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Abstract 

 

Evaporation, flame formation and liquid-phase dynamics of isolated fuel droplet shares similar 

characteristics with the droplets within fuel spray. Hence, isolated droplet studies which involves 

simple mass and energy transport are relevance to the complex spray environment in combustion. 

Motivations in the present work evolves around the evaluation of disruptive, transient liquid and gas 

phase of evaporating liquid fuel between analytical and experimental method. These disruptive and 

transient effects were analysed by several droplet conditions and arrangements including the 

experimentation on neat fuel with large difference in volatility and sooting propensities, stable and 

unstable emulsion droplets, soot contaminated diesel and multi-droplet combustion. Fuel droplets 

experimented in present work were suspended on 100 µm silicon carbide fibre and ignited in normal 

gravity, atmospheric pressure and ambient air. Backlighting was utilised to image the droplet and the 

flame was imaged directly by high speed cameras. The discrepancies between experimental and 

analytical works were divided into two conditions. Prolonged droplet heating affected the prediction 

accuracy of burning rate whilst prolonged fuel vapour accumulation affected the prediction accuracy 

of flame stand-off ratio. Higher amount liquid mass was ejected from water emulsion compared to 

ethanol emulsion droplet resulting 100% higher burning rate in each additive loading. It was found that 

microexplosion only occurs once all three conditions are present; the droplet temperature reaches 

the superheat limit of its lower boiling point component, a complete phase separation of emulsion 

components and the location of dispersed phase near the centre of the droplet. Compared to the 

unchanged reduction in burning rate of surface-contaminated droplet, the burning rate of volume-

contaminated droplet was further reduced when the particle loading was higher. The difference was 

determined to be factored by the agglomeration rate of particles. Surface-contaminated droplet had a 

complete particle agglomeration upon ignition whilst volume-contaminated droplet had gradual 

agglomeration of particles, with faster particle agglomeration in higher loadings. In both contamination 

conditions, the droplet heating effect was longer due to high particle absorbance and the accumulated 

fuel vapour is found to be reduced due to the supressed evaporation rate. During the combustion of 

closely packed fuel droplets, the critical distance is found to be longer for lower volatility fuel factored 

by its tendency to have fuel vapour accumulation effect which enlarges the flame size when there is a 

starvation of oxygen. Transient droplet heating during multi-droplet combustion was found to be 

affected by the availability of oxidiser and heat transfer from the flame of nearby droplets. On the 

other hand, the combustion stability depended on the inter-droplet distance between neighbouring 

droplet. Overall, it is found that during transient droplet heating, longer duration taken for a fuel 

droplet to reach its boiling point would prolong its effect whilst the effect of fuel vapour accumulation 

is highly depended on the evaporation rate and volatility of fuel. 
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Nomenclature 

 

Symbol Description 

B Spalding transfer number 

Cp Specific heat (kJ/kg.K) 

D Diameter (mm) 

D2 Squared droplet diameter (mm2) 

g Gravity (m/s2) 

hc Heat of combustion (kJ/kg) 

hfg Latent heat of vaporisation (kJ/Kg) 

k Thermal conductivity (W/m.K) 

L Separation distance (m) 

ME Instantaneous evaporation (kg/s) 

MR Instantaneous consumption (kg/s) 

ṁ’’f Mass flux (kg/m2s) 
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Q Heat per unit mass (kJ/kg) 
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R, θ Polar unit vectors (mm, °) 
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t Time (s) 

u Velocity (m/s) 
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Subscript Description 

a Ambient 
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s surface 

 

Abbreviation Description 

CO Carbon monoxide 
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DW Diesel-in-water 
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VCD Volume-contaminated droplet 

WD Water-in-diesel 

WDns Water-in-diesel (no surfactant added) 



18 
 

We Weber number 

WO Water-in-oil 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



19 
 

 

Chapter 1 

 

Introduction 

 

1.1 Research background 

 

Current research direction in transportation energy focuses on either alternative sustainable 

source of energy or the optimisation of conventional combustion of heat engine. Although 

there is a promising development in green approach in the near future, high dependence on 

internal combustion engine is present in most of heat engine, particularly for transportation. 

Therefore, it is crucial to enhance the capability of the engine to operate with higher 

efficiency and lower emission, specifically diesel engine [1]. In order to further improve 

current efficiency of a diesel engine, the ignition and combustion mechanism of diesel fuel 

spray need to be examined at a basic level, which is the fuel droplet study [2-6].  

Understanding droplet combustion characteristics is beneficial as it is a component of 

stratification via liquid fuel sprays. Therefore, a deeper understanding of fuel droplet ignition 

and combustion characteristics would provide a relative insight of spray combustions [7]. 

Scaling approach towards the relativity of isolated droplet and spray combustion would serve 

as a meaningful data for numerical and modelling study; since the size of a liquid fuel spray is 

sufficiently smaller [2]. Furthermore, it was observed that the combustion behaviour of a 

single isolated droplet and droplets within fuel sprays shares the same similarities in terms of 

droplet evaporation, ignition mechanism and droplet evolution dynamics [3, 4]. Hence, 

isolated droplets studies which involve simple mass and energy transport are relevance to the 

complex spray environment in combustion. 

Classical quasi-steady model first proposed by Godsave [8] and Spalding [9] predicted 

that a liquid fuel droplet undergoess steady gasification process throughout its lifetime. The 

assumption made on the model prediction involves the droplet to be spherically symmetric 

with a uniform and constant droplet temperature. The effect of droplet heating and fuel 

vapour accumulation were neglected [10, 11]; making mass and energy transport during the 

evaporation process to be one-dimensional [12]. However, in the actual evaporation process, 

liquid fuel droplet undergoes few transient evaporation processes which involves droplet 
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heating, fuel vapour accumulation and disruptive dynamics in liquid-phase evolution [13], [14]. 

As a result, the experimental results are found to be non-one-dimensional especially during 

the evaporation of a fuel droplet in normal gravity. Such discrepancies have motivated several 

researchers to modify the quasi-steady model analytically to improve the prediction 

accuracies [7-13].  

There are several focuses on quantitative measurements of isolated and grouped 

droplet combustion studies including detailed dynamics throughout droplet lifetime in high 

speed imaging [15, 16], ignition and combustion behaviour of binary mixtures [17, 18], group 

interactions of droplet combustion [19-21] and droplet flame spread mechanism [22-24]. 

These type of research approaches are highly beneficial to support the analytical analyses of 

several papers [19, 25], to precisely models the actual combustion of fuel. It has taken over 

years of quantitative and analytical study to reduce the deviation and error between the 

calculated and measured results. Further researching these areas with more detailed 

measurement technique will provide more comprehensive details on the fuel evaporation 

processes. 

This study aims on examining the behaviour of droplet combustion in various type of 

condition and fuel types quantitatively; focusing to summarise the results on detailed droplet 

evolution dynamics, flame structure and the phases of disruptive burning periods. High 

repetitive measurements acquired from the present work allows the identification of 

transient combustion processes involved during fuel droplet combustion to be possible. In 

the present work, literature study on all objective included in Chapter 2. Chapter 3 explains 

the general experimental setups and result analysis in the present work. Chapter 4 discusses 

the transient combustion processes of neat fuel droplet associated with the discrepancies 

between classical quasi-steady model and experimental results. Chapter 5 analyses the 

disruptive processes during evaporation of emulsion fuels; including the main cause of the 

droplet to microexplode. Chapter 6 explains the effect of soot contamination to a diesel 

droplet during combustion. Chapter 7 explores the unsteady effects during the combustion of 

closely packed interacting droplet. Chapter 8 concludes major findings in each research 

objective and suggestions on future works based on the research questions that emerged 

from the present work.   
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1.2 Problem Statements 

 

The classical quasi-steady model predicts one-dimensional process of mass and heat transfer 

during evaporation of liquid fuel droplets. Because of this, several studies of droplet 

evaporation were conducted in a microgravity to reduce the discrepancies between 

experimental and quasi-steady model by making the droplet to assume spherically symmetric 

shape resulting one-dimensional heat and mass transfer processes [16, 18, 20, 22, 26-29]. Such 

effort managed to prove the prediction accuracy of the quasi-steady model. However, actual 

fuel spray combustion process undergoes more complex heat and mass transfer processes 

resulting unsteady evaporation process. Some studies discussed the transient processes 

involved during the droplet evaporation which involves droplet heating [13, 30, 31] and fuel 

vapour accumulation effects [11, 14, 32]. However, a detailed correlation between the 

quantitative measurements on the droplet surface regressions, flame formation and liquid-

phase dynamics were not presented to specify the unsteady effect throughout the lifetime of 

evaporating fuel droplet. Under these reasons, investigation on the cause of discrepancies 

between the experimental results and analytical model need to be conducted to specify the 

unsteady behaviours. With high measurement repeatability, such processes can be 

categorised by correlating the characteristics between surface regression, flame formation 

and liquid-phase dynamics.  

The disruptive burning behaviour during the combustion of emulsion fuel is well 

documented by study conducted by several researchers [33-35]. Faik [36] concluded that a 

water emulsion has higher burning rate than an ethanol emulsion resulted by the more active 

process of puffing and sub-droplet ejections. However, The surfactant holding strength of a 

water emulsion is stronger than an ethanol in combustion condition [35]. This finding shows 

that an ethanol emulsion should have a higher sub-droplet ejection rate than a water 

emulsion which in turn would result higher burning rate due to a larger amount of mass loss. 

On the other hand, the main cause of an emulsion droplet to microexplode is unclear. Some 

theorised that a microexplosion will definitely occur when the lower boiling point component 

has reached its superheat limit [1, 37-39], while some theorised when it is shortly after the 

formation of phase separation within the droplet [34, 40], and some others theorised it is the 

combination of both phase separation and exceeding the superheat limit of the more volatile 

component [29, 33, 41]. Under these reasons, a clear visualisation and more precise 

quantitative measurements are needed to determine the cause of elevated burning rate of a 

water emulsion despite its stronger surfactant strength. Moreover, the microexplosion 
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mechanics are needed to be studied in detail by considering all factors involved including the 

superheat limit temperature and liquid phase separation condition.  

The combustion characteristics of a fuel droplet is found to be enhanced when an 

energetic nanoparticle is suspended inside a base fuel [42, 43]. Beneficial properties of 

nanofluid includes the enhancement of combustion heat, increase in radiative absorption by 

the particle and improve mixing by a secondary atomisation [44-46]. Their results show that 

there is a critical nanoparticle loading that would optimise the combustion characteristics. 

Within the combustion of energetic nanofluid studies, such enhancement is well established. 

On the other hand, a soot that forms within the hot combustion gas is a nano-sized particle 

with a size ranging from 10 to 50 nm [47-50]. During continuous combustion process in a 

compression ignition engine, there is a possibility of soot to contaminate the fuel droplet 

contained in the spray [43, 51-55]. However, an experimental analysis on combustion 

behaviour of continuous, random and non-stabilised contamination of soot particles on a fuel 

droplet surface and within the droplet volume are not present. There is a high possibility of 

soot to contaminate the droplet in actual spray due to their larger surface to volume ratio 

compared to a single droplet having the same mass. Because of these reasons, the 

combustion characteristics of isolated diesel droplets contaminated with solid soot particles 

need to be examined.  

Interacting combustion between a multiple fuel droplet is known to reduce the 

burning rate thus deviates the regression of squared droplet diameter from linear as 

predicted by D2-law [21, 56-58]. Significant increase in the deviation is found on a higher 

number of droplet or closer interaction (high density number). This is due to the increase 

competition of available oxidiser as the density number increases [25]. On the other hand, the 

combustion of fuel with a high carbon number (high sooting propensity) releases high 

amount of soot particles in the fuel rich region [59, 60]. Within certain inter-droplet distance, 

there is a possibility of soot formed by the burning of the nearby droplets to contaminate 

each other. Within this scope, no literature describes the cause of disruptive burning during a 

multi-droplet combustion; and its effect to the burning characteristics. Because of this, an 

investigation on the transient burning of multiple droplets need to be conducted by 

considering all transient burning processes involved and quantitatively categorising them by 

their effects during combustion. 
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1.3 Research Objectives 

 

In general, the aim of the study focuses on the quantitative investigation during the 

combustion of a liquid fuel droplet through high speed imaging techniques. Specifically, the 

aim of the research can be achieved by: 

1. Determining transient liquid-phase and gas-phase combustion of neat diesel and 

ethanol droplet that would deviates the experimental results from the classical quasi-

steady prediction.  

2. Evaluating the disruptive burning of an emulsion fuel droplets. The aim is to identify the 

differences in the droplet breakup and secondary atomisation processes between a 

flammable and incombustible property of additives with a lower boiling point 

compared to the base fuel.  

3. Identifying the main cause of emulsion droplet to microexplode in terms of activation 

temperature, liquid coagulations and the location of dispersed liquid upon complete 

droplet breakup. 

4. Analysing the effect of soot contamination to the combustion characteristics of diesel 

fuel droplet. Comparisons are made between surface-contaminated and volume-

contaminated diesel droplet to visualise and analyse their differences in liquid-phase 

dynamics. 

5. Evaluating the effect of gas-phase interactions on droplet heating, fuel vapour 

accumulation and disruptive surface regression during multi-droplet combustion. 

 

1.4 Research Scopes 

 

The scope of the study is to evaluate and develop a strong theory on transient characteristics 

of evaporating droplet through high speed imaging. Specifically, they are: 

1. Investigations on droplet evaporation and burning are measured quantitatively using 

high-speed imaging techniques 

2. Tests are done under normal gravity and atmospheric pressure in ambient air 

3. Droplets are ignited by a thermal heating wire to ensure neat ignition except during 

specific objectives such as heightening the effect of fuel vapour accumulation and soot 

contamination processes.  

4. Droplets are suspended on 100 µm Silicon Carbide (SiC) fibre 
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5. Droplet and flame images are processed using image processing algorithm in Matlab 

6. The fuel mixing processes are assumed reliable when the repeatability of measured 

results is high 

 

1.5 Summary 

 

The experimental analysis done in the present work focuses on the practicality of selected 

fuel and evaporating conditions during actual fuel spray combustion. Diesel is widely used in 

compression ignition engine and with the recent development in alternative fuel, ethanol is 

introduced. Comprehensive study on the evaporating behaviour of both fuels would provide 

beneficial insight towards combustion optimisation by identifying the variation of their 

transient evaporation processes as well as reducing the discrepancies between experimental 

and predicted calculations.  

 Also, results from the analysis of emulsion fuel combustion conducted in this study 

would provide clearer identification of microexplosion processes. This would lead to a more 

comprehensive understanding towards improving fuel mixing during combustion process of 

fuel spray. Furthermore, clearer combustion characteristics of ethanol and water emulsion 

are described which would provide definitive guideline during fuel selection processes.  

 The contamination processes and effects during fuel spray combustion are unclear. 

The analysis on the effect of soot contamination to the droplet evaporation experimented in 

the present work would clearly demonstrate its influence towards combustion stability and 

transient behaviour at fundamental level. This would help to provide useful data towards 

optimising the efficiency of the combustion during actual fuel sprays which focuses on 

minimising the soot contamination within the cylinder.  

 Lastly, experimentation on multi-droplet combustion in the present work 

demonstrates the correlation between the fuel properties and their effect to the transient 

evaporation behaviour during interacting droplet within fuel spray. This would provide a 

definitive description towards the optimisation of fuel spray which focuses on injection 

parameters such as spray angle, pressure and timing which would vary the separation 

distance, droplet size and fuel type. 
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Chapter 2  

 

Literature Review 

 

2.1 Introduction to combustion 

 

Combustion process involves high temperature with extremely fast exothermic reactions 

between fuel and oxidiser that produces oxidised and gaseous products. The physical and 

chemical process from combustion releases heat as a form of energy that propagates 

outwards from the reaction in the form of flame when interacted with fire [61]. Process of 

combustion involves fuel and oxidiser mixing, flame propagation through ignition and 

termination when the fuel is depleted. The highest temperature within combustion region is 

the flame, where the fuel and oxidiser react, and the heat ensures a self-sustaining 

combustion process. Present study focuses on the combustion of organic fuel which is always 

exothermic due to the weaker double bond in oxygen compared to the combustion products 

carbon dioxide and water. Since the energy released by the products (new bonds) is greater 

than the energy needed to break the former bonds, heat is always produced [62].  

 When the combustion is complete, the reactant is thoroughly burned producing 

possible maximum heat release with minimum amount of oxidiser and this process always 

referred as stoichiometric air. In case of hydrocarbon fuels, the primary yields of reaction are 

carbon dioxide and water. Combustion in stoichiometric air is not possible since the liquid 

droplets dispersed in actual process are not fine enough for fast evaporation with some 

location within the spray is inaccessible for oxidiser to penetrate. However, calculation of 

stoichiometric air is used as a reference for theoretical predictions of combustion efficiency 

in actual combustors [63].  When there is insufficient oxidiser to completely react with the 

fuel for primarily producing carbon dioxide and water, incomplete combustion occurs. 

Product of pyrolysis that occurred before combustion remains unburned and contaminate 

the emission with particulate matter and smoke such as carbon (soot and dust) and carbon 

monoxide. Incomplete combustion process is typical in every combustor and contributes in 

the factor of discrepancies between experimental and theoretical predictions in combustion 

studies.  
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 There are two common physical states of reactant in combustion. When the physical 

state of the reactant is the same with the oxidiser such as gaseous fuel and oxygen, the term 

homogeneous combustion is referred. Combustion of fuel and reactant with different initial 

physical phases such as liquid fuel in air, heterogeneous combustion is referred [64]. 

Applications in combustion is majorly heterogeneous combustion involving vaporised liquid 

fuel or pulverised coal particle with air. This process involves multiphase transitions of 

reactant and complicates the theoretical prediction. Hence more comprehensive 

experimental study is needed to develop firm understanding on the physical and chemical 

processes involved.  

Flame produced from combustion is divided into two type of formations, within two 

type of flows. On the formations, when the fuel and oxidiser separately enter the combustion 

zone for reaction, diffusion flame will occur. Due to the slow diffusion process between the 

fuel and oxidiser, higher rate of incomplete combustion occurred and observable by its bright 

yellow flame formation which indicates the oxidation of soot. When the oxidiser and fuel is 

well-mixed prior to ignition, premixed flames will take place. This type of flame has higher 

combustion efficiency with lower harmful emission due to higher portion of the fuel being 

completely burned. This formation is observable with its blue coloured flame [65]. When the 

flame formations produced in laminar flow, it is termed laminar flames whereas in turbulent 

flow, it is termed turbulent flames [66].  

The present experimental work involves examination on the combustion of liquid fuel 

droplet suspended on fibre. Therefore, the scope focuses on heterogeneous combustion of 

fuel with laminar diffusion flame based on the aforementioned combustion and flame types.  

 

2.2 Liquid Fuel Spray 

 

The first self-running compression ignition engine was designed by Hans Linder and Rudolf 

Diesel in 1894 who used air-blast injection to supply diesel fuel into the cylinder [67]. The 

injection system was later upgraded by James McKechnie in 1910 to a poppet-type airless 

injection system which became the origin of injection system in diesel engine [68]. Diesel 

spray is characterised by the high-momentum dispersions of liquid diesel fuel in high 

surrounding pressure for well-mixed spray-air mixture within the combustion chamber [69]. 

Injector is mounted on the cylinder head, which delivers the fuel via sprays between the 

piston face and upper portion of the cylinder head (also called combustion chamber). As a 

result, variable sized droplets is formed with random directions and velocities developing a 
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poorly defined combustion zone [66]. The breakup and formation of fuel spray is depicted in 

Fig. 2.1.  

 

 

 

Fig. 2.1 Breakup and formation of liquid fuel spray (taken from [66]) 

 

There are several parameters that characterises fuel spray namely; (1) The degree of 

spray angle, (2) The breakup length referring to the length of the non-disintegrated liquid 

core within the spray, (3) The length of sprayed liquid phase region to a point where the fuel 

injection rate becomes equal to the fuel evaporation rate, (4) Size distribution of droplets in 

spray, (5) Sauter mean diameter which represents the equivalent diameter to surface area of 

spray, (6) Spatial distribution of spray and (7) Intensities of turbulence [69].  

Once injected, the liquid spray is subjected to a turbulence and further breakup into a 

dense cloud of variable droplet size and penetrate the combustion zone with a process called 

atomisation. Atomisation is defined by the disintegration of sprayed liquid into smaller sized 

fuel droplets that is dispersed into a gaseous environment [70]. There are two atomisation 

processes involved termed primary and secondary atomisation process explains by 

illustration in Fig. 2.2. The velocity profile in the centre of the spray is the highest and 

gradually decreases to zero towards the edge of the disintegration zone. During primary 

atomisation, the continuous phase of liquid (liquid core) near the injector with the highest 

velocity profile disintegrates into filament and eventually collapses into droplets due to the 

interaction between the liquid spray and the gas inside the cylinder [71]. Typical fuel droplet 

size in sprays during primary atomisation varies between 50-150 µm [72].  
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Fig. 2.2 Schematic of liquid fuel spray [71] 

 

As the primary droplets penetrate to the surrounding air, the secondary atomisation is 

initiated where the primary droplets further break into smaller droplets due to aerodynamic 

forces of velocity gradient. With the combination of evaporation, the droplets continue to 

move along x-axis with reducing size. Secondary atomisation process numerically 

represented by Weber number (We) defined by the ratio between inertia and surface tension 

in equation 2.1 

 

𝑊𝑒 =
𝐷𝜌𝑎𝑢𝑟𝑒𝑙

2

𝜎𝑠
                                                             Equation 2.1 

 

Due to the atomisation process, fuel sprays consist multiple small sized droplet 

dispersed in ambient air. Hence, studies on isolated droplet evaporation and burning is one of 

the alternative approach of simplifying the evaporation process of droplets in spray [73]. 

Although the size of suspending droplet study is sufficiently larger than those sprayed inside a 

diesel engine, such quantitative data is meaningful in term of various sizing and arrays 

mechanism for scaling studies.  

 

2.3 Quasi-Steady Theory in Droplet Evaporation and Combustion 

 

Combustion of isolated fuel droplet is important as it relates to the theoretical study of liquid 

spray combustion which assumes dispersed droplets to be spherical symmetric [12]. To 
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model the evaporation of droplets in simplified manner, D2-law was first proposed by 

Godsave [8] and Spalding [9] to model the evaporation of fuel droplet which predicts the 

linear reduction of droplet squared diameter with time as the droplet evaporates. The basic 

assumptions made for this model is the droplet being spherically symmetric, uniform and 

constant droplet temperature by neglecting the effect of droplet heating and fuel vapor 

accumulation [10, 11]. In both cases of vaporisation and combustion, D2-law predicts a constant 

gasification rate [74]. The combustion model of isolated droplet evaporating in stagnant 

oxidising environment is shown in Fig. 2.3. The oxidiser radially diffuses inward from the 

ambient to the flame interface while the fuel vapour from the droplet surface diffuses 

outward towards the flame interface [75]. Three processes are involved in bringing the liquid 

element to the surface of the droplet for evaporation. The first one includes mass diffusion of 

species in fuel. The second is convection that produced by internal circulation of the droplet; 

induced by the shear stress exerted by external gas flow on the droplet surface. The third is 

the regression of the droplet surface through evaporation, which eventually exposes the 

interior liquid [76]. The flame envelopes the droplet and characterised as diffusion-controlled 

combustion. Fuel evaporates and transported to the flame front for the combustion process 

[77]. Heat transfer within liquid droplet is a result of conduction and convection from internal 

circulation of the liquid droplet caused by friction of flowing gas to the surface of the droplet. 

For gas-phase, the heat transfer to the surface of the droplet dominated by convection 

induced by thermophoretic force and radiation from the flame [78]. 

 

 

 

Fig. 2.3 isolated droplet evaporating in stagnant oxidising environment (taken from [66]) 
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Droplet evaporation principles involved on the assumption made with control 

mechanism of mass and heat transfer rate from ambient to droplet surface. Evaporating 

droplet have its surface temperature to be near the boiling point and modelled with a simple 

mathematical expression. Also, this theory is practically useful for droplet burning model, 

considering the surrounding flame as the ambient temperature interacting with the droplet 

itself. Apart from the aforementioned assumptions, there are several other assumptions 

made for this model [79]: 

 

a) The evaporation process is in steady state which eliminates the partial differential 

equations expressions. 

b) Single-component liquid fuel is assumed. 

c) Uniform droplet temperature of near boiling point and the transient heating behaviour 

of the droplet is neglected. 

d) Constant thermal conductivity, density and specific heat. 

e) Non-sooting combustion with negligible radiation. 

 

Several main combustion characteristics of droplet combustion can be predicted in 

quasi-steady theory. With constant value throughout the droplet lifetime, the mass burning 

rate is evaluated as:  

 

𝑚̇𝑓 =
4𝜋𝑘𝑔𝑟𝑠

𝑐𝑝𝑔
𝑙𝑛[1 + 𝐵]                                                    Equation 2.2 

 

With constant gasification and stoichiometric air fuel ratio, flame temperature is expressed 

as: 

𝑇𝑓 = 𝑇𝑠 +
𝑞𝑖−𝑙 + ℎ𝑓𝑔

𝑐𝑝𝑔(1 + 𝑣)
(𝑣𝐵 − 1)                                           Equation 2.3 

 

With Spalding transfer number, B for both evaporating and burning droplet expressed by: 

 

𝐵 =
∆ℎ𝑐/𝑣 + 𝑐𝑝𝑔(𝑇𝑎 − 𝑇𝑠)

𝑞𝑖−𝑙 + ℎ𝑓𝑔
                                                Equation 2.4 

 

Due to the constant gasification, flame stand-off ratio is predicted to be constant at all time 

during the combustion of droplet and expressed as: 
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𝑟𝑓

𝑟𝑠
=

𝑙𝑛(1 + 𝐵)

𝑙𝑛[(𝑣 + 1)/𝑣]
                                                     Equation 2.5 

 

And the burning rate constant which is also assumed to be constant in quasi-steady 

assumption: 

 

𝐾 =
8𝑘𝑔

𝜌𝑙𝑐𝑝𝑔
𝑙𝑛(𝐵 + 1)                                                   Equation 2.6 

 

Hence, linear correlation between squared droplet diameter and droplet lifetime is assumed 

with D2(t) = Do2 - Kt. This expression is valid for all droplet within stated assumptions and 

generally referred as D2-law; and it is shown in Fig. 2.4. 

 

 

Fig. 2.4 D2-law for droplet evaporation in quasi-steady assumptions (Reproduced from [79]) 

 

In general, the square of droplet diameter is linearly decreased by time; as dictated by 

D2-law. However, in certain cases, the conformation of the law is more profound in later stage 

of droplet burning compared to initial stage of ignition [4]. The differences in the combustion 

stages are due to the limited parameter of the assumptions and subjected to various reasons. 

For instance, first stage of droplet ignition shown an increase in droplet size due to 

volumetric expansion thus swelling the droplet. Furthermore, the burning behaviour is 

subjected to the initial droplet and ambient temperature; on high initial temperature of a 

droplet, the burning duration of the droplet is shorter as the droplet size reduces. It is 

because the droplet heating time becomes shorter thus the combustion energy is used most 

on the evaporation of the droplet rather than to heat the droplet for evaporation 
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temperature [6]. Transient behaviour presented during droplet burning is subjected to their 

multiple combustion stages. According to Okai et. Al [20], the burning stages can be divided 

into four (4) types. The first stage is called droplet heating; when there is a small swelling and 

oscillation in the droplet due to the thermal expansion of droplet. Also, fuel vapour formed in 

the centre of the droplet is unable to escape through the surface, thus nucleate and swell the 

droplet [18]. Second stage is determined as puffing; with sudden emission of air, vapour or 

smoke. Higher amount of bubble nucleation oscillates the droplet even more. As the 

temperature distribution gets more constant throughout the droplet, the small amount of gas 

trapped inside will be able to escape through the surface due to reduced surface tension; 

creating a behaviour of puffing. Third stage mentioned is boiling; having high droplet 

oscillation but with no puffing or disruptive burning. In this stage, the measurement of the 

burning rate constant confirms with the quasi-steady assumptions of D2-law. The fourth stage 

is disruptive burning. The puffing and oscillation of droplet is profound in this stage, deviating 

the measurement of burning rate from constant D2 regression. As observed by Wang et. Al. [1], 

as the combustion progresses, more viscous droplet surface will form as a result of fuel 

decomposition. This will trap more gas inside the droplet and the only way of the inner 

vapour to escape through the droplet surface is by rupturing the surface of the droplet.  

In other words, classical quasi-steady theory is reliable to predict the combustion 

parameter gained from experimental study but limited to fuel droplet that evaporates with 

steady heating phase and low boiling point [73]. Results from experimental studies may 

deviates from quasi-steady assumption by up to 20% uncertainties [31]. Therefore, several 

studies have been done to numerically modify the quasi-steady assumptions as well as 

determining the effect of transient and unsteady phase of combustion experimentally. 

 

2.4 Transient Droplet Combustion Process 

 

There are two transient processes, namely droplet heating and fuel vapour accumulation 

effect which deviates the gasification rate and flame stand-off ratio of experimental droplet 

combustion from the quasi-steady assumption. The transient effect is profound in high boiling 

point and low volatility fuel [73]. In this section, droplet heating is considered as transient 

liquid-phase process whereas fuel vapour accumulation is considered the transient gas-phase 

process [11]. 
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2.4.1 Transient Liquid-Phase Combustion 

 

Droplet heating assumes liquid-phase transient process and generally neglected in quasi-

steady assumptions based on the argument of insignificant duration of such process within 

droplet lifetime. However, the effect of droplet heating actually occupies a portion of droplet 

lifetime and the effect is more significant during multicomponent and multi-droplet 

combustion [14]. During the transient heating period, the surface regression rate is much 

slower than the internal heat conduction rate and clearly observable in experimental study 

for a short period of time upon ignition with a non-linear regression of D2 [13]. The 

manifestation of non-linear burning mechanism is when the burning rate increases with time 

[80], shown by the gradual increase of instantaneous burning rate in the early lifetime of 

droplet in Fig. 2.5. Furthermore, Deprédurand et al. [81] stated that droplet heating is less 

important for droplet with high volatility. They calculated that the heat flux entering the 

droplet is low (indicates low heat flux needed for droplet heating) when heat flux due to 

evaporation is high (higher evaporation rate of high volatility fuel).  

 

 

 

Fig. 2.5 Instantaneous burning rate of nonane/hexanol mixture droplets [80] 

 

For a droplet with low boiling point, the surface regression of droplet assumes linear in 

shorter period of time even though the droplet heating is still progressing. As long as the 

surface layer is heated to a boiling at high rate, the subsequent heating of droplet interior 

required less heating for gasification thus satisfies the requirement of D2 law [82]. Droplet 

heating phase is estimated between 10-20% of droplet lifetime. However, the heating lifetime 

highly dependent on the boiling point and volatility of the fuel droplet [83]. Law et al. [11] 

concluded the unsteady effects constitutes between 20-25% for benzene and Sirignano and 
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Law [13] found it constitutes 20% of octane droplet lifetime. The differences between the 

unsteady lifetime shows that the effect of droplet heating to the surface regression is physical 

and chemical dependent.  

 

2.4.2 Transient Gas-Phase Combustion 

 

In gas-phase transient process, quasi-steady theory assumes the consumption rate of gas at 

the flame is equal to the evaporation rate since the smaller density of gas is assumed to move 

faster towards the flame compared to the regression of liquid surface. However, in actual 

observations, there is a fuel vapour accumulation inside the gas film surrounding the droplet 

due to the steep increase and infinity value of flame stand-off ratio upon ignition and toward 

the flame extinction respectively. This implies that the rate of evaporation is faster than the 

fuel consumption [14]. Fuel accumulation effect is low during droplet heating and gradually 

increases over time. This in turn pushes the flame front further from the droplet surface and 

believed to be the main reason of increasing flame stand-of ratio. Law et. al [11] simulated the 

droplet by three conditions shown in Fig. 2.6 and they have found that the fuel vapour 

accumulation dominates the regression of FSR even with added droplet heating effect. 

Towards the end of droplet lifetime, the rate of vapour consumption is higher compared to 

evaporation rate due to the burnout of accumulated vapour in the gas film. Their analysis 

proves to have discrepancies with the D2-law model which assumes instantaneous 

consumption of vapour at the droplet surface by the flame [14].  

 

 

 

Fig. 2.6 Variations of FSR with the effect of droplet heating, fuel vapour accumulation and both 

transient conditions [11] 
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Awasthi et al. [32] formulated the relative delay between vapour consumption and 

gasification implies that instantaneous mass evaporation rate from the droplet surface is 

given by: 

𝑚̇𝐸(𝑡) = ∫ 𝑚̇𝑓,𝜃
′′ . 2𝜋𝑅2. 𝑠𝑖𝑛𝜃𝑑𝜃       

𝜋

𝜃=0

                               Equation 2.7 

 

And instantaneous vapour consumption is given by: 

 

𝑚̇𝑅(𝑡) = ∫ .
𝑟=𝑟∞

𝑟=𝑅

∫ 𝑚̇𝑓 . 2𝜋𝑟2. 𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝑟
𝜋

𝜃=0

                            Equation 2.8 

 

Accumulation dominates when ṁR < ṁE whilst vapour consumption dominates when ṁR 

> ṁE. It is expected that ṁE is higher during the early stage of combustion and ṁR is higher 

towards the end of the droplet lifetime. In case of quasi-steady assumption, ṁR is equal to ṁE 

which justifies the constant gasification and vapour consumption rate resulting constant 

flame stand-off ratio [79]. 

 

2.5 Droplet Flame Formation 

 

In normal gravity, flame flow is buoyancy induced [22]. Shown in Fig. 2.7(a), the flame of 

burning fuel droplet is elongated to the opposite direction of the gravity due to natural 

convection [77]. Also, the faint part at the top of the flame is because of buoyancy [82]. In 

buoyant flame, the temperature contours are widely and closely spaced near the droplet 

surface and continues to converge as the flame moves upward. The highest temperature is 

recorded at the distance of twice the droplet diameter above the burning droplet [84]. The 

dynamic behaviour of flame structure in droplet burning relates closely with the droplet 

evaporation mechanism. Larger initial droplet diameter burns with larger flame formation 

which in turn increases the radiative heat loss from the flame for droplet heating [28] thus 

reduces the evaporation rate. This shows that with a slight change in evaporation rate, 

droplet excitation or flame intensities tend to influence each other.  
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(a) (b) 
 

Fig. 2.7 Flame structure of suspended diesel droplet showing; (a) diffusion flame and (b) premixed 

flame formation upon ignition 

 

In the early lifetime of droplet combustion, the flame height and width recorded the 

highest before sharply reduced in size. The combustion is enhanced by the fuel vapour 

accumulation from droplet heating and evaporation resulting higher flame size [7]. Miyasaka 

and Law [82] observed similar trend in their experimental work stated that the flame length is 

considerably long during ignition due to the effect of fuel vapour accumulation. The flame 

then settled to a lower size and begins to increase by time. Umemura [72] observed that there 

is a faint premixed zone around the droplet before thin layer of diffusion flame appears, 

shown in Fig. 2.7(b). Oxidiser originally exists around the droplet that would mix with an 

amount of concentrated vapour prior to ignition. The amount of vapour burned in premixed 

flame is much smaller than the diffusion flame and would make the lifetime of premixed-

mode flame significantly shorter within the droplet lifetime. Small sized premixed flame 

formation slightly improves the droplet heating due to the closer flame position to the droplet 

surface which enhances the radiative heat transfer [85] which in turn, increases the 

evaporation rate [86]. However, the transition to a large diffusion flame counter-effects the 

enhancement of heat transfer during heating period because the temperature in larger flame 

formation is lower due to higher amount of radiative heat loss [59]. Since the lifetime of large 

diffusion flame is substantially longer than the premixed flame formation, the effect on 

radiative heat transfer to the surface of the droplet is detrimental.  

Higher ignition temperature reduces the heating time which prevents the droplet 

surrounding to have denser fuel vapour prior to ignition [24] but tends to increase the 

burning velocity of fuel, suggesting that flame front velocity is strongly dependant on the 

ignition temperature [87]. Although the heat transfer rate is low in early stage of combustion, 
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higher ignition temperature provides beneficial mechanism for flame spread mechanism in 

case of fuel sprays. In relation with droplet mass burning rate, higher rate is theoretically 

causes the flame temperature to be high due to a higher mass of energy consumption rate [4]. 

In this case, the flame intensities of burning droplet is dependence of the boiling point of the 

fuel, with higher flash point of the fuel results lower intensity of flame during combustion [16].  

Flame size of an isolated droplet increases upon ignition and almost constant to the 

middle of its lifetime and it begins to drop [25]. In latter state of combustion, the flame 

temperature and size sharply reduce due to the diffusion-controlled combustion, where the 

evaporation of the fuel is continuously consumed by flame in steady manner; steady 

enveloped flame. During the lower flame size period, the combustion is steadier due to the 

controlled mixing of fuel vapour by diffusion flame [4]. This indicate that droplet combustion 

process involved two phases, ambient and diffusion-controlled conditions. 

Consistent discrepancies were found on the flame stand-off ratio, FSR which is the 

ratio of instantaneous flame radius, rf to the droplet radius, rd when comparing results 

obtained from quasi-steady model and experimental works. Theoretical prediction shows 

that the FSR remains constant [75, 12] throughout the combustion based on steady 

gasification rate of droplet [80] with negligible effect of droplet heating and fuel vapour 

accumulation [32]. FSR increases sharply upon ignition, reduced to a steady increase and rises 

sharply again towards the end of the droplet lifetime in experimental observations [88]. The 

increase of FSR with time is attributed to fuel vapour accumulation between the flame and 

the droplet surface [89], making FSR a time dependent ratio throughout the lifetime of a 

burning droplet. Continuous accumulation of fuel vapour upon ignition pushes the flame front 

further from the droplet surface. Towards the end of droplet lifetime, the rate of vapour 

consumption is higher compared to evaporation rate due to the burnout of accumulated 

vapour in the gas film [14]. With higher amount of fuel vapour supplied to the flame front, the 

flame size enlarges. In microgravity experiment done by Fahd [16], FSR tends to increase 

throughout droplet lifetime due to better heat containment of flame structure. This was 

possible due to the thermal buffering on the far field of the combustion which in turn reduces 

the heat loss generated from the combustion of the droplet. This suggests that in lower flame 

size period, there is a slight increase in flame temperature. However, thermal buffering 

effects only presence in microgravity experiments, with spherically symmetric flame 

formation. In normal gravity, the effect of thermal buffering diminished due to the buoyancy 

that tends to push the flame upwards.  
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It is worth mentioning that the transient effect of droplet heating and vapour 

accumulation does deviates the experimental result from the theoretical prediction of quasi 

steady model especially during the early and towards the end of the droplet lifetime. The 

unsteady heating phase significantly effects the droplet surface regressions and the fuel 

vapour accumulation effects is more profound on the flame formation; which relevant to their 

terms as transient liquid-phase and transient gas-phase respectively. Conclusively, detailed 

experimental study to quantitatively measure these effects on several fuel types and 

arrangements would provide valuable insights to the unsteady burning of liquid fuel droplets. 

 

2.6 Droplet suspension method 

 

In droplet evaporation and burning study, droplet surface regressions as well as flame 

formations are mostly analysed through images acquired from visualisation technique via 

digital image recordings and some, film photograph during early experimental developments. 

In order to fulfil the requirements of imaging capabilities in term of spatial and temporal 

resolutions, the droplet suspension method plays an important role. The dynamics, 

positioning and conditions of the droplet needs to be acceptable for minimal errors. Among 

them, there are three suspension method considered to be most reliable in term of accuracy 

and repeatability; free-falling, fibre suspended and porous sphere droplet combustion. Fig. 2.8 

illustrates typical suspension methods. All suspension technique has their advantages and 

drawbacks, which will be further explained in this section. 

 

   

(a) (b) (c) 

Fig. 2.8 Droplet suspension method in laboratory-controlled droplet combustion experiment; (a) Free-

falling method (b) fibre suspended droplet and (c) Porous sphere method. [66] 
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2.6.1 Free-falling droplet technique. 

 

In this technique, droplet is dispersed through imaging field of view with preferable velocity 

and direction of trajectories. Most popular method is by releasing the droplet to fall due to 

the force of gravity done by several researchers [42, 44, 90, 91] and some with multiple 

droplet dispersions with different angle for collision merged multicomponent droplet [37, 38, 

92]. Typical arrangements of free-falling technique in droplet experiment is shown in Fig. 2.9.  

 

Fig. 2.9 Schematic of the droplet steam combustion experiment (taken from [42] with a permission 

from the publisher). 

 

Droplet is generated mainly by  liquid jet disintegration through vibrations from 

piezoceramic [42, 78, 81],  modified ink-jet printing injector [60, 93], mechanical squeeze on 

fine nozzle [38, 94] and rapid retraction and jerking of small sized needle [12]. There are 

several advantages of employing free falling technique in droplet combustion study. The size 

of generated droplet can be as small as 0.1 mm [94] which is very close to the typical size of 

droplet in fuel spray of 0.1 mm or less [12]. This in turn minimises the measurement error in 

combustion characteristics between different sized droplets. The other advantage is 

instantaneous fuel mixing prior to ignition. Free falling droplet provides enough space for 

mixing a fuel in case of merge collision experiment done by [37]. Due to the inability to 

perform stable mixture of methanol/alkane, they performed experiment to collide water/oil 

emulsion fuel prior to auto-ignition in a heated environment. Results obtained was treated as 

emulsion fuel study. Visualising flame streak is one of the benefits of free-falling droplet 

experiment as shown in Fig. 2.10. Conducted by Botero et al. [95], the streak of flame images 

indicates the change in flame intensities and sooting propensities of burning droplet. The 

lifetime of the droplet is also well defined with the extinction of flame or via microexplosions. 
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Also, Guerieri et al. [44] conducted free-falling nanofluid droplet suspended with oxide 

compound able to determine the combustion phase change during the evaporation of the 

base fuel, mixture of base fuel, nanoparticle and disruptive secondary atomisation in flame 

streak visualisation. The condition of actual fuel spray can also be physically simulated. Wave 

function generator able to disturb to the free-falling fluid jet thus breaks up the stream to 

form a uniform and equal-sized droplet. This is practical to be applied in uniform droplet 

stream study experimented by Tanvir and Qiao [42]. 

 

 

 
Fig. 2.10 Flame streak images for: (a) castor oil biodiesel, (b) biodiesel used in [9], (c) castor oil 

biodiesel and 30% toluene and (d) castor oil biodiesel and 30% tetralin. (taken from [95] with 

a permission from the publisher) 

 

Despite of all those advantages, there are some drawbacks to this technique. The 

trajectories of the generated droplet cannot be maintained in a straight line, especially in a 

condition of disruptive burning and forced convective flow. This will complicate the 

experimental procedure especially with small field of view or when experimenting on multi-

droplet interaction due to the dependence of droplet separation with time. Also, the effect of 

convection increases due to forced convection thus complicates further modelling work 

based on experimental technique. In case of visualising or quantitatively measure the effect of 

soot shell formed in radial position of the droplet, free falling droplet shows less occurrence 

due to the sweeping of soot particles in slip-velocity of co-flow on the droplet [90]. Buoyancy 

and slip effects on droplet eventually change the droplet shape to a non-spherical symmetry. 
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Furthermore, the magnification on the droplet is limited, depending on the initial droplet 

diameter in the expense of visualisation field of view. For instance, high magnification would 

limit the maximum droplet size to significantly small due to the moving and evaporating 

droplet that might be out of visualisation field of view before completely evaporates. 

Nevertheless, this technique has proven to have reliable outcome with acceptable 

repeatability as conducted by several researchers on multiple scope of analysis including the 

combustion of multicomponent droplet, burning rate, phase changes in flame streak, 

microgravity and multi-droplet interactions. 

 

2.6.2 Fibre-Suspended Droplet Technique 

 

Suspending the droplet on fibre is widely used in droplet combustion studies. Fig. 2.11 shows a 

typical fuel droplet suspension on a single thin fibre. Method of droplet suspension on a small 

sized fibre provide high controllability on experimented droplet with acceptable accuracy 

[39]. In general, the effect of heat transfer is negligible for a very small suspending fibre 

diameter which has almost no impact on the droplet evaporation rate [10]. Heat transfer 

through the fibre is proportional to the cross-sectional area of fairly thin diameter is 

negligible [82, 96]. Analysis by Jackson et al. [60] shows that the heat transferred to the fibre is 

less than 1% of total heat transfer to the droplet during evaporation and burning.  

 

 

 

Fig. 2.11 Droplet suspended on a 100 µm SiC fibre [36] 

 

There several common materials of suspending fibre used with various sizes and 

application. Table 2.1 shows some type of suspension fibres used by several researchers. 

Although there are many more varieties of suspending fibre used, all of them having diameter 

of 0.5 mm for a droplet of 2 mm in size at most. Suspension of droplet on fibre has several 

advantages in experimental study. One of them is the ability to ensure precise initial droplet 

diameter prior to ignition. Suspended droplet in ambient temperature have a brief moment 

of stagnant droplet condition which enable some adjustments to be made before proceeding 
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for ignition. For instance, droplet suspension method done by Faik and Zhang [36] and Rasid 

and Zhang [97] able to ensure the suspended droplet to have similar-sized droplet on each 

sample. Prior to ignition, they measured the suspended droplet using the live imaging 

software to measure and manually adjust the initial size to be 1 mm + 0.05 mm. This ensures 

repeatability of experimental results as initial droplet size influences the combustion 

behaviour of droplet. Larger droplet diameter has lower burning rate due to larger flame size 

which increases radiative thermal loss thus reduces the evaporation [98]. By ensuring the 

repeatability of initial droplet size, comparisons of similar sized fuel droplet can be done on 

variety of fuel type, arrangements and burning conditions. 

 

Table 2.1 Examples of several suspending fibre used in experimental work 

Researcher(s) Material Size, mm Droplet size, mm 

Tsue et al. [33][99] quartz 0.25 1.0 

Rao et al. [100] 

Antaki and Williams [101] 
quartz 0.2 1.2 to 1.8 

Xu et al. [102][103] 

 
quartz 0.5 0.6 to 1.8 

Watanabe [34] 

Suzuki et al. [104] 

Kim et al. [105] 

Thermocouple bead 0.05 0.85 to 1.0 

Mohan et al. [106] Thermocouple bead 0.075 1.4 

Gan and Qiao [107] Silicon Carbide 0.078 1 to 1.3 

Nishiyama et al. [108] Silicon Carbide 4 x 0.014 1 

Faik and Zhang [36] 

Rasid and Zhang [97] 

Kim et al. [96] 

Silicon Carbide 0.1 1 

Park and Choi [109] 

Manzello et al. [89] 

Yozgatligil et al. [110] 

Avedisian and Calahhan [80] 

Silicon Carbide 2 x 0.015 1 to 2 

Nagata et al. [88] glass 0.5 1 

Chao et al. [29] 

Pan and Chiu [39] 
Ceramic 2 x 0.015 0.5 
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  Also, suspension of droplet on fibre ensures fixed position of droplet during 

combustion. Suspension technique is essential during experimentation of droplet burning in 

groups. The centre to centre droplet distance would vary without fixed suspension and the 

result from the combustion is inconclusive due to inconsistent physical parameters [111]. 

Furthermore, fibre is used to prevent the droplet to move out of field of view during 

combustion visualisation period [50, 59]. Because of the stationary condition of the droplet, 

very high imaging magnification can be conducted thus providing the ability for liquid-phase 

visualisation to be done [112]. Burning droplet would never move out of the field of view 

throughout its lifetime with sharp imaging focus on the interior of the droplet. 

There are some drawbacks of using fibre suspension technique. The droplet shape is 

observed to be slightly deformed from spherical shape [113]. Droplet suspended on fibre is 

spheroidal with an elongation in the direction of fibre axis [22]. By assuming volume 

equivalence between ellipsoidal and spherical droplet, an equivalent spherical diameter is 

calculated. Hence, the equivalent diameter is calculated by the cubic root from the product of 

squared minor diameter times major diameter [111]. This calculation subjected to a fairly small 

error due to the effect of shape on combustion behaviour although the volume is equivalent. 

Throughout combustion, the fibre would promote heterogeneous nucleation around the 

fibre-droplet interface [39]. Also, stated by Okai et al. [20], fibre support promotes 

heterogeneous nucleation due to higher surface area with more violent disruption compared 

to homogeneous nucleation of free falling droplets. Using fibre with diameter larger than 150 

µm transfers heat through it which would heat the centre of the droplet during combustion 

[82]. Enhanced heat transfer to the droplet would increase the evaporation rate thus renders 

the result incomparable to actual burning rate. For a fibre with diameter equal or less than 

one tenth of the droplet diameter [29], the measured burning rate is comparable to that of 

free-falling droplet technique. However, the fibre do perturbed the soot formation and cause 

some of unoxidised soot to be deposited on the fibre [114]. 

 

2.6.3 Porous sphere Technique 

 

Early investigations of fuel droplet combustion in sprays leads to a study of isolated fuel 

droplet in convective flow [2]. Spalding [9] and Gollahalli & Brzustowski [115] observed 

differences in flame structures between a stationary and a droplet subjected to a convective 

flow. The droplet burns with an envelope flame (Fig. 2.12a) at a low relative speed and a wake 

flame (Fig. 2.12b) at high relative speed thus lead to the earliest establishment of porous-
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sphere experimental method. This method allows the control of several parameters in study; 

including varying sphere diameter, fuel type and convective air velocity.  

 

 

 

(a) (b) 
 

Fig. 2.12 Flame photographs of (a) enveloped flame and (b) Wake flame (taken from [116] with a 

permission from the publisher) 

 

Fig. 2.13 shows typical experimental setup for porous sphere combustion method. The 

alundum sphere is supported by a 1.2 mm hypodermic needle. A radial hole of 0.4 mm is 

drilled at the end of the hypodermic needle to ensure uniform fuel distribution inside the 

sphere. Fuel is supplied by an infusion pump which pushed the glass syringe plunger at any 

speed for desirable volumetric flow rate of fuel. Airflow system is directly installed below the 

sphere consist of wind tunnel with a settling chamber [117-119]  

 

 

Fig. 2.13 Schematic diagram of porous sphere experimental setup (taken from [116] with a permission 

from the publisher) 
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Nevertheless, there are several limitations of this method on fuel droplet studies. The 

diameter of the sphere which is considerably large is assumed to be the size of the droplet. 

Large droplet size in high evaporation rate would have a high temperature gradient across the 

droplet. This in turn would make the droplet to have uneven evaporation around the sphere. 

Secondly, it is impossible to visualise the liquid phase of the fuel droplet during combustion 

due to the fuel being inside the porous sphere. Any instabilities of liquid phase would be left 

unnoticed. Lastly, the heat loss from the combustion is more complex as it involves 

conduction within the sphere as well as the hypodermic needle with considerably large 

surface areas. 

 

2.7 Droplet Combustion in Microgravity 

 

2.7.1 Microgravity Conditions 

 

Microgravity environment is described as an environment which changes the apparent weight 

of a system to be smaller than the actual weight in normal gravity.  Within the influenced of 

earth’s gravity (ground and airspace), microgravity is created by putting any object in a state 

of free-fall [120]. There are two common method of creating microgravity for droplet 

combustion experimentation within earth’s atmosphere and they are through the use of drop 

tower facilities and parabolic flight technique. 

 

2.7.2 Drop Tower Facility 

 

Experimentation using drop tower facilities involves the use of drop chamber consists of 

experimentation apparatus. Considering air resistance which would deaccelerate any falling 

object near the surface of the earth, a drag shield is utilised to minimise the effects air 

resistance during free-fall period [27]. Typical experimental apparatus of droplet combustion 

in microgravity is described by Segawa et al. [112]. Before the release of the capsule in the 

drop shaft, fuel was supply by a remote-controlled system of hypodermic needle, stepping 

motors and syringe. When the capsule is dropped, the electric current was supplied to the 

heating coil and translated towards the droplet for ignition. The coil then removed quickly 

upon ignition to prevent perturbation of flame. Electronic signal is sent to release the entire 

package that is hung by an electromagnet to initiate the free-fall sequence [39]. Experimental 

apparatus is enclosed in the drag shield that would fall relatively to each other. The 
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experimental apparatus made contact with the bottom of the drag shield at the moment 

when the entire package impacts the air bag. Fig. 2.14 depicts the drop tower facility in NASA 

Lewis Research Centre. 

 

Fig. 2.14 Schematic of the NASA Lewis Research Center 2.2 Second Drop Tower [120]. 

 

2.7.3 Parabolic Flight Technique 

 

Another method of creating microgravity is through the parabolic flight technique. Fig. 2.15 

shows the schematic of parabolic flight path. When the plane flies on a parabolic path, 

microgravity environment is created. Typical parabolic flight lasts two to three hours. The 

process involves three flight manoeuvres starting from a rapid 45-47 degree climb angle, 

parabolic trace, and 43-45 degree descend angle. During parabolic trace, the gravity is 

approximately 10-2g with 15 seconds of microgravity condition [121].  

 

 

Fig. 2.15 Parabolic Flight Characteristics [120] 

 

2.7.4 Fuel Droplet Experimentation in Microgravity  

 

The first droplet combustion in microgravity was developed by Kumagai and Isoda [122]. 

Motivation for microgravity experiment came from the idea of creating a spherically 
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symmetric shape of liquid droplet for a comparable analysis against established numerical 

models in detailed chemical kinetics and transport derived from the classical quasi-steady 

assumptions [74]. Furthermore, microgravity further simplify the complex system of liquid 

combustion including droplet heat-up, phase change, chemical reactions and diffusion 

processes because of the spherical symmetry of the droplet [75]. This in turn reduces the 

computational cost especially in complex chemical kinetic study [123].  

 

Table 2.2 Microgravity facilities used for fuel droplet combustion 

Researchers Facility 
Tower  

height, m 

Gravity 

condition, m/s2 

Microgravity 

duration, s 

Tsue et al [33] 

Nakaya et al [28] 

Microgravity lab in 

University of Tokyo 
5 10-5 1 

Mikami et al [111] 

Nakaya et al [98] 

Drop tower in 

University of Tokyo 
10 10-4 1.4 

Nagata et al. [88] 

Struk et al. [25] 

Ikegami et al. [18] 

Japan Microgravity 

centre, JAMIC 
500 10-4 10 

Nishiyama et al [108] 

Micro-Gravity 

laboratory of Japan, 

MGLAB 

100 10-4 4.5 

Park and Choi [109] 

Manzello et al [89] 

Struk et al. [25] 

Yozgatligil et al. [26] 

Urban et al. [124] 

NASA Glenn 

Research Centre 

(NASA-GRC) 

24 10-4 2.2 

Chao et al [29] 

Pan and Chiu [39] 
No mention 3.5 10-4 0.68 

 

The effect of buoyancy is mitigated in microgravity experiment which in turn forms a 

spherically symmetric flame shape [39, 80, 98]. Liquid and gas phase transport is symmetric 

around the droplet thus enables a one-dimensional analysis to be conducted [28]. Also, the 

burning process excludes convection which is considered one of the unknowns in burning 

conditions [50]. Investigation of sooting propensity of various type of fuel is possible with 
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microgravity experiment since diffusion, convection and thermophoresis are subjected to 

one-dimensional transport which is radial direction. Such one-dimensional characteristic 

creates a measurable ring of soot shell around the burning droplet [109]. Table 2.2 shows 

some of the facilities used by several researchers working on droplet combustion in 

microgravity.  

 

2.8 Multicomponent Liquid Fuel Droplet Combustion 

 

2.8.1 Evaporation Characteristics of multicomponent Fuel Droplet 

 

In practical combustors, fuels are typically utilised in the form of multicomponent mixture 

either premixed as a stable fuel mixture such as Jet A, diesel and petrol or to be mix prior to 

utilisation. Combination of different fuel component varies depending on the specific 

requirement based on their advantages of drawbacks. There are few types of 

multicomponent fuel mixture that are widely used in modern combustors. They are in the 

form of blends (combination of miscible fuel) or emulsions (immiscible fuel mixture with 

addition of surfactant) [66]. The utilisation of multicomponent fuel is beneficial in enhancing 

the heating value, promotes atomisation and reduce the harmful emission by the base fuel. 

However, D2-law is not adequate to model the droplet size regression of a multicomponent 

fuel due to their much lower mass diffusion rate compared with thermal diffusion rate [125]. 

Most combustion characteristics of these fuel is explored in experimental study [29, 33, 36, 

38, 41, 99, 100, 106, 126] and some with numerical study of improved model of quasi-steady 

assumption [10, 30, 34, 76, 92].  

According to Wang et al. [3], there are three period of gasification in multicomponent 

droplet combustion. First, more volatile component envelopes the droplet with a thin layer of 

mass at the surface, thus dominate the gasification characteristic of the mixture. During this 

period, the boiling point of higher volatility component controls the droplet temperature, 

which has a lower temperature value between the boiling point of both components. Once 

the concentration of more volatile mixture reduced, this period ends. Second, as the 

concentration of more volatile component depleting at the surface, more of less volatile 

component resides on the surface and increases the droplet temperature to be near the 

boiling point of the less volatile component. During this stage, the gasification of the droplet is 

steady with fractional rate of gasification for both components is almost equivalence 

according to their initial mass fraction in the mixture. Lastly, as more volatile component 
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completely absents at the droplet surface, less volatile combustion behaviour is present. 

Similar conclusion was made by Ikegami et al. [18], stating that the multicomponent fuel 

mixture tend to vaporize according to the order of their volatility; which most of higher 

volatility component will vaporize first and followed by next lower volatility; shown by four 

stage of droplet surface regressions based on temperature variation in Fig. 2.16. This 

behaviour is also termed with selective or preferential evaporation. Because of the 

temperature is controlled by the order of volatility, the final surface temperature of droplet 

blends before extinction is the highest since it assumes the boiling temperature of lower 

volatile droplet which evaporates the last [92]. 

 

 

 

Fig. 2.16 Variation of surface temperature and surface regressions during the evaporation of heavy oil 

[18] 

 

Droplet expansion is observed to occur multiple times during combustion especially 

during the transition of preferential evaporation [20]. Droplet size evolution during ignition for 

blends experiences higher fluctuation behaviour compared to their individual neat conditions. 

This transient behaviour represents the transition phase of burning behaviour; from volatile 

stage to less volatile stage combustion behaviour. In early stage of the combustion, the 

droplet temperature is limited to the boiling point of the more volatile component thus 

exhibit the less volatile component to be fully expanded. As soon as the intensity of more 

volatile component at the surface of the droplet is fairly reduced, the droplet temperature 

will increase to reach to boiling point of the less volatile component. This will allow the less 

volatile component to fully expand before transitioning to steady evaporation phase [7]. These 

behaviours are clearly observable during the combustion of multicomponent droplet with 

large volatility difference between individual component and in agreement with observation 

made by Sirignano [19]. On top of transient evaporation behaviour, sufficiently large volatility 



50 
 

difference would lead to disruptive effects on both liquid and gas phase of evaporating 

droplet. 

 

2.8.2 Disruptive Burning of Multicomponent Fuel Droplet 

 

Disruptive effects during combustion of fuel droplet mainly caused by a homogeneous bubble 

nucleation, expansion and eventually explosion that took place inside the droplet [127]. These 

processes are widely known by two phenomenon; puffing and microexplosion [36]. Puffing is 

described as a process of liquid or vapour ejection from a portion of a droplet that 

disintegrates into a smaller sized droplet. Microexplosion is a disintegration process of the 

whole droplet to a fragment of smaller sized droplets [106]. Landis and Mills [128] stated that 

the occurrence of microexplosion is possible since in certain region of the droplet interior, 

the equilibrium vapour pressure of the more volatile component exceeds the ambient 

pressure. Puffing and microexplosion constitutes secondary atomisation that improves fuel 

mixing with oxidiser which in turn enhances evaporation. Droplet satellites ejected from the 

parent droplet combusts quickly and adds an additional surface area to be exposed towards 

the flame for evaporation thus increases the burning rate [44]. As a result, NOx formation and 

soot formations are retarded [95, 129]. Mohan et al. [106] conducted combustion of ternary 

emulsion droplet suspended on thin fibre discussed that the ejected sub-droplet is observed 

to have experienced puffing and microexplosion with similar breakup mechanism as their 

parent droplet despite their differences between suspended and free falling.  

Although the evaporation of multicomponent fuel starts with the evaporation of the 

most volatile component that reside on the surface of the droplet, a portion of the more 

volatile component is still trapped inside the droplet. Without complete depletion of the more 

volatile component, the evaporation proceeds with higher surface temperature equivalent to 

the boiling temperature of the less volatile component, hence superheating the trapped 

volatile fuel [1, 10, 92, 129]. This leads to a homogeneous nucleation of multiple bubble forming 

inside the droplet [73]. Nucleation of trapped volatile component in a form of bubble near the 

core of the droplet tends to rupture the surface of the droplet as a mean of escaping [76, 95, 

126].  On the bubble dynamics, Faik [66] stated that bubble growth inside a higher density 

component is slower with fewer number of nucleation bubble due to the increased 

resistance for expansion. On the other hand, bubble growth inside a lower density 

component would have higher bubble growth rate with a greater number of bubble 

nucleation and easily released or ejected through the surface. In addition, merging of multiple 
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vapour bubble inside the droplet would produce more effective atomisation process during 

surface rupture compared to multiple smaller bubble burst. 

Typically, the bubble breakup undergoes multiple stage, mainly the development of 

liquid ligament, fragmentation of ligament and formation of small sub-droplet. The ejected 

droplet may be transported towards the flame for evaporation or explodes which in turn 

disturbs the flame formation [100]. It was observed repeatedly through shadowgraph [36] that 

a gush of vapour always occurs shortly before either sub-droplet ejection or ligament 

protruding at the same spot on the droplet surface. Release of vapour through the droplet 

surface created a low-pressure spot that pulls liquid toward the region. The internal pressure 

and velocity of the flowing fluid rushes toward this spot thus pushing the ruptured surface 

outward [126]. This observation is in agreement with modelling works of Shinjo et al. [130] who 

stated that the surface tension quickly shrinks the periphery of the ruptured hole followed by 

a flow of fluid to the bottom hole of the rupture which pushes the bottom part upward, 

known as recoiling; shown in Fig. 2.17. With the combination of repelling motion (pushing the 

droplet backward), wall is detached in a form of ligament.  

 

 

 

Fig. 2.17 Typical sub-droplet ejection processes [130] 

 

Puffing of dispersed phase component inside the droplet typically ejects fuel vapour 

and sometimes together with small sub-droplet. On the other hand, puffing of continuous 

phase ejects the component in the form of ligaments which eventually detaches small sub-

droplet due to the pinching process of surrounding pressure [131]. Rao et al. [100] categorised 

four bubble breakup mechanism as follows; low-intensities breakup, intermediate breakup, 

high-intensities breakup and microexplosion. Low-intensities breakup involves rupturing of 

small sized bubble with slight surface distortion whereas high-intensities breakup involves 

rupturing of large bubble with substantial droplet surface distortion. Two parameters 

determine the shape and stability of ligament evolution. Viscosity stabilises the evolution 

while surface tension inhibits the stretching of ligament and at the same time reduce the neck 

radius along the circumference to pinch-off the sub-droplet. The bubble size upon breakup is 



52 
 

smaller for mixture that has lower volume of more volatile component. The ligament exerted 

by smaller bubble detaches the sub-droplet faster in this condition. 

According to Mohan et al [106], microexplosion strength categorised into two types; 

strong and weak disintegration shown in Fig. 2.18(a) and 2.18 (b) respectively. Strong 

microexplosion initiated by a protrusion on the droplet surface, expelling high pressure 

vapour expulsion with a fast speed sub-droplet ejection velocity. This type of microexplosion 

occurs every time a phase separation is observed. Weak disintegration initiated by a bulging 

on the surface with relatively small droplet ejection before complete disintegration, with 

larger and slower velocity of expelled sub-droplets. For both case, the microexplosion 

mechanism of droplet are as follows: protrusion/bulging on the surface prior to sub droplet 

ejection, rapid internal vapour expansion deforms the droplet into a shape of half cup with 

void space in the centre, expansion of liquid sheet, perforation of liquid sheet, extruded 

ligaments and breakup to small droplets. 

 

  

(a) (b) 

Fig. 2.18 Microexplosion with (a) weak disintegration and (b) strong disintegration [106] 

 

Several conclusions on the mechanism that causes the droplet disruption to be 

transitioned from puffing to microexplosion were made by various studies on 

multicomponent droplet combustion. First argument focuses on the strength of pressure 

build-up inside the vapour bubble. Higher pressure will rupture the droplet with 

microexplosion whilst lower pressure bubble escapes through puffing, mainly contributed by 

the viscosity of the mixture [18, 126]. Hoxie et al. [129] explains higher tendency of droplet to 

microexplode when the transition from high volatility to low volatility-controlled diffusion is 

earlier within the droplet lifetime. This points out to the droplet with lower volumetric 

composition of high volatility fuel in the mixture.  Most popular theories on the onset of 

microexplosion are either; as long as the more volatile component is heated up to its 
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superheat limit [1, 37-39], or shortly after the formation of phase separation within the droplet 

[34, 40], or combination of both phase separation and exceeding the superheat limit of the 

more volatile component [29, 33, 41]. Nevertheless, all probability contributed to their analysis 

came with strong experimental and numerical evidences. hence it is crucial to determine the 

main cause of microexplosion to be induced in multicomponent fuel droplet combustion by 

varying the mixture composition, stability and volatilities. 

Although this phenomenon is usually described on the experimentation of single 

isolated droplet combustion study, these effects are reported during combustion of liquid 

fuel spray. Watanabe and Okazaki [132] observed the occurrence of puffing  from the droplet 

size as small as 30-50 µm in actual sprays and observed to be more dominant than 

microexplosion. Furthermore, according to Shinjo et al. [133], the gas flow in a spray induces 

internal liquid circulation which produces a non-uniform liquid temperature that promotes 

local puffing rather than the microexplosion of the entire droplet. On the other hand, Zhang 

et al. [134] experimented diesel-ethanol emulsion spray in constant volume engine and 

observed the occurrences of microexplosion at 900 K and 4MPa ambient temperature and 

pressure respectively. Also, Wang et al. [135] experimented water-diesel emulsion spray with 

the same engine and ambient conditions observed microexplosions phenomena which 

increases the relative volume of spray by five times compared to neat diesel. Hence, the 

analysis of puffing and microexplosion of single isolated droplet is relevant and could provide 

useful insight in multicomponent fuel combustion characteristics.  

 

2.9 Emulsion Fuel 

 

Multicomponent alternative fuel provides better in-cylinder mixing during evaporation and 

spray breakup process due to puffing and microexplosion. Specifically, this phenomenon 

applies to a mixture of emulsion with large differences in their boiling point. Superheating, 

drastic heat-up and phase separation are promoted by utilising them in practical combustor. 

Emulsion fuel has the capability to microexplode or puff, which initiates the secondary 

atomisation caused by explosive boiling of dispersed phase droplets that ruptures the droplet 

[126]. Commonly known emulsion fuel that have a potential of such advantage are water-oil 

and ethanol-oil mixture [33-35]. 

Emulsion is a blend of fuel of between immiscible components such as water and oil or 

alcohol and oil [126]. To stabilise the emulsion, a surfactant need to be added and 

accumulated between the interface of the two liquids [35]. Addition of emulsifier forms an 



54 
 

elastic protective layer which would prevent early phase separation [36]. Adding lipophilic 

emulsifier with hydrophile-lipophile balance (0<HLB<9) forms water-in-oil emulsion (WO) 

with a structure consist of tiny water droplet dispersed in the base fuel whereas hydrophilic 

emulsifier with (11<HLB<20) forms oil-in-water (OW) emulsion consist of water dispersed in 

continuous phase throughout the droplet [105, 136, 137]. The solution is stirred vigorously to 

agitate the emulsion with very low amount of surfactant in volume (maximum 2%) and would 

interfere with the base fuel properties when added excessively [91]. For instance, the addition 

of 2% span 80 increases the boiling temperature of the emulsion by 2oC [105]. Also, higher 

surfactant concentration reduces the potential of a droplet to puffing and microexplode [138]. 

 

 

 

Fig. 2.19 Water-in-diesel and diesel-in-water emulsions in 10%, 20%, and 30% concentrations [66] 

 

Water emulsion fuel droplet is opaque with a uniform colour of milky white prior to 

heating due to the immiscible nature between water and diesel [34, 36, 40]; shown in Fig. 2.19. 

Ethanol emulsion is observed to have tiny droplets of dispersed ethanol throughout the base 

fuel without noticeable change of respective colour. The addition of surfactant increases the 

surface tension of emulsion fuel. In low temperature condition, the surface tension is higher 

because the temperature is inversely proportional to the surface tension of the droplet. 

Higher surface tension in low temperature would hinder the water/ethanol vapour to blast 

through the droplet surface which in turn leads to a larger expansion of the droplet before 

rupturing [105]. Furthermore, surfactant has a high boiling point of 853 K at normal 

atmospheric pressure. Due to its high boiling point, evaporation of droplet containing a 

surfactant leads to a preferential evaporation of the base fuel since there is some 

concentration of the surfactant in the layer near the droplet surface [84, 104]. Additionally, 

surfactant at the interface of the water and oil destabilises above 350K-370K which 

aggregates the disperse water [33]. Consequently, droplet that burns with such behaviour 

tends to nucleate bubbles of vapour internally leading to sudden surface rupture by bursting 
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vapour in puffing process as explained in previous section. Due to their advantages in 

practical combustor, emulsion of diesel-ethanol and diesel-water is focused in present study. 

 

2.9.1 Diesel – Ethanol Emulsion 

 

Adding oxygenates into a diesel fuel has the capability to reduce particulate emissions in 

internal combustion engine. Strong candidate of oxygenated fuel is ethanol which has lower 

tendency to produce soot when compared to diesel [77, 38]. Ethanol is produced via a 

fermentation process of glucose which is derived from starch, sugar and cellulose [139]. 

Under normal atmospheric pressure, ethanol is known to have a non-sooting characteristics 

[28, 39]. For justification, visual observation of ethanol diffusion flame in atmospheric 

pressure was made by Urban et al. [124] further proves that there is no noticeable amount of 

soot is present. With the availability of oxygen atom to combine with oxygen molecule in air, 

more complete combustion can be achieved [95, 140] thus reduces the amount of unburned 

hydrocarbon (UHC), carbon monoxide (CO), particulates and Nitrogen oxide (NOx) [109]. On 

the other hand, some traces of soot formation was reported by Urban et al. [124] on the 

combustion of ethanol droplet. Prior to ignition, a region of stratified fuel vapour and 

surrounding air is formed during deployment and growth. Some soot particulate was 

observed to be formed during this period but eventually burned during the transition to 

diffusive burning. Energy source added from the igniter to the rich stratified gas-phase of fuel 

and oxidiser mixture rapidly accelerates fuel pyrolysis which briefly forms soot. 

 

   

(a) (b) (c) 

 

Fig. 2.20 Backlit view of burning ethanol droplet in (a) 1.8 atm, 21% oxygen (b) 2 atm, 25% oxygen and 

(c) 2 atm, 30% oxygen [124] 

 

In high ambient pressure and oxygen concentration, ethanol burns with luminous flame 

with observable amount of soot formation [110]. Major decomposition channel of ethanol 

produces mainly molecular products consist of C2H4 and H2O. H abstraction from C2H4 
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further decomposes forming acetylene which is considered one of the key species of soot 

formation process. Decomposition process of ethylene however considered to be very low in 

normal atmospheric pressure but increased by more than threefold if the ambient pressure 

is doubled, which explain the low sooting and high sooting propensities of ethanol at normal 

and high atmospheric pressure respectively [26, 27]. Figure 2.20 shows the increasing density 

of soot ring from the combustion of ethanol droplet in elevated ambient pressures and 

oxygen concentrations. For instance, 10% addition of ethanol provides 3% oxygen addition to 

the ethanol-diesel emulsion and promotes better soot oxidation. Although more soot is 

generated, the rate of oxidation is higher leading to a reduced amount of soot emission at the 

end of the combustion [35].  

Furthermore, ethanol addition promotes air-fuel mixing due to their tendency to 

microexplode, enhance combustion efficiency and lower the peak combustion temperature 

which in turn lowers exhaust emissions [73]. In addition, the heat up period of burning and 

evaporation of ethanol is observed to be short [28]. Hence, adding ethanol to the base fuel 

increases the burning rate due to the reduced heating time and enhanced evaporation 

characteristics of ethanol [95, 29]. Ethanol-diesel mixture is considered to be emulsion due to 

the immiscibility and the need for surfactant to stabilised the mixture [38]. Without the aid of 

stabilising surfactant, mixture of diesel-ethanol is found to be unstable and phase separation 

occurs especially for mixture with more than 10% volume of ethanol [133]. Surfactant serves 

as an interface within the mixture for homogeneous dispersion of ethanol [39] and mainly 

used  to prevent phase separation while stabilises the fuel mixture [30]. 

 

 

 

Fig. 2.21 Phase separation of ethanol in ethanol-biodiesel fuel mixture [29] 

 

Combustion of diesel-ethanol assumes the characteristic burning of multicomponent 

fuel with high potential to behave in disruptive manner. Early droplet temperature of diesel-

ethanol blend is lower due to the preferential evaporation of multicomponent fuel, which in 

this case ethanol with lower boiling point than diesel. As the concentration of ethanol get 

thinner, the droplet temperature suddenly increases and controlled by the less volatile fuel 
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component; diesel [30]. It is reported that the secondary atomisation took place at early as 

10% of diesel-ethanol droplet lifetime [36]. Also, the occurrences of phase separation is 

reported by Chao et al. [29] shown in Fig. 2.21. Water could be absorbed by a droplet with 

alcohol mixture due to its hydrogen bond thus promotes immiscibility between the interface 

of ethanol and diesel. Formation of heterogeneous formation between diesel and ethanol 

blend is due to the hygroscopicity (capability of component to absorb or release water) of 

ethanol. High humidity and hygroscopicity of alcohol type would yield larger heterogeneous 

sites [29]. This suggests the capability of diesel-ethanol emulsion to microexplode due to the 

possibility of the mixture to have phase separation and ethanol having lower superheat limit 

than boiling point of diesel. 

  

2.9.2 Diesel-Water Emulsion 

 

In internal combustion engine particularly diesel engine, combustion process produced a very 

high range of operating temperature. This in turn results high emission of NOx and 

particulates. In terms of controlling the combustion temperature so that the harmful 

emission can be reduced to a minimum, many studies have been conducted by means of 

using water as one of binary component fuel. As reported by Wang et al. [1], the emission of 

NOx can be potentially reduced either by injecting water inside the chamber or through 

emulsification process first before injection. Addition of water increases the specific heat and 

latent heat of vaporisation of diesel which in turn reduced the peak combustion temperature 

and is known to reduce the generation of NOx [34, 35, 91]. Increase in droplet temperature 

induces coalescence of water and drainage of water which in turn starts the phase separation 

[112]. This in turn would make the droplet to undergo significant growth during heating period 

by up to 20% of its initial size and attributes to the bubble nucleation and growth inside the 

droplet before puffing [141]. 

Water used as a component in fuel mixture have the capability to cause the fuel 

droplet to explode in microexplosion during combustion and have the potential to increase 

the burning rate and reduced particulate emissions [9, 142].  Reported by Kadota et al. [41], the 

probability of microexplosion to occur increases linearly with the water content, given the 

increased rate of water coalescence with larger diameter of phase separation [104]. Also, 

higher volume of water mixture in fuel will allow more surface of water to be exposed to the 

burning flame thus leads to a reduced flame temperature due to a higher expenditure of 

vaporization heat [1]. Microexplosion occurs when the water inside the emulsion droplet 
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coalescences into a complete phase separation within the droplet. However, a droplet size 

larger than 1 mm is needed to provide enough time for the phase separation before the 

droplet completely evaporated in normal gravity. On the other hand, the coalescence time of 

water is shorter in microgravity due to the absence of natural convection which promotes 

internal mixing. Without microexplosion, combustion proceeds with multiple occurrence of 

puffing [73].  

 

 

 

Fig. 2.22 D2 regression of octane-water emulsion in distillation and frozen mode [76] 

 

To further understand the evaporation characteristics of water emulsion, Law et al. 

[76] modelled the evaporation of octane-water with two case assumptions; distillation mode 

with active internal circulation, diffusing the lower boiling point component (water) towards 

the surface in early lifetime and the combustion transitions to the higher boiling point 

component as the water almost depleted. The other assumption is freezing mode, with no 

internal circulation but with only surface regression exposing the liquid for evaporation. 

Results from Fig. 2.22 shows that with distillation mode, the early droplet regression is low 

due to the evaporation being mostly water component. As soon as the water component fairly 

reduced, the surface regression transitioned to a higher regression rate indicating the starts 

of octane-dominated evaporation process. On the other hand, in freeze mode, the surface 

regression remains constant throughout the droplet lifetime with the value averaged between 

both regression in distillation mode due to the simultaneous evaporation of both components 

in regard to their initial volume composition. Both of these theories were compared with 

experimental observation done by the same authors. They found the evaporation behaviour of 

octane-water emulsion behaves exactly like the distillation mode, with distinct preferential 

evaporation sequence. It is concluded that the droplet would preferentially evaporates when 

the internal circulation is higher. If the droplet temperature does not reach the superheat 
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limit of water before the end of its lifetime, microexplosion would not occur. Droplet 

evaporation assumes distillation mode in normal atmospheric pressure whereas freeze mode 

can be experimented in fairly low ambient pressure between 0.1 and 0.15 atm with minimum 

effect of natural convection similar to microgravity. It is however, concluded by Tsue et al. [33] 

that microexplosion occurs earlier for droplet in normal gravity due to its higher heating rate 

in initial stage assisted by convection and water coagulation is accelerated due to internal 

circulation. 

There are several differences in behaviour of combustion between oil-in-water (OW) 

and water-in-oil (WO) emulsions. For OW, When the temperature of the droplet elevated, the 

surfactant begins to destabilise resulting agglomeration of dispersed base oil in the 

continuous phase of water initiating phase separation. Complete phase separation is 

observed when there is an opaque formation of water droplet in the centre of the droplet 

surrounded by transparent layer of base fuel. The evaporation proceeds by distinct 

preferential evaporation with decreasing diesel mass layered on the surface of the droplet 

without any measured mass loss of water content [41]. Ejections of sub-droplet begins shortly 

after several occurrence of puffing for OW. The change from milky white droplet to a 

transparent with milky white droplet in the core of the droplet indicate its phase separation. 

For WO emulsions, the puffing continuously occurs throughout the lifetime with less sub-

droplet ejection in average, but with more sub-droplet ejection at the end of its lifetime. Also, 

the droplet remains milky white without any phase separation [112]. OW has higher surface 

tension compared to WO emulsion. The dispersed water droplet of WO is dominant on the 

droplet surface with water having higher surface tension than oil [28]. Furthermore, Jang and 

Kim [91] found that WO has lower energy absorption compare to OW. This is explained by the 

position of dispersed water with milky white consistency that dominate the surface of the 

emulsified droplet with more light scattering intensities. Emulsification holds better in WO 

compared to OW emulsion which has water to be drained towards the centre. It is assumed 

that disruption of multiple sub-droplet ejection occurs because of the formation of water 

droplet internally by phase separation [112]. 

Despite similarities of combustion behaviour, there are few differences and drawbacks 

of using both ethanol and water emulsified fuel. The downside of water emulsion fuel is lower 

heating value, thermal efficiency and the water content in the emulsion potentially corrodes 

the metal parts in the combustor [105]. The combustion temperature of water emulsion is 

lower than ethanol emulsion. Furthermore, the oxygenated feature of water does not help 

with the soot oxidation due to water of being incombustible. The surfactant holding strength 
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of ethanol emulsion is stronger in evaporation condition while it is stronger for water 

emulsion in combustion condition. Because of that, microexplosion occurs at lower 

temperature for ethanol emulsion compared to water emulsion during combustion [35]. 

Finally, water is more abundance and easily acquired compared to ethanol which requires 

fermentation processes. To compare the combustion behaviour between ethanol and water 

emulsion especially during disruptive burning, isolated fuel droplet experiment would provide 

useful data on their respective differences.  

 

2.10 Nanofluid Droplet Combustion 

 

2.10.1 Introduction to Nanofluid 

 

Dilution and suspension of nano-sized particle in fuel droplet studies were widely explored 

believed to emerged from work of Choi and Eastman [143] who proposed nanofluids concept. 

Within this field of study, stable form of agglomeration of nanofluid is formed by the addition 

of various type of energetic nanoparticles, surfactants, followed by rigorous stirrings and 

sonication [79, 96]. However, is it not absolute certain that the nanoparticles were evenly 

distributed inside the droplet during testing due to suspension process (injection or 

pressurised liquid flowing through a syringe), but with repeatable result, it is assumed to be 

evenly distributed [42]. Common nanofluid suspensions are either metallic typically boron, 

aluminium and titanium or non-metallic such as ceria, carbon and alumina. To aid with 

stabilisation, surfactants are added but, in some cases, none added because it would change 

the properties of the base fuel such as viscosity, boiling point and surface tension. Also, 

adding surfactant to a burning nanofluid produces a cross-linking structure by the 

decomposition of surfactant and would produce an impermeable shell of particles as a 

product of pyrolysis [107]. Without surfactant added to the nanofluid, the suspension was 

found to be stable for minimum of two hours [84].  

 

2.10.2 Enhancement of Combustion Efficiency 

 

Nanofluid is known to have enhanced ignition probability, shortened ignition delays, reduce 

the surface tension and in some cases, reduced combustion temperature [42]. Javed et. Al 

[43] conducted a study on various dilute concentrations of aluminium particles in kerosene 

and heptane droplet combustion concluded that metallized liquid fuels burns with higher 
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combustion energy due to higher gravimetric energy contents of metal compared with 

traditional liquid fuel. Positive attributes of nanoparticle suspension include high energy 

density [44], promotes complete combustion and high specific surface area [45]. Moreover, 

nanoparticle is known to become a secondary energy carrier that enhances the energy 

release during combustion [46]. Nanoparticles increases the thermal conductivity as well as 

thermal diffusivity which in turn improves the dispersion of energy conducted towards the 

centre of the droplet [144]. With size less than 10 nm, the cross-linking particles acted as a 

thermal bridge and improved thermal conductivity via Brownian motion [145, 146]. As the 

combustion progresses, the droplet temperature increase to a boiling and the nanoparticle 

acts as a heat source that continues to heat the droplet beyond the boiling temperature of 

the base fuel [96].  

 

2.10.3 Combustion Phases of Nanofluid. 

 

Nanofluid combustion involves multiphase, multicomponent and multiscale nature 

throughout the lifetime of the droplet due to their thermal conductivity, surface tension, 

radiative absorption and mass diffusivity which vary with time [96]. The combustion 

characteristics behaved differently in each combustion phases. Three typical combustion 

stages are observed in nanofluid combustion either in low or high loadings. They are defined 

with ignition and droplet heating, steady burning with multiple sub-droplet ejections and 

disruptive burning with higher frequency of puffing or microexplosion [84, 46]. During heating 

phase, nanofluid with the addition of surfactant burns with preferential combustion similar to 

multicomponent fuel droplet. Because of higher boiling point of surfactant, the base fuel 

vaporised first and leave a higher concentration of surfactant on the droplet surface as the 

burning progresses. Larger expansion of droplet was observed together with the occurrence 

of puffing that ejects nanoparticle to be burned [43]. During the steady combustion phase, 

some distortion on the droplet surface is observed. Particles inside the bubble heats up the 

droplet locally, initiating a heterogeneous nucleation which forms multiple small bubble that 

merged into one large bubble; with some puffed through the surface [147]. The steady stage 

ended when the bubble ruptured the droplet with stronger puff. In disruptive stage, more 

particles agglomerated, and puffing ejects some particles that burns inside the flame. This 

disturbs the formation of flame on the primary droplet. The particles agglomerated to a shell 

on the droplet surface, leading to a local heating on the surface that would superheat the 
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base fuel resulting stronger puffing and more frequent sub-droplet and particle ejection [107]. 

Fig. 2.23 illustrates the shell formation that leads to microexplosion in nanofluid combustion 

 

 

Fig. 2.23 Schematic illustrations of shell formation and liquid breakup during nanofluid combustion 

[46] 

 

2.10.4 Aggregation of nanofluid. 

 

Interparticle collisions causes the attachments between them is the main cause of particle 

aggregation, depending on the collision frequency and efficiency. Gan and Qiao [107] 

categorised the mechanism of particle aggregation with three major transport mechanism. (i) 

Brownian diffusion also known as perikinetic collision is a random movement of particles 

inside the droplet. (ii) Relative motion of particles which also known as orthokinetic 

aggregation due to fluid stirring, shear flow and turbulence. This is strongly affected by the 

natural convection which exerts shear stress on the surface of a droplet, causing internal 

circulation inside a burning droplet. Also, the surface of the droplet regresses as it 

evaporates, promoting collisions between particles concentrated on the surface of the 

droplet to move inward and collides with the particle contained inside. (iii) Differential 

settling is significant when the particle is denser and heavier than the base fuel. When 

particles settle during expansion, the settling particle collides with other particle and 

agglomerates. Once the particles aggregates through these means, it is less likely for the 

particles to be diffused back inward toward the centre of the droplet. 

Tree parameter that can ensure a smooth regression of burning nanofluid droplet are 

the formation of porous spherical shell, delays of particle agglomeration and uniform 

distribution of particles [46]. Agglomeration of nanoparticle in high loading would be the main 

attribute for the reduction in the burning rate of droplet [148]. The surface energy of particle 

is reduced when they agglomerate, creating a larger restrictive force for the mass diffusion of 

the liquid fuel [84]. The formation of aggregate shell during the combustion not only depend 

on the size, but also on the morphology of the particle. It was observed by Ojha et al [46] that 
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stronger microexplosion occurs with crystalline boron that forms into an impermeable shell 

compared to amorphous boron which forms into a permeable shell. More evenly distributed 

particle inside the droplet would form a porous and permeable shell that allows nucleated 

vapour to escape easily. Typical nanoparticles has high specific surface area (5-50 m2/g) [149] 

which forms a strong interaction between the particle and surrounding liquid. Repulsive force 

resulted from the absorption of ionic groups in a liquid to the surface of nanoparticles. This 

forces may reduce the agglomeration rate [107]. Further delaying the process of 

agglomeration, continuous diffusion near the surface ensures insufficient time for the 

nanoparticle to form large aggregates [42]. On the particle distribution, more evenly 

distributed particle inside the droplet would form a porous and permeable shell that allows 

nucleated vapour to escape easily. With higher particle loading, microexplosion is expected 

due to higher pressure resistive shell which leads to a higher pressure build up inside the 

droplet [46, 147]. 

 

2.10.5 Heat Transfer Mechanism in Nanofluid Combustion 

 

Thermal conductivity in nanofluid is enhanced significantly [150] due to the aggregation of 

nanoparticles [151]. Nanofluid droplet is not entirely transparent compared to neat fuel and 

radiation emission from the flame significantly enhance the burning rate with higher radiation 

absorption. Larger surface area of nanofluid droplet enhances the radiation absorption which 

increases the evaporation rate [144]. Also, measurements done by Tanvir and Qiao [42] 

presented in Fig. 2.24 found that nanoparticles near the droplet surface absorbs most of 

radiation energy which leads to localised heating and boiling near the surface. This in turn 

promotes evaporation which found to be the main cause of enhanced burning rate of 

nanofluid. Even in low particle concentrations, the nanoparticle was found to absorb almost 

all the radiative energy. Higher concentration of nanoparticle does not affect the total 

radiative energy absorbed. However, as concluded by the authors, in high particle 

concentration, the photon does not penetrate deep enough and concentrated on the 

liquid/gas surface. Flame temperature is found to be constant throughout the combustion in 

each particle loading. Another possible change in the evaporation rate is due to the smaller 

size of flame. Smaller flame size improves heat conduction from the flame to the droplet 

surface due to its closer vicinity [84]. 
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Fig. 2.24 The percentage of absorbed photons toward the surface of ethanol droplet suspended with 

graphite [42]. 

 

2.10.6 Differences Between Metal and Carbon-base Nanofluid Combustion 

 

To investigate the differences of metal and carbon based nanofluids, Gan and Qiao [144] 

compared the burning characteristics and transmission spectrum between carbon and 

aluminium nanoparticles. The authors discovered that the metal particle in nanofluid absorbs 

the highest radiation energy but most of the energy was scattered away. On the other hand, 

carbon-based nanoparticles have higher absorption efficiency than the scattering efficiency 

which in turn produced higher evaporation rate. Yadav et al. [84] uses graphene nanoplatelet 

(GNP) in nanofluid shows that the burning rate is reduced in low amount of particle mass 

loading (below 0.2%) but enhanced to a maxima in 0.2% mass loading and begin to decline 

with additional loading due to their tendency to agglomerate. It is also found that the smaller 

specific surface area of GNP is, the more detrimental the effect to the burning rate in low 

particle loading. The results is in agreement with works done by Ghamari and Ratner [152] 

who determined the optimum mass loading for carbon-type nanoparticle is between 0.15% to 

0.22% for GNP, Multi-Walled Carbon Nanotubes (MWNT) and OH functionalized Multi-Walled 

Carbon Nanotubes (MWNT-OH). On the other hand, higher loading causes more particles 

trapped near the surface of the droplet with little amount of the aggregation transported to 

the flame. Unburned carbon particles inside a droplet gradually extinguished the flame as 

more heat used to be absorbed rather than used to evaporate the fuel [152]. For metal-based 

nanofluid, the burning rate is found to continuously increased even after 1% mass loadings  

with shortened ignition delay [96][43][153]. It is also found that the burning rate is reduced in 

low amount of particle mass loading (below maxima of 1%) and the declining trend is more 
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profound when the ambient temperature gradually increased. Two important results worth 

to be mentioned here; carbon-based nanoparticle has very low optimum loading (0.2%) 

compared to metal-based nanoparticle (1%) and loadings lower than optimum for both cases 

are detrimental to the burning rate which is more profound when the ambient temperature is 

higher.  

 

2.11 Soot Formation and Effect During Combustion 

 

2.11.1 Introduction  

 

Fuel is sprayed into a high temperature and pressure environment in diesel engine operation 

for a continuous combustion process. In practical combustor, it is not possible to achieve a 

complete combustion. As a result, hazardous air pollutants such as polycyclic aromatic 

hydrocarbons (PAHs) and carbon monoxide constitutes most of soot and gas phase produced 

during incomplete combustion [154][155][156]. In particulate emission, there are two 

categories of organic substances. Insoluble organic fraction consists of sulphate and soot 

while soluble organics fraction consists of low molecular weight substance mainly lubricants 

and unburned fuel [157]. PAHs and acetylene (C2H2) [77] are known as the soot precursor in 

hydrocarbon combustion that formed in the rich region of non-premixed flame due to high-

temperature pyrolysis [110]. Formation of primary soot particle and precursors are located 

within the area between the flame front and the droplet surface. The equivalence ratio in this 

region is high and most of diffused oxygen from the ambient is consumed in the flame region 

[77]. Soot formation are greater than oxidation in fuel rich region and the opposite for lean 

zones. When the combustion temperature is higher, the rate of oxidation increases [158].  

 

2.11.2 Soot Formation Process 

 

Soot consist one-part hydrogen and eight parts of carbon with a density of 1.84 + 0.1 g/cm3 

[158]. There are six process of solid soot formations by sequence involving pyrolysis, 

nucleation, coalescence, surface growth agglomeration and oxidation as shown by process 

flow in Fig. 2.25. During any point of these process, hydrocarbons converted to CO2, CO, and 

H2O through oxidation process [159]. Density of soot produced in combustion depend on the 

type and concentration of fuel. Diesel combustion with higher C/H ratio produced denser 

soot compared to butane which is in alkane group that considered to form very low soot 
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formation [52]. Also, higher number of carbon atoms in the fuel increases the mass of soot 

formed [89] 

 

 

Fig. 2.25 Schematic diagram of the steps in the soot formation process from gas phase to solid 

agglomerated particles. (taken from [159] with a permission from the publisher) 

 

2.11.3 Microstructure of Soot 

 

Rohani and Bae [47] analysed the microstructure of soot particle taken from spray flame 

injected in ambient condition without external temperature and pressure rise. In their case, 

the soot collected is highly comparable to the soot formed by a droplet combustion. They 

observed the primary soot particle as an amorphous carbon which is surrounded by semi-

graphitic shell. Particle sampled from spray is found to be less compact (larger primary 

particle of 25 nm) from the actual engine operation due to oxidation of lower combustion 

temperature with less aggregation (shorter fringe length, 0.796 nm) due to lower collision 

rate. However, the large-sized primary particle is not limited to combustion without external 

pressure and temperature elevation. Müller et al. [48] took a soot sample from raw exhaust of 

heavy duty diesel S2876 CR-engine and studied the microstructure and morphology of the 

soot particle with transmission electron microscope (TEM). They found a secondary chain-

like structure of agglomerated particle which is a common morphology of soot shown in Fig. 

2.26.  

 

 

 

Fig. 2.26 TEM micrographs of soot [48] 
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The mean size of primary particle is about 25 nm and the built-up agglomerate has a 

size up to micrometres. The size of soot aggregate in spherically symmetric burning of 

droplet is found to be between 40-50 nm and consistent with other types of soot aggregate 

found in sooting flame. Temperature field and convection patterns influences the position of 

trapped aggregate but have no significant effect on the mean precursor size [108]. On the 

other hand, Tao et al. [49] predicted the size of soot through their soot prediction model 

stated that the diameter of primary soot particle is 10.28 nm with considerable amount of 

hydrogen contained in soot particle along with carbon atoms. Despite of slight differences of 

soot particle sizes in their measurements and modelling, it is reasonable to agree on the size 

to be within the range of 10 to 50 nm [50]. 

 

2.11.4 Morphology of soot. 

 

Soot nuclei is formed when small sheet of graphene stacks on each other in circular fashion 

which grow in size by surface growth or collision, hence produces a soot primary particle 

[160][161] shown in Fig. 2.27. According to study on candle and natural gas soot performed by 

Su et. al [41], the number and size of soot particles varies between different type of fuel with 

definite presence of nanodiamond particles which began to nucleate inside the flame [162]. 

The aggregation of primary soot particle forms a chain-like agglomerates that is released 

through the exhaust [47]. Also mentioned by Omidvarborna et al. [163], rigid structure of 

graphitic crystallise surrounded a spherical nucleus that is structurally and chemically less 

stable. Majority constituent of soot particles are hydrophobic with the rest being hydrophilic 

and hygroscopic [156]. Soot particle is highly porous and results from [154] shows the 

existence of micropore structure of the soot particle and accounted for the specific surface 

area of the primary particle (1.9 m2/g). 

 

 

Fig. 2.27 Example of the well-known shell/core nanostructure of many primary soot particles. (Taken 

from [161] with a permission from the publisher) 
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2.11.5 Soot formation in droplet combustion. 

 

Unburned fuel nucleates from vapour to solid phase at elevated temperature of fuel rich 

region and forms soot with higher propensity when the residence time of fuel molecule in 

burning environment is longer [59, 60]. On the other hand, soot formation from a smaller 

droplet is mitigated due to the shorter residence time of soot precursor [98, 164] in smaller 

flame size [52, 80]. The transport of soot particles is controlled by the temperature gradient 

of surrounding gas-phase that pushes the particle inward toward the surface of the droplet 

and viscous drag caused by the gasification of the droplet that pushed the particle outward 

towards the flame termed thermophoresis and Stefan Flux (diffusiophoretic force) 

respectively [28]. Stefan flow induced drag is influenced by the burning rate whilst 

thermophoresis highly effected by the flame radius and temperature. Higher burning rate 

produce high Stefan flux and the combination of high flame temperature and small flame 

stand-off ratio produce high thermophoresis [110]. Soot shell appears as a dark ring with 

porous structure surrounding the burning droplet and known to be trapped by the balance 

between inward force of thermophoresis and outward force of Stefan flux [90, 104, 165]. 

Visualisation of soot shell around a burning droplet between the droplet surface and flame 

microgravity experiments shown in Fig. 2.28 confirms the existence of these forces [89, 109, 

110]. Burning of less volatile fuel tend to have soot shell to be formed closer to the droplet 

surface [60]. Once the Stefan Flux is lower than the thermophoresis, the soot particles is then 

pushed towards the flame to be oxidised. Larger flame has lower thermophoretic force due 

to the further vicinity of the heat source [59]. It was found that the burning rate becomes low 

whenever there's a formation of soot shell and jumps back to higher burning rate as the soot 

shell collapses [98]. On the other hand, soot particle from the combusted droplet in normal 

gravity is blown away by the buoyancy-induced convection; making it impossible to be 

measured quantitatively via visualisation method [39]. However, even in strong convection, 

soot precursor was found to be present and always trapped in the fuel-rich side between the 

droplet and the flame [50]. Convections slightly reduces the formation and agglomeration of 

soot particle in normal gravity as the flow carries the agglomerated particle towards the 

flame front without allowing thermophoresis to position the soot inside the flame for 

extended residence time for further soot accumulation [60].  
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Fig 2.28 (a) Schematic of burning droplet with spherically symmetric flame formation and (b) 

formation of soot shell around droplet burns in microgravity. (taken from [12] with a 

permission from the publisher). 

 

2.11.6 Effect of Soot Formation in Droplet Combustion. 

 

The formation of soot results significant change in the heat transfer and evaporation 

characteristic of a burning droplet. Results of such effect in several literature focuses on the 

formation of soot away from the droplet, either forms as shape of shell (microgravity, 

balanced Stefan flux and thermophoresis) or flowing within the region between flame and the 

droplet surface due to the effect of imbalanced force of Stefan flow and thermophoresis or 

buoyancy (normal gravity). The soot shell formed around the burning droplet serves as a heat 

sink which reduces the radiation heat transferred to the droplet for evaporation [80]. 

Furthermore, soot shell acts as a physical barrier which reduces the mass diffusion of the 

vapour as well as hindering the oxidiser to reach the reaction zone [59, 60]. In different 

perspective, radiative heat transfer is enhanced by the presence of soot which acts as a heat 

sink, absorbing the radiative heat from the flame [109]. Because of that, the radiative heat 

transfer towards the droplet surface is enhanced in later period of droplet combustion 

because of the formation of soot shell. However, The radiative heat loss is also increased [85, 

86] from the radiative emission of soot shell which in turn reduces the flame temperature and 

burning rate [89, 166]. Kittelson [167] used absorption spectroscopy to measure the visible 

light through diesel soot stated that the scattering of visible light is lower than absorbance for 

diesel soot particle regardless of size due to high carbon content of the particle. This justifies 

the soot as a high heat absorbing particle, which absorbs the heat, promotes heat loss from 

flame and acts as a physical barrier between the flame and the droplet that inhibit 

evaporation.  
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2.11.7 Soot Contamination in Fuel Droplet. 

 

With turbulence flame, interacting burning droplet and buoyancy-driven soot particle 

transport, there is high possibility of soot contamination in droplet prior to ignition and 

during the combustion. Concluded by Kadota and Hiroyasu [51], the formation of soot is 

between the flame and droplet surface, considered to be in a thin layer region which partly 

pushed inward into the droplet while some of it oxidized [52]. When the thermophoretic 

force is higher than the Stefan flux, soot particles formed in the fuel-rich region would be 

pushed towards the droplet thus contaminating the surface. Under this possibility, Shaw and 

Williams [53] conducted numerical analysis on impure fuel droplets, suggesting fuel 

contamination with low volatility component from the product of combustion as they might 

have seeped into the droplet in gas phase during fuel pyrolysis. The author concluded as the 

impurity fraction increased, the evaporation rate became weaker as a result of flame 

contraction. Additionally, prior to ignition, Kittelson and Kraft [54] described the formation of 

soot cloud prior to ignition during the injection of fuel. These soot particles travelled in every 

direction in low temperature region and do not oxidized which gives the possibility to be 

absorbed as impurities in the droplet slightly before ignited, either from current or previous 

cycle. Moreover, soot is formed as a part of particulate matters circulated in the exhaust gas 

during combustion cycle, suggesting trapped aggregates within the cylinder and considered 

in soot modelling study of Mosbach et al. [55] as part of the combustion mixture. Some 

particles that re-enter the cylinder through engine gas recirculation (EGR) system survived 

the oxidation process upon entering and may act as a sponge and attach to other remaining 

fuel droplets, engine oil and soot particle [43]. Under these circumstances, it is possible to 

conduct an examination of fuel droplet contaminated with soot which would provide 

beneficial result on the contamination mechanisms and the effect to the burning behaviour.  

 

2.12 Interaction of Multiple Fuel Droplet Combustion 

 

An interaction between droplets must be taken into account in droplet combustion study 

rather than in isolation which in turn provides a better insight in the prediction of fuel spray 

behaviour [21, 25]. Vaporisation of droplets in spray behave differently from isolated fuel due 

to their interaction between each other [56]. Competition between droplets for available 

oxidizer inside the combustion chamber in spray combustion was concluded by Labowsky 

and Rosner [57] who stated that oxidizer is prevented to reach the spray core due to this 
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competition. This behaviour was confirmed by Chigier [58] who observed that the flame only 

surrounds the spray boundary without appearing in any location in the spray core which also 

in agreement with the findings of Sangiovanni [21]. The interactive combustion of fuel droplet 

mostly depends on the physical parameter during combustion, which is the separation 

distance, L. It is also reported by Miyasaka and Law [82] that buoyancy is enhanced during 

combustion of droplet in groups. This in turn enhances the oxygen supply to the droplet but 

closer distance below the effective critical distance of L/d = 10 starves the oxygen between 

interacting droplets [111]. Numerical analysis done by Marberry et al. [168] shows that the 

deviation of combustion characteristics of grouped droplet from single isolated droplet are 

significant for L/d < 20. Fig. 2.29 shows the diminishing effect of droplet interaction on to the 

surface regression when the separation distance is beyond 20.  

 

 

 

Fig. 2.29 Extinction droplet diameters as a function of pressure for a single droplet and binary droplet 

arrays in normal gravity [25] 

 

Significant increase in the deviation is found for higher number of droplet or closer 

interaction (high density number). This is due to the increase competition of available 

oxidiser as the density number increases. Burning droplet would behaves comparable to an 

isolated droplet condition under certain separation distance, depending on the properties of 

the fuel droplet [25]. Fuel that burn with similar burning rate is expected to have the same 

interaction behaviour due to the same heating, heat flow and gasification rate [56]. In grouped 

droplet combustion, interaction between them is considered when there is a noticeable 

change in droplet surface regression, burning rate, droplet lifetime and flame formation of 

the fuel from droplet in isolation.  
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2.12.1 Combustion Stability of Interacting Droplet 

 

Unsteady condition effects grouped droplet combustion, severely effecting centre-positioned 

droplet [82]. The flame region moves away from the droplet surface due to the search of 

diffused oxidiser and somewhat unsteady in shape and temperature. This would prevent the 

burning to settle down on quasi-steady condition [72]. According to Nagata et al. [88], 

unsteady behaviour dominates the dense cluster of small droplet due to fuel vapour 

accumulation effect. Flame formation in cluster of droplets is larger, and because of that the 

accumulated vapour took longer time to reach the enveloped flame, more fuel accumulated 

around the droplet rather than being consumed by the flame. Also, droplet heating duration 

becomes longer due to the radiative heat loss of larger flame formation. Upon ignition, early 

evaporation rate of droplet is higher than the vapour consumed by the flame and the flame 

front extends further as the field of vapour accumulation gets bigger. Eventually along the 

combustion lifetime, the vapour consumed by the flame is higher than the evaporation rate, 

similar to droplet heating and vapour accumulation effect of isolated droplet but with 

increased magnitude. Contradicting the result of previous authors, Okai et. Al. [20] stated that 

multidroplet burning stabilized the combustion irregularity and smoothen droplet liquid 

surface. Moreover, the onset of stability is earlier for multidroplet arrays compared to 

isolated droplet. Combustion stabilisation only apply when there is a strong interaction 

between a group of fuel droplets. Also, as mentioned by Mikami [24], It was observed that a 

group of droplets which burns in one enveloped flame is beneficial in flame stabilization 

mechanism in combustors especially on the flame spreading mechanism. 

 

2.12.2 Effects of Droplet Interaction on Burning Rate and Lifetime 

 

As stated by D2-law, the surface area of an isolated droplet decreases linearly with time. The 

same trend should be imposed to the burning rate of an arrays of droplet if the multi-droplet 

position is geometrically constant throughout the droplet lifetime [21]. However, slight 

deviation from D2-law is presented for less than 10 inter-droplet distances. Higher interaction 

between burning droplets increases the droplet lifetime; given with specific minimum spacing 

between them for each type of fuel. These interaction plays an important role in extending 

burning times of spray combustion. With more comprehensive details on the mechanism, one 

can control the burning duration and intensities to suit the optimum engine operation. 

Minimum lifetime of droplet (no inter-droplet reaction) in arrays can be achieved by a 
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specific inter-droplet distances, depending on the type of fuel used [20]. Strong interaction 

between the flow fields surrounding neighbouring droplets occurs when the droplet centres 

are less than two diameters apart [19]. Also, the lifetime of an isolated burning droplet is 

increased more than twice in droplet spacing that is less than 2 diameters [21] and these 

concluding remarks by Sirignano and Sangiovani respectively, applies to most type of fuel. It is 

again confirmed by Struk et al [25] that it is evidence that the burning rate is not significantly 

affected for the interaction with initial separation distance over initial droplet size (L/Do) 

above 5. Below normalised distance of 5, the burning rate reduces significantly. On the other 

hand, instantaneous burning rate of interacting droplets depends on the instantaneous 

droplet size, D and initial separation distance, L. Continuous increment of instantaneous 

separation distance is due to the reduction in droplet size as the combustion proceeds. This 

changes the intensity of droplet vaporisation with continuous change thus renders D2-law 

non-existent [82, 56]. To analyse these changes, burning rate correction factor ƞ = 

Kinstant/Kisolated was numerically introduced by Labowsky [169] to see the changes in burning 

rate that vary with time during interactions, with clearer differences of trend in the 

regression and implemented in experimental study by Miyasaka and Law (normal gravity) [82] 

and Mikami et al. (microgravity) [111]. With the correction factor, they determined that the 

effect of strong droplet interaction is indeed within the instantaneous separation distance 

below 5, with slight deviation from D2-law above 5 shown in Fig. 2.30. Hence, the strength of 

the interaction mainly depended on the flash point, autoignition temperature and the 

chemical compound of the fuel itself and this is worth investigating thus providing a 

comprehensive datasheet of droplet interactions. 

 

 

 

Fig. 2.30 Buoyancy-induced burning rate of multi-droplet combustion of decane droplet using burning 

rate correction factor [111] 

 



74 
 

2.12.3 Flame Structure and Heat Transfer of Interacting Droplet 

 

Droplet interaction tends to change the combustion flame structure in term of size and 

shape. Group of droplet burns with two type of flame structure. The first would be individual 

combustion mode with separate flame that burns each droplet individually and the second 

would be an enveloped flame that engulf the entire group of droplets shown in Fig. 2.31. The 

flame mode depends on the chemical condition of the whole system and significantly affected 

by the vicinity of neighbouring droplets [72]. Overlapping flames and burning group of arrays 

is an evidence of a strong droplet interaction [21]. The oxygen depletion between the flame 

causes the flame to merge into one enveloped flame with larger flame size [23]. This in turn 

decreases the vaporisation rate, lower the temperature gradient within the group of flame 

thus prolong the combustion lifetime [170] due to further distance of flame front that reduces 

the heat transfer towards the surface of the droplet. Interaction between droplet still exist 

even without the overlapping of flame formation. Size and shape changes of the flame 

indicates the sign of droplet interaction and the effect is the strongest with merged flames 

[21].  

 

 

 

Fig. 2.31 Direct photographs of the flame for different flame shape modes [111] 

 

During interaction of droplets, cooling effect is expected due to duplication of heat sink 

and evaporation of more vapour that cools the surrounding gas phase. Also, the supply of 

vapour is increased by multiple fuel source thus extending the lifetime of the burning droplet 

as well as increases the distance of flame front [108]. Closer spacing reduces the heat transfer 

from the flame to the surface of the droplet due to the increase of flame distance as well as 

radiation heat loss to the ambient [88]. Also, the Nusselt number based upon local ambient 

conditions will be less than the corresponding value for an isolated droplet and decreases as 

spacing decreases [19]. Referring to Okai [20], Heat loss is reduced between the droplets, but 

heat generation is retarded by their competition for available nearby oxidizer. For interacting 
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droplet that burns with individual flame, oxygen starvation considered not to be occurred. 

The radiative heat transfer is enhanced between the droplet, with the flame of neighbouring 

droplet increases the radiative heat transfer to the adjacent droplet [111]. Buoyancy is 

enhanced in close proximity of interacting droplet with better interior motion which in turn 

enhances the conductive heat transfer within the droplet. Although the effect of buoyancy is 

improved, close proximity still reduces the evaporation due to a higher decline in radiative 

heat transfer compared to little enhancement of conduction [82, 56]. Nevertheless, deeper 

analysis on droplet interaction is important to establish better understanding of fuel spray. 

Although a single isolated droplet study is beneficial in terms of combustion fundamental, it is 

restricted to isolation; without any interaction and instable burning behaviour. 

 

2.13 Summary 

 

Several hypotheses can be drawn from the transient behaviour of a burning droplet based on 

the extensive study made on the literature. Slight change made on a fuel droplet would vary 

their transient behaviour, especially during droplet heating and fuel vapour accumulation. 

These effects can be studied in detailed by various approaches. 

Firstly, the transient burning of a fuel droplet highly depended on the properties of the 

fuel. Fuel with high boiling point would have significant droplet heating effect during the 

transient liquid-phase evaporation. Low volatility fuel would have significant fuel vapour 

accumulation effect as a result from lower fuel vapour consumption rate. However, such 

effects are only observable during experimental works. Classical quasi-steady analysis 

assumes constant gasification and equal evaporation-consumption during the evaporation of 

a fuel droplet. Since the droplet heating and fuel vapour accumulation constitutes a large 

portion of the droplet lifetime, high discrepancies between quasi-steady analysis and 

experimental result is expected when liquid and gas-phase transient effect are included into 

the quantitative measurement. Hence, comparison between a fuel with high and low boiling 

point with quasi-steady assumptions could demonstrate such transient effects. 

Secondly, emulsion droplets have high potential to improve mixing during actual spray 

combustion as a result of more violent droplet breakup during their disruptive evaporation 

processes. From the literature, ethanol emulsion is expected to have a better breakup 

process compared to water emulsion due to its lower surface tension and flammable 

properties. However, adding a surfactant to stabilise the mixture would change the internal 

dispersion of lower boiling point component (ethanol and water). Higher holding strength of 
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surfactant would trap more volatile component within the droplet and initiates more violent 

droplet breakup process. Existing quantitative measurements between both emulsion fuels 

found that water emulsion has higher burning rate compared to ethanol emulsion. This must 

be contributed by the higher mass loss of liquid during the disruptive evaporation of water 

emulsion. It is believed that their distinct differences of droplet breakup can be identified by 

experimentally comparing them with a high repeatability measurement. Hence, more detailed 

measurement during their disruptive evaporation phases would provide an insight into their 

breakup processes. 

Thirdly, an unstable emulsion fuel droplet has a high potential to microexplode. 

Mixroexplosion of an emulsion droplet are caused by a complete phase separation and upon 

reaching the superheat limit of the dispersed phase within the droplet. Three conclusions 

were drawn from various literatures. Firstly, it is theorised that an emulsion droplet will 

microexplode once the dispersed phase goes into a complete phase separation. Secondly, 

microexplosion will occur once the lower boiling point component has reached its superheat 

limit. Thirdly, microexplosion only occurs when both complete phase separation and when 

the superheat limit is reached. However, some literature reports that although both 

conditions are met, the emulsion droplet still able to completely evaporate without 

microexploding. It is believed that there must be another condition required to initiate a 

complete droplet breakup since the process is categorised into two exploding strength. One 

process involved nearly symmetrical expansion and one would undergo a strong gush of 

vapour jet prior to a complete breakup. Hence, detailed visualisation into the liquid-phase of 

emulsion droplet is needed to observe the dynamics of the dispersed liquid within emulsion 

fuel.  

Fourth, the presence of nanoparticle within a fuel droplet significantly changes the 

burning behaviour. Nanoparticles has high heat absorbance which in turn would enhance the 

heat conduction within a fuel droplet, diminishing the droplet heating effect and improve 

mixing through particle oxidation. On the other hand, soot is a nano-sized particle produced 

within the rich fuel region of flame. The surface area of soot is measured to be much larger 

with smaller size of primary particle than the energetic nanoparticles used in nanofluid 

combustion. Furthermore, soot is hydrophobic and easily agglomerated due to its tendency 

to move towards the area with less liquid. With high potential of soot to contaminate the 

liquid droplet during turbulence mixing of fuel spray, the role of soot during the combustion 

of fuel droplet need to be taken into consideration. At a certain amount of nanoparticle 

suspended within a fuel droplet, a critical loading can be achieved with a significant 
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enhancement of combustion characteristics. Hence, the effect of soot contaminating a liquid 

fuel need to be studied and compared with existing nanofluid experimented by various 

studies. 

Fifth, gas-phase interactions between multiple droplet combustion highly effect the 

transient evaporation process. Small spaces between burning droplet with larger flame 

starves the oxygen supply in the reaction zone. This in turn prolongs the droplet heating 

process. Also, higher density of multiple evaporating droplet increases the fuel vapour 

accumulated between the flame and the surface of the droplet. It is expected that within a 

certain critical droplet separation distance, the transient evaporation process would be 

affected significantly. On the other hand, Stefan flow is highly dependent on the mass 

consumption rate of a fuel droplet whereas the thermophoretic flux is highly dependent on 

the temperature gradient of gas in the hot region within the flame. The dynamic change of 

these parameters has the effect on the soot generation and position. Under a certain ratio of 

these flow, the soot generated would have the potential to either pushed toward the surface 

of the burning droplet or nearby droplet. Based on various literatures, the transient effect 

would behave differently between each type of fuel. Hence, meaningful comparisons can be 

made by experimenting on types of fuel with large differences in their volatility and sooting 

propensities.  
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Chapter 3 

 

Research Methodology 

 

3.1 Fuel Selection 

 

Research advances in the combustion efficiency of compression ignition engine lead to a 

breakthrough in achieving a relatively high thermal efficiency. Recently, a study done by 

Splitter et al. [171] has achieved 60% thermal efficiency through reactivity controlled 

compression ignition (RCCI) system. Although diesel fuel considered to be more efficient 

combustion energy fuel compared to petrol in the recent study [172-176], diesel combustion 

posed a high risk to air pollution from its emission. Furthermore, additional problems raised 

by its price fluctuation, depletion and increasing energy demands. Researchers have been 

exploring an alternative source of energy to tackle these problems.  

In order to meet the high energy demand and avoid price fluctuation, studies on diesel 

and bioethanol blending were conducted due to its renewable nature. Bioethanol is produced 

via a fermentation process of glucose which is derived from starch, sugar and cellulose [139]. 

Adding bioethanol into diesel fuel reduces the sooting propensity during combustion of the 

mixture [77, 38] because ethanol is an oxygenated fuel which in turn has the capability to 

promote more complete combustion  [95, 140]. For instance, 10% addition of ethanol provides 

3% oxygen addition to the ethanol-diesel emulsion and promotes better soot oxidation [35]. 

For this reason, it is worth to mix diesel and ethanol as subjects of study. 

To further tackle high Nox emission from diesel combustion, water and diesel 

emulsion was introduced. Water addition into the combustion chamber reduced the 

operating temperature, thus reduces NOx formation [177-179]. Also, reported by Faik [66], high 

excitation and explosion of diesel and water emulsion aided the combustion process, with 

higher burning rate constant and a number of secondary atomization. Also, higher water 

content has proven to further reduce the combustion temperature to a cold combustion 

region, with almost zero CO and NOx emission. However, higher water content produced 

unstable combustion and posed a diminishing effect to higher operating load due to its nature 
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of microexploding. Closer study on diesel and water droplet emulsion would enable the 

categorisation of each mixture composition in term of its stability and reliability. 

 

3.1.1 Neat Fuel 

 

Neat fuels that were used in present work are diesel and ethanol. Diesel was treated as the 

base fuel for each blend and emulsion. The type of diesel fuel utilized in present work is a 

regular Shell Diesel Fuel. The type of ethanol fuel utilized in present work is a Biofuel-500 

Gardeco, plant-based bioethanol produced from industrial distillation. The physical 

properties of diesel, ethanol and water used are depicted in table 3.1. These properties are 

used for the calculation of classical quasi-steady theory on neat fuel in the present work.  

 

Table 3.1 Properties of neat fuel and water used in present work 

Properties Diesel Ethanol Water 

Chemical composition C10H22 C2H5OH H2O 

Density @ 25 ᵒC, kg/m3 830 783.2 1000 

Specific gravity @ 25 ᵒC 0.83 0.79 1 

Molecular weight, g/mol 148.6 46.07 18.02 

Stoichiometric AF ratio 14.6 9 - 

Thermal conductivity @ 25 ᵒC, W/m.K 0.142 0.171 0.608 

Kinematic Viscosity @ 40 ᵒC, mm2/s 3.05 1.08 0.892 

Boiling point, ᵒC 170-390 78 100 

Flash point, ᵒC 79 16.6 - 

Specific heat @ 25 ᵒC, kJ/kg.K  1.81 2.44 4.186 

Latent Heat of Vaporization, kJ/kg 250 840 2257.7 

Surface tension @ 25 ᵒC, mN/m 28.2 22.1 72 

Lower Heating Value, MJ/kg 43.2 26.8 - 

Higher heating Value, MJ/kg 44.8 29.7 - 

 

Diesel constitutes multiple component of volatile mixture within it, making the boiling 

point to be within the range of 170 to 390 °C. For the boiling point of diesel, 170 °C is used in 

the analytical study conducted in the present work; which considers the minimum 

temperature that is required for the onset of steady diesel evaporation. In analytical 

consideration, the fuel would only steadily evaporate when the boiling point is reached. 
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However, in the experimental observation, fuel starts to steadily evaporate even below the 

boiling point of a fuel. Hence, minimum boiling point of diesel was utilised in the calculation to 

avoid higher discrepancies between experimental and analytical analysis. 

 

3.1.2 Emulsion Fuel 

 

The diesel-ethanol and diesel-water fuel prepared in this experiment incorporated an 

emulsification method. This process was done to obtain a kinetically and thermodynamically 

stable solution for combustion purposes. The composition of emulsion fuel is depicted in 

Figure 3.1 [180]. Water-in-oil emulsion would have water-based liquid to be dispersed inside 

the continuous phase of oil whereas oil-in-water emulsion would have the oil to be dispersed 

inside the continuous phase of a water-based liquid. The emulsifying agent forms a protective 

layer between the boundary of the immiscible liquid which in turn prevents early coagulation 

and complete phase separation. 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

Figure 3.1 Illustration of (a) water-in-oil (WO) and (b) oil-in-water (OW) emulsion (reproduced from 

[180]) 

 

Generally, there are two types of emulsifier, which are hydrophilic and lipophilic 

emulsifiers. Hydrophilic emulsifier tends to form an oil-in-water emulsions whereas lipophilic 

emulsifiers produce a water-in-oil emulsion. These types of emulsifiers were scaled by a 

Hydrophile-Lipophile Balance number (HLB), from 0 to 20, having an equal emulsifier 

attraction to oil and water in the scale of 10 [181]. To simplify, the emulsifier characteristic 

based on their respective HLB is briefly described in table 3.2. To ensure the fuel prepared is 

water-in-oil emulsification, Sorbitan-mono-oleate with Hydrophile-Lipophile Balance number 

Emulsifying agent 

Water-based 

liquid 

Oil Phase 

Emulsifying agent 

Water-based 

liquid 

Oil Phase 
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(HLB) 4.3 was used. On the other hand, Polysorbate 80 with HLB =15 was used to produce oil-

in-water emulsion fuel. 

 

Table 3.2 Ranges of HLB number and characteristics 

HLB Number Type Emulsion 

0 < HLB < 9 Oil-soluble (Lipophilic)  Water-in-oil 

10 
hydrophilically-lipophilically 

balanced 
N/A 

11 < HLB < 20 Water-soluble (Hydrophilic) Oil-in-water 

 

The emulsifier (less than 2% of the total volume of solution) is added to the diesel 

(base fuel) and stirred by using a mechanical stirrer of 2000 rpm. Water or ethanol is added 

continuously to the base solution while under steady stirring. This method was similar to the 

preparation made by Califano [182], by ensuring the water or ethanol is added drop by drop 

to the base fuel while under continuous stirring. Specifically, experimental parameters of 

water composition in diesel were set at 10%, 20% and 30% for these sample preparations. 

Further increasing the water composition in the emulsion rendered the mixture 

incombustible. On the other hand, the volume loading of ethanol tested in this study is similar 

to water for the purpose of comparability.  

 

3.1.3 Diesel fuel Contaminated by Soot Particles 

 

The effect of soot particle contaminating a diesel fuel droplet is studied in present work. 

There were two contamination conditions in particular; surface contamination and volume 

contamination. These conditions were selected to simulate the instantaneous contamination 

process during fuel spray combustion.  

Surface-contaminated diesel (SCD) droplets were prepared during the ignition 

process. The imaged neat diesel droplet was ignited by another diesel droplet positioned 

below it. The soot contained in the hot combustion gas flowed upward because of buoyancy 

and contacted the imaged droplet. At the same time, heat from the diesel flame positioned 

below ignited the imaged droplet. As a result, the imaged droplet was ignited while having its 

surface contaminated by soot particles. However, it is not possible to control the 

contamination density precisely due to the continuous process from the contamination to 
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droplet ignition. To minimise the measurement errors, this process was repeated by a 

significant amount of time to ensure each similar level of contamination can be repeated at 

least six times ranging from 30% to 100% of droplet surface coverage. 

Volume-contaminated diesel (VCD) droplets were prepared before the droplet 

deployment. The diesel soot was collected from the particle’s deposition during the burning 

of diesel fuel through a fibre glass-reinforced wick. A glass sheet was placed above the diesel 

flame for the soot deposition. The deposited particles are then scrapped by a spatula into a 

glass bottle and weighted. To ensure there was no moisture contained within the particles, 

drying process was done. The soot particle inside the glass bottle was placed inside a drying 

oven for over four hours to evaporate any moisture.  

VCD droplet was prepared by adding the dried soot particles into a diesel fuel with 

0.1% to 0.5% particle loadings by mass. It is stated from various studies on carbon-based 

nanofluid droplet combustion [42, 84, 144, 152] that the critical loading of nanoparticle for 

enhanced combustion characteristics is between 0.1 to 0.5%. Particle loading beyond the 

critical loading is found to detriment the burning rate and stabilities of a nanofluid droplet. 

Under these reasons, those particular mass loading of soot particles were investigated since 

the diesel soot is made up of mostly carbon-based particles. The collected soot particles 

were added to the diesel (base fuel) and stirred by using a mechanical stirrer of 2000 rpm. 

No surfactant was added to prevent significant change to the fuel properties of base fuel as 

well as the formation of a protective layer around the suspended soot particles. The 

suspended particles inside the base fuel is found to be evenly segregated from the 

visualisation on the droplet liquid-phase with good repeatability of measured results; further 

discussed in Chapter 6. 

 

3.1.4 List of Fuels 

 

Fig. 3.2 shows a complete list of fuels used in present work; categorised into each chapter. It 

is worth mentioning that the fuels were selected based on their respective objectives; mainly 

to evaluate the transient combustion processes of evaporating droplets.  

In Chapter 4, neat diesel and ethanol were selected to analyse the transient burning of 

the fuel in neat condition respectively by comparing them based on their large differences in 

boiling point, volatility and sooting propensities. Diesel has high boiling point and low volatility 

which expected to have high droplet heating and fuel vapour accumulation effect. On the 

other hand, ethanol is expected to have minimum droplet heating and fuel vapour 
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accumulation effect due to its low boiling point and high volatility. With large differences in 

their properties, a significant difference in their transient behaviour could be observed. 

Hence, the identification of such transient effect can be made clearly by a comprehensive 

analysis that leads to a more detailed description. 

In Chapter 5, two emulsion types with six mixture conditions were analysed. For a 

stable emulsion fuel of water-in-oil (water-in-diesel and ethanol-in-diesel), comparisons were 

made between them mainly to identify their disruptive burning behaviour. As a flammable 

component within emulsion fuel, ethanol is expected to enhance the evaporation rate of an 

emulsion fuel significantly compared to water. However, based on literature [66], water 

emulsion undergoes higher evaporation rate. Hence, a detailed liquid-phase visualisation is 

made to identify their characteristics during disruptive burning which influenced such 

enhancements. On the other hand, the main cause of emulsion droplet to microexplode is 

studied in detail by analysing the unstable emulsion of oil-in-water (diesel-in-ethanol, diesel-

in-water and both emulsion without any surfactant added). By adjusting the heating, 

composition and dispersed condition within the unstable emulsions, the tendency of the 

droplet to micrexplode can be identified by looking into the effect of ambient temperature, 

phase separation and the location of dispersed phase. 

Chapter 6 focuses on the effect of soot contamination onto the liquid fuel droplet. 

Diesel was selected to demonstrate such effect due to its practical use with high potential to 

be contaminated by soot during actual spray combustion. By igniting a diesel droplet 

positioned below the imaged diesel droplet, such effect can be simulated and analysed. To 

further analyse the role of soot as a nanoparticle that would potentially enhance the 

combustion, a uniform suspension of soot within a diesel droplet was studied. It is expected 

that uniform suspension of soot would enhance the combustion similar to nanofluid 

containing energetic nanoparticles.  

Chapter 7 focuses on the effect of interaction during the combustion of multiple fuel 

droplet. This would simulate the liquid and gas phase behaviour of burning droplet during 

actual fuel spray in relative scales. Neat diesel and ethanol were selected based on their large 

differences in fuel properties. Larger flame formation and high sooting propensities of a 

burning diesel is expected to increase the effect of oxygen starvation and contaminate the 

nearby droplet respectively. The opposite effects are produced during the burning of ethanol. 

By comparing the multi-droplet combustion of both fuels, the effect of volatility and sooting 

propensity of a burning fuel to their transient evaporation behaviour is identified. 
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Fig. 3.2 Chart of fuels utilised in present work 

 

3.2 Characterisation on Experimental Procedures 

 

This section explains the characterisation of the experimental procedures, mainly focused on 

the droplet generation, suspension and ignition. Through the course of this research, similar 

characterisation approaches were implemented. 

 

3.2.1 Droplet Generation and Suspension 

 

Prior to suspending the fuel droplet, all neat fuel and emulsion were placed inside a chemical 

bottle and labelled. In present work, fuel droplets were suspended on a 95 µm Silicone Fibre 

enforced with 5 µm diameter tungsten core. According to trials done by Liu et al. [16], 14 µm 

fibre support enables the suspension of droplet less than 1 mm and 80 µm fibre support 

Chapter 4 

Neat fuel 

Ethanol 

Chapter 5 

Emulsion fuel 

Water-in-

diesel (WD) 

Ethanol-in-

diesel (ED) 

Diesel-in-water 

(DW) 

Diesel-in-

ethanol (DE) 

Ethanol-in-

diesel with no 

surfactant 

(EDns) 

Water-in-diesel 

with no 

surfactant 

(WDns) 

10% Ethanol 

20% Ethanol 

30% Ethanol 

Diesel 

10% Water 

20% Water 

30% Water 

10% Ethanol 

10% Water 

10% Ethanol 

10% Water 

Chapter 6 

Contaminated 

diesel fuel 

Surface 

contamination 

Various 

Volume 

contamination 

0.05% 

0.1% 

0.2% 

0.3% 

0.4% 

0.5% 

Chapter 7 

Multi-droplet 

combustion 

Neat fuel 

Diesel 

Ethanol 



85 
 

could suspend a droplet higher than 1 mm. The main idea is to track the droplet dynamics and 

flame characteristics during droplet combustion. Therefore, the size of the fibre selected for 

testing is suitable for 1 mm fuel droplet size suspension in the purpose of observing clear 

nucleation inside the droplet and longer lifetime of combustion flame. For the purpose of 

liquid-phase visualisation, high magnification images on stationary droplet is required. Hence, 

fibre-suspension method was selected in the present work. Figure 3.3 shows the droplet 

suspension on the silicon carbide fibre prior to ignition. 

 

 

Figure 3.3 Suspended Diesel Droplet on 100 µm SiC Fibre 

 

Droplets were suspended on the SiC fibre by transferring the fuel from the chemical 

bottle via micro-fine syringe with a hypodermic needle (0.33 mm diameter and 12.7 mm 

length). A relatively small amount of fuel then injected to the end of the fibre and measured to 

ensure the consistency of the transferred size. 

 

 

Figure 3.4 Initial Droplet size of suspended fuel droplet 
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As shown in Figure 3.4, the deviation in the initial droplet size was kept as minimum as 

possible to ensure the precision and repeatability of the experiment. Standard deviation was 

calculated to be as low as 0.075 mm whilst the average diameter is 1.064 mm. Hence, by 

manually injecting and measuring for each instance ensured the practicality of current 

method thus provided high reliability of analysed results. 

 

3.2.2 Droplet Ignition 

 

There were two methods of fuel droplet ignition used in the current study based on the 

specific scope of analyses. In general, two ignition devices involved with the various setup of 

heating approach. 

 

Ignition with Butane Flame 

After the suspension of the droplet, a butane lighter was ignited underneath the droplet and 

the flame edge was inserted to be at least 5 mm away from the droplet. This placement was 

made to ensure the ignited flame from the fuel droplet was free from disturbances from the 

butane flame; which might alter the actual size of the ignition flame. Ignition delays measured 

from this approach were neglected, due to its uncertainty of insertion speed, distance and 

flame intensity, which yielded between the range of 1 to 10 milliseconds. A study done by Faik 

[7, 36, 66] implemented this approach which focused on the burning rate constant, flame and 

droplet dynamics rather than the ignition characteristics. Figure 3.5 shows the timeframe 

between butane flame side heating insertion and ignition. 

 

  

(a) (b) 

Figure 3.5 Butane flame side heating at (a) flame insertion at 0 ms (b) visible diffusion flame at 12 ms 
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Ignition with Thermal Wire Heater 

The apparatus consists of the thermal wire heater (Smok Alien 220W) which able to vary the 

heating power output within range the of 6W to 220W. Wire setup on the atomizer varies, 

ranging from the type of wire, size, total resistance and shape. It was observed that the most 

stable configuration; which was used in this experiment is Kanthal A-1 wire, 6 number of coil 

round with 3 mm diameter. The resistance reading used is 0.82 ohm. From results obtained 

from the measurement of temperature responses in Chapter 4, it is confirmed that placing 

the thermal heating wire 1 mm away would provide a steady temperature distribution; similar 

to ignition method done by [18, 20, 22, 23]. However, ignition done by these researchers does 

not particularly controlling the ignition repeatability as the distances varied between 1 mm to 

2 mm. Although the closer placement of the wire yielded higher precision, reducing the 

distance less than 1 mm would disturb the flame formation once the droplets were ignited. 

Hence, 1 mm was chosen to be the best suited for this experiment. To Precisely adjust the 

distance, a micrometer ratchet was used and the distance was measured using the Photron 

Fastcam Viewer Software on the image prior to recording. This ignition method was 

developed in the present work to ensure high repeatability of experimental measurement by 

providing neat ambient temperature elevation around the droplet without any external gas or 

vapour influence. With flexible adjustment of device wattage, the coil temperature can be 

controlled for any desired level. Furthermore, the small-sized heating device provides more 

compact arrangement of experimental apparatus thus simplifies the suspension and imaging 

method for more complicated arrangement such as soot contamination processes, multi-

droplet arrays and repeatable disruptive processes in emulsion droplet. 

The heating wire device actuated outside of the droplet range for at least 10 seconds 

to ensure the wire has reached a steady maximum temperature of given power settings. The 

device is then slid below the droplet with 1 mm distance and steadily heating until ignition. 

Preliminary measurement indicated that there was no reliable correlation between ignition 

delay and ignition temperature setting thus produced a negligible result (ranges between 10 

to 100 ms). This is due to the low repeatability criteria of heating device insertion directly 

below the droplet. As soon as a visible flame is observed to form, the heating device was 

quickly retracted. This ignition method ensures neat combustion of each fuel droplet with 

only temperature elevation made to the ambient air. Figure 3.6 shows the device insertion 

sequence from reaching a steady maximum temperature to the ignition of the droplet 
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(a) (b) (c) 

Figure 3.6 Thermal heating wire on steady maximum temperature at (a) away from the droplet 

(optical axis) (b) 1 mm away below the droplet (c) droplet ignition 

 

3.3 Imaging Setup 

 

In present work, two imaging setups were conducted, each with their specific purpose of 

image visualisation.  

 

3.3.1 Backlighting and Direct Flame imaging 

 

The imaging setup for all fuel droplet experiments conducted in the present work is shown in 

Fig. 3.7. For tracking droplet lifetime and droplet dynamics in high speed, HIG-HSV 1-High 

Speed Video 50k FPS-Phantom V210 camera was used. In the purpose of tracking droplet size 

and dynamics, a backlighting imaging was conducted by placing an IDT 19-LED high intensity 

illuminator with a diffuser behind the droplet which is opposite to the camera lens (Nikon AF 

Micro NIKKOR 60mm f/2.8D). Additionally, a direct flame imaging was conducted 

simultaneously with backlighting by positioning a Photron-SA4 high speed colour camera with 

its optical path in the perpendicular axis of droplet imaging with Nikon AF Nikkor 50 mm 

f/1.8D lens attached to it. This was done to acquire the flame formation of the combusted 

droplet, enabling real time tracking between droplet dynamic and flame characteristics. 
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Figure 3.7 Backlit and Direct Flame Imaging Setup for Fuel Droplet Ignition 

 

For droplet dynamics imaging, 10,000 to 20,000 frames per second was set. Direct 

flame imaging was done with 500 frames per second. Droplets initial diameters were kept 

constant at 1 + 0.05 mm for each test. The recording of images was between the actuation of 

ignition devices to the flame extinction. The acquired images were stored as TIFF format and 

processed with each specific algorithm written in Matlab. Figure 3.8 shows an example of 

acquired images during the experiment. Table 3.3 summarises the visualisation parameters 

conducted in present work. 

 

  

(a) (b) 

Figure 3.8 Image of diesel fuel droplet at 0.53 s of combustion lifetime in (a) backlit imaging and (b) 

direct flame imaging 
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Table 3.3 Summary of visualisation parameters 

Chapter 
Resolution 

(pixels) 

Backlighting Direct flame visualisation 

Spatial 

resolution 

(pixels/mm) 

Temporal 

resolution 

(frames/second) 

Spatial 

resolution 

(pixels/mm) 

Temporal 

resolution 

(frames/second) 

4 320 x 256 130 10,000 17.57 500 

5 320 x 256 130 20,000 17.57 500 

6 512 x 384 130 20,000 17.57 500 

7 800 x 600 130 10,000 17.57 500 

 

3.3.2 Arrangements of Suspended Droplet 

 

The experimental work done in the present study implemented three arrangements of fuel 

droplets. In all arrangements, the initial droplet size was ensured to be 1 mm and suspended 

on 100 µm silicon carbide fibre. Because of a high spatial resolution of 130 pixel/mm and high 

temporal resolution between 10,000 to 20, 000 frames per second, only one droplet can be 

imaged in the field of view. The arrangements of the droplet are shown in Fig. 3.9, derived 

from the area circled in Fig. 3.7.  

Visualisation on single isolated droplet is done by placing the kanthal wire 1 mm below 

the droplet after undergoes at least 10 seconds of preheating shown in Fig. 3.9 (a). In the 

droplet evaporation (non-burning) experiment, the position of heating wire remains 1 mm 

underneath the droplet until the droplet was fully evaporated. In droplet burning experiment, 

as soon as the first visible flame is formed, the kanthal wire was removed in quick succession. 

This arrangement was implemented during the experimental study of a single isolated neat 

fuel droplet in Chapter 4, single isolated emulsion fuel droplet in Chapter 5 and single isolated 

volume-contaminated diesel droplet in Chapter 6.  

Fig. 3.9 (b) shows the droplet arrangement implemented during the combustion of 

surface-contaminated diesel droplet in Chapter 6. The imaged diesel droplet was ignited by 

another diesel droplet placed directly below it. The flame edge of the contaminating droplet 

was ensured to be at least 1 mm away from the imaged droplet. As soon as the imaged droplet 

was ignited, the burning contaminating droplet was removed in quick succession.  

Fig. 3.9 (c) shows the arrangement during the experimentation of multi-droplet 

combustion in Chapter 7. The arrangement is either with two droplets or three fuel droplets. 

The distance between droplets was adjusted by turning the micrometre ratchet to the 
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desired position. The distance between droplets was checked again using the measurement 

tool inside Photron Fastcam Viewer to ensure precise inter-droplet distance prior to ignition. 

The droplets were positioned a bit further away from the light diffuser due to the space 

restriction of imaging equipment. As a result, the highest possible temporal resolution used to 

visualise the droplet was 10, 000 fps due to the lower intensity of light received by the 

camera’s sensor. 

 

 

 

 

 

 

 

(a) (b) (c) 

Fig. 3.9 Various arrangements of fuel droplet during the experimentation of (a) single isolated (b) soot 

contamination and (c) multi-droplet 

 

3.4 Image Processing 

 

Raw images from the experiment does not provide a complete quantitative data that were 

fully analysed and presentable. Therefore, processing the images were crucial for 

comprehensive analysis thus fulfilling the aim of the research. All images were processed 

using a Matlab software with an aid of image processing tools featured in the software. Figure 

3.10 shows the processes done in the image processing section. 
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Figure 3.10 Flow chart of image processing sequence 

 

3.4.1 Droplet and Flame Segmentation 

 

In order to produce a suitable image for further processing, a segmentation process on 

acquired images of droplets and flames is needed. Is was proven that a well manipulated 

image served better measurement analysis in digital image processing [53]. Images captured 

from optical imaging were then processed in sequential order of segmentation and they are 

shown in Figure 3.11 for droplet image segmentation and Figure 3.12 for flame image 

segmentation 

 

   

   

Figure 3.11 Digital Image Segmentation Processes on droplet image from (a) raw image, (b) cropped 

image, (c) complementation, (d) holes filling, (e) thresholding and (f) Noise filtering 
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Figure 3.12 Digital Image Segmentation Processes on Droplet Flame from (a) Cropped image, (b) 

grayscale image, (c) thresholding and (d) noise filtering 

 

The image was first cropped to isolate any unnecessary objects; in this case the image 

of the heating wire. For the morphological process later discussed in section 3.4.3, black and 

white images were needed to run the algorithm [54]. Droplet and flame segmentation 

processes were slightly different from each other due to the raw image types. Droplet images 

acquired by Phantom V210 camera were in grayscale whereas flame images from Photron-

SA4 high speed colour camera were in red, green and blue format. In general, the result for 

segmentation processes were the same, which isolating the effective boundary of captured 

images in black and white format. This was done by a process of thresholding, which 

transformed the image into a white foreground and black background based on the specific 

value of thresholding. Pixel that has less value than the thresholding parameter was set in 

black background. 

 

3.4.2 Actual Image Size Determination 

 

To determine the actual size of the measured objects, a simple calibration was made on fixed 

magnification of the lenses. It was a crucial step in order to quantify the relationship of actual 

and image data which in general considered input and output data of measuring system [55]. 

This process was done based on the known actual size of the SiC fibre which is 100 µm.  

Figure 3.13 shows the actual size calibration method for this test. 
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(a)  (b)  

Figure 3.13 Image calibration parameters in (a) Nikon AF Micro Nikkor 60mm f/2.8D lens on droplet 

image and (b) Nikon AF Nikkor 50mm f/1.8D lens on flame image 

 

The actual sizes of the droplet and flame formation were calibrated through two 

different magnification of lenses. The scales determination depicted in Figure 3.11 was 

acquired from using measurement tools in Photron Fastcam Viewer Software.  

 

3.4.3 Feature Extraction 

 

This step involved operations of Matlab algorithm run on segmented images. The main 

purpose is to extract the features from the images and convert them into a quantitative data 

for further analysis by transforming them into a presentable data. The process dealt with a 

morphological operation such as size, shape and quantity. Evaluation of the droplet diameter 

and flame length was then exported to excel in pixel values. With calibration parameters 

mentioned in Section 3.4.2, image coordinates in pixel were then converted into a measurable 

dimension; which in general expressed in mm. 

In normal gravity, the shape of the suspended droplet is ellipsoid. The diameter 

measured by the feature extraction function in Matlab considers the minor and major 

diameter of the droplet. The equivalent volume is calculated from the product of squared 

minor diameter times major diameter. By assuming volume equivalence between ellipsoidal 

and spherical droplet, an equivalent spherical diameter D is calculated. The calculation of 

droplet diameter from the assumption of volume equivalence between ellipsoid and sphere 

was done by various researchers working on droplet combustion in normal gravity [77, 84, 

107].  

 

0.1 mm = 13 pixel 

Xfib 

Dmin 

Dmin 

1 mm = 17.57 pixel 
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3.5 Combustion Phases 

 

All analysis and discussions on combustion phases in this thesis will be referring to the 

diagram shown in Figure 3.14; taken from one regression of droplet squared diameter of 

burning diesel droplet processed in present work. Upon ignition, the droplet begins to swell 

and expand due to thermal expansion and denoted as Phase I. During this phase, the droplet 

undergoes droplet heating process with a gradual increase in temperature to its boiling point. 

Natural convection promotes internal circulation within the droplet, bringing the much higher 

temperature of liquid near the surface inward [50]. As a result, several high temperature 

spots exist within the droplet that initiates homogeneous nucleation of vapour bubble in small 

sizes. This bubble expands and escapes through the surface. These occurrences mildly distort 

the surface of the droplet and at the same time expands the diameter. The main 

characteristics of this phase are shown by the non-linear curve in the regression of D2 which 

indicates the continuous process of both expansion and evaporation [4]. Hence, the 

measurement of droplet evaporation and the burning rate does not account the regression 

during this phase. 

As soon as the droplet heating effect diminishes, the regression of D2 is shown to 

linearly reduce. According to Law and Sirignano [13], a high evaporation rate of the fairly large 

droplet (1 mm) would have a temperature gradient along the surface to the core of the 

droplet that varies with time. The unequal temperature across the droplet would initiate 

some puffing and mildly oscillates the droplet. During this phase, D2 reduces linearly with 

time and conforms with D2-law [183]. During this period, it is theorised that the droplet 

surface is near its boiling point which in turn steadily evaporates the droplet. Hence, this 

phase is denoted as Phase II (boiling) and the measurement of evaporation and burning rate 

is made within the period of this phase.  

Over time, the surface regressed disruptively as the droplet surface becomes more 

viscous resulted from fuel decomposition [1]. Also, some particle is observed to be trapped 

inside the droplet which in turn initiates heterogeneous nucleation of vapour bubble within 

the droplet. More bubbles try to escape through and upon the surface rupture, the liquid 

from the bottom of the bubble periphery pushed the liquid outside and ejects multiple sub-

droplets. The sudden loss of liquid mass deviated the D2 regression from D2-law and the 

measurement of evaporation rate during this phase is unreliable [23, 152]. Disruptive burning 

causes the regression of D2 during this phase to fluctuate and denoted as Phase III 

(disruptive)  
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Fig. 3.14 Combustion phases throughout the lifetime of burning diesel droplet.  

 

3.6 Experimental Challenges 

 

Several challenges were faced throughout the entire scope of the present work. The first is to 

ensure the repeatability of the heating wire to exhibit constant temperature. The Kanthal wire 

would eventually oxidised after several use and decreases the temperature distribution 

around the droplet. A new coil of Kanthal need to be replaced after several use by ensuring 

the precise amount of resistance and coil structure. The temperature distribution needs to 

be check regularly to determine the condition of the coil for a new replacement. 

 Secondly, the dispersed droplet of ethanol and water has high tendency to separate 

even within the syringe. The mixtures need to be regularly stirred for each sample testing to 

ensure the homogeneity of the dispersed phase. It is found that without applying frequent 

stirring, the measurement repeatability was very poor. 

 Thirdly, similar separation conditions were observed during the suspension of soot 

particles. Without surfactant added to uniformly suspends the soot particles, the tendency of 

particle to agglomerate was high. Regular stirring was made to the mixture to ensure the soot 

particle to be evenly distributed within the diesel droplet in each sample. Also, the delay 

between soot quenching and the ignition of imaged droplet during SCD experiment varies 

with different density of contamination. Large amount of sample size was needed to analyse 

each respective contamination density so that a reliable conclusion can be drawn from the 

quantitative measurements. 

 Lastly, during the multi-droplet combustion, the dimension, orientation and position of 

each droplet in array need to be checked and manually adjusted to minimise the error 
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between them. It was observed that even with a slight difference in any of those parameters 

would deviate the results with poor repeatability. The SiC fibre was regularly replaced to 

ensure similar positioning of the droplets; preventing the imaged droplet to be out of the field 

of view. 
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Chapter 4 

 

Evaporation Behaviour of Isolated Neat Fuel Droplet 

 

4.1 Introduction 

 

This chapter generally investigates the evaporation rate, flame formation and liquid-phase 

conditions of isolated fuel droplet subjected to elevated ambient temperature in pure 

evaporation and burning droplet. The results are then compared with the classical quasi-

steady (QS) model for determining transient processes involved during droplet evaporation 

in detail. The focus mainly evolves around the theory of transient liquid-phase by analysing the 

droplet heating effect to the regression of squared droplet diameter, D2 and the evaporation 

rates. Also, the effect of transient gas-phase by fuel vapour accumulation is demonstrated in 

detail by analysing the formation of flame during the combustion. Equation 2.3 to Equation 2.6 

were used to calculate the evaporation characteristics and the sample calculation is shown in 

Appendix A. 

Two type of fuel is selected to be tested due to their distinct evaporation 

characteristics. The first is a combustible fuel which is diesel; with high boiling point and 

sooting propensities. The second is a flammable fuel which is ethanol; with low boiling point 

and non-sooting fuel under atmospheric pressure [124]. Fuel with high flash and boiling point 

is expected to have a significant transient effect during droplet heating and fuel vapour 

accumulation period [72, 73, 81]. This would provide beneficial insight into the transient 

evaporation process of fuel droplet. Furthermore, the selection of both fuel for analysis and 

comparison is useful due to their practical use in fossil as well as renewable fuel operating 

engines.  

Three types of droplet evaporating method are implemented in present work. The first 

is pure evaporation; by increasing the ambient temperature towards near ignition to evaluate 

the differences in evaporation behaviour between different ambient temperature. The 

second is by igniting the droplet with minimum ignition temperature to ensure diffusion-

controlled evaporation of fuel droplet without external thermal influences. The third is by 

igniting the diesel droplet with a butane flame with butane lighter. Although the nature of this 

ignition method is unreliable, it was done to specifically elevate the droplet heating and fuel 
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vapour accumulation effect that can clearly demonstrate the transient effect which could be 

compared with diffusion-controlled evaporation and QS model. 

 

4.2 Ambient Air Temperature Responses 

 

Measurements were made on the air temperature 1 mm above the heating wire. An exposed 

type K thermocouple probe (nickel-chromium/nickel-alumel) with diameter of 0.315 mm was 

used to measure the ambient air temperature. For a real-time data collection and display, a 

thermocouple data logger TC-08 from Pico Technology paired with Picolog software was 

used. The temperatures value needed for the experiment were predetermined within the 

range of 250 oC to 400 oC by adjusting the wattage subjected to the atomiser of the thermal 

heating device. Fig. 4.1 shows the temperature responses of the ambient air 1 mm above the 

thermal wire upon initiation. The temperature increased to a steady state within 10 seconds 

with a slight fluctuation of + 7 oC. The air temperature rose by the effect of thermal 

convection and radiation from the heated Kanthal wire. It has been taken into account that 

due to the effect of radiation, there are discrepancies between measured and actual air 

temperature 1 mm above the heating wire. The actual air temperature subjected to the 

surface of the droplet would differ from the reading of the thermocouple probe given their 

differences in emissivity under the effect of radiation. Nevertheless, this measurement was 

used as a reference point for the provisions of steady ambient temperature around the 

droplet with 50 oC increment during droplet evaporation experiments. The wire was heated 

outside the droplet area by up to 30 seconds to ensure the wire to have reached steady 

temperature before moving it 1 mm below the droplet centre. The wire position was kept in 

place during evaporation until the droplet was fully evaporated. The droplet evaporation tests 

were conducted within 250 oC to 350 oC as the suspended fuel droplet started to ignite when 

the temperature reading has reached 400 oC.  

 

Fig. 4.1 Temperature response in an area of 1 mm above the thermal wire 
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For the droplet ignition part, the low ignition temperature of 400 oC was used to 

minimise the thermal effect from the Kanthal wire upon ignition. It is found that in the present 

work, all droplet started to ignite at this temperature thus selected to be used as the 

minimum ignition temperature. Excessive ignition temperature would shorten the lifetime of 

a burning droplet [6]. As soon as the droplet was ignited, the Kanthal wire positioned 1 mm 

below the centre of the droplet is removed. Droplet heating, steady evaporation and 

extinction were kept free from external thermal influence and the droplet evaporation during 

combustion was ensured to be affected only by the diffusion flame from the droplet. For both 

evaporation and burning tests, some errors in the measurement of droplet surface 

regression were considered for a short period of time during the initiation process; kanthal 

wire insertion in droplet evaporation and removal during ignition tests. The duration of 

evaporation and burning uncertainties during the early stages was short with the longest 

duration was determined to be 0.0907 seconds. Hence, no reliable visualisation and analysis 

such as bubble nucleation, surface distortion and evaporation rate are considered during this 

brief period. 

 

4.3 Regressions of Squared Droplet Diameter, D2 

 

Quantitative measurements were made on the droplet surface regressions in each test and 

compared with the quasi-steady (QS) model. Fig. 4.2 shows an example of three repetitive 

measurements of droplet surface regression for diesel (Fig. 4.2-a) and ethanol (Fig. 4.2-b) in 

evaporation and burning processes. For experimental measurements, high repetitive 

measurements were achieved with slight discrepancies during initiation (evaporation) and 

ignition (burning) process due to the insertion processes. Droplet undergoes expansion 

during the heating period (PI) and transitioned to a steady reduction of squared droplet 

diameter (PII). In addition, a short duration of disruptive phase (PIII) towards the end of the 

droplet lifetime is shown in Fig. 4.2 (a) during droplet burning. As the ambient temperature 

increased, some surface distortions were observed especially in higher temperature exerted 

by diffusion flames. This is due to the occurrences of puffing caused by bubble rupture near 

the surface of the droplet [18]. For a fairly large droplet of 1 mm, temperature gradient exists 

across the droplet throughout the lifetime [13]. With internal circulation induced by natural 

convection, a liquid fuel that has reached to its boiling temperature would be circulated 

inside the droplet thus locally nucleates to a vapour bubble. In high ambient temperature, 
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more nucleation of vapour bubble appeared which in turn distorts the surface with higher 

frequency. 
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Fig. 4.2 Regression of squared droplet diameter in comparison with the classical quasi-steady model 

for (a) neat diesel and (b) neat ethanol 
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Significantly large differences between QS model and experimental results is shown in 

D2 regressions. However, higher ambient temperature brought D2 regression of QS model 

closer to the experimental measurements. Such discrepancies were based on several 

considerations that are absent in QS model. One of the reasons is due to the negligible effect 

of droplet heating in QS model [10, 11]. Higher ambient temperature shortened the droplet 

heating period thus brings the regression closer to the experimental measurement and such 

effect is shown in Fig. 4.2. Also, QS model neglects the effect of natural convection. 

Experiments were conducted in normal gravity which subjected to the effect of natural 

convection during droplet evaporation. Natural convection promotes internal circulation 

within the droplet thus enhances mass diffusion which in turn increases the evaporation rate 

[184]. This is evidenced by the steeper gradient of experimental D2 regressions compared to 

the QS model in each case, indicating a higher evaporation rate of experimental results.  

Fig. 4.3 shows the D2 regressions of diesel droplet ignited by a butane flame. Five 

examples of the regressions are presented showing a low repetitive measurement of such 

ignition method. High butane flame temperature shortened the heating period (PI) but 

increased the duration of disruptive phase (PIII). The unburned butane gas supplied by the 

igniter mixes with the diesel fuel vapour surrounding the droplet and increases the total 

lifetime due to the addition of extra combustible gas on top of fuel vapour. Because of the 

inconsistencies in the mass of butane gas being released from the lighter, the effect varies 

between each repetitive measurement. Although it is possible to provide a consistent mass 

release of gas for high repetitive measurement, the gas accumulation effect is impossible to 

be eliminated. Distortions in the disruptive phase are more intense due to a higher 

occurrence of stronger puffing. Only one case of butane flame ignition is demonstrated in 

present work mainly to study the mechanism of droplet heating and fuel vapour accumulation 

effects despite of its unreliable evaporation rate and flame formations. 

 

Fig. 4.3 D2 regressions of diesel droplet ignition via butane flame 
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4.4 Evaporation Rate of Isolated Fuel Droplet 

 

Quantitative measurements on the droplet evaporation rate were done during the steady 

evaporation phase (PII) with linear regression of D2. During this phase, the droplet surface 

temperature is assumed to be near the boiling temperature of the fuel [79] with minimum 

disruptive evaporation and droplet heating effects [125]. Fig. 4.4 shows the evaporation rate of 

diesel and ethanol droplets subjected to elevated ambient temperature and diffusion flame. 

Diesel is found to have a higher evaporation rate compared to ethanol in each case. This can 

be explained by the higher temperature of diesel (170 oC) compared to ethanol (78 oC). When 

the surface of diesel droplet reaches the boiling point, higher heat is supplied to elevate the 

temperature of the liquid fuel inside the droplet, providing continuous evaporation process 

with a higher rate. Furthermore, diesel has lower heat of vaporisation (250 kJ/kg) compared 

to ethanol (840 kJ/kg) thus evaporates with higher rate. Such different in evaporation rate 

between diesel and ethanol satisfy the classical droplet combustion theory which states that 

the burning rate of fuel increases with an increase in flame temperature and a decrease in 

latent heat of vaporisation [77]. 

From the classical QS model, diesel flame temperature is calculated to be 1884.53 K and 

ethanol with 1484.66 K. It is mentioned by turns [79] that QS model underpredicts the flame 

temperature due to the absence of buoyancy and only taking into account that the fuel starts 

evaporating once the boiling temperature is reached. In actual condition, more fuel vapour is 

readily present around the droplet due to a lower flash point of fuel compared to its boiling 

temperature. Nevertheless, the approximation from QS proves that diesel flame provides 

higher heat transfer to the surface of the droplet thus increases the evaporation rate 

compared to ethanol. In the case of butane flame ignition, the evaporation rate measured to 

be less than thermal heating wire. This highlights the role of fuel vapour accumulation effect. 

Although the diesel droplet ignited with thermal heating wire undergoes fuel accumulation 

effect upon ignition, the effect is more profound in butane flame ignition. Combustion of 

accumulated vapor during heating process enlarges the flame formation [52]. Denser 

accumulation of fuel vapor with additional unburned butane gas pushes the flame front 

further away from the surface of the droplet. This in turn reduces the heat transfer from the 

hot combustion gas to the surface of the droplet thus reduces the evaporation rate [28, 59]. 

Once the accumulated butane gas completely consumed, the evaporation rate elevated with 

severe disruptive burning behaviour. Since the measurement of burning rate focuses on the 
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steady D2 regression, the measured evaporation rate was done during the butane gas 

accumulation still present with lower evaporation rate. 

 

Fig. 4.4 Evaporation rate comparison between diesel and ethanol with their respective QS model 

 

From the results obtained in the present work, classical QS model underpredicts the 

evaporation rate measured in the experimental study. The discrepancies between 

experimental and QS model prediction is shown in Fig. 4.5. For both cases, the differences are 

lower as the ambient temperature is increased. It is evidenced that the shorter duration of 

droplet heating reduces the deviated value, shown in Fig. 4.6. Butane flame provides high 

ignition temperature for the droplet with a rapid heating process thus shortened the 

duration of droplet heating. For combustible fuel such as diesel, the QS prediction is more 

accurate when the droplet heating duration is shortened. In the case of flammable fuel (flash 

point lower than 37.5 oC) such as ethanol, the calculation error is higher although the droplet 

heating duration is considerably lower than diesel. This is due to the other simplified 

consideration of classical QS model that assumes liquid fuel to only evaporates once the 

droplet temperature reaches its boiling point [79]. Ethanol has a weaker intermolecular force 

which is the hydrogen bond and easily evaporates even in room temperature. Given the very 

low flash point (16.60 °C), more ethanol liquid evaporates in actual condition compared to the 

underpredicted evaporation rate of classical QS model. Nevertheless, experimental results 

clearly show that the accuracy of QS model highly dependent on the droplet heating effect 

for fuel tested in the present study. 
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Fig. 4.5 Discrepancies of evaporation rate between experimental and QS model 

 

 

Fig. 4.6 Lifetime of droplet heating phase 

 

Fig. 4.7 shows the instantaneous evaporation rate of burning diesel and ethanol droplet. 

The fluctuation of instantaneous evaporation rate during the heating phase of thermal wire-

ignited diesel droplet shown in Fig. 4.7 (a) is more profound compared to others. However, 

once the droplet heating phase transitioned to a steady phase, the evaporation continues 

with steadier rate towards extinction. This provides a longer reliable measurement of steady 

evaporation rate since the evaporation is diffusion-controlled throughout its lifetime. In 

addition, it provides a more precise measurement of droplet evaporation rate without the 

interference of external influences; shown by high repetitive measurement in Fig. 4.2. 
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Instantaneous evaporation of diesel with butane flame ignition shown in Fig. 4.7 (b) has short 

droplet heating duration before transitioned to a steady evaporation rate. However, the 

transition to disruptive phase is earlier making the burning rate measurement unreliable for 

up to half of its lifetime. On the other hand, the instantaneous evaporation rate of ethanol 

shown in Fig. 4.7 (c) has a steadier distribution with obvious underprediction of QS model. 

Overall, the instantaneous evaporation rate of diesel lands closely to the classical QS 

prediction if the effect of droplet heating and fuel vapour accumulation are not taken into 

account [10, 11].  

 

  

(a) 
 

(b) 

 
(c) 

Fig. 4.7 Instantaneous evaporation rate of (a) diesel with thermal wire ignition, (b) diesel with butane 

flame ignition and (c) ethanol with thermal wire ignition 

 

4.5 Flame Formation of Isolated Fuel Droplet Combustion 

 

The length of flame that forms in the direction of buoyancy is measured and compared with 

the QS model for both thermal wire and butane flame ignition of diesel; shown in Fig. 4.8 (a) 

-1.5

-0.5

0.5

1.5

2.5

0.0 0.5 1.0 1.5 2.0 2.5

K
 (

m
m

2
/s

)

Lifetime, t (s)

Experimental
Quasy-steady theory

-1.5

-0.5

0.5

1.5

2.5

0.0 0.5 1.0 1.5 2.0 2.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.5 1.0 1.5 2.0 2.5



107 
 

and (b) respectively. In the present study, the flame formation of ethanol is not possible to be 

quantitatively measured due to unclear visible flame produced during ethanol combustion 

[77]. Upon ignition, QS model predicts larger flame formation with the assumption of 

negligible droplet heating effect [31]. The flame would form as if the droplet surface to have 

reached the boiling point upon ignition thus having a denser fuel vapour with a larger flame 

front. In actual observation, flame formation gradually enlarges upon ignition due to droplet 

heating; limiting the fuel evaporation [12].  

 The experimental measurement is in accordance to fuel vapour accumulation theory 

[88], showing considerably large flame front towards the end of the droplet lifetime. During 

the early combustion process, fuel vapour consumption rate (by the flame) is less than the 

evaporation, making the excess of unburned vapour to accumulate in the area between the 

droplet surface and the flame region [12]. This pushes the flame front further away from the 

droplet surface. Towards the end of the droplet lifetime, the vapour consumption rate is 

higher than the evaporation making the fuel stand-off ratio (FSR) increases towards infinity as 

shown in Fig. 4.9. QS model predicts constant FSR throughout droplet lifetime with steady 

evaporation rate and the flame shrinks in relation to the droplet diameter as the combustion 

progresses shown in Fig. 4.8 [32, 89].  

 

  
(a) (b) 

Fig. 4.8 Quantitative measurement of the flame length of (a) diesel with thermal wire ignition and (b) 

diesel with butane flame ignition 
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accumulated gas, the flame length is large due to the shortened droplet heating period, 

providing denser fuel vapour to be consumed by the flame. The sharp reduction in the flame 

length shown in Fig. 4.8 (b) indicates the transition phase of unburned butane gas and high 

droplet surface temperature spike upon ignition to a diffusion-controlled evaporation. The 

diesel vapour accumulation effect is still present a with shorter period due to the shorter 

time of diffusion-controlled evaporation. With both quantitative measurement done on the 

flame formation and droplet surface regression, it is evidenced that there is a trace of 

unburned butane gas accumulation upon ignition due to highly elevated flame formation 

without any drastic increase in the evaporation rate shown by D2 regression in Fig. 4.3 and 

instantaneous evaporation rate in Fig. 4.7 (b). Overall, shown in Fig. 4.9, the FSR of both 

ignition methods is similar to each other during the diffusion-controlled evaporation period 

with slight differences towards the flame extinction.  

 

 

Fig. 4.9 Flame stand-off ratio of burning diesel droplet 

 

4.6 Visualisation of Liquid-phase and Flame Formation 

 

The effect of droplet heating and fuel vapour accumulation is further examined by the 

visualisation of liquid-phase and flame formation. Fig. 4.10 compares the droplet heating 

phase between thermal wire ignition (Fig. 4.10-a) and butane flame ignition (Fig. 4.10-b). 
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gradient along the surface to the core of the droplet. Because of the differences in local 

temperature throughout the droplet, the thermal expansion rate differs locally thus pushes 

the liquid surface at a different rate around the droplet [18]. Combining with droplet internal 

flows induced by buoyancy [50], the surface appears to be continuously distorted with the 

movement of bulged surface around the droplet. Distortion continuous until the droplet 

surface reached boiling temperature with a minimal temperature gradient across the droplet 

and proceeds to steady surface regression.  

In Fig. 4.10 (a), the flame formation upon ignition is slightly blue in colour for a very 

short period of time due to well-mixed fuel vapour with the oxidiser prior to ignition [72]. The 

flame front continues to expand with orange-coloured diffusion flame to a steady flame 

length once the droplet heating effect has ended. The increase in flame length is linear during 

droplet heating, showing a complete fuel droplet diffusion-controlled evaporation and began 

to maintain in size once the steady evaporation phase is reached. The occurrence of small 

puffing slightly disrupted the flame shape throughout the steady evaporation phase due to 

the temperature gradient across the droplet that still exists [13] which locally elevated the 

temperature spot within the droplet with the help of internal circulation.  
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Fig. 4.10 Visualisation of diesel droplet liquid-phase and flame formation during droplet heating with 

(a) thermal wire ignition and (b) butane flame ignition 
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Diesel droplet ignited by the butane flame undergoes more rapid droplet heating 

process due to the higher ignition temperature exerted by the butane flame. Shortly upon 

ignition, the flame length increased significantly before sharply reduced to a smaller flame 

length shown in Fig. 4.10 (b) at 384 ms. The flame length then began to increase linearly 

before reaching a steady flame length similar to heating wire ignited droplet. The spike in 

flame length is the effect of the increased amount of volatile gas and vapour. This was 

attributed to the accumulation of unburned butane gas released by the butane lighter during 

ignition. Once the accumulated butane gas depleted, the flame length reduced to a smaller 

size and the combustion proceeds with diffusion-controlled evaporation of the diesel droplet. 

The onset of steady evaporation (PII) occurred during the combined consumption of butane 

gas and diesel fuel vapour and is shown by the droplet and flame formation at 242 ms in Fig. 

4.10 (b).  

 Fig. 4.11 shows the disruptive phase of burning diesel droplet that further 

demonstrates self-contamination effect of diesel soot. Fig. 4.11 (a) shows typical puffing of 

diesel droplet and Fig. 4.11 (b) shows a typical process of sub-droplet ejection. In both cases, a 

trace of soot particles is observed to contaminate the droplet with butane flame ignited 

droplet having a higher concentration of contamination. The addition of butane gas around 

the droplet prolonged the droplet lifetime which in turn increases the residence time of fuel 

vapour. This in turn increases the sooting propensity [59] that would eventually pushes some 

of the combustion soot towards the surface of the droplet due to the thermophoretic force 

from the flame [28]. Fig. 4.11 (b) shows a darkened colour of the fuel droplet indicating the 

high amount of self-contamination.  

The presence of soot particle on the droplet surface initiated heterogeneous bubble 

nucleation and eventually ruptured the surface as the mean of escape [97]. In the thermal 

heating wire ignition method, a smaller bubble nucleated inside the droplet and escaped 

through the surface by puffing. Puffing of fuel vapour occurred multiple times during steady 

and disruptive phase towards the end of droplet lifetime thus explains the fluctuation within 

the regression of D2 shown in Fig. 4.2 and 4.3. On the other hand, a higher amount of soot 

presence in the droplet with butane flame ignition initiated multiple nucleation of the bubble 

in higher quantity compared to diesel droplet ignited with thermal heating wire. These 

bubbles tend to merge and forms a larger bubble that ruptured the surface with higher 

intensities, ejecting the vapour together with a smaller sized sub-droplet. Evaporation of 

ejected sub-droplets is then consumed by the flame, increasing the flame size due to the 

effect of gas-phase interaction between groups of burning fuel droplet. This explains the 
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fluctuation of flame size measured in Fig. 4.9 with butane flame ignited droplet having a higher 

magnitude of fluctuation in the regression of FSR.  It is worth mentioning that the droplet 

ignited with thermal wire do ejects multiple sub-droplet during disruptive phase but was later 

in time with lower intensities compared to diesel droplet ignited with butane flame. 

 

 
 
 

 
 
 
 
 

   
 

 
 
 

 
 
 
 
 

 
 
  

(a) (b) 

Fig. 4.11 Visualisation of diesel droplet liquid-phase and flame formation during typical (a) puffing and 

(b) sub-droplet ejection 
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instantaneous evaporation rate towards the end of droplet lifetime in Fig. 4.7 (b) is because of 

fuel vapour accumulation effects with a prolonged residence time of fuel vapour that would 

eventually contaminates the droplet with higher amount soot. This promotes multiple 

heterogeneous nucleation of vapour bubble to form and merge that would eventually 

ruptures the surface of the droplet with higher intensities.  
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4.7 Summary 

 

The prediction of classical QS model is reliable to be applied on combustible fuel (diesel in 

the present study) when the periods of droplet heating and the effect of fuel vapour 

accumulation are minimum. This is clearly demonstrated by the reduction of discrepancies 

between the QS model and experimental results as the droplet heating duration reduces. 

Also, longer duration of steady droplet surface regression is produced for a reliable 

measurement of evaporation rate when the effect of fuel vapour accumulation reduces. 

Although flammable fuel (ethanol in present study) has minimum droplet heating and fuel 

vapour accumulation effects, the evaporation rates highly deviated from the QS prediction 

due to the tendency of ethanol to evaporate below its boiling point with a very low flash point; 

contradicting the model prediction that consider the evaporation of fuel starts when the 

droplet reaches its boiling point. 

From the results presented in this chapter, the effects of transient liquid-phase 

combustion are determined by quantitatively measuring the droplet surface regression 

specifically during the early period of droplet lifetime. A longer period of unsteady surface 

regression indicates a higher effect of droplet heating thus further deviates the evaporation 

rate from the prediction of the classical QS model. On the other hand, the effects of transient 

gas-phase combustion are determined by quantitatively measuring the flame formation 

throughout the entire lifetime of the evaporating fuel droplet. The increasing trend of FSR 

towards infinity at the end of droplet lifetime indicates the effect of fuel vapour accumulation. 

With sufficient pieces of evidence demonstrated through quantitative measurement, liquid 

phase and flame visualisation, the transient behaviours of burning isolated neat fuel droplet 

are clearly explained in this chapter. 
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Chapter 5 

 

Evaporation and Burning of Emulsion Fuel Droplet 

 

5.1 Introduction  

 

This chapter investigates the evaporation and combustion behaviour of emulsion fuel droplet. 

Tests were done on various conditions of emulsion fuel including water-in-diesel (WD), 

ethanol-in-diesel (ED), diesel-in-water (DW), diesel-in-ethanol (DE), diesel-water (WDns) and 

diesel-ethanol (EDns) mixture without any surfactant added. Analyses were done by 

quantitatively measuring the evolution of droplet diameter and flame formation. In addition, 

visualisations on the liquid-phase were done to observe their dynamic changes during 

evaporation process. The ambient temperature was varied from 423 K to a diffusion-

controlled flame temperature in order to evaluate their respective changes.  

The experimental tests were designed to clearly evaluate their differences in mixture 

stability, combustion behaviour, disruptive effect, phase separation process and their 

tendency to microexplode. Results obtained from this chapter would provide a new and clear 

insight on the evaporation behaviour of an emulsion fuel in normal atmospheric pressure and 

ambient condition. Water and ethanol are selected to be studied due to their common use in 

actual combustor. Comparisons are made to provide a clear description of disruptive 

mechanisms during the burning of water and ethanol emulsion. With the results provided in 

the present work, such behaviour could be expected at the basic level upon fuel selection 

between combustible (ethanol) and incombustible (water) as alternative source of 

component with low boiling point in emulsion fuels. 

 

5.2 Combustion Characteristics of Water-in-oil Emulsion 

 

The initial condition of emulsion droplet of ethanol-in-diesel (ED) and water-in-diesel (WD) is 

shown in Fig. 5.1. Pressure applied to the emulsion during droplet generation via syringe 

slightly aggregated the dispersed additives within the droplet. Furthermore, ethanol tends to 

diffuse towards the surface of the droplet upon suspension due to its tendency to evaporate 
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at room temperature. Due to their fast-diffusive properties, the translation of heating wire 

below the droplet was initiated as soon as the droplet was suspended to minimise the 

aggregation of dispersed phase and early evaporation of additives. It is observed that with any 

pressure applied to the emulsion in order to generate the droplet would slightly aggregates 

the liquid in dispersed phase. With high magnification and clear visualisation made in the 

present work; such condition is observed. The WD emulsion appeared to be opaque after the 

mixing process with milky white in colour. Therefore, internal visualisation of the droplet was 

not possible within half of their lifetime.  
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 (a) (b) (c) 

Fig. 5.1 Initial visualisation on emulsion droplet liquid-phase of ethanol-in-diesel and water-in-diesel in 

(a) 10% additive, (b) 20% additive and (c) 30% additive 

 

5.2.1 Regression of Squared Droplet Diameter, D2 

 

Fig. 5.2 shows the measurements on D2 regression of ED and WD emulsion in three additive 

volume composition with three elevated ambient temperature from 250 °C to diffusion-flame 

controlled temperature. In both ethanol and water emulsion, the dispersed liquid of additives 

diffused towards the surface of the droplet during the early lifetime of the evaporating 

droplet due to their lower boiling point which have the tendency to evaporate first. The 

evaporation follows the characteristics of batch distillation, where the evaporation proceeds 

with a preferential evaporation [76]. The component with a lower boiling point would 

evaporate first and followed by the evaporation of less volatile component [3, 7, 19]; which is 

diesel for both case in the present work. The preferential evaporation behaviours are clearly 

shown by each regression in Fig. 5.2, with high disruptive burning and steeper surface 
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regression upon ignition and began to decline to a steadier surface regression towards the 

end of droplet lifetime. 
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Fig. 5.2 D2 regressions of emulsion droplet subjected to 250 °C, 350 °C and diffusion flame for (a) 

Ethanol-in-diesel and (b) water-in-diesel 

 

The volatile evaporation phase is not necessarily longer when the composition of lower 

boiling point component is higher in volume. This is due to the occurrences of more rapid 

puffing and sub-droplet ejection during volatile evaporation phase. However, emulsion with 
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high ethanol and water additive shows high peak in D2 regression. With high content of a more 

volatile component, more bubble nucleation had merged to form a larger bubble shortly 

before rupturing the surface of the droplet [36]. This in turn expanded the droplet to a larger 

size. Puffing from a larger bubble produced stronger pushing force upon surface rupture, 

ejecting higher volume of sub-droplet outward. Under these reasons, the composition of 

more volatile component depleted with similarly short amount of time regardless of their 

high initial volume in emulsion composition. Results obtained from the present work shows 

the duration of preferential evaporation in emulsion fuel is more temperature rather than 

volumetric dependant. The volatile component tends to evaporate in rapid manner as soon as 

the droplet temperature has reached its boiling point, diffusing most of its component to be 

released outward [129]. Volatile component that is readily dispersed near the droplet surface 

evaporates to a vapour phase with minimum distortion of the droplet surface whilst volatile 

component that is dispersed within the droplet nucleated to a bubble of vapour and ruptured 

the surface of the droplet as a means of escaping; highly distorting the surface [10, 126].  

Slow evaporation process has impact on the droplet expansion. In lower ambient 

temperature, the disruptive surface regression occupies shorter portion of its lifetime and 

began to proceed with steady evaporation earlier. With lower ambient temperature around 

the droplet, the nucleated bubble expanded with longer time available for the bubble to 

merge into a larger bubble before being superheated and rupturing the droplet surface. With 

a slow increase in the droplet temperature and steadier temperature gradient across the 

droplet, more volatile component nucleated into a bubble and released via strong puffing less 

frequently during the early lifetime of droplet evaporation. Measurement of the 

dimensionless D2 shows that the droplet expansion is larger in lower ambient temperature 

with a peak of 2.97 for ED and 3.3 for WD in 250 °C relative ambient temperature. The lifetime 

portion of disruptive surface regressions are longer during droplet burning, indicating 

continuous release of nucleated vapour throughout the droplet lifetime. Buoyancy induces 

internal flow within the droplet, transporting the liquid from the high surface temperature 

toward the centre of the droplet [76]. Because of the rapid heating, several high temperature 

spots are present inside the droplet and nucleates the volatile component around it locally. As 

a result, the vapour bubbles continuously emerged in different spot within the droplet until 

the volatile component nearly depleted [129] which in turn stabilised the droplet surface. 

Under these circumstances, high combustion temperature is preferable for emulsion fuel to 

enhance mixing due to their prolonged disruptive behaviour.  
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5.2.2 Evaporation and Burning Rate of Water-in-oil Emulsion Fuel Droplet 

 

Average evaporation and burning rate constants of water-in-oil emulsion droplet subjected to 

elevated ambient temperature were measured and shown in Fig. 5.3. Measurement of the 

average evaporation rate considers the average from the scattering measurements of droplet 

squared diameter that includes heating phase, steady evaporation and disruptive phase. As 

demonstrated in Fig. 5.2, the droplet surface regressed disruptively throughout the entire 

droplet lifetime, making the precise measurement of steady evaporation phase impossible to 

be determined [66]. Nevertheless, the measurement of average evaporation rate serves as a 

relative measurement for a burning rate constant that fulfils D2-law and would provide a 

meaningful insight to the evaporation behaviours of an emulsion fuel droplet.  

 

 

Fig. 5.3 Average evaporation and burning rate constant of water-in-oil emulsion droplet 

 

In the evaporation mode, both emulsion fuels evaporated in similar fashion with little 

differences in the value of evaporation rate. The increase of additives slightly increased the 

evaporation rate for both emulsions due to the lowering of the droplet’s boiling point. 

Evaporation rate of ethanol is more sensitive to temperature increase compared to water 

emulsion [35]. Shown in Fig. 5.4, the increase of evaporation rates from 250 °C to 350 °C 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

5 10 15 20 25 30 35 40

A
ve

ra
ge

 b
u

rn
in

g 
ra

te
 c

o
n

st
an

t,
 K

a
ve

(m
m

2
/s

)

Additive volume (%)

ED (250)

ED (350)

ED (Burning)

WD (250)

WD (350)

WD (Burning)



118 
 

heating is high with 87.35%, 120.46% and 130.66% for ED10, ED20 and ED30 respectively. For 

water emulsion, the increase of evaporation rate when the ambient temperature was 

increased by 100 °C is 12.33%, 9.97% and 10.31% for WD10, WD20 and WD30 respectively. Such 

differences are due to the lower boiling (78 °C) and flash point (16.6 °C) of ethanol compared 

to water, making ethanol emulsion to be more sensitive to the temperature increase thus 

evaporates more rapidly. By analysing the fluctuation pattern of D2, it shows that the ethanol 

tends to diffuse towards the surface of the droplet whilst water tend to be dispersed inside 

the droplet, diffusing slowly towards the surface. Major mechanics of preferential 

evaporation in water emulsion are through puffing shown by a more violent distortion of the 

surface regression shown in Fig. 5.2 (b). This explains the unchanged value of the evaporation 

rate increment between different water loadings as the ambient temperature was increased 

for water emulsion. The water trapped inside the droplet nucleated into vapour bubbles and 

released a strong puffing when the temperature exceeded its boiling point [104] rather than 

steadily evaporated on the surface like the ethanol, making the average evaporation rate 

remains unchanged. 

 

  
(a) (b) 

Fig. 5.4 Average burning rate comparison of increased additive loading and ambient temperature 

between (a) ED and (b) WD 

 

In the burning mode, water emulsion has a higher burning rate increase when the 

water volume is increased. During combustion, water emulsion ejected a high amount of sub-

droplet as it burns; different from low temperature evaporation mode which only involved 

puffing. Although both ethanol and water emulsion undergo several sub-droplet ejections 

during combustion, water emulsion has a higher ejection rate together with a larger-sized 
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sub-droplet. Because of a higher volumetric loss of the water emulsion through sub-droplet 

ejections, the measurement of average burning rate appeared to be higher than the ethanol 

emulsion. Droplet with a higher volume of water undergoes stronger and more frequent 

ejection of sub-droplet resulting increased value of the burning rate [36]. 
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 (a) (b) 

Fig. 5.5 Flame stand-off ratio of burning droplet with various volumetric loading of (a) ethanol 

emulsion and (b) water emulsion 
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5.2.3 Flame formation of Water-in-Oil Emulsion Fuel Droplet 

 

Fig. 5 5 show the repetitive measurements on the flame stand-off ratio of the ethanol and 

water emulsion in 10%, 20% and 30% volumetric loadings of additive. Results shows high 

repeatability of the FSR measurement despite of high disruptive burning of both fuels. In both 

cases, the FSR continues to increase upon ignition to a peak before sharply reduced towards 

the end of the droplet lifetime. This indicates that the effect of the fuel vapour accumulation 

is still present [32, 88, 89] because diesel is used as the base fuel. However, the evaporated 

vapour is consumed by the flame earlier compared to the neat diesel shown in Fig. 5.6. The 

rate of vapour consumption is higher in smaller formation of flame [32]. The flame area of the 

burning emulsion fuel was smaller than the flame of the burning neat fuel, making the rate of 

vapour consumption higher. Also, high volatility of emulsion fuel restricts the amount of 

vapour to be accumulated due to a faster vapour consumption rate [81]. This is demonstrated 

by the regression of the FSR in Fig. 5.6. When the additive volume is low (10%), the effect of 

fuel vapour accumulation lasted longer in both case of ethanol and water emulsion. The 

decline in the FSR were earlier as the additive loading were higher. 

 

  
(a) (b) 

Fig. 5.6 Comparison of flame stand-off ratio between neat diesel and emulsion fuel droplet (a) ED and 

(b) WD 

 

The FSR of the water emulsion climbed slowly during the early stage of the combustion 

and the rate of increase is even slower in higher additive loadings.  On the other hand, the FSR 

of the ethanol emulsion regressed in the opposite manner as the additive loadings were 

increased. These differences are shown by the formation of flame in Fig. 5.7. For both 

emulsion fuels, the occurrences of puffing and sub-droplet ejection disrupted the flame 
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shape, especially during the early lifetime of the droplet. During this phase, most of ethanol 

and water evaporated first in a preferential evaporation either by gas diffusion or puffing 

shown by the fluctuation of D2 during the early phase of combustion in Fig. 5.2. Ejection of 

sub-droplet and puffing effects the formation of flame during this period, with the ethanol 

emulsion flame grew larger in a stronger puffing whilst water emulsion flame shrunk in a 

stronger puffing. The ejection of the ethanol-diesel fuel vapour and sub-droplet enlarged the 

flame due to the sudden burst of additional fuel vapour, with ethanol as a flammable fuel. On 

the other hand, a burst of water vapour from the water emulsion partly extinguished the 

flame due to the incombustible properties of water [35]. Under these reasons, the flame 

enlarged as the ethanol loadings were higher which provided more easily consumed vapour 

due to its lower flash point whilst the evaporation of higher loading of water cooled the 

temperature surrounding the droplet thus shrinking the flame size. 
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 (a) 10% additive (b) 20% additive (c) 30% additive 

Fig. 5.7 Flame formation during preferential evaporation of volatile fuel component 

 

5.2.4 Liquid-phase Visualisation on Water-in-oil Emulsion Fuel Droplet 

 

Liquid-phase visualisations were done to examine the disruptive behaviours of the emulsion 

fuel droplet during combustion. With high temporal (20 000 frame per second) and spatial 

(130 pixel/mm) resolution, the mechanics of puffing, bubble breakup and sub-droplet 

ejections were observed and quantitatively measured. Fig. 5.8 shows typical puffing and sub-

droplet ejection mechanics during the disruptive evaporation of the emulsion fuel (both 
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ethanol and water emulsion) which includes bubble breakups that leads to a recoiling motion, 

pinching of protruded liquid ligaments, repelling motion and ligament breakup. During the 

preferential evaporation, the droplet surface is heated to the boiling point of less volatile 

component; which is diesel in present study. This elevates the temperature exerted to the 

more volatile component inside the droplet beyond its boiling point [10, 126]. The volatile 

component evaporated into a vapour by the means of homogeneous nucleation inside the 

droplet and forms a vapour bubble that expands and merges with each other by time [7]. This 

process repeatedly occurred during the preferential evaporation and began to reduce in 

frequency and magnitude when the volatile component in the droplet is almost fully 

evaporated. Phase transition from the preferential evaporation of volatile component to less-

volatile component can be approximated by examining the D2 regression of the burning 

emulsion droplet shown in Fig. 5.2 with ethanol lasted by 0.36 and water by 0.52 of normalised 

droplet lifetime t/Do
2.   

Referring to the first row of Fig. 5.8, vapour is released through the rupturing of 

droplet surface once the pressure inside the bubble is higher than the surface tension of the 

droplet [66]. Release of vapour through the droplet surface created a low-pressure spot that 

pulls liquid towards the region. The internal pressure and velocity of the flowing fluid rushes 

toward this spot thus pushing the ruptured surface outward [126]. In the present study, this 

process which is also known as recoiling is visually confirmed by monitoring the movement of 

the unmerged vapour bubble. Once the larger bubble ruptured the surface of the droplet, the 

unmerged smaller bubble moved towards the periphery of the ruptured hole indicating a flow 

of the liquid to the bottom hole of the rupture. Shortly afterwards, the ruptured hole closes 

and the flowing liquid pushes the bottom part outwards and protrudes a ligament from the 

ruptured surface [130]. The strength of the push depends on the bubble size formed shortly 

before the surface rupture. Breakup of a larger bubble packed a stronger push of flowing 

liquid and protruded longer ligaments outward. Two parameters determined the shape and 

stability of the ligament evolution. Viscosity stabilised the evolution while surface tension 

inhibits the stretching of ligament and at the same time reduce the neck radius along the 

circumference to pinch-off the sub-droplet [100]. 
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Fig. 5.8 Disruptive droplet evaporation process of emulsion fuel droplet 
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rupture process. At critical length, the surrounding pressure pinched a section of the 

ligament once the internal pressure of the ligament is lower than the atmospheric pressure 

[131]. This detaches the sub-droplet with size depending on the width of the ligament during 

critical length of the ligament protrusion. Initial trajectory of the ejected sub-droplet is in-line 

with the direction of the ligament protrusion [36]. However, as the ejected sub-droplet 

instantly exposed to the heat generated by the flame, the trajectory changed due to the effect 

of buoyancy and floated upward while rapidly evaporating. The droplet recovers to its initial 

shape of ellipsoidal shortly after the ligament retracted. Retraction of the ligament is due to 

the pulling force of the surface tension which inhibit further protrusion of the ligament 

outward. The momentum of the pulling slightly moved the droplet in the opposite direction of 

the ligament protrusion before returning to its original shape. This process is known as the 

repelling motion [131].  

Another mechanics of sub-droplet ejection were through multi-breakup of protruded 

ligament shown in the last row of Fig. 5.8. This type of sub-droplet ejection occurred when 

there is a formation of a vapour bubble within the protruded liquid ligament. The presence of 

these bubbles destabilised and weakened the ligament with the exertion of higher 

concentration of atmospheric pressure. As a result, the ligament broke into several sub-

droplets with a minimum repelling motion. This process typically occurred in a higher loading 

of a volatile component which is observed to have higher number of bubble nucleation 

emerged within the droplet. The ejected sub-droplets resulted from multiple ligament 

breakup were observed to be smaller in size and slower in speed.  

Fig. 5.9 shows the additional disruptive mechanics during a volatile preferential 

evaporation; unique to the water-in-diesel (WD) emulsion. As mentioned in the previous 

section, dispersed water droplet within the droplet tend to circulate within the centre rather 

than rapidly diffused towards the surface of the droplet. As a result, higher amount of vapour 

bubble with stronger pressure ruptured the surface of the droplet. This further destabilised 

the motion of the droplet that lead to a higher loss of liquid mass during burning process. The 

first row of Fig 5.9 shows the burst of the dispersed water bubble formed within the droplet. 

Emulsifier formed a protective layer between the dispersed water and base fuel, preventing a 

complete coalescence of water droplet within the droplet [84]. As a result, the pressure from 

the burst of superheated water vapour within the droplet was insufficient to completely 

break the droplet via microexplosion due to the smaller-sized bubble nucleation of dispersed 

water droplet. This process is similar to microexplosion mechanics explained by Rao et al. 

[100] but with lower intensities which only affecting one side rather than the whole droplet. 
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Vapour bursting through the surface pushed a sheet of liquid around the hole that formed to 

a shape of a half-cup. Small sub-droplets detached from the liquid sheet shortly after the 

burst and rapidly evaporated as they projected outward.  

Another sub-droplet ejection process of water emulsion droplet is the motion 

detachment shown in the last row of Fig. 5.9. This ejection process contributes a major loss of 

liquid mass during the disruptive evaporation due to their larger size of ejected sub-droplets. 

Multiple protrusion of the ligaments caused the droplet to rotate in high speed due to the 

multiple repelling motion as well as the effect of buoyancy. As a result, larger portion of the 

ligament is detached from the parent droplet caused by the centrifugal force exerted by the 

rotating droplet.  Both sub-droplet ejection process in Fig. 5.9 occurred multiple times in 

addition to the recoiling motion shown in Fig. 5.8 during the combustion of the WD. Under 

this reason, the WD has higher rate of mass loss compared to ED which further explains its 

higher burning rate compared in Fig. 5.3.  
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Fig. 5.9 Disruptive droplet evaporation process unique to water emulsion 
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Measurements were done on the disruptive process during the disruptive burning of 

the emulsion fuel droplet. These measurements focus on the physical change of the droplet 

liquid-phase during the volatile preferential evaporation. During this phase, the droplet still 

contains most of the volatile component inside the droplet which in turn highly disrupting the 

evolution of the liquid droplet. Once the evaporation phase transitioned beyond the volatile 

preferential evaporation, the disruptive mechanism changed inconsistently due to the 

depletion of volatile component and unreliable to be measured within the disruptive burning 

of a multicomponent fuel droplet since the droplet would be made up of mostly less volatile 

component with just a little trace of the trapped volatile component. Measurements were 

made within 0.36 and 0.52 normalised lifetime of the water-in-oil ethanol and water emulsion 

respectively with a satisfactory repeatability between the measurements. It is worth 

mentioning that it is not possible to precisely count the number of bubble nucleation, 

protruded ligaments and sub-droplet ejections in the present work as the visualisations were 

done in two-dimensional. Any occurrences towards and away from the imaging axis would be 

undetectable. Furthermore, the occurrences of disruptive process have low repeatability 

because of the complex mechanics of the internal circulation, radiative heat transfer from the 

unstable flame and random positioning of dispersed phase within the droplet. 

Fig. 5.10 shows the measurement done on the bubble diameter near surface rupture, 

protruded ligament length near the tip breakup and ejected sub-droplet diameters during 

the volatile preferential evaporation phase. Bubble diameter near the surface rupture 

increased when the ethanol loading was increased to 20% by volume and decreased as the 

ethanol loading increased to 30%. As the ethanol loading increased, the homogeneous 

nucleation of ethanol into a bubble increased in number. The multiple bubble tends to merge 

with each other forming a larger bubble prior to the surface rupture of the droplet. This 

process is shown in Fig. 5.11. With more vapour bubble nucleated in higher loading, larger 

bubbles were formed as a result from the merging of multiple bubbles. However, as the 

ethanol loading was increased to 30%, multiple bubbles ruptured the surface of the droplet 

before completely merge with each other. This resulted smaller bubble diameter upon 

surface rupture with lower liquid ejection strength. As a result, the lengths of protruded 

ligament were shorter with a smaller sub-droplet being released as the surrounding pressure 

pinched the ligament. Bubble diameter, ligament length and sub-droplet diameter correlated 

between each other indicating the dependency of the liquid push upon surface rupture on 

the final size of the nucleated vapour bubble [100]. Furthermore, higher occurrences of the 

multiple ligament breakup shown by the last row in Fig. 5.8 were observed during the 
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disruptive evaporation of ED30. High amount of smaller bubble scattered within the droplet 

and contained within the protruded ligament as the liquid were pushed outward. This in turn 

shortened the ligament length and eventually breaks the ligament into multiple smaller sub-

droplets.  

 

 

Fig. 5.10 Physical measurement on disruptive mechanics during volatile preferential evaporation of 

ethanol emulsion 

   

   

Fig. 5.11 Merging of nucleated vapour bubble during combustion of ED20 

 

Similar measurements were done during the volatile preferential evaporation of the 

water emulsion. However, the measurement of bubble diameter near the surface rupture is 

not possible due to the droplet being opaque in appearance. The droplet only turned 

transparent when the volatile preferential evaporation has ended indicating the depletion of 

dispersed water phase within the droplet [41, 112]. The size of the ejected sub-droplets was 
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categorised from three ejection processes namely during; burst of dispersed phase, ligament 

pinched-off and motion breakup shown in Fig. 5.12.  

 

Fig. 5.12 Physical measurement on disruptive mechanics during volatile preferential evaporation of 

water emulsion 

 

The ligament length of the water emulsion increased as the water loading increased. 

Higher amount of water possibly nucleated a larger-sized vapour bubble prior to droplet 

surface rupture. As a result, a stronger push of the liquid developed a longer ligament in the 

process. Compared to the ethanol emulsion which has shortened the ligament length in 30% 

loading, the increase in the ligament length of the water emulsion is substantial as the water 

loading was increased to 30%. Such difference contributed to their differences in the surface 

tension. Water has a higher surface tension compared to diesel and ethanol which inhibit the 

breakup of multiple ligament as it protruded outward and observed to be more stabilised 

when the water loading was increased. Furthermore, high surface tension of the water 

inhibits the stretching of the ligament [100], resulting shorter length of the ligament 

protrusion compared to the ethanol in each respective additive loading. Because of the 

tendency of water to coalescence inside the droplet, there were no observable bubble 

formed within the ligament, ensuring a single breakup on the ligament tip. All size of ejected 

sub-droplet in three breakup mode of water emulsion closely related with the water loading. 

Low loading with smaller dispersed phase of water inside the droplet has a weaker bubble 

0
.4

3
2

7

0
.5

6
9

6 0
.8

8
8

0

0
.0

4
5

7

0
.0

8
76

0
.1

0
6

2

0
.0

72
5

0
.1

4
12

0
.1

6
3

3

0
.1

17
6 0
.2

2
2

2

0
.2

6
3

7

0.0

0.2

0.4

0.6

0.8

1.0

1.2

WD10 WD20 WD30 WD10 WD20 WD30 WD10 WD20 WD30 WD10 WD20 WD30

Ligament length Sub-droplet diameter
(dispersed phase

breakup)

Sub-droplet Diameter
(ligament breakup)

Sub-droplet Diameter
(motion breakup)

D
im

e
n

si
o

n
, m

m



129 
 

burst that would eventually eject smaller size sub-droplet. Shorter ligament length ejected 

smaller sub-droplet with minimal disruptive motion to the droplet. As a result, the centrifugal 

force exerted by the motion is lower and detached smaller size droplet during the motion 

breakup. As the waster loading increased, the size of ejected sub-droplet increased, and this 

process is similar to each breakup mode and protrusion of ligament.  

Overall, the ethanol emulsion is easier to undergo breakup process due to its lower 

surface tension compared to diesel and water [35]. Having higher loading of ethanol would 

break the droplet into a much smaller size during the disruptive evaporation and the effect is 

opposite for water emulsion due to a higher surface tension of water compared to diesel and 

ethanol. As long as the disruptive evaporation does not undergo a microexplosion process, 

the physical behaviour of the droplet liquid-phase would behave similarly to the visualisations 

and measurements discussed in this section. 

 

5.3 Phase separation in emulsion droplet 

 

In the present work, separation of the continuous phase within the emulsion droplet were 

observed and associated with the oil-in-water emulsion fuel for both ethanol and water 

emulsion. Also, tests were done on the emulsion droplet without any surfactant added to 

clearly see the effect of phase separation that could potentially leads to a microexplosion. The 

analysis focuses on three phenomena mainly; the stability of the mixture to maintain evenly 

distributed droplets of the dispersed or continuous phase during combustion, the tendency 

of volatile component to coalescence and the main cause of emulsion droplet to 

microexplode. In this section, tests were done on 10%, 20% and 30% volume loading of 

additive. Because of their similar evaporation behaviour in each loading, only the result of 10% 

loading is presented in this section to summarise the phenomena of phase separation and 

microexplosion. 

 

5.3.1 Phase Separation in Ethanol Emulsion 

 

Prior to ignition, a slight phase separation is observed within the droplet shown in Fig. 5.13. 

Because of the ethanol had the tendency to evaporate in room temperature, the ethanol is 

observed to slowly coalescence even without being subjected to elevated ambient 

temperature. Since ethanol assumes the continuous phase within the droplet for diesel-in-

ethanol emulsion (DE), the coalescence of ethanol was rapid due to the absence of protective 
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layer between them, completely separating diesel and ethanol aided by natural convection. 

For ethanol mixture without surfactant added (EDns), ethanol diffuses outward during 

evaporation prior to ignition and eventually coalescence near the surface of the droplet. In 

both cases, it was observed that ethanol coalescence on the surface of the droplet, especially 

when the ambient temperature was elevated during ignition process. For this reason, both 

diesel-ethanol mixture demonstrated in this section considered to be unstable and 

visualisations were done to specifically observe their effect to the disruptive evaporation. 

 
D

E
 (

p
o

ly
so

rb
at

e
) 

  

E
D

n
s 

(n
o

 
su

rf
ac

ta
n

t)
 

  

 (a) (b) 

Fig. 5.13 Diesel-in-ethanol and diesel-ethanol mixture without surfactant added showing (a) initial 

condition and (b) phase separation 

 

Quantitative measurements were done to the regression of the droplet surface for 

both DE and EDns shown in Fig. 5.14; in various ambient temperature. The ethanol evaporated 

first during the early lifetime of the droplet because of its lower boiling point. Different to 

ethanol-in-diesel (ED) discussed in the previous section, the ethanol in both mixtures 

presented here were readily coagulated on the surface of the droplet. As a result, the ethanol 

evaporated or ejected rapidly without any hindrance either from the protective layer of 

surfactant or the continuous phase of the diesel. This in turn depleted the ethanol component 

within a very short amount of time. The transitions of the volatile preferential evaporation to a 

steady surface regression were earlier, and the surface of the droplet continue to regress 

with minimum disruptive effect. Steady regression indicates the absence of the volatile 

component within the droplet and at the same time diminished the benefit of improved 

mixing provided by an emulsion fuel due to absence of secondary atomisation and droplet 

breakup.  
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(a) (b) 

Fig. 5.14 D2 regressions of (a) DE and (b) EDns 

 

From the surface regressions shown in Fig. 5.14, there were only one strong puffing 

occurred before transitioned to the steady evaporation phase. To determine the cause of 

such behaviour, visualisations on the liquid-phase during droplet evaporation were made, 

shown in Fig. 5.15. As mentioned earlier, the ethanol rapidly aggregated near the surface of the 

droplet. Once the heating process commenced, the heat subjected to the surface of the 

droplet elevated the ethanol temperature above its boiling point thus nucleated the ethanol 

into a vapour bubble near the surface of the droplet. Because of the complete coalescence of 

ethanol due to phase separation, the entire ethanol composition nucleated into a bubble of 

vapour and released through puffing during the surface rupture. Observation on the liquid-

phase shortly after the puffing shows no trace of ethanol in phase separation further justify 

the complete ejection of ethanol from the diesel-ethanol mixture. No microexplosions were 

observed due to the absence of ethanol component for the entire lifetime of the steady 

evaporation phase. With only single component of fuel continued to evaporate, no vapour 

bubble nucleated, and the superheat limit of the volatile component was not achieved. Similar 

behaviour was observed in both case of DE and EDns, confirming the rapid liquid-diffusion 

and coalescence of ethanol component theorised in present work.  
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Fig. 5.15 Ejections of separated ethanol droplet 

 

5.3.2 Phase Separation in Water Emulsion 

 

Visualisation on the liquid-phase of diesel-in-water (DW) and diesel-water emulsion with no 

surfactant (WDns) were done and the initial and phase separated condition are shown in Fig. 

5.16. Water component in the WDns separated earlier compared to the DW due to the 
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immiscibility of water and diesel [105]. The phase separation was observed almost instantly 

after the droplet was suspended. On the other hand, phase separation occurred in DW 

immediately after the droplet was subjected to a heat from the thermal wire. The holding 

strength of emulsion diminished when the droplet temperature increased [41, 112]. Also, the 

phase separated rapidly under similar reason as the DE; with water as the continuous phase 

within the droplet, there were no protective layer of surfactant to inhibit the coalescence of 

water. As soon as the droplet temperature was increased, the water component was shown 

to have completely separated from the diesel. Under these reasons, both water emulsion 

experimented in this section were unstable and have a high potential to microexplode. 
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 (a) (b) 

Fig. 5.16 Diesel-in-water and diesel-water mixture without surfactant added showing (a) initial 

condition and (b) phase separation 

 

The regressions of squared droplet diameter of unstable water emulsion were 

quantitatively measured and depicted in Fig. 5.17. The droplet in both cases microexploded 

when exposed to a high ambient temperature shown by in the regression of D2. 

Microexplosion occurred earlier with higher temperature indicating its temperature-

dependant process [33, 40]. With rapid increase in the droplet temperature, the superheat 

limit of water is reached earlier thus rupturing the surface with a complete breakup of the 

entire droplet. Because there was a delay in the phase separation of water in DW, the onset of 

microexplosion was later when compared to the WDns. On the other hand, the WDns 

undergoes several puffing shortly before undergoes a complete droplet breakup. As shown by 

Fig. 5.16 (b), the water is readily coalescence near the surface of the droplet during the early 

lifetime of droplet evaporation. As a result, early nucleation of vapour produced a bubble that 
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could easily escaped through the surface without breaking the entire droplet. However, the 

disruptive behaviour is shown to be different from the EDns. Water component was not 

completely evaporated or ejected through puffing but undergoes a complete breakup of 

droplet shortly afterwards.  

 

  
(a) (b) 

Fig. 5.17 D2 regressions of (a) DW and (b) WDns 

 

 The liquid-phase visualisation was done on the DW and WDns to closely observe the 

microexplosion processes of the water emulsion droplet. Shown in Fig. 5.18, the coagulated 

water droplet diffused inward with the aid of the internal circulation and located near the 

centre of the droplet [73]. The positioning is confirmed by observing the expansion of vapour 

bubble in both cases. During the bubble expansion, the entire droplet expanded in all 

direction indicating the position of the coagulated water inside the droplet to be located near 

the core of the droplet. The droplet expanded to a shape of half-cup consists of liquid sheet 

during the combustion of the DW and the droplet breaks to a fairly large sub-droplet upon 

surface rupture. In the case of WDns, the vapour burst was observed to be stronger and 

breaks the entire droplet in all direction, pushing the sheet of liquid fuel outward that 

eventually breaks into smaller sub-droplets. This difference indicates the role of surfactant to 

form a protective layer within the droplet [138]. Surface tension of the DW is higher due to the 

addition of surfactant and prevented the droplet to break into smaller droplets compared to 

the WDns. Liquid-phase observation done in the present work brought a new insight to the 

microexplosion process; where the position of coagulated water plays a role in the droplet 

breakup. Coalescence of a volatile component near the surface would nucleate into a vapour 

bubble and released by a puffing process whilst coalescence of volatile component in the core 
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of the droplet would break the entire droplet in all direction and considered to be one of the 

criteria for a microexplosion to occur. 
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Fig. 5.18 Microexplosion processes of burning DW and WDns 

 

The unstable water emulsion was subjected to ambient temperature below the 

superheat limit of water (543K [112]) to further confirm the theory made by various 

researchers [1, 29, 33, 37-39, 41] on the certainty of droplet to microexplode upon reaching 

the superheat limit of the more volatile component in emulsion droplet. The test was done to 

see whether the droplet would still microexplode if subjected to an ambient temperature 

below the superheat limit of water. The regression of D2 when the unstable water emulsion 

droplet was subjected to a steady ambient temperature of 423 K is shown in Fig. 5.19. In both 
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unstable mixture of the DW and WDns, no microexplosion occurred despite having a 

complete phase separation of water within the droplet. Some puffing was observed as a mean 

of vapour to escape from the droplet core. Hence, comparisons made in present work 

confirms that the lower boiling point component need to reach its superheat limit in order 

for microexplosion to occur. 

 

 

Fig. 5.19 D2 regression of DW10 and WDns10 subjected to 423 K ambient temperature. 

 

5.4 Summary 

 

Several key findings are highlighted in this chapter. From the experimental results, it is found 

that the water-in-oil emulsion is more stable compared to oil-in-water emulsion; based on 

two reasons. Firstly, the surfactant added to the emulsion forms a protective layer on the 

boundary between dispersed and continuous phase thus prevents early separation of phase 

during the droplet evaporation. The dispersed component of the water-in-oil emulsion are 

separated between each other by the continuous phase and the protective layer of the 

surfactant, ensuring minimum coalescence of the more volatile component during the 

evaporation process. With minimum phase separation occurs inside the droplet, the 

evaporation proceeds with disruptive evaporation until the end of droplet lifetime. 

Continuous occurrences of puffing and sub-droplet ejection in water-in-oil emulsion provides 

improved mixing through a secondary atomisation processes thus highly preferable in the 

application of an emulsion fuel.  

Secondly, the more volatile component in the emulsion fuel have the tendency to 

diffuse towards the surface of the droplet during the early lifetime of the droplet. As a result, 

high volume of the component resides and coalescence on the surface. Since the volatile 
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component assumes the continuous phase in the oil-in-water emulsion, they coalescences 

rapidly and a complete phase separation occurs at the early lifetime of droplet. Most volatile 

component is released in a strong puffing which in turn completely evaporated from the 

droplet. With the aid of internal circulation, some volatile component moves towards the 

centre of the droplet and explodes violently as the temperature reaches its superheat limit. 

As a result, no puffing or sub-droplet ejection occurs once the volatile component is 

completely depleted which in turn diminished the benefit of emulsion droplet to improve 

mixing during combustion. On the other hand, microexplosion of water emulsion occurs early 

with high amount of water vapour being ejected and extinguish the flame upon a complete 

breakup.  

Major finding in this chapter focuses on the characteristics of the emulsion fuel 

droplet to microexplode. With sufficient evidences provided by the quantitative measurement 

and liquid-phase visualisation conducted in the present work, the cause of emulsion fuel 

droplet to microexplode is determined. It is found that there are three conditions required 

for the onset of microexplosion. Firstly, the temperature of the component with a lower 

boiling point need to reach its superheat limit temperature. In present work, the diesel-in-

water droplet undergoes a microexplosion each time a temperature above the superheat 

limit of water is subjected to the droplet. When the ambient temperature is lowered below its 

superheat limit, microexplosion does not occur. Secondly, the droplet would only 

microexplodes when there is a phase separation of component with a lower boiling point in 

the droplet. It is demonstrated in the present work that the onset of microexplosion was 

delayed when a complete separation phase of volatile component was delayed. Finally, a 

microexplosion would only occur when the water coalescence is located in the core of the 

droplet. It is clearly shown in the present work that the coalescence of the more volatile 

component near the surface does not induce a microexplosion. The dispersed droplet would 

only undergo strong puffing and released through the surface as shown by tests done on the 

diesel-in-ethanol. For the diesel-in-water and diesel-water mixture without any surfactant 

added, the dispersed water is found to be located near the core of the droplet thus breaking 

the droplet in a strong burst once the superheat limit of water is reached. Under these 

reasons, microexplosion would only occur once all three conditions are fulfilled; reaching the 

superheat limit temperature, a complete phase separation and when the dispersed phase 

located near the core of the droplet. 
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Chapter 6 

 

Soot Contamination Effect on the Combustion Behaviour of 

Isolated Diesel Droplet 

 

6.1 Introduction 

 

This chapter analyses the quantitative measurement and the liquid-phase visualisation made 

during the combustion of the diesel droplet contaminated with soot particles. Imaging on the 

droplet liquid-phase and flame formation was synchronised to simultaneously observe the 

combustion behaviour. The analysis focuses on the effect of soot contamination to the 

burning rate, surface regression, combustion phases and flame formation during the lifetime 

of the burning diesel droplet.  

Two contamination conditions were simulated in the present work. Firstly, the 

contamination was made by igniting the imaged diesel droplet with another diesel droplet 

positioned below it. The soot contained in the hot combustion gas from the contaminating 

droplet would flow upward due to the effect of buoyancy and contacts the imaged droplet 

[97]. This process assumes spontaneous contamination of soot during a non-turbulent fuel 

spray that would eventually collides with soot particles contained inside an actual cylinder 

[53]. Secondly, soot particles were evenly distributed inside the droplet by properly mixing 

the collected soot with diesel. Surfactant was not added into the mixture to avoid any change 

to the fuel properties [84]. This process assumes a spontaneous contamination of soot during 

turbulent mixing, with a possibility of soot particle to penetrate the surface towards the core 

of the droplet [158]. 

The findings of this chapter would provide an insight into the possibility of soot 

contaminating the fuel droplet in spray during an actual combustion process. Furthermore, 

the effect to the combustion behaviour is evaluated in detail by analysing the relation between 

the surface regression, flame formation and disruptive behaviour of contaminated droplet. 
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6.2 Combustion Characteristics and Liquid-phase Visualisation of Single 

Isolated Diesel Droplet with Surface Contaminated by Soot Particles 

 

Investigations on the effect of soot contaminating a diesel droplet were done to simulate the 

continuous process during the combustion of diesel in actual engine cylinder. The soot 

produced within the hot combustion gas would have the potential to contaminate the diesel 

droplet being sprayed into the cylinder. Also, some soot would still be trapped inside a 

cylinder in each combustion cycle that would attach to the fuel droplet sprayed towards it 

[54]. To properly investigate this phenomenon, the flame from a diesel droplet was used to 

ignite the imaged diesel droplet. At the same time, the soot propagating upward from the 

flame would contaminate the diesel droplet positioned above it. To ensure soot to 

contaminate the imaged droplet, the flame edge was adjusted so that it was 1 mm away from 

the imaged droplet. Thermal heating wire was used to ignite the lower droplet for steady and 

neat ignition process. As soon as there was an observable formation of flame on the imaged 

droplet, the contaminating droplet was removed 

 

6.2.1 Visualisation on the Contamination Process 

 

The contamination process of soot particles was imaged and presented by the sequences 

shown in Fig. 6.1. As soon as the contaminating diesel droplet was ignited, soot formed within 

the hot combustion gas flowed upward due to the buoyancy effect. The soot particles were 

quenched immediately after in contact with the surface of the imaged droplet shown in Fig. 

6.1 (b). The quenched soot particles agglomerated and resided on the surface of the droplet. 

As more soot being quenched, the agglomerated soot particles enveloped the surface of the 

droplet and formed a thin layer of a shell-like structure on the surface of the droplet. 

Repetitive visualisation on the imaged droplet has shown similar contamination mechanics, 

and a formation of a shell-like agglomerated soot particles that always reside on the surface 

of the droplet without penetrating towards the core. It is found that this would be the 

primary mechanism of soot contamination on any fuel droplet and the area covered by the 

shell depended on the amount of the contaminating soot particles quenched on the surface 

of the droplet [97]. 
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(a) (b) (c) (d) 

Fig. 6.1 Soot contamination process shown by sequence of (a) intial condition, (b) quenching and 

agglomeration of soot particles, (c) early formation of soot shell and (d) fully formed shell of 

agglomerated soot particles [97]. 

 

6.2.2 Initial Condition of Contaminated Droplet 

 

The test was repeated more than 50 times due to the differences of the contamination 

densities between each repetitive measurement. Fig. 6.2 shows a typical contamination of the 

imaged droplets. The soot particles contaminated the surface of the droplet in various 

concentration, from light with a few uncovered surface areas of droplet to heavy with the 

droplet surface being completely covered by the shell of agglomerated soot. Random 

contamination process conducted in the present work would simulate the contamination 

process during actual fuel spray, limited to the contamination during vertical ignition process.  

 

 

Fig. 6.2 Typical soot contamination from light to heavy surface coverage [97]. 

 

6.2.3 Evolution of Droplet Squared Diameter (D2) and Flame Stand-off Ratio, FSR 

(Df/D) of SCD Droplet 

 

Quantitative measurements were done on the regression of droplet diameter represented as 

normalised squared droplet diameter and the flame stand-off ratio for both neat and surface-

contaminated diesel (SCD) droplet shown in Fig. 6.3. High repeatability is shown in the 

regression of both D2 and FSR. Further describing on the D2 and FSR regression of SCD 

droplet, the contamination density was found to have negligible effect on the gradient during 
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the steady burning phase (PII). However, higher contamination density does increase the 

magnitude of the disruptive effect throughout the combustion. The SCD droplet undergoes a 

stronger puffing and surface distortion during the steady evaporation phase thus fluctuated 

the D2 regression even more. There was no observable sub-droplet ejection occurred during 

steady burning phase thus explains the similarities of the burning rate between each sample 

regardless of their contamination densities. Once the combustion transitioned into the 

disruptive phase (PIII), their D2 regressions deviated from each other with a steeper 

regression of denser contaminated droplet, indicating a higher amount of liquid mass loss.  

There is a brief uncertainty in the measurement of the FSR between 0.15 and 0.18 

s/mm2 for the neat diesel and 0.07 to 0.1 s/mm2 for the SCD droplet. During these period, 

slight elevation of the flame formation was observed and identified to be the interaction 

effect of the imaged droplet with their respective ignition media. Higher overshoot shown by 

the FSR of SCD during this period is because of the effect of accumulated fuel vapour 

provided by the contaminating droplet used to ignite the SCD droplet. As previously 

discussed in Chapter 4, ignition of a droplet with another combustible fuel or gas would have 

a brief moment of increased flame height due to the increase amount of fuel vapour 

accumulated between the droplet and the flame zone. Although the combustion 

characteristics of neat diesel were already discussed in Chapter 4, it is represented in this 

chapter for the sake of comparing it with the SCD droplet.  

Most works on a droplet suspended with particles done by various researchers [18, 

152, 185] used a low frame rate between 30 to 5200 fps in visualising the evolution of the 

droplet diameter which in turn would make the measurement on the regressing surface of 

the droplet to appear with less disruptive behaviour. In the present work, a higher frame rate 

of 10,000 with a spatial resolution of 130 pixel/mm was conducted to precisely track the 

disruptive regression of the droplet surface during the combustion processes.  

Shown in Fig. 6.3 (a), the lifetime of the SCD droplet is shortened compared to the 

neat diesel due to its frequent sub-droplet ejections during the disruptive phase (PIII). Most 

of the heat gained from the flame absorbed by the soot shell formed on the surface of the 

droplet because of its high energy absorbance [71, 158], inhibiting the heat transfer towards 

the centre of the droplet thus reduced the expansion rate of the SCD droplet in heating 

phase (PI). As a result, the SCD droplet was observed to slightly expanded later at normalised 

lifetime of 0.4 s/mm2. When the core temperature elevated at slower rate, lower amount of 

fuel vapour escaped through the surface thus reduces the surface distortion during the 

heating phase. Furthermore, the shell of agglomerated soot particles formed a protective 
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layer around the droplet, changes the surface tension and at the same time observed to be 

able to maintain the ellipsoidal shape of the droplet despite of being rapidly heated during 

droplet heating process. 
N

e
at

 d
ie

se
l 

  

S
u

rf
ac

e
 c

o
n

ta
m

in
at

e
d

 d
ie

se
l 

  
 (a) (b) 

Fig. 6.3 Normalised regression of neat diesel and surface-contaminated diesel droplet on (a) D2 and 

(b) FSR [97]. 

 

The FSR of SCD droplet is found to be declined as the combustion progressed shown 

in Fig. 6.3 (b). Early formation of the agglomerated soot shell on the surface of the droplet 

promotes faster agglomeration rate of soot particles during self-contamination process as 

the combustion progressed. Formation of soot shell around the droplet supressed the 

evaporation rate as a result of slower mass diffusion of liquid from the core to the surface of 

the droplet [97, 147, 148]. This in turn contracted the formation of flame due to the lowering of 

fuel vapour consumption with a minimum effect of fuel vapour accumulation. Ejection of the 

sub-droplet in the disruptive phase is known to increase the flame size due to the effect of 

gas-phase interaction. This process is observed and measured to have elevated the flame size 

during the combustion of neat diesel. Although burning SCD droplet shown more active sub-

droplet ejection during the disruptive phase, the FSR continues to decline. Hence, clear 
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visualisation of the dynamics inside and on the surface of the droplet is needed to identify 

their differences.  

 

6.2.4 Burning Rate Constant and Lifetime of Combustion Phases 

 

In the case of SCD droplet, the regression of D2 is still linear during Phase II despite having 

some fluctuation due to the more active puffing of fuel vapour through the surface of the 

droplet. This enables the measurement on the burning rate to be possible. Measurement of 

the burning rate shown in Fig. 6.4 indicates that the burning rate of SCD droplet declined 

similarly despite having different densities of soot contamination during the ignition process. 

Denser contamination of soot particles on SCD droplet does not further reduce the burning 

rate during PII and this is shown by relatively small deviation between each repetitive 

measurement done on the SCD droplet. Comparing to the neat diesel, it is found that even 

the slightest contamination of soot particles on the surface of the droplet reduces the 

burning rate by 17%. Formation of soot shell on the surface of the droplet prior to ignition 

inhibited the liquid diffusion of fuel from the interior to the surface of the droplet thus 

suppressing the evaporation process. However, the magnitude of disruptive behaviours is 

more profound with higher fluctuation of D2 shown in Fig. 6.3 (a). The soot shell hinders the 

release of nucleated fuel vapour which in turn shortly expands the droplet before being 

release through the surface. Large differences were observed between the combustion 

characteristics of nanofluid and SCD droplet conducted in the present work. Small amount of 

energetic nanoparticles suspended in a base fuel (nanofluid) improves the burning rate [43, 

152] whereas even the slightest contamination of soot on the surface of the droplet would be 

detrimental to the burning rate.   

Imaging techniques applied in the present work with high repeatability provides a 

reliable identification of combustion phases in the regressions of D2 with distinct changes 

from one phase to another during the combustion of neat diesel and SCD droplet. 

Contamination of soot deviated the regression of steady evaporation from D2-law and 

prolongs the duration of droplet heating (PI) and disruptive phase (PIII) shown in Fig. 6.4. The 

reliable measurement of the burning rate of SCD droplet is shortened to 57.92% of its lifetime 

from 72.21% in neat diesel. Soot shell absorbed high amount of radiation from the flame 

during the combustion. As a result, heterogeneous nucleation is promoted inside the droplet 

due to high temperature spot around the soot shell on the surface. The soot shell creates an 

obstruction for the nucleated vapour bubble to escape through the surface. Nucleated 
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vapour trapped inside the droplet would require a higher pressure to be released through 

the thicker soot shell thus further disoriented the droplet surface. The surface of the droplet 

is then ruptured with stronger gush of vapour, ejecting a sub-droplet and soot particles 

outward which destabilises the surface regression with higher loss of mass thus transitioned 

the combustion to Phase III earlier. SCD droplet is measured to have longer disruptive 

burning (PIII) with 12.7% of its total lifetime.  

 

 

Fig. 6.4 Quantitative measurement on the burning rate and lifetime of combustion phases of neat 

diesel and SCD droplet [97]. 

 

Examination on the regression of D2 in SCD droplet shows that the duration of 

lifetimes in each combustion phase does not affected by the variations of soot contamination 

degrees on the droplet surface prior to ignition. The lifetime of each phase measured in Fig. 

6.4 has a deviation of less than 4% between each repetitive measurement despite having 

different condition of initial soot contamination. Typical findings on nanofluid droplet 

combustion suggests earlier destabilisation of combustion with longer duration of disruptive 

phase when the concentration of precursors or nanoparticles is increased beyond its critical 

loading [43, 148, 152]. However, findings obtained from the present work are distinctly 

different from nanofluid combustion due to its differences in the condition of particle laden. 

It is found that soot contamination on the surface of the droplet promotes rapid particle 

agglomeration and the effect to the droplet evaporation and stability is detrimental 

regardless of any contamination density. 
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6.2.5 Liquid-Phase Visualisation 

 

Liquid-phase visualisations were done to monitor the dynamics of particle during the 

combustion process as well as obtaining a clearer view inside the droplet. Although such 

approach were done in various work on the droplet with a particle suspension [18, 43, 148, 

152, 185, 186], the disruptive dynamics of particle were not closely associated with the 

regression of the D2 and FSR. For instance, the puffing and liquid ejection are more active in 

the combustion of the SCD droplet in the present work but the FSR was measured to decline 

as the combustion transitioned to PIII. Although the effect of vapour accumulation is definitely 

reduced due to suppressed evaporation, there should be a slight enhancement to the flame 

formation due to the gas-phase interaction between the parent and ejected droplet as 

observed in the neat fuel. For this reason, a closer visualisation was done to observe the 

dynamics of the droplet and soot particles that would made the combustion of the SCD 

droplet behave differently from the neat diesel. 

Evaporation of the SCD droplet during Phase I shows only a slight surface distortion. 

During this period, the soot shell resided on the surface of the droplet absorbed most of the 

radiation from the flame, locally heats the surface of the droplet. Elevation of the temperature 

to its boiling point evaporates the liquid fuel near the surface of the droplet. Because of there 

were no obstruction to the evaporating liquid near the surface, the evaporation proceeds 

with steadier manner. However, this slows the heating process towards the core of the 

droplet. As a result, liquid mass diffusion from the core to the surface of the droplet is 

retarded due to a slow heating process resulting suppressed evaporation. Less amount of 

vapour tries to escape through which in turn stabilises the surface of the droplet. The 

absence of a homogeneous bubble nucleation inside the droplet shown in Fig. 6.5 (i) 

minimised the droplet expansion during the heating period.  

As the combustion progressed to Phase II, the shell began to be densely packed due to 

the reduced droplet size. The core temperature of the droplet would eventually increase 

towards its boiling point during this phase indicated by the steady regression of D2. Escaping 

vapour through puffing ejected some of the agglomerated soot particles shown in Fig 6.5 (ii) 

without any protrusion of liquid ligaments. Multiple occurrences of puffing eventually 

fragmented the dense shell shown Fig. 6.5 (iii).   

Segregation of the densely packed shell of agglomerated soot particles locally heats 

the liquid near the surface of the droplet. As the droplet continues to reduce in size, more 

fuel vapour that was trapped inside the shell tries to escape through the surface. Tougher 
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obstruction subjected by the soot shell caused the vapour to be released by a higher vapour 

pressure thus pushes out the vapour together with a fragment of the shell outward, clearly 

shown in Fig 6.5 (iv). Flame enveloping the droplet ignited the released particles and fuel 

vapour thus initiated an explosion outside the droplet shown in Fig. 6.5 (v). This explosion 

fluctuates the flame size in Phase III and the effect is clearly shown by the regression of the 

FSR in Fig. 6.3 (b). The measurement on the flame height shows that the explosion does not 

enhance the flame size upon interaction. Similar occurrences of non-interaction flame 

formation were observed in each repetition of flame visualisation. On top of reduced effect of 

fuel vapour accumulation, the ejected soot particle exploded without enhancing the flame 

formation through gas-phase interaction resulting continuous decline of the FSR towards the 

flame extinction. With such large differences in the dynamic of liquid-phase observed 

between the neat diesel and SCD droplet, the cause of declining FSR is identified.  

 

Phase I Phase II Phase III 

 

 
 
 

 

 

 

 
 
 

 

 

   

  
 
 
 

 

Fig. 6.5 Liquid-phase and flame visualisation during Ignition, swelling, boiling and disruptive phases of 

surface-contaminated diesel droplet [97]. 

 

6.3 Combustion Characteristics and Liquid-phase Visualisation of Single 

Isolated Diesel Droplet with Volume Contaminated by Soot Particles 

 

Experimentations were done on the diesel droplet suspended with soot particles. The soot 

particles were thoroughly mixed with a diesel with increasing amount of particle loading by 

mass. This experiment was conducted to simulate the contamination process inside the 
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cylinder. There is a possibility of soot to penetrate the surface of the droplet during turbulent 

mixing. Also, this test was conducted to specifically compare the differences between surface 

soot contamination, energetic nanofluid and volume soot contamination effect. The loading 

was increased from 0.05% to 0.5% of loading by mass in 0.1% increment. 0.05% mass loading 

was tested for the sake of visualising the liquid-phase as well as to increase the precision of 

burning rate measurement in low particle loadings.  

 

6.3.1 Initial Condition of Volume-Contaminated Diesel (VCD) Droplet 

 

Fig. 6.6 shows the initial condition of the VCD droplet prior to ignition. With very low density 

of 1.84 g/cm3 [158], the amount of soot contained in the droplet was high even with 0.05% 

mass loading. The VCD droplet is fairly transparent by up to 0.1% particle loading shown in Fig. 

6.6 (b). Higher loading of particle turned the droplet to opaque in appearance, making 

visualisation inside the droplet to be impossible. The soot particles suspended inside the base 

fuel is observed to be evenly distributed even without any surfactant added. To prevent early 

agglomeration of soot particle due to a gravitational settling described by Gan and Liao as one 

of the factor of particle agglomeration inside a fuel droplet [107], the ignition was made as 

soon as the droplet was suspended on the fibre.  

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Fig. 6.6 Initial condition of VCD prior to ignition with mass loading of (a) 0.05%, (b) 0.1%, (c) 0.2%, (d) 

0.3%, (e) 0.4% and (f) 0.5% 
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6.3.2 Evolution of Droplet Squared Diameter (D2) of VCD Droplet 

 

Measurements on the evolution of droplet diameter were made on VCD droplet with up to 

0.5% soot particle mass loading and is presented in Fig. 6.7. Measurement of the D2 shows 

good repeatability in each sample thus making the analyses done in the present work to be 

considered reliable. In low mass loading of 0.05%, the regression is steady with a minor 

puffing recorded throughout the lifetime of the droplet. The droplet undergoes less 

expansion during heating phase compared to the neat diesel. This is due to its prolonged 

droplet heating during the early lifetime of the droplet. When the loading increased to 0.1%, 

the regression of the D2 fluctuates rapidly in Phase II and the magnitude of distortion is at the 

highest in 0.2% loading. This is believed to have occurred due to the multiple heterogeneous 

nucleation of vapour bubble emerged within the droplet. As a result, more puffing process 

occurred, and the effect is the highest when the particle loading increased to 0.2%. However, 

when the loading increased to 0.3%, the frequency and magnitude of fluctuation on D2 

regression began to reduce and observed to be steadier when the loading was further 

increased. On the other hand, the period of droplet heating has shown to be increased by a 

longer curve of D2 regression during the early lifetime as the particle loading increased 

indicating higher amount of heat from the combustion being absorbed by the soot particles 

rather than heating the liquid fuel. Hence, closer visualisation on liquid-phase is needed to 

determine the cause of such change in combustion behaviour.  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 6.7 Repetitive measurement on D2 regression of VCD droplet with soot particle mass loading of 

(a) 0.05%, (b) 0.1%, (c) 0.2%, (d) 0.3%, (e) 0.4% and (f) 0.5% 

 

6.3.3 Dynamics of Soot particle inside VCD Droplet during combustion 

 

To further understand such change in the combustion behaviour, the dynamics of particle 

within the droplet need to be identified. Fig. 6.8 shows sequential visualisation on the VCD 

droplet with 0.05% mass loading. This loading was selected to be demonstrated here due to 
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its transparent droplet appearance, making the observation on the particle dynamics inside 

the droplet to be possible. Upon ignition, the particle inside the droplet starts to move with 

the aid of internal circulation induced by buoyancy. Some of the particle began to 

agglomerate shown at t = 200.3 ms. The segregated particles near the surface of the droplet 

is shown to be oxidised in the early lifetime of droplet combustion shown by the darker 

combustion gas at 513.5 ms.  

As the combustion progressed, the soot particle is shown to have agglomerated and 

formed a shell on the surface of the droplet at t = 788 ms. It is shown that the suspended soot 

was unable to be oxidised once they had agglomerated. Movement of the soot shell from t = 

788 ms to t = 797.1 ms indicates that the shell is certainly located near the surface, which 

moves in relation with the rotation of the liquid surface. The tendency of the soot to move 

towards the surface of the droplet is due to its composition which made up of mostly 

hydrophobic element [156], that would move to area with less liquid being subjected to its 

surface area. As the droplet continues to evaporate and shrunk in size at t = 1049.9 ms, the 

shell is shown to have fully enveloped the droplet thus creating a barrier that obstructs any 

escaping fuel vapour through the surface.  

Nucleation of the liquid fuel into a bubble of vapour within the shell is shown at t = 

1079.6 ms. The bubble expands and moved towards the surface with the thinnest shell before 

the surface rupture shown by the more transparent area on the surface of the droplet during 

t = 1532.6 ms. Once the surface of the droplet ruptured during bubble breakup, a ligament of 

liquid fuel protruded outward thus ejects a sub-droplet outside. After the flame has extinct, 

residue of soot particle was left on the fibre indicating an incomplete ejection and oxidation 

of soot particles suspended inside the droplet during combustion process.  

The dynamics of the VCD droplet combustion shown by the sequential images in Fig. 

6.8 are found to be similar in each sample. However, the dynamics of soot particles inside the 

droplet with 0.2% and beyond cannot be observed due to their opaque appearances. 

Nevertheless, the occurrences of puffing and sub-droplet ejection were observed in each 

sample and can be identified by the fluctuation in the regression of the D2 and FSR. 
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t = 172.5 ms t = 200.3 ms t = 513.5 ms t = 788 ms 

    
t = 797.1 ms t = 1049.9 ms t = 1079.6 ms t = 1532.6 ms 

   

 

t = 1532.9 ms t = 1533.4 ms t = 1824.8 ms  

Fig. 6.8 Burning behaviour of VCD droplet with 0.05% particle loading 

 

6.3.4 Burning Rate and Lifetime of Combustion Phases of VCD Droplet 

 

The burning rates of the VCD droplets were measured and compared with the neat diesel 

shown in Fig. 6.9. Volume contamination of soot particle is found to have significantly reduce 

the burning rate of neat diesel in all mass loading. The burning rate reduced sharply in low 

particle loading of 0.05%, began to slightly increase to a peak in 0.2% particle loading and 

continue to reduce when the loading is increased further. From the observation made on the 

liquid-phase dynamics, it is known that the soot contained inside the droplet undergoes rapid 

agglomeration process. The agglomerated soot particles form a shell that resides on the 

surface of the droplet early in the lifetime of the burning VCD droplet. Due to the similar 

location of agglomerated soot shell to a surface-contaminated diesel droplet discussed in 

Section 6.2, the reduction in burning rate of the VCD droplet is well understood. The shell 

inhibits the liquid diffusion from the core towards the surface of the droplet which in turn 

supressed the evaporation rate [148].  
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The mass loading of soot is found to be critical at 0.2% which recorded to have the 

highest burning rate among other loading of the VCD droplet. As shown by the liquid-phase 

dynamics in Fig. 6.8, VCD droplet could undergo strong puffing and sub-droplet ejections 

during combustion. From the regression of the D2 shown in Fig. 6.7(c), the fluctuation is more 

severe during the combustion of the VCD with 0.2% soot mass loading. This indicates the 

occurrences of a more rapid puffing and sub-droplet ejections which in turn making the 0.2% 

VCD droplet to have higher mass loss of liquid fuel through a vapour nucleation process 

especially during PII. Higher soot mass loadings formed a sturdier shell of agglomerated soot, 

obstructing any fuel vapour to be ejected through the surface. In addition, more heat is 

absorbed by thicker shell enveloping the droplet thus slowing the heating process within the 

core of the droplet. As a result, the evaporation only occurs near the formation of shell with 

minimal internal bubble nucleation and the evaporation progresses with less disruption that 

would have potentially be caused by the expansion of a nucleated vapour bubble within the 

core of the droplet. 

 

 

Fig. 6.9 Burning rate of neat diesel and VCD droplet in various particle loadings. 

 

Fig. 6.10 shows the lifetime of the combustion phases between the neat diesel and VCD 

droplet with 0.1% to 0.5% particle loadings. The bar graph shown during Phase I indicates the 

increase duration of droplet heating process when the soot particle loading is increased. 

According to Kittelson [167], the absorbance of visible light of soot is high compared to the 

scattering due high carbon content of the particle. Hence, the soot tends to act as a heat sink 

which absorb most of the heat from the flame during early combustion process. Once the 

temperature of the soot shell reaches the boiling point of diesel, it acts as a heat source that 
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starts to heat the liquid droplet toward its boiling point. This process delayed the onset of 

liquid heating thus prolongs its duration. 

Steady burning phase of the VCD droplet is shortened to a similar duration between 

each loading. However, the disruptive burning behaviour during critical loading of 0.2% 

resulted higher deviation between repetitive measurement. It is shown that as long as there is 

a soot contaminating the droplet, the steady combustion shortens regardless of any particle 

loading, similar to the SCD droplet. In the VCD droplet combustion, the contamination only 

affected the duration of droplet heating (PI) and disruptive phase (PIII) when the particle 

mass loading is different. Longer duration of PIII is shown by the bar chart in Fig. 6.10 in low 

particle loading. This is caused by the occurrences of sub-droplet ejections of the VCD 

droplet with mass loading up to 0.2%. The soot shell in 0.1% is thinner which allows more 

puffing of fuel vapour and sub-droplet ejection to occur thus transitioned PII combustion to 

PIII earlier. With minimum mass loss of liquid fuel on the VCD droplets that has soot mass 

loading higher than 0.2%, their duration of disruptive phase is equivalently low.  

 

 

Fig. 6.10 Lifetime of combustion phases in various particle loadings of VCD 

 

6.3.5 Liquid and Particle Ejections During Disruptive Burning 

 

To further demonstrate the differences in disruptive burning between low and high particle 

loadings, sequential images of the liquid and particle ejections are presented in Fig. 6.11 and 

Fig. 6.12 respectively. For particle loading below critical value (0.2%), typical sub-droplet 
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ejection process is shown in Fig. 6.11. The combustion flame was unable to oxidise the soot 

particles once they are completely aggomerated thus turning the droplet into opaque in 

appearance when the droplet reduced to a smaller size. The sub-droplet ejection process is 

similar during any type of droplet combustion, which involves protrusion of liquid ligament 

that eventually detaches the sub-droplet upon being pinched by the surrounding pressure. 

Ejected sub-droplet of the VCD droplet contains soot particle inside it indicated by the colour 

of flame in the image at t = 1353.8 ms. The bright orange-coloured flame indicates the 

oxidation of soot contained inside the ejected sub-droplet. Similar ejection process occurred 

multiple times within the disruptive phase, further explaining the cause of the liquid mass loss 

that prolongs the duration of PIII.  

 

     
1350.7 ms 13511 ms 1352.3 ms 1353.8 ms 1355 ms 

Fig. 6.11 Ejection of volatile mixture consisting liquid fuel and soot particles during the combustion of 

VCD droplet with 0.2% soot loading 

 

Typical disruptive burning process of a VCD droplet with a particle loading above the 

critical loading is shown in Fig. 6.12. During this phase, the agglomerated soot particle is 

observed to be ejected through the surface of the droplet. Although the puffing intensities are 

lower, the soot particles contained inside the droplet is more densely packed. Slight puffing 

during the combustion would ejects low amount of volatile vapour together with a chunk of 

agglomerated soot particles outward. The certainty of the ejected matter to be a soot particle 

is shown in the image at t = 1457 ms, with a smouldering particle once it is transported to the 

flame region. Ejection of particle mildly distorts the surface of the droplet thus explains the 

lower intensities of fluctuation recorded in the D2 regression of VCD droplet with loadings 

beyond critical of 0.2%. 
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1454.9 ms 1455.5 ms 145.66 ms 1457 ms 1457.6 ms 

Fig. 6.12 Ejection of agglomerated soot particles during the combustion of VCD droplet with 0.3% soot 

loading 

 

6.3.6 Flame Formation of VCD Droplet Combustion 

 

Fig. 6.13 shows the comparison of the FSR between the neat diesel and VCD droplet with soot 

mass loading between 0.1% to 0.5%. Reduced burning rate of the VCD droplet in all loadings 

lowered the FSR throughout the entire droplet lifetime. Some vapour accumulation effect are 

present shown by the slight increase of the FSR during PII. Similar to the SCD droplet 

combustion, the FSR is found to be declined towards the end of droplet lifetime. Slight 

elevation of the FSR during sub-droplet ejection is shown for the VCD droplet with soot mass 

loading below critical of 0.2% indicating the gas-phase interaction between the flame of 

ejected sub-droplet and parent droplet. Regressions of the FSR for mass loading beyond 

critical are observed to have sharply decline due to non-interacting combustion between 

smouldering soot particle and enveloped flame of the parent droplet. With synchronised 

visualisation of droplet liquid-phase and flame formation conducted in present work, the 

decline of the burning rate and FSR is fully identified. 

 

 

Fig. 6.13 Flame stand-off ratio comparison between neat diesel and VCD droplet 
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6.4 Summary 

 

There are several key findings on the combustion behaviour of contaminated diesel droplet; 

worth to be mentioned in this chapter. Firstly, the contamination of soot particle on a fuel 

droplet during continuous combustion process is possible due to its fast reaction 

demonstrated in this chapter. As soon as the soot contained in the hot combustion gas 

contacts the surface of the droplet, it is quenched and form a shell of agglomerated soot 

particles that resides near the surface of the droplet. The shell of agglomerated soot particles 

enveloped the droplet and forms a barrier which inhibits the liquid diffusion from the core 

towards the surface of the droplet resulting suppressed evaporation. When the shell exists on 

the droplet surface prior to ignition, the burning rate of diesel is found to be reduced 

significantly. Higher density of surface contamination does not further reduce the burning 

rate but increases the magnitude of fluctuation in the regression of D2. The formation of shell 

obstructs the nucleated fuel vapour to be released through the surface of the droplet thus 

highly distorts the surface of the droplet.  

Secondly, it is found that soot has high tendency to agglomerate and forms a thin layer 

of shell that resides on the surface of the droplet. Having its component made up of mostly 

hydrophobic element, soot particles tend to move towards the surface of the droplet. The 

contamination retards the droplet heating process, as most of the combustion heat produced 

by the flame is absorbed by the agglomerated soot shell formed on the surface of the droplet. 

It is demonstrated that any contamination of soot either initially quenched on the surface or 

being evenly distributed within the droplet would significantly reduce the burning rate and 

highly distorts the surface of the droplet during combustion process. The slight enhancement 

of the burning rate in critical loading of 0.2% is due to the increased rate of liquid mass loss 

via multiple puffing of nucleated fuel vapour within the droplet.  

With sufficient evidence between the regression of the D2 and FSR, the transient 

behaviour of burning SCD and VCD droplet is identified. Morover, closer visualisation on the 

liquid-phase has provided further explaination on the main cause of change in combustion 

behaviour between combustion phases.  
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Chapter 7 

 

Multi-Droplet Combustion Arranged in Horizontal Arrays 

 

7.1 Introduction 

 

Experimentations on the simultaneous combustion of multiple fuel droplet were done to 

evaluate the transient characteristics within the lifetime of evaporating droplets. Two and 

three droplets were simultaneously ignited and arranged horizontally. The diameter of the 

droplets was ensured to be equivalent prior to ignition to prevent inconsistent transient 

effect to occur during the combustion of each droplet such as increased sooting propensities, 

variable vapour accumulation effect and unequal size of flame formation.  

In the combustion of closely packed fuel droplets, the oxygen depletion between the 

flame causes the flame to merge into one enveloped flame with a larger flame size. This in 

turn decreases the vaporisation rate, lower the temperature gradient within the group of 

flame thus prolong the combustion lifetime [170, 25]. In addition, formation of primary soot 

particle and precursor are within the area between the flame front and the droplet surface 

[77]. With a certain inter-droplet distance, the formed soot particle around the droplet would 

have the possibility to continuously contact and contaminated the nearby droplet. It is 

determined in Chapter 6 that contamination of soot on the droplet surface would reduce the 

burning rate and promotes instabilities in a burning droplet. Under these reasons, a closer 

evaluation on the change in the burning rate, surface stabilities and lifetime of a fuel droplet 

need to be done to determine and differentiate between the effect of oxygen starvation, fuel 

vapour accumulation and soot contamination. Hence, a diesel fuel with high sooting 

propensity and non-sooting ethanol were selected to be experimented in this chapter to 

compare the additional effect of soot contamination during a multi-droplet combustion. 

The results from this chapter would provide a comprehensive analysis on the 

combustion behaviour of fuel droplets during multi-droplet combustion subjected to two 

prevalent effects namely; oxygen starvation and soot contamination. Furthermore, the results 

from the present work would provide a new insight on the effect of soot contamination to the 

transient behaviour during the combustion of closely packed fuel droplets. 
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7.2 Initial Condition of Multi-droplet Arrangement Prior to Ignition 

 

Experimentations on the multi-droplet combustion were done on two and three droplets 

arranged in a horizontal array. Figure 7.1 shows the typical arrangement of three droplets 

prior to ignition. Droplet sizes were ensured to be 1 + 0.05 mm before the ignition was made. 

The multi-droplet distance, L is the distance between the droplet centres of adjacent droplet. 

In three droplet arrangements, the distances were change symmetrically between right and 

left droplet in accordance to the centre droplet.  

 

 

Fig. 7.1 Initial condition of three diesel droplet arranged in horizontal array. 

 

7.3 Evolution of Squared Droplet Diameter During Multi-Droplet 

Combustion 

 

Fig. 7.2 shows the normalised regression of D2 in each normalised inter-droplet distance, L/Do 

during multi-droplet combustion of diesel. In the combustion of two diesel droplet in array 

shown in Fig. 7.2 (a), a close inter-droplet distance of 1.25 and 1.50 shows a significant 

fluctuation of D2 during the disruptive burning phase. The regression began to be steadier 

when L/Do increased between 2.00 and 3.50 and started to fluctuate again in 4.00 and 

beyond. Closer examination on the D2 shows that the regression of the inter-droplet distance 

between 2.00 and 3.50 transitioned to PII earlier and believed to be caused by rapid process 

of droplet heating. However, the magnitude of fluctuation in D2 during PIII is shown to be 

reduced in proportion to the increase of L/Do. This indicates that a closer inter-droplet 

distance has earlier occurrences with higher strength of puffing and sub-droplet ejection. 

Normalised regression of D2 from the combustion of three diesel droplets in array is shown in 

Fig. 7.2 (b). Compared with the two burning droplets in array, the D2 fluctuation of close L/Do 

distance (1.25) shows stronger with earlier onset of puffing and sub-droplet ejections. 

Changes of the gradient in D2 is shown to be proportionally non-linear when L/Do is increased 

with significant change in gradient during close multi-droplet proximity between 1.25 < L/Do < 

3.50.  

L = 1.25 mm 
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(a) 

 
(b) 

Fig. 7.2 Normalised regression of D2 of each normalised inter-droplet distance, L/Do during multi-

droplet combustion of (a) two diesel droplets in array and (b) three diesel droplets in array 

 

Figure 7.3 shows the normalised regression of D2 in each normalised inter-droplet 

distance, L/Do during multi-droplet combustion of ethanol. Shown in Fig. 7.3 (a), changes of D2 

gradient during two interacting droplets is linearly proportional to the change of inter-

droplet distance between 1.25 < L/Do < 2.50. However, gas-phase interactions do not have any 

effect on the disruptive burning of ethanol. Fluctuations of D2 are very low and comparably 

similar between each inter-droplet distance. Furthermore, the fluctuation of D2 in PIII remains 

unchanged even with increased gas-phase interactions during the combustion of three 

ethanol droplets shown in Fig. 7.3 (b).  

With similar trend of change in D2 gradient observed between two and three arranged 

droplets in both fuels, it is certain that the centre droplet in a three droplet arrays have 

higher effect of oxygen starvation compared to two droplet arrays. These observations are in 

accordance with the findings discussed by Miyasaka and Law [82] who states that the gas-

phase interference to the middle droplet is more severe compared to the side droplet during 

the combustion of three droplet in array. In two interacting droplets, each droplet having half 

of the droplet area exposed to the ambient air. This allows more oxidiser to be diffused 

towards the reaction zone thus enhances the combustion process. Also, the gas-phase 
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interaction area between droplets only affecting on one side of the droplet, thus influencing 

the combustion to behave proportionally linear with the change of inter-droplet distance.  

Droplet interactions during the diesel droplet combustion significantly affected the 

stability of regressing droplet during PIII but has no effect on the ethanol. It is believed that 

the soot particles contained in the hot combustion gas would have contaminate the 

neighbouring droplet, contributing to the increased occurrences of puffing and sub-droplet 

ejections. According to Randolph and Law [52], incomplete soot oxidation is observed in 

strong interacting conditions of closely spaced droplets. This in turn would increase the 

possibility of interacting droplets to contaminate each other within a certain effective inter-

droplet distance due to a higher soot emission during the combustion. The possibility of 

contamination is in agreeable relevance with the effects imposed during PIII. Presence of soot 

particles on the droplet surface would result multiple occurrences of heterogeneous 

nucleation of vapour bubble inside the droplet thus fluctuates the regression of D2 upon a 

surface rupture. On the other hand, the contamination mechanics does not occur during 

multi-droplet combustion of ethanol due to its non-sooting properties when burns in 

atmospheric pressure [26, 27, 124, 140]; thus explains the unchanged disruptive burning of 

ethanol in any inter-droplet distances.  

 
(a) 

 
(b) 

Fig. 7.3 Normalised regression of D2 of each normalised inter-droplet distance, L/Do during multi-

droplet combustion of (a) two ethanol droplets and (b) three ethanol droplets  
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7.4 Visualisation of Soot Contamination During the Combustion of Interacting Diesel 

Droplets 

 

Liquid-phase visualisations were done on the imaged droplet during interacting multi-droplet 

combustions to observe the contamination process and effects. Fig. 7.4 shows the liquid-

phase of the imaged diesel and ethanol droplet during multi-droplet combustion with inter-

droplet distances varied from the closest (L/Do = 1.25), the furthest (L/Do = 5.00) to infinity 

(isolated single droplet). Images from three interacting droplet combustion were presented 

in the figure for clearer provisions of the contamination effects. The soot contaminating the 

droplet is observed to be denser when the inter-droplet distance of diesel is closer. Very little 

amount of soot particle is observed to be present in the isolated droplet due to self-

contamination effect. In the ethanol droplet, there is no observable soot contained in the 

droplet during PIII shown in the figure; and the condition is similar in each inter-droplet 

distance. 

The onset of the disruptive burning is due to the breakup of bubble emerged from the 

heterogeneous nucleation induced by the presence of solid soot particle on the surface of the 

droplet. Closer inter-droplet distance experienced much earlier bubble rupture shown by the 

images in the second row of Fig. 7.4. This promotes early fluctuation of D2 regression during 

the normalised lifetime of 0.50, 0.69, 0.74 and 0.78 in case A, B, C and D respectively. Larger 

size of bubble near surface rupture is shown in case A due to the mergence of high number of 

vapour bubbles. The size of bubble near surface rupture in puffing process is observed to be 

smaller as the inter-droplet distance are further away. As a result, the bubble breakup 

fluctuates the regression of D2 with lower magnitude when the interactions between the 

droplet reduces. In the case of ethanol droplet, multiple smaller bubble was observed to have 

form within the droplet shortly before transitioned to PIII. Due to the tendency of ethanol to 

evaporate at room temperature, a region of stratified fuel vapour is formed with the 

surrounding air. During ignition, the igniter added an additional energy source to the rich 

stratified mixture of fuel vapour and oxidiser which in turn rapidly accelerates fuel pyrolysis, 

forming some soot in the process [124].  

Shortly after the breakup of nucleated bubble, puffing of fuel vapour follows. Closely 

packed diesel droplets (L/Do = 1.25) ejects some amount of soot during puffing, indicating 

higher amount of soot contained within the droplet through continuous contamination 

process from the neighbouring droplets. Less contaminated droplet in higher inter-droplet 

distance ejects mostly fuel vapour during the puffing process shown by the third-row images 
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in Fig. 7.4. The bubble ruptures and puffing processes repeatedly occurred during Phase II 

before transitioned to Phase III which explains the continuous fluctuation of D2 regression 

shown in the Fig. 7.2. On the other hand, puffing of ethanol is slightly different compared to 

the diesel droplet. Forces from the liquid push upon surface rupture able to completely 

ejects the soot contained inside the droplet with ease due to low surface tension of ethanol 

thus cleanses the droplet. This process was observed to be occurring once in every 

interacting condition of ethanol droplet and determined to be the main cause of slight 

elevation in the D2 during the onset of PIII.  
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Fig. 7.4 Liquid-phase visualisation on multi-droplet combustion; (a) diesel with L/Do = 1.25, (b) diesel 

with L/Do = 5.00, (c) diesel with L/Do = ꝏ and (d) ethanol with L/Do = 1.25 
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The combustion progresses with increasing amount of soot from the neighbouring 

droplet quenched on the surface of the imaged droplet. As a result, liquid diffusion from the 

core to the surface of the droplet reduces at increasing rate. Higher amount of soot particles 

induced multiple heterogeneous nucleation of vapour bubble that would eventually rupture 

the surface of the droplet with a stronger liquid push that ejects small sized sub-droplets 

from the parent droplet. Sudden loss of mass transitioned the combustion phase from PII to 

PIII with the regression of D2 being deviated from the steady surface regression stated by D2-

law. The disruptive burning process is similar to the isolated fuel droplet contaminated by 

soot discussed in chapter 6 and well published by Rasid and Zhang [97]. However, the effect 

of soot contamination in interacting combustion of multiple droplet to the disruptive burning 

is less effective compared to the work done in previous chapter due to their difference in 

contamination rate and process. Horizontal arrangements of multiple interacting droplets do 

not contaminate nearby droplet heavily as most of the soot particles within the hot 

combustion gas moves upward. Only some portion of soot produced during fuel pyrolysis are 

continuously contaminating the droplet when the rich fuel region within the flame contacted 

the surface of nearby droplet. Furthermore, the arranged multi-droplet was in neat condition 

prior to ignition. Nevertheless, the disruptive effect observed in the regression of D2 is well 

associated with the liquid-phase dynamics presented in present work. 

 

7.5 Burning Rate and Lifetime of Multi-Droplet Combustion  

 

Quantitative measurements were done on the burning rate and lifetime of the multi-droplet 

combustion of diesel and ethanol droplet to identify the critical distance of a strong gas-

phase interaction during the combustion.  Fig. 7.5 shows the burning rate and burning rate 

reduction during the combustion of two interacting droplet in comparison with single 

isolated neat diesel and ethanol droplet. The burning rate is shown to increase in two 

sections of linear line with slight difference in gradient for both fuel droplet when the inter-

droplet distance is increased. It is shown that the first linear section of the ethanol is shorter; 

extending to L/Do = 2 compared to the diesel which extended to L/Do = 3.50.  

The transition of a critical gas-phase interaction is further evaluated by examining the 

change in the total droplet lifetime shown in Fig. 7.6 (a) for the combustion of two interacting 

droplets. It is well established that the lifetime of droplet increases when there is an 

interaction of gas-phase during the combustion of closely packed droplets [21] and the effect 

is significant with strongly interacting droplets [108]. It is shown that the total lifetime of the 
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diesel and ethanol droplet reduces steeply until L/Do = 3.50 and L/Do = 2.00 respectively. The 

sudden change in the lifetime reduction shows the same critical inter-droplet distance with 

the measurement of the burning rate thus confirming this finding.  

 

Fig.7.5 Burning rate and burning rate reduction of two interacting diesel and ethanol droplet. 

 

The sudden change of gradient is assumed to be the transition from a strong towards 

weak gas-phase interaction. In strongly interacting droplet, the droplet burns in one large 

enveloping flame with significantly large flame size [21, 23, 24]. Starvation of oxidiser causes 

the flame to enlarge, seeking available oxidiser in larger area further away from the droplet 

[72]. When the position of the flame edge is further away from the surface of the droplet, the 

radiative heat transfer from the flame towards the surface of the droplet is lower and the 

rate of radiative heat loss from the flame to the surrounding is higher [28, 59]. As a result, the 

heat needed for droplet heating reduces which in turn supressing the evaporation rate.  

Beyond the critical distance of strong gas-phase interaction, the droplet burns with an 

individual flame with a smaller flame size. The deviation of D2 regression from D2-law is still 

present beyond this point but with lower rate. Additionally, the gas-phase interaction of two 

burning ethanol droplet is measured to be relatively short and completely burns with 

equivalent burning rate of its isolated counterpart when L/Do > 2.00.   
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(a) (b) 

Fig. 7.6 Total lifetime of multi-droplet combustion with (a) two interacting droplets and (b) three 

interacting droplets 

 

To further analyse the critical distance of strongly interacting droplet, measurements 

of the burning rate and burning rate reduction were made on the combustion of three 

interacting diesel and ethanol droplet; and it is shown in Fig. 7.7. The transition from a strong 

to weak gas-phase interaction is clearer for the ethanol droplet, with the same critical 

distance of L/Do = 2.00. However, the critical transition is not clear for the diesel droplet. This 

is believed to be cause by the complex transient evaporation process of diesel, which have an 

additional interferences of prolonged droplet heating and high rate of the fuel vapour 

accumulation effect. From the scattering of the burning rate reduction, it is observed that the 

critical gas-phase interaction is within the range of 2.50 < L/Do < 3.50. On the other hand, the 

gas-phase interaction of the ethanol is further beyond L/Do > 5.00 in three droplet 

combustion. This indicates the role of the fuel vapour accumulation effect. More evaporated 

fuel from neighbouring droplet interferes with the reaction zone of the droplet positioned in 

the centre, thus increases the fuel vapour accumulated within the flame reaction zone [108]. 

From the measurement done on the burning rate, it is determined that the inter-

droplet distance of critical gas-phase interaction of fuel remains the same regardless of 

interacting droplet numbers. However, higher number of interacting droplets in multi-droplet 

combustion increases the effective distance due to a higher amount of fuel accumulated in 

the reaction zone in addition of further starvation of oxidiser. Under this reason, it is 

confirmed that the volatility of fuel plays an important role during the simultaneous 

combustion of multiple droplets. Lower volatility fuel such as diesel would increase the 
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effective distance of the critical gas-phase interaction as well as the gas-phase interaction as a 

whole due to a higher effect of the fuel vapour accumulation within the area between the 

droplet surface and the flame zone [88].  

 

 

Fig. 7.7 Burning rate and burning rate reduction of three interacting diesel and ethanol droplet. 

 

7.6 Combustion Phases of Interacting Multi-droplet Combustion 

 

Flame formation in a cluster of droplets is larger, and because of that the droplet heating 

duration becomes longer due to the radiative heat loss of a larger flame formation [170]. 

Under this reason the droplet heating (PI) is found to be longer when the separation distance 

between the droplet reduces and the effect is similar during the combustion of two and three 

droplet in array shown in Fig. 7.8 (a) and 7.8 (b) respectively. However, the duration of 

droplet heating is observed to be reduced towards the critical gas-phase interaction distance 

and raises again beyond the critical point. This effect if more prevalent during the combustion 

of two interacting droplets. Within optimum range of separation distance, the effect of 

buoyancy would enhance the burning rate of the interacting droplets. It is known that too 

close proximity of droplet reduces the evaporation due to a higher decline in radiative and 

conductive heat transfer even though the effect of buoyancy is improved. When the distance 

is too far apart, the effect of natural convection is minimum [56]. Furthermore, Miyasaka and 

Law [82] stated that buoyancy is enhanced during interaction of two burning droplet with 

better interior motion which in turn enhances the heat transfer within the droplet hence 

shortened the heating period.  
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For the result obtained in the present work, the optimum distance of improved 

buoyancy is found to be the same as the critical gas-phase interaction. Within the critical 

distance of gas-phase interaction determined in the present work, the flame began to 

separate, caused by the effect of buoyancy flowing in between the flame zone of each droplet. 

In addition, the droplet is heated by the flame of neighbouring droplet due to the closer 

separated edge of flame. Under this reason, the shortened duration of droplet heating is well 

explained. However, the enhanced effect of droplet heating only effects the combustion of 

three droplet mildly especially on the diesel droplets. With the more revealing effect on 

ethanol, it is believed that the buoyancy effect is diminished by the effect of fuel vapour 

accumulation. During interaction of droplets, cooling effect is expected due to the duplication 

of heat sink and evaporation of more fuel vapour that cools the surrounding gas phase [108]. 

Diesel has lower volatility with high tendency of evaporated vapour to accumulate around the 

droplet resulting higher cooling effect to the droplet thus prolonged the droplet heating 

phase.  

 

  
(a) (b) 

Fig. 7.8 Lifetime of droplet heating (PI) in the combustion of (a) two interacting droplets and (b) three 

interacting droplets 

 

Flame images of interacting droplet was visualised to further identify the critical inter-

droplet distance of the gas-phase interaction. Fig. 7.9 shows the flame formation of diesel 

burning in two (first row) and three (second row) droplets in horizontal array. In both case, it 

is shown that the droplets burns in merged flame that envelopes all burning droplet. In critical 

distance of 3.50 determined by the examination on the burning rate and total lifetime of 

diesel droplet, the flame starts to separate and a faint line of flame separation is observed. 
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Increasing the inter-droplet distance beyonf the critical distance would further separate the 

flame and shown by L/Do = 5.00 in the figure. During critical distance, the distance of 

neigbouring flame edge is minimum, with natural convection separating the flame together 

with increased amount of oxidiser. Combination of both increased supply of the oxidiser and 

heat from the neighbouring droplet would heat the droplet rapidly, thus explains the 

optimum droplet heating distance described in Fig. 7.8.  
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Fig. 7.9 Flame formation of interacting diesel droplet 

 

Fig. 7.10 shows the disruptive phase (PIII) during the combustion of multiple fuel 

droplet in various inter-droplet distance. Closer inter-droplet distance increases the lifetime 

of the disruptive phase during the combustion of diesel droplet in both two and three 

simultaneous burning of droplet shown in Fig. 7.10 (a) and Fig. 7.10 (b) respectively. These 

behaviours are expected due to a higher effect of fuel vapour accumulation. The 

accumulation effect increases the residence time of fuel vapour [184] thus increasing the 

sooting propensity of the combustion [109] that would eventually contaminates the droplet. In 
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addition, findings from the liquid-phase visualisation done in present work shows that there is 

definitely a continuous process of soot produced by the neighbouring droplet to contaminate 

the surface of the imaged droplet. The contamination disrupted the liquid surface 

significantly with earlier onset of PIII. Higher mass loss of droplet due to frequent sub-droplet 

ejection deviated the surface regression from D2-law thus prolonged the disruptive phase.  

On the other hand, the duration of disruptive phase in multiple combustion of ethanol 

is observed to be fairly unaffected by the change of the inter-droplet distance. It is known that 

the effect of fuel vapour accumulation is still present shown by the increase of effective 

distance of gas-phase interaction in Fig. 7.7 beyond L/Do = 5. However, there were no 

significant contamination of soot observed during the combustion of ethanol except during 

the rapid pyrolysis upon ignition. Under this comparison, it is determined that the effect of 

soot contamination is significant to the reduction of burning rate (reduced liquid diffusion) as 

well as prolonged disruptive burning during the combustion of fuel with high sooting 

propensities. Although the exact portion of detrimental effect from the soot contamination is 

unable to be quantified in the present work, it is certain that the effect plays a significant role 

in the reduction of the burning rate and promotes instabilities during the combustion of 

closely packed fuel droplet.  

 

  
(a) (b) 

Fig. 7.10 Lifetime of disruptive phase (PIII) in the combustion of (a) two interacting droplets and (b) 

three interacting droplets 
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7.7 Summary 

 

The evaluation made on the combustion of closely packed fuel droplets in this chapter 

provided several unique findings within the scope of a multi-droplet combustion. It is found 

that there is a specific critical inter-droplet distance of strong gas-phase interaction which 

would form one large enveloping flame around burning droplets. Within this critical distance, 

the burning rate is significantly reduced due to the enhanced heat loss from the enlarged 

flame caused by the starvation of oxygen. Also, it is found that the effective inter-droplet 

distance for optimised droplet heating falls within the critical gas-phase interaction distance. 

The droplet heating is shorter when the separation distance approaches the critical value for 

both tested fuels and increased beyond this distance. This is explained by the enhanced effect 

of oxygen diffusion by the buoyancy and additional droplet heating by the edge of 

neighbouring flame. Once the droplet is separated further, the additional heat provided by 

the neighbouring droplet reduces thus increases the droplet heating period. 

The critical distance of gas-phase interaction does not affect the lifetime of the 

disruptive phase shown by the proportionally linear relation between the lifetime of 

disruptive phase and inter-droplet distance. It is determined that the duration of disruptive 

phase is highly dependent on the soot contamination process. Larger flame increases the 

residence time of accumulated vapour thus increases the sooting propensities. The soot 

formed within the hot combustion gas would eventually pushed towards the surface of the 

droplet during self-contamination process. Furthermore, more soot particles from the side 

droplet is observed to contaminate the imaged droplet when the inter-droplet distance is 

closer. The effect is clearly shown by the fluctuation in the regression of D2; with high 

magnitude and earlier onset of disruptive burning when the inter-droplet distance was 

reduced. On the other hand, the duration of disruptive burning of non-sooting ethanol 

remains fairly unchanged in each inter-droplet distance, further demonstrates the significant 

effect of soot contamination to the combustion stability. 
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Chapter 8 

 

Conclusions and Future Works 

 

8.1 Conclusions 

 

The work presented in this thesis mainly focuses on the transient and unsteady condition 

during the evaporation of fuel droplet. The type of fuel selected in this work is based on their 

practical use in the combustion of fuel spray. In chapter 4, the experimentation was designed 

so that it highlights any significant transient combustion behaviour that causes the 

discrepancies between the predicted model and actual combustion characteristics of 

evaporating fuel droplet. Experimentation continues to explore the causes of disruptive 

effects that occurred during the combustion of multicomponent droplet which are not 

possible to be predicted by a quasi-steady model, specifically on emulsion fuel droplet 

presented in Chapter 5. Chapter 6 further explores the combustion characteristics of fuel 

droplet with a possibility of being contaminated by soot during mixing in actual combustion 

process. Finally, Chapter 7 further simulates the combustion of fuel droplet that burns in 

group. Although the combustion process is more complex during the combustion of closely 

packed fuel droplets, analyses done in the present work focuses on categorising the main 

cause of transient burning behaviour throughout the lifetime of the fuel droplet. 

The effect of droplet heating can be clearly evaluated by measuring the droplet surface 

regression. During transient droplet heating, longer duration taken for a fuel droplet to reach 

its boiling point would prolong its effect. It is demonstrated that a fuel with high boiling point 

would extend the period of droplet heating. This effect is further explained by soot 

contamination effect. Soot resides within the droplet or on the surface of the droplet absorbs 

most of the heat transferred to the droplet during the early lifetime of droplet. This in turn 

delayed the droplet heating towards its boiling point. Furthermore, interaction between 

multi-droplet combustion pushes the flame away from the droplet even further. This in turn 

in increases the rate of heat loss from the flame that would otherwise used for droplet 

heating. With all effects demonstrated in the present work, the main cause of prolonged 

droplet heating is determined to be the effect of delayed temperature increase towards the 
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boiling point of fuel. Longer period of droplet heating deviates the experimental and 

predicted result even further. 

On the other hand, fuel vapour accumulation can be clearly evaluated by measuring the 

flame stand-of ratio of a burning droplet. The effect of fuel vapour accumulation is highly 

depended on the evaporation rate and volatility of fuel. It is found that although the 

evaporation rate of emulsion fuels is higher than a neat diesel, their volatility is much higher. 

This in turn increases the vapour consumption rate thus diminishes the vapour accumulation 

effect. Contamination of soot is found to have suppressed the evaporation rate. Although the 

volatility of contaminated diesel remained fairly low, the evaporation rate reduced 

significantly. This in turn lowers the fuel accumulation effect due to a reduced evaporation 

rate. During multi-droplet combustion, the evaporation rate of combined droplets is much 

higher which in turn increases the fuel vapour accumulation effect.  

Optical setups were made to suit the testing requirements. In order to observe clear 

droplet dynamics for the identification of transient burning behaviour, the images of droplet 

liquid-phase were taken with high spatial resolution of 130 pixel/mm and temporal resolution 

between 10,000 to 20,000 fps depending on the test conditions. Furthermore, simplified 

experimental setup done in present work produced high repeatability of quantitative 

measurements which enables the identification of combustion phases that can be related to 

the disruptive behaviour of droplet liquid-phase. It is found that the fuel types and imaging 

setups done were sufficient to reach the objectives in the present work. Significant findings 

from each chapter of this thesis are highlighted in the next sub-section. 

 

8.1.1 Evaporation Behaviour of Isolated Neat Fuel Droplet 

 

1. The transient effect of droplet heating is identified to be the non-linear regression of 

squared droplet diameter, D2 during early lifetime of droplet evaporation. During this 

period, the droplet undergoes thermal expansion and at the same time gradually increase 

its evaporation rate. Once the D2 regression assumes linear regression, the droplet 

heating period ends. This transient period is clearly shown by the curve in the D2 

regression upon droplet ignition. In short, the identification of droplet heating effect can 

be made by evaluating the regression of D2; generally categorised as the transient liquid-

phase effect. 
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2. The effect of droplet heating is significant, and it is crucial to be considered during 

numerical prediction of evaporating fuel droplet. Longer period of droplet heating further 

increase the discrepancies between the experimental results and numerical prediction. 

Furthermore, the classical quasi-steady model implemented in the present work has very 

low accuracy when the evaporating temperatures are low due to the its underprediction 

of heat transfer rate within the fuel droplet. 

 

3. The duration of droplet heating highly depended on the volatility of fuel. For droplet with 

low boiling point, the regression of droplet surface assumes linear faster even though the 

droplet heating still progressing. As long as the surface layer is heated to a boiling at high 

rate, the subsequent heating of droplet interior required less heating for evaporation 

thus satisfies the requirement of D2-law. 

 

4. Increasing trends of flame stand-off ratio, FSR indicates the increased amount of vapour 

accumulated between the flame and the surface of the droplet. During this period, the 

rate of evaporated vapour is higher than the rate of vapour being consumed by the flame 

which in turn pushes the flame edge away from the surface of the droplet. High vapour 

accumulation effect is determined during the end of droplet lifetime, with FSR 

approaching infinity indicating there is still vapour being consumed although the droplet 

has been fully evaporated. Identifications of fuel vapour accumulation effect were made 

by evaluating the regression of FSR. Hence, the transient effect of fuel vapour 

accumulation is generally recognised as the transient gas-phase effect. 

 

5. Fuel vapour accumulation effect prolongs the residence time of accumulated vapour 

surrounding the droplet which in turn increases the sooting propensity during 

combustion of fuel droplet. Thermophoretic force induced by the heat from the flame 

would eventually pushes the denser formation of soot towards the droplet surface, 

causing the droplet to be contaminated by the soot through self-contamination process. 

 

6. Strong fuel vapour accumulation effect causes the droplet surface to regress disruptively 

due to the more frequent and stronger puffing. The duration of steady surface regression 

was found to be shortened and transitioned to the disruptive burning earlier throughout 

the lifetime of evaporating droplet.  
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8.1.2 Evaporation and Burning of Emulsion Fuel Droplet 

 

1. Evaporation behaviours of emulsion droplet is well demonstrated in present work. It is 

found that the component with a lower boiling point evaporates first through a process 

termed as preferential evaporation. The volatile component has tendency to diffuse 

towards the surface of the droplet during early lifetime of the evaporating droplet. The 

surface regresses with the evaporation of less volatile component once the volatile 

component is almost completely evaporated.  

 

2. Dispersed liquid of the more volatile component that is trapped inside the droplet 

homogeneously nucleates into a vapour bubble when it is heated beyond its boiling point. 

The bubble expands and eventually ruptured the surface of the droplet as a mean of 

escape. Higher additive loading of the more volatile component promotes higher number 

of bubbles to be nucleated inside the droplet and merges into a larger sized bubble 

before bursting through the surface. However, the bubble breakup process is highly 

dependent on the surface tension of the emulsion. Ethanol has lower surface tension 

compared to diesel and water. As a result, the droplet surface undergoes multiple bubble 

breakup in smaller sizes during the combustion of emulsion fuel with high ethanol 

volume.  

 

3. Sub-droplet ejection processes were determined by observing the sequential images 

during the disruptive burning. It is observed that the bubble breakup creates a low-

pressure region which draws the liquid fuel towards the bottom of the periphery. The 

push from the flowing liquid protruded a ligament outward with a length proportional to 

the bubble size near surface rupture. The end of the protruded ligament was then 

pinched by the surrounding pressure once the ambient pressure exceeds the internal 

pressure of the ligament. This process detaches a sub-droplet projecting in the direction 

of the protruded ligament. High surface tension of water emulsion protruded a shorter 

ligament with a larger size of the ejected sub-droplet. 

 

4. Surface distortion of the water emulsion was found to be more violent than the ethanol 

emulsion. As a result, two additional processes of liquid ejections were observed. The 

strength of surfactant to hold the dispersed water inside the droplet is stronger than 

ethanol. As a result, the nucleated vapour inside the droplet needed higher pressure to 
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burst through the surface, which was observed to be released by a gush of vapour jet, 

pushing the side of the ruptured area to a sheet of liquid that eventually detaches 

multiple sub-droplet. Furthermore, because of the violent distortion caused by a strong 

repelling motion, the droplet surface rotates in relation to the core of the droplet. As a 

result, the whole protruded ligament detaches into a larger sized sub-droplet with the aid 

of centrifugal force. 

 

5. Ethanol within the dispersed (ethanol-in-diesel) and continuous phase (diesel-in-Ethanol) 

diffuses rapidly towards the droplet surface due to its low flash point and weaker holding 

strength of the surfactant. As a result, no microexplosion occurred during the 

combustion of the ethanol emulsion by up to 30% of volume loading. The ethanol 

component is observed to reside near the surface of the droplet and easily ejected from 

the emulsion droplet through puffing. 

 

6. The microexplosion of the emulsion droplet was determined to be caused by three 

factors. Firstly, the droplet temperature needs to reach the superheat limit of the lower 

boiling point component. Secondly, there must be a complete phase separation between 

the components within the emulsion fuel. Thirdly, the position of the dispersed liquid 

must be near the centre of the droplet upon reaching the superheat limit.  

Microexplosion only occurs once these three conditions are met. 

 

8.1.3 Soot Contamination Effect on the Combustion Behaviour of Isolated Diesel 

Droplet 

 

1. The process of soot contaminating a fuel droplet is observed in present work. As soon as 

the soot particles contained in the hot combustion gas contacted the surface of the 

droplet, it is quenched on the surface of the droplet. The quenched particles immediately 

form a shell of agglomerated particles that enveloped the droplet. 

 

2. The presence of the soot shell on the surface of the droplet forms a barrier which inhibits 

the liquid diffusion from the core towards the surface of the droplet resulting suppressed 

evaporation. The effect of reduced evaporation rate was quantitatively measured by 

evaluating the slope of D2 regression.  
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3. When the soot contaminates the droplet during the early lifetime of combustion, the 

burning rate is found to be reduced significantly. Higher density of surface contamination 

does not further reduce the burning rate but increases the magnitude of fluctuation in 

the regression of D2. Denser shell of soot creates tougher barrier that obstructs the 

release of the nucleated vapour bubble inside the droplet. Hence, higher force of 

recoiling occurs which highly distorts the surface of the droplet.  

 

4. The effect of fuel vapour accumulation reduces when the droplet is contaminated by a 

soot particle which in turn suppresses the evaporation. This is evaluated by the declines 

of the FSR towards the end of the droplet lifetime. In addition, the ejected matters during 

the disruptive burning phase contains mostly agglomerated soot particles. Explosion of 

the ejected mixture outside the droplet was observed to have no gas-phase interaction 

with the parent droplet resulting continuous decline of the FSR towards the end of the 

droplet lifetime. 

 

5. The critical loading of volume-contaminated diesel (VCD) droplet is found to be at 0.2%. 

The slight increase in the burning rate was observed to be caused by the more frequent 

puffing processes during the steady burning phase. This indicates higher amount of liquid 

evaporation by the means of vapour nucleation and liquid-gas diffusion on the surface of 

the droplet. The shell formed on the surface is thin enough to allow the nucleated vapour 

bubble to escape through the surface. Higher loading of the soot particles retarded the 

heat transfer process toward the core of the droplet. As a result, no vapour bubble was 

observed to have nucleated within the droplet. Hence, the evaporation rate is reduced 

with only liquid-gas diffusion process occurred on the surface of the droplet. 

 

6. As long as there is a soot particle contaminating the fuel droplet, the burning rate is found 

to have significantly reduced. The differences of burning rate between the surface-

contaminated diesel (SCD) and the VCD droplet experimented in this study is 

determined to be affected by their differences in particle agglomeration rate. Soot 

particles on the SCD has completely agglomerated into a shell upon ignition. The soot 

contained within the VCD droplet only began to agglomerate once the droplet ignites. 

Higher particle loadings have more rapid particle agglomeration rate which explains the 

declining burning rate of VCD in higher loadings. Overall, as soon as the soot particle 



177 
 

completely agglomerated to a soot shell, the evaporation of contaminated fuel droplet is 

suppressed.  

 

8.1.4 Combustion of Multiple Droplets Arranged in a Horizontal Array 

 

1. There is a critical distance of strong gas-phase interaction during the combustion of 

multiple fuel droplets. The distance is highly dependent on the volatility of fuel; with 

longer inter-droplet distance of the critical reaction between lower volatility fuel 

droplets. Within this critical distance, the arranged droplets burn in one large enveloped 

flame. The burning rate of droplets positioned within this critical distance is found to be 

significantly reduced due to the enhanced heat loss from the flame.  

 

2. Fuel Droplets that burns closely to each other have significant increase during the heating 

period due to the reduced heat being transferred to the surface of the droplet. However, 

the droplet heating period is measured to reduce gradually when the inter-droplet 

distance approaches the critical distance of respective fuel droplet. More oxidiser is able 

to diffuse towards the reaction zone due to enhanced buoyancy. Slight separation of 

flame within the critical distance further improves droplet heating by the heat being 

transferred from the flame of neighbouring droplets. Inter-droplet distance beyond the 

critical reaction distance prolongs the droplet heating. Although the effect of buoyancy is 

enhanced, the heat transfer from the neighbouring flame reduces as it separated further 

away from the droplet.  

 

3. Visualisation on liquid-phase of a grouped fuel droplet combustion demonstrates that 

there is a soot contamination process throughout the lifetime of the droplet. It is found 

that the contamination was denser when the inter-droplet distance was shorter. More 

soot is shown to be quenched on the surface of three droplets in array; confirming that 

the soot particles were originated from the neighbouring droplets. Furthermore, the 

regression of the D2 during the combustion of three diesel droplets shows higher 

fluctuation compared to the two droplets in array; further confirming this observation. 

 

4. The lifetime of the disruptive phase is found to be unaffected by the critical distance of 

the gas-phase interaction. However, it is highly affected by the contamination of soot from 

the neighbouring droplets. The lifetime of the disruptive phase is found to increase 
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proportionally linear with the reduction of the inter-droplet distance. Higher amount of 

soot contamination would promote more heterogeneous nucleation of vapour bubble 

inside the droplet. This in turn would increase the occurrences of puffing and sub-droplet 

ejections. Hence, the steady burning is measured to be transitioned to the disruptive 

burning earlier due to the sudden loss of the liquid mass during the sub-droplet ejection 

process.  

 

5. The effect of soot contamination to the lifetime of the disruptive burning was further 

evaluated by comparing the diesel interaction with the multiple combustion of ethanol 

droplets. It is shown that the lifetime of disruptive phases during the combustion of 

multiple ethanol droplets were unaffected in any inter-droplet distance. Hence, it is 

confirmed that the critical distance of gas-phase interaction highly effects the lifetime of 

droplet heating and the soot contamination density highly effects the lifetime of the 

disruptive phase during the combustion of interacting multiple fuel droplets. 

 

8.2 Future works 

 

The results presented in this thesis raises more research questions on the combustion 

behaviour of fuel droplets; worth investigating in near future. The following suggestions could 

satisfy the research gap highlighted in present work; 

 

 

8.2.1 Acoustic effect on droplet evaporation 

 

This study would provide further insight into the effect of acoustics and vibration on the 

evaporation process of droplets. Study would include the effect of acoustics to the droplet 

surface distortion. Theoretically, distorted droplet surface would expose larger surface area 

of liquid to the ambient. The effect of increased surface exposure to the evaporation rate 

would be beneficial in understanding the evaporation characteristics of liquid droplet. 

Furthermore, the effect of heat and mass transfer to the acoustically agitated liquid could be 

further explore in this study. 
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8.2.2 Three-Dimensional Visualisation on the Liquid-phase of the Droplet 

 

Visualisation on the liquid-phase in three-dimensional images would provide additional info to 

the evaporating liquid droplet. This technique would provide precise quantitative 

measurement on the number of nucleated vapour bubble inside the droplet, the frequency of 

sub-droplet ejections and the volume of protruded ligaments during disruptive burning. 

Furthermore, the position of bubble nucleation could be tracked and reconstructed to 

further understand the dynamics of disruptive process within the droplet. Also, the strength 

of sub-droplet ejection could be determined with more precise measurement on the ejection 

speed of sub-droplets.  

 

8.2.3 Selective Enhancement on Flame Formation of Burning Droplet 

 

With this technique, the composition of soot, premixed flame and diffusion flame can be 

precisely measured. This would provide further information on the effect of soot 

contamination on the droplet. In addition, the effect of oxygen starvation can be evaluated by 

the flame formation of interacting droplet. Also, the effect of ignition temperature to the early 

formation of flame can be evaluated quantitatively. 

 

8.2.4 Numerical Study on the Effect of Transient Burning Using Modified QS Model 

 

A modified model of QS could be established using the experimental data provided by 

present work. Implementing the transient burning condition within the model would increase 

the modelling accuracy. The completion of this modelling would provide the opportunity to 

predict more complex combustion behaviour of fuel droplet such as multi-droplet 

combustion, particle interferences, and secondary atomisation characteristics. 

 

8.2.5 Particle Image Velocimetry to Visualise the Dynamics of Particle During 

Combustion 

 

This study would provide better insight into the dynamics of particles inside the droplet as 

well as the liquid flow of droplet during combustion. The effect of natural convection during 

the combustion of fuel droplet in normal gravity and atmospheric pressure to the internal 



180 
 

circulation can be determine. In addition, the agglomeration rate of particles can be precisely 

quantified and its effect to the evaporation behaviour could be evaluated.  
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Appendices 

 

Appendix A 

 

Sample calculation using classical quasi-steady model on neat diesel droplet 

 

By neglecting the heat transferred to the interior of the droplet, the Spalding transfer 

number is; 

𝐵 =
∆ℎ𝑐/𝑣 + 𝑐𝑝𝑔(𝑇𝑎 − 𝑇𝑠)

𝑞𝑖−𝑙 + ℎ𝑓𝑔
 

𝐵 =
(

44800
14.6 ) + 1.81(298 − 443)

0 + 250
= 11.22 

 

Assuming the droplet evaporates when its surface has reached the boiling point, the flame 

temperature is; 

𝑇𝑓 = 𝑇𝑠 +
𝑞𝑖−𝑙 + ℎ𝑓𝑔

𝑐𝑝𝑔(1 + 𝑣)
(𝑣𝐵 − 1) 

𝑇𝑓 =
0 + 250

1.81(1 + 14.6)
[(14.6)(11.22) − 1] + 443 = 1884.53 𝐾 

 

By dividing the flame height with the droplet diameter, the flame stand-off ratio is; 

𝑟𝑓

2𝑟𝑠
=

𝑙𝑛(1 + 𝐵)

𝑙𝑛[(𝑣 + 1)/𝑣]
 

𝑟𝑓

2𝑟𝑠
=

ln (1 + 11.22)

ln [
(14.6 + 1)

14.6 ] (2)
= 18.87 

 

Based on the calculated flame temperature, calculating the average gas-phase temperature is; 

𝑇̅ =
𝑇𝑏𝑜𝑖𝑙 + 𝑇∞

2
 

𝑇̅ =
443 + 1884.53

2
= 1163.77 
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Based on average gas-phase temperature, the gas-phase specific heat is; 

𝐶𝑝𝑔 = 3.791
𝑘𝐽

𝑘𝑔. 𝐾
  (referring to Table B. 2 of Turns [79]) 

By considering the thermal conductivity of liquid fuel and ambient air, the gas-phase thermal 

conductivity is; 

𝑘𝑔 = 0.4𝑘𝐹𝑇̅ + 0.6𝑘∞𝑇̅ 

𝑘𝐹 = 0.06137
𝑊

𝑚. 𝐾
 (referring to Table B. 3 of Turns [79]) 

𝑘∞ = 0.1268
𝑊

𝑚. 𝐾
 (referring to Table C. 1 of Turns [79]) 

𝑘𝑔 = 0.4(0.06137) + 0.6(0.1268) = 0.1
𝑊

𝑚. 𝐾
 

 

By considering the parameters in gas-phase, the burning rate of diesel fuel droplet is; 

𝐾 =
8𝑘𝑔

𝜌𝑙𝑐𝑝𝑔
𝑙𝑛(𝐵 + 1) 

𝐾 =
8(0.1)

830(3791)
ln(11.22 + 1) = 0.6364 mm2/s 
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