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Abstract

Two decades ago, it was difficult to imagine a machine that can auto-detect patterns in

images. The state-of-the-art studies have advanced shape recognition, which explores the rep-

resentation of each modality. However, it remains a challenge for machines to learn shape

representations accurately. One way to describe the topology of a shape is to use feature repre-

sentations. Discriminative features have attracted attention because of their potential in recog-

nising patterns with more accuracy at rapid execution speeds. In this thesis, we first introduce a

novel method for in-air arbitrary shape recognition. Particularly, we propose a subset of graph

spectral features, which are invariant to rotation, flip, and mirror changes, to classify different

shape categories. A new dataset is also introduced for in-air hand-drawn that includes samples

of shapes and numbers. This method has resulted in the highest performance with accuracies of

99.56% and 99.44%, for numbers and shapes, respectively, outperforming the existing methods

for different datasets. The second contribution involves the development of an adaptive graph

connectivity method based on the local details. Such graphs are created to fit the topology of the

targeted shapes. A set of spectral graph features are then extracted to capture the local details,

improving the state-of-the-art performance by 2% and 9% for two 2D datasets, and 2% and 6%

for two 3D datasets. The third contribution focuses on simplifying the shapes by further ex-

ploring the local details. A spectral partitioning is applied to understand the geometric structure

of each part. This is followed by extracting the spectral features to identify the shapes. The

empirical evaluation shows that partitioning of the shapes provides deep geometric details that

have demonstrated increasing accuracy levels in different datasets by 1.02%, 5.09%, 2.1%, and

7.89%.
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Chapter 1

Introduction

Shape recognition has received great attention in the field of computer vision. The detection

of shape appearance, part-structure, occlusion, articulation, and local details have played an

important role in shape classification. The representation of such characteristics is particularly

significant when it comes to distinguishing highly similar shapes. This is often the case in

existing shape datasets, which consist of similar and complex shapes, leading to ambiguity in

shape recognition.

This chapter presents the main motivation behind, and challenges involved in shape identifi-

cation. This chapter is organised as follows, Section 1.1 presents the motivation behind studying

shape recognition and crystallises the main research question. The key challenges facing shape

recognition techniques are highlighted in Section 1.2. Section 1.3 highlights the contributions

of this thesis. A list of publications based on the contents of the thesis are listed in Section 1.4.

Section 1.5 outlines the structure of the thesis.

1.1 Motivation

Over the last decade, there have been significant contributions to the shape representation liter-

ature. In particular, shape recognition has benefited from great efforts in the computer vision

community, resulting in its remarkable evolution [4,5]. This is because of its extensive applica-

tions in many fields, which have a direct impact on everyday life [6–9].
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a                        b                           c                                d            e

Figure 1.1: Some examples of computer vision applications; (a) Robotic http://www.
luigifreda.com/; (b) Virtual reality https://www.blippar.com/; (c) Medical
imaging https://en.wikipedia.org/; (d) Object detection and recognition https:
//towardsdatascience.com/; (e) Security https://www.vision-systems.
com/.

Examples of these applications can be found in the industrial applications, such as using

robots for human assistance (Figure. 1.1a), and medical imaging for accurate and fast diagnosis

(Figure. 1.1b). Moreover, the recent development of computer vision leads to a great improve-

ment in the virtual reality and video gaming (Figure. 1.1c) especially with the emerging of deep

learning. From detection, tracking, segmentation, and recognition, all of these processes can

be performed accurately using computer vision, which could be useful in a wide range of ap-

plications such as human detection, and self-driving cars (Figure. 1.1d). As a result, computer

vision provides an efficient way to improve the security in homes (Figure. 1.1e), airports, and

fingerprint identification.

Humans possess one of the most complex visual systems, and have an extraordinary ability

to capture a variety of shape details. In order to understand human perception, sociologists have

shown that human sight detects different complex objects, based on visual acuity (i.e., ability

to see fine details), depth, colour, movement, and contrast. In addition to these features, many

researchers have highlighted the importance of surface curvature details for shape understanding

[10–13]. This thesis therefore aims to analyse shapes based on the global and local details of

their surfaces, taking into account a variety of structures.

From an engineering perspective, shape recognition has been explored using different meth-

ods, including via deep learning [14], graph theory [15], feature extraction [16], view similari-

ties [17], and model similarities [18]. Specifically, graphs have been widely used in the field of

computer vision, and have been demonstrated to be powerful tools with many applications, such

as pattern recognition, segmentation, and clustering [19–22]. Graphs are applied in shape recog-
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Chapter 1 – Introduction

nition in two ways. The first method, which has been used in many studies, utilises approximate

similarity measurement methods through the adjacency matrices of two samples [15, 23–29].

In the second method, a bipartite graph matching is performed based on the node domain to find

the optimal fit map between two samples [30–32]. However, graph-based methods are limited

in their performance to address the problems of accurate recognition, rotation changes, and

time complexity. Graph-based methods are rotation invariant but time-consuming. In contrast,

feature-based methods are fast but sensitive to angle changes.

Therefore, in this thesis, we use new hybrid methods that combine graph and features based

approaches. Particularly, we explore the utility of graph spectral features for shape recognition

to achieve real-time and rotation invariant shape representation, rather than graph matching in

the node domain. The main research question here is to develop and test the ability of the graph

spectral domain features to provide optimal shape recognition methods. To achieve this goal,

we need,

1. To explore the ability of the graph spectral features to capture global details.

2. To investigate the reliability of the graph spectral features to reveal fine details.

3. To examine the efficiency of the graph spectral features representation for real-time per-

formance and rotational changes.

4. To evaluate the performance of the graph spectral features of shape partitioning, in order

to have a deep understanding of the shape topology.

These objectives outline the research methodology. In the following subsections, we will high-

light the main difficulties in shape recognition methods.

1.2 Challenges

Identifying shapes via computer is a difficult task, and there are many problems that need to

be addressed when designing an optimal recognition system [33]. These issues may include

shape representation, scaling differences, fine details detection, the distinction among high sim-

ilarity objects, and performance complexity. The major challenges for shape recognition are

summarised below:
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a

b

c

d

Figure 1.2: Challenging shapes for recognition methods. The difficulty varies depending on the
type of structure, articulation, rotational invariant, and the similarity among different categories.

1. Global shape detection

One of the major challenges to an accurate and robust shape recognition system is to

perfectly represent the geometric structure of the shape. This has previously been imple-

mented through a set of descriptors, view similarities, model representations, and deep

learning techniques. However, the aim to identify increasingly complex objects makes

the recognition process difficult to implement. For example, Figure. 1.2(row a) [3] shows

the different geometric details belong to one class. In this scenario, more features are

needed to provide an optimal description of the shape. Similarly, more data are required

to train the deep learning approaches in order to achieve an acceptable performance. An

efficient recognition method should perfectly characterise the geometric details of the

structure.
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2. Angle changes

Another challenging issue in shape recognition studies is sensitivity to rotational changes.

The existing datasets display objects from each class in different views, as shown in

Figure. 1.2(row b). Moreover, some objects are provided in different sizes, which adds

further difficulties to the recognition process. An optimal classification system must be

able to recognise the same object from different views and at different sizes.

3. Local details detection

Recognising and interpreting small variations in objects that are distinctly similar in their

global structure is a crucial factor in distinguishing between different patterns. The human

eye can easily discriminate patterns in images. However, a manual classification process

for these patterns is a challenging task for researchers. For example, objects may be

classified in the same class, even though they have different types of geometric structures,

as shown in Figure. 1.2(row c). This is because the similarities between the patterns are

numerous, in terms of global structure, while relatively few differences are noticed. As a

result, the interpretation of small details is an important factor for distinguishing between

different shapes. This highlights the importance of exploiting differences, in terms of

protrusions and other fine details, as well as the global shape.

4. Deep understating of the topology

More complex situations occur in recognising shapes that have similar geometric details

and the same number of limbs, as shown in Figure. 1.2(row d). The ability to classify

such shapes usually depends on deep learning approaches. This is because it is difficult

to achieve an effective description simply through features or models. Therefore, any

feature representation of shapes should provide accurate deep information of local and

global details.

1.3 Key contributions

The main contributions of this thesis are:

1. The proposal of a new rotation and flip-invariant method for in-air hand drawn
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shape recognition with real-time operation

A new shape recognition method is proposed, based on the global details for in-air hand-

drawn shape recognition. Chapter 3 addresses the problem of matching shapes by repre-

senting the structures as a graphical form and extracting the features based on the graph

spectral domain. The first contribution of this thesis includes pre-processing for convert-

ing the hand path movement, captured via Kinect, into a fully connected graph, followed

by analysis of the eigenvectors of the normalised Laplacian matrix to form feature vectors.

This method uses the eigenvector corresponding to the lowest eigenvalue to formulate the

feature vectors, as it captures the global details of the structure. The proposed method has

achieved average accuracy rates of 99.56% and 99.44%, for numbers and shapes, respec-

tively, outperforming the existing methods. It also adds the benefits of real-time operation

and invariance to rotation and flipping, making the recognition system robust to different

writing and drawing variations.

2. An in-air hand-drawn number and shape dataset

A new data set of in-air hand-written numbers and shapes samples is collected and up-

loaded for public use. More details about this dataset are presented in Chapter 3.

3. A new method for graph formulation with adaptive connectivity to represent shapes

by capturing their local and global characteristics

A new method is presented, based on local details for 2D shape matching, which is ex-

ploited for 3D shape matching, in Chapter 4. An adaptive graph is created to accurately

contain the shape architecture, including its fine details in such a way that shape protu-

berances are highlighted and interpreted via node connectivity. We formulate an adaptive

graph connectivity based on a certain threshold associated with the shape’s structure.

Such generated graphs show the arrangement of prominent parts along the border of the

shape in great detail. This is followed by a feature extraction process using the graph

spectral and node domains. The experimental evaluations show that the containment of

local details reduces the error rate in the matching process and improves the accuracy

level of the ETU10, Tool, SHREC2010, and 3D shape benchmark datasets by 2%, 9%,

2% and 6% respectively.
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4. A shape partitioning method for matching purposes

With more complex shapes being identified, it has become necessary to obtain a deep

understanding of their details. This can be achieved by simplifying the shape, along with

analysing the global and local details of the structure. Chapter 5 therefore presents a

new method, based on local and global details for 3D shape recognition, which we also

applied to 2D shape and hand gesture recognition. Local and global details of the shapes

are detected using the graph spectral domain features. A fully connected graph is gener-

ated over the silhouette of the shape to describe their global structures. We also introduce

a fully automatic, divisive, hierarchical clustering method based on a skeleton representa-

tion, for matching purposes. In practice, we demonstrate the ability of the Fiedler vector

to provide a stable partitioning. The evaluation process manifests the performance of the

proposed method compared to state-of-the-art studies, by increments of 1.02%, 5.09%,

2.1%, 7.89% for four datasets.
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1.4 Publications

Part of the work in this thesis has been published in the following journal and conference papers.

Journal papers:

1. B. Alwaely and C. Abhayaratne. “ Graph Spectral Features for In-Air Hand-Drawn Num-

ber and Shape Recognition” submitted toward IEEE Access, October, 2019.

2. B. Alwaely and C. Abhayaratne. “ Spectral Features of Adaptively Connected Graphs for

2D and 3D Shape Representation ” submitted toward IEEE transaction on image process-

ing, October, 2019.

3. B. Alwaely and C. Abhayaratne. “ Shape Simplifying Based on Graph Spectral Domain

” to be submitted toward IEEE transaction on Systems, Man, and Cybernetics, 2019.

Conference papers:

1. B. Alwaely and C. Abhayaratne. “ Graph Spectral Domain Feature Representation for

in-Air Drawn Number Recognition” Proc. of European Signal Processing Conference

(EUSIPCO), 2017, pp. 370-374.

2. B. Alwaely and C. Abhayaratne. “ Graph Spectral Domain Shape Representation” Proc.

of European Signal Processing Conference (EUSIPCO), 2018, pp. 603-607.

3. B. Alwaely and C. Abhayaratne. “ Adaptative Graph Formulation for 3D Shape Recog-

nition” Proc. of International Conference on Acoustics, Speech, and Signal Processing

(ICASSP), IEEE, 2019, pp. 1947-1951.

4. B. Alwaely and C. Abhayaratne. “ Graph Spectral Domain Features for Static Hand

Gesture” Proc. of European Signal Processing Conference (EUSIPCO), 2019, pp. xxx-

xxx.
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1.5 Outline

The overall structure of the thesis takes the form of six chapters, which are listed as follows:

Chapter 2 provides a detailed description of the existing works on shape recognition. Sec-

tion 2.1 gives an insight about different type of structures. Section 2.2 illustrates graph fun-

damentals including the graph theory, graph spectral domain, graph applications. Section 2.3

explores the existing works of the in-air hand written shape recognition. 2D/3D shape recog-

nition studies are explained in Section 2.4. Section 2.5 reviews the existing work of the static

hand gesture recognition. This chapter will be summarised in Section 2.6.

Chapter 3 introduces a novel method for in-air hand drawn number and shape recognition

based on a graph spectral features representation. Section 3.1 provides a general introduction to

the proposed methods. Section 3.2 presents the proposed graph spectral features in the context

of an in-air hand drawn number recognition system. Section 3.3 provides the performance

evaluation, followed by a summary of the work in Section 3.4.

In Chapter 4 a new method is proposed, based on the graph spectral domain for 2D/3D

shape recognition. Section 4.1 introduces the proposed adaptive graph generation. A compre-

hensive explanation of the graph concepts, the graph model based on adaptive connectivity and

graph spectral features are shown in Section 4.2. Then, Section 4.3 evaluates the proposed sys-

tem based on different classifiers and data-sets. Finally, the work is summarised in Section 4.4.

Chapter 5 presents a new method for hand gesture recognition, which we exploited for

2D/3D shape matching based on shape silhouette and skeleton representation. See Section 5.1

for an introduction to the use of the graph spectral domain to detect the global shape and the

utility of the graph for simplifying the structure. In Section 5.2 the proposed method is illus-

trated in detail, including the graph concepts, the silhouette and skeleton representation, and the

proposed features. A performance evaluation of the proposed method, using publicly available

hand gestures databases and shape datasets is presented in Section 5.3 including testing differ-

ent classifiers and parameters. A cross validation performance of all the proposed method will

be shown in Section 6.2. This work is summarised in Section 5.4.

Chapter 6 brings together the contents of the thesis and outlines potential future directions

for shape recognition studies.
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Chapter 2

Background and related work

2.1 Introduction

As mentioned above, in this chapter, we provide a detailed background on the graph theory and

review the most relevant works pertinent to shape recognition. In general, shapes can be seen

from three different perspectives ( low, medium, and high level detailed shapes). For example,

Figure. 2.1(row1) shows a set of shapes that can be rendered using a skeleton representation.

In other words, they can be drawn using a single line, from the starting point to the endpoint.

We call this type of shape a low-level structure and these can be found in applications related

to human hand movements. Another type of structure, which can not be represented by a

single line, is called a medium-level structure. In such structures, the fine details of a silhouette

representation are needed in order to understand the shape, whereas a skeleton representation

might cause similarity among different classes as can be seen in Figure. 2.1(row2). These

shapes are often found in 2D shape recognition applications. High-level structures contain

more complex details in their topologies, and are usually 3D shapes, such as 3D point cloud

shapes and mesh structures. Figure. 2.1(row3) illustrates an example of such structures. From

this, it can be observed that even the skeleton and silhouette representations of these structures

have conceptual similarities.

Therefore, this study aimed to develop an ideal method for the three related structures in

shape understanding. First, we explore the differentiation of shapes in terms of global details

to recognise low-level structures. Since these structures can be represented by a single line, the
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Low level

Medium level

High level

Figure 2.1: Different types of shapes according to its structure. Based on their complexity, we
divided them into three levels, low, medium and high levels structure.

solution to this problem is to be able to detect patterns with high accuracy level, fast execution,

and irrespective of rotation. Second, we exploit distinctions in shapes, in terms of protrusions

and fine details in the shape contour as well as the global shape description. Finally, we investi-

gate the ability of graph spectral domain bases for shape partitioning in order to have a deeper

understanding of each part of the shape. This partitioning process is able to provide a stable

fragmentation process for different shapes.

This chapter is divided into six sections, which explains how we approached achieving these

objectives. Initially we provide preliminary information on graph theory, spectral graph theory,

and graph signal process operations in Section 2.2. Then, we review relevant works in the field

of in-air hand drawn shape recognition in Section 2.3 as an application for low level structures.

2D/3D shapes are considered as an applications of the medium, and high complexity struc-

tures, and they have almost the same techniques as will be shown in Section 2.4. In addition,

we applied the proposed methods for hand gesture recognition, and so works of hand gesture

recognition are discussed in Section 2.5. This chapter is summarised in Section 2.6.
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Figure 2.2: Seven bridges of Konigsberg and its graph representation.

2.2 Graph spectral domain concepts

In this section, we cover the areas of graph theory, graph spectral theory, and related applica-

tions. Historically, graph theory was invented by Leonhard Euler when he solved the Bridges

of Konigsberg city problem (see Figure. 2.2). Three lands were connected to each other with

the mainland by seven bridges, and all the lands could be accessed by walking cross all the

bridges once, which is known later by the Eulerian graph. Since 1736, the idea of graph theory

was created. In the past decade, great attention has been given to graph signal processing [34]

due to its benefits in supporting numerical applications, such as social networks, sensors, image

processing, partitioning, and transportations [35]. Also, significant effort has been devoted to

expanding and applying traditional basic signal processing methods to graphs such as down

sampling, Fourier transforms, compression, and wavelet [35, 36] as will be shown in the fol-

lowing subsection.

2.2.1 Graph theory

The graph is a mathematical representation of the structure data (e.g., regular and irregular

data). A graph in this context comprises nodes, which are connected by edges. Different graph

properties and its related applications based on the node domain are shown as follows,

Direct and undirected graphs are two types of graph edges form. Undirected graph means
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that the same edge can be used to go and come back between vertices. The vitality of the

undirected graph is in the adjacency matrix, which is symmetric and results in real eigenvalues

and eigenvectors, whereas, a direct graph may form ill-posed situated in the graph eigenvectors

matrix.

Connected and unconnected graphs are based on the available edges between the nodes. A

graph is called connected when its vertices have, at least, one edge between them to connect

as one group, while the graph is called unconnected graph if there is, at least, one node is not

connected to other nodes. Graph connectivity is an important property in applications related to

cycles [37] or pathfinder [38]. The connectivity could be also detected by the graph eigenvalues

as will be shown later in Chapter 4, where the number of zero eigenvalues refers to the number

of connected groups.

2.2.2 Graph spectral analysis

Let G be an undirected graph, G = {V , E ,A}, where V is the set of n vertices, E is the set of

edges and A is the adjacency matrix with edge weights. We consider G as a fully connected

graph, which means each vertex has (n − 1) connected edges. We define the weight, A(i,j)

corresponding to an edge, e(i,j) connecting vertices i and j is as follows:

Ai,j =
|e(i,j)|

1
n

∑n−1
i=0

∑n−1
j=0 |e(i,j)|

, (2.1)

e(i,j) is the Euclidean distance between the vertices, i and j, normalised with the average edge

length of the nodes. There is another alternative way of interpreting the relationship between

nodes by considering the value equal to one to each pair of connected nodes and zeros otherwise.

This matrix representation is defined as the incidence matrix (I) as shown in Eq. (2.2).

I =

 1, if i and j are connected;

0, otherwise.
(2.2)

The combinatorial graph Laplacian matrix or the non-normalised version, L, is defined as

L = D−A, (2.3)
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where D is the diagonal matrix of vertex degrees, whose diagonal components are computed as

follows:

D(i,i) =
n−1∑
j=0

A(i,j), i = 0, 1, ..., n− 1. (2.4)

We also consider the symmetric normalised Laplacian matrix, (L), which is computed as fol-

lows:

L = D−
1
2 LD−

1
2 , (2.5)

and the geometric Laplacian matrix (Γ), is computed as follows:

Γ = D−1A. (2.6)

Since, the Laplacian matrices, L, L, and Γ are symmetric positive semidefinite matrices,

from spectral projection theorem, there exists a real unitary matrix, U, that digonalises L, such

that UtLU = Λ = diag{λ`} is a non-negative diagonal matrix [39], leading to an eigenvalue

decomposition of L matrix as follows:

L = UL
tλUL =

n−1∑
`=0

λ`u`u
t
`, (2.7)

where u`, the column vectors of U, are the set of orthonormal eigenvectors of L with corre-

sponding eigenvalues, 0 = λ0 < λ1 ≤ λ2... ≤ λn−1 = λmax [35].

An example of a random undirected graph can be seen in Figure. 2.3, with its corresponding

adjacency matrix Eq. (2.8), incidence matrix Eq. (2.9), combinatorial eigenvectors Eq. (2.10),

normalised eigenvectors Eq. (2.11), and the geometric eigenvectors Eq. (2.12). In this exam-

ple, we can see the negative values of the second eigenvector are associated with the poorly

connected nodes, while the positive values are associated with the strong connectivity.
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Figure 2.3: Example of a random six-node graph with it is connectivity.

A =



0 0 0.0127 0 0 0

0 0 0.0113 0.0113 0 0

0.0127 0.0113 0 0 0.0113 0

0 0.0113 0 0 0.0113 0.0127

0 0 0.0113 0.0113 0 0.0127

0 0 0 0.0127 0.0127 0


, (2.8)

I =



0 0 1 0 0 0

0 0 1 1 0 0

1 1 0 0 1 0

0 1 0 0 1 1

0 0 1 1 0 1

0 0 0 1 1 0


, (2.9)
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UL =



0.4082 −0.7786 0.2942 0.3232 0.0943 −0.1649

0.4082 0.0592 −0.7876 0.2299 −0.2032 −0.3397

0.4082 −0.2472 −0.1662 −0.5958 −0.2431 0.5749

0.4082 0.3204 −0.0312 0.3247 0.6494 0.4500

0.4082 0.2291 0.2312 −0.5548 0.3121 −0.5676

0.4082 0.4171 0.4595 0.2728 −0.6095 0.0473


, (2.10)

UL =



−0.2757 0.5608 0.2980 −0.4300 −0.5467 −0.1923

−0.3688 0.1185 −0.7463 −0.4360 0.1426 0.2874

−0.4604 0.5387 0.0648 0.6265 0.2662 0.1738

−0.4604 −0.3685 −0.3073 0.3235 −0.3700 −0.5624

−0.4604 −0.2286 0.4017 −0.3571 0.6007 −0.2933

−0.3899 −0.4395 0.3071 0.0163 −0.3350 0.6693


, (2.11)

UΓ =



−0.1781 −0.3907 −0.2108 −0.2855 −0.3732 −0.1271

−0.3186 −0.1104 0.7060 −0.3873 0.1302 0.2542

−0.4966 −0.6268 −0.0765 0.6948 0.3035 0.1919

−0.4966 0.4288 0.3630 0.3587 −0.4218 −0.6210

−0.4966 0.2660 −0.4745 −0.3960 0.6849 −0.3239

−0.3562 0.4331 −0.3072 0.0153 −0.3235 0.6259


. (2.12)

One question that needed to be asked in this study was about which Laplacian matrix should

be used. From the literature review, there is no clear evidence concerning which was the optimal

version of the graph Laplacian matrix. However, it had been found [35] that both versions have

the similar notion of frequency, based on the number of zero crossing in their eigenvectors. In

general, researchers have tended to use L in applications related to image processing [40, 41].

This is because L provides useful image bases, such as the direct current (DC) value in the
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eigenvector corresponding to the first eigenvalue which is not the same case for L. Figure. 2.4

shows an example of line graph with 8 nodes, and it is corresponding bases of the L or L.

The normalised Laplacian matrix was first introduced [20] to minimise the generalised eigen

problem. Basically, the combinatorial version optimises the objective based on the number of

nodes in each group, while the normalised version optimises the graph relative to the volume of

each group. For example, Figure. 2.5 illustrates the behaviour of both versions using different

graphs of handwritten numbers (0-9). We can see that the combinatorial version is sensitive to

the individual node connectivity, whereas the normalised version provides a general description

of the graph. Hence, we can conclude that the normalised version can be used for understanding

global shape, while the combinatorial version reveals the local details of the structure.

The graph signal process offers new opportunities for the processing, compression and

analysis of spatially non-uniformly sampled data, represented as a graph, by characterising

the global structure, based on its eigenvalues and the eigenvectors of the graph Laplacian ma-

trix [35]. The graph eigenvectors (e.g., bases vectors as in a content adaptive transform) provide

an efficient representation of the connectivity and the structure of the graph. One of the most

highlighted basis is the eigenvector corresponding to the second smallest eigenvalue, which is

known as the Fiedler vector [42] or the algebraic connectivity [43]. The sign of Fiedler vector

has been explored in analysis tasks, such as, determining the stability of system [44], saliency

estimation [45] and image partitioning [20]. Fiedler vector has been proven to be a power-

ful division tool by splitting the graph into two parts based on its sign and according to the

optimisation formula,

λ1 = min

[
UtLU

UtU

]
, (2.13)

which has been proven in Eq. (2.14) [42], where
[

UtLU
UtU

]
is a vector and λ1 represents the
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Figure 2.4: (a): Eight connected nodes as a line to form a line graph, (b): graph eigenvectors of
the L, (c): graph eigenvectors of the L, where the X-axes refer to the individual node and the
Y-axes represent corresponding eigenvector’s value. This experiment shows the behaviour of
the graph eigenvectors of the combinatorial (Left side) and the normalised (right side) versions
for the line graph.
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Figure 2.5: (a): Handwritten number digits, (b): the second eigenvector of their combinatorial
Laplacian matrix, (c): the second eigenvector of their normalised Laplacian matrix. The X-axes
refer to the individual node and the Y-axes represent corresponding eigenvector’s value.
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minimum value in the vector.

UtLU =
n−1∑
i,j=0

Li,juiuj, (2.14a)

=
n−1∑
i,j=0

(D−A)uiuj, (2.14b)

=
n−1∑
i,j=0

Di,ju
2 −

∑
i,j∈E

2uiuj, (2.14c)

=
∑
i,j∈E

u2
i + u2

j − 2uiuj, (2.14d)

=
∑
i,j∈E

(ui − uj)
2, (2.14e)

Thus,

λ1 = min


∑
i,j∈E

(ui − uj)
2∑

i

u2
i

 . (2.15)

Note that, (Di,ju
2) is equal to (u2

i + u2
j ) because node i has degree Di. So, value ui

2 needs to

be summed up Di times. But each Ei,j has two endpoints, so we need u2
i + u2

j . Also, we know

that
∑
i=0

u2
i = 1 and

∑
i=0

ui = 0.

An example of how to use Fiedler vector for graph partitioning can be seen in Figure. 2.6.

2.2.3 Graph signal processing operations

In this section, we illustrate the basic classical signal processing applications in the graph

spectral domain such as graph filtering [34], graph Fourier transforms [46], graph down sam-

pling [37], and graph wavelets [40].

1. Graph filtering

Image filtering can be implemented based on spectral graph theory Eq. (2.16) using a

certain filter. For example, a (512 × 512) image is filtered using a node connection and

low pass filter Eq. (2.17),
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Figure 2.6: Graph partitioning using Fiedler vector [1]. In this example, two different structures
and their Fiedler values are displayed, which can be used for partitioning based on the sign of
the individual value.

ˆfout(λ`) = f̂in(λ`)ĥ(λ`), (2.16)

ĥ(λ) = Ut (1/(1 + γλ)) U, (2.17)

where f̂in is the input data, ĥ is the filter and the value of γ = 10. As shown in Figure. 2.7,

we took the 80× 80 pixels sub image from the cameraman image to be f̂in and corrupted

it with additive Gaussian noise with a mean of zero and a standard deviation of 0.1 to

get a noisy signal. A spectral graph filtering method is applied to de-noise the signal. In

this experiment, a semilocal graph is formed from the pixels by connecting each pixel

to its horizontal, vertical, and diagonal neighbours (i.e., eight connections). The edge

weight represents the differences between neighbouring pixel values in the noisy image.

Low-pass graph filtering is applied using γ = 10 to reconstruct the image. We can see

in Figure. 2.7 that the graph spectral filtering method does not smooth the edges, as the

geometric structure of the image is encoded in the graph Laplacian via the noisy image.
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Figure 2.7: Graph filtering: (a) the original sub-image, (b) adding noise, (c) filtered image using
graph spectral domain.

2. Graph Fourier transform

Forward graph Fourier transform is calculated as shown in Eq. (2.18) [35],

f̂(L`) =
N∑
i=1

f(i)u∗`(i), (2.18)

where ∗ is a transpose operation and f is the input data. The inverse graph Fourier trans-

form is given by:

f(i) =
N−1∑
`=0

f̂(L`)u`(i), (2.19)

3. Graph down sampling

Graph down sampling was implemented in three different ways based on; the signs of

the singular value decomposition (SVD) bases [47], the colour distribution [48], and the

order of the sorted nodes using maximum spanning trees (MST) [37]. MST based down

sampling provides faster implementation than the SVD and colouring formulas.

4. Graph wavelet

Several studies have proposed graph wavelet methods, and there are few differences

among these, mainly being in the downsampling, compression, and multi-resolution. The

basic operation of the graph spectral wavelet is to construct bases that are localised in

both the graph and vertices. For example, a diffusion wavelet was performed based on

the compressed power of a diffusion operation [49]. Another graph wavelet was designed
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Table 2.1: Comparisons between different wavelet algorithm

[52] [49] [40] [50] [51]
Spectral localisation 7 3 3 3 3

Multi-resolution Partial 3 Partial Partial Partial
Down sampling Partial 3 7 3 7

Fast transform 3 Partial Partial 3 Partial
Graph compression 7 3 7 3 7

by a two-channel filter bank as a bipartite graph [50], which demonstrated a perfectly

reconstructed, orthogonal transform. However, this graph wavelet was designed for a

particular case, which assumed that the graph had to be bipartite, taking advantage of the

limited range of graph eigenvalues for bipartite graphs.

A spectral graph wavelet transform (SGWT) was implemented by scaling function on

each vertex [40]. To simplify, its two steps were dilated and translated from a band pass

kernel design in a graph for the combinatorial graph Laplacian matrix. While this method

did not require any down sampling, it had a faster transform and spectral localisation. The

SGWT, however, was not perfectly reconstructed, and so could only be used for a specific

application that did not require this limitation. An extension of the SGWT has been

proposed, where a tight frame is formed to conserve energy in the wavelet domain [51,52].

The resulting wavelet coefficients focused on developing localised transforms specifically

for the data defined on the graphs. Table 2.1 illustrates the main differences between the

existing graph wavelet methods.

In the following subsection, we will review the current work of the in-air hand drawing

shape recognition, 2D/3D shape recognition, and hand gesture recognition. The most relevant

techniques, which are used in these applications, are highlighted in Table 2.2.

2.3 In-air hand-drawn shape recognition methods

The existing work of in-air hand-drawn shape recognition is presented in this section. Common

key parameters for evaluating the performance of hand-drawn methods include runtime, prepro-

cessing, rotation invariance, and matching of different sizes. Based on these criteria, Table 2.3
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Table 2.2: Several methods to classify different shapes.

In-air shapes 2D/3D shapes Hand gesture
Graph-based 3 3 3

Model-based 7 3 7

Feature-based 3 3 3

View-based 7 3 7

Deep learning-based 7 3 3

Table 2.3: Summary of the state-of-the-art methods for in-air hand-drawn recognition.

[23] [25] [30] [31] [53] [54] [55] [56] [57] [58] [59] [60]
Different size matching 3 3 3 3 3 3 3 3

Rotation invariant 3 3

Normalisation 3 3 3 3 3 3 3

Downsampling 3 3 3 3 3 3 3 3 3

Shape coding 3 3

In air hand drawing

Feature-basedGraph-based

ApproximateBipartite Node-basedImage-based

Figure 2.8: In air hand-drawn shape recognition techniques.

shows a comparison of the in-air hand-drawn shape recognition methods. These methods can

be divided into two types: graph-based [31, 32] and feature-based [53, 54] as shown in Figure.

2.8.

2.3.1 Graph-based methods

Previous methods on graph matching have explored either bipartite graph matching using the

vertex domain or an approximate method based on the graph adjacency matrix. In bipartite

graph matching, a set of edges are chosen, with no two edges sharing the same end point, in

order to maximise the matching ratio between two sets of points without increasing the degrees

of the nodes. Different matching conditions have been used in bipartite graph matching such

as, the shortest edge [31](Figure. 2.9), the convex path inside text images [30] and the largest
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Figure 2.9: Bipartite graph matching of two samples, where the node degrees and angles con-
nections are used to find similarities.

eigenvalue [32]. Bipartite graph matching provides real-time performance, but is sensitive to

any minor changes in rotation angle.

The maximum probability of correspondence mapping between two patterns through a

weight matrix is also used for matching purposes. For example, a graph indexing process is

performed based both on a polynomial characterisation and a weighted graph [23, 25]. The

polynomial characterisation is used in the context of polyhedral object recognition. The main

limitations of these approaches are the high computational complexity and restrictions on cer-

tain graph sizes.

2.3.2 Feature-based methods

Methods of recognising hand-drawn shapes in the air can be classified into two groups: image-

based representation [53–55] and node representation [56–60]. In image-based representation,

the numbers are saved as an image with two types of pixels: number path pixels and background

pixels. Thus, a large amount of data is required to represent the numbers, which is identified as

a limitation of this approach. In one approach [55], number images are normalised into a binary

table where 1 and 0 referring to the hand writing path and the background respectively. In order

to eliminate the effect of too many zeros in the table, order code with shape code have been

utilised [53]. Later, further improvements have been achieved by normalising the hand-path by

picking out a specific number of points [54].

In node representation, the path of the hand movement is saved as a set of coordinates,
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Table 2.4: The main characteristic of the existing methods of the 2D/3D shape recognition.

2D/3D shape recognition
Deep learning Model-based View-based Feature-based Graph-based

2DCNN 3DCNN Skeleton-based Silhouette-based Internal 2D view 3D view Global features Local features Bipartite Approximate
[14, 61] [62–65] [18, 66–68] [69–72] [17, 73] [73, 74] [75–77] [16, 78, 79] [80, 81, 81] [26, 27, 82]

Table 2.5: The main characteristic of the existing methods of the 2D/3D shape recognition.

Deep learning Model-based View-based Feature-based Graph-based
Global detection 3 3 3 3 3

Local detection 3 3

Rotation invariant 3 3

Real-time performance 3

Different size matching 3 3 3 3

Small amount of required data 3 3 3 3

which are captured by different ways, such as, tracking the hand node using Kinect skeleton

representation [56–58], tracking the position and the orientation of the user’s hand using a Wii

remote [59], or using supervised learning to detect hand path [60]. The drawback of these

methodologies is the sensitivity to any slight change in the angle of drawing, which causes

a serious mismatching of the samples [55]. Also, these low-level features are extracted from

pixels, requiring a large amount of data to achieve the optimal level of accuracy. This has

hindered their ability for real-time operation.

2.4 2D/3D shape recognition methods

Although considerable progress has been made in shape-matching [4,83–86], an efficient recog-

nition system has yet to be developed. This is because the number of complex shapes is unlim-

ited, and each has their own unique properties, making the matching process a difficult task to

perform. 2D shapes are usually presented as a 2D binary or RGB image, while 3D shapes are of-

ten presented as a 3D point cloud. To identify such shapes, many concepts have to be considered

in the matching method, such as global details, local details, rotation invariance, data require-

ments, size, and performance time. Available methods in the literature can be divided into five

categories, including: graph-based [26, 27], model-based [18, 66], feature-based [16, 78], view-

based [17,73], and deep learning-based [14] as illustrated in Table 2.4. Table 2.5 highlights the

main characteristic of the existing techniques for 2D/3D shape recognition.

45



Chapter 2 – Background and related work

2.4.1 Graph-based

Graph-based approaches usually generate a graphical model based on an abstract shape or a

skeleton representation to imitate the shape configuration in 2D or 3D space. Similarly, an

approximation graph matching method can be applied to identify 2D/3D shapes by exploiting

the adjacency matrix of the shape. Current techniques explored the maximum probability of

correspondence mapping between two patterns through the weight matrix based on the eigen

domain [27], spectral relaxation [26], and higher order constraints [82].

A few works (e.g., [80, 81]) have explored the utility of bipartite graph matching for 3D

shape recognition. For example, a set of contour descriptors and the interior region of a 3D

object was extracted in order to employ a greedy bipartite graph matching algorithm [80]. In

addition, a fully dynamic and fast bipartite graph matching algorithm was used for 3D shape

recognition based on the polynomial deterministic [81].

The main problems associated with the graph-based approaches are the execution time of the

approximation methods, making it unsuitable for real-time applications; and that local details

are often ignored in bipartite graph matching, making high similarity shape matching difficult

task to achieve.

2.4.2 Model-based

Model-based methods create a model representation in order to characterise the geometric de-

tails of the shape by extracting local, global, skeleton, or silhouette features. Such models

involve two types of approaches: shape-skeleton studies and shape-contour studies. Skeleton-

based studies mainly involve constructing a tree model using object’s edges to form a shape

descriptor, with the similarity measurement being based on tree matching approaches. For ex-

ample, different methods can be implemented by creating a shape descriptors prototype using:

short-cut [18]; points corresponding [66]; skeleton pruning [67]; and shape scaling [68]. Al-

ternatively, several studies have relied on the boundaries provided by silhouette images. These

edges efficiently characterise the global structure of an object using a single closed curve, as

long as there are no holes inside the object. An early study by Zahn and Roskies [69] used

Fourier descriptors to represent the shape, while the latest studies are based on progressive
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shape-distribution-encoding [70]; structure integral transform [71]; and chordal axis transform

(CAT) [72]. In general, these approaches can provide a rich understanding of the global shape

structure. However, the main issue with the model-based methods is that local details are omit-

ted or entirely neglected. In other words, most model-based methods ignore small protrusions

or dense areas, focusing only on the global structure. For each method, a specific dynamic

programme was used to identify the matching similarities between patterns. In some cases,

even if the algorithm was not optimised, the matching programme may be able to increase the

recognition score.

2.4.3 Feature-based

Feature-based methods involve extracting a set of features that provides an optimal representa-

tion of the shape structures followed by a classification algorithm for matching process. Feature-

based studies typically require more than one feature to describe a complex structure and the

vast majority of literature falls into this category using a variety of features. Such features may

capture the local details using scale invariant feature transform (SIFT) [78]; tree union [16]; lo-

cal phase [79]; shape histogram [87]; part decomposition [33]; or the global shape characteristic

such as; contour features [75]; inner-distance [76]; full shape [77]; bag of words [88]; curva-

ture [89]; compact bag-of-features heat kernel signatures (CboFHKS) [90]; Fourier descrip-

tors [91]; clustering coefficient [26]; and hierarchical structure [15]. These methods demon-

strate a great achievement in terms of accuracy, complexity, and capturing the topology details.

However, identifying shapes from different angles is the only challenging problem for these

methods.

Since graph representation is invariant to rotation, using a hybrid method to extract features

based on a graphical model can enhance the performance of both types of methods. There-

fore, a recent work using complex-network [92] shows an efficient performance for 3D shape

recognition. In this study, graphs are created to capture the global shape. This is followed by a

graphical growing procedure based on pre-determined threshold in order to highlight the local

details. However, since shapes have different scales and articulations, specifying one threshold

value for all shapes in datasets is not an optimal way to capture the topology description.
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2.4.4 View-based

View-based methods rely on similarity measurements between models from all viewing angles.

In other words, the similarity score is based on how similar the view angle is between two

models. View-based approaches are usually applied in 3D shape recognition [73, 74]. Only a

few studies have applied visual similarity techniques in 2D shape recognition. For example,

using several views generated from a circle centred on a shape’s centroid, based on distance

from each viewing point [17]. Another method [73] was used to generate a 3D shape prototype

by viewing the model from several angles. The resulting 2D images are then interpreted to

create a single 3D model. A hybrid method using view similarity and deep learning [74] has

also been employed for shape recognition, in which the input data to the neural network are

the shape segmentations. Similarly, multi-view depth line (MDLA) [93], symmetric branch

[68], and complex function [94] can be used to obtain an understanding of topological details

from different angles. However, most studies have focused only on matching the global shape,

resulting in a mismatch between shapes with similar outlines. Also, typical approaches have

been performed using analysis of multiple views of a shape, which leads to high complexity.

2.4.5 Deep-learning-based

The robustness and dominance of deep-learning approaches in shape recognition have been

proven in the literature. Since this thesis explores the graph spectral feature representation,

deep learning methods are considered beyond the scope of this thesis. Therefore, the common

approaches to 2D/3D deep learning shape recognition methods are referred to only briefly in this

section. For example, a deep auto encoder four-layer coding network is implemented to retrieve

shapes [14] using deep learning. 2D face and shape images are classified based on a series of

images, extracted from different angles [61, 74]. Similarly, a 3D filter and pooling operations

are implemented in 3D point cloud [64, 65]. A volumetric representation of a shape obtained

through a convolution process has been demonstrated to be a powerful tool in deep-learning

approaches because it contains the local and global details of the shape [62,63]. In other words,

the filter design is important in capturing structural details for deep-learning approaches.

Although such methods have a high level of accuracy in both 2D and 3D shape recogni-
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2D/3D Shape Recognition
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Figure 2.10: The current work of the 2D/3D shape recognition and their main advantages (blue
boxes) and disadvantage (red boxes).

tion, they are still not suitable for all applications due to the amount of training time and data

required. In addition, there is no strong evidence available to help in determining the most

efficient parameters for designing the networks. The performance of the existing works rely

entirely on the experimental setup and authors skills. The main advantages and disadvantages

of the 2D/3D techniques can be summarised in Figure. 2.10.

2.5 Static hand gesture recognition

Many algorithms have been proposed in recent years to address the optimal hand gesture recog-

nition method and a comprehensive review can be found in [5,95,96]. In general, a hand gesture

recognition system begins by capturing the hand data, then uses pre-processing steps to extract

the hand’s descriptors, which are classified as shown in Figure. 2.11.

Previous studies on hand detection have relied on colour data (e.g., skin colour) to segment

the hand. However, colour-based hand segmentation is not an optimal solution because dif-

ferent hand’s have different skin colours, and there can also be similarities in face and hand
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RGB camera
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Figure 2.11: A standardised pipeline for a manual hand gesture recognition studies, which can
be categorised primarily into four steps (data acquisition, pre-processing, feature extraction,
classification).

colour with the background. The recent development of cameras (see Figure. 2.12), such as the

Kinect sensor, Time-Of-Flight, and Real Sense have contributed to the establishment of an ap-

propriate communication between humans and machines. In particular, depth information can

reduce many of these issues related to colour-based hand detection such as lighting conditions

and background clutter. Depth maps provide an efficient method for detecting and segment-

ing the hand. Several methods have been proposed for acquiring accurate depth information.

For example, three different views of the hand were analysed to obtain an accurate model of a

hand [97]. Others have assumed that the hand is the closest object to the camera in a scene [98].

A combination of colour and depth mapping can also be used for hand detection [99]. Although

combination colour and depth images have resulted in great improvements in hand detection,

the time requirements for processing both the cameras and the calibration process in order to

align both cameras are a main concern in this technique.

Once the hand is detected, preprocessing steps are performed to eliminate noise (i.e., us-

ing thresholds) and obtain a consistent representation of the hand (i.e., using a sampling and

resizing procedure). The preprocessing steps are used in almost all current studies. The hand
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Figure 2.12: Depth sensors from left to right: Kinect sensor, time of flight (ToF) sensor, Real
Sense.

Figure 2.13: Different ways of hand representation [2].

representation resulting from this step can be broadly categorised into two types, appearance-

based and 3D model-based as shown in Figure. 2.13. Producing a 3D hand model involves

three techniques: a 3D texture volumetric, 3D geometric, and 3D skeleton models. Such repre-

sentation is usually used for virtual hand generation [100, 101], while hand gesture recognition

studies utilise appearance-based representation. A 3D model-based usually shows the 3D spa-

tial description of the hand along with temporal aspects. Such model provides details about

each finger on the hand individually or in combination with the other fingers. The advantage

of this type of representation is the ability to update the hand parameters during tracking by

the camera, leading to precise hand gesture representation. The 3D texture volumetric model

contains more details about a hand skin and skeleton.

Hand representation is followed by a feature extraction process, which is the most important

step. Hand gesture features can be divided into two types, learned and handcraft features.
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Learning feature aims to obtain features, extracted from initial trained hand data and use it to

identify completely new data for the model [102]. Hand craft features are a set of descriptors

that represent the shape. They can be categorised into two types: graph-based features, and

general feature-based methods.

2.5.1 Graph-based methods

Previous works using graph-based methods have been applied only in static hand gesture recog-

nition [103–108] employing graph theory rather than the spectral domain. For example, a

Gabor filter is applied over the hand in order to allocate the regions of interest [103–106]. By

considering these regions as nodes, a graph is created to capture the hand topology. The similar-

ity measurement is based on the degree of nodes and the graph size. The main issue with these

studies is in the hand detection. Since these are colour-based methods, mixed detection can

occur in real-life applications. For example, the face and any similar colour in the background

might be detected as one object. Another graph-based hand gesture recognition method [107]

performed a tree representation over the hand. In this study, the fingers were connected in a pair-

wise Markov random field, which enforced the connectivity of the hand structure through soft

constraints. Pairwise finger connections overcome the occlusion issue in hand gesture recog-

nition. More recently, a combination of hand appearance and graph features (GA) [108] has

been utilised for RGB hand gesture recognition. A growing neural gas network was used to

imitate the topology of the hand, and the resulting nodes were used for graph generation. Then,

different classes were identified based on statistical measurements between the nodes, such as

the number of nodes, and the angle of node distribution. Such studies, however, would have

been more robust if they had applied a spectral-domain because this would have provided an

efficient characterisation of the structures.

2.5.2 Feature-based methods

The majority of work on hand gesture recognition rely on extracting a set of descriptors to

enable distinction between different classes. These descriptors are based on either skeleton

or silhouette representations. The advantages of a skeleton representation includes providing
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Table 2.6: Common classifiers in hand gesture recognition methods.

prediction speed Memory capacity preferred for
Support vector machine (SVM) Slow Medium Two classes, linear data

Neural Network (NN) Slow Medium General
Random Forest (RF) Fast Small Non linear data

K-Nearest Neighbour algorithm (KNN) Medium Medium Euclidean distance
Dynamic time warping (DTW) Fast Medium Two different length signal
Hidden Markov Model (HMM) Medium Large Previous case estimation

accurate tracking of the fingers and no assumption that the hand must face the camera. There-

fore, the literature on hand-skeleton methods includes a variety of features such as, histogram

of 3D facets (H3DF) [109], histogram of oriented gradients (HOG) [110], dimensional zernike

moments (DZM) [111], zernike moments (ZM) [112], Fourier descriptors (FD) [113], local

curvature with distance transform (LCDT) [102], local energy function [114], and depth project

map based bag of contour fragments (DPM-BCF) [115]. Two problems associated with such

studies include, the complexity of finger detection and locations. This is because finding only

the number of extended fingers is not enough to categorise the shape, unless there is information

about the location of each extended finger.

The silhouette feature has also been considered in a number of studies and shows improved

performance using the finger earth mover’s distance (FEMD) [99], super-pixel earth mover’s

distance (SP-EMD) [116], and finger segmentation (FS) [117]. However, silhouette techniques

are affected by the hand orientations, being required to capture the correct gestures and the

current work has only been tested against minor changes in rotation angle [99, 116]. The low

resolution of the depth stream is another issue, making an accurate finger detection a chal-

lenging task. Moreover, most of the works mentioned above use depth information, involving

intensity of the Gray image for hand segmentation only.

In the final step, these features are classified using either template matching (TM) [99],

dynamic time warping (DTW) [98], nearest neighbour (KNN) [110], support vector machine

(SVM) [111], linear discriminant analysis (LDA) [108], or hidden Markov model (HMM) [113]

methods. A brief comparison between the common classifiers for hand gesture recognition can

be found in Table 2.6.

53



Chapter 2 – Background and related work

2.5.3 Deep learning-based methods

Only a few studies have used deep learning for hand gesture. This is mainly because of

the time and data requirements [118–122]. Moreover, feature-based methods have already

achieved a high level of accuracy with real-time performance, and this has reduced the need

for a deep-learning approaches. Inputs to the neural network includes two types of data either

images [118–120] or surface electromyography (sEMG) signals [121, 122], that obtained from

the user’s hands. The sEMG-based method has demonstrated optimal performance despite the

state of the surrounding environment (i.e., lighting conditions, camera scene, and noise). How-

ever, such methods are usually evaluated using a small numbers of classes, and the performance

decreases when the categories are increase.

2.6 Concluding remarks

In this section, we have outlined the categorisation of shapes into three different types based on

their structural complexity. We have also presented basic information about graph theory, graph

spectral theory, relevant works on in-air hand drawn shape recognition, 2D/3D shape recogni-

tion, and hand gesture recognition. Based on the existing works, we draw several conclusions:

1. The existing graph-based approaches suffer from time complexity and rotational changes.

To solve these issues, in Chapter 3, we explain that performing feature-to-feature rather

than point-to-point matching reduces the time complexity. Moreover, since the represen-

tation of edges depends on relative measurements between the nodes, they are not affected

by scaling or angles changes.

2. Covering intra-class variations in high similarity shapes is a challenging task in 2D shape

classification. Therefore in Chapter 4, we introduce a new method for generating adap-

tive graph connectivity parameters to capture small articulations.

3. With more complex shapes, it is necessary to obtain a deeper understanding of the de-

tails. This can be achieved by simplifying the shape, along with analysing the global and

local details of the structure. Thus, in Chapter 5 a new method is presented for 2D/3D
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shape recognition that involves capturing the local and global details of the structure and

simplifying objects using a graph partitioning technique.

In the next chapter, we will introduce the in-air hand-drawn shape recognition work.
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Graph spectral domain based on global

details for in-air hand-drawn recognition

3.1 Introduction

As mentioned previously, this chapter proposes a novel method for in-air hand-drawn shape

recognition. Human computer interaction has become popular in applications, such as, in-

teractive computer gaming, robotics, sign-language recognition, healthcare and assisted liv-

ing mainly due to the availability of inexpensive depth sensors, such as, Kinect sensor. Re-

cent years therefore have seen new advances in hand movement understating methodologies

[99, 116, 123, 124]. These studies were primarily focussed on either static hand gestures or

dynamic hand gestures, such as hand movements. Many modern applications rely on direct

observation and analysis of the human body part movement. The smooth flow and flexibility of

the human body configuration allow the humans to create very complex and arbitrary shapes in

the air using hands. Automated analysis and understanding of these complex shapes created by

hand movements benefit in real-time gesture-based human computer interaction applications.

Particularly, in-air hand-drawn number recognition has attracted a strong attention [53–60]

due to applications-related importance and the interesting challenges in the problem. These

methods are based on the image representation of the numbers [53–55] followed by shape

matching or the path representation of the hand movement [56–60]. However, all these meth-

ods suffer from the sensitivity to changes in the angle of drawing leading to serious recognition
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errors of the in-air drawn.

To solve these issues, in this chapter, we exploit the emerging graph signal processing (GSP)

to propose a graph spectral feature representation for in-air drawn arbitrary shape recognition.

The GSP has attracted a great attention in processing, analysis, coding and understanding of data

sampled on a non-uniform grid, often referred to as irregular data or graph data. The classical

discrete signal processing is not directly applicable on such irregular data. GSP provides a

robust mechanism to represent irregular data in terms of their connectivity to each other when

represented as a graph. The connectivity among the vertices characterises the global structure

of the graph and it does not change after rotation, flipping or mirroring of the graph structure.

Since graph spectral representation is driven by the connectivity, rotation invariant features can

be extracted in the graph spectral domain. Therefore, the proposed method, that explores such

features, is not sensitive to the drawing angle. In terms of sampling the hand movement paths

of the in-air drawn shapes, we aim to minimise number of vertices while keeping the properties

of the structure intact. This leads to lowering the complexity without affecting the recognition

accuracy rates. The use of the graph matching on vertex domain has been explored for shape

matching purposes in the literature [30, 31, 125]. However, they are not robust to variations in

angles of orientation of the shapes and numbers.

Thus, this chapter presents a novel set of the graph spectral domain features representa-

tion for accurate and fast in-air hand-drawn number and shape recognition. In this work, we

explore representing the shapes and numbers in the graph spectral domain as opposed to the

node domain for feature extraction for recognition. Different shapes are represented based on

the connectivity description through the graph spectral domain. A fixed number of features is

extracted followed by machine learning for recognition of shapes. The proposed method is ex-

perimented using Kinect sensor for data capturing and real time recognition (as in Figure. 3.1).

A demonstration video of this method can be found at [126]. The main contributions of this

work are:

• Proposal of a new set of graph spectral domain features for in-air hand-drawn number

and other shape recognition.

• Proposal of a new rotation and flip-invariant feature set with real-time operation.

57



Chapter 3 – Graph spectral domain based on global details for in-air hand-drawn recognition

Figure 3.1: Left–right flipped screen shots of in-air drawing.

• Creation of a new dataset for in-air hand-drawn number and shape recognition research

[127].

The rest of this chapter is organised as follows: Section 3.2 presents the proposed graph

spectral features in the context of a in-air hand-drawn number recognition system. Section 3.3

shows the results and discussions in terms of number and other shape recognition followed by

the concluding remarks in Section 3.4.

3.2 The proposed method

The proposed method (Figure. 3.2) can be divided into four steps: data acquisition; pre-processing;

graph spectral feature extraction, and classification. The main novelty in the work presented in

this chapter is in graph spectral feature extraction. Details of data acquisition and pre-processing

are included in this section for completeness. However, it should be noted that the graph spec-

tral feature extraction and classification methodology can be applied on any node representation

of in-air drawn numbers and arbitrary shapes.
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Figure 3.2: Flowchart of the proposed method.
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Acquired data Dense node removal Down-sampled nodes

Figure 3.3: Data acquisition and pre-processing steps: (Left) Data acquired from the original
hand path; (Middle) Dense nodes removal; (Right) Node Down-sampling.

3.2.1 Data acquisition and pre-processing

The Kinect sensor is used to acquire depth data based on skeleton tracking. Users have to stand

in front of Kinect around 1 to 3 metres away [128]. The right hand is used to draw numbers

in-air. Then, users can raise their left hand higher than the shoulder to end the movement as

in Figure. 3.1. By doing so, users will have unlimited time to draw digits in-air. The depth

values acquired using the Kinect skeleton tracking is not accurate when the hand movement

is fast. Therefore, several methods have been proposed in the literature to get more accurate

depth information, such as, 3D analysis [97], combining of colour and depth information [99]

and considering the closest object to the camera in the scene [98]. In this work, hand contour

searching is performed based on the assumption that the hand is the closest object to the cam-

era in the scene. The search takes place in a block of 20×20 pixels. In this case, the block

centre represents the right hand position. The left hand tracking is based on the Kinect skele-

ton tracking because this technique is fast and no depth information is used for the left hand

operation.

The acquired data can be densely sampled as can be seen in the left sub-figure in Figure.

3.3. For each point, the (X, Y ) coordinates on the vertical plane and the depth Z are recorded

to form the 3D measurement space in (X, Y, Z). In order to remove these unwanted samples,

starting from the first sample, for each sample, all the samples captured within a distance less

than a chosen fixed threshold (T ) are removed. This process eliminates the extra nodes that

are created when the user stops moving their hand at any point during drawing or at the end
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of drawing. The resulting in-air drawn path, P , is a smooth curve with N number of nodes as

can be seen in the middle sub figure of Figure. 3.3. To reduce the complexity of the subsequent

graph spectral decompositions, we choose n number of nodes, where n < N , to form a new

down-sampled path, P̂ , as follows (as in the right sub figure of Figure. 3.3):

P̂ (i) = P

({
iT

n

})
, (3.1)

where i = 0, 1, ..., n−1 is the new node index and {} is the rounding to the nearest integer.

This is followed by normalising which includes centring the down-sampled path, P̂ , around

the centre point (0,0,0) and resizing the (x, y) coordinate range to m × m. Figure. 3.4 shows

an example of the normalisation process. Finally, the node i represented with its coordinates

(xi, yi, zi).

3.2.2 Proposed graph spectral features

We can now represent the nodes in the hand path, P̂ , as the nodes in an undirected and fully

connected graph, G. The weight, Ai,j corresponding to an edge, ei,j is computed as in Eq. (2.1).

We define the signal r̂ : V → R, where ith component represents the Euclidean distance

from the centre (0,0,0) to the vertex i in V as follows:

r̂i =
√
x2
i + y2

i + z2
i , i = 0, 1, ...., n− 1. (3.2)

An example of a G and its signal r̂ is shown in Figure. 3.5. We also define the signal θ : V → R,

where ith component represents the angle of the vertex i in V with respect to the centre (0,0,0)

as follows:

θi = tan−1

(
|yi|
|xi|

)
. (3.3)

The absolute value of xi and yi keeps the range of the angle between (0◦ − 90◦). For example,

the points (3,4), (-3,4), (3,-4) and (-3,-4) have the same angle value, which is equal to 53.13◦.

An example of a G and its signal θ is shown in Figure. 3.5.

The combinatorial graph Laplacian matrix, L, is defined as in Eq. (2.3) and the diagonal

matrix is computed as in Eq. (2.4). As the shapes form non-regular graphs, we consider the
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After pre-processing step

Original Hand written number

Sample before and after 
pre-processing step

Figure 3.4: 3D space of a digit before and after pre-processing. Original in-air hand draw-
ing sample with its zoomed version is plotted in yellow, and the result of preprocessing steps
including remove noise, down sampling and centring is plotted in green.
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ca

d

b

e

Figure 3.5: Graph construction above the hand path (red lines) with its vertices (green points),
fully connected node edges, E , (yellow lines) and the node values (black lines), where (a): Top
view of the graph, (b): r̂ values (Side view), (c): r̂ values (45◦ view), (d): θ values (Side view),
(e): θ values (45◦ view).

symmetric normalised Laplacian matrix, (L), and the geometric version as shown in Eq. (2.5)

and Eq. (2.6). The spectral decomposition of the graph is computed as in Eq. (2.7).

Although, L has been widely used in image processing related applications [40, 41], the

symmetric normalised Laplacian, L, is thought to be more appropriate for representing non-

regular graphs in the literature [39, 45]. Therefore, in this work our primary focus is on the

symmetric normalised Laplacian.

The graph eigenvectors have been used in analysing graph spectra both algebraic and ana-

lytic wise [129,130]. It has been shown in [129], that given a graph with no isolated vertices and

Lu = λu, i.e., u is an eigenvector of L, then the corresponding harmonic eigenvector, y asso-
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ciated with the eigenvalue λ is D−
1
2 u. Thus, given the harmonic eigenvector for λ = 0 defined

as 1√
n
1, where 1 is the constant 1 vector and n is the number of nodes, the first eigenvector, u0,

is defined as

u0 = D
1
2

1√
n

1. (3.4)

The remaining eigenvectors are orthogonal to u0, since L is symmetric. As can be seen from

Eq. (2.4) and Eq. (3.4), the eigenvector u0 of L, corresponding to the lowest eigenvalue, λ0 = 0

captures important details of the structure of the graph. Therefore, in our proposed method, we

explore the use of u0 as part of features for shape recognition.

Many experiments are conducted in order to achieve effective discriminatory features of all

structures. We start with one simple feature such as, the graph eigenvector matrix, individual

graph eigenvectors, u0.i, u0.i
2,u0.i

3, r̂, and θ. We found that u0.i
2, r̂, and θ provide the highest

level of accuracy. Therefore, we carry out additional experiments to investigate the perfor-

mance of a combination of features. More details about these experiments can be found in the

appendices Section A. At the end, we propose a feature vector comprising of the following 3

components:

1. The first part of the feature vector addresses translation invariance of the shape analysis

of u0 by computing the second moment components about the mean as follows:

F1 = M1.u0, (3.5)

where modulation matrix, M1, is a diagonal matrix with diagonal elements computed as

follows:

M1(i,i) = (i+ 1− (n+ 1)/2)2 + 1, i = 0, 1, ..., n− 1. (3.6)

2. The second part of the feature vector modulates u0 with the distance to each node with

respect to the origin, (0,0,0), as follows:

F2 = M2.u0, (3.7)
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where the modulation matrix, M2, is a diagonal matrix with diagonal elements are formed

by the magnitude signal, f̂ , computed by Eq. (3.2).

3. The final part of the feature vector modulates u0 with the angle to each node with respect

to the origin as follows:

F3 = M3.u0, (3.8)

where the modulation matrix, M3, is a diagonal matrix with diagonal elements are formed

by the angle signal, θ, computed by Eq. (3.3).

Overall, the feature vector is formed by concatenating the three vectors, F1, F2 and F3, resulting

in a feature vector with total length equal to 3n. The components of the feature vectors for

numbers 0 to 9 are shown in Figure. B.22. Similarly, Figure. B.23 shows the feature vector

components for the shapes included in our dataset, which is shown in Figure. 3.6. More details

about the proposed feature can be found in the appendices Section B.

3.2.3 Classification

For the multi-class classification problem and the length of the feature vectors proposed, Dis-

criminant Analysis classifier is expected to work well. Several classifiers were tested as detailed

in Section 3.3.2. The Quadratic Discriminant Analysis (QDA) function, and the Linear Discrim-

inant Analysis (LDA) function are similar in terms of the function and classification rules except

the way covariance matrix is computed separately for each class (i.e., varying, not identical).

As a result, QDA tends to fit the data better than LDA.

3.3 Performance evaluation

In this section, we evaluate the performance of the proposed graph spectral features for in-air

hand-drawn number and shape recognition. The experimental set up includes creation of a new

dataset for both numbers and shapes using in-air hand-drawn by several users captured by a

Kinect sensor as detailed in Section 3.3.1. The evaluation process includes evaluating the effect

of different classifiers for the proposed features in order to find the optimal classifier, the effect

of number of nodes, n, for graph formulation, the impact of the threshold value T and the choice
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G
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Rectangular
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Figure 3.6: Ten classes of shape dataset with its graph construction.

of eigenvectors (from both normalised and combinatorial Laplacian matrices) for feature vector

formation. The performances in terms of average recognition rates, confusion matrices and

execution times are reported.

3.3.1 Dataset

The system we proposed in this chapter is designed for acquiring live data streams of the in-air

hand-drawn numbers and shapes. However, the available datasets mostly consist of numbers

recorded as images. The challenge in such cases is to identify the hand path, starting and

ending points. We evaluate the proposed system using two different datasets, which provide

a sequence of the hand writing (i.e., hand path movement sequence is provided as a vector).

The dataset presented in [54] consists of 1000 training samples and 2300 testing samples (d1),

while the dataset presented in [60] consists of 100 samples per number (0-9) captured using a

PrimeSense 3D camera (d2).

In order to evaluate our proposed method using a larger dataset, we have created a new in-
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air hand-drawn numbers and shapes dataset (d3), details of which can be found in [127]. The

samples in our dataset, acquired using Kinect, provide the direct observation of a sequence of

hand movements (i.e., start and end points coordinates). The database can be divided into two

parts: numbers (Figure. 3.1) and arbitrary shapes (Figure. 3.6). The number sub dataset includes

500 instances per each number 0 to 9, resulting in a total of 5000 samples of in air hand-drawn

numbers. Similarly, the shape sub dataset also includes 500 samples per each shape of 10

different arbitrary 3D shapes, resulting in a total of 5000 samples. The total samples equals

10,000 instance and samples of the datasets can be seen in Figure. 3.7. Our numbers and shapes

datasets provide X, Y, Z coordinates of the users writing hand movement. The dataset provides

raw sampled hand path with original sampling rates and without any normalising nor smoothing,

resulting in various numbers of data points within a given hand path. Our approach for pre-

processing was outlined in Section 3.2.1. This dataset creation has received The University of

Sheffield ethics approval under application 023005 granted on 19/10/2018. Table 3.1 shows a

brief description of each dataset.

3.3.2 Evaluation of different classifiers

In order to test the entire dataset instead of random partitioning, a 10-fold cross-validation

procedure is implemented to find the optimal classifier. Table 3.2 shows the mean accuracy for

each classifier. QSVM records relatively lower degree of accuracy than the other classifiers,

whereas the Quadratic QDA shows the highest level of recognition rate with more than 99%,

while both CT and KNN provide nearly 99% level of accuracy. Thus, QDA is used for the rest

of the experiments.

3.3.3 Evaluation of different number of graph nodes and threshold values

In this experiment, the pre-processing steps were repeated for various values of n. We start

the test using n = 3, which is the minimum number of nodes to form the graphs. As can be

seen in Figure. 3.8, it is clear that too few number of nodes (i.e., n ≤ 10 nodes) is not suitable

for accurately representing the samples. The level of accuracy is then relatively stable using
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Figure 3.7: Samples of the proposed dataset [127], which can be divided into three datasets:
numbers, shapes, and 3D gestures.
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Table 3.2: Average recognition rates (%) for different classifiers.

Classifier QDA QSVM CT KNN
Mean accuracy (%) 99.5 97.8 98.6 99.18

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Number of nodes (n)
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95
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A
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c
y
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%
)

Recognition rates of different number of nodes

Numbers

Shapes

Figure 3.8: Recognition rates for different values of n at T = 1. In this experiments, we use the
same set of feature but for different number of observation at a fixed threshold.

12 ≤ n ≤ 24 nodes. Note that 24 nodes is the minimum length among all samples in our

dataset.

Similarly, the pre-processing steps were also repeated for various values of T . As can be

seen in Figure. 3.9, it is evident that the optimal range lies in 1 to 8 unit distance. Then the

accuracy falls dramatically using T ≥ 12 .

3.3.4 Evaluation of different eigenvectors

It has been shown that the geometric Laplacian matrix Γ has almost similar behaviour to the

eigenvectors of normalised Laplacian matrix L [35]. Therefore, in this experiment, we only

evaluate the individual eigenvectors from L and L, as the feature vector. Figure. 3.10 shows

the accuracy rate of using different graph eigenvector instead of u0 in Eq. (3.5), Eq. (3.7), and
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Figure 3.9: Recognition rates for different values of T at n = 17. In this experiments, we use
the same set of feature but for different values of the threshold at a fixed length.

Eq. (3.8). It can be seen that the u0 of L provides the highest recognition rate of 99.56%, as

it captures details of the structure of the graph. The second best result is from the uN−1 of L,

which corresponds to the maximum eigenvalue (λmax). For most eigenvectors, those from L

appear to outperforming those from L.

3.3.5 Performance of the proposed method

From the above experiments, we use (n = 17, m = 15, T = 2) for numbers and (n = 13,

m = 15, T = 3) for shapes to construct the graph. This is followed by using u0 of L, for

generating the feature vector components F1, F2 and F3 and the QDA classifier to evaluate the

performance of the proposed method using our dataset. The corresponding confusion matrices

for numbers and shapes are shown in Figure. 3.11 and Figure. 3.12. The proposed method has

achieved average recognition rates of 99.56% and 99.44% for numbers and shapes, respectively.

In order to compare the proposed method with the state-of-the-art methods in the literature,

we first evaluate the method using an existing datasets in d1 and d2. For the two datasets, the
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Figure 3.10: The accuracy rate of individual eigenvectors of the normalised and combinatorial
graph Laplacian matrices using QDA classifier for both numbers and shapes. In this experiment,
individual graph eigenvectors are used instead of u0 in Eq. (3.5), Eq. (3.7), and Eq. (3.8) to
compute the features.
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Figure 3.11: Confusion matrix for individual numbers (Overall average recognition rate is
99.56%).
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Figure 3.12: Confusion matrix for individual shapes shown in Figure. 2.1 (Overall average
recognition rate is 99.44%).
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Table 3.3: Average recognition rate (%) for sign numbers.

Method [55] [53] [54] Proposed method [60] [126]
Dataset d1 d1 d1 d1 d3 d2 d2 d3

Zero 92.61 97.83 97.83 97.82 99.8 100 98.5 99.62
One 76.09 94.78 91.3 93.47 98 98 99.5 93.85
Two 86.96 95.65 96.09 99.56 100 100 98.8 96.15

Three 86.96 93.48 97.39 96.95 99.4 99 99 99.62
Four 91.74 96.09 97.39 99.56 100 98 98.7 100
Five 75.96 89.13 98.26 95.21 100 100 97.5 94.23
Six 86.96 95.65 97.83 98.26 99.8 99 99 97.69

Seven 91.3 94.35 97.83 96.52 99 99 99 95.38
Eight 87.83 93.91 95.22 99.56 100 100 97.9 100
Nine 89.57 95.22 99.13 96.95 99.6 99 98.6 98.46

Average 90.8 94.6 96.82 97.39 99.56 99.2 98.63 97.53

Table 3.4: Average time requirement to perform different steps in the proposed system.

Step Performance average time (ms)
Hand’s path detection 2.729
Graph decomposition 0.055

Feature extraction 0.195
Classification 1.148

Full time system 4.127

parameters, (n = 9, m = 35, T = 3) and (n = 24, m = 10, T = 2) were used respectively

for forming the graph. As can be seen in Table 3.3, this has achieved mean accuracy of 97.39%

for d1 and 99.2% for d2, which are both better than the methods in the literature that use those

datasets [53–55,60,126]. Overall, the proposed method has achieved the best results compared

to the existing methods in Table 3.3.

All experiments were implemented using Matlab R2015b on a PC with Intel processor,

CPU@3.6GHz and RAM 16GB. The time requirement of operating number and shape recog-

nition in a Kinect-based real-time system is about 4.127 ms per sample, which is suitable for

a real-time in-air hand-drawn number and shape recognition system. The breakdown of the

average times for components of the algorithm is shown in Table 3.4.

Since the graph adjacency matrix was defined based on the connectivity, it is insensitive to
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Figure 3.13: Hand drawing in different rotating angles (top row) with corresponding features
(bottom row). We can see in the bottom row that the features are the same despite the drawing
angle.

the rotation and flip changing. In other words, it does not matter what is the angle or direction

of writing as long as it follows the rules of starting and ending point. For example, all the cases

shown in (Figure. 3.13) are detected as number four. Due to this reason, the proposed method

is invariant to the rotation or flipping or orientation angle variation of the in-air drawn samples.

More example on the rotation invariant property can be seen on [126].

3.4 Concluding remarks

In this chapter, we have presented novel graph spectral features for in-air hand-drawn number

and shape recognition. The proposed method includes pre-processing for converting the hand

path movement, captured via Kinect, into a fully connected graph followed by analysis of the

eigenvectors of the normalised Laplacian of the graph adjacency matrix for forming the feature

vector. We have utilised the eigenvector, u0, as it captures the details of the structure of the

graph. The proposed method has resulted in the highest performance with accuracies of 99.56%

and 99.44%, for numbers and shapes, respectively, out performing the existing methods for
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three different datasets. The proposed method also has the added benefits of fast operation

and invariance to rotation and flipping. In the next chapter, more complex shapes with high

similarities will be considered in the recognition process.
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Chapter 4

Graph spectral domain based on local

details for shape recognition

4.1 Introduction

In the previous chapter, we solve the problem of matching low-level structures. In this chapter,

we will explore the graph spectral features matching for the medium-level structures. Object

recognition in terms of shape analysis has recently received a great attention in the field of

computer vision [18] and applications, such as, security [131], video gaming [72], medical

imaging [132] and human activity and pose understanding [133].

The detection of shape appearance, part-structure, occlusion, articulation, and local details

play an important role in shape classification. Representation of these characteristics is par-

ticularly significant when it comes to distinguishing highly similar shapes. This is often the

case in many existing shape data-sets which consist of similar and complex shapes leading to

ambiguity in shape recognition [134]. For example, although, various shapes in Figure. 4.1 can

be easily distinguished by human vision, it is challenging for shape classification algorithms

due to the similarity in global structures and indistinguishable local variations of these shapes.

Thus, the capturing small local details and prominent parts as well as the global structure into

shape models is an important factor in distinguishing between different objects. Further, this

becomes even more difficult for 3D shapes due to the complexity and different view-points of

shapes. This challenge has motivated us for this work to exploit the shape structure in terms of

77



Chapter 4 – Graph spectral domain based on local details for shape recognition

Classification

Sh
ap

e
s

A
d

ap
tive grap

h
Train

in
g / 

Te
stin

g
Fe

atu
re

s

Figure 4.1: Challenging objects belong to four different classes that have high conceptual simi-
larity structures (top row) and their associated adaptive graph connectivity. The top row shows
how a human can see and the bottom row explains how a computer can see.

protrusions and fine details present within the global shape to propose a novel model for shape

representation.

Previous work on shape classification include a wide range of methods such as graph match-

ing [25], inner-distance [135], complex-network [92], short-cut [18], part-alignment [72], and

shape contexts [136]. These studies aimed to achieve the optimal representation of shapes by

investigating on its outline. However, main limitations of these approaches are high computa-

tional complexity, restrictions on some shape sizes [25] and sensitivity to noise [135]. Although

deep learning [62, 63] has achieved significant performance in object classification, such algo-

rithms need extensive training data and time [137]. Psychophysical and neuro-physiological

studies have proposed a hypothesis for a structural representation of shapes in terms of object

structures, parts and their positional relationships [10, 138, 139]. Further, studies on human
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vision have highlighted the importance of capturing the local details of the shape surface for

the human visual perception of shapes [12, 13]. More importantly, another study on human vi-

sion suggests that the visual cortex perceives and understands shapes be representing the shape

boundary as a connected set of nodes [11], which has inspired us for the proposed method in

this work.

In this study we propose a novel approach for shape representation by considering the shape

as a connected graph, whose node connectivity is formulated adaptively, and analysing the

spectral properties of the resulting graph. The proposed concept of adaptive formulation of

connectivity, firstly computes an implicit threshold to build a graph from shape nodes to capture

complex shape structures and details. A set of discriminating features is then extracted on graph

spectral domain followed by classification using machine learning techniques. In the present

chapter, we address representing both 2D and 3D shapes. By 3D shapes, we refer to the shapes

perceived by point clouds of 3D objects. The main contributions of this work are:

1. Proposal of a novel graph-based representation of 2D and 3D shapes.

2. A new method for graph formulation with adaptive connectivity to represent shapes cap-

turing their local and global characteristics.

3. Proposal of a new set of graph spectral features based on the node distribution of the

adaptively connected graph for shape representation.

The rest of the chapter is structured as follows: a comprehensive explanation of the graph

concepts, graph model based on adaptive connectivity and graph spectral features are shown in

Section 4.2. Then, Section 4.3 evaluates the proposed system based on different classifiers and

data-sets. Finally, the concluding remarks are shown in Section 4.4.

4.2 The proposed method

The proposed method can be summarised mainly into four steps as shown in Figure. 4.2. The

framework begins by representing the shape’s silhouettes using edge detector filter for 2D

shapes and Growing Neural Gas (GNG) for 3D shapes. The resulted pixels are used as graph

nodes. Graphs are then created by updating the allowable limits for node connections. After
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Growing Neural Gas (GNG) Down  sampling 

Input object  

D shapes 2 D  3 shapes 

Threshold  

( maximum entropy of the node distribution)  

Graph generation and feature extraction 

Classification using K - nearest neighbour 

Figure 4.2: The proposed method contains of four steps: shape representation, graph generation,
feature extraction and classification.

getting the desired limit, a combination of node and spectral domain features are extracted to

represent the shape. Lastly, these features are classified using a machine learning technique.

4.2.1 Shape representation

Since this work applies machine learning for classification, we need to specify a fixed number

of pixels n to get the same length of features and reduce the complexity of 2D/3D shapes as

follows:

2D Shape

Let d = (Ḧk, lk) be a dataset, where Ḧk is the 2D binary shape and l is the corresponding label

of sample k. For each Ḧk, we extract its contour (x, y) from the input image silhouette using

an edge detector filter (e.g., Sobel filter). The resulting path P is usually a smooth curve with

N -pixels. Therefore, n-pixels are selected from P , where n < N , to create a uniform path P̂

for graph generating as given in Eq. (3.1). P̂ is then used to generate the graph.
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Figure 4.3: Example of applying the GNG on 3D shapes. Left side, we show only the nodes.
right side, we show the node and its adaptive connectivity.

3D shape

While a silhouette border is extracted to represent the 2D shape, this is not possible for the 3D

shape (
...
H) because it is represented as a surface. Therefore, we use (GNG) to get the same

number of pixels to represent the samples. GNG is a simple unsupervised procedure to select

the optimal pixels to represent the shape based on their distance, and it does not create any new

pixels. The main characteristic of GNG is that the output neurons represent the topology of the

shape.

GNG starts with two nodes, randomly selected from a set of existing nodes. Then, it gen-

erates a signal based on the probability density between these nodes. After that, it finds the

nearest node to both initial nodes. Based on Euclidean distance, the edges between these nodes

will be updated based on the error function, which represents the difference in distance. These

steps are repeated until the n nodes are selected.

In this study, the input data of GNG are the Cartesian coordinates of a 3D point cloud

shape. Based on the Euclidean distance, pixels grow gradually inside the shape region during

the training. At the end of training process, GNG should satisfactorily cover the shape regions as

can be seen in Figure. 4.3. A detailed description of GNG can be found in [140] with its Matlab

code. From GNG, we took only pixel locations and not their connections. The connection

procedure is based on the proposed threshold. In the following subsections, we will provide

information about: graph preliminary, graph connectivity, graph properties, threshold set up,

feature extraction, and classification procedure.
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4.2.2 Graph preliminaries

Suppose that G is an undirected graph, the A,D, r̂, and L are computed as in Eq. (2.1), Eq.

(2.4), Eq. (3.2), Eq. (2.3). For (Ḧ), z dimension is not considered in Eq. (3.2). We also define

Φi as the number of edges incident on Vi, which is also known as a node degree, as in Eq. (2.2).

The following subsections will highlight the most relevant properties of graph spectral domain.

Graph connectivity

Connecting pixels is a key concept in generating graphs because the way to connect vertices

has a direct effect on the spectral characteristics of the graph. The graph connectivity can be

categorised into four types:

1. Special connectivity: for specific applications, vertices have their own connectivity with-

out the ability to change it. An example of this is the Minnesota graph, where the edges

represent the road network [35].

2. Full connectivity: when Vi is connected to all other vertices in the graph and each vertex

has (n − 1) connections. This type of connectivity provides an efficient characterisation

of global shapes.

3. K-Nearest Neighbour: where Vi is linked to the nearest K-vertices, and each vertex has K

connections [141]. This type of connectivity is usually applied in a uniform grid such as

image-based applications.

4. Conditional or circular connectivity: vertices are connected if a certain condition t is

accomplished.

Vi is connected to Vj , if and only if Vj satisfies the requirement of a particular condition

Figure. 4.4. Using this connectivity type, there is no fixed number of connections at each

vertex and the number of connected elements depends on the condition.

Although a fully connected graph provides an efficient representation of the global shape as

we showed in Chapter 3, the major drawback of this type is that local details are not reliably

detected compared to the global shape. Since we aim to classify more complex shapes, this

work uses a conditional connectivity to reveal the local information.
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Figure 4.4: Conditional connectivity for a random graph. As we can see, vertices with the
specified distance are connected, otherwise, they are not connected.

As mentioned earlier, the edges between the vertices represent the Euclidean distance of the

pixels. Therefore, the proposed conditional connectivity means that each vertex is connected

to other vertices that fall in less than a certain distance. Figure. 4.5 shows an example of how

vertices are connected using different thresholds with their corresponding node degree (Φ). This

type of connectivity can be used to reveal the protrusions on the shape’s surface.

Graph properties.

In order to explain the effect of the conditional connectivity on the graph basis, Figure. 4.6

shows different graph generation using four threshold values, which are 6, 7, 8 and 9 unit pixels

in A, B, C, and D respectively.

The corresponding graph eigenvalues are listed below:

λ(t(A),n) = [0, 0, 0, 0, ..., 0.50, 1.86, ..., 24.97].

λ(t(B),n) = [0, 0, 0, 0, 0.01, 0.06, ......., 34.54].

λ(t(C),n) = [0, 0.030, 0.050, ................., 49.94].

λ(t(D),n) = [0, 0.031, 0.054, ................., 60.49].

The graph eigenvalues reveal important properties of the shape characteristic and they can be

interpreted for the shape matching process. These properties include information about the size

and number of clusters as shown below:
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Figure 4.5: Different connectivity level with its corresponding node degree. In this experiment,
we show five different levels of connectivity from a small distance to a larger distance. We can
see how the connection grows with the threshold value.
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T=6                                                         T=7                                                       T=8                                                          T=9                                                       

A                                                            B                                                            C  D                                                       

Figure 4.6: Graph construction using different threshold values. We can see how the connection
grows with the increasing threshold value.

1. The shape density:

Relatively, we can measure the density of the graph connectivity through the eigenvalues

and, to be more accurate, through its last values λ(n−1). In this example for the same

shape, we can see that λ(n−1) reflects the intensity of the graph connectivity. Also, it is

always that

λ(t,n−1) < λ(t+1,n−1), (4.1)

which means that the last eigenvalue is always directly proportional to the value of t.

λ(n−1) α t. (4.2)

This property is used to interpret the shape density.

2. The number of clusters (ω).

Since we used a distance as a threshold to link vertices, in some cases, there may be some

pixels without links or a group of nodes separated as one group. This can be detected

using the number of zeros in the eigenvalues of the graph [35], which means that the

eigenvalues of the graph can be used as an indicator of the number of clusters in the
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shape. The number of existing clusters depends on the threshold and it is calculated as

shown in Eq. (4.3) and Eq. (4.4) [35].

ω =
n−1∑
i=0

bi, (4.3)

where,

bi =

 1, if λi = 0,

0, otherwise.
(4.4)

For more clarification, Figure. 4.6A shows a dog with 39 groups and these group can be

the sum of pixels or individual pixels. This is clearly shown in the number of zeros of

the graph eigenvalues, where λ(t(A),0→38) are equal to zeros. The same thing in shape B,

λ(t(B),0→3) are equal to zeros, which means that there are four groups (ω = 4). For both

shapes C and D, only λ0 is equal to zero (ω = 1), and that means all the existing pixels

are connected as one group. In the rest of this work, ω will be used to state the graph

connectivity and we will refer to the threshold value that makes ω = 1 as t◦.

3. Spectral response:

The behaviour of the graph eigenvectors of the Laplacian matrix depends on the connec-

tivity. For example, if ω > 1, the spectral response will be a pulse signal. However, if

ω = 1, the spectral response will be a sine wave as we can see in Figure. 4.7. In addition,

we can see that the details of the object begin to appear in detail with the increased value

of the condition. This property is vital in designing the adaptive graph because it gives a

relative representation of the node connectivity.

4. The impact of n on the connectivity:

t◦ is affected by the number of nodes (n). More pixels observed from the shape leads to

the desired threshold t◦ being smaller and the opposite is also true. Thus, we can conclude

that t◦ has an inversely proportional relationship with the number of observed pixels Eq.

(4.5).

t◦ α
1

n
. (4.5)

Figure. 4.8 demonstrates the relation between n and t◦ using the same sample with n = 40
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Figure 4.7: The spectral response (e.g., Fielder vector) of the graph Laplacian matrix through
different threshold values using three different shapes. In this experiment, we increased the
threshold value from 4 to 10 pixels, and the result is a pulse or sine signal based on the shape
topology.

and n = 400.

The information above highlight the importance of the graph spectral domain for shape under-

standing. We seek to generalise the method by considering any number of observations. To do

this, two cases that lack local details should be considered as will be shown in Section 4.2.2.

Threshold set up

To achieve the optimal threshold, two rules have to be satisfied:

1. Lower boundary

All the pixels must be linked as one group, which means that ω = 1. Any threshold below

this limit is not accepted.

2. Higher boundary

It is advisable to increase the connection for a particular range δ to further highlight the

local details as shown in Figure. 4.6 D. However, full connectivity, where each pixel has

(n− 1) connections, should be avoided because local details will be missing.
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(a) n = 400, t◦ = 2. (b) n = 40, t◦ = 12.

Figure 4.8: Two cases with big and small n (left column). We can see that t0 is inversely
proportional to n.

To summarise, t◦ is the minimum accepted distance but not always the optimal level. This

is certainly true for the shape shown in Figure. 4.8a. This situation indicates the need for

pixel down-sampling or increasing the threshold because pixels are only connected to their

neighbours using t◦. Therefore, the threshold is updated by a fixed increment, and we can see

that Φ begins with a mostly uniform number of connections, where most of the pixels are only

connected to their neighbours. The local details at this level cannot be revealed. Then, these

details start to appear after increasing δ as can be seen in the middle level of the Figure. 4.8a.

Lastly, Φ then is fixed at n− 1 level towards the maximum value of δ. Figure. 4.8b provides the

same notion of Figure. 4.8a, except that the initial levels at t◦ are different. The constraint of Φ

is explained in Figure. 4.9.

For all the samples, therefore, the optimal threshold T is computed by updating the initial

t◦ with a specific dynamic range δ as shown in Eq. (4.6),

T = t◦ + δ. (4.6)

The optimal threshold (T ) is defined as the value that reveals the maximum details of the shape

architecture. Therefore, for each object (Ḧ) or (
...
H) with n nodes in d that contains k shapes,

we compute the entropy of the normalised node distribution at t◦. Then, we increase δ from

0→ (n− 1) to find the node distribution corresponding to the maximum entropy as follows:

T = argmax
δ

(E), (4.7)
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Figure 4.9: The upper and lower boundaries of Φ.

(A) (B) (C)

δ

n

k

(D)

T = 𝒂𝒓𝒈𝒎𝒂𝒙 (𝑬)

Index of the node

N
u

m
b

er
 o

f 
co

n
n

ec
te

d
 n

o
d

es

𝜙 values by increasing the threshold

𝐸𝛿

Figure 4.10: The dynamic evaluations, A: number of connected pixels for one sample, B: com-
bining all samples, C: matrix representation of the connectivity for all samples in dataset, D:
the entropy of each φ.
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Algorithm 1 Input = (Ḧ) or (
...
H), Output = (T )

1: for i = 0 : (k − 1) do
2: P̂i ← Shape representation as (xi,yi,zi).

3: t◦ ← Threshold at ω = 1.

4: for δ = 0 : (n− 1) do
5: Φδ ← Node distribution at (δ + t◦).

6: Φ̂δ ← Normalising ( Φδ

max(Φδ)
) .

7: Eδ ← Compute the Entropy of Φ̂δ.

8: end
9: Ti ← max(E).

10: end

Classification

Global details

Local details

Rotation invariant

Figure 4.11: Three types of features are extracted to form a shape signature.

where,

E =
n−1∑
i=0

Φi log2

(
1

Φi

)
. (4.8)

The procedure of computing the proposed threshold of all samples in dataset is illustrated in

Algorithm 1 and Figure. 4.10. A short demo can be found in [142].

4.2.3 Graph Spectral Features (GSF)

In order to classify samples, it is important to create a unique signature for each class using the

prior interpretation of the adaptive graph. To achieve such a task, the proposed features should

detect the local and global details of the shape. In addition, they should also be invariant to the

rotation changes (Figure. 4.11).
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For a given object, we calculate its features GSFk = {fa, fb, fc} as follow:

1.

fa = r̂i λ(i), i = 0, . . . , n− 1. (4.9)

fa is the scalar product between the eigenvalue λi and the corresponding distance f̂i.

This provides an efficient descriptor to estimate the global structure and the density of

the connectivity as described earlier in the example shown in Figure. 4.6. Figure. 4.12

and Figure. 4.13 show the average eigenvalue at each node for different classes with its

standard deviation. The eigenvalues provide a clear distinction between various classes

of four datasets.

2.

fb = Φ̂i, i = 0, . . . , n− 1. (4.10)

Node distributions fb is used at a certain level, which gives the maximum entropy to re-

veal the local details of the shape’s surface.

3. fc :

In addition, we include a variety of other statistics of the node distribution for the detec-

tion process. This information is not affected by changes in shape rotation; such as:

(a) f(c,1) = the mean.

(b) f(c,2) = the variance.

(c) f(c,3) = the entropy (Eq. (4.8)).

(d) f(c,4) = the summation of square node distribution Eq. (4.11).

f(c,4) =

√√√√n−1∑
i=0

Φ̂i
2
. (4.11)

Concatenating all features leads to an effective representation of shapes, which are classified

in the next step using Machine learning principles. The total length of the features is (2n + 4).
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Figure 4.12: The fa (y-axis) at each node (x-axis) for ETU10 and Tool datasets. Colours are
corresponding to different classes.
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Figure 4.13: The fa (y-axis) at each node (x-axis) for kimia99 and Kimia216 datasets. Colours
are corresponding to different classes.
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4.2.4 Machine learning

Based on several experiments conducted to select the optimal classifier, Nearest Neighbour

(KNN) shows better performance compared to other classifiers in terms of accuracy and time

processing, as will be shown in Section 4.3. The experiments include using SVM, KNN, CT,

QDA, NN.

4.3 Performance evaluation

This section describes the performance evaluation of the proposed method for 2D/3D shapes

classification. All the experiments are implemented using MATLAB R2018a on a PC with Intel

3.6 GHz processor and 16 GB RAM. Here, we will start by introducing the datasets, which are

used in the evaluation process:

4.3.1 Datasets

We are keen to test the proposed method against a variety of shapes, sizes, and datasets, which

vary in orientation, articulation, and scales. Thus, a large number of experiments are performed

using four 2D shape datasets and two 3D shape datasets as follows:

1. ETU10 silhouette dataset (d4).

One of the most well-known 2D databases is the EUT10 database [143], which provides

a 5-degree rotation difference for each class. This dataset has 10 classes ×72 shapes in

each class = 720 total images. Sample silhouettes from each class are shown in the top

two rows of Figure. 4.14A. The bottom row shows different angles of the object. The

ten classes in the confusion matrix correspond to the Bed, Bird, Fish, Guitar, Hammer,

Horse, Sink, Teddy, Television and Toilet respectively.

2. Tool dataset (d5).

The tool dataset [144] is one of the most challenging dataset as it has a conceptual sim-

ilarity in its shapes. It consists of 35 articulated shapes, which are classified into four

classes: 10 scissors, 15 pliers, 5 knives and 5 pincers respectively as shown in Figure.

4.14B.
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3. Kimia 99 dataset (d6).

The Kimia 99 dataset [145] consists of 9 classes × 11 samples = 99 images as shown

in Figure. 4.14C. The nine classes in Tool dataset correspond to the Fish, Hand, Human,

Aeroplane, Ray, Rabbit, Misk, Spanner and Dog respectively.

4. Kimia 216 dataset (d7).

The Kimia 216 dataset [146] consists of 18 classes × 12 samples = 216 images as shown

in Figure. 4.14D. The 18 classes in the confusion matrix correspond to the Bird, Bone,

Brick, Camel, Car, Children, Classic, Elephant, Face, Fork, Fountain, Glas, Hammer,

Heart, Key, Misk, Ray and Turtle respectively.

5. SHERC2010 dataset (d8).

SHREC2010 dataset [147] consists of 20 objects × 10 classes = 200 points cloud models

in total. These samples are taken from McGill Articulated Shape Benchmark dataset and

some of its samples are shown in Figure. 4.15. The classes include: Ants, Crabs, Hands,

Humans, Octopus, Pliers, Snakes, Spectacles, Spiders, and Teddy respectively.

6. 3D shape benchmark dataset (d9).

3D shape benchmark dataset [148]. This dataset consists of 19 classes× 20 samples

per class = 380 shapes in total. Objects were presented in different orientations, scales

and articulation, and that makes it one of the most challenging datasets. These classes

include: Human, Cup, Glasses, Airplane, Ant, Chair, Octopus, Table, Teddy bear, Hand,

Plier, Fish, Bird, Mech, Bust, Armadillo, Bearing, Vase, and Four Leg respectively. Some

of the objects are shown in Figure. 4.15.

4.3.2 Classifiers

Initially, we test different classifiers in terms of speed and the score for the recognition process.

A 10-fold cross validation scheme is utilised to train and test all the samples in the dataset.

Table 4.1 shows the accuracy of all the 2D datasets. As we can see, NN and KNN show the

highest level of accuracy among all the classifiers. However, KNN classifier is much faster than

NN. Therefore, for the rest of the experiment, we select KNN for the classification process.
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Figure 4.14: 2D datasets, which are used in this section, include A: ETU10 silhouette Dataset,
B: Tools Dataset, C: Kiama99 dataset and D: Kiama216 dataset.
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Figure 4.15: Samples of SHREC2010 dataset (Top), and 3D shape benchmark dataset (Bottom).
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Table 4.1: Recognition score (%) using different classifiers and datasets.

Dataset CSVM KNN CT DA NN
d4 99.58 99.58 94.18 89.54 99.7
d5 100 100 92.85 100 100
d6 97.98 100 90.82 91.91 99
d7 95.37 96.30 89.88 90.27 96.8

KNN classifier recognises samples based on the available trained classes (i.e., KNN is a class-

based classifier rather than individual samples). Several types of distances are tested such as

Euclidean, Manhattan, Cosine, Mahalanobis, Correlation, Minkowski, Standardised Euclidean,

and we found that the normal Euclidean distance provides an efficient performance.

4.3.3 Confusion matrices

In this study, we will use the confusion matrix to show the classification results of the individual

dataset.

• For both d5 and d6, samples are classified correctly with 100% accuracy. Although

Tool dataset provides high similarity structures, the proposed method forms significant

descriptors for the individual class.

• Despite the different angles of the samples in d4, the proposed features recognise sam-

ples with a high level of accuracy exceeding the state-of-the-art performance by 99.58%.

These samples are classified without any confusion samples as we can see in Figure. 4.16.

• d7 is one of the most challenging dataset because of the small number of available sam-

ples in each class compared to the total number of classes. This leads to a challenging

score of up to 96.3% as shown in Figure. 4.16.

• As shown in Figure. 4.16, the proposed GSF recognises all models in d8 with a high ac-

curacy score of 93%. The only confusing sample is the octopus, which has been matched

with spiders and this is because of the similarity in size ( ie eigenvalues) and structure.

• d9 has been classified with an accuracy level of (76.32%) as shown in Figure. 4.16. This

dataset has more misclassified samples compared to other such as in Bearing, Vase, Four
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Figure 4.16: Confusion matrices of different datasets, which are described in Section 4.3.1.

Leg, and Bust. This is because the same object appears in different poses and articulation.

4.3.4 The proposed threshold versus number of observation

Figure. 4.8 illustrates that, for the same shape, the threshold value depends on the number of

observations. In order to provide a general idea about the system performance using a wide

range of n and T , this study uses Technique for Order of Preference by Similarity to Ideal So-

lution (TOPSIS) [149]. The TOPSIS is an optimisation method, which helps to understand and

analyse the relationship between multi-parameters based on cost function. In this experiment,
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Figure 4.17: The proposed dynamic range of the increments δ with respect to the number of
connected elements.

Table 4.2: Minimum number of observation at t◦.

Dataset n accuracy time (second)
d4 55 99.56 7.47
d5 45 100 2.84
d6 35 98.98 4.56
d7 65 95.83 6.13

the accuracy scores of 30 ≤ n ≤ 200 using T = 1, 2, ..., 10 levels are used as a cost function.

Note that the levels of t are equivalent to 5%, 10%, ..., 50% of n respectively as shown in Fig-

ure. 4.17. We found that T , for most of the samples using varies value of n, lies in this range.

In general, the system performance depends on the number of observation as shown in Figure.

4.18. For each (n), we found the maximum accuracy of the different threshold values.

We also explore the optimal value of n that provides the highest discriminative representa-

tion between samples when δ = 0. This is implemented using TOPSIS by searching the optimal

n at t◦. Table 4.2 shows that the range between 35-65 pixels is the efficient number to represent

the shapes among all the datasets using only t◦.
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Figure 4.18: The proposed dynamic range of the increments δ with respect to the number of
connected elements.

4.3.5 Time requirement

The average time to perform graph generation, features extraction, training and testing samples

twelve times is also shown in Table 4.2 for all the datasets. In addition, the average required

time to test a new sample was 12 milliseconds, which reflects the real-time performance of the

proposed method.

4.3.6 Comparison with other works

2D shape

In order to test the robustness of the proposed method, we compare the graph spectral features

(GSF) with the state-of-the-art studies. Table 4.3 shows the recognition score of the proposed

method and the maximum score of the existing works for the four datasets. Note that, the

proposed method performance is compared with the best available results based on the classifi-

cation score and we exclude the retrieval results. The proposed method performs better than the

existing methods using the ETU10 silhouette, and Tool dataset. Although there is a significant
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Table 4.3: Comparison with the state-of-the-art studies (%).

Dataset Proposed method Existing work
d4 99.58 97.50 [143]
d5 100 90.86 [75]
d6 100 100 [75]
d7 96.3 98.15 [16]

Table 4.4: Classifiaction accuracy results of SHERC2010 dataset and 3D shape benchmark (%).

d8 Average d9 Average
(SHREC2010) accuracy (%) (3D benchmark) accuracy (%)

f1-features [150] 86.49 3D shape histogram [87] 43.42
GPS-embedding [151] 88.87 Shape distribution [152] 67.37

Shape-DNA [153] 90.96 Complex-network [92] 70.79
Proposed method 93 Proposed method 76.32

similarity in these datasets, the proposed method detects these local details with a high level of

detail.

3D shape

In order to demonstrate the robustness of 3D shape recognition, we test GSF against various

state-of-the-art methods, whose respective configurations align with the proposed method (i.e.,

threshold set, features, and node distribution). Table 4.4 shows that GSF exceeds the state-of-

the-art performance by 2% for the d8 and 6% for the d9.

4.4 Concluding remarks

In this chapter, a new method for 2D/3D shape recognition has been proposed. An adaptive

graph for individual shape has been generated to fit the geometric details using the proposed

threshold. Then, a combination of graph spectral and node domain features have been used,

which were able to capture the global and local details of the shape. They were also invariant to

rotation and scaling changes. A cross-validation technique has been applied to train and test all

samples in the datasets. The proposed features have been classified using K-nearest neighbour

classifier. Four public and well-known datasets were used to evaluate 2D models: the ETU
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dataset, Tool dataset, kimia99, and kimia216 datasets and two public, challenging datasets were

used to evaluate 3D models: SHREC2010 and 3D benchmark dataset. The performance evalua-

tion shows that the proposed method is robust in detecting different kinds of complex shapes and

outperformance the state-of-the-art studies by increment 2%, 9%, 2%, and 6% for four datasets.

In the next chapter, we will introduce a new method for simplifying the structure for matching

purposes, which is applied for 2D/3D shape recognition and hand gesture recognition.
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Shape simplifying on graph spectral

domain for shape recognition.

5.1 Introduction

In the previous two chapters, we solved the problem of matching low and medium-level struc-

tures. In this chapter, we will explore the graph spectral features matching for the high-level

structures. Graph Signal Processing provides an appropriate mathematical platform for under-

standing and analysing the unstructured data, often referred to as non-uniform grids. This is

because the normal Discrete Signal Processing (DSP) deals only with structured data. Graphs

contain nodes connected by edges and these edges take the form of any relationship between

nodes. Based on the graph connectivity, the graph spectral domain provides a rich knowledge

about the structure characteristic.

A considerable amount of literature has been published on using graphs for shape match-

ing [23–27, 31, 32]. These studies usually generated graphs based on the shape abstract to sim-

ulate the structure with low complexity details. Then, either approximate or bipartite matching

methods are used for identification. However, most of these studies rely on the global details

for matching. Also, the time requirements are usually too expensive for implementation. The

available datasets of the 2D and 3D shape matching provide more complex shapes, making the

classification process a difficult task to be implemented. Therefore, more details about the shape

are needed to have a deep understanding of the structures such as local details, global details,
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shape simplifying. In addition, the available classes usually come with different orientation and

scale, which adds an extra challenge for the classification process.

In this chapter, we are interested in using graph spectral domain features for hand gesture

recognition, 2D binary shape recognition, and 3D point cloud shape recognition. The main

reasons for using graphs are: 1) The graph spectral bases depend on the relative measurements

between the nodes, making them invariant to the rotation changes. 2) The ability to create

a shape’s map with low complexity. 3) Graph connectivity observes the details of the global

structure and characterises it in the graph spectral bases. The proposed method contains two

parts: firstly we extract the contour and a fully connected graph is created over the contour

representation to describe the global shape details using graph spectral domain features. Sec-

ondly, we extract the skeleton representation to capture the local details and to simplify the

shape for matching purposes [154]. At the final step, these features are concatenated to be

classified using a machine learning technique. Eight public datasets are used to evaluate the

proposed method, including four hand gesture datasets, two 2D shape datasets, and two 3D

shape datasets. Performance evaluation demonstrates the efficiency of the proposed method

compared to the state-of-the-art studies with real-time implementation. The main contributions

of this work are:

• Proposing a new method for shape recognition that preserves local and global details of

shapes.

• Using the graph spectral features for hand gesture recognition.

This chapter is structured as follows, Section 5.2 illustrates the proposed method in detail in-

cluding graph concepts, the silhouette and skeleton representation, and the proposed features.

The performance evaluation of the proposed method using publicly available hand gestures

datasets and shape datasets are presented in Section 5.3 including testing different classifiers

and parameters. Section 5.4 compares between the proposed methods in this thesis. This work

will be concluded in Section 5.4.
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Inputs
2D/3D shape

Shape skeleton
(GNG)

Graph partitioning Feature extraction Classification

Shape silhouette and node 
selection

Graph generation KNN

Figure 5.1: The pipeline of shape representation, which is extracted from the silhouette and
skeleton representations. The top row indicates a silhouette representation and graph generation
to extract the features. While the bottom row is shown how to form the shape skeleton to
simplify the shape into several parts. Both features are concatenated and classified using a
machine learning technique at the final step.

5.2 The proposed method

The full pipeline of the proposed method is shown in Figure. 5.1. The method starts by ex-

tracting the silhouette and skeleton representations of the shape. Candidate nodes are selected

from the contour to form a fully connected graph, which is used to characterise the topology of

the shape. A skeleton representation is employed to partition the shape into meaningful parts,

which helps understanding the local details. At the last step, a combination of silhouette and

skeleton features are used to classify shapes using a machine learning technique. Details of each

step are provided in following subsections. Before we begin to explain the proposed method,

relevant graph properties are provided in the next subsection.

5.2.1 Graph preliminaries

For a given graph G, we calculate the adjacency matrix, the combinatorial graph Laplacian

matrix, normalised graph Laplacian matrix, degree matrix, geometric graph Laplacian as shown
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Figure 5.2: (Top): The eigenvalues of the L,L and Γ. (Bottom): zoom in between the L and Γ
eigenvalues.

in Eq. (2.1), Eq. (2.3), Eq. (2.4), Eq. (2.5), Eq. (2.6), and Eq. (2.7) respectively.

The eigenvalues of L have different behaviour from the combinatorial Laplacain version,

where the λ0 = 0 and 1
n

∑n−1
i=0 λi ≈ 1. In other words, the eigenvalues are fluctuated around 1

and they are ordered as 0 = λ0 < |λ1 − 1| ≥ |λ2 − 1| ≥ ... ≥ |λ(n−1) − 1|. The eigenvalues of

Γ have almost the same behaviour of L, but are ordered as |λ0| ≥ |λ1| ≥ |λ2| ≥ ... ≥ |λ(n−1)|

except that they are fluctuated around the zero. Figure. 5.2 shows the general trends of these

eigenvalues for undirected fully connected graph. Note that, these bases could be changed with

the size of the graph or the connectivity as shown in Chapter 4. More information about the

graph connection can be found in Section 4.2.2.

Since we deal with different shapes (i.e., different graph structures), a combination of global

and local details is required to classify shapes. Therefore, in this work, we use a silhouette

with a fully connected graph to observe the global detail. In addition, we use the skeleton

representation to capture local details by simplifying the structure into several parts through

the partitioning process. In the next subsections, we will provide information about the shape
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representations.

5.2.2 Silhouette and Skeleton representation

The silhouette and skeleton representation are similar to the procedure in Section 4.2. We

implement an edge detector (e.g., Sobel filter) of P with length (N ) in order to reduce the

complexity and to keep samples in the same size. The resulting 2D closed path consists of

random pixels, which are used to generate a new set of pixels (n1) to form a new down-sampled

path, P̂ , as shown in Eq. (3.1) (as in the top sub-figure of Figure. 5.1). We also used GNG to

generate a new set of nodes (n2) inside the shape as shown in Figure. 5.1.

5.2.3 Silhouette-based graph spectral feature extraction

In order to classify different shapes, we have to understand the boundary’s map of the shape.

This study therefore interprets the contour details through the graph spectral domain. We take

advantage of the eigenvectors and eigenvalues representations of the fully connectivity to recog-

nise shapes. Before we explain the proposed features, we will give insight about how these

spectral bases preserve the topology of the shape and how the eigenvalues can be used for shape

matching.

There is a vast literature discussing the relation between graph bases and connectivity. For

example, for any node Vi, the Fiedler value is inversely proportional to the weight of the edge

connecting i and j in the adjacency matrix [35, 43, 44]. According to this concept; dense areas

or a group of nodes, which are close together, are presented as high values compared to other

values in the graph bases. This can be clearly seen in the extended fingers for hand gesture

recognition and limbs or other small parts in shapes. Figure. 5.3 illustrates these concepts using

6 classes of hand gestures and we can see that the peaks on the graph spectral basis refer to the

extended fingers. The sequence of the peaks and troughs helps to localise the extended fingers

with respect to the full contour details. This leads to classify shapes, which have the same

number of extended parts.

In the next experiment, we test individual graph eigenvector of graph Laplacian matrix to

determine the most effective basis. As can be seen in Figure. 5.4, a wide range of accuracy
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Figure 5.3: Graph spectral response (e.g., the first eigenvector of the normalised Laplacian
matrix) of different classes using dataset (d10). From left to right, top row (classes 1-3) and the
bottom row (classes 4-6) .

levels is achieved. The bases can be categorised into four sections (A, B, C, D). Both nor-

malised and geometric graph Laplacian matrix recognise shapes with a high level of accuracy

at (A-section). Then, it drops towards (D-section). Whereas the combinatorial version provides

inverse behaviour to the normalised the geometric versions and it reaches the highest accuracy

at (D-section). This experiment shows that the A and D sections of the eigenvectors provide a

significant contribution of the matching percentage, whereas the rest of the eigenvectors (i.e.,

B-section and C-section) show lower range of accuracy. Therefore, this work employs a certain

range of the bases to eliminate the effect of the inefficient eigenvectors.

Since the graph eigenvectors are presented as a scaler values from [-1,1] to reflect the relative

measurements of the nodes connectivity, it is not affected by the linear changes. Therefore,

the graph eigenvalue is used to provide a notation of the structure size. For illustration, an

experiment has been conducted to test the graph bases for the same shape in its original size

with a scaled size as shown in the top of Figure. 5.5. These two pictures have exactly the same

eigenvectors but different eigenvalues. It also shows the difference between these eigenvalues in

the bottom. The large difference between these shapes occurs in the last eigenvalue. Therefore,

the last λn1−1 and second eigenvalue λ1 are used as features.
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Figure 5.4: The accuracy score for individual graph eigenvectors. In this experiments, we use
different graph eigenvectors of the three different Laplacian versions to compute the accuracy
level using KNN classifier.

Assume that SQ is a matrix, which consist of (n/4) eigenvectors in Q-section as shown in

Eq. (5.1). We calculate the mean value of each node in the eigenvectors of Q-section so that the

average values have the same length as the eigenvectors as shown in Eq. (5.2).

SQ =



u0

u1

.

.

u((N/4)−1)


(5.1)

|Si| =
1

(N/4)

(N/4)−1∑
j=0

u(i,j), i = 0, 1, .., N − 1, (5.2)

where || is a function to find the mean, and j is the index of each eigenvector. Figure. 5.6 shows

an example of how to compute the mean value of eigenvectors. This is implemented to achieve
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Figure 5.5: In the top, the original size of the shape(Left) and its scaled version 2X (Right). In
the bottom, the different in eigenvalues at each node between two samples above.
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Figure 5.6: Mean value of the eigenvectors in A-section. This experiment demonstrates how to
calculate |SA|, which represents the mean of the six eigenvectors in section A. The result is a
vector of n length.

a stable representation of the shape. Also, using the mean value reduces the complexity of the

system instead of taking all the eigenvectors. The general description of the proposed features

based on the silhouette representation is obtained as in Eq. (5.3).

F = e(λ(1)−λ(n−1))|S|, (5.3)

In order to optimise these features, we consider the accuracy state in Figure. 5.4. Therefore, the

optimal features are computed as shown in Eq. (5.4), Eq. (5.5), and Eq. (5.6) for the combina-

torial, normalised, and the geometric versions respectively.

FL = e(λ(1)−λ(n−1)/1000)|SD|, (5.4)

FL = e(λ(1)−λ(n−1))|SA|, (5.5)

FΓ = e(λ(1)−λ(n−1))|SA|. (5.6)
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The silhouette feature length = n1.

5.2.4 Skeleton based partitioning and graph features

In this subsection, we provide a fast partitioning method, which can be used to simplify the

structures for matching purposes. Graph partition has a long history in the segmentation process

specifically using the eigenvector corresponding to the smallest non-zero eigenvalue, which is

known as a Fiedler vector. This is because Fiedler vector provides the minimum cutting ratio

according to the optimisation formulae Eq. (2.13) [42]. The vast majority of current partitioning

methods require determining the number of clusters in advance. For this purpose, we adapt new

rules to achieve a fully automatic and stable recursive hierarchical partitioning, which leads to

automatically identifying the meaningful parts of the structure. That is to say, there is no need

for human intention to determine the number of required clusters.

For graph partitioning, the main differences in terms of graph generation is that we use the

combinatorial Laplacian version and conditional connectivity, where the condition here is the

smallest distance to link all nodes as one group. The main reason for using a combination

of the conditional connectivity and the combinatorial Laplacian matrix is that the local details

of the shapes can be efficiently detected as shown in Chapter 4. Thus, limb nodes always

have less connected nodes compared to the other nodes in the main area, and that makes the

segmentation process an easy task to be implemented. Repeating the procedure will end up

with efficient segmentation quality. In order to avoid fragmentation in the main body and in the

small parts, the segmentation process should satisfy two rules, which are:

1. The minimum number of nodes in each sub-group = 2.

ng1 ≥ 2 and ng2 ≥ 2. (5.7)

2. In order to split two graphs (g1, g2), the difference in number of nodes between them

> n2/3, where n2 the total number of nodes in the skeleton representation.

|ng1 − ng2| > n2/3, (5.8)

113



Chapter 5 – Shape simplifying on graph spectral domain for shape recognition.

where ng1 and ng2 are the number of nodes in the new generated sub-graphs. Figure. 5.7 shows

nine levels of 3D shape segmentation as an example. For each given object, we calculate its

features GSFk = {fa, fb, fc} as follow:

1. Number of clusters

fa = ω. (5.9)

2. Fiedler value at each node by the end of segmentation

fb = r̂i u(1,i), i = 0, . . . , n− 1. (5.10)

3. We also consider the number of connected nodes at each node (i.e., node degree)

fc = Φ̂i, i = 0, . . . , n− 1. (5.11)

The skeleton feature length = 2n2 + 1.

The total feature length = n1 + 2n2 + 1.

5.2.5 Machine learning

Several experiments have been implemented to test the optimal classifier for classification as

will be shown in the next section. The test includes K-Nearest Neighbour classifier with K=1

(KNN), multi class Support Vector Machine with Cubic kernel (CSVM), Classification Tree

with 30 learners using the bag-ensemble method (CT), Discriminative Analysis with pseudo

Quadratic as a discriminative type (QDA), and Neural Network with two layers feed-forward

network and 30 neurons in its hidden layer (NN).

5.3 Performance evaluation

In this section, we provide information about the implementation of the proposed method in-

cluding, the datasets used for evaluation, different classifiers test, confusion matrices, time re-
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Level1 Level2

Level3 Level4 Level5

Level6 Level7 Level8

Level9

Figure 5.7: Segmentation procedure of the proposed graph partitioning. In this example, we
show nine segmentation levels, and as we can see that there is no different between level right
and level nine and therefore the segmentation process stop. More samples can be found in the
Appendix C.
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quirement, and comparison with other studies. All the experiments were implemented using

MATLAB R2018a on a PC with Intel processor, CPU@3.6GHz and RAM 16GB. A 10-fold

cross validation scheme is used to train and test most of the datasets. In order to reduce the

complexity, a few number of nodes are used to generate the silhouette (n1 = 50) for 2D shapes

and the skeleton (n2 = 200) for 3D shapes.

5.3.1 Datasets

A big number of data is used to evaluate the proposed graph spectral feature including variety

forms of shapes starting from simple shapes to more complex details such as: 2D RGB images

d10, depth images (d11, d12, d13), 2D binary shapes (d4, d6), and 3D point cloud samples

(d8, d9). More details about these datasets are shown in the next subsection.

1. d10

The first dataset (RGB dataset) [155] contains 36 American Sign Language (ASL) ges-

tures implemented by five persons. Images are captured using a neutral-coloured. We

focus on the 10 classes corresponding to the numbering gestures from (0 - 9) with 65

samples for each gesture as shown in Figure. 5.8.

2. d11

The second dataset (RGB-depth dataset) [99] contains 10 subjects × 10 hand gestures ×

10 different orientations = 1000 colour and its corresponding depth images as can be seen

in Figure. 5.8. The dataset includes the subject poses with various hand orientation, scale

and articulation. Only depth images are used for evaluation.

3. d12

The third dataset (Synthetic dataset) [102] contains 120 samples for 11 classes, which

are implemented by 4 persons. The dataset provides RGB images and its corresponding

depth image. A confidence depth map for each sample is used for the evaluation as shown

in Figure. 5.8.

4. d13

The fourth dataset (HKU dataset) [116] contains 100 samples for 10 classes, which are
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implemented by 5 persons. The dataset provides RGB images and its corresponding

depth image. Only the depth information of each gesture is used for evaluation as shown

in Figure. 5.8.

5. d4, d6, d8, d9

Four datasets are used as well for evaluation, which are two datasets for 2D shapes (d4,

d6) and another two datasets for 3D shape (d8, d9). More details about these datasets can

be seen Section 4.3.

5.3.2 Cross-validation of different classifiers and Laplacian matrices.

In this experiment, we apply L for shape partitioning. In order to observe the global details,

we examine the three versions of the graph Laplacian matrices based on different classifiers as

can be seen in Table 5.1. Three points can be concluded from these results, which are firstly

KNN, CSVM and NN provide the highest recognition score and we use KNN in the rest of

the experiments because of its fast implementation. Secondly, Γ and L show approximately

the same performance, and we use Γ for the rest of the experiments in this chapter. Finally,

the correlation of the results based on different classifiers demonstrate the distributions of the

features among different classes.

5.3.3 Confusion matrices

In this study, we use the confusion matrix to show the performance of the proposed method

and the classification results of the individual dataset. The confusion matrices of the datasets

are shown in Figure. 5.9. However, we exclude d5 and d6 because the accuracy score of these

datasets is nearly 100%. The results demonstrate the efficiency of the proposed method for

shape classification by achieving 99.53%, 99.6%, 95%, 98.5%, 99.6%, 100%, 95%, and 78.68%

for d10, d11, d12, d13, d4, d6, d8, d9 respectively.

In general, there are no serious confusion cases for all datasets and the only challenge is in

case when the classes have almost the same contour structure as can be seen in Figure. 5.10.

The fist and the open hand have nearly the same contour properties, which result in the same
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Figure 5.8: Samples of the datasets (d10, d11, d12 and d13 from the top to the bottom) were
used to evaluate the proposed method. 118
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Table 5.1: The accuracy score (%) of different classifiers for the three graph Laplacian matrices.

KNN CSVM CT DA NN
d10
L 93.2 98.7 91.1 97.2 98.6
L 98.7 98.6 90.3 98.9 99.1
Γ 99.53 99.1 91.3 98.8 99.67

d11
L 94.2 97.19 91.34 96.38 95.1
L 99.6 98.84 92.42 98.19 98
Γ 99.7 98.27 88.11 97.57 99.1

d12
L 87.48 91.66 79.60 84.92 89.7
L 94.4 93.03 76.19 91.28 91.4
Γ 95 92.44 71.81 90.15 91.3

d13
L 93.1 94.7 84 89.3 93.9
L 98.3 93.4 72.7 91.4 91
Γ 99.4 95 78.1 95.1 94.2
d4
L 94.3 94.7 86.8 93.61 96.2
L 98.3 97.6 84.7 96.12 99.5
Γ 99.6 98.8 85.2 96.43 99.7
d6
L 89.90 92.93 88.89 92.93 93.8
L 100 97.98 85.86 96.97 99
Γ 100 97.98 85.86 97.98 99.6
d8
L 88.63 89.2 75.8 87.82 91.1
L 95.47 94.8 70.1 91.64 93.8
Γ 95 94.5 71.4 93.47 95.2
d9
L 66.7 65.4 65.47 62.39 68.25
L 76.23 72.9 62.61 70.46 75.4
Γ 78.68 77.3 64.32 74.12 78.3
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Figure 5.9: Confusion matrices using KNN classifier.
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Figure 5.10: Confusion cases, where the silhouette representations of different classes are sim-
ilar.

Table 5.2: The average time to perform different steps of the proposed method.

Step Performance average time (ms)
GNG 3984.54

Partitioning 428.12
Graph generation (silhouette) 0.429

Feature extraction 0.185
Classification 1.654

Full time system ≈ 4.4 seconds

segmentation process. These classes are detected based on the silhouette representation rather

than skeleton representation.

5.3.4 Performance complexity

Table 5.2 shows details implementation time for each individual step using different datasets.

The total required time is only above four seconds and can be improved with other alternative

programs. Except for GNG training time, all other actions are in real time. Note that, the

training time of the GNG depends on several parameters such as the required number of nodes,

number of iterations and other parameters.
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Table 5.3: Comparison with the existing works using d10.

d10 Method Score (%)
Proposed method GSF 99.53
Aowal et al. [110] DZM 98.51

Otiniano et al. [111] ZM 96.37
Ng and Ranganath [113] FD 95.68

Avraam [108] GA 83.1

Table 5.4: Comparison with the existing works using d11.

d11 Method Score (%)
Feng et al. [115] GSF 100
Proposed method GSF 99.7
Wang et al. [116] SP-EMD 99.6
Zhang et al. [109] H3DF 95.5

Ren et al. [99] FEMD 93.9
Plouffe and Cretu [98] DTW 93.88

Chen et al. [117] FS 93.2
Zhang et al. [109] HOG 93.1

Table 5.5: Comparison with the existing works using d12.

d12 Method Score (%)
Proposed method GSF 95.00

Minto and Zanuttigh [102] LCDT 89.91

5.3.5 State-of-the-art performance

In order to test the robustness of the proposed graph spectral features, we compare the method

with the state-of-the-art studies. Table 5.3, Table 5.4, Table 5.5, Table 5.6, Table 5.7, Table 5.8,

Table 5.9 and Table 5.10 show the recognition score (%) of the proposed method and the existing

works for all the datasets using different methods and classification techniques. The proposed

method exceeds the state-of-the-art performance using d10, d12, d4, and d9 by 1.02%, 5.09%,

2.1% and 7.89% respectively.
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Table 5.6: Comparison with the existing works using d13.

d13 Method Score (%)
Proposed method GSF 99.4
Wang et al. [116] SP-EMD 99.1

Table 5.7: Comparison with the existing works using d4.

d4 Method Score (%)
Proposed method GSF 99.6

Akimaliev and Demirci [143] Shape abstraction 97.5
Demirci et al. [66] Skeleton 95.2

Table 5.8: Comparison with the existing works using d6.

d6 Method Score (%)
Proposed method GSF 100
Nanni et al. [75] Local descriptors 100

Table 5.9: Comparison with the existing works using d8.

d8 Method Score (%)
Agathos et al. [156] Graph matching 97.6

Proposed method GSF 95
Lavoue [157] Hybrid 2D/3D 92.5

Lian et al. [90] CboFHKS 90.1
Reuter et al. [153] Shape-DNA 90.96

Chaudhari et al. [151] GPS-embedding 88.87
Khabou et al. [150] f1-features 86.49

Table 5.10: Comparison with the existing works using d9.

d9 Method Score (%)
Proposed method GSF 78.68

da Silva and Backes [92] Complex network 70.79
Osada et al. [152] Shape distribution 67.37
Ankerst et al. [87] 3D shape histogram 43.42
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5.4 Concluding remarks

The new emerging field of graph spectral domain provides new opportunities to exploit the ge-

ometric structure of the complex shapes. This work has presented a new method for 2D/3D

shape matching and hand gesture recognition based on the shape silhouette and skeleton rep-

resentation. A fully automatic divisive hierarchical clustering method is used to simplify the

shape and capture its local details. A set of spectral graph features is classified using a KNN

classifier. Eight public datasets were used for evaluation including hand gesture recognition,

2D binary shape and 3D shape point cloud. The proposed method has shown an improvement

compared to the state-of-the-art methods for four datasets by 1.02%, 5.09%, 2.1% and 7.89%.
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Conclusions

6.1 Summary of achievements

This thesis have explored the utility of the graph spectral domain features for shape recogni-

tion. Different graph formulations have been presented that observe topological details. A new

dataset for in-air hand-drawn number and shape recognition have been introduced. We have

also taken into account different shape characteristics, including in-air hand-drawn recognition,

hand gesture recognition, and 2D/3D shapes recognition. Three different methods have been

proposed, each based on global details, local details, and a combination of both respectively.

The first problem was to capture the overall structure of in-air hand-drawn shapes. We have

presented novel graph spectral features for in-air hand-drawn number and shape recognition.

The proposed method includes pre-processing for converting the hand path movement, cap-

tured via Kinect, into a fully connected graph followed by analysis of the eigenvectors of the

normalised Laplacian of the graph adjacency matrix to form the feature vector. We utilised the

eigenvector, u0, as this captures the topology details of the graph. The proposed method has

resulted in the highest performance with accuracies of 99.56% and 99.44%, for numbers and

shapes, respectively, out performing existing methods for three different datasets. The proposed

method also has the added benefits of fast operation and invariance to rotation and flipping.

The second problem required developing a new optimal model for shape recognition. The

proposed model has the ability to observe fine details of the shape and characterise the topology

of the shape using an adaptive graph connectivity. Then, a set of graph spectral features was
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used to capture the global and local details of the shape. The performance evaluation showed

that the proposed method is robust in detecting different complex shapes with improving re-

sults compared to the state-of-the-art studies of the ETU10 dataset, Tool dataset, SHREC2010

dataset, and 3D shape benchmark dataset by 2%, 9%, 2% and 6% respectively.

The third problem focuses on simplifying the shapes for matching purposes. A new method

for 2D/3D shape matching and hand gesture recognition based on shape silhouette and skeleton

representations has been presented. A fully automatic divisive hierarchical clustering method

was used to simplify shapes and capture their local details. This is followed by feature extrac-

tion process. The shape simplification features improves the state-of-the-art performance for

four datasets including RGB hand gestures, synthetic, SHREC2010, and 3D shape benchmark

datasets by 1.02%, 5.09%, 2.1% and 7.89%, respectively.

Finally, we would like to highlight a few points regarding to the technical methods used in

this thesis. A rotational invariant method for in-air hand-drawn shape recognition is presented

in Chapter 3, and we showed how the number four is detecting from different directions. How-

ever, some applications require determining the directions of the hand movements. For example,

it is necessary for other applications to distinguish between right and left swipes. The method

in Chapter 3 does not apply for such applications. Although it can be achieved by modifying

the feature representation, then we would lose the constant rotation features. Also, in Chapter

5, a shape simplification method is presented. However, in this method, it is difficult to iden-

tify shapes that have the same silhouette representations. In the next sub-section, we provide a

cross-validation performance of different methods.

6.2 Cross-validation of different methods

In this section, we show the cross-validation performance of the three methods namely, global-

based, local-based, and simplicity-based using all dataset in this thesis. Table 6.1 illustrates

a detailed accuracy score (%) for each method using all datasets. For simplicity, Figure. 6.1

visualises the contents of Table 6.1.

In Figure. 6.1(a), we can see that the global details work very well for in-air hand-drawn,

but it fails to detect 2D/3D shapes because the high similarity in their structure. Therefore,
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Table 6.1: Cross-validation of different methods using all the datasets in this thesis.

Application Dataset Reference Global Local Simplicity

In-air In-air dataset1-d1 [54] 97.39 69.36 58.37
hand-drawn In-air dataset2-d2 [60] 99.2 71.54 61.24

shape recognition Our dataset-d3 [127] 99.56 62.72 55.5

ETU10 silhouette-d4 [143] 82.12 99.56 99.6
Tool dataset-d5 [144] 14.28 100 100

2D/3D Kimia 99-d6 [145] 57.25 98.98 100
shape Kimia 216-d7 [146] 36.8 95.83 96.1

recognition SHREC2010-d8 [147] 21.4 93 95
3D shape benchmark d9 [148] 15.36 76.32 78.68

RGB dataset-d10 [155] 95.6 98.1 99.53
Hand RGB-depth dataset-d11 [99] 91.4 96 99.7

gesture Synthetic dataset-d12 [102] 89.2 93 95
recognition HKU dataset-d13 [116] 88.82 95.4 99.4

global based detection is not enough for these structures. Similarly, the simplicity and locally-

based methods detect complex shapes, but cannot distinguish between simple structures because

numbers like one and seven do not have much detail in their structure. It is very likely to

detect the number one with small noise as number seven because the local-based method is

very sensitive to fine details.

Figure. 6.1(b) shows that hand gestures are well-identified using the three methods with

lower standard deviation compared to other applications. Here, we can note that the worst sce-

nario occurs when using global detection to recognise 2D/3D shapes and this is understandable

with the increasing complexity of the shapes in 2D/3D data sets.

Figure. 6.1(c) demonstrates that the overall performance for all methods and application.

All the methods work very well for the hand gesture recognition because it can be considered

a low-level structure in terms of skeleton representation and a high-level structure in terms of

silhouettes representation. Table 6.2 highlights the main features and differences between the

three technical chapters.
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Figure 6.1: (a): Average performance for each application using a different method, (b): indi-
vidual method performance for each application, (c): overall accuracy for each application.

Table 6.2: Details of the contributions.

Chapter Aim Laplacian matrix Connectivity Application
Chapter 3 Global details L Fully connectivity In-air handwritten recognition
Chapter 4 Local details L Adaptive connectivity 2D/3D shape recognition
Chapter 5 Simplifying L and Γ Both Hand gestures, 2D/3D shape recognition
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6.3 Future directions

In this section, we expand the content of this thesis to some possible future directions as follows,

1. In Chapter 3, we proposed a robust model for in-air hand-drawn number and shape

recognition. This model can be extended to detect the movements of two hands simulta-

neously. This requires an initial separation process to create two separate graphs or one

graph. Then, the detection procedure can be performed using the spectral domain. In ad-

dition, another type of camera can be used to capture hand movement instead of a depth

map. For example, an event camera that senses the movement of a scene can be a possible

solution.

2. In Chapter 4, we demonstrated the robustness of the adaptive graph formulation for un-

derstanding shapes, based on maximum entropy. In this work, we use a statistic measure-

ment (i.e., entropy). In the future, optimisation techniques can be used to achieve optimal

representation. Furthermore, deep learning technique can be also applied by training and

testing the highest discriminative edges weights among the predefined dataset. In other

words, for any data sets provided, we can create graphs for each sample and this is fol-

lowed by training step to achieve effective representation of each sample.

3. In Chapter 5, we presented a new method for shape clustering based on adaptive connec-

tivity. The proposed method was used for matching purposes. However, the separation

boundaries between different cluster were approximated and not exactly on the separation

line. This is because if we use GNG, we lose the homogeneous distribution of the nodes

in the joining areas between two parts. Further investigation is needed in future to get

better representation, so it can be proposed as an graph-based segmentation method.

4. Using adaptive graph formulations can be applied in many applications, such as image

understanding. Since the generated graph highlights the most important details, resulting

in efficient representation of the graph bases. Possible applications may include, Graph

Convolution Neural Network (GCNN) for classification, salience map detection based on

the sign of the Fiedler vector, and image compression based on the graph eigenvectors.
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5. From the content of this thesis, we can conclude the importance of the graphical model

for shape characteristic. This can be used to identify the human activities in general,

especially if we consider each movement to be a timeline-based graphical model. Then,

a bipartite graph matching can be performed to recognise different actions. In addition,

a graph spectral feature can be also useful for distinguishing various tasks based on the

edges between nodes.

6. In this thesis, we explore the use of the graph spectral domain features for shape rep-

resentation, followed by machine learning techniques for classification step. In future,

graph-based classifiers such as the deep graph regularized learning [158] could be con-

sidered to achieve a fully graphical model.
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Appendix A

In-air hand-drawn number and shape

feature extraction

In this section, we conduct several experiments to test different parameters in order to obtain an

effective representation for the in-air hand-drawn number and shape recognition. The accuracy

rate for each experiment is shown Table A.1. Initially, we have modulated the u0 with a unit

vector (i.e., [1, 1 , ... ,1]) with length n. This is the same as taking the u0 on its own.

1. F1= u0.

2. F2 = u0 ∗ i, i = 0, 1, ..., n− 1.

This modulation provides a higher weight towards the end of the shape.

3. F3 = u0 ∗ i2, i = 0, 1, ..., n− 1.

This modulation provides a much higher weight towards the end of the shape.

Looking at F2 and F3, one can wonder why we should give a higher weight to the end,

why not at the start too. Therefore, we define two more functions F4 and F5.

4. F4 = u0 ∗ (n− i), i = 0, 1, ..., n− 1.

5. F5 = F 2
4 .

Now, we can add more two modulations using higher weight at both ends but lower weight

at the centre.
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Chapter A – In-air hand-drawn number and shape feature extraction

6. F6= n− (i+ 1− (n+ 1)/2) + 1, i = 0, 1, ..., n− 1.

7. F7= n− (i+ 1− (n+ 1)/2)2 + 1, i = 0, 1, ..., n− 1.

We can also taper this feature to the centre,

8. F8= (i+ 1− (n+ 1)/2) + 1, i = 0, 1, ..., n− 1.

9. F9= (i+ 1− (n+ 1)/2)2 + 1, i = 0, 1, ..., n− 1.

Also, we note, some shapes are started at the top and some are started at the centre. Then,

in the pre-processing step, we centre the shape with respect to the (0, 0, 0) coordinate.

Then, we compute the distance and the angle with respect to the (0, 0, 0). Two features

are tested as followed,

10. F10 = u0 ∗ r̂.

11. F11 = u0 ∗ θ.

Finally, we use features combination based onr̂, θ, and the graph eigenvectors of the

combinatorial and the normalised versions as follows,

12. F12 = UL ∗ r̂.

13. F13 = UL ∗ θ.

14. F14 = UL ∗ r̂.

15. F15 = UL ∗ θ.

Based on these results, we test a different set of features as follows,

16. F16 = Concatenating (F2+F10+F11).

17. F17 = Concatenating (F1+F2+F3+F10+F11).

18. F18 = Concatenating (F3+F10+F11).

19. F19 = Concatenating (F1+F3+F10+F11).

20. F20 = Concatenating (F10+F11).
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21. F21 = Concatenating (F9+F10+F11).

Table A.1: Accuracy rate (%) of various features of numbers and shapes.

Exp. no. Feature combination Accuracy of numbers Accuracy of shapes
1 F1 96.8 94.6
2 F2 93.7 93.4
3 F3 98.01 96.2
4 F4 95.2 93.8
5 F5 95.1 93.3
6 F6 93.8 91.9
7 F7 96.3 94.4
8 F8 94.01 91.5
9 F9 98.01 96.2
10 F10 95.7 94.2
11 F11 96.1 94
12 F12 55.56 51.9
13 F13 56.03 52.31
14 F14 74.34 71.65
15 F15 64.65 61.8
16 F16 99.27 98.25
17 F17 99.18 98
18 F18 99.42 99.37
19 F19 99.1 98.8
20 F20 99.04 98
21 F21 99.56 99.44
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Appendix B

In-air hand-drawn number and shape

feature visualisation

In this section, we illustrate in details the proposed features for in-air hand-drawing numbers

and shapes recognition. For all figures in this section, please follow the legend in Figure. B.1.

X-axes refer to the index of the feature and Y-axes represent the value of the features. For

comparison purposes, we show all these features together (Figure. B.22 and Figure. B.23) at the

end of this section.

Figure B.1: Legend of the figures in this section.
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Figure B.2: Features of number 0.
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Figure B.3: Features of number 1.
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Figure B.4: Features of number 2.
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Figure B.5: Features of number 3.
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Figure B.6: Features of number 4.
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Figure B.7: Features of number 5.
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Figure B.8: Features of number 6.
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Figure B.9: Features of number 7.
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Figure B.10: Features of number 8.
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Figure B.11: Features of number 9.
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Figure B.12: Features of shape Yes.
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Figure B.13: Features of shape No.
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Figure B.14: Features of shape Star.

148



Chapter B – In-air hand-drawn number and shape feature visualisation

2 4 6 8 10 12 14 16
0.2

0.22

0.24

0.26

0.28

0.3

0.32

2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

18

20

2 4 6 8 10 12 14 16

0

0.5

1

1.5

2

2.5

3

2 4 6 8 10 12 14 16
0

5

10

15

20

25

Figure B.15: Features of shape Heart.
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Figure B.16: Features of shape M.
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Figure B.17: Features of shape G.
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Figure B.18: Features of shape Rectangular.
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Figure B.19: Features of shape Spiral.
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Figure B.20: Features of shape N.
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Figure B.21: Features of shape d.
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u0 F1 = M1.u0 F2 = M2.u0 F3 = M3.u0
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Figure B.22: The proposed feature vectors for the numbers 0 to 9 (shown in each row): Column
1: Shows the eigenvector u0; Column 2 - Column 4 show the feature vector parts F1, F2 and
F3, respectively.
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u0 F1 = M1.u0 F2 = M2.u0 F3 = M3.u0
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Figure B.23: The proposed feature vectors for the shapes (shown in each row): Column 1:
Shows the eigenvector u0; Column 2 - Column 4 show the feature vector parts F1, F2 and F3,
respectively.
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Appendix C

Examples of spectral partitioning

In this section, we show more samples for the partitioning methods

Figure C.1: Samples of the proposed partitioning method-Crabs.
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Figure C.2: Samples of the proposed partitioning method-Ants.
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Figure C.3: Samples of the proposed partitioning method-Hand.
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Figure C.4: Samples of the proposed partitioning method-Human.
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Figure C.5: Samples of the proposed partitioning method-Octopus.
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Figure C.6: Samples of the proposed partitioning method-Pliers.
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Figure C.7: Samples of the proposed partitioning method-Snake.
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Figure C.8: Samples of the proposed partitioning method-Spectacle.
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Figure C.9: Samples of the proposed partitioning method-Spider.
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Figure C.10: Samples of the proposed partitioning method-Teddy.
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