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Abstract

Movement is an essential process for almost all species in the animal kingdom. For example,
survival is the result of successfully finding food and avoiding predators. Also, reproductive
success depends on encounters with mates. Over the last century, scientists have developed
statistical methods to understand the nature and behaviour of species and have thus shed
light on animal movement. The more we study the details of animal movement, the more
we understand animal behaviour. Naturally and realistically, animal movement happens
in continuous time, but movement data on tagged animals are observed in discrete time.
Many statistical methods ignore this fact or consider animal movement to be time-continuous
but use a discrete time approximation, which involves errors that are difficult to calculate.
Blackwell et al. (2016; Methods in Ecology and Evolution, 7, 184-195) introduced a new
statistical method to analyse complex animal movement with environmental information in
continuous time, specifically without the need for approximation. In this thesis, continuous
time Ornstein-Uhlenbeck (OU) diffusion processes have been used to model animal move-
ment data, and Markov Chain Monte Carlo (MCMC) Bayesian methods have been applied to
make inferences about the model. The purpose of this thesis is to extend and refine recently
developed methods for statistically analysing animal movement data in continuous time. In
practical terms, it aims to improve the efficiency of current algorithms and to allow more
general models to be applied. The goals of this thesis are to extend the current continuous
time models to allow for the estimation of unknown boundaries for the animal’s home range
or between different habitats, to extend the possible range of prior distributions that can
be used for the behavioural process, and to generalise the model to allow for semi-Markov
modelling. The information gained using these methods will help ecologists to learn more
about animal behaviour and the environment. Ecologists study animal movement to explain
the relationship between animal movement and major habitat features, interactions between
species and how the animals use the habitat. We apply our methods to real data and explore
their performance using simulated data.

Keyword: Animal Movement, Ornstein-Uhlenbeck process, Exact simulation, Markov
Chain Monte Carlo, Switch diffusion models, semi-Markov model, boundaries.
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Chapter 1

Introduction

1.1 Thesis aim

Animal movement includes any movement or method that an animal uses to move or transport
itself from one place to another, such as running, jumping, swimming, flying and hopping.
Animals move for several reasons: to find food, to find mates, to explore, to escape from a
predator or for migration. As a result, the ability to move is essential to survival. Animal
movements have been extensively investigated because movement is one of the most impor-
tant parameters of ecological processes. Furthermore, movement studies assist ecologists in
improving their understanding about animal behaviour and how an individual’s movement is
affected by the surrounding environment and interaction with other animals.

The overall goal of this thesis is to develop, improve and generalise continuous time move-
ment models. The specific aims of this thesis are:

1. To develop a better tool for analysing animal movement data, in order to answer
ecologists’ questions.

2. To improve the efficiency of continuous time modelling and continuous time estimation.

3. To extend the range of the continuous time models.

We achieve these aims by extending the range of the continuous time models to include esti-
mation an unknown boundary and semi-Markov modelling, by proposing an approximation
to the existing exact method of inference (converting it from a variable-dimension problem
to a fixed-dimension one), and by reformulation of the exact method to allow it to be more
adaptive.
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2 Introduction

1.2 Thesis outline

This thesis is structured as follows. Chapter 1 presents the general ideas used in animal
movement studies by describing the home range, territory, utilisation distribution and centre
of attraction, providing details about how to collect and present animal movement data, and
the history of the beginning of animal movement methods, which focused mainly on home
range estimation. Chapter 2 discusses definitions of animal behaviour, presents a literature
review of the more widespread recent methods used to fit movement data that incorporate
animal behaviour, such as hidden Markov models (HMMs) and state space models (SSMs),
and compares discrete and continuous time models. Chapter 3 presents a detailed discussion
of the Ornstein-Uhlenbeck (OU) diffusion model, describes an existing recent algorithm and
discusses some of the implementation issues. Chapter 4 presents a new approximation idea
in which there is one potential change in behaviour between each pair of observations to
speed the algorithm. In Chapter 5, the exact method is improved by allowing kappa, a key
quantity in the exact estimation of continuous-time models, generally taken to be constant, to
vary over the iterations of the algorithm. The aim is to save computational cost and increase
the accuracy of the parameter estimation. In Chapter 6, the exact method is adjusted to
estimate an unknown boundary between regions in space in order to learn more about the
environment from movement data. In Chapter 7, the variable kappa idea is generalised to deal
with semi-Markov models, where the duration time for behaviours can follow any continuous
distribution instead of being limited to the exponential distribution as in the Markov case.
Chapter 8 presents a summary and future extensions.

1.3 Home range and territory

In the first animal movement studies, the primary task was to estimate the animals home
ranges (Jennrich and Turner 1969). Burt (1943) stated that the first and essential point is
to understand the difference between the home range and the territory. Burt (1943) distin-
guished between home range and territory, defining the home range as the region that a single
animal or group of animals typically uses around the den or nest within which the animal
accomplishes daily activities and the territory as the guarded, defended and protected area.
Burt (1943) defined "the home range as the area that the animal uses for its normal activities,
such as collecting food, mating and raising young". Areas of nature that are simply explored
by an animal should not be considered a part of the home range. Seton (1909) said no animal
moves completely at random. Rather, each animal covers a consistent general area, which is
called its home range. Jennrich and Turner (1969) defined "the home range as the smallest
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1.3 Home range and territory 3

region that accounts for 95% of an animal’s habitat utilisation". Burt (1943) demonstrated
that most animals have a home range but that not all animals have a territory; also, animals
do not all engage in territorial behaviour to the same degree. Burt (1943) states there are two
main types of territoriality: areas reserved for storing food and shelter and those intended for
breeding and the rearing of young animals. These two categories may be further divided in
special cases.

Burt (1943) explained that individuals of most species spend their lives in a specific area,
which is called the home range. However, some animals migrate from one area to another
during certain seasons. Burt (1943) clarified that animals do not necessarily have the same
home range throughout their lives; this is especially true for migrant animals, which have
different home ranges in winter and summer. Every species chooses and deals with its home
range and territory area in different ways. A territory can be the same area as a home range,
or it can serve only as a nest site. Burt (1943) has found that territories are often smaller than
home ranges because they require a great deal of energy and time to maintain. The sizes
of a home range and territory depend on an animal’s size, age and sex; the season; the type
of habitat; food availability and interactions with other species. Cowlishaw (2014) stated
that identifying the size of a home range and territory is complicated. Cowlishaw (2014)
explained that the two important ecological factors affecting territory area are population
size and food availability. For example, Cowlishaw’s (2014) studies of damselfish show that
when the population is high and there is a large amount of food available, the territory area
tends to be small. However, when there is a high population size but a low amount of food
available, the animals will leave and relinquish their territory area because protecting the
territory area hinders the animals from exploring other areas in search of food.

Burt (1943) wrote that home ranges may sometimes overlap within species. This over-
lap is not part of the territory area. Some species will tend to avoid one another rather than
seeking to expel one another. MacDonald et al. (1980) stated that interactions between
animals can be split into two categories based on their home ranges and movement. The first
is static interaction, which pertains to the proportion of home range overlap between two or
more animals of the same species. The second is dynamic interaction, which refers to the
relation between the movements of two animals, or the way in which the movements of two
animals are connected in terms of attraction or avoidance. Dunn and Gipson (1977) examined
the movements of twin deer and found that most of the time the twins stayed very close
to one another. In contrast, MacDonald et al. (1980) investigated the dynamic interaction
between male and female foxes, observing that these foxes typically avoided each other.
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1.3.1 Utilisation distribution and the centre

Don and Rennolls (1983) stated that a home range can be delineated as one region or divided
into more than one area, each with well-defined boundaries. They referred to these regions
as animal domains. Don and Rennolls (1983) explained that species do not utilise all of their
home ranges with equivalent density. Specific areas are used more than others. Jennrich and
Turner (1969) explained that another term related to the home range is utilisation distribution
(occupation density distribution), which is used to identify where the animal may be at
a specific time. In other words, it indicates the probability of discovering an animal in
specific parts of its home range. Van Winkle (1975) referred to utilisation distribution as
the "proportional to the bivariate probability distribution of an animal’s position over time".
Considering this, even a home range that is formed of two or more disjointed area can be
estimated. Anderson (1982) stated that utilisation distribution describes space use but not
necessarily resource use.

Dixon and Chapman (1980) referred to "the activity centre as the zone inside the home
range with the highest level of activity". Every home range has a statistical centre and
typically one or more biological centres. Hayne (1949) identified the statistical centre as
the mean coordinates of the observed animal location points or the mean of the utilisation
distribution. This statistical centre of activity usually has little or no biological meaning. Don
and Rennolls (1983) explained that the true biological centres of activity (centre of attraction)
are biological attraction points, such as nest sites, food sources, small pools, resting sites and
feeding places. Don and Rennolls (1983) called these centres nuclei, and an animal typically
has several nuclei within a home range, as reflected in the animal’s choice of multiple resting
sites. Don and Rennolls (1983) assumed that the locations of these biological centres are
often known by a field worker. None of these nuclei are necessarily located at the statistical
activity centre. These nuclei have an important effect on the habitat utilisation intensity of a
specific animal because the animal frequently returns to these attraction sites.

1.4 Movement data

Animal tracking data help ecologists to understand the movement of animals within their
habitats or as they migrate. This information helps ecologists to understand the effect of
environmental challenges such as the passing of infection to other animals and humans,
the effects of enviromental change on animal behaviours and species loss. Scientists study
animal movement to gain more information about animal populations, major habitat features,
interactions between species and how the animals use the habitat. Understanding an animal’s
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1.4 Movement data 5

life requires studying its behaviour. Ecologists often want to study the causes and reasons for
animal movement in a habitat as well as to determine what affects the animals’ movement.
In addition, they seek to clarify how the animals interact with other species and the habitat
(Hooten et al. 2017). In addition, recently, ecologists have been wanting to extract more
detail from the movement data, particularly about where animals go, their behaviour and
how they interact with each other and the environment (Hooten et al. 2017). The statistical
methods used to understand the nature and behaviour of species require data on animal
locations across time (Worton 1987).

Movement data can be collected using various techniques depending on the study’s budget
and the animal in question. Spatial data may be collected via radio tracking, live trapping
or other methods. At the beginning of the twentieth century, the live trapping method was
typically used to collect data on animal location by attaching a band, collar or ring with a
code or number to the animal, then releasing the animal back into the habitat. To record the
data, the animal had to be seen or captured again. The tag did not contain any electronics and
was typically used with birds. The tag was lightweight and cheap. However, a large number
of animals had to be tagged. because the tags yield only very limited data on location as
animals are only observed very intermittently. The tag itself is inexpensive, but collecting the
data is very labour-intensive. This form of data is called capture-recapture data and will not
be discussed any further in this thesis.

The other method involves attaching an electronic tag which will provide telemetry tracking
such as via radio or satellite, such as a global positioning system (GPS) and the Advanced
Research and Global Observation Satellite (Argos), an acoustic monitor, an accelerometer,
geolocation/TDR tags or other technologies. The electronic tracking approach also became
popular because it can provide extensive data, and the time interval between the observations
is often minimal. Electronic tracking data are collected by immobilising the animal, attaching
a small electronic tag and then releasing the animal. GPS data can supply high-resolution,
longitudinal data over massive distances.

Hooten et al. (2017) explained that animal movement data are the result of recording
series of spatial points. Worton (1987) states that animal movement data are collections of
animal locations or positions over time (discrete points), representing a type of time series
data. Most animal data are on a horizontal plane, which is two dimensional. The exceptions
to this are aerial and marine wildlife, where the data can be three dimensional or vertical
(height or depth), representing a movement in one dimension. For example, Natvig and
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6 Introduction

Subbey (2011) analysed vertical movement data collected by electronic bands attached to
fish. The tags recorded the depth, then the researchers used a mixed OU process with a
transition matrix for states in which to analyse the data. Marine data will not be discussed
any further in this thesis. Movement data are generated by frequently recording the location
of an animal. The time interval between the observed locations can be regular or irregular
because of missing data, the design of the model or limitations on the sensor. The time
interval can be seconds, minutes, hours or days. If studying behaviour is the aim of the
research, the time interval between observations should be short. Thus, there should be a
balance between the time interval and aim of the research. The accuracy of estimating animal
behaviour is affected by the sample interval between observations; if there is a large interval,
it may be difficult to understand some of the behaviour. Thus, ecologists should be careful
when collecting the data to choose a time interval suitable for the aim of the study.

Movement data can be represented in different forms. Most tags produced raw (unpro-
cessed) data in the form of animals’ positions/locations over time, but most studies use
processed data, such as measuring the distance between two locations, which is called the
step length, determining the direction of the movement or any change in the direction between
locations, which is called the turning angle, by calculating the angles between three locations.
The step length may be divided by the length of the time interval to give a measure of speed.
The step length and turning angle depend on the animal’s initial location and the direction
the animal is heading (bearing).

Tags that record only accelerometry data do not directly give locations, and are outside
the scope of this thesis. The electronic tracking method provides data on an animal’s location
and, in some monitors, on what it is doing and with which other animal it is interacting.
Various monitors are used to supply knowledge and guidance about animal behaviours that
cannot be identified from location data alone. GPS location data do not provide direct infor-
mation on animal behaviour. Data on animal movement and behaviour complement one other,
thereby enabling scholars to explain the social system that underlies species interactions. For
example, Nams (2014) combined animal movements and behavioural data. Pedersen and
Weng (2013) used SSMs and OU processes to estimate animal movements from observation
network data; they used fixed monitors to collect animal presence and absence data in specific
areas. Their observation network data were similar to the capture-recapture idea but without
the need for great effort from ecologists; moreover, their approach provides continuous
information. Description about animal behaviours can be found in Section 2.1.1.
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1.5 History of home range estimation methods 7

Sometimes, an ecologist probes into the movement of a group of animals of the same
species and combines data regarding many individual animals. The animal movement data
considered in this thesis are for a single animal and provide information only about animal
location and the time of observation.

1.5 History of home range estimation methods

Macdonald et al. (1980) stated that the starting point for understanding animal movement is
studying the size and shape of the home range and how the animal utilises their home range.
The methods discussed in this chapter have been used for analysing animal movement data
to provide the ecologist with a range of essential information, such as the time an animal
spends in a specific location and the size and shape of the home range.

In the early movement methods literature, the animal movement data were usually anal-
ysed using three main methods: polygon methods, nonparametric methods for utilisation
distribution and parametric methods, such as a bivariate normal distribution. Worton (1987)
explained that the polygon method is a nonparametric method that provides information
only about the size and shape of the home range, whereas the other approaches provide
information about the animal’s home range use intensity in addition to the size and shape of
the home range.

1.5.1 Polygon method

In the early stages of home range scholarship, researchers employed polygon methods. At
that time, polygon methods were the most popular and convenient approach to estimate home
range. The polygon method assumes that the region is in the form of a convex polygon
and derives this representation by drawing the boundary around the outermost capture
observation points. Worton (1987) said the polygon method defines "the home range as
the smallest polygon comprising all the position points”, the minimum convex polygon
(MCP) or convex hull. The attractiveness of this method lies in its simplicity; it is easy to
calculate by hand, quick and reasonably statistically stable. However, the polygon method
has two disadvantages: first, this method is characterised by biases in terms of sample size;
an increase in sample size expands the area a home range occupies. Second, it make an
unreasonable assumption that the home range shape should be a convex polygon, which is
often implausible, especially when the surrounding environment is nonhomogeneous. This
method produces overestimates of home range size when the home range is not convex.
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This discrepancy in size is attributed to the inclusion of areas that an animal never visits
or can never visit. The polygon methods were once widely used but are now regarded as
inappropriate because these methods provide only the home range size and shape but do not
provide any information about the utilisation distribution and which parts of the home range
are most utilised.

1.5.2 Nonparametric utilisation distribution methods

The nonparametric methods described in this section produce more information about how
an animal utilises the environment than the polygon method. Worton (1987) explained that
nonparametric home range methods have no assumption about the format of the utilisation
distribution and make it easier to investigate the effect of different factors on the animal’s
movement. Voigt and Tinline (1980) presented the grid method as a simple nonparametric
method that draws the animal’s movement according to the frequency with which it is located
in each grid cell or square. Worton (1986) did not consider the grid method a statistical
method or a viable model, adding that in the grid method animal movements are restricted
solely to the types of moves that are allowed in a game of chess. However, if the main interest
is in exploring the overall spatial distribution of directions of movement within the data, this
method is very helpful.

To deal with the issue of small sample size, Ford and Krumme (1979) established an approach
known as population utilisation distribution (PUD), which calculates the average utilisation
for all the inhabitants by merging data for individual animals from the population. They
estimated the population utilisation distribution by assuming that the habitat is divided into
regions that are equal in size, and assuming that the total of the probabilities of all regions
was equal to one, which means it is impossible for the animal to depart from the study area.
They then calculated the population utilisation distribution by solving equations that equate
the empirical Relocation distance function (RDF) to the RDF implied by the population
utilisation distribution (PUD). Ford and Krumme (1979) calculated the Relocation distance
function which is the equation for the frequency of finding an animal at each possible distance
from its previous location. The series of equations can be solved by minimising the squared
difference between the empirical Relocation distance function and the Relocation distance
function implied by the population utilisation distribution.

Empirical RDF−RDF implied by the PUD = 0.
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1.5 History of home range estimation methods 9

The advantage of this method is that it can be used to calculate the utilisation distribution
for an individual animal and a group of animals. The disadvantage is that it requires high
computation cost, and the results are complicated to explain because the method incorporates
data for many animals that could be from different areas.

Anderson (1982) developed a nonparametric method to estimate the utilisation distribu-
tion for a single animal using Fourier transform methods for smoothing two-dimensional
locations. Worton (1987) suggested the kernel method as another nonparametric method
that can be applied to estimate the home range by smoothing the animal’s location. Worton
(1987) compared the Fourier transform with the kernel method and found that both have
disadvantages and give similar estimation results; nevertheless, biologists prefer the kernel
method because it is easily interpretable and is more reliable than other nonparametric meth-
ods. Worton (1987) concluded that to estimate utilisation distribution, it is best to use the
method that makes no assumptions about the underlying distribution. Additionally, Worton
(1987) suggested that when using nonparametric methods to analyse telemetry data, a test for
independence should be conducted because these methods assume independence between
observations. There are other nonparametric methods that are not mentioned in this section
due to their limited relevance, such as the harmonic mean (Dixon and Chapman,1980).

1.5.3 Bivariate normal methods

Because the probabilities of an individual appearing in specific areas of a home range are
unequal, scientists have for a long time been striving to develop a model to calculate such
probabilities. Calhoun and Casby (1958) assumed the animal locations are independently
sampled from a bivariate normal distribution, which is the utilisation distribution. Calhoun
and Casby (1958) developed three assumptions regarding the home range: first, the home
range is stationary that is, it is fixed and exhibits no shift in its centre of activity; second,
a true centre of activity (biological attraction) exists, but the statistical centre may differ
from it and, third, the probability of an animal appearing in a specific location of the home
range decreases with increasing distance from the true centre of activity (Calhoun and Casby
1958). These assumptions suggest a bivariate normal distribution. Calhoun and Casby (1958)
defined the capture radius as the distance between the biological centre and the observation
point. This distance can be measured to understand how the animals interact with the environ-
ment and to estimate the home range boundaries. Calhoun and Casby (1958) excluded any
sample that was characterised by a short time interval between two observations because such
durations cause dependence between observations, and their model assumes independence
between observations. This model can estimate the home range size and boundaries, the
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probability of an animal appearing in a specific area and the time an animal spends in a
certain location. Van Winkle (1975) said this method measures how far the animal moves
from the centre, not the area covered during daily movement.

Calhoun and Casby (1958) restricted their models by assuming that the home range is
circular. However, the credibility of such a finding is doubtful because the method affects the
determination of the shape of the home range. If circular symmetry fails, the home range will
be overestimated. The assumption by Calhoun and Casby of a circular home range thereby
makes it unsuitable as a general home range model (Don and Rennolls 1983). Jennrich and
Turner (1969) created a more general model by removing the circularity assumption from
Calhoun and Casby’s method. The unrestricted bivariate normal model became popular
because it was the only parametric method that was free of the assumption of circularity and
has no sample size bias. However, Macdonald et al. (1980) explain that Jennrich and Turner’s
method has little biological explanatory power because it does not include any information
about different behaviours (modes of movement) at different locations. Given the lack of
independence between radio tracking observations, this method cannot be generalised to
all home range data. If the utilisation distribution is unknown, then Jennrich and Turner’s
method may not fit all data well.

1.5.4 Conclusion

Although the conception of a home range has changed over the last century, researchers
have not reached a consensus regarding the approach that best represents movement data.
Various methods are applied to analyse movement data, and each approach can yield different
results. All the previous methods assumed a fixed home range, meaning the animal did not
travel outside the study area. Each technique is characterised by limitations and biases in the
estimation of home ranges. Van Winkle (1975) states that none of the parametric methods
can be used with a non-homogeneous habitat. Anderson (1982) compared his nonparametric
method with polygon convex and bivariate normal distribution, concluding that none of these
models are free from problems. In his comparison of the nonparametric and bivariate home
range models, Van Winkle (1975) argues for the bivariate normal method’s appropriateness
as an approximation of the utilisation distribution. The bivariate normal method is more
informative than the polygon method because the polygon method provides information
regarding only the home range’s size, shape and position. The polygon method provides
information about only the home range boundary, but it does not provide information about
what happens inside that region. In the polygon method, the time of the observation is
usually completely ignored (i.e. not included in the model), which can potentially be very
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1.5 History of home range estimation methods 11

misleading. The bivariate normal method is free from sample size bias, but it is based on a
very strong assumption about the shape of the utilisation distribution. A home range’s size,
shape, position and orientation are insufficient for an ecologist who is particularly interested
in the estimation of the utilisation distribution because it has additional information that
can explain habitat use. Macdonald et al. (1980) state that a complicated method does not
necessarily yield a better estimate. As none of the previous methods is without faults, none
of them is appropriate for all cases.

Trapping data with long periods between capture observations provide independent lo-
cation records, but the use of electronic tracking data and decreased time between captures
may led to dependence between the location observations, which means the current posi-
tions of an animal will be correlated with the previous locations. Dunn and Gipson (1977)
suggest the use of a diffusion model to solve the autocorrelation problem, which will be
discussed in detail in Chapter 3. Otherwise, when using electronic tracking data, the time
interval between observations must be large to ensure independence. The nature of ani-
mal movement may be insufficiently explained in the previous methods because of a lack
of any information about animal behaviour. Frequently, the boundaries of a home range
calculated as described above cannot be interpreted biologically (MacDonald et al. 1980).
A statistician endeavours to develop a home range model by delving into how changes in
physical and biological variables affect animal movement. An ecologist may know the
location of the biological centre of activity for some animals, but he or she is unable to
incorporate this information into a home range model. Macdonald et al. (1980) stated that
the main drawback of all the methods described above is that they do not necessarily distin-
guish between different behaviours at different locations. Van Winkle (1975) recommends
generating a model to study how animal movement is affected by changes in the environment.

Don and Rennolls (1983) stated that there is still no agreement regarding which method
gives the most valuable results. The choice of a method for analysing spatial data depends on
the purpose of the study and the type of data. Anderson (1982) stated that various methods
can be used to estimate home range but that these estimates cannot be compared, because
there is no agreement about the definition of a home range. All of the methods described
here assumed independence between observations and do not include any behavioural in-
formation. Because of this, nowadays, the researcher is seeking more suitable models to
analyse animal movement data. Models that incorporate dependence between observations
and different behaviours can give a more realistic estimation of the home range. Statisticians
have developed more advanced approaches to tackle these problems, which will be described
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in Chapter 2. The best movement models include the effects of the environment on animal
behaviour in order to understand how the animal utilises the space.



Chapter 2

Recent Animal Movement Methods

2.1 Introduction

Different data require different analytical methods, and data collection methods have devel-
oped significantly in recent years. However, a gap between the technology used in collecting
data and the statistical methods used remains. Don and Rennolls (1983) stated that the choice
of model is determined by the aims of the research, the type of data and the ecological
question being pursued in the research.

The previous methods described in Section 1.5 were aimed at estimating the home range. If
scientists want to learn only about the home range, they use these methods. However, most of
the models described in Chapter 1 are no longer in use because they are too simple and do not
provide enough information. For this reason, statisticians have incorporated behaviour into
the movement models, which results in a more complicated but more realistic model in regard
to utilisation distribution. The methods described in the current chapter are used to model a
more complicated and realisitc model for utilisation distribution. Moreover, when electronic
tags are used, the time between observations in the movement data is greatly reduced, which
results in dependency between observations. However, all the methods described in Chapter
1 assume that the observations are independent.

The models described in this chapter are more widespread than those developed in the
past. They can deal with large datasets and allow for behavioural movement processes. The
most widespread groups of statistical methods for analysing animal movement data are as
follows; all are stochastic processes:
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• Hidden Markov models (HMMs): These models involve discrete time, continuous
space and no measurement errors.

• State-space models (SSMs): These models represent discrete time, continuous space
and measurement errors.

• Diffusion process: These models comprise continuous time and continuous space.
Diffusion processes can incorporate measurement error but in practice the measurement
error is often ignored or neglected.

These classes of models are described in the following Sections 2.2 to 2.4, and Section 2.5
outlines the limitations and advantages of both the continuous and discrete time models. But
first a description of animal behaviours will be presented in the next subsection.

2.1.1 Animal behaviours

In examinations of animal movement, certain animal behaviours or habitat features can be
incorporated into models because interactions between animals and the environment affect
animal movement behaviour. Studying animal behaviour helps in understanding how the
organism utilises different habitats and resources. Ecologists study animal movement to
understand animal behaviour. The more extensively we examine an animal’s behaviour, the
more insights we obtain into its inherent characteristics.

In this thesis, we think of behaviour as being expressed by different modes of movement, for
example moving at different speeds, moving towards particular features, etc. In movement
modelling, this is often represented by an animal switching between discrete behavioural
states, with different movement characteristics in each state. Blackwell (1997) explained that
there are many factors that affect an animal’s movement, such as the type of activity, e.g.
foraging, resting, exploring and socialising; various physiological states, such as experiencing
hunger or thirst, or the part of the home range being used. For convenience, we refer to
these as ‘behavioural states’. Moreover, an animal might be foraging in an area and then
return to its nest or home range to rest or sleep; thus, the animal will not sleep outside its
home range or nest. Animal behaviour changes over time. An animal can have certain
behavioural states that depend on it being in a particular habitat, so it moves in a different
way in a different habitat. In most of the models considered in this thesis, the behavioural
states are set up in a particular way. For example, In the fisher data (described in Chapter 5),
each state is associated with a particular habitat. In the ibex data (described in Chapter 6),
one state represents locations close to the centre of attraction and the other state represents
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2.2 Hidden Markov models (HMMs) 15

locations farther away from the centre of attraction. Also, there may be some states without
any biological meaning. For example, in the homogenous model, the behavioural state does
not depend on the animal’s location (details of the homogenous model are given in Chapter
3). Hence, there is sometimes no immediate link between the states and anything that is
external or biological. Therefore, no biological interpretation of the state is necessary.

Animal behavioural states can be observed, partially observed or non-observed. These
terms refer to whether or not an ecologist can observe that an animal is in a particular
behavioural state. For example, an ecologist can observe an animal’s behaviour by following
it around, as was done in early experiments before researchers used electronic monitors.
However, in a large habitat area, it is difficult and time consuming to follow the animal around
to record the different behaviours. With recent technology, some sensors can record animal
activity, heart rate and body temperature, which helps to estimate different behavioural state.
A significant amount of GPS and radio-tracking data do not record any behaviour directly,
but an ecologist can use modern sensors to record extra data to determine how an animal is
moving, as described in Section 1.4. Of course, if the behavioural state is internal, such as the
animal being hungry or thirsty, the state cannot be observed. In this thesis, animal behaviours
are not observed; rather we try to learn about the behaviours from the location data.

2.2 Hidden Markov models (HMMs)

St+1

Ot+1

St+2

Ot+2

St+3

Ot+3

. . . . . . Hidden (behavioural state)

Observed (steps & turns)

Fig. 2.1 Basic structure of Hidden Markov Model.

HMMs are widely used for analysing animal movement data with underlying behaviour.
An HMM is an SSM with a discrete finite number of hidden behavioural states and the
assumption of no errors in the location data. Figure 2.1 provides basic structure for the HMM.
The HMM structure has two mains processes. First, a state dependent process Ot using time
series data is usually employed in the form of step lengths lt and turning angles at , which are
assumed to come from distributions that depend on the underlying state with regular time
intervals between observations and the assumption that the data have no measurement errors
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16 Recent Animal Movement Methods

or only small, insignificant errors.
Ot = (lt ,at), (2.1)

Second, the hidden behaviour process St{1, . . . ,N} in the HMM includes only one part,
namely the hidden behavioural state. In the HMM, the behavioural states are assumed to be
hidden (unobserved), and they can be represented using a Markov chain with fixed number
of states. The Markov chain behaviour matrix contains the probability of switching from one
state to another (Zucchini and MacDonald 2009).

λi j = P(St = j | St−1 = i), i, j = 1, ....,N. (2.2)

Also, the observations are assumed to be conditionally independent, given the states (Zucchini
and MacDonald 2009).

fi(Ot) = f (Ot | St = i) = f ((lt ,at) | St = i) = f (lt | St = i) f (at | St = i). (2.3)

The duration time for each behavioural state must follow a geometric distribution. Each
behaviour is connected with a different random walk. Often, HMMs uses a homogenous
two-state Markov chain and two separate correlated random walks (CRWs). For example,
Patterson et.al (2017) explained that the two states could be represented as the first is "en-
camped" with small step lengths and a lot of turnings and the second is "exploring" with
extended step lengths and few smaller turning angles.

The likelihood for the HMM is:

L = f (O1, . . . ,Ot)

=
N

∑
S1=1

. . .
N

∑
ST=1

f (O1, . . . ,Ot | S1, . . . ,St) f (S1, . . . ,St).

=
N

∑
S1=1

. . .
N

∑
ST=1

P(S1)
T

∏
t=1

f (lt | St) f (at | St)
T

∏
t=2

P(St | St−1). (2.4)

There are many recent extensions and developments for the HMM. For example, Morales et
al. (2004) extended the HMM to allow for a mixture of random walks, each representing
different animal behaviours, using step length and turning angle data. For the state dependent
processes, which generate steps and turns, there are certain assumptions and restrictions
for the types of distribution that can be used. However, Langrock et al. (2015) solved this
problem by providing a nonparametric method for estimating the state dependent distribu-
tions. The HMM has been extended to include spatial heterogeneity by adding environmental
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2.2 Hidden Markov models (HMMs) 17

covariates that affect animal behaviour to understand the interaction between animals and
their environment, using non-homogenous Markov chains (Langrock et al. 2012). Langrock
et al. (2011) developed a model to remove the limitation that the duration time for each
behavioural state must follow a geometric distribution by assuming that the time spent can
follow any distribution, which gives a hidden semi-Markov model (HSMM). Bulla et al.
(2010) produced an R package called HSMM to provide inference for this model. Langrock
et al. (2014) extended the hidden Markov model with multiple states to estimate group
movement and how the animals interact within the group. Most HMM methods are easily
accessible to ecologists because of the R package called moveHMM (Michelot et al. 2015).

The HMM has the following limitations:

• It can fit only with regular time interval data because discrete time Markov chains are
uninterpretable without time units. A continuous time HMM can be used to solve this
limitation. However, the problem with the continuous time HMM is that it can not
easily use the current method of inference (discussion the next subsection).

• It is useful only when the location data include no measurement errors or very small
errors. The HMM models are usually applied to GPS data, thereby assuming that there
are no measurement errors in the data is realistic in this case. In general, only GPS
monitors give data with small measurement errors; some monitors usually contain
large measurement errors in the data. The solution to this problem is to use the SSMs,
although the SSMs are also only suitable with regular time data.

2.2.1 Continuous time-hidden Markov model

In the discrete-time HMM, it is assumed that the animal can switch or change its behaviour
only at the time of the observation, not during the interval. The animal’s next location depends
only on the states at these times (i.e. the times of the observations) and these states are the
only hidden quantities. In a continuous-time HMM, the animal can change its behaviour at
any time. Also because it uses continuous time, then the time between observations does
not have to be regular (i.e. it can be regular or irregular). Hence, the animal’s new location
does not depend only on what the animal is doing at this instant but rather on everything that
happens in the interval between the two observations. There are additional sets of hidden
quantities - the states, locations and times of switches. It is more realistic to construct the
model in this way than to use the discrete-time HMM. The problem with the continuous-time
HMM is the difficulty in using the same tools and algorithm that are used in the discrete-time
HMM. Blackwell (2018) developed a method to deal with this problem, which allows for
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18 Recent Animal Movement Methods

a calculation tool that is similar to the discrete-time HMM, which is called the integrated
continuous-time HMM. It involves sampling the switching times and locations by MCMC
and then using the same algorithm as in discrete-time HMMs to calculate the likelihood.

2.3 State space models (SSMs)

SSMs are hierarchical discrete time and continuous space models. SSMs represent an
extension of the HMM that can deal with measurement errors in the data. Both the HMM and
SSM contain two stochastic processes. The first is the state dependent process Ot which has
a very similar structure in both the HMM and SSM. The second is the hidden state process
zt , which in the HMM represents a fixed number of states, while in the SSM it represents
an unlimited number of states with continuous value (Patterson et al. 2017). The hidden
state process zt in the SSM includes the real continuous movement path xt , and can also
contain a second part relating to discrete behavioual states St (such that zt = {St ,xt}). This
means the SSM is modelling the true locations as hidden states. In the SSM, there is always a
distinction between the true location and the observed location. The Markovian assumption is
that the true future location depends on only the true current location. The observed location
is connected to the true location through the dependent process. Figure 2.2 shows simple
structure for SSM.

Xt = f (xt−1,εt), (2.5)

Ot = g(xt ,θt). (2.6)

Where ε and θ are the hidden state process and the observation (i.e. state dependent) process
error, respectively.

In both the SSM and HMM, the behavioural state does not exactly represent one be-
haviour; instead, it represents a group of behaviours that are similar in movement. For
example, if there is an SSM with two states, encampment and exploring, the "encampment"
state will represent a group of behaviours related to small movements, such as foraging
and resting. Meanwhile, the "exploring" state will represent behaviours related to large
movements, such as running and hunting.
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2.3 State space models (SSMs) 19

St+1

Xt+1

Ot+1

St+2

Xt+2

Ot+2

St+3

Xt+3

Ot+3

. . . . . . Hidden (behavioural state)

hidden (true steps & turns)

observed (steps & turns)

Fig. 2.2 Basic structure of State Space Model.

The likelihood for the SSM is:

L = f (O1, . . . ,OT )

=
N

∑
S1=1

∫
z1

. . .
N

∑
ST=1

∫
zT

f (O1, . . . ,OT | x1, . . . ,xT )

f (x1, . . . ,xT | S1, . . . ,ST ) f (S1, . . . ,ST )dzT . . .dz1. (2.7)

The SSM is more challenging to apply than the HMM because the HMM likelihood can be
evaluated easily, while the SSM requires complicated inference to approximate the likelihood.
It is important to note that the SSM includes location errors, but the limitations for the SSM
include that it is more complicated to use than the HMM. For more details about the SSM,
see Patterson et al. (2007).

Beyer et al. (2013) used a Bayesian SSM (CRW) to estimate behavioural states from
movement data. These researchers improved the effectiveness of Morales et al.’s (2004)
idea (introduced on page 16) by using stochastic simulations to estimate behavioural states
from movement trajectories. Avgar et al. (2013) added heterogeneous habitats to the SSM
and replaced the discrete hidden behavioural state with a continuous hidden behavioural
state. They also incorporated environmental data with movement data to understand how the
animals interact with the environment.

The limitation of both the HMM and SSM is that they are applied only to regular time
interval data. In contrast, the diffusion model can be applied to regular and irregular time
data.

hajar
Highlight



20 Recent Animal Movement Methods

2.4 Diffusion processes

"A diffusion process is a continuous-time Markov process with continuous sample paths"
(Cox and Miller 1965). Diffusion modelling uses either standard models (for example,
Brownian motion) or formulation in terms of stochastic differential equations (SDEs). Here,
we consider some standard models first (Sections 2.4.1 to 2.4.3), then briefly discuss SDEs
(Section 2.4.4).

2.4.1 The Wiener process: Brownian motion

The basic diffusion model is Brownian motion, which in one dimension has:

X(s+ t)|X(s)∼ N(x(s), tv), (2.8)

where v is the diffusion rate, or variance per unit time. It is a Gaussian stochastic process in
continuous time, and can be obtained as the limit of a random walk in discrete time (Iacus,
2008). In d dimensions, we have:

X(s+ t)|X(s)∼ N(x(s), tΣ), (2.9)

where Σ is the variance-covariance matrix. Usually, we take Σ = σ2Id , where Id is the identity
matrix. As a movement model, Brownian motion is very simple, with only a single parameter
that controls how fast the animal moves.

A Brownian bridge is a Brownian motion over a time interval, conditioned on its posi-
tion at both endpoints. It arises naturally concerning the location of an animal between two
observations. The probability of the animal’s presence at a particular location depends on
the locations at the beginning and end of the interval, the time between the observations and
the movement parameter (Horne et al. 2007) . In an analysis concentrating on this approach,
the Brownian bridge is sometimes discussed in the literature as if it were a different model
in itself, the Brownian bridge movement model (BBMM). Horne et al. (2007) introduced
the BBMM terminology and extended the model to estimate the movement trajectory for an
animal using movement data with measurement errors.

A key disadvantage of movement modelling based on Brownian motion or the BBMM
is that assumes that the animal moves randomly, unaffected by any points of attraction or
other features of its environment. The process is not stationary, so the animal cannot have a
consistent home range.
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2.4.2 Other models of location

Some of the limitations of the Brownian motion model can be addressed by allowing directed
movement, in which the animal is always pulled toward (or pushed away from) a specific
location. The Brownian motion is a limiting case of the Ornstein–Uhlenbeck OU process
(Uhlenbeck and Ornstein, 1930). Dunn and Gipson (1977) introduced the use of the Orn-
stein–Uhlenbeck OU process as a movement model. The OU process has a centre point µ to
which the animal is attracted. For example, µ can signify a food source, a nest or the centre
of the home range, as described in Chapter 1. Throughout this thesis, the OU process is used
for the analysis of animal location. The detailed description for this model, and the methods
used to fit it, are given in Chapter 3.

The Dunn and Gipson model was extended by Blackwell (1997, 2003) to allow switch-
ing between different behavioural states, giving a switching diffusion (or mixed diffusion)
model. This is analogous to having different behaviours in an HMM. A formal definition
follows in Chapter 3. Harris and Blackwell (2013) extended the switching OU model further
by adding spatial heterogeneity. Kranstauber et al. (2012) added behavioural switching in a
similar way in the BBMM to give what they called a dynamic BBMM.

2.4.3 Modelling velocity

All the diffusion models thus far are formulated directly in terms of position. However, in this
section we look at modelling the velocity and then integrating with respect to time to get the
position. Johnson et al. (2008) used the OU process; however, instead of modelling locations
directly, they modelled velocity. They used a continuous time OU velocity process to predict
the location using maximum likelihood estimation while incorporating measurement errors.
The limitation of this model is that it does not include different behavioural states. Michelot
and Blackwell (2018) extended Johnson et al.’s (2008) continuous time model for velocity to
include multiple behavioural states.

Parton et al. (2016) fit a stochastic continuous time model for both speed and bearing.
Here, the bearing is represented by Brownian motion, and the speed is a one-dimensional
OU process. This is similar to Johnson et al.’s (2008) approach, but Johnson et al. mod-
elled velocity as a two-dimensional OU process. Note that the Johnson model is solved
exactly, like the OU model for position; the Parton et al. model solved using a numerical
approximation. Parton et al. (2016) assumed that location error has a multivariate normal
distribution and is independent; however, the independent assumption is unrealistic because
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22 Recent Animal Movement Methods

location observations are usually auto-correlated. Breed and Severns (2015) explained that
if the sampling frequency is high in GPS movement data, the observation error might be
very correlated. Another limitation of this study is that it assumes animals have a single
behavioural state. However, in their recent paper, Parton and Blackwell (2017) extended this
model to include multiple behaviours but assumed there were no errors in the location data.
The limitation of this model is the high computational cost.

2.4.4 Stochastic differential equations (SDEs)

The OU process and Brownian motion are the solutions to linear SDEs, which means that the
equation can be solved exactly. Other approaches used general non-linear SDEs that cannot
be solved exactly but can only be approximated numerically, which inhibits the description of
complicated animal movements (Brillinger et al. 2002; Brillinger and Stewart, 1998; Preisler
et al. 2004). Parton et al.’s (2016) continuous time-step and turn-angles model (as mentioned
above in Section 2.4.3) uses an SDE for the speed and the bearing over time, which cannot
be solved exactly, but only numerically. In general, the published non-linear SDE models
do not include behavioural switching, though in principle switching could be added. Some
studies have used nonparametric estimation for SDEs to analyse animal movement data and
study how movement is affected by the environment. For more detail, see Brillinger et al.
(2002); Brillinger and Stewart (1998) and Preisler et al. (2004).

2.5 Discrete or continuous time

McClintock et al. (2014) discussed the difference between continuous and discrete time
models. Animal movement happens in continuous time, but animal locations are collected at
discrete, fixed intervals. In discrete time, the time interval at which the data are recorded,
for example every 10 minutes or every 1 hour, does not mean anything in regard to the
animal. Thus, it is natural and more realistic to think about animal movement in continuous
time. However, the discrete time model is more widely used than the continuous time model
because it is usually less complicated to implement than the continuous time model. More-
over, a continuous time model is more complicated. Not all ecologists have the technical
background to use a continuous time model on their own. Another problem currently with the
continuous time models is the intense computational cost when used to analyse large datasets.
Whilst, the discrete time modelling benefits from readily available implementations of fast
algorithms for model fitting and the straightforward interpretation of the resulting parameters.
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2.5 Discrete or continuous time 23

Discrete time models have three limitations. Firstly, the time intervals between obser-
vations should be regular; the models cannot be fitted in a meaningful way when there are
different time intervals between observations. This can be a problem with real data in various
ways. Real data can be irregular because observations are delayed (e.g. when a GPS fix
fails) or missing. They can also have a time step that is not constant by design because more
information is recorded at a certain time of the day. For example, for the wild boar data of
Quy et al. (2014), re-analysed by Blackwell et al. (2016), some of the time measurements
were collected every 15 minutes, while others were collected every 30 minutes. It may be
possible to fit a discrete time model by treating some observations as missing, but this is
potentially highly inefficient. A continuous-time model, in contrast, can fit irregular data
without being slower than regular data.

Secondly, the interpretation of the parameters in the discrete time model depends on the time
interval, so it is impossible to compare different data collected at different time scales, even
if they are for the same species. Thus it is often impossible to compare different studies. For
a continuous time model, the parameters are interpreted independently of the time scale of
observations, so comparing or combining studies is possible.

A third difficulty in using the discrete time model is that combining the movement data with
other types of data using other sensors is impossible unless the time scales in the different
test data match. In contrast, in the continuous time model, this combination can be done
easily. In the continuous time model, the animal movement data can be combined with other
data that provide information about behaviour, such as those derived from the accelerometer,
which has a completely different time scale. Sometimes, the observations are of the location
and at other times they are of the behaviour. A similar issue arises in thinking about the
behavioural state that underlies the observed movement. In a discrete time model, behaviour
can change only at the time of an observation, whereas in reality behaviours occur at random
or irregular time intervals. This can make the estimation of behaviour parameters using a
discrete time model difficult.

There are two circumstances in which the discrete time method can be used to approxi-
mate the continuous time method: 1) the observations are equally spaced (which means the
time between observations is the same) so that discrete time can fit these models and 2) the
switching rate is very slow in comparison to the number of observations such that there are
many observations for each time visit behaviour and states. In this case, a discrete time
approximation can be used in these models; however, if the switch is very quick, as it is in
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24 Recent Animal Movement Methods

some of the examples in the present work, the discrete time approach will not work well.
For example, if the switching in behaviour is very slow in comparison to the observations,
each visit to a behavioural state will contain a substantial number of observations. In such a
scenario, adding a discrete time approximation to the continuous time model would probably
be reasonable.



Chapter 3

Ornstein-Uhlenbeck (OU) Diffusion
Process

3.1 Introduction

We use the OU process to model animal location data throughout this thesis. The OU process
is a continuous time process used to analyse animal movement data. We prefer a continuous
time model because it is more realistic than a discrete time model (for more details see
Section 2.5). In this chapter, we describe an existing class of models based on OU processes
and give additional explanation and discussion in addition to that in Blackwell et al. (2016).
This chapter is not only a literature review; it also provides more explanation and detail about
how the model works.

Chapter 2 gave an overview of models that allow for dependence; here we focus only
on a specific set of continuous time models. To deal with the problem of dependence between
observations, Dunn and Gipson (1977) generalised and developed the bivariate movement
method of Jennrich and Turner (1969), which we described in Section 1.5. They assumed
the animal movement "data are generated from a continuous, stationary, Gaussian stochastic
process" that has Markovian properties, which is called the multivariate OU diffusion pro-
cess. The continuous Gaussian assumption means that the animal’s utilisation distribution
still follows a bivariate normal distribution, but attention is paid to the correlation between
observations over the animal’s path, which is assumed to be a continuous path. The stationary
home range assumption means that the home range is fixed (stable) and that there is an
assumption the animal is not in a migrant state. When an animal migrates during a study,
the model fails to estimate the position because the process becomes non-stationary. The

hajar
Highlight

hajar
Highlight



26 Ornstein-Uhlenbeck (OU) Diffusion Process

Markovian assumption means that the animal’s future or next location depends only on the
current location, not on the past.

The observation (animal location) for a single animal at time t is:

X(t) = [x1(t),x2(t)]′. (3.1)

The animal location is a sample from a bivariate normal distribution called the equilibrium
(unconditional distribution):

X(t)∼ N(µ,Λ), (3.2)

where µ is the mean vector, and Λ is the variance covariance matrix (Dunn and Gipson 1977).
This corresponds to the normal utilisation distribution discussed by Jennrich and Turner
(1969). The conditional distribution of an animal’s position at time (s+ t), given its position
at time (s), has a bivariate normal distribution (Dunn and Gipson, 1977; Blackwell, 1997):

X(s+ t) | X(s) = x(s)∼ N(µ + eBt(x(s)−µ), Λ− eBt
ΛeB′t), (3.3)

where µ is 2-vector, and Λ,B are 2×2 matrices, and B is a stable matrix; eBt → 0 as t → ∞,
which controls the central tendency, and B′ is the transpose of B (Dunn and Gipson 1977;
Blackwell 1997). The movement process has three parameters: (µ,Λ,B), where µ is the
centre of attraction (for more detail see Section 1.3.1), Λ is the covariance matrix of the
animal location, i.e. the variation in location, and B is a centralisation tendency matrix or
rate of attraction toward µ . In the OU model, when the animal is farther away from the
centre of attraction, it moves faster toward the centre of attraction. In some cases B and Λ

have an isotropic assumption, which assumes B = bI for b < 0, and Λ = vI, where I is the
identity matrix. Adding this constraint minimises the number of parameters and simplifies
the inference.

The Dunn and Gipson model can be applied to m > 1 animals simultaneously, defining:

X(t) = [X1(t),X2(t), ...,Xm(t)], (3.4)

and

Xi(t) = [xi1(t),xi2(t)]′, i = 1,2, ....,m. (3.5)
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3.2 Mixed diffusion process 27

where Xi is the location for the i-th animal at time (t). In this case µ is a vector of length
2m, and Λ and B are 2m×2m matrices. Animal movement can be modelled using an OU
process for a number of animals collected together as a multivariate OU process (in this
case, the process will also describe the interaction between these animals). This enables the
simultaneous analysis of groups of species and allows the study of interactions between two
or more animals.

Dunn and Gipson (1977) and Worton (1995) find that when using the diffusion model
it is necessary to decide how to specify the initial location. The likelihood for the diffusion
model is:

p{x(0),x(1),x(2), .....|θ}= p{x(0)|θ}∏
i=1

p{x(i)|θ ,x(i−1)}. (3.6)

where θ = (µ,Λ,B) represents all movement parameters and the term p{x(0)|θ} refers to the
initial location. Dunn and Gipson (1977) explained that when the dataset is large, the initial
term p{x(0)|θ} can be ignored or deleted, which is equivalent to treating the initial location
as fixed and known. However, Dunn and Gipson (1977) argued that the initial information
is highly significant and that the initial term in the likelihood contains more information
than the conditional term for a later observation. To solve this problem, Dunn and Gipson
(1977) assumed that the initial term can be generated from the equilibrium distribution. The
assumption is that the initial term is a sample from a multivariate normal distribution called
the equilibrium (unconditional distribution).

There are two main disadvantages of Dunn and Gipson’s (1977) OU process. First, the
OU process assumes that the home range’s shape is always elliptical, but some home ranges
are not elliptical. Second, the OU process always assumes a unimodal utilisation distribu-
tion, which is unrealistic because some data are multimodal. Another limitation for Dunn
and Gipson’s method is that it does not include behavioural information (Blackwell 1997).
Moreover, the model does not account for any habitat features, such as rivers or highways.
The OU process can incorporate measurement error but in practice the measurement error is
often ignored or neglected.

3.2 Mixed diffusion process

The aim of the Dunn and Gipson (1977) model was to study the animal’s home range.
However, more realistic modelling of animal movement includes information about different
behaviours that animals use in daily activity. Blackwell (1997) developed Dunn and Gipson’s
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28 Ornstein-Uhlenbeck (OU) Diffusion Process

model to incorporate animal behaviour. Blackwell (1997) said that rather than an animal’s
movement being represented by a single diffusion process, an animal switches between
several diffusion processes, with each one representing a different behaviour (more detail
about animal behaviour is given in Section 2.1.1). This process is called a random or mixed
diffusion process.

Blackwell’s (1997) model has two processes:

• Behaviour or switching process: The discrete finite set of behavioural states follows a
continuous time Markov process, and is independent of position. The behaviour process
is defined by a generator matrix G = (λi j), indicating the transition rate between states:

P(J(t +δ t) = j | J(t) = i,x(t) = x)≈ λi jδ t, i ̸= j. (3.7)

If n states exist, the matrix dimension will be n×n, where

λi j ≥ 0 when i ̸= j,

and λii =−∑
j ̸=i

λi j.
(3.8)

The sum of the generator row should equal zero. The transition rate λi j can take any
positive value. If the λi j is high, there are many switches, which means that the animal
changes its behaviour quickly. If the λi j is low, it takes a long time to switch. The
animal remains in one state for some period of time and then switches to different
state and remains there for some period of time, etc. The probability of switching
to a new state depends only on the current state. Blackwell (1997) stated that when
number of states equals n, the behaviour process can represent the average time spent
in every state and the probabilities of switching among several behavioural states.
The duration of time spent in a state follows an exponential distribution, with the
parameters (transition rates) do not depend on (location or time) only the state.

• Movement process: The animal location follows an OU diffusion process, as in the
Dunn and Gipson model, but the movement parameters depend on the states, which
means having more than one OU process, each one connected to a different state. The
movement process is stationary. This point is different than Dunn and Gipson’s model
(1977), in which there is only one diffusion process, and it should be stationary. In
Blackwell’s (1997) method, the mixture of diffusion processes should be stationary,
and this can be satisfied when all the processes are stationary or when only some of
them are stationary OU processes, and the others involve Brownian motion (a diffusion
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process without any drift), which is non-stationary. For more detail about Brownian
motion see Section 2.4.1. For each state, there are different movement parameters for
Equation (3.3):

µi, Λi, Bi, for i = 1, ...,n. (3.9)

Blackwell (1997) fitted the model for a single animal data. Blackwell (2003) described
a full Bayesian approach to analysing a mixed diffusion process via the hybrid MCMC
method. Blackwell (2003) assumed that the states are observed at the same times as the
locations. However, he estimated transition rates, and also estimated behaviour between
the observations. Dunn and Gipson’s (1977) model is a special case of Blackwell’s model,
specifically when the number of behavioural states (n) is equal to one.

3.3 Spatially heterogeneous diffusion method

Animals move differently in different habitats, and the previous approaches do not take
account of this fact. Harris and Blackwell (2013) extended Blackwell’s (1997, 2003) models
by adding spatial heterogeneity. Harris and Blackwell (2013) introduced new continuous time
models that allow animal movement to depend on animal location over several regions and
underlying behaviour states. The new spatially heterogeneous model divides the environment
into a fixed group of regions and uses different continuous time diffusion processes X(t)
in each region. They extend Blackwell’s (1997, 2003) model by allowing the movement
process to depend not only on the animal’s behavioural state but also on the animal’s
location. Therefore, three elements are used to describe the new model: the switching
process for animal behaviour, the diffusion movement process for the animal’s position and
the boundaries of each region, which divide the habitat. If there are n states and the habitat
is divided into l regions, the behaviour process depends on the animal’s location, with a
transition rate dependent on region; thus, it will need l generator matrices Gr, r = 1, ..., l
each of dimension n×n. Blackwell et al. (2016) used the same idea as Harris and Blackwell
(2013) by let X(t) be the animal location at time t and J(t) be the behavioural state at time t.
λi j(t,x) is the transition rate from behaviour state i to behaviour state j at time t and location
x, so the probability of an animal switching from behaviour state i to behaviour state j in a
short, finite interval is as follows:

P(J(t +δ t) = j | J(t) = i,x(t) = x)≈ λi j(t,x)δ t, i ̸= j. (3.10)
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The movement process will depend on both location and behaviour, which will give n× l
OU diffusion movement process for the combined state and region:

µi j, Λi j, Bi j, i = 1, ...,n, j = 1, ..., l. (3.11)

For example, two regions and three states will have two generator matrices; thus, each model
comprises two 3×3 matrices and six OU diffusion processes. Dunn and Gipson’s (1977)
model is a special case of Harris and Blackwell’s model, specifically when l = 1 one habitat
region, and n = 1 one behavioural state.

3.3.1 The separable model

To simplify the model and its inference, Harris and Blackwell (2013) suggested that the
movement process should depend only on the state, and that the transition rate (behaviour
process) should depend only on the region, meaning that the movement indirectly depends
on the region. This newly defined model is called the separable model. When there are n
behavioural states and the environment is divided into l regions, the separable model will
have n OU movement processes and l generator matrices for the behaviour process. The
separable model has been used throughout this thesis.

3.4 Behavioural states

Unknown behavioural states are used throughout this thesis. If behavioural states were known,
e.g. from accelerometer data, it would be straightforward to allow for that by conditioning the
state updates on the observations. Typically, for the data collected using GPS, the behavioural
states will be unobserved. Usually, for GPS or radio-tracking data, it is not possible to know
the animal’s behavioural states. Therefore, how can the number of states be determined in
the proposed model? Usually, a number of behaviours are known. The number of states is
affected by type of data. There could be an explicit number when the state is related to the
feature in the environment. In the adaptive model (detailed section 3.6.2), the behavioural
state depends on the animal’s habitat; for example, in the fisher data (detailed in Chapter 5),
there were only three different habitats, so there will only be three behavioural states.

For some other cases, it might not be possible to know how many behavioural states there
are. One commonly used way to determine the number is by fitting two or more separate
models with different numbers of states and comparing how well they fit using deviance
information criterion (DIC). However, the problem with the DIC method is the difficulty
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of calculating the likelihood, which can be done approximately within the MCMC. This is
straightforward using the animal movement model in discrete time but not in continuous
time. The calculation of DIC for a continuous time model is described briefly by Blackwell
et al. (2016). For example in the fisher experiment in Blackwell et al. (2016), the researchers
fit a model with one state which is not dependent on habitat and another model with three
states, and compared the two models using DIC; then they concluded that the one state
model was not fitting very well. Another option is to use Reversible Jump (RJ) MCMC to
obtain posterior probabilities for each model instead of fitting different models separately.
The DIC compares models by looking at how well they explain the data and how complex
they are. RJ treats the choice of model as an uncertain quantity that we can learn about
directly from the data; if we assume that one of the models is correct, then we can calculate
posterior probabilities for which one it is. However, updating the trajectory is difficult using
RJ MCMC.In this thesis, we only use the DIC approach.

3.5 Introduction to MCMC

3.5.1 MCMC

Throughout this thesis, we used an MCMC algorithm to estimate the movement and behaviour
parameters via mixture of Metropolis-Hastings or Gibbs sampling. The Gibbs sampling
method can be used when the full conditional distribution for each parameters is known.
The Gibbs sampling method is faster and easier than the Metropolis-Hastings algorithm.
However, the Metropolis-Hastings algorithm covers more cases and is more general than
Gibbs sampling. The Metropolis-Hastings algorithm is used when the posterior density
does not follow any standard distribution as well as when the full conditional distribution is
unknown. The movement parameters can be updated using Gibbs sampling or a standard
random walk Metropolis-Hastings. Throughout this thesis, we used the Metropolis-Hastings
algorithm to estimate the movement parameters and Gibbs sampling or a standard random
walk Metropolis-Hastings to estimate the behaviour parameters. The details are given in each
chapter and also in next Section 3.6 and Section 3.7.

3.5.2 Convergence

The MCMC sample has converged when the posterior result does not depend on the initial
value. We diagnosed convergence in different ways: First, we ran multiple chains, each with
different starting values and checked whether we got the same posterior result. Second, we
used the R package called “coda”, which has many different tests for convergence. Also,
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32 Ornstein-Uhlenbeck (OU) Diffusion Process

we checked the effective sample size, and autocorrelation plots and the trace plots for the
posterior parameters. Third, we ran the model for a long interval to make sure it converged.
We used a long run with 10 million iterations. The same number of iterations was used in
all experiments in this thesis. We used a long run because the model is complicated, and
the algorithm takes a long time to converge. Blackwell et al. (2016) likewise used the same
number of iterations. Complicated models like this usually do not mix well. For the same
reason, we used burn-in in all the experiments in this thesis. Burn-in is a method used to
remove the initial part of the sample posterior (MCMC) result to remove the effect of the
initial value on the posterior inference. Also, to check the stability of our results, we did not
change anything; we just ran the same model with new seeds. In R we used set.seed() with
different parameters to generate new random numbers. Then we run the code again to check
that we get the similar result, even with different sequence of random numbers.

3.5.3 Thinning

Thinning is a technique used to handle the autocorrelation in the data by saving only every
kth sample from the posterior. In this thesis, we thin for several reasons mainly to save space,
storage and time in doing the actual calculation, which is the estimation of the posterior
distribution. We thin to reduce the size of the file and make the results easy to work with.
The only other reason for thinning in such a way is for autocorrelation. However, thinning is
not needed for making theoretical points about allowing for autocorrelation. Developing a
histogram or calculating the posterior density based on un-thinned data should yield the same
results that are obtained using thinned data. Link and Eaton (2012) suggested that un-thinned
MCMC result is often more precise than thinned result. Based on the un-thinned data, the
posterior density is slightly more accurate because thinning always causes the loss of some
information. However, because of the very strong autocorrelation that is typically found in
MCMC samples, the posterior does not lose very much information. Hence thinning leads to
minimal information loss. Therefore, fitting a model without thinning will yield a slightly
higher effective sample size than with thinning. However, the difference is small, so it is only
a practical consideration.

3.6 Bayesian Inference

Blackwell (2003) introduced exact Bayesian inference for mixed diffusion processes, assum-
ing the states are observed. Blackwell et al. (2016) developed the idea of Blackwell (2003)
by using Harris and Blackwell’s (2013) separable model. Blackwell et al. (2016) aim to fully
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3.6 Bayesian Inference 33

implement the Bayesian inference for the separable model without any approximation due to
discrete time errors using the MCMC method. Each iteration updated three main sets:

• The trajectory; switching times, locations and states.

• The movement (OU) diffusion parameters; µi, vi, bi.

• The behaviour parameters; λi j(x, t).

Every set is updated individually by the Metropolis-Hasting algorithm or Gibbs sampling.
The first step in this MCMC approach is to simulate the potential path of switches, locations
and states along some interval of time conditioned on the path outside the interval and on
movement and behaviour parameters. Fundamentally, this involves the simulation of the
augmented trajectories. This simulation of the states and the locations at the times of potential
switches can be used as a form of data augmentation in an MCMC algorithm (Blackwell et
al. 2016).

Blackwell (2003) explained that the exact inference for the mixed diffusion model is difficult
because the switching time and some duration times of the behaviour process are unobserved,
and the conditional distribution depends on all the parameters. Blackwell (2003) used data
augmentation to solve this problem and treated the trajectory as missing data. Simulating
a trajectory is straightforward when the switching is completely random and the behaviour
is independent of location and time such that λi j(t,x) = λi j (Blackwell 2003). However, in
Blackwell et al.’s (2016) model when the transition rate λi j(t,x) depends on the location x(t),
the time of the switch is unknown unless the animal location x(t) is known. The easiest way
to resolve this is to use approximation via discrete time, but Blackwell et al. (2016) wanted
to avoid discretisation errors through the exact simulation of the trajectory. The important
assumption Blackwell et al. (2016) made was that the transition rates were bounded. This
means transitions in behaviour never happen immediately when an animal changes its habitat.
They first calculate the global upper bound:

κ = max
j,t,x

λ j(t,x), (3.12)

where κ is constant and fixed. They define:

λ j(t,x) = ∑
i ̸= j

λ ji(t,x), (3.13)

which describes the transition rate out from behaviour j at time t and position x. This allowed
them to define a random variable that is a lower bound for the waiting time until the next
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34 Ornstein-Uhlenbeck (OU) Diffusion Process

switch in behaviour:

T ∼ exp(κ). (3.14)

This represents the time at which the first switch in behaviour can happen. When we
consider all the times at which changes in behaviour may occur, depending on the animal’s
movement, this can be termed a Poisson process of rate κ . Then in an interval (ta, tb),
M ∼ Poisson(κ(tb − ta)) is the number of potential switches within the interval ta < Tk < tb,
where k = 1, ...,M. Knowing the potential switching times, a trajectory for both behaviour
and location can be simulated as in Blackwell (2003) and Blackwell et al. (2016) as follows:
sample times, locations and states for all potential changes during an interval (ta, tb) are
dependent on the path out the interval based on states at the beginning J(ta) and at the
end J(tb). We propose times T1, ...,TM as above, which represent the proposed times of
potential switches. Starting with the location of the observation x(ta) and the behavioural
state J(ta) = j, we simulate the location of the first potential switch x(T1) using the movement
model related to state J(ta), then check whether an actual switch occurred. If it has, the
new state J(T1) is sampled. The potential switch at T1 is an actual switch with the following
probability:

λ j(T1,x(T1))

κ
. (3.15)

If so, the new state i is sampled with probability

λ ji(T1,x(T1))

λ j(T1,x(T1))
. (3.16)

Otherwise, the state continues to be j. We then iterate this process forward, through each
potential switch in turn. To propose a new trajectory, Blackwell et al. (2016) used an inde-
pendence sampler with an idea similar to the one just described to create an exact simulation.
Then, they used a Metropolis-Hasting update to accept or reject the simulated path. It was
required that the last simulation state J(TM) match the existing state J(tb) at the end of the
interval. In practice, we need to be able to update in this way over an interval that contains
other observations of location. In that case, we can assume that the state at the time of one
of these observations equals the state at the previous potential switch, and the movement
process is restarted at the known location.

To simulate a single transition rate out from state j, we need the global bounded κ be-
cause the transition rate away from other states affects the other choices and because we
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3.6 Bayesian Inference 35

are considering the entire interval between observations. For example, if we have a high
transition rate for one of the states, we know the animal will not remain in this state and
will switch very quickly to a new state, which affects the choice of the state for the new
potential switch. Additionally, we know the current state, but the next state is unknown.
When simulating a process for which the current state is known, we need to determine when
the first change occurs by using the rate λ j to generate a potential switch and determine the
location of that switch in space using the actual transition probability. If a switch to a new
state occurs, then by using a global upper bound κ = maxi,x(λ j(x)), we can find the time of
all potential switches and simulate forward until the next switch.

After updating the trajectory, at each observation, we know which movement processes
to follow. We then infer the movement parameter in two ways: using a conjugate prior
with Gibbs sampling or using a standard random walk Metropolis-Hastings update for the
parameters, as according to Blackwell (2003). Blackwell (2003) explained that the movement
parameters for each OU process are updated together using the Metropolis-Hastings algo-
rithm. Each movement parameter has an independent proposal, for the centre of attraction µi

the proposal is bivariate normal distribution, while for bi and vi, because of the isotropic as-
sumption, the proposal is univariate truncated normal distribution centred on the current value.

Similarly, the switching parameters can be updated in a separate MCMC step. The de-
tails depend on the structure of the model.

3.6.1 Homogeneous model

The homogenous model means that the habitat has one region and the transition rates from
one state to another λi j(x, t) = λi j do not depend on the animal’s location. This is the same
model described by Blackwell (1997, 2003). The model will have one generator:

G =


−∑

d
i=2 λ1i λ12 λ13 . . . λ1d

λ21 −∑
d
i ̸=2 λ2i λ23 . . . λ2d

...
...

... . . . ...
λd1 λd2 λd3 . . . −∑

d−1
i=1 λdi

 . (3.17)

At a potential switch, the probability for the switch from state i to state j is:

pi j =
λi j

κ
, (3.18)
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and the probability for no switch in the behaviour is:

pii = 1−
∑i ̸= j λi j

κ
, (3.19)

where
κ = max

i
∑
i ̸= j

λi j. (3.20)

The likelihood for the transition rate is a multinomial product of the elements in each row of
the probability matrix. There are likelihoods for each state; for example, the likelihood for
state d is :

p(data|λi j) =
(

1− λdd

κ

)ndd
×

d−1

∏
j=1

(
λd j

κ

)nd j
, (3.21)

where ni j is the number of switches from state i to j, and nii is the number of switches that
stay at state i. After simulating the trajectory, the inference for the behaviour parameters is
straightforward. Blackwell (2003) used a Dirichlet distribution as the joint prior to update
the transition rate in the Gibbs sampling algorithm.

3.6.2 Adaptive model

The adaptive model is an example of a separable model, which is similar to Harris and
Blackwell (2013) and Blackwell et al. (2016), where the habitat is divided into multiple
regions, and the transition rate between behaviours depends on the region λi j(x, t). The
adaptive model means the animal can only switch to the behaviour that matches its region. In
any given region, there is only one possible behaviour to switch to. This means the number of
behavioural states is equal to the number of regions. The way that the adaptive model works
is that if the animal enters into region one, the animal will change to behaviour one quite
quickly, but not immediately. When the animal crosses the boundary into a different habitat,
it switches to the behaviour that matches the new region but not immediately. However,
we want the animal to switch quickly so that we do not spend a long time in the "wrong"
state. The model has multiple generator matrices, each one associated to a different region
Gl where l represents the region:

G1 =


0 0 0 . . . 0

λ21 −λ21 0 . . . 0
...

...
... . . . ...

λd1 0 0 . . . −λd1

 . (3.22)
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3.6 Bayesian Inference 37

For example, when the animal is in region one and state one, then nothing happens; the
animal should stay in state one. When the animal is in region one and state two, the animal
should switch to state one with rate λ21(l = 1). However, there is always a chance that the
animal will stay in state two for a while and take some time before switching to state one or
just leave the region. When the animal is in region one and state d, then it will either switch
to state one or stay in state d a bit longer.

G2 =


−λ11 λ12 0 . . . 0

0 0 0 . . . 0
...

...
... . . . ...

0 λd2 0 . . . −λd2

 . (3.23)

Gd =


−λ1d 0 0 . . . λ1d

0 −λ2d 0 . . . λ2d
...

...
... . . . ...

0 0 0 . . . 0

 . (3.24)

This means the diagonal element in the generator matrix always equals the transition rate:

λi(x) = λii(x) =−λi j(x), (3.25)

where
κ = max

i,x
∑
i ̸= j

λi j(x). (3.26)

κ = max
i,x

λi(x). (3.27)

The probability can be calculated in the same way as in the homogenous model; however,
the probability in the adaptive model depends on the region as well. The likelihood for the
transition rate is a binomial product of the elements in each row of the probability matrix.
Each row has only two possibilities: to stay in the same state for a little while or switch to
the behavioural state that matches the region. There are likelihoods for each region l:

p(data|λi j(x)) =
l

∏
x=1

d

∏
i=1

(
λix(x)

κ

)nix,x
×
(

1− λii(x)
κ

)nii,x
, (3.28)

where nix,x is the number of switches from state i to x that matches the region, and nii,x is the
number of switches staying at state i. After simulating the trajectory, the inference for the
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38 Ornstein-Uhlenbeck (OU) Diffusion Process

behaviour parameters is straightforward. Blackwell et al. (2016) used the beta distribution
as a marginal prior to update the transition rate in the form of (λ/κ) in the Gibbs sampling
algorithm.

3.6.3 Initial value

Initial values for the movement parameters µi and vi can be learned from the data, while
other parameters can be learned from running the model more than once. The details are
given in each chapter and the code.

We sampled the initial states using a hidden Markov model. We used the R package
called "moveHMM" to help define initial values for the states. The starting configuration
of the states was taken into consideration. In theory, any possible sequence of initial states
is acceptable. In practice, the initial set of states can significantly influence the estimated
posterior results in any finite run. One of the limitations of the Blackwell et al. (2016)
approach (exact method) is that it has difficulty constructing a reasonable trajectory - or
at least takes a very large number of iterations – to reach a state sequence that is a good
fit to the data if we start from all states being the same. Alternatively, if there is a set of
possible state sequences that are the best fitting ones, it takes a long time to reach any of
them from that starting point. we are updating the transition rates separately from the states,
then the values of the transition rates in the early iterations will be misleadingly low. The
algorithm will have trouble picking the correct value for the transition rate λ because it
does not properly change the initial sequence of states. Thus, the initial set of states should
not start with all observations assigned to one state, as this will slow the mixing. Also, it
would be difficult to determine a set of parameters that easily enable transition between states.

Starting the initial sequence of states with a mix of states, rather than having all the obser-
vations in one state, will improve the mixing and help the model converge more quickly
than before. To do This, we used a hidden Markov model to start the configuration for the
behaviour states, which gave us a better estimate for the transition rate and more consistent re-
sults. We chose the hidden Markov model because it is a simple and fast method. The HMM
move package (moveHMM) can be used to estimate the initial states of the model by fitting
a discrete-time HMM and using the fitted states as the initial states of the continuous-time
model. Although this method does not specifically fit the correct model, it does allow for a
sensible sequence of initial states. Of course, we did not have any actual information about
the states, but using a hidden Markov model as part of the set up could provide a better initial
sequence of behavioural states to classify each observation into one of different states, and
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3.7 The prior distribution 39

this is something that we could do with real data. The package ignore the actual times, even
if the data are not regular in time, the HMM package will treat the data as if it is regularly
space in time.

3.7 The prior distribution

Some of the information used in setting the prior distributions were obtained from discussions
with ecologists. In some situations, if the species is well studied, the ecologist may know
a great deal about its behaviour and its movements. If the species has not been studied
extensively, the ecologist probably has only a limited idea of how the animal moves. For
this reason, the statistician might want to use an uninformative prior distribution. An un-
informative prior helps us to know what we can learn just from the data, without being
strongly influenced by the prior of one particular ecologist. Statisticians might want to try to
convince or demonstrate to a wide range of scientists that something interesting has emerged
from the dataset, which is the reason they use uninformative prior distributions. Using an
uninformative prior distribution that leads to a clear conclusion can convince others that
using a different prior distribution will lead to a similar conclusion. It is generally better to
use the informative prior distribution of the ecologist. However, if it is not possible or the
ecologist does not have strong information about the species, then the statistician can use a
less informative prior distribution. The general idea is that when the data sample size is large,
then the posterior distribution is dominated by the data, so using an informative prior or an
uninformative prior distribution should yield similar results.

Part of the prior information can also be obtained from thinking about the interpretation and
meaning of the model and thinking about what it represents: i.e. what the model is meant
to represent. For example, in the fisher data (Section 5.1.1), the adaptive model (for more
detail see section 3.6.2) only makes sense if the animal changes its behaviour quite quickly to
match the habitat that it is in. Because of this, Blackwell et al. (2016) used prior information
that made it very unlikely that the transition rate would be very low. They tried to ensure
that the transition rate was not too low because when the animal enters a new habitat, its
behaviour should switch to match the habitat it is in. Thus, if the transition rate is too low,
then the animal can spend a long time in a habitat without changing its behaviour to match
the habitat. This is not what the model is meant to represent.

Prior distributions may be based upon previously published choices, as is the case for
most of the examples in this thesis. All data used in this thesis have already been published
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40 Ornstein-Uhlenbeck (OU) Diffusion Process

and analysed. Therefore, we will attempt to obtain a prior distribution similar to those in
published experiments so that we can compare the results. Blackwell (2003) and Blackwell
et al. (2016) used the Metropolis-Hastings algorithm to estimate the movement parameters.
The prior distribution for µ was bivariate normal. The prior distributions for each vi and
bi were truncated univariate normal distributions. These priors are used throughout this thesis.

Blackwell (2003) and Blackwell et al. (2016) used Gibbs sampling to estimate the be-
haviour parameters. In the homogenous model, Blackwell (2003) used the Beta distribution
as a marginal prior distribution to estimate the transition rate in the form of (λ/κ). In the
adaptive model, Blackwell et al. (2016) used a gamma distribution as the marginal prior
distribution for each transition rate. In this thesis we used the Metropolis-Hastings algorithm
to update the transition rate but with similar priors to the published papers. The details are
given in each Chapter.

3.8 Model extensions

Single animal

This thesis aims to study the movement of a single animal. Other studies that have simultane-
ously modelled a group of tracked of animals have previously been published. For example,
Mu Niu et al. (2016) presented a new approach for modelling group animal movements in
continuous time using a multivariate OU process to implement inferences exactly, without
any time discretisation or approximation. They developed a method using a multivariate OU
process in high-dimensional space by assuming there is a hidden leading point that all the
animals in the group are pulled toward. The leading point follows an OU process pulled to
an unknown centre of attraction.

The migration path in continuous time

Throughout this thesis, we assume the animal does not migrate during the study. The animal
needs to be motivated to migrate. There are two approaches to modelling animal migration.
The first is the Brownian motion with drift. For example, if the animal is migrating to the
north but in a steady way, then the Brownian motion with drift is used with no particular
centre, only the drift to travel in a particular direction, to model the migration. The Brownian
motion with drift is a limiting, special case of the OU process. The Brownian motion with
drift has variance and linear drift, which is always in the same direction. The advantage of
the Brownian motion model is that it can be applied using only data with a small sample size.
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The second approach to modelling the migration could be an OU process with a very
large v and a very small b. Then the attraction toward the centre would be less and slower
so that over the timescale of the data, the animal would always be attracted in the same
direction as the location to which it would eventually migrate. Therefore, the centre of the
attraction could be the new location, which would yield results similar to those obtained by
the Brownian motion.





Chapter 4

Approximation Method

4.1 Introduction

Throughout this thesis we tried to extend Blackwell et al.’s (2016) method (for more detail
see Section 3.4), which we called the exact or full method. The main point of this chapter is
increasing the speed of the inference and thus its efficiency. As described in the previous
chapter (Section 3.4), to update the trajectory in the exact case, the number of potential
switches is sampled from the Poisson distribution, whose mean number of potential switches
can take any value. In this chapter, however, we assume that between every two obser-
vations there is only one potential switch, and we call this the approximation method. In
the implementation of the exact case, the estimated parameters are exact for that model.
However, in the approximation case, the estimation of the parameters is approximate. We
also approximate the number of switches as a step toward approximately estimating the
parameters.

In the approximation case, we have fewer potential switches; therefore, we know that
the analysis will not be exactly right because it excludes some possible occurrences in the
real unobserved path. For example, in using this approximation, it is no longer possible to
have two actual switches in the interval, which rules out some possible sequences of be-
haviours. We expected the model to be faster because there will be fewer potential switches
in most cases, so less computation, and the number of potential switches will be fixed, which
also gives an opportunity to simplify/speed up the code.
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44 Approximation Method

4.2 The model

We update the trajectory of the sort described in Section 3.4, and we choose the interval to
include at least three observations, and assume the states at the beginning and end of the
interval are known. Now we assume that there is only one potential switch between two
observations. Using the approximate method, we take a random interval with three to six
observations and assume that the states at the beginning and end of the interval are known and
that the states of the observations between them are unknown. The interval should contain
at least 3 observations, because it needs to contain at least one observation in addition to
the observations that lie at the start and end of the interval, at which the behavioural state
is assumed to be known. The reason for not including too many observations is that the
acceptance probability is going to decrease as we cover more observations, and for long
intervals we will nearly always reject the proposed set of switches and states, which is
inefficient. The "known" states represent conditioning within the MCMC and are not actual
data, for which states are unobserved. For example, if we take an interval of five observations
from t1 to t5, we know the states at J(t1) and J(t5) only. We can then assume that there is
only one potential switch between each observation, which gives four potential switches in
this example x(T1), ...,x(T4). We sample the time for the first potential switch to determine
when the switch occurs, at exactly T1 ∼ exp(κ), where t1 < T1 < t2, and sample the location
of the potential switch x(T1). We subsequently check whether or not this potential switch is
an actual switch. If it is, the state of the switch will be J(T1). For this purpose, we assume
the state of the second observation x(t2) will equal the new state of the previous potential
switch J(t2) = J(T1), and we repeat the iteration for each switch. The final state must equal
the state of the end observation, and the state in the fourth potential switch should equal the
state in the fifth observation J(T4) = J(t5).

4.3 Implementation

We consider a single interval from ta to ta+k, and write t = ta+k − ta for its length, where k is
some interval of time , Ω = κt for the expected number of potential switches in the exact
method it contains and

M ∼ Poisson(Ω). (4.1)
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for the random number of potential switches, in the exact method. We then have

M =


0 with probability exp(−Ω)

1 with probability Ωexp(−Ω)

2 with probability Ω2 exp(−Ω)/2!

etc.

(4.2)

These probabilities are derived from the probability mass function for the Poisson distribution.
The idea of the approximation is to condition on M ≤ 1, so that

M|M ≤ 1 =

0 with probability 1/(1+Ω)

1 with probability Ω/(1+Ω).
(4.3)

This probability is related to whether there is one potential switch. The probability that there
is no actual switch given there is at least one potential switch can be shown to be:

p(M = 0|M ≤ 1) =
p(M = 0 & M ≤ 1)

p(M ≤ 1)

=
p(M = 0)
p(M ≤ 1)

=
p(M = 0)

p(M = 0)+ p(M = 1)

=
exp(−Ω)

exp(−Ω)+Ωexp(−Ω)

=
1

1+Ω
.

(4.4)
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The same holds for the probability that there is one actual switch given there is at least one
potential switch:

p(M = 1|M ≤ 1) =
p(M = 1 & M ≤ 1)

p(M ≤ 1)

=
p(M = 1)
p(M ≤ 1)

=
p(M = 1)

p(M = 0)+ p(M = 1)

=
Ωexp(−Ω)

exp(−Ω)+Ωexp(−Ω)

=
Ω

1+Ω
.

(4.5)

Obviously this will only be a useful approximation if κ and the intervals between the observa-
tions are not too large. To allow for a simpler implementation of this approximate algorithm,
we want to arrange for the dimension of the reconstructed trajectory to be fixed. We can do
this by representing the case M = 0 as one potential switch with zero probability of being an
actual switch.

In the exact method, a potential switch is an actual switch from state i to state j with
probability pi j ; i ̸= j, where

pi j =
λi j

κ
. (4.6)

Combining these expressions, in the approximation case, the probability of an actual switch
from state i to j within the interval is as follows:

pi j =
Ωλi j

κ(1+Ω)
. (4.7)

So, the likelihood for the behaviour process for each behaviour i will be:

p(data|λij) = (pii)
nii ×∏

j ̸=i
(pi j)

ni j

=
(

1− λi

κ(1+Ω)

)nii
×∏

j ̸=i

(
Ωλi j

κ(1+Ω)

)ni j
,

(4.8)

where nii is the number of switches out of state i, and ni j is the number of switches from
state i to state j. We sample the potential switch time Ta, location x(Ta) and state J(Ta)
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conditional on the trajectory outside the interval where potential state J(Ta) should equal
the state at the end of the interval J(ta+k), where is k is the number of observations in the
interval.” ; otherwise the proposal is rejected. Then we can perform an update to that part
of the trajectory by proposing new values T ′

a and then performing a Metropolis-Hastings
accept/reject step. Usually we would do this for a longer interval, eg. from ta to ta+k. In
the approximation approach, we proposed the number of switches in a way different from
that proposed in the exact approach, which affects the way the trajectory is updated. Also,
updating the behaviour parameters is different in the two approaches because the probability
has changed. However, the updating for the movement parameters is the same in the two
approaches.

4.3.1 Other approaches of approximation

Here, we present two different approach approximations to the Poisson distribution. Condi-
tioning is not a very accurate way of approximating the Poisson distribution for the number
of the switches M with a Bernoulli distribution. An alternative method involves having a
potential switch whenever M ≥ 1 and having a non-switch when M = 0, with probabilities
of 1− exp(−Ω) and exp(−Ω), respectively. In this case, the probability of having an actual
switch from i to j is:

(1− exp(−Ω))
λi j

κ
. (4.9)

Another possibility is to try to match the mean number of potential switches. For example, we
want a potential switch with a probability equal to Ω if possible; in practice, the probability
would have to be min{Ω,1}. The probability of an actual switch from i to j is:

min{Ω,1}
λi j

κ
. (4.10)

4.4 Simulated experiments

4.4.1 Data

We used simulated data that were similar to the data used by Patterson et al. (2017) in
which the movement model was assumed to follow an OU process with three behavioural
states. We used these data because Patterson et al. (2017) analyse them using the exact
method of Blackwell et al. (2016). We used these simulated data to test and compare
the exact method with the new approximate approach. In this experiment, the model was
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homogeneous (Section 3.4.1), so there is only one region in the habitat. There are three
behavioural states, so we will have three OU processes, each associated with one state. The
movement parameters for each OU process are: the variance for each state vi = (0.05,0.5,5),
and all the three states share the same rate of attraction bi = 0.1 where i = 1,2,3 and also
share the same centre of attraction µi = (0,0) . The behaviour parameters λi j are determined
by the generator matrix:

G =

−0.10 0.04 0.06
0.025 −0.05 0.025
0.2 0 −0.20

 . (4.11)

The sample size for the simulated data was 100, and the time interval between observations
was one unit of time.

4.4.2 The model

For each of the following experiments, we ran the data twice: once with the exact approach
and then using the same data with the approximation approach to compare the two approaches.
We ran each experiment for 10 million iterations using a thinning ratio of 1000 and a burn-in
period of 5000 iterations after thinning. The value of κ is fixed at 0.4. We are taking kappa
to be 0.4 because, in reality, we would not know the true parameter values, and we need to
give a reasonable range for their possible values.

In the exact method Gibbs sampling is used to update the behaviour parameter, while
in the approximation method we used a Metropolis-Hastings algorithm to update the be-
haviour process for the transition rates. In the exact method the probability of an actual
switch was fixed and does not depend on the interval length between observations. However,
in the approximation method the probability of an actual switch is more complicated and
depends on the interval length between observations.

In both approaches, the transition rates, expressed relative to κ (i.e. λ/κ) are assumed
to have a joint prior distribution that is Dirichlet, so that the marginal prior distribution for
each λ/κ is a Beta distribution with parameters (α = 1,β = 3). Because we need the prior
to be bounded. The transition rates λ can take any value in the range (0,∞). Instead of
assigning priors to the transition rates themselves, however, we assign them to the transition
rates divided by kappa (when kappa is fixed) - i.e. to λ/κ . Because kappa is the upper bound
for the transition rates the value of λ/κ must be in the range (0,1). We assume that the joint
prior distribution for λ/κ is a Dirichlet distribution, because this ensures the prior for each
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marginal distribution is bounded to (0,1) and has a Beta distribution.In the approximation
approach, we used a truncated normal distribution centred on the current value to propose
a new value for the transition rate. Updating the movement parameters is the same in both
methods, as described in Section 3.6. For the movement parameters: The prior distribution
for µ is bivariate normal with a mean vector (0,0) and SD 2. The prior distribution for each
vi is a univariate normal distribution with mean= 0.1 and SD =20 truncated to (0, inf). The
prior distribution for each bi is a univariate normal distribution with mean= 0.1 and SD =2
truncated to (0,1). The initial states are unknown and sampled from a HMM package, as in
Section 3.6.3. The initial value for simulation and the MCMC can be accessed from the code.

4.4.3 Example (1): Compare exact method with approximation method

We compared the results from both, the exact and the approximate methods. Figure 4.1 shows
the MCMC sample of the posterior distribution for the two main parameters that control the
movement bi and vi in the model for each behavioural state. We can note from Figure 4.1
and Table 4.1 that the result for the approximate method was very similar to the result for the
exact method. The estimation for the state one parameters is more precise than for the other
states. This is a property of the data itself, not the method, because both approaches get a
similar result. Figure 4.2 shows a map of the trajectory data, where the animal spends little
time in state 3, which makes estimating the parameters for state 3 imprecise. The standard
deviation for v3 is very large and that because the animal spend few time in state 3. Both
approaches get a more precise estimate for the movement parameters for state one than for
the other states. Also, both approaches overestimate the transition rate; again, this issue is
related to the small sample size, not the method. Figure 4.2 shows there are 9 switches in total
between the different states. To improve the mixing and to get a more precise estimate, we
need to increase the sample size because the 100 observations contain very little information
about the states and switches as there are not many transitions between different behaviours,
and that makes trying to estimate the transition rate difficult. To solve this, we increase the
sample size and the transition rate. Increasing the transition rate means having more switches.
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Fig. 4.1 Posterior distributions for the log of the movement parameters of all the behavioural
states where the sample size is 101, Example (1). The movement parameters for states 1, 2
and 3 can be seen in red, green and blue, respectively. The real values are displayed as black
dots.
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real value Exact Approximation

µx 0 -0.29(0.24) -0.32(0.26)
µy 0 -0.12(0.29) -0.17(0.3)
b1 0.1 0.079(0.018) 0.077(0.017)
b2 0.1 0.091(0.05) 0.071(0.05)
b3 0.1 0.136(0.12) 0.092(0.11)
v1 0.05 0.07(0.025) 0.078(0.028)
v2 0.5 0.79(1.08) 1.77(4.25)
v3 5 6.4(10.8) 17.12(44.61)
λ12 0.04 0.087(0.05) 0.091(0.05)
λ13 0.06 0.095 (0.53) 0.099(0.52)
λ21 0.025 0.036(0.035) 0.046(0.037)
λ23 0.025 0.05(0.035) 0.044(0.035)
λ31 0.2 0.18(0.066) 0.18(0.066)
λ32 0 0.05(0.043) 0.049(0.045)

running time - 1h 38min 1h 53min

Table 4.1 Posterior means and standard deviations (SDs) for the parameters in both ap-
proaches, where the sample size is 101, Example (1).
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Fig. 4.2 The trajectory for each observation to follow state 1, 2 or 3, For example (1).



52 Approximation Method

4.4.4 Example (2): Approximation method with higher transition rate
and larger sample size

Example 2.a: Larger sample size.

In this example, we used data and methods similar to those in Example 1, but first the
data sample size was increased from 100 to 300. After we increase the sample size to
300 observations, the number of switches between different states increase to 31 switches.
Figure 4.4 shows there are 31 switches in total between the different states. The results in
Figure 4.3 and Table 4.2 show that the posterior results are more precise than the results in
Example 1 for both the exact and approximation methods for all the parameters. However,
the approximation approach overestimates v2, which can be seen in Figure 4.3 and Table 4.2.
Figure 4.5 compare the posterior results for the transition rate values from the approximation
approach with the marginal prior distribution.

real value Exact Approximation

µx 0 0.008(0.084) 0.01 (0.088)
µy 0 0.044 (0.082) 0.0375 (0.083)
b1 0.1 0.1(0.006) 0.1(0.006)
b2 0.1 0.13 (0.05) 0.1 (0.06)
b3 0.1 0.099 (0.04) 0.09 (0.04)
v1 0.05 0.046 (0.005) 0.048 (0.005)
v2 0.5 0.59 (0.78) 2.34 (10.21)
v3 5 7.407 (5.747) 10.58 (14.23)
λ12 0.04 0.049 (0.025) 0.05(0.024)
λ13 0.06 0.064 (0.026) 0.065(0.025)
λ21 0.025 0.06 (0.036) 0.092(0.043)
λ23 0.025 0.06 (0.034) 0.053(0.035)
λ31 0.2 0.1 (0.034) 0.09 (0.035)
λ32 0 0.024 (0.02) 0.052 (0.033)

running time - 1h 50 min 2h 8min

Table 4.2 Posterior means and SDs for the parameters in both approaches for Example 2.a,
where the sample size has been increases from 100 to 300.
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Fig. 4.3 Posterior distributions for the log movement parameters of all the behavioural states,
where the sample sizes is 301, Example 2.a. The parameters for states 1, 2 and 3 can be seen
in red, green and blue, respectively. The real values are displayed as black dots.

Example 2.b: Larger sample size and doubled the transition rate.

Then we did another run with 300 observations, and the transition rates in the generator
matrix were doubled except λ31 to improve the estimation; the generator matrix is as follow:

G =

−0.20 0.08 0.12
0.05 −0.1 0.05
0.2 0 −0.2

 . (4.12)

The results shown in Figure 4.6 and Table 4.3 are similar to those in Example 2.a; however,
after doubling the value for the transition rates, the CV for the posterior distributions for
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Fig. 4.4 The trajectory for each observation to follow state 1, 2 or 3, For example (2).

the transition rates were slightly smaller than the results in Example 2.a for both the exact
and approximation methods. The MCMC algorithm mixined better when we increased the
sample size from 100 to 300. Also, by increasing the transition rates, the number of switches
increases, which results in more precise estimates for the transition rates. However, because
we have not double all the transition rates the number of switches between different states in
this example stay the same as Example 2.a.

4.4.5 Example (3): Approximation method with a similar variance for
all the states

In this example, we used data and methods similar to those in Example 2, but the vi values
were closer to each other vi = (0.25,0.5,1), which meant that there were no large differences
between the three states. In Figure 4.7 we can see that in the exact approach there were only
small differences between the movement posterior for the three states. In the approximation
approach the movement posterior for state one and state two overlap. This example shows
that the model cannot recognise the difference between the three states when the vi have very
small differences in the value between all the states. Table 4.4 shows the posterior results for
all the parameters in both approaches.
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Fig. 4.5 For example 2, the posterior results for the transition rate of the three behavioural
states. The true values are displayed as vertical black lines. The blue curve is the marginal
prior distribution.
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Fig. 4.6 Posterior distributions for the log movement parameters of the all behavioural states,
for Example 2.b. The parameters for states 1, 2 and 3 can be seen in red, green and blue,
respectively. The real values are displayed as black dots.

4.4.6 Example (4): Different way of approximation

Here, we used the same data and methods as in Example 2, but we used the two different
approaches of approximations described in Section 4.3.1. From Figure 4.8 we can see that
the minimum approximation and the exponential approximation produced a result similar to
that of the exact and approximate methods, as shown in Figure 4.6. Also, Table 4.4 shows
that the posterior results for all the parameters in both approaches are very similar. We
concluded that the results from the approximate model were very close to the results from
the exact method. The results are robust in regard to the details of how the approximation is
done.
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real value Exact Approximation

µx 0 -0.12(0.12) -0.13 (0.12)
µy 0 0.19(0.13) 0.156(0.12)
b1 0.1 0.11(0.009) 0.11(0.0009)
b2 0.1 0.058(0.023) 0.069(0.025)
b3 0.1 0.086(0.051) 0.074(0.05)
v1 0.05 0.046(0.007) 0.049(0.007)
v2 0.5 1.243(1.145) 0.94(0.82)
v3 5 10.22(18.21) 14.79(27.37)
λ12 0.08 0.1 (0.045) 0.091(0.039)
λ13 0.12 0.1(0.043) 0.095(0.037)
λ21 0.05 0.07(0.036) 0.041(0.026)
λ23 0.05 0.06(0.033) 0.082(0.031)
λ31 0.2 0.14(0.045) 0.16(0.05)
λ32 0 0.09(0.044) 0.1(0.051)

running time - 1h 58min 2h 14 min

Table 4.3 Posterior means and SDs for the parameters in both approaches for Example 2.b,
where the transition rate values have been doubled.

real value Exact Approximation

µx 0 -0.05(0.19) -0.061 (0.19)
µy 0 -0.2(0.18) -0.22(0.19)
b1 0.1 0.093(0.05) 0.134(0.069)
b2 0.1 0.17(2.4) 0.04(0.046)
b3 0.1 0.14(0.07) 0.15(0.069)
v1 0.25 0.4(0.4) 0.31(0.4)
v2 0.5 1(1.56) 3.43(7.22)
v3 1 2.02(7.1) 1.52(7.1)
λ12 0.08 0.081(0.064) 0.09(0.067)
λ13 0.12 0.08(0.055) 0.081(0.056)
λ21 0.05 0.087(0.068) 0.072(0.057)
λ23 0.05 0.1(0.064) 0.13(0.065)
λ31 0.2 0.175(0.064) 0.15(0.069)
λ32 0 0.058(0.051) 0.08(0.055)

running time - 1h 51 min 2h 19 min

Table 4.4 Posterior means and SDs for the parameters in both approaches for Example 3.
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Fig. 4.7 Posterior distributions for the log movement parameters of all the behavioural states,
where the vi values are close to each other, Example 3. The parameters for states 1, 2 and 3
can be seen in red, green and blue, respectively. The real values are displayed as black dots.

4.5 Discussion

In this chapter we tried to improve the efficiency for Blackwell et al.’s (2016) exact method
by approximating the posterior parameters. We made the approximation by assuming there
is only one potential switch between each pair of observations rather than generating the
number of potential switches from the Poisson distribution. We presented three different
approximation approaches, and all gave results very close to each other and to the exact
method. However, none of them were faster than the exact approach. Maybe this occurred
because we had to use the Metropolis-Hastings method to update the transition rates.
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real value Exponential minimum

µx 0 -0.13(0.125) -0.12(0.13)
µy 0 0.14(0.127) 0.16(0.13)
b1 0.1 0.11(0.009) 0.11(0.0095)
b2 0.1 0.066(0.026) 0.062(0.027)
b3 0.1 0.072(0.048) 0.079(0.053)
v1 0.05 0.049(0.008) 0.05(0.009)
v2 0.5 1.127(1.69) 1.43(1.75)
v3 5 13.82 (21.45) 17.56(43.39)
λ12 0.08 0.11(0.04) 0.11(0.04)
λ13 0.12 0.091(0.036) 0.09(0.035)
λ21 0.05 0.047(0.025) 0.087(0.04)
λ23 0.05 0.082(0.029) 0.053(0.026)
λ31 0.2 0.17(0.047) 0.13(0.043)
λ32 0 0.077(0.045) 0.1(0.04)

running time - 2h 14 min 2h 16 min

Table 4.5 Posterior means and SDs for the parameters in both approaches for Example 4.

The strength of the approximation method is that the model performs very well and gives
us very close results to those of the exact case, but the weakness was that it did not speed
the inference up as much as we had hoped. In these scenarios we attained results similar to
those of the exact method when we used the approximate method, it took the same amount
of time. In other words, we could not generate a new method that was faster than the exact
method. one main limitation for the experiments presented in this chapter is with kappa 0.4,
most of the time the approximation method will have the same number of potential switches
as the exact method, so of course it is a good approximation, and of course it is not much
faster. The probability of being two or more switches/transition between the observations
is only about 0.06. Part of the reason we expected to save some time even in this case, not
because of those fewer potential switches but because the number of switches/transitions is
fixed so the dimension of the problem is fixed. In practice, as we have shown, the results of
both experiments are the same. The positive point is that the approximation idea works well
for estimation, and different versions of the approximation approach give the same answer.
Unless the speed is increased, there is not much to gain. Regarding the present algorithm,
it is not worth pursuing because of the computational cost of the present models. However,
in future research on different continuous time models, the idea presented here might be
useful. This idea may work with other classes of models or in other extensions or variations.
Alternatively, there may be cases where the approximation is more useful and beneficial.
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Fig. 4.8 Posterior distributions for log movement parameters of all the behavioural states in
both exponential and minimum approaches, Example 4. Parameters for states 1,2 and 3 can
be seen in red, green and blue respectively. The real values are displayed as black dot.

Accordingly, in the next chapter, we use the exact method with a variable kappa rather
than a fixed global upper bound (kappa) for the transition rates. This is to increase efficiency
as the kappa can be closer to the actual switching rate in the model. This is also to reduce
the computational cost. This approach is also more general than the existing exact method
because we do not need a fixed upper bound on the prior support for the transition rates.



Chapter 5

Variable Kappa

5.1 Introduction

The aim of this chapter is to improve the Blackwell et al.’s (2016) algorithm by making it
more efficient. As mentioned in Section 3.4, the use of kappa is essential to fitting with
the exact method, in which kappa is an upper bound for the transition rates. Blackwell et
al. (2016) used a fixed value of kappa, so the transition rates are globally bounded above.
However, in this chapter, we allow kappa to vary so that we do not need to fix an upper bound
on the prior distribution for the transition rates. Allowing kappa to vary will potentially
make the model more efficient, universal and flexible by saving time. Kappa will potentially
vary from each iteration to the next, in a way that depends on the data through the lambda
parameters. Kappa is treated either as a function of the parameters or as a parameter in its
own right, that will be estimated from the data and part of inference

Blackwell et al. (2016) stated that the value of the fixed kappa should be sufficiently
large, but in a real dataset, we can never be sure if the fixed kappa value is large enough.
Additionally, if the fixed kappa value is too large, it will give the correct answer, but it
will not be efficient because the run will take too long. Using the fixed kappa approach
with a value that is too high results in too many potential switches between observations,
slowing down the algorithm and increasing the computational cost. Allowing kappa to vary
is potentially faster than using a fixed kappa because the kappa value does not need to be
made too large; the new kappa value will adapt to the values of the transition rates λi j, as they
are learnt during the inference. Another benefit of the variable kappa is that when starting
with a very small kappa value, the kappa will increase or decrease according to the values of
the transition rates. In the case of fixed kappa, starting with a very small value will causes
flawed results.
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One of the limitations of the exact method with fixed kappa is that if the transition rate
prior is unbounded, approximation is needed to fit the model. With variable kappa, the exact
method can be used with any form of prior for the transition rates, i.e. bounded or unbounded.

In Sections 5.2 and 5.3, we describe how to the model can be implemented using vari-
able kappa. In Section 5.3, we use simulated data to test the idea. In Section 5.5, we use
real data to compare our results with those of published work. Section 5.6, provides the
conclusions.

5.2 The model

There are two ways to implement the variable kappa idea, described in the following two
subsections.

5.2.1 Kappa as a function of the transition rate

In this case, kappa is a deterministic function of the transition rates λi j. As the transition
rates λ vary in the MCMC updating, so does kappa because at any given iteration, we need:

κ ≥ max
i,x

λi(x), (5.1)

where
λi(x) = ∑

i ̸= j
λi j(x). (5.2)

is the transition rate out of state i. The simplest idea is to always take:

κ = max
i,x

λi(x). (5.3)

i.e. kappa is given by the maximum row sum of the (off-diagonal) lambdas in the generator
matrix across all locations.

In many cases, individual λi j values will be strictly less than kappa, as will all but one
the λis. However, there are some particular models in which λi(x) is equal to one of the
λi j(x), either for particular values of i and x or more generally. For example, in a two-state
model, λ1(x) = λ12(x) and λ2(x) = λ21(x). Similarly, in the adaptive model (described in
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Section 3.4.2),
λi(x) = λi j(x), (5.4)

in region j, so kappa will be equal to one of the lambdas. This can lead to situations in which
the probability of a specific transition is one at a potential switch, leading to difficulties
in updating state sequences and, therefore, to poor mixing. The probability for a switch
happening from statei to state j is λi j/κ . If kappa is equal to one of the lambdas, then the
probability to switch to this state will be one and the probability to switch to other states will
be zero. In this case, it is not possible to generate a feasible trajectory for behaviour which
then makes it difficult to update the lambdas, since the probability is equal to zero for a wide
range of values of the lambdas. In particular, for example, runs with the three-state adaptive
model (details not included) show that this ‘obvious’ way of defining kappa does not work
in practice. This problem can be avoided by defining kappa as a different function of the
transition rate λ s. To improve the mixing, we make kappa slightly higher than required:

κ = (1+ ε)max
i,x

λi(x). (5.5)

where ε is some small value. This small addition makes kappa a little larger than the lambda
and slows down the run slightly, but it seems to improve the mixing. An alternative would
be:

κ = max
i,x

λi(x)+ ε, (5.6)

but multiplying by (1+ε) instead of adding ε is better, as this rate will be different depending
on the example. In the multiplicative case, if the lambdas are completely different in each
example, using the same value for epsilon still makes sense. We will fix this epsilon value for
all of the examples. Currently, we have lambda values that are around 3.0 and an epsilon of
0.1, which is related to the definition of an epsilon in Equation 5.5; this is fine for the current
experiment. In experiments with a much larger or smaller lambda, an additive epsilon value
would need to be changed, whereas a multiplicative term is more likely to be transferable
between examples.

We add Equation 5.5 to the MCMC algorithm for updating the transition rates λ so that every
time the lambda updates, the kappa will also change. Adding a small value to the maximum
works well with homogenous and adaptive models (details in Section 3.4), and it is better
than just using the maximum. The results are omitted because we are going to focus on the
second approach. To improve the algorithm, we want a more general idea that can work with
any model.
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5.2.2 Kappa as a parameter

The second approach is to think of kappa as a parameter and allow it to update separately
from the lambdas. Obviously, kappa and lambda are connected because kappa needs to
satisfy Equation 5.1 at each iteration. Kappa is difficult to interpret through this approach,
as it is not really a parameter; changing kappa does not change the true posterior for the
transition rate parameters, provided Equation 5.1 is satisfied. However, treating kappa as if it
was a parameter makes it much easier to update the lambda and kappa separately. We add an
extra MCMC step to the algorithm to update kappa. We will have two likelihood calculations
and two Hastings ratios for the separate updates. By having separate proposals, kappa will
typically change quite slowly, whereas the lambdas change relatively quickly. Within this
approach, we need to specify a joint prior for the lambdas and for kappa. The prior for the
λ s potentially represents ‘real’ prior information, whereas that for kappa is an artefact of this
version of the algorithm. This suggests an independent form for the joint prior, which would
look as follows:

p(
˜
λ ,κ) ∝ f (

˜
λ )g(κ), (5.7)

where f (
˜
λ ) is a function only of the transition rates

˜
λ , and g(κ) is a function only of kappa

κ; and
˜
λ represents the vector of λi js. However, the joint prior distributions cannot be

independent, as
˜
λ and κ must satisfy Equation 5.1. Instead, to keep the prior as simple as

possible whilst satisfying the inequality, we let:

p(
˜
λ ,κ) ∝ f (

˜
λ )g(κ)I{κ≥maxi,x λi(x)}, (5.8)

where IA is the indicator function of the event A, taking a value of 1 if A occurs and zero
otherwise. In this case,

I{κ≥maxi,x λi(x)} =

{
1 if κ ≥ maxi,x λi(x)
0 otherwise.

(5.9)

To do separate updates for lambda and kappa, we need both the conditional prior for the
lambdas given a particular kappa,

p(
˜
λ | κ) ∝ f (

˜
λ )I{κ≥maxi,x λi(x)}. (5.10)

and the conditional prior for kappa given the lambdas,

p(κ |
˜
λ ) ∝ g(κ)I{κ≥maxi,x λi(x)}. (5.11)



5.2 The model 65

We also need the marginal prior for lambda, integrating over all values of kappa, to match
the required ‘true’ prior for

˜
λ .

p(
˜
λ ) =

∫
κ

p(
˜
λ ,κ) dκ,

=
∫

∞

κ=0
f (

˜
λ ) g(κ) I{κ ≥ maxi,x λi(x)} dκ,

=
∫

∞

κ=maxi,x λi(x)
f (

˜
λ ) g(κ) dκ,

= f (
˜
λ )
∫

∞

κ=maxi,x λi(x)
g(κ) dκ.

(5.12)

We do not care what the prior distribution is for kappa, except that it needs to satisfy the
condition that kappa is always greater than the appropriate sum of the lambdas, as shown
in Equation 5.1. However, the kappa value should not make any difference as long this
condition is always satisfied. In principle, if the kappa value increases, there will be no
difference in the posterior result for the transition rate, only in the efficiency of the algorithm.
Furthermore, we want the prior to give a slightly greater probability to the small values
because we want to try keeping the kappa value small for efficiency. The marginal prior for
kappa is :

p(κ) =
∫

λ

p(
˜
λ ,κ)dλ . (5.13)

For the MCMC algorithm, we need to consider how the other quantities depend on λ and
κ . Only the behavioural states depend directly on

˜
λ , and only the potential switching times

depend on κ . The conditional posterior to update lambda, which is the density of lambda
given the states and kappa, is therefore:

p(
˜
λ | κ,S) ∝ p(

˜
λ | κ) × p(S |

˜
λ ),

∝ f (
˜
λ ) I{κ ≥ maxi,x λi(x)} × p(S |

˜
λ ).

(5.14)

The conditional posterior to update kappa, which is the density for lambda given kappa and
the switching time, is:

p(κ |
˜
λ ,T ) ∝ p(κ |

˜
λ ) × p(T | κ),

∝ g(κ) I{κ ≥ maxi,x λi(x)} × p(T | κ).
(5.15)

Here, p(S |
˜
λ ) is the probability of the current state sequence occurring S, given the transition

rates
˜
λ , and p(T | κ) is the probability of the current set of potential switching times T as a

realisation of a Poisson(κ) process.
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These conditional posteriors are known only up to proportionality, but we are interested only
in the Hastings ratio calculation. Therefore, all terms not shown in Equation 5.18 and 5.19
will cancel. The Hastings ratio for a proposed value

˜
λ ′ given a current value

˜
λ is:

=
q(λ | λ ′)

q(λ ′ | λ )
.
p(

˜
λ ′ | κ,S)

p(
˜
λ | κ,S)

=
q(λ | λ ′)

q(λ ′ | λ )
.

f (
˜
λ ′) I{κ ≥ maxi,x λi(x)} p(S |

˜
λ ′)

f (
˜
λ ) p(S |

˜
λ )

,

(5.16)

assuming λ ,κ satisfy κ ≥ maxi,x λi(x), and for κ ′ given κ , it is:

q(κ | κ ′)

q(κ ′ | κ)
.
g(κ ′) I{κ ≥ maxi,x λi(x)} p(T | κ ′)

g(κ) p(T | κ)
, (5.17)

where q(.|.) is the proposal forward and backward functions, and κ ′ and λ ′ are the proposed
values for kappa and lambda, respectively. In the code, we incorporate the indicator function
by truncating the proposal distribution for both lambda and kappa. We need to have a
proposal for kappa that is bounded below by the maximum lambda value. We let kappa
have a normal proposal centred on the current value but truncated below at the maximum
lambda. In other words, the kappa will be able to change slightly and will be more likely to
move toward the transition rates value, although it cannot go below the maximum. We will
have both forward and backward proposal terms in the Hastings ratio because we have this
truncation. We have:

q(κ ′ | κ) =
φ(κ ′ | κ,σ2

κ)

1−Φ(max(λi) | κ,σ2
κ)

, (5.18)

where φ(κ ′ | κ,σ2
κ) and Φ(max(λi) | κ,σ2

κ) are the p.d.f and c.d.f, respectively, of the
untruncated normal distribution with a specified mean and variance, and σ2

κ is the proposal
variance. Thus, the Hastings ratio includes a term:

q(κ | κ ′)

q(κ ′ | κ)
=

1−Φ(max(λi) | κ,σ2
κ)

1−Φ(max(λi) | κ ′,σ2
κ)

, (5.19)

as the φ(κ ′ | κ,σ2
κ) terms cancel by symmetry.

This approach, in which kappa is a parameter, also enables us to update each lambda
separately, which is closer to the fixed case and is definitely better than updating all the
lambda togather, but there is no considerable difference in performance. Updating each
transition rate separately may be useful in some cases.
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5.3 Implementation

We use the second approach with kappa as a parameter, to fit the data. All the implementa-
tions should be the same as in Section 3.4, except for updating the behaviour parameter. With
a fixed value of kappa, as described in Section 3.4, we can use the Gibbs sampling algorithm
to update the behaviour parameters λi j. In the variable kappa approach, the Metropolis-
Hastings algorithm has been used to update the behaviour parameters lambda and kappa.
We want to compare the exact method with a fixed value of kappa and our new idea with
kappa as a parameter; all parameters are the same for the two methods, except for the lambda
prior. We want to obtain similar results between the fixed and variable kappa approaches
because statistically, the only difference between the two is the prior for the transition rates
and the way of updating the behaviour parameters. However, the fixed and variable kappa
approach have different algorithms to update the behaviour parameters—Gibbs sampling and
Metropolis–Hastings, respectively—which might mean that one does a better job exploring
the behaviour parameter space than the other.

The important point when comparing the two methods is that the prior used for the transition
rate should be similar in each case. Currently, the fixed kappa (the exact method) uses a
Beta distribution as the prior for the transition rate in the adaptive model; in the homogenous
model, a Dirichlet distribution is used as the prior for the transition rate (details in Section
3.4). However, in the current approach, when kappa is a parameter, using gamma as the
marginal prior for the transition rates is natural; therefore, the gamma prior distribution
should match the beta distribution in the adaptive model (Dirichlet distribution in the ho-
mogenous model). The transition rate prior in the current approach with kappa as a parameter
is designed to match the prior in the fixed kappa case (the exact method), with the gamma
distribution mean being equal to the beta distribution (Dirichlet distribution) mean. They are
not exactly the same, but they look close enough.

For example, the transition rate prior for the current approach follows:

X ∼ Gamma(Shape = α, rate = β ).

E[X ] =
α

β
, V [X ] =

α

β 2 .
(5.20)
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while, the transition rate prior for the fixed case (adaptive model) follow:

Y ∼ Beta Distribution(η ,ζ )

E[Y ] =
η

η +ζ
, V [Y ] =

ηζ

(η +ζ )2()η +ζ +1)
.

(5.21)

The mean for the current prior should be equal to the mean of the prior for the fixed case:

E[X ] = E[Y ]
α

β
= E[Y ]

α = E[Y ]β .

(5.22)

Furthermore, the variance:

V [X ] =V [Y ]
α

β 2 =V [Y ]

α =V [Y ]β 2.

(5.23)

Then, the Equations 5.22 and 5.23 can be solved numerically. We can follow the same
process when we have a homogenous model.

Choosing the kappa prior is different; therefore, the kappa prior can be chosen in any
way that makes sense. For simplicity and for ease in combining the two densities, we choose
g(κ) as an exponential density:

g(κ) ∝ exp(−κθ). (5.24)

where θ is the parameter of the exponential. If the λi js have independent Gamma priors,
then,

f (
˜
λ ) =

p(
˜
λ )

H(
˜
λ )

. (5.25)

where,
H(

˜
λ ) =

∫
∞

κ=maxi,x λi(x)
g(κ)dκ. (5.26)

and
p(

˜
λ ) ∝ Πi̸= j λ

α−1
i j exp(−βλi j). (5.27)
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where α and β are the parameters for gamma distribution. We divided p(
˜
λ ) by H(

˜
λ ) because

we want the marginal prior gamma for lambda and the marginal prior exponential for kappa,
as specifying the joint prior is difficult. When f (

˜
λ ) and g(κ) are combined, we still get the

required form for this lambda’s marginal prior. In practice, the ecologist will give a prior
for lambda p(

˜
λ ). From there, we can work out some combination for f (

˜
λ ) and g(κ) that is

consistent with the prior. There are several ways to choose f (
˜
λ ) and g(κ), but this was an

attempt to make it simple and give us something tractable for this calculation.

5.4 Simulation experiments

We started with the simulated data to check how well our idea of estimating the parameters
performed and whether the model converged. We wanted to keep the algorithm as efficient
as possible. We did other runs with different starting values, and we also did some runs with
different seeds and checked the convergence, as described in Section 3.5.

5.4.1 Simulated data

The simulated data (similar to those decribed in Section 4.4.1) are from a homogeneous
model which has one region and three behavioural states, with the following movement
parameters: the three states share the same centre of attraction µi = (0,0). Furthermore,
the three states have the same rate of attraction bi = 0.1, where i = 1,2,3 and v1 = 0.05,
v2 = 0.5, v3 = 5. The sample size was 300 observations with one time unit interval between
observations. The generator matrix for the transition rates is as follows:

G =

 −0.1 0.04 0.06
0.025 −0.05 0.025
0.2 0 −0.2

 . (5.28)

5.4.2 The model

We fitted the data twice: one with a fixed value of kappa and again with the variable kappa
approach. In both versions, we did the same things: all initial values of the transition rates
were equal to one another (λi j = 0.15), initial states were set using as an HMM run, as
described in Section 3.5, priors and the proposal distribution for all the movement parameters
are normally distrbuted centered on the current value with a standard deviation of 2, as
described in Section 3.4, and both approaches run for 10 million iterations using a thinning
ratio of 1000 and a burn-in of 5000 iterations.
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In the fixed (exact method) approach, the fixed value of κ is 0.4, and the prior for the
transition rate is Dirichlet (α = 1); in the variable kappa approach, the marginal prior for κ

has an exponential distribution with (θ = 3) , the marginal distribution for each transition rate
has a Gamma distribution with (α = 2, β = 0.1), the proposal distribution for κ is truncated
normal centred on the current value and the proposal SD is 0.4, and the proposal distribution
for λ is truncated normal centered on the current value and the proposal SD is 0.1. The
values were chosen to obtain approximately optimal acceptance rates. The acceptance rate
for the transition rate can be found in the result section.

The generator matrix for the homogeneous model was the same as that in Section 3.4:

G =

 −(λ12 +λ13) λ12 λ13

λ13 −(λ21 +λ23) λ23

λ31 λ32 −(λ31 +λ32)

 (5.29)

5.4.3 Results

real value Fixed Variable

µx 0 0.009(0.089) 0.014(0.086)
µy 0 0.045(0.082) 0.042(0.084)
b1 0.1 0.1(0.006) 0.1(0.006)
b2 0.1 0.12(0.05) 0.14(0.05)
b3 0.1 0.1(0.04) 0.097(0.043)
v1 0.05 0.046(0.005) 0.046(0.005)
v2 0.5 0.55(0.33) 0.49(0.24)
v3 5 6.7(3.66) 8.21(6.92)
λ12 0.04 0.059(0.024) 0.057(0.045)
λ13 0.06 0.06(0.026) 0.08(0.06)
λ21 0.025 0.058(0.03) 0.034(0.019)
λ23 0.025 0.07(0.037) 0.038(0.02)
λ31 0.2 0.11(0.04) 0.1(0.06)
λ32 0 0.03(0.03) 0.075(0.057)
κ - - 0.26(0.11)

running time - 1h 55 min 1h 35 min

Table 5.1 Posterior means and SDs for the parameters obtained using both approaches for the
simulated data.
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Fig. 5.1 Posterior distributions for the log movement parameters of all the behavioural states
with the simulated data. Parameters for states 1, 2 and 3 can be seen in red, green and blue,
respectively. The real values are displayed as black dots.

Figure 5.1 shows that both the fixed and variable kappa approaches recognised three
different states and made precise estimates for the movement parameters. Furthermore, Table
5.1 shows that both approaches reconstructed the state and estimated the movement rate
accurately. From Figure 5.1 and Table 5.1, we can see how well we estimated the movement
parameters. The model precisely estimated the parameters for state 1, whereas for state 2
and 3, the posterior mean for the movement parameters is very close to the real value but has
a high SD, especially for state 3 .

Figure 5.3 and Figure 5.4 compare the posterior results for the transition rate values
from the variable kappa approach with those from the fixed kappa approach. On the his-
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togram plot for the posterior results, the vertical line is the true value. The fixed kappa
approach estimates the posterior of the transition rate for state one more precisely and accu-
rately than the variable kappa approach does; by contrast, the variable kappa approach gives
a more precise estimate for the transition rate for state two than the fixed kappa approach
does. However, both the fixed and variable kappa approaches have a similar estimation for
some of the transition rate parameters.

For the variable kappa approach, the acceptance rate for the behaviour parameters; κ is
0.18, that for λ1 j is 0.28, that for λ2 j is 0.17 and for that λ3 j is 0.29. The results here are for
a run carried out after some pilot runs to set the proposal standard deviations in order to give
reasonable acceptance rates.

Figure 5.2 shows the true trajectory of behaviour and the reconstruction in the vari-

0 50 100 150 200 250 300

Simulated data with variable kappa

Time

S
ta

te

1
2

3

Fig. 5.2 For the variable kappa approach, the trajectory for each observation to follow state 1,
2 or 3.

able kappa case, which is very close to the true one. The black curve represents the true
trajectory states, and the coloured line represents our reconstruction of the trajectory with the
area representing the posterior probability of a state at each time. I do not show the plot for
the fixed kappa approach because it is very similar to the variable kappa approach.

The variable kappa approach took only 1 hour and 35 minutes; whereas the fixed kappa
approach took 1 hour and 55 minutes. The variable kappa approach was faster than the fixed
kappa approach by just 20 minutes or about 13%.
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Fig. 5.3 For the variable kappa approach, the posterior results for the transition rate of the
three behavioural states. The true values are displayed as vertical black lines.
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Fig. 5.4 For the fixed kappa approach, the posterior results for the transition rate of the three
behavioural states. The true values are displayed as vertical black lines.
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5.5 Application

In this section, I apply the the two approaches to a real data example with an adaptive model.

5.5.1 Fisher data

The data were collected using a GPS collar attached to a male fisher. A fisher (scientific
name Pekania pennanti) is a medium-size terrestrial mammal living in North America. Fisher
locations were recorded every 10 minutes; however, there are some missing data, which
result in a longer interval between observations. These are the same data as those analysed by
Blackwell et al. (2016). The data are massive, but Blackwell et al. (2016) choose one subset
of the original dataset; the subset size is 128 observations for a 24 hour period. The reason
for choosing one subset is to obtain a subset in which the animal is attracted to the same
centre of attraction for the entire subset length of 24 hours (LaPoint et al. 2013a, b). The
map for the study area is available with the known boundary for each habitat region; there
are three different regions. The study area is divided into three different habitats: developed
open space, forest and wetland. The map information comes from the US National Land
Cover Database (NLCD 2006 Land Cover layer; Fry et al. 2011). We used the same subset
as Blackwell et al. (2016) because we want to compare our results from the variable kappa
approach with those from the fixed kappa approach.

5.5.2 The model

The analysis of the fisher data provides an example of an adaptive model; in this model, the
transition rate between behaviours depends on the location. In this particular case, the way
the behaviours work is that the animal can only switch to the behaviour that matches its
habitat. The way that the adaptive model works is if the animal enters a region, the animal
will change to a behaviour that matches the region quite quickly, but not immediately (for
details, see Section 3.4.2)

The study area has 3 different habitat regions, which means that the model will have three
different behavioural states, and each one of these is connected to one region. We therefore
model the data by using three different OU processes that each has an associated behavioural
state. The three OU processes share the same centre of attraction µ , with a different value
for each variation vi and bi rate of attraction. The behaviour process depends on the animal
location (habitat region), so we had three Gi generator matrices; each one is associated with
one region. Therefore, the model has only six non-zero transition rates. The generator for
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region one is as follows:

G1 =

 0 0 0
λ21 −λ21 0
λ31 0 −λ31

 . (5.30)

The generator for region two is as follows:

G2 =

 −λ12 λ12 0
0 0 0
0 λ32 −λ32

 . (5.31)

The generator for region three is as follows:

G3 =

 −λ13 0 λ13

0 −λ23 λ23

0 0 0

 . (5.32)

I fitted both approaches to the data, first with fixed kappa and then with variable kappa, as
described in Section 5.2.2. The two approaches share the same updating for the movement
parameter µ,bi,vi, the prior for µ is bivariate normal distribution and the prior for bi and vi

is truncated normal; all the three states have the same prior. The proposal distribution for all
the movement parameters is a normal distribution centred on the current value with SD = 2.
The details for the movement parameter prior and proposal are as described in Sections 3.4
and 3.5. The movement parameters are updated using the Metropolis-Hastings algorthim.
Furthermore, the two approaches update the trajectory in the same way (more details in
Sections 3.4 and 3.5). Both approaches run for 10 million iterations with a 5000 burn-in.
Both approaches have the same intial value for the movement parameters and behaviour
parameters.

The only difference between the two approahes is updating the behaviour parameters. In
the fixed kappa approach, kappa is fixed at a value of 4, and the marginal prior for the
transition rate has a truncated beta (12, 4). The behaviour parameters are updated using
Gibbs sampling. By contrast, in the variable kappa approach, the kappa marginal prior is
exponential with a rate of 4, and the proposal distribution for kappa is truncated normal
centered on the current value with SD = 0.2. The marginal prior for each of the transition
rates has a gamma distribution with parameters 51.14 and 17.04, the proposal distribution
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for the transition rate is truncated normal centered on the current value with sd 0.3. The
behaviour parameters are updated using the Metropolis-Hastings algorithm.

5.5.3 Results

Figure 5.5 shows that both algorithms gave results for the movement parameters that were
very close to each other. For estimating the movement parameters, both the fixed and variable
kappa experiments gave results that were close to each other as expected. Both approaches
have nearly identical estimations for the centre of attraction µ ; both also have a very similar
estimation for the movement parameters of state one. However, there are some slight differ-
ences in estimating the movement parameters for states 2 and 3 between the two approaches;
the details are shown in Table 5.2. The problem is that these particular habitats (regions two
and three) do not have enough visits, so we cannot learn much about the estimates of their
movement parameters.

Figure 5.6 shows that the fisher spends the most time in state one, with few visits to
state three and limited visits to state two. There were not many switches or clear changes
in the states, so the data do not give us much information about the states 2 and 3. One
of the limitations of the fisher dataset was that the results for states two and three varied
considerably because there was not much information about these two regions. This made it
difficult to estimate state three parameters and also affected state two. Blackwell et al. (2016)
mentioned in their results that the parameters for state two are not well estimated. Blackwell
et al. (2016) explained that this issue happened because much of the data from the subset
are in region one, meaning that the animal spends the most time in behaviour one and state
one, which results in an uncertain estimate for the parameters of states two and three. When
comparing the fixed and variable kappa for the states over time, Figure 5.6 shows that the
animal spends most of the time in state one, with few visits to state three, but the probability
of being in state two remains very low. We can conclude that we obtained similar results
as Blackwell et al (2016) did and that the poor estimation for some of the parameters was
related to the dataset and not to the approach used. Furthermore, we have a more efficient
approach because of the saving in the computational cost.

Table 5.2 shows the posterior mean and standard deviation for the parameters in both
the fixed kappa and variable kappa cases. The values for the posterior of the transition rate
are not identical in different experiments, but they are quite close. Blackwell et al. (2016)
used fixed kappa with a particular prior for their fisher results and did not allow lambda to
go below two or above 4 in the beta distribution. Blackwell et al. (2016) had a restriction
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Fig. 5.5 Posterior distributions for the log movement parameters of all the behavioural states
for the fisher data . Parameters for states 1, 2 and 3 can be seen in red, green and blue,
respectively.
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Fig. 5.6 Trajectory for each observation to follow states one, two or three, for the fisher data.
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on the lambda value because they want that when the animal enters a habitat, it quickly
switches its behaviour to the state that matches the habitat. However, we allowed lambda
to go below two and above 4; we still obtain similar results in terms of the posterior distri-
bution for the transition rate, with not much posterior probability outside the interval (2.0,4.0).

First, we applied the fixed kappa model to the fisher data; it took six hours with a fixed

Fixed Variable

µx 9.02(0.04) 9.02(0.04)
µy 3.45(0.043) 3.46(0.04)
b1 7.94(17.52) 9.1(20.79)
b2 0.2975(0.51) 0.188(0.16)
b3 23.56(50.83) 51.122(130.146)
v1 0.14(0.016) 0.14(0.017)
v2 8.33(13.01) 9.53(12.11)
v3 2.58(1.12) 2.04(0.59)
λ12 3.02 (0.39) 2.82 (0.39)
λ13 3.21 (0.31) 2.91 (0.45)
λ21 2.97 (0.39) 2.94 (0.4)
λ23 3.03 (0.39) 2.94 (0.41)
λ31 3.1 (0.34) 3.23 (0.45)
λ32 2.98 (0.38) 2.96 (0.41)
κ - 3.79 (0.42)

running time 6h 5h 35 min

Table 5.2 Posterior means and SDs for the parameters of the fisher data in both approaches.

κ = 4. Then, I ran it with variable kappa; it took 5 hours and 35 minutes. The fixed kappa
run was very slow because the kappa value affects the time it takes to run. If the kappa goes
up, it generates more switches, so it runs more slowly. Details of the reduction in κ are given
below in Table 5.2. The variable kappa approach reduced the computation time by 11%.

5.6 Discussion

The idea developed in this chapter is to use a variable kappa approach, which allows kappa
to simultaneously update with the behavioural transition rate rather than having a fixed value
upper bound on the transition rates. Doing this helped us make more efficient estimates
and saves time. Kappa can be nearly equivalent to the current transition rates in the model
to provide more efficiency, thereby decreasing the number of potential switches and the
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computational costs (Blackwell et al. 2016). A variable kappa idea also provides an efficient
algorithm and methodology to investigate how well the method can mix. We used the idea
with two datasets; the fisher data (adaptive model) and homogenous simulated data, to test
how well the estimate performs. We also developed and tested other methods to calculate the
kappa.

In this chapter, we tried to improve the existing algorithm. The numerical results not
only show us that variable kappa is better in terms of estimation and efficiency but also
demonstrate that the benefit is in terms of using more realistic priors for lambda, as it is
difficult to give a fixed value of kappa and ensure that this fixed value is reasonable. We
wanted to put on prior with a very high lambda and see what the data say. Scientists do not
need to worry about the fixed value for kappa; they just need to think about the prior for the
lambdas. The other benefit is in terms of computational cost; in the real data examples from
Blackwell et al. (2016), the variable kappa approach reduced the computation time by 11%.

The use of a variable kappa does not involve much extra computation and gives us the
flexibility to use a general form of prior. In the next chapters, we will try to extend the
model’s range; we want to have an efficient algorithm for kappa in order to enable us to draw
inferences about the boundary and in the semi-Markov case.





Chapter 6

Estimating an unknown boundary

6.1 Introduction

In this chapter, we try to extend the Blackwell et al. (2016) movement model to estimate
the unknown boundaries of the animal habitat regions. In some movement studies, the
boundary between different habitats is known, as we see in the fisher data in Section 5.5.1.
The boundary between habitats is usually represented by a map for a geographical habitat
with different zones, such as: forest, wetland and grassland etc. However, in this chapter, the
boundary may represent an unknown boundary between different habitat types or may be
more of a mental boundary for the animal, in which the animal thinks it is within its own
territory or home range.

In ecological landscape studies, understanding current and future habitat fragmentation
plays a significant role in managing and maintaining the ecosystem and the species in the
specific area. Boutin and Hebert (2002) defined ‘habitat fragmentation’ as the process of
dividing the landscape into small separate patches; this breakup could be result from human
action, such as building urban areas, transferring forest to agriculture or constructing reser-
voirs, highways and so on. Alternatively, habitat fragmentation could be result from any
geological action that may affect the geographic environment. Habitat fragmentation affects
the species of the original landscape, which could result in their migration and extinction, or
increases in some kinds of species compared to others who lived in this area. Ecologists study
the new small patches to understand and predict new mixtures of species. Different sizes,
shapes and boundaries of the patch affect the species’ populations and their communities as
well as the ecosystem in general (see Boutin and Hebert 2002).

Methods for estimating the home range that are described in Section 1.5 are similar to
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the idea of estimating the boundary in this chapter. Previously published papers studied
how the animal utilises the habitats and estimates the home range from the movement data.
However, the authors of these studies were interested in the utilisation distribution and which
area is most used, not the animal behaviour inside and outside the home range. For more
details about the previous home range method, see Section 1.5. The estimate of the mental
boundary of the animal is similar to the estimate of its home range; however, in an early
study by Dunn and Gipson (1977), they did not examine different behaviours. They only
fit the utilisation distribution as a bivariate normal, the contour of which was circular. One
way of thinking about estimating the boundary as a home range model is that, if the animal
changes its behaviour when it is more than a given distance outside the circle, the shape of
the utilisation distribution could be changed. In Dunn and Gipson’s model, there is a normal
distribution with one behavioural state. When the animal is allowed to behave differently in
the area outside the boundary, then the new movement behaviour pushes the animal back
toward the centre. In other words, when the animal is outside the boundary, its behaviour
changes, and it returns quickly to the centre. This boundary represents the home range, and
the behaviour differs inside and outside that region, which helps us to generate a general
behaviour model. By placing these two behaviours in two different regions, we have a
more flexible idea of the appearance of a home range, how the animal behaves regarding its
habitat and how the utilisation decreases as the animal moves away. Dunn and Gipson (1977)
identified the problem early, and this chapter is our attempt to solve it.

In this approach, the number of regions in the environment can be known or unknown.
For example, in cases where the number of regions is known, the boundaries between these
regions need to be estimated, including how the animal utilises each region. However, in
other cases, the number of regions inside the habitat is unknown because the terrain is hard
to measure or observe or the animal has a mental map of its home range or territory. The
reason for it being a distinct region might be purely mental or might be resources of food
or water, which the scientists are unaware. Therefore, the model described in this chapter
could be used to estimate some features of the environment regarding the animal’s movement.

Different habitats have distinct effects on animals’ behaviour and movements. Tishkovskaya
and Blackwell (In prep.) used telemetry location data to improve a continuous time model
for analysing animal movements in a heterogeneous environment. The aim of this chapter
is to use the same idea as Tishkovskaya and Blackwell (In prep.), but with the Harris and
Blackwell (2013) separable model (as discussed in Section 3.3.1) where the Blackwell et al.
(2016) exact method can be used. The main target is to use location data to learn more about
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the environment and how different habitats affect the animal movement. The variable kappa
approach has been used within this chapter to estimate the boundary (described in Chapter 5).
In this chapter, we try to estimate two types of boundaries: the circle/disc boundary where
one behaviour is inside a circle and the other behaviour is outside it, and linear boundary.
The new method has been tried with two different datasets: simulated data and ibex data.
These can be seen in the next sections.

6.2 The model

Tishkovskaya and Blackwell (In prep.) introduced habitat heterogeneity by assuming that
the habitat is divided into a fixed number of non-intersecting regions and that animals move
differently in each region. Tishkovskaya and Blackwell (In prep.) assumed that animals have
one behavioural state for each region. Therefore, each region has a different OU process.
Tishkovskaya and Blackwell (In prep.) explained that, if two observed locations xt and
xt−1 are in separate regions, then on crossing the boundary the conditional distribution of
P(xt |xt−1) is a weighted mixture of two OU processes. The weights could be a function of
the location, but in practice they use equal weights. The authors introduced the new idea by
considering a simple case in which the studied landscape consists of two regions: region one,
where the animal spends most of its time, with a circular boundary, and region two, which is
outside the circle and has less use. Region one, which is inside the circle, can be explained
as the animal’s territory, the home range; it could have a particular biological purpose. The
two regions share the same centre of attraction, which means that, they share the common
centre: µ1 = µ2. Tishkovskaya and Blackwell (In prep.) assumed that b1 is larger than b2.
The b value means attraction towards the centre, as in Section 3.1. Note that values of b are
negative, so the smaller (more negative) value represents stronger attraction. Accordingly,
when the animal is farther away from the centre of attraction, it moves faster toward the
centre of attraction. Thus, when the animal crosses the boundary from region one into region
two, it will have a stronger attraction to return. Consequently, even though the animal can
travel outside the circle boundary, it has pressure to return back to region one.

We will use a concept similar to Tishkovskaya and Blackwell’s (In prep.) to extend the Black-
well et.al’s (2016) model, to estimate the unknown boundaries between different regions.
The unknown boundaries are estimated by dividing the environment into regions, and each
region has only one behavioural state. Therefore, the number of regions is equals to the
number of behavioural states. We assume the habitat is divided into two regions and each
region is associated with one behavioural state, which is an adaptive model (for more details
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see Section 3.6.2). Furthermore, a change in behaviour means that the animal has crossed
the boundary and entered the next region. However, as discussed in Section 3.6, in the exact
method, the transition rate has an upper bound κ , which means the animal does not change
its behaviour immediately after crossing the boundary.

In this chapter, we estimate two different types of boundaries:

6.2.1 Circular boundary

The first idea is a circular boundary. In a situation where the animal spends most of its time
inside the circle and only occasionally leaves it, this model will be more suitable. Several
ecological home range studies have concluded that the shape of an animal’s home range is
a circle. Gurnell (1984) explained that the red squirrel’s home range is circular; moreover,
Russell et al. (2012) showed that the lion’s home range is circular. Harris and Blackwell
(2013) used two simulated datasets with a circular home range.

6.2.2 Linear boundary

We tried to generalise the boundary estimation idea. Because having a circular region
boundary was rather restrictive, a more general idea for the boundary was to use a straight
line. The straight line boundary is the simplest boundary, but it is also quite realistic, because
it can be seen as a local approximation to any smooth boundary. We wanted to keep the
structure simple. One of the possibilities was merely to create a straight line boundary so the
space was cut into two regions, as part of the realistic example. In that case, we did not know
where the boundary was, and we wanted to learn the boundary’s location from the movement.
Two regions were separated by a linear boundary. The boundary line could be oriented in
any direction because it represented the edge of a forest, field, territory or home range etc.
The linear boundary can be represented as a linear equation as:

y = ax+b. (6.1)

where a and b are some numerical values for the intercept and slope. The linear boundary
can be generalized (given suitable data) to a smooth nonlinear boundary.
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6.3 Implementation

We used Bayesian inference to estimate the parameters in the model, similar to Chapter
5, except with the addition of an extra MCMC step to estimate the boundary parameters.
Updating the movement parameters µ,v,b and the trajectory uses a similar approach to that
used in Section 3.6. In addition, we updated the behaviour parameters λi j(x) similar to the
adaptive model in Section 3.6.2 and treating kappa as a parameter in Section 5.2.2.

To update the boundary parameters, we use a Metropolis Hastings step that proposes new
parameters for the boundary. The idea of estimating an unknown boundary, is implemented
by adding an extra MCMC step to update the parameters to describe the current boundary. We
propose the new boundary, and after each potential switch, we calculate the new probability
of making that transition and calculate the Hastings ratio from that. Subsequently, we accept
or reject the proposed boundary based on the Hastings ratio.

6.3.1 Circular boundary

To estimate the boundary, we add two more parameters to the current model. The boundary
parameters are the centre point (x0,y0) and radius R. Tishkovskaya and Blackwell (In prep.)
clarified the circle border radius R as the maximum area of attraction, around a food source,
nest site, etc. Using the centre point, radius and an observed location, (x,y), we can test
whether the particular (x,y) location point is outside or inside the new circle boundary. The
next step is to update the boundary by proposing a new value for the centre point (x0,y0) and
the radius R, and then deciding if those values are either accepted or rejected by using the
Metropolis Hastings algorithm. Hence, when the boundary is updated, any of the points may
change from being in one region to being in the other; sometimes, that means the proposed
boundary is not possible because the sequence of behaviours does not make sense, given
the region. We have an adaptive model, which means the animal’s behavioural states should
only change to be the same as the region where the animal is. For example, if the animal
is inside the circle’s boundary, it is in behavioural state one, which is settled. The animal
cannot switch to behavioural state two, which is exploring, until it leaves the circle region.
The model allows the animal to switch to behavioural state two after crossing the boundary.
The transition from behaviourally settled to behaviourally exploring while the animal is still
in region one inside the boundary is impossible, which would lead to a rejection of the newly
proposed boundary.
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6.3.2 Linear boundary

The line boundary idea will have the same implementation as the circular boundary, except it
replaces the radius and centre in the circle boundary by the intercept and slope a and b, as
the linear boundary parameters for Equation 6.1.

6.4 Model checking

To check our results, we used the deviance information criterion (DIC) to compare a two-
state model with a one-state model. The DIC, defined below, is a very useful tool for
model selection in Bayesian inference where the posterior distribution for the parameters is
estimated using MCMC. The DIC is defined as:

DIC = pv +D. (6.2)

The deviance is based on the log-likelihood for a particular parameter value of θ :

D(θ) =−2log[P(y|θ)]. (6.3)

where θ is a vector of the unknown parameters that would be estimated. The deviance mean
is given by:

D = E[D(θ)], (6.4)

averaging over the posterior distribution for θ . The mean measures how well the model fits
the data: the larger the value, the worse the fit. Of course, when the number of the parameters
in the model increases, the deviance mean will decrease. Therefore, the DIC included a term
related to the number of parameters. The effective number of the parameters for the model
can be estimated as:

pv =
1
2

Var[D(θ)]. (6.5)

The model with the smallest value for the DIC is the best, considering the trade-off between
the fit and the complexity of the model. For more details see, for example: Spiegelhalter et
al. (2002) and Spiegelhalter et al. (2014).



6.4 Model checking 89

6.4.1 Approximating the DIC

In this chapter, the DIC is approximated similarly to both Blackwell et al. (2016) and
Tishkovskaya and Blackwell (In prep.). Calculating the DIC for the one state model is
straightforward however the calculation for the two-state model is not completely straight-
forward. The problem with the two-state model is that there are switches in behaviours and
the path between observations is unknown. Even the numbers of potential switches in the
two-state model is unknown, so calculating the probability of going from one observed point
to another is quite complicated. Blackwell et al. (2016) and Tishkovskaya and Blackwell (In
prep.) solve this problem by making the simple assumption that the behaviour and trajectory
are known, which means that the DIC approximation calculation concerns only the movement
parameters. We assume that, in each observation, the behaviour is known and that it stays the
same until the next observation. If we do not make this assumption, we allow the behaviour to
change at different times during the interval. Then the likelihoods for the DIC calculation are
not comparable between the two-state model and one-state model, because the distinctions in
the fit will be due to variations in the reconstruction of the behaviour much more than to the
differences in the number of states.

In addition, we considered which state we wanted to use, from the MCMC inference,
we had a posterior distribution over possible states. We examined the output to decide the
most likely state at that time. We merely recorded the state at the time of the observation,
not the complete trajectory. The state is fixed based on the result of the MCMC, by taking
the state with the highest posterior probability at the actual observation. When, within the
DIC calculation, we took the average over the samples from the posterior distribution, we
used the same most likely state in each case, combined with parameters from the posterior
distribution to calculate the probability of going from this observation to the next one.

By approximating the DIC in this way, we are using only likelihood terms that directly
relate to the observations. The parameters controlling the behaviour, the transition rate λ

and upper bounded κ , do not have any effect. This is consistent with the effective number of
parameters pv, which approximately matches the number of movement parameters. Similarly,
the likelihood terms regarding the variable boundary do not enter into the DIC. Therefore,
this approach in itself does not allow us to compare the fixed and variable boundary models.
However, we have no biological justification for fixing the boundary in advance.

Therefore, the approximate DIC enables us to make sensible comparisons between the
movement parameters in models with varying numbers of states. We used this method
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because the difference in DICs between the two models was very large, so the approximation
did not change the model order. Although this method of calculation did have some effect on
the values obtained for the DIC, it did not affect the conclusion when there was a distinction
between DIC values for the two models at large. If the difference in the DIC between the
two models had been small, however, we should be careful, because the approximate DIC
may not correctly indicate the conclusion that exact DIC values (the more sophisticated
calculation) would have reached about whether one model is better than the other model.

6.5 Application

6.5.1 Ibex data

The ibex data are telemetry data consisting of ibex (wild goat) locations for 15 days in the
Belledonne Mountain (French Alps), as recorded using a GPS tracker. There were four ibexes,
but we studied the movement of only one of them. A total of 71 observations were recorded,
and ibex locations were updated every four hours. The data are available in an R package
called adehabitat (Calenge et al. 2009). This is the same dataset used by Tishkovskaya and
Blackwell (In prep.).

The actual numerical values for the (x,y) locations in the data are very large, which
could potentially cause numerical problems in the analysis, particularly as the variation
within the data is relatively small. To make the numbers easier to work with, we rescaled and
shifted the origin to define a new set of co-ordinates, as in the following:

xnew =
xold −9×105

1000
(6.6)

ynew =
yold −2×106

1000
(6.7)

6.5.2 The model

In this example, we assumed a circular boundary between two regions, as in Tishkovskaya
and Blackwell (In prep.) and as described in detail above in Section 6.2.1. Figure 6.1 shows
the movement path for an ibex in the original coordinates, in which the blue triangle is the
starting location. From this figure, we can see that the ibex has a strong attraction toward the
centre area at the upper part of the figure. This core area can be represented as a foraging
region or home range, with the ibex making shorter movements away from this area. A centre
of attraction for the foraging region could be a food source or (in the context of the other
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Fig. 6.1 The observed Ibex movement path. The blue triangle is the starting location, while
the red is the end point.
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Fig. 6.2 The observed Ibex movement path after transformation of the coordinates.
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species) a den or nest site. For more details about centre of attraction, see Section 1.3.1. The
ibex’s movements outside the boundary can be understood as exploration or incursions into
other home ranges. Figure 6.2 shows the movement path for an ibex after transformation of
the coordinates.

We fit the data with two OU processes, each one connected to a specific region; both
OU processes share the same centre of attraction. The first OU process represents the ex-
ploratory movement (outside the boundary) from the initial location to the core area, whereas
the second OU process describes the shorter animal movement inside the circular foraging
area, which could be called resident or foraging movement.

6.5.3 Implementation

We updated four separate sets of parameters: the trajectory, the movement parameters, the
behaviour parameters and the boundary parameters. The updating of the trajectory and
movement parameters was carried out as described in Section 3.6. The movement parameters:
The prior for µx was a normal distribution with mean 0 and sd 0.9. The prior for µy was
a normal distribution with mean 40 and sd 0.9. The prior for b1 was a normal distribution
with mean 3 and sd 0.9. The prior for b2 was a normal distribution with mean 0.4 and sd 0.9.
The prior for v1 was a normal distribution with mean 0.9 and sd 0.9. The prior for v2 was a
normal distribution with mean 5 and sd 0.9.

For updating the behaviour parameters, we used the variable kappa approach, where kappa
was treated as a parameter, as described in Sections 5.2.2 and 5.3. The forms of the priors
for kappa and the transition rates were the same as in the previous chapter (Chapter 5), the
marginal prior for κ was an exponential distribution with rate 2 and the marginal prior for λ

was a Gamma distribution with shape 2 and rate 6. The proposals for kappa and the transition
rate were similar to those in the previous chapter. We ran the model with an initial value for
all λ of around 0.5, while the initial value for κ was 1

To update the boundary parameters (radius and centre point), a truncated normal distri-
bution was used as the prior for the radius with mean= 1.2 and SD= 0.9 truncated on (0,∞).
The proposal for the radius was a truncated normal distribution centred on the current value,
with SD 0.9. We choose a truncated normal distribution because the radius should always be
positive. The truncated distribution resulted in a proposal that was no longer symmetrical,
so we had to add forward and backward terms for the proposal density of the radius to the
MCMC calculation for the Metropolis Hastings ratio, just as in the truncated proposals in
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Section 5.2.2. The prior distribution for the centre point was normal distribution. The prior
for y0 was a normal distribution with mean 41 and sd 0.9. The prior for x0 was a normal
distribution with mean 0 and sd 0.9. The proposal distribution for the centre point was normal
distribution centred on the current value with SD 0.5.

For the actual data observations, we initially labelled them according to the region that
they were in. For example, if the observation was in region one, the animal was in be-
havioural state one. We know that the behaviour does not change exactly at the time of the
observation. This trajectory (the data alone) did not make sense; thus, before we could start
the algorithm, we had to add in at least some potential switches similar to Section 3.6.

The posterior estimations were a result of running ten million iterations after a five mil-
lion iterations burn-in. To check our posterior estimation for the boundary regard whether
or not it converged, we used the same model with a different initial value for the bound-
ary parameters. We also made longer updates. Before, we made updates over an interval
containing three to six observations, as described in Section 3.6, but we changed it to five
to fifteen observations. From the results of both updates, there was no difference between
longer updates or shorter updates.

We considered deleting one point from the data because we thought it may be an out-
lier. We ran a similar analysis excluding that point to check if it made a difference to the
estimation of the parameters. After deleting point number 18, there was no difference in the
estimates for the movement parameters. As such, the outlier did not have a major effect.

6.5.4 Results

Figure 6.5 shows the estimates of movement parameters b and v for the two states, which
together explain that the model can distinguish between the two regions parameters pre-
cisely. The posterior mean and SD for the movement parameters were the followings:
b1 =−5.027(0.497), b2 =−0.748(0.057), v1 = 0.58(0.053), v2 = 7.5(0.6). The posterior
mean for the movement parameters, v2, was more than twice the size of v1, suggesting that the
movement outside the circle was more spread out. Also b2 was larger than b1, which means
the movement inside had a weaker attraction towards the centre point than the movement
outside the circle. This agrees with Tishkovskaya and Blackwell’s results.

For the behaviour parameters estimate, the posterior mean and SD were as follows: λ12 =

0.135(0.088), λ21 = 0.83(0.074), κ = 0.27(0.16). The acceptance rate for λi j was 0.3 and
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Fig. 6.3 Ibex movement data with the circular boundary between two regions. Red for the
initial boundary and green for the posterior mean boundary.



96 Estimating an unknown boundary

0 1000 2000 3000 4000 5000

−
3

−
2

−
1

0
1

2
3

Iterations

Trace of X0

−4 −2 0 2

0.
0

0.
2

0.
4

0.
6

Density of X0

N = 5001   Bandwidth = 0.1069

0 1000 2000 3000 4000 5000

39
40

41
42

43
44

Iterations

Trace of Y0

38 39 40 41 42 43 44

0.
0

0.
2

0.
4

0.
6

0.
8

Density of Y0

N = 5001   Bandwidth = 0.09468

0 1000 2000 3000 4000 5000

1
2

3
4

Iterations

Trace of Rd

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Density of Rd

N = 5001   Bandwidth = 0.06393

Fig. 6.4 Trace plots for the boundary parameters for the ibex data.
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Fig. 6.5 Posterior results for the movement parameters for the ibex data. The two clusters
correspond to states 1 and 2 (red and green, respectively).
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Fig. 6.7 The ibex movement data with a few samples from the posterior distribution of circle
boundaries.
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Fig. 6.8 Ibex data: The marginal posterior distribution for the transition rates between the
two behavioural states. The marginal priors are displayed as red curve.
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Kappa posterior results for ibex data
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Fig. 6.9 Ibex data: The posterior distribution for the kappa. The prior is displayed as red
curve.
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for κ was 0.35. Figure 6.8 shows the marginal posterior distribution of the transition rates
between the two states and the marginal priors displayed as a red curve. Figure 6.9 shows
the posterior distribution of kappa and the prior displayed as a red curve. These results
suggest that the data do not give us much informative about these parameters. We expected
this because we had little information about the switches and the transitions. We had few
points to tell us about the transition from behaviour state two to one, which means that the
choice of prior becomes very important. As such, we are uncertain about the value of lambda.
We can only learn about the value of lambda when the animals are in a region and have not
yet changed their behaviour to match that region. Unfortunately, this state does not happen
very much in this dataset. The ibex only crossed the boundary three or four times, so it is
very hard to learn about what the values of the lambdas are, which is expected from this
dataset. The location points tell us more about the boundary. We cannot omit the transition
rates, because they are part of the model, and the estimation of the movement parameters
is precise, so we should not worry about the large uncertainty on the estimate value of the
lambda transition rate.

Figure 6.3 shows the estimated posterior boundary. The green circle represents the
estimated posterior mean boundary between the two regions, while the red one is the initial
boundary. The posterior mean estimates of the boundary parameters with the standard devi-
ations (SD) are as follows: X0 = 0.325(0.6) , Y0 = 41.453(0.52), R = 1.827(0.38). Figure
6.10 shows the posterior distribution for the centre point and the marginal prior displayed as
a red curve. Figure 6.11 shows the posterior distribution of the radius and the prior displayed
as a red curve. In Figure 6.4, we see the trace plot for the boundary parameters, which show
good mixing, with an acceptance rate of 0.34.

In Figure 6.7, the plot shows not only the posterior mean boundary but also a few boundary
samples from the posterior distribution after the burn-in. Every few thousand iterations, we
plotted the posterior boundary. Presenting the posterior uncertainty about the regions in the
form of a plot gives us a geometric understanding rather than a purely numerical one in terms
of the parameters. Figure 6.7 shows that all the posterior samples for the boundaries are very
close to each other and that they give us a reasonable result. We get a slightly larger map
boundary than the map in Tishkovskaya and Blackwell (In prep.).

Figure 6.6 shows the probability of each observation following each behavioural state.
We can see that, from the first observation to the 20th observation, the ibex was in state two,
exploring, with probability one, because the ibex spent that time outside the boundary. After
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Posterior results for the centre point for ibex data

Fig. 6.10 Ibex data: The marginal posterior distribution for the centre point between for the
circular boundary between two regions. The marginal priors are displayed as red curve.
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Posterior results for the ibex data
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Fig. 6.11 Ibex data: The posterior distribution for the radius. The prior is displayed as red
curve.
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that, the ibex began switching to behaviour state one, foraging, with very high probability,
around 0.9, by observation 25. This implies that the ibex had crossed the boundary. There
is some uncertainty with observation numbers 30 and 50, which correspond with Figure
6.3, because these two points are outside the boundary, but still have some probability of
following behaviour one. The results show that some of the points close to the boundary but
outside the circle (region one), have the same behaviour as in region one because an animal
does not switch its behaviour immediately after crossing the boundary.

In summary, we gained precise results for the movement parameters but uncertain results
for the transition rates. This is acceptable, as we are using a small dataset and we have few
switches between the two regions. We checked our parameter estimates by running the same
model with a fixed boundary to estimate the transition rate and movement parameters, and it
gave us a similar result. It took around five hours to run the model.

The DIC for ibex data

A much simpler model was fitted with only one behavioural state, one region, no boundary,
no kappa, no switches, no transition rate and therefore no need for MCMC to update the
behaviour or the boundary. Then, we compared it with the two behavioural state model and
checked if the two state model fits better using DIC.

Before formal assessment using the DIC, we wanted to compare the estimated values
for the movement parameters between the two-state model and the one-state model. Fig-
ure 6.12 shows the joint posterior for b and v. When we compared it with the two-state case
in Figure 6.5, the parameters for the one-state case were "in between" those for the two-states
in the switching model, which is as expected. As such, those estimates do seem reasonable
when compared with the two-state case.

For the two-state model, we had eight movement parameters, and for the one-state model, we
had four movement parameters. For the one-state model, the effective number of parameters
was pv = 3.09, the mean deviance D = 648.583 and the DIC= 651.673. The effective num-
ber of parameters for the two-state model should be greater than for the one-state model. For
the two-state model, the effective number of parameters was pv = 8.5 , the mean deviance
D = 509.11 and the DIC= 517.535.

In summary, we have an approximate form of the DIC that is easily calculated, is directly
comparable with the simpler one-state model and which seems to behave sensibly based on
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Fig. 6.12 Posterior movement parameters for the ibex data for the one state case.

the effective number of parameters. It shows that the two-state model is clearly better than
the one-state model, even allowing for its extra complexity. In this example, because the
difference between the DIC values for both models is large, we expect that the conclusions
of both will be the same regardless of how we calculated the DIC.

6.6 Simulated experiments: linear boundary

We used the idea described in 6.2.2, where we had a linear boundary between two regions.
The size of the simulated data was 100 observations, and the time interval between each pair
of observations was one time unit. We assumed the habitat was divdied into two regions
and that each region each region was associated with one behavioural state, so that we had
two behavioural states with two transition rates λ12 = λ21 = 0.3. In all the experiments, the
area above the line was region one, while the area under the line was region two. The two
regions shared the same centre of attraction µ = (10,5), which was above the line in region
one, while the start point (initial location) (x0,y0) = (−20,−10) was under the line in region
two. The linear boundary had parameters are a = 0 and b = 0.

We did three different experiments with the linear boundary. All the three simulated data
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have the same behaviour parameters (transition rates λ ) and the same boundary parameters
(intercept a and slope b). The only different between the three data is the movement parame-
ters for state 2 b2 and v2. First, one where b1 was larger than b2 and v2 was larger than v1;
second, one where b1 was larger than b2 but v2 was equal to v1; and third, one where b1 was
equal to b2 and v2 was larger than v1. We used these experiments to check how the linear
boundary estimation was affected by the strength of attraction and also demonstrate the effect
of the location variation.

6.6.1 Implementation

We updated four separate sets of parameters: the trajectory, the movement parameters, the
behaviour parameters and the boundary parameters. All the three experiments used the
same code with the same priors for all the parameters except the movement parameters for
region two. The updating of the trajectory and movement parameters was carried out as
described in Section 3.6. For updating the movement parameters, The prior for b1 was a
normal distribution with mean 0.1 and sd 0.1. The prior for v1 was a normal distribution with
mean 0.2 and sd 0.1.

For updating the behaviour parameters, we used the variable kappa approach, where kappa
was treated as a parameter, as described in Sections 5.2.2 and 5.3. The forms of the priors
for kappa and the transition rates were the same as in the previous chapter (Chapter 5), the
marginal prior for κ was an exponential distribution with rate 3 and the marginal prior for
λ was a Gamma distribution with shape 3 and rate 10. The proposals for kappa and the
transition rate were similar to those in the previous chapter. We ran the model with an initial
value for all λ of around 0.5, while the initial value for κ was 1

To update the linear boundary parameters (intercept a and slope b), a normal distribution was
used as the prior for the intercept and the slope with mean= 0 and SD= 0.25. The proposal
for the intercept and the slope were a normal distribution centred on the current value, with
SD 0.9. The posterior estimations were a result of running ten million iterations after a five
million iterations burn-in.

6.6.2 Experiment 1: Simulated data with b2 larger than b1 and v2 is
larger than v1

In the first experiment, the real movement parameters values were b1 =−0.1 > b2 =−0.5
and v1 = 0.2 < v2 = 1, so there was a very large difference between the vi values for states
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one and two. The posterior behaviour parameters acceptance rate is 0.35. Figure 6.13

Real value Simulated

µx 10 10.1 (0.11)
µy 2 1.9 (0.11)
b1 -0.1 0.1 (0.008)
b2 -0.5 0.53 (0.03)
v1 0.2 0.21 (0.02)
v2 1 0.98 (0.1)
λ12 0.3 0.3 (0.14)
λ21 0.3 0.31 (0.16)
κ 0.8 0.7 (0.33)
a 0 -0.01(0.19)
b 0 -0.11 (0.14)

Table 6.1 Posterior means and SDs for the parameters of the simulated data with a linear
boundary in Experiment 1.

shows the movement trajectory in black, with the real boundary in blue and the posterior
mean boundary in red. There was some uncertainty in the boundary. Even if we assume
the boundary to be a straight line, we have some uncertainty. For the posterior movement
parameters, Table 6.1 shows that the results are accurate and precise.

For the posterior behaviour parameters, Table 6.1 shows the estimates are accurate but
have high standard deviation. For the posterior boundary parameters, Table 6.1 shows the
results are uncertain about the boundary, with high but still reasonable standard deviation.

Figure 6.14 shows the marginal posterior distribution of the transition rates between
the two states and the marginal priors displayed as a red curve. Figure 6.15 shows the
posterior distribution of kappa and the prior displayed as a red curve. Figure 6.16 shows
the posterior distribution of the boundary parameters and the marginal priors displayed as
a red curve. Figure ?? shows the posterior distribution of the movement parameters and
the prior displayed as a red curve. These results suggest that the data do not give us much
informative about these parameters. We expected this because we had little information
about the switches and the transitions. We had few points to tell us about the transition from
behaviour state two to one, which means that the choice of prior becomes very important.
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Fig. 6.13 The movement path for the simulated data for Experiment 1. Blue line for the real
boundary and red for the posterior mean
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Experiment 1: Posterior results for the transition rates for the simulated data

Fig. 6.14 Experiment 1: The marginal posterior distribution for the transition rates between
the two behavioural states. The marginal priors are displayed as red curve.
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Kappa posterior results for ibex data
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Fig. 6.15 Experiment 1: The posterior distribution for the kappa. The prior is displayed as
red curve.
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Experiment 1: Posterior results for the linear boundary for the simulated data

Fig. 6.16 Experiment 1: The posterior distribution for the boundary parameters between the
two regions. The priors is displayed as red curve.
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Experiment 1: Posterior results for the movement parameters for the simulated data

Fig. 6.17 Experiment 1: The posterior distribution for the movement parameters. The prior is
displayed as red curve.
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6.6.3 Experiment 2: Simulated data with b2 is larger than b1 but v2 is
equal to v1.

In this experiment the real movement parameter values were b1 = −0.1 > b2 = −0.5 and
v1 = v2 = 0.2. From Table 6.2 and Figure 6.23, CV for some of the parameters is much

Real value Simulated

µx 10 9.9 (0.12)
µy 5 4.9 (0.11)
b1 -0.1 -0.1 (0.008)
b2 -0.5 -0.5(0.014)
v1 0.2 0.2(0.016)
v2 0.2 0.2(0.02)
λ12 0.3 0.31(0.16)
λ21 0.3 0.3(0.17)
κ 0.8 0.8 (0.4)
a 0 0.001 (0.2)
b 0 0.009 (0.2)

Table 6.2 Posterior means and SDs for the parameters of the simulated data with a linear
boundary in Experiment 2.

higher than the previous example. Figure 6.19 shows the marginal posterior distribution of
the transition rates between the two states and the marginal priors displayed as a red curve.
Figure 6.20 shows the posterior distribution of kappa and the prior displayed as a red curve.
Figure 6.21 shows the posterior distribution of the boundary parameters and the marginal
priors displayed as a red curve. Figure ?? shows the posterior distribution of the movement
parameters and the prior displayed as a red curve. These results suggest that the data do not
give us much informative about these parameters. We expected this because we had little
information about the switches and the transitions. We had few points to tell us about the
transition from behaviour state two to one, which means that the choice of prior becomes
very important.

6.6.4 Experiment 3: Simulated data with b1 equal to b2 and v2 is larger
than v1

In this experiment, the real movement parameter values were b1 = b2 =−0.1 and v1 = 0.2 <

v2 = 1. Thus, there was a very large difference between the vi values for state one and two,
but the two regions had the same attraction toward the centre.
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Fig. 6.18 The movement path for the simulated data for Experiment 2. Blue line for the real
boundary and red for the posterior mean.
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Experiment 2: Posterior results for the transition rates for the simulated data

Fig. 6.19 Experiment 2: The marginal posterior distribution for the transition rates between
the two behavioural states. The marginal priors are displayed as red curve.
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Experiment 2: Kappa posterior results for ibex data
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Fig. 6.20 Experiment 2: The posterior distribution for the kappa. The prior is displayed as
red curve.
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Experiment 2: Posterior results for the linear boundary for the simulated data

Fig. 6.21 Experiment 2: The posterior distribution for the boundary parameters between the
two regions. The priors is displayed as red curve.



118 Estimating an unknown boundary

Histogram of b1

b1

D
en

si
ty

0.0 0.1 0.2 0.3 0.4

0
10

20
30

40
50

Histogram of b2

b2

D
en

si
ty

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
5

10
15

20
25

Histogram of v1

v1

D
en

si
ty

0.0 0.1 0.2 0.3 0.4

0
5

10
15

20
25

Histogram of v2

v2

D
en

si
ty

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0
5

10
15

Experiment 2: Posterior results for the movement parameters for the simulated data

Fig. 6.22 Experiment 2: The posterior distribution for the movement parameters. The prior is
displayed as red curve.
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Fig. 6.23 The movement path for the simulated data for Experiment 3. Blue line for the real
boundary and red for the posterior mean
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Experiment 3: Posterior results for the transition rates for the simulated data

Fig. 6.24 Experiment 3: The marginal posterior distribution for the transition rates between
the two behavioural states. The marginal priors are displayed as red curve.
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Experiment 3: Kappa posterior results for ibex data
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Fig. 6.25 Experiment 3: The posterior distribution for the kappa. The prior is displayed as
red curve.
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Experiment 3: Posterior results for the linear boundary for the simulated data

Fig. 6.26 Experiment 3: The posterior distribution for the boundary parameters between the
two regions. The priors is displayed as red curve.
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Experiment 3: Posterior results for the movement parameters for the simulated data

Fig. 6.27 Experiment 3: The posterior distribution for the movement parameters. The prior is
displayed as red curve.
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Real value Simulated

µx 10 9.9 (0.12)
µy 5 5.1 (0.12)
b1 -0.1 -0.09 (0.006)
b2 -0.1 -0.11 (0.005)
v1 0.2 0.19 (0.015)
v2 1 1.01 (0.1)
λ12 0.3 0.32(0.17)
λ21 0.3 0.29 (0.17)
κ 0.8 0.75 (0.37)
a 0 0.06 (0.3)
b 0 -0.13 (0.25)

Table 6.3 Posterior means and SDs for the parameters of the simulated data with a linear
boundary in Experiment 3.

The model results can recognise that there were two states. Figure 6.23 shows the real
boundary in blue and the estimated boundary in red. The posterior results for the boundary
behaved in an expected way. For the posterior movement parameters, Table 6.3 shows that
the results are accurate. For the posterior behaviour parameters, Table 6.3 shows that the
results are accurate with a high standard deviation. That may be because there is only one
switch between the two regions. Further, we had few data points under the line, which was
also because of the small dataset, and we had only two switches. This makes estimating the
transition rate very difficult. For the posterior boundary parameters, Table 6.3 shows that
the results are uncertain about the boundary, with a high standard deviation, but they are
still accurate. Figure 6.24 shows the marginal posterior distribution of the transition rates
between the two states and the marginal priors displayed as a red curve. Figure 6.25 shows
the posterior distribution of kappa and the prior displayed as a red curve. Figure 6.26 shows
the posterior distribution of the boundary parameters and the marginal priors displayed as
a red curve. Figure ?? shows the posterior distribution of the movement parameters and
the prior displayed as a red curve. These results suggest that the data do not give us much
informative about these parameters. We expected this because we had little information
about the switches and the transitions. We had few points to tell us about the transition from
behaviour state two to one, which means that the choice of prior becomes very important.
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6.6.5 Conclusion for simulated experiment

For all the experiments above, the movement parameter estimation was accurate and precise,
and it did a reasonable job of separating the states. The behaviour parameters estimation
was accurate but not certain. The boundary estimate contained some uncertainty, but it was
at a reasonable level. We tried other experiments with the real value for the movement
parameters bi and vi for both states being relatively similar, but it was not possible to estimate
the boundary, and the model cannot separate the two states. It is clear in this case that it is
difficult to detect this difference.

To check the results, we used the same data but with a fixed boundary. In the fixed boundary,
we got the same results, so there was no problem regarding the estimate boundary idea. As
such, even in the two-state model, the movement behaviours were quite similar in their being
attracted back toward the same centre of attraction. The results separated out the two states
and the parameters of the two states.

The idea of estimating the boundary worked very well when there was a large difference
between the states. The simulated experiments told us which cases were possible and which
cases were difficult.

6.7 Discussion

We extended the Blackwell et al.’s (2016) concept to include the estimation of an unknown
boundary between two regions. The boundary idea was included in the model by adding an
extra MCMC step to estimate the boundary parameters. We fit two types of boundary: one
with a circular habitat boundary and one with a linear boundary dividing the environment
into two different habitats. Our extension of this research will help the ecologists learn more
about using movement data to study the environment and how different habitats affect the
animal movement. This idea can be extended to a more complicated model, where the habitat
consists of many different patches rather than just two regions. In this case, the habitat
could be split into many regions, but the same idea would apply. The linear boundary can be
generalized (given suitable data) to a smooth nonlinear boundary.





Chapter 7

Generalization of models for duration of
behaviour

7.1 Introduction

As discussed in Chapter 3, the Markov assumption is important for the Ornstein-Uhlenbeck
(OU) process with behavioural switching. For the Markov assumption to be correct, the
behaviour process constrains the time spent in a given behavioural state (the duration-time) to
follow an exponential distribution in the continuous time models, or a geometric distribution
in the discrete time models. This is not reasonable or appropriate in some situations. One
solution to this problem is to implement a semi-Markov process, wherein duration can follow
any distribution with positive support. The downside to this solution is that the model loses
the Markov property, which results in more complicated likelihood calculations. This means
that the probability of transitioning from one state to another in the semi-Markov model
depends on the duration-time of that state λi j(t), while in the Markov model, the probability
of transition is constant in any given state of λi j(t) = λi j, which does not depend on time.
We do not consider models in which the movement within a state is non-Markov.

Many studies have attempted to deal with the duration-time distribution limitation with-
out losing the Markovian property. Cox and Miller (1965) introduced the method of stages as
a solution for non-Markovian cases. The method of stages assumes that the process will go
through sub-states in a series. Each state is divided into k sub-states. The time spent in each
sub-state follows an exponential distribution so that the Markovian property is maintained,
but the total of the sub-states in the series is not exponential. Cox and Miller (1965) stated
that the simplest case where all sub-states share the same λi j = λ , or transition rate. The total
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time spent in each state is proportional to the Gamma/Erlang distribution with parameters
(k,λ ). This process is Markovian. The partition of states into sub-states is a mathematical
strategy and does not have any biological interpretation. Many recent studies have used the
distribution function of the Erlang exponential staging method to model the duration-time of
states as the sum of independent exponential sub-states.

Cox and Miller (1965) concluded that the incorporation of sub-states in series or paral-
lel can approximate any distribution, but an accurate approximation requires a larger number
of sub-states. Using this method, Cox and Miller (1965) noted that when the number of
sub-states k is very large, an accurate approximation of any distribution can be ensured.
However, in practice the number of sub-states is usually small to simplify the calculation.
Cox and Miller (1965) concluded that the important point is to increase the flexibility in the
presentation of duration-time distribution which can be obtained with a small number of
sub-states

This idea developed into the concept of the phase-type distribution, which has made the
Markov process an effective and widely used stochastic model. The distribution of time
in the joining of an absorbing state from a group of transition states in a continuous time
Markov process is called the phase type distribution. Each transition sub-state is called a
phase. Thus, if there are n transition sub-states, the process has the phase type distribution
with order n. The time spent in each phase is exponentially distributed, and the process
begins with phase one. Each transient phase is visited at least once before absorption. Any
positive distribution in (0,∞) can be approximated by the phase type distribution. Discrete
distributions can be approximated, but it probably needs a lot of phases to get something
close to a discrete distribution.

The phase type distribution is a generalization of the exponential and Erlang distributions.
The phase type distribution with only one transition phase is equivalent to an exponential
distribution with a rate of λ . More generally, the Erlang distribution E(k,λ ) is the sum of
k, exponential phases having the same or equal rate of λ . The Erlang distribution is further
generalized by allowing each exponential phase to have different transition rates of λi j.
This is called the hypo-exponential distribution. Allowing the process to start in any phase
and permitting each phase to have different transition rates is called the hyper-exponential
distribution. A combination of the hypo and hyper-exponential distribution is called a Coxian
distribution. A Coxian distribution begins in phase one, moving through the various phases
with different rates (λi). In each phase, there are two possibilities: moving into to the next
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phase, or going into the absorbing state. A Coxian distribution can be extended by allowing
the process to start in any state. This process is called a generalized Coxian distribution
(Buchholz et al., 2014).

Rubino and Sericola (1989) discussed the duration-time time of a homogeneous finite Markov
process in both discrete and continuous time models without an absorbing state. Rubino and
Sericola (1989) used a Markov chain, grouping the sub-states into state aggregates. Each
aggregate corresponded to one behavioural state. In general, the time spent in one aggregate
by the Markov chain is not geometric or exponential, and the sequence of transitions between
the aggregates produces a Markov chain. This is done to protect the Markovian property,
even if the group of the sub-states is not Markovian.

These approaches to more flexible duration times have been applied in a discrete-time
setting to hidden Markov models by several authors. Russell and Cook (1987) compared
two solutions to the limitation imposed by the geometric assumption. First, they consid-
ered a hidden semi-Markov model (HSMM), defined to be a generalisation of an HMM
in which the duration of a visit to a state has a general discrete distribution. Bulla et al.
(2009) introduced an R package for analysing the hidden semi-Markov model in discrete
time. Second, they considered an expanded state hidden Markov model (ESHMM). Russell
and Cook (1987) defined the ESHMM as replacing each state of an HMM with a group
of Markovian sub-states. Thus, the distribution function for the time in an existing state
is equivalent to the distribution of the sum of the times in the sub-states. Johnson (2005)
also experimented with HSMM, ESHMM; he also considered a further extension of HSMM,
called Variable Transition HMMs, which we do not consider any further here. Both Russell
and cook (1987) and Johnson (2005) showed that when the number of sub-states is large
enough, the performance of the HSMM and the ESHMM are equivalent. For the ESHMM,
the Markovian property is maintained so that the standard Markovian algorithm can be used.
As the number of sub-states increases, computational complexity also increases. This is a
limitation of the ESHMM. However, when the total number of sub-states increases, so does
the ability of improving target distribution estimation. For this reason, the ESHMM is seen
to be an efficient option in comparison to developing a complex and expensive computational
model.

Aparna et al. (2014) used the ESHMM to predict the farrowing of sows. This was done by
assuming that sows go through behavioural states, such as: a exploring state, nesting state,
resting and farrowing. Each state was divided into sub-states, and each sub-state followed an
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exponential distribution. As such, the total duration-time in the state was non-exponentially
distributed, and farrowing was the absorbing state. These behavioural states were not directly
observed.

The main problem with the HSMM is the loss of Markovian property, which leads to
complex computation, difficulty including covariates, and issues with making predictions. In
the wild, there is a lack of information regarding the animal being studied. The Markovian
property helps to deal with this lack of information, as future states depend only on the
current ones. Langrock and Zucchini (2011) structured a new application of the ESHMM
that fits and approximates any duration-time distribution. This is called the state-aggregate
process. This concept is similar to those discussed by Russell and Cook (1987) and Johnson
(2005). Langrock and Zucchini (2011) argued that an HMM with aggregate sub-states is
appropriate, as it will not change with differing state duration-time distributions. It can
also use the same statistical tools and methods for making predictions or also for including
covariates that already exist.

The aim of this chapter is to address this limitation by allowing the duration-time of each
behavioural state to follow any continuous distribution, by allowing distribution to be approx-
imated. This is done by expanding the behavioural states into multiple sub-states. Langrock
and Zucchini (2011) used this idea for animal movement in a discrete-time model. While this
has been suggested before, it has not been implemented for the animal movement model un-
der a continuous-time OU process. This chapter proposes expanding upon the state-aggregate
approach introduced by Langrock and Zucchini (2011) by extending it to continuous time.
We want to take the same developments that have been made in discrete time models and
applying them to the OU model.

Blackwell et al. (2016) discussed the use of different distributions for the duration-time in
a continuous-time model under a semi-Markov model. Although this study mentioned the
use of the hazard function as the transition rate, they did not attempt to implement it. In the
hazard idea, inference is possibly to be hard. This is because a change in the update of an
interval can affect transition rates once an interval has ended. Thus, to facilitate the inference,
a better approach and a more elaborate Markov method must be established.
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7.2 The model

The aim of this chapter is to present a behavioural process that represents any continuous
duration-time distributions. The proposed model expands a non-exponential behavioural
state to multiple sub-states, forming a state-aggregate. Within each aggregate, each sub-state
follows an exponential distribution.

For example, if the time spent in the feeding state does not follow an exponential dis-
tribution, the feeding behaviour can be divided into two sub-states: feeding A and feeding B.
Each of these sub-states would have an exponential distribution, and the distribution of the
total time spent in the two sub-states (the general feeding state) would be a non-exponential
distribution. This allows for more flexible modelling of the time spent feeding. The differ-
ences between the feeding A and feeding B states would not be observed in the field. The
expansion of behaviour does not have any biological meaning. Rather, this is a mathematical
process used to generalize the model and simplify the inference.

To obtain a precise approximation of the real distribution for the duration time, there must be
a large number of sub-states. In other words, if one of the states does not follow an expo-
nential distribution, it can be divided into multiple sub-states. By creating extra sub-states,
the distribution of time spent in a behavioural state can be controlled. When the behaviour
time does not follow an exponential distribution, the true distribution can be accurately
approximated through the use of several sub-states. However, even if the behavioural state is
expanded to just two sub-states,this model will still be more flexible than the model without
any sub-states.

7.2.1 The method

Langrock et al. (2012) added several sub-states for each behaviour. They divided the
non-geometric behavioural states into 30 sub-states, and the process progressed from each
sub-state into the next until the process left one aggregate to transfer to the other. Because
Langrock et al. (2012) used a discrete-time model (HMM), its formulation is slightly differ-
ent than the OU process. The inference computation for 30 sub-states presents a problem
for the OU process, as the large number of sub-states requires a lot of parameters, and
this makes the inference very slow. In our new approach, used throughout this chapter, we
assume that each behaviour is represented by only two sub-states. The use of two sub-states
provided flexibility, and sufficient for most purposes. Further, even dividing the behaviour
state into two sub-states can offer a worthwhile improvement. Expanding the behaviour state
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into more than two sub-states is straightforward, but we use only two sub-states to save on
computational costs.

In the simplest case, where the process enters an aggregate sub-states, the process should go
through all the sub-states in series with a fixed transition rate for all the sub-states λi j = λ .
The animal must cycle through all the sub-states before switching to a different behaviour
state. For example, when the animal enters the substate feeding A, the animal can’t switch to
different behavioural state until it visits sub-state feeding B. Then, from the substate feeding
B, it can switch to a different behaviour state. In this example, the generator would appear as
follows:

G =

 −λ f a, f b λ f a, f b 0
0 −λ f b,E λ f b,E

λE, f a 0 −λE, f a

 (7.1)

If λ f a, f b = λ f b,E , the duration time for the feeding state is a gamma distribution. In this
example, the animal would begin their duration-time in the exploratory state. They would
then transition to the feeding A sub-state, followed by the feeding B sub-state, before return-
ing to the exploratory state. This one route case can be generalised to the case where each
sub-states has a different transition rate λ f a, f b ̸= λ f b,E In such case, the duration time in the
behavioural state follows hypo-exponential distribution.

The alternative to the one route case is a more flexible case in which, when the process
enters a sub-state, it can switch to the next sub-state or switch out of this behaviour state.
The duration distribution for the behaviour state in this case would follow a phase type
distribution. For example, from the exploratory state, the animal can transition to feeding A.
Moreover, if the behaviour transitions to feeding A, it could either move forward to feeding
B, or leave the feeding behaviour state by switching back over to the exploratory state. The
generator matrix for this case would be flexible.

G =

 −∑i λ f a,i λ f a, f b λ f a,E

0 −λ f b,E λ f b,E

λE, f a 0 −λE, f a

 (7.2)

In this case, time spent in the feeding behaviour state follows a phase-type distribution
composed of a combination of exponential distributions. Any continuous distribution can be
approximated in this way if there are enough sub-states. If the number of sub-states is large
enough, duration-time distribution can be estimated regardless of distribution shape. ˜
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To fit a continous time animal movement model using this idea, we assume that we have a
homogenous model (for more details, see Section 3.4.1). The movement process has an OU
process for each sub-state. The two sub-states representing the same behaviour share the same
movement parameters, but for the behaviour process each substate had different transition
rates. For example, there are two behavioural states (feeding and exploring), and feeding has
two sub-states (feeding A and feeding B). The movement process has three OU processes:
for the exploring state, feeding A and feeding B. However, the two OU processes for the
sub-states feeding A and feeding B will share the same movement parameters µ fa = µ fb ,
b fa = b fb and v fa = v fb . To examine the new idea, even when the data is Markovian and the
time spent in a specific behaviour follows an exponential distribution, we can fit the data
using the group of sub-states as a special case. If the state is Markovian, then the transition
rate for the second sub-state will be close to zero or, at the least, small.

7.3 Implementation

In this chapter, we use the variable kappa approach by treating kappa as a parameter. For
more details, see Section 5.2.2. The implementation in this chapter is similar to that of
previous chapters; updating the movement parameters and the trajectory is similar to the
description in Section 3.4. The Metropolis Hastings algorithm was used for updating the
behaviour parameters in a similar way to the variable kappa approach seen in Section 5.3.
The algorithm was run for 10 million iterations. We ran each experiment for 10 million
iterations using a thinning ratio of 1000 and a burn-in period of 5000 iterations after thinning.

7.4 Simulation experiments

In this section, there are three homogenous simulated datasets: a two state simulated dataset,
a three state simulated dataset and a four-state simulated dataset. The details are given in
Sections 7.4.3 to 7.4.5 below. We fitted the same model for all of the three datasets. The
model has two behavioural states, (a and b), and each behavioural state is divided into two
substates, (a1,a2 and b1,b2), respectively. This was done by implementing a state-aggregate
method with two aggregates, wherein each set of two sub-states represents one behaviour.
The model allows for the selection of the duration-time spent in each state. The two sub-states
representing the same behaviour share the same movement parameter, but have different
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transition rates. Thus, each state has two sub-states, Figure 7.1, with the generator:

G =


−∑i λa1,i λa1,a2 λa1,b1 0

0 −λa2,b1 λa2,b1 0
λb1,a1 0 −∑i λb1,i λb1,b2

λb2,a1 0 0 −λb2,a1

 (7.3)

The data was fitted with a two aggregate substates OU process, with all the four substates
sharing the same centre of attraction. The prior mean and SD for movement parameters for
substate 1 equals the movement parameters for substate 2, sharing the same prior.

a1

a2

b2

b1

λa1,a2

λa1,b1

λa2,b1

λb1,b2

λb1,a1

λb2,a1

Exploratory

Encamped behaviour

Fig. 7.1 Two behavioural state Markov chains with two sub-states for the simulated data.
Left, aggregate states a1 and 2a. Right, aggregate states b1 and b2

The likelihood associated with λa2,b1 is:

p(data|λ ) =
(

λa2,b1

κ

)na2,b1
×
(

1−
λa2,b1

κ

)na2,a2
(7.4)

where ni j is the number of switches from sub-state i to sub-state j. This is similarly the case
for λb2,a1 , because the likelihood for these states is binomial, while for λa1,a2 and λa1,b1 , the
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likelihood is multinomial :

p(data|λ ) =
(

λa1,a2

κ

)na1,a2
×
(

λa1,b1

κ

)na1,b1
×
(

1−
λa1,a2 +λa1,b1

κ

)na1,a1
(7.5)

similarly, this is the case for λb1,a1 and λb1,b2 .

After reaching the posterior result, the duration-time distribution was reviewed within each
behaviour by plotting the distribution of each posterior. The Bernoulli distribution was used
so that substate a1 could transition into substate a2 or b1. As such, the Bernoulli model
yielded 1 if substate a1 transitioned to sub-state a2 and 0 if it transitioned to sub-state b1.
Simulation of duration time in a phase type- process.

• Simulate Xi ∼ Exp(λa1,a2 +λa1,b1).

• Simulate Bi ∼ Bernoulli
(

λa1,a2
λa1,a2+λa1,b1

)
.

• Simulate Yi ∼ Exp(λa2,b1).

• Zi =

{
Xi +Yi Bi = 1

Xi Bi = 0

This prompted an idea regarding the duration-time distribution shape of the posterior dis-
tribution. The duration-time distribution was compared against an exponential distribution
with the same mean, and the mean was calculated from the simulation sample. The density
was then plotted for the exponential with the same mean. This made it easier to see the
differences between the estimated distribution and exponential distribution of the posterior
mean. Also, a QQ-plot provides another method of comparing the estimated result with the
real exponential distribution.

7.4.1 Two-state Markov model

Simulated data

First, the OU model was used to simulate data from the homogenous model. The behavioural
process was demonstrated through the use of a two-state Markov process, wherein the time
spent in each state followed an exponential distribution with the generator:

G =

(
−0.3 0.3
0.5 −0.5

)
(7.6)
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The movement parameters shared the centre of attraction for both states µx = 95, µy = 55,
ba = 0.00023, bb = 0.0033, va = 3, vb = 75.
The simulation was completed with observations every 1 time units, providing 901 observa-
tions in total.

Results

After running the MCMC algorithm described above; the mean posterior transition rates as
follows:

λ =


−0.24 0.09 0.15 0

0 −0.01 0.01 0
0.17 0 −0.2 0.03
0.025 0 0 −0.025

 (7.7)

The model results indicate that the λa1,a2 and λb1,b2 values are very small, close to zero.
The results suggest that this is a two-state model without the need to expand into substates,
wherein the duration-time for each state represents the exponential. When the animal is in
substate a1, it does not have to switch to substate a2, but it can leave this behaviour and
switch directly to the next behaviour b1. This allows for an exponential distribution for the
total time in a behaviour.

The posterior means for the movement parameters vary between the two behaviours. bi and vi

are shown in Figure 7.2. There are clear differences in the movement parameters between the
two behaviours. The black dot is the real value, and the posterior results show estimates for
the movement parameters as coloured points. The estimation for the movement parameters
was accurate but not precise.

Figure 7.3 shows the QQ-plot to examine if the time spent in each behaviour follows
the exponential distribution. Figure 7.4 shows a histogram defining the time spent in each
behaviour. The red line is the exponential distribution with a rate= 1

mean . Figure 7.4 and
Figure 7.3 shows that states a and b are Markovian and follow an exponential distribution.
The message from Figure 7.4 and Figure 7.3 is that even though the parameter estimation is
not very good, the distribution of durations using those parameters is quite close to the truth.
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Fig. 7.2 Posterior movement parameters for the simulated dataset with two states. The two
clusters correspond to behaviour states a and b (red and blue, respectively).

7.4.2 Three-states Markov model

Simulated data

The second simulated data-set was conducted through the simulation of a three-states model,
wherein two of the states represent the same behaviour. This is known as a combined state.
The behavioural process has given by a three-state Markov process in which the duration-time
followed an exponential distribution, with the generator:

G =

 −0.3 0.3 0
0.4 −0.6 0.2
0.3 0 −0.3

 (7.8)

The movement parameters were sharing the centre of attraction for three states µx = 95,
µy = 55, movement parameters for state 2 equal the movement parameters for state 3 because
they represent the same behaviour. b1 = 0.00023, b2 = b3 = 0.0033, v1 = 3, v2 = v3 = 75.
The simulation was run with observations every 1 time units, giving 901 observations in total.
The 4-state model defined in Equation 7.3 was fitted, as before. The MCMC algorithm was
run for 10 million iterations.
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Fig. 7.3 Exponential QQ-plot for the posterior result for both behaviour for the simulated
dataset with two states. The left hand graph shows the aggregate state associated with a1 and
a2, the right hand graph the aggregate state associated with b1 and b2.
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Fig. 7.4 Histogram for the posterior time spent in each behaviour for the simulated dataset
with two states. The left hand graph shows the aggregate state associated with a1 and a2,
and the right hand graph the aggregate state associated with b1 and b2. The red line is the
exponential distribution.
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Results

Thus, each state has two sub-states with the mean posterior transition rate generator:

λ =


−0.25 0.02 0.23 0

0 −0.13 0.13 0
0.19 0 −0.56 0.37
0.22 0 0 −0.22

 (7.9)

The model results show that λa1,a2 = 0.02 is small. This means that there are very few
switches to substate a2. Meanwhile, λb1,b2 = 0.37 is large. This means that there are many
switches to substate b2. This suggests that the process is a two-states model, wherein substate
a1 is a regular Markov state without the need to extra substate while substates b1 and b2 use
an sub-states aggregate model, and the duration time in total b state do not follow exponential
distribution. When the animal is in substate a1, it does not have to transition to substate a2,
but can go directly to substate b1. This allows for an exponential distribution for the duration
time in behaviour a. So the structure in the estimated model matches the structure used to
simulate the data. The posterior mean for the movement parameters varies between the two
behaviours. bi and vi are shown in Figure 7.5. There are clear differences in the movement
parameters between the two behaviours. The black dot is the real value, and the posterior
results are shown as colored dots. Figure 7.6 shows the QQ-plot examining whether or
not the dwell-time of each behaviour follows an exponential distribution. Figure 7.7 and
Figure 7.6 shows that duration time for state a follow exponential distribution while duration
time for state b is not exponential. Figure 7.7 shows a histogram of the time spent in each
behaviour. The red line is the exponential distribution with rate= 1

mean .

7.4.3 Four-states Markov model

Simulated data

This simulated datasets is similar to the bison example in the next section. A four-states
model was simulated, wherein each pair of two states represented one behaviour. The OU
model with a four-state Markov process was implemented, and the duration-time of each
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Fig. 7.5 Posterior Movement parameters for the simulated dataset with three states. The two
clusters correspond to states a and b ( green, blue respectively).

state followed an exponential distribution with the generator:

G =


−0.5 0.3 0.2 0

0 −0.2 0.2 0
0.3 0 −0.7 0.4
0.5 0 0 −0.5

 (7.10)

The OU parameters shared the centre of attraction in the four-states model µx = 95, µy = 55.
Movement parameters for state 3 were equal to the movement parameters of state 4 because
they represent the same behaviour. The movement parameters of state 1 are also equal
to the movement parameters of state 2, as they represent the same behaviour b1 = b2 =

0.00023, b3 = b4 = 0.0033, v1 = v2 = 3, v3 = v4 = 75. The simulation was completed with
observations every 1 time units, providing 901 observations in total. The estimation algorithm
used was run for 10 million iterations.
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Fig. 7.6 Exponential QQ-plot for the posterior result for both behaviour for the simulated
dataset with three states. The left hand graph shows the aggregate state associated with a1
and a2, the right hand graph the aggregate state associated with b1 and b2.
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Histogram of simulated data with 3 states state3&4
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Fig. 7.7 Histogram for the time spent in each behaviour for the simulated dataset with three
states. The left hand graph shows the aggregate state associated with a1 and a2, the right
hand graph the aggregate state associated with b1 and b2, the red line is the exponential
distribution
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Results

We fit the 2 state model in which each state has two sub-states, with the mean posterior
transition rate generator:

λ =


−0.36 0.27 0.09 0

0 −0.21 0.21 0
0.08 0 −0.25 0.17
0.35 0 0 −0.35

 (7.11)

The posterior distributions of the movement parameter varied between the two behaviours.
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Fig. 7.8 Posterior movement parameters for the simulated dataset with four states. The two
clusters correspond to states a and b (red, green respectively).

bi and vi are shown in Figure 7.8. There are clear differences in the movement parameters
between the two behaviours. The black dot is the real value, and the posterior results shows
an colored dots.

Figure 7.9 shows the QQ-plot examining whether or not the duration-time of each be-
haviour follows an exponential distribution. Figure 7.10 shows a histogram of the time
spent in each behaviour for the four states simulated data. The red line is the exponential
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Fig. 7.9 Exponential QQ-plot for the posterior results for both behaviour for the simulated
dataset with four states. The left hand graph shows the aggregate state associated with a1
and a2, the right hand graph the aggregate state associated with b1 and b2.



146 Generalization of models for duration of behaviour

Histogram of simulated data with 4 states state1&2

Time unit

D
en

si
ty

0 10 20 30 40

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12
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Fig. 7.10 Histogram for the posterior time spent in each behaviour for the simulated dataset
with four states. The left hand graph shows the aggregate state associated with a1 and a2, the
right hand graph the aggregate state associated with b1 and b2. The red line is the exponential
distribution.



7.5 Application 147

distribution. Figure 7.10 and Figure 7.9 shows that state a and b are not Markovian and the
lengths of time spent there do not follow an exponential distribution.

7.5 Application

7.5.1 Bison data

American bison were observed using GPS radio collars within the Prince Albert National
Park in Saskatchewan, Canada. This study was conducted between October 2005 and April
2006. The locations of the bison were collected every hour. For more details about the
data see; Babin et.al. (2011). Langrock et al. (2012) used this datasets but with three-hour
intervals to ensure the data followed regular time-intervals. There are some missing data
so they thinned the data to a three-hour interval to solve this problem. This is because the
discrete time approach cannot address irregular data, for more details see Section 2.5. While
Langrock et al. (2012) analysed the movement paths of nine bison but each animal separately,
this chapter focuses on the movement of only one bison. There were 1654 observations. A
plot of the bison movement is provided in Figure 7.11. Langrock et al. (2012) suggest that
the bison displayed two behaviours: encamped with slower movement, and exploratory with
faster movement.

Langrock et al. (2012) choose to use part of the dataset that ware collected over one winter.
This is because though the behaviour of bison varies within the season, it is reasonable to
assume that it is homogeneous throughout the winter. In other words, the animal will not
change its behaviour over time within this season. For example, the transition rate will
change with the season over a full year, but the movement parameters and transition rate
during the winter will remain constant. The same data as in Langrock et al. (2012) are used
here to compare the results of our new approach with their results.

7.5.2 Approaches to analysis

The proposed model will be spatially homogeneous. There will be a single transition
generator matrix, and the behavioural states will be exploratory and encamped. Langrock et
al. (2012) suggested the bison in these data have two behaviours and divided each behaviour
into 30 sub-states. Then they used a hidden Markov model to fit the data. Here, we assume
the same thing, that the bison has only two behaviours, but we expanded each behaviour to
only two sub-states. This is because using the OU model, the 30 sub-states will complicate
and slow the algorithm. Also, even dividing the behaviour state to only two sub-states can
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Fig. 7.11 Observed movement path for the bison.
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give a worthwhile improvement. We will use the same model describe in the simulated
experiment with 2 states. Each state has two substates, and the substate share the same OU
process. For more details see Section 7.4.

7.5.3 Results

The movement parameters of state a1 were equal to the movement parameters of state a2,
as they shared the same behaviour. The movement parameters of state b1 were equal to the
movement parameters of state b2.
The posterior mean for the transition rates generator matrix is:

λ =


−0.49 0.3 0.19 0

0 −0.26 0.26 0
0.27 0 −0.3 0.03
0.19 0 0 −0.19

 (7.12)

The kappa posterior mean is κ = 0.61.
From the above matrix it can be noted that, λa1,a2 , λa1,b1 are large which means there are
many switches to state a2 and b1 from state a1, while the transition rate λb1,b2 = 0.03 is small,
which means very few switches happen from state b1 to state b2. That means most of the
time the process travels through only 3 states which are a1, a2 and b1 with very few visits to
state b4. That means the first a behaviour does not follow an exponential distribution and
needs an aggregate state to fit it. And the second b behaviour is following an exponential
distribution and does not need any sub-states.

The result of Langrock et al. (2012) suggest that the duration time for the encamped
state follows a geometric distrbution, while the duration time for the exploratory state follows
a negative binomial distribution. The first behaviour was Markov, while the second behaviour
was not, and that agrees with our results. As this study did not implement the same model
used by Langrock et al., there was no guarantee that the same distribution would be obtained.
As with the results in the previous chapters, there was a strong correlation between the b and
v movement parameters. The posterior distributions of the parameters vary between bi and vi.
They are shown in Figure 7.12. There are clear differences in the movements parameters of
the two behaviours. The parameters of states b1 and b2 are less accurately estimated due to
the small amount of time spent in those states.

Figure 7.13 shows the QQ-plot that examines whether or not the time spent in each
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Fig. 7.12 Posterior movement parameters for the bison data. The two clusters correspond to
state a and b (green, blue, respectively).
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Fig. 7.13 Exponential QQ-plot for the posterior results for both behaviours for the bison
data. The left hand graph shows the state associated with a1 and a2, and the right hand graph
shows the state associated with b1 and b2.
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behaviour follows the exponential distribution for the bison data. It is clear that the combina-
tion of states a1 and a2 do not follow an exponential distribution (left), while the combination
of states b1 and b2 follow an exponential distribution with a few outliers (right). This plot
allows for the comparison of estimated distributions for the time spent within a state against
an exponential distribution. Figure 7.14 shows a histogram of the duration-time for each
behaviour. The red line is the exponential distribution with a rate= 1

mean . The histogram
represents the time spent in each behaviour, as well as its density and probability. It is clear
that the combination of sub-states a1 and a2 do not follow an exponential distribution (left),
while the combination of sub-states b1 and b2 follows an exponential distribution (right).
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Fig. 7.14 Histogram for the posterior time spent in each behaviour for the bison data. The
left hand graph shows the state associated with a1 and a2, and the right hand graph shows the
state associated with b1 and b2. The red line is the exponential distribution.

7.6 Discussion

A limited property of the Markov process is that the duration-time distributions for be-
havioural states must follow an exponential distribution in the continuous time. Relaxing
this assumption leads to a loss of the Markovian property, making the analysis more difficult.
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This chapter has considered how to address this limitation by allowing the duration-time to
follow any continuous distribution, while simultaneously maintaining the Markov property.
This was achieved by expanding the existing behaviour state to multiple sub-states.

In the simulated experiments, three different simulated datasets were used to examine
the new idea and all of them gave reasonable results. Then real data were used to compare
the results we get with other studies that used the same data and the same technique but in a
discrete time model, and the result was satisfactory.

The advantage of the proposed model is that it provides more flexibility and generality,
while also saving on computational costs when compared against semi-Markov models. Fur-
thermore, this method maintains the Markov property, which is lost when the semi-Markov
model is used. Losing the Markov property leads to difficulties in fitting the model and the
inference, despite the Markov model being straightforward in principle.

This extension could be an important innovation within the field of ecology, as it not only
improves the model in a realistic way, but also has the potential to bring forth important
behavioural insights that basic Markov models cannot provide, as it allows the aggregate
behaviours in the model more flexibility in matching actual behaviours based on observed
movement.





Chapter 8

Conclusion

8.1 Summary

Animal movement data represent animal locations and their observation times. Global
Positioning System (GPS) and radio tracking technology used in animal tracking have pro-
duced complex datasets of animal movement behaviour. The availability of high-resolution
datasets is the result of these developed telemetry technologies, which are used to describe
specific characteristics of wildlife movement and are linked to behaviour and environment.
Researchers want to obtain more information from these data to help them understand not
only about the animal location (home range, territory, etc.) but also about the animal dynamic
(movement) itself. When an ecologist records animal locations using the capture-recapture
idea or recent tracking technologies but the time interval between these observations is large,
then these locations can typically be assumed to be independent. That is fine, if the ecologist
is only interested in learning about where an animal wants to spend its time (home range,
territory) or to simply study utilisation distribution. However, if the ecologist is interested
in studying an animal’s behaviour and the effect of the environment on its behaviour, then
location observations should be close together in time, making the data autocorrelated. If
the movement data are correlated, then a statistical approach is needed that allows for the
autocorrelation between observations.

Most existing literature uses discrete time models to analyse the animal movement data.
Ecologists find it easier to use discrete time models due to the availability of statistical
software. There are some limitations of the discrete time models. The interpretation of
the parameters depends on the time scale, which makes it difficult to compare different
studies or to combine data that have different time intervals. Also, discrete time models
cannot be used with irregular time data. In contrast, continuous time models can fit regular
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and irregular time data, and the interpretation of the parameters does not depend on time.
However, the continuous time models have two main limitations. First, the analysis of data
using continuous time models is still quite complicated at the moment and most ecologists
need assistance from statisticians. Second, there is a high computational cost when fitting
continuous time models to large datasets. Ideally, one of the things researchers would like
to achieve is to provide software that makes it easier for the ecologists to fit continuous
time models. Unfortunately, the method is still in development currently, thus this is hard to
accomplish.

Throughout this thesis, the OU diffusion process was used to model the animal move-
ment data in continuous time. Dunn and Gipson (1977) were the first to present the OU
process for the purpose of animal movement analysis and in order to deal with dependence
between observations. Blackwell (1997, 2003) further developed the Dunn and Gipson idea
to include switching between discrete modes of movement. Harris and Blackwell (2013)
additionally extended the model by adding spatial heterogeneity and they also introduced
the separable model to simplify inference and algorithm. Blackwell et al. (2016) introduced
the exact Bayesian inference method to analyse the separable model and called it the exact
method. This thesis attempted to extend and generalise the method presented by Blackwell
et al. (2016).

For some cases, the exact method can be inefficient. Thus, this thesis attempted to im-
prove the algorithm and extend the range of the models that can be fitted using this method.
In practice, the goal of this thesis is to improve the efficiency of current algorithms and to
allow more general models to be applied, and this thesis aimed to ensure that the exact method
is practically feasible. This thesis shown some ways in which computational efficiency have
been improved and some ways in which the models can be made much more general. It
attempted to improve the efficiency of the computational costs of animal movement in a
continuous time model as well as to increase the speed and the range of the model. The
following is a summary of each experimental chapter (i.e. of each chapter that discussed how
the aims of the thesis can be achieved).

In Chapter 4, the approximation method, the goal was to increase the efficiency of the
current (exact) method. In the current method, the number of potential switches between
observations are generated from the Poisson distribution. However, this chapter tried to
approximate the number of switches in order to approximate the estimation of the poste-
rior parameters by assuming that there is only one potential switch between each pair of
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observations. This method was tested using simulated data. The results suggested that
both methods (exact and approximation) give very similar results in terms of estimating the
posterior parameters. However, the approximation method did not save time because other
parts of the algorithm become more complicated. It can be concluded from the results of the
approximation method chapter that some approximations can be safely conducted and results
similar to those of the exact method can be obtained, but the method does not save as much
time as hoped.

In Chapter 5, variable kappa, the aim was also to increase the efficiency of the current
algorithm (exact method) as well as to broaden the range of possible priors for the transition
rates. Blackwell et al. (2016) assumed that the transition rate has a global upper bound,
which they defined as κ . Furthermore, they assumed that the kappa value is known and fixed
even though kappa does not have any biological meaning. It was attempted to improve upon
this method here by allowing kappa to vary rather than have a fixed value. This was achieved
by treating kappa as a parameter and making it adjust to the value of the transition rates
so that, when the transition rate is updated at every iteration, the kappa is updated as well.
The reason for that is that there are a lot of potential switches between observations when
kappa has a large value, which slows the algorithm. The variable kappa approach was used
with various data, such as the fisher dataset (used for fitting the adaptive model) and some
simulated data. The results showed that the variable kappa improves the current method
by saving time and gives similar posterior results to the current approach while allowing
unbounded prior distributions for all parameters.

In Chapter 6, estimating unknown boundaries, the purpose was to extend the current model
to estimate the unknown boundaries between different regions. This boundary can be psy-
chological, such as an animal’s home range boundary or territory boundary, or a physical
boundary of unknown habitat spatial structures. The boundary estimation idea increased
the flexibility in modelling the ways in which an animal uses the space. The idea worked
with two different data sets: first, the simulated dataset in which there was an unknown
straight-line boundary between two regions; second, the real dataset for Ibex (a type of wild
goat) in which a circular boundary between two regions was estimated. In estimating the
boundaries between regions, more can be learned about the environment and how it affects
the movement of the animal using it.

The exact method assumed that the duration time for each behaviour follows an exponential
distribution. In Chapter 7, the current model was further extended to include application
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in cases where behaviours have general continuous distributions in time. In practice, there
are biological reasons for the duration of the time distribution to differ from the exponential
distribution, such as an animal doing some task it needs to complete. When there is reason to
think that an animal is exhibiting a particular behaviour that involves completing a task, for
example feeding until it is no longer hungry, then semi-Markovian behaviour is expected.
By applying the semi-Markovian model, a new model was developed here that has a more
realistic behaviour pattern. This more flexible behavioural model lets researchers learn about
how an animal behaves and the effect of this behaviour on its movement. These extensions
were illustrated by presenting a re-analyses of two movement datasets, one simulated and
one from a radio-tracking experiment on bison.

Continuous time modelling was successfully expanded in different directions by allowing
the kappa to vary, allowing for semi-Markovian states and estimating unknown boundaries.
It is hoped that these ideas will make modelling animal movement in continuous time more
widespread. Statistical methods were developed to enable us to learn more from animal
movement data. It is hoped that these new methods will help ecologists use movement data
easily to learn more about animal behaviour and the environment.

8.2 Future work

In the approximation chapter, the hoped for improvements in speed were not obtained as
the speed of the analysis did not increase by very much. However, the results did show that
the underlying idea worked and that a very good approximation was obtained. Therefore,
it may be possible to combine this approach in the future with other ideas about increasing
the speed of the code. However, in isolation, it was shown that the approximation idea is
not useful. Blackwell (2018) tried to use hidden Markov models to increase the speed of
the exact analysis, which can be combined effectively with the approximation method. It
is possible to combine the approximation method with other techniques to speed up the
inference. Hence, these two separate improvements for the method could be combined in the
future.

In the chapter that estimates the boundary, two examples were provided: the line boundary
and the circle boundary. However, it would be possible to extend the model to include
estimating the boundaries of multiple patches. It could be assumed that that the number of
patches was known but that the location of these patches was unknown; thus, in the author’s
future work, an estimation of the location of the patches is going to be attempted based on
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the movement data.

In the semi-Markov model chapter, it was assumed that the model is homogenous so that the
transition rate does not depend on location. The model can be extended further by allowing
the semi-Markov model to be non-homogenous and to have different transition rates for differ-
ent regions. Extending the semi-Markov idea by allowing for spatial variation would increase
the flexibility of the model. However, the difficultly lies in ensuring that the parameters are
still interpretable. The semi-Markovian model could be extended through a combination with
the spatial heterogonous case, which would result in an extremely flexible model with the
potential for many parameters. Therefore, it would be necessary to restrict the parameters to
maintain the interpretation and meaning of the model. If the model had a separate λi j for each
region, then there would be too many parameters to estimate and the shape of the duration
time distribution would vary, depending on the region in which the animal was located,
thus complicating both the algorithm and the model. Therefore, this would be done only if
there was a biological reason. The model should not have too many parameters to estimate,
because the aim is to think about what an ecologist wants to represent as well as about the
states and transitions that need to be considered. Reducing the number of parameters would
be a natural way to simplify the model; in other words, some transitions would not be allowed.

Langrock et al. (2016) added a large number of sub-states to the semi-Markovian model.
They allowed each state to have several sub-states in order to obtain a good approximation for
the duration time distribution. For example, in the simplest model with two states, each one
has a series of 30 sub-states inside a particular behavioural state. Their aim was to achieve a
close mathematical approximation of a particular distribution. However, in most cases, it
is not known in advance what this distribution should be. Hence, in practice, flexibility is
needed to approximate a range of distributions. An expanded states idea is needed to check
that the number of the sub-states required to estimate the duration distribution is enough. The
model always yields better estimates when it includes more sub-states. However, the real
question here is when the inclusion of additional states makes a difference? One possibility
is to investigate how well the model is fitted. In the expanded states chapter, a simple model
with two sub-states was applied to determine the distribution of the duration time. In future
work, models could be compared to see how well they approximate the duration distribu-
tion for different numbers of sub-states. By fitting the same model to three sub-states and
then to two sub-states, a comparison of the two duration distributions could help determine
whether they have the same flexibility or not. The two cases would not have exactly the
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same distributions, but they may be very close, in which case the simpler model would be
preferred.

Resource selection

Animal movement is affected by habitat features such as food and water sources. In addition,
barriers in the environment influence an animal’s movement, including highways, fences,
railroads and other barriers that limit animal movement. Scientists have extended the animal
movement models to include habitat resource selection, barriers and measurement errors. The
aim of the work by Brost et al. (2015) was to estimate the probability of resource use that was
conditional on resource availability. In this type of research on resource selection, scientists
often study complex maps on which there is a grid and separate resource measurements in
each pixel. These maps are used to estimate how attractive each resource is to an animal.

In some studies, there may not be any information about the environmental resources or about
which resources are important for an animal. Examples of such information include details
about when an animal’s movements show exploratory behaviour through the localisation of
it slower movements, which may indicate that the animal wants to explore food or water in a
patch of resources found in the habitat. Then, the analysis in the chapter estimating unknown
boundaries can be extended to identify and estimate these resources.

In the discrete time model, using the hidden Markov model often allows the transition
probabilities to depend on covariates. In future work, the continuous time model could be
extended to allow the transition, depending on the spatial covariate, where λi j is a function
of x. For example, λi j(x, t) might be exp(αi j + βi j x), where x is the distance from the
current location to some particular point, such as a river, a food patch resource or water.
The distance of an animal from this point would determine how likely the animal would be
to switch to a particular behaviour. This example is similar to the idea proposed by Wang
et al. (in preparation): a continuous time model was fit with covariates, but the switching
model was restricted by assuming that an animal would always switch to the best centre of
attraction, depending on the current location and the patch quality. In their research, Wang
et al.’s study area had several patches and each patch had a centre of attraction different
from the other patches. Moreover, the quality of the food density depended on the number
of revisits for each patch. If an animal was in a specific location and there was a potential
switch, the switch depended on the distance between the current location, the patches and
the quality of the patches. In some cases, the quality of these patches was varied, depending
on the time of the year. At certain times of the year, the quality of one patch decreased



8.2 Future work 161

while the quality of another patch increased. Hence, at some point, the animal stops heading
towards a low-quality patch and starts moving to a high-quality patch. The idea of Wang et al.
represents a special case of spatial covariates, because the animal could switch to only one
patch every time and there is no randomness in behaviour. In the idea of multiple patches,
a behaviour exists for each patch, as well as for moving between the patches, which might
result in having twice as many behaviours for a given number of patches. Some behaviours
represent an animal’s movement inside each patch, while other behaviours represent its
movement towards each patch.

Measurement error for observations

As mentioned in Chapter 3, this thesis assumed that there is no measurement error in locations.
An animal does not move very much in a small interval, which indicates that a risk exists
of an error being larger relative to its actual movement. If an error is substantial, then an
animal might be moving in a completely different direction. When the data have a fine-scale
observations, it is more important to think about the movement error. The model presented
here can be extended to include the measurement error.

In the current model, some potential switches exist and the locations at the time of the
switches need to be reconstructed. When including a measurement error, the true locations at
the observation times also need to be reconstructed by allowing for measurement uncertainty,
instead of the current practice of treating the observations as true locations. In this model, the
true location x(t) would follow the OU process and, at a given time. The observed location
yt could follow a normal distribution or t-distribution that is centred on the true location and
with some variance. A new set of variables would need to be added to represent the true
locations and an extra step would be needed in the MCMC to update those true locations.

If a measurement error is small, then both models with or without this measurement er-
ror should yield very similar results. In reality there is always some measurement error,
but the question this notion raises concerns whether this error is small enough to ignore or
whether it should be incorporated in the model. However, including a measurement error
further complicates the model and it becomes harder to make inferences; thus, an error should
be omitted if it is small enough. This approach is often applied to GPS data, because the
GPS measurement error is relatively small.

Even if a measurement error is not small, scientists can often determine its size—e.g.
the variance in the error term. In that case, the known variance or an informative prior



162 Conclusion

distribution of its value can directly be included in the model. On the other hand, if there
is a measurement error but its size is unknown, then an uninformative prior must be used
for the actual error variance. This case is unavoidably difficult—if an error is large, then
the observed path might not resemble the actual path and learning about the details of an
animal’s movement and behaviour would be impossible.
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