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Abstract 

Cloud Computing has transformed the way in which enterprises and individuals 

are utilising the Information Technology (IT) by offering on-demand services 

such as applications, platforms and infrastructures for their customers with 

reasonable prices based on their usage (e.g., pay-as-you-go model). However, 

the wide adoption of Cloud Computing and the growing number of Cloud 

customers have increased the overall operational costs for Cloud providers, 

especially with the increasing cost of energy consumed to operate Cloud 

services. Consequently, Cloud providers consider energy consumption as one 

of the most important cost factors to be maintained within their infrastructures. 

In order to achieve energy efficiency and reduce the operational costs for 

Cloud services, reactive and proactive management mechanisms can be used 

to efficiently manage Cloud resources and reduce energy-related costs while 

maintaining service performance requirements. However, these mechanisms 

need to be supported with performance and energy awareness not only at the 

physical machine (PM) level but also at virtual machine (VM) level in order to 

make enhanced cost decisions. Moreover, estimating the future cost of Cloud 

services can help the cloud service providers offer suitable services that meet 

their customers’ requirements. 

This thesis introduces a Cloud system architecture along with a novel 

Cost Modeller component that aims to enable the awareness of energy 

consumption, performance variation and cost in a Cloud environment. To fulfil 

this aim, an energy-based cost model is firstly developed to attribute the PM’s 

energy consumption to VMs and measures the actual resource usage, power 

consumption and the total cost for each VM. An energy-based cost prediction 

framework is then introduced to predict workload, power consumption and 

estimate the total cost of the VMs during service operation based on historical 

workload data. Finally, a performance and energy-based cost prediction 

framework is introduced to combine VMs consolidation and resource 

provisioning in order to design cost-effective strategies while taking into 

consideration the trade-off among cost, energy efficiency and performance 

variation of Cloud services. 
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The evaluation of the proposed research on a Cloud testbed shows that 

the proposed energy-based cost model is capable of fairly attributing the PMs 

energy consumption to heterogeneous VMs, thus enabling cost and energy 

awareness at the VM level. Compared with actual results obtained in the Cloud 

testbed, the predicted results show that the proposed energy-based cost 

prediction framework is capable of predicting workload, power consumption and 

estimating the total cost for heterogeneous VMs based on historical workload 

patterns. Additionally, the results have shown that the proposed performance 

and energy-based cost prediction framework is capable to estimate the total cost 

of heterogeneous VMs by considering their resource usage and power 

consumption, while maintaining the expected level of service performance. 

The application of the proposed research provides the awareness of 

energy consumption, performance variation and cost at the virtual level in Cloud 

environments, which contributes to overcoming the challenge of identifying the 

most cost-effective strategies for Cloud services. The outcomes of this research 

can be used and incorporated in reactive and proactive management 

mechanisms to make enhanced cost decisions supported by performance and 

energy awareness in order to efficiently manage Cloud resources. This has the 

potential to contribute to a reduction in energy consumption, and therefore 

lowering the total cost for Cloud providers while maintaining the service 

performance. 
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Chapter 1. Introduction 

1.1 Motivation 

Cloud Computing is an important and growing business model that has 

revolutionised the Information Technology (IT) industry by providing different 

services such as Software as a Service (SaaS), Platform as a Service (PaaS) 

and Infrastructure as a Service (IaaS) for the Cloud customers with reasonable 

prices based on their usage (e.g., pay-as-you-go model). However, the wide 

adoption of Cloud Computing and the growing number of Cloud customers have 

increased the overall operational costs for Cloud providers [1]–[5]. Thus, 

reducing the operational costs of different Cloud services is an active area of 

research. 

The cost mechanisms that are employed by different Cloud service 

providers significantly influence the adoption of Cloud Computing within the IT 

industry. In this regards, the cost mechanisms that are offered by Cloud service 

providers have become sophisticated, as customers are charged per month, 

hour, minute or second based on the resources they utilise [6]–[8]. Nevertheless, 

there are still limitations, as customers are charged based on pre-defined tariffs 

for the resources they utilise. These pre-defined tariffs do not consider the 

variable cost of energy [9], [10]. With the increasing cost of electricity, Cloud 

providers consider energy consumption as one of the biggest operational cost 

factors to be managed within their infrastructures [1]–[3], especially with the large 

fluctuations in electricity prices [11]. Consequently, modelling a new cost 

mechanism for Cloud services that can be adjusted to the energy costs has 

attracted the attention of many researchers [1]–[3].  

A number of mechanisms have been adopted by Cloud service providers 

in order to achieve economies of scale in a Cloud environment. For example, 

dynamic consolidation presents a solution to improve resource utilisation and 

achieve energy efficiency in Clouds. Virtual Machines (VMs) consolidation allows 

VMs to move from one physical machine (PM) to another through live migration, 

without any interruption in the service. This mechanism plays an important role 

in load balancing among the PMs and reduces the overall energy consumption 
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by switching off the idle hosts. However, VMs live migration is a resource-

intensive operation which has an impact on the performance of the migrating VM 

and consequently on the services running on other VMs [12], [13]. Besides, there 

are additional costs [14] in terms of migration time and energy overhead that 

need further consideration [15], [16]. Thus, understanding the impact of VM live 

migration is essential to design a cost-effective VM consolidation strategy. 

Resource provision defined as VMs auto-scaling is another solution to provide 

additional capacity to the VMs on-the-fly in order to handle service performance 

variations. However, this mechanism may take a few minutes to initiate [17], [18], 

which is unacceptable for VMs that need to rapidly scale during the computation 

[19], [20]. Also, there are additional costs [14] in terms of scaling time 

(booting/rebooting), license fees for the new VMs (horizontal scaling) and energy 

overhead that need attention [21]. Hence, understanding the impact of VMs auto-

scaling is important to design a cost-effective resource provision technique. 

In addition, most of the existing studies in the literature have focused on 

minimising the energy consumption and maximising the resource utilisation, 

instead of improving the performance of applications. To illustrate, Cloud 

providers such as Amazon EC2 [22] have established their Service Level 

Agreements (SLAs) based on service availability without such an assurance of 

the service performance [23]. For instance, during service operation, consider 

the situation where a number of VMs are running on the same PM, and each VM 

is allocated its fair share of resources. If the VM’s workload increases and no 

resources are available to handle this increment (e.g., the workload exceeds the 

acceptable level of Central Processing Unit (CPU) such as 95% threshold), 

resource competition may occur leading to VMs’ performance degradation which 

may affect the fulfilment of the SLAs and hence the cloud infrastructure provider’s 

revenue. Hence, to prevent such performance loss, proactive frameworks have 

the advantage of taking preventive actions (e.g., auto-scaling, live migration or 

both) at an early stage to avoid service performance degradation. The 

effectiveness of such frameworks will depend on potential actuators/decisions to 

implement at service operation. Furthermore, estimating the future cost of cloud 

services can help the service providers offer suitable services that meet their 

customers’ requirements. 
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1.2 Aim and Objectives 

This research is aimed towards enabling the awareness of energy consumption, 

performance variation and cost at the virtual level in Cloud Computing 

environments, which contributes to overcoming the challenge of identifying the 

most cost-effective strategies for Cloud services.  

The research presented in this thesis requires a number of stages to meet 

the aims and objectives of this work. The first stage is exploring the issues of the 

current cost models in Cloud Computing and the identification of a research 

opportunity, which is the need for enabling the awareness of energy 

consumption, performance variation and cost at VM level. The next stage is to 

introduce a Cost Modeller as a solution within the system architecture to fulfil this 

need, followed by the development of an energy-based cost model to attribute 

the PM’s energy consumption to VMs and measure the actual resource usage, 

power consumption and the total cost for each VM. After that, the energy-based 

cost prediction framework is introduced to predict workload, power consumption 

and estimate the total cost of the VMs. The final stage is the introduction of a 

performance and energy-based cost prediction framework that combines VMs 

consolidation and resource provisioning in order to design cost-effective 

strategies while taking into consideration the trade-off between cost, energy 

efficiency and performance variation in a Cloud environment.  

The outcomes of this research can be used and incorporated by reactive 

and proactive resource management techniques to make enhanced cost 

decisions supported by performance and energy awareness in order to efficiently 

manage the Cloud resources. 

 

Therefore, the following research questions need to be addressed: 

 

 Q.1: How can a cost model that considers power consumption as a key 

parameter be established? And what will be the impact of its adoption on 

Cloud provider’s revenue? 

 Q.2: How can a model that predicts resource usage, power consumption, 

and estimates the cost for heterogeneous VMs at service operation be 
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designed? And what will be the impact of enabling cost and energy 

awareness at the VM and PM levels on the Cloud provider’s revenue? 

 Q.3: How can a prediction cost model that adapts to a performance 

variation at the PM and VM levels be designed? And what will be the 

impact of such a model on energy consumption and the total cost of Cloud 

services?  

 Q.4: Based on the predicted results. How to efficiently get the 

service/application performance to the expected level with minimal impact 

on cost? And what will be the impact of VMs consolidation and resource 

provisioning on the total cost of Cloud services? 

 Q.5: How can a proactive prediction framework that integrates VMs 

consolidation with resource provisioning into a hybrid approach be 

designed? And what will be the impact of such an integration on the cloud 

provider’s revenue? 

 

In order to address these questions, a number of objectives are identified: 

 

 O.1: Exploring the current cost models related issues and challenges in 

the Cloud paradigm. Optimising cost mechanisms of Cloud services has 

been an active research area, especially with the trade-off between cost, 

energy efficiency and performance variation in Clouds. Therefore, it is 

essential to understand the current challenges in order to contribute to a 

solution that can be used to address these challenges.  

 O.2: Investigating how the cost models of Cloud services are used in a 

Cloud environment as well as the identification of their limitations. Energy 

consumption is one of the important parameters that influence the cost of 

Cloud services. The power consumption at the PM level can be easily 

identified but is not directly measured at the VM level. Thus, 

understanding how the physical resources are correlated with the virtual 

resource’s usage and their impact on energy consumption is important. 

This work therefore introduces and implements an energy-based cost 

model that can fairly attribute PM’s energy consumption to VMs and 
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estimate the actual cost for heterogeneous VMs by considering their 

resource usage and power consumption.  

 O.3: Exploring the use of statistical techniques and prediction methods 

along with mathematical modelling in order to predict workload, energy 

consumption and estimate the total cost of the VMs. This work introduces 

an energy-based cost prediction framework to predict workload, energy 

consumption and estimate the total cost for heterogeneous VMs at service 

operation based on historical time-series workload patterns.  

 O.4: Investigating the issues related to VMs consolidation and resource 

provisioning in a Cloud environment in terms of performance variation and 

energy consumption. Thus, understanding the impact of VMs 

consolidation and resource provisioning is essential to design cost-

effective strategies for Cloud services. A set of algorithms that deal with 

VMs consolidation and resource provisioning are proposed with the aim 

to minimise the overall costs incurred by the performed decisions. This 

work introduces a performance and energy-based cost prediction 

framework that aims to estimate the total cost of heterogeneous VMs by 

considering their resource usage and power consumption, while 

maintaining the expected level of service performance.  

 O.5: Integrating VMs auto-scaling with dynamic VMs allocation into a 

hybrid approach in this research context. A set of algorithms that detect 

the underloaded and overloaded hosts in order to perform the most cost-

effective decision(s) to handle the service performance variation are 

proposed. This work introduces a hybrid approach for performance and 

energy-based cost prediction that aims to integrate VMs auto-scaling with 

live migration. This is aimed at minimising the overall costs incurred by 

the performed decisions and estimating the total cost of heterogeneous 

VMs by considering their resource usage and power consumption, while 

maintaining the expected level of service performance. 
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1.3 Methodology 

In order to achieve the aims and objectives of this research, a quantitative 

approach with three traditional research methods are used [24]:  

 Direct Experiments [25], [26]: in the context of this research, this method 

can be defined as conducting direct experiments to validate a hypothesis 

or a solution on a real Cloud environment, (e.g., a Cloud testbed), which 

can give most accurate and reliable results. However, this method can be 

time-consuming to conduct such repeatable experiments and limited to 

the resources availability. Therefore, it can be hard and costly to conduct 

large-scale experiments in a real Cloud environment [27].  

 Mathematical Modelling [12], [28]: this method can be defined as a 

precise formulation of mathematical models that can be idealised or 

modelled (under a set of assumptions) to match the original system. The 

models achieved by this method can be validated with a direct 

implementation in a real environment or in a simulation [29].  

 Simulation [27], [30]: this method can be defined as a simulated use of a 

real system for conducting experiments to validate a hypothesis or a 

solution. This method can be easily repeatable and scalable in a 

controllable environment with low cost. However, simulation involves 

some randomness that gives less accuracy and reliability as compared to 

direct experiments. Therefore, simulation alone requires further 

verification (e.g., combined with mathematical models or direct 

implementation) in order to represent a real environment [31].  

In the context of this research, both mathematical modelling and direct 

experiments methods are used. Mathematical modelling is used to formulate the 

energy-based cost model and the prediction models presented in this thesis. 

Direct experiments are also used and conducted on a Cloud testbed to verify and 

validate the capability of these models in a real Cloud environment. Furthermore, 

these research methods will be useful when collecting and analysing the data 

obtained from a local Cloud testbed, in order to identify relevant metrics and their 

relationship. 
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The simulation method has not been considered in this thesis for the 

following reasons. Firstly, the experimental results achieved from the simulation 

can be less accurate as compared to the direct experiment. Secondly, it is difficult 

to understand the real behaviour and correlation of the Cloud resources using 

simulation. For example, the direct experiments that are conducted in this thesis 

on a Cloud testbed have helped to identify the required parameters and their 

correlations for the implementation of the mathematical models, as to be 

presented in Sections 3.3 and 4.2. However, the simulation method can be 

considered as future work to further study the scalability-related issues, which is 

difficult to address with the limited resources in a local Cloud testbed. 

1.4 Main Contributions 

The main contributions of this thesis are the following: 

 

 A Cloud system architecture along with an energy-based cost model. This 

architecture includes the required components to support energy 

awareness, performance variation and cost of Cloud services. The Cost 

Modeller is the main architectural component including the other 

contributions of this thesis. An energy-based cost model is established to 

address the first research question (Q.1) by enabling cost and energy-

awareness at the VM level. This model can fairly attribute the PM’s energy 

consumption to heterogeneous VMs and measure the actual resource 

usage, power consumption and the total cost for each VM.  

 An energy-based cost prediction framework. This framework consists of 

a number of mathematical models with the aim of addressing the second 

research question (Q.2) by predicting the workload, power consumption 

and estimating the total cost of the VMs during service operation. This 

framework makes use of a prediction model for predicting the VMs’ 

workload based on historical workload patterns and correlating the 

predicted VMs workload with physical resources to predict the power 

consumption for each VM. The total cost of the VMs’ is then estimated 

based on the predicted VMs workload and power consumption.  
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 A performance and energy-based cost prediction framework. This 

framework aims to address the third and fourth research questions (Q.3 

and Q.4) by estimating the total cost of heterogeneous VMs, considering 

their resource usage and power consumption, while maintaining the 

expected level of service performance. This framework includes two 

approaches that can be used for VMs consolidation and resource 

provisioning in order to design cost-effective strategies and prevent 

performance loss at different levels. A set of algorithms have been 

developed for VMs consolidation and resource provisioning to achieve 

cost savings while meeting the performance objectives. This framework 

works by predicting the workload, power consumption and estimating the 

total cost of the migrated and scaled VMs during service operation based 

on historical workload data.  

 A hybrid approach for performance and energy-based cost prediction. 

This approach aims to address the fifth research question (Q.5) by 

integrating auto-scaling with live migration in order to estimate the total 

cost of heterogeneous VMs by considering resource usage and power 

consumption. A set of algorithms have been developed for VMs 

consolidation and resource provisioning to achieve cost savings while 

meeting the performance objectives. This approach works by detecting 

the underloaded and overloaded hosts in order to perform the most cost-

effective decision(s) to handle the service performance variation. 

1.5 Thesis Overview 

The remaining chapters of this thesis are organised as follows: 

 Chapter 2 presents an overview of the fundamental concepts of Cloud 

Computing, Cloud applications and their workload patterns as well as 

related benchmarks. A description of Cloud Computing pricing models is 

also presented. This is followed by positioning the work in the relevant 

literature, focusing on the energy-related cost issues, prediction models 

and resource management in Cloud Computing, along with a presentation 

of the thesis scope. 
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 Chapter 3 introduces the system architecture with thorough details of its 

main components and their interactions. This is followed by a presentation 

of an energy-based cost model that considers energy consumption as a 

key parameter. The experiments are performed to evaluate the ability of 

the proposed system architecture in terms of supporting cost and energy 

awareness at the VM level in a Cloud environment.  

 Chapter 4 proposes an energy-based cost prediction framework which 

consists of a number of mathematical models in order to estimate the total 

cost of VMs by considering the resource usage and power consumption. 

This is followed by a demonstration of experiments on the Cloud testbed 

to evaluate the capability of the proposed framework.  

 Chapter 5 introduces a performance and energy-based cost prediction 

framework that aims to estimate the total cost of VMs by considering their 

resource usage and power consumption, while maintaining the expected 

level of service performance. This framework includes two approaches 

that can be used for VMs consolidation and resource provisioning in order 

to design cost-effective strategies and prevent performance loss at 

different levels. A number of algorithms have been developed for VMs 

consolidation and resource provisioning to achieve cost savings while 

meeting the performance objectives. This is followed by experiments on 

a Cloud testbed to evaluate the capability of the proposed framework to 

predict live migration and auto-scaling total cost for heterogeneous VMs 

at service operation.  

 Chapter 6 presents a hybrid approach for a performance and energy-

based cost prediction. This approach supports decision-making by 

integrating auto-scaling with live migration, considering their costs, while 

at the same time being aware of the impact on other quality characteristics 

such as energy consumption and performance of the application. A 

number of algorithms have been developed for VMs consolidation and 

resource provisioning to achieve cost savings while meeting the 

performance objectives. This is followed by a demonstration of 

experiments on the Cloud testbed to evaluate the capability of the 

presented approach to identify the most suitable cost-effective decision(s) 



- 10 - 
 

to handle the service performance variation at both physical and virtual 

levels. 

 Chapter 7 summarises the work, research outcomes and contributions 

presented in this thesis. This is followed by a discussion of the limitations 

and future work directions that could further improve this research. 
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Chapter 2. Background and Literature Review 

2.1 Overview 

This chapter presents the essential background and reviews the literature on the 

subject of energy-related cost issues, prediction models and resource 

management in Cloud Computing. It starts by introducing the fundamental 

concepts of Cloud Computing with a detailed description of its definition, system 

architecture, services types, deployment types and virtualisation technologies, 

as presented in Section 2.2. The aspects of Cloud applications and their 

workload patterns as well as related benchmarks are discussed in Section 2.3. 

A description of Cloud Computing pricing models is presented in Section 2.4. 

This is followed by positioning the work in the relevant literature, focusing on the 

energy-related cost issues, prediction models and resource management in 

Cloud Computing. The energy-related cost issues are highlighted, along with a 

detailed discussion of the closely related work in Section 2.5. It then discusses 

the prediction models related to the workload, energy consumption and cost of 

Cloud services, as well as a summarised discussion of the closely related work, 

as presented in Section 2.6. It also reviews the existing work on dynamic 

resource management, including VMs consolidation and resource provisioning, 

along with a summarised discussion of the closely related work, as presented in 

Section 2.7. Finally, the thesis scope is presented in Section 2.8. 

2.2 Cloud Computing 

Cloud Computing is a technology that uses the Internet to provide computing 

resources as services. This innovation allows scalable, on-demand sharing of 

resources and their costs between Cloud customers. Also, it provides customers 

with various online computing services at reasonable prices, to manage, 

process, and store their data efficiently. With the cloud, customers do not need 

to install any kind of software on their machines; as long as the Internet 

connection is accessible, they can reach their data worldwide from any computer 

[32]. 
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In the following subsections, a definition of Cloud Computing, system 

architecture, service types, deployment types, virtualisation, Cloud applications 

patterns and pricing models will be discussed. 

2.2.1 Definition 

Cloud Computing is defined by the National Institute of Standards and 

Technology (NIST) as: 

“a model for enabling convenient, on-demand network access to a 

shared pool of configurable computing resources (e.g., networks, servers, 

storage, applications, and services) that can be rapidly provisioned and 

released with minimal management effort or service provider interaction” 

p.2, [33]. 

According to the NIST definition, there are five main characteristics of Cloud 

Computing [33], [34]: 

 On-demand self-service: the ability of Cloud providers to provision 

computing resources to their customers as needed without requiring 

human interaction.  

 Broad network access: through standard mechanisms, the cloud 

customers can access their resources over the network. 

 Resource pooling: the cloud providers have a pool of computing 

resources to serve different customers using (e.g., a multi-tenant 

model). 

 Rapid elasticity: the capacity of Cloud resources can be more flexible 

and rapidly provisioned. 

 Measured service: the resource utilisation is monitored, automatically 

measured and optimised. 
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2.2.2 System Architecture 

NIST [33] has presented a high-level system architecture that involves all Cloud 

actors along with their distinct roles and interactions in Cloud Computing. This 

Cloud Computing reference architecture model consists of five actors, namely 

Cloud consumer, Cloud auditor, Cloud provider, Cloud broker and Cloud carrier 

[35], as depicted in Figure 2-1. 

 

Figure 2-1: NIST Cloud Computing Reference Architecture Model [35]. 

 

In terms of roles and interactions, the Cloud consumer is a person or an 

organisation, that can consume any Cloud services offered by a Cloud provider, 

who is responsible for managing and maintaining the Cloud services, or by a 

Cloud broker, who acts as an intermediary between service providers and 

consumers, and is responsible for ensuring the delivery of Cloud services. The 

Cloud auditor can have the role of collecting, ensuring and verifying essential 

information in order to evaluate the delivery of Cloud services. Finally, the Cloud 

carrier is responsible for connecting the actors (consumers, brokers and 

providers) in a Cloud environment [35].  

Moving on to the layered design of Cloud Computing architecture, Buyya 

et al. [36] stated that the Cloud architecture consists of four main levels, namely 
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system level, core middleware, user-level middleware and user-level Cloud 

application, as shown in Figure 2-2.  

 

 

Figure 2-2: Layered Cloud Computing Architecture [36]. 

 

Starting from the bottom level, the system level is the basis of the Cloud 

architecture which includes all the physical resources such as servers, routers, 

switches, network links and storage components. These resources are controlled 

and managed by the virtualisation services which allow sharing of their capacity 

among virtual instances [36]. The core-middleware level is the platform that 

provides a run-time environment, enabling to host and control the application 

services at the user-level middleware. Furthermore, the cloud programming 

environments and tools are hosted at the user-level middleware level in order to 

support the developers to create and run their applications in Clouds [36]. Finally, 

the user-level Cloud application includes the applications deployed by Cloud 

providers that can be accessible by the customers [27]. Note that the customers 

may deploy and run their own applications according to such architecture. 

Additionally, Zhang et al. [37] categorised the Cloud Computing 

architecture into four layers, namely hardware, infrastructure, platform and 

application layers, as indicated in Figure 2-3. 
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Figure 2-3: Cloud Computing Architecture [37]. 

 

At the bottom of this architecture is the hardware layer where the Cloud 

physical resources (e.g., routers, servers, switches and cooling systems) are 

managed within Cloud data centres [37]. On top of the hardware comes the 

infrastructure layer, which also known as virtualisation layer. The infrastructure 

layer consists of a pool of virtualised computing resources through the use of 

virtualisation technologies such as KVM [38], Xen [39] and VMware [40]. On top 

of the infrastructure layer, the operating systems are included in the platform 

layer, which provides the environment to deploy the applications in virtual 

instances. Finally, the application layer sits on top of the architecture which 

consists of the actual Cloud applications. 

2.2.3 Services Types 

With reference to the Cloud architectural layers shown in Figure 2-3, there are 

three main types of Cloud services, namely, Software as a Service (SaaS) 

provided at the user level; Platform as a Service (PaaS) provided at the core 



- 16 - 
 

middleware; Infrastructure as a Service (IaaS) provided at the system hardware 

level [37], [27], in addition to other Cloud services such as Everything as a 

Service (XaaS) [41]. 

 Software as a Service (SaaS): this layer provides applications and 

software programs, in addition to interfaces for the customers. Over the 

Internet, customers can access services to utilise applications or software 

programs and pay fees according to their consumed services, for 

instance, through pay-as-you-go model. Google Apps [42] Google 

Documents and Google Mail (Gmail) are examples of SaaS service. 

 Platform as a Service (PaaS): with this type of Cloud service, the 

customer has the ability to deploy and generate Cloud applications using 

programming languages, services, libraries and tools supported by Cloud 

providers. The customer does not control or oversee the cloud 

infrastructure, including network, storage, servers or operating systems; 

however, they have control over the deployed applications and often 

configuration settings for the application’s hosting environment. Include 

examples of the PaaS service are Microsoft Azure Services [43] and 

Google App Engine [42]. 

 Infrastructure as a Service (IaaS): in this layer, hardware devices and 

infrastructure are virtualised and offered as a service (e.g., VMs), which 

also called instances. Several types of virtualisation are supported in this 

layer on different resources, such as network, computing, hardware and 

storage. With the IaaS, customers can have access to these resources in 

order to run their applications; but they do not have the ability to manage 

the underlying infrastructure that provisions these resources, which is the 

responsibility of the providers [33]. Amazon Elastic Compute Cloud (EC2) 

[6] and Rackspace [44] are examples of IaaS service. 

 Everything as a Service (XaaS): where X is everything that can be 

described as a new type of Cloud services, such as desktop, network, 

storage, hardware, security, communication, virtualisation, data and 

business [41]. 
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2.2.4 Deployment Types 

As shown in Figure 2-4, Cloud Computing can be deployed through many 

models, which can be mainly public, private, hybrid, and community Clouds [33]. 

 

Figure 2-4: Types of Cloud Deployment Models [45]. 

 

 Public Cloud: a public Cloud is owned by a service provider offering 

services and computational resources to organisations and individuals. A 

public Cloud allows customers access to the cloud through the Internet 

and the customers only pay for the time period that they utilise the service, 

(e.g., using a pay-per-use model) [34], [37]. Nevertheless, public Clouds 

are less secure compared to other Clouds, and all the data and 

applications on a public Cloud may fall victim to malicious attacks [37].  

 Private Cloud: a private Cloud, which can also be named an internal 

Cloud or corporate Cloud, is usually hosted and managed by the company 

itself. Security is improved in a private Cloud as only the company users 

have access to the provided services. The company owns the cloud 

infrastructure, which makes it easy to manage applications, resources, 

maintenance, and upgrades, in addition to providing more control over 

how applications are deployed [37], [35]. 
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 Hybrid Cloud: this is a composition of private Cloud and public Cloud. In 

this type of deployment, a private Cloud is connected to one or more 

external Cloud services. It allows the company to support its needs in the 

private Cloud and if extra resources are needed (e.g., at peak time), it can 

connect to the public Cloud for providing additional computing resources 

[34], [37], [33].  

 Community Cloud: the community Cloud is a model that is shared 

between several organisations in order to meet specific requirements that 

difficult to achieve in a public Cloud (e.g., security requirements, policy, 

and compliance considerations). In a community Cloud, the infrastructure 

might be hosted and managed by one or more of the organisations in the 

community, or by a third-party provider [34], [33]. 

2.2.5 Virtualisation 

Virtualisation is a key component of the Cloud Computing infrastructure and is 

defined as:  

“a technology that combines or divides computing resources to 

present one or many operating environments using methodologies like 

hardware and software partitioning or aggregation, partial or complete 

machine simulation, emulation, time-sharing, and many others” p.2, [46]. 

According to Hwang et al. [47], virtualisation can be implemented at various 

operational levels, as given below: 

 Application level: it virtualises an application as a virtual machine.  

 Library support level: it controls the communication between 

applications and the rest of a system through Application Programming 

Interface (API). 

 Operating system level: it creates isolated containers on a single 

physical server and the Operating System (OS) instances to utilise the 

software and hardware in data centres. 

 Hardware Abstraction Level (HAL): it generates a virtual hardware 

environment for a virtual machine and manages the underlying hardware 

through virtualisation. 
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 Instruction Set Architecture (ISA) level: it emulates a given ISA by the 

ISA of the host machine. 

One of the main advantages of virtualisation is to abstract the Physical 

Machines (PMs) hardware in order to provide Virtualised Machines (VMs) that 

can work in isolation and run different applications with different operating 

systems. By virtualisation, the VMs can be consolidated to minimise the number 

of active PMs using (e.g., live migration), which would then reduce the power 

consumption as well as lowering the operational cost, as will be discussed in 

Section 2.7.1.  

Thus, virtualisation adds an essential value to the Cloud infrastructure by 

increasing the physical resource utilisation, achieving significant energy savings 

and reducing the operational cost in Cloud environments [48].  

2.2.5.1 Virtual Infrastructure Manager 

Cloud infrastructure providers use Virtual Infrastructure Manager (VIM) to 

manage their physical resources in order to provide virtualised resources to meet 

their customers’ service requirements. In order to build, deploy and manage 

Cloud infrastructures, there are several open source Cloud management 

platforms available to manage virtualised infrastructures in Clouds. Some 

examples of the major open source Cloud platforms are OpenNebula [49], 

OpenStack [50] and CloudStack [51]. The following Table 2-1 summarises some 

of the features of these VIMs. 

Table 2-1: Comparison of Open Source Cloud Platforms. 

Functionality OpenNebula OpenStack CloudStack 

Cloud Infrastructure Private, Public and Hybrid 
Clouds 

Private, Public and Hybrid 
Clouds 

Private, Public and Hybrid 
Clouds 

Resource Abstraction Compute, Storage and 
Network 

Compute, Storage and 
Network 

Compute, Storage and 
Network 

Architecture Modular (third- party 
component) 

Fragmented into many 
modules 

Monolithic central 
controller  

Installation Difficulty Easy (process-based 
package installers)  

Difficult (many choices, 
not fully automation)  

Medium (Few parts to 
install)  

Supported Hypervisors  Xen, KVM, VMWare, 
vCenter 

Xen, KVM, VMware, 
HyperV, vCenter, LXC, 
vSphere  

Xen, KVM, VMWare, 
HyperV, LXC, vSphere,  

Administration  Web UI, CLI  Web UI, CLI  Web UI, CLI  

User Management  Yes Yes Yes 

Live Migration  Yes Yes Yes 

Load Balancing  Yes Yes Yes 
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Fault-tolerance  VM scheduling, replication  VM scheduling, replication  VM scheduling, replication  

High Availability  Yes Yes Yes 

Security  user authentication  VPNs, firewall, user 
authentication, others  

VPNs, firewall, user 
management, others  

Compatibility All Amazon Interfaces Amazon EC2, Amazon S3  Amazon EC2, Amazon S3  

Extensibility Yes Yes Yes 

OpenNebula, OpenStack and CloudStack have a common role in 

providing a platform for deploying, managing and provisioning (compute, storage 

and networking) resources through interfaces such as Web User Interface (Web 

UI) and Command Line Interface (CLI). However, there are some differences in 

terms of their architectures based on the configurations, settings and their 

deployment. For instance, OpenStack has many components to install, which 

may increase the complexity of installation and configuration as well as the 

management overhead [52]. In order to avoid this, the OpenStack administrator 

has to only install the required components to meet the needs of their Cloud 

deployment. In contrast, OpenNebula does not have such constraints as it 

provides centralised deployment and has a fine-grained core [52].  

In addition to OpenNebula, OpenStack and CloudStack, there are other 

VIMs available freely or commercially for the deployment and management of 

Cloud infrastructures such as OpenQRM [53], Eucalyptus [54], Nimbus [55] and 

others more. 

2.2.5.2 Hypervisors 

Hypervisors-based virtualisation abstracts the underlying physical hardware to 

provide isolated instances, called VMs, which can run their own operating system 

(guest - OS) [56], [57]. These VMs are managed by the hypervisor, which is also 

referred to the Virtual Machine Monitor or Manager (VMM) to control the number 

of resources allocated to each VM. The hypervisor sits between the physical 

hardware and OS, which is also responsible for creating, running, migrating, 

copying, and deleting the VMs [57]. Further, hypervisors can be implemented in 

different ways such as full virtualisation when the hypervisor runs on underlying 

physical OS and hardware virtualisation when the hypervisor runs on underlying 

physical hardware. Some examples of hypervisors include Kernel-based Virtual 

Machine (KVM) [38], Xen [39], VMware [40], Microsoft Hyper-V [58] and Virtual 

Box [59]. 
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2.2.5.3 Containers 

Containers-based virtualisation modifies the underlying host OS to provide 

isolated instances, called containers, that can run different applications by 

sharing the same host OS [57], [60]. Containers provide new ways for faster-

running applications, developing, and shipping. It represents a light-weight 

alternative instance when compared to VM, thus, instead of building one 

application, developers can build a suite of components, called micro-services, 

which come together over the container [61]. Most of Cloud service providers 

have moved to Docker [62] such as Microsoft, Google and Amazon Web 

Services to provide the infrastructure that supports the container standard [63]. 

Containers are better suited to micro-services than VMs, they can start up and 

shut down more rapidly as well as their resources can be scaled independently. 

However, containers do not provide full isolation, which may cause security 

issues. Therefore, hypervisor-based is more appropriate than container-based 

virtualisation in terms of isolation and security concern. Some examples of 

containers include Docker [62], Linux Containers (LXC) [64] and Warden 

Container [65]. 

2.3 Cloud Computing Applications 

Cloud applications should be designed specifically with the support of a Cloud 

Computing architecture; thus, the applications need to break down into separate 

components to support the distribution among Cloud resources [66]. Also, the 

Cloud applications should be designed to support scalability and elasticity, which 

allow dynamic reservation and release of the Cloud resources to match the 

changes of the workloads. 

2.3.1 Workload Patterns 

In Cloud environments, different applications have different resource usage 

requirements. Therefore, Cloud applications can experience different workload 

patterns based on the customers’ usage behaviours, and these workload 

patterns consume power differently based on the resources they utilise. As 
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stated in [67], the cloud workload patterns can be categorised as static workload, 

periodic workload, once-in-a-lifetime workload, unpredictable workload, and 

continuously changing workload. 

As depicted in Figure 2-5, a static workload pattern occurs when an 

application is running continuously with the same and stable resource utilisation 

over a period of time. Private websites and wikis are examples of such static 

workload. A periodic workload pattern can be experienced when an application 

is running with a repeated resource utilisation peaks occurring over time intervals 

(e.g., seasonal changes). Examples of this type of workload include shopping 

websites during holiday periods, sporting events (Olympics) and traffic during 

rush hours. 

 

 

Figure 2-5: Cloud Application Workload Patterns [67]. 

 

 

Furthermore, when an application is running with stable resource 

utilisation and peak once over time, it is considered once-in-a-lifetime workload 

pattern. Payroll, billing and backup applications are examples of once-in-a-

lifetime tasks or jobs. An unpredicted workload pattern occurs when an 

application has a random peak (constantly fluctuating) of resource utilisation over 

time. Unpredictable traffic and forecasting are examples of unpredicted 

workload. Finally, when the application is running with stable resource utilisation 

and rapidly decreases or increases over time, it experiences a continuously 

changing workload pattern [67]. Examples of such type of workload include; 

social networking (Facebook and Twitter), open-source downloads and Android 

applications. 
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As mentioned early, these types of application workload patterns can 

have a different impact on energy consumption based on the resources they 

consume. More details on the application workload patterns considered in this 

thesis are found in Chapter 4, Section 4.2.1. 

2.3.2 Benchmarking 

Benchmark suites are adopted to evaluate Cloud services to support the 

configuration and adaptation of applications before they start utilising Cloud 

resources, such as VMs and containers. Benchmarking aims at defining and 

reproducing execution conditions for the target system (application, resource, 

service) to be evaluated [68]. It also provides a set of metrics in order to quantify 

the relative software and hardware performance, and understand how Cloud 

application workloads behave as the underlying Cloud resources are stretched 

and approach full capacity [69]. 

In this regard, the Standard Performance Evaluation Corporation (SPEC) 

[70] launched a tool that provides a set of synthetic workloads, which exercises 

the CPU, memory and disk performance as well as tests the energy efficiency of 

a system at different load levels. Generally, this benchmark exerts graduated 

levels of load on a given machine, normally evaluating the energy consumption 

and performance of server hardware between (idle 0% and fully active 100%) 

load at 10% graduated load levels [71]. 

Similarly, a simple benchmarking tool for POSIX systems [72], called 

Stress-ng [73], has been designed as a workload generator. This tool has the 

capability to simulate a wide range of workload patterns such as static, periodic, 

continuously changing, and once-in-a-lifetime workload patterns. Further, the 

Stress-ng workload generator is able to simulate both single and multi-threaded 

applications, as well as test workloads that are resource-bound in many ways, 

e.g., applications that are both CPU and memory intensive.  

More details on the software tool considered in this thesis are found in 

Chapter 3, Section 3.5.1. 
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2.4 Pricing Models in Cloud Computing 

Cloud service providers offer different types of services to their customers with 

different pricing models. The strategy of pricing models in Clouds can be 

categorised as 1) fixed pricing: when the price of the services doesn't change 

(flat fees) and determined by the provider, and 2) variable pricing: when the price 

of the services is dynamically changed based on the market supply and demand 

[32]. Thus, the price of each Cloud service will be based on the chosen type of 

pricing model.  

The most popular Cloud service providers (e.g., Amazon EC2 [6], 

Microsoft Azure [7] and Google Cloud [8]) have three common types of pricing 

models, which are subscription, on-demand and auction pricing models. These 

pricing models are discussed as follows: 

 A subscription-based pricing model: this type of model allows 

customers to pay a fixed price up-front for a specific period of time, usually 

monthly or yearly (e.g., reserved instances provided by Microsoft Azure). 

Typically, customers pay lower prices for long-term commitments due to 

the fact that this can help Cloud providers to estimate the expenses of 

their infrastructures [74]. With this type of pricing model, Cloud providers 

attract more customers’ by offering a discount rate and ensuring that their 

resources will be available at any time they want [32]. 

 A demand-based pricing model: there are no long-term commitments 

with this type of pricing strategy, which enables customers to pay service 

fees on a time-based, usually per hour or second (e.g., pay-as-you-go and 

on-demand pricing models provided by Google Cloud and Amazon EC2, 

respectively). Pay-as-you-go model is ideal for businesses that cannot 

pay up-front or cannot estimate their required computing resources. The 

price is set according to the size of the instances and their resources. For 

example, the instances that do not involve Graphics Processing Units 

(GPUs) or lots of Central Processing Units (CPUs) or Solid-State Drive 

(SSD) based storage, will automatically be cheaper since they are not 

used for high performance [32], [75]. Furthermore, a hybrid pricing model 

is presented by Jelastic plans [76], which is an intermediate model 

between subscription and on-demand with charged on an hourly basis. In 
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this model, the customers can set a minimum number of resources to be 

reserved for an application and get a discount rate accordingly, as well 

as, it allows the customers to set maximum limits of resources in case if 

the application demand increases. 

 An auction-based pricing model: the idea of the auction pricing model 

is based on selling the idle time of Cloud services, which enables 

customers to bid for the services and Cloud providers have the right to 

accept or reject the offer. For instance, Amazon EC2 Spot instances [77] 

allow customers to bid on a spare Amazon EC2 computing capacities. 

Also, customers can view the Spot instance price history for the last 90 

days to determine which bid price they should offer [77], [78]. Thus, if the 

customer’s bid exceeds or meets the current bid price, the customer can 

access the resources. Contrarily, if the customer’s bid is overridden, the 

customer gives the resources back. The prices of the auction-based 

model compared to subscription and on-demand models are significantly 

lower. However, if a customer loses a bid, these resources can be taken 

away, which make it not suitable for businesses [32]. 

 

In Cloud environments, the majority of the costs are derived through 

resource usage, which can be defined as the resource capacity that required to 

run applications on the cloud infrastructure. However, not all the costs are related 

to the resource usage of infrastructure, there are further additional costs. For 

example, the costs that are associated with software licenses, IT support, cooling 

and maintenance. These costs are difficult to measure or estimate due to the 

differences between Cloud service providers. Besides, the current pricing 

models do not provide details of the energy consumed by the offered services. 

Thus, in order to effectively contribute to the overall business model and offer 

transparent pricing to the customers, Cloud service providers should consider 

energy consumption when designing their pricing models [10], [79], [80]. 

Therefore, only the costs of the cloud infrastructure that can be calculated 

through resources along with their energy consumption are considered in the 

scope of this thesis. 
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2.5 Energy-related Cost Issues in Cloud Computing 

Many Cloud service providers such as Amazon [6], Microsoft Azure [7] and 

Google Cloud [8] have allowed the customers to run their applications in Clouds. 

They therefore have established cost models in order to charge their customers 

based on the offered services. Although many cost models in the IaaS are 

already proposed (e.g., subscription, on-demand, and auction pricing models), 

there are still inevitable to suffer from wasted payment and resources when using 

these types of pricing models [81], [10], [82]. In fact, cost modelling is a critical 

component of the Cloud Computing paradigm since it directly affects providers’ 

revenue and customers’ payment [81], [82]. Thus, designing an appropriate and 

precise cost model which can make both providers and customers satisfied is 

considered as a vital concern in a Cloud environment. 

Furthermore, Cloud data centres continue to consume huge amounts of 

energy and have a major impact on environmental and operational costs caused 

by this high energy consumption [83]. With the increasing electricity costs for 

Cloud data centres, energy consumption has become one of the major 

operational cost issues for Cloud providers to maintain [84]. In 2013, Cloud 

Computing consumed about 684 billion Kilowatt-Hour (kWh) of electricity [85], 

while the increase in energy consumption is estimated to be around 60% or even 

more by 2020 [85]. Yet, most of Cloud service providers charge their customers 

for the offered services on a time-based without considering the actual cost of 

energy consumption [23]. Due to the economic impact of Cloud data centres’ 

energy consumption, Cloud providers should consider the actual cost of energy 

consumption when designing their cost models for the offered services [10]. In 

addition to that, Cloud customers cannot affect or know in any way the amount 

of energy that they consume for running the cloud services. Consequently, it is 

necessary to make them aware of their energy usage, which may help to change 

their behaviour accordingly, for example, by shutting down/consolidating VMs 

and running applications which are energy efficient. 

In the following subsections, some of the research conducted on Cloud 

cost models to reduce the cost and energy consumption in the IaaS Cloud 

environment will be discussed.  
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2.5.1 Cost Models 

Cloud cost modelling is a challenging issue as the increasing number of business 

are moving their computation workloads to Clouds. Although many public Cloud 

providers are already used the (pay-as-you-use) model to charge their 

customers for the offered services, the customers still usually pay more than 

what they are actually used [86]. Therefore, the work by Belli et al. [87] explored 

the area of cost models, that allows the customers to optimise their choice of 

IaaS Cloud providers in terms of the offered price. They presented a Cost-

Optimised Cloud Application Placement Tool (COCA-PT) based on a Resource 

Consumption Model (RCM). The main goal of their work is to optimise the 

placement of customers applications based on the price offered by different 

Cloud providers. However, as mentioned by the authors, the proposed tool is not 

completed yet and needs a further extension. Moreover, their cost model does 

not take into account the power consumption consumed by the running 

applications.  

Jin et al. [81] designed a fine-grained fair pricing model to improve the 

resource utilisation and reduce partial usage waste problem. They investigated 

the optimisation of the trade-off between the proposed model and various 

overheads (e.g., VM maintenance and billing cycle). The model is evaluated 

using two large-scale production traces (Grid Workload Archive and Google Data 

Centre) and the experimental result show that the proposed model can 

significantly improve social welfare (e.g., increasing provider revenues and 

reducing customers costs). Although the authors have been focused on the 

design of precise pricing model that can satisfy both customers and providers, 

their approach has not shown the impact of the power consumption of the used 

resources on Cloud pricing models. 

Moreover, Berndt and Maier [23] presented a hybrid IaaS pricing model 

to address an issue when Cloud providers practice of overbooking and double 

selling capacity in order to retain profitability, which would affect performance 

and Cloud adoption. To clarify, this pricing model charges based on a flat rate 

part that guarantees a certain performance to the customers and on a flexible 

part that charges for the resource usage exceeding the flat rate portion. Their 

approach only requires measurement of performance in one side and 
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measurement of resource usage on the other side, as stated in their work [23]. 

Yet, their approach is still limited in the essence that it does not consider the 

actual cost of energy consumption. 

Mao and Humphrey [17] presented a cost-aware auto-scaling mechanism 

for scheduling tasks in Clouds, which called Scaling-Consolidation-Scheduling 

(SCS). The auto-scaling mechanism takes into consideration the instantiation 

time that every VM needs to be running, then the Earliest Deadline First (EDF) 

algorithm is used to schedule tasks on each VM. They primarily focus on 

minimising the cost of the VMs and satisfying their performance requirement 

based on tasks deadline constraints. This is achieved by forcing the tasks to run 

on the same VM in order to improve performance and save the data transfer 

cost. They compare the proposed SCS approach with two cost-based 

approaches, and the results demonstrate that their approach achieved cost-

savings of 9.8% - 40.4% along with improved utilisation over other approaches. 

However, this approach only ensures a reduction in the cost of each VM and 

does not take into account the trade-off between performance and power 

consumption of the selected VMs.  

Further, a cost-aware super professional executor (Suprex) with auto-

scaling mechanism is proposed by Aslanpour et al. in [88]. This approach aims 

to provide an executor with the capability to isolate the overloaded VM until the 

billing period is completed, which leads to overcome the challenge of postponed 

VM start-up and maximise the cost efficiency. The results show that the Suprex 

executor can reduce the cost of VM by 7%, but in some cases this executor leads 

to lower resource utilisation. 

Chard et al. [89] proposed an approach for cost-aware elastics resource 

provisioning for scientific workloads. This approach monitors a job submission 

queue and provisions VMs based on pre-defined policies. The authors 

investigate the impact of workload execution on the total cost of Cloud services 

by using dynamic pricing models (e.g., Spot and On-Demand instances) 

provided by Amazon Web Services (AWS) [77], based on different availability 

zones. They evaluate their approach under realistic conditions based on 

workload traces through simulation. However, their investigation does not 

consider the impact of energy consumption on AWS pricing models. 
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2.5.2 Cost and Energy Consumption Models 

With the expansion of Cloud Computing, optimising the energy efficiency of the 

Cloud paradigm at all different layers is considered significantly important, as 

highlighted by Djemame et al. [90], [91]. The authors have proposed a Cloud 

architecture that enables energy awareness at all layers of the Cloud stack and 

through the Cloud application life-cycle. This architecture is a complete energy 

efficient solution, capable of self-adaption and aware of the impacts on other 

quality characteristics such as cost and performance of the applications. An 

example of a cost model for Infrastructure as a Service (IaaS) providers to align 

with the energy consumption cost is introduced by Hinz et al. in [10]. They 

proposed a cost model called Proportional-Shared Virtual Energy (PSVE), which 

investigates the relationship between energy consumption and VMs workload in 

a Cloud environment. The PSVE model considers the cost of heterogeneous 

VMs as well as their energy consumption, which is based on the number of 

allocated virtual CPU to each VM. Also, it consists of two main elements: 1) a 

cost associated with VMs resources (e.g., CPUs and networks) along with their 

power consumption, and 2) a shared cost associated with the hypervisor, 

relatively distributed among VMs. Nevertheless, their model does not consider 

the actual utilisation of the virtual CPUs, only considers the number of allocated 

virtual CPU to each VM, thus their cost model may not be an accurate, as stated 

by [79], [80]. In this context, the current cost models offered by Cloud service 

providers (e.g., Amazon EC2 [6]) only consider the number of allocated 

resources to each VM based on the time of usage, and do not consider the 

utilisation ratio of these resources (actual usage). To illustrate that, let's consider 

two VMs (VM1 and VM2) allocated on the same host and have the same number 

of virtual CPUs. VM1 and VM2 used 10% and 90% of the CPU utilisation, 

respectively. These ratios of CPUs utilisation have different impacts on energy 

consumption [92], but both are usually charged the same price, regardless if a 

VM is using 10% or 90% of its CPU. Consequently, the authors in [79], [80] 

highlighted the need of Cloud service providers to offer cost models that fairly 

charge their customers based on the actual resource usage with consideration 

of their energy consumption.  
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Wang et al. [75] argued the importance of having precise cost models for 

adopting Cloud Computing. Through their investigation, they found that different 

system configurations have a significant impact on energy consumption and thus 

the total cost of Cloud services. Consequently, Yousefipour et al. [93] proposed 

an energy and cost-aware VM consolidation model that aims to minimise the 

number of active PMs in order to reduce power consumption and cost of 

heterogeneous Cloud data centres. The consolidation process is nearly 

optimised based on the trade-off between power consumption and cost using a 

mixed-integer non-linear programming model and a genetic algorithm. The 

results show that the proposed model is capable of reducing the power 

consumption and costs when compared to the First Fit (FF), First Fit Decreasing 

(FFD), and Permutation Pack (PP) algorithms. However, they assume the power 

consumption is increasing linearly for all PMs, which is not usually the case in 

the heterogeneous Cloud environment, as stated in [94]. Also, this work does not 

consider the energy consumption overhead incurred by VMs consolidation. 

Similarly, in [95] authors proposed a cost and energy efficient scheduling 

algorithm based on Particle Swarm Optimization (PSO). This algorithm aims to 

optimise execution cost and energy consumption of Cloud data centres, 

considering deadline constraint and time. The proposed algorithm is evaluated 

using CloudSim [27] based on independent tasks scheduling and compared with 

honey bee and min-min algorithms. Nevertheless, this work lacks to consider 

other Quality of Services (QoS) parameters such as application performance 

variations, load balancing, availability and SLA violation. 

Further, Jung et al. [12] introduced Mistral, a holistic framework that 

balances the power consumption, application performance and the transient 

power/performance costs incurred by the adaptation decisions of the framework. 

Their approach investigates the problem of dynamic consolidation of 

homogeneous VMs and focuses on improving the power consumption of the 

physical host. However, this framework does not optimise the trade-off between 

all mentioned objectives (power consumption, application performance and 

costs), only two of these objectives are considered to be optimised at the same 

time. 
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2.5.3 Overall Discussion 

Cost modelling is an important component of the Cloud Computing paradigm 

since it directly affects providers’ revenue and customers’ payment [81], [82]. The 

main aim for Cloud providers is to achieve maximum revenue and for Cloud 

customers to achieve the highest service performance at a reasonable price. 

Current cost models used by Cloud service providers (e.g., Amazon EC2 

[6] and Microsoft Azure [7]) are based only on the usage of the virtualised 

resources such as CPU, memory, and disk, and do not consider the variable cost 

of energy consumed by these resources. With the increasing cost of electricity, 

Cloud providers consider energy consumption as one of the most important 

operational cost factors to be managed within their infrastructures [1]–[3]. 

Consequently, modelling a new cost mechanism for Cloud services that takes 

into account the actual energy costs has attracted the attention of many 

researchers [1]–[3]. 

Although many public Cloud providers are already using the (pay-as-you-

go) model to charge their customers for the offered services, the customers still 

usually pay more than what they are actually use [81], [82], [86]. Therefore, 

designing an appropriate and accurate cost model which can make both 

providers and customers satisfied is considered as a vital concern in a Cloud 

environment. 

In order to properly alleviate the operational cost, Cloud service providers 

can be assisted with cost and energy awareness to enhance their decisions and 

efficiently manage Cloud resources. Section 2.5 has reviewed the related work 

on modelling the cost as well as the energy consumption in Cloud environments. 

As discussed in Section 2.5.1, the work presented in [87], [81], [23], [17], [89] 

aimed to improve the cost efficiency in Cloud environments in order to meet the 

performance requirements, customers' demands and efficient resource 

utilisation, but not considering the energy consumption of the resources. In 

Section 2.5.2, the work presented in [93], [12] considered the energy 

consumption in their models, but their focus is only at the physical level in order 

to consolidate the VMs and minimise the number of active hosts. Only the work 

presented in [10] considered the energy consumption at both physical and virtual 

levels, though this is still limited as their model only consider the number of 
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allocated virtual CPU to each VM. Thus, there is a clear need to consider energy 

consumption at VMs level, taking into account the actual utilisation of the virtual 

CPUs in order to obtain a precise cost model. 

The following Table 2-2 provides a comparison summary of the closely 

related work on modelling cost and energy consumption for VMs in a Cloud 

environment. 

Table 2-2: Summary of Existing Cost and Energy Models. 

Criteria 

by 

Cost Model based on VMs 
Resource Utilisation 
Consideration 

Actual Power Consumption Consideration 

PMs level VMs level 

Belli et al. 
[87] 

Homogeneous VMs only. Not considered. Not considered. 

Jin et al. [81] Homogeneous VMs only. Not considered. Not considered. 

Berndt and 
Maier [23] 

Homogeneous VMs only. Not considered. Not considered. 

Mao and 
Humphrey 
[17] 

Homogeneous and 
heterogeneous VMs. 

Not considered. Not considered. 

Chard et al. 
[89] 

Homogeneous and 
heterogeneous VMs. 

Not considered. Not considered. 

Yousefipour 
et al. [93] 

Homogeneous and 
heterogeneous VMs. 

Homogeneous PMs 
only. 

Not considered. 

Jung et al.  
[12] 

Homogeneous VMs only. Homogeneous PMs 
only. 

Not considered. 

Hinz et al. 
[10] 

Homogeneous and 
heterogeneous VMs. 

Homogeneous PMs 
only. 

Homogeneous and heterogeneous 
VMs, but only based on the number 
of allocated virtual CPUs to each VM. 

 

2.6 Prediction Models in Cloud Computing 

Having discussed the existing work on modelling the cost and energy 

consumption of Cloud services in Sections 2.5.1 and 2.5.2, this section 

discusses the work on predicting the workload, energy consumption and 

estimating the total cost of the VMs during the service operation. 

Providing prediction information of the Cloud services ahead of their 

operation or at the run-time can be very beneficial for the service providers, as 

they need to carefully predict their business growths and efficiently manage the 

Cloud resources. 

To optimise the use of Cloud services, proactive mechanisms can be 

applied to improve resource utilisation and reduce energy-related costs, while 
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maintaining service performance requirements. However, such mechanisms 

need to be supported with performance and energy awareness not only at the 

physical machine (PM) level but also at virtual machine (VM) level in order to 

make enhanced cost decisions. Moreover, estimating the future cost of Cloud 

services can help Cloud service providers offer suitable services that meet their 

customers’ requirements. 

2.6.1 Workload Prediction 

In terms of workload prediction, a number of methods are used in order to predict 

the workload in Cloud environments. For example, an evaluation of commercial 

Cloud services offered by major service providers is provided in [96], where a 

Cloud monitoring tool is used to measure the service performance of a month 

period for 20 Cloud providers. According to the workload data collected from 

different Cloud providers, they applied the Auto-Regressive Integrated Moving 

Average (ARIMA) and Exponential Smoothing (ETS) to predict the future 

behaviour of service performance. This prediction helps Cloud customers and 

service brokers to select Cloud services according to their requirements. The 

overall performance prediction results show that ARIMA performs better than 

ETS for predicting service performance. Also, a predictive elastic resource 

scaling scheme (PRESS) for Cloud systems is presented in [97]. The approach 

uses a short-term pattern matching and state-driven approach (Markov chain) to 

predict the PMs and VMs workloads. This approach is implemented on top of 

Xen [39], using RUBiS [98] and an application load traces from Google. In their 

work, only the workload as a standalone application is predicted. 

Moreover, Huang et al. [99] proposed an elastic resource allocation 

mechanism for a Cloud system, namely Prediction-based Dynamic Resource 

Scheduling (PDRS). The PDRS is employed to predict the VMs workload 

fluctuations using the ARIMA model based on the historical workload data. 

Based on the predictor, they developed dynamic resource allocation algorithms 

along with VMs live migration in order to reduce the number of active PMs. The 

results show that this approach is able to realise adaptive resource allocation 

with an acceptable effect on SLAs and migration overhead. Though this 

approach is focused on predicting the workload in order to perform the VMs 
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allocation and live migration, without considering the energy overhead due to the 

migrations of the VMs. 

Farahnakian et al. [100] introduced a predictive VM consolidation 

approach, called Utilization Prediction-aware VM Consolidation (UP-VMC). The 

UP-VMC aims to optimise three objectives include the number of SLA violations, 

the number of VM migrations and energy consumption. It considers the current 

and future PMs and VMs resource utilisation in order to migrate VMs into the 

least number of active PMs, and then switch the idle PM to the sleep mode in 

order to minimise the energy cost. The future resource utilisation (CPU and 

memory) is predicted using two regression-based prediction models (Linear and 

K-Nearest Neighbour). The obtained results using Google cluster and PlanetLab 

workload traces show that the UP-VMC can reduce SLA violations, energy 

consumption and the number of migrations. However, the experiments 

conducted on a simulation-based have focused on predicting the PMs and VMs 

resource utilisation and do not consider the prediction of PMs and VMs energy 

consumption.  

Zhang et al. [20] presented a proactive virtual resource management 

framework, called (PRMRAP), which predicts the amount of resource needed to 

cope with unexpected workload changes. This approach uses the ARIMA model 

based on the historical workload data in order to predict the VMs workload 

changes and the number of resources needed. In this framework, they consider 

both vertical and horizontal scaling of the VMs, which can reduce time latency 

for handling the workload changes in a cost-efficient manner. Likewise, Fang et 

al. [101] presented a novel Resource Prediction and Provisioning Scheme 

(RPPS), which predicts the workload demands and dynamically adjusts resource 

provision for Cloud applications. This approach takes advantage of the ARIMA 

model which has high prediction accuracy in order to handle the resource 

provisioning in a short period of time. They implemented the RPPS model on top 

of Xen [39] and KVM [38] virtualisation platforms, and conducted the experiments 

in a real Cloud data centre. The results show that this approach has high 

prediction accuracy of about 90% and able to scale Cloud resources under 

different situations (e.g., peak and low phases). Further, Yang et al. [102], [18] 

used a Linear Regression Model (LRM) to predict the VMs workload for the next 

time interval. Based on the predicted workload, an auto-scaling mechanism is 
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proposed to scale virtual resources which combines the real-time scaling and the 

pre-scaling in order to handle the workload demands. They used the knowledge 

from workload prediction to select the number of resources needed for scaling, 

considering both horizontal and vertical scaling. According to the experiment 

results, this approach is able to predict the VMs workload while lowering the 

scaling costs and Service Level Agreement (SLA) violations. However, all these 

approaches do not consider or predict VMs energy consumption when 

performing dynamic resource provisioning (scaling decisions). 

Also, it is worth mentioning that the workload prediction modelling requires 

a quantitative evaluation and statistical analysis in relation to the characteristics 

of the workloads in terms of their length, pattern, and resource consumption. 

Thus, modelling the relationships between these different workload 

characteristics is important in order to achieve accurate and reliable prediction 

results. 

2.6.2 Energy Prediction 

There are many ongoing research projects focusing on the prediction of energy 

consumption based on resource utilisation. For example, Bircher and John [103] 

proposed an approach to estimate the power consumption of a complete system 

using microprocessor performance counters. They developed power models for 

subsystems (e.g., CPU, memory, disk, and network) on two platforms (server 

and desktop). Also, synthetic workloads were generated in order to control the 

utilisation of the subsystems. They performed a correlation analysis between the 

performance counters and the power consumption using linear and polynomial 

regression techniques. The average error of their models was 14.1% for the 

memory controller and less than 9% for each subsystem. Similarly, McCullough 

et al. [104] have evaluated the competence of existing predictive power models 

based on their accuracy using hardware performance counter for modern 

hardware architectures. A number of linear and non-linear regression models are 

compared. For the linear regression models, the results show that these models 

provide a reliable accuracy with low computational complexity for a single-core 

scenario. In contrast, the non-linear models provided better accuracy with the 

multi-core scenario, although they incur a higher computational complexity. 
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However, these approaches are performed on non-virtualised environments and 

thus do not consider or support the power consumption of the virtual resources. 

Smith et al. [105] proposed a power monitoring tool for software-based, 

called CloudMonitor. The authors argued that such a tool can be used in order 

to create energy-efficient applications as well as design energy-based cost 

models. The results show that the power monitoring tool is able to estimate PM 

power consumption for different applications as long as the physical hardware 

has the same configuration. However, this tool does not support the 

heterogeneity of the PMs as well as the estimation of VMs power consumption. 

Kistowski et al. [106] introduced a model for predicting the power 

consumption of physical hosts at run-time. This approach makes use of run-time 

monitoring data to train the model and then predict the power consumption based 

on load intensity and performance counters. The authors claimed that this 

approach can be used with any performance model to optimise the energy 

efficiency of distributed systems. They evaluated the model using two different 

web applications deployed in a heterogeneous environment. The results show 

that this approach can predict the power consumption of a system with an error 

of 2.21%. Yet, their approach only considers the prediction of the power 

consumption at the PMs level and does not consider the prediction at the VMs 

level. 

Further, Makaratzis et al. [107] conducted a survey study on energy 

modelling in Cloud simulations. They focused on the energy models that have 

been proposed for the prediction of the energy consumption of Cloud data 

centres. The most popular Cloud simulation frameworks were considered in this 

survey: CloudSched, CloudSim, DCSim, GDCSim, GreenCloud and iCanCloud. 

Hence, the experiments were conducted in order to compare these different 

simulations with their energy models, and the results show that the same 

tendency prevails for the energy models in all Cloud simulation frameworks. 

However, these simulations along with their energy models do not consider the 

impact of heterogeneous VMs on the energy consumption in Cloud data centres. 

Li et al. [48] have built an online power metering model that estimates the 

power consumption for the PMs and VMs in a Cloud environment. The power 

modelling is performed using a linear regression technique based on the impact 
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of the CPU, memory and disk. The implementation of the model shows that it 

can achieve an average estimation accuracy of more than 96% with low runtime 

overhead. Nevertheless, they assumed that all the PMs and VMs are 

homogeneous, which is very rarely used in Cloud environments.  

Moreover, Farahnakian et al. [108] introduced a load prediction method, 

called a Linear Regression-based CPU Utilisation Prediction (LiRCUP). This 

method is used to predict the short-time future CPU utilisation of the overloaded 

and underloaded PMs based on historical data of each PM. Based on this 

prediction, some VMs are migrated to other hosts in order to avoid SLA violations 

and reduce energy costs. In order to evaluate this work, the authors implemented 

the proposed method in the CloudSim and the results show that the proposed 

method can reduce the energy cost and SLA violation rate. However, this work 

is focused on predicting the workload and then the energy consumption only at 

the host level and not considering the workload and energy prediction at the VM 

level.  

Subirats and Guitart [109] proposed a VM placement algorithm, which is 

aimed to take the appropriate decisions (e.g., VM replication, migration, 

cancellation). Generally, mathematical modelling is used to design a CPU 

utilisation predictor in order to predict the energy consumption for different 

workload types at PMs and VMs levels. Their proposed predictor consists of four 

prediction models, namely linear regression, moving average, single and double 

exponential smoothing in order to predict CPU utilisation and power consumption 

of a given VM. Although this work only considers a linear relationship between 

the CPU utilisation and the power consumption, other non-linear relationships 

such as polynomial and exponential could be considered in order to increase the 

prediction accuracy. 

2.6.3 Cost Estimation 

Estimating the cost of resource provisioning is essential to automatically cope 

with workload demands. Therefore, Jiang et al. [19] presented an online temporal 

data mining system, called A Self-Adaptive Prediction (ASAP), which is used to 

predict the VM demands, and provision resources accordingly. The authors also 

proposed a Cloud Prediction Cost which is used to measure the performance of 
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several prediction models based on historical time series data. The experiments 

results show that the ASAP is capable to decrease the resource provisioning 

time of all VMs. Another approach for an efficient auto-scaling is proposed in 

[110]. They used a second order Auto-Regressive Moving Average (ARMA) 

model in order to predict the VMs workload and cost for the next time interval 

based on historical workload data. This look-ahead approach enables early auto-

scaling detection, which allows the new VMs to boot (horizontal scaling) before 

workload increases. The model aims to minimise resource usage and satisfy 

QoS requirements, while keeping operational costs low. However, these two 

approaches only consider workload prediction for dynamic resource 

provisioning, and do not consider the energy consumption which would influence 

the overall cost of the scaling decisions. 

Sharma et al. [111] proposed a cost-aware resource provisioning 

framework for Cloud applications, called Kingfisher. It aims to optimise the cost 

of resource provisioning and reconfiguring using Integer Linear Program (ILP) 

formulation. Kingfisher exploited both scaling and migration mechanisms to 

dynamically select appropriate decisions that optimise the cost incurred by 

customers. In their work, the ARIMA model is employed to estimate the workload 

in order to capture future workload trends. They implemented the Kingfisher 

framework using the OpenNebula Cloud platform, and the results demonstrate 

that the Kingfisher has the ability to select the lowest cost of resource 

provisioning and reconfiguring to meet an application’s requirements. 

Nevertheless, their approach does not consider the energy consumption 

overhead when performing the migration and scaling decisions. 

Furthermore, Liu et al. [112] designed performance and energy models to 

estimate VM migration cost based on theoretical analysis and empirical studies 

on the Xen platform. The theoretical analysis and empirical studies show that the 

migration-related parameters like VM memory size, memory dirtying rate and 

network speed are the major factors impacting migration performance in terms 

of migration time, migration downtime and the total volume of network traffic. 

Also, they designed a linear regression model and a theoretical model to 

estimate the energy consumption of the networks during VM migration based on 

their performance model. The experimental results demonstrate that the 

proposed models are able to estimate VM migration cost with an estimation 
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accuracy of about 90% based on performance and energy metrics. However, 

this work does not consider the heterogeneity of the PMs or the VMs when 

designing their models. 

2.6.4 Overall Discussion 

Cloud service providers can take advantage of prediction models to enhance the 

efficiency of managing Cloud resources. With the unexpected workload 

demands, Cloud service providers should strike a balance between their 

operating costs, energy consumption and satisfying QoS objectives. 

Consequently, modelling a proactive mechanism can be beneficial to improve 

resource utilisation and reduce energy-related costs, while maintaining service 

performance requirements. 

Section 2.6 has reviewed the related work on predicting the workload and 

energy consumption as well as estimating the total cost of the VMs during the 

service operation. As discussed in Section 2.6.1, the work presented in [18], [20], 

[97], [99]–[102] aimed to predict the workload in order to improve resource 

utilisation in Cloud environments, but without considering the energy 

consumption of the predicted workloads. 

In Section 2.6.2, the work presented in [105], [106], [108] considered the 

prediction of energy consumption in their models, but these approaches only 

consider the prediction of the power consumption at PMs level and do not 

consider the prediction at VMs level. Only the work presented in [48], [109] 

considered the prediction of energy consumption at both physical and virtual 

levels. Though there are still limited as the model in [48] assumed that all the 

PMs and VMs are homogeneous, whereas, the model in [109] only considers a 

linear relationship between the CPU utilisation and the energy consumption in 

order to predict the power at the VMs level. 

The work presented in [19], [110], [111] considered the prediction of 

workload and the estimation of cost for the VMs, but do not consider the energy 

consumption which would influence the overall cost estimation of Cloud services, 

as discussed in Section 2.6.3. The only work that considered the prediction of 

workload and energy consumption as well as the estimation of cost, is presented 
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in [112]. However, this work does not consider the heterogeneity of the PMs or 

the VMs when designing their models. 

Thus, there is still a need for predictive modelling that takes into account 

the workload, energy consumption and cost not only at the PMs level, but also 

at the VMs level considering their heterogeneity, in order to make enhanced cost 

decisions and efficiently manage Cloud resources. 

The following Table 2-3 provides a comparison summary of the closely 

related work on prediction models that consider workload, energy consumption 

and cost for VMs in a Cloud environment. 

Table 2-3: Summary of Prediction Models. 

Criteria 

by 

Workload Prediction Consideration Energy Prediction Consideration Cost 
Estimation 
Consideration PMs level VMs level PMs level VMs level 

Gong et al. 
[97], Huang et 
al. [99] 

Homogeneous 
PMs only. 

Homogeneous 
VMs only. 

Not considered. Not considered. Not 
considered. 

Farahnakian 
et al. [100] 

Homogeneous 
and 
heterogeneous 
PMs. 

Homogeneous 
and 
heterogeneous 
VMs. 

Not considered. Not considered. Not 
considered. 

Zhang et al. 
[20] 

Not considered. Heterogeneous 
VMs. 

Not considered. Not considered. Not 
considered. 

Fang et al. 
[101] 

Homogeneous 
PMs only. 

Not considered. Not considered. Not considered. Not 
considered. 

Yang et al.  
[102], [18] 

Not considered. Heterogeneous 
VMs. 

Not considered. Not considered. Not 
considered. 

Smith et al. 
[105] 

Not considered. Not considered. Homogeneous 
PMs only. 

Not considered. Not 
considered. 

Kistowski et 
al. [106] 

Not considered. Not considered. Heterogeneous 
PMs. 

Not considered. Not 
considered. 

Li et al. [48] Not considered. Not considered. Homogeneous 
PMs only. 

Homogeneous 
VMs only. 

Not 
considered. 

Farahnakian 
et al. [108] 

Heterogeneous 
PMs. 

Not considered. Heterogeneous 
PMs. 

Not considered. Not 
considered. 

Subirats and 
Guitart [109] 

Heterogeneous 
PMs. 

Homogeneous 
VMs only. 

Heterogeneous 
PMs. 

Homogeneous 
VMs only. 

Not 
considered. 

Jiang et al. 
[19] 

Heterogeneous 
PMs. 

Heterogeneous 
VMs. 

Not considered. Not considered. Based on the 
resource 
usage. 

Roy et al. 
[110] 

Not considered. Homogeneous 
VMs only. 

Not considered. Not considered. Based on the 
resource 
usage. 

Sharma et al. 
[111] 

Heterogeneous 
PMs. 

Homogeneous 
VMs only. 

Not considered. Not considered. Based on the 
resource 
usage. 

Liu et al. [112] Homogeneous 
PMs only. 

Homogeneous 
VMs only. 

Homogeneous 
PMs only. 

Homogeneous 
VMs only. 

Based on the 
resource 
usage and 
power 
consumption 
cost for 
homogeneous 
PMs and VMs. 
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2.7 Dynamic Resource Management in Cloud Computing 

Resource management is one of the most important problems in Cloud 

infrastructures, which can be expressed as a multi-objective problem since there 

are several conflicting objectives (e.g., maintain the performance, reduce energy 

and costs) that need to be optimised [113], [15]. Therefore, Cloud service 

providers have applied dynamic resource management through VMs' 

consolidation and resource provisioning techniques in order to meet the 

performance requirements of applications, while minimising the operation costs 

and energy consumptions in Cloud data centres. 

In the following subsections, VMs' consolidation and resource 

provisioning along with their related works will be discussed. 

2.7.1 VM Consolidation 

One of the benefits of virtualisation is the VMs’ consolidation strategy, which 

allows Cloud service providers to migrate and reallocate the VMs from one host 

to another in order to increase resource utilisation and reduce energy costs in 

Cloud data centres [114]. Hence, VMs’ consolidation through live migration has 

a major impact on energy efficiency by gathering several VMs into the minimum 

number of hosts and switching the idle hosts to a power-saving mode. However, 

VM consolidation is not a trivial task in case of unpredicted increases in demand, 

as it can result in generates unnecessary migrations, violations of the SLA and 

increases the operation cost due to the migration processes [115]. Therefore, 

dynamic VMs consolidation requires an estimate of the workload demand in 

order to handle the fluctuating demands of Cloud customers, efficiently manage 

Cloud resources and avoid unnecessary migrations [116]. 

VM live migration acts as a backbone of the VM consolidation process, 

which can be defined as the capability of transferring a complete state of the VM 

(including CPU states, memory pages, storage and network connections) from 

the source host to the destination host, without any interruption in the service or 

application [117], [118]. There are two types of VM migration, which are currently 

used in Cloud data centres, namely, post-copy and pre-copy migration. 
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 Post-copy: transfers a VM’s memory contents after its processor state 

has been sent to the destination host. However, this method can take a 

long migration time, which consumes the resources on both source and 

destination hosts due to the residual dependency. Also, it has some 

downtime initially, which makes the VM’s service unavailable for a certain 

time period [119]. 

 Pre-copy: first copies the memory state to the destination, through 

iterative phases, after which its processor state is transferred to the 

destination. In this way, the VM can be migrated from one host to another 

with a close to zero downtime [120]. 

 

Live migration efficiency of multiple VMs has been investigated in various 

research studies. For instance, Ye et al. [117] presented a live migration 

framework of multiple VMs based on different resource reservation mechanisms. 

This framework aims to improve migration efficiency by using parallel migration 

and workload-aware migration strategies. Experimental results show that the 

performance overheads of the live migration process are affected by workload 

types, memory size and the number of CPUs. Thus, parallel migration and 

workload-aware migration strategies can efficiently improve the performance of 

migrated VMs. However, the performance overhead incurred by concurrent VM 

migrations may increase the migration interference on the destination host. 

Zhao et al. [121] presented a VM placement method based on VM service 

performance, which aims to address VMs performance degradation issue when 

placing the VMs. This method takes the application-aware resource consumption 

characteristic into consideration to place the VMs on appropriate PMs in order to 

guarantee the VM performances and ensure customers’ Quality of Experience 

(QoE). The proposed method is evaluated in a real Cloud platform (OpenStack) 

using video streaming applications. The results show that the proposed method 

can minimise PM performance degradation and guarantee the VM performance 

compared to other methods. However, their approach only focuses on the 

resource consumption characteristic when performing VMs placement and does 

it not take the power consumption of the PMs and VMs into account. 

Moreover, Ferreto et al. [122] proposed an approach called dynamic 

consolidation with migration control, which aims to reduce the number of VM 
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migrations and the number of active hosts using linear programming formulation. 

This approach gives a higher priority to migrate VMs with variable workload 

instead of the VMs with a stable workload in order to reduce the number of 

migrations and required hosts with a minimal SLA violation. They compared the 

proposed approach with static and dynamic consolidation approaches using TU-

Berlin and Google data centre workloads. The evaluation results demonstrate 

that the suggested approach performs well in terms of the number of PMs used 

and VMs migrated. However, this approach does not take into account VMs 

power consumption and migration costs when consolidating the VMs.  

Farahnakian et al. [118] presented a modified approach of Best Fit 

Decreasing (BFD) algorithm, named a Utilization Prediction-aware Best Fit 

Decreasing (UP-BFD) algorithm. This approach employed a utilisation prediction 

model to eliminate unnecessary VM migrations and reduce SLA violations using 

K-Nearest Neighbor Regression (K-NNR) model. The prediction model is trained 

by generating historical data based on different types of workloads developed in 

the CloudSim. This approach also considers both the current and future 

utilisation of resources in order to perform VM consolidation based on the hosts 

CPU and memory utilisation thresholds. Although this work focuses on reducing 

PMs energy consumption, the number of VM migrations and SLA violations, they 

do not consider the impact of energy consumption that occurs by VMs live 

migration decisions in their approach. 

Further, Beloglazov and Buyya [123] addressed the problem of VMs 

consolidations under QoS constraints in Cloud data centres. They employed the 

Markov chain model and the control algorithm to detect the overloaded hosts and 

then migrate some VMs in order to achieve a specified QoS goal. This dynamic 

VMs consolidation aims to improve the PMs resource utilisation (particularly CPU 

utilisation) for stationary workloads, which also can be applied for non-stationary 

workloads using the Multisize Sliding Window workload estimation technique. 

Simulation results using workload traces on PlanetLab servers demonstrate that 

the introduced method outperforms the benchmark methods while meeting the 

QoS goal. However, this method focused on improving the performance of Cloud 

applications by reducing the number of overloaded hosts, but without explicitly 

considering energy and cost of VMs migrations, as a part of VMs consolidation 

decision criterion. 
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Xu et al. [124] proposed a lightweight interference-aware VM live 

migration strategy, called iAware. It focuses on the performance of VMs during 

and after live migration, considering the interference of the migration process on 

both source and destination PMs. The iAware jointly estimates, analyses and 

minimises both the migration time and co-location interference among VM’s 

based on a multi-resource demand and supply estimation model. The 

experiments are conducted in a real Cloud environment with different workloads 

using a Xen hypervisor cluster platform. The results are compared with traditional 

interference-unaware algorithms and show that the iAware can estimate VM 

performance interference during live migration and meet the SLA requirements. 

However, their work does not consider the energy consumption overhead of VMs 

migrations. 

Beloglazov and Buyya [125] presented an energy efficient resource 

management policy for Cloud data centres. The proposed method mainly 

focuses on dynamic re-allocation of VMs using live migration in order to minimise 

the energy consumption, while maintaining the QoS requirements. They 

evaluated the proposed method using a CloudSim and the results show a 

reduction of energy consumption in a Cloud data centre. However, the proposed 

method does not show the effectiveness of the heterogeneity of the PMs in terms 

of energy efficient when performing the live migration of the VMs. 

Furthermore, Beloglazov et al. [126] presented an energy-aware VM 

consolidation policies to optimise the resources utilisation and energy efficiency 

in a Cloud data centre. In this approach, the VMs are migrated from one host to 

another in order to increase the overall servers' utilisation and reduce 

infrastructure costs (energy costs) by switching off the idle hosts. Thus, upper 

and lower CPU utilisation thresholds for each host are set along with several VM 

selection policies, in order to identify from which host the selected VMs should 

be migrated. The experiment results conducted in the CloudSim show that this 

approach leads to an improvement of energy efficiency in Cloud data centres. 

Likewise, Farahnakian et al. [113] proposed a Self-Adaptive Resource 

Management System (SARMS) for efficient resource management in Cloud 

infrastructure. The SARMS provides an adaptive utilisation threshold (CPU and 

memory) mechanism to dynamically identify the overloaded and underloaded 

PMs. This system has two steps, migration of VMs from the overloaded PMs to 
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prevent SLA violations, and consolidation of VMs into a minimum number of 

active PMs in order to reduce energy consumption. They evaluated the proposed 

system using the CloudSim based on real workloads from Google and 

PlanetLab. The obtained results show that the SARMS can achieve performance 

requirements, while reducing PMs energy consumption and the number of VM 

migrations. Nevertheless, these approaches do not consider the energy 

consumption overhead and the costs of VMs consolidation. 

Beloglazov and Buyya [127] proposed a technique for dynamic VM 

consolidation based on CPU utilisation thresholds. This technique focuses on 

Cloud resource management strategies (e.g., VM migration) with the aim to 

optimise resource usage and reduce energy consumption, while maintaining the 

SLAs. It can be achieved by migrating the VMs from the underloaded hosts in 

order to reduce the number of active hosts and saving energy. To re-allocate the 

VMs, a Modified Best Fit Decreasing (MBFD) algorithm is used to sort the 

selected hosts based on their CPU utilisation and energy efficiency. They 

evaluated the proposed technique through simulations with different types of 

workloads using PlanetLab servers. The results show that this technique 

outperforms other migration policies in terms of the number of VM migrations 

and SLA violation, while showing a similar level of energy consumption. 

However, the proposed technique lacks to consider the actual cost and power 

consumption caused by VMs consolidation. 

Also, Malekloo et al. [128] introduced a Multi-objective Ant Colony 

Optimisation (MACO) approach for VMs placement and consolidation 

algorithms. In this regard, the VMs’ placement algorithm aims to minimise energy 

consumption, CPU resource wastage and communication cost. While, the VM 

consolidation algorithm aims to reduce SLA violations, VMs migration and the 

number of active PMs. They evaluated the proposed approach using the 

CloudSim based on eight performance metrics. The results show that this 

approach outperforms the other approaches in terms of achieving the balance 

between energy consumption, system performance and QoS requirements. Yet, 

this approach focused on minimising PMs energy consumption without taking 

into consideration the energy consumption incurred by VMs consolidation. 

Zhou et al. [16] proposed an adaptive strategy for energy and 

performance efficient VM consolidation, called (DADTA). The DADTA strategy 
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aims to minimise energy consumption while satisfying the SLAs in the Cloud data 

centre. They applied a specific adjustment of thresholds to adapt the dynamic 

workload changes and then performed VM consolidation by using the DADTA in 

order to improve the overall optimisation. To evaluate the proposed strategy, a 

modified prediction model conducted on the CloudSim is used to deal with the 

time-series data obtained from the Google cluster workload trace, and the 

findings show that the proposed DADTA outperforms other benchmarks in terms 

of minimising the PMs energy consumption and SLA violations. In their work, the 

consolidated VMs are homogeneous and only considers PMs power 

consumption. 

Moreover, Beloglazov and Buyya [115] presented adaptive algorithms for 

dynamic VM consolidation based on a statistical analysis of historical workload 

data. Statistical models are used to calculate the upper and lower CPU utilisation 

thresholds of each host. If the host is determined to be overloaded, one or more 

VMs are selected to be migrated from the host to another suitable one in order 

to optimise the resource usage and maintain a high level of SLAs. On the other 

hand, if the host is determined as underloaded, all hosted VMs are selected to 

be migrated from the host and switch it to the sleep mode in order to reduce the 

energy consumption. They evaluated the proposed algorithms through the 

CloudSim using workload traces from PlanetLab, considering the heterogeneity 

of PMs and VMs. The results of the experiments show that the proposed 

algorithms outperform other dynamic VM consolidation algorithms in terms of the 

level of SLA violations and the number of VM migrations. However, this work 

only considers PMs energy consumption and does not refer to VMs energy 

consumption.  

The authors in [129], [130] emphasised the importance of taking migration 

cost into account for a fine-grain VM consolidation strategy. Therefore, Zakarya 

and Gillam [131] proposed a VM consolidation technique, named a Consolidation 

with Migration Cost Recovery (CMCR). This technique aims to explore the ability 

of the VMs to recover their migration costs. In order to achieve that, the VMs 

should firstly be migrated to an energy efficient host and then continue to run 

them for a certain period of time. A linear power model is used to identify the 

power consumption for the target host in order to check the ability of the VMs to 

recover their migration costs. They evaluated the CMCR through CloudSim using 
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real workload traces from a Google cluster. The results show that by using the 

CMCR the majority of the migrated VMs can recover their migration cost. 

However, their work is applicable only to the hosts that follow a linear power 

model and does not consider the heterogeneity of PMs or VMs. Similarly, Verma 

et al. [129] introduced a power-aware application placement framework for 

virtualised server clusters, called pMapper, which dynamically places the VMs to 

minimise the power consumption and the migration cost, while meeting the 

performance requirements. In their framework, they have extended the First Fit 

Decreasing (FFD) heuristic algorithm in order to migrate the VMs to suitable 

hosts. This is aimed to minimise the data centre’s energy consumption by 

reducing the number of active hosts, while taking into account the VMs migration 

cost. They have implemented the pMapper framework on IBM testbed with 

heterogeneous hosts using a set of benchmark applications. The results show 

that the pMapper outperforms other power unaware algorithms in terms of 

minimising the PMs power consumption and VMs migration costs, while meeting 

the application performance guarantees. However, their framework does not 

provide any information regarding the migration costs calculation. 

2.7.2 Resource Provisioning 

Cloud service providers support an on-demand resource provisioning model, 

called auto-scaling, which provides additional resources requested by 

applications using vertical and horizontal scaling techniques. 

Generally, the auto-scaling can be defined as the ability of a system or 

users to add and remove resources (such as CPU, memory), which is beneficial 

for adapting to workload variations and ensuring consistent performance with 

lower costs [21], [14]. Cloud providers such as Amazon Web Services (AWS) 

[132] offer this service. 

Auto-scaling is a dynamic property for Cloud Computing, and it comes in 

two types, namely, vertical and horizontal scaling. The vertical scaling is used 

to add or release virtual resources dynamically (e.g., vCPUs and memory) inside 

the VMs, whereas, horizontal scaling is used to create or delete VMs, all of 

which were based on application requirements. However, the latter mechanism 
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may take a few minutes to initiate [17], [18], [133], [102], which may be unsuitable 

for VMs that need to rapidly scale during the computation [19], [20]. 

To achieve the scalability of Cloud resources a combination of these two 

scaling techniques can help to find an optimal scaling strategy [102]. However, 

most of the vertical and horizontal scaling approaches are reactive methods 

which happen after detecting there are not enough resources for an application 

[20], [134]. Thus, it is desirable if the methods can be scaled earlier than the time 

when the workload actually increases. This can be achieved by using proactive 

methods that can predict workloads of applications and scale the resources 

commensurate with the predicted workload. 

A number of solutions have been proposed to support resource elasticity 

for Cloud applications. For example, Ficco et al. [15] presented a new approach 

for managing elastic resources reallocation in Cloud infrastructures using the 

coral-reefs algorithm and game theory optimisation. This approach uses a multi-

objective optimisation to maintain customers SLAs, minimise resource 

consumption and cost during the auto-scaling and migration processes. In their 

work, the coral-reefs algorithm is used to model the elasticity of Cloud resources, 

whereas, the game theory is used to optimise the aims of the service provider 

expressed through resource reallocation strategies with respect to the 

customer’s requirements. The experimental results show that the combination of 

coral-reefs algorithm and game theory optimisation achieves the elasticity of 

Cloud resources and leads to significant performance improvements. However, 

the energy-related cost when performing the auto-scaling and migration is not 

considered in their approach.  

Likewise, Tighe and Bauer [135], [136] developed a rule-based approach 

that combines the auto-scaling of applications with dynamic VM allocation to 

match current workload demands and maintain SLA achievement. In their 

approach, vertical scaling is performed to scale up and down the VMs according 

to their resource requirements to run applications, as well as, the VMs are 

consolidated into a minimal number of PMs using live migrations in order to 

switch off the idle PMs and saving energy costs. As shown on their simulation 

results, they argued that their combined approach can achieve better application 

performance with a reduction in VM live migrations compared to the independent 

approaches. However, their approach only considers the vertical scaling of the 
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scaled resources and do not consider the prediction of these resources. In 

addition, the costs of the scaled resources are not considered. 

Dawoud et al. [137] proposed a dynamic resource provisioning approach 

that aims to allocate the minimum resources required to handle the future 

workload demands while maintaining the Service Level Objectives (SLOs). Their 

approach includes three controllers for CPU, memory, and application to 

guarantee efficient resource allocation and optimise the application performance. 

A linear prediction model is used to predict the future resource requirements for 

efficient allocation and correspond with the workload demands. They have 

evaluated the proposed approach using the Xen hypervisor with a synthetic 

workload, and the results show that their controllers are capable to horizontally 

scale the VMs to correspond with the workload demands while mitigating the 

SLO violation. However, their approach only considers the horizontal scaling to 

cope with VMs workload demands without considering the vertical scaling 

technique. Also, the energy consumption of provisioned resources is not 

considered. 

Moreover, Meng et al. [138] proposed a joint-VM provisioning approach 

that estimates the VMs capacity needs through statistical multiplexing principles 

based on their workload patterns. The main idea of this approach is to borrow 

unused resources from low utilised VMs and reallocated these resources to the 

VMs with high utilisation in order to achieve the application performance 

requirements. The proposed approach is evaluated based on data collected from 

commercial data centres using simulations. The results demonstrate that the 

proposed joint-VM provisioning approach has improved the overall resource 

utilisation by 45% compared to the individual-VM provisioning approaches.  

Also, Gandhi et al. [21] investigated the impact of resource auto-scaling 

on cost, performance and provisioning times for Cloud applications. They 

employed the Amdahl’s Law formula to model service time scaling, the queueing-

theoretic concepts to model performance scaling, and a Kalman filtering 

approach to estimate the performance model parameters. They implemented 

their approach on OpenStack and the results show the ability of the proposed 

approach to determining the most cost-effective scaling option for a given 

workload, considering both horizontal and vertical scaling. However, this 
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approach does not consider the prediction of resource requirements and their 

energy consumption when performing the scaling decisions. 

Dutta et al. [14] presented an automatic scaling framework called 

(SmartScale), which uses a combination of horizontal and vertical scaling in 

order to optimise the resource usage and the reconfiguration cost incurred due 

to scaling. The SmartScale is a proactive technique that used a polynomial 

regression in order to estimate the resource requirements to perform the scaling 

decisions for the next time interval. They evaluated their framework using a real 

Cloud testbed and the results show that the SmartScale can scale the required 

resources to run applications with the lowest reconfiguration cost. However, this 

framework does not consider the power consumption of required resources 

incurred due to scaling decisions. 

2.7.3 Overall Discussion 

Cloud resource management has the ability to adapt VMs' consolidation and 

resource provisioning in order to meet the performance requirements of 

applications, minimise the operation costs and energy consumptions in Cloud 

data centres.  

Section 2.7 has reviewed the related work on VMs' consolidation and 

resource provisioning mechanisms in Cloud environments. 

In terms of VMs consolidation, a commonly known NP-hard optimisation 

problem is closely related to it, where the most important objectives are 

minimising resource usage and energy consumption, while satisfying the SLAs. 

As discussed in Section 2.7.1, the work in [117], [121], [124] aimed to improve 

the VMs performance during the migration process, considering the application-

aware resource consumption characteristic, but their models only focused on the 

resource consumption and do not consider the energy consumption overhead of 

VMs migrations. Moreover, the work presented in [113], [115], [125], [126], [127], 

[128] mainly focused on dynamic re-allocation of VMs using live migration to 

increase the overall servers' utilisation and minimise the energy consumption, 

while maintaining the required QoS. Yet, these approaches focused on 

minimising PMs energy consumption without taking into consideration the energy 

consumption incurred by VMs consolidation. Also, the work presented in [129], 
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[131] have addressed the issue with migration cost, considering the energy 

consumption at both PMs and VMs levels. Though there are still limited as the 

model in [129] does not provide any information regarding the migration cost 

calculation, whereas, the work in [131] is only applicable to the hosts that follow 

a linear power model and does not consider the heterogeneity of PMs or VMs. 

Further, the work presented in [118], [123], [16] employed workload prediction 

models based on historical data to eliminate unnecessary VM migrations, 

minimise energy consumption and SLA violations. These models focused on 

improving the performance of Cloud applications by reducing the number of 

overloaded hosts, but without explicitly considering energy and cost of VMs 

migrations, as a part of VMs consolidation decision criterion. 

In terms of VMs resource provisioning, a fine-grained resource 

provisioning while ensuring the performance and the SLAs for applications are 

required, which makes finding the optimal and efficient scaling option a very 

challenging problem. In Section 2.7.2, the work in [21] investigated the impact of 

resource auto-scaling on cost, performance, and provisioning times in order to 

determine the most cost-effective scaling option for Cloud applications. Further, 

the work presented in [15], [135], [136] combined the auto-scaling of applications 

with dynamic VM allocation to match current workload demands and maintain 

SLA achievement. However, the energy consumption related to the auto-scaling 

and migration decisions is not considered in their approaches. Moreover, the 

work presented in [137], [138], [14] considered the prediction of resources 

provisioning to handle the future workload demand while maintaining the SLOs, 

but these approaches do not consider the power consumption of required 

resources incurred due to scaling decisions. 

Thus, there is still a need for predictive modelling that dynamically 

supports VMs live migration and auto-scaling decisions, considering the trade-

off between cost, power consumption, and performance during service 

operation, which can help Cloud providers to make better use of their 

infrastructures and efficiently manage Cloud resources [139], [140]. 

The following Table 2-4 provides a comparison summary of the closely 

related work on VMs' consolidation and resource provisioning that considers the 

workload, energy consumption and cost in Cloud environments, followed by a 
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comparison summary of the closely related work on the prediction of these 

mechanisms, as shown in Table 2-5. 

Table 2-4: Summary of Existing Models for VMs' Consolidation and Resource 
Provisioning. 

Criteria 

by 

Workload Consideration Energy Consumption 
Consideration 

Cost Consideration 

PMs level VMs level PMs level VMs level Cost of 
Migration 

Cost of 
Scaling 

Ye et al. [117] Homogeneous 
PMs only. 

Homogeneous 
VMs only. 

Not considered. Not considered. Not 
considered. 

__ 

Zhao et al. 
[121] 

Heterogeneous 
PMs. 

Heterogeneous 
VMs. 

Not considered. Not considered. Not 
considered. 

__ 

Xu et al. [124] Homogeneous 
PMs only. 

Heterogeneous 
VMs. 

Homogeneous 
PMs only. 

Not considered. Not 
considered. 

__ 

Beloglazov 
and Buyya 
[125], 
Beloglazov et 
al. [126], 
Malekloo et 
al. [128] 

Heterogeneous 
PMs. 

Not considered. Heterogeneous 
PMs. 

Not considered. Not 
considered. 

 

 

__ 

Farahnakian 
et al. [113] 

Heterogeneous 
PMs. 

Heterogeneous 
VMs. 

Heterogeneous 
PMs. 

Not considered. Not 
considered. 

__ 

Beloglazov 
and Buyya 
[127], [115] 

Heterogeneous 
PMs. 

Not considered. Heterogeneous 
PMs. 

Not considered. Considered.  

__ 

Zakarya and 
Gillam [131] 

Homogeneous 
PMs only. 

Homogeneous 
VMs only. 

Homogeneous 
PMs only. 

Homogeneous 
VMs only. 

Considered. __ 

 

Verma et al. 
[129] 

Heterogeneous 
PMs. 

Heterogeneous 
VMs. 

Heterogeneous 
PMs. 

Heterogeneous 
VMs. 

Considered. __ 

Ficco et al. 
[15] 

Homogeneous 
PMs only. 

Not considered. Not considered. Not considered. Considered. Considered. 

Tighe and 
Bauer [135], 
[136] 

Homogeneous 
PMs only. 

Homogeneous 
VMs only. 

Homogeneous 
PMs only. 

Not considered. Not 
considered. 

 

__ 

Gandhi et al. 
[21] 

Homogeneous 
PMs only. 

Homogeneous 
VMs only. 

Not considered. Not considered. __ Considered. 

Table 2-5: Summary of Prediction Models for VMs' Consolidation and Resource 
Provisioning. 

Criteria 

by 

Workload Prediction 
Consideration 

Energy Prediction 
Consideration 

Cost Estimation 
Consideration 

PMs level VMs level PMs level VMs level Cost of 
Migration 

Cost of 
Scaling 

Farahnakian 
et al. [118] 

Heterogeneous 
PMs. 

Heterogeneous 
VMs. 

Not considered. Not 
considered. 

Not 
considered. 

__ 

Beloglazov 
and Buyya 
[123] 

Homogeneous 
PMs only. 

Not considered. Not considered. Not 
considered. 

Not 
considered. 

 

__ 

Zhou et al. 
[16] 

Heterogeneous 
PMs. 

Not considered. Heterogeneous 
PMs. 

Not 
considered. 

Considered. __ 

 

Dawoud et al. 
[137] 

Homogeneous 
PMs only. 

Homogeneous 
VMs only. 

Not considered. Not 
considered. 

__ Not 
Considered. 

Meng et al. 
[138] 

Homogeneous 
PMs only. 

Homogeneous 
VMs only. 

Not considered. Not 
considered. 

Not 
considered. 

__ 

Dutta et al. 
[14] 

Homogeneous 
PMs only. 

Homogeneous 
and 
heterogeneous 
VMs. 

Not considered. Not 
considered. 

 

__ 

Considered 
(horizontal 
and vertical 
scaling). 
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2.8 Thesis Scope 

This thesis aims to enable the awareness of energy consumption, performance 

variation and cost in a Cloud Infrastructure, as depicted in Figure 2-6. To achieve 

this aim, an energy-based cost model is firstly developed to attribute the PM’s 

energy consumption to VMs and measures the actual resource usage, power 

consumption and the total cost for each VM, considering the heterogeneity of the 

PMs and VMs, as discussed in Chapter 3. An energy-based cost prediction 

framework is then introduced to predict workload, power consumption and 

estimate the total cost of the VMs during service operation based on historical 

workload data, using the ARIMA model and regression analysis, as discussed in 

Chapter 4. Finally, a proactive performance and energy-based cost prediction 

framework is introduced to combine VMs consolidation (live migration) and 

resource provisioning (auto-scaling) in order to design cost-effective strategies, 

while taking into consideration the trade-off among cost, energy efficiency and 

performance variation of Cloud services, as discussed in Chapters 5 and 6. 

 

 

Figure 2-6: Thesis Scope. 
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2.9 Summary 

This chapter has introduced the essential background and the literature related 

to this research. Firstly, it has discussed some fundamental aspects of Cloud 

Computing including its definition, system architecture, services types, 

deployment types and virtualisation technologies. Additionally, it has presented 

the concepts of Cloud applications and their workload patterns as well as related 

benchmarks, followed by a description of the pricing models in Cloud Computing. 

Secondly, it has reviewed the literature on the energy-related cost issues in 

Cloud Computing, as well as a comparison summary of the closely related work 

of this research has been presented. Thirdly, it has highlighted the prediction 

models related to predicting the workload, energy consumption and cost of Cloud 

services, in addition to a summary discussion of the closely related work has 

been introduced. This chapter has finally concluded with a discussion of the 

existing work on Cloud resource management, including VMs consolidation and 

resource provisioning, along with a comparison summary of the closely related 

work of this research and a presentation of the thesis scope. 
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Chapter 3. System Architecture and Energy Cost Modelling 

3.1 Overview 

In this chapter, definitions and assumptions considered in this thesis are given 

in Section 3.2. Section 3.3 presents the system architecture that supports 

energy, performance and cost awareness of Cloud infrastructure services, 

followed by the descriptions of the required components and their interactions 

within the proposed architecture. Section 3.4 presents an energy-based cost 

model that considers energy consumption as a key parameter with respect to the 

actual resource usage and the total cost of the VMs. This chapter concludes by 

discussing early experiments conducted on a Cloud testbed to validate the ability 

of a proposed model of estimating the actual total cost of the VMs based on their 

actual resource usage with consideration of their energy consumption, as 

presented in Sections 3.5 and 3.6. 

3.2 Definitions and Assumptions 

The following list includes the main assumptions and definitions of variables and 

terms considered in this thesis: 

 This research makes abstraction of the type of Cloud applications. Yet, 

the modelling and prediction in this research are driven through Cloud 

application workload patterns, in the sense that it considers Cloud 

applications having repeated historical workload patterns, periodic only, 

when modelling and predicting the VMs workload and energy 

consumption. 

 This research considers heterogeneous VMs. The term homogeneous 

VMs refers to the VMs having the same size in terms of the number of 

vCPUs and RAM, while the term heterogeneous VMs refers to the VMs 

having different sizes based on their number of vCPUs and RAM. 

 VM workload is represented as (CPU, RAM, disk and network), when 

modelling and predicting the VM workload and cost. 
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 Virtual CPUs (vCPUs) utilisation represents the workload of the VM, only 

when modelling and predicting VM energy consumption. It is measured in 

percentage unit (%). 

 PM CPU utilisation represents the workload of the PM, when modelling 

and predicting PM energy consumption. It is measured in percentage unit 

(%). 

 PM power consumption represents the actual or predicted power 

consumption of the PM at a given point in time, when modelling or 

predicting VM power consumption, which includes the idle and active 

power. It is measured by Watt (W). 

 The idle energy of the PM is attributed to homogeneous and 

heterogeneous VMs by considering the size of each VM in terms of the 

vCPUs assigned to it.  

 The active energy of the PM is attributed to homogeneous and 

heterogeneous VMs by considering the VM CPU utilisation and number 

of vCPUs assigned to each VM.  

 VM power consumption represents the attributed power consumption of 

the VM at a given point in time, when modelling or predicting, which 

includes (the idle and active power). It is measured by Watt (W). 

 Power is the rate of electrical usage when performing a work at an instant 

of time and it measured by Watt (W). Energy is the averaged power 

consumption over a period of time to deliver a work and is measured by 

Kilowatt-Hour (kWh). 

 VM total cost represents the cost of VM workload (including CPU, RAM, 

disk and network) along with the cost of VM energy consumption (driven 

only through the CPU utilisation) for a period of time, when modelling and 

estimating the total cost of the VM. It is charged in British Pound Sterling 

(GBP/£). However, there are various costs incurred by Cloud providers 

such as software licenses, IT support, cooling and maintenance, which 

are out of the scope of this research. In addition, other system resources 

such as memory, disk and network, as well as the hypervisor and context 

switches consume energy, but this research considers the energy-related 

to CPU utilisation only, see Section 3.4. 
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 When the VMs are idle and no tasks have been assigned to them, they 

have to share the idle power of the host based on their size (the number 

of vCPUs assigned to each VM); the cost of idle energy is considered in 

the calculation of the VM total cost. 

 The research presented in this thesis makes use of a local Cloud testbed 

with a limited scale (4 PMs and 3 VMs are only used, see Section 3.5).  

3.3 Proposed System Architecture 

The proposed Cloud system architecture is based on the three standard layers 

(discussed in Chapter 2), which are Software as a Service (SaaS) where the 

service creation takes place, Platform as a Service (PaaS) where the service 

deployment takes place, and Infrastructure as a Service (IaaS) where the service 

operation takes place, as shown in Figure 3-1. 

 

Figure 3-1: System Architecture. 

 

This proposed architecture summaries the high-level details of these three 

layers and mainly focuses on the IaaS layer where the service operation takes 

place. In the IaaS layer, the admission, allocation and management of VMs are 

performed through the interaction between a number of components. These 

components and their interactions within this architecture, are discussed in 

Section 3.3.1. The highlighted component Cost Modeller is the main component 

of interest including the other contributions of this thesis. The overall aim of the 
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Cost Modeller is to advance beyond the state of the art by considering the 

awareness of energy consumption, performance variation and total cost of Cloud 

infrastructure services. 

3.3.1 Key Components and Interactions 

As depicted in Figure 3-1, the IaaS layer in the proposed architecture consists of 

a number of components, mainly the Service Level Agreement (SLA) Manager, 

Virtual Machine Manager (VMM), Infrastructure Manager (IM), Monitoring 

Infrastructure (MI) and Cost Modeller. The Cost Modeller is the main component 

within this architecture, it interacts with other components with the aim to support 

the effectiveness of the proposed architecture. In order to achieve that, the SLA 

manager continually monitors SLA conformance and interacts with the VMM to 

determine the SLA offers. The role of the VMM is to react to any periodical events 

such as VMs consolidation and resource provisioning in order to optimise 

resource management during service operation. Thus, the VMM would need to 

utilise the Cost Modeller as well as the essential data from MI in order to handle 

these events efficiently. In this regard, the Cost Modeller would help to provide 

cost-efficient decisions related to the VMs based on their resource usage and 

power consumption, then send to the VMM to perform. Further details of these 

components and the role of Cost Modeller plays in each, are discussed next. 

3.3.1.1 SLA Manager 

The SLA Manager is responsible for monitoring and measuring the application 

SLA’s agreed terms at the IaaS layer. This component interacts with the VMM to 

check the availability and capability of resources to determine the SLA offers as 

well as interacts with the Cost Modeller to assign the cost of the offered terms. 

3.3.1.2 VM Manager 

The VMM component is responsible for managing the VMs at service operation 

level. This component considers an efficient resource management decision(s) 

such as VMs consolidation and resource provisioning in order to improve 

resource usage and reduce the energy cost, and consequently the total cost of 
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Cloud services. In the case of service performance degradation, this component 

will interact with the Cost Modeller to request measures or predictions related to 

the resource usage, power consumption and cost that VMs would incur on any 

particular host. In this research, the service performance refers to the resources 

required to run applications in an efficient way, in terms of resource availability, 

energy efficiency and cost. 

3.3.1.3 Infrastructure Manager 

The IM manages the entire physical infrastructure that includes e.g., processors, 

memory, storage devices, networking and hardware energy meters. In this 

component, the VMs are managed by the Hypervisor, which allows sharing of 

the physical resources among the VMs. 

3.3.1.4 Monitoring Infrastructure 

The main role of this component is to monitor the PMs and VMs resource usage 

(e.g., CPU, memory, network and disk), PMs’ energy consumption (e.g., Watts-

hour) and performance-related metrics (e.g., CPU utilisation and memory usage) 

during the execution of the applications at the service operation level. 

3.3.1.5 Cost Modeller 

The overall aim of this component is to: 1) enable the awareness of energy 

consumption, performance variation and total cost of the VMs at the operational 

level, and 2) predict the workload and power consumption as well as estimate 

the total cost of the VMs incurred by different resource management decisions 

(e.g., VMs re-allocating, live migration and auto-scaling). Therefore, this 

component supports: 

 Energy-based Cost Model that provides measuring the actual resource 

usage, power consumption and total cost relating to the VMs. The details 

of this model will be discussed in Section 3.4. 

 Energy-based Cost Prediction Framework that predicts the resource 

usage, power consumption and estimates the total cost for the VMs. The 

details of this framework will be discussed in Chapter 4. 
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 Performance and Energy-based Cost Prediction Framework that 

supports actuators (e.g., VMs re-allocating, live migration and auto-

scaling) to tackle the performance variation and attempt to get the 

performance to the expected level with minimal impact on cost. 

Furthermore, the proposed framework (in Chapter 4) is used in this 

context to predict the PMs/VMs workload and power consumption as well 

as estimate the total cost of the VMs incurred by live migration and auto-

scaling decisions. The details of this framework will be discussed in 

Chapter 5. 

 A Hybrid Approach for Performance and Energy-based Cost 

Prediction that dynamically supports decision-making regarding auto-

scaling and live migration costs, while at the same time being aware of 

the impact on other quality characteristics such as energy consumption 

and performance of the application. In this hybrid approach, the proposed 

framework (in Chapter 5) has been extended by integrating auto-scaling 

with live migration in order to perform the most cost-effective decision to 

handle the service performance variation. The details of this approach will 

be discussed in Chapter 6. 

3.4 Energy-based Cost Model 

Modelling a new cost mechanism for Cloud services that can be adjusted to the 

actual energy costs has attracted the attention of many researchers. With the 

increasing cost of electricity [11], Cloud providers consider energy consumption 

as one of the biggest cost factors to be maintained within their infrastructures 

[1]–[3], [83].  

In a Cloud environment, each PM can run a single VM or multiple VMs 

simultaneously. These VMs can be homogeneous or heterogeneous based on 

their characteristics, for example, the number of Virtual CPUs (vCPUs) and 

memory size. Thus, these parameters should be taken into consideration along 

with their power consumption when modelling and identifying the total cost for 

the VMs.  

Most Cloud infrastructure providers charge their customers for the offered 

services on a time-based fee [82] regardless of the actual resource usage [23] 
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and consideration of energy consumption [23], [10]. Therefore, an energy-based 

cost model that considers energy consumption as a key parameter with respect 

to the actual resource usage and the total cost is proposed in this thesis. This 

model accounts based on the actual resource usage (e.g., vCPUs, memory, 

network and disk) taking into account the power consumption of the VMs.  

The PMs power consumption can be directly measured through 

monitoring tools either internal such as Running Average Power Limit (RAPL) 

[141] and Intelligent Platform Management Interface (IPMI) [142] or external 

such as Watt’s Up Power Meter [143]. Unlike PMs, a VMs’ power consumption 

is difficult to identify and cannot be directly measured as they do not have 

physical interfaces to plug in any of the power meters for example. Instead, the 

power consumption of VMs can be gathered from their underlying PMs, which is 

still difficult to achieve [144], [145].  

Many of the existing approaches model and identify the energy 

consumption in PMs, as presented in [2], [146], [147] and the energy 

consumption in VMs, as proposed in [131], [148], by considering only the CPU 

utilisation. Therefore, understanding how resource usage affects the power 

consumption is required. An experimental study that investigates the effect of the 

resource usage (e.g., CPU, memory, disk and network) on the power 

consumption is presented in Section 3.6. The findings show that the CPU 

utilisation is highly correlated with the power consumption, as supported in other 

work, for example [2], [146], [149], [108], [118], [113]. Thus, the proposed model 

in this thesis follows the same approach and takes into account the CPU 

utilisation only when modelling and identifying the energy consumption for the 

VMs [144]. 

The energy-based cost model introduced in this chapter works by firstly 

measuring the VMs workload as well as the PMs energy consumption through a 

monitoring system [150]. After that, this model would attribute the PM’s energy 

to the VMs in order to estimate the energy consumption for each VM. Then, the 

VMs total cost can be obtained based on the measured workload and energy 

consumption for each VM. In order to achieve that several steps are required: 

Step 1: The VMs workload (the actual resource usage including vCPUs, 

memory, network and disk) is measured through a monitoring system [150] for 
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each VM. Similarly, the PMs power consumption can be directly measured 

through a monitoring system [150] for each PM, as long as each of the PM has 

a Watts Up [143] meter attached to it. 

Step 2: After the VMs workload and PMs power consumption are 

measured, the second step is to attribute the PM power consumption to the new 

requested VM and to the VMs already running on the PM. Hence, the power 

consumption for the new VM can be done in two parts: 1) VMs idle power 

consumption, VM𝑥𝐼𝑑𝑙𝑒𝑃𝑤𝑟 based on the number of vCPUs assigned to each VM 

[144], as shown in Equation (3.1). The idle energy of the PM is attributed to 

homogeneous and heterogeneous VMs by considering the size of each VM in 

terms of the vCPUs assigned to them, and 2) VMs active power consumption, 

VM𝑥𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑤𝑟 based on the VM CPU utilisation as well as the number of vCPUs 

assigned to each VM [144], as shown in Equation (3.2). The active energy of the 

PM is attributed to heterogeneous and homogeneous VMs by considering the 

VM CPU utilisation and number of vCPUs assigned for each VM. 

 
VM𝑥𝐼𝑑𝑙𝑒𝑃𝑤𝑟 = 𝑃𝑀𝑥𝐼𝑑𝑙𝑒𝑃𝑤𝑟  ×  ( 

VM𝑥𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠

∑ VM𝑦𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠
𝑉𝑀𝑐𝑜𝑢𝑛𝑡
𝑦=1  

) 
(3.1) 

where 𝑃𝑀𝑥𝐼𝑑𝑙𝑒𝑃𝑤𝑟 is the idle power consumption of the PM where the VMs 

are hosted; VM𝑥𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠 is the number of the vCPUs assigned to the given VM; 

𝑉𝑀𝐶𝑜𝑢𝑛𝑡 is the number of VMs running on the same PM; and 

∑ VM𝑦𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠
𝑉𝑀𝑐𝑜𝑢𝑛𝑡
𝑦=1  is the number of vCPUs assigned to a number of the VMs 

set hosted by the same PM. 

 
VM𝑥𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑤𝑟 = (𝑃𝑀𝑥𝑃𝑤𝑟 − 𝑃𝑀𝑥𝐼𝑑𝑙𝑒𝑃𝑤𝑟) × (  

VM𝑥(𝑈𝑡𝑖𝑙×𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠)

∑ VM𝑦(𝑈𝑡𝑖𝑙×𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠)
𝑉𝑀𝑐𝑜𝑢𝑛𝑡
𝑦=1

 ) 
(3.2) 

where 𝑃𝑀𝑥𝑃𝑤𝑟 is the total power consumption of the PM, from which the 

PM’s idle power 𝑃𝑀𝑥𝐼𝑑𝑙𝑒𝑃𝑤𝑟  is deducted to identify the PM’s active power; 

VM𝑥(𝑈𝑡𝑖𝑙×𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠) is the VM CPU utilisation times the number of vCPUs assigned 

to the given VM; and ∑ VM𝑦(𝑈𝑡𝑖𝑙×𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠)
𝑉𝑀𝑐𝑜𝑢𝑛𝑡
𝑦=1  is the VMs CPU utilisation times 

the number of vCPUs for a set of VMs hosted by the same PM. 

Thus, the total power consumption, VM𝑥𝑃𝑤𝑟, for each VM at any given 

time can be identified by summing up both idle and active power consumption 

[144], as shown in Equation (3.3) and Equation (3.4), respectively. 
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VM𝑥𝑃𝑤𝑟 = 𝑃𝑀𝑥𝐼𝑑𝑙𝑒𝑃𝑤𝑟  ×  ( 

VM𝑥𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠

∑ VM𝑦𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠
𝑉𝑀𝑐𝑜𝑢𝑛𝑡
𝑦=1  

) + (𝑃𝑀𝑥𝑃𝑤𝑟 −  𝑃𝑀𝑥𝐼𝑑𝑙𝑒𝑃𝑤𝑟)

× (  
VM𝑥(𝑈𝑡𝑖𝑙×𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠)

∑ VM𝑦(𝑈𝑡𝑖𝑙×𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠)
𝑉𝑀𝑐𝑜𝑢𝑛𝑡
𝑦=1

 ) 

(3.3) 

which is equal to: 

 VM𝑥𝑃𝑤𝑟 = VM𝑥𝐼𝑑𝑙𝑒𝑃𝑤𝑟 +  VM𝑥𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑤𝑟  (3.4) 

where VM𝑥𝑃𝑤𝑟 is the total power consumption for one VM (idle and active 

power) measured by Watt. The 𝑃𝑀𝑥𝐼𝑑𝑙𝑒𝑃𝑤𝑟 is the idle power consumption and 

𝑃𝑀𝑥𝑃𝑤𝑟 is the total power consumption for a single PM. VM𝑥𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠 is the 

requested number of vCPUs and ∑ VM𝑦𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠
𝑉𝑀𝑐𝑜𝑢𝑛𝑡
𝑦=1   is the total number of 

vCPUs for all VMs on the same PM. VM𝑥(𝑈𝑡𝑖𝑙×𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠) is the VM CPU utilisation 

times the number of vCPUs assigned to the given VM; and 

∑ VM𝑦(𝑈𝑡𝑖𝑙×𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠)
𝑉𝑀𝑐𝑜𝑢𝑛𝑡
𝑦=1  is the VMs CPU utilisation times the number of 

vCPUs for a set of VMs hosted by the same PM. 

Hence, the energy-based cost model can fairly attribute the idle and active 

energy consumption of a PM to VMs with the same or different sizes in terms of 

the allocated vCPUs for each VM. As the VMs are heterogeneous in terms of 

size, they consequently have different attribution of the idle and active energy 

consumption, which fairly corresponds to their size. For instance, when both a 

small VM with 1 vCPU and a large VM with 4 vCPUs are being fully utilised on 

the same PM, the large VM would be attributed about four times the amount of 

energy consumption as compared to the small VM (see Section 3.6.2). Thus, this 

model can help to assess how the power consumption of the PMs is attributed 

to the VMs based on the actual physical CPU utilisation used by each VM. Also, 

this model can explore the impact of the actual resource usage on the power 

consumption of the VMs, especially when the VMs are running on different hosts 

with different energy characterisation, as presented in Section 3.6.2. 

After identifying the power consumption for each VM, the conversion of 

power to energy is required using Equation (3.5), since the energy providers 

charge by Kilowatts per hour (kWh). 

 
VM𝑥𝐸𝑛𝑒𝑟𝑔𝑦 =  

VM𝑥𝑃𝑤𝑟

1000
 ×  

𝑇𝑖𝑚𝑒𝑠

3600
 

(3.5) 
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where VM𝑥𝐸𝑛𝑒𝑟𝑔𝑦 is the energy consumption of the VM, measured by 

kWh. VM𝑥𝑃𝑤𝑟 is the total power consumption for one VM (idle and active power) 

measured by Watt (W) times the period of time 𝑇𝑖𝑚𝑒𝑠, measured by second. 

Step 3: The final step in this model is to estimate the total cost of the VM 

based on the actual resource usage from Step 1 and power consumption from 

Step 2. The following Equation (3.6) is used: 

 

VM𝑥𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 = ((VM𝑥𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠 ×
𝑉𝑀𝑥𝑈𝑡𝑖𝑙

100
) × (𝐶𝑜𝑠𝑡 𝑝𝑒𝑟 𝑣𝐶𝑃𝑈 ×  𝑇𝑖𝑚𝑒𝑠))

+ (VM𝑥𝑅𝐴𝑀𝑈𝑠𝑎𝑔𝑒 ×  (𝐶𝑜𝑠𝑡 𝑝𝑒𝑟 𝐺𝐵 ×  𝑇𝑖𝑚𝑒𝑠))

+ (VM𝑥𝐷𝑖𝑠𝑘𝑈𝑠𝑎𝑔𝑒 ×  (𝐶𝑜𝑠𝑡 𝑝𝑒𝑟 𝐺𝐵 × 𝑇𝑖𝑚𝑒𝑠))

+ (VM𝑥𝑁𝑒𝑡𝑈𝑠𝑎𝑔𝑒 ×  (𝐶𝑜𝑠𝑡 𝑝𝑒𝑟 𝐺𝐵 ×  𝑇𝑖𝑚𝑒𝑠))

+ (VM𝑥𝐸𝑛𝑒𝑟𝑔𝑦 ×  𝐶𝑜𝑠𝑡 𝑝𝑒𝑟 𝑘𝑊ℎ) 

 

 

(3.6) 

where VM𝑥𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡  is the total cost of a single VM. The VM𝑥𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠 is the 

number of requested vCPUs and VM𝑥𝑈𝑡𝑖𝑙 is the CPU utilisation for each VM times 

the cost for requested vCPUs for a period of time. VM𝑥𝑅𝐴𝑀𝑈𝑠𝑎𝑔𝑒  is the resource 

usage of RAM times the cost for that resource for a period of time. We consider 

the similar notation for the disk and network resources. VM𝑥𝐸𝑛𝑒𝑟𝑔𝑦 is the energy 

consumption of the VM times the energy cost as considered by the energy 

providers. 

3.5 Early Implementation 

In order to obtain an early evaluation of the proposed energy-based cost model, 

a number of experiments have been conducted on an existing Cloud testbed, 

available at the University of Leeds. The details of this testbed and how it 

monitors the resource usage and energy consumption at the PM and VM levels 

will be discussed next. 

3.5.1 Cloud Testbed 

The Cloud testbed consists of a cluster of eight commodity Dell servers, and 

each one of these servers has Linux CentOS version 6.6 installed as its operating 
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system (OS). Four of these servers with four core X3430 and eight core E31230 

V2 Intel Xeon CPU were used. Also, each server has a total of 16GB RAM and 

250GB up to 500GB of SATA HDD. Additionally, the testbed has a Network File 

System (NFS) share running on the head node of the cluster and providing a 

2TB total storage for VM images. The architecture of this testbed is shown in 

Figure 3-2. The testbed utilises a Virtual Infrastructure Manager (VIM), 

OpenNebula [49] version 4.10.2, Privileged Virtual Machine (PVM) to manage 

and monitor the Virtual Machine Manager (VMM), the testbed uses Kernel-based 

Virtual Machine (KVM) [38] hypervisor version 4.0.1 along with the Linux Kernel 

version 2.6.32.24. 

 

Figure 3-2: Cloud Testbed Architecture. 

 

3.5.2 Monitoring Infrastructure 

The resource usage and energy monitoring on the Cloud testbed is depicted in 

Figure 3-3. At the physical host level, each of the PM has a Watts Up meter [143] 

attached to directly measure the power consumption on a per second basis for 

each PM. The measured power values are then pushed to Zabbix [150], which 

is the monitoring infrastructure tool used on this testbed. Additionally, Zabbix also 

monitors the resources usage such as CPU, memory, network and disk, for each 

of the running PMs and VMs. The PMs power usage along with the VMs resource 

usage are sent to the Cost Modeller, which is responsible for measuring energy 

consumption along with the total cost for the VMs, as described in Section 3.6. 
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Figure 3-3: Monitoring Infrastructure. 

 

3.5.3 Specifications of PMs and VMs 

As explained earlier, the testbed has a cluster of commodity Dell servers, and 

the following Table 3-1 summarises the configurations of the four PMs 

considered in this thesis. Hosts A and B are considered in the experiments 

conducted in this Chapter and Chapter 4. Hosts A, B, C, and D are considered 

in the experiments conducted in Chapters 5 and 6, respectively. 

Table 3-1: Configurations of the PMs. 

Hostname CPU Memory Disk 

Host A A four core X3430 Intel 
Xeon CPU (default clock 
speed of 2.40GHz) 

Total of 16GB of RAM 
(four modules of 4GB 
DDR3 at 1600MHz) 

250GB (Model Number: 
WDC WD2502ABYS) 

Host B An eight-core E3-1230 V2 
Intel Xeon CPU (default 
clock speed of 3.30GHz) 

Total of 16GB of RAM 
(two modules of 8GB 
DDR3 at 1600MHz) 

500GB (Model Number: 
ST1000NM0033) 

Host C A four core X3430 Intel 
Xeon CPU (default clock 
speed of 2.40GHz) 

Total of 16GB of RAM 
(four modules of 4GB 
DDR3 at 1600MHz) 

250GB (Model Number: 
WDC WD2502ABYS) 

Host D A four core X3430 Intel 
Xeon CPU (default clock 
speed of 2.40GHz) 

Total of 16GB of RAM 
(four modules of 4GB 
DDR3 at 1333MHz) 

500GB (Model Number: 
WD5003ABYX) 

 

In terms of the VMs considered in the experiments presented in this 

thesis, Table 3-2 summarises the configurations of the VMs. Rackspace [151] is 

used as a reference for the VMs configurations, as it provides a wide range of 

VM types, which gives the customers lots of flexibility to meet their needs. Three 

types of VMs, small, medium and large are used in this thesis with different 
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capacities. The cost of the virtual resources is set according to ElasticHosts [152] 

and VMware [153], whereas they describe a service cost breakdown in detail as 

follows: 1 vCPU = £0.008/hr, 1 GB Memory = £0.016/hr, 1 GB Storage = 

£0.0001/hr, 1 GB Network = £0.0001/hr; and the cost of energy = £0.14/kWh 

[154]. 

Table 3-2: Configurations of the VMs. 

Instance Type vCPU Memory Disk Network 

Small VM 1 vCPU 1GB 20GB 1GB 

Medium VM 2 vCPUs 2GB 20GB 1GB 

Large VM 4 vCPUs 4GB 20GB 1GB 

 

3.6 Experiments and Evaluation 

3.6.1 Design of Experiments 

A number of direct experiments have been conducted on the Cloud testbed. The 

overall aim of these experiments is to evaluate the capability of the energy-based 

cost model for measuring the actual resource usage, power consumption and 

total cost at the VM level. Furthermore, the proposed model focuses on overall 

cost savings of the VMs that can be obtained when running the VMs on different 

hosts have different energy characterisation. 

In order to design such experiments, a software tool called Stress-ng [73] 

is used to induce the workload on the VMs/PMs in different selectable ways. The 

aim is to generate synthetic periodic workload patterns to represent real 

workload patterns of Cloud applications by stressing all the resources, e.g., CPU, 

RAM, disk and network on different types of VMs to their full utilisation. Also, 

Stress-ng is used in order to investigate the relation between CPU utilisation and 

power consumption. All the experiments are repeated five times 30 minutes each 

and the statistical analysis is performed to consider the mean values of the 

results and eliminate any anomalies due to the dynamicity of the cloud. Note that 

each experiment is set to run for 30 minutes in order to ensure it runs long 

enough and produce relevant data to support the workload patterns. 

The following experiments have been designed to show various aspects 

of energy consumption at the PM and VM levels. This way can help to assess 



- 68 - 
 

how the power consumption of the PMs is attributed to the VMs and explore the 

impact of the actual resource usage and power consumption on the VMs total 

cost when being run on different hosts. 

3.6.2 Evaluation 

The conducted experiments show the results for three types of VMs, small, 

medium and large when being run on different PMs, (Host A and Host B), having 

different characteristics in terms of resources and energy consumption.  

The aim of these experiments is to evaluate the capability of the proposed 

energy-based cost model to measure the actual resource usage, power 

consumption and total cost for a number of VMs when being run on 

heterogeneous PMs.  

In terms of measuring the VMs resource usage, Zabbix [150] monitoring 

tool system is used, Figures 3-4, 3-6 and 3-8 depict the results of the actual VMs 

workload, including CPU, RAM, disk and network usage for the VMs. As 

mentioned earlier, all the VMs workload are repeated five times 30 minutes to 

perform the statistical analysis by considering the mean values of the results and 

eliminate any anomalies. The vertical error bars illustrate the standard deviation 

from the mean values. Based on the measured workload for each VM, their 

power consumption is also measured via the remaining steps within the 

proposed model. Figures 3-5, 3-7 and 3-9 show the actual results of the power 

consumption for all VMs (small, medium and large), respectively, when being run 

on different PMs (Host A and Host B). As a result, the power consumption 

attribution for each VM is affected by the variation in the CPU utilisation of all 

VMs. 

The conducted experiments have shown the energy consumption 

attribution for three heterogeneous VMs running on Host A and Host B, and 

revealed that they can have different attribution of energy consumption based on 

the power characteristics of the underlying PM. Host B has less idle and active 

power consumption than Host A; therefore, when these three types of VMs are 

running on Host A, they have more energy consumption as compared to when 

running on Host B, as shown in Figures 3-5, 3-7 and 3-9, respectively. Hence, 

enabling energy-awareness at the VM level can help Cloud service providers 
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monitor the energy consumption of the VMs and, if necessary migrate the VMs 

to another host to maintain their energy goals as an example. 

  

(a) (b) 

  

(c) (d) 

Figure 3-4: The Workload Results for Small VM (for 30 minutes). 

 

 

  

(Host A) (Host B) 

Figure 3-5: Power Consumption Small VM on Host A and Host B. 
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(a) (b) 

  

(c) (d) 

Figure 3-6: The Workload Results for Medium VM (for 30 minutes). 

 

 

 

 

  

(Host A) (Host B) 

Figure 3-7: Power Consumption Medium VM on Host A and Host B. 
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(a) (b) 

  

(c) (d) 

Figure 3-8: The Workload Results for Large VM (for 30 minutes). 

 

  

(Host A) (Host B) 

Figure 3-9: Power Consumption Large VM on Host A and Host B. 

For clarifying how the proposed model can fairly attribute the PMs power 

consumption to the VMs, Figures 3-10 and 3-11 show the distribution of the PMs 

mean power consumption to all three VMs over time (30 minutes) when being 

run on Host A and Host B, respectively. As designed, all the VMs are idling for 

the first 15 minutes and actively running with 80% of CPU utilisation for the 

remaining 15 minutes [144].  
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Figure 3-10: PM Mean Power 
Consumption Attributed to each VM 

- Host A. 

Figure 3-11: PM Mean Power 
Consumption Attributed to each VM 

- Host B. 

 

Figures 3-12 and 3-13 show the mean energy consumption per VM in 

terms of their idle, active and total energy. As the VMs are heterogeneous in 

terms of size, they consequently have different attribution of the idle and active 

energy consumption, which fairly corresponds to their size. The energy 

consumption of a small VM is about twice smaller than a medium VM and about 

four times smaller than the large VM, which is fairly based on their CPU utilisation 

and sizes defined by the number of vCPUs each VM has. Further, the conducted 

experiments have revealed that a considerably large portion of the VMs total 

energy resides on their idle energy, which is being attributed from the idle energy 

of the underlying PM. Thus, attributing the PMs idle energy to the VMs, which is 

already considered in the proposed model, is very important, especially to 

alleviate the idle energy costs for the PMs.  

  

Figure 3-12: Mean Energy Consumption 
per VM (for 30 minutes) - Host A. 

Figure 3-13: Mean Energy Consumption 
per VM (for 30 minutes) - Host B. 

 

The proposed model is also capable of obtaining the total cost for a 

number of VMs hosted/running on different PMs as shown in Figure 3-14, which 

presents the total cost for all the VMs running on different PMs (Host A and Host 
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B). As the VMs are heterogeneous, the costs of VMs are consequently different. 

The cost of a small VM is about twice smaller than a medium VM and four times 

smaller than a large VM when there are running on both Host A and Host B, 

which is fairly based on their actual resource usage and energy consumption by 

each VM. The energy efficiency of Host B plays an important role to reduce the 

total cost (Cost Saving) of the VMs as compared to Host A, as shown in Figure 

3-15.  

  

Figure 3-14: The VMs Total Cost on Host 
A and Host B. 

Figure 3-15: The VMs Cost Saving on 
Host B. 

 

Despite the combination of different types of VMs running on different 

PMs, the results indicate that the proposed model is capable of estimating the 

actual total cost for a number of VMs based on their actual resource usage with 

consideration of their energy consumption. 

As mentioned earlier in Section 2.4, the work presented in this thesis is 

primarily focused on the costs of the cloud infrastructure that are associated with 

resources along with their energy consumption. However, there are various costs 

incurred by Cloud providers such as software licenses, IT support, cooling and 

maintenance, which are out of the scope of this research. 

3.7 Summary 

To enable performance, cost and energy awareness in a Cloud environment, a 

system architecture along with the main component Cost Modeller are proposed 

in this thesis. Furthermore, an energy-based cost model that considered energy 

consumption as a key parameter with respect to the actual resource usage and 

the total cost of heterogeneous VMs during service operation has been 
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presented and discussed comprehensively in this chapter. A number of direct 

experiments were conducted on a Cloud testbed to evaluate the ability of the 

proposed model to fairly attribute the PM’s energy consumption to VMs and 

estimates the actual cost for different VMs based on their resource usage with 

consideration of their energy consumption.  

Additionally, extra care has been put into the overall process from 

experimental design, implementation, data collection and data analysis to ensure 

it is thorough and consistent. Hence, a statistical analysis has been performed 

to consider the mean values and the standard deviation of the results in order to 

eliminate any anomalies. This has helped the proposed model validation and 

gave confidence in its output. 
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Chapter 4. Energy-based Cost Prediction Framework 

4.1 Overview 

In this chapter, an energy-based cost prediction framework that aims to estimate 

the total cost of VMs by considering their resource usage and power 

consumption is presented in Section 4.2. This framework works by predicting the 

VMs’ workload based on historical workload patterns and correlating the 

predicted VMs workload with physical resources in order to estimate the power 

consumption of the VMs. It then estimates the VMs’ total cost accordingly. A 

number of experiments along with their results are presented in Sections 4.3 and 

4.4 to evaluate the capability of this framework to predict the workload, power 

consumption and estimate the total cost for different VMs at the operation of 

Cloud services.  

4.2 Energy-based Cost Prediction Framework 

The cost mechanisms that are offered by Cloud service providers have become 

sophisticated, as customers are charged per month, hour, minute or second 

based on the resources they utilise. Nevertheless, there are still limited, as 

customers are charged based on pre-defined tariffs for the resources they utilise. 

These pre-defined tariffs do not consider the variable cost of energy [9], which is 

considered as one of the biggest operational cost factors by Cloud infrastructure 

providers. Consequently, estimating the cost of Cloud services including the 

energy consumption can help the service providers offer suitable services that 

meet their customers’ requirements. 

Therefore, an energy-based cost prediction framework that aims to predict 

the workload and power consumption, as well as estimate the total cost for a 

number of VMs during service operation is introduced. The VMs workload 

including vCPUs, memory, disk and network is firstly predicted. The predicted 

VM workload is then correlated to PM workload in order to estimate the PM 

power consumption, from which the predicted VMs power consumption would be 

based on. After that, the total cost of VMs is estimated based on their predicted 

workload and power consumption. 
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As depicted in Figure 4-1, the energy-based cost prediction framework is 

implemented within the cost modeller (introduced in Section 3.2) and includes 

five main steps to predict the VMs workload and power consumption, then 

estimate the total cost of VMs. To achieve this aim, the following steps are 

required. 

 

 

Figure 4-1: Energy-based Cost Prediction Framework. 

4.2.1 VMs Workload Prediction 

The first step of the framework is to predict VM workload for the next time interval, 

which is the requested number of VMs along with their capacity in terms of 

(vCPUs, memory, disk and network) to execute the application. Using the Auto-

Regressive Integrated Moving Average (ARIMA) model, the VM workload is 

predicted based on historical workload patterns retrieved from a knowledge 

database. Cloud applications can experience different workload patterns based 

on the customers’ usage behaviours, and these workload patterns consume 

power differently based on the resources they utilise.  

As already pointed out, there are several workload patterns (discussed in 

Chapter 2, Section 2.3.1), such as static, periodic, continuously changing, 

unpredicted, and once-in-a-lifetime, as stated in [67]. The static workload pattern 

can be easily predicted, but there are many challenges that can obstruct the 

workload prediction when using other patterns. For example, other patterns may 

reflect temporary fluctuations of the workload such as continuously changing and 

once-in-a-lifetime or may be difficult to predict in advance such as the 
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unpredicted pattern. These patterns do not necessarily occur in data centres on 

a daily basis [101]. Therefore, it is essential to have approximated workload 

patterns that occur in the time series history to achieve a high prediction accuracy 

[101]. Thus, the periodic workloads can be more appropriate and precise to allow 

Cloud services to rapidly scale or descale the capacity to meet demand and 

dynamically control the cost of the infrastructure. Therefore, the simulated 

periodic workload pattern is considered for the historical data to be used in this 

framework. 

The ARIMA model is a time series prediction model that has been used 

widely in different domains, including economics and finance, owing to its 

sophistication and accuracy [155]. ARIMA model is a generalisation of the Auto-

Regressive Moving Average (ARMA) (p, q) model that contains two components: 

1) Auto-Regressive (AR): the number of autoregressive parameters, which is 

indicated by (p), and 2) Moving Average (MA): the highest order of the moving 

average parameters represented by (q). In order to obtain the ARIMA model, 

ARMA models can be extended with an integrational (I) in order to convert a non-

stationary time-series data to a stationary one, which is indicated by the 

differencing (d) value. Thus, the ARIMA model is generally stated as ARIMA (p, 

d, q), which consists of three main components: the order of autoregressive (p), 

the degree of differencing (d) and the order of moving average (q); further details 

about the ARIMA model can be found in [155]. 

A number of works, as in [101], [155], [156], have used the ARIMA model 

to predict workload in the cloud environment; though their objectives do not 

consider predicting the energy consumption and the total cost of VMs. Hence, 

the same approach using ARIMA model is applied in this thesis to predict the 

workload, but with the objectives of predicting the energy consumption and the 

total cost of VMs. Unlike other prediction methods such as sample average and 

single exponential smoothing, ARIMA is a powerful, quicker and more flexible 

model to predict time series data with low computational overhead [157], [101]. 

It takes multiple inputs as historical observations and outputs multiple future 

observations depicting the seasonal trend. Also, it can be used for seasonal or 

non-seasonal time-series data. The type of seasonal ARIMA model is used in 

this thesis as the targeted workload patterns are reoccurring and showing 

seasonality in time intervals. To use the ARIMA model for predicting the VM 



- 78 - 
 

workload, the historical time series workload data has to be stationary, otherwise, 

Box and Cox transformation [158] and data differencing methods are used to 

make these data series stationary. Further, the model selection of ARIMA can 

be automatically processed in the R package [159] using the (auto.arima) 

function, which selects the best fit model of ARIMA based on the Akaike 

Information Criterion (AIC) or Bayesian Information Criterion (BIC) value [155]. 

Once the VMs workload using the ARIMA model based on historical data 

is predicted, prediction of PMs workload and the PMs/VMs power consumption 

using regression models take place next. 

4.2.2 PMs Workload Prediction 

Once the VMs workload is predicted, the second step is to understand how this 

workload would be reflected on the physical resources and predict the PMs 

workload, which is based on PM CPU utilisation. This would require measuring 

the relationship between the number of vCPUs and the PM CPU utilisation for a 

PM. Therefore, the relationship between the number of vCPUs and the PMs’ 

CPU utilisation is characterised for the targeted PMs. For the purpose of this 

framework, two different PMs (Host A and Host B, see Section 4.3.1) on the 

Cloud testbed have been characterised with regression models, as shown in 

Figures 4-2 and 4-3, respectively. These experiments were carried on the Cloud 

testbed by stressing the CPU to its full capacity using the Stress-ng tool [73], 

(see Section 4.4). 

  

Figure 4-2: Number of vCPUs vs CPU 
Utilisation for Host A. 

Figure 4-3: Number of vCPUs vs CPU 
Utilisation for Host B. 

 

A linear regression model has been applied to predict the PMs CPU 

utilisation based on the used ratio of the requested number of vCPUs for the VMs 
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with consideration of its current workload as the PM may be running other VMs 

already [79], [92]. The following Equation is used (4.1): 

 

PM𝑥𝑃𝑟𝑒𝑑𝑈𝑡𝑖𝑙 = (α × ( ∑ (VM𝑦𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠

𝑉𝑀𝐶𝑜𝑢𝑛𝑡

𝑦=1

×
𝑉𝑀𝑦𝑃𝑟𝑒𝑑𝑈𝑡𝑖𝑙

100
)) +  𝛽)

+ (𝑃𝑀𝑥𝐶𝑢𝑟𝑟𝑈𝑡𝑖𝑙 − 𝑃𝑀𝑥𝐼𝑑𝑙𝑒𝑈𝑡𝑖𝑙) 

 

(4.1) 

where PM𝑥𝑃𝑟𝑒𝑑𝑈𝑡𝑖𝑙 is the predicted PM CPU utilisation;  is the slope and 

 is the intercept of the CPU utilisation. The VM𝑦𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠 is the number of 

requested vCPUs for each VM and 𝑉𝑀𝑦𝑃𝑟𝑒𝑑𝑈𝑡𝑖𝑙 is the predicted utilisation for 

each VM. The 𝑃𝑀𝑥𝐶𝑢𝑟𝑟𝑈𝑡𝑖𝑙  is the current PM utilisation and 𝑃𝑀𝑥𝐼𝑑𝑙𝑒𝑈𝑡𝑖𝑙 is the idle 

PM utilisation. 

4.2.3 PMs Power Consumption Prediction 

After predicting the PMs workload, the third step is to predict the PMs power 

consumption based on the correlation of the predicted PM workload with PM 

power consumption. Thus, the considered PMs need to be characterised in 

terms of their power consumption in relation with CPU utilisation using regression 

models, as shown in Figures 4-4 and 4-5, respectively. 

  

Figure 4-4: CPU Utilisation vs Power 
Consumption for Host A. 

Figure 4-5: CPU Utilisation vs Power 
Consumption for Host B. 

 

Therefore, the PMs predicted power consumption, PM𝑥𝑃𝑟𝑒𝑑𝑃𝑤𝑟 measured 

in Watts, can be identified using a linear relation with the predicted PMs CPU 

utilisation, as shown in Figure 4-4 and in Equation (4.2). 𝛼 and 𝛽 are the slope 

and interceptor values obtained from the regression relation, and PM𝑥𝑃𝑟𝑒𝑑𝑈𝑡𝑖𝑙 is 

predicted PM CPU utilisation. 
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 PM𝑥𝑃𝑟𝑒𝑑𝑃𝑤𝑟 = (α × (PM𝑥𝑃𝑟𝑒𝑑𝑈𝑡𝑖𝑙)  +  𝛽) (4.2) 

However, not all existing PMs necessarily follow a linear power model in 

relation to their CPU utilisation, since the PMs are heterogeneous in nature, as 

shown for example in Figure 4-5. In this case, other regression models, such as 

polynomial, can be used to characterise the relation between the power 

consumption and CPU utilisation of the targeted PM, as shown in Equation (4.3). 

 PM𝑥𝑃𝑟𝑒𝑑𝑃𝑤𝑟 = (α(PM𝑥𝑃𝑟𝑒𝑑𝑈𝑡𝑖𝑙)3 −  γ(PM𝑥𝑃𝑟𝑒𝑑𝑈𝑡𝑖𝑙)2 +  δ(PM𝑥𝑃𝑟𝑒𝑑𝑈𝑡𝑖𝑙)  +  𝛽) (4.3) 

where ,  and  are all slopes,  is the intercept and PM𝑥𝑃𝑟𝑒𝑑𝑈𝑡𝑖𝑙 is 

predicted PM CPU utilisation. 

4.2.4 VMs Power Consumption Prediction 

The fourth step of this framework is to attribute the predicted PM power 

consumption to the newly requested VM and to the VMs already running on the 

physical host. Hence, the power consumption model of Equation (3.3) presented 

in Section 3.4 is used to predict power consumption for the new VM, VM𝑥𝑃𝑟𝑒𝑑𝑃𝑤𝑟, 

but with different notations, as shown in Equation (4.4): 

 
VM𝑥𝑃𝑟𝑒𝑑𝑃𝑤𝑟 = 𝑃𝑀𝑥𝐼𝑑𝑙𝑒𝑃𝑤𝑟  ×  ( 

VM𝑥𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠

∑ VM𝑦𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠
𝑉𝑀𝑐𝑜𝑢𝑛𝑡
𝑦=1  

)

+ (𝑃𝑀𝑥𝑃𝑟𝑒𝑑𝑃𝑤𝑟 − 𝑃𝑀𝑥𝐼𝑑𝑙𝑒𝑃𝑤𝑟)

×  (  
VM𝑥(𝑃𝑟𝑒𝑑𝑈𝑡𝑖𝑙×𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠)

∑ VM𝑦(𝑃𝑟𝑒𝑑𝑈𝑡𝑖𝑙×𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠)
𝑉𝑀𝑐𝑜𝑢𝑛𝑡
𝑦=1

 ) 

 

(4.4) 

where VM𝑥𝑃𝑟𝑒𝑑𝑃𝑤𝑟  is the predicted power consumption for one VM 

measured in Watt. The 𝑃𝑀𝑥𝐼𝑑𝑙𝑒𝑃𝑤𝑟  is the idle power consumption and 

𝑃𝑀𝑥𝑃𝑟𝑒𝑑𝑃𝑤𝑟  is the predicted power consumption for a single PM. VM𝑥𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠 is 

the requested number of vCPUs and ∑ VM𝑦𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠
𝑉𝑀𝑐𝑜𝑢𝑛𝑡
𝑦=1  is the total number of 

vCPUs for all VMs on the same PM. VM𝑥(𝑃𝑟𝑒𝑑𝑈𝑡𝑖𝑙×𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠) is the predicted VM 

CPU utilisation times the number of vCPUs assigned to the given VM; and 

∑ VM𝑦(𝑃𝑟𝑒𝑑𝑈𝑡𝑖𝑙×𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠)
𝑉𝑀𝑐𝑜𝑢𝑛𝑡
𝑦=1  is the predicted VMs CPU utilisation times the 

number of vCPUs for a set of VMs hosted by the same PM. 
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4.2.5 VMs Total Cost Estimation 

The final step in this framework is to estimate the total cost of the VM based on 

the validated results from the predicted VM workload (Section 4.2.1) and the 

predicted VM power consumption (Section 4.2.4). The energy providers usually 

charge by kWh. Therefore, the conversion of the predicted power consumption 

to energy is required using Equation (3.5) presented in Section 3.4, but with 

substitution of VM𝑥𝐸𝑛𝑒𝑟𝑔𝑦 with VM𝑥𝑃𝑟𝑒𝑑𝐸𝑛𝑒𝑟𝑔𝑦 and VM𝑥𝑃𝑤𝑟 with VM𝑥𝑃𝑟𝑒𝑑𝑃𝑤𝑟, as 

shown in Equation (4.5): 

 
VM𝑥𝑃𝑟𝑒𝑑𝐸𝑛𝑒𝑟𝑔𝑦 =  

VM𝑥𝑃𝑟𝑒𝑑𝑃𝑤𝑟

1000
 × 

𝑇𝑖𝑚𝑒𝑠

3600
 

(4.5) 

To estimate the total cost for the VM, Equation (3.6) presented in Section 

3.4 is used with different notations, as shown in Equation (4.6): 

 

VM𝑥𝐸𝑠𝑡𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 = ((VM𝑥𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠 ×
𝑉𝑀𝑥𝑃𝑟𝑒𝑑𝑈𝑡𝑖𝑙

100
) × (𝐶𝑜𝑠𝑡 𝑝𝑒𝑟 𝑣𝐶𝑃𝑈 ×  𝑇𝑖𝑚𝑒𝑠))

+ (VM𝑥𝑃𝑟𝑒𝑑𝑅𝐴𝑀𝑈𝑠𝑎𝑔𝑒 ×  (𝐶𝑜𝑠𝑡 𝑝𝑒𝑟 𝐺𝐵 ×  𝑇𝑖𝑚𝑒𝑠))

+ (VM𝑥𝑃𝑟𝑒𝑑𝐷𝑖𝑠𝑘𝑈𝑠𝑎𝑔𝑒 ×  (𝐶𝑜𝑠𝑡 𝑝𝑒𝑟 𝐺𝐵 ×  𝑇𝑖𝑚𝑒𝑠))

+ (VM𝑥𝑃𝑟𝑒𝑑𝑁𝑒𝑡𝑈𝑠𝑎𝑔𝑒 ×  (𝐶𝑜𝑠𝑡 𝑝𝑒𝑟 𝐺𝐵 ×  𝑇𝑖𝑚𝑒𝑠))

+ (VM𝑥𝑃𝑟𝑒𝑑𝐸𝑛𝑒𝑟𝑔𝑦 ×  𝐶𝑜𝑠𝑡 𝑝𝑒𝑟 𝑘𝑊ℎ) 

 

 

(4.6) 

where VM𝑥𝐸𝑠𝑡𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡  is the estimated total cost of the VM. The 

VM𝑥𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠 is the number of requested vCPUs for each VM and VM𝑥𝑃𝑟𝑒𝑑𝑈𝑡𝑖𝑙 is 

the predicted utilisation for each VM times the cost for the requested vCPUs for 

a period of time, 𝑇𝑖𝑚𝑒𝑠. VM𝑥𝑃𝑟𝑒𝑑𝑅𝐴𝑀𝑈𝑠𝑎𝑔𝑒, VM𝑥𝑃𝑟𝑒𝑑𝐷𝑖𝑠𝑘𝑈𝑠𝑎𝑔𝑒 and VM𝑥𝑃𝑟𝑒𝑑𝑁𝑒𝑡𝑈𝑠𝑎𝑔𝑒 

denoted the predicted resource usage of memory, disk and network, 

respectively, times the cost of each resource for a period of time. 

VM𝑥𝑃𝑟𝑒𝑑𝐸𝑛𝑒𝑟𝑔𝑦 is the predicted energy consumption of the VM times the energy 

cost as considered by the energy providers. 

4.3 Implementation 

The energy-based cost prediction framework is introduced in this research to 

estimate the total cost of the VMs during service operation based on historical 
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workload patterns. Thus, in order to evaluate this framework, a number of 

experiments have been conducted on the Cloud testbed (see Section 4.4.2) to 

synthetically generate historical workload data. The historical data has been 

generated to represent real workload patterns of Cloud applications (discussed 

in Section 4.2.1), including a periodic workload, by stressing all the resources 

(CPU, memory, disk and network) on different types of VMs using the Stress-ng 

tool [73] (see Section 4.4.1). The prediction process works by firstly predicting 

the VM workload using the (auto.arima) function in R package [159] to 

automatically select the best fit model of ARIMA based on AIC or BIC value. The 

process is then going through the steps of the introduced framework to consider 

the correlation between the physical and virtual resources in order to predict the 

power consumption of the VMs. Finally, the total cost of the VMs when being run 

on different PMs is estimated based on their predicted workload and power 

consumption. 

4.3.1 Characterisation of Physical Machines 

Two different PMs on the Cloud testbed have been considered. The first PM, 

Host A, has a four core X3430 Intel Xeon CPU, and the second PM, Host B, has 

an eight-core E3-1230 V2 Intel Xeon CPU. Also, each PM has a Watt meter [143] 

attached to directly measure the power consumption. Heterogeneous VMs are 

created and their monitoring is performed through Zabbix [150], which is also 

used for resource usage monitoring.  

4.4 Experiments and Evaluation 

4.4.1 Design of Experiments 

The overall aim of the experiments is to demonstrate that the energy-based cost 

prediction framework is capable of predicting the workload, power consumption 

as well as estimating the total cost of heterogeneous VMs when being run on 

heterogeneous PMs.  

Three direct experiments have been conducted by using three types of 

VMs with the objective to 1) understand the relation between each PM’s CPU 

utilisation and the number of vCPUs, 2) understand the power characteristics of 



- 83 - 
 

each PM with their CPU utilisation, and 3) predict the workload, power 

consumption and estimate the total cost for a number of VMs when being run on 

different PMs. 

To design the experiments, historical periodic workload patterns have 

been generated synthetically to represent real workload patterns of Cloud 

applications by conducting a number of experiments to stress all the resources 

(CPU, memory, disk and network) on different types of VMs, as discussed in 

Section 4.3. 

In order to generate a periodic workload pattern for each VM type, a time 

interval of four slots (30 minutes each) is considered. The first three intervals 

(slots) are used as the historical data set for prediction, and the last interval (slot) 

is used as the testing data set to evaluate the predicted results. A similar 

approach is used in [160] and followed in this thesis. 

Note that each experiment is set to run for 30 minutes in order to ensure 

it runs long enough and produce relevant data to simulate the periodic workload 

patterns. Further, in order to use the ARIMA model, it would require having at 

least 50 but preferably more than 100 observations to train the model [155]. 

Therefore, all experiments have four-time intervals 30 minutes each, equal to 

120 minutes (observations), and thus applied to the experiments conducted in 

this Chapter and subsequent Chapters 5 and 6 to ensure consistency. 

4.4.2 Evaluation 

The conducted experiment shows the prediction results for three types of VMs, 

small, medium and large on two different PMs, (Host A and Host B), having 

different characteristics. The aim of this experiment is to evaluate the capability 

of the proposed framework to predict the workload, power consumption and 

estimate the total cost for a number of VMs with different workload when being 

run on different PMs. 

In terms of the historical and testing data sets, Figures 4-6, 4-7 and 4-8 

depict the results of the predicted versus the actual VMs workload, including 

(CPU, RAM, disk, and network) usage for the VMs. Despite the periodic 

utilisation peaks, the predicted VMs’ CPU and RAM workload results closely 
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match the actual results, which shows the strength of the ARIMA model for 

predicting based on historical seasonal data, repeated patterns of the periodic 

workload and give a very accurate prediction accordingly. The predicted VMs’ 

disk and network workload also match the actual workload, but with less 

accuracy as compared to the CPU and RAM prediction results. This can be 

justified because of the high variations in the generated historical periodic 

workload pattern of the disk and network not closely matching in each interval, 

whereas the generated historical periodic workload patterns for the CPU and 

RAM usage are closely matched in each interval. Besides the predicted VMs’ 

workload mean values, the results also show the high and low 95% and 80% 

confidence intervals for the predicted workload of each VM based on the ARIMA 

model. 

 

  

(a) (b) 

  

(c) (d) 

Figure 4-6: The Workload Prediction for Small VM (for 30 minutes). 

 

Table 4-1: Prediction Accuracy for Small VM. 

Parameters ME RMSE MAE MPE MAPE 

CPU Utilisation 0.057922 0.638338 0.282995 0.176069 1.324204 

RAM Usage 0.000060 0.000115 0.000072 0.015359 0.018484 

Disk Usage 0.1188962 0.975295 0.841385 -1.49987 12.05513 

Network Usage -0.015988 0.167085 0.089504 -2.02527 5.942 
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(a) (b) 

  

(c) (d) 

Figure 4-7: The Workload Prediction for Medium VM (for 30 minutes). 

 

 

Table 4-2: Prediction Accuracy for Medium VM. 

Parameters ME RMSE MAE MPE MAPE 

CPU Utilisation -0.0592 0.93451 0.631026 -0.15173 1.07904 

RAM Usage 0.000003 0.00029 0.000193 0.004484 0.018850 

Disk Usage -0.22049 1.57393 1.189894 -5.46191 20.25606 

Network Usage 0.046753 0.36071 0.145621 1.11802 9.038321 
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(a) (b) 

  

(c) (d) 

Figure 4-8: The Workload Prediction for Large VM (for 30 minutes). 

 

 

Table 4-3: Prediction Accuracy for Large VM. 

Parameters ME RMSE MAE MPE MAPE 

CPU Utilisation 0.03765 0.299769 0.137823 0.309809 6.615192 

RAM Usage 0.000004 0.008671 0.002587 -0.00675 0.107601 

Disk Usage 0.1838898 1.116114 0.733408 0.924781 12.64005 

Network Usage 0.0657477 0.225631 0.132185 -6.13982 17.56377 

 

In terms of prediction accuracy, a number of metrics have been used to 

evaluate the predicted workload (CPU, RAM, disk and network) for small, 

medium and large VMs based on periodic workload patterns as presented in 

Tables 4-1, 4-2 and 4-3, respectively. These metrics include, Mean Error (ME) 

which measures the average error of the predicted values; Root Mean Squared 

Error (RMSE) which depicts the square root of the variance measured by the 

mean absolute error; Mean Absolute Error (MAE) is the average of the absolute 

value of the difference between predicted value and the actual value; Mean 

Percentage Error (MPE) is the computed average of percentage errors by which 

the predicted values vary from the actual values; and Mean Absolute Percent 

Error (MAPE) is the average of the absolute value of the difference between the 

predicted value and the actual value explained as a percentage of the actual 
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value [161]. When the values of these metrics are too low or close to zero, it 

indicates that the prediction method has achieved very high prediction accuracy. 

Based on the predicted workload for each VM, their power consumption 

is predicted through the remaining steps within the framework. Figures 4-9, 4-10 

and 4-11 show the predicted versus the actual results of the power consumption 

for small, medium and large VMs when being run on Host A and Host B, noting 

that Host B is more energy efficient as compared to Host A. Also, the predicted 

power consumption attribution for each VM is affected by the variation in the 

predicted CPU utilisation of all VMs, hence the predicted power consumption of 

all VMs is closely matched the pattern of the predicted VMs CPU utilisation, as 

shown in Figures 4-6, 4-7 and 4-8. In terms of prediction accuracy, a number of 

metrics have been used to evaluate the predicted power consumption for small, 

medium and large VMs based on periodic workload patterns as presented in 

Table 4-4. 

  

(Host A) (Host B) 

Figure 4-9: Predicted Small VM Power Consumption. 

 

 

 

  

(Host A) (Host B) 

Figure 4-10: Predicted Medium VM Power Consumption. 
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(Host A) (Host B) 

Figure 4-11: Predicted Large VM Power Consumption. 

 

 

Table 4-4: Prediction Accuracy for The Predicted Power Consumption for all VMs on 
(Host A and Host B). 

Parameter VMs Hosts ME RMSE MAE MPE MAPE 

VMs Power 
Consumption 

Small VM 
Host A 0.01049666 0.1050482 0.04551519 0.02957622 0.1178556 

Host B 0.01007936 0.1110991 0.04925524 0.01709142 0.0759957 

Medium 
VM 

Host A -0.0124435 0.2178242 0.1455701 -0.0238362 0.2762649 

Host B -0.02060695 0.3252957 0.2196544 -0.0242161 0.2635127 

Large VM 
Host A 0.02621121 0.2086939 0.09594997 0.01031316 0.1175031 

Host B 0.00013134 0.1663338 0.06292857 -0.0310118 0.1377464 

 

This framework is also capable of estimating the total cost for a number 

of VMs hosted/running on different PMs as shown in Figure 4-12, which presents 

the estimated total cost of small, medium and large VMs running on different 

PMs (Host A and Host B). 

 

Figure 4-12: The Estimated VMs Total Cost on Host A and Host B. 
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In addition, Figure 4-12 shows the estimated cost for a number of VMs 

running on different PMs. As the VMs are heterogeneous, the costs of VMs are 

therefore different. The cost of small VM is about two times smaller than medium 

VM and three times smaller than large VM, which is based on their resource 

usage and energy consumption by each VM. The predicted energy efficiency of 

Host B plays an important role in reducing the total cost of the VMs comparing 

to Host A. As a result, choosing the more energy efficient host (Host B) to run 

the VMs can achieve 16.25% cost-saving for the small VM, 11.75% for the 

medium VM and 9.38% for the large one, as shown in Figure 4-13. 

 

Figure 4-13: The Estimated VMs Cost Saving on Host B. 

 

Despite the combination of different types of VMs with different workloads 

running on different PMs, the accuracy metrics indicate that the predicted VMs 

workload and power consumption achieve high prediction accuracy along with 

the estimated total cost. 

4.5 Summary 

The proposed energy-based cost prediction framework for predicting resource 

usage, power consumption and estimating the total cost of heterogeneous VMs 

during service operation has been presented and discussed comprehensively in 

this chapter. The chapter further has been followed by a demonstration of a 

number of experiments along with their results to evaluate the capability of the 

proposed framework for predicting the workload, power consumption and 
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estimating the total cost of VMs based on historical workload pattern when being 

run on heterogeneous PMs. 

More care has been put into the overall process from experiment design, 

implementation, data collection, data analysis to ensure it is thorough and 

consistent. For this purpose, statistical analyses (linear and polynomial 

regressions) have been used to compare and validate the model output with the 

real system output, and the values of R-squared have been given accordingly. 

In terms of prediction, the first three intervals have been used as the training data 

set for prediction, and the last interval has been used as the testing data set to 

evaluate the predicted results. The predicted versus the actual VMs workload 

(CPU, RAM, disk, and network) along with their power consumption have been 

validated using five accuracy metrics, and the high and low 95% and 80% 

confidence intervals have also used. Thus, considering all these methods have 

helped the proposed model validation and gave confidence in its results 

obtained. 

 

 



- 91 - 
 

Chapter 5. Performance and Energy-based Cost Prediction 

Framework 

5.1 Overview 

In this chapter, a performance and energy-based cost prediction framework that 

aims to estimate the total cost of VMs by considering their resource usage and 

power consumption, while maintaining the expected level of application 

performance is presented in Section 5.2. This framework includes two 

approaches that can be used for VMs consolidation and resource provisioning in 

order to design a cost-effective strategy and prevent performance loss at 

different levels. A number of experiments along with their results to evaluate the 

capability of the proposed framework to estimate live migration and auto-scaling 

total cost for heterogeneous VMs at service operation are presented in Sections 

5.3 and 5.4. 

5.2 Performance and Energy-based Cost Prediction Framework 

The cost mechanisms that are employed by different Cloud service providers 

significantly influence the adoption of Cloud Computing within the IT industry. 

With the increasing cost of electricity, Cloud providers consider energy 

consumption as one of the biggest operational cost factors to be managed within 

their infrastructures. Most of the existing studies have focused on minimising the 

energy consumption and maximising the resource usage, instead of improving 

the performance [121]. Further, Cloud providers such as Amazon [22], have 

established their SLAs based on service availability without such an assurance 

of the service performance. For instance, during service operation, consider the 

situation where a number of VMs are running on the same PM, and each VM is 

allocated its fair share of resources. If the VM’s workload increases (stretching 

its capacity to its limits) and no resources are available to handle that increment 

(e.g., the workload exceeds the acceptable level of CPU such as 95% threshold), 

resource competition may occur leading to VMs’ performance degradation [121], 

which may affect the fulfilment of the SLAs and hence the cloud provider’s 
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revenue. Hence, to prevent such performance loss, it is necessary to have 

preventive actions such as VMs re-allocation through live migration and VMs 

auto-scaling. Therefore, a performance and energy-based cost prediction 

framework that supports the potential actuators (e.g., migrating and auto-scaling 

VMs) to handle the performance variation in a cost-efficient manner is proposed. 

This framework aims towards predicting PMs/VMs workload and power 

consumption as well as estimating the total cost of the VMs incurred by live 

migration and auto-scaling. Thus, the energy-based cost prediction framework 

(discussed in Chapter 4) is used in this Chapter. 

Generally, the performance and energy-based cost prediction framework 

implemented inside the cost modeller (introduced in Section 3.2) can be 

described using a classic MAPE (Monitor, Analyse, Plan, Execute) control loop 

[162], as illustrated in Figure 5-1.  

 

Figure 5-1: Performance and Energy-based Cost Prediction Framework. 

 

A brief explanation of each phase is provided as follows: 

 Monitoring: the PMs and VMs workload (CPU utilisation and RAM usage) 

are continuously monitored and the data are collected through a 

monitoring system [150].  

 Analysing: the collected data are analysed and threshold policies and 

rules-based are set in order to identify any changes in the behaviour of 

the workload. During this phase, the framework determines whether it is 

necessary to predict the workload for the next time interval based on the 

threshold policy and the rule-based. 
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 Planning: based on the output of the analysis phase, a proper action 

(e.g., VM live migration or auto-scaling) is selected and the target 

component (Execute) is informed to start the execution of the action. 

 Executing: the energy efficiency of the hosts is considered as a key 

factor, which influences the overall cost of the performed action in this 

phase. Moreover, this phase finds when to migrate, which VMs to migrate 

and where to migrate. Also, it decides when to scale, how to scale the 

VMs and where to scale. 

Further details of this framework and the role of live migration and auto-scaling 

are presented next in Section 5.2.1 and Section 5.2.2, respectively.  

5.2.1 VMs Live Migration Prediction Models 

VMs live migration is an important mechanism to improve resource utilisation 

and achieve energy efficiency in Clouds. Live migration allows VMs to move from 

one PM to another without any interruption in the service. This mechanism plays 

an important role in load balancing among the PMs and reduces the overall 

energy consumption [114]. However, VMs live migration is a resource-intensive 

operation [99], which has an impact on the performance of the migrating VM as 

well as the services running on other VMs [12], [13], [100], [118], [124]. Besides, 

there are additional costs [14] in terms of migration time and energy overhead 

that need further consideration [15], [16]. Hence, understanding the impact of 

VM live migration is essential to design an effective consolidation strategy.  

Previous studies show that in most situations, live migration overhead is 

acceptable but cannot be ignored as stated in [112], [163], [113]. As a result, live 

migration overhead needs to be taken into account when the migration decision 

is about to be made [129], [130]. Consequently, estimating the future cost of 

Cloud services can help the service providers offer suitable services that meet 

their customers’ requirements. Thus, a proactive framework has the advantage 

of taking preventive actions (e.g., re-allocating and migrating VMs) at an early 

stage to avoid service performance degradation. The effectiveness of such 

framework depends on potential actuators/decisions to detect the overloaded 

hosts in order to decide when to migrate, which VMs to migrate and where to 

migrate. 
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The proposed framework is implemented inside the cost modeller 

(introduced in Section 3.2) and supports decision-making regarding live 

migration cost while at the same time being aware of the impact on other quality 

characteristics such as energy consumption and performance of the application. 

This framework is aimed towards predicting PMs/VMs workload and power 

consumption as well as estimating the total cost and the recovery cost of the 

VMs incurred by live migration, as depicted in Figure 5-2. 

 

Figure 5-2: Performance and Energy-based Cost Prediction Framework (Live Migration). 

 

To achieve this aim, several steps are required in order to predict the 

PMs/VMs workload and power consumption, then estimate the total cost of the 

migrated VMs as explained next.  

Step 1: The PMs CPU utilisation and RAM usage (upper and max_upper) 

thresholds (e.g., 85% and 95%) are set and the source PMi workload is 

monitored periodically. If the PMi workload equals or exceeds the max_upper 

threshold (e.g., 95%), VM live migration is performed as described in Algorithm 

5.1, using the pre-copy VM live migration technique (introduced in Section 2.7.1). 

The list of the algorithms parameters and their notations is shown in Table 5-1. 

Step 2: If the PMi workload is in the range of [upper and max_upper 

threshold], then predict the PMi workload for the next time interval (e.g., every 5 

minutes [164]) using the ARIMA model based on historical workload patterns (as 

introduced in Chapter 4). This prediction helps detect the workload to control the 

number of migrations in order to avoid unnecessary migration caused by the 

small peaks in the workload (false alarm). If the predicted workload for the next 
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interval exceeds the max_upper threshold, VM live migration is performed as 

described in Algorithm 5.1. 

Table 5-1: Summary of Notations. 

Notation Description 

PMi the source physical machine 

PMj the destination physical machine 

VMx the candidate VM to migrate / the overloaded VM to scale 

C_CPU_PM total CPU capacity of the PM 

C_RAM_PM total memory capacity of the PM 

U_CPU_PM used CPU capacity of the PM (∑ (vCPU𝑉𝑀_𝐶𝑜𝑢𝑛𝑡
𝑦=1 )) 

U_RAM_PM used memory capacity of the PM (∑ (RAM𝑉𝑀_𝐶𝑜𝑢𝑛𝑡
𝑦=1 )) 

C_CPU_VM total CPU capacity of the VM 

C_RAM_VM total memory capacity of the VM 

U_CPU_VM used CPU capacity of the VM  

U_RAM_VM used memory capacity of the VM  

I_CPU_VM increment CPU capacity of the VM  

I_RAM_VM increment memory capacity of the VM 

 

Algorithm 5.1: Performance Prediction 

   Initialise: PM workload = (
U_CPU_PM

C_CPU_PM
,

U_RAM_PM

C_RAM_PM
); 

   PM max_upper threshold = 0.95 × (C_CPU_ PM, C_RAM_ PM);     

   PM upper threshold = 0.85 × (C_CPU_ PM, C_RAM_ PM); 

   Predicted workload = null. 

   Input: PMs list. 

      1: for each (PMi in PMs list) do 

      2:     if (PMi workload ≥ PMi max_upper threshold) then 

      3:         perform VM live migration using (Algorithm 5.2); 

      4:         break 

      5:         else 

      6:                if (PMi workload ≥ PMi upper threshold) && (PMi workload < PMi max_upper threshold) then 

      7:                    Predicted workload ⟵ predict the (PMi workload) for the next interval using the ARIMA model. 

      8:                    PMi workload = Predicted workload; 

      9:                end if 

    10:          end if 

    11: end for 

 

Step 3: The proposed Algorithm 5.2 is used to identify the candidate VMx 

to be migrated and appropriate destination PMj to host it. This algorithm 

combines live migration with re-allocation in order to minimise the overall cost of 

migration by re-allocation the VMs to the most energy efficient host, if possible. 

To do so, the PMs are ranked in decreasing order according to their energy 

efficiency, whereas the VMs are ranked in increasing order of their workload. 

The energy efficiency of the hosts (source PMi and destination PMj) is computed 

based on Equation (3.3) presented in Section 3.4. Thus, the energy efficiency of 
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the hosts can be given by: PM power = 
PM𝑖 (power of the source) 

PM𝑗 (power of the destination)
, whereas; 

PM𝑖 (power of the source) =  ∑ VM𝑝𝑤𝑟𝑉𝑀𝑐𝑜𝑢𝑛𝑡
𝑦=1  and PM𝑗 (power of the destination) =

  ∑ VM𝑝𝑤𝑟𝑉𝑀𝑐𝑜𝑢𝑛𝑡
𝑦=1 . The ∑ VM𝑝𝑤𝑟𝑉𝑀𝑐𝑜𝑢𝑛𝑡

𝑦=1  denotes the sum of the VMs power 

consumption that are already running on the host, which includes the idle and 

active power consumption of the host. For example, if the PM power > 1, the 

destination host is more energy efficient than the source; if the PM power = 1, 

the destination host is similar to the source in terms of the energy efficient and if 

the PM power < 1, the destination host is less energy efficient than the source. 

Starting with the PMj with the lowest idle power (the most energy efficient host), 

and check if PMj has enough resources to meet the migration requirements while 

at the same time making sure that the destination host PMj will not exceed the 

upper threshold for allocating of the migrated VMx. The task is to select a 

matching candidate VMx for migration, considering firstly the one with the 

smallest workload. This ensures 1) the candidate VMx does not overload the 

destination PMj, 2) the source PMi workload decreases significantly once the 

migration has taken place, and 3) potentially increase the ability for recovering 

the migration costs.  

Algorithm 5.2: VM Selection for Migration and PM Allocation 

   Initialise: VM workload = (
U_CPU_VM

C_CPU_VM
,

U_RAM_VM

C_RAM_VM
);  

   PM workload = (
U_CPU_PM

C_CPU_PM
,

U_RAM_PM

C_RAM_PM
);  

   PM upper threshold = 0.85 × (C_CPU_ PM, C_RAM_ PM); 

   PM power = 
PM𝑖 (power of the source)

PM𝑗 (power of the destination)
; // to check the energy efficiency 

   Destination PM = null, Candidate VM = null. 

   Input: PMs list, VMs list. 

   Output: Candidate VM, Destination PM. 

      1: Sort the PMs list in decreasing order of the PM power;      

      2: Sort the VMs list on PMi in increasing order of the workload; // (on the source host) 

      3:     for each (VMx in VMs list) do 

      4:         for each (PMj in PMs list) do 

      5:             if ((PMj workload + VMx workload) < PMj upper threshold) then 

      6:                 Destination PM = PMj; 

      7:                 Candidate VM = VMx; 

      8:                 break 

      9:            end if 

    10:        end for    

    11:    end for 

    12: return Candidate VM, Destination PM. 
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After identifying the candidate VMx and the destination PMj, the ARIMA 

model is used to predict the candidate VMx workload including (CPU, memory, 

disk and network) and identify the best fit model (as introduced in Section 4.2.1). 

Once the candidate VMx workload is predicted using the ARIMA model based 

on historical data, the next step is to predict the PMs (source and destination) 

workload and PMs/VMx power consumption using regression models.  

Step 4: To predict the PMs workload represented as (PMs CPU 

utilisation), would require measuring the relationship between the number of 

vCPU and the PM CPU utilisation for the PMs, as shown in Figures 5-3, 5-4 and 

5-5. 

  

Figure 5-3: Number of vCPUs (VMx) vs 
PM CPU Utilisation (Source PMi), Host A. 

Figure 5-4: Number of vCPUs (VMx) vs 
PM CPU Utilisation (Destination PMj 
- most energy efficient PM), Host B. 

 

Figure 5-5: Number of vCPUs (VMx) vs PM CPU Utilisation (Destination PMj - less 
energy efficient PM), Host D. 

 

The linear regression model of Equation (4.1) presented in Section 4.2.2 is used 

to predict the PMs CPU utilisation.  

Step 5: The PMs power consumption is predicted based on the 

relationship between the predicted PM workload (PM CPU utilisation) with PM 



- 98 - 
 

power consumption on the PMs. Using a regression analysis, the relation is best 

described as linear regression for this particular PMi, as shown in Figure 5-6. 

 

Figure 5-6: The PM CPU Utilisation vs Power Consumption (Source PMi), Host A. 

 

The linear regression model of Equation (4.2) presented in Section 4.2.3 is used 

to predict the PMs power consumption.  

As discussed in Chapter 4, not all existing PMs necessarily follow a linear 

power model in relation to their CPU utilisation, as shown in Figures 5-7 and 5-

8. 

  

Figure 5-7: The PM CPU Utilisation vs 
Power Consumption (Destination PMj - 

most energy efficient PM), Host B. 

Figure 5-8: The PM CPU Utilisation vs 
Power Consumption (Destination PMj - 

less energy efficient PM), Host D. 

 

In this case, other regression models, such as polynomial, can be used to 

characterise the relation between the power consumption and CPU utilisation of 

the targeted PMs, as presented in Equation (4.3), Section 4.2.3. 

Step 6: The proposed Equation (4.4), in Section 4.2.4, is used to predict 

the VMx power consumption on both PMs (source and destination), then the 

conversion of the power consumption to energy is required using the Equation 

(4.5). 
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Step 7: This step estimates the total cost for the migrated VMx based on 

the predicted VMx resource usage in Step 3 and the predicted VMx energy 

consumption in Step 6 within this framework.  

The total time required for migrating VMx can be given by: 

 𝑇𝑀𝑖𝑔 = (𝑇𝑀𝑖𝑔_𝐸𝑛𝑑 −  𝑇𝑀𝑖𝑔_𝑆𝑡𝑎𝑟𝑡) (5.1) 

 𝑇𝑅𝑢𝑛_𝑆𝑜𝑢 = (𝑇𝑅𝑢𝑛_𝑆𝑜𝑢_𝐵𝑒𝑓_𝑀𝑖𝑔 +  𝑇𝑀𝑖𝑔) (5.2) 

 𝑇𝑅𝑢𝑛_𝐷𝑒𝑠 = (𝑇𝑅𝑢𝑛_𝐷𝑒𝑠_𝐴𝑓𝑡_𝑀𝑖𝑔 +  𝑇𝑀𝑖𝑔) (5.3) 

where 𝑇𝑀𝑖𝑔 is the VMx total migration time measured by seconds. 

𝑇𝑀𝑖𝑔_𝑆𝑡𝑎𝑟𝑡 is the time when the migration is started and 𝑇𝑀𝑖𝑔_𝐸𝑛𝑑 is the time when 

the migration is ended. 𝑇𝑅𝑢𝑛_𝑆𝑜𝑢 is the running time of the VMx on the PMi before 

migration starts plus the migration time 𝑇𝑀𝑖𝑔 itself and 𝑇𝑅𝑢𝑛_𝑆𝑜𝑢_𝐵𝑒𝑓_𝑀𝑖𝑔 is the 

running time of VMx before migration. 𝑇𝑅𝑢𝑛_𝐷𝑒𝑠 is the running time of the VMx on 

the PMj during and after migration and 𝑇𝑅𝑢𝑛_𝐷𝑒𝑠_𝐴𝑓𝑡_𝑀𝑖𝑔 is the running time of VMx 

after migration. 

The total cost for VMx would require an estimation of the cost of the VM 

before and after the migration process. Hence, to estimate the total cost for VMx 

before migration, Equation (4.6) presented in Section 4.2.5 is used, but with 

different notations, as shown in Equation (5.4): 

 
VM𝑥𝐸𝑠𝑡_𝐶𝑜𝑠𝑡_𝑃𝑀𝑖 = ((VM𝑥𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠_𝑃𝑀𝑖 ×

𝑉𝑀𝑥𝑃𝑟𝑒𝑑_𝑈_𝑃𝑀𝑖

100
)

× (𝐶𝑜𝑠𝑡_𝑣𝐶𝑃𝑈 × 𝑇𝑅𝑢𝑛_𝑆𝑜𝑢))

+ (VM𝑥𝑃𝑟𝑒𝑑_𝑅_𝑈_𝑃𝑀𝑖 ×  (𝐶𝑜𝑠𝑡_𝐺𝐵 × 𝑇𝑅𝑢𝑛_𝑆𝑜𝑢))

+ (VM𝑥𝑃𝑟𝑒𝑑_𝐷_𝑈_𝑃𝑀𝑖 ×  (𝐶𝑜𝑠𝑡_𝐺𝐵 ×  𝑇𝑅𝑢𝑛_𝑆𝑜𝑢))

+ (VM𝑥𝑃𝑟𝑒𝑑_𝑁_𝑈_𝑃𝑀𝑖 ×  (𝐶𝑜𝑠𝑡_𝐺𝐵 ×  𝑇𝑅𝑢𝑛_𝑆𝑜𝑢))

+ (VM𝑥𝑃𝑟𝑒𝑑_𝐸_𝑃𝑀𝑖 ×  𝐶𝑜𝑠𝑡_𝑘𝑊ℎ) 

 

 

 

(5.4) 

where VM𝑥𝐸𝑠𝑡_𝐶𝑜𝑠𝑡_𝑃𝑀𝑖  is the estimated total cost of the VMx before and 

during migration on the source PMi. The VM𝑥𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠_𝑃𝑀𝑖 is the number of 

requested vCPUs for the VM and 𝑉𝑀𝑥𝑃𝑟𝑒𝑑_𝑈_𝑃𝑀𝑖 is the predicted CPU utilisation 

for the VM times the cost for requested vCPUs for a period of time. 
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VM𝑥𝑃𝑟𝑒𝑑_𝑅𝐴𝑀_𝑈_𝑃𝑀𝑖 is the predicted memory usage times the cost for that resource 

for a period of time. We consider the similar notation for the disk and network 

resources on PMi. VM𝑥𝑃𝑟𝑒𝑑_𝐸_𝑃𝑀𝑖 is the predicted energy consumption of VMx 

times the energy cost as considered by the energy providers.  

Similarly, the total cost of the VMx during and after migration on the 

destination PMj, VM𝑥𝐸𝑠𝑡_𝐶𝑜𝑠𝑡_𝑃𝑀𝑗, is estimated based on Equation (5.4), but 

substituting PMi with PMj and 𝑇𝑅𝑢𝑛_𝑆𝑜𝑢 with 𝑇𝑅𝑢𝑛_𝐷𝑒𝑠 for each resource such as 

CPU, RAM, disk, network and energy. 

Thus, the estimated total cost for VMx, VM𝑥𝑇𝑜𝑡𝑎𝑙_𝐸𝑠𝑡_𝐶𝑜𝑠𝑡, before and after 

the migration can be given by: 

 VM𝑥𝑇𝑜𝑡𝑎𝑙_𝐸𝑠𝑡_𝐶𝑜𝑠𝑡 = VM𝑥𝐸𝑠𝑡_𝐶𝑜𝑠𝑡_𝑃𝑀𝑖 + VM𝑥𝐸𝑠𝑡_𝐶𝑜𝑠𝑡_𝑃𝑀𝑗 (5.5) 

Step 8: Finally, this step compares the estimated total cost of VMx before 

live migration with the estimated total cost of the same VMx after the migration 

takes place, in order to check the ability to recover the costs incurred by live 

migration, as described in Algorithm 5.3. 

Algorithm 5.3: Migration Cost Recovery 

   Initialise: VMx Cost Before Migration = VM𝑥𝐸𝑠𝑡_𝐶𝑜𝑠𝑡_𝑃𝑀𝑖 (as explained in Section 5.2.1 Step 7); 

   VMx Cost After Migration = VM𝑥𝐸𝑠𝑡_𝐶𝑜𝑠𝑡_𝑃𝑀𝑗 (as explained in Section 5.2.1 Step 7). 

   Input: VMs list. 

   Output: Boolean Cost Recovery list. 

      1: for each (VMx in VMs list) do  

      2:     if (VMx Cost After Migration ≤ VMx Cost Before Migration) then 

      3:         Cost Recovery list = true; // The cost of migration is recovered.  

      4:             else 

      5:      Cost Recovery list = false; // The cost of migration is not recovered.  

      6:     end if 

      7: end for 

      8: return Cost Recovery list. 

5.2.2 VMs Auto-Scaling Prediction Models 

VMs auto-scaling is an important technique to provide additional capacity to the 

VMs on-the-fly. Generally, there are two types of VMs auto-scaling [18], [21], 

[14]: 1) vertical scaling (scale-up): request for more resources (e.g., vCPUs and 

memory) inside the VMs, and 2) horizontal scaling (scale-out): request for 

creating additional VMs. However, the latter mechanism may take a few minutes 
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to initiate [17], [18], [133], [102], which is unacceptable for VMs that need to 

rapidly scale-out during the computation [19], [20]. Besides, there are additional 

costs [14] in terms of scaling time (booting/rebooting), license fees for the new 

VMs (horizontal scaling) and energy overhead that need further consideration 

[21]. Hence, understanding the impact of VMs auto-scaling is essential for the 

design of an effective resource provision technique [21]. 

To enable VMs auto-scaling on-the-fly without any performance loss or 

delay, some form of prediction mechanism is needed to prepare the VMs in 

advance [14]. Thus, the proactive framework can help to avoid service 

performance degradation by taking preventive actions (e.g., VMs auto-scaling) 

at an early stage. The impact of such a framework will rely on potential 

actuators/decisions to detect the overloaded VMs in order to decide when to 

scale, how to scale the VMs and where to scale. Additionally, the proactive 

framework can assist service providers to estimate the future cost of Cloud 

services (e.g., VMs auto-scaling) in order to offer suitable services that meet their 

customers’ requirements. 

The proposed framework implemented inside the cost modeller 

(introduced in Section 3.2) has the ability to take advance decisions regarding 

auto-scaling cost, while considering other quality requirements such as energy 

consumption and performance of the application [91]. The auto-scaling resource 

provisioning technique can be described using the MAPE [165] control loop to 

provision resources when needed, as depicted in Figure 5-9. 

 

Figure 5-9: Performance and Energy-based Cost Prediction Framework (Auto-Scaling). 
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The proposed framework is aimed towards predicting workload and power 

consumption as well as estimating the total cost of the VMs incurred by the auto-

scaling decision. To achieve this aim, several steps are required in order to first 

predict the PMs/VMs workload and power consumption, then estimate the total 

cost of the scaled VMs as explained next. 

Step 1: The VMs CPU utilisation and RAM usage (upper and max_upper) 

thresholds (e.g., 85% and 95%) are set and the VMx workload is monitored 

periodically to determine whether extra resources are needed. If the VMx 

workload is in the range of [upper and max_upper threshold], then predict the 

VMx workload for the next time interval (e.g., every 5 minutes [164]) using the 

ARIMA model based on historical workload patterns (as introduced in Chapter 

4). This prediction supports the avoidance of the unnecessary scaling caused by 

the small peaks in the workload (false alarm). If the predicted VMx workload for 

the next interval equals or exceeds the max_upper threshold, VM auto-scaling is 

performed as described in Algorithm 5.4. The list of the algorithms parameters 

and their notations is shown in Table 5-1, Section 5.2.1. 

Step 2: Algorithm 5.4 is used to identify the overloaded VMx to be scaled 

and potentially the most energy efficient PMj to host it, if there is no capacity to 

perform a vertical scaling in the first place. The VMs are ranked in decreasing 

order of their workload, whereas the PMs are ranked in decreasing order 

according to their energy efficiency. The estimation of the energy efficiency for 

both hosts (source PMi and destination PMj) can be computed as: PM power = 

PM𝑖 (power of the source) 

PM𝑗 (power of the destination)
 , as introduced in Section 5.2.1, Step 3. It is also 

ensured that the destination PMs would have sufficient resources to handle the 

scaled VMx workload in order to prevent service performance degradation (e.g., 

when VM resource utilisation increases beyond the predefined threshold).  

Algorithm 5.4: VMs Workload Prediction and Auto-Scaling Decision 

Initialise: VM workload = (
U_CPU_VM

C_CPU_VM
,

U_RAM_VM

C_RAM_VM
); 

VM upper threshold = 0.85 × (C_CPU_VM, C_RAM_VM); 

VM max_upper threshold = 0.95 × (C_CPU_VM, C_RAM_VM);     

PM workload = (
U_CPU_PM

C_CPU_PM
,

U_RAM_PM

C_RAM_PM
);  

PM upper threshold = 0.85 × (C_CPU_PM, C_RAM_PM); 

PM power = 
PM𝑖 (power of the source)

PM𝑗 (power of the candidate)
; // to check the energy efficiency 

Predicted VM workload = null; 
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VM Resource Increments = (I_CPU_VM, I_RAM_VM) = (null, null); 

Scaling Decision = null. 

Input: VMs list, PMs list. // Assuming all the PMs in running/active status 

Output: Scaling Decision. 

   1: Sort the PMs list in decreasing order of the PM power;       

   2: Sort the VMs list on PMi in a decreasing order of the workload; 

   3: for each (VMx in VMs list) do 

   4:       if (VMx workload ≥ VMx upper threshold) && (VMx workload < VMx max_upper threshold) then 

   5:           Predicted VMx workload ⟵ predict the (VMx workload) for the next interval using the ARIMA model. 

   6:            if (Predicted VMx workload > VMx workload) then 

   7:                VM Resource Increments = Predicted VMx workload − VMx workload; 

   8:        else  

   9:              break 

 10:           end if 

 11:       end if 

 12: if (Predicted VMx workload ≥ VMx max_upper threshold) then 

 13:    if (PMi workload + VM Resource Increments) < PMi upper threshold) then  

             // The resource availability on the same host is met (Resize VMx) 

 14:        Scaling Decision ⟵ perform VMx vertical scaling based on (VM Resource Increments);  

 15:        break 

 16:       else // Lack of resources on the same host 

 17:          for each (PMj in PMs list) do 

 18:             if ((PMj workload + VM Resource Increments) < PMj upper threshold) then 

 19:             Scaling Decision ⟵ perform VMx horizontal scaling based on (VM Resource Increments);  

                            // Create a New VM on: 1) the most energy efficient host  

                                                              or 2) on a similar host configuration to source  

                                                              or 3) on the less energy efficient host 

 20:                      break 

 21:             end if 

 22:          end for   

 23:    end if 

 24: end if 

 25: return Scaling Decision. 

 26: end for 

 

Furthermore, this algorithm demonstrates the comparison between 

vertical scaling (scale-up) and horizontal scaling (scale-out) in order to obtain the 

most cost-effective scaling decision. The task is to scale the overloaded VMx 

and select the candidate PM to host it. To do so, the following conditions are 

tested in this order and the subsequent action performed: 1) vertical scaling on 

the same PMi (vertical scaling is limited to the capacity of PMi [18], [102], [14]); 

2) horizontal scaling on the most energy efficient PMj; 3) horizontal scaling on 

PMj which has a similar configuration as the source (e.g., on any PMj that has 
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the same configuration as the source PMi in terms of the CPU type and the ratio 

of idle power), or 4) horizontal scaling takes place on a less energy efficient PMj, 

as illustrated in Figure 5-10. 

 

 

Figure 5-10: The Process of VM Auto-Scaling (Vertical Scaling vs Horizontal Scaling). 

 

Step 3: Algorithm 5.5 is used to select the right size of the VMs to be 

scaled in a cost-efficient way based on the closest predefined instance sizes set 

by Cloud providers (e.g., small, medium and large VM). However, this 

mechanism occasionally leads to resource over-provisioning (e.g., if the 

requested resources for scaling are less than the predefined instance sizes set 

by Cloud providers). This may result in resource wasted (needless capacity is 

created) and the customers might pay more without any benefit [138], [14], [82], 

which is not the aim of VMs auto-scaling. Moreover, wasted resources may lead 

to an increase in the cost of energy due to their under-utilisation and a decrease 

in the Cloud provider’s revenue due to the reduction of the number of resource 

requests that can be accepted. Therefore, a self-configuration approach to 

resize/create VMs based on the right size of the requested resources is 

proposed. The self-configuration approach aims to allocate the proper amount of 

resources to the VMs and avoid the over-provisioning of resources. Thus, this 

mechanism will help Cloud providers to maximise their resource utilisation 

beside their profits and the customers will pay for what they actually use, as 

described in Algorithm 5.5. 
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Algorithm 5.5: Self-configuration - Resizing/Creating VMs  

Initialise: Scaling VM = null. 

Input: Scaling Decision; // From Algorithm 5.4 (Vertical or Horizontal Scaling) 

VMs size list; // List of VMs sizes set by Cloud providers  

VM size. // Based on the predefined VM-sizes list (e.g., small, medium and large) 

VM Resource Increments = (I_CPU_VM, I_RAM_VM) // From Algorithm 5.4 

Output: Scaling VM. 

   1: Sort the VMs size list in increasing order of the VM sizes; 

   2: for each (VM size i in VMs size list) do 

   3:     if (VM Resource Increments = VM size i) then // To ensure that the predefined VM capacity 

                                                                                          is matched with the actual load 

   4:        Scaling VM = VM size i; // Resize or Create using a predefined VM size based on the Scaling Decision 

   5:           else 

   6:         if (VM Resource Increments < VM size i) then  

   7:             Scaling VM = VM Resource Increments; // Resize or Create using a Self-configuration  

                                                                                               VM size based on the Scaling Decision 

   8:             break 

   9:         end if 

  10:     end if 

  11: end for 

  12: return Scaling VM. 

 

After identifying the right size of the VMx to be scaled and the destination 

PMj to host it, the ARIMA model is used to predict VMx workload including 

(vCPU, memory, disk and network) and identify the best fit model (as introduced 

in Section 4.2.1).  

Once the scaled VMx workload is predicted using the ARIMA model 

based on historical data, the next step is to predict the PMs (source and 

destination) workload and PMs/VMx power consumption using regression 

models.  

Step 4: The prediction of the PMs workload represented as (PMs CPU 

utilisation), requires measuring the relationship between the number of vCPUs 

and the PM CPU utilisation for the PMs, as presented in Figures 5-3, 5-4 and 5-

5 in Section 5.2.1. The linear regression model of Equation (4.1) presented in 

Section 4.2.2 is used to predict the PMs CPU utilisation, as mentioned earlier.  

Step 5: The PMs power consumption is predicted based on the 

relationship between the predicted PM workload (PM CPU utilisation) with PM 

power consumption on the PMs. Using regression analysis, the relation is best 

described as a linear regression for this particular PMi, as presented in Figure 5-
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6 in Section 5.2.1. Therefore, in order to predict the PM power consumption, the 

linear regression model of Equation (4.2) presented in Section 4.2.3, is used. 

Not all existing PMs essentially follow a linear power model in relation to 

their CPU utilisation, as presented in Figures 5-7 and 5-8 in Section 5.2.1. In 

such a scenario, other regression models can be used to describe the relation 

between the power consumption and CPU utilisation of the targeted PMs. 

Therefore, in order to predict the PM power consumption that does not follow the 

linear model, the polynomial model in Equation (4.3) presented in Section 4.2.3, 

is used. 

Step 6: The proposed Equation (4.4) in Section 4.2.4, is used to predict 

the VMx power consumption on the PMs, then the conversion of the power 

consumption to energy is required using the Equation (4.5). 

Step 7: This step estimates the total cost for the scaled VMx based on the 

predicted VMx resource usage in Step 3 and the predicted VMx energy 

consumption in Step 6 within this framework. 

The total time required for auto-scaling VMx can be given by: 

 𝑇𝑆𝑐𝑎𝑙𝑖𝑛𝑔_𝑉𝑀𝑥 = (𝑇𝐸𝑛𝑑_𝑆𝑐𝑎𝑙𝑖𝑛𝑔 −  𝑇𝑆𝑡𝑎𝑟𝑡_𝑆𝑐𝑎𝑙𝑖𝑛𝑔) (5.6) 

 𝑇𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔_𝑉𝑀𝑥 = (𝑇𝐸𝑛𝑑_𝑅𝑢𝑛 −  𝑇𝑆𝑡𝑎𝑟𝑡_𝑅𝑢𝑛) − (𝑇𝑆𝑐𝑎𝑙𝑖𝑛𝑔_𝑉𝑀𝑥) (5.7) 

where 𝑇𝑆𝑐𝑎𝑙𝑖𝑛𝑔_𝑉𝑀𝑥  is the time required for scaling VMx measured by 

seconds. 𝑇𝑆𝑡𝑎𝑟𝑡_𝑆𝑐𝑎𝑙𝑖𝑛𝑔 is the time when the scaling is started and 𝑇𝐸𝑛𝑑_𝑆𝑐𝑎𝑙𝑖𝑛𝑔 is 

the time when the scaling is ended. 𝑇𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔_𝑉𝑀𝑥  is the running time of the existing 

VMx before scaling starts. 𝑇𝑆𝑡𝑎𝑟𝑡_𝑅𝑢𝑛 is the start time of the running task and 

𝑇𝐸𝑛𝑑_𝑅𝑢𝑛 is the end time of the running task. 

The total cost for VMx would require an estimation of the cost of the VM 

before and after the scaling process. Hence, to estimate the total cost for VMx 

before scaling, Equation (4.6) presented in Section 4.2.5 is used, but with 

different notations, as shown in Equation (5.8): 
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VM𝑥𝐸𝑠𝑡_𝐶𝑜𝑠𝑡_𝑃𝑀𝑖 = ((VM𝑥𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠_𝑃𝑀𝑖 ×

𝑉𝑀𝑥𝑃𝑟𝑒𝑑_𝑈_𝑃𝑀𝑖

100
)

× (𝐶𝑜𝑠𝑡_𝑣𝐶𝑃𝑈 ×  𝑇𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔_𝑉𝑀𝑥))

+ (VM𝑥𝑃𝑟𝑒𝑑_𝑅_𝑈_𝑃𝑀𝑖 ×  (𝐶𝑜𝑠𝑡_𝐺𝐵 ×  𝑇𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔_𝑉𝑀𝑥))

+ (VM𝑥𝑃𝑟𝑒𝑑_𝐷_𝑈_𝑃𝑀𝑖 ×  (𝐶𝑜𝑠𝑡_𝐺𝐵 ×  𝑇𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔_𝑉𝑀𝑥))

+ (VM𝑥𝑃𝑟𝑒𝑑_𝑁_𝑈_𝑃𝑀𝑖 ×  (𝐶𝑜𝑠𝑡_𝐺𝐵 × 𝑇𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔_𝑉𝑀𝑥))

+ (VM𝑥𝑃𝑟𝑒𝑑_𝐸_𝑃𝑀𝑖 ×  𝐶𝑜𝑠𝑡_𝑘𝑊ℎ) 

 

 

 

(5.8) 

where VM𝑥𝐸𝑠𝑡_𝐶𝑜𝑠𝑡_𝑃𝑀𝑖  is the estimated total cost of VMx before scaling on the 

source PMi. The VM𝑥𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠_𝑃𝑀𝑖 is the number of requested vCPUs for the VM 

and 𝑉𝑀𝑥𝑃𝑟𝑒𝑑_𝑈_𝑃𝑀𝑖 is the predicted CPU utilisation for the VM times the cost for 

requested vCPUs for a period of time. VM𝑥𝑃𝑟𝑒𝑑_𝑅_𝑈_𝑃𝑀𝑖 is the predicted resource 

usage of RAM times the cost for that resource for a period of time before scaling 

𝑇𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔_𝑉𝑀𝑥. We consider the similar notation for the CPU, disk and network 

resources on PMi. VM𝑥𝑃𝑟𝑒𝑑_𝐸_𝑃𝑀𝑖 is the predicted energy consumption of VMx 

times the energy cost as considered by the energy providers.  

Similarly, the cost of VMx after scaling takes place on the destination PMj 

is estimated using Equation (5.8), but substituting PMi with PMj and 𝑇𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔_𝑉𝑀𝑥 

with 𝑇𝑆𝑐𝑎𝑙𝑖𝑛𝑔_𝑉𝑀𝑥 for each resource such as CPU, RAM, disk, network and energy. 

Besides, additional license fees 𝛼 for the new VM is applied when horizontal 

scaling takes place, and is considered as constant (£0.1/hr). 

Thus, the estimated total cost for VMx before and after scaling can be 

given by: 

 VM𝑥𝑇𝑜𝑡𝑎𝑙_𝐸𝑠𝑡_𝐶𝑜𝑠𝑡 = VM𝑥𝐸𝑠𝑡_𝐶𝑜𝑠𝑡_𝑃𝑀𝑖 + VM𝑥𝐸𝑠𝑡_𝐶𝑜𝑠𝑡_𝑃𝑀𝑗 (5.9) 

5.3 Implementation 

The performance and energy-based cost prediction framework is introduced in 

this research to estimate the total cost of migrated and scaled VMs during service 

operation. Thus, in order to evaluate this framework, a number of direct 

experiments have been conducted on the Cloud testbed (see Section 5.3.1) to 
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synthetically generate historical workload data. The prediction process starts by 

firstly predicting the PMs/VMs workload using the (auto.arima) function in R 

package [159] to automatically select the best fit model of ARIMA based on AIC 

or BIC value. Once the PMs/VMs workload is predicted, the process is then going 

through the steps of the introduced framework to consider the correlation 

between the physical and virtual resources in order to predict power consumption 

of the VMs running on multiple PMs. Finally, the total cost of the migrated and 

scaled VMs is estimated based on their predicted workload and power 

consumption. 

5.3.1 Characterisation of Physical Machines 

Four different PMs on the Cloud testbed have been considered. The first three 

PMs, Host A, C and D, have four core X3430 Intel Xeon CPU, and the last PM, 

Host B, has an eight-core E3-1230 V2 Intel Xeon CPU. Host A is considered as 

the source host and Host B, C and D are considered as the destination’s hosts. 

Host B is the most energy efficient host, Host C is the similar host configuration 

to the source (Host A), and Host D is the less energy efficient host. Also, each 

PM has a Watt meter [143] attached to directly measure the power consumption. 

Heterogeneous VMs are created and their monitoring is performed through 

Zabbix [150], which is also used for resource usage monitoring.  

5.4 Experiments and Evaluation 

5.4.1 Design of Experiments 

The overall aim of the experiments is to demonstrate that the performance and 

energy-based cost prediction framework is capable of predicting the workload 

and power consumption as well as estimate the total cost of migrated and scaled 

VMs when being run on different PMs.  

Three direct experiments have been conducted for each live migration 

and auto-scaling using three types of VMs with the objective to 1) reduce energy-

related costs while maintaining performance requirements; 2) estimate the total 

cost for a number of VMs before and after live migration, in order to check the 

ability to recover the costs incurred by live migration, and 3) identify the most 
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suitable cost-effective scaling strategy and estimate the total cost of the scaled 

VMs accordingly. 

To design the experiments, historical data has been generated to 

represent real workload patterns of Cloud applications (discussed in Section 

4.2.1), by using Stress-ng tool [73] (see Section 4.4.1) in order to stress all the 

resources including (CPU, memory, disk and network) on different types of VMs. 

The generated workload for each VM type has a time interval of four slots (30 

minutes each). The first three intervals (slots) are used as the historical data set 

for prediction, and the last interval (slot) is used as the testing data set to evaluate 

the predicted results. A similar approach is used in [160] and followed in this 

thesis. 

5.4.2 Evaluation 

5.4.2.1 VMs Workload Prediction 

This section presents the quantitative evaluation of the performance and energy-

based cost prediction framework in terms of VMs live migration and auto-scaling 

in order to estimate the total cost of VMs during service operation.  

Figures 5-11, 5-12, and 5-13 show the predicted workload results for three 

types of VMs, small, medium and large, running on a multiple PMs based on 

historical periodic workload pattern. They depict the results of the migrated and 

scaled VMs predicted versus the actual workload, including CPU, RAM, disk, 

and network usage for the VMs. Despite the periodic utilisation peaks, the 

predicted VMs CPU, RAM and network workload results closely match the actual 

results, which reflects the capability of the ARIMA model to capture the historical 

seasonal trend and give a very accurate prediction accordingly. The predicted 

VMs disk workload is also matching the actual workload, but with less accuracy 

as compared to the CPU, RAM and network prediction results. This can be 

justified because of the high variations in the generated historical periodic 

workload pattern of the disk not closely matching in each interval. Besides the 

predicted VMs’ workload mean values, the results also show the high and low 

95% and 80% confidence intervals for the predicted workload of each VM based 

on the ARIMA model. 
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(a) (b) 

  

(c) (d) 

Figure 5-11: The Workload Prediction Results for Small VM. 

 

 

Table 5-2: Prediction Accuracy for Small VM. 

Parameters ME RMSE MAE MPE MAPE 

CPU Utilisation 0.00486 1.7101 0.5652 -3.4611 4.978 

RAM Usage 0.00167 0.0189 0.0055 0.1618 0.6585 

Disk Usage -0.0052 0.1869 0.0461 3.459 6.940 

Network Usage 0.00072 0.0051 0.0030 0.64200 2.8612 
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(a) (b) 

  

(c) (d) 

Figure 5-12: The Workload Prediction Results for Medium VM. 

 

 

Table 5-3: Prediction Accuracy for Medium VM. 

Parameters ME RMSE MAE MPE MAPE 

CPU Utilisation 0.019355 0.2451 0.12275 -3.1443 3.576033 

RAM Usage 0.001976 0.0189 0.00588 0.11509 0.333648 

Disk Usage 0.000197 0.0940 0.01848 -8.96 9.5482 

Network Usage -0.00005 0.0030 0.00181 -0.2380 2.716369 
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(a) (b) 

  

(c) (d) 

Figure 5-13: The Workload Prediction Results for Large VM. 

 

 

Table 5-4: Prediction Accuracy for Large VM. 

Parameters ME RMSE MAE MPE MAPE 

CPU Utilisation 0.437240 4.8481 1.39113 0.86261 2.095702 

RAM Usage -0.00097 0.0308 0.00791 -0.0621 0.328699 

Disk Usage -0.08418 1.4943 0.47049 -3.3323 11.57954 

Network Usage -0.00001 0.0028 0.00156 -0.3278 3.637562 

 

 

In terms of prediction accuracy, a number of metrics have been used to 

evaluate the results of the predicted workload for three types of VMs, as these 

metrics have been defined earlier in Section 4.4.2. The accuracy of the predicted 

VMs workload (CPU, RAM, disk, network) based on periodic workload is 

evaluated using these accuracy metrics, as summarised in Tables 5-2, 5-3 and 

5-4, respectively. 

5.4.2.1.1 VMs’ Live Migration Workload Prediction 

In Algorithm 5.1 of Section 5.2.1, when PMi is overloaded and exceeds the 

predefined (upper threshold), instead of immediately migrating VMs, the 

prediction model is used to minimise the number of VM migrations and avoid 
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unnecessary migrations caused by the small peaks in the workload. However, 

when PMi is overloaded and exceeds the predefined (max_upper threshold), the 

proposed Algorithm 5.2 is used to migrate the candidate VMx, in order to reduce 

the overloaded PMi and allocate the VMx on appropriate PMj, which has 

sufficient resources and is potentially more energy efficient. It is also ensured 

that the destination PMj utilisation will not exceed the max_upper threshold for 

reallocating of the incoming VMx. To illustrate the migration process, Figure 5-

14 shows the predicted versus the actual PMs workload when the VMs run CPU-

intensive workload, during the migration process the resource interference 

incurred by migration has appeared on both source PMi and destination PMj. 

Therefore, this resource interference incurred on both source and destination 

needs to be taken into account [124] when estimating the total migration cost 

(see Section 5.4.2.3). Moreover, to achieve the migration without degrading the 

performance, both PMi and PMj (CPU and RAM) resources need to be carefully 

managed [124]. Since the PMi max_upper threshold is predefined and PMj have 

available resources to accept the candidate VMx, the performance during the 

migration process is therefore not affected. 

 

Figure 5-14: The Predicted Workload vs The Actual Workload for both PMs (Source PMi 
and Destination PMj). 

 

5.4.2.1.2 VMs' Auto-Scaling Workload Prediction 

In Algorithm 5.4 of Section 5.2.2, when VMx is overloaded and exceeds the 

predefined (upper threshold), instead of immediately auto-scaling VMs, the 

prediction model is used to minimise the number of VMs scaling and avoid 

unnecessary scales caused by the small peaks in the workload. However, when 
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VMx is overloaded and exceeds the predefined (max_upper threshold), the 

overloaded VMx will be scaled in order to prevent service performance 

degradation and allocated to an appropriate PMj, which has sufficient resources 

and is potentially most energy efficient. To achieve the auto-scaling without 

degrading the performance of VMx, the destination PMj (CPU and RAM) 

resources need to be carefully managed. Since the PMi upper threshold is 

predefined and PMj has available resources to accept the allocated VMx, the 

performance of the auto-scaled VMx is not affected. It is also ensured that the 

destination PMj will not exceed the upper threshold for allocating of the incoming 

VMx. 

5.4.2.2 VMs Power Consumption Prediction 

Besides the VMs workload prediction, the proposed framework can predict the 

power consumption for a number of VMs when running on source PMi and 

destination PMj for both live migration and auto-scaling, as described below. 

5.4.2.2.1 VMs' Live Migration Power Consumption Prediction 

Figures 5-15, 5-16 and 5-17 depict the results of the predicted versus the actual 

power consumption for a number of VMs when running on source PMi (Host A) 

and destination PMj, noting that the destination PMj can be the most energy 

efficient (Host B) or less energy efficient (Host D) comparing to source PMi based 

on the migration decision. Also, the predicted power consumption attribution for 

each VM is affected by the variation in the predicted CPU utilisation of all the 

VMs. In terms of prediction accuracy, a number of metrics have been used to 

evaluate the predicted power consumption for small, medium and large VMs 

based on periodic workload pattern as presented in Table 5-5. 
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Figure 5-15: Small VM Predicted vs Actual 
Power Consumption on (Source PMi 

and Destination PMj). 

Figure 5-16: Medium VM Predicted vs 
Actual Power Consumption on 

(Source PMi and Destination PMj). 

 

 

Figure 5-17: Large VM Predicted vs Actual Power Consumption on (Source PMi and 
Destination PMj). 

Table 5-5: Prediction Accuracy for The Predicted Power Consumption for all VMs on 
(Host A, Host B and Host D). 

Parameter VMs Hosts ME RMSE MAE MPE MAPE 

VMs Power 
Consumption 

Small 
VM 

Host A -0.00551665 0.5150904 0.2493285 0.00539324 0.3674461 

Host B 0.005655233 0.4750381 0.2190667 0.04799226 0.5281281 

Host D 0.00246747 0.1537848 0.07028654 0.0023619 0.05689478 

Medium 
VM 

Host A 0.01939327 0.07113483 0.04306951 0.02648363 0.05983904 

Host B 0.01529777 0.05683427 0.03492552 0.03521646 0.08024377 

Host D 0.004925887 0.01823638 0.01120869 0.003956332 0.00901164 

Large 
VM 

Host A -0.2564522 1.533448 0.5685501 -0.2213621 0.5101096 

Host B -0.07265782 0.5223516 0.193443 -0.0954475 0.2912161 

Host D 0.00000132 0.0000031 0.00000278 0.00000099 0.0000021 

 

5.4.2.2.2 VMs' Auto-Scaling Power Consumption Prediction 

Figures 5-18 to 5-23 show the results of the predicted versus the actual power 

consumption for the VMs running on a number of PMs using different scaling 

strategies based on the predefined instance size and the self-configuration 

instance size (as discussed in Algorithm 5.5 of Section 5.2.2). According to 

Algorithm 5.5, the vertical scaling is performed on the same PM (Host A) and the 

horizontal scaling is performed on a number of hosts, (Host B) is the most energy 

efficient PM, (Host C) is a similar host configuration to the source (Host A), and 
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(Host D) is the less energy efficient PM. Note that, the vertical scaling was not 

performed with the large VM, since the large VM has four CPU cores and the 

capacity of the hosted PM (Host A) has the same number of CPU cores as the 

VM. Thus, there is no available capacity to perform vertical scaling on the same 

host. Therefore, only horizontal scaling can be performed with this specified VM. 

By observing the figures, the self-configuration auto-scaling mechanism 

proposed in (Algorithm 5.5) outperforms the predefined one, since the predicted 

power consumption is lower, thus the total cost of VMs will be lower as well. Also, 

it should be mentioned that the predicted power consumption attribution for each 

VM is affected by the variation in the predicted PM CPU utilisation of all the VMs. 

In terms of prediction accuracy, a number of metrics have been used to evaluate 

the predicted power consumption for small, medium and large VMs based on 

periodic workload pattern as presented in Table 5-6. 

  

Figure 5-18: Small VM Predicted vs Actual 
Power Consumption using a 

Predefined VM Size - Scaling on a 
Number of PMs. 

Figure 5-19: Small VM Predicted vs Actual 
Power Consumption using Self-

Configuration VM Size - Scaling on 
a Number of PMs. 

 

  

Figure 5-20: Medium VM Predicted vs 
Actual Power Consumption using a 
Predefined VM Size - Scaling on a 

Number of PMs. 

Figure 5-21: Medium VM Predicted vs 
Actual Power Consumption using 

Self-Configuration VM Size - Scaling 
on a Number of PMs. 
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Figure 5-22: Large VM Predicted vs Actual 
Power Consumption using a 

Predefined VM Size - Scaling on a 
Number of PMs. 

Figure 5-23: Large VM Predicted vs Actual 
Power Consumption using Self-

Configuration VM Size - Scaling on 
a Number of PMs. 

 

Table 5-6: Prediction Accuracy The Predicted Power Consumption for all VMs on (Host 
A, Host B, Host C and Host D). 

Parameter VMs Hosts ME RMSE MAE MPE MAPE 

VMs Power 
Consumption 

Small VM 

Host A -0.01103331 1.030181 0.498657 0.03021525 0.6409635 

Host B 0.000138589 0.9890217 0.4683952 0.02041722 0.4281543 

Host C -0.01103331 1.030181 0.498657 0.00539323 0.3674461 

Host D -0.00304837 0.6681303 0.3196148 0.0011727 0.1668069 

Medium 
VM 

Host A 0.03878653 0.1422697 0.08613903 0.04478487 0.1014052 

Host B 0.03469103 0.1274472 0.07799503 0.0297295 0.06752187 

Host C 0.03878655 0.1422697 0.08613901 0.02648364 0.05983903 

Host D 0.02431962 0.08910762 0.05427882 0.01224154 0.02755249 

Large VM 

Host B -0.32911 2.054355 0.7619931 -0.17381 0.4269158 

Host C -0.5129043 3.066896 1.1371 -0.2213621 0.5101096 

Host D -0.2934642 1.762708 0.6549309 -0.1180191 0.2683187 

 

5.4.2.3 VMs Total Cost Estimation 

This framework is also capable of estimating the live migration and auto-scaling 

total cost for a number of VMs when running on different PMs. 

5.4.2.3.1 VMs' Live Migration Cost Estimation 

Figures 5-24 and 5-25 show the results of the estimated total cost before and 

after live migration for a number of VMs along with their migration cost recovery 

based on the proposed Algorithm 5.3 in Section 5.2.1. In Figure 5-24, the 

estimated migration cost recovery can be achieved for all three types of VMs 

when the migration is performed to the most energy efficient host. Conversely, 
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when the migration is performed to the less energy efficient host as shown in 

Figure 5-25, only a large VM can recover that migration cost. 

 
 

Figure 5-24: Estimated Total Cost Before 
vs After Migration with Migration 
Cost Recovery on (most energy 

efficient PM), Host B. 

Figure 5-25: Estimated Total Cost Before 
vs After Migration with Migration 
Cost Recovery on (less energy 

efficient PM), Host D. 

 

In addition, Figures 5-26 and 5-27 show the percentage results of the 

estimated migration cost recovery for all three types of VMs when being migrated 

to the most energy efficient host: 21.53% for the small VM, 18.20% for the 

medium VM and 17.44% for the large one. However, when the VMs are migrated 

to the less energy efficient host, only the large VM can recover that migration 

cost with 7.81%, for small and medium VMs the migration cost cannot be 

recovered (-11.35% and -2.95%), respectively. 

  

Figure 5-26: The Potential Migration Cost 
Recovery on (most energy efficient 

PM), Host B. 

Figure 5-27: The Potential Migration Cost 
Recovery on (less energy efficient 

PM), Host D. 

 

5.4.2.3.2 VMs' Auto-Scaling Cost Estimation 

Figures 5-28, 5-29 and 5-30 show the results of the estimated auto-scaling total 

cost for three types of VMs running on a number of PMs using different scaling 
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strategies, along with the self-configuration technique (proposed in Algorithm 5.5 

of Section 5.2.2). This helps select the most suitable cost-effective scaling 

strategy.  

  

Figure 5-28: Estimated Small VM Auto-
Scaling Total Cost (Predefined VM 
Size Scaling vs Self-Configuration 

VM Size Scaling). 

Figure 5-29: Estimated Medium VM Auto-
Scaling Total Cost (Predefined VM 
Size Scaling vs Self-Configuration 

VM Size Scaling). 

 

 

Figure 5-30: Estimated Large VM Auto-Scaling Total Cost (Predefined VM Size Scaling 
vs Self-Configuration VM Size Scaling). 

 

As shown in Figures 5-28, 5-29 and 5-30, choosing between vertical and 

horizontal scaling can have a significant impact on the cost of the scaled VMs 

(e.g., vertical scaling can be more cost-effective than horizontal scaling when the 

VM scaled on a similar host configuration). This can be justified because of the 

additional cost in terms of software license for the new VM when horizontal 

scaling is performed. Also, horizontal scaling using most energy efficient PM can 

be more cost-effective than horizontal scaling when using less energy efficient 

PM. As mentioned earlier, the vertical scaling was not performed with the large 

VM (see Figure 5-30), since it has the same number of CPU cores as the hosted 

PM (Host A). This means that the host is fully utilised via the VM. 
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Figure 5-31: Cost Saving by Self-
Configuration Scaling (Small VM). 

Figure 5-32: Cost Saving by Self-
Configuration Scaling (Medium VM). 

 

 

Figure 5-33: Cost Saving by Self-Configuration Scaling (Large VM). 

 

In addition, Figures 5-31, 5-32 and 5-33 show the results of the estimated 

self-configuration cost that can incur less VMs scaling cost compared to 

predefined instance size choices. The cost comparison shows that choosing a 

self-configuration VMs size can achieve about 21.9% cost-saving compared to 

the predefined VMs size on the same host (PMi) when vertical scaling is 

performed. In case of horizontal scaling on (PMj), around 6.89% cost-saving can 

be gained on a most energy efficient host, approximately 7.03% on a similar host 

configuration and about 6.43% on a less energy efficient host. 

5.5 Summary 

This chapter has presented and evaluated a new performance and energy-based 

cost prediction framework that dynamically supports VMs live migration and 

auto-scaling to demonstrate the trade-off between cost, power consumption, and 

performance during service operation. This framework estimates live migration 

and auto-scaling total cost for heterogeneous VMs by considering their resource 
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usage and power consumption, while at the same time maintaining the expected 

level of application performance. The results show that the proposed framework 

can predict the resource usage, power consumption and estimate the total cost 

for the migrated and scaled VMs based on historical workload patterns, when 

being run on heterogeneous PMs. 
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Chapter 6. A Hybrid Approach for Performance and Energy-

based Cost Prediction 

6.1 Overview 

In this chapter, a new hybrid approach for performance and energy-based cost 

prediction that aims to integrate auto-scaling with live migration in order to 

estimate the total cost of VMs by considering resource usage and power 

consumption is presented in Section 6.2. This approach works by detecting the 

underloaded and overloaded PMs in order to perform the most cost-effective 

decision(s) to handle the service performance variation. A number of 

experiments along with their results are presented in Sections 6.3 and 6.4 to 

evaluate the capability of this hybrid approach to predict the workload, power 

consumption and estimate the total cost of VMs scaling and migration when 

being run on different PMs at service operation. 

6.2 Integration of VMs Auto-Scaling with Live Migration: A 

Hybrid Approach 

In a Cloud environment, resource provisioning and VMs consolidation are used 

to address workload fluctuations issues. Current solutions such as resource 

provisioning attempt to provide additional resource capacity to the VMs as 

needed in order to meet QoS requirements. For instance, when one or more VMs 

are detected as overloaded (e.g., the workload exceeds the predefined upper 

threshold), the VMs should be scaled up/out to meet the application demands. 

This can be achieved either by vertical scaling (adds resources to the VMs on 

the same host) or by horizontal scaling (creates new VMs on appropriate host), 

all of which were based on application requirements. Another solution such as 

VM consolidation aims to move the VMs from one host to another in order to 

reduce the number of active PMs and save power. For instance, when a host is 

detected as underloaded (e.g., the workload less than the predefined lower 

threshold), it is a candidate for being switched off or to enter power saving mode. 

This can be accomplished by re-allocating VMs through live migration to an 
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appropriate host. However, these techniques have their own set of limitations in 

terms of the additional costs related to scaling/migration time and energy 

consumption, as discussed earlier in Chapter 5. 

A number of papers in the literature [12]–[14], [20], [21], [100], [101], [113] 

have investigated the resource provisioning and VM consolidation independently 

through different objectives such as load balancing, increasing the capacity of 

VMs resources and reducing the energy-related costs. To minimise the 

operational costs while achieving performance objectives, Cloud providers can 

automatically perform an integration of VMs consolidation and resource 

provisioning to match workload changes and prevent any performance loss. 

Thus, a proactive framework has the advantage of taking preventive actions on-

the-fly (e.g., VMs auto-scaling, migrating and re-allocating) at earlier stages to 

avoid service performance degradation. The effectiveness of such framework 

depends on potential actuators/decisions to implement at service operation. This 

solution would allow Cloud providers to make better use of their infrastructure in 

terms of maintaining service performance, reducing power consumption and 

operating cost. In addition, estimating the future cost of Cloud services can help 

the service providers offer suitable services that meet their customers’ 

requirements. 

Therefore, the proposed framework (discussed in Chapter 5) has been 

extended to support a new hybrid approach for performance and energy-based 

cost prediction, as depicted in Figure 6-1. This approach is implemented inside 

the cost modeller (introduced in Section 3.2) and supports decision-making 

regarding auto-scaling and live migration, considering their costs, while at the 

same time being aware of the impact on other quality characteristics such as 

energy consumption and performance of the application. 

This approach is aimed towards predicting PMs/VMs workload using the 

ARIMA model in order to perform the most effective decision(s) (e.g., auto-

scaling, live migration or both) to handle the performance variation of the 

applications. The relationship between the VMs and PMs workload is 

investigated using regression models in order to predict the VMs power 

consumption for an efficient allocation/re-allocation of the VMs. Hence, the total 

cost of the VMs incurred by the most effective decision(s) can be estimated 

based on the predicted workload and energy consumption for each VM. 
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Figure 6-1: A Hybrid Approach for Performance and Energy-based Cost Prediction. 

 

To achieve this aim, several steps are required in order to detect the underloaded 

and overloaded PMs, predict the PMs/VMs workload and their power 

consumption, then estimate the total cost of the scaled/migrated VMs as 

explained below. 

Step 1: The PMs CPU utilisation and RAM usage (lower, upper and 

max_upper) thresholds (e.g., 25%, 85% and 95%, respectively) are set and the 

PMs workload is monitored periodically. The proposed Algorithm 6.1 is used to 

detect the underloaded and overloaded PMs. This algorithm combines two sub-

algorithms: 1) live migration with VMs re-allocation in order to switch the 

underloaded host to power saving mode, hence save energy-related costs. Also, 

this sub-algorithm aims to minimise the overall cost of migration by re-allocation 

the VMs to the most energy efficient host (if possible), as presented in Algorithm 

6.2; and 2) an integration of auto-scaling, live migration and re-allocation in order 

to prevent the host to be overloaded. This sub-algorithm would help to select the 

most cost-effective action(s) in order to minimise the overall cost of the VMs 

incurred by scaling/migration decision(s), as presented in Algorithm 6.3. The list 

of the algorithms parameters and their notations was shown in Table 5-1 of 

Chapter 5. 

Step 2: In terms of the underloaded PMs, Algorithm 6.1 is used to detect 

the underloaded PMs and perform appropriate actions such as live migration and 

re-allocation to save energy cost. Therefore, if the PMi workload 

(∑ VM𝑠 workload𝑛
𝑖=1 ) is less than or equals to the lower threshold (e.g., 25%), 

then predict the VMs workload for the next time interval (e.g., every 5 minutes) 
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using the ARIMA model based on historical workload patterns (see Step 4). This 

prediction helps detect the underloaded PMi workload in order to migrate the 

VMs and switch PMi to power saving mode. Thus, if the predicted VMs workload 

for the next interval is still less than or equals to the lower threshold, then VMs 

live migration and re-allocation are performed using Algorithm 6.2.  

 

Algorithm 6.1: PMs Underload/Overload Workload Detector and Performance Prediction  

  Initialise: PM workload = (
U_CPU_PM

C_CPU_PM
,

U_RAM_PM

C_RAM_PM
);  

   PM lower threshold = 0.25 × (C_CPU_PM, C_RAM_PM);     

   PM upper threshold = 0.85 × (C_CPU_PM, C_RAM_PM);   

   PM max_upper threshold = 0.95 × (C_CPU_PM, C_RAM_PM);     

   VM workload = (
U_CPU_VM

C_CPU_VM
,

U_RAM_VM

C_RAM_VM
);  

   Predicted VM workload = null; 

   Predicted ∑  𝑛
𝑖=1 VMs workload = null; 

   Predicted VMs list workload = empty. 

   Input: PMs list. 

     1: for each (PMi in PMs list) do 

     2:     if (PMi workload ≤ PMi lower threshold) then  

     3:         for each (VMx in PMi) do 

     4:              Predicted VMx workload ⟵ predict VMx workload for the next interval using the ARIMA model. 

     5:         Predicted ∑  𝑛
𝑖=1 VMs workload ⟵ Predicted VMx workload ++; // The sum  

                                                                            of the predicted VMs workload on PMi. 

     6:   end for  

     7:               if (Predicted ∑  𝑛
𝑖=1 VMs workload ≤ PMi lower threshold) then // Underloaded PM 

     8:                   Perform Algorithm 6.2.      

     9:         end if 

   10:     else  

   11:         if (PMi workload ≥ PMi upper threshold) && (PMi workload < PMi max_upper threshold) then 

   12:            for each (VMx in PMi) do 

   13:          Predicted VMx workload ⟵ predict VMx workload for the next interval using the ARIMA model. 

   14:          Predicted ∑  𝑛
𝑖=1 VMs workload ⟵ Predicted VMx workload ++; // The sum  

                                                                             of the predicted VMs workload on PMi. 

   15:         Predicted VMs list workload ⟵ Predicted VMx workload ++; // The list of  

                                                                          the predicted VMs workload on PMi. 

   16:      end for 

   17:                    if (Predicted ∑  𝑛
𝑖=1 VMs workload ≥ PMi upper threshold) &&  

                               (Predicted ∑  𝑛
𝑖=1 VMs workload < PMi max_upper threshold) then // Overloaded PM 

   18:                        Perform Algorithm 6.3.  

   19:              end if 

   20:         end if 

   21:     end if 

   22: end for 
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Algorithm 6.2: Switching PMs to Power Saving Mode  

Initialise: PM workload = (
U_CPU_PM

C_CPU_PM
,

U_RAM_PM

C_RAM_PM
); 

PM upper threshold = 0.85 × (C_CPU_PM, C_RAM_PM); 

PM power = 
PM𝑖 (power of the source)

PM𝑗 (power of the candidate)
; // To check the energy efficiency 

Decision = null. 

Input: PMs list; // Assuming all the PMs in running/active state 

Predicted ∑  𝑛
𝑖=1 VMs workload; // From Algorithm 6.1 

Cost of Switching PMi to Power Saving Mode; 

Cost of Migrating VMs. // To any targeted host PMj 

Output: Decision.  

  1: Sort the PMs list in decreasing order of the PM power;       

  2:      for each (PMj in PMs list) do 

  3:          if ((Predicted ∑  𝑛
𝑖=1 VMs workload + PMj workload) < PMj upper threshold)  

                   && 

                   (Cost of Switching PMi to Power Saving Mode > Cost of Migrating VMs) then  

  4:                    Decision ⟵ perform VMs migration to target host PMj; 

  5:                    Switch PMi to Power Saving Mode. 

  6:                    break 

  7:         end if 

  8:     end for 

  9: return Decision. 

 

The proposed Algorithm 6.2 is used to select a matching destination PMj 

to host the migrated VMs, checking whether the cost incurred by VMs live 

migration is less than the cost of switching the source PMi to power saving mode. 

To do so, the PMs are ranked in decreasing order according to their energy 

efficiency. This is aimed at migrating the VMs to the most energy efficient host. 

In this regard, the estimation of the energy efficiency for both source PMi and 

destination PMj are considered (as described in Section 5.2.1). Starting with the 

PMj with the lowest idle power (the most energy efficient host), PMj is checked 

whether it has enough resources to meet the migration requirements while at the 

same time ensuring that the destination host PMj will not exceed the upper 

threshold for allocating of the migrated VMs.  

This algorithm ensures: 1) the migrated VMs do not overload the 

destination PMj, 2) the source PMi will be switched to power saving mode once 

the migration takes place in order to save energy cost.  

Step 3: In terms of the overloaded PMs, Algorithm 6.1 is used to detect 

the overloaded PMs and identify the candidate VMs that need to be 
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scaled/migrated. Therefore, if the PMi workload is in the range of [upper and 

max_upper threshold], then the VMs workload is predicted in PMi for the next 

time interval (e.g., every 5 minutes) using the ARIMA model based on historical 

workload patterns (see Step 4). This prediction helps to detect in advance the 

overloaded PMi workload and perform preventive actions such as VMs auto-

scaling and live migration. Further, this algorithm would help to control the 

number of scaling and migrations decisions in order to avoid unnecessary 

scaling/migration caused by the small peaks in the workload (false alarm). Thus, 

if the predicted VMs workload for the next interval is still in the range of [upper 

and max_upper threshold], VMs auto-scaling/live migration is performed using 

Algorithm 6.3. 

The proposed Algorithm 6.3 combines the auto-scaling (vertical/horizontal 

scaling) with live migration in order to obtain the most cost-effective decision(s). 

The task is to scaling/migrate the overloaded VMs (e.g., resize VMs, migrate 

existing VMs and resize them, or initiate new VMs), then select appropriate 

destination PMj to host it. To do so, the following conditions are tested in this 

order and the subsequent actions performed:  

1) if PMi (the source host) has enough resources to meet the scaling 

requirements, the vertical scaling is performed on the same PMi (hint: 

vertical scaling is limited to the capacity of PMi [18], [102], [14]);  

2) in the case if PMi does not have enough resources, the PMs are ranked 

in decreasing order according to their energy efficiency, as described in 

Section 5.2.1. After sorting the PMs based on their energy efficiency, the 

migration and vertical scaling decision is performed in order to firstly 

migrate the overloaded VMs to appropriate host PMj and then vertically 

scaling them. It also checks if PMj has enough resources to meet the 

migration and scaling requirements while at the same time ensuring that 

the destination host PMj will not exceed the upper threshold for allocating 

of the migrated VMs along with their scaling requirements (the additional 

resources); otherwise 

3) horizontal scaling takes place on PMj in a similar manner as the previous 

action by placing the new VM to an appropriate destination. 
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This algorithm ensures: 1) the scaling and migrations VMs do not overload 

the destination PMj, 2) the source PMi workload decreases significantly once 

scaling/migration has taken place, and 3) minimise the overall cost of the VMs 

incurred by scaling/migration decisions.  

Algorithm 6.3: Integrate Auto-Scaling Decisions with Dynamic VMs Allocation  

Initialise: PM workload = (
U_CPU_PM

C_CPU_PM
,

U_RAM_PM

C_RAM_PM
);  

PM upper threshold = 0.85 × (C_CPU_PM, C_RAM_PM); 

PM max_upper threshold = 0.95 × (C_CPU_PM, C_RAM_PM);     

PM power = 
PM𝑖 (power of the source)

PM𝑗 (power of the candidate)
; // To check the energy efficiency 

Candidate PM = false; 

VM workload = (
U_CPU_VM

C_CPU_VM
,

U_RAM_VM

C_RAM_VM
);  // From Algorithm 6.1 

Candidate VM = false; 

Overloaded VM = null. 

VM Resource Increments = (I_CPU_VM, I_RAM_VM) = (null, null);  

Decision = null. 

Input: PMs list; // Assuming all the PMs in running/active state 

Predicted VMs list workload; // From Algorithm 6.1 

Predicted VM workload; // From Algorithm 6.1 

Output: Decision. 

 1: Sort the Predicted VMs list workload on PMi in a decreasing order; 

 2:       for each (VMx in Predicted VMs list workload) do 

 3:             if (Predicted VMx workload > VMx workload) then  

 4:       Overloaded VMx = Predicted VMx workload; 

 5:       VMx Resource Increments = Predicted VMx workload − VMx workload; 

 6:       Candidate VM = true; 

 7:                  break 

 8:  end if 

 9:      end for 

10: if (Candidate VM = false) then  

11:      break // no candidate VM is found  

12:   else  

13:       if ((PMi workload + VMx Resource Increments) < PMi max_upper threshold) then  

                 // The resource availability on the same host is met (Resize VMx) 

14:             Decision ⟵ perform VMx vertical scaling based on (VMx Resource Increments);  

15:          else // Lack of resources on the same host  

16:               Sort the PMs list in decreasing order of the PM power;       

17:               for each (PMj in PMs list) do 

18:                    if ((PMj workload + Overloaded VMx) < PMj upper threshold) then  

19:                Decision ⟵ perform VMx migration to target host PMj; and 

                                                  perform VMx vertical scaling based on (VMx Resource Increments); 

                                                 // Migrate existing VM and resize it 

20:                          Candidate PM = true;  

21:                          break 

22:           end if 
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23:               end for 

24:            if (Candidate PM = false) then 

25:                 for each (PMj in PMs list) do 

26:                       if ((PMj workload + VMx Resource Increments) < PMj upper threshold) then  

27:                   Decision ⟵ perform VMx horizontal scaling based on (VMx Resource Increments); 

                                                    // Create a New VM 

28:                            break 

29:                       end if   

30:                 end for 

31:            end if 

32:       end if 

33:  end if 

34:  return Decision. 

 

Step 4: The ARIMA model is used to predict the VMs workload including 

(vCPU, memory, disk and network) for the next time interval and identify the best 

fit model (as introduced in Section 4.2.1). The prediction will help perform the 

most suitable action(s) and scale the VMs in a cost-efficient way based on the 

right size of the requested resources using the self-configuration technique (as 

described in Algorithm 5.5). Once the VMs workload is predicted using the 

ARIMA model based on historical data, the next step is to predict the PMs 

(source and destination) workload and PMs/VMs power consumption using 

regression models.  

Step 5: To predict the PMs workload represented as (PMs CPU 

utilisation), would require measuring the relationship between the number of 

vCPU and the PM CPU utilisation for the PMs, as presented in Figures 5-3, 5-4 

and 5-5 in Section 5.2.1. The linear regression model of Equation (4.1) presented 

in Section 4.2.2 is used to predict the PMs CPU utilisation.  

Step 6: The PMs power consumption is predicted based on the 

relationship between the predicted PM workload (PM CPU utilisation) with PM 

power consumption on the PMs. Using a regression analysis, the relation is best 

described as linear regression for this particular PMi, as presented in Figure 5-6 

in Section 5.2.1. The linear regression model of Equation (4.2) presented in 

Section 4.2.3 is used to predict the PMs power consumption.  

As discussed earlier in Chapters 4 and 5, not all existing PMs necessarily 

follow a linear power model in relation to their CPU utilisation, as presented in 

Figures 5-7 and 5-8 in Section 5.2.1. In this case, other regression models, such 
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as polynomial, can be used to characterise the relation between the power 

consumption and CPU utilisation of the targeted PMs, as presented in Equation 

(4.3), Section 4.2.3. 

Step 7: The proposed Equation (4.4) presented earlier in Section 4.2.4 is 

used to predict the VMx power consumption on the PMs, then the conversion of 

the power consumption to energy is required using the Equation (4.5). 

Step 8: Finally, this step estimates the total cost for the VMx based on the 

predicted VMx resource usage in Step 4 and the predicted VMx energy 

consumption in Step 7.  

The total time, 𝑇𝑖𝑚𝑒𝑠, required for migrating VMx can be obtained using 

Equations (5.1), (5.2), and (5.3) presented in Section 5.2.1. Also, the total time, 

𝑇𝑖𝑚𝑒𝑠, required for auto-scaling VMx can be obtained using Equations (5.6), and 

(5.7) presented in Section 5.2.2. 

To estimate the total cost for VMx based on the performed action(s), 

Equation (4.6) presented in Section 4.2.5 is used, but with different notations, as 

shown in Equation (6.1): 

 
VM𝑥𝐸𝑠𝑡_𝐶𝑜𝑠𝑡_𝑃𝑀𝑖 = ((VM𝑥𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠_𝑃𝑀𝑖 ×

𝑉𝑀𝑥𝑃𝑟𝑒𝑑_𝑈_𝑃𝑀𝑖

100
)

× (𝐶𝑜𝑠𝑡_𝑣𝐶𝑃𝑈 ×  𝑇𝑖𝑚𝑒𝑠))

+ (VM𝑥𝑃𝑟𝑒𝑑_𝑅𝐴𝑀_𝑈_𝑃𝑀𝑖 ×  (𝐶𝑜𝑠𝑡_𝐺𝐵 × 𝑇𝑖𝑚𝑒𝑠))

+ (VM𝑥𝑃𝑟𝑒𝑑_𝐷𝑖𝑠𝑘_𝑈_𝑃𝑀𝑖 × (𝐶𝑜𝑠𝑡_𝐺𝐵 ×  𝑇𝑖𝑚𝑒𝑠))

+ (VM𝑥𝑃𝑟𝑒𝑑_𝑁𝑒𝑡𝑤𝑜𝑟𝑘_𝑈_𝑃𝑀𝑖 × (𝐶𝑜𝑠𝑡_𝐺𝐵 ×  𝑇𝑖𝑚𝑒𝑠))

+ (VM𝑥𝑃𝑟𝑒𝑑_𝐸𝑛𝑒𝑟𝑔𝑦_𝑃𝑀𝑖 ×  𝐶𝑜𝑠𝑡_𝑘𝑊ℎ) 

 

 

(6.1) 

where VM𝑥𝐸𝑠𝑡_𝐶𝑜𝑠𝑡_𝑃𝑀𝑖  is the estimated total cost of the VMx before and 

during the action(s) takes place on the source PMi. The VM𝑥𝑅𝑒𝑞𝑣𝐶𝑃𝑈𝑠_𝑃𝑀𝑖 is the 

number of requested vCPUs for the VM and VM𝑥𝑃𝑟𝑒𝑑_𝑈_𝑃𝑀𝑖 is the predicted 

utilisation for the VM times the cost for requested vCPUs for a period of time, 

(the time, 𝑇𝑖𝑚𝑒𝑠, is based on the performed action, it can be “migration or scaling 

or both”). VM𝑥𝑃𝑟𝑒𝑑_𝑅𝐴𝑀_𝑈_𝑃𝑀𝑖  is the predicted memory usage times the cost for 

that resource for a period of time. We consider the similar notation for disk and 
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network resources. VM𝑥𝑃𝑟𝑒𝑑_𝐸𝑛𝑒𝑟𝑔𝑦_𝑃𝑀𝑖 is the predicted energy consumption of 

VMx times the energy cost as considered by the energy providers.  

Similarly, the cost of the VMx during and after the action(s) takes place on 

the destination PMj will be estimated using Equation (6.1), but substituting PMi 

with PMj for each resource such as CPU, RAM, disk, network and energy. 

Besides, additional license fee 𝛼 for the new VM is applied when horizontal 

scaling takes place, and is considered as constant (£0.1/hr). 

Thus, to get the estimated total cost for VMx before and after the action(s) 

takes place can be given by: 

 VM𝑥𝑇𝑜𝑡𝑎𝑙_𝐸𝑠𝑡_𝐶𝑜𝑠𝑡 = VM𝑥𝐸𝑠𝑡_𝐶𝑜𝑠𝑡_𝑃𝑀𝑖 + VM𝑥𝐸𝑠𝑡_𝐶𝑜𝑠𝑡_𝑃𝑀𝑗 (6.2) 

6.3 Implementation 

The hybrid approach for performance and energy-based cost prediction that 

aims to integrate the auto-scaling with live migration and estimate the total cost 

for both migrated and scaled VMs during service operation has been introduced. 

In order to evaluate this approach, a number of direct experiments have been 

conducted on the Cloud testbed (see Section 6.3.1) to synthetically generate 

historical workload data. The process starts by firstly detecting the underloaded 

and overloaded hosts in order to handle the service performance variation, then 

predicting the VMs workload using the (auto.arima) function in R package [159] 

to automatically select the best fit model of ARIMA based on AIC or BIC value. 

Once the VMs workload is predicted, the process goes through the cycle of the 

approach and considers the correlation between the physical and virtual 

resources to predict power consumption of the VMs when being run on multiple 

PMs. Then, the most cost-effective decision(s) is performed, and the total cost is 

estimated for both migrated and scaled VMs based on their predicted workload 

and power consumption. 

6.3.1 Characterisation of Physical Machines 

Four different PMs on the Cloud testbed have been considered. The first three 

PMs, Host A, C and D, have four core X3430 Intel Xeon CPU, and the last PM, 

Host B, has an eight-core E3-1230 V2 Intel Xeon CPU. Host A is considered as 
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the source host and Host B, C and D are considered as the destination’s hosts. 

Host B is the most energy efficient PM, Host C is the similar PM configuration to 

the source PM (Host A), and Host D is the less energy efficient PM. Also, each 

PM has a Watt meter [143] attached to directly measure the power consumption. 

Heterogeneous VMs are created and their monitoring is performed through 

Zabbix [150], which is also used for resources usage monitoring.  

6.4 Experiments and Evaluation 

6.4.1 Design of Experiments 

A number of direct experiments have been conducted on the Cloud testbed. The 

overall aim of the experiments is to demonstrate that the hybrid approach for 

performance and energy-based cost prediction is capable to detect and predict 

the underloaded/overloaded PMs in order to perform cost-effective decisions. 

Also, this approach is capable to predict the workload and power consumption 

as well as estimating the total cost of migrated and scaled VMs when being run 

on different PMs. Furthermore, the proposed approach focuses on overall cost 

savings that can be obtained when migrating/scaling the VMs to/on different 

hosts have different energy characterisation. 

Three direct experiments have been conducted for each live migration 

and auto-scaling operation using three types of VMs with the objective to 1) 

detect the underloaded and overloaded hosts in order to handle the service 

performance variation at the PM level; 2) reduce energy-related costs while 

maintaining performance requirements, 3) identify the most suitable cost-

effective decision(s) to handle the service performance variation at the VM level; 

and 4) estimate the total cost for both migrated and scaled VMs. 

To design the experiments, historical data has been generated to 

represent real workload patterns of Cloud applications (discussed in Section 

4.2.1), by using Stress-ng tool [73] (see Section 4.4.1) in order to stress all the 

resources including (CPU, memory, disk and network) on different types of VMs. 

The generated workload of each VM type has a time interval of four slots (30 

minutes each). The first three intervals (slots) are used as the historical data set 

for prediction, and the last interval (slot) is used as the testing data set to evaluate 
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the predicted results. A similar approach is used in [160] and followed in this 

thesis. 

6.4.2 Evaluation 

6.4.2.1 VMs Workload Prediction 

This section presents the quantitative evaluation of the hybrid approach for 

performance and energy-based cost prediction in terms of VMs live migration 

and auto-scaling in order to estimate the total cost of VMs during service 

operation. The figures show the predicted workload results for three types of 

VMs, small, medium and large, running on multiple PMs based on historical 

periodic workload pattern. 

In Algorithm 6.1, when PMi is in the situation of underloaded/overloaded 

that meets the predefined (lower, upper and max_upper) thresholds, instead of 

immediately migrating/auto-scaling the VMs, the prediction model is used to 

minimise the number of VM migration/scaling decisions and avoid unnecessary 

migration/scaling caused by the small peaks in the workload (false alarm). 

However, when PMi is underloaded which means that the predicted workload is 

less than or equals to the predefined lower threshold. The proposed Algorithm 

6.2 is used to migrate the VMs and re-allocate/allocate them on appropriate PMj 

which has sufficient resources and is potentially more energy efficient, in order 

to switch PMi to power saving mode and hence save energy cost. In the case 

when PMi is overloaded and the predicted workload is in the range of [upper and 

max_upper threshold]. The proposed Algorithm 6.3 is used to perform the most 

cost-effective scaling/migration decisions (e.g., resize VMs, migrate existing VMs 

and resize, or initiate new VMs) and re-allocate/allocate the VMs on the selected 

PMj which has sufficient resources and is potentially more energy efficient. 

Figures 6-2, 6-3, and 6-4 depict the results of the migrated and scaled 

VMs predicted versus the actual workload, including CPU, RAM, disk, and 

network usage for the VMs. Despite the periodic utilisation peaks, the predicted 

VMs CPU, RAM and network workload results closely match the actual results, 

which reflects the capability of the ARIMA model to capture the historical 

seasonal trend and give a very accurate prediction accordingly. The predicted 
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VMs disk workload is also matching the actual workload, but with less accuracy 

as compared to the CPU, RAM and network prediction results. This can be 

justified because of the high variations in the generated historical periodic 

workload pattern of the disk not closely matching in each interval. Besides the 

predicted VMs’ workload mean values, the results also show the high and low 

95% and 80% confidence intervals for the predicted workload of each VM based 

on the ARIMA model. 

 

  

(a) (b) 

  

(c) (d) 

Figure 6-2: The Workload Prediction Results for Small VM. 

 

Table 6-1: Prediction Accuracy for Small VM. 

Parameters ME RMSE MAE MPE MAPE 

CPU Utilisation 0.00486 1.7101 0.5652 -3.4611 4.978 

RAM Usage 0.00167 0.0189 0.0055 0.1618 0.6585 

Disk Usage -0.0052 0.1869 0.0461 3.459 6.940 

Network Usage 0.00072 0.0051 0.0030 0.64200 2.8612 
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(a) (b) 

  

(c) (d) 

Figure 6-3: The Workload Prediction Results for Medium VM. 

 

 

 

Table 6-2: Prediction Accuracy for Medium VM. 

Parameters ME RMSE MAE MPE MAPE 

CPU Utilisation 0.019355 0.2451 0.12275 -3.1443 3.576033 

RAM Usage 0.001976 0.0189 0.00588 0.11509 0.333648 

Disk Usage 0.000197 0.0940 0.01848 -8.96 9.5482 

Network Usage -0.00005 0.0030 0.00181 -0.2380 2.716369 
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(a) (b) 

  

(c) (d) 

Figure 6-4: The Workload Prediction Results for Large VM. 

 

 

Table 6-3: Prediction Accuracy for Large VM. 

Parameters ME RMSE MAE MPE MAPE 

CPU Utilisation 0.437240 4.8481 1.39113 0.86261 2.095702 

RAM Usage -0.00097 0.0308 0.00791 -0.0621 0.328699 

Disk Usage -0.08418 1.4943 0.47049 -3.3323 11.57954 

Network Usage -0.00001 0.0028 0.00156 -0.3278 3.637562 

 

In terms of prediction accuracy, a number of metrics have been used to 

evaluate the results of the predicted workload for three types of VMs, as these 

metrics have been defined earlier in Section 4.4.2. The accuracy of the predicted 

VMs workload (CPU, RAM, disk, network) based on a periodic workload is 

evaluated using these accuracy metrics, as summarised in Tables 6-1, 6-2 and 

6-3, respectively. 

6.4.2.2 VMs Power Consumption Prediction 

Besides the VMs workload prediction, the proposed approach can predict the 

power consumption for a number of VMs when running on source PMi and 

destination’s PMj for both live migration and auto-scaling, as described next. 
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6.4.2.2.1 VMs’ Live Migration Power Consumption Prediction 

Figures 6-5, 6-6 and 6-7 depict the results of the predicted versus the actual 

power consumption for a number of VMs running on source PMi (Host A) and 

destination PMj, noting that the destination PMj can be the most energy efficient 

PM (Host B), a similar PM configuration to the source PM (Host C) or less energy 

efficient PM (Host D) comparing to source PMi, all of which were based on the 

migration decision. According to Algorithm 6.2, the migration is performed for the 

underloaded PMi if the selected destination PMj has enough resources and does 

not exceed the upper threshold once the VMs migration takes place. 

Also, it is worth mentioning that the predicted power consumption 

attribution for each VM is affected by the variation in the predicted PM CPU 

utilisation of all VMs. In terms of prediction accuracy, a number of metrics have 

been used to evaluate the predicted power consumption for small, medium and 

large VMs based on a periodic workload pattern as presented in Table 6-4. 

  

Figure 6-5: Small VM Predicted vs Actual 
Power Consumption on (Source PMi 

and Destination PMj). 

Figure 6-6: Medium VM Predicted vs 
Actual Power Consumption on 

(Source PMi and Destination PMj). 

 

 

Figure 6-7: Large VM Predicted vs Actual Power Consumption on (Source PMi and 
Destination PMj). 
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Table 6-4: Prediction Accuracy for The Predicted Power Consumption for all VMs on 
Source (Host A) and Destination (Host B, Host C and Host D). 

Parameter VMs Hosts ME RMSE MAE MPE MAPE 

VMs Power 
Consumption 

Small VM 

Host A -0.00551665 0.5150904 0.2493285 0.00539324 0.3674461 

Host B 0.005655233 0.4750381 0.2190667 0.04799226 0.5281281 

Host C -0.00551665 0.5150904 0.2493285 0.00539324 0.3674461 

Host D 0.00246747 0.1537848 0.07028654 0.0023619 0.05689478 

Medium 
VM 

Host A 0.01939327 0.07113483 0.04306951 0.02648363 0.05983904 

Host B 0.01529777 0.05683427 0.03492552 0.03521646 0.08024377 

Host C 0.01939327 0.07113483 0.04306951 0.02648363 0.05983904 

Host D 0.004925887 0.01823638 0.01120869 0.003956332 0.00901164 

Large 
VM 

Host A -0.2564522 1.533448 0.5685501 -0.2213621 0.5101096 

Host B -0.07265782 0.5223516 0.193443 -0.0954475 0.2912161 

Host C -0.2564522 1.533448 0.5685501 -0.2213621 0.5101096 

Host D 0.00000132 0.0000031 0.00000278 0.00000099 0.0000021 

 

6.4.2.2.2 VMs' Auto-scaling Power Consumption Prediction 

Figures 6-8 to 6-16 depict the results of the predicted versus the actual power 

consumption for a number of VMs running on different hosts using different 

techniques (vertical scaling, migration and vertically scaling and horizontal 

scaling). According to Algorithm 6.3, the vertical scaling is performed for the 

overloaded VMs on the same host, if the host has enough resources to meet the 

scaling requirements (vertical scaling is limited to the capacity of PMi). 

Otherwise, the VMs migration and vertically scaling or the horizontal scaling are 

performed for the overloaded VMs on a number of hosts, e.g., (Host B) is the 

most energy efficient PM, (Host C) has a similar PM configuration as the source 

PM (Host A), and (Host D) is the less energy efficient PM.  

Note that, the vertical scaling was not performed for all types of VMs (e.g., 

large VM), since the large VM has four CPU cores and the capacity of the hosted 

PM (e.g., on Host A, Host C or Host D) has the same number of CPU cores as 

the large VM. Thus, there is no available capacity to perform vertical scaling on 

the same host. Therefore, only horizontal scaling can be performed with this type 

of VM. On the other hand, the vertical scaling or migration and vertically scaling 

can be performed for the large VM only on (Host B), since it has eight CPU cores. 

In terms of prediction accuracy, a number of metrics have been used to evaluate 

the predicted power consumption for small, medium and large VMs based on a 

periodic workload pattern as presented in Tables 6-5, 6-6 and 6-7, respectively. 
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Figure 6-8: Small VM Predicted vs Actual 
Power Consumption using Vertical 

Scaling on a Number of PMs. 

Figure 6-9: Medium VM Predicted vs 
Actual Power Consumption using 
Vertical Scaling on a Number of 

PMs. 

 

 

Figure 6-10: Large VM Predicted vs Actual Power Consumption using Vertical Scaling 
on a Number of PMs. 

 

 

 

 

Table 6-5: Prediction Accuracy for The Predicted Power Consumption for all VMs 
performs (Vertical Scaling) on Different Hosts. 

Parameter VMs Hosts ME RMSE MAE MPE MAPE 

VMs Power 
Consumption 

Small 
VM 

Host A -0.00827498 0.7726357 0.3739927 0.01611016 0.5129771 

Host B 0.01625062 0.6698005 0.2994985 0.09771351 0.6698014 

Host C -0.00827498 0.7726357 0.3739927 0.01611016 0.5129771 

Host D 0.00627207 0.2159668 0.09559397 0.00575502 0.07665149 

Medium 
VM 

Host A 0.02908991 0.1067022 0.06460426 0.03629048 0.08216754 

Host B 0.01980407 0.07504576 0.04582536 0.04335952 0.09834909 

Host C 0.02908991 0.1067022 0.06460426 0.03629048 0.08216754 

Host D 0.006596707 0.02445368 0.01499183 0.005249759 0.01192901 

Large 
VM 

Host B 
-0.03093269 0.3194241 0.1197874 -0.02547422 0.174785 
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Figure 6-11: Small VM Predicted vs Actual 
Power Consumption using 

Migration and Vertically Scaling on 
a Number of PMs. 

Figure 6-12: Medium VM Predicted vs 
Actual Power Consumption using 

Migration and Vertically Scaling on 
a Number of PMs. 

 

 

Figure 6-13: Large VM Predicted vs Actual Power Consumption using Migration and 
Vertically Scaling on a Number of PMs. 

 

 

Table 6-6: Prediction Accuracy for The Predicted Power Consumption for all VMs 
performs (Migration and Vertically Scaling) on Different Hosts. 

Parameter VMs Hosts ME RMSE MAE MPE MAPE 

VMs Power 
Consumption 

Small VM 

Host B 0.01625062 0.6698005 0.2994985 0.09771351 0.6698014 

Host C -0.00827498 0.7726357 0.3739927 0.01611016 0.5129771 

Host D 0.00627207 0.2159668 0.09559397 0.00575502 0.07665149 

Medium 
VM 

Host B 0.01980407 0.07504576 0.04582536 0.04335952 0.09834909 

Host C 0.02908991 0.1067022 0.06460426 0.03629048 0.08216754 

Host D 0.006596707 0.02445368 0.01499183 0.005249759 0.01192901 

Large VM Host B -0.03093269 0.3194241 0.1197874 -0.02547422 0.174785 
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Figure 6-14: Small VM Predicted vs Actual 
Power Consumption using 

Horizontal Scaling on a Number of 
PMs. 

Figure 6-15: Medium VM Predicted vs 
Actual Power Consumption using 
Horizontal Scaling on a Number of 

PMs. 

  

 

Figure 6-16: Large VM Predicted vs Actual Power Consumption using Horizontal 
Scaling on a Number of PMs. 

 

 

 

Table 6-7: Prediction Accuracy for The Predicted Power Consumption for all VMs 
performs (Horizontal Scaling) on Different Hosts. 

Parameter VMs Hosts ME RMSE MAE MPE MAPE 

VMs Power 
Consumption 

Small VM 

Host B -0.0054593 0.7680777 0.3691814 0.00744378 0.3509133 

Host C -0.0082749 0.7726357 0.3739927 0.00169475 0.2865351 

Host D -0.0052990 0.5977032 0.2882975 -0.0005908 0.1515757 

Medium 
VM 

Host B 0.02823278 0.1035619 0.06297163 0.02507514 0.05674791 

Host C 0.02908989 0.1067022 0.06460427 0.02091843 0.04715986 

Host D 0.02224723 0.08158656 0.04950406 0.01128311 0.02533147 

Large VM 

Host B -0.3341869 2.027128 0.7513777 -0.1932349 0.4520876 

Host C -0.3846782 2.300172 0.8528251 -0.1904874 0.4350779 

Host D -0.2811938 1.68985 0.6266054 -0.1155186 0.2615967 
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6.4.2.3 VMs Total Cost Estimation 

The proposed approach is also capable of estimating the live migration and auto-

scaling total cost for a number of VMs when running on different PMs. 

6.4.2.3.1 VMs' Live Migration Cost Estimation 

Figure 6-17 shows the results of the estimated total cost for a number of VMs 

before live migration on (Host A) and after live migration takes place on (Host B, 

Host C and Host D) along with their migration cost. According to Algorithms 6.1 

and 6.2, the migration is performed for the underloaded PMi only if the cost of 

VMs incurred by live migration to the selected destination PMj is less than the 

cost of switching the source PMi to power saving mode. In this case, only the 

small VM can meet these conditions to be migrated to the selected destination 

PMj, if it is the only VM running on the source PMi. 

  

Figure 6-17: Estimated Total Cost Before 
vs After Migration on Different PMs. 

Figure 6-18: Estimated Cost Saving for 
Migrating Small VM to Different PMs. 

 

In addition, Figure 6-18 shows the results of the estimated cost saving 

that can be achieved for the small VM when being migrated to different hosts. 

This comes at the cost of the power savings that are gained by switching the 

source (Host A) to power saving mode. For example, when the VM is migrated 

to the most energy efficient PM (Host B), it can achieve approximately 100% cost 

saving which means the cost that can be saved by switching PMi to power saving 

mode (idle state) minus the cost incurred by the migration decision. With a similar 

PM configuration to the source (Host C), it can achieve around 76% cost saving 

and with the less energy efficient PM (Host D), it can achieve about 27%. 

Further, the energy efficiency of the hosts plays an important role to 

reduce the overall energy consumption. Thus, selecting the appropriate hosts to 
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migrate the VMs have a significant impact on the overall cost saving (e.g., 

migrating the VMs to most energy efficient PM (Host B) can be more cost-

effective than migrating the VMs to less energy efficient PM (Host D)). 

6.4.2.3.2 VMs' Auto-Scaling/Migration Cost Estimation 

Figures 6-19, 6-20 and 6-21 show the results of the estimated total cost for three 

types of VMs running on a number of PMs using different scaling/migration 

strategies. According to Algorithm 6.3, the vertical scaling is performed on the 

same host, if the host has enough resources to meet the scaling requirements. 

Otherwise, the VMs migration and vertically scaling or the horizontal scaling are 

performed on a number of hosts, e.g., (Host B) is the most energy efficient PM, 

(Host C) is a similar PM configuration to the source PM (Host A), and (Host D) is 

the less energy efficient PM.  

As mentioned earlier, the vertical scaling was not performed with the large 

VM, since it has the same number of CPU cores as the hosted PM (e.g., on Host 

A, Host C or Host D), which means that the host is fully utilised via the VM. 

However, the vertical scaling can be performed for the large VM only on (Host 

B) that has eight cores, as shown in Figures 6-19 and 6-20, respectively. 

  

Figure 6-19: Estimated Vertical Scaling 
VMs Total Cost. 

Figure 6-20: Estimated Migration and 
Vertically Scaling VMs Total Cost. 

 

 

Figure 6-21: Estimated Horizontal Scaling VMs Total Cost. 
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Choosing between different scaling strategies can have a significant 

impact on the cost of the scaled VMs (e.g., vertical scaling can be more cost-

effective than the proposed migration and vertically scaling or the horizontal 

scaling when the VMs are scaled on a similar host configuration), as shown in 

Figures 6-19, 6-20 and 6-21, respectively. This can be justified because vertical 

scaling has no additional costs in terms of migration cost (e.g., in the case of 

migration and vertically scaling) or software license for new VMs [18] (e.g., in the 

case of horizontal scaling). However, the vertical scaling technique is limited to 

the capacity of the host [18], [102]. Therefore, the proposed migration and 

vertically scaling mechanism can help to select the most suitable cost-effective 

scaling strategy, rather than just only choosing between scaling up/out.  

As shown in Figures 6-20 and 6-21, the proposed migration and vertically 

scaling mechanism outperforms the horizontal scaling one. This can be justified 

because of the additional cost in terms of software license for the new VMs when 

horizontal scaling is performed is higher than the cost of live migration for the 

VMs when migration and vertically scaling is performed. Furthermore, selecting 

the appropriate hosts in terms of their energy efficiency to scale the VMs have a 

significant impact on the total cost of the scaled VMs (e.g., horizontal scaling 

using most energy efficient PM can be more cost-effective than horizontal scaling 

when using less energy efficient PM). 

6.5 Summary 

This chapter has presented and evaluated a new hybrid approach for 

performance and energy-based cost prediction. This approach dynamically 

supports decision-making regarding auto-scaling and live migration costs while 

at the same time being aware of the impact on the energy consumption and 

performance of the application during service operation. This hybrid approach 

integrates auto-scaling with live migration in order to estimate the total cost of 

heterogeneous VMs by considering their resource usage and power 

consumption, while at the same time maintaining the expected level of 

application performance. The results show that the proposed hybrid approach 

can detect the underloaded and overloaded hosts in order to perform the most 

cost-effective decision(s) to handle the service performance variation. It can also 

predict the workload, power consumption and estimate the total cost for both 
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migrated and scaled VMs when being run on different PMs, with a high prediction 

accuracy based on historical workload patterns. 
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Chapter 7. Conclusion 

This chapter concludes this thesis and provides a summary of the conducted 

research, as presented in Section 7.1. This is followed by an overall results 

discussion of the conducted experiments in Chapters 3, 4, 5 and 6, along with a 

comparison of the related work with the work introduced in this thesis, as 

presented in Section 7.2. The key contributions of the research are provided and 

discussed in Section 7.3. This is followed by a discussion on the limitations of 

the research based on the results obtained from the conducted experiments and 

the comparison with the related work, as presented in Section 7.4. Finally, future 

work directions that can be explored based on the work presented in this 

research are suggested and discussed in Section 7.5. 

7.1 Research Summary 

With the wide adoption of Cloud Computing, Cloud providers consider energy 

consumption as one of the biggest cost factors to be maintained within their 

infrastructures [1]–[3]. Consequently, modelling a new cost mechanism for Cloud 

services that can be adjusted to the energy costs has increasingly become an 

important research topic for both academia and industry, as presented in 

Chapter 3 and Chapter 4. Further, Cloud Computing can be used to obtain cost 

benefits through proactive efficient resource management techniques such as 

VMs consolidation and resource provisioning. These techniques can help Cloud 

providers to make enhanced cost decisions in terms of reducing energy-related 

costs while maintaining performance requirements. Consequently, estimating 

the future cost of Cloud services can help the service providers offer suitable 

services that meet their customers’ requirements, as presented in Chapter 5 and 

Chapter 6. 

Therefore, the work presented in this thesis aims at enabling the 

awareness of energy consumption, performance variation and cost in a Cloud 

environment. A cloud system architecture is introduced along with the main 

component Cost Modeller to fulfil this aim. Firstly, an energy-based cost model 

is developed to attribute the PM’s energy consumption to VMs and measures the 

actual resource usage, power consumption and the total cost for each VM. Then, 
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the energy-based cost prediction framework is introduced to predict workload, 

power consumption and estimate the total cost of the VMs. Finally, a 

performance and energy-based cost prediction framework is introduced to 

combine VMs consolidation and resource provisioning in order to design cost-

effective strategies, while taking into consideration the trade-off between cost, 

energy efficiency and performance variation of Cloud services.  

 Chapter 2: presents the essential background and reviews the literature 

on the subject of the energy-related cost issues, prediction models and 

resource management in Cloud Computing. It starts by introducing the 

fundamental concepts of Cloud Computing with a detailed description of 

its definition, system architecture, services types, deployment types and 

virtualisation technologies. The aspects of Cloud applications and their 

workload patterns, as well as related benchmarks, are discussed. A 

description of Cloud Computing pricing models is presented. This is 

followed by positioning the work in the relevant literature, focusing on the 

energy-related cost issues, prediction models and resource management 

in Cloud Computing. The energy-related cost issues are highlighted, 

along with a detailed discussion of the closely related work. It then 

discusses the prediction models related to the workload, energy 

consumption and cost of Cloud services. A discussion of the closely 

related work is also presented. Finally, it reviews the existing work on 

dynamic resource management, including VMs consolidation and 

resource provisioning, along with a discussion of the closely related work 

and the thesis scope. 

 Chapter 3: introduces the system architecture that supports energy, 

performance and cost awareness of Cloud infrastructure services. 

Detailed descriptions of the proposed system architecture main 

components along with their roles and how they interact with the proposed 

component Cost Modeller to achieve their objectives are discussed. This 

is followed by presenting an energy-based cost model that considers 

energy consumption as a key parameter. This model focuses on fairly 

attributing the PM’s energy consumption to heterogeneous VMs based on 

their vCPU utilisation and size. Then, measures the actual resource 

usage, power consumption and the total cost for each VM. A thorough 
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discussion of the development of this model is provided. Early 

experiments along with their results are performed to evaluate the ability 

of the proposed system architecture along with the proposed model in 

terms of supporting cost and energy awareness at the VM level in a Cloud 

environment. 

 Chapter 4: introduces an energy-based cost prediction framework used 

to enable cost and energy awareness at the VM level in a Cloud 

environment. This framework focuses on predicting the VMs’ workload 

based on historical workload patterns and correlating the predicted VMs 

workload with physical resources to predict the power consumption of the 

VMs. Then, estimate the total cost of the VMs’ during service operation. 

A thorough discussion of the development of this framework is provided. 

A number of direct experiments on the Cloud testbed are demonstrated 

along with their results to evaluate the proposed framework in terms of its 

capability to estimate the total cost of VMs by considering their resource 

usage and power consumption during service operation. 

 Chapter 5: introduces the performance and energy-based cost prediction 

framework used the prediction framework presented in Chapter 4 for 

enabling energy, performance and cost awareness of Cloud infrastructure 

services. This framework focuses on enhancing VMs consolidation and 

resource provisioning techniques in order to design cost-effective 

strategies and prevent performance loss at different levels. A thorough 

discussion of the development of this framework is provided. A number of 

direct experiments on the Cloud testbed are demonstrated along with their 

results to evaluate the capability of the proposed framework to estimate 

the live migration and auto-scaling total cost for heterogeneous VMs at 

service operation. 

 Chapter 6: presents a hybrid approach for the presented framework in 

Chapter 5 by integrating auto-scaling with live migration in order to 

estimate the total cost of VMs by considering their resource usage and 

power consumption. This framework focuses on detecting the 

underloaded and overloaded hosts in order to perform the most cost-

effective decision(s) to handle the service performance variation. A 

thorough discussion of the development of this approach is provided. A 
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number of direct experiments on the Cloud testbed are demonstrated 

along with their results to evaluate the capability of the hybrid approach to 

estimate the total cost for heterogeneous VMs incurred by different 

decisions at service operation.  

7.2 Research Outcomes 

A cloud system architecture is introduced in this thesis to enable the awareness 

of energy consumption, performance variation and total cost of Cloud 

infrastructure services. The Cost Modeller is the main architectural component 

including the other contributions of this thesis are highlighted below. 

7.2.1 Energy-based Cost Model 

Chapter 3 has investigated how the cost models of Cloud services can be 

identified in a Cloud environment. In this regard, energy consumption considered 

as one of the important parameters that influence the cost of Cloud services. The 

power consumption at the PM level can be easily identified but is not directly 

measured at the VM level. Thus, identifying how the physical resources are 

correlated with the virtual resource’s usage and their impact on energy 

consumption is important for Cloud service providers. 

The conducted experiments on a Cloud testbed have shown an early 

evaluation of the ability of the proposed system architecture in terms of 

supporting cost and energy awareness at the VM level, which addresses the first 

research question (Q.1 – see Section 1.2).  

The overall results show that the proposed energy-based cost model can 

fairly attribute the PM’s energy consumption to the VMs and measure the actual 

resource usage, power consumption and the total cost for a number of VMs, as 

presented in Section 3.6.2. Unlike other existing works, this approach considers 

the heterogeneity of the VMs, with respect to the actual resource usage, power 

consumption and the total cost. These VMs also runs on two PMs having 

different characteristics with different energy consumption. 
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Furthermore, the experiments have shown that the measured total cost 

for the same type of VMs when being run on Host B is less than the total cost 

when being run on Host A, since Host B has less power characteristics in terms 

of the idle and active as compared to Host A, as presented in Section 3.6.2. 

Hence, enabling cost and energy awareness at the VM level can help Cloud 

service providers to make enhanced cost decisions and efficiently manage their 

resources. 

7.2.2 Energy-based Cost Prediction Framework 

Chapter 4 has presented prediction methods along with developed mathematical 

modelling. The aim of the proposed energy-based cost prediction framework is 

to address the second research question as stated in (Q.2 – see Section 1.2) by 

predicting the workload, power consumption and estimating the total cost of 

heterogeneous VMs during service operation based on historical workload 

pattern. A number of direct experiments were conducted on a Cloud testbed to 

evaluate the capability of the prediction models.  

The overall results show that the proposed framework can attribute the 

PM’s energy consumption to the VMs and predict the resource usage, power 

consumption and estimate the total cost for the VMs with a high prediction 

accuracy based on Cloud workload patterns, as presented in Section 4.4.2. 

Unlike other existing works, this framework considers the heterogeneity of the 

VMs, with respect to predict resource usage, power consumption and estimate 

the total cost. Besides the prediction, these VMs also runs on two PMs having 

different characteristics with different workloads. 

Furthermore, the experiments have shown that the estimated cost for the 

same type of VMs when being run on Host B is less than the estimated cost 

when being run on Host A, since Host B has less power characteristics as 

compared to Host A. Hence, enabling cost and energy awareness at the VM 

level can help Cloud service providers to make enhanced cost decisions and 

efficiently manage their resources, leading towards a reduction of energy 

consumption, and therefore lowering the operational costs for Cloud providers. 

Furthermore, estimating the future cost of Cloud services can help service 

providers offer suitable services that meet their customers’ requirements. 
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Despite the high variation of the workload utilisation, the accuracy metrics 

indicate that the predicted VMs workload and power consumption achieve high 

prediction accuracy along with the estimated total cost. 

7.2.3 Performance and Energy-based Cost Prediction Framework 

Chapter 5 has investigated the issues related to VMs consolidation and resource 

provisioning in a Cloud environment in terms of performance variation and 

energy consumption. Thus, understanding the impact of VMs consolidation and 

resource provisioning is essential to design cost-effective strategies for Cloud 

services. A set of algorithms that deal with VMs consolidation and resource 

provisioning are proposed with the aim to minimise the overall costs incurred by 

the performed decisions.  

The aim of the proposed performance and energy-based cost prediction 

framework is to address the third and fourth research questions as stated in (Q.3 

and Q.4 – see Section 1.2) by estimating the total cost of the migrated and scaled 

VMs, considering their resource usage and power consumption, while 

maintaining the expected level of service performance. A number of direct 

experiments were conducted on a Cloud testbed to evaluate the capability of the 

prediction models.  

The overall results show that the proposed framework can predict the 

workload, power consumption and estimate the total cost for a number of VMs 

when being run on multiple PMs using different migration and scaling strategies, 

as presented in Section 5.4.2. The experiments have shown that the estimated 

migration cost for the same type of VMs when being migrated to Host B is less 

than the estimated migration cost when being migrated to Host D, since Host B 

is more energy efficient as compared to Host D. Hence, the estimated migration 

cost recovery can be achieved when the migration is performed to the most 

energy efficient Host B. However, when the migration is performed to the less 

energy efficient Host D, only a large VM can recover the migration cost. 

Moreover, choosing between different scaling strategies (vertical and horizontal 

scaling) can have a significant impact on the cost of the scaled VMs. For 

example, when performed vertical scaling on the same host, Host A, it can be 

more cost-effective than performed horizontal scaling on a similar host 
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configuration, Host C. Also, horizontal scaling on the most energy efficient host, 

Host B, can be more cost-effective than horizontal scaling when using less 

energy efficient host, Host D. In addition, the results have shown that the 

proposed self-configuration auto-scaling mechanism outperforms the predefined 

one, since the predicted power consumption and cost are lower. Thus, these 

mechanisms can help Cloud providers to make enhanced cost decisions in terms 

of selecting the most cost-effective decision for both live migration and auto-

scaling techniques. 

7.2.4 A Hybrid Approach for Performance and Energy-based Cost 

Prediction 

Chapter 6 has integrated the VMs auto-scaling with dynamic VMs allocation into 

a hybrid approach in this research context. A set of algorithms that detect the 

underloaded and overloaded hosts in order to perform the most cost-effective 

decision(s) are proposed with the aim to minimise the overall costs incurred by 

the performed decisions. 

The aim of the proposed hybrid approach for the performance and energy-

based cost prediction is to address the fifth research question as stated in (Q.5 

– see Section 1.2) by integrating auto-scaling with live migration to handle the 

service performance variation. Then, predict the workload, power consumption 

and estimate the total cost for both migrated and scaled VMs during service 

operation based on historical workload data. A number of direct experiments 

were conducted on a Cloud testbed to evaluate the capability of the hybrid 

approach to estimate the total cost for heterogeneous VMs incurred by different 

decisions at service operation.  

The overall results show that the proposed approach can detect the 

underloaded and overloaded hosts in order to perform the most cost-effective 

decision(s) and predict the workload, power consumption as well as estimate the 

total cost for a number of VMs when being run on multiple PMs using different 

migration and scaling strategies, as presented in Section 6.4.2.  

The experiments have shown that in the case of the underloaded host the 

estimated cost saving of the VMs can be achieved only if the cost of VMs incurred 

by live migration to the selected destination PMj is less than the cost of switching 
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the source PMi to the power saving mode. In this regard, the energy efficiency 

of the selected hosts plays an important role to reduce the overall energy 

consumption. Thus, selecting the appropriate hosts to migrate the VMs has a 

significant impact on the overall cost saving that can be achieved. In the case of 

the overloaded host, choosing between different scaling/migration strategies 

have a significant impact on the total cost of the VMs. Furthermore, selecting the 

appropriate hosts in terms of their energy efficiency to scale the VMs have a 

significant impact on the total cost of the VMs. Thus, the proposed approach can 

help Cloud providers to make enhanced cost decisions in terms of selecting the 

most suitable cost-effective migration and scaling strategies. 

7.2.5 Comparison of Research Approaches with Related Work 

Enabling the awareness of energy consumption, performance variation and cost 

at the virtual level in Cloud environments has become significant and attracted 

the attention of many researchers. As discussed in Section 2.5, different 

approaches and models have been introduced to identify cost and energy 

consumption for VMs in a Cloud environment. Table 7-1 presents a comparison 

of these related cost and energy models along with the models introduced in this 

thesis for modelling a new cost mechanism for Cloud services that can be 

adjusted to the actual energy costs.  

Table 7-1: Comparison of Cost and Energy Models. 

Criteria 

by 

Cost Model based on VMs 
Resource Utilisation 
Consideration 

Actual Power Consumption Consideration 

PMs level VMs level 

Belli et al. [87] Homogeneous VMs only. Not considered. Not considered. 

Jin et al. [81] Homogeneous VMs only. Not considered. Not considered. 

Berndt and 
Maier [23] 

Homogeneous VMs only. Not considered. Not considered. 

Mao and 
Humphrey [17] 

Homogeneous and heterogeneous 
VMs. 

Not considered. Not considered. 

Chard et al. 
[89] 

Homogeneous and heterogeneous 
VMs. 

Not considered. Not considered. 

Yousefipour et 
al. [93] 

Homogeneous and heterogeneous 
VMs. 

Homogeneous PMs only. Not considered. 

Jung et al.  
[12] 

Homogeneous VMs only. Homogeneous PMs only. Not considered. 

Hinz et al. [10] Homogeneous and heterogeneous 
VMs. 

Homogeneous PMs only. Homogeneous and heterogeneous VMs, 
but only based on the number of allocated 
virtual CPUs to each VM. 

This Research Homogeneous and heterogeneous 
VMs. 

Homogeneous and 
heterogeneous PMs. 

Homogeneous and heterogeneous VMs, 
based on the number and the actual 
utilisation of the virtual CPUs assigned to 
each VM. 
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As shown in Table 7-1, most of the related work [87], [81], [23], [17], [89] 

aimed to improve the cost efficiency in Cloud environments in order to meet the 

performance requirements, customers' demands and efficient resource 

utilisation, but do not consider the energy consumption of the resources. The 

other models, presented in [93], [12] considered the energy consumption, but 

their focus is only at the physical level in order to consolidate the VMs and 

minimise the number of active hosts. The only exception is the model presented 

in [10] which considers the energy consumption at both physical and virtual 

levels, though this is still limited as their model only considers the number of 

allocated virtual CPUs to each VM without consideration of the actual utilisation.  

The energy-based cost model presented in this thesis is different when 

compared to existing models found in the literature. It considers attributing the 

PM’s idle and active power consumption to heterogeneous VMs based on their 

vCPU utilisation and size, as discussed in Chapter 3. Thus, the model introduced 

in this research is unique as it considers the heterogeneity of the VMs along with 

their actual resource usage, power consumption, and the total cost. 

In terms of estimating the future cost of VMs during the service operation, 

it would first require predicting their workload, which can be then translated into 

energy based on their physical resource usage. Table 7-2 presents a comparison 

of the related work along with the work presented in this thesis for predicting. 

Table 7-2: Comparison of Prediction Approaches. 

Criteria 

by 

Workload Prediction 
Consideration 

Energy Prediction Consideration Cost Estimation 
Consideration 

PMs level VMs level PMs level VMs level 

Gong et al. 
[97], Huang 
et al. [99] 

Homogeneous 
PMs only. 

Homogeneous 
VMs only. 

Not considered. Not considered. Not considered. 

Farahnakian 
et al. [100] 

Homogeneous 
and 
heterogeneous 
PMs. 

Homogeneous 
and 
heterogeneous 
VMs. 

Not considered. Not considered. Not considered. 

Zhang et al. 
[20] 

Not considered. Heterogeneous 
VMs. 

Not considered. Not considered. Not considered. 

Fang et al. 
[101] 

Homogeneous 
PMs only. 

Not considered. Not considered. Not considered. Not considered. 

Yang et al.  
[102], [18] 

Not considered. Heterogeneous 
VMs. 

Not considered. Not considered. Not considered. 

Smith et al. 
[105] 

Not considered. Not considered. Homogeneous 
PMs only. 

Not considered. Not considered. 

Kistowski et 
al. [106] 

Not considered. Not considered. Heterogeneous 
PMs. 

Not considered. Not considered. 



- 155 - 
 

Li et al. [48] Not considered. Not considered. Homogeneous 
PMs only. 

Homogeneous 
VMs only. 

Not considered. 

Farahnakian 
et al. [108] 

Heterogeneous 
PMs. 

Not considered. Heterogeneous 
PMs. 

Not considered. Not considered. 

Subirats and 
Guitart [109] 

Heterogeneous 
PMs. 

Homogeneous 
VMs only. 

Heterogeneous 
PMs. 

Homogeneous 
VMs only. 

Not considered. 

Jiang et al. 
[19] 

Heterogeneous 
PMs. 

Heterogeneous 
VMs. 

Not considered. Not considered. Based on the resource 
usage. 

Roy et al. 
[110] 

Not considered. Homogeneous 
VMs only. 

Not considered. Not considered. Based on the resource 
usage. 

Sharma et al. 
[111] 

Heterogeneous 
PMs. 

Homogeneous 
VMs only. 

Not considered. Not considered. Based on the resource 
usage. 

Liu et al. 
[112] 

Homogeneous 
PMs only. 

Homogeneous 
VMs only. 

Homogeneous 
PMs only. 

Homogeneous 
VMs only. 

Based on the resource usage 
and power consumption cost 
for homogeneous PMs and 
VMs. 

This 
Research 

Homogeneous 
and 
heterogeneous 
PMs. 

Homogeneous 
and 
heterogeneous 
VMs. 

Homogeneous 
and 
heterogeneous 
PMs. 

Homogeneous 
and 
heterogeneous 
VMs. 

Based on the resource usage 
and power consumption cost 
for 
homogeneous/heterogeneous 
PMs and VMs. 

 

As discussed in Section 2.6, most of the related approaches presented in 

[18], [20], [97], [99]–[102] aimed at predicting the workload in order to improve 

resource utilisation in Cloud environments, yet not considering the energy 

consumption of the predicted workloads. The other approaches, presented in 

[105], [106], [108] considered the prediction of energy consumption, but these 

approaches only take into account the prediction of the power consumption at 

PMs level and do not consider the prediction at VMs level. However, the work 

presented in [48], [109] considered predicting energy consumption at both 

physical and virtual levels. This work is still limited as the model in [48] assumed 

that all the PMs and VMs are homogeneous, whereas, the model in [109] only 

considers a linear relationship between the CPU utilisation and the energy 

consumption in order to predict the power at the VMs level. Further, the work 

presented in [19], [110], [111] considered the prediction of workload and the 

estimation of cost for the VMs, but not the energy consumption which would 

influence the overall cost estimation of Cloud services.  

As shown in Table 7-2, the work presented in [112] is the only work that 

has a similar approach to the one introduced in this thesis in terms of the 

prediction of the workload and energy consumption as well as the estimation of 

VMs cost. Nonetheless, their approach does not consider the heterogeneity of 

the PMs or the VMs, whereas the prediction approach introduced in this thesis 

takes into account the heterogeneity of the PMs and the VMs.  
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The energy-based cost prediction framework presented in this thesis first 

predicts the workload of the VMs and then correlates the predicted VM workload 

with the PM to estimate the PM’s workload and power consumption, from which 

the power consumption for the VMs is predicted. After that, the total cost of VMs 

is estimated based on their predicted workload and power consumption, as 

discussed in Chapter 4. 

Additionally, Cloud service providers implement dynamic resource 

management through VMs' consolidation and resource provisioning techniques 

in order to meet the performance requirements of applications, while minimising 

the operation costs and energy consumptions in Cloud data centres. Section 2.7 

has reviewed the related work on VMs' consolidation and resource provisioning 

mechanisms in Cloud environments. The following Table 7-3 presents a 

comparison of the closely related work on the prediction models for VMs' 

consolidation and resource provisioning that considers the workload, energy 

consumption and cost in Cloud environments, along with the work presented in 

this thesis. 

Table 7-3: Comparison of Prediction Models for VMs' Consolidation and Resource 
Provisioning. 

Criteria 

by 

Workload Prediction 
Consideration 

Energy Prediction 
Consideration 

Cost Estimation 
Consideration 

PMs level VMs level PMs level VMs level Cost of 
Migration 

Cost of 
Scaling 

Farahnakian 
et al. [118] 

Heterogeneous 
PMs. 

Heterogeneous 
VMs. 

Not considered. Not 
considered. 

Not 
considered. 

__ 

Beloglazov 
and Buyya 
[123] 

Homogeneous 
PMs only. 

Not considered. Not considered. Not 
considered. 

Not 
considered. 

 

__ 

Zhou et al. 
[16] 

Heterogeneous 
PMs. 

Not considered. Heterogeneous 
PMs. 

Not 
considered. 

Considered 
the cost of 
migration. 

__ 

 

Dawoud et 
al. [137] 

Homogeneous 
PMs only. 

Homogeneous 
VMs only. 

Not considered. Not 
considered. 

__ Not 
Considered. 

Meng et al. 
[138] 

Homogeneous 
PMs only. 

Homogeneous 
VMs only. 

Not considered. Not 
considered. 

Not 
considered. 

__ 

Dutta et al. 
[14] 

Homogeneous 
PMs only. 

Homogeneous 
and 
heterogeneous 
VMs. 

Not considered. Not 
considered. 

 

__ 

Considered 
the cost of the 
horizontal and 
vertical 
scaling. 

This 
Research 

 

Homogeneous 
and 
heterogeneous 
PMs. 

Homogeneous 
and 
heterogeneous 
VMs. 

Homogeneous 
and 
heterogeneous 
PMs. 

Homogeneous 
and 
heterogeneous 
VMs. 

Considered 
the cost of 
migration and 
their recover 
cost. 

Considered 
the cost of the 
horizontal and 
vertical 
scaling. 
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In terms of VMs consolidation, the work presented in [118], [123], [16] 

employed workload prediction models based on historical data to avoid 

unnecessary VM migrations and minimise energy consumption and SLA 

violations. These models focused on improving the performance of Cloud 

applications by reducing the number of overloaded hosts, but without explicitly 

considering energy and cost of VMs migrations, as a part of VMs consolidation 

decision criterion. 

In terms of VMs resource provisioning, the work presented in [137], [138], 

[14] considered the prediction of resources provisioning to handle future 

workload demand while maintaining the SLOs, but these approaches do not 

consider the power consumption of required resources incurred due to scaling 

decisions. 

The performance and energy-based cost prediction framework along with 

the hybrid approach presented in this thesis dynamically supports VMs live 

migration and auto-scaling decisions, considering the trade-off between cost, 

power consumption, and performance during service operation. This work 

detects the underloaded and overloaded hosts in order to perform the most cost-

effective decision(s) to handle service performance variations. Also, it predicts 

the workload, power consumption as well as estimates the total cost for a number 

of VMs when being run on multiple PMs using different migration and scaling 

strategies, as discussed in Chapters 5 and 6, respectively. 

7.3 Research Contributions 

In order to address the research questions of this thesis (see Section 1.2), a 

number of contributions have been presented in this thesis and they are mainly 

summarised as follows: 

 A Cloud system architecture. This architecture has been proposed along 

with the main component in this research Cost Modeller in order to enable 

the awareness of energy consumption, performance variation and cost in 

a Cloud environment. An energy-based cost model is introduced to 

address the first research question (Q.1) by enabling cost and energy-

awareness at the VM level. The results presented in Chapter 3 show that 

the proposed energy-based cost model can fairly attribute the PM’s 
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energy consumption to heterogeneous VMs and measures the actual 

resource usage, power consumption and the total cost for each VM.  

 An energy-based cost prediction framework. A number of models have 

been introduced within this framework with the overall objective to 

address the second research question (Q.2) by predicting the workload, 

power consumption and estimating the total cost of the VMs during 

service operation. Firstly, the VMs’ workload is predicted using the ARIMA 

model based on historical periodic workload patterns. Then, the predicted 

VM workload is correlated with the physical resources using regression 

models introduced within this framework in order to predict the PM power 

consumption, from which the predicted VMs power consumption is 

identified. After that, the total cost is estimated based on the predicted 

workload and power consumption for each VMs’. The results presented in 

Chapter 4 show that a high prediction accuracy of the VMs’ workload and 

power consumption along with their estimated total cost has been 

achieved by the introduced framework. 

 A performance and energy-based cost prediction framework. A number of 

models and algorithms have been introduced within this framework with 

the overall objective to address the third and fourth research questions 

(Q.3 and Q.4) by estimating the total cost of heterogeneous VMs, 

considering their resource usage and power consumption, while 

maintaining the expected level of application performance. This 

framework introduced two approaches that can be used for VMs 

consolidation and resource provisioning in order to design cost-effective 

strategies and prevent performance loss at different levels. This 

framework works by predicting the workload, power consumption and 

estimating the total cost of the migrated and scaled VMs during service 

operation based on historical workload data.  The results presented in 

Chapter 5 show the capability of the proposed framework to estimate the 

live migration and auto-scaling total cost for heterogeneous VMs at 

service operation. 

 A hybrid approach for performance and energy-based cost prediction. A 

number of models and algorithms have been introduced within this 

approach with the overall objective to address the fifth research question 
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(Q.5) by integrating auto-scaling with live migration in order to estimate 

the total cost of heterogeneous VMs, considering their resource usage 

and power consumption, while maintaining the expected level of 

application performance. This approach works by detecting the 

underloaded and overloaded hosts in order to perform the most cost-

effective decision(s) to handle the service performance variation. The 

results presented in Chapter 6 show the capability of this hybrid approach 

to predict the workload, power consumption and estimate the total cost of 

the performed decisions. 

7.4 Limitations 

The direct experiments conducted on the Cloud testbed along with their 

evaluation demonstrate very promising results for enabling the awareness of 

energy consumption, performance variation and cost at the VM level during 

service operation in Cloud environments. Though, there are a few limitations, as 

follows: 

 The proposed energy-based cost prediction framework only considers the 

CPU utilisation, (PM CPU utilisation and number of vCPUs assigned for 

each VM), when modelling and predicting the energy to the VMs. Other 

resources such as memory, disk and network are not taken into 

consideration. However, many of the related work concluded that the CPU 

utilisation is highly correlated with the power consumption. Thus, the CPU 

is the only resource that affects the power consumption and any other 

resources do not have any impact on the power, or indirectly impact on 

the power, driven only through the CPU utilisation.  

 The VM workload prediction in the proposed energy-based cost prediction 

framework is based only on historical periodic workload pattern. Additional 

Cloud applications workload patterns (e.g., unpredictable, once-in-a-

lifetime, and continuously changing), can be further considered to 

broaden the scope of using the proposed framework to predict the 

workload, power consumption and estimate the total cost of the VMs 

based on different types of workload patterns. 
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 The proposed performance and energy-based cost prediction framework 

only considers the CPU utilisation and memory usage as thresholds to 

predict the service performance variation and trigger the appropriate 

action(s) accordingly. Since the direct experiments are conducted on a 

local Cloud testbed, thus there is no impact on disk or network in terms of 

resources competition. However, the performance prediction algorithms 

of the proposed framework could be extended by considering such 

resources (disk and network) when identifying the thresholds. 

7.5 Future Work Directions 

To further extend the work presented in this thesis, there are some directions 

that can be followed, as suggested next: 

 The energy-based cost prediction framework presented in this thesis 

predicts the PMs power consumption based on the correlation of the 

predicted PM CPU utilisation with PM power consumption using 

regression models. Then, fairly attribute the predicted PM power 

consumption to heterogeneous VMs based on the allocated vCPUs and 

their utilisation by each VM. An extension to this is to also consider the 

performance counters to predict the subsystems power consumption 

including memory, disk, and network. This would be a beneficial 

enhancement which may increase the accuracy of the predicted power 

consumption at the VM level.  

 The workload prediction within the proposed framework is using a time 

series prediction model (an ARIMA model) based on historical periodic 

workload patterns. Another suggested extension in terms of prediction is 

to consider more powerful data-driven methods, e.g., Machine Learning 

(ML) techniques including an Artificial Neural Network (ANN) or a Deep 

Neural Network (DNN) with additional Cloud applications workload 

patterns, e.g., unpredictable, once-in-a-lifetime, and continuously 

changing. This extension would be valuable to broaden the scope of using 

the framework to predict the workload, power consumption and estimate 

the total cost of the VMs based on different prediction techniques along 

with different types of workload patterns.  
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 The work presented in this thesis considered the heterogeneity as a 

different number of resources with different CPUs architectures. 

Nowadays, heterogeneity refers to different hardware with different 

architectures that may contain accelerators (e.g., Graphic Processing 

Units (GPUs) and Field Programmable Gate Arrays (FPGAs)). Since the 

majority of the proposed energy models in the literature are based on the 

CPU utilisation, a promising extension of the proposed work is to consider 

the impact of hardware accelerators, such as GPUs and FPGAs on the 

energy consumption and service performance. This extension would be 

useful when modelling and identifying the energy consumption and total 

cost of Cloud services. 
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