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Abstract

Neutrophils are the white blood cells that play a crucial role in the response of the

innate immune system to tissue injuries or infectious threats. Their rapid arrival to

the damaged area and timely removal from it define the success of the inflammat-

ory process. Therefore, understanding neutrophil migratory behaviour is essential

for the therapeutic regulation of multiple inflammation-mediated diseases. Recent

years saw rapid development of various in vivo models of inflammation that provide

a remarkable insight into the neutrophil function. The main drawback of the in vivo

microscopy is that it usually focuses on the moving cells and obscures the external

environment that drives their migration. To evaluate the effect of a particular treat-

ment strategy on neutrophil behaviour, it is necessary to recover the information

about the cell responsiveness and the complex extracellular environment from the

limited experimental data. This thesis addresses the presented inference problem

by developing a dynamical modelling and estimation framework that quantifies the

relationship between an individual migrating cell and the global environment.

The first part of the thesis is concerned with the estimation of the hidden chem-

ical environment that modulates the observed cell migration during the inflammat-

ory response in the injured tail fin of zebrafish larvae. First, a dynamical model of

the neutrophil responding to the chemoattractant concentration is developed based

on the potential field paradigm of object-environment interaction. This represent-

ation serves as a foundation for a hybrid model that is proposed to account for

heterogeneous behaviour of an individual cell throughout the migration process. An

approximate maximum likelihood estimation framework is derived to estimate the

hidden environment and the states of multiple hybrid systems simultaneously. The

developed framework is then used to analyse the neutrophil tracking data observed

in vivo under the assumption that each neutrophil at each time can be in one of

three migratory modes: responding to the environment, randomly moving, and sta-

tionary. The second part of the thesis examines the process of neutrophil migration

at the subcellular scale, focusing on the subcellular mechanism that translates the

local environment sensing into the cell shape change. A state space model is formu-

lated based on the hypothesis that links the local protrusions of the cell membrane

and the concentration of the intracellular pro-inflammatory signalling protein. The

developed model is tested against the local concentration data extracted from the

in vivo time-lapse images via the classical expectation-maximisation algorithm.
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1 Introduction

1.1 Background

Inflammation is a fundamental defence reaction of the host immune system to in-

fection or injury. It is initiated by leukocyte migration from the bloodstream to

the damaged tissue where they kill bacteria and pathogens. Neutrophils are the

most abundant type of leukocytes that are essential for combating various infectious

threats [1]. Highly sensitive to the tissue “distress signals”, neutrophils are rapidly

recruited to the wound area where they exert two critical functions: amplify the

inflammatory signal to recruit other types of immune cells and eliminate bacteria

via multiple defence mechanisms.

However, a malfunction in either neutrophil deployment or deactivation may

have a devastating impact on the host. An overzealous neutrophilic response is ac-

companied by the release of multiple cytotoxic mediators that can damage healthy

tissue. The neutrophil-induced tissue damage is characteristic for rheumatoid arth-

ritis, pulmonary disease, and many autoimmune disorders. On the other hand,

an impaired mechanism of neutrophil removal from the damaged area may lead

to chronic inflammatory diseases. That is why the moderation of recruitment and

timely removal of these cells from the damaged tissue is crucial for treatment of vari-

ous inflammation-mediated diseases. Given the critical role the neutrophil migration

plays in the inflammatory response, many therapeutic strategies target this process.

To be able to manipulate this process precisely, one needs not only to understand

but also to be able to predict the behaviour of these immune cells in various settings.

Since the early nineteenth century, when cell biology was postulated as a dis-

cipline, the cell function has been studied experimentally by means of observation.

Therefore, the success of research in this field remains closely connected to the ad-

vances in experimental assays. For a long time, the understanding of neutrophil

function and role in inflammation has been informed by the experimental studies

that were conducted in artificial environments (in vitro). Dramatic improvements

in genomics and microscopy lead to the development of several animal models of in-

flammation where the immune response can be observed running its natural course
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inside the living organism (in vivo). The most promising in vivo model is the

zebrafish. The combination of novel imaging techniques, transparency of zebrafish

larval form, and fluorescent labelling of immune cells in transgenic animals helped to

elucidate various mechanisms of neutrophil migration. Whilst in vivo experiments

undoubtedly have moved the research in this topic forward, the need for quantitative

evaluation of developed hypotheses is clear.

It is well known that the activity of neutrophils during the immune response

is characterised by continuous interaction with their environment. At initial stages

of inflammation, the cells are guided towards the target site by multiple external

mediators, called chemoattractants. This directed migration, called chemotaxis, has

been widely studied in various cell types. Despite the intensive research in this field,

the principal mechanism that connects sensing the environment with cell locomotion

remains undefined. In the light of this problem, two aspects require investigation:

behavioural modes of cells moving in the chemoattractant environment, and intra-

cellular signalling pathways responsible for cell locomotion in response to changes

in the environment.

At the final stages of inflammation, after the infectious threat has been re-

solved, neutrophils are deactivated and removed from the wound. Recent in vivo

experiments have revealed that some neutrophils migrate away from the damaged

site [2], [3]; this migration may be induced by the interaction with the environment

or, on the contrary, by the loss of cell’s sensitivity to the environment caused by the

receptor internalisation. The inability to assess the chemoattractant (or chemore-

pellent) concentration in in vivo studies makes it impossible to reject either of the

hypotheses.

This thesis attempts to analyse different aspects of cell-environment interaction

during the inflammatory process through the medium of mathematical modelling and

system identification. The role of mathematical modelling in biological studies has

become widely appreciated in recent years as it allows to represent a complex in-

terconnected system with simple prototypes that account for the key interactions

within the system. The predictive capacity of the developed model depends largely

on how well it is linked to the data. Thus, the ambition of data-driven modelling is

not to merely simulate cell motion but to identify mechanistic models which could

represent its innate processes with satisfying accuracy.

Rapid development of data-driven modelling in biology is directed by three key

processes: refinement of measurement technologies, continuous improvement and

development of models representing complex biological processes, and fitting of the

existing models to available experimental data. Both the task of model fitting and

the model development can be viewed as a parameter estimation problem and solved

using classical system identification tools. System identification is the discipline that
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deals with the process of creating mathematical models of a dynamical system from

the available data. It is constituted by the selection of the appropriate model struc-

ture and the estimation of unknown parameters in the constructed model. Because

both the model structure and the measurements are subject to uncertainty, the in-

ferences about the unknown parameters are of stochastic nature and can be obtained

via various statistical methods. This thesis focuses on the dynamical modelling of

neutrophil migration and employs a combination of statistical inference methods to

link the developed models to the experimental data.

1.2 Systems perspective on neutrophil migration

The inflammatory response that evolves over long periods of time can be viewed

as a dynamical process and investigated through the agency of systems theory.

The dynamical system considered in this work is the population of activated pro-

inflammatory neutrophils migrating in the tissue towards the wound, where each

individual neutrophil is an element of the high-level system. The environment in

which the system functions consists of the chemokine concentrations that drive the

cell population towards and away from the wound area. Based on the experimental

evidence that shows that neutrophil migration is actively regulated by these concen-

trations it is considered here that the evolution of the system is not only affected by

the environment but explicitly linked to it.

In order for the described system to achieve the aim of efficiently removing the

infectious threat and resolving the inflammation process, all of its elements must

function correctly. If one is to consider a therapeutic treatment of inflammatory

response as a controller for a dynamical system, the need for the formal description

of the interaction between its constituent parts becomes evident. Thus, the devel-

opment of a comprehensive mathematical model of neutrophil migration driven by

various chemokine environments can be viewed as a part of the design process of a

controller that would regulate that particular interaction.

A systematic approach to the model development involves a cycle of the three

key processes: hypothesis development, experiment design and implementation, and

testing the hypothesis against the experimental data. In biological research, the

experimental design usually dictates the level of detail of the developed model. This

particular study is dealing with a relatively novel type of experiment, where the dir-

ect observation of the system’s environment is not possible. The model development

in this thesis is concerned with the following questions:

• What can be inferred about the underlying environment from the observed

migratory patters of the neutrophil population?

• Do all neutrophils always respond to the external environment during the
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recruitment stage of inflammation?

• Do all neutrophils always respond to the external environment during the

resolution stage of inflammation?

• How is the influence of the environment translated into the locomotion of an

individual neutrophil?

The objectives of this thesis are developed in accordance to the posed questions.

1.3 Aims and objectives

The principal aim of this thesis is to characterise the interaction between the migrat-

ing neutrophils and their environment during different stages of inflammation. This

research is motivated by new challenges presented by the novel microscopy meth-

ods. In particular, it seeks to recover information about the external environment,

that is typically not measured in vivo, based on the observed cell behaviour. The

experimental data is obtained by collaborators from the transgenic zebrafish whose

immune responses are similar to human ones.

The influence of the environment on neutrophils is assessed on various scales.

The first part of the thesis deals with the macro-scale level of cell population but

utilises the models of individual cell dynamics. The final chapter deals with the

sub-cellular processes that occur as a result of spacial environment sensing. The

analysis is conducted from a system-theoretic point of view and utilises a state-space

framework to interpret the temporally resolved experimental data. The developed

state-space models are fitted to the experimental data via various identification

techniques.

The following objectives are associated with the established aim:

• Develop a phenomenological model of cell dynamics that would incorporate a

parametrised model of the global environment.

• Develop a hybrid model of cell dynamics to account for the homogeneous

behaviour of the migrating neutrophils.

• Create an estimation framework that is able to estimate simultaneously the

hidden environment and cell dynamic properties with minimum prior assump-

tions made about the environment.

• Analyse the interaction between migrating neutrophils and their environment

during different stages of inflammation by applying the developed estimation

framework to the population in vivo data collected from zebrafish model of

inflammation.

• Quantify and analyse the relationship between sub-cellular concentrations and

the deformation of the cell boundary of a migrating cell by applying a classical
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estimation method to the sub-cellular in vivo data collected from zebrafish

model of inflammation.

1.4 Thesis overview

Below is the summary of the thesis structure and the key contributions of the

chapters.

Chapter 2 consists of two parts. The first part provides a brief overview of

neutrophil function during the immune response and discusses state of the art of the

mathematical modelling in the study of chemotaxis. Models at different scales are

reviewed alongside with recent developments in experimental procedures. The role

and the challenges of evidencing the mathematical hypotheses with biological data

are discussed. The second part surveys popular methods of statistical inference and

provides the systems context for the data-driven analysis of neutrophil chemotaxis.

Chapter 3 proposes a dynamical model of cell migration that incorporates

the influence of the unknown chemoattractant concentration for the quantitative

analysis of the cell migration data obtained from the in vivo model of inflammation.

The model builds on the potential field paradigm of object-environment interaction.

The parametrised model of the hidden chemoattractant concentration is obtained

via basis function decomposition with unknown scaling parameters. The estimation

of these parameters is performed simultaneously with the cell state estimation in the

form of an approximate Expectation-Maximisation (EM) algorithm. The developed

algorithm is applied to several datasets of neutrophils observed in the zebrafish larvae

during the recruitment stage of the inflammatory response. The Chapter makes the

following contributions:

• A novel state space model of cell dynamics which includes the parametrised

model of the chemoattractant environment.

• An inference framework that predicts the chemoattractant concentration based

on tracking data. The estimation is performed under the assumptions that all

cells at all times interact with the environment.

Chapter 4 proposes an approximate maximum likelihood framework for estim-

ation of the hidden environment that drives the migration of multiple objects with

hybrid dynamics. The hybrid model is a direct extension of the model introduced

in Chapter 3. Along with explicitly linking the object dynamics with the external

environment, the new model accounts for the heterogeneous behaviour of the mi-

grating object which is common in many engineering and life systems applications.

The joint state-parameter estimation of the proposed model is performed via the

EM algorithm that utilises a multiple model smoother during the expectation step.
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The performance of the proposed estimation framework is demonstrated on several

simulation examples with varying migration patterns and model mismatches. The

main contribution of this Chapter is summarised as:

• An approximate maximum-likelihood method for estimation of the hidden en-

vironment driving multiple objects, based on hybrid representation of object

dynamics.

• An implementation of the interacting multiple model (IMM) unscented al-

gorithm.

Chapter 5 demonstrates the application of the developed framework to the

neutrophil in vivo data collected from zebrafish larva at different stages of inflam-

mation. A hybrid system consisting of three state space models is proposed to rep-

resent the dynamics of an individual cell in order to relax the assumption that all

neutrophils are responding to the environment at all times. The first model accounts

for the cell behaviour when it is driven by the external stimuli, the second model

represents the randomly moving cell, and the third model describes the behaviour

of a stationary cell. Two types of the multiple model state estimation algorithms

are used in the estimation procedure. The key contributions are the following:

• A novel hybrid model of cell dynamics that accounts for the heterogeneous

interactions with its environment.

• Simultaneous inference of the hidden chemoattractant concentration field and

cell behavioural modes from the cell migration patterns observed in zebrafish.

• Quantitative evidence that neutrophils randomly diffuse from the wound dur-

ing the inflammation resolution.

Chapter 6 analyses the process of neutrophil chemotaxis on a finer scale.

It investigates morphodynamics of the migrating neutrophil and proposes a novel

framework of quantifying the internal concentrations. A dynamical model used in

the chapter builds on the current understanding of the PIP3
1 signalling mediator

that governs changes of the cell boundary. A series of image-processing techniques

are applied to the time-lapse images of the migrating neutrophils to quantify the key

factors described by the selected model. The correlation analysis of the extracted

data is performed to assess whether the observed sub-cellular concentration maybe

considered as the sole or the most prominent contributor to the cell membrane

evolution. The resultant state space model linking cell boundary evolution and

concentrations of sub-cellular activators is tested against the in vitro imaging data

obtained by observing the immortalised mammalian cells with pro-inflammatory

proteins tagged with green fluorescent protein (GFP). The contributions of this

Chapter are listed below:

1 Phosphatidylinositol (3,4,5)-trisphosphate
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• An image-processing module for quantification of intracellular concentrations

and geometric properties of an individual cell.

• Quantitative evidence that the sub-cellular mediator PIP3 is not the dominant

local activator in pseudopod formation process.

Chapter 7 provides a summary of the results achieved in the thesis and pro-

poses several possible directions for future work.

1.5 Disseminated results

The contributions of this thesis have been disseminated in the following works

• A. Kadochnikova, Y. Zhang, V. Kadirkamanathan. “A dynamical systems

modelling framework for eukaryotic cell migration analysis”. An abstract in

proceedings of SEB Symposium “Bridging scales in models of cell to tissue

behaviour”, Oxford, United Kingdom, 13-15 September 2016.

• A. Kadochnikova, H.M. Isles, S.A. Renshaw, V. Kadirkamanathan. “Estim-

ation of Hidden Chemoattractant Field from Observed Cell Migration Pat-

terns”. A peer-reviewed paper in Proceedings of 18th IFAC Symposium on

System Identification SYSID 2018, Stockholm, Sweden, 9-11 July 2018.

• H.M. Isles, C. Muir, A. Kadochnikova, C.A. Loynes, V. Kadirkamanathan,

P.M. Elks, S.A. Renshaw. “Non-apoptotic pioneer neutrophils initiate a swarm-

ing response in a zebrafish tissue injury model” submitted to EMBO Reports,

2019.

The following journal papers are currently in development:

• A. Kadochnikova, V. Kadirkamanathan. “An Approximate Maximum Like-

lihood Framework for Estimating the Environment Driving multiple objects

with Hybrid Dynamics”.

• A. Kadochnikova, H.M. Isles, S.A. Renshaw, V. Kadirkamanathan. “Infer-

ence of the External Stimuli Environments from Heterogeneous Behaviour of

Migrating Neutrophils in Zebrafish Model of Inflammation”.
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2 Mathematical modelling of cell

migration

This chapter contains an overview of relevant experimental and theoretical research

of directed immune cell migration. The concepts presented in this part of the thesis

serve as a foundation for the analysis conducted in further chapters. Section 2.1

outlines an example scenario of the inflammatory response and explains the role of

neutrophil chemotaxis in this process. Section 2.2 is a survey of state of the art in

mathematical modelling of chemotaxis on different scales. Section 2.3 provides a

system-theoretic perspective on time series analysis and defines the model structure

that will be utilised throughout the thesis. Sections 2.4 and 2.5 overview commonly

used methods of parameter and state estimation, respectively.

2.1 Background on inflammation

Inflammation is the innate immune system response to infectious threats or injuries.

It is mediated by the migration of white blood cells, or leukocytes, to and from the

damaged tissue. From the leukocyte-centred point of view, the inflammatory process

can be divided into two phases: the recruitment during which these immune cells

migrate towards the injury site, and the resolution during which leukocytes are

removed from the damaged tissue after eradicating alien cells. Both phases are

complex multi-stage processes governed by a variety of overlapping signals that

incite cell motion. Although the insistent study elucidated the key events that take

place during the recruitment, recent improvements in the experimental procedures

reveal new aspects of this process that are yet to be understood [1]. The progress

in investigating inflammation resolution for a long time was hindered by the lack

of technological capacity to reproduce this process in artificial conditions. Whilst

novel microscopy available nowadays allows to observe the natural course of this

process, the level of involvement and the exact role of leukocytes in the inflammation

resolution remain unknown [2].
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2.1.1 Neutrophils in the inflammatory response

Neutrophils constitute a major class of mammalian white blood cells and play a

vital role in inflammatory responses. They are deservedly called the first responders

of the innate immune system as they migrate towards the damaged tissue within

minutes post-injury. Early recruited neutrophils promote recruitment of other im-

mune cells such as phagocytes [4], but also possess phagocytic mechanisms for re-

moval of pathogens and microbial debris from the tissue [5]. Although neutrophils

function in cooperation with other immune cells, they outnumber any other parti-

cipants of the process and define the way the inflammation evolves.

In the absence of external threats to the host, the majority of neutrophils are

found in the bone marrow and less than 2% in blood circulation in inactive state [6].

Once the immune system detects a microbial threat or tissue damage, neutrophils

activate, leave the bone marrow, and enter the circulation that quickly delivers them

closer to the damaged site. They then transmigrate through the endothelial layer

of blood vessels to the tissue and enter the pro-inflammatory state to start their

migration towards the target area [4].

In the tissue, neutrophil migration towards the wound site is tightly regulated by

stimulating chemokines deployed by the damaged tissue, commonly called chemoat-

tractants (ChA). Activated neutrophils exert different types of receptors to sense

the local ChA concentration. Depending on the perceived chemotactic environment,

neutrophils can commit two distinct types of movement. In uniform attractant con-

centrations, cells undergo chemokinesis - the type of movement characterised by the

increase in cell speed while the choice of direction remains random. In spatially

changing ChA concentrations one can observe chemotaxis - the directed cell mi-

gration. Chemotaxing cells alternate between periods of persistent motion, called

chemotactic runs [7], in a direction along the steepest concentration gradient,

and periods of random motility, during which neutrophils are thought to assess the

concentration gradient at their location [8]. Being the quickest eukaryotes, during

chemotactic runs neutrophils can develop speeds up to 10-20 µm/min.

Having arrived to the target area, neutrophils eliminate the bacterial or infec-

tious threat by means of phagocytosis (chase and engulfment of individual microbes

[9]) or degranulation (release of toxic molecules [10]). Degranulated neutrophils also

leave extracellular traps that deactivate and kill the pathogens by delivering large

numbers of antimicrobial molecules to the target [11]. Neutrophils are known to

amplify the pro-inflammatory signal to other leukocytes by releasing into the tissue

various mediators that serve as attractants for other cell types [12].

During the inflammation resolution, surviving neutrophils can be removed from

the wound site through one of the following processes:
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• Apoptosis (cell death);

• Engulfment by macrophages1;

• Reverse migration within the tissue;

• Reverse transmigration back into the circulation.

The first two processes can be characterised as passive. Neutrophil apoptosis

prevails during the resolution phase and plays an important role in the dampening of

the inflammatory response. Dying neutrophils release anti-inflammatory chemokines

that slow down the recruitment of new leukocytes until it eventually ceases [13]. In-

teractions between macrophages and neutrophils have been examined in various

animal models [14]. Recent advances in cell imaging revealed that neutrophils can

actively migrate away from the wound site [3]. Ability to regulate this active pro-

cess therapeutically could advance the treatment of many inflammation-mediated

diseases. The migration back to circulation is normally driven by mechanical cues

and has been observed in extraordinary conditions [15], therefore it is not considered

to be of primary importance for the inflammation resolution stage.

The exact mechanism of neutrophil reverse migration remains unknown but

there exist several hypotheses about the way it progresses. Firstly it is was assumed

that cells react to directional cues regulating their removal from the injury site via

fugetaxis. In this process, opposite to chemotaxis, cells are driven away from high

concentrations of repelling agents called chemorepellents [16]. Recent analysis of

the experimental data suggests that this retrograde movement is rather a stochastic

redistribution of cells than a directed migration [17]. There is an increasing trend of

papers speculating that neutrophils lose sensitivity to local gradients owing to the

receptor internalisation [14], however more evidence is needed to determine which

mechanism is more prevalent.

Neutrophil malfunction at any stage of inflammation can lead to fatal damage

to the host: if neutrophils fail to react during the recruitment phase, infection will

spread further into the host body, while failure in neutrophil deactivation during

the resolution phase can cause passer-by damage to healthy tissue cells and lead to

chronic inflammation, which in turn contributes to the development of numerous

disorders [18]. Therapeutic importance of neutrophil regulation is obvious, but des-

pite decades of extensive study many aspects of their migratory mechanism remain

unknown.

1 Macrophages are a specialised type of white blood cells involved in the detection, phagocytosis

and destruction of bacteria and other pathogens.
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2.1.2 The mechanism of chemotaxis

In the literature, the chemotaxis is viewed as a result of complex coordination of

motility, gradient sensing, and polarisation [19]. Motility is the main driver of the

crawling motion of stimulated neutrophils [20]. A motile neutrophil undergoes severe

morphological changes by extending and retracting actin-rich protrusions, also called

pseudopods. It must be noted that the motility occurs independently from gradient

sensing, as neutrophils exhibit spontaneous protrusion extension even in uniform

concentrations [21].

Neutrophils are extremely receptive to the environment - they are able to de-

tect the spatial change in chemoattractant concentrations as small as 1% across

the cell length [22], [23]. The environment sensing is facilitated by the activation

of G-protein-coupled (GPC) receptors located on the cell membrane [24]. They

“measure” local concentrations of the attractant by capturing nearby ligands. The

receptor-ligand binding initiates several signalling cascades that translate the ex-

ternal gradient into the intracellular gradient that mediates cell polarisation [25].

One of the critical cascades for protrusion development starts with activation of

PI3-kinase (PI3k)2 and its product, PIP3
3, that boosts actin polymerisation in the

growing pseudopod [26]. Other cascades lead to the recruitment of GPC receptors

from the rear to the front of the cell, and send myosin and other motor proteins

involved in membrane contraction to the rear thus inhibiting the retraction of the

new pseudopod [27]. As a result, the neutrophil assumes an elongated shape with

two well defined domains: the leading edge and the trailing edge (see Figure 2.1).

This process is called polarisation.

During the polarisation process, the dominant pseudopod develops into the

leading edge and defines the direction of cell movement. Large number of recept-

ors at the front create the self-amplifying loop of pro-migratory signalling, leading

to persistent polarisation that ultimately results into a chemotactic run [12]. This

process goes on until either the direction of the chemotactic gradient changes direc-

tion or receptor desensitisation occurs. The neutrophil with internalised receptors

slows down, but never fully rounds up as it keeps extending pseudopods to find the

direction for the next run. These protrusions are regulated by multiple activators

and inhibited by receptor occupancy [28]. The pseudopod extension is illustrated

in frames 2-7 of Figure 2.2, while the beginning of the chemotactic run is shown in

frames 7-12.

2 The phosphatidylinositide 3-kinases (PI3k) are a family on enzymes that are involved in cell

motility, growth and directional sensing. In presense of the external stimuli, PI3k is activated after

a GPC receptors start binding to external ligands.
3 Phosphatidylinositol (3,4,5)-trisphosphate (PIP3) is the second messenger PI3k product that

resides in the membrane and activates multiple downstream components, including the protein

kinase (Akt).
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Figure 2.1: A polarised neutrophil senses the environment via GPC receptors clustered

at the leading edge. Engagement of these receptors with external stimuli initiates

several signalling cascades that lead to f-actin polymerisation and further protrusion

of the cell membrane. The PIP3 activity is inhibited in the trailing edge whose

retraction is mediated by a different signalling cascade descending from PI3k.

Although the polarisation process is usually linked to the spatial sensing, it

can be viewed as a result of the locomotion itself [21]. Once exposed to a gradient,

a cell reorients by turning existing leading edge in line with the gradient, because

new pseudopods are usually formed near the existing leading edge. If the gradient is

steeper at the opposite side from the leading edge, neutrophils make a U-turn rather

then extend new pseudopod at the rear [29].

2.1.3 Role of in vivo experiments in chemotaxis research

Our current understanding of the way neutrophils mediate the inflammatory re-

sponse is evidenced by qualitative experimental research. For a long time the main

experimental material for studying neutrophil function has been a cell purified from

human blood [30] observed in vitro, i.e. in an artificial environment. The extraction

of neutrophils from blood often leads to spontaneous apoptosis, which is benefi-

cial for investigation of this process but creates extra difficulties in the observation

of cell behaviour over long periods of time. The problem of short life span was

initially solved by developing immortalized neutrophil-like cell lines, where tenden-

cies observed in genetically modified cultures would later undergo the validation for

primary neutrophils. This, however, has proven to be both time consuming and

inaccurate. For example, modified cells are defective in apoptosis and inapplicable

for testing hypotheses that account for the cell death [31].

Knowledge about the role of neutrophils in the inflammation process has pro-

gressed dramatically since the introduction of in vivo experiments, where cells are
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Figure 2.2: Morphological changes of the migrating PH-Akt-GFP neutrophil observed in

vivo. Visible is the GFP-tagged pleckstrin homology (PH) domain of the Akt pro-

tein kinese that binds to PIP3 and gets translocated to the membrane. The GFP

intensity on each image indicates the concentration of PIP3 and actin polymerisa-

tion. The highest level of actin polymerisation is maintained in the leading edge

A. Pseudopods B,C, and E form near the leading edge in search for the highest

ChA concentration, whilst the secondary pseudopod D branches from B in frame

4, severely stretching the cell material. When the signalling in pseudopods B, C, D

is inhibited by the growing number of occupied receptors, the membrane contracts

and pseudopods eventually collapse.
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Figure 2.3: Time-lapse in vivo images: neutrophils labelled with a green fluorescent protein

(GFP) are visible in the transparent zebrafish embryo as they arrive to the wound

site during inflammation recruitment stage. The dashed line indicates the location

of the tail fin transection. The process is observed starting from 30 minutes to 4

hours post the injury.

observed in their natural environment in the living organisms such as drosophila flies

[32], zebrafish [33], and mice [34]. In these animal models innate immune system

reaction is triggered by an injury after which recruited leukocytes are observed in

real time using novel microscopy techniques. Various limitations of modelling hu-

man inflammation have been reported for both mice [35] and drosophila [36]. On the

other hand, the zebrafish model has been steadily gaining popularity as it best re-

sembles innate immune response of humans [37]. The biophysical and morphological

properties of zebrafish immune cells are similar to those of human leukocytes, and

the overall course of the inflammation has similar kinetics with mammalian immune

responses [31].

The optical transparency of zebrafish larval form, combined with extensive ge-

nomic resources available for genetic manipulation, makes it an outstanding model

of inflammation. In inflammation-specific line the neutrophils are labelled with

the green fluorescent protein (GFP) or with photoconvertible Kaede protein that

changes colour from green to red after exposure to violet light [38]. The inflammat-

ory response is initiated by the tail fin transection of the fish larva. The fluorescent

neutrophils are then tracked directly in the fish using time-lapse imaging techno-

logy (see Figure 2.3). Development of Kaede zebrafish line has fostered numerous

studies of the inflammation resolution stage, revealing longer life span of neutro-

phils in the tissue and their potentially crucial role in anti-inflammatory processes
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[39]. Furthermore, GFP markers can be applied to a certain protein within the cell

such as GFP-labelled PH-domain of Akt in Figure 2.2, allowing the investigation of

individual signalling pathways regulating neutrophil motility and polarisation [40].

The unique insight provided by the in vivo microscopy comes at a price of nu-

merous shortcomings of a passive experiment. Although the inflammation process

is actively triggered by the injury, it is impossible to manipulate the course of the

inflammation or customise the experiment in any way. Furthermore, only limited

measurements can be made along the process, while some important aspects of in-

flammation - such as the underlying environment driving neutrophil chemotaxis -

cannot be measured directly. Thus, there arises a need for a rigorous methodo-

logy that can quantify voluminous in vivo data in a systematic and principled way;

and the most straightforward way to perform quantitative analysis is through the

medium of mathematical modelling.

2.2 Mathematical models of chemotaxis

Experimental studies of chemotaxis have been greatly complemented by the math-

ematical modelling as it provides a myriad of tools for interpreting quantitative data.

The benefits of using mathematical modelling in biological applications are threefold

[41]:

• Models that are closely linked to the biological data are instrumental in devel-

opment of new experimental techniques and detection of potential outliers.

• Data-driven models help to rule out biological hypotheses at a fraction of cost

and time required to run multiple laboratory experiments.

• Speculative models introduce additional detail to the processes that are cur-

rently observed. Although these models are often impossible to validate using

currently available biological data, they greatly contribute to mechanistic un-

derstanding of complex processes that cannot yet be reached experimentally.

Complexity of a mathematical model depends on the level of detail of the ex-

perimental data that is being characterised. Traditionally, the modelling process

progresses from high-level phenomenological models with limited number of para-

meters to more detailed ones. When a model on a certain descriptive level conflicts

with the data, it usually means that the potential of modelling on this level has been

exhausted. In this case one can either a) test a different hypothesis on the same

descriptive level, or b) switch to a more detailed descriptive level by introducing

extra components to the model, if sufficient knowledge about these components is

available or can be inferred from the data.

Steady progress in microscopy and signal processing methods led to two import-
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ant level-down transitions in the modelling of chemotaxis. Initially, the modelling

literature was dominated by macro-scale models that describe global trends in the

cell population behaviour [42]. The first shift was from the level of cell population

to the whole-cell level of modelling, where mechanisms of the single cell locomotion

are examined without association to molecular processes inside the cell [43]. In view

of recent in vivo studies, it has become apparent that the whole-cell models fail to

capture the intrinsic complexity of the locomotory mechanism of migrating cells.

This led to the development of models describing the interdependent signalling and

molecular processes inside the migrating cell, thus constituting the second trans-

ition to the subcellular level of modelling. In present days, when computational

costs of high-order simulations are not as much of a concern, subcellular models

enjoy ever-increasing interest from the cell biology community [41].

This section provides an overview of relevant mathematical models4 used to

describe chemotaxis of the population level, the single cell level, and the subcellular

level. Furthermore, models of cell morphology are discussed separately as they

constitute an intermediate descriptive level that provides a connection between the

subcellular signalling and the whole cell locomotion.

2.2.1 Population level

Stochastic nature of the migrating cell behaviour resembles Brownian motion of

particles with external bias introduced by the acting environment. Thus, the dir-

ected motion of the cell can be mathematically described by the biased random

walk (RW) [44], while the behaviour of cell population is viewed as a consequence

of irregular movement of its members. The irregularity of individual motion im-

pedes precise assessment of the attractant gradient by an individual, yet the average

behaviour of cells in the population reflects it with remarkable accuracy.

The first approach to population modelling deals with the population as a whole

and directly describes changes in the population density in space and time. The first

macroscopic model of chemotaxis dates back to the pioneering work of Keller and

Segel in application to slime molds [42]. The original Keller-Segel (KS) model

consists of four strongly coupled partial differential equations (PDEs) describing the

evolution of densities and the mean flux of two populations: attractant molecules

and migrating cells. A more widely used KS model can be obtained by reducing the

original system to two equations under the quasi-steady-state assumption [45]:

∂u

∂t
= ∇(Du∇u)−∇(χ(u, v)u∇v); (2.2.1a)

4 Note that all mathematical models presented in this section preserve the notation of original

papers and may contradict the notation adopted in the thesis. All parameters are defined in the

text.
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∂v

∂t
= Dv∇2v − f(u, v)v, (2.2.1b)

where u(s, t) is the density of migrating cells and v(s, t) is the density of attractant

molecules at position s and time t, and where Du denotes cell diffusion coefficient,

χ is the coefficient of chemotactic sensitivity. In (2.2.1b), f(u, v) is a function

describing attractant degradation and Dv � Du denotes the coefficient of attractant

diffusion. The reaction-diffusion (RD) system (2.2.1) describes slow diffusion of

cells with a drift proportional to the gradient of the ChA concentration ∇v, and

fast diffusion of the attractant molecules accompanied by the decay that can be

influenced by the migrating cells or some external mediator.

Lauffenburger et al. in [46] account for the fact that the aggregation-diffusion

process described above is also affected by fluctuations in cell population. In their

model, equation (2.2.1b) remains the same, while two extra terms are added to

(2.2.1a):

∂u

∂t
= ∇(Du(u, v)∇u)−∇(χ(u, v)u∇v) + g(u, v)− h(u, v), (2.2.2)

where function g(u, v) describes the rate of cell population growth, and function

h(u, v) describes the rate of cell death. Many mathematical descriptions of cell

chemotaxis are derived from this modified model. Differences between transformed

models mainly consist of the forms of functions f(u, v), g(u, v), and h(u, v) [7].

An alternative to describing the evolution of densities is stochastically modelling

the trajectory of each individual in the population and deriving the limit RD system

to describe the population evolution. In the work that anticipated KS model by

nearly two decades, Patlak derives the PDE that governs population densities from

the random walk model with external bias [44]. Patlak is the first to coin the

idea of directional persistence by introducing the non-independence in the particle

direction between two successive steps, which suitably describes the behaviour of

some chemotaxing cells. Alt extends this idea in [47] by considering the alternations

between persistent random walk and reorientation. The resultant population model

describes the evolution of density as a function of the position, time, orientation,

and the time of starting the directed motion. Further improvements in explicit

derivation of the population model from stochastic equations are recently reviewed in

[48]. Microscopic approach to the population modelling requires good approximation

of the dynamics of an individual cell. Several stochastic models of individual cell

migration are discussed below.

2.2.2 Individual cell level

Majority of single-cell models rely on the similarity of the migrating cell behaviour to

the Brownian motion, the process that for a long time has been treated statistically
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based on fundamental works [49], [50]. One of the first attempts to model individual

cell migration rigorously utilises Ornstein and Uhlenbeck (O-U) process [43]. It

describes the velocity of a massive particle committing random walk in presence of

friction:

v̇(t) = −βv(t) +
√
σW(t); (2.2.3a)

x(t) =

∫ t

0
v(τ)dτ, (2.2.3b)

where v(t) is the particle velocity and x(t) is its position at time t. In (2.2.3a), the

first term denotes the deterministic drag that opposes the motion of the particle

with the rate β, and the second term represents random disturbances, where W(t)

is the Wiener process scaled by volatility σ. This behaviour is similar to the random

crawling neutrophils perform when not affected by the ChA environment. Various

extensions to the model above have been introduced over the years to account for

the environment influence.

Stokes et al. in their study of microvessel endothelial cell migration extend the

O-U process to account for the directional bias in the cell velocity in reaction to

the ChA gradient [51]. This behaviour is described by an additional term in the

equation of cell velocity change:

v̇(t) = −βv(t) +
√
σW(t) + Ψ̃(t); (2.2.4)

where β and σ are the same motility parameters as in the O-U process, W(t) is the

Wiener process, and Ψ̃(t) is a drift function. According to (2.2.4), cell acceleration

is the result of the chemotactic bias, random fluctuations, and resistance to motion.

The drift function is calculated as the product of cell responsiveness to the attractant

κ, magnitude of the chemotactic gradient ∇ψ, and its orientation with respect to

the gradient, φ(t):

Ψ̃(t) = κ∇ψ sin |φ(t)

2
|. (2.2.5)

This model is connected to the KS population model of chemotaxis, as the au-

thors claim that chemotactic responsiveness “is related, although probably not in a

trivial way, to the cell population chemotaxis coefficient χ”. The ChA gradient ∇ψ
is viewed as a force that accelerates the particle while the friction force −βv(t) op-

poses the motion. Whilst this representation is a fundamental step in the progress of

modelling the environment-driven cell migration, it is constructed under the assump-

tion that the migrating cell is interacting with the environment at all times. This

assumption contradicts recent experimental findings, particularly observed periods

of random motility in neutrophils and slime molds [52].

A unifying model that combines two observed modes of neutrophil behaviour

(chemotactic runs and random motility) treats the ChA gradient as a turning mo-
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ment affecting cell orientation rather than acceleration [25], [53]. The model math-

ematically links the directional randomness of neutrophil migration to receptor-

ligand binding fluctuations. Although the model yields important perspective on

chemotaxis in the context of receptor sensitivity and occupation, it is created under

the assumption of persistent cell polarity. This means that cells have defined front

and rear at any moment, the assumption that may not hold the test against the

experimental data (recall Figure 2.2).

A more complex hybrid model consisting of five types of random walk is pro-

posed and linked to the in vivo neutrophil data in [54]. The following random

walks are considered: Brownian motion, biased RW, persistent RW, and two dis-

tinct biased-persistent RWs. The type of random walk depending on values of three

parameters: bias b, persistence p, and a random variable w that defines whether a

cell commits biased or persistent motion. The cell state at time t is determined by

a step length s(t) (similar with cell displacement) and the turning angle φ(t), which

is defined as the angle between cell reference axis and the direction of motion

s(t) =
√
dt× ω(t),where (2.2.6a)

ω(t) ∼ N+(0, 1), (2.2.6b)

φ(t) ∼ N (µ, σ) (2.2.6c)

where N+(0, 1) is a normal distribution truncated at 0, while φ(t) follows the

wrapped Gaussian distribution whose parameters µ and σ depend on the type of

the random walk. If the cell is performing a biased RW, the mean µ = β, where β is

the direction to the wound, while for the persistent motion µ = φ(t−1). The model

(2.2.6) describes the cell that at each time moves a distance s(t) in the direction φ(t)

that is determined by the type of RW the cell is currently performing. Although

this model does not explicitly link cell motion with locally acting environment, it

captures an emerging trend of employing hybrid models to describe non-trivial cell

motion. Similar idea is be explored in Chapter 3, where a hybrid model incorporates

the parametrised model of the environment.

Random walk modelling treats the migrating cell as a particle and therefore

only focuses on the direction and the displacement of the cell. A single cell is viewed

as a material point whose mass is concentrated in the cell centroid or the leading

edge [43], [54], or as a fixed domain [25], [53]. Although various random walk models

have been successfully used to characterise the migration of different types of cells,

their capacity is restricted by the following:

• The whole-cell approach does not consider subcellular signalling mechanisms

that determine directional change of cell movement.

• The fast changing shape of neutrophils falls beyond the scope of cell centroid

and leading edge models.
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These limitations indicate that the complexity of neutrophil inner mechanisms re-

quires modelling in greater detail.

2.2.3 Subcellular level

For a long time intracellular process regulating cell directed migration has been con-

sidered to be strictly sequential [8], [55]. Snyderman and Goetzl in [23] describe two

distinct models accounting for the environment sensing mechanism in the migratory

process. The first model involves temporal sensing which means that a cell first

receives information about the environment, then reorients itself along the selec-

ted direction and moves in a straight line for a certain period of time. This type

of movement can be observed in bacteria cultures. The second approach is more

appropriate for modelling neutrophil intracellular processes because considers spa-

tial sensing which involves morphological changes of a cell exposed to a stimulating

gradient.

Since the subcellular processes are usually accompanied by the redistribution of

various chemical concentrations, they are commonly represented by the RD systems

[56]. A simple two-agent model is given by

∂A

∂t
= Da∇2A+ fa(A,B), (2.2.7a)

∂B

∂t
= Db∇2B + fb(A,B), (2.2.7b)

where A is an autocatalytic activator and B is the inhibitor, Da < Db are the

diffusion coefficients for activator and inhibitor, respectively, and functions fa, fb

represent the interactions that lead to the pattern formation [57]. The activator

and the inhibitor describe the series of feedback loops between the receptors and the

mediators of actin polymerisation (see Figure 2.4a). The accumulation of activator

corresponds to the increasing activity of protrusion-promoting proteins (PI3k) and

lipids (PIP3), while the inhibitor may correspond to various mediators that can

degrade PIP3 and actin polymers. Some models consider global inhibition (Db →
∞), meaning that after the cell has identified the direction of the gradient an started

moving, the signalling from surface receptors stops for some time.

The first model of the dynamic cell polarisation introduced by Meinhardt in

[58] is based on the RD system with two antagonists to activation. For a discretised

cell boundary composed of K elements, the local evolution of species at the k-th

node is described as follows

∂Ak
∂t

= Da
Sk(A

2
k/B + ba)

(S + Ck)(1 + SaA2
k)
− raAk, (2.2.8a)

∂B

∂t
= bb

n∑
k=1

Ak/n− rbB, (2.2.8b)
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∂Ck
∂t

= bcAk − rcCk, (2.2.8c)

where A is the activator, B is the global, rapidly distributed inhibitor, and where C

is the local inhibitor, ra, rb, rc are the corresponding rates of decay, and ba, bb, bc are

the corresponding rates of production. S is the external signal that translates the

information about the local environment (see Figure 2.4b). In this model, global

inhibition generates the pattern, while local inhibition is only present at local max-

ima and deactivates it after some time, facilitating continuous pattern change [57].

The Meinhardt model accounts for many phenomena in the process of polarisation,

including strong amplification of the external signal and fast reaction to the changes

in the environment [56].

Another popular model of gradient sensing is the local excitation, global

inhibition (LEGI) model [28], [59], where the external signal S has similar effect

on both the local agent E and the slowly acting global inhibitor I, which jointly

regulate the downstream signal to polarisation regulator R that cab be active (R)

or inactive (RT −R) [60]:

∂E

∂t
= −k−EE + kES, (2.2.9a)

∂I

∂t
= −k−II + kIS +DI∇2I, (2.2.9b)

∂R

∂t
= −k−RIR− kR(RT −R)E, (2.2.9c)

where RT denotes the total concentration of the regulator that is assumed to be

constant. In this model, the local excitation represents fast self-amplifying genera-

tion of enzymes that initiate the growth of pseudopods, while the global inhibition

reflects a slowly changing average level of receptor occupancy [61]. The original

LEGI model represents only the sensing mechanism and does not account for the

amplification of the external signal. In subsequent works [62], the same authors

develop a model that couples the LEGI module with the two-agent RD called the

biased excitable signalling network (BEN). In the new model, illustrated in Figure

2.4d, the LEGI mechanism models the environment sensing, while BEN accounts

for the amplification of the external signal. The excitable network is represented

by a RD system similar to (2.2.7). A more recent publication [60] introduces an

additional RD system to model spontaneous polarisation in absence of the external

gradient gradient.

Although RDS models account for multiple aspects of cell polarisation in pres-

ence of external gradients, most of them assume existence of a fast-diffusing global

inhibitor. Their applicability for neutrophils is limited by the fact that no candidates

for the global inhibitor have been proposed yet. Irimia et al. develop an adaptive-

control model that combines spatial sensing and polarisation without relying on

global inhibition [30]. A system of coupled equations, illustrated in Figure 2.4e,
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Figure 2.4: Schematic representation of various signalling models. (a) RDS with local

autocatalytic activator (A) and global, fast-diffusing inhibitor (B) reacting to the

external signal (S) [57]. (b) RDS with added local inhibitor (C) accounts for the

dynamic pattern formation [58]. (c) LEGI mechanism of environment sensing: both

local excitation (E) and global inhibition (I) are induced by the external signal

and regulate downstream signal (R) [59]. (d) LEGI-BEN: a combination of LEGI

module with the biased excitable network accounts for the signal amplification and

polarisation [60], [62]. (e) Adaptive control model is an alternative to RD models.

The external signal (S) induces the activation of the membrane receptors (Rs), which

in turn initiate the activation of the response mediator (M) and the local inhibitor

(C). The mediators amplify the external signal and initiate the redistribution of

microtubules (T), which leads to the formation of pseudopods (P) [30].

thoroughly describes behaviour of multiple mediators within the cell and accounts

for the temporal sensing under the assumption that receptors are situated at the tip

of each protrusion. Results of the modelling work are tested on the data from the

microfluidic device. The findings suggest that the key role in intracellular signalling

processes may be allotted to a feedback between receptors and the actin network.

Together with a simplistic model of local attractant concentration it provides neces-

sary connection between interior processes of the cell and its environment.

The majority of computational studies of polarisation and environment sens-

ing have been carried out under the assumption of fixed cell boundary, normally
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represented as an unwrapped surface or a sphere. The role of cell geometry in the

subcellular processes and vice versa is just starting to be appreciated in the literature

[56]. The following subsection will focus on several models that take into account

the changing cell domain.

2.2.4 Cell morphodynamics

One of the outstanding questions in modelling the cell motility is how to connect

multiple subcellular events and processes with evolving shape of the chemotaxing

cell [63]. Several recent theoretical works consider the deforming cell boundary [60],

[64]–[66]. Usually, one of the RD systems described above is utilised to account

for the subcellular signalling, while the evolving cell membrane is represented by a

discretised closed hypersurface Γ (t). The hypersurface is obtained by numerically

approximating the cell membrane by a finite number of nodes or intervals (elements)

whose motion is linked to the chemical patterns produced by the RD system.

The motion of each node is governed locally by the interaction of forces acting

normal to the boundary:

F = (Fpro + Ften + Fvol + Fext + Fvisc + Fb)ν, (2.2.10)

where ν is an outward pointing normal to the curve Γ at the node s ∈ Γ , and the

acting forces are the following:

• Protrusive force . It is commonly assumed that Fpro is proportional to the

concentration of chemical species active along the cell boundary (for example,

cross-linked filaments [67]). For Na species with local concentrations ai(s) at

the node s on the cell boundary, the corresponding force is expressed as follows

Fpro(s) =

Na∑
i

(ka)iai(s), (2.2.11)

where the sign of the coefficient (ka)i defines whether the species ai promotes

protrusion ((ka)i > 0) or retraction ((ka)i < 0) of the cell boundary.

• Surface tension . Ften corresponds to the surface energy that prevents the

cell membrane from stretching. In the literature, it is incorporated in the

model either as a global spatially invariant force that is a product of mean cell

curvature K and mean surface tension γ [65]:

Ften = γK, (2.2.12)

or as a local force defined at discrete nodes x of curve Γ (t) [60]

Ften(s) = γ(s)κ(s), (2.2.13)

where γ(s) is local tension and κ(s) is local curvature.
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• Volume conservation . There exists a pressure difference between exterior

and interior of the cell that balances small volume changes caused by boundary

evolution. In modelling literature, the corresponding tension force is either

assumed to be a hard constant [65], or dependant on change in cell area in 2-D

or cell volume in 3-D [60]

Fvol = kvol

(
At −A0

)
, (2.2.14)

where kvol is a constant coefficient, At is the cell area at time t, and A0 is the

initial cell area. This force is spatially constant.

• Viscous force . Fvisc opposes the cell motion

Fvisc(s) = −kviscvν , (2.2.15)

where vν denotes the local material velocity of the cell boundary that is dir-

ected normal to the boundary.

• External force. Fext accounts for possible interactions with the medium in

which the cell moves. It can represent interaction with an obstacle or another

cell. Majority of modelling studies to date do not account for this type of

interaction.

• Resistance to bending. The main component of the cell membrane resists

excessive bending and accounts for the contributing force

Fb = kb

(
∆Γκ+ κ|∇Γ|2 −

1

2
κ
)
, (2.2.16)

where κ is the mean curvature, ∇Γ is the surface gradient, and ∆Γ is the

Laplace-Beltrami operator. See [65] and references therein for the derivation

of this model.

Several works couple the simplified force equation with the Meinhardt model.

In [64], [68], a 2-D pseudopod-centred model is constructed, where each node on the

cell boundary can either move outward subject to the protrusive force (2.2.11), or

inward subject to the tension force (2.2.13). The protrusive force is proportional to

the local activator level from the system (2.2.8) modified for the evolving domain.

Such model implies no direct connection between the pseudopod formation and the

centralised processing of external signal. Protrusions can emerge at any point of the

cell surface based on local stimuli concentration and receptor occupancy [69]. The

model is generalised to the 3-D case in [66].

The authors of [65] also utilise the Meinhardt model, but consider all the afore-

mentioned forces in both 2-D and 3-D cases. The model is constructed under the

assumption that the force balance holds, e.g. F = 0, and the equation describing

the evolution of the cell boundary is obtained by substituting the constituent terms

of (2.2.10) by (2.2.11)-(2.2.15). Then the local velocity normal to an individual
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segment of the discretised closed curve (or the surface) can be expressed as follows

vν =

(∑
i

{
(ka)i
kvisc

ai

}
+

γ

kvisc
κ+

kvol

kvisc

(
At −A0

)
+

kb

kvisc

(
∆Γκ+ κ|∇Γ|2 −

1

2
κ
))
ν.

(2.2.17)

This computational model is constructed under the assumption that the tangent

movement of cell membrane is accounted for in surface tension and volume conser-

vation terms, e.g. vτ = 0.

On the other hand, Iglesias et. al. in [60] couple the polarised LEGI-BEN model

with the evolution equation that includes the protrusive force (2.2.11), local tension

(2.2.13), and volume conservation force (2.2.14). The protrusive force is a result of

a downstream signal amplified through the BEN. The polarity module introduces

an additional pair of feedbacks that translate the effect of this force on the future

signalling. The local positive feedback ensures that the next protrusion is more likely

to occur next to the existing one, while the global negative feedback occasionally

inhibits the activity in the cell and prevents the overzealous polarisation.

One of the most challenging aspects of modelling cell morphodynamics is the

representation of the deforming cell domain. Several techniques commonly used in

2-D modelling are reviewed in [41]. The interest of this thesis lies in coupling the

velocity of individual nodes on the cell boundary and the local protrusive forces, so

the direct modelling of the cell bulk and boundary are not considered.

2.3 Systems approach to the modelling of biological

processes

A major challenge presented by the modelling process of any biological system is

handling both measurement and model uncertainties. While the former are the

result of measurement errors and are external to the system of interest, the latter are

inherent to the system and can be subsumed under two broad categories. The first

category includes random processes that may influence the evolution of the system.

In the models of cell motility described above these processes are represented by

stochastic terms in the dynamics. The model uncertainty of the second type is

caused by our inability to predict which model terms are significant to describe

the evolution of the underlying system. This uncertainty is particularly hard to

reduce when modelling life systems, as typically not only the model parameters are

unspecified, but some of the signals cannot be directly observed. The abundance of

models reviewed in the previous section is the direct consequence of this uncertainty.

From a system-theoretic point of view, a cell interacting with its environment

and undergoing changes as a result of this interaction can be viewed as a dynamical
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system. Then the cell’s perception of the local chemoattractant is the input sig-

nal of the system, while its velocity, orientation, and polarity are the characteristic

quantities of the cell that evolve in time. The cell properties that can be measured

experimentally, e.g. cell position, are the observables of the system. The construc-

tion of the dynamical model from observable signals is a fundamental problem in

systems theory that relies heavily on testing various hypotheses about the system of

interest against the available observables. Despite the importance of this problem,

it is often overlooked in the cell modelling literature, where mathematical models

are presented without validation or linkage to the experimental data.

System identification provides appropriate machinery for quantifying model un-

certainty and linking models to the data. The purpose of system identification is to

construct the mathematical model that would best describe the dynamical system

by processing its observable input and output signals. The ”accuracy” of the model

is assessed in terms of some criterion and, coincidentally, the identification process

often consists of combining methods of statistical inference and optimisation. Be-

fore we move on to outline the principal methods of system identification in sections

below, a brief introduction of some important notions and assumptions is in order.

2.3.1 State space representation

Mathematical characterisation of complex biological processes often amounts to in-

terpreting temporally resolved experimental data at hand. The time series struc-

ture of the data arises naturally from the format of many biological experiments,

where the process of interest is observed periodically. Systems theory offers a unified

way to analyse time series by introducing the notion of state - a minimum size vec-

tor of variables that fully summarise the past of the system and determine its future

evolution [70]. A full set of all possible states the dynamical system can assume is

called state space .

In the state space approach, the underlying process is described by two time

series running in parallel. The first time series is a sequence of unobservable states

x0, . . . ,xT that captures the evolution of the system, while the other one consists of

observations y0, . . . ,yT associated with these states. It is assumed that the trans-

ition from xt to xt +1 happens in a definable way, and the process of obtaining yt is

known. A generic mathematical model that specifies both the state evolution and

the observation process in discrete time is called the discrete time state space
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model and is formulated as follows:
x1(t +1)

x2(t +1)
...

xn(t +1)


︸ ︷︷ ︸

xt +1

=


f1

(
x1(t), . . . , xn, u1(t), . . . , um(t)

)
f2

(
x1(t), . . . , xn, u1(t), . . . , um(t)

)
...

fn

(
x1(t), . . . , xn(t), u1(t), . . . , um(t)

)


︸ ︷︷ ︸

f(xt,ut)

, (2.3.1a)


y1(t)

y2(t)
...

yp(t)


︸ ︷︷ ︸

yt

=


h1

(
x1(t), . . . , xn, u1(t), . . . , um(t)

)
h2

(
x1(t), . . . , xn, u1(t), . . . , um(t)

)
...

hn

(
x1(t), . . . , xn, u1(t), . . . , um(t)

)


︸ ︷︷ ︸

h(xt,ut)

, (2.3.1b)

where t = 0, 1, . . . ,T is the discrete time index, xt =
[
x1 x2 . . . xn

]>
∈ Rn is

the unobserved state of the system, also referred in literature as hidden or latent,

ut =
[
u1 u2 . . . um

]>
∈ Rm is the input vector consisting of either deterministic

or random components, and yt =
[
y1 y2 . . . yp

]>
∈ Rp is the observation. State

evolution is described by the function of dynamics, f , and the observation proccess

is described by the measurement function h.

Throughout the thesis, the discrete time model (2.3.1) will be referred to simply

as state state model or SSM. Continuous case is not discussed in further sections.

2.3.2 Preliminaries

All problems discussed in this thesis will be defined by the following assumptions.

Assumption 2.3.1: All SSMs of the underlying processes are linear with respect

to the state xt and deterministic input ut ∀ t.

f(xt,ut) = Atxt +Btut, (2.3.2a)

h(xt,ut) = Ctxt +Dtut. (2.3.2b)

The first equation of system (2.3.2) is known as the discrete dynamics equation

with the following parameters:

At ∈ Rn× n is the state transition matrix,

Bt ∈ Rn×m is the control gain.

The second equation is known as the discrete measurement equation with the fol-

lowing parameters:

Ct ∈ Rp× n is the measurement matrix,
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Dt ∈ Rp×m is input-to-measurement gain.

Assumption 2.3.2: The state evolution happens in presence of the input dis-

turbance, or the process noise, represented by a white zero mean Gaussian process

ωt, where whiteness property means that ωt1 is independent of ωt2 at all times.

wt ∼ N (0, Qω(t)), (2.3.3a)

E
[
wt1w

>
t2

]
= Qt1δt1,t2 ∀ t1 6= t2, (2.3.3b)

where δt1,t2 is the Kronecker delta function and where the discrete time noise cov-

ariance Qt is defined directly.

Assumption 2.3.3: The measurement process happens in presence of the meas-

urement noise, represented by a white zero mean Gaussian process vt independent

of wt at all times.

vt ∼ N (0, Rυ(t)), (2.3.4a)

E
[
vt1v

>
t2

]
= Rt1δt1,t2 ∀ t1 6= t2, (2.3.4b)

E
[
wt1v

>
t2

]
= 0 ∀ t1 6= t2, (2.3.4c)

where the discrete time measurement noise covariance Rt is defined directly.

In presence of the disturbance, not the state itself but its probability density

function (pdf) uniquely determines the evolution of the underlying process [71].

The dynamics of the stochastic system is governed by the probability laws specifying

conditional dependence between hidden states and the measurements. The whiteness

of noise in this case is a particularly important property, as it guarantees that the

evolution of the deterministic system state is a Markov process, i.e. the pdf of

the state at some time t, conditioned on the past states until the time t−1, depends

only on the most recent state xt−1:

p
(
xt | x0:t−1,ut−1

)
= p
(
xt | xt−1,ut−1

)
. (2.3.5)

Assumption 2.3.4: The initial state x0 conforms to a Gaussian distribution

with a prior mean x̄0:

x0 ∼ π(x0) = N (x̄0,P0), (2.3.6)

which is independent from both noise sequences:

E
[
x0w

>
t

]
= 0 ∀ t, (2.3.7a)

E
[
x0v

>
t

]
= 0 ∀ t . (2.3.7b)

The resulting SSM defined by the assumptions above is called a discrete time

linear stochastic system and is described by the following equations

xt +1 = Atxt +Btut +Gtwt (2.3.8a)
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yt = Ctxt +Dtut +Htvt, (2.3.8b)

where wt ∼ N (0, Qt), Qt ∈ Rnω × nω is the Gaussian white noise that enters the

system via the process noise gain Gt ∈ Rn×nω , and where vt ∼ N (0, Rt), Qt ∈
Rnυ × nυ is the Gaussian white noise that enters the system via the measurement noise

gain Ht ∈ Rp× nυ . Since the relationship between hidden states is Markovian, (2.3.8)

is also referred to as a hidden Markov model (HMM). A diagram specifying

causal relationship between variables of the system (2.3.8) is presented in Figure

2.5.

Typically, hidden states cannot be deduced directly from the observations, but

they can be recovered given the model structure. However, as was discussed in the

beginning of this section, it is very common in life systems applications to have

limited idea about model parameters. Depending on whether states or parameters

(or both) are of interest, there are three broad categories of estimation problems

associated with stochastic SSMs:

• Reconstruction of the hidden states x = {xt}Tt=0 from the set of available

measurements y = {yt}Tt=0 is called state estimation problem.

• The problem of estimating a single parameter or an ensemble of parameters,

e.g. process matrices in (2.3.8), from a set of observations y is called para-

meter estimation problem or parameter learning problem.

• In some cases, especially at early stages of the modelling process, both true

states of the systems and model parameters are unknown and must be inferred

given y. This problem is referred to as joint state-parameter estimation .

Further sections explore common estimation methods dealing with these problems.

2.4 Parameter estimation

The function that infers a property of the underlying process from the available data

is called an estimator. It is formally defined as follows [72]:

Definition 2.4.1 (The estimator): The estimator of the unknown variable θ given

a set of observations

yt = f (t, θ,vt) , t = 0, . . . ,T, (2.4.1)

made in presence of the measurement noise vt ∼ N (0, Rυ) is a function of T +1

discrete-time observations

θ̂ , θ̂ [T,Y] , (2.4.2)

where Y is the set of observations associated with θ

Y = {yt}Tt=0. (2.4.3)
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Hidden state x0 xt−1 xt xt +1 xT−1 xT

π(x0) ut−1 ut
ut +1 uT−1 uT

Initial state

distribution

y0 yt−1 yt yt +1 yT−1 yTObservation

. . .
p(xt | xt−1)

. . .

p(yt | xt)

Figure 2.5: A directed graph of a hidden Markov model representing time series. Arrows

represent causality between states xt and observations yt. In Markov processes, the

state xt is conditionally independent on all past states given the previous one xt−1.

The observation yt is dependent only on the current state xt.

The unknown variable can be either scalar, denoted by θ, or vector valued,

denoted by Θ, and may include model parameters, hidden states, or future data

that is yet to be observed [73]. The task of parameter estimation from the data

collected in presence of measurement noise is commonly formulated as a problem of

statistical inference [74].

There are two commonly used approaches to statistical inference that arise

from different interpretations of probability. The first one is Bayesian approach, that

treats probability as a reasonable expectation that is corresponding to some rational

belief about the unknown parameters [75]. The uncertainty of the model is the result

of one’s limited knowledge about it, thus all the unknowns are uncertainties that

can be quantified by probability distributions. This approach finds the parameter

set Θ̂(Y) that minimises the errors between the available data Y and the predicted

model behaviour.

An alternative to Bayesian is the frequentist approach [76], that asserts that the

probability of an event is asymptotically close to the frequency of its occurrence as

the number of independent trials approaches infinity. In this setting, the uncertainty

of the model arises from the limited number of observations, while the unknown

parameters are treated as constants. Frequentist methods aim to find the parameter

set Θ̂(Y) that has the highest probability of producing the available observation

set. In other words, the frequentist approach fixes the underlying parameter and

assesses variability of the data, while in Bayesian methods the data is fixed and the

uncertainty of the parameter is assessed.

Despite the ongoing 250-year long debate about which approach is superior, it

is widely recognised at the methodological level that both Bayesian and frequentist

approaches are legitimate and may compliment each other in application to certain

inference problems [77]. The following subsections will outline basic concept of both
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approaches and demonstrate the connection between them.

2.4.1 Bayesian estimation

Bayesian estimation [78] deals with the model uncertainty by treating its unknown

parameters as random variables. As such, the parameters have a pdf that should be

taken into account in the estimation process. In this approach, the knowledge about

the hidden parameters available prior to receiving any observations is summarised

in the prior distribution normally referred to simply as prior . This distribution is

then combined with the information coming from the available data to produce a

posterior distribution of the unknown parameters.

In Bayesian approach, the propagation of distributions relies on the Bayes’ rule

[78]:

p(Θ | Y) =
p(Y | Θ)π(Θ)

p(Y)
, (2.4.4)

where Θ denotes a set of hidden properties that are of interest, π(Θ) is their prior

distribution, and Y is a set of observations associated with Θ, called the evidence

of Θ. p(Y) denotes the probability of observing Y that can be rewritten as follows

p(Y) =

∫ ∞
−∞

p(Y | Θ)π(Θ)dΘ. (2.4.5)

Although the evidence does not give the exact idea about Θ, there exists the prob-

ability density p(Y | Θ) that is a measure of likelihood that the observation set

is generated by the hidden parameters, called the likelihood function . Finally,

p(Θ | Y) denotes the sought posterior distribution of the unknown parameters

given the evidence Y. Usually, calculating the observation probability p(Y) is not

necessary, and it can be treated as a normalising constant for the posterior distri-

bution:

p(Θ | Y) =
1

c
p(Y | Θ)π(Θ). (2.4.6)

In practical applications, knowing the parameter distribution alone may not be

particularly meaningful and it is necessary to obtain a finite-dimensional estimate of

Θ, called the point-wise estimate . Bayesian methods find a point-wise estimate

Θ̂(Y) by minimising some loss function that quantifies the discrepancy between

the true value of the unknown parameter and its estimate [79]. The most common

types of loss functions are the quadratic loss function [80]:

l(Θ, Θ̂) = (Θ− Θ̂)>L(Θ− Θ̂), (2.4.7)

and the 0-1 loss function [81]:

l(Θ, Θ̂) =

0, for |Θ− Θ̂| < ε,

1, otherwise.
(2.4.8)
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Since Θ is a random variable, it makes sense to consider statistics of the selected

loss function. The average loss associated with Θ̂(Y) is called the risk and is defined

as the expectation of the loss function over the density of Y:

R(Θ, Θ̂) =

∫
Y
l(Θ, Θ̂)p(Y,Θ)dY. (2.4.9)

Bayesian estimation averages the risk over the available prior distribution of Θ.

Definition 2.4.2 (Generic Bayes estimator): The Bayes estimator minimises the

expected risk marginalised over the prior distribution of the unknown parameter:

Θ̂B = arg min
Θ̂

∫
Θ
R(Θ, Θ̂)dΘ = arg min

Θ̂

∫
Θ

∫
Y
l(Θ, Θ̂)p(Y,Θ)dYdΘ. (2.4.10)

Most of Bayesian methods require knowledge of the generative model for Y in

order to compute the likelihood function. However, recently developed numerical

methods offer ways to circumvent direct evaluation of the likelihood for scenarios

when the mathematical properties of the likelihood function are not fully known.

One class of these methods bypasses exact calculation of the likelihood by simulating

from it using Markov Chain Monte Carlo (MCMC) method. An overview of MCMC-

based algorithms is provided in [82]. Another popular class of algorithms is called

Approximate Bayesian Computation (ABC) and is based on rejection sampling.

Instead of evaluating the likelihood, an ABC rejection sampler draws a parameter

sample from prior π(Θ) and simulates the measurement set with each value in the

sample. The sampled parameter values are accepted or rejected after assessment of

the distance between some summary statistics of simulated and real measurements.

The fundamental idea behind the ABC and its extensions are reviewed in [83].

2.4.2 Maximum Likelihood estimation

In cases when the prior π(Θ) is unavailable, the estimation relies solely on the

parameter likelihood function introduced in the subsection above. It is defined as a

pdf of the observations conditioned on the unknown parameter

L(Θ) , p(Y | Θ). (2.4.11)

The aim of the Maximum Likelihood (ML) estimation is to find the value of Θ

that has the highest likelihood of generating the data Y. As a frequentist approach,

ML estimation does not associate any probabilities with the unknown parameter

and outputs a point-wise estimate that maximises the likelihood function in the

form (2.4.11).

Definition 2.4.3 (Maximum likelihood estimator):

Θ̂ML = arg max
Θ

L(Θ). (2.4.12)
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Since the data is treated as an ensemble of independent random variables, its

probability can be computed as a product of probabilities associated with each

observation

L(Θ) =

T∏
t=0

p(yt | Θ). (2.4.13)

As all individual densities p(yt | Θ) are less than 1, the product (2.4.13) will quickly

become very small, thus calculating the product for the large sample is infeasible,

making logarithms are used to avoid some of the unnecessary computations. Mono-

tonicity of the logarithm guarantees that maximising full likelihood function is equi-

valent to maximising the log likelihood in the form

logL(Θ) =

T∑
t=0

log p(yt | Θ), (2.4.14)

which is especially convenient with Gaussian assumptions, as (2.4.14) becomes the

sum of products of estimation errors and their covariances.

The Maximum Likelihood estimate (MLE) can be obtained by maximising

(2.4.14):
∂ logL(Θ)

∂Θ
= 0. (2.4.15)

If the model is linear with respect to the unknown parameter set Θ and the log

likelihood is tractable, the analytical solution can be easily obtained. In most cases,

however, the log likelihood (2.4.14) must be maximised numerically. A number of

available numerical techniques for solving (2.4.15), such as Newton-Raphson method

and its modifications, are discussed in [84].

It is important to note that, while the true value of the parameter Θ? is an

unknown constant, the MLE Θ̂ML is a function of the set of random measurements

Y and therefore is a random variable. Furthermore, under the regularity conditions

listed in the Theorem 2.6 of [85], the MLE is proven to be asymptotically normal as

n→∞
Θ̂n ∼ N

(
Θ?,

1

I(Θ?)

)
(2.4.16)

where n denotes the size of the measurement set Y and the covariance of the random

variable is expressed as the reciprocal of the expected Fisher information , I(Θ?),

which represents the amount of information about the parameter contained in the

data Y. It is often expressed as the expected negative Hessian of the log likelihood

evaluated at the true value of the parameter

I(Θ?) = E
[
−∂

2 logL(Θ)

∂Θ2

] ∣∣∣
Θ=Θ?

(2.4.17)

In practice, the expected information is hard to compute, and the observed

Fischer information is used instead. It is given by the negative Hessian of the
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log likelihood evaluated at the current MLE value

J (Θ̂n) = −∂
2 logL(Θ)

∂Θ2

∣∣∣
Θ=Θ̂n

. (2.4.18)

It is often argued in the literature that the observed information is a more prac-

tical measure of the data variability (for the frequentist justification see [86]). Given

a large enough data sample, J (Θ̂n) can be used to approximate I(Θ?). This is be-

cause with the growing number of observations (n→∞), as the estimate approaches

the true parameter value, the expectation of the observed information approaches

the expected information.

E
[
J (Θ̂n)

]
→ I(Θ?). (2.4.19)

Predictable behaviour of the MLE with the growing number of observations

enables one to express the uncertainty of the estimator in terms of confidence

regions. For the Gaussian distribution (2.4.16), the volume of the confidence region

is given by

Vα =
2πp/2

pΓ(p2)
(χ2
p,α)p/2 |Σ|1/2 , (2.4.20)

where α denotes the level of confidence, p is the dimension of Θ, Γ(·) is the gamma

function, and where the χ2
p,α is the Chi-Square probability associated with the given

confidence level and the dimension p. The volume of the confidence region is propor-

tional to the square root of the generalised variance Σ which is approximated by the

inverse of J (Θ̂n) [87]. In other words, the more ”informative” is the data sample

at hand, the smaller is the volume of the confidence region (width of the interval in

univariate case). Note that confidence region is a random variable in a sense that

given the realisation of the sample Y, it will either contain Θ? or not [73].

Remark 2.4.1: Confidence regions are inferences about the reliability of the es-

timation procedure rather than about the parameter uncertainty.

For example, the 95% confidence region will not contain 95% of MLE real-

isations, but it will contain the true value of the parameter with the certainty of

95%.

2.4.3 Maximum a posteriori estimation

Maximum a posteriori (MAP) estimation is often regarded as a hybrid between

Bayesian and frequentist approaches, as it is a point-wise estimate that utilises prior

knowledge about the underlying parameters. MAP estimator is usually described

in the Bayesian setting, as it maximises the posterior distribution of the unknown

parameter.
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Definition 2.4.4 (Maximum a posteriori estimator):

Θ̂MAP = arg max
Θ

p(Θ | Y). (2.4.21)

It is commonly accepted that the MAP estimator is the limit of the Bayes es-

timator (see def. 2.4.2) with the hit-or-miss loss function (2.4.8) [88], which allows

to subsume it under the category of Bayesian methods. The recent paper defines ad-

ditional conditions for this assertion to hold in the general setting [89]. On the other

hand, if one is to consider the MAP estimator with diffuse prior for the parameter

π(Θ) = ε for|Θ| < 1

2ε
, (2.4.22)

where ε > 0 but small, from the definition of data probability (2.4.5) it follows that

p(Y) =

∫ ∞
−∞

p(Y | Θ)π(Θ)dΘ = ε

∫ ∞
−∞

p(Y | Θ)dΘ = εg(Y), (2.4.23)

where g(Y) is not a function of Θ. Inserting the denominator into the Bayes formula

(2.4.4) renders

p(Θ | Y) =
p(Y | Θ)ε

εg(Y)
=

1

c
p(Y | Θ), (2.4.24)

meaning that a MAP estimate with a diffuse prior pdf is proportional to the like-

lihood function, and thus coincides with the MLE [72]. This property of the MAP

estimator provides a unifying view on Bayesian and frequentist estimation.

Remark 2.4.2: The ML estimate is a Bayesian MAP estimate with complete

ignorance of prior.

In view of this connection between the two approaches, the choice of the method

depends on the expertise of an individual researcher and is often defined by such as-

pects as availability of the model structure, possibility to manipulate the experiment

design, or one’s confidence in the prior information about the unknowns. Admit-

tedly, Bayesian methods are more effective for small data samples or when data is

processed as it comes in. However, the trade-off of relying on the prior assumptions is

the risk of collapsing into subjectivity. In absence of a unified procedure for choosing

a prior, different Bayesian estimators may arrive to contradicting conclusions about

the same data. The Maximum likelihood approach, on the other hand, provides an

objective solution that is achieved in a consistent and rigorous way with minimum

assumptions in cases when no prior information is available. This thesis utilises ML

methods for parameter learning and Bayesian methods for state estimation.

2.4.4 Least Squares estimation

Another common approach to non-random parameter estimation is the Least Squares

(LS) method. First introduced by Gauss in 1809 [90], it pre-dates the ML estim-
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ator but can be considered its special case under the zero-mean Gaussian assump-

tion. The simplest LS algorithm makes no assumption about the measurement noise

v ∼ N (0, Rv). It considers a linear input-output model given by

yt = Θxt + vt, t = 0, . . . ,T, (2.4.25)

where both the input xt and output yt are known, and where Θ and vt are unknown.

For any selection of Θ̂ there exists a difference between the predicted output and

available output, called the residual :

εt = yt − ŷt. (2.4.26)

The LS estimate is obtained by minimising the sum of squared residuals.

Definition 2.4.5 (Ordinary Least Squares estimator):

Θ̂LS = arg min
Θ

T∑
t

ε>t εt. (2.4.27)

The criterion in (2.4.27) can be rewritten as a quadratic cost function

l(Θ̂) =
(
yt − Θ̂xt

)>
R−1

v

(
yt − Θ̂xt

)
, (2.4.28)

minimising which is the equivalent of maximising the log likelihood function for a

linear SSM with zero-mean Gaussian noise.

Despite the apparent simplicity of the LS estimator, it has found multiple ap-

plications in modified forms. For instance, a generalised Least Squares (GLS) al-

gorithm derived in [91] is often employed for estimation in presence of correlated

measurement errors. The regularised Least Squares (RLS) estimator can be util-

ised in situations when the model suffers from bad generalisation or the number

of estimated parameters is unknown [92]. Furthermore, the recursive LS estimator

[72] served as foundation for the development of the most ubiquitous recursive state

estimator that will be discussed in the following section.

2.4.5 Parameter inference from the incomplete data

The Expectation-Maximisation (EM) algorithm [93] is a broadly used iterative

method of obtaining MLEs in situations when only the absence of some data im-

pedes straightforward ML estimation [84]. Under the assumption that there exists

a complete data set Z = {X ,Y} that consists of the observable incomplete data

Y, and the missing data X , the algorithm converts the parameter estimation into

two coupled problems: recovering the expected value of the complete-data log like-

lihood function, and optimising the obtained function with respect to the unknown
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parameters Θ. The two problems are solved iteratively and on each iteration the

expectation is conditioned on the previously obtained parameter estimate.

Let the Z = {Y,X} be a complete data set with a joint density p(Z | Θ). Then

log likelihood function of the parameter is defined as

logL(Θ) = log p(Z | Θ) = log p(X | Y,Θ). (2.4.29)

As logL(Θ) is not tractable without the exact knowledge of X , at each iteration i it is

replaced by its lower bound which is obtained by introducing marginal distribution

over hidden data, p(X | Y,Θi) > 0, where Θi is the current parameter estimate.

Then (??) takes the following form

logL(Θ) = log

∫
X
p(X | Y,Θi)

p(Y,X | Θ)

p(X | Y,Θi)
d{X}. (2.4.30)

Note that
∫
X p(X | Y,Θ)dX = 1. Using Jensen’s inequality B.2, one can establish

that

logL(Θ) ≥
∫
X
p(X | Y,Θi) log

p(X ,Y | Θ)

X | Y,Θi)
d{X}, (2.4.31)

where the terms can be regrouped as follows

logL(Θ) ≥
∫
X
p(X | Y,Θi) log p(X ,Y | Θ)d{X}−

−
∫
X
p(X | Y,Θi) log p(X | Y,Θi)d{X}.

(2.4.32)

The second term in (2.4.32) is not a function of Θ and can be disregarded in max-

imising the log likelihood. Noting the definition of the expected value B.1, yields

the lower bound that must be evaluated:

Q(Θ, Θ̂i−1) = E
[
logL(Θ) | Y, Θ̂i−1

]
. (2.4.33)

The computation of (2.4.33), commonly called the Q-function, constitutes the ex-

pectation step (E-step) of the algorithm. When processing HMMs, this step

usually amounts to computing the posterior marginals of the hidden states X given

observations Y via the forward-backward algorithm. Then the maximisation

step (M-step) amounts to obtaining the MLE that maximises the Q-function:

Θ̂i = arg max
Θ

Q(Θ, Θ̂i−1).

The EM algorithm is usually initialised with an arbitrary estimate Θ̂0. The

two steps defined above are then repeated until some convergence criterion is sat-

isfied. Convergence properties of the EM algorithm are first discussed in [93] and

established for a more generic case in [94].
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Theorem 2.4.1: The generic EM algorithm generates a non-descending sequence

of log-likelihood function values

logL(Θi) ≥ logL(Θi−1),

that converges to a stationary point logL(Θ∗).

Proof. From (4.3.3) one can observe that logL(Θi) is lower bounded by F (Θ | Θi)

expressed as

F (Θ | Θi) = Q(Θ | Θi)−H(Θ | Θi),

where

H(Θ | Θi) = E
[

log p(X | Y,Θ) | Y,Θi
]
.

The difference between lower bound values in two successive iterations is given by

F (Θ | Θi)− F (Θ | Θi−1) =
[
Q(Θi | Θi)−Q(Θi−1 | Θi−1)

]
−

−
[
H(Θi | Θi−1)−H(Θi−1 | Θi−1)

]
,

(2.4.34)

where Q(Θi | Θi)−Q(Θi−1 | Θi−1) ≥ 0 by definition of the maximisation step. The

second term of (2.4.34) is the Kullback-Leibler distance between two distributions

with densities p(X | Y,Θi+1) and p(X | Y,Θi). As a consequence of Jensen’s

inequality B.2, H(Θi | Θi−1) ≤ H(Θi−1 | Θi−1) with equality reachable if and only

if p(X | Y,Θi+1) = p(X | Y,Θi) almost everywhere. Hence, the difference defined

by (2.4.34) in non-negative and logL(Θi) is non-descending function of i.

The function Q(Θi | Θi−1) is continuous in both arguments, satisfying condition

of Theorem 2 in [94], which assures convergence of log-likelihood function to a local

maximum logL(Θ∗), completing the proof. �

Similarly with Newton-type methods, global convergence of the EM cannot be

guaranteed and the estimation relies on the initial value selection. This is com-

pensated by many advantages of the EM algorithm over numerical methods such

as its numerical stability, low computational costs per iteration, and simplicity of

monitoring convergence that arises from monotone increase in likelihood with each

iteration [84].

Although here the EM algorithm is presented from the ML perspective, it can

be utilised to produce a MAP estimate given an informative prior pdf π(Θ) [95].

The MAP estimate of Θ corresponds to the maximum of the log posterior density

given by

log p(Θ | Y) = logL(Θ) + log π(Θ). (2.4.35)

Effectively, the modified algorithm consists of the computation and maximisation of

the augmented Q-function in the following form:

E
[
log p(Θ | Y) | Y, Θ̂i−1

]
= Q(Θ, Θ̂i−1) + E

[
log π(Θ) | Y, Θ̂i−1

]
. (2.4.36)
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The presence of the second term in the right hand side of (2.4.36) as a Bayesian

prior almost always makes the maximised function more concave than that in the

ML case [84].

2.4.6 The expected log likelihood for a state space model

The problem of joint state-parameter estimation of the model (2.3.8) can be formu-

lated as an incomplete-data problem [96], where the available measurement sequence

y = {y}T0 are regarded as the incomplete data Y, while hidden states x = {x}T0 con-

stitute the missing data X that must be recovered along with unknown parameters.

Assume that initial state of the system and all its dynamical matrices (considered

to be time-invariant for this derivation) are unknown:

Θ = {A,B,C,D, x̄0,P0} . (2.4.37)

In the general EM framework, the complete data defined above consists of two

subsets X , Y and a mappings from X onto Y. It follows that

p(Z | Θ) = p(Y | X ,Θ)p(X | Θ), (2.4.38)

In state space context, two mappings emerge: one from the hidden data X on

the observed data Y, and another one from X onto itself. Under the Markovian

assumptions adopted in Section 2.3, the right hand side in (2.4.38) can be substituted

by the product of individual pdf s

p(Z | Θ) = π(x0 | Θ)
T∏

t=1

p(xt | xt−1,Θ)
T∏

t=0

p(yt | xt,Θ), (2.4.39)

where π(x0 | Θ) is the initial state pdf, p(xt | xt−1,Θ) is the state update pdf, and

where p(yt | xt,Θ) is the observation emission pdf. Using the properties of the log

function and the definition (2.4.29), the log likelihood function can be factorised as

follows

logL(Θ) = log π(x0 | x̄0,P0)︸ ︷︷ ︸
L0(Θ)

+

T∑
t=1

log p(xt | xt−1, A,B,Qw)︸ ︷︷ ︸
LX (Θ)

+

+

T∑
t=0

log p(yt | xt, C,Rv)︸ ︷︷ ︸
LY (Θ)

,

(2.4.40)

Given the above expression for the log-likelihood, the Q-function is divided into

three independent terms, each depending on the small portion of parameters:

Q(Θ, Θ̂i) =E
[

logL(Θ) | Y, Θ̂i
]

= E
[

logL0(x̄0,P0) | Y, Θ̂i
]
+

+E
[

logLX (A,B,Qw) | Y, Θ̂i
]

+
[

logLY(C,Rv) | Y, Θ̂i
]
,

(2.4.41)
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which ensures a straightforward of the maximisation step. Further expanding each

pdf (see, for example, [97]) shows that evaluation of (2.4.41) via the forward-backward

algorithm depends on the following conditional expectations

E
[
xt | Y, Θ̂i

]
; (2.4.42a)

E
[
xtx

>
t | Y, Θ̂i

]
; (2.4.42b)

E
[
xtx

>
t−1 | Y, Θ̂i

]
. (2.4.42c)

Hence, the computation of the expected log-likelihood function Q(Θ, Θ̂i) re-

quires evaluation of the state expectations given the set of observations Y, which

constitutes the problem of MAP state estimation. The common framework for solv-

ing this problem is presented in the following section.

2.5 State estimation

The purpose of state estimation is to recover the hidden state xt of a dynamical sys-

tem which is observed through a set of noisy measurements y = {yt}T
?

t=1. Depending

on the time span of the measurement set, state estimation methods are divided in

three classes:

• prediction , where the state at time t is estimated given the measurements

available until some time in the past t? < t;

• filtering , where the state at time t is estimated given all preceding and the

current measurement.

• smoothing , where the state at time t is estimated given a full set of meas-

urements available until some subsequent time T? > t.

Statistically optimal filtering and smoothing algorithms can be formulated from the

Bayesian perspective.

2.5.1 Optimal state estimation

Consider a discrete time stochastic SSM in the form (2.3.8) with hidden state xt

and observation vector yt that comply fully to the distributions

xt ∼ p(xt | xt−1) (2.5.1)

yt ∼ p(yt | xt). (2.5.2)

In the Bayesian framework, the purpose of filtering is to approximate the posterior

distribution of (xt given only preceding measurements. Filtering distributions are
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computed recursively using the prediction-correction algorithm [98]. First, the

predictive distribution of the hidden state xt is obtained in the following form

p(xt | y0:t−1) =

∫
p(xt | xt−1)p(xt−1 | y0:t−1)dxt−1 (2.5.3)

generates the predicted distribution given the measurement sequence up to time

t−1. When the new observation yt arrives at time t, it is incorporated at the

correction step to produce the filtering (posterior) distribution using Bayes’ rule

(2.4.4) modified as follows

p(xt | y0:t) =
p(yt | xt)p(xt | y0:t−1)

p(yt | y0:t−1)
, (2.5.4)

where the observation distribution is marginalised over the prior pdf of the hidden

state

p(yt | y0:t−1) =

∫
p(yt | xt)p(xt | y0:t−1)dxt. (2.5.5)

In optimal smoothing, the probability density of the hidden state at a prior time

t is ”retrodicted” based on the full history of observations until some subsequent

time T? > t. The corresponding smoothing distributions can be computed in two

forms:

1) Two-filter smoother [99]:

p(xt | y1:T?) ∝ p(xt | y0:t)p(yt +1:T? | xt), (2.5.6)

where the first pdf on the right hand side obtained directly from the Bayesian filter,

and the second term is computed via the backward-time filter. The applicability of

this smoother rarely goes beyond the linear case. In more general cases calculation

of additional probability densities is required to ensure the backward-time filter is

normalisable [81].

2) Forward-backward smoother [100]:

p(xt | y1:T?) ∝ p(xt | y0:t)

∫
p(xt +1 | xt)p(xt +1 | y1:T?)

p(xt +1 | y0:t)
dxt +1, (2.5.7)

where the first term in the numerator is the filtering distribution of the state at

time t, and the second term is the predicted distribution at time t +1 given by

(2.5.3). While the smoothing algorithm proceeds backward in time starting at T?,

each recursion is implemented in forward time, making the implementation much

more straightforward and easily applicable to nonlinear cases.

The formal equations presented in this subsection are generally computation-

ally intractable and must be approximated numerically or evaluated for a specific

distribution. The special case of optimal estimator for the linear Gaussian system

is derived in the following subsection.
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2.5.2 Filtering in linear Gaussian case

In the Bayesian framework, the model (2.3.8) is fully described by the following

distributions

p(xt | xt−1) = N (xt;At−1xt−1 +Bt−1ut−1, Qt−1), (2.5.8a)

p(yt | xt) = N (yt;Ctxt, Rt), (2.5.8b)

π(x0) = N (x̄0,P0). (2.5.8c)

Given the model (2.5.8), filtering equations presented in the section above can be

solved in the closed form and the resulting distributions will be Gaussian

p(xt | y0:t−1) = N (x̂t|t−1,Pt|t−1), (2.5.9a)

p(yt | y0:t) = N (ỹt|t,St|t), (2.5.9b)

p(xt | y0:t) = N (x̂t|t,Pt|t), (2.5.9c)

where x̂t|t−1 and x̂t|t denote the predicted and filtered estimates, respectively, and

where ỹt|t is the predicted measurement residual, also referred to as innovation. The

resultant estimator is called the Kalman filter (KF) [101]. It is a widely used

recursive state estimator that has found numerous applications in control [102],

aerospace [103], and computational biology [104]. The historical importance of this

algorithm is also notable, as the publication of Kalman’s seminal paper coincided

with the fundamental shift in the systems theory from input-output models to the

state space representation [90].

Although originally the Kalman filter was presented as a LS approach , it can

be derived as a point-wise Bayesian estimator x̂t with a quadratic loss function of

the form

l(xt, x̂t) = (xt − x̂t)
>Lt(xt − x̂t), (2.5.10)

where Lt is an arbitrary non-singular positive-definite symmetric matrix for all t

[88]. Then the Bayesian risk is expressed as follows

R(x̂t, p(xt)) =

∫
x
R(xt, x̂t)dxt =

∫
x

(xt − x̂t)
>Lt(xt − x̂t)p(xt | y0:t−1)dxt.

(2.5.11)

Under Gaussian assumptions, the estimate can be calculated in the closed form by

taking the derivative of the risk with respect to xt and setting it equal to zero

∂R(x̂t, p(xt))

∂xt
= 2Lt

∫
x

(xt − x̂t)p(xt | y0:t−1)dxt = 0. (2.5.12)

Solution of (2.5.12) is the expectation of xt given the preceding set of measurements

y0:t−1 and is independent of the matrix Lt:

x̂t|t−1 =

∫
x
xtp(xt | y0:t−1)dx = E [xt | y0:t−1] . (2.5.13)
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The corresponding covariance matrix is defined as

Pt|t−1 =

∫
x

(xt − x̂t)(xt − x̂t)
>p(xt | y0:t−1)dx =

= E
[
(xt − x̂t)(xt − x̂t)

> | y0:t−1

]
.

(2.5.14)

Expectations correspond to the predictive pdf in Bayesian filter and are called prior

state estimate and prior state covariance . Under linear-Gaussian assumptions

(2.3.1-2.3.2) they can be calculates follows

x̂t|t−1 = Atx̂t−1|t−1 +Btut, (2.5.15)

Pt|t−1 = AtPt−1|t−1A
>
t +Qt. (2.5.16)

The likelihood of xt in (2.5.4) is Gaussian by definition (2.5.8). What remains

is to evaluate the denominator of (2.5.4) which will also be Gaussian under the given

assumptions

p(yt | y0:t) = N (ỹt,St|t), (2.5.17)

where ỹt denotes the residual between the predicted observation and the available

observation, and where St|t is the corresponding residual covariance:

ỹt = yt − Ct E [xt | y0:t−1] = yt − Ctx̂t|t−1, (2.5.18)

St|t = E
[
(ỹt − Ctx̂t|t−1)(ỹt − Ctx̂t|t−1)> | y0:t−1

]
= CtPt|t−1C

>
t +Rt. (2.5.19)

Substituting all terms in (2.5.4) with (2.5.18) and (2.5.19) renders

p(xt | y0:t) =

∣∣CtPt|t−1C
>
t +Rt

∣∣ 1
2∣∣2πPt|t−1Rt

∣∣ 1
2

exp−
1
2
ζ , (2.5.20)

where

ζ =
(
xt − x̂t|t−1

)>
(Pt|t−1)−1

(
xt − x̂t|t−1

)
+

+ (yt − Ctxt)
> (Rt)

−1 (yt − Ctxt)−

−
(
yt − Ctx̂t|t−1

)> (
CtPt|t−1C

>
t +Rt

)−1 (
yt − Ctx̂t|t−1

)
.

(2.5.21)

The exponent can be represented in the quadratic form

ζ =
(
xt − x̂t|t

)>
(Pt|t)

−1
(
xt − x̂t|t

)
. (2.5.22)

Simple matrix manipulations render the expressions for the posterior state es-

timate and the posterior covariance in the following form:

x̂t|t = x̂t|t−1 +Ktỹt, (2.5.23)

Pt|t = Pt|t−1 −KtSt|tK
>
t . (2.5.24)
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where Kt is the optimal filter (Kalman) gain given by

Kt = Pt|t−1C
>
t

(
St|t
)−1

. (2.5.25)

An intuitive interpretation of the Kalman gain is offered in [72]: if viewed as a scalar,

Kt is “proportional” to the variance of the prediction, and “inverse proportional”

to the measurement variance. As such, a small gain yields a response to inaccurate

observations, while a large gain corresponds to inaccurate predictions. The full

filtering recursion is summarised in the Algorithm 2.1.

Algorithm 2.1 Kalman filter

Input: Measurement vector y1:T; model matrices; state noise variance, Qt; measurement noise variance,

Rt; initial state estimate, x̄0; and initial covariance, P0.

Output: Sequence of filtered state estimates, {x̂t|t}Tt=0; filtered covariances, {Pt|t}Tt=0.

1: for t← 1,T do

2: Compute prior state estimate x̂t|t−1 = Atx̂t−1|t−1 +Btut;

3: Compute prior covariance Pt|t−1 = AtPt−1|t−1A
>
t +Qt;

4: Compute residual ỹt = yt − Ctx̂t|t−1;

5: Compute residual covariance St|t = CtPt|t−1C
>
t +Rt.;

6: Compute Kalman gain Kt = Pt|t−1C
>
t

(
St|t

)−1
;

7: Compute posterior state estimate x̂t|t 1 = x̂t|t−1 +Ktỹt;

8: Compute posterior covariance Pt|t = Pt|t−1 −KtSt|tK
>
t ;

9: end for

Remark 2.5.1: All of the state estimates are implicitly conditioned on the model

structure of the dynamical system. In Kalman filter the residual ỹt quantifies good-

ness of fit of the model to the observations. Thus the pdf of the residual (2.5.17) can

be viewed as a marginal likelihood of the system model M :

L(M) , p(yt |M,y0:t) = N (ỹt,St|t). (2.5.26)

This interpretation of the model likelihood is utilised in further sections to

discriminate between various candidate models of the dynamical process.

2.5.3 Smoothing in linear Gaussian case

Similarly with the Kalman filter, there exist closed form smoothing solutions for

the model (2.3.8) both in two-filter and forward-backward forms. The resultant

smoothing distribution is normal

p(xt | y1:T?) = N (x̂t|T? ,Pt|T?), (2.5.27)

For the sake of brevity, this subsection only includes the resultant linear equations.

The linear case of the two-filter smoother consists of two Kalman filters [70],

one running in direct time, while the other is applied to the reversed observation

sequence y−0:T? such that

y−0 , . . . ,y
−
T? = yT? , . . . .y0. (2.5.28)
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Given that At is a non-singular matrix, filtered estimates can be obtained for a

system with reverse time dynamics defined as

x−t +1 = A−t x
−
t +B−t u−t +G−t w

−
t , (2.5.29a)

y−t = C−t x−t +H−t v−t , (2.5.29b)

where w−t and v−t are backward forced noises [105]. The justification for using this

form for the reverse time system is provided in [70].

Then the smoothed state estimate is a weighted sum of two filtering estimates

x̂t|T? = Pt|T?
(

(Pt|t)
−1x̂t|t + (P−t|t)

−1x̂−t|t

)
, (2.5.30)

where the smoothed covariance Pt|T? is given by

Pt|T? = Pt|T? =
(

(Pt|t)
−1 + (P−t|t)

−1
)−1

. (2.5.31)

The complete recursion is summaries in Algorithm 2.2. The limitation of this al-

gorithm is evident as a it requires non-singularity of the state transition matrix and

of all covariances. Information filters can be used to avoid taking the inverses [102].

Algorithm 2.2 Two-filter smoother

Input: Measurement vector y1:T? ; model matrices, state noise variance, Qw, and measurement noise vari-

ance, Rv , fro forward and reverse time systems; initial state estimates, x̄0, x̄
−
0 ; and initial covariances,

P0,P
−
0 .

Output: Sequence of smoothed state estimates, {x̂t|T?}T?

t=0; smoothed covariances, {Pt|T?}T?

t=0.

1: Execute Kalman filter for the forward-time system (2.3.8);

2: Execute Kalman filter for the backward-time system (2.5.29);

3: for t← 0,T do

4: Merge covariances Pt|T? =
(

(Pt|t)
−1 + (P−

t|t)
−1
)−1

;

5: Merge estimates x̂t|T? = Pt|T?

(
(Pt|t)

−1x̂t|t + (P−
t|t)
−1x̂−

t|t

)
;

6: end for

The linear Gaussian case of the forward-backward algorithm is the Rauch-Tung-

Striebel (RTS) smoother [106]. The forward pass of the smoother is equivalent to

the regular KF, while the backward recursion is implemented in backward time as

follows. The smoother is initialised at the time of final observation T?:

x̂T? = x̂T?|T? , (2.5.32a)

PT? = PT?|T? . (2.5.32b)

Then, at each time t < T?, the prediction is made about the future state t +1 in

exact form of the Kalman filter prediction step:

x̂t +1|t = Atx̂t|t +Btut, (2.5.33)

Pt +1|t = AtPt|tA
>
t +Qt. (2.5.34)
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The smoothing step accounts for the discrepancy between the prediction of the future

state and its smoothed estimate:

x̂t|T? = x̂t|t + Jt

(
x̂st +1|T? − x̂t +1|t

)
, (2.5.35)

Pt|T? = Pt|t + Jt

(
Pt +1|T? − Pt +1|t

)
J>t , (2.5.36)

where Jt is the smoothing gain defined as

Jt = Pt|tA
>
t

(
Pt +1|t

)−1
. (2.5.37)

The resultant estimation recursion is summarised in the Algorithm 2.3.

Algorithm 2.3 Backward recursion of the RTS smoother

Input: Sequence of filtered state estimates, {x̂t|t}T
?

t=0; filtered covariances, {Pt|t}T
?

t=0; state transition

matrices, At.

Output: Sequence of smoothed state estimates, {x̂t|T?}T?

t=0; smoothed covariances, {Pt|T?}T?

t=0.

1: Initialise: x̂T? = x̂T?|T? , PT? = PT?|T? ;

2: for t← T?−1, 0 do

3: Calculate the smoothing gain Jt = Pt|tA
>
t

(
Pt +1|t

)−1
;

4: Smooth state estimate x̂t|T? = x̂t|t + Jt
(
x̂t +1|T? − x̂t +1|t

)
;

5: Smooth covariance Pt|T? = Pt|t + Jt
(
Pt +1|T? − Pt +1|t

)
J>t ;

6: end for

Depending on how many future observations are available (where is T? located

with respect to t), the smoothers of both types can be further classified as follows:

• Fixed-point smoothing estimates the previous state given the newest obser-

vation, i.e. T? = t +1.

• Fixed-lag smoothing estimated the state with a fixed time delay τ from the

newest observation, i.e. T? = t +τ .

• Fixed-interval smoothing estimates the states in presence of the full obser-

vation set, i.e. T? = T, where t = 0, 1, . . . ,T.

Figure 2.6 illustrates the span of measurement sets utilised by each type of smoother.

Note that the fixed-interval smoother outputs the expectation and covariance

of the system state given the full observation sequence:

x̂t|T = E [xt | y0:T] = E [xt | Y] , (2.5.38)

Pt|T = E
[
(xt − x̂t|T)(xt − x̂t|T)> | Y

]
, (2.5.39)

which can be combined to produce the following

Pt|T + x̂t|T(x̂t|T)> = E
[
xtx

>
t | y0:T

]
= E

[
xtx

>
t | Y

]
, (2.5.40)

thus providing the first and second expectation in (2.4.42) necessary for performing

the E-step in the §2.4.6. The third expectation (2.4.42c) is given by

Pt,t−1|T + x̂t|T(x̂t−1|T)> = E
[
xtx

>
t−1 | y0:T

]
= E

[
xtx

>
t−1 | Y

]
, (2.5.41)
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Figure 2.6: Observation sets utilised in filtering and smoothing algorithms.

where Pt,t−1|T denotes the cross-covariance of two subsequent states [107]. It is com-

puted in backward-time recursion of the RTS smoother as shown in the Algorithm

2.4.

Algorithm 2.4 Cross-covariance computation

Input: Sequence of filtered covariances, {Pt|t}Tt=0; sequence of smoothing gains, {Jt}Tt=0; system matrices

at final time, AT, CT, Kalman gain at final time, KT.

Output: Sequence of cross-covariances, {Pt,t−1|T}Tt=1.

1: Initialise: PT,T−1|T = (I−KTCT)ATPT−1|T−1;

2: for t← T−1, 1 do

3: Pt,t−1|T = Pt|tJ
>
t−1 + Jt−1(Pt +1,t|T)J>t−1;

4: end for

In consequence, the forward-backward procedure that constitutes the expecta-

tion step of the EM algorithm for linear Gaussian SSMs is equivalent to the combina-

tion of the Kalman filter and the RTS smoother. It provides all necessary quantities

for the evaluation of the expected log likelihood function in the EM algorithm in

§2.4.6, ensuring a closed form solution of the maximisation step for linear Gaussian

systems.

2.5.4 Suboptimal state estimation

In practical applications, the model of interest is often non-linear and the Kalman

filter in its original form is not applicable. Derivation an optimal non-linear filter

requires complete knowledge of the conditional pdf p(xt | xt−1) which is hardly

achievable, thus multiple suboptimal filtering solutions have been sought. This sub-

section briefly discusses the most prominent extensions of Kalman algorithm in
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applications to non-linear systems of the general form (2.3.1).

The extended Kalman filter (EKF) was developed in application to naviga-

tion and guidance systems. It is based on assuming the knowledge of the approxim-

ate solution and describing the deviation from the actual model by linear equations.

This is done via the first-order Taylor series expansion of the given non-linear model

functions f and h [108]. The resultant Jacobians ∂f
∂x

∣∣
x=x̂

, ∂h
∂x

∣∣
x=x̂

evaluated at the

current estimate are then utilised in the classical filter recursion. In case of non-

additive noise, extra Jacobians ∂f
∂w

∣∣
w=0

, ∂h
∂v

∣∣
v=0

are evaluated and used to calculate

covariances [81]. Simplicity of the EKF makes it attractive in engineering applic-

ations, but local linearisation restricts applicability of this filter only to dynamical

models with differentiable functions f and h.

The unscented Kalman filter (UKF) [109], [110] builds on a rather intuit-

ive notion that it is easier to approximate a Gaussian distribution than an arbitrary

non-linear SSM. In the filter, the distribution p(xt | yt−1) is approximated by de-

terministically choosing a set of sigma points that capture its mean and covariance.

These points are then propagated through the non-linear functions f and h, to

produce a new distribution with updated mean and covariance. The UKF has re-

peatedly outperformed the EKF as it can capture the moments of the distribution

after a non-linear transformation [111], neither does it require differentiability of

the model function, although it is computationally demanding. The complementing

unscented RTS smoother is derived in [112].

Aside from EKF and UKF that are the most commonly used for non-linear

state estimation, there exist a number of filtering algorithms, such as statistically

linearised filter [113], cubature Kalman filter [114], Gauss-Hermite Kalman filter

[115], each with their merits and varying applicability. However, all suboptimal

solutions rely on some level of approximation, be it linearisation (EKF), fitting

to a curve (cubature KF), or deterministic moment approximation (UKF), which

may lead to divergence of an estimator in cases of significant non-linearity or in

situations where the Gaussian approximation is not appropriate. Particle filters are

the sequential Monte Carlo (SMC) methods that numerically approximate Bayesian

filtering equations [116]. Unlike the UKF that relies on the deterministic selection of

sigma-points, particle filters utilise random sampling from the posterior distribution.

Particle filters do not require that distribution to be Gaussian and therefore are

applicable to a wider class of models, though this flexibility comes at a price of

high computational costs and bad scalability for high dimensional problems. Non-

Gaussian situations are not considered in the following chapters.
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2.5.5 State estimation of jump Markov systems

Another useful category of dynamical models are the hybrid systems that exhibit

both continuous and discrete dynamic behaviour. A generic hybrid system is de-

scribed by a finite set of discrete states, or modes, M = {M j}Nmj=1, each associated

with a different SSM governing the evolution of the continuous-valued state xt.

Remark 2.5.2: In the hybrid systems context, a continuous-valued state at some

discrete time t ∈ {0, 1, 2, 3, ...T} is defined as xt ∈ Xt, where Xt is an uncountable

set.

For example, a discrete-time hybrid system composed of linear SSMs is given

by

xt = A(mt)xt−1 +B(mt)ut−1 +G(mt)wt−1 (2.5.42a)

yt = C(mt)xt +D(mt)ut +H(mt)vt, (2.5.42b)

where wt ∼ N (0, Q(mt)), vt ∼ N (0, R(mt)), and where system matrices cor-

respond to the current mode in effect mt ∈ M. The mode switching process is

usually assumed to be left-continuous, i.e. the mode mt +1 comes into effect at time

t+. Causal relationship between modes, states, and observations of a hybrid system

(2.5.42) is demonstrated in Figure 2.7. Alternative structures of hybrid systems are

examined in [117]. The systems where mode also depends on the continuous-valued

state are not considered here.

State x1 x2 xt−1 xt xt +1 xT−1 xT

y1 y2 yt−1 yt yt +1 yT−1 yTObservation

m1 m2 mt−1 mt mt +1
mT−1 mTMode

. . . . . .

. . . . . .

. . . . . .

Figure 2.7: A directed acyclic graph of a generic left-continuous hybrid model. The discrete

state (mode) mt affects the state and the observation at time t. Both discrete and

continuous-valued states are hidden.

Jump Markov systems (JMS) constitute a class of hybrid systems in which

the evolution of the discrete state mt is governed by a finite state Markov chain [72],

[118] described by the set of initial probabilities Π = {πj ≥ 0}NMj=1 and a transition
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probability matrix

Φ = {φjl ≥ 0}NMj,l=1 (2.5.43)

where each element denotes an individual transition probability

φlj , P (mt = M l |mt−1 = M j). (2.5.44)

The multiple model (MM) approach to hybrid system estimation involves

running a bank of mode-matched filters [72]. At each time t the exact posterior pdf

of the continuous-valued state comes as a mixture of mode-conditioned posteriors

produced by model-matched filters

p(xt | y0:t) =

Nm∑
j=1

µjtp(xt |mt = M j ,y0:t), (2.5.45)

where the mixing coefficients are given by the posterior mode probabilities

µjt , P (mt = M j | y0:t); (2.5.46)

and where, under assumptions 2.3.2-2.3.3, the filtered posterior is Gaussian

p(xt |mt = M j ,y0:t) = N (x̂jt|t,P
j
t|t). (2.5.47)

The mode probability at each time µjt is directly linked to the model likelihood

L(M j) that is produced by the filter as described in Remark 2.5.1.

The exact MM estimation of jumping systems proves impractical, as keeping

exhaustive history of each model leads to exponentially increasing computational

complexity (see Figure 2.8). Multiple methods that have been developed to make

JMS estimation feasible rely on either pruning or merging techniques [119]. Pruning

is an ad hoc solution that cuts off unlikely mode histories at each time. While it is

an efficient strategy in change point detection, pruning algorithms are hardly applic-

able in situations where the true system differs from all of the hypothesised modes.

Contrarily, merging achieves the tractability by replacing the mixture (2.5.45) with a

single Gaussian that would summarise the ”combined” history of all possible modes:

p(xt | y0:t) ≈ N (x̂t|t,Pt|t), (2.5.48)

where the combined state estimate and its covariance are obtained via moment

matching:

x̂t|t =

Nm∑
j=1

µjt|tx̂
j
t|t (2.5.49a)

Pt|t =

Nm∑
j=1

µjt

{
P j

t|t + (x̂jt|t − x̂t|t)(x̂
j
t|t − x̂t|t)

>
}
. (2.5.49b)
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Figure 2.8: The number of model-matched Kalman filters (KF j) required for the exact

estimation of the jump Markov system grows exponentially.

Generalised pseudo-Bayesian (GPB) algorithms are a class of algorithms that

utilise the merging procedure to combine estimates that have different history at

previous n sampling periods, where n is defined by the order of the algorithm. The

first order GPB (GPB1) stores mode-conditioned estimates from the last sampling

period only. The second order algorithm (GPB2) stores all previous estimates and

all their possible histories, i.e. all modes they could have arrived from. While the

GPB2 clearly outperforms GPB1 in terms of accuracy, it requires running (Nm)2

filters at each iteration [119]. The recursions of GPB1 and GPB2 estimation of a

JMS with two modes are illustrated in Figures 2.9a and 2.9b, respectively.

The most preferred method for JMS state estimation is the interacting mul-

tiple model (IMM) algorithm [120], [121]. It is principally similar to the GPB2,

but has one crucial advantage. Instead of running (Nm)2 model-matched filters for

all possible posteriors, it first produces the mixed posteriors using the updated mode

probabilities as mixing weights. This procedure is called the interaction step (see

steps 3-4 of Algorithm 2.5). As demonstrated in Figure 2.9c, the IMM framework

employs the merging procedure twice: once during the interaction step to produce

mixed initial conditions for the model-matched filters, and once after the filtering

step to produce the combined estimate. The interaction step ensures that the al-

gorithm utilises information from two subsequent sampling periods while running

only Nm filters, thus providing a compromise between the under-performing GBP1

and the computationally expensive GBP2.

Several smoothing counterparts to forward IMM filters have been developed

to improve the estimation accuracy in tracking applications. The two-filter IMM

approach [122], [123] combines all possible estimates of forward and backward-time

models, and is therefore restricted to the systems where time-reversal is possible.
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Figure 2.9: Multiple model algorithms for a jumping system with two modes.
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Algorithm 2.5 Forward time recursion of the IMM filter

Input: Measurements sequence, y; hypothesised models, M; initial model probabilities, Π; mode transition

probabilities, Φ.

Output: Sequence of mode-conditioned state estimates, x̂j0:T, j = 1, . . . , Nm; Sequence of merged state

estimates, x̂0:T, and their covariances, P0:T; estimated model probabilities, µ̂0:T.

1: Initialise the algorithm with µj
0|0, x̂

j
0|0,P

j
0|0 j = 1, . . . , Nm;

2: for t← 1,T do

3: for j ← 1, Nm do

4: Calculate mixing probabilities µ0j
t−1|t−1

= 1
cj
φijµ

j
t−1|t−1

, where cj =
Nm∑
i=1

φijµ
i
t−1|t−1

;

5: Compute mixed initial conditions:

x̂0j
t−1|t−1

=

Nm∑
j=1

µ0j
t−1|t−1

x̂j
t−1|t−1

P 0j
t−1|t−1

=

Nm∑
j=1

µ0j
t−1|t−1

{
P 0j

t−1|t−1
+ (x̂j

t−1|t−1
− x̂0j

t−1|t−1
)(x̂j

t−1|t−1
− x̂0j

t−1|t−1
)>
}

6: Run KF matched with the mode Mj to produce x̂j
t|t,P

j
t|t;

7: Compute mode likelihood Lj
t|t = p(yt |Mj ,y0:t);

8: end for

9: Update mode probabilities µj
t|t = 1

c
Lj

t|tcj , where c =
Nm∑
j=1
Lj

t|tcj ;

10: Merge mode-conditioned states and covariances:

x̂t|t =

Nm∑
j=1

µj
t|tx̂

j
t|t

Pt|t =

Nm∑
j=1

µj
t|t

{
P j

t|t + (x̂j
t|t − x̂t|t)(x̂

j
t|t − x̂t|t)

>
}

;

11: end for

The fixed-lag IMM smoother proposed in [124] utilises state augmentation to provide

filtered and smoothed estimates simultaneously. However, the method builds on

the assumption that the mode does not change within the lag period. The first

RTS-type MM algorithm presented in [125] uses Bayesian retrodiction during the

backward recursion and utilises (Nm)2 smoothers on each iteration, which renders

it inferior to the RTS-type IMM algorithm recently proposed in [126]. The RTS

IMM estimator first proceeds in forward time using IMM filter, then utilises mode-

conditioned filtered estimates during the backward-time recursion. The merged

smoothed estimate produced by the algorithm on each iteration can be computed

separately and has no direct effect on the smoothing process.

Although the algorithms discussed in this subsection build on linear-Gaussian

assumptions for candidate models, the multiple model framework is not limited to

strictly linear cases. Modular structure of IMM is particularly accommodating to

non-linear model-matched filters, although such modification adds an additional level

of approximation. A range of non-linear multiple model methods will be discussed

in the following chapters in application to a specific model structure.



3 Inference of the hidden

chemoattractant field from

observed cell migration patterns

This chapter introduces the problem of estimating a spatially-varying chemoattract-

ant (ChA) concentration field from observed migration patterns of cell populations.

The analysis is motivated by the shortcomings of novel in vivo microscopy tech-

niques that do not have the capacity for quantifying the ChA environment. The

problem, once introduced, is formulated within a state space framework that in-

corporates a parametrised model of the hidden environment in the cell dynamics.

An approximate Expectation-Maximisation (EM) solution is proposed for the joint

state-parameter estimation and applied to several in vivo datasets obtained from

transgenic zebrafish. Selected results of this chapter have been presented in [127].

3.1 Background

Neutrophilic chemotaxis is an essential part of immune system response to external

threats. The recruitment phase of the inflammation is defined by rapid cell migration

towards the damaged tissue driven by the extracellular chemoattractant concentra-

tion, here referred to as the environment. Therefore the recruitment process can be

manipulated in two ways: by either changing the ChA environment, or changing the

way cells respond to it. However, in order to create robust cost-effective therapeutic

strategies the researchers must have a clear understanding on the way the immune

cells perceive the chemoattractant.

Rapid progress of the experimental procedures, and development of in vivo

assays in particular, has informed numerous theoretical studies of neutrophil dy-

namics. At the same time, new microscopy methods pose a novel problem for the

theorists. Whereas in artificial circumstances the concentration of the attractant is

tightly regulated and is available for measurement, it is impossible to directly ob-

serve it in the living organism (see Figure 3.1). Processing of in vivo data presents

a new challenge in quantifying the unobserved environment. Because the environ-
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ment influences migrating cells, it is possible to recover the information about the

hidden chemoattractant concentration from the observed migration patters of the

cell population. The primary goal of this chapter is to develop a dynamical model

that links the hidden global environment with the trajectory of an individual cell.

This link is then exploited in the estimation of the hidden ChA concentration gov-

erning neutrophil recruitment in zebrafish larvae. An extension of the EM algorithm

discussed in §2.4.6 is utilised for the estimation.

It has been observed that the migrating cells alternate between directed mo-

tion towards the higher concentration of external stimuli and random walk. An

individual neutrophil migration can thus be characterised as a stochastic dynamical

process driven by an external environment. Various dynamical models describing the

movement of an individual cell have been proposed, each incorporating the influence

of the chemoattractant differently. In [51] the field gradient acts on a cell as a force,

contributing to its acceleration. In [25], [53] the environment affects the orientation

of the cell. In [128], neutrophil velocity is directly proportional to the gradient.

This chapter utilises the model of [51] because it can be easily transformed into a

state-space representation and incorporate the influence of the global environment

as an input vector. The resultant model is presented in Section 3.2.

The problem of ChA field inference addressed here is similar to the ones solved

by [129] and [128]. Authors of the former tackle the environment estimation problem

by introducing three different phenomenological models of the hidden concentration

field and discriminating between them within the Bayesian rejection algorithm. The

proposed solution requires making prior assumptions about the shape of the field

thus limiting its inference to several generic models. The latter work introduces

a more flexible methodology in terms of field representation that relies on basis

function decomposition of the chemoattractant environment. However, the authors

solve the problem deterministically by decoupling field parameter learning and cell

state estimation.

The main contribution of this chapter is an approximate Maximum Likelihood

framework that can estimate the hidden chemoattractant concentration field and

recover cell states simultaneously from spatiotemporally resolved in vivo data. The

algorithm is derived in Section 3.3. The solution employs the artificial potential

field method of modelling object interaction with the global environment, a popular

reactive mechanism that is often used to model the environment in wide range of

applications, including algorithms of swarm formation for ground-based robots [130],

[131] or UAVs [132]. In this approach, the underlying environment is modelled as a

static potential field U driving object movement. This translates to the cell migration

as follows: a cell that moves through the chemoattractant concentration field is

subject to the attractive force that is proportional to the field gradient at the current
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Figure 3.1: An example of tracking data obtained from in vivo observation of the injured

zebrafish larva. Two key aspects of chemotaxis are unobserved: cell velocities and

ChA concentration environment.

cell position. The underlying field is parametrised via basis function decomposition

which provides the flexibility necessary for inference of complex shapes without

changing the model structure.

The framework is applied to several datasets to recover the ChA concentra-

tion generated by different types of injury. The combination of ML method and

basis function decomposition means that no prior assumptions about the shape of

concentration environment are required within the selected parametrisation. The

estimation results are presented and analysed in Section 3.4. All datasets are pro-

cessed with the same tuning parameter values, meaning that the inferences made

about the environment are made based solely on the available tracking data.

3.2 Methods

3.2.1 Data acquisition

All animal experiments were performed by the collaborators at the Department of

Infection, Immunity & Cardiovascular Disease according to legislation and guidelines

detailed in the Animals (Scientific Procedures) Act 1986. Ethical approval was given

by the University of Sheffield Local Ethical Review Panel and experiments were

fully approved by the Home Office (Project license PPL 70/8178). The neutrophil-

specific fluorescent Tg(mpx:GFP)i114 zebrafish line, also referred to as mpx:GFP,

was used for all experiments. Adult zebrafish were raised in the Bateson Centre at

The University of Sheffield in UK Home-Office approved aquaria. All zebrafish were

maintained according to standard protocols in [133].

All experiments were conducted on 3 days post fertilisation (dpf) mpx:GFP

embryos anaesthetised by immersion in E3 containing 4.2% tricaine (Sigma-Aldrich).
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The inflammatory response was activated by tail fin transection using a sterile scalpel

blade as described previously in [33], or by a tail fin nick by a sterile needle as

described in [1]. 3dpf mpx:GFP embryos were mounted in 0.7% low melting point

agarose (Sigma-Aldrich) containing 4.2% tricaine for imaging immediately after tail

transection. Time lapse imaging was performed during 0.5-5 hours post injury with

30 second sampling period using an Eclipse TE2000-U fluorescence microscope with

a Andor Zyla 5.5 camera (Nikon).

Fast sampled imaging allows one to track individual cells. The Z-stacked images

obtained from the video microscopy were compressed into one maximum intensity

projection layer in within the NIS Elements software (Nikon). The 2-D neutrophil

trajectory data was then extracted from the compressed time lapse images by ap-

plying a threshold to detect GFP neutrophils and linking their centroid positions

via the tracking tool within the NIS Elements. The tracking results superimposed

on brightfield images of fish bodies are shown in Figure 3.2.

Different injury methods demonstrated in the figure can induce inflammatory

responses of varying severity. Normally, the tail fin transection is performed near

the end of the circulation loop without damaging it or the notochord (the circulation

defined by the black line and the spinal chord defined by the bright line are intact

in Figure 3.2a). In the absence of inflammation inhibitors, normal injury induces

continuous recruitment of immune cells for 5-6 hours post injury, during which

neutrophils get uniformly distributed along the wound site. Occasionally, one can

observe a more concentrated swarm-like formation near the wound, as in two larvae

in Figure 3.2b. A mild injury can be triggered by either a tail fin transection further

away from the circulation (see Figure 3.2c), or by a small cut with a needle below the

notochord (as in Figure 3.2d). It can be seen that fewer neutrophils are activated

by the mild injury, and in case of the nick injury the neutrophils are often delivered

to the wound site by the circulation rather than travelling in the tissue. This results

in rather short tracks concentrated around the wound. A severe injury is performed

by cutting through the notochord and the circulation loop (severed circulation loops

can be seen in both larvae in Figure 3.2e). A rapid inflammatory response induced

by the severe injury is characterised by a more “chaotic” neutrophil behaviour, which

may be caused by the fact that the ChA ligands quickly diffuse within the tissue

and their global concentration gradient becomes more shallow.

For each fish larva, the observation set Y consists of K tracks:

Y = {yk}Kk=1,

where each track yk is a collection of observed positions of the k-th cell ordered in

time:

yk = {yk
t }T

k

t=0,



3. Chemoattractant field inference: homogeneous cell behavior 59

(a) Normal injury set 1

(b) Normal injury set 2

(c) Mild injury

(d) Tail fin nick injury

(e) Severe injury

Figure 3.2: The tail fin transection initiates recruitment of neutrophils that are tracked

for 5 hours post injury. (a)-(b) Normal injury is characterised by lengthy tracks

with notable preference in direction. (c-d) A minor injury is inflicted on the fish by

either a smaller fin transection or a tail fin nick with a needle and is characterised

by numerous short tracks. (e) Severe injury activates more neutrophils but the

recruited cells do not maintain the directionality and diffuse within the tissue.
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where Tk is the length of the individual track, and an individual measurement at

time t contains the observed cell position yk
t = [s̄x, s̄y]>t .

3.2.2 Model of neutrophil dynamics

In this chapter, the problem of environment inference is solved under the following

key assumptions.

Assumption 3.2.1: The ChA environment U is time-invariant.

Assumption 3.2.2: The global environment acts on an individual cell as a po-

tential field.

Assumption 3.2.3: All neutrophils migrate in response to the acting environ-

ment.

The dynamics of the k-th cell are described by a standard discrete time SSM:

xk
t = Axk

t−1 +Buk
t−1 +Gwk

t−1, (3.2.1a)

yk
t = Cxk

t + vk
t , (3.2.1b)

where the state vector at sample time t contains position and velocity of the cell

centroid on the two-dimensional image

xk
t = [sx, sy, vx, vy]>t , (3.2.2)

and where the process noise wt ∼ N (0, Qw), Qw ∈ IR2×2 and the measurement

noise vt ∼ N (0, Rv), Rv ∈ IR2×2 are i.i.d. Gaussian sequences. System matrices

A,B,G, and C are considered to be time-invariant and are defined as follows

A =

[
I2 T I2
O2 I2 − TρI2

]
, (3.2.3a)

B =
[
O2 T I2

]>
, (3.2.3b)

G =
[
O2 T I2

]>
, (3.2.3c)

C =
[
I2 O2

]>
, (3.2.3d)

where T is the time increment, I2 is an identity matrix and O2 is a zero matrix of

size 2× 2. Noise variances Qw and Rv are defined as

Qw = σ2
wI2; Rv = σ2

vI2. (3.2.4)

The presented model is the Euler–Maruyama discretisation of the biased ran-

dom walk with resistance to the environment described in [51]. In the transition
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matrix A, the term I2 − TρI2 corresponds to the reversion to mean in the O-U pro-

cess describing velocity of a large Brownian particle in continuous time. Random

fluctuations of neutrophil acceleration that are modelled as a Wiener process in [51]

are approximated here by the Gaussian noise because the process is sampled with

a constant time increment. The rate of reversion to mean ρ, and variances σw and

σv are the tuning parameters that are specified prior to the estimation procedure.

Under the potential field paradigm, the deterministic input term in (3.2.1a)

corresponds to the influence of the environment that can be described as follows

uk
t = uk

t (sx, sy) = ∇U(sx, sy). (3.2.5)

where ∇ denotes the gradient and where U(sx, sy) is the ChA concentration at the

current position of the migrating cell. In the interest of the posed inference problem,

the potential function U must be defined globally.

3.2.3 Chemoattractant field decomposition

Direct estimation of the global ChA concentration from the localised tracking data

poses an infinite-dimensional problem, thus necessitating a simplified parametrised

model of the environment. A natural way to reduce the order of the model is to

represent a complex function by a linear combination of isotropic basis functions.

As any other smooth surface, the chemoattractant concentration field can be ap-

proximated to an arbitrary degree of accuracy via the following decomposition

U(sx, sy) =

Nb∑
h=1

βh(sx, sy)θh; (3.2.6)

where βh(sx, sy) is a bivariate basis function defined in 2-D space and θh is the

corresponding scaling coefficient that defines the magnitude of this function (Figure

3.3a). Since only one scaling parameter is assigned to each function (shown in Figure

3.3b), overall inference of such a model is easy to implement and has computational

costs proportional to the size of the basis function grid. Note that the decomposition

in the form (3.2.6) poses no restrictions on the kernel of basis functions. For example,

in [128] the environment U(sx, sy) is approximated by a composition of overlapping

Gaussian basis functions defined as follows

βh(s) = exp[−1

2
(s− ch)TΣ−1

βh
(s− ch)], (3.2.7)

where ch ∈ R2 denotes the centre of h-th basis function, and s = [sx, sy]> denotes

the position of a cell. Matrix Σβh defines width of each basis function in two spatial

dimensions. In a simple case, symmetric basis functions are considered, and hence

diagonal elements of Σβh are equal.
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(a) (b)

(c) (d)

Figure 3.3: Decomposition of the environment with a grid of basis functions. (a) A 5× 4

grid of uniformly spaced tensor product cubic B-splines is placed over the image of

the fish body. Each b-spline βh is a function of two coordinates, sx and sy. (b)

Each b-spline is associated with a scaling parameter θh that regulates its magnitude.

(c) Even a small number of b-splines guaranties smooth approximation of complex

shapes. (d) The masked image illustrates the ChA environment within the fish

body.

This thesis utilises another common type of multivariate basis functions called

the tensor product B-splines

βh(sx, sy) = β4
l (sx)β4

m(sy), (3.2.8)

where l×m = Nb and where β4
l (sx) and β4

m(sx) are cubic B-splines constructed for a

uniform knot sequence in each spatial dimension. The base of each B-spline is defined

by a rectangle with sides Dx
l = {dx

l , . . . , d
x
l+5} for β4

l (sx) and Dy
m = {dy

m, . . . , d
y
m+5}

for β4
m(sy) . The tensor product formalism is discussed in chapter 7 of [134]. Its main

advantage is that all properties of univariate B-splines extend to the multivariate

case:

• βh(sx, sy) is a non-negative polynomial on the compact support containing

knots Dl,x, Dm,y.

• βh(sx, sy) is equal to zero everywhere outside the area

• βh(sx, sy) is differentiable k − 1 times where k is the B-spline order and the

derivative can be calculated analytically.
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These properties, as well as inherent smoothness and flexibility make B-splines par-

ticularly attractive in applied problems that may have high computational complex-

ity. Although the estimation framework introduced below is not restricted to the

particular type of basis functions as long as they are differentiable, the aim of this

work is to not only approximate a global function of unknown order but also provide

the consistent gradients: in areas with no tracking data the field is expected to be

a flat surface for approximation of which local polynomial representations are more

suitable. This is why the low order B-splines are selected to parametrise the en-

vironment. Moreover, the B-splines have no additional tuning parameters (such as

width of the Gaussian), meaning that for any given grid of B-splines and the image

of any size the locations of the control points can be computed automatically.

This chapter utilises a coarse grid of tensor product B-splines to infer the global

environment based on localised tracking data. The resultant model of individual cell

dynamics can be rewritten as

xk
t = Axk

t−1 +Bϕk
t−1(sx, sy)Θ +Gwk

t−1, (3.2.9)

where the term ϕk
t (sx, sy) = µ∇B(sx, sy) describes the gradient of superposition of

basis functions at the current cell location. The chemotactic sensitivity coefficient µ

is arbitrary set to one, while the gradient of the superposition of splines is presented

as follows

∇B(sx, sy) =

∂β1(sx,sy)
∂sx

∂β2(sx,sy)
∂sx

. . .
∂βh(sx,sy)

∂sx
. . .

∂βNb (sx,sy)

∂sx
∂β1(sx,sy)

∂sy

∂β2(sx,sy)
∂sy

. . .
∂βh(sx,sy)

∂sy
. . .

∂βNb (sx,sy)

∂sy

 . (3.2.10)

In (3.2.9), Θ denotes a vector of the corresponding scaling parameters that are

unknown

Θ = [θ1, θ2, . . . , θh, . . . , θNb ]
> . (3.2.11)

In can be seen that the developed model is linear with respect to the unknown

parameter vector Θ. However, since the basis functions depend on cell positions, the

dynamics are non-linear with respect to the cell state. The measurement equation

(3.2.1b) remains unchanged.

The following estimation objectives are associated with the model (3.2.9):

• Estimate all hidden states X =
{
{xk

t }
Tk
t=0

}K

k=1
conditional on the given cell

tracks Y and the prediction of the underlying environment (here amounts to

the estimated parameter vector Θ̂).

• Estimate the value of scaling coefficients Θ̂ given the complete data set Z =

{X ,Y} and estimated cell states X .

The following section presents the formulation of the chemoattractant field inference

problem within the ML framework.
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3.3 Chemoattractant concentration inference

The problem of joint state-parameter estimation in the presence of the whole ob-

servation set Y can be straightforwardly solved via the EM algorithm discussed in

the previous chapter and summarised in Algorithm 3.1. It is a popular approach to

estimating the parameters of generic linear SSMs [135] that treats all unobserved

states as the hidden data X . The algorithm efficiently separates two estimation

problems and solves them iteratively until convergence. The fact that the ML ap-

proach does not require any a priori knowledge about unobserved data makes it

particularly applicable to biological systems, where it is desirable to minimise the

number of assumptions about the parametrised model [136]. The constituent steps

of Algorithm 3.1 are discussed in the following subsections.

Algorithm 3.1 Expectation-Maximisation algorithm

Input: The set of observations Y; the dynamics function, f(xt,ut,wt); the measurement function

h(xt,ut,vt); state noise variance, Qw; measurement noise variance, Rv ; initial state estimate for each

cell, x̄k
0; and initial covariance for each cell, P k

0 .

Output: The MLE of the unknown parameter vector, Θ̂∗.
1: Initialise with Θ̂0;

2: while not converged do

3: E-step: compute the expected log-likelihood function Q(Θ, Θ̂i) = E
[
log p(X ,Y | Θ) | Y, Θ̂i

]
;

4: M-step: compute ML estimates Θ̂i+1 = arg max
Θ
Q(Θ, Θ̂i);

5: Check convergence condition;

6: end while

3.3.1 The log likelihood function

For K cells observed across all sampling times there exists complete data set Z =

{X ,Y} with joint probability defined as follows

L(Θ) = p(Z | Θ) =
K∏

k=1

[
p(xk

0)

Tk∏
t=1

p(xk
t | xk

t−1,Θ)

Tk∏
t=0

p(yk
t | xk

t )

]
, (3.3.1)

where individual probability densities are

p(xk
0) = N (µ0,Π), (3.3.2a)

p(xk
t | xk

t−1Θ) = N
(
(G)†(xk

t −Axk
t−1 −Bφ(Cxk

t−1)Θ),Σw

)
, (3.3.2b)

p(yk
t | xk

t ) = N (Cxk
t , Rv). (3.3.2c)

where

Σw ,
{

(G)†
}>

(Qω)−1(G)† (3.3.3)

is the process noise variance updated to account for the process noise gain. The

Moore-Penrose pseudoinverse

(G)† , (G>G)−1G>
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is used in case the noise gain G is a singular matrix. Taking the logarithm of (3.3.1)

leads to the following expression for the log likelihood

logL(Θ) =
K∑

k=1

[
p(xk

0) +

Tk∑
t=1

log p(xk
t | xk

t−1,Θ) +

Tk∑
t=1

log p(yk
t | xk

t )

]
, (3.3.4)

where only the term corresponding to (3.3.2b) is a function of Θ, which significantly

simplifies the computation of the M-step:

Q(Θ, Θ̂i) = E
[

logL(Θ)
]

= E
[ K∑

k=1

Tk∑
t=1

log p(xk
t | xk

t−1,Θ) | Y, Θ̂i
]

+ c, (3.3.5)

where c includes all terms that are independent of Θ.

3.3.2 The forecasting step

In the linear Gaussian case, both the expectation and maximisation step can be

solved analytically, as the Q-function becomes the quadratic form and depends only

on the first two central moments of the state xk
t and the unknown parameters Θ. In

case of non-linear dynamics considered here, a tractable approximation is required

for both steps of the algorithm. There exists a multitude of non-linear state es-

timators that can be utilised in the expectations step. Further complications arise

during the maximisation step, since the maximised Q-function may depend on high

order moments of the state (in case of B-spline basis) or involve non-polynomial

dependencies (in case of Gaussian basis). Explicit computation of (3.3.2b) becomes

infeasible.

Numerical optimisation of the log likelihood may be computationally expensive

and difficult to implement. Possible workarounds for this problem range from basis

function decomposition of the dynamics f(xk
t ) and the observer h(xk

t ) [137] to using

partial M-steps that increase the lower bound. Such algorithms as the Expectation

Conditional Maximisation (ECM) algorithm [138] utilise this principle, but are liable

to slow convergence as each CM step only guarantees to increase the log likelihood

but does not maximise it [139]. Another solution is to approximate the non-linear

function by the first-order Taylor series expansion, similar to the one employed in

the EKF.

This work circumvents the problem of numerical optimisation by introducing

another layer of hidden states that are algebraically linked to the expected state of

the neutrophil at each time

sk
t = Cx̂k

t|Tk , t = 0, . . . ,Tk, k = 1, . . . ,K, (3.3.6)

so the augmented state sk
t can be interpreted as a forecast of the cell position that is

utilised in computing the gradient of basis functions φ(sk
t ) = µ∇B(sx, sy) as shown
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in (3.2.10). Similar state augmentation is utilised in [140] to generate the forecast

distribution in on-line particle filtering. In this case a simpler, mean field type ap-

proximation is used to replace the inherent stochasticity of the dynamical process

with determinism [141], [142]: each forecast position sk
t behaves as an independent

real-valued constant random variable that is deterministically linked to the state.

The added state conforms to the degenerate distribution with the following probab-

ility mass function (pmf ):

p(sk
t | xk

t ) =

1, sk
t = Cx̂k

t ,

0 otherwise,
(3.3.7)

which ensures that the complete-data likelihood function only takes non-zero value

when sk
t is equal to the expected position of the cell. In the mean field approach,

independence of sk
t means that the joint conditional pdf is factorisable

p(xk
t , s

k
t | xk

t−1, s
k
t−1) = p(sk

t | xk
t )p(xk

t | xk
t−1, s

k
t−1), (3.3.8)

so the addition of the forecasting step does not affect the cost function of the estim-

ation algorithm.

Since the entire observation set Y is available prior to the estimation procedure,

cell states can be estimated via one of the non-linear smoothers discussed in §2.5.4.

An additional, “forecasting” step (3.3.6) may be implemented after all expected state

values have been obtained. The basis grid gradient is then calculated in the forecast

positions, φk
t = φ(sk

t ). For the convenience of parameter estimation discussed in the

following subsection, after the expectation and forecasting steps are complete the

state transition model may be written in the following form

xk
t = Axk

t−1 +Bφ(sk
t−1) +Gwk

t−1, (3.3.9)

meaning that the pdf of the state transition is approximated as

p(xk
t | xk

t−1,Θ) ≈p(xk
t | xk

t−1, s
k
t−1,Θ) =

=N
(
(G)†(xk

t −Axk
t−1 −Bϕ(sk

t−1)Θ),Σw

)
.

(3.3.10)

Hence, as long as the sequence of forecast cell positions S =
{
{sk

t }
Tk
t=1

}K

k=1
is obtained

prior to the maximisation step, the Q-function can be approximated as

Q(Θ, Θ̂i) ≈ E
[ K∑

k=1

Tk∑
t=1

log p(xk
t | xk

t−1, s
k
t−1,Θ)

]
+ c. (3.3.11)

The estimation procedure is then simplified to cycle between three steps:

E-step: X | Θ̂i−1, (S)

Forecast: S | X
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M-step: Θ̂i | X ,S.

The intermediate step effectively separates the variables and reduces the maximisa-

tion step to optimising (3.3.11) in the closed form.

3.3.3 The maximisation step

Given the augmented state introduced above, the gradient of basis functions can be

computed for all cell positions prior to the maximisation step

ϕk
t = ϕ(sk

t ), t = 1, . . . ,Tk, k = 1, . . . ,K, (3.3.13)

making the Q-function a quadratic form of the state that can be maximised analyt-

ically.

Lemma 3.3.1: Suppose that all constituent terms of (3.3.11) are estimated dur-

ing the expectation step. Then the new MLE of the unknown parameter vector is

given by

Θ̂i+1 =

( K∑
k=1

Tk∑
t=1

(ϕk
t−1)>Σ−1

w ϕk
t−1

)−1

×

×
[ K∑

k=1

Tk∑
t=1

(ϕk
t−1)>Σ−1

w

(
EΘ̂i

[
xk

t

]
−AEΘ̂i

[
xk

t−1

] )]
,

(3.3.14)

where

EΘ̂i

[
xk

t−1

]
, E

[
xk

t−1 | yk, Θ̂i
]
, (3.3.15a)

EΘ̂i

[
xk

t

]
, E

[
xk

t | yk, Θ̂i
]

(3.3.15b)

are expectations of cell full states at two subsequent times conditioned on the observed

cell tracks and the current parameter estimate Θ̂i.

Proof. See Appendix A. �

Note that because of the model structure and the adopted approximation, the

maximisation step relies only on the first moments of the conditional hidden state

distribution at two subsequent time instances. These expectations, along with aug-

mented states sk
t , are computed during the expectation step.

3.3.4 The expectation step

As has been shown in §2.4.6, the state space modelling framework allows one to

substitute evaluation of the full Q-function with computation of state expectations
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Algorithm 3.2 Extended forward-backward algorithm

Input: Measurement vector y1:T; the dynamics function, f(x,u,w); the measurement function h(x,u,v);

state noise variance, Qw; measurement noise variance, Rv ; initial state estimate, x̄0; and initial covari-

ance, P0.

Output: Sequence of smoothed state estimates, {x̂t|T}Tt=1; and the corresponding covariances, {Pt|T}Tt=1.

1: Forward recursion: Initialise with x̄0 and P0;

2: for t← 1,T do

3: Compute the Jacobian of the dynamics function Ft = ∂f
∂x
|x=x̂t|t ;

4: Compute the Jacobian of the measurement function Ht = ∂h
∂x
|x=x̂t|t ;

5: Run the standard Kalman filter (see Algorithm 2.1) recursion with Ft as a transition matrix and Ht

as an observation matrix;

6: Backward recursion: Initialise with x̄T|T and PT|T obtained in the forward pass;

7: end for

8: for t← T−1, 1 do

9: Compute the Jacobian of the dynamics function Ft = ∂f
∂x
|x=x̂t|t

10: Run the RTS smoother recursion with Ft as a transition matrix as described in Algorithm 2.3.

11: end for

conditioned on the current parameter estimates and available measurements. The

maximisation step presented above requires estimation of cell states at two successive

sampling periods:

EΘ̂i

[
xk

t−1

]
= E

[
xk

t−1 | yk, Θ̂i
]

= x̂k
t−1|Tk , (3.3.16)

EΘ̂i

[
xk

t

]
= E

[
xk

t | yk, Θ̂i
]

= x̂k
t|Tk , (3.3.17)

where x̂k
t−1|Tk

and x̂k
t|Tk

are produced by the smoothing algorithm. Since the set

of full tracks Y is available a priori, the state space model described by (3.3.9) and

(3.2.1b) is used in a fixed-interval smoother to recover full cell states. This chapter

utilises the forward-backward scheme in the form of the RTS smoother.

Recall that the basis functions depend on the current position sk
t of the k-th

cell at time t, which makes the matrix φk
t a non-linear function of the cell hidden

state, rendering the SSM non-linear as well. As has been discussed in the previous

chapter, there exist a number of approximate methods for non-linear state estim-

ation. Two most popular algorithms for non-linear estimation combine either the

extended Kalman filter (EKF) and extended RTS smoother (ERTS), as summarised

for one object (K = 1) in Algorithm 3.2, or the unscented Kalman filter (UKF) and

unscented RTS smoother (URTS), as shown in the Algorithm 3.3. Alternatively,

one can utilise the forecast cell positions computed on the previous iteration of the

EM algorithm, and estimate full cell states using the linear RTS smoother.

After the state estimation procedure with one of the smoothing algorithms, the

forecast cell positions can be easily obtained by passing state estimates through the

noiseless measurement equation

ŝk
t = Cx̂k

t , t = 1, . . . ,Tk, k = 1, . . . ,K .
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Algorithm 3.3 Unscented forward-backward algorithm

Input: Measurement vector y1:T; the dynamics function, f(x,u,w); the measurement function h(x,u,v);

state noise variance, Qw; measurement noise variance, Rv ; initial state estimate, x̄0; and initial covari-

ance, P0; state vector length, n; filter parameters, λ, α, β.

Output: Sequence of smoothed state estimates, {x̂t|T}Tt=1; and their covariances, {Pt|T}Tt=1.

1: Forward recursion: initialise with x̄0 and P0;

2: for t← 1,T do

3: Generate 2n sigma points x̃t−1 representative of the distribution N(x̂t−1|t−1,Pt−1|t−1):

X̃0,t−1 = x̂t−1|t−1,

X̃k,t−1 = x̂t−1|t−1 +
(√

(n+ λ)
√

Pt−1|t−1

)
, k = 1, . . . , n;

X̃k,t−1 = x̂t−1|t−1 +
(√

(n+ λ)
√

Pt−1|t−1

)
, k = n+ 1, . . . , 2n;

where n is the size of the state vector xt|t.

4: Compute the weights:

Wm
0 =

λ

n+ λ
;

W c
0 =

λ

n+ λ
+ (1− α2 + β);

Wm
k = W c

k =
1

2(n+ λ)
, k = 1, . . . , 2n;

5: Propagate the sigma-points through the dynamics to get X̃k,t = f(X̃k,t−1,ut−1), k = 0, . . . , 2n;

6: Compute prior mean x̂t|t−1 =
2n∑
k=0

Wm
k X̃k,t;

7: Compute prior covariance Pt|t−1 =
2n∑
k=0

W c
k (X̃k,t − x̂t|t−1)(X̃k,t − x̂t|t−1)> +Qw;

8: Predict the measurement Ỹk,t =
2n∑
k=0

Wm
k h(X̃k,t,ut);

9: Compute residual covariance St =
2n∑
k=0

W c
k (Ỹk,t − yt)(Ỹk,t − yt)> +Rv ;

10: Compute cross-covariance Pt,t|t−1 =
2n∑
k=0

W c
k (Ỹk,t − yt)(X̃k,t − x̂t|t−1)>;

11: Compute Kalman gain Kt = Pt,t|t−1(St)−1;

12: Complete the regular measurement update to acquire x̂t|t and Pt|t as described in Algorithm 2.1;

13: end for

14: Backward recursion: initialise with x̂T|T and PT|T obtained during the forward pass;

15: for t← T−1, 1 do

16: Augment the state and covariance:

x̃t|t =

[
x̂t|t

0

]
; P̃t|t =

[
Pt|t 0

0 Qw

]
.

17: Repeat steps 3-7 for the augmented state x̃t|t to obtain X̃t +1|t, ˆ̃xt +1|t, and Pt +1|t;

18: Compute cross-covariance Pt +1,t|t =
2n∑
k=0

W c
k (X̃k,t − ˆ̃xt|t)(X̃k,t +1 − ˆ̃xt +1|t)

>;

19: Compute the smoother gain Jt = Pt +1,t|t
(
Pt +1|t

)−1
;

20: Obtain the smoothed state ˆ̃xt|T = ˆ̃xt|t + Jt
(

ˆ̃xt +1|T − ˆ̃xt +1|t
)
;

21: Obtain the smoothed covariance Pt|T = Pt|TJt
(
Pt +1|T − Pt +1|t

)
J>t ;

22: end for

Each of the computed forecast positions is then utilised to approximate the matrix

ϕk
t necessary for the maximisation step using equation (3.3.13).



70 3.3. Chemoattractant concentration inference

3.3.5 The estimation algorithm

The EM algorithm is initialised by calculating values of φk
t for all measured cell

positions (ϕ̂k
t )0 = ϕ(yk

t ). These matrices are then utilised in the estimation of full

cell states with the assumption that there is no field acting on moving cells, i.e.

all magnitude coefficients are set equal to zero Θ = 0. The maximisation step is

performed afterwards to obtain the initial parameter estimate Θ̂0. Then the three

steps described above are repeated until convergence as follows:

i) E-step: compute the expected values of the cell state sk
t , t = 1, . . . ,Tk, k =

1, . . . ,K via the URTS algorithm.

ii) Forecasting: compute forecasts of object positions, sk
t , and approximate gradi-

ents of the basis function grid in those positions, ϕ̂k
t , for t = 0, . . . ,Tk, k =

1, . . . ,K.

iii) M-step: maximise the Q-function in closed form.

Assessing convergence of the likelihood function comes at a high computational cost

as it requires computation of all terms included in the constant in (3.3.11) at each

iteration of the algorithm. Instead, the following stopping criteria is used

∆Θi =
(Θi −Θi−1)>(Θi −Θi−1)

(Θi)>Θi
< ε. (3.3.20)

The rate of convergence is highly dependent on the selection of the initial parameter

vector estimate. As an EM solution, the algorithm described in this section is liable

to converge to local maxima of the likelihood function. It must also be noted that

the shape of the estimated chemoattractant field is only unique up to an additive

constant since it is not the magnitude of the field that drives cell migration but its

gradient.

In addition to the risk of converging to a neighbourhood of a local maxima,

single-point estimation obscures the fact that there may exist other local max-

ima solutions worth investigating. As discussed in §2.4.2, the most straightforward

way to assess the uncertainty of the ML estimator is via confidence regions. In

incomplete-data problems it is impossible to compute the expected Fisher informa-

tion as part of the information is inevitably lost to the missing data, but there exists

a number of techniques to recover the observed information.

The observed Fisher information is not a direct by-product of the EM algorithm,

but it conforms to the missing data principle [143]:

J (Θ | Y) = Ic(Θ,Y)− Im(Θ,Y), (3.3.21)

where the first term on the right-hand side denotes the expected complete-data

information and can be calculated as the expectation of the negative Hessian of the
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complete log-likelihood function

Ic(Θ | Y) = −E
[
∂2 logL(Θ)

∂Θ2
| Y,Θ

]
, (3.3.22)

and the second term denotes the quantity that can be interpreted as missing inform-

ation that is lost as a consequence of observing only Y

Im(Θ | Y) = −E
[
∂2 log g(X | Y,Θ)

∂Θ2
| Y,Θ

]
, (3.3.23)

where g(X | Y,Θ) = p(Z | Θ)/p(Y | Θ) is the conditional density of Z given Y.

It is shown in [144] that both terms in (3.3.21) can be computed directly on the

last iteration of the EM algorithm as the covariance of scores

Im(Θ | Y) = covΘ

{
E
[
∂ logL(Θ)

∂Θ
| Y
]}

. (3.3.24)

Then the observed information is calculated as follows

J (Θ | Y) = −E
[
∂2 logL(Θ)

∂Θ2
| Y,Θ

]
− E

[
∂ logL(Θ)

∂Θ

∂ logL(Θ)>

∂Θ
| Y,Θ

]
+

+

{
E
[
∂ logL(Θ)

∂Θ
| Y,Θ

]
E
[
∂ logL(Θ)

∂Θ
| Y,Θ

]}
,

(3.3.25)

where the last term will be equal to zero if the EM reached the stationary point on

the final iteration. The reciprocal of the observed information is fully defines the

orientation and size of Nb-dimensional confidence ellipsoid [145]. The trace of this

reciprocal is used in the thesis as a measure of total variance of the obtained MLE.

In order to provide a unified metric for all experiments, the trace is divided by the

dimension of Θ:

Var(Θ̂) = tr
(
(J (Θ | Y))−1

)
/Nb.

3.4 Results

Given several data sets with different types of injury, we can see how the neutrophil

recruitment process adjusts depending on the varying scale of infectious threats.

The proposed estimation algorithm is used to process all datasets described above

with similar parameters summarised in Table 3.1. The time step for each experiment

is equal to the time increment between two frames in the video microscopy, and the

measurement noise covariance matches the variance of the tracking module in NIS

Elements software. The rest of the parameters used for this analysis are selected

arbitrarily. All datasets from the same experiment are processed with the same

tuning parameters.
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Parameter Normal

injury

Mild

injury

Nick

injury

Severe

injury

T 2 min 1.5 min 0.5 min 2 min

ρ 0.3 0.3 0.2 0.3

Qw 2 I2 1 I2 0.5 I2 2 I2
Rv 2 I2 2 I2 2 I2 2 I2

Table 3.1: Tuning parameters of the dynamical model.

In the dataset with the normal injury, a grid of 5× 4 basis functions has been

created to parametrise the environment for the normal injury experiment, with the

knot sequence generated automatically given the dimensions of the fish image. In

datasets with other injury types, cell populations are usually confined to a smaller

area in the fish body, therefore a sparser, 4 × 4 grid was used to approximate the

environment for those datasets.

3.4.1 Simulation examples

The proposed estimation framework has been tested on the Monte Carlo simulation

of tracking data generated by multiple objects migrating in response to the artificial

potential field. The field is modelled using a 4×4 grid of overlapping tensor product

cubic B-splines B(sx, sy) placed on the map of size 1000×1000 arbitrary units (a.u.).

The magnitude of the h-th B-spline is defined by a corresponding coefficient θh. The

vector of magnitude coefficients is assumed to be unknown for purposes of testing

the algorithm. The gradient of the modelled field is illustrated in Figure 3.4. In

(a) (b)

Figure 3.4: The potential field modelled with a 4 × 4 grid of tensor product B-splines.

(a) Basis functions at each column are assigned with equal scaling parameters. (b)

The gradient of the resultant modelled field. The colour bar corresponds to the

magnitude of the constructed field.



3. Chemoattractant field inference: homogeneous cell behavior 73

each simulation, 100 tracks were generated by integrating the discrete-time SMM

for 100 minutes with time increment T set to 1 min. Other tuning parameters have

been selected to match the normal injury set (see Table 3.1).

Performance of the estimation framework is assessed by processing the simu-

lation data with the assumption that all tuning parameters are fully known. An

unscented forward-backward algorithm is used during the expectation step. The

gradient of the mean estimated potential field that is shown in Figure 3.5a matches

that of the modelled field, but the magnitude of the field is higher. This is the result

of the initial choice of the parameter estimate Θ̂0, as the bias of the mean field (see

Figure 3.5b) is nearly invariant spatially and can be accounted for in an additive

constant discussed above.

(a) Gradient of the estimated field (b) Bias of the mean estimate

Figure 3.5: Field estimation results obtained from 100 MC simulations via the EM al-

gorithm employing URTS smoother durint the expectation step. (a) The gradient

of the potential field constructed with the mean parameter estimates, ∇U(Θ̂). The

colour bar corresponds to the magnitude of the constructed field. (b) Total bias

between the true field and the mean estimate, U(Θtrue) − U(Θ̂). The colour bar

corresponds to the magnitude of the total bias.

The statistics of the parameter estimation results obtained using the correct

model parameters are presented in Table 3.2. Since the scaling parameter values

have varying magnitude it is more reasonable to compute the percentage (%-) bias

and the coefficient of variance (CV) for accessing the unbiasedness and the precision

of individual MLEs. The %-bias computed as the percentage ratio of the total bias

to the true parameter value:

%-bias =
θ − θ̂
θ
× 100%.

The CV is the percentage ratio of standard deviation to the mean estimate:

CV =
σθ̂
θ̂
× 100%.
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Parameter True Mean est. St. dev. CV (%) %-bias

θ1 10 32.680 20.878 63.887 226.801

θ2 10 27.049 18.949 70.053 170.491

θ3 10 27.485 18.533 67.430 174.847

θ4 10 31.057 19.341 62.276 210.573

θ5 100 129.034 12.608 9.771 29.034

θ6 100 125.105 10.199 8.153 25.105

θ7 100 123.581 10.487 8.486 23.581

θ8 100 130.831 13.357 10.209 30.831

θ9 190 216.838 9.232 4.258 14.125

θ10 190 213.117 6.607 3.100 12.167

θ11 190 213.588 6.963 3.260 12.415

θ12 190 215.734 8.391 3.890 13.544

θ13 290 325.707 9.721 2.985 12.313

θ14 290 326.660 8.960 2.743 12.641

θ15 290 325.258 8.219 2.527 12.158

θ16 290 326.411 10.219 3.131 12.556

Table 3.2: Statistics of the parameter MLEs obtained via the EM algorithm employing

URTS state estimation over 100 simulations.

The standard deviation is consistent for all elements of the parameter vector,

meaning that all MLEs have similar dispersion from the mean value. Small deviation

also indicates that the estimator is consistent over all MC simulations. Since the

estimation was performed with correct tuning parameters, precision of the MLEs

is high compared to the absolute parameter values (as indicated by small CV).

The highest variance coefficient and %-bias are observed for the scaling parameters

corresponding to B-splines at the left hand side of the map (θ1 − θ4). In this case

such results can be explained by the choose of initial parameter values rather than

poor estimation performance: recall absolute bias observed in Figure 3.5b is spatially

constant, meaning that the %-bias will be large for small scaling coefficients.

While in this simulation study it is possible to compute statistics of the para-

meter MLEs from the Monte Carlo sample, for real-life applications of the ML estim-

ator the measure of estimation uncertainty is provided by the reciprocal of Fisher

information. In order to provide a point of reference for the estimation results

presented in the following subsections, measures of the normalised total variance for

the MLE vector obtained from a single Monte Carlo realisation of the tracking data

are presented in Tables 3.3 and 3.4. Table 3.4 demonstrates the effect of the process
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Qw 0.5 I2 2 I2 4 I2 8 I2

Var(Θ̂)ERTS 41.315 165.147 330.235 660.349

Var(Θ̂)URTS 39.098 156.083 270.976 416.914

Table 3.3: Normalised total variance of the estimation results obtained using the model

with varying process noise parameters. The measurement noise covariance is fixed

at Rv = 2 I2.

Rv 0.5 I2 2 I2 4 I2 8 I2

Var(Θ̂)ERTS 165.058 165.147 165.198 165.256

Var(Θ̂)URTS 155.975 156.083 156.157 156.358

Table 3.4: Normalised total variance of the estimation results obtained using the model

with varying measurement noise parameters. The process noise covariance is fixed

at Qw = 2 I2.

noise covariance on the dispersion of the parameters. Even though the smaller noise

covariance Qw = 0.5 I2 does not match the “true” setting, it results into a smaller

scatter of the parameter MLEs. This may be explained by the fact that only the

first moment of the cell state is explicitly involved in the computation of parameter

estimates, and a smaller noise variance would result into a smoother mean estimate

of the state while preserving the general trend of the true state. Higher process

noises lead to the distortion of mean state estimates which in turn contribute to the

higher dispersion of MLEs. Table 3.4, on the other hand, shows that the mismatch

in the model of the measurement noise does not contribute to increase the estimate

total variance. Note that the choice of the non-linear smoother employed in the ex-

pectation step also has no significant effect on the parameter estimation. However,

it is worth investigating the accuracy of cell state estimation in more detail.

Performance of the state estimation stage is demonstrated on an example sim-

ulated track processed with ERTS and URTS smoothers on the last iteration of the

EM algorithm in Figures 3.6 and 3.7, respectively. Mean values and ±3σ confidence

regions are presented for both filtering and smoothing procedures. While the confid-

ence region for the extended framework is narrower than that of the unscented one,

the UKF performs better than the EKF in the forward recursion, in particular with

respect to the hidden states. Initial estimation errors of the EKF are corrected

on the smoothing stage, but the URTS does produces similar results as UKF. The

latter can be explained by accurate state estimation in the forward recursion of the

unscented framework that does not leave much room for improvement.

Additional tests performed on the simulated tracking data have revealed that

the ERTS framework is also sensitive to the tuning parameters Qw and Rv, while
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Figure 3.6: State estimation results obained from the ERTS smoother for a simulated

track. The true state ( ), filtered state ( ) and its ±3σ tube ( ), smoothed

state ( ) and its ±3σ tube ( ). Noise covariances used in the smoother match

the parameters used to simulate the track: Qw = 2 I2, Rv = 2 I2.
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Figure 3.7: State estimation results obained from the URTS smoother for a simulated

track. The true state ( ), filtered state ( ) and its ±3σ tube ( ), smoothed

state ( ) and its ±3σ tube ( ). Noise covariances used in the smoother match

the parameters used to simulate the track: Qw = 2 I2, Rv = 2 I2.

the URTS scheme provides similar estimates regardless of the noise level, which in-

dicates that in is more robust to the mismatch in the model of uncertainty. This

is demonstrated in the plots of the Root Mean Square Error (RMSE) of state es-
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timates for the example track processed with varying noise covariances (see Figures

3.8, 3.9). For both extended and unscented algorithms the mismatch in the pro-

cess noise model has stronger effect on the estimation accuracy, particularly for the

hidden states vx, vy. Notably, the extended filter has larger RMSE even when the

estimation is performed with the correct levels of noise, but the accuracy is signi-

ficantly improved in the smoother. It can be concluded from Figure 3.9 that the

unscented filter copes better with the measurement noise mismatch: RMSE quickly

stabilises on the same level as that of the filter with correct parameters. Since the

true process and measurement noises of the dynamical system describing the mi-

grating neutrophil are unknown, the URTS smoother is employed in the estimation

framework while processing the experimental data.

3.4.2 Estimation results: cell velocities

First, the performance of various state estimation algorithms discussed in this chapter

is compared in application to the neutrophil tracking data. Neutrophil tracks are

processed with the EM algorithm employs different non-linear methods during the

expectation step. The estimated states for one cell track in Fish 1 from the normal

injury set are presented in Figure 3.10. It can be seen that the results obtained

via the URTS smoother and the ERTS smoother are similar, potentially because

the non-linearity is present only in the control input term, and the dynamical model

reflects the fact that cell positions are measured with small observation errors. How-

ever, the extended smoother tends to smooth out small abrupt changes in direction,

attributing them to the random fluctuation. The estimation framework based on

the unscented transform attributes these “turns” to the dynamics and is generally

more sensitive to small changes in velocity. The field estimation results presented

in the following subsections are obtained by the framework that utilises the URTS

algorithm.

The zebrafish in majority of the experiments are mounted on the microscope in

such way so that the wound is aligned with the y-axis. This means that the directed

migration of neutrophils towards the wound should be characterised by both median

and mean shift in the horizontal velocity component. Example histograms of velocity

components for various wound types are illustrated in Figure 3.11. Small but evident

shift in the mean of the vx component has been observed for all data sets, although

there is little difference between the velocity shift caused by the normal wound and

that caused by the severe wound. However, in zebrafish with severe injury the net

mean shift in velocity along the X-axis is more notable compared to the normal

injury data, but 25% of of all cells have vx component close to zero, which brings

the mean value to that of the zebrafish with normal injury. On the other hand, there

is no positive median shift for any of the wound types. The observed results can be
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Figure 3.8: RMSEs of the state estimates obtained from EKF and ERTS with varying

noise covariances. RMSE of filtered ( ) and smoothed ( ) estimates obtained

with Qw = 2 I2, Rv = 2 I2. RMSE of filtered ( ) and smoothed ( ) estimates

obtained with Qw = 4 I2, Rv = 2 I2. RMSE of filtered ( ) and smoothed ( )

estimates obtained with Qw = 2 I2, Rv = 4 I2.
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Figure 3.9: RMSEs of the state estimates obtained from UKF and URTS with varying

noise covariances. RMSE of filtered ( ) and smoothed ( ) estimates obtained

with Qw = 2 I2, Rv = 2 I2. RMSE of filtered ( ) and smoothed ( ) estimates

obtained with Qw = 4 I2, Rv = 2 I2. RMSE of filtered ( ) and smoothed ( )

estimates obtained with Qw = 2 I2, Rv = 4 I2.

interpreted as follows: while neutrophils increase their velocity while moving towards

the wound, they are still equally likely to be migrating towards and away from the
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Figure 3.10: Comparison of state estimation results obtained from non-linear state estim-

ation algorithms. (a) Observed cell track in the zebrafish larva. (b) The observed

cell track ( ), cell positions estimated by EKF ( ), estimated by ERTS ( ),

estimated by UKF ( ), and estimated by URTS ( ). (c)-(d) Estimates of cell

coordinates. (e)-(f) Estimates of velocity components.

wound site. This means that the initial assumption that all cells are driven by the

ChA environment is falsified for the in vivo neutrophil data. The vy component has

similar distributions for all wound types, though the severe injury data has smaller

variance.
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Figure 3.11: The example distributions of cell velocities estimated with UKF-URTS al-

gorithm. (a) Fish 6 from the normal injury set. (b) Fish 1 from the mild injury

set. (c) Fish 1 from the severe injury set.

3.4.3 Estimation results: normal injury

The estimated chemoattractant fields for the six zebrafish larvae from the first set

are presented in Figure 3.12. Each result demonstrates the correlation between

the total number of cells passing through the area and the estimated magnitude

of the chemoattractant field in that area. The presented estimation results are

adjusted post-estimation so that the smallest concentration is equal to zero. It

can be seen that the estimated fields for Fish 1, 2, 3 and 6 conform to the well-

established hypothesis that the chemoattractant is uniformly distributed along the

injury with the highest concentration located at the injury site. Fish 4 and 5,

however, demonstrate a different type of neutrophil behaviour. Contrary to the
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(a) Fish 1 (b) Fish 2 (c) Fish 3

(d) Fish 4 (e) Fish 5 (f) Fish 6

Figure 3.12: Inferred chemoattractant fields for the normal injury data. All colour bars

are normalised to scale 0-600 a.u..

expected pattern, cells “swarm” towards the lower region of the injury site in Fish

4 and to the upper region in Fish 5. The swarming may be a response to the self-

generated gradient recently observed in [146], that may be modulated predominantly

by the LTB41 mediator released by neutrophils themselves. In Fish 4, for which the

lowest number of cell tracks is available, the magnitude of the inferred field peaks

in the area with the most persistent cell tracks. The estimation results for Fish 4

and Fish 5 indicate that the future modelling and estimation work on population

dynamics should take into account cell-to-cell interaction.

3.4.4 Estimation results: mild and severe injury

Results of the environment inference for other types of injury are summarised in

Figure 3.13. In case of mild injury, the magnitude of chemoattractant concentrations

ranges between 0 and 300 a.u., which is almost half of the range for several larva with

normal injury. This is consistent with the fact that smaller wound releases fewer

pro-inflammatory mediators which, in turn, attract fewer neutrophils. Sparsity of

the neutrophil tracking data leads to sharp spatial changes in the estimated field that

contradict the diffusive nature chemoattractants (see Figure 3.13b), and to unusually

low concentration outliers near the wound site (see Figure 3.13f). This is the result

of the environment decomposition with basis functions that have local support, the

1 Leukotriene B4 is a lipid mediator secreted by various types of leukocytes and identified as a

chemotactic agent.
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(a) Mild injury. Fish 1 (b) Mild injury. Fish 2 (c) Mild injury. Fish 3

(d) Tail fin nick. Fish 1 (e) Tail fin nick. Fish 2 (f) Tail fin nick. Fish 3

(g) Severe injury. Fish 1 (h) Severe injury. Fish 2

Figure 3.13: Inferred chemoattractant field for various wound types. (a-c) The mild

injury. Colour bars are normalised to scale 0-300 a.u.. (d-f) The tail fin nick injury.

Colour bars are normalised to scale 0-100 a.u.. (g-h) The severe injury. Colour

bars are normalised to scale 0-400 a.u..

effect of which will be further investigated in Chapter 4. Despite individual outliers

in the MLEs of scaling parameters, the framework successfully identifies the highest

concentration in the tail fin nick injury without any additional information about the

field shape. This proves that the selected environment model enhances the flexibility

of the estimation framework.

The estimation results for the severe injury dataset also demonstrate smaller

relative difference between the ChA concentration near the wound and at the fish

body. This can be explained by the fact that the larger wound leads to the in-

tensified generation of the pro-inflammatory mediators that rapidly diffuse away

from the wound. Since the model parameter estimates obtained from the developed

framework are only unique up to an additive constant, the magnitude of the global

concentration field may be much higher but will have a reduced slope in comparison

with the normal injury. The observed cell behaviour appears to support this claim:

instead of rushing towards the wound, a large proportion of the activated neutrophils
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remain in the fish body throughout the entire observation period. At the same time,

the neutrophil presence is far more abundant than in the normal injury examples,

which allows us to speculate that the recruited immune cells encounter the bacterial

threat much deeper in the fish body. A clear outlier in the scaling parameter MLEs

can be seen in Figure 3.13h at the area above the circulation. Similarly to the mild

injury datasets, the magnitude of that area has not been estimated correctly because

there are no cell tracks located there.

3.5 Discussion

This chapter presents a quantitative framework for the inference of global chemoat-

tractant driving neutrophil recruitment that is normally not measured in in vivo

experiments. Although based on several simplifying assumptions about the nature

of cell-environment interaction, the proposed framework is the first attempt to solve

the problems of the ChA field inference and the cell velocity estimation simultan-

eously without requiring any prior knowledge about the field shape.

The estimation procedure is derived from the classical EM algorithm with ad-

dition of an intermediate step that computes “forecasts” of cell positions that are

utilised to solve the maximisation step in closed form. Such approximation is rather

ad hoc, but its use is justified in this application because the noise-to-signal ratio

in video microscopy of cell centroids is very small, meaning that the estimates of

the cell positions obtained from the RTS smoother do not change significantly with

iterations of the EM algorithm. Since the basis used for the decomposition of the

potential field is a polynomial function of the cell position, it is technically possible

to compute all expectations involved in the B-spline decomposition using moment

generating functions for multivariate random variables [147]. However, explicit com-

putation of high-order moments for every time point in the dataset will increase the

computational complexity of the algorithm. Instead, several alternative solutions

may be explored in the future, such as linearisation of the SSM via the first order

Taylor series expansion or numerical optimisation of the expected log-likelihood.

The estimation results confirm the consensus that the highest concentration of

the chemoattractant is located near the wound and show that the inference frame-

work is able to identify complex concentration patterns, such as ones generated by

the tail fin nick injury. The statistical analysis of the data from different wound

types has revealed net bias in cell velocity along the X-axis, which in most exper-

iments corresponds to the direction towards the injury. This indicates that even

though some cells do not appear to maintain the persistent direction of their move-

ment, on average they are drifting towards the wound site. The biased random walk

can therefore be considered as an appropriate mathematical model of neutrophil
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chemotaxis. However, lack of median shift in velocity distributions indicates that

describing the dynamics of each neutrophil in the observed population by a single

SSM implies that the all recruited cells uniformly respond to the environment. In

reality, neutrophils are known to alternate between the directed motion to random

motion that may be directed away from the wound. It is speculated in the literature

that these “switches” are the result of neutrophil desensitisation that allows them

discriminate between various sources of chemoattractant [148]. This complex beha-

viour requires a more detailed mathematical description. Furthermore, the model

considered here has a pre-defined structure, where all dynamic matrices are known.

Including the estimation of model parameters such as process noise variance σw

and the rate of the reversion to mean ρ will improve the flexibility of the developed

framework.

3.6 Summary

This chapter introduces an approximate Maximum Likelihood framework for the

chemoattractant environment inference from neutrophil migration patterns observed

in vivo. A novel dynamical model of neutrophil migration is proposed that builds

on the potential field model of interaction between migrating cells and the hidden

underlying environment. The global hidden environment is viewed as an inverse

potential field in which the cells move up the gradient. It is parametrised via the

decomposition with cardinal tensor product B-splines, such that the scaling para-

meters of individual B-splines are the unknown parameters of the model. Based on

the assumption that cell movement is driven exclusively by the field gradient, the

ML framework utilises the proposed model to process cell positions tracked in vivo

to infer the chemoattractant environment and cell velocities simultaneously.

The performance of the framework and state estimation algorithms is demon-

strated on MC simulation examples. Then the framework is applied to several

datasets of neutrophil recruitment to the tail injury site observed in a transgenic

zebrafish larvae. The estimation results conform with the established theory that

neutrophils are driven up the ChA gradient to the wound. The environment infer-

ence results for several types of tail fin injury demonstrate that the steepness of the

chemoattractant concentration field differs for wounds of varying severity, however

it is impossible to determine whether this change in perception is the result of in-

hibited neutrophil sensitivity or the change in the concentration itself. Results for

all experiments are obtained with the same field parametrisation and support the

claim that the framework does not require any a priori knowledge about the shape

of the environment.

A number of extensions for the proposed solution can be considered. For in-



3. Chemoattractant field inference: homogeneous cell behavior 85

stance, changes in the behaviour of an individual migrating cell fall beyond the

scope of the linear state space representation. The model of neutrophil dynamics

considered here implies that all cells are responding to the environment all the time.

A more complex hybrid model can be employed to represent experimentally observed

heterogeneous behaviour of migrating neutrophils, although lack of exact methods

for state estimation of hybrid systems would significantly increase the complexity

of the resulting algorithm. The following chapter aims to develop the environment

estimation framework that would employ such a model.
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4 An approximate Maximum

Likelihood framework for

estimating the environment

driving objects with hybrid

dynamics

The inference solution proposed in the previous chapter utilises the state-space for-

mulation of individual object dynamics to recover information about the hidden

global environment. A similar problem is often solved as a part of simultaneous loc-

alisation and mapping (SLAM), monitoring of population migration, or in detecting

the anomalies in crowd monitoring. In most of these applications, the observed ob-

ject behaviour is prone to abrupt changes that can be caused by sensing faults (in

robotics and SLAM), behavioural anomalies (in crowd or population monitoring),

or physiological limitations (in migrating cells). For example, a robot solving the

SLAM problem may have different sensors and therefore different regimes of inter-

action with its surroundings. In population monitoring, an individual that moves in

a direction different from the majority may be characterised as someone who is not

interacting with an artificial underlying environment. Finally, a migrating cell has

a limited number of receptors that react to the chemoattractant gradient and may

stop interacting with the environment once the receptor capacity has been saturated.

Considering a simple SSM in these cases may lead to errors in the environment

estimation. This chapter considers a more complex model of individual object dy-

namics that can account for heterogeneous behaviour of the observed objects. This

is achieved by introducing a discrete Markov chain with finite number of states that

correspond to the possible regimes of object-environment interaction. The resultant

model is a jump Markov system (JMS) that utilises the parametrisation of the

hidden environment introduced in §3.2.3, so the unknown parameters incorporated

in the input term of the JMS. The field inference problem is then solved via the EM

algorithm extended to the case of a hybrid system. Several simulation examples are
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presented to assess the performance of the estimation framework.

4.1 Background

The problem of tracking objects interacting with their environment is extensively

studied in a variety of fields. Knowledge of object surroundings can be used to

improve accuracy of target tracking [149], or to impose constraints in robotics path

planning [150], [151]. A common assumption considered in literature is that a model

of the environment is available and its parameters are known. However, a number of

real-life applications pose an inverse problem of estimating the environment based

on observed movement patters of multiple manoeuvring objects. An example of

such problem is presented in the previous chapter, where characterisation of cells

migrating under the influence of global stimuli requires simultaneous state estimation

of multiple tracked cells and learning model of the environment that governs cell

movement.

This chapter considers the problem of environment learning conditioned on the

tracking results, that is conceptually similar to the ones addressed in [128] and

[152]. The former adopts a deterministic approach, while the latter proposes com-

putationally expensive Bayesian solution based on Rao-Blackwellized particle filter.

Both solutions rely heavily on the assumption that dynamics of moving objects is

homogeneous, while this chapter deals with a new class of problems where object

dynamics varies in time. This chapter introduces an estimation framework that em-

ploys a hybrid model that can better reflect the heterogeneous dynamics of moving

objects.

Recall a Jump Markov system described by a finite set of hypothesised state

space models (SSMs) M = {M1,M2, ...MNm}, where Nm denotes the total number

of models. The model in effect is chosen based on the discrete-valued state mt that

takes one of the values in the set M:

xt = A(mt)xt−1 +B(mt)ut−1 +G(mt)wt−1 (4.1.1a)

yt = C(mt)xt + vt, (4.1.1b)

where xt ∈ IRp×1 is the full state of the system, ut ∈ IRq×1 is an input vec-

tor, and yt ∈ IRr×1, where r < p, is state observation at time t. The state

noise wt ∼ N (0, Qw(mt)), Qw(mt) ∈ IRp×p and the measurement noise vt ∼
N (0, Rv(mt)), Rυ ∈ IRr×r are independent Gaussian sequences. A(mt), B(mt),

G(mt), and C(mt), Qw(mt), Rv(mt) are the system matrices of the model in effect

mt ∈ M. In the interest of introduced notation the models hereafter are referred

to simply as modes. Jump systems are often employed to represent abrupt changes

in the system dynamics that can be caused, amongst other reasons, by compon-
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ent failures, measurement faults [153], or sudden changes in the environment [118].

Markovian switching is also relevant in modelling biological systems such as cells

that transition through distinct states [154].

The framework developed here deals with multiple discrete-time JMSs interact-

ing with the time-invariant attractive environment. The aim is to estimate paramet-

ers of the environment model using knowledge about how it influences objects moving

within it. A parametrised model of the hidden environment is obtained via decom-

position with overlapping basis functions as shown in Chapter 3. This approach

allows the building of complex shapes with a simple grid of identical functions, and

thus can be employed in a wide range of applications with varying settings. In the

adopted potential field paradigm, influence of the environment on a moving object is

incorporated as the input term uk
t of each hypothesised model in set M. This results

into a JMS that remains linear with respect to unknown parameters regardless of

the mode, which allows one to pose the task of potential function inference as a

problem of JMS parameter estimation.

The problem of parameter estimation of JMS is thought to be considered first in

[155], where the truncated ML framework is proposed for estimation of the unknown

transition probabilities Another EM solution that relies on variational approxima-

tion is suggested in [117], but it only considers switching between the measurement

models, while the state transition model remains mode-independent. Following the

development of simulation-based methods, various versions of the EM algorithm

have been introduced, each utilizing different approximations of the hidden data

distribution. For example, parameter learning of JMSs using particle filters is con-

sidered in [156]. Other off-line and on-line estimation algorithms based on SMC

methods are presented in [157] and [158], respectively.

This chapter is concerned with the case where object states are only partially

observed and state sequence of the governing Markov chain is unknown. If the full set

of observations is available, both the state sequence and parameters can be estimated

off-line within the ML framework via the EM algorithm. However, the joint state-

parameter estimation of JMS introduces a challenging problem: intractability of

posterior probabilities of hidden data prevents the computation exact state estimates

[72]. The most popular approach to state estimation of JMSs is to approximate a

mixture model with a single Gaussian at each iteration via the IMM algorithm [121],

[159] principle of which in forward time has been previously described in §2.5.5. The

backward time recursion of the IMM RTS-type smoother utilised in the developed

framework is described in §4.3.3.

The contribution of this chapter is a novel approximate Maximum Likelihood

framework that infers a spatially varying hidden global environment from the ob-

served movement of objects interacting with it in different modes. An off-line EM
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algorithm for a set of JMSs is derived in order to separate joint state-parameter

estimation problem into to two coupled tasks and solve them iteratively. An ap-

proximate estimation of JMS states is performed during the expectation step in

the form of the IMM smoother, which also provides mode probabilities and mode-

conditioned state estimates that are instrumental in parameter learning. These

quantities are exploited during the maximisation step to compute MLEs of environ-

ment model parameters in closed form. The inference framework takes into account

all possible mode sequences of each moving object by constructing the log-likelihood

function as a weighted sum of mode-conditioned probabilities. No prior knowledge

about the environment is required, however, if available, it can be incorporated at

the initialisation stage.

4.2 The problem statement

The formalised state-space model considered here consists of four components: a

set of SSMs for object dynamics as defined in equation (4.1.1a), a model describing

the observation process of object positions in the form (4.1.1b), a Markov chain for

modelling mode transitions, and a parametrised model for the environment in which

the objects move.

Consider K objects whose dynamics is described by a JMS composed of Nm

SSMs

xk
t = A(mk

t )xk
t−1 +B(mk

t−1)uk
t +G(mk

t )wk
t−1 (4.2.1a)

yk
t = Cxk

t + vk
t , (4.2.1b)

where the state xk
t consists of the spatial position and velocity projections on two

axes

xk
t = [sx, sy, vx, vy]> ,

and where the control input vector is defined as the gradient of the hidden environ-

ment at the current position of the cell

uk
t = uk

t (sx, sy) = µ∇U(sx, sy). (4.2.2)

where µ is the chemoatactic sensitivity coefficient arbitrarily set to one. Similarly

with the previous chapter, moving objects are influenced by the global spatially

varying environment acting as an attractive potential field. Decomposition with

bivariate tensor product cubic B-splines provides a parametrised model of the field

U(sx, sy) = B(sx, sy)Θ =

Nb∑
h=1

β4
h(sx, sy)θh, (4.2.3)
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where β4
h(sx, sy) denotes a bivariate tensor product cubic B-spline at position (sx, sy),

and θh is a corresponding scaling parameter that defines its magnitude. This rep-

resentation results in each candidate SSM being a linear function of the parameter

vector

xk
t = A(mk

t )xk
t−1 +B(mk

t )φ(sx, sy)Θ +G(mk
t )wk

t−1 (4.2.4a)

yk
t = Cxk

t + vk
t , (4.2.4b)

where φ(sx, sy) = µ∇B(sx, sy) describes the gradient of superposition of basis func-

tions at the current cell location. Consistently with §3.2.3, the matrices in the

control input term denote the following

∇B(sx, sy) =

∂β1(sx,sy)
∂sx

∂β2(sx,sy)
∂sx

. . .
∂βh(sx,sy)

∂sx
. . .

∂βNb (sx,sy)

∂sx
∂β1(sx,sy)

∂sy

∂β2(sx,sy)
∂sy

. . .
∂βh(sx,sy)

∂sy
. . .

∂βNb (sx,sy)

∂sy

 , (4.2.5)

Θ = [θ1, θ2, . . . , θh, . . . , θNb ]
> . (4.2.6)

The model of an individual object considered in this chapter is defined by the

following assumptions.

Assumption 4.2.1: The mode transition process is left-continuous, i.e. the effect

of model mk
t +1 starts at time t+.

Assumption 4.2.2: The initial state of the k-th object xk
0 ∼ N (x̂k

0,P
k
0 ) is inde-

pendent from wk
t and vk

t for all t.

Assumption 4.2.3: The model parameters λ are known

λ , {A(M j), B(M j), G(M j), Q(M j), C,R,

Π,Φ, x̂k
0,P

k
0 ∀ k ∈ K},

(4.2.7)

where Π and Φ are initial and transition probability matrices, respectively.

Assumption 4.2.4: The observation process is mode-independent, i.e measure-

ment matrix C is not a function of the discrete state.

The DAG illustrating casual relationships between states, modes, and observa-

tions under the adopted assumptions is presented in Figure 4.1. Transition between

the modes is governed by a discrete-time finite homogeneous Markov chain with

initial probabilities Π = {πj ≥ 0}Nmj=1. The evolution of the given JMS is fully

characterised by the following quantities:

• Mode transition probability matrix Φ = {φlj ≥ 0}Nml,j=1 regulates the switching

between states of Markov chain

φlj(m
k
t ) , P (mk

t = M j |mk
t−1 = M l), (4.2.8)

where M j ,M l ∈M.
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State x1 x2 xt−1 xt xT−1 xT

y1 y2 yt−1 yt yT−1 yTObservation

m1 m2 mt−1 mt
mT−1 mTMode

. . . . . .

. . .

. . .
. . .

. . .

Figure 4.1: A DAG of the JMS considered in this chapter illustrates conditional depend-

ence between variables. The observation yt depends only on the state xt, while

state update is conditioned by the current system mode mt and the previous state

xt−1. Note that in the system (4.2.1b) this relation is reflected in mode-independent

measurement parameters C(mt) = C = const, Rv(mt) = Rv = const.

• Probability distribution Ψ = {ψj(xk
t )}Nmj=1 of arriving at state xk

t is conditioned

on the previous state xk
t−1, and mode mk

t

ψj(x
k
t ) , p(xk

t | xk
t−1,m

k
t = M j ,Θ). (4.2.9)

• Emission probability distribution Γ = {γj(yk
t )}Nmj=1 of observing yk

t is condi-

tioned on the current state

γj(y
k
t ) , p(yk

t | xk
t ). (4.2.10)

For each object whose dynamics is described by equation (4.2.1a) the state xk
t

is partially observed and the mode mk
t is unobserved. Therefore, the hidden data

set includes full sequences of all states and modes {X ,M}. A set of observations

Y = {yk}Kk=1 is available for K objects.

Given the model defined above, the ML estimation of environment model para-

meters relies on distributions (4.2.8)-(4.2.10). For derivation of the EM-based es-

timation algorithm we consider the following estimation problems:

• Discrete-valued state estimation, where the probability of each mode in the set

M is computed given parameters Θ and the full set of observations Y.

• Continuous-valued state estimation, where each hidden state in the set X is

estimated given parameters Θ and the full set of observations Y.

• Parameter inference, where unknown parameters Θ are estimated given the

complete data set Z = {Y,X ,M}.

The first two objectives are coupled and should be solved simultaneously prior to

the parameter inference.
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4.3 The estimation framework

In the EM algorithm, MLEs of unknown parameters can be obtained by maximising

the log-likelihood function of the complete data set Z. For the system of interest

the log-likelihood function is given by

logL(Θ) = log p(M,X ,Y | Θ), (4.3.1)

where Y is the incomplete data and where sets M and X constitute the hidden

data. One can obtain the lower bound on logL(Θ) by introducing the marginal

distribution of the hidden data

q(M,X ) , p(M,X | Y, Θ̂i) > 0,

where Θ̂i is the current parameter estimate [117]. Then (4.3.1) takes the following

form

logL(Θ) = log

∫
M,X

q(M,X )
p(M,X ,Y | Θ)

q(M,X )
dM,X . (4.3.2)

Using Jensen’s inequality (B.2) one can establish

logL(Θ) ≥
∫
M,X

q(M,X ) log
p(M,X ,Y | Θ)

q(M,X )
d(M,X ). (4.3.3)

Regroup terms:

logL(Θ) ≥
∫
M,X

q(M,X ) log p(M,X ,Y | Θ)d(M,X )

−
∫
M,X

q(M,X ) log q(M,X )d(M,X ),

(4.3.4)

where the second term is not a function of Θ and can be disregarded on the maxim-

isation step. The first term defines the Q-function, the lower bound of log-likelihood

that must be evaluated

Q(Θ, Θ̂i) = EM,X
[

log p(Y,X ,M | Θ) | Y, Θ̂i
]
, (4.3.5)

where E
[
·
]

denotes the expected value of the function. In case of a hybrid system,

the lower bound is intractable because the number of possible mode sequences grows

exponentially with time. A way to circumvent this problem is to approximate (4.3.5)

using the law of iterated expectations defined in Appendix B.1:

Q(Θ, Θ̂i) = EM|Y,Θ̂i
[
EX|M,Y,Θ̂i log p(Y,X ,M | Θ) | Y, Θ̂i

]
, (4.3.6)

where the inner expectation is over the continuous-valued state conditioned on the

mode sequence, and the outer expectation is over the mode sequence conditioned

on the observation set [160], [161]. Equation (4.3.6) constitutes the expectation

step of the algorithm. MLEs of unknown parameters are then obtained through the

maximisation of computed expectation:

Θ̂i = arg max
Θ
Q(Θ, Θ̂i−1). (4.3.7)

The two steps are iterated until convergence.



94 4.3. The estimation framework

4.3.1 The likelihood function

For the model described above there exists a complete data set Z = {M,X ,Y} with

joint probability density across all sampling points for K objects given by

p(Z | Θ) =

K∏
k=1

[
πkp(x

k
0 |mk

0)

Tk∏
t=1

p(mk
t |mk

t−1)×

×
Tk∏
t=1

p(xk
t | xk

t−1,m
k
t ,Θ)

Tk∏
t=1

Tk∏
t=1

p(yk
t | xk

t )

]
,

(4.3.8)

where all individual pdf s are defined in the section above. Because of the specific

model structure, only the state update pdf depends on the unknown parameter

vector, which significantly simplifies evaluation of the expected log likelihood.

Lemma 4.3.1: Suppose assumptions 4.2.1-4.2.4 hold, then the Q-function for K

JMSs satisfies

Q(Θ, Θ̂i) =
K∑

k=1

Tk∑
t=1

Nm∑
j=1

µk,j
t E

[
log p(xk

t | xk
t−1,m

k
t ,Θ) |mk

t ,y
k
t , Θ̂

i
]
, (4.3.9)

where µk,j
t denotes the mode association probability of the k-th object at time t con-

ditioned on the observation sequence for the given object yk

µk,j
t , P(mk

t = M j | yk,Θ) ≥ 0. (4.3.10)

Proof. Expanding the lower bound (4.3.6) for each moving object gives a superpos-

ition of simpler individual pdf s

Qk(Θ, Θ̂i) =
∑
mk

∫
xk

q(mk,xk) log p(mk,xk,yk)dxk, (4.3.11)

where the joint marginal distribution of the hidden data for an individual object is

described by

q(mk,xk) = p(mk,xk | yk, Θ̂i) (4.3.12)

and where the sum
∑

mk

[
·
]

is over the mode sequence and the integral
∫
xk

[
·
]

is over the state sequence of the k-th object. Then the lower bound of the joint

log-likelihood function for K objects is a superposition of individual Q-functions

(4.3.11):

Q(Θ, Θ̂i) =
K∑

k=1

Qk(Θ, Θ̂i) =
K∑

k=1

[∑
mk

∫
xk

q(mk,xk) log p(mk,xk,yk)dxk
]
. (4.3.13)
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From substituting the complete data pdf in (4.3.13) by (4.3.8) arises the fol-

lowing expression

Q(Θ, Θ̂i) =
K∑

k=1

[∑
mk

∫
xk

{
q(mk,xk) log πj

}
dxk+

+
∑
mk

∫
xk

{
q(mk,xk) logψj(x

k
0)
}
dxk +

∑
mk

∫
xk

{
q(mk,xk)

Tk∑
t=1

logϕlj(m
k
t )
}
dxk+

+
∑
mk

∫
xk

{
q(mk,xk)

Tk∑
t=1

logψj(x
k
t )
}
dxk +

∑
mk

∫
xk

{
q(mk,xk)

Tk∑
t=1

log γj(y
k
t )
}
dxk

]
,

(4.3.14)

Marginalising all unused variables in the hidden data pdf renders

Q(Θ, Θ̂i) =

K∑
k=1

[∑
mk

0

{
q(mk

0) log πj

}
+
∑
mk

0

∫
xk

0

{
q(xk

0,m
k
0) logψj(x

k
0)
}
dxk

0+

+

Tk∑
t=1

∑
mk

t

∑
mk

t−1

{
q(mk

t ,m
k
t−1) logϕlj(m

k
t )
}

+

Tk∑
t=1

∫
xk

t

{
q(xk

t ) log γj(y
k
t )
}
dxk

t +

+

Tk∑
t=1

∑
mk

t

∫
xk

t

∫
xk

t−1

{
q(xk

t ,x
k
t−1,m

k
t ) logψj(x

k
t )
}
dxk

tdx
k
t−1

]
,

(4.3.15)

where q(·) = p(· | yk, Θ̂i) denotes the joint marginalised pdf of hidden variables.

Given the definition of probability distributions (4.2.8)-(4.2.10) for the given system,

only one term is a function of unknown parameters. Substituting the state update

probability with (4.2.9) and expanding summation over the mode index leads to the

Q-function in the following form

Q(Θ, Θ̂i) =
K∑

k=1

Tk∑
t=1

Nm∑
j=1

∫
xk

t

∫
xk

t−1

{
q(xk

t ,x
k
t−1,m

k
t )×

× log p(xk
t | xk

t−1,m
k
t ,Θ) |mk

t Θ)
}
dxk

tdx
k
t−1 + c,

(4.3.16)

where c denotes the sum of all terms that are independent of Θ. The joint probability

density of hidden data can be partitioned as

q(xk
t ,x

k
t−1,m

k
t ) = p(xk

t ,x
k
t−1,m

k
t | yk, Θ̂i) =

= µk,j
t p(xk

t ,x
k
t−1 |mk

t ,y
k, Θ̂i),

(4.3.17)

Noting that the mode association probability (4.3.10) is not a function of x, we can

rearrange terms in (4.3.16) as follows

Q(Θ, Θ̂i) =
K∑

k=1

Tk∑
t=1

Nm∑
j=1

µk,j
t

∫
xk

t

∫
xk

t−1

{
log p(xk

t | xk
t−1,m

k
t ,Θ) |mk

t ,Θ)×

×p(xk
t ,x

k
t−1 |mk

t ,y
k, Θ̂i)

}
dxk

tdx
k
t−1 + c.

(4.3.18)
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The expression (4.3.18) conforms with the expectation of a distribution of two con-

tinuous random variables with a given joint probability density is defined in B.2 and

renders a simplified form of the Q-function (4.3.9), completing the proof. �

4.3.2 The maximisation step

Suppose that all constituent terms of the joint probability density function are com-

puted during the E-step.

Assumption 4.3.1: The control input term ϕk
t−1 is approximated prior to the

maximisation step ∀ t, k by computing position forecasts as explained in §3.3.2.

The above assumption makes use of the batch structure of the proposed al-

gorithm and will be addressend in §4.3.4. Then (4.3.9) becomes a deterministic

function of the parameter vector Θ, and an algebraic solution can be obtained.

Lemma 4.3.2: The MLE of the unknown parameter vector Θ̂i+1 that maximises

the Q-function is given by

Θ̂i+1 =

(
K∑

k=1

Tk∑
t=1

Nm∑
j=1

µk,j
t

{
(ϕk

t−1)>(Bj)>Σj
ωB

jϕk
t−1

})−1

×

×
K∑

k=1

Tk∑
t=1

Nm∑
j=1

µk,j
t

{
(ϕk

t−1)>(Bj)>Σj
ωE
[
xk,j

t

]
−

−(ϕk
t−1)>(Bj)>Σj

ωA
jE
[
xk

t−1

]}
(4.3.19)

where

Σj
ω ,

{
(Gj)†

}>
(Qjω)−1(Gj)†, (4.3.20)

Emk
t =Mj

[
xk

t−1

]
, E

[
xk

t−1 |mk
t = M j ,yk, Θ̂i

]
, (4.3.21)

Emk
t =Mj

[
xk,j

t

]
, E

[
xk

t |mk
t = M j ,yk, Θ̂i

]
. (4.3.22)

Proof. See Appendix A. �

4.3.3 The expectation step

Maximisation of the Q-function in the form (4.3.9) requires the calculation of mode

associated probabilities, µk,j
t , j = 1, . . . , Nm, and conditional expectations of system

state at two successive steps, Emk
t =Mj

[
xk

t−1

]
and Emk

t =Mj

[
xk

t

]
. Adopted repres-

entation of the object dynamics is suitable for the state estimation via multiple

model algorithms discussed in §2.5.5. Here the desired quantities are obtained by

running the IMM filter for the forward-time recursion and the IMM smoother for

the backward-time recursion. The filtering algorithm has been described in detail in
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§2.5.5 , and the smoothing procedure for the k-th object is summarised in Algorithm

4.1.

Assumption 4.2.1 implies independence of xk
t−1 and mk

t . Then the expectations

defined by (4.3.21) and (4.3.22) correspond to the following

E
[
xk

t−1 |mk
t = M j ,yk, Θ̂i

]
= E

[
xk

t−1 | yk, Θ̂i
]

= x̂k,s
t−1|Tk

; (4.3.23)

E
[
xk

t |mk
t = M j ,yk, Θ̂i

]
= x̂k,j

t|Tk
, (4.3.24)

where x̂k,s
t−1|Tk

denotes the smoothed state estimate, calculated at the final step of

the Algorithm 4.1, and x̂k,j
t|Tk

is a mode-conditioned smoothed estimate, produced

by the j-th mode-matched smoother.

Algorithm 4.1 Backward recursion of the IMM RTS smoother

Input: Sequence of mode-conditioned state estimates, x̂j0:T, and their covariances, ; sequence of mode

probabilities produced by IMM filter, µj0:T; hypothesised models, M; initial model probabilities, Π;

mode transition probabilities, Φ.

Output: Sequence of smoothed state estimates, x̂0:T|T, and their covariances, P0:T|T; sequence of mode-

conditioned smoothed state estimates, x̂j0:T, and their covariances, P j0:T; estimated model probabilities,

µ̂0:T.

1: Initialise the algorithm with µj
T|T, x̂

j
T|T,P

j
T|T j = 1, . . . , Nm;

2: for t← T−1, 0 do

3: for j ← 1, Nm do

4: Calculate mixing probabilities µ0j
t +1|T = 1

dj
φijµ

j
t +1|T, where dj =

Nm∑
i=1

φijµ
i
t +1|T;

5: Compute mixed initial conditions:

x̂0j
t +1|T =

Nm∑
j=1

µ0j
t +1|Tx̂j

t +1|T

P 0j
t +1|T =

Nm∑
j=1

µ0j
t +1|T

{
P 0j

t +1|T + (x̂j
t +1|T − x̂0j

t +1|T)(x̂j
t +1|T − x̂0j

t +1|T)>
}

;

6: Run RTS smoother for a model Mj to produce x̂s,j
t|T,P j

t|T;

7: end for

8: for j ← 1, Nm do

9: for i← 1, Nm do

10: Compute mode-conditioned likelihoods Li|j
t +1|T = N (x̂s,i

t +1|T − x̂j
t +1|t, S

j,i);

11: end for

12: Compute smoothed mode likelihood Lj
t +1|T =

Nm∑
i=1

φijL
i|j
t +1|T;

13: Update mode probability µs,j
t|T = 1

d
Lj

t +1|Tµ
j
t|t, where d =

Nm∑
j=1
Lj

t +1|Tµ
j
t|t;

14: end for

15: Merge mode-conditioned states and covariances:

x̂t|T =

Nm∑
j=1

µj
t|Tx̂j

t|T

Pt|T =

Nm∑
j=1

µj
t|T

{
P j

t|T + (x̂j
t|T − x̂t|T)(x̂j

t|T − x̂t|T)>
}

;

16: end for
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The implemented IMM algorithm is an RTS-type smoother [126] that does not

require that the dynamical model to be reversible in time (unlike the smoother in

[123]) and is applicable both linear and non-linear models using either unscented

transform or Taylor expansion.

4.3.4 The approximate algorithm

The structure of the environment model adopted in this chapter leads to the hybrid

system that is non-linear with respect to the object state. Thus, alongside with

merging of mode histories, two additional approximations are utilised to ensure a

computationally feasible solution to the problem of joint state-environment estima-

tion. The first approximation is to employ banks of unscented filters and smoothers

within the IMM framework during the expectation step. The second approximation

is similar to the one introduced in §3.3.2. It is employed to separate the variables in

the Q-function prior to the maximisation step by computing “forecasts” the object

positions at each time sk
t = [sx, sy]> , t = 1, . . . ,Tk, k = 1, . . . ,K. The forecast is

treated as an independent variable that is algebraically linked to its expected state

sk
t = Cx̂k

t|Tk . (4.3.27)

Because of the batch nature of the algorithm, all forecasts can be computed after

the expectation step. The gradient of the basis grid is then calculated in the forecast

positions

ϕ̂k
t = ϕ(sk

t ), (4.3.28)

leading to the analytical solution of the maximisation problem that relies only on

the first central moments of the object state at two subsequent time instances.

The resulting algorithm is initialised with computing the gradient of the basis

function grid for each measured object position ϕ̂k
t = ϕ(yk

t ) and setting Θ̂ = 0.

Then, the initial velocity estimates are recovered from the observation set Y by

applying the unscented RTS smoother to the model structure that accounts for

the object-environment interaction. The initial parameter estimate Θ̂0 is obtained

using the LS-type algorithm under the assumption that all objects were driven by

the environment. The framework then iterates between the expectation, forecasting,

and maximisation steps until the parameter convergence is achieved:

i) E-step: compute the expected values of the continuous-valued state sk
t and

mode probabilities µk,j
t , j = 1, . . . , Nm, t = 1, . . . ,Tk, k = 1, . . . ,K via IMM-

RTS algorithm.

ii) Forecasting: compute forecasts of object positions, sk
t , and approximate gradi-

ents of the basis function grid in those positions, ϕ̂k
t , for t = 0, . . . ,Tk, k =

1, . . . ,K.
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iii) M-step: maximise the Q-function in closed form.

As an ML estimator, the developed algorithm arrives at a point estimate of

unknown parameters in a finite number of iterations but does not guarantee that

the estimate corresponds to the global maximum of the log-likelihood.

The computational complexity of each iteration is linear with respect to the

number of objects and the size of the observation set. By using the IMM framework

we ensure that the expectation step will be of order O(K Tk(Nm + Nm)) at most,

which is beneficial when dealing with large set of objects or long time series for

individual objects. The maximisation step is of the same complexity as the LS

algorithm, O(N3
b ). The runtime of overall algorithm increases linearly with each

iteration.

4.4 Simulation examples

The performance of the proposed algorithm is tested through Monte Carlo simulation

of several scenarios inspired by various real-life phenomena of objects interacting

with their environment. Similarly with the previous chapter, the acting environment

is modelled using a 4×4 grid of overlapping tensor product cubic B-splines B(sx, sy)

placed on the map of size 1000×1000 arbitrary units (a.u.). The scaling coefficients

and the modelled field have been previously shown in Figure 3.4. Each scenario is

simulated a hundred times with different realisations of noise and with the same field

parameters. The field drives the motion of a hundred objects whose trajectories are

modelled with time increment of 1 min for 100 minutes or until the object leaves

the field of influence. Dynamics of each object are modelled by a JMS with a known

transition probability matrix. It is assumed that at each time an object can be in

one of two modes:

• M1 : the driven mode in which the object responds to the acting environment;

• M2 : the desensitized mode in which an object does not perceive the envir-

onment, i.e. the input gain associated with the acting environment is set to

zero.

The dynamics of the k-th object moving in the field are described by the system

(4.1.1) with a state vector

xk
t = [sx, sy, vx, vy]> ,

where sx, sy denote the spatial position and vx, vy denote velocity projections on

corresponding axes.

The following SSM matrices are used in the model:

A1 = A2 =

[
I2 T I2
O2 I2 − TρI2

]
; (4.4.1a)
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B1 =
[
O2 T I2

]>
; (4.4.1b)

B2 =
[
O2 O2

]>
, (4.4.1c)

G1 = G2 =
[
O2 T I2

]>
, (4.4.1d)

C =
[
I2 O2

]
, (4.4.1e)

where T =1 min is the time increment and I2 is the identity matrix and O2 is a zero

matrix of size 2× 2. The rate of the reversion to mean has been set to ρ = 0.3.

The process noise covariances are set to Q1
w = 2.5I2 a.u.2/min4 for the field-

driven mode, and Q2
w = 2I2 a.u.2/min4 for the desensitized mode, where I2 is a

2 × 2 identity matrix. The measurement noise variance is set to Rv = I2 a.u.2.

Initial velocity estimates are arbitrarily assumed to be zero with covariance P0 = I2
a.u.2/min4. Initial mode probabilities for the IMM filter are set to π =

[
0.5, 0.5

]
to ensure complete uncertainty of the initially correct model. The mode transition

probability matrix is set to [
φ11 φ12

φ21 φ22

]
=

[
0.9 0.1

0.1 0.9

]
. (4.4.2)

It must be noted that the model parameters have been selected arbitrarily with

the purpose to demonstrate the performance of the proposed estimation framework.

Several cases of object movement patterns are generated using the hybrid model

and the “true” underlying potential function in the interest of testing the estimation

framework (see Figure 4.2). The case with uniformly distributed starting points is

used to demonstrate the capabilities of the framework and analyse the estimator

uncertainty. The rest of the examples are used to assess the quality of the global

environment inference from the localised tracking data with presence of various

model mismatches.

4.4.1 Experiment I: uniformly distributed starting points

This case of data generation is inspired by a phenomenon of directed cell migration

in global chemotactic field. Recall the data described in the previous chapter, where

cells tracks can start anywhere on the image as neutrophils enter the tissue from the

circulation at multiple locations. The estimation is performed with the assumption

that the model structure is known for both cell modes. Two aspects of the estimation

procedure are assessed here: the probabilistic statement about the mode of each

moving object, and the quality of the field parameter inference.

The results of the IMM estimator from the final iteration of the EM algorithm

are presented in Figure 4.3. Shown are the twenty tracks from one Monte-Carlo
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(a) (b)

(c) (d)

Figure 4.2: Examples of migration patterns generated by the interaction of N hybrid

systems with the modelled potential field, where N = 100. Colour bars correspond

to the magnitude of the constructed field. The starting points for each track is

marked by the red asterisk (∗). (a) Uniformly distributed starting points. (b) All

objects start at the position sx = 450 a.u., sy = 450 a.u.. (c) All objects start at

positions with sx = 300 a.u.. (d) All objects start at positions with sx = 450 a.u.

realisation plotted on top of the gradient of the estimated field. It can be seen that

both IMM filter and smoother correctly identify that the segments of tracks that

are aligned with the gradient direction and maintain persistence are more likely to

have been generated by the object in the responsive mode M1.

The estimation framework is used to process 100 Monte Carlo realisations of

the migrating pattern to obtain a sample of 100 parameter vector estimates Θ̂. This

sample is then used to compute the statistics of the MLE distribution. The gradient

of the potential field constructed with mean estimates of the scaling parameters

is presented in Figure 4.3c. While the gradient field appears to be similar to the

modelled one, the magnitude of the total bias between the true field and the mean

estimate grows towards the right side of the map (see Figure 4.3d), meaning that

most of the mean estimates overstate the value of the parameter. The bias in scaling

parameter estimates can be caused by two factors. Firstly, the IMM algorithm
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(a) IMM filter output (b) IMM smoother output

(c) Gradient of the estimated field (d) Bias of the mean estimate

Figure 4.3: Estimation results for Experiment I. (a)-(b) Example tracks processed by the

IMM algorithm plotted against the gradient of the estimated field from one Monte

Carlo realisation. Each segment of an individual track between the neighbouring

points st−1 and st is colour-coded according to the the probability µk,1
t of an object

being in the responsive mode (M1) at time t. The colour bars correspond to the

probability of an object being in the responsive mode. (c) The gradient of the

potential field constructed with the mean parameter estimates, ∇U(Θ̂). The colour

bar corresponds to the magnitude of the constructed field. (d) Total bias between

the true field and the mean estimate, U(Θtrue)−U(Θ̂). The colour bar corresponds

to the magnitude of the total bias.

utilised for the state estimation of the hybrid system may introduce the bias into the

velocity estimate during the merging stage; secondly, the selected model of object-

parameter interaction incorporates the information about the gradient only and not

the magnitude of the underlying field, meaning that the gradient may be inferred to

have been produced by the field with the same slope as the true one but with either

higher or lower magnitude. The bias of the second type is spatially invariant and

can be eliminated by introducing constraints or prior information about the field.

In Figure 4.3d, however, the total bias is not constant meaning that the slope of the

estimated field is not in full agreement with that of the true field.
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The statistics of the parameter MLEs are presented in Table 4.1. It can be seen

that standard deviations of individual estimates θ5 - θ16 are similar irrespective of

the parameter value. The variability of these MLEs is rather small compared to the

parameter value, meaning that the estimation is consistent from one MC realisation

to another. Both CV and %-bias are the highest for the parameters in the left

corners of the map where the true values of scaling parameters are the smallest (θ1

and θ4). This can be explained by the fact that fewer tracks pass through the outer

area of the potential field, and even those objects whose tracks originate at the left

hand side of the map quickly migrate away from that area along the gradient.

Parameter True Mean est. St. dev. CV (%) %-bias

θ1 10 6.026 58.344 968.264 39.744

θ2 10 8.981 35.181 391.732 10.189

θ3 10 9.000 27.805 308.935 9.997

θ4 10 14.843 29.052 195.729 48.428

θ5 100 114.095 29.795 26.114 14.095

θ6 100 118.349 18.131 15.320 18.349

θ7 100 115.129 17.821 15.479 15.129

θ8 100 120.766 15.990 13.241 20.766

θ9 190 209.359 20.268 9.681 10.189

θ10 190 211.904 13.764 6.495 11.528

θ11 190 210.064 11.689 5.564 12.322

θ12 190 213.411 14.823 6.945 10.873

θ13 290 321.531 21.109 6.565 10.873

θ14 290 327.303 15.010 4.586 12.863

θ15 290 329.106 13.209 4.014 13.485

θ16 290 318.868 15.298 4.798 9.954

Table 4.1: Estimation results for Experiment I over 100 simulations.

The characteristics presented in the table above are computed using the sample

of MLE estimates obtained using the Monte Carlo approach. However, majority of

real-life applications do not allow for repetitive experiments, thus other methods to

assess the estimation uncertainty are often sought. The advantage of the proposed

framework is that it can provide interval estimates of the scaling parameters in the

form of confidence regions (see Figure 4.4). As has been discussed in §2.4.2, the

orientation and the volume of a Nb-dimensional confidence ellipsoid are defined by

the reciprocal of the observed Fisher information that can be computed directly

in the EM algorithm as shown in §4.3.4. The eigenvalues of this matrix indicate

the variability of the parameter estimates along the principal axes. The provided
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Figure 4.4: Example estimation results and confidence regions. The 95% confidence ellips-

oid( ) centred at the mean estimate ( ) changes volume with decreasing number

of experiments but maintains the orientation. The mean estimate is located close

to the true parameter value ( ). The size of the 95% covariance ellipsoid ( ) is

defined by the dispersion of the estimates ( ).

examples clearly demonstrate the correspondence between the volume of the con-

fidence region and the size of the observation set that amounts to the number of

Monte Carlo simulations. While the variance ellipsoid maintains nearly the same

size, the volume of the confidence region decreases dramatically when there is more

data available. In further experiments, the volumes of the 95-% confidence regions

will be compared to assess the variability of the parameter vector MLEs conditioned

on the available tracking data and the selected parametrisation. In addition, the

total variance normalised by the length of the parameter vector is provided as a

unified measure of MLE scatter.

The rate of convergence of the EM algorithm for a hybrid system is impossible

to determine analytically, therefore here it is examined by letting the estimation

algorithm run for 10 iterations. The rate of parameter estimate convergence is

presented on the log scale in Figure 4.5. It can be seen that the convergence threshold

selected for this framework is typically reached within 3-4 iterations.
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Figure 4.5: Parameter estimate convergence for 100 simulations in log scale. The black

line shows the convergence threshold selected for testing the algorithm.

4.4.2 Experiment II: single starting point

This example is relevant to robotics applications where a swarm of robots is de-

ployed at some initial position, as well as to processing some in vitro neutrophil

data obtained from experimental assays where cells are released in to the chemical

environment via a particular entrance. All objects in this scenario enter the poten-

tial field at the same point on the map as shown in Figure 4.2b. The main concern

that may arise in this situation is that all object tracks are confined to a certain

area and do not inform the estimation framework about the potential function in

remote locations on the map. The estimation is performed under the assumption

that all the dynamical matrices are known in order to assess how the localisation

of the tracking data can affect field estimation results, hence the state estimation

results are omitted for this case as they are similar to the previous scenario.

The mean field parameters estimated over 100 realisations of the tracking data

are used to reconstruct the gradient field in Figure 4.6a. The magenta point on

the map indicates the starting position of all objects, sx = 450, sy = 450. The

contour lines show that, apart from the area in the top left corner of the map, the

inferred underlying field is of higher magnitude than the true field. The bias of the

estimated field from the true field is shown in Figure 4.6b. It can be seen that the

bias surface is flat almost everywhere, meaning that the bias in MLEs of θ5–θ16 can

be attributed to the selected initial estimate. On the other hand, the estimate of of

the parameter corresponding to B-spline β4, whose local support is highlighted in

Figure 4.6b, is much further from the true value than the rest of the MLEs. This

can be explained by the fact that there are no object tracks passing through this

area of the map, because the single starting point is located near the centre of the

map. Therefore, no information about the contribution of that area of the field to

the directed migration of the population can be extracted by the proposed inference

framework.
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(a) Gradient of the estimated field (b) Bias of the mean estimate

Figure 4.6: Estimation results for Experiment II. (a) The gradient of the potential field

constructed with the mean parameter estimates, ∇U(Θ̂). The colour bar corres-

ponds to the magnitude of the constructed field. The magenta dot (•) indicates the

starting point of all generated tracks. (b) Total bias between the true field and the

mean estimate, U(Θtrue) − U(Θ̂). The colour bar corresponds to the magnitude of

the total bias.

The statistics of the selected estimates associated with B-splines in different

areas of the map are summarised in Table 4.2. It can be seen that the lack of

tracking information leads to loss of precision and increased bias in MLEs of the

scaling parameters that correspond to the basis functions located in the left hand

side of the map. While the mean estimates of θ1 and θ8 are much closer to the

true value than θ4, their corresponding CV indicate poor estimation precision. This

example reveals the drawback of using the field decomposition with local support

when processing highly localised data. However, despite the bias in individual MLEs,

the inference framework is able to locally reproduce the slope of the potential field

that has been used to generate the object tracks.

Parameter True Mean est. St. dev. CV (%) %-bias

θ1 10 21.140 504.673 2387.372 111.402

θ4 10 -303.403 2937.143 968.056 —

θ8 100 85.6469 227.501 382.385 14.353

θ12 190 253.982 111.009 43.707 33.67

θ16 290 348.453 106.682 30.616 20.156

Table 4.2: Selected estimation results for Experiment II over 100 simulations.
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4.4.3 Experiments III and IV: starting points on the line

Another application that may require simultaneous learning of object behavioural

modes and the environment concerns the development of computer vision systems

that determine the speeding in the traffic flow, or disruption in the crowd flow in

public spaces. The abnormal behaviour in the crowd motion is usually detected as an

individual deviation from the crowd treated as a whole population [162]. However,

this approach requires first creating a sufficient model for the patterns of the crowd

behaviour, and thus only works in situations when the population behaviour is

uniform. While these scenarios are common in motorway traffic control, monitoring

of the pedestrian flow deals with heterogeneous patterns.

In cases of non-uniform population behaviour the abnormality identification

relies on the individual object tracking [163], [164]. For example, detecting an indi-

vidual crossing the road outside of the designated pedestrian pathway using popula-

tion models is hindered by the fact that this ”abnormality” is a common occurrence

and can be identified as a normal pattern during the training process training the

computer vision system. Instead, this problem can be interpreted as a problem of

identifying objects that are not responding to the artificial global environment. The

framework derived here can be used to infer such artificial environment.

The tracking data for these experiments has been generated to replicate the

situations when all objects enter the map from one side. Two cases are considered:

i) all objects enter the map at the area with the smallest magnitude as demonstrated

in Figure 4.2c); ii) all object enter the map at the central area (see Figure 4.2d).

Note that the colour bars are not normalised across two cases in order to highlight

the magnitude of the bias surface for individual experiments.

The estimation results for both scenarios are presented in Figure 4.7. The

gradient of the estimated field in the Experiment III is in good agreement with

the true gradient almost everywhere, though its magnitude is inferred to be lower.

Spatially constant bias in Figure 4.7b is likely the result of the choice of the initial

estimate Θ̂0. The coefficients corresponding to the right column of B-splines are

slightly overstated by the framework but the difference is not significant judging by

the %-bias in Table 4.3. The standard deviation for MLEs of θ13−θ16 is greater than

it is for other coefficients because only a limited number of tracks reaches highlighted

area of local support in the right hand side of the map before terminating after 100

minutes.

When the object tracks originate in the middle of the map, the first column of B-

splines covers the area with a rather limited number of data points (the local support

β1 and β4 is highlighted in Figure 4.7d). Similarly with Experiment II, MLEs of

corresponding scaling coefficients understated the parameter values. However, the
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fact that all object tracks originate in that area is enough to sufficiently decrease

the variance of the MLEs in comparison with the results from Experiment II. This is

evidenced by the reduced CV for θ1 − θ4 in Table 4.4. The rest of the estimates are

unbiased and have small variance, which allows us to conclude that the environment

is estimated with a high degree of accuracy.

(a) Gradient of the estimated field (b) Bias of the mean estimate

(c) Gradient of the estimated field (d) Bias of the mean estimate

Figure 4.7: Estimation results for Experiments III and IV.(a) The gradient of the potential

field constructed with the mean parameter estimates, ∇U(Θ̂). The magenta line(–

) indicates the starting position of the generated tracks at sx = 300 a.u.. (c)

The gradient of the potential field constructed with the mean parameter estimates,

∇U(Θ̂). The magenta (–) line indicates the starting position of the generated tracks

at sx = 450 a.u.. (b,d) Total bias between the true field and the mean estimate,

U(Θtrue)− U(Θ̂). The colour bars correspond to the magnitude of the total bias.

4.4.4 Experiment V: dynamical model mismatch

The simulation examples presented above all rely on the fact that each SSM in the

hybrid system modelling object dynamics is fully known. While this may be the

case with some engineering applications, in life systems and the crowd monitoring,
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Parameter True Mean est. St. dev. CV (%) %-bias

θ1 10 23.903 17.958 75.131 139.024

θ4 10 21.638 19.385 89.586 116.380

θ8 100 118.038 15.335 12.992 18.038

θ13 290 274.599 74.027 26.958 5.311

θ16 290 301.069 63.362 21.046 3.817

Table 4.3: Selected estimation results for Experiment III over 100 simulations.

Parameter True Mean est. St. dev. CV (%) %-bias

θ1 10 -35.767 88.752 248.140 457.670

θ2 10 -30.893 75.748 245.197 408.928

θ3 10 -30.143 79.534 263.856 401.430

θ4 10 -37.000 87.530 236.566 470.003

θ12 190 191.018 19.543 10.231 0.535

θ16 290 288.495 27.647 9.583 0.519

Table 4.4: Selected estimation results for Experiment IV over 100 simulations.

the hybrid model is always an approximation of a true, more complex, dynamical

system. This experiment examines the sensitivity of the estimation framework to

the model mismatch in the object dynamics. The tracks from the experiment III

were processed using a hybrid model that differs from the one used to generate them.

In the estimation algorithm the responsive mode M1 is described by the dynamics

without reversion to mean (ρ = 0). The state transition matrix takes the following

form:

A1 =

[
I2 T I2
O2 I2

]
, (4.4.3)

while the rest of the model parameters remain the same. The estimation results are

presented in Figure 4.8. The IMM estimation results reveal the apparent reason of

poor estimation field estimation results. The IMM framework identifies the objects

moving against the gradient to be in the responsive mode, which results in poor

estimation accuracy of the underlying field. The total bias increases sharply in the

right hand side area of the map where the true field magnitude is the largest.

Statistics of the selected parameter estimates presented in Table 4.5 demon-

strate the severe effect of the dynamical model mismatch on the estimation results.

It can be seen that the standard deviation of all parameters is small in comparison to

previous experiments. In this case it small variance means that the estimation bias

is consistent for all Monte Carlo realisations. The percentage bias is also the highest

compared to previous experiments. This example demonstrates the consequences of
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(a) IMM filter output (b) IMM RTS output

(c) Gradient of the estimated field (d) Bias of the mean estimate

Figure 4.8: Estimation results w for Experiment V. (a)-(b) Example tracks processed

by the IMM algorithm plotted against the gradient of the estimated field from one

Monte Carlo realisation. Each segment of an individual track between the neigh-

bouring points st−1 and st is colour-coded according to the the probability µk,1
t of

an object being in the responsive mode (M1) at time t. The colour bars correspond

to the probability of an object being in the responsive mode. (c) The gradient of

the potential field constructed with the mean parameter estimates, ∇U(Θ̂). The

colour bar corresponds to the magnitude of the constructed field. The magenta line

(–) indicates the starting point of all generated tracks. (d) Total bias between the

true field and the mean estimate, U(Θtrue)− U(Θ̂). The colour bar corresponds to

the magnitude of the total bias.

field estimation with the wrong model structure.

4.4.5 Experiment VI: field model mismatch

One of the advantages of the proposed framework that has been pointed out earlier

is that it does not require any knowledge about the structure of the underlying

potential field. A way to test this claim is to assess the sensitivity of the estimation

framework to the mismatch in the field model structure. This simulation example
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Parameter True Mean est. St. dev. CV (%) %-bias

θ1 10 45.309 8.708 19.218 —

θ4 10 46.170 8.688 18.817 57.935

θ8 100 40.954 6.753 16.488 59.046

θ12 190 35.792 11.009 30.758 81.162

θ16 290 9.523 35.435 372.121 96.716

Table 4.5: Selected estimation results for Experiment V over 100 simulations.

utilises the data from the Experiment I to estimate the hidden field with the grid of

5× 5 B-splines.

The gradient of the field constructed with mean parameter estimates and the

bias of the inferred field from the true field are shown in Figure 4.9. In this case

it is impossible to assess bias of individual parameter estimates, so the bias of the

estimated field is calculated as the difference between the true potential field used

to generate the tracks and the potential function reconstructed with the mean para-

meter estimates. It can be seen that the bias function is nearly flat at the right

hand side of the map, meaning that the slope of the estimated field is in good align-

ment with the true slope. Again, the framework overestimates the magnitude of

the underlying field almost everywhere. The scaling coefficient corresponding to the

B-spline β1 is the only parameter whose value is understated. This is because in the

finer grid of B-splines the local support of and individual B-spline covers a smaller

area than the one in, for example, Experiment I. Limited number of tracks passing

through that area of the map leads to poor estimation accuracy. As can be seen

in Table 4.6, the MLE of θ1 also has the highest variance, while the other estimate

are more precise. As shown in Figure 4.9a, the framework successfully infers the

slope of the underlying field almost everywhere despite the increased dimension of

the parameter vector.

Parameter True Mean est. St. dev. CV (%) %-bias

θ1 — -36.811 314.097 853.270 —

θ5 — 46.584 58.741 126.098 —

θ10 — 114.326 28.955 25.327 —

θ15 — 182.433 27.426 15.033 —

θ20 — 264.317 22.924 8.673 —

θ25 — 269.622 29.283 10.861 —

Table 4.6: Selected estimation results for Experiment VI over 100 simulations.
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(a) Gradient of the estimated field (b) Bias of the mean estimate

Figure 4.9: Estimation results for Experiments VI.(a) The gradient of the potential field

constructed with the mean parameter estimates, ∇U(Θ̂). (b) Total bias between

the true field and the mean estimate, U(Θtrue)−U(Θ̂). The colour bar corresponds

to the magnitude of the total bias.

4.5 Discussion

The potential field method of modelling the cell-environment interaction employed

in this chapter leads to a hybrid model that is non-linear with respect to the object

state. The E-step of the estimation algorithm therefore consists of running the IMM-

URTS smoother to recover full object states at the reduced computational cost.

The attractive feature of the IMM algorithm in the EM context is that it explicitly

computes the probabilities of the object being an each mode at each time, which are

used at weighing coefficients of the corresponding mode pdf. This means that the

framework does not single out the most probable migratory mode and accounts for

the estimation uncertainty that is usually caused by the fact that the true model

of the moving object may be unknown. It must be noted that the price paid for

computational efficiency is the suboptimality of the environment model estimation.

Firstly, the interaction stage of the state estimator may introduce undesired bias in

merged state estimates, especially if interacting state vectors have different lengths.

Secondly, the intermediate step is introduced which involves approximation of object

positions and allows to solve the optimisation problem in closed form. Although

this approximation is considered suitable for the application of interest because of

small noise-to-signal ratio in cell centroid microscopy, alternative approximation

techniques must be considered in the future.

As an alternative to the IMM algorithm, a combination of optimal methods

[165], [166] can be employed to guarantee unbiased estimation at a cost of the in-

creased complexity, which will make the algorithm unsuitable for use with large

data sets. It is also possible to utilise a particle filter instead of running a bank
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of smoothers on each step. An EM scheme that utilises Rao-Blackwellised particle

smoother during the expectation step is proposed in [167] for joint state-parameter

estimation of non-linear JMSs. This scheme is particularly suitable for the inference

problem considered here because Rao-blackwellisation marginalises discrete-valued

states and explicitly computes their probabilities via an HMM filter. However, in

applications where all candidate models approximate only a certain aspect of the

“true” model which is unknown, the number of particles drastically reduces with

each resampling step. This may result in posterior densities being represented by

one particle, a known degeneracy problem of the particle-based methods [116].

The proposed framework utilises the ML method which is inherently a point-

wise estimator. However, the measure of the estimation uncertainty is provided

by the confidence regions of the mean estimate Θ̂. Volumes of the Nb-dimensional

confidence ellipsoids obtained from the data samples of varying size are compared

in Table 4.7. In the table, N denotes the number of Monte Carlo realisations that

were used to compute the mean estimate of the parameter vector. As expected,

Experiment N = 1 N = 10 N = 25 N = 50 N = 100

I 1.88×1026 8.27×1017 6.22×1014 8.71×1012 8.71×109

II 3.64×1032 4.74×1023 3.77×1020 8.39×1017 3.95×1015

III 2.12×1026 2.49×1018 1.67×1015 6.65×1012 5.26×1010

IV 4.09×1026 1.31×1019 8.38×1017 3.36×1013 1.35×1011

V 4.87×1029 5.45×1025 3.55×1022 1.37×1019 5.01×1017

VI 3.11×1042 2.19×1030 2.77×1025 4.33×1021 6.66×1017

Table 4.7: Volumes of confidence regions for N MC simulations.

the estimation from the uniformly distributed tracking data in with full knowledge

of the hybrid model has the smallest level of uncertainty. Restricting the tracking

data to a particular starting line on the map III and IV has no significant impact

on the estimation uncertainty. On the other hand, the effect of “less informative”

localised tracking data in Experiment II is the increased uncertainty of parameter

MLEs. It must be noted that the confidence region for the Experiment VI is of

higher dimension (Nb = 25 compared to Nb = 16 for the other experiments), yet

with the growing number of realisations its size reduces significantly. The uncer-

tainty introduced by the model mismatch in Experiment V becomes evident with

the increasing number of Monte Carlo realisations, as the volumes confidence regions

for a hundred realisations are of similar order despite the difference in dimensions.

A better insight into the estimation uncertainty can be provided by treating the

unknown parameters as random variables. This can be done by introducing a weak

prior for Θ and extending the inference to fully Bayesian framework. The tractable
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joint posterior of JMS states, modes, and unknown parameters in this case can be

obtained via variational approximation [168]: the true posterior p(X ,M,Θ | Y) is

approximated by a parametrised distribution

p̃(X ,M,Θ) := arg min
η

KL [p̃(X ,M,Θ) ‖ p(X ,M,Θ)] ,

where KL [·] denotes Kullback–Leibler divergence between two distributions, an η

denotes the set of hyper parameters that define “closeness” of the approximating

posterior to the true one. The interdependencies of the true joint posterior can be

efficiently decoupled via the mean-field approximation [169], [170]:

p̃(X ,M,Θ) = p̃(X )p̃(M)p̃(Θ),

where p̃(·) denotes a variational posterior distribution of each random variable. Re-

cursive variational Bayes (VB) scheme is similar to the EM algorithm and is often

referred to as variational Bayes Expectation-Maximisation (VBEM) [171], [172], in

which the expectation step is replaced by computing the variational posteriors p̃(X )

and p̃(M) to maximise the lower bound of the log evidence rather than log likelihood

function. Maximisation step then updates p̃(Θ) and η. Several recent studies utilise

VB method for inference of linear JMS, either in parameter learning [117], [173], or

in approximate state estimation [174]. The VB emerges as a versatile alternative

to the IMM which allows to bypass the merging of mode histories by considering

independent distributions of M and X . The comparative analysis in [117] shows

that IMM and VB methods perform equally well in Gaussian case. The authors

speculate that a combination of two methods will provide a robust inference for a

wide class of hybrid models and propose using IMM framework to initialise VBEM

recursion.

The anticipated advantage of extending the present framework to mean-field

VB inference is that it will obviate the need for the forecasting step: while the

classical EM relies only on the first central moments of state pdf s, VBEM considers

full distributions and therefore incorporates the knowledge of higher order moments.

Another attractive feature of variational methods is that, while fully Bayesian, they

are deterministic and computationally cheap in comparison with the sampling-based

methods discussed above. However, additional investigation is required to analyse

the effect of decoupling state and mode of the JSM in variational distributions on

the quality of the environment inference.

Based on the conducted experiments we can conclude that the quality of the

environment inference is affected by the following three factors: the localisation of

the available tracking data, the fit of the selected dynamical model to the data,

and the choice of initial conditions for the estimation framework. Experiments

II, III, and IV assess the estimation accuracy in scenarios where the tracks are
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confined to an area that is smaller than the map approximated by the B-spline grid.

Because the cardinal B-splines used for the environment decomposition have local

support, the lack of tracking data within the support of an individual B-spline leads

to poor estimation accuracy of the corresponding scaling parameter. This is best

demonstrated in Figure 4.6b. The results indicate that the uniform support knot

sequence may not be the best choice in applications with highly localised migration

patterns. A potential solution is to utilise the hierarchical B-spline decomposition

or a combination of coarse and fine basis function grids.

Values of the total variance for the MLE vector obtained from a various number

Monte Carlo realisations are presented in Tables 4.8. The values presented in the

Table are normalised over the size of the unknown parameter vector (Nb) to provide

a unified measure of MLE variance per individual parameter. It can be noted that

the dynamical model mismatch has the most significant effect on the scatter of

the individual MLE, while for other experiments variance values are comparably

similar for the same number of MC simulations. This means that the precision of

the estimation procedure suffers the most from the lack of knowledge of the true

dynamics. The increase in variance for Experiment VI from Experiment I can be

explained by the fact that a larger number of unknown parameters is being estimated

based on the observation set of the same size, thus rising the level of uncertainty.

Experiment N = 1 N = 10 N = 25 N = 50 N = 100

I 169.91 18.81 7.68 3.81 1.82

II 287.91 35.35 14.17 6.95 3.39

III 256.62 29.65 11.97 5.96 2.91

IV 187.20 20.42 8.37 4.17 2.05

V 2.42× 105 5.47× 103 1.51× 103 475.78 322.72

VI 459.33 51.87 20.89 9.99 4.93

Table 4.8: Normalised total variance for N MC simulations.

Because of the selected model structure, scaling parameter MLEs produced by

the proposed framework are unique up to an additive constant, so the absence of

the prior information and the choice of the initial estimate Θ̂0 will contribute to the

bias of the field estimator. This is demonstrated in Experiments II and VI, where

in the right hand side of the map the total bias is spatially constant. This type of

bias can only be eliminated by introducing some restrictions on the field magnitude

prior to the estimation. The estimation with dynamical model mismatch is tested

in Experiment V. In this case, the bias in the field estimate is caused by poor

performance of the state estimation algorithm. When the SSM of the responsive

migratory mode is wrong, the MM framework favours the random walk over the
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wrong model of the responsive mode, thus reducing the number of data points that

contribute to the knowledge about the field.

The choice of the function grid does not strongly influence the accuracy of the

estimation, however with the growing number of unknown parameters the variance

of the estimator increases dramatically. This is evidenced by the larger volume

of the confidence regions for the Experiment VI in Table 4.7. Despite the bias in

magnitude caused by the choice of the initial conditions, the slope of the potential

field estimated in the Experiment VI matches that of the true field. This result

supports the claim that the proposed framework does not require prior knowledge

about the environment model, as long as there are no significant mismatches present

in the model of object dynamics.

The estimation is carried out under the assumption that the mode transition

probability matrix is known a priori. In the life systems applications this is an

artificial parameter that cannot be evaluated from observations. It is possible to

approximate the switching probability by the switching frequency which is computed

here based on the estimation results of the IMM smoother at the final iteration of the

EM algorithm. It is computed as the number of switches between the estimated most

probable modes at two subsequent times related to the total number of switches.

The results shown in Table 4.9 appear to be in good agreement with the transition

matrix used to generate the tracking data, however it is not clear whether this is

caused by the self-fulfilling nature of the IMM algorithm. A potential route of the

future work is extending the proposed framework to include the identification of

the transition frequency matrix. The estimation algorithm will have to be extended

to the ECM form with two conditional maximisation steps: one for computing the

environment model parameters and one for estimating the transition probability

matrix as described, for instance, in [155].

Experiment M1 to M1 M2 to M1 M1 to M2 M2 to M2

I 0.9127 0.0873 0.1412 0.8588

II 0.9135 0.0865 0.1302 0.8698

IV 0.8366 0.1634 0.1302 0.8698

II 0.9031 0.0959 0.1215 0.8785

V 0.8366 0.1634 0.1195 0.8805

VI 0.9105 0.0895 0.1441 0.8559

Table 4.9: Mode transition frequencies computed on the final iteration of the EM algorithm.

Finally, the proposed algorithm deals with a specific problem of quantifying

the hidden environment based on object tracking data, while the model parameters

of object dynamics are assumed to be known. The estimation framework can be
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extended to infer model coefficients [156], [175]. Such modifications would improve

the applicability of the proposed algorithm for cases where the system dynamics is

largely undetermined.

4.6 Summary

This chapter introduces an approximate Maximum Likelihood framework for a novel

problem, in which the potential field environment is inferred from only the observed

positions of objects with hybrid dynamics. An approximate EM solution is derived,

that involves state estimation of jump Markov non-linear system and identification

of environment model parameters. The expectation step is approximated with the

interacting multiple model algorithm that runs a bank of unscented Kalman filters

for forward recursion and unscented RTS smoothers for backward recursion. The

IMM procedure avoids incurring a prohibitive computational cost, while the unscen-

ted transform utilised by each smoother provides accurate estimates of cell positions

and velocities. Additional set of variables is introduced to approximate object pos-

itions for computing the bases values, thus allowing to solve the maximisation step

in the closed form.

Several simulation examples are presented to demonstrate the performance of

the developed algorithm in various settings. The hybrid model utilised in the frame-

work describes a dynamical system with two migratory modes, in one of which the

system driven by the gradient of the environment while in another it is insensitive

to its influence. The estimation results demonstrate that an accurate estimate of

the global underlying environment can be obtained when the model of the respons-

ive mode is close to the true dynamics and when the tracking data is available in

every local support. The lack of prior information may lead to bias in the estim-

ated field magnitude, however the slope of the potential field can be reconstructed

accurately. The simulation example that utilises a finer grid of basis function also

provides a precise (but biased) estimate, indicating that the estimation framework is

scalable to higher dimensions of the unknown parameter vector or the larger volume

of tracking data. The following chapter demonstrates a practical application of the

developed framework to the problem of estimating global concentration of pro- and

anti-inflammatory chemokines in the zebrafish body that drive immune cells towards

and from the inflammation site.
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5 Characterisation of the

environment influence on

neutrophils during stages of

inflammation

The analysis in Chapter 3 is performed under a rather limiting assumption that all

neutrophils constantly respond to the environment throughout the whole observation

period. It is well understood that the complex behaviour of chemotactic cells cannot

be sufficiently described by a single state space model (SSM). Clear distinction

between observed modes of neutrophil behaviour invites using a hybrid-like model

of individual cell migration.

This study makes use of the framework proposed in Chapter 4 for the inference

of the hidden chemoattractant environment with the assumption that a migrating

cell can at some point stop responding to its surroundings and switch to pure random

walk. Each neutrophil tracked in vivo is described with a hybrid model that accounts

for heterogeneous behaviour of migrating cells evidenced by the experimental data.

The hybrid model proposed in this chapter combines several dynamical models avail-

able in the literature, with three modes selected based on the observed behaviour

of the immune cells. The EM algorithm adapted for the proposed hybrid model

is applied to all datasets introduced in §3.2.1, as well as several datasets obtained

during the inflammation resolution process.

5.1 Background

Neutrophil responsiveness to the environment during the recruitment stage of inflam-

mation is of fundamental importance in designing effective therapeutic treatments

of inflammation-mediated diseases. Majority of works that analyse the inflamma-

tion process on macro-scale consider a cell population as a uniform entity where

every individual member conforms to the same mathematical model [7], [128], [129].

At the same time, multiple experimental studies suggest that migrating neutrophils
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alternate between different types of motion. The two most reported types of chemo-

taxing cell behaviour are a) chemotactic runs during which the moving cell maintains

its directionality, and b) periods of random motility that neutrophils appear to be

searching for the direction of the steepest gradient in the ChA concentration [7]. In

light of the shortcomings of in vivo microscopy discussed before, there arises a novel

challenge of identifying which of the observed cells are responding to the hidden

external environment. The results achieved in the preceding chapters allow us to

account for this switching behaviour when solving the problem of the environment

inference by using discrete-time finite-order Markov chains to model the evolution

of neutrophil behaviour.

The first attempt to characterise neutrophil chemotaxis using Markov chain

theory is described in [176]. The authors experimentally verify the Markovian nature

of neutrophil locomotion by matching a five-state continuous-time Markov chain to

the in vitro data. Four states correspond to the movement in the direction within a

certain segment of angles with respect to the X-axis. The fifth state, called 0-state,

describes a stationary cell that moves around a fixed position and extends multiple

pseudopods in all directions. It is discovered that neutrophils frequently enter the

0-state between periods of directed locomotion. The authors note that neutrophils

can randomly switch direction bypassing the zero-state and explain these switches

by local changes in the otherwise monotonous ChA environment.

A more recent study uses a hybrid model to quantify the in vivo data from

zebrafish neutrophils [54], and drosophila hemocytes [177]. In [54], the considered

hybrid model includes five types of random walk (RW): pure RW, biased RW, per-

sistent RW, and two types of biased-persistent RW. These models are linked to the

tracking data via the ABC framework. In the designed estimation framework, an

individual cell at each time instance is characterised by the length of its displace-

ment and the direction angle that complies to a wrapped normal distribution. The

mean and variance of this distribution depend on the type of RW to which the cell is

committed at a given time. The parameters of distributions for each RW model are

estimated based on the in vivo data obtained from four zebrafish with acute injury.

Based on the estimation results, the authors suggest spatio-temporal dependence

between bias and persistence in the direction of neutrophil migration towards the

wound. The same authors employ the proposed model in further analysis of the

drosophila in vivo data [177] that links the estimated directional bias to the ChA

gradient produced by a circular wound. The attractant gradient is described by a

standard 2-D diffusion model with three unknown parameters: total strength of the

attractant source, the time of the attractant emission, and the rate of the diffusion.

Although the study investigates more complex scenarios of conflicting gradients, it

assumes perfect geometry of the wound and uniform process of ChA diffusion.
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Neutrophil behaviour during the inflammation resolution stage poses a similar

problem. Development of a novel zebrafish experimental assay revealed that the

immune cells that survive during the resolution stage could migrate away from the

wound within the tissue. It has been speculated that these neutrophils are act-

ively driven away in the process called fugetaxis [178]. This process, also known as

retrograde chemotaxis, is characterised by cell migration along the negative concen-

tration gradient of the driving chemokines called chemorepellent [16]. However, the

fugetaxis paradigm is widely disputed in the literature, as no candidate chemokines

for the role of the repellent have been identified yet [178]. An alternative hypothesis

has been proposed, that after spending a considerable amount of time at the in-

flammatory site with high ChA concentration, the neutrophils lose sensitivity to the

environment and diffuse away from the wound.

The two hypotheses are tested on zebrafish inflammation resolution data in a

series of works [17], [39], [179] followed by a thesis-long investigation of the reverse

migration mechanisms [180]. The observed neutrophil positions are processes via

the ABC framework that selects between two models: the pure diffusion model,

which describes completely random migration of individual neutrophils, and the

drift-diffusion model, that describes biased migration induced by the unobserved

chemorepellent concentration. The estimation results strongly suggest that cells are

randomly redistributed rather than actively led away from the wound site. Because

of the specifics of the experimental data, the authors characterise neutrophil be-

haviour under the assumption that all cells in the observed population behave in

the same way, and their estimation framework only makes a statement about the

observed population as a whole.

This chapter builds on the idea of Markov switching by introducing multiple

SSMs of cell migration that incorporate the parametrised model of the hidden en-

vironment. Switching between these models is governed by a three-state Markov

chain, while the influence of the hidden environment is assumed to affect cell accel-

eration rather than its direction. The concepts proposed in previous chapters for

the estimation procedure, in [54] for the single-cell model of chemotaxis, and in[179]

for models of reverse migration are utilised to address the following questions:

• Is the observed cell movement at a given time determined by the interaction

with its environment or randomly?

• What is the global environment that is influencing cell migration?

These questions are of interest when characterising the migration of cells both to-

wards and away from the wound. The framework developed in the previous chapter

is used to process the data sets obtained during two stages of inflammation. The

novelty of this analysis is that it utilises a hybrid model that accounts for varying

cell behaviour and makes a probabilistic statement about the migratory mode of an
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individual neutrophil at each time as well as providing the information about the

hidden global ChA environment that may be driving neutrophil migration without

relying on any prior information about the shape of this environment.

5.2 Methods

5.2.1 Data acquisition

In addition to the inflammation recruitment data introduced before, this chapter

deals with several datasets obtained during the inflammation resolution stage. The

reverse migration process can be observed in Tg(mpx:GAL4;UAS:Kaede)i222 trans-

genic zebrafish line, in which neutrophils are tagged with a photoswitchable fluor-

escent protein kaede that converts from green to red fluorescence upon exposure to

UV light [181].

Four larvae 3dpf were anaesthetised and subjected to the tail fin transection

with a sterile scalpel. The fluorescence of kaede-tagged neutrophils was photocon-

verted using an UltraVIEWPhotoKinesisTM device (Perkin Elmer and Analytical

Sciences) on an UltraVIEWVoX spinning disc confocal laser imaging system (Per-

kin Elmer). Photoconversion of kaede protein was performed using a 405nm laser

at 40% energy using 120 cycles. The calibrating procedure of the device and the

details of photoconversion are described in [182].

Time lapse imaging was performed during 6-16 hours post injury with 5 minute

sampling period using an Eclipse TE2000-U fluorescence microscope with a Andor

Zyla 5.5 camera (Nikon). Both recruited and departing neutrophils were tracked

simultaneously using GFP and mCherry filters with 488 and 561 nm excitation

respectively. Similarly with the previously described datasets, the 2-D neutrophil

trajectory data was obtained by processing the Z-stacked images via the tracking tool

within the NIS Elements (Nikon), where the threshold was set to detect the mCherry

cells. Tracking results are shown against the brightfield images of zebrafish larvae

in Figure 5.1.

5.2.2 Describing heterogeneous cell behaviour

The model of cell dynamics utilised in this chapter accounts for both random aspect

of Brownian-like cell motion and the influence of the underlying field which is in-

cluded as a deterministic term. The state xk
t consists of the spatial position of the

cell and velocity projections on two axes

xk
t = [sx, sy, vx, vy]> ,



5. Chemoattractant field inference: switching cell behaviour 123

Figure 5.1: Tracking results from the inflammation resolution stage. Neutrophils can be

seen slowly migrating away from the wound site. The resolution process was ob-

served using video microscopy during 6-16 hours post injury with 5 minute intervals

between frames.

In order to distinguish between behavioural modes of an individual cell and identify

which of the observed migratory patterns may be the product of the cell-attractant

interaction, we describe the dynamics of each moving cell by a hybrid model con-

sisting of several SMMs, each describing a different type of cell behaviour that can

be observed during the course of in vivo experiments (see Figure 5.2). Available

centroid observations allow us to conclude that there are at least three types of

neutrophil behaviour:

• Interacting with the environment, or responsive. This mode corresponds to the

cells with more directionally persistent tracks. The state of the chemotaxing

cell is described by the discrete-time O-U-type process with bias induced by

the acting environment:

M1 : xt +1 = A(M1)xt +1 +B(M1)∇U +G(M1)wt, wt ∼ N (0, Q(M1)),

(5.2.1)

where the matrix A(M1) accounts for reversion to mean.

• Diffusing. This mode is used to describe cells that keep moving as if there is

no gradient in the attractant concentration and commit Brownian-like motion.

Dynamics of an individual cell in this mode is represented by the discrete-time

O-U-type process:

M2 : xt +1 = A(M2)xt +G(M2)wt, wt ∼ N (0, Q(M2)). (5.2.2)

• Stationary. Dead neutrophils remain florescent and are registered by tracking

software. The tracks of stationary cells are normally lengthy and may corrupt

the environment inference if these cells are considered as actively migrating.
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On the other hand, some of the observed neutrophils that are waiting to be

released into the bloodstream can be observed in the fish body. Behaviour of

both of these cells can be described by a small magnitude RW. Dynamics of

stationary cells is therefore described by the discrete-time O-U-type process

with variance significantly smaller than that of the modes described above:

M3 : xt +1 = A(M3)xt +G(M3)wt, wt ∼ N (0, Q(M3)). (5.2.3)

Modelling two types of cell behaviour by the same SSM means that the cells

can switch from the stationary mode to other modes, which means that the

mode evolution can be appropriately described by the ergodic Markov chain.

The ergodic Markov chain governing the mode switching is illustrated in Figure

5.2b. Combined with the basis function representation of underlying field utilised

in previous chapters, the JMS describing the dynamics of the k-th cell is formulated

as follows:

xt +1 = A(M j)xt +B(M j)ϕ(sk
t−1) +G(M j)wt, wt ∼ N (0, Q(M j)), (5.2.4)

where the modes are described as follows:

M1 : A =

[
I2 T I2
O2 I2 − Tρ1I2

]
;B =

[
O2

T I2

]
;G =

[
O2

T I2

]
.

M2 : A =

[
I2 T I2
O2 I2 − Tρ2I2

]
;B =

[
O2

O2

]
;G =

[
O2

T I2

]
.

M3 : A =

[
I2 T I
O2 I2 − Tρ3I2

]
;B =

[
O2

O2

]
;G =

[
O2

T I2

]
.

where T is the time increment, I is an identity matrix and O is a zero matrix of

size 2 × 2. The rate of reversion to mean ρj may be different for each mode. The

standard deviation of the process noise also depends on the mode of the cell:

σ(M3)� σ(M1) ≤ σ(M2) (5.2.5)

In (5.2.4) sk
t−1 is the mode-independent noiseless measurement of cell position arti-

ficially introduced to simplify the estimation process

sk
t = Cxk

t , (5.2.6)

where

C =
[
I2 O2

]
. (5.2.7)

The observation process is also independent of the mode:

yk
t = Cxk

t + vk
t , (5.2.8)
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(a) Cell tracks in the zebrafish larva
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(b) Ergodic Markov chain diagram

(c) Mode switching examples

Figure 5.2: The examples of neutrophils switching between three proposed behavioural

modes. (a) The tracks superimposed on the fish image are colour-coded to match

the tracks in the table. (b) A three state ergodic Markov chain governs the mode

switching. Each mode can be reached from every other mode in a single transac-

tion. (c) Each of the selected cells demonstrates the switching between the described

modes. The tracks in the first column from the left have clearly defined directional-

ity, as can be seen on the fish image. The tracks in the central column demonstrate

possible magnitude of random fluctuations in the directionality of desensitised cells.

The tracks in the right column belong to the cells that were tracked before becoming

activated and starting their migration. All of these cells are located in the fish body

next to the spinal cord.
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where the observation vector at sample time t contains positions of cell centroids on

the two-dimensional image. Some of the tracked neutrophils that switch between

the types of behaviour discussed above are shown in Figure 5.2c. The figure demon-

strates that each mode can be reached from any other mode at any point throughout

the recruitment process, which means that the switching process can be described

by an ergodic HMM, making the JMS an appropriate hybrid model for describing

neutrophil dynamics. Track 1, highlighted in the figure, belongs not to an apoptotic

neutrophil but to the cell within the spinal cord that has not been released into the

tissue. Considering such cells to be interacting with the environment will inevitably

lead to the bias in the parameter estimation. The mode M3 is introduced to account

for these tracks and can be interpreted as a way of dealing with outliers.

The JMS defined above may be used in the inference of global chemorepel-

lent concentration, with the sign of the B matrix in the responsive mode reflecting

the fact that the neutrophils are moving in the direction opposite to the steepest

gradient:

M1 : A =

[
I2 T I2
O2 I2 − Tρ1I2

]
;B = −

[
O2

T I2

]
;G =

[
O2

T I2

]
.

5.2.3 Environment inference with a hybrid model of neutrophil

dynamics

The estimation algorithm utilised for the chemoattractant field inference is summar-

ised in Figure 5.3. Similarly with the preceding chapters, the inference framework is

implemented as an EM-like algorithm with an intermediate step where the forecast

of cell positions is computed prior to the maximisation step. Although no prior

information about the shape of the environment is required in this method, the as-

sumptions are made about cell behavioural modes, particularly about the structure

and tuning parameters of individual SSMs. Since the true dynamics of migrating

cells are unknown, all hypothesised models must be considered at each time point

when estimating the cell state. This leads to the problem of multiple model state

estimation, that cannot be solved directly because of the prohibitive computational

cost of keeping exhaustive mode histories. There exist several ways to decrease

these costs, but two most common approaches achieve this by reducing the size

of the mode history. One method relies on merging all modes from previous time

instances, while the other ”cuts off” the least probable modes at each time.

Merging. A number of methods that merge possible mode histories have been

discussed in §2.5.5. The framework proposed in the previous chapter employs one

such method - the IMM smoother. In the interest of the estimation objective, the

IMM method is used to make a probabilistic statement about the cell behaviour at
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Figure 5.3: A schematic overview of the estimation framework utilised for the joint es-

timation of the global chemoattractant concentration field and the individual cell

behaviour.

each time point. The estimated probabilities of an individual neutrophil being in a

given mode are used as mixture weights in the log-likelihood function of the com-

plete data set. This technique is preferable in tracking applications where the true

dynamics of the object is unknown and does not match with any of the hypothesised

models. In reality, a migrating cell can only be in one mode at any given time. In

cases when the modes accurately describe possible behaviour of the migrating ob-

ject, the merged state that is the output of the IMM algorithm is a weighted sum

of all possible states and can thus be biased to some average value.

Pruning. A popular alternative to merging histories is reducing the number of

sequences that are brought forward in time. This is achieved by pruning the posterior

densities that correspond to the smaller model likelihoods after each recursion of the

estimator [183], [184]. The simplest version of a pruning algorithm is the threshold-

based pruning, that at each iteration of multiple-model filtering runs Nm filters to

produce the likelihood of each mode, then only keep an arbitrary number M < Nm

of modes with highest probabilities, discarding the rest. The difficulty with pruning

arise on the smoothing stage. While there exists a two-filter smoother that utilises

pruning in both forward and backward-time recursions [185], it requires time-reversal

of the dynamical model. On the other hand, an RTS-type smoother suffers from

degeneracy as the number of hypotheses has been reduced because of pruning on the

filtering stage. This chapter considers the combination of IMM forward filter and

RTS smoother with M -best pruning, where M = 1. In other words, the smoother

will follow the most probable mode sequence of an individual cell. Implementing the

pruning procedure allows the computation of a simplified M-step derived in Lemma

3.3.1 that utilises only the sequence of states conditioned on the most probable mode
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at each time. The estimation algorithms that employ merging and pruning methods

are compared in Table 5.1.

Input: Observation set, Y; hypothesised models, M; measurement noise covariance, R; initial model prob-

abilities, Π; mode transition probabilities, Φ; convergence threshold, ε.

Output: Smoothed estimate of full hidden state sequence, X ; estimated mode probabilities, µ̂; estimated

model parameters, Θ̂.

Estimation with history merging

1: Initialise parameter vector Θ̂0;

2: while (i ≤ imax) and ¬(convergence) do

3: for k← 1,K do

4: Run IMM-URTS algorithm to recover

full states x̂k and mode-associated probab-

ilities µ̂;

5: for t← 1,T do

6: Obtain cell position forecast using

merged states ŝk
t = Cx̂k

t ;

7: end for

8: end for

9: Estimate Θ̂i using Lemma 4.3.2;

10: Check convergence of the parameter vector Θ̂;

11: end while

Estimation with history pruning:

1: Initialise parameter vector Θ̂0;

2: while (i ≤ imax) and ¬(convergence) do

3: for t← 1,T do

4: Run IMM filter to produce Nm mode-

conditioned state pdf s;

5: end for

6: for t← T, 1 do

7: Run RTS smoother with pruning at M = 1

to produce the most probable sequence of

cell modes;

8: Compute cell position forecast using the

state conditioned on the most probable

mode ŝk
t = Cx̂k,j

t ;

9: end for

10: Estimate Θ̂i using Lemma 3.3.1;

11: Check convergence of the parameter vector Θ̂;

12: end while

Table 5.1: Alternative methods for the environment inference.

5.3 Results

The estimation framework developed in the previous chapter is applied to the neut-

rophil tracking data from two stages of the inflammatory response. The following

aspects of the observed cell migration are examined here: the probability of an in-

dividual neutrophil being in the responsive migratory mode, the mean bias in the

velocity projections of neutrophils in different modes, mode switching frequencies,

and the shape of the chemokine concentration environment perceived by the re-

sponsive cells. In addition, the estimation algorithm that employs history pruning

during the expectation step is applied to the normal injury data in order to compare

two alternative ways of approximating the exact mode history when the true model

describing neutrophil dynamics is unknown.

The tuning parameters used for the processing of the data from various ex-

periments are summarised in Table 5.2. In the table, the time increment of the

dynamics model is equal to the interval between frames selected for an individual

experiment. The measurement noise covariance is the same for all datasets because
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all data was obtained using the same equipment. The process noise variances are

selected arbitrarily to satisfy (5.2.5). Note that Qw(M1) and Qw(M2) are the same

because the cell that is driven by the external gradient is assumed to be subjected to

random disturbances of the same magnitude as those affecting a randomly moving

cell. While the sensitivity of the estimation framework to the tuning parameters is

not assessed in this work; it is important to note that as long as all datasets from

one experiment are processed with the same settings the estimation results can be

analysed in the same context. The mode transition probability matrix is arbitrarily

Parameter Normal

injury

Mild

injury

Nick

injury

Severe

injury

Reverse

migration

T 2 min 1.5 min 0.5 min 2 min 5 min

ρ(M1) T/20 T/20 T/20 T/20 T/100

ρ(M2) T/10 T/10 T/10 T/10 T/50

ρ(M3) T/10 T/10 T/10 T/10 T/40

Qw(M1) 2 I2 2 I2 1 I2 3 I2 0.250 I2
Qw(M2) 2 I2 2 I2 1 I2 3 I2 0.250 I2
Qw(M3) 0.5 I2 0.05 I2 0.01 I2 0.5 I2 0.005 I2

Rv 2 I2 2 I2 2 I2 2 I2 2 I2

Table 5.2: Tuning parameters of the hybrid model.

set to the following

Φ =

φ11 φ12 φ13

φ21 φ22 φ23

φ31 φ32 φ33

 =

0.8 0.1 0.1

0.1 0.8 0.1

0.1 0.1 0.8

 . (5.3.1)

The EM algorithm for all types of injury converges within 5 iterations. The

convergence plots are omitted here. Volumes of the Nb-dimensional confidence re-

gions are presented to provide the metric of the estimation uncertainty for various

wound types. In this application, the confidence regions can also be interpreted as

the measure of how informative the tracking data is in experiments with various

wound types.

5.3.1 Chemoattractant concentration inference during neutrophil

recruitment stage

The normal injury.

At each iteration of the estimation procedure neutrophil tracks are processed

via the IMM-URTS smoother which identifies the probability of the cell being at
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either of the modes. Examples of mode and state estimation results from the final

iteration of the EM algorithm are presented in Figure 5.4. Neutrophil tracks in

each instance are colour coded according to the estimated probability of being in

a particular mode at each time. It can be observed that more persistent tracks

in the the central area of the fish body belong to the cells that are identified as

responding to the environment, while those closer to the wound site are inferred

to be randomly moving. As expected, the cells that are more likely to be in the

stationary mode are located either at the fish body or at the very edge of the injury.

It can be speculated that the cells in the body were not activated throughout the

inflammation recruitment, while the cells at the injury have undergone apoptosis.

The framework appears to make a clear distinction between different migratory

modes: for example, the probabilities of being in the responsive mode are normally

close to 1. Thus, these neutrophil tracks provide the most information about the

chemotactic environment. The example histograms of the horizontal velocity com-

ponent for cells that are identified to be in different modes are compared in Figure

5.5. The responsive cells are characterised by the clear bias of both mean and me-

dian horizontal velocity in all larvae. This means that the proposed model better

captures the ChA-induced directional bias in comparison with the simple SSM con-

sidered in Chapter 3. The unusual bias of mean in the diffusing mode is observed in

the histogram corresponding to Fish 4 in which the wound is not aligned with the

Y-axis, thus some of the cells diffusing in the wound area have increased vx. The

stationary cells are characterised by the small variance of both velocity components.

The histograms of vertical velocity components are not examined here as they are

similar for all migratory modes.

Field inference results are presented in Figure 5.6. The hidden chemoattractant

field in this case has been approximated by a 5 × 4 grid of B-splines. It can be

seen that the results for Fish 1–3, 5 and 6 are consisted with the assumption that

the ChA is uniformly distributed along the wound. It must be noted that Fish

1, 2 and 3 do not have outliers, while the results for Fish 4, 5 and 6 have sinks

outside of the fish body. These results, once again, demonstrate the effect of using

the B-spline grid with uniform local support. Nonetheless, for five out of six larvae

the inferred environment is characterised by uniform concentration along the wound

and a gradual decrease along the length of the fish body.

Selected results of applying an alternative algorithm that employed mode his-

tory pruning is presented in Figure 5.7. The plotted tracks illustrate a definitive

decision about the cell behaviour at each time made by the pruning algorithm: each

tracks in the figure is colour coded corresponding to the identified modes, rather

than with the probability of each mode. The figure shows that the decisions made

about the migratory mode of each neutrophil coincide with the results of the IMM
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(a) Fish 1

(b) Fish 3

(c) Fish 4

(d) Fish 5

Figure 5.4: Examples of migratory mode probabilities estimated via IMM-URTS algorithm

during the expectation step. Plots in each row are ordered from left to right as

follows: probabilities of M1, probabilities of M2, probabilities of M3. The cell

tracks are colour coded in accordance to the probability of the cell being at a given

mode. Colour bars correspond to the probability of the particular mode.

algorithm. This is because the hybrid model describes three distinctive types of be-

haviour, so both frameworks discriminate between the migratory modes with high

degree of certainty. Another reason for this similarity is that both algorithms utilise

the IMM filter for forward estimation, and only differ at the smoothing procedure.
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(a) Cells that are identified to be in the interactive mode
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(b) Cells that are identified as randomly moving
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(c) Cells that are identified as stationary

Figure 5.5: Comparison of cell velocity histograms for actively migrating and randomly

moving neutrophils during the recruitment stage of the inflammatory response. Ve-

locity components estimated with IMM-URTS algorithm. (a) Histograms of the

horizontal velocity component corresponding to neutrophils that are more likely to

be in the active mode. (b) Histograms of the horizontal velocity component of

neutrophils that are more likely to perform random walk. (c) Histograms of the ho-

rizontal velocity component of neutrophils that are more probable to be stationary.

Field inference results obtained from the pruning algorithm are in good align-

ment with those obtained by using the IMM smoother but are characterised by the

steeper slope of ChA concentration. Similar shapes of the estimated fields are the

result of the fact the neutrophils that are identified by the framework as responding

to the environment are assigned high probabilities (> 0.8), thus their contribution

to the inference is close to the contribution of cell that are ”definitely” responding

to the field, according to the gradient. At the same time, even small probability of a

cell being in a responsive mode carries the information about the environment which

is utilised in the framework with the IMM smoother. This leads to the milder slope

of the field estimated using the IMM-based approach. On the other hand, all cells

with small probability of being in a responsive mode are discarded by the pruning
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(a) Fish 1 (b) Fish 2 (c) Fish 3

(d) Fish 4 (e) Fish 5 (f) Fish 6

Figure 5.6: The chemoattractant concentration field estimated from the normal injury

data via the framework with IMM algorithm. The colour bars are normalised to

scale 0-500 a.u..

algorithm as diffusing, so their states are not utilised in the environment estimation

step. This results in a steeper concentration gradient along the length of the fish

body. Since the inference outcomes are rather similar for both algorithms, the fur-

ther subsections will only utilise the framework that employs the IMM smoother for

the cell state estimation.

Volumes of 20-dimensional confidence regions for model parameter estimates

obtained from the normal injury data are presented in Table 5.3. While sizes of

confidence ellipsoids for Fish 1-3 are similar, the highest levels of uncertainty cor-

respond to Fish 4 and 5 where the body of a larva is not horizontally aligned on

the image. This results in two of the B-splines being located completely out of the

fish body with no tracking data available. High order of total variance values may

be the result of the inaccurate model of cell dynamics or noise levels, as model mis-

matches in the previous chapter were resulting in similar levels of MLE dispersion.

The computed mode transition frequencies illustrated in Figure 5.8 indicate that the

stationary cells rarely switch to other migratory modes, and that responding neut-

rophils do not immediately become stationary. Instead, they tend to switch to the

diffusion mode which seems to be intermediate between the other two, as switches

from M2 to M3 and M1 happen with similar frequency.

The mild injury.
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(a) Fish 1 (b) Fish 2 (c) Fish 3

(d) Fish 1 (e) Fish 2 (f) Fish 3

Figure 5.7: Estimation results obtained form the EM algorithm with mode history pruning.

(a)-(c) Cell tracks colour-coded with the migratory mode decided by the pruning

algorithm. (d)-(f) The chemoattractant concentration field estimated from the

normal injury data with pruning of cell modes. The colour bars are normalised to

scale 0-700 a.u..

Dataset VNb=20 Var(Θ̂)

Fish 1 1.36×1041 3.90×103

Fish 2 8.87×1040 1.50×103

Fish 3 2.32×1041 1.28×103

Fish 4 8.53×1047 5.90×103

Fish 5 2.12×1045 7.75×103

Fish 6 2.68×1043 2.41×103

Table 5.3: Volumes of confidence regions

and normalised total MLE variance

for the normal injury datasets.

Figure 5.8: Computed mode transition fre-

quencies for the normal injury data-

sets.

The datasets from this experiment are characterised by sparse but long neutro-

phil tracks with high degree of directional persistence. Mode probabilities are estim-

ated by the IMM smoother at the final iteration of the EM algorithm are shown in

Figure 5.9. Similarly with normal injury data, the framework distinguishes between

modes with high degree of certainty: the cells that are identified to be in the re-

sponsive mode have probabilities close to 1. The decisions about the diffusing mode
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(a) Fish 1

(b) Fish 2

(c) Fish 3

Figure 5.9: Migratory mode probabilities estimated via IMM-URTS algorithm from the

mild injury data. Plots in each row are ordered from left to right as follows: prob-

abilities of M1, probabilities of M2. The cell tracks are colour coded in accordance

to the probability of the cell being at a given mode.

are not as conclusive, as the probability of being in M2 for most of cell tracks does

not go over 0.6. Estimated probabilities of the stationary mode are close to 1 as

well. The results for M3 are not illustrated in this figure.

Because of the sparsity of the tracking data, the underlying environment is

parametrised by a 4× 4 grid of basis functions. The inference results are shown in

Figure 5.10. Some outlier peaks are observed for Fish 2 and 3 in the areas with no

tracks available. It can be seen that the high concentration peaks correspond to the

areas where a single responsive neutrophil is found. The slope of the estimated fields

not as steep as that inferred from the normal injury data, but the diffusive nature

of the global environment is not captured by the framework in this case.

Volumes of confidence regions for the parameter MLEs presented in Table 5.4

provide a measure of the estimation uncertainty. While they are much smaller in

size than those obtained from the normal injury dataset, they correspond to the

16-dimensional hyperellipsoid, as opposed to the 20-dimensional region considered
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(a) Fish 1 (b) Fish 2 (c) Fish 3

Figure 5.10: The chemoattractant concentration field estimated from the mild injury data.

The colour bars are normalised to scale 0-200 a.u..

Dataset VNb=16 Var(Θ̂)

Fish 1 4.62×1030 2.21×103

Fish 2 2.65×1030 3.88×103

Fish 3 7.40×1029 3.83×103

Table 5.4: Volumes of confidence regions

and normalised total MLE variance

for the mild injury datasets.

Figure 5.11: Computed mode transition

frequencies for the mild injury data-

sets.

above. Variance values for this dataset are consistent with the results of the normal

injury set. Estimated mode transition frequencies illustrated in 5.11 suggest similar

behaviour to the normal injury case.

The tail fin nick injury.

The zebrafish with tail fin injury is characterised by numerous short tracks

confined to the lower area of the fish body. The estimated mode probabilities of the

observed neutrophils are illustrated in Figure 5.12. It can be seen from the figure

that even the neutrophils that do not appear to migrate towards the wound are

identified as responding to the environment, while a large proportion of neutrophils

at the wound site are perceived by the framework as more probable to be diffusing.

Very few cells are estimated to be stationary therefore the probabilities of this mode

are not shown in the figure.

The global environment is approximated with a 4 × 4 grid to avoid outliers

in the scaling parameter estimates. The inference results are presented in Figure

5.13. While in Fish 2 the estimated peak of chemoattractant concentration is loc-

ated near the wound, Fish 1 and 3 have outlier peaks that match the area with

several persistent cell tracks directed away from the wound. These cells are also
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(a) Fish 1

(b) Fish 2

(c) Fish 2

Figure 5.12: Neutrophil mode probabilities estimated via IMM-URTS algorithm from

the tail fin nick injury data. Plots in each row are ordered from left to right as

follows: probabilities of M1, probabilities of M2. The cell tracks are colour coded

in accordance to the probability of the cell being at a given mode.

(a) Fish 1 (b) Fish 2 (c) Fish 3

Figure 5.13: The chemoattractant concentration field estimated from the normal injury

data. The colour bars are normalised to scale 0-250 a.u..
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Dataset VNb=16 Var(Θ̂)

Fish 1 9.48×1029 3.58×103

Fish 2 7.39×1029 9.42×103

Fish 3 7.45×1029 5.35×103

Table 5.5: Volumes of confidence regions

and normalised total MLE variance

for the nick injury datasets.

Figure 5.14: Computed mode transition

frequencies for the tail fin nick in-

jury datasets.

identified as responding to the ChA gradient, however they may be driven by an-

other neutrophil-generated gradient. The framework utilised for this analysis does

not differentiate between various sources of attractants, however it successfully picks

up on the ”unusual” neutrophil activity in the area remote from the wound, unlike

the estimation framework based on the simple SSM (recall the estimation results for

the same dataset in Figure 3.13).

The severe injury.

Mode probability estimates for the severe injury tracking data are illustrated in

Figure 5.15. Interestingly, it is more difficult to distinguish between the responsive

mode and the diffusing mode of the neutrophils in this case. The majority of the

tracks do not maintain directionality, yet the ones that are closer to the wound site

are identified as responsive with high probability. In addition, stationary neutrophils

are scattered around the fish body, rather than being confined to the spinal cord

or the wound site. However, in order to assess whether this unusual behaviour is

a result of the higher magnitude of the ChA concentration in the fish body, it is

necessary to conduct more experiments with severe injury.

The overwhelming number of randomly diffusing and stationary cells results into

a rather small slope of the estimated field (see Figure. 5.16). While in Fish 1 the

inferred ChA concentration appears to be uniformly diffused along the wound site,

the results for Fish 2 suggest that there might be a local peak of chemoattractant

at the wound site generated by neutrophils themselves. The slope of the estimated

concentration field is rather moderate compared to the estimate obtained in Chapter

3, because only a portion of cell tracks inform the inference. However, because of

the non-unique solution provided by the inference framework, the estimates shown

in the figure are likely to be understating the actual magnitude of the attractant

field that could be much higher. Confidence region volumes presented in Table 5.6
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(a) Fish 1

(b) Fish 2

Figure 5.15: Migratory mode probabilities estimated via IMM-URTS algorithm from the

severe injury data. Plots in each row are ordered from left to right as follows:

probabilities of M1, probabilities of M2, probabilities of M3. The cell tracks are

colour coded in accordance to the probability of the cell being at a given mode.

are consistent with the results obtained for the mild and tail nick injury data, as do

the computed mode transition frequencies shown in Figure 5.17.

5.3.2 Chemorepellent concentration inference during

inflammation resolution stage

Neutrophil tracks from the reverse migration dataset are concentrated in the tail

fin area. As has been demonstrated in the simulation examples from the previous

chapter, using a fine grid of the basis functions to parametrise the global environment

in case of highly localised tracking data may lead to high variance estimates of

individual scaling parameters. In order to avoid this, a sparse 4×4 grid of B-splines

has been selected to approximate the hidden environment.

The output of the IMM smoother from the final iteration of the EM algorithm is

presented in Figure 5.18. The colour bars of each plot correspond to the probability

of being at a given mode. It can be observed that the more persistent tracks are

assigned high probabilities (≥ 0.8) of being in the responsive mode. However, the

number of such tracks is very limited, and most of them are confined to the central

area of the fish body which means that they could have been removed from the

tissue into the spinal cord. Overwhelming majority of neutrophils are identified as

randomly migrating.
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(a) Fish 1 (b) Fish 2

Figure 5.16: The chemoattractant concentration field estimated from the severe injury

data. The colour bars are normalised to scale 0-80 a.u..

Dataset VNb=16 Var(Θ̂)

Fish 1 8.58×1028 3.65×103

Fish 2 8.33×1027 2.55×103

Table 5.6: Volumes of confidence regions

and normalised total MLE variance

for the severe injury datasets.

Figure 5.17: Computed mode transition

frequencies for the severe injury

datasets.

The histograms of the estimated horizontal velocity components for the neut-

rophils in the reverse migration dataset are shown in Figure 5.19. The plots in each

row correspond to one of four larvae observed during the experiment. Note that the

mean values of vx are negative because the cells are migrating away from the wound.

Unlike the case of active neutrophil recruitment, the distribution parameters of the

horizontal velocity corresponding to the responsive mode are inconsistent from one

zebrafish larva to another. In Fish 1 and 3, where more persistent tracks are ob-

served, the mean estimate of vx is comparable in magnitude with the the mean of

the recruited cells. In Fish 2 and 4, there is little difference between the responsive

mode and the diffusing mode, however velocity distributions in the responsive mode

appear to have larger variance. Note that for Fish 2 the bias of the mean vx for

the diffusing cells is larger than that of the actively migrating cells. The estimated

velocities for the stationary cells are similar for all larvae.

Since very few neutrophils are identified as responsive, the tracking data that

carries the information about the underlying chemorepellent concentration is rather
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limited which leads to poor estimation accuracy. The environment inference results

for the reverse migration data are presented in Figure 5.20. The inferred field for

the Fish 1 and 3 demonstrates slight increase in concentration towards the wound

area (ignoring the outlier peaks), however the gradient of the estimated field is

rather shallow. Estimation results for Fish 2 and Fish 4 contradict the hypothesis of

the chemorapellent concentration near the wound site. Because the EM algorithm

estimates cell modes and the environment iteratively, the field inference results are

directly connected with the number of responding neutrophils.

The neutrophils that are identified to be in the responsive mode are the main

contributors to the information about the underlying environment, thus the variance

of the field estimator is expected to be rather large. Volumes of the 16-dimensional

confidence hyperellipsoids and total variances are presented in Table 5.7. It can be

seen that the confidence region with the smallest volume corresponds to Fish 1 that

has the largest number of persistent tracks in the dataset. The confidence regions

indicate that Fish 3 and 4 are the least informative because the tracking data is

confined to the tail fin. The total variance of parameter MLEs is inconsistent for

different datasets. While for Fish 1 and 2 it is significantly smaller than for the

previous datasets, a drastic increase for Fish 3 and 4 indicates large dispersion of

MLEs.

5.4 Discussion

Contemporary therapeutic strategies for inflammation-mediated diseases have sev-

eral directions for the development, including the following:

• Antagonising the pro-inflammatory signals in neutrophils by inhibiting parti-

cipants of the PI3k signalling pathway [186].

• Inhibiting sensory activity on the neutrophil to the external chemokines [187],

[188].

The first strategy motivates early inflammation resolution, while the latter reduces

the sensitivity of neutrophils and limits the cell recruitment. Although both treat-

ment strategies have enjoyed considerable success in some animal models, they rarely

succeed in clinical trials because the mechanism of neutrophilic response to the envir-

onment is not fully understood [189], [190]. Identifying which intracellular mediators

should be inhibited is a lengthy and expensive process especially when it involves in

vivo experiments.

If a neutrophil has reduced sensory capacity, it may undergo several periods of

desensitisation during the recruitment stage. It may be necessary to identify the

length of the periods during which the cell remains responsive, as well as estimate
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(a) Fish 1

(b) Fish 2

(c) Fish 3

(d) Fish 4

Figure 5.18: Migratory mode probabilities of neutrophils performing reverse migration.

Plots in each row are ordered from left to right as follows: probabilities of M1,

probabilities of M2. The cell tracks are colour coded in accordance to the probability

of the cell being at a given mode.

the underlying concentration field that is driving it during such periods. The novelty

of this analysis is that it does not restrict the neutrophils to one migratory mode

while estimating the hidden environment. The hybrid model employed to describe
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(a) Cells that are identified to be in the interactive mode
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(b) Cells that are identified as randomly moving
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(c) Cells that are identified as stationary

Figure 5.19: Comparison of cell velocity histograms for actively migrating and randomly

moving neutrophils during the resolution stage of the inflammatory response. Each

column corresponds to an individual larva in the dataset.(a) Histograms of the

horizontal velocity component corresponding to neutrophils in zebrafish from the

reverse migration set that are more likely to be in the active mode. (b) Histograms

of the horizontal velocity component of neutrophils that are more likely to perform

random walk. (c) Histograms of the horizontal velocity component of neutrophils

that are more probable to be stationary.

the dynamics of an individual cell captures the heterogeneous behaviour of this cell

by accounting for several possible modes at each time instance. Thus, the developed

framework can be employed to infer the ChA gradients perceived by neutrophils

subjected to different inhibiting treatments. It has the potential to be used as an

in silico tool for preliminary assessment of the effectiveness of novel therapeutic

strategies.

5.4.1 Estimation framework

Two methods of MM state estimation have been applied to the recruitment data.

The pruning algorithm follows the most probable migratory mode sequence of a cell,
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(a) Fish 1 (b) Fish 2

(c) Fish 3 (d) Fish 4

Figure 5.20: The chemoattractant concentration field estimated from the reverse migration

data.

Dataset VNb=16 Var(Θ̂)

Fish 1 5.31×1025 740.14

Fish 2 4.79×1028 294.53

Fish 3 3.65×1032 1.68×105

Fish 4 1.02×1034 4.74×104

Table 5.7: Volumes of confidence regions

and normalised total MLE variance

for the reverse migration datasets.

Figure 5.21: Computed mode transition

frequencies for the reverse migration

datasets.

thus making a definite decision about its behaviour at each time. Only the cells that

are identified as responsive contribute to the environment inference. Discriminating

the cells with small probabilities of being in the responsive mode leads to a steeper

gradient of the estimated chemoattractant field. While the pruning algorithm per-

formance is close to that one of the IMM smoother in this instance, ignoring the less

probable modes may have a negative effect on the field inference when the hybrid

model describes more types of neutrophil behaviour. The IMM state estimation al-
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gorithm outputs the probabilities of each migratory mode of an individual neutrophil

at each time. The estimated mode probabilities can be viewed as the importance

coefficients in the Gaussian mixture: the higher is the probability of a cell being in a

responsive mode, the more information it contributes to the environment inference.

This leads to more informed inference results even though the true dynamics of an

individual migrating neutrophil is unknown. Hence, the IMM algorithm of hybrid

state estimation is considered more appropriate for this application.

The comparison of pruning and merging estimation results for the recruitment

data shows that the IMM easily discriminates between the selected modes and as-

signs very high probability of being in a responsive mode to the cells with clearly

defined directional persistence. This is the result of using three easily distinguishable

models with random components of different magnitudes. The mode identification

quality is expected to worsen if one is to consider several SSMs with similar struc-

ture, e.g. several models of responding to the environment with varying levels bias

and persistence, or pure RWs with varying noise magnitudes to model diffusive

behaviour.

Despite the use of a sparse basis function grid, in several cases the ChA field was

estimated with local errors, especially in the reverse migration set. This is the effect

of using the cardinal basis functions with local support that was previously demon-

strated in §4.4.2. Basis with local support only accounts for the high-frequency

spatial change, meaning that the tracking data in a local area of the field only in-

forms the estimation of those parameters that correspond to the B-splines that cover

that area. A possible way to account for the low-frequency (global) changes is to

create a multi-scale decomposition by superimposing a fine grid of smaller basis func-

tions on a sparser grid, as has been done in [128]. However, this solution increases

the dimension of the estimation problem and is likely to lead to higher estimation

uncertainty. A more promising direction of the future model improvement is to use

the hierarchical basis with non-uniform knot grid [134] or using B-spline wavelets as

proposed in [191], [192].

5.4.2 Recruitment stage

The analysis of normal wound datasets reveals a common behavioural pattern in

recruited neutrophils. Majority of the cells start in the stationary mode deep in the

body. Once activated, neutrophils first diffuse away from the starting point in search

of the gradient. Upon sensing an uneven concentration, they switch to the responsive

mode and rapidly migrate up the gradient. Occasional changes back to the diffusive

mode are seen in all fish; they may be the result of sporadic receptor desensitisation

to the chemoattractant or obstacles within the tissue. Upon entering the wound site

- the area starting at ∼ 100µm away from the wound, the neutrophils switch back to
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the diffusive mode. It is not clear, however, whether the diffusive behaviour at the

threat area is the result of neutrophil desensitisation to certain ChA gradients, or

chemokinesis in the uniformly high chemoattractant concentration. If cells undergo

apoptosis, they are identified as stationary. Thus, the mode M3 efficiently describe

both the cells that near the entry point into the tissue from the circulation in non-

activated state and those that have died at the wound site. It can be viewed as

a method of outlier detection, because stationary tracks do not contribute to the

environment inference.

The estimates of the ChA field for all datasets have much smoother slopes than

those obtained in Chapter 3 with the same field parametrisation. This captures

the nature of slowly diffusing environments. Although the field inference results are

presented in arbitrary units, the estimates for all zebrafish from the same experiment

have similar range which demonstrates the consistency of the estimation framework.

While the use of a hybrid model certainly relaxes the assumptions made about

the cell dynamics, the analysis carried out in this chapter considers one universal

time-invariant chemoattractant field that is expected to drive neutrophils towards

the wound. This expectation is contradicted by the results in the tail nick injury

dataset, where a small outlier peak in ChA concentration has been inferred from

several localised persistent tracks that are directed away from the wound. It has

been shown experimentally that throughout the course of the inflammation recruit-

ment neutrophils respond to various, sometimes competing, chemoattractants [193].

Chemoattractant concentration is also expected to diffuse over time [148], so relax-

ing the assumption about time invariance of the environment will enable us to make

more detailed inferences about the process of neutrophil chemotaxis.

5.4.3 Resolution stage

Rather than discriminating between two models of the population dynamics, the

framework utilised here accounts for the possibility of an individual cell to change

its behaviour. Despite the use of a more flexible model, the estimation results of

inflammation resolution data reveal that the neutrophils predominantly diffuse away

from the wound, which confirms the findings of earlier works [17], [179].

It has been observed that some neutrophils can arrive to the wound even at

10 hours post injury, and they could be guided by the residual chemoattractant

concentration. The framework used in this chapter could either identify these cells

as simply not responding to the chemorepellent, or could infer that there is a high

chemorepellent concentration in the fish body driving the immune cells outward to-

wards the wound (see Figure 5.20). Thus, the possible extension to consider in the

analysis of neutrophil reverse migration is to take into account two conflicting en-
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vironments: the attracting environment inducing the chemotactic response in some

neutrophils, and the repelling environment driving the cells away from the wound.

Considering both chemoattractant and chemorepellent concentrations would require

creating two non-matching bases to model each of the environments. Furthermore,

a new hybrid model of individual neutrophil dynamics can be proposed with the

following modes: cell responding to the attractant concentration, cell responding to

the repellent concentration, randomly diffusing cell, and a stationary cell.

5.5 Summary

The analysis carried out in this chapter continues the investigation of neutrophil dir-

ected migration. Building on the potential field model of the environment influence

and phenomenological model of cell dynamics introduced in Chapter 3, this work

further relaxes the assumptions made about the cell-environment interaction prior

to the parameter estimation by accounting for the switching nature of neutrophil

behaviour highlighted in the experimental literature. The migratory behaviour of an

individual neutrophil is described by a hybrid system with three modes: responding

to the environment, randomly diffusing, or stationary. It is assumed that an indi-

vidual cell moves in response to the environment only when it is in the first mode.

Based on the observed neutrophil behaviour it has been concluded that each migrat-

ory mode can be reached from any other mode, thus the heterogeneous dynamics of

a cell are described by the JMS.

The proposed model is calibrated against the tracking data obtained from the

zebrafish model of inflammation via the approximate ML framework proposed in

Chapter 4. The inference framework employs a combination of several well-known

methods for the state estimation of the non-linear hybrid model. Utilising such

model is the first attempt to analyse the interactions between the migrating neutro-

phils and the external environment without restricting the individual cell to a certain

type of migratory behaviour. Two multiple model state estimators are compared:

the IMM algorithm, that merges the preceding mode histories, and the M-best prun-

ing algorithm, that follows the most probable mode sequence for each cell.

The estimation results for the inflammation recruitment stage demonstrate that

majority of the neutrophils actively respond to the ChA gradient on their way to the

wound, but upon arrival their behaviour becomes more erratic. The underlying ChA

field estimated from the tracking data of responsive cells confirms the idea of the

global slowly diffusing concentration, but two fish with tail fin injury demonstrate

local competing sources chemoattractant. The estimation results for the reverse

migration data support the claim made in [179] about the random nature of neutro-

phil migration away from the wound during the inflammation resolution stage. The
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corresponding field estimates are indecisive and have high variance because they are

not informed by the sufficient number of responsive cell tracks.

In summary, this chapter utilises the information contained in localised tracking

data of individual neutrophils to infer the shape of the global environment that

governs the migration of the entire cell population, thus bringing together two scales

of the chemotaxis modelling. The questions that remains open is how does an

individual neutrophil translates the perceived ChA concentration gradient into the

reorientation of its leading edge or other severe shape changes. The next chapter

attempts to answer this question by analysing the subcellular concentrations of the

migrating neutrophil observed in vivo.



6 Statistical analysis of neutrophil

morphodynamics regulated by

the subcellular signalling

Previous chapters of this thesis deal with high-level models that treat an individual

cell as a material point that can commit to different types of motion. Extensive

biological data is available for the development and validation of these macro-scale

models, so they are suitable for prediction and inference of the unobserved aspects

of chemotaxis. Whole-cell studies, both theoretical and experimental, provide no

insight into the mechanism of translating the environmental signals perceived by

the chemotaxing cell to its locomotion. Characterisation of this process is crucial

for advancing our understanding of neutrophil function. Moreover, the identification

of key players in this translation process may lead to the development of more precise

treatment strategies that can target specific proteins within the cell without affecting

its other functionality.

This chapter looks into one aspect of the chemoattractant-induced cell loco-

motion: the relationship between the concentration of subcellular signalling medi-

ators and the changes of the cell membrane. An image-processing framework is de-

veloped for extracting the information about the subcellular concentration. Coupled

with the active contour tracking of the cell boundary, it relates local shape changes

to the concentration of the local activator. The state space model (SSM) of the

cell membrane evolutions is tested against neutrophil in vivo data via a series of

correlation tests. The generic EM algorithm is then employed to estimate the model

parameters based on the quantitative data obtained from the image processing mod-

ules.

6.1 Background

Mathematical modelling is deservedly recognised as a standard method of studying

molecular interactions within the cell [194]. Modelling on the subcellular level often

fills in for the missing specific experimental data by providing hypotheses about
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the underlying molecular relationships that are considered in the future experiment

design. Several types of theoretical models of eukaryotic cell motility that consider

subcellular processes are reviewed in [41]. The first type deals exclusively with

biochemical characteristics of the cytoskeleton in order to understand the full role

of actin in the cell shape change and locomotion. The second type aims to describe

the signalling activity and its relation to forces facilitating cell motion. The third

type combines the two previous approaches.

The modelling literature is dominated by two hypotheses about the subcellular

mechanism driving eukaryotic chemotaxis: the “internal compass” and “pseudopod-

centered” models [69]. The internal compass refers to a localised signal inside the

cell that represents the direction of the external ChA gradient. Formation of new

pseudopods is strongly regulated by the extracellular environment. For example, if

the direction of the steepest gradient differs from the current direction of the cell,

the new pseudopod is formed to align with the gradient. This paradigm implies

direct causal relationship between the environment sensing and the polarisation.

This relationship is established mathematically in a series of models employing local

excitation, global inhibition (LEGI) mechanism [59]–[61].

The hypothesis of pseudopod-led regulatory mechanism was first advocated by

Insall in [69], where he argues that the future direction of cell polarisation is largely

defined by the current location of pseudopods or the leading edge. In subsequent

works [66], [68] he and colleagues have developed a mathematical model where the

external signal processing is implicit and only regulates the rate of subcellular pro-

cesses which are modelled by the Meinhardt RDS [58] previously discussed in §2.2.3

of the literature review. This means that new pseudopod generation is the result of

evolution and splitting of the existing ones, rather than that of the environment sens-

ing. This model can potentially explain the phenomenon of behavioural polarisation

discussed in [29]. While pseudopod-led paradigm presumes different mechanism of

signal processing, its pattern formation process leading to cell polarisation is similar

to the one described in LEGI model. The difficulty of finding biological candidates

for the agents of the theoretical RDS hinders validation of these models.

Unlike cell population or even single cell models, the models of intracellular dy-

namics are rarely phenomenological, and the reasons for it are two-fold. Firstly, the

experimental methods are often not sophisticated enough to validate very detailed

relationships proposed in these models. On the other hand, some of the aspects of

the model may not be connected to real-life phenomena. For example, models based

on finite-element decomposition popular in modelling the cell shape and bulk [65],

[66] lack the explicit connection between the model parameters and the underlying

physical processes. Although they can predict the changes of the shape to a certain

degree of accuracy, they do not explain the underlying dynamical processes driving
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the severe shape changes of the migrating cell.

In neutrophils, chemoattractant receptors are uniformly distributed along the

cell membrane. Gradient sensing is facilitated by rearrangement of the signalling

lipids that bind with the receptor-associated G proteins and activate the down-

stream signalling pathways. As was discussed in §2.1.2 of the literature review,

in the presence of the shallow external gradient, neutrophils selectively accumulate

lipid products of PI3k near the membrane where there is more receptor activity.

One of the key lipids that accumulate at the up-gradient edge are the PI(3,4,5)P3 –

self-catalytic second messengers that initiate activation of multiple downstream sig-

nalling cascades. The self-amplifying internal gradient of PIP3 is much steeper than

that of the external ChA. This lipid is considered as a strong candidate for the role

of local activator in both LEGI and pseudopod-centred model as it has been proven

to trigger the polarisation and cause the bias in random motility of neutrophils [19],

[69].

The crucial role of PIP3 in directed motion has been shown in multiple exper-

imental studies [195], [196]. However, there is no quantitative framework in place

that would allow investigating the causal relationship between spatially varying PIP3

concentration and local changes in the cell shape. The focus of this chapter is to

provide a missing link between the theory that delegates the role of a local activ-

ator to PIP3 and the experimental data that shows its distribution along the cell

membrane.

A common way to assess the distribution of PIP3 within the cell is to track

the GFP-tagged pleckstrin homology (PH) domain of Akt (PH-Akt-GFP). Akt is

accumulated near the membrane and activated via the engagement of its PH do-

main with PIP3, so the observed concentration of its molecules is indicative of the

underlying concentration of PIP3 [197]. This chapter analyses the time-lapse im-

ages of the PH-Akt-GFP neutrophils observed in vivo under the assumption that

the local concentration of PIP3 is proportional to the measurable fluorescence of

PH-Akt along the tracked cell boundary.

In summary, this chapter tests the causal relationship between redistribution

of PIP3 induced by the external ChA gradient and local changes of the cell shape.

Several computational modules developed for extracting the quantitative data are

discussed in Section 6.2. The correlation analysis of raw quantitative data is con-

ducted in Section 6.3 to establish whether there is a strong connection between the

measured variables. A simple model of the cell membrane evolution is then presen-

ted in a state space form where the state is the local normal velocity of the cell

membrane. The introduced model allows to employ the generic EM algorithm for

simultaneous smoothing of local velocities and estimation of the model coefficients.

The estimation framework is applied to motile neutrophil with multiple protrusions
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observed in vivo and to the polarised neutrophil-like immortalised cell from [27]

observed in vitro.

6.2 Methods

6.2.1 Data acquisition

The subcellular activity within recruited neutrophils has been observed in vivo us-

ing the Tg(lyz:PH-Akt- EGFP) zebrafish line. The injured larvae were observed via

time-lapse imaging with an inverted Olympus IX81 microscope, using an Olympus

UPlanSApo 60x oil Immersion objective (Germany). The cells were tracked at a spe-

cific region near the wound site using the 488 nm laser line that imaged the zebrafish

on 20 different depths (along the Z scale). The Z-stack images were converted into

the single maximum exposure layer within imageJ software. The compressed 2-D

images of several neutrophils are presented in Figure 6.1.

6.2.2 Model of cell boundary evolution

Let us define the cell boundary as an evolving closed curve Γ (t), whose motion is

governed locally by the interaction of forces acting normal to the boundary. The full

model of the boundary evolution is described in detail in §2.2.4. In order to ensure

model identifiability, this chapter examines a simplified model and considers only

the following forces locally acting on the cell membrane

F = (Fpro + Fvisc + Ften + Fvol)ν, (6.2.1)

where ν is a local outward pointing normal to the segment ds of the curve Γ (t), the

Fpro is the protrusion force that is proportional to the local concentration of the

signalling proteins and lipids

Fpro =

Na∑
i

ka,iai. (6.2.2)

Other forces in (6.2.1) are defined in §2.2.4. Fvisc is the viscous force caused by the

resistance of the environment to the membrane protrusion, and forces Ften and Fvol

are the result of local membrane tension and volume conservation, respectively. The

experimental data provides information about only one signalling lipid, PIP3, so the

analysis in this chapter is conducted under the following defining assumption:

Assumption 6.2.1: PIP3 is the only activator regulating the cell protrusion, e.g.

in equation (6.2.2) Na = 1.
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Figure 6.1: Example time-lapse images of the PH-Akt-GFP neutrophils in the zebrafish

body migrating towards the tail fin wound.

The computational model proposed in [65] implies that the the force balance

holds at each time instance, t, for each segment ds of the curve Γ(t)

Ft(ds) = 0, (6.2.3)

Expanding constituent terms of the above equation renders the expression that ana-

lytically links normal velocity of the cell membrane and local concentration of PIP3:

vν(ds) =

(
(ka)

kvisc
at(ds) +

γ

kvisc
κt(ds) +

kvol

kvisc

(
At −A0

))
ν, (6.2.4)

where at(ds) denotes the local concentration of the PIP3 at the segment ds ∈ Γt at a

given time. The interpretation of time-lapse cell images deals with the projection of
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3-D cell bulk on a 2-D plane, therefore using force balance equation should be viewed

as approximate. The discrepancy between the mathematical model of the normally

acting force considered here and the actual local force can be represented by ran-

dom disturbances in local normal velocity change. Instead of obtaining the velocity

directly from algebraic the relation, one could formulate the dynamical model that

employs the following discrete-time ODE for the normal velocity component

dvν(ds)

d t
=

1

m
Ft(ds) + wt(ds), (6.2.5)

where m is an arbitrary coefficient corresponding to the material mass of the local

membrane area and where the random component wt(ds) ∼ N (0, Qw) accounts

for the acceleration caused by the forces not considered in the simplified model.

Expanding the constituent terms yields the following expression

dvν,t(ds)

d t
=

1

m

(
kaat(ds)+γκt(ds)+kvol

(
At−A0

)
−kviscvν,t(ds)

)
+wt(ds). (6.2.6)

The tangent component of the local segment motion is not considered in here in

accordance to the original model proposed in [65]. Hence, the dynamical model of

the cell membrane evolution relies on the following quantities:

• Local normal velocity of the cell boundary, vν(ds);

• Local curvature of the cell boundary, κ(ds);

• Local PIP3 concentration along the cell boundary, a(ds);

• The area enclosed by the observed cell boundary, A.

The remainder of this section summarises the methods for extracting these quantities

from the time-lapse images.

6.2.3 Cell boundary tracking

At first, the time-lapse images are processed using the the active contour tracking

tool developed in [198]. Within the tracking framework, cell contours are first iden-

tified using the watershed algorithm that highlights the areas of the image. The

boundary is then parametrised with a collection of cubic B-splines placed on K

equidistant support nodes. These B-splines compose the active contour of the cell

that is utilised in constructing the second-order spatio-temporal model of the indi-

vidual cell migration. In this model, the measurement vector consists of the bound-

ary segments, and the hidden state consists of the positions and velocities of the

support nodes. The tracking is then performed by applying the Kalman smoother

to the constructed kinetic model with an intermediate procedure of the cell corres-

pondence identification. The cell correspondence is estimated via a common nearest

neighbour method [199].
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The output of the tracking module is a time series of cell boundaries approx-

imated with a collection of discrete nodes skt =
[
skx, s

k
y

]
, k = 1, . . . ,K. Each node

is assigned a velocity vector vkt =
[
vkx , v

k
y

]
components of which are defined in the

absolute reference frame. The model of cell membrane evolution considers only the

component of membrane velocity that is normal to the cell boundary. Thus, for the

purposes of the analysis carried out in this chapter, velocity vectors of each node

must be projected onto the new reference frame relative to the cell boundary. The

set of nodes produced by the tracking algorithm skt =
[
skx, s

k
y

]
, k = 1, . . . ,K can

approximates the cell boundary at an individual frame so it can be viewed as a

polygon while computing local normals (see Algorithm C.1 in Appendix C). The

projection of the velocity vector on the local reference frame produces a new vector

vkt =
[
vkν , v

k
τ

]
. The discrete approximation of the boundary also permits straightfor-

ward computation of Cartesian curvature, κ(skt ), and the area enclosed by the cell

membrane, At, using Algorithm C.2 in Appendix C, thus providing all quantities

required to construct the discrete-time SSM and test it against the experimental

data.

6.2.4 Extracting PIP3 concentration data from the time-lapse

images

It is necessary to extract the information about the local concentration of PIP3 along

the cell membrane and associate it with the tracking data prior to the analysis.

Since the imaging data contains fluorescence intensity of the PH domain of Akt that

binds to PIP3 molecules, in stable activation process one can assum proportional

relationship between the observed concentration of Akt and the hidden concentration

of PIP3.

Assumption 6.2.2: The integrated fluorescence intensity obtained from the ima-

ging data is proportional to the local PIP3 concentration.

The procedure of extracting local intensity from one frame is implemented as

follows. The RGB image of the cell is first converted into the greyscale colour

map. Because the GFP-tagged cells are exposed only in the green channel (R = 0,

B=0), the resultant image has luminance directly proportional to the original. This

means that the relative difference in fluorescence intensity is preserved. Next, the

membrane of a cell is identified via mathematical topology method of edge detection

[200]. The fluorescence intensity of each pixel along the detected edge is extracted

from the image with a threshold of η = 50 arbitrary units (a.u.) to discriminate the

background fluorescence. Finally, the pixels with brightness above the threshold are

associated with the nodes available from the active contour tracking module using

the nearest neighbour method. The full procedure is summarised in Algorithm 6.1.
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Algorithm 6.1 Extraction of local fluorescence intensity along the cell boundary

Input: Sequence of time-lapse images of the migrating neutrophil, Imt, t = 1, . . . ,T; sequence of discret-

ised neutrophil boundaries from the tracking module, skt = {sx, sy}kt , t = 1, . . . ,T, k = 1, . . . ,K.

Output: Local fluorescence intensity associated with the boundary nodes, akt , t = 1, . . . ,T, k = 1, . . . ,K.

1: for t← 1,T do

2: Convert the image into the greyscale: Imt → Gst;

3: Erode the image: Gst 	 Se, where Se is a flat structuring element;

4: Obtain the cell boundary image:

Bt = Gst −Gst 	 Se;

5: Identify coordinates of all pixels on the edge with intensity higher than a threshold η:

Pt{px ∈ Bt : a(px) ≥ η},

where px is an individual pixel and a(px) is the intensity of the pixel;

6: for k ← 1,K do

7: Associate the pixels from the set Pkt with the node skt on the boundary via the NN method;

8: Compute the integrated local intensity of the area

a(skt−1) =
∑
Pk
t

a(px);

9: end for

10: end for

6.2.5 Estimating parameters of the boundary evolution model

Because the mathematical model introduced above considers only the normal velo-

city components, there is no coupling between the neighbouring nodes and they can

be considered as individual points in the population. The discrete-time discrete-

space dynamical model that describes the behaviour of an individual point arising

from the (6.2.6) is expressed as follows

vν(skt ) = vν(skt−1)− rvvν(skt−1) + raa(skt−1) + rγκ(skt ) + rvol

(
At −A0

)
, (6.2.7)

for k = 1, . . . ,K and t = 1, . . . ,T, where rv = kviscT/m, ra = kaT/m, rγ = γT/m,

and rvol = kvolT/m are the unknown model coefficients and where T is the time

increment between the frames. The corresponding state-space representation of

(6.2.7) is obtained by assuming that the normal velocity of an individual node is a

one-dimensional state

xkt =
[
vν(skt )

]
,

and considering the rest of the measured variables as the constituent terms of the

deterministic input vector

ukt =
[
a(skt ), κ(skt ), (At −A0)

]>
.
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Then the model with the familiar structure introduced in §2.3.2 takes a simplified

form

xt = Atxt−1 +Btut−1 + wt−1, wt ∼ N (0, Qw) (6.2.8a)

yt = Ctxt + vt, vt ∼ N (0, Rv) (6.2.8b)

with the following dynamical matrices:

A =
[
1− rv

]
;B =

[
ra rγ rvol

]
;C =

[
1
]
.

The process noise in this case accounts for possible random perturbations of the

membrane. Since cell membrane velocities are already smoothed by the tracking

module, no additional measurement noise is considered in the model.

Assumption 6.2.3: The measurement process is noiseless, e.g. Rv = 0.

The parameters of interest in this chapter are the following:

Θ = {A,B,Qw}. (6.2.9)

Given the unit measurement matrix C, Assumption 6.2.3 renders the model (6.2.8) a

first order autoregressive model (AR(1)) that has no latent variables. The estimate

of the unknown parameter vector Θ can thus be straightforwardly obtained via

classical Maximum Likelihood (ML) algorithm that is introduced in §2.4.2. The

likelihood function for the unknown parameters of the linear Gaussian AR(1) model

is defined as follows

L(Θ) =

K∏
k=1

T∏
t=1

1√
2πQw

×

×exp

{
−1

2

(
xkt −Axkt−1 −Bukt−1

)>
Q−1

w

(
xkt −Axkt−1 −Bukt−1

)}
.

(6.2.10)

Taking the logarithm of (6.2.10) renders

logL(Θ) = −1

2

{
K T log |Qw|+Q−1

w tr
(
Sxx −ASxbx−

−SxxbA> +ASbbA
> −BSux − SxuB>+

+BSuuB
> +BSuxbA

> +ASxbuB
>)}+ c,

(6.2.11)

where constant c includes all terms independent of the unknown parameter Θ. The

constituent terms of (6.2.11) are defined as follows

Sxx =
K∑
k=1

T∑
t=1

xkt (xkt )>. (6.2.12a)
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Sxxb =
K∑
k=1

T∑
t=1

xkt (xkt−1)>, Sxbx = S>xxb. (6.2.12b)

Sbb =

K∑
k=1

T∑
t=1

xkt−1(xkt−1)>. (6.2.12c)

Suu =
K∑
k=1

T∑
t=1

ukt−1(ukt−1)>. (6.2.12d)

Sxu =
K∑
k=1

T∑
t=1

xkt (ukt−1)>, Sux = S>xu. (6.2.12e)

Sxbu =

K∑
k=1

T∑
t=1

x̂kt−1(ukt−1)>, Suxb = S>xbu. (6.2.12f)

The parameter MLEs are then straightforwardly by taking partial derivatives of

the log-likelihood function and setting them equal to zero. To obtain the dynamics

matrices, set 
∂ logL(Θ)

∂A = −Sxxb + SxuB
> + SbbA

> = 0;

∂ logL(Θ)
∂B = −Sxu +ASxbu +BSuu = 0.

(6.2.13)

Then solving the linear system results in the following expression

[
Â B̂

]
= [Sxxb Sxu]

[
Sbb Suxb

Sxbu Suu.

]−1

. (6.2.14)

To obtain the MLE of the noise covariance matrix set

∂ logL(Θ)

∂Qw
= K TQ−1

w +Q−2
w {ζ} = 0, (6.2.15)

where ζ denotes the quadratic form within the trace operator in (6.2.11). The

resultant estimate is then given by

Q̂w =
1

K T

{
Sxx − ÂS>xxb − SxxbÂ> + ÂSbbÂ

>−

−B̂S>xu − SxuB̂> + B̂S>uu + B̂SuxbÂ
> + ÂS>uxbB̂

>}. (6.2.16)

The parameters of interest are estimated in an iterative scheme.

6.3 Results

6.3.1 Image processing results

The results of cell boundary tracking and node-association of local fluorescence in-

tensity are presented in Figure 6.2. The cell membrane at each frame is approximated

with K = 125 control points within the tracking module. Local membrane velocities
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and detected pixels with high fluorescence intensity are plotted against the cell edge

that has been extracted using image erosion. The pixels on the cell edge that are

clustered using Algorithm 6.1 are colour coded according to the node on the bound-

ary with which they are associated. It can be seen from the integrated intensity plot

that the brightest fluorescence corresponds to the areas of cell protrusion. However,

the intensity peaks locally at the area between nodes 25 and 50 that is retracted. In

(a) Image processing results: frame 10

(b) Image processing results: frame 11

Figure 6.2: Processing results of two subsequent frames of a migrating neutrophil. The left

image shows node velocities produced by the boundary tracking module. The white

point denotes the estimated position of the cell centroid. The middle image shows

the pixels along the identified edge associated with each node on the cell boundary.

The right image shows the local integrated intensity plotted against the node index.

addition, the tracking module provides the estimates of cell centroid position and

velocity. In the shown time frames the centroid velocity is rather small, meaning

that the neutrophil at this instance is immobile and assessing the environment by

extending an additional pseudopod in the direction opposite from the existing one.

Next, the estimated velocities are projected on the local reference frames at the

vertices of the polygon that approximates the cell membrane as presented in Figure

6.3a. The projections of velocity vectors obtained from the tracking module onto
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the local reference frame are illustrated in Figure 6.3b. It can be seen on the figure

that both the retraction and protrusion of the cell membrane are characterised by

large normal velocity component and small tangent component, which allows us to

speculate that the local normal velocity is a sufficient measure of the local membrane

change.
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(a) Vertex normals and tangents
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(b) Local velocity projections

Figure 6.3: Vertex bases and projections of local velocities. (a) The outward-facing normal

unit vectors with corresponding tangent vectors are computed for each node. The

plotted vectors are scaled for visualisation. (b) Each velocity vector at time t

estimated via the tracking module is projected on the reference frame centred at the

corresponding vertex to obtain a normal component ( ) and a tangent component

( ). The cell membrane at time t +1 is defined by the dashed line ( ).

As a result of processing two in vivo image sequences, 8 datasets have been

obtained corresponding to individual neutrophils. Each dataset contains spatio-

temporally resolved measurements of the local normal velocity, vν(skt ), integrated

fluorescence intensity, a(skt ), local curvature, κ(skt ), k = 1, . . . ,K, and the cell area,

At. These quantities are used bellow to identify the parameters of the proposed

dynamical model.

6.3.2 Correlation analysis results

First, the raw quantitative data extracted from the time-lapse images is subjected

to the correlation analysis in order to assess whether PIP3 has strong association

with the normal velocity at the following time instance. The correlation plots for 8

cells are presented in Figure 6.4. The values of ra for each cell are calculated via the

standard linear regression. It can be seen that the estimated slope varies for cells

1-5 that all belong to the same imaging sequence, while the results for cells 6-8 are

more consistent. However, the scatter plots for all cells shows that the extracted

intensity values have rather intermittent nature: even in the nodes with high normal
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(a) Cell 1 (b) Cell 2

(c) Cell 3 (d) Cell 4

(e) Cell 5 (f) Cell 6

(g) Cell 7 (h) Cell 8

Figure 6.4: Correlation plots of local normal velocity and local concentration of PIP3 over

the entire cell boundary. Scatter plots are colour coded according to the index of

the frame from which the values have been extracted. The provided colour bar

demonstrates colour-to-frame association. The black line in each plot illustrates the

estimated slope of linear regression.



162 6.3. Results

velocity, the local intensity is zero. This is expected to have negative effect on the

estimation results.

Since local normal velocities demonstrate rather weak correlation with the ex-

tracted intensity distribution along the whole cell boundary, it is interesting to see

whether individual segments of the membrane with higher concentration of PIP3

show more active protrusion. For this analysis, the nodes on the cell membrane

boundary have been classified into four groups based on their fluorescence intensity

and its first time derivative. First, the areas with high intensity are thresholded at

35 a.u., and then the areas with positive and negative time derivatives are identified.

Figure 6.5 demonstrates the distribution of cell velocities in four clusters of nodes

for one of the cells: high concentration with positive rate of change ( ) and neg-

ative rate of change ( ), and low concentration with positive rate of change ( )

and negative rate of change ( ). Observe that the areas with negative derivative

have normal velocities predominantly pointing inwards, which is characteristic for

the membrane retraction. The negative derivative of the intensity at a particular

node is interpreted here as the effect of receding PIP3 concentration which could

coincide with either membrane retraction or the ”stalling” area between protru-

sions. Here, ”stalling” refers to the parts of the cell membrane located between

conflicting pseudopods and characterised by negative local curvature. An example

of the stalling area can be observed near the node 125 in Figure 6.2. This study is

concerned only with the areas of PIP3 activation, i.e. with positive time derivative.

Normal velocities in the areas with high ( ) and low ( ) intensity do not fit

a specific distribution type. That is why the shift in velocity magnitude is assessed

using the Mann-Whitney test [201] with null hypothesis that it is equally likely that

normal velocities in the areas with low fluorescence will be greater or less than the

average vν in the area of high intensity. The decision about the hypothesis is made

based on the test value p that denotes the approximate probability of observing such

result. In this study, the alternative hypothesis states that the median of velocity

distribution in areas with high PIP3 concentration is grater than that in the nodes

with low a. The results of the hypothesis testing with significance level α = 0.05

for all tracked cells are summarised in Table 6.1. In the table, logical variable

H denoting whether the null-hypothesis has been rejected (H = 1), or accepted

(H = 0) is shown alongside the probabilities that informed the decision.

It can be seen from the table that for the majority of the cells the null-hypothesis

is rejected. Based on the Mann-Whitney test results and computed medians of

velocity distributions, we can conclude that in the nodes with higher concentration

of PIP3, on average, velocity of the advancing membrane is higher. This means

that, despite weak direct correlation of membrane deformation velocity and the local

concentration of PIP3, there is a median shift in normal velocity distribution in the

areas of the cell where higher concentrations of this mediator are observed. From
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Figure 6.5: Normal velocity histograms for Cell 6.

Nodes are clustered according to concentra-

tions and growth rate of PIP3 concentration.

Cell H p

1 1 0.0023

2 0 0.4661

3 1 6.18×10−8

4 0 0.3728

5 1 3.51×10−8

6 1 4.78×10−5

7 1 7.26×10−7

8 1 0.0014

Table 6.1: Mann-Whitney U-test

results.

the biological point of view, this result can be interpreted as follows: PIP3 is not

essential for pseudopod formation, however its high concentration is associated with

accelerated membrane protrusion. These results allow us to make a judgement about

the population of nodes as a whole, however they do not provide information about

the dynamics of the cell membrane. Given that an association has been detected, it

is interesting to examine the dynamical relationship between cell membrane velocity

and the local PIP3 concentration.

6.3.3 Example of model identification from in vivo data

In order to evaluate the influence of PIP3concentration on local membrane evolu-

tion, the dynamical model introduced in §6.2.5 is calibrated against the extracted

quantitative data via the EM algorithm. The algorithm is initialised by the LS-type

step that computes the initial estimate of the parameter vector, Θ̂0, using the res-

ults of cell boundary tracking and the integrated intensity smoothed over the cell

boundary.

The non-normalised integrated fluorescence intensity is smoothed over the cell

boundary domain prior to the estimation. Two smoothing algorithms have been

tested: the moving average algorithm and the B-spline smoothing. The smoothing

results around the cell boundary for one time instance are compared in Figure 6.6.

The MA method is selected for this analysis because it is more sensitive to sharp

changes in the magnitude and its output remains positive, unlike that of the B-spline
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smoother. The smoothed intensity and local curvature are shown in Figure 6.7 as
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Figure 6.6: Smoothing of the extracted fluorescence intensity over the cell boundary at

time t. Measured fluorescence intensity ( ) smoothed with MA ( ) and B-

spline ( ) methods.

colour maps where the Y-axis corresponds to the node index on the unwrapped cell

boundary, and the the X-axis to time instance. The smoothed intensity captures the

diffusive nature of the local activator, with highest concentration between nodes 100

and 20. Local curvature is the highest and the cell area computed for each frame

are used to estimate the model parameters via the EM algorithm.

The estimation results for all cells are summarised in Table 6.2. It can be

seen that most of the parameter MLEs are inconsistent for different cells, and the

estimated noise covariances suggest that the estimation algorithm attributes the

dominant effect on the membrane dynamics to the random disturbance. An example

Cell r̂v r̂a r̂γ r̂vol Q̂w P̂ k
0

1 0.3080 0.2289 4.4175 -0.0013 69 38.07

2 0.0672 -0.0896 -41.1960 -0.0003 51 2.28

3 0.5059 0.1419 14.1492 -0.0003 124 106.03

4 0.2203 -0.0826 29.2137 -0.0026 60 10.22

5 0.2532 0.1243 2.1701 -0.0001 198 6.67

6 0.4714 0.0247 -16.0153 -0.0001 47 48.13

7 0.5875 0.0096 12.6756 -0.0000 44 58.14

8 0.1076 0.2217 -0.3254 -0.0004 58 15.09

Table 6.2: Estimation results for PH-Akt-GFP neutrophils.

of the local velocity predicted by the model with estimated parameters from the data

shown above is compared to the EM output in Figure 6.8. The model is simulated

under the assumption of noiseless process to evaluate the mean value behaviour of

the evolving membrane. It can be seen that magnitudes of the predicted velocity
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(a) Smoothed intensity (b) Local curvature

Figure 6.7: Cell properties extracted from the imaging data. (a) Smoothed local fluores-

cent intensity of PH-Akt-GFP is assumed to be proportional to the PIP3 concen-

tration. (b) Local curvature of the cell membrane.

(a) Estimated velocity (b) Predicted velocity

Figure 6.8: Estimation results for a motile neutrophil (Cell 6). (a) The local normal

velocity (in px/min) filtered during the expectation step of the EM algorithm. (b)

The local normal velocity (in px/min) is predicted using the dynamical model with

the estimated coefficients.

are smaller than the estimated ones. Besides, the model produces values that are

directly proportional to the intensity magnitudes shown in Figure 6.7. This shows

a significant mismatch between the extracted cell velocities and their predictions.

An additional estimation procedure has been conducted under the assumption that

the noise covariance is known (Q̂w = 1), however the predicting capabilities of the

estimated dynamical model saw no improvement.

Poor estimation results can be interpreted as the result of describing non-

persistent polarity with a simple linear model. No meaningful predictions can be

made about the evolution of multiple protrusions from the available PIP3 distribu-



166 6.3. Results

tion along the cell membrane. This leads to the conclusion that the hypothesis of

direct influence of PIP3 on pseudopod protrusion as specified by the linear SMM

used here is falsified for neutrophils performing chemotaxis. Alternative mathemat-

ical representations of cell morphodynamics should be sought in future analyses.

6.3.4 Example of model identification from in vitro data

While the examined model poorly describes the morphological changes of highly

motile cells such as neutrophils, it is interesting to consider whether it can fit the

data from polarised cells. This analysis is performed with a different cell line which

is often used to model neutrophil behaviour – immortalised mammalian leukocytes,

HL-60. A set HL-60 cell with the the same GFP labelling as the neutrophils invest-

igated in this chapter is taken from [27]. The morphodynamics of one cell in the

set that maintains polarity for 14 frames is analysed here. The image processing

results presented in Figures 6.9b- 6.9c show that the highest fluorescence intensity

corresponds to the leading edge of the cell.

The node-vs-time colour maps presented in Figure 6.10 show that the highest

intensity is maintained between nodes 75 and 120, which correspond to the leading

edge. The second, although much smaller, increase in value corresponds to the

trailing edge of the cell. The highest curvature is observed at the trailing edge and

bordering nodes of the advancing pseudopod.

The results of applying the EM algorithm to the polarised cell data are shown

in Table 6.3. Because only one cell is analysed, it is not clear whether the MLEs

of r̂v and r̂a will be more consistent for polarised cells. Similarly with the results

obtained from in vivo data, estimated parameter values suggest that the cell area

change has little effect on the boundary evolution. It could be argued that the effect

of volume conservation can only be observed in 3-D, so considering it as an aspect

in analysing 2-D data can only be approximate. On the other hand, the estimated

noise covariance is much smaller compared to that for motile neutrophils.

Parameter r̂v r̂a r̂γ r̂vol Q̂w P̂ k
0

Value 0.4872 0.1503 -102.03 -0.0004 1.3637 1.0007

Table 6.3: Estimation results for a polarised cell.

The estimates from Table 6.3 have been substituted into the dynamical model

to predict the local normal velocity given the concentration of PIP3, local curvature,

and the cell area. Because of the linear relationship between the components pre-

sumed by the model, higher concentration at the trailing edge contributes to the

increase in normal velocity, however this effect is compensated by large curvature
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Frame 1 Frame 4 Frame 8 Frame 12

(a) Examples of time-lapse in vitro images

(b) Image processing results: frame 9

(c) Image processing results: frame 10

Figure 6.9: Time-lapse images of a polarised HL-60 and selected processing results. (a) Se-

lected in vitro frames of the immortalised mammalian neutrophil with GFP-tagged

PH domain of Akt performing the chemotactic run. (b)-(c) Processing results of

two subsequent frames of the cell. The left image shows node velocities produces by

the boundary tracking module. The middle image shows the pixels along the cell

boundary associated with each node on the cell boundary. The right image shows

the local integrated intensity plotted against the node index.

values. This signifies that the model captures the regulatory role of the local mem-

brane tension in the polarised cell. The noiseless prediction results are compared
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(a) Smoothed intensity (b) Local curvature

Figure 6.10: Quantitative data extracted from the images of a polarised HL-60 cell. (a)

Smoothed local fluorescent intensity of PH-Akt-GFP is assumed to be proportional

to the PIP3 concentration (b) Local curvature of the polarised cell. The highest

curvature correspond to the cell rear.

(a) Estimated velocity (b) Predicted velocity

Figure 6.11: Estimation results for a polarised HL-60 cell. (a) Local normal velocity

(in px/min) filtered during the expectation step of the EM algorithm. (b) Normal

velocity (in px/min) is predicted using the dynamical model with the estimated

coefficients.

to the values estimated by the EM algorithm in Figure 6.11. It can be seen that

the predicted velocity map aligns with the estimated values. However, the estim-

ated process noise covariance still indicates rather large noise-to-signal ratio in the

resultant model.

This is the only cell for which the parameter estimation resulted into a good

prediction, suggesting that PIP3 is a participant of the signalling pathways in an

established leading edge, rather than the activator of new protrusions. Combined

with the results from the in vivo data, this indicates that the linear dynamical model



6. Statistical analysis of cell morphodynamics 169

that allocates the role of the “internal compass” to the internal gradient of PIP3

cannot be considered as a candidate for the role of the local activator that induces

membrane protrusion in the polarisation process.

6.4 Discussion

The results demonstrate that, while on average higher PIP3 concentration corres-

ponds to the faster protrusion of the cell membrane, the examined model does not

support the hypothesis that PIP3 is the direct contributor to the pseudopod growth.

These results can be interpreted from two perspectives: characterisation of the bio-

logical process and adequacy of the mathematical description. On one hand, the

estimation outcomes agree with several experimental studies which demonstrate on

various knock-out cell mutants that the PI3k-PIP3 signalling pathway is not essential

for accurate chemotaxis, although it accelerates protrusion growth [202], [203]. The

analysis conducted in this chapter provides quantitative evidence obtained from cells

with normal PIP3 generation rate that complements the experimental findings from

knock-out mutant cells. On the other hand, the results indicate that the commonly

used linear dynamical model with a single activator cannot sufficiently describe the

severe morphological changes of a migrating neutrophil.

The fact that the tangent movement of the membrane segments is not con-

sidered in the model is also rather limiting because in some protrusions only the

front part moves forward, while the rest of the pseudopod has a larger tangent com-

ponent of the velocity (see, for example, Figure 6.12). It can be seen in the figure

that the upper pseudopod, where the high concentration of PIP3 is observed, is char-

acterised by a ”slide” in the membrane. This leads to the mismatch between the

selected model of boundary evolution and the observed protrusion, where, despite

the high concentration of PIP3, the dominant component of local velocity is tangent

to the membrane. This means that the dynamical model needs to be extended to

the local tangent velocity evolution, however such representation may imply spatial

dependence between the nodes. The state space model must then consider the state

of the entire curve rather than an individual node, which may complicate the model

parameter estimation.

Another possible extension of the SSM is to consider the spatial aspect of the

local activator dynamics using one of the RD models discussed in §2.2.3. Because the

nodes are equally spaced on the discretised curve representing the cell boundary, the

PDE describing the spatio-temporal dynamics of the activator can be straightfor-

wardly discretised using finite differences method. The difficulties of adapting such

models arise from the fact that the evolution of the activator is coupled with extra-

cellular environment and often a global inhibitor. The former cannot be observed
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Figure 6.12: Example of the cell membrane classification based on the local curvature and

local velocity components. Node velocities are colour coded as follows. Advancing

membrane: vν � ε, |vν | � |vτ | ( ); retracting membrane: κ > 0, vν � −ε,
|vν | � |vτ | ( ); sliding membrane: vτ � ε, |vτ | � |vν | ( ); stalling membrane:

κ < 0, |vν | � ε, |vτ | � ε ( ). The threshold ε is arbitrarily set to 10 px/min for

the given cell. The threshold depends on the time increment between frames and

the resolution of time-lapse images.

experimentally which leads to the problem of simultaneous estimation of multiple

aspects of the highly non-linear process, while the latter is an artificial parameter

that is not linked to any physical aspects of the subcellular signalling. Developing

a simplified model of the local activator redistribution is therefore deemed more

feasible.

In polarised cells, the relationship between the PIP3 redistribution and the

direction of the membrane protrusion is more evident. This is demonstrated in the

HL-60 cell observed in vitro. The model with estimated parameters can predict the

magnitude of normal velocity at the leading edge based on the local concentration of

PIP3 and the curvature of the membrane. Indeed, the majority of modelling works

focus exclusively on persistently polarised shape [41], [60], [66] which is only suitable

for cells with stable leading edges. It can be argued that the single leading edge is not

maintained throughout the process of chemotaxis, especially in in vivo neutrophils

whose motion is characterised by multiple protrusions (recall the neutrophil shown

in Figure 6.1). At the same time, both neutrophils and HL-60 cells demonstrate an

inherent propensity to polarise in absence external gradient [204]. Thus, a possible

extension to the this analysis would be to introduce a switching model that reflects

different modes of neutrophil membrane evolution: periods of clear polarity can be
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described by the model considered in this chapter, while the periods of multiple

protrusions require a different description with a higher degree of randomness. The

switching process could be conditioned on the number of protrusions of the cell.

Development of such a model is beyond the scope of this thesis.

The lack of correlation between the messenger concentration and the local ve-

locity may be the result of various imaging artefacts that are caused by observing a

3-D object in two dimensions. In case of neutrophil population considered in previ-

ous chapters, the cell movement along the Z-axis (away or towards the camera) can

be neglected because the ”depth” of the zebrafish tail fin is rather small compared

to the distances the neutrophils must cover over the course of the inflammatory

response. After zooming in to the level of an individual cell the Z-component of the

local velocity becomes comparable in size with the other two components. Thus,

the high concentration of PIP3 may correspond to the membrane advancing towards

the camera that is obscured by compressing the Z-stack images into one layer (see

Figure 6.13). For more conclusive results, individual Z-layers can be processed using

the tools developed in this chapter.

Because of the limited size of the experimental dataset, the biological signi-

ficance of the analysis results is disputable. It is also not clear whether there is

a stronger link between PIP3 and the protrusion formation in other types of euka-

ryotic cells as only neutrophils and neutrophil-like cells are analysed. The estimation

procedure developed in this chapter can be applied to the different cell types or in-

tracellular messengers such as Rac that has been successfully imaged in [205], [206],

PTEN, and other species that may regulate local shape changes in a migrating cell.

6.5 Summary

This chapter introduces a computational module for processing the time-lapse im-

ages of neutrophil subcellular activity and utilises the processing results to assess

the assumption commonly made in the modelling literature about the relationship

between the environment sensing mechanism and shape changes in migrating euka-

ryotic cells. Processed are the images of migrating neutrophils tracked in vivo with

GFP-tagged PH-Akt domain whose fluorescence corresponds to the local concen-

tration of PIP3 – a crucial second messenger that is considered as a candidate for

the role of local activator in several models of the subcellular signalling mechanism

driving chemotaxis.

The mathematical model of cell shape evolution that is examined in this chapter

is tested against the in vivo images of zebrafish neutrophils obtained by the collab-

orators on the project, as well as in vitro images of immortalised mammalian neut-

rophil (HL-60 line) with persistent polarisation from [27]. The correlation analysis
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(a) Cell moving away from the camera

(b) Cell moving towards the camera

Figure 6.13: The effect of 2-D microscopy on the single-cell scale. Since the Z-stack

time-lapse images are compressed into one layer, the motion along the Z-axis is not

accounted for in the cell boundary tracking. (a) The neutrophil migrating away

from the camera. (b) The neutrophil migrating towards the camera. Both cells are

characterised by similar distribution of Akt intensity.

of the data extracted from in vivo imaging results reveals that the there is no strong

connection between the distribution of PIP3 and the speed of advancing or retract-

ing membrane. This could be attributed to imaging artefacts or tracking errors.

However, on average, areas with the highest local concentration and the positive

time derivative of the second messenger correspond to the accelerated membrane

protrusion which conforms to the hypothesis that PIP3 accelerates the pseudopod

extension. The processing results of the polarised HL-60 cell are used to estimate

the parameters of the evolution model and predict local velocities in the leading edge

based on the PIP3 concentration and the local curvature of the cell membrane. This

indicates that the simplified model of the membrane evolution heavily relies on the

assumption of persistent polarisation which is rarely the case for chemotaxing neut-

rophils. The main focus of the future work should therefore be on the development

of more sophisticated data-driven models of pseudopod formation and retraction.
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The progress in this direction may be impeded by slow advances in the imaging of

subcellular activity in vivo.

In summary, this chapter demonstrates a set of methods that can be used to

evaluate the relationship between various subcellular species and deformations of

the cell membrane. This analytical framework can be instrumental in future studies

of cell morphodynamics for processing of time-lapse imaging data that focuses on

internal concentrations of signalling proteins.
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7 Conclusion

7.1 Summary of contributions

The ultimate goal of researching the neutrophil migration is to increase the preci-

sion of the therapeutic treatment for various inflammation-mediated diseases while

minimising potentially harmful side effects. This is impossible to achieve without

thorough knowledge of the key processes regulating the responsiveness of neutrophils

to the external environment which drives their migration towards and away from

the area of the infectious threat. A colossal leap towards clearer understanding of

neutrophil function during the inflammatory response has been made with the in-

troduction of the in vivo models of inflammation which allow researchers to observe

cells in naturally occurring inflammatory event. However, in vivo microscopy often

obscures the important aspects of the process, such as the underlying environments

that induce neutrophil chemotaxis. Along with lengthy and expensive experiment

design, this shortcoming slows down the process of treatment development and in-

creases its costs. Data-driven computational models of neutrophil migration have

the potential to simplify the process of testing various therapeutic strategies which

can reduce the costs of medical trials. In order to make meaningful predictions of

cell behaviour, these models must first be calibrated against the experimental data.

This thesis provides an account of developing statistical inference tools that can be

used at various stages of the model calibration process.

The background chapter provides an overview of the inflammatory response

from the neutrophil-centred perspective, discusses mathematical models of cell chemo-

taxis on varying scale, and concludes with a brief but comprehensive review of the

statistical inference methods that are utilised throughout the thesis. The state space

approach to modelling the dynamical processes is advocated as a suitable way to

interpret the problem posed in the thesis.

Chapter 3 introduces a novel problem of simultaneous estimation of neutrophil

velocities and the hidden chemoattractant environment that drives their migration

during the recruitment stage of the inflammation. A simple solution is sought based

on the assumption that the hidden environment acts on the moving cell as a potential
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field. A state space model of individual neutrophil dynamics is formulated to ex-

plicitly include the parametrised model of the global attractant concentration. The

hidden environment is parametrised via the basis function decomposition where the

scaling coefficient corresponding to individual basis functions are the model para-

meters. The resultant state space model is linear with respect to the unknown

parameters and non-linear with respect to the cell state. Cell states and field model

parameters are estimated via the Expectation Maximisation (EM) algorithm that

employs an unscented smoother during the expectation step. An additional step

approximates cell positions in order to ensure the analytical solution of the max-

imisation step. The inference results are in agreement with the widely accepted

hypothesis that the neutrophils are actively driven to the wound area by the ex-

ternal chemoattractant concentration, however the estimation is constricted by the

assumption that all neutrophils uniformly respond to the chemoattractant.

Chapter 4 considers a generic problem of the environment inference based on the

observed migration of multiple models with hybrid dynamics. A jump Markov model

of individual object dynamics is combined with the environment model proposed in

Chapter 3. The potential field method of modelling the object-environment interac-

tion leads to a hybrid model that is linear in terms of the unknown parameters. An

approximate EM solution is derived for the simultaneous estimation of object full

states, mode probabilities, and the environment model parameters. Because one of

the state space models within the hybrid system is non-linear with respect to the

state, an additional approximation step is introduced that computes the forecasts of

object positions that are further utilised to solve the maximisation problem in closed

form. The algorithm also employs the IMM-URTS smoother on the expectation step

that provides the mode probabilities and mode-conditioned states of each object at

reduced computational cost. The simulation examples reveal three crucial factors

that affect the accuracy of the environment estimation: the tracking data localisa-

tion, the choice of initial conditions in the inference framework, and the closeness

of the utilised hybrid model to the true object dynamics. One of the simulation

examples demonstrates that a good estimate of the underlying environment can be

achieved irrespective of the knowledge of the true environment model. Although the

estimation framework is developed in the interest of processing neutrophil track-

ing data, some of the presented simulation examples speculate on other potential

applications where the inference of the global environment may be required.

The hybrid model of the individual neutrophil dynamics considered in Chapter

5 relaxes the assumption of uniform behaviour in the population of migrating cells.

The proposed model accounts for three types of behaviour observed experimentally:

• responsive mode, in which the neutrophil moves in response to the spatial

changes in external chemoattractant (ChA) concentration;
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• diffusing mode, in which the neutrophil is performing a mean-reversing random

walk;

• stationary mode, which describes apoptotic or non-activated cells.

Flexibility of the exploited JMS makes it possible to utilise the model in the

novel analysis of both recruitment and resolution stages of inflammation. In the

analysis, the hybrid system is embedded into the estimation framework proposed

in Chapter 4 to infer chemoattractant and chemorepellent concentrations from the

zebrafish tracking data. Two alternative methods of the approximate state estima-

tion of a hybrid model are considered: IMM algorithm that merges the mode his-

tories, and the pruning algorithm that favours the most probable migratory mode

of a neutrophil at each time. The environment inference for all recruitment datasets

recovers the smooth global environment with higher concentration at the wound site,

however in two instances for the tail fin nick injury the outlier peaks are identified

from the persistent migration of several neutrophils in the direction opposite from

the wound. Mode identification results show that majority of the neutrophils remain

responsive on their route to the injury site, yet upon arrival to the site they switch

to random movement. This change of behaviour could be caused by either loss of

sensitivity to the gradient or by chemokinesis in uniformly high ChA concentration.

To author’s best knowledge, Chapter 5 describes the first attempt to analyse

the reverse migration process using the modelling framework that incorporates the

influence of the environment in the dynamical model of the cell. Moreover, the

hybrid model utilised for this analysis takes into account the fact that a neutrophil

may switch between various migratory modes throughout the process of reverse

migration. The estimation results conform with previously proposed hypothesis

that neutrophils predominantly diffuse away from the wound area [17], [179].

The level of detail in the data-driven model is usually defined by the exper-

imental data in hand. While a large part of this thesis examines the process of

directed cell migration on the level of population and the individual whole cell,

Chapter 6 moves on to a finer scale and analyses the subcellular mechanisms of the

migrating neutrophil. The hypothesis that the distribution of PIP3 along the cell

boundary acts as a local mediator of protrusion growth is tested against the imaging

data of individual neutrophils. A simple model of local cell membrane evolution is

formulated in the state space domain to linearly link local PIP3 concentration, local

curvature, and the cell area to the local normal velocity of the boundary. The state-

parameter estimation of the developed model is performed via the ordinary Least

Squares algorithm to recover the proportionality coefficients and the process noise

variance. The preliminary analysis of raw quantitative data obtained from the in vivo

time-lapse images of migrating neutrophils reveals that there is no strong correlation

between the candidate mediator and local advances of the cell membrane, although



178 7.2. Future Work

the areas with higher concentration of PIP3 are characterised by the median shift of

local velocity distributions. The dynamical model with estimated parameter values

could not reproduce the observed membrane dynamic of motile cells, leading to the

conclusion that the redistribution of PIP3 alone may not be sufficient to mediate

multiple protrusions. However, the estimation results of a polarised cell observed in

vitro suggest that the examined model may sufficiently describe the dynamics of a

cell with a well defined leading edge.

In summary, this thesis makes an important contribution to the effort of closing

the gap between the experimental data and the mathematical modelling of directed

cell migration during the inflammatory response. The environment inference frame-

work developed in Chapters 3-5 is flexible, amendable to various types of wounds and

migration patterns, and can be utilised as a decision-support tool in the design pro-

cess of various inflammation treatments. On the other hand, the image processing

tools and the estimation algorithm developed in Chapter 6 can be of assistance

in identifying the subcellular messengers that regulate the deformation of the cell

shape.

7.2 Future Work

While the work conducted in this thesis significantly extends the scope of the invest-

igation of neutrophil migration during the inflammatory response, several limitations

of the proposed models and estimation methods have been identified throughout the

thesis. Overcoming these limitations is the basis of future work outlined below.

Implementation of the estimation framework

Several aspects of the estimation framework proposed in Chapter 4 can be improved.

First, it is necessary to assess how various approximations of the non-linear dynam-

ical model may improve the estimation performance compared to the forecasting

object positions that has been employed in this work. A numerical optimisation of

the expected log-likelihood can also be considered in case of a sparse basis function

grid. For example, a multi-start search will be able to identify multiple stationary

points of the log-likelihood function, though at the cost of increased computational

complexity. The proposed algorithm is developed in the interest of application where

no prior information about the field is available. As a Maximum Likelihood solu-

tion, it provides only a point estimate of the model parameters. Extending the EM

algorithm to produce the MAP estimate of the underlying environment will improve

its applicability to situations where the prior knowledge about the environment para-

metrised model can be utilised. Furthermore, employing variational Bayes methods
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to approximate the posterior pdf of model parameters will extend the framework to

a fully Bayesian estimation [207].

The mode transition probability matrix is assumed to be known to the es-

timation framework. Its estimation can be included by extending the developed

algorithm to the expectation conditional maximisation scheme, in which one of the

conditional M-steps will estimate the underlying environment, and the other will

estimate the transition frequency matrix as described in [155].

Several simulation examples in Chapter 4 demonstrate the disadvantage of us-

ing a simple tensor B-spline grid with uniform knot sequence. Local support of the

individual basis functions combined with the tracking data confined to a particu-

lar area of the field lead to poor accuracy of individual parameter estimates. This

effect can be observed in Chapter 5 in the analysis of reverse migration data. Sev-

eral alternatives to the simple B-spline decomposition can be considered to account

for the spatial changes of the environment on varying scale: the hierarchical knot

placement, multi-resolution approximation with B-spline wavelets, or using a com-

bination of fine and coarse grids. The multi-resolution model of the environment

will be able to capture small details in the areas with high density of object tracks

and ”smooth” the areas where limited data is available. This extension can serve

as foundation for further improvements in the application to neutrophil migration

that are discussed below.

Modelling and estimation of cell-environment interaction

The analysis of neutrophil chemotaxis in Chapter 5 is performed under the as-

sumption that the underlying chemoattractant concentration field is time-invariant.

This implies a single slowly-diffusing agent acting on the recruited neutrophils,

which contradicts recent experimental studies that observe multiple chemoattract-

ants throughout the course of inflammation recruitment. For example, the rapidly

diffusing hydrogen peroxide (H2O2) has been identified as a candidate for the initial

wound-to-cell signalling [208]. The experiments reveal that the peroxide concentra-

tion peaks near the wound at 20 min post injury and diffuses until 120 min to be

replaced with intermediate attractants. The future analysis should account for the

spatio-temporal dynamics of the ChA concentration. Because the inherent batch-

based structure of the developed framework requires collecting the tracking data

prior to the field inference, the simplest solution would be to divide the neutrophil

tracks into hourly sets and perform the estimation for each hour separately using

the algorithm proposed in Chapter 4. However, the sparsity of the hourly tracking

data may lead to poor accuracy of field estimation, especially if the field model is

parametrised using the basis functions with local support. A more sophisticated

approach would involve recursive environment estimation: at each time interval,
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the concentration field will be inferred from the neutrophil tracks that have been

accumulated by the given time.

Another restricting assumption made in this analysis is that there is only one

chemoattractant source that promotes neutrophil recruitment. Multiple experi-

mental studies have demonstrated that neutrophils navigating in a complex ChA

field have to select between various local gradients [209]. The estimation results for

the tail nick injury in Chapter 5 support this statement: the shape of the inferred

global environment indicates that there may be two or more threat areas located

next to each other. Neutrophil chemotactic behaviour in case of competing ChA

sources has been investigated in [177], where the gradient model is assumed to be

known. Adding distinct models of neutrophil interaction with each of the competing

gradients to the framework proposed in this thesis will enable the inference of these

non-trivial environments based only on the tracking data.

The natural direction for future analysis of reverse neutrophil migration is to

consider the conflicting chemoattrachant and chemorepellent environments. This

can be implemented by introducing an additional migratory mode to the hybrid

model of neutrophil dynamics that will describe the recruitment process. Two unique

basis function decompositions of the competing fields are required for this type of

analysis.

The estimates of chemoattractant concentrations are presented in arbitrary

units that only describe the relative spatial change of the environment. In order

to relate the inference results to the physical chemoattractant concentration, the

estimation framework should be calibrated on in vitro experiments where the un-

derlying ChA field can be manipulated and measured.

Modelling and estimation of cell shape evolution

The main direction of the future research, however, should focus on the study of

subcellular processes driving neutrophil migration. Several outstanding problems

that arise from the analysis in Chapter 6 need to be addressed. Firstly, a more

complex dynamical model that accounts for the spatio-temporal dynamics of the ac-

tivator can be used to describe the evolution of the cell membrane. Multiple models

for that account for diffusive nature of the activator have been reviewed in §2.2.3,

however most of them couple local mediators with a global inhibitor. Approxim-

ating the partial differential equation that describes spatio-temporal dynamics of

the local activator with the finite differences method will lead to coupling between

neighbouring nodes. The state of the system will then have to include the velocities

and concentrations along the entire cell boundary:

xt =
[
{vν(skt )}K1 , {a(skt )}K1

]>
,



7. Conclusion 181

whereK denotes the number of equidistant nodes used to approximate the boundary.

Because the distance between nodes may be changing between the time-lapse frames,

the state transition dynamics obtained from the finite-differences algorithms will

become time-varying. The expectation step of the algorithm will have to include a

time-varying smoother for the state estimation.

Secondly, the model used in Chapter 6 also presumes that the local activator

concentration is directly proportional to the local external gradient sensed by the cell.

A further extension would be to include the external field along the cell membrane

as a hidden state that can be estimated simultaneously with the model parameters.

This extension would provide a link between the subcellular processes and the ex-

ternal environment. The anticipated challenge of this extension is spatio-temporal

modelling of the extracellular domain that wound ensure identifiability of the system.

Finally, the most feasible extension of this dynamical modelling framework is

to account for the switching behaviour of migrating neutrophils on the subcellular

level. Since the estimated model parameters obtained from the polarised cell allow

us to predict the local velocity from the observed concentration of PIP3, it may be

sufficient to describe morphodynamics of polarised cells. An alternative model can

be introduced to describe the motile behaviour of neutrophils, and the switching

from polarised to motile state can be defined by the presence of multiple protru-

sions of the neutrophil membrane. An example quantitative method that combines

boundary tracking and detecting protrusions in a migrating cell is presented in [210].

The estimation results suggest that the PIP3 cannot be assumed as the only signi-

ficant contributor to multiple pseudopod extension, so additional mediators should

be considered when modelling membrane evolution of motile cells. Data-driven de-

velopment of such models is still in the early stages and relies on improvements in

the in vivo microscopy of subcellular concentrations. Future work in this direction

should seek ways to quantify multiple subcellular environments simultaneously.
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A Derivation of the maximisation

step for the EM algorithm

Chapters 3 and 4 solve the problem of the environment inference with the EM

algorithm. Since the hidden environment is presented by the same model, the max-

imisation steps in both chapters are derived using the same principle. The proof

below is presented for Lemma 4.3.2 that considers a more complex hybrid model, but

can be easily amended to prove Lemma 3.3.1, if one is to consider that the hybrid

model has only one discrete state. The notation in this appendix is consistent with

the notation adopted throughout the thesis.

Recall the expression for the Q-function for the jump Markov system from

Lemma 4.3.1

Q(Θ, Θ̂i) =
K∑

k=1

Tk∑
t=1

Nm∑
j=1

µk,j
t E

[
log p(xk

t | xk
t−1, s

k
t−1,m

k
t ,Θ) |mk

t ,y
k
t , Θ̂

i
]

+ c, (A.1)

where the constant c denotes all terms independent of Θ, sk
t−1 is the augmented

state and where

µk,j
t , P(mk

t = M j | yk,Θ) ≥ 0. (A.2)

Then the expression (4.3.19) can be achieved as follows.

Proof. Expand (A.1) using the definition of the state update probability

Q(Θ, Θ̂i) =c1 −
1

2
E

[
K∑

k=1

Tk∑
t=1

Nm∑
j=1

µk,j
t

{
(Qjω)−1×

×
(

(Gj)†(xk
t|t −A

jxk
t−1|t −B

jφ(sk
t−1)Θ)

)2
}]

,

(A.3)

where the expectation is taken over states xk
t−1,x

k
t , and where constant c1 includes

the terms that will be discarded during the maximisation procedure. Recall that the

term φ(sk
t−1) is approximated using the computed sk

t−1 prior to the maximisation

step and thereafter is referred to as φk
t−1. Noting (4.3.20), expand constituent terms
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of (A.3) further as,

Q(Θ, Θ̂i) = c1−
1

2
E
[ K∑

k=1

Tk∑
t=1

Nm∑
j=1

µk,j
t

{
(xk

t )>Σj
ωx

k
t−

−2(xk
t )>Σj

ωA
jxk

t−1+

+2Θ>(φk
t−1)>(Bj)>Σj

ωA
jxk

t−1−

−2Θ>(φk
t−1)>(Bj)>Σj

ωx
k
t +

+(xk
t−1)>(Aj)>Σj

ωA
jxk

t−1+

+Θ>(φk
t−1)>(Bj)>Σj

ωB
jφk

t−1Θ
}]
.

(A.4)

We can obtain parameter estimates corresponding to the maximum of the log-

likelihood function by taking the partial derivative of (A.4) with regard to Θ and

setting it equal to zero

∂Q(Θ, Θ̂i)

∂Θ
=E
[ K∑

k=1

Tk∑
t=1

Nm∑
j=1

µk,j
t

{
(φk

t−1)>(Bj)>Σj
ωx

k
t−

−(φk
t−1)>(Bj)>Σj

ωA
jxk

t−1 − (φk
t−1)>(Bj)>Σj

ωB
jφk

t−1Θ
}]
.

(A.5)

Using properties of the expectation listed in the appendix B, we can rewrite the

above equation to produce

∂Q(Θ, Θ̂i)

∂Θ
=

K∑
k=1

Tk∑
t=1

Nm∑
j=1

µk,j
t

{
(φk

t−1)>(Bj)>Σj
ωEmk

t =Mj

[
xk

t

]
−

−(φk
t−1)>(Bj)>Σj

ωA
jEmk

t =Mj

[
xk

t−1

]
− (φk

t−1)>(Bj)>Σj
ωB

jφk
t−1Θ

}
.

(A.6)

Solving (A.6) for Θ leads directly to (4.3.19). Furthermore, the second partial

derivative of the Q-function defined by

∂2Q(Θ, Θ̂i)

∂Θ2
= −

K∑
k=1

Tk∑
t=1

Nm∑
j=1

µk,j
t

{
(φk

t−1)>(Bj)>Σj
ωB

jφk
t−1

}
(A.7)

is clearly negative definite owing to its auto-product structure, which verifies that the

new parameter estimate Θ̂i+1 is located at a maximum, global or local, completing

the proof. �

Remark A.1: If one is to assume the single SSM for the object dynamics as has

been done in Chapter 3, then the following substitutions must be made in the proof

above:

• There is only one candidate SSM Nm = 1;
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• The probability of the considered SSM is µk,j
t = 1 at all times for all objects;

• All mode-conditioned expectations are replaced by the expectations conditioned

on the parameter vector EΘ̂i

[
xk

t−1

]
, E

[
xk

t−1 | yk, Θ̂i
]

and EΘ̂i

[
xk

t

]
, E

[
xk

t |
yk, Θ̂i

]
.

Then solving the simplified equation (A.6) for Θ leads directly to (3.3.14), proving

Lemma 3.3.1.



188



B Properties of the expectation

Definition B.1: Let g(x) be a function of a random variable with pdf p(x). The

expected value of g(x) is defined as follows

E [g(x)] =

∫
x
g(x)p(x)dx. (B.1)

Definition B.2 (from [74]): Let g(x, y) be a function of two random variables

with joint pdf p(x, y). The expected value of g(x, y) is defined as follows

E [g(x, y)] =

∫
x

∫
y
g(x, y)p(x, y)dxdy. (B.2)

Definition B.3 (Conditional expectation): For two random variables with a con-

tinuous joint pdf p(x, y), the marginal pdf of y is given by

py(y) =

∫
x
p(x, y)dx. (B.3)

Then the conditional expected value of x is computed relative to the conditional

distribution p(x | y) = p(x, y)/py(y)

E [x | y = Y ] =

∫
y
xp(x | y)dy, (B.4)

with the randomness inherited from randomness in y.

The following properties are used in derivation of the EM algorithms.

Property B.1 (Linearity of expectation): Let f(x) and g(x) be functions of x

and a and b be constants, then, if the expectation exists, it satisfies the following

E [af(x) + bg(x)] = aE [f(x)] + bE [g(x)] . (B.5)

Property B.2 (Jensen’s Inequality): Let f(x) be a function of x, then

f(E [x]) ≤ E [f(x)] . (B.6)

Proof. see [211]. �
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Property B.3 (Expectation of quadratic form): Let x ∈ Rn×1 be a vector and

A ∈ Rn×n be a square matrix, then

E
[
x>Ax

]
= tr

(
E
[
x>Ax

] )
. (B.7)

Theorem B.1 (Law of iterated expectations): Suppose that a random variable

x has the expectations E [x], then for any continuous random variable y defined in

the same probability space it holds that

E [x] = E
[
E [x | y]

]
(B.8)

Proof. The conditional expectation E [x | y] can itself be treated as a random vari-

able, then by definition B.1 its expected value is given by

E
[
E [x | y]

]
=

∫
y
E [x | y = Y ] py(y)dy, (B.9)

where py(y) is the marginal pdf of y defined by (B.3). Noting the definition B.3, the

above equation can be expanded as follows

E
[
E [x | y]

]
=

∫
y

∫
x
xp(x | y)dxpy(y)dy

=

∫
y

∫
x
xp(x | y)py(y)dydx

=

∫
x

∫
y
xp(x, y)dydx,

(B.10)

where x can be moved outside the internal integral and where where p(x, y) is the

joint pdf of two random variables, marginalisation of which renders

E
[
E [x | y]

]
=

∫
x
x

∫
y
p(x, y)dydx =

∫
x
xpx(x)dx. (B.11)

The integration over the marginal pdf px(x) by definition B.1 gives the following

E
[
E [x | y]

]
=

∫
x
xpx(x)dx = E

[
x
]
. (B.12)

�

Corollary B.1: Suppose that a random variable x has the expectation E [x], then

for a discrete random variable y that can take a finite number of values {Y j} it holds

that

E [x] =
∑
j

E [x | y]P (y = Y j). (B.13)



C Geometry of the cell boundary

This appendix presents definitions and methods for calculating auxiliary quantities

that were necessary for the computation of the cell boundary evolution model. Note

that previously adopted notation is abandoned in this appendix.

Definition C.1 (Local Curvature [212]): Suppose that Γ(t) is a twice continu-

ously differentiable curve, then its local curvature at a node s(t) is the rate of change

of the tangential angle φ(t) and is defined as

κ(s) =
φ(t)

‖l′(t)‖
, (C.1)

where l(t) is the local arc length, the prime denotes the first order derivative with

respect to the variable t, d
dt , and ‖·‖ denotes Euclidean norm.

Property C.1 (Local curvature in Cartesian coordinates): For a curve defined

by Cartesian coordinates Γ(t) = [x(t); y(t)], the local curvature satisfies

κ(s) =
x′(t)y′′(t)− y′(t)x′′(t)[
(x′(t))2 + (y′(t))2

]3/2 . (C.2)

Proof. Denote the tangent vector as s′(t) = [x′(t); y′(t)] and tangent angle as φ(t).

By definition of the Euclidean norm:

κ(s) =
φ′(t)√

(x′(t))2 + (y′(t))2
. (C.3)

The change of tangent angle can be obtained using the definition of tangent

tanφ =
dx(t)

dy(t)
, (C.4)

which is the equivalent of

tanφ =
dx(t)/dt

dy(t)/dt
=
x′(t)

y′(t)
. (C.5)

The derivative of the tangent is defined as follows

d

dt
tanφ = sec2 φ

dφ

dt
. (C.6)
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On the other hand,

d

dt
tanφ =

d

dt

(
x′(t)

y′(t)

)
=
x′(t)y′′(t)− y′(t)x′′(t)

(x′(t))2
. (C.7)

After combining equations (C.6), (C.7) and simple manipulations we get

dφ

dt
=
x′(t)y′′(t)− y′(t)x′′(t)

(x′(t))2 + (y′(t))2
, (C.8)

Substituting numerator in (C.3) by (C.8) leads to the final expression for local

curvature in the form (C.2), completing the proof. �

Local outward-pointing normal. Since the cell boundary curve is approx-

imated with a discrete set of nodes, it is represented by a polygon. Then for each

vertex sk the local normal ν̄(sk) can be computed as a polygon vertex normal using

algorithm C.1. The result of running one iteration of the algorithm is demonstrated

in Figure C.1.

Algorithm C.1 Computation of polygon vertex bases

Input: Sequence of nodes defining the polygon, = sk = [xk, yk] , k = 1, . . . ,K, ordered in the counter-

clockwise direction with s1 = sK .

Output: A set of outward-facing normals, ν̄(sk), k = 1, . . . ,K−1; a set of corresponding tangent vectors,

τ̄(sk), k = 1, . . . ,K − 1.

1: for k ← 1,K−1 do

2: Form a segment vector ĀB = sk − sk−1;

3: Form a segment vector B̄C = sk+1 − sk;

4: Compute the outward face normals

ν̄AB = null(ĀB),

ν̄BC = null(ĀB),

such that ν̄AB × ĀB > 0 and ν̄BC × B̄C > 0;

5: Set the origin of both face normals at the vertex sk;

6: Obtain the vertex normal as a normalised geometric sum of two pointing normals:

ν̄(sk) =
ν̄AB + ν̄AB

‖ν̄AB + ν̄AB‖
;

7: Obtain the corresponding tangent vector τ̄(sk) = null(ν̄(sk)) such that ν̄(sk)× τ̄(sk) > 0;

8: end for

Area enclosed by the cell boundary. The cell area can be computed as

the area of the non-convex polygon via triangulation. One of the most popular

techniques is Delaunay triangulation that maximises the smallest angle each triangle

(see Figure C.2a). This method requires solving an optimisation problem on for each

cell at each frame that proves to be computationally expensive. A simpler method

for computing the area with a standard triangulation is summarised in algorithm

C.2. The advantage of representing the triangle vertexes as a matrix is that it will

automatically detect the triangles that are outside the polygon (coloured grey in
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sk−1

sk

sk+1

ν̄AB
ν̄BC

ν̄(sk)

τ̄(sk)

Figure C.1: An example of the basis located at a vertex of the polygon.

Algorithm C.2 Computation of the polygon area with standard triangulation

Input: Sequence of nodes defining the polygon, sk = [xk, yk] , k = 1, . . . ,K, ordered in the counter-

clockwise direction with s1 = sK .

Output: The area of the polygon, A.

1: Initialise the algorithm with A = 0;

2: for k ← 3,K − 2 do

3: Draw diagonal from sk to s1;

4: end for

5: for k ← 2,K − 2 do

6: Calculate the area of the triangle with vertexes sk, sk+1, and s1 as a determinant of the matrix:

A∆ =
1

2
det

 x1 y1 1

xk yk 1

xk+1 yk+1 1

 ;

7: A = A+A∆;

8: end for

Figure C.2b) as the ones with negative area. Both methods have the same output

as demonstrated in Figure C.2.
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(a) Cell area computed with Delaunay

triangulation
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(b) Cell area computed with standard

triangulation

Figure C.2: Approaches to calculating the area of non-convex polygons.
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