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Abstract

Positron emission tomography (PET) imaging has a wide applicability in oncol-

ogy, cardiology and neurology. However, a major drawback when imaging very

active regions such as the bladder and the bone is the spill in effect, leading to

inaccurate quantification and obscured visualisation of nearby lesions. Therefore,

this thesis aims at investigating and correcting for the spill in effect from high

activity regions to the surroundings, as a function of activity in the hot region,

lesion size and location, system resolution as well as application of post-filtering,

using the background correction technique. This thesis involved analytical sim-

ulations for the digital XCAT2 phantom, and validation acquiring data from

NEMA phantoms and patient datasets with the GE Signa PET/MR and Siemens

Biograph mMR/mCT scanners. Reconstructions were done using the ordered

subset expectation maximisation (OSEM) algorithm. Dedicated point spread

function (OSEM+PSF) and the background correction (OSEM+PSF+BC) were

incorporated into the reconstruction for spill in correction. For region of interest

(ROI) analysis, a semi-automated ellipsoidal ROIs were drawn on the exact loca-

tion of the lesions, and these were used to extract the standardized uptake value

(SUV). The bias, recovery coefficient (RC), coefficient of variation (CoV) and

contrast-to-noise ratio (CNR) were computed from the SUVs, and these were

used as figures of merit to compare the performances of all the reconstruction

algorithms. The thesis revealed that: (i) lesions within 15-20 mm from the hot

region are predominantly affected by the spill in effect, leading to an increased

bias and impaired lesion visualisation within the region; (ii) the spill in effect

is further influenced by the ROI selection, increasing activity in the hot region,

reduced resolution and application of post-filter; (iii) the spill in effect is more ev-

ident for the SUVmax than the SUVmean; (iv) for proximal lesions (within 2 voxels

around the hot region), PSF has no major improvement over OSEM because of

the spill in effect, coupled with the Gibbs effect; (v) with OSEM+PSF+BC, the
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spill in contribution from the hot region was removed in all cases (irrespective

of ROI-selection, proximity of lesion to hot source, or application of post-filter),

thereby facilitating stability in quantification and enhancing the contrast in le-

sions with low uptake. This thesis therefore concludes that the BC technique

is effective in correcting for the spill in effect from hot regions to surrounding

regions of interest. It is also robust to ROI-induced errors and post-filtering.
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Chapter 1

Introduction

1.1 Context and Motivation

Despite the wide applicability of positron emission tomography (PET) in oncol-

ogy, cardiology and neurology (Capirci et al. [2007], Hoh [2007], Ben-Haim and

Ell [2009]) for quantification, diagnosis, and post-therapeutic response prediction

(Nahmias and Wahl [2008]), accurate clinical assessment is often affected by the

partial volume effect (PVE) leading to overestimation (spill in) or underestima-

tion (spill out) of activity in various small regions (Liu [2012], Gaertner et al.

[2013], Afshar-Oromieh et al. [2014]). The spill in effect, in particular, can be

very challenging when the target region is close to a hot background region such

as the brain (Soret et al. [2007]), urinary bladder (Liu [2012]), myocardium (Du

et al. [2013]) and spine (Forsythe et al. [2018]). Concerns have been raised on

the effectiveness of some common tracers in imaging areas with high radiotracer

uptake (hot regions), and these concerns stem from the observation that activity

from the hot regions may interfere with PET quantification and visualisation of
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nearby lesions, tumours and abnormalities. As a result, nearby lesions have their

standardized uptake value (SUV) overestimated, and in some cases, lesions can

be totally missed (Liu [2012]). Various techniques are being employed to correct

for the spill in effect but none has been shown as an effective correction technique

when the tumour of interest is within 10− 50 mm distance from the hot region

(Liu [2012], Akerele et al. [2018]). In fact, past studies have shown that in such

situations, the SUV is often substantially overestimated and therefore invalid

(Liu [2012]). This effect can therefore pose great limitations to PET imaging in

certain clinical investigations such as [18F]- fluorodeoxyglucose (FDG) PET ex-

amination of the pelvic areas for infection, metastases and cancer (Bouchelouche

and Oehr [2008], Heuber et al. [2017]); and [18F] Sodium Fluoride ([18F]-NaF)

PET imaging of the abdominal aortic aneurysm (AAA) where extensive spill in

effect from the bone into the aneurysm can be observed (Forsythe et al. [2018]).

Common image analysis techniques to mitigate the spill in contamination in-

clude masking out the highly radioactive region in the image space, or simply

excluding areas of spill in from regions of interest around the tissue of interest

(Forsythe et al. [2018]). The challenge in this practice is the high dependence

of the measurements on clinician expertise. In addition, a certain degree of po-

tentially important physiological information might be lost from the excluded

regions. This therefore suggests a clear need for more practical methods to cor-

rect for the spill in effects. This thesis focuses on investigating the spill in effect

in lesions close to a hot background region, and also validating the background

correction (BC) method (proposed by Silva-Rodriguez et al. [2016]) in mitigating

this effect.
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1.2 Purpose of the Thesis

The main goal of this thesis is to investigate spill in effects in regions close to

a highly radioactive region, and to correct this using the background correction

technique. This is an iterative reconstruction technique where the contribution

from the active background region is estimated (through prior segmentation),

forward projected and then included as part of the additive term in the re-

construction algorithm. This thesis presents the validation of the background

correction technique with simulated and real data including phantoms and pa-

tients. It also shows the performance comparison of the background correction

technique with other recent techniques in terms of their convergence, contrast,

and noise properties, as well as their spill in correction capabilities.

1.3 Key Contributions of the Thesis

The specific achievements of this thesis are listed as follows:

1) The spill in effect from hot regions to surrounding colder regions of interest

was thoroughly investigated. The contributing factors to the spill in effect

were also investigated and discussed.

2) The performance of the background correction technique in mitigating

quantification errors arising from the spill in effect was examined and vali-

dated with simulated and real data. The potential limitations of the back-

ground correction technique were also explored and discussed.

3) The spill in correction ability of the background correction technique was
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also compared with other algorithms. This comparison was done on the

basis of the convergence, contrast and noise properties of the algorithms.

4) The background correction technique was applied to several sets of clinical

data which showed that spill in correction is feasible, and that it enhances

PET quantification, lesion contrast and better patient management.

1.4 Thesis Overview

The thesis is divided into six main chapters, which are interconnected through

the theme of spill in effects, correction and quantification. The overview of the

thesis is presented as follows:

Chapter 2: Background

This chapter introduces the basic concept of medical imaging and the imaging

techniques which are applicable to this thesis. A detailed description of the

physical processes involved in PET acquisition, computed tomography (CT) and

magnetic resonance (MR), and introduction to multi-modal imaging techniques

is provided. The theoretical background and mathematical formulation of the

algorithms and correction techniques used in this thesis is also provided.
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Chapter 3: Validation of the Background Correction Method

for the Suppression of Spill in Effects Near Highly Radioac-

tive Regions in PET

This chapter investigates the effect of the spill in contamination on quantification

of regions in proximity of a hot region. It also explores the factors which con-

tribute to the spill in effect. Finally, the feasibility of the background correction

technique described in Chapter 2 in correcting for the spill in effect is investi-

gated and validated using simulated and real datasets. This chapter consists of

work previously published in IEEE Conference Proceedings and European Jour-

nal of Nuclear Medicine and Molecular Imaging Physics. These are referenced

in Akerele et al. [2017, 2018].

Chapter 4: Comparison of Correction Techniques for Spill

in Effects

The systematic evaluation of the background correction technique in compari-

son with two novel correction techniques is performed in this chapter. This is

done using both simulated and experimental PET/MR phantom data as well as

abdominal aortic aneurysm PET/CT human patient data. The performance is

compared using the convergence, contrast and noise properties of the techniques.

Part of the work in this Chapter has been presented as oral presentation at the

2018 IEEE NSS MIC conference and as a poster presentation at the 2019 EMIM

meeting. The work has also been submitted to IEEE TRPMS in 2019, and this

has been provisionally accepted pending major correction.
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Chapter 5: Clinical Application of the Background Cor-

rection Technique

In this chapter, the background correction technique is applied to 65 sets of ab-

dominal aortic aneurysm PET/CT human patient data. The intention is to in-

vestigate the spill in contamination emanating from the bone into the aneurysm,

and its effect on quantification and patient management. The performance of

the background technique in correcting for this effect is also explored. The work

in this Chapter has been submitted to Journal of Nuclear Cardiology in 2019

and this has been accepted pending minor correction.

Chapter 6: General Conclusion and Future Work

The general summary of the thesis are discussed in this chapter, together with

the current limitations and potential future applications.

1.5 Dissemination

Work from the following jointly authored publications, which is listed as Akerele

et al. [2017, 2018] in the References, is included in this thesis:

1.5.1 Journal Articles

Mercy I. Akerele, Palak Wadhwa, Jesus Silva-Rodriguez, William Hallet and

Charalampos Tsoumpas. Validation of a Novel Image Reconstruction Method

for the Suppression of spill in Effect in Positron Emission Tomography. In

European Journal of Nuclear Medicine and Molecular Imaging Physics, 5:34.
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The candidate designed the study and validated the background correction

method with digital simulations, as well as experimental and patient dataset.

She also performed all the simulations, image reconstructions, image analysis

and manuscript writing as well as many other aspects. The organisation of the

manuscript and writing corrections were jointly performed with co-authors. The

acquisition experiment was performed by the co-authors.

Mercy I. Akerele, Nicolas Karakatsanis, Rachael O. Forsythe, Marc R.

Dweck, Maaz Syed, Robert G. Aykroyd, Steven Sourbron, David E. Newby and

Charalampos Tsoumpas. Iterative Reconstruction Incorporating Background

Correction Improves Quantification in [18F]-NaF PET Imaging of patients with

Abdominal Aortic Aneurysm. In Journal of Nuclear Cardiology; In press,

2019.

The candidate designed the study, performed all the image segmentation,

image reconstructions, image analysis, statistical analysis and manuscript writing

as well as many other aspects. The organisation of the manuscript as well as

writing corrections were jointly performed with co-authors. The acquisition of

the patient data, and conversion to sinograms were performed by the co-authors.

Mercy I. Akerele, Nicolas Karakatsanis, Daniel Deidda, Jacobo Cal-Gonzalez,

Rachael O. Forsythe, Marc R. Dweck, Robert G. Aykroyd, Steven Sourbron, and

Charalampos Tsoumpas. Comparison of Correction Techniques for the spill in

Effect in Emission Tomography. In IEEE Transactions on Radiation and Plasma

Medical Sciences; Provisionally accepted, pending major corrections,

2019.
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The candidate designed the study, performed all the image reconstructions,

image analysis and paper writing as well as many other aspects. The organisation

of the manuscript as well as writing corrections were jointly performed with

co-authors. The acquisition of experimental phantom and patient data were

performed by the co-authors.

1.5.2 Conference Papers

Mercy I. Akerele, Palak Wadhwa, Jesus Silva-Rodriguez, William Hallet and

Charalampos Tsoumpas. Comparison of partial volume correction techniques for

lesions near high activity regions. In Nuclear Science Symposium and Medical

Imaging Conference Record, pages 1–7. IEEE, 2017.

The candidate performed all image reconstructions, image analysis and paper

writing as well as many other aspects. The organisation of the manuscript as well

as writing corrections were jointly performed with co-authors. The acquisition

experiment was performed by the co-authors.

Mercy I. Akerele, Nicolas Karakatsanis, Daniel Deidda, Jacobo Cal-Gonzalez,

Rachael O. Forsythe, Marc R. Dweck, Robert G. Aykroyd, Steven Sourbron, and

Charalampos Tsoumpas. Improved Correction Techniques for Partial Volume

and spill in Effects’ Compensation in PET. In Nuclear Science Symposium and

Medical Imaging Conference Record. IEEE, pages 1–5. IEEE, 2017.

The candidate designed the study and performed all the simulations. She

performed all image reconstructions, image analysis, paper writing as well as

many other aspects. The organisation of the manuscript and writing corrections

were jointly performed with co-authors.
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1.5.3 Conference Abstracts

Mercy I. Oloniyo, Nikos Efthimiou, Palak Wadwha, Jesus Silva-Rodriguez,

and Charalampos Tsoumpas. Impact and correction of bladder uptake on tu-

mour quantification. In Nuclear Science Symposium-Medical Imaging Confer-

ence. IEEE, 2016, Strasbourg, France (Poster presentation).

Mercy I. Oloniyo, Nikos Efthimiou, Palak Wadwha, Jesus Silva-Rodriguez,

and Charalampos Tsoumpas. Investigation and correction of partial volume

effect in lesions near high activity regions. In University of Leeds Science Day.

2017, Leeds, UK (Oral presentation).

Mercy I. Akerele, Palak Wadhwa, Jesus Silva-Rodriguez, William Hallet

and Charalampos Tsoumpas. Comparison of partial volume correction tech-

niques for lesions near high activity regions. In Nuclear Science Symposium-

Medical Imaging Conference. IEEE, 2017, Atlanta, GA, USA (Poster presenta-

tion).

Mercy I. Akerele, Nicolas Karakatsanis, Daniel Deidda, Jacobo Cal-Gonzalez,

Rachael O. Forsythe, Marc R. Dweck, Robert G. Aykroyd, Steven Sourbron, and

Charalampos Tsoumpas. Improved Correction Techniques for Partial Volume

and spill in Effects’ Compensation in PET. In Nuclear Science Symposium and

Medical Imaging Conference Record. IEEE, 2018, Sydney, Australia (November

2018, Oral presentation).

Mercy I. Akerele, Nicolas Karakatsanis, Daniel Deidda, Jacobo Cal-Gonzalez,

Rachael O. Forsythe, Marc R. Dweck, Robert G. Aykroyd, Steven Sourbron,
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and Charalampos Tsoumpas. Spill in Effect in Positron Emission Tomogra-

phy (PET) Imaging of Abdominal Aortic Aneurysm (AAA). In 14th European

Molecular Imaging Meeting. EMIM, 2019, Glasgow, UK (March 2019, Poster

presentation).

Daniel Deidda, Mercy I. Akerele, Rachael O. Forsythe, Marc R. Dweck,

Maaz Syed, David Newby, Robert G. Aykroyd, and Charalampos Tsoumpas.

Performance Evaluation of the Kernelised Expectation Maximisation Algorithm

on [18F]-NaF PET/CT Data of Patients with Abdominal Aortic Aneurysm. In

Synergistic Image Reconstruction Framework. SIRF Symposium, 2019, Chester,

UK (November 2019, Poster presentation).
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Chapter 2

Background

In this chapter, a brief overview of medical imaging is presented, followed by a

concise description of CT, magnetic resonance imaging (MRI), PET and multi-

modal imaging. A detailed theory of the PET reconstruction algorithm, some

PET effects and correction techniques are also discussed, particularly as it relates

to this thesis.

2.1 Introduction to Medical Imaging

In ancient times, people’s health are being managed with the use of various tra-

ditional herbal treatments (Shi et al. [2010]). However, this comes with a lot of

complications resulting from overdosage (since there is no prescription), infec-

tions (due to poor drug preparation) which subsequently leads to death (Yuan

et al. [2016]). Civilisation and modernisation come with the introduction of

modern medicine which is far more effective and life-saving (Wang et al. [2016]).

Nevertheless, modern medicine has its limitations. One of these is that it often

treats symptoms, whereas most illnesses have complicating symptoms making
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it difficult to diagnose and treat the main disease. Also, some sicknesses are

chronic, the symptoms show up so late and this may lead to death before proper

treatment is given (Singh [2010], Pizzorno [2016]).

Advances in medicine comes with the introduction of some diagnostic tools

such as X-ray imaging and X-ray CT, medical ultrasonography and MRI which

allow earlier and more precise diagnosis of diseases, help in the localisation of

tumour, suggest the most appropriate treatment protocols, and subsequently in-

crease the chances for survival (Hawkes [2019]). Although these medical imaging

modalities could provide excellent anatomical images, their limitation in provid-

ing biological information suggest the need for complementary imaging modality.

Nuclear medicine offers a promising future for imaging in that it is possible to

obtain images of biochemical processes which give valuable information about any

type of disease ( [US], Mettler Jr and Guiberteau [2012]). It could also identify

ailments earlier than some other imaging modalities. For example, Alzheimer

disease as well as reduced blood supply to the heart can be diagnosed far before

any symptoms ensues (Johnson et al. [2013]). Also, nuclear medicine offers an

ample opportunity for whole-body imaging. This is particularly useful in cases

where lesions spread all over the body (Cherry et al. [2018], Rahmim et al. [2018]).

There are two major imaging modalities in nuclear medicine which are: single

photon emission computed tomography (SPECT) and PET. The former involves

emission of a single photon, while for the latter, a positron is emitted which

annihilates with an electron to form two annihilation photons. Imaging is done

by injecting trace amounts of radioactive compounds, known as radiotracers,

into the body. These compounds are majorly gamma or positron-emitters upon

decay. The energy of the photons emitted are high enough so that a significant
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amount can penetrate through the body and be detected by an external camera.

The distributions of the emitted photons within the body are used to form images

which provide diagnostic information for wide range of diseases and infections

(Welch and Pimlott [2010]). Radiotracers used in nuclear medicine are either

generated in a cyclotron or generator.

Nuclear medicine makes use of detectors which can detect trace amount of

radioactivity, as well as radionuclides with high-specific activity. Therefore it

is sufficient to form high quality images. This imaging technique uses different

radiotracers as shown in Table 2.1, but the most widely used is 99mTc for SPECT

and 18F for PET.

Table 2.1: Some Common Radionuclides used in Nuclear Medicine
Radionuclides Symbol Half-life (T1/2) Uses

Technetium-99m 99mTc 6.01 hours Brain, heart and kidney imaging
Iodine-123 123I 13.2 hours Diagnosis of thyroid disorder
Chromium-51 51Cr 27.7 days Survival studies of red blood cell
Thallium-201 201Tl 73 hours Cardiac studiesS

P
E

C
T

Gallium-67 67Ga 3.26 days Inflammation detection
Carbon-11 11C 20.3 mins Protein synthesis and metabolism
Nitrogen-13 13N 9.97 mins Blood flow marker in cardiac studies
Oxygen-15 15O 2.03 mins Blood flow studies
Gallium-68 68Ga 67.7 mins Cancer imaging
Fluorine-18 18F 110 mins Glucose metabolism
Rubidium-82 82Rb 75 secs Blood flow measurement

P
E

T

Copper-64 64Cu 12.7 hours Small animal imaging

The opportunity for wide selection of radionuclide compounds combined with

the high sensitivity obtained make nuclear medicine a thriving imaging technique.

PET is however preferred to SPECT due to its characteristic high resolution and

sensitivity (Rahmim and Zaidi [2008]).
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2.2 Computed Tomography (CT)

In 1895, X-rays were discovered by Wilhelm Conrad Rontgen, a German physi-

cist who later won a Physics Nobel Prize in 1901. In 1971, Godfrey Newbold

Hounsfield (1979 Nobel Prize winner for Physiology and Medicine) implemented

the first X-ray CT system. Since the discovery of X-rays, CT has been referred

to as the most important invention in radiological diagnosis (Kalender [2006]).

Although the initially implemented CT was limited to imaging of the brain,

this has now developed into a versatile 3D whole body imaging modality for a

wide range applications. CT can be used for screening, diagnosis, radiotherapy

treatment planning and patient follow-up.

2.2.1 Basic Principles

CT acquisitions are made by measuring the X-ray transmission through an ob-

ject for a large number of projections, hence the name computed tomography.

As the X-rays pass through the object, they are either absorbed, scattered, or

transmitted. The scattered and absorbed X-rays result in X-ray intensity re-

duction, and the process is called attenuation. The X-rays transmitted through

the object at the different angles are collected on the detector, and visualised on

computer, thereby creating a complete reconstructed image of the object. The

3D data structure of the image represents the electron density distribution in the

object (Bartscher et al. [2007]).

A CT image consists of a matrix of pixels, and a value is assigned to each

pixel which is proportional to the average linear attenuation coefficient, µ (m−1)

of the tissue present in that pixel. The linear attenuation coefficient is dependent
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on the composition, density and photon energy of the material as given by Beer’s

law:

I(T ) = Ioe
−µT (2.1)

where I(T ) and Io are the intensities of the attenuated and non-attenuated X-ray

beams respectively; and T is the material thickness.

Since the human body is made up of different tissues with their associated lin-

ear attenuation coefficients, the intensity of an X-ray beam transmitted through

a distance, d, in the patient body can be expressed as:

I(d) = Ioe
−

∫ d
0 µ(T )dT (2.2)

The matrix of the reconstructed linear attenuation coefficients, µmaterial, is trans-

formed into a corresponding Hounsfield units, HUmaterial where the HU scale is

expressed relative to the linear attenuation coefficient of water at room temper-

ature as:

HUmaterial =
µmaterial − µwater

µwater
× 1000 (2.3)

HU ranges from -1000 for air (as µmaterial=0) to +1000 for bone. In essence, HU

depends on the material composition, the tube voltage, and the temperature.

A minimum of 12 bit depths can be assigned to the HU, thereby enabling the

creation of an Hounsfield scale from -1024 to +3071 which covers most clinically

relevant tissues.
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2.2.2 Image Acquisition and Reconstruction

CT is used in medical imaging to produce 3D representations of a patient by

taking many X-ray projections around a rotation axis and then reconstructing

a 3D model using many reconstruction algorithms. This reconstruction chal-

lenge was solved by Cormack [1963] and Hounsfield [1973], who later received

a joint Nobel prize in 1979. Over the years, five generations of CT scanners

have been developed, and the efficiency of data acquisition has increased with

each generation. Currently, most scanners are helical, multi detector row CT

scanners. A typical CT imaging system consists of the CT gantry, patient table

and computer. The gantry contains the X-ray tube, detector, high voltage gen-

erator, air or water cooling, data acquisition system, collimator and the beam

shaping filters, which are required to record the transmission data of the patient.

The gantry is mounted on a rotating support so that the transmission data can

be recorded at different rotating angles. The recorded projection data are then

transmitted from the gantry to the computer for image reconstruction.

Several reconstruction algorithms have been developed to reconstruct the 3D

acquired projections based on the principle of Radon transform, the statistical

knowledge of the data acquisition process and the geometry of the imaging system

(Herman [2009]). In general, we have the analytical (cone-beam and multi-

slice helical) reconstructions and the iterative reconstruction. In the analytical

reconstruction algorithms, each projection sample is weighted, filtered and back-

projected to formulate an image. However in the iterative method, the image

is estimated iteratively until an initially set cost function is minimised. This

cost function measures how well the estimated image fits the acquired projection
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data according to a model of the imaging system. Although the iterative method

is complex and time consuming, they are routinely used in nuclear medicine

because of their benefits over analytical methods. Iterative methods have better

performance in low-dose CT acquisitions, and can remove streak artefacts in

images, especially when fewer projection angles are used.

2.3 Magnetic Resonance Imaging (MRI)

MRI is a non-invasive and non-ionising medical imaging technique which is based

upon the principle of nuclear magnetic resonance (NMR). Unlike other imaging

modalities which use X-rays or radioactive isotopes, MRI does not use ionising

radiation. It also has a good soft tissue contrast which gives it an edge over

other modalities and it can be particularly used to diagnose problems with joints,

cartilage, ligaments and tendons.

In the mid 1940s, Felix Bloch and Edward Purcell independently discovered

the principle of MR from the excitation of protons immersed in a static magnetic

by a radio frequency field at the resonance frequency (McRobbie et al. [2017]).

Later in 1971, Raymond Damadian discovered that tumours and normal tissues

excited at the same frequency have different relaxation times. These form the

basis for MRI as a diagnostic and treatment monitoring tool.

2.3.1 MRI Theory

MRI operates on the principle of NMR which occurs when nuclei interact with a

strong magnetic field. For this to happen, such nuclei must possess an intrinsic

magnetic moment and spin angular momentum (i.e. they must possess a non-
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zero spin) (Lipton [2008]). This property makes it possible for a nucleus placed in

a magnetic field to be excited by radio waves, and consequently emit a detectable

radio frequency signal. The hydrogen nucleus has this property, and since the

human body is made up of approximately 70% water (containing the hydrogen

nucleus), the MRI operates on hydrogen-based resonance. The hydrogen nucleus

has a fixed spin (and charge) and the resultant magnetic moment points in a

random direction in the absence of an external magnetic field, as illustrated in

Figure 2.1. But in the presence of a uniform magnetic field Bo, the spins will

precess around Bo in a trajectory manner describing a cone because of the spin

angular momentum. This is described in Figure 2.2.

Figure 2.1: Randomly oriented hydrogen spins outside a magnetic field

The angular frequency, ωo, of the precession is given by the Lamor’s equa-

tion in Equation 2.4, and the precession is described by the Bloch equation in

Equation 2.5:

ωo = γ |Bo| (2.4)
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Figure 2.2: Schematic representation of precession of an isolated spin of magnetic
moment µ in a static magnetic field Bo

dµ

dt
= ωo × µ (2.5)

where γ is the gyromagnetic constant (42.58 MHz/T for hydrogen), |Bo| is the

magnetic field strength and µ is the magnetic moment.

The finite temperature of the human body leads to an anisotropic spin pre-

cession, which means the magnetic moments are likely to orientate with low

magnetic energy parallel to Bo than high magnetic energy anti-parallel to Bo.

This effect leads to a net magnetisation, M, and this is zero when no external

field is applied (McRobbie et al. [2017]).

Without an RF pulse, the initial net magnetisation, Mo, is aligned with

the magnetic field Bo. But when an RF pulse, B1, is applied at the Larmor
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frequency, it results in a resonance and the Mo tilts away from Bo. The Mo has

two components: (1) the transverse component, Mxy, which rotates on the xy

axis, and (2) the longitudinal component, Mz, along the z-axis. This is described

in Figure 2.3. The rotation of Mxy about the z-axis generates an electromagnetic

field which is capable of inducing a current though the receiver coil. The signal

generated can be detected when amplified, and this is referred to as MR signal

or free-induction decay.

(a) (b)

Figure 2.3: The net magnetisation in (a) the equilibrium state, and (b) when an
RF pulse B1 is applied. B1 tips the spin towards the xy-plane, hence producing
two magnetisation components Mz and Mxy

2.3.2 Relaxation Mechanism

When an RF pulse is applied, the spin system remains in their excited states,

but when the RF pulse is stopped, there is loss of energy, and the spin returns

to its equilibrium state. This process is referred to as relaxation, and the time it
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takes is the relaxation time (T1 and T2). There are two mechanisms of relaxation,

namely: spin-lattice and spin-spin relaxation. The spin-lattice relaxation is the

longitudinal relaxation of the Mz component. This is characterised by the time

constant T1, which is the rate at which energy is transferred from the nuclear

spin system to the neighbouring molecules, known as the lattice. The standard

method of measuring T1 is known as the inversion-recovery, and this is given by

the Bloch equation (Bloch [1946]):

Mz = Mo

(
1− e−t/T1

)
(2.6)

The spin-spin relaxation is the transverse relaxation of the Mxy component.

This is represented by the time constant T2 and can be expressed as:

Mxy = Moe
−t/T2 (2.7)

After a 90o pulse, the spins precess coherently in one direction, but this coher-

ence is gradually lost due to field inhomogeneity and direct interaction between

spins. However, this type of relaxation does not involve any transfer of energy

to the lattice. The dephasing due to the combined impact of T2 decay and field

inhomogeneity is expressed as T ∗2 , and it is shorter than T2 (McRobbie et al.

[2017]).

It is worth noting that there is a relation between the spin-spin and spin-

lattice relaxation, because an increase in z-magnetization is not possible without

a corresponding decrease in xy-magnetization. So, T2 ≤ T1 (T2 ≈ T1 in liquids,

but T2 � T1 in solids).
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2.3.3 Image Acquisition

During acquisition, the raw data is spatially organised to locate a signal in a

matrix using a spatial encoding technique that is based on the magnetic field

gradient. The first step is selecting a slice to be imaged. When the gradient

is turned on, the magnetic field strength varies along a specific direction. The

Lamor frequency will also change along this direction, hence, each slice can be

excited by applying different RF pulses, and so resonance occurs. Depending on

sequence, slice selection can be made using X, Y or Z gradients which correspond

to sagittal, coronal and axial slices respectively (Weishaupt et al. [2008]). The

slice thickness however depends on combination of two factors: (1) the strength

or steepness of the gradient, and (2) the frequency range or bandwidth in the

RF pulse (Sprawls [2000]). A shallow gradient generates a thicker slice while a

steep gradient generates a thinner slice as demonstrated in Figure 2.4.

Having selected the position and the thickness of the slices, the spatial po-

sition of the MR signal is then identified using spatial encoding, comprising of

phase and frequency encoding. In phase encoding, the gradient in one orthogonal

direction (say, y) is switched on and this changes the frequencies of the spins with

respect to their location along the gradient. As a result, the excited spins at a

higher position experience a stronger magnetic energy and gain phase compared

to spins at lower position. This results in a phase shift of the spins, and each slice

can then be identified by its unique phase. For frequency encoding, the gradient

is applied in the third direction (i.e. x) and this generates a magnetic field whose

strength increases from right to left. The resulting change in frequencies causes

the left side spins to precess slower than the right side spins. Having obtained
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Figure 2.4: Demonstration of MR slice selection with corresponding slice thick-
ness

a wide range of frequency spectrum, each slice can then be characterised by its

specific frequency. Combination of both phase and frequency results helps to

spatially identify each volume element (voxels) uniquely. The encoding process

is repeated several times at different gradient strengths, and the information

containing the MR signal is stored into K-space. The number of phase encod-

ing steps determines the number of pixels in the image. More phase encoding

steps improve resolution and image quality, but also prolongs the total scan time

(Liney [2007], Weishaupt et al. [2008]). A Fourier transform is then applied to

all the raw k-space values, which then generate the final MR image.

Although the application of MRI to image hard tissues is challenging due to

the low water contents in such tissues, MRI techniques that are able to image
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tissues with low water content and ultrashort T2 are being developed. The most

promising techniques include ultrashort echo time (UTE) imaging, zero echo time

(ZTE) imaging, and sweep imaging with Fourier transformation (SWIFT). The

ZTE imaging sequence is used for GE Signa PET/MR scanner attenuation esti-

mation (Delso et al. [2018]). For this sequence, the encoding gradient is switched

on before the RF pulse excitation, hence resulting in zero TE (Mastrogiacomo

et al. [2019]). For Siemens mMR scanner, the attenuation image is obtained us-

ing volumetric interpolated breath-hold examination (VIBE) sequence with two

segmented tissue classes: air and water (Karakatsanis et al. [2016]).

2.4 Positron Emission Tomography (PET)

PET is a non-invasive imaging technique with established applications in on-

cology, cardiology and neurology (Capirci et al. [2007], Hoh [2007], Ben-Haim

and Ell [2009]) using SUV for quantification, diagnosis, and post-therapeutic re-

sponse prediction (Nahmias and Wahl [2008], Suttie et al. [2009]). It visualises

distribution of molecules in the body and provides functional and molecular in-

formation of tissues such as blood flow, receptor density and glucose metabolism.

PET is preferred in clinical routine because it has a relatively higher sensitivity

and quantitative accuracy than SPECT (Frey et al. [2012]).

2.4.1 Basic PET Principles

PET examination is carried out by injecting positron emitting radiotracers from

photon-rich elements into the body. A radiotracer consists of a biologically active

molecule which is radiolabelled with an unstable isotope. The most common
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isotopes used in PET imaging are [11C], [13N], [15O], [18F] and [68Ga]. These

radioisotopes are bound to a molecule targeting specific functions in the body

(as shown in Table 2.1). PET radiotracers have relatively short half-lives, and

this implies that high count-rate image acquisitions with low patient-radiation

dose can be achieved.

An injected radiotracer decays by emitting a positron and a neutrino. The

positron travels a short distance (known as the mean positron range) and inter-

acts with a free electron in the body as demonstrated in Figure 2.5. The positron

range varies from isotope to isotope, and it is the main source of image blurring

and resolution degradation in PET imaging.

Figure 2.5: Illustration of photon formation and detection in PET imaging

Both positron and electron are annihilated, resulting in the production of

two high energy photons. For conservation of mass and momentum, these two

photons are required to travel in opposite direction with the same mass and
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energy (511 keV) which determine the line of response (LOR). Ideally, the angle

between the two photons should be 180o, but in reality, the positron has non-

zero kinetic energy and so, the photons are typically emitted with an angle of

180o ± 0.25o. This uncertainty in specifying the LOR (known as acolinearity)

causes an additional image blurring and resolution degradation in PET that is

proportional to the radius of the detector ring, R. The magnitude of this blurring

(in mm FWHM) is given by 0.0044R. So, in essence, the same level of acolinearity

leads to a bigger degradation with a larger ring diameter.

PET resolution is given by the full width at half maximum (FWHM) of the

PET system, and this is affected by factors such as the detector size, positron

range and acolinearity, as expressed in Equation 2.8:

FWHMtotal =
√
FWHM2

det + FWHM2
range + FWHM2

acol (2.8)

where FWHMdet, FWHMrange and FWHMacol are the blurring caused by the

detector size, positron range and acolinearity respectively.

The contribution to resolution degradation due to positron range can be

summarised in Table 2.2. The implication is that resolution degradation can be

kept at minimum by using a radiotracer with relatively low positron range. For

example, imaging with [68Ga] will give lower resolution than using [18F] tracer.

Other factors such as the detectors effects and depth of interaction can also limit

the resolution, but these can be compensated for in detector design.

The annihilated photons are detected by a pair of detectors in the detector

ring in a process called coincidence detection. In order for the two photons to

be recorded as a coincident event, they must reach the detector pair within a
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Table 2.2: Contribution to resolution blurring due to positron range of common
PET radiotracers (Derenzo et al. [1982], Jødal et al. [2012]).

Isotope Emax (MeV) Rmax (mm) FWHM (mm)
18F 0.64 2.4 0.54
11C 0.97 4.1 0.92
13N 1.22 5.1 1.49
15O 1.72 7.3 2.48
68Ga 1.90 8.2 2.83

specific time and energy window. There are basically three types of coincidence

detection, as shown in Figure 2.6. True coincidence is when the photons mea-

sured are related to the same annihilation event. Scatter coincidence occurs

when one or both annihilated photons undergo Compton scattering, potentially

leading to a wrongly recorded LOR. Random coincidence occurs when the two

photons originating from different annihilation events are mistakenly recorded as

a single annihilation event. Scatter and random events degrade image resolution

by contributing a background signal, thereby decreasing the signal to noise ratio

(SNR). The performance of an imaging system in terms of SNR is measured

using the noise equivalent count rate (NECR):

NECR =
True2

True+Random+ Scatter
(2.9)

The distance between the detector pair is the LOR along which the annihila-

tion process takes place. The LOR is characterised by the angle and the shortest

distance between the centre of the detector ring and the LOR. Figure 2.8 shows

four coincident detections and their respective angles plotted as a function of

distance from the centre. A graph of all possible LORs at different points in the

image forms a sine wave, and therefore it is called ”sinogram”.
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(a) (b) (c)

Figure 2.6: Illustration of (a) true, (b) scatter and (c) random coincident events.
In true coincidence, the event detected by the detector pair actually took place
along the LOR, but in scatter and random coincidences, the LORs are wrongly
determined.

(a) (b)

Figure 2.7: An example of sinogram formation in 2D PET imaging. (a) shows
an ellipsoidal ROI situated at the centre of the ring (marked X), with four LORs
(A, B, C and D) passing through it; and (b) shows the plots of the LORs with
the angular orientation on y-axis, and the displacement from the centre on x-axis
(Adapted from Fahey [2002]).
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A sinogram is a set of bins corresponding to 1 segment and 1 axial position.

When there is no axial compression, the sinogram corresponds to the LORs in a

detector ring (direct sinogram) or between two detector rings (oblique sinogram).

Therefore, for a scanner having n detector rings, there are n direct sinograms

and n ∗ n − n oblique sinograms. This results in a total of n ∗ n sinograms.

Two rings associated to a sinogram is separated by a distance called the ring

difference, while the segment is the set of sinograms having a common ring

difference. However, axial compression is often used to reduce the number of

sinograms at different ring difference. This is often referred to as the span, which

shows how much axial compression has been used. A schematic representation

of the axial compression is shown in Figure 2.8.

Several sinograms are collected, and these are back-projected into the image

space using image reconstruction algorithms.

2.4.2 Image Reconstruction

After patients are injected with a radiotracer, PET scanners are able to collect

the data of the in vivo radiotracer distribution as described in section 2.4.1.

In order to obtain functional information of the images, these data need to be

reconstructed using tomographic image reconstruction.

Reconstruction is an inverse problem in that it uses the information stored

in form of a sinogram to obtain the radiotracer distribution.

If a forward problem is represented by:

y = Hf (2.10)
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Figure 1: Michelogram with span=7. Warning: due to historical reasons, the
axis labels are wrong. The horizontal axis corresponds to ringB.

6

Figure 2.8: A Michelogram of data with a maximum ring difference of 17 and a
span of 7. rdmin, rdmax and average delta represent the minimum, maximum
and averaged ring difference respectively (From STIR glossary (Labbe et al.
[2012])).

where y is the measured sinogram, H is the projection matrix and f is the image

to be obtained, f is obtained using the inverse method f = H+y, where H+ is

the pseudo-inverse of H. The solution to the inverse problem can be achieved

through image reconstruction algorithms, which is capable of incorporating the
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Poisson nature of the photon measurement, accounting for the noise and other

relevant physical features (Lange and Carson [1984]). There are basically two

image reconstruction methods, namely: analytical and iterative reconstruction

methods.

Analytical reconstruction methods are commonly used in 2D reconstruction

and the most common method is the filtered backprojection (FBP). This works

by estimating the Fourier transforms of the projection data, and multiplying

it with a frequency filter. The resulting inverse transform is then estimated

and back-projected to form an image. The implementation introduces a lot of

noise and star artefacts in the resultant image especially when limited number of

projections are used (Lyra and Ploussi [2011]). Other factors such as scanner ge-

ometry and spatial variance make the use of analytical reconstruction techniques

complicated.

Iterative reconstruction method involves the use of an iterative approach to

reconstruct images. In most cases, it gives better and more accurate estimate

than the analytical approach because it makes use of a detailed and more real-

istic system model (Nuyts et al. [2013]). However, this is done at the expense

of increased complexity and computational time. Maximum likelihood expec-

tation maximisation (MLEM), introduced in 1982 by Shepp and Vardi [1982],

is an iterative reconstruction technique which forms the basis for most statisti-

cal reconstruction methods. It is commonly used in PET image reconstruction

and it helps in the determination of maximum likelihood estimate (MLE) using

numerical methods.

MLEM algorithm is employed to estimate the likelihood of the emission based

on the assumption that measurement follows a Poisson distribution. Given the
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mean value of the emission data as yi and the expectation value as
∑

j Hijfj,

The probability of measuring f given y (p(f, y)) is a difficult inverse problem,

but this can approximated from the probability of measuring y given f (p(y, f))

which is a rather ’easy’ forward problem. These two probabilities are linked by

the Bayes’ theorem:

p(f, y) ∼ p(y, f) p(f)

p(y)
(2.11)

For maximum likelihood, we assume:

p(f, y) ∼ p(y, f) =
∏
i

[
e−(Hij .fj)(Hij.fj)

yi

yi!

]
(2.12)

There is need to choose the most likely image which maximises the probability

of producing the data. This is best done by maximising the log-likelihood of

the distribution. So,we take the logarithm of the density function, P (y, f) =

ln (p(y, f)), also called the objective function:

P (y, f) = ln (p(y, f)) =
∑
i∈N

[
yiln

(∑
j∈Ii

Hijfj

)
−
∑
j∈Ii

Hijfj − ln(yi!)

]
(2.13)

where Ii is the set of voxel contributing to projection i; N is the total number

of projections in the data; Hij is the probability that an event occurring in voxel

j produces a coincidence in the ith pair of detectors, taking into account the

attenuation and normalisation corrections; fj is the intensity of pixel j of the

emission image; and yi represents the emission sinogram data.

MLEM algorithm is usually generated using two steps:

• Expectation step (E step): This step estimates the expectation value of
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P (y, f), (i.e E(P (y, f)|y, f (n)), using a uniform image f (n) for the initial

iteration.

E(P (y, f)|y, f (n)) = E

[∑
i∈N

(
yiln

(∑
j∈Ii

Hijfj

)
−
∑
j∈Ii

Hijfj − ln(yi!)

)
|y, f (n)

]
(2.14)

Due to linearity of expectation, Equation 2.14 can be rewritten as:

E(P (y, f)|y, f (n)) =
∑
i∈N

[
E[yi|y, f (n)]ln

(∑
j∈Ii

Hijfj

)
−
∑
j∈Ii

Hijfj − ln(yi!|y, f (n)]

]
(2.15)

This yields Equation 2.16 by applying the probability theory

E(P (X, f) | Y, f (n)) =
∑
i,j

[
Hijf

(n)
j yi∑

k∈Ii Hikf
(n)
k

ln(Hijfj)− (Hijfj)

]
(2.16)

where X is the number of pairs of photons emitted from voxel j and de-

tected in projection i, and it is related to yi by:

yi =
∑
j∈Ii

Xij (2.17)

• Maximisation step (M step): This step then finds the image which best

maximises the log-likelihood of the previous E step computation. This is

done by obtaining the partial derivatives as shown in equation 2.18:

∂E(P (X, f) | Y, f (n))

∂fj

∣∣∣∣
f=f (n)

=
∑
i∈Jj

[
Hijf

(n)
j yi∑

kHikf
(n)
k

f−1j −Hij

]
= 0 (2.18)

where Jj is the set of projections to which voxel j contributes.
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The resulting formula (equation 2.19) is the MLEM algorithm:

f
(n+1)
j =

f
(n)
j∑

i∈Jj Hij

∑
i∈Jj

Hij
yi∑

k∈Ii Hikf
(n)
k

(2.19)

The resulting image estimate f
(n+1)
j will be put back into the E step and the

iteration will continue until convergence is attained.

However, there are two major limitations of this algorithm: (1) it is computa-

tionally demanding, and (2) the rate of convergence is slow. This has led to the

introduction of the ordered subsets expectation maximisation (OSEM) algorithm

which gives a huge improvement over MLEM in terms of less computational time

and faster convergence.

OSEM involves the iterative use of ordered subset scheme for convergence ac-

celeration and data update (Hudson and Larkin [1994]). In OSEM, the projection

data is organised into ordered subsets and the MLEM algorithm is then applied

to each subset in turn. The image obtained after each subset now becomes the

starting point for the next subset. Each step is referred to as sub-iteration, and

so every full iteration passes through all the subsets.

The OSEM algorithm is derived from the MLEM algorithm by substituting

the sum over i with the sum over i ∈ Sb in Equation 2.19. Sb is the subset of the

detector pairs, and b = 1, ..., B, where B is the subset number:

fn+1
j =

f
(n)
j∑

i∈Sb
Hij

∑
i∈Sb

Hij
yi∑

kHikf
(n)
k

(2.20)

The faster convergence in OSEM comes at the expense of increased image

noise, which becomes magnified after each iterations. Therefore, in clinical prac-
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tice, the noise magnification is often addressed by stopping the reconstruction at

about 2-3 iteration (Ahn et al. [2015]) or by applying a Gaussian post-filter to

the reconstructed images (Hamill and Bruckbauer [2002]).

2.4.3 Image Quantification

PET involves visual inspection of images for traditional evaluation. However,

its potential lies majorly in its ability to provide quantitative evaluation. This

is often measured by a semi-quantitative parameter referred to as SUV (Naqa

et al. [2007]) and expressed as:

SUV =
Activity Concentration in a P ixel (MBq/mL)

Injected Radioactivity (MBq)/Body Weight (g)
(2.21)

Using this equation, the unit of SUV would be g/mL. However, SUV is often

measured as a dimensionless unit with the assumption that 1 mL of tissue weighs

1 g (Kinahan and Fletcher [2010]).

SUV provides relatively objective tumour characterisation, reliable differen-

tial diagnosis and earlier treatment response evaluation and monitoring (Boel-

laard [2009], Adams et al. [2010]). SUVs can be reported as the maximum value

of all voxels, SUVmax, or the mean value over all voxels, SUVmean, within the

defined region of interest (ROI). A decrease in SUV can often be used as an in-

dicator for therapy response, however, there is currently no established protocols

with regards to this (Shankar et al. [2006], Tani et al. [2016]). This is because

SUV depends on other parameters beyond the user’s control. These parameters

could be biological factors such as body size and blood glucose level (Hoekstra

et al. [2000], Weber [2006], Westerterp et al. [2007]), or inter-observer issues such
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as defining regions of interest and reconstruction methods (Hoekstra et al. [2002],

Westerterp et al. [2007], Adams et al. [2010]).

2.4.4 Factors Affecting Quantification of PET Images

PET is being regarded as a quantitative imaging tool due to its ability to map

the radiotracer concentration in the human body with accuracy and precision.

However, there are some factors which greatly affect the accuracy and precision

of PET measurements. This informs the need for proper correction of acquired

PET data to enhance better quantification. The mode of correction is dependent

on the scanner, but a general sequence of correction is presented in this thesis.

2.4.4.1 Attenuation

Attenuation is the reduction in photon intensity as it transverses through matter.

The bigger or more dense the matter is, the more the photons are attenuated.

Attenuation is expressed as:

I = Ioe
−µT (2.22)

where µ is the linear attenuation coefficient and T is the thickness. µ at 511 keV

is approximately 0.028 cm−1 for lung, 0.096 cm−1 for soft tissue, and 0.14 cm−1

for bone.

If image reconstruction is carried out without correcting for attenuation, less

dense organs like the lungs appear to have higher uptake than denser areas,

resulting in artefacts. This has negative impact on tumour visualisation and

quantification (Bromiley et al. [2001]).

Attenuation correction (AC) is done in a hybrid PET/CT scanner using the

38



Positron Emission Tomography (PET)

CT image to correct for attenuation of PET emission data. This technique is

more advantageous than the earlier method of acquiring PET transmission scan

using 68Ga or 68Ge sources in that the acquired image is less noisy, insensitive to

emission contamination and can be acquired within shorter time (Kinahan et al.

[2003]). However, since the CT data are acquired as a weighted average of photon

energies (from 30-140 keV), they need to be converted into the corresponding

estimate of PET photon energies (511 keV) (Kinahan et al. [2003], Ay et al.

[2011]). The converted CT image is referred to as CT attenuation correction

(CTAC) image which now has a resolution similar to the PET image. CTAC

can be generated using three approaches: dual-kVp CT scans, segmentation, and

scaling. Of all three, the scaling method is the simplest and widely used approach

as it closely approximates the electron density as a function of CT number in

most tissues (Schneider et al. [2000], Abella et al. [2012]).

In the software for tomographic image reconstruction (STIR) library, attenua-

tion is estimated by forward projecting the attenuation coefficient image obtained

from the scanner.

2.4.4.2 Scatter

Positron annihilation does not always occur along a straight LOR. There is a

probability that one or more photons might have been scattered through Comp-

ton scattering, thereby losing part of its energy (as shown in Figure 2.6b). In

most PET systems, energy window is typically set between 450 and 650 keV. So,

it is not easy to discriminate scattered coincidences from true coincidences and

this results in poor resolution and loss of contrast.

Typical scatter correction employed in three-dimensional (3D) PET imaging
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works on the principle of single scatter simulation (SSS) algorithm (Watson et al.

[1996]) as estimated in STIR (Tsoumpas et al. [2004]). This estimates scatter

contributions with emission and transmission images. Scatter points are ran-

domly selected in the attenuation image using a threshold. For each point, the

probability for a photon to be scattered and detected are evaluated using Klein-

Nishina formula (Klein and Nishina [1994]). The scatter probabilities are then

summed for each point in a transmission image and detector pair to estimate

the distribution, and then scaled using a tail-fit method, a fit to match the tails

of the measured data at each projection. The tail-fitting is done to account for

multiple scatter and events outside the field of view (FoV) (Thielemans et al.

[2007]). The scattered event estimate is subtracted from the random-corrected

prompts (Polycarpou et al. [2011]) and the new estimate is used in the next

iteration.

2.4.4.3 Random

Random coincidences arise from the infinite width of the time window used

for true coincidence detection. This gives allowance for two uncorrelated single

events to be mistakenly detected as true coincidence, as shown in Figure 2.6c.

Random coincidences are significant in PET imaging, specifically for very high

activity and for 3D acquisition. The fractions of randoms in regions of high

attenuation are often large, and these could lead to great errors if uncorrected

(Bailey et al. [2005]).

Randoms can be reduced by making the coincidence window smaller. How-

ever, caution must be taken not to make this too small, else, true coincidences

may be lost due to different arrival time. This implies that coincidence window
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selection is a trade-off between random minimisation and loss of sensitivity. Con-

sequently, the coincidence window is often set to about 3-4 times the FWHM

timing resolution.

Random coincidences are generally corrected by tail fitting (for distribution in

sinogram or projection space) (Karp et al. [1990]); estimation from singles rates

as employed for GE Signa PET/MR scanner (Michel et al. [1998], Stearns and

Lonn [2011], Grant et al. [2016]); or from delayed coincidence channel estimation

as commonly used in Siemens mMR scanners (Delso et al. [2011]).

2.4.4.4 Normalisation

There is often non-uniformity in PET acquired data resulting from instrumenta-

tion errors, variation in detector’s efficiency, or geometry effect. Knowledge of the

extent of this variation is important in reconstruction so as to remove artefacts

in PET images, and the method for correcting this is called normalisation.

Normalisation is often done by exposing the whole detector to a uniform

radiation while estimating the number of counts recorded by each detector pair.

Ideally, all detector pairs should record the same counts but this is not so in

practice due to efficiency variation. So a normalisation factor, Normi,j, is needed

for each detector pair, and this is given as:

Normi,j =
Ni,j

< N >
(2.23)

< N > is the average value of Ni,j for all detector pairs. The corrected count

CNormi,j
is then obtained for the recorded counts in each detector pair Ci,j using:
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CNormi,j
=

Ci,j
Normi,j

(2.24)

Normalisation data are often stored in the PET raw data, and they can be

extracted using some software utilities like STIR. The different normalisation

components such as crystal efficiency and geometry factors, as well as time win-

dow misalignment between blocks are estimated using the maximum likelihood

approach (Hogg et al. [2001]).

2.4.4.5 Partial Volume Effect

Partial volume effect (PVE) is primarily caused by the poor spatial resolution

of PET images, as well as the discrete image sampling (Aston et al. [2002]).

However, motion (patient, respiratory and cardiac), and errors in activity distri-

bution (due to tracer uptake and washout) can introduce additional PVE (Frey

et al. [2012]).

PVE has been linked to a significant false-positive and false-negative results

in lesion quantification, and in some cases, lesions could be totally missed. PVE

is more pronounced in smaller objects whose spatial dimension is less than 2 to 3

times the FWHM resolution of the scanner (Ptacek et al. [2014]). Larger objects

might also experience intensity reduction around the edges, resulting in blurring,

but the activity at the center will still be preserved.

This effect is also known as spill in effect because there is a cross-contamination

of activity from hot regions to cold regions, leading to underestimation and over-

estimation in image quantification (Rousset et al. [2007]). Spill in effect from

hot region such as the bladder has been identified in many studies as spill in

effect (Bai et al. [2013], Silva-Rodriguez et al. [2016]), shine-through effect (Liu
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[2012]), halo-artifact (Heuber et al. [2017]), or broadly as partial volume effect

(Soret et al. [2007]). Many believe this effect arises from no or inaccurate attenu-

ation and scatter correction (Heuber et al. [2017], Afshar-Oromieh et al. [2014]),

while others believe it depends on choice of radiotracers, imaging modality and

clinical practice (Bouchelouche and Oehr [2008], Chondrogiannis et al. [2014]).

However, there is currently no established evidence to these allusions (Heuber

et al. [2017]).

2.5 Multi-modal Imaging

In recent years, attention is being shifted to multi-modal imaging techniques

which could combine anatomical information from CT and MRI with the func-

tional information obtained from PET (or SPECT). PET scanners integrated

with CT (PET/CT) or MRI (PET/MR) are being developed and are finding

their ways as effective and efficient imaging modalities for clinical and commer-

cial interest (Beyer et al. [2002], Ell and von Schulthess [2002]). Combining

anatomical with functional information is aimed at improving the throughput

for clinical (and preclinical) studies, and also providing additional information

that would be rather difficult to obtain using different scanners (Cherry [2009]).

2.5.1 PET/CT Imaging

PET/CT is the most developed multi-modality technique in medical imaging.

Its high performance and spatial resolution is largely due to the combination

of precise molecular image fusion from PET with the high-quality anatomical

images from CT. These combined anato-molecular images can be generated with
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the help of high performance computer software. PET/CT is primarily used

in oncology (Beyer et al. [2002]), but it also has applications in clinical and

research cardiology (Carli and Dorbala [2007]), as well as identification of brown

fat which has implication for diabetes-related metabolic disorders (Cohade et al.

[2003]). Another importance of PET/CT imaging is that the CT image can be

used to correct for attenuation and scatter, while reducing the total imaging time

(Kinahan et al. [2003]) as previously discussed.

2.5.2 PET/MR Imaging

Following the implementation of combined PET/CT scanners in clinical practice,

efforts are being made towards the development of PET/MR scanners (Townsend

[2008]), although this is a bit slower due to the inherent technical challenges

from combining both modalities (Vaquero and Kinahan [2015]). This is because

conventional PET systems use photomultiplier tubes (PMTs) which are highly

sensitive to magnetic fields. One possible approach to overcome this issue is the

use of active PMTs shield to spatially separate the PET and the MR systems.

This was implemented in the first whole-body PET/MR, the Philips Ingenuity

TF PET/MR system (Zaidi et al. [2011]). Alternative approach is the use of

solid state photo-detectors like avalanche photodiodes (APDs) and silicon pho-

tomultipliers (SiPMs). This is the approach used for the Siemens Biograph mMR

(Delso et al. [2011]) and the GE Signa PET/MR (Grant et al. [2016]).

The potential value of combined PET/MR imaging lies in its better soft

tissue contrast produced by MR compared with CT. This would allow a more

accurate localisation of the high uptake PET region, while avoiding the additional

CT radiation dose (Disselhorst et al. [2014], Musafargani et al. [2018]). Also,
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PET/MR imaging is capable of achieving truly simultaneous imaging, thereby

reducing the effect of motion-induced blurring. At the moment, emphasis is being

placed on comparing the diagnostic value of PET/MR imaging with PET/CT,

and recent studies have demonstrated that this is not significantly different (Al-

Nabhani et al. [2014]).

2.5.3 Challenges in Multi-modal Imaging

The advantage of multi-modal imaging system over stand-alone systems comes

with a trade-off between improved imaging performance and cost. It also comes

with increased complexity which requires expertise across both, or all, of the com-

bined modalities. However, the afore-mentioned challenges are mild compared

to the more severe ones highlighted below:

2.5.3.1 Image Registration

For quantitative accuracy of multi-modality imaging, PET functional images

and anatomical images from CT or MR need to be accurately aligned, and this

is referred to as image registration. Due to respiratory motion, there is often

a misalignment between PET and CT images especially at the level of the di-

aphragm. This affects the assignment of attenuation coefficients to structures

around the diaphragm, leading to misalignment artefacts. Although this does

not often cause major diagnostic problems (Osman et al. [2003]) but there are

situations in which accurate registration of PET and CT images is necessary,

like in the treatment planning of basal lung cancer (Hicks et al. [2007]). In such

cases, there may be need for respiratory gating of PET and CT images, which is

complex and time consuming (Nehmeh et al. [2004]). Various software are being
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developed for accurate registration of different body tissues and organs.

2.5.3.2 Motion Correction

Although in PET/CT imaging, the PET and CT images are acquired nearly

simultaneously, there is a short time delay between the first acquired CT image

and the PET image. There is therefore a possibility of motion between CT and

PET acquisitions, which could potentially lead to some errors in the diagnosis

or staging (Vaquero and Kinahan [2015]). For PET/CT imaging, the most sig-

nificant form of motion is the respiratory motion which could significantly affect

the imaging of the lung and abdomen. This type of motion causes blurring,

hence leading to shape distortion and loss of signal (Liu et al. [2009]). It could

also lead to a mismatch between PET and CT, leading to errors in AC. Several

approaches are being used to compensate for motion effect, with the most direct

approach being the use of respiratory gated CT and PET images (Kinahan et al.

[2006], Nehmeh and Erdi [2008]).

The respiratory motion effect is not so pronounced in PET/MR imaging. In

fact, simultaneous PET/MR imaging provides accurate respiratory-gating sig-

nals, which can be used for motion correction (Chun et al. [2012]).

2.5.3.3 Attenuation Correction

A major challenge in PET/MR imaging is attenuation correction (AC). In PET/CT

imaging, the attenuation correction factors (ACF)s can be derived from the CT

image because photon scattering is affected by the same processes in PET and

CT. However for PET/MR imaging, image values are representative of weighted

average of the hydrogen proton density, as well as T1 and T2 relaxation times
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which are not related to photon attenuation. These values are further influenced

by the environment, thereby causing a mismatch between PET and MR (Liang

and Lauterbur [1999]). In essence, no simple scaling method can be sufficiently

used to convert the MR image to CT-equivalent attenuation map. Several ap-

proaches are being used for AC but the most common approach is the use of

image segmentation. Tissue classes are segmented from the MR image into air,

lungs, fat and soft tissues; and a uniform attenuation coefficient is then assigned

to each class. Bone are not classified in this approach because MR does not show

signal in the bone due to its short relaxation time. This can lead to a significant

error in estimating PET uptake in bony structures such as the spine. However,

the segmentation approach is currently the most robust method for lung imag-

ing (Martinez-Moller et al. [2009]). Other approaches are also being used for AC

which include population-based methods where several patient data are used to

create an atlas (Hofmann et al. [2011]) or a training sample for machine learning

(Liu et al. [2017]); and the data-driven methods which use information from PET

data to create an attenuation map (Mehranian and Zaidi [2015]).

Although AC is not a challenge in PET/CT imaging, if there are errors or

artefacts in the CT image maybe due to the use of contrast medium or the

presence of metallic implants, these artefacts could potentially be transferred to

the PET image through the AC process, thereby affecting accurate quantification

(Boas and Fleischmann [2012], Hsieh [2015]).

2.5.3.4 PET Calibration

In PET/CT, PET calibration and quality control are often carried out using

water-filled phantoms. But this is challenging in PET/MR imaging because the
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water phantoms show artifacts and inhomogeneities when imaged at the 3T field

strength of current PET/MR systems (Quick [2014]). Oil would have been a

better alternative, but this is challenging because FDG does not dissolve well in

oils (Ziegler et al. [2013]). Development is however underway for phantom fluids

which could effectively be used for calibration and quantification procedures in

PET/MR imaging (Vaquero and Kinahan [2015]). Also, with the emerging field

of 3D printing technology, there is a potential indication that a single 3D printed

phantom can be used for imaging or dosimetry measurements in different imaging

acquisitions and modalities (Filippou and Tsoumpas [2018]).

2.6 Partial Volume Correction Techniques

Partial volume correction (PVC) is essential in PET imaging for enhanced quan-

titative accuracy and better lesion detection (Hofheinz et al. [2012], Thomas et al.

[2016], Cysouw et al. [2017], Munk et al. [2017]). Various techniques are being

employed for PVE correction and these can be implemented at voxel level (e.g.

point spread function (PSF)-based reconstruction, multi-resolution and partition

methods) or at ROI level (e.g. recovery coefficient correction, geometric transfer

matrix (GTM) and deconvolution method) (Geworski et al. [2000], Frouin et al.

[2002], Cal-Gonzalez et al. [2018]). They can be classified broadly into two cate-

gories, namely: (a) post-reconstruction methods (e.g. recovery coefficient correc-

tion, GTM), local projection (LP) technique and (b) within-reconstruction meth-

ods (e.g. PSF-based reconstruction, BC technique and Bayesian approaches)

(Rousset et al. [2007], Soret et al. [2007], Moore et al. [2012]). Some correction

techniques require a priori information about the lesion shape and size, hence
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increasing the possibility of erroneous estimation when this information is not

precisely known. They might also be computationally demanding (Cal-Gonzalez

et al. [2018]). Given the added advantage of multi-modal imaging as previously

discussed, some PVC techniques can be further classified as data-driven (when

they rely only on PET data) or anatomical-based (when additional information

is provided by the anatomical components).

A detailed description of the correction approaches used in this thesis is pre-

sented below:

2.6.1 PSF Reconstruction

PVC is mostly implemented using a homogeneous, Gaussian-shaped PSF of the

scanner which is specified by its FWHM in every direction. Implementation of

PSF is referred to as resolution recovery technique and it is specific for each

scanner.

PVC can be done by incorporating the system PSF into the OSEM recon-

struction in both forward and backward projections (Alessio et al. [2010], Rapis-

arda et al. [2010], Rogasch et al. [2014]) as illustrated in Equation (2.25).

Hij =
∑
k

HkjPSFik (2.25)

where Hkj represents the system matrix, and Hij is the system matrix con-

volved with the system PSF in both forward and back projections.

The PSF can either be modelled as a spatially-variant or spatially-invariant

model. With spatially-invariant, it is assumed that the PSF is the same every-

where in the imaging space, while for spatially-variant, the PSF changes depend-
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ing on the object location in the FoV.

Spatially-variant PSF model is the most accurate and mostly implemented in

medical imaging. This needs a careful modelling of the system matrix and an ac-

curate description of the PSF model which is not always straightforward. Monte

carlo simulations are often accurate but they are computationally demanding.

So alternatively, an empirical measurement of the PSF can be done. Although

this is a lot easier, but it becomes cumbersome to acquire a point source which

can cover the entire FoV of the PET scanner (González et al. [2011]). Also, in

order to obtain a significant activity recovery of the PET image, the iteration

needs to run fully until convergence. However, this increases the image noise,

and also introduce Gibbs (edge) artifacts to the PSF-based reconstructed images

(Thielemans et al. [2010]).

Due to the complexities and computational demands associated with the use

of a spatially-variant model, a spatially-invariant model of the PSF was used

in this thesis. Although this choice might limit the performance of the PSF

algorithm in correcting for the spill in effect, but previous works have reported

similar behaviour between the two models in terms of resolution, contrast and

noise metrics (Teo et al. [2007], Alessio et al. [2010]).

2.6.2 Other Correction Techniques

Apart from PSF reconstruction, other PVC techniques are also used in the liter-

ature, but these are commonly applied to brain imaging. The first method was

the use of phantoms to generate correction factor (also called recovery coefficient

(RC)). This was expressed as the ratio of the reconstructed count density and

the true count density in small regions. RCs are normally 1 for larger objects,
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these values are then applied to small structures to correct for PVE. However,

this approach is very tedious. Moreso, the sizes of the in vivo structures are not

precisely known, so this technique might not be accurate for these structures.

A pixel-by-pixel correction method was then proposed by (Videen et al.

[1988]) using anatomical images from high resolution CT to segment the brain.

Convolution was done on the segmented images using a Gaussian PSF of the

scanner to create corrected tissue image. The original PET image is then di-

vided by the corrected tissue image on a pixel-by-pixel basis to yield a corrected

PET image.

This technique was extended to three-dimension (3D) by (Meltzer et al.

[1990]) using standard MRI T2 weighted pulse sequences which provide greater

accuracy. However, these techniques could only correct for spill out counts, and

not spill in assuming no background activity. So the method was further devel-

oped by (Muller-Gartner et al. [1992]) to account for spill in effects.

Despite the efficiency of this above method, it cannot be directly applied

in certain circumstances where parameters vary during acquisition, e.g bladder

imaging where bladder volume and activity vary during acquisition. So, segment-

ing from CT will result in mismatch between PET and CT images since they are

not acquired simultaneously. This therefore implies that PET segmentation will

be particularly useful for bladder correction (Heiba et al. [2009], Silva-Rodriguez

et al. [2016]). Also, instead of just dividing the original image with the cor-

rected tissue image, it would be better to incorporate the correction into the

reconstruction algorithm.

Based on these reasons, a background correction technique was proposed

by (Silva-Rodriguez et al. [2016]) using the concept of PET segmentation and
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reconstruction-based correction method (Tsoumpas and Thielemans [2009]).

2.6.3 Segmentation and Reconstruction-based Background

Correction (BC) Technique

Correction methods have been proposed and incorporated into MLEM recon-

struction algorithm since it does not take random and scatter events into ac-

count. So in order to correct the final image, the algorithm can be extended by

adding an additive term which will account for random and scatter (Lange and

Carson [1984]) as shown in equation 2.26:

yi =
∑
j∈Ii

Xij + Ai (2.26)

Ai has a poisson distribution with an expected value ai. This additive term

could then be included in the E step to give the result in equation 2.27:

fn+1
j =

fnj∑
i∈Sb

Hij

∑
i∈Sb

Hij
yi∑

kHikfnk + Ai
(2.27)

Also, one of the common ways of reducing partial volume effect is through

soft segmentation. This approach gives allowance for uncertainties around the

boundaries, thereby retaining more image information as opposed to the standard

method of hard segmentation (Pham et al. [2000]). Segmentation involves the use

of a characteristic function which indicates whether a pixel is inside a particular

set or not.

Given a location j ε I, the characteristic function χk(j) of set Rk can be defined
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as:

χk(j) =

 1 if jεRk

0 otherwise
(2.28)

Similar segmentation and correction techniques were used by Silva-Rodriguez

et al. [2016] to correct for the spill in activity from the hot background region

into the colder one, using bladder as a case study. The first step was to delineate

the hot region using the soft segmentation approach where Rj is 1 in the hot

region and 0 outside. The segmented hot region, B, was now obtained using

equation (2.29):

Sj = Rjf
N
j (2.29)

where fNj is the reconstructed image at iteration N , and Sj is the pixel value

on the segmented mask. This will then be forward projected into the sinogram

space using equation (2.30)

Pi =
∑
j

HijSj (2.30)

Pi is the contribution from the hot region which is now included as a back-

ground term in the reconstruction, as expressed in equation (2.31)

fn+1
j =

fnj∑
i∈Sb

Hij

∑
i∈Sb

Hij
yi∑

kHikfnk + Ai + Pi
(2.31)

A general layout of the background correction is shown in Figure 2.9

The convergence property of the BC technique depends on the size and activ-

ity of the background region. Big and active regions tend to converge faster, but

for smaller regions, a higher number of iteration might be required to ensure an
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Figure 2.9: Flow sequence of the background correction technique

adequate convergence (Akerele et al. [2018]). The BC technique also depends on

the segmentation accuracy of the background region. Inaccurate segmentation

might affect the quantification of proximal lesions to the background region.
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2.6.4 Local Projection (LP) Technique

Another recent approach to compensate for the partial volume and spill in effects

is the LP technique (Moore et al. [2012], Cal-Gonzalez et al. [2018]. Consider a

reconstructed image consisting of a detected lesion with high uptake. Quantifica-

tion in the lesion can be improved by introducing information derived from high-

resolution segmentation, and removing background activity from neighbouring

tissues. This is the basic principle of the LP technique. So, the image is seg-

mented into the target volume of interest (VOI) and a global background outside

the target VOIs. The VOI consists of one or more different tissues, including

the lesion of interest, and the activity concentration in the different tissues is

represented by the average value inside each tissue. It could also be assumed

that voxels belonging to the same tissue have a more similar activity than voxels

belonging to different tissues.

In this thesis, the image to be corrected is basically made up of the target

lesions, an hot region which is responsible for the spill in of activity into the

target lesions, and the global background. Therefore, the image is segmented

into a target VOI (consisting of the lesion and the hot region ROIs), and the

global background outside the target VOI. The measured emission projection

counts, yi, can be modelled as the sum of the projection counts from the 2-tissue

VOI, plus the counts originating from the global background outside the VOI,

as shown in Equation 2.32:

yi =
J∑
j=1

VjCij + gout,i (2.32)

yi are the expected counts per sinogram bin i, Vj is the activity and Cij is the
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system matrix for each segmented tissue in the VOI, while gout,i is the counts

coming from the global background outside the target VOI.

Partial volume correction using the LP technique is performed as a post-

reconstruction step. The system matrix values, Cij, for each segmented tissue

and the global background, gout,i, are first computed. Then, the LP tissue-

activities, Vj, are obtained by maximizing the log-likelihood for the expected

value, yi, as shown in Equation 2.33.

J∑
j′=1

V
(k)
j′

[∑
i

Cij′Cij

y
(k)
i

]
=
∑
i

Cij

(
ni − g(k)out,i

)
y
(k)
i

(2.33)

where ni are the measured count per sinogram bin. This equation is solved

iteratively where the values of yi, Vj and gout,i are updated after each iteration

(k). The resulting tissue activity is then substituted in place of the original

activity in each voxel within the target VOI. The resulting image is forward-

projected and the obtained sinogram is reconstructed with STIR library. The

forward projector used is based on Siddon’s matrix ray tracing algorithm with

10 tangential rays traced for each projection bin. A flow chart of the LP method

is given in Figure 2.10.

2.6.5 Hybrid Kernelized Expectation Maximization (HKEM)

Technique

Since the advent of dual/multi-modal imaging scanners, several anatomically-

driven reconstruction methods have also been proposed with the intent of ex-

ploiting the dual information provided by these scanners. Most of these methods
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Figure 2.10: Flowchart of the LP method.

are based on the Bayesian approach which maximises the posterior density func-

tion instead of the Poisson density function. These methods have been shown to

produce promising results in terms of quantification and image quality. (Vunckx

et al. [2012], Ehrhardt et al. [2016], Yang et al. [2018]).

Recently, an hybrid kernelised expectation maximisation (HKEM) method

was proposed (Deidda et al. [2019a,b,c]), which uses information from both PET

and an anatomical image in order to compensate for partial volume effects. The

advantage of the HKEM method is that it does not require segmentation and

it achieves improved resolution for each individual voxel and also for the edges

of a region (Bland et al. [2017, 2018]). This technique, although it is not a
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dedicated partial volume correction technique, was used so as to explore the edge-

preserving and noise-suppression performance in enhancing resolution recovery

and reducing the spill in effect from the hot background into the colder ROIs

(Belzunce et al. [2018]). The HKEM method re-parameterizes the expectation

maximisation (EM) algorithm in terms of spatial basis functions (kernel matrix,

K) and coefficients (α). Therefore, the image to be reconstructed, fi, can be

expressed as:

fi =
M∑
m=1

αmkmj (2.34)

where kmj is the mjth element of the kernel matrix, and αm is the coefficient

vector to be estimated in the EM step as shown in Equation 2.35:

α(n+1)
m =

α
(n)
m∑

l k
(n)
lm

∑
iHil

∑
l

k
(n)
lm

∑
l

Hil
yi∑

bHb

∑
q k

(n)
qb α

(n)
q + Ai

(2.35)

Since the HKEM method extracts information from both anatomical and

PET images, the kernel matrix can then be expressed as:

k
(n)
im = ka(νm, νi).kp(z

(n)
m , z

(n)
l ) (2.36)

where ka and kp are the kernel components from attenuation and PET images

respectively, calculated using the functions in Equations 2.37 and 2.38:

ka(νm, νi) = exp

(
− ||νm − νi||2

2σ2
a

)
exp

(
− ||xm − xi||2

2σ2
da

)
(2.37)

kp(z
(n)
m , z

(n)
i ) = exp

−
∣∣∣∣∣∣z(n)m − z(n)i

∣∣∣∣∣∣2
2σ2

p

 exp

(
− ||xm − xi||2

2σ2
dp

)
(2.38)
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νm and z
(n)
m are the feature vectors calculated from the attenuation image and the

nth iteration PET image, α, respectively, while σa, σp, σda and σdp are scaling pa-

rameters for the distances in Equations 2.37 and 2.38. The choice of these param-

eters is important as big values for σda, which is related to the MR image, causes

artefacts at the borders between different tissues (Deidda et al. [2019b,c]. Pre-

liminary investigation (Deidda et al. [2019c]) has shown that σdp=0.5 or σp=0.3

is the optimum value for accurate quantification in small lesions. It is better

to use a higher σp for a very noisy data, in order to obtain a smoother image.

However, this will be at the expense of quantification accuracy (Deidda et al.

[2019a,c]).
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Validation of the Background

Correction Method for the

Suppression of Spill in Effects

Near Highly Radioactive Regions

in PET

In the previous chapter, various PVC techniques were discussed. The BC tech-

nique was also discussed as a prospective method to correct for the spill in effects

in regions near high activity regions. This section investigates the spill in effect

and the performance of the BC method in mitigating this effect, using bladder

as a case study of the highly radioactive region.

This chapter consists of work previously published in Akerele et al. [2017,

2018].
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3.1 Introduction

Despite the wide applicability of PET, concerns are being raised on the effective-

ness of some common PET tracers in imaging areas with high radiotracer uptake

(hot regions) such as the brain (Soret et al. [2007]), urinary bladder (Liu [2012],

myocardium (Du et al. [2013]) and spine (Forsythe et al. [2018]). These concerns

stem from the observation that activity from the hot regions may interfere with

PET quantification and visualisation of nearby lesions, tumours and abnormali-

ties due to PVE (Liu [2012], Gaertner et al. [2013], Afshar-Oromieh et al. [2014]).

As a result, nearby lesions have their SUVs overestimated, and in some cases,

lesions can be totally missed (Liu [2012]). Several techniques are being employed

to solve the quantification issues but this has not been sufficiently explored for

the case of spill over activity from hot regions, such as the bladder, to adjacent

lesions.

The urinary bladder is a hollow, muscular and distensible (elastic) organ,

sitting on the pelvic floor, where urine produced by the kidneys is stored. Urine

enters the bladder through the ureters and exits through the urethra. The blad-

der is constantly filling (with a volume between 600ml and 1000ml) (Hole [1981],

Auday [2018]) and a region of very high activity in PET imaging because the

injected radiotracers are excreted through the kidney and the urinary bladder.

Bladder filling varies from patient to patient but generally, bladder fills naturally

at a rate of 1-2 ml/min. Although after diuretic, stable bladder has physiological

filling rates between 10-20 ml/min while fast filling is about 100 ml/min (Getliffe

and Dolman [2007]).

Several researches have been conducted on the application of [18F]-FDG
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PET/CT for the prediction of post-therapeutic tumour response in locally ad-

vanced rectal cancer (Guillem et al. [2004], Cascini et al. [2006], Capirci et al.

[2007], Ben-Haim and Ell [2009]), ovarian cancer (Avril et al. [2005]) and uterine

cancer (Nishiyama et al. [2008]). In these studies, SUV variation was used to

predict therapy response, discriminate responders from non-responders, as well

as predict long-term outcome. Evidence of SUV reproducibility has also been

established for malignant tumours when taken several days apart (Nahmias and

Wahl [2008]).

However, assessment of bladder activity and its effects on surrounding or-

gans is complicated because FDG accumulates in the bladder, and this in turn

interferes with visualisation of pelvic and abdominal abnormalities. This ac-

cumulation however varies from patient to patient, being dependent on patient

hydration, kidney function and blood glucose level. Research has shown that hy-

drated patients have higher FDG excretion than dehydrated ones (Moran et al.

[1999]), and in situation of normal blood glucose level and kidney function, FDG

excretion could potentially vary between 5 - 15 % of the injected dose (Bach-

Gansmo et al. [2012]).

The high activity from the bladder can potentially mask findings in surround-

ing regions such as the prostate, falsify uptake values and subsequently influence

patients’ diagnosis (Heuber et al. [2017]). This can as well impair tumor visibil-

ity and staging around the pelvic region because it interferes with the ability to

distinguish wall activity from luminar activity (Bouchelouche and Oehr [2008]).

A recent work by Silva-Rodriguez et al. [2016] showed an overestimation in lesion

uptake as high as 41.3% and 22.2% for SUVmax and SUVmean respectively due to

spill over activity from the bladder. This quantification issue was also reported
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by Liu [2012] who concluded that SUV values for lesions within 40-50 mm from

the hot source are often overestimated and therefore invalid.

Many attempts towards correcting this issue have been made. For example,

in clinical practice, the spill in effect from the bladder to the surroundings is often

addressed using techniques such as bladder voiding prior to PET examination,

catheterisation, bladder irrigation and retrograde filling, and use of alternative

tracers (Koyama et al. [2003]). However, none of these techniques have been

proven to be effective (Kosuda et al. [1997], Moran et al. [1999], Massaro et al.

[2012], Bach-Gansmo et al. [2012], Lo et al. [2014]). They are also uncomfortable

and invasive for the patients (Lo et al. [2014]), whereas PET is meant to be

a minimally-invasive imaging technique. Due to these challenges, alternative

tracers are sometimes used because of their minimal urinary excretion (Witney

et al. [2012], Beheshti et al. [2013], Rauscher et al. [2016]), but such tracers still

have some limitations with regards to patient sensitivity and specificity (Steiner

et al. [2009]). These issues clearly suggest the need for a more practical correction

technique for the spill in of activity from hot regions to the surroundings due to

its negative implication on lesion quantification, visibility and staging.

A recent novel simulation study (Silva-Rodriguez et al. [2016]) suggested a re-

construction approach to correct for the high physiological radioactive concentra-

tion in order to address these aforementioned issues and improve lesion quantifi-

cation. This method involves segmentation, forward-projection and reconstruction-

based correction. However, the performance of this correction method on a

state-of-the-art scanner, including accurate iterative scatter correction and point-

spread-function (PSF) correction inside the reconstruction remains to be studied.

The previous work used the General Electric (GE) Advance NXi scanner with
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a spatial resolution of 4.8 mm FWHM, whereas the present work used the GE

Signa PET/MR scanner with a spatial resolution of 4.3 mm FWHM. Also, the

previous work corrected for the scattered and random events before the recon-

struction, whereas this current work incorporated all corrections (attenuation,

normalisation, scatter and randoms) in the reconstruction, as in the state-of-the-

art reconstruction algorithms.

Therefore, one of the aims of this investigation is to evaluate the partial

volume effect in lesions close to a high activity region, and also to investigate

how much this is dependent on spill over activity from the adjacent region, lesion-

to-hot region distance, lesion size, spatial resolution, degree of post-filtering, and

scatter effect. The background correction would then be implemented and its

performance evaluated in terms of lesions’ quantification accuracy and contrast,

using both simulated and real clinical PET/MR data.

3.2 Materials and Methods

3.2.1 Datasets and PET/MR System

Two datasets were primarily used in this study: (i) simulated data from digital

XCAT2 phantom (Segars et al. [2010]) and (ii) experimental data from a NEMA

IQ phantom (Ziegler et al. [2015]). Additionally, a patient abdominal scan was

used for further validation. These datasets are shown in Figure 3.1.

The experimental studies were acquired using the GE Signa PET/MR scanner

at Invicro, with 25 cm axial FoV, 60 cm transaxial FoV, 70 cm ring diameter, 25

× 4.0 × 5.3 crystal size in mm, and energy resolution of 10.5% with an energy

window 425 – 650 keV (Grant et al. [2016]). The simulation was performed using
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L1 (19.4 mm)

L2 (29.4 mm)

L3 (14.5 mm)

Bladder

S1 (10 mm)

S2 (13 mm)

S3 (17 mm)

S4 (22 mm)

S5 (28 mm)

S6 (37 mm)

Bottle
B6

B5

B4

B2

B3

B1
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R
2

R
3

R2 R3

(a) (b) (c)

B (74.2 mm)

Figure 3.1: The datasets used for this study: (a) simulation from XCAT2 phan-
tom consisting of the bladder, 3 lesions (L1 - L3) and 1 background lesion (B)
placed at different distances (shown in brackets) from the bladder; (b) NEMA
phantom consisting of a hot bottle at the centre, surrounded by 6 spheres (S1
- S6) with diameters shown in brackets. The blue spheres (B1 - B6) were used
to estimate the background activity for the estimation of CNR; (c) patient data
showing high activity in the spleen and liver.

an analytical model of the same scanner.

3.2.2 Simulations

The pelvic region was simulated using digital XCAT2 phantom with a typical

[18F]-FDG distribution. Hot bladder was simulated with a fixed volume (500 ml)

and various activities (i.e. SUVs 8.5, 19.3, 33.8 and 55.5) allocated as obtained

from the literature (Park et al. [2007], Pelosi et al. [2011]). This is to mimic

the progressive increase in bladder activity due to the radiotracer accumulation

during a typical PET examination. Three lesions labelled L1, L2, L3 each with

diameter 10 mm and fixed activity value (SUV 8) were placed at different loca-

tions around the bladder as shown in Figure 3.1a. An increase in bladder volume

and activity during a typical 90 minutes scan was also simulated using extracted

values from the literature (Lee and Kim [2008], Puri et al. [2017]) at time points

1, 10, 30, 45 and 90 minutes. This was done to investigate the spill in effect

66



Materials and Methods

from the bladder to the surrounding lesions as a function of increasing bladder

volume, bladder activity and lesion distance from the bladder. Additionally, le-

sion diameters ranging from 6 mm to 12 mm with a step size of 2 mm were

simulated for all bladder SUVs to investigate the spill in effect as a function of

lesion size. For each lesion diameter, same sized background lesion (B) was also

added farther from the bladder such that the background lesion is not affected

by the spill in effect from the bladder. This was done to distinguish between

spill in and spill out effects as it affects lesion quantification, especially for small

lesions. The emission and attenuation images were generated for each of these

bladder and lesions combinations.

Fully 3D analytical simulation was done using the STIR package (Thielemans

et al. [2012]), considering all sinograms with ring difference less than or equal to

44, and span 1. To approximate the blurring effect from the scanner, the simu-

lated images were first convolved with a Gaussian filter having FWHM as that of

GE PET/MR PSF (4.2 mm and 5.7 mm FWHM in transverse and axial planes

respectively (Levin et al. [2016])) at the forward projection stage. The forward

projector used is based on Siddon’s ray tracing algorithm (Siddon [1985]), tracing

10 tangential rays for each bin. ACFs were calculated from the attenuation image

and this was used to attenuate the emission sinogram. Constant normalisation

and randoms sinograms were also generated, with the random counts making up

to 20% of the total projection data. Scatter was estimated analytically using the

SSS approach (Watson et al. [1996]) as incorporated into STIR (Tsoumpas et al.

[2004]). A scaling factor was applied to make the scatter count 35% of the total

simulated events. The random and scatter sinograms were used to generate the

additive term, while the attenuation and normalisation sinograms were used as
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multiplicative terms. time of flight (TOF) was not simulated for this study.

Poisson noise was added to the sinograms to simulate 65×106 counts (which

corresponds to approximately 5 minutes of PET scanning), and 20 noise realisa-

tions were performed for statistical analysis. Spherical ROIs equal in diameter

to the size of the lesions were placed in the position of each lesion in order to

extract the uptake values (SUVmean and SUVmax) for each noise realisation. The

mean (M̄), standard error of the mean (SEM), and bias (B) from all the 20 re-

alisations (as defined in Equations 3.1) were used as figures of merit to show the

differences in SUV values for both uncorrected and corrected images.

M̄ =
1

N

N∑
i=1

fi (3.1a)

SEM =
SD√
N

(3.1b)

where SD =

√√√√ 1

N − 1

N∑
i=1

(fi − M̄)2 (3.1c)

B(%) =
M̄ − T
T

× 100 (3.1d)

where fi is the SUV from a single noise realisation, N is the total number of

noise realisations (=20) and T is the SUV of the true simulated image.

The % change in lesion (l) SUV (∆SUVl) as the bladder SUV increases from

SUV 8.5 to SUV 55.5 was also estimated using:

∆SUVl(%) =
SUVl (55.5)− SUVl (8.5)

SUVl (8.5)
× 100 (3.2)

where SUVl (8.5) and SUVl (55.5) represent the lesion SUV at bladder SUVs 8.5

and 55.5, respectively.
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To further investigate the spill in effect from the bladder to the surroundings,

shells of different voxels (from 2 to 10 voxels with a step size of 2 voxels) was

created around the bladder by performing a morphological operation on the

bladder mask to obtain the edge mask:

edge mask = dilation(bladder mask, n)− bladder mask (3.3)

where dilation(bladder mask, n) means dilating the bladder mask by n voxels

using a sphere structuring element in MATLAB.

The resulting edge mask was then used to extract the uptake values around

the bladder in both true simulated and reconstructed mean images as illustrated

in Figure 3.2a.

Mask
Dilated 
Mask

Mask 
Edge

(a) (b)

Figure 3.2: The schematic 2D representation of the technique used to extract
the voxel values around the edges of the simulated bladder. (a) represents the
procedure for extracting the voxel values, while (b) shows a 2D representation
of all the dilated 3D regions around the bladder (i.e. the white region) from 2
voxels to 10 voxels with a step-size of 2 voxels.
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3.2.3 Validation by Real Data

3.2.3.1 Experimental phantom

A phantom experiment was performed with the GE Signa PET/MR scanner at

Invicro Ltd using the NEMA image quality (IQ) phantom without the wall (Fig-

ure 3.1b) (Ziegler et al. [2015]). This phantom consisted of 6 fillable spherical

spheres S1 to S6 (with diameters 10, 13, 17, 22, 28 and 37 mm respectively, and

filled with 5.38 MBq of [18F]-FDG). A high activity 500 mL bottle (filled with

77.9 MBq of [18F]-FDG), was placed at the centre of the phantom. The exper-

imental set-up involved a simultaneous PET/MR acquisition with a 5 minutes

static PET acquisition and 2-point Dixon MR 3D acquisition. List of events and

singles rates for crystals were extracted from the listmode file from the scanner

and these were converted to emission and random sinograms using STIR utility.

The normalisation file was also extracted from the scanner and was converted

to the normalisation sinogram using STIR. ACFs were obtained from the in-

phase magnetic resonance attenuation correction (MRAC) image, and scatter

was estimated using STIR. The CNR was used to evaluate the signal quality

and noise properties of each reconstruction algorithm. This was done by esti-

mating the mean activity and standard deviation in each sphere, as well as in

pre-selected background spheres. The background spheres were represented as 6

spherical ROIs placed around the hot bottle which were exactly the same size as

the spheres and located at approximately the same distance from the hot bottle

(as shown in Figure 3.1b). So, the CNR was estimated for each sphere (i = 1, 2,
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. . . , 6) using:

CNRsphere(i) =
Activitysphere(i) − Activitybackground(i)√

SD2
sphere(i) − SD2

background (i)

(3.4)

Also, the spill in activity from the bottle to the surroundings was estimated

using the same morphological operation as in the simulation studies (shown in

Equation 3.3).

3.2.3.2 Patient data

For further validation, patient data (Figure 3.1c) acquired with the General

Electric (GE) PET/MR scanner at Invicro was used. This was acquired during

a lung fibrosis examination using an [18F]-based radiotracer. This data did not

exhibit high activity in the bladder, but in the spleen and the liver. Thus, for

demonstration purposes, the spleen was chosen as the background hot region.

The patient data was reconstructed using the same settings as for the phantom

experiment. The morphological dilation operation (in Equation 3.3) was also

carried out on all reconstructed images so as to estimate the spill in effect around

the hot region (spleen).

3.2.4 Data Reconstruction and Spill in Correction

Image reconstruction was done using the 3D iterative OSEM algorithm in STIR

library. Attenuation, normalisation, random and scatter corrections were per-

formed by including the multiplicative and additive terms in the reconstruction

algorithm. For the simulation, 28 subsets and 30 full iterations were used to

ensure reasonable convergence of the recently proposed correction algorithm.
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Meanwhile for the real data, fully 3D reconstruction with mixed span factors ac-

cording to GE’s configuration (span 1 for |RD| > 1; and span 3 for RD = -1,0,1)

was done using OSEM with 28 subsets and 20 full iterations, incorporating all

corrections within the reconstruction. The reconstructed images have 256 × 256

× 89 voxels with size 2.34 × 2.34 × 2.78 mm3, and they were post-filtered with

a 4 mm isotropic 3D Gaussian filter. spill in correction was done using the two

techniques as outlined below:

(a) PSF Reconstruction

This involves incorporating a spatially-invariant PSF into the OSEM reconstruc-

tion in both forward and backward projections as illustrated in Equation (3.5).

This PSF was specified as a 3D Gaussian filter with 4.2 mm and 5.7 mm FWHM

in transverse and axial planes respectively, according to experimental values ob-

tained for the GE PET/MR scanner (Levin et al. [2016]).

Hij =
∑
k

HkjPSFik (3.5)

where Hkj represents the system matrix, and Hij is the system matrix con-

volved with the system PSF in both forward and back projections (Rapisarda

et al. [2010], Rogasch et al. [2014]). This reconstruction method is referred to as

OSEM+PSF in this study.

(b) Background Correction (BC)

The background correction was implemented as discussed in Chapter 2. For

the simulation, the bladder (hot region) was automatically segmented from the

XCAT2 phantom to obtain the bladder mask Sj. This was then multiplied by

the OSEM+PSF reconstructed image f
(N)
j (taken at five iterations) to obtain the
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bladder contribution in the image (i.e. Bj = Sjf
(N)
j , which was then forward-

projected using the same projection matrix for the simulation (Pi =
∑

j HijBj)

and included in the reconstruction as a background term along with the additive

term (as shown in Equation 3.6). For the real data, the highly radioactive bottle

that accompanied the NEMA phantom, and the hot spleen of the patient were

segmented from the Dixon in-phase MRAC image before forward-projecting it

to obtain the background contribution.

f
(n+1)
j =

f
(n)
j∑
iHij

∑
i

Hij
yi∑

kHikf
(n)
k + Ai + Pi

(3.6)

where f
(n)
j is the uncorrected image, yi is the emission sinogram, Hij is the system

matrix with the PSF, Ai is the additive term, Pi is the bladder background term,

and f
(n+1)
j is the final corrected image without the bladder contribution. The flow

sequence is shown in Figure 3.3. Since this technique also includes OSEM+PSF,

it will be referred to as OSEM+PSF+BC in this study.

It is worth noting that the BC reconstruction technique is the same as the

standard OSEM reconstruction, where a uniform image is used as the initial

estimate. The only difference is that in the BC technique, the additive sino-

gram term now consists of an extra component to account for the background

contribution in addition to randoms and scatter.
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Figure 3.3: Schematic description of the background correction technique, as
demonstrated for the XCAT2 phantom simulation. In this study, the bladder
was automatically segmented from the XCAT2 phantom, but in principle, the
hot region can be segmented from either the CT or MR image.

3.3 Results

3.3.1 Simulations

3.3.1.1 Convergence property of the reconstruction algorithms

For the convergence plot, the mean SUVmean and SUVmax of the simulated lesions

(L1, L2, L3) for bladder (SUV: 8.5 and 55.5) were estimated using the SUVs of

the 20 noise realisations with 4 mm isotropic 3D Gaussian filter. The result is
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shown in Figure 3.4.

Each reconstruction algorithm, as well as each simulated lesion, seems to have

slightly different convergence rates. Therefore, for SUV analysis in this study, the

iteration number was increased to 30 so as to ensure a reasonable convergence

of all algorithms and lesions. OSEM+PSF reconstruction has a higher SUV

comparative with OSEM reconstruction both for SUVmean and SUVmax. This

has been a commonly reported behaviour associated with the incorporation of

PSF into the reconstruction Rapisarda et al. [2010], Rogasch et al. [2014]. For

L3 at bladder SUV 55.5, OSEM and OSEM+PSF have higher SUVs at early

iterations, but this reduces as the number of iteration increases. This might

signify that for proximal lesions to hot regions, the spill in effect reduces with

iteration. However, OSEM+PSF+BC has similar behaviour at both bladder

SUV 8.5 and SUV 55.5.

3.3.1.2 Investigating the spill in effect as a function of bladder activ-

ity, lesion size and postfilter using OSEM reconstruction

Figure 3.5 shows the mean lesion SUVmax and SUVmean for OSEM reconstruction

at 30 full iterations. As the bladder SUV increases, the lesion SUVmax also

increases for all lesions, with the highest SUV in L3. However, SUVmean increases

only for L3. The % bias and the % change in lesion SUV as the bladder SUV

increases from SUV 8.5 to SUV 55.5 (using Equation 3.2) are presented in Table

3.1.

For lesion L3, the % bias in SUV increases as the bladder SUV increases,

and this is more pronounced for SUVmax than SUVmean. However, for lesions

L1 and L2, only SUVmax has an increased % bias as the bladder SUV increases,
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Figure 3.4: Convergence plots of all the reconstruction algorithms using lesion
SUVmax and SUVmean. This is estimated for lesion diameter 10 mm at (a)
bladder SUV 8.5 and (b) bladder 55.5, and it is obtained from the mean of all
20 noise realisations with 4 mm Gaussian post-filter. First, second and third
columns represent the convergence plots for lesions L1, L2 and L3 respectively
(each with true SUV: 8). 76



Results

 
 

 

 

 
 

7

7.5

8

8.5

9

9.5

10

8.5 19.3 33.8 55.5

Le
sio

n 
SU

V
m

ax

Bladder SUV

L1 L2 L3

5.5

5.7

5.9

6.1

6.3

6.5

8.5 19.3 33.8 55.5

Le
sio

n 
SU

V
m

ea
n

Bladder SUV

Figure 3.5: The lesion uptake as the bladder SUV increases for images recon-
structed with OSEM. These are the mean SUVs from all the 20 noise realisations
and for lesion diameter 10 mm at 30 full iterations. The error bars are the stan-
dard error of the mean (SEM) while the dashed horizontal line denotes the true
simulated lesion SUV.

Table 3.1: The bias and relative change in lesion SUVmax and SUVmean for all
the simulated bladder SUVs and for lesion diameter 10 mm. These are estimated
from the mean SUVs from all the noise realisations. (The % bias values are given
in parentheses).
Bladder SUV Simulated Lesions

L1 L2 L3
SUVmax SUVmean SUVmax SUVmean SUVmax SUVmean

SUV 8.5 8.08 (1.00) 5.90 (-26.28) 7.98 (-0.21) 5.82 (-27.27) 7.30 (-8.72) 5.70 (-28.72)
SUV 19.3 8.13 (1.61) 5.89 (-26.39) 8.05 (0.57) 5.81 (-27.39) 7.68 (-3.95) 5.80 (-27.47)
SUV 33.8 8.23 (2.82) 5.88 (-26.53) 8.08 (0.97) 5.78 (-27.71) 8.19 (2.41) 5.90 (-26.23)
SUV 55.5 8.35 (4.41) 5.87 (-26.57) 8.14 (1.78) 5.78 (-27.78) 9.54 (19.27) 6.03 (-24.61)
% Change 3.37 -0.39 1.99 -0.7 30.67 5.77

SUVmean seems constant. At bladder SUV 55.5, SUVmax of lesion L3 (closest to

the bladder) has a % bias of 19.3% while for L2 (further away), the % bias in

SUVmax is only 1.8%. As bladder SUV increases from 8.5 to 55.5, the % SUV

change for L3 is 30.67% and 5.77% for SUVmax and SUVmean respectively, while

the % change in SUVmax is less than 4% for lesions L1 and L2.
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Figure 3.6 shows the spill in and spill out effects on lesion quantification as

a function of lesion size. This is shown for lesions L1-L3 and background lesion

B at bladder SUV 55.5. As expected, the spill out effect from the lesions to the

colder background causes an underestimation in lesion SUV for small diameter

lesions, but the SUV increases as the diameter increases. However, the lesion

SUV is further influenced by spill in effect from the bladder to the lesions, and

this depends on the lesion distance. Lesion L3, which is the closest lesion to the

bladder, has the highest SUVs while lesion L2, which is farther away, has the

least.
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Figure 3.6: The spill in and spill out effects as a function of lesion size for lesions
L1-L3 and background lesion B at bladder SUV 55.5. The SUVs were obtained
from OSEM reconstructed images using the mean SUVs of all noise realisations
at 30 full iterations with 4 mm Gaussian post-filter. The error bars are the
standard error of the mean (SEM) while the dashed horizontal line denotes the
true simulated lesion SUV. Background lesion B is the reference which shows the
expected lesion SUV without spill in effect.

The relationship between the spill in effect (due to increasing bladder activity)

and lesion size is further shown in Table 3.2. For a fixed diameter, the lesion
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SUV increases with bladder activity, thereby increasing the bias. This is not so

evident in L1 and L2.

Table 3.2: The effect of increasing bladder SUV on lesion quantification for each
lesion diameter. This is expressed as the % change in lesion SUV as bladder
SUV increases. The SUV values are the mean values from all noise realisations
at 30 full iterations with 4 mm postfilter.

Relative Change in Lesion SUV
Lesion Diameter (mm) L1 L2 L3

SUVmax SUVmean SUVmax SUVmean SUVmax SUVmean

6 1.67 0.31 1.89 0.51 10.94 3.90
8 3.08 0.45 1.41 0.85 15.09 4.90
10 3.37 0.39 1.99 0.70 30.67 5.77
12 4.96 0.33 2.07 0.99 53.53 8.50

The % relative change in lesion SUV is further influenced by the application

of post-filter as shown in Figure 3.7. Lesion L3 showed the highest % relative

change in SUV (both SUVmean and SUVmax) as post-filter FWHM increases,

and with 5 mm post-filter, this relative change was as much as 49% and 9% for

SUVmax and SUVmean respectively. L1 showed a slight relative change but L2

showed no defined relative change in SUV.

To further investigate the spill in effect as a function of the system resolution,

instead of blurring the simulated PET images with the GE Signa PSF, the images

were blurred with an isotropic Gaussian filter of FWHM ranging from 3 – 6 mm

before forward projection. Figure 3.8 shows the estimated spill in activity around

the dilated bladder shells as resolution increases (using Equation 3.3). The spill

in activity is expressed as the % activity difference in the dilated shells between

the simulated and OSEM reconstructed images.

FWHM of 6 mm has the highest % activity difference, and this reduces signif-

icantly as resolution improves, with FWHM of 3 mm having the least % activity
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Figure 3.7: The dependence of spill in effect on post-filter. This was done with
a single noise realisation at 30 iterations.
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Figure 3.8: The spill in activity from the bladder to the surroundings as a func-
tion of the system resolution (in FWHM), using Equation 3.3. The activity
difference is estimated from a single noise realisation of OSEM reconstruction
with bladder SUV 55.5 at 30 full iteration with 4 mm post-filter.

difference. Also, as expected, the immediate shell around the bladder (2 voxels)

has the highest activity difference for all resolutions, but it reduces as it moves
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further away. However, for FWHM of 5 and 6 mm, the activity difference re-

mains almost constant and considerably high even at voxels 6 to 10 away from

the bladder.

3.3.1.3 Effect of correction techniques on reduction of spill in effect

Figure 3.9 shows how the lesion SUV changes iteratively for all reconstruction

techniques as bladder SUV increases from SUV 8.5 to SUV 55.5. This shows

that % change in lesion SUV reduces as iteration increases. At 30 iterations, the

% change in lesion SUVmax is about 31%, 26%, and 4% for OSEM, OSEM+PSF

and OSEM+PSF+BC respectively, while for lesion SUVmean, it is about 6%, 1%

and -6% for OSEM, OSEM+PSF and OSEM+PSF+BC respectively.
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Figure 3.9: The % relative change in lesion SUV (as bladder SUV increases from
SUV 8.5 to SUV 55.5) as a function of increasing iteration. This is obtained
from a single noise realisation and for lesion L3 of diameter 10 mm with 4 mm
Gaussian post-filter.

Table 3.3 shows the estimated spill in activity from the bladder to the sur-

rounding regions for both uncorrected and corrected images at 30 full iterations
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with and without post-filtering. This is the percentage activity difference in the

dilated shells between the true simulated image and the reconstructed image.

Table 3.3: Estimation of the spill in activity from the bladder to the surrounding
regions. This is estimated from both filtered and unfiltered mean images with
simulated bladder SUV 55.5 at 30 iterations (the filtered results are given in
parentheses). d̄ is the difference between the mean values of the true simulated
and reconstructed images for all voxels in the dilated region. LOA is the 95%
Limit of Agreement of d̄, with showing the upper and lower limits.

Dilated Regions (voxels) OSEM OSEM+PSF OSEM+PSF+BC
1 – 2 % Difference (d̄) 31.5 (41.8) 18.7 (30.8) 3.3 (1.6)

SD1 26.4 (28.4) 25.0 (30.2) 15.4 (11.7)
LOA2 -20.3 to +83.3 -30.4 to +67.8 -26.9 to +33.5

(-13.9 to +97.6) (-28.4 to +89.9) (-21.4 to +24.6)
3 – 4 % Difference (d̄) 9.3 (8.5) 2.6 (2.7) 4.7 (3.9)

SD 10.6 (9.5) 8.0 (8.9) 10.0 (8.8)
LOA -11.4 to +30.0 -13.1 to +18.4 -15.0 to +24.3

(-10.1 to +27.0) (-14.7 to +20.1) (-13.4 to +21.2)
5 – 6 % Difference (d̄) 5.4 (6.4) 2.4 (3.6) 1.3 (2.5)

SD 12.9 (7.8) 8.7 (6.7) 10.9 (8.3)
LOA -19.9 to +30.7 -14.8 to +19.5 -20.0 to +22.7

(-8.8 to +21.6) (-9.5 to +16.7) (-13.8 to +18.8)
7 – 8 % Difference (d̄) 4.0 (4.3) 1.6 (2.0) 1.4 (1.6)

SD 12.8 (7.9) 8.9 (7.1) 11.2 (8.3)
LOA -21.1 to +29.9 -16.0 to +19.1 -20.4 to +23.3

(-11.2 to +19.8) (-12.0 to +15.9) (-14.6 to +17.9)
9 – 10 % Difference (d̄) 2.8 (3.4) 0.6 (1.5) 0.5 (1.3)

SD 11.6 (7.0) 9.1 (6.4) 10.7 (7.4)
LOA -19.9 to +25.5 -17.2 to +18.4 -20.4 to +21. 3

(-10.2 to +17.1) (-11.0 to +14.1) (-13.1 to +15.8)

There is a large spill in activity within 2 voxels around the bladder as the

% activity difference between the simulated and reconstructed images is 31.5%

(41.8%) for OSEM and 18.7% (30.8%) for OSEM+PSF reconstructions with-

out and with post-filtering respectively. This shows that filtered images show

increased spill in activity of about 33% and 65% for OSEM and OSEM+PSF re-

spectively, compared with the unfiltered images. At 4 voxels around the bladder,

1SD =
√

1
n−1

∑
k = 1n(dk − d̄)2, k represents each voxel in the dilated region

2LOA= d̄ ± 1.96SD
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the activity difference around the bladder dropped greatly to 9.3% (8.5%) and

2.6% (2.7%), and at 10 voxels from the bladder, the activity difference is 2.8%

(3.4%) and 0.6% (1.5%) for OSEM and OSEM+PSF, respectively. However, with

the correction technique, the % activity difference is within 0.5% and 4.7% with

and without post-filtering. It could be observed that OSEM has the highest up-

per limit of agreement (LOA), compared to OSEM+PSF and OSEM+PSF+BC.

Also, the upper LOA for all methods reduces as we move voxels away from the

bladder.

This spill in activity can also be seen around the bladder edges in the uncor-

rected images (as shown in Figure 3.10). This causes a bias around the bladder

edges making the bladder appear bigger, hence affecting the visibility of nearby

lesions.

3.3.1.4 Dependence of the background correction method on segmen-

tation accuracy

To demonstrate the dependence of the recently proposed background correction

method on segmentation accuracy, an increase in bladder volume and activity

during a 90 minutes scan typical of PET/MR scan was simulated at time points

1, 10, 30, 45 and 90 minutes. Each image was reconstructed with background

correction (OSEM+PSF+BC), but the segmented bladder mask at 1min time-

point was used for the correction in all cases. The resulting background corrected

images are displayed in Figure 3.11.

This result shows that bladder expands majorly at the anterior superior end

towards the rectum and the prostate. The error in segmentation is pronounced

after 10 mins.
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Figure 3.10: Images showing improvement in lesion detection and reduction of
bias around bladder edges with the correction technique. This is shown for blad-
der SUV 55.5 and lesion diameter 10 mm at 30 full iterations. Sf and Snf are
the single noise realisation images with and without filtering respectively, while
Mf and Mnf are the mean images from 20 noise realisations with and without
filtering respectively. Bf and Bnf are the bias images (i.e. difference between
the mean image and the true simulated image) with and without filtering respec-
tively. The bias image in OSEM+PSF+BC was estimated by first removing the
bladder from the true simulated image.

3.3.2 Validation by Phantom Experiment and Patient Data

Figure 3.12 shows the MRAC, segmented bottle and reconstructed images of the

bottle phantom. OSEM+PSF+BC image shows improved visibility especially
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1 min 10 mins 30 mins 45 mins 90 mins

Figure 3.11: Demonstration of how inaccurate segmentation can limit the accu-
racy of the background correction technique. This is shown for a single noise
realisation, with 4 mm postfilter. All images are displayed with the same maxi-
mum SUV threshold value 20.

for S1 and S2.

Figure 3.13 shows the CNR of all the spheres as a function of iteration.

As expected, the CNR increases as the sphere diameter increases, but reduces

with the number of iterations. OSEM and OSEM+PSF have almost the same

CNR for all spheres, while OSEM+PSF+BC shows higher CNR than OSEM and

OSEM+PSF for the two smallest spheres, and the ones closest to the bottle (S1

and S2). OSEM+PSF+BC does not show any clear improvement over OSEM

and PSF for bigger spheres S3-S6.

Figure 3.14 shows the normalised mean activity in each of the dilated shells

surrounding the hot NEMA bottle. Although the surrounding shells should have

zero activity, the reconstructed images show a considerable amount of spill in

activity from the hot bottle to the surrounding shells. Within 1 voxel around

the hot region, the activity is about 75% and 90% of the activity in the sphere for

OSEM; and 60% and 80% for OSEM+PSF, with and without post-filtering re-

spectively. However, at 4 voxels, this activity is greatly reduced to just about 2%

for OSEM and OSEM+PSF, either with or without post-filtering. However, for

OSEM+PSF+BC, the activity is less than 3% in all cases, showing an improve-
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0.15

0

Figure 3.12: The NEMA bottle phantom used for the validation. The first
row shows the MRAC image of the phantom; the middle row is the segmented
bottle from the MRAC image; while the last row is showing the coronal view
of the reconstructed images at 3 full iterations with 4 mm Gaussian filter for
OSEM, OSEM+PSF and OSEM+PSF+BC reconstructions respectively. The
blue arrows in the reconstructed images are pointing to the spheres in which
there is visual improvement.

ment of more than 80% and 70% over OSEM and OSEM+PSF reconstructions

respectively.

For the patient data, Figure 3.15 shows the normalised mean activity in the

dilated shells around the spleen in all reconstructed images at 3 and 20 full

iterations with and without post-filter. As expected, the mean activity in the

dilated shells reduces as we move voxels away from the spleen, with the highest
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Figure 3.13: Plots of the CNR of the NEMA phantom spheres S1 - S6 against
the iteration for all the reconstruction techniques across the 20 full iterations and
without post-filtering. The CNR was estimated using the mean activity values
in the spheres and background.

value at 1 voxel from the spleen in all cases. Also, increasing the number of

iterations tends to reduce the activity in the dilated shell. For OSEM at voxel

1 and without post-filter, the mean activity is about 43% at 3 iterations but

reduced to only 26% at iteration 20. However, with the application of post-filter,

there is no pronounced difference in the voxel activities at 3 and 20 iterations.

Also, OSEM+PSF has similar or even higher voxel activity than OSEM at 3

iterations with and without post-filter, but at 20 iterations, OSEM+PSF shows
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Figure 3.14: The normalised mean activity within the dilated shells surrounding
the NEMA bottle obtained at 3 full iterations with (a) no postfilter and (b) 4
mm Gaussian postfilter. This demonstrates how spill in activity from the hot
bottle to the surrounding shells reduces as we move further away from the bottle.
The voxel activity were normalised with the actual activity in the spheres.

reduced voxel activity than OSEM. But in all cases, OSEM+PSF+BC has lower

and almost constant voxel activity.

3.3.3 Investigating the Impact of TOF Reconstruction in

Mitigating Spill in Effect

In order to explore the benefit of TOF reconstruction in correcting for spill in

effect, the NEMA IQ phantom was reconstructed using the GE PET Toolbox

with and without TOF implementation (with 28 subsets and 20 full iterations).

The reconstructed images have 256 × 256 × 89 voxels with size 2.34 × 2.34

× 2.78 mm3. The activity in the dilated shells surrounding the hot bottle was

estimated using the morphological operation in Equation 3.3.
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Figure 3.15: Validating the effect and correction of spill in effect using patient
data. This figure shows the normalised mean values within the dilated shells
surrounding the spleen at (a) 3 full iterations with no postfilter, (b) 20 full
iterations with no postfilter, (c) 3 full iterations with 4 mm Gaussian postfilter,
and (d) 20 full iterations with 4 mm Gaussian postfilter. The mean activity
values in the dilated shells were normalised with the mean activity in the liver.

Figure 3.16 shows the normalised mean activity in each of the dilated shells

surrounding the hot NEMA bottle, for TOF and non-TOF reconstructions. At
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3 iterations, there is a slight improvement of TOF reconstruction over non-TOF

reconstruction for 2 voxels around the bottle, however, at 20 iterations, the

improvement is only seen at 1 voxel.
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Figure 3.16: The normalised mean values within the dilated shells surrounding
the NEMA bottle obtained at with (a) 3 iterations and (b) 20 iterations., with
non-TOF and TOF reconstructions. The reconstructions were done with the GE
PET toolbox. The voxel activity were normalised with the actual activity in the
spheres.

It is worthy of note that at 2 voxels, the spill in activity in non-TOF image is

up to 17% at 3 iterations, but only 12% at 20 iterations. This also reiterates the

fact that SUV overestimation as a result of spill in effect reduces over iteration.

Therefore, in order to reduce the spill in effect, slightly increasing the number

of iterations might be a good alternative. However, this will be at the expense

of reduced CNR and increased noise. For the NEMA bottle phantom, the spill

in activity from the hot bottle to the surrounding shells reduces as we move

further away from the bottle, and this is lower for TOF reconstruction than

non-TOF. Similar trend is also seen in the patient data (Figure 3.17), but major
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improvement with TOF reconstruction over non-TOF reconstruction in terms

of reduced spill in effect around the segmented spleen is visible only at higher

iterations.
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Figure 3.17: Normalised mean values within the dilated shells surrounding the
spleen obtained with non-TOF and TOF reconstructions at (a) 3 iterations and
(b) 20 iterations. The reconstructions were done with the GE PET toolbox. The
voxel activity was normalised with the mean activity in the liver.

3.4 Discussion

An extensive investigation has been carried out with simulated and experimental

phantoms on the full suppression of the spill in effect from background hot regions

to the surrounding lesions as a function of increasing background activity, lesion

size, and distance to the background, using the background correction technique

(Silva-Rodriguez et al. [2016]).

The simulation results show that lesion uptake increases as bladder activity
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increases (Figure 3.5) and this could be attributed to bladder accumulation,

thereby causing spill in effects (Liu [2012]). L3 closest to the bladder has the

highest change in SUV, while L1 and L2 further away have less SUV variation.

This indicates that there is a high probability of SUV overestimation in lesions

close to the bladder, and hence they suffer greatly from the spill in effect (Kolb

et al. [2015], Puri et al. [2017]). A similar experiment was conducted by Liu

[2012] and he concluded that if the lesions are within 40 - 50 mm from the

hot source, the estimated SUV values are overestimated and therefore invalid.

However, for our study, this SUV overestimation is only experienced in lesions

within 15 - 20 mm from the bladder. This improved result may be due to the

improved resolution of the simulated GE PET/MR scanner, which makes the

effect less prominent (as seen in Figure 3.8).

It was also discovered that the spill in effect seems to increase with lesion

size, and this is more evident in proximal lesions to the bladder (Figure 3.6). As

expected, spill out effect from the lesions to the background causes an under-

estimation in lesion SUV for small diameter lesions, but the SUV increases as

the diameter increases. However, the lesion SUV is further influenced by spill

in effect from the bladder to the lesions, and this is dependent on the lesion

distance. Lesion L3 which is the closest lesion to the bladder has the highest

bias in SUVs while the background lesion has the least. For lesion L3, the spill

in effect seems to increase with lesion diameter. This is because smaller lesions

suffer from both spill out effect to the colder region and spill in effect from the

hot background region. These two effects might sometimes cancel out, thereby

giving a false impression of quantification accuracy in smaller lesions (as depicted

in our study). However, for bigger lesions close to the bladder, spill in effect is
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the major effect, thereby leading to a pronounced overestimation in SUV. For

lesions L1 and L2 however, the impact of spill in effect on SUV quantification is

small, and only evident for SUVmax (Details in Table 3.2). This also re-iterates

the strong dependence of spill in effect on lesion distance.

It is worthy of note that the spill in effect is more pronounced in lesion SUVmax

than SUVmean as demonstrated by the results in Figures 3.5 to 3.9. This implies

that if one is interested in quantification using SUVmean, then, the spill in effect

is minimal and can potentially be ignored. However, the fact that SUVmax is

the global clinical standard for quantification informs the need for proper spill in

correction. Our study also shows that SUV overestimation as a result of spill in

effect reduces over iteration (as seen in Figures 3.4, 3.9, 3.15 - 3.17). Therefore,

in order to reduce the spill in effect, slightly increasing the number of iteration

might be a good alternative. However, this will be at the expense of reduced

CNR and increased noise.

OSEM+PSF and OSEM+PSF+BC were used as correction techniques for

the spill in effect (their convergence properties are shown in Figure 3.4). For L3,

there does not seem to be any major improvement in OSEM+PSF reconstruc-

tion over OSEM especially for SUVmax (as seen in Figure 3.9). This could be

because of the closeness of the lesion to the bladder, coupled with the blurring

effect caused by post-filtering. This seems to nullify the recovery already ob-

tained by incorporating PSF into the reconstruction algorithm, thereby making

both ordinary OSEM and OSEM+PSF reconstructions to behave in a similar

way. This blurring effect could further be confirmed by a pronounced bias at the

bladder edges due to the spill in activity from the bladder as shown in Figure

3.10, as well as the edge analysis in Table 3.3. OSEM and OSEM+PSF are
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greatly affected by filtering, but OSEM+PSF+BC is more robust and less sen-

sitive to filters. Another reason for the similar behaviour between OSEM and

OSEM+PSF might be the simplistic spatially-invariant resolution modelling in

this study. This simple resolution modelling has been shown by past studies to

increase edge artefact and system blurring (Alessio et al. [2010]).

From the NEMA phantom experiment (Figure 3.14), this spill in activity from

the bottle can cause between 20 - 90% activity overestimation in a sphere if it is

within 1-2 voxels away from the hot bottle, but it reduces as we move further away

from the bottle. The spill in activity reduced greatly with OSEM+PSF+BC as it

shows a value less than 3% in all cases. In this phantom experiment, spill in effect

is only prominent within 3 voxels (< 10 mm) around the hot bottle, whereas in

the simulation study, this effect could potentially extend to about 15 mm with

a very high activity in the bladder. This is an indication that this spill in effect

is strongly dependent on the activity in the hot region. Further validation of

this technique using patient data also establishes the spill in effect as a function

of distance from the hot region (Figure 3.15). OSEM and OSEM+PSF images

show an increased activity value in the immediate vicinity of the spleen compared

to OSEM+PSF+BC image, but this disparity in activity value decreases as we

move further away from the spleen.

From the results shown in Figures 3.9, 3.10 and 3.12, it could be seen that

better lesion detection and quantification could be achieved with the recently

proposed background correction technique, thereby potentially enhancing low

contrast lesion detectability and better diagnosis. This was also confirmed by

the NEMA phantom (Figure 3.13) as OSEM+PSF+BC demonstrate higher CNR

than OSEM and OSEM+PSF especially at lower iterations and for smaller
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spheres. Also, the recently proposed background correction method has a stable

performance for both lesion SUVmean and SUVmax (demonstrated by almost 0%

change in Figure 3.9) irrespective of the bladder activity and application of post-

filter. This performance stability is an indication that the correction method

can be used in the clinic for treatment response monitoring, however, this is still

subject to further validation.

When compared with previously published results (Liu [2012], Silva-Rodriguez

et al. [2016]), this current study presented a complete and thorough analysis

demonstrated on acquired PET data probably due to improved correction tech-

nique, incorporation of PSF in the reconstruction, and improved scanner reso-

lution. There is an indication that the recently proposed background correction

technique is robust and efficient in removing spill in activity from the high activity

regions to the surroundings, thereby producing more reliable lesion quantification

and better lesion visibility, compared with other correction techniques. More-

over, it is less tedious in that there is no need to calculate each lesion activity

separately.

However, the recently proposed background correction technique is highly

dependent on segmentation accuracy as shown in Figure 3.11. This is important

especially for pelvic scans where the bladder changes in volume and shape over

time. The results showed that the segmentation error is pronounced after 10 mins

where the bladder expands majorly in an anterior direction towards the rectum

and superior to the pelvic organs. This is in line with past studies (Foroudi et al.

[2013], Grønborg et al. [2015]) which showed that bladder expands primarily

in the superior anterior direction, and hence, addition of anisotropic margins

to the bladder are necessary. The translation of this correction technique to
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clinical application would need to take into account the inaccuracy in bladder

segmentation either by adding additional margins or by manual correction as

suggested by past studies.

With the emergence of new tracers such as [68Ga]-prostate specific membrane

antigen (PSMA) for prostate imaging, this correction technique can also be appli-

cable for correcting shine-through effect in PET/MR imaging which causes loss

of resolution and image artefacts due to its significant urinary excretion (Steiner

et al. [2009], Kolb et al. [2015]). Therefore, accurate correction will enhance

reliable quantification of PET images, and may lead to a tangible breakthrough

in [68Ga]-PSMA imaging.

Clinical translation of this technique would need to place careful emphasis on

the segmentation of the high activity region. For example, it could be possible

to use an MR image to segment the region as done in this study. Although

segmentation could be performed on CT images as well, this is more challenging

as PET/CT acquisitions are not performed simultaneously and there is the po-

tential of bladder expansion between CT and PET scanning due to physiological

motion. This has been reported to cause conspicuous distortions in lesions’ shape

and location (Cal-González et al. [2017]). Another segmentation mismatch could

also result from increase in bladder shape and size during a typical PET/MR

scanning session. These issues could cause loss of resolution and inadequate

quantification, and also limit the applicability of this correction approach, as

demonstrated in Figure 3.11. A potential way of dealing with the segmentation

inaccuracies might be to perform segmentation using multi-MR sequences, which

could track the bladder change in shape and volume during a typical PET/MR

scan. Appropriate corrections for bladder expansion and motion is aimed to be
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incorporated in the BC algorithm.

3.5 Conclusion

The effect of increasing activity from hot regions on adjacent lesion quantifica-

tion, as well as the improvement brought about by the recently proposed back-

ground correction technique has been extensively studied in this work. This study

shows that lesions relatively close to hot regions (within 15-20 mm) are greatly

affected by the spill in effect, causing reduced visibility and activity overestima-

tion of lesions. This effect is more pronounced in SUVmax than SUVmean, and

reduces over iteration, but it is further aggravated by the use of filter. However,

improved quantification and better lesion detectability were achieved with the

recently proposed background correction technique irrespective of the lesion size,

lesion distance from the hot region, the activity in the hot region, or application

of post-filter. It could therefore be concluded that the background correction

method is appropriate for reliable quantification and diagnosis of lesions near a

hot region. This is particularly important when examining the pelvic areas for

infection, metastases and cancer. Furthermore, this correction technique is not

limited to pelvic imaging. It could potentially be applied to imaging of any high

activity region such as the brain, head and neck, myocardium, as well as bone.
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Comparison of Correction

Techniques for the Partial

Volume and Spill in Effects

In the previous chapter, a thorough analysis on the spill in effect and the con-

tributing factors (i.e. low system resolution, proximity of ROI to an active region,

and the application of post-filter) was carried out. It was also shown that the

BC technique is effective in correcting for the spill in effect. In this chapter, the

performance of the BC technique is compared with other recent techniques in

mitigating the quantitative inaccuracies due to the spill in effect and the general

PVE.

This chapter consists of work previously published in Akerele et al. [2018].
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4.1 Introduction

PVE poses a great limitation to PET imaging in certain clinical investigations

such as [18F]-NaF PET imaging of the AAA where extensive spill in from the

bone into the aneurysm can be observed (Forsythe et al. [2018]). Common image

analysis techniques to mitigate the spill in effect include masking out the highly

radioactive region in the image space, or simply excluding areas of spill in from

regions of interest around the tissue of interest (Forsythe et al. [2018]). The

challenge is the high dependence of the measurements on clinician expertise.

In addition, a certain degree of potentially important physiological information

might be lost from the excluded regions. There is therefore a clear need for more

practical methods to correct for the spill in effects.

Recently, a BC technique was implemented which iteratively removes the

entire background contribution from the reconstructed image (Tsoumpas and

Thielemans [2009], Silva-Rodriguez et al. [2016], Akerele et al. [2018]). This

method showed promising results for spill in correction, but it was not tested in

relevant clinical data, neither was its performance compared with other correc-

tion techniques. Therefore, the aim of this study is to evaluate various recently

proposed PET correction techniques to compensate for the partial volume and

spill in effects in simulated phantom, experimental phantoms with known activ-

ity concentration and in patients with AAA lesions in close proximity to bone

tissue. The rationale for using these sets of data was to mimic various clini-

cal scenarios where spill in effect poses a serious challenge to quantification and

diagnostic accuracy.
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4.2 Methods and Materials

4.2.1 Correction Techniques

Correction of PET data was implemented using three approaches: (1) back-

ground correction (BC) technique; (2) local projection (LP) technique and (3)

hybrid kernelised expectation maximization (HKEM) technique.

4.2.1.1 Background Correction (BC)

This method involves segmentation of the hot background region from a high-

resolution anatomical image such as MR or CT; forward-projection of the seg-

mented background mask; and iterative removal of the background contribution

as previously discussed in Chapter 2. Although, a better approach would be to

estimate the background contribution iteratively, however, in this thesis, a sim-

ple and easy-to-implement approach was used where the background contribution

was estimated when the variation in the background activity is minimum.

For this purpose, the change in bone activity with iteration (4SUV (%)) was

estimated using:

4SUV (itn)(%) =
SUV (itn)− SUV (itn−1)

SUV (itn)
× 100 (4.1)

where SUV (itn) and SUV (itn−1) are the current and previous iterations re-

spectively.
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4.2.1.2 Local Projection (LP)

A previously introduced LP method (Moore et al. [2012], Cal-Gonzalez et al.

[2018]) was adapted for spill in correction as discussed in Chapter 2. In this

study, the reconstructed image was segmented into a target VOI (consisting of

the ROI and the hot background), and the global background outside the target

VOI.

4.2.1.3 Hybrid Kernelized Expectation Maximization (HKEM)

The recently proposed HKEM method (Deidda et al. [2019b,a]), which uses in-

formation from both PET and an anatomical image in order to compensate for

partial volume effects, was used in this study. Its theory and implementation

has also been discussed in Chapter 2. In this work, a high-resolution MRAC

image was used to extract the anatomical information needed for the algorithm.

Moreover, for the HKEM parameters, the values of σa = σp = 1, and σda and σdp

= 3 were used as it yielded the best trade-off between image quality and noise ac-

cording to a previous optimization study (Deidda et al. [2019a]). The advantage

of the HKEM technique is the employment of the PET image to estimate one

part of the hybrid kernel, thereby reducing the dependence on the anatomical

image. Also, unlike BC and LP methods, there is no need for segmentation or a

preliminary reconstruction step.

4.2.2 Datasets

Three datasets were used in this study: (i) digital phantom simulation with

Siemens mMR scanner (ii) an experimental cold-sphere Jaszczak phantom ac-
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quired with a PET/MR scan, and (iii) 3 clinical PET datasets from patients

with AAA undergoing [18F]-NaF PET/CT imaging.

4.2.2.1 Simulation

For this study, the pelvic region was simulated using a digital anthropomorphic

XCAT2 Phantom (Segars et al. [2010]) with a typical [18F]-FDG distribution.

This simulated data include a fixed size bladder with SUV 55.5 (representing the

hot source) and various-sized lesions with SUV 8 placed at different positions

around the bladder (as shown in Figure 4.1). Emission and attenuation images

were generated and these were blurred with Gaussian filter with FWHM ranging

from 4-7.5 mm in order to simulate various degree of partial volume effects

from various PET scanners. The blurred images were then forward projected

to obtain the sinograms using simulated Siemens mMR scanner. The forward

projector used is based on Siddon’s ray tracing algorithm (Siddon [1985]), tracing

10 tangential rays for each bin. ACF were calculated from the attenuation image

and this was used to attenuate the emission sinogram. Constant normalisation

and randoms sinograms were also generated, with the random counts making up

to 20% of the total projection data. Scatter was estimated analytically using the

SSS approach (Watson et al. [1996]) as incorporated into STIR (Tsoumpas et al.

[2004]). A scaling factor was applied to make the scatter count 35% of the total

simulated events. The random and scatter sinograms were used to generate the

additive term, while the attenuation and normalisation sinograms were used as

multiplicative terms.

Poisson noise was simulated for approximately 65M counts and the noisy

sinograms were reconstructed using OSEM with 21 subsets and 10 full itera-
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tions. The images have 344 × 344 × 127 voxels with voxel size 2.086 × 2.086 ×

2.031 mm3. Both simulation and reconstruction were done using STIR package

(Thielemans et al. [2012]).
  

 
 
(a) 

 
 
 
 
 
 
 
 
 
 

 
 

(b) 

L6 (12 mm) 

L1 (10 mm) 
L2 (6 mm) 

L3 (10 mm) 

L4 (20 mm) 

L5 (8 mm) 

Figure 4.1: The simulated data from digital XCAT2 phantom: (a) is the emission
image showing an active bladder surrounded with lesions of various diameters
ranging from 6mm to 20 mm, while (b) is the attenuation image used for attenu-
ation correction. The yellow ROIs in (a) are the selected background ROIs used
to calculate the CNR.

For background correction, the bladder was automatically segmented from

the digital phantom by generating an emission image where the activity is 1 in

the bladder and 0 everywhere outside the bladder. The segmented bladder was

multiplied by the reconstructed image obtained after three iterations to obtain

the bladder contribution in the reconstructed image. This was then forward-

projected to obtain the sinogram using the same settings for the simulation.

The sinogram was then included as a background term along with additive term

in the reconstruction to obtain a corrected image with bladder activity masked

out.

ROI analysis was done by placing spherical ROIs with diameters equal to

the lesion sizes on the exact position of the lesions. Mean and maximum SUV
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values (SUVmean and SUVmax) in each ROI was estimated for quantification

purpose. For each reconstruction technique, the RC and CNR of each lesion was

estimated using Equations (4.2) and (4.3). These were used as figures of merit

to show the resolution recovery, image contrast as well as the noise properties of

each correction technique.

RC =
lesion SUVestimated
lesion SUVtrue

(4.2)

CNR =
SUVlesion − SUVbackground√(

SD2
lesion + SD2

background

) (4.3)

The background values were estimated as the average of the 3 yellow ROIs

shown in Figure 4.1a.

Furthermore, cross-combination of the reconstruction algorithms was per-

formed in order to explore whether the performance of each algorithm (in terms

of resolution recovery, image contrast and spill in reduction) can be further en-

hanced.

4.2.2.2 Experimental phantom

A physical phantom experiment was performed using the Jaszczak Flangeless

Deluxe Phantom1 acquired with the Siemens Biograph mMRTM PET/MR scan-

ner (Siemens Healthineers, Erlangen, Germany) in Mount Sinai Hospital, NY,

USA. This phantom (shown in Figure 4.2) consists of six cold spheres S1 - S6

(of diameters 9.5 mm, 12.7 mm, 15.9 mm, 19.1 mm, 25.4 mm and 31.8 mm

1Biodex: Flangeless Deluxe PET SPECT Phantoms. Last accessed 6/6/2019.
http://www.biodex.com/nuclear-medicine/products/pet-positron-emission-tomography/pet-
phantoms/flangeless-deluxe-pet-and-sp

105



Chapter 4

respectively) and a hot background filled with 155 MBq of [18F]-FDG acquired

for one hour. The Siemens mMR scanner has an energy resolution of 14.5% with

a 430-610 keV energy window. The transaxial FoV is 59.4 cm and the axial

FoV is 25.8 cm. The reconstructed images consisted of 344 × 344 × 127 voxels

of 2.086 × 2.086 × 2.031 mm3. Uncorrected prompt, normalization and ran-

dom sinograms were generated from the acquired listmode data using the STIR

(Thielemans et al. [2012]) (with 344 bins: bin size 2.04 mm; 252 views; axial

compression 11 and maximum ring difference 60). The randoms were estimated

using the delayed coincidence window technique with smoothing (Delso et al.

[2011]). The attenuation image was obtained from a 19s MR VIBE sequence

with two segmented tissue classes: air and water (Karakatsanis et al. [2016]).

The attenuation image was co-registered with the PET image and resliced to

match the PET resolution and FoV. ACFs were obtained from the attenuation

image, while scatter was estimated using the SSS algorithm (Watson et al. [1996])

implemented in STIR (Tsoumpas et al. [2004]).

The dedicated PSF kernel for the Siemens mMR scanner was modeled as a

Gaussian filter with 4.1 mm axial and 4.0 mm transverse FWHM according to

experimental point source PSF measurements with the Siemens mMR scanner

(Karlberg et al. [2016]). PVE correction was performed with all the techniques

highlighted in Section 4.2.1. For the background correction, the hot background

region of the phantom was segmented from the MRAC image and included as an

additive sinogram term in the OSEM reconstruction (details in section 4.2.1a).

The LP method was implemented for the phantom using two regions, namely:

the 6 cold spheres, as the target VOI, and the segmented hot background region,

as the global background.
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Figure 4.2: The Jaszczak resolution phantom: (a) transverse slice of the PET
image showing the hot background, and six cold spheres S1-S6, (b) segmented
MRAC image highlighting the background region.

ROI analysis was performed by placing spherical ROIs with diameters equal

in size to the actual diameters of the cold spheres. Another spherical ROI of 15

mm diameter was placed in the hot background region. These ROIs were used to

extract the sphere and background mean uptakes respectively. The normalized

mean activity, AN , in each sphere was estimated so as to compare the sphere

activity for each correction technique, using Equation 4.4:

AN =
Asph
Abkg

(4.4)

where Asph and Abkg are the mean uptakes in the cold spheres and hot background

respectively.

4.2.2.3 Patient data

Three human patient datasets were randomly selected from the archive of the

SoFIA3 ([18F]-NaF uptake in AAA) study (Forsythe et al. [2018]) involving [18F]-
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NaF PET/CT imaging of AAA lesions. Each patient was injected with 125 MBq

of [18F]-NaF and imaged on the Biograph mCTTM PET-CT scanner (Siemens

Healthineers, Knoxville, TN, USA) (Irkle et al. [2015]). A low-dose CTAC scan

was performed (120 kV, 50 mAs, 5/3 mm) followed by a PET acquisition using 3

× 10 min bed positions to ensure coverage from the thoracic aorta to the aortic

bifurcation. The raw data were extracted into sinograms using the Siemens e7

tool, and the sinograms were reconstructed with OSEM using 21 subsets and 30

iterations. PSF modelling was incorporated into the reconstruction of all the spill

in correction methods as an isotropic 3D Gaussian kernel with 4.4 mm FWHM in

both axial and transverse planes (Karlberg et al. [2016]). A 3-tissue LP algorithm

was implemented, where the image was segmented into a target VOI consisting of

the aneurysm, and the hot bone (i.e. J=2), and the global background outside

the target VOI. A sample patient scan showing the attenuation image, PET

image and the segmented bone is shown in Figure 4.3.

 

 
 

 
 

 

(a)                       (b)                             (c) 
 
 
 

Figure 4.3: Sagittal view of an [18F]-NaF PET/CT scan of a patient with AAA:
(a) CT-based attenuation image where the AAA (circled with a blue dashed line)
is in close proximity to the bone (shown with green arrow), (b) PET image, and
(c) active bone segmented from the CTAC image.

ROI analysis was performed by delineating the aneurysmal aorta to estimate

the mean and maximum SUVs (SUVmean and SUVmax) in the aneurysm. The
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scaling factor between the Siemens and STIR reconstructed images was obtained

with one data from patient using the least-squares fitting technique. This scaling

factor was then applied to all patient datasets to obtain the SUVs. Following the

standard clinical quantification (Vallabhaneni et al. [2004], Pawade et al. [2016],

Forsythe et al. [2018]), the maximum target-to-background ratio TBRmax was

estimated using:

TBRmax =
SUVmax(T )

SUVmean(Bp)
(4.5)

where SUVmax(T ) corresponds to the maximum SUV in the target (aneurysm),

while SUVmean(Bp) is the mean SUV in the background (blood pool region in

the inferior vena cava).

To demonstrate the magnitude of the spill in effect from the bone to the aorta,

two ROIs were delineated: ROI1, denoted as AAA, covers the entire aneurysm

and ROI2, denoted as AAAexc, excludes the AAA parts very close to the bone, as

has been reported previously (Forsythe et al. [2018]). The SUV at the aneurysm

was then quantified using these two ROIs as shown for all the 3 patient datasets

in Figure 4.4.

The performance of all the reconstruction algorithms was evaluated in terms

of the contrast (CTB) of the aneurysm region against normal tissue.

CTB =
1
NT

∑NT

j Tj
1
NB

∑NB

j Tk
(4.6)

where Tj is the value of voxel j of the reconstructed image, j is one of the

NT voxels of the target region (AAA), and k is one of the NB voxels of the

background normal tissue.
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Figure 4.4: The transverse and sagittal views of the CTAC images for all the 3
patients, showing the ROIs used to extract the SUVs at the aneurysm.

The coefficient of variation (CoV) was used as the noise metrics for all algo-

rithms, defined as:

COV =
1

1
NT

∑NT

j Tj

√√√√ 1

NT − 1

NT∑
j

(
Tj −

1

NT

NT∑
j

Tj

)2

(4.7)

These metrics were computed at each iteration using AAAexc in order to avoid

the influence of the spill in contamination on the results.
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4.3 Results

4.3.1 Simulation

4.3.1.1 Partial volume and the spill in effects as it affects lesion quan-

tification

In order to explore how partial volume affects lesion quantification, various PET

resolution were simulated by blurring the simulated images with Gaussian filters

ranging from 4 mm to 7.5 mm FWHM.

Figure 4.5 shows the RCmean and RCmax of all the simulated lesions as the

FWHM increases. These were obtained from the SUVmean and SUVmax of all

lesions using Equation 4.2, and estimated from the OSEM images at 10 full

iterations. As expected, the RCmean and RCmax for all the lesions increase as the

resolution FWHM improves, with the best recovery obtained at 4 mm FWHM.

Also, the lesion L2 which has the smallest diameter (i. e. 6 mm) has the smallest

recovery coefficient. Even at the best simulated resolution of 4 mm FWHM, the

recovery is only about 0.6 and 0.7 for RCmean and RCmax respectively. The

highest RC is expected for L4, being the biggest lesion (diameter = 20 mm),

however, L1 (10 mm) closest to the bladder has the highest RCmean and RCmax

for all FWHMs. Also, L5 (8 mm) close to the bladder has almost the same

RCmean and RCmax with L4 (20 mm), and this is higher than that of L3 (10

mm) and L6 (12 mm).

These effects are further explored for all lesions as iteration increases, and

the result is displayed in Figure 4.6. In both cases, one would expect the RC

values to increase with iterations. However, this is only true for lesions L3, L4
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Figure 4.5: The RCmean and RCmax of all lesions as a function of increasing
FWHM. This is shown for OSEM reconstruction at 10 full iterations with the
application of 4 mm Gaussian post-filter. A good recovery is given by an RC
value of 1 as specified by the dashed line.

and L6 which are farther from the bladder. Lesions L1, L2 and L5 (close to the

bladder) have overestimated RCs (> 1) at lower iterations, and these slightly

reduce towards convergence as iteration increases, especially at 7.5 mm FWHM.

But, at 4mm FWHM, the RC of L1, L2 and L5 only reduces for the first 3

iterations, after which it starts to increase. However, in all cases, RC seems to

be stable at the 10th iteration, therefore, all analyses were performed at iteration

10.

4.3.1.2 Correction of partial volume and spill in effects with the cor-

rection algorithms

Figure 4.7 shows the RCmean and RCmax of all the lesions at 4 mm FWHM for all

the reconstruction algorithms. OSEM and PSF show higher RCmax than other

methods, especially for lesions L1 and L4 with a significant RC overestimation of

up to 40%. However, the correction methods: BC, LP and HKEM have almost
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Figure 4.6: The RCmean and RCmax of all lesions as a function of increasing
iteration. Images are reconstructed with OSEM algorithm with the application
of 4 mm Gaussian post-filter. This is shown for (a) 4 mm FWHM and (b) 7.5
mm FWHM. A good recovery is given by an RC value of 1 as specified by the
dashed line.

steady RC values (close to 1) for all lesions except for lesion L2 which is greatly

underestimated with HKEM.

In order to estimate how all algorithms perform as system resolution changes,

the RCmean was estimated at different FWHM used for the simulation. This is
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Figure 4.7: The RCmean and RCmax of all lesions for all the methods. This is
shown for FWHM 4mm at 10 full iterations. A good recovery is given by an RC
value of 1 as specified by the dashed line.

estimated for lesion L3 at 10 full iterations and shown in Table 4.1.

Table 4.1: RCmean for lesion L3 as a function of system resolution (FWHM).
This is obtained from the SUVmean at 10 iterations

FWHM (mm) OSEM PSF BC LP HKEM
4 0.73 0.82 0.73 0.75 0.83
5 0.60 0.81 0.60 0.63 0.74
6 0.48 0.78 0.50 0.52 0.62
7.5 0.34 0.73 0.35 0.38 0.47

As expected, the RC reduces with a decreasing system resolution, but PSF,

LP and HKEM have very good RC even at low resolution. HKEM has the highest

RC at 4mm FWHM, while PSF gives the highest RC for all others FWHM, with

a relatively small % change as FWHM increases from 4 to 7.5 mm.

To estimate the image contrast and noise properties of each method, the

CNRmean and CNRmean were calculated for lesion L3 as iteration increases using

Equation 4.3, and this is shown in Figure 4.8. BC, LP and HKEM methods have

higher CNR than OSEM and PSF using both SUVmean and SUVmax, but LP
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and HKEM have significantly higher values than BC for CNRmax.
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Figure 4.8: The CNRmean and CNRmax of both uncorrected and corrected images.
This is shown for lesion L1 and FWHM 4mm.

4.3.1.3 Improved performance of the correction algorithms by cross-

combination

Potential improvement in the correction algorithms was explored by combining

each algorithm with another. The possible combination pairs and the resultant

RC mean of the algorithms at FWHM 7.5 mm are displayed in Table 4.2.

Table 4.2: RCmean of L3 at FWHM 7.5 mm obtained by method combination.
The diagonal values are the original values for each correction technique, while
the off-diagonal ones are obtained from cross-combination.

PSF BC LP HKEM
PSF 0.73
BC 0.81 0.35
LP 0.84 0.39 0.38
HKEM 0.77 0.40 0.39 0.47

The result shows that BC, LP and HKEM methods give major improvement
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when they are combined with PSF, but a very small improvement when they

combine with each other.

4.3.2 Experimental Phantom

For the resolution phantom, the normalized mean uptake value in each of the

cold spheres was obtained from all the reconstructed images (using Equation

4.4). The result is displayed in Figure 4.9.
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Figure 4.9: Normalized mean uptake against the iterations in each sphere for
each reconstruction algorithm.

Although the spheres are meant to be cold (i.e. without any uptake), the

reconstructed images showed a certain level of residual uptake in the spheres

which varied in magnitude as a function of the spheres’ diameter. Smaller spheres
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had higher uptake than bigger ones, with sphere S1 having the highest activity

and S6 having the least. For OSEM images at the 3rd iteration, sphere S1 had

about 34% of the background activity, while sphere S6 had only 3%. The residual

uptake in the spheres reduced with increasing number of iterations. For S1, the

uptake was as much as 54% at the 1st iteration but reduced to only 19% at the

10th iteration (showing about 75% reduction in spill in activity). The correction

techniques reduced the spill in effects in the cold spheres, with BC exhibiting the

best performance for all the spheres. Furthermore, LP performed better than

other reconstruction algorithms in reducing the spill in activity in the spheres,

but not as much as BC.

4.3.3 Patient Data

4.3.3.1 Estimation of the background contribution

The background contribution was estimated at an iteration when the variation

in background activity is minimum. This was done for the patient datasets,

where the change in bone SUV with iterations was estimated using Equation

4.1. Figure 4.10 showed the plots of 4SUVmean (%) and 4SUVmax (%) against

iterations for the 3 patient datasets used in this study. For almost all cases, the

4SUV (%) is negligible after the 3rd iterations. The background contribution

was therefore estimated using the reconstructed images at the 3rd iterations.

4.3.3.2 Comparative evaluation of the reconstruction algorithms

Figure 4.11 shows the convergence properties of each reconstruction algorithm

in the 3 patient datasets. In all the 3 patients, OSEM algorithm has the high-
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Figure 4.10: 4SUVmean (%) and 4SUVmax (%) of the bone activity for the 3
patient datasets. (a) and (c) are for OSEM reconstructed images, while (b) and
(d) are for PSF images.

est SUV and TBR values at early iterations, while HKEM algorithm has the

least. But at late iterations, PSF has the highest values, except for patient 3

where OSEM has the highest TBRmax at both early and late iterations. PSF

and PSF+BC have similar behavior, and they do not show good convergence.

However, OSEM and PSF+LP have good convergence for all the quantification

metrics.

Figure 4.12 shows the CT attenuation and PET reconstructed images of the
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Figure 4.11: The convergence plots of the reconstruction algorithms for the three
patient datasets. These plots are shown for all the quantification metrics used
in this study, and the ROI was drawn over the entire aneurysm region.

three datasets under review. The PET images demonstrated higher [18F]-NaF

uptake in the aneurysm, compared to normal tissue. Also, a high uptake was

observed in the adjacent bone, which might significantly influence quantification
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at the aneurysm. It could also be seen that for all the patients, PSF-based

reconstructions attained a better contrast and more reduced noise than OSEM

reconstruction, with the PSF+HKEM algorithm yielding the best performance.

This was also shown quantitatively for each reconstruction algorithm in terms of

the contrast and CoV in Figure 4.13.
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Figure 4.12: Sagittal views of the PET reconstructed images at 3 full iterations,
shown for the 3 patients (top-to-bottom rows). All images are displayed with
the same maximum SUV threshold value 6.

4.3.3.3 Spill in estimation and correction

The spill in activity from the bone into the aneurysm was estimated by drawing

2 ROIs on the aneurysm: ROI1 was drawn over the entire aneurysm region

(AAA), while ROI2 was drawn such that it excluded regions close to the active

bone (AAAexc). Figure 4.14 shows the SUVmean, SUVmax, and the TBRmax

for both ROI1 and ROI2. These values were estimated at 3 iterations for all

reconstruction algorithms. The results showed that OSEM images have higher

quantitative values than PSF-based images, while PSF+HKEM images yielded
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Figure 4.13: Contrast versus COV in the aneurysm as iteration increases.

the least quantitative values. Also, substantial differences between AAA and

AAAexc were observed for SUVmean, SUVmax and TBRmax.

This discrepancy in SUV between the two ROIs is most likely due to the spill

in effect emanating from the adjacent active bone. PSF-based reconstructions

performed well in reducing this spill in activity for patient 1, but not for patients

2 and 3. For all 3 patients under review, PSF+BC exhibited the least differences

between the two ROIs for all the quantitative metrics used, thereby suggesting

the most robust spill in correction performance.

The difference in SUVs and TBR between AAA and AAAexc as iteration

increases was computed for all patients, and the result is displayed in Figure

4.15. The difference decreased with iterations for all algorithms, with patient

3 exhibiting the largest difference. However, PSF+BC showed an almost zero

difference for all patients.

The spill in effect from the bone into the aneurysm was also shown by drawing

a line profile across the bone and the aneurysm as shown in Figure 4.16. Indeed,
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Figure 4.14: The ROI analysis for patients 1-3 (top-to-bottom rows) using all the
quantification metrics for all evaluated reconstruction algorithms at 3 iterations.

the regions of the aneurysm in close proximity to the bone appeared to exhibit

higher activity concentration, as they are expected to be more prone to the spill

in effects from the hot background signal in the bone tissues. This was true for

all the reconstruction algorithms, except PSF+BC, where the bone contribution
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Figure 4.15: Quantification difference between AAA and AAAexc for all metrics.
This is shown for patients 1 – 3 (from top to bottom).

was successfully removed.
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Figure 4.16: Profile across the bone and the aneurysm, showing that the portion
of the aneurysm in contact with the bone are more prone to the spill in effect
from the bone.

4.4 Discussion

This study has investigated the partial volume and spill in effects in target re-

gions close to highly active background regions, and evaluated new techniques

which are capable of compensating for both effects especially as it applies to

different set of clinical scenarios. These techniques were compared using a simu-

lated phantom, the resolution PET/MR phantom data obtained from a Siemens

Biograph mMRTM scanner and AAA [18F]-NaF PET/CT data of three patients

scanned with the Siemens Biograph mCTTM scanner.
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For the simulation, the recovery coefficients increases with increasing lesion

diameter, where lesion L2 with the smallest diameter of 6 mm has the smallest

recovery coefficient. Although, one would expect the RC values for all lesions to

improve with increasing iterations, this is only true for lesions L3, L4 and L6.

Lesions L1, L2 and L5 have their RC reducing as iteration increases, especially

at 7.5 mm FWHM, until it converges at about 10 iterations. This behaviour is

attributed to the spill in effect in previous studies (Akerele et al. [2018]) as these

lesions are more prone to spill in effect because they are closer to the bladder

(Liu [2012], Kolb et al. [2015], Puri et al. [2017], Akerele et al. [2018]). Even

though L1 and L3 have the same diameter (10 mm), this spill in effect resulted

in a big difference in quantification of up to 15% and 38% in RCmean and RCmax

respectively between L1 and L3. The spill in effect also makes L5 (8 mm) to

have higher RC than even L4 (20 mm). However, despite the spill in effect in L2

(6 mm), it still has lower RC than other lesions for all reconstruction algorithms.

This is due to the fact that the spill in effect is probably offset by the spill out

effect which is more prominent in small lesions. While the spill in effects in L1 and

L2 might not be surprising, one would possibly query why there is spill in effect

in L5 and not L3 or L4 (because they are relatively at the same distance from

the bladder). However, a possible explanation to this is that bladder expands

primarily in the superior anterior direction (Foroudi et al. [2013], Grønborg et al.

[2015], Akerele et al. [2018]). Therefore, lesions in that direction are more likely

to be affected by an increase in bladder size and volume, and hence by the spill

in effect from the bladder.

Comparing the reconstruction algorithms, OSEM and PSF images show a

significant overestimation in lesion SUVmax of up to 40% for lesions very close
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to the bladder, and small lesions are greatly underestimated (Figure 4.6). But

BC, LP and HKEM methods have almost steady uptake recovery (close to 1) for

all lesions except L2. Although PSF could not give a good recovery for lesions

L1 and L2, it does give the highest value and lowest variability in RC for L3, as

system resolution reduces (Table 4.1). This shows that PSF is more robust for

resolution recovery when the lesions are not close to hot region and are bigger

than 8 mm. So, for clinical routines involving these specific cases, combining

PSF with any of BC, LP or HKEM methods will be an added advantage as seen

in Table 4.2.

Comparing the image contrast and noise properties of all the methods, BC,

LP and HKEM have significantly higher CNR than OSEM and PSF (as seen in

Figure 4.8). This is because there is a spill of activity from the bladder to the

surrounding, thereby making the background values higher, and subsequently

reducing the CNR of the lesions. This spill of activity is corrected for by the 3

correction techniques, hence showing higher CNR.

For the resolution phantom in Figure 4.9, although the spheres were meant

to be cold (i.e. without any radioactivity), the reconstructed images showed a

certain level of residual activity in the spheres due to spill in effect from the

background. The amount of radioactivity varied in magnitude as a function of

the sphere diameter, with smaller spheres having higher activity than bigger ones,

thereby suggesting that spill in effect from the background to the cold spheres is

prominent in small structures. The apparent higher activity in the small spheres

might also have been affected by the ROI selection. A small activity was observed

also in the bigger spheres, this may be due to the positive bias induced by the

non-negativity constraint of the OSEM algorithm and less because of PVEs at
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the periphery of the cold spheres. The correction techniques reduced the spill in

effects in the cold spheres, with BC yielding the best correction performance, as

demonstrated by the almost zero activity values observed in all empty spheres

at about 10 iterations. HKEM yielded a considerably lower activity for all the

spheres compared to OSEM and PSF, while LP outperformed HKEM. However,

LP could not remove as much activity from the cold spheres as the BC method.

The performance of the reconstruction algorithms for the patient PET im-

ages were evaluated in terms of convergence properties, contrast and CoV as

displayed in Figures 4.11 and 4.13. In all 3 patients, OSEM yielded the high-

est SUVmean, SUVmax and TBRmax at early iterations while the PSF+HKEM

algorithm exhibited the lowest. However, at late iterations, PSF and PSF+BC

methods attained the highest values. This could be clearly seen in Figures 4.12

and 4.13 where PSF-reconstructed images attained better noise reduction and

higher contrast compared to the OSEM images. The high SUVs in OSEM recon-

structed images might be due to the noise amplification of the algorithm, com-

pared with PSF-reconstruction. In addition to the considerable noise reduction,

PSF+LP and PSF+HKEM images achieved higher contrast, with PSF+HKEM

yielding the best performance. The significant noise reduction attained with the

PSF+HKEM method could be partly responsible for the considerably lower val-

ues obtained from the PSF+HKEM images. It should also be noted, however,

that PSF reconstructions exhibited a slow convergence, which has been a com-

monly reported issue in past PSF resolution modelling reconstruction studies

(Rahmim et al. [2013], Munk et al. [2017]).

For the patient data, the spill in effect from the active bone adjacent to the

aneurysm resulted in major differences between the two ROIs (AAA and AAAexc)
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for SUVmean, SUVmax and TBRmax (Figure 4.14), especially for patient 3. This

spill in effect was further demonstrated by extracting a profile across the bone

and the aneurysm as demonstrated in Figure 4.16. It could be seen that regions

of the aneurysm in close proximity to the bone were relatively more prone to

the spill in effect from the bone. This was true for all the reconstructions algo-

rithms, except PSF+BC, where the bone contribution was successfully removed.

The differences in SUVs and TBR between AAA and AAAexc decreased with a

larger number of iterations for all algorithms, except PSF+BC which showed an

almost zero difference in all cases. This suggests that the spill in effect might have

been reduced at later iterations, as previously reported (Akerele et al. [2018]).

This observation might be explained by the convergence of all algorithms with

more iterations. However, a high noise amplification with little or no improve-

ment in the image contrast was observed for higher number of iterations (Figure

4.13). Therefore, all analysis were performed at three iterations, which follows

the recommended clinical settings, but without the use of post-filter.

It could also be noted that PSF+HKEM and PSF+LP images had consider-

ably higher differences compared to the other techniques in all the quantification

metrics used. Although PSF+LP performed slightly better than PSF+HKEM, it

could not remove as much spill in effects in the patient data as it did for the phan-

tom data. This could be due to the assumption that the segmented tissue inside

the VOI had a uniform activity concentration (Moore et al. [2012], Cal-Gonzalez

et al. [2018]). Since this is not the case for the patient data, the LP method

might have had the tendency to enforce a uniform uptake over the aneurysm

and the bone tissues, thereby limiting the performance of the algorithm. Also,

the seemingly high spill in effect in the PSF-based reconstructions could have
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been observed due to the commonly reported Gibbs artefacts, resulting in an

overshoot around the hot region (i.e. bone) (Rahmim et al. [2013], Nuyts [2015],

Munk et al. [2017]). This might have led to the considerably higher values for

AAA than AAAexc, making it appear as though there is a higher spill in effect

with PSF reconstruction. However, the background correction (BC) technique

corrected for this overestimation, and also improved the spill in correction in the

aneurysm. The large difference between AAA and AAAexc noticed for patient 3

might also have been observed due to inaccurate segmentation of the bone, and

ROI-induced errors (where the aneurysm ROI partly covers the bone). This was

also true for the resolution phantom where the performance of the LP method

was dependent on segmentation (as earlier discussed). This suggests that these

correction techniques were sensitive to segmentation errors (and potentially, mis-

alignment of PET and CT images), which might have posed limitations to their

performance. Investigations have been carried out on the effect of registration

errors on the HKEM technique (Deidda et al. [2019a]) and the effect of seg-

mentation errors on the BC reconstruction method (Akerele et al. [2018]). Past

studies have also shown that there is currently no firm consensus as to which

correction approach is the best (Soret et al. [2007], Hutton et al. [2013], Thomas

et al. [2016]).

The performance of the BC techniques could have been further enhanced by

further optimizing its implementation parameters. However, in this current work,

the BC was implemented as a simple, yet effective, spill in correction technique

which could be easily adopted for routine use in the clinic. Thus, we estimated

the background contribution at the 3rd iterations which is the most commonly

employed iteration in clinical PET exams. More so, the estimated background

129



Chapter 4

regions were quite active and large, and hence, it was reasonably expected that

the background activity would have nearly converged after the 3rd iteration, as

demonstrated in Figure 4.10. However, for smaller background regions, a higher

number of iteration might be required to ensure an adequate convergence.

4.5 Conclusion

The impact of the partial volume and spill in effects on PET quantification ac-

curacy in regions of interest close to high background activity regions has been

investigated. For that purpose, a systematic performance evaluation of three re-

cently proposed promising correction techniques was carried out using simulated

and experimental PET/MR phantom data as well as AAA PET/CT human pa-

tient data. The results showed that the BC method could be successfully used

to correct for the spill in effects in regions close to a hot background region.

The BC method was also robust to ROI-selection variability thus enhancing the

accurate PET signal quantification in large varieties of target regions of interest.

Although the other two techniques could not accurately correct for the spill in

effect, they did give a good resolution recovery and improved detectability for

small lesions. Their performance can be effectively improved when combined

with PSF, or when their implementation is further optimised. These methods

are promising for clinical integration for some specific cases where PVE has a

significant impact on clinical decisions.

130



Chapter 5

Clinical Application of the

Background Correction

Technique

The previous chapter compared the performance of the background correction

technique, in mitigating the quantitative inaccuracies due to the spill in effect

and the general partial volume effect, with other novel correction techniques. The

results showed that while other techniques gave improved resolution recovery and

image contrast, none could effectively correct for the spill in effect as much as

the BC method. Therefore, in this chapter, the BC method was applied to a

specific clinical scenario where the spill in effect poses a significant limitation to

PET quantification.
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5.1 Introduction

Abdominal aortic aneurysm (AAA) is the irreversible dilation of the abdominal

aorta to greater than 30 mm diameter, representing a more than 50% increase

compared with a normal aortic diameter. As the disease progresses, the aorta

becomes more enlarged, and could potentially rupture unless there is a timely

clinical intervention (Sakalihasan et al. [2005]). AAA rupture is life-threatening,

with more than 80% mortality rate and accounts for over 8,000 deaths annually

in the UK (Metcalfe et al. [2011]). The exact causes of the emergence and pro-

gression of AAA are not completely understood, however, the most common risk

factors for AAA development are smoking, male sex, hypertension and advancing

age (Johansen and Koepsell [1986], Alcorn et al. [1996]).

In clinical practice, once an AAA is identified, the patient enters a surveil-

lance programme, with serial measurements of the aortic diameter (commonly

using ultrasound) until the aneurysm meets a ‘diameter threshold’ for consider-

ing intervention (typically 55 mm). However, the use of aortic diameter alone

as a prognostic measure is somewhat limited because aneurysms vary in their

progression rate and risk of rupture (Kurvers et al. [2004], Hong et al. [2010],

Malm and Sadeghi [2017]). This suggests the need for more reliable tools to

identify patients at risk of AAA expansion and rupture, and so the use of imag-

ing biomarkers to assess the biological activity of AAA is a field of increasing

interest.

At the moment, [18F]-FDG is the most commonly used radiotracer for imag-

ing AAA due to its property of detecting vascular diseases caused by inflamma-

tion (Cocker et al. [2012], Vaidyanathan et al. [2015]), which is a key process in
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AAA progression (Lindeman et al. [2008]). However, different studies show con-

tradictory findings in terms of correlation between [18F]-FDG uptake and AAA

expansion or risk of rupture (Forsythe et al. [2016], Lee et al. [2018]). The use

of [18F]-FDG in imaging of AAA is therefore limited, with potential confounding

factors and lack of specificity, thereby raising concerns about its future clinical

use in predicting potential AAA expansion and risk of rupture (Forsythe et al.

[2016], Lee et al. [2018]). Therefore, an alternative radiotracer, [18F]-NaF, is

currently being explored as a marker for microcalcification in the cardiovascular

system (Janssen et al. [2013], Dweck et al. [2014], Bellinge et al. [2018]) and has

been used to investigate coronary atherosclerosis (Dweck et al. [2012a]), abdom-

inal atherosclerosis (Cal-Gonzalez et al. [2018]), aortic stenosis (Ferreira et al.

[2018]) and AAA diseases (Forsythe et al. [2018]). Preliminary investigation

(Forsythe et al. [2018]) shows that this tracer is promising for improved predic-

tion of AAA disease progression, and may therefore facilitate early intervention

for those at higher risk of rupture. However, a major confounding issue is the

spill in contamination from the bone into the aneurysm due to the limited PET

resolution and the associated partial volume effect. [18F]-NaF is predominantly

taken up by bones, so, the AAA regions in close proximity to the bones have

considerably higher uptake than more distal regions (Forsythe et al. [2018]).

Common conventional techniques to mitigate the spill in contamination in-

clude masking out the high uptake region in the image space, or simply excluding

areas of spill in from regions of interest during image analysis. The obvious chal-

lenge in these techniques is the high dependence of the measurements on clinician

subjective choices. In addition, a certain degree of potentially important physio-

logical information might be lost from the excluded regions. These issues clearly
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suggest the need for a more objective method to correct for the spill in effects.

Therefore, the aim of this study is to investigate the spill in effects in patients

diagnosed with AAA as a function of AAA diameter, [18F]-NaF uptake in bone,

as well as ROI selection. We also aim to correct for the spill in effects using the

background correction technique, and then compare its performance against the

conventional correction technique.

5.2 Methods and Materials

5.2.1 Datasets

Sixty-five (65) patient datasets with varying aneurysm diameter were selected

at random from the archive of the [18F]-sodium fluoride uptake in abdominal

aortic aneurysm (SoFIA3) study (NCT02229006) (Forsythe et al. [2018]) which

involved [18F]-NaF PET/CT imaging of AAA. The data consists of 55 males

and 10 females with age range 72.6 ± 6.9 years, body mass index 27.4 ± 3.4

kg/m2 and aortic diameter 48.4 ± 7.6 mm. Each patient was injected with 125

MBq of [18F]-NaF and scanned with the Biograph mCTTM PET-CT (Siemens

Healthineers, Knoxville, TN, USA) (Irkle et al. [2015]). A low-dose CTAC scan

was performed (120 kV, 50 mAs, 5/3 mm) followed by acquisition of PET data

using 3 × 10 min bed positions to ensure coverage from the thoracic aorta to the

aortic bifurcation.
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5.2.2 Reconstruction and Spill in Correction

The data were reconstructed using the STIR library (Thielemans et al. [2012])

with the OSEM algorithm (21 subsets, 3 iterations). Additionally, PSF modelling

was incorporated into the reconstruction as an isotropic 3D Gaussian kernel with

4.4 mm FWHM in both axial and transverse planes (Karlberg et al. [2016]). The

spill in effect from the bone into the aneurysm was corrected using the previously

proposed background correction technique (Tsoumpas and Thielemans [2009],

Silva-Rodriguez et al. [2016], Akerele et al. [2018]) as explained in Chapter 2.

All resulting reconstructed images were post-filtered with an isotropic 3 mm

FWHM Gaussian filter which is the standard clinical setting.

5.2.3 Image Analysis

All reconstructed images (OSEM, PSF and PSF+BC) were analysed using OsiriX

imaging software (version 10.0.2, Geneva, Switzerland), but, results from only

sixty-three (63) reconstructed images were included in the final analysis because

two (2) of them were outliers. ROI analysis was performed by drawing semi-

automated ellipsoidal ROIs on the CT images. In order to investigate the spill in

effect, two ROIs were drawn: (i) an ROI over the entire aneurysm (AAA), and (ii)

an ROI over the aneurysm but excluding the part close to the bone (AAAexc). All

ROIs were drawn on the CTAC images, and then transferred to the PET images.

For both ROIs, the maximum SUV was recorded on each slice and averaged,

following the same approach used in the SOFIA3 study. An ROI was also drawn

on the normal aorta (non-AAA) in order to investigate if there is a significant

uptake discrepancy between aneurysm and normal aorta. Following standard
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clinical quantification methods (Vallabhaneni et al. [2004], Chen and Dilsizian

[2015], Pawade et al. [2016], Forsythe et al. [2018]), the corrected maximum SUV,

cSUVmax, and maximum target-to-background ratio, TBRmax, were estimated

using:

cSUVmax = SUVmax(T )− SUVmean(Bp) (5.1)

TBRmax =
SUVmax(T )

SUVmean(Bp)
(5.2)

where SUVmax(T ) corresponds to the maximum SUV in the target aneurysm

region, while SUVmean(Bp) is the mean SUV in the background (blood pool

region). The blood pool SUV was taken as the average of 3 circular 2 cm2 ROIs

placed on consecutive slices at the inferior vena cava.

5.2.4 Statistical Analysis

Statistical analysis was performed using the IBM SPSS software package version

23. For all patients, we investigated whether there was a significant uptake in

the aneurysm compared with the normal aorta. It is useful to note here that the

AAA is normally said to have a clinically significant uptake when the % uptake

difference between AAA and non-AAA is greater than 25% (Dweck et al. [2012b],

Joshi et al. [2014], McBride et al. [2016.]). Additionally, a linear regression analy-

sis was performed to investigate the correlation between [18F]-NaF uptake in the

aneurysm and AAA diameter, both for the uncorrected (OSEM) and corrected

(PSF and PSF+BC) images. Finally, the significance of the uptake differences

between the uncorrected and corrected images and between the two ROI groups
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(AAA and AAAexc) for all reconstruction methods was compared using a paired

t-test. A P-value less than 0.05 was considered statistically significant.

5.3 Results

This section presents the quantification results of the aneurysm and normal aorta

obtained from all the reconstruction algorithms. All analyses were done with

reconstructed images at 3 full iterations with and without post-filtering.

Figure 5.1 shows the images as reconstructed from all three reconstruction

algorithms which show a good [18F]-NaF uptake in the aneurysm and the bone.

Note that the bone uptake has been removed in the PSF+BC images.

5.3.1 [18F]-NaF Uptake in Aneurysm (AAA) and Normal

Aorta (non-AAA)

For all the patient data involved in the study, there is a higher [18F]-NaF uptake

(quantified as SUVmax) in the aneurysm than in the normal aorta both for filtered

and unfiltered images, as shown in Figure 5.2. With the application of filtering,

the mean SUVmax for the normal aorta is similar for all the algorithms, while for

the aneurysm, the mean SUVmax is different for all the algorithms. The t-test

conducted on the reconstruction algorithms showed that there is a significant

difference in the aneurysm (AAA) SUVmax between OSEM versus PSF+BC,

but not with OSEM versus PSF. There is also a statistically significant differ-

ence in the aneurysm SUVmax between the correction algorithms (i.e. PSF and

PSF+BC). However, for the normal aorta, there is no significant difference be-

tween the uptake values of the different reconstruction methods. Without post-
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(a) 

(b) 

Figure 5.1: CT and PET reconstructed images of four indicative patient datasets
(a) with and (b) without postfilter. These images show high [18F]-NaF uptake
in the bone and the aneurysm.
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filtering, OSEM images have significantly higher uptake than PSF-reconstructed

images, both for the aneurysm and the normal aorta, but there is no significant

difference in SUVmax between PSF and PSF+BC images.
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Figure 5.2: The SUVmax of AAA and non-AAA obtained from all the recon-
struction algorithms with: (a) application of 3 mm Gaussian filter, and (b) no
post-filtering. The plot displays the mean SUVmax of all patients and the error
bar (SD). The significance of uptake differences in AAA was evaluated using
paired t- test.

5.3.2 Correlation between [18F]-NaF Uptake and AAA

Diameter

Figure 5.3 shows the results of the regression analysis performed on all the uncor-

rected (OSEM) and corrected (PSF and PSF+BC) images to investigate the cor-

relation between [18F]-NaF uptake and AAA diameter. For all the reconstruction

algorithms and with post-filtering, no significant correlation was observed be-

tween [18F]-NaF uptake in the aneurysm and AAA diameter, (OSEM: R=0.097,

P=0.99; PSF: R=0.057, P=0.99; PSF+BC: R=0.025, P=1). Although without

post-filtering, there seems to be a linear but weak correlation between aneurysm
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uptake and diameter, but this is not statistically significant for either of the

reconstruction algorithms (OSEM: R=0.175, P=0.96; PSF: R=0.206, P=0.99;

PSF+BC: R=0.161, P=0.99). Also, PSF seems to have a slightly higher (but

non-significant) R value than PSF+BC, both with and without post-filtering.
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Figure 5.3: Regression analysis to investigate the relationship between [18F]-NaF
uptake and AAA diameter, (a) with and (b) without post-filtering respectively.
[18F]-NaF uptake was quantified using SUVmax with an ROI covering the entire
aneurysm (AAA). In the equations, S & D are the AAA SUVmax and diameters
respectively.
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5.3.3 AAA Uptake Differences due to ROI Selection

Table 5.1 shows the SUVmax, cSUVmax and TBRmax of the AAA and AAAexc

calculated using Equations 5.1 and 5.2. It can be seen that there is an up-

take difference between AAA and AAAexc for all the reconstruction algorithms,

both with and without the application of post-filter. With AAAexc and with

post-filtering, PSF and PSF+BC almost have the same SUVmax (2.80), but with

the whole AAA, PSF has the highest SUVmax (3.59 ± 0.96), while PSF+BC

has the lowest (2.89 ± 0 .79). For SUVmax, cSUVmax and TBRmax, the dif-

ference in quantification between AAA and AAAexc is statistically significant

for OSEM and PSF, but not for PSF+BC. Also, PSF+BC showed the least

difference between AAA and AAAexc, and it also had the least SD across all

the quantification metrics used. Although the SUVs are significantly increased

without post-filtering, there appears not to be any significant uptake difference

between AAA and AAAexc for all the reconstruction algorithms, except for PSF

where there is a significant difference in SUVmax and cSUVmax.

It could also be seen (in Table 5.2) that while using AAAexc with post-

filtering, the mean % uptake difference (d̄) between the aneurysm and normal

aorta is about 70% for all algorithms, but this is much higher when quantifying

with the AAA, as OSEM and PSF images have higher values than PSF+BC

(OSEM ≈ 109%, PSF ≈ 122% and PSF+BC ≈ 79%). The 95% Limit of Agree-

ment of d̄, defined as LOA = d̄ ± 1.96SD, is also higher in OSEM and PSF

images than PSF+BC images. There is also a major difference in the num-

ber of patients having a significant AAA uptake (as depicted by a % difference

>25%). With AAAexc, about 84% (86% for PSF and PSF+BC reconstructions)
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Table 5.1: The SUVmax, cSUVmax and TBRmax of the aneurysm (AAA) for
all the reconstruction algorithms with and without post-filtering. The SUVs of
AAA were extracted using two ROIs (AAA and AAAexc) in order to quantify
the spill in effect from the bone. The differences between AAA and AAAexc

were compared using a paired t-test. Values are expressed as mean ± standard
deviation (SD). A P-value less than 0.05 was considered statistically significant.

Mean ± SD P-Value
AAA AAAexc

SUVmax OSEM 3.31 ± 0.84 2.80 ± 0.80 0.00023
PSF 3.59 ± 0.96 2.80 ± 0.75 <0.0001
PSF+BC 2.89 ± 0.79 2.80 ± 0.76 0.43

cSUVmax OSEM 2.60 ± 0.79 2.07 ± 0.74 0.0001
PSF 2.71 ± 0.88 1.92 ± 0.67 <0.0001
PSF+BC 2.08 ± 0.69 2.00 ± 0.69 0.38

TBRmax OSEM 4.87 ± 1.58 4.10 ± 1.49 0.003
PSF 4.27 ± 1.28 3.33 ± 1.05 <0.0001

3
m

m
p

os
t-

fi
lt

er

PSF+BC 3.80 ±1.23 3.70 ±1.25 0.55
SUVmax OSEM 7.93 ± 2.56 7.36 ± 2.68 0.23

PSF 5.24 ± 1.49 4.62 ± 1.50 0.026
PSF+BC 4.82 ± 1.46 4.63 ± 1.49 0.49

cSUVmax OSEM 7.23 ± 2.55 6.66 ± 2.66 0.23
PSF 4.39 ± 1.49 3.77 ± 1.48 0.024
PSF+BC 4.04 ± 1.42 3.86 ± 1.46 0.48

TBRmax OSEM 12.15 ± 5.22 11.30 ± 5.36 0.38
PSF 6.54 ± 2.61 5.78 ± 2.56 0.11

n
o

p
os

t-
fi
lt

er

PSF+BC 6.67 ±2.80 6.42 ±2.85 0.64

of the patients have significant uptake in the aneurysm, whereas with AAA, it

is 94% in OSEM, 95% in PSF and 87% in PSF+BC. But without post-filtering,

although the mean % uptake difference (d̄) between the aneurysm and normal

aorta is significantly increased in all the algorithms, the % number of patients

having a significant AAA uptake is greatly reduced for PSF (from 95% to 89%)

and PSF+BC (from 87% to 84%), but it remains the same for OSEM images.

Also, the resulting difference in the % number of significant AAA uptake when

quantifying with AAA and AAAexc is 10% for OSEM, 3% for PSF and 1% for
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PSF+BC.

Table 5.2: The analysis of the % uptake difference (d) between aneurysm (AAA
or AAAexc) and normal aorta (non-AAA) using the SUVmax with and without
post-filtering. d̄ is the mean % uptake difference for all the patients, and LOA
is the 95% Limit of Agreement of d̄, defined as LOA = d̄± 1.96SD.

Mean % SD LOA No
¯

with
difference, d̄ d >25% (%)

OSEM AAA 108.98 61.43 -11.42 to +229.38 59 (94)
AAAexc 73.54 47.33 -19.23 to +166.31 53 (84)

PSF AAA 121.59 65.21 -6.21 to +249.40 60 (95)
AAAexc 70.48 39.84 -7.62 to +148.57 54 (86)

PSF+BC AAA 78.94 42.13 -3.62 to +161.51 55 (87)

3
m

m
p

os
t-

fi
lt

er

AAAexc 73.81 42.37 -9.22 to +156.85 54 (86)
OSEM AAA 127.50 91.66 -52.15 to +307.15 59 (94)

AAAexc 111.01 91.00 -67.36 to +289.37 53 (84)
PSF AAA 119.78 77.80 -32.71 to +272.26 56 (89)

AAAexc 93.29 73.93 -51.62 to +238.20 54 (86)
PSF+BC AAA 103.33 76.06 -45.74 to +252.41 53 (84)

n
o

p
os

t-
fi
lt

er

AAAexc 95.94 78.07 -57.08 to +248.95 52 (83)

This disparity in quantification between AAA and AAAexc is partly due to

the spill in effect from the bone into the aneurysm, as shown with line profiles

extracted from all the reconstruction algorithms in Figure 5.4. The Figure pre-

sented two patient cases: Case 1 where aneurysm is detached from the bone

(Figure 5.4a and c); and Case 2 where the aneurysm is attached (Figure 5.4b

and d). The maximum voxel values were extracted from the normal aneurysm

part (A1) and the aneurysm part close to the bone (A2), and the results are

presented in Table 5.3.

This spill in effect varies in magnitude with the relative position of the

aneurysm to the bone, as aneurysms in close contact with the bone suffer more

spill in effect than detached aneurysms. When the aneurysm is detached from

the bone (Figure 5.4a), the maximum voxel value for PSF obtained with 3 mm
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(a) (b)

(c) (d)

Figure 5.4: Profile across the bone and the aneurysm showing the spill in effect
from the bone to the aneurysm. (a) and (b) are images with 3 mm Gaussian filter,
while (c) and (d) are images without post-filter. The portion of the aneurysm
prone to the spill in effects from the bone is highlighted with the dashed rectangle.
In (a,c), the aneurysm is detached from the bone, but in (b, d), it is in contact
with the bone.

post-filter is 1.73 in the spill in prone area, and 1.54 in the rest of the aneurysm.

This implies that the spill in effect can potentially increase the SUVmax in the

aneurysm by a factor of 1.12. However, when the aneurysm is in contact with the

bone (Figure 5.4b), the maximum voxel value is 3.18 in the spill in prone area,

and 2.05 in the rest of the aneurysm, resulting in a spill in factor of about 1.55.
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Table 5.3: The analysis of the spill in effect as a result of application of post-filter
and relative location of the aneurysm to the bone. This is done by extracting
the SUVmax in the normal aneurysm area (A1) and in the spill in prone areas
(A2) (close to the bone) with and without post-filter.

3 mm post-filter No post-filter
A1 A2 spill in factor (A1

A2
) A1 A2 spill in factor (A1

A2
)

OSEM 1.15 1.38 1.20 1.46 1.11 0.76
PSF 1.54 1.73 1.12 1.22 1.26 1.03

C
as

e
1

PSF+BC 1.56 0.80 0.51 1.24 0.46 0.37
OSEM 1.73 2.68 1.55 1.66 4.24 2.55
PSF 2.05 3.18 1.55 2.06 3.22 1.56

C
as

e
2

PSF+BC 2.09 2.45 1.17 2.14 2.44 1.14

However, without the application of post-filter, the spill in factor is reduced when

the aneurysm is detached from the bone (Figure 5.4c). For aneurysm attached to

the bone ((Figure 5.4d), the spill-in factor is greatly increased for OSEM (from

1.55 to 2.55) and slightly for PSF (1.55 to 1.56). The reason for this behaviour

might be because of noise interference which mostly affects the OSEM image.

5.4 Discussion

[18F]-NaF PET imaging is currently being explored as a promising imaging

biomarker for microcalcification in AAA. However, a confounding issue is the

spill in contamination from the bone into the aneurysm. Therefore, this study

has investigated the spill in effect in [18F]-NaF PET imaging of the abdominal

aortic aneurysms and how it changes with ROI selection. We also evaluated the

performance of the background correction technique aimed at reducing the spill

in effect.

For all the patient data involved in the study, there is a significant [18F]-

NaF uptake in the aneurysms, and for post-filtered images, the SUVmax in the
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aneurysm obtained from PSF-reconstructed images is higher than that in OSEM

images, and this is the case for 49 out of the 63 patients under review. But with-

out post-filtering, OSEM images have higher SUVmax than PSF images. How-

ever, the regression analysis performed on all the reconstructed images showed

that there is no significant correlation between [18F]-NaF uptake and AAA di-

ameter for all the reconstruction algorithms both with and without post-filtering

(Figure 5.3). Similar studies were conducted with [18F]-FDG PET (Reeps et al.

[2008], Truijers et al. [2008], Barwick et al. [2014]) where no correlation was

recorded between [18F]-FDG PET uptake and aneurysm diameter. It was then

concluded that PET uptake is a feature of both normal and aneurysmal aortic

walls, and therefore not related to the aneurysm size. For example, a patient

with a large aneurysm size (diameter 61 mm) showed a low SUVmax of 2.50 and

he is still alive. However, three patients with the lowest aneurysm size (diameter

40-43 mm) showed a high uptake (SUVmax > 4). These patients died within

a year of follow-up, still with their aneurysms intact. This suggests that [18F]-

NaF may have the ability to stratify high risk aneurysms even before rupture,

as revealed by previous work published from results obtained from the SoFIA3

study (Forsythe et al. [2018]). Therefore, better AAA disease prediction using

[18F]-NaF would be of great benefits for patients with high-risk aneurysms which

size may be smaller than what the current guidelines may suggest (i.e. 55 mm).

Also, all reconstruction algorithms demonstrated a higher [18F]-NaF uptake

in the aneurysms than normal aorta, as illustrated in Figure 5.2. For filtered

images, the mean SUVmax for the normal aorta is almost the same for all the

algorithms, whereas for the aneurysm, the SUVmax is different for all the algo-

rithms, with the PSF algorithm producing images with the highest SUVmax. The
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paired t-test, conducted on the reconstruction algorithms, showed that there is a

significant difference in AAA SUVmax between OSEM and PSF+BC, but not for

OSEM versus PSF. There is also a statistically significant difference in the AAA

SUVmax between the correction algorithms (i.e. PSF and PSF+BC). Apart from

the uptake differences observed across the reconstruction algorithms, a statis-

tically significant uptake difference was also noticed in the aneurysm when the

ROIs were drawn differently (i.e. with AAA and AAAexc). PSF and PSF+BC

produced almost the same SUVmax in AAAexc, but PSF produced the highest

SUVmax in AAA, while PSF+BC produced the lowest. These higher values ob-

served in PSF reconstructions might likely be due to the commonly reported

Gibbs artefacts, resulting in an overshoot around the hot region (i.e. bone)

(Rahmim et al. [2013], Nuyts [2015]). This led to a considerably higher value

for AAA than AAAexc, making it appear as though there is a higher spill in ef-

fect with PSF reconstruction. However, the background correction technique was

not susceptible to this overestimation, thereby making the technique effective for

spill in correction area of the aneurysm. For SUVmax, cSUVmax and TBRmax,

the difference in quantification between AAA and AAAexc was statistically sig-

nificant for OSEM and PSF, but not for PSF+BC (Table 5.1). Also, PSF+BC

showed the least difference between AAA and AAAexc, and it also had the least

SD across all the quantification metrics used.

Again, it could be seen that when using AAAexc with 3 mm post-filter, the %

difference between aneurysm and normal aorta is within 70% for all algorithms,

but there is a big disparity when quantifying with the AAA. This also leads to

a major difference in the number of patients having a significant AAA uptake

as shown in Table 5.2 (note that significant difference is defined as % Difference
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> 25% (Dweck et al. [2012a], Joshi et al. [2014], McBride et al. [2016.]). With

AAAexc, about 84% (86% in PSF-based reconstructions) of the patients have

significant uptake in the aneurysm, whereas with AAA, we have 94% in OSEM,

95% in PSF but only 87% in PSF+BC. But without post-filtering, the % num-

ber of patients having a significant AAA uptake is greatly reduced for PSF and

PSF+BC, but it remains the same for OSEM images. Also, the resulting differ-

ence in the % number of significant AAA uptake when quantifying with AAA or

AAAexc with (or without) post-filtering is 10% (10%) for OSEM, 9% (3%) for

PSF and 1% (1%) for PSF+BC.

This significant disparity between the two ROIs is partly due to the spill in

effect emanating from the adjacent bone into the aneurysm, as demonstrated

in Figure 5.4. This spill in effect varies in magnitude with the position of the

aneurysm relative to the bone, as aneurysms in close contact with the bone are

more susceptible to the spill in effects from the bone (SUVmax amplified by about

1.55) than aneurysms detached from the bone (SUVmax amplified by about 1.12).

It then appears that a good option would be to exclude areas close to the bone

during image analysis. However, the obvious challenge would be that a certain

degree of potentially important physiological information might be lost from the

excluded regions. This is because the posterior retroperitoneal rupture (rupture

from the aneurysm site close to the bone) is the most common and which could

be treated with early clinical intervention (Sakalihasan et al. [2005], Assar and

Zarins [2009]). It could also be seen in the patient cases presented in Figure 5.1

that there are genuine CT signal and PET uptake in the posterior parts of the

aneurysm which are distinct from spill in effect from the bone.

This spill in effect and the Gibbs artefacts in the PSF-reconstructed images
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were considerably reduced when the images were analysed without post-filtering.

PSF images have lower quantitative values than OSEM images, and the discrep-

ancies in quantification between AAA and AAAexc were significantly reduced

(Tables 5.1 and 5.2). Therefore, a good option for reducing the spill in ef-

fect would also be to avoid post-filtering of the images, as previously validated

in Akerele et al. [2018]. However, the challenge is the noise amplification in

the reconstruction algorithms, which would inversely impact image contrast and

quantification. This would be particularly challenging when using SUVmax for

quantification, as this metric is more prone to noise.

5.5 Conclusion

This study has investigated the spill in effect in the [18F]-NaF PET imaging

of the AAA, and also evaluated the performance of the background correction

(BC) technique in improving quantification and correcting for the spill in effect.

This study showed that the spill in effects from the bone leads to overestimation

of SUVmax in the aneurysm and this may adversely affect patient management

and treatment decision. It has also been shown that the spill in effect is further

influenced by the ROI selection especially when the aneurysm is adjacent to the

active bone, in which case SUVmax in the aneurysm could be amplified by about

a factor of 1.5. However, the background correction (BC) technique is effective

in correcting for the spill in effect from the bone, thereby enhancing accurate

quantification at the aneurysm. Since this method helps to artificially eliminate

the activity from the bone and the consequent spill in effect, employing this

technique will lead to a more accurate SUVmax quantification at the aneurysm.
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Chapter 6

General Conclusion and Future

Work

6.1 Summary

Despite the wide applicability of PET imaging in oncology, cardiology and neu-

rology, its quantitative strength is often limited due to the partial volume effect.

This effect is particularly challenging when imaging a region of interest close to

an active region such as the urinary bladder, myocardium and the bone. The

main objective of this thesis was to investigate the partial volume spill in effect

and how it affects PET quantification in the regions of interest, as well as inves-

tigate the feasibility of the background correction technique in mitigating this

effect. In the different chapters of the thesis, different issues have been addressed,

including: investigation of the spill in effect using simulated and experimental

phantoms as well as patient datasets; spill in correction with the proposed back-

ground correction technique; comparison of the background correction with other
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novel techniques; and application of the background correction to a specific clin-

ical application.

Following the overview and the theoretical background to the thesis in Chap-

ters 1 and 2, Chapter 3 extensively investigated the effect of the spill in activity

from hot regions on adjacent lesion quantification, as well as the improvement

brought about by the background correction technique. This work revealed that

lesions or tissues relatively close to hot regions (within 15-20 mm) are more prone

to the spill in effect, causing reduced visibility and activity overestimation. The

overestimation in lesion activity is considerably high at lower iterations but it

gradually reduces as iteration increases. However, even at 30 iterations, the

overestimation is still up to about 31% and 6% for SUVmax and SUVmean re-

spectively, indicating that the spill in effect is more pronounced in SUVmax than

SUVmean, and reduces over iteration. It might then appear that a natural solu-

tion to reducing the spill in effect is by increasing the iteration. However, this

comes at the expense of reduced lesion contrast and increased noise, and the

SUVmax is quite sensitive to noise. This partly explains why the SUVmax is more

prone to the spill in effect. On the other hand, post-filtering the reconstructed

images to reduce the noise will in turn aggravate the spill in effect, as the ac-

tivity overestimation is doubled by the use of filtering. It was also shown that

for lesions in close proximity to the hot region, PSF algorithm performed similar

or even worse than the OSEM algorithm. This behaviour is possibly due to the

commonly reported Gibbs artefacts, resulting in an overshoot around the hot re-

gion. However, improved quantification and better lesion contrast were achieved

with the BC technique irrespective of the lesion size, lesion distance from the

hot region, the activity in the hot region, or application of post-filter.

152



Summary

Chapter 4 systematically evaluated the performance of the BC technique in

comparison with two novel correction techniques LP and HKEM using both sim-

ulated and experimental PET/MR phantom data as well as abdominal aortic

aneurysm (AAA) PET/CT human patient data. In all the data, the results

showed that the LP and HKEM techniques have improved lesion contrast and

noise-reduction capabilities compared with OSEM, PSF and BC, but they could

not successfully correct for the spill in effects in regions close to a hot background

region as much as the BC technique. They are also sensitive to segmentation and

ROI-induced errors resulting in a huge difference in SUVs when the ROIs were

drawn slightly differently. However, the BC method was robust to segmentation

and ROI-selection variability thus enhancing the accurate PET signal quantifi-

cation in large varieties of target regions of interest close to a hot background

region. Since the BC method could only correct for the spill in effect, while

the other methods gave improved contrast and reduced noise, it was therefore

stipulated that the performance of the BC method could be further enhanced

by combining it with more advanced reconstruction methods. The combination

effect was demonstrated using the simulated phantom (Table 4.2) as the RC of

the BC method could potentially be increased from 35% to around 80%.

Chapter 5 specifically applied the BC technique to 65 sets of abdominal aortic

aneurysm PET/CT human patient data with the intent of correcting for the

spill in effect emanating from the bone into the aneurysm. The results showed

a significantly higher uptake in the aneurysm compared to normal aorta. This

uptake in the aneurysm is not related to the aneurysm diameter with and without

BC correction. This is also in line with previous studies which showed that PET

uptake is a feature of both aneurysm and normal aorta. However, there was
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a significant difference in the aneurysm uptake with OSEM and PSF methods

when the ROIs were drawn slightly differently. This uptake difference is partly

due to the spill in effect from the bone into the aneurysm which affected mostly

the posterior part of the aneurysm adjacent to the bone. This spill in effect

might adversely affect patient management and treatment decision as the result

showed a net difference of 10% and 9% with OSEM and PSF respectively in

the number of patients having significant aneurysm uptake. However, the net

difference is only 1% with the BC method. Also, this effect is dependent on the

proximity of the aneurysm to the bone, as the SUVmax could be amplified by

almost a factor of 1.5 for aneurysms almost attached to the bone, but only a

factor of 1.1 for those detached from the bone. Thus, the study concluded that

accurate quantification can be achieved in the aneurysm region using the BC

technique irrespective of the proximity of the aneurysm to the bone, and the

ROI delineation criteria.

In general, the background correction method has been shown to be appro-

priate for reliable quantification and diagnosis of regions near a hot region. In

this project, the background correction technique has been shown to be appli-

cable for two major clinical investigations, namely: indicative PET examination

of the pelvic areas for infection, metastases and cancer; and in the [18F]-NaF

PET examination of patients with abdominal aortic aneurysm. However, this

correction technique is not limited to the investigated clinical scenarios. It could

potentially be applied to imaging of any high activity regions such as the brain,

head and neck, myocardium, as well as bone.
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6.2 Limitations

A major limitation of this work is that there is no TOF implementation, whereas

the modelled GE and the Biograph PET/CT scanners support TOF. Although

TOF has been shown to mitigate errors due to data inconsistency (Vandenberghe

et al. [2016]), it is not yet certain if TOF implementation can sufficiently correct

for spill in effect, especially for proximal lesions as shown in Chapter 3. However,

this has recently been implemented in the STIR library (Efthimiou et al. [2019]),

and it could be potentially included in future investigations.

Another limitation is the lack of detailed realistic simulations to model some

effects such as positron range, non-collinearity, detector response, inter-crystal

scattering etc. Furthermore, a crucial approximation is that an image-based

position-invariant Gaussian blurring was modelled, and the same analytical model

was used to simulate and reconstruct the data. Although this is helpful for in-

vestigating the performance of the algorithm, it would have been preferable to

utilise Monte Carlo simulators. Nevertheless, these limitations do not cancel the

relevance of the background correction method because acquired phantom and

patient datasets were also utilised which demonstrated that the recently pro-

posed background correction method successfully corrects for the background

activity.

Also, a spatially-invariant model of the PSF was used in this work due to the

complexities and computational demands associated with the use of a spatially-

variant model. This might have limited the performance of the PSF algorithm in

correcting for the spill in effect as the results clearly showed that PSF performed

similarly to OSEM especially for proximal lesions. Although previous works have
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reported similar behaviour between spatially-variant and spatially-invariant PSF

models in terms of resolution, contrast and noise metrics (Teo et al. [2007], Alessio

et al. [2010]), however, it is reasonable that a spatially-variant model of the

PSF would improve the system resolution in the entire field of view. Therefore,

it might be more appropriate to implement a realistic, spatially-variant PSF

modelling.

6.3 Future Work

In this current work, the BC was implemented as a simple, yet effective, spill in

correction technique which could be easily adopted for routine use in the clinic.

Thus, the background contribution was estimated at the 3rd iteration which is

the most commonly employed iteration in clinical PET exams. However, the

performance of the BC techniques could be further enhanced by optimizing its

implementation parameters. Since the estimated background regions were quite

active and large, it was reasonably expected that the background activity would

have nearly converged after the 3rd iteration. However, for smaller background

regions, a higher number of iteration might be required to ensure an adequate

convergence.

A natural extension of this work would be to validate the applicability of the

BC technique with more relevant clinical datasets. It might also be required to

perform more clinically-oriented method evaluation such as lesion detectability

with receiver operating characteristics (ROC) analysis and inter-observer vari-

ability studies. Also for the clinical validation in chapter 5, the investigation

was done with only baseline data, so the effect of spill in correction on the abil-
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ity of [18F]-NaF PET/CT to predict AAA disease progression was not studied.

Therefore, follow-up datasets could potentially be included in future work.

Also, the clinical study involved the use of [18F]-NaF PET/CT imaging

where the background region (i.e. bone) was segmented from the CTAC image.

The clinical translation of the BC technique might be challenging for [18F]-NaF

PET/MR imaging in terms of the anatomical segmentation of the bone. An

alternative approach will then be to segment the bone from the PET image, but

this will require a more careful implementation as the segmented bone might also

include the spill in prone regios of the aneurysm. Therefore, another potential

advantage of using the BC method could be in improving automated segmen-

tation methods. Although segmentation is better carried out using anatomical

images due to their better contrast, it has however been shown in Chapters 3

and 5 that the background correction technique enhances better lesion contrast

and visibility, as it makes it easier to see the boundaries of the lesions of inter-

est more clearly. Therefore, this suggests that an automatic or semi-automated

segmentation may be more accurate if performed on background corrected PET

images. It will also be interesting to carry out radiomic analysis study where the

proposed background correction method is expected to offer a larger uptake area

to evaluate its characteristics.

Throughout the thesis, it has been shown that the spill in effect is more pro-

nounced in SUVmax than SUVmean. So the use of SUVmean might be considered

for use in the clinic as opposed to the currently used SUVmax. However, the use

of SUVmean might not accurately reflect the functional distribution in an hetero-

geneous lesion such as the aneurysm where the activity in the most diseased part

is considerably higher than the remaining parts. So a potential future direction
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might be to introduce alternative SUV metrics such as the SUV50, SUV70, SUV90

which might be less sensitive to the spill in effect.
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