sinβv
s∑

p=0

(−1)pv2(s−p)

β2p+2(2s− 2p)!

1

0

=
2

(k + 1)π

1
2
k−1∑
s=0

(
k + 1

2s+ 2

)
(2s+ 1)!

2k−2s−1

cosβ

s∑
p=0

(−1)p+1

β2p+1(2(s− p) + 1)!
+

sinβ
s∑

p=0

(−1)p

β2p+2(2s− 2p)!


= P

(oc)
k0 (β) cosβ + P

(os)
k0 (β) sinβ, (4.24)

where

P
(oc)
k0 (β) = − k!

2k−2π

1
2
k−1∑
s=0

s∑
p=0

22s(−1)p

(2s+ 2)(k − 2s− 1)!(2(s− p) + 1)!β2p+1

= − k!

2k−2πβ

1
2
k−1∑
p=0

 1
2
k−1−p∑
s=0

22s

(2s+ 2p+ 2)(k − 2s− 2p− 1)!(2s+ 1)!

(− 4

β2

)p
(4.25)
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and

P
(os)
k0 (β) =

k!

2k−2π

1
2
k−1∑
s=0

s∑
p=0

22s(−1)p

(2s+ 2)(k − 2s− 1)!(2s− 2p)!β2p+2

=
k!

2k−2πβ2

1
2
k−1∑
p=0

 1
2
k−1−p∑
s=0

22s

(2s+ 2p+ 2)(k − 2s− 2p− 1)!(2s)!

(− 4

β2

)p
.

(4.26)

Now,

Pk0(β) = P
(0)
k0 (β) + P

(u)
k0 (β) +

[
P

(ec)
k0 (β) + P

(oc)
k0 (β)

]
cosβ +

[
P

(es)
k0 (β) + P

(os)
k0 (β)

]
sinβ

= P
(0)
k0 (β) + P

(u)
k0 (β) + P

(c)
k0 (β) cosβ + P

(s)
k0 (β) sinβ, (4.27)

where

P
(c)
k0 (β) = P

(ec)
k0 (β) + P

(oc)
k0 (β)

=
k!

2k−1πβ

1
2
k∑

p=0

 1
2
k−p∑
s=0

22s

(2s+ 2p+ 1)(k − 2s− 2p)!(2s)!

(− 4

β2

)p
−

k!

2k−2πβ

1
2
k−1∑
p=0

 1
2
k−1−p∑
s=0

22s

(2s+ 2p+ 2)(k − 2s− 2p− 1)!(2s+ 1)!

(− 4

β2

)p

=



1
6πβ

(
1− 8

β2

)
, k = 2

1
2k−1(k+1)πβ

+ k!
2k−1πβ

{∑ 1
2
k

p=1
2k−2p

(k+1)(k−2p)!

(
− 4
β2

)p
+∑ 1

2
k−1

p=1

∑ 1
2
k−1−p

s=0
22s

(2s+1)!(k−2s−2p)!×[
2s+1

2s+2p+1 −
2(k−2s−2p)

2s+2p+2

] (
− 4
β2

)p}
,

k > 2,

(4.28)
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and

P
(s)
k0 (β) = P

(es)
k0 (β) + P

(os)
k0 (β)

= − k!

2k−3πβ2

1
2
k−1∑
p=0

 1
2
k−1−p∑
s=0

22s

(2s+ 2p+ 3)(k − 2s− 2p− 2)!(2s+ 1)!

(− 4

β2

)p
+

k!

2k−2πβ2

1
2
k−1∑
p=0

 1
2
k−1−p∑
s=0

22s

(2s+ 2p+ 2)(k − 2s− 2p− 1)!(2s)!

(− 4

β2

)p

=
k!

2k−2πβ2

1
2
k−1∑
p=0

1
2
k−1−p∑
s=0

22s

(2s+ 1)!(k − 2s− 2p− 1)!

{
−2(k − 2s− 2p− 1)

2s+ 2p+ 3
+

2s+ 1

2s+ 2p+ 2

}(
− 4

β2

)p
.

(4.29)

We can now use equations (4.18), (4.21), (4.28) and (4.29) in equation (4.27) to calculate

Pk0, and then equation (4.7) to calculate Pk`, at least sufficiently far from β = 0 to avoid

numerical problems stemming from the appearance of negative powers of β in our equations.

4.4 Bounds on Pk`(β)

Jordan’s inequality,
2
πθ ≤ sin θ ≤ θ, θ ∈

[
0, π2

]
(4.30)

can be used to put bounds on Pk`(β) for β ∈
[
0, 1

2π
]
.

Now

Pk`(β) =
1

π

∫ 1
2

− 1
2

∫ x+ 1
2

x− 1
2

xk(x− v)`
sinβv

v
dvdx

=
1

π

(∫ 0

−1

∫ v+ 1
2

− 1
2

+

∫ 1

0

∫ 1
2

v− 1
2

)
xk(x− v)`

sinβv

v
dxdv

=
1 + (−1)k+`

π

∫ 1

0

∫ 1
2

v− 1
2

xk(x− v)`
sinβv

v
dxdv. (4.31)

If k and ` are both even and β ∈
[
0, π2

]
, then the integrand in equation (4.31) is non-
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negative. This means that

Pk`(β) ≥ β

4π2

∫ 1

0

∫ 1
2

v− 1
2

xk(x− v)`dxdv

=
β

4π2

∫ 1
2

− 1
2

∫ x+ 1
2

0
xk(x− v)`dvdx

=
4β

π2(`+ 1)

∫ 1
2

− 1
2

xk
[
−(x− v)`+1

]x+ 1
2

0
dx

=
4β

π2(`+ 1)

∫ 1
2

− 1
2

xk
[

1

2`+1
+ x`+1

]
dx

=
4β

π2(`+ 1)

[
xk+1

2`+1(k + 1)

] 1
2

− 1
2

=
β

2k+`−1(`+ 1)(k + 1)π2
. (4.32)

By essentially the same argument, Pk`(β) ≤ β
2k+`(k+1)(`+1)π

and, so

β

2k+`(k + 1)(`+ 1)π
≥ Pk`(β) ≥ β

2k+`−1(k + 1)(`+ 1)π2
. (4.33)

On the other hand, if k and ` are both odd and β ∈
[
0, π2

]
, the integrand of (4.31) is

non-negative on the region of integration only when (x, v) ∈
{
v ∈

[
0, 1

2

]
, v − 1

2 ≤ x ≤ 0
}
∪{

v ∈
[
0, 1

2

]
, v ≤ x ≤ 1

2

}
and is non-positive when (x, v) ∈

{
v ∈

[
0, 1

2

]
, 0 ≤ x ≤ v

}
∪{

v ∈
[

1
2 , 1
]
, v − 1

2 ≤ x ≤
1
2

}
.

Thus, in that case,

Pk`(β) ≥ β

{
π

2

(∫ 1
2

0

∫ v

0
+

∫ 1

1
2

∫ 1
2

v− 1
2

)
+

∫ 1
2

0

∫ 0

v− 1
2

+

∫ 1
2

0

∫ 1
2

v

}
xk(x− v)`dxdv

= β

{
π

2

∫ 1
2

0

∫ x+ 1
2

x
+

∫ 0

− 1
2

∫ x+ 1
2

0
+

∫ 1
2

0

∫ x

0

}
xk(x− v)`dvdx

=
β

`+ 1

{
π

2

∫ 1
2

0
xk
[
−(x− v)`+1

]x+ 1
2

x
dx +

∫ 0

− 1
2

xk
[
−(x− v)`+1

]x+ 1
2

0
dx+

∫ 1
2

0
xk
[
−(x− v)`+1

]x
0

dx

}

=
β

`+ 1

{
− π

2`+2

∫ 1
2

0
xkdx +

∫ 0

− 1
2

xk
[
− 1

2`+1

]
dx+

∫ 1
2

− 1
2

xk+`+1dx

}
(4.34)
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4.5 The Taylor-MacLaurin series

We have that Pk`(β) is infinitely differentiable with

d2m

dβ2m
Pk`(β) = P

(2m)
k` (β) =

(−1)m

π

∫ 1
2

− 1
2

∫ 1
2

− 1
2

xku`(x− u)2m−1 sinβ(x− u)dudx,

d2m+1

dβ2m+1
Pk`(β) = P

(2m+1)
k` (β) =

(−1)m

π

∫ 1
2

− 1
2

∫ 1
2

− 1
2

xku`(x− u)2m cosβ(x− u)dudx.

Thus, P
(2m)
k` (0) = 0 and

P
(2m+1)
k` (0) =

(−1)m

π

∫ 1
2

− 1
2

∫ 1
2

− 1
2

xku`(x− u)2mdudx

=
(−1)m

π

2m∑
r=0

(
2m

r

)
(−1)r

∫ 1
2

− 1
2

xk+2m−rdx

∫ 1
2

− 1
2

u`+rdu,

so

P
(2m+1)
2k,2` (0) =

(−1)m

π

2m∑
r=0

(−1)r
(

2m

r

)∫ 1
2

− 1
2

x2k+2m−rdx

∫ 1
2

− 1
2

u2`+rdu

=
(−1)m

π

2m∑
r=0

(−1)r
(

2m

r

)
1 + (−1)r

22k+2m−r+1(2k + 2m− r + 1)

1 + (−1)r

22`+r+1(2`+ r + 1)

=
(−1)m

22k+2`+2mπ

m∑
r=0

(
2m

2r

)
1

(2k + 2m− 2r + 1)(2`+ 2r + 1)

=
(−1)m

22k+2`+2m+1(m+ k + `+ 1)π

m∑
r=0

(
2m

2r

)[
1

2`+ 2r + 1
+

1

2k + 2m− 2r + 1

]

=
(−1)m

22k+2`+2m+1(m+ k + `+ 1)π

m∑
r=0

(
2m

2r

)[
1

2`+ 2r + 1
+

1

2k + 2r + 1

]
,

and, by Taylor’s Theorem,

P2k,2`(β) =

M∑
m=0

1

(2m+ 1)!
P

(2m+1)
2k,2` (0)β2m+1 + PR,2k,2`,M (β) = P2k,2`,M (β) + PR,2k,2`,M (β),

(4.35)
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where

|PR,2k,2`,M (β)| (4.36)

≤ β2M+3

(2M + 3)!π
max
β′∈[0,β]

∣∣∣∣∣
∫ 1

2

− 1
2

∫ 1
2

− 1
2

x2ku2`(x− u)2M+2 cosβ′(x− u)dudx

∣∣∣∣∣
≤ β2M+3

(2M + 3)!π
max
β′∈[0,β]

∫ 1
2

− 1
2

∫ 1
2

− 1
2

|x2ku2`(x− u)2M+2 cosβ′(x− u)|dudx

≤ 2β2M+3

(2M + 3)!π

∫ 1
2

− 1
2

∫ 1
2

u
x2ku2`(x− u)2M+2dxdu

≤ 1

22(k+`)+1(2M + 3)!π

[
1

(2k + 1)(2`+ 1)
+

1

22(M+1)(2k + 1)[2(M + `) + 3]
+

1

22(M+1)[2(M + k) + 3](2`+ 1)

]
β2M+3

(4.37)

(using the Lagrange form for the remainder in Taylor’s Theorem), as

∫ 1
2

− 1
2

∫ 1
2

u
x2ku2`(x− u)2M+2dxdu

=

(∫ 0

− 1
2

∫ 0

u
+

∫ 0

− 1
2

∫ 1
2

0
+

∫ 1
2

0

∫ 1
2

u

)
x2ku2`(x− u)2M+2dxdu

=

∫ 1
2

0

[∫ 1
2

0
x2ku2`(x+ u)2M+2dx+

(∫ u

0
+

∫ 1
2

u

)
x2ku2`(x− u)2M+2dx

]
du

≤
∫ 1

2

0

[∫ 1
2

0
x2ku2`dx+

∫ u

0
x2ku2(M+`+1)dx+

∫ 1
2

u
x2(M+k+1)u2`dx

]
du

≤
∫ 1

2

0

[∫ 1
2

0
x2ku2`dx+

∫ 1
2

0
[x2ku2(M+`+1) + x2(M+k+1)u2`]dx

]
du

=
1

22(k+`+1)

[
1

(2k + 1)(2`+ 1)

1

22(M+1)(2k + 1)[2(M + `) + 3]
+

1

22(M+1)[2(M + k) + 3](2`+ 1)

]
. (4.38)

As limM→∞ |PR,2k,2`,M (β)| = 0 for every fixed β, P2k,2`,M (β) converges for every fixed

β. Inequality (4.37) implies that |PR,2k,2`,M | ≤ 7
12π

β2M+3

(2M+3)! for every k, `, so, if we wish the

absolute error to be bounded by ε for fixed β, we choose M such that 7
12π

β2M+3

(2M+3)! < ε.

If β ≤ 10 and ε = 4× 10−15, then 7
12π

β2M+3

(2M+3)! ≤
7

12π
102M+3

(2M+3)! = 7
12π

1049

49! ≈ 3.0525× 10−15 <

4× 10−15 = ε for M = 23.

Thus ∣∣∣∣∣P2k,2`(β)−
23∑
m=0

P̃2k,2`,2m+1β
2m+1

∣∣∣∣∣ < 4× 10−15 (4.39)
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for β ∈ [0, 10], where

P̃2k,2`,2m+1 =
(−1)m

22(m+k+`)+1(2m+ 1)(m+ k + `+ 1)π
m∑
r=0

1

(2r)!(2m− 2r)!

[
1

2k + 2r + 1
+

1

2`+ 2r + 1

]
. (4.40)

Now, if β ∈ [0, 10],

P2k,2`(β) ≈
M∑
r=0

M∑
m=r

(−1)m

22(m+k+`)+1(2m+ 1)(m+ k + `+ 1)(2r)!(2m− 2r)!π
×[

1

2k + 2r + 1
+

1

2`+ 2r + 1

]
β2m+1

=
β

22(k+`)+1π

M∑
r=0

(−1)rβ2r

22r(2r)!

[
1

2k + 2r + 1
+

1

2`+ 2r + 1

]
×

M−r∑
m=0

(−1)mβ2m

22m(2m+ 2r + 1)(m+ r + k + `+ 1)(2m)!
,(4.41)

where we have ensured that the summations contain terms with expressions like t
( 1
2
β)

2m

(2m)!

which can be written as exp
(
2m ln 1

2β − ln Γ(2m+ 1)
)

so that the Matlab R© function gammaln

(= ln Γ(·)) can be used for accuracy of evaluation.

In order to get bounds on the relative absolute error,
|PR,2k,2`,M (β)|

P2k,2`(β) , we set M = 0 in

equation (4.35):

P2k,2`(β) = P̃2k,2`,1β + PR,2k,2`,0(β)

≥ 1

22(k+`)+1(k + `+ 1)π

[
1

2k + 1
+

1

2`+ 1

]
β −

1

6π

1

22(k+`+1)

[
1

(2k + 1)(2`+ 3)
+

1

(2k + 3)(2`+ 1)

]
β3

=
1

22(k+`)(2k + 1)(2`+ 1)π

[
1− 1

24

(
2k + 1

2k + 3
+

2`+ 1

2`+ 3

)
β2

]
β, (4.42)

where we have used equation (4.40) and, instead of inequality (4.37), a tighter ver-

sion holding just for M = 0, |PR,2k,2`,0(β)| ≤ 1
6π

∫ 1
2

− 1
2

∫ 1
2

− 1
2

x2ku2`(x − u)2dxdu =

1
6π

[
1

(2k+1)(2`+3) + 1
(2k+3)(2`+1)

]
. The right-hand side of inequality (4.42) is positive if β2 <

24
(

2k+1
2k+3 + 2`+1

2`+3

)−1
∈ (12, 36], and, if β0 ∈ [0, 2

√
3), we are guaranteed that P2k,2`(β) ≥

1
22(k+`)(2k+1)(2`+1)π

[
1− 1

24

(
2k+1
2k+3 + 2`+1

2`+3

)
β2

0

]
β > 0 for β ∈ [0, β0].

As π ∈ [0, 2
√

3), we must have

P2k,2`(β) ≥ 1

22(k+`)(2k + 1)(2`+ 1)π

[
1− 1

24

(
2k + 1

2k + 3
+

2`+ 1

2`+ 3

)
π2

]
β > 0, β ∈ [0, π].

(4.43)
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Consequently,

|PR,2k,2`,M (β)|
P2k,2`(β) ≤ 1

2(2k+1)(2`+1)(2M+3)!

[
1− 1

24

(
2k+1
2k+3 + 2`+1

2`+3

)
π2
]−1
×[

1 + 2`+1
22(M+1)[2(M+`)+3]

+ 2k+1
22(M+1)[2(M+k)+3]

]
β2M+2

≤ 1
2(2k+1)(2`+1)

[
1− 1

24

(
2k+1
2k+3 + 2`+1

2`+3

)
π2
]−1
×[

1 + 2k+1
4(2k+3) + 2`+1

4(2`+3)

]
β2M+2

(2M+3)!

≤ 1
2(2k+1)(2`+1)

[
1− π2

12

]−1
3β2M+2

2(2M+3)! = 9
(12−π2)(2k+1)(2`+1)

β2M+2

(2M+3)! .

(4.44)

Hence, if we want to bound the relative absolute error in P2k,2`(β) (caused by taking the

Taylor series on β ∈ [0, π]) by ε, we need to find M such that 9
12−π2

π2M+2

(2M+3)! ≤ ε. If we take

ε = 10−6, then a suitable M is 8, as 9π18

19!(12−π2)
≈ 5.8633× 10−7.

If we may assume that minβ≥π,(k,`)∈{(k′,`′)∈{0,1,2,...,10}2:k′ + `′ is even} Pk`(β) ≥ 4 × 10−9

(which certainly appears to be the case from the evaluation of Pk`(β) using Matlab R©’s built-in

functions), then, by inequalities (4.39) and (4.44),

|PR,2k,2`,23(β)|
P2k,2`(β) ≤ 10−6, β ∈ [0, 10]. (4.45)

We now deal with the case where Pk` has odd indices.

P
(1)
2k+1,2`+1(0) =

1

π

∫ 1
2

− 1
2

x2k+1dx

∫ 1
2

− 1
2

u2`+1du = 0,

P
(2m+1)
2k+1,2`+1(0) =

(−1)m

π

2m∑
r=0

(
2m

r

)
(−1)r

∫ 1
2

− 1
2

x2k+2m+1−rdx

∫ 1
2

− 1
2

u2`+1+rdu

=
(−1)m

π

2m∑
r=0

(
2m

r

)
(−1)r

1− (−1)r

22k+2m+2−r(2k + 2m+ 2− r)
1− (−1)r

22`+2+r(2`+ 2 + r)

=
(−1)m+1

22(m+k+`+1)π

m−1∑
r=0

(
2m

2r + 1

)
1

(2k + 2m+ 1− 2r)(2`+ 3 + 2r)

=
(−1)m+1

22(m+k+`)+3(m+ k + `+ 2)π
×

m−1∑
r=0

(
2m

2r + 1

)[
1

2k + 2m+ 1− 2r
+

1

2`+ 3 + 2r

]
=

(−1)m+1

22(m+k+`)+3(m+ k + `+ 2)π
×

m∑
r=1

(
2m

2r − 1

)[
1

2k + 1 + 2r
+

1

2`+ 1 + 2r

]
,m > 0,
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and, again by Taylor’s Theorem,

P2k+1,2`+1(β) =

M∑
m=1

1

(2m+ 1)!
P

(2m+1)
2k+1,2`+1(0)β2m+1 + PR,2k+1,2`+1,M (β)

= P2k+1,2`+1,M (β) + PR,2k+1,2`+1,M (β), (4.46)

where

|PR,2k+1,2`+1,M (β)|

≤ β2M+3

(2M + 3)!π
max
β′∈[0,β]

∣∣∣∣∣(−1)M+1

∫ 1
2

− 1
2

∫ 1
2

− 1
2

x2k+1u2`+1(x− u)2M+2

cosβ′(x− u)dudx

∣∣∣∣∣
≤ β2M+3

(2M + 3)!π
max
β′∈[0,β]

∫ 1
2

− 1
2

∫ 1
2

− 1
2

|x2k+1u2`+1(x− u)2M+2 cosβ′(x− u)|dudx

≤ 2β2M+3

(2M + 3)!π

∫ 1
2

− 1
2

∫ 1
2

u
|x|2k+1|u|2`+1(x− u)2M+2dxdu

= 1
22(k+`)+5π

[
1

(k+1)(`+1) + 1
22(M+1)(k+1)(M+`+2)

+ 1
22(M+1)(M+k+2)(`+1)

]
β2M+3

(2M+3)! ,

(4.47)

as∫ 1
2

− 1
2

∫ 1
2

u
|x|2k+1|u|2`+1(x− u)2M+2dxdu ≤ 1

22(k+`+3)

[
1

(k+1)(`+1) + 1
22(M+1)(k+1)(M+`+2)

+

1
22(M+1)(M+k+2)(`+1)

]
,

derived in the same way as inequality (4.38).

Inequality (4.47) implies that |PR,2k+1,2`+1,M (β)| ≤ 5
128π

β2M+3

(2M+3)! for all k, `. Putting

M = 23, β = 10 in this gives |PR,2k+1,2`+1,23(β)| ≤ 5×1049

128(49)!π ≈ 2.0441× 10−16 < 4× 10−15 for

β ∈ [0, 10].

Together with inequality (4.39), this means∣∣∣∣∣Pk,`(β)−
23∑
m=0

P̃k,`,2m+1β
2m+1

∣∣∣∣∣ < 4× 10−15, (4.48)
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where

P̃2k+1,2`+1,2m+1 =


0, m = 0;

(−1)m+1

22(m+k+`)+3(2m+1)(m+k+`+2)π
×∑m

r=1
1

(2r−1)!(2m−2r+1)!

[
1

2k+1+2r + 1
2`+1+2r

]
, m > 0,

P̃2k,2`,2m+1 =
(−1)m

22(m+k+`)+1(2m+ 1)(m+ k + `+ 1)π
×

m∑
r=0

1

(2r)!(2m− 2r)!

[
1

2`+ 2r + 1
+

1

2m+ 2r + 1

]
,

or, to summarise,

P̃k,`,2m+1 =



(−1)m

22m+k+`(2m+1)(2m+k+`+2)π
×∑m

r=0
1

(2r)!(2m−2r)!

[
1

k+2r+1 + 1
`+2r+1

]
, k, ` both even;

0, m = 0;
(−1)m+1

22m+k+`(2m+1)(2m+k+`+2)π
×∑m−1

r=0
1

(2r+1)!(2m−2r−1)!×[
1

k+2r+2 + 1
`+2r+2

]
,

m > 0;


k, ` both odd;

0, otherwise.

(4.49)

As

m∑
r=0

1

(k + 2r + 1)(2r)!(2m− 2r)!
=

1

2(2m)!

m∑
r=0

(
2m

r

)
1 + (−1)r

k + r + 1

=
1

2(2m)!

m∑
r=0

(
2m

r

)
[1 + (−1)r]

∫ 1

0
xk+rdx

=
1

2(2m)!

∫ 1

0
xk[(1− x)2m + (1 + x)2m]dx

=
1

2(2m)!

[
Γ(k + 1)Γ(2m+ 1)

Γ(2m+ k + 2)
+

∫ 2

1
(x− 1)kx2mdx

]
=

k!

2(2m+ k + 1)!
+

1

2(2m)!

k∑
r=0

(
k

r

)
(−1)r

∫ 2

1
x2m+k−rdx

=
k!

2(2m+ k + 1)!
+

1

2(2m)!

k∑
r=0

(
k

r

)
(−1)r

2m+ k − r + 1
[22m+k−r+1 − 1]

=
k!

2(2m+ k + 1)!
+

(−1)k

2(2m)!

k∑
r=0

(
k

r

)
(−1)r

2m+ r + 1
[22m+r+1 − 1],

(4.50)
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and, similarly,

m−1∑
r=0

1

(k + 2r + 2)(2r + 1)!(2m− 2r − 1)!
=

1

2(2m)!

2m∑
r=0

(
2m

r

)
1− (−1)r

k + r + 1

= − k!

2(2m+ k + 1)!
+

(−1)k

2(2m)!

k∑
r=0

(
k

r

)
(−1)r

2m+ r + 1
[22m+r+1 − 1],

(4.51)

we can rewrite equation (4.49) as

P̃k,`,2m+1 =



(−1)m

22m+k+`+1(2m+1)(2m+k+`+2)π
×[

k!
(2m+k+1)! + `!

(2m+`+1)! +

1
(2m)!

{∑k
r=0

(
k
r

) (−1)r[22m+r+1−1]
2m+r+1 +∑`

r=0

(
`
r

) (−1)r[22m+r+1−1]
2m+r+1

}]
,

k, ` both even, or

k, ` both odd and

m > 0;

0, otherwise.

(4.52)

To determine how many terms are necessary to bound the relative absolute error when

the indices of P are odd, we need to look at equation (4.46) with M = 1 (note that the

leading term is in β3, not β, as is the case for even indices):

P2k+1,2`+1(β) = P2k+1,2`+1,1(β) + PR,2k+1,2`+1,1(β)

≥ P̃2k+1,2`+1,3β
3 − |PR,2k+1,2`+1,1(β)|

= 1
3×22(k+`)+5(k+`+3)π

[
1

2k+3 + 1
2`+3

]
β3 −

1
22(k+`+4)5!π

[
1

(k+1)(`+3) + 6
(k+2)(`+2) + 1

(k+3)(`+1)

]
β5

= β3

3×22(k+`+2)(2k+3)(2`+3)π
− 1

22(k+`+4)5!π

[
β5

(k+1)(`+3) + 6
(k+2)(`+2) + 1

(k+3)(`+1)

]
= β3

22(k+`+4)π

[
16

3(2k+3)(2`+3) −
1
5!

(
1

(k+1)(`+3) + 6
(k+2)(`+2) + 1

(k+3)(`+1)

)
β2
]
,

(4.53)

where we have used equation (4.49) and the stricter version of inequality (4.47) for M = 1
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given by

|PR,2k+1,2`+1,1(β)| ≤ β5

5!π

∫ 1
2

− 1
2

∫ 1
2

− 1
2

|x|2k+1|u|2`+1(x− u)4dxdu

=
β5

5!π

∫ 1
2

− 1
2

∫ 1
2

− 1
2

|x|2k+1|u|2`+1(x4 + 6u2x2 + u4)dxdu

=
4β5

5!π

∫ 1
2

0

∫ 1
2

0
x2k+1u2`+1(x4 + 6u2x2 + u4)dxdu

= β5

22(k+`+4)5!π

[
1

(k+1)(`+3) + 6
(k+2)(`+2) + 1

(k+3)(`+1)

]
,

so, if β2
0 < 640

(2k+3)(2`+3)

(
1

(k+1)(`+3) + 6
(k+2)(`+2) + 1

(k+3)(`+1)

)−1
, where the greatest lower

bound of the right-hand side of this inequality is 1280
39 , we will have P2k+1,2`+1(β) ≥

1
22(k+`+3)π

[
4

3(2k+3)(2`+3) −
1
5!

(
1

(k+1)(`+3) + 6
(k+2)(`+2) + 1

(k+3)(`+1)

)
β2

0

]
β3 for β ∈ [0, β0]. But

π ∈
[
0, 16

√
5
39

]
, so

P2k+1,2`+1(β) ≥ 1
22(k+`+3)π

[
16

3(2k+4)(2`+3) −

1
5!

(
1

(k+1)(`+3) + 6
(k+2)(`+2) + 1

(k+3)(`+1)

)
π2
]
β3 > 0, β ∈ [0, π].

(4.54)

Thus

|PR,2k+1,2`+1,M (β)|
P2k+1,2`+1(β) ≤ 2

[
16(k+1)(`+1)
3(2k+3)(2`+3) −

1
5!

(
`+1
`+3 + 6(k+1)(`+1)

(k+2)(`+2) + k+1
k+3

)
π2
]−1
×[

1 + `+1
22(M+1)(M+`+2)

+ k+1
22(M+1)(M+k+2)

]
β2M

(2M+3)!

≤ 2
[

16
27 −

π2

18

]−1 [
1 + 1

22M+1

] β2M

(2M+3)! ≤
108

32−3π2
β2M

(2M+3)! , (4.55)

as the turning points of 8(k+1)(`+1)
3(2k+3)(2`+3) −

`+1
120(`+3)π

2 = 4(k+1)
3(2k+3) −

π2

120 −
4(k+1)

3(2k+3)(2`+3) + 1
60(`+3)π

2

considered as a function of ` are at negative values of `, so

8(k+1)(`+1)
3(2k+3)(2`+3) −

`+1
120(`+3)π

2 ≥ inf
`∈[0,∞)

{
4(k+1)
3(2k+3) −

π2

120 −
4(k+1)

3(2k+3)(2`+3) + 1
60(`+3)π

2
}

= min
{

8(k+1)
9(2k+3) −

π2

360 ,
4(k+1)
3(2k+3) −

π2

120

}
= 8(k+1)

9(2k+3) −
π2

360 ≥
8
27 −

π2

360

and 16(k+1)(`+1)
3(2k+3)(2`+3)−

1
120

(
`+1
`+3 + 6(k+1)(`+1)

(k+2)(`+2) + k+1
k+3

)
π2 ≥ 16

27−
π2

180−
(k+1)(`+1)

20(k+2)(`+2)π
2 ≥ 16

27−
π2

18 > 0.

Equation (4.55) means that the absolute relative error for β ∈ [0, π] is bounded by ε =

10−6 if 108
32−3π2

π2M

(2M+3)! < 10−6, which is satisfied if M ≥ 8, as 108
32−3π2

π16

19! ≈ 6.3514× 10−7.

If we again use minβ≥π,(k,`)∈{(k′,`′)∈{0,1,2,...,10}2:k′ + `′ is even} Pk`(β) ≥ 4 × 10−9, inequali-

ties (4.48) and (4.55) mean that inequality (4.45) also holds when P has odd indices:

|PR,2k+1,2`+1,23(β)|
P2k+1,2`+1(β) ≤ 10−6, β ∈ [0, 10]. (4.56)
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Returning to equation (4.49), we have, in particular,

P̃k,`,1 =

{
1

2k+`(k+`+2)π

[
1

k+1 + 1
`+1

]
, k, ` both even;

0, otherwise.
(4.57)

and

P̃k,`,3 =


− 1

3·2k+`+3(k+`+4)π

[
1

k+1 + 1
`+1 + 1

k+3 + 1
`+3

]
, k, ` both even

1
3·2k+`+2(k+`+4)π

[
1

k+2 + 1
`+2

]
, k, ` both odd;

0, otherwise,

(4.58)

so

P =



1 0 1
12 0 1

80 · · ·
0 0 0 0 0 · · ·
1
12 0 1

144 0 1
960 · · ·

0 0 0 0 0 · · ·
1
80 0 1

960 0 1
6400 · · ·

...
...

...
...

...
. . .


β

π
+



− 1
36 0 − 7

2160 0 − 11
20160 · · ·

0 1
432 0 1

2880 0 · · ·
− 7

2160 0 − 1
2880 0 − 23

403200 · · ·
0 1

2880 0 1
19200 0 · · ·

− 11
20160 0 − 23

403200 0 − 1
107520 · · ·

...
...

...
...

...
. . .


β3

π

(4.59)

to O(β5).

The evaluation form similar to equation (4.41) for β ∈ [0, 10], is

P2k+1,2`+1(β) ≈
M∑
m=1

m∑
r=1

(−1)m+1

22(m+k+`)+3(2m+ 1)(m+ k + `+ 2)π

1

(2r − 1)!(2m− 2r + 1)!
×[

1

2k + 1 + 2r
+

1

2`+ 1 + 2r

]
β2m+1

= − β

22(k+`)+3π

M∑
r=1

(−1)r

22r(2r − 1)!

[
1

2k + 1 + 2r
+

1

2`+ 1 + 2r

]
β2r ×

M−r∑
m=0

(−1)m

22m(2m+ 2r + 1)(m+ r + k + `+ 2)(2m+ 1)!
β2m,

(4.60)

The results of using equations (4.41) and (4.60) with M = 16 to calculate P00(β), P11(β),

P22(β), P02(β), P13(β) and P04(β) for β ∈ [10−5, 30] are shown in Figures 4.1 and 4.2, together

with the Matlab R©evaluation of equations (4.5).

In Figure 4.1, we see that the difference between the Taylor series and expressions of

equations (4.5) appear to be extremely small well beyond the region β ∈ (0, 10], where they

are designed to be small by the choice M = 16. However, in the diagrams for P11(β), P22(β),

P13(β) and P04(β) in Figure 4.1, the vertical axis is overlain by the curve corresponding to

the evaluation of equation (4.5), indicating a difference between the Taylor series and that

evaluation which is relatively large.
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Figure 4.1: Taylor series evaluation of Pk` for small k and ` (red), compared with the result of using

equations (4.5) (blue — or red when both curves are coincident)

In Figure 4.2 we examine the curves of Figure 4.1 near β = 0. Except for the P00(β)

curves, whose relative difference is bounded by 1.8 × 10−6, there is a large, and oscillating,

relative difference between the two ways of evaluating Pk`. This is due to the expression in

equation (4.5) of pole-free quantities in terms of the sum of quantities which have poles at

β = 0. Consequently, we will prefer to use equations (4.41) and (4.60) to evaluate Pk`(β) for

β ∈ [0, 1].

This has little to do with the Matlab R©evaluation of Si(β), which is compared with the

evaluation of its Taylor series up to the 33rd term,
∑16

m=0
(−1)mβ2m+1

(2m+1)(2m+1)! , in Figure 4.3. The

relative error is bounded by 10−15.

4.6 Expansion involving Si(β), sin β and cos β

When we use expressions like (4.5) we want to be sure that they are evaluated accurately, so

here we examine the asymptotic expansion for Si.
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Figure 4.2: Taylor series evaluation of Pk`(β) near β = 0 for small k and `, compared with the result

of using equations (4.5)

4.6.1 Asymptotic expansion for Si

Using Si(β) =
∫ β

0
sinx
x dx =

∫∞
0

sinx
x dx−

∫∞
β

sinx
x dx = π

2−
∫∞
β

sinx
x dx and integrating by parts,

as in [44], gives

Si(β) =
π

2
−
[
−cosx

x
−
∫

cosx

x2
dx

]∞
β

=
π

2
− cosβ

β
+

∫ ∞
β

cosx

x2
dx

=
π

2
− cosβ

β
+

[
sinx

x2
+ 2

∫
sinx

x3
dx

]∞
β

=
π

2
− cosβ

β
− sinβ

β2
+ 2

∫ ∞
β

sinx

x3
dx

= Ss(β) +Rs(β), (4.61)
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Figure 4.3: Upper diagram: Taylor series evaluation of Si(β) near β = 0 (SiTS(β), red), compared

with the result of using the Matlab R©-supplied routine (blue, but the curves are coincident to figure

resolution); lower diagram: the relative error in terms of eps, the smallest value of ε such that

1 + ε 6= 1 to machine precision — for the machine used, eps is approximately 2.2× 10−16

where

Ss(β) =



π
2 , s = 0;
π
2 −

cosβ
β , s = 1;

π
2 − cosβ

∑ 1
2
s

r=1
(−1)r+1(2r−2)!

β2r−1 − sinβ
∑ 1

2
s

r=1
(−1)r+1(2r−1)!

β2r , s even, s > 0;

π
2 − cosβ

∑ 1
2

(s+1)

r=1
(−1)r+1(2r−2)!

β2r−1 − sinβ
∑ 1

2
(s−1)

r=1
(−1)r+1(2r−1)!

β2r , s odd, s > 1,

(4.62)

and

Rs(β) =

{
(−1)

1
2
s+1s!

∫∞
β

sinx
xs+1 dx, s even;

(−1)
1
2

(s+1)s!
∫∞
β

cosx
xs+1 dx, s odd.

(4.63)

π

2
− cosβ

∞∑
r=1

(−1)r+1(2r − 2)!

β2r−1
− sinβ

∞∑
r=1

(−1)r+1(2r − 1)!

β2r
(4.64)
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is an asymptotic series for Si(β) (i.e. Ss(β) = Si(β) + O
(

1
βs

)
, but, for fixed β > 0,

lims→∞ Ss(β) diverges), as

|Rs(β)| ≤ s!
∫ ∞
β

dx

xs+1
=

(s− 1)!

βs
= R̃s(β). (4.65)

Now, R̃sβ (β) < R̃s(β) for s ∈ N ∪ {0} − sβ if R̃sβ (β) < R̃sβ−1(β), R̃sβ+1(β) ⇔ sβ − 1 <

β < sβ, so the approximation of Si at β by a truncation of the asymptotic series (4.64) with

the best bound of the form (4.65) is given by Sdβe(β) and then the bound is given by

R̃dβe(β) = (dβe−1)!

βdβe
. (4.66)

s

β dβe min{dβe, 30} min{dβe, 20} min{dβe, 10}
1 1

2 0.25

5 7.68× 10−3

10 3.629× 10−5

20 1.160× 10−9 3.544× 10−8

25 6.986× 10−12 1.338× 10−11 3.805× 10−9

30 4.294× 10−14 3.489× 10−13 6.145× 10−10

35 2.678× 10−16 4.212× 10−16 1.599× 10−14 1.315× 10−10

40 1.687× 10−18 7.669× 10−18 1.106× 10−15 3.461× 10−11

Table 4.1: Bounds R̃dβe(β), R̃min{30,dβe}(β), R̃min{20,dβe}(β) and R̃min{10,dβe}(β) for the absolute
error caused by taking s terms of the asymptotic series for Si(β)

This bound is given for various values of β in Table 4.1, together with similar bounds

when the number of terms in the approximation is itself bounded.

As π
2 + 2

β ≥
π
2 + 1−cosβ

β ≥ S1(β) + |R1(β)| ≥ Si(β) = S1(β) +R1(β) ≥ S1(β)− |R1(β)| ≥
π
2 −

1+cosβ
β ≥ π

2 −
2
β , we have 3π

4 ≥ Si(β) ≥ π
4 for β > 8

π , so the absolute relative error is of

the same order of magnitude as the absolute error in Table 4.1, at least for the rows with

β ≥ 5 > 8
π .

We will find that the quantities of interest to us depend on the eigenvalues and eigegen-

vectors of H−1P (β), or related matrices.

As H is a positive definite symmetric matrix, it has a decomposition H = OHDHO
T
H ,

where OH is an orthogonal matrix and DH is a diagonal matrix with positive elements along

the diagonal. Hence, H−
1
2 = OHD

− 1
2

H OT
H , where D

− 1
2

H is the diagonal matrix whose diagonal

elements are the positive square roots of the reciprocals of the corresponding elements of DH ,

is a positive definite matrix such that H−
1
2H−

1
2 = H−1.

Then H−
1
2P (β)H−

1
2 is a positive definite symmetric matrix with the same eigenvalues as

H−1P (β), and we also have H−
1
2P (β)H−

1
2 → I ⇔ H−1P (β) → I. The dependence of the
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Figure 4.4: Pseudocolour plot of the elements of H−
1
2P (β)H−

1
2 for n = 7. The colour scale given

for the β =∞ plot applies to all plots (exactly zero entries are shaded black and near-zero entries are

shaded dark grey)

entries of H−
1
2P (β)H−

1
2 on β for n = 7 is illustrated in Figures 4.4 and 4.5 (The elements of

H−
1
2P (β)H−

1
2 fall into a narrower numerical range than those of H−1P (β), so it is easier to

plot than H−1P (β); Figure 4.5 gives an idea of the magnitude of the values associated with

the colours of Figure 4.4).

We can see that the convergence of the entries of H−
1
2P (β)H−

1
2 to those of I is fairly

slow, especially for the off-diagonal elements.

4.7 Using P

As we shall see, the maximum L2 distance between ψ(x) =

{ ∑n
k=0 akx

k, x ∈
[
−1

2 ,
1
2

)
;

0, otherwise,

such that ‖ψ‖ = 1 and
∫ 1

2

− 1
2

ψ(x)dx = 0, and the bandwidth limited version of ψ, ψβ, is given

by 1 − λ0(β), where λ0(β) is the smallest eigenvalue of the generalised eigenvalue problem

QbP (β)Qba = λQbHQba, where Qb is the projection into the space orthogonal to b.



4.7. USING P 141

-0.3551
0

-  =: /4

1

-0.3551
0

-  =: /2

1

-0.3551
0

-  =:

1

-0.3551
0

-  =2:

1

-0.3551
0

-  =4:

1

-0.3551
0

-  =8:

1

-0.3551
0

-  =16:

1

-0.3551
0

-  =32:

1

-0.3551
0

-  =1

1

Figure 4.5: 3-d plot of the elements of H̃−
1
2 P̃ (β)H̃−

1
2 for n = 7. The colour scale given in Figure 4.4

for the β =∞ plot applies to all plots here too

This approach can be generalised to take account of any additional condition on ψ that

can be expressed as cTa = 0. We will use the wrapped endpoint conditions continuity and

differentiability.

Wrapped endpoint continuity, (wec),

ψ

(
−1

2

)
= ψ

(
1

2

)
, (4.67)

equivalent to cTa = 0 with c = c1 =
[

0 1 0 1
4

0 ··· 1+(−1)n

2n−1
1−(−1)n

2n

]T
, ensures that the function∑

k∈Z ψ(x−k) is continuous, and wrapped endpoint differentiability, (wed), wec together with

d

dx
ψ(x)

∣∣∣∣
x=− 1

2

=
d

dx
ψ(x)

∣∣∣∣
x= 1

2

, (4.68)

equivalent to wec plus the condition cTa = 0 with c = c2 =
[

0 0 2 0 1··· 1−(−1)n

2n−2 (n−1)
1+(−1)n

2n−1 n
]T

,

ensures that
∑

k∈Z ψ(x− k) is differentiable. Through their effect on
∑

k∈Z ψ(x− k), both of
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these conditions reduce the presence of higher frequency components in ψ̂.

When n ≥ 3, det
[
b(3) c

(3)
1 c

(3)
2

]
= 2 6= 0, where b(3) =

[
1, 0, 1

12

]T
, c

(3)
1 = [0, 1, 0]T and

c
(3)
2 = [0, 0, 2]T, so the wrapped endpoint conditions are independent of each other, and of

the zi condition.

In order to evaluate the effect of the finite bandwidth of the NAT accelerometer, we wish

to find the maximum L2 distance between a pair of wavelets ψ and ψ′ such that ψ′ is the

same distance from (or closer to) ψβ than ψ is. (Clearly, such wavelets could be confused for

each other if the replacements ψ → ψ′β, ψ′ → ψβ are made.)

That is, we wish to find the maximum value of ‖ψ′−ψ‖ such that ‖ψ′−ψβ‖ ≤ ‖ψ−ψβ‖.
Since ‖ψ′−ψ‖2 = 2(1−〈ψ′, ψ〉), ‖ψ−ψβ‖2 = 1−‖ψβ‖2 and ‖ψ′−ψβ‖2 = 1−2〈ψ′, ψβ〉+

‖ψβ‖2, an equivalent problem is that of minimising 〈ψ′, ψ〉, subject to 〈ψ′, ψβ〉 ≥ ‖ψβ‖2.

Writing ψ′(x) =

{ ∑n
k=0 a

′
kx

k, x ∈
[
−1

2 ,
1
2

)
;

0, otherwise,
our problem becomes that of minimising

aTHa′, subject to aTP (β)a′ ≥ aTP (β)a, where, as ψ and ψ′ obey the ue and zi conditions,

we must also have aTHa = a′THa′ = 1 and bTa = bTa′ = 0.

We will look at three cases:

1 where we impose no further conditions on ψ and ψ′;

2 where we impose wrapped endpoint continuity, ψ
(
−1

2

)
= ψ

(
1
2

)
, ψ′

(
−1

2

)
= ψ′

(
1
2

)
, en-

forced by cT
1 a = cT

1 a
′ = 0;

3 where we impose cT
1 a = cT

1 a
′ = 0 and wrapped endpoint differentiability, d

dxψ(x)
∣∣
x=− 1

2
=

d
dxψ(x)

∣∣
x= 1

2
, d

dxψ
′(x)

∣∣
x=− 1

2
= d

dxψ
′(x)

∣∣
x= 1

2
, enforced by cT

2 a = cT
2 a
′ = 0.

To take account of the requirement that bTa = bTa′ = 0, we find an orthogonal matrix O

such that Ob = ‖b‖e0, where e0 ∈ Rn+1 has a 1 as its first entry and zeros elsewhere.

Then 0 = bTa = ‖b‖eT
0 Oa = ‖b‖eT

0 ã implies eT
0 ã = 0, where ã = Oa, so ã =

[
0
ã1

]
.

Similarly, ã′ = Oa′ =
[

0
ã′1

]
, and our problem becomes that of minimising ãT

1 H̃1ã
′
1, subject

to ãT
1 P̃1(β)ã′1 ≥ ãT

1 P̃1(β)ã1 and ãT
1 H̃1ã1 = ã′1

TH̃1ã
′
1 = 1, where H̃ = OTHO =

[
h̃0 h̃T1
h̃1 H̃1

]
and

P̃ (β) = OTP (β)O =
[
p̃0(β) p̃1(β)T

p̃1(β) P̃1(β)

]
for some h̃0, p̃0(β) ∈ R and h̃1, p̃1(β) ∈ Rn.

Thus, we have projected case 1 into Rn.

Analogously, we can project cases 2 and 3 into Rn−1 and Rn−2. As b and c1 (resp. b, c1

and c2) are linearly independent if n > 2 (resp. n > 3), we can find an orthogonal matrix O

such that Ob = ‖b‖e0 and Oc1 = ‖c1‖e1 (resp. Ob = ‖b‖e0, Oc1 = ‖c1‖e1 and Oc2 = ‖c2‖e2).

In case 2 (resp. case 3), we can multiply by O as we did in case 1 and then delete the first

two (resp three) elements of ã and ã′, and the first two (resp. three) rows and columns of H̃

and P̃ (β) to obtain H̃1 and P̃1(β).

Given S = {u0, u1, u2, u3, . . . , un} =


{b, e1, e2, e3, . . . , en}, case 1;

{b, c1, e2, e3, . . . , en}, case 2;

{b, c1, c2, e3, . . . , en}, case 3

(where ek is the

vector with 1 in the kth position and zeros elsewhere) we can apply the well-known Gram-
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Schmidt process to orthogonalise S and read off the rows of the orthogonal matrix O required

for each of the three cases above:

e′0 = u0
‖u0‖ , so O0k =

u0,k
‖u0‖ (=

b0,k
‖b‖ in all cases),

e′′1 = u1 − (e′0
Tu1)e′0, e′1 =

e′′1
‖e′′1‖

, so O1k =
u1,k−(e′0

Tu1)e′0,k√
‖u1‖2−(e′0

Tu1)2
,

e′′2 = u2 − (e′0
Tu2)e′0 − (e′1

Tu2)e′1, e′2 =
e′′2
‖e′′2‖

,

... =
...

... =
...

e′′n = un −
∑n−1

k=0(e′k
Tun)e′k, e′n = e′′n

‖e′′n‖
,

and the rest of the Ok` can be read off the equations e′′k =
∑k−1

`=0 Ok`e`.
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Figure 4.6: Pseudocolour plot of the elements of H̃−
1
2 P̃ (β)H̃−

1
2 for n = 7

Temporarily writing H̃c1 and P̃c1(β) (resp. H̃c1c2 and P̃c1c2(β)) for H̃1 and P̃1(β) in case 2

(resp. case 3) (but leaving H̃1 and P̃1(β) unchanged in case 1), we can look at the behaviour

of the projections of H−
1
2P (β)H−

1
2 .

In Figures 4.7 and 4.6, we illustrate the behaviour of H̃
− 1

2
1 P̃1(β)H̃

− 1
2

1 as β →∞, for n = 7.

Although there is no clear apparent relation to the behaviour of the values of the elements

of H−
1
2P (β)H−

1
2 (as shown in Figures 4.4 and 4.5) for small values of β, it seems that the
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Figure 4.7: 3-d plot of the elements of H−
1
2P (β)H−

1
2 for n = 7. The colour scale given in Figure 4.4

for the β =∞ plot applies to all plots here too

convergence of H̃
− 1

2
1 P̃1(β)H̃

− 1
2

1 to I(∈ R7×7) as β → ∞ is slower, especially for the diagonal

elements of the matrices.

In Figures 4.9 and 4.8, we illustrate the behaviour of H̃
− 1

2
c1 P̃c1(β)H̃

− 1
2

c1 as β → ∞, for

n = 7.

Although for the smallest value of β, H̃
− 1

2
c1 P̃c1(β)H̃

− 1
2

c1 is quite similar to H̃
− 1

2
1 P̃1(β)H̃

− 1
2

1

(as shown in Figures 4.6 and 4.7) with the first row and column deleted, there is no clear pat-

tern to the relationship H̃
− 1

2
1 P̃1(β)H̃

− 1
2

1 (as shown in Figures 4.6 and 4.7) and H̃
− 1

2
c1 P̃c1(β)H̃

− 1
2

c1

for small and medium values of β, but it seems that the convergence of H̃
− 1

2
c1 P̃c1(β)H̃

− 1
2

c1

to I(∈ R6×6) as β → ∞ is slightly quicker for the off-diagonal elements, especially for the

(1, 3)/(3, 1) element. Also, positive off-diagonal elements persist longer in the H̃
− 1

2
c1 P̃c1(β)H̃

− 1
2

c1

matrix.

In Figures 4.11 and 4.10, we illustrate the behaviour of H̃
− 1

2
c1c2P̃c1c2(β)H̃

− 1
2

c1c2 as β →∞, for

n = 7.

In a comparison between H̃
− 1

2
c1c2P̃c1c2(β)H̃

− 1
2

c1c2 and H̃
− 1

2
1 P̃1(β)H̃

− 1
2

1 (Figures 4.6 and 4.7),
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Figure 4.8: Pseudocolour plot of the elements of H̃
− 1

2
c1 P̃c1(β)H̃

− 1
2

c1 (wec) for n = 7

the elements of H̃
− 1

2
c1c2P̃c1c2(β)H̃

− 1
2

c1c2 are quite similar to those of H̃
− 1

2
1 P̃1(β)H̃

− 1
2

1 for small β,

and the relationship becomes confused for medium β. As β → +∞, the diagonal elements of

H̃
− 1

2
c1c2P̃c1c2(β)H̃

− 1
2

c1c2 seem to converge more slowly to those of I ∈ R5×5 than do those of the

top left-hand 5× 5 corner of H̃
− 1

2
1 P̃1(β)H̃

− 1
2

1 , whereas the reverse appears to be true for the

off-diagonal elements.

When the comparison is between H̃
− 1

2
c1c2P̃c1c2(β)H̃

− 1
2

c1c2 and H̃
− 1

2
c1 P̃c1(β)H̃

− 1
2

c1 (Figures 4.8

and 4.9), the former seems to be similar to the lower right-hand 5× 5 submatrix of the latter

for the smallest value of β, and similar to the upper left-hand 5 × 5 submatrix of the latter

as β →∞, with no clear pattern for intermediate values of β.

The eigenvalues of the matrices H̃−1
1 P̃1(β) (n = 2, . . . , 7), H̃−1

c1 P̃c1(β) (n = 3, . . . , 7) and

H̃−1
c1c2P̃c1c2(β) (n = 4, . . . , 7) are shown as functions of β in Figures 4.12 to 4.14.

Dropping our temporary notation, we can now treat all of our three cases in a similar

fashion.
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Figure 4.9: 3-d plot of the elements of H̃
− 1

2
c1 P̃c1(β)H̃

− 1
2

c1 (wec) for n = 7. The colour scale given in

Figure 4.4 for the β =∞ plot applies to all plots here too
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Figure 4.11: 3-d plot of the elements of H̃
− 1

2
c1c2 P̃c1c2(β)H̃

− 1
2

c1c2 (wed) for n = 7. The colour scale given

in Figure 4.4 for the β =∞ plot applies to all plots here too
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Figure 4.12: Plots of the eigenvalues of H̃−1P̃ (β), for n = 2, 3, 4, 5, 6, 7. The thicker black line

gives the minimum of these eigenvalues, the thinner, the maximum. These eigenvalues correspond to

the local extrema of the inner product 〈ψ,ψβ〉. The dashed vertical lines correspond to the bandwidth

of the NAT accelerometer (80Hz), and this value divided by the frequency most characteristic of PD

movement disorders, 6Hz
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Figure 4.13: Plots of the eigenvalues of H̃−1c1 P̃c1(β) (wec), for n = 3, 4, 5, 6, 7. These eigenvalues

correspond to the local extrema of the inner product 〈ψ,ψβ〉, subject to the constraint that ψ
(
− 1

2

)
=

ψ
(
1
2

)
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Figure 4.14: Plots of the eigenvalues of H̃−1c1c2 P̃c1c2(β) (wec), for n = 4, 5, 6, 7. These eigenvalues

correspond to the local extrema of the inner product 〈ψ,ψβ〉, subject to the constraints that ψ
(
− 1

2

)
=

ψ
(
1
2

)
and d

dxψ(x)
∣∣
x=− 1

2

= d
dxψ(x)

∣∣
x= 1
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4.7.1 Maximum distance between ψ and ψβ

Obviously, the L2 distance between ψ and ψβ is nonzero, because ‖ψβ‖2 = ‖ψ̂β‖2 =∫ β
−β |ψ̂β(ξ)|2dξ <

∫∞
−∞ |ψ̂β(ξ)|2dξ =

∫∞
−∞ |ψ̂(ξ)|2dξ = ‖ψ‖2 = 1, as a result of |ψ̂β(ξ)|2 be-

ing bounded away from 0 on some nontrivial interval I(β) contained in (−∞,−β] ∪ [β,∞).

Consequently, ψ 6= ψβ, and ‖ψ − ψβ‖2 6= 0.

As ‖ψ − ψβ‖2 = ‖ψ‖2 − 2〈ψ,ψβ〉 + ‖ψβ‖2 = 1 − ‖ψβ‖2 (because 〈ψ,ψβ〉 = 〈ψ̂, ψ̂β〉 =∫∞
−∞ ψ̂(ξ)ψ̂β(ξ)dξ =

∫ β
−β ψ̂(ξ)ψ̂β(ξ)dξ =

∫ β
−β ψ̂β(ξ)ψ̂β(ξ)dξ = ‖ψ̂β‖2 = ‖ψβ‖2), we have ‖ψ −

ψβ‖2 = 1 − aTP (β)a, and maximising ‖ψ − ψβ‖ with respect to ψ subject to the zi and

ui conditions (and possibly the wrapped endpoint conditions), is equivalent to minimising

aTP (β)a with respect to a, subject to aTHa = 1 and bTa = 0 (and possibly cT
1 a = 0, or

cT
1 a = cT

2 a = 0 as well).

100 101 102 103
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Maximum kA ! A-k

n = 2
n = 3
n = 4
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Figure 4.15: Plots of the L2 distance between ψ and ψβ, maximised over wavelets ψ, against β and

for n = 2, 3, . . . , 7. The dashed vertical lines again correspond to the NAT accelerometer bandwidth

(80Hz), and this value divided by 6Hz

Using the projections above to take care of the conditions of the form cTa = 0, we wish

to find ã1 minimising ãT
1 P̃1(β)ã1 subject to ãT

1 H̃1ã1 = 1, where ã1 satisfies Oa =
[

0
ã1

]
. Then
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the solution of the original problem is a = OT
[

0
ã1

]
.

To solve the projected problem, we simultaneously diagonalise the symmetric and positive

definite matrices H̃1 and P̃1(β).

Let H̃1 = OT
HDHOH , where OH is an orthogonal matrix and DH is a diagonal ma-

trix whose diagonal elements are the (positive) eigenvalues of H̃1. As H̃1 is positive def-

inite and symmetric, such a decomposition exists. Then, if D
− 1

2
H is the diagonal matrix

whose diagonal entries are the positive square roots of the reciprocals of the correspond-

ing entries of DH , D
− 1

2
H OHH̃1O

T
HD

− 1
2

H = I and D
− 1

2
H OH P̃1(β)OT

HD
− 1

2
H is a positive defi-

nite symmetric matrix, so there exists a decomposition OT
PDPOP = D

− 1
2

H OH P̃1(β)OT
HD

− 1
2

H ,

where OP is orthogonal and DP is diagonal, with diagonal elements equal to the (posi-

tive) eigenvalues of D
− 1

2
H OH P̃1(β)OT

HD
− 1

2
H . Hence, (OT

HD
− 1

2
H OT

P )TH̃1O
T
HD

− 1
2

H OT
P = I and

(OT
HD

− 1
2

H OT
P )TP̃1(β)OT

HD
− 1

2
H OT

P = DP .
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Figure 4.16: Plots of the L2 distance between ψ and ψβ, maximised over wavelets ψ under wec,

against β and for n = 3, 4, . . . , 7 (note that the n = 4 curve is hidden by the n = 5 curve, and that the

n = 6 curve is hidden by the n = 7 curve)

Now put ã1 = OT
HD

− 1
2

H OT
P g. Then ãT

1 H̃1ã1 = (OT
HD

− 1
2

H OT
P g)TH̃1O

T
HD

− 1
2

H OT
P g = gTg,
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ãT
1 P̃1(β)ã1 = (OT

HD
− 1

2
H OT

P g)TP̃1(β)OT
HD

− 1
2

H OT
P g = gTDP g. Obviously, g minimising gTDP g,

subject to gTg = 1, is a unit eigenvector of DP corresponding to the least eigenvalue λ0 of

DP : DP g = λ0g.

But then DPOPD
1
2
HOH ã1 = λ0OPD

1
2
HOH ã1 as g = OPD

1
2
HOH ã1, and then, as DP =

OPD
− 1

2
H OH P̃1(β)OT

HD
− 1

2
H OT

P , DPOPD
1
2
HOH ã1 = OPD

− 1
2

H OH P̃1(β)ã1 = λ0OPD
1
2
HOH ã1 or

H̃−1P̃1(β)ã1 = λ0ã1 on multiplying by OT
HD

− 1
2

H OT
P . Hence, ã1 is an eigenvector of H̃−1

1 P̃1(β)

corresponding to the eigenvalue λ0 (and it is easy to see that it is the least eigenvalue of

H−1
1 P̃1(β)).

However, ã1 is not, in general, a unit vector, as ãT
1 H̃1ã1 = 1.

The value of ãT
1 P̃1(β)ã1 at the minimum is simple to calculate: it is ãT

1 H̃1H̃
−1
1 P̃1(β)ã1 =

λ0ã
T
1 H̃1ã1 = λ0. Consequently, the maximum L2 distance between ψ and ψβ is

√
1− λ0 =√

1− λ0(β).
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Figure 4.17: Plots of the L2 distance between ψ and ψβ, maximised over wavelets ψ under wed,

against β and for n = 4, 5, 6, 7

The values of this for the case with no endpoint conditions are shown in Figure 4.15. In
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Figure 4.18: Plots of the upper envelope of the distances of Figure 4.15

the first two columns of Table 4.21 we show the values of the distances at β = 80Hz (the

bandwidth of the NAT accelerometer) and β = 40
3 Hz (accelerometer bandwidth scaled by the

typical signal frequency of Parkinson’s movement disorders).

For general wavelets of our form, we see that the maximum of the distance ‖ψ − ψ80Hz‖
increases from 0.2012 to 0.5382 as n increases from 2 to 7. This increase is to be expected, as

polynomials of degree n comprise a special case of the set of polynomials of degree n+ 1, so

optimising over the latter is optimising over a larger set. Bearing in mind that the maximum

L2 distance between two functions φ, φ′ on the unit sphere2 (‖φ‖, ‖φ′‖ = 1) is only 2, and the

1Many of the entries in this Table are identical. In many cases, possibly all, this is not a coincidence. The
matrices H and P can be transformed into block diagonal matrices, each with one

⌈
1
2
(n + 1)

⌉
×

⌈
1
2
(n + 1)

⌉
block (corresponding to the original even indices) and one

⌊
1
2
(n + 1)

⌋
×

⌊
1
2
(n + 1)

⌋
block (corresponding to

the original odd indices), merely by permuting their indices. (Recall that our first index is 0, corresponding
to x0 in our polynomial.) But each of our projections either affects only the original even indices or only the
original odd ones, so the eigenvalues of H̃−1

1 P̃1(β) fall into two groups, one of which is unaffected by a further
projection. If the smallest eigenvalue of H̃−1

1 P̃1(β) before the additional projection is in the unaffected group,
and no eigenvalue in the affected group becomes smaller, then the worst-case ‖ψ − ψβ‖ remains the same

2We are not claiming ψβ is on the unit sphere — it is inside it — but only using such functions for a
comparison



156 CHAPTER 4. EFFECT OF ACCELEROMETER BANDWIDTH

100 101 102 103

-

0.1

1

2
Upper envelope of maximum kA ! A-k (Continuous)

n = 3
n = 4
n = 5
n = 6
n = 7

Figure 4.19: Plots of the upper envelope of the distances of Figure 4.16

maximum of min{‖φ−φ′‖, ‖φ− (−φ′)‖} is only
√

2 (achieved when φ and φ′ are orthogonal,

and more relevant here, as 〈ψ,ψβ〉 > 0), these values seem quite large.

The situation is worse (as might be expected) when we consider
∥∥∥ψ − ψ 40

3
Hz

∥∥∥: this in-

creases from 0.5252 to 0.9999 over the range of n considered.

For the maximum values of ‖ψ − ψβ‖ and, in particular, ‖ψ − ψ80Hz‖ and
∥∥∥ψ − ψ 40

3
Hz

∥∥∥
when the wrapped endpoint continuity condition is imposed, see Figure 4.16 and the middle

two columns of Table 4.2: the former range from 0.2012 to 0.4641, and the latter from 0.5252

to 0.9981, so the values remain large for the two special values of β.

When the wrapped endpoint differentiability conditions are imposed, ‖ψ − ψβ‖ is shown

in Figure 4.17, and ‖ψ−ψβ‖ and, in particular, ‖ψ−ψ80Hz‖ and
∥∥∥ψ − ψ 40

3
Hz

∥∥∥ in the last two

columns of Table 4.2, and the values in the Table are still quite large, ranging from 0.1380

to 0.2158 and from 0.3883 to 0.9837.

As our general piecewise polynomial wavelets of nth degree have n − 1 free parameters,

and the imposition of each of the wrapped endpoint conditions sacrifices one of these free

parameters, if we wish to compare wavelets with the same number of parameters, we should
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Figure 4.20: Plots of the upper envelope of the distances of Figure 4.17

Wavelets Wavelets with wec Wavelets with wed

n β = 40
3 Hz β = 80Hz n β = 40

3 Hz β = 80Hz n β = 40
3 Hz β = 80Hz

p ‖ψ − ψβ‖ ‖ψ − ψβ‖ ‖ψ − ψβ‖
1 2 0.5252 0.2012 3 0.5252 0.2012 4 0.3883 0.1380

2 3 0.6800 0.2850 4 0.8587 0.3360 5 0.5716 0.1380

3 4 0.8587 0.3360 5 0.8587 0.3360 6 0.8308 0.2158

4 5 0.9810 0.4129 6 0.9981 0.4641 7 0.9837 0.2158

5 6 0.9981 0.4641 7 0.9981 0.4641 — — —

6 7 0.9999 0.5382 — — — — — —

Table 4.2: Values for the maxima of
∥∥∥ψ − ψ 40

3
Hz

∥∥∥ and ‖ψ − ψ80Hz‖ over ψ. n is the degree of the

polynomial on which the wavelets are based, and p is the number of free parameters. Values which

are identical (to within the numerical accuracy) for the same β are given in coloured text of the same

colour

compare the nth degree general wavelets with the (n+1)th degree wavelets with the wrapped

endpoint continuity condition imposed and the (n+2)th wavelets with the wrapped endpoint
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differentiability conditions.

If we do this, we find that, for even n, the distances at β = 80Hz and 40
3 Hz are the

same for general piecewise polynomial wavelets of degree n and for piecewise polynomial

wavelets of degree (n + 1) with wrapped endpoint continuity, and for odd n, the distances

for the latter actually increase, so, at first sight, there appears to be little point in imposing

wrapped endpoint continuity on its own.

However, when we compare these distances for the general piecewise polynomial wavelets

of degree n and for piecewise polynomial wavelets of degree (n+2) with the wrapped endpoint

differentiability conditions, we find that the latter are significantly smaller, except for the case

n = 5 at β = 40
3 Hz, so there is an indication that imposing both conditions may improve

performance without sacrificing the number of free parameters, at least for small n.

Wavelets Wavelets with wec Wavelets with wed

p n A B n A B n A B

1 2 1.7847 -0.5000 3 1.7847 -0.5000 4 1.2223 -0.5004

2 3 2.5228 -0.5000 4 2.9846 -0.5000 5 1.2223 -0.5004

3 4 2.9846 -0.5000 5 2.9846 -0.5000 6 1.9102 -0.5015

4 5 3.6489 -0.4997 6 4.1315 -0.4995 7 1.9102 -0.5015

5 6 4.1315 -0.4995 7 4.1315 -0.4995 — — —

6 7 4.7499 -0.4989 — — — — — —

Table 4.3: Parameters for the approximate relation ‖ψ − ψβ‖ = AβB which holds when β > 80Hz.

Parameter pairs which are identical (to within the numerical accuracy) are given in coloured text of

the same colour

It will be noted that the curves in Figures 4.15 to 4.17 start off fairly flat, remaining very

close to 1, before making a transition to being approximate straight lines with significant

negative gradients to the right of β = 80Hz. Ironically, the transition commences around

β = 40
3 Hz, between β = 1

2
40
3 Hz and β = 240

3 Hz.

Thus, increasing the bandwidth of the accelerometer (equivalent to shifting the dashed

lines in Figures 4.15 to 4.17 by the same distance to the right, but otherwise leaving the

Figures unchanged), is likely to be rewarded by improved performance.

As both scales in these Figures are logarithmic, under the straight-line regime to the right

of 80Hz, ‖ψ − ψβ‖ ≈ AβB for some A and B. By applying a least-squares regression to the

pairs (lnβ, ln ‖ψ − ψβ‖) for β ≥ 80Hz, we obtain the As and Bs collated in Table 4.3.

Further approximating, we can sum up Table 4.3 by saying that ‖ψ − ψβ‖ ≈ A(n)√
β

, where

A(n) ∈ [2, 5] and A(n) has a further dependence on the conditions imposed on ψ. Thus,

replacing our accelerometers by ones with a bandwidth four times greater will reduce the

worst-case ‖ψ − ψβ‖ by a factor of 2, when β is reasonably large.

Outside of this Subsection, we will refer to the wavelet ψ which maximises ‖ψ − ψβ‖ as

ψ(1) (because ‖ψ − ψβ‖ involves one wavelet), so ψβ becomes ψ(1)β.
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4.7.2 Maximum distance between ψ and ψ′ such that ‖ψ′ − ψβ‖ ≤ ‖ψ − ψβ‖

The use of the worst-case ‖ψ−ψβ‖ to assess the effect of limited accelerometer bandwidth on

the possibility of confusing different wavelets suffers from the fact that ψβ does not qualify

as one of our wavelets.

Instead, we can use the worst-case ‖ψ−ψ′‖, where ψ′ is one of our wavelets, and is closer

to ψβ than, or at most is at the same distance as, ψ. In other words, ‖ψ′ − ψβ‖ ≤ ‖ψ − ψβ‖.

That is, we seek to maximise ‖ψ − ψ′‖ over wavelets ψ and ψ′, subject to ‖ψ′ − ψβ‖ ≤
‖ψ − ψβ‖, which means that ψ and ψ′ both obey the ue and zi conditions, and we may

choose to impose either the wrapped endpoint continuity condition or the wrapped endpoint

differentiability conditions on both of them.

To translate to “a” language, we set ψ′(x) =
∑n

k=0 a
′
kx

k, and then we need to maximise

‖ψ − ψ′‖2 = ‖ψ‖2 − 2〈ψ,ψ′〉 + ‖ψ′‖2 = 2(1 − 〈ψ,ψ′〉) = 2(1 − aTHa′) with respect to a

and a′, subject to the conditions aTHa = a′THa′ = 1, bTa = bTa′ = 0 and ‖ψ′ − ψβ‖2 =

‖ψ′‖2−2〈ψ′, ψβ〉+‖ψβ‖2 = 1−2aTP (β)a′+aTP (β)a ≤ ‖ψ−ψβ‖2 = 1−aTP (β)a. Optionally,

we also impose cT
1 a = cT

1 a
′ = 0 or cT

1 a = cT
1 a
′ = cT

2 a = cT
2 a
′ = 0.

This is equivalent to minimising aTHa′ with respect to a and a′, subject to aTHa =

a′THa′ = 1, bTa = bTa′ = 0 and aTP (β)a′ ≥ aTP (β)a, with or without one of the optional

conditions.

If we make the projections of the previous section, we reduce this to the problem of

minimising ãT
1 H̃1ã

′
1 with respect to ã1 and ã′1, subject to ãT

1 H̃1ã1 = ã′1
TH̃1ã

′
1 = 1 and

ãTP̃1(β)ã′1 ≥ ãT
1 P̃1(β)ã1, and we recover a and a′ through a = OT

[
0
ã1

]
and a′ = OT

[
0
ã′1

]
.

We first fix a (and hence ã1), and seek to minimise ãT
1 H̃1ã

′
1, with respect to ã′1, subject

to ãT
1 P̃1(β)ã′1 ≥ ãT

1 P̃1(β)ã1 and ã′1
TH̃1ã

′
1 = 1, where it is given that ãT

1 H̃1ã1 = 1.

Initially, we ignore the condition ãT
1 P̃1(β)ã′1 ≥ ãT

1 P̃1(β)ã1, and minimise ãT
1 H̃1ã

′
1, subject

to just ã′1
TH̃1ã

′
1 = 1.

Starting by using the method of Lagrange multipliers, we look for ã′1 satisfying the con-

ditions for saddle points of

Q(ã′1, λ) = ãT
1 H̃1ã

′
1 + λ[ã′1

TH̃1ã
′
1 − 1]. (4.69)

We have that ∂
∂ãT1

Q(ã′1, λ) = 2λH̃1ã
′
1 + H̃1ã1, so ∂

∂ãT1
Q(ã′1, λ) = 0⇒ ã′1 = − 1

2λ ã1.

Rather than continuing down the Lagrangian path, we apply the condition ã′1
TH̃1ã

′
1 = 1

to this partial solution directly, and soon find that λ = ±1
2 and ã′1 = ∓ã1. The solution

ã′1 = ã1 maximises ãT
1 H̃1ã

′
1, and the solution ã′1 = −ã1 violates the hitherto ignored condition

ãT
1 P̃1(β)ã′1 ≥ ãT

1 P̃1(β)ã1 > 0 (as P̃1(β) is positive definite and clearly ã1 6= 0).

Since there are no valid solutions away from the “boundary” of the condition ãT
1 P̃1(β)ã′1 ≥

ãT
1 P̃1(β)ã1, we can replace it by the corresponding equality constraint, and, within the La-

grangian formulation, there is no constraint on the multiplier corresponding to this new

constraint.
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Thus, we find the condition on ã′1 for a saddlepoint of

Q(ã′1, λ, κ) = ãT
1 H̃1ã

′
1 + λ[ã′1

TH̃1ã
′
1 − 1] + κ[ãT

1 P̃1(β)ã′1 − ãT
1 P̃1(β)ã1]

= λã′1
TH̃1ã

′
1 + [H̃1ã1 + κP̃1(β)ã1]Tã′1 − λ− κãT

1 P̃1(β)ã1. (4.70)

This is ∂
∂ãT1

Q(ã′1, λ, κ) = 0 or 2λH̃1ã
′
1 +[H̃1 +κP̃1(β)]ã1 = 0, so ã′1 = − 1

2λ [ã1 +κH̃−1
1 P̃1(β)ã1].

We again complete this partial solution by applying the conditions directly to it to find

suitable values of λ and κ.

The constraint ãT
1 P̃1(β)ã′1 = ãT

1 P̃1(β)ã1 yields

− 1
2λ [ãT

1 P̃1(β)ã1 + κãT
1 P̃1(β)H̃−1

1 P̃1(β)ã1] = ãT
1 P̃1(β)ã1 (4.71)

or

κ = − (1+2λ)ãT1 P̃1(β)ã1

ãT1 P̃1(β)H̃−1
1 P̃1(β)ã1

. (4.72)

Then

ã′1 = − 1
2λ

[
ã1 −

(1+2λ)ãT1 P̃1(β)ã1

ãT1 P̃1(β)H̃−1
1 P̃1(β)ã1

H̃−1
1 P̃1(β)ã1

]
(4.73)

and then the condition ã′1
TH̃1ã

′
1 = 1 becomes

1
4λ2

[
1− 2(1+2λ)(ãT1 P̃1(β)ã1)2

ãT1 P̃1(β)H̃−1
1 P̃1(β)ã1

+
(1+2λ)2(ãT1 P̃1(β)ã1)2

ãT1 P̃1(β)H̃−1
1 P̃1(β)ã1

]
= 1, (4.74)

which, provided that ãT
1 P̃1(β)H̃−1

1 P̃1(β)ã1 6= (ãT
1 P̃1(β)ã1)2, has the solutions λ = ±1

2 as

before, and, also as before, the solution λ = −1
2 leads to the trivial, maximising, value of ã1

for ã′1. However, the solution λ = 1
2 results in

ã′1 = 2
ãT1 P̃1(β)ã1

ãT1 P̃1(β)H̃−1
1 P̃1(β)ã1

H̃−1
1 P̃1(β)ã1 − ã1, (4.75)

and then

ãT
1 H̃1ã

′
1 = 2

(ãT1 P̃1(β)ã1)2

ãT1 P̃1(β)H̃−1
1 P̃1(β)ã1

− 1. (4.76)

If ãT
1 P̃1(β)H̃−1

1 P̃1(β)ã1 = (ãT
1 P̃1(β)ã1)2, we have ãT

1 P̃1(β)[H̃−1
1 − ã1ã

T
1 ]P̃1(β)ã1 = 0, which

is certainly possible, as det(H̃−1
1 − ã1ã

T
1 ) = det(H̃−1

1 ) det(I − H̃1ã1ã
T
1 ) = det(H̃−1

1 )(1 −
ãT

1 H̃1ã1) = 0. But equation (4.73) shows that ã′1
TP̃1(β)ã′1 = ãT

1 P̃1(β)ã′1 and ã′1
TH̃1ã

′
1 = 1,

and ãT
1 H̃1ã

′
1 has its maximum value of 1, no matter what the value of λ, under these

circumstances. Since we wish to minimise ãT
1 H̃1ã

′
1, we may rule out any ã1 such that

ãT
1 P̃1(β)H̃−1

1 P̃1(β)ã1 = (ãT
1 P̃1(β)ã1)2.

We now wish to minimise
(ãT1 P̃1(β)ã1)2

ãT1 P̃1(β)H̃−1
1 P̃1(β)ã1

with respect to ã1, subject to ãT
1 H̃1ã1 = 1,

in order to make the left-hand side of equation (4.76) as small as possible.

Here we use the decompositions and notation of the previous section, H̃1 = OT
HDHOH

and D
− 1

2
H OH P̃1(β)OT

HD
− 1

2
H = OT

PDPOP , so (OT
HD

− 1
2

H OT
P )TH̃1O

T
HD

− 1
2

H OT
P = I and

(OT
HD

− 1
2

H OT
P )TP̃1(β)OT

HD
− 1

2
H OT

P = DP .

Put ã1 = OT
HD

− 1
2

H OT
P g as before. Then ãT

1 H̃1ã1 = gTg, ãT
1 P̃1(β)ã1 = gTDP g.
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Also, ãT
1 P̃1(β)H̃−1

1 P̃1(β)ã1 = (OT
HD

− 1
2

H OT
P g)TP̃1(β)H̃−1

1 P̃1(β)OT
HD

− 1
2

H OT
P g =

gTOPD
− 1

2
H OHO

T
HD

1
2
HO

T
PDPOPD

1
2
HOHO

T
HD

−1
H OHO

T
HD

1
2
HO

T
PDPOPD

1
2
HOHO

T
HD

− 1
2

H OT
P g =

gTD2
P g.

If p =


n− 1, case 1;

n− 2, case 2;

n− 3, case 3

and the eigenvalues of D
− 1

2
H OH P̃1(β)OT

HD
− 1

2
H , λ0, λ1, λ2, . . . , λp,

are arranged down the diagonal of DP , then gTg =
∑p

k=0 g
2
k, g

TDP g =
∑p

k=0 λkg
2
k and

gTD2
P g =

∑p
k=0 λ

2
kg

2
k, and, on putting g2

k = hk, our problem becomes that of minimising

F (h) =
[
∑p
k=0 λkhk]

2∑p
k=0 λ

2
khk

, subject to
∑p

k=0 hk = 1 and hk ≥ 0;∀k.

If we assume that precisely p1+1 of the hk are nonzero, and that the hk and corresponding

diagonal elements of DP are relabelled so that the nonzero hk become h0, h1, h2, . . . , hp1 ,

with λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λp1 , then F (h) =
[
∑p1
k=0 λkhk]

2∑p1
k=0 λ

2
khk

=
[λ0+

∑p1
k=1(λk−λ0)hk]

2

λ20+
∑p1
k=1(λ2k−λ

2
0)hk

, when the

condition
∑p

k=0 hk =
∑p1

k=0 hk = 1 is taken into account.

Treating F (h) as a function of the variables h1, h2, . . . , hp1 , the usual condition for an

extremum of F , ∂F
∂hk

= 0, k = 1, 2, . . . , p1, implies

(λ` − λ0)

{
2

[
λ2

0 +

p1∑
k=1

(λ2
k − λ2

0)hk

]
− (λ` + λ0)

[
λ0 +

p1∑
k=1

(λk − λ0)hk

]}
= 0, (4.77)

` = 1, 2, . . . , p1, and, if λ1 = λ2 = . . . = λp0−1 = λ0, we have

2

λ2
0 +

p1∑
k=p0

(λ2
k − λ2

0)hk

− (λ` + λ0)

λ0 +

p1∑
k=p0

(λk − λ0)hk

 =

λ2
0 +

p1∑
k=p0

(λk − λ0)(2λk + λ0)hk − λ`

λ0 +

p1∑
k=p0

(λk − λ0)hk

 = 0, (4.78)

` = p0, p0+1, p0+2, . . . , p1, which means that either λp0 , λp0+1, λp0+2, . . . , λp1 have a common

value, or λ2
0 +

∑p1
k=p0

(λk − λ0)(2λk + λ0)hk = λ0 +
∑p1

k=p0
(λk − λ0)hk = 0. But the second

alternative is impossible, as λk, λk − λ0 and hk are positive for k = p0, p0 + 1, p0 + 2, . . . , p1,

as is λ0, so we must have λp0 = λp0+1 = λp0+2 = . . . = λp1 = µ, say.

Returning to our original labelling, this means that at an extremum of F (h), the set {λk :

hk > 0} contains either 1 or 2 values. If it contains one value, then F (h) = 1, a maximum.

Suppose {λk : hk > 0} = {µ0, µ1}, µ0 < µ1. Then F (h) =

[
µ0+(µ1−µ0)

∑
{k:λk=µ1}

hk

]2
µ20+(µ21−µ20)

∑
{k:λk=µ1}

hk
=

[µ0+A(µ1−µ0)]2

µ20+A(µ21−µ20)
depends on h only via A =

∑
{k:λk=µ1} hk.

But dF
dA = 0 implies 2(µ1−µ0)[µ2

0+A(µ2
1−µ2

0)]−(µ2
1−µ2

0)[µ0+A(µ1−µ0)] = 0, which in turn

implies A = µ0
µ0+µ1

∈ (0, 1), which corresponds to the local minimum 4µ0µ1
(µ0+µ1)2

= 4(
µ0
µ1

)2
+
(
µ1
µ0

)2 .

The global minimum is given by min(µ0,µ1)∈{(µ′0,µ′1):µ′0,µ
′
1∈{λ0,...,λp},µ0<µ1}

{
4(

µ0
µ1

)2
+
(
µ1
µ0

)2
}

=
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4mλMλ
(mλ+Mλ)2

, where mλ = min{λ0, λ1, λ2, . . . , λp}, Mλ = max{λ0, λ1, λ2, . . . , λp}, and this global

minimum will be less than 1 if {λ0, λ1, λ2, . . . , λp} contains at least two distinct values.
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Figure 4.21: Three dimensional plot of F (h) against g0 and g1 for the case p = 3, with λ0 = 1
2 , λ1 = 1

3

and λ2 = 1
5 . The three maxima of value 1 at g = [1, 0, 0]T, [0, 1, 0]T and [0, 0, 1]T are marked with

magenta stars, and the two merely local minima of 4λ0λ1

(λ0+λ1)2
= 24

25 at g =
[√

λ1

λ0+λ1
,
√

λ0

λ0+λ1
, 0
]T

=[√
2
5 ,
√

3
5 , 0
]T

and 4λ1λ2

(λ1+λ2)2
= 15

16 at g =
[
0,
√

λ2

λ1+λ2
,
√

λ1

λ1+λ2

]T
=
[
0,
√

5
8 ,
√

3
8

]T
are shown by red

crosses. The global minimum of 4λ0λ2

(λ0+λ2)2
= 40

49 at g =
[√

λ2

λ0+λ2
, 0,
√

λ0

λ0+λ2

]T
=
[√

2
7 , 0,

√
5
7

]T
is

given a red circle. The mismatch between the boundary of the coloured surface and the g2 = 0 curve

is due to the limited resolution of the plot

An example of the relationship between F and its extrema is given in Figure 4.21.

If h′ ∈ arg minF (h), then h′k = 0 if λk 6∈ {mλ,Mλ},
∑

k∈{k′:λk′=mλ}
h′k = Mλ

mλ+Mλ
and∑

k∈{k′:λk′=Mλ} h
′
k = mλ

mλ+Mλ
, so h′ is not uniquely determined unless both the maximum and

minimum eigenvalue are of multiplicity 1.

Nevertheless, although the solution is not necessarily unique, it exists, and we can

choose h, and thus g, minimising
gTD2

P g

gTDP g
subject to gTg = 1, so ã1 = OT

HD
− 1

2
H OT

P g min-

imises
(ãT1 P̃1(β)ã1)2

ãT1 P̃1(β)H̃−1
1 P̃1(β)ã1

subject to ãT
1 H̃1ã1 = 1, and this minimum has the value 4mλMλ

(mλ+Mλ)2
,

where mλ and Mλ are the minimum and maximum eigenvalues of DP . If u is an eigen-
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vector of DP , with eigenvalue ν, then DPu = νu ⇒ D
− 1

2
H OH P̃1(β)OT

HD
− 1

2
H u = νu ⇒

OT
HD

− 1
2

H D
− 1

2
H OH P̃1(β)OT

HD
− 1

2
H D

− 1
2

H OHO
T
HD

1
2
Hu = H̃−1

1 P̃1(β)OT
HD

− 1
2

H u = νOT
HD

− 1
2

H u, so ν is

an eigenvalue of H̃−1
1 P̃1(β) with eigenvector OT

HD
− 1

2
H u. Moreover,

(OT
HD

− 1
2

H u)TH̃1O
T
HD

− 1
2

H u′ = uTD
− 1

2
H OHO

T
HDHOHO

T
HD

− 1
2

H u′ = uTu′

=



0,

OT
HD

− 1
2

H u and OT
HD

− 1
2

H u′ are

eigenvectors of H̃−1
1 P̃1(β) cor-

responding to distinct eigen-

values;

1,

OT
HD

− 1
2

H u′ and OT
HD

− 1
2

H u

are the same eigenvector of

H̃−1
1 P̃1(β);

some value in [−1, 1], otherwise.

Consequently, the minimum value of 〈ψ,ψ′〉 is given by 8mλMλ
(mλ+Mλ)2

− 1, where mλ and

Mλ are the minimum and maximum eigenvalues of H̃−1
1 P̃1(β), and the maximum distance is

‖ψ − ψ′‖ =

√
2
[
2− 8mλMλ

(mλ+Mλ)2

]
= 2Mλ−mλ

Mλ+mλ
.

In Figures 4.22 to 4.24 we show the worst-case ‖ψ−ψ′‖ for general wavelets of our form,

wavelets under the wrapped endpoint continuity condition, and wavelets under both the

wrapped endpoint differentiability conditions. In and around the range β ∈ [10, 100], the

curves clearly have an important oscillatory component, so, in Figures 4.25 to 4.27, we plot

their upper envelop3, in order to avoid underestimating ‖ψ−ψ′‖ because of minor inaccuracies

in the effective4 value of β.5

The plots in Figures 4.25 to 4.27 all show a rapid decline between β = 4πHz (40
3 ∈ (4π, 5π))

and 80Hz. In some cases, this decline commences earlier, and it is almost monotonic.

In Table 4.4, we collate the values of the plots in Figures 4.25 to 4.27 at the especially

relevant values of β, 40
3 Hz and 80Hz. By this measure, too, the imposition of the wrapped

endpoint continuity condition does not compensate for the loss of a free parameter, but

imposing both such conditions more than compensates for the loss of two free parameters.

When we compare this Table with Table 4.2, we find6, that ‖ψ−ψ′‖ is much smaller than

‖ψ(1) − ψ(1)β‖ when β = 80Hz, but, when β = 40
3 Hz, ‖ψ − ψ′‖ is smaller than ‖ψ(1) − ψ(1)β‖

3Defined here as follows — if f is a function, its upper envelope is fU (x) = max
x′∈

[
π
⌊
x
π

⌋
,π

(⌊
x
π

⌋
+1

)) f(x′).

We use Matlab R©’s fminsearch function to find the minimum (the code internal to this uses ordinary double
arithmetic, but we use variable precision arithmetic in the functions it calls)

4We model the response of the accelerometer by a sharp cut-off. A more gentle decline in accelerometer
response might mean the response is better modelled by a cut-off not at the specification value, but at a
nearby point

5The bandwidth might be greater than stated, which could lead to ‖ψ−ψ′‖ increasing rather than decreasing
6There are fewer coincident values here than in Table 4.2. Referring to the explanation of coincident

values in footnote 1, a value in the Table will be unchanged if the both the maximum and minimum affected
eigenvalues remain bracketted by the maximum and minimum eigenvalues in the unaffected group. The “near
misses” in Table 4.4 may be genuinely different values, or may be due to arithmetic errors in calculating
eigenvalues. At this juncture, this is a moot point
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Figure 4.22: Plots of the worst-case ‖ψ − ψ′‖ corresponding to the eigenvalues of Figure 4.12 (i.e.,

for general wavelets of our form)

only when the number of free parameters is 1 or 2 for the case without endpoint conditions,

and only when p = 1 when there are such conditions. When p is larger, then ‖ψ − ψ′‖ is

much bigger than ‖ψ(1) − ψ(1)β‖.
Returning to Figures 4.25 to 4.27 themselves, and comparing them to Figures 4.22 to 4.24,

we see that the differences are small, and increase with bandwidth, but are still significant

near the bandwidth of interest, represented by the leftmost dashed line.

In Figures 4.28 to 4.30, we show the wavelets ψ and ψ′ which maximise ‖ψ−ψ′‖ subject

to ‖ψ′ − ψβ‖ ≤ ‖ψ − ψβ‖ for the worst case ψ, together with ψβ (the working which enables

these plots to be drawn is in Appendix 7.7, which also contains Tables referring to values of

‖ψ − ψβ‖, etc., for special values of β).
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Figure 4.23: Plots of the worst-case ‖ψ − ψ′‖ corresponding to the eigenvalues of Figure 4.13 (i.e.,

for wavelets of our form subject to wec). Note that the n = 4 curve is coincident with, and obscured

by, the n = 5 curve, and the same is true of the n = 6 and n = 7 curves

Wavelets Wavelets with wec Wavelets with wed

n β = 40
3 Hz β = 80Hz n β = 40

3 Hz β = 80Hz n β = 40
3 Hz β = 80Hz

p ‖ψ − ψ′‖ ‖ψ − ψ′‖ ‖ψ − ψ′‖
1 2 0.1621 0.0162 3 0.2933 0.0412 4 0.1365 0.0191

2 3 0.5430 0.0846 4 1.1497 0.1195 5 0.3838 0.0192

3 4 1.1497 0.1195 5 1.1631 0.1196 6 1.0488 0.0477

4 5 1.8542 0.1864 6 1.9846 0.2413 7 1.8743 0.0477

5 6 1.9847 0.2413 7 1.9847 0.2413 — — —

6 7 1.9993 0.3387 — — — — — —

Table 4.4: Values of the upper envelopes of the worst-case ‖ψ − ψ′‖ in Figures 4.25 to 4.27 at our

special values of β
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Figure 4.24: Plots of the worst-case ‖ψ − ψ′‖ corresponding to the eigenvalues of Figure 4.14 (i.e.,

for wavelets of our form subject to wed)

Wavelets Wavelets with wec Wavelets with wed

p n A B n A B n A B

1 2 1.3860 -1.0109 3 3.2743 -1.0037 4 1.5084 -1.0020

2 3 6.7484 -1.0076 4 9.6797 -1.0107 5 1.5151 -1.0026

3 4 9.6794 -1.0107 5 9.6865 -1.0108 6 3.7736 -1.0074

4 5 15.1124 -1.0160 6 20.1106 -1.0204 7 3.7735 -1.0074

5 6 20.1106 -1.0204 7 20.1106 -1.0204 — — —

6 7 28.1238 -1.0266 — — — — — —

Table 4.5: Parameters for the approximate relation ‖ψ − ψ′‖ = AβB which holds when β > 80Hz

(analogue of Table 4.3)
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Figure 4.25: Plots of the upper envelope of the distances of Figure 4.22

‖ψ − ψβ‖
β — wec wed

5Hz ∼ 1− 9.98× 10−11 ∼ 1− 9.66× 10−7 ∼ 1− 9.66× 10−7

20Hz 0.9625 0.8853 0.8853

80Hz 0.5333 0.4757 0.4757

320Hz 0.2676 0.2379 0.2379

Table 4.6: Maximum distance between ψ and ψβ
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Figure 4.26: Plots of the upper envelope of the distances of Figure 4.23. Note that the n = 4 plot is

coincident with, and obscured by, the n = 5 plot, and the same is true of the n = 6 and n = 7 plots
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Figure 4.27: Plots of the upper envelope of the distances of Figure 4.24
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Figure 4.28: Plots of the wavelets ψ(x) (blue) and ψ′(x) (magenta) which maximise ‖ψ−ψ′‖ subject

to ‖ψ′ − ψβ‖ ≤ ‖ψ − ψβ‖, and of ψβ(x) (thick, red). The green area is the envelope of all ψ′′ such

that ‖ψ′′ − ψβ‖ ≤ ‖ψ − ψβ‖
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Figure 4.30: Similar to Figure 4.28, but with all wavelets satisfying wed
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4.8 Analogous calculation for trigonometric

polynomial wavelets

Let ψ(x) =

{ ∑n
k=1[ak sin 2kπx+ ck cos 2kπx], x ∈

[
−1

2 ,
1
2

)
;

0, otherwise,
with the ue condition being∫ 1

2

− 1
2

ψ(x)2dx = 1
2

∑n
k=1[a2

k + c2
k] = 1 or [ aT cT ]H [ ac ] = 1, where a = [a1, . . . , an]T, c =

[c1, . . . , cn]T ∈ Rn and H = 1
2 I ∈ R2n×2n.

The zi condition is automatically satisfied, as are the optional wrapped endpoint conti-

nuity or differentiability conditions.

Define the bandwidth limited version of ψ, ψβ(x) = [ψ̂β(ξ)]ˇ(x), where ψ̂β(ξ) ={
ψ̂(ξ), ξ ∈ [−β, β];

0, otherwise.

As before, ‖ψ − ψβ‖2 = ‖ψ̂ − ψ̂β‖2 = ‖ψ̂‖ − 2<〈ψ̂, ψ̂β〉+ ‖ψ̂β‖2 = 1− ‖ψ̂β‖2, and

‖ψ̂β‖2 =

n∑
k=1

n∑
`=1

[aka`〈f̂k,β, f̂`,β〉+ akc`〈f̂k,β, ĝ`,β〉+ cka`〈ĝk,β, f̂`,β〉+ ckc`〈ĝk,β, ĝ`,β〉]

=

n∑
k=1

[a2
k‖f̂k,β‖2 + 2akck<〈f̂k,β, ĝk,β〉+ c2

k‖ĝk,β‖2] +

2<
n−1∑
k=1

n∑
`=k+1

[aka`〈f̂k,β, f̂`,β〉+ akc`〈f̂k,β, ĝ`,β〉+ ckc`〈ĝk,β, ĝ`,β〉], (4.79)

where

fk(x) =

{
sin 2kπx, x ∈

[
−1

2 ,
1
2

)
;

0, otherwise,
gk(x) =

{
cos 2kπx, x ∈

[
−1

2 ,
1
2

)
;

0, otherwise,
(4.80)

and

f̂k,β(ξ) =

{
f̂k(ξ), ξ ∈ [−β, β];

0, otherwise,
ĝk,β(ξ) =

{
ĝk(ξ), ξ ∈ [−β, β];

0, otherwise.
(4.81)

But fk is real, so f̂k(−ξ) = f̂k(ξ), and fk is odd, so f̂k is purely imaginary. Together,

these facts imply that f̂k,β is i times a real odd function. Similarly, gk real and even ⇒ ĝk is

real and ĝk(−ξ) = ĝk(ξ), so ĝk,β is a real even function, for all k. Hence, f̂k,β ĝ`,β is i times

a real odd function and 〈f̂k,β, ĝ`,β〉 = 0, for all k and `, is an easy consequence of this. The

same argument leads to the conclusion that 〈f̂k,β, f̂`,β〉 and 〈ĝk,β, ĝ`,β〉 are real.

Thus, equation (4.79) becomes

‖ψ̂β‖2 =
n∑
k=1

[a2
k‖f̂k,β‖2 + c2

k‖ĝk,β‖2] + 2
n−1∑
k=1

n∑
`=k+1

[aka`〈f̂k,β, f̂`,β〉+ ckc`〈ĝk,β, ĝ`,β〉]

=
[
aT cT

] [ Pf (β) 0

0 Pg(β)

][
a

c

]
=
[
aT cT

]
P

[
a

c

]
, (4.82)
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where

Pf (β) =


‖f̂1,β‖2 〈f̂1,β, f̂2,β〉 · · · 〈f̂1,β, f̂n,β〉
〈f̂1,β, f̂2,β〉 ‖f̂2,β‖2 · · · 〈f̂2,β, f̂n,β〉

...
...

. . .
...

〈f̂1,β, f̂n,β〉 〈f̂2,β, f̂n,β〉 · · · ‖f̂n,β‖2

 ,

Pg(β) =


‖ĝ1,β‖2 〈ĝ1,β, ĝ2,β〉 · · · 〈ĝ1,β, ĝn,β〉
〈ĝ1,β, ĝ2,β〉 ‖ĝ2,β‖2 · · · 〈ĝ2,β, ĝn,β〉

...
...

. . .
...

〈ĝ1,β, ĝn,β〉 〈ĝ2,β, ĝn,β〉 · · · ‖ĝn,β‖2

 ,

P =

[
Pf 0

0 Pg

]
. (4.83)

Now

f̂k(ξ) =
1√
2π

∫ ∞
−∞

fk(x)e−iξxdx =
1√
2π

∫ 1
2

− 1
2

e−iξx sin 2kπxdx

=
1

2i
√

2π

∫ 1
2

− 1
2

[e−i(ξ−2kπ)x − e−i(ξ+2kπ)x]dx = 1
2i
√

2π

[
e−i(ξ−2kπ)x

−i(ξ−2kπ) −
e−i(ξ+2kπ)x

−i(ξ+2kπ)

] 1
2

− 1
2

= (−1)k+1i√
2π

[
1

ξ−2kπ −
1

ξ+2kπ

]
sin 1

2ξ, (4.84)

and similarly,

ĝk(ξ) = (−1)k√
2π

[
1

ξ−2kπ + 1
ξ+2kπ

]
sin 1

2ξ. (4.85)

Hence,

‖f̂k,β‖2 =
1

2π

∫ β

−β

[
1

ξ − 2kπ
− 1

ξ + 2kπ

]2

sin2 1
2ξdξ

=
1

4π

∫ β

−β

[
1

(ξ − 2kπ)2
+

1

(ξ + 2kπ)2
− 1

2kπ

(
1

ξ − 2kπ
− 1

ξ + 2kπ

)]
(1− cos ξ)dξ

=
1

2π

∫ β

−β

[
1

(ξ − 2kπ)2
− 1

2kπ

1

ξ − 2kπ

]
(1− cos ξ)dξ

= 1
2π

[
S′k(β)− 1

2kπC
′
k(β)

]
, k ≥ 1, (4.86)
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where

S′k(β) =

∫ β

−β

1− cos ξ

(ξ − 2kπ)2
dξ =

∫ β−2kπ

−β−2kπ

1− cos ξ

ξ2
dξ

=

[
−1− cos ξ

ξ
+

∫
sin ξ

ξ
dξ

]β−2kπ

−β−2kπ

= Si(β − 2kπ)− 1− cosβ

β − 2kπ
+ Si(β + 2kπ)− 1 + cosβ

β + 2kπ

= Sk(β) + S−k(β) (4.87)

and

C ′k(β) =

∫ β

−β

1− cos ξ

ξ − 2kπ
dξ =

∫ β−2kπ

−β−2kπ

1− cos ξ

ξ
dξ

=


∫ β+2kπ
−β+2kπ

cos ξ−1
ξ dξ, β ∈ (0, 2kπ];(

−
∫ 0
−β−2kπ −

∫ β−2kπ
0

)
cos ξ−1

ξ dξ, β ∈ (2kπ,∞)

=

(∫ β+2kπ

0
−
∫ |β−2kπ|

0

)
cos ξ − 1

ξ
dξ

= Ci(β + 2kπ)− γ − ln(β + 2kπ)− Ci(|β − 2kπ|) + γ + ln |β − 2kπ|

= Ck(β)− C−k(β) (4.88)

for the sine and cosine integrals Si and Ci, where γ = limn→∞
(∑n

k=1
1
k − lnn

)
is the Euler-

Mascheroni constant, for

Sk(β) = Si(β + 2kπ)− 1 + cosβ

β + 2kπ
,

Ck(β) =

{
γ, β = −2kπ;

Ci(|β + 2kπ|)− ln |β + 2kπ|, otherwise.
(4.89)

We consequently have

‖f̂k,β‖2 = 1
2π

[
Sk(β) + S−k(β)− 1

2kπ{Ck(β)− C−k(β)}
]
, k ≥ 1. (4.90)

Similar to the result for ‖f̂k,β‖2, we have

‖ĝk,β‖2 = 1
2π

[
Sk(β) + S−k(β) + 1

2kπ{Ck(β)− C−k(β)}
]
, k ≥ 1. (4.91)
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If ` 6= k,

〈f̂k,β, f̂`,β〉 =
1

2π

∫ β

−β

[
1

ξ − 2kπ
− 1

ξ + 2kπ

] [
1

ξ − 2`π
− 1

ξ + 2`π

]
sin2 1

2ξdξ

=
1

π

∫ β

−β

1

ξ − 2kπ

[
1

ξ − 2`π
− 1

ξ + 2`π

]
sin2 1

2ξdξ

=
1

4π2

∫ β

−β

[
1

k − `

(
1

ξ − 2kπ
− 1

ξ − 2`π

)
− 1

k + `

(
1

ξ − 2kπ
− 1

ξ + 2`π

)]
×

(1− cos ξ)dξ

=
1

2(k2 − `2)π2

∫ β

−β

[
`

ξ − 2kπ
− k

ξ − 2`π

]
(1− cos ξ)dξ

= 1
2(k2−`2)π2 [`{Ck(β)− C−k(β)} − k{C`(β)− C−`(β)}], (4.92)

and

〈ĝk,β, f̂`,β〉 =
1

4π2

∫ β

−β

[
1

k − `

(
1

ξ − 2kπ
− 1

ξ − 2`π

)
+

1

k + `

(
1

ξ − 2kπ
− 1

ξ + 2`π

)]
×

(1− cos ξ)dξ

=
1

2(k2 − `2)π2

∫ β

−β

[
k

ξ − 2kπ
− `

ξ − 2`π

]
(1− cos ξ)dξ

= 1
2(k2−`2)π2 [k{Ck(β)− C−k(β)} − `{C`(β)− C−`(β)}]. (4.93)

To find the wavelets ψ,ψ′ which maximise ‖ψ − ψ′‖ subject to ‖ψ′ − ψβ‖ ≤ ‖ψ − ψβ‖,
we follow the argument of Section 4.7, with the considerable simplifications that we need not

make any projections (as the zi and wrapped endpoint conditions are satisfied), XT
0 X0 = n

and H = 1
2 I.

We then find that, given [aT, cT]T, [a′T, c′T]T, with the obvious meaning, is given by

ã′ = 2
ãTP (β)ã

ãTP (β)2ã
P (β)ã− ã, (4.94)

and then

ãTHã′ =
(ãTP (β)ã)2

ãTP (β)2ã
− 1, (4.95)

where we are now using the tilde to denote quantities like ã = [aT, cT]T, ã′ = [a′T, c′T]T.

Continuing with the argument, we find that the minimum value of ãTHã′, as given by

equation (4.95), is 8λ1λ2n
(λ1+λ2n)2

− 1, where λ1 is the minimum eigenvalue of H−1P (β) = 2P (β)

and λ2n is the maximum such eigenvalue. Then, the maximum value of ‖ψ − ψ′‖ subject to
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Figure 4.31: Pseudocolour plot of the elements of 2P (β)(= H−
1
2P (β)H−

1
2 ) for n = 4. The colour

scale given for the β =∞ plot applies to all plots (exactly zero entries are shaded black and near-zero

entries are shaded dark grey). (This figure is analogous to Figure 4.4)

our conditions is 2λ2n−λ1λ1+λ2n
, and (non-unique) values for ã and ã′ are

ã =
√

λ2n
λ1+λ2n

u1 +
√

λ1
λ1+λ2n

u2n,

ã′ = 3λ1−λ2n
λ1+λ2n

√
λ2n

λ1+λ2n
u1 + 3λ2n−λ1

λ1+λ2n

√
λ1

λ1+λ2n
u2n, (4.96)

where u1 and u2n are unit eigenvectors of 2P (β) corresponding to the eigenvalues λ1 and λ2n

respectively.

Again, we may find the envelope of ψ′′ such that ‖ψ′′ − ψβ‖ ≤ ‖ψ − ψβ‖ by defining

X0 = [sin 2πx0, sin 4πx0, . . . , sin 2nπx0, cos 2πx0, cos 4πx0, . . . , cos 2nπx0]T, and then substi-

tuting the resulting equality XT
0 X0 = n and H̃1 = 1

2 I into equation (8), along with the
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Figure 4.32: 3d plot of the elements of 2P (β) for n = 4. (This figure is analogous to Figure 4.5)

relevant notational changes:

Ψ′±(x0) = XT
0 ã
′′(λ∓, κ(λ∓)) =

(ãTP (β)ã)(XT
0 P (β)ã)

ãTP (β)2ã
±
√
n(ãTP (β)2ã)−(XT

0 P (β)ã)2

ãTP (β)2ã
×√

2ãTP (β)2ã− (ãTP (β)ã)2.

(4.97)

We will also need

Ψ′′±(x0) = ±
√

2n, (4.98)

and then the upper boundary of the envelope is given by

Ψ+(x0) =

{
max{Ψ′+(x0),Ψ′′+(x0)}, if

√
2ãTP (β)X0 ≥

√
nãTP (β)ã;

Ψ′+(x0), otherwise;
(4.99)
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Figure 4.33: Plots of the eigenvalues of H−1P (β) = 2P (β), for n = 2, 3, 4, 5. The thicker black line

gives the minimum of these eigenvalues, the thinner, the maximum. The eigenvalues of Pf (β) are

shown by the blue curves, those of Pg(β) by the red ones. The dashed vertical lines correspond to the

bandwidth of the NAT accelerometer (80Hz), and this value divided by the frequency most characteristic

of PD movement disorders, 6Hz

similarly, the lower boundary is given by

Ψ−(x0) =

{
min{Ψ′−(x0),Ψ′′−(x0)}, if

√
2ãTP (β)X0 ≤ −

√
nãTP (β)ã;

Ψ′−(x0), otherwise.
(4.100)
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4.9 Windowed polynomial wavelets

If we fix β, we can use the frequency-windowed functions

fk(x) =
1

2π

∫ β

−β

∫ 1
2

− 1
2

yke−iξydyeixξdξ =
1

π

∫ 1
2

− 1
2

yk
sinβ(y − x)

y − x
dy (4.101)

as a basis for wavelets ψ(x) =
∑n

k=0 akfk(x).

The zi condition then becomes b̄Ta = 0, where

b̄k =

∫ ∞
−∞

fk(x)dx

=
1

π

∫ ∞
−∞

∫ 1
2

− 1
2

yk
sinβ(y − x)

y − x
dydx

=
1

π

∫ 1
2

− 1
2

yk
∫ ∞
−∞

sinβ(y − x)

y − x
dxdy =

∫ 1
2

− 1
2

ykdy =

{
1

2k(k+1)
, k even;

0, k odd
= bk,

(4.102)

and the ue condition aTH̄a = 1, where

H̄k` =

∫ ∞
−∞

fk(x)f`(x)dx

=
1

π2

∫ ∞
−∞

∫ 1
2

− 1
2

yk
sinβ(y − x)

y − x
dy

∫ 1
2

− 1
2

w`
sinβ(w − x)

w − x
dwdx

=
1

π2

∫ 1
2

− 1
2

∫ 1
2

− 1
2

ykw`
∫ ∞
−∞

sinβ(y − x)

y − x
sinβ(w − x)

w − x
dxdydw

=
1

π

∫ 1
2

− 1
2

∫ 1
2

− 1
2

ykw`
sinβ(w − y)

w − y
dydw = Pk`(β); (4.103)

that is, b̄ = b and H̄ = P (β), where b and P (β) are the quantities with the same roles as

encountered when discussing piecewise polynomial wavelets.

4.10 Windowed trigonometric polynomial wavelets

If we fix β, we can use the frequency-windowed functions

fk(x) =
1

2π

∫ β

−β

∫ 1
2

− 1
2

e−iξy sin 2πky dy eixξ dξ =
1

π

∫ 1
2

− 1
2

sinβ(y − x)

y − x
sin 2πky dy

=
1√
2π

∫ β

−β
eixξ f̂k(ξ) dξ =

(−1)k+1i

2π

∫ β

−β
eixξ

(
1

ξ − 2kπ
− 1

ξ + 2kπ

)
sin 1

2ξ dξ

=
(−1)k

2π

∫ β

−β

(
1

ξ − 2kπ
− 1

ξ + 2kπ

)
sin 1

2ξ sinxξ dξ =
(−1)k

π

∫ β

−β

sin 1
2ξ sinxξ

ξ − 2kπ
dξ

(4.104)
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(as f̂k(ξ) is given by equation (4.84) on its support, and we have used the symmetries of the

integrands), and

gk(x) =
1

2π

∫ β

−β

∫ 1
2

− 1
2

e−iξy cos 2πky dy eixξ dξ =
1

π

∫ 1
2

− 1
2

sinβ(y − x)

y − x
cos 2πky dy

=
1√
2π

∫ β

−β
eixξ ĝk(ξ) dξ =

(−1)k

2π

∫ β

−β
eixξ

(
1

ξ − 2kπ
+

1

ξ + 2kπ

)
sin 1

2ξ dξ

=
(−1)k

2π

∫ β

−β

(
1

ξ − 2kπ
+

1

ξ + 2kπ

)
sin 1

2ξ cosxξ dξ =
(−1)k

π

∫ β

−β

sin 1
2ξ cosxξ

ξ − 2kπ
dξ

(4.105)

(ĝk(ξ) is given by equation (4.85) on its support) as a basis for the wavelets ψ(x) =
∑n

k=1[akfk(x)+

ckgk(x)].

By the substitution equivalent to the translation ξ → ξ + 2kπ and using the argument

addition properties of trigonometric functions,

fk(x) = 1
2π

[{
Gk
(
x+ 1

2

)
−Gk

(
x− 1

2

)}
cos 2kπx+

{
Fk
(
x+ 1

2

)
− Fk

(
x− 1

2

)}
sin 2kπx

]
,

(4.106)

gk(x) = 1
2π

[{
Fk
(
x+ 1

2

)
− Fk

(
x− 1

2

)}
cos 2kπx−

{
Gk
(
x+ 1

2

)
−Gk

(
x− 1

2

)}
sin 2kπx

]
,

(4.107)

where

Fk(x) = Si((β + 2kπ)x) + Si((β − 2kπ)x), (4.108)

Gk(x) =


0, β = 2kπ, x = 0;

Ci(4kπ|x|)− ln(4kπ|x|), β = 2kπ, x 6= 0;

ln
∣∣∣β+2kπ
β−2kπ

∣∣∣ , β 6= 2kπ, x = 0;

Ci((β + 2kπ)|x|)− Ci(|β − 2kπ||x|), otherwise.

(4.109)

The functions given by equations (4.106) and (4.107) are shown in Figure 4.35 for β =

80Hz and k = 1, 2, 3 and 4. Unsurprisingly, fk(x) is mostly close to sin 2kπx on
[
−1

2 ,
1
2

]
and mostly close to zero elsewhere, and gk(x) is mostly close to cos 2kπx on

[
−1

2 ,
1
2

]
and

mostly close to zero elsewhere, although there is a certain amount of “ringing” in both these

functions.

The zi condition becomes∫ ∞
−∞

ψ(x)dx =

∫ ∞
−∞

n∑
k=1

[akfk(x) + ckgk(x)]dx

=

n∑
k=1

[
ak

∫ 1
2

− 1
2

sin 2kπxdx+ ck

∫ 1
2

− 1
2

cos 2kπxdx

]
= 0, (4.110)

which is automatically satisfied (as for piecewise trigonometric wavelets), and the ue condition
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Figure 4.35: f1(x), f2(x), f3(x) and f4(x) (blue), and g1(x), g2(x), g3(x) and g4(x) (red)

is ∫ ∞
−∞

ψ(x)2dx =

∫ ∞
−∞

n∑
k=1

n∑
`=1

[akfk(x) + ckgk(x)][a`f`(x) + c`g`(x)]dx

=

n∑
k=1

n∑
`=1

[
aka`

∫ ∞
−∞

fk(x)f`(x)dx+ ckc`

∫ ∞
−∞

gk(x)g`(x)dx

]

=
1

4π

n∑
k=1

n∑
`=1

[
aka`

∫ 1
2

− 1
2

∫ 1
2

− 1
2

sin 2kπw sin 2`πy
sinβ(w − y)

w − y
dydw +

ckc`

∫ 1
2

− 1
2

∫ 1
2

− 1
2

cos 2kπw cos 2`πy
sinβ(w − y)

w − y
dydw

]

=
[
aT cT

] [ Pf 0

0 Pg

][
a

c

]
= 1, (4.111)

where we have exploited the fact that the fk are even functions and the gk odd, and changed

the order of integration to integrate with respect to x first. In the final line, we have used

equation (4.82), where Pf and Pg are given by substituting equations (4.86) to (4.8) into

equations (4.83).
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We would also like to find∫ x0

−x0
ψ(x)2dx =

[
aT cT

]
T

[
a

c

]
,

as our new wavelets no longer have compact support and we wish to determine the region

where they may be assumed zero without too much loss of accuracy.

The matrix T has the form T =
[
Tf (x0) 0

0 Tg(x0)

]
(again because of the parities of the fs

and gs), where

Tf,k`(x0) =

∫ x0

−x0
fk(x)f`(x)dx, Tg,k`(x0) =

∫ x0

−x0
gk(x)g`(x)dx

but evaluating these integrals in terms of standard special functions is not easy.
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Figure 4.36: fk(x)f`(x) (blue) and gk(x)g`(x) (red) for k, ` = 1, 2, 3 and 4, (k < `)

Nevertheless, we can find T numerically, by using Matlab R©’s function integral to in-

tegrate the quantities7 under the integral sign in the right-handmost members of equa-

7As these quantities are sensitive to arithmetical error, we use Matlab R©’s vpa (variable precision arithmetic)
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tions (4.104) and (4.105).
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Figure 4.37: The diagonal elements of Tf (blue) and Tg (red) for k = 1, 2, 3 and 4. The vertical

dotted line is at x0 = 1
2

The products fk(x)f`(x) and gk(x)g`(x) for β = 80Hz and k, ` = 1, 2, 3 and 4 are shown in

Figure 4.36, and the integrals of these quantities (i.e., the elements of Tf and Tg) are shown

in Figures 4.37 and 4.38.

In Figures 4.39 and 4.40 we show the elements of P−
1
2T (x0)P−

1
2 , which is a symmetric

matrix with the same eigenvalues as P−1T (x0), and these Figures confirm that T (x0) → P

rather slowly as x0 →∞.

We now wish to find min
∫ x0
−x0 ψ(x)2dx over our wavelets for each value of x0 ∈ (0,∞),

that is we wish to find min
{

[ ac ]T
[
Tf (x0) 0

0 Tg(x0)

]
[ ac ]
}

, subject to the condition of the last line

of equation (4.111).

This is similar to other extremisation problems we have considered, and we have

min
{

[ ac ]T T (x0) [ ac ] : [ ac ]T P [ ac ] = 1
}

= λ, where λ = λ(x0) is the smallest eigenvalue of

P−1T (x0).

We now find
∫ x0+ 1

2
∆

x0− 1
2

∆
fk(x)dx and

∫ x0+ 1
2

∆

x0− 1
2

∆
gk(x)dx and use these to find filter coefficients,

to evaluate them
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Figure 4.38: The off-diagonal elements of Tf (blue) and Tg (red) for k, ` = 1, 2, 3 and 4 (k < `)

on setting ∆ to the gap between sampling points, and x0 to integer multiples of ∆.
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Figure 4.39: 3-d plots of the elements of P−
1
2T (x0)P−

1
2 (P

− 1
2

f Tf (x0)P
− 1

2

f to the left corner of the

plots, and P
− 1

2
g Tg(x0)P

− 1
2

g to the right) for various values of x0. The colour map is given in Figure 4.40

below

Now,

∫ x0+ 1
2

∆

x0− 1
2

∆
fk(x)dx =

1

2π

∫ x0+ 1
2

∆

x0− 1
2

∆

∫ 1
2

− 1
2

∫ β

−β
e−iξ(y−x) sin 2kπy dξdydx

= − i

2π

∫ 1
2

− 1
2

∫ β

−β
e−iξy

eiξ(x0+ 1
2

∆) − eiξ(x0−
1
2

∆)

ξ
sin 2kπy dξdy

= − 1

4π

∫ 1
2

− 1
2

∫ β

−β
eix0ξ

e
1
2
i∆ξ − e−

1
2
i∆ξ

ξ
e−iξy

[
e2ikπy − e−2ikπy

]
dξdy

=
(−1)k+1i

4π

∫ β

−β
eix0ξ

e
1
2
i∆ξ − e−

1
2
i∆ξ

ξ

[
e−

1
2
iξ − e

1
2
iξ
]
×[

1

ξ − 2kπ
− 1

ξ + 2kπ

]
dξ

=
(−1)k+1i

π

∫ β

−β
eix0ξ

sin 1
2∆ξ sin 1

2ξ

ξ

[
1

ξ − 2kπ
− 1

ξ + 2kπ

]
dξ

=
(−1)k

π

∫ β

−β

sinx0ξ sin 1
2∆ξ sin 1

2ξ

ξ

[
1

ξ − 2kπ
− 1

ξ + 2kπ

]
dξ
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2
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corner of the plots, and P
− 1

2
g Tg(x0)P

− 1
2

g to the lower right)

where the last line follows from the fact that the integrand of the previous line without the

factor eix0ξ is an odd function of ξ, so the even part of eix0ξ may be ignored.

Hence, ∫ x0+ 1
2

∆

x0− 1
2

∆
fk(x)dx =

2(−1)k

π

∫ β

−β

sinx0ξ sin 1
2∆ξ sin 1

2ξ

ξ(ξ − 2kπ)
dξ,

by the evenness of 1
ξ sinx0ξ sin 1

2∆ξ sin 1
2ξ, and so

∫ x0+ 1
2

∆

x0− 1
2

∆
fk(x)dx =

(−1)k

kπ2

∫ β

−β

[
1

ξ − 2kπ
− 1

ξ

]
sinx0ξ sin 1

2∆ξ sin 1
2ξdξ.

As sinx0ξ sin 1
2∆ξ sin 1

2ξ = −1
4

{
sin
(
x0 + 1

2 + 1
2∆
)
ξ + sin

(
x0 − 1

2 −
1
2∆
)
ξ− sin

(
x0 + 1

2 −
1
2∆
)
ξ−

sin
(
x0 − 1

2 + 1
2∆
)
ξ
}

(easily derivable by writing sinx0ξ etc. as 1
2i(e

ix0ξ − e−ix0ξ) etc.), we
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have

∫ x0+
1
2 ∆

x0−1
2 ∆

fk(x)dx = Jk,+,+(x0,∆) + Jk,−,−(x0,∆)− Jk,+,−(x0,∆)− Jk,−,+(x0,∆), (4.112)

where

Jk,±,±′(x0,∆) =
(−1)k+1

4kπ2

∫ β

−β

[
1

ξ − 2kπ
− 1

ξ

]
sin
(
x0 ± 1

2 ±
′ 1

2∆
)
ξdξ

=
(−1)k+1

4kπ2

∫ β−2kπ

−β−2kπ

sin
(
x0 ± 1

2 ±
′ 1

2∆
)

(ξ + 2kπ)

ξ
dξ −

(−1)k+1

4kπ2

∫ β

−β

sin
(
x0 ± 1

2 ±
′ 1

2∆
)
ξ

ξ
dξ

= − 1

4kπ2

∫ β−2kπ

−β−2kπ

sin
([
x0 ± 1

2 ±
′ 1

2∆
]
ξ + 2kπ

[
x0 ±′ 1

2∆
])

ξ
dξ +

(−1)k

2kπ2 Si
(
β
[
x0 ± 1

2 ±
′ 1

2∆
])

or

Jk,±,±′(x0,∆) = − 1

4kπ2
cos 2kπ

(
x0 ±′ 1

2∆
) ∫ β−2kπ

−β−2kπ

sin
(
x0 ± 1

2 ±
′ 1

2∆
)
ξ

ξ
dξ −

1

4kπ2
sin 2kπ

(
x0 ±′ 1

2∆
) ∫ β−2kπ

−β−2kπ

cos
(
x0 ± 1

2 ±
′ 1

2∆
)
ξ

ξ
dξ +

(−1)k

2kπ2 Si
(
β
[
x0 ± 1

2 ±
′ 1

2∆
])

= − 1
4kπ2 cos 2kπ

(
x0 ±′ 1

2∆
)
×{

Si
(
(β − 2kπ)

(
x0 ± 1

2 ±
′ 1

2∆
))
− Si

(
(−β − 2kπ)

(
x0 ± 1

2 ±
′ 1

2∆
))}
−

1
4kπ2 sin 2kπ

(
x0 ±′ 1

2∆
)
×{

Ci
(
(β − 2kπ)

(
x0 ± 1

2 ±
′ 1

2∆
))
− Ci

(
(−β − 2kπ)

(
x0 ± 1

2 ±
′ 1

2∆
))}

+

(−1)k

2kπ2 Si
(
β
[
x0 ± 1

2 ±
′ 1

2∆
])

= − 1
4kπ2 cos 2kπ

(
x0 ±′ 1

2∆
)
×{

Si
(
(β − 2kπ)

(
x0 ± 1

2 ±
′ 1

2∆
))

+ Si
(
(β + 2kπ)

(
x0 ± 1

2 ±
′ 1

2∆
))}
−

1
4kπ2 sin 2kπ

(
x0 ±′ 1

2∆
)
×{

Ci
(
|β − 2kπ|

∣∣x0 ± 1
2 ±
′ 1

2∆
∣∣)− Ci

(
(β + 2kπ)

∣∣x0 ± 1
2 ±
′ 1

2∆
∣∣)+ uiπ

}
+

(−1)k

2kπ2 Si
(
β
[
x0 ± 1

2 ±
′ 1

2∆
])
, (4.113)

where u =


−1, β < 2kπ;

undetermined, β = 2kπ;

0, β > 2kπ

(when u is non-zero, it is so as a consequence of

using the Cauchy Principal Value of the integral in the definition of Ci).

As we may drop the part of Jk,±,±′(x0,∆) in equation (4.113) which is unchanged under
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the interchange ± ↔ ∓ (or ±′ ↔ ∓′), we have

∫ x0+
1
2 ∆

x0−1
2 ∆

fk(x)dx = J ′k,+,+(x0,∆) + J ′k,−,−(x0,∆)− J ′k,+,−(x0,∆)− J ′k,−,+(x0,∆), (4.114)

where

J ′k,±,±′(x0,∆) = − 1
4kπ2 cos 2kπ

(
x0 ±′ 1

2∆
)
×{

Si
(
(β − 2kπ)

(
x0 ± 1

2 ±
′ 1

2∆
))

+ Si
(
(β + 2kπ)

(
x0 ± 1

2 ±
′ 1

2∆
))}
−

1
4kπ2 sin 2kπ

(
x0 ±′ 1

2∆
)
×{

Ci
(
|β − 2kπ|

∣∣x0 ± 1
2 ±
′ 1

2∆
∣∣)− Ci

(
(β + 2kπ)

∣∣x0 ± 1
2 ±
′ 1

2∆
∣∣)}+

(−1)k

2kπ2 Si
(
β
[
x0 ± 1

2 ±
′ 1

2∆
])
. (4.115)

Similarly,

∫ x0+ 1
2

∆

x0− 1
2

∆
gk(x)dx =

1

2π

∫ x0+ 1
2

∆

x0− 1
2

∆

∫ 1
2

− 1
2

∫ β

−β
e−iξ(y−x) cos 2kπy dξdydx

= − i

4π

∫ 1
2

− 1
2

∫ β

−β
eix0ξ

e
1
2
i∆ξ − e−

1
2
i∆ξ

ξ
e−iξy

[
e2ikπy + e−2ikπy

]
dξdy

=
(−1)k

4π

∫ β

−β
eix0ξ

e
1
2
i∆ξ − e−

1
2
i∆ξ

ξ

[
e−

1
2
iξ − e

1
2
iξ
] [ 1

ξ − 2kπ
+

1

ξ + 2kπ

]
dξ

=
(−1)k

π

∫ β

−β
eix0ξ

sin 1
2∆ξ sin 1

2ξ

ξ

[
1

ξ − 2kπ
+

1

ξ + 2kπ

]
dξ

=
(−1)k

π

∫ β

−β

cosx0ξ sin 1
2∆ξ sin 1

2ξ

ξ

[
1

ξ − 2kπ
+

1

ξ + 2kπ

]
dξ

where the last line follows from the fact that the integrand of the previous line without the

factor eix0ξ is an even function of ξ, so the odd part of eix0ξ may be ignored.

Hence,

∫ x0+
1
2 ∆

x0−1
2 ∆

fk(x)dx =
(−1)k

kπ2

∫ β

−β

[
1

ξ − 2kπ
− 1

ξ

]
cosx0ξ sin 1

2∆ξ sin 1
2ξdξ,

by the oddness of 1
ξ cosx0ξ sin 1

2∆ξ sin 1
2ξ.

As cosx0ξ cos 1
2∆ξ cos 1

2ξ = −1
4

{
cos
(
x0 + 1

2 + 1
2∆
)
ξ + cos

(
x0 − 1

2 −
1
2∆
)
ξ −

cos
(
x0 + 1

2 −
1
2∆
)
ξ − cos

(
x0 − 1

2 + 1
2∆
)
ξ
}

(easily derivable by writing cosx0ξ as 1
2(eix0ξ +

e−ix0ξ) etc. and sin 1
2ξ etc. as 1

2i(e
1
2
iξ − e−

1
2
iξ) etc.), we have

∫ x0+ 1
2

∆

x0− 1
2

∆
fk(x)dx = Kk,+,+(x0,∆) +Kk,−,−(x0,∆)−Kk,+,−(x0,∆)−Kk,−,+(x0,∆), (4.116)
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where

Kk,±,±′(x0,∆) =
(−1)k+1

4kπ2

∫ β

−β

[
1

ξ − 2kπ
− 1

ξ

]
cos
(
x0 ± 1

2 ±
′ 1

2∆
)
ξdξ

=
(−1)k+1

4kπ2

∫ β−2kπ

−β−2kπ

cos
(
x0 ± 1

2 ±
′ 1

2∆
)

(ξ + 2kπ)

ξ
dξ −

(−1)k+1

4kπ2

∫ β

−β

cos
(
x0 ± 1

2 ±
′ 1

2∆
)
ξ

ξ
dξ

= − 1

4kπ2

∫ β−2kπ

−β−2kπ

cos
([
x0 ± 1

2 ±
′ 1

2∆
]
ξ + 2kπ

[
x0 ±′ 1

2∆
])

ξ
dξ

= − 1

4kπ2
cos 2kπ

(
x0 ±′ 1

2∆
) ∫ β−2kπ

−β−2kπ

cos
(
x0 ± 1

2 ±
′ 1

2∆
)
ξ

ξ
dξ +

1

4kπ2
sin 2kπ

(
x0 ±′ 1

2∆
) ∫ β−2kπ

−β−2kπ

sin
(
x0 ± 1

2 ±
′ 1

2∆
)
ξ

ξ
dξ

= − 1
4kπ2 cos 2kπ

(
x0 ±′ 1

2∆
)
×{

Ci
(
(β − 2kπ)

(
x0 ± 1

2 ±
′ 1

2∆
))
− Ci

(
(−β − 2kπ)

(
x0 ± 1

2 ±
′ 1

2∆
))}

+

1
4kπ2 sin 2kπ

(
x0 ±′ 1

2∆
)
×{

Si
(
(β − 2kπ)

(
x0 ± 1

2 ±
′ 1

2∆
))
− Si

(
(−β − 2kπ)

(
x0 ± 1

2 ±
′ 1

2∆
))}

= − 1
4kπ2 cos 2kπ

(
x0 ±′ 1

2∆
)
×{

Ci
(
|β − 2kπ|
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′ 1
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1
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As we may drop the part of Kk,±,±′(x0,∆) in equation (4.117) which is unchanged under

± ↔ ∓ (or ±′ ↔ ∓′), we have

∫ x0+ 1
2

∆

x0− 1
2

∆
fk(x)dx = K ′k,+,+(x0,∆) +K ′k,−,−(x0,∆)−K ′k,+,−(x0,∆)−K ′k,−,+(x0,∆),

where

K ′k,±,±′(x0,∆) = − 1
4kπ2 cos 2kπ

(
x0 ±′ 1

2∆
)
×{

Ci
(
|β − 2kπ|

∣∣x0 ± 1
2 ±
′ 1

2∆
∣∣)− Ci

(
|β + 2kπ|

∣∣x0 ± 1
2 ±
′ 1

2∆
∣∣)}+

1
4kπ2 sin 2kπ

(
x0 ±′ 1

2∆
)
×{

Si
(
(β − 2kπ)

(
x0 ± 1

2 ±
′ 1

2∆
))

+ Si
(
(β + 2kπ)

(
x0 ± 1

2 ±
′ 1

2∆
))}

.

(4.118)
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4.11 The subsidiary hypothesis

As the results of this section have shown that wavelets obeying the wec and wed conditions

are successively less affected by bandwidth limitations, we hypothesis that wavelets obeying

the endpoint continuity condition, ec,

ψ

(
−1

2

)
= ψ

(
1

2

)
= 0 (4.119)

(which implies wec) and endpoint differentiability conditions, ed,

lim
x→− 1

2

d

dx
ψ(x) = lim

x→ 1
2

d

dx
ψ(x) = 0 (4.120)

(which implies wed) will be less affected by these limitations than wec and wed respectively.

Numerical problems have made an explicit calculation of the effect of ec and ed difficult,

but we believe that these difficulties can be overcome.

Nevertheless, if this hypothesis holds, then it is likely that the further hypothesis men-

tioned at the start of this Chapter will also hold: i.e., the performance of the method with

wavelets with ec or ed will be better than that without.

4.12 Summary

The most important result of this chapter is that, according to a worst-case analysis, the

bandwidth of the NAT accelerometer is on the boundary of what is needed to obtain data of

the quality to make the method work, but that the effects of the bandwidth are ameliorated

by the imposition of stricter smoothness conditions, at least as far as the wec and wed

conditions are concerned. The quickest way to see this is to examine Figures 4.18 to 4.20

and 4.25 to 4.27.

Although this is a worst-case analysis, and we might be “lucky” and find ourselves working

in a region of the function spaces concerned which is away from the worst part of that space,

we cannot rely on this.

In addition, the amelioration through smoothness conditions has enabled us to erect a

subsidiary hypothesis.



Chapter 5

Experiments and results

Our aim here is to evaluate the efficacy of classification of unseen data for our method, when

it is trained on data from known sources.

We wish to recognise unseen data from the same sources as was used in training, but

also to see how the method generalises across wrist of attachment, and across subjects. As

the number of our subjects is very limited, we can only look at generalisation across control

subjects.

We will also compare changes in performance as we introduce the ec and ed conditions

(defined on p192) on our ECWTs.

A major consideration is the question of diversity — we do not wish to measure the same

characteristic in many ways, but to measure different characteristics.

5.1 Introduction and method

The method utilised here is adapted from that discussed in Kohavi[46], and found to have

good results in estimating the performance of a wide range of algorithms. Following that

reference, we basically divide our data into ten “plies”, train a classifier on nine of these and

test on the tenth. This procedure is repeated which each of the ten plies playing the role of

test ply in turn. This procedure is believed to yield a good approximation to performance

statistics generated on larger amounts of data without re-use.

Here, we use seven sets of triaxial data: left hand and right hand data from subjects PD1,

who has Parkinson’s Disease, C2 and C4, and left hand data from subject C3. Subjects C2

and C3 have no known underlying health problems, and C4 is a diabetic.

All the data was generated by NATs operating at a sampling rate of 500Hz with the range

set to ±2g, with a right-hand or left-hand wrist attachment.

The data was divided up into 5 minute epochs of consecutive samples, with any epoch

containing saturated data (any of the three channels registering ±2 5
18g) discarded.

The dimensions of the data and the uses we put each set to are given in Table 5.1.

For each data set which has a “Y” in the “Library extraction and member selection”

column of Table 5.1, we uniformly randomly select 10 non-intersecting “plies” of bNdata set/10c
epochs, where, of course, Ndata set is the number of epochs in the data set.

193
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Subject Hand Number
of epochs

Number of
epochs in a ply

Library extrac-
tion and member
selection

Testing

PD1 left 385 38 Y Y

right 527 52 Y Y

C2 left 350 35 Y Y

right 441 44 Y Y

C3 left 296 29 N Y

C4 left 105 10 N Y

right 477 47 N Y

Table 5.1: Size and use of each data set

We will specify a basic test suite by giving three data sources (S1,S2,S3),

where S1,S2 ∈ {(PD1,LH), (PD1,RH), (C2,LH), (C2,RH)}, S2 6= S1, and S3 ∈
{(PD1,LH), (PD1,RH), (C2,LH), (C2,RH), (C3,LH), (C4,LH), (C4,RH)} − {S1}. The first

two elements of a test suite, (S1,S2) will be called a training suite. A full test suite,

(S1,S2,S3,S4) is the combination of the two basic test suites (S1,S2,S3) and (S1,S2,S4).

We will label some of the sections of our text by the relevant suites.

Test suite Experiment type

(PD1, RH, C2, RH, PD1, RH, C2, RH) Recognition

(PD1, LH, C2, LH, PD1, LH, C2, LH) Recognition

(C2, RH, PD1, RH, C2, RH, PD1, RH) Recognition

(C2, LH, PD1, LH, C2, LH, PD1, LH) Recognition

(PD1, RH, C2, RH, PD1, LH, C2, LH) Generalisation: attachment

(PD1, LH, C2, LH, PD1, RH, C2, RH) Generalisation: attachment

(PD1, RH, C2, RH, PD1, RH, C4, RH) Generalisation: control subject

(PD1, LH, C2, LH, PD1, LH, C3, LH) Generalisation: control subject

(PD1, LH, C2, LH, PD1, LH, C4, LH) Generalisation: control subject

Table 5.2: Test suites and experiment types

In Table 5.2, we list our test suites and the type of experiment they are involved in: a

recognition experiment is when an attempt is made to classify different data from the same

sources as the training data, and a generalisation experiment is when an attempt is made to

classify data from (at least partially) different sources to the training data. (If some of the

data in a generalisation experiment is not from a new source, we ensure that it is not the

same as the training data.)

For each ply k of S1, F1k, we extract a library of ECWTs, LS1k, from data comprised

of a uniformly randomly selected subset F ′1k containing 2
3 of the members of ∪k′ 6=kF1k′ . We

then attempt to select ten library members, MS1S2km, indexed by m, from LS1k by using
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∪k′ 6=kF1k′ −F ′1k and ∪k′ 6=kF2k′ as a contrast set, where the F2k′ are the plies of S2,1 by using

the q∗∗ method at the end of the previous chapter, which, of course, also delivers a ΘS1S2km

and θS1S2km for each library member m successfully selected (and an indication of whether

the proportion of PD activations exceeding θS1S2km “should” be greater than ΘS1S2km and

the proportion of non-PD activations exceeding θS1S2km less than ΘS1S2km — the “normal”

situation — or vice versa).

We then evaluate the activations of each window of each of our chosen lengths that fits

into each of the the epochs of F1k with respect to MS1S2km, to find the ratio of the number

of the activations exceeding θS1S2km to the total number for each epoch, ρS1S2kmS3` . The first

superscript of ρ here is, of course, the data source for the extraction of the library, the second

is the data source which serves as contrast to the extraction source in the selection of the

library members, the third is the ply index and the fourth is the library member. The first

subscript is the source of the data being tested and the second numbers the epoch of the test

data.

If S3 = S2, we find ρS1S2kmS2` only for the epochs ` of F2k, to avoid using epochs of S2 in

both test and training (contrast) roles.

On the other hand, if S3 6= S2, we find ρS1S2kmS3` for each epoch ` of S3.

As the libraries LS1k and LS1k′ are extracted from different data sets, unless k′ = k, they

are very unlikely to contain the same ECWTs, and, if even they did, the ordered sets of

selected members (MS1S2k1,MS1S2k2,MS1S2k3, . . .) and (MS1S2k′1,MS1S2k′2,MS1S2k′3, . . .)
are likely to differ, as selection also depends on different sets. Consequently, the ρs with

respect to the best-rankedMS1S2km andMS1S2k′m′ ,MS1S2k1 andMS1S2k′1, i.e., ρS1S2k1
S3` and

ρS1S2k
′1

S3` , are likely to be with respect to different ECWTs, and, of course, the same applies

to equal-ranked ECWTs of lower rank, m, and their corresponding ρs, ρS1S2kmS3` and ρS1S2k
′m

S3` .

This fact is important when inspecting some of the later diagrams.

We evaluate our results in three ways:

1 we classify each ply with respect to the libraries generated for it;

2 we classify each epoch of each ply with respect to the libraries generated for its ply;

3 we look at pairs of value lists (repetitions allowed)
{
ρS1S2kmS21 , ρS1S2kmS22 , ρS1S2kmS23 , . . .

}
and{

ρS1S2kmS31 , ρS1S2kmS32 , ρS1S2kmS33 , . . .
}

to see if they have significant differences.

Before doing so, set the variable ιS1S2km to 1 if median`

(
ρ̃S1S2kmS1`

)
> median`

(
ρ̃S1S2kmS2`

)
,

to -1 if the inequality is reversed, and to 0 if neither inequality holds, where ρ̃S1S2kmS3` is the

equivalent of ρS1S2kmS1` calculated from the part of S1 (when S3 = S1) used in the selection

of MS1S2m` from LS1m, or the part of S2 (when S3 = S2) used in the same process. When

ιS1S2km = 1, what “should” happen happens, and the tail (as defined by θS1S2km) of the

empirical distribution of ρ̃S1S2kmS1` is fatter than that of the empirical distribution of ρ̃S1S2kmS2` ,

1We somewhat arbitrarily pair F1k′ and F2k′ for each k′, but this should not matter, as the plies of S1 and
S2 are selected independently
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when ιS1S2km = −1, the relationship between the tails of these two distributions is reversed,

and when ιS1S2km = 0, the tails are equally fat, and the selection of MS1S2m` fails, anyway.

We now work on the assumption that S1 is a PD data set, and S2 and S3 are not PD

data sets, or vice versa.

(a) If ιS1S2km = 1

1. find median`

(
ρS1S2kmS1`

)
and median`

(
ρS1S2kmS3`

)
.

i. If median`

(
ρS1S2kmS1`

)
> ΘS1S2km, label S1 as PD with respect to MS1S2m` if

S1 is PD, and as non-PD with respect to MS1S2m` if S1 is non-PD — that is

label S1 with its own class with respect to MS1S2m`;
ii. If median`

(
ρS1S2kmS1`

)
≤ ΘS1S2km, label S1 with S2’s class with respect to

MS1S2m`;
iii. If median`

(
ρS1S2kmS3`

)
> ΘS1S2km, label S3 with S1’s class with respect to

MS1S2m`;
iv. If median`

(
ρS1S2kmS3`

)
≤ ΘS1S2km, label S3 with S2’s class with respect to

MS1S2m`;

2. find ρS1S2kmS1` and ρS1S2kmS3` .

i. If ρS1S2kmS1` > ΘS1S2km, label F1` with S1’s class with respect to MS1S2m`;
ii. If ρS1S2kmS1` ≤ ΘS1S2km, label F1` with S2’s class with respect to MS1S2m`;

iii. If ρS1S2kmS3` > ΘS1S2km, label F3` with S1’s class with respect to MS1S2m`;
iv. If ρS1S2kmS3` ≤ ΘS1S2km, label F3` with S2’s class with respect to MS1S2m`;

3. perform a one-sided Wilcoxon test on
{
ρS1S2kmS1`

}
and

{
ρS1S2kmS3`

}
found above,

to test the null hypothesis that the latter has a median greater than or equal to

the median of the former, and to find out at what level, if any, this hypothesis is

rejected;

(b) ιS1S2km = −1

1. replace > by < and ≤ by > in this item under (a);

2. replace > by < and ≤ by > in this item under (a);

3. change the “greater than” to “less than” in the null hypothesis in this item un-

der (a).

(We use the Matlab R© built-in ranksum for the Wilcoxon test.)

5.2 Training — diversity, thick tails

Here, we examine the diversity of the library members selected in the training phase, and

also whether the distribution of the activations has a thicker tail for the extraction subject

(as expected) or for the contrast subject.
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As can be seen from Table 5.2, we only have four training suites to examine here: (PD1,

RH, C2, RH), (PD1, LH, C2, LH), (C2, RH, PD1, RH) and (C2, LH, PD1, LH).

5.2.1 Diversity

In Figure 5.1 we display the distances between the ten selected members2 from the libraries

extracted from the first ply of the right-hand PD1 data, using right-hand C2 data as a contrast

set, where the extraction was under our three sets of conditions — “plain” (only ue and zi),

ec and ed. The underlying polynomial for the plain results was of degree 4, that for ec, 6 and

that for ed, 8, so there are p = 2 degrees of freedom in each case (n + 1 parameters for an

nth degree polynomial, minus 2 conditions for the plain condition set — ue and zi – 2 more

for ec and a further 2 for ed).
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Figure 5.1: Example distance squares, for the selected members of the library L extracted from the

first ply of the right-hand PD1 data, using right-hand C2 data as a contrast set

As the colour scale is the same for each diagram, the yellower the squares, the more widely

separated are the corresponding library members.

We first note that the maximum distance between members is
√

2, as they can be consid-

ered as equivalence classes of unit vectors, and the distance between these classes is analogous

to min{‖v1 − v2‖, ‖v1 + v2‖} rather than simply the Euclidean distance ‖v1 − v2‖. Hence,

there are many pairs with a separation greater than 25% of the maximum, and several with

one greater than 50%, shown across our diagrams.

For this ply of the (PD1, RH, C2, RH) training suite, at least, it seems that the imposition

of stronger condition sets on the ECWTs does not force the selected members to be closer

together, if the degree of freedom is the same. In fact, the ec diagram shows that one member

is strongly separated from the others, and the ed diagram has one member even more strongly

separated from most of the others. Any such features of the plain diagram are certainly less

marked.

In Figure 5.2, we show the diagram corresponding to Figure 5.1, but for ten random

members of L for the first ply. The colour scale is the same as Figure 5.1.

2It will be recalled that ten members will usually be selected. In this case, 11 members are selected under
the ed condition set, but we only display the square for the first ten
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Figure 5.2: Example distance squares, for random members of the library L extracted from the first

ply of the right-hand PD1 data

The ec and ed diagrams in Figure 5.2 are clearly bluer than the corresponding diagrams

in Figure 5.1, and it is arguable that the same is true of the plain diagrams. In other words,

there is evidence that the selection procedure does not favour less distant members, in this

particular instance, anyway.

In order to see if these observations hold more generally, we assemble sets consisting of

all the intra-library distances for the (distinct) selected members for all the plies, for each

training suite. We repeat this for each available degree of the underlying polynomials for the

ECWTs. Statistics relating to these distances are displayed in the box plots of Figure 5.3.

Note that:

1. it is possible for (lower quartile - interquartile range3) to be negative for a distribution

of positive values — we set the lower limit of the vertical axis to be 0, cutting off some

of the “whiskers”;

2. in some cases the notch is very narrow — this will happen when there are a lot of values

quite close to the median value.

We also do the same for the intra-library distances between sets of ten randomly chosen

members in Figure 5.5.

Across all the diagrams of the Figure for the selected members, Figure 5.3, the lowest

median (“waist”) appearing is 0.3175, roughly midway between a 1
5 and a 1

4 of the maximum

possible, and the lowest lower quartile (bottom of the box) is 0.2234, just under a 1
6 of the

maximum, so, even at the lower end, the separations are considerable.

In Figure 5.4, we plot histograms of the distances within 223 randomly generated4 sets of

ten ECWTs (45 distances per set, so roughly 104 distances in all).

We can see that

3Abbreviated as iqr from here onwards
4Details of the generation: for each component of the individual ECWTs, we produce a random (n + 1)

dimensional vector from the normal distribution N (0, 1) and multiply it by H−
1
2 , producing vectors whose

directions are uniformly distributed with respect to the metric H. These vectors are then projected into the
space orthogonal to that spanned by the vectors corresponding to the condition sets, and the resulting sets of
three vectors are normalised to give an ECWT
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Figure 5.3: Notched box plots for intra-library distances (selected members). The horizontal line at

the “waist” of each box is the median of the intra-library separations, the boxes themselves stretch

from the 1st to the 3rd quartile of the separations. The “notch” begins at the lower bound for the 95%

confidence intervala for the median and ends at the upper bound. The vertical lines, or “whiskers”

stretch from the lower quartile downwards a distance of one iqr, and from the upper quartile upwards

a distance of one iqr. The crosses represent the distances not in the range spanning 1.5 iqrs either

side of the median. The red boxes represent the plain results, the green ones the ec ones and the red

ones the ed results. These colours become lighter as the degrees of freedom increase
aActually, there are many such confidence intervals. The particular one shown is symmetric, in the sense that the ratio

between the estimated probability that the actual population median lies in the part of the confidence interval above

the sample median and the estimated probability that the actual population median lies in the part of the confidence

interval below the sample median is as close as possible to 1

1. the empirical distribution of the distances appears to point at an underlying unimodal

distribution in each case;

2. the position of the mode varies from about 0.05
√

2 to 0.7
√

2;

3. the mode moves to the right as p increases;

4. the mode moves to the left as the stringency of the condition set increases.

Thus, it is confirmed that the distances giving rise to Figure 5.3 are still considerable, taking

into account that those shown in Figure 5.4 are between ECWTs not constrained to match

any data.

There is an individual diagram in Figure 5.3 for each training suite we consider, and,

within each of these diagrams, the sections demarcated by the dotted lines contain box plots

for different condition sets, but for the same degree of freedom, p.

In very few of the sections with all three condition sets, i.e., the two left sections, does the

sequence determined by increasing median correspond to the sequence of condition sets (plain,
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Figure 5.4: Histograms for randomly generated ECWTs (the top row is for the plain condition set,

the middle one for ec, the bottom for ed)

ec, ed). Even when there are just two conditions for constant p, the sequence corresponding

to increasing medians is (plain, ec) less often than the reverse, so there is little evidence

that increasing the severity of the conditions on the libraries pushes the selected members

together. Moreover, the differences between medians are quite small within the results for

each training set, both absolutely and relative to the iqr. Nevertheless, as the (projections

of) notches (onto the vertical axis) rarely overlap, these differences are statistically significant

in most cases.

Making a comparison of the green box from the first section and the red from the third

(n = 6), the green box from the second section and the red from the fourth (n = 7), the

blue box from the first section and the green from the third (n = 8), and the blue box from

the second section and the green from the fourth (n = 9), for each given training suite, we

see that the evidence that increasing the rigour of the condition set automatically pushes

the selected members together is also very weak when only n, the degree of the underlying

polynomials, is held fixed.

Making comparisons between training suites, i.e., across, rather than within the dia-

grams of Figure 5.3, we see that there are systematic differences for the separations for

different training suites — for instance, the range of the medians for (PD1, LH, C2, LH)

is 0.3672
√

2–0.5765
√

2, which is entirely above the corresponding ranges for (PD1, RH, C2,

RH), 0.2824
√

2–0.3542
√

2 and (C2, RH, PD1, RH), 0.2245
√

2–0.3641
√

2, and mostly above

that for (C2, LH, PD1, LH), 0.2785
√

2–0.3536
√

2. In terms of decreasing median of the me-

dians, the training suites have the following order: (PD1, LH, C2, LH) (0.4777
√

2); (C2, LH,
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PD1, LH), (0.3536
√

2); (PD1, RH, C2, RH) (0.3097
√

2); (C2, RH, PD1, RH), (0.2932
√

2);

so, the separation of the selected members seems to be greater for the left-hand data, and,

within that ordering, for the libraries generated using the PD1 data.

We now look at, in Figure 5.5, the distribution of the distance for random, rather than

selected, members of the libraries.
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Figure 5.5: Box plots for intra-library distances (random members). As the second subject-hand pair

of the training suite designation plays a role only in member selection, we drop it from the labelling

of the plots

The major systematic differences with Figure 5.3 are that the notches are broader, and

corresponding medians are usually lower. The first difference means that the concentration

of the most central part of the distribution of distances for the randomly chosen members is

lower. However, the iqr is, if anything, smaller, except for the (PD1, LH) libraries, so there

is a slightly greater concentration over a more broadly defined centre of the distribution in

the non-exceptional cases. Of course, the (PD1, LH) libraries are less concentrated over the

broadly defined centre, too.

In 34 out of 40 cases, the median separation of the selected members is greater than

the corresponding median for random members. Moreover, in the sense that the respective

notches do not overlap, this difference is significant in 30 of these cases, so we can safely say

that the selection process tends to increase the median distance, by selecting some of the

more widely separated members.

As in Figure 5.3, there is no evidence for a decrease in intra-library distances with stricter

conditions, when p or even n is held constant.
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5.2.2 Thick tails

As we extract libraries from one set of data and select members on the basis of the difference

between the distributions of the activations with respect to these members of windows in

similar and supposedly different data, where the difference is measured in terms of the relative

thickness of the tails of these distributions, we would expect that the tails of the distributions

of the activations related to the first set would be thicker. As we shall see, this is often not

the case. When it is not the case, we say that the tails are reversed.

(PD1, RH, C2, RH)

When we extract L from the (PD1, RH) data and use the (C2, RH) as a contrast set to select

members of L, the situation is simple — no tails reversed for any of the selected members

for any combination of n and the condition sets we have examined.

(PD1, LH, C2, LH)

When we extract L from the (PD1, LH) data and use the (C2, LH) as a contrast, the situation

is very different, as shown by Figures 5.6 (plain condition set), 5.7 (ec) and 5.8 (ed). Apart

from half the libraries selected without using the ply pair 9, all of the tails are reversed.
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Figure 5.6: Fat tails diagram for (PD1, LH, C2, LH), with the plain condition set. The white

squares correspond to reversed tails, the black ones to the expected fatness of the tails and the red ones

to missing libraries

A possible explanation for the generally higher relative number of activations of windows

in the (C2, LH) data with respected to the selected libraries extracted from (PD1, LH) data
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than is the case with unseen5 (PD1, LH) is that PD1’s left hand is his least affected one. If

at this stage of development of PD, the motion of his left hand is characterised primarily by

attenuation of normal patterns, then the library members extracted might mainly correspond

to normal patterns which are more strongly present in C2’s data.
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Figure 5.7: Fat tails diagram for (PD1, LH, C2, LH), with the ec condition set
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Figure 5.8: Fat tails diagram for (PD1, LH, C2, LH), with the ed condition set

(C2, RH, PD1, RH)

The results here are simple: all tails reversed for any combination of n and the condition sets.

This result is slightly problematic, as it seems to imply that motion patterns present in

the (C2, RH) data and picked up by our method, are present to an exaggerated extent in the

(PD1, RH) data. However, this is certainly a possibility.

5Before the selection stage, naturally
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(C2, LH, PD1, LH)

Here, the results for the plain condition set, n = 4–7 are given in Figure 5.9, and we can

see that the tails are reversed in just one case. The results for the ec (n = 6–9) and the ed

(n = 8–9) condition sets are that no tails are reversed (a result too simple to need a picture).
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Figure 5.9: Fat tails diagram for (C2, LH, PD1, LH), with the plain condition set

Not only is this result what we broadly expect, it also does not contradict the idea

used to explain the results above on page 202, under the heading (PD1, LH, C2, LH), that

attenuation of normal patterns of movement may be a feature of the PD1 data for the left-

hand attachment.

5.2.3 Summary

We have found that the median intra-library separation between our selected ECWTs is a

substantial fraction of the maximum possible, and compares well with the median separations

of groups of ten randomly chosen library members, and those of groups of ten randomly

selected members of the entire set of ECWTs. Moreover, the median separation of the

selected ECWTs is not greatly or systematically affected by the imposition of our condition

sets.

Contrary to expectation, our tails are frequently reversed, with the tail of the contrast set

activation distribution being thicker than that of the extraction set in a substantial number

of cases.

But if

1. the PD1 left-hand data contains attenuated, but normal, patterns of motion present in

the C2 left-hand data;
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2. the C2 right-hand data contains patterns of motion present to an exaggerated extent

in the PD1 right-hand data

this reversal of the tails can be explained.

5.3 Recognition

In this section, we first examine the ability of our methods to correctly classify data stemming

from previously unseen PD1 and C2 data, when the libraries have been extracted from PD1

data and C2 data has been used as a contrast.

We then do the same, but with libraries extracted from C2 data and using PD1 data as

contrast.

In both cases, we first look at right-hand and then left-hand data.

5.3.1 Test suite (PD1, RH, C2, RH, PD1, RH, C2, RH)

Plain

We first examine the results under the plain condition set, for n = 4–7.

In Table 5.3, we show the classifications of the PD1 and C2 right-hand plies with respect

to the library members ranked one to ten (it should be emphasised that, although the plies

are constant down the columns, it is only the rank of the library members with respect to the

plies that is constant across the rows — even the libraries from which these members come

are different for different partitions).

ply

Mem. 1 2 3 4 5 6 7 8 9 10
rank P C P C P C P C P C P C P C P C P C P C

1 P C P C P C P C P C P C P C P P C C P C

2 P C P C P C P C P C P C P C P P P C P C

3 P C P C P C P C P C P C P C P P C C P C

4 P C P C P C P C P C P C P C P P C C P C

5 P C P C P C P C P C P C P C P P C C P C

6 P C P C P C P C C P P C P C P P C C P C

7 P C P C P C P C P C P C P C P P C C P C

8 P C P C P C P C C C P C P C P P C C P C

9 P C P C P C P C P C P C P C P P C C P C

10 P C P C P C P C C C P C P C P P P C P C

Table 5.3: Classification of the test data for each partition (i.e., the data not in the training data for

that partition): n = 4

The information of Table 5.3 can be represented more compactly graphically, and this

graphical representation is given in Figure 5.10.

We can see from Figure 5.10 that PC1 and C2 plies 1-4, 7, 8 and 10 are classified perfectly,

for n = 4–7, and that the number of (ply pair number, library member) pairs where the PC1
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Figure 5.10: Graphical version of Table 5.3, but with n = 5, 6 and 7 as well as 4. Green squares

indicate (P,C) → (P,C), or that Parkinson’s data is classified as Parkinson’s data and control data

is classified as control data, blue squares indicate (P,C)→ (P, P ), or that both Parkinson’s data and

control data are classified as Parkinson’s data, yellow squares indicate (P,C)→ (C,C) and red squares

indicate (P,C)→ (C,P ), both with the obvious meanings

and C2 plies are both classified correctly varies from 79% (n = 7) to 84% (n = 4), while the

number of pairs where both plies are classified incorrectly varies from 0% (n = 4, 5, 6) to 1%

(n = 7).

Both plies in the pairs 1–4, 6, 7 and 10 are always classified correctly, but there is some

difficulty in classifying the pairs 8 and 9, and, to a lesser extent 5. The difficulty is in

classifying the PD1 ply for pair 8, and the C2 ply for pairs 5 and 9 (except when n = 7,

where neither ply of pair 8 is classified correctly by using the activations of the 6th ranked

library for that ply pair).

In Table 5.4 we present the p values for the Wilcoxon for the hypotheses mentioned above.

Although there is some interest in the details of p, its major value is in deciding hypotheses

at standard levels, and it is easier to see the p-values of several hypotheses at once via a

diagram like Figure 5.11.

From Figure 5.11, we can see that the null hypotheses can mostly be rejected, and quite

strongly, for plies 1-3, 6, 7 and 10, and also sporadically elsewhere. In other words, we can be

quite certain that the median proportion of activations exceeding θ is greater for PD1 data

than for C2 in the majority of cases.

We would expect that the grey squares of Figure 5.11 to correspond to green squares in

Figure 5.10, and this is mostly the case. The only real exception is column 4, corresponding

to a ply pair which is correctly classified in all cases, but which has higher p-values, indicating
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Mem. plies
rank 1 2 3 4 5

1 5.12×10−4 1.64×10−4 1.19×10−5 0.065 0.091

2 1.78×10−3 1.36×10−4 3.69×10−5 0.111 0.085

3 6.47×10−4 2.61×10−4 1.05×10−5 0.145 0.070

4 1.23×10−2 2.04×10−4 2.58×10−5 0.355 0.380

5 9.93×10−4 2.10×10−4 8.97×10−5 0.230 0.437

6 2.75×10−3 4.68×10−4 1.07×10−4 0.361 0.487

7 1.99×10−3 2.70×10−4 1.27×10−4 0.307 0.528

8 2.75×10−3 2.41×10−4 1.27×10−4 0.366 0.545

9 1.04×10−2 4.10×10−4 1.19×10−5 0.145 0.504

10 1.41×10−2 4.01×10−4 1.05×10−5 0.307 0.583

Mem. plies
rank 6 7 8 9 10

1 1.82×10−3 3.75×10−5 3.07×10−3 7.22×10−3 5.01×10−5

2 5.02×10−3 5.72×10−5 1.16×10−2 1.53×10−2 1.25×10−4

3 4.80×10−3 6.55×10−4 7.65×10−3 9.49×10−3 1.68×10−4

4 7.66×10−3 1.52×10−4 1.75×10−2 2.68×10−2 1.83×10−4

5 2.27×10−2 3.31×10−4 3.38×10−2 1.39×10−2 3.78×10−4

6 1.28×10−2 1.23×10−4 0.059 9.15×10−3 2.28×10−4

7 9.29×10−3 2.58×10−4 3.16×10−2 3.72×10−2 2.46×10−4

8 8.43×10−3 3.62×10−4 0.104 0.109 5.27×10−4

9 5.02×10−3 1.38×10−4 1.16×10−2 0.106 7.26×10−4

10 1.82×10−3 5.72×10−5 3.07×10−3 0.106 1.54×10−3

Table 5.4: p-values of the one-sided Wilcoxon of the hypothesis that the median fraction of the

activations of epochs of Parkinson’s data exceeding θ is less than or equal to the median of such a

fraction calculated on epochs of control data. Here, n = 4, the bold italic font indicates that the

hypothesis is rejected at the 1% level, a bold roman font rejection at 5% and non-bold italic one at

10%. A plain font indicates that the hypothesis is not rejected at these levels.

that the relative disposition of the
{
ρS1S2kmS1`

}
and

{
ρS1S2kmS3`

}
is not very unlikely if the null

hypothesis holds.

We note that

1. “not very unlikely” is not the same as “very likely”: from Table 5.4, we can see that

the most likely disposition of the
{
ρS1S24m
S1`

}
and

{
ρS1S24m
S3`

}
, m = 1, 2, . . . , 10 is that

of
{
ρS1S248
S1`

}
and

{
ρS1S248
S3`

}
, and the probability of this disposition (or worse, from the

point of view of the null hypothesis) is 0.361;

2. the tests represented by a column of a Figure like 5.11 are not independent — at the

very least, the quantities we use are generated from the same test data, and, even if

we succeed in picking up different characteristics with different library members, these
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Figure 5.11: Graphical version of Table 5.4, but with n = 5, 6, 7 as well as 4. Black squares indicate

that the hypothesis is rejected at the 1% level, dark gray ones at 5% and light gray ones at 10%. White

squares indicate that the hypothesis is not rejected at any of those levels

characteristics are likely to be correlated in time;

3. although we do not have enough evidence to reject the null hypothesis at a desirable

significance level, we may not have collected enough evidence — we are dealing with

the disposition of 96
total = 52

PD1 + 44
C2 real numbers.

Obviously, as well as using the median of the fractions of tail activations of epochs in a

ply in comparison to the appropriate Θ to classify the ply as a whole, the tail activations of

an individual epoch can be used to classify the epoch itself. Each of the library members

(together with their respective Θs and θs) implies a different classification method, so the

number of these classification methods which result in a correct classification can be con-

sidered a function of the epoch, and we can show this in the form of a relative-frequency

histogram, as in Figure 5.12. If a bar is labelled k, then its height represents the proportion

of plies which are correctly classified by exactly k of the relevant selected library members.

The profiles of the bars in Figures 5.12 all have a rough “U” shape, as most epochs are

either correctly classified by all the selected library members for its ply, or are incorrectly

classified by all of them, with substantially more in the former category than the latter. This

result indicates that either the motion patterns picked up by the library members are similar,

or that they occur at around the same time. We believe the results on diversity rule out the

former explanation.

There is no easily discernible systematic change with n in any of the Figures 5.10-5.12.
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Figure 5.12: Epoch-level classification diagram for (PD1, RH, C2, RH, PD1, RH, C2, RH), with

the plain condition set. The portion of each bar coloured blue represents epochs in the PD1 plies, that

coloured red those in the C2 plies (n = 4–7, top to bottom)
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ec

In Figures 5.13 to 5.15 we present the ply classification, Wilcoxon and epoch classification

diagrams analogous to Figures 5.10 to 5.12, but for the ec condition set.
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Figure 5.13: Diagram like Figure 5.10, but for (PD1, RH, C2, RH, PD1, RH, C2, RH), with ec

condition set

The ply classification (Figure 5.13) is perfect for n = 4–6, and only fails for 8 of the 10

selected members for the single ply pair 8 for n = 7, and only on the C2 member of the

pair. The Wilcoxon tests (Figure 5.14) show that the null hypotheses are mostly strongly

rejected (i.e., at low p-levels) where the classification is correct, with the only slight exception

being the squares for ply 5 and a few of those for ply 4. The “difficult” ply for n = 7, ply 8,

corresponds with the null hypothesis being “only” rejected at a 5% level for 6 of the 8 selected

members where the classification fails on the C2 ply (and being rejected at the same level

for 1 of the 2 where classification was correct).

The epoch-level classification (Figure 5.15) again shows the rough “U” distribution.

There does appear to be some dependence on n in this case, with performance being

roughly the same for n = 4–6, but falling off slightly for n = 7. This is visible in both

Figures 5.13 (perfect classification everywhere for n = 4–6, classification failure on ply 8 (C2)

in 8 of 10 cases for n = 7) and 5.14 (n = 4-6: rejection of null hypothesis at the 1% level for

86-88% of the squares in the diagrams, failure to reject at any of the given levels for 0-1%;

n = 7: rejection of null hypothesis at the 1% level for 78% of the squares in the diagrams,

failure to reject at any of the given levels for 5%).

When we compare the classification and Wilcoxon results with the ec condition set to those

with the more relaxed plain condition set, we see a clear improvement with the ec condition

set, both for constant degrees of freedom (diagrams in the same position in Figures 5.10
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Figure 5.14: Diagram like Figure 5.11, but for (PD1, RH, C2, RH, PD1, RH, C2, RH), with ec

condition set

and 5.13, and in Figures 5.11 and 5.14), and for constant n (diagrams in the bottom row of

the plain Figures and top row of the ec Figures).

The epoch classification diagrams, Figures 5.12 and 5.15, for the plain and ec condition

set, appear to be qualitatively the same.

ed

Figures 5.16 to 5.18 display our results when the ed condition set is imposed.

We first note that there are missing library selections for certain ply pairs (white squares

in the ply-classification Figure, red squares in the Wilcoxon Figure and missing plots in the

epoch-classification Figure). Indeed, there are no selections for plies 4 and 5 when n = 8,

and none for plies 1 and 3 when n = 9. This due to our algorithm being unable to detect a

difference in the tails of the relevant activation distributions over the PD1 and C2 contrast

sets.

However, where library members have been selected, the ply classification is perfect (Fig-

ure 5.16), and the hypotheses of equal or “wrongly-ordered” medians are all, mostly strongly,

rejected (Figure 5.17).

The epoch-level classification diagrams (Figure 5.18) are once again “U”-shaped.

In this case, we might co-opt the library members selected for n = 8 for plies 1 and 3

to serve alongside the library members selected for n = 9 for plies 2 and 4–10. Although

the general 9th degree polynomial cannot be considered an 8th degree polynomial, this is no

reason, in principle, why the reverse cannot be done, using members selected for n = 9 to

cover the gaps in the members for n = 8.
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Figure 5.15: Diagram like Figure 5.12, but for (PD1, RH, C2, RH, PD1, RH, C2, RH), with ec

condition set (n = 6–9, top to bottom)
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Figure 5.16: Diagram like Figure 5.10, but for (PD1, RH, C2, RH, PD1, RH, C2, RH), with ed

condition set. The white squares indicate that the corresponding library member is missing for the

corresponding ply pair
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Figure 5.17: Diagram like Figure 5.11, but for (PD1, RH, C2, RH, PD1, RH, C2, RH), with ed

condition set (red squares for missing library members)

However, we are unlikely to always have this option, as the gaps for one value of n need

not be covered by the members selected for another.

If we now compare the ply-level classification under the ec and ed condition sets, Fig-

ures 5.13 and 5.16, we can only claim that the ed results are better than the ec ones when

n = 9, for the 8th ply pair; but then it is difficult to improve on perfection!

Nor can we claim the missing selections as an improvement.

It is a similar story for the Wilcoxon tests in Figures 5.14 and 5.17: we can only claim

that the ed results are better than the ec on a handful of squares, when we exclude those

that are red in the ed Figure.

Apart from the fact that it only shows two values of n, the epoch-level classification

Figure 5.17 is little different from Figure 5.14, the corresponding Figure for the ec condition

set.

Summary

The method appears to have a good ability to distinguish right-hand PD1 plies from C2

ones, and this improves with the imposition of the ec condition set. The further imposition

of the ed condition set means that the method fails to produce a member selection in 20% of
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Figure 5.18: Diagram like Figure 5.12, but for (PD1, RH, C2, RH, PD1, RH, C2, RH), with ed

condition set (n = 8–9, top to bottom)

cases, and cannot simply be used to yield an improvement. Combining results from running

the algorithms under the ed conditions could enable a full suite of selected members to be

produced, but the improvement on the ec results is ambiguous and anyway minor.

Difficulty

Cond. Set n PD1
(yellow)

C2
(blue)

Both
(red)

Not selected
(white)

4 5, 9 8 — —
plain 5 5, 9 8 — —

6 9 8 — —
7 5, 9 8 5 —

ec 9 — 8 — —

ed 8 — — — 4, 6
9 — — — 1, 3

Table 5.5: Plies which pose particular problems for the method (colours refer to the ply-level classifi-

cation diagrams)

In Table 5.5 we collate the plies which cause difficulties for the method, so that it has a

non-green square in its column, either corresponding to at least one misclassification or at at
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least one failure to distinguish the tails of the activation distributions. There appears to be

a high degree of consistency for the difficult plies (both in which ply pair they are found in,

and which of the two plies they are) when the difficulty is in classification, but no evidence

for any consistency when the difficulty is in library selection.

The Wilcoxon tests show when the difference in the tails of the activations is significant,

and therefore where we should be able to obtain a good performance by a good choice of Θ.

In most cases, this coincides with the combination of library member and ply pair where we

have actually classified correctly, so, on this data, our policy for the choice of Θ has been

vindicated, but there are a few cases where the Wilcoxon appears to show that the difference

between the tails is not significant (see the squares for ply 4 in Figures 5.10 and 5.11), yet our

classification appears to work. However, it is not necessary for a threshold to work for the

differences in the medians to be statistically significant. And it is possible for the differences

to be significant over the data used in the selection phase, which is three times larger, and

not over the test data.
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5.3.2 Test suite (PD1, LH, C2, LH, PD1, LH, C2, LH)

We now look at the recognition of PD1 and C2 left-hand data when our method is used with

the training suite (PD1, LH, C2, LH).

Plain

With the minimal plain conditions set, the ply-level classification, Wilcoxon and epoch-level

classification Figures for this test suite are 5.19–5.24.
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Figure 5.19: Diagram like Figure 5.10, but for (PD1, LH, C2, LH, PD1, LH, C2, LH), with the plain

condition set

The classifications in Figure 5.22 are somewhat disappointing, in that the green squares

(double classification successes) vary from 34% to 51% of the total. This may given a pes-

simistic view of the efficacy of classification, as the overall classification success rates can be

read off the diagrams by using the formula 2G+B+Y
200 , where G is the number of green squares,

B the number of blue and Y the number of yellow ones (we count a failure to obtain a selected

member as a double classification failure). These rates are 61%, 71%, 74% and 70.5% for

n = 4, 5, 6 and 7 respectively, but these are still not very good values.

The Wilcoxon Figure is also disappointing, as few of the null hypotheses we would like to

reject can be rejected at any reasonable level. It is only for ply pairs 1, 3 and 10 that there

are a good number of grey squares across all values of n considered, indicating that the tails

of the activation distributions are sufficiently distinct to have much hope of improving the

results by adjusting thresholds, and ply 10 is already one of the two plies where classification

is already perfect. When n 6= 4, there are more grey squares for ply 9, indicating that there

is possible scope for improvement here, too.
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Figure 5.20: Diagram like Figure 5.11, but for (PD1, LH, C2, LH, PD1, LH, C2, LH), with the plain

condition set

Obviously, these results are especially disappointing when compared to the similar results

for the corresponding test suite for the right-hand attachment.

When we come to Figure 5.24, we see that some of the diagrams show a different pattern

to the ‘U”-shaped pattern of corresponding diagrams for the right-hand attachment. A much

more significant proportion of epochs is correctly classified by other than 0 or 10 of the selected

members. This shows that the selected members are classifying different things. We recall

that the “U”-shape does not show the reverse, as these different things may occur at roughly

the same time, i.e., in the same epoch. (However, it should be noted that the distributions

of distances between the selected members in a library are displayed in Figure 5.3, and this

clearly shows that these distances tend to be greater in the (PD1, LH, C2, LH) case than

in the (PD1, RH, C2, RH) one, i.e., the “different things” are more “different” in the (PD1,

LH, C2, LH) case than in the (PD1, RH, C2, RH) one.)

In the current case, some of the central bars of the non-“U” histograms are mainly red,

which means that some of the motion patterns extracted from the (PD1, LH) training data

and chosen for their relative absence from the (C2, LH) training data are also relatively

absent from the (C2, LH) test data, whereas other motion patterns extracted and selected in

the same way are not absent from the (C2, LH) test data.

Nevertheless, most of the larger central bars are more evenly split between red and blue,

which means that the above paragraph continues to hold, but, in addition, there are some

motion patterns derived from the same training data as above, and in the same way, which

are only weakly present in the (PD1, LH) test data.
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Figure 5.21: Diagram like Figure 5.12, but for (PD1, LH, C2, LH, PD1, LH, C2, LH), with the plain

condition set (n = 4–7, top to bottom)
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ec

We now move onto the results for this test suite when the ec condition set is imposed. These

are shown in Figure 5.22 to 5.23.

1 2 3 4 5 6 7 8 9 10

Ply pair

1 

2 

3 

4 

5 

6 

7 

8 

9 

10

Li
br

ar
y 

m
em

be
r 

ra
nk

n = 6

1 2 3 4 5 6 7 8 9 10

Ply pair

1 

2 

3 

4 

5 

6 

7 

8 

9 

10

Li
br

ar
y 

m
em

be
r 

ra
nk

n = 7

1 2 3 4 5 6 7 8 9 10

Ply pair

1 

2 

3 

4 

5 

6 

7 

8 

9 

10

Li
br

ar
y 

m
em

be
r 

ra
nk

n = 8

1 2 3 4 5 6 7 8 9 10

Ply pair

1 

2 

3 

4 

5 

6 

7 

8 

9 

10

Li
br

ar
y 

m
em

be
r 

ra
nk

n = 9

Figure 5.22: Diagram like Figure 5.10, but for (PD1, LH, C2, LH, PD1, LH, C2, LH), with ec

condition set

The ply-level classification Figure, 5.22, has no missing selected members, and it has 57%

green squares with an overall success rate of 76.5% for n = 6, with corresponding values of

54% and 77% for n = 7, 55% and 75.5% for n = 8 and 52% and 73.5% for n = 9.

In the Wilcoxon Figure, 5.23, aside from certain plies, we have a lack of the desirable grey

squares, and in the epoch-level classification Figure, 5.24, there is a mixture of “U”-shaped

and other profiles, with the former predominating.

If we compare the plain condition set results with the ec condition set results, we find

that the percentages of both plies being correctly classified (green squares in the diagrams)

increases from 34% to 57% when the degrees of freedom, p, are 3, from 46% to 54% (p = 4),

from 51% to 55% (p = 5) and from 47% to 50%. The same comparison with n fixed is

from 51% to 57% (n = 6) and from 47% to 54% (n = 7).

For the overall correct classification rate, we also find increases in going from the plain

condition set to the ec condition set: for constant p, these increases are: 60.5% to 76.5%, 66%

to 77%, 74% to 75.5% and 69.5% to 72.5%; for constant n, they are: 74% to 76.5% and 69.5%

to 77%.

Although these increases do not result in very good rates, they are substantial.

When we compare the epoch-level classification diagrams for the plain condition set,

Figure 5.21 and those for the ec condition set, Figure 5.24, we see that the two diagrams

for each p and ply are very similar, so the comments made above, in the plain condition set
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Figure 5.23: Diagram like Figure 5.11, but for (PD1, LH, C2, LH, PD1, LH, C2, LH), with ec

condition set

section, about these diagrams apply here, too.

ed

We now look at the processing of left-hand data under the ed condition set: the results for

this are summarised in Figures 5.27 to 5.27. We can immediately see that there are no library

members selected for ply pairs 3 and 7 when n = 8 and for ply pairs 2–4 and 7–8 when n = 9.

These missing members are the reason why the percentages of green squares (double

successes) in the ply-level classification diagrams of Figure 5.27 are 45% (n = 8, p = 3)

and 34% (n = 9, p = 4), and the overall classification rates are 60% and 40%, despite the

green squares being the majority among the coloured squares, i.e. excluding selection failures,

for both values of n.

The Wilcoxon Figure for the ed condition set, 5.26, is similarly marked by selection

failures, but, even where library members are selected, the white squares are in the majority

(just, for n = 9, at least).

The epoch-level classification diagrams of Figure 5.26 again show a mixture of “U” and

“non-U” profiles, with central bars either mostly red or evenly split between red and blue, so

we can draw the same conclusions as under the plain condition set for this test suite — in

particular, the different squares in a ply-pair column of the ply-level classification diagrams

represent the present or absence of different things in the data.

If we use the raw double successes and overall classification rates, then clearly introducing

the ed condition set in the place of the ec one leads to a reduction in performance. We might,

however, take selected members from elsewhere to play the role of the missing selections.



5.3. RECOGNITION 221

Ply 1

0

0.2

0.4

0.6

0.8

fr
ac

tio
n 

of
 e

po
ch

s

Ply 2 Ply 3 Ply 4 Ply 5

Ply 6

0 2 4 6 8 10
Number of members

0

0.2

0.4

0.6

0.8

fr
ac

tio
n 

of
 e

po
ch

s

Ply 7

0 2 4 6 8 10
Number of members

Ply 8

0 2 4 6 8 10
Number of members

Ply 9

0 2 4 6 8 10
Number of members

Ply 10

0 2 4 6 8 10
Number of members

Ply 1

0

0.2

0.4

0.6

0.8

fr
ac

tio
n 

of
 e

po
ch

s

Ply 2 Ply 3 Ply 4 Ply 5

Ply 6

0 2 4 6 8 10
Number of members

0

0.2

0.4

0.6

0.8

fr
ac

tio
n 

of
 e

po
ch

s

Ply 7

0 2 4 6 8 10
Number of members

Ply 8

0 2 4 6 8 10
Number of members

Ply 9

0 2 4 6 8 10
Number of members

Ply 10

0 2 4 6 8 10
Number of members

Ply 1

0

0.2

0.4

0.6

0.8

fr
ac

tio
n 

of
 e

po
ch

s

Ply 2 Ply 3 Ply 4 Ply 5

Ply 6

0 2 4 6 8 10
Number of members

0

0.2

0.4

0.6

0.8

fr
ac

tio
n 

of
 e

po
ch

s

Ply 7

0 2 4 6 8 10
Number of members

Ply 8

0 2 4 6 8 10
Number of members

Ply 9

0 2 4 6 8 10
Number of members

Ply 10

0 2 4 6 8 10
Number of members

Ply 1

0

0.2

0.4

0.6

0.8

fr
ac

tio
n 

of
 e

po
ch

s

Ply 2 Ply 3 Ply 4 Ply 5

Ply 6

0 2 4 6 8 10
Number of members

0

0.2

0.4

0.6

0.8

fr
ac

tio
n 

of
 e

po
ch

s

Ply 7

0 2 4 6 8 10
Number of members

Ply 8

0 2 4 6 8 10
Number of members

Ply 9

0 2 4 6 8 10
Number of members

Ply 10

0 2 4 6 8 10
Number of members

Figure 5.24: Diagram like Figure 5.12, but for (PD1, LH, C2, LH, PD1, LH, C2, LH), with ec

condition set (n = 6–9, top to bottom)
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Figure 5.25: Diagram like Figure 5.10, but for (PD1, LH, C2, LH, PD1, LH, C2, LH), with ed

condition set
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Figure 5.26: Diagram like Figure 5.11, but for (PD1, LH, C2, LH, PD1, LH, C2, LH), with ed

condition set

If we use the library members selected for plies 2, 4 and 8 when n = 8 alongside those

selected for plies 1, 5, 6, 9 and 10 when n = 9, we would increase the percentage of double

successes to 44%, and the overall classification success rate to 49.5% for the n = 9 ply-level

classification diagram: these values are slightly below those for the unaltered n = 8 diagram.

Alternatively, we might use selected members under the ec condition set to stand in for

missing members. If we do this keeping p constant, we will take the members for plies 3 and 7

from the ec results for n = 6 to play the roles of the missing members for the same plies for

the ed condition set and n = 8, and do the analogous thing using ec, n = 7 members to play

the roles of the missing ed, n = 9 selections.

If we do this, the double success/overall success rates become 56%/62.5% for ed n = 8

and 50%/56.5% for ed n = 9.

We can do the same thing, but keeping n constant between the ed and ec libraries,

resulting in 53%/62% (n = 8) and 47%/56% (n = 9).

Although these results substituting ec library members for missing selections in the ed

outcomes are close to those for the pure ec procedure above in terms of the double success

rate, they are quite a bit below in terms of the overall success rate.
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Figure 5.27: Diagram like Figure 5.12, but for (PD1, LH, C2, LH, PD1, LH, C2, LH), with ed

condition set (n = 8–9, top to bottom)

Summary

The most striking thing about the performance of our algorithms as classifiers for this test

suite, (PD1, LH, C2, LH, PD1, LH, C2, LH), is that, although it is certainly far better than

random, it is not anywhere near as good as it is on the suite (PD1, RH, C2, RH, PD1, RH,

C2, RH).

One thing is constant over the two test suites: as shown in Table 5.6, the plies that are

difficult for one combination of n and condition set to classify, tend to be difficult for other

combinations. For this test suite, however, the stability extends to the difficulty in selecting

members, at least as far as concerns ply 3.

We also have evidence that, for at least some plies, the method is picking up characteristics

which do not occur together in time, i.e., the non-“U” shape occurring in some of the epoch-

level classification diagrams.
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Difficulty

Cond. Set n PD1
(yellow)

C2
(blue)

Both
(red)

Not selected
(white)

4 2, 4, 8 1, 3, 5, 7 9 3
plain 5 2, 4, 8 1, 3, 5, 7, 9 9 3

6 2, 4, 8 1, 3, 5, 9 9 —
7 2, 4, 8 1, 3, 5, 7, 9 9 —

6 2, 4, 8 3, 5, 7, 9 9 —
ec 7 2, 4, 8 3, 5, 7, 9 — —

8 2, 8 3, 5, 7, 9 8, 9 —
9 2, 4, 8 3, 5, 7, 9 9 —

ed 8 2, 8 5, 9 8, 9 3, 7
9 — 5, 9 9 2, 3, 4, 7, 8

Table 5.6: Plies which pose particular problems for the method
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5.3.3 Test suite (C2, RH, PD1, RH, C2, RH, PD1, RH)

Our main aim in considering libraries of ECWTs extracted from C2 data, with members

selected using PD1 data as a contrast set, is to determine whether classification for left-hand

data based on these members can make good the deficiency of the classification based on

extracting libraries from PD1 data using C2 data as a contrast set.

However, we will stick to our order of considering right-hand data first, and look at the

left-hand data later.

Plain

For the (C2, RH, PD1, RH, C2, RH, PD1, RH) test suite under the plain condition set, we

present the ply-level classification results in Figure 5.28, the Wilcoxon results in Figure 5.29

and the epoch-level results in Figure 5.30.
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Figure 5.28: Diagram like Figure 5.10, but for (C2, RH, PD1, RH, C2, RH, PD1, RH), with the

plain condition set

The ply-level classification Figure 5.28 suggests a partial return to form — the double suc-

cess/overall success rates are 65%/79.5%, 67%/81%, 68%/80% and 64%/81% as n increases

from 4 to 6.

Figure 5.29 is not quite so good news, as the non-rejection (at any of the p-levels we

consider) rates of the null hypotheses (which we would like to be rejected!) are 56%, 53%, 49%

and 53%.

Only a few of the profiles of the bar charts in Figure 5.30 are non-“U”-shaped, i.e., plies 1

and 6 for n = 4, ply 1 for n = 5, plies 5, 6 and 10 for n = 6 and ply 1 for n = 7.
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Figure 5.29: Diagram like Figure 5.11, but for (C2, RH, PD1, RH, C2, RH, PD1, RH), with the

plain condition set

We note that, in the current case, the meaning of the central bars is somewhat reversed

with regard to the discussion on page 217: the blue part of the central bars of the non-“U”

histograms means that some of the motion patterns extracted from the (C2, RH) training

data and chosen for their relative absence from the (PD1, RH) training data are also relatively

absent from the (PD1, RH) test data, whereas other motion patterns extracted and selected

in the same way are not absent from the (PD1, RH) test data. The interpretation of the red

part here relates to the presence and absence of the same motion patterns from the (C2, RH)

test data.

ec

The Figures summarising the results for the ec conditions set are 5.31, 5.32 and 5.33.

The ply-level classification, Figure 5.31 shows a good performance except where selections

are missing (ply 4 for n = 4, and plies 4 and 5 for n = 5).

Again, except where selections are missing, the Wilcoxon Figure, 5.32, also shows good

performance, with black squares dominating the non-red squares for the n = 4 and n = 6

cases, and grey squares dominating the n = 5 and n = 7 ones.

There are few non-“U” profiles in Figure 5.33, so there is little evidence here of different

motion patterns being picked up.

When we compare these results with those for the plain condition set, we see that for

ply-level classification, the double success/overall success rates increase for p = 3, 5 and 6,

to 78%/84%, 85%/92% and 79%/89.5%, while, for p = 3, the decreases to 64%/71.5% are

primarily due to the missing selections. If we co-opt the corresponding plain condition set
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Figure 5.30: Diagram like Figure 5.12, but for (C2, RH, PD1, RH, C2, RH, PD1, RH), with the

plain condition set (n = 4–7, top to bottom)
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Figure 5.31: Diagram like Figure 5.10, but for (C2, RH, PD1, RH, C2, RH, PD1, RH), with ec

condition set
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Figure 5.32: Diagram like Figure 5.11, but for (C2, RH, PD1, RH, C2, RH, PD1, RH), with ec

condition set

selections to play the role of the missing ec selections, then there are increases across the

board: to 88%/94% for p = 3 and 74%/81.5% for p = 4. Similarly, the Wilcoxon Figure

for the ec condition set, Figure 5.32, is much darker than that for the plain condition set,
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Figure 5.33: Diagram like Figure 5.12, but for (C2, RH, PD1, RH, C2, RH, PD1, RH), with ec

condition set
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Figure 5.29, a clear improvement.

For some unknown reason, the number of non-“U” epoch-level classification diagrams is

reduced here in comparison to the case for the plain condition set.

ed

The ply-level classification here (Figure 5.34) shows near-perfect performance for n = 8/p = 3,

and almost as good a performance for n = 9/p = 4.
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Figure 5.34: Diagram like Figure 5.10, but for (C2, RH, PD1, RH, C2, RH, PD1, RH), with ed

condition set

Similarly, the Wilcoxon diagrams (Figure 5.35) are close to being solid black, apart from

the ply 5 column, indicating that the tails of the activation distributions for PD1 and C2 are

very different here.
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Figure 5.35: Diagram like Figure 5.11, but for (C2, RH, PD1, RH, C2, RH, PD1, RH), with ed

condition set

The trend (for this test suite) to return to “U”-shaped profiles of the epoch-level clas-

sification as the severity of the imposed conditions increases continues here, as Figure 5.36

shows — almost all epochs are either classified correctly by all the selected members, or by

none of them.

In comparison with the results for the ec condition set, we see a general improvement of

classification performance and the significance of the difference in the tails of the activation

distributions.
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Figure 5.36: Diagram like Figure 5.12, but for (C2, RH, PD1, RH, C2, RH, PD1, RH), with ed

condition set (n = 8–9, top to bottom)

Summary

As we have increased the severity of the conditions on the ECWTs involved, the ply-level

classification has improved from mediocre (plain conditions) to rather good (ed conditions),

although there were some selection failures for the ec condition set.

In Table 5.7 we list the problematic ply pairs. We see that there is some degree of stability

in the plies which are difficult for the algorithm. Ply pairs 1, 2 and 1–8 never experience

selection failure (however, remember that the selection happens on data excluding these plies),

there is difficulty in classifying the PD1 member of pair 8 (except under the ed condition

set), the C2 member of pair 9 and both members of ply 5 (but only under the plain condition

set).

Because test suite (PD1, RH, C2, RH, PD1, RH, C2, RH) involves the classification of

exactly the same data as the current suite, we compare the results there with those here.

Comparing the corresponding ply-level classification Figures, Figures 5.10 and 5.28, 5.13

and 5.31 and 5.16 and 5.34 immediately reveals, without any need to count squares, that the

members selected using C2 data as a contrast set from libraries extracted from PD1 data do

much better than members selected using PD1 data as a contrast set from libraries extracted

from C2 data, except under the ed condition set, where the (PD1, RH, C2, RH) performance
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Difficulty

Cond. Set n PD1
(yellow)

C2
(blue)

Both
(red)

Not selected
(white)

4 5, 7, 9 6, 8, 10 5 —
plain 5 5, 7, 9 8, 10 5 —

6 5, 7, 9 1, 5, 8 5 —
7 5, 7, 9 5, 8, 10 5 —

6 9 8 — 4
ec 7 9 8 — 3, 4

8 9 8 — —
9 9 8 — —

ed 8 9 — — —
9 9 — — —

Table 5.7: Plies which pose particular problems for the method

is affected by selection failure.

It is exactly the same story for the Wilcoxon Figures — many more black squares, and

much fewer white ones, for the (PD1, RH, C2, RH, PD1, RH, C2, RH) test suite.

However, the result of this comparison is what we expected: more motion patterns ex-

tracted from PD data are absent in control data, than vice versa.

Finally, we compare Tables 5.5 and 5.7: ply pair 5, both of whose plies are problematic

here for the plain condition set, is also problematic under the same circumstances for (PD1,

RH, C2, RH) training; the PD1 ply of pair 9 is difficult everywhere here, and under the

plain condition set there; the C2 ply of pair 8 is difficult for all the classifiers produced under

the plain and ec condition set here, and also the classifiers produced there, under the same

condition sets (excluding ec, n = 8); and it is the C2 ply of pair 9 that is difficult everywhere

here, but only under the plain conditions set.

Ply pairs 5, 8 and 9 are the only ones which cause any classification problems for the

training suite (PD1, RH, C2, RH), and only 9 does so for any set of selected members under

the ec and ed condition set (and just for one value of the ordered pair (n, condition set))

where as several others do for the suite (C2, RH, PD1, RH), so, in this respect too, the

former training suite appears superior.

In fact, it is only from the point of view of selection failure that (C2, RH, PD1, RH)

appears superior, and this is an empty superiority, as perfect selection is possible using

(PD1, RH, C2, RH): i.e., under the ec condition set for n = 6–8.
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5.3.4 Test suite (C2, LH, PD1, LH, C2, LH, PD1, LH)

Because of the relative failure of the training suite (PD1, LH, C2, LH) to classify (PD1, LH)

and (C2, LH) data (at least compared to the success of the training suite (PD1, RH, C2,

RH) in classifying (PD1, RH) and (C2, RH) data)), we wish to examine the efficacy of the

outcome of the training suite (C2, LH, PD1, LH) in classifying (PD1, LH) and (C2, LH)

data.

Plain

In Figures 5.37 (ply-level classification), 5.38 (Wilcoxon) and 5.39 (epoch-level classification),

we present the results for this test suite under the plain condition set.
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Figure 5.37: Diagram like Figure 5.10, but for (C2, LH, PD1, LH, C2, LH, PD1, LH), with the plain

condition set

Handicapped by a number of selection failures ranging from 8% to 18%, we can see from

the ply-level classification Figure, 5.37, that the double classification/overall classification

success rates are 40%/61%, 48%/68.5%, 45%/68% and 43%/67.5%, for n = 4, 5, 6, 7 respec-

tively.

Also, in the Wilcoxon Figure, 5.38, apart from the columns for ply pairs 9 and 10, and

the mostly red columns for pairs 1 and 3, only columns 8 and 9 are dominated by rejections

of the null hypotheses (and none of these is at the 1% p-level), so it is unlikely to be easy to

improve the ply-level classification results by a better choice of thresholds.

Turning to the epoch-level classification diagrams of Figure 5.39, we see that roughly

25% are non-“U”, so there is evidence here for the activations with respect to the selected

members reflecting different motion patterns in the data.
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Figure 5.38: Diagram like Figure 5.11, but for (C2, LH, PD1, LH, C2, LH, PD1, LH), with the plain

condition set

ec

Our summary diagrams in this section are contained in Figures 5.40 to 5.42.

The ply-level classification diagrams in Figure 5.40 display double/overall classification

success rates of 56%/78%, 51%/78%, 54%/77% and 54%/77% (again), as n runs from 4 to 7,

and the Wilcoxon diagrams of Figure 5.41 are dominated by white squares.

We do not have any markedly non-“U” profiles among the epoch-level classification dia-

grams of Figure 5.41, so here there is no further evidence of the selected members leading to

measurement of different motion patterns.

When we compare these results with those for the plain condition set of the previous

section, we find:

1. the number of selection failures has dropped;

2. primarily as a result of this, the double/overall success rate increases substantially;

3. although the ec Wilcoxon diagrams remain dominated by white squares, everywhere

where there was a selection failure under the plain condition set, the null hypothesis

is rejected, while elsewhere the rejections (at one or other of our levels) in diagrams

representing results at the same number of degrees of freedom are in the same place.

This naturally results in an increase of the rate of rejection of the null hypotheses;

4. the number of non-“U” profiles in the epoch-level classification diagrams is reduced in

the ec Figure.

We can sum up by saying that the ec results are substantially better than the plain ones.
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Figure 5.39: Diagram like Figure 5.12, but for (C2, LH, PD1, LH, C2, LH, PD1, LH), with the plain

condition set (n = 4–7, top to bottom)
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Figure 5.40: Diagram like Figure 5.10, but for (C2, LH, PD1, LH, C2, LH, PD1, LH), with ec

condition set
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Figure 5.41: Diagram like Figure 5.11, but for (C2, LH, PD1, LH, C2, LH, PD1, LH), with ec

condition set

ed

In the ply-level classification diagrams for the ed condition set, Figure 5.43, there are identical

double/overall classification rates: 58%/79%, which are not marvellously good, but approach
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Figure 5.42: Diagram like Figure 5.12, but for (C2, LH, PD1, LH, C2, LH, PD1, LH), with ec

condition set (n = 6–9, top to bottom)
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Figure 5.43: Diagram like Figure 5.10, but for (C2, LH, PD1, LH, C2, LH, PD1, LH), with ed

condition set

There is no great indication that these results could be improved by a different choice of

thresholds from the Wilcoxon diagrams in Figure 5.44.
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Figure 5.44: Diagram like Figure 5.11, but for (C2, LH, PD1, LH, C2, LH, PD1, LH), with ed

condition set

As far as the epoch-level classification diagrams of Figure 5.45 are concerned, there is

no evidence for different motion patterns being found in different epochs, as there are no

non-“U” profiles.

When we compare the ed results to the ec ones, we find that they are slightly better

(ec: double/overall classification success rates: 51-56%/75.5-78%; ed: 58%/79%), but the

Wilcoxon diagrams are close to being identical across the two condition sets and the values of

n considered. There is no striking difference in the epoch-level classification diagrams, either.

Summary

In Table 5.8 we list the ply pairs which were particularly difficult to classify. We see that

there is a lot of stability in which plies are difficult to classify — PD1 plies 3, 5, 7 and 9 and

C2 plies 2, 4 and 8. There was also some difficulty in selecting members for ply pairs 1 and 3,

but only under the plain condition.

When we compare the results for this test suite with those for (PD1, RH, C2, RH, PD1,
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Figure 5.45: Diagram like Figure 5.12, but for (C2, LH, PD1, LH, C2, LH, PD1, LH), with ed

condition set (n = 8–9, top to bottom)

Difficulty

Cond. Set n PD1
(yellow)

C2
(blue)

Both
(red)

Not selected
(white)

4 2, 8 5, 7, 9 — 1, 3
plain 5 2, 8 3, 5, 7 9 1, 3

6 2, 4, 8 3, 5, 7 — 1, 3
7 2, 4, 8 3, 5, 7, 9 — 1, 3

6 2, 8 3, 5, 7, 9 — —
ec 7 2, 4, 8 3, 5, 7, 9 — —

8 2, 4, 8 3, 5, 7 — —
9 2, 4, 8 3, 5, 7, 9 — —

ed 8 2, 4, 8 3, 5, 7, 9 — —
9 2, 4, 8 3, 5, 7 — —

Table 5.8: Plies which pose particular problems for the method

RH, C2, RH), we find that the latter are far better in terms of double/overall classification

success rates.

However, the motivation for considering the current suite, (C2, LH, PD1, LH, C2, LH,

PD1, LH) was to see if we could improve over the results for the suite (PD1, LH, C2, LH,
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PD1, LH, C2, LH), i.e., to see if we could find better sets of classifiers for the unseen parts

of the data sets (PD1, LH) and (C2, LH).

By comparing Tables 5.6 and 5.8, we see that the same ply pairs are difficult for both

training suites: 2, 4 and 8 for their PD1 member, and 3, 5, 7 and 9 for their C2 plies.

When we collate the double and overall success rates for the two suites in Table 5.9, we

can easily see that the best results come for (C2, LH, PD1, LH, C2, LH, PD1, LH), but that

the improvement is slight, and that frequently, for the same condition set and n, the larger

value is for the other suite.

(PD1, LH, C2, LH,
PD1, LH, C2, LH)

(C2, LH, PD1, LH,
C2, LH, PD1, LH)

Cond. set n Double
success

Overall
success

Double
success

Overall
success

4 34% 61% 40% 61%
plain 5 50% 71% 48% 68.5%

6 51% 74% 45% 68%
7 47% 70.5% 43% 67.5%

6 57% 76.5% 56% 78%
ec 7 54% 77% 51% 75.5%

8 55% 75.5% 54% 77%
9 52% 73.5% 54% 77%

ed 8 45% 60% 58% 79%
9 34% 40% 58% 79%

Table 5.9: Double and overall success rates for (PD1, LH, C2, LH, PD1, LH, C2, LH) and (C2, LH,

PD1, LH, C2, LH, PD1, LH) (the largest values in each rate column are in a bold font)

In relative terms, there is a great improvement in the number of cases in which the null

hypotheses about the tails of the distributions which we would like to reject, are rejected

for the (C2, LH, PD1, LH, C2, LH, PD1, LH) test suite, as we can see by comparing the

Wilcoxon Figures 5.20 ((PD1, LH, C2, LH, PD1, LH, C2, LH), plain condition set) and 5.38

((C2, LH, PD1, LH, C2, LH, PD1, LH), plain condition set), Figures 5.23 ((PD1, LH, C2,

LH, PD1, LH, C2, LH), ec condition set) and 5.41 ((C2, LH, PD1, LH, C2, LH, PD1, LH),

ec condition set) and Figures 5.23 ((PD1, LH, C2, LH, PD1, LH, C2, LH), ed condition

set) and 5.44 ((C2, LH, PD1, LH, C2, LH, PD1, LH), ed condition set). Nevertheless, this

improvement still leaves the Wilcoxon diagrams dominated by white, non-rejection, squares.
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5.4 Generalisation across attachment

In this section, we determine whether there is any apparent generalisation across the attach-

ment point of the NAT; we attempt to use library members extracted and selected using

right-hand data when classifying left-hand data, and vice versa.

5.4.1 Test suite (PD1, RH, C2, RH, PD1, LH, C2, LH)

Here we attempt to classify left-hand data using library members resulting from the training

suite (PD1, RH, C2, RH).

Plain

Under the plain condition set, we obtain the ply-level classifications shown in Figure 5.46.
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Figure 5.46: Diagram like Figure 5.10, but for (PD1, RH, C2, RH, PD1, LH, C2, LH), with the

plain condition set

We can immediately see that the PD ply for every ply pair is misclassified for every library

member selected for the pair, and that the misclassification rate of the control plies varies

from 16% to 33%, so we can also immediately say that the generalisation across attachment

under the plain condition set is terrible, at least with the given training suite.

We do not present Wilcoxon diagrams like those of Figure 5.11 for (PD1, RH, C2, RH,

PD1, LH, C2, LH), with the plain condition set, as the hypothesis is not rejected at any of

our levels for any of the member-ply pair combinations which would be represented on such

diagrams In other words, the diagrams would consist solely of white squares. Of course, this

fact also points to a very poor generalisation performance.
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Figure 5.47: Diagram like Figure 5.12, but for (PD1, RH, C2, RH, PD1, LH, C2, LH), with the

plain condition set (n = 4–7, top to bottom)
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As regards the epoch-level performance depicted in Figure 5.47, we note the presence of

several non-“U” profiles, but we can easily see that the left-hand upright in the “U”-profiles

is larger than the right-hand one, which is the reverse of the case for our more successful

classifications — there are more epochs which are incorrectly classified by all the relevant

library members than are correctly classified by all the relevant members.

ec and ed

The story for the ec and ed condition sets is mostly the same as for the plain condition set —

the classification performance is very poor, although there are slightly fewer misclassifications

of the C2 plies; on the other hand, there are some selection failures under the ed condition

set.

For completeness, we present the ply-level classification diagrams in Figures 5.48 and 5.49,

and the epoch-level classifications in Figures 5.50 and 5.51.

We do not present Wilcox diagrams like those of Figure 5.11 for (PD1, RH, C2, RH, PD1,

RH, C2, RH) for (PD1, RH, C2, RH, PD1, LH, C2, LH), with the ec and ed condition sets,

as, again, the diagrams would be all white, or red and white in the case of the ed set.

Summary

The generalisation performance of the classification based on libraries extracted and selected

from the right-hand datasets we used to left-hand data under the ec and ed condition sets is

virtually non-existent, and is even worse under the plain condition set.

The large amounts of yellow and red across the ply-level classification diagrams in Fig-

ures 5.46, 5.48 and 5.49 mean that, for these classifiers, left-hand PD1 data resembles right-

hand C2 data more than it does right-hand PD1 data.
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Figure 5.48: Diagram like Figure 5.10, but for (PD1, RH, C2, RH, PD1, LH, C2, LH), with ec

condition set
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Figure 5.49: Diagram like Figure 5.10, but for (PD1, RH, C2, RH, PD1, LH, C2, LH), with ed

condition set
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Figure 5.50: Diagram like Figure 5.12, but for (PD1, RH, C2, RH, PD1, LH, C2, LH), with ec

condition set (n = 6–9, top to bottom)
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Figure 5.51: Diagram like Figure 5.12, but for (PD1, RH, C2, RH, PD1, LH, C2, LH), with ed

condition set (n = 8–9, top to bottom)
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5.4.2 Test suite (PD1, LH, C2, LH, PD1, RH, C2, RH)

Here we examine the generalisation from left-hand data to right-hand data.

Plain

Ply pair 9 aside, every PD1 member of a ply pair is misclassified in the plain condition set

ply-level classification diagrams of Figure 5.52, and, even for ply pair 9, the number of selected

members for fixed n which correctly classify the PD1 member (green or blue squares) varies

from 10% to 80%, with more in the lower part of the range. On the other hand, the C2

members are mostly correctly classified (and the C2 member of ply pair 9 is always correctly

classified). This combination means that the overall success rate is greater than 50% only for

n = 7 (and there it is only 51%).
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Figure 5.52: Diagram like Figure 5.10, but for (PD1, LH, C2, LH, PD1, RH, C2, RH), with the

plain condition set

This picture is confirmed by the diagrams of the Wilcoxon Figure 5.53, where the desired

rejections of the null hypotheses are concentrated in the column for ply pair 9, and then only

for appreciable numbers when n = 4.

In Figure 5.54, we see that several of the epoch-level classification diagrams are non-“U”

(including the diagrams for plies 8 and 9 for n = 5, which, although strictly speaking, are

“U”-shaped, have doubled left and right vertical strokes), with the usual implication that

different selected library members measure different things.
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Figure 5.53: Diagram like Figure 5.11, but for (PD1, LH, C2, LH, PD1, RH, C2, RH), with the

plain condition set

ec

Although the ec ply-level classification diagrams of Figure 5.55 look a little different to those

of Figure 5.52, in that blue squares make their appearance, reflecting an increase in the

number of times that the PD1 member of a ply is correctly classified, the fact that they

also represent a decrease in the number of times the C2 member is correctly classified, and

that there is also an increase in the number of red squares, means that the overall success

rate is reduced with respect to the plain condition set. The even poorer quality of the ec

classification is also reflected in the low number of grey squares in the Wilcoxon Figure,

Figure 5.56.

For some reason, most of the extra red squares occur in ply-pair columns 1, and, where the

corresponding squares were not already red in Figure 5.52, 7. That is, it seems particularly

difficult to classify the C2 ply of these pairs under the ec condition set.

The ply pair 9 remains an exception, in that green squares also occur in its column of

the ply-level classification diagrams under the ec condition set, and also grey squares in the

Wilcoxon diagram.

In the epoch-level classification diagrams, Figure 5.57, we again have several non-“U”

profiles, indicating diversity in the selected members.

ed

Because of the 7 columns of selection failures over the twenty columns, two per ply pair,

over the two ply-level classification diagrams of Figure 5.58, it is difficult to tell whether the
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Figure 5.54: Diagram like Figure 5.12, but for (PD1, LH, C2, LH, PD1, RH, C2, RH), with the

plain condition set (n = 4–7, top to bottom)
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Figure 5.55: Diagram like Figure 5.10, but for (PD1, LH, C2, LH, PD1, RH, C2, RH), with ec

condition set
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Figure 5.56: Diagram like Figure 5.11, but for (PD1, LH, C2, LH, PD1, RH, C2, RH), with ec

condition set

classification results for the ed condition set more closely resemble those for the plain or ec

conditions sets, but they are similar to both in that they document a poor generalisation

from the right-hand data to the left-hand data. That said, the particular difficulty that the

classification under the ec set has with the C2 ply of pair 1 extends to the ed set.
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Figure 5.57: Diagram like Figure 5.12, but for (PD1, LH, C2, LH, PD1, RH, C2, RH), with ec

condition set (n = 6–9, top to bottom)
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Figure 5.58: Diagram like Figure 5.10, but for (PD1, LH, C2, LH, PD1, RH, C2, RH), with ed

condition set
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Figure 5.59: Diagram like Figure 5.11, but for (PD1, LH, C2, LH, PD1, RH, C2, RH), with ed

condition set

Summary

Apart from ply pair 9, under the plain and ed condition sets, the story for the generalisation

from left-hand to right-hand data is the same as the reverse generalisation — it is poor.

For the ec condition set, the generalisation is also poor apart from ply pair 9, but there

are some blue squares, meaning that there are some library members selected for some ply

pairs which correctly classify PD1 data, but not C2 data. On balance, the performance with

the ec condition set is worse than under the plain condition set, and probably only better

than the performance under the ed condition set because of the missing selections under the

latter set.

The large amounts of yellow and red in the ply-level classification diagrams here mean

that, for these classifiers, right-hand PD1 data resembles left-hand C2 data more than it does

left-hand PD1 data.
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Figure 5.60: Diagram like Figure 5.12, but for (PD1, LH, C2, LH, PD1, RH, C2, RH), with ed

condition set (n = 8–9, top to bottom)
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5.5 Generalisation across control subjects

In this section, we replace the control subject C2 by the subjects C3 and C4 in the test data.

The same plies of PD1 data (left or right) are used in these experiments, and so the

classification of the PD1 half of the ply pairs here is the same as when they were classified

alongside C2 data. Consequently, the map which takes squares of, say, Figure 5.10, to the

corresponding squares of the corresponding Figure here (Figure 5.61 below), and which is

determined by the classification of the other half of the ply pair, is constrained to take the

green squares (representing (P, C) → (P, C)) to green or blue squares ((P, C) → (P, P)), the

blue squares to green or blue squares, the yellow squares ((P, C) → (C, C)) to yellow or red

squares ((P, C) → (C, P)), and the red squares to yellow or red squares. Of course, as the

training suite is unchanged, white squares are taken to white squares.

As the results for the PD1 epochs are unchanged from earlier work, the epoch-level clas-

sification diagrams here are, like the ply-level classification diagrams, a kind of blend of new

results and ones seen earlier. However, they add little to the discussion from this point on,

so we refrain from displaying them.

5.5.1 Test suite (PD1, RH, C2, RH, PD1, RH, C4, RH)

Here we examine the effect of replacing the C2 test data by C4 data, in the tests for the

right-hand attachment.

Plain

Figure 5.61 contains the ply-level classification diagrams for this test suite under the plain

condition set. The results are disappointing, because they show a large amount of misclassi-

fication of the C4 plies (blue and red squares).

However, if we look at the Wilcoxon Figure, 5.62, we see large areas of overlap between the

black squares and the blue squares of Figure 5.61, suggesting that the null hypotheses that the

tails of the PD1 activation distributions are not thicker than the C4 activation distribution

tails can comfortably be rejected. Cutting through the mess of multiple negatives here,

we can say that the distributions are statistically significantly different, and that adjusting

thresholds can improve the classification performance.

This point is reinforced if the grey squares are counted alongside the black ones.

ec

If we now look at the ply-level classifications for the ec condition set shown in Figure 5.63,

we see a clear improvement over the results for the plain condition set: the double/overall

success rates increase from 20%/55.5% to 51%/75.5% (p = 3 degrees of freedom); 17%/54%

to 46%/73% (p = 4); 17%/54% to 44%/72% (p = 5); and 16%/52.5% to 48%/74% (p = 6)

The almost total domination of the Wilcoxon Figure 5.64 by black squares suggests that

the removal of most of the red and blue squares from Figure 5.63, and their replacement by
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Figure 5.61: Diagram like Figure 5.10, but for (PD1, RH, C2, RH, PD1, RH, C4, RH), with the

plain condition set
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Figure 5.62: Diagram like Figure 5.11, but for (PD1, RH, C2, RH, PD1, RH, C4, RH), with the

plain condition set

green ones could be achieved by altering thresholds.



256 CHAPTER 5. EXPERIMENTS AND RESULTS

1 2 3 4 5 6 7 8 9 10

Ply pair

1 

2 

3 

4 

5 

6 

7 

8 

9 

10
Li

br
ar

y 
m

em
be

r 
ra

nk

n = 6

1 2 3 4 5 6 7 8 9 10

Ply pair

1 

2 

3 

4 

5 

6 

7 

8 

9 

10

Li
br

ar
y 

m
em

be
r 

ra
nk

n = 7

1 2 3 4 5 6 7 8 9 10

Ply pair

1 

2 

3 

4 

5 

6 

7 

8 

9 

10

Li
br

ar
y 

m
em

be
r 

ra
nk

n = 8

1 2 3 4 5 6 7 8 9 10

Ply pair

1 

2 

3 

4 

5 

6 

7 

8 

9 

10

Li
br

ar
y 

m
em

be
r 

ra
nk

n = 9

Figure 5.63: Diagram like Figure 5.10, but for (PD1, RH, C2, RH, PD1, RH, C4, RH), with ec

condition set
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Figure 5.64: Diagram like Figure 5.11, but for (PD1, RH, C2, RH, PD1, RH, C4, RH), with ec

condition set

ed

The double/overall success rates under the ed condition set are 36%/58% (n = 8) and 51%/65.5%

(n = 9). However, if we ignore ply pairs 4 and 6 when n = 8, which are columns with se-

lection failures throughout, the rates for n = 8 become 45% and 72.5%. If we also ignore
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these columns in the ec diagrams, the resultant double/overall success rates become 40%/70%

(n = 6), 36.25%/68.125% (n = 7), 33.75%/66.875% (n = 8), and 35%/67.5% (n = 9).
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Figure 5.65: Diagram like Figure 5.10, but for (PD1, RH, C2, RH, PD1, RH, C4, RH), with ed

condition set

Similarly, if we ignore ply pairs 1 and 3 when n = 9, which are all-white columns, the rates

for this n become 63.75% and 81.875%. If we also ignore these columns in the ec diagrams,

the resultant double/overall success rates become 63.75%/81.875% (n = 6), 56.75%/78.625%

(n = 7), 55%/77.5% (n = 8), and 60%/80% (n = 9). Hence, if we ignore the columns which

are all white in the ed, n = 8 case, both the double and overall success rates for the ed, n = 8

case beat the same rates for all the ec cases, and, if we do the same for the white columns in

the ed, n = 9, the double and overall success rates for the ed, n = 9 case beat the same rates

for all the ec cases except one, and, in the exception, the ed and ec rates are the same.

If we look at the Wilcoxon diagrams in Figure 5.66 and disregard the red columns, we

again see lots of black — every square apart from those of column 5. This means that

readjusting thresholds might improve classification rates.

Ply pair 5 is also exceptional for the ec method, in that the undesirable null hypotheses

regarding the relative magnitudes of the tail medians are less strongly rejected for this pair

than any other (excluding the columns of selection failure in the ed case).
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Figure 5.66: Diagram like Figure 5.11, but for (PD1, RH, C2, RH, PD1, RH, C4, RH), with ed

condition set
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Summary

Although the good performance on the (PD1, RH, C2, RH, PD1, RH, C2, RH) test suite

does not fully generalise to the test suite here, (PD1, RH, C2, RH, PD1, RH, C4, RH), we do

get moderately good results under the ec condition set, which are an improvement on those

under the plain condition set. A further improvement under the ed condition set appears to

be prevented by the high rates of selection failure (20%) under the latter set.
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5.5.2 Test suite (PD1, LH, C2, LH, PD1, LH, C3, LH)

In this and the next section we will examine the generalisation of the classification based on

the training suite (PD1, LH, C2, LH) to the classification of the left-hand data of PD1 and

of control subjects other than C2. We start here with C3.

Of course, the maps φ which take square Sk of the ply-level classification diagrams of

Figures 5.19, 5.22, and 5.25 to the corresponding squares of Figures 5.67, 5.69 and 5.71

below, have the same characteristics as those mentioned at the start of the previous section:

if C is the map which takes a square to its colour, coded in the obvious way by W , G, B,

Y and R, we have C(φ({Sk : C(Sk) = W})) = {W}, C(φ({Sk : C(Sk) = G})) ⊂ {G,B},
C(φ({Sk : C(Sk) = B})) ⊂ {G,B}, C(φ({Sk : C(Sk) = Y })) ⊂ {Y,R} and C(φ({Sk :

C(Sk) = R})) ⊂ {Y,R}.

Plain

We can immediately see from the ply-level classification diagrams for this condition set that

the double success rate is 0% for all the values of n we consider.
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Figure 5.67: Diagram like Figure 5.10, but for (PD1, LH, C2, LH, PD1, LH, C3, LH), with the plain

condition set

The overall classification rates are all at or below 50% as a consequence of the zero double

success rate, and they are all in fact well below this level.

The paucity of grey and black squares in the Wilcoxon Figure 5.68 shows that the poor

success rates are not merely the result of a poor choice of thresholds, but that the expected

differences in the tails of the activation distributions for the PD1 and C3 data do not mate-

rialise, except for ply pairs 1 and 3 and a few other scattered cases.
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Figure 5.68: Diagram like Figure 5.11, but for (PD1, LH, C2, LH, PD1, LH, C3, LH), with the plain

condition set

ec

As Figures 5.69 and 5.70 tell much the same story as Figures 5.67 and 5.68, despite a 1% rise

in classification rates where there are no selection failures under the plain condition set, and

a slightly greater rise elsewhere, the classification is poor and the difference in the tails is not

great, except for a few ply pairs (with ply pair 10 being added to the list of these pair).

ed

In Figures 5.71 another pair of poor classification rates is demonstrated, made worse by 7

columns of selection failures, and in Figure 5.72 we see that this poor performance is mainly

due to the distribution tails not being sufficiently distinct — with the exception of ply pairs 1

and 10.

Summary

Although there is a slight improvement in moving from the plain condition set to the ec

condition set, the overall classification rate is very poor here.

This is a result

1. the classification of the PD1 members of the ply pairs not being outstanding, as it is

unchanged from the test suite (PD1, LH, C2, LH, PD1, LH, C2, LH);

2. the green squares of the (PD1, LH, C2, LH, PD1, LH, C2, LH) ply-level classification

Figures 5.19 (plain), 5.22 (ec) and 5.25 (ed) being mostly mapped to blue squares of



5.5. GENERALISATION ACROSS CONTROL SUBJECTS 261

1 2 3 4 5 6 7 8 9 10

Ply pair

1 

2 

3 

4 

5 

6 

7 

8 

9 

10

Li
br

ar
y 

m
em

be
r 

ra
nk

n = 6

1 2 3 4 5 6 7 8 9 10

Ply pair

1 

2 

3 

4 

5 

6 

7 

8 

9 

10

Li
br

ar
y 

m
em

be
r 

ra
nk

n = 7

1 2 3 4 5 6 7 8 9 10

Ply pair

1 

2 

3 

4 

5 

6 

7 

8 

9 

10

Li
br

ar
y 

m
em

be
r 

ra
nk

n = 8

1 2 3 4 5 6 7 8 9 10

Ply pair

1 

2 

3 

4 

5 

6 

7 

8 

9 

10

Li
br

ar
y 

m
em

be
r 

ra
nk

n = 9

Figure 5.69: Diagram like Figure 5.10, but for (PD1, LH, C2, LH, PD1, LH, C3, LH), with ec

condition set
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Figure 5.70: Diagram like Figure 5.11, but for (PD1, LH, C2, LH, PD1, LH, C3, LH), with ec

condition set

the (PD1, LH, C2, LH, PD1, LH, C3, LH) ply-level classification Figures 5.67, 5.69

and 5.71 (i.e., correct C2 classifications being mapped to incorrect C3 classifications);

3. the yellow squares of Figures 5.19, 5.22 and 5.25 being mostly mapped to red squares

of Figures 5.67, 5.69 and 5.71 (i.e., correct C2 classifications being mapped to incorrect
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Figure 5.71: Diagram like Figure 5.10, but for (PD1, LH, C2, LH, PD1, LH, C3, LH), with ed

condition set
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Figure 5.72: Diagram like Figure 5.11, but for (PD1, LH, C2, LH, PD1, LH, C3, LH), with ed

condition set

C3 classifications again).

(There are a few exceptions to the above: e.g. for the plain condition set and n = 4, the

red column for ply pair 9 is mapped to a yellow column.)

In other words, from the point of view of most of the classifiers based on the selected

members, the C3 plies are closer to the PD1 training data than to the C2 training data.
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5.5.3 Test suite (PD1, LH, C2, LH, PD1, LH, C4, LH)

The ply-level classification diagrams for the test suite (PD1, LH, C2, LH, PD1, LH, C4, LH),

Figures 5.73 (plain), 5.74 (ec) and 5.75 (ed) are extremely similar to those for (PD1, LH, C2,

LH, PD1, LH, C3, LH), Figures 5.67, 5.69 and 5.71, so that everything that was said about

the classification above can also be said here, despite the fact that the Wilcoxon diagrams

here, Figures 5.76 (plain), 5.77 (ec) and 5.78 (ed) are somewhat less similar to those for

(PD1, LH, C2, LH, PD1, LH, C3, LH), Figures 5.68, 5.70 and 5.72. This is because the latter

diagrams differ mainly from the former in having even fewer grey squares, and so even less

chance of mitigating the poverty of the classification by choosing better thresholds.
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Figure 5.73: Diagram like Figure 5.10, but for (PD1, LH, C2, LH, PD1, LH, C4, LH), with the plain

condition set
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Figure 5.74: Diagram like Figure 5.10, but for (PD1, LH, C2, LH, PD1, LH, C4, LH), with ec

condition set
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Figure 5.75: Diagram like Figure 5.10, but for (PD1, LH, C2, LH, PD1, LH, C4, LH), with ed

condition set
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Figure 5.76: Diagram like Figure 5.11, but for (PD1, LH, C2, LH, PD1, LH, C4, LH), with the plain

condition set
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Figure 5.77: Diagram like Figure 5.11, but for (PD1, LH, C2, LH, PD1, LH, C4, LH), with ec

condition set
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Figure 5.78: Diagram like Figure 5.11, but for (PD1, LH, C2, LH, PD1, LH, C4, LH), with ed

condition set
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5.6 Benchmark

We describe a benchmark in this section, and train it on (PD1, RH, C2, RH) data to classify

unseen (PD1, RH) and (C2, RH) data, and on (PD1, LH, C2, LH) data to classify unseen

(PD1, LH) and (C2, LH) data.

In order to obtain this benchmark for the classification performance, we exploit the excess

activity with a frequency of around 6Hz which is typical of the motion of some PD patients.

To make a classifier, we automate the process of interpreting “about 6Hz” and “excess

activity” — we automatically find a frequency band and a threshold on the proportion of the

total power which is in the frequency band, where the “activity” in the band is excessive if

its proportion of the total power exceeds the threshold.

For each of our epochs of the right-hand data, we take the raw single-sided Fourier trans-

form of each channel of our acceleration, square its magnitude and sum it over the three

channels, to yield a traces like the top diagram of Figure 5.79.6 We then take this power

spectrum, truncate it to run between 0.1 and 15Hz, and then divide by the sum of its values

over this truncated range, to yield the normalised power spectra of the middle diagram. We

call these PS(ω; k,PD1) and PS(ω; k′,C2), where k and k′ label the particular epoch.

Then, for each pair of numbers ωL, ωU ∈ (0.1, 15) such that ωU > ωL + 1,7

RS(ωL, ωU ; k,PD1) =
∫ ωU
ωL

PS(ω; k,PD1)dω, RS(ωL, ωU ; k′,C2) =
∫ ωU
ωL

PS(ω; k′,C2)dω ∈
[0, 1].8

Consequently, for the `th ply pair (maintaining the same division of epochs into associated

PD1 and C2 plies as before), we have the sets of real numbers in [0, 1], S(`;ωL, ωU ,PD1) =

{RS(ωL, ωU ; k,PD1) : epoch k is a PD1 epoch not in the PD1 ply of pair `} and

S(`;ωL, ωU ,C2) = {RS(ωL, ωU ; k,C2) : epoch k is a C2 epoch not in the C2 ply of pair `}.
For each pair (ωL, ωU ) which coincides with the discrete points of the Fourier transform,

we carry out a Wilcoxon test on the hypothesis that the median of the underlying distribution

of the S(`;ωL, ωU ,C2) points is greater than or equal to the median of the S(`;ωL, ωU ,PD1),

and then choose the pair (ω∗L(`), ω∗U (`)) which results in the rejection of this null hypothesis

at the lowest p-level.

To obtain a threshold Θ(`) for the classification of the unseen data in the `th ply pair, we

find the greatest integer j ≤ 50 such that the (50 + j)th percentile of S(`;ωL, ωU ,C2) does

not exceed the (50 − j)th percentile of S(`;ωL, ωU ,PD1) and set Θ(`) to the mean of these

two percentiles.

Table 5.10 is the result of doing all this with the right-hand data, and the bottom diagram

of Figure 5.79 shows our example epochs and the appropriate band for them.

We note that the results are fairly consistent, no matter which ply pair is excluded to be

used as test data: 5.1–55.4Hz for ω∗L, 6.15–6.55 for ω∗U , band widths of 1 (the minimum we

allowed)–1.15, and Θ from 0.042–0.048. We note that 6Hz is always found within the band,

6We have taken real but extreme data for illustrative purposes
7We add 1 to ensure that the resultant frequency band is not too narrow
8For speed of execution, as well as speed of development, we use the simplest possible numerical integration,

one based on the cumulative sum
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Figure 5.79: Power spectra over sample epochs for benchmark processing. The blue trace is for a

control epoch, the red for a PD one. In the lowest diagram, the dotted lines are for the frequency band

(ω∗L, ω
∗
R) defined in the text. Note that the vertical scale in the top diagram is logarithmic, but the

lower two are linear

Excluded
ply pair

ω∗L ω∗U Θ

1 5.15 6.15 0.044

2 5.15 6.15 0.044

3 5.43 6.55 0.046

4 5.43 6.55 0.046

5 5.43 6.55 0.046

6 5.40 6.55 0.048

7 5.41 6.41 0.042

8 5.43 6.55 0.047

9 5.15 6.15 0.044

10 5.15 6.15 0.043

Table 5.10: Frequency bands and thresholds for benchmark — right hand

and that epochs will be classified as PD if and only if the signal energy contained in a band

of width roughly 1Hz amounts to more than about 4.5-5% of the total between 0.1 and 15Hz.



5.6. BENCHMARK 269

We now classify the kth PD1 (resp., C2) epoch of the right-hand ply pair ` as PD1 if

RS(ω∗L(`), ω∗U (`); k,PD1) > Θ(`) (resp., RS(ω∗L(`), ω∗U (`); k,PD1) > Θ(`)) and as C2 other-

wise, and we classify the PD1 (resp., C2) member of the `th ply as PD1 if the median of the

set S(`;ω∗L(`), ω∗U (`),PD1) (resp. S(`;ω∗L(`), ω∗U (`),C2)) exceeds Θ(`), and as C2 otherwise.

When the ply-level classifications are carried out here, the result is that both the PD1

members and the C2 members of all the ply pairs are correctly classified, equivalent to a

green row in the ply-level classification diagrams with respect to ECWTs of the rest of this

chapter. The epoch-level classification rates are shown in Figure 5.80 below.

Excluded
ply pair

ω∗L ω∗U Θ

1 7.19 8.29 0.016

2 7.18 8.28 0.016

3 7.19 8.28 0.015

4 7.72 8.74 0.014

5 7.19 8.28 0.015

6 7.19 8.29 0.016

7 7.19 8.28 0.015

8 7.18 8.31 0.016

9 7.05 8.27 0.017

10 7.19 8.28 0.015

Table 5.11: Frequency bands and thresholds for benchmark — left hand

Table 5.11 collates the same information for the left-hand data as Table 5.10 does for

the right-hand data. Here, the lower boundary of the band is between 7.05 and 7.72HZ, the

upper boundary is between 8.27 and 8.74Hz, and the width varies between 1.02 and 1.22Hz,

with the threshold proportion of signal energy in the band being 1.4%-1.7%. We can see that

the band is always above 6Hz.

As with the right-hand data, both the PD1 and C2 ply of every ply pair is correctly

classified.

However, as the scatter diagram for the epoch-level success rates, Figure 5.80, shows,

in neither the right- or left-hand case does the ply-level success rest on a very high rate

of correct epoch-level classifications, even though these rates must be over 50% to account

for the ply-level succeses. In fact, no epoch-level classification rate exceeds 80%, with some

below 60%.

Although some of the combinations of n and condition sets for our algorithms found

greater difficulty in classifying the PD1 member of ply pairs 5 and 9 within the (PD1, RH,

C2, RH, PD1, RH, C2, RH) test suite, this is only reflected here by ply pair 9, which has a

relatively low epoch-level classification rate in Figure 5.80 (9 towards the left among the blue

numbers). Similarly, the difficulty found for the C2 member of ply 8 is not reflected here.

The difficulties found in the (PD1, LH, C2, LH, PD1, LH, C2, LH) find a greater echo

here, as the difficult PD1 members of plies 2, 4 and 8 have their (red) numbers towards
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Figure 5.80: Scatter diagram with the epoch-level classification rate for PD1 epochs in a ply pair

being plotted against that for C2 epochs in the same ply pair. Each number represents its ply pair, the

blue ones being for the right-hand data

the left, and difficult C2 members of plies 3, and 9 have their numbers towards the bottom.

However, the difficult C2 members of the plies 5 and 7 have higher epoch-level classification

rates.

Also, for example, the left position of blue 6 in Figure 5.80 or the low position of red 2,

does not reflect any difficulty in classifying the C2 member of ply 6 for the right-hand test

suite, or of classifying the PD1 member of ply 2 for the left-hand test suite.

5.7 Summary

In this Chapter, we documented several experiments using our methods to extract libraries

and to employ them to classify unseen data.

5.7.1 Member separation and tail thickness

We first noted that the library members extracted and selected were fairly well separated

for all the training suites, degrees of freedom and condition sets we chose, and that there
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was little systematic variation in this separation with degrees of freedom and condition sets.

Despite the fact that there were statistically significant variations with training set, these

variations were not large in absolute terms.

Support for the idea that the selected members are well separated comes from the epoch-

level classification diagrams. When these are “U”-shaped, then either what is picked up by

the high activations corresponding to different members is very similar, or frequently occurs

in the same epoch. When the diagram is not “U”-shaped, neither is the case, so the different

activations reflect different things. But across our experiments, there are often non-“U”

diagrams.

When we looked at the relative thickness of the tails of the distributions of activations

of the windows of the PD1 and C2 selection data with respect to the library members which

were selected for each training suite, what we found was that, when this suite was (PD1, RH,

C2, RH) or (C2, LH, PD1, LH), all the results were as expected (with one exception): where

there were no selection failures, the tails of the distribution derived from the extraction data

set were thickest.

However, this expectation was not fulfilled when the suite was (PD1, LH, C2, LH) (re-

spectively (C2, RH, PD1, RH)): nearly all (respectively all) the contrast set distribution tails

were thicker.

A possible explanation for these thwarted expectations is that the motion patterns which

are present in the movement of C2’s left hand are attenuated in the movement of PD1’s left

hand, and that patterns present in the movement of C2’s right hand are exaggerated in the

movement of PD1’s right hand, reflecting the fact that PD1’s left hand was the least affected

at the time the data was collected. (NB, it is not suggested that the movement of either

subject’s right or left hand is dominated by these motion patterns, merely that the extent to

which they are present differs the most between subjects.)

5.7.2 Recognition

We obtained a good classification performance for most of the library members selected for

the (PD1, RH, C2, RH) training set when they were confronted with unseen (PD1, RH)

and (C2, RH) data — in the case of the ec condition set, the classification of the unseen

data was perfect for n = 6, 7 and 8. Selection failures prevented the ed selected members

from achieving similar results, but co-opting ec results to cover the missing selections would

have achieved these. Although the plain condition set results were not as good, their overall

classification rates were 89%+. A possible improvement with the strictness of the imposed

condition set may be hidden by the facts that the ed results are brought down by selection

failures, and it is not possible to improve on the perfection of the ec results. However, this

perfection is only through the prism of the of the ply-level classification. If we look at the

Wilcox diagrams, there are more black squares for ply pair 5 (the only ply pair which has

grey or white squares in the ec diagrams) in the ed diagrams.

For the (PD1, LH, C2, LH) training set operating on the unseen (PD1, LH) and (C2, LH)
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data, the classification results were not as good, although they did improve as the condition

set was changed from plain to ec (this improvement may have been exaggerated by selection

failures in the case of the plain condition set with n = 4 and 5, but there were no other

such failures, so the increase with a constant number of degrees of freedom — from plain,

n = 6 or 7, to ec, n = 8 or 9 — or constant n — i.e., n = 6 or 7, was real). Any further

improvement under the ed condition set was hidden by a large number of selection failures

there. Moreover, the picture is not much changed by looking at the Wilcoxon diagrams.

As we had begun to suspect that the relative failure of the results of (PD1, LH, C2, LH)

training was due to attenuation of normal modes of movement in the LH PD1 data, rather

than the strong presence of abnormal patterns in it, we decided to investigate the training

suite (C2, LH, PD1, LH) and its ability to classify unseen (PD1, LH) and (C2, LH) data.

Although the ply-level classification results were slightly better, in that the best double

and overall classification rates were 58% and 79% for n = 8 and 9 under the ed condition

set (cf best double rate of 57% for ec, n = 6 and best overall rate of 77%, for ec, n = 7 for

the (PD1, LH, C2, LH) training suite), the clarity of the result is muddied by the fact that,

of the 4 combinations of condition set and n where both the (PD1, LH, C2, LH) and (C2,

LH, PD1, LH) training suites are unaffected by selection failures (they happen to be the ec

combinations), the former yields better results for overall success rates in two cases, and for

double success rates in one.

If we wish to restrict ourselves to looking at cases without selection failures within the

(C2, LH, PD1, LH, C2, LH, PD1, LH) test suite, we can only compare the different condition

sets plain and ec: plain, n = 6 and n = 7 with ec, n = 6 and n = 7 for the comparison

with constant n, and with ec, n = 8 and n = 9 for the comparison with constant degrees of

freedom (p = 5 and p = 6). In both comparisons, there is an increase in performance in both

double success rates and overall ones in going from the plain to the ec condition set.

The Wilcoxon diagrams differ very little from the corresponding diagrams for the (C2,

LH, PD1, LH) training suite.

For completeness, we looked at the (C2, RH, PD1, RH, C2, RH, PD1, RH) test suite.

The results are, as expected, not quite as good as those for the (PD1, RH, C2, RH, PD1,

RH, C2, RH) suite, presumably because motion patterns characteristic of PD are excluded

from the outset. Nevertheless, the results are better than those of both the test suites for LH

data.

5.7.3 Generalisation

Across attachment

When we attempted generalisation across attachment, we found that the generalisation was

poor, without much scope for correction by choosing better thresholds9, and that this was

mostly due to the misclassification of the PD1 members of the ply pairs.

In other words, from the point of view of classifiers built on our selected members,

9As evidenced by the relevant Wilcoxon diagrams
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1. LH PD1 data is closer to RH C2 data than it is to RH PD1 data;

2. but LH C2 data is closer to RH C2 data than it is to RH PD1 data,

in terms of characteristics extracted from RH PD1 data and chosen to be infrequent in RH

C2 data, and

1. RH PD1 data is closer to LH C2 data than it is to LH PD1 data;

2. but RH C2 data is closer to LH C2 data than it is to LH PD1 data

in terms of characteristics extracted from LH PD1 data and chosen to be infrequent in LH

C2 data. The second pair of conclusions is less significant here, as

1. the classifiers resulting from the (PD1, LH, C2, LH) training suite are not as good in

classifying LH PD1 and LH C2 data as are those from (PD1, LH, C2, LH) training

suite in classifying even RH PD1 and RH C2 data;

2. there are more exceptions to the inability of the classifiers resulting from the (PD1, LH,

C2, LH) training suite to classify PD1 RH and C2 RH data.

Across control subjects

When we examine the generalisation from classifiers built on right-hand PD1 and C2 data to

the task of distinguishing unseen right-hand PD1 and C4 data, we find that the generalisation

is quite poor under the plain condition set, but that there is quite an improvement in moving

to the ec set, and that this improvement could well be maintained for the ed set, were it not

for the number of selection failures under the latter. We have also seen that the Wilcoxon

diagrams point towards some of the deficiencies being remediable by changing thresholds.

It is a different story with the generalisation of left-hand PD1 and C2 data to the job of

distinguishing left-hand PD1 and C3 or C4 data. In addition to the relatively poor perfor-

mance in classifying the LH PD1 data in the test suite (PD1, LH, C2, LH, PD1, LH, C2, LH)

compared to its right-hand counterpart, we now have a very poor performance in classifying

the LH C3 or C4 data. Nor is there much evidence that this is due merely to a poor choice

of thresholds for separating different activation distributions.

It seems that, from the perspective of the training suite (PD1, LH, C2, LH), the C3 and

C4 left-hand data is more similar to the LH PD1 data than to the LH C2 data.

5.7.4 Improvement of performance with strictness of condition sets

In Chapter 3, we examined the blurring effect that the limited bandwidth of the NAT ac-

celerometer has on the ECWTs we are employing, and discovered that this effect reduces as

we impose stricter conditions on the ECWTs (because these force a reduction in the higher

frequency content of the polynomials underlying the ECWTs).

We now briefly examine the practical outcome of diminishing this effect through continuity

and differentiability conditions. In Table 5.12 we collate the double classification success
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excluding the selection failures10, and, for each section of constant degrees of freedom and

test suite where the rates increase, at least monotonically, we have chosen a bold font.

Test suite

p Cond.
set

n 1 2 3 4 5 6 7 8 9

plain 4 84 35.7 65 48.8 0 8.7 20 0 19
3 ec 6 100 57 86.7 56 0 4 51 0 51

ed 8 100 43.8 97 58 0 1.2 45 0 45

plain 5 80 58.1 67 53.3 0 1 17 0 17
4 ec 7 100 54 80 51 0 0 46 0 44

ed 9 100 68 95 58 0 8 63.8 0 63.8

5 plain 6 81 51 68 49.4 0 1 17 0 17
ec 8 100 55 85 54 0 2 44 0 44

6 plain 7 79 47 64 46.7 0 3 16 0 16
ec 9 92 52 79 54 0 4 48 0 48

Table 5.12: Double success percentages for test suites 1) (PD1, RH, C2, RH, PD1, RH, C2, RH),

2) (PD1, LH, C2, LH, PD1, LH, C2, LH), 3) (C2, RH, PD1, RH, PD1, RH, C2, RH), 4) (C2, LH,

PD1, LH, PD1, LH, C2, LH), 5) (PD1, RH, C2, RH, PD1, LH, C2, LH), 6) (PD1, LH, C2, LH,

PD1, RH, C2, RH), 7) (PD1, RH, C2, RH, PD1, RH, C4, RH), 8) (PD1, LH, C2, LH, PD1, LH,

C3, LH) and 9) (PD1, LH, C2, LH, PD1, LH, C4, LH), relative to number of selection successes per

combination of test suite, condition set and n. Values affected by selection failures are in italics, and

sections where the test suite and p are constant and the rate monotonically increases with strictness

of condition set are in bold — although we exclude constant zero cases

Over all the sections, the number of cases where we find monotonic increases is 55.6% of

the total of 36. If we restrict attention to the training suites 1–4, corresponding to recog-

nition, the monotonically increasing cases are 81.2%, and, if we further restrict attention

to the sections with three condition sets, which obviously constitute a stricter test, we find

monotonic increases in 62% of the cases.

When we do the same thing, but defining sections with constant n rather than p,11 as in

Table 5.13, we find that that the increasing cases are 69.4% of the total 36, and looking at

training suites 1–4 again, they are 93.8% of the total of 16 (obviously, all sections have two

condition sets here!)

We can repeat this exercise with the overall success rate rather than the double, and this

is what we do in Tables 5.14 and 5.15.

The percentages of the sections with constant p (in Table 5.14) where the overall suc-

cess rate monotonically increases with the strictness of the conditions are 66.7% (all sec-

tions), 93.8% (sections with test suites 1–4) and 87.5% (three-condition sections with test

suites 1–4).

10This seems more apposite when we are examining the possible improvement of the results with increasing
condition strictness, rather than claiming success

11We drop the results for the plain condition set with n = 4 or 5, as they have no ec or ed partner with the
same n
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Test suite

n Cond.
set

1 2 3 4 5 6 7 8 9

6 plain 81 51 68 49.4 0 1 17 0 17
ec 100 57 86.7 56 0 4 51 0 51

7 plain 79 47 64 46.7 0 3 16 0 16
ec 100 54 80 51 0 0 46 0 44

8 ec 100 55 85 54 0 2 44 0 44
ed 100 43.8 97 58 0 1.2 45 0 45

9 ec 92 52 79 54 0 4 48 0 48
ed 100 68 95 58 0 8 63.8 0 63.8

Table 5.13: Re-ordered version of Table 5.12

Test suite

p Cond.
set

n 1 2 3 4 5 6 7 8 9

plain 4 92 62.2 79.5 74.3 42 42.3 55.5 37.2 55
3 ec 6 100 76.5 93.3 78 50 40.5 75.5 39.5 75.5

ed 8 100 78.1 98.5 79 50 43.1 72.5 37.5 72.5

plain 5 90 76.3 81 76.1 34.5 48.9 54 38.2 54.5
4 ec 7 100 77 79.4 75.5 49 42.5 73 39.5 72

ed 9 100 80 97.5 79 49.4 44 81.9 50 81.9

5 plain 6 90.5 74 80 74.7 35.5 49 54 39 54
ec 8 100 75.5 92 77 49.5 40 72 40 72

6 plain 7 89 52 81 73.4 33.5 51 52.5 39 52.5
ec 9 96 70.5 89.5 77 46 44 74 40 74

Table 5.14: Overall percentage success rates for test suites labelled as in Table 5.12, relative to number

of selection successes per combination of test suite, condition set and n

When we re-order the data of Table 5.14 by n in Table 5.15, we obtain the following

percentages for the monotonically increasing sections: 88.9% (all sections) and 93.8% (sections

for test suites 1–4).

We think all this constitutes evidence for a strong tendency for the efficacy of the method

improving as the strictness of the condition set increases.
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Test suite

n Cond.
set

1 2 3 4 5 6 7 8 9

6 plain 90.5 74 80 74.7 35.5 49 54 39 54
ec 100 76.5 93.3 78 50 40.5 75.5 39.5 75.5

7 plain 89 52 81 73.4 33.5 51 52.5 39 52.5
ec 100 77 79.4 75.5 49 42.5 73 39.5 72

8 ec 100 75.5 92 77 49.5 40 72 40 72
ed 100 78.1 98.5 79 50 43.1 72.5 37.5 72.5

9 ec 96 70.5 89.5 77 46 44 74 40 74
ed 100 80 97.5 79 49.4 44 81.9 50 81.9

Table 5.15: Re-ordered version of Table 5.14
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5.7.5 The benchmark: classification or characterisation?

The results for the benchmark set a very high bar for the performance of a classifier, at least

on this very limited data.

Although we generate a different set of up to ten classifiers for each ply pair, if the

Kohavi[46] methodology is correct, we should get very similar results if we repeated the same

experiment with ten sets of entirely independently collected training and test data of similar

size (from the same sources).

What we have done is produce (up to 10) classifiers Ck,SR,` , based on tRaining data

SR,` = ∪r∈[{1,2,...,10}−{`}]SE,r, where k indexes the individual classifier, for each r, and applied

them to the tEst data SE,` (we abstract from the internal organisation of these collections

of data here). Assuming the Kohavi method can be applied here, we should obtain results

statistically similar to producing classifiers Ck,SR in the same way from a set of training data

SR, of the same size as the SR,`, but collected independently from the SE,`, and applying

these to the SE,`.
If such classifiers Ck,SR exist for some set of training data SR and our results can be applied

to them, then, what we have shown with the benchmark is that they can only compete (as

least as far as data from our sources is concerned) in the case of the training suite (PD1, RH,

C2, RH) being applied to the task of classifying unseen (PD1, RH) and (C2, RH) data.

But should our method primarily be used as a classifier in competition with other ap-

proaches? It is designed to pick out different patterns of motion which are characteristic of

PD, but need not be present at all times — indeed, it would be better if they were not present

at all times, but reflected the development of the disease and/or the place in the medication

cycle.

Moreover, it could be used in conjunction with other methods to diagnose PD, rather

than in competition with them.

Any success it has in classification should perhaps best be seen as supporting evidence

for its ability to pick out different patterns of motion which are indeed characteristic of PD.

5.7.6 Composite classifiers

However, if we insist on building a tool based on the method to diagnose PD in the first

place, the combination of results from more than one library member may provide the best

results.

We can regard each of the ECWTs determined by a row and column of our ply-level

classification diagrams as part of a composite classifier. For example, a ply can be classified

as PD if at least one of the ECWTs represented in its column classifies the ply as PD, and

as a control otherwise (except when there are no selected members for that ply, when we will

regard the composite classifier as undefined).12

12Here, we do not wish to argue too much with the benefit of hindsight — we could have chosen this example
in advance, as it is sensible to at least consider classifying a subject as PD if they display any one of a set of
motion patterns characteristic of PD
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In terms of the colours of the squares in the ply-level classification, this composite classifier

will correctly classify the PD member of the ply pair if there is a green or blue square in

the pair’s column, and will classify the control member correctly if there are no blue or red

squares in the pair’s column (and at least one square which is not white).

If the result of this composite classification is represented in a kind of summary row for

the ply pairs, whose squares are colour-coded in the same way as the original classification

diagrams, then

summary square white ⇔ entirely white column;

summary square green ⇔ at least one correct PD1 classification in column

and no incorrect C2 classifications in column;

⇔ at least one green or blue square in column

and no blue or red squares in column;

⇔ at least one green square in column containing only green, yellow or white squares;

summary square blue ⇔ at least one correct PD1 classification in column

and at least one incorrect C2 classifications in column;

⇔ at least one green or blue square in column

and at least one blue or red square in column;

⇔ at least one blue square in column

or at least one green and at least one red square in column;

summary square yellow ⇔ no correct PD1 classification in column

and no incorrect C2 classifications in column;

⇔ no green or blue square in column

and at no blue or red square in column;

⇔ at least one yellow square in column consisting of yellow and white squares;

summary square red summary square not white, green, blue or yellow.

For each test suite, we will have one of these summary rows for each combination of n

and condition set, and we assemble these 10 combinations for each of our recognition test

suites in Figure 5.81 (note that we have not built a combination classifier for each row of the

diagrams in Figure 5.81, but rather have a recipe for building a classifier from data excluding

that contained in the ply pair corresponding to each square in the row, which results in the

classification of the ply pair illustrated. It is the success rate — or otherwise — of the recipe

that is recorded in the diagrams.)

As we reverse the roles of the PD1 and C2 data in the two test suites (C2, RH/LH,

PD1, RH/LH, C2, RH/LH, PD1, RH/LH), we could equally well argue that the combination

policy should be inverted for these test suites — a ply is classified as PD if all of the ECWTs
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Figure 5.81: Ply-level classification diagrams for combination classifiers

represented in its column classify the ply as PD, and as a control otherwise (with obvious

modifications if there are no coloured squares in the column).

Then the map from column to summary square satisfies

summary square white ⇔ entirely white column;

summary square green ⇔ at least one green square in a green, blue and white column;

summary square blue ⇔ blue square in blue, green and white column;

summary square yellow ⇔ at least one yellow square in column

or at least one red square and at least one green square in column;

summary square red summary square not white, green, blue or yellow.

The results for applying this “inverse” method to the two test suites (C2, RH/LH, PD1,

RH/LH, C2, RH/LH, PD1, RH/LH) are depicted in Figure 5.82, and the double/overall

success rates are collated in Table 5.16.

As we already had perfect classification results for right-hand data, we focus on the

left-hand data results here: under the “inverse” version of the combination, with libraries

extracted from C2 data and using PD1 data as a contrast, we obtain double/overall success

rates of 70%/85% with the ec condition set and n = 6, and with the ed condition set and

n = 8 (which means the degrees of freedom are the same: 3). However, this is something of

a “cherry-picked” result: with so little data behind it, it should be treated as the basis for a

hypothesis that such results are reliably derivable.
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Figure 5.82: Ply-level classification diagrams for “inverse” combination classifiers

Nevertheless, it is certainly possible that a combined method could compete with the

benchmark for left-hand data of the kind we have collected.

Double success rate Overall success rate

Test
suite

min. max. Best methods min. max. Best methods

1 80% 100% ec, n = 6, 7, 8 80% 100% ec, n = 6, 7, 8

2 30% 50% plain, n = 6, 7; ec,
n = 9

40% 75% plain, n = 6, 7; ec,
n = 9

3 50% 100% ed, n = 8, 9 70% 100% ed, n = 8, 9

4 40% 50% plain, n = 4, 5, 7; ec,
n = 9; ed, n = 9

70% 75% plain, n = 5, 7; ec,
n = 9; ed, n = 9

5 60% 90% ec, n = 8; ed, n = 8, 9 75% 95% ec, n = 8; ed, n = 8, 9

6 50% 70% ec, n = 6; ed, n = 8 70% 85% ec, n = 6; ed, n = 8

Table 5.16: Combined classifier success rates. Test suites are: 1) (PD1, RH, C2, RH, PD1, RH, C2,

RH); 2) (PD1, LH, C2, LH, PD1, LH, C2, LH); 3) (C2, RH, PD1, RH, PD1, RH, C2, RH); 4) (C2,

LH, PD1, LH, PD1, LH, C2, LH); 5) (C2, RH, PD1, RH, PD1, RH, C2, RH), (inverse); 6) (C2,

LH, PD1, LH, PD1, LH, C2, LH) (inverse)

We expect our individual classifiers to fail when the pattern of motion they are modelled

on is not present in the data, and we also expect that these patterns are not ever-present

— the point of these classification experiments, despite their form, is to establish that the

patterns are frequently in the data. For this reason, we have avoided giving precision and

sensitivity figures for these individual classifiers.

However, for the combined classifiers, which are actually supposed to act as classifiers,

we will not be so shy.

We will use conservative definitions for precision and recall, defining a false positive as a

failure to find a positive, even if this is the result of selection failure leading to a lack of a

classifier, and similarly, a false negative is a failure to find a negative.
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Then precision is

P =
tp

tp + fp
=

G+B

G+B + Y +R+W
=
G+B

10
(5.1)

and sensitivity

S =
tp

tp + fn
=

G+B

G+ 2B +R+W
, (5.2)

where tp is the number of correctly identified PD1 plies, tn is the number of correctly iden-

tified C2 plies, fp is the number of incorrectly identified PD1 plies and fn is the number of

incorrectly identified C2 plies, G is the number of green squares, and similarly for the other

colours. These formulæ work because each green square represents a contribution of 1 to tp

and 1 to tn, etc. As each row represents a combined classifier, the formulæ are applied across

the rows.

We then find that the triplet (min{P},median{P},max{P}) is (0.8, 1, 1) for the test

suite (PD1, RH, C2, RH, PD1, RH, C2, RH), (0.5, 0.8, 0.9) for (PD1, LH, C2, LH, PD1, LH,

C2, LH), (0.8, 0.9, 1) for (C2, RH, PD1, RH, PD1, RH, C2, RH) and (0.8, 0.8, 0.9) for (C2,

LH, PD1, LH, PD1, LH, C2, LH), for the combined classifier of Figure 5.81.

The triplet (min{S},median{S},max{S}) is (0.8, 0.909, 1) for (PD1, RH, C2, RH, PD1,

RH, C2, RH), (0.417, 0.655, 0.692) for (PD1, LH, C2, LH, PD1, LH, C2, LH), (0.667, 0.784, 1)

for (C2, RH, PD1, RH, PD1, RH, C2, RH) and (0.667, 0.680, 0.727) for (C2, LH, PD1, LH,

PD1, LH, C2, LH), for the same combined classifier.

For the inverse combined classifier, we have precisions (0.7, 0.75, 0.9) for (C2, RH, PD1,

RH, PD1, RH, C2, RH) and (0.6, 0.7, 0.7) for (C2, LH, PD1, LH, PD1, LH, C2, LH), and

sensitivities (0.778, 0.95, 1) for (C2, RH, PD1, RH, PD1, RH, C2, RH) and (0.7, 0.875, 1)

for (C2, LH, PD1, LH, PD1, LH, C2, LH).

These are not bad numbers, but clearly the perfect benchmark beats most of them.
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Chapter 6

Conclusions

It is important to recognise that, given the limited amount of data available to us, any

evidence presented here can only be towards a proof of concept.

6.1 Hypotheses

We restate our main hypothesis here for convenience:

1. it is possible, using the techniques to be developed, to distinguish between data stem-

ming from PD patients and controls on the basis of patterns of motion;

2. these patterns of motion can be captured sufficiently well by the NAT and CWT analysis

of the resultant data;

3. these patterns of motion are diverse enough to be easily distinguished from each other,

and frequently occur in the data.

Obviously, our experiments test items 1 and 2 together.

The classification results in the previous chapter show that it is indeed possible to distin-

guish between unseen data stemming from one PD control and one control subject, and in

the case of data stemming from the right-hand attachment, to do this easily, provided that

our method is trained on data stemming from the same subjects. Within the limitations of

this proviso, this is evidence for items 1 and 2.

Further evidence for these items comes from the experiment examining the generalisation

from the right-hand data of PD1 and C2 to the classification of unseen PD1 and C4 right-hand

data. Although the classification is poor here, compared to the recognition experiment carried

out with the same training suite, the Wilcoxon diagrams for the generalisation experiment

are dominated by black squares, indicating that the tails of the distributions are dissimilar,

and that the thresholds used to separate them could be adjusted to produce a considerably

better classification performance.

The results for the same items from the experiments involving left-hand data are not as

good, but we have a tentative explanation, in terms of a characterisation of PD1, for this,

which we shall give below.
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As for item 3, we have two main pieces of evidence that it holds — the actual separation

of the selected library members for each combination of training suite, n and condition set,

which is reasonably large, and documented in section 5.2.1; and the existence of non-“U”

profiles for the classification diagrams throughout the previous chapter, at least for some of

the experiments documented there.

We also drew up a subsidiary hypothesis, also given here:

increasing the strictness of the conditions set on smoothness improves the results of applying

the method.

It would have been nice to carry out the same experiments for n = 8–11 for the ed

condition set as we did for n = 4–7 for the plain set and n = 6–9 for the ec set, so we could

more thoroughly examine this hypothesis, but time and resource pressures meant that we

could only do this for ed n = 8 and 9.

However, we do have some good evidence that this hypothesis holds, at least as a tendency

— taking the three-condition set sections of Tables 5.12 and 5.14 (where the sections are

defined by constant p), restricted to the recognition test suites (which have comparatively

good results, which presumably means that results here are less distorted by interference

from any other factor which might stop the method from working), we find that the double

(respectively, overall) success rates increase with the strictness of the condition in 62.5%

(respectively 87.5%) of cases.

From the sections of Tables 5.13 and 5.15 (where the sections are defined by constant N),

again restricted to the recognition test suites, we find that the double (respectively, overall)

success rates increase with the strictness of the condition in 93.8% of cases, for both double

and overall success rates. Obviously, all the sections of these Tables are two-condition set

sections, so the test is less vigorous here, but the indication is that the method improves

with the strictness of the smoothness requirement, even at the expense of loss of degrees of

freedom.

6.1.1 A particular weakness of the method

As the method is tuned to picking up patterns of motion largely disregarding their speed

of execution (but not entirely — the windowing of the data is within limits on the window

length), the method may entirely miss “pure” bradykinesis, that is, bradykinesis unaccom-

panied by abnormal shapes of motion. A possible remedy for this is to store (ECWT, scale)

pairs in the libraries, and to modify the distances we have used to measure the separation

between ECWTs to take into account the scale member of these pairs.

It should be noted that there is no reason why the method should not pick up hypokinesis,

as a reduction in the amplitude of movement results in a reduction in the activations with

respect to all ECWTs.
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6.2 Other conclusions

A large number of our selected library members result in a classification indicative of a

performance of our method equal to the benchmark (green rows in many of the ply-level

classification diagrams), but the success of the benchmark in classifying all the plies thrown

at it, and not just the right-hand ones, makes it seem like the methods here are not competitive

as classifiers, but this, perhaps, should be no surprise, as the library/CWT methods are more

atomic, focussed on details. If these details are sometimes there, and sometimes absent,

classification failure of classifiers based on a single member is to be expected.

We have seen that a combined classifier is better than a single one on the left-hand plies,

although it does not approach the benchmark. Perhaps the fairest comparison between the

benchmark and classification based on the methods of this thesis would involve the best

combined classifier on a set of training data, either a subset of the data used to derive the

classifiers, or, preferably, entirely training new data (from the same sources). Of course, this

best classifier would have to be derived before applying it to unseen data.

Even on the left-hand data, the classification performance is not so bad that these methods

necessarily bring nothing to the table. In combination with classifiers based on other methods,

including the benchmark used here, they may be useful.

On the subject of classification, it should also be noted that the paucity of data also

affects the negative conclusions drawn from it.

However, although the association with PD of the characteristics picked up by the activa-

tion tails of the ECWTs may not be strong enough for them to always operate as individual

classifiers, if they measure different things, the balance of these things may characterise the

development of the disease, and/or the position in the treatment cycle. Beyond classifying

the library members into linear, planar and full-dimensional, we have done little work in

interpreting these members and the motion patterns they capture. (With good reason —

a much larger amount of data seems to be necessary to make any conclusions about these

details.)

A possible characterisation of PD1 (at the time of the data collection) has emerged from

this work.

When we extracted the libraries from the RH PD1 data and selected library members

such that the activation tails were, according to our criterion, as different as possible for the

activations of the windows into the RH PD1 data and into the RH C2 data, the tails of the

former were thicker than those of the latter, as expected. We interpret this as meaning that

there are patterns of motion which are strong in the PD1 data but weak in the C2 data.

When we extracted the libraries from the LH PD1 data and selected library members

such that the tails were as different as possible for the activations of the windows into the

LH PD1 data and into the LH C2 data, the tails of the latter were thicker than those of the

former, contrary to expectation. We interpret this as meaning that there are no patterns of

motion which are strong in the PD1 data but weak in the C2 data, although patterns which

are strong in the C2 data but weak in the PD1.
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We interpret these facts together as meaning that patterns of motion characteristic of PD

were a feature of the movement of PD1’s right hand, but the most prominent feature of the

motion of PD1’s left hand was the attenuation of normal movement.

At the time the measurements were taken, PD1’s left hand was the least affected by the

progression of the disease.

Although the analysis in Chapter 4 is a worst-case analysis, its conclusion that, with a

NAT accelerometer bandwidth of 80Hz, we are on the edge of these methods being unworkable

is supported by the fact that the tactic we used to ameliorate the problem actually appears to

be effective. Consequently, a more direct way of making the problem go away would be to use

accelerometers with higher bandwidths. Given the steepness of the drop-off of the blurring

caused by limited bandwidth, a modest increase to, say, 100Hz would suffice to remove most

of the problem.

6.3 Novelty

We list here the more important contributions made in this Theses which we believe to be

novel:

Libraries of motion shapes: at least within the field of the analysis of the motion of PD

subjects;

Representing motion shapes: by equivalence classes of piecewise polynomial wavelet triplets,

which are invariant under rotations and reflections;

Distance functions: working out the form of a distance based on the L2 distance between

individual functions, but which works on the equivalence classes mentioned above;

hierarchical k-medoids : an approximation to k-medoids, using the clustering of cluster

centres, which runs faster than k-medoids.

The value of the last item in finding clusters of clusters which are meaningful rather

than just a step towards a clustering of individual points, should, perhaps, be investigated

separately.



Chapter 7

Future directions

Here we discuss what work can be done to complete and extend the work done here, and also

other research avenues.

7.1 Work that could have been done within the context of the

present thesis

Some of the results of our experiments point towards further experiments.

For example, all of the available left-hand or right-hand control data could be amalga-

mated into one collection of epochs, which could then be split into plies and the recognition

experiments carried out on these plies alongside the PD1 plies. This would be especially

interesting for the classification of the left-hand plies, as the method currently works better

with right-hand ones.

With more control data, we would expect the selected library members to be more distant

from common control characteristics, and less affected by C2’s idiosyncrasies (if any!).

As our methods are based on equivalence classes which are rotation- and reflection-

invariant, all of the control data could be amalgamated and then divided randomly into

plies for further experiments, where the classification task would be to separate PD1 unseen

right- or left-hand data from unseen general control data.

Of course, it is also possible to amalgamate the right- and left-hand PD1 data, but,

as we believe that these data sets are somewhat different from one another in rotation- and

reflection-invariant ways, and probably to a far greater extent than are the right- and left-hand

data sets stemming from the control subjects, there is the possibility of the characteristics of

the left-hand data sets being hidden by this amalgamation. Nevertheless, the amalgamation

of this data could be investigated.

Experiments for the generalisation across attachment or control subject which involve the

amalgamation of the control and/or the PD1 data to some extent can easily be devised, e.g.,

use the right-hand PD1 data and all of the right-hand control data for training, and divide

the left-hand control data into plies to be used alongside the left-hand PD1 for testing.

As mentioned before, the experiments with the ed condition set and n = 10 and 11 could
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not be carried out because of time and resource constraints. These could now be carried

out on York University’s new cluster, the Viking Cluster[47], or perhaps by modifying the

software.

Much of the work that has been done here can be extended to ECWTs based on trigono-

metric polynomials, requiring only the tweaking of the fundamental equations without alter-

ing the basic framework. If we had had the time, we would have done this.

7.2 Further work on the CWT

7.2.1 PD

Several of the animal behaviour papers considered above use smoothing (Wilson, Shepard

and Liebsch[11], Shepard et al.[12], Pastell et al.[13], Yoda et al.[6]) or explicit filtering (Guo

et al.[9], Watanuki et al.[8]) to obtain the static acceleration. There is no reason why these

techniques cannot also be applied to PD data.

Although it is perfectly possible that the wavelet techniques considered above may produce

results which classify movement patterns, it is also likely that some improvement may be

obtained by removing the static acceleration for the classifiers, and then using either the

dynamic acceleration alone, or the dynamic acceleration together with the static acceleration

as input to wavelet-based pattern matching. When this is done, it would be useful to bear in

mind that a careful consideration of the pass and stop frequencies, in the manner of Watanuki

et al.[8], could be the best way to proceed.

Another approach would be to set ψ(x) =

{
P (x)

∑n+1
`=1 a`x

`−1, x ∈ [0, 1);

0, otherwise
for some

fixed polynomial P (e.g., P (x) = x(1 − x), which has the additional property of enforcing

ψ(0) = ψ(1) = 0, which in turn compels a degree of smoothness on 〈ψ, f〉 as the data window

represented by f changes, and this may be an advantage), and analyse, or at least observe,

the effects on the well-conditionedness of the matrix playing the role of H in the equation for

the norm, ‖ψ‖2 = aTHa.

We may also exploit the repetitive nature of tremor by looking for mother wavelets of the

form ψ(x) =



∑n
`=1 a`x

`−1, x ∈
[
0, 1

q

)
;∑n

`=1 a`

(
x− 1

q

)`−1
, x ∈

[
1
q ,

2
q

)
;

...
...∑n

`=1 a`

(
x− q−1

q

)`−1
, x ∈

[
q−1
q , 1

)
;

0, otherwise,

with windows q times as long as the

ones considered here (assuming the data remains sampled at 500Hz). Once derived, the “1
q

wavelet”, ψ 1
q
(x) =


∑n

`=1 a`

(
x
q

)`−1
, x ∈ [0, 1);

0, otherwise
can be used.

Obviously, this combining this approach with wavelets of the trigonometric poly-

nomial form will be simpler, as then the relevant mother wavelet is ψ(x) =
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{ ∑n
`=−n c`e

2πiq`x, x ∈ [0, 1);

0, otherwise.

7.2.2 Animal behaviour

Although the emphasis of the work has shifted towards PD, the vectorisation of the algorithms

means that there should be ample opportunity to complete the analysis of the animal data

that is to hand.

7.3 The DWT and accelerometer data

With the switch of emphasis to PD, the use of multiresolution analyses with scales related

by factors of two will probably become less relevant, as important features are concentrated

around 4-6Hz (corresponding to scales 1
6 -1

4s, i.e., a range of scales whose lower limit is greater

than half its upper limit). However, as noted by Daubechies[48], there are multiresolution

analyses with scales related by factors q for any rational number q (except 0 and 1). This

corresponds to replacing condition II on page 31 by f(x) ∈ Vj ⇔ f(qx) ∈ Vj+1 ∀j ∈ Z. This

is an additional complicating factor in the work described below.

To fit the DWT into the methodology used for the CWT, it is necessary to find families

of wavelets satisfying conditions I and II on page 31, which can be fitted to the data in a

similar fashion to the functions we have used for the CWT.

Since the fast algorithms for calculating {〈f, ψj,k〉 : k ∈ Z}, mentioned on p32

i) are accurate to within machine accuracy if the wavelets have compact support;

ii) are subject to greater approximation the more slowly the wavelets decay;

iii) are simpler if the wavelets are orthonormal rather than biorthonormal

(Daubechies[48]), we wish to find, in decreasing order of desirability:

a: a family of orthonormal, compactly-supported wavelets with several parameters whose

waveform varies considerably;

b: a family of biorthonormal, compactly-supported wavelets with several parameters whose

waveform varies considerably;

c: a family of rapidly-decaying orthonormal wavelets with several parameters whose wave-

form varies considerably;

d: a family of rapidly-decaying biorthonormal wavelets with several parameters whose wave-

form varies considerably.

The work of investigating wavelets defined by equation (2.1) with ν(ξ) other than ν(ξ) = 1

has already begun, with the idea of fitting ν to the data.
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In the case that φ = φH , φ̂H(ξ) = i√
2πξ

(1 − e−iξ), m0(ξ) = 1+e−iξ

2 , so wavelets corre-

sponding to the MRA associated with φH are given by ψ̂(ξ) = − i√
2πξ

(1− e
1
2
iξ)2ν(ξ), where

ν is an arbitrary unit-modulus 2π-periodic measurable function.

Given a function f , where it is desired to maximise |〈f, ψ〉|, we can

make use of |〈f, ψ〉|2 = |〈f̂ , ψ̂〉|2 = 1
2π

∣∣∣∫∞−∞ f̂(ξ)
ξ (1− e−

1
2
iξ)2ν(ξ)dξ

∣∣∣2 =

1
2π

∣∣∣∫ 2π
0 ν(ξ)

∑
`∈Z

f̂(ξ+2`π)
ξ+2`π [1− (−1)`e−

1
2
iξ]2dξ

∣∣∣2, which, if the sum converges, means

that we need only do our optimisations for a finite integral.

7.4 Non-human species

If the work on animal behaviour is resumed, it might be extended to monitor the behaviour

of rats, which would most likely be mostly a question of scaling the accelerometer ranges.

7.5 Combination with other approaches

There has been much useful work in using accelerometry to diagnose PD and classify the

stages of its progression. ABNs have been used to handle fairly long time series as a unit,

successfully classifying these as stemming from PD patients and controls at a sub-expert, but

useful, level. It is possible that a more analytic, wavelet-based approach, detecting short-lived

patterns in the acceleration traces may complete with or complement the ABN and other

approaches (possibly as preprocessing, transforming the input of ABNs to represent wavelet

content at various scales).

7.6 Other data

As the NAT can be attached to a range of devices to log their output, there is a vast range of

data which could be analysed in conjunction with accelerometry data, some of which could

be analysed in the same way — e.g., in PD, EMG data is likely to have content indicating the

progress of the disease, and this content may be accessible after a suitable wavelet transform

and may supplement that of acceleration data; in animal experiments, the DWTs/CWTs1

of EEG traces may have different relationships to the DWTs/CWTs2 of accelerometry data

under different experimental conditions.

Monitoring and diagnosis depends on the detection of changes in features of the object

of these activities, and the interpretation of these changes. It is hoped that picking out

“behaviours” in biological signals and associating them with wavelets tailored to fit them

will enable them to be detected again, even if their scale changes. The wavelet content, as

manifested in the scaleogram, counts as a feature, whose changes (absolute or in relation to

1With respect to wavelets picking out specific components present in the trace
2Picking out different specific components present in these traces
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other features) may or may not be useful for monitoring and diagnosis. This needs to be

investigated.

7.7 Further work on the subject of the Thesis, narrowly de-

fined

We close the Thesis with a discuss of further work which could not have been done within

its scope, but which continue its start.

The biggest impediment to a more thorough investigation of the power of the methods of

the Thesis was the chronic lack of data, or the narrow range of subjects available, to say the

same thing in a different way. Not only was the work reduced to a feasibility study, it was

close to the minimum feasibility study.

A second impediment was the limited bandwidth of The NAT accelerometer. Although

it is not possible to more precisely determine its impact in the light of the first impediment,

it does appear to have affected the results. Moreover, some of the work done here indicates

that only a modest increase in bandwidth might be sufficient to improve performance.

So the first suggestion for further work is: do it again, but with more subjects (especially

PD subjects), and with slightly better equipment. At the same time, the weakness in detecting

bradykinesis noted in the previous Chapter could be addressed by changing the contents of

the libraries and altering the distance functions, as suggested there.

As the major result of this Thesis is to show the feasibility of a characterisation of PD by

showing, via an examination of the ability to the methods to distinguish between PD and

control data, that the methods can find patterns of motion more strongly present in

PD data than control data;

showing that these patterns of motion are reasonably distinct from one another,

an exploration of the patterns themselves and their clinical meaning is necessary.

A modest beginning has been made in this Thesis to the first part of this exploration,

in the dimensionality analysis of some of our ECWTs, and even to the second part, in the

tentative explanation of some of our results being due to attenuation of normal patterns of

motion in the movement of PD1’s left hand.
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Appendix: Working behind

Figures 4.28–4.30

Although we do not need a1 and a′1 explicitly to calculate the maximum distance ‖ψ − ψ′‖,
we wish to find ψ and ψ′ for illustrative purposes, and for this we do need a1 and a′1.

β = 5Hz β = 20Hz

n ‖ψ − ψ′‖ ‖ψ − ψβ‖ ‖ψ′ − ψ′β‖ ‖ψ − ψ′‖ ‖ψ − ψβ‖ ‖ψ′ − ψ′β‖
2 1.1378 0.8787 0.6907 0.0895 0.3632 0.3535

3 1.9614 0.9947 0.9742 0.3501 0.4247 0.2827

4 1.9985 0.9998 0.9990 0.5792 0.5424 0.2396

5 ∼2 - 1.64×10−5 ∼1 - 2.24×10−6 ∼1 - 1.12×10−5 0.9154 0.6767 0.0607

6 ∼2 - 2.42×10−7 ∼1 - 3.29×10−8 ∼1 - 1.64×10−7 1.1568 0.7606 0.1209

7 ∼2 - 1.47×10−9 ∼1 - 2.00×10−10 ∼1 - 9.98×10−10 1.7260 0.9290 0.6745

β = 80Hz β = 320Hz

n ‖ψ − ψ′‖ ‖ψ − ψβ‖ ‖ψ′ − ψ′β‖ ‖ψ − ψ′‖ ‖ψ − ψβ‖ ‖ψ′ − ψ′β‖
2 0.0156 0.1783 0.1777 0.0040 0.0892 0.0891

3 0.0839 0.2050 0.1878 0.0201 0.1003 0.0983

4 0.1163 0.2413 0.2133 0.0282 0.1188 0.1154

5 0.1838 0.3032 0.2474 0.0427 0.1461 0.1399

6 0.2358 0.3434 0.2624 0.0551 0.1660 0.1569

7 0.3315 0.4071 0.2722 0.0743 0.1927 0.1784

Table 1: ‖ψ − ψβ‖ and ‖ψ′ − ψ′β‖ for wavelets without the wec or wed conditions

If we order the eigenvalues of DP in increasing order along its diagonal, relabelling if

necessary, so that mλ = λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λp = Mλ (which involves a choice if either λ0

or λp has multiplicity greater than 1), then we can choose g =
[√

λp
λ0+λp

, 0, 0, . . . , 0,
√

λ0
λ0+λp

]T

,

and then a = O[0, ã1]T and a′ = O[0, ã′1]T, where ã′1 is given by equation (4.75) and the 0 in

these equations is a scalar in case 1, is in R1×2 in case 2 and is in R1×3 in case 3.

We have

ã1 =
√

λp
λ0+λp

u0 +
√

λ0
λ0+λp

up, (1)

where u0 and up are eigenvectors of H̃−1
1 P̃1(β), corresponding to the eigenvalues λ0 and λp,

and normalised such that uT
0 H̃1u0 = uT

p H̃1up = 1. If the value set of the eigenvalues of

H̃−1
1 P̃1(β) contains at least two values, we also have uT

0 H̃1up = 0 (if this is not the case,
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we can deduce3 that H̃−1
1 P̃1(β) = λ0I; but, then the minimisation over ã1 and ã′1 becomes

trivial, with the solution ã′1 = ã1, for any ã1 such that ãT
1 H̃1ã1 = 1 and minimum value 0,

so we henceforth assume that the value set of the eigenvalues of H̃−1
1 P̃1(β) has cardinality

greater than one).

Then H̃−1
1 P̃1(β)ã1 = λ0

√
λp

λ0+λp
u0 + λp

√
λ0

λ0+λp
up, ãT

1 P̃1(β)ã1 =

ãT
1 H̃1H̃

−1
1 P̃1(β)ã1 =

[√
λp

λ0+λp
u0 +

√
λ0

λ0+λp
up

]T

H̃1

[
λ0

√
λp

λ0+λp
u0 + λp

√
λ0

λ0+λp
up

]
=

2λ0λp
λ0+λp

and ãT
1 P̃1(β)H̃−1

1 P̃1(β)ã1 = ãT
1 H̃1H̃

−1
1 P̃1(β)H̃−1

1 P̃1(β)ã1 =[√
λp

λ0+λp
u0 +

√
λ0

λ0+λp
up

]T

H̃1

[
λ2

0

√
λp

λ0+λp
u0 + λ2

p

√
λ0

λ0+λp
up

]
= λ0λp, so equation (4.75)

becomes

ã′1 = 4
λ0+λp

[
λ0

√
λp

λ0+λp
u0 + λp

√
λ0

λ0+λp
up

]
−
√

λp
λ0+λp

u0 −
√

λ0
λ0+λp

up

=
3λ0−λp
λ0+λp

√
λp

λ0+λp
u0 +

3λp−λ0
λ0+λp

√
λ0

λ0+λp
up. (2)

β = 5Hz β = 20Hz

n ‖ψ − ψ′‖ ‖ψ − ψβ‖ ‖ψ′ − ψ′β‖ ‖ψ − ψ′‖ ‖ψ − ψβ‖ ‖ψ′ − ψ′β‖
3 1.0363 0.8829 0.7367 0.1782 0.3083 0.2575

4 1.9982 0.9998 0.9990 0.5792 0.5424 0.2398

5 1.9984 0.9998 0.9990 0.5843 0.5411 0.2265

6 ∼2 - 2.63×10−7 ∼1 - 3.29×10−8 ∼1 - 1.64×10−7 1.1564 0.7607 0.1226

7 ∼2 - 2.54×10−7 ∼1 - 3.29×10−8 ∼1 - 1.64×10−7 1.1570 0.7606 0.1198

β = 80Hz β = 320Hz

n ‖ψ − ψ′‖ ‖ψ − ψβ‖ ‖ψ′ − ψ′β‖ ‖ψ − ψ′‖ ‖ψ − ψβ‖ ‖ψ′ − ψ′β‖
3 0.0400 0.1417 0.1361 0.0100 0.0707 0.0700

4 0.1163 0.2413 0.2133 0.0282 0.1188 0.1154

5 0.1164 0.2412 0.2131 0.0282 0.1188 0.1154

6 0.2358 0.3434 0.2624 0.0551 0.1660 0.1569

7 0.2358 0.3434 0.2624 0.0551 0.1660 0.1569

Table 2: ‖ψ − ψβ‖ and ‖ψ′ − ψ′β‖ for wavelets with wec

We also have

‖ψ − ψβ‖2 = 1− ãT
1 P̃1(β)ã1 = 1− 2λ0λp

λ0+λp
;

‖ψ′ − ψ′β‖2 = 1− ã′1TP̃1(β)ã′1 = 1− 2λ0λp(5λ20−6λ0λp+5λ2p)

(λ0+λp)3
,

(3)

and we already know that ‖ψ′ − ψβ‖ = ‖ψ − ψβ‖.
To complete our evaluation of the effect of a limited bandwidth on our wavelets, at each

point x0 ∈
[
−1

2 ,
1
2

)
we wish to extremise ψ′′(x0) − ψ(x0) over all wavelets ψ′′ such that

3H̃−1
1 P̃1(β) = OT

HD
−1
H OHO

T
HD

1
2
HO

T
PDPOPD

1
2
HOH = OT

HD
− 1

2
H OT

PDPOPD
1
2
HOH =

λ0O
T
HD

− 1
2

H OT
POPD

1
2
HOH = λ0I
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β = 5Hz β = 20Hz

n ‖ψ − ψ′‖ ‖ψ − ψβ‖ ‖ψ′ − ψ′β‖ ‖ψ − ψ′‖ ‖ψ − ψβ‖ ‖ψ′ − ψ′β‖
4 1.0392 0.8833 0.7367 0.0836 0.2192 0.2035

5 1.9724 0.9965 0.9830 0.0892 0.2132 0.1946

6 1.9985 0.9998 0.9991 0.3093 0.3942 0.2731

7 ∼2 - 1.04×10−5 ∼1 - 1.35×10−6 ∼1 - 6.76×10−6 0.3158 0.3974 0.2720

β = 80Hz β = 320Hz

n ‖ψ − ψ′‖ ‖ψ − ψβ‖ ‖ψ′ − ψ′β‖ ‖ψ − ψ′‖ ‖ψ − ψβ‖ ‖ψ′ − ψ′β‖
4 0.0185 0.0967 0.0949 0.0046 0.0482 0.0480

5 0.0186 0.0965 0.0947 0.0046 0.0482 0.0480

6 0.0461 0.1519 0.1449 0.0112 0.0749 0.0740

7 0.0461 0.1519 0.1449 0.0112 0.0749 0.0740

Table 3: ‖ψ − ψβ‖ and ‖ψ′ − ψ′β‖ for wavelets with wed

‖ψ′′ − ψβ‖ ≤ ‖ψ − ψβ‖. As ψ(x0) = aTX0 and ψ′′(x0) = a′′TX0 (where a′′ has the same

relation to ψ′′ as a has to ψ) for X0 = [1, x0, x
2
0, . . . , x

n
0 ]T, our problem is that of extremising

a′′TX0 with respect to a′′, subject to a′′TP (β)a ≥ aTP (β)a ⇔ ‖ψ′′ − ψβ‖ ≤ ‖ψ − ψβ‖, the

wavelet conditions a′′THa′′ = 1 and bTa′′ = 0, and, optionally, cT
1 a
′′ = 0 and cT

2 a
′′ = 0.

As above, we use the orthogonal matrix O to reduce these problems, to that of extremising

ã′′1
TX̃01 with respect to ã′′1, subject to ã′′1

TP̃1(β)ã1 ≥ ãT
1 P̃1(β)ã1 and ã′′1

TH̃1ã
′′
1 = 1, where, of

course, ã′′ = Oa′′ =
[

0
ã′′1

]
, where 0 is a scalar in case 1, is in R2 in case 2 and is in R3 in

case 3, and X̃0 = OX0 =
[
X̃00

X̃01

]
, where X̃00 ∈ R,R2,R3 in case 1 (resp. case 2, case 3).

We use the Lagrangian

Q(ã′′1, λ) = ã′′1
TX̃01 + λ[ã′′1

TH̃1ã
′′
1 − 1], (4)

for the problem without the condition ã′′1
TP̃1(β)ã1 ≥ ãT

1 P̃1(β)ã1. This has, by analogy with

the working above, turning points when ã′′1 = − 1
2λH̃

−1
1 X̃01 with 1

4λ2
X̃T

01H̃
−1
1 X̃01 = 1, i.e.

λ = ±1
2

√
X̃T

01H̃
−1
1 X̃01, ã′′1 = ∓ 1√

X̃T
01H̃

−1
1 X̃01

H̃−1
1 X̃01. These solutions can only be solutions

of the problem with ã′′1
TP̃1(β)ã1 ≥ ãT

1 P̃1(β)ã1 if ∓ 1√
X̃T

01H̃
−1
1 X̃01

X̃T
01H̃

−1
1 P̃1(β)ã1 ≥ ãT

1 P̃1(β)ã1.

As the right-hand side of this inequality is positive, at most one of these solutions is valid for

the more rigorous problem (i.e., the one with the extra condition). The extremal values of

the laxer problem are ∓
√
X̃T

01H̃
−1
1 X̃01.

Using the expression (1) for ã1, we have

ãT
1 P̃1(β)ã1 = ãT

1 H̃1H̃
−1
1 P̃1(β)ã1

= ãT
1 H̃1

[
λ0

√
λp

λ0+λp
u0 + λp

√
λ0

λ0+λp
up

]
=

2λ0λp
λ0+λp

(5)
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and

X̃T
01H̃

−1
1 P̃1(β)ã1 =

√
λ0λp
λ0+λp

X̃T
01

[√
λ0u0 +

√
λpup

]
, (6)

so

1. the maximum
√
X̃T

01H̃
−1
1 X̃01 of ã′′1

TX̃01 at ã′′1 =
H̃−1

1 X̃01√
X̃T

01H̃
−1
1 X̃01

is valid if

X̃T
01

[√
λ0u0 +

√
λpup

]
≥ 2
√

λ0λp
λ0+λp

√
X̃T

01H̃
−1
1 X̃01;

2. the minimum −
√
X̃T

01H̃
−1
1 X̃01 of ã′′1

TX̃01 at ã′′1 = − H̃−1
1 X̃01√

X̃T
01H̃

−1
1 X̃01

is valid if

X̃T
01

[√
λ0u0 +

√
λpup

]
≤ −2

√
λ0λp
λ0+λp

√
X̃T

01H̃
−1
1 X̃01.

Further solutions of the more rigorous problem are obtained by replacing ã′′1
TP̃1(β)ã1 ≥

ãT
1 P̃1(β)ã1 by ã′′1

TP̃1(β)ã1 = ãT
1 P̃1(β)ã1, and using the Lagrangian

Q(ã′′1, λ, κ) = ã′′1
TX̃01 + λ[ã′′1

TH̃1ã
′′
1 − 1] + κ[ã′′1

TP̃1(β)ã1 − ãT
1 P̃1(β)ã1]

= λã′′1
TH̃1ã

′′
1 + [X̃01 + κP̃1(β)ã1]Tã′′1 − κãT

1 P̃1(β)ã1 − λ. (7)

This has turning points when

ã′′1 = ã′′1(λ, κ) = − 1
2λH̃

−1
1 [X̃01 + κP̃1(β)ã1],

ã′′1
TH̃−1

1 ã′′1 = 1
4λ2

[X̃01 + κP̃1(β)ã1]TH̃−1
1 [X̃01 + κP̃1(β)ã1]

= 1
4λ2

[X̃T
01H̃

−1
1 X̃01 + 2κãT

1 P̃1(β)H̃−1
1 X̃01 + κ2ãT

1 P̃1(β)H̃−1
1 P̃1(β)ã1] = 1 and

ã′′1
TP̃1(β)ã1 = − 1

2λ ã
T
1 P̃1(β)H̃−1

1 [X̃01 + κP̃1(β)ã1]

= − 1
2λ [ãT

1 P̃1(β)H̃−1
1 X̃01 + κãT

1 P̃1(β)H̃−1
1 P̃1(β)ã1] = ãT

1 P̃1(β)ã1.

Thus, κ = κ(λ) = −2λãT1 P̃1(β)ã1+ãT1 P̃1(β)H̃−1
1 X̃01

ãT1 P̃1(β)H̃−1
1 P̃1(β)ã1

and X̃T
01H̃

−1
1 X̃01 +

4λ2(ãT1 P̃1(β)ã1)2−(ãT1 P̃1(β)H̃−1
1 X̃01)2

ãT1 P̃1(β)H̃−1
1 P̃1(β)ã1

= 4λ2 ⇔ λ = λ± = ±Λ =

±1
2

√
(X̃T

01H̃
−1
1 X̃01)(ãT1 P̃1(β)H̃−1

1 P̃1(β)ã1)−(ãT1 P̃1(β)H̃−1
1 X̃01)2

ãT1 P̃1(β)H̃−1
1 P̃1(β)ã1−(ãT1 P̃1(β)ã1)2

, provided ãT
1 P̃1(β)H̃−1

1 P̃1(β)ã1 −

(ãT
1 P̃1(β)ã1)2 = ãT

1 P̃1(β)[H̃−1
1 − ã1ã

T
1 ]P̃1(β)ã1 6= 0 and the quantity under the square root

sign is non-negative.

But we have already ruled out any ã1 such that ãT
1 P̃1(β)H̃−1

1 P̃1(β)ã1 − (ãT
1 P̃1(β)ã1)2 =

0, and, using OH , OP , DH and g as defined above, H̃−1
1 − ã1ã

T
1 = OT

HD
−1
H OH −

OT
HD

− 1
2

H OT
P gg

TOPD
− 1

2
H OH = OT

HD
− 1

2
H OT

P [I − ggT]OPD
− 1

2
H OH . As we have that gTg = 1,

OH and OP are orthogonal and DH is positive definite, this means that H̃−1
1 − ã1ã

T
1 is

positive semi-definite and ãT
1 P̃1(β)H̃−1

1 P̃1(β)ã1 − (ãT
1 P̃1(β)ã1)2 > 0.

Thus, we require that (X̃T
01H̃

−1
1 X̃01)(ãT

1 P̃1(β)H̃−1
1 P̃1(β)ã1) − (ãT

1 P̃1(β)H̃−1
1 X̃01)2 =

X̃T
01[(ãT

1 P̃1(β)H̃−1
1 P̃1(β)ã1)H̃−1

1 − H̃−1
1 P̃1(β)ã1ã

T
1 P̃1(β)H̃−1

1 ]X̃01 ≥ 0. But ãT
1 P̃1(β)H̃−1

1 ã1 =

gTD2
P g and H̃−1

1 P̃1(β)ã1 = (OT
HD

−1
H OH)(OT

HD
1
2
HO

T
PDPOPD

1
2
HOH)(OT

HD
− 1

2
H OT

P g) =

OT
HD

− 1
2

H OT
PDP g, so (ãT

1 P̃1(β)H̃−1
1 P̃1(β)ã1)H̃−1

1 − H̃−1
1 P̃1(β)ã1ã

T
1 P̃1(β)H̃−1

1 =
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(gTD2
P g)OT

HD
−1
H OH − OT

HD
− 1

2
H OT

PDP gg
TDPOPD

− 1
2

H OH = OT
HD

− 1
2

H [(gTD2
P g)I −

OT
PDP gg

TDPOP ]D
− 1

2
H OH , which is positive semi-definite, as (gTD2

P g)I − OT
PDP gg

TDPOP

is positive semi-definite, because gTDPOPO
T
PDP g = gTD2

P g. Hence, we do have

(X̃T
01H̃

−1
1 X̃01)(ãT

1 P̃1(β)H̃−1
1 P̃1(β)ã1)− (ãT

1 P̃1(β)H̃−1
1 X̃01)2 ≥ 0.

This means that the values X̃T
01ã
′′
1(λ±, κ(λ±)) of XT

0 a
′′ are at least locally extremal, where

X̃T
01ã
′′
1(λ±, κ(λ±)) = ∓ 1

2Λ [X̃T
01H̃

−1
1 X̃01 + κ(±Λ)X̃T

01H̃
−1
1 P̃1(β)ã1]

=
(ãT1 P̃1(β)ã1)(X̃T

01H̃
−1
1 P̃1(β)ã1)

ãT1 P̃1(β)H̃−1
1 P̃1(β)ã1

∓

1
2Λ

(X̃T
01H̃

−1
1 X̃01)(ãT1 P̃1(β)H̃−1

1 P̃1(β)ã1)−(X̃T
01H̃

−1
1 P̃1(β)ã1)2

ãT1 P̃1(β)H̃−1
1 P̃1(β)ã1

=
(ãT1 P̃1(β)ã1)(X̃T

01H̃
−1
1 P̃1(β)ã1)

ãT1 P̃1(β)H̃−1
1 P̃1(β)ã1

∓
√

(X̃T
01H̃

−1
1 X̃01)(ãT1 P̃1(β)H̃−1

1 P̃1(β)ã1)−(X̃T
01H̃

−1
1 P̃1(β)ã1)2

ãT1 P̃1(β)H̃−1
1 P̃1(β)ã1

×√
ãT

1 P̃1(β)H̃−1
1 P̃1(β)ã1 − (ãT

1 P̃1(β)ã1)2, (8)

and

ã′′1(λ±, κ(λ±)) =
ãT

1 P̃1(β)ã1

ãT
1 P̃1(β)H̃−1

1 P̃1(β)ã1

H̃−1
1 P̃1(β)ã1 ∓√

ãT
1 P̃1(β)H̃−1

1 P̃1(β)ã1 − (ãT
1 P̃1(β)ã1)2

(X̃T
01H̃

−1
1 X̃01)(ãT

1 P̃1(β)H̃−1
1 P̃1(β)ã1)− (ãT

1 P̃1(β)H̃−1
1 X̃01)2

×[
H̃−1

1 X̃01 −
ãT

1 P̃1(β)H̃−1
1 X̃01

ãT
1 P̃1(β)H̃−1

1 P̃1(β)ã1

H̃−1
1 P̃1(β)ã1

]
. (9)

Using equations (5) and (6) and

ãT
1 P̃1(β)H̃−1

1 P̃1(β)ã1 = ãT
1 H̃1H̃

−1
1 P̃1(β)H̃−1

1 P̃1(β)ã1

= ãT
1 H̃1

[
λ2

0

√
λp

λ0+λp
u0 + λ2

p

√
λ0

λ0+λp
up

]
= λ0λp, (10)

we have

X̃T
01ã
′′
1(λ±, κ(λ±)) = 2

λ0+λp

√
λ0λp
λ0+λp

X̃T
01

[√
λ0u0 +

√
λpup

]
∓

λp−λ0
λ0+λp

√
X̃T

01H̃
−1
1 X̃01 − 1

λ0+λp

[
X̃T

01

(√
λ0u0 +

√
λpup

)]2
,

(11)
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and

ã′′1(λ±, κ(λ±)) = 2
√

λ0λp
(λ0+λp)3

[√
λ0u0 +

√
λpup

]
∓

λp−λ0
λ0+λp

√
λ0+λp

(λ0+λp)X̃T
01H̃

−1
1 X̃01−[X̃T

01(
√
λ0u0+

√
λpup)]

2 ×{
H̃−1

1 X̃01 −
X̃T

01[
√
λ0u0+

√
λpup]

λ0+λp

[√
λ0u0 +

√
λpup

]}
.

(12)
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