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ABSTRACT 

 

In model identification, the existence of uncertainty normally generates negative impact 

on the accuracy and performance of the identified model. This thesis focuses on the 

development of three novel methods to deal with model uncertainty, which are the robust 

model structure selection (RMSS) method, cloud-NARX model and machine learning 

enhanced nonlinear autoregressive moving average with exogenous inputs (MLE-

NARMAX) model.  

First, the RMSS method is developed for model identification problems with small size 

data and multi-datasets. The proposed method can reduce the model structure uncertainty 

and therefore improve the model performances. The RMSS method is applied to two real 

data applications, which are the modelling of Kp index and modelling of cortical response.  

Second, the cloud-NARX model is proposed. The cloud-NARX model uses cloud 

model and cloud transformation to quantify the uncertainty throughout the structure 

detection, parameter estimation and model prediction. The cloud-NARX model is applied 

to predict AE index 1 hr ahead. The new predicted band can be generated to forecast 

system output with confidence interval. The cloud-NARX method provides a new way to 

evaluate the model based on uncertainty analysis and reveal the reliability of model, and 

visualize the bias of model prediction. 

Third, the MLE-NARMAX model is developed. The MLE-NARMAX model is 

established based on a NARMAX model structure, which is composed of the most 

important candidate features (variables). With an extra neural network sub-model, the 

MLE-NARMAX model is enhanced by the machine learning methods so that the model 

performance can be improved. The MLE-NARMAX model is applied to predict 

appliance energy use 10 minutes ahead and predict Dst index 3 hours ahead. The proposed 

model provides a new way for data modelling problems through machine learning 

approach with a simple/sparse, interpretable and transparent model structure. 
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Chapter 1  

 

INTRODUCTION 

 

 

1.1 Background and Motivation 

Data acquisition is an important aspect of any type of the research because inaccurate data 

might lead to invalid data learning results. In recent years, the collection of data from a 

wide range of fields has become more convenient and the quality of data has increased. 

Benefit from the revolution of computation capacity and data acquisition, data-driven 

modelling and data analytics approaches have been applied to learn features and 

behaviours of a wide range of complex systems. As the size and complexity of data 

increases, the analysis of the uncertainty in the data modelling process becomes ever 

important for quantifying and improving the reliability of the identified model in many 

fields (Robinson, Benke & Norng, 2015; Christina, 2016).  

The general process of system identification consists of several steps, for example, 

model type selection, model structure detection, term selection, parameter estimation, 

model evaluation, etc (Ayala Solares, Wei & Billings, 2017). There are a lot of models 

which have been developed to deal with the system identification problems, for example, 

NARMAX model (Billings, 2013; Chen & Billings, 1989), neural network (Chen & 

Billings, 1992; Chen, Billings & Grant, 1990; Haykin, 1994; Wang, et al., 2017), wavelet 

models (Billings & Wei, 2005a; Billings & Wei, 2005b; Zhang, 1992), Bayesian network 

(Guo, Liu & Sun, 2016), fuzzy models (Zadeh, 1965; Bustince, et al., 2016), etc. To 

establish and optimise the model, a wide range of technologies have been applied, for 

example, term selection (Chen, Billings & Luo, 1989), model selection (Billings & Wei, 
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2008), model averaging (Lukacs, Burnham & Anderson, 2010), correlation tests (Billings 

& Voon, 1983; Billings & Voon, 1986), etc.  

Although many data modeling and systems identification methods are capable to 

describe a wide range of unknown systems, the existence of strong uncertainty may still 

cause deleterious effect in the modelling process. First, the uncertainty in data collection 

(e. g. the experimental uncertainty and epistemic uncertainty) might generate incomplete 

and inaccurate information. If the number of samples are insufficient or some important 

variables are missing in the dataset, it is extremely difficult to find a suitable model. 

Second, the model structure uncertainty can directly affect the model performance. It is 

known that models are usually designed to represent some specific system features and 

there are no single model type or structure that can perfectly describe all the true systems. 

Therefore, it is essential to choose a suitable model structure to represent the system. On 

the contrary, an inappropriate model structure can reduce the model performance. Third, 

noise/disturbance is another main source of uncertainty. The noise can be brought to the 

data through many ways, for example, measurement error from physical equipment, 

external disturbances, etc. The existence of noise could lead to biased parameter 

estimation, incorrected selected model terms, etc. Based on the above reasons, novel 

methods are needed to reduce and quantify the uncertainty in the modelling process. 

For modelling problems with small size data, there usually exists strong uncertainty in 

the data because small changes in a few or even a single sample can cause a large effect 

on the accuracy of parameter estimation. Therefore, the difficulty of finding reliable 

models is often exacerbated due to the small sample size of data. Consequently, the strong 

uncertainty of the model structure might generate negative impact on the model 

performance and accuracy. Finding a robust model structure can reduce the model 

structure uncertainty. However, sometimes the existence of uncertainty is inevitable, and 

it is hard to find a robust model structure. Under the effect of uncertainty, the identified 

model usually cannot perfectly represent the system but only approximately describe the 

system behaviors. In these situations, a single model may not always work well on future 

new data, as there might be a risk on trusting and relying on a single model for future 

system behavior forecasting. In these situations, quantifying the model uncertainty is 

another way to increase the robustness of the identified model.  
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In recently years, ‘big’ data becomes a popular topic in engineering and computation 

fields. As the size and complexity of the data massively increases, the modelling of the 

complex nonlinear systems requires more efficient and powerful methods. The neural 

network and its variants are powerful regarding of model prediction performance, but 

lack capacity to provide an explainable representation. The regression models, for 

example, the commonly used NARX model, provides a transparent and parsimonious 

representation. However, sometimes the prediction performance is restricted due to the 

limitation of the simple model structure. Therefore, it is essential to find a way to deal 

with data modelling problems through machine learning approach with a simple/sparse, 

interpretable and transparent model structure. 

 

1.2 Aims and Objectives 

The aim of this thesis is to develop novel data modelling and systems identification 

methods to address the issues brought by model uncertainty. The objectives of the project 

are given as follows: 

• Develop a model structure selection method to establish a robust model structure 

for modelling problems with strong uncertainty (e. g., small size data problems). 

The developed method will be applying to some real data case studies, for 

example, space weather forecast, EEG data, etc. 

• Develop a data modelling method to analyze uncertainty. The model will hold the 

good property of the conventional NARMAX model, but also brings some new 

abilities to quantify the model uncertainty. It is also desired to develop a new 

model prediction that provides confidence intervals to describe the model 

prediction uncertainty.  

• Develop a machine learning enhanced NARMAX method. The developed method 

should be able to provide a transparent and interpretable model structure, which 

can reveal the most important model terms and systems components. The new 

model is also expected to achieve better model prediction performance than the 

conventional NARMAX model. 

• Apply the developed methods to a series of case studies, including social science, 

medical, space weather, environmental data, etc. 
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1.3 Overview and Contribution 

The research in this thesis mainly focus on the modelling, forecasting and uncertainty 

analysis issues of complex nonlinear systems. The NARMAX methodology, cloud 

models, neural network and other machine learning techniques are applied and further 

extended to overcome the negative effects of strong uncertainty in the data modelling 

problems.  The developed methods are illustrated and evaluated via a series of simulation 

and real data case studies, for example, space weather, appliance energy use, EEG, life 

satisfaction, etc.  

The thesis is organised as follows and the main contributions of the thesis are briefly 

introduced.  

 

Chapter 3: Robust model structured selection method for small size data 

modelling problems 

This contribution of chapter 3 is the development of a novel RMSS method. Based on a 

data resampling approach, combined with an orthogonal forward regression algorithm, 

the RMSS method is designed to reduce model uncertainty and improve model 

performance. This is especially useful for the following two scenarios of data based 

modelling problem: (i) modelling from multiple small sample size datasets (e.g. many 

datasets for a same system but generated under different experimental conditions; (ii) 

modelling for a non-stationary system where although the key system dynamics can be 

represented using a single model structure, different model parameters are needed to 

adaptively reflect the change of system behaviors at different times.  

Several simulation examples and case studies are presented to illustrate the advantages 

of the RMSS method on the modelling of small size data. In addition, a case study on 

EEG data is presented to show that the RMSS method also works well on data modelling 

problems with multi-datasets. In the case study, the RMSS method is employed for the 

modelling and forecasting the cortical responses to mechanical wrist perturbations. The 

results indicate that the RMSS method can improve the model performance with more 

than 90% variance accounted for (VAF) when implementing a one-step-ahead prediction 

and around 50% VAF for a three-step- ahead prediction. The case study significantly 
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improves modeling of cortical activity in the sensorimotor system in comparison to 

previous work which uses a truncated Volterra series. 

The results of this chapter are published in one journal (Gu & Wei, 2018b) and one 

conference (Gu & Wei, 2017). Another paper is currently under s review at IEEE 

Transactions on Biomedical Engineering. 

 

Chapter 4: System identification and uncertainty analysis using a new 

Cloud-NARX model  

In chapter 4, a new cloud-NARX model is developed for: a) describing model structure 

and parameter uncertainty using a new uncertainty concept ‘cloud’ model; b) generating 

a new predicted band, which provides the confidence interval of predicted AE index; c) 

providing a new way to evaluate the model reliability based on uncertainty analysis. The 

reliability of the model can be quantified by the proposed uncertainty analysis method, 

which makes the cloud-NARX model more robust than the conventional NARX model. 

The proposed cloud-NARX model is applied to the modelling and forecasting of AE 

index. The correlation coefficient between averaged prediction and observation is 0.87 

and prediction efficiency of 0.81 when benchmarked for the period of 17-21 March 2015 

and 22-26 June 2015, which is nearly identical to that produced by the best NARX model. 

More importantly, the cloud-NARX model is capable to quantify the uncertainty of model 

structure, model parameter and model prediction and generate new model prediction band 

with confidence interval. The width of the prediction band indicates the uncertainty of the 

model prediction and can be used to forecast the arrival of severe geomagnetic activity.  

The results of this chapter are published in one journal (Gu, et al., 2018). 

 

Chapter 5: Machine Learning Enhanced NARMAX Model  

The contribution of chapter 4 is developing a novel MLE-NARMAX model to improve 

the model performance and provide a transparent representation. The MLE-NARMAX 

model consists of two parts, the NARX sub-model and the neural network sub-model. 

The NARX sub-model reveals the most significant model terms and the neural network 
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can improve the overall model performance. A simulation example and two real data case 

studies are presented to illustrate the new MLE-NARMAX model. 

One case study presents the MLE-NARMAX model to predict appliance energy use 

10 minutes ahead. By taking advantages of neural network and NARMAX model, the 

proposed interpretable model cannot only provide good forecast result in terms of two 

prediction skills: correlation coefficient of 0.78 and prediction efficiency of 0.61, but also 

provide an interpretable NARMAX model structure. In another case study, the MLE-

NARMAX model is used to generate 3 hours ahead predictions for Dst index, on three 

typical test periods of strong storms. The results are compared with those produced by 

the conventional NARX and neural networks. The main feature of the MLE-NARMAX 

model are: 1) the resulting models are transparent and easy to interpret, and 2) the model 

possesses good prediction performance. 

The results of this chapter are summarized in two papers. One paper is accepted at the 

one conference and another paper will be submitted to a journal soon. 

 

1.4 List of Publications  

The present research and related works have been published in several journals and 

conferences, which are listed below: 

 

1.4.1 Journal Papers 

• Gu, Y., & Wei, H. L. (2018). A robust model structure selection method for small 

sample size and multiple datasets problems. Information Sciences, 451–452, 195–

209. 

• Gu, Y., Wei, H. L., Boynton, R. J., Walker, S. N., & Balikhin, M. A. (2019). 

System identification and data driven forecasting of AE index and prediction 

uncertainty analysis using a new cloud-NARX model. Journal of Geophysical 

Research: Space Physics, 124. 

• Gu, Y., Wei, H. L., & Balikhin, M. A. (2017) Nonlinear predictive model selection 

and model averaging using information criteria. Systems Science & Control 

Engineering, 6:1, 319-328. 
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• Gu, Y., & Wei, H. L. (2018). Significant indicators and determinants of happiness: 

Evidence from a UK survey and revealed by a data-driven system modelling 

approach. Social Sciences, 7(4). 

• Akinola, T. E., Oko, E., Gu, Y., Wei, H. L., Wang, M. (2019) Non-linear system 

identification of solvent-based post-combustion CO2 capture process. Fuel. 239. 

pp. 1213-1223. 

 

1.4.2 Conference Papers 

• Gu, Y., Wei, H. L., Balikhin, M. A., Boynton, R. J. & Walker, S. N (2019). 

Machine Learning Enhanced NARMAX Model for Dst Index Forecasting. In 

ICAC 2019 IEEE International Conference on Automation and Computing. 

Accepted.  

• Gu, Y., Wei, H. L., & Balikhin, M. A. (2017). Nonlinear dynamic predictive 

model selection and interference using information criteria. In ICAC 2017 - 2017 

23rd IEEE International Conference on Automation and Computing: Addressing 

Global Challenges through Automation and Computing. 

http://doi.org/10.23919/IConAC.2017.8082005 

• Gu, Y., Wei, H. L., Boynton, R. J., Walker, S. N., & Balikhin, M. A. (2017). 

Prediction of Kp index using NARMAX models with a robust model structure 

selection method. In Proceedings of the 9th International Conference on 

Electronics, Computers and Artificial Intelligence, Vol. 2017–January, pp. 1–6. 

• Gu, Y., & Wei, H. L. (2016). Analysis of the relationship between lifestyle and 

life satisfaction using transparent and nonlinear parametric models. In 2016 22nd 

International Conference on Automation and Computing. 

 

1.4.3 Poster Presentations 

• Gu, Y., Wei, H. L., Boynton, R. J., Walker, S. N., & Balikhin, M. A. (2017). 

Nonlinear predictive model identification for Kp index forecasting. 14th 

Europeam Space Weather Week. 
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• Gu, Y., & Wei, H. L. (2016). K-fold voting method with normal cloud 

transformation - assessment and analysis of model uncertainties. In 2016 ACSE 
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1.4.4 Submitted Papers 

• Gu, Y., Yuan, Y., Dewald, J. P. A., van del Helm, F. C. T. & Wei, H. L. Nonlinear 

Modelling of Cortical Response to Mechanical Wrist Perturbation using the 
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23 

 

Chapter 2  

 

AN OVERVIEW OF SYSTEMS 

IDENTIFICATION, DATA MODELLING 

AND UNCERTAINTY ANALYSIS 

 

 

2.1 Introduction 

This chapter provides an in-depth review of the system identification and uncertainty 

analysis approaches, focusing on the NARMAX model, orthogonal forward regression 

(OFR) algorithm, cloud model, etc.  In addition, a brief discussion of model selection 

approaches, model validation methods and other commonly used technologies in data 

modelling process are presented.  

 

2.2 The NARMAX Method 

The general procedure of data modelling and systems identification is shown in figure 

2.1. Among the many data modelling methods, the NARMAX model is one of the most 

commonly used model types for many real-world applications including engineering 

(Zhang, Zhu, & Gu, 2017), ecological (Marshall et al., 2016), environmental (Bigg et al., 

2014), geophysical (Balikhin et al., 2011; Boynton, Balikhin, Billings, Wei, & 

Ganushkina, 2011), medical (Billings, Wei, Thomas, LMLE-NARMAXane, & Hope-Gill, 

2013), and neurophysiological sciences (Li, Wei, Billings, & Sarrigiannis, 2016). 
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This section presents brief reviews of NARMAX and NARX model, along with the 

associated term selection, parameter estimation, model selection and model validation 

methods.  

 

Figure 2.1 The general procedure of system identification 

 

2.2.1 The NARMAX Model and the NARX Model 

The nonlinear autoregressive moving average with exogenous inputs (NARMAX) model 

(Chen & Billings, 1992; Billings, 2013) was developed for black-box system 

identification where the true model structure is assumed to be unknown. The general 

NARMAX model structure is: 

𝑦(𝑡) = 𝐹[𝑦(𝑡 − 1),… , 𝑦(𝑡 − 𝑛𝑦), 𝑢(𝑡 − 1),… , 𝑢(𝑡 − 𝑛𝑢), 𝑒(𝑡 − 1), … , 𝑒(𝑡 − 𝑛𝑒)] +

               𝑒(𝑡)                                                                                                             (2.1) 

where 𝑦(𝑡) and 𝑢(𝑡) are systems output and input signals; 𝑒(𝑡) is a noise sequence with 

zero-mean and finite variance. 𝑛𝑦, 𝑛𝑢, and 𝑛𝑒  are the maximum lags for the system 

output, input and noise. 𝐹[∙] is some nonlinear function. Many of the traditional linear 
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and nonlinear model type, for example, AR, ARM and NARX model can be treated as 

special cases of NARMAX model. The commonly-used NARX model can be described 

as:  

𝑦(𝑡) = 𝐹[𝑦(𝑡 − 1),… , 𝑦(𝑡 − 𝑛𝑦), 𝑢(𝑡 − 1),… , 𝑢(𝑡 − 𝑛𝑢)] + 𝑒(𝑡)           (2.2) 

There are several advantages of NARX and NARMAX model: first, the model 

structure can be determined in a stepwise way by selecting the significant model terms 

by an orthogonal forward regression (OFR) algorithm (Chen, Billings & Luo, 1989); 

second, the identification procedure is not time consuming and easy to implement; third, 

the polynomial form of the model provides a transparent and parsimonious representation 

of the system which is easy to understand and use. These advantages can be realized using 

an OFR method, which can effectively and efficiently select model terms, from a huge 

number of candidate model terms. 

 

2.2.2 Term Selection with Orthogonal Forward Regression 

Note that a comprehensive expansion or representation of the function 𝐹[∙] in (2.1) might 

be very complex. This is because that a candidate full model which includes all the 

available or possible terms (both linear and cross-product terms) may involve a huge 

number of unknown parameters. However, in many situations, the fact is that only a small 

number of model terms are effective in describing the system behaviours and many of the 

candidate model terms are redundant. Therefore, the model structure of (2.1) is usually 

overfitting and contains too much unnecessary model components.  It is essential to pick 

out these effective model terms from the full candidate model terms and uses these terms 

to establish a model that is simpler and more parsimonious. The term selection process 

can be realized by an orthogonal forward regression (OFR) algorithm (Chen, Billings & 

Luo, 1989). 

The classic OFR algorithm, firstly introduced in (Chen, Billings & Luo, 1989), was 

originally developed as a subset selection method for nonlinear modelling problems 

where the nonlinearity is unknown in advance and the desirable model terms cannot be 

specified. The OFR method was proposed in solving such ‘black-box’ system 

identification problems. The basic idea behind this method is to use an error reduction 

ratio (ERR) index, to measure the significance of candidate model terms and generate a 
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rank according to the contribution made by each of the model terms to explaining the 

variation of the response variable. At each step, one model term can be selected from the 

candidate sets according to their ERR ranking. After each term is selected, it is removed 

from the bases and the bases are then transformed to new orthogonalized bases for the 

next terms selection procedure.   

The general process of the OFR algorithm is presented as follow. First, the polynomial 

NARX model can be written as the following linear-in-the-parameters form:  

𝑦(𝑡) = ∑ 𝜃𝑚𝜑𝑚(𝑡)
𝑀
𝑚=1 + 𝑒(𝑡)                                  (2.3) 

where 𝜑𝑚(𝑡) = 𝜑𝑚(𝜗(𝑡))  are the model terms generated from the regressor vector 

𝜗(𝑡) = [𝑦(𝑡 − 1),… , 𝑦(𝑡 − 𝑛𝑦), 𝑢(𝑡 − 1),… , 𝑢(𝑡 − 𝑛𝑢)] 
𝑇 (𝑇  indicates the transpose of 

the vector), 𝜃𝑚  are the unknown parameters and 𝑀 is the number of candidate model 

terms.  

The OFR algorithm is briefly introduced as follows (Chen, Billings & Luo, 1989). 

First, the regression model and prediction error can be written in a compact matrix form:  

𝑦 =  Φ  𝜽+  𝜀                                                        (2.4) 

where  

𝑦 = [

𝑦(1)

𝑦(2)
⋮

𝑦(𝑁)

]                                                     (2.5) 

𝜃 = [

𝜃1
𝜃2
⋮
𝜃𝑀

]                                                       (2.6) 

   𝜀 = [

𝜀(1)

𝜀(2)
⋮

𝜀(𝑁)

]                                                       (2.7) 

Φ = [𝜑1, 𝜑2, … , 𝜑𝑀]                                            (2.8) 

𝜑𝑖 = [

𝜑𝑖(1)
𝜑𝑖(2)
⋮

𝜑𝑖(𝑁)

]          𝑖 = 1, 2, … . , 𝑀                    (2.9) 
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where 𝑁  is the number of observations, 𝑀  is the number of candidate model terms, 

{𝜃1, 𝜃2, … , 𝜃𝑀} are the unknown model parameters, {𝜑1, 𝜑2, … , 𝜑𝑀} are the associated 

candidate basis vectors generated from the candidate model terms {𝑢1, 𝑢2…𝑢𝑚}. 

    Let 𝐷 = { 𝜑𝑖: 1 ≤ 𝑖 ≤ 𝑀} be the initial dictionary of all the candidate model terms, the 

objective of OFR algorithm is to select a number of significant model terms to form a 

subset, which can be described as 𝐷𝑛 = { 𝜑𝑙1 , … ,  𝜑𝑙𝑛}. The output can then be described 

with the selected terms as follows: 

𝑦 = ∑ 𝜃𝑙𝑖  𝜑𝑙𝑖
𝑛
𝑖=1 + 𝑒                                               (2.10) 

    At first step of the term selection, the ERR index of each candidate model term of the 

initial dictionary can be calculated by:  

𝐸𝑅𝑅(1)[𝑖] =
(𝑟0

𝑇 𝜑𝑖)
2

(𝑟0𝑇𝑟0)(𝜑𝑖
𝑇 𝜑𝑖)

                                     (2.11) 

where 𝑖 = 1, 2, … ,𝑀.  The first selected model term is the candidate model term with 

highest ERR value, as:  

𝑙1 = 𝑎𝑟𝑔 𝑚𝑎𝑥
1≤𝑖≤𝑀

{𝐸𝑅𝑅(1)[𝑖]}                                  (2.12) 

    The 1st selected model term is 𝜑𝑙1, and the its associated orthogonal variable can be 

defined as 𝑞1 = 𝜑𝑙1. The selected term 𝜑𝑙1is then removed from the initial dictionary and 

the dictionary 𝐷 is then reduced to a sub-dictionary 𝐷𝑀−1 which consists of 𝑀 − 1 model 

candidates. The residual sum of squares can be calculated as: 

‖𝑟1‖
2 = ‖𝑦‖2 −

(𝑟0
𝑇𝑞1)

2

𝑞1
𝑇𝑞1

                                        (2.13) 

    At step 𝑠 (𝑠 ≥ 2) , the 𝑀− 𝑠 + 1  bases are first transformed into new group of 

orthogonalised base [𝑞1
(𝑠), 𝑞2

(𝑠), … , 𝑞𝑀−𝑠+1
(𝑠) ] with an orthogonal transformation as below: 

𝑞𝑗
(𝑠)
= 𝛿𝑗 − ∑

𝜑j
Tqr

qr
Tqr
qr

s−1
r=1                                         (2.14) 

where 𝑞𝑟(𝑟 = 1, 2, … , 𝑠 − 1)  are orthogonal vectors,  𝜑𝑗(𝑗 = 1, 2, … ,𝑀 − 𝑠 + 1 ) are 

the basis of unselected model terms of subset 𝐷𝑀−𝑠+1and 𝑞𝑗
(𝑠)
(𝑗 = 1, 2, … ,𝑀 − 𝑠 + 1)  

are the new orthogonalised bases. The rest of the model terms can then be identified step 

by step using the ERR index of orthogonalised subsets 𝐷𝑀−𝑠+1:  
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𝐸𝑅𝑅(𝑠)[𝑗] =
(𝑦𝑇𝑞𝑗

(𝑠)
)2

(𝑦𝑇𝑦)(𝑞
𝑗
(𝑠)

 

𝑇
𝑞
𝑗
(𝑠)
)
                                     (2.15) 

𝑙𝑠 = 𝑎𝑟𝑔 𝑚𝑎𝑥
1≤𝑗≤𝑀−𝑠+1

{𝐸𝑅𝑅(1)[𝑗]}                                (2.16) 

    The 𝑠-th significant model term of the subset is 𝜑𝑙𝑠 , and its associated orthogonal 

variable can be defined as 𝑞𝑠 = 𝑞
(𝑠)
𝑙𝑠

. The residual sum of squares can be updated by 

(Wei & Billings, 2006):  

‖𝑟𝑠‖
2 = ‖𝑟𝑠−1‖

2 −
(𝑟𝑠−1

𝑇𝑞𝑠)
2

𝑞𝑠
𝑇𝑞𝑠

                                       (2.17) 

    Recursively, the model terms of the subset  { 𝜑𝑙1 , … ,  𝜑𝑙𝑛} can be identified step by step, 

each at one step. By summing (2.17) for 𝑠 from 1 to 𝑛, yields:  

‖𝑟𝑛‖
2 = ‖𝑦‖2 − ∑  𝑛

𝑠=1
(𝑟𝑠−1

𝑇𝑞𝑠)
2

𝑞𝑠
𝑇𝑞𝑠

                                 (2.18) 

    The ‖𝑟𝑛‖
2 is called residual sum of squares, or sum squared error of the final model. 

The mean square error (MSE) of the model can be calculated as ‖𝑟𝑛‖
2/𝑛 , which can be 

used to form model selection criteria such as AIC, BIC and APRESS.  

    Initially, the OFR algorithm is used with the ERR metric. However, the ERR only 

measures the linear dependencies. Some new metrics have been developed to measure 

the nonlinear dependencies, for example, the mutual information. The mutual information 

can be defined as:  

𝐼(𝑥, 𝑦) = ∑  ∑  𝑦∈𝛾𝑥∈𝜒 𝑝(𝑥, 𝑦) ln  (
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)
)                             (2.19) 

where 𝑥 and 𝑦 are two random discrete variables with alphabet 𝜒 and 𝛾, and with a joint 

probability mass function 𝑝(𝑥, 𝑦) and marginal probability mass function 𝑝(𝑥) and 𝑝(𝑦) 

(Wei & Billings, 2008a). Mutual information measures the amount of information that 

one variable shares with another and can be incorporated into the OFR algorithm in the 

same way as the ERR metric. 

    In recent years, several variants have been introduced to improve the performance of 

NARX model and OFR algorithm, for example, the wavelet NARX model (Billings & 

Wei, 2005a; Wei & Billings, 2005b; Wei & Billings, 2004a; Wei & Billings, 2004b), the 
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iterative search algorithm (Wei & Billings, 2008a), the common/robust model structure 

selection method (Li et al., 2016; Gu & Wei, 2018a), etc. 

 

2.2.3 Parameter Estimation             

Assume that a total of 𝑛  model terms are selected. Through an orthogonalization 

procedure, a unity upper triangular matrix 𝐴 , along with auxiliary parameter vectors 𝑔 =

[𝑔1
 , 𝑔2

 , … , 𝑔𝑛
 ], can be calculated as:  

𝐴 = [

𝑎11
 𝑎12

 

0 𝑎22
 ⋯

𝑎1𝑛
 

𝑎2𝑛
 

⋮ ⋱ ⋮
0 0 ⋯ 𝑎𝑛𝑛

 

]                                       (2.20) 

𝑎11
 = 𝑎22

 = ⋯ = 𝑎𝑛𝑛
(𝑘) = 1                                       (2.21) 

𝑎𝑟𝑗
 =

(𝑞𝑟
 )𝑇𝜑𝑙𝑗

 

(𝑞𝑟
 )𝑇𝑞𝑟 

    (𝑟 = 1, 2, … , 𝑗 − 1 𝑎𝑛𝑑 𝑗 = 2, 3, … 𝑛)                  (2.22) 

𝑔𝑗
 =

(𝑦 )𝑇𝑞𝑗
 

(𝑞𝑗
 )𝑇𝑞𝑗

  (𝑗 = 1, 2, … , 𝑛)                               (2.23) 

    Then the model parameter vector 𝜃 
 = [𝜃𝑙1

 , 𝜃𝑙2
 , … , 𝜃𝑙𝑛

 ], can be estimated from the 

triangular equations  𝐴 𝜃 
 = 𝑔 .  

 

2.2.4 Model Selection 

Among various model selection methods, Akaike information criterion (AIC) and 

Bayesian information criterion (BIC) are two most popular measures. Since AIC was 

firstly proposed in 1974 (Akaike, 1974), many variations of AIC have been developed for 

model selection. For example, the second-order Akaike information criterion (AICc) was 

developed for small sample size data modelling problems in 1989 (Hurvich & Tsai, 1989; 

Brockwell & Davis, 2013); the AIC was designed to approximately estimate the 

Kullback-Leiber information of models in 1998 (Akaike, 1998); also, the delta AIC and 

the Akaike weights were introduced to measure how much better the best model is when 

compared with the other models. In the model selection process, the AIC, delta AIC and 

AIC weights are calculated for each candidate model. Usually, the ‘best’ model is chosen 

to be the model with the smallest AIC; the delta AIC calculates the difference between 
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the AIC of each model and the smallest AIC of the ‘best’ model (Symonds & Moussalli, 

2011); the AIC weight is ranged from 0 to 1, which is an analogous to the probability that 

a candidate model is the best choice (Buckland, Burnham & Augustin, 1997). Drawn on 

these theories, some model averaging approaches were also developed, for example, the 

natural averaging method (Buckland, Burnham & Augustin, 1997) and full model 

averaging method (Lukacs, Burnham & Anderson, 2010). Over the past few decades, AIC 

and its variations have been used to solve a wide range of model selection problems 

including those in ecology (Johnson & Omland, 2004) and phylogenetics (Posada & 

Buckley, 2004), among others. Both AIC and BIC have been widely applied on model 

selection problems. However, there still exists large room for improvement. For example, 

it lacks evidence that the two criteria can also work well for complex nonlinear system 

identification problems. AIC and BIC can be calculated as (Akaike, 1974; Gchwarz, 

1978):   

 𝐴𝐼𝐶(𝑘) = −2 𝑙𝑛(𝐿) + 2𝑘                                                  (2.24) 

𝐵𝐼𝐶(𝑘) = −2 𝑙𝑛(𝐿) + 𝑘 𝑙𝑛(𝑁)                                             (2.25) 

where 𝑘 is the number of fitted parameters in the model, 𝐿 is the maximum likelihood 

estimate for the model and 𝑁  is the sample size. For least square based regression 

analysis, AIC and BIC can be directly calculated by using MSE, as (Hurvich & Tsai, 

1989):  

𝐴𝐼𝐶(𝑘) = 𝑁 𝑙𝑛(𝑀𝑆𝐸(𝑘)) + 2𝑘                                            (2.26) 

𝐵𝐼𝐶(𝑘) = 𝑁 𝑙𝑛(𝑀𝑆𝐸(𝑘)) + 𝑘 𝑙𝑛(𝑁)                                    (2.27) 

Equations (2.26) and (2.27) are and their variants have been applied for nonlinear and 

generalized linear model identification (see for example Blake and Kapetanios, 2003; Liu 

et al., 2007; Wei et al., 2007; Egrioglu et al., 2008).  

    Although AIC and BIC have been widely applied on model selection problems. 

However, there still exists large room for improvement. For example, it lacks evidence 

that the two criteria can also work well for complex nonlinear system identification 

problems. Although AIC and BIC can usually produce good model selection result based 

on the assumption that the ‘true’ model is among the candidate models, they may fail to 

select the best model when the system is very complex and neither of the candidate 

models can sufficiently represent the data. These situations often occur when the model 
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structure or some prior information is unknown. To solve the model selection problem of 

nonlinear system identification, the cross-validation (CV) based criterion (Stone, 1974) 

and its two variations, the Leave-One-Out (LOO), also called Predicted Residuals Sum 

of Squares (PRESS) (Allen, 1974; Hong, Sharkey & Warwick, 2003; Chen et al., 2004), 

and generalised cross-validation (GCV) (Golub, Health & Wahba, 1979), were developed. 

Most recently, a modified generalised cross-validation criterion, also known as adjustable 

predicted error sum of squares (APRESS), was also proposed for nonlinear systems 

identification (Billings & Wei, 2008).  

Table 2.1 The advantage and disadvantage of AIC, BIC and APRESS  

Criterion Advantage Limitation 

AIC 

• AIC minimizes useful risk 

function when true model is 

not a candidate and the model 

is complex. 

• AIC-based model performs 

not well for out-of-sample 

data. 

• AIC-based model is often 

more complicated  

BIC 

• BIC is consistent in selecting 

true model when model is a 

candidate. 

• BIC-based model has better 

out-of-sample performance 

• BIC is not consistent when 

the model is too complex or 

the uncertainty is too strong 

APRESS 

• APRESS is easy to implement 

in the OFR algorithm for 

nonlinear dynamic modelling. 

• APRESS have been applied 

for nonlinear model selection 

of many applications.  

• APRESS has a tuning 

parameter so that it needs a 

figure to determine the 

optimal turning point 

 

The APRESS is given as (Billings & Wei, 2008):   

𝐴𝑃𝑅𝐸𝑆𝑆(𝑛) = (
𝑁

𝑁−𝜆𝑛
)
2

𝑀𝑆𝐸(𝑛)                                   (2.28) 
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where 𝑁 is the number of observations, 𝑛 is the number of selected model terms, 𝜆 is a 

small positive number and 𝑀𝑆𝐸(𝑛) is the mean square error. The optimal number of 

model terms is often chosen as:  

𝑛𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = 𝑎𝑟𝑔 𝑚𝑖𝑛
1≤𝑛≤𝑀

{𝐴𝑃𝑅𝐸𝑆𝑆(𝑛)}                                  (2.29) 

From the investigation of the literature, a summary of the reported advantages and 

limitations of the AIC/BIC/APRESS is given in Table 2.1. It can be noted that each of the 

three criteria contains two components: the first component measures the prediction error, 

which indicates how well the model fits the data. The second component is the cost 

function, which is used to penalize the model when more model terms (also called 

parameters in statistics) are added to the model. Therefore, there is a trade-off between 

the better fit and the model complexity. In general, the value of the criterion decreases 

when a first few model terms are included in the model, because of the reduction of 

prediction error. When an enough number of model terms are included, the penalty 

component becomes significant, leading to increased value. Thus, the model with a 

minimum value is then treated as an optimal choice with both good prediction 

performance as well as parsimonious representation of the system.  

 

2.2.6 Correlation Test 

In system identification procedure, model validation is a fundamental part to examine 

whether the model represent the system correctly. In fact, for many real data modelling 

problems, the existence of uncertainty might lead to biased estimation. Therefore, model 

validation is important to evaluate the efficiency and accuracy of the identified model.  

    A set of statistical correlation tests were developed for nonlinear model testing and 

validation (Billings & Voon, 1983; Billings & Voon, 1986; Zhang, Zhu & Longden, 

2007). The model residual will be unpredictable if and only if these following conditions 

are satisfied (Billings & Voon, 1986): 

{
 
 

 
 
𝜙𝜉𝜉(𝜏) = 𝛿(𝜏), ∀𝜏

𝜙𝑢𝜉(𝜏) = 0, ∀𝜏

𝜙𝜉(𝜉𝑢)(𝜏) = 0, 𝜏 ≥ 0

𝜙(𝑢2)′𝜉(𝜏) = 0, ∀𝜏

𝜙(𝑢2)′𝜉2(𝜏) = 0, ∀𝜏

                                        (2.30) 
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where 𝜉(𝑡) is the model residual of the OSA model prediction, (𝑢2)′𝜉 = 𝑢2(𝑡) − 𝑢2̅̅ ̅  and  

(𝜉𝑢)(𝑡) = 𝜉(𝑡 + 1)𝑢(𝑡 + 1), and the cross correlation function 𝜙 between two signials 

is defined as:  

𝜙𝑥𝑦(𝜏) =
∑ [𝑥(𝑡)−�̅�][𝑦(𝑡+𝜏)−�̅�]𝑁−𝜏
𝑡=1

√∑ [𝑥(𝑡)−�̅�]2𝑁
𝑡=1 ∑ [𝑦(𝑡)−�̅�]2𝑁

𝑡=1

                                  (2.31) 

Other approaches such as chi-squared test can also be used for model validation. These 

validations tests are compatible with many other model types including Volterra series, 

wavelet models, etc (Billings, 2013; Wei & Billings 2004a). 

 

2.2.7 Model Prediction 

To evaluate the performance of model prediction, the one step ahead (OSA) and model 

predicted output (MPO) prediction are generated and compared to the system observation. 

Consider a simple linear model:  

𝑦(𝑡) = 𝑎𝑦(𝑡 − 1) + 𝑏𝑢(𝑡 − 1) + 𝑐𝑢(𝑡 − 2) + 𝑒(𝑡)                  (2.32) 

Assume that a number of observations for the system input 𝑢(𝑡) and output 𝑦(𝑡) are 

available, the OSA can be calculated as:  

{

�̂�(3) = 𝑎𝑦(2) + 𝑏𝑢(2) + 𝑐𝑢(1)

�̂�(4) = 𝑎𝑦(3) + 𝑏𝑢(3) + 𝑐𝑢(2)
…

�̂�(𝑘) = 𝑎𝑦(𝑡 − 1) + 𝑏𝑢(𝑡 − 2) + 𝑐𝑢(𝑡 − 2)

                       (2.33) 

Different from OSA prediction, the MPO is calculated from the identified model driven 

only by the given input. The MPO is defined as:  

{
 
 

 
 

�̂�(1) = 𝑦(1)

�̂�(2) = 𝑦(2)

�̂�(3) = 𝑎�̂�(2) + 𝑏𝑢(2) + 𝑐𝑢(1)

�̂�(4) = 𝑎�̂�(3) + 𝑏𝑢(3) + 𝑐𝑢(2)
…

�̂�(𝑘) = 𝑎�̂�(𝑡 − 1) + 𝑏𝑢(𝑡 − 2) + 𝑐𝑢(𝑡 − 2)

                     (2.34) 

   The problem with the OSA prediction is that the measured output is used at each step 

of the calculation, so that the errors are suppressed. As the MPO uses the predicted output 

at each step, it is usually used to evaluate the long-term prediction of the model. Therefore, 

a model with good OSA prediction can still be insufficient, biased and unstable. 
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Sometimes it is essential to use MPO to validate the model, especially when the long-

term prediction is desired. 

    Commonly used statistics include correlation coefficient, prediction efficiency (PE), 

absolute fraction of variance (𝑅2), prediction efficiency (PE), normalized root-mean-

square error (NRMSE), root mean square error (RMSE), mean square error (MSE) and 

mean absolute deviation (MAD). Some of the statistics can be calculated as follows:  

𝑅2 = 1 − [∑ (𝑦�̂� − 𝑦𝑖) 
2𝑁

𝑖=1 /∑ (𝑦𝑖 − �̅�) 
2𝑁

𝑖=1 ]                           (2.35) 

𝑀𝑆𝐸 = ∑ (𝑦�̂� − 𝑦𝑖) 
2𝑁

𝑖=1 /𝑁                                        (2.36) 

𝑅𝑀𝑆𝐸 = [∑ (𝑦�̂� − 𝑦𝑖) 
2𝑁

𝑖=1 /𝑁] 1/2                                    (2.37) 

𝑀𝐴𝐷 = ∑ |𝑦�̂� − 𝑦𝑖|
𝑁
𝑖=1 /𝑁                                       (2.38) 

𝑃𝐸 = 1 −
𝜎𝑒𝑟𝑟𝑜𝑟
2

𝜎𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
2                                               (2.39) 

where 𝑦�̂�  is the model prediction, 𝑦𝑖  is the observation, 𝑁  is the number of samples; 

𝜎𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
2  is the variance of the observation and 𝜎𝑒𝑟𝑟𝑜𝑟

2  is the variance of the error between 

the model prediction and observation.  

 

2.2.8 Hypothesis Test 

The hypothesis testing can be used to detect the spurious model terms and refine the 

resultant model when the input is poorly designed (Wei & Billings, 2008a). The 

hypothesis for testing the significance of the regression coefficient, for instance 𝜃𝑗 in the 

model (2.10), is:  

𝐻0: 𝜃𝑗 = 0             𝐻1: 𝜃𝑗 ≠ 0                                        (2.40) 

    The corresponding regressor 𝑥𝑗 can be removed from the model if there is no sufficient 

reason to reject the null hypothesis 𝐻0: 𝜃𝑗 = 0. The test statistic for the hypothesis is:  

𝑡0 =
|𝜃�̂�|

𝑠𝑒(𝜃�̂�)
                                                      (2.41) 

where 𝑠𝑒(𝜃�̂�)  is the standard error of the regression coefficient 𝜃𝑗 . The details of 

implementing the hypothesis testing in the system identification procedure is summarised 

in (Wei & Billings, 2008a). 
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2.2.9 Extended Least Square Method  

Note that the noise signal 𝑒(𝑡) in Eq. (2.2) may be a correlated or colored noise sequence, 

which is generally unobserved and is often replaced by the model residual sequence. Let 

𝑓(∙) represent an estimator for the model 𝑓(∙), the model residuals 𝜀(𝑡) can then be 

estimated as 

𝜀(𝑡) = 𝑦(𝑡) − �̂�(𝑡) = 𝑦(𝑡) − 𝑓[𝑦(𝑡 − 1),… , 𝑦(𝑡 − 𝑛𝑦), 𝑥1(𝑡)…, 

𝑥1(𝑡 − 𝑛𝑢), 𝑥2(𝑡), … , 𝑥2(𝑡 − 𝑛𝑢) … , 𝑥𝑀(𝑡), … , 𝑥𝑀(𝑡 − 𝑛𝑢)]               (2.42) 

To reduce the effect of the noise, the algorithm includes an ELS-type procedure to 

compute the prediction errors 𝜀(𝑡) and use the value of 𝜀(∙) from the previous iteration 

so that noise model terms are included in model 𝑓(∙) (Billings, 2013). With the extra 

moving average components, the NARX model can be further developed to the 

NARMAX model, which can be described as:  

𝑦 = 𝑓[𝑦(𝑡 − 1),… , 𝑦(𝑡 − 𝑛𝑦), 𝑥1(𝑡) … , 𝑥1(𝑡 − 𝑛𝑢), 𝑥2(𝑡), … , 𝑥2(𝑡 −

𝑛𝑢) … , 𝑥𝑀(𝑡), … , 𝑥𝑀(𝑡 − 𝑛𝑢) + 𝑓
[𝑝𝑛][[𝑦(𝑡 − 1),… , 𝑦(𝑡 − 𝑛𝑦), 𝑥1(𝑡) … , 𝑥1(𝑡 −

𝑛𝑢), 𝑥2(𝑡), … , 𝑥2(𝑡 − 𝑛𝑢) … , 𝑥𝑀(𝑡), … , 𝑥𝑀(𝑡 − 𝑛𝑢), 𝜀(𝑡 − 1), … , 𝜀(𝑡 − 𝑛𝑒)] +

                    𝑓𝑛[𝜀(𝑡 − 1), … , 𝜀(𝑡 − 𝑛𝑒)]                                                                      (2.43) 

where 𝑓(∙) is the NARX sub-model identified in first step, 𝑓[𝑝𝑛](∙) is the process input-

output noise-related sub-model and 𝑓[𝑛](∙) is the purely noise process sub-model. In some 

situations, it may be possible to use just a linear noise model where 

𝑓[𝑛](∙) = 𝛼1𝜀(𝑡 − 1) + ⋯+ 𝛼𝑛𝑒𝜀(𝑡 − 𝑛𝑒)                               (2.44)    

    If this is insufficient, then 𝜀(𝑡 − 𝑝) for  𝑝 = 1,2, … 𝑛𝑒  can be included in model, where 

the basic regressor vector is defined as 𝑦(𝑡 − 1),… , 𝑦(𝑡 − 𝑛𝑦), 𝑢(𝑡 − 1), … , 𝑢(𝑡 −

𝑛𝑢), 𝜀(𝑡 − 1), … , 𝜀(𝑡 − 𝑛𝑒).  

 

2.3 Review of Data Modelling and Data Mining Methods 

Many techniques have been used for time series forecasting and modelling problems, for 

example, neural network (Haykin, 1994; Wang et al., 2017; Chen & Billings, 1992; Chen 

& Billings, 1990), wavelet models (Billings & Wei, 2005; Wei & Billings, 2004; Zhang 
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& Benvenise, 1992), etc. This section presents brief review on some commonly-used data 

modelling and data analysis methods.  

 

2.3.1 LASSO Method and Regularization Methods 

LASSO is a regression analysis method with variable selection and regularization. It was 

originally proposed as one of the least square methods. Assume that 𝑦(𝑡) is the output 

variable and 𝑥𝑗(𝑡)  (𝑗 = 1,2, … ,𝑀) are the input variables. The objective of lasso is to 

solve 

min
𝛽0,𝛽 

 (
1

𝑁
∑ (𝑦(𝑡) − 𝛽0 − ∑ 𝛽𝑗𝑥𝑗(𝑡)

𝑀
𝑗=1 )

2𝑁
𝑡=1 )    subject to ∑ |𝛽𝑗| ≤ 𝑧

𝑀
𝑗=1          (2.45) 

where 𝑧 is a prespecified parameter that determines the amount of the regularisation. The 

estimator of the LASSO method can be considered as (Tibshirani, 1996):  

�̂�𝑗 = �̂�𝑗
𝑂𝐿𝑆
max (0, 1 −

𝑁𝜆

|�̂�𝑗
𝑂𝐿𝑆

|
)                                  (2.46) 

where �̂�𝑗
𝑂𝐿𝑆
= (𝑋𝑇𝑋) −1𝑋𝑇𝑦 is the least square estimate. The formula (2.46) is a sub 

gradient method that translates values toward zero instead of setting smaller values to 

zero and leave large values unchanged. This can be compared to ridge regression (Hoerl 

& Kennard, 1970), where the estimator is:  

�̂�𝑗 = (1 + 𝑁𝜆) 
−1�̂�𝑗

𝑂𝐿𝑆
                                             (2.47) 

    The ridge regression shrinks all the values by the factor (1 + 𝑁𝜆) −1. Another 

method is the best subset selection, which is defined as:  

�̂�𝑗 = �̂�𝑗
𝑂𝐿𝑆
𝐼(|�̂�𝑗

𝑂𝐿𝑆
| > √𝑁𝜆)                                       (2.48) 

where the indicator function 𝐼 is 1 if its argument is true and 0 otherwise. It can be seen 

that the LASSO method shrink all the values but also set some of the values to 0. In 

addition, some variants of the LASSO method have been developed, for example, elastic 

net (Zhou & Hastie, 2005), group LASSO (Yuan & Lin, 2006), fused LASSO (Tibshirani, 

et al., 2005), etc. 

However, LASSO suffers from some weakness. For example, when the number of 

variables 𝑀 is much large than the number of samples 𝑁, lasso is only capable to select 
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𝑀 features, due to the nature of convex optimization problem. In addition, some authors 

have found that LASSO is not able to select a group of correlated terms (Hong & Chen, 

2012). 

 

2.3.2 Wavelet NARX Model 

Wavelet are usually chosen as the function components in additive models, because of its 

approximation capabilities (Wei, Billings & Balikhin, 2002). The additive models uses 

an ordinary linear-in-the-parameters form which can be solved by the least square 

algorithms. From the wavelet theory (Baford, Fazzio & Smith, 1992), any function can 

be expressed as the wavelet multiresolution expansions:  

𝑔(𝑥) = ∑ 𝛼𝑗0,𝑘𝑘 𝜚𝑗0,𝑘 + ∑  𝑗≥𝑗0 ∑ 𝛽𝑗,𝑘𝑘 𝜛𝑗,𝑘(𝑥)                       (2.49) 

where 𝜚 is the mother wavelet and 𝜛 is the associated scale function,  𝛼𝑗0,𝑘 and 𝛽𝑗,𝑘 are 

the wavelet decomposition coefficients. Although there are many mother functions that 

can be used in the decomposition, few of them are suitable for nonlinear system 

identification. The limitation is that most existing wavelet networks are limited to 

handling problems in low-dimensional space due to the curse of dimensionality. Later, 

the wavelet based NARX model and wavelet networks were developed for the 

identification of nonlinear input-out systems (Wei & Billings, 2004; Billings & Wei, 

2005a; Billings & Wei, 2005b).  The new models uses sub-models to approximate the 

nonlinear function, which can be defined as:  

𝐹[𝑥(𝑘)] = 𝑐0 + 𝐹1[𝑥(𝑘)] + 𝐹2[𝑥(𝑘)] + ⋯+ 𝐹𝑛[𝑥(𝑘)]            (2.50) 

where 𝑐0 is constant and the individual wavelet sub-models 𝐹[∙] are of the form:  

𝐹1[𝑥(𝑘)] = ∑ 𝑓𝑖[𝑥𝑖(𝑘)]
𝑛
𝑖=1                                                 (2.51) 

𝐹2[𝑥(𝑘)] = ∑  𝑛
𝑖=1 ∑ 𝑓𝑖𝑗[𝑥𝑖(𝑘), 𝑥𝑗(𝑘)]

𝑛
𝑗=𝑖+1                               (2.52) 

𝐹𝑀[𝑥(𝑘)] = 𝑓12…𝑀[𝑥1(𝑘), 𝑥2(𝑘), … , 𝑥𝑀(𝑘)]                                 (2.53) 

The function components 𝑓  can be wavelet networks or multi-resolution wavelet 

decomposition (Billings & Wei, 2005b). The new model holds the attractive features 

possessed by the wavelets and can be used in nonlinear dynamical systems identification. 

Wavelet is effective to describe data at different scales with a wide range of functions and 
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can be tuned or refined without interfering with the rest of the model. Thus, a complex 

nonlinear system can be well represented using only a limited number of basis functions. 

 

2.3.3 State-space Model 

Another commonly used model is the state-space model. The advantage of state-space 

model is that it provides a clear structure of model variables that can represent the physical 

variables in the real world, in both static and dynamic, linear and nonlinear structure. The 

general form of discrete-time state-space model for single-input, single-output systems 

can be expressed as:  

{
 
 

 
 
𝑥1(𝑘) = 𝐹1[𝑥1(𝑘 − 1),… , 𝑥𝑀(𝑘 − 1), 𝑢(𝑘 − 1)] + 𝑒1(𝑘)

𝑥2(𝑘) = 𝐹2[𝑥1(𝑘 − 1),… , 𝑥𝑀(𝑘 − 1), 𝑢(𝑘 − 1)] + 𝑒2(𝑘)
:

𝑥𝑀(𝑘) = 𝐹𝑀[𝑥1(𝑘 − 1),… , 𝑥𝑀(𝑘 − 1), 𝑢(𝑘 − 1)] + 𝑒𝑀(𝑘)

𝑦(𝑘) = 𝐺[𝑥1(𝑘), … , 𝑥𝑀(𝑘), 𝑢(𝑘)] + 𝜂(𝑘)

               (2.54) 

The disadvantage of the state-space model is that all the variables in the model need to be 

measured and the relationship of the variables need to be known (Billings, 2013). This is 

because in order to establish a state-space model, a series of sub-models must be identified, 

which can only be achieved only if the observations of systems input, output and the state 

variables are available. It is extremely difficult when dealing with ‘black-box’ modelling 

task or the systems is nonlinear and complicated. 

 

2.3.4 Neural Network  

Neural network is one of the most commonly-used model type for data-driven modelling 

task (Zurada, 1992). Over the past few decades, it has been developed and applied in 

many research areas such as data modelling, signal processing, control, etc. The neural 

network can be used to represent the data using some learning algorithm (Haykin, 1994; 

Wang, et al., 2017). Commonly used neural network for SISO system contains one input 

layer, one hidden layer and one output layer. The nodes of the layers are connected with 

associated weights, which define the relationship between the system input and output. 

The identification of neural network contains several steps:  
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Determine the input layers and output layer.  

For the neural network fitting problem, the input variables are entered through the input 

layers of the neural network and the response variable is defined as the output layer of the 

neural network. Note that dynamic problems involve lagged variables, which needs to be 

derived from the input and output signals.  

Initialization of the network  

For conventional neural network, the number of neurons of hidden layer needs to be 

determined. For deep neural network, the number of the hidden layers needs to be chosen. 

Once the number of the hidden layers and neurons are chosen, the structure of neural 

network can be initialized. The weights of the connections are initialized with random 

values. The output of that node (also called neuron) is defined by the activation function. 

This output is then used as input for the next node and so on until a desired representation 

of the data is found.  

    There are many activation functions which can be used in neural network, for example, 

sigmoid tangent function, saturation function, sigmoid function, hyperbolic tangent 

function, Gaussian function, multi-quadratic function, fractional multi-quadratic function, 

inverse multi-quadratic function, fractional inverse multi-quadratic function and thin-

plate spline function, etc. Some of the activation functions are defined as (Billings, 2013):  

• Sigmoid function 

𝜑(𝑣) =
1

1+𝑒−𝑎𝑣
,    𝑎 > 0                                           (2.55) 

• Gaussian function 

𝜑(𝑣) = 𝑒
−
𝑣2

2𝜎2 ,    𝜎 > 0                                           (2.56) 

• Multi-quadractic function 

𝜑(𝑣) = √𝑣2 + 𝛼2,    𝛼 > 0                                           (2.57) 

• Saturation (threshold) function 

𝜑(𝑣) = {
−𝑎, 𝑣 ≤ −𝑐
𝑣, −𝑐 ≤ 𝑣 ≤ 𝑐
𝑎,   𝑣 ≥ 𝑐

,     𝑎 > 0, 𝑐 ≥ 0                         (2.58) 
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• Hyperbolic tangent function 

𝜑(𝑣) =
𝑒𝑎𝑣−𝑒−𝑎𝑣

𝑒𝑎𝑣+𝑒−𝑎𝑣
,    𝑎 > 0                                         (2.59) 

where 𝑐 is the vector representing function center and 𝑎 is a parameter of the function. 

Estimation of the weights of each layer.  

The network is trained by operating on the prediction error between the actual output and 

desired output of the network, to change the connections between the nodes. With the 

Matlab Toolbox, the weights of the neural network can be estimated using several 

methods, for example, Levenbery-Marquardt method, Bayesian Regularization method 

or Scaled Conjugate Gradient methods, etc. Levenbery-Marquardt method is the default 

algorithm when the computation memory is sufficient. 

The advantage of neural network is that it can achieve relatively higher performance 

for complex data in high dimensional space. However, the neural network is too 

complicated to understand. The structure of neural network is not transparent and it is 

impossible to know the role of the model terms/components throughout the neural 

network.  

 

2.4.5 Deep Learning 

Comparing to the conventional neural network with single hidden layer, deep learning 

allows the use multiple-layers network to process the data. In recent years, deep learning 

methods have been successfully applied to a wide range of research areas, for example, 

speech recognition (Hinton, et al, 2012), face and pose detection (Garcia & Delakis, 2004), 

etc. With multiple level of representation, deep-learning methods can learn very complex 

function by composing simple but non-linear modules at each level. At each level, the 

raw input is transformed into a representation at a higher, slightly more abstract level 

(Lecun, Bengio & Hinton, 2015). These layers are not designed by human, but learned 

from data using a general-purpose learning procedure.  

Deep learning is making major advances in solving supervised and unsupervised 

problems. However, deep neural network is not widely used for systems identification 

problems. Most of the deep learning models are designed for image recognition, 

classification, etc. Therefore, it is necessary to design and apply deep learning network 
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for system identification problems. Another issue is that the deep learning network is even 

more complex than neural network, which makes it impossible to obtain a transparent and 

simple representation. 

 

2.4 Review of Uncertainty Analysis Methods 

The existence of uncertainty in the modelling process could cause negative effect on the 

performance of identified model. This section reviews some uncertainty analysis 

approaches, for example, cloud model and cloud transformation, fuzzy sets, noise 

modelling, etc. One of the objectives of this research is to incorporate the novel 

uncertainty analysis methods into the nonlinear systems identification and data modelling 

problems. Thus, the uncertainty analysis methods are investigated to access the feasibility 

of their ability in data modelling and systems identification.     

 

2.4.1 Cloud Model and Cloud Transformation 

Cloud model is a cognitive model which provides a way of bidirectional transformation 

between a qualitative concept ‘cloud’ and the quantitative data ‘cloud drops’ (Wang, Xu 

& Li, 2014). The concept cloud is described by three numerical characteristics, namely 

𝑒𝑥 (expectation), 𝑒𝑛 (entropy) and ℎ𝑒 (hyper entropy). Similar to normal distribution, 𝑒𝑥 

is the expectation of all the elements in the set and 𝑒𝑛 is the variance of the distribution. 

ℎ𝑒 depicts the degree of departure from normal distribution of cloud model (Wang, Xu 

& Li, 2014). Based on the theorem that any distribution can be represented by the sum of 

several normal distributions, the cloud model can be seen as an extension of normal 

distribution: when ℎ𝑒  equals to 0, the cloud model become actually a normal 

distribution.  ℎ𝑒  is often regarded as an extra variable in practical situation, such as 

psychological quality of an athlete. 

 

Figure 2.2 Cloud model and generic forward/backward cloud transformation 
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The bridges between cloud model and cloud drops is cloud transformation. The common 

used cloud transformation is generic forward and backward cloud transformation (GFCT 

and GBCT). The forward transformation is used to generate cloud drops from a known 

cloud model. The backward transformation is used to identify the cloud model from a 

sequence of cloud drops. In previous research, an ideal cloud backward transformation is 

also studied (Zhang et al., 2016). However, it is not feasible in real life as the groups of 

cloud drops could hardly be obtained in advance. The representation of forward and 

backward cloud transformation can be illustrated as follows:   

[𝑥1, 𝑥2, … 𝑥𝑛]
𝑐𝑙𝑜𝑢𝑑 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛
⇔                𝑐𝑙𝑜𝑢𝑑 (𝑒𝑥, 𝑒𝑛, ℎ𝑒)              (2.60) 

where 𝑐𝑙𝑜𝑢𝑑  (𝑒𝑥, 𝑒𝑛, ℎ𝑒) is a cloud concept of characteristics modelled from 𝑛 samples 

numerical data ‘cloud drops’ [𝑥1, 𝑥2, … 𝑥𝑛].   

 

Algorithm 1: Generic backward cloud transformation (GBCT) 

Input: Cloud drops {𝑥1 𝑥2  … 𝑥𝑛}.  

Output: 𝑒𝑥, 𝑒𝑛 and ℎ𝑒. 

Step 1: Calculate the sample mean 𝑒𝑥 

𝑒𝑥 =
1

𝑛
∑ 𝑥𝑘
𝑛
𝑘=1                                                    (2.61) 

Step 2: Make the cloud drops {𝑥1 𝑥2  … 𝑥𝑛} divide into 𝛼 groups randomly, and each group will 

have 𝛽 samples (note that 𝛼 × 𝛽 = 𝑛, so that the number of cloud drops do not change after 

resampling). The resampled cloud drops can be described as 𝑥𝑖𝑗 ,where 𝑖 = 1, 2, … , 𝛼 and  𝑗 =

1,2,… , 𝛽. 

Step 3: Calculate the sample mean and variance of each group:  

𝑢𝑖 =
1

𝛽
∑ 𝑥𝑖𝑗
𝛽
𝑗=1                                                     (2.62) 

𝜎𝑖 =
1

𝛽−1
∑ (𝑥𝑖𝑗 − 𝑢𝑖)

2𝛽
𝑗=1                                     (2.63) 

where 𝑖 = 1,2, … , 𝛼. 

Step 4: Calculate estimated 𝑒𝑛 and ℎ𝑒.  

𝑒𝑛2 =
1

2
√4𝐸𝑌2 − 2𝐷𝑌,         ℎ𝑒2 = 𝐸𝑌 − 𝐸𝑛2                          (2.64) 

where 𝐸𝑌 =
1

𝛼
∑ 𝜎𝑖
𝛼
𝑖=1  and 𝐷𝑌 =

1

𝛼−1
∑ (𝜎𝑖 − 𝐸𝑌)

2𝛼
𝑖=1 .  
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Algorithm 2: Generic forward cloud transformation (GFCT) 

Input: 𝑒𝑥, 𝑒𝑛 and ℎ𝑒 

Output: Cloud drops 𝑥𝑖𝑗   (𝑖 = 1, 2, … , 𝛼
′, 𝑗 = 1, 2, … , 𝛽′) 

Step 1: Generate 𝛼′ normally distributed random numbers 𝛿𝑖  (𝑖 = 1, 2, … , 𝛼
′) with expectation 

𝑒𝑛 and variance ℎ𝑒2
 
;  

Step 2: For each 𝛿𝑖 in step 1, generate 𝛽′ normally distributed random numbers 𝑥𝑖𝑗  (𝑖 =

1, 2, … , 𝛼′, 𝑗 = 1, 2, … , 𝛽′) with expectation 𝐸𝑥 and variance 𝛿𝑖
2
.  

Step 3: Calculate the certainty degree   𝜇(𝑥𝑖𝑗) = 𝑒𝑥𝑝 {−
(𝑥𝑖𝑗−𝐸𝑥)

2

2𝛿𝑖
 2 } for each 𝑥𝑖𝑗   (𝑖 =

1, 2, … , 𝛼′, 𝑗 = 1, 2, … , 𝛽′). 

Step 4: 𝑥𝑖𝑗   (𝑖 = 1, 2, … , 𝛼
′, 𝑗 = 1, 2, … , 𝛽′) are the cloud drops. The total number of the 

generated cloud drops is 𝛼′ × 𝛽′. 

 

The generic cloud transformation achieves the transformation between intension and 

extension of the cloud concept. The advantage of cloud model is that it provides a way to 

describe a distribution with only three parameters that cannot be characterized by 

traditional normal distribution. The cloud transformation is better and more powerful than 

normal distribution in that: i) it includes normal distribution as a special case; and ii) 

many data in real life do not follow a normal distribution. 

 

2.4.2 Probabilistic Model 

A series of researches have been conducted to deal with uncertainty using techniques such 

as regression, machine learning and statistical analysis, and so on. Probability theory is 

one of the effective tools in uncertainty analysis. The central topics of probability theory 

are random variables and stochastic processes. Thus, the probabilistic model can be 

applied to describe random uncertainty, with different probabilistic distributions for 

example Gaussian distribution being used as an approximation to a large number of 

random phenomena (Wang, Xu & Li, 2014).  

Numerous studies on these probabilistic approaches have been conducted over the 

centuries since then. Bayesian theory and related techniques are among the commonly 

used methods to calculate the probability density of distributions, providing quantitative 

descriptions of uncertainty. The probabilistic models often provide confidence intervals 

with specific distributions of model parameters and predictions, for example, Gaussian 
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process model (Arendt, Apley & Chen, 2012). However, in some cases, the distributions 

of variables cannot be known in advance, or need to assume some very specific 

distributions. Thus, finding a robust and adjustable representation of the uncertainty is 

still an open question for data modelling problems.  

 

2.4.3 Fuzzy Set 

Fuzzy set provides an alternative to represent uncertainty (Zadeh, 1965). As an extension 

of the classical notion of set, it has developed to be the main tool dealing with fuzzy 

uncertainty and successfully achieved a lot of applications (Bustince, et al, 2016; Kim, 

2015). The main extensions of the fuzzy sets include: Type-n fuzzy set, Interval-Valued 

Fuzzy Set, Set-valued Fuzzy Set, Bipolar-Valued Fuzzy Set, Hesitant Fuzzy Set, m-Polar-

Valued Fuzzy set, etc. (Bustince, et al, 2016).  

The use of membership function in fuzzy theory provides a novel gradual assessment, 

to evaluate how much degree of an element belongs to a fuzzy concept, and can be applied 

in a wide range of fields where the information in incomplete and imprecise. The biggest 

challenge of fuzzy set is to find the optimal fuzzy rules to represent the randomly 

distributed data. The process of identifying the fuzzy rules can be time consuming, due 

to the variation of data types in real world.  

 

2.4.4 Noise Modelling 

Another approach to deal with uncertainty is noise modelling techniques. The uncertainty 

is often regarded as a noise sequence. Many algorithms have been proposed addressing 

the noise modelling process. 

In some situations where the system is nonlinear, the model residual 𝑒(𝑡) is highly 

unlikely to be Gaussian. In this case, there is still correlation between the noise 𝑒(𝑡) and 

the model inputs. The noise can be modelled in many ways, including the traditional 

recursive prediction error method (PEM), generalised least squares (GLS), instrumental 

variables (IV), or an extended least square procedure (Young, 1984; Norton, 1986; 

Lennart, 1999; Sodestrom & Stoica, 1989; Billings, 2013). As discussed in the section 

2.2.9, the noise sequence of the NARX model can be learnt as part of the model fitting 

using the extended least square (ELS) method (Billings, 2013).  
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2.4.5 Model Averaging  

A single model may not be reliable for some worse-case data scenarios. The collective 

use of information from many models, however, may help improve the overall model 

performance. Model averaging is therefore also a widely applied method to reduce or 

eliminate the negative effect caused by model uncertainty. It was argued that model 

averaging is a much more reliable method than other techniques such as the statistical 

tests (Plumper & Neumayer, 2012). Model averaging often involves a resampling process 

of the original data, through some resampling approach such as bootstrap method (Smith, 

et al, 2014). The resampling and related methods have been applied to effectively 

minimise and reduce the variance of estimated parameters for dynamic data modelling 

(Wei & Billings, 2009). Other resampling methods for example cross validation and jack-

knife have also been widely applied to data modelling and analysis (Devijver & Kittle, 

1982; Efron, 1983; Efron & Tibshirani, 1993). Model identified from different resampled 

data may be different. So, how to effectively make good use of a number of models to 

produce a robust or reliable model that well represents the original data is the core interest 

of model averaging. Extensive research on model averaging has been done to gather 

information from several or many sub-models identified from a number of sub-datasets, 

including Bayesian averaging. A key point is to employ resampling and model averaging 

process to reduce or eliminate the overfitting and biased estimation in particular when the 

available data is small.  

    Model averaging approaches such as AIC and BIC based averaging methods have been 

used in many applications (Cade, 2015; Asatryan & Feld, 2015; Moral-Benito, 2015; 

Kontis et al., 2017). The model averaging approach with AIC involves the computation 

of the delta AIC and the Akaike weights. The delta AIC can be calculated as (Symonds 

& Moussalli, 2011):  

∆𝐴𝐼𝐶𝑐𝑖 = 𝐴𝐼𝐶𝑐𝑖 − 𝐴𝐼𝐶𝑐𝑚𝑖𝑛                                              (2.65) 

where AICci is the AIC value for the i-th candidate model, AICcmin is the minimum AIC 

of all the 𝑀  candidate models, and 𝑖 = 1, 2, … ,𝑀 . The Akaike weight indicates the 

probability that an individual candidate model is the best model. The Akaike weight for 

i-th candidate mode is computed as (Buckland, Burnham & Augustin, 1997):  

𝜔𝑖 =
𝑒𝑥𝑝 (−0.5∆𝐴𝐼𝐶𝑐𝑖)

∑  𝑀
𝑗=1 𝑒𝑥𝑝 (−0.5∆𝐴𝐼𝐶𝑐𝑗)

                                                (2.66) 
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where 𝜔𝑖 is the Akaike weight for the i-th candidate model and  𝑖 = 1, 2, … ,𝑀. Then, the 

averaged parameter estimate of ‘full model averaging’ is calculated as follows:  

�̂̅� = ∑ 𝜔𝑖�̂�𝑖
𝑀
𝑖=1                                                          (2.67) 

To produce averaged model based on BIC and APRESS, a simple approach is to 

replaced AIC by BIC and APRESS, to calculate the BIC and APRESS weights of model 

parameters of all candidate models. The advantage of the averaged model is that it is in 

general more robust than the single ‘best’ model determined by the model selection 

criterion. This is because a single model only contains a limit number of model terms 

suggested by model selection criterion. If a model selection criterion fails to detect the 

correct number of model terms, the model terms of the single model may be insufficient 

to well represent the system. On the contrary, the averaged model uses the information of 

all the candidate models and each candidate model gives its contribution according to 

their weights based on the model selection criterion. Therefore, when the single model 

selected by the model selection criterion is not the best, the performance of the averaged 

model is usually better than that of the single model. However, it should also be noted 

that a model with more terms is not necessarily always better than a model with less terms, 

because some terms may be redundant and may deteriorate the model prediction 

performance. Therefore, it is not always true that the averaged model is better than a 

single model, but the averaged model is often more robust in case where there is large 

uncertainty in the data collection, model structure and model parameter, etc. 

 

2.5 Summary 

This chapter gives an overview of the system identification methods and uncertainty 

analysis approaches which are used in this thesis. The general process of system 

identification including the term selection, parameter estimation and model validation are 

reviewed. The discussion focusses on the implementation of the NARMAX model and 

OFR algorithm, which is popular and effective for the data-driven modeling problems. 

Some other common-used modelling approaches are discussed. In addition, a brief review 

of uncertainty analysis approach is presented, emphasizing on the new concept cloud 

model. The cloud transformation provides an effective tool to describe variable which is 

beyond normal distribution.  
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Chapter 3  

 

ROBUST MODEL STRUCTURE 

SELECTION METHOD FOR SMALL SIZE 

DATA MODELLING PROBLEMS 

 

 

3.1 Introduction 

In model identification, the existence of uncertainty normally generates negative impact 

on the accuracy and performance of the identified models, especially when the size of 

data used is rather small. With a small data set, least squares estimates are biased, the 

resulting models may not be reliable for further analysis and future use. This chapter 

introduces a novel robust model structure selection (RMSS) method for model 

identification. The proposed method can successfully reduce the model structure 

uncertainty and therefore improve the model performances. Case studies on simulation 

data and real data are presented to illustrate how the proposed metric works for robust 

model identification. 

 

3.2 Small Size Data Modelling Problems 

Broadly speaking, data-based modelling approaches can be categorized into two groups: 

parametric and nonparametric. Nonparametric methods are those that do not make strong 

assumptions about the form of the mapping functions (that map the model "input" 

variables to the model "output" variables). Most existing artificial neural networks are 
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nonparametric approaches. In (Russell & Norvig, 2010) it is stated that "Nonparametric 

methods are good when you have a lot of data and no prior knowledge, and when you 

don’t want to worry too much about choosing just the right features” (p.757). One of the 

advantages of neural networks is that in general they can achieve relatively higher 

performances in dealing with complicated data modelling problems defined in high 

dimensional space. However, the model structure of most neural networks is very 

complicated and cannot be simply written down. In addition, neural networks models 

often involve a large number of variables and take a long time for training. General neural 

networks models cannot provide a transparent model structure, where the significance of 

individual variables and the role of their interactions are invisible. Moreover, the 

implementation of some nonparametric approaches for example Bayesian networks 

normally would need a huge number of samples.  In comparison with neural networks 

models, parametric NARX models use a nonlinear polynomial structure and often only 

need a small number of effective model terms to describe the system. It can be achieved 

by selecting a number of most important model terms by an orthogonal forward regression 

(OFR) algorithm (Chen, Billings & Luo, 1989; Wei, Billings & Liu, 2004), so that it 

generally only requires a relatively small number of input and output data points (Wei & 

Billings, 2008a; Billings & Wei, 2008)). In many applications (e.g. Bigg, et al., 2014; 

Billings, et al., 2013), where the main objective of the modelling tasks is not only to 

predict future behaviour, but also reveal and understand which model variables are most 

important and how the candidate variables interactively affect the system behaviour, 

parametric models are usually become a first choice.     

    Under some specific conditions and assumptions, most existing model identification 

methods work well and can provide sufficiently reliable models for most applications. 

However, in many cases where there is modelling uncertainty (e.g. in data, model form 

and structure, parameters, noise level, etc.), the identified models may lack reliability and 

thus less useful. This is particularly true when the available data set is small. This study 

focuses on parametric models and aims to answer the following challenging question. 

Given a small set of experimental data of a system, how to build a model that best 

represents the underlying system dynamics hidden in the data? Most data modelling 

approaches can generate good models that best fit the data themselves, but the models 

may not be able to represent well the inherent dynamics of the original system because of 

different kinds of uncertainties. For small data modelling problems, the difficulty of 
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finding reliable models is often exacerbated due to the small sample size of data. It is 

observed that for a small data modelling problem, small changes in a few or even a single 

sample can cause a large effect on model estimation. Thus, another question that arises 

is: how to reduce the model uncertainty (i.e. increase the model reliability) for small size 

data modelling problems? 

    It is not straightforward, if not impossible, to induce a robust model from a small 

sample size data, no matter what kind of system identification or data modelling algorithm 

are employed. In additional to noise and the size of samples, other types of factors can 

also lead to model uncertainty. For example, a data based modelling approach may just 

simply assumes a specific model type to represent the data but the specified model 

structure is completely different from the true system model; some driven variables may 

be immeasurable or ignored. All this is embedded in the aphorism “all models are wrong, 

but some are useful” (Box & Draper, 1987). In fact, for all system identification problems, 

model type selection and structure detection is usually an instrumentally important task. 

For the same data based modelling problem, different types of models often have different 

properties and performance, with different interpretation of the data. Even for the same 

model type, different algorithms could lead to different final model representations. The 

reason is simple: when the true model is unknown, all the identified models could be 

wrong because of uncertainty and the incompleteness of information. Effectively dealing 

with uncertainty (model structure, parameter, prediction, etc.) has become an important 

topic in many research fields, for example, soil changes (Robinson, Benke & Norng, 

2015), carbon and water fluxes at the tree scale (Christina, 2016). In all scientific research, 

it nearly always needs to consider uncertainty, from various perspective such as, sources 

of uncertainty, techniques of quantifying uncertainty, decision making under strong 

uncertainty conditions, etc. 

    With the above observations, this study aims to develop a new approach to find a robust 

model structure to reduce uncertainty in model identification especially when sample size 

is small. Based on a data resampling approach, combined with an orthogonal forward 

regression (OFR) algorithm (Chen, Billings & Luo, 1989; Wei, Billings & Liu, 2004), a 

robust model structure selection (RMSS) method is designed to reduce model uncertainty 

and improve model performance. This is especially useful for the following two scenarios 

of data based modelling problem: i) modelling from multiple small sample size datasets 

(e.g. many datasets for a same system but generated under different experimental 
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conditions; ii) modelling for a non-stationary system where although the key system 

dynamics can be represented using a single model structure, different model parameters 

are needed to adaptively reflect the change of system behaviours at different times. In 

summary, the main contribution of this chapter lies in the new robust common model 

structure detection method for solving two challenging problems frequently encountered 

in practical system identification and data-driven modelling, namely, (a) reliable model 

identification from small sample data, and (b) robust common model determination from 

several or many experimental datasets.   

 

3.3 Robust Model Structure Selection Method 

Following the discussions in the previous section, the OFR method is used to select a 

small number of significant terms to establish a best model structure. For many real 

modelling tasks, there are several commonly seen situations where the OFR algorithm 

cannot be directly used to generate best models, for example: i). the data are usually 

recorded from a series of experiments under different experimental conditions, or the 

system itself is non-stationary and needs to be observed for a long-time scale. In these 

scenarios, the model structure might be varying with time and/or with the change of 

external environmental conditions. ii). The true model structure of the system is unknown 

and cannot be well represented by any of the candidate model terms in the dictionary. 

Thus, it is impossible to find a perfect model structure and there will always be 

uncertainty of model structure. iii). the data is corrupted with strong noises which makes 

the OFR estimation biased. The bias could be extremely obvious when data size is small, 

since a small change of a single term can bring a huge difference on the estimated model.  

Under these conditions, the OFR method may fail to find a best model structure that can 

well represent the system. Therefore, the RMSS method is needed for capturing and 

reducing the model uncertainty and thus improving the overall model predictive 

performance. 

    In the following, the RMSS method is proposed. The basic idea of the new method is 

first illustrate using a simple example, and the procedure of the method is then presented.  
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3.3.1 Basic Idea  

    Consider a scenario where a total number of 𝐾 datasets are available, all of which are 

generated from a same system under some different conditions. The primary objective is 

to find a common model that best fits all the 𝐾 datasets. The new method uses a concept 

of overall mean absolute error (OMAE); it is defined as the average of 𝐾 individual mean 

absolute errors (MAE) which are calculated when a model (or a new model term is 

included in an existing model) to fit all the 𝐾 datasets. Consider two datasets (as shown 

in Table 3.1) generated from the true system 𝑦 = 1.5𝑥1+0.1𝑥2+0.02𝑥3, the OMAE can 

be calculated. Note that the first dataset is noise free, while the second dataset is affected 

by some noises 𝑁(0,0.01). 

Table 3.1 Variables of two datasets 

 x1 x2 x3 y 

 -0.3 0.1 -0.7 -0.4540 

dataset 1 0.1 -0.1 0.2 0.1440 

 -0.9 1.0 -0.5 -1.460 

 -0.9 -0.3 0.3 -1.3740 

 0.1 -0.7 0.4 0.0040 

dataset 2 0.6 0.6 0.5 1.1055 

 0.9 -0.4 -0.1 1.2008 

  -0.8 0.1 -0.9 -1.1119 

 

    Assuming that one and only one variable (among x1, x2, and x3) is needed to fit the two 

datasets, then which one can give a minimum OMAE value? This can be done by 

calculating the individual MAE values one by one. For example, the individual mean 

absolute error 𝜖1
(1)

 of the variable  x 1
(1)

 for dataset 1 can be calculated as:  

𝜖1
(1) =

1

4
‖𝑦(1) − 𝛼1

(1)
 𝑥 1

(1)
‖
1
=
1

4
‖𝑦(1) −

 𝑥 1
(1)𝑇

 𝑦  
(1)

 𝑥 1
(1)𝑇

 𝑥 1
(1)
 𝑥 1
(1)‖

1

= 0.0290      (3.1) 



 

 

52 

MAEs for x2 and x3 can be calculated in a similar way for datasets 1. Similar 

calculations can be performed to dataset 2. There is a total number of 6 individual MAEs.          

The OMAEs can be calculated, as shown in Table 3.2. As the OMAE value of x1 is 

smaller than the other two, x1 should be the best choice for fitting the two datasets. Note 

that once the first model term is determined, a second model term can be chosen to join 

the first one, and then a third one, and on. The detailed descriptions of the general 

procedure of the RMSS method is given in next section. 

Table 3.2 MAE and OMAE values of 𝑥1, 𝑥2, and 𝑥3  

Term MAE (dataset 1) MAE (dataset 2) OMAE  

 𝑥1 0.0290 0.1313 0.0802 

 𝑥2 0.4954 0.8657 0.6805 

 𝑥3 0.6926 0.5910 0.6418 

 

3.3.2 Robust model structure selection method 

The RMSS method can be summarized into several steps:  

a). Resampling process (for small size data) 

Assume that the original data can be described by a 𝑁 ×𝑀 matrix 𝒅 as follows: 

𝒅 = [𝝋1, … ,  𝝋𝑀] = [

 𝜑1(1)  𝜑2(1)

 𝜑1(2)  𝜑2(2)
⋯

 𝜑𝑀(1)

 𝜑𝑀(2)
⋮ ⋱ ⋮

 𝜑1(𝑁)  𝜑2(𝑁) ⋯  𝜑𝑀(𝑁)

]                (3.2) 

where { 𝝋1, … ,  𝝋𝑀} is 𝑀  candidate basis vectors (generated from 𝑀  candidate model 

terms) and 𝑁 is the number of data points. The original dataset can be regrouped to form 

𝐾 sub-datasets through some resampling methods e.g. random sampling or bootstrap (see 

(Wei & Billings, 2009a; Wei & Billings, 2009b) and the references therein). The k-th 

sub-dataset can be described by a 𝑁′ ×𝑀 matrix:      

𝒅(𝑘) = [𝝋1
(𝑘)
, … , 𝝋𝑀

(𝑘)
] =

[
 
 
 
 𝜑1

(𝑘)(1) 𝜑2
(𝑘)(1)

𝜑1
(𝑘)(2) 𝜑2

(𝑘)(2)
⋯

𝜑𝑀
(𝑘)(1)

𝜑𝑀
(𝑘)(2)

⋮ ⋱ ⋮

𝜑1
(𝑘)(𝑁′) 𝜑2

(𝑘)(𝑁′) ⋯ 𝜑𝑀
(𝑘)(𝑁′)]

 
 
 
 

               (3.3) 
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where the associated candidate basis vectors become {𝝋1
(𝑘)
, … , 𝝋𝑀

(𝑘)
}  and 𝑁′  is the 

number of data points in each sub-dataset. 

Remark 1: For small size data, the original dataset is resampled by removing one of the 

data points each time until all the data points have been picked out once (leaving one 

sample out), so that 𝑁′ = 𝑁 − 1 and 𝐾 = 𝑁. Thus, the uncertainty brought by removing 

or adding a single data point can be reduced by finding a single common model for the K 

sub-datasets. The resampling process is used for the situations when the data size is small 

and the effect of a single data point can be significant for determining the final model 

structure and model parameters. 

 

b).The OMAEs of model terms for K sub-datasets 

To find a robust model structure that best fits all the 𝐾 sub-datasets, an MAE matrix is 

calculated using the data from all the 𝐾 sub-datasets. In the first step search, the MAE 

matrix is defined as: 

𝜳 (1) =

[
 
 
 
 𝜖1
(1)

𝜖2
(1)

𝜖1
(2)

𝜖2
(2)

⋯
𝜖𝑀
(1)

𝜖𝑀
(2)

⋮ ⋱ ⋮

𝜖1
(𝐾)

𝜖2
(𝐾) ⋯ 𝜖𝑀

(𝐾)
]
 
 
 
 

                       (3.4)  

where 𝜖𝑚
(𝑘) (𝑚 = 1, 2, … ,𝑀 𝑎𝑛𝑑 𝑘 = 1, 2, … , 𝐾)  is the individual MAE value when the 

m-th candidate model term is used to approximate output 𝑦(𝑘) in the k-th sub-dataset. It 

is calculated as: 

𝜖𝑚
(𝑘) =

1

𝑁′
‖𝒚(𝑘)

 
− 𝛼𝑚

(𝑘)
𝝋𝑚
(𝑘)
‖
1
                            (3.5) 

where 𝛼𝑚
(𝑘)

 is the parameter. Then, the OMAE associated with the m-th candidate model 

term which is used to represent all the 𝐾 sub-datasets is defined as:   

𝜖�̅�
 =

1

𝐾
(𝜖𝑚
(1)
+ 𝜖𝑚

(2)
+ …+ 𝜖𝑚

(𝐾)
)                        (3.6) 

Remark 2: In addition to the OMAE, there are several other metrics for measuring the 

overall predicted error of each model term, for example: 

𝜙1(𝑦 , 𝑦 ̂) =
1

𝑁
∑ |𝑦𝑡 − 𝑦�̂�|
𝑁
𝑡=1                              (3.7) 
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𝜙2(𝑦 , 𝑦 ̂) =
1

𝑁
∑ (𝑦𝑡 − 𝑦�̂�)

2𝑁
𝑡=1                          (3.8) 

𝜙3(𝑦 , 𝑦 ̂) =
∑ |𝑦𝑡−𝑦�̂�|
𝑁
𝑡=1

∑ |𝑦𝑡|
𝑁
𝑡=1 +∑ |𝑦�̂�|

𝑁
𝑡=1

                                     (3.9) 

𝜙4(𝑦 , 𝑦 ̂) =
√
1

𝑁
∑ |𝑦𝑡−𝑦�̂�|
𝑁
𝑡=1

√
1

𝑁
∑ |𝑦𝑡|
𝑁
𝑡=1 +√

1

𝑁
∑ |𝑦�̂�|
𝑁
𝑡=1

                                  (3.10) 

where y and  𝑦 ̂ are the observed and predicted system outputs and 𝑁 is the number of data 

points. As will be illustrated later that ϕ1(y , y ̂) (MAE) is a better choice. It was argued 

in some studies that MAE is a better metric for model evaluation (Chai & Draxler, 2012).  

 

c). OMAE-based term selection and parameter estimation 

Define:  

𝑙1 = 𝑎𝑟𝑔 𝑚𝑖𝑛
1≤𝑚≤𝑀

 {𝜖�̅�
 }                                   (3.11)  

    Then the 1st significant model terms can be selected as 𝜑𝑙1
 . After removal of the basis 

𝜹𝑙1
(𝑘)

 from the k-th sub-dataset (𝑘 = 1, 2, … , 𝐾), the dictionaries of all the 𝐾 sub-datasets 

are then reduced and consists of 𝑀 − 1  model candidates. Similar to that in the 

conventional OFR algorithm, at step 𝑠 (𝑠 ≥ 2), the 𝐾 dictionaries consist of 𝑀 − 𝑠 + 1 

candidate model terms. The 𝐾  bases are all transformed into a new group of 𝐾 

orthogonalized bases. The orthogonal transformation can be implemented using (2.14) 

for each single sub-dataset. The MAE matrix at step 𝑠 can be calculated using the new 

group of 𝐾 bases, and the MAE matrix is:  

𝜳 (𝑠) =

[
 
 
 
 𝜖1
(1)

𝜖2
(1)

𝜖1
(2)

𝜖2
(2)

⋯
𝜖𝑀−𝑠+1
(1)

𝜖𝑀−𝑠+1
(2)

⋮ ⋱ ⋮

𝜖1
(𝐾)

𝜖2
(𝐾) ⋯ 𝜖𝑀−𝑠+1

(𝐾)
]
 
 
 
 

                       (3.12)  

    The OMAEs of all the candidate terms can then be calculated and the s-th robust 

model term can be selected to be 𝜑𝑙𝑠, with: 

𝑙𝑠 = 𝑎𝑟𝑔 𝑚𝑖𝑛
1≤𝑚≤𝑀−𝑠+1

 {𝜖�̅�
 }                     (3.13)  
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    Repeating the recursive process, a number of model terms can be selected to form a 

linear-in-parameters robust model structure. Similar to OFR algorithm, the selection 

procedure can be terminated when specific conditions are met. Assume that a total of 𝑛 

model terms are selected, and for the 𝑘-th sub-dataset let the output 𝑦(𝑘) be represented 

by the 𝑛 selected model terms as:  

𝒚(𝑘) = 𝜃𝑙1
(𝑘) 𝝋𝑙1

(𝑘) + 𝜃𝑙2
(𝑘) 𝝋𝑙2

(𝑘) + …+ 𝜃𝑙𝑛
(𝑘) 𝝋𝑙𝑛

(𝑘)                (3.14) 

    Following (Chen, Billings & Luo, 1989; Chen & Billings, 1989), the model parameters 

𝜃𝑙1
(𝑘), 𝜃𝑙2

(𝑘), … , 𝜃𝑙𝑛
(𝑘)

 can be calculated through an iterative procedure. According to the 

orthogonalization procedure (Chen, Billings & Luo, 1989; Chen & Billings, 1989), here 

we define 𝐾 unity upper triangular matrices first: 

𝑨(𝑘) =

[
 
 
 
 𝑎11
(𝑘)

𝑎12
(𝑘)

0 𝑎22
(𝑘)

⋯
𝑎1𝑛
(𝑘)

𝑎2𝑛
(𝑘)

⋮ ⋱ ⋮

0 0 ⋯ 𝑎𝑛𝑛
(𝑘)
]
 
 
 
 

                                   (3.15) 

where 𝑎11
(𝑘)
= 𝑎22

(𝑘)
= ⋯ = 𝑎𝑛𝑛

(𝑘) = 1.From the orthogonalization procedure, the elements 

of 𝑨(𝑘) can be calculated as:                

𝑎𝑟𝑗
(𝑘)
=
(𝒒𝑟
(𝑘)
)𝑇𝜹𝑙𝑗

(𝑘)

(𝒒𝑟
(𝑘)
)𝑇𝒒𝑟(𝑘)

    (𝑟 = 1, 2, … , 𝑗 − 1 𝑎𝑛𝑑 𝑗 = 2, 3, … 𝑛)             (3.16) 

𝑔𝑗
(𝑘) =

(𝒚(𝑘))𝑇𝒒𝑗
(𝑘)

(𝒒
𝑗
(𝑘)
)𝑇𝒒𝑗

(𝑘)
 (𝑗 = 1, 2, … , 𝑛)                                         (3.17) 

    The estimates of K groups of parameter vector 𝜽 
(𝑘) = [𝜃𝑙1

(𝑘), 𝜃𝑙2
(𝑘), … , 𝜃𝑙𝑛

(𝑘)] can 

then be calculated from the triangular equations  𝑨(𝑘)𝜽 
(𝑘) = 𝒈(𝑘). The final model 

parameter estimation is chosen to be the average of the 𝐾 parameter estimates, with:  

𝜃 
 
𝑙𝑗
=
1

𝐾
∑  𝐾
𝑖=1 𝜃𝑙𝑗

(𝑖)
 (𝑗 = 1, 2, … , 𝑛)         (3.18) 

    Detailed derivation and explanation for the mechanism of the above calculations can 

be found in (Chen, Billings & Luo, 1989; Chen & Billings, 1989).  

Remark 3: The proposed RMSS method can be summarized into several steps: 1). 

calculate the OMAE of each candidate model term; 2). select the model term according 

to the OMAEs; 3). remove the selected terms in the dictionary and transformed the rest 
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of bases to form new orthogonalized bases; 4) repeat the first 3 steps until a specific model 

selection criterion is met. 5). parameter estimation. The whole procedure can be described 

by a diagram as shown in Fig. 3.1. 

 

Figure 3.1 Robust model structure selection (RMSS) method 

 

Remark 4:  Note that different from traditional L2-norm based algorithms, e.g. the 

orthogonal projection pursuit (OPP) algorithm (Wei & Billings, 2008b) that can be 

proven to converge, the proof of the convergence of the proposed RMSS method is not 

straightforward.  In this study, the focus is on choosing a set of most powerful model 
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terms from a given pool consisting of a large number of candidate model terms, through 

an iterative manner, one term at each search step, until a model with an appropriate model 

terms that gives satisfactory fit to the data is obtained. Instead of strictly prove the 

convergence of the proposed method, we demonstrate the overall performance of the new 

method through numerical case studies which are presented in the next section.      

 

3.4 Simulation 

Two simulation examples are presented to test the efficiency of the RMSS method and to 

show under which conditions the proposed method can improve the model performance.  

The first example aims to test if the proposed method can pick out the correct model terms 

when data are noise free. The second example investigates the performance of the 

proposed method for modelling problems with different levels of uncertainty (noise). 

Finally, case studies are carried out to demonstrate the power of the new method solving 

a real-world problem. For the convenience of comparative analysis, the model identified 

by OFR method will be referred as ‘regular model’ and the model identified by RMSS 

method will be referred as ‘robust model’. 

 

3.4.1 Example 1- noise free data modelling 

It is known that most existing model structure selection methods can provide sufficiently 

reliable model, when data are clean (i.e. not corrupted with noise).  In the following it 

will show that both the RMSS method and classic OFR method can generate perfect 

model structure from noise free data. Consider a nonlinear system:  

y(t) = 0.5y(t − 1) + 0.8𝑢(𝑡 − 2) + u2(t − 1) − 0.05𝑦2(t − 2) + 0.5             (3.19)     

where the input u(t) was assumed to be uniformly distributed on [−1, 1]. A total number 

of 100 input-output data points were generated. The first 70 points were used for model 

estimation and the remaining 30 points were used for performance test. From the results 

of some pre-experiments, the following candidate variable vector was used for model 

construction:  

𝝑(𝑡) = [y(t − 1), y(t − 2), u(t − 1), u(t − 2)] 𝑇                     (3.20)  
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Table 3.3 Selected terms by classic OFR method  

No. Term ERR(100%) Parameter 

1 y(t-1) 78.7770 0.5000 

2 u(t-2) 10.6233 0.8000 

3 u(t-1) ×u(t-1) 8.8996 1.0000 

4 constant 1.3601 0.5000 

5 y(t-2) ×y(t-2) 0.3401 -0.0500 

 

Table 3.4 Selected terms by RMSS method 

No. Term OMAE Parameter 

1 y(t-1) 0.5639 0.5000 

2 u(t-2) 0.3831 0.8000 

3 u(t-1) ×u(t-1) 0.1610 1.0000 

4 constant 0.0652 0.5000 

5 y(t-2) ×y(t-2) 0.0000 -0.0500 

 

    The initial full model was chosen to be a polynomial form with nonlinear degree of l =

3. Firstly, the OFR method was applied to find the significant model terms according to 

the ERR ranking. The APRESS values suggest that a model of 5 terms can be a good 

choice. Not surprisingly, all the model terms are correctly selected and the parameters are 

estimated correctly. The selected terms and the associated ERR values are shown in Table 

3.3. The RMSS method was also applied to the same train data, to select significant terms 

according to their OMAEs relating to a total number of 70 sub-datasets generated through 

the resampling process. As a result, the RMSS method selected exactly the same model 

terms as the OFR method. The associated OMAEs are shown in Table 3.4.  
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Figure 3.2 SERR and OMAE versus the number of iterations of term selection 

 

Figure 3.3 Statistics prediction performance of regular model and robust model versus 

the model complexity 

    



 

 

60 

 Note that the OFR and RMSS methods employ two different indicators (i.e., the ERR 

index and OMAEs to measure the contribution of each model term to explaining the 

variance of response variable. During the process of OFR, the SERR (sum of ERR values) 

is increasing to the maximum value of 100%, which indicates that 100% of the variance 

of response variable can be explained by the selected terms. For the RMSS method, the 

OMAE is decreasing to 0, which means that there is no error in the identified model. The 

variation of SERR and OMAE of the OFR and RMSS are displayed in Fig. 3.2. It can be 

easily seen that the model with 5 terms is perfect and can describe 100% of the variance 

of the response variable. The variation of the correlation coefficient and prediction 

efficiency, with the inclusion of model terms, one by one, is shown in Fig. 3.3. 

 

3.4.2 Example 2- data with additive white noise 

Now consider a nonlinear system:  

𝑦(𝑡) = −𝑢(𝑡 − 1)√|𝑦(𝑡 − 1)| + 0.4𝑢2(𝑡 − 1) + 0.8𝑢(𝑡 − 2)𝑢 (𝑡 − 1) + 𝜉(𝑡)  (3.21)   

where the input 𝑢(𝑡) was assumed to be uniformly distributed on [−1, 1] and 𝜉(𝑡) is a 

white noise with zero mean and finite variation. Note that there is no strict definition of 

‘small’ size data. Normally if the number of data points are around 100 or less, the data 

is a small size data. Also, the SNR is important to determine if there is strong uncertainty 

in the data. With five different levels of signal to noise ratio, namely, noise-free and SNR 

= 50, 15, 10, 0 dB, respectively, the system was simulated five times. For each SNR case, 

a total number of 100 input-output data points were generated. The first 70 points were 

used for model estimation and the remaining 30 points were used for performance test. 

From the results of some pre-experiments, the initial full model was chosen to be a 

polynomial form with maximum time lags of 𝑛𝑦 = 𝑛𝑢 = 2 and nonlinear degree of 𝑙 =

3. Note that the model term √|𝑦(𝑡 − 1)| was not included in the specific library of 

candidate model terms. As a consequence, it is impossible to identify a ‘true’ model 

structure that perfectly represents every single component of the system. However, it is 

possible to use both the OFR and the RMSS method to find model that can well represent 

the simulated data. In what follows, it presents analysis and discussions on whether the 

RMSS methods can find satisfactory models with good predictive performance, under 

different level of noise. 
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Table 3.5 Selected terms by OFR and RMSS method  

SNR No. OFR method RMSS method 

noise 

free 

1 u(t-2) ×u(t-2) u(t-2) ×u(t-2) 

2 u(t-1) u(t-1) 

3 u(t-1) ×u(t-1) ×y(t-2) u(t-1) ×u(t-1) ×y(t-2) 

4 u(t-1) ×u(t-2) ×u(t-2) u(t-1) ×u(t-2) ×u(t-2) 

5 u(t-1) ×u(t-2) u(t-1) ×u(t-2) 

6 u(t-1) ×u(t-2) ×y(t-1) u(t-1) ×u(t-2) ×y(t-1) 

7 u(t-2) ×y(t-1) y(t-1) ×y(t-2) 

50db 1 u(t-2) ×u(t-2)           u(t-2) ×u(t-2)           

2 u(t-1)                    u(t-1)                    

3 u(t-1) ×u(t-1) ×y(t-2)  u(t-1) ×u(t-1) ×y(t-2)  

4 u(t-1) ×u(t-2) ×u(t-2)  u(t-1) ×u(t-2) ×u(t-2)  

5 u(t-1) ×u(t-2)           u(t-1) ×1(t-2)           

6 u(t-1) ×u(t-2) ×y(t-1)  u(t-1) ×u(t-2) ×y(t-1)  

7 u(t-2) ×y(t-1) y(t-1) 

15db 1 u(t-2) ×u(t-2)           u(t-2) ×u(t-2)           

2 u(t-1)                    u(t-1)                    

3 u(t-1) ×u(t-1) ×y(t-2)  u(t-1) ×u(t-1) ×y(t-2)  

4 u(t-1) ×u(t-2) ×u(t-2)  u(t-1) ×u(t-2) ×u(t-2)  

5 u(t-1) ×u(t-2)           u(t-1) ×u(t-2)           

6 u(t-1) ×u(t-2) ×y(t-1)  u(t-1) ×u(t-2) ×y(t-1)  

7 u(t-1) ×u(t-2) ×y(t-2)  u(t-1) ×u(t-2) ×y(t-2)  

8 u(t-2) ×y(t-1)           u(t-1) ×u(t-1)           

10db 1 u(t-2) ×u(t-2)           u(t-2) ×u(t-2)           

2 u(t-1)                    u(t-1)                    

3 u(t-1) ×u(t-1) ×y(t-2)  u(t-1) ×u(t-1) ×y(t-2)  

4 u(t-1) ×u(t-2)           u(t-1) ×u(t-2)           

5 u(t-1) ×u(t-2) ×y(t-1)  u(t-1) ×u(t-2) ×y(t-1)  

6 y(t-1) ×y(t-2)           u(t-2) ×y(t-2)           

7 y(t-1) ×y(t-2) ×y(t-2)  u(t-1) ×u(t-1) ×u(t-2)  

8 u(t-1) ×u(t-2) ×u(t-2)  y(t-2) ×y(t-2) ×y(t-2)  

9 u(t-1) ×u(t-1) ×u(t-2) u(t-1) ×u(t-2) ×y(t-2) 

0db 1 u(t-2) ×u(t-2)           u(t-2) ×u(t-2)           

2 u(t-1)                    u(t-1)                    

3 u(t-2) ×u(t-2) ×y(t-2)  u(t-2) ×u(t-2) ×y(t-2)  

4 u(t-1) ×u(t-1) ×y(t-1)  y(t-1) ×y(t-1)           

5 u(t-1) ×u(t-2)           u(t-2) ×y(t-2)           

6 u(t-1) ×u(t-1)           u(t-2) ×u(t-2) ×u(t-2)  

7 y(t-1) ×y(t-1)           u(t-2) ×y(t-2) ×y(t-2)  

8 y(t-1) ×y(t-2)           y(t-1) ×y(t-1) ×y(t-1)  

9 y(t-1) ×y(t-1) ×y(t-1)  u(t-1) ×u(t-1) ×y(t-2) 

 

Both the OFR and RMSS methods were applied to the simulated data with different 

levels of noises (noise-free, SNR = 50, 15, 10, 0 dB). The model complexity was 

determined by the APRESS metric (Billings & Wei, 2008). The selected model terms by 
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the two methods are shown in Tables 3.5. It can be observed that for most cases, the two 

methods select the same model terms for the first few steps. This is reasonable because 

these terms are the most significant terms and make major contribution to explaining the 

variance of system output and leaving one sample out (this scheme is used in RMSS 

method but not in OFR) does not affect the order of the selected terms. However, the two 

methods start to select different model terms when the SNR is decreased. For example, 

for 15db, the 8th terms are different; for 10db, the 6th terms become different.  These model 

terms give smaller contributions to explaining the variance in output signal, and a small 

change of single sample might affect result of selection of these terms. In other words, 

the less significant model terms are more sensitive to the effect of noise. 

Table 3.6 Performance statistics of the regular model, robust model, lasso algorithm 

and neutral networks under different noises  

SNR 

Level 

performance statistic regular  

NARX 

model 

robust  

NARX 

model 

lasso 

algorithm 

neural 

network* 

noise-free correlation coefficient 0.9365 0.9497 0.9335 0.9070 

 predicted efficiency 0.8534 0.8754 0.8573 / 

50 dB correlation coefficient 0.9374 0.9463 0.9343 0.9273 

 predicted efficiency 0.8560 0.8721 0.8587 / 

15 dB correlation coefficient 0.9117 0.9208 0.9114 0.8292 

 predicted efficiency 0.7899 0.8135 0.7808 / 

10 dB correlation coefficient 0.8339 0.8758 0.8550 0.7712 

 predicted efficiency 0.6219 0.7366 0.7025 / 

0 dB correlation coefficient 0.3780 0.4311 0.4931 0.3740 

 predicted efficiency 0.0426 0.1846 0.2221 / 

* The training algorithm is Levenberg-Marquardt. The algorithm was run for 10 times 

and the averaged correlation coefficient is recorded. 
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    As mentioned earlier, the classic OFR method uses ERR index as measure to select 

model terms; the measure is defined as how much (in percentage) of the variance in the 

response signal can be explained by a newly included model term. The RMSS method 

uses OMAE instead, which is a measure of the averaged prediction error in relation to a 

great number (say 𝐾 ) of models estimated from 𝐾  sub-datasets generated from the 

original data through a resampling process. Therefore, the resulting robust model should 

provide better overall predictive performances than the regular model. The performance 

statistics of the regular and robust models are given in Table 3.6.  The results show that 

with the decrease in SNR values, the performance of the models identified by both the 

OFR method and the robust method decreases, due to the increase of uncertainty. It should 

be stressed that even for the noise-free case, both of the two methods fail to detect the 

true model structure, because the model component 𝑢(𝑡 − 1)√|𝑦(𝑡 − 1)| is actually not 

in the pre-defined library of candidate model terms. 

    Comparing the performance statistics of the regular and robust NARX models given, 

the robust models outperform the regular models in all the cases. In addition, the 

improvement of the robust models is significant when SNR is quite low say at 10 dB and 

0 dB.  Fig. 3.4-3.6 show the model prediction of the regular and robust models for the 

three cases: noise-free and SNR=15dB and 0dB, respectively. As can be seen from the 

figures, the differences of predicted and observed output become more significant with 

the increase of noise level. It can be noted in Fig. 3.6 that there are some extremely large 

values in predicted output from the regular model, and the robust model is more 

conservative in prediction, where the amplitudes of the predicted values are in general 

smaller than that of the classical model but closer to the true values. The prediction of 

robust method has smoother curve than that of the regular method. 

We also compared the performances of proposed RMSS method with other two 

nonlinear identification methods: lasso and neural networks. Lasso aims to the degree of 

the freedom of a given model structure by shrinking the coefficients of unnecessary model 

terms to zero. The lasso method can be easily adapted to many application scenarios 

where the desired response signal is assumed to be of a sparse representation of a set of 

independent signals (predictors). However, lasso could fail to produce stable subset 

selection results when the predictors are highly correlated. The performances of the two 

methods are evaluated based on the models with the same number of model terms. From 

the results in Table 3.6, the robust NARX model outperforms the lasso method in most 
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of the cases (noise-free, SNR=50, 15, 10 dB). This is because the orthogonal forward 

regression (OFR) algorithm used in RMSS can effectively solve sever correlation and ill-

conditioning problems (Wei & Billings, 2008a; Wei, Billings & Liu, 2004).  

The applied neural network has one input layer, one hidden layer and one output layer. 

The number of neurons is 10 and the activation function is sigmoid function. Note that 

the neural network was evaluated via correlation. So only correlation statistics is 

calculated.  The estimation algorithm was run for 10 times to obtain robust results, as the 

training of neural network uses a stochastic process. Regarding all the five cases, the 

performances of the neural network models are lower than those of the other two methods. 

This might be because that the size of the data is very small, and that the power of neural 

networks is cannot be fully exploited for this small size data modelling problem. More 

importantly, the proposed RMSS method has the following superiorities: i). the procedure 

is easy to implement and not time-consuming; ii). the identified model clearly indicates 

the information of the most important model terms; iii). the identified model provides a 

transparent and parsimonious linear-in-the-parameters representation, which can be 

easily generalized to new data. It is worth mentioning that in this example, all the robust 

models were built using only 70 data points, which is quite small. This means the 

proposed RMSS method may promise an effective data driven modelling approach for 

nonlinear systems, especially for small size data with strong uncertainty. Overall, these 

results show the clear advantage of the proposed RMSS method in nonlinear model 

identification. 

Table 3.7 Comparison of the performances of robust models identified based on 

different measures 

Measures 𝜙1 𝜙2 𝜙3 𝜙4 

Correlation Coefficient 0.9208 0.9202 0.8667 0.8667 

Predicted Efficiency 0.8135 0.8059 0.7018 0.7018 

 

    In addition, for the case of SNR=15dB, three extra robust models are obtained based 

on the other three different measures defined in (3.8)-(3.10), respectively. The 

performance statistics of all the four models are given in Table 3.7 and it turns out that 

the robust model selected by OMAE over performs the other three models.    
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Figure 3.4 One-step-ahead (OSA) predictions of robust model and regular model (noise 

free) 

 

Figure 3.5 One-step-ahead (OSA) predictions of robust model and regular model (SNR 

is 15dB) 

 

Figure 3.6 One-step-ahead (OSA) predictions of robust model and regular model (SNR 

is 10dB) 

 

3.5 Real Data Case Studies 

This section presents two real data case studies to illustrate the RMSS method. The first 

case study is modelling and forecasting of Kp index with small size data. the second case 

study is modelling and forecasting of cortical response with multi-datasets data. 

Table 3.8 Kp index and solar wind variables 

Name Model variable Description 

𝐾𝑝 y Kp index 
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𝑉 u1 solar wind speed/velocity (flow speed) [km/s] 

𝐵𝑠 u2 interplanetary magnetic field factor [nT] 

𝑝 u3 solar wind pressure (flow pressure) [nPa] 

𝑛 u4 solar wind density (proton density) [n/cc] 

𝑉𝐵𝑠 u5 V × Bs/1000 

√𝑝 u6 square root of 𝑝 

 

3.5.1 Example 1- Kp index Forecasting 

Magnetic disturbance can affect many equipment and systems on or nearby earth, for 

example, navigation systems, communication systems, satellites, and power grid, etc. 

They can be paralyzed and unreliable during these severe magnetic situations. In order to 

understand and forecast the geomagnetic activity, the Kp (planetarische Kennziffer) index 

was first introduced by Bartels in 1949 (Bartels, 1949). The value of Kp index ranges 

from 0 (very quiet) to 9 (very disturbed) in 28 discrete steps, resulting values of 0, 0+, 1-, 

1, 1+,2-, 2, 2+, …, 9 (Wing, et al., 2005).  The Kp index has been recorded and updated 

since last century and become an important dataset to study space weather. The 

correlation between Kp index and solar wind parameters has been discovered by many 

researches. Normally, the solar wind variables are treated as the model inputs and Kp 

index is treated as the model output. A full description of the solar wind variables and 

derived variables is summarized in Table 3.8. 

Table 3.9 Selected terms by OFR method for Kp model 

No Term ERR(100%) Parameter 

1 u6(t-1) 79.6551 7.7057e+00 

2 u2(t-1) ×u2(t-1) 5.3507 4.0605e+02 

3 u1(t-1) 2.5907 2.3494e+00 

4 u2(t-2) 0.3058 7.4787e+00 
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Table 3.10 Selected terms by RMSS method for Kp model 

No Term OMAEs Parameter 

1 u6(t-1) 0.85592 6.4929e+00 

2 u2(t-1) 0.74081 5.0490e+01 

3 u1(t-1) ×u6(t-2) 0.68803 2.0516e+01 

4 u5(t-1) 0.65544 -8.2486e+04 

 

    The Kp index was sampled every 3 hours and the solar wind variables were sampled 

every 1 hour. It should be noted that this study aims to build the models using robust 

method to predict Kp index 3 hours ahead. Therefore, the unit of time lags of both input 

and output is 3 hours. For example, 𝑦(𝑡 − 2) is the Kp index recorded 6 hours before 

𝑦(𝑡) and 𝑢4(𝑡 − 1) is the solar wind speed recorded 3 hours before 𝑢4(𝑡). A total 

number of 150 input-output data points of the 2011 are selected for the case study. The 

maximum time lags are chosen as 𝑛𝑢 = 2 and the nonlinear degree is 2. The first 100 

samples are used for training and the remaining 50 samples are used for testing. The 

model is selected using only input lag variables, without using autoregressive variables. 

The first 4 model terms selected by OFR method and RMSS method are shown in the 

following Table 3.9 and Table 3.10. 

The performance statistics of the two models are given in Table 3.11 and Fig. 3.7 

presents comparisons between the model outputs and the associated measurements. 

Clearly, the overall performance of the robust model is better than the regular model and 

that produced by the lasso algorithm. The performance of the neural network model is 

slightly better than the robust NARX model. However, it is worth noting that the robust 

NARX model uses a much less number of model terms to provide a transparent and 

parsimonious representation, which is easy to interpret and use. Although the correlation 

between the measurements and the corresponding prediction of the neural network model 

is higher, the model itself is very complicated and difficult to write down. In contrast, the 

RMSS method and NARX model provide a transparent and parsimonious representation, 

which is simple where all the interactive relation among variables is clear. In general, the 

RMSS method achieves   a good trade-off between model complexity and model 
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performance. Overall, the robust NARX model can be a good choice for Kp index 

predictions. 

Table 3.11 Performance statistics of the regular model and robust model on Kp forecast 

Performance Statistics regular 

model 

robust 

model 

lasso neural 

networks* 

Correlation Coefficient 0.7132 0.8056 0.6109 0.8368 

Predicted Efficiency 0.2927 0.6304 0.3202 / 

NRMSE 0.2449 0.1750 0.3506 / 

* The training algorithm is Levenberg-Marquardt. The algorithm was run for 10 times 

and the averaged correlation coefficient is recorded.  

 

 

Figure 3.7 One-step-ahead (OSA) predictions of robust model and regular model for 

Kp index 

 

3.5.2 Example 2- Modelling of Cortical Response 

This section presents an example where the RMSS method is applied to an EEG 

modelling problem to identify a common model structure for 10 the cortical response of 

10 different participants. 

The data used in this study were recorded from 10 different participants, and each 

participant took part in 7 experiments with different input signals (mechanical wrist 

perturbation) (Vlaar, et al., 2017a; Vlaar, et al., 2017b). In total, there are 70 datasets, and 

each contains 256 sampled input-output data points. Thus, there are 70 datasets in total. 

Each dataset contains 210 periods (1 s per period) of signals. We average the data over 

periods to improve its signal-to-noise ratio, leaving 1 s (256 sampled input-output data 

points) per dataset as shown in Figure 3.8.  The first six experiments of each participant 

were used for model identification and the remaining one was used for model evaluation. 
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    Note that there is a large difference between the amplitudes of the input (i.e., the 

mechanical perturbation signal) and output signals (i.e., the IC component of EEG signal) 

in the original experimental datasets. In order to avoid or alleviate ill-conditioning in the 

relevant procedures (e.g. calculation of designed matrices and associated model 

parameters), the input signals are scaled up as 𝑢 = 𝑢′ × 100, where 𝑢 is the amplified 

input signal and 𝑢′ is the original input signal, so that the amplitude of the input signals 

used for model identification is at a similar scale as that of output signals.  

 

 

Figure 3.8 Input-output data pairs of the seven realizations of one representative 

participant (the input signals were amplified 100 times to make the input and the output 

in the same scale).  
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Subject-specific Structure Models for Cortical Responses to Mechanical Wrist 

Perturbations 

Subject-specific NARX and Volterra (a nonlinear model without autoregressive terms) 

models were firstly identified for each participant using the OFR algorithm (Chen, 

Billings & Luo, 1989). The OFR algorithm uses an error reduction ratio (ERR) index 

(Chen, Billings & Luo, 1989) to measure the significance of each candidate of model 

term, and then selects significant model terms based on a stepwise strategy. In each search 

step, it calculates the associated ERR value for each candidate to create a ranking order. 

Based on this ranking order, the OFR selects the most significant term for building a 

model structure.  

    In this study, the maximum lag of input was set as 𝑛𝑢 = 20 for both the NARX and 

Volterra models, and the maximum lags of output was set as 𝑛𝑦 = 5 for the NARX model. 

Since previous studies have demonstrated the dominance of second order nonlinearity in 

this dataset (Vlaar, et al., 2017b), the nonlinear degree is chosen to be 2 for both models. 

(i) one-step-ahead model predicted output: 

�̂�(𝑡) = 𝑓 (𝑦(𝑡 − 1),… , 𝑦(𝑡 − 𝑛𝑦), 𝑢(𝑡 − 1),… , 𝑢(𝑡 − 𝑛𝑢))                           (3.22) 

(ii) two-step-ahead model predicted output: 

�̂�(𝑡 + 1) = 𝑓(�̂�(𝑡), 𝑦(𝑡 − 1), … , 𝑦(𝑡 − 𝑛𝑦 + 1), 𝑢(𝑡), 𝑢(𝑡 − 1), …, 

𝑢(𝑡 − 𝑛𝑢 + 1))                                                                     (3.23) 

(iii) three-step-ahead model predicted output: 

�̂�(𝑡 + 2) = 𝑓(�̂�(𝑡 + 1), �̂�(𝑡), 𝑦(𝑡 − 1), … , 𝑦(𝑡 − 𝑛𝑦 + 2), 𝑢(𝑡 + 1), 𝑢(𝑡)… , 𝑢(𝑡 −

𝑛𝑢 + 2))                                                                                        (3.24)  

where y ̂(t) represents the model predicted output, while y(t) is the corresponding 

measured output at the time instant t. The same evaluation was also performed on the 

output estimated by the second-order Volterra method (Vlaar, et al., 2017b). 

The mean correlation coefficient, VAF and NRMSE of OSA predictions generated by 

subject-specific NARX models are 0.9710, 94.27% and 0.0458, respectively. The mean 
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correlation coefficient, VAF, and NRMSE of MSA predictions generated by subject-

specific NARX method are 0.7431, 54.84% and 0.1281, respectively. The mean 

correlation coefficient, VAF, and NRMSE of subject-specific Volterra method are 0.6625, 

42.84% and 0.1450, respectively. The results from the NARX model is significantly 

better than those from the Volterra model. Thus, the second-order NARX model provides 

a simpler model representation with better prediction performances than the second-order 

truncated Volterra model in all tested datasets.  

Common Structure Models for Cortical Responses to Mechanical Wrist Perturbations 

Table 3.12 Ten NARX models with common model structure (Pa: Estimated Parameter; Ts: T 

Statistics With 95% Confidence). 

 

COMMON 

MODEL TERMS 
VALUE 

10 SETS OF MODEL PARAMETERS WITH STANDARD ERRORS FOR 10 PARTICIPANTS 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

y(t-1) 
PA     1.9136     2.1283     1.9620     1.9062     1.7919     1.9537     1.8207     1.8540     1.7685     2.0378 

TS    39.1586    44.0510    38.6501    37.4519    35.8379    40.7721    35.4509    37.3112    34.4946    40.7741 

y(t-2) 
PA    -1.6389    -2.3801    -2.0750    -1.9747    -1.6039    -1.8897    -1.6366    -1.9239    -1.5882    -1.9979 

TS    16.1492    22.3020    19.4596    19.2289    16.4262    18.9754    16.4895    19.5723    15.8643    18.2081 

y(t-3) 
PA     1.1496     1.8781     1.5953     1.5802     1.2751     1.4604     1.2766     1.4740     1.1811     1.4295 

TS     9.6775    14.3512    12.5753    13.2003    11.5258    12.4170    11.3040    12.5733    10.3050    10.8256 

y(t-4) 
PA    -0.8802    -1.0940    -0.8163    -0.8601    -0.8167    -1.0204    -0.8348    -0.8606    -0.6631    -0.8276 

TS     8.6350    10.3107     7.7028     8.4583     8.3737    10.3214     8.4195     8.8606     6.6553     7.5462 

y(t-5) 
PA     0.3605     0.3753     0.2594     0.2450     0.2953     0.4125     0.2350     0.2961     0.2067     0.2998 

TS     7.3846     7.9710     5.1839     4.9668     5.9365     8.9470     4.7321     6.3907     4.0945     6.0141 

u(t-7)u(t-14) 
PA    -0.1579    -0.9576     2.7795    -4.4608    -0.5413     1.9474     0.4822    -4.7443    -0.8010     0.0526 

TS     0.2824     1.2252     1.9677     2.9549     0.6473     1.7759     0.3595     3.1248     0.5467     0.1008 

u(t-1)u(t-1) 
PA     0.1563    -0.1202     1.3766    -1.2776    -0.1300     0.9525    -1.1649     0.2051    -0.3703     0.1146 

TS     0.7821     0.4234     2.6169     2.2957     0.4287     2.4534     2.4056     0.3871     0.6949     0.5931 

u(t-1)u(t-18) 
PA    -0.0040    -0.1286    -0.0059     0.0936     0.2731    -0.1931     0.0772     0.3802    -0.0445     0.0494 

TS     0.0598     1.3528     0.0342     0.4992     2.6692     1.5074     0.4736     1.9592     0.2442     0.7698 

u(t-20)u(t-20) 
PA    -0.0164    -0.0546     0.0148    -0.2992     0.0527    -0.0058     0.2762    -0.5263    -0.2104     0.0240 

TS     0.2980     0.7076     0.1024     2.0001     0.6435     0.0532     2.1118     3.6043     1.4651     0.4670 

y(t-1)y(t-1) 
PA    -0.0004    -0.0004     0.0001     0.0002     0.0001    -0.0000     0.0003    -0.0006     0.0003     0.0008 

TS     0.6481     1.1333     0.5856     0.6525     0.2848     0.1825     1.1217     1.9511     0.7684     1.4559 

u(t-15)u(t-18) 
PA    -0.0842     0.1514    -0.4369     0.4028     0.0370    -0.4325    -0.3078     0.8469     0.1073    -0.0686 

TS     1.1332     1.4362     2.2765     1.9458     0.3318     3.0430     1.7342     4.0962     0.5481     0.9779 

u(t-6)u(t-12) 
PA     0.2432     3.7802    -7.9935    15.7187     2.8887    -4.1672     0.2478     8.9275     2.3809     0.3125 

TS     0.1498     1.6439     1.9138     3.5803     1.1758     1.3221     0.0635     2.0608     0.5526     0.2016 

u(t-1)u(t-8) 
PA     1.7644     9.3520   -11.8257    16.3080    -3.4110     3.2285   -11.4160    18.8067     9.4023    -1.7272 

TS     1.0645     3.8427     2.7152     3.5468     1.3480     0.9892     2.6911     4.1768     2.1317     1.0826 

u(t-4)u(t-10) 
PA    -1.0187   -23.0848    40.0287   -77.1972    -7.2711    10.2672     0.5519   -36.9031   -23.7419    -1.1842 

TS     0.1521     2.4104     2.2962     4.2000     0.7122     0.7988     0.0344     2.0595     1.3247     0.1825 

u(t-2)u(t-8) 
PA    -4.2048   -40.0234    71.4439  -104.4858     3.9345     7.8501    10.7568   -72.9761   -50.9539     3.2769 

TS     0.4693     3.1010     3.0365     4.1776     0.2882     0.4569     0.4999     3.0394     2.1237     0.3766 

u(t-4)u(t-5) 
PA     0.6918     1.8722    -0.4837     1.2057    -1.1374     2.3516    -5.1799     4.5207     1.1439    -0.5797 

TS     1.5510     2.8550     0.4214     0.9969     1.6396     2.5092     4.1501     3.6059     0.9603     1.3500 

u(t-3)u(t-9) 
PA     2.6126    45.6948   -81.8456   138.8617     5.2147   -16.2129    -1.8655    75.9933    54.9498    -0.0197 

TS     0.2212     2.7010     2.6538     4.2476     0.2897     0.7171     0.0661     2.4033     1.7373     0.0017 

constant 
PA    -0.1711    -0.8208     1.0130    -0.2438    -0.0188     0.0589     1.7409    -2.2673    -0.2763    -0.0014 

TS     0.4167     1.3881     0.9611     0.2204     0.0307     0.0745     1.6422     1.9482     0.2595     0.0036 

u(t-9)u(t-20) 
PA     0.1232     0.1400    -0.0637     0.4682    -0.3325     0.2862    -0.3279     0.4030     0.3258    -0.0239 

TS     1.3271     1.0731     0.2666     1.8478     2.4127     1.5864     1.5145     1.6409     1.3480     0.2735 

u(t-1)u(t-6) 
PA    -0.1401     3.3975   -13.2583    14.6835     0.5296    -6.0680     7.8915     5.2528     7.6663    -0.2059 

TS     0.0761     1.2961     2.7581     2.8655     0.1893     1.7153     1.7818     1.0726     1.5571     0.1152 
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A common model structure, with 10 different model parameters, was built to 

characterize the cortical response behavior of the 10 participants. The first 6 datasets of 

each participant (recorded from the first 6 experiments) were used for model 

identification, and the remaining one dataset is used for model evaluation. In total, there 

were 60 datasets for model identification and 10 datasets for model evaluation. The time 

lags of input and output were still chosen to be 𝑛𝑢 = 20 and 𝑛𝑦 = 5 and the nonlinear 

degree is chosen to be 2. The common model structure was identified using the proposed 

CMSD method based on all 60 datasets. According to the results of model length criterion, 

the optimal number of model terms was determined as 20. The common model structure 

includes the most important 20 model terms (regressors) selected from a great number of 

candidates (i.e. 351 candidates). Although the same model structure was obtained for all 

participants, subject-specific parameters were estimated to indicate the individual 

differences (see Table 3.12). 

Then, the model parameters of each individual NARX model were estimated from the 

associated 6 datasets of each participant. As shown in Table 3.12, the common model 

structure comprises of 20 terms selected by the CMSD method, and there are 10 sets of 

model parameters for different participants. For example, the model for the first 

participant is 𝑦(𝑡) = 1.9136𝑦(𝑡 − 1) − 1.6389𝑦(𝑡 − 2) + ⋯− 0.1401𝑢(𝑡 − 1)𝑢(𝑡 −

6); while the model for last participant is𝑦(𝑡) = 2.0378𝑦(𝑡 − 1) − 1.9979𝑦(𝑡 − 2) +

⋯− 0.2059𝑢(𝑡 − 1)𝑢(𝑡 − 6) .  All participants have the same model structure but 

different model parameters.  

 Table 3.13 OMAE values and error reductions (ER) of the selected 20 common model 

terms (ER= oMAE value of previous term - oMAE value of current term) 

Model Terms oMAE ER Model Terms oMAE ER 

y(t-1) 9.45 - u(t-15)u(t-18) 5.50 0.0291 

y(t-2) 7.16 2.3419 u(t-6)u(t-12) 5.46 0.0375 

y(t-3) 6.37 0.7899 u(t-1)u(t-8) 5.43 0.0366 

y(t-4) 6.02 0.3456 u(t-4)u(t-10) 5.38 0.0411 

y(t-5) 5.70 0.3291 u(t-2)u(t-8) 5.35 0.0323 

u(t-7)u(t-14) 5.65 0.0412 u(t-4)u(t-5) 5.30 0.0423 

u(t-1)u(t-1) 5.62 0.0311 u(t-3)u(t-9) 5.26 0.0455 
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u(t-1)u(t-18) 5.59 0.0325 constant 5.23 0.0364 

u(t-20u(t-20) 5.56 0.0312 u(t-9)u(t-20) 5.20 0.0317 

y(t-1)y(t-1) 5.53 0.0285 u(t-1)u(t-6) 5.17 0.0291 

   

    The significance of each model terms can be measured by the proposed oMAE. The 

oMAE values of all selected model terms in the common structure are presented in Table 

3.13. We can see that the inclusion of each model term progressively reduced the overall 

prediction error, step by step. According to our results, the first five autoregressive terms 

are important in reducing the prediction error. This result indicates that it is necessary to 

use the NARMAX method for modeling, since the Volterra model does not have 

autoregressive terms. Additionally, the t-statistics (with 95% confidence) of each selected 

model terms are presented in Table 3.12. The t-statistics indicate that the selected model 

terms are significant for most of the participants.  As shown in Table 3.13, the first 5 

autoregressive terms are important in reducing the prediction error. However, this does 

not indicate a linear AR model is sufficient to describe the system. The VAF of the linear 

AR model with only the 5 AR terms y(t-1) ... y(t-5) is only 36.83% in the 3-step ahead 

prediction. 

Similar to the individual models, we compared the OSA prediction as well as MSA (3-

step) model predicted outputs with the measured output using correlation coefficient, 

VAF and NRMSE to evaluate the models (See Table 3.14). For OSA, the mean 

correlation coefficient, VAF, and NRMSE for are 0.9691, 93.91% and 0.0472, 

respectively. For MSA, the mean correlation coefficient, VAF, and NRMSE are 0.6866, 

47.09% and 0.1387, respectively.  

Table 3.14 Performance statistics of NARX models with the common structure  

No. of 

participant 

Correlation 

(NARX-

OSA) 

Correlation 

(NARX- 

MSA) 

VAF 

(100%) 

(NARX-

OSA) 

VAF 

(100%) 

(NARX- 

MSA) 

NRMSE 

(NARX-

OSA) 

NRMSE 

(NARX- 

MSA) 

P1 0.9773 0.7556 95.52 57.08 0.0397 0.1224 

P2 0.9735 0.6366 94.74 39.53 0.0435 0.1459 

P3 0.9642 0.5750 92.95 31.17 0.0467 0.1437 

P4 0.9591 0.5891 91.94 32.26 0.0543 0.1563 

P5 0.9698 0.7848 94.04 61.57 0.0468 0.1191 
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P6 0.9681 0.7028 93.72 49.18 0.0464 0.1323 

P7 0.9784 0.8084 95.73 65.35 0.0487 0.1398 

P8 0.9587 0.5952 91.90 32.57 0.0584 0.1689 

P9 0.9607 0.6164 92.24 37.98 0.0515 0.1461 

P10 0.9813 0.8024 96.28 64.21 0.0362 0.1126 

Mean 0.9691 0.6866 93.91 47.09 0.0472 0.1387 

Std. 0.0079 0.0898 1.54 13.28 0.0062 0.0165 

 

We compared the OSA prediction as well as k-step ahead (k = 3) model predicted 

outputs with the measured output using correlation coefficient, VAF and NRMSE to 

evaluate the models (see Table 3.14). Comparisons of the NARX model predicted output 

(obtained from the k-step ahead prediction) and the corresponding measured cortical 

responses are shown in Fig. 3.9 for the ten participants. As shown in Fig.3.9, waveforms 

of predicted outputs and measured cortical responses look very similar across participants. 

The autocorrelations of model residuals are shown in Fig. 3.10. Since the common model 

estimation requires that the model fits different data realizations, the model residual may 

not be a perfect white noise. For most participants, the statistically significant non-zero 

auto-correlation values rarely occur with very small magnitudes, indicating that the 

estimated NARX models describe the inherent dynamics of the cortical response well. 

For comparison purpose, common structure Volterra models with 20 model terms are 

also built. The mean correlation coefficient, VAF, and NRMSE are 0.4893, 23.27% and 

0.1690, respectively, which are worse than the NARX model. These results indicate that 

the inclusion of autoregressive terms, as with a NARX model, improves the model 

prediction performance substantially 

The results indicated that the cortical response can be better explained by the 

NARMAX method in comparison to previous studies using a linear system identification 

approach and Volterra kernels (Vlaar, et al., 2017b). The Volterra model can be 

considered as a special case of the NARMAX model, i.e. a NARMAX model without 

autoregressive (AR) terms. Our results indicate that the AR terms are essential to reduce 

the model error and decrease the model complexity.  
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In modeling, the performance of a common structure model (and using individualized 

model parameter values) is slightly lower than subject-specific structure models. 

However, a subject-specific model structure could not summarize common characteristics 

across subjects. A common model structure attempts to capture the common 

characteristics shared by and buried in all datasets, by sacrificing local properties hidden 

in individual datasets. A key advantage of the common model structure for the cortical 

response is that the model structure reveals the most important inherent features that can 

explain all data from different participants. Nevertheless, the parameter values may differ 

from subject to subject when the common model structure is used (see Table 3.12). The 

common model structure approach may be highly useful for future pathophysiological 

research to detect abnormalities after neurological dysfunction. 

The OSA yielded much better performances than the k-step ahead for both subject-

specific models as well as the common model. The k-step ahead prediction for brain 

activity is still a recognized challenge in the specific field of brain signal modeling due 

to the complexity of brain dynamics, as well as the poor signal to noise ratio and the non-

stationary properties of EEG signals. In this study, the sampling rate of EEG signal is 256 

Hz, then each sample time lag is approximately 4 milliseconds (ms). Thus, k-step ahead 

prediction actually estimates brain activity based on the measured brain “state”, i.e. the 

output, around 12 ms ago (in case k is 3 steps).  
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Figure 3.9 Comparisons of model predicted outputs (3-step ahead prediction) and the 

corresponding measurements of cortical responses for the ten participants (red line: 

model prediction outputs, black line: measurements of cortical responses). 

As shown in Table 3.12, all model terms (except the constant term) are dynamic 

components with specific time lags. Multiple nonlinear terms and time lags in the 

common model structure revealed that the processing of somatosensory information in 

the human nervous system involves multiple neuronal circuitries with different neural 

transmission delays. These results provide new evidence to support the previous 

theoretical explanations on neurophysiological mechanisms underlying nonlinear 

processing of somatosensory information in the human nervous system (Yang, et al., 

2018).  
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Figure 3.10 Auto-correlations of the model residuals for the ten study participants (blue 

lines indicate 99% confidence bounds) 

 

The human nervous system receives the mechanical perturbation to the wrist via 

mechanoreceptors including muscle spindles, Golgi tendon organs, and cutaneous 

afferents. There are two kinds of sensory fibers in muscle spindles: type Ia primarily 

sensing muscle stretch velocity and type II primarily sensing muscle stretch. Golgi tendon 

organ (Ib fibers) detects the tendon strain and as such the force in the muscle-tendon 

complex. The transmission delays for type Ia fibers are much shorter than those for type 

II and Ib fibers. Finally, cutaneous afferents (A𝛽 fibers) conduct the activity of skin 

sensors resulting from the mechanical perturbation. When the participants are subjected 

to the mechanical perturbations, all these sensory fibers are active and sense different 

modalities with different transmission delays. Nonlinear terms with input signal u are 

likely associated with nonlinear encoding and processing of external inputs in the nervous 

system. Different time lags may be related to different transmission delays in the sensory 

input pathways from the mechanoreceptors to the brain.  
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 In the model, we also found (AR) terms with output signal y, both linear (e.g., y(t-5)) 

and nonlinear (e.g. y(t-1)y(t-1)).  These output related terms indicate that both linear and 

nonlinear neuronal interactions occur at the cortex, presumably caused by cortical neural 

networks or the inherent dynamics of the cortical processes. Nevertheless, the linear terms 

have much large weights than the nonlinear terms (see Table 3.12), indicating the 

dominance of the linear terms in the AR part of the model.  

 

3.6 Conclusion 

This chapter focuses on improving model identification methods from small size data. 

When the size of data is small or data is corrupted with noises, there is large uncertainty 

of model structure and parameter. These conditions can bring a negative effect on the 

model structure selection process of the classic OFR method. In this study, the RMSS 

method is proposed to enhance the classic OFR algorithm by selecting the robust 

significant model terms according to the OMAEs of resampled sub-datasets. The new 

method is tested on two simulation examples and real data applications. The results 

suggest that the new method can improve the prediction performance of modelling 

problems, especially when the data size is small and there are strong noises and unknown 

system components. The advantage of this robust model is that it can better capture the 

inherent dynamics of the whole dataset and thus can be well generalized to new data. 

Thus, the new method can be applied for small sample size and multiple datasets problems. 

    As this method does not analyse model uncertainty (e.g. the uncertainty existing in both 

model structure and model parameters) and its effect on model generalization 

performance. Inspired by the concepts and ideas proposed for fuzzy and cloud model, one 

of the future research directions would be focusing on quantitative analysis of model 

uncertainty, which is presented in the next chapter. In addition, the idea behind Generative 

Adversarial Network (GAN) (Liu, et al., 2019; Wang, Fan, Zhu & Tang, 2018) would be 

potentially useful for dealing with small size data modelling problem. A GAN based 

approach will be considered in future work. 
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Chapter 4 

 

SYSTEM IDENTIFICATION AND 

UNCERTAINTY ANALYSIS USING A NEW 

CLOUD-NARX MODEL 

 

 

4.1 Introduction 

In model identification, the existence of uncertainty normally generates negative impact 

on the accuracy and performance of the identified models. This chapter introduces a novel 

cloud NARX model for model identification and uncertainty analysis. It is the first time 

that a cloud representation is introduced and incorporated with NARX model to provide 

a nonlinear representation of both the systems and uncertainty.  

    The presented model uses uncertainty ‘cloud’ model and cloud transformation to 

quantify the uncertainty throughout the structure detection, parameter estimation and 

model prediction. The new predicted band can be generated to forecast AE index with 

confidence interval. The proposed method provides a new way to evaluate the model 

based on uncertainty analysis, revealing the reliability of model and visualize the bias of 

model prediction. Cloud model is a cognitive model which provides a way of bidirectional 

transformation between a qualitative concept ‘cloud’ and the quantitative data ‘cloud 

drops’ (Wang, Xu & Li, 2014). The cloud concept is described by three numerical 

characteristics, namely 𝑒𝑥 (expectation), 𝑒𝑛 (entropy) and ℎ𝑒 (hyper entropy). 𝑒𝑥 is the 

expectation of all elements in the set and 𝑒𝑛 is the variance of the distribution. ℎ𝑒 depicts 
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the degree of departure from normal distribution of the cloud model. Thus, the cloud 

model is an extension of normal distribution. In figure 4.1, several cloud models with the 

same 𝑒𝑥, 𝑒𝑛 and different ℎ𝑒 are presented as a simple example. When ℎ𝑒 = 0, the cloud 

model is a normal distribution. As ℎ𝑒 increases, the cloud model departs from normal 

distribution and follows a new ‘cloud’ distribution.  

 

 

Figure 4.1 The cloud membership functions of cloud models with different values of ℎ𝑒 

(𝑒𝑥 = 1, 𝑒𝑛 = 1) 

 

Remarks: The advantage of cloud model is that it provides a way to describe a 

distribution with only three parameters that cannot be characterized by traditional normal 

distribution. The cloud transformation is better and more powerful than the normal 

distribution in that: i) it includes normal distribution as a special case; and ii) many data 

in real life do not follow a normal distribution. In figure 1, each element is a cloud drop 

and all the cloud drops together form the cloud concept. The bridges between cloud model 

and cloud drops is cloud transformation. The forward transformation is used to generate 

cloud drops from a known cloud model. The backward transformation is used to identify 

the cloud model from a sequence of cloud drops.  

 

4.2 Cloud-NARX Model 

Under the assumption that these model structures can perfectly describe the true system 

components, most of the models are capable to provide accurate representations of the 

system. However, in many practical scenarios, this assumption is usually invalid due to 

the existence of uncertainty. The existence of noise could lead to biased parameter 

estimation, incorrected selected model terms, etc. Therefore, quantifying uncertainty is 
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essential for establishing the significance of findings and making predictions with known 

confidence.  

    From the literature, it is known that estimating the true uncertainty remains an elusive 

goal. This study aims to quantify uncertainty using a new concept called cloud model 

(Wang, Xu & Li, 2014).  Based on the cloud model and cloud transformation, a novel 

cloud-NARX model is proposed to quantify the uncertainty in the system modelling 

process. The new method can quantify the uncertainty efficiently. In addition, the new 

model is also capable to generate model prediction with known confidence and provide 

the information of how much uncertainty exists in the model prediction. 

 

4.2.1 The cloud-NARX model structure 

Based on cloud model and cloud transformation, a cloud-NARX model is proposed. The 

idea behind the metrics is to use a new uncertainty ‘concept’ (cloud model) to replace the 

traditional model parameters.  A series of predicted points can be calculated by 

performing a transformation (generic cloud transformation) to generate a series of model 

parameters (cloud drops) from the concept. These predicted points form a predicted 

distribution (surface/band) with confidence intervals, describing the uncertainty and risk 

brought by model uncertainty. The cloud-NARX model can be described:  

𝑦 = ∑ 𝐶𝑙𝑜𝑢𝑑𝑙𝑖(𝑒𝑥, 𝑒𝑛, ℎ𝑒) 𝜑𝑙𝑖
𝑛
𝑖=1                                                (4.1) 

where  𝐶𝑙𝑜𝑢𝑑𝑙𝑖 (𝑒𝑥, 𝑒𝑛, ℎ𝑒) (𝑖 = 1, 2, … , 𝑛) are the cloud models, which represent the 

estimated parameters and the uncertainty of these parameters. The parameters 𝑒𝑥, 𝑒𝑛, ℎ𝑒 

are the characteristics of each cloud model. 

 

4.2.2 Estimation of the cloud-NARX model 

The estimation of cloud-NARX model consists of three steps, which are data resampling, 

sub-model identification and cloud parameter estimation. The general process of 

estimating the cloud-NARX model is shown in Figure 4.2. 
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Figure 4.2 The process of estimation and evaluation of the cloud-NARX model 

 

    First, the original dataset can be regrouped to form 𝐾  sub-datasets through some 

resampling methods e.g. random sampling or bootstrap (Wei & Billings, 2009). Assume 

that the input and output sequence for the k-th dataset is {𝑢(𝑘)(𝑡)}
𝑡=1

𝑁𝑘
 and {𝑦(𝑘)(𝑡)}

𝑡=1

𝑁𝑘
, 

respectively, for 𝑘 = 1, 2, … , 𝐾. The model terms [𝜑1
(k)(t),… , 𝜑M

(k)(t)] of the k-th dataset 

can be generated from the associated regressor vector relating to the k-th dataset 

[𝑦(𝑘)(𝑡 − 1), … , 𝑦(𝑘)(𝑡 − 𝑛𝑦), 𝑢
(𝑘)(𝑡 − 1), … , 𝑢(𝑘)(𝑡 − 𝑛𝑢)] 

𝑇. The sub-model for the k-

th sub-dataset can be written in the compact matrix form:   

𝑦(𝑘) = ∑ 𝜃𝑙𝑖
(𝑘) 𝜑𝑙𝑖

(𝑘)𝑛
i=1                                                     (4.2) 

    Second, for each sub-dataset, the OFR algorithm can be applied to select a number of 

significant model terms to establish an individual NARX model. A common model 

structure can be formed by model terms selected in all the sub-datasets. In addition, a 

robust model structure selection (RMSS) method is developed as an alternative method, 

for small size data modelling problem (Gu & Wei, 2018a). With OFR or RMSS method, 

a common model structure { 𝜑𝑙1 , … ,  𝜑𝑙𝑛} can be identified and the associated model 

parameters for each sub-dataset can be estimated as [𝜃𝑙𝑖
(1), 𝜃𝑙𝑖

(2), … 𝜃𝑙𝑖
(𝐾)]. 
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    Finally, the cloud model for each model term can be identified from the 𝐾 groups of 

model parameters using generic backward cloud transformation (Wang, Xu & Li, 2014). 

[𝜃𝑙𝑖
(1), 𝜃𝑙𝑖

(2), … 𝜃𝑙𝑖
(𝐾)]

𝐺𝐵𝐶𝑇
→   𝐶𝑙𝑜𝑢𝑑 𝑙𝑖(𝑒𝑥, 𝑒𝑛, ℎ𝑒)                                 (4.3) 

where 𝑖 = 1, 2, … , 𝑛. So that the cloud-NARX model can be identified. 

    It is known that when the model structure is perfect, and the data is not corrupted with 

noises, any of the sub-datasets will lead to exact the same model. However, the model 

structures of the sub-models might be different when there is model uncertainty brought 

by the noises/disturbances/insufficient information. In these situations, any single model 

might be unreliable. By removing or adding some data points in the 𝐾 sub-datasets, the 

uncertainty can be quantified by the sub-models with different structures and parameters.  

 

4.2.3 Model Predicted Band and Averaged Prediction 

With identified cloud model of each parameter, 𝐾′ groups of cloud drops are generated 

using cloud forward transformation, as follows: 

𝐶𝑙𝑜𝑢𝑑 𝑙𝑖(𝑒𝑥, 𝑒𝑛, ℎ𝑒)
𝐺𝐹𝐶𝑇
→   [�̂�𝑙𝑖

(1), �̂�𝑙𝑖
(2), … , �̂�𝑙𝑖

(𝐾)]                                    (4.4) 

where �̂�𝑙𝑖
(k′)

 is the generated parameters for the model term 𝜃𝑙𝑖 with 𝑘′ = 1, 2, … , 𝐾′. A 

number of 𝐾′ predicted time series of output 𝑦 can then be calculated as:  

�̂�(𝑘′) = �̂�𝑙1
(𝑘′) 𝜑𝑙1 + �̂�𝑙2

𝑘′ 𝜑𝑙2 +⋯+ �̂�𝑙𝑛
(𝑘′) 𝜑𝑙𝑛                                        (4.5) 

where 𝑘′ is the index of predicted time series (𝑘′ = 1, 2, … , 𝐾′). The 𝐾′ model prediction 

can then form a predicted band with density. The upper and lower boundaries of the 

predicted band can be determined as:   

�̂�𝑙𝑜𝑤𝑒𝑟 = 𝑚𝑖𝑛 (�̂�
(1), �̂�(2), … , �̂�(𝐾′))                                               (4.6) 

�̂�𝑢𝑝𝑝𝑒𝑟 = 𝑚𝑎𝑥 (�̂�
(1), �̂�(2), … , �̂�(𝐾′))                                              (4.7) 

    The averaged model prediction can also be calculated as:  

�̂�𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑 =
1

𝐾′
∑ �̂�(𝑖)𝐾′
𝑖=1                                                            (4.8) 
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4.2.4 Model Performance Evaluation 

To evaluate the averaged prediction of the model, the correlation coefficient ( 𝜌 ), 

prediction efficiency (PE) and normalized root-mean-square error (NRMSE) are 

calculated. The PE is defined as:  

𝑃𝐸 = 1 −
𝜎𝑒𝑟𝑟𝑜𝑟
2

𝜎𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
2                                                              (4.9) 

where 𝜎𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
2  is the variance of the observed AE values and 𝜎𝑒𝑟𝑟𝑜𝑟

2  is the variance of 

the error between the predicted AE values and observed AE values. The accuracy of the 

predicted band can be defined as: 

𝛾 =
𝑁𝑡
′

𝑁𝑡
                                                                  (4.10) 

where 𝑁𝑡 is the total number of observed data points in test dataset and 𝑁𝑡
′ is Number of 

the observed data points within the predicted band.  

 

4.3 Simulation 

In this section, two simulation examples are presented. 

 

4.3.1 A Simple Linear System 

    Consider a simple linear system:  

𝑦 = 𝑢1 + 0.7𝑢2 + 0.4𝑢3 + 0.2𝑢4 + 𝜉(𝑡)                       (4.11) 

where the inputs 𝑢1…𝑢4 was assumed to be uniformly distributed on [−1, 1], and the 

noise  𝜉(𝑡)  is a Gaussian white noise. Input-output data points were generated and 

grouped for model estimation and performance test.  

A comparison of the NARX and cloud-NARX model is presented in Table 4.1. From 

the table, the true parameters cannot be estimated due to noise. The conventional NARX 

model uses single parameters which are biased. The cloud-NARX model uses two extra 

parameters 𝑒𝑛 and ℎ𝑒 to quantify the uncertainty of the parameter estimation. 
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Table 4.1 Estimated parameters of NARX model and Cloud-NARX model 

Terms 
True 

Parameter 

NARX 

Parameter 
𝑒𝑥 𝑒𝑛 ℎ𝑒 

𝑢1 1 0.9907 0.9907 0.0433 0.0112 

𝑢2 0.7 0.6975 0.6975 0.0434 0.0125 

𝑢3 0.4 0.4020 0.4020 0.0424 0.0122 

𝑢4 0.2 0.2034 0.2034 0.0454 0.0113 

 

    The cloud membership functions of the model terms are presented in figure 4.3. From 

the figure, the bias of parameter estimation can be well described by the cloud models. 

According to the sample prediction of the cloud-NARX model in figure 4.4, the cloud-

NARX model provide a predicted band/surface to quantify the prediction uncertainty. 

The prediction error of the conventional NARX prediction can be better described by the 

Cloud-NARX model. 

 

Figure 4.3 The cloud membership functions of the selected model terms  
𝑢1, 𝑢2, 𝑢3, 𝑢4 
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Figure 4.4 Model prediction of the cloud-NARX model 

 

4.3.2 A Nonlinear Dynamic System 

Consider a nonlinear dynamic system:  

𝑦(𝑡) = −0.5𝑦(𝑡 − 2) + 0.7𝑦(𝑡 − 1)𝑢(𝑡 − 1) + 0.6𝑢2(𝑡 − 2) + 0.2𝑦3(𝑡 − 1) −

   0.7𝑦(𝑡 − 2)𝑢2(𝑡 − 1)                                                                        (4.12) 

where the input 𝑢(𝑡) was assumed to be uniformly distributed on [−1, 1], and the noise  

𝜉(𝑡) is a Gaussian white noise. The SNR of the data is 30 dB. A total number of 1000 

input-output data points were generated. The first 500 points were used for model 

estimation and selection and the remaining 500 points were used for performance test. A 

regression vector can be defined as:  

𝜑(𝑡) = [𝑦(𝑡 − 1), 𝑦(𝑡 − 2), 𝑢(𝑡 − 1), 𝑢(𝑡 − 2)] 𝑇                                  (4.13) 

with the maximum time lags of 𝑛𝑦 = 𝑛𝑢 = 2. The initial full model was chosen to be a 

polynomial form with nonlinear degree of 𝑙 = 3. It can be noted that all the components 

of the system can be well represented by the candidate model terms. 
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Table 4.2 Cloud-NARX model with cloud parameters 

Model Term 𝑒𝑥 𝑒𝑛 ℎ𝑒 

u(t-2) *u(t-2) 0.5937 0.0268 0.0007 

y(t-2) -0.4924 0.0473 0.0026 

u(t-1) *y(t-1) 0.6923 0.0673 0.0040 

u(t-1) *u(t-1) *y(t-2) -0.7024 0.1262 0.0110 

 

 

Figure 4.5 Comparison of predicted band, averaged predicted and observation of test 

dataset  
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    The correlation coefficient, prediction efficiency and NRMSE of the Cloud-NARX 

model with 5 terms on test dataset are 0.99, 0.99 and 0.01 (averaged prediction), while 

the conventional NARX model has nearly the same statistics. 

    The reason that both the two models achieve high performances is that the system in 

this example has a structure which can be well represented by the selected model terms, 

so that there is no model structure uncertainty. Also, noise of the data is not very strong 

so that the parameters are estimated without much disturbances. Thus, it is not surprising 

that in this example, there are no significant differences of the performances of the two 

models.   

    The cloud-NARX model can provide a predicted band to visualize the confidence 

interval of the model prediction. A comparison of the predicted band/observations and 

averaged predicted line/observation is shown in Fig. 4.5. The accuracy of the predicted 

band is 90%, meaning that 90% of the observed points is within the band.  

    From the figure, the predicted band is narrow for most of the data points. When some 

points of the averaged line are far from the real observed points, the predicted band 

becomes quite wide and covers most of the observed points. In this way, it is possible to 

know when the model uncertainty is large and the averaged prediction become unreliable. 

For risk analysis and prediction, it is extremely useful to avoid losses caused by the model 

uncertainty. 

    Fig. 4.6 shows an example of the model prediction for some selected data points. From 

the figure, the frequency distribution of the predictions is displayed and the maximum, 

minimum and average value of the prediction is compared to the observation. There are 

two clear boundaries, indicating the uncertainty in the prediction. The average prediction 

can be used as the conventional model prediction. Comparing to the conventional model 

prediction, the new predicted band provides extra information on how much the 

uncertainty of model prediction is. Therefore, the cloud-NARX model is more robust and 

the uncertainty in model prediction can be visualized.  
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Figure 4.6 Prediction of Cloud-NARX model on 10 randomly selected test data points  

 

4.4 Real Data Case Study: AE Index Modelling 

This section presents a real data modelling case study, where the proposed cloud-NARX 

model is applied to the modelling and forecasting of AE index. 

 

4.4.1 Backgrounds 

Many modern technological systems are sensitive to space weather disturbances, such as 

geomagnetic storms and sub storms and ionosphere variability (Ayala Solares et al., 2016). 

The severe situations of space weather can have harmful effect on power grid, navigation 

systems, and satellite system. Thus, it is extremely important to forecast the space weather 
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disturbances to avoid damages and losses. In addition to the traditional first principle and 

statistical approaches for understanding the interactions between the solar wind and 

magnetosphere (e.g., Ala-Lahti et al., 2018 and the references therein), application of data 

based methods and in particular techniques based on machine learning to the prediction 

of various geomagnetic indices resulted in many MLE-NARMAXovative forecasting 

models (e.g. Wintoft & Cander, 2000; Chandorkar, Camporeale, & Wing, 2017; 

Camporeale et al., 2018). 

    The AE index, along with the Al and AU indices, was introduced by Davis and Sugiura 

(1966) as a measurement of global auroral electrojet activity (Mayaud 1980). Changes in 

AE are driven by variations in the solar wind convection electric field produced by 

fluctuations in the solar wind velocity and IMF. These two factors govern the efficiency 

of the coupling between the solar wind and terrestrial magnetosphere with the dominant 

role being played by a southward directed IMF. In this coupling process, the energy 

associated with the solar wind flow is converted into magnetic energy which is transferred 

into the magnetosphere via reconnection processes on the day side and is stored in the 

magnetotail. This energy is eventually released, energising the plasmasheet, ring current, 

and ionosphere. 

    Three classes of interactions have been identified, depending upon the southward 

turnings of the IMF (see e.g. Gonzales et al., 1994). Short lived southward turnings of the 

IMF with modest (Bz~-3nT) give rise to minor intensifications of the ring current, 

yielding substorm events. Repeated southward turnings, referred to as HILDCAA (high 

intensity, long duration, continuous AE activity) events arise due to the occurrence of 

interplanetary Alfven wave train embedded within the solar wind flow (Tsurutani and 

Gonzalez, 1987). These events result in a continued period of AE activity. Finally, 

Coronal Mass Ejections (CMEs) or magnetic clouds exhibit extended periods in which a 

strong Bz is observed. This coupling, between the CME and terrestrial magnetosphere, 

results in a major intensification of the ring current, and large deviations in both AE and 

Dst and is referred to as an intense magnetic storm. 

    Previous studies of substorm using AE index have provided accumulated evidence that 

the magnetosphere behaves as a nonlinear dynamic system, and it can be described by a 

small number of variables (Kamide et al., 1998). There are plenty of studies aiming to 

forecast AE index from solar wind measurements. Among the many approaches of 
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modelling and forecast, neural networks (NN) is a commonly used method. Early in 1997, 

neural network models were constructed to study prediction of the AE index (Takalo & 

Timonen, 1997). Later, an ANN algorithm based at interplanetary magnetic field 

measured on Lagrangian point L1 and plasma measurements was introduced in 2008 to 

predict AE index from 5 to 60 minutes ahead (Pallocchia et al., 2008). The ANN models 

were further improved to achieve a correlation coefficient of 0.83 for 1-hour-ahead 

forecast and 0.80 for 3-hour-ahead forecast, respectively (Bala & Reiff, 2012). In addition, 

some other approaches are also applied for the analysis, for example, a correlation 

analysis with a technique of wavelet decomposition and selective reconstruction was 

applied to analyse the relationship between AE index and solar wind variables (Guarnieri, 

et al., 2018). The advantage of neural networks and its variants is that it can provide an 

efficient nonlinear representation to generate good model predictions. However, the 

identification process of neural networks often involves a large number of variables, so 

that the model structure of neural networks can be very complicated. From such model 

structure, it is quite difficult to further understand the nonlinear dynamic of the system, 

for example, which model term/variables are superior for describing the index and which 

model terms/variables are redundant. Nevertheless, it is obvious that such a model cannot 

provide a model structure that is simple and easy for understanding.  

Another widely used approach for the modelling and forecast of magnetosphere is the 

nonlinear autoregressive with exogenous input (NARX) model. The NARX model is 

developed for the nonlinear system identification and can detect an appropriate model 

structure by selecting the most important model terms from a dictionary consisting of a 

huge number of candidate model terms (Billing 2013). Thus, it is very efficient method 

for the space weather forecast due to the fact that the magnetosphere is a nonlinear process 

(Kamide et al., 1998). The NARX model have successfully solved the modelling and 

prediction of many magnetic indices, for example, the Dst index (Balikhin et al, 2011; 

Boynton et al., 2011; Wei, et al., 2004), the Kp index (Ayala Solares et al., 2016), etc.         

Comparing to the neural networks, the NARX method only uses a small number of 

effective model terms to describe the system, so that the system can be represented a 

linear-in-the-parameter form which is parsimonious and transparent.  
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4.4.2 Data Description 

A full description of the solar wind variables and the magnetic indices is given in Table 

4.3. The AE index is one of the most widely used indices for researchers in geomagnetism, 

aeronomy and solar-terrestrial physics, to understand the geomagnetic activity. The AE 

index is the maximum deviation of the horizontal components of geomagnetic field 

variations from a set of globally distributed ground-based magnetometers located in and 

near the auroral zone in the Northern Hemisphere (Guarnieri, et al., 2018). It increases 

when a sub storm event is happening and represents the overall disturbance in both 

eastward and westward ionospheric electrojets located at around 100 km altitude (Davis 

& Sugiura, 1966).  

 

Table 4.3 Descriptions of the solar wind variables and AE index 

Variable Description 

𝑦 AE index 

𝑉 solar wind speed/velocity (flow speed) [km/s] 

Bst Interplanetary magnetic field factor [nT] 

𝑛 solar wind density (proton density) [cm-3] 

𝑝 solar wind pressure (flow pressure) [nPa] 

Note: Bst = 𝐵𝑇sin
6(𝜃/2) [nT] (Boynton et al., 2011) 

 

    The AE index and solar wind variables used in this study were all sampled hourly. The 

AE index and solar wind variables are used as the output and input of the systems 

modelling, respectively. The amplitude of the solar wind velocity is around 250-1000 

km/s, which is much larger than those of the other input signals. To avoid producing 

extreme parameter estimations, the solar wind speed/velocity variable is firstly 

normalized by 𝑉 → 𝑉′/1000, where 𝑉′ is the original signal and 𝑉  is the normalized 

signal. Two derived variables, √𝑝 and 𝑉𝐵𝑠𝑡 = 𝑉 × 𝐵𝑇sin
6(𝜃/2) (Boynton et al., 2011), 

which are effective in describing the magnetic indices, are also used as input variables for 

the system model.  
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Figure 4.7 Observation of hourly sampled AE index and solar wind variables of two 

interested periods of 2015 

 

4.4.3 Construction of the cloud-NARX Model 

The AE and solar wind data from 2011 to 2013 (around 26000 sampled data points) were 

used for training the model and the data of 2015 (around 9000 sampled data points) were 
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used for model validation. In the test dataset, two time periods of strong magnetic storm, 

17-21 Mar 2015 and 22-26 Jun 2015 (120 sampled data points for each period) were used 

as special cases to evaluate the model. The time series of the AE index and solar wind 

variables of the two interested periods are shown in Figure 4.7. The figure shows that 

there were two significant storms on 17th Mar 2015 and 22th Jun 2015. Both periods 

match ICMEs. The first period 17-21 March corresponds to St Patrick storm caused by 

the CME on the 15th of March [see:  

https://www.swpc.noaa.gov/sites/default/files/images/u33/StPatrick%27sDay_Geomagn

etic_Storm.pdf] whereas the second period 22-26 June 2015 corresponds to the ICME 

registered by Wind [https://wind.nasa.gov/cycle24.php]. 

 

Table 4.4 Cloud-NARX model with cloud parameters 

No. Model Terms 𝑒𝑥 𝑒𝑛 ℎ𝑒 

1 𝐵𝑠𝑡(𝑡 − 02) -9.7009 8.9120 0.0615 

2 𝑉𝐵𝑠(𝑡 − 1) 6.0214 24.8546 16.3577 

3 𝑦(𝑡 − 01) 0.6252 0.0108 0.0037 

4 𝑉(𝑡 − 01) ×  𝐵𝑠𝑡(𝑡 − 01) 143.6189 33.5311 0.0614 

5 𝑉(𝑡 − 01) ×  𝐵𝑠𝑡(𝑡 − 02) -19.7937 22.3581 0.6368 

6 𝑉(𝑡 − 01)  × √𝑝(𝑡 − 01) 14.3895 15.9883 0.1581 

7 𝑉(𝑡 − 02)  × 𝑝(𝑡 − 01) 7.8305 9.0816 0.1808 

8 𝑉(𝑡 − 02)  × √𝑝 (𝑡 − 01) 2.7969 7.8950 2.9935 

9 𝐵𝑠𝑡(𝑡 − 2) × √𝑝(𝑡 − 02) -0.0807 0.5708 0.9887 

10 𝑝(𝑡 − 2) × 𝑉𝐵𝑠𝑡(𝑡 − 1) -0.0795 0.2808 0.4866 

11 𝑉𝐵𝑠(𝑡 − 01)  × 𝑉𝐵𝑠𝑡 (𝑡 − 01) -5.6495 0.4665 0.7133 

12 𝑉𝐵𝑠𝑡 (𝑡 − 02)  × 𝑦(𝑡 − 01) -0.0195 0.0029 0.0008 

Note: Bst = 𝐵𝑇sin
6(𝜃/2) [nT], 𝑉𝐵𝑠𝑡 = 𝑉 × 𝐵𝑠𝑡 (Boynton et al., 2011) 

     

https://www.swpc.noaa.gov/sites/default/files/images/u33/StPatrick%27sDay_Geomagnetic_Storm.pdf
https://www.swpc.noaa.gov/sites/default/files/images/u33/StPatrick%27sDay_Geomagnetic_Storm.pdf
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In order to determine the maximum time lags for both the input and output variables, we 

have carried out pre-modelling experiments and simulations, the results suggest that the 

maximum time lags of the input and output were chosen to be 𝑛𝑢 = 2 and 𝑛𝑦 = 2. The 

initial full model was chosen to be a polynomial form with nonlinear degree of 2. The 

input-output data points of training dataset were firstly resampled 100 times with 

replacement, to form 100 sub-datasets. For each sub-dataset, a NARX model with 6 

model terms is identified. For convenience of description, these single NARX models are 

referred to as ‘individual NARX models’. Thus, there are a total number of 100 different 

individual NARX models and each has its own parameters. A total of 12 different model 

terms are selected during the 100 runs, and these terms are used for cloud-NARX model 

construction. The cloud parameters of each of these selected model terms are shown in 

Table 4.4.  

    It is noteworthy that the cloud-NARX model consists of 12 model terms, rather than 6 

terms, this is because that each individual NARX model has its own structure. There are 

some common terms which are included in nearly all the individual NARX models, for 

example, 𝑉𝐵𝑠𝑡(𝑡 − 02)  and y (𝑡 − 01) . Also, some terms for example, 𝑉𝐵𝑠𝑡(𝑡 −

02) × 𝑦(𝑡 − 01), is selected and included in a relatively small number of times out of 

the 100 runs. These rarely selected model terms are usually ignored in conventional 

NARX model because they make small contributions to the whole dataset. However, in 

some of the sub-datasets, they might be effective in some rare situations, for example, the 

peak times of the AE index.  

Figure 4.8 shows the normal cloud membership functions of the 12 selected model 

terms. The estimated parameters of the some model terms are normally distributed, for 

example, 𝐵𝑠𝑡(𝑡 − 02) , 𝑉(𝑡 − 01) ∗  𝐵𝑠𝑡(𝑡 − 01) , 𝑉(𝑡 − 01) ×  𝐵𝑠𝑡(𝑡 − 02) , 𝑉(𝑡 −

01) × √𝑝(𝑡 − 01) and 𝑉(𝑡 − 02) × 𝑝(𝑡 − 01). The distributions of the parameters of 

some other model terms (for example 𝑉𝐵𝑠(𝑡 − 1), 𝑦(𝑡 − 1), 𝑉𝐵𝑠𝑡(𝑡 − 1) × 𝑦(𝑡 − 1)) 

are beyond normal distributions. Note that the normal distributions are not always 

sufficient to describe the distribution of the estimated parameters of these model terms 

due to the existence of uncertainty which do not necessarily follow a normal distribution 

law. The three characteristics 𝑒𝑥, 𝑒𝑛 and ℎ𝑒 are used to analyze the uncertainty of each 

model term. As discussed earlier, 𝑒𝑥 is the mean of estimated parameters of each model 

term, which is consistent with the conventional model parameter;  𝑒𝑛 is the variance of 
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the parameter estimation; ℎ𝑒 is the hype-parameter to describe the degree of departure of 

the distribution to normal distribution. The values of 𝑒𝑛  of some model terms (for 

example 𝑦(𝑡 − 1)) are quite small, which indicates that the parameters of these model 

terms in the individual models are very close. In other words, the contributions of these 

model terms are consistent in each individual model. On the contrary, the values of 𝑒𝑛 of 

some model terms (for example 𝑉𝐵𝑠(𝑡 − 1) ) are quite large, which means that 

uncertainty of the estimated parameters of these model terms are strong. In the disturbed 

periods, the contributions of these model terms are different in each individual model and 

the width of the predicted band increases due to the prediction uncertainty. The cloud 

parameter ℎ𝑒 describes how much the distribution is beyond normal distribution. If the 

value of ℎ𝑒 is much smaller than that of 𝑒𝑛, it means the estimated parameters of the 

model term are normally distributed. With the hyper cloud parameter ℎ𝑒, the cloud model 

can better describe the estimated model parameters which are not normally distributed. 

 

Figure 4.8 The normal cloud membership functions of the 12 selected model terms 
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4.4.4 One-hour-ahead Prediction of AE cloud-NARX Model 

As mentioned earlier, the cloud-NARX model is built on hourly sampled data, so the 

model can be directly used to generate one-hour ahead (that is one-step-ahead) predictions 

of AE index. With the cloud parameters, the generic cloud forward transformation was 

applied to generate 100 sets of model parameters (that is called ‘cloud drops’ in the 

transformation) for all the selected terms. A total number of 100 time series of the AE 

index prediction was calculated. The average prediction and predicted band are presented 

in Figure 4.9. The predicted band is the quantification of uncertainty throughout the 

structure detection, parameter estimation and model prediction. If the model structure is 

perfect and the parameters are estimated unbiased, the predicted band will be narrow. 

Otherwise, if there are strong uncertainty in the data itself or the model structure and 

parameter, the uncertainty will be propagated to model prediction and the width of 

predicted band will be increased. 

 

 

Figure 4.9 One-hour-ahead predicted band (consists of 80% of generated model 

predictions) and averaged prediction of AE index over 17-21 Mar and 22-26 Jun of 

2015 (black line: observation; blue line: averaged prediction; green shadow: predicted 

band; red line: prediction of conventional NARX model) 

 

    From the figure, the predicted band is very wide over 17 Mar 2015 and 22 Jun 2015. 

This can be explained or understood as follows. First, from the input signals shown in 
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Figure 4.7, we know that there were interplanetary disturbances over the two periods. It 

is known that in general most storms last quite a short period in the long-term evolution 

of the process. As a consequence, most of the training data were sampled at ‘quiet’ times 

and only a very small fraction of the training data is for the storm period. This results in 

that the training data are severely ‘imbalanced’ (Ayala Solares et al., 2016). Therefore, 

while a single model may well capture the features and dynamics of the system at ‘quiet’ 

times, it may not sufficiently capture the system dynamics at the severe situation times. 

That is why the prediction band is so wide for these stormy periods. Second, the wide 

prediction band over the period of 17 Mar 2015 and 22 Jun 2015 implies that no single 

model would produce reliable prediction of AE over stormy periods, no matter 

what/which method is used to build the model. That is why we propose to carry out 

uncertainty analysis in this study.   

 

Figure 4.10 Predicted band with density over an 8-hours period on 17 Mar 2015 (FRE: 

the frequency of predicted AE occurrences in each divided bin of the predicted band) 
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Note that the predicted band in Figure 4.9 provides only rough quantification of the 

uncertainty. In many situations, the detailed information of the predicted AE index at a 

specific time point is often needed. Figure 4.10 and Figure 4.11 are the predicted bands 

with density over an 8-hours period on 17 Mar 2015 and 23th Jun 2015, respectively. 

Note that 90% of the prediction vectors are used to form the predicted band. These figures 

show the probability of the predicted AE index being in each interval. As shown in the 

figure, the interval of the predicted band for each time point is divided into 100 bins.  The 

histogram shows the probability (frequency) of a single predicted AE value occurs in each 

bin. The boundaries of the predicted band are also displayed with the histogram, to 

visualize the prediction uncertainty and make it easier to understand. In addition, it is 

straightforward to compare the observation (green line) and averaged prediction (blue 

line) of AE index in the figure. The overall accuracy of the predicted band on the test 

dataset is 65%. The accuracy of high AE period (𝐴𝐸 > 1000) is 70%.     

 

Figure 4.11 Predicted band with density over an 8-hours period on 23 Jun 2015 (FRE: 

the frequency of predicted AE occurrences in each divided bin of the predicted band) 
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The only way to reduce the width of the predicted band is to find a model structure 

which can better describe the true system. However, it is very hard, if not impossible, to 

obtain a perfect model structure for real-world system identification data modelling 

problem in the presence of strong uncertainty. Nevertheless, it should be noted that the 

performance of the model given by Table 4.4 outperforms previous models, for example, 

the NN model (Bala and Reiff, 2012) (as shown in Table 4.5). Therefore, a wide predicted 

band might indicate that a severe situation (interplanetary disturbances) is likely to 

happen. The property of the predicted band could potentially be used to forecast the 

arrival of the interplanetary disturbances.  

 

4.4.5 Performance and advantage of the cloud-NARX Model  

The performance of the averaged prediction of cloud-NARX model is comparable to the 

best NARX model with very similar structure but fixed model parameters, as shown in 

Table 4.5. Figure 4.12 presents the scatter plot of the averaged prediction and observation. 

The correlation coefficient, PE and NRMSE of the averaged prediction is 0.872, 75.97% 

and 0.0589 (for data of year 2015), which are consistent with the best NARX model. The 

NARX model outperform the NN model for 1 hour ahead prediction, as the previous NN 

model achieves the correlation of 0.83 (Bala and Reiff, 2012). More importantly, the 

cloud-NARX provides a transparent and parsimonious representation. As shown in Table 

4.4, the NARX model reveals which of the variables/model terms are significant and 

which are not, for example, the model terms 𝑉(𝑡 − 02) × 𝐵𝑠𝑡(𝑡 − 01) indicates that the 

dayside reconnection 20-40 minutes prior (Balikhin et al., 2010) is an important 

component of the system, and the model terms 𝑦(𝑡 − 1) suggests that the autoregressive 

term has a significant effect on the AE index. On the contrary, the NN models are usually 

very complicated and the training process involves a huge number of model terms and 

takes a lot of time. 

The cloud-NARX model holds all the good properties of conventional NARX model 

and possess an extra advantage. It provides a tool for understanding and analyzing 

uncertainty in the model structure and forecasting. For example, the uncertainty band in 

Figure 4.9 indicates that the model performs well for the period of 18-21 Mar 2015 and 

24-26 Jun 2015, but the model is insufficient to characterize the dynamics of the process 

for the period 17 Mar 2015 and 22-23 Jun 2015 (i.e. when a sharp change occurs in solar 
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wind variables, for example, 𝐵𝑠𝑡 /  𝑉𝐵𝑠𝑡 ). As discussed earlier, this property could 

potentially be used to forecast the arrival of a solar wind storm. 

 

Table 4.5 Comparison of the Performances of the best NARX model and cloud-NARX 

model on test data of year 2015 

Model Correlation  PE NRMSE 

Best NARX model 0.8728 0.7611 0.0588 

cloud-NARX model 0.8723 0.7597 0.0589 

NN model 0.83 / / 

 

 

Figure 4.12 Scatter plot of the averaged prediction and observation of the cloud-NARX 

model and the best NARX model on two test datasets 
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Note that the model also works well and even better in non-disturbed periods. This is 

because that the model was trained on the dataset where most of the data were sampled 

at non-disturbed period. Therefore, the system behaviors in non-disturbed periods are 

well captured by the identified model. A comparison between the observed and predicted 

AE index in two selected non-disturbed periods (23 Apr ~ 5 May & 19 Oct ~ 1 Nov) is 

given in Figure 4.13. According to the figure, the predicted band is narrow, which means 

that the uncertainty of the model is not strong. From these results, the cloud-NARX model 

also generates good prediction results in the non-disturbed times.  

 

 

Figure 4.13 One-hour-ahead predicted band and averaged prediction of AE index over 

23 Apr ~ 5 May & 19 Oct ~ 1 Nov of 2015 (black line: observation; blue line: averaged 

prediction; green shadow: predicted band; red line: prediction of convention NARX 

model) 

 

The model prediction of the cloud-NARX model and the conventional NARX model 

are consistent in non-disturbed periods. In some disturbed periods, the prediction 

performance of the cloud-NARX model is better than that of the NARX model. The 

correlation coefficient and NRMSE of cloud-NARX model in disturbed periods (AE>

1000) are 0.3422 and 0.4454, while the conventional NARX model achieves correlation 

coefficient and NRMSE of 0.3226 and 0.4518 in the same periods. As discussed earlier, 

the inclusion of some extra selected model terms in the cloud-NARX model can help 

improve the model robustness in some severe situations. Therefore, compared to the 
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conventional NARX model, the cloud-NARX model can better describe the nonlinear 

effect in the disturbed periods. 

    In addition, it is easy to generate long-term prediction using the cloud-NARX model. 

For example, the 3 hours ahead AE index forecast can be achieved by generating 3-step-

ahead model predicted output (MPO) with the cloud-NARX model. The correlation 

coefficient, prediction efficiency and NRMSE of the 3-step-ahead MPO of the cloud-

NARX model are 0.8167, 0.6667 and 0.0694, respectively. It is reasonable that the 

performance of 3 hours head prediction is lower than that of the 1 hour ahead prediction. 

It is because that at each step of the multiple-step-ahead prediction, the predicted AE 

index at previous step is used as the model input (as autoregressive variable). Thus, the 

prediction uncertainty of long-term prediction is increased due to the propagation of the 

error. 

 

 

4.5. Conclusion 

In this chapter, a new cloud-NARX model was applied to the modelling and forecasting 

of AE index. Good forecasting results were obtained for 1 hour ahead AE index prediction. 

The correlation coefficient between averaged prediction and observation is 0.87 and 

prediction efficiency of 0.81 when benchmarked for the period of 17-21 March 2015 and 

22-26 June 2015, which is nearly identical to that produced by the best NARX model. 

More importantly, the cloud-NARX model is capable to quantify the uncertainty of model 

structure, model parameter and model prediction.  

The advantages of this new model can be summarized as follows. First, the model 

structure of cloud-NARX model is more robust than that of the conventional NARX 

model, as the model terms of cloud-NARX model are selected from resampled sub-

datasets. Second, the estimated parameters (𝑒𝑥, 𝑒𝑛 and ℎ𝑒) of cloud-NARX model can 

provide more comprehensive information on the model parameter uncertainty. Third, 

based on cloud forward transformation, the cloud-NARX model can generate the 

predicted band, which clearly indicates the confidence interval of each predicted AE 

index. It is extremely important for space weather forecast, because when model becomes 

unreliable under some severe situations, the biased prediction could cause damages and 
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losses. With the predicted band, the bias of model prediction can be identified, and the 

reliability of model can be evaluated.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

105 

 

Chapter 5 

 

MACHINE LEARNING ENHANCED 

NARMAX MODEL 

 

 

5.1 Introduction 

As the size and complexity of the data largely increase in recent years, the modelling and 

forecasting of complex nonlinear systems requires more efficient and powerful 

techniques. In model identification, one of the main objectives is to generate model 

predicted output that can be relied upon for decision-making, forecasting, etc. Also, it 

becomes ever more important to develop explainable model structure, to reveal the 

detailed information of system behaviours. This study introduces a novel machine 

learning enhanced NARMAX (MLE-NARMAX) model for nonlinear systems 

identification, which can improve the model prediction performance and provide a 

transparent and interpretable representation. Case studies on the modelling and 

forecasting of the appliance energy use and Dst index are presented. The results indicate 

that the new model generates excellent model prediction and reveals the significant the 

factors for appliance energy use, for example, humidity in living room and parent room, 

temperature in laundry room, number of seconds from midnight, etc. 

 

5.2 Limitations of NARMAX model and Neural Network 

Neural network was firstly introduced to simulate the way the brain works (Zurada, 1992), 

and such a model soon became one of the most commonly-used model type for data-
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driven modelling task (Zurada, 1992).  Note that most traditional neural networks only 

contains a few (e.g. less than three) hidden layers, whose performance is not always 

evident among the available data-driven modelling tools.  

Compared to conventional neural network, deep neural network is a much more 

powerful and complicated network (Ciregan, Meier & Schmidhuber, 2012). DNN uses 

multi-layers network, as shown in Figure 5.1, which can be used to represent a large 

amount of various systems, linear and nonlinear, static and dynamic. Neural network and 

its variants, for example, the group method of data handling (GMDH), convolutional 

neural network (CNN), long short-term memory (LSTM) and DNN have been applied to 

many modelling problems (Hinton, et al., 2012; Ciregan, Meier & Schmidhuber, 2012).  

 

Figure 5.1. Deep neural network 

 

    For many modelling and forecasting problems, neural network is capable to describe 

the behaviours and features of complex systems and can usually achieve excellent model 

prediction performance. The performance of neural network could become even more 

powerful when increasing the number of the hidden layers. However, two common issues 

can arise with neural network.  The first issue is the interpretability of the model and the 

potential overfitting problem. Another issue is that it is known that complicated neural 

networks usually require a huge amount of computational time. The model structure 

contains a large number of the connections between each single layer. Improving the 

training efficiency and convergence capability has always been an important research task 

for neural network. 
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Table 5.1 Comparison of the NARMAX model and neural network 

 NARMAX Neural Network 

Model 

Complexity 

Only a small number of 

significant model terms are 

included in the model 

All the available model terms are 

included in the model 

Model 

Transparency 

Transparent linear-in-the-

parameters form 

Complex network structure 

Model 

Interpretability 

Easy to understand; 

important terms are 

revealed; 

Not interpretable; 

Cannot know which terms are 

important or not. 

Simulatability The NARMAX model can 

be written down, and 

simulations for a NARMAX 

model is possible for not 

only the modeler but also 

model users. 

The NN model is difficult to describe.  

Training data 

size 

requirement 

No special requirement The number of data points should be 

much larger than the number of 

variables. 

Prediction  

Capability 

Good prediction 

performance 

Very strong model prediction 

capability 

 

 

    Compared to neural networks, the nonlinear autoregressive moving average with 

exogenous (NARMAX) model provides a much simple representation of nonlinear 

systems (Chen & Billings, 1989; Billings, 2013). It employs an orthogonal forward 

regression (OFR) algorithm to measure and rank the significance of each candidate model 

terms, so that the most significant model terms can be selected accordingly (Aguirre & 

Billings, 1995; Chen, Billings & Luo, 1989; Wei & Billings, 2008; Wei, Billings & Liu, 
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2004). More importantly, the NARMAX model provides a transparent and parsimonious 

model structure, which is very useful for understanding and interpreting the system 

behaviour.   The NARMAX model and the OFR algorithm have been successfully applied 

to solve a wide range of real-world problems in various fields including engineering 

(Zhang, Zhu, & Gu, 2017), ecological (Marshall et al., 2016), environmental (Bigg et al., 

2014), geophysical (Amisigo, et al., 2008; Balikhin et al., 2011; Boynton, Balikhin, 

Billings, Wei, & Ganushkina, 2011), medical (Billings, Wei, Thomas, LMLE-

NARMAXane, & Hope-Gill, 2013), control technology (Tsai, et al., 2010), and 

neurophysiological (Li, Wei, Billings, & Sarrigiannis, 2016) sciences. A summary of the 

advantages and limitations of the NARMAX method and the neural network is given in 

Table 5.1.  

    In NARMAX model estimation procedure, the moving average model part (i.e. the 

noise model) is implemented as follows. In each search step, a candidate NARX model 

is established first, based on which the model error (residual) ξ(t) is calculated and used 

to estimate an associated candidate NARMAX model. The procedure repeats many times 

until a NARMAX model with good performance is established. In this study, the 

estimation of the moving average model part is omitted and replaced by a neural network 

model.  

This study presents a new type of model, which consists of two sub-models, namely, 

the NARX model component and the neural network model component. The NARX sub-

model is established to capture and represent the most important system dynamics in a 

transparent way, while the neural network sub-model is established to accommodate the 

error relating to the NARX model. In this way, both the advantages of the NARX model 

(e.g. transparent, interpretable, simple) and the neural networks (e.g. general strong 

learning ability) can be well exploited and combined. This is important for many real 

applications where it requires that the resulting model should be transparent and easy to 

use to interpret the system behaviour, but in the same time the model should possess 

excellent prediction performance. The proposed machine learning enhanced NARMAX 

model is referred to as MLE-NARMAX model.  
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5.2 MLE-NARMAX Model 

This section introduces the novel MLE-NARMAX model and the identification method 

of MLE-NARMAX model. 

 

5.2.1 Basic Idea 

As mentioned earlier, the noise vector 𝑒(𝑡) in the NARX model is usually assumed to be 

independent of any input and output variables. However, in many real data modelling 

problems, the noise vector 𝑒(𝑡)  might be correlated with input signal. Consider a 

nonlinear dynamic single input and single output system as follows: 

𝑦(𝑡) = −𝑢(𝑡 − 1)√𝑢 (𝑡 − 1) + 0.4𝑢2(𝑡 − 1) + 0.8𝑦(𝑡 − 2)𝑢(𝑡 − 1) + 𝑒(𝑡)    (5.1) 

    Assume that the maximum time lags are chosen to be 𝑛𝑢 = 𝑛𝑦 = 2 and the nonlinear 

degree of the initial full model is 2, the full dictionary of all the candidate model terms is 

𝑦(𝑡 − 1), 𝑦(𝑡 − 2), 𝑥(𝑡 − 1), 𝑢(𝑡 − 2), 𝑦(𝑡 − 1) × 𝑦(𝑡 − 1), 𝑦(𝑡 − 1) × 𝑦(𝑡 −

2), 𝑦(𝑡 − 1) × 𝑢(𝑡 − 1), 𝑦(𝑡 − 1) × 𝑢(𝑡 − 2), 𝑦(𝑡 − 2) × 𝑦(𝑡 − 2), 𝑦(𝑡 − 2) × 𝑢(𝑡 −

1), 𝑦(𝑡 − 2) × 𝑢(𝑡 − 2), 𝑢(𝑡 − 1) × 𝑢(𝑡 − 1), 𝑢(𝑡 − 1) × 𝑢(𝑡 − 2), 𝑢(𝑡 − 2) × 𝑢(𝑡 −

2). Clearly, the true system components 𝑢2(𝑡 − 1) and 𝑦(𝑡 − 2)𝑢(𝑡 − 1) are included in 

the candidate model terms dictiornary but √𝑢 (𝑡 − 1) cannot be perfectly represented by 

any the candidate model terms.  

    In this case, the polynomial NARX structure cannot perfectly describe the system 

behaviours. The traditional way to deal with the model residual in to apply the noise 

modelling process. However, the extra MA components are not useful when generating 

model prediction, which means that the long term prediction performance of the model 

can become unreliable due to the unexplained information in the model residual. To 

overcome this issue, the role of model residual needs to be considered. Based on these 

considerations, the relationship between the model residual and input signals is 

considered as a sub-system. This study proposes to use a neural network to characterize 

the model error relating to the NARX model.   Therefore, the final MLE-NARMAX 

model consists of two sub-models, the NARX sub-model and neural network sub-model. 
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5.2.2 Identification of the MLE-NARMAX Model 

Based on the above considerations, a two-stage identification method is developed, to 

establish the MLE-NARMAX model. The first stage is to identify the NARX sub-model 

and the second stage is to use an extra neural network sub-model to fit the model residual 

of NARX sub-model. 

(i). First-stage NARX sub-model 

      Using the OFR algorithm the first-stage NARX sub-model can be established as:  

𝑦𝑁𝐴𝑅𝑋(𝑡) = 𝜃𝑙1𝜑𝑙1(𝑡) + ⋯+ 𝜃𝑙𝑛𝜑𝑙𝑛(𝑡) + 𝑒(𝑡)                        (5.2) 

where 𝜑𝑙1(𝑡), 𝜑𝑙2(𝑡),… , 𝜑𝑙𝑛(𝑡) are the selected model terms and 𝜃𝑙1 , 𝜃𝑙2 , … , 𝜃𝑙𝑛 are the 

estimated parameters. Note that the NARX sub-model is a linear-in-the-parameters 

representation, where individual model terms are fully transparent, and their contributions 

are measurable and interpretable. The significant model terms are selected from a pre-

specified dictionary and then ranked based on the values of the ERR index. While in most 

situations, NARX model can provide a good representation of the underlying system 

dynamics of interest, NARX model might not sufficiently capture all the details of the 

system. This motivates the use of a neural network sub-model in the second stage to 

improve the prediction performance.  

 

 (ii). Second-stage neural network sub-model 

In the second stage, a neural network is used to approximate the model residual of the 

NARX model. Note that the output (desired signal) of the neural network is the model 

error, while the inputs of the neural network include not only the original input variables 

of the NARX model, but also the lagged versions of the model residual variable. The 

motivation of introducing a neural network model to approximate the model error is to 

take advantage of neural network approximation capability to accommodate the 

dependent and correlated relations between the model error and all the candidate 

explanatory variables that are sufficiently explained by the NARX model.  

      To avoid any confusion, in this study we use e(t) and 𝜀(𝑡) to represent noise (of a 

general sense) and model error (residual). The model error of the NARX model (5.2) is:  

𝜀(𝑡) = 𝑦(𝑡) − �̂�𝑁𝐴𝑅𝑋(𝑡)                                         (5.3) 
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      The signal 𝜀 (t) is used as the desired output signal to train the neural network sub-

model of the form:   

𝜀(𝑡) = 𝑔[𝜔1(𝑡),𝜔2(𝑡), … , 𝜔𝑀′(𝑡)]                                    (5.4) 

where 𝑔[∙] represents the constructed neural network sub-model, and the input vectors 

𝜔𝑘(𝑡), with 𝑘 = 1,2, … ,𝑀′, are defined as  𝑦(𝑡 − d),… , 𝑦(𝑡 − 𝑛𝑦), 𝑥1(𝑡 − 𝑑)… , 𝑥1(𝑡 −

𝑛𝑢), 𝑥2(𝑡 − 𝑑),… , 𝑥2(𝑡 − 𝑛𝑢) … , 𝑥𝑟(𝑡 − 𝑑),… , 𝑥𝑟(𝑡 − 𝑛𝑢), 𝜀(𝑡 − d)), … , 𝜀(𝑡 − 𝑛𝑧), 

where 𝑛𝜌 is the time lag for the error signal. Note that the neural network sub-model uses 

all the model terms 𝜔1(𝑡), 𝜔2(𝑡), … , 𝜔𝑀′(𝑡), meaning that the model structure can be 

extremely complicated and the modelling process can therefore time-consuming. The 

applied neural network has one input layer, one hidden layer and one output layer. The 

number of neurons is 10 and the activation function is sigmoid function. 

 

Figure 5.2. The MLE-NARMAX model structure 
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      The general structure of the MLE-NARMAX model is presented in figure 5.2, where 

the MLE-NARMAX model can be explicitly expressed as:   

𝑦(𝑡) = 𝜃𝑙1𝜑𝑙1(𝑡) + 𝜃𝑙2𝜑𝑙2(𝑡) + ⋯+ 𝜃𝑙𝑛𝜑𝑙𝑛(𝑡) + 

𝑔[𝜔1(𝑡),𝜔2(𝑡), … , 𝜔𝑀′(𝑡)]                                                  (5.5) 

where the  𝜃𝑙1𝜑𝑙1(𝑡) + 𝜃𝑙2𝜑𝑙2(𝑡) + ⋯+ 𝜃𝑙𝑛𝜑𝑙𝑛(𝑡)  is the NARX sub-model and 

𝑔[𝜔1(𝑡),𝜔2(𝑡), … , 𝜔𝑀′(𝑡)] is the neural network sub-model. The model prediction of the 

MLE-NARMAX model can be calculated as:  

�̂�𝑀𝐿𝐸−𝑁𝐴𝑅𝑀𝐴𝑋(𝑡) = �̂�𝑁𝐴𝑅𝑋(𝑡) + 𝜀𝑁�̂�(𝑡)                                          (5.6)                      

where �̂�𝑁𝐴𝑅𝑋(𝑡) is the model prediction of NARX sub-model and 𝜀𝑁�̂�(𝑡) is the model 

prediction of neural network sub-model.  

 

5.3 Simulation Example 

Consider a nonlinear dynamic single input and single output system: 

𝑦(𝑡) = −𝑢(𝑡 − 1)√𝑢 (𝑡 − 1) + 0.4𝑢2(𝑡 − 1) + 0.8𝑦(𝑡 − 2)𝑢(𝑡 − 1) + 𝑒(𝑡)    (5.7) 

    Assume that the maximum time lags are chosen to be 𝑛𝑢 = 𝑛𝑦 = 2 and the nonlinear 

degree of the initial full model is 2, a number of 14 candidate model terms can be 

generated. The system component 𝑢(𝑡 − 1)√𝑢 (𝑡 − 1) cannot be perfectly described by 

the model term selected by the OFR algorithm (as shown in Table 5.2).  

Table 5.2 Selected model terms by OFR algorithm with associated ERR values and 

estimated parameters  

No. Model Term ERR (100%) Parameter 

1 u(t-01) *u(t-01)     36.1871     0.4005 

2 u(t-01)                 28.1675    -0.2587 

3 u(t-01) *y(t-01)      9.6927    -0.5915 

4 u(t-01) *y(t-02)     6.1369     0.4808 
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    In this case, the model residual of the NARX model can be further fitted by the neural 

network sub-model. The second-stage neural network model can be identified. The 

performance of first-stage NARX model and the new MLE-NARMAX model are shown 

in Table 5.3.  

 

Table 5.3 Comparison of performances of NARX and MLE-NARMAX models on test 

dataset 

Model Type Corr PE NRMSE 

Conventional NARX model 0.8534 0.7281 0.0768 

MLE-NARMAX Model  0.8953 0.8015 0.0656 

* The algorithm was run for 10 times and the averaged statistics are recorded 

 

 

Figure 5.3 Comparison of the observation and prediction of first-stage NARX model and 

MLE-NARMAX model 
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A comparison of the model prediction of the NARX, neural network and MLE-

NARMAX model is shown in figure 5.3. Note that estimation algorithm was run for 10 

times to obtain robust results, as the training of neural network uses a stochastic process. 

Clearly, the extra second-stage neural network sub-model can improve the model 

prediction performance. Although the neural network sub-model is not transparent and it 

is impossible to know what the system is like from the model, the NARX sub-model is 

interpretable and able to provide the detailed system information. For example, the system 

components 𝑦(𝑡 − 2)𝑢(𝑡 − 1)  and 𝑢(𝑡 − 1)𝑢(𝑡 − 1)  are revealed and selected in the 

NARX sub-model. Due to the system noise and uncertainty brought by the ‘unknown’ 

component 𝑢(𝑡 − 1)√𝑢 (𝑡 − 1), there is bias in the parameter estimation. It is normal as 

most of the read data comes with strong noise. However, as discussed earlier, the term 

selection process of OFR algorithm is not affected by noise. Thus, the selected terms in 

NARX model sub-model is reliable.  

 

5.4 Case Study: Dst Index Forecast 

The magnetosphere is a very complex system. To understand the magnetosphere system, 

the Dst index was developed to measure the magnetic disturbances and it is known to be 

correlated with a number of solar wind variables (Wei, Billings & Balikhin, 2004; Wei, 

et al., 2007; Kamide, et al., 1998). In (Wu & Lundstedt, 1996; Wu & Lundstedt, 1997), 

recurrent neural networks were first proposed for Dst index prediction. Since then, many 

other neural network models have been introduced for Dst index prediction (Gonazalez, 

et al., 2004); Amata, et al., 2008; Temerin & Li, 2002; Temerin & Li, 2006). The 

NARMAX method has also been applied to Dst index forecasting (Boynton, et al., 2011a; 

Boynton, et al., 2011b). Other methods, for example, wavelets models were also used to 

forecast Dst index (Wei, Billings & Balikhin, 2004; Wei, et al., 2007). A comparison 

study of the Dst index forecast models suggests that the neural network by Temerin and 

Li produces the best predictions when all the events are considered (Ji, et al., 2012). The 

process of Dst is treated to be a dynamic nonlinear system, where the system inputs are 

solar wind variables and the system output is the Dst index. The description of the solar 

wind variables and Dst index is given in Table 5.4. All the variables were sampled every 

1 hour. It should be noted that 𝑉𝐵𝑠𝑡 = 𝑉 × 𝐵𝑇sin
6 (
𝜃

2
) /1000 is a multiplied input which 

was suggested to be included in the model inputs (Gonzalez, et al., 1994). 
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Figure 5.4 Observations of sampled Dst index and solar wind variables of the three test 

periods. 

 

The Dst and solar wind data of year 2014 were used for training the model. Three time 

periods of intense storms (Dst<-100nT), Mar 2015, Jun 2015 and Sep 2017 were used to 
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evaluate the model. The time series of the Dst index and solar wind variables of the three 

interested periods are shown in figure 5.4. For Dst index forecast, negative peak values 

are important. From the figure, there are strong storms in these periods. In total, there are 

around 8700 data points in the training dataset and around 2200 data points in the three 

test datasets. 

Table 5.4 Dst index and solar wind variables 

Name Description 

Dst Dst index [nT] 

V solar wind speed/velocity (flow speed) [km/s] 

p solar wind pressure (flow pressure) [nPa] 

n solar wind density (proton density) [cm-3] 

B interplanetary magnetic field (IMF) [nT] 

Bz the north-south IMF [nT] 

Bst Bst = 𝐵𝑇sin
6(𝜃/2) [nT] [8] 

 

 

5.4.1 Predict Dst index 3 hours ahead 

The 3 hours ahead prediction of Dst can be defined as:  

𝐷𝑠𝑡(𝑡) = 𝐹𝑀𝐿𝐸−𝑁𝐴𝑅𝑀𝐴𝑋[𝐷𝑠𝑡(𝑡 − 3)…𝐷𝑠𝑡(𝑡 − 𝑛𝑦), 𝑉(𝑡 − 3)…𝑉(𝑡 − 𝑛𝑢), 𝑝(𝑡 −

3)…𝑝(𝑡 − 𝑛𝑢), 𝑛(𝑡 − 3)…𝑛(𝑡 − 𝑛𝑢), 𝐵(𝑡 − 3)…𝐵(𝑡 − 𝑛𝑢), 𝐵𝑧(𝑡 − 3)…𝐵𝑧(𝑡 −

𝑛𝑢), 𝐵𝑠𝑡(𝑡 − 3)…𝐵𝑠𝑡(𝑡 − 𝑛𝑢), 𝑉𝐵𝑠𝑡(𝑡 − 3)…𝑉𝐵𝑠𝑡(𝑡 − 𝑛𝑢)]                       (5.8) 

where 𝐹𝑀𝐿𝐸−𝑁𝐴𝑅𝑀𝐴𝑋 is the MLE-NARMAX framework. To evaluate the prediction of 

the model, the correlation coefficient, prediction efficiency (PE), and normalized root-

mean square error (NRMSE) are calculated.  
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Table 5.5 Selected model terms of the NARX sub-model 

No Model Term ERR (100%) Parameter t-statistics 

1 Dst(t-03) 78.1229 0.8462 103.3129 

2 B(t-04) *VBst(t-03)  3.3731 -0.1680 4.6679 

3 B(t-04) *VBst(t-04)  0.4205 0.1528 6.1903 

4 p(t-03) *p(t-04)  0.3519 -0.2623 16.1041 

5 Bz(t-03) *Bst(t-03)  0.2090 0.2002 13.3520 

6 p(t-04) *n(t-03)  0.1400 0.0728 11.8165 

7 n(t-04) *Dst(t-03)  0.1077 -0.0064 7.0959 

8 Bst(t-03) 0.0645 -0.6475 6.9029 

9 Bz(t-03) *Bz(t-03)  0.0590 0.0346 8.5650 

10 V(t-04) *Bz(t-04)  0.0844 -0.0006 6.5766 

 

5.4.2 The identified MLE-NARMAX model 

In order to determine the maximum time lags for both the input and output variables, 

following the approach described in (Wei, Billings & Liu, 2004) we have carried out pre-

modelling experiments and simulations (Wei, Billings & Liu, 2004), the results suggest 

that the maximum time lags of the input and output were chosen to be 𝑛𝑢 = 4 and 𝑛𝑦 =

4. The initial full model was chosen to be a polynomial form with nonlinear degree of 2. 

    In the first step, a 10-term bilinear NARX sub-model was identified. The 10 model 

terms, together with their corresponding ERR values and t-statistics, are shown in Table 

5.5. The t-statistics given in the table indicates that all the selected model terms are 

significant.  Note the first-stage bilinear NARX model reported in Table 5.5 can be 

written as:  

𝐷𝑠𝑡(𝑡) = 0.8462 𝐷𝑠𝑡(𝑡 − 3) − 0.1680 𝐵(𝑡 − 4) 𝑉𝐵𝑠𝑡(𝑡 − 3) + ⋯                  (10) 
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Figure 5.5 Comparison of the predictions of the NARX model, neural network model 

and MLE-NARMAX model of the three test datasets.  

 

    In the second step, the neural network sub-model was estimated to fit the error of 

NARX sub-model. The estimation algorithm was run for 10 times and the averaged 

performances were recorded. Then, the final MLE-NARMAX model is obtained with the 
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NARX sub-model and the neural network sub-model. As the neural network contains too 

many nodes and connections, the details of the model are not presented here.  

Table 5.6 Comparison of the performances of NARX model, neural network and MLE-

NARMAX model of the three test periods 

Period Model 

Type 

Correlation 

Coefficient 

Prediction 

Efficiency 

NRMSE 

 NARX 0.9502 0.9029 0.0353 

Mar 2015 Neural Network* 0.9716 0.9439 0.0269 

 MLE-NARMAX* 0.9734 0.9474 0.0260 

 NARX 0.8907 0.7368 0.0678 

Jun 2015 Neural Network* 0.9599 0.9212 0.0364 

 MLE-NARMAX* 0.9598 0.9173 0.0368 

 NARX 0.8828 0.7735 0.0642 

Sep 2017 Neural Network* 0.9295 0.8487 0.0500 

 MLE-NARMAX* 0.9206 0.8333 0.0529 

* The algorithm was run for ten times and the averaged statistics are recorded 

 

5.4.3 Performance and advantage of the MLE-NARMAX model 

The MLE-NARMAX model was used to generate 3 hours ahead Dst predictions for the 

three test periods: Mar 2015, Jun 2015 and Sep 2017. Figure 5.5 presents graphical 

comparisons of the observed and predicted Dst index of the three test periods. The 

statistical performances of the NARX model, neural network and the MLE-NARMAX 

model on the three test periods are presented in Table 5.6. From the statistics, the 

performances of the MLE-NARMAX model are similar to those of the neural networks 

and better than those of the NARX models for all the three test periods. It can be seen that 

for the test period of June 2015, the improvement is obviously more significant than those 

for the other two periods. From Table 5.6 and Figure 5.5, it can be noticed that while the 

bilinear NARX structure can well capture the features and dynamics of the Dst process at 

most times of the test periods of June 2015 and September 2017, the model does not 

sufficiently capture the system dynamics at the severe situation times. The neural network 

sub-model, however, can help improve the model performance. 
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Figure 5.6 Scatter plots of the 3 hours ahead NARX model, neural network model and 

MLE-NARMAX model of the three test datasets.  

    

    Figure 5.6 shows the scatter plots of the NARX model, neural network and MLE-

NARMAX model. From these plots, it can be seen that the MLE-NARMAX model 

produces better predictions for strong storms (Dst< -100nT) than the bilinear NARX 
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model alone.  In other words, the results show that the combination of the NARX sub-

model and neural network sub-model can better predict change of the Dst index during 

strong storm periods. 

From the results shown in Table 5.5, the NARX sub-models only consists of 10 

significant terms. Obviously, the model provides a parsimonious and transparent 

representation, where contributions of the selected model terms are clear. However, such 

a simple bilinear NARX model may not always be sufficient to capture the underlying 

dynamics of the process, and the model prediction performance may be improved by 

introducing a sub-model to characterize some dynamics of the system hidden in the model 

residuals that is not captured by the sub-NARX model. This explains why the two-stage 

MLE-NARMAX performs better than the NARX model.    

 

Figure 5.7 Training state of the neural network sub-model of the MLE-NARMAX 

model. 

 

    Note that although the neural network sub-model improves the model performance, the 

model structure itself cannot be written down. Figure 5.7 shows the training state of one 

of the neural network sub-models. The two variables ‘gradient’ and ‘gamk’ indicate the 

values of the associated gradient and the effective number of parameters at each iteration, 

respectively. The figure shows that during the training process of the MLE-NARMAX 

models, the neural network sub-model contains over 150 parameters. The model 

complexity of the neural network sub-model is much higher than that of the NARX sub-

model. In addition, the neural network sub-model takes many steps to train. For ‘big’ data 

modeling problems where the data size is much larger, the training of neural network can 

take quite long time. On the contrary, the training of the NARX sub-model only takes a 
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few steps and use relatively much less time. Therefore, the MLE-NARMAX model is 

developed so that it can take the advantages of both NARX model and neural network 

model. For example, it provides a transparent representation of complex nonlinear 

systems, which helps to understand the systems behaviors. Meanwhile, it provides good 

model prediction performance. 

 

5.5 Case Study: Modelling and Forecasting of Energy Use 

    The energy use of appliances has received a lot of attention in recent years (Candanedo, 

Feldheim & Deramaix, 2017). Understanding the relationship between energy use and 

different potential factors (variables) is very important for many applications, for example, 

load control of the energy management system (Zhao, Suryanarayanan & Simões, 2013; 

Barbato, et al., 2011), building performance simulation (Muratori, et al., 2013; Crawley, 

et al., 2008), control of the energy consumption (Perez-Lombard, Ortiz & Pout, 2008). 

Different methods have been applied to the analysis of the energy use, including 

regression models (Candanedo, Feldheim & Deramaix, 2017; Nicoleta, et al., 2012; 

Candanedo, Dehkordi & Stylianou, 2013), neural networks (Ekici & Aksoy, 2009; 

Gonzalez & Zamarreno, 2005), machine learning (Li, Bowers & Schnier, 2010; Dong, 

Cao & Lee, 2005), ensemble modelling (Fan, Xiao & Wang, 2014). As reported in the 

literature, the energy use of appliances can be explained by many factors,  such as 

humidity and temperature of different areas in the building, weather condition outside the 

house, number of the seconds from midnight (Candanedo, Feldheim & Deramaix, 2017). 

Some non-temperature features such as solar radiation were also found to affect the 

energy use (Fikru & Gautier, 2015). The usage of some energy efficient appliances, 

programmable thermostats and insulation were correlated with slight increase in energy 

consumption (Kavousian, Rajagopal & Fischer, 2013). The occupants’ behaviour has also 

been proved to be effective on the energy use (Masoso & Grobler, 2010; Yan, et al., 2015). 

There are some other factors which were found to be effective, such as socio-enconomic 

and dwelling factors (Jones, Fuertes & Lomas, 2015). 
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5.5.1 Data and Variable Description 

The appliance energy use data used in this study is at 10 min for about 4.5 months. The 

house temperature and humidity conditions were monitored with a ZigBee wireless 

sensor network. Each wireless node transmitted the temperature and humidity conditions 

around 3.3 min and the wireless data was averaged for 10 minutes periods. The energy 

data was logged every 10 minutes with m-bus energy meters (Candanedo, Feldheim & 

Deramax, 2017). Weather from the nearest airport weather station (Chievres Airport, 

Belgium) was downloaded from a public data set from Reliable Prognosis (rp5.ru), and 

merged together with the experimental data sets using the date and time column. Two 

random variables have been included in the data set for testing the regression models and 

to filter out non predictive attributes (parameters). The descriptions of all the variables 

are given in Table 5.7 (Candanedo, Feldheim & Deramax, 2017). The appliances energy 

use is considered as the output variable and the other features are considered as the input 

variables.  The number of seconds from midnight is a derived variable. 

 

Table 5.7 Descriptions of variables 

Variables No.  Description 

Appliances y energy use in Wh 

lights u1 energy use of light fixtures in the house in Wh 

T1 u2 Temperature in kitchen area, in °C 

RH_1 u3 Humidity in kitchen area, in % 

T2 u4 Temperature in living room area, in °C 

RH_2 u5 Humidity in living room area, in % 

T3 u6 Temperature in laundry room area in °C 

RH_3 u7 Humidity in laundry room area, in % 

T4 u8 Temperature in office room, in °C 

RH_4 u9 Humidity in office room, in % 
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T5 u10 Temperature in bathroom, in °C 

RH_5 u11 Humidity in bathroom, in % 

T6 u12 Temperature outside the building (north side), in °C 

RH_6 u13 Humidity outside the building (north side), in % 

T7 u14 Temperature in ironing room, in °C 

RH_7 u15 Humidity in ironing room, in % 

T8 u16 Temperature in teenager room 2, in °C 

RH_8 u17 Humidity in teenager room 2, in % 

T9 u18 Temperature in parents room, in °C 

RH_9 u19 Humidity in parents room, in % 

Tout u20 Temperature outside (from Chievres weather station), in °C 

Pressure u21 Pressure (from Chievres weather station), in mm Hg 

RH_out u22 Humidity outside (from Chievres weather station), in % 

Wind Speed u23 Wind speed (from Chievres weather station), in m/s 

Visibility u24 Visibility (from Chievres weather station), in km 

Tdewpoint u25 Tdewpoint (from Chievres weather station), in °C 

rv1 u26 Random variable 1, nondimensional 

rv2 u27 Random variable 2, nondimensional 

NSM u28 number of seconds from midnight, in s 

 

    The appliances energy use and the variables in Table 1 are sampled every 10 minutes, 

from 17:00 of 11 Jan to 18:00 of 27 May of 2016. There are a total number of 19736 

observed data points. The first 75% of the data is used for model training and the 

remaining 25% of the data is used for model testing. Figure 5.8 shows the full time series 

of the appliances energy use and Figure 5.9 gives an example of the appliances energy 

use of a representative week. It can be seen that the midday and the evening are two 
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periods when the appliances energy use increases significantly. The daily appliances 

energy use of the weekends is lower than that of the weekdays.  

 

Figure 5.8 Observed appliances energy use from 1 Jan to 27 May 

 

Figure 5.9 Observed appliances energy use in a representative week (From Monday 22 

Feb to Sunday 28 Feb) 

 

5.5.2 Model Construction 

In this case study, the MLE-NARMAX model was employed to predict energy use 10 

minutes ahead. As discussed earlier, the construction of the MLE-NARMAX model 

contains two steps. At the first step, the NARX sub-model is identified by the OFR 

algorithm; at the second step, the neural network sub-model is identified using the model 

residual (noise sequence) of the first-stage NARX sub-model.  
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Figure 5.10 Number of selected model terms versus APRESS value (alpha is a tuning 

parameter) 

 

i) First-stage NARX sub-model 

For the NARX sub-model, the maximum time lag of the input and output variables are 

chosen to be 𝑛𝑢 = 2 and 𝑛𝑦 = 2. The candidate variable vector for model construction 

is:  

𝜗(𝑡) = [𝑦(𝑡 − 1), 𝑦(𝑡 − 2), 𝑢𝑚(𝑡), 𝑢𝑚(𝑡 − 1), 𝑢𝑚(𝑡 − 2)] 
𝑇 

where 𝑢𝑚(𝑡), … , 𝑢𝑚(𝑡 − 2) (𝑚 = 1, 2, … , 28) are the input variables (as listed in Table 

1) and 𝑦(𝑡 − 1), 𝑦(𝑡 − 2) are the autoregressive terms. The initial full model was chosen 

to be a polynomial form with nonlinear degree of 𝑙 = 2. There are a total number of 1770 

of candidate model terms, including the first-order terms, the second-order terms and the 

constant term. The number of terms that should be included in the model is determined 

by the APRESS criterion (Billings & Wei, 2008). As shown in Figure 5.10, there is 

turning points at 4, 7 and 14, which indicates that the optimal number of model terms can 

be 4, 7 or 14. According to the results of pre-modelling experiments and simulations, a 

number of 7 model terms are selected to construct the NARX model. 
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    The 7 selected model terms, their associated ERR values and estimated parameters are 

given in Table 5.8. The importance of these selected model terms are quantified and 

ranked by the ERR index. The NARX sub-model in Table 2 should read as: 

𝑦(𝑡) = 0.9553𝑦(𝑡 − 1) − 0.0004𝑦(𝑡 − 1)𝑦(𝑡 − 2) + ⋯                       (5.9) 

 

Table 5.8 Selected model terms by OFR algorithm with associated ERR values and 

estimated parameters of NARX sub-model 

No. Model Term ERR (100%) Parameter t-statistics 

1 y(t-1) 75.5984 9.5526e-01 6.1719e+01 

2 y(t-1) *y(t-2) 1.8692 -3.8010e-04 1.7518e+01 

3 y(t-1) *y(t-1) 0.4692 -1.4239e-04 5.3335e+00 

4 u1(t) *u19(t-2) 0.1441 1.2398e-01 6.9934e+00 

5 u1(t) *u5(t) 0.0656 -1.1020e-01 6.0755e+00 

6 u6(t) *u28(t) 0.0660 3.3825e-05 1.1715e+01 

7 u28(t) *u28(t-2) 0.1480 -7.8836e-09 1.0058e+01 

 

 

ii) Second-stage neural network sub-model 

The model residual of the first-stage NARX sub-model is calculated as:  

𝑧(𝑡) = 𝑦(𝑡) − �̂�(𝑡) = 𝑦(𝑡) − [0.9553�̂�(𝑡 − 1) − 0.0004�̂�(𝑡 − 1)�̂�(𝑡 − 2) + ⋯ ]  (5.9) 

    The model residual 𝑧(𝑡)  is considered as the output layer of neural network. The 

variables 𝑢1… . 𝑢28 are used as the input layers. The neural network is established by 

running the algorithm for 10 times and the averaged performances are recorded.  

    Because that the neural network structure is not transparent, the information of the 

significance of the input variables can’t be known and. Therefore, the neural network 

model is only useful for generating model prediction, but not for understanding the system 
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behaviours. Assume that the predicted output signal of the neural network can be 

described as �̂�(𝑡), the model prediction of the final MLE-NARMAX model is:  

�̂�𝐼𝑁𝑁(𝑡) = �̂�(𝑡) + �̂�(𝑡) = 0.9553�̂�(𝑡 − 1) + ⋯+ �̂�(𝑡)                   (5.10) 

 

5.5.3 Model Performance 

The statistics of prediction performances of the first-stage NARX sub-model, the 

conventional neural network model and the MLE-NARMAX model are shown in Table 

5.9. Figure 5.11 shows the scatter plot of the three models and Figure 5.12 shows the 

comparison of the observed the predicted energy use of MLE-NARMAX model. The 

correlation coefficient, prediction efficiency and NRMSE of the NARX sub-model on 

test dataset are 0.7494, 0.5606 and 0.707, respectively. The overall correlation coefficient 

of the MLE-NARMAX model is 0.7804. The prediction efficiency is about 0.6078 and 

the NRMSE is about 0.0665. It can be seen that the model prediction is improved by the 

extra neural network sub-model. From the results, the MLE-NARMAX model and 

conventional neural network model outperform the conventional NARX model. The 

performance of MLE-NARMAX model is slightly better than that of the conventional 

neural network model.  

 

 

Figure 5.11 Scatter plot of observed and predicted appliance energy use (left: First-

stage NARX model, middle: Neural Network, right: MLE-NARMAX Model) 
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Figure 5.12 Comparison of observed and predicated appliances energy use of MLE-

NARMAX model 

 

 

Table 5.9 Comparison of performances of three models on test dataset 

Model Type Correlation PE NRMSE 

First-stage NARX model 0.7494 0.5606 0.0707 

Neural Network*  0.7790 0.6054 0.0667 

MLE-NARMAX Model*  0.7804 0.6078 0.0665 

* The algorithm was run for 10 times and the averaged statistics are recorded 
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5.5.4 Discussion 

Our results indicated that the appliances energy use can be better explained by the new 

MLE-NARMAX method in comparison to conventional NARX and neural network 

model. The model involving the autoregressive terms and dynamic components reflects 

the close-loop and dynamic features of the systems. As shown in Table 5.8, all the model 

terms of first-stage NARX sub-model are dynamic with specific time lags and the model 

structure of is fully transparent. The significant model terms are picked out from a huge 

number of candidate terms, which largely reduces the time and cost for data collection 

and investigation. In general, the first-stage NARX sub-model provides a parsimonious 

and interpretable representation, which is able to describe the majority of the variance of 

system output (PE=56%). The second-stage neural network sub-model is developed to 

further improve the model performance. According to the results shown in Table 5.9, the 

prediction performance of MLE-NARMAX model is improved by the extra neural 

network sub-model for around 5%. It is because that the unexplained information in the 

model residual of the first-stage NARX sub-model can be further described by the neural 

network sub-model structure. 

    The selected model terms indicate that the appliances energy use is highly correlated 

with the house and weather conditions at current time and 10/20 minutes earlier. The 

results from our study show that, the following factors appear to have significantly impact 

on the appliance energy use. The previous appliance energy use is extremely significant 

in the identified model as the first three selected model terms y(t-1), y(t-1) *y(t-2), y(t-1) 

*y(t-1) are all autoregressive terms, which indicate that the appliance energy use is highly 

correlated to its history value. The appearance of u1 in the model terms u1(t) *u19(t-2) 

and u1(t) *u5(t) indicates that large amount of appliance energy use comes from the lights 

fixtures. The humidity in the living room is also found to be an important factor due to 

the model term u1(t) *u5(t). The selected model term u6(t) *u28(t) and u1(t) *u19(t-2) 

also show the significance of the temperature in the laundry room and the humidity in 

parent’s room. The last 3 model terms u6(t) *u28(t), u28(t) *u28(t-2) all consists of the 

variable u28, which is the number of seconds from the midnights. Clearly, the appliance 

energy use is highly related to the time period of the day. For the role of energy use of 

light fixture, temperature in laundry room and number of seconds from midnights, our 

finding re-confirms the conclusion of previous studies by Candanedo, Feldheim & 

Deramaix (2008). Our method do not select any weather-related model terms. The reason 
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might be that for different types of residential building and different seasons, the 

appliance energy use is not always sensitive to weather changes, which are supported by 

Fikru & Gautier (2015). 

It should be noted that many previous study on the modelling of appliance energy use 

mainly focus on achieving high performance of the predictor. The previous neural 

network models cannot provide information on which of the factors are significant and 

which are not (Gonzalez & Zamarreno, 2005; Ekici & Aksoy, 2009). Although some 

interpretable model reveals how the appliance energy use replies on the input variables, 

the prediction performance is lower than that of the neural network (Candanedo, Feldheim 

& Deramaix, 2008). Rather following the literature, this study advocates to use a new 

data-driven modelling approach, to identify the most important variables from a huge 

number of candidate variables by using NARMAX method and improve the model 

prediction by using an extra neural network sub-model. It is known that the size and 

complexity of the data is increasing rapidly, there is an increasing demand for quantitative 

methods for automatic identification of important variables. In this sense, the proposed 

method provides an effective automatic tool which can save data analysis cost and time 

and meanwhile produces high prediction performance. 

 

5.6 Conclusion 

In this paper, a new MLE-NARMAX model method is proposed. Benefitted from the 

two-stage modelling process, the MLE-NARMAX model uses an hybrid model structure 

of NARMAX model and neural network model, to provide interpretable system 

information and strong model prediction ability. The new MLE-NARMAX model was 

applied to the modelling and forecasting of appliance energy use. The correlation 

coefficient between 10 minutes ahead prediction and observation is 0.78 and the 

prediction efficiency is 0.60, which is nearly identical to that produced by the best neural 

network model. The MLE-NARMAX method is used for 3 hours ahead prediction of the 

Dst index. Three periods with typical strong storms were used to test the model 

performance. The MLE-NARMAX model outperforms the conventional NARX model 

in terms of correlation coefficient and prediction efficiency. More importantly, the MLE-

NARMAX model is capable to provide an interpretable representation of the system, 

which can reveal the most significant model terms and, in the meantime, show good 
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generalization properties. For many real data modelling problems, where the central 

modelling task and objective is not is not only for prediction but also for understanding 

and explaining the input-output behaviour or cause-effect relationships of the systems, 

the proposed MLE-NARMAX model is a good choice 

For future work, we intend to further develop the neural network sub-model by 

employing deep learning methods, to improve the prediction performance of the MLE-

NARMAX model. The MLE-NARMAX model uses neural network to enhance the 

NARMAX model. Similarly, other machine learning techniques can be cooperated with 

the NARMAX method in the same way. Gradient boosting method (GBM), lasso method, 

and support vector machine (SVM) can be used to model the residual. Further research 

can be conducted to investigate if these machine learning methods can be combined with 

the NARMAX method.  
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Chapter 6 

 

CONCLUSIONS 

 

 

6.1 Summary and Conclusions 

This thesis focuses on developing new approaches for nonlinear dynamic system 

identification and data modelling, to overcome the negative effect caused by the 

uncertainty. Three new approaches, namely RMSS method, cloud-NARX model and 

MLE-NARMAX model have been proposed for data modelling problems with different 

objectives. The developed methods have been evaluated via simulations and applied to 

several real data modelling problems, for example, EEG, space weather, energy, etc. 

First, the RMSS method is developed to deal with the model structure detection 

problems with small size data and multi datasets. The RMSS method uses a resampling 

process and a new oMAE metric to select the important model terms from a series of sub-

datasets, to overcome the issue that the change of a single data pair in small size data 

might bring strong uncertainty to the model structure. In this way, a robust model 

structure that is robust to all the data points can be identified. In addition, the RMSS 

method can be directly applied to multi-datasets modelling problems.  

Several simulation case studies and two real data case studies are carried out to 

illustrate the advantages of the RMSS method. In one of the real data case studies, the 

RMSS method is applied on the modelling and forecasting of Kp index. From this small 

size data modelling problems, the RMSS method produces more robust model than the 

conventional NARX and neural network model. In another real data case study, the RMSS 
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method is applied to a multi-dataset modelling problem, which is the modelling and 

forecasting of cortical response to mechanical wrist perturbation. There are 10 

participants for the collection of EEG data so there are a total number of 10 sub-datasets. 

The RMSS method establish a common model structure which is robust to all the sub-

datasets.  

Second, the cloud-NARX model is proposed for uncertainty analysis of the nonlinear 

dynamic system identification. The cloud-NARX model uses an uncertainty concept, 

cloud model, to describe and quantify the uncertainty during the modelling process. 

Benefitted from generic forward and backward cloud transformation, the cloud-NARX 

model can store the information of the model uncertainty with only three parameters when 

the model is established and provide visualized information of the model uncertainty with 

a confidence interval when generating model predictions. The model reliability can be 

revealed and described using the new model predicted band/surface. This property is 

useful for detecting strong disturbances in some unstable systems, for example, the space 

weather.  

The cloud-NARX model is firstly evaluated by some simulation examples. Then, the 

cloud-NARX model is applied to the modelling and forecasting of AE index. The results 

show that the strong uncertainty caused by the magnetic storm can be detected by the 

cloud-NARX model. In addition, the cloud-NARX generated excellent 1 hour ahead 

prediction for AE index.  

Third, a novel MLE-NARMAX model for system identification and data modelling is 

developed. By taking advantages of neural network and NARMAX model, the proposed 

interpretable model cannot only provide good forecast result.  More importantly, the 

resulting model is established based on an interpretable NARMAX model structure, 

which is composed of the most important candidate features (variables), it can clearly 

indicates how the system output depends on these variables. The proposed model 

provides a new way for data modelling problems through machine learning approach with 

a simple/sparse, interpretable and transparent model structure.  

The proposed method is evaluated via a simulation example and two case studies. In 

the first case study, the presented a novel MLE-NARMAX is used to predict appliance 

energy use 10 minutes ahead and achieve good forecasting results in terms of two 

prediction skills: correlation coefficient of 0.78 and prediction efficiency of 0.61. In 
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second case study, the MLE-NARMAX is used to predict Dst index 3 hours ahead. The 

new model outperforms the conventional NARX and neural network model, and also 

reduces the time cost for the identification process. 

In conclusion, the proposed methods provide some solutions for some challenging 

questions of data modelling and systems identification. The negative effect of the model 

uncertainty can be reduced or quantified by the proposed novel methods. The applications 

to data driven modeling and analysis of space weather, energy, social science shows the 

abilities to establish robust model structure, quantify uncertainty and improve model 

performance with interpretable model structure.  

 

6.2 Future Work 

The proposed novel methods perform the systems identification and data modelling, 

combined with uncertainty analysis and machine learning. The thesis has laid a 

framework for such data driven modelling and analysis questions, but further extensions 

and new directions of research can take this further, which are outlined below. 

 The data resampling process is very important for the RMSS method, given that 

the resample method defines the differences of the sub-datasets and the efficiency 

of the modelling process.  Nevertheless, there is still no systematic approach to 

determine which resampling method is optimal. Several resampling methods have 

been proposed but further research is required. 

 According to the results of AE index modelling study, the cloud-NARX describe 

the change of the system (magnetic disturbances) by the predicted band/surface. 

However, there is no metric to measure the uncertainty brought by these changes. 

Thus, further research is needed to develop a measure to solve this issue. 

 For imbalanced data (for example AE data), the system dynamics is time-variant. 

In these situations, a single model might be insufficient to describe the system 

behaviors in different conditions. A hybrid model is needed for the systems which 

has several different statuses.  
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 The MLE-NARMAX model can be further improved by employing deep learning 

to replace the conventional neural network. One challenge is that the training 

process of deep neural network needs a lot of time and computation resources. 

NARMAX method and deep learning on the same programing platform. 

 The MLE-NARMAX provides a promising framework for combining machine 

learning techniques and NARMAX method. Thus, it is essential to investigate 

how the other machine learning methods such as classification, clustering, etc can 

be combined with the conventional NARMAX method.  
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