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Abstract

In the mid to late twentieth century, Jacques Tits’ work in the area of Lie groups and Lie
algebras caused him to develop the construct of a building. Since then the topic has expanded to
be viewed from a range of different perspectives and has proven useful in a range of other fields
of mathematical research. The topic of buildings brings together several areas of mathematics,
including combinatorics, incidence geometry, and Coxeter groups, to name but a few. Buildings
are used by many as a vehicle to understanding properties of some of the more complex and
unworkable groups that one may wish to understand. This is done through having a building
upon which a group can act. In this thesis we will see that the building itself can be considered
the fundamental object, and motivate ideas that by taking buildings in different geometries we
are able to find new examples of groups. There are a variety of ways from which one may
approach the study of buildings, each with its own benefits and shortcomings. This thesis
provides an introduction to the topic of buildings showing a geometric based construction with
recurring examples.
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Introduction

The theory of buildings was originally developed in the late twentieth century by Tits in
order to aid his understanding of Lie Groups. Since then buildings have found another use
in the wider topic of groups, as they allow a mathematician to obtain data about a group that
would be far too complex to analyse alone. As well as groups, the topic of buildings brings
together multiple areas of mathematics into a single point of study and as such there are multiple
approaches available to reach buildings.

This thesis aims to explore and prepare the reader for the many different pathways that
lead into the desired construction of a building. We begin by looking at incidence geometry
through chamber systems and more generally wider geometries, before moving on to reflection
groups and Coxeter groups and then finally combining these two areas to give us a building.
Additionally, concepts such as apartments, panels and isometries are presented. In this thesis
we take a predominately example-driven approach, supported by key definitions and theorems.
Many of our examples make multiple reappearances throughout, a testament to the multiple
topics that buildings cover.

Firstly, we begin in chapter 1 by introducing chamber systems. A chamber system is a
geometric structure created from simplices. As well as an introduction to chamber systems
we also provide examples of how they can be realised from geometric solids. After more
generalised definitions relating to the properties and structure of chamber systems, we close
chapter 1 by detailing some of the tools that one has in order to work with such structures. This
first section largely follows the motivations used in [6] and [15].

As we move into chapter 2, we turn away from the group theoretic aspects which we start to
see in the language of chamber systems and instead focus on geometry. This chapter provides a
solid grounding in Euclidean, spherical and hyperbolic geometries, as required for our purpose
(and with possibly a little extra). We begin by defining the different geometries through looking
at how to define inner products, norms and metrics on spaces equipped with each geometry.
We then move to look specifically at triangles in each of the three geometries, exploring how
properties of the triangle are impacted by the geometry of the space they lie in. We end this
chapter by looking at how triangles in the plane can be generated by the reflection of regular
geometric objects. This gives the reader a stronger appreciation for the close ties between
geometry and the material that is to follow. This chapter takes inspiration from [13] and [12].
Neither of these texts lead the author to the study of buildings, and often in some of the major
texts in the area of buildings such as [1], [15] or [11], a comprehensive cover of material related
to geometries is lacking.

Chapter 3 focuses on reflections and reflection groups, turning back towards group theory
from geometry. We begin this chapter by examining, through examples, what we mean by a
reflection. With this understanding, we are able to define a reflection group, before taking some
time to point out the links with the previous chapter. We then look at root systems. We provide
a running example throughout this section to illustrate some of the key points regarding to root
systems. We then look at the classification for irreducible reflection groups. This work is taken
almost directly from [1], but is worthy of inclusion to illustrate the diversity of reflection groups
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possible and the importance of the root system. We end this chapter by formalising the notion
of a word, a definition which becomes ever more important as we continue.

Moving forwards to chapter 4, we first define what a Coxeter system is before showing by
our canonical example, how a chamber system can be realised from a Coxeter system. This sec-
tion starts to tie much of the previous material into something that starts to feel more purposed.
Also in this chapter we explore properties of Coxeter systems and discuss the classification of
Coxeter systems. We end this chapter with a range of examples to aid the understanding of the
reader and to draw back to the geometric examples seen in chapter 2.

Our final chapter d the introduction of the building, using information taken from each of
the previous chapters. We provide some key definitions and accompanying examples, before
launching into a much more theoretic approach to both illustrate some key points and also to
highlight the range that the construct of the building has across group theory. We conclude
this chapter, and indeed the thesis, by providing a brief discussion of alternative approaches to
reaching buildings.
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CHAPTER 1

Chamber Systems

We begin this exposition leading to the construction of buildings by introducing chamber
systems. Our approach to study chamber systems will be to introduce a recurring example,
which will be used to illustrate key points throughout both the chapter and the thesis as a
whole. Much of this first section may remind the reader of graph theory. This can be a useful
view to take in these earlier stages and key results in later chapters will allow us to transfer
these simple graphical ideas to the language of buildings. This first chapter follows a similar
approach as seen in [6], rephrasing and expanding on key points and with addition of some
further material.

1. Constructing a Chamber System

1.1. The Flag System. Our first example shows how it is possible to construct a chamber
system using a vector space. This example is our canonical example throughout this thesis,
indeed we will see it as a motivating example in several places as we continue forwards.

We start by taking an n + 1-dimensional vector space V over a field k. Let X be the set of
all proper, non-zero subspaces of V , and let there be a set I = {1, 2, . . . n} which we will call the
index set. We now take maximum flags from X.

A flag f ∈ X is a run of subspaces x1 ⊂ x2 ⊂ x3 . . . ⊂ xm−1 ⊂ xm ⊂ V such that m ≤ n
and for all 1 ≤ j ≤ m we have that x j ∈ X. A maximal flag on an n-dimensional subspace is a
run x1 ⊂ x2 ⊂ . . . ⊂ xn−1 ⊂ V where each xi has dimension i. Essentially we need the spaces
to have consecutive dimensions, so that for any xi−1 and xi in a flag, there cannot exist some
x j where xi−1 ⊂ x j ⊂ xi. We will call a maximal flag a chamber. We may denote chambers
x1 ⊂ x2 . . . ⊂ xn as (x1, x2, . . . , xn). For now we can think of these chambers as being denoted
graphically, as will soon be shown.

Next we must introduce the notion of being i-adjacent. This relation is an equivalence
relation between two chambers. For our example, we will say that two chambers (x1, x2, . . . , xn)
and (y1, y2, . . . , yn) are i-adjacent if x j = y j for all j ∈ {1, . . . , i − 1, i + 1, . . . , n}. Essentially we
are saying here two chambers are i-adjacent if they differ only in the ith position. Considering
chambers as vertices, we connect two vertices by an edge whenever the chambers are i-adjacent
for some i ∈ I, and the edge is labelled i for the relevant i ∈ I.

This is our chamber system: a collection of chambers and a relation of adjacency between
them. We can take this example a little further by inserting some figures to make the example
more concrete.

Example 1.1. Set n = 3 for the dimension of our vector space V , and set k to be a field of
order q = pn for some p prime. We need to count how many 1-dimensional and 2-dimensional
subspaces there are. For the 1-dimensional case each subspace is spanned by a non-zero vector,
of which there are q3−1. These are all the possible vectors without the zero vector. But then by
taking any vector v, it will span the same line as any non-zero scalar multiple. There are q − 1
scalar multiples of v ∈ V . We are left with q3−1

q−1 = 1 + q + q2 1-dimensional subspaces of V . A
similar argument gives us that there are also 1 + q + q2 2-dimensional subspaces of V .
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Now we need to know how many 1-dimensional subspaces are contained in each 2-dimensional
subspace and, vice versa, how many 2-dimensional subspaces each 1-dimensional subspace is
contained in. We can see using the argument used above that each 2-dimensional subspace
must contain q2−1

q−1 = q + 1 of the 1-dimensional subspaces. Since we know that there are
(q2 + q + 1) × (q + 1) distinct inclusions of subspaces x1 ⊂ x2 and we also know that there are
q2 + q + 1 subspaces of V which are 1-dimensional, we must also have that each 1-dimensional
subspace is contained in q + 1 subspaces of V which are 2-dimensional .

Setting the subspaces in the flags as vertices (with 1-dimensional subspaces shown in white
and 2-dimensional subspaces shown in black) and distinct inclusions x1 ⊂ x2 as an edge con-
necting two vertices, we get the following flag systems when q = 2 and q = 3. These figures
are based on those used in [6].

Figure 1. The flag complex ∆ of the 3-dimensional vector space over the field
of order 2

Figure 2. The flag complex ∆ of the 3-dimensional vector space over the field
of order 3
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As is clear from the above two figures, the system becomes vastly more complicated with
only a small increase in the order of the field.

1.2. Motivating the Chamber System. We can formalise the setup above to give the def-
inition of a chamber system, a construct central to our study of buildings. The following def-
initions are based on those found in [7]. We begin by introducing simplicial complexes: a
construct analogous to the flag system introduced in our earlier example. In this exposition, we
are only going to consider simplices of finite dimension, although infinite simplices do exist.
We then move into the definition for chamber systems which we will focus on in this thesis,
using edge coloured graphs.

Definition 1. For a set V , a combinatorial simplicial complex with vertices V is a set X
such that:

• X is a set of finite subsets of V
• If x ∈ X and y ⊂ x then y ∈ X
• Every singleton subset of V is contained in X

Call the elements x ∈ X simplices.

Essentially here, we can think of simplicial complexes as a kind of partially ordered set, in-
deed this is how we have already seen them presented in our canonical example. Geometrically,
simplices are often described using geometric objects to aid visualisation. In such a descrip-
tion, one could describe the zero-simplex as a point, the one-simplex as a line, the two-simplex
as a triangle, the three-simplex as a tetrahedron, and so on. Each is contained within the next
simplex up. The simplicial complex is then formed through ‘sticking’ the faces of different
tetrahedra together in some reasonable way.

We now look at how to define a maximum simplex, as was taken in our canonical example.

Definition 2. A simplex x ∈ X is maximal if there exists no simplex z ∈ X such that
x ⊂ z ∈ X.

We have already seen this idea in our canonical example where we required maximum flags
of the set of subsets of the vector space. For the sake of this thesis, we are only interested in
flag complexes or simplicial complexes where every flag (simplex) is contained in a maximal
flag (simplex).

We motivate the chamber system by considering simplicial complexes displaying two qual-
ities, namely that for a simplicial complex X:

• every simplex is contained in a maximal simplex, and
• for maximal simplices x, y ∈ X there exists a sequence x0, x1, . . . , xn of maximal sim-

plices x0 = x and xn = y and xi is adjacent to xi+1 for all indices i. We will refer to the
maximal simplicies as chambers and say that two chambers sharing the same face are
i-adjacent.

[7]
The purpose of starting with simplicial complexes to motivate the concept of a chamber sys-

tem is to help illustrate the strong links of this topic with geometry, which is further expanded
on in the examples provided in section 1.4. Whilst some texts in the literature surrounding this
topic focus purely on the simplicial complex approach, we will now take a different route. This
approach follow that of [15], and begins by defining an edge coloured graph.

Definition 3. For a graph ∆ = (V, E), with V a set of vertices and E ⊂ V × V a set of edges
between pairs of vertices, say that ∆ is an edge coloured graph if there exists some set I of
’colours’ with a surjective map from E to I.
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Indeed, a useful way of thinking about chamber systems is as edge coloured graphs. The
set I of colours acts such that it literally colours in the edges of the graph ∆. Denote x ∼i y to
mean the edge connecting x and y is colour i.

Another useful definition, offering a way of isolating important parts of the edge coloured
graph, is that of a residue. When we use language such as “connected” or “connected compo-
nent” in the context of edge coloured graphs and chamber systems, we are talking about the
standard notion of connectedness for the underlying graph. So a connected component is a
part of the graph where there is a route through a sequence of edges from every vertex in the
component to any other vertex in the component. This leads to the definition of a residue.

Definition 4. For some subset J ⊂ I, a J-residue or residue of an edge coloured graph ∆ is
a connected component of the subgraph of ∆ made by deleting all i-labelled edges for all i < J.
[15]

We now have enough terminology to define what we mean by a chamber system.

Definition 5. A chamber system is an edge coloured graph ∆ with an index set I such that
each i-residue of ∆ is a complete graph with two or more chambers, for each i ∈ I. [15]

Notice that any J-residue of a chamber system is itself a chamber system, as the natural
chamber system over the set J. We now consider how one would describe routes through the
edge coloured graph.

Definition 6. A gallery γ of length n from chambers c to c′ in ∆ is any sequence of n + 1
chambers γ = (c0, c1, . . . , cn) in ∆ such that c = c0, c′ = cn and for all 1 ≤ j ≤ n we have that
c j−1 ∼i j c j for a given i j ∈ I. [15]

A gallery is effectively a possible route between two chambers in the chamber system. The
type of a gallery γ with respect to the chamber system is the word i1i2i3 . . . in ∈ MI . Here MI

denotes the free monoid on the set I, giving all possible combinations of elements of I of any
length. The definition and use of words is formalised in chapter 3. We will use the definition
of a gallery significantly in the study of buildings, primarily as it provides a notion of length.

Clearly we have that our initial example of the flag complexes over vector spaces fits the
definition of a chamber system. If we consider the example given in figure 1, that is the flag
complex of the 3-dimensional vector space over the field of order 2, we can take the edges of
this graph to be chambers. We can label the vertices as 1 or 2 (shown in figure 1 as black or
white vertices) to refer to which subspace the flags differ in. Two chambers are then i-adjacent
if they share an i labelled vertex.

The notion of i-adjacency gives an equivalence relation. Taking the example above again,
it is clear to see this. Given any three adjacent chambers, c1, c2 and c3, for all i ∈ I we have
that c1 ∼i c1. This is clear as we can always go from the edge c1 through an i-labelled vertex
back to c1, hence ∼ is reflexive. We also have that if c1 ∼i c2 that c2 ∼i c1 as going from one
edge through an i-labelled vertex to an adjacent edge can always be done in reverse, hence ∼
is symmetric. Finally it is clear to see that if c1 ∼i c2 and c2 ∼i c3, then c1 ∼i c3. This can be
seen by considering any three edges sharing a vertex on figure 1, and shows transitivity. We
can therefore see that ∼ is an equivalence relation.

Weiss introduces the reader to chamber systems at the very start of his text on buildings
[15] and over the course of his first chapter spends time looking at the chamber system as little
more than a specialised graph. Conversely, in Brown’s book on buildings [1], we do not meet
the chamber system until almost chapter 2, since Brown takes a completely different approach
to arrive at chamber systems later on. We will see both of these alternative definitions as we
progress.
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1.3. Further Examples. Returning to our example above, we could have taken things
further by using a higher dimensional vector space. Even working one dimension higher where
V is 4-dimensional increases the complexity significantly. With the same notation as before, in
a 4-dimensional vector space we would have q3 + q2 + q + 1 of the 3-dimensional subspaces,
q4 + q3 + 2q2 + q + 1 of the 2-dimensional subspaces and q3 + q2 + q + 1 of the 1-dimensional
subspaces. There are now three places in the flag that we can have a different subspace, so the
resulting graph would look much more complicated

Alternatively we could have used an entirely different chamber system. Our canonical
example at the start was chosen as it has the depths to take us smoothly all the way into the
language of buildings. Many chamber systems do not get that far. Indeed, we can consider a
chamber system made purely geometrically by labelling a cube as shown below, or even a tiling
of the Euclidean plane. The following examples are based on those found in [12].

Example 1.2. An abstract chamber system can be taken from examples in basic shapes in
geometry. Take a tetrahedron; the edges can be labelled by the set I = {1, 2, 3} as shown. Each
face, or chamber, then contains exactly one edge labelled by each i ∈ I. This gives us a chamber
system comprised of 4 chambers. We could also choose to take the vertices as the chambers
in this example, which would give an equivalent chamber system. As can be seen on figure 3
below, we would have that

c1 ∼3 c2

since c1 and c2 share a common edge labelled 3.

12

3

2
3

c1 

1

c2 

c3 

c4 

Figure 3. A tetrahedron labelled by the set I = {1, 2, 3}, giving a chamber sys-
tem with 4 chambers

Example 1.3. Continuing on the same logic, we could choose to label a cube. In this case
we have a choice for our labelling of the edges depending upon whether we view the faces or
vertices as the chambers. In this example, each gives rise to different chamber systems.

First consider labelling the edges of the cube using the set I = {1, 2, 3} as shown in figure
4 below. In this labelling we view the vertices as the chambers, so each of the vertices of the
cube contain exactly one edge labelled for each i ∈ I. This gives a chamber system comprised
of 8 chambers for the 8 vertices, as shown below.
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c1 

c2 

c3 

c4 

3

2

1

1

2

3

1

2
1

2
3

3

c6 

c5 

c7 

c8 

Figure 4. A cube with edges labelled using the set I = {1, 2, 3} to give a chamber
system with 8 chambers

Alternatively we could label the edges of the cube using the set I = {1, 2, 3, 4} and take the
chambers as the faces of the cube, such that each face contains exactly one edge with label i for
each i ∈ I. This gives a chamber system with 6 chambers.

c1 

c2 

c3 

c4 

4

3
1

3

2

1

1

4

2

3

2

c6 c5 

4

Figure 5. A cube with edges labelled using the set I = {1, 2, 3, 4} to give a
chamber system with 6 chambers

Example 1.4. Our final example here involves tiling the 2-dimensional Euclidean plane with
triangles. By labelling the edges using the set I = {1, 2, 3}, we get a chamber system with an
infinite number of chambers. The chambers here are the triangles, with each triangle containing
exactly one i-labelled edge for each i ∈ I

For further examples of chamber systems, [12] provides a very thorough review of chamber
systems and a wider exposition of incidence geometry.

2. Structure of the Chamber System

In this section we delve deeper within the structure of the chamber system, and introduce a
range of new terminology.
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Figure 6. Tessellation of the 2-dimensional Euclidean plane by triangles, with
edges labelled using I = {1, 2, 3} to give an infinite chamber system

2.1. Within Chamber Systems. With an understanding of what a chamber system is, we
now look to understand further structure within a chamber system. A natural starting point
is the idea of a sub-chamber system, also referred to as a chamber subsystem in [12]. The
following definitions follow those in [15].

Definition 7. For a chamber system ∆, a subchamber system is a chamber system ∆′ such
that:

• ∆′ ⊆ ∆

• For c1, c2 ∈ ∆′, if c1 ∼i c2 in ∆ then c1 ∼i c2 in ∆′.

If we return to the definition of a residue, we now state a further useful piece of terminology,
defining a panel in a chamber system.

Definition 8. For a chamber system ∆, a panel (of type i) is an i-residue for some i ∈ I.
[15]

So a panel is one of the connected components that we are left with after deleting every
edge between chambers which are not labelled i. The definition of an i-adjacent can now be
restated.

Definition 9. For a chamber system ∆ and chamber c, c′ ∈ ∆, say that c is i-adjacent to c′

if and only if c and c′ lie on the same panel of type i.

Panels have other uses, one of which is to allow us to break chamber systems into different
classes.

Definition 10. If every panel in a chamber system contains exactly two chambers, we call
the chamber system thin. If every panel contains more than two chambers we call the chamber
system thick. [15]

This language of thin and thick will return later. Taking routes through sequences of edges
in chamber systems, as is done to get a connected component above, is common when dealing
with chamber systems. Recall the definition of a gallery, which we now use to give a notion of
distance through chamber systems.

Definition 11. The distance between chambers c and c′ is given by the distance function,
which is defined as:

15



dist(c, c′) = min{n | n is the length of a gallery from c to c′}.

As desired, we now have a distance function. We say that a gallery of length n from c to c′

is minimal if dist(c, c′) = n.
We return to our initial example of a flag complex over a vector space. By taking any two

chambers on the graph, it is obvious that we have a vast supply of galleries between chambers.
Not only are there a variety of direct routes between two chambers but there is also the option
to double-back on oneself within the gallery.

This final definition will take us back to subchamber systems, utilising several of the defi-
nitions given above.

Definition 12. A subchamber system ∆′ of a chamber system ∆ is convex if for any cham-
bers c, c′ ∈ ∆′, a minimal gallery joining c and c′ is the same in ∆ as in ∆′.

2.2. Between Chamber Systems. Now that we have looked within the chamber system,
we turn our attention to what we can do when we have several chamber systems together.
There are a variety of directions in which this subsection could take us, indeed in [15] there are
a range of different definitions that are covered. For the purposes of this thesis, we will restrict
ourselves to the following definitions.

Definition 13. For chamber systems ∆ and ∆′ with index sets I and I′ respectively, a ho-
momorphism of chamber systems is two maps σ : I → I′ and µ : ∆→ ∆′ such that each panel
of type i in ∆ is mapped to a panel of type σ(i) in ∆′.

This leads into the logical extension of an isomorphism.

Definition 14. An isomorphism of chamber systems is a homomorphism of chamber sys-
tems where σ and µ are bijections.

Isomorphisms are extremely useful as a way of moving between chamber systems as they
preserve distance between chambers by mapping galleries to galleries of the same length. Our
final definition of this chapter follows from the definition of an isomorphism.

Definition 15. An automorphism of a chamber system is an isomorphism such that σ :
I → I permutes the index set and µ : ∆→ ∆.

Definition 16. A homomorphism (and by extension isomorphism or automorphism) is
called a special homomorphism (or isomorphism, automorphism) for some σ if I = I′ and
σ : I → I is the identity map.

For the three definitions of a homomorphism, an isomorphism and an automorphism, we
sometimes refer to these maps as a σ-homomorphism (or σ-isomorphism, σ-automorphism
respectively) in order to draw attention to the map σ on the index sets. Before finishing this
chapter on chamber systems, we will make one final remark about homomorphisms. For any
two chambers c, c′ ∈ ∆ and σ-homomorphism µ, we have that dist(µ(c), µ(c′)) ≤ dist(c, c′),
where dist is defined as above.
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CHAPTER 2

Geometries

In this chapter we introduce three fundamental geometries, namely spherical, Euclidean,
and hyperbolic geometries. We have already seen examples linking chamber systems and ge-
ometry. Whilst a fair portion of the following material should be familiar to the reader, this
chapter will provide a short overview of three geometries which can be linked into the study of
buildings. We will be showcasing the key differences between each geometry and, for spheri-
cal and hyperbolic geometries, models that can be helpful for working with them. It should be
noted that the two principle sources of material in this chapter are [10] and [13].

1. Bilinear forms

We begin our overview of Euclidean, spherical and hyperbolic geometry by introducing
some central constructs which exist within each geometry. Our focus to start with will be on
the definitions of an inner product, a metric and a norm. Allow us to first recap what each of
these means in the Euclidean sense, something the reader will likely be familiar with.

1.1. Euclidean Rn. Our first key construct is that of the inner product, an essential tool
for working in a Euclidean vector space. The starting example in Euclidean space of an inner
product is the dot product of two vectors.

Definition 17. Given two vectors x, y ∈ Rn such that x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn),
the dot product of x and y is defined to be:

x · y = x1y1 + . . . + xnyn ∈ R.

[10]

The second key construct that we will focus on is that of a norm, which can be defined as
follows:

Definition 18. The norm of a vector v ∈ R is defined to be the real number

||v|| = (v · v)
1
2

[10]

In Euclidean space, the norm is used to assign a strictly positive notion of length to a given
vector; we will see that this is similar for the spherical and hyperbolic cases. The Euclidean
Norm for a vector x ∈ Rn is denoted |x|.

Definition 19. The Euclidean distance between two vectors x and y ∈ Rn is defined as
follows:

dE(x, y) = ||x − y||
where |x − y| denotes the Euclidean norm of (x − y).

As we move through spherical and hyperbolic geometry, we will also be concerned with
viewing hyperplanes in each.

Definition 20. A hyperplane in Rn is an (n − 1)−dimensional linear subspace.
17



x1

x2

x3

Figure 1. Spherical 2-space in R3

Finally, we discuss models for a geometry. Each geometry which we will look at is defined
through a set of axioms. These control how the space behaves. As we move into both spherical
and hyperbolic geometries, we shall require a model for each geometry to apply these rules to.
These models will be used primarily as an aid to visualising what is going on, just as the space
Rn serves for working with Euclidean geometry.

1.2. Spherical n-Space. Throughout this chapter we will describe and illustrate points
using the standard model for spherical geometry, namely the n−dimensional unit sphere in
Rn+1:

S n = {x ∈ Rn+1 : |x| = 1}
Therefore the picture to keep in mind when dealing with spherical geometry is rather than

having 2-dimensional Euclidean space R2, we have the surface of the unit sphere S 2 which the
real Euclidean space has been ‘wrapped around’. Throughout this chapter, S n will be used to
denote spherical n-space. The space S 2 in R3 is shown in the figure 1.

Definition 21. Let x and y be vectors in S n and let θ(x, y) denote the Euclidean angle
between x and y, such that 0 ≤ θ(x, y) ≤ π. The spherical distance between x and y is defined
to be

dS (x, y) = θ(x, y).

Note that in S n, we could equally choose to use the Euclidean distance as defined in the
previous section. The spherical distance however, is more ‘intrinsic’ to the space. Despite
θ providing a measure of angle, in spherical geometry we are working with radians, so the
measure of angle is analogous to the measure of length between two points on the surface of
the S n. Spherical n-space can be defined as the space consisting of S n together with dS [10].

It is a simple and well known result that our usual inner product has the following relation
with the cosine function: for two unit vectors x, y ∈ Zn

x · y = cos θ(x, y).
18



Figure 2. A hyperplane in S 2 (shown in red) is the intersection of S 2 with a
hyperplane in R3

This has an analogous result in S n using our spherical distance function; for x, y ∈ S n

(x, y) = cos dsn(x, y).

Thus we are provided with an alternative definition in S n for using our usual Euclidean distance.
The final aspect that we will look at in spherical geometry is how a hyperplane in S n will

look. [13]

Definition 22. A Hyperplane in S n is the intersection of an n-dimensional hyperplane of
the ambient Rn+1 space with S n.

This is shown in figure 2.

1.3. Hyperbolic n-Space. Finally we look to hyperbolic geometry. As with spherical ge-
ometry, we must fist construct our model with which to work with hyperbolic geometry. We do
this through first introducing a new product. [10]

Definition 23. For x and y vectors in Rn+1 the Lorentzian product, (x, y)L ∈ C, of x and y
is defined as:

(x, y)L = x1y1 + . . . + xnyn − xn+1yn+1

Similarly, we can use the Lorentzian product in order to define the Lorentzian norm func-
tion:

Definition 24. The Lorentzian norm of a vector x ∈ Rn+1 is given by:

||x||L = (x, x)
1
2
L

Our principle use for this new product is to allows us to dissect the space Rn into three
distinct parts. For any x ∈ Rn+1, exactly one of the following is true:

• (x, x)L < 0
• (x, x)L = 0
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(x,x) < 0L 

(x,x) = 0L 

(x,x) > 0L 

Figure 3. The light cone in R3 defined using inequalities on the Lorentzian inner product

• (x, x)L > 0
In R3, this splits the space as shown in figure 3.
This diagram also has applications to physics, where the vectors satisfying each option are

given the following names:
• A vector x ∈ Rn+1 such that (x, x)L < 0 is called time-like
• A vector x ∈ Rn+1 such that (x, x)L = 0 is called light-like
• A vector x ∈ Rn+1 such that (x, x)L > 0 is called space-like

This is where the cone in space derives its name as a light cone.
We now arrive at our model of hyperbolic n-space.

Definition 25. The hyperboloid model of Hyperbolic n-space, denoted Hn, is defined as

Hn = {x ∈ Rn+1 : ||x||2L = −1, x1 > 0}

Less formally this is described to be the positive sheet of the sphere of radius i, which is the
top hyperboloid in figure 4.

With the image of the hyperboloid in mind, it is necessary to consider what we mean when
we speak of ‘angles’ in this space. We now state two theorems from [10] without proof, pro-
viding comment on the impact in defining time like vectors.

Theorem 1. Let x, y ∈ Rn both be positive (or both negative) time-like vectors, then |x · y| ≤
|x|L|y|L with equality if and only if x and y are linearly dependent.

With x and y as defined above, there exists a unique non-negative η(x, y) ∈ R such that:

x · y = |x|L|y|L cosh η(x, y).

We call η(x, y) the time-like angle between time-like vectors.

Theorem 2. Let x, y ∈ Rn+1 be linearly independent space-like vectors, then |x · y| > |x|L|y|L
if and only if the vector subspace V spanned by x and y is time like.
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n
H

Figure 4. A model of H2 in R3 inside the light cone, also showing inverse dual hyperboloid

Taking x and y as defined above, we have that there exists a unique positive η(x, y) ∈ R such
that:

|x · y| = |x|L|y|L cosh η(x, y).

We call η(x, y) the time-like angle between space-like vectors.
We now define distances in Hn, as shown in [10].

Definition 26. For vectors x, y ∈ H and ν(x, y) denoting the time-like angle between x and
y the hyperbolic distance, or hyperbolic metric between x and y is defined to be

dH(x, y) = η(x, y)

and equivalently we have that

(x, y)L = − cosh dHn(x, y).

Our next observation to make of hyperbolic geometry is of how a hyperplane in Hn would
look.

Definition 27. A Hyperplane in Hn is the intersection of an n-dimensional hyperplane of
the ambient Rn+1 space with Hn.

This is illustrated in figure 5.
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Figure 5. A hyperplane in H2 (depicted in red) is the intersection of the hyper-
boloid and a hyperplane of R3

Finally forH2, we introduce a further model to help our depiction of key points, the Poincaré
Disc Model. We will here only provide a short description and illustration of how this model
works. As the figure 6 shows, the model essentially involves placing a unit disc in R3 beneath
the hyperboloid, centred at the origin. Any point on the hyperboloid is then joined by a straight
line to the top point of the lower hyperboloid, making a stereographic projection through map-
ping the point on Hn to the unique point that it intersects the disc. This disc has radius 1.

nH

Poincaré Disk

Figure 6. The Poincaré disc model

And then a triangle drawn in Hn would appear on the Poincaré Disk Model shown in figure
7.

As with any models, the Poincaré disc model has its own benefits and limitations. We
choose to use this model as it helpfully preserves angles between lines on the hyperbolic plane.
In following examples, this allows us to jump from diagrams of the hyperbolic plane and the
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Poincaré Disc 
2Model of H

Hyperboloid 
2Model of H

Figure 7. A triangle in Hn shown on the Poincaré disc model

disc model when talking about angles, which is much easier to depict. The model also has
the benefits that both sits in the two dimensional plane and does not extend to infinity. Other
models have benefits such as being able to show geodesics using straight lines (Beltrami-Klein
model).

2. Triangles

In each of Euclidean, spherical and hyperbolic geometries, it is interesting to look at the
properties and behaviours of triangles. We open this section looking at the areas of triangles in
our three geometries, before shifting our focus to the angles of triangles and how we are able
to draw triangles using familiar geometric shapes. We will state many results below without
proof.

2.1. Triangles and their Areas. In Euclidean R2, denoted E2, it is obvious that a triangle
could be drawn as shown in figure 8.

The following is well known regarding the sum of internal angles, which we will denote as∑
^, that in E2 (2-dimensional Euclidean space)∑

^ = π.

Indeed for any n-gon in E2, we have a well known result that∑
^ = (n − 2)π.
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θ

Figure 8. A triangle in E2

Figure 9. A triangle in S 2

We can now consider a triangle in S 2 as shown in figure 9.
In S 2 we have no such requirement that

∑
^ = π, as illustrated by figure 9 showing a triangle

such that ∑
^ =

3π
2
.

However we are able to go in a different direction with spherical geometry to state that for any
triangle in S 2, the area of the triangle (denoted M) must satisfy

M=
∑
^ − π.

This can be easily seen using the example of figure 9 again. Consider the triangle shown
above with each internal angle set to π

2 . By the above formula we have that

M=
3π
2
− π =

π

2
.

Since the sphere has total surface area 4π and the triangle shown covers 1
8 the surface of the

sphere, we can indeed see that the area of the given triangle is π
2 as expected.
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Figure 10. A triangle in H2 with
∑
^ = 0 and area π

Figure 11. A triangle in H2 with
∑
^ = 2π

3 and area π
3

Finally we consider some triangles in H2, as shown in figure 10 using the Poincaré Disc
Model:

For this first triangle, clearly we have that∑
^ = 0.

We could also take another triangle as shown in the figure 11.
In this example we have that

∑
^ =

2π
3
.

Again however, in hyperbolic geometry we are able to take things a step further and state that
the area M of any triangle in H2 must satisfy the following
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M= π −
∑
^.

Whist these statements are made without proof, both arise as consequences of the Gauss-Bonnet
Theorem. A version of this theorem may be found in [1] .

2.2. Triangles in the Plane. Working in not only Euclidean, but also spherical and hyper-
bolic geometries, opens up new rules on the behaviours of triangles. With these new rules in
hand, we are further able to distinguish between different triangles based on their interior an-
gles. Consider a triangle having vertices with interior angles π

p , π
q and π

r , such that p, q, r ∈ Z≥2

and p ≤ q ≤ r.
We can distinguish between triangles with different values for p, q and r dependant upon

what is possible in each geometry. In Euclidean geometry, since∑
^ = π

we get that
1
p

+
1
q

+
1
r

= 1.

Considering this in E2, we must have that p ≤ 3, as for all p > 3
1
p

+
1
q

+
1
r
≤

1
p

+
1
4

+
1
4

=
3
4
< 1.

In the case with p = 2, we cannot have q = 2 as this forces r = 0. We must have that q ≤ 4
since for q, r > 4 we have

1
2

+
1
q

+
1
r
≤

1
2

+
1
5

+
1
5

=
7

10
< 1.

This means that either (p, q, r) = (2, 4, 4) or (p, q, r) = (2, 3, 6).
In the case with p = 3 we have that q ≤ 3 since q ≤ p. We also have that q ≯ 3 since for

q, r > 3 we have
1
3

+
1
q

+
1
r
≤

1
3

+
1
4

+
1
4

=
5
6
< 1.

This forces that we can only have (p, q, r) = (3, 3, 3). And hence our only options for (p, q, r)
in E2 are:

• (2,4,4)
• (2,3,6)
• (3,3,3)

In spherical geometry our rules are slightly different. Since we have that∑
^ − π > 0

and therefore get that
1
p

+
1
q

+
1
r
> 1.

This time we must have that p = 2, as for all p ≥ 3 we have that
1
p

+
1
q

+
1
r
≤

1
3

+
1
3

+
1
3

= 1 ≯ 1.

We must also have that q ≤ 3 as for q > 3 we have that
1
2

+
1
q

+
1
r
≤

1
2

+
1
4

+
1
4

= 1 ≯ 1.
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For the case where q = 2, we have that r = n for all n ∈ Z≥2. For the case where q = 3 we have
that r ≤ 5 since for all r > 5 we have that

1
2

+
1
3

+
1
r
≤

1
2

+
1
3

+
1
6

=
11
12

≯ 1.

This gives us that in S2 the possibilities for (p, q, r) are
• (2,2,n) for n ∈ Z≥2

• (2,3,3)
• (2,3,4)
• (2,3,5)

And finally in hyperbolic geometry, we have different rules yet again. Since

π −
∑
^ > 0

we have that

1
p

+
1
q

+
1
r
< 1.

As we have shown the possible values of (p, q, r) for both cases where
1
p

+
1
q

+
1
r

= 1.

and
1
p

+
1
q

+
1
r
> 1.

we must have that all possibilities for (p, q, r) other than those listed above for E2 and S 2 are
possible in Hn.

With the above information in hand, we turn our attention to how we might generate these
triangles in each of the geometries listed above. These examples use the vertices, edge centres
and face centres of possible tilings of Euclidean, Spherical or Hyperbolic planes. We begin in
E2. What is interesting here is how we are able to draw the triangles using familiar geometric
shapes.

First consider the case where (p, q, r) = (2, 4, 4). This triangle is achieved through the
tessellation of the plane by squares, as shown in figure 12. Note that we say that a tessellation
(often referred to as a tiling) of the Euclidean plane R2 is said to be regular if the tiling is
achieved using only one regular polygon of consistent size.

Next we consider the case where (p, q, r) = (2, 3, 6). This is achieved through the tessella-
tion of the plane with hexagons, as shown in figure 13.

And finally we look at the case (p, q, r) = (3, 3, 3). This is achieved through the tessellation
of the plane with equilateral triangles, as shown in figure 14.

Moving to our spherical options for (p, q, r), we provide several examples using tilings of
S 2.

Figure 15 shows the case with (p, q, r) = (2, 2, n). In this example, we are able to form
tessellations of s2 into triangles with the desired π

n angle by using n great circles, by which we
mean a line in s2 dividing the sphere into two equal hemispheres, which all meet a further great
circle at an angle of π

2 . This divides S 2 into 4n triangles.
Figure 16 shows the case with (p, q, r) = (2, 3, 3). This example is formed using 6 great

circles to tessellate S 2 into 24 triangles. Select 4 nodes where great circles intersect to form
angles of π

3 such that the nodes are not joined to another node with angles of π
3 . If we consider

these nodes as the centre of faces, we are able to realise the tetrahedron.
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(2,4,4) π/2π/4

π/4

Figure 12. Triangle (2,4,4) in E2 obtained by tessellation of the plane with squares

(2,3,6)

π/3

π/2

π/6

Figure 13. Triangle (2,3,6) in E2 obtained by tessellation of the plane with reg-
ular hexagons
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(3,3,3)

π/3

π/3

π/3

Figure 14. Triangle (3,3,3) in E2 obtained by tessellation of the plane with reg-
ular triangles

(2,2,n)

2S
π/n

π/2π/2

Figure 15. Triangle (2,2,n) in S 2
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(2,3,3)

2
S

π/2

π/3
π/3

Figure 16. Triangle (2,3,3) in S 2, which can be used to realise the tetrahedron

The case where (p, q, r) = (2, 3, 4) tessellates S 2 into 48 triangles. Considering nodes where
great circles join at an angle of π

4 as the centre of each face, we are able to realise the cube.
Alternatively if we consider the nodes where great circles join with an angle of π

3 as the centre
of each face, we are able to realise the octahedron.

And finally figure 17 shows the case with (p, q, r) = (2, 3, 5). This example is formed using
14 great circles to tessellate S 2 into 120 triangles. This time if we group the 10 triangles around
each node where great circles join at an angle of π

5 into faces, we realise the dodecahedron.
With this example, we can also group the 6 triangles around each node where great circles

intersect at an angle of π
3 into faces, to realise the icosahedron.

Between the three possible examples of tessellating S 2 by triangles with (p, q, r) = (2, q, r),
we are able to realise the 5 platonic solids.
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(2,3,5)

2
S

π/2

π/3
π/5

Figure 17. Triangle (2,3,5) in S 2 which can be used to realise both the dodeca-
hedron and the icosahedron
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CHAPTER 3

Reflection Groups

In this chapter we look at groups formed from reflections. Coxeter groups, a topic central
to the construction of the building, naturally arise as an extension of reflection groups. We
start this chapter with some motivating examples, before beginning a more systematic study of
reflection groups. The author would like to cite [9], as the main source for this chapter with
additional material taken from [6] and [1].

1. Reflections

1.1. Examples of Reflections. To begin this chapter, we take a look at some examples of
reflection groups. Linking on nicely from our previous chapter on geometries, we see some of
the same shapes that were used for the tessellation of the plane to get triangles emerging again
here. We will formalise what we mean by a reflection shortly, however for now the reader
should follow these examples with intuition of a reflection.

Example 3.1. The Dihedral Group
In the 2-dimensional Euclidean plane, consider a regular hexagon. We are going to take

two reflections, s1 and s2, which are depicted in the diagram shown below.

s1

s2

Figure 1. A hexagon with two reflecting lines s1 and s2

Using these reflections, it is possible to define a rotation r of the hexagon by π
3 anticlock-

wise, such that
r = s1s2

where s1s2 denotes the composite reflection obtained by a reflection in s1 followed by a reflec-
tion in s2.

In fact, all the other reflections of the hexagon can be labelled using only s1 and s2, as
shown in the following figure. Here we denote r = s1s2 and write terms such as r2 to denote
s1s2s1s2 and r−2 to denote s2s1s2s1.
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s1

s2

-1r s r1

-1r s r2-2 2r s r1

-2 2r s r2

r=s s1 2

Figure 2. The 6 reflections of a hexagon labelled using reflections s1 and s2

Thus we have all 6 possible reflections taking the hexagon to itself labelled using only the
original 2 reflecting lines. We have already labelled one of the rotations of the hexagon using
s1 and s2. It turns out that all 6 possible rotations of the hexagon which map the shape to itself
can be described using our two reflecting lines. We therefore have that if r denotes a rotation
of π

3 , then note that

r = s1s2

and

r6 = (s1s2)6 = I = s2
1 = s2

2

where I denotes the identity map of the hexagon, obtained by mapping each edge of the
hexagon to itself. We therefore have that every possible symmetry of the hexagon is contained
in the group containing s1 and s2 with presentation:

D6 = 〈s1, s2 | s2
1 = s2

2 = (s1s2)6 = 1〉.

This is the dihedral group of order 12. We can generalise to give the presentation for the
dihedral group of order 2m:

Dm = 〈s1, s2 | s2
1 = s2

2 = (s1s2)m = 1〉.

Dihedral groups are an example of finite reflection groups. We will return to this example
to illustrate further points as we move through the chapter.

Example 3.2. An Affine Weyl Group
In Euclidean R2, consider the reflecting lines in the figure shown below. Again this diagram

is one that we saw at the end of the last chapter, the triangle in E2 labelled (2, 4, 4).
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s1

s3s2

π/2

π/4

π/4

Figure 3. A triangle formed using reflections s1, s2 and s3

If we take the three lines forming the edge of the triangle to be reflecting lines, and have
that s1, s2 and s3 all denote reflections in these lines mapping R2 → R2 then there is then a
group which is generated by these reflections. This is the group with presentation:

G = 〈s1, s2, s3 | s2
1 = s2

2 = s2
3 = (s1s2)2 = (s2s3)4 = (s1s3)4 = 1〉.

This is an example of an infinite reflection group; we will come back to these later in the
chapter.

1.2. Defining a Reflection. We now move onto the definition of a reflection .

Definition 28. [9] Let V be an n-dimensional vector space over R equipped with the Eu-
clidean distance, (λ, µ) on V . Fix a vector v ∈ V . A reflection in V is a map sv : V → V such
that for all u ∈ V and some k ∈ Z

sv,k(u) = u −
2 ((u, v) − k)

(v, v)
v.

When k = 0 we have a linear reflection.

Call the set {u ∈ V : (u, v) = k} the reflecting hyperplane, denoted Hv,k, for the reflection
sv,k. The example shown in figure 3 is an example of an affine reflection, which is not a linear
reflection. When k = 0, we denote the reflection as simply sv.

The figure 4 illustrates the definition of a linear reflection in R2.
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{λ∈V : (λ,v)=0}

v

-v

sv

Figure 4. A reflection sv in R2

Using the idea of a hyperplane to deconstruct the reflection, we can restate the above defi-
nition more intuitively as follows.

Definition 29. [6] A reflection of a finite-dimensional vector space V is a linear map s :
V → V for which there is a decomposition:

V = Hs ⊕ Ls

where Hs is a codimensional one subspace and Ls is 1-dimensional , such that:
• The restriction of s to Hs is the identity
• The restriction of s to Ls is the map v 7→ −v for all v ∈ V

This is illustrated in the figure 5.
The hyperplane is, in effect, a fixed mirror of points in V which reflects the rest of the space

by multiplication of −1 in a direction determined by the reflecting line Ls. The reflecting line
should not lie in the hyperplane, as it would leave the whole of V invariant under s.

Whilst this is all relatively easy to picture in two or three dimensions, we can believe that
this definition will also hold in higher dimensions in a similar manner. Thinking back to the
previous section on geometries, we can also see that the definition should hold intuitively for
reflections in spherical and hyperbolic space.

2. Reflection Groups

We have already seen two examples of reflection groups, namely the dihedral group and an
affine Weyl group. It is obvious through our construction of these groups that reflections are
central to the groups’ behaviour.

2.1. Defining a Reflection Group. We now provide a formal definition for a reflection
group.

Definition 30. A reflection group W is a group generated by finitely many reflections.
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v

-v

sv

Hs

Ls

Figure 5. A reflection sv in R2 = Hv ⊕ Ls

By convention, we denote the set of hyperplanes generating a reflection group as H . It is
useful to note that in the case where all reflections are linear maps, then the reflection group W
generated by these reflections is finite. We will prove this later in the chapter.

Example 3.3. The Symmetric Group
For a Euclidean vector space V = Rn with an orthonormal basis {e1, e2, . . . en}, define the

Symmetric group
Sn = S ym{1, 2, . . . , n}

as the group of all possible permutations of the set {1, 2, . . . , n}. For each σ ∈ Sn, we uniquely
define a linear map

Σ : Rn → Rn

ei 7→ eσ(i)

We now confirm that this is a reflection group. We must first show that in the case where

σ = (i, j) ∈ Sn

we have that Σ is the reflection sv with v = ei − e j. Indeed, we have that

Σ(ei − e j) = e j − ei = −(ei − e j)

meeting our first criterion for a reflection group. Now for the hyperplane of points which are
invariant by the reflection. Notice that for the vector u = ei + e j orthogonal to v = ei − e j, then
we have that

Σ(u) = e j + ei = ei + e j = u.
Hence u is invariant under Σ and indicates the reflecting line. Therefore we have a linear
reflection Σ which corresponds to v = ei−e j. We denote the reflection Σ = sv. We can therefore
consider Sn as a reflection group as it is generated by transpositions, which are reflections on
Rn. We can define the set of hyperplanes associated to the reflection group as

H = {Hi, j : Hi, j = (vi − v j)⊥, 1 ≤ i , j ≤ n + 1}

meaning thatH is the set of hyperplanes with equation xi − x j = 0.
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2.2. Reflection Groups and Geometries. Clearly from the nature of reflection groups
depending upon reflections, there is a strong relation between geometry in the previous chapter
and our reflection groups here. This becomes more obvious with the following definition.

Definition 31. A reflection group is called a spherical reflection group if it has finite order.

Recall the examples at the end of Chapter 2 showing the tessellation of the 2-dimensional
Euclidean, spherical and hyperbolic planes. It was clear to see from these examples that, due to
the Euclidean and hyperbolic planes extending infinitely, reflecting a triangle could produce a
tiling of the plane made of an infinite number of triangles. Considering the spherical example,
we observed how a tiling of the 2-dimensional spherical plane by reflecting a triangle could
only be achieved using a finite number of triangles. Consider that each triangle is an element
of the reflection group, and it is clear to see why we call finite reflection groups spherical.

3. Root Systems

In this section we introduce and study root systems including what they are, how they arise,
the group given by a root system, positive and simple systems and how a root system can be
generated by reflections. Again the author would like to reference chapter 1 of [9] as the key
source for content presented.

3.1. Motivation for Root Systems. We begin our introduction to root systems by looking
at reflection groups from a different point of view. This begins with defining an orthogonal
map.

Definition 32. An orthogonal map on a vector space V is a linear map

f : V → V

such that
( fµ, f u) = (µ, u)

for all vectors µ, u ∈ V , where (µ, u) denotes the Euclidean distance.

This means that the map f will preserve the origin, lengths and angles. We can thus describe
a reflection as orthogonal, bijective and of order 2 (since s2

v = 1 for sv a reflection on V).
We can define a group of orthogonal transformations:

Definition 33. The group O(V) denotes the group of all orthogonal transformations on a
vector space V .

Since all reflections are orthogonal, we have that any reflection group G is a subgroup of
O(V). We now want to look at reflection groups in a different way. To get to this point, we need
the following lemma.

Proposition 1. For f ∈ O(V) and any non-zero vector α ∈ V, we have that

s fα = f sα f −1

Proof. We are aiming to show that f sα f −1 sends fα to its negative and also preserves the
orthogonal complement of fα, denoted ( fα)⊥, point-wise. Clearly we have that

f sα f −1( fα) = f sα(α) = f (−α) = −( fα).

Now, for any u ∈ V we have that
( fα, f u) = (α, u),

meaning that
u ∈ α⊥ ⇔ f u ∈ ( fα)⊥.
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Therefore we have that any element of ( fα)⊥ must be of the form f u for some u ∈ α⊥, and that

f sα f −1( f u) = f sα(u) = f u

as required. �

If we suppose that W is a reflection group, we can take an interesting corollary, which we
will state without proof.

Corollary 1. For W a reflection group and some w ∈ W, then swα ∈ W if and only if
sα ∈ W.

Hence, for a vector α corresponding to a reflection sα ∈ W and some w ∈ W, we have that
swα is also a reflection corresponding to some reflection in W. The key message here is that a
reflection group W permutes the vectors ±α, corresponding to the reflections it contains. This
is our alternative way of thinking about reflection groups.

3.2. Defining a Root System. We now state the definition of a root system.

Definition 34. Let Φ be a finite set of non-zero vectors in V . The set Φ is called a root
system if

(1) Φ ∩ Rα = {α,−α} for all α ∈ Φ, here Rα denotes the R-span of α, meaning the line
containing α.

(2) sαΦ = Φ for all α ∈ Φ.

Similarly we can define a root.

Definition 35. For a root system Φ, the elements α ∈ Φ are called roots.

We will look at further examples of roots and root systems as we continue.

3.3. The Group Given by a Root System. There is a clear link between reflection groups
and root systems. The following definition formalises this.

Definition 36. For a root system Φ and any root α ∈ Φ, define a linear reflection group
with root system Φ as the group W which is generated by the reflections sα.

This is best illustrated with an example, for which we return to the dihedral group.

Example 3.4. The Dihedral Group
We have already seen that the dihedral group is an example of a reflection group. The

diagram below illustrates the root system for the dihedral group of order 12, D6.
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Φ

Figure 6. A root system Φ for the dihedral group D6

However, if we were to look for the root system of our affine Weyl group from example 2 in
this chapter, we may have some difficulty. This is explained as a consequence of the following
theorem.

Theorem 3. If W is a linear reflection group with root system Φ, then W is a spherical
(finite) reflection group.

Proof. If |Φ| = n then W permutes elements of Φ, meaning there is a homomorphism

θ : W → Sn.

We can write the vector space V as

V = spanΦ ⊕ spanΦ⊥

where w fixes spanΦ⊥ point-wise. If we have that

w ∈ kerθ

then w must also fix spanΦ point-wise. Therefore W fixes the whole of the space V so we must
have that

w = 1.
Therefore θ is injective and W is isomorphic to a subgroup of Sn. This gives us that |W | < ∞
as required. �

This tells us that if a reflection group has a root system, it must be a spherical reflection
group.

3.4. Positive, Negative and Simple Systems. We now continue with the example of the
dihedral group D6. We have just seen that this group has 12 roots; however, when we first
introduced the dihedral group at the start of the chapter it was shown with only two generators,
not twelve. This leads us to the definition of a positive and a negative vector.

Definition 37. For a reflection group W with root system Φ and a vector t ∈ V such that for
all α ∈ Φ we have (α, t) , 0, a vector v ∈ V is positive if (v, t) > 0 or negative if (v, t) < 0
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The concept of positive and negative vectors enables us to define a positive system and a
negative system.

Definition 38. For a reflection group W with root system Φ and a vector t ∈ V such that for
all α ∈ Φ we have (α, t) , 0, the set

Π = {α ∈ Φ : (α, t) > 0}

is called a positive system.

Definition 39. For a reflection group W with root system Φ and a vector t ∈ V such that for
all α ∈ Φ we have (α, t) , 0, the set

−Π = {α ∈ Φ : (α, t) < 0}

is called a negative system.

There are two features of importance to note here. Firstly, that Φ is the disjoint union of its
positive system, Π, and negative system, −Π. This is true since

(α, t) > 0⇔ −(α, t) < 0⇔ (−α, t) < 0.

The second point of note is that it is always the case that positive α lies on the same side of the
hyperplane t⊥ as t. This is true because we have that (α, t) > 0.

We now turn our attention from positive and negative systems, to simple roots and simple
systems.

Definition 40. For a positive system Π, a subset ∆ ⊆ Π is called a simple system if δ is the
smallest set such that every element of Π can be written as a linear combination of elements of
∆ with non-negative coefficients.

This also provides us with the definition of a simple root.

Definition 41. The elements δ ∈ ∆ for a simple system ∆ are called simple roots.

We will now return to our standing example of the dihedral group to further aid our under-
standing of what these new definitions provide us.

Example 3.5. The Dihedral Group
See the following diagram from our previous example. On this diagram, we can choose any

vector t which is not contained within one of the roots.
40



t

t⟂

Figure 7. A root system Φ for the dihedral group D6 showing t and t⊥

This will give us a positive system (Π) and a negative system (−Π), as shown in the follow-
ing figure.

t

t⟂

Π

-Π t⟂

Figure 8. A root system Φ for the dihedral group D6 showing the positive sys-
tem (Π) and a negative system (−Π)

Furthermore, we must have that any simple system ∆ will have at least two vectors. Since
we must have that ∆ is the smallest subset of Π such that all α ∈ Π are linear combinations of
the elements of ∆ with non-negative coefficient, for our choice of t there is only one option for
∆. We must have that ∆ = {α1, α2} as shown below.

41



t

t⟂
α1

α2

Δ={α ,α }1 2

Figure 9. The simple system ∆ for a root system Φ of the dihedral group D6

There are several key observation we will make here:
(1) For a root system Φ, the choice of t means that there could be many positive systems

Π ⊆ Φ that we could have, however for each Π there is a unique simple system ∆.
(2) span(∆) = span(Φ)
(3) For ∆ = {α1, α2}, we have that the reflections sα1 , sα2 generate D6.

Each of the above observations turn out to be true in general.

4. Classification of Reflection Groups

4.1. Classification. There are many different families of reflection groups. Finite reflec-
tion groups have been completely classified up to isomorphism into different families, as can be
seen in [1][2]. We give more details below, however broadly the classification proceeds by ob-
serving that each finite refection group is a direct product of certain irreducible factors. We then
classify the irriducible finite reflection groups into different ‘Types’, each with an associated
Coxeter diagram.

Since we also use the word ‘type’ in the context of galleries in a chamber system, for clarity
in this thesis we will distinguish between the two notions by referring to the ‘type’ of a gallery
and the ‘Type’ of a group.

4.2. Finite Reflection Groups. There are three families of finite reflection groups:
• Type An for n ≥ 1 is the group of symmetries of a regular n-simplex (or the symmetric

group on n + 1 elements.
• Type Bn for n ≥ 2, sometimes known as Type Cn is the group of symmetries of the

n-cube.
• Type Dn for n ≥ 4 is the group that is the Weyl group of a root system. The Weyl group

of a root system is a group generated by reflections in hyperplanes that are orthogonal
to the roots. This does not correspond to any regular solid.

Then there are seven exceptional groups which are given by the following four Types:
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• Type En for n = 6, 7, 8 is the Weyl group of the root system of the same name. This
group does not correspond to any regular solid. Please see [1] for full details.
• Type F4 is the group of symmetries of a certain self-dual 24-sided regular solid in R4.

The faces of this solid are 3-dimensional octahedra.
• Type G2 is the group of symmetries of a hexagon, meaning our example D6 has this

Type.
• Type Hn for n = 3 and n = 4. When n = 3 this is the symmetry group of either

the dodecahedron or the icosahedron. For n = 4 this is a 120-sided solid in R4 or
alternatively a 600-sided solid in R4.

4.3. The Dihedral Groups. We have already looked at the dihedral group as a key exam-
ple thus far. Also notice that for a dihedral group Dn:

• If n = 2 then the group is reducible
• If n = 3 then the group has Type A2

• If n = 4 then the group has Type B2

• If n = 6 then the group has Type G2

We denote one final family:
• Type I2(n) for n = 5 or n ≥ 7 is the dihedral group of order n.

This concludes the classification of finite reflection groups. For the full classification theo-
rem, the reader should consult [2].

5. Words and Reduced Words

As we continue forwards with reflections and begin to turn our mind to Coxeter groups in
the following chapter, we want to formalise the concept of a ‘word’. We first encountered the
terminology of a ‘word’ back in chapter 1, used to define the type of a gallery. In this chapter
we briefly return to the concepts of a word to clarify and expand on the notion. We will focus
more deeply on the further related definitions and theorems regarding words once we have
covered Coxeter Systems in the following chapter. Our key sources of material for this section
are [7], [11] and [1].

5.1. Reduced Words. We begin with some key definitions.

Definition 42. For some set I the free monoid on I, denoted MI , is the set of all finite
strings of elements of I, called ‘words’, with the binary operation of concatenation. The identity
element is the empty word, denoted ∅.

Given a group G with generating set S , an element s1, s2, . . . sn ∈ G is set to correspond
with the word s1, s2, . . . sn ∈ MI , with 1 ∈ G corresponding to ∅.

Whilst we may not always be so formal, and sometimes for convenience denote the word
1, 2, . . . n as the expression s1, s2, . . . sn. There is a distinction to be made between a word
w ∈ MI and the element g = s1 . . . sn ∈ G which it represents. We now define the length of a
word.

Definition 43. For a group G with generating set S , the length of a word w ∈ MI with
respect to S , denoted l(w), is the least n ∈ Z such that the word w has the expression

w = (s1, . . . , sn)
such that si ∈ S .[7]

Using the definition of length, we define what it means for a word to be reduced.
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Definition 44. For a group G with generating set S and the word w = (s1, . . . , sn) corre-
sponding to some g ∈ G, say that w is reduced with respect to S if and only if n = l(w). If w is
reduced, call the expression (s1, . . . , sn) the reduced decomposition of g.[7]

To put this another way, a word is reduced when there is no shorter word which can repre-
sent it.
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CHAPTER 4

Coxeter Systems

With an understanding of reflection groups, roots, chambers and words behind us, we move
to look at Coxeter groups and Coxeter systems. A Coxeter group is essentially a generalisation
of a reflection group. We begin by providing a definition for the Coxeter group before we start
to link everything together that we have covered thus far.

1. Coxeter Groups

1.1. Refection Groups to Coxeter Groups. Recall from the previous chapter on reflection
groups the example of the dihedral group D6. As we noted in example 3.1., the group could be
generated using only 2 reflecting lines, s1 and s2. Of key importance was a remark which we
made at the end of example 3.1., that the group could be given with presentation

D6 = 〈s1, s2 | s2
1 = s2

2 = (s1s2)6 = 1〉.

We wish to understand and generalise some key properties of the reflection group to take us to
a Coxeter group.

Firstly we must examine the properties given by the reflections s1 and s2. We now choose to
describe a generating set S = {s1, . . . , sn} where the elements are reflections for some reflection
group W. Notice that since each si is a reflection, we have for all si such that 1 ≤ i ≤ n that si

has order 2 in W. Also notice that there is a relation for s1, s2 ∈ S such that (s1s2)6 = 1. Both
of these facts cause the group to have the presentation in the form that we see above.

Secondly, consider the following figure showing the reflections s1 and s2 (as previously
defined for our example of D6) and fixing one of the triangular segments labelled I.

s1

s2

I

s2

s1

s s2 1

s s1 2

s s s1 2 1

s s s2 1 2

2(s s )2 1

2(s s )1 2

2(s s ) s2 1 1

2(s s ) s2 1 2

3

3

(s s
) =
(s s

)

2
1

1
2

Figure 1. A hexagon with two reflecting lines s1, s2 ∈ S , a fixed triangle I and
all other triangles labelled via the reflections and rotations which move I to that
triangle
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By fixing our triangle I as the triangle which the reflecting lines in S are the edges, we are
able to generate all 12 elements of D6 on our hexagon.

1.2. Defining a Coxeter System. We will now use the observations made about D6 to
motivate the definition of a Coxeter group. The following definition is based on those found in
[6] and [1].

Definition 45. A Coxeter System (W, S ) is a group W with generating set S such that every
generator s ∈ S has order 2 with respect to W, and W admits a presentation

〈s ∈ S | (sis j)mi, j = 1〉

where mi, j ∈ Z
≥1 and is such that mi, j = m j,i, and mi, j = 1 if and only if i = j.

Sometimes we refer to the group W as a Coxeter group and (W, S ) as the Coxeter system.
We will see the importance of the choice of S later in this chapter. Clearly our dihedral group
above satisfies this definition, so is therefore not only a reflection group but also a Coxeter
group. We can use the mi, j as given in the definition above to state the definition of a Coxeter
matrix.

Definition 46. For a Coxeter group (W, S ) with generating set S = {s1, . . . , sn}, the associ-
ated Coxeter matrix is an n × n matrix with mi, j corresponding to the entry (i, j) such that:

• (i, j) = ( j, i)
• (i, j) is either a positive integer or the symbol∞ when (sis j) has infinite order in W
• (i, j) = 1 if and only if i = j.

[15]

Clearly this definition gives us a symmetric matrix with 1’s on the main diagonal.
Finally we state the following theorem without proof.

Theorem 4. All reflection groups are Coxeter groups.

This result was a key contribution of Coxeter. A full proof of this theorem can be found in
Coxeter’s 1935 paper [3].

2. The Associated Chamber System

In this section we return to our material on chamber systems. Indeed we will look at our
canonical example (example 1.1.) to observe how we can move from our initial chamber system
to a reflection group, and indeed a Coxeter group. This section returns to follow the method
used in [6] to realise the chamber system.

2.1. Realising a Chamber System. In this section, we are going to start with our chamber
system and see that it corresponds to a Coxeter system. This is not true for every chamber
system and usually we would look in the opposite direction where we are able to find a chamber
system starting from a reflection group.

Recall our canonical example of a flag system of a vector space. When we took the flag
system of a 3-dimensional vector space over the field of order 2, we obtained an image of a
chamber system ∆ as shown in the following figure, which we repeat from a previous chapter.
Here the chambers are the edges and are i adjacent for I = {1, 2} whenever two edges meet at a
node. For c1, c2 ∈ ∆, if c1 ∼1 c2 we will denote this with a white node. If c1 ∼2 c2 then we will
denote this with a black node.
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c1

c2

Figure 2. The chamber system ∆ of a flag system of a 3-dimensional vector
space over the field of order 2 (from example 1.1) with chambers c1 and c2

labelled

We now make an observation about this chamber system. Notice that we are able to set
c1, c2 ∈ ∆ to be any two distinct chambers and always find a closed loop of six chambers
x1, x2, x3, x4, x5, x6 ∈ ∆ with

x1 ∼1 x2 ∼2 x3 ∼1 x4 ∼2 x5 ∼1 x6 ∼2 x1

such that c1, c2 ∈ {x1, x2, x3, x4, x5, x6}. In other words, any two chambers are contained in
a common hexagon of chambers. We will call this the local picture of ∆, as shown in the
following figure.

c1

c2

c1

c2

Figure 3. The local picture ∆ for two chambers c1 and c2

We want to get a reflection group from this chamber system. Already we have that there
is a set I = {1, 2} for the adjacency between chambers. Looking at the example above, we can
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also see that there are two possible routes between c1 and c2. If we were instead to think of the
adjacency between chambers as reflections s1 and s2, we can say that

s2s1 = s1s2s1s2.

We also have that

s2
1 = s2

2 = 1

and by placing the two chambers on opposite sides of the hexagon, that

s1s2s1 = s2s1s2.

Let us consider what these reflections are doing. We are taking some chamber c1 and
through reflections we get to another chamber c2. In fact we are using the reflections as a way
of permuting the six chambers. We can think of taking some g ∈ W, where W is our reflection
group, such that g sends c1 to c2. Clearly if we are looking at a group which is permuting a set
of 6 elements then we are talking about the symmetric group S3. We can think of redrawing
our local picture of ∆ to show the reflecting lines s1 and s2, as shown in the following figure.
We show this on the triangle to emphasise that we are talking about S3, with the reflections
permuting the vertices of the triangle.

c1

c2

c1

c2

s1

s2

c1

c2

s1

s2

Figure 4. The local picture ∆ shown with reflections s1 and s2 to realise the
symmetric group S3

2.2. Chambers, Panels and Adjacency. We now formalise what is happening in the pre-
vious section and reintroduce the language of chamber systems in this new setting. We will
continue to follow our example of the flag system in diagrams, but will also speak more gener-
ally. This approach uses root systems to follow a similar method in [6]

Let V be a Euclidean vector space and W be a reflection group with index set I. Let W be
generated by reflections S = {si | i ∈ I} with a corresponding set of hyperplanes H = {Hi}i∈I .
Also have that WH = H giving that W is finite. We are going to consider the root system Φ of
W. The following figure shows a root system for our previous case with 3 hyperplanes.
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s1

s2

α1

α3 α2

Figure 5. A root system Φ of W

We are going to use the roots αi for i ∈ I to each define half spaces dividing V . Here (v, αi)
denotes the Euclidean distance of v and αi. We will use roots to provide partitions of V such
that for each hyperplane Hi ∈ H :

• Hi consist of all v with (v, αi) = 0
• One side of the half space of Hi consists of all v such that (v, αi) > 0
• One side of the half space of Hi consists of all v such that (v, αi) < 0

We now fix an I-tuple, ε = (εi)i∈I with εi ∈ {±1}, and consider a set

c = c(ε) = {v ∈ V : εi(v, αi) > 0 for all i}.
If this set is non-empty then we say that it is a chamber of W. Furthermore, we say that a panel
is a non-empty set of the form

a = a(ε) = {v ∈ V : (v, αi0) = 0 for some i0 ∈ I and εi(v, αi) > 0 for all i , i0}.

We return to our running example. We will denote the panels and chambers by their I-tuples.
In the following figure, we can see the 6 chambers realised over the group W.

s1

s2

α1

α3 α2

-α1

-α2 -α3

+++

++-

-++

- - - +- - 

- -+

chambers

Figure 6. Chambers shown on the group W

Furthermore, the following figure shows the 6 panels.
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s1

s2

α1

α3 α2

-α1

-α2 -α3

Panels

- 0+

- - 0

0++

++0

+0 -

0 - -

Figure 7. Panels shown on the group W

Note that there are possible I-tuples which are not shown in the two previous figures. This
is common, such I-tuples denote empty sets. In our example we have 6 chambers, 6 panels and
8 empty sets.

This construct gives a clear notion of the i-adjacency of chambers. We previously had that
two chambers are adjacent if they share a common face. We can specify this definition to say
the following.

Definition 47. Two chambers are adjacent if they share a common panel.

2.3. Regular Action of W. As we have just seen, we can form a chamber system using
reflections. This led to chambers being separated by panels such that two chambers sharing
a panel are said to be adjacent. We mentioned earlier that for some c1, c2 ∈ ∆, we can find a
g ∈ W such that we have c1 = gc2. It turns out that this g is unique for our symmetric group
example, and is formalised with the following definition.

Definition 48. For a chamber system ∆ and a group W acting on ∆, say that W has a regular
group action on ∆ if for any c1, c2 ∈ ∆ there exists a unique g ∈ W such that c1 = gc2.

2.4. The Coxeter Chamber System. A key example of a chamber system which we are
now able to state is that of the Coxeter chamber system. For any Coxeter system (W, S ) with
S = {si}i∈I the generating set of reflections and index set I, it is possible to construct a chamber
system. The chambers in this building are the elements of W. For any two chambers x, y in the
chamber system, we define i-adjacency as

x ∼i y⇐⇒ x−1y = si.

By convention we will denote this chamber system ΣΠ where the Coxeter system is of Type
Π. Here, Π refers to the Coxeter diagram of the Coxeter system, which we will define in the
following section.

3. Coxeter Systems

We now return to our definition of a Coxeter system, which we denoted (W, S ). Also recall
from the previous chapter on reflection groups that we included the classification of reflection
groups (up to isomorphism). In this section we will start by introducing some new terminology
regarding Coxeter groups which we will then use when we look at the classification of Coxeter
groups.
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3.1. Coxeter Diagrams and Classification. The Coxeter diagram is a very visual way of
working with Coxeter Groups. The diagram contains information about the Coxeter matrix M
of a Coxeter group (W, S ), and is defined as follows:

Definition 49. [1] For a Coxeter system (W, S ) with index set I = {1, . . . , n} and Coxeter
Matrix M, the Coxeter diagram is a graph vertex set I and an edge connecting vertices i, j ∈ I
if and only if mi, j ≥ 3. By convention:

• If mi, j = 3 the edge (i, j) has no label
• If mi, j ≥ 4 the edge (i, j) is labelled with the value mi, j

Note that the lack of an edge joining two vertices indicates that mi, j = 2. We can use
Coxeter diagrams to show differences between Coxeter systems. In the final example from the
previous section, we used the Coxeter diagram to inndicate the Type of the Coxeter group. As
we will see in the next section, each Type of Coxeter group is linked to a Coxeter diagram. Key
information about the system is contained in the diagram, as demonstrated by the following
definition.

Definition 50. A Coxeter System (W, S ) is irreducible if and only if the Coxeter diagram
for (W, S ) is a connected graph.

We will bring up Coxeter diagrams in our examples later in this chapter, however one of
the most visual demonstrations of the Coxeter diagram in action is to see our classification for
irreducible reflection groups shown by their Coxeter diagram. We will see this in the following
subsection.

3.2. Classification of Finitely Generated Coxeter Groups. A great deal can be said
about a Coxeter group from its diagram. In Coxeter’s 1935 paper [4], he gives a complete
classification all finite irreducible Coxeter systems according to their Coxeter diagrams. In
an earlier paper [3], Coxeter also gives a classification for infinite irreducible Coxeter groups
according to their symbol.

The following figure shows the Coxeter diagrams for all families of irreducible finite reflec-
tion groups, which we last saw in the classification of reflection groups. This figure is based on
a similar figure found in [1].
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A  (for n≥1)n 

B  / C  (for n≥2)n n 
4

D  (for n≥4)n 

E6

E7

E8

F4

4

G2

6

H3

5

H4
5

I (n) (for n=5, n≥7) 2

n

Figure 8. Finite reflection group classifications given by their Coxeter diagram [1]
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3.3. The Choice of S . Earlier we remarked that the purpose of denoting a Coxeter system
(W, S ) was to emphasise the importance of the choice of the set S . Coxeter diagrams are a
simple way to show the consequence of the choice of S . It is possible for two Coxeter groups
to have the same group W with different generators S . These groups would then be isomorphic.

A simple illustration of this is to consider our example of the dihedral group D6. As we
have already noted, D6 is a reflection group of Type G2 with 2 generators. However, we can
also take D6 to be a group given by the direct product of two groups of Type A1 × A2 which
has 3 generators. This is illustrated by the groups’ Coxeter diagrams, as shown in example 4.1.
below.

4. Examples of Coxeter Systems

The classification of reflection groups has already raised some examples of reflection, and
therefore Coxeter systems. In this section we look at some specific examples to aid clarity and
understanding.

4.1. Finite Coxeter Groups. These examples are finite groups formed by reflections. We
will formalise the two groups that we have already used as examples in this section.

Example 4.1. The dihedral group D6 with generators S = {s1, s2} is a Coxeter system
(D6, S ) of Type G2 with presentation

(D6, S ) = 〈s1, s2 | s2
1 = s2

2 = (s1s2)6 = 1〉.
This Coxeter system has Coxeter matrix

M =

(
1 6
6 1

)
and Coxeter diagram as shown below.

6

This group is isomorphic to the group D6 with generators S ′ = {s′1, s
′
2, s
′
3}which is a Coxeter

system (D6, S ′) of Type A2 × A1. This Coxeter system admits a presentation

(D6, S ′) = 〈s′1, s
′
2, s
′
3 | s

′2
1 = s′22 = s′23 = (s′1s′2)3 = (s′1s′3)2 = (s′2s′3)2 = 1〉,

and has Coxeter matrix

M =

1 3 2
3 1 2
2 2 1


and has the following Coxeter diagram.

We note for emphasis that whilst the reflection group D6 is the same in both examples, the
Coxeter systems are different. The two Coxeter systems (D6, S ) and (D6, S ′) admit completely
different presentations and have different Coxeter diagrams. This is the importance of noting
the generating set S when giving a Coxeter system.
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It is useful to see how we can relate between (D6, S ) and (D6, S ′). For (D6, S ′) notice that
the element s′3 commutes the other generators (such that (s′1s′3)2 = 1 and (s′2s′3)2 = 1). This
means that s′3 must be the centre of the group, and we have that s′3 = (s1s2)3. Since we have that
s′1 and s′2 must be reflections with (s′1s′2)3 = 1, we can choose these new generators such that
s′1 = s1 and s′2 = s2s1s2.

Now that this is fixed, we can write s2 in terms of the new generators:

s2 = s2(s1s1) = (s2s1)s1 = (s1s2)5s1 = (s1s2)3s1(s2s1s2)s1 = s′3s′1s′2s′1.

This enables us to rewrite all elements of D6 in terms of generators in S ′.
We can imagine a picture of this isomorphism by considering the picture of a six pointed

star inside a hexagon, with the points of the star at the vertices of the hexagon. We have that
the rotation of s′3 swaps the two triangles which make up the star and then there is a copy of
the symmetric group S3 generated by s′1 and s′2 which permutes the vertices of each triangle
amongst themselves. This leads us on to our next example.

Example 4.2. The Symmetric Group
The symmetric group S3 of order six with generating set S = {s1, s2} admits a presentation

of the form

(S3, S ) = 〈s1, s2 | s2
1 = s2

2 = (s1s2)3 = 1〉.
This Coxeter System, (S3, S ) has Coxeter matrix

M =

(
1 3
3 1

)
and Coxeter diagram as shown below.

Example 4.3. We can give a generalised presentation for the Coxeter system (Sn+1, S ) with
generating set S , as

(Sn+1, S ) = 〈s1, s2, . . . , sn | s2
i = (sisi+1)3 = (sis j)2 = 1 for all j , i + 1〉.

The Coxeter system (Sn+1, S ) is of Type An with the following Coxeter diagram (with n
nodes). This clearly holds true for the special case of S3 shown above which is of Type A2.

4.2. Infinite Coxeter Groups. At the end of chapter 2 on Geometries, we have already
seen several examples of ways that we can tessellate the plane to obtain specific triangles.
The motivation for this subsection is to take three lines which intersect each other to form the
boundary of a triangle to be generating reflections s1, s2, s3 which tessellate the plane.

Consider a group generated by a finite set of reflecting lines H in the Euclidean plane R2.
We set a ‘fundamental region’ of the plane as the geometric shape contained as the interior of
the intersections of these reflection lines. For this example we are working with the assumption
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that there is an interior shape, so the reflections are not linear, and the set of reflection lines
are minimal (in the sense that removing any one reflection line will change the fundamental
region). We are interested in reflections which form a reflection group giving a complete tiling
of the Euclidean plane in copies of the fundamental region.

It turns out that for the 2-dimensional Euclidean plane, there are only four possible tilings
which do this. These are denoted (n; m1, . . .mn) where n is the number of reflecting lines gen-
erating the tiling and the mi are such that π

mi
are each of the n internal angles of the fundamental

shape; we will provide a brief explanation for this shortly. We now state the Coxeter systems
coming from regular tilings of the Euclidean plane, with notes on isomorphic groups from [9].

• (3; 2, 4, 4), a Coxeter system isomorphic to the semidirect product Z2 o D8

• (3; 3, 3, 3), a Coxeter system isomorphic to the semidirect product Z2 o D12

• (3; 3, 3, 3), a Coxeter system isomorphic to the semidirect product Z2 o S 3

• (4; 2, 2, 2, 2), a Coxeter system isomorphic to the semidirect product Z2 o D4

Note that the term semidirect product G = Z2 o D8 means that Z2 is a normal subgroup
of the reflection group G and D8 is a subgroup. For every element g ∈ G there exists unique
x ∈ Z2 and x′ ∈ D8 such that g = xx′. We return to our claim that these are the only possible
Coxeter systems possible from tiling R2. We will not state an entire proof, however the reader
should be motivated that this is true from the following proposition.

Proposition 2. There are exactly 3 regular tilings of Euclidean R2, namely the triangle,
square and hexagon tilings.

Proof. Any regular tiling is achieved using a regular n-gon. Taking any regular n-gon in
euclidean R2, we must have that for the choice of n ∈ Z, that n ≥ 3 to give an enclosed area
with which to tile R2. As already noted in section 2.1, in Euclidean R2 we have that for the sum
of the internal angles of an n-gon, denoted

∑
^, satisfies∑

^ = π(n − 2).

Since the n-gon used to tile the plane is a regular n-gon, we must therefore have that each
internal angle, ^, satisfies

^ =
π(n − 2)

n
.

We can therefore say that at any point, p, where the regular shapes in the tiling meet, that

p
π(n − 2)

n
= 2π⇒ p =

2n
n − 2

.

Notice that limn→∞
2n

n−2 = 2. Taking a brute force approach, we see that
• when n = 3 we get p = 6, giving the tiling by a regular triangle;
• when n = 4 we get p = 4, giving the tiling by a square;
• when n = 5 we get p = 10

3 < Z, giving no tiling; and
• when n = 6 we get p = 3, giving the tiling by a regular hexagon.

Since there exists no p ∈ Z such that 2 < p < 3, these are all possible tilings of Euclidean R2

by regular n-gons. �

Finding appropriate reflection groups for each of these regular shapes yields the Coxeter
systems mentioned above.

Example 4.4. We now turn our attention to the tiling (3; 2, 4, 4) of the Euclidean plane as
shown in the figure 9. This example uses the square to tile the plane, which we split into
non-regular triangles.
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4 4

s1

s2s3

Fundamental
     Region

Fundamental
     Square

Figure 9. Tiling of Euclidean R2 by reflecting lines s1, s2, s3 showing a funda-
mental region and fundamental square

We will begin by stating that if we consider the fundamental region enclosed by these
reflections as our fixed region 1, we clearly have that s2

1 = s2
2 = s2

3 = 1. Also with figure 10 to
aid us, we can clearly see that we have (s1s2)2 = (s1s3)4 = (s2s3)4 = 1.

We therefore have a Coxeter system (W, S ) which admits a presentation

(W, S ) = 〈s1, s2, s3 | s2
1 = s2

2 = s2
3 = (s1s2)2 = (s1s3)4 = (s2s3)4 = 1〉

with Coxeter matrix

M =

1 2 4
2 1 4
4 4 1


and Coxeter diagram as follows.
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s1

s2

s3

21=(s s )1 2

s1
s s1 2

s s s1 2 1

s1

s2s3

41=(s s )1 3

s1

s s1 3

s s s1 3 1

2(s s )1 3

2(s s ) s1 3 1

3(s s )1 3

3(s s ) s1 3 1

s1

s2

s3

41=(s s )2 3 s2

s s2 3 s s s2 3 2

2(s s )2 3
2(s s ) s2 3 2

3(s s )2 3

3(s s ) s2 3 2

Figure 10. Tiling of Euclidean R2 showing the relations (s1s2)2 = (s1s3)4 =

(s2s3)4 = 1

Since we are considering translations of the triangle, it is obvious that the triangle must have
infinite order so the group must have infinite order. We also stated above that this is a group
isomorphic to the semidirect product Z2 o D8, which is infinite. This statement should look
a little clearer now as we see that our fundamental square has been divided into 8 segments.
Clearly by just using s1 and s2 we are able to get the group D8. The inclusion of a further
reflecting line s1 opens this out to tessellate the plane.

An interesting question to now ask is that given any triangle on the tiling of the Euclidean
plane, is it possible to generalise a mapping from the fundamental region to a specified triangle
using only our reflections s1, s2 and s3?

This is possible. We can already see from the previous figures that the reflections rotate the
fundamental region around the fundamental square. All that remains is to find a way to trans-
late one square to another. We must find an expression for the reflections a, b, c, d, reflecting
in the 4 edges of the fundamental square and also e, f , reflecting through the horizontal and
vertical symmetry lines of the fundamental square, using only combinations of s1, s2 and s3.
The required reflections are shown in the following diagram.
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a
Fundamental
     Region

Fundamental
     Square

b

c

d

e

f

Figure 11. Reflections a, b, c, d, e, f required to translate the fundamental
square in all directions

It is relatively straightforward to obtain that:
• a = s1

• b = s2s3s1s2s3

• c = (s3s2)2s1(s3s2)2

• d = s3s1

• e = s3s2s3

• f = s2

Combining these reflections, we are able to write a translation by one square up (U), down
(D), left (L) or right (R) from the fundamental square.

U = s2s1s3s2s3s1

D = s3s2s3s1

L = s3s1s3s2

R = s2s3s1

We can now state a formula for a generalised map to any triangle in this tessellation of R2 from
the fundamental region. A triangle which is n1 squares up, n2 squares down, n3 squares left and
n4 squares right of the fundamental region would be obtained by the reflections

n1U + n2D + n3L + n4R (+ required rotation within fundamental square)
thus enabling us to map any part of the tiled Euclidean plane to any other part.

4.3. Reflections on a Hyperbolic Plane. We briefly touch on hyperbolic Coxeter systems.
In chapter 2, we discussed the different triangles that can be generated by familiar geometric
shapes on a plane in each of Euclidean, spherical and hyperbolic geometries. Recall that we
were able to specify that a specific set of triangles was possible in each of spherical and Eu-
clidean spaces, owing to the restriction placed from the sum of interior angles on the triangle.
We had that most triangles could not be obtained in the spherical or Euclidean spaces and were
found instead as tessellations of the hyperbolic plane.

We state without proof that there are an infinite number of hyperbolic Coxeter groups on
H2 and will provide only one example for illustrative purposes.
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Example 4.5. There exists a Coxeter system (W, S ) in Hn with presentation

(W, S ) = 〈s1, s2, s3 | s2
1 = s2

2 = s2
3 = (s1s2)2 = (s1s3)3 = (s2s3)7 = 1〉

with Coxeter matrix

M =

1 2 3
2 1 7
3 7 1


and Coxeter diagram as shown below.

3 7

It turns out that we can use the Poincaré disc model to show the reflections of a triangle on
the plane which generate this Coxeter system. This image is taken from [17].

Figure 12. Reflections in Hn giving the hyperbolic Coxeter group (W, S ) [17]

5. Words

In this next section we return to look at the concept of words, which we defined in chapter
3. This is our final topic before the grand reveal of the building, and links closely in with the
next chapter. This section will use standard definitions shown in [11] and [15].

Recall definition 42 for which describes the free monoid MI on a set I and the definition of
a word in the MI . We will use the concept of a word to see how homotopies, expansions and
contractions can transform one word into another.
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5.1. Homotopy, Expansions and Contractions. For a Coxeter System (W, S ), let [mi j] be
a Coxeter matrix with an index set I. We define the map P(i, j), for any i ∈ I, as:

P(i, j) =

(i j)
mi j

2 if mi j is even

j(i j)
mi j−1

2 if mi j is odd

for all ordered pairs with distinct i, j such that mi j < ∞. The point of defining P(i, J) is that
it always gives a word of length mi, j. For example if mi, j = 3 we have P(i, j) = ji j. We now
use the definition of P(i, j) to provide the definition of an elementary homotopy of galleries in
a building. Recall that in the language of galleries, the type of a gallery was defined in chapter
1 as the word f ∈ MI taken by denoting each i ∈ I which chambers are adjacent in the route of
the gallery.

For some word f ∈ MI such that f = i1i2 . . . ik, set s f = si1 si2 . . . sik in the Coxeter system
(W, S ). Set r∅ = 1 where ∅ denotes the empty word. Finally, we notice that given c1, c2 ∈ (W, S ),
there is a gallery of type f from x to y if and only if x−1y = s f . We will come back to this fact
in the following chapter. We use the above definitions and observation to define an elementary
homotopy.

Definition 51. An elementary homotopy is an alteration from a word of the form f1 p(i, j) f2

to the word f1 p( j, i) f2.

We the use this definition to define what it means for two words to be homotopic.

Definition 52. Two words f , g ∈ MI are said to be homotopic, denoted f ' g, if one can
be transformed into the other by a finite sequence of elementary homotopies.

Notice that two homotopic words will always have equal length. To transform a word into
another word with different length, one will require a contraction or an expansion. First we
define a contraction.

Definition 53. An elementary contraction is the alteration from a word of the form f1ii f2 ∈

MI to the word f1 f2 ∈ MI .

And similarly we can define an expansion.

Definition 54. An elementary expansion is the alteration from a word of the form f1 f2 ∈

MI to the word f1ii f2 ∈ MI .

Combining all of the above gives us the definition for the equivalence of words.

Definition 55. Two words f , g ∈ MI are said to be equivalent if f can be transformed to g
by a finite sequence of elementary homotopies, contractions or expansions.

This equivalence between words is extremely powerful and enables use to move between
words with relative ease. This all brings us to the important definition of a reduced word.

Definition 56. A words f ∈ MI is said to be reduced if f cannot be transformed into a
word of the form f1ii f2 by a sequence of elementary homotopies.

Having reduced words enables us to specify a word of minimal possible length with which
to work. This will be extremely useful in the following chapter. In the following chapter we
will show that if two reduced words are equivalent, then they are homotopic. For now, the best
that we can do is the following, which we sketch a proof for.

Proposition 3. Two words f , g ∈ MI are equivalent if and only if s f = sg.
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Proof. As previously defined in this chapter, in the context of Coxeter groups we have
that s2

i = 1, which enables us to expand and contract words. We also have that (sis j)mi, j = 1.
This gives us that sP(i, j) = sP( j,i), which enables homotopy of words. Since this holds true for
generator elements of (W, S ), we must have that f , g ∈ MI are equivalent if and only if s f = sg

as required. �

5.2. The Exchange and Deletion Conditions. We end this chapter by stating three im-
portant theorems in this area, without proof. The exchange condition is a theorem regarding
words and reflection groups. The deletion condition is then a corollary of this theorem. There
is a further interesting theorem that is a consequence of these conditions which links us back
into Coxeter systems. These theorems are given as in [7], where a worked proof of each can be
found. In these theorems, l(w) denotes the length of word w.

Theorem 5 (The Strong Exchange Condition). For a reflection group W and some w =

s1 . . . sn ∈ W, if there exists some reflection t ∈ W such that l(wt) < l(w) then there exists some
i ∈ {1, . . . , n} whereby:

wt = s1 . . . ŝi . . . sn

where ŝi denotes omission of si. If the word w is reduced then i is unique. [7]

Corollary 2 (The Deletion Condition). If w = s1 . . . sn with n > l(w) then there exists
i, j ∈ {1, . . . , n} with i < j such that

wt = s1 . . . ŝi . . . ŝ j . . . sn

with ŝi again denoting omission. [7]

Theorem 6. Any group W generated by a set S with all s ∈ S of order 2 and satisfying the
deletion condition gives a Coxeter system (W, S ).
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CHAPTER 5

Buildings

With the necessary material now covered, we finally arrive at the main topic of interest: the
building. We begin by motivating the building from our canonical example of the flag system,
before formally defining the building and some further terminology. We conclude this chapter
with some examples of buildings and a discussion of where the topic of buildings extends to
beyond what we cover in this thesis.

1. The Building

1.1. Our Motivating Example. Recalling what we have seen so far with this example,
we started by taking the flag complex of a 3-dimensional vector space over the field of order
2. This was used to motivate the concept of a chamber system. The chambers were maximal
flags in the vector space and two chambers were said to be i-adjacent when the flags shared a
common face.

In chapter 2 we moved to look more closely at the underlying geometry in action, before
carrying forwards into chapter 3 where we encountered reflection groups with a classification,
root systems and words. Finally we rejoined our canonical example in chapter 4, when we es-
tablished that we could realise our chamber system from the symmetric group S3. We observed
that this chamber system over the set I = {1, 2} has an associated Coxeter system of Type A2.

The key picture to think of here is the local picture of our chamber system ∆ with the gallery
through i labelled nodes between two chambers instead denoted by a series of reflections in
corresponding si, as shown in the following figure.

c1

c2

c1

c2

s  s2 1

2  (s s )1 2

Figure 1. The local picture of ∆ showing the distance between chambers c1 and c2
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We can then set s1 ∈ S3 and s2 ∈ S3 such that they satisfy the necessary relations, giving
us the symmetric group of order 6 permuting the chambers around. What we have not done,
until now, is to use the group S3 to define a metric on ∆, a way of defining distance between
chambers. We then define a map δ : ∆×∆→ S3 such that if c1, c2 are joined by a gallery of type
2, 1 and a gallery of type 1, 2, 1, 2 as in our example above, then δ(c1, c2) = s1s2 = s2s1s2s1.
This is a building, a chamber system together with some metric from a Coxeter system (W, S ).
We now move to formalise this definition.

1.2. Defining a Building. Having just seen the motivation of a building, we now provide
a definition of the building. Here when we say the Type of a building, we refer to the Coxeter
diagram of the associated Coxeter system, as we used the definition of Type in the previous
chapter.

Definition 57. [6] For a Coxeter system (W, S ) with S = {si}i∈I , a building of Type (W, S )
is a chamber system ∆ over I such that:

(1) Every panel of ∆ contains at least two chambers
(2) ∆ has a W-valued metric δ : ∆ × ∆ → W such that if s f = si1 . . . sik is a reduced word

for some expression in W, then

δ(c, c′) = s f ⇔ there exists a gallery c1 → f c2 in ∆

We will sometimes refer to W as the Weyl group and δ as the Weyl distance function of
∆. Before turning to more building related definitions and theorems, we move to realise a large
family of examples of buildings.

1.3. Coxeter systems as buildings. We are going to construct a substantial number of
examples of buildings in one go, by realising that every Coxeter system (W, S ) of Type Π can
be seen as a building (ΣΠ, δW). To obtain this building from any Coxeter system, we simply set

δ(x, y) = x−1y.

In order for this δ function to serve as our metric, we require the following proposition.

Proposition 4. For all x, y ∈ ΣΠ there exists a gallery of type f from x to y in ΣΠ exactly
when x−1y = s f for some s f ∈ W.

Proof. This is true by the construction of ΣΠ. Take chambers x, y ∈ ΣΠ and a word f ∈ MI

such that x−1y = s f ∈ W, we can write f as f = i jklm . . .. Then by definition of ΣΠ there exists
a chamber x1 = xsi ∈ W such that x ∼i x1. Similarly there exists a chamber x2 = xsi j such that
x1 ∼ j x2, and so on. Therefore there is a unique gallery (x, x1, x2, . . . y) of type i jklm . . . = f in
ΣΠ from x to y.

In the reverse direction, given a gallery of type f from x to y, by definition of the Coxeter
chamber system we will have x−1y = s f for some s f ∈ W as required. �

We will now demonstrate a Coxeter system can be a building using our example the Coxeter
group (D6, {s1, s2}).

Example 5.1. A building from (D6, {s1, s2}) The 12 elements of this group are shown in the
following figure.
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s1

s2

I

s2

s1

s s2 1

s s1 2

s s s1 2 1

s s s2 1 2

2(s s )2 1

2(s s )1 2

2(s s ) s2 1 1

2(s s ) s2 1 2

3

3

(s s
) =
(s s

)

2
1

1
2

Figure 2. The Coxeter system (D6, {s1, s2})

If we take the intersection of the reflecting lines of the the hexagon with a circle, we are able
to realise a chamber system. This is shown in the following figure with white nodes connecting
two 1-adjacent chambers and black nodes connecting two 2-adjacent chambers.

s1

s2

I

s2

s1

s s2 1

s s1 2

s s s1 2 1

s s s2 1 2

2(s s )2 1

2(s s )1 2

2
(s s ) s2 1 1

2(s s ) s2 1 2

3 3
(s s ) =(s s )2 1 1 2

Figure 3. The building (∆, δ) obtained from the Coxeter system (D6, {s1, s2})

Here, it is clear that the Weyl distance function δ for any two chambers x, y ∈ ∆ can be
defined to be

δ(x, y) = x−1y.

This is easy to check, and should be obvious from the fact that the Coxeter group is generated
by reflections si for i ∈ I with a chamber system taken over such a set I.

1.4. Thin and Thick Buildings. When describing buildings, a common descriptor for
buildings are the definitions of thick and thin. This labelling in fact comes from the underlying
chamber system. Recall that a chamber system is called thin if every panel in the chamber
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system is a face containing exactly 2 chambers. For chamber systems with every panel being a
face of at least 3 chambers we say that the chamber system is thick.

The example of Coxeter complexes as buildings are all examples of thin buildings, in fact
it turns out that these are our only examples of thin buildings. We now move to look at further
definitions, structures and theorems relating to buildings, before returning to state some more
example of spherical buildings, by which we mean buildings associate to a finite Coxeter group.

2. Words and Buildings

With the definition of a building behind us, we now move to look at related structures,
properties, and maps between buildings. In this next section we return to look at the concept
of words, which we have already looked into. We will see that what we have already seen and
introduced can now be pulled directly into the language of buildings. Specifically, there are
several definitions and results that will prove useful for working with galleries of words. We
are able to link these topics because of the W-valued metric on our building, which associates
each gallery in a building (∆, δ) with some s f in the associated Coxeter system.

2.1. Galleries. We begin by providing another definition of homotopy, with more focus on
the building. Recall from Chapter 4 that we defined a map P(i, j).

Definition 58. For a building ∆ of Type Π with index set I, consider a gallery γ of the form
(γ f1 , γP(i, j), γ f2). An elementary homotopy of γ is a transformation of γ to a gallery γ′ of the
form (γ f1 , γP( j,i), γ f2).

We the use this definition to define what it means for two galleries to be homotopic.

Definition 59. Two galleries are said to be homotopic if one can be transformed, expanded
or contracted into the other by a finite sequence of elementary homotopies.

Similarly, the definitions of contraction, expansion and equivalence of words provides ana-
logues to the definitions of contraction, expansion and equivalence of galleries.

We next state an interesting theorem about reduced words. Due to reliance on other proofs
omitted from this thesis, this theorem is stated without proof. The reader can find a full proof
in [11].

Theorem 7. A gallery of type f is minimal if and only if f is reduced, and moreover any
two reduced words f , g ∈ MI which are equivalent must be homotopic.

We can now give a very useful proposition that will ultimately yield a variety of information
about the structure and properties of buildings, and will be essential to the major theorem of
this thesis that is presented towards the end of this chapter. The proposition is as stated in [15],
with some further discussion provided in the proof.

Proposition 5. For a building ∆ of Type Π with index set I, chambers x, y ∈ ∆ and a gallery
γ of type f in ∆ connecting x and y, the following hold:

(1) If g ∈ MI is a word homotopic to f , then there exists a gallery from x to y of type g
which is homotopic to γ.

(2) The gallery γ is minimal if and only if its type f is reduced.
(3) If γ is a minimal gallery, then it is the unique gallery of type f from x to y.

Proof. Let (W, r) denote the Coxeter system of Type Π. As defined earlier in this section,
we can take two words P(i, j) and P( j, i) in MI . Since P(i, j) is either a word of the form
i ji j . . . i j or ji ji j . . . i j we have that P(i, j) is reduced for i, j distinct, and similarly for P( j, i).
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We also have that the words P(i, j) and P( j, i) have the same image under s, where s denotes
the map MI → W such that f 7→ s f as seen previously.

From the definition of a building, we therefore have that if γ2 is a gallery in ∆ of type P(i, j)
for some distinct i, j ∈ I then there always exists a gallery of type P( j, i) with the same first and
last chambers as γ2. Therefore if we set g to be the word obtained from f by an elementary
homotopy, there exists an elementary homotopy transforming γ into a gallery of type g. Thus
(1) holds.

For (2), first let us assume that f is not reduced. We want to show that this causes γ to not
be a minimal gallery. From part (1) which we have just proven, if f is not reduced then we can
assume that f is of the form f1ii f2 for some i ∈ I, therefore containing a subgallery (p,w, q) of
type (ii). From the definition of a chamber system, we have that this means either p ∼i q or else
p = q. Therefore it is possible to delete either one or two chambers from γ giving a gallery of
type f1i f2 or f1 f2 from x to y, so γ is not minimal.

Instead suppose that f is reduced and that the minimal gallery from x to y is of type h.
By the above, h is reduced. From the definition of a building, we have that s f = sh. All that
remains to show is that this means f ' h. This is true as a consequence of theorem 7. Since we
have that s f = sh, that both f and h are reduced, and that h is a minimal gallery, it follows that
l( f ) = l(h) therefore f is also a minimal gallery from x to y, therefore we must have that f ' h
Thus (2) holds.

For the final part of the proposition, suppose that γ is minimal such that the length of γ,
denoted as above |γ| = k such that k ≥ 2 (otherwise x ∼i y and the minimal gallery is obviously
unique by the definition of a building). From part (2) of the proposition above, we have that f
is reduced.

Next, write γ as γ = (x, . . . , u, v, y) and suppose that there exists another gallery γ′ =

(x, . . . u′, v′, y) of type f from x to y. By construction we have that both v ∼i y and v′ ∼i y
(where the last letter of f is i. From the definition of a chamber system, we have that if v ∼i y
and v′ ∼i y then v ∼i v′.

Supposing that we have that v and v′ are distinct, then we have that (x, . . . u, v) is a gallery of
length k− 1 from x to v and (x, . . . , u′, v′, v) is a gallery of length k also from x to v. The second
of these galleries is therefore not minimal, however it has type f . This gives us a contradiction
since from part (2) we have that all galleries of type f are minimal, so we must have v = v′. By
induction with respect to k, we have shown that part (3) holds. �

3. Subbuildings

Recalling back to our first chapter on chamber systems, by following our instincts we ar-
rived at the definition sub-chamber system. We now look to find an analogous definition for
this special family of chamber systems, and arrive at the definition of a subbuilding.

3.1. Defining a Subbuilding.

Definition 60. Let (∆, δ) be a building of Type Π with index set I. If ∆0 is a sub-chamber
system of (∆, δ) with index set J ⊂ I and (∆0, δ0) is also a building (where δ0 denotes the
restriction of δ0 to ∆0 × ∆0), then we say that (∆0, δ0) is a subbuilding of Type ΠJ of (∆, δ).

In defining a subbuilding, we are able to come to a fundamental result about buildings
which gives a variety of corollaries. This key theorem will allow us to show that we do indeed
get subbuildings, and provide us with a way to find concrete examples of such things. To get to
this theorem, we will need to come back to the notion of convexity that was introduced in the
first chapter on chamber systems. We will then need to give a short proposition.
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Recall that a subchamber system is convex if for any two chambers in the sub-chamber
system, we have that the minimal gallery joining them is the same gallery in the sub-chamber
system as in the wider chamber system.

We can use convexity in the following lemma, as given in [15].

Proposition 6. For a building (∆, δ) of Type Π with index set I and a sub-chamber system
∆0 of ∆ with index set J ⊂ I, the following are equivalent:

(1) (∆0, δ0) is a subbuilding of Type ΠJ of (∆, δ)
(2) ∆0 is convex

In proving this proposition, we rely heavily on proposition 4.

Proof. We start by showing that (2) implies (1). We have that ∆0 is a convex subchamber
system of ∆ and (∆, δ) is a building. We need to show that (∆0, δ0) is a building.

Firstly, from the definition of a convex chamber system, we have that for any two chambers
x, y ∈ ∆0 and minimal gallery γ connecting them in ∆ then γ is completely contained in ∆0.
Secondly, if we let the type of γ be denoted f . By the proposition at the end of the previous
chapter, we have that f is a reduced word (because γ is minimal). By the above two facts, we
have that the index set of ∆0 is J and so we must have that f ∈ MJ ⊂ MI . We now bring in the
δ function as described in the proposition. Recall from chapter 1 that all residues of chamber
systems are themselves sub-chamber systems. Denote the Coxeter system of Type Π (so the
Coxeter system associated with our building) as (W, S ), and define

WJ = {si | i ∈ J}

From the definition of a building, we have that δ(x, y) = s f ∈ WJ. Hence δ(∆0 × ∆0) ⊂ WJ.
If we have that δ(x, y) = sg for g ∈ MI some other reduced word, then again by the definition

of a building we must have a gallery γ′ from x to y in ∆ of type g. Following the same reasoning
as above, the previous proposition gives us that γ′ must be minimal because g is reduced. Then
again, γ′ is contained in ∆0 because ∆0 is convex. We have shown that (∆0, δ0) is indeed a
building, and since it is a sub-chamber system as, we have that indeed (∆0, δ0) is a subbuilding
of Type ΠJ of (∆, δ) as required.

In the reverse direction, we start with (∆0, δ0) as a subbuilding of Type ΠJ of (∆, δ). Take
any two chambers x, y ∈ ∆0 and call the minimal gallery in ∆ between them γ. Denote the type
of γ as f . Since γ is minimal, by the earlier result we have that f is reduced, hence from the
definition of a building we have that s f = δ(x, y). Since δ(x, y) ∈ δ(∆0,∆0) and δ(∆0,∆0) ⊂ WJ

we have that s f ∈ WJ, and hence f ∈ MJ. Why? If s f ∈ WJ that means that s f = sg for some
reduced g ∈ MJ. �

It is worth noting that in this proof we defined and used a subgroup of the form WJ. There
is a fundamental fact that these subgroups are themselves Coxeter groups generated by the
corresponding subset of W.

3.2. A Theorem to Find Subbuildings. We will now state and provide a proof for a the-
orem which will allow us to realise examples of subbuildings from buildings.

Theorem 8. Let (∆, δ) be a building of Type Π with index set I. Let J be a subset of I and
let ΠJ denote the subdiagram of Π spanned by J (the subdiagram obtained from Π by deleting
all vertices not contained in J and all edges connected to a vertex in J). Let R be a J-residue
of the chamber system ∆. Then R is a subbuilding of ∆ of Type ΠJ.

We will prove this theorem using the above proposition giving an alternative definition of a
subbuilding involving convexity.
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Proof. Again, define
WJ = {si | i ∈ J}

and let u, v ∈ R be chambers in R. Our strategy will be to take a gallery between these chambers
and show that it is contained within R. Since this is for a gallery between arbitrary chambers
we will get that R is convex.

Let γ be a minimal J-gallery from u to v (a gallery such that the type, f , of γ is contained
in MJ). We can assume that f is of reduced. Why? Suppose for a contradiction that f is not a
reduced word in MJ, so we have

f � f1ii f2 = g
for some words f1, f2, g ∈ MJ. By an earlier result, we have that there then must exists another
J-gallery from u to v of type g, which we denote γ1. Note that we have that

|γ1| = |γ|

where | · | is the length of the gallery with respect to its type.
Because we have the repeated ii in the type of γ1, we are able to delete at least one chamber

from γ1 to obtain a shorter J-gallery from u to v. Hence γ is not minimal.
Since f is reduced, we have from the definition of a building that δ(u, v) = s f ∈ S . We have

constructed γ to be a J-residue, so it is unsurprising that γ is contained in R. If we now take
an I-gallery from u to v called γ2 and let the type of this gallery be denoted h, we have from
an earlier result that h is also reduced. From the definition of a building therefore, we have that
s f = sh ∈ WJ and as such h ∈ MJ. It follows therefore that γ2 is also contained in R. Therefore
R is convex.

By the previous proposition, we have that since R is convex, then (R, δR) is a subbuilding of
(∆, δ of Type ΠJ , where δR denotes the map δ restricted to R × R. �

The above result is extremely powerful, since it gives us a way of finding subbuildings using
residues. The following corollary formalises a simple consequence of the previous theorem.

Corollary 3. All residues of buildings are convex.

Proof. This follows the result of the previous theorem �

4. Maps between buildings

Isometries are essentially maps going between buildings, and play a central role in the
study of buildings. We begin by formally defining an isometry of buildings. This section
follows the work of [15] very closely, with commentary and further expansion in places to aid
understanding through the theorems.

4.1. Apartments and Isometries.

Definition 61. [15] Let (∆, δ) and (∆̂, δ̂) be two buildings of the same Type, so therefore
having the same index set I and same Coxeter group). A map π from a subset X ⊆ ∆ to ∆̂ is
called an isometry from X to ∆̂ if δ̂(π(x), π(y)) = δ(x, y) for all chambers x, y ∈ X.

Notice here that the isometry need not be between one entire building and another, but
rather a subset of one and another. The main notion in this definition is that of isometries
preserving the Weyl distance in buildings. With this definition in hand, we now define another
central construct in the theory of buildings, apartments.

Definition 62. [15] Let (∆, δ) be a building of Type Π. An apartment of ∆ is an isometric
image of ΣΠ in ∆.
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This means that an apartment is the piece of a building that an isometry maps all of a
Coxeter chamber system to. In fact, it turns out that apartments are themselves Coxeter chamber
systems of Type Π.

4.2. Isometry Theorem. Now we move to the first major theorem we come to, which
will allow us to utilise much of our existing knowledge of Coxeter chamber systems into the
language of buildings. We will only provide a sketch of the proof for this theorem, with a full
worked proof available in [15].

Theorem 9. For a building ∆ of Type Π and a subset X ⊆ ΣΠ, every isometry from X to ∆

extends to an isometry from ΣΠ to ∆.

Proof. First denote the Coxeter system of type Π by (W, S ). Suppose X ⊂ ΣΠ and let
π : X → ∆ be an isometry. The strategy for this proof is to show that if X , ΣΠ , then we can
extend π to an isometry from a set X′ → ∆, where X ( X′ ⊆ ΣΠ. Then an application of Zorn’s
lemma will show that it is possible in the end to extend π to all of ΣΠ.

We may assume that X is non-empty, which means that we can find adjacent chambers u ∈ X
and v < X, by the connectedness of ΣΠ. Since left multiplication by u−1 is an automorphism of
ΣΠ which preserves distances and adjacency, we may assume that u = 1 and hence, since v is
adjacent to u, that v = si for some si ∈ S , with i ∈ I. Set X′ = X ∪ si.

In order to extend the isometry π to X′, we need to work out where to send si. There are
two cases to consider.

The first (easier) case is where for every reduced word g such that sg ∈ X, the word ig is
also reduced. In this case, we can simply choose any chamber c ∈ ∆ which is i-adjacent to π(1)
and set π(si) = c. For then, since ig is reduced for all g with sg ∈ X, we do get that π : X′ → ∆

is an isometry.
The second case is much more involved. Here we have at least one reduced word g with

sg ∈ X and such that ig is not reduced. This means that g is homotopic to a reduced word
f = ih, say, with h reduced. Now there is a gallery from 1 to s f = sg in ΣΠ of type f , and this
gallery is minimal by proposition 5. Now, since π is an isometry, there is a gallery from π(1) to
π(sg) of type f in ∆. Denote this gallery by (c0, c1, . . . , ck), where c0 = π(1) and ck = π(sg).

Then we set π(si) = c1 in this case. It remains to show that this does indeed define an
isometry from X′ to ∆. It is clear that π(si) is i-adjacent to π(1), since the gallery (c0, c1, . . . , ck)
has type f = ih, so c0 and c1 are i-adjacent. The last thing to check is that δ(c1, π(x)) = s−1

i x for
all x ∈ X. We skip the details of this check because they involve some technical constructions
not included in this thesis.

�

4.3. Consequences of the Isometry Theorem. The above theorem leads onto some very
nice results, one of the most important being the following.

Corollary 4. Any two chambers in a building are contained in a common apartment.

Proof. If we take two chambers x, y ∈ (∆, δ) for a building of Type Π; we can the two
element subset {1, δ(x, y)} of ΣΠ and an isometry sending 1 7→ x and δ(x, y) 7→ y. Using the
proof of the previous theorem, we can extend this isometry to an isometry ΣΠ → δ, giving us
an apartment. �

The following is original work. A sensible question to ask at this point is whether this proof
can give us a recipe for finding an apartment containing any two chambers x and y. The way to
approach finding a common apartment for a spherical building would be:
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(1) Let {1, δ(x, y)} = X ⊆ ΣΠ and set the isometry π such that 1 → x and δ(x, y) → y as in
the above proof of corollary 1.

(2) (if repeating process) Use the special auotomorphism obtained by left multiplication
on the Coxeter group to shift the most recently added element of the group to be the
identity element, 1 ∈ X.

(3) Choose an adjacent chamber to 1 in ΣΠ but not in X (so a generating element of the
Coxeter group) and call it v = si (as in the above proof of theorem).

(4) For all reduced g such that sg ∈ X, check if ig is a reduced word. If so, continue to (5),
if not continue to (6).

(5) Choose any chamber c ∈ ∆ such that x ∼i c and set π(v) = c. Continue to (7)
(6) For the sg ∈ X such that ig is not reduced, find a reduced word f homotopic to g begin-

ning with i and the gallery γ of type f from x to π(sg), so that γ = (x, c1, c2, . . . , π(sg)).
Set π(v) = c1 from the gallery.

(7) Set a new X = X ∪ si and go back to (2). If X = ΣΠ, stop as you are done!
There is yet more that we can extract from the powerful theorem that we have just proven,

but first we will need a couple of simple propositions that mostly follow as a result of the
theorem. See [15] for full worked proofs.

Firstly we note that for a building (∆, δ) of Type Π and a subgraph Σ ⊆ ∆, then Σ is an
apartment if and only if Σ is a thin subbuilding of Type Π. This provides us with a useful way
of identifying apartments.

Our second consequence is that all apartments are convex. This again is a useful property
which aids in further theorems in the subject area.

Finally, and perhaps of most interest, we have that isomorphisms between buildings map
apartments to apartments.

5. A Thick Spherical Building

We have defined a building and considered their structure and properties. So far however,
we have only seen a minimal number of explicit examples of buildings. We unfortunately will
stop short of showing many thick buildings in this thesis, as the next step in obtaining such a
family of thick buildings involves extracting buildings from the structure of reductive algebraic
groups. This is a topic that we have not, and will not be covering in this thesis. We finish where
we started by stating one final generalised example before entering our closing section . This
example follows an example shown in [6].

Example 5.2. Spherical buildings of Type An−1 Let (W, S ) be a Coxeter system with Coxeter
diagram with n nodes as shown below.

Taking our canonical example of a chamber system ∆ formed from a flag complex of a
n-dimensional vector space over a field of order k, we put a W-valued metric onto our flag
complex. This metric δ is defined as follows. For 1 ≤ i ≤ n, let

π(i) = min{ j |V ′i ⊂ V ′i−1 + V j}

We want to show that π is a bijection which permutes the i ∈ I. Whilst this is more involved
than it might seem, we will suffice to show that for the case where two flags differ only in the
ith position, that π swaps i and i + 1.
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If we have two flags V1 ⊂ . . . ⊂ Vi ⊂ . . . ⊂ Vn and V1 ⊂ . . . ⊂ V ′i ⊂ . . . ⊂ Vn such that
Vi , V ′i , then we must have that

• π( j) = j for all 1 ≤ j ≤ i − 1 and i + 2 ≤ j ≤ n;
• π(i) = i + 1; and
• π(i + 1) = i.

This clearly swaps i and i + 1. Then for c, c′ ∈ ∆ we define

δ(c, c′) = π

This is a spherical building which is an example of a thick building.

6. Alternative Approaches and Further Reading

6.1. Another Approach. In introducing buildings, we have followed a very geometrically
based narrative. Our approach came from the perspective of chamber systems, linking them
to Coxeter groups and then producing the building. The common alternative approach into the
topic of buildings, as is used in [1], is to start with Coxeter complexes and show that these are
simplicial complexes. The definition of a building then introduces apartments immediately, as
is shown in the first definition of a building given by Brown in [1]:

Definition 63. A building is a simplicial complex ∆ which can be expressed as the union
of subcomplexes Σ (called apartments) satisfying the following axioms:

• B0 Each apartment Σ is a Coxeter complex
• B1 For any two simplices A, B ∈ ∆, there is an apartment Σ containing both A and B
• B2 If Σ and Σ′ are two apartments containing A and B, then there is an isomorphism

Σ→ Σ′ fixing A and B pointwise

As is clear by the above definition, it is the apartment and not the chamber that is seen as
the fundamental object in this view of a building.

6.2. Beyond Spherical Buildings. The reader may also be wondering why we spent so
much time explaining Euclidean and hyperbolic geometries when we only went so far as to
show spherical buildings in this thesis. Our reasoning behind understanding all of this material
in different geometries is to build the expectation in the reader that spherical buildings are not
the end of the story with buildings. For a full introduction and study to Euclidean buildings, the
author recommends [16] as a well structured narrative. Hyperbolic buildings are also structures
which exist, however these are a much more recent development in the topic of buildings and
consequently the material is still relatively undeveloped.

The applications of buildings is seen through important results in some areas of mathemat-
ics which, without the connection of buildings, can seem fairly disparate. As mentioned in
the introduction to the previous section, there are strong links between buildings and reduc-
tive algebraic groups. The building provides something for these groups to act on, providing
a sometimes unique insight to properties of such group which would go unrealised without
buildings.

6.3. The Final Example. We conclude this thesis with a final example, this time illus-
trating a simple Euclidean building from which the reader can take inspiration to continue
exploring this fascinating area further. This example follows work in [6].

Example 5.3. A Euclidean Building We motivate this example through showing various
figures to illustrate key points, and this example is only to serve as motivation for material in
related literature which follows from the conclusion of this thesis.
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We start by considering the following Coxeter diagram.

∞

This shows the diagram for the infinite dihedral group W. The question here is what would
a building of this Type look like? We can show an example of this building. Take the infinite
3-valent tree and set the edges of the tree to be the chambers. If we colour the vertices black
and white, we can get a notion of 1-adjacency and 2-adjacency. Figure 4 shows a portion of
this tree labelled as described.

Since there is a unique shortest path between any two chambers in this tree, which will pass
through a sequence of ‘black’ and ‘white’ nodes, we can associate a sequence of 1’s and 2’s
and hence a corresponding element in the Coxeter group W. It is then straightforward to check
the building axioms.

To realise W concretely as an affine Coxeter group, letV be 2-dimensional and consider two
reflections S = s1, s2 on V , and the group W generated by S . Unlike our previous orthogonal
reflections (where the decomposition of V by the reflection si was the direct sum of a hyperplane
Hsi with an orthogonal reflecting line Lsi), consider s1, s2 such that for the decomposition V =

Lsi ⊕ Hsi we have Hs1 , Hs2 but Ls1 = Ls2 = L. This means that not only is L left invariant by
W but that any line parallel to L is also invariant by W. This setup is shown in the figure 5.

However, notice that the reflection s0Hs1 < H . It turns out that we must extend H to the
infinite set shown on the figure 6. If we were to then identify an invariant affine line parallel to
L as R, we get that W is isomorphic to the group of affine reflections of R in Z.

As stated previously, this is not a fully worked example and serves only to further engage the
reader in the material of Euclidean Buildings which the author recommends exploring further.

Figure 4. A portion of the 3-valent tree, an example of a building associated
with the infinite dihedral group
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Figure 5. Reflecting hyperplanes Hs1 ,Hs2 sharing the same reflecting line Ls1 =

Ls2 = L
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Figure 6. Reflecting hyperplanes Hs1 ,Hs2 extend S to an infinite set of reflections
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