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Summary

A rigorous formulation for the structural response of thin-
walled members of arbitrary open cross—section acted upon by a general
system of loads is developed based on energy principles and virtual
work concepts. Full account is taken of three dimensional behaviour,
inéluding sectorial warping effects. The analysis incorporates the
effect of initial geometrical deflections. Different patterns of
residual stress, non-coincidence of the shear centre and centroid, a
complete absence of symmetry in the section and the influence of higher
order terms in the strain-displacement relationships including products
of the derivatives of axial displacements are also incorporated.

A computer program based on finite element analysis suitable
for application in both the elastic and inelastic ranges is developed.
This is used to solve the differential equations governing the ultimate
strength of beam-columns in space,

The program .is written in the Fortran 77 Language. The main
function of the program is to follow the loss of stiffness due to
spread of yield and hence to trace the full load-deflection response up
to collapse. It may be used in a wide variety of ways.

Three types of analysis have been conducted in this study.
These are: Linear, Partial Non-linear and Full Non=linear. The Linear
involves only the small deflection theory. Partial Non-linear analysis
uses non-linear strains whiie the Full Non~linear analysis incorporates
both non-linear strains and nonlinear stiffness matrices., Several
illustrative examples, previously investigated either theoretically or

experimentally, have been chosen to check the validity of both the



analytical approach and the computer program. These examples cover
flexural, flexural-torsional, biaxial bending, and bending and
torsional behaviour in the elastic and inelastic ranges. They contain a
wide range of parameters e.g. different cross-section shapes, loading,
boundary conditions and initial imperfections. Finally the program has
been used to study the ultimate strength of steel members subjected to
compression,. bending and torsion in a more rigorous fashion than has

previously been possible.
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Chapter 1

Introduction

1.1 General

The order of complexity of the response of a structural
member in three-dimensions depends on a number of factors. These
include the nature of the loading, material properties, and the kind of
assumptions made in deriving the governing_equations. The most general
type of member, which combines both axial and flexural loading, is
generally termed a 'beam-column',

The behaviour of beam-columns depends on their slenderness
and the load conditions as shown in Fig., 1.1, Failure can occur in
either the elastic or inelastic range, in the form of flexural or
flexural=-torsional buckling, or, more generally, biaxial bending. When
a member 1is bent about its weaker principal axis, or when it is
prevented from deflecting laterally while being bent about its stronger
principal axis, then only an in-plane flexural response 1is possible.
Flexural-torsional buckling occurs when a member is bent about its
stronger axis but is not restrained laterally so that it may buckle out
of the plane of bending by deflecting laterally and twisting. If the
member is bent about both axes and twisted it will respond in a full

three dimensional manner.



1.2 Aim of the study

The purpose of this study is to provide a general formulation
suitable for many kinds of cross section such as channel, tee, L, Z, U,
I, (mono or doubly symmetric), etc. for structural members acted upon
by any form of loading and provided with very general support
conditions. The validity and accuracy of this approach is demonstrated
by several illustrative examples, the results of which are compared
with those obtained previously from either theoretical or experimental
investigations.

The domain of this study is summarized in the following:

1= Developing a theoretical analysis for a beam-column having an
arbitrary open cross section, which is applicable to both
elastic and inelastic analysis.

2- Derivation of linear and nonlinear tangential and geometrical
stiffness matrices and strain-displaéement matrices for a
beam-column in space suitable for many kinds of cross-section
subjected to a wide range of loading.

3~ Developing a general computer proéram based on finite element
analysis. This program 1is capable of implementing the
formulation to provide numerical solutions.

4 Checking the wvalidity and accuracy Qf both the derived
equations and the computer program by comparing the results
against those previously obtained by experimental and
theoretical considerations,

5= Investigating problems of bending and torsion not previously

fully solved in both the elastic and the inelastic ranges.



1.3 Out-line of the thesis

This thesis contains nine chapters setting out the
formulation and implementation of an ultimate strength study of the
behaviour of steel beam=-columns.

Chapter 1 provides a general introduction to the problem ¢to
be investigated. This is followed in Chapter 2 by a selective review of
the previous work (theoretical and experimental), within the general
area of the structural response of beam=columns,

Chapter 3 presents a pair of general three dimensional
formulations, based on the concept of virtual work or the use of energy
principles, in which the influence of higher order terms, the effect of
initial imperfections (such as residual stresses, initial crockedness,
etc.) have been included. Comparison between previous more restricted
formulations and this general one are explained in detail, Chapter 4
presents the full stiffness matrices (linear/ nonlinear tangent and
geometric stiffnesses and linear/ nonlinear strain matrix together with
the interpolation functions and the transformation matrix) required for
the impleméntation of this approach.

Chapter 5 describes both the analytical procedure and the
computer program structure. The analytical process is used to generate
the section and sectorial properties, internal forces, curvatures,
tracing spread of yield through the entife cross-section, etc., The
program TDCP (Three Dimensional Computer Program) is based on finite
element computer concepts, is written in the Fortran-77 Language,
contains a wide variety of options, (in-plane ,out of plane, uniform
loads ,distributed loads, initial geometrical imperfections, different
boundary conditions, etc.) and may be used to investigate the elastic

and inelastic behaviour of members of thin-walled open cross-section,

-3 -



under different load and support arrangements,

Chapters 6 and 7 contain comparisons between the results of
this program and those derived previously by other techniques. 'These
illustrate the advantage of both the modified formulation and the more
advanced computer program which is capable of correctly accounting for
factors such as, absence of symmetry, any form of loading, any pattern
of residual stress, any set of initial deformations as well as varying
degrees of sophistication in the assumed strain-displacement relations
and general geometrical aspects of the problem.

In chapter 8, new problems involving the determination of
ultimate strength under bending and torsion are presented in both the
elastic and inelastic ranges for beam-columns of I-section,

Chapter 9, presents general conclusions and makes some

suggestions for further work.
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Chapter 2

Review of Previous Work

2.1 Introduction

The ©behaviour of thin-walled beams and beam-columns of open
cross-section is a subject of importance to those concerned with the
design of metallic structures, This was initially due to the growth of
their use in aircraft followed by increases in their use as members in
civil engineering structures, A great deal of research =both
theoretical and experimental- has been carried out to provide
comprehensive data on which safe and economical designs can be based.

In this thesis a general three-dimensional formulation for
the structural response of steel beam-columns having an arbitrary open
cross-section 1is derived taking into account almost all the known
factors affecting their behaviour, such as 1initial crockedness,
different patterns of residual stresses, and a wide variety of loads
and boundary conditions. The wultimate strength behaviour of beam-
columns in both the elastic and inelastic ranges has been investigated
by using a computer program based on the resulting finite element
analysis, Before wundertaking this contribution a review of previous

work was conducted.

2.2 Review of Previous Work

2.2.1 Historiecal & General

The behaviour of a beam=column depends principally on its



slenderness ratio. Failure of slender members is often governed by
buckling in the elastic range, for which the effects of small geometric
imperfections are comparatively unimportant, and the presence of
residual stress irrelevant. Thus elastic critical loads may be used to
approximate the ultimate strength. However, members of intermediate
slenderness normally fail by inelastic buckling, for which the residual
stresses are important because they cause early yielding within the
cross-section, resulting in a reduction in the effective stiffness of
the member, and a lowering of the resistance to buckling. Stocky beam-
columns may attain loads determined 1largely from material strength
considerations. Fig. 2.1 represents a typical moment-slenderness
relationship for beams. It relates to both idealised members with no
initial deflections or residual strains, and a real member for which
the effects of these imperfections have been incorporated; failure may
be either elastic or inelastie.

A great deal of research work (experimental and theoretical)
has been conducted into the behaviour of steel members of thin-walled
cross-section subjected to a variety of loading conditions. Some of
these studies have 1included the effects of initial geometrical
imperfections. Investigations have covered both the elastic and the
inelastic ranges and have considered both two and three dimensional
response,

When a 1laterally unsupported member is subjected to biaxial
bending, it will usually deflect in both principal planes and twist at
any load level as illustrated in Fig. 2.2. The importance of twisting
lies in the fact that the ultimate load carrying capacity of an open
cross-section, for which the torsional rigidity is small, will be

crucially affected by the torsional aspect of the deformations.



The review given below covers only a selection of
contributions to the general subject area, concentrating on some of the
more significant developments,

Timoshenko (1910) developed the fundamental differential
equations for flexure and torsion of doubly symmetric simply supported
I-beams. He solved them for the elastic critical loads by using energy
theorems, A particular study was made of the effect of the point of
load application when it was remote from the shear centre axis. Wagner
(1929) studied the torsional buckling of a thin-walled column; Kappus
(1937) modified Wagner's equation and generalized it to deal with any
thin-walled open cross section. Bleich (1933,1936) derived an
equilibrium equation for a member subjected to axial compression and
equal end moments having an I-cross section; in his study the ecritical
loads for flexural-torsional buckling were determined.

A number of investigations have been carried out to determine
the critical loads for I-beams subjected to a variety of different load
cases. Tabulated results are given by Clark and Hill (1960), Timoshenko
and Gere (1961), Vlasov (1961), Galambos (1968), Nethercot and Rockey
(1971), and Nethercot (1972). Winter (1941) derived an approximate
formula to determine the buckling loads of monosymmetric I-sections
under equal end moments. Other load cases have been considered by
Petterson (1952), Vliasov (1961), and Anderson and Trahair (1972),

General design methods based on the extensive research on the
elastic flexural-torsional . buckling of beams have been proposed by
Clark and Hill (1960), Trahair (1966), Nethercot and Rockey (1971), and
SSRC (1976). ;

Pekoz and Winter (1966) have noted that the twisting of a

beam-column subjected to axial load with eccentricities eyand e, can
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be explained by considering the physical model illustrated in Fig. 2.3,

in which the applied load can be decomposed into four components viz:

1= equivalent to pure axial load P,

2- equivalent to bending moment about weak axis.,

3~ equivalent to bending moment about strong axis.

4o equivalent to bimoment which causes the bar to warp. (this

system produces zero axial load and bending moments on the

section.)

A survey of the elastic-plastic behaviour of columns of thin-
walled section under biaxial loading has been prepared by Chen and
Santathadaporn (1968). A complete account of the developments in this
area must necessarily deal with two important aspects: solutions
emerging from analytical studies and experimental results obtained by
laboratory testing.

Experimental and theoretical investigations have Dbeen
conducted by Black (1967d who studied the non-=linear elastic behaviour
of an unsymmetrical thin-walled beam of open section. The theoretical
relationships developed include the effect of torque components arising
from the displacements of the beam axes and the point of application of
the 1loads. Experiments were carried out to test the validity of this
formulation and he reported that good agreement was obtained

SSRC (1976) reported research results obtained from several
theoretical and experimental investigations on beam-columns, including
members under uniaxiél or biaxial bending, or transverse 1loads, or

combinations of loads. These covered:

1= the evaluation of critical loads in perfect members.
2- the behaviour of beams with initial imperfections.
3- the importance of residual stresses in steel members.



4~ developments relating the strain hardening modulus of steel

to inelastic buckling behaviour,

n
]

studies of the combination of the effects of a)initial
residual stress, b) geometrical shape imperfections and/ or
uncertainties of load location.
A full review of research on beam-columns in steel structures
conducted during the last forty years was carried out by Massonnet
(1976). This covers the behaviour of beams and beam-columns in the
elastic and inelastic range subjected to different load patterns. Since
that date extensive additional studies (theoretical and experimental)
on the behaviour and design of beam-column have been made. In
(1976,1977) Chen and Atsuta provided a two volume text on the behaviour
of beam-columns In two and three dimensions; Volume 1 helps the reader
to develop an wunderstanding of in-plane behaviour, while the second
volume provides a comprehensive source of information on biaxially
loaded beam-columns as well as an explanation of their space behaviour
under various load conditions. The two volumes taken together comprise
the first single reference book to discuss the complete theory of beam-
columns systematically from the most elementary to the most advanced
stage of development., They also covered some publications which provide
background and design rules for beam-columns, specifically:

1= "Guide to Stability Design Criteria for Metal Structures", by

SSRC,
2- "Stability of Steel Structures" by ECCS,
3- "Handbook of Structural Stability" by CRC of Japan,
Chen (1977) has provided a review of the theory and design

rules for beam-columns under different 1load patterns and boundary

conditions. The basic theoretical principles and methods of analysis in
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two and three dimensions in the elastic and inelastic ranges have been
included together with an assessment of the validity of the proposed
interaction approach to the design of biaxially 1loaded members.
Vinnakota (1977) has derived governing differential equations for an
arbitrary open cross-section, without making wuse of the notions of
centre of gravity, principal axes and shear centre. The finite
difference method has been used to solve these equations for a number
of problems having different load conditions.

Chen and Cheong-Siat-Moy (1980) have presented a review of

the philosophy behind the various interaction formulas for a beam-
column that have been proposed and are under consideration by various
specification writing bodies such as the American Institute of Steel
Constriction. The general validity of these proposed interaction
formulas has been demonstrated by comparison of computed loads with
test results.
- A survey of recent achievements in the analysis (experimental
and numerical solutions) and design of steel members in the USA has
been produced by Chen (1981), who investigated the behaviour of an
isolated beam=column under the influence of the initial deflections,
residual stresses, and various 1loading and boundary conditions. His
proposed interaction formulas have been checked against both computed
loads and the available test results.

Kennedy and Madugula (1982) made a comprehensive review of
both theoretical and experimental work on the buckling of angles,
covering single or built-up angles, equal-leg or unequal-leg angles
subjected to axial (either concentric or eccentric) load, transverse
load, or a combination of loads. Through their study they found that,

depending upon the cross-section, effective 1length and applied load
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configuration,v members comprising of angle shapes can fail by any of
the following : |

1= Flexural buckling about the minor axis.

2- Torsional buckling about the shear centre,

3- Torsional-flexural buckling.

be Local plate buckling.

5- Combination of torsional-flexural buckling and local buckling.

Cescotto et al. (1983) developed design rules for determining
the buckling strength of beam-columns of monosymmetric sections (Tee
and Triangle). The wultimate buckling loads obtained from experiments
gave quite satisfactory agreement with numerical simulations for both
cases, The suggested design rules appear as a useful complement to the
E.C.C.S. Recommendations. Numerical and experimental analyses have been
considered by Nakashima, et 2l.(1983) to investigate the buckling and
post buckling behaviour of steel beams having an H-shape, subjected to
a constant axial thrust and monotonically increasing end moments,
Interaction equations of ©beam-columns in the design

specification of Western Europe have been investigated by Nethercot
(1983)., He presented some quantitative evaluation of these proposals.
He also provided a tabulated comparison of these interaction formulae,

His investigation covered the following aspects:

1= "Uniaxial bending leading to in-plane failure",
2~- "Uniaxial bending producing lateral-torsional buckling".
3- "Biaxial bending".

A full review covering the theoretical and experimental
analysis 1in .both the elastic and inelastic ranges for columns, beams,
and beam-columns covering the years 1744 to 1984 has been presented by

Cuk (1984). Nethercot (1986) reviewed éomprehensively the lateral
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buckling of beams dealing with theoretical approaches in both the
elastic and inelastic ranges, It was found that the original
theoretical developments could be traced through to the most recent
ultimate strength approaches.

This introductory review is intended to provide an indication
of both the historical development of the subject and the wide range of
research already conducted. In the remainder of this chapter attention

will be focussed on specific aspects of the subject,

2.2.2 Elastic Behaviour

2.2.2.1 Flexural & Lateral Torsional Buckling

The elastic flexural and lateral-torsional buckling of beams
of different cross-section subjected to a wide variety of loads and
boundary conditions have been studied by many investigators.

Anderson and Trahair (1972) presented tabulated results for
simply supported monosymmetric I-beams and cantilevers with
concentrated and distributed loads, and investigated the influence of
load height on the elastic buckling moment, Their results compared very
well with test data,

Epstein and Murray (1976) developed a three-dimensional large
deflection theory for the analysis of thin walled beams, Numerical
examples are presented to illustrate the application of their theory to
the solution of elastic torsional post buckling behaviour of I-beams.
They reported that their solutions compared well with results obtained
from experiments,

Kitipornchai and Trahair (1980) developed a simple method for

determining section vproperties for a wide range of monosymmetric
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I-beams, including sections with lipped flanges and also they presented
a method to calculate the elastic critical loads of monosymmetric
beams. Their rule for the calculated elastic critical 1load for both
monosymmetric and doubly symmetric I-beams has been compared with AS
1250, BS U449, and the AISC specification., More accurate and consistent
results were obtained.

A second order differential equation has been derived by
Warnick and Walstoni(1980) using a coordinate system whose orientation
remains fixed in space for symmetrical members under different loading
conditions, Several examples were examined to investigate the 1lateral
buckling of I-beams. Results of their method were comparable with test
data. |

The behaviour of nonprismatic structural members (simply
supported or cantilever) under transverse concentrated loads has been
studied by Brown (1981) using the finite difference method to determine
the critical loads of simply supported and cantilever beams. He found
that the effect of loads placed either below or above the centroid was
significant in all types of beams but 1leads to an increase, with
decreasing free end depth for the cantilever.

Cuk (1984) 1investigated theoretically isolated/ continuous
beam=-columns subjected to transverse loads and end moments to determine
the elastic flexural-torsional buckling. He reported that his results
compared favourably with those obtained experimentally.

Kitipornchai et al (1985) proposed an alternative
approximation formula to evaluate the elastic 1lateral buckling of
simply suppoqied monosymmetric I-beams under moment gradient. They
found three factors affecting the buckling of monosymmetric sections,

which were
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1= Wagner effect Sx'
2- End moment ratio B,

3- Degree of monosymmetry P ( P= Iz Y.

£ / (Izt+Izb
Their results were compared with those furnished by the design rule,
which employed the moment modification factor m=1,75+1.038+,382 §2.56.
It was found that the application of their approach gave reasonable
results for beams of nearly equal flanges, but for higher degrees of

monosymmetric (P<,3 and p>.7) unsafe results were obtained when

compared with the previous formula.

2.2.2.2 Biaxial Bending

Culver (1966a,b) developed an exact numerical method to solve
the differential equations governing biaxial bending and torsion
established by Timoshenko and Vlasov (1961), His analysis covers two
cases viz :

i- Biaxial bending without initial imperfections

iia- Inclusion of the initial imperfections,
The results of both cases were compared with experimental data;
satisfactory agreement was obtained.

A governing differential equation for members of thin-walled
section subjected to biaxial bending has been derived by Soltis and
Christiano (1972). The effects of large deformations and higher order
terms were included. Several illustrative examples have been solved by
small and large deflection analysis. The results obtained by these
analyses yielded similar results up to 80% of the critical 1load. For
higher loads . both out-of-plane displacements .and the twist were

overestimated by the small deformation approach.
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2.2.2.3 Bending and Torsion

A two-volume treatise on the behaviour of beams and girders
subjected to transverse loading causing torsion has been prepared by
BCSA (1968,1970). The first of these presents general theory and
formulae together with graphs used ¢to display solutions, while the
latter presents worked examples (beams and griders subjected to bending
and torsion) to calculate stresses (normal stress, bending stresses
about Y and Z axes, warping stress, and shearing stresses) and
deflections at any point along the member and around the cross-section,

A theoretical approach has been developed by Kitipornchai and
Trahair (1975) to study the strength behaviour of tapered monosymmetric
I-beams of constant depth subjected to bending and torsion. Also they
carried out experiments on small-scale aluminium J-beams to confirm the
validity of their theory. They reported that excellent agreement
between the two analyses was obtained.

Pastor and DeWolf (1979) 1investigated theoretically the
behaviour of wide-flange beams ﬁnder equal end moments and a constant
torque applied at mid-span. They considered only small deflections and
ignored the coupling effects., The results obtained for three beams
having sections W12x120, W12x36, and W 12x14 respectively under Mcr /
100 at mid-span and monotonically - increasing end moments were
tabulated. They suggested the design of members subjected to flexural
bending and torsion should involve two checks:

1- The total stress should be compared with the yleld stress".
2~ The applied moments should be compared with critical moments
based on 1lateral-torsional buckling, with safety

considerations.
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2.2.3 Inelastic

2.2.3.1 Flexural and Lateral Torsional Buckling

Kennedy and Murty (1972) have conducted an experimental
investigation aimed at verifying the design approaches for angle and
tee struts of the AISC (1969) and CSA S16-1969 (1969) standards
covering inelastic flexural, torsional-flexural, and plate buckling. As
a result they recommended that design be based on the 1lowest of the
calculated values,

For angle struts

5625 B 75

0= —2°52 . 4f = ==

1.67(?)2 t " Jo
0z 0,60 ir 2 ;ZS—
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For tee struts
D D
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The inelastic flexural-torsional buckling of simply supported
I-beams wunder unifbrm moment and different patterns and magnitudes of
residual stresses has been studied theoretically by Trahair and
Kitipornchéf (1972). They deduced that the changes in the residual
stress system led to variations in the yielded regions in the cross

section, and consequent variation in the section rigidities. These
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variations cause very significant changes in the 1inelastic critical
moment .

Abdel-Sayed and Aglan (1973) studied the lateral torsional
buckling of wide flange beam-columns subjected to axial force and equal
end moments about the major axis. Initial imperfections were considered
together with strain hardening effects. They come out with these
general conclusions; the 1lateral torsional buckling reduces the
strength of beam-column in the 1inelastic range, while the residual
stresses have negligible effect on the buckling in the elastic range
but a significant effect in the inelastic range.

Nethercot (19732 presented a theoretical solution for
monosymmetric I-beams 1loaded by equal end moments acting in the plane
of the web to cause 1inelastic flexural-torsional instability. He
employed the expression for the critical moments deduced by Galambos

(1968), which wasg

M &1
Moo= eI R (1D 14 2
er " L 2 CK o
L2GK (14—
EI )
N (V]

in which EIz is the minor flexural rigidity; GK 1is the torsional
rigidity; EI  is the warping rigidity; Mp:foosz; and p is the
distance from the shear centre to the point where the stress, o, acts.
His conclusion was that the Galambos equation was valid for inelastic
buckling providing the stiffness terms, EIz. GK, EIm. and Mp are
correctly reduced to allow for the presence of yielded material.
Yoshida and Maegawa (1984) examined I-beams subjected to the
influence of residual stresses, various 1loading conditions and

geometrical imperfections to determine the lateral-torsional buckling
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strength, the load-deformation behaviour and the spread of yilelded
portions in the beam., They also examined the relation between the
ultimate strength and the buckling strength for the four theoretical
models of Fig. 2.4, which are:
Model-I A beam with out-of-plane deflection.
Model-II Straight beam subjected to a concentrated load at the top
flange with eccentricity ey( eyis the distance from centre

line of web to the loading point on the top flange).

Model-II11 Beam subjected to a vertical concentrated load Pz on
the top flange and :y applied horizontally at the same
point, where the ratio ;X is kept constant.

Model-IV A beam witﬁ gut-of—plane displacement under

eccentric loading.

Matthey (1984) studied the wultimate strength behaviour of
beam=columns of I-section subjected to axial force, and bending moments
about the X and Y axes. Residual stresses and initial deflections were
included. Those variables were arranged in a systematic fashion to form
the framework for a study of more than 2500 cases. For each case the
compressive load was applied up to a predetermined 1limit followed by
end moment loading to failure. He used these results to calculate the
Performance Factor which is defined as the ratio between the ultimate
load for every case obtained from his calculations and that given by
the design rules of EC3 (1983), SIA (1979), SIAC (1961), and Chen
(1979).

Kitipornchai and Lee (1986a) investigated theoretically the
inelastic flexural and flexural-torsional buckling of single-angle, tee
and double-angle cross-sections wused as simply supported columns

subjected to axial load. They found that the flexural buckling mode is
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the dominant failure mode for most shapes, except for single unequal
r

angles, for tees, and for double angles whose radii of gyration give L
r
pd

greater than 1.0. These theoretical results were checked against other

analyses and were in reasonable agreement,

2.2.2.3 Biaxial Bending

An approximate formulation has been provided by Syal and
Sharma (1971) for the solution of the generalized problem of biaxially
loaded columns with equal or unequal load eccentricities. The effects
of the residual stresses, cross-section shape B/D, and warping at the
ends being either permitted or restrained have been included. They
reported that their results match those previously obtained, Linder
(1972) conducted a theoretical investigation to determine the ultimate
load of columns of bisymmetrical section under biaxial loading. He
employed polynomial expressions for the displacements (U, V, and ®) 1in
order to obtain a general solution, He provided examples to demonstrate
his approach, which incorporates different slenderness, eccentricities,
and residual stress.

Epstein et al. (1978) extended the work developed by Epstein
and Murray (1976) to deal with nontrivial inelastic stability problems
for the prediction of the maximum load-carrying capacity of thin-walled
beam-columns of open cross-section under biaxial bending. Results for
inelastic biaxial bending and for instability of laterally unsupported
beams were compared with the experimental results obtained by Birnstiel
(1968) and Lee and Galambos (1963) respectively and satisfactory

agreement was obtained,
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Bending and Torsion

Theoretical studies on biaxially loaded thin-walled beam-
columns of open cross-section with and without incorporating torsional
effects have been investigated by Razzaq (1974). He undertook some
experimental work to verify the validity of the theoretical predictions
of his analysis. Twenty beam specimens were tested up to collapse at
two different slenderness ratios for the following loading conditions:

1- Subjected to equal end moments about a principal axis,
2- Subjected first to concentrated torque at midspan, and
subsequently to equal end-moments about minor axis.
3~ Reverse of case 2 .
It was found that good agreement was obtained between theory and
experiment,

Kollbrunner, et al. (1978) have examined theoretically the
ultimate strength behaviour of a cantilever member of I-section
subjected to bending and warping torsion. They reported that the
comparison’ of the analytical results with those obtained from
experiments was good, Kollbrunner, et al. (1979) have carried out
theoretical investigations on the elastic-plastic behaviour of thin-
walled fixed ended I-beams under bending and torsion. The results
compared well with those obtained from experiments in terms of ultimate

loads, internal forces, and twisting angles.

2.2.3 Experimental Studies

The behaviour of 1laterally unsupported angles of equal and
unequal leg lengths for a variety of % have been 1investigated
experimentally by Thomas et al. (1972). Uniform moments were applied

about an axis pérallel to an angle leg. Their conclusion was that the
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angle of twist (%) causes a reduction in the maximum section stress and
‘has a significant influence on the maximum loads.

Kitipornchai and Trahair (1975) have conducted an
experimental investigation of inelastic flexural-torsional buckling of
full-scale simply supported I-beams under concentrated loads. The end
supports allow for rotation about both minor and ﬁajor axes, transverse
displacements and twisting about the longitudinal axis were restrained,
but warping was free. The beams were loaded to failure and all but one
failure was inelastic. They found that the effects of residual stresses
was not important, and they confirmed that by theoretical predictions,
while the geometrical imperfections were more significant in reducing
the strength of beams below their theoretical buckling loads. They also
reported that their results were consistent when compared against
theoretical and test data together with the Australian Code for the
elastic and inelastic ranges.

82 experiments have been conduct in Leige (1983) on beam-
columns of ‘I-cross-section (HEA200 and steel grade Fe 360), subjected

to biaxially eccentric loading. The following variables were accounted

for:
1- The slenderness ratio in both planes (%L and ;%0.
2~ The bending moments applied in both plg;es. :
3= The axial load applied,
4. The moment gradient in both planes.

An extensive survey of the experimental investigations
preformed at various institutions on beams and girders which failed by
lateral instability has been prepared by Fukumoto and Kubo (1977). A
total of 275 tests have been included in their review; 159 for beams

and 119 for welded beams and girders. They employed statistical
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characteristics (Mean values (m) and mean minus twice standard
deviation) in order to have a comparison between test results and those
obtained from recommended design formulae, |

The variation of inelastic beam capacity with changing moment
gradient of simply supported 1laterally continuous I-beams has been
investigated exﬁerimentally by Dux and Kitipornchai (1983), Beam
slendernesses were chosen such that buekling should occur in the
loading range between the first yielding and the attainment of the
plastic moment. The points of 1load application were prevented from
moving 1laterally and twisting. The test results were compared with
theoretical predictions. An experimental investigation to determine the
inelastic flexural-torsional buckling of continuous beams of I-section
in a sub-assemblage of a three dimensional structural framework has
been carried out by Cuk (1984). He reported good agreement with the
results obtained from his parallel theoretical study.

A series of experiments on tees and angles in compression has
been conducted by Wilhoite et al. (1984a,b) to study their behavior and
strength. The tested bars were made of high strength, low-alloy steel
with improved formability to match the requirements of ASTM-A-718-81,
grade 60, They reported that the results obtained for both sections
match fairly well the theoretical predictions.,

Kitipornchai and Lee (1986b) investigated experimentally the
inelastic flexural and flexural-torsional buckling of single-angle, tee
and double-angle cross-sections subjected to axial load. They found
that flexural buckling is the dominant failure mode for most shapes,

except for single unequal angles, for tees, and double angles whose
r .
radii of gyration give gL greater than 1.0, Their experimental results

2
were carried out on SU4 struts with modified slendernesses ranging from
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0.33 to 1.08 for simply supported members prevented from twisting about
their longitudinal axis. These experimental results are in reasonable

agreement with theoretical predictions.

2.,2.4 Finite Element Development

Based on the finite element concept much research has been
carried out to obtain formulations for beams and beam=-columns in three
dimensions, using the equilibrium condition, the virtual work principle
or energy principles. Some of these have considered only uniform
torsion, whilst others have studied both uniform and nonuniform torsion
where the loads applied may be axial, flexural (uniaxial & biaxial) or
combinations.

The designation ‘'finite element concepts', as employed by
Barsoum and Gallagher (1970) ,was intended to characterize the
formulation of a relationship between the forces and displacements of a
single member via simplified assumptions as to the behaviour of the
element in terms of stress or displacements., Energy theorems were used
to develop the governing differential equation to study the torsion and
combined flexural-torsional instability of one dimensional members of a
constant cross-section in the elastic range., Their stiffness equations
gave excellent agreement (as the number of elements was increased) with

existing theory when compared with the following cases:

1- Torsional buckling (pure torsion).

2= Lateral buckling of simply supported beam under applied
moments.

3- Lateral buckling of a cantilever beam acted upon by

concentrated load at the shear centre.

Rajasekaran (1971) presented a finite element analysis, based
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on the principle of virtual work, for thin-walled members of open
section made from material having a trilinear stress-strain curve, The
effects of initial imperfections, residual streuses and different
patterns of loads have been included . The validity of this formulation
has been demonstrated by Rajasekaran and Murray (1973) for several
problems in both the elastic and the inelastic ranges by comparison
with existing results.

Nethercot (1973p) presented solutions for the 1inelastic
lateral buckling of I-beams loaded with either uniform or nonuniform
moments, with or without the inclusion of the effect of residual
stresses obtained by the finite element method. His analysis was
applied to several illustrative examples and the results compared with
existing theoretical and experimental data, good agreement being
obtained.

Epstein and Murray (1976) developed a formulation for the
analysis of thin -walled beams of arbitrary open cross-section
subjected to arbitrary large displacements in three-dimensions based on
a set of kinematic assumptions. They reported that numerical solutions
obtained for elastic lateral-torsional buckling for several problems
employing their model were consistent with experimental results, The
approach opened the way for predicting the real behaviour of structural
elements in the large deflection range,

Roberts and Azizian (1981) derived expressions for the second
order strains in a thin walled bar of open cross section subjected to
flexural, torsional and axial displacements based on energy methods.
These expressions could be‘used for nonlinear analysis, Such analysis
would be difficult so it was necessary to employ numerical solution

techniques. Roberts and Azizian (1983a) used these expressions to derive
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the equilibrium differential equations by assuming 1linear elastic
material behaviour. They supported their theory by providing several
{llustrative examples.

Chaudhary (1982) used the differential equation derived by
Vlasov (1961) to develop a general sti%fness matrix for a structural
member (monosymmetric) of thin walled open cross section subjected to a
concentric axial force, The analysis built upon the hypothesis that the
presence of bimoment leads to coupling of rotational displacements. He
found that bimoment has an important effect with a reduction in wall
thickness of the cross section of the structure., A three-dimensional
formulation for beams of an arbitrary open section based on large
deflection assumptions has been derived by Ramm and Osterrieder (1983),
Several illustrative examples are compared with previous work,

Opperman (1983) presented a mathematical model to study the
spatial behaviour of thin walled open cross-sections using the finite
element method., He reported that good agreement had been achieved
through comparisons with experimental results for several load cases,

Attard (1985) presented a nonlinear theory of nonuniform
torsion for straight prismatic bars having an open section under
conservative 1loads, where the nonlinear effects of changes in the
geometry are ignored in the 1linear elastic theory of nonuniform
torsion. Yeong Bin ~.Yang and Mc-guire (1985) adopted the equilibrium
equations of thin-walled beams based on the principle of virtual
displacements and an updated Lagrangian procedure,

Hasegawa, et al, (1985) presented an analysis scheme for the
problem of ouﬁ-of-plane instability of thin-wallgd beams and frames.
Based on the second order strain-displacement relationships, and the

theorem of virtual work, they derived the general stiffness equation of
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linearized finite displacements for a thin-walled member. Numerical
examples, which covered the out-of-plane instability for both straight
and curved beams, were compared with existing results. Their conclusion
was that the results obtained by them were accurate, efficient and
versatile for wide applications. Nishida and Fukumoto (1985) derived an
exact expression for the fundamental equations of a member with initial
imperfections subjected to the action of bending and torsional moments,
and also to investigate the strength of a beam under various load and
support conditions.

Wekezer (1985) developed an analysis for the nonlinear
torsion of bars of variable cross-section. The stiffness matrix is
expressed as a function of the coordinates of a discrete set of points
selected from the mid-surface of the bar. The geometrical description
of the mid-surface of a bar and its strain were considered, Stresses
were obtained from the linear stress-strain relations. He reported good
agreement with previously obtained results, either theoretical or
experimental,

An incremental equilibrium equation has been derived by
Sakimoto, et al. (1985) for a beam-column with arbitrary open cross-
section., Features provided in the analysis are:

i~ Inelastic warping torsion of a member,

ii- Yield of the material is judged as a bi-axial stress problem
associated with both normal and shear stresses.

iii- The stress distribution development of the plastic zones in
the cross-section can be easily displayed at each 1incremental

load step.

- 27 =



vi- The effect of arbitrarily distributed residual stresses can b;
considered,
They reported that their approach shows good agreement when compared
with available theoretical and experimental results.

Attard (1986) developed two finite element formulations, the
first one ignores initial bending curvature and the second takes into
consideration the first order initial curvature. The lateral buckling
loads for straight elastic prismatic beams of thin-walled section under
conservative loads were investigated. Close agreement was obtained with
experimental data,

Ohga and Hara (1986) developed a finite element-transfer
matrix method that can be applied to linear and nonlinear problems of
thin-walled members under various loading conditions. They employed the
Newton=-Raphson method to achieve convergence of each {iteration step.
The section was divided into small layers in order to trace the spread
of yield. The von-Mises yield criterion was used. The accuracy of their
method was demonstrated by thé results obtained by experimental
evidence,

Kanok=-Nukulchai et al. (1986) presented a formulation for the
large deflection of members using a Lagrangian mode of description for
the structural elements. Their assumptions were based on
1= Appropriate selection of element geometry, nodes as well as

nodal variables
2= Implementation of an element shape function which incorporate
all the kinematic characteristics of the applied class of

structure,
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3- Reduction of the three dimensional model into a suitable form,
To establish an element model, several problems have been solved which
were found to be in close agreement with experimental results.

Total potential energy has been used by Chan and Kitipornchai
(1986) ¢to provide a formulation for a general thin walled beam-column
incorporating member geometrical nonlinearity. The proposed finite
element formulations were demonstrated on a number of buckling problems
oincluding flexural-torsional buckling of rectangular beams, tee beams
under moment gradient and angle beam-columns. Good agreement has been
achieved when compared with independent numerical solutions. The
efficiency of his method has been compared with the experimental

results obtained by Fukumoto and Nishida (1981).
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