

HARDWARE IMPLEMENTATION

OF ARTIFICIAL EPIGENETIC

NETWORKS

Andrew J. Walter MEng (Hons)

PhD

The University Of York

Electronic Engineering

September 2019

2

Abstract

An extension of Artificial Gene Regulatory Networks (AGRNs), Artificial Epigenetic

Networks (AENs) implement an additional layer of bio-inspired control to allow for

enhanced performance on certain types of control tasks by facilitating topological self-

modification. This work looks to expand the applications of AENs by translating the

existent software architecture into a form suitable for implementation on a Field

Programmable Gate Array (FPGA). This opens the possibility of AENs being used in

applications where high-performance computational resources are impractical, such as

robotic control. This thesis develops a more resource efficient architecture for epigenetic

networks based on reduced precision integer mathematics, and then translates it into

hardware to provide improvements in resource utilisation and execution speed while not

sacrificing the unique benefits provided by the epigenetic mechanisms. The application to

robotic control is investigated by utilising the hardware AEN to perform various versions

of a foraging task, culminating in one designed to replicate a search and rescue scenario.

While the AENs did not demonstrate significant performance improvements compared to

their non-epigenetic counterparts, this did indicate that not every type of control task

benefits from the inclusion of the epigenetic mechanism. In addition, this work investigates

another aspect of AENs, specifically the limits of their topological self-modification with

respect to reacting to changes in their environment. More specifically, it is asked if an

AEN can maintain its ability to perform a specific task when confronted with factors

outside of those it has been optimised to handle. While not conclusively demonstrated,

there is sufficient evidence that the answer to this question depends on the performance

gains imparted by epigenetic behaviours under normal circumstances.

3

Table of Contents

Abstract ... 2

Table of Contents ... 3

List of Tables ... 9

List of Figures .. 14

Acknowledgements .. 24

Author’s Declaration .. 25

1 Introduction.. 26

1.1 Background ... 26

1.2 Hypothesis ... 28

1.3 Objectives .. 29

1.4 Contributions ... 30

1.5 Thesis Organisation ... 31

2 Artificial Epigenetic Networks ... 33

2.1 Neural Networks .. 33

2.1.1 Neuron Model... 34

2.1.2 Multi-Neuron Networks .. 37

2.2 Gene Regulatory Networks .. 40

2.2.1 Biological Genomes.. 40

2.2.2 Protein Synthesis .. 43

2.2.3 Gene Regulation ... 45

2.2.4 Artificial Gene Regulatory Networks .. 48

2.3 Epigenetic Networks .. 49

2.3.1 Biological Mechanisms ... 49

2.3.2 Artificial Networks ... 52

2.4 Summary ... 54

4

3 Genetic Algorithms .. 55

3.1 Background ... 55

3.1.1 Biological Evolution ... 55

3.1.2 History of Evolutionary Methods .. 57

3.1.3 Structure of a Genetic Algorithm .. 59

3.2 Simple Genetic Algorithm ... 66

3.2.1 Selection Method.. 67

3.2.2 Offspring Generation .. 67

3.3 Single Sample Generational Evolution... 67

3.4 Nondominated Sorting Genetic Algorithm II ... 68

3.5 Summary ... 71

4 Software Epigenetic Network... 72

4.1 Network Structure ... 73

4.1.1 Connections.. 73

4.1.2 Genes ... 75

4.1.3 Epigenetic Molecules ... 77

4.2 Changes from Prior AENs ... 78

4.2.1 Removal of Gene to Protein Network Translation 78

4.2.2 Input/output elements ... 81

4.3 Floating Point to Integer Networks .. 83

4.3.1 Overflow Prevention .. 84

4.3.2 Sigmoid Function ... 86

4.4 Summary ... 89

5

5 Hardware Epigenetic Network.. 90

5.1 Input Units ... 90

5.2 Genes and Molecules ... 93

5.3 Output Units .. 99

5.4 Network Interconnections .. 101

5.5 Network Configuration .. 104

5.6 AXI-Lite Interface, ARM Core and PC Connection ... 107

5.7 Summary ... 110

6 Experiment Overview .. 111

6.1 General Experimental Process .. 112

6.2 Inverted Pendulum Simulation ... 113

6.3 Robotic Foraging ... 120

6.4 Dynamic Environment ... 131

6.4.1 Mobile Prey Objects ... 132

6.4.2 Falling Debris ... 133

6.5 Summary ... 135

6

7 Inverted Pendulum Experiments .. 136

7.1 Evolution of Integer Based Controllers .. 136

7.1.1 Experimental Design and Parameters .. 136

7.1.2 Results ... 139

7.1.3 Hardware Analysis ... 150

7.2 Unexpected Impulse Injection Response .. 154

7.2.1 Experimental Design and Parameters .. 154

7.2.2 Results ... 157

7.2.3 Network Analysis ... 160

7.3 Connection Weights: Single Output vs Multiple Input 179

7.3.1 Experimental Design and Parameters .. 179

7.3.2 Results ... 181

7.3.3 Epigenetic vs Non-Epigenetic with Compactness Optimisation 183

7.3.4 Results ... 184

7.4 Summary ... 188

7

8 Robot Foraging Experiments .. 190

8.1 Basic Foraging Environment .. 190

8.1.1 Experiment Design and Parameters ... 190

8.1.2 Results .. 192

8.1.3 Network Analysis ... 194

8.2 Maze Foraging Environment .. 197

8.2.1 Experiment Design and Parameters ... 197

8.2.2 Results .. 199

8.2.3 Network Analysis ... 200

8.3 Foraging for Mobile Prey ... 203

8.3.1 Experiment Design and Parameters ... 203

8.3.2 Results .. 205

8.4 Summary ... 207

9 Robot Rescue Experiments ... 208

9.1 Basic Rescue Task ... 209

9.1.1 Experimental Design and Parameters .. 209

9.1.2 Results .. 211

9.1.3 Network Analysis ... 212

9.2 Rescue within an Unstable Environment .. 217

9.2.1 Experimental Design and Parameters .. 217

9.2.2 Results .. 219

9.2.3 Network Analysis ... 223

9.3 Summary ... 232

8

10 Conclusions and Future Work .. 233

10.1 Work Conducted ... 233

10.2 Objectives and Hypothesis Revisited ... 235

10.2.1 Hardware Implementation of the Artificial Epigenetic Network................ 235

10.2.2 Application of Artificial Epigenetic Networks to Robotic Control 235

10.2.3 Maintaining Performance in a Dynamic Environment 236

10.3 Critical Comments ... 237

10.4 Further Work ... 238

11 Appendix A: Network Structure Tables.. 240

11.1 Network 1.. 240

11.2 Network 2.. 242

11.3 Network 3.. 245

11.4 Network 4.. 248

11.5 Network 5.. 251

11.6 Network 6.. 254

11.7 Network 7.. 257

11.9 Network 8.. 260

12 Bibliography ... 263

9

List of Tables

Table 2.1.1. A selection of neuron activation functions, their equations and the range of

neuron outputs they produce. ... 36

Table 2.1.2. Truth table for an XOR function with two inputs .. 37

Table 2.1.3. Truth tables for neurons acting as NAND, OR and AND gates. 38

Table 5.2.1. Signal mapping table for the finite state machine that controls the calculation

elements of the gene/molecule units. .. 96

Table 5.6.1. Mapping of the 64 registers within the AXI-Lite breakout to the various

inputs/outputs of the epigenetic network. Note that read/write is from the processor’s

perspective. .. 108

Table 6.2.1. Details of the sensors. Note that the actual values returned by all sensors are

mapped to the range [0, 127]. ... 114

Table 6.2.2. Model parameters with default values. .. 116

Table 7.1.1. Parameters for the data width determination evolution using the simple genetic

algorithm. .. 137

Table 7.1.2. Parameters for the network size determination evolution using the simple

genetic algorithm. .. 138

Table 7.1.3. Parameters for the final evolution of the integer network using the simple

genetic algorithm. .. 138

Table 7.1.4. Network size, number of genes/molecules and median fitness of networks

where all non-outliers are above 0.75. .. 145

Table 7.1.5. Maximum, Median and Minimum fitness, as well as 25th and 75th percentiles

of Turner’s 64-bit, floating point software networks compared with those for this work’s 8-

bit, integer hardware networks. Note that outlier values are not included. 149

Table 7.1.6. Resources available on a Xilinx ZynQ-7000 XC7Z020 FPGA, as utilised in

this work [74]. ... 150

Table 7.1.7. Comparison of FPGA resource utilisation for 32-bit and 8-bit integer

networks. Both networks have: 10 inputs; 12 genes; 3 molecules; and 2 outputs. Table

includes percentage utilisation relative to the values in table 7.1.6. 150

Table 7.1.8. Comparison of FPGA resource utilisation for 32-bit and 8-bit integer network

components: input units; wrapped genes; wrapped molecules; and output units. See chapter

5 for descriptions. Table includes percentage utilisation relative to the values in table 7.1.6.

 .. 151

10

Table 7.1.9. Average execution times of: an 8-bit integer hardware network; an 8-bit

integer software network; a 64-bit integer software network; and a 64-bit floating point

software network. Times encapsulate: molecule execution; gene activation state updates;

gene execution; and output execution. Input execution is not included as their execution

timings are primarily dependent on factors external to the network. 153

Table 7.2.1. Parameters for the evolution of epigenetic networks. 154

Table 7.2.2. Parameters for the evolution of non-epigenetic networks. 155

Table 7.2.3. Maximum, Median and Minimum fitness, as well as 25th and 75th Percentiles

and mean of the epigenetic networks’ basic fitness, fitness with the impulse injection and

fitness difference. Fitness difference is reversed, as in its case, smaller values are better.

Note that outlier values are only included in the calculation of mean fitness. 159

Table 7.2.4. Maximum, Median and Minimum fitness, as well as 25th and 75th Percentiles

and mean of the non-epigenetic networks’ basic fitness, fitness with the impulse injection

and fitness difference. Fitness difference is reversed, as in its case, smaller values are

better. Note that outlier values are only included in the calculation of mean fitness. 159

Table 7.3.1. Parameters for the NSGA-II evolution of fitness and compactness. 180

Table 7.3.2. Maximum, Median, mean and Minimum fitness, as well as 25th and 75th

Percentiles and interquartile range for normal, input weighted networks and single, output

weighted networks with a compactness of 0.93. Note that outlier values are only included

in the calculation of mean fitness. .. 183

Table 8.1.1. Parameters of the foraging arena. ... 190

Table 8.1.2. Parameters for the evolution of epigenetic networks. 191

Table 8.1.3. Parameters for the evolution of non-epigenetic networks. 191

Table 8.1.4. Maximum, Median, mean and Minimum fitness, as well as 25th and 75th

Percentiles and interquartile range for epigenetic and non-epigenetic networks. Note that

outlier values are only included in the calculation of mean fitness.................................. 193

Table 8.2.1. Parameters of the foraging arena. ... 197

Table 8.2.2. Parameters for the evolution of epigenetic networks 197

Table 8.2.3. Parameters for the evolution of non-epigenetic networks 198

Table 8.2.4. Maximum, Median, mean and Minimum fitness, as well as 25th and 75th

Percentiles and interquartile range for epigenetic and non-epigenetic networks. Note that

outlier values are only included in the calculation of mean fitness.................................. 200

Table 8.3.1. Parameters of the environment. .. 203

Table 8.3.2. Parameters for the evolution of epigenetic networks. 203

11

Table 8.3.3. Parameters for the evolution of non-epigenetic networks 204

Table 8.3.4. Maximum, Median, mean and Minimum fitness, as well as 25th and 75th

Percentiles and interquartile range for epigenetic and non-epigenetic networks that were

able to forage at least one prey object under standard conditions. Note that outliers are only

included in the calculation of the mean fitness. .. 206

Table 9.1.1. Parameters of the environment. ... 209

Table 9.1.2. Parameters for the evolution of epigenetic networks 209

Table 9.1.3. Parameters for the evolution of non-epigenetic networks. 210

Table 9.1.4. Maximum, Median, mean and Minimum fitness, as well as 25th and 75th

Percentiles and interquartile range for epigenetic and non-epigenetic networks. Note that

outlier values are only included in the calculation of mean fitness. 212

Table 9.2.1. Parameters of the environment. ... 217

Table 9.2.2. Parameters for the evolution of epigenetic networks. 217

Table 9.2.3. Parameters for the evolution of non-epigenetic networks. 218

Table 9.2.4. Maximum, Median, mean and Minimum fitness, as well as 25th and 75th

Percentiles and interquartile range for epigenetic and non-epigenetic networks that rescued

2 people under standard conditions. Note that outlier values are only included in the

calculation of mean fitness. .. 221

Table 9.2.5. Maximum, Median, mean and Minimum fitness, as well as 25th and 75th

Percentiles and interquartile range for epigenetic and non-epigenetic networks that rescued

3 people under standard conditions. Note that outlier values are only included in the

calculation of mean fitness. .. 221

Table 9.2.6. Maximum, Median, mean and Minimum fitness, as well as 25th and 75th

Percentiles and interquartile range for epigenetic and non-epigenetic networks that rescued

4 people under standard conditions. Note that outlier values are only included in the

calculation of mean fitness. .. 222

Table 11.1.1 Connection parameters of all input elements of network 1, including what

other network elements use them as inputs. .. 240

Table 11.1.2 Connection parameters of all molecules of network 1, including what other

network elements they use as inputs. Note that which genes are controlled by each

molecule varies during runtime. ... 240

Table 11.1.3. Connection parameters of all genes of network 1, including what other

network elements they use as inputs and what network elements use them as inputs. 241

12

Table 11.1.4. Connection parameters of all output elements of network 1, including which

genes they use as inputs. .. 241

Table 11.2.1. Connection parameters of all input elements of network 2, including what

other network elements use them as inputs. .. 242

Table 11.2.2. Connection parameters of all molecules of network 2, including what other

network elements they use as inputs. Note that which genes are controlled by each

molecule varies during runtime. ... 242

Table 11.2.3. Connection parameters of all genes of network 2, including what other

network elements they use as inputs and what network elements use them as inputs. 243

Table 11.2.4. Connection parameters of all output elements of network 2, including which

genes they use as inputs. .. 244

Table 11.3.1. Connection parameters of all input elements of network 3, including what

other network elements use them as inputs. .. 245

Table 11.3.2. Connection parameters of all genes of network 3, including what other

network elements they use as inputs and what network elements use them as inputs. 246

Table 11.3.3. Connection parameters of all output elements of network 3, including which

genes they use as inputs. .. 247

Table 11.4.1. Connection parameters of all input elements of network 4, including what

other network elements use them as inputs. .. 248

Table 11.4.2. Connection parameters of all molecules of network 4, including what other

network elements they use as inputs. Note that which genes are controlled by each

molecule varies during runtime. ... 248

Table 11.4.3. Connection parameters of all genes of network 4, including what other

network elements they use as inputs and what network elements use them as inputs. 249

Table 11.4.4. Connection parameters of all output elements of network 4, including which

genes they use as inputs. .. 250

Table 11.5.1. Connection parameters of all input elements of the network, including what

other network elements use them as inputs. .. 251

Table 11.5.2. Connection parameters of all molecules of the network, including what other

network elements they use as inputs. Note that which genes are controlled by each

molecule varies during runtime. ... 251

Table 11.5.3. Connection parameters of all genes of the network, including what other

network elements they use as inputs and what network elements use them as inputs. 252

13

Table 11.5.4. Connection parameters of all output elements of the network, including

which genes they use as inputs. .. 253

Table 11.6.1. Connection parameters of all input elements of network 6, including what

other network elements use them as inputs. .. 254

Table 11.6.2. Connection parameters of all molecules of network 6, including what other

network elements they use as inputs. Note that which genes are controlled by each

molecule varies during runtime. ... 254

Table 11.6.3. Connection parameters of all genes of network 6, including what other

network elements they use as inputs and what network elements use them as inputs. 255

Table 11.6.4. Connection parameters of all output elements of network 6, including which

genes they use as inputs. .. 256

Table 11.7.1. Connection parameters of all input elements of the network, including what

other network elements use them as inputs. .. 257

Table 11.7.2. Connection parameters of all molecules of the network, including what other

network elements they use as inputs. Note that which genes are controlled by each

molecule varies during runtime. ... 257

Table 11.7.3. Connection parameters of all genes of the network, including what other

network elements they use as inputs and what network elements use them as inputs. 258

Table 11.7.4. Connection parameters of all output elements of the network, including

which genes they use as inputs. .. 259

Table 11.9.1. Connection parameters of all input elements of network 7, including what

other network elements use them as inputs. .. 260

Table 11.9.2. Connection parameters of all molecules of network 7, including what other

network elements they use as inputs. Note that which genes are controlled by each

molecule varies during runtime. ... 260

Table 11.9.3. Connection parameters of all genes of network 7, including what other

network elements they use as inputs and what network elements use them as inputs. 261

Table 11.9.4. Connection parameters of all output elements of network 7, including which

genes they use as inputs. .. 262

14

List of Figures

Figure 2.1.1. Schematic of a typical neuron, showing the synapses, dendrites and axon.

Taken from [8]. ... 34

Figure 2.1.2. McCulloch-Pitts neuron model. Taken from [13]. 35

Figure 2.1.3. Plots of the activation functions from table 2.1.1, as well as the step function

from equation 2.1.2. S range ± 4. ... 36

Figure 2.1.4. 3 neuron network for computing the XOR function. 39

Figure 2.2.1. A single DNA nucleotide, consisting of phosphate/sugar backbone and a

base, in this case Adenine. Taken from [23]. .. 40

Figure 2.2.2. A small section of a complete DNA strand, consisting of two nucleotide

polymer chains joined by bonds between their respective bases. Taken from [23]. 41

Figure 2.2.3. Simplified illustration of the protein synthesis process. Taken from [25]. 43

Figure 2.2.4. The process of translation, where an amino acid polymer is formed based on

the sequence contained within a strand of mRNA. Taken from [26]. 44

Figure 2.2.5. The lactose utilisation mechanism of E. coli. Permease transports lactose past

the cell wall, where β-galactosidase and transacetylase break it down into its constituent

sugars. Taken from [25]. .. 45

Figure 2.2.6. Action of the lacl gene and lac repressor protein under normal conditions.

Taken from [25]... 46

Figure 2.2.7. Blocking of the lac repressor protein by allolactose. Taken from [25].......... 47

Figure 2.2.8. A Boolean network for robotic control, together with its input/output

mechanisms. Taken from [28]. ... 48

Figure 2.3.1. Structure of a chromosome, showing the coiling of DNA and histones to from

chromatin fibers. Taken from [31]. .. 50

Figure 2.3.2. Non-compact Eurchromatin, left; and tightly compacted Heterochromtin,

right. Taken from [33]. .. 51

Figure 2.3.3. A simple illustration of a gene regulatory network, with the addition of an

epigenetic mechanism. Taken from [6]. ... 52

Figure 2.3.4. An AERN with epigenetic switch inactive, top, and active, bottom. Note how

the activation of the epigenetic mechanism, and hence suppression of the genes,

dramatically changes the characteristics of the network. .. 53

Figure 3.1.1. Four out of the fifteen species of Galapagos finches, more commonly known

as Darwin’s finches. Drawn by John Gould and taken from [37]. 56

15

Figure 3.1.2. Rechenberg’s evolutionary algorithm, applied to the design of aircraft

winglets. Picture taken from [38]. .. 58

Figure 3.1.3. An example of a flawed creature (left) and its unconventional method of

locomotion (right). Taken from [42]. .. 61

Figure 3.1.4. The biological process of chromosomal crossover during meiosis. Note that

without crossover, the only allele combinations would be Ab and aB. With crossover this

becomes AB, ab, Ab and aB. Taken from [25]. .. 63

Figure 3.1.5. An example of uniform crossover. Taken from [48]. 64

Figure 3.1.6. An example of N-point crossover, where N = 2. Taken from [48]. 64

Figure 3.1.7. An example of arithmetic crossover, utilising the mean of the parents. Taken

from [48]. .. 65

Figure 3.4.1. Population generation method of VEGA. Taken from [52]. 69

Figure 3.4.2. Illustration of the sorting, selection and offspring generation process of

NSGA-II. ... 70

Figure 4.1.1. An example of the location/proximity system. Elements A and D have no

inputs; element B’s inputs are elements A and C; and element C’s inputs are elements A, B

and C ... 73

Figure 4.1.2. Plot of the sigmoid function, with trivial slope/offset, and x values in the

range ±10.0. ... 76

Figure 4.1.3. An example of an epigenetic molecule with the location space. The

molecule’s location and proximity result in gene A being used as an input, while its output

and output proximity result in gene B being made inactive ... 77

Figure 4.2.1. The input and output spaces of an example network. This network has 7

genes, 3 inputs and 1 output. Note the difference in gene position between the two regions,

as well as the fact the input 3 has no gene mapped to it at this time [33]. 81

Figure 4.2.2. An example of an input and an output element within the location space. The

input element is within range to be an input for gene A, while genes A and B are in range

of the output. Gene A will be the first in the array, so its expression will be the network

output. ... 82

Figure 4.3.1. Plot of the sigmoid activation function for a floating point network, with an

input range of ±40. The upper and lower lines show where the sigmoid output levels off at

1.0 and 0.0 respectively . .. 87

Figure 4.3.2. Plot of the sigmoid activation function for a 4-bit network with maximum and

minimum output values removed. .. 88

16

Figure 5.1.1. Single n-bit storage element with load complete signalling mechanism. Note

the presence of a CLK input on the register in addition to its enable signal. 91

Figure 5.1.2. Complete n-bit input unit, with identification and input storage elements,

enable signal generation logic. ... 91

Figure 5.2.1. Parameter storage section of an n-bit gene/molecule unit with m possible

inputs... 93

Figure 5.2.2. Weighted sum of inputs calculation section of an N-bit gene/molecule with

256 possible inputs. ... 94

Figure 5.2.3. State transition diagram for the finite state machine that controls the

calculation elements of the gene/molecule units. .. 95

Figure 5.2.4. Sigmoid input and LUT address calculation elements of an n-bit

gene/molecule unit. .. 97

Figure 5.2.5. LUT and output storage register for an n-bit gene/molecule unit. 97

Figure 5.3.1. Parameter storage elements for an n-bit output unit. 99

Figure 5.3.2. Output selector logic of an n-bit output unit with m inputs. 99

Figure 5.4.1. Parameter storage elements of an n-bit gene wrapper. 101

Figure 5.4.2. Parameter storage elements of an n-bit molecule wrapper. 102

Figure 5.4.3. Input selection elements of an n-bit gene or molecule wrapper with m inputs

 .. 102

Figure 5.4.4. Network interconnection system, excluding control signals. 103

Figure 5.5.1. Structure of the 32-bit parameter load address signal, showing the width of

the various sections. Note that the hashed out section in the middle is an unused 11-bits.

 .. 105

Figure 5.5.2. Parameter loading mechanism for a network with W inputs, X genes, Y

molecules and Z outputs. Note that the enable signals are excluded. 106

Figure 6.1.1. Illustration of the general experimental process, including the software

optimisation loop (shown in blue), and the on hardware analysis (shown in green). 112

Figure 6.2.1. A cart and pendulum from the Hamann model, illustrating the “positions” of

the various simulated sensors, taken from [71]. See table 6.3.1 for more detail the specific

sensors. .. 113

Figure 6.3.1. A Finite State Machine (FSM) representation of basic foraging, taken from

[67].. 120

17

Figure 6.3.2. Screenshot of JBotEvolver’s GUI, configuration view. The left hand side is

the configuration arguments menu; the centre the options for a selected argument; and the

right hand side and overview of the configuration and the simulator environment. 121

Figure 6.3.3. Herbert, the Collection Machine, one of the first examples of a foraging

robot. Built in the 1980s at MIT by Rodney Brooks et al, it was able to autonomously

navigate the laboratory, collect objects of interest (usually soft drinks cans) and return

them to its home location [79]. Image taken from [80]. .. 123

Figure 6.3.4. The JBotEvolver configuration file for a foraging robot............................. 125

Figure 6.3.5. Top down model of the robot described by file 6.3.1. It is 0.1 units in

diameter, with two forward facing “eyes” that are 30̊ apart. Each “eye” is a combination of

various sensors with a 60̊ cone of vision; together they facilitate wall, prey and nest

detection. Two wheels create a differential drive, with a maximum speed of 0.1 units per

time step. The protrusion on the front is the prey actuator, which allows manipulation of

prey objects. It incorporates a sensor that detects wither or not the actuator is holding a

prey object. Also shown is a prey object, which is a simple cylinder 0.05 units in diameter.

 .. 126

Figure 6.3.6. Illustration of the basic foraging environment. The robot starts within the

nest, the green circle, at the centre of the environment. Prey objects, the black circles, are

randomly spawned in the region between the two red circles, the outer of while defines the

forage limit: the furthest from the nest a robot will need to move in order to gather prey.

The large black circle represents the boundary of the environment, with robots being

heavily penalised for traveling beyond it. ... 127

Figure 6.3.7. Illustration of the first maze foraging environment. The robot starts in the left

alcove, while the nest, the green circle, is at the northern tip. Prey objects, the black circles,

spawn within the four red circles, which are distributed around the maze and not

immediately visible from the start point. There is no forage limit or environment boundary,

as the maze is completely encapsulated by solid walls, which not only prevent travel, but

also block the robot’s sensors. .. 128

Figure 6.3.8. Illustration of the second maze foraging environment. Once again the robot

starts in the left alcove, but in this instance that is also the location of the nest. There are

only five prey objects, but they are distributed in similar locations around the maze. There

is no forage limit or environment boundary, as the maze is completely encapsulated by

solid walls, which not only prevent travel, but also block the robot’s sensors. 130

18

Figure 6.4.1. A robot competing in the 2017 RoboCup Rescue League. Note the presence

of simulated hazardous materials as it attempts to complete its task. Image taken from [82].

 .. 133

Figure 6.4.2. Illustration of the rescue environment, with the inclusion of the debris fall

locations, depicted as black squares. .. 134

Figure 7.1.1. Fitnesses of the best integer epigenetic networks from each repeat, with data

widths in the 4- to 18-bit range. The blue line at 0.75 denotes the fitness at which the

networks are able to maintain the pendulum in the upright equilibrium position. Note that:

the dotted circle represents the median fitness; the box encapsulates values between the

25th and 75th percentiles; the whiskers encapsulate all non-outliers; and the circles are

outliers. MatLab’s boxplot function defines outliers as values greater than 𝑞3 + 𝑤𝑞3 −

 𝑞1, or less than 𝑞3 − 𝑤𝑞3 − 𝑞1; where q1 and q3 are the 25th and 75th percentiles of the

data, and w is the maximum whisker length, defined as ±2.7σ. 139

Figure 7.1.2. Fitness of integer epigenetic networks with data widths in the 19- to 32-bit

range. .. 140

Figure 7.1.3. Time evolution plot, showing fitness over 4000 generations: the blue line is

an 8-bit network; the orange a 32-bit network; and the yellow line is the 0.75 fitness

threshold. ... 141

Figure 7.1.4. Fitness of integer epigenetic networks with an 8-bit data width, 3 molecules

and between 12 and 18 genes. The blue line at 0.75 denotes the fitness at which the

networks are able to maintain the pendulum in the upright equilibrium position............. 142

Figure 7.1.5. Fitness of integer epigenetic networks with an 8-bit data width, 3 molecules

and between 19 and 25 genes. .. 142

Figure 7.1.6. Fitness of integer epigenetic networks with an 8-bit data width, 4 molecules

and between 12 and 18 genes. .. 143

Figure 7.1.7. Fitness of integer epigenetic networks with an 8-bit data width, 4 molecules

and between 19 and 25 genes. .. 143

Figure 7.1.8. Fitness of integer epigenetic networks with an 8-bit data width, 5 molecules

and between 12 and 18 genes. .. 144

Figure 7.1.9. Fitness of integer epigenetic networks with an 8-bit data width, 5 molecules

and between 19 and 25 genes. .. 144

Figure 7.1.10. Fitness of integer epigenetic networks with an 8-bit data width, 12 genes and

3 molecules. The blue line at 0.75 denotes the fitness at which the networks are able to

maintain the pendulum in the upright equilibrium position... 146

19

Figure 7.1.11. Fitness of integer epigenetic networks in software and hardware. The blue

line at 0.75 denotes the fitness at which the networks are able to maintain the pendulum in

the upright equilibrium position. .. 147

Figure 7.1.12. The results of Turner’s original evolutions to produce a floating point

network able to balance the inverted pendulum, taken from [6]. The green line at 0.75

denotes the fitness at which the networks are able to maintain the pendulum in the upright

equilibrium position. .. 148

Figure 7.2.1. The results of the evolution of epigenetic and non-epigenetic network, as well

as their fitness values during impulse injection. The blue line at 0.75 denotes the fitness at

which the networks are able to maintain the pendulum in the upright equilibrium position.

 .. 157

Figure 7.2.2. Difference between the evolved fitness and impulse injection fitness for both

epigenetic and non-epigenetic networks. Note that in this case, a lower value is better. .. 158

Figure 7.2.3. Structure of an epignetic network that suffered no fitness drop when exposed

to impulse injection. ... 161

Figure 7.2.4. Plots of the angle off vertical of the pendulum when controlled by network

20401. The top plot shows normal balancing; the bottom shows the response to impulse

injection at time step 1500, denoted by the black line. The inset shows a close-up of the

time either side of the impulse injection. .. 162

Figure 7.2.5. Plots of the angular velocity of the pendulum when controlled by network

20401. The top plot shows normal balancing; the bottom shows the response to impulse

injection at time step 1500, denoted by the black line. .. 163

Figure 7.2.6. Activation state of genes within network 20401 between time steps 0 and

2000 (20 simulated seconds). A value of 0 indicates the gene is being deactivated by an

epigenetic element, while a value of 1 indicates the gene is active and producing an output.

 .. 164

Figure 7.2.7. Activation state of the epigeneticaly active genes within network 20401,

along with the outputs of the network’s epigenetic molecules. A value of 0 indicates the

gene is being deactivated by an epigenetic element, while a value of 1 indicates the gene is

active and producing an output. Molecule outputs are between 0 and 127, with the value

relating to the location in the network space where it looks for genes to deactivate. See

section 4.1.3 for more details. .. 165

20

Figure 7.2.8. Values of inputs 1, 3, 4 and 10; Output of molecule 2; and activation states of

genes 2, 6 and 8 of network 20401 between time steps 1200 and 2000 with no impulse

injection... 166

Figure 7.2.9. Values of inputs 1, 3, 4 and 10; Output of molecule 2; and activation states of

genes 2, 6 and 8 of network 20401 between time steps 1200 and 2000 with an injection of

a 1 rad s-1 impulse at time step 1500, marked by a black line. .. 167

Figure 7.2.10. Structure of an epigenetic network of median fitness. 168

Figure 7.2.11. Plots of the angle off vertical of the pendulum when controlled by network

8578. The top plot shows normal balancing; the bottom shows the response to impulse

injection at time step 1500, denoted by the black line... 169

Figure 7.2.12. Plots of the angular velocity of the pendulum when controlled by network

8578. The top plot shows normal balancing; the bottom shows the response to impulse

injection at time step 1500, denoted by the black line... 170

Figure 7.2.13. An extended plot of the angle off vertical of the pendulum when controlled

by network 8578, with an impulse injection at 1500. .. 171

Figure 7.2.14. Activation state of genes within network 8578 between time steps 0 and

2000 (20 simulated seconds). A value of 0 indicates the gene is being deactivated by an

epigenetic element, while a value of 1 indicates the gene is active and producing an output.

 .. 172

Figure 7.2.15. Activation state of genes within network 8578 between time steps 0 and

2000 (20 simulated seconds), with impulse injection at time step 1500, denoted by the

black line. A value of 0 indicates the gene is being deactivated by an epigenetic element,

while a value of 1 indicates the gene is active and producing an output. 173

Figure 7.2.16. Activation state of genes exibiting epigenetic behaviour between time steps

0 and 300 (3 simulated seconds) and the outputs of the epigenetic molecules. With genes: a

value of 0 indicates the gene is being deactivated by an epigenetic element, while a value

of 1 indicates the gene is active and producing an output. With molecules, their output is

between 0 and 127, with the value relating to the location in the network space where it

looks for genes to deactivate. See section 4.1.3 for more details. 174

Figure 7.2.17. Structure of a non-epigenetic network of median fitness. 175

Figure 7.2.18. Plots of the angle off vertical of the pendulum when controlled by network

28314. The top plot shows normal balancing; the bottom shows the response to impulse

injection at time step 1500, denoted by the black line... 176

21

Figure 7.2.19. Plots of the angular velocity of the pendulum when controlled by the

network. The top plot shows normal balancing; the bottom shows the response to impulse

injection at time step 1500, denoted by the black line. .. 177

Figure 7.3.1. Single output applied weights (left) versus the more conventional input

applied weights (right). .. 179

Figure 7.3.2. Functional fitness and compactness of normal, input applied weights (blue)

and single, output applied weights (orange). ... 181

Figure 7.3.3. Fitness of all networks with a compactness of 0.93. 182

Figure 7.3.4. Functional fitness and compactness of networks with and without epigenetic

elements. .. 184

Figure 7.3.5. Functional fitness of all networks with a compactness of 0.93. 185

Figure 7.3.6. Compactness of all networks with fitnesses over 0.75. 186

Figure 7.3.7. Fitness of epigenetic networks with between 2 and 16 network elements

(genes and molecules). ... 187

Figure 7.3.8. Fitness of non-epigenetic networks with between 2 and 16 genes. 187

Figure 8.1.1. Fitness of the best individuals from 50 evolutionary runs of epigenetic and

non-epigenetic networks. Note that any fitness value greater than 1.0 indicates the

successful collection and return of at least one prey object. .. 192

Figure 8.1.2. Structure of the network. ... 194

Figure 8.1.3. Activation state of genes within the network between time steps 0 and 1000.

A value of 0 indicates the gene is being deactivated by an epigenetic element, while a

value of 1 indicates the gene is active and producing an output. 196

Figure 8.2.1. Fitness of the best individuals from 50 evolutionary runs of epigenetic and

non-epigenetic networks. Note that any fitness value greater than 1.0 indicates the

successful collection and return of at least one prey object. .. 199

Figure 8.2.2. Illustration of the epigenetic network’s structure. 201

Figure 8.2.3. Activation state of genes within the network between time steps 0 and 10000.

A value of 0 indicates the gene is being deactivated by an epigenetic element, while a

value of 1 indicates the gene is active and producing an output. 202

Figure 8.3.1. The results of the evolution of non-epigenetic and epigenetic networks, as

well as their fitness values when attempting the foraging task in an environment with

moving prey objects. .. 205

22

Figure 9.1.1. Fitness of the best individuals from 50 evolutionary runs of epigenetic and

non-epigenetic networks. The results are divided based upon the number of people

successfully rescued. ... 211

Figure 9.1.2. Illustration of the epigenetic network structure. ... 213

Figure 9.1.3. Activation state of genes within the network between time steps 0 and 10000.

A value of 0 indicates the gene is being deactivated by an epigenetic element, while a

value of 1 indicates the gene is active and producing an output. 214

Figure 9.1.4. Illustration of the epigenetic network. ... 215

Figure 9.1.5. Activation state of genes within the network between time steps 0 and 10000.

A value of 0 indicates the gene is being deactivated by an epigenetic element, while a

value of 1 indicates the gene is active and producing an output. 216

Figure 9.2.1. The results of the evolution of epigenetic networks, as well as their fitness

values when attempting search and rescue in an environment with falling debris. Note that

the label for the number of people rescued in the debris scenarios relates to their

performance in the standard environment... 219

Figure 9.2.2. The results of the evolution of non-epigenetic networks, as well as their

fitness values when attempting search and rescue in an environment with falling debris.

Note that the label for the number of people rescued in the debris scenarios relates to their

performance in the standard environment... 220

Figure 9.2.3. Illustration of network structure. ... 223

Figure 9.2.4. Activation state of genes within the network between time steps 0 and 10000

during a resuce task within a normal environment. A value of 0 indicates the gene is being

deactivated by an epigenetic element, while a value of 1 indicates the gene is active and

producing an output. .. 224

Figure 9.2.5. Activation state of genes within the network between time steps 0 and 10000

during a resuce task within an environment with falling debris. A value of 0 indicates the

gene is being deactivated by an epigenetic element, while a value of 1 indicates the gene is

active and producing an output. ... 225

Figure 9.2.6. Activation state of epigeneticaly active genes, and the outputs of the

epigenetic molcules during a resuce task within a standard environment. A value of 0

indicates the gene is being deactivated by an epigenetic element, while a value of 1

indicates the gene is active and producing an output. The output of the epigenetic

molecules correlates to the location in the network space where it is supressing gene

activity. ... 226

23

Figure 9.2.7. Activation state of epigeneticaly active genes, and the outputs of the

epigenetic molcules during a resuce task within an environment with falling debris. A

value of 0 indicates the gene is being deactivated by an epigenetic element, while a value

of 1 indicates the gene is active and producing an output. The output of the epigenetic

molecules correlates to the location in the network space where it is supressing gene

activity. .. 227

Figure 9.2.8. Output of molcule 2, and readings of various sensors during a resuce task

within a standard environment. The output of the epigenetic molecules correlates to the

location in the network space where it is supressing gene activity; values of the eye sensors

relate to distance to the closest object of the relevant type, scaled between 0.0 and 1.0;

distance to the nest is a measure of the strait line distance between the robot and the nest;

and person carried is 1 when a person is held by the robot’s manipulator. 228

Figure 9.2.9. Output of molcule 2, and readings of various sensors during a resuce task

within an environment with debris. The output of the epigenetic molecules correlates to the

location in the network space where it is supressing gene activity; values of the eye sensors

relate to distance to the closest object of the relevant type, scaled between 0.0 and 1.0;

distance to the nest is a measure of the strait line distance between the robot and the nest;

and person carried is 1 when a person is held by the robot’s manipulator. The black lines

mark the time steps at which a random piece of debris is spawned into the environment.229

Figure 9.2.10. Output of molecule 2, and the outputs of several genes during a rescue task

within a standard environment. The output of the epigenetic molecules correlates to the

location in the network space where it is supressing gene activity. 230

Figure 9.2.11. Output of molecule 2, and the outputs of several genes during a rescue task

within an environment with debris. The output of the epigenetic molecules correlates to the

location in the network space where it is supressing gene activity. 231

24

Acknowledgements

I would like to thank Prof. Andy Tyrrell, Dr. Simon Bale and Dr. Martin Trefzer for their

tireless guidance and assistance; Dr. Alex Turner for his help in replicating and building

upon his own doctoral work; John Wilson for his pointers on foraging robots; and Richard

Redpath, Matthew Rowlings and Dr. John Szymanski for their aid in various technical

areas; and finally my partner Finn McLellan, for his tireless support.

25

Author’s Declaration

I declare that this thesis is a presentation of original work and I am the sole author. This

work has not previously been presented for an award at this, or any other, university. All

sources are acknowledged as reference.

26

1 Introduction

The biological world is a perennial source of inspiration for engineers. With millions of

years of evolution to devise solutions, engineers have applied ideas from nature to

problems that range from energy efficient buildings [1], to advanced optics [2]. An area

where bio-inspiration is of great interest is computation, as the natural world possesses a

plethora of mechanisms that store, manipulate and process data. A comparative newcomer

in this arena is the Artificial Epigenetic Network (AEN), which expands the more

traditional Artificial Gene Regulatory Network (AGRN) through the addition of

components that mimic the biological mechanisms of epigenetic regulation. This work is

centred on translating such networks from their more resource intensive software form, to a

hardware architecture that maintains their unique benefits while opening up more possible

applications. Along the way, a hypothesis developed about an epigenetically augmented

network’s ability to react to unanticipated changes in its environment, which fuelled the

latter parts of this work.

1.1 Background

The supermajority of biological systems rely on genetic material for the storage of the

information needed to construct and maintain their physiologies. However, far from being

simply a static storage system, biological genomes are capable of information processing

though a number of systems collectively referred to as gene regulatory mechanisms [3]. In

recent years however, it has been discovered that these are not the only systems that

biological organisms possess that alter their genetic expression. These so called Epigenetic

mechanisms also play a role, interacting with the genetic material through alterations to its

structure, but without being a part of it [4].

Artificial Gene Regulatory Networks (AGRNs) are computational architectures inspired by

these mechanisms. They are created either as a tool for research into their biological

counterparts, or as a way to exploit their properties for useful applications, with the latter

being the one relevant to this work [5]. While they possess similarities to the more

ubiquitous Artificial Neural Networks (ANNs), their basis in genetic, rather than neural

mechanisms leads them to possess a number of differences, most notably in their more

indirect method of network topology encodement, which leads to networks that are less

linear than feed forward ANNs, but without the total interconnectivity of recurrent neural

27

networks; while also reducing the number of parameters needed [5]. While direct

performance comparisons between AGRNs and ANNs are currently lacking the field is

still developing.

Artificial epigenetic networks expand upon AGRNs in the same way as in nature, adding

additional control mechanisms that sit outside the “genome” but alter its behaviour.

Devised by Dr. Alex Turner, the addition of these epigenetic elements to a network provide

performance benefits over standard gene regulatory networks, particularly with tasks that

involve the control of dynamical systems, with explicit results that confirm this for

Chirikov’s standard map; the control of single and multiple coupled inverted pendulums;

and the control of transfer orbits in gravitational systems [6]. However, the implementation

of epigenetics employed previously is computationally intensive: utilising floating-point

numbers and having several features that while more biologically accurate are

computationally inefficient, such as: replication of gene to protein transcription, causing

increased memory requirements; utilisation of single, output applied weights, resulting in

different connection weights requiring entirely different to exist; and an absence of

dedicated input/output elements, requiring processing elements to be temporally utilised as

such, wasting their resources.

Biological systems on the other hand are frequently lauded for their resource efficiency, so

once again it inspires this work: the development and testing of a hardware implementation

of an epigenetic network, built upon the reduction of the original’s resource utilisation and

streamlining of its processes.

While pursuing this objective, a hypothesis was developed about an epigenetic network’s

ability to handle unexpected stimulus: under ideal circumstances, a control system

(epigenetic or otherwise) can be expected to encounter conditions that have already been

accounted for in its design, either by human engineers or by the parameters used by some

automated optimisation mechanism, like a genetic algorithm. In reality, it is impossible for

every possibility to be factored in to the design process, and such there is a desire for a

control paradigm that is able to maintain its performance when confronted with such

unforeseen circumstances. The self-modification ability inferred by epigenetic behaviour

seems to be ideally suited to providing this kind of performance.

28

1.2 Hypothesis

As a key strength of the artificial epigenetic network is its ability to dynamically

reconfigure its topology in response to the changing state of its environment, is it possible

for an artificial epigenetic network to complete a task it has been optimised for, while

being confronted with environmental alterations that it has not encountered during its

optimisation? Or, to put this in the form of a hypothesis:

“Do the topological self-modification abilities granted to an artificial hardware

network by the inclusion of epigenetic elements, henceforth referred to simply as

epigenetic mechanisms, grant that network a greater capacity to maintain its

functionality when confronted with un-optimised for stimulus compared to a similar

artificial network without epigenetic mechanisms?”

29

1.3 Objectives

The final outcome of this thesis is the hardware implementation of the artificial epigenetic

network, which entailed the development of a version of the artificial epigenetic network

that would translate well into digital hardware, In the course of perusing this objective,

several side goals developed, which are encapsulated in the questions below.

a) Is it possible to switch the underlying logic of the artificial epigenetic network from

computationally intensive floating-point maths to more simplistic integer

mathematics?

b) Is it then possible to reduce the precision of the artificial epigenetic network’s

mathematics while maintain its unique functionality?

c) Is it possible to bring the architecture of an epigenetic network more in line with

design conventions, without loss of its unique abilities?

d) Taking it as an example of a resource limited application, does the artificial

epigenetic network bring any significant benefits to the area of robotic control?

These questions are, of course, in addition to the one posed in Section 1.2, regarding the

epigenetic network’s ability of react to un-optimised for stimulus.

30

1.4 Contributions

In the process of carrying out this work, and pursuing the objectives in Section 1.2, the

following contributions to knowledge were made:

• Demonstrated that the properties and performance of an epigenetic network are

preserved when its underlying logic is translated from floating-point to integer

mathematics.

• Demonstrated that the properties and performance of an epigenetic network are

preserved when its precision is reduced through the reduction in the bit width of

its underlying logic.

• Demonstrated that the properties and performance of an epigenetic network are

preserved when its processing elements are re-designed to bring them more in line

with design conventions; while also demonstrating that such networks can be

more compact than their Turner architecture counterparts.

• Demonstrated that the properties and performance of an epigenetic network are

preserved when it’s translated from a software to hardware implementation.

• Demonstrated that the translation from a software to hardware implementation of

an epigenetic network results in improvements in resource utilisation and speed

performance.

• Demonstrated that networks with epigenetic elements will not always utilise them,

and that only tasks of a certain level of complexity will trigger the evolution of

epigenetic behaviours.

• Produced data on the performance of epigenetic networks when applied to various

permutations of a foraging robot task, including a version simulating a search and

rescue scenario.

• Produced data showing that it is theoretically possible for the epigenetic elements

of a network to react to maintain the network’s performance when confronted with

stimulus that it has not already been optimised for.

31

1.5 Thesis Organisation

This thesis is organised into three parts. Chapters 2-3 will cover the background of this

work, detailing the origins and biological basis of epigenetic networks and genetic

algorithms. Chapters 4-5 will then cover the specific implementations of epigenetic

networks created for this work, with Chapter 5 in particular describing the hardware

architecture. Chapters 6-9 concern the various experiments carried out to ensure the

functionality and demonstrate the capabilities of the hardware epigenetic network.

Chapter 2 Background of epigenetic networks, with a particular focus on the

biological mechanisms that inspired them, and their predecessors: the artificial neural and

gene regulatory networks.

Chapter 3 Discussion of genetic algorithms, including their biological inspiration and

functionality, as well as the specific implementations relevant to this thesis.

Chapter 4 Description of the software epigenetic network architecture used in this

work; comparisons between it and the original Turner networks; as well as discussion of

the translation from floating-point to integer mathematics; and the reduction of precision

via lowing of the network’s bit width.

Chapter 5 Description of the hardware epigenetic network architecture used in this

work, including the mechanisms to facilitate parametrisation and parallelisation of the

network; with the former being in service to investigation of bit width reduction, and the

latter being a benefit that dedicated hardware can bring about.

Chapter 6 Initial outline of experiments; the implementation of the inverted pendulum

model and simulated robot, as well as the fitness metrics used in each case; then a detailed

discussion of the idea mentioned in Section 1.2: that epigenetic networks can maintain

performance when encountering un-optimised for conditions, something conceptualised

within the idea of a dynamic environment.

Chapter 7 Detailed look at experiments involving the inverted pendulum, and results

from the same. This chapter includes the successful demonstration of the hardware

network, as well as experiments relating to the reduction of precision; and the first

experiments involving dynamic environmental conditions, in the form of impulse injection,

which provide promising results.

32

Chapter 8 Detailed look at experiments involving simulated robots performing a

foraging task, and results from the same. These include experiments with both a basic and

more complex foraging task, which the former showing how the development of epigenetic

behaviour is not a forgone conclusion. The second set of dynamic environment

experiments are present in this chapter, with the dynamics taking the form of moving

foraging targets. These are not as successful as those in Chapter 7.

Chapter 9 Detailed look at experiments involving simulated robots performing a more

complex foraging task, conceptualised as a search and rescue, and results from the same.

This includes the initial experiments, which show how the contextualisation of the task

brings improvements to the fitness of the networks; and the third set of dynamic

environment experiments, which involve the simulation of debris fall. While also not as

successful as those in Chapter 7, they are more so than those in Chapter 8.

Chapter 10 Summation of the work conducted in this thesis, the drawing of

conclusions, and discussion of the direction of possible future work.

33

2 Artificial Epigenetic Networks

The ultimate goal of this work is to develop a hardware based epigenetic network

architecture, one which is able to bring the advantages such networks have already

demonstrated to resource constrained applications. It is therefore vital to first understand

the nature of these kind of networks. This chapter details the lineage of Artificial

Epigenetic Networks (AENs): first with their predecessors in the form of Artificial Neural

and Gene Regulatory Networks (ANNs and AGRNs); then with the epigenetic mechanisms

of biology; before finally looking at the creation of AENs themselves by Dr. Alex Turner,

and his work applying them to various control problems [6].

2.1 Neural Networks

Tracing their origins back to the neuron models of Warren McCulloch and Walter Pitts [7],

artificial neural networks seek to replicate the information processing architecture of the

organic brain. In addition to the obvious strength of being the only processing paradigm

known to be capable of implementing intelligent thought, the brain’s neural networks have

other features that are considered highly desirable in computing systems [8]:

• Fault Tolerance and Robustness. Neural cells die regularly without impacting the

overall performance of the brain, and significant functionality can be maintained

even after extensive damage, such as in the famous case of Phineas Gage [9].

• Flexibility. Not only is the brain able to cope with fuzzy or inconsistent input,

but it can adjust to completely new tasks and input sets through learning.

• Highly Parallel. The adult human brain has an average of 86 ± 8 billion neurons,

and an additional 85 ± 10 billion non-neuronal cells, each of which is capable of

functioning independently [10].

• Low Power. Most estimates place the power consumption of the human brain the

region of 12-20W [11].

34

2.1.1 Neuron Model

Figure 2.1.1. Schematic of a typical neuron, showing the synapses, dendrites and axon.

Taken from [8].

Figure 2.1.1 shows an example of a neuron, the primary repeating unit of an organic brain.

Each neuron has a number of dendrites, branching fibres that form connections with other

neurons via electro-chemical junctions called synapses. The synapses closest to the cell

body of the neuron can be conceptualised as its inputs, with signals that arrive at them

from other neurons which alters the electrical potential within the cell itself. Synaptic

connections that raise this potential are referred to as excitatory, while those that lower it

are inhibitory. This is because when the electrical potential reaches a certain level, known

as the threshold voltage, a pulse called the action potential is fired along the neuron’s axon,

which can be through of as its output. More synapses are located at the end of the axon,

facilitating connections with other neurons [8] [12].

35

Figure 2.1.2. McCulloch-Pitts neuron model. Taken from [13].

Figure 2.1.2 shows the McCulloch-Pitts model of the neuron, which has become the basis

of most artificial neural networks since they proposed it in 1943 [7]. The input synapsis

and dendrites are represented by the weighted inputs, with the weights allowing

connections to be excitatory or inhibitory. There is also a bias value, which enables

adjustment of the threshold at which the neuron fires. The weighted inputs and bias are

summed together, producing a value that is fed to the activation function, sometimes also

called the firing function. Based on the weighted sum, the function determines if the

neuron produces an output. Equations 2.1.1 and 2.1.2 summaris this behaviour, with n

being the number of inputs; Xi being inputs; Wi being weights; S being the weighted sum; b

being the bias; φ() being the activation function and Y being the output [8].

𝑺 = ∑ 𝑿𝒊𝑾𝒊
𝒏
𝒊=𝟏 (𝟐. 𝟏. 𝟐)

𝒀 = 𝝋(𝑺 − 𝒃) (𝟐. 𝟏. 𝟐)

The original McCulloch-Pitts neuron used 1 and 0 as the input/output values; -1 and +1 as

weights and a simple step for the firing function, shown in equation 2.1.3.

𝒀 = {
𝟏 𝒊𝒇 𝑺 ≥ 𝟎;
 𝟎 𝑶𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆.

 (𝟐. 𝟏. 𝟑)

This the far from the only activation function however, and as table 2.1.1 and figure 2.1.3

show there are a range of behaviours that can be achieved.

36

Table 2.1.1. A selection of neuron activation functions, their equations and the range of

neuron outputs they produce.

Activation Function Equation Output Range

Sigmoid [14]
𝑌 =

1

1 + 𝑒−𝑆

[0, 1]

Hyperbolic Tangent [15]
𝑌 =

(𝑒𝑆 − 𝑒−𝑆)

(𝑒𝑆 + 𝑒−𝑆)

[-1, 1]

Rectified Linear Unit [16]
𝑌 = {

𝑆 𝑖𝑓 𝑆 ≥ 0
0 𝑖𝑓 𝑆 < 0

[0, ∞]

Leaky Rectified Linear Unit [17]
𝑌 = {

𝑆 𝑖𝑓 𝑆 ≥ 0
0.01𝑆 𝑖𝑓 𝑆 < 0

[-∞, ∞]

SoftPlus [18] 𝑌 = ln(1 + 𝑒𝑆) [0, ∞]

Figure 2.1.3. Plots of the activation functions from table 2.1.1, as well as the step function

from equation 2.1.2. S range ± 4.

37

2.1.2 Multi-Neuron Networks

In both biological and artificial contexts, a single neuron is limited in its utility. For

example, in 1958 the Perceptron neuron, an improved version of the McCulloch-Pitts

neuron that substitutes the Boolean weights for continuous values in the range -1 to +1,

thus allowing for inputs to have different degrees of importance [19] was devised.

However, in 1969 it was shown to be incapable of computing the XOR function [20].

Table 2.1.2. Truth table for an XOR function with two inputs

Input 1 Input 2 Output

0 0 0

0 1 1

1 0 1

1 1 0

Table 2.1.2 shows the possible input combinations and the outputs they should produce.

Taking this and the activation function of the neuron, the step function from equation 2.1.2,

it is possible to express the weights as the inequalities shown in equations 2.1.3 through

2.1.6.

𝑰𝒏𝒑𝒖𝒕𝟏 = 𝟎, 𝑰𝒏𝒑𝒖𝒕𝟐 = 𝟎 ⇒ 𝑾𝟏𝑰𝒏𝟏 + 𝑾𝟐𝑰𝒏𝟐 = 𝟎 ⇒ 𝟎 < 𝒃 (𝟐. 𝟏. 𝟑)

𝑰𝒏𝒑𝒖𝒕𝟏 = 𝟎, 𝑰𝒏𝒑𝒖𝒕𝟐 = 𝟏 ⇒ 𝑾𝟏𝑰𝒏𝟏 + 𝑾𝟐𝑰𝒏𝟐 = 𝑾𝟐 ⇒ 𝑾𝟐 ≥ 𝒃 (𝟐. 𝟏. 𝟒)

𝑰𝒏𝒑𝒖𝒕𝟏 = 𝟏, 𝑰𝒏𝒑𝒖𝒕𝟐 = 𝟎 ⇒ 𝑾𝟏𝑰𝒏𝟏 + 𝑾𝟐𝑰𝒏𝟐 = 𝑾𝟏 ⇒𝑾𝟏 ≥ 𝒃 (𝟐. 𝟏. 𝟓)

𝑰𝒏𝒑𝒖𝒕𝟏 = 𝟏, 𝑰𝒏𝒑𝒖𝒕𝟐 = 𝟏 ⇒ 𝑾𝟏𝑰𝒏𝟏 + 𝑾𝟐𝑰𝒏𝟐 = 𝑾𝟏 + 𝑾𝟐 ⇒ 𝑾𝟏 + 𝑾𝟐 < 𝒃 (𝟐. 𝟏. 𝟔)

From the inequalities in equations 2.1.4, 2.1.5 and 2.1.6; it is clear to see why the XOR

function isn’t implementable, as it requires the weights to be greater than zero on their

own, but less than it if added together [21].

38

However, if additional neurons are introduced the XOR function becomes trivially

computable.

Table 2.1.3. Truth tables for neurons acting as NAND, OR and AND gates.

Input 1 Input 2 Neuron 1 (NAND) Neuron 2 (OR) Neuron 3 (AND)

0 0 1 0 0

0 1 1 1 0

1 0 1 1 0

1 1 0 1 1

𝑰𝒏𝒑𝒖𝒕𝟏 = 𝟎, 𝑰𝒏𝒑𝒖𝒕𝟐 = 𝟎 ⇒ 𝑾𝟏𝑰𝒏𝟏 + 𝑾𝟐𝑰𝒏𝟐 = 𝟎 ⇒ 𝟎 > 𝒃 (𝟐. 𝟏. 𝟕)

𝑰𝒏𝒑𝒖𝒕𝟏 = 𝟎, 𝑰𝒏𝒑𝒖𝒕𝟐 = 𝟏 ⇒ 𝑾𝟏𝑰𝒏𝟏 + 𝑾𝟐𝑰𝒏𝟐 = 𝑾𝟐 ⇒ 𝑾𝟐 ≥ 𝒃 (𝟐. 𝟏. 𝟖)

𝑰𝒏𝒑𝒖𝒕𝟏 = 𝟏, 𝑰𝒏𝒑𝒖𝒕𝟐 = 𝟎 ⇒ 𝑾𝟏𝑰𝒏𝟏 + 𝑾𝟐𝑰𝒏𝟐 = 𝑾𝟏 ⇒ 𝑾𝟏 ≥ 𝒃 (𝟐. 𝟏. 𝟗)

𝑰𝒏𝒑𝒖𝒕𝟏 = 𝟏, 𝑰𝒏𝒑𝒖𝒕𝟐 = 𝟏 ⇒ 𝑾𝟏𝑰𝒏𝟏 + 𝑾𝟐𝑰𝒏𝟐 = 𝑾𝟏 + 𝑾𝟐 ⇒ 𝑾𝟏 + 𝑾𝟐

< 𝒃 (𝟐. 𝟏. 𝟏𝟎)

Equations 2.1.7 through 2.1.10 are the weight/bias inequalities for neuron 1, which is

acting as a NAND gate. Solving them gives W1 = -1, W2 = -1, and b = -1.

𝑰𝒏𝒑𝒖𝒕𝟏 = 𝟎, 𝑰𝒏𝒑𝒖𝒕𝟐 = 𝟎 ⇒ 𝑾𝟏𝑰𝒏𝟏 + 𝑾𝟐𝑰𝒏𝟐 = 𝟎⇒ 𝟎 < 𝒃 (𝟐. 𝟏. 𝟏𝟏)

𝑰𝒏𝒑𝒖𝒕𝟏 = 𝟎, 𝑰𝒏𝒑𝒖𝒕𝟐 = 𝟏 ⇒ 𝑾𝟏𝑰𝒏𝟏 + 𝑾𝟐𝑰𝒏𝟐 = 𝑾𝟐 ⇒ 𝑾𝟐 ≥ 𝒃 (𝟐. 𝟏. 𝟏𝟐)

𝑰𝒏𝒑𝒖𝒕𝟏 = 𝟏, 𝑰𝒏𝒑𝒖𝒕𝟐 = 𝟎 ⇒ 𝑾𝟏𝑰𝒏𝟏 + 𝑾𝟐𝑰𝒏𝟐 = 𝑾𝟏 ⇒ 𝑾𝟏 ≥ 𝒃 (𝟐. 𝟏. 𝟏𝟑)

𝑰𝒏𝒑𝒖𝒕𝟏 = 𝟏, 𝑰𝒏𝒑𝒖𝒕𝟐 = 𝟏 ⇒ 𝑾𝟏𝑰𝒏𝟏 + 𝑾𝟐𝑰𝒏𝟐 = 𝑾𝟏 + 𝑾𝟐 ⇒ 𝑾𝟏 + 𝑾𝟐

> 𝒃 (𝟐. 𝟏. 𝟏𝟒)

Equations 2.1.11 through 2.1.14 are the weight/bias inequalities for neuron 2, which is

acting as an OR gate. Solving them gives W1 = 1, W2 = 1, and b = 1.

39

𝑰𝒏𝒑𝒖𝒕𝟏 = 𝟎, 𝑰𝒏𝒑𝒖𝒕𝟐 = 𝟎 ⇒ 𝑾𝟏𝑰𝒏𝟏 + 𝑾𝟐𝑰𝒏𝟐 = 𝟎⇒ 𝟎 < 𝒃 (𝟐. 𝟏. 𝟏𝟓)

𝑰𝒏𝒑𝒖𝒕𝟏 = 𝟎, 𝑰𝒏𝒑𝒖𝒕𝟐 = 𝟏 ⇒ 𝑾𝟏𝑰𝒏𝟏 + 𝑾𝟐𝑰𝒏𝟐 = 𝑾𝟐 ⇒ 𝑾𝟐 < 𝒃 (𝟐. 𝟏. 𝟏𝟔)

𝑰𝒏𝒑𝒖𝒕𝟏 = 𝟏, 𝑰𝒏𝒑𝒖𝒕𝟐 = 𝟎 ⇒ 𝑾𝟏𝑰𝒏𝟏 + 𝑾𝟐𝑰𝒏𝟐 = 𝑾𝟏 ⇒ 𝑾𝟏 < 𝒃 (𝟐. 𝟏. 𝟏𝟕)

𝑰𝒏𝒑𝒖𝒕𝟏 = 𝟏, 𝑰𝒏𝒑𝒖𝒕𝟐 = 𝟏 ⇒ 𝑾𝟏𝑰𝒏𝟏 + 𝑾𝟐𝑰𝒏𝟐 = 𝑾𝟏 + 𝑾𝟐 ⇒ 𝑾𝟏 + 𝑾𝟐

> 𝒃 (𝟐. 𝟏. 𝟏𝟖)

Finally, Equations 2.1.15 through 2.1.18 are the weight/bias inequalities for neuron 3,

which is acting as an AND gate. Solving them gives W1 = 1, W2 = 1, and b = 1.5. By

combining these three neurons together in the manor shown in figure 2.1.4, the XOR

function is implemented.

Figure 2.1.4. 3 neuron network for computing the XOR function.

This simple example demonstrates how combining neurons together in networks allows

more complex functions to be implemented.

Neuron 1

Neuron 2

Neuron 3

Input 1

Input 2

Output 1

40

2.2 Gene Regulatory Networks

The brain is not the only aspect of biological organisms that performs information

processing. Although it does so on a different timescale and using significantly different

mechanisms, the genetic material that shapes organic creatures physiology is also a rich

source of inspiration for computational architectures.

2.2.1 Biological Genomes

The genomes of most biological life are comprised of long chains polymers called

DeoxyriboNucleic Acid (DNA). The repeating unit of these chains, shown in figure 2.2.1,

are called nucleotides and consist of a “backbone” of deoxyribose sugar and phosphoric

acid, along with one of four complex bases: Adenine, Guanine, Thymine and Cytosine

(abbreviated to A, G, T and C) [22].

Figure 2.2.1. A single DNA nucleotide, consisting of phosphate/sugar backbone and a

base, in this case Adenine. Taken from [23].

The nucleotides are joined together by bonds between the phosphate/sugar backbones,

creating the polymer. Each strand of DNA is comprised of two of these polymer chains,

jointed together by bonds between the bases, as illustrated in figure 2.2.2.

41

Figure 2.2.2. A small section of a complete DNA strand, consisting of two nucleotide

polymer chains joined by bonds between their respective bases. Taken from [23].

It should be noted that the bases can only bond in two configurations: A with T and C with

G. The sequence of bases along a DNA strand form a code, which in simple terms is often

described as a blueprint for a particular organism. More specifically, however, DNA

encodes the instructions needed to create proteins. Proteins are complex macromolecules

that are vital for biological life, as they perform a vast array of functions [24]:

• Structural proteins form frameworks, such as collagen in tendons and cartilage in

skeletons.

• Contractile proteins, such as actin and myosin in muscles, facilitate movement.

• Transport proteins, carry molecules throughout organism’s tissues, with

haemoglobin being the most well-known.

• Regulatory proteins, such the hormone insulin, control biochemical reactions.

• Protective proteins, such as antibodies and clotting factors, combat infective agents

and facilitate healing.

• Storage proteins hold molecules for future use, such as ferritin which stores iron.

• And perhaps the most important, Enzymes, which act as catalysts for biochemical

reactions like the release of energy from glucose; or the transcription of DNA

itself.

42

Like DNA, proteins are also polymers, with their repeating monomer being the amino acid.

Amino acids are themselves quite complex, consisting of a shared core of a hydrogen

atom, a carboxyl group and an amino group; bonded to a so-called R group, which is

different for every amino acid. Each gene with a genome encodes the complete sequence

of amino acids that comprise a single protein, as well as other information that will be

discussed in section 2.2.3. Each amino acid is represented in this code by a sequence of

three bases, referred to as a codon. With the four possible base pairs, there are enough

codons to represent 64 amino acids. In reality however most organisms (including humans)

only have 20 of them, along with their respective codons [23].

Note that, even with some amino acids having multiple codons, there are only 61 base

combinations accounted for. The remaining three are referred to as the termination or stop

codons, as they indicate the end of an amino acid sequence.

43

2.2.2 Protein Synthesis

Protein synthesis is the process of transforming the “blueprint” of DNA into the actual

protein. It consists of two stages, shown in figure 2.2.3: Transcription, during which the

section of DNA coding for a particular gene is used to create a corresponding section of

mRNA; and Translation, during which tRNA segments manoeuvre the amino acids into

position.

Figure 2.2.3. Simplified illustration of the protein synthesis process. Taken from [25].

RNA is RiboNucleic Acid, another complex polymer that is involved in these cellular

processes. As its name would suggest, it is similar in structure to DNA, but with two

differences: first, the base Thymine is replaced by the base Uracil; and second, it only

consists of a single polymer chain. It is this second difference that is the most important, as

it allows RNA to form bonds and adopt more complex shapes than DNA [25]. mRNA, or

messenger RNA, is perhaps the simplest of these shapes, as it is an RNA strand intended to

carry the amino acid sequence to the ribosome, the cell’s protein synthesis machinery. It is

produced by a protein called RNA polymerase, which latches onto a single strand of DNA

at the start of a gene (a location called a promotor). The polymerase then moves down the

strand, bonding together RNA nucleotides to produce the RNA strand. Once completed,

mRNA has a number of additional features added, the most significant of which is a

special non-codon sequence of bases called the ribosome binding site. This provides a

point for the ribosome, the protein that mediates the translation process, to latch onto the

mRNA strand.

44

Figure 2.2.4. The process of translation, where an amino acid polymer is formed based on

the sequence contained within a strand of mRNA. Taken from [26].

Once the ribosome is connected to the mRNA, it moves along it codon by codon. It is at

this stage that tRNA, or transport RNA, is involved. As shown in figure 2.2.4, tRNA

collects amino acids, transports them to the ribosome. Each tRNA has a nucleotide

sequence on it that corresponds to the codon for the amino acid they carry, so they can

connect to the mRNA. This hold the amino acid in place, ready for the ribosome to

facilitate the bond between it and the next amino acid in the sequence. When a stop codon

is reached, instead of a tRNA section, a protein called a release factor connects, which

disconnects the ribosome from the mRNA strand, and releases the completed amino acid

polymer [25].

45

2.2.3 Gene Regulation

A complete biological genome is present in every cell in an organism’s body, but not every

cell requires all of the proteins it codes for all of the time. Some proteins, like ribosomes

and others involved in DNA transcription, are always needed, so their respective genes,

called housekeeping genes, are always active or expressed. Non-housekeeping genes

however, have their expression controlled through a variety of mechanisms, general

collectively referred to as gene regulation mechanisms.

An excellent example of one such mechanism is the so called regulatory circuit of the lac

operon of E. coli. Escherichia coli is a bacterium that is an example of a model organism, a

lifeform that is well understood by biologists and hence utilised widely in experiments

(other model organisms include D. melanogaster, the fruit fly; and C. elegans, the

nematode worm). Operons are clusters of genes in bacteria and other prokaryotic

organisms that code for sets of proteins that work together to complete some larger task

[24]. The lac operon codes for three proteins: permease, β-galactosidase and

transacetylase; which together form the mechanism, shown in figure 2.2.5, by which E.

coli breaks down the complex sugar lactose into the simpler galactose and glucose sugars

[3].

Figure 2.2.5. The lactose utilisation mechanism of E. coli. Permease transports lactose

past the cell wall, where β-galactosidase and transacetylase break it down into its

constituent sugars. Taken from [25].

The amount of these proteins within the cell varies with the amount of lactose present,

something which is caused by a gene slightly before the lac operon called lacl. Lacl codes

46

for a protein called the lactose repressor, which under normal circumstances bonds to the

promotor of the lac operon, as shown in figure 2.2.6. This prevents the RNA polymerase

from connecting there to initiate transcription of the genes, thus preventing the synthesis of

the lactose breakdown proteins.

Figure 2.2.6. Action of the lacl gene and lac repressor protein under normal conditions.

Taken from [25].

However, as figure 2.2.6 shows, something interesting occurs when lactose in added to the

equation. When E. coli encounters a quantity of lactose, a small amount is able to permeate

the cell wall and is converted to a slightly altered form called allolactose. Allolactose is

able to bond with the lac repressor protein before it can bond to the lac operand promotor.

This results in the transcription of the genes proceeding, creating the proteins needed to

utilise the newly found lactose [3].

47

Figure 2.2.7. Blocking of the lac repressor protein by allolactose. Taken from [25].

While other mechanisms of gene regulation exist, this regulatory circuit illustrates the

process. It is easy to see how more complex regulatory mechanisms could be built up,

though the addition of more parts.

48

2.2.4 Artificial Gene Regulatory Networks

As alluded to at the start of this section, gene regulation mechanisms have been taken as

inspiration for computational methods. One of the first examples is Kauffman’s random

Boolean networks [27], which modelled genes as binary units which were either on or off.

Each gene was randomly connected to other genes, and possessed a random truth table that

specified its on/off state based on the state of the other genes. Despite their simplicity, it is

easy to see how such a network would be able to replicate the behaviour of a gene

regulatory circuit like the one detailed in section 2.2.3.

Figure 2.2.8. A Boolean network for robotic control, together with its input/output

mechanisms. Taken from [28].

As for computational application, such networks have been successfully used in

applications such as robotic control [28], though they are limited by their use of Boolean

expression values [29]. Continuous Valued Discreet Time Gene Regulatory Networks

(CDGRNs) are an improvement upon Boolean networks, as they solve the limited

expression value issue by instead using a continuous value range, such as decimal values

between 0.0 and 1.0. Instead of a truth table, CDGRNs use a regulatory function that maps

the inputs from other genes to an output expression value [14]. This should sound familiar,

as this version of a gene regulatory network is comparable to the neural networks described

in section 2.1. In fact the sigmoid activation function, noted in table 2.1.1, is one of the

more commonly used regulatory functions [14].

49

2.3 Epigenetic Networks

Gene regulation as described in section 2.2 is not the only mechanism which alters the

expression of genes within an organism. Coming from the Greek and literally meaning

“above” or “over” genetics, epigenetic mechanisms operate upon the genome, but they are

distinct from it. Dr. Nessa Carey uses the analogy of a play script [4]. The original script is

the genome, with dialog being the protein genes and stage directions being the regulatory

genes. Several different directors now receive copies of the script, ready to produce the

play, and make their alterations. Some are impermanent, directions given to actors,

production design decisions; these are non-hereditary epigenetic changes, they alter the

expression of the genome, but not the genome itself, and are not carried forward. However,

some of the directors write on the script, cross things out, add things in etc. These copies of

the script might then pass to other directors, who use them to produce their own versions of

the play. These are the hereditary changes, like those discussed at the start of this section:

the genome (text of the play) remains the same, but the alterations to their expression are

carried forward.

2.3.1 Biological Mechanisms

While often presented as such, DNA does not float freely within the nucleus of the cell, at

least not in complex organisms. Instead it is confined to structures called chromosomes,

which are shown in figure 2.3.1. As the figure illustrates, chromosomes are formed by

tightly coiling together fibers called chromatin. In turn, the chromatin fiber is comprised of

units called nucleosomes; which consist of a DNA strand wrapped around a cluster of

proteins called histones [30].

50

Figure 2.3.1. Structure of a chromosome, showing the coiling of DNA and histones to from

chromatin fibers. Taken from [31].

Originally thought to be primarily a packaging method, it is now understood that the

structure of chromatin fibers plays a role in altering the expression of the genes wrapped

up within them. At the centre of each nucleosome are eight histones, collectively called a

histone octamer, of which there a four types: H2A, H2B, H3 and H4 (the histone H1

performs a different function). All of these histones consist of a protein core and two tails

of amino acids. These tails allow other molecules to bond to the histones, which can have a

variety of different effects from initiating transcription to reacting to DNA damage. Of

interest to this work however, is that some modifications such as methylation can repress

the transcription process [30].

51

Occurring in H3 and H4, histones methylation is the addition of one or more methyl groups

to instances of the amino acids lysine and arginine in one of the tails of a histone. One of

these amino acid instances, referred to as H3K9, has the important property that its

methylation forms a binding site for the protein Chromobox Homolog, more commonly

called Heterochromating Protein 1 (HP1) [32]. HP1 alters the shape of the chromatin fiber,

taking from the more standard Euchromatin to the tightly packed Heterochromatin, both of

which are shown in figure 2.3.2. This chromatin compacting has the knock on effect of

blocking sections of DNA from being accessed by transcription factors, preventing their

expression.

Figure 2.3.2. Non-compact Eurchromatin, left; and tightly compacted Heterochromtin,

right. Taken from [33].

52

2.3.2 Artificial Networks

Inspired by these additional mechanisms of genetic expression control, Dr. Alex Turner

created the first artificial epigenetic networks in 2013 [6] [33]. Building upon the CDGRNs

described in section 2.2, artificial epigenetic networks add a layer of control that is able to

supress the normal functioning of the processing elements, genes, of the network.

Figure 2.3.3. A simple illustration of a gene regulatory network, with the addition of an

epigenetic mechanism. Taken from [6].

The initial version of an epigenetically augmented network, called an Artificial Epigenetic

Regulatory Network (AERN), uses Boolean switches as the epigenetic mechanism. A

number of genes are connected to each switch, which would have a predetermined

condition of activation. When activated, the epigenetic switch would inhibit the activity of

its connected genes, as shown in figure 2.3.5.

53

Figure 2.3.4. An AERN with epigenetic switch inactive, top, and active, bottom. Note how

the activation of the epigenetic mechanism, and hence suppression of the genes,

dramatically changes the characteristics of the network.

A more sophisticated version, simply called the Artificial Epigenetic Network (AEN),

replaces the Boolean switches with elements similar to the genes themselves. That is to say

processing elements that take in a selection of input values, then apply a function to

determine their output. As it is this version that will be expanded upon in this work, a more

in-depth look at its architecture and mechanisms will be given in Chapter 4.

Turner was able to demonstrate that these kinds of networks are able to outperform their

more standard gene regulatory network counterparts in various example problems, such as:

navigating a Chirikov’s standard map; controlling single and multiple coupled inverted

pendulums; and the control of transfer orbits in gravitational systems [6].

Input 1 Input 2 Gene 1 Gene 2 Gene 3 Gene 4 Output

1

Epigenetic

Switch

Input 1 Input 2 Gene 2 Gene 4 Output

1

Epigenetic

Switch

Gene 3 Gene 1

54

2.4 Summary

This chapter has traced the development of the epigenetic network architecture, from both

its biological origins and the computing paradigms that inspired it. As already mentioned,

Chapter 4 will further expand upon the AENs introduced in this chapter, while Chapter 3

continues to look at the aspects of this work that owe their origins biological inspiration, by

covering the subject of evolution and genetic algorithms.

55

3 Genetic Algorithms

Given the expansive range of parameters that an Artificial Epigenetic Network (AEN)

possess (as Chapter 4 will show, a small network with 2 inputs, 4 genes, 2 molecules and 2

outputs has at least 40 parameters to set), manual design is not a realistic option. Artificial

Neural Networks (ANNs) can solve this problem by making use of learning algorithms, a

wide range of different methods that allows an ANN’s parameters to gradually be adjusted

until the network is trained to solve a particular problem [34]. Unfortunately, no such

algorithms exist for Artificial Gene Regulatory Networks (AGRNs), so for one to be

applied to an AEN would require development from first principles. However, a more

straightforward solution exists in the form of genetic algorithms; a method that can be used

to solve complex optimisation problems by evolving a population of individuals towards a

solution.

This chapter details the background and theory of evolutionary methods, of which genetic

algorithms are an example. It will then detail the particular instances that are employed

within this work: a simple, single objective implementation called the Simple Genetic

Algorithm; the slightly more complex Single Sample Generational Evolution algorithm;

and finally the multi-objective Non-dominated Sorting Genetic Algorithm II (NSGA II).

3.1 Background

3.1.1 Biological Evolution

In a very broad sense, evolution simply means the gradual change of something over time,

although nowadays it is far more commonly used to refer to the specific process of

biological evolution through natural selection. Evolution through natural selection is the

process by which biological life diversifies and adapts itself to its environment [35]. The

core of this theory was summarised by biologist Ernst Mayr as follows [36]:

• Every species is fertile enough that if all offspring survived to reproduce, the

population would grow.

• Despite periodic fluctuations, populations remain roughly the same size.

• Resources such as food are limited and are relatively stable over time.

• Thus, a struggle for survival ensues.

• Individuals in a population vary significantly from one another.

https://en.wikipedia.org/wiki/Species
https://en.wikipedia.org/wiki/Struggle_for_existence

56

• Much of this variation is heritable.

• Individuals less suited to the environment are less likely to survive and less likely to

reproduce; individuals more suited to the environment are more likely to survive and

more likely to reproduce and leave their heritable traits to future generations, which

produces the process of natural selection.

• This slowly effected process results in populations changing to adapt to their

environments, and ultimately, these variations accumulate over time to form new

species.

To elaborate upon this an example will be used, in the form of Darwin’s finches; four of

which are shown in figure 3.1.1. In numerical order they are: a Large Ground Finch, a

Medium Ground Finch, a Small Tree Finch and a Green-Warbler Finch.

Figure 3.1.1. Four out of the fifteen species of Galapagos finches, more commonly known

as Darwin’s finches. Drawn by John Gould and taken from [37].

All the finches shown in figure 3.1.1 share a common ancestor, a historical species that

was the first to spread to the Galapagos Islands. As this species multiplied, it encountered a

variety of differing environmental niches, especially with respect to available food sources.

Due to the natural degree of variation within a species, say for example in beak size, some

finches happened to be more adept at exploiting some of these sources: a slightly stronger

beak might enable a finch to open nuts; a thinner beak to reach grubs within trees; and so

https://en.wikipedia.org/wiki/Heredity
https://en.wikipedia.org/wiki/Natural_selection

57

on. A finch better equipped to feed itself would be more likely to breed, as it would be both

healthier and more able to provide food for its offspring; offspring which would inherit the

same physiological differences that provided their parent with an advantage. Over

hundreds, if not thousands of generations, these small changes accumulate to create

completely different species of finch which look quite different from one another: the

slightly stronger beak is now much larger and perfectly adapted for nut cracking, as with

the large ground finch, or possibly the consumption of hard seeds like its medium

counterpart; while the grub eaters like the Green-Warbler finch possess beaks almost

comparable to a spear.

This diversification also illustrates a very important fact about evolution through natural

selection: none of the species in figure 3.1.1 are better than the others overall, because each

one of them is optimised for the particular environmental niche that they occupy. It is

because of this that evolutionary biologists decry the phrase “Survival of the Fittest” as

basically meaningless, as more accurate description might be “Proliferation of the

Suitable”. It is also important to note that, in biological evolution, there is no guiding force,

either in the introduction of changes or the elimination of less suitable

individuals/promotion of suitable ones. It is on this point that artificial evolutionary

methods diverge from biological evolution by natural selection, in that evolutionary

methods do possess such a guiding force: the engineer employing them.

3.1.2 History of Evolutionary Methods

Credit for the idea to translate the principles of evolution via natural selection into the field

of engineering can be shared between two individuals: Prof. John Henry Holland of the

University of Michigan and Prof. Ingo Rechenberg of the Technical University of Berlin.

During the 1960s and 70s, both of them developed the idea of employing genetic and

evolutionarily inspired methods of designing and adapting artificial systems, with

Rechenberg’s work being his doctoral thesis, built around the utilisation of an early genetic

algorithm to design aircraft wings [38].

58

Figure 3.1.2. Rechenberg’s evolutionary algorithm, applied to the design of aircraft

winglets. Picture taken from [38].

Figure 3.1.2 shows the evolutionary process employed by Rechenberg, which can very

clearly be compared directly to biological evolution. In place of, say, a finch, there is

instead a model of an aircraft wing, with variations in the angle of its wingtip elements.

Instead of the acquisition of food, there is aerodynamic efficiency, and natural selection is

replaced by the intelligent selection of individuals that better meet design requirements.

These are then used to create a new generation of possible designs, and the process repeats.

This process: creating a population of individuals, evaluating them, selecting the best,

creating a subsequent generation and then iterating; is still the core of generic algorithm

design. As technology has developed, the automation of the algorithms has improved:

while Rechenberg needed to manually alter the shape of the wing model for each variation,

put it into a physical wind tunnel and record the results; a modern version of this

experiment could be performed entirely within a computer, utilising simulation tools able

to automatically produce and analyse the possible wings. Indeed, Akira Oyama utilised this

approach in 2000 to optimise the aerodynamics of transonic aircraft wings [39]. Because of

the flexibility afforded by this more modern methodology, Oyama was able to modify 11

different parameters of his wing design, something that would have been completely

impractical for Rechenberg.

59

3.1.3 Structure of a Genetic Algorithm

With a basic grounding established, it is now possible to look at the specific stages of a

genetic algorithm in greater detail. In order, these are:

1. Genotype Definition

2. Generation of Initial Population

3. Genotype/Phenotype Mapping

4. Evaluation

5. Selection Operation

6. Generation of Offspring

With stages 3 through 6 repeating until an ending condition is met, usually either a number

of generations, for more open ended problems; or an individual reaching a target

evaluation result [40].

3.1.3.1 Genotype Definition

In the biological world, the element responsible for the transmission of traits from one

generation to the next is its genome, stored within its DNA. As already discussed in section

2.2, DNA is a complex molecule that is able to encode information in the pattern of its sub-

elements, called base pairs: Adenine (A), Thymine (T), Cytosine (C), and Guanine (G).

Each sequence of three is referred to as a codon, and each codon relates to either a specific

amino acid, the building blocks of proteins; or functions as an “instruction” to the protein

synthesis “machinery”. A complete set of control and amino acid codons encodes the

needed information to create a single protein, with multiple proteins combining together to

build a part of an organism. This total summation of an organism’s genetic information is

referred to as its genotype, with the morphology that results from it being the phenotype

[35]. The first step in creating a genetic algorithm is to define how the genotype, which is

what will be carried down the generations, encodes its phenotype, the thing that is actually

being designed. In the case of both Rechenberg and Oyama’s work, the phenotype was

wing geometry, and the genotype consisted of a number of measurements of described that

geometry e.g. winglet angles for Rechenberg [38] [39]. Note that in these cases, the

genotype directly describes some aspect of the phenotype, whereas in biological systems

the mapping is much more indirect.

60

3.1.3.2 Generation of Initial Population

With genotype structure defined, the first step of the algorithm proper is the generation of

an initial population. This will consist of a number of genotypes, produced in a number of

possible ways, though the most usual is to simply generate them randomly. Other

possibilities include: seeding the population with genotypes that relate to known good

phenotypes, such as the best existing design; or building a population out of copies, or

slightly altered copies, or the same genotype. This does limit the diversity of the

population, whether or not this is a bad thing depends on the desires of the algorithm’s

designer [40].

3.1.3.3 Genotype/Phenotype Mapping

In order to evaluate the individual solution that the genotypes within the population relate

to, they need to be translated into their phenotype form. Referring back to Rechenberg and

Oyama: Rechenberg’s translation required the manual adjustment of a physical model of

an aircraft wing; while Oyama was able to offload this work to software which generated a

simulated model based on the parameters encoded by the genotype [38] [39].

3.1.3.4 Evaluation

Now that the phenotype exists, it can be evaluated to determine its suitability for the task.

This can be broken down into two stages: testing and assessment. In the testing stage, the

phenotype is exposed to some range of environments or stimuli, while its performance and

responses are measured. With Rechenberg, this involved placing the physical wing model

within a wind tunnel, and then measuring its aerodynamic performance with various

instruments; Oyama’s testing was the same, but performed using simulated wind tunnel

[38] [39]. This, together with the equivalent comparison from section 3.1.3.3 illustrates

why most current genetic algorithms utilise computer models and simulations, as it

dramatically reduces resource and time requirements, while increasing automatability and

parallelisability. However, there are still arguments for utilising physically realised

phenotypes, particularly in fields like robotics, as it is often impractical to encapsulate all

the factors and variations of the real world within a simulator. This can lead to designs

created using computer simulation for evaluation having reduced performance, or even

failing completely, when taken into the real work, an issue called the “reality gap” [41].

With data gathered from the evaluation, whichever form it has taken, the suitability of the

individual can now be assessed and a “score” given. This “score” is referred to as the

61

individual’s fitness, and the means of calculating it as a fitness function. The creation of a

fitness function for a particular application is complex, especially in more open-ended

situations. There are tasks, such as optical character recognition, where the finished design

must produce a particular response to a particular stimulus, and as such the fitness directly

relates to this. However, consider a more complex problem, such as evolving a simulated

robot able to walk, an example of one of the many problems looked at by Karl Sims [42].

Sims’ work was centred on simulated “creatures”, whose morphology and control systems

could be altered via evolution to suit a specific task, specified by the fitness function used.

In his initial work on evolving locomotion, the fitness of a simulated creature was based

solely on its average horizontal velocity, with Sims’ reasoning being that a better

locomotion method would be able to move faster. This instead reliably produced creatures

like those shown in figure 3.1.3.

Figure 3.1.3. An example of a flawed creature (left) and its unconventional method of

locomotion (right). Taken from [42].

Rather than evolve anything that could be characterised as limbs or a gait, the creatures

instead evolved to be very tall and top heavy. When simulated, they would fall forward,

sometimes even managing to “somersault” to maintain momentum for longer. While far

from the intended outcome, these falling creatures were able to dominate because of their

performance exactly met the specification of the fitness function: maximise horizontal

velocity [43].

62

3.1.3.5 Selection Operation

Once every individual in the population has been assessed and evaluated, the next stage is

to select which of them will contribute to the next generation: either by being directly

carried over to it; or as parents to new individuals (offspring). There are a wide variety of

stratagems, of which a few of the most common are:

• Tournament Selection. One of the simplest selection methods, in a tournament

selection algorithm, a group of q individuals are taken, often randomly, from the

population and compared to one another. The best individual is then either placed

directly in the next population, or becomes a parent. In the latter case, the other

parent will either be chosen from the same group of q by some other metric; or by

a second tournament selection [44].

• Rank-Based Selection. Rather than drawing a small group from the population and

then choosing from it, rank-based selection works by ordering the entire

population based on fitness, and then weighting the selection of individuals to

move the new population/become parents based on this ranking [45].

• Diversity-Based Selection. Similar to rank-based selection, but instead of the

weighting being proportional to the fitness of an individual, it is instead based on

how different each individual is to one another. This is intended to maintain the

diversity of the population, which helps to avoid local optima [46]

• Disruptive Selection. Suggested by Ting Kuo and Shu-Yuen Hwang, disruptive

selection penalises individuals whose fitness is close to the population average,

instead choosing those with very high, or very low fitnesses. While this stratagem

doesn’t work well for all problems, it has been shown to have a positive impact of

the diversity of the population [47].

• (µ, λ) Evolution. An example of a deterministic selection method. µ parents will

be chosen, which in turn will create λ offspring. The best µ of these offspring will

then replace their parents. Note that this does not allow for the possibility of an

individual progressing directly from one generation to the next, which means it is

possible for the maximum fitness to go down [40].

• (µ + λ) Evolution. Like (µ, λ) evolution, but instead of replacing their parents, the

offspring and parents are assessed as a group, which allows for parents fitter than

their offspring to progress to the next generation in their place [40].

63

3.1.3.6 Generation of Offspring

Regardless of the method used to select them, the next stage is to use various pairs of

parents to create a number of offspring. This involves two processes: crossover, sometimes

called recombination; and mutation. In biological evolution, crossover occurs as a part of

the process of genetic recombination during the production of gametes during meiosis. The

gametes, or sex cells (e.g. eggs and sperm), of most animals are haploid, which means they

have half the number of chromosomes as a normal, or diploid, cell. This allows for half a

child’s genetic information to come from each parent, but would limit the possible

combinations of genetic material. However, during the process of meiosis, sections, or

alleles, of two comparable, or homologous, chromosomes can swap. This crossing over of

material, shown in figure 3.1.4, increases the diversity of a given parent’s gametes, and

thus their offspring [25].

Figure 3.1.4. The biological process of chromosomal crossover during meiosis. Note that

without crossover, the only allele combinations would be Ab and aB. With crossover this

becomes AB, ab, Ab and aB. Taken from [25].

As the individuals in an artificial system do not have the same sort of variation in

chromosomes as a biological organism, the crossover process instead occurs between the

two parents and their offspring: sections of the two parent genomes are combined, creating

an offspring comprised of aspects of both. Like the selection process, there are various

different stratagems for determining which parent will provide which sections:

64

• Uniform Crossover. A simplistic method, in which the choice between the parents

is made independently for each value of the genome. This can either be completely

random; or weighted depending on factors like fitness, with the better parent having

a greater chance of being chosen [48]. Illustrated in figure 3.1.5.

Figure 3.1.5. An example of uniform crossover. Taken from [48].

• N-Point Crossover. Instead of going value by value, the genome of the offspring is

instead divided at N points, creating a number of sections (e.g. 2 points = 3

sections, as shown in figure 3.1.6). Each section then comes from one of the

parents, with the choice being made in a similar manor to uniform crossover.

Figure 3.1.6. An example of N-point crossover, where N = 2. Taken from [48].

65

• Arithmetic Crossover. In arithmetic crossover, neither parent is chosen to

contribute to the genome of the offspring. Instead, values are chosen using some

function that uses the values from both parents, with the simplest example being

the average of the two parents, as shown in figure 3.1.7.

Figure 3.1.7. An example of arithmetic crossover, utilising the mean of the parents. Taken

from [48].

After crossover generates the offspring, there then exists the possibility of mutation. In

biological organisms, mutation refers to changes in a genome brought about by any one of

a huge number of causes, from errors in the process of DNA replication to chemical or

radiological exposure. While often associated with negative effects like genetic diseases,

mutation is ultimately responsible for all variation in organic life [25]. It is because of this

important role that genetic algorithms include a mutation operation, to allow offspring to

possess traits beyond those of their parents. Broadly the same method of mutation is used

in all cases: a chance exists for each value of the genome to mutate; and if a value is

chosen, it is replaced by a different value. The exact value of the mutation chance,

frequently called the mutation rate, is important. Too low and very little variation will

occur, too high and positive traits won’t be passed between parents and offspring. In 1992

Heniz Muhlenbein developed a formula (equation 3.1.1) that posited a relationship

between ideal mutation rate, population size and the size of the genome [49].

𝑁 × 𝑚 × √𝑛 = 1.7 (3.1.1)

Where N is the population size, n is the genome length and m is the mutation rate. This

broadly states that larger populations with larger genomes should have lower rates of

mutation.

66

With the general structure of a genetic algorithm and its various elements detailed, the

following sections will look at the three specific algorithms used within this work, starting

with the simple genetic algorithm.

3.2 Simple Genetic Algorithm

A very basic implementation, the simple genetic algorithm is intended for use in the initial

experiments to confirm the functionality of the epigenetic networks, as it is similar to the

algorithm employed in Turner’s work [6], a fact that also allows valid comparisons to be

drawn between the two network implementations. An overview of the process is shown in

algorithm 3.2.1, while algorithm 3.2.2 elaborates on the new population generation

process.

Algorithm 3.2.1 Simple Genetic Algorithm, with a population of M and N generations

Generation of initial population of N individuals

for N generations {

 for M individuals in the population {

 Assess fitness of individual

 }

 Generate new population (see algorithm 3.2.2)

}

Algorithm 3.2.2 Simple Genetic Algorithm, generation of new population

Sort current population by fitness

Copy M/8 best individuals into the new population

for M – M/8 individuals {

 Select two individuals from the best 1/8th to be parents

 Crossover Parents to produce new individual

 Apply mutation operator

 Place new individual into new population

}

67

3.2.1 Selection Method

The simple genetic algorithm uses a form of rank-based selection, with the addition of

elitism. The population is ordered by fitness, then the top N individuals are selected, where

N is 1/8th of the population size (e.g population size = 128, N = 16). These individuals are

copied directly into the new population, while also being used as the pool from which

parents are selected to produce offspring. The remaining 7/8th of the new population are

new offspring.

3.2.2 Offspring Generation

Uniform crossover is used to produce the initial offspring, with selection between the two

parents being based on a crossover rate parameter that biases the fitter parent. For example:

a crossover rate of 0.2 means that 80% of the offspring’s genome will come from the fitter

parent; and 20% from the weaker parent. Following crossover, each offspring passes

though the mutation operator, where the mutation rate determines the probability that each

value within the genome will be switched with a randomly generated replacement.

3.3 Single Sample Generational Evolution

The single sample generational evolution algorithm is the genetic algorithm integrated into

the JBotEvolver simulation package, which is disused in more detail in section 6.2. It is

largely the same as the simple genetic algorithm, but with two key differences. First,

parents are not directly chosen from the N elite individuals that make up the first portion of

the new population, but from a set of elite individuals of size λ. If N = λ, then the selection

functions exactly the same as for the simple genetic algorithm. However, if N > λ then the

parents are more exclusive, reinforcing the elitism; while N < λ allows lower fitness

individuals to be parents, aiding genetic diversity. The other difference is that single

sample generational evolution has no crossover, with offspring instead being mutated

copies of a single parent.

68

3.4 Nondominated Sorting Genetic Algorithm II

Thus far, all discussion of genetic algorithms, as well as the two implementations in

sections 3.2 and 3.3, have been limited to a single objective. That is to say the algorithms

are optimising based on only one fitness metric, e.g. aerodynamic performance. However,

there are often occasions when multiple factors need to be taken into consideration during

the design process. For example, it is possible that a genetic algorithm could produce a

design that performed its function perfectly, but which consumed vast amounts of power

and cost thousands of pounds to produce. Instead of a perfect design, what these situations

call for is something called a pareto-optimal solution: a balance in which all objectives are

taken into account [50]. Often, there isn’t a single pareto-optimal, rather a set of them that

display different trade-offs, much like the old engineering adage: “good, cheap, fast; pick

two”. In tackling these problems with evolutionary methods, the tool used is called a multi-

objective algorithm.

Generally speaking, the primary difference between single objective and multi-objective

algorithms is the method by which individuals are selected to proceed to the next

generation/produce offspring. Fonseca and Fleming divided the different approaches to this

into three broad categories [51]:

• Plain Aggregating Approaches. A sort of half-way approach, plain aggregation

works by taking the various different axis of optimisation and combining them into

a single fitness, at which point the methods discussed in section 3.1.3.5 can be

employed. While considered advantageous for their ability to produce a single

solution rather than a group of possible ones, the aggregation approach often

requires specialised knowledge of the problem to devise a suitable aggregation

function, as the different optimisation axis often do not equally contribute to the

final fitness, so weighting must be employed.

• Population-based non-Pareto Approaches. The earliest method applied to the

problem of multi-objective optimisation, population-based approaches are built

around considering each objective individually, but allowing all of them some

contribution to the selection process. An example is the Vector Evaluated Genetic

Algorithm (VEGA), devised by J. David Schaffer in 1985 [52]. VEGA divides the

new population being produced into a number of sections equal to the number of

objectives. Then each section is populated with individuals selected using one of

69

the objectives, effectively producing a number of single objectively optimised sub-

populations. These sub-populations are then shuffled together to produce the final

new population. Figure 3.4.1 illustrates this process.

Figure 3.4.1. Population generation method of VEGA. Taken from [52].

Other versions of the population-based approach include: tournament selection

where the objective being used for comparison either being randomly selected each

time, or being chosen based on a weighting of importance [53] [54]; or the deletion

of members of the population with fitness values below a certain threshold for each

objective, with the remaining individuals going on to produce offspring [55].

• Pareto-based Approaches. As its name suggest, this approach directly utilises the

pareto-optimality of the individuals to assess them, more specifically an aspect of it

called domination. In a population, if individual A has a lower fitness in one of its

objectives than individual B, then individual A is dominated by individual B. The

less individuals that this individual is dominated by, the better it is, with individuals

that have the same domination count being grouped together in pareto fronts, as

they are considered to be comparably pareto-optimal. The ultimate goal is for a

front to be comprised of non-dominated individuals, ones which are better than all

others. Selection of individuals is then made based on these fronts, with secondary

factors sometimes being employed to improve elements like genetic diversity.

As its name would suggest, the Non-dominated Sorting Genetic Algorithm 2 (NSGA-II) is

an example of this final category. Proposed in 2002 by Kalyanmoy Deb et al [56] as an

improvement to the previous NSGA [57], NSGA-II starts by assessing the individuals in

70

the population to see how many other individuals dominate them, before sorting them into

pareto fronts, also called non-dominated fronts (NDFs) in this instance. It also calculates a

value called the crowding distance for each individual, which is based on its proximity to

other individuals within the same front, and then sorts each front based on this value. Thus,

the algorithm produces a number of groups of individuals of comparable suitability, sorted

in order of difference from each other. The algorithm then fills half the new population

with individuals selected by working though the fronts in descending order, moving onto

the next when the front is depleted. This typically results in all of the first few fronts, and

then a fraction of a middling front, with all fronts below it being discarded. Finally, the

individuals that have passed into the new population are used as the pool from which

parents are chosen, typically at random, to produce the offspring that comprise the second

half of the new population. This process is illustrated in figure 3.4.2.

Figure 3.4.2. Illustration of the sorting, selection and offspring generation process of

NSGA-II.

In the implementation used in this work, the offspring generation processes is the same as

that previously described in section 3.2.

Initial

Population

Sort into non-Dominated

fronts and sort fronts based on

crowding distance

Select upper half

to transfer to

new population

Fill rest of new

population with

offspring of upper half

71

3.5 Summary

This chapter has built up a picture of genetic algorithms: starting with their inspiration in

the form of biological evolution through natural selection; then moving onto an overview

of their structure and functioning. This has provided context to the descriptions of the three

genetic algorithms employed in this work. The simple genetic algorithm, which will be

employed in initial experimentation due to its similarity to the algorithm employed in

Turner’s original work; The single sample generational evolution algorithm will form the

basis of the robotics experiments as it is already integrated into the simulation tools; and

the multi-objective non-dominated sorting genetic algorithm 2 (NSGA-II), which has a

history of usage in multiobjective applications that indicates it will be suitable for the

multiobjective experiments contained within this work.

The next chapter returns to the subject of Chapter 2 to look at part of what these algorithms

will be used to optimise: the software implementation of the epigenetic network

architecture.

72

4 Software Epigenetic Network

While the ultimate goal of this work is a hardware implementation of an Artificial

Epigenetic Network (AEN), a software version is a necessary first step. This is for several

reasons: implementing and refining Turner’s original networks ensures a solid

understanding of the principals involved in AENs; and the modifications needed to go

from hardware to software can be prototyped and tested with greater ease. A functioning

software network will also provide a metric against which any hardware networks can be

compared to ensure a successful translation has been performed.

The first software network is an implementation of Turner’s original AEN algorithm: 64-

bit floating point numbers, with parameters taking a range between 0.0 and 1.0 (or -1.0 to

1.0 in some cases) [33]. This network will, however, not exactly copy Turner’s work, due

to a small number of refinements that will be detailed later in this chapter. These

alterations have been made either to remove unnecessary complexity (such as the removal

of gene to protein translation); make the network’s architecture more “hardware like” (the

changes to the I/O mechanism).

The next software network laid the ground work for the primary element of the hardware

transition: a switch from floating point numbers to integers. This is an important change to

make as integer based logic: takes up less silicon; utilises less power; and can be executed

at greater speed than its floating point counterpart, particularly with operations like

multiplication. Additionally, it is a much simpler task to alter the precision of an integer

system via changing the bit width, which opens up the possibility of further reducing the

needed silicon. This flows back into the justification for performing initial experiments on

software networks, as altering the precision can be tested more quickly given that there is

no need to synthesise a new hardware implementation, (indeed, a large range of possible

bit widths could be automatically tested with relative ease).

This chapter will begin with section 4.1 detailing the general structure shared between the

various implementations; section 4.2 will then describe the changes made to the original

AENs; finally section 4.3 explains the differences between the floating point and integer

versions.

73

4.1 Network Structure

Instead of modelling the exact mechanics of the epigenetic mechanisms discussed in

section 2.3, the artificial networks designed by Turner employ a more abstract

representation [6]. A number of network elements called epigenetic molecules take in

inputs from either the inputs of the network or the genes (the term for the network’s

processing elements). These molecules then calculate which genes they will alter the

behaviour of using these inputs, in effect abstracting the more complex chemical processes

of chromatin modification. These genes and molecules are connected together via a

location/proximity system, which allows varying network topologies to arise from a

minimal number of parameters, something else that the artificial network shares with its

biological counter parts.

4.1.1 Connections

Instead of each gene and molecule holding a complete list of its connections, a system of

locations and proximities is used. Each element has a location, which corresponds to a

position in a 1D space that is conceptually similar to a DNA strand; and a proximity, which

determines how far on either side of its position an element will look for other units. All

other elements within this proximity will be used as inputs by this first element. Note that

these connections are not reciprocal, so if element A’s location falls within the proximity

of element B, making it one of element B’s inputs, element B will not automatically be an

input of element A.

Figure 4.1.1. An example of the location/proximity system. Elements A and D have no

inputs; element B’s inputs are elements A and C; and element C’s inputs are elements A, B

and C

A

C

D

B Location: 1

Proximity: 1

Location: 3

Proximity: 2

Location: 4

Proximity: 3

Location: 6

Proximity: 1

74

As elements within an AEN will not always be present (due to the action of the epigenetic

molecules), these connections need to be calculated anew at each time step, a process

performed by the algorithm below.

Algorithm 4.1.1 Forming connections between network elements

for number of elements in network (A) {

 for number of elements in network (B) {

 if element (A) is not element (B) {

 if element (B)’s location <= element (A)’s location + proximity {

 if element (B)’s location >= element (A)’s location - proximity {

 element (B) is an input of element (A)

 }

 }

 }

}

Note the conditional statement on line 3, which prevents self-connections. While there is

nothing conceptually wrong with some elements in a network feeding back into

themselves, the location/proximity system means that all elements would do this.

In terms of possible values for the location and proximity parameters, an elements location

can be anywhere within the 1D space, so any value between 0 and the networks maximum

is valid (e.g. 0.0 to 1.0 for a floating point network). The proximities, however, must be

limited to a smaller range, in order to avoid over connection: for example, regardless of its

location, an element with a proximity close to the networks maximum value would connect

to every other element in the network. With this in mind, a range of 0 to 1/7th of the

maximum was used in Turner’s networks, and the author sees no reason to change this.

75

4.1.2 Genes

In addition to the location and proximity described above, each gene also holds a number

of other parameters and an implementation of the firing function, used to determine the

gene’s output.

Once the connections between genes are established, the weighted sum of inputs is

calculated. This of course requires weights, which are stored as an array within the gene.

This brings up a difference between this version of an AEN and Turner’s original: each

input to a gene has its own weight value; rather than using a single weight, applied at the

output of a gene. The original method meant that all connections drawn from a particular

gene would have the same weight, regardless of which genes they were serving as inputs

for. While this does reduce the complexity of the network, as well as the evolutionary

process, it is an uncommon approach that limits the potential functionality of the network;

for example, two different genes, all other things being equal, cannot react to the actions of

a third in different ways. With this in mind, the new multiple weight system was

implemented, although it does come with a problem of its own: as the number of

connections each gene possesses changes, both during the evolutionary process and

execution, the number of weights used also changes. Therefore each gene holds a number

of weights equal to the maximum number of possible connections it could have

(conveniently equal to the number genes plus the number of inputs). These weights are

treated as being directly mapped to a particular possible connection, so when gene A uses

gene B as an input, it uses weight B.

With the weighted sum of inputs acquired, the gene’s firing function is used to determine

its output. The function in question is a simple Sigmoid, used here and in the original

AENs as it has been shown to be an effective choice for various applications [58] [14].

76

Figure 4.1.2. Plot of the sigmoid function, with trivial slope/offset, and x values in the

range ±10.0.

𝒚 =
𝟏

𝟏 + 𝒆−𝒔𝒙−𝒃
 (𝟒. 𝟏. 𝟏)

Figure 4.1.2 and equation 4.1.1 show this function, where x is the weighted sum of inputs,

while s and b correspond to the slope and offset of the sigmoid. These two values can be

altered to result in a slight variation in the firing function, and are the final two parameters

stored with each gene. Once the sigmoid function calculates the gene’s output, it is stored

within the gene, so that it can be accessed by other genes/molecules during the next

execution cycle, or read out of the network as an external output.

77

4.1.3 Epigenetic Molecules

Much of the functionality of the genes carries over into the functionality of the epigenetic

molecules: the molecules also calculate a weighted sum of inputs, using unique weights for

each possible connection; which in turn feeds a sigmoid firing function, used to generate

the molecules output. The difference comes in how this output is used by the network.

While gene outputs are used as inputs by other genes/molecules, or possibly network

outputs; the outputs of the molecules are mapped to positions in the 1D space that all genes

and molecules occupy (described above). Each molecule also possesses a second proximity

which is used to determine how far from this calculated position to look for genes. All

genes within this area are switched to inactive mode, and thus play no part in the next

calculation cycle.

Figure 4.1.3. An example of an epigenetic molecule with the location space. The

molecule’s location and proximity result in gene A being used as an input, while its output

and output proximity result in gene B being made inactive

A B

Molecule

Location: 1

Location: 3

Proximity: 2

Location: 6

Output Value: 5

Output Proximity: 1

78

4.2 Changes from Prior AENs

In addition to the change in the weights noted above, there are two other alterations that

have been made from Turner’s original architecture. Both of these modifications have been

made in the service of creating a more “hardware like” network structure, which will allow

for a simpler translation later.

4.2.1 Removal of Gene to Protein Network Translation

As laid out in Section 2.2.2, in biological systems it is not the genes themselves that

perform a function, it this the proteins they code for which do. This is replicated in

Turner’s AENs, as active genes are copied into a second array called the protein network.

It is the elements in the protein network that are updated during execution, before any

changes are then copied back to the genes. This translation process is laid out in greater

detail in algorithm 4.2.1.

79

Algorithm 4.2.1 Execute single iteration of AEN with gene to protein translation

for number of epigenetic molecules

 for number of genes in protein network

 if gene is in range of molecule’s input

 add to molecule’s weighted sum

 Execute epigenetic molecules

 if gene is in range of molecule’s output

 mark for addition to protein network

clear the current protein network

for number of genes

 if gene is marked

 copy to the protein network

for number of genes in protein network

 for number of genes in protein network

 if gene is in range of gene’s input

 add to gene’s weighted sum

 Execute gene

 Record output

for number of genes

 if gene is in protein network

 store its new output

While this system is more biologically accurate, it can also be argued that it introduces

unneeded complexity; resulting in greater memory requirements and computational

overhead. Additionally, there is no evidence within Turner’s work that this exact version of

the mechanism is vital to the correct functioning of the epigenetic networks. With this in

mind, the gene to protein network translation has been removed, replaced by a simple

Boolean flag within each gene. Algorithm 4.2.2 shows how this execution differs from the

original in algorithm 4.2.1. When the epigenetic molecules update the activity of the genes,

these flags are altered accordingly (TRUE, active, by default; FALSE, inactive, if set by a

molecule). When the genes are executed, only those whose flags are set TRUE have their

expressions updated. In addition, only active genes will have their outputs used as part of

the weighted sum of other active genes.

80

Algorithm 4.2.2 Execute single iteration of AEN with flags

for number of epigenetic molecules

 for number of genes

 if gene is active and in range of molecule’s input

 add to molecule’s weighted sum

 Execute epigenetic molecules

set all genes active

for number of genes

 if gene is in range of a molecule’s output

 set gene inactive

for number of genes

 if gene is active

 for number of genes

 if gene is active and in range of gene’s input

 add to gene’s weighted sum

 Execute gene

 Record output

for number of genes

 update gene output

81

4.2.2 Input/output elements

The other significant change involves the handling of inputs and outputs from the network.

The original AENs used a system similar to the location/proximity method, described in

section 4.1.1, to map inputs and outputs to specific genes at run time. Each gene possessed

an input and output number, which functioned as location values within two separate 1D

regions (which were also separate from the primary one used for inter-network

connections). Each of these regions was then divided up into partitions, one for each input,

or output, with any space left over being ignored. In a correctly functioning network, each

I/O region would therefore have at least one gene within it, although this is not always the

case, as figure 4.2.1 shows.

Figure 4.2.1. The input and output spaces of an example network. This network has 7

genes, 3 inputs and 1 output. Note the difference in gene position between the two regions,

as well as the fact the input 3 has no gene mapped to it at this time [33].

With outputs, the expression value of the first active gene within the partition is used and

fed out of the network. The method for inputs is a little more complex, as the external input

value replaces the expression of the first active gene within the partition. In effect, this

injects the input value into the normal network space at the location of the replaced gene.

82

This version of the AEN uses a similar, but more streamlined system, based on input and

output elements, placed into the same 1D space as the genes and molecules, using location

values of their own. Input elements hold a value, presenting it at their location for genes

and molecules to use, a similar method to the one described above that uses a separate

element instead of repurposing a gene. Output elements are more complex, as they also

have a proximity value. Like genes and molecules, this value defines an area around

themselves where they look for genes. The value they set as an output to the network is the

expression of the first gene that falls within this region.

Figure 4.2.2. An example of an input and an output element within the location space. The

input element is within range to be an input for gene A, while genes A and B are in range

of the output. Gene A will be the first in the array, so its expression will be the network

output.

This new system has a few advantages: by not replacing the expressions of genes with

inputs, there is no reduction in the network’s capacity; additionally, by specifying

everything within a single 1D space, the resource requirements are reduced; and finally,

this method allows for more of the network’s functionality to be encapsulated with discreet

units (the I/O elements), something that will make the transition to hardware simpler.

Input

B

Output

A

Location: 1

Location: 3

Proximity: 2

Location: 4

Proximity: 2

Location: 5

Proximity: 1

83

4.3 Floating Point to Integer Networks

The final alterations to elaborate on are those which relate to the transition from floating

point to integer mathematics. The benefits of this are twofold: firstly, integer values, and

their corresponding mathematical operations, are significantly easier to implement in

digital hardware. Field Programmable Gate Array (FPGA) manufacturers do produce

various IP cores intended to streamline the use of floating-point maths, such as the Xilinx

LogiCORE Floating-Point Operator [59] however, using one would increase the hardware

footprint of the network, which goes against one of the reasons for wanting a hardware

implementation: reduction of resource usage, something discussed in greater detail at the

start of chapter 6.

This leads to the second reason for switching to an integer network: ease of reducing the

network’s data width. In the same way that integer mathematics consume less resources

than its floating-point counterpart, the smaller the bit width of the values used, the less

resources that are required to utilise them; not just in terms of computational elements, like

adders and multipliers, but also with more basic components such as registers, and even the

connections between components. Consider two networks implemented on an FPGA, one

with 64 bit values, the other 8 bits. Modern FPGAs are comprised of units called

Configurable Logic Blocks (CLBs), which in turn contain a number of elements that can

be configured in various ways in order to implement any arbitrary digital circuit. To take as

an example the CLBs of a Xilinx series 7 FPGA [60], these elements are:

• 8 6-input Look Up Tables (LUTs), for implementing logic gates.

• 16 1-bit Flip-Flops, for temporary data storage.

• 2 Carry Chains, for improving the implementation of arithmetic elements such as

adders.

• 256 bits of Distributed RAM, for data storage.

• And 128 bits of Shift Registers, for data storage and multiplication.

If the networks required something as simple as two signals to undergo a bit-wise AND

operation, the 8-bit network would fit the required hardware with a single CLB. The 64-bit

network on the other hand would not only need multiple CLBs, but also the additional

complexity of the routing elements that connect the CLBs together. The same problem

exists with memory: if the two networks each have, say, 4 inputs and 4 genes; then each

84

gene requires 12 parameter values (identification, proximity, slope, offset and 8 weights).

In this 8-bit network, this is a total of 96-bits of memory, once again able to fit within the

resources provided by a single CLB. The 64-bit network requires 768-bits of memory,

equal to the RAM of 3 CLBs.

4.3.1 Overflow Prevention

Having established the motivation behind the switch from floating-point to integer

mathematics as the basis of this work’s networks, the actual changes made to support this

can be detailed. The network’s connection mechanisms can remain unchanged, as the

location/proximity system requires nothing more than a 1D space and values for an

elements location within that space; the mechanism can be implemented with integers just

the same as with floating point values. However, the weighted sum of inputs, as well as the

inclusion of the slope/offset present an issue. With the floating-point networks, all the

parameters, with the exception of the slope, are in the range -1.0 to +1.0 (the slope range is

±20.0) [6]. Recalling equation 4.1.1, this means that for any given gene:

(i) A weighted input can never exceed ±1.0.

(ii) The sum of weighted inputs can never exceed ±n, where n = number of inputs.

(iii) The sigmoid exponent can never be exceed ±40.0n.

Therefore, if a network was implemented with 64-bit floating-point values, which have a

range of ±1.7*10308, a gene would require more than 4.25*10306 inputs for an overflow to

occur. However, if the parameters of this floating-point network were directly mapped to a

64-bit integer network, then overflow could potentially occur when an input is multiplied

by its weight. In order to prevent this, the integer range will be used to fix the ranges of all

parameters, while increased bit widths will be calculated for the weighted inputs, the

weighted sum and the sigmoid exponent.

85

𝑷𝒂𝒓𝒂𝒎𝒓𝒂𝒏𝒈𝒆 = ±(𝟐
𝒏−𝟏) − 𝟏 (𝟒. 𝟑. 𝟏)

𝑾𝒆𝒊𝒈𝒉𝒕𝒆𝒅 𝑰𝒏𝒑𝒖𝒕𝒓𝒂𝒏𝒈𝒆 = ±𝑷𝒂𝒓𝒂𝒎𝒓𝒂𝒏𝒈𝒆
𝟐 (𝟒. 𝟑. 𝟐)

𝑺𝒖𝒎𝒓𝒂𝒏𝒈𝒆 = ±𝑵𝒖𝒎𝑰𝒏𝒑𝒖𝒕𝒔(𝑾𝒆𝒊𝒈𝒉𝒕𝒆𝒅 𝑰𝒏𝒑𝒖𝒕𝒓𝒂𝒏𝒈𝒆) (𝟒. 𝟑. 𝟑)

 𝑺𝒊𝒈𝒎𝒐𝒊𝒅 𝑷𝒐𝒘𝒆𝒓𝒓𝒂𝒏𝒈𝒆

= ± (𝟐𝟎(𝑷𝒂𝒓𝒂𝒎𝒓𝒂𝒏𝒈𝒆)) (𝑺𝒖𝒎𝒓𝒂𝒏𝒈𝒆 ± 𝑷𝒂𝒓𝒂𝒎𝒓𝒂𝒏𝒈𝒆) (𝟒. 𝟑. 𝟒)

Equations 4.3.1 through 4.3.4 detail the range calculation process. Starting with equation

4.3.1 which restates that the initial range is defied by the range of values that can be

represented by the bit width of the network (n), when using the two’s complement

representation (Strictly, this range should be -2n-1 to +(2n-1 – 1), but the version above is

accurate enough and simpler). Equation 4.3.2, states the range for a weighted input is the

parameter range squared, and equation 4.3.3 that the weighted sum range is that multiplied

by the number of possible inputs. This is because the largest absolute value of the weighted

sum of inputs would arise if the largest possible input and largest possible weight were

present at all possible gene inputs, and as weights and inputs have the same range, this

maximum weighted input range is the square of their range. Lastly, equation 4.3.4 details

the range of the sigmoid power, which is the range of the weighted sum combined with the

ranges for the slope and offset values of the sigmoid. Taking the example of a 4-bit

network with 4 possible inputs for each gene: the parameters take the range ±7; the

weighted inputs, ±49 (72); the weighted sum of inputs, ±196 (4*72); and the sigmoid

exponent, ±28420 (140*((4*72) ±7)).

With these ranges specified, the data widths needed can be deduced. Equations 4.3.5 to

4.3.8 give them in the general form.

𝑷𝒂𝒓𝒂𝒎𝒘𝒊𝒅𝒕𝒉 = 𝒏 (𝟒. 𝟑. 𝟓)

𝑾𝒆𝒊𝒈𝒉𝒕𝒆𝒅 𝑰𝒏𝒑𝒖𝒕𝒘𝒊𝒅𝒕𝒉 = 𝟐𝒏 (𝟒. 𝟑. 𝟔)

𝑺𝒖𝒎𝒘𝒊𝒅𝒕𝒉 = 𝟑𝒏 (𝟒. 𝟑. 𝟕)

𝑺𝒊𝒈𝒎𝒐𝒊𝒅 𝑷𝒐𝒘𝒆𝒓𝒘𝒊𝒅𝒕𝒉 = 𝟔𝒏 (𝟒. 𝟑. 𝟖)

4.3.5 restates that the network parameters are of the base data width n; 4.3.6 that the

weighted inputs will need 2n bits, as a multiplication operation occurs which doubles to

width requirement. Equation 4.3.7 states that the sum of inputs needs 3n bits, to allow for

86

the range increase caused by the cumulative addition; and finally 4.3.8 states that the

sigmoid power needs 6n bits, or 2(3n), as another multiplication occurs.

4.3.2 Sigmoid Function

The last alteration required is the sigmoid activation function, as any exponent of e outside

the range ±1.0 will not work, and translating the integer to an acceptable value beforehand

would still require the e exponent element to be computed, which brings with it significant

hardware requirements (Xilinx’s recommendation is to employ the Floating-Point Operator

that was mentioned above [59], which would very much defeat the purpose of the switch to

integer). It is possible however, to construct an integer version of the sigmoid by using a

Look Up Table (LUT). A LUT, like its name suggests, replaces the actual calculation of a

function with a simple array of possible inputs and their corresponding output values.

There is a design consideration with LUTs, which is the number of entries they hold.

While a trivial function, like a two input AND gate, can be fully described with only 4

entries; something like the sigmoid function has the potential to be much too large to use

this simplistic approach. For example, the 4-bit network used as an example in section

4.3.1 would need at 56841 entries in its lookup table in order to fully map each possible

input to its outputs. Recalling the FPGA CLB specifications in section 4.3 shows that while

this wouldn’t fit into the 256 bits of distributed RAM available, let alone accommodate the

other parameters required.

87

Figure 4.3.1. Plot of the sigmoid activation function for a floating point network, with an

input range of ±40. The upper and lower lines show where the sigmoid output levels off at

1.0 and 0.0 respectively .

Fortunately, the sigmoid function itself provides a simple method of reducing the LUT

requirements significantly. Figure 4.3.1 is a plot of the sigmoid activation function for a

floating point network, where the possible inputs to the sigmoid fall into the range of at

least ±40 (recall the specification of this in Section 4.3.1). Looking at this figure it is clear

to see that a significant number of possible inputs result in outputs of ether 0.0 or 1.0, with

the region of interest actually only being between -10.0 and +10.0. This means that when

creating the integer LUTs, possible entries that correspond to outputs of 0 or +2n-1 can be

removed from the table can handled with trivial if statements. Returning again to the 4-bit

network example, this method reduces the 56841 entry lookup table to only 4202 entries.

88

Figure 4.3.2. Plot of the sigmoid activation function for a 4-bit network with maximum and

minimum output values removed.

Figure 4.3.2 illustrates the “sigmoid” described by such a 4202 entry LUT, which shows

another possible route to further reducing its size. Each possible output of the LUT

corresponds to multiple input values, so instead of having one entry per input value, the

LUT can be reduced to one per possible output value, with external logic to determine

which entry an input corresponds to (input < A then output = entry A). Switching to this

implementation allows the 4-bit network previously described to have a lookup table of

only 6 elements. This equates to a LUT with a total of 24 bits, meaning it fits into the 256

bits of distributed RAM that the CLBs detailed in section 4.3.

89

4.4 Summary

Bringing this chapter to a close, the architecture of a software based epigenetic network

has been elaborated in detail, with a look at the various elements that comprise one:

including the genes and molecules; and the location/proximity based interconnection

system.

Additionally, the changes made from the original network architecture have been covered.

The gene to protein network translation has been removed in favour of a more streamlined

system that employs Boolean flags within each gene, which are set by the epigenetic

elements. Also, the input/output system has been changed from its direct integration with

the genes to a separate set of elements, which will make the translation to hardware easier.

The alterations needed to accommodate the switch to from floating-point to integer maths.

This included the replacement of the sigmoid activation function with a Look Up Table

(LUT); and considerations to prevent overflows that are now possible.

The validation of the performance of the software network is covered in section 1 of

chapter 7, while chapter 5 details the creation of the FPGA based hardware network

architecture that forms the core of this thesis, expanding upon the design of the various

network elements and how they fit together.

90

5 Hardware Epigenetic Network

With an integer and lookup table based version of an Artificial Epigenetic Network (AEN)

already created in software, the translation to hardware requires only that the existing

architecture be rebuilt. The platform used for this implementation is a Field Programmable

Gate Array (FPGA), a class of chips that can be configured to implement a huge variety of

digital logic circuits: from simple state machines to complete multi-processor systems.

This configurability not only avoids the need to develop specialised hardware, but it is

another element that allows for the easy investigation of the consequences of altering the

data width of the network. FPGA configuration necessitates the use of a hardware

description language, which in this case will be the Very high-speed integrated circuit

Hardware Description Language (VHDL). There are two important properties that the

completed hardware network must possess: paramarisability, meaning that properties such

as the network’s data width, or the number of network elements and be changed easily; and

parallelisation, meaning that, unlike the sequential execution of the software networks, the

hardware network will execute the molecules, genes and outputs of the network all at once,

greatly improving time performance.

This chapter will detail the hardware versions of the various network units (i.e. genes,

molecules and inputs/outputs); the means by which they are connected together to form a

network; as well as the means by which the network will be configured. Finally, some

additional elements will also be needed to allow for data to be sent to/from a PC to the

complete network, which will be based on off the shelf components.

5.1 Input Units

The input units are the simplest network elements and the beginning of the network from a

conceptual point of view. Referring back to their software counterpart in section 4.2.2 for a

specification, each input element needs to hold two values: their identification, or location

within the 1D space the network elements occupy; and an input value. Each of these values

will need a storage element of paramatrisable width, to allow for the bit width of the

network to be adjusted as needed. Additionally, while the network’s sequential elements

will be synchronous with the clock, a reasonable precaution will be the implementation of

the ability for an element to signal when a value has been successfully stored, in order to

avoid the network prematurely initiating the calculation of outputs. To facilitate this, each

91

storage element will be paired with a comparator that will check if the input and output of

the storage is the same; if it is, then the elements enable signal will be carried through. An

illustration of this complete assembly is shown in figure 5.1.1.

Figure 5.1.1. Single n-bit storage element with load complete signalling mechanism. Note

the presence of a CLK input on the register in addition to its enable signal.

Figure 5.1.2. Complete n-bit input unit, with identification and input storage elements,

enable signal generation logic.

N-bitsN-bits

Load Complete

Data OutData In

Enable

N-bit Register

Comparator

3-bits

N-bits

N-bits

N-bits

N-bits

Parameter Input

Input Input

Parameter Select

Load Complete

Load Complete

Input Output

Ident Output

Network Mode

Enable

Input Storage

Ident Storage

Enable Logic

92

Figure 5.1.2 shows a complete input, which as mentioned contains two of the storage

elements detailed in figure 5.1.1. There is also an additional component in the form of the

enable logic, which takes the external enable signal and carries it through to one of the two

storage elements depending on the mode of the network and the value of the parameter

selection bus.

The network mode is a simple signal, with a value of 0 specifying that the network is to

execute normal behaviour (taking in inputs and computing outputs); while a value of 1

corresponds to the network being in configuration mode, during which parameters, like the

input elements identification, are loaded. The parameter selection bus on the other hand is

more akin to an address, as it specifies which parameter storage element a particular value

is to be loaded into. This is largely irrelevant in the input units, as they have only one

parameter, and so will be explained in greater detail in sections 5.2 and 5.4. Thus, in the

case of the input units: a network mode of 0 allows the input storage to be enabled; and 1

allows the same for the ident storage.

93

5.2 Genes and Molecules

Figure 5.2.1. Parameter storage section of an n-bit gene/molecule unit with m possible

inputs.

The initial section of the gene/molecule units, shown in figure 5.2.1 is quite similar to the

input units, but with a few key differences. First, the presence of more than one parameter

storage element necessitates the use of a selection unit, which routes the parameter input

through to the input of one of the storage elements, depending on the value of the

parameter select input. This signal, which also now has an effect on the enable logic due to

the multiple storage array enables, acts akin to an address value, specifying which of the

parameters is to be loaded. The exact values that correspond to each parameter will be

detailed in section 5.5, where the network configuration mechanism will be elaborated

upon in its entirety. A similar function is performed by the weight select signal, which

leads into the other significant change, the weight storage array. Given that each gene

requires multiple weights, one for each possible connection it can form with both other

genes and the input units, the parameter select alone is insufficient to address each storage

element. Instead, the parameter select routes the parameter input and enable signals

through to an array of storage elements, which have their own additional layer of logic

Execute Enable

Weights Bus

Weight Select

Load Complete

3-bits

N-bits

N-bits

N-bits

N-bits

Parameter Input

Parameter Select

Load Complete

Load Complete

Offset

Slope

Network Mode

Enable

Offset Storage

Slope Storage

Enable Logic

N-bits
M*N-bits

Weight Storage

Array

Parameter Sector

N-bits

8-bits

94

MAC Enable

Reset

Weighted Sum of Inputs

Weights Bus

Inputs Bus

256*N-bits
N-bits

4*N-bits
N-bits

MACInput Selector

256*N-bits

Weight

Selector

mirroring those above. This layer uses the weight select signal to pass the parameter input

and enable signals through to one of the storage elements. The weight select bus uses a

simple numerical value, much like an addressable memory. Unlike most other elements of

the network, which are paramatrisable, the weight select bus is a fixed 8 bits, due to its

requirement to connect into the parameter address system discussed in section 5.5.

However, 8 bits allows for 256 possible inputs, more than sufficient. The last point to note

with respect to figure 5.2.1 is the absence of two parameters. Looking back at section 4.1.1

highlights the absence of the identification and proximity values that are needed to

facilitate connectivity. This is because these elements have been placed within a wrapper

that handles connections, allowing the units themselves to be solely dedicated to

processing. This also removes any differences between the genes and molecules, allowing

the same component to be reused as their core. These wrappers will be discussed in more

detail in section 5.4.

Figure 5.2.2. Weighted sum of inputs calculation section of an N-bit gene/molecule with

256 possible inputs.

The next section of the gene/molecule units is the start of the actual processing mechanism:

the calculation of the weighted sum of inputs, which is show in figure 5.2.2. The weights

bus, also shown in figure 5.2.1, and the inputs bus, which is an input to the gene/molecule

unit, are inputs to a pair of selector elements, which route them one at a time into the

Multiply Accumulate Unit (MAC). When enabled, the MAC multiplies the input and

weight together, adds them to its existing output, and then replaces that output with the

new value. The reset signal zeros the MACs output, allowing a summing to be started.

Control of the MAC, as well as the two selectors is performed by a Finite State Machine

(FSM).

95

Figure 5.2.3. State transition diagram for the finite state machine that controls the

calculation elements of the gene/molecule units.

Enable = 0

Enable = 0

Input Count = Number of Inputs

Input Count < Number of Inputs

Execute Enable = 1 AND

Unit Expression = 0

Execute Enable = 1 AND

Unit Expression = 1

Reset

Wait
MAC

Run

Power

Calc.

Save

Output

6*N-bits

Offset

Slope

N-bits

Sigmoid Power

Calculation
LUT Address

N-1 - bits

Weighted Sum of Inputs

4*N-bits

N-bits

LUT Address

Generator

96

Table 5.2.1. Signal mapping table for the finite state machine that controls the calculation

elements of the gene/molecule units.

Signal Reset Wait MAC

Run

LUT Address

Calc.

Save Output

Input Count ‘0’ ‘0’ Count + 1 Count Count

MAC Enable ‘0’ ‘0’ ‘1’ ‘0’ ‘0’

MAC Reset ‘1’ ‘0’ ‘0’ ‘0’ ‘1’

Output Register

Enable

‘0’ ‘0’ ‘0’ ‘0’ ‘1’

Execution Complete ‘0’ ‘1’ ‘0’ ‘0’ ‘1’

Figure 5.2.3 and table 5.2.1 detail this FSM, which also produces the enable signal for the

register that stores the computed output, and the execution complete signal (similar to the

load complete signals the storage elements possess).

• Reset State: the default state of the FSM. In this state, the enable and complete

signals are set LOW; the MAC unit is reset; and the count that tracks which

input/weight combination is to be fed into the MAC is set to zero. When the

gene/molecule’s enable signal is set HIGH, the FSM switches to the Wait or MAC

Run states, depending on the value of the unit expression signal. The unit

expression is the signal that indicated whether or not a unit should be active and

involved in the calculation. For genes, this value is set as a result out the outputs

of the molecules, while molecules have it permanently set HIGH.

• Wait State: when the unit’s expression signal is LOW, the unit’s activity is being

suppressed by one of the epigenetic molecule units (as such, this can only happen

within a gene). In this case, the unit’s execution complete signal is set HIGH, and

it waits until the unit enable goes LOW, which returns it to the reset state.

• MAC Run State: when the unit’s expression signal is HIGH, then the

gene/molecule is able to execute normally. In the MAC Run State, the MAC unit

is enabled, and the count increments by 1 every clock cycle. As long as the count

value is less than the number of input/weight parings, then the two selector units

feed the appropriate ones through to the MAC. When the count exceeds this, the

FSM progresses to the Power Calculation State.

97

• LUT Address Calculation State: in this state, the FSM does nothing for a clock

cycle. This is to allow the logic that calculates the LUT address to run. The FSM

then proceeds to the Save Output State.

• Save Output State: in this state, the MAC unit is reset and the enable for the

output storage register is set HIGH, allowing the value produced during the

calculation state to be stored. The enable complete signal is also set HIGH, to

signal the completion of processing. Like the wait state, the FSM then waits for

the unit’s enable signal to be set LOW, whereupon it then returns to the reset state.

Figure 5.2.4. Sigmoid input and LUT address calculation elements of an n-bit

gene/molecule unit.

Figure 5.2.5. LUT and output storage register for an n-bit gene/molecule unit.

Figures 5.2.4 and 5.2.5 show the final stages of the gene/molecule units, which takes the

weighted sum of inputs and uses it, along with the slope and offset parameters, to produce

the output. The first element calculates the input for the sigmoid, as shown in equation

4.1.1 in section 4.1. There is one change to note however, which is that the slope value is

first multiplied by 20. This is because, recalling section 4.3.1, the slope has a range of

±20*normal range. Rather than store it as a larger value, the hardware gene/molecules

store it as if it were no different from all the other parameters, only factoring in its

6*N-bits

Offset

Slope

N-bits

Sigmoid Power

Calculation
LUT Address

N-1 - bits

Weighted Sum of Inputs

4*N-bits

N-bits

LUT Address

Generator

Unit Expression

0

N-bits

Output Reg. Enable

Gene Output
LUT Address

N-1 - bits

N-bits
N-bits

Output Register

2N-1 Entry LUT

0

1

6*N-bits

Offset

Slope

N-bits

Sigmoid Power

Calculation
LUT Address

N-1 - bits

Weighted Sum of Inputs

4*N-bits

N-bits

LUT Address

Generator

6*N-bits

Offset

Slope

N-bits

Sigmoid Power

Calculation
LUT Address

N-1 - bits

Weighted Sum of Inputs

4*N-bits

N-bits

LUT Address

Generator

98

increased size at the last possible moment. The Look Up Table (LUT) is exactly as

described in section 4.3.2, and as such the 6*N-bit output of the sigmoid input calculator

needs to be transformed to a value that can function as an address. Fortunately, this can be

done by taking only the top n-1 bits of the sigmoid input, which the LUT then maps to the

appropriate output value. In order to allow the network to be fully paramatrisable, the

content of the LUT needs to be replaced depending on the bit width used, a task that is

accomplished using a simple external program that generates the LUT for a given bit-

width. The output of the LUT is stored in the register, when enabled by the FSM. The final

element is a multiplexer, which is controlled by the unit expression signal. When a gene

unit is supressed by an epigenetic molecule, it needs to produce an output of 0.0. To ensure

this, the multiplexer allows the value stored in the register to be substituted as the output to

the unit under this circumstance.

99

5.3 Output Units

Figure 5.3.1. Parameter storage elements for an n-bit output unit.

Like all previous units, the output units start with the parameter storage elements, shown in

figure 5.3.1. Like the input units, the output units hold their own connection parameters,

which now includes a proximity value. This is internal to the output unit, rather than being

in a wrapper like the gene/molecule units, because they’re needed by the unit’s internal

logic.

Figure 5.3.2. Output selector logic of an n-bit output unit with m inputs.

Output Enable

3-bits

N-bits

N-bits

N-bits

N-bits

Parameter Input

Parameter Select

Load Complete

Load Complete

Prox.

Ident.

Network Mode

Enable

Prox. Storage

Ident. Storage

Enable Logic

Parameter Sector

N-bits

Output Enable

Bound

Calculator

Gene Idents Bus

M*N-bits

Gene Outputs Bus

M*N-bits

N-bits

Prox.

N-bits

Ident.

N-bits

N-bits

Mask

Generator

N-bits

Output

Selector

M-bits

N-bits

Delay

Output

Load Complete
Prox.

Storage

100

Figure 5.3.2 shows this logic, which selects and stores the gene output value that

corresponds to this particular output unit’s value. This process begins by using the ident.

and prox. values to calculate the upper and lower bounds: the two points that define the

range that the output unit will choose values from, illustrated in figure 4.2.2 in section 4.2.

These two values then go to the mask generator, where together with the ident. values of

the network’s gene units, they produce an m-bit mask, which identifies which gene output

is to be the output of this unit, and thus a network output. This is done in two stages:

1. An initial mask specifies which genes are within the output unit’s range, a simple

case of seeing which idents are between the two bounds. Valid genes are masked

HIGH, invalid LOW

2. The final mask then specifies which of the valid genes is to be the output, which it

does by taking the initial mask and carrying through only the first HIGH value.

The completed mask is then used to control the output selector, which passes through the

mask chosen value to the output storage register. The last element to note is the delay,

which holds back the register’s enable signal to ensure that the output selection process is

complete.

101

5.4 Network Interconnections

Figure 5.4.1. Parameter storage elements of an n-bit gene wrapper.

In section 5.2 it was mentioned that the gene and molecule units outsource their

interconnection mechanism to wrapper units. Figures 5.4.1 and 5.4.2 show the parameter

storage elements of these wrappers, which are much like their counterparts in the output

units, shown in figure 5.3.1. Note, however, the addition of the gene/molecule parameter

signal, which routes parameters such as slope, offset and weights through to the

gene/molecule unit where they will be handled by the elements shown in figure 5.2.1.

There is also the difference between the gene wrapper and the molecule version, in the

form of the extra proximity storage element. Recalling section 4.1.3, this second proximity

is for establishing connections with the genes that the molecule will control.

Gene Parameter

3-bits

N-bits

N-bits

N-bits

N-bits

Parameter Input

Parameter Select

Load Complete

Load Complete

Prox.

Ident.

Network Mode

Enable

Prox. Storage

Ident. Storage

Enable Logic

Parameter Sector

N-bits

N-bits

102

Figure 5.4.2. Parameter storage elements of an n-bit molecule wrapper.

Figure 5.4.3. Input selection elements of an n-bit gene or molecule wrapper with m inputs

The other half of the gene and molecule wrappers are the same, and very similar to part of

the output elements, specifically those shown in figure 5.3.2. These elements, shown in

figure 5.4.3: take the ident. and prox. (input proximity in the case of a molecule wrapper);

calculate the upper and lower bounds; and utilise these along with the identification values

of the possible inputs to produce a mask. The first difference is that, while the output unit

only considered gene units, both the gene and molecule wrappers also consider the

N-bits

N-bits

Load Complete

Output Prox.
Output Prox.

Storage

N-bits

Molecule Parameter

3-bits

N-bits

N-bits

N-bits

N-bits

Parameter Input

Parameter Select

Load Complete

Load Complete

Input Prox.

Ident.

Network Mode

Enable

Input Prox. Storage

Ident. Storage

Enable Logic

Parameter Sector

N-bits

M*N-bits

Input Idents Bus

M*N-bits

Input Values Bus

M*N-bits

N-bits

Prox.

N-bits

Ident.

N-bits

N-bits

Mask

Generator

Mask

Applier

M-bits

Bound

Calculator

Input Bus

103

network’s input units. In addition, the mask specifies which units are within the wrapper’s

range rather than selecting only one. The bus of input values, with any from units outside

the wrapper’s range being zeroed, is passed through to the gene/molecule unit.

Figure 5.4.4. Network interconnection system, excluding control signals.

All the components discussed previously come together in the network interconnection

system, shown in figure 5.4.4. Input values are loaded into the input units, which causes

their load complete signals to go HIGH. By ANDing together all the input’s load

completes, a signal is created that indicates when all the input values are present. This

signal then serves as the enable for the molecule units, which pull their inputs from a bus

that gathers together both the values from the input units and the outputs of the gene units.

A second bus gathers together all the ident. values for the input and gene units, which

allows the wrappers to determine the values which go through to the gene/molecule units.

The ident. values of the molecules however are fed to the gene expression logic, along with

their outputs and the idents. of the genes, provided by the bus. This logic determines which

genes are to have their activity supressed, following the process described in sections 4.1.3

and 4.2.1. The results of this logic are fed to the gene units in the form of the unit

expression signals. Just like with the input units, the completion of the molecule unit’s

Outputs

Inputs
Input

Units

Wrapped

Molecule

Units

Wrapped Gene

Units

Gene & Molecule Inputs Bus

Idents Bus

Gene

Expression

Controller

Output Units

104

execution sends their complete signals HIGH, these are again ANDed together to produce

the enable signal for the gene units, which in turn perform their calculations, pulling their

inputs from the same buses as the molecules. When they complete, they too send their

complete signals HIGH, the ANDing of which produces the enable signal for the output

units. Unlike the genes and molecules, the output units do not take their inputs from the

two buses, but instead directly from the gene units, as they have no need for the values of

the input units. Once the output units have completed the selection and storage of the

network outputs, their complete signals will go HIGH, the ANDing of which produces an

execution complete signal for the entire network.

5.5 Network Configuration

The last part of the network proper is the configuration system, which allows the various

parameters of the network to be changed on the fly. Parts of this mechanism have already

been mentioned, in the form of the parameter storage elements within the network units;

the network mode signal; and the parameter and weight select signals shown in figures

5.1.2, 5.2.1, 5.3.1, 5.4.1 and 5.4.2. These last two signals, however, are part of the larger

parameter load address signal, the various sections of which control all aspects of the

parameter loading process.

105

Figure 5.5.1. Structure of the 32-bit parameter load address signal, showing the width of

the various sections. Note that the hashed out section in the middle is an unused 11-bits.

Figure 5.5.1 shows the complete parameter address signal, which is comprised of 5 parts.

From left to right they are as follows:

• 2-bit unit type. These two bits specify which of the four types of network unit the

parameter is for:

o 00 – input

o 01 – gene

o 10 – molecule

o 11 – output

• 8-bit unit address. This is a numerical identifier for a specific individual network

unit.

• 11-bit unused region. These bits are unused but exist as a necessity of the address

signal being 32-bits in size. The reason for this will be given in section 5.6. This

region is in the signal’s centre because it also acts as a clear visual divide between

the sections of the address used by routing logic external to the genes/molecules,

and those used by the internal logic.

• 8-bit weight address. Already discussed in section 5.2, this is only used when a

weight value is being loaded and identifies which of the gene or molecule’s inputs

the weight corresponds to.

• 3-bit parameter type. Lastly, these three bits indicate which of the various possible

parameter storage elements is to be loaded:

o 001 – identity

o 010 – input proximity

o 011 – slope

o 101 – offset

o 110 – output proximity

o 111 – weight

2 8 8 3

106

Figure 5.5.2. Parameter loading mechanism for a network with W inputs, X genes, Y

molecules and Z outputs. Note that the enable signals are excluded.

Gene Unit 1 Gene Unit 2 Gene Unit X

Unit check

Type

check

Unit check Unit check

Input Unit 1 Input Unit 2 Input Unit W

Unit check

Type

check

Unit check Unit check

Molecule

Unit 1

Molecule

Unit 2

Molecule

Unit Y

Unit check

Type

check

Unit check Unit check

Output Unit 1 Output Unit 2 Output Unit Z

Unit check

Type

check

Unit check Unit check

P
ar

am
et

er
 B

u
s A

d
d
re

ss
 B

u
s

{--------------}

{--------------}

{--------------}

{--------------}

107

Figure 5.5.2 illustrates how the parameter address, and the signal carrying the value of the

parameter, connect together with the units of the network to form the complete loading

mechanism. A parameter value and the complete address are provided to the two signals.

The type checker looks at the first two bits of the address and roots the value and the rest

of the address through if it matches the type of unit that it is connected to. The same

process is repeated with the unit checkers, which consult the 8-bit unit address. This results

in the parameter value, the parameter type and the weight number (if needed) being

presented to the network unit, where the internal elements shown in figures 5.1.2, 5.2.1,

5.3.1, 5.4.1 and 5.4.2 take over.

5.6 AXI-Lite Interface, ARM Core and PC Connection

If the network was to have its parameters fixed, and then be directly connected to some

system that it was to control, then the components detailed thus far would be sufficient.

However, to facilitate the various experiments that will be carried out using this

architecture, it needs to be connected to a PC, which will not only perform the

configuration of the network, but also provide its inputs via the various simulations which

will be detailed in chapter 6. The start of this network to PC connection is an AXI-Lite

interface unit.

The Advanced eXtensible Interface (AXI) is a microcontroller bus protocol created by

ARM in 2003, with the current version, AXI4, being released in 2010. It is designed to

allow easy implementation of memory mapped interfaces, with AXI-Lite being a version

that has a small logic footprint and a very simple interface [61]. Xilinx development tools

have built in support for the AXI protocol, including the ability to generate AXI

peripherals through its IP core packager [62]. Using this tool, an AXI-Lite interface has

been created that allows a microcontroller to send and receive data from the epigenetic

network. The AXI-Lite Breakout, as it is called, contains 64 32-bit registers: 32 read, 32

write; the size of the registers is a property of the AXI-Lite protocol, which utilises 32-bit

data. A microcontroller connected to the breakout via the AXI-Lite bus will be able to

read/write to the appropriate registers, while the epigenetic network does the same. The

function of the various registers is detailed in table 5.6.1.

108

 Table 5.6.1. Mapping of the 64 registers within the AXI-Lite breakout to the various

inputs/outputs of the epigenetic network. Note that read/write is from the processor’s

perspective.

Register

Number

Read/Write Network I/O

0 Write Control Signals (Network Mode and Enable)

1 Write Parameter Load Address

2 Write Parameter Value

3 to 31 Write Network Inputs (maximum of 29, if a network has less inputs,

extra registers are ignored)

32 Read Parameter Load Complete

33 Read Network Execution Complete

34 to 63 Read Network Outputs (maximum of 30, if a network has less

output, extra registers are ignored)

Taking the connection mapping in table 5.6.1 together with the network architecture

described in sections 5.4 and 5.5, the process by which a microcontroller is able to control

the network becomes clear.

• To load a set of parameters into the network:

1. Set the network to parameter load mode via register 0.

2. Put a parameter address and parameter value into registers 1 and 2.

3. Set the network enable HIGH via register 0.

4. Wait for register 32 to report the successful loading of the parameter.

5. Set the network enable LOW via register 0.

6. Repeat steps 2 through 5 until all parameters are loaded.

• To execute the network:

1. Set the network mode to execute via register 0.

2. Put the inputs for this cycle into registers 3 through 31.

3. Set the network enable HIGH via register 0.

4. Wait for register 33 to report the successful completion of an execution

cycle.

5. Set the network enable LOW via register 0.

6. Read the outputs of this cycle from registers 34 through 63.

109

The next step in the connection process is the previously alluded to microcontroller, which

reads/writes data to the AXI-Lite Breakout. There is very little to say on this matter, as the

FPGA made available for this work was a Xilinx Zynq-7000 System on Chip (SoC), which

includes an ARM Cortex-A9 processor on the die, which requires only the inclusion of an

AXI-Interconnect peripheral to allow it to talk to the breakout [63]. In addition, given the

support provided by the Xilinx tool chain, the Xilinx Software Development Kit (SDK),

that is used to program the ARM core, is able to generate a driver for the AXI-Lite

Breakout, which reduces the reading/writing of data to a single line of C.

The final stage is to allow communication between the ARM core and a PC, such that the

epigenetic network can be configured and executed from software. This would allow the

work already done to support the software network described in Chapter 4 to be carried

over. Once again, the capabilities of the Xilinx tools provide a simple solution, in the form

of the Lightweight TCP/IP stack, or LwIP. LwIP is an implementation of the TCP/IP

networking protocol, designed for minimal resource usage, making it ideal for embedded

systems applications [64]. As such, the Xilinx SDK is able to automatically generate a

simple LwIP server, which would allow data to be sent to and from a PC via Ethernet. It is

then a case of modifying this file such that the incoming data triggers the correct

interactions with the epigenetic network via the AXI bus, and that the data is then sent

pack to the PC. Thus, the control process for the epigenetic network is as follows:

1. PC and ARM core establish a network connection.

2. PC sends signal indicating subsequent data will be network parameters.

3. ARM core acknowledges this signal.

4. PC sends a network parameter, ARM core stores it in memory and acknowledges

receipt. This is repeated until all parameters are sent.

5. PC sends signal indicating all parameters have been sent, and that subsequent data

will be instructions.

6. ARM core acknowledges.

7. PC sends instruction to load the saved parameters into the epigenetic network.

8. ARM core executes the parameter loading sequence described previously in this

section, determining addresses based on order sent.

9. Once all parameters are loaded, the ARM core sends back a completion signal.

110

10. The PC sends a signal indicating that subsequent data will be input values.

11. ARM core acknowledges this signal.

12. PC sends a network input, ARM core stores it in memory and acknowledges

receipt. This is repeated until all input values are sent.

13. PC sends signal indicating all parameters have been sent, and that subsequent data

will be instructions.

14. ARM core acknowledges.

15. PC sends instruction to execute a cycle of the epigenetic network.

16. ARM core performs the network execution sequence described previously in this

section, storing the outputs of the network in memory.

17. Once all outputs are stored, the ARM core sends back a completion signal.

18. The PC sends a signal requesting an output value, the ARM core sends back the

first one in memory, which is then removed.

19. This is repeated until the PC requests a non-existent value, at which point the ARM

core will send an all outputs send signal.

20. The PC then possess all output values for a given set of inputs.

The source of both the parameters values and the inputs to the network will be discussed in

chapters 6 and 7.

5.7 Summary

This chapter has detailed the architecture of the hardware epigenetic network which forms

the heart of this work. It has shown the structure of the various individual elements; how

those elements connect together to replicate the software based networks discussed in

Chapter 4; and how those elements are able to be reconfigured either manually (to create

networks of varying size and data-width) or automatically (to create networks with varying

internal parameter values).

This chapter has also explained the hardware and software processes that allow the

network to be connected to a PC, such that a program can automatically perform

experiments using the network in a similar manner to a software implementation. This is a

suitable point upon which to progress to Chapter 6, which begins to detail such

experiments.

111

6 Experiment Overview

With both software and hardware networks now available, discussion of the experiments to

be carried out can now begin. This chapter will detail the two varieties of experiment that

will be carried out, as well as the tools used for each of them.

Section 6.1 details the general experimental process that will be employed throughout this

work, in the form of the optimisation loop that will be used in all experiments. Section 6.2

will cover the Inverted Pendulum; a well understood and widely used control problem that

has been employed as an evaluation tool since 1975 [65]. Additionally, it has was one of

the three control problems used as the original benchmarks by Dr. Turner [66].

The second, covered in section 6.3, is Robot Foraging, a highly regarded benchmark as it

encapsulates a variety of important problems [67], including exploration and navigation of

environments; as well as object identification, manipulation and transport. Additionally,

the use of a robotics benchmark provides an example of a resource constrained system, and

a system operating in a dynamic environment, as a genuinely autonomous robot is limited

in its on-board power supply and computational capacity. For example, the now wide

spread ePuck robot is built around a Microchip Technology Inc. dsPIC30F6014A digital

signal controller [68]. This chip consists of a RISC (Reduced Instruction Set Computer)

processor, with 16-bit data and 24-bit instructions [69]. Its maximum clock speed is

40MHz, allowing for a maximum of 30 MIPS (Million Instructions per Second), although

the ePuck’s 3.3V power supply limits this to 10 MIPS. This draws an average of 46mA of

current, up to maximum of 68mA, equating to a power consumption of 0.15W to 0.22W.

While the ePuck’s battery has a 5Wh capacity, it also powers the robot’s motors and other

systems, which results in 2-3 hours of operation on one charge. In contrast, the original

epigenetic experiments were run on a standard desktop PC. Taking this author’s machine

as an example, this makes available an Intel Core i7-4790 CPU, a 64-bit processor (data

and instructions) with average clock speeds of 3.6GHz [70]. Power consumption is also

higher, averaging 80W during normal operations.

Finally, section 6.4 discusses the idea of a dynamic system vs a system (of any type) in a

dynamic environment; a distinction that is important to the intended goals of this thesis and

relevant to Chapters 7, 8 and 9, as they detail the experiments themselves.

112

6.1 General Experimental Process

Figure 6.1.1. Illustration of the general experimental process, including the software

optimisation loop (shown in blue), and the on hardware analysis (shown in green).

Figure 6.1.1 shows the general process that will be employed in the experiments included

in this work. Starting in software: an initial population of networks will be generated; then

have its fitness assessed, based on the metrics that will be discussed later in this chapter. If

the end condition of the optimisation process has not been met, then a new population will

be generated, with the exact process being determined by which of the genetic algorithms,

discussed in Chapter 3, is being employed. If the ending condition has been met, usually in

the form of reaching a set number of iterations around the loop, or generations, then work

moves over to the hardware. On hardware, analysis of the networks will be performed,

such as investigation of epigenetic activity and network structure. In the cases where

networks are exposed to stimulus they have not been evolved for, something that will be

discussed in greater detail in Section 6.4 of this chapter, then this will also take place with

the network being implemented on hardware. It should be noted however, that this

hardware translation only applies to the epigenetic networks, as there is no hardware

implementation of their non-epigenetic counterparts. Instead, these will remain confined to

the realm of software.

Generation of

Initial

Population

Fitness

Assessment

Generation of

New

Population

Network

Analysis

End

Loop

113

6.2 Inverted Pendulum Simulation

As the inverted pendulum is a control problem that is both very well studied and not the

primary focus of this work, a pre-existing model will be used. In particular, the one

designed by Hamann et al [71] was chosen, for two reasons: it has prior history as a

problem for epigenetic networks [6]; and it is explicitly intended for use as a robotics

benchmark: instead of providing absolute measurements of factors like pendulum angle

and velocity, the Hamann implementation uses simulated sensors that only monitor part of

the model. In addition, the outputs of these sensors (as well as the control signals for the

model’s actuators) are low resolution, mapping all values to the range [0, 127]. The exact

details of these sensors are given figure 6.2.1, which shows their position on the modelled

cart; and table 6.2.1 which explains the function and parameters of each sensor

Figure 6.2.1. A cart and pendulum from the Hamann model, illustrating the “positions” of

the various simulated sensors, taken from [71]. See table 6.3.1 for more detail the specific

sensors.

114

Table 6.2.1. Details of the sensors. Note that the actual values returned by all sensors are

mapped to the range [0, 127].

ID Sensor Name Sensor Details

S0 Pendulum angle 1 Returns the angle of the pendulum (ϕ) when within

the range [0, 0.5𝜋], else returns 0

S1 Pendulum angle 2 Returns the angle of the pendulum (ϕ) when within

the range [𝜋, 1.5𝜋], else returns 0

S2 Pendulum angle 3 Returns the angle of the pendulum (ϕ) when within

the range [0.5𝜋, 𝜋], else returns 0

S3 Pendulum angle 4 Returns the angle of the pendulum (ϕ) when within

the range [1.5𝜋, 2𝜋], else returns 0

S4 Proximity 1 Returns the distance to the left hand end of the cart

track, calculated from the cart position (x)

S5 Proximity 2 Returns the distance to the right hand end of the cart

track, calculated from the cart position (x)

S6 Cart Velocity 1 Returns the velocity of the cart (v) when it is

traveling leftwards, else returns 0

S7 Cart Velocity 2 Returns the velocity of the cart (v) when it is

traveling rightwards, else returns 0

S8 Pendulum Velocity 1 Returns the angular velocity of the pendulum (ω)

when it is rotating anti-clockwise, else returns 0

S9 Pendulum Velocity 2 Returns the angular velocity of the pendulum (ω)

when it is rotating clockwise, else returns 0

Looking at table 6.2.1 it is clear to see that all the sensors report some aspect of one of four

factors: cart position, cart velocity, pendulum angle and pendulum angular velocity. At

each time step, the value of these factors are updated, based on their previous value and a

number of variables. The relationships are shown in equations 6.2.1 through 6.2.4, while

the variables are expanded upon in table 6.2.2.

115

𝒙̇ = 𝒙 + 𝒗 (𝟔. 𝟐. 𝟏)

𝒗̇ = 𝒎𝒐𝒕𝒐𝒓(𝒖, 𝒗) (𝟔. 𝟐. 𝟐)

𝝓̇ = 𝝓 + 𝝎 (𝟔. 𝟐. 𝟑)

𝝎̇ = {

𝟑𝒈

𝟐𝑳
𝐬𝐢𝐧𝝓 −

𝟑

𝟐𝑳
𝒎𝒐𝒕𝒐𝒓(𝒖, 𝒗) 𝐜𝐨𝐬𝝓 , 𝒊𝒇 𝝎 = 𝟎

𝟑𝒈

𝟐𝑳
𝐬𝐢𝐧𝝓 −

𝟑

𝟐𝑳
𝒎𝒐𝒕𝒐𝒓(𝒖, 𝒗) 𝐜𝐨𝐬𝝓 − 𝑲𝒑𝝎|𝝎| − 𝑲𝒍

𝝎

|𝝎|
, 𝒆𝒍𝒔𝒆

 (𝟔. 𝟐. 𝟒)

Equations 6.2.1 and 6.2.3 are quite strait forward: the cart position at the next time step is

directly based on the cart velocity; just as the new pendulum angle is directly based on its

angular velocity. Equation 6.2.4, the angular velocity of the pendulum, is somewhat more

complex, as the calculation depends on wither or not the pendulum is currently in motion.

If not, the new angular velocity is based on the component of the cart velocity that is acting

along the vector of the pendulum’s current position, as well as the action of gravitational

acceleration upon the pendulum, again modified by the pendulum’s angle. If, however, the

pendulum is currently in motion, then the equation also takes into account the inertia that

results from that motion.

Finally, the velocity of the cart, equation 6.2.2 is result of the function motor(u, v), shown

in algorithm 6.2.1. This function determines the actual velocity applied by the motor, based

on current and desired cart velocity, as well as model parameter ΔUV: the smallest change

in velocity the motor is capable of (this can be conceptualised as a precision value for a

hypothetical motor driver circuit).

116

Algorithm 6.2.1 motor(u, v)

if |u – v| > ΔUV
 if u > v

 if v ≥ 0
 motor(u, v) = Vmotor
 else
 motor(u, v) = Vbreak
 else
 if v ≥ 0
 motor(u, v) = - Vbreak
 else
 motor(u, v) = - Vmotor
else

if u > v
 if v ≥ 0
 motor(u, v) = Vmotor / ΔUV(u – v)
 else
 motor(u, v) = Vbreak / ΔUV(u – v)
 else
 if v ≥ 0
 motor(u, v) = Vbreak / ΔUV(u – v)
 else
 motor(u, v) = Vmotor / ΔUV(u – v)

Vmotor and Vbreak are the maximum acceleration and deceleration values of the simulated

motor; their values and those of the other model parameters are shown in table 6.2.2.

Table 6.2.2. Model parameters with default values.

Symbol Parameter Value

g Acceleration due to gravity 9.81 ms-2

L Pendulum length 0.5 m

Vmotor Maximum acceleration 7.0 ms-2

Vbreak Maximum deceleration 8.5 ms-2

w Track length 2 m

- Cart length 0.1 m

Kp 0.005

KL 0.05 s-2

ΔUV Minimum velocity change 0.05 ms-1

117

Implementation of the model is done using the Runge-Kutta method of the 3rd order [72],

with the discreet time step (Δt) being set to 0.01s. Equations 6.2.5 through 6.2.20 show

how this method is applied to equations 6.2.1 through 6.2.4: the direct relationships of the

original equations are replaced with differential equations, each term of which is the

original broken down into fractional time steps.

𝒙̇ = 𝒙 + ∆𝒕 (
𝟏

𝟔
𝒙𝒅𝟏 +

𝟒

𝟔
𝒙𝒅𝟐 +

𝟏

𝟔
𝒙𝒅𝟑) (𝟔. 𝟐. 𝟓)

𝒙𝒅𝟏 = 𝒗 (𝟔. 𝟐. 𝟔)

𝒙𝒅𝟐 = 𝒗 + 𝒗𝒅𝟏 (
𝟏

𝟐
∆𝒕) (𝟔. 𝟐. 𝟕)

𝒙𝒅𝟑 = 𝒗 − 𝒗𝒅𝟏 + 𝒗𝒅𝟐(𝟐∆𝒕) (𝟔.𝟐. 𝟖)

𝒗̇ = 𝒗 + ∆𝒕 (
𝟏

𝟔
𝒗𝒅𝟏 +

𝟒

𝟔
𝒗𝒅𝟐 +

𝟏

𝟔
𝒗𝒅𝟑) (𝟔. 𝟐. 𝟗)

𝒗𝒅𝟏 = 𝒎𝒐𝒕𝒐𝒓(𝒖, 𝒗) (𝟔. 𝟐. 𝟏𝟎)

𝒗𝒅𝟐 = 𝒎𝒐𝒕𝒐𝒓(𝒖, 𝒙𝒅𝟐) (𝟔. 𝟐. 𝟏𝟏)

𝒗𝒅𝟑 = 𝒎𝒐𝒕𝒐𝒓(𝒖, 𝒙𝒅𝟑) (𝟔. 𝟐. 𝟏𝟐)

𝝓̇ = 𝝓 + ∆𝒕 (
𝟏

𝟔
𝝓𝒅𝟏 +

𝟒

𝟔
𝝓𝒅𝟐 +

𝟏

𝟔
𝝓𝒅𝟑) (𝟔. 𝟐. 𝟏𝟑)

𝝓𝒅𝟏 = 𝝎 (𝟔. 𝟐. 𝟏𝟒)

𝝓𝒅𝟐 = 𝝎 + 𝝎𝒅𝟏 (
𝟏

𝟐
∆𝒕) (𝟔. 𝟐. 𝟏𝟓)

𝝓𝒅𝟑 = 𝝎 − 𝝎𝒅𝟏 + 𝝎𝒅𝟐(𝟐∆𝒕) (𝟔. 𝟐. 𝟏𝟔)

118

𝝎̇ = 𝝎 + ∆𝒕 (
𝟏

𝟔
𝝎𝒅𝟏 +

𝟒

𝟔
𝝎𝒅𝟐 +

𝟏

𝟔
𝝎𝒅𝟑) (𝟔. 𝟐. 𝟏𝟕)

𝝎𝒅𝟏

= {

𝟑𝒈

𝟐𝑳
𝐬𝐢𝐧𝝓 −

𝟑

𝟐𝑳
𝒎𝒐𝒕𝒐𝒓(𝒖, 𝒗) 𝐜𝐨𝐬𝝓 , 𝒊𝒇 𝝎 = 𝟎

𝟑𝒈

𝟐𝑳
𝐬𝐢𝐧𝝓 −

𝟑

𝟐𝑳
𝒎𝒐𝒕𝒐𝒓(𝒖, 𝒗) 𝐜𝐨𝐬𝝓 −𝑲𝒑𝝎|𝝎| − 𝑲𝒍

𝝎

|𝝎|
, 𝒆𝒍𝒔𝒆

 (𝟔. 𝟐. 𝟏𝟖)

𝝎𝒅𝟐 =

{

𝟑𝒈

𝟐𝑳
𝒔𝒊𝒏(𝝓 + 𝝓𝒅𝟏 (

𝟏

𝟐
∆𝒕))

−
𝟑

𝟐𝑳
𝒎𝒐𝒕𝒐𝒓(𝒖, 𝒙𝒅𝟐) 𝒄𝒐𝒔 (𝝓 + 𝝓𝒅𝟏 (

𝟏

𝟐
∆𝒕)) , 𝒊𝒇 𝝓𝒅𝟐 = 𝟎

𝟑𝒈

𝟐𝑳
𝒔𝒊𝒏(𝝓 + 𝝓𝒅𝟏 (

𝟏

𝟐
∆𝒕))

−
𝟑

𝟐𝑳
𝒎𝒐𝒕𝒐𝒓(𝒖, 𝒙𝒅𝟐) 𝒄𝒐𝒔 (𝝓 + 𝝓𝒅𝟏 (

𝟏

𝟐
∆𝒕))

−𝑲𝒑𝝓𝒅𝟐|𝝓𝒅𝟐| − 𝑲𝒍
𝝓𝒅𝟐

|𝝓𝒅𝟐|
, 𝒆𝒍𝒔𝒆

 (𝟔. 𝟐. 𝟏𝟗)

𝝎𝒅𝟑

=

{

𝟑𝒈

𝟐𝑳
𝒔𝒊𝒏(𝝓 − 𝝓𝒅𝟏 + 𝝓𝒅𝟐(𝟐∆𝒕))

−
𝟑

𝟐𝑳
𝒎𝒐𝒕𝒐𝒓(𝒖, 𝒙𝒅𝟑) 𝒄𝒐𝒔(𝝓 − 𝝓𝒅𝟏 + 𝝓𝒅𝟐(𝟐∆𝒕)) 𝒊𝒇 𝝓𝒅𝟑 = 𝟎

𝟑𝒈

𝟐𝑳
𝒔𝒊𝒏(𝝓 − 𝝓𝒅𝟏 + 𝝓𝒅𝟐(𝟐∆𝒕))

−
𝟑

𝟐𝑳
𝒎𝒐𝒕𝒐𝒓(𝒖, 𝒙𝒅𝟑) 𝒄𝒐𝒔(𝝓 − 𝝓𝒅𝟏 + 𝝓𝒅𝟐(𝟐∆𝒕))

−𝑲𝒑𝝓𝒅𝟑|𝝓𝒅𝟑| − 𝑲𝒍
𝝓𝒅𝟑
|𝝓𝒅𝟑|

, 𝒆𝒍𝒔𝒆

 (𝟔. 𝟐. 𝟐𝟎)

119

The final thing to note is the fitness function, equation 6.2.21, which returns a value

proportional to the number of time steps that the pendulum occupies an upright position

(ϕ = 0).

𝑭 = ∑
|𝝓(𝒕) − 𝝅|

𝒕𝒎𝒂𝒙 𝝅

𝒕𝒎𝒂𝒙

𝒕=𝟎

 (𝟔. 𝟐. 𝟐𝟏)

tmax is the maximum number of time steps the model will be simulated for. The model will

run for this long unless: the cart hits the end of the track; the pendulum exceeds its maximum

angular velocity (5𝜋 rad s-1); or the cart exceeds its maximum velocity (2 ms-1). Such a

premature stop will result in a reduced fitness. It should be noted that, as the pendulum starts

in the lower quadrant, it is not possible to achieve a fitness of 1.0, as this requires the

pendulum to occupy the upright position for all its time steps.

Chapter 7 will cover the actually experiments that this model will be utilised in, while the

next section of this chapter will cover the other type of experiment: foraging robots. As

discussed in the introduction, a robotics application has been chosen as it is a good example

of a resource limited system that could benefit from the reconfigurable nature of an

epigenetic network.

120

6.3 Robotic Foraging

The task of robot foraging is a widely used benchmark in robotics, inspired by the

behaviour of foraging in various biological systems, especially social insects. Østergaard et

al described it as a “process in which 1) robots search a designated region of space for

certain objects, and 2) once found these objects are brought to a goal region using some

form of navigation [73].”

Figure 6.3.1. A Finite State Machine (FSM) representation of basic foraging, taken from

[67].

Figure 6.3.1 breaks down the foraging process in more detail by conceptualising it as a

Finite State Machine (FSM). Starting in the upper left, the robot searches the environment

for the object they are after. Once successfully located, it is acquired, typically with some

type of manipulator or “grabber”, ready for transport. The robot then searches the

environment again, but this time for its home location, where it deposits the acquired

object before returning to the start of the process. It is this compartmentalisation that raises

the possibility of performance gains through the use of epigenetic mechanisms. If an

epigenetic network were evolved to control a robot carrying out this task, then it is likely

that the network would also become compartmentalised. In a very simplistic example, the

network could be divided between elements dedicated to prey acquisition and prey return

behaviours. Additionally, a robot operating within an environment containing other objects

that it has no direct insight into is an excellent example of a system in a dynamic

environment, a concept that will be explored in greater detail in section 6.4 of this chapter.

121

As this work utilises evolutionary methods to optimise the control networks, using a real

robot would be impractical, as time even a single test of a possible network configuration

would be considerable, and attempting to accelerate the process by testing with many

robots in parallel would prohibitively expensive. Therefore, a computer model of a robot

will be employed along with a suitable simulated environment for it to interact with. The

robot model will be controlled by an implementation of the epigenetic network, either as a

software application or the actual hardware version. Much like the inverted pendulum,

robotics simulations are widely used and not the focus of this work, so again an off the

shelf solution will be employed. After investigating a few possibilities including ARGoS

[74], Webots [75], and V-Rep [76]; a suitable application was found in the form of

JBotEvolver, shown in figure 6.3.2, a Java program designed at ISCTE – University

Institute of Lisbon specifically for experiments involving the evolution of robotic

controllers [77].

Figure 6.3.2. Screenshot of JBotEvolver’s GUI, configuration view. The left hand side is

the configuration arguments menu; the centre the options for a selected argument; and the

right hand side and overview of the configuration and the simulator environment.

122

JBotEvolver is comprised of two primary components. JBotEvolver itself generates initial

populations of controllers, executes fitness evaluations and the evolutionary algorithm. It is

able to execute all stages of these operations in parallel thanks to Java’s inherent multi-

threading capabilities. The other half is JBotSim, which translates the populations from

JBotEvolver into actual controllers, before handling the simulation of the robots and the

environment they occupy. There is also an optional tool called EvolutionAutomator, which

allows the automatic execution of multiple evolutionary runs, in parallel if able. The

automator can also use different configuration options of each evolutionary experiment.

JBotEvolver allows for easy design of experiments through the use of a configuration file

that can be used to specify every aspect: from the parameters of its integrated genetic

algorithm, which is detailed in Chapter 3; to the exact specification of the various sensors

that the robot(s) can be equipped with. The creation of custom variations of all these

elements can also be easily achieved, as JBotEvolver’s code is open source and available

through GitHub [78].

123

With a platform chosen, consideration should first be given to the design of the robot that

will be simulated using it. Looking at an example of one that has been successfully used to

carry of the foraging task would be an excellent starting point.

Figure 6.3.3. Herbert, the Collection Machine, one of the first examples of a foraging

robot. Built in the 1980s at MIT by Rodney Brooks et al, it was able to autonomously

navigate the laboratory, collect objects of interest (usually soft drinks cans) and return

them to its home location [79]. Image taken from [80].

Figure 6.3.3 shows one of the first robots to successfully perform this kind of task: Herbert,

or the collection machine, built at MIT. Herbert utilised a number of sensor systems,

including an early LIDAR scanner, to navigate the MIT AI laboratory in search of soft

drinks cans. Once located, its gripper arm picked up the can, before it transported it to a

designated home location, usually a waste bin [79]. From both this and the breakdown of

the foraging task already performed, it can be deduced that the simulated robot will require

the following elements:

• A means of locomotion about the environment.

• A sensor for detecting obstacles or other environmental hazards.

• A sensor for detecting the prey objects that it is to acquire.

• A means of picking up or otherwise moving the prey object.

• And a method of navigating to its drop off point.

Fortunately, all of these components are built into JBotEvolver, and as such it is simply a

matter of creating the configuration file that describes the robot, which is shown in figure

124

6.3.4. Additionally, figure 6.3.5 shows an illustration of the robot. It starts with a standard

DifferentalDriveRobot, a java object that the simulator can add other components, such as

the sensors and actuators that are described next. Sensor 1 is quite strait forward, as it

simply indicates if the robot is currently carrying a prey object. Sensors 2, 3 and 4 on the

other hand are a little more complex. They are Prey, Nest and Wall sensors respectively,

each of which responds to their respective object within the environment. On a functional

level, these sensors are modified versions of JBotEvolver’s LightSensor class, they simply

treat the objects they are designed to detect as “light sources”. The parameters for all three

of these sensor types are the same:

• NumberSensors: how many of this type of sensor at to be attached to the robot, in

this case 2. Normally, they will be spaced equidistant around its body.

• Angle: the angle of the sensors vision cone, in this case 60̊.

• Eyes: setting this parameter to 1 changes the way in which the sensors are placed

on the robot. Instead of equidistant spacing, they will instead be placed at n ̊

increments away from the front of the robot, with n being the value of the

EyesAngle property. In this case, EyesAngle is 15̊, which means the two sensors

will be placed on either side of the robot’s front, a total of 30̊ apart.

The two actuators allow the robot the ability to move and interact with its simulated

environment. The first is a PreyPickerAcctuator, which is able to grab and hold prey

objects, allowing them to be transported; while the TwoWheelActuator allows the robot

itself to move by adding a simple two wheeled differential drive.

125

--robots

 classname=DifferentialDriveRobot,

 sensors=(

 PreyCarriedSensor_1=(

 classname=PreyCarriedSensor,

 id=1

),

 PreySensor_2=(

 classname=PreySensor,

 numbersensors=2,

 angle=60,

 eyes=1,

 eyesangle=15,

 id=2

),

 NestSensor_3=(

 classname=NestSensor,

 numbersensors=2,

 angle=60,

 eyes=1,

 eyesangle=15,

 id=3

),

 WallRaySensor_4=(

 classname=WallRaySensor,

 numbersensors=2,

 angle=60,

 eyes=1,

 eyesangle=15,

 id=4

)

),

 actuators=(

 PreyPickerActuator_1=(

 classname=PreyPickerActuator,

 id=1

),

 TwoWheelActuator_2=(

 classname=TwoWheelActuator,

 id=2

)

)

Figure 6.3.4. The JBotEvolver configuration file for a foraging robot.

126

Figure 6.3.5. Top down model of the robot described by file 6.3.1. It is 0.1 units in

diameter, with two forward facing “eyes” that are 30̊ apart. Each “eye” is a combination

of various sensors with a 60̊ cone of vision; together they facilitate wall, prey and nest

detection. Two wheels create a differential drive, with a maximum speed of 0.1 units per

time step. The protrusion on the front is the prey actuator, which allows manipulation of

prey objects. It incorporates a sensor that detects wither or not the actuator is holding a

prey object. Also shown is a prey object, which is a simple cylinder 0.05 units in diameter.

Prey

Object

Robot

Right “eye” Left “eye”

Right

Wheel

Left

Wheel

Prey Manipulator

127

As for the environment this robot will be tested in, two different types will be created: a

simple foraging environment designed to test basic prey identification, acquisition and

return; and a set of more complex, maze type environments, which will add not only

navigation, but object avoidance to the foraging task.

Figure 6.3.6. Illustration of the basic foraging environment. The robot starts within the

nest, the green circle, at the centre of the environment. Prey objects, the black circles, are

randomly spawned in the region between the two red circles, the outer of while defines the

forage limit: the furthest from the nest a robot will need to move in order to gather prey.

The large black circle represents the boundary of the environment, with robots being

heavily penalised for traveling beyond it.

128

Figure 6.3.7. Illustration of the first maze foraging environment. The robot starts in the left

alcove, while the nest, the green circle, is at the northern tip. Prey objects, the black

circles, spawn within the four red circles, which are distributed around the maze and not

immediately visible from the start point. There is no forage limit or environment boundary,

as the maze is completely encapsulated by solid walls, which not only prevent travel, but

also block the robot’s sensors.

129

𝑭 = 𝑷𝒓𝒆𝒚𝒏𝒆𝒔𝒕 + ∑ (
𝟏

𝒕𝒎𝒂𝒙
𝑹𝒄𝒂𝒓𝒓𝒚𝒊𝒏𝒈 −

𝟏𝟎𝟎

𝒕𝒎𝒂𝒙
𝑹𝒆𝒏𝒗𝒊𝒓𝒐 𝒍𝒊𝒎𝒊𝒕 −

𝟎.𝟏

𝒕𝒎𝒂𝒙
𝑹𝒇𝒐𝒓𝒂𝒈𝒆 𝒍𝒊𝒎𝒊𝒕)

𝒕𝒎𝒂𝒙

𝒕=𝟎

(𝟔. 𝟑. 𝟏)

The fitness function for the foraging task, equation 6.3.1, is comprised of two parts; the

simplest is the first term, Preynest, which is the number of prey objects returned to the nest.

The second is the sum over the total run time of three weighted factors:

• Rcarrying, which is 1.0 if the robot is currently carrying a prey object.

• Renviro limit, which is 1.0 if the robot is beyond the boundary of the environment.

This only really has an impact in the first environment.

• Rforage limit, which is 1.0 if the robot is beyond the foraging limit. Once again this

only has an impact in the first environment.

In plain language, the robot will be rewarded for each time step it is carrying prey, and

rewarded for each prey object it returns to the nest. While being tested in the non-maze

environment, the robot can also be penalised for moving beyond the foraging limit or the

boundary of the environment.

The second maze, shown in figure 6.3.8, isn’t significantly different from the maze in

figure 6.3.7, but the alteration to the distribution of prey objects, or more accurately:

rescue targets, is part of the set up for a slightly different type of task: a rescue operation.

As well as providing a real world context for the experiment, a recue task brings with it

an additional factor that will be incorporated to increase the complexity: time pressure.

𝑭 = ∑ (
𝒕𝒎𝒂𝒙 − 𝒕𝒓𝒆𝒔𝒄𝒖𝒆𝒅

𝟎. 𝟏𝒕𝒎𝒂𝒙
)

𝒕𝒐𝒕𝒂𝒍 𝒓𝒆𝒔𝒄𝒖𝒆𝒅

.

+ ∑ (
𝟏

𝒕𝒎𝒂𝒙
𝑹𝒄𝒂𝒓𝒓𝒚𝒊𝒏𝒈)

𝒕𝒎𝒂𝒙

𝒕=𝟎

 (𝟔. 𝟑. 𝟐)

Equation 6.3.2 shows the altered fitness function that incorporates this time pressure

factor. The second half is the same as its equivalent in equation 6.3.1, but instead of

simply adding the number of people rescued (returned to the nest), the new element

instead corresponds to the point in time at which they were rescued. The closer to the start

of the simulation, the greater the value. Each person recovered has such a value, which

are then summed together at the end of the simulation run, producing a fitness that

rewards rescuing as many people as possible, as quickly as possible.

130

Figure 6.3.8. Illustration of the second maze foraging environment. Once again the robot

starts in the left alcove, but in this instance that is also the location of the nest. There are

only five prey objects, but they are distributed in similar locations around the maze. There

is no forage limit or environment boundary, as the maze is completely encapsulated by

solid walls, which not only prevent travel, but also block the robot’s sensors.

131

6.4 Dynamic Environment

The ultimate goal of this project is to show that an epigenetic network is able to

demonstrate improved performance over a more standard gene regulatory of neural

network, even when restricted to the reduced precision of a hardware implementation, and

especially when confronted with a degree of unpredictability. Such networks have already

been shown to give measurable performance improvements when controlling dynamic

systems; however, these systems do not demonstrate the kind of unpredictability this

project wishes to investigate.

It is the opinion of the author that a distinction can be made between a dynamic system,

and a system that exists within a dynamic environment. An example of the former would

be an inverted pendulum: a system that possesses complex behaviours, ones that even

render it unstable under certain conditions. However, these behaviours can all be

considered internal to the system. A model like the one detailed in 6.2, encapsulates

everything about not only the pendulum itself, but everything that might affect the,

uncontrolled, pendulum’s behaviour. Simply put, no matter how complex it might be, a

dynamic system is usually considered in isolation. Taking this idea forward, a system

within a dynamic environment can be described thus: a system of arbitrary complexity, the

behaviour of which is altered due to external factors not considered part of the system

itself. To return to the inverted pendulum, a simple of example of a system in a dynamic

environment would be a pendulum that is subject to an externally provided impulse. This

distinction between a system and the environment it exists in becomes more important

when a controller is introduced. A controller for an inverted pendulum is something easily

designable, the reason for its use in the teaching of control theory. If such a simple

controller were connected to a pendulum, which after an arbitrary period of time were to be

subject to external inference, the controller would most likely experience difficulty

maintaining the stability of the system. The impulse was not encapsulated within the

pendulum model, which was used to design to controller. Put simply, the controller was

not designed to handle the environment surrounding the system it controls.

The great strength of epigenetic networks is their capacity to modify their own behaviour.

It is the opinion of the author that this may extend to the ability to handle changes in the

system under the networks control, even if such changes come from an external source.

132

To investigate this possibility, networks evolved under the conditions described in Sections

6.2 and 6.3 of this chapter will be evaluated in environments that incorporate these

dynamic factors. In the inverted pendulum’s case, the example already discussed in this

section will be utilised: the injection of an impulse of force, representing something like

the pendulum being subjected to a “kick”. This impulse will be modelled as an increase in

the pendulum’s angular velocity, occurring between two time steps. The robot foraging’s

environmental dynamics however will be much more varied.

6.4.1 Mobile Prey Objects

In the standard foraging task, once a prey object has been spawned into the environment, it

remains in place, unless moved either by the robot picking it up or by something colliding

with it. It is possible to think of this scenario as being akin to the food acquisition of a

herbivore: the only thing moving about is the creature/robot. In comparison, consider the

more complex situation facing predatory animals, wherein their food is most often also

ambulatory. It is from this line of logic that the first environmental dynamics come: the

switch from static to mobile prey objects. While a more complete simulation of ambulatory

prey, with its own distinct behaviours, would be interesting, it is beyond the scope of this

work. So instead, a simplified model will be used, where the prey objects exhibit random

motion. Algorithm 6.4.1 shows the process by which the random motion is achieved, as

well as the inclusion of a function to avoid the prey wondering into the nest, as this would

result in a scenario where the robot could achieve a high fitnesses while doing completely

nothing. It should also be noted that the maximum distance the prey can move in a time

step must be lower than the robot’s maximum speed. Otherwise the possibility exists that

the robot will never catch anything.

Algorithm 6.4.1 Introduction of random motion into prey objects

for number of prey in the environment

 Generate random movement distance

 Generate random movement direction

 Calculate new position based on current position/distance/direction

 If new position is inside the nest

 Regenerate distance and movement

 Else

 Move to new position

133

6.4.2 Falling Debris

In addition to the factors already discussed, contextualising the foraging task as a search and

rescue one brings with it another benefit: an ample supply of possible environmental

dynamics. For example, figure 6.3.1 shows a test environment used by the robocup rescue

challenge, an international competition designed to “Develop and demonstrate advanced

robotic capabilities for emergency responders [81]”, include features such as: tight, winding

corridors; slopes, ramps and stairs; uneven ground; and simulated fires and chemical hazards

[82].

Figure 6.4.1. A robot competing in the 2017 RoboCup Rescue League. Note the presence

of simulated hazardous materials as it attempts to complete its task. Image taken from

[82].

In this case of this work, the hazard chosen to introduce environmental dynamics is: falling

debris, as it is readily implementable via the tools provided by JBotSim. Figure 6.3.2 shows

the rescue environment, previously depicted in figure 6.2.8. Note however, the addition of

the 6 black regions, distributed throughout. At the start of the simulation, these squares are

empty; but a pre-determined time steps, a random one of them will become filled with a wall

object, simulating a fall of debris. In abstract terms, this results in the environment becoming

harder to navigate as time progresses.

134

Figure 6.4.2. Illustration of the rescue environment, with the inclusion of the debris fall

locations, depicted as black squares.

135

6.5 Summary

This chapter has covered the tools created to facilitate the experiments of this thesis: an

inverted pendulum simulation and simulation of a robot, as well as the varied environments

that it will occupy. The tasks that the epigenetic network will be evolved to perform have

also been discussed, along with the various fitness functions that will be used to

characterise their performance.

Finally, section 6.4 elaborated on one of the core hypothesis of this thesis; the ability of an

epigenetic network to handle the introduction of environmental dynamics into the system

that it is controlling, while retaining a high degree of fitness. This section also covered the

details of how these environmental dynamics will be introduced into the various tasks:

impulse injection; moving prey objects; and the simulation of an unstable environment via

falling debris. If the assertion that this thesis makes is correct, then not only will the

epigenetic networks be able to maintain performance better than their non-epigenetic

counterparts, but analysis of the networks should show the action of the epigenetic

mechanisms as the cause. This will be put to the test in Chapter 7, which contains the

methods, results and analysis of the experiments performed using the simulation of the

inverted pendulum.

136

7 Inverted Pendulum Experiments

This chapter describes the experiments performed using the Hamann inverted pendulum

model [71], described in detail in Chapter 6 of the thesis. The first set of experiments will

replicate those of Turner’s work: evolving an epigenetic controller capable of swinging up

and balancing the pendulum [66], although in the experiments outlined in this chapter, the

controllers will be integer based networks, first in software and then hardware (FPGA

implementation). This will also involve experiments to determine suitable data width and

network size for the integer network. This validation of functionality is then be built upon

with new work, demonstrating the ability of an epigenetically enhanced controller to

withstand externally introduced dynamics better than a standard Artificial Gene Regulatory

Network (AGRN). The external perturbation takes the form of the injection of an impulse

into the pendulum, analogous to an object hitting it. Finally, experiments involving the

evolution of epigenetic controllers with two different methods of applying connection

weights are described, giving justification to the changes detailed in Section 4.1.2.

7.1 Evolution of Integer Based Controllers

7.1.1 Experimental Design and Parameters

A major aim of this work is to implement a form of epigenetic network model on to a

hardware platform, in this case an FPGA. The first step is to validate that the translation

from a software floating-point network implementation to a hardware integer network

implementation and to show that this does not adversely affected the performance of the

epigenetic network. This was done in several stages: first, a series of experiments were

performed to identify the data width for the integer network, more specifically how small it

could be made without negatively impacting the network’s performance. These

experiments used the simple genetic algorithm, detailed in section 3.2, to evolve a number

of controllers for the Hamann inverted pendulum model [71], with the data width varying

between 4 and 32 bits. Ideally, this range would go up to 52 bits, so as to be equivalent to

the mantissa width of the 64 bit floating point values of Turner’s original floating-point

networks [66], but this limitation is imposed by the 32 bit width of the AXI-Lite bus that

the hardware implementation uses for communication (see section 5.6 for details). Any

data width lower than 4 is considered too small to be worth testing, as this would cause the

connection mapping mechanism described in section 4.1 to connect all the network

137

elements together in one large mass. The results of these experiments will allow the

selection of a suitable data width that demonstrates a high enough fitness while also being

efficient to implement in hardware. A similar process will then be repeated to determine

the number of genes and epigenetic molecules the final network iteration will require, with

a range of 12 to 25 genes and 3 to 5 molecules, these being the range of values used in

Turner’s original work [6]. Note that while Turner’s work allowed network size to be an

evolvable parameter, these experiments determine a fixed value. This is necessary because

the hardware implementation does not facilitate a change in the number of network

elements without resynthesise, so it must be of fixed dimensions.

With data width and network size determined, the final evolution of the software network

with reduced size is performed, the results of which are compared to Turner’s original data.

Success for the integer epigenetic network is defined as the integer network demonstrating

finesses equivalent to those of the floating-point networks, within the limits of variation

due to the non-deterministic nature of genetic algorithms. Next, a suitable candidate from

among these networks is used to generate a configuration for the hardware platform, which

is then tested to see if it matches the software network’s control ability. Success is defined

as the hardware network performing the same as its software counterpart.

Throughout these experiments, the parameters of the inverted pendulum model are the

same as those noted in table 6.2.2 in the previous chapter. The parameters for the simple

genetic algorithm and integer network are specified in the tables 7.1.1, 7.1.2 and 7.1.3.

Table 7.1.1. Parameters for the data width determination evolution using the simple

genetic algorithm.

Parameter Value

Population Size 64

Number of Generations 2048

Number of Repeats 50

Crossover Rate 0.5

Mutation Rate 0.05

Data Width 4 - 32

Number of Genes 20

Number of Epigenetic Molecules 3

138

Population size, number of generations and the number of repeats are chosen from

experimental experience, crossover and mutation rates come from Turner’s original work

[6], and equate to a 50% chance of a crossover and a 5% chance of a mutation (see Chapter

3 for a definition of these operators and section 3.2 for the specifics of them within the

simple GA). The number of genes and molecules for these experiments were arbitrarily

chosen from the ranges that will be used later.

Table 7.1.2. Parameters for the network size determination evolution using the simple

genetic algorithm.

Parameter Value

Population Size 64

Number of Generations 2048

Number of Repeats 50

Crossover Rate 0.5

Mutation Rate 0.05

Data Width Determined by prior experiments

Number of Genes 12-25

Number of Epigenetic Molecules 3-5

Table 7.1.3. Parameters for the final evolution of the integer network using the simple

genetic algorithm.

Parameter Value

Population Size 500

Number of Generations 200

Number of Repeats 50

Crossover Rate 0.5

Mutation Rate 0.05

Data Width Determined by prior experiments

Number of Genes Determined by prior experiments

Number of Epigenetic Molecules Determined by prior experiments

139

7.1.2 Results

Figure 7.1.1. Fitnesses of the best integer epigenetic networks from each repeat, with data

widths in the 4- to 18-bit range. The blue line at 0.75 denotes the fitness at which the

networks are able to maintain the pendulum in the upright equilibrium position. Note that:

the dotted circle represents the median fitness; the box encapsulates values between the

25th and 75th percentiles; the whiskers encapsulate all non-outliers; and the circles are

outliers. MatLab’s boxplot function defines outliers as values greater than 𝑞3 +
𝑤(𝑞3 − 𝑞1), or less than 𝑞3 − 𝑤(𝑞3 − 𝑞1); where q1 and q3 are the 25th and 75th

percentiles of the data, and w is the maximum whisker length, defined as ±2.7σ.

140

Figure 7.1.2. Fitness of integer epigenetic networks with data widths in the 19- to 32-bit

range.

The results of the data width evolutions are show in the figures 7.1.1 and 7.1.2. 4-bit

networks are able to exceed the 0.75 fitness threshold, but most fall short, with a median

fitness of 0.71. Networks with data widths between 5 and 20-bits all exhibit similar results

to each another, with most networks achieving a fitness greater than 0.75.

However, unexpected behaviour occurs with the networks with data widths beyond this

point. Given that the floating-point networks have a data width of 64 bits, it should be

expected that the fitness values would slowly increase as the data widths got closer to this

value, but instead a decline begins at 21-bits. By 23-bits the median value is below 0.75,

and by 27-bits even outliers are unable to exceed this fitness. To understand what occurred,

a further experiment was performed. Two networks were evolved, an 8-bit and a 32-bit, in

these cases however the number of generations was increased to 4000. The intention was

to compare the change in fitness over a longer time period.

141

Figure 7.1.3. Time evolution plot, showing fitness over 4000 generations: the blue line is

an 8-bit network; the orange a 32-bit network; and the yellow line is the 0.75 fitness

threshold.

The Figure 7.1.3 shows the change in fitness as evolution proceedes, and it presents a

simple conclusion: given sufficent generations, the higher bit width networks will reach

fitness values eqivalent to those that the smaller width networks. This also suggests a

possible cause, namely that the increase in data width comes with an increase in the search

space of possible network configurations. To illustrate this conclusions, a system with 10

inputs, 20 genes, 3 epigenetic elements, and 2 outputs has a total of 799 parameters that the

evolutionary process can optimise. In an 8-bit network, each of those parameters can have

256 possible values, which means a search space of 204,544 possible epigenetic networks.

By comparision, in a 32-bit network, each parameter can have 4.2 × 109 possible values,

leading to a serach space of over 3.4 × 1012 epigenetic networks. With a search space

over 16 million times larger to search, it is easy to see why it takes longer to identify good

solutions, although it is also a potent reminder of why computing architecures like

epigenetic networks require optimisation methods such as evolutionary algorithms.

142

The result of these experiments give a clear picture: reducing the width of the integer

networks even to as low as 5-bits can still produce viable controllers. Given its median

fitness of over 0.90, a data width of 8-bits appears to be a suitable choice for future

experiments. This is a useful as this equates to 1 Byte, which in turn is 1/8th the size of 8

Bytes a 64 floating point value occupies.

Figure 7.1.4. Fitness of integer epigenetic networks with an 8-bit data width, 3 molecules

and between 12 and 18 genes. The blue line at 0.75 denotes the fitness at which the

networks are able to maintain the pendulum in the upright equilibrium position.

Figure 7.1.5. Fitness of integer epigenetic networks with an 8-bit data width, 3 molecules

and between 19 and 25 genes.

143

Figure 7.1.6. Fitness of integer epigenetic networks with an 8-bit data width, 4 molecules

and between 12 and 18 genes.

Figure 7.1.7. Fitness of integer epigenetic networks with an 8-bit data width, 4 molecules

and between 19 and 25 genes.

144

Figure 7.1.8. Fitness of integer epigenetic networks with an 8-bit data width, 5 molecules

and between 12 and 18 genes.

Figure 7.1.9. Fitness of integer epigenetic networks with an 8-bit data width, 5 molecules

and between 19 and 25 genes.

145

The results of the network size evolutions are shown in figures 7.1.4 through 7.1.9. All

gene and molecule combinations have median fitnesses above the 0.75 threshold, and in a

few cases all non-outliers achieve at least this value also.

Table 7.1.4. Network size, number of genes/molecules and median fitness of networks

where all non-outliers are above 0.75.

Network Size Number of Genes Number of Molecules Median Fitness

15 12 3 0.93

16 13 3 0.92

18 13 5 0.88

19 15 4 0.91

21 18 3 0.90

22 18 4 0.88

22 19 3 0.89

23 20 3 0.90

Considering the results in the Table 7.1.4, a clear choice presents itself: 12 genes and 3

molecules is not only the smallest network, with a total size of 15, but it also has the

highest median fitness, 0.93.

With all parameters of the network determined, evolution of the completed integer

networks and hardware configuration generation can proceed.

146

Figure 7.1.10. Fitness of integer epigenetic networks with an 8-bit data width, 12 genes

and 3 molecules. The blue line at 0.75 denotes the fitness at which the networks are able to

maintain the pendulum in the upright equilibrium position.

The results from the evolution of the complete integer networks are shown in Figure

7.1.10. With a median fitness of 0.91 and only a few outliers below the 0.75 threshold, the

software integer network is clearly able to complete the inverted pendulum task. The final

task is now to transfer these integer networks from software on to the hardware platform

detailed in Section 5. To do this, the software networks have the parameters of their

various input/output nodes, genes and molecules extracted to produce configuration files

for the hardware, as detailed in section 5.5.

147

Figure 7.1.11. Fitness of integer epigenetic networks in software and hardware. The blue

line at 0.75 denotes the fitness at which the networks are able to maintain the pendulum in

the upright equilibrium position.

The software to hardware translation results, shown in Figure 7.1.11, show excellent

comparison, giving confidence that the translation of various parameters has been achieved

with appropriate accuracy. When translated on to the hardware, all networks were able to

achieve the same fitness as their software counterparts

148

Figure 7.1.12. The results of Turner’s original evolutions to produce a floating point

network able to balance the inverted pendulum, taken from [6]. The green line at 0.75

denotes the fitness at which the networks are able to maintain the pendulum in the upright

equilibrium position.

The final comparison is now made between Turner’s original 64-bit, floating point

software epigenetic networks and this work’s 8-bit, integer hardware networks. Firstly,

both versions are able to produce a number of individuals able to cross the 0.75 fitness

threshold. Although three of the hardware networks fall below this limit. The maximum,

median and minimum fitness of both network types, as well as the 25th and 75th percentiles

are detailed in Table 7.1.5 for ease of comparison.

149

Table 7.1.5. Maximum, Median and Minimum fitness, as well as 25th and 75th percentiles

of Turner’s 64-bit, floating point software networks compared with those for this work’s 8-

bit, integer hardware networks. Note that outlier values are not included.

Property 64-bit, Floating Point

Software Networks

8-bit, Integer Hardware

Networks

Minimum Fitness 0.95 0.83

25th Percentile Fitness 0.96 0.89

Median Fitness 0.97 0.91

75th Percentile Fitness 0.98 0.95

Interquartile Range 0.02 0.06

Maximum Fitness 0.98 0.98

Comparing the two sets of results using the A measure [83] returns a value of 0.2, which

indicates a signficant divergence in the two populations. In this case, it corrisponds to a

statistical drop in fitness between the origninal 64-bit floating point software networks and

the new 8-bit integer hardware networks. However, they are able to match them in maxium

fitness, 0.98. Given this fact it is reasonable to assert that, although statistically speaking

there is a performance reduction, integer hardware epigenetic networks are able to acheve a

similar peformance as a 64-bit, floating point software version.

150

7.1.3 Hardware Analysis

The reduced hardware network architecture is able to perform comparably to its

predecessor, but an important argument for making the transition is a reduction in the use

of resources. Taking each step of the transition in turn, starting with the reduction in the

data width of the network, comparisons can be made to see if the resource usage reduction

has been successful.

Table 7.1.6. Resources available on a Xilinx ZynQ-7000 XC7Z020 FPGA, as utilised in

this work [74].

Resource Description Number

Available

LUTs Lookup table, for implementing logical/mathematical

operations or storage. Configurable as 6 or 5 input.

53200

Registers Short term storage. 106400

DSP Slices Digital Signal Processing elements, for implementing

mathematical operations, specifically available:

multiplication and accumulation.

220

F7 Multiplexers Selecting between multiple signals. 26600

F8 Multiplexers Selecting between multiple signals. 13300

BRAM Tiles Block Random Access Memory, longer term storage.

36 Kbits up to 36 bits in width.

140

Table 7.1.7. Comparison of FPGA resource utilisation for 32-bit and 8-bit integer

networks. Both networks have: 10 inputs; 12 genes; 3 molecules; and 2 outputs. Table

includes percentage utilisation relative to the values in table 7.1.6.

Resource 32-bit network 8-bit network

 Number Used Percentage Number Used Percentage

LUTs 34501 64.48% 18073 33.97%

Registers 6160 5.79% 4418 4.15%

DSP Slices 262 119.09% 30 13.64%

F7 Multiplexers 1648 6.20% 804 3.02%

F8 Multiplexers 464 3.49% 216 1.62%

BRAM 480 342.86% 7 5.00%

151

Table 7.1.8. Comparison of FPGA resource utilisation for 32-bit and 8-bit integer network

components: input units; wrapped genes; wrapped molecules; and output units. See

chapter 5 for descriptions. Table includes percentage utilisation relative to the values in

table 7.1.6.

 32-bit network 8-bit network

Network

Element

Resource Number

Used

Percentage Number

Used

Percentage

 LUTs 607 1.14% 272 0.51%

 Registers 40 0.04% 18 0.02%

 DSP Slices 0 0.00% 0 0.00%

Input Unit F7 Multiplexers 0 0.00% 0 0.00%

 F8 Multiplexers 0 0.00% 0 0.00%

 BRAM 0 0.00% 0 0.00%

 LUTs 2643 4.97% 1105 2.08%

 Registers 379 0.36% 278 0.26%

 DSP Slices 16 7.27% 2 0.91%

Wrapped Gene F7 Multiplexers 368 1.38% 62 0.23%

 F8 Multiplexers 116 0.87% 18 0.14%

 BRAM 32 22.86% 0.5 0.36%

 LUTs 2485 4.67% 965 1.81%

 Registers 386 0.36% 284 0.27%

 DSP Slices 16 7.27% 2 0.91%

Wrapped Mole. F7 Multiplexers 368 1.38% 20 0.08%

 F8 Multiplexers 116 0.87% 0 0.00%

 BRAM 32 22.86% 0.5 0.36%

 LUTs 377 0.71% 145 0.27%

 Registers 48 0.05% 24 0.02%

 DSP Slices 0 0.00% 0 0.00%

Output Unit F7 Multiplexers 0 0.00% 0 0.00%

 F8 Multiplexers 0 0.00% 0 0.00%

 BRAM 0 0.00% 0 0.00%

152

Table 7.1.7 shows the resource utilization of two complete networks, one 8-bit and one 32-

bit; each with the same number of genes and molecules; while table 7.1.8 shows the

utilization of the various components of those networks. The two largest differences are in

the DSP and BRAM utilization; although this is not surprising, as the DSP resources are

partly responsible for mathematical operations, along with the LUTs; while the BRAM

resources hold the sigmoid lookup tables. In both these cases, increasing the data width

brings increased demands. In fact, looking at the utilization percentages shows that the 32-

bit network couldn’t actually be implemented onto the hardware utilised in this project.

Outside these two stark instances, the other resources are also used to a greater extent by

the 32-bit network, with the LUT and Multiplexer utilisations almost doubling. This clearly

illustrates the advantage of reducing the bit width of the network when it comes to

reducing silicon resources. And while there isn’t a hardware floating point network to

compare with as well, the fact that one would need an even greater data width, as well as

specialised mathematical elements, shows the benefits of making the switch.

153

Another axis of comparison, and one where a floating-point network can be looked at, is

execution time. The hardware network is designed to allow for parallel execution, whereas

the both the integer and floating-point software versions are forced to execute each

network element in turn.

Table 7.1.9. Average execution times of: an 8-bit integer hardware network; an 8-bit

integer software network; a 64-bit integer software network; and a 64-bit floating point

software network. Times encapsulate: molecule execution; gene activation state updates;

gene execution; and output execution. Input execution is not included as their execution

timings are primarily dependent on factors external to the network.

Network

Type

8-bit integer

hardware

network

8-bit integer

software

network

64-bit integer

software

network

64-bit floating-

point software

network

Execution

Time

3 µS 26 µS 29 µS 542 µS

Table 7.1.9 shows these averaged execution time mesurments, measured using the system

clock for software and a dedicated clock unit for hardware. The mesurments for the

software networks were from executions performed on the standard desktop PC described

in the introduction of Chapter 6. The hardware network is an order of magnitude faster

than its software counterparts, which is almost certanly down to the parallelisation. The

two integer software networks have comparable execution times, indicating that the bit

width has little impact on execution times. However, the floating point network is

dramatically slower than even the 64-bit integer network, something that demonstrates the

additional computational complexity brought on by floating point maths. Taking this

together with the hardware utilisation numbers, and the performance results in section

7.1.2, it is resonable to make the following statement: By transitioning to a dedicated,

integer-based hardware architecture, it is possible to significantly reduce the resource

requirements of an epigenetic network without sacrificing performance.

With confermation that the transition has been succesful, the next stage is the investigation

of the response of epigenetic networks to unevolved for external factors, as described in

section 6.4. Section 7.2 leverages the existing inverted pendulum model to look at a simple

instance of this: Impulse Injection.

154

7.2 Unexpected Impulse Injection Response

Recall from Section 6.4, that a system in a dynamic environment is considered different

from a dynamic system, in that all the properties that might affect the behaviour of a

dynamic system are encapsulated with its model; where as a system in a dynamic

environment is one subject to unanticipated external influences, such as an object

impacting the pendulum while it is in the upright position. Such an occurrence would

require the pendulum’s controller to alter its behaviour to compensate for the sudden

change, and as such behavioural changes are an ostensible strength of epigenetic networks,

this should be a worthwhile line of investigation.

7.2.1 Experimental Design and Parameters

The first stage of these experiments will be to generate two suitable populations of

networks, one which includes epigenetic elements and the other which does not. To ensure

valid comparisons, it is important that the total number of network elements are the same

across both populations.

Table 7.2.1. Parameters for the evolution of epigenetic networks.

Parameter Value

Population Size 64

Minimum Target Fitness 0.90

Number of Repeats 48

Crossover Rate 0.5

Mutation Rate 0.05

Data Width 8

Number of Genes 12

Number of Epigenetic Molecules 4

155

Table 7.2.2. Parameters for the evolution of non-epigenetic networks.

Parameter Value

Population Size 64

Minimum Target Fitness 0.90

Number of Repeats 48

Crossover Rate 0.5

Mutation Rate 0.05

Data Width 8

Number of Genes 16

The parameters for these networks are listed in the tables 7.2.1 and 7.2.2, most of the

evolutionary algorithm and network parameters remain the same as those detailed in

Section 7.1.1, although there are two changes. The most obvious change is that instead of a

number of generations, there is a minimum target fitness specified. This is because the goal

of this series of experiments is to see how a network reacts when confronted with stimulus

that is outside the parameters it was designed for. In order to make clear any significant

differences, it is important that networks are as capable as reasonably possible. Thus,

instead of looking to see what networks can be produced within certain time constraints,

the evolutionary algorithm will instead continue to optimise the networks until they reach a

fitness value of at least 0.9. Additionally, the number of epigenetic molecules has been

increased to 4. This is because it results in the total number of network elements equalling

16, or 24, meaning that the hardware version of these networks will be able to address all

the network elements with only 4-bits.

Once both populations have been produced, they will be used to control the inverted

pendulum model for an extended period of time. During these extended runs, once the

pendulum is stable in the upright position, external dynamics will be introduced. This will

take the form of a simple impulse injection, used to represent something striking the top of

the pendulum, causing it to change angular velocity. Considering Section 6.2 and equations

6.2.1 through 6.2.4, which describe the properties of the pendulum model at each time step,

it can be noted that a term for angular velocity exists (ω). Thus, the impulse injection can

be easily modelled simply by adding to the angular velocity term at the appropriate time

step. The initial impulse will be limited to 1 rad s-1, injected at time step 1500, as previous

156

results indicate that a network of good fitness should have balanced the pendulum by this

point.

Comparison between the epigenetic and non-epigenetic networks will take two forms:

(i) The inverted pendulum fitness function is still a valid metric, as it measures

time spent in the upper equilibrium position. Therefore, the difference between

the evolved fitness of a network, and the fitness measured during the impulse

injection experiment will directly equate to the time the pendulum spent off

vertical due to the impulse. Thus, a smaller fitness difference means a network

that recovered from the impulse faster.

(ii) Directly measuring the pendulum angle and its angular velocity, then plotting

over time, allows for a more qualitative performance metric.

157

7.2.2 Results

Figure 7.2.1. The results of the evolution of epigenetic and non-epigenetic network, as well

as their fitness values during impulse injection. The blue line at 0.75 denotes the fitness at

which the networks are able to maintain the pendulum in the upright equilibrium position.

158

Figure 7.2.2. Difference between the evolved fitness and impulse injection fitness for both

epigenetic and non-epigenetic networks. Note that in this case, a lower value is better.

Considering figure 7.2.1 it is obvious that both the epigenetic and non-epigenetic network

populations appear to include individuals that are able to handle the impulse injection

without any measurable reduction in fitness. However, from figures 7.2.1 and 7.2.2

additional observations can be made: First, the median post-impulse fitness of the

epigenetic population is 0.78, above the 0.75 threshold, while the non-epigenetic networks

have a median of 0.60. Combined with the epigenetic network’s superior fitness difference

median, 0.19 against 0.32, it appears that the epigenetic networks do demonstrate a

resilience to the impulse injection in this instance.

159

Table 7.2.3. Maximum, Median and Minimum fitness, as well as 25th and 75th Percentiles

and mean of the epigenetic networks’ basic fitness, fitness with the impulse injection and

fitness difference. Fitness difference is reversed, as in its case, smaller values are better.

Note that outlier values are only included in the calculation of mean fitness.

Property Basic Fitness Impulse Fitness Fitness Difference

Minimum 0.90 0.30 0.61

25th Percentile 0.91 0.50 0.43

Median 0.94 0.78 0.19

75th Percentile 0.95 0.93 0.00

Interquartile Range 0.04 0.43 0.43

Maximum 0.98 0.97 0.00

Mean 0.93 0.72 0.21

Table 7.2.4. Maximum, Median and Minimum fitness, as well as 25th and 75th Percentiles

and mean of the non-epigenetic networks’ basic fitness, fitness with the impulse injection

and fitness difference. Fitness difference is reversed, as in its case, smaller values are

better. Note that outlier values are only included in the calculation of mean fitness.

Property Basic Fitness Impulse Fitness Fitness Difference

Minimum 0.90 0.30 0.60

25th Percentile 0.92 0.38 0.56

Median 0.94 0.61 0.32

75th Percentile 0.95 0.93 0.01

Interquartile 0.03 0.45 0.55

Maximum Fitness 0.97 0.97 0.00

Mean 0.94 0.63 0.31

Tables 7.2.3 and 7.2.4 summarise these data points, as well as providing the means, which

allows for confidence limits to be placed on the data, and thus the calculation of p-values.

• Impulse Fitness:

o Confidence Limits: 0.09 ± 2.16(0.05)

o p-value: p < 0.05

• Fitness Difference:

o Confidence Limits: 0.1 ± 2.16(0.05)

o p-value: p < 0.025

160

In both cases p < 0.05, which indicates that these results are significant, reinforcing the

assertion that the epigenetic elements of the networks are positively contributing to their

recovery from the impulse injection. To confirm this, an example epigenetic network was

analysed in greater detail.

7.2.3 Network Analysis

As going over all the networks and looking at their angle and vecloity plots would be

impractical, a few specific examples will be selected, these are chosen because they

exemplify specific points of interest. These points are:

(i) An epigenetic network with a fitness difference of 0.0;

(ii) An epigenetic network with a post impulse fitness as close to the population

median as possible.

(iii) And a non-epigenetic network with a post impulse fitness as close to the

population median as possible.

In addtion, each of these networks will be investigated in greater detail, to see if

correlations can be identified between the behaviour of the pendulum under their control;

and their internal states.

161

10 314987265

1

3

2

4

2
3

48

11

5 10

7

9

6

12

1

1

2

n

n

n

n

Input Element

Epigenetic Molecule

Gene

Output Element

Network Legend

The first network under analysis is the sample of a network with a a fitness difference of

0.0. In this case it has both a pre and post impulse injection fitness of 0.97.

Figure 7.2.3. Structure of an epignetic network that suffered no fitness drop when exposed

to impulse injection.

Figure 7.2.3 details the stucture of the network, which is derived from the parameter tables

in appendix A, section 11.1. Starting at the begining, the network uses all of its inputs, with

each one being connected to at least one gene or epigeneitc molecule. This is particually

noteworthy as Turner’s networks often used as few as two of their inputs, tipically the

equivalnets of inputs 1 and 10 [6]. Moving on to the epigenetic molecules, all but molecule

4 take input 4 into consideration, not unsupprising given that it is one of the two sensors

that would indicate that the pendulum was in the upright possition. With the genes, there

are three densely intraconnected groups: genes 2, 4 and 8; genes 7 and 9; and genes 1, 3,

5, 10 and 12. Genes 6 and 11 are not connected to any other genes.

162

Figure 7.2.4. Plots of the angle off vertical of the pendulum when controlled by network

20401. The top plot shows normal balancing; the bottom shows the response to impulse

injection at time step 1500, denoted by the black line. The inset shows a close-up of the

time either side of the impulse injection.

163

Figure 7.2.5. Plots of the angular velocity of the pendulum when controlled by network

20401. The top plot shows normal balancing; the bottom shows the response to impulse

injection at time step 1500, denoted by the black line.

Looking at the angular velocity plots, figure 7.2.5, there is no discernible difference in the

pendulum’s behaviour between the two. This reiterates the fact that the fitness difference

of 0.0, as any measurable deviation would have increased this value. The angle of vertical

plots, figure 7.2.4, do show a small perturbation following the impulse injection, but it is

quickly damped down.

The next series of plots detail the action of the epigenetic molecules and genes during

execution of the network. Figure 7.2.6 shows which genes have their activity altered by the

epigenetic mechanisms, while figure 7.2.7 shows which specific molecules are responsible.

Plots 7.2.8 and 7.2.9 then compares the epigenetic behaviour of the network under normal

conditions (7.2.8) and during the injection of the impulse (7.2.9).

164

Figure 7.2.6. Activation state of genes within network 20401 between time steps 0 and

2000 (20 simulated seconds). A value of 0 indicates the gene is being deactivated by an

epigenetic element, while a value of 1 indicates the gene is active and producing an output.

165

Figure 7.2.6 shows the epigenetic behaviour of the network’s genes during the first 2000

time steps under normal conditions (no impulse at step 1500). From this, it can be seen that

genes 2, 6 and 8 are the only ones that have their activation state affected by the epigenetic

molecules, with all other genes being permanently active, except for gene 11 which is

permanently inactive.

Figure 7.2.7. Activation state of the epigeneticaly active genes within network 20401,

along with the outputs of the network’s epigenetic molecules. A value of 0 indicates the

gene is being deactivated by an epigenetic element, while a value of 1 indicates the gene is

active and producing an output. Molecule outputs are between 0 and 127, with the value

relating to the location in the network space where it looks for genes to deactivate. See

section 4.1.3 for more details.

166

Figure 7.2.7 shows that molecule 2 is the element responsible for affecting the activation

state of all three of the epigenetically active genes, with genes 2 and 8 being inhibited

when its output is low and gene 6 when its output is high; a fact that makes sense given the

positions of these genes within the network space, see figure 7.2.3. Figure 7.2.3 also shows

that molecule 2 takes inputs 1, 3, 4 and 10 and gene 7 as its inputs, gene 7 in turn is

connected to the same inputs and gene 9. Gene 9 has no inputs. From this it can be

ascertained which network elements attention needs to be payed to when investigating if

any notable epigenetic change occurs when the network is confronted with the impulse

injection.

Figure 7.2.8. Values of inputs 1, 3, 4 and 10; Output of molecule 2; and activation states of

genes 2, 6 and 8 of network 20401 between time steps 1200 and 2000 with no impulse

injection.

167

Figure 7.2.9. Values of inputs 1, 3, 4 and 10; Output of molecule 2; and activation states of

genes 2, 6 and 8 of network 20401 between time steps 1200 and 2000 with an injection of a

1 rad s-1 impulse at time step 1500, marked by a black line.

168

9 1034 872 65

1
2

4

2

3

4

8

11

5

10

7

9

6

12

1

1
2

n

n

n

n

Input Element

Epigenetic Molecule

Gene

Output Element

Network Legend

1

3

Directly comparing figures 7.2.8 and 7.2.9, it is clear to see not only the difference in

behaviour triggered by the impulse injection, but how exactly this behavioural change

comes about. Referring back to table 6.2.1: inputs 1 and 4, the two which show a clear

change following the impulse injection, are the two sensors that measure the pendulum

angle either side of the vertical position. The disturbance of the pendulum from vertical

alters the output of molecule 2, which in turn changes the activate states of the three genes

under its purview. Finally, table figure 7.2.3 confirms that these genes are connected to the

outputs of the network, with genes 2 and 8 connecting to output 1 and gene 6 connecting to

output 2.

Considering the second network, which has a post impulse injection fitness of 0.79, the

closest to the population median of 0.78.

Figure 7.2.10. Structure of an epigenetic network of median fitness.

There are no significant revelations from the structure of the network, which is shown in

figure 7.2.10 and derived from the parameter tables in appendix A, section 11.2. As with

previous networks the intra-connected clusters are present, although there are no outliers

for this network.

169

Figure 7.2.11. Plots of the angle off vertical of the pendulum when controlled by network

8578. The top plot shows normal balancing; the bottom shows the response to impulse

injection at time step 1500, denoted by the black line.

170

Figure 7.2.12. Plots of the angular velocity of the pendulum when controlled by network

8578. The top plot shows normal balancing; the bottom shows the response to impulse

injection at time step 1500, denoted by the black line.

Figures 7.2.11 and 7.2.12 illustrate the angle and angular velocity for this network, which

displays the closest fitness difference (0.18) to the median of the epigenetic network

population (0.19). Unlike the previous two networks, the impact of the impulse injection is

very clearly seen. The angle plot indicates that following the impulse, the pendulum starts

rotating. However, the speed of rotation is not consistent, nor does it steadily decrease as it

would if the cart was not moving. The angular velocity plot indicates that when the

pendulum approaches the vertical position, its velocity decreases. This suggests the

network is attempting to bring the rotation under control.

171

Figure 7.2.13. An extended plot of the angle off vertical of the pendulum when controlled

by network 8578, with an impulse injection at 1500.

However, running the model for an extended period (10,000 cycles, equating to 100

seconds real time), it would appear that this rotational is something the network is not able

to handle. This indicates that the boundary between a network able to recover from

impulse injection, and a network that cannot is very small. Despite the difference between

their fitness being only 0.18, the previous network almost ignores the impulse, while this

network becomes unstable.

The next series of plots detail the action of the epigenetic molecules and genes during

execution of the network. Figures 7.2.14 and 7.2.15 compare the epigenetic behaviour of

the network under normal conditions (7.2.14) and during the injection of the impulse

(7.2.15) by showing the difference in the activation states of the genes. The plot in figure

7.2.16 then illustrates which specific epigenetic molecules are affecting the activation state

of which genes.

172

Figure 7.2.14. Activation state of genes within network 8578 between time steps 0 and

2000 (20 simulated seconds). A value of 0 indicates the gene is being deactivated by an

epigenetic element, while a value of 1 indicates the gene is active and producing an output.

173

Figure 7.2.15. Activation state of genes within network 8578 between time steps 0 and

2000 (20 simulated seconds), with impulse injection at time step 1500, denoted by the

black line. A value of 0 indicates the gene is being deactivated by an epigenetic element,

while a value of 1 indicates the gene is active and producing an output.

174

As with the previous network, only some of network 8578’s genes are epigenetically

active, and they fall into two of the three gene clusters (as indicated in figures 7.2.14 and

7.2.15). Genes 3, 5 and 9 all display the same pattern of epigenetic behaviour, as do genes

4 and 8. Gene 11 is a slight anomaly, in that while it is part of the same intra-connected

cluster as genes 4 and 8, its epigenetic pattern is different. It does however share portions

of its behaviour with the other genes in its cluster, suggesting that multiple epigenetic

elements are acting on it.

Figure 7.2.16. Activation state of genes exibiting epigenetic behaviour between time steps

0 and 300 (3 simulated seconds) and the outputs of the epigenetic molecules. With genes: a

value of 0 indicates the gene is being deactivated by an epigenetic element, while a value

of 1 indicates the gene is active and producing an output. With molecules, their output is

between 0 and 127, with the value relating to the location in the network space where it

looks for genes to deactivate. See section 4.1.3 for more details.

175

7910 348 26 5

2
34

8

115

10

7 9

6

12

1

1 2

n

n

n

n

Input Element

Epigenetic Molecule

Gene

Output Element

Network Legend

1

13

1415

16

Looking at the gene activation states and epigenetic molecule outputs together, Figure

7.2.16, confirms that this is indeed the case, and not just for gene 11. This shows that gene

5 also has slightly different behaviour to the other two genes in its cluster, in this case

genes 3 and 9. Comparing the gene patterns with the outputs of the molecules indicates the

following:

• Genes 3 and 9 are controlled by molecule 2;

• Gene 5 is also controlled by molecule 2, but can also be affected by molecule 4;

• Genes 4 and 8 are controlled by molecule 3; and

• Gene 11 is controlled by molecules 3 and 4.

The final network to undergo analysis is a non-epigenetic network with a post impulse

injection fitness of 0.55, the closest to median impulse fitness value of 0.60.

Figure 7.2.17. Structure of a non-epigenetic network of median fitness.

176

Figure 7.2.17 details the structure of this network, which is derived from the parameter

tables in appendix A, section 11.3. As with previous networks, there is a clear clustering,

with two intra-connected groupings developing:

• Genes 2, 4, 5, 7 and 12, which connect to Inputs 6, 8, 9 and 10.

• Genes 1, 3, 6, 8, 9, 10, 11, 13, 14 and 15, which connect to inputs 2, 3 and 5.

Gene 16 is on its own, connected to Inputs 1, 4, 6, 7, 8 and 9, an observation made

noteworthy by the fact that gene 16 is the only one connected to output 1. Additionally, no

other genes act as inputs to gene 16, making it solely responsible for one of the network

outputs. The other output is connected to several of the genes from the second cluster, as

well as gene 16, indicating that genes of the first cluster have no impact on the behaviour

of the network.

Figure 7.2.18. Plots of the angle off vertical of the pendulum when controlled by network

28314. The top plot shows normal balancing; the bottom shows the response to impulse

injection at time step 1500, denoted by the black line.

177

Figure 7.2.19. Plots of the angular velocity of the pendulum when controlled by the

network. The top plot shows normal balancing; the bottom shows the response to impulse

injection at time step 1500, denoted by the black line.

The Network’s initial response to the impulse injection, shown in figures 7.2.18 and

7.2.19, is similar to that of the previous shown in figures 7.2.11 and 7.2.12. However,

rather than developing into the steady rotational behaviour, the pendulum controlled by

this network instead accelerates, eventually reaching over 15 rad S-1 , at which point the

plots cut off. This is a consequence of one of the properties of the pendulum model,

detailed in section 6.2, where it was noted that the inverted pendulum simulation can be

terminated prematurely under certain conditions. One such condition was if the pendulum

exceeded an angular velocity of 5π rad S-1, which is clearly the case here.

178

Taking this together with the statistical results from section 7.2.2, it is reasonable to make

the following statement: Within the conditions of this experiment, an epigenetic

network is capable of a superior response to an unevolved for external impulse, when

compared to a counterpart network without epigenetic behaviour. While this is only

an initial experiment, it suggests that the core thesis of this work may be valid. Further

investigation will be detailed in Chapter 8, where the switch to the more crucial robotics

experiments are made. Section 7.3 of this chapter covers a brief aside into validating a

structural change made to the epigenetic networks during their translation to hardware.

179

7.3 Connection Weights: Single Output vs Multiple

Input

7.3.1 Experimental Design and Parameters

Separate from the mainline experiments, outlined in this section is an experiment to

validate one of the design choices made when creating the epigenetic network outlined in

this thesis. As detailed in Section 4.1.2, and illustrated in figure 7.3.1, Turner’s original

epigenetic networks applied connection weights at the output of each gene, effectively

resulting in inhibitory or excitatory genes. This means that if Gene A and Gene B need to

react differently to the output of Gene C, the network requires a version of Gene C for each

of Genes A and B.

Figure 7.3.1. Single output applied weights (left) versus the more conventional input

applied weights (right).

Given network compactness is a goal of this work, a more standard weight application

method was implemented, with weights being applied to each input of each gene and

molecule individually. This experiment is intended to confirm that this alteration does

indeed permit smaller networks with higher fitness to be evolved than the original. The

process to do this is straightforward, a series of networks with both types of weight

structures will be evolved, optimising not only for fitness, but compactness (e.g. smaller

networks will be better). The results for both network types will then be compared.

A

C

B

C

Weight 1 Weight 2

A B

C

Weight 1 Weight 2

180

In order to evolve a network for both fitness and compactness, the NSGA-II genetic

algorithm detailed in Section 3.4 will be employed. Additionally, a metric for network

compactness will be required, equation 7.3.1.

𝑭 = 𝟏. 𝟎 − (
𝑺𝒊𝒛𝒆

𝑺𝒊𝒛𝒆𝒎𝒂𝒙
) (𝟕. 𝟑. 𝟏)

The compactness metric is straightforward, simply producing a value inversely

proportional to the size of the network.

Table 7.3.1. Parameters for the NSGA-II evolution of fitness and compactness.

Parameter Value

Population Size 128

Number of Generations 4096

Number of Repeats 50

Crossover Rate 0.5

Mutation Rate 0.05

Data Width 8

Maximum Number of Genes 25

Maximum Number of Epigenetic Molecules 5

Two important differences should be noted with this experiment’s parameters, compared to

the others outlined in this chapter:

(i) Both population size and the number of generations have been increased

significantly from the experiments previously detailed in this chapter. This is

because this experiment is intended to push the networks to their maximum

possible limits, with no premature cut off due to insufficient time to evolve.

(ii) There is only a maximum number of genes and molecules, meaning that a

network could potentially have only one of each. Again, this is so that the limits

can be found, if the evolutionary algorithm is able to produce a high fitness

network with so few elements, then it should be allowed to.

181

7.3.2 Results

Figure 7.3.2. Functional fitness and compactness of normal, input applied weights (blue)

and single, output applied weights (orange).

Figure 7.3.2 shows the results of NSGA-II evolution, with the two objectives, fitness and

compactness, plotted against each other. Both the input and output applied weight

networks are able to produce individuals with high compactness or high fitness, but it is

clear that the normal, input applied weights are able to better achieve both together.

182

Figure 7.3.3. Fitness of all networks with a compactness of 0.93.

Figure 7.3.3 shows only the fitness of networks, of both types, that have a compactness of

0.93: 1 gene and 1 molecule. This shows even more than Figure 7.3.2 the difference, as it

can easily be seen that while the median fitness of the normal, input weight networks is

below 0.75, there are no single, output weight networks with a fitness above 0.71. It is

therefore reasonable to state that the purpose of this experiment has been fulfilled, as these

results show that the switch to a more conventional method of connection weighting allows

for greater network compactness while retaining performance.

183

Table 7.3.2. Maximum, Median, mean and Minimum fitness, as well as 25th and 75th

Percentiles and interquartile range for normal, input weighted networks and single, output

weighted networks with a compactness of 0.93. Note that outlier values are only included

in the calculation of mean fitness.

Property Input Weighted Networks Output Weighted Networks

Minimum Fitness 0.58 0.55

25th Percentile Fitness 0.70 0.59

Median Fitness 0.73 0.63

75th Percentile Fitness 0.80 0.64

Interquartile Range 0.10 0.05

Maximum Fitness 0.97 0.71

Mean Fitness 0.75 0.62

Table 7.3.2 summarises the data points from figure 7.3.3, as well as the mean fitness of the

two network types, thus allowing confidence limits and p-values to be calculated.

• Confidence Limits: 0.13 ± 2.16(0.08)

• p-value: p < 0.10

 In this case, despite the apparent clarity of the raw data; p > 0.05, which indicates the

results are insufficient to draw a significant conclusion.

7.3.3 Epigenetic vs Non-Epigenetic with Compactness Optimisation

Given the previous results, it is interesting to compare the epigenetic networks to their non-

epigenetic counterparts when compactness is a factor under consideration. With results

already available for the epigenetic networks (specifically those for the normal weights),

experiments are required, with the parameters detailed in Table 7.3.1, but in this case with

the epigenetic elements disabled.

184

7.3.4 Results

Figure 7.3.4. Functional fitness and compactness of networks with and without epigenetic

elements.

Figure 7.3.4 shows the results of the new, epi off evolution compared to the original epi on

evolution. The first thing to note is that in this case, the epigenetic and non-epigenetic

networks have a median fitness below the 0.75 threshold, specifically 0.72. However, both

were able to produce non-outlier networks with fitness values of 0.98. Regarding

compactness, the vast majority of the non-epigenetic networks achieve greater

compactness than their epigenetic counterparts, which on reflection is not surprising given

that they have no need for the epigenetic elements.

185

Figure 7.3.5. Functional fitness of all networks with a compactness of 0.93.

Looking solely at the maximum compactness networks, Figure 7.3.5, shows little to

differentiate the two populations. In both cases, the median fitness values are 0.72, with a

few outliers reaching a maximum of 0.94. The epigenetic population contains 32

individuals, while the non-epigenetic contains 36.

186

Figure 7.3.6. Compactness of all networks with fitnesses over 0.75.

Figure 7.3.6 shows the compactness of all networks above a set fitness threshold (0.75),

these results also reveals little to differentiate the two populations. The total number of

epigenetic networks is 19, and 20 non-epigenetic. Both populations contain individuals that

achieve maximum compactness, while the epigenetic population has a median of 0.77 and

the non-epigenetic and median of 0.83.

In an effort to obtain some final clarity, a version of the very first experiment is repeated:

multiple epigenetic evolutions will be launched, each one with different network sizes. The

crucial differences are that this time, the sizes will be from 2 to 16 network elements; and

there will be a second set of evolutions of non-epigenetic networks for comparison. It is

also worth noting, that the above considers network elements, not genes. This is because,

in order to make a valid comparison between the epigenetic and non-epigenetic, it is

important they are of the same size. It would be meaningless to consider a 2 gene

epigenetic network as comparable in performance to a 4 gene non-epigenetic network, if

the former also had 6 molecules.

187

Figure 7.3.7. Fitness of epigenetic networks with between 2 and 16 network elements

(genes and molecules).

Figure 7.3.8. Fitness of non-epigenetic networks with between 2 and 16 genes.

188

Figures 7.3.7 and 7.3.8 show the results of these experiments. There is a very clear trend

that indicates that the addition of epigenetic elements to an epigenetic network in place of

some of that network’s standard elements, does not provide an improvement in

performance, at least with regards to the inverted pendulum. Perhaps the starkest

illustration of this is with the two populations of networks with 2 elements: the epigenetic

networks (1 gene, 1 molecule) were not able to exceed the 0.75 threshold, and possess a

median fitness of 0.61; the non-epigenetic networks (2 genes) were able to all exceed the

threshold, excepting a few outliers, but their median fitness is 0.96.

7.4 Summary

Considering all the experiments and results presented in this chapter, the following

comments can be made:

The initial goal of this work has been successful, as a hardware implementation of the

epigenetic network has been developed, and demonstrated to perform comparably to its

software counterpart on the inverse pendulum. Furthermore, this comparable performance

has survived a translation from a floating-point to integer implementation, as well as a

dramatic reduction in data width. However, further analysis has revealed that the presence

of epigenetic elements with a network is no guarantee of epigenetic activity, as the genetic

algorithm was able to achieve high levels of fitness of the inverse pendulum without

actually connecting the epigenetic elements to any of the genes involved in actual

processing.

In looking to challenge the epigenetic network, with the aim of producing a clear division

between it and more standard gene regulatory (or non-epigenetic) network, populations of

high fitness networks were exposed to a stimulus, in the form of a dynamic environment.

This took the form of an impulse injection, simulating the pendulum being impacted at

high speed by another object. In this case, there was good evidence to suggest that, while

further refinement would be beneficial, the epigenetic elements had a measurable positive

impact on the network’s performance.

189

Finally, in order to validate the assertions made in Section 4.1.2, the effect of the

alterations made to the network’s connection weighting was tested. This confirmed that by

switching from the original, output applied single weights to the more conventional input

applied weights, the networks can be significantly reduced in size, with some individuals

even attaining high levels of functionality with only 1 gene and 1 molecule. Additionally,

this prompted a comparison between epigenetic and non-epigenetic networks along similar

lines, looking to see if epigenetic elements were able to allow for very compact networks.

However, the results offered a very clear statement the replacement of standard network

elements with epigenetic ones actually resulted in a significant reduction in overall

performance.

Drawing the work of this chapter to a close, the hypothesis laid out in section 6.4 does look

to have some preliminary support. More evidence is needed however for a definite

conclusion, and sticking to a single type of problem would be inadvisable. Thus, the next

chapter of this work will focus on repeating the type of experiment of section 7.2, but with

a different problem: Foraging Robots.

190

8 Robot Foraging Experiments

This chapter covers the first series of experiments carried out using the JBotEvolver

platform [77] and simulated robot detailed in Section 6.3 of this thesis, as well as

expanding upon some of the experiments of Chapter 7.

As this is a new problem for the epigenetic network, the first stage of experiments is

intended to confirm the viability of the network as a robot controller, in general, and to see

if it is capable of handling a simple foraging task. In addition, the same experiment will be

repeated on a comparable non-epigenetic network, to establish a baseline for later

comparison. The second set of experiments introduce the added complexity of a simple

maze, necessitating that the robot develop behaviours to navigate the maze while also

foraging for prey. The final layer of complexity comes with the substitution of the normal,

stationary prey with prey objects that move about the environment. In order to continue

being a successful foraging, the robot will need to be able to compensate for this added

complexity; as prey may now move out of range of its manipulator just as it is about to

grab them.

8.1 Basic Foraging Environment

8.1.1 Experiment Design and Parameters

The initial validation experiments will take place in the basic foraging arena described in

Section 6.3, illustrated in figure 6.3.6. The simulated robot will begin at the centre of the

environment, and will have a limited amount of time to acquire as much food as possible

and return it to the nest, also located in the centre of the environment. Section 6.3 also

covers the characteristics of the simulated robot, which is illustrated in figure 6.3.5. Table

8.1.1 details the parameters of the environment.

Table 8.1.1. Parameters of the foraging arena.

Parameter Value

Outer Boundary Radius 5.0 Units

Food Spawn Boundary Radius 2.0 Units

Nest Radius 0.5 Units

Initial Number of Food 20

Respawning Food TRUE

191

The first three parameters in table 8.1.1 are self-explanatory, as they relate directly to

aspects of the environment shown in figure 6.3.6. ‘Initial Number of Food’ is the number

of food objects that will be distributed randomly throughout the environment at the start of

the simulation. ‘Respawning Food’ relates to what occurs when a food item is deposited

into the nest: TRUE means the food item will be placed in a new random location, hence

keeping the total number of food items in the environment static, and giving no upper limit

to the amount of food that the robot can return to the nest.

Table 8.1.2. Parameters for the evolution of epigenetic networks.

Parameter Value

Number of Simulation Time Steps 1000

Population Size 500

Number of Generations 200

Number of Repeats 50

Mutation Rate 0.05

Data Width 8

Number of Genes 12

Number of Epigenetic Molecules 4

Table 8.1.3. Parameters for the evolution of non-epigenetic networks.

Parameter Value

Number of Simulation Time Steps 1000

Population Size 500

Minimum Target Fitness 200

Number of Repeats 50

Mutation Rate 0.05

Data Width 8

Number of Genes 16

Tables 8.1.2 and 8.1.3 contain all the experimental parameters, as in the experiments

detailed in Chapter 7. Note the absence of the crossover rate parameter, as the genetic

algorithm integrated into the simulator does not use crossover, see section 3.2 for more

details.

192

8.1.2 Results

Figure 8.1.1. Fitness of the best individuals from 50 evolutionary runs of epigenetic and

non-epigenetic networks. Note that any fitness value greater than 1.0 indicates the

successful collection and return of at least one prey object.

193

Table 8.1.4. Maximum, Median, mean and Minimum fitness, as well as 25th and 75th

Percentiles and interquartile range for epigenetic and non-epigenetic networks. Note that

outlier values are only included in the calculation of mean fitness.

Property Non-Epigenetic Networks Epigenetic Networks

Minimum Fitness 7.37 7.51

25th Percentile Fitness 8.61 8.56

Median Fitness 9.47 9.40

75th Percentile Fitness 9.61 9.66

Interquartile Range 1.00 1.10

Maximum Fitness 10.60 10.61

Mean Fitness 9.27 9.16

Looking at figure 8.1.1, and the summary of its significant points in table 8.1.4, it can be

seen that, when presented with the basic foraging environment, both the epigenetic and

non-epigenetic network controlled robots are able to reach similar fitness levels. It should

be noted that the integer component of the fitness value directly correlates to the amount of

prey returned to the nest.

This establishes an excellent baseline for later comparison, as it means that later

divergences in performance will be a result of the changing experimental parameters. This

simple experiment also confirms the functionality of the experimental setup.

194

8.1.3 Network Analysis

As control of a foraging robot is a new task to epigenetic network, it is prudent to validate

that epigenetic behaviour is occurring. As such, analysis of a sample network will be

performed, specifically one with a fitness close to the median.

Starting with the structure of the network, which is shown in figure 8.1.2 and derived from

the parameter tables in appendix A, section 11.4

Figure 8.1.2. Structure of the network.

Considering the structure of the network, several features can be identified, the most

prominent of which is an interconnected cluster of elements at the centre of the network

space, consisting of genes 1, 2, 4, 5, 7, 10, 11 and 12. This cluster connects to inputs 1, 3

and 4, as well as molecule 1, and also connects to all three of the network outputs. The

other 4 genes of the network have very few connections, with genes 3 and 9 not having any

inputs at all, while genes 8 outputs only to molecules 2 and 3 and gene 6 has no outputs at

all. Previous work, illustrated in the network analysis in Chapter 7, has shown that the

elements of an epigenetic network will cluster together, but there are typically several,

spread throughout the network space.

31 42 5

1

3 2
4

2

3

4

8
11

5

10

7

96

12

1

12

n

n

n

n

Input Element

Epigenetic Molecule

Gene

Output Element

Network Legend

3

195

Figure 8.1.3 shows the epigenetic activity within the network during foraging, and while it

clearly shows two genes (3 and 9) being affected by the epigenetic elements, which genes

they are is problomatic. Looking at figure 8.1.2, it can be seen that the two epigenetically

active genes are also the ones that have no inputs. Additionally gene 3, the most

epigenetically active, only outputs to two of the networks epigenetic elements, and none of

its outputs. This leads to the conclusion that: in this case, there is no benefit to the addition

of epigenetic behaviour. One conclusion from this is that the task is not complex enough to

allow the epigenetic structures to make a significant difference over the more simple non-

epigenetic strcuture. It is therefore prudent to move onto the next, more complex foraging

task, which will hopefully introduce the needed stimulus to trigger the development of

epigenetic behaviour.

196

Figure 8.1.3. Activation state of genes within the network between time steps 0 and 1000. A

value of 0 indicates the gene is being deactivated by an epigenetic element, while a value

of 1 indicates the gene is active and producing an output.

197

8.2 Maze Foraging Environment

8.2.1 Experiment Design and Parameters

As with the basic foraging experiment in Section 8.1, the simulated robot will have a set

period of time to return as much food to the nest as possible.

Table 8.2.1. Parameters of the foraging arena.

Parameter Value

Food Spawn Boundary Radius 0.1 Units

Nest Radius 0.2 Units

Initial Number of Food 20

Respawning Food TRUE

Table 8.2.1 contains the parameters for the basic maze environment shown in figure 6.3.7.

The ‘Nest Radius’; ‘Initial Number of Food’; and ‘Respawning Food’ parameters refer to

the same properties as in Section 8.1, but the ‘Food Spawn Boundary Radius’ parameter

now refers to the size of the spawning circles, as illustrated in figure 6.3.7. Food is

randomly placed in these circles at the start of the simulation time, and will be respawned

into one when it is returned to the nest by the robot.

Table 8.2.2. Parameters for the evolution of epigenetic networks

Parameter Value

Number of Simulation Time Steps 10000

Population Size 500

Number of Generations 200

Number of Repeats 50

Mutation Rate 0.05

Data Width 8

Number of Genes 12

Number of Epigenetic Molecules 4

198

Table 8.2.3. Parameters for the evolution of non-epigenetic networks

Parameter Value

Number of Simulation Time Steps 10000

Population Size 500

Minimum Target Fitness 200

Number of Repeats 50

Mutation Rate 0.05

Data Width 8

Number of Genes 16

The parameters of the experiments, shown in tables 8.2.2 and 8.2.3, are largely the same as

those of the pervious experiments, shown in tables 8.1.2 and 8.1.3. They only difference is

that the simulation time has been increased from 1000 to 10000 time steps, to account for

the increased time required for the more complex task.

199

8.2.2 Results

Figure 8.2.1. Fitness of the best individuals from 50 evolutionary runs of epigenetic and

non-epigenetic networks. Note that any fitness value greater than 1.0 indicates the

successful collection and return of at least one prey object.

200

Table 8.2.4. Maximum, Median, mean and Minimum fitness, as well as 25th and 75th

Percentiles and interquartile range for epigenetic and non-epigenetic networks. Note that

outlier values are only included in the calculation of mean fitness.

Property Non-Epigenetic Networks Epigenetic Networks

Minimum Fitness 0.960 0.960

25th Percentile Fitness 0.975 0.976

Median Fitness 0.980 0.979

75th Percentile Fitness 0.988 1.033

Interquartile Range 0.013 0.057

Maximum Fitness 1.053 1.104

Mean Fitness 1.070 1.040

Figure 8.2.1 shows the comparison between the results of the epigenetic and non-

epigenetic controlled robots, with the important points summarised in table 8.2.4. The

epigenetic and non-epigenetic networks perform similarly, with very close median and

mean fitness values. In both cases, however, not all of networks were able to successfully

return any prey to the nest, with only 14 epigenetic and 12 non-epigenetic networks

completing this section of the task, with most of them being outliers. This should still be

enough to progress forward, provided that, unlike in the previous case, epigenetic activity

can be demonstrated.

8.2.3 Network Analysis

As an epigenetic network of median fitness would not encapsulate the completion of a

successful foraging run, the network under scrutiny is instead one with a fitness as close to

the mean value as possible: 1.0327. Figure 8.2.2 details the structure of this network,

derived from the parameter tables in appendix A, section 11.5.

201

Figure 8.2.2. Illustration of the epigenetic network’s structure.

Considering the network structure, the usual gene clustering can be seen, with clusters

composed of: genes 2, 6, 7, 9, 11, 10, 12; and genes 3, 4, 5 and 1; with gene 8 out on its own.

Gene 12 connects gene 3 into the first cluster, but other than that the cluster connections are

once again primarily internal. In contrast to the networks analysed previously in this chapter

and in Chapter 7 however, there is a much greater degree of connection between the genes

and molecules; and the genes and the outputs: as every gene is connected to at least one of

each, and most to two.

Considering now to the gene activation plots in figure 8.2.2, there is a much greater degree

of epigenetic activity than in the previously analysed network, see figure 8.1.2. Genes 2, 3,

10 and 12 all display consistent epigenetic behaviour, made more promising by the roles

they play not only as parts of the two gene clusters, but as inputs to two of the network’s

output elements. With a demonstration that the maze foraging environment is a more

useful optimisation task for the development of epigenetic behaviours, it is possible to

progress again to the introduction of environmental dynamics, in the form of moving prey

objects.

3 1 4 26

13

2

4

2

3 4

8

11

5

10

7
9

6

12

1

12

n

n

n

n

Input Element

Epigenetic Molecule

Gene

Output Element

Network Legend

3

57

202

Figure 8.2.3. Activation state of genes within the network between time steps 0 and 10000.

A value of 0 indicates the gene is being deactivated by an epigenetic element, while a value

of 1 indicates the gene is active and producing an output.

203

8.3 Foraging for Mobile Prey

As a maze based foraging task has been shown to be able to induce the evolution of

epigenetic behaviour, it is now possible to move on to the first introduction of the

environmental dynamics for robots: the mobile prey.

8.3.1 Experiment Design and Parameters

The foraging task will take place in the environment shown in figure 6.3.7 in Chapter 6

Table 8.3.1. Parameters of the environment.

Parameter Value

Food Spawn Boundary Radius 0.1 Units

Nest Radius 0.2 Units

Initial Number of Food 20

Respawning Food TRUE

Table 8.3.1 contains the parameters for the environment, which are the same as those from

the previous experiment in section 8.2.

Table 8.3.2. Parameters for the evolution of epigenetic networks.

Parameter Value

Number of Simulation Time Steps 10000

Population Size 500

Number of Generations 200

Number of Repeats 50

Mutation Rate 0.05

Data Width 8

Number of Genes 12

Number of Epigenetic Molecules 4

204

Table 8.3.3. Parameters for the evolution of non-epigenetic networks

Parameter Value

Number of Simulation Time Steps 10000

Population Size 500

Minimum Target Fitness 200

Number of Repeats 50

Mutation Rate 0.05

Data Width 8

Number of Genes 16

The parameters of the experiments, shown in tables 8.3.2 and 8.3.3, are the same as those

of the previous experiments in this chapter. Once two populations of networks have been

evolved, they will be reassessed in the same environment, but with the switch to mobile

rather than static prey objects, as described in Chapter 6. As the experiment in Section 8.2

has shown that not every individual produced is actually able to complete the foraging

task, only those that have a fitness higher than 1.0 (indicating they have foraged at least

one prey object) will be used during the second stage. Similar to the impulse injection

experiment from Chapter 7, the goal is to compare how the epigenetic and non-epigenetic

networks react when confronted with stimulus that they have not been optimised for.

205

8.3.2 Results

Figure 8.3.1. The results of the evolution of non-epigenetic and epigenetic networks, as

well as their fitness values when attempting the foraging task in an environment with

moving prey objects.

The results of the epigenetic and non-epigenetic networks are shown in figure 8.3.1, with

the important points summarised in table 8.3.4. The results show clearly that none of the

networks, both epigenetic and non-epigenetic, are able to return any prey objects to the

nest when they are mobile. The best results in both cases are statistical outliers: non-

epigenetic network 19, standard fitness 1.200, moving prey fitness 0.982; and epigenetic

network 14, standard fitness 1.219, moving prey fitness 0.949. With these results, there is

little reason to analyse any of the networks in greater detail.

206

Table 8.3.4. Maximum, Median, mean and Minimum fitness, as well as 25th and 75th

Percentiles and interquartile range for epigenetic and non-epigenetic networks that were

able to forage at least one prey object under standard conditions. Note that outliers are

only included in the calculation of the mean fitness.

Property Non-Epigenetic

Networks

Epigenetic Networks

 Standard

Conditions

Falling

Debris

Standard

Conditions

Falling

Debris

Minimum Fitness 1.021 0.000 1.021 0.000

25th Percentile Fitness 1.040 0.000 1.060 0.000

Median Fitness 1.129 0.000 1.105 0.005

75th Percentile Fitness 1.186 0.000 1.277 0.012

Interquartile Range 0.146 0.000 0.217 0.012

Maximum Fitness 1.381 0.000 1.322 0.075

Mean Fitness 1.141 0.141 1.214 0.115

207

8.4 Summary

Considering all the experiments and results presented in this chapter, the following

comments can be made:

After the encouraging start provided by the results detailed in Chapter 7, the transfer to a

task very different from ones previously tackled by the epigenetic network has so far

provided little to support the hypothesis presented in Chapter 6. While the simulation tools

have performed well, the initial failure of the basic foraging task to provide sufficient

stimulus to evolve epigenetic behaviour is discouraging.

The switch to the maze environment, and thus the addition of greater complexity to the

basic foraging task, did result in epigenetically active networks, but with a poorer fitness.

Indeed many individuals were unable to return even a single prey object to the nest, a trend

that continued with the moving prey experiments.

Drawing the work of this chapter to a close, the hypothesis laid out in section 6.4 remains

unproven. Changing the nature of the foraging task may yield more encouraging results,

which leads into Chapter 9, where a slightly different approach is taken in the form of the

search and rescue task.

208

9 Robot Rescue Experiments

Taking a slightly different approach to the experiments of Chapter 8, this chapter covers

the series of experiments that simulate a search and rescue scenario using the JBotEvolver

platform [77] and simulated robot detailed in Chapter 6 of this thesis. As discussed in

Chapter 6, there are two primary reasons for re-contextualising the foraging task into one

that mimics a search and rescue scenario. The first is the introduction of time pressure as a

factor in determining the fitness of a given network. If two robots both recovered 4 people,

the metrics used in Chapter 8 would declare them equal, even if one did so much faster,

and therefore more efficiently, than the other. The rescue fitness function, given in

equation 6.3.2 in Chapter 6 allows these two robots to be differentiated, which in turn

should encourage the evolution of more efficient control networks, and hopefully ones that

are more epigenetically active. The second reason relates to the introduction of the

environmental dynamics that are of importance to the hypothesis laid out in Section 6.3:

the fact that a search and rescue task provides ample inspiration for possible dynamics to

introduce.

As in Chapter 8, the first experiment will be a validation of the epigenetic networks ability

to perform the task, as well as the establishment of a baseline for latter comparison by

repeating the experiment with non-epigenetic networks. The introduction of environmental

dynamics is described in Section 9.1, in the form of the simulated debris fall described in

Section 6.3.2 for Chapter 6. This section is followed by a description of a series of

experiments, results and analysis.

209

9.1 Basic Rescue Task

9.1.1 Experimental Design and Parameters

The basic rescue task will take place in the environment shown in figure 6.3.8 in Chapter

6.

Table 9.1.1. Parameters of the environment.

Parameter Value

Nest Radius 0.2 Units

Initial Number of People 5

Respawning People FALSE

Table 9.1.1 contains the parameters for the environment. The ‘Nest Radius’; ‘Initial

Number of People’ and ‘Respawning People’ parameters all have similar functions as their

counterparts in Chapter 8, although it should be noted that: in addition to their only being

five people, they will not be respawning when deposited in the nest by the robot. This is to

give a more accurate representation of a search and rescue scenario, as in reality you can

only find each missing person once.

Table 9.1.2. Parameters for the evolution of epigenetic networks

Parameter Value

Number of Simulation Time Steps 10000

Population Size 500

Number of Generations 200

Number of Repeats 50

Mutation Rate 0.05

Data Width 8

Number of Genes 12

Number of Epigenetic Molecules 4

210

Table 9.1.3. Parameters for the evolution of non-epigenetic networks.

Parameter Value

Number of Simulation Time Steps 10000

Population Size 500

Minimum Target Fitness 200

Number of Repeats 50

Mutation Rate 0.05

Data Width 8

Number of Genes 16

The parameters of the experiments, shown in tables 9.1.2 and 9.1.3, are the same as those

of the previous experiments from Chapter 8.

211

9.1.2 Results

Figure 9.1.1. Fitness of the best individuals from 50 evolutionary runs of epigenetic and

non-epigenetic networks. The results are divided based upon the number of people

successfully rescued.

Figure 9.1.1 shows the comparison between the results of the epigenetic and non-

epigenetic controlled robots, with the important points laid out in table 9.1.4. As has been

the case in prior experiments, detailed in Chapter 8, the networks have comparable fitness

results. Both the epigenetically and none-epigenetically controlled robots were able to

rescue between and 3 and 4 people, with the finesses indicating that they were able to do so

at comparable speeds.

212

Table 9.1.4. Maximum, Median, mean and Minimum fitness, as well as 25th and 75th

Percentiles and interquartile range for epigenetic and non-epigenetic networks. Note that

outlier values are only included in the calculation of mean fitness.

Property Non-Epigenetic

Networks

Epigenetic Networks

 3 People

Rescued

4 People

Rescued

3 People

Rescued

4 People

Rescued

Minimum Fitness 17.654 18.386 17.397 17.801

25th Percentile Fitness 19.370 20.601 20.138 20.855

Median Fitness 20.937 22.002 20.777 22.019

75th Percentile Fitness 22.823 23.604 22.217 25.397

Interquartile Range 3.453 3.003 2.079 4.542

Maximum Fitness 26.575 25.047 24.707 26.371

Mean Fitness 21.373 22.024 21.234 22.701

9.1.3 Network Analysis

As the results have already been divided based on the number people rescued, it is useful

to look at a sample epigenetic network from both groups. Starting with a network of fitness

20.776, the closest to the median fitness value for the recovery of 3 people, figure 9.1.2

details its structure in the usual fashion, derived from the parameter tables in appendix A,

section 11.6.

213

Figure 9.1.2. Illustration of the epigenetic network structure.

From the figure, there are three features of this network that are of note. Firstly, unlike

previous networks analysed in this work, there are no clear gene clusters, with most genes

being fairly evenly distributed throughout the network space. Second, there is one

molecule, molecule 2, which is connected to all the inputs and genes in the network.

Finally, gene 10, which is connected to the output that controls the grabber, has no inputs.

However, looking at the gene activation plots in figure 9.1.3 shows that gene 10 is among

those that are epigenetically active, along with genes 3, 8 and 11. Furthermore, not only are

all of these genes connected to the network outputs, but they are either the only ones, in the

case of outputs 1 and 3, or make up the vast majority, in the case of output 2. This clearly

indicates that epigenetic behaviour is playing an important role in the functioning of this

network.

314 2 6

13
2

4

2

3

4

8

11

5

10

7

9

6

121

1 2

n

n

n

n

Input Element

Epigenetic Molecule

Gene

Output Element

Network Legend

3

57

214

Figure 9.1.3. Activation state of genes within the network between time steps 0 and 10000.

A value of 0 indicates the gene is being deactivated by an epigenetic element, while a value

of 1 indicates the gene is active and producing an output.

215

314 2 6

13
2

4

2

3

4

8

11

5

10

7

9

6

121

1 2

n

n

n

n

Input Element

Epigenetic Molecule

Gene

Output Element

Network Legend

3

57

Moving on to the example network for the recovery of 4 people: fitness 21.475, the closest

to the median fitness; the structure of which is illustrated in figure 9.1.4, derived from the

parameter tables in appendix A, section 11.7.

Figure 9.1.4. Illustration of the epigenetic network.

Compared to the network illustrated in figure 9.1.2, the 4 people recovered median

network has some noteworthy differences. The gene clustering is present, with densely

intra-connected group consisting of: genes 1, 2, 3 and 11; and genes 7, 9, 10 and 11; while

the other genes are spread out through the rest of the network space. There is no molecule

connected to all the network elements, but gene 7 does connect to all the inputs and all the

other genes. The most unusually network feature however is output 2, which connects to

the left hand motor, has no inputs. Analysis of the motor model within JBotEvolver

provides the following equation for motor speed at time t:

 𝑺𝒑𝒆𝒆𝒅𝒕 = 𝟐𝑺𝒑𝒆𝒆𝒅𝒎𝒂𝒙(−𝟎. 𝟓 + 𝑪𝒐𝒏𝒕𝒓𝒐𝒍 𝑽𝒂𝒍𝒖𝒆) (𝟗. 𝟏. 𝟏)

With the output providing a control value of 0, due to its lack of inputs, equation 9.1.1

indicates that this network was able to control the robot to complete the task while its left

motor was permanently in full reverse. It would be unreasonable to attribute the ability to

maintain performance to the epigenetic mechanisms of this network, so instead this stands

as a testament to the ability of evolutionary and genetic algorithms to continue to produce

solutions that surprise human designers. Turning to figure 9.1.5, the gene activation plots,

216

it can be seen that there is epigenetic activity present in this network too; with genes 2, 3, 6

and 10 all displaying switching behaviour; while genes 5 and 7 are permanently

deactivated by the epigenetic molecules. Genes 10 and 6 are both inputs to output elements

1 and 3 respectively; while genes 2 and 3 are part of one of the network’s intra-connected

clusters. It is therefore once again reasonable to deduce that the epigenetic activity plays a

role in the performance of this network.

Figure 9.1.5. Activation state of genes within the network between time steps 0 and 10000.

A value of 0 indicates the gene is being deactivated by an epigenetic element, while a value

of 1 indicates the gene is active and producing an output.

217

9.2 Rescue within an Unstable Environment

As the search and rescue task has been shown to be sufficient to induce the evolution of

epigenetic behaviour, it is now possible to move on to the introduction of environmental

dynamics, in the form of simulated debris falling.

9.2.1 Experimental Design and Parameters

As before, the task will take place in the environment shown in figure 6.3.8 in Chapter 6

Table 9.2.1. Parameters of the environment.

Parameter Value

Nest Radius 0.2 Units

Initial Number of People 5

Respawning People FALSE

Table 9.2.1 contains the parameters for the environment, which are the same as those from

the previous experiment in section 9.1.

Table 9.2.2. Parameters for the evolution of epigenetic networks.

Parameter Value

Number of Simulation Time Steps 10000

Population Size 500

Number of Generations 200

Number of Repeats 50

Mutation Rate 0.05

Data Width 8

Number of Genes 12

Number of Epigenetic Molecules 4

218

Table 9.2.3. Parameters for the evolution of non-epigenetic networks.

Parameter Value

Number of Simulation Time Steps 10000

Population Size 500

Minimum Target Fitness 200

Number of Repeats 50

Mutation Rate 0.05

Data Width 8

Number of Genes 16

The parameters of the experiments, shown in tables 9.2.2 and 9.2.3, are the same as those

of the previous experiments in this chapter. Once two populations of networks have been

evolved, they will be reassessed in the same environment, but with the addition of the

simulated falling debris described in Chapter 6. As with the impulse injection experiment

from Chapter 7 and the mobile prey experiment from Chapter 8, the goal is to compare

how the epigenetic and non-epigenetic networks react when confronted with stimulus that

they have not been optimised for.

219

9.2.2 Results

Figure 9.2.1. The results of the evolution of epigenetic networks, as well as their fitness

values when attempting search and rescue in an environment with falling debris. Note that

the label for the number of people rescued in the debris scenarios relates to their

performance in the standard environment.

220

Figure 9.2.2. The results of the evolution of non-epigenetic networks, as well as their

fitness values when attempting search and rescue in an environment with falling debris.

Note that the label for the number of people rescued in the debris scenarios relates to their

performance in the standard environment.

The results of the epigenetic and non-epigenetic networks are shown in figures 9.2.1 and

9.2.2 respectively, with the important points of equivalent groups summarised in tables

9.2.4 through 9.2.6. The results show clearly that the majority of networks, both epigenetic

and non-epigenetic, fail to rescue or even locate any people when inserted into the debris

environment. There is one point to mention however: there are two statistical outliers in the

epigenetic network population from runs 22 and 32. Under normal conditions, both

networks rescued 3 people from the environment, with fitnesses of 18.598 and 19.245

respectively. When tested in the debris environment, they were both able to rescue 1

person, with fitnesses of 6.128 and 2.429 respectively. While they are both outliers, and as

such cannot be held up as confirmation of the hypothesis laid out in Section 6.4; they do

indicate the potential predicted to be present within epigenetically active networks does

exist. As such, further analysis of one of these networks should yield useful insights.

221

Table 9.2.4. Maximum, Median, mean and Minimum fitness, as well as 25th and 75th

Percentiles and interquartile range for epigenetic and non-epigenetic networks that

rescued 2 people under standard conditions. Note that outlier values are only included in

the calculation of mean fitness.

Property Non-Epigenetic

Networks

Epigenetic Networks

 Standard

Conditions

Falling

Debris

Standard

Conditions

Falling

Debris

Minimum Fitness 13.304 0.000 11.791 0.000

25th Percentile Fitness 13.476 0.000 14.091 0.000

Median Fitness 14.618 0.000 16.082 0.000

75th Percentile Fitness 15.871 0.000 16.711 0.000

Interquartile Range 2.395 0.000 2.620 0.000

Maximum Fitness 18.237 0.000 17.360 0.000

Mean Fitness 14.934 0.031 15.434 0.022

Table 9.2.5. Maximum, Median, mean and Minimum fitness, as well as 25th and 75th

Percentiles and interquartile range for epigenetic and non-epigenetic networks that

rescued 3 people under standard conditions. Note that outlier values are only included in

the calculation of mean fitness.

Property Non-Epigenetic

Networks

Epigenetic Networks

 Standard

Conditions

Falling

Debris

Standard

Conditions

Falling

Debris

Minimum Fitness 14.338 0.000 15.861 0.000

25th Percentile Fitness 18.009 0.000 17.516 0.000

Median Fitness 19.317 0.000 18.916 0.000

75th Percentile Fitness 20.514 0.000 19.940 0.000

Interquartile Range 2.505 0.000 2.424 0.000

Maximum Fitness 22.982 0.000 22.144 0.000

Mean Fitness 19.205 0.025 18.894 0.271

222

Table 9.2.6. Maximum, Median, mean and Minimum fitness, as well as 25th and 75th

Percentiles and interquartile range for epigenetic and non-epigenetic networks that

rescued 4 people under standard conditions. Note that outlier values are only included in

the calculation of mean fitness.

Property Non-Epigenetic

Networks

Epigenetic Networks

 Standard

Conditions

Falling

Debris

Standard

Conditions

Falling

Debris

Minimum Fitness 19.272 0.000 19.390 0.000

25th Percentile Fitness 19.272 0.000 20.230 0.000

Median Fitness 19.272 0.000 22.751 0.000

75th Percentile Fitness 19.272 0.000 24.006 0.000

Interquartile Range 0.000 0.000 3.776 0.000

Maximum Fitness 19.272 0.000 24.424 0.000

Mean Fitness 19.272 0.000 22.188 0.000

223

3 1 42 6

1

3

2

4

2

3

4

811

5

10
7

9

6 12

1

12

n

n

n

n

Input Element

Epigenetic Molecule

Gene

Output Element

Network Legend

3

57

9.2.3 Network Analysis

The outlier chosen for further analysis is network 22, standard fitness 18.598 (3 people),

debris fitness 6.128 (1 person). Figure 9.2.3 illistrates the network’s structure, derived from

the parameter tables in appendix A, section 11.8.

Figure 9.2.3. Illustration of network structure.

The structure of this network is possibly one of the more unsual encountered thus far in

this work. Compared to the previous researched networks in this chapter and Chapter 8, as

well as the pendulum networks in Chapter 7, several features are of note. Every input is

connected to at least twos genes and molecules; there are multiple molecules connected to

significant sections of the network; there is vertually no gene clustering; and every output

has multiple inputs. The next series of plots illustrate the analysis of the network to identify

the cause of the altered behaviour. Figure 9.2.4 and 9.2.5 show which genes have their

activation states altered by epigenetic activity, both under normal conditions (9.2.4) and

during the simulated debris run (9.2.5). Following that, figures 9.2.6 and 9.2.7 show the

states of these genes in comparison to the activity of the epigenetic molecules, illustrating

significantly altered behaviour during the debris fall run (9.2.7). The two figures after that,

9.2.8 and 9.2.9 show which of the various parameters the robot is sensing are having an

effect on the activity of the epigenetic molecules, while figures 9.2.10 and 9.2.11 connect

these effects to the sensors themselves by looking the inputs of the molecules.

224

Figure 9.2.4. Activation state of genes within the network between time steps 0 and 10000

during a resuce task within a normal environment. A value of 0 indicates the gene is being

deactivated by an epigenetic element, while a value of 1 indicates the gene is active and

producing an output.

225

Figure 9.2.5. Activation state of genes within the network between time steps 0 and 10000

during a resuce task within an environment with falling debris. A value of 0 indicates the

gene is being deactivated by an epigenetic element, while a value of 1 indicates the gene is

active and producing an output.

The unusual nature of the network continues with its epigenetic behaviour. During normal

conditions, figure 9.2.4, genes 4, 11 and 12 are epigenetically active; with genes 2, 5 and

10 being permanently deactivated by the epigenetic elements. However, during the rescue

in the debris environment, genes 2, 8, 10 and 12 are the epigenetically active ones; while

genes 4, 6, 7 and 9 become the deactivated genes. It is important to restate at this time, that

the behaviour exhibited in the debris environment was not evolved, it is simply the

outcome of a network, optimised for a less complex task being confronted with a change in

its environment.

226

Figure 9.2.6. Activation state of epigeneticaly active genes, and the outputs of the

epigenetic molcules during a resuce task within a standard environment. A value of 0

indicates the gene is being deactivated by an epigenetic element, while a value of 1

indicates the gene is active and producing an output. The output of the epigenetic

molecules correlates to the location in the network space where it is supressing gene

activity.

227

Figure 9.2.7. Activation state of epigeneticaly active genes, and the outputs of the

epigenetic molcules during a resuce task within an environment with falling debris. A

value of 0 indicates the gene is being deactivated by an epigenetic element, while a value

of 1 indicates the gene is active and producing an output. The output of the epigenetic

molecules correlates to the location in the network space where it is supressing gene

activity.

Figures 9.2.6 and 9.2.7 show the epigenetically active genes in each instance, alongside the

molecules responsible for their behaviour. This sheds some light on the changes caused by

the change in the environment. In both cases, the majority of epigenetically active genes

appear to be regulated by molecule 2, modulated by molecule 1. Gene 11 is directly

regulated by molecule 2, but only under normal conditions. Molecule 1’s behaviour is

unchanged by the environmental alteration, while Molecule 2’s changes significantly. In

addition, molecule 4 starts producing a varying output in the debris environment, while

molecule 3 switches from being inactive to active.

228

Figure 9.2.8. Output of molcule 2, and readings of various sensors during a resuce task

within a standard environment. The output of the epigenetic molecules correlates to the

location in the network space where it is supressing gene activity; values of the eye sensors

relate to distance to the closest object of the relevant type, scaled between 0.0 and 1.0;

distance to the nest is a measure of the strait line distance between the robot and the nest;

and person carried is 1 when a person is held by the robot’s manipulator.

Figure 9.2.8 shows the output of molecule 2 in relation to the values of the robots various

sensors, discussed in greater detail in Chapter 6, during the standard rescue task.

Considering these together, it appears that the “gaps” in molecule 2’s outputs are strongly

correlated to periods where the robot is carrying a person with its griper. This is also the

case in figure 9.2.9, which shows the same values during the search of the debris

environment. This however does not account for the initial period of inactivity on molecule

2’s part in this second instance.

229

Figure 9.2.9. Output of molcule 2, and readings of various sensors during a resuce task

within an environment with debris. The output of the epigenetic molecules correlates to the

location in the network space where it is supressing gene activity; values of the eye sensors

relate to distance to the closest object of the relevant type, scaled between 0.0 and 1.0;

distance to the nest is a measure of the strait line distance between the robot and the nest;

and person carried is 1 when a person is held by the robot’s manipulator. The black lines

mark the time steps at which a random piece of debris is spawned into the environment.

230

Figure 9.2.10. Output of molecule 2, and the outputs of several genes during a rescue task

within a standard environment. The output of the epigenetic molecules correlates to the

location in the network space where it is supressing gene activity.

Figures 9.2.10 and 9.2.11 show the outputs of genes 2, 4, 5, 6, 7, 9 and 10, alongside the

output of molecule 2. Recall from figures 9.2.3 and 9.2.4 that these are the genes whose

activation states switch between permanently off and epigenetically active depending on

the environment. As figure 9.2.9 is for the normal environment, genes 2, 5 and 10 are

permanently off, and as such their outputs are zero. While active, genes 4 and 6 are also

producing an output of zero. Genes 7 and 9 are producing outputs, and taking this together

with figure 9.2.7 it looks like molecule 2’s output results from the output of gene 7,

modulated by either the person held sensor or the person eye sensors.

231

Figure 9.2.11. Output of molecule 2, and the outputs of several genes during a rescue task

within an environment with debris. The output of the epigenetic molecules correlates to the

location in the network space where it is supressing gene activity.

Figure 9.2.10 shows the same readings, but taken from the network during the rescue in the

debris environment. Genes 4, 6, 7 and 9 are now permanently inactive, while genes 2, 5

and 10 are now active. It can immediately be seen that gene 5 now directs the outputs of

molecule 2. Gene 5 has only input, in the form of the right hand person eye, which explains

why its output correlates strongly to the sensor plots from figures 9.2.7 and 9.2.8. This

switch in molecule inputs explains the change in network behaviour, demonstrating the

capacity of the epigenetic elements to fundamentally alter the network.

232

9.3 Summary

Considering all the experiments and results presented in this chapter, the following

comments can be made:

The shift to the search and rescue type task was a useful one, as the results in section 9.1

show that it was much more suitable for triggering the evolution of epigenetic behaviour,

as well as producing networks of a much better calibre than either of the two foraging tasks

in Chapter 8, due to the greater number of target objects they were able to recover (prey or

people). Of the three changes that the new task encapsulated (reduced number of target

objects; non-respawning target objects; and the inclusion of speed of return in the fitness

function), it is most likely that the later made the most significant contribution to the

performance improvement by allowing a greater degree of differentiation between

networks that the less complex fitness function of the foraging task would have declared

equal.

However, this improvement in network optimisation did not translate into an improvement

in the network’s ability to respond to the un-optimised for environmental dynamics,

introduced by the addition of the falling debris. Although the analysis of network 22 did

once again suggest that it is possible for an epigenetic network to display the kind of

behaviour desired by this work, a single statistical outlier is not a foundation upon which to

claim success.

Drawing the work of this chapter to a close, the hypothesis laid out in section 6.4 remains

unproven. Further remarks upon this, as well as what other knowledge can be drawn from

this completed thesis are found in Chapter 10, the conclusion of this work.

233

10 Conclusions and Future Work

10.1 Work Conducted

In bringing this thesis to a close, it is important to revisit the work conducted during the

processes of its completion. Starting in Chapter 4, with the creation of this work’s

implementation of a software based epigenetic network. More than just a replication of

previous work, the new epigenetic network included a number of refinements, such as the

introduction of dedicated input/output elements and the removal of the gene to protein

translation process. In addition, the switch from the unusual weight application method to a

more conventional design also improved the compactness of the networks, something

demonstrated in Section 7.3 of Chapter 7. In preparation for the eventual translation from

software to hardware, Chapter 4 also discussed the switch from floating-point maths to

integer, including the replacement of the sigmoid function with a look up table; and

established the methods for altering the bit width of the network.

These developments came into play in Chapter 5, where the core of this work was

described: the creation of the hardware epigenetic network architecture. Through the use of

generic, paramatrisable units, the hardware network can have its bit width easily adjusted

to allow experimentation with reduced precision; as well as permitting alteration of the

number of input/output units, genes and molecules within the network. These features

came into play in Chapter 7, where the experiments involving the inverted pendulum were

detailed. In Section 7.1, it was shown that: the transition from floating-point to integer

maths did not adversely affect the performance of the epigenetic network; that it is possible

to dramatically reduce the bit width of an epigenetic network and still maintain its

performance; and that not only did the hardware transition result in a reduction in resource

utilisation, it also provided an improvement to certain performance metrics, most

significantly execution speed, thanks to its parallelisation of the network elements.

Section 7.2 was the beginning of work on the other important through line of this thesis:

the hypothesis regarding the ability of epigenetic networks to react to un-optimised for

stimulus in such a way as to maintain their performance. The first test of this was the

experiment where epigenetic, and non-epigenetic, networks were optimised to control the

inverted pendulum, and were then tested to see how they maintained that control when the

pendulum was subject to an external impulse, a.k.a. a kick. The results of this experiment

234

provided support for this hypothesis, as the epigenetic networks were, statistically, able to

maintain the pendulum in the upright position better than the non-epigenetic ones. In the

case of the networks that were analysed in greater detail, the performance of the two

epigenetic networks could be clearly linked to the actions of their epigenetic elements;

while the non-epigenetic network actually performed so poorly that it violated one of the

conditions of the task.

This strong start did not carry over into Chapter 8 however, which marked to transition

from the dynamic control tasks of previous work, to the application epigenetic networks to

the field of robotic control, specifically foraging robots. Section 8.1 demonstrated that,

even when a network contains epigenetic elements, those elements will not necessarily be

brought to bear, as efforts to optimise the networks for the basic foraging task showed.

Section 8.2 proved to be more promising, as the introduction of greater complexity via a

maze environment returned epigenetic behaviour to the networks. These two sections

together indicate that it is not enough to include the mechanisms for epigenetic behaviour

within a network, it is also important that the task itself is sufficiently complex to

necessitate their utilisation, or that some other selection pressure is applied. With basic

performance achieved, the application of environmental dynamics, in this case taking the

form as the foraging targets being made mobile, came next. The results of this were

disappointing, as all the epigenetic, and non-epigenetic, networks were unable to catch any

of these new, ambulatory prey.

Chapter 9 brought with a different approach to the problem, as the foraging task was

reconceptualised as a search and rescue task, which included the alteration of the fitness

metric to incorporate a time pressure. Section 9.1 showed that this not only induced the

evolution of epigenetic behaviour, but produced superior results overall, suggesting that

this version of the task was much more suitable for the epigenetic networks. Unfortunately

this performance improvement and increased epigenetic activity did not result in the same

level of un-optimised stimulus response as in Chapter 7, with the introduction of

environmental dynamics, in the form of simulated debris fall, resulted in almost all the

epigenetic, and non-epigenetic, networks failing to recover even one person. There were,

however, two statistical outliers that did, and closer analysis indicates that their epigenetic

behaviour was the reason for this.

235

10.2 Objectives and Hypothesis Revisited

With this summation of work in mind, a re-visitation of the objectives and hypothesis laid

out in Chapter 1 is in order.

10.2.1 Hardware Implementation of the Artificial Epigenetic Network

This goal was most definitely achieved successfully, with the hardware networks utilised

throughout this work performing comparably to their software counterparts. Furthermore,

they were able to achieve superior performance when it came to the areas of resource

utilisation and execution speed, something that can be attributed to the parallelisation

provided by the hardware; the improvements made to the architecture that allowed for

greater network compactness; as well as the transition to reduced precision integer

mathematics. These facts also answer the first three questions posed in Section 1.3:

a) Is it possible to switch the underlying logic of the artificial epigenetic network from

computationally intensive floating-point maths to more simplistic integer

mathematics? Yes.

b) Is it then possible to reduce the precision of the artificial epigenetic network’s

mathematics while maintain its unique functionality? Yes.

c) Is it possible to bring the architecture of an epigenetic network more in line with

design conventions, without loss of its unique abilities? Yes.

10.2.2 Application of Artificial Epigenetic Networks to Robotic Control

The fourth question from Section 1.3: “does the artificial epigenetic network bring any

significant benefits to the area of robotic control?”. While Chapters 8 and 9 showed that an

epigenetic network could perform the foraging robot task, their performance was

consistently comparable to that of its non-epigenetic counterpart. However, as the results

from Chapter 9 demonstrated that a notable level of epigenetic activity was present in those

networks that did perform well, it is reasonable to speculate that other types of robot tasks

may be more suited to the unique abilities of the epigenetic network.

236

10.2.3 Maintaining Performance in a Dynamic Environment

Finally, a return to the hypothesis presented in Section 1.2 of this thesis: the assertion that

an epigenetic network, with its ability to alter its own structure in response to change,

would be able to maintain its performance when confronted with stimulus that it had not

been optimised for; with this latter part being refined in Section 6.4 into the idea of a

dynamic environment. The answer here is much less clear cut. Chapter 7 did show that the

epigenetic networks were able to recover from the impulse injection faster than the non-

epigenetic networks; analysis showed that the results were statistically significant; and

network analysis linked this improved response to the epigenetic mechanisms. However,

this was in the limited case of the injection of a single, low magnitude impulse as it was

intended as a proof of concept before progressing to the more substantial experiments in

Chapters 8 and 9. Chapter 8 gives the least support for the hypothesis, as the epigenetic

networks completely failed to maintain any degree of performance when confronted with

the sudden mobility of their previously static prey. The saving grace is perhaps that the

non-epigenetic networks performed equally poorly. Lastly, while not as bad as those in

Chapter 8, the results in Chapter 9 also provided little support, as the supermajority of

epigenetic networks failed to maintain performance within the debris fall environment.

However, two outliers did recover some of the rescue targets, and network analysis showed

that this limited performance was down to the epigenetic elements of the network, which

dramatically altered their behaviour in response to the environmental change.

Taking all this together, it is reasonable to make the following statements:

• In the case of tasks that have already been shown to benefit from the inclusion of

epigenetic elements, such as the inverted pendulum, there is evidence to support the

hypothesis, although more work is needed to provide confirmation.

• In the case of the robotic control tasks, there is insufficient evidence to support the

hypothesis, although it is unknown if this is due to the inherent invalidity of the

hypothesis, or a consequence of the lack of benefit from epigenetic behaviour in

general.

237

10.3 Critical Comments

Before progressing to the matter of future directions that work in this area could take, this

section will serve as a repository for some general critical commentary about several

aspects of this work.

The various genetic algorithms employed throughout this work performed acceptably,

although all but NSGA-II were quite limited. This was especially true of the single sample

generational evolution algorithm that is integrated into JBotEvolver. In an ideal world both

it, and the simple evolutionary algorithm would have been replaced by something more

suitable for the task, but the need to make comparisons with Turner’s work and employ the

simulation tool prevented that on this occation.

Despite its unusual design, the Hamann inverted pendulum model that was employed in the

first set of experiments (and described in detail in Section 6.1) [71] provided no

difficulties, thanks primarily to its existing history with epigenetic networks [6]. However,

while it set out to act as a benchmark for robotics problems, the design decisions made in

pursuit of this are unusual. The reduction of sensor/actuator precision and the replacement

of abstract measurements with ones that correspond to simulated sensors positioned on the

pendulum model are good, but the choice of sensor types and placements could be

improved. For example, it would be more common in current practice for pendulum angle

to be measured by a rotary encoder; while the speed of the cart would more likely be

inferred from measurements made at the wheels or via use of accelerometers.

In a similar situation is JBotEvolver [77], the tool used for all the true robotics experiments

in Chapters 9 and 8. Its status as a tool designed for evolving bio-inspired networks for

robotic control made it a well suited choice, but it had a few issues. Foremost among them

was the lack of high quality documentation, which resulted in a steep learning curve, as

well as certain aspects, such as its sub-optimal evolutionary algorithm, only being

discovered late on in its use. However, its open source nature and ease with which

modifications can be made to its code mean that further work could continue to employ it.

238

10.4 Further Work

Now that this work is complete, it is important to consider what direction future work

could take to build upon this thesis. Looking back over the work done and its results, two

directions present themselves:

• Greater range of dynamic environment experiments with tasks such as the inverted

pendulum. As noted, in Section 10.2, the range of dynamic environment

experiments done with the inverted pendulum was very limited, intended to be a

simple proof of concept. It would therefore be worthwhile to expand upon this, not

only in with the inverted pendulum itself, but with other tasks such as Chirikov’s

standard map and the control of transfer orbits in gravitational systems. In the case

of the inverted pendulum, a greater range of injected impulses would be the

obvious place to begin; and the possibility has been discussed of scenarios that

involve a pendulum that extends/retracts, or a pendulum subjected to changing

gravitational forces, perhaps simulating an object experience the forces of

acceleration atop a rocket.

• Alternate robotics experiments. Though the performance of the foraging task seams

to not benefit from the inclusion of epigenetic behaviours, this doesn’t mean that no

robotics application can benefit. A possibility that immediately suggests itself to the

author is to investigate the application of epigenetic networks to control of a robot

navigating a route that consists of varied types of terrain such as: road, mud, sand,

rocky ground etc. In particular, giving the network control of aspects like the

robot’s gearing, suspension stiffness, differential, ride height and so forth; as these

would benefit from different network states developing for different terrain types,

something that the epigenetic mechanisms would be ideally suited to.

239

• Further refinement of the hardware architecture. The hardware architecture still

incorporates several features that are a legacy of the software implementation, such

as: the generic sigmoid function, which necessitates the use of the slope and offset

parameters; and the calculation of connectivity at runtime. Replacement of these

with alternatives such as: leveraging the individual LUTs to allows each element’s

sigmoid to already incorporate the slope/offset alterations; and establishment of

connections during configuration of the network; would be a suitable starting point

from which to then investigate other refinements.

• Drawing further inspiration from biology. The biological basis for the epigenetic

networks in this thesis comes second hand from Turner’s work [6], which only

modelled the epigenetic mechanisms discussed in section 2.3 in an abstract fashion.

While this has lent itself quite well to the creation of the hardware implementation,

returning to the biological roots of epigenetics might provide new inspiration for

further development: for example, the alteration of gene expression with

epigenetics encompasses several different mechanisms [32], thus perhaps it might

be fruitful to implement a number of differently operating epigenetic molecules

into a network.

In a wider sense, other avenues of investigation include: investigating alternative

optimisation techniques beyond simple genetic algorithms, with the author being

particularly interested in the possibility of a version of the Neuro-Evolution for Advanced

Topologies (NEAT) algorithm [84]; and crossing the reality gap, as all work done this far

with epigenetic networks has involved simulations.

240

11 Appendix A: Network Structure Tables

11.1 Network 1

Section 7.2; Epigenetic Network; Inverted Pendulum Control; Fitness 0.97

Table 11.1.1 Connection parameters of all input elements of network 1, including what

other network elements use them as inputs.

Input Number Sensor Identification Input for

1 Pendulum Angle 1 84 Molecule 2

Gene 7

2 Pendulum Angle 2 8 Gene 11

3 Pendulum Angle 3 88 Molecule 2

Gene 7

4 Pendulum Angle 4 59 Molecules 1 and 3

Genes 5 and 10

5 Proximity 1 4 Gene 11

6 Proximity 2 4 Gene 11

7 Cart Velocity 1 10 Genes 2 and 8

8 Cart Velocity 2 39 Genes 5 and 10

9 Pendulum Velocity 1 39 Genes 5 and 10

10 Pendulum Velocity 2 84 Molecule 2

Gene 7

Table 11.1.2 Connection parameters of all molecules of network 1, including what other

network elements they use as inputs. Note that which genes are controlled by each

molecule varies during runtime.

Molecule Number Identification Proximity Uses as an Input

1 60 4 Input 4

2 68 28 Inputs 1, 3, 4 and 10

Gene 7

3 60 4 Input 4

4 122 10 Gene 6

241

Table 11.1.3. Connection parameters of all genes of network 1, including what other

network elements they use as inputs and what network elements use them as inputs.

Gene

Number

Identification Proximity Uses as an Input Used as Input by

1 31 2 Gene 12 Genes 5, 10 and

12

2 13 4 Input 7

Genes 4 and 8

Genes 4 and 8

Output 1

3 19 2 None Genes 5 and 10

4 15 2 Genes 2 and 8 Genes 2 and 8

Output 1

5 39 21 Inputs 4, 8 and 9

Genes 1, 3, 10 and

12

Gene 10

6 124 11 None Molecule 4

Output 2

7 96 17 Inputs 1, 3, and 10

Gene 9

Molecule 2

8 13 4 Input 7

Genes 2 and 4

Genes 2 and 4

Output 1

9 111 4 None Gene 7

10 39 21 Inputs 4, 8 and 9

Genes 1, 3, 5 and 12

Gene 5

11 6 4 Inputs 2, 5 and 6 None

12 31 2 Gene 1 Genes 1, 5 and 10

Table 11.1.4. Connection parameters of all output elements of network 1, including which

genes they use as inputs.

Output Number Actuator Identification Proximity Uses as an Input

1 Motor 1 10 4 Genes 2, 4 and 8

2 Motor 2 121 4 Gene 6

242

11.2 Network 2

Section 7.2; Epigenetic Network; Inverted Pendulum Control; Fitness 0.79

Table 11.2.1. Connection parameters of all input elements of network 2, including what

other network elements use them as inputs.

Input Number Sensor Identification Input for

1 Pendulum Angle 1 16 Molecules 2, 3 and 4

Genes 4 and 8

2 Pendulum Angle 2 3 Molecule 4

Genes 4 and 8

3 Pendulum Angle 3 55 Genes 1, 7, 10 and 12

4 Pendulum Angle 4 16 Molecules 2, 3 and 4

Genes 4 and 8

5 Proximity 1 52 Genes 1, 7, 10 and 12

6 Proximity 2 52 Genes 1, 7, 10 and 12

7 Cart Velocity 1 4 Molecules 2 and 3

Genes 4 and 8

8 Cart Velocity 2 52 Genes 1, 7, 10 and 12

9 Pendulum Velocity 1 16 Molecules 2, 3 and 4

Genes 4 and 8

10 Pendulum Velocity 2 97 Genes 3 and 9

Table 11.2.2. Connection parameters of all molecules of network 2, including what other

network elements they use as inputs. Note that which genes are controlled by each

molecule varies during runtime.

Molecule Number Identification Proximity Uses as an Input

1 121 6 Gene 5

2 15 11 Inputs 1, 4, 7 and 9

Genes 4, 8 and 11

3 15 11 Inputs 1, 4, 7 and 9

Genes 4, 8 and 11

4 19 24 Inputs 1, 2, 4, 7 and 9

Genes 4, 8 and 11

243

Table 11.2.3. Connection parameters of all genes of network 2, including what other

network elements they use as inputs and what network elements use them as inputs.

Gene

Number

Identification Proximity Uses as an Input Used as Input by

1 66 29 Inputs 3, 5, 6 and 8

Genes 2, 6, 7, 10 and

12

Genes 7, 10 and 12

2 71 1 Gene 6 Genes 1, 6, 7, 10 and

12

3 112 23 Input 10

Genes 9 and 5

Gene 9

Output 1

4 17 25 Inputs 1, 2, 4, 7 and 9

Genes 8 and 11

Molecules 2, 3 and 4

Gene 8

Output 2

5 123 1 None Molecule 1

Genes 3 and 9

Output 1

6 71 1 Gene 2 Genes 1, 2, 7, 10 and

12

7 73 28 Inputs 3, 5, 6, 8 and

10

Genes 1, 2, 6, 10 and

12

Genes 1, 10 and 12

8 13 18 Inputs 1, 2, 4, 7 and 9

Genes 4 and 11

Molecules 2, 3 and 4

Gene 4

Output 2

9 112 23 Input 10

Genes 3 and 5

Gene 3

Output 1

10 66 29 Inputs 3, 5, 6 and 8

Genes 1, 2, 6, 7 and

12

Genes 1, 7 and 12

244

11 8 1 None Molecules 2, 3 and 4

Genes 4 and 8

Output 2

12 66 29 Inputs 3, 5, 6 and 8

Genes 1, 2, 6, 7 and

10

Genes 1, 7 and 10

Table 11.2.4. Connection parameters of all output elements of network 2, including which

genes they use as inputs.

Output Number Actuator Identification Proximity Uses as an Input

1 Motor 1 121 9 Genes 3, 5 and 9

2 Motor 2 32 24 Genes 4, 8 and 11

245

11.3 Network 3

Section 7.2; Non-Epigenetic Network; Inverted Pendulum Control; Fitness 0.55

Table 11.3.1. Connection parameters of all input elements of network 3, including what

other network elements use them as inputs.

Input

Number

Sensor Identification Input for

1 Pendulum Angle 1 61 Gene 16

2 Pendulum Angle 2 94 Genes 1, 3, 6, 8, 9, 11, 13, 14 and

15

3 Pendulum Angle 3 94 Genes 1, 3, 6, 8, 9, 11, 13, 14 and

15

4 Pendulum Angle 4 64 Gene 16

5 Proximity 1 82 Genes 3, 6, 8 and 9

6 Proximity 2 53 Genes 2, 7 and 16

7 Cart Velocity 1 64 Gene 16

8 Cart Velocity 2 53 Genes 2, 7 and 16

9 Pendulum Velocity

1

58 Genes 2, 7 and 16

10 Pendulum Velocity

2

28 Genes 2, 4, 5 and 7

246

Table 11.3.2. Connection parameters of all genes of network 3, including what other

network elements they use as inputs and what network elements use them as inputs.

Gene

Number

Identification Proximity Uses as an Input Used as Input by

1 111 23 Inputs 2 and 3

Genes 3, 6, 8, 9, 10,

11, 13, 14 and 15

Genes 3, 6, 8, 9, 10,

13 and 14

2 28 31 Inputs 6, 8, 9, 10

Genes 4, 5, 7, 12, 16

Genes 7, 4 and 5

3 96 23 Inputs 2, 3 and 5

Genes 1, 6, 8, 9, 10,

11, 13, 14 and 15

Genes 1, 6, 8, 9, 10,

11, 13, 14 and 15

Output 2

4 20 13 Input 10

Genes 2, 5, 7 and 12

Genes 2, 5 and 7

5 20 13 Input 10

Genes 2, 4, 7 and 12

Genes 2, 4 and 7

6 106 31 Inputs 2, 3 and 5

Genes 1, 3, 8, 9, 10,

11, 13, 14 and 15

Genes 1, 3, 8, 9, 10,

13 and 14

7 28 31 Input 10

Genes 2, 4, 5 and 12

Genes 2, 4 and 5

8 100 23 Inputs 2, 3 and 5

Genes 1, 3, 6, 9, 10,

11, 13, 14 and 15

Genes 1, 3, 6, 9, 10,

11, 13 and 14

Output 2

9 101 23 Inputs 2, 3 and 5

Genes 1, 3, 6, 8, 10,

11, 13, 14 and 15

Genes 1, 3, 6, 8, 10,

11, 13 and 14

Output 2

10 111 12 Genes 1, 6, 8, 9, 13

and 14

Genes 1, 3, 6, 8, 9, 13

and 14

11 95 6 Inputs 2 and 3

Genes 3, 8, 9 and 15

Genes 1, 3, 6, 8, 9, 10,

11, 13 and 14

Output 2

247

Gene

Number

Identification Proximity Uses as an Input Used as Input by

12 9 3 None Genes 2, 4, 5 and 7

13 111 23 Inputs 2 and 3

Genes 1, 3, 6, 8, 9, 10,

11, 14 and 15

Genes 1, 3, 6, 8, 9

and 14

14 111 23 Inputs 2 and 3

Genes 1, 3, 6, 8, 9, 10,

11, 13 and 15

Genes 1, 3, 6, 8, 9

and 13

15 95 1 Inputs 2 and 3

Genes 3 and 11

Genes 1, 3, 6, 8, 9,

11, 13 and 14

Output 2

16 54 11 Inputs 1, 4, 6, 7, 8 and

9

Output 1

Table 11.3.3. Connection parameters of all output elements of network 3, including which

genes they use as inputs.

Output Number Actuator Identification Proximity Uses as an Input

1 Motor 1 64 16 Gene 16

2 Motor 2 76 26 Genes 3, 8, 9, 11, 15 and 16

248

11.4 Network 4

Section 8.1; Epigenetic Network; Basic Foraging Task; Fitness 9.40

Table 11.4.1. Connection parameters of all input elements of network 4, including what

other network elements use them as inputs.

Input Number Sensor Identification Input for

1 Prey Carried 38 Molecule 4

Genes 5, 10 and 12

2 Left Prey Eye 17 Gene 6

3 Right Prey Eye 55 Genes 1, 2, 4, 5, 10 and 12

4 Left Nest Eye 58 Genes 1, 2, 4, 5, 10 and 12

5 Right Nest Eye 121 Molecules 2 and 3

Gene 8

Table 11.4.2. Connection parameters of all molecules of network 4, including what other

network elements they use as inputs. Note that which genes are controlled by each

molecule varies during runtime.

Molecule Number Identification Proximity Uses as an Input

1 77 8 Genes 7 and 11

2 109 27 Input 5

Genes 3 and 8

3 105 23 Input 5

Genes 3 and 8

4 38 9 Input 1

Gene 10

249

Table 11.4.3. Connection parameters of all genes of network 4, including what other

network elements they use as inputs and what network elements use them as inputs.

Gene

Number

Identification Proximity Uses as an Input Used as Input by

1 63 20 Inputs 3 and 4

Genes 2, 4, 5, 7,

10, 11 and 12

Genes 4, 5, 7, 10 and

11

2 49 9 Inputs 3 and 4

Genes 10 and 12

Genes 1, 4, 5, 10 and

12

3 93 0 None Molecules 2 and 3

4 64 19 Inputs 3 and 4

Genes 1, 2, 5, 7,

10, 11 and 12

Gene 1, 5, 7, 10 and 12

5 60 27 Inputs 1, 3 and 4

Genes 1, 2, 4, 7,

10, 11 and 12

Genes 1, 4, 10 and 12

6 5 22 Input 2 None

7 71 9 Genes 1, 4 and 11 Molecule 1

Genes 1, 4, 5, 10, 11

and 12

8 121 22 Input 5 Molecules 2 and 3

9 28 1 None Gene 10

10 47 27 Inputs 1, 3 and 4

Genes 1, 2, 4, 5, 7,

9 and 12

Molecule 4

Genes 1, 2, 4, 5 and 12

11 77 9 Gene 7 Molecule 1

Genes 1, 4, 5, 7 and 12

12 56 23 Inputs 1, 3 and 4

Genes 1, 2, 4, 5, 7,

10 and 11

Genes 1, 2, 4, 5 and 10

250

Table 11.4.4. Connection parameters of all output elements of network 4, including which

genes they use as inputs.

Output

Number

Actuator Identification Proximity Uses as an Input

1 Prey Grabber 56 24 Genes 1, 2, 4, 5, 7, 10, 11

and 12

2 Left Motor 36 15 Genes 2, 9 and 10

3 Right Motor 58 19 Genes 1, 2, 4, 5, 7, 10 and

12

251

11.5 Network 5

Section 8.2; Epigenetic Network; Maze Foraging Task; Fitness 1.032

Table 11.5.1. Connection parameters of all input elements of the network, including what

other network elements use them as inputs.

Input Number Sensor Identification Input for

1 Prey Carried 31 Molecules 2 and 4

Genes 2, 6, 7, 9, 10 and 12

2 Left Prey Eye 126 Molecule 1

Gene 8

3 Right Prey Eye 25 Molecules 2 and 4

Genes 2, 6, 7, 9 and 12

4 Left Nest Eye 102 Molecules 1, 3 and 4

5 Right Nest Eye 89 Molecules 1, 3 and 4

Genes 1 and 4

6 Left Obstacle Eye 51 Molecules 2 and 4

Genes 3, 4 and 12

7 Right Obstacle Eye 12 Molecules 2 and 4

Genes 7, 9, 11 and 12

Table 11.5.2. Connection parameters of all molecules of the network, including what other

network elements they use as inputs. Note that which genes are controlled by each

molecule varies during runtime.

Molecule

Number

Identification Proximity Uses as an Input

1 108 20 Inputs 2, 4 and 5

Genes 1 and 8

2 22 54 Inputs 1, 3, 6 and 7

Genes 2, 3, 4, 7, 9, 10, 11 and 12

3 86 16 Inputs 4 and 5

Genes 1, 4 and 5

4 19 83 Inputs 1, 3, 4, 5, 6 and 7

Genes 1, 2, 3, 4, 5, 6, 7, 9, 10, 11 and 12

252

Table 11.5.3. Connection parameters of all genes of the network, including what other

network elements they use as inputs and what network elements use them as inputs.

Gene

Number

Identification Proximity Uses as an

Input

Used as Input by

1 88 4 Input 5

Gene 5

Molecules 1, 2 and 3

Gene 4

Outputs 1 and 2

2 30 10 Inputs 1 and 3

Genes 6, 9, 10

and 12

Molecules 2 and 4

Genes 6, 7, 9, 10 and 12

Output 3

3 58 14 Input 6

Gene 4

Molecules 2 and 4

Genes 4 and 12

Output 2

4 70 19 Inputs 5 and 6

Genes 1, 3 and

5

Molecules 2, 3 and 4

Gene 3

Output 2

5 84 0 None Molecules 2 and 3

Genes 1 and 4

Outputs 1 and 3

6 31 10 Inputs 1 and 3

Genes 2, 9, 10

and 12

Molecules 2 and 4

Genes 2, 7, 9, 10 and 12

Output 3

7 14 36 Inputs 1, 3 and

7

Genes 2, 6, 9,

10, 11 and 12

Molecules 2 and 4

Genes 9, 11 and 12

Output 3

8 121 10 Input 2 Molecule 1

Output 1

9 22 28 Inputs 1, 3 and

7

Genes 2, 6, 7,

10, 11 and 12

Molecules 2 and 4

Genes 2, 6, 7, 11 and 12

Output 3

253

10 38 8 Input 1

Genes 6 and 12

Molecules 2 and 4

Genes 2, 6, 7, 9 and 12

Output 3

11 0 24 Input 7

Genes 7 and 9

Molecules 2 and 4

Genes 7 and 9

12 35 29 Inputs 1, 3, 6

and 7

Genes 2, 3, 6,

7, 9, 10 and 12

Molecules 2 and 4

Genes 2, 6, 7, 9 and 10

Output 3

Table 11.5.4. Connection parameters of all output elements of the network, including

which genes they use as inputs.

Output

Number

Actuator Identification Proximity Uses as an Input

1 Prey Grabber 103 27 Genes 1, 5 and 8

2 Left Motor 78 31 Genes 1, 3, 4 and 5

3 Right Motor 26 19 Genes 2, 6, 7, 9 and 12

254

11.6 Network 6

Section 9.1; Epigenetic Network; Basic Rescue Task; Fitness 20.776

Table 11.6.1. Connection parameters of all input elements of network 6, including what

other network elements use them as inputs.

Input Number Sensor Identification Input for

1 Person Carried 109 Molecules 1 and 2

Genes 2, 3, 8 and 12

2 Left Person Eye 106 Molecules 1 and 2

Genes 2, 3, 8 and 12

3 Right Person Eye 126 Molecule 2

Genes 3, 8 and 12

4 Left Nest Eye 87 Molecule 2

Genes 1, 2 and 5

5 Right Nest Eye 74 Molecule 2

Genes 1, 2, 5 and 6

6 Left Obstacle Eye 122 Molecule 2

Genes 3, 8 and 12

7 Right Obstacle Eye 16 Molecules 2, 3 and 4

Genes 7 and 11

Table 11.6.2. Connection parameters of all molecules of network 6, including what other

network elements they use as inputs. Note that which genes are controlled by each

molecule varies during runtime.

Molecule

Number

Identification Proximity Uses as an Input

1 109 7 Inputs 1 and 2

2 23 124 Inputs 1, 2, 3, 4, 5, 6 and 7

Genes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and

12

3 36 24 Input 7

Genes 10 and 11

4 2 32 Input 7

Genes 7, 9, 10 and 11

255

Table 11.6.3. Connection parameters of all genes of network 6, including what other

network elements they use as inputs and what network elements use them as inputs.

Gene

Number

Identification Proximity Uses as an Input Used as Input by

1 63 28 Inputs 4 and 5

Genes 2, 4, 5 and 6

Molecule 2

Genes 5 and 6

2 91 20 Inputs 1, 2, 4 and 5

Genes 4 and 5

Molecule 2

Genes 1 and 5

3 120 15 Inputs 1, 2, 3 and 6

Genes 8 and 12

Molecule 2

Genes 8 and 12

Output 2

4 84 2 None Molecule 2

Genes 1, 2 and 5

5 81 24 Inputs 4 and 5

Genes 1, 2, 4 and 6

Molecule 2

Genes 1 and 2

6 66 10 Input 5

Gene 1

Molecule 2

Genes 1 and 5

7 3 30 Input 7,

Genes 9 and 11

Molecules 2 and 4

8 125 31 Inputs 1, 2, 3 and 6

Genes 3 and 12

Molecule 2

Genes 3 and 12

Output 2

9 7 0 None Molecules 2 and 4

Gene 7

10 34 2 None Molecules 2 and 3

Output 1

11 15 5 Input 7 Molecules 2, 3 and 4

Gene 7

Output 3

12 121 16 Inputs 1, 2, 3 and 6

Genes 3 and 8

Molecule 2

Genes 3 and 8

Output 2

256

Table 11.6.4. Connection parameters of all output elements of network 6, including which

genes they use as inputs.

Output

Number

Actuator Identification Proximity Uses as an Input

1 Person Grabber 36 8 Gene 10

2 Left Motor 123 14 Genes 3, 8 and 12

3 Right Motor 19 9 Gene 11

257

11.7 Network 7

Section 9.1; Epigenetic Network; Basic Rescue Task; Fitness 21.475

Table 11.7.1. Connection parameters of all input elements of the network, including what

other network elements use them as inputs.

Input Number Sensor Identification Input for

1 Person Carried 19 Molecules 2 and 4

Genes 7, 9, 10 and 11

2 Left Person Eye 117 Genes 8 and 7

3 Right Person Eye 0 Molecule 4

Genes 7 and 10

4 Left Nest Eye 8 Molecules 2 and 4

Genes 7, 9 and 10

5 Right Nest Eye 95 Genes 4 and 7

6 Left Obstacle Eye 92 Genes 4 and 7

7 Right Obstacle Eye 11 Molecules 2 and 4

Genes 7, 9 and 10

Table 11.7.2. Connection parameters of all molecules of the network, including what other

network elements they use as inputs. Note that which genes are controlled by each

molecule varies during runtime.

Molecule

Number

Identification Proximity Uses as an Input

1 105 4 Gene 12

2 16 12 Inputs 1, 4 and 7

Genes 7, 9, 10 and 11

3 51 29 Genes 1, 2, 3 and 5

4 9 64 Inputs 1, 3, 4 and 7

Genes 1, 2, 3, 5, 7, 9, 10 and 11

258

Table 11.7.3. Connection parameters of all genes of the network, including what other

network elements they use as inputs and what network elements use them as inputs.

Gene Identification Proximity Uses as an Input Used as Input by

1 54 29 Genes 2, 3, 5 and 11 Molecules 3 and

4

Genes 2, 3 and 7

2 43 16 Genes 1, 3 and 5 Molecules 3 and

4

Genes 1, 3 and 7

3 52 19 Genes 1, 2 and 5 Molecules 3 and

4

Genes 1, 2 and 7

4 95 22 Inputs 2, 5 and 6

Genes 6, 8 and 12

Gene 7

Output 3

5 36 0 None Molecules 3 and

4

Genes 1, 2, 3, 7,

10 and 11

Output 1

6 85 0 None Genes 4 and 7

Output 3

7 9 116 Inputs 1, 2, 3, 4, 5, 6,

and 7

Genes 1, 2, 3, 4, 5, 6,

8, 9, 10, 11 and 12

Molecules 2 and

4

Genes 9 and 10

Output 1

8 116 17 Input 2

Gene 12

Gene 7

9 17 12 Inputs 1, 4 and 7

Genes 7, 10 and 11

Molecules 2 and

4

Genes 7, 10 and

11

Output 1

259

10 20 24 Inputs 1, 3, 4 and 7

Genes 5, 7, 9 and 11

Molecules 2 and

4

Genes 7, 9 and 11

Output 1

11 25 14 Inputs 1 and 7

Genes 5, 9 and 10

Molecules 2 and

4

Genes 1, 7, 9 and

10

Output 1

12 105 2 None Molecule 1

Genes 7 and 8

Output 3

Table 11.7.4. Connection parameters of all output elements of the network, including

which genes they use as inputs.

Output

Number

Actuator Identification Proximity Uses as an Input

1 Person Grabber 23 15 Genes 7, 9, 10 and 11

2 Left Motor 11 1 None

3 Right Motor 83 24 Genes 4, 6 and 12

260

11.9 Network 8

Section 9.2; Epigenetic Network; Rescue Task with Falling Debris; Fitness 18.60

Table 11.9.1. Connection parameters of all input elements of network 7, including what

other network elements use them as inputs.

Input Number Sensor Identification Input for

1 Person Carried 79 Molecules 1, 2 and 4

Genes 2, 7 and 10

2 Left Person Eye 30 Molecules 2 and 4

Genes 4, 7 and 9

3 Right Person Eye 0 Molecules 2 and 4

Genes 4, 5 and 7

4 Left Nest Eye 120 Molecules 1 and 4

Genes 8, 10, 11 and 12

5 Right Nest Eye 118 Molecules 1 and 4

Genes 3, 8, 10, 11 and 12

6 Left Obstacle Eye 34 Molecules 2 and 4

Genes 4, 7 and 9

7 Right Obstacle Eye 6 Molecules 2 and 4

Genes 4 and 7

Table 11.9.2. Connection parameters of all molecules of network 7, including what other

network elements they use as inputs. Note that which genes are controlled by each

molecule varies during runtime.

Molecule

Number

Identification Proximity Uses as an Input

1 101 29 Inputs 1, 4 and 5

Genes 2, 3, 8, 10, 11 and 12

2 18 86 Inputs 1, 2, 3, 6 and 7

Genes 1, 2, 4, 5, 6, 7, 9 and 10

3 19 5 Gene 4

4 29 105 Inputs 1, 2, 3, 4, 5, 6 and 7

Genes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and

12

261

Table 11.9.3. Connection parameters of all genes of network 7, including what other

network elements they use as inputs and what network elements use them as inputs.

Gene

Number

Identification Proximity Uses as an Input Used as Input by

1 59 4 None Molecules 2 and 4

Outputs 1 and 2

2 89 11 Input 1

Gene 10

Molecules 1, 2 and

4

Gene 10

3 109 9 Input 5

Gene 12

Molecules 2 and 4

Genes 10, 11 and

12

4 20 24 Inputs 2, 3, 6 and 7

Genes 5, 7 and 9

Molecules 2, 3 and

4

Gene 7

Output 2

5 0 0 Input 3 Molecules 2 and 4

Genes 4 and 7

Output 3

6 69 9 None Molecules 2 and 4

Genes 7 and 10

Outputs 1 and 2

7 6 80 Inputs 1, 2, 3, 6 and 7

Genes 1, 4, 5, 6 and 9

Molecules 2 and 4

Gene 4

Output 3

8 120 7 Inputs 4 and 5

Genes 11 and 12

Molecules 1 and 4

Genes 10, 11 and

12

9 31 8 Inputs 2 and 6 Molecules 2 and 4

Genes 4 and 7

Output 2

262

10 99 31 Inputs 1, 4 and 5

Genes 2, 3, 6, 8, 11

and 12

Molecules 1, 2 and

4

Genes 2 and 11

11 120 22 Inputs 4 and 5

Genes 3, 8, 10 and 12

Molecules 1 and 4

Genes 8, 10 and 12

12 119 18 Inputs 4 and 5

Genes 3, 8 and 11

Molecules 1 and 4

Genes 3, 8, 10 and

11

Table 11.9.4. Connection parameters of all output elements of network 7, including which

genes they use as inputs.

Output

Number

Actuator Identification Proximity Uses as an Input

1 Person Grabber 52 19 Genes 1 and 6

2 Left Motor 49 31 Genes 1, 4, 6 and 9

3 Right Motor 3 12 Genes 5 and 7

263

12 Bibliography

[1] Y. Yuan, X. Yu, X. Yang, Y. Xiao, B. Xiang and Y. Wang, “Bionic building energy

efficiency and bionic green architecture: A review,” Renewable and Sustainable

Energy Reviews, vol. 74, pp. 771-787, 26th March 2017.

[2] B. Song, V. E. Johansen, O. Sigmund and J. H. Shin, “Reproducing the Hierarchy of

Disorder for Morph-inspired, Broad-angle Color Reflection,” Scientific Reports, vol.

7, no. 46023, 2017.

[3] T. A. Brown, “Control of Gene Expression,” in Genetics: A Molecular Approach,

Cheltenham, Stanlet Thornes Ltd, 1994, pp. 145-167.

[4] N. Carey, The Epigenetics Revolution, London: Icon Books, 2012.

[5] S. Cussat-Blanc, K. Harrington and W. Banzhaf, “Artificial Gene Regulatory

Networks - A Review,” Artificial Life, vol. 24, no. 4, pp. 296 - 328, 2018.

[6] A. P. Turner, The Artifical Epigenetic Network, York: University of York, 2013.

[7] W. S. McCulloch and W. Pitts, “A Logical Calculus of the Ideas Immanent in

Nervous Activity,” The Bulletin of Mathematical Biophysics, vol. 5, no. 4, pp. 115-

133, 1943.

[8] J. Hertz, A. Kroght and R. G. Palmer, Introduction to the Theory of Neural

Computation, New York: Perseus Books Publishing, 1991.

[9] J. F. Kihlstrom, “Social Neuroscience: The Footprints of Phineas Gage,” Social

Cognition, vol. 28, no. 6, pp. 757-783, 2010.

[10] F. A. C. Azevedo, L. R. B. Carvalho, L. T. Grinerg, J. M. Farfel, R. E. L. Ferretti, R.

E. P. Leite, W. J. Filho, R. Lent and S. Herculano-Houzel, “Equal Numbers of

Neuronal and Nonneuronal Cells make the Human Brain an Isometrically Scaled-Up

Primate Brain,” The Journal of Comparative Neurology, vol. 513, no. 5, pp. 532-541,

2009.

264

[11] F. Jabr, “Does Thinking Really Hard Burn More Calories?,” Scientific American, 18

July 2012. [Online]. Available: https://www.scientificamerican.com/article/thinking-

hard-calories/. [Accessed 20 August 2019].

[12] C. Hammond, Cellular and Molecular Neurobiology, Paris: Dion, 1996.

[13] J. B. Ahire, “The Artificial Neural Networks Handbook: Part 4,” Medium, 11

November 2018. [Online]. Available: https://medium.com/@jayeshbahire/the-

artificial-neural-networks-handbook-part-4-d2087d1f583e. [Accessed 2019

November 2019].

[14] M. A. Lones, A. M. Tyrell, S. Stepney and L. S. Caves, “Controlling Complex

Dynamics with Artificial Biochemical Networks,” in European Conference on

Genetic Programming, Berlin, 2010.

[15] C. Nwankpa, W. Ijomah, A. Gachagan and S. Marshall, “Activation Functions:

Comparison of trends in Practice and Research for Deep Learning,” 8 November

2018. [Online]. Available: https://arxiv.org/abs/1811.03378. [Accessed 23 August

2019].

[16] V. Nair and G. E. Hinton, “Rectified Linear Units Improve Restricted Boltzman

Machines,” in Proceedings of the 27th International Conference on Machine

Learning, Haifa, 2010.

[17] A. L. Maas, A. Y. Hannum and A. Y. Ng, “Rectifier Nonlinearities Improve Neural

Network Acoustic Models,” in Proceedings of the 30th International Conference on

Machine Learning, Atlanta, 2013.

[18] X. Glorot, A. Bordes and B. Yoshua, “Deep Sparse Rectifier Neural Networks,” in

Proceedings of the 14th International Conference on Artifical Intelligence and

Statistics, Fort Lanerdale, 2011.

[19] F. Rosenblatt, “The Perceptron: A Probabailistic Model for Information Storage and

Organisation in the Brain,” Psychological Review, vol. 65, no. 6, pp. 386-408, 1958.

[20] M. Minsky and S. Papert, Perceptrons: an introduction to computational geometry,

Cambridge: The MIT Press, 1969.

265

[21] R. Rojas, “Weighted Networks - The Perceptron,” in Neural Networks - A Systematic

Introduction, Berlin, Springer-Verlang, 1996, pp. 55-76.

[22] T. A. Brown, “The Structure of DNA,” in Genetics: A Molecular Approach,

Cheltenham, Stanley Thornes Ltd, 1998, pp. 24-51.

[23] T. A. Brown, “The Genetic Code,” in Genetics: A Molecular Approach, Cheltenham,

Stanley Thornes Ltd, 1994, pp. 108-126.

[24] T. A. Brown, “Genes and Biological Information,” in Genetics: A Molecular

Approach, Cheltenham, Stanley Thornes Ltd, 1994, pp. 40-51.

[25] T. R. Robinson, Genetics for Dummies, Hoboken, New Jersey: Wiley Publishing

Inc., 2005.

[26] T. A. Brown, “Transcription,” in Genetics: A Molecular Approach, Cheltenham,

Stanley Thornes Ltd, 1994, pp. 52-70.

[27] S. A. Kauffman, “Metabolic Stability and Epigenesis in Randomly Constructed

Genetic Nets,” Journal of Theoretical Biology, no. 22, pp. 437-467, 1969.

[28] A. Roli, M. Manfroni, C. Pinciroli and M. Birattari, “On the Design of Boolean

Network Robots,” Evolutionary Applications, pp. 43-52, 2011.

[29] G. Karlebach and R. Shamir, “Modelling and Analysis of Gene Regulatory

Networks,” Nature Reviews: Molecular Cell Biology, vol. 9, no. 10, pp. 770-708,

2008.

[30] C. D. Allis, T. Jenuwein and D. Reinberg, “Overview and Concepts,” in Epigenetics,

New York, Cold Spring Harbor Laboratory Press, 2007, pp. 23-61.

[31] “Chromosome Structure Proteins,” Creative BioMart, [Online]. Available:

https://www.creativebiomart.net/researcharea-chromosome-structure-

proteins_407.htm. [Accessed 02 September 2019].

[32] T. Kouzarides and S. L. Berger, “Chromatin Modifications and their Mechanisms of

Action,” in Epigenetics, New York, Cold Spring Harbor Laboratory Press, 2007, pp.

191-209.

266

[33] A. P. Turner, M. A. Lones, L. A. Fuente, S. Stepney, L. S. D. Caves and A. Tyrrell,

“The Artifical Epigenetic Network,” in IEEE International Conference on Evolvable

Systems, Singapore, 2013.

[34] A. Dey, “Machine Learning Algorithms: A Review,” International Journal of

Computer Science and Information Technologies, vol. 7, no. 3, pp. 1174-1179, 2016.

[35] T. Back, Evolutionary Algorithms in Theory and Practice, New York: Oxford

University Press Inc., 1996.

[36] E. Mayr, The Growth of Biological Thought, Belknap Press, 1982.

[37] C. Darwin, On the Origin of Species by Means of Natural Selection, or the

Preservation of Favoured Races in the Struggle for Life, London: John Murray, 1859.

[38] I. Rechenberg, Evolutionary Strategy – Optimisation of Technical Systems According

to the Principles of Biological Evolution, Berlin: Technical University of Berlin,

1971.

[39] A. Oyama, S. Obayashi, K. Nakahashi and T. Nakamura, “Aerodynamic

Optimization of Transonic Wing Design Based on Evolutionary Algorithms,”

Tohoku University, Sendai, 2000.

[40] J. A. Hilder, Evolving Variability Tolerant Logic, York: University of York, 2010.

[41] N. Jakobi, P. Husbands and I. Harvey, “Noise and the Reality Gap: The Use of

Simulation in Evolutionary Robotics,” in European Conference on Artifical Life,

Granada, Spain, 1995.

[42] K. Sims, “Evolving Virtual Creatures,” in SIGGRAPH, Orlando, Florida, 1994.

[43] J. Lehman and et al, “The Surprising Creativity of Digital Evolution: A Collection of

Anecdotes from the Evolutionary Computation and Artificial Life Research

Communities,” 14 August 2018. [Online]. Available:

https://arxiv.org/abs/1803.03453. [Accessed 02 August 2019].

267

[44] T. Blickle, “Tournament Selection,” in Evolutionary Computation 1 - Basic

Algorithms and Operators, Bristol and Philadelphia, Institute of Physics Publishing,

2000, pp. 181-186.

[45] J. Grefenstette, “Rank-Based Selection,” in Evolutionary Computation 1 - Basic

Algorithms and Operators, Bristol and Philadelphia, Institute of Physics Publishing,

2000, pp. 187-194.

[46] D. Gupta and S. Ghafir, “An Overview of Methods of Maintaining Diversity in

Genetic Algorithms,” International Journal of Emerging Technology and Advanced

Engineering, vol. 2, no. 5, pp. 56-60, 2012.

[47] T. Kuo and S.-Y. Hwang, “Using Disruptive Selection to Maintain Diversity in

Genetic Algorithms,” Applied Intelligence, vol. 7, no. 3, pp. 257-267, 1997.

[48] L. B. Bookers, D. B. Fogel, D. Whitley, P. J. Angeline and A. E. Eiben,

“Recombination,” in Evolutionary Computation I - Basic Algorithms and Operators,

Bristol and Philadelphia, Institute of Physics Publishing, 200, pp. 256-307.

[49] H. Muhlenbein, “How genetic algorithms really work I - Mutation and hillclimbing,”

in Parrallel Problem Solving from Nature 2, Amsterdam, Elsever, 1992, pp. 15-25.

[50] E. Zitzler and L. Thiele, “Multiobjective Evolutionary Algorithms: A Comparative

Case Study and the Strength Pareto Approach,” IEEE Transactions on Evolutionary

Computation, vol. 3, no. 4, pp. 257-271, 1999.

[51] C. M. Fonseca and P. J. Fleming, “An Overview of Evolutionary Algorithms in

Multiobjective Optimisation,” Evolutionary Computation, vol. 3, no. 1, pp. 1-16,

1995.

[52] J. D. Schaffer, “Multiple Objective Optimization with Vector Evaluated Genetic

Algorithms,” in Genetic Algorithms and Their Applications: Proceedings of the First

International Conference on Genetic Algorithms, 1985.

[53] M. P. Fourman, “Compaction of Symbolic Layout using Genetic Algorithms,” in

Genetic Algorithms and Their Applications: Proceedings of the First International

Conference on Genetic Algorithms, 1985.

268

[54] A. Ben-Tal, “Characterisation of Pareto and Lexographic Optimal Solutions,” in

Lecture Notes in Economics and Mathmatical Systems - Multiple Criteria Decision

Making Theory and Application, Berlin, Springer-Verlag, 1979, pp. 1-11.

[55] F. Kursawe, “A Variant of Evolutionary Strategies for Vector Optimisation,” in

Parallel Problem Solving from Nature - 1st Workshop, Berlin, 1991.

[56] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, “A Fast and Elitist Multiobjective

Genetic Algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation,

vol. 6, no. 2, pp. 182-197, 2002.

[57] N. Srinivas and K. Deb, “Multiobjective Optimization using Nondominated Sorting

in Genetic Algorithms,” Journal of Evolutionary Computation, vol. 2, no. 3, pp. 221-

248, 1995.

[58] T. Mestla, E. Plahteb and S. W. Omholt, “A mathematical framework for describing

and analysing gene regulatory networks,” Journal of Theoretical Biology, vol. 176,

no. 2, pp. 291-300, 1995.

[59] Xilinx, “LogiCORE IP: Floating-Point Operator,” Xilinx, San Jose, California, 2014.

[60] Xilinx, “7 Series FPGAs Configurable Logic Block User Guide,” Xilinx, 2016.

[61] Xilinx, “AXI Reference Guide,” Xilinx, San Jose, California, 2011.

[62] Xilinx, “Vivado Design Suite - AXI Reference Guide,” Xilinx, San Diego, California

, 2017.

[63] Xilinx, “Zynq-7000 SoC Data Sheet,” Xilinx, San Diego, California, 2018.

[64] A. Dunlels and L. Woestenberg, “LwIP Lightweight IP Stack,” [Online]. Available:

http://www.nongnu.org/lwip/2_1_x/index.html. [Accessed 12 07 2019].

[65] K. H. Lundburg and T. M. Barton, “History of Inverted-Pendulum Systems,” in 8th

IFAC Symposium on Advances in Control Education, Kumamoto, Japan, 2010.

269

[66] A. P. Turner, M. A. Trefzer, M. A. Lones and A. M. Tyrrell, “Evolving Efficient

Solutions to Complex Problems Using the Artificial Epigenetic Network,”

Information Processing in Cells and Tissues, vol. 9303, pp. 153-165, 2015.

[67] A. F. Winfield, “Foraging Robots,” in Encyclopedia of Complexity and Systems

Science, New York, Springer, 2009.

[68] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz, S. Magnenat, J.

-C. Zufferey, D. Floreano and A. Martinoli, “The e-puck, a Robot Designed for

Education in Engineering,” in Proceedings of the 9th Conference on Autonomous

Robot Systems and Competitions, 2009.

[69] Microchip Technology Inc., “dsPIC30F6011A/6012A/6013A/6014A Data Sheet,”

Microchip Technology Inc., Chandler and Tempe, Arizona, 2011.

[70] Intel, “Desktop 4th Generation Intel® Core™ Processor Family, Desktop Intel®

Pentium® Processor Family, and Desktop Intel® Celeron® Processor Family

Datasheet – Volume 1 of 2,” Intel, Santa Clara, California, 2015.

[71] H. Hamann, T. Schmickl and K. Crailsheim, “Coupled Inverted Pendulums: A

Benchmark for Evolving Decentral Controllers in Modular Robotics,” in Genetic and

Evolutionary Computation Conference, Dublin, 2011.

[72] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical

Recipes in C++, Cambridge: Cambridge University Press, 2002.

[73] E. H. Ostergaard, G. S. Sukhatme and M. J. Mataric, “Emergent bucket brigading: A

simple mechanism for improving performance in multi-robot constrained-space

foraging tasks,” in Proceedings of the International Conference on Autonomous

Agents, Monteal, Canada, 2001.

[74] C. Pinciroli, V. Trianni, R. O'Grady, G. Pini, A. Brutschy, M. Brambilla, N.

Mathews, E. Ferrante, G. Di Caro, F. Ducatell, M. Birattari, L. M. Gambardella and

M. Dorigo, “ARGoS: a Modular, Parallel, Multi-Engine Simulator for Multi-Robot

Systems,” Swarm Intelligence, vol. 6, no. 4, pp. 271-295, 2012.

270

[75] O. Michel, “Webots: Professional Mobile Robot Simulation,” International Journal

of Advanced Robotic Systems, vol. 1, no. 1, pp. 39-42, 2004.

[76] E. Rohmer, S. Singh and M. Freese, “V-REP: a Versatile and Scalable Robot

Simulation Framework,” in Proc. of The International Conference on Intelligent

Robots and Systems, 2013.

[77] M. Duarte, F. Silva, T. Rodrigues, S. M. Oliveira and A. L. Christensen,

“JBotEvolver: A Versitile Simulation Platform for Evolutionary Robotics,” in

Fourteenth International Conference on the Synthesis and Simulation of Living

Systems, New York, 2014.

[78] M. Duarte, F. Silva, T. Rodrigues, S. M. Oliveira and A. L. Christensen, “GitHub -

JBotEvolver,” BioMachinesLab, 03rd September 2016. [Online]. Available:

http://github.com/biomachineslab/jbotevolver. [Accessed 07th June 2019].

[79] R. A. Brooks, J. H. Connell and P. Ning, “Herbert: A Second Generation Mobile

Robot,” A.I. Memo, January 1988.

[80] R. Hoggett, “1986c - "Herbert" the Collection Machine,” CyberneticZoo.com, 26th

June 2011. [Online]. Available: http://cyberneticzoo.com/cyberneticanimals/1986c-

herbert-the-collection-machine-brooks-connell-ning-american/. [Accessed 11th June

2019].

[81] “League Overview,” RoboCup Rescue League, [Online]. Available:

https://rrl.robocup.org/league-overview/. [Accessed 20 September 2019].

[82] R. League, “RoboCup Rescue Rulebook 2019 version 2.4,” 17th June 2019. [Online].

Available: https://rrl.robocup.org/wp-

content/uploads/2019/06/rrl_rulebook_2019_v2.4.pdf. [Accessed 20th September

2019].

[83] A. Vargha and H. D. Delaney, “A Critique and Improvement of the "CL" Common

Language Effect Size Statistics of McGraw and Wong,” Journal of Educational and

Behavioral Statistics, vol. 25, no. 2, pp. 101-132, 2000.

271

[84] K. O. Stanley and R. Miikkulainen, “Evolving Neural Networks through Augmenting

Topologies,” Evolutionary Computation, vol. 10, no. 2, pp. 99-127, 2002.

