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Abstract  
 

The ability to successfully allocate attention to a particular space or feature in 

the visual world is vital for successful day-to-day functioning. Attention refers 

to a narrowing of focus, with increased processing of an attended attribute at 

the expense of other non-attended dimensions. This attentional mechanism 

can modulate activity in the visual cortex and beyond. However, the full 

range of spatial scales at which attentional effects are evident in the visual 

cortex as a function of task is still relatively little understood. This thesis 

aimed to investigate the effects of attentional modulation across the visual 

cortex at several spatial scales, examining activation at the level of mean 

activity in individual regions-of-interest (ROIs), comparing patterns of voxel-

level activity, and employing connectivity-style approaches to examine 

communication between multiple visual areas simultaneously.  

  

In this thesis we examined how patterns of modulation across the visual 

cortex differed as a function of attentional task using a combination of visual 

psychophysics and functional magnetic resonance imaging (fMRI). Secondly, 

we assessed the generalisability of findings, initially collected with highly-

controlled, low-level visual stimuli, to a similar experimental paradigm using 

an uncontrolled, dynamic and relatively naturalistic stimulus.  
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Novel findings and methods were demonstrated in this thesis.  

1) We identified relatively little robust evidence of differing modulation as 

a function of attentional task at the univariate level, when examining 

mean activation in an individual visual ROI.  

2) We do, however, note clear differences in patterns of attentional 

modulation as a function of task when comparing voxel-level patterns 

of activation in individual visual ROIs at the multivariate level.  

3) Additionally, we assessed the communication between multiple visual 

regions simultaneously as a function of attentional task. Here, we 

identify significantly greater positive connectivity during passive 

viewing than during directed attention tasks. We suggest this robust 

finding is representative of a visual ‘default mode’ network, at a 

smaller spatial scale (millimetres) than traditional connectivity 

research (centimetres).    

4) Finally, we find that the overall pattern of results collected with highly-

controlled low-level visual stimuli, generalise relatively well to our 

experiment investigating attentional effects with an uncontrolled, 

dynamic and relatively naturalistic stimulus. In this more-naturalistic 

experiment, we identify little robust evidence of attentional modulation 

at both the univariate and multivariate levels. We also, however, 

demonstrate significant differences in patterns of connectivity across 

ROIs as a function of attentional task.   
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1. Introduction 
 
 
1.1 Thesis overview 
 
Humans must constantly navigate through a complex and dynamic visual 

environment, yet, we possess limited resources to process that environment. 

Attention is a mechanism which allows us to direct these limited resources to 

a particular spatial location, or to a particular feature in our visual 

environment. This effectively reduces the amount of information we must 

process, at the expense of the remaining visual scene. Attention as such is a 

vital gain control mechanism, allowing humans to efficiently and effectively 

process a wealth of visual information.  

 

The experiments in this thesis form two clear, yet interacting, strands, 

examining attentional modulation effects with highly controlled visual stimuli, 

and assessing the generalisability of these findings through research 

conducted with complex, uncontrolled naturalistic stimuli.  

 

Firstly, we use psychophysical testing and functional magnetic resonance 

imaging (fMRI) to investigate changing patterns of activation in the visual 

cortex as a function of switching attentional task between low-level visual 

features. We examine the influence of attentional modulation at three cortical 

spatial scales; the region-of-interest (ROI), the voxel and the network, to 

identify the spatial extent of attentional modulation. These experiments are 

useful for furthering our understanding of the relatively little-understood 

signatures of featural attention at multiple spatial scales.  
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Second, we examine signatures of attentional modulation in response to both 

different low-level visual features and stimulus chromaticities, investigating 

the distinct representations of chromatic information in the visual cortex. 

Again, we examine patterns of activation at multiple spatial scales, to 

examine patterns of feature-specific attentional modulation and identify 

interactions between stimulus feature and stimulus chromaticity across the 

visual cortex.  

 

Finally, we direct attentional focus towards a highly-complex, dynamic, 

naturalistic stimulus, to assess the extent our findings from experimentation 

with highly-controlled low-level visual stimuli generalise to real-world visual 

scenarios, and to examine the signatures of activation when attention is 

directed toward a relatively higher-level visual stimulus (faces). Hence, we 

investigate similarities in attentional modulation patterns elicited both with 

highly-controlled, low-level and uncontrolled, naturalistic stimuli.  

 

We use a range of methods including visual psychophysics, functional 

magnetic resonance imaging, machine learning classification and 

connectivity analyses to help answer the following questions: 

1) Is it possible to identify clear patterns of modulation when switching 

attention between different visual features?  

2) At which spatial scale(s) do we see clear signatures of feature-specific 

attentional modulation?  
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3) To what extent do findings from highly-controlled low-level visual 

experiments generalise to research conducted with uncontrolled, 

complex relatively naturalistic stimuli?  

 

The aim of this chapter is to introduce the key ideas related to the 

experiments conducted in this thesis. This includes a brief overview of the 

organisation of the visual cortex and the processing of low-level visual 

features. We also include a summary of the attentional literature and outline 

research regarding functional connectivity analyses and the use of 

naturalistic stimuli.  

 

1.2 Human Visual System 
 

1.2.1 Pre-cortical visual system 
 

 
Visual processing originates in the retina, a layer of rod and cone 

photoreceptors at the back of the eye. Rod photoreceptors typically respond 

in low light levels, whereas cone photoreceptors (cones) respond in well-lit 

conditions to light of different wavelengths and are critical for the perception 

of colour (for a review, see Conway, 2009). Whilst many retinal ganglion cell 

(RGC) types exist, most common are the midget and parasol cells. Midget 

cells cluster around the fovea and have small, dense dendritic fields whereas 

parasol cells, possess larger, less dense dendritic fields. These cell types 

signal the beginning of segregation of visual information, forming the 

parvocellular (PC) and magnocellular (MC) pathways respectively.   
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The MC, PC and koniocellular (KC) pathways receive input from weighted 

combinations of these cone photoreceptors. The magnocellular pathway 

receives input from long- and middle- wavelength sensitive cones, 

possessing sensitivity to achromatic contrast, high temporal- and low spatial-

frequencies. The parvocellular pathway compares responses from long- and 

middle-wavelength sensitive photoreceptors, providing a linear contrast 

response, with slow temporal- but high spatial-resolution. The KC pathway 

receives input from short-wavelength cones, which are sparsely arranged in 

the retina in comparison to long- and middle- wavelength photoreceptors, 

hence the pathway has a lower spatial-resolution than it’s fellow pathways 

(Roorda & Williams, 1999). 

 

Photoreceptors then send this information, regarding external light 

conditions, through their respective pathways backwards into the visual 

cortex through a series of retinal cells, which form the optic nerve. 

Information from the retina to the visual cortex undergoes a re-routing in the 

optic chiasm. Nasal (nearest the nose) responses from each retina cross to 

the contralateral (opposite) hemisphere, whist temporal (nearest the ear) 

responses remain on the ipsilateral (same) side. This information then enters 

the lateral geniculate nuclei of the thalamus (LGN) (see Figure 1.1).  

 

The LGN are bilateral structures in the brain which receive input from each 

eye and contain six distinct layers. Axons of different cells types in the retina 

terminate in discrete layers of the LGN. Axons of midget ganglion cells 

terminate in the upper four (parvocellular) layers. Whereas parasol ganglion 
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cell axons terminate in the lower two (magnocellular) layers (Polyak, 1941). 

Axons from small bistratified retinal ganglion cells predominantly terminate in 

regions intercalated between the magnocellular and parvocellular layers, 

termed the koniocellular layers (see Casagrande, 1994 for a review).  

 

1.2.2 Primary visual cortex (V1) 

The information in the LGN then projects to the primary visual cortex (V1), in 

the calcarine sulcus through the optic radiation. V1 is composed of 6 layers, 

distinguished by the variation in density of neurons, axons and synapses 

(Wandell, 1995). Information from the LGN is transported to distinct layers of 

the primary visual cortex. Information from the magnocellular pathway 

projects to layer 4Cα and lower layer 6. Responses in the parvocellular 

pathway instead terminate in layer 4Cβ and the upper layer 6. Whilst less is 

known about the projection of information in the koniocellular pathway, it is 

thought projections exist from the LGN to layers 1, 3B, 4A and cytochrome 

oxidase (CO) blobs in the upper, superficial layers of V1 (Chatterjee & 

Callaway, 2003; Hendry & Reid, 2000) (see Figure 1.1). Information is then 

transmitted from V1 to a multitude of further visual areas, for example, 

inactivation of V1 activity results in a lack of response in areas V2 and V3 

(Girard & Bullier, 1989; Girard, Salin, & Bullier, 1991; Schiller & Malpeli, 

1977).  It has been suggested these feedforward connections to higher visual 

areas are transmitted from the upper layers of V1, and feedback to V1 is 

received in its deeper layers (Rockland & Pandya, 1979).  
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1.2.3 Extra-striate visual areas  
 
Visual information travels from V1 to many areas of the visual hierarchy. For 

example, the motion-responsive area MT+, receives direct input from V1 

(Zeki, 2004). As a general rule of thumb, the further you travel up the visual 

hierarchy, the more functionally-specialised visual regions become. Higher 

 
Figure 1.1 The transmission of information within the human early visual 

pathway. Visual information enters the eye and passes through a series of 

retinal nerve cells before projection to the LGN. Within the LGN, information 

is split into segregated layers, corresponding to the PC, MC and KC 

pathways. This segregated information then projects to distinct layers within 

V1 (Figure from Solomon & Lennie, 2007). 
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visual areas are increasingly focused on the processing of complex visual 

properties such as faces and motion, and relatively detached from the 

processing of low-level visual features, typically reserved for early visual 

areas (for a review, see Grill-Spector & Malach, 2004). The extent to which 

we see clear functional specialisation of regions in the visual cortex is 

debated, with the theory of functional specialisation first suggested by 

Livingstone & Hubel, (1988) and Zeki, (2004; 1973). However, others 

suggest instead a theory of multifunctionality, where neurons in the visual 

cortex can encode information about multiple visual features, not possessing 

distinct feature-specific properties (Schiller, 1996). In short, it is likely earlier 

visual areas possess little strict functional segregation, instead, responsive to 

a multitude of low-level visual features, whereas relatively higher visual areas 

such as motion area MT+ and the fusiform face area (FFA) do exhibit distinct 

and specific feature-specific preferences (for reviews, see Born & Bradley, 

2005; Kanwisher & Yovel, 2006).  

 

1.2.4 Retinotopic organisation 
 

Retinotopy refers to the mapping of visual input from the retina to neurons (or 

voxels) in the visual system. Neurons in the primary visual cortex are 

retinotopically organised; the centre of the visual field is represented in the 

fovea and the periphery is located more anteriorly in the calcarine sulcus 

(Holmes, 1918). The organisation of information in primary visual cortex is 

also dependent upon hemisphere. The left hemisphere V1 receives 

information from the right visual hemifield, and vice versa.  Additionally, 

neurons located dorsally in V1 receive information from the lower quadrant of 
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their respective visual hemifields, whilst neurons in the ventral aspects of V1 

represent the upper quadrants of the visual field. In summary, the 

representation of the visual field is reversed and flipped to form a retinotopic 

map of visual space in V1. The ability to map this organisation through fMRI 

was first identified by Engel et al., (1994). It is now possible to map many 

areas of the visual cortex retinotopically on the basis of characteristic visual 

field representations (see Wandell, Dumoulin, & Brewer, 2007) (see Figure 

1.2).  

 
Figure 1.2 Retinotopic mapping of early visual cortex. Regions of interest 

(ROIs) are defined on the basis of their eccentricity (top left) and polar angle 

(bottom left) on flat maps (A) and the inflated cortical surface (B-left 

eccentricity, right polar angle) (Figure from Mackey, Winawer, & Curtis, 

2017). 
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1.2.5 Perception of visual features  
 

1.2.5.1 Perception of orientation 

Stimulus orientation is encoded in a distributed manner across the visual 

cortex, with visual regions possessing subpopulations of orientation-

preferring neurons. However, the extent of segregation of orientation-

encoding throughout the visual hierarchy is debated. Horton & Hubel, (1981) 

identified cytochrome oxidase (CO) blobs and interblobs in primate V1, so 

called due to their visibility when V1 is stained with cytochrome oxidase, an 

enzyme involved in metabolism. Blobs were considered to possess weak 

spatial frequency and orientation tuning but respond well to isoluminant 

colour, whereas interblobs were highly orientation selective (Livingstone & 

Hubel, 1984).  

 
 
Some researchers think this segregation of colour and orientation in V1 blobs 

and interblobs may persist further into the visual cortex, with projections into 

thin and interstripe regions of V2 respectively (Levitt, Kiper, & Movshon, 

1994; Livingstone & Hubel, 1984). Researchers have also suggested the 

segregation of colour and orientation-encoding in particular visual regions, 

such as a non-existence of colour-selective cells in V3, V3A/B or MT+ in 

rhesus monkeys (for a review, see Zeki, 1978). Lesioning of area V4 has 

also been noted to heavily impact colour perception with little disruption to 

form (orientation) processing (Meadows, 1974; Zeki, 1990).  

 

However, others question the extent to which orientation preference is 

independent of other low-level visual features. For example, Conway, (2001) 
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and Johnson, Hawken, & Shapley, (2001) provided the first evidence for 

orientation tuning in colour-coding V1 cells. In early visual areas V1 and V2, 

Engel (2005) used adaptation to demonstrate the presence of neurons tuned 

jointly to both colour and orientation. Single unit electrophysiology also 

supports this idea: Economides, Sincich, Adams, & Horton, (2011) identified 

only a subtle difference in orientation-selectivity between V1 blob and 

interblob cells, along with many previous researchers, suggesting the 

segregation of orientation processing in the visual cortex may not be as strict 

as once considered. Evidence for the existence of orientation-sensitive 

responses has now been identified in visual regions across the cortex, from 

V1, both dorsally and ventrally to higher visual areas such as LO-1 (e.g. 

Conway, Moeller, & Tsao, 2007; Silson et al., 2013; Sumner, Anderson, 

Sylvester, Haynes, & Rees, 2008).  

 

1.2.5.2 Perception of contrast 

The human visual system is highly sensitive to contrast (differences in 

illumination). Retinal photoreceptors possess a dynamic range with a 

maximum of two orders of magnitude, yet across the visual system, we are 

able to scale responses efficiently to process information across more than 

ten orders of magnitude (Ohzawa, Sclar, & Freeman, 1985). 

 

Contrast gain control refers to the ability of the visual system to centre the 

limited response range of a cell around a mean level of contrast (Ohzawa et 

al., 1985). It begins in the retina (Shapley & Enroth-Cugell, 1984) and is 

strengthened along the visual hierarchy (Sclar, Maunsell, & Lennie, 1990). It 
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regulates the gain and integration time of the visual system on the basis of 

the locally prevalent contrast and the luminance of a stimulus versus the 

mean luminance present in a visual scene. Both gain and integration time 

are reduced when contrast is high, and are increased when contrast is low 

(Carandini et al., 2005). Contrast gain control mechanisms reduce the impact 

of large changes in mean contrast such as occur during eye movements.  

 

For example, Gardner et al., (2005) provided the first evidence of a contrast 

gain control mechanism in early visual cortex (V1, V2 and V3) which adapts 

to the mean contrast level, using event-related fMRI. Neurons in V1, V2 and 

V3 appeared to shift their contrast response functions to centre their 

maximum response at the adapting contrast level (contrast gain). However, 

hV4 responses indicated sensitivity to the salience of contrast change rather 

than a providing a pure contrast representation, responding positively to both 

increments and decrements in contrast. This evidence suggested an ability 

of the visual system both to discount, slow, uninformative changes in 

contrast with adaptation, and to remain highly-sensitive to contrast changes 

which may signal important events in the environment.  In support, Wang & 

Wade, (2011) identified evidence of attentional modulation to achromatic 

contrast in visual areas as early as the primary visual cortex (V1).   

 

Hence, the processing of contrast information across the visual cortex, 

through contrast gain control mechanisms is a robust and well-understood 

phenomenon. There is a wealth of clear evidence for its existence across the 

entire visual cortex.  
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1.2.5.3 Perception of shape 

As is the case with the processing of orientation and contrast, there is 

evidence of shape processing, in various forms, across the visual cortex. For 

example, Dumoulin & Hess, (2007) noted clear responses to concentric 

stimuli across many early visual areas (V1 to hV4), rather than shape-

specific responses present solely in an isolated visual region. In support, 

Tschechne & Neumann, (2014) produced a recurrent computational network 

for the encoding of shape information, and suggested a distributed 

representation of shape in the visual cortex, with lower-level representations 

in early visual areas (e.g. V1, V2, V3) projecting to intermediate and higher 

levels of shape processing (e.g. hV4, and inferotemporal (IT) cortex).  

 

Despite clear evidence for multiplexed feature processing in early visual 

areas, there is also clear evidence for particular regions of the visual cortex 

possessing distinct specialisations for shape processing. For example, much 

research suggests an involvement of hV4 in the encoding of shape, as 

oppose to purely chromatic information. hV4 has frequently been noted as an 

area responsive to concentric shapes (e.g. Dumoulin & Hess, 2007; Gallant, 

Braun, & Van Essen, 1993; Gallant, Shoup, & Mazer, 2000; Wilkinson et al., 

2000), and the curvature of stimuli (first identified by Pasupathy & Connor, 

(2001). hV4 is considered an intermediate shape processing region, 

encoding shape information more complex than orientation, but at a more 

basic level than the processing of meaningful objects (for a review, see 

Loffler, 2008). In support, research has demonstrated that lesioning V4 can 
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profoundly negatively impact shape discrimination in primates (Merigan, 

1996; Merigan & Pham, 1998; Schiller, 1995).   

 

Additionally, the lateral occipital complex (LO) has been identified as a region 

of functionally segregated shape recognition (Denys et al., 2004; Grill-

Spector et al., 1999; Kourtzi & Kanwisher, 2001; Malach et al., 1995). Visual 

object agnosia, a condition in which individuals fail to recognise the identity 

of visually-presented objects, is associated with LO damage (Ptak, Lazeyras, 

Di Pietro, Schnider, & Simon, 2014). Larsson & Heeger, (2006) identified two 

retinotopically-distinct regions LO-1 and LO-2, which overlap with posterior 

regions of LO, proposed to integrate abstract shape information from lower 

visual areas (Vernon, Gouws, Lawrence, Wade, & Morland, 2016). However, 

other research has suggested a distinct difference in the visual information 

LO-1 and LO-2 selectively encode. Silson et al., (2013) used transcranial 

magnetic stimulation (TMS) and identified a double dissociation, with LO-2 

impaired in shape processing, but not orientation processing during the 

application of TMS to temporarily disrupt activity in the region. Conversely, 

TMS applied to area LO-1 disrupted orientation processing, but not shape. 

This suggests a specialised role for LO-2 in the processing of shape 

information in the human visual cortex.  

 

1.2.5.4 Perception of colour 

The perception of colour begins with the cone photoreceptors present in the 

retina. Retinal photoreceptors are classified into three distinct types on the 

basis of their sensitivity to wavelengths of light. Long-wavelength cones (L) 
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have a peak sensitivity at approximately 560nm, medium-wavelength cones 

(M) have maximum light absorption peaks at ~530nm, and around 420nm for 

short-wavelength (S) cones (Bowmaker & Dartnall, 1980; Schnapf, Kraft, & 

Baylor, 1987) (see Figure 1.3).  

 

More recently, researchers have identified a third type of light-sensitive cell, 

in addition to rod and cone photoreceptors, which contains a pigment called 

melanopsin. These intrinsically photosensitive retinal ganglion cells (ipRGCs) 

were initially thought to be involved solely in the regulation of non-visual 

responses to photic stimuli, such as the pupillary light reflex and regulation of 

sleep. Yet, recent research has also demonstrated this pigment is light-

sensitive. For example, Panda et al., (2005), produced light-sensitive frog 

eggs when injected with the genes for melanopsin, and Melyan, Tarttelin, 

Bellingham, Lucas, & Hankins, (2005) modified embryonic mouse neurons to 

produce melanopsin, which then demonstrated light-sensitive responses. 

Human melanopsin has been demonstrated to possess a spectral sensitivity 

to blue light (peaking at 479nm) (Bailes & Lucas, 2013).  
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Chromatic information is extracted from these retinal photoreceptors and 

supplied to V1. Each cone photoreceptor connects to a series of retinal cells, 

which process information in their receptive field in a centre-surround 

organisation (chromatic-opponency).  Midget bipolar retinal ganglion cells 

receive input in the centre of their receptive field from few cone 

photoreceptors, and input from horizontal cells in their surround, containing 

information about nearby cone photoreceptors (Dacey, 1996; Dacey et al., 

2000). This centre-surround organisation allows for comparison of cone 

photoreceptor activation between the centre and surround regions of the 

receptive field. This comparison of L- and M-cone activation (L-M) is 

transmitted to the LGN and V1 via the parvocellular pathway (Sumner et al., 

2008). However, information from the S-cones remains segregated, and 

 
Figure 1.3 Rod and cone photoreceptor sensitivities. Retinal 

photoreceptors have peak sensitivities at different wavelengths of light, and 

comparisons of these signals provide the initial stage of colour processing 

within the visual system (Figure from Foster, 2010). 
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projects from small bistratified retinal cells to the koniocellular layers of the 

LGN and then to distinct layers 3B and 4A of the primary visual cortex. This 

pathway provides colour-opponent signals, comparing S-cone activation with 

L- and M-cone responses (S-(L+M)) (Casagrande, 1994; Chatterjee & 

Callaway, 2003).  

 

The comparison of inputs to centre-surround receptive fields provides three 

colour-opponent pathways, which form the basis for the processing of colour 

across the visual cortex. A luminance (L+M) pathway which encodes the 

sum of L- and M-cone responses, is insensitive to wavelength (colour) and 

responds to achromatic contrast. A ‘red-green’ (L-M) pathway performs a 

chromatic comparison of signals from L- and M-sensitive cones, encoding 

the red-green dimension of colour space, and a ‘blue-yellow’ sensitive 

pathway (S-(L+M)), which is driven predominantly by S-cones.  

 

The encoding of colour is considered to be distributed across the visual 

cortex (Seymour, Williams, & Rich, 2016). However, previous research 

originally identified area hV4 as a ‘colour centre’, based on the 

predominance of colour-sensitive cells detected (first proposed by Zeki, 

1969, 1973) . Research also identified mm-scale colour-sensitive ‘globs’ in 

hV4, thought to reflect the specialisation of CO blobs in V1 (Conway et al., 

2007). This was supported by research on cerebral achromatopsia, a loss of 

colour perception, which resulted from lesions in regions considered to be 

homologous to macaque V4 (Meadows, 1974). However, more recent 

research has moved away from this complete functional specialisation of 
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area hV4, after identifying that lesions in macaque V4 did not significantly 

negatively impact colour perception, suggesting other regions across the 

visual cortex must contribute to complete colour perception (Heywood, 

Gadotti, & Cowey, 1992).  

 

1.2.5.5 Perception of faces 

Despite the distributed processing of many low-level visual features across 

the visual cortex, the perception of relatively higher-level, complex visual 

stimuli (formed from combinations of low-level stimulus attributes such as 

orientation, colour, contrast and shape) tends to be processed in a distinct, 

and segregated manner in the visual cortex. For example, the fusiform face 

area (FFA) is considered a specialised region dedicated to the perception of 

faces, first identified by Kanwisher, McDermott, & Chun, (1997), as a region 

with significantly greater response to face stimuli than to a variety of 

comparison stimuli (such as scrambled faces, houses and hands). However, 

others argue that instead of reflecting a face-specific mechanism, the FFA 

provides evidence of a region responsive to fine-grain discriminations (e.g. 

Gauthier, Behrmann, & Tarr, 1999). In respect of this, the expertise 

hypothesis argues face-specific regions such as the FFA are not necessarily 

specialised for the processing of faces, but instead are activated when 

distinguishing category exemplars from one another which share a same 

basic configuration (Diamond & Carey, 1986).  

 

Despite the debate regarding the precise functional segregation of the FFA, 

there is overwhelming evidence to support its specific response to face 
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stimuli (see Kanwisher & Yovel, 2006 for a review). Two additional face-

responsive areas have also been identified in the visual cortex, the occipital 

face area (OFA) and the superior temporal sulcus (STS). The OFA was first 

identified by Gauthier et al., (2000), with greater responsivity to faces versus 

objects than identified in the FFA. The STS was originally identified as a 

region in macaque cortex responsive to faces, parts of faces and facial 

expressions (Heywood & Cowey, 1992). More recently, the STS has also 

been identified as responsive to dynamic faces and bodies (Allison, Puce, & 

McCarthy, 2000). Currently, the neuronal mechanisms behind face-specific 

responses are not fully understood, however, evidence clearly suggests the 

existence of specialised regions for the processing of complex, higher-level 

face stimuli in the visual cortex.  

 

1.3 Visual Attention  
 
1.3.1 What is visual attention?  
 
The importance of attention as a mechanism for successful interaction with 

our visual world has been understood from very early in the development of 

Psychology as a discipline. William James reported attention as a ‘[taking]’ 

one out of what seems several simultaneously possible objects or trains of 

thought’ and ‘a withdrawal from some things in order to deal effectively with 

others’ (James, 1890). Without attentional mechanisms, we would become 

overwhelmed by the sheer amount of information present in our visual 

environment. Hence, visual attention, a mechanism to weight the current 

important of specific aspects of a stimulus, is vital.  
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The primary function of attention is to optimise task performance, such as the 

detection of a salient stimulus in a cluttered visual environment (e.g. 

Serences, Saproo, Scolari, Ho, & Muftuler, 2009). There are many 

mechanisms controlling attentional modulation in the visual cortex, with their 

exact processes are typically little understood. However, attention 

mechanisms are generally considered to alter the activity of neurons most 

informative for a particular visual task. This typically results in an 

enhancement of processing of task-relevant information in the visual cortex 

and a suppression of distracting information providing greater efficiency of 

processing (e.g. Martinez-Trujillo & Treue, 2004; Serences et al., 2009).  

 

More precisely, attention is a form of gain control; allowing the visual system 

to efficiently process information over many orders of magnitude in a limited 

processing range (Carandini & Heeger, 2011). Attention reshapes the 

distribution of activity across populations of neurons, balancing relative levels 

of stimulus-specific excitation and suppression (Reynolds & Heeger, 2009). 

This response-reshaping is thought to be dependent on the stimulus and size 

of attentional field. Attention directed to a relatively small region of a large 

visual stimulus will elicit response gain changes in activation (multiplicative 

changes in the output level) , whereas a small stimulus with a relatively large 

region of attentional focus will produce contrast gain effects (changes in the 

apparent input level) (Herrmann, Montaser-Kouhsari, Carrasco, & Heeger, 

2010; Reynolds & Heeger, 2009) (see Figure 1.4). The effects of attentional 

modulation are also dependent upon the stimulus attended. Attention is a 

complex mechanism which does not simply up-regulate the activity of 
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neurons responsive to a stimulus of attentional focus. Instead, attention 

optimises the gain of visual cortical neurons in a flexible and adaptive 

manner to enable efficient interaction with task-relevant aspects of a visual 

stimulus (Carrasco, 2011).   

 

1.3.2 Spatial attention 
 

Attention can be directed towards many aspects of a visual stimulus. In past 

research, spatial attention was most commonly studied. This is typically 

 
 

Figure 1.4 The Normalisation Model of Attention. The interaction between 

stimulus size and the size of the attentional field alter the form of attentional 

modulation. A smaller stimulus with a large attentional focus will produce 

contrast gain effects (left), whereas a relatively smaller attentional focus with 

a larger stimulus elicits predominantly response gain effects (right) (Figure 

from Reynolds & Heeger, 2009). 
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referred to as a ‘spotlight’ of focus we apply to a visual scene (Posner, 

Snyder, & Davidson, 1980). Spatial attention refers to directing focus towards 

a particular location in visual space. A multitude of techniques have been 

used to demonstrate spatial attention can modulate activity in the visual 

cortex. For example, Tootell et al., (1998) used fMRI to identify increases in 

response at cortical representations of an attended visual target across 

multiple low-level visual areas. Similar research has identified that when two 

stimuli are presented simultaneously in a cells receptive field (measured in 

macaque V4), the neuronal response is strongly modulated by which of the 

two stimuli was attended (Moran & Desimone, 1985).  

 

Additional research has also demonstrated that attention to a particular 

spatial location in a luminance-modulated grating produces increases in the 

amplitude of responses in regions of the visual cortex representing the 

attended location (Lauritzen, Ales, & Wade, 2010; Verghese, Kim, & Wade, 

2012). Interestingly, Sumner, Tsai, Yu, & Nachev, (2006) demonstrated the 

robust nature of spatial attention, which can modulate activity even in 

response to invisible stimuli. Attention was noted to increase the perceptual 

strength of an invisible spatial prime, enhancing its visibility, and also 

independently boosted unconscious sensorimotor processes initiated by this 

invisible priming stimulus. Hence, spatial attention is a highly important and 

powerful mechanism which can produce clear modulation of activity in the 

visual cortex as we interact with our visual environment.  
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1.3.3 Featural Attention 
 

Alternatively, attention can be directed towards a particular stimulus feature. 

This has been shown to alter activity in neurons encoding the attended 

feature. The influence of featural attention has been noted across the visual 

hierarchy (e.g. Kamitani & Tong, 2006). For example, fMRI BOLD responses 

in MT+ increase during attention toward a visual motion stimulus (e.g. 

O’Craven, Rosen, Kwong, Treisman, & Savoy, 1997). Additionally, increased 

hV4 activation has been identified in response to attention directed towards 

chromatic stimuli (Chawla, Rees, & Friston, 1999; Schoenfeld et al., 2007). 

Evidence of feature-specific attentional modulation in regions responsible for 

the processing of that feature is also found for higher-level, complex stimuli. 

For example, attention to faces and places modulates responses in the FFA 

and parahippocampal place area (PPA) respectively (O’Craven, Downing, & 

Kanwisher, 1999).  

 

Unlike spatial attention, where focus is restricted to a single spatial location 

in the visual field, featural attention is global in scope. For example, attention 

to the colour or motion of a stimulus has been demonstrated to increase 

responses in the visual cortex representing all visual field locations the 

attended feature is present (Saenz, Buracas, & Boynton, 2002). Evidence 

has demonstrated the global focus of featural attention persists in early 

visual cortical areas, even when a restriction of attention is critical for 

successful task performance (Andersen, Hillyard, & Müller, 2013). This is 

typified in the feature-similarity gain model of Martinez-Trujillo & Treue, 

(2004), which suggests featural attention increases the gain of neurons 
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tuned to the attended feature, and decreases the response of neurons tuned 

away from this feature at the population level, across the visual field.  

 

Featural attention is a robust phenomenon. Feature-specific activation in the 

visual cortex has been noted even in the absence of direct visual stimulation. 

For example, Serences & Boynton, (2007) identified activation to the 

attended visual feature even in regions of the visual scene which did not 

contain a stimulus. Xing, Ledgeway, McGraw, & Schluppeck, (2013), also 

demonstrated an ability to decode the contrast of a perceived stimulus from 

activity in early retinotopic visual areas when the stimulus had to be held in 

working memory (i.e. during periods when no stimulus was present). 

Additionally, they demonstrated the generalisation of classification from a 

model trained on a perceived stimulus to a purely remembered stimulus and 

vice versa, demonstrating the highly consistent nature of feature-specific 

patterns of response in early visual cortex.  

 

Additionally, the importance of studying the contribution of feature-based 

attention on visual cortex activation has been highlighted by Huk, Ress, & 

Heeger, (2001). They demonstrated that featural attention accounted for the 

reported increases of MT+ activation with the perception of a motion 

aftereffect. Hence, consideration of the contribution of attentional effects in 

visual research is vital. 
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1.3.4 Classification of attentional state 
 

Whilst it is widely accepted attention modulates activity in the visual cortex in 

areas responsive to the attended location or feature, the scale of these 

modulatory effects is less clearly understood. Much recent research has 

demonstrated, using multivariate (voxel-level) analysis techniques, that it is 

possible to identify the visual feature attended. For example, Kamitani & 

Tong, (2005) used fMRI to demonstrate it is possible to decode which of 

eight stimulus orientations a participant was attending to, from the pattern of 

activation across voxels in early visual cortical regions (V1-hV4 

independently). Kamitani & Tong, (2006) also demonstrated above-chance 

decoding accuracies for motion direction, even during presentation of an 

ambiguous motion stimulus.  

 

Since these initial findings, many other researchers have demonstrated 

similar classification abilities. Mannion, McDonald, & Clifford, (2009) 

exhibited successful classification of orientation (clockwise or anticlockwise) 

in a glass pattern stimulus balanced in its radial components. Brouwer & 

Heeger, (2009) additionally provided evidence for the decoding of stimulus 

colour across early visual areas. Interestingly, Sumner et al., (2008) 

demonstrated successful classification of colour-orientation interactions; in 

visual areas V1, V2 and V3, it was possible to decode luminance-, red-

green- and blue-yellow-defined orientations. Furthermore, Harrison & Tong, 

(2009) provided evidence for the ability to predict which of two oriented 

gratings was held in working memory in early visual areas (V1-hV4), 
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demonstrating the clear existence of feature-specific patterns of attentional 

modulation at the multivariate level.  

 

However, there exists debate regarding the driving forces behind these 

successful classification analyses. For example, Freeman, Brouwer, Heeger, 

& Merriam, (2011) argued that the successful classification of attended 

orientation was driven by large-scale coarse topographical biases in the 

mapping of orientation columns in V1. This viewpoint regarding large-scale 

biases in the underlying mapping of visual cortical regions as sufficient for 

classification of an attended feature has clear support in the literature 

(Beckett, Peirce, Sanchez-Panchuelo, Francis, & Schluppeck, 2012; Clifford, 

Mannion, & McDonald, 2009; Raemaekers, Lankheet, Moorman, Kourtzi, & 

van Wezel, 2009; Sasaki et al., 2006). In support, Op de Beeck, (2010) 

modelled decoding accuracies with application of various levels of spatial 

smoothing, to assess the impact of smoothing on the ability to detect small-

scale functional organisation at the voxel level. They identified no negative 

impact of smoothing on the sensitivity of multivariate analyses and proposed 

this evidence contradicts the idea classification accuracies are reflective of 

sub-voxel inhomogeneities in feature preference.  

 

However, other researchers believe successful classification is unlikely to be 

solely driven by coarse-scale biases in mapping amongst visual areas. 

Instead, they suggest important information is present in the fine-grain 

(voxel-level) patterns of fMRI activity. It is assumed each voxel reflects 

responses from many visual neurons, and sampling scale means that voxels 
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will sum responses of neurons with differing proportions of preference for a 

particular visual feature, and that these inhomogeneities in feature-

preference across voxels are what contribute to above-chance classification 

accuracies (e.g. Kay, Naselaris, Prenger, & Gallant, 2008). For example, 

Mannion et al., (2009) demonstrated successful decoding of orientation in 

stimuli with no dominant radial component, indicating radial bias is not critical 

for successful decoding of attended orientation. Additionally, whilst Kamitani 

& Tong, (2005) and Sumner et al., (2008) did identify evidence of a weak 

radial bias in their responses, they argued this did not have a substantial 

contribution to discrimination accuracy.  Finally, Kamitani & Sawahata, 

(2010) noted from their own simulations no basis for ruling out the possibility 

classification is driven to some extent by small-scale inhomogeneities across 

voxels. Hence, the ability to classify feature-specific attentional modulation 

effects at the voxel level is likely driven by both sub-voxel inhomogeneities in 

the organisation of feature-preference and large-scale biases in 

topographical mapping in visual regions.  

 

1.4 Connectivity  
 

1.4.1 Default mode network 
 

Interest in cortical connectivity – the way that information is passed between 

cortical areas - has increased in recent years. These connectivity analyses 

have revealed key networks, consisting of distinct sets of cortical regions, 

which exhibit synchronised activity during particular tasks. The earliest such 

network, the so-called ‘default mode network’ (DMN) was first formally 

identified by Raichle et al., (2001), as a collection of regions in the medial 
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and lateral parietal, medial prefrontal and medial and lateral temporal 

cortices, who consistently decrease their activity during attentionally-

demanding, complex tasks (Raichle, 2015). Typically, the network of regions 

forming the DMN demonstrate high metabolic activity and synchronised 

activation at rest, or during tasks requiring little attentional effort (for a review, 

see Buckner, Andrews-Hanna, & Schacter, 2008). This synchronisation of 

activity across a large array of cortical areas, is thought to support emotional 

processing, self-referential mental activity and the recollection of prior 

experiences, commonly termed ‘mind-wandering’ (see Raichle, 2015).  

 

1.4.2 Task-based networks 
 

However, there exist multiple other functionally- and anatomically- distinct 

networks in the cortex. For example, the dorsal attention network (DAN)  is 

formed from regions of the intraparietal sulcus (IPS), superior parietal lobule 

and dorsal frontal cortex near to the frontal eye fields (see Corbetta, Patel, & 

Shulman, 2008). The DAN is thought to activate when attention is directed to 

the external world. Additionally, the ventral attention network (VAN) is 

considered to be predominantly right lateralised across regions of the inferior 

frontal gyrus, anterior insula and adjacent frontal operculum, and is 

suggested to automatically re-orient attention towards salient perceptual 

stimuli (Corbetta et al., 2008). There appears a reciprocal relationship 

between the activity of the default mode network and many task-based 

networks. For example, when the DAN is active, there is typically a 

simultaneous decrease in DMN activity, across many different tasks (e.g. 

Shulman et al., 1997). Hence, it appears that attention is able to profoundly 
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modulate activity across networks of cortical areas at a far larger spatial 

scale than changes in voxel-level activation (Spadone et al., 2015) (see 

Figure 1.5).  

 

 
Figure 1.5 Large-scale brain connectivity networks. A) The default mode 

network (DN) core subsystem includes the anterior medial prefrontal cortex 

(mPFC), posterior cingulate cortex (PCC) and posterior inferior parietal lobule 

(pIPL). A second default mode subsystem centres around the medial 

temporal lobe (MTL) including the hippocampal formation (HF) and 

parahippocampal cortex (PHC). The third subcomponent of the default 

network extends dorsally into the dorsomedial prefrontal cortex (dmPFC) and 

the lateral temporal cortex (LTC). B) The dorsal attention network (DAN) is 

composed of regions centred around the intraparietal sulcus (IPS), the 

superior parietal lobule (SPL) and along the dorsal frontal cortex. C) The 

ventral attention network (VAN) contains a collection of ventral frontal regions 

such as the inferior frontal gyrus (IFG), anterior insula (AI) and the ventral 

temporoparietal junction (vTPJ (Christoff, Gordon, Smallwood, Smith, & 

Schooler, 2009) (Figure from Christoff, Irving, Fox, Spreng, & Andrews-

Hanna, 2016). 
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1.4.3 Attentional modulation of network connectivity  
 

Previous research has demonstrated that attention can modulate the pattern 

of activity in individual visual regions or across voxels. However, recent 

research suggests attention may also modulate the connectivity across 

multiple areas of cortex simultaneously. For example, Bartels & Zeki, (2004b) 

identified higher anatomical specificity and functional connectivity across the 

cortex during natural viewing of a movie stimulus versus ‘rest’, when 

participants performed no explicit task. Additionally, Hasson, Nir, Levy, 

Fuhrmann, & Malach, (2004) demonstrated individual brain regions ‘tick 

together’ in a synchronised fashion during passive viewing of a dynamic, 

complex stimulus, providing evidence for the distributed synchronized activity 

of the default mode network during undemanding tasks. Conversely, Fox et 

al., (2005) identified a decrease in BOLD signal in default mode regions 

during challenging, externally-directed tasks, again providing evidence for 

the modulation of activity in default mode and task-based networks as a 

function of attention.  

 
The reciprocal relationship between the default mode and task-based 

networks has been termed ‘functional antagonism’ (see Anticevic et al., 

2012). The extent of this activity change between networks as a function of 

externally-directed attention has been suggested to have specific benefits. 

For example, previous research has demonstrated that individuals 

possessing stronger negative connections between the fronto-parietal and 

visual attention networks with the default mode network had better cognitive 

functioning and task-switching (executive function) abilities (see Reineberg, 

Gustavson, Benca, Banich, & Friedman, 2018). This cognitive flexibility 



 52 

(antagonism between greater positive connectivity during rest and negative 

connectivity during demanding tasks in the default mode network), has also 

been associated with higher levels of creativity (Li et al., 2017), better 

reading abilities in childhood and higher stress resilience (see Dajani & 

Uddin, 2015 for a review).  

 

1.5 Naturalistic stimuli 
 

Traditional visual research focuses on the use of highly-controlled low-level 

visual stimuli in order to probe precise aspects of visual system functioning. 

However, the extent this research is always a reflection of visual processes 

in the real-world is questionable. To tackle this issue of generalisation, recent 

research is beginning to investigate visual function with complex, dynamic, 

uncontrolled naturalistic stimuli, such as movie clips, which possess far 

greater similarity with real-world visual scenes than more traditional stimuli. 

Haxby, Connolly, & Guntupalli, (2014) argue for the importance of naturalistic 

visual stimuli in identifying transformation parameters to allow for modelling 

of low-level stimulus results to real-world scenarios. Additionally, Spiers & 

Maguire, (2007) note that the human brain evolved in a complex and 

dynamic visual world, and stress the importance of examining visual function 

under these conditions.  

 
Naturalistic stimuli are also considered to offer some benefits beyond more 

traditional stimuli. For example, Bartels & Zeki, (2004b) demonstrate that the 

‘rich’ stimulation provided by a naturalistic stimulus elicits greater activation 

of areas than typically seen with conventional stimuli. They also demonstrate 

a high similarity of results between two halves of an experiment conducted 



 53 

with a naturalistic stimulus, indicating that despite their imprecise and 

uncontrolled nature, complex, dynamic stimuli are effective in investigating 

activation across the visual cortex (Bartels & Zeki, 2004a). In line with 

previous research, Russ & Leopold, (2015) also demonstrate that it is 

possible to create functional maps and assess aspects of functional brain 

organisation under natural viewing conditions. Hence, recent research 

demonstrates the importance of experimentation with naturalistic, dynamic 

visual scenes to supplement findings with more conventional low-level, highly 

controlled visual stimuli. 

  

1.6 Outline of thesis 
 

This thesis contains four experiments organised into individual empirical 

papers. First, Chapter 2 provides a detailed overview of the methods used 

across the four experimental chapters. In Chapter 3, we conducted a 

psychophysics experiment to assess the effectiveness of radial frequency 

patterns as a stimulus to probe visual attention through the use of the 

selective versus distributed paradigm. In Chapter 4, we use visual 

psychophysics and fMRI to examine feature-specific patterns of attention and 

functional connectivity in human visual cortex. In Chapter 5, we use similar 

methods with chromatic stimuli to examine the feature- and colour-specific 

patterns of attentional modulation in the visual cortex. In Chapter 5 we use 

fMRI and a complex, naturalistic stimulus to investigate differential patterns 

of stimulus-specific activation and connectivity when directing attention 

toward a dynamic, uncontrolled visual stimulus. Chapter 6 summarises the 
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conclusions of these four experiments, as well as describing directions for 

future studies.  
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2. Methodologies  
 
 
The following is a review of key methodologies used in this thesis that are 

covered only briefly in the experimental chapters themselves. This includes a 

definition of radial frequency patterns and isoluminance testing as well as a 

summary of the principles of neuroimaging, including population receptive 

field mapping, MT+ localisation and machine learning classification methods.  

 

2.1 Radial frequency patterns 
 
Here we discuss the creation of stimuli used in Chapters 3, 4 and 5. Radial 

frequency (RF) patterns are sinusoidally-modulated circular patterns, 

characterised by the number and size of their lobes (Ivanov & Mullen, 2012; 

Wilkinson, Wilson, & Habak, 1998; Wilson & Wilkinson, 1997) (see Figure 

2.1). RF patterns are defined in polar coordinates, and are specified using 

the following formula: 

In this equation, 𝑟 is specified as a function of 𝜃, which represents the angle 

around the circle’s perimeter, which can be modulated sinusoidally by altering 

frequency (𝜔) which specifies the number of lobes, and amplitude (𝐴), 

specifying the size of those lobes. The rotation of the stimulus is defined by 

𝑟 = 𝑟&'1 + 𝐴(sin(𝜔𝜃 + 	∅))1 

 
Equation 2.1 Equation for the calculation of a RF pattern 
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the phase (∅). The mean radius (𝑟&) specifies the average size of the stimulus 

in degrees of visual angle.  

 
Figure 2.1 Radial frequency patterns with different radial frequencies, 

amplitudes and orientations (polar phase). Radial amplitude refers to 

modulation relative to the radius of a base circle. Within this thesis, we use 

three-lobed radial frequency pattern and modulate the amplitude (shape), 

orientation and contrast of the stimulus (Figure from Salmela, Henriksson, & 

Vanni, 2016).  
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The RF patterns in this thesis were all presented against a mid-grey 

luminance background. The contour of a RF pattern contains a cross-

sectional luminance profile defined by the fourth derivative of a Gaussian 

(D4) (see Figure 2.2). This produces a Gabor-like appearance, which 

previous research has demonstrated is effective in eliciting activation of 

simple cells in V1, which respond to edges and gratings (Hubel & Wiesel, 

1959). Hence, RF patterns should elicit clear activation in early visual cortical 

areas.  

 

We chose to use RF pattern stimuli in Chapters 3,4 and 5 over more 

traditional Gabor stimuli for several reasons. First, they allow for simple 

parametrical manipulation of a number of isolated stimulus characteristics 

 
Figure 2.2 Fourth Derivative of a Gaussian (D4) used to render radial 

frequency patterns.  
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(such as orientation and contrast). Additionally, RF patterns allow for 

manipulation of stimulus curvature (shape), which is known to elicit activation 

in a number of regions of the visual cortex (see section 1.2.2.3, or see 

Pasupathy, 2006 for a review). Evidence also suggests visual region LO-2 is 

causally involved in processing of RF patterns (used in this thesis), making 

them a highly-relevant stimulus for the investigation of shape into relatively 

higher regions of the visual cortex (Silson et al., 2013).  

 

As noted in Vernon, (2016) the rendering method used when plotting RF 

patterns with large deviations from concentricity produces rapid changes in 

radial distance, resulting in distorted shading of the RF pattern contour. To 

resolve this issue, we used a distance transform computed by Vernon, 

(2016) (see Figure 2.3). Here, for any given pixel, the shortest distance to the 

contour is calculated along any direction, as oppose to a single direction and 

then is shaped by the same D4 function. This ensures the rendering of the 

stimulus contour remains constant across any range of frequency and 

amplitude.  
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2.2 Isoluminance testing 
 
Isoluminance refers to chromatic stimuli in which the contributing colours 

(e.g. red-green) have been carefully equated in luminance so that they 

stimulate only colour- and not luminance-sensitive mechanisms (Anstis & 

Cavanagh, 1983; Lu, Lesmes, & Sperling, 1999). Humans vary in the 

amounts of retinal pigmentation, the ratio and sensitivities of cone 

photoreceptor types in the retina and random variation in neuronal responses 

(Roorda & Williams, 1999; Sumner, 2006). It is therefore important to 

calibrate chromatic stimuli perceptually to remove ‘stray’ luminance signals 

(L+M). To achieve this, in Chapter 5, our participants completed 

isoluminance (minimum motion testing). 

 
Figure 2.3 D4 Rendering Method from Vernon et al., (2016). The left image 

demonstrates a radial frequency pattern rendered using the fourth derivative 

of a Gaussian in polar coordinates. Deviations from circularity cause rapid 

changes in radial distance, leading to distortions in shading along the 

perimeter of the shape. The right stimulus demonstrates the same radial 

frequency pattern rendered based upon a distance transform, producing a 

more uniform boundary (Figure from Vernon et al., 2016). 
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Evidence suggests that colour and motion signals are processed in separate 

neural pathways (Zihl, von Cramon, Mai, & Schmid, 1991). This suggests 

that motion cannot be perceived in perfectly isoluminant chromatic stimuli. In 

isoluminance experiments, participants equate the amount of luminance in a 

particular chromatic channel (e.g. they equate the luminance of the red and 

green aspects of a L-M stimulus), until no motion is detected. We implement 

this by allowing participants to alter the angle ‘θ’ of the stimulus vector in 

MacLeod Boynton space - effectively changing the ratio of L to M cone 

excitation (see Figure 2.4).  
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During this testing, participants fixated centrally at 57cm viewing distance in 

a darkened room. All stimuli were presented on a mid-grey luminance 

background with a central white fixation cross. Stimulus colour was initially 

specified in LMS cone-excitation space, with matrices for the conversion 

from LMS to RGB values given as a product of the Stockman Sharpe 10o 

fundamentals for the L-, M- and S-cones, and the spectral power distribution 

of the RGB phosphors in the stimulus screen. Participants viewed a central 

 
Figure 2.4 Three-dimensional colour space used to define the point of 

isoluminance. Alteration of the elevation parameter (θ) changes the amount 

of luminance present within a chromatic signal. Isoluminance testing asks 

participants to alter the angle of θ until a flickering/moving stimulus is no 

longer visible- the point at which luminance information within the two aspects 

of a chromatic stimulus is equated). Isoluminance testing is performed for red-

green and blue-yellow (tritan) defined stimuli (Figure from Palmer, Mobley, & 

Teller, 1993).  
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annulus through a gaussian window which contained a chromatically-defined 

(L-M or S-(L+M)) circle (3.8° diameter) with a sine wave contour (2.33 

cycles/°) (see Figure 2.5). The phase of the stimulus cycled through a range 

of 0- π/2 radians in 6° increments, which appeared to pulse backwards and 

forwards in space.  

 

Participants altered the amount of luminance contamination, varying the 

angle θ (in 0.005° increments) until no or very minimal motion of the stimulus 

was perceived. Audio feedback was provided to participants, indicating the 

minimum and maximum extents of luminance contamination in the stimulus. 

Participants completed three sets of adjustment for each chromatic condition 

(L+M and S-(L+M)). The average of these three values of θ for each stimulus 

colour was then used to specify stimulus chromaticity in the psychophysics 

and fMRI experiments included in Chapter 5.  
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2.3 Neuroimaging  
 
2.3.1 The BOLD response 
 
Functional magnetic resonance imaging (fMRI) is a non-invasive measure of 

blood-oxygen changes in the brain. This BOLD signal is considered a proxy 

for neuronal activation (see Logothetis & Wandell, 2004 for a review). When 

neurons fire signals, they use energy (in the form of ATP), which requires 

oxygen in order to be replenished (via a process of oxidative 

phosphorylation). Oxygen is transported around the body in a protein called 

haemoglobin. Oxyhaemoglobin is a haemoglobin protein possessing oxygen 

 
Figure 2.5 Example red-green (L-M) and blue-yellow (S-(L+M)) 

isoluminance stimuli. Participants adjusted the amount of luminance 

contamination within the chromatic signal (θ) to equate the amount of 

luminance within the stimulus. Stimuli were defined by a 3.8° circle with a 

sine-wave contour (2.33 cycles/°). The stimulus pulsed back and forth in 

space with altering phase, across a range of 0- π/2 radians in 6° increments.  
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molecules, conversely deoxyhaemoglobin possesses no bound oxygen 

molecules. These two states of haemoglobin have different magnetic 

susceptibility. Deoxyhaemoglobin is a paramagnetic molecule (attracted to 

magnetic fields), whereas oxyhaemoglobin is diamagnetic and relatively 

repelled from magnetic fields.  

 

These differences produce a difference in susceptibility to the radiofrequency 

(RF) pulse dephasing protons; deoxyhaemoglobin molecules exhibit a 

greater susceptibility to dephasing of hydrogen nuclei, and an associated 

reduction in T2* relaxation time, resulting in a darker colour of voxels 

containing deoxyhaemoglobin in an MR image. As oxyhaemoglobin is 

diamagnetic, it does not produce the same dephasing of protons as in 

deoxyhaemoglobin and these differences in relative blood oxygenation 

appear as signal (colour) changes in the T2*-weighted functional magnetic 

resonance images. As the relative proportion of oxygenated versus 

deoxygenated haemoglobin increases, the blood-oxygenation level 

dependent (BOLD) signal increases. Hence fMRI images make the 

assumption increased neural firing demands increased blood flow, which is 

taken to indicate metabolic activity in particular regions of the brain.  

 

2.3.2 The haemodynamic response function (HRF) 
 
MRI does not measure neural activity directly, hence there exists a temporal 

lag between neuronal firing and resultant changes in relative proportions of 

oxygenated and deoxygenated blood. The time course of the BOLD signal is 

termed the haemodynamic response function (HRF). The BOLD signal 
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initially begins to rise 1-2 seconds after neural activity begins, as oxygen is 

extracted from the blood to supply the oxidative phosphorylation process and 

the haemoglobin becomes paramagnetic. The HRF peaks at around 4-6 

seconds, in response to compensatory blood flow, with the peak denoting the 

primary neural response. If neural activity continues the BOLD signal will 

plateau. Upon removal of stimulation, the BOLD response begins to fall, with 

an initial undershoot (falling slightly below baseline), before returning to 

baseline after around 16-18 seconds. The full process can take up 30 

seconds (Logothetis, Guggenberger, Peled, & Pauls, 1999) (see Figure 2.6). 

The haemodynamic response function shape is best typified by a 

combination of two gamma functions, to provide a double-gamma shaped 

haemodynamic response function.  

 

 

 
 

Figure 2.6 The BOLD haemodynamic response. The BOLD signal initially 

dips with the onset of a stimulus, then increases to a peak at 4-8 seconds. 

Once maximal MR signal has been achieved, the signal declines, followed 

by a negative overshoot then returns to baseline (Figure from Kornak, Hall, 

& Haggard, 2011).  
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2.3.3 Magnetic resonance imaging  
 
Both magnetic resonance imaging (MRI) and fMRI measure changes in 

magnetic fields. With no clear magnetic field, hydrogen nuclei (protons) in a 

human body are randomly oriented, with no net magnetisation. However, 

when a participant enters a strong magnetic field (in an MRI scanner), 

protons align themselves along the bore of the scanner (B0) (the longitudinal 

direction) to reach equilibrium (they become polarised).  Approximately half 

of these protons align parallel to the B0, with a relatively low-energy stable 

state. The remaining protons align antiparallel to the longitudinal direction in 

a high-energy, less stable state. The discrepancy between high and low 

stability results in a bias towards the stable, parallel alignment state, 

producing net magnetisation in the B0 direction. Each proton possesses a 

mass and spin, which provides them with angular momentum. Hence, 

protons are not static. Instead, they precess around a magnetic field direction 

(i.e. they rotate around the alignment direction, forming a cone-shaped arc). 

Magnetic resonance imaging reflects changes in the alignment of protons 

across energy states.  

 

During an MRI scan, a short RF pulse is applied, which provides the 

hydrogen nuclei with energy. This causes the low-energy protons in the 

participant to flip to a high-energy state, which reduces the overall 

magnetisation along the B0 axis. By applying a 90° RF pulse specifically, 

approximately half of the protons are in high- and low-energy states 

respectively, which cancels out the magnetisation along the longitudinal 

direction. This also brings the spins of all protons into phase, resulting in a 
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net magnetisation in the transverse plane (at a right angle to the longitudinal 

plane).  

 

Once the RF pulse is terminated, the protons are in an overall less stable 

state. Overtime, these protons return to their equilibrium state (relaxation). 

Protons in the high energy (unstable) state will revert to the lower-energy 

(stable) state over time, leading to a gradual restoration of the magnetic field 

in the B0 plane (T1 recovery). T1 recovery specifically refers to the time is 

takes for 63% of the magnetisation in the B0 plane to recover. However, 

additionally, when protons transition from high to low energy states, they also 

release an RF pulse at the same frequency as the stimulation pulse. This 

can be detected by the MRI scanner, via a receiver coil in the transverse 

plane, as overtime, during this transition, protons lose their spin coherence. 

Hence, this is termed T2 decay, as it results in a loss of overall magnetisation 

in the transverse plane and refers specifically to the time it takes for 

transverse magnetisation to decay by 63% of its maximum value. The 

current induced from this decay is detected as an MR signal. T1 relaxation 

time is always longer or equal to T2 relaxation time.  

 

T1 and T2 relaxation times differ dependent on in which tissue hydrogen 

nuclei lie. For example, in T1-weighted images, cerebrospinal fluid (CSF) is 

dark as relaxation time is longer in water, yet in T2-weighted images, CSF is 

bright. These differences help to provide a high-resolution spatial image.  
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fMRI exploits differences between oxygenated and deoxygenated blood to 

identify the BOLD response. Deoxygenated blood has greater magnetic 

susceptibility than oxygenated blood, meaning it will produce local 

inhomogeneities in the magnetic fields in the regions it is present. These 

inhomogeneities can elicit a loss of spin coherence across the protons, which 

can interact with the loss of phase coherence in the transverse plane. This 

process is known as T2* decay and allows for measurement of BOLD 

response across the brain.  

 

2.3.4 Retinotopy and population receptive field (pRF) 
mapping using fMRI 

 
In Chapters 4, 5 and 6, we define specific regions of the visual cortex to 

analyse and perform subsequent regions-of-interest (ROI) based analyses. 

We define our ROIs for this purpose using retinotopic, population receptive 

field (pRF) mapping. Retinotopic mapping exploits the fact early visual areas 

contain explicit maps of the visual world (as described in 1.2.4) (e.g. Engel et 

al., 1994). Additionally, a neuronal receptive field is defined as the region of 

the visual field in which is it possible to influence the firing of that neuron (see 

Hubel & Wiesel, 1962). These receptive field preferences can be split into a 

location in visual space, and an associate spread. Given early visual regions 

are retinotopically-defined, the preferred locus of activation should vary 

systematically across neurons (voxels) as you travel across a visual area. 

Recent developments in fMRI have been able to combine the principles of 

retinotopic mapping and the architecture of receptive fields in order to 

provide a measure of a single voxels polar angle and eccentricity in visual 

space, through a process termed pRF mapping (Dumoulin & Wandell, 2008).  
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A typical voxel of the human brain will contain more than 100,000 neurons; 

hence the BOLD response summarises computations of populations of 

neurons with tuning to multiple stimulus parameters in a single voxel. pRF 

mapping summarises this pooled neuronal response in a voxel as a 

population receptive field, assuming neurons in a voxel will share similar (at 

least spatial) preferences due the organised topographical mapping of early 

visual areas (Wandell & Winawer, 2015). Hence, a pRF response for an 

individual voxel is considered a reflection of the mean tuning of neurons in 

that voxel.  

 

Prior to the development of pRF mapping procedures, the topographical 

organisation of the visual cortex was identified via retinotopic mapping 

paradigms (Engel, Glover, & Wandell, 1997). Here, the topographic mapping 

of the visual field is identified through presentation of high-contrast, 

achromatic rotating wedges and expanding rings. As the wedge rotates for 

example, it will activate discrete populations of neurons as it falls in their 

receptive fields. This will happen multiple times with the rotation (or 

expansion) of the stimulus. Overtime, comparison of the phase of the 

stimulus and the recorded BOLD response, will produce a travelling wave of 

activation, providing a measure of tuning in visual space for each voxel in 

visual cortex. pRF mapping expands upon this traditional retinotopic mapping 

paradigm, by allowing investigation of both traditional (visual field location) 

and additional voxel parameters (such as receptive field size), using a high-
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contrast checkerboard drifting bar stimulus (Dumoulin & Wandell, 2008) (see 

Figure 2.7). 

 

In pRF mapping, the receptive field of each voxel is defined as an isotropic 

Gaussian, with two visual field locations (x0 and y0) and a pRF size (δ). 

These parameters can be extracted from an fMRI timeseries in response to a 

traditional retinotopic mapping stimulus or a drifting bar stimulus (a high-

contrast, achromatic checkerboard, size invariant bar which drifts in multiple 

directions across visual space). The pRF model employs a linear 

spatiotemporal model of fMRI response, which is defined as: 

 

 

 
Figure 2.7 Illustration of retinotopy and population receptive field mapping 

(pRF) stimuli. A and B demonstrate the rotating wedge and expanding ring 

stimuli used in traditional retinotopic mapping used to map the topographic 

organisation of the visual cortex (polar angle and eccentricity). C) 

demonstrates the standard bar stimulus which drifts across the visual field in 

eight directions, detailed in D.  All stimuli are high-contrast achromatic 

checkerboards presented on a mid-grey luminance background  (Figure from 

Dumoulin & Wandell, 2008). 
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𝛾(𝑡) = 𝑝(𝑡)𝛽 + 𝑒 

Equation 2.2 Equation for the spatiotemporal linear model of the fMRI 

response   

 

Here, 𝑝(𝑡) refers to the predicted fMRI signal, 𝛽 is the response strength 

scaling factor (accounting for the unknown units of fMRI signal) and 𝑒 refers 

to noise.  

 

The predicted fMRI signal for each voxel is calculated using a 2D Gaussian 

model of the population receptive field, defined below. Here, 𝑥& and 𝑦& refer 

to the centre of the pRF, and 𝜎 refers to the standard deviation of the 

Gaussian (or spread of the population receptive field).  

 

𝑔(𝑥, 𝑦) = 𝑒𝑥𝑝 − =
(𝑥 − 𝑥&)> + (𝑦 − 𝑦&)>

2𝜎>
@ 

Equation 2.3 Equation for the Gaussian model of pRF used to calculate p(t) 

 

The pRF model finds and fits the optimal pRF parameters to each voxel by 

minimising the residual sum of squares between the predicted and observed 

fMRI time course. In the first stage of this process, data are smoothed with a 

5mm full-width at half-maximum (FWHM) Gaussian kernel to improve spatial 

correlation amongst neighbouring voxels.  Next, brute force search is applied 

to identify the best fit for each voxel to the observed fMRI data from 100,000 

timeseries predictions.  In this second stage, unsmoothed voxels from the 
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first stage whose fits explain more than 15% of the variance in that voxels 

time course are retained. From these fits, 𝑥&,	𝑦& and 𝜎 are estimated for 

each voxel. The values provide for each voxel, the eccentricity (how far from 

the centre of the visual field a voxel is tuned), the polar angle (radial distance 

preference) and receptive field size (the degrees of visual angle in space a 

voxel receives input from).  

 

2.3.5 MT+ motion localiser  
 
For some participants, we employed a MT+ motion localiser in combination 

with population receptive field mapping to isolate the voxels in area MT+ with 

a clear response to motion stimuli. The design for this MT+ localiser was 

adapted from Fischer, Bülthoff, Logothetis, & Bartels, (2012), Huk, 

Dougherty, & Heeger, (2002) and  Maloney, Watson, & Clifford, (2013). The 

motion stimulus was composed of black and white dots with a density of 

9.9dots/degree2, with a smoothed Gaussian profile (𝜎 = 0.04). These dots 

filled an annulus which extended from 0.5°-11.75° eccentricity, on a mid-grey 

luminance background. Dot position updated at 0.33Hz frequency, yielding a 

5.3°/sec average dot speed (see Figure 2.8). The localiser consisted of a 

block design, with each run containing 31, 12 second blocks. Each run 

included five stimulus conditions; static dots (a randomly selected single 

frame of the motion stimulus), left-hemifield coherent radial motion (with 

motion restricted to the left 120° of the display, hence 66.66% of the display 

contained static dots), right-hemifield coherent radial motion, full-field 

coherent radial motion and fixation-only trials. A jittered inter-stimulus-interval 

(ISI) of between 3-12 seconds was included between each full stimulus cycle 
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(60 seconds). All participants completed two runs of the localiser to enable 

accurate location of MT+ post-hoc. MT+ location was identified via a full-field 

coherent radial motion versus static dot GLM contrast. The voxels activated 

in this contrast were defined as the region-of-interest for further analysis.  

 

2.4 Machine learning classification 
 
2.4.1 Overview 

 
The aim of machine learning is to accurately predict a class a single data 

point has originated from. Typically, classification is supervised. This refers 

to the fact a machine learning classifier is provided with explicitly labelled 

 
 

Figure 2.8 Full-field motion-localiser stimulus. Participants viewed 

alternating blocks of full-field motion, left- and right-hemifield motion, static 

motion and fixation-only. Achromatic dots were presented on a mid-grey 

luminance background and had a 5.3°/second dot speed. Comparisons of 

the full-field versus static motion conditions allowed for accurate location of 

visual area MT+.  
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data (i.e. data point one belongs to class A, data points 2 and 3 are members 

of class B). A classifier then uses this data to ‘learn’ how each piece of the 

supplied data relates to its assigned class. The goal of classification is to 

produce a model from this training data which then accurately predicts the 

class of each piece of test data, using statistical similarities it has identified 

about each of these classes from the test data.   

 

Modern machine learning frequently involves very large datasets. In 

Chapters 4, 5 and 6 we employ use a form of machine learning classification 

with multivariate (voxel-level data), with the aim of classifying unique patterns 

of feature-specific attentional focus. Area-level sensitivity to stimulus 

changes can be examined using many methods such as multivariate pattern 

classification analysis (MVPA) and adaptation. Researchers sought to 

examine the relative strengths and weaknesses of such classification 

methods to evaluate their most suitable applications. In a comparison of such 

multivariate pattern classification methods (support vector machine versus 

adaption), whilst both models performed similarly on typical orientation 

classification paradigms, the multivariate pattern analysis (SVM) method 

possessed greater sensitivity to smaller differences in orientation than the 

adaption paradigm (Sapountzis, Schluppeck, Bowtell, & Peirce, 2010). In 

Chapters 4 and 5, we present very small stimulus feature changes (close to 

participant’s thresholds for detection), hence in this thesis, we choose to 

employ MVPA analyses (SVM) as oppose to adaptation paradigms.  
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However, here, in the consideration of participant fatigue and data collection, 

instead of collecting new data to test the classifier on, we split our dataset for 

each participant into two groups (a training and test set). In these chapters 

we employ leave-one-out cross validation in order to assess how our 

classification model performs on multiple, varying subsets of training and test 

data. In each cross-validation iteration, the machine learning classifier is 

trained on all but one of our data instances. This fitted classification model is 

then used to assess the accuracy of classification for the remaining data. 

This process is repeated for all combinations of training and test sets and we 

average the classification accuracies to gain an overall percentage 

classification accuracy score.  

 

2.4.2 Support vector machines 
 
In Chapters 4,5 and 6 we use a support vector machine (SVM) classifier to 

identify potential differences in patterns of activation across multiple voxels 

during feature-specific attentional focus. Support vector machine 

classification is a popular and widely used form of classifier (Chang & Lin, 

2011), created by Cortes & Vapnik, (1995). SVMs are capable of producing 

significant classification accuracies with less computational power than other 

comparable methods. Briefly, a support vector machine is a generalisation of 

a maximal margin classifier, which allows investigation of non-linear datasets 

and can be used for both binary and multi-class classification. However, a 

single support vector machine classification does not provide probability 

estimates. To overcome this, SVMs are frequently employed with cross-
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validation techniques (see 2.4.1) or bootstrapping methods, to generate 

confidence intervals for the associated classification accuracies.  

 

A support vector machine aims to find a hyperplane in an N-dimensional 

space (N referring to number of features in the analysis), that best separates 

the supplied data points into their respective classes (see Figure 2.9). 

Amongst many possible hyperplanes, the aim of an SVM is to identify the 

hyperplane with the maximum distance between the data points of the 

classes. This increased margin allows greater accuracy of classifying future 

data points which may lie slightly outside of the boundaries of the original 

dataset. Support vectors themselves are defined as the data points closest to 

(most informative in terms of the position and orientation of) the hyperplane. 

Regularisation can be employed to specify the size of the margins between 

the separating hyperplane and the data points. Low regularisation will identify 

the largest margin (biggest difference between the support vector and the 

hyperplane) even if this results in misclassifications. Alternatively, high 

regularisation specifies a small margin between support vectors and the 

hyperplane which will result in a higher classification accuracy in the training 

data, but which may lead to overfitting (see 2.4.4).  
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Support vector machines typically employ a kernel to improve the fitting of 

the hyperplane for non-linear data. A kernel specifies the similarity between 

two sets of data and allows for transformation of data from a low-dimensional 

input space to a higher-dimensional space in which the data points are 

linearly separable. Instead of explicitly representing the original data, a 

kernel represents the data through pairwise similarity comparisons (a 

modified dot product) in this higher dimensional space.  

 

 

 
Figure 2.9 Support vector machine classification. Support vector machine 

classification takes an input of values across many instances for two 

conditions (here, fMRI voxel activation for during attention to orientation 

(red), and attention to contrast (blue)) (left). This data is transformed to a 

higher-dimensional space via a kernel trick to help fit a hyperplane (green) 

(right) linearly separating the data points into their respective conditions. This 

hyperplane is then used to assess classification accuracy on a test set of 

data.  
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2.4.3 Radial Basis Function Kernel 
 
As described above, kernels transform low-dimensional data into higher-

dimensional data to identify a hyperplane separating the data. There are 

many different types of kernel which can be used for this process. In this 

thesis, we employ a radial basis function (RBF) kernel in our SVM 

classification. The most popular RBF is the Gaussian RBF.  In simple terms, 

the radial basis function fits each cluster of data with a radial shape. In the 

analysis in this thesis, this is a circle with a centre at the mean of the 

distribution, with a Gaussian spatially-smoothed profile.  The SVM then 

assesses the probability another instance of data falls in the distribution for a 

particular category. A RBF has one free parameter, gamma, which specifies 

the variance of the Gaussian distribution.  

 

2.4.4 Overfitting 
 
Overfitting refers to situations in which a hyperplane is fit too closely to a 

single data set. In this situation, the model fit is heavily influenced by the 

precise details and noise contained in the data. When such a model is tested 

with a new set of data, its classification is typically very low (i.e. it does not 

generalise well from training data to a new test dataset). Overfitting is a 

common problem in machine learning classification. To overcome it, many 

classifiers include parameters which limit how well a model can fit the data, 

such as regularisation parameters (see 2.4.2). Alternatively, techniques such 

as leave-one-out cross validation (see 2.4.1) can be used to ensure the 

model tunes its hyperplane only with the original training data set, ensuring 

the test dataset has had no influence on the fit of the model, and this process 
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is repeated several times. The cross-validation technique has been 

suggested as the best technique for avoiding this issue in SVMs (Gholami & 

Fakhari, 2017). In Chapters 4, 5 and 6 we employ this leave-one-out cross 

validation method to provide probability estimates and reduce the potential 

risk of overfitting our data.  

 

2.5 Multiple comparisons correction 
 
Benjamini-Hochberg correction (Benjamini & Hochberg, 1995), is a widely 

used method of false discovery rate correction, which controls the expected 

proportion of type one errors (falsely concluding a significant effect) across a 

range of significant values. It is a simple method which is sufficient for many 

exploratory experimental studies such as the ones detailed in this thesis, and 

the output provides a conservative estimate of significance across multiple 

statistical analyses, with a good balance between the discovery of statistical 

significance and limitation of false-positive occurrences (e.g. Noble, 2009). In 

comparison to methods controlling family-wise error rate, such as the highly 

conservative Bonferroni correction, which relates to the probability of making 

any type 1 errors at all, ‘punishing’ all p-values equally, the Benjamini-

Hochberg correction, ‘punishes’ p-values according to their ranking.  

 

Benjamini-Hochberg correction sorts the p-values in ascending order, then 

divides each observed p-value by its percentile rank to get an estimate false-

discovery rate. Throughout this thesis, we employ Benjamini-Hochberg 

correction when correcting for multiple comparisons across a number of 

statistical tests (e.g. across the significance values for multiple one-sample 
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Wilcoxon signed-rank tests), and Bonferroni family-wise error correction 

when controlling for multiple comparisons in a related analysis (such as 

across post-hoc testing in a repeated measures ANOVA). These methods 

help to reduce the likelihood of making a type 1 error in our data analysis (i.e. 

concluding a significant effect when one does not truly exist).  
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3. Investigating Selective Versus 
Distributed Attentional Effects  
 
 
3.1 Abstract 
 
It has been frequently noted in the literature, that task accuracy decreases, 

and reaction time increases with an increased attentional load. Here, we 

sought to replicate these well-established findings in a selective versus 

divided visual psychophysics paradigm, utilising a relatively novel stimulus in 

the attention literature, the radial frequency pattern. Participants were 

directed to selectively detect changes in a single stimulus dimension 

(orientation, contrast or shape) or to identify changes in any of these stimulus 

attributes simultaneously (divided attention). Participants had significantly 

lower change detection accuracy and significantly longer response times 

when attention was divided across multiple features versus selectively 

focused upon one attribute. We provide substantiation for the use of the 

radial frequency pattern as an effective stimulus to probe visual attention.  

 

3.2 Introduction 
 
We are constantly exposed to complex, multi-faceted visual stimuli (e.g. 

objects with orientation, colour and motion information), hence a mechanism 

to weight the contextual importance of particular subsets of visual information 

is vital for efficient and successful interaction with our world (Posner, 1994; 

Posner & Petersen, 1990). Attention allows the selection and processing of 

relevant information at the expense of processing task-irrelevant information, 

which is filtered out. Featural attention refers to the modulation of activation 



 82 

when focus is directed toward a specific visual feature (e.g. vertical 

orientation, red, upwards motion), across the entire visual field (Saenz et al., 

2002). Featural attention is a robust phenomenon, which typically increases 

the activation in cortical regions responsible for the processing of the 

attended feature, such as increases in MT+ activation during attention to 

motion (Beauchamp, Cox, & DeYoe, 1997; Chawla et al., 1999; Corbetta, 

Miezin, Dobmeyer, Shulman, & Petersen, 1991; Huk & Heeger, 2000; 

O’Craven et al., 1997; Treue & Martínez Trujillo, 1999), or increased V4 

activity with attention towards chromatic stimuli (Chawla et al., 1999; Liu, 

Slotnick, Serences, & Yantis, 2003; Schoenfeld et al., 2007).  

 

Visual psychophysics experiments typically probe isolated and specific 

aspects of visual processing using highly-controlled visual stimuli such as 

Gabor patches. Here, we utilise a more recent visual stimulus, the radial 

frequency (RF) pattern (Wilkinson, Wilson, & Habak, 1998; Wilson & 

Wilkinson, 1997). Whilst, like the Gabor patch, the RF pattern is a highly-

controlled low-level visual stimulus, it possess a relative advantage, allowing 

investigation into shape processing with manipulation of radial amplitude 

modulation and shape perimeter (for example; Wilkinson et al., 1998; Ivanov 

and Mullen, 2012; Bell et al., 2014; Lawrence et al., 2016). Additionally, 

combinations of multiple RF patterns are considered to more-closely reflect 

‘real-world’ visual stimuli than other more traditional stimuli (Lawrence et al., 

2016). 
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We planned to utilise these RF patterns as a method of probing the cortical 

regions and networks involved in encoding, processing and switching 

attention between different low-level visual features. However, very little 

research has specifically investigated attentional mechanisms using RF 

pattern stimuli (see Smith et al., 2009). Hence, there is little evidence to 

substantiate the use of RF patterns an effective stimulus to probe visual 

attention. As such, we conducted a psychophysics study aiming to replicate 

a key finding in the attentional literature, to assess the effectiveness of RF 

patterns as a stimulus to probe attention to low-level visual features.   

 

The selective versus divided attentional paradigm compares participants 

change detection accuracy between conditions in which their attention is 

directed towards a single visual feature, versus a condition where 

participants must divide their attention across multiple visual features 

(Corbetta, Miezin, Dobmeyer, Shulman, & Petersen, 1990). In their original 

experiment, Corbetta et al., (1990) presented participants with consecutive 

frames of randomly dispersed bars moving leftwards or rightwards as a 

collective. The bars could vary in shape, colour and/or velocity between 

frames. Participants attention was directed toward a specific stimulus feature 

(for example, colour), and they were asked to make yes/no choice 

judgements regarding the presence/absence of a change in the attended 

stimulus between two frames (same/different). For example, a change in only 

the shape of the bars between frames in an ‘attend to colour’ trial should be 

reported as ‘same’, as no change in the attended feature occurred. In a 

separate condition, participants divided their attention across multiple 
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stimulus dimensions, making yes/no judgements to indicate the presence or 

absence of a change in at least one of the attended features between 

frames.  

 

It is widely noted that change detection accuracy for detecting small changes 

in a visual feature is greater with selective attention (directed toward a single 

stimulus dimension) than when presented with the same stimulus, with 

attention divided across multiple stimulus attributes (Corbetta et al., 1991; 

Corbetta et al., 1990). A longer response time has also been identified in 

divided versus focused attention tasks (e.g. Ninio and Kahneman, 1974; 

Hahn et al., 2008). This deficit likely reflects the limited processing capacity 

humans possess; when we divide attention across multiple features, we must 

split or rapidly shift our attentional focus, limiting the resources we have 

available for the detection of change in any single feature simultaneously 

(Broadbent, 1958; Parasuraman, 1998).  

 

We aimed to replicate the results of this well-established selective versus 

divided paradigm with RF patterns as a stimulus to probe feature-based 

attention, predicting lower sensitivity to change, and longer response times 

when attentional focus is divided across multiple stimulus attributes. We 

examine change detection across three low-level visual features of interest; 

orientation, contrast and shape. In this experiment, we used participant-

specific task difficulty calibration, attempting to control the level of attention in 

the “attend orientation”, “attend contrast” and “attend shape” conditions, to 

validate this calibration method in future experiments. We hypothesised no 
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significant difference in loglinear d’ or reaction times between the three 

selective attentional focus conditions. Our findings indicate participants are 

more accurate at detecting changes in a target feature with selective 

attention (directed toward a single stimulus feature) than during divided 

attentional focus. We find no evidence for differences in participant response 

(loglinear d’ or reaction time) between the three selective attention 

conditions.  

 

3.3 Methods 
 
3.3.1 Participants 
 
24 volunteer participants (all University of York staff or postgraduate 

students) (17 female) were recruited for the study. All participants had 

normal or corrected-to-normal vision. Ethical approval for the experiment was 

granted by the University of York, Department of Psychology ethics board. 

All participants provided informed consent and remained naïve regarding the 

specific focus of the study (differences between selective and divided 

attention) until after testing ended. Participants were provided with verbal 

instructions and had the opportunity to ask questions to clarify their 

understanding. 

 

3.3.2 Design & Procedure 
 
3.3.2.1 Stimulus presentation 

Participants completed the experiment in a darkened room, at a viewing 

distance of 57cm from the screen. All participants completed at least one 

practice block (10 trials) before starting the experiment. Visual stimuli were 
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presented to participants on a ViewPixx 3D LCD screen system (1920 x 

1080 pixels’ resolution, running at 120Hz). A Shuttle XPC SZ88RG high-end 

graphics system with intel Core i7-4790K processor at 4.0GHz and an 

NVIDIA GeForce GTX970 graphics card with 4GB DDR5 Memory were used 

to control the experiment. All stimuli and experimental procedures were 

controlled by Matlab 9.2.0 (2017a) in conjunction with the Psychtoolbox 

3.0.12 (Brainard, 1997; Pelli, 1997).  

 

3.3.2.2 Threshold testing 

Before assessing participants’ selective versus divided attention change 

detection accuracies, we first had to ensure that the selective tasks were of 

equal difficulty, and that overall task difficulty was consistent across 

participants. To achieve this, we collected participants’ 75% correct detection 

thresholds for each low-level visual feature of interest (orientation, contrast 

and shape).  

 

To efficiently estimate detection thresholds, we used a Bayesian staircase 

procedure (Watson & Pelli, 1983). Feature-specific initial estimates of 

threshold (0.3 radians orientation, 30% contrast, 0.08 radial amplitude 

modulation/shape) were provided with 0.5-unit standard deviation. We 

utilised a RF pattern stimulus, a radially modulated circular contour defined 

by the fourth derivative of a gaussian in polar coordinates (Ivanov & Mullen, 

2012; Wilkinson et al., 1998; Wilson & Wilkinson, 1997).  
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Participants were initially presented with a visual cue, signalling the attended 

feature and a central white fixation letter present across trials matched the 

cued feature (‘O’, ‘C’ or ‘S’). Trials commenced with a 200ms presentation of 

a grayscale reference stimulus against a mean luminance background. The 

reference RF pattern stimuli had a 2.0° average radius, 0° orientation and 

50% contrast (see Figure 3.1A).  

 

This was followed by a 200ms inter-stimulus interval with presentation of the 

letter-fixation cue only. A target stimulus was then presented for 200ms, with 

a change in the attended visual feature derived from the initial estimate and 

participants’ previous performance on subsequent trials. For each feature, a 

stimulus change could be either of two directions (with approximately equal 

frequency)- clockwise versus anticlockwise orientation, high contrast versus 

low contrast, ‘spiky’ versus smooth shape. This was followed by a central 

black fixation cross for 800ms, during which participants made a yes/no 

judgement indicating the direction of change between the reference and 

target stimulus (‘A’ or ‘L’ keyboard press). Participants were informed via a 

toned ‘beep’ if their response was correct or incorrect. Each participant 

completed 50 trials (alongside 10 discarded practice trials at the start of each 

run) to provide an estimated 75% correct detection threshold for each 

feature. Each feature-specific staircase was repeated three times with 

participants’ final detection thresholds reflecting the average of these three 

repetitions. Each run lasted approximately 2 minutes. 
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3.3.2.3 Selective versus divided  

The stimulus design and procedure employed in the main selective versus 

divided attention paradigm was very similar to the staircase design employed 

above. Participants were first presented with a brief instruction screen, 

providing a repeat of the task instructions and required keypresses. 

Participants were then presented with a mean luminance grey screen with 

white text cueing the attentional focus condition (e.g. Attend to changes in 

ORIENTATION (selective) or Attend to changes in ORIENTATION or 

CONTRAST or SHAPE (divided). Participants were presented with the same 

reference RF pattern as the staircase threshold testing procedure, with a 

fixed 2.0° average radius, 0° orientation and 50% contrast, for 200ms. This 

reference RF pattern was presented with a small white letter at central 

fixation matching the cued featural attentional focus condition (O, C, S, or N, 

for orientation, contrast, radial amplitude modulation (shape) and divided 

attention respectively). This reference stimulus was then followed by the 

same central fixation letter as previous on the same mid-grey luminance 

background for a 200ms inter-stimulus interval. Following this, in an 

important distinction from the threshold staircase procedure, a target radial 

frequency pattern, with the potential to alter in one, multiple or no stimulus 

features was presented, along with the same attention-specific fixation letter 

(see Figure 3.1B).  
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The averaged 75% correct detection thresholds of changes in each of the 

three stimulus features gained via previous Bayesian staircases (described 

above) were used in this experiment to ensure the changes in stimulus 

features were calibrated to each participants’ level of change perception and 

to ensure we controlled for the level of attention across participants- 

maintaining an equal difficultly of task for all features and participants. These 

75% correct detection thresholds were doubled for each participant, and 

these values specified the amount change in each stimulus feature. Unlike 

the threshold staircases, to help ensure the task remained a manageable 

difficulty, stimulus features only altered in one direction (anticlockwise 

orientation, increased contrast and ‘spikier’ shape).  

 

The frequency of these feature changes was manipulated in two different trial 

types. Previous literature contains examples of constant change distributions 

across conditions; keeping the number of changes consistent across 

selective and divided blocks (e.g. Hahn et al., 2008). It also contains 

examples of equal response distributions; where the number of signal trials 

are kept constant across blocks (e.g. Corbetta et al., 1990). Both equal and 

unequal change conditions were tested in this experiment. The unequal 

change condition involved keeping the number of stimulus changes constant 

across selective and divided featural attention blocks. In these blocks, the 

probability of change in any stimulus feature was 20%, regardless of the 

attentional focus block. In selective attention blocks, where participants are 

required to respond to changes in only one stimulus feature (e.g. respond to 

orientation), approximately 20% of trials require a ‘different’ response from 



 91 

the participant. However, in the divided attention condition, where 

participants are asked to respond to changes in any stimulus feature, 

participants should respond ‘different’ on approximately 60% of trials, hence 

the number of trials containing a signal are not equal across selective and 

distributed attention blocks.  

 

Conversely, the equal change condition involved keeping the number of 

signal trials constant across the different attentional blocks. In the selective 

attention conditions, the number of potential trials to respond to was still 

approximately 20%, as the change in any one stimulus feature remains at 

20% probability, so although 60% of trials were changing in stimulus feature, 

only 20% of changes matched the feature of attentional focus. However, in 

the divided conditions, each stimulus had a 6.66% probability of change, 

such that overall, the number of changes in all stimulus features (the number 

of trials requiring a ‘different’ response) was approximately 20%, matching 

the number of signal trials in the selective conditions- an equal distribution of 

stimulus changes requiring a response across the conditions.   

 

Regardless of the distribution of stimulus change condition, participants 

viewed the target RF pattern for 200ms, and were then presented with the 

same single central attention-specific fixation letter for 800ms, in which they 

were required to make same-different responses in respect of their directed 

attentional focus (‘A’ (different) or ‘L’ (same) keyboard responses). The 

attended feature was randomly allocated in each selective attention block 
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and the order of equal and unequal change distribution runs was 

counterbalanced across participants.  

 

Participants completed 50 trials per block, and there were 4 blocks per run (2 

selective and 2 divided), hence a total of 200 trials per run (100 selective and 

100 divided). At the end of each block (50 trials) participants were able to 

take a break and initiate the next block of testing themselves, by pressing the 

spacebar. In a single testing session, participants completed 4 runs (2 equal 

and 2 unequal), such that each participant contributed 200 selective and 200 

divided trials for equal and unequal change distribution conditions 

respectively. Each run lasted 5 minutes, such that an entire testing session 

lasted approximately 30 minutes. After completing all 4 runs, participants 

were debriefed as to the aims of the experiment.  

 

3.4 Results 
 
As a result of the complete randomisation of selective feature blocks, some 

participants were missing data from a single selective attentional focus 

condition. For these participants, we created simulated response blocks via 

bootstrapping, selecting 50 trials with replacement from all trials for that 

condition concatenated across all participants. Hence, we select trials from 

multiple participants for a single condition and combine these to create a 

simulated set of block responses. This ensured every participant had 

response data for all three selective attentional conditions.  
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Data for each participant were concatenated across runs for the equal and 

unequal analyses separately. Across these 400 trials, data were split into 

individual attentional focus conditions (orientation, contrast, shape and 

divided). We removed data from any trial where the response time was less 

than 100ms, taken to be the minimum plausible human reaction time to the 

stimulus). This resulted in the removal of a maximum of one trial in each 

condition. Additionally, any trial where the participant failed to make a 

response was also removed from analysis.  

 

For each condition, we then calculated the mean reaction time for (across all 

condition repetitions) for participant responses. We then also calculated 

loglinear d prime (d’) for each condition (Hautus, 1995). We chose to use the 

calculation of loglinear d’ to account for the issue of an infinite d’ value in 

instances where the number of hits or false alarms is zero, which infrequently 

occurred in our dataset (as noted in Stanislaw and Todorov, 1999). This 

involved incrementing the number of hits and false alarms for each condition 

by 0.5, and the number of signal and noise trials by 1. We were then able to 

calculate a participant accuracy score, indicated by loglinear d’ for each 

selective and divided attention condition.  

 

However, in the selective versus divided attention literature, there have been 

two differing strategies employed regarding the distribution of stimulus 

change occurrences across the selective and divided attention conditions. 

Some researchers have employed equal numbers of possible response trials 

in both the selective and divided conditions, such as Corbetta et al., (1990). 



 94 

However, other researchers have opted to have unequal numbers of 

response trials between these two condition types (e.g. Hahn et al., 2008). 

Hence, we first wished to identify any differences in loglinear d’ or reaction 

time across these unequal and equal analysis pipelines.  

 

We conducted multiple paired-sample t-tests, comparing equal and unequal 

loglinear d’ scores for the divided, orientation, contrast and shape attention 

conditions individually (as displayed in Table 3.1). We repeated the same 

analysis performing multiple paired-sample t-tests, comparing each 

participant’s mean reaction time in the divided, orientation, contrast and 

shape conditions across equal runs (see Table 3.2). Of the 8 comparisons, 3 

had a non-normal distribution of one of the data conditions (Shapiro-Wilk p 

<.05). In these instances, we instead performed the non-parametric paired-

sample Wilcoxon signed-rank test. For both loglinear d’ and reaction time 

analyses, we performed a Benjamini-Hochberg correction on the resulting 

significance values (4) to control for the increased risk of a type one error 

with multiple comparisons. Statistical analysis revealed no significant 

difference in loglinear d’ between the equal and unequal run types in any 

attentional focus condition (p > .05). We also identified no significant 

Table 3.1 No significant difference in loglinear d prime between equal and 

unequal change distribution analyses for any attentional focus condition. 

 Equal mean 
(d’) 

Unequal mean 
(d’) 

Statistic 
(test) 

Adjusted 
p 

Divided 1.20 1.20 -0.03 (Z) .977 
Orientation 1.70 1.63 0.09 (Z) .977 

Contrast 1.72 2.07 -2.05 (T) .206 
Shape 1.69 1.73 -0.23(T) .977 
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differences in the mean reaction time between equal and unequal run types 

for any selective or divided attention condition (p > .05).  

 

As we identified no significant difference in participant accuracy or reaction 

time between the equal and unequal conditions, we report only the outcomes 

of the equal response trial distribution runs in subsequent analyses. This 

matches the distribution of response trials employed in the original Corbetta 

et al., (1990) experiment we aim to replicate, in which both the divided and 

selective attention conditions contained approximately 50% of trials requiring 

a ‘different’ response.  

 

In this experiment, we aimed to establish if utilising a relatively novel RF 

pattern visual stimulus, we could replicate the well-established findings of 

greater accuracy and faster response during selective attention, opposed to 

when attention is divided across multiple stimulus features (Corbetta et al., 

1991; Corbetta et al., 1990). To investigate this, for each participant, we 

calculated the average loglinear d’ score across orientation, contrast and 

shape conditions to provide a single averaged selective attention accuracy 

score. These averaged selective attention loglinear d’ values were then 

Table 3.2 No significant difference in mean reaction time between equal and 

unequal change distribution analyses for any attentional focus condition. 

 Equal mean 
(RT) 

Unequal mean 
(RT) 

Statistic 
(test) 

Adjusted 
p 

Divided 355.22 371.41 -1.97 (T) .243 
Orientation 324.21 332.61 -0.83 (T) .553 

Contrast 321.78 341.23 -1.51 (Z) .260 
Shape 345.33 342.28 0.25 (T) .807 
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compared with each participant’s corresponding accuracy in the divided 

attention condition. A paired-sample Wilcoxon signed-rank test revealed 

participants were significantly better at detecting changes in the attended 

stimulus in the selective versus divided attention condition (Z (23) = 3.71, p 

<.001) (See Figure 3.2A). Additionally, we wished to identify if this difference 

between selective and divided attention conditions was also evident in 

participant’s response times. As before, we calculated the average response 

time across orientation, contrast and shape conditions to provide a single 

averaged selective attention reaction time score. This was then compared 

with participants’ reaction time in the divided attention condition. A paired-

sample t-test revealed participants took significantly longer to respond in the 

divided attention condition than compared to the averaged selective 

attentional focus condition (T (23) = -4.91, p <.001) (See Figure 3.2B).  

 

Furthermore, we wished to investigate potential differences in participant 

response across the three individual selective attention conditions, in order to 

 

Figure 3.2 Significantly greater participant accuracy (indexed by loglinear d’) 

(A) and faster reaction times (B) in selective than distributed attentional 

conditions. Error bars reflect +/- 1 standard error. 
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validate our use of participants’ feature-specific detection thresholds as a 

method of calibrating task difficultly and associated levels of attention, for 

use in later fMRI experimentation. We conducted two one-way repeated 

measures ANOVAs (for loglinear d’ and reaction time respectively) to identify 

potential differences in response between the three selective conditions. 

Analyses identified no significant difference in participant accuracy (loglinear 

d’) across the orientation, contrast and shape conditions (F (2,46) = 0.01, p = 

.987) (see Figure 3.3A). For the reaction time comparison, we identify a 

significant difference in mean reaction time across the three selective 

attention conditions (F (2,46) = 4.25, p = .020). However, Bonferroni-

corrected post-hoc tests reveal no significant difference between any 

pairwise comparison of conditions (p > .05) (see Figure 3.3B).  

 

 

 

 
Figure 3.3 No significant difference in loglinear d’ (A) or reaction time (B) 

between selective attention directed toward orientation, contrast or shape. 

Error bars reflect +/- 1 standard error. 
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3.5 Discussion 
 
Here, we used a relatively novel visual stimulus, the RF pattern, to probe 

attentional mechanisms. We aimed to replicate robust findings of the 

selective versus divided attention paradigm to validate the use of the RF 

pattern as an effective stimulus to probe attentional modulation. We replicate 

these well-established findings here. Firstly, we identify significantly greater 

change detection accuracy across participants during selective (single-

feature) attentional focus versus divided (multiple-feature) conditions. This 

supports our initial hypothesis and replicates the findings of a wealth of 

previous research (e.g. Corbetta et al., 1990, 1991).  

 

We additionally demonstrate that participants took significantly longer to 

make a yes/no judgement when attention was divided across multiple 

stimulus features, versus when directed toward a single visual attribute. 

Again, these findings confirm our hypothesis and support the findings of 

previous literature identifying reduced sensitivity and longer response times 

with attention divided across multiple features of a stimulus (e.g. Ninio and 

Kahneman, 1974; Hahn et al., 2008). This demonstrates that our results are 

not reflective of a speed-accuracy trade off. Participants in the selective 

attention conditions were both faster and more accurate than in their 

responses within the divided condition.  Hence, we provide support for the 

notion that manipulation of attentional focus can influence behavioural 

performance in a visual psychophysics task (Corbetta et al., 1990). Our 

replication of a robust finding in the attentional literature provides a clear 
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validation for the use of RF patterns as effective stimuli to probe visual 

attention processes.  

 

Our results support the notion of attention as a mechanism with limited 

capacity and its division across multiple features impedes the amount of 

attention we are able to direct to any single visual stimulus (Broadbent, 

1958). Our results provide no indication of the cortical processes involved in 

these behavioural differences, however previous literature demonstrates 

featural attention increases activation in regions of the visual cortex 

associated with processing that stimulus attribute (e.g. Corbetta et al., 1991; 

Beauchamp et al., 1997; O’Craven et al., 1997; Chawla et al., 1999; Treue 

and Martínez Trujillo, 1999; Huk and Heeger, 2000; Liu et al., 2003; 

Schoenfeld et al., 2007).  

 

Additional research has identified increased neuronal/fMRI activity during 

divided attention versus when attention is directed toward a single visual 

feature (Corbetta et al., 1991; Herath, Klingberg, Young, Amunts, & Roland, 

2001; Johnson & Zatorre, 2006; Loose, Kaufmann, Auer, & Lange, 2003; 

Nebel et al., 2005; Rees, Frackowiak, & Frith, 1997; Vandenberghe et al., 

1997; Weerda, Vallines, Thomas, Rutschmann, & Greenlee, 2006). 

However, further research has failed to identify the existence of functionally-

specific cortical activity in divided attention (Hahn et al., 2008). Future 

research could investigate potential differences in inter-regional connectivity 

between the selective and divided paradigms, as perhaps complex tasks 

involve reduced correlation between regions important for the successful 
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change detection of specific visual features. This decorrelation between 

regions has been identified to have beneficial effects on task performance in 

cognitive flexibility literature (e.g. Dajani and Uddin, 2015; Spadone et al., 

2015; Vatansever et al., 2016; Li et al., 2017).  

 

Additionally, we identified no significant differences in participant accuracy or 

reaction time across selective attentional focus conditions (attention directed 

to orientation, contrast or to shape). This is evidence of the success of our 

method of calibrating feature- and participant- specific task difficultly with 

previously collected participant threshold detection scores for each low-level 

stimulus feature. This lack of significant difference across conditions gives 

strength to the notion we successfully equated task difficultly across 

conditions, importantly suggesting the level of attention employed should be 

highly similar for each participant across the selective attention conditions.  

 

In conclusion, we replicate the findings of a well-established attentional 

paradigm with the use of a novel highly controlled visual stimulus, 

substantiating it’s use as an effective stimulus in probing attentional 

modulation. We also demonstrate the success of a method calibrating the 

selective versus divided task to each participant’s perceptual experience. 

This study provides support for the use of the RF pattern stimulus and our 

method of calibrating task difficulty in our future fMRI studies. 
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4. Feature-Specific Patterns of 
Attention and Functional 
Connectivity in Human Visual 
Cortex 

 
 
4.1 Abstract 
 
Attending to different features of a scene can alter the responses of neurons 

in early- and mid- level visual areas but the nature of this change depends on 

both the (top down) attentional task and the (bottom up) visual stimulus. One 

outstanding question is the spatial scale at which cortex is modulated by 

attention to low-level stimulus features such as shape, contrast and 

orientation. It is unclear whether the recruitment of neurons to particular 

tasks occurs at an area level or at the level of intra-areal sub-populations, or 

whether the critical factor is a change in the way that areas communicate 

with each other. Here we use functional magnetic resonance imaging (fMRI) 

and psychophysics, to ask how areas known to be involved in processing 

different visual features (orientation, contrast and shape) are modulated as 

participants switch between tasks based on those features while the visual 

stimulus itself is effectively constant. At a univariate level, we find almost no 

feature-specific bottom-up or top-down responses in the areas we examine. 

However, multivariate analyses reveal a complex pattern of voxel-level 

modulation driven by attentional task. Connectivity analyses also 

demonstrate flexible and selective patterns of connectivity between early 

visual areas as a function of attentional focus. Overall, we find that attention 

alters the sensitivity and connectivity of neuronal subpopulations in individual 
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early visual areas but, surprisingly, not the univariate response amplitudes of 

the areas themselves.  

 

4.2 Introduction 
 
 
Attention directed toward spatial locations or visual features can influence 

both behaviour and physiology. In general, attention tends to increase the 

relative sensitivity of neurons representing the attended location or feature 

(e.g. Duncan and Humphreys, 1989; Corbetta et al., 1990; Luck et al., 1997; 

Reynolds et al., 2000; Martínez-Trujillo and Treue, 2002; Serences and 

Boynton, 2007), rendering participants faster and more sensitive when 

detecting changes at attended locations, or in pre-cued features (Corbetta et 

al., 1990; Posner et al., 1980; Posner & Cohen, 1984).  

 

Given many early visual areas have been identified as having intrinsic 

preferences for particular features (for a review, see Kanwisher, 2010), it 

might seem obvious that attention towards those features would modulate 

activity in entire areas. For areas with high specificity for a single feature, this 

does seem to be the case. fMRI BOLD responses in hMT+ increase during 

attention toward a visual motion stimulus (Huk et al., 2001; O’Craven et al., 

1997). Increased hV4 activation has been identified in response to attention 

to chromatic stimuli (Corbetta et al., 1991, Chawla et al., 1999; Liu et al., 

2003; Schoenfeld et al., 2007) and attention to faces and places can drive 

robust responses in the fusiform face area (FFA) and parahippocampal place 

areas (PPA) respectively (O’Craven et al., 1999). 
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However, recent work suggests that attention acts primarily through a gain 

control mechanism, whose primary effect is to alter inter-neuronal noise 

correlation (Cohen & Maunsell, 2009). If this is correct, we might expect to 

see relatively little attentionally-driven change in overall activity in earlier 

visual areas. While individual neuronal sub-populations might become more 

or less correlated in their trial-to-trial responses, normalization would serve to 

reduce any long-term response differences (Verhoef & Maunsell, 2017).  

 

This hypothesis is consistent with two findings from the literature: first that 

early visual areas exhibit relatively little overall change in activity when 

subjects switch low-level visual tasks (Brouwer & Heeger, 2009; Kamitani & 

Tong, 2006; Seymour, Clifford, Logothetis, & Bartels, 2009, 2010; Song, 

Rowland, McPeek, & Wade, 2011). Secondly, that attentional modulation is 

detected readily by EEG, which is sensitive to the level of correlated noise in 

large-scale neuronal populations (Di Russo, Martínez, & Hillyard, 2003; 

Martinez et al., 2001; Verghese et al., 2012; Wang & Wade, 2011). 

 

If attention drives changes in the relative sensitivity and noise correlation of 

neuronal sub-populations, it should alter activity at the level of feature maps 

in each visual area. These changes might be detected using multivariate 

fMRI methods, which in the past, have enabled researchers to decode 

participants’ featural attentional focus from fMRI BOLD activity (Brouwer & 

Heeger, 2009; Freeman et al., 2011; Kamitani & Tong, 2005, 2006; Song et 

al., 2011).  

 



 104 

Finally, attention can change patterns of activity across areas as well as in a 

single region. Such changes could act at the level of input or output layers, 

altering not just the sensitivity of neurons performing within-area 

computations, but also the type of information passed between areas. In 

support of this hypothesis, it is clear that brain-wide changes in functional 

connectivity are associated with different mental states (Fox et al., 2005; 

Greicius, Krasnow, Reiss, & Menon, 2003) and, more specifically, previous 

literature has identified attentionally-driven changes in patterns of 

connectivity amongst regions involved in visuospatial tasks (Fox et al., 2005; 

Gao, Gilmore, Alcauter, & Lin, 2013; Spadone et al., 2015). 

 

Here, we looked for evidence of differential univariate or multivariate 

responses in regions-of-interest (ROIs) in the visual cortex, as well as 

differences in inter-areal connectivity. In the multivariate case, we also asked 

if successful classification was driven by coarse-scale topographical maps or 

fine-scale voxel-level sensitivities.  

 

Surprisingly, we found very few univariate differences in the regions we 

examined. However, voxel-level analyses revealed above-chance decoding 

of attentional focus in all visual ROIs, with successful decoding driven by 

fine-grain participant-specific differences in voxel activity. Connectivity 

analyses revealed greater connectivity between visual regions during 

passive viewing than during feature-specific directed attentional focus, and 

these feature-specific connectivity patterns changed as a function of the ROI 

subset examined.  



 105 

4.3 Methods 
 
4.3.1 Participants 
 
12 participants were recruited (8 female, mean age 25 years). All participants 

had normal or corrected-to-normal vision and provided informed consent. 

Ethical approval for the study was granted by the University of York 

Department of Psychology and York Neuroimaging Centre ethics boards. 

Participants completed two 1.5-hour scanning sessions as part of this 

experiment, during which we collected high resolution anatomical scans, 

population receptive field mapping (pRF) and attentional modulation data.  

 

4.3.2 Experimental Design 
 
4.3.2.1 Behavioural Psychophysics 

 
To control for difficulty and levels of attention, prior to fMRI scanning, each 

participant completed 1 hour of psychophysical testing, to identify their 75% 

correct detection thresholds for each visual feature (orientation, contrast and 

shape). Prior testing revealed no significant differences in difficulty (indexed 

by loglinear d’) or reaction time across the attentional focus conditions 

F(2,22) = 0.61, p = 0.553, F(2,22) = 1.36, p = 0.275 (no significant 

Bonferroni-corrected post-hoc tests) respectively. This ensured task difficulty, 

and associated attentional effort was constant across attention conditions in 

our fMRI experiment. 

 

Stimuli were presented on a ViewPixx monitor (120Hz, 1920x1220 pixels 

resolution) at 57cm viewing distance. Stimulus presentation was performed 
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on a Shuttle XPC SZ87RG high-end graphics system with an Intel Core i7-

4790K processor at 4GHz and a NVIDIA GeForce GTX970 graphics card 

with 4GB DDR5 memory. All stimuli and experimental procedures were 

controlled by Psychtoolbox 3.0.12 routines (Brainard, 1997; Pelli, 1997).  

 
To estimate detection thresholds, we used a Bayesian adaptive staircase 

design (Watson & Pelli, 1983). Feature-specific initial estimates of threshold 

(0.3 radians orientation, 30% contrast, 0.08 radial amplitude 

modulation/shape) were provided with 0.5-unit standard deviation. Our 

stimuli were variants of a radial frequency pattern (RFPs): radially modulated 

circular contours (Ivanov & Mullen, 2012; Wilkinson et al., 1998; Wilson & 

Wilkinson, 1997).  

 

This stimulus allowed for an investigation of shape processing and reflected 

naturalistic stimuli to a greater extent than traditional Gabors (Lawrence et 

al., 2016; Vernon et al., 2016). Reference RF pattern stimuli had a 2.0° 

average radius, 0° orientation and 50% contrast (see Figure 4.1A).  

 

Attended features were cued by a central white fixation letter present across 

trials (‘O - orientation’, ‘C - contrast’ or ‘S - shape’). Trials began with a 

200ms presentation of a grayscale reference stimulus against a mean 

luminance background. The reference RF pattern stimuli had a constant 2.0° 

average radius, 0° orientation and 50% contrast (see Figure 4.1A). For all 

visual features, the testing of participant’s thresholds were modulated above 

and below this reference value, such that participants were responding to 

increments of change within the stimulus feature. For example, within the 
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contrast task, a reference stimulus of 50% contrast was always presented, 

and participants responded to relative increases or decreases in contrast 

from this reference value. This reference stimulus was followed by a 200ms 

inter-stimulus interval with presentation of the letter-fixation cue only. A target 

stimulus was then presented for 200ms, with a change in the attended visual 

feature derived from the initial estimate and individual participant’s previous 

trial performance. For each feature, a stimulus change could be in one of two 

directions (with equal probability) - clockwise versus anticlockwise 

orientation, high contrast versus low contrast, ‘spiky’ versus ‘smooth’ shape. 

This was followed by a central black fixation cross for 800ms, during which 

participants indicated the perceived direction of change between the 

reference and target stimulus (‘A’ or ‘L’ keyboard press). Participants were 

informed via a toned ‘beep’ if their response was correct or incorrect. Each 

participant completed 50 trials (alongside 10 discarded practice trials at the 

start of each run) to provide an estimated 75% correct detection threshold for 

each feature. Each feature-specific staircase was repeated three times with a 

participant’s final detection thresholds reflecting the average of these three 

repetitions. Each run lasted approximately two minutes.  

 

4.3.2.2 fMRI Attentional Modulation 

The same 12 participants who completed the psychophysics testing also 

completed the fMRI experiment. The fMRI experimental design followed a 

similar procedure to the psychophysics paradigm. However, here we wished 

to examine the effects of participants directing attention toward changes in 

individual visual features. To ensure participants maintained a constant 
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attentional load, they constantly monitored the stimulus for the a near-

threshold-level change in an attended feature (ignoring changes in uncued 

features). In this respect, our fMRI experiment differed from the 

psychophysics- each visual feature was not modulated on every trial, and 

changes in multiple visual features could co-occur.  The fMRI experiment 

was also designed such that we presented the same average stimulus (i.e. 

the probability of a change in each feature was constant across blocks), so 

that any effects we identify should be driven by differing attentional focus as 

oppose to stimulus-driven effects. The timing of each trial in our fMRI 

experiment, however, was identical to the psychophysical testing paradigm. 

 

Prior to each attentional focus block a 1.5s visual cue directing participants’ 

attentional focus was presented (white text; ‘ORIENTATION’, ‘CONTRAST’, 

‘SHAPE’ or ‘PASSIVE’) against a mean luminance background. During 

passive blocks, participants were instructed to view the stimulus without 

directed attention and were not required to respond. As before, each trial 

began with a 200ms presentation of the reference RFP with a white central 

fixation letter matching the cued feature of attention (‘O’, ‘C’, ‘S’ or ‘P’), 

followed by a 200ms presentation of the fixation cue. This was followed by a 

200ms presentation of the target RFP stimulus, which could vary in no, 

single or multiple visual features with respect to the reference stimulus.  The 

degree of change between the reference and target RFP was double the 

participant’s previously-recorded feature-specific 75% averaged correct 

detection threshold. Each feature varied in only one direction (anticlockwise 

orientation, high contrast and spikier shape). For each feature, the target 
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stimulus differed from the reference on approximately 20% of trials, hence a 

constant level of visual modulation was present across blocks on average. A 

central fixation letter was then presented for 800ms, during which 

participants made a same/different response. Each trial was 1.5s duration, 

with a block consisting of 10 trials (15s). Each block was followed by a black 

central fixation cross (7.5s) allowing BOLD signal to return to baseline. 

Blocks were presented in a pseudo-randomised order, with the randomised 

four-block cycle presented four times in each run.  

 

4.3.3 Functional Neuroimaging 
 
4.3.3.1 fMRI data acquisition 

Visual stimuli were presented using a PROpixx DLP LED projector (Vpixx 

Technologies Inc., Saint-Bruno-de-Montarvile, QC, Canada) with a long 

throw lens which projected the image through a waveguide behind the 

scanner bore and onto an acrylic screen. Presented images had 1920x1080 

pixels resolution and 120Hz refresh rate. Participants viewed the stimulus at 

57cm viewing distance in the scanner.  

 

A Shuttle XPC SZ87RG high-end graphics system with Intel Core i7-4790K 

processor at 4GHz and a NVIDIA GeForce GTX970 graphics card with 4GB 

DDR5 memory matched to the system used in the Psychophysical testing 

were used to control the fMRI experiment. All stimuli and experimental 

procedures were controlled by MATLAB 8.5.0 (2016a) in conjunction in 

Psychtoolbox 3.0.12 routines (Brainard, 1997; Pelli, 1997). During scanning 
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behavioural responses and scanner trigger pulses were acquired using a 

fibre-optic response pad Forp-932 (Current Designs, Philadelphia, PA).  

 

fMRI data were collected at the York Neuroimaging Centre using a GE 3T 

Excite MRI scanner (GE Healthcare, Milwaukee, WI). Structural scans were 

obtained using an 8-channel head coil (MRI Devices Corporation, 

Waukesha, WI) to minimise magnetic field inhomogeneity. Population 

receptive field and attentional modulation data were obtained with a 16-

channel posterior head coil (Nova Medical, Wilmington, WI) to improve 

signal-to-noise in the occipital lobe. Two high-resolution, T1-weighed full-

brain anatomical structural scans were acquired for each participant (TR 

7.8ms, TE 3.0ms, T1 450ms, voxel size 1 x 1 x 1.3mm3). 

 

pRF scan sessions consisted of 6.5-minute stimulus presentation runs 

collected using a standard EPI sequence (TR 3000ms, TE 30ms, voxel size 

2.0 x 2.0 x 2.5mm3, flip angle 20°, matrix size 96 x 96 x 39). pRF parameters 

were obtained using procedures very similar to those described by Dumoulin 

& Wandell (2008) (see Figure 4.1B).  

 

Attentional modulation scan sessions consisted of an average of 6, 6:42-

minute runs, containing 134 volumes of data, including 3 dummy TRs later 

removed to allow for the scanner magnetisation to reach a steady-state. 39 

slices were acquired in a bottom-up interleaved acquisition order (TR 

3000ms, TE 30ms, field-of-view 19.2cm3, matrix size = 96 x 96, voxel size 

2.0 x 2.0 x 2.5mm3, flip angle 90°).  
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During the pRF and attentional modulation scanning sessions, one 16 

channel coil T1-weighted structural scan with the same spatial prescriptions 

as the functional scans was acquired to aid in the alignment of the functional 

data to the T1-weighted anatomical structural scan (TR 2100ms, TE 8.6ms, 

field-of-view 19.2cm3, matrix size 512 x 512, voxel size 0.38 x 0.38 x 

2.5mm3, flip angle 90°, 39 slices).  

 

4.3.3.2 fMRI Pre-processing 

To improve grey-white matter contrast, the two T1 high-resolution anatomical 

scans were aligned and averaged together using the FLIRT FSL tool 

(Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012). This averaged 

T1 was automatically segmented using a combination of FreeSurfer (Fischl, 

2012) and FSL, and manual corrections were made to the segmentation 

using ITK-SNAP (Teo, Sapiro, & Wandell, 1997).  

 

Functional data were analysed using MATLAB 2016a (Mathworks, MA) and 

VISTA software (Vista Lab, Stanford University). Between- and within-scan 

motion correction was performed to compensate for motion artefacts 

occurring during the scan session. Any scans with > 3mm movement were 

removed from further analysis (no attentional modulation runs were removed 

on the basis of excessive movement). The Vista rxAlign tool was then used 

to co-register the 16-channel coil T1-weighted structural scan to the 8-

channel coil T1-weighted full-brain anatomical scan. We applied a manual 

alignment by using landmark points to bring the two volumes into 

approximate register, followed by a robust EM-based registration algorithm to 
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fine-tune the alignment (Nestares & Heeger, 2000). The final alignment was 

visually inspected to ensure the automatic registration procedure optimised 

the fit. This alignment was then used as a reference to align the functional 

data to the full-brain anatomical scan. These functional data were then 

interpolated to the anatomical segmentation.  

 

4.3.3.3 Population receptive field mapping  

To probe attentional modulation across the visual system, we focused our 

analysis on early visual regions with clear feature-specific preferences or 

organisation related to our stimulus modulations. The discrete 

cytoarchitecture of V1, consisting of regular blobs and interblobs with 

differential spatial and contrast tuning might result distinct activation patterns 

associated with orientation and contrast. (Horton & Hubel, 1981; Livingstone 

& Hubel, 1988; Song et al., 2011). Regions LO-1 and LO-2 are clearly-

defined, retinotopic areas on the lateral surface of visual cortex (Larsson & 

Heeger, 2006) that have been identified as having a particular significance in 

both shape and orientation processing (Larsson & Heeger, 2006; Silson et 

al., 2013). We also selected two additional visual ROIs, a ‘ventral’ area, hV4 

and a ‘dorsal’ area V3A/B; regions with no clear expected patterns of 

attentional modulation to summarise patterns of attentional modulation 

across the visual cortex. For example, hV4 has been implicated in contrast, 

orientation and shape processing (Dumoulin & Hess, 2007; Ghose & Ts’ O, 

1997; Sani, Santandrea, Golzar, Morrone, & Chelazzi, 2013).  
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We additionally noted attentional modulation driven by changes in cued task 

demands must involve feedback signals from higher cortical areas such as 

the IPS to lower-level visual regions (e.g. Di Russo et al., 2003; Bressler et 

al., 2008; Lauritzen et al., 2009). We therefore included the IPS as a 

separate ROI of particular interest in our analysis of connectivity. 

 

pRF parameters (eccentricity, polar angle and size) were estimated for each 

voxel using the standard pRF model in mrVista (Dumoulin & Wandell, 2008). 

Following Wandell et al., (2007) we manually delineated 9 bilateral ROIs: V1, 

V2, V3, V3A/B, hV4, LO-1, LO-2, MT+ and IPS0 on cortical flat maps on the 

basis of polar angle reversals and eccentricity for each participant (see 

Figure 4.1D and Figure 4.1E).  
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Seven participants possessed previously-collected MT+ localiser data (the 

design adapted from (Fischer et al., 2011; Huk et al., 2002; Maloney et al., 

2013), defining MT+ on the basis of responses to motion versus static stimuli 

(see Figure 4.1C). For these participants, we used these motion-defined 

MT+ ROIs. To ensure consistency and examine reliability across these 

different MT+ identification techniques, each participants’ structural space 

was transformed to Talairach coordinates using the seven landmarks 

outlined in (Ryu et al., 2010). A reference spherical 8mm MT+ ROI was 

created from standardised Talairach coordinates centred on [LH: -47 -76 2, 

RH: 44 -67 0] (Dumoulin et al., 2000). All defined-MT+ ROIs overlapped with 

the standardised control MT+ spherical ROIs. Using the same process, a 

5mm spherical control ROI of the primary auditory cortex (A1) was created 

for each participant with standardised coordinates centred on [LH: -49 -20 9, 

RH: 48 -21 10] (Lacadie, Fulbright, Arora, Constable, & Papademetris, 

2008).  

 

4.3.3.4 Attentional Modulation 

General linear models (GLM) were implemented to test the contribution of 

stimulus condition to the BOLD time course (Friston et al., 1998). The default 

double-gamma haemodynamic response function (HRF) from the SPM8 

toolbox was used (Penny, Friston, Ashburner, Kiebel, & Nichols, 2006) and 

we fit the model to an averaged time course of BOLD signal changed for 

each stimulus condition by minimising the sum of squared errors between 

the predicted timeseries and the measured BOLD response.  
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The first GLM analysed bottom-up stimulus feature change events during 

which beta weights were obtained by multiple linear regression. Events were 

classified according to the nature of the stimulus change occurring in a 1 TR 

(3s) period, regardless of attentional focus (orientation, contrast, shape, no 

change and multiple change events). Multiple change events reflected two 

different feature stimulus changes occurring in a single TR. Feature change 

events (orientation, contrast and shape) reflected when both trials in a TR 

contained a change in the same feature (e.g. orientation change, orientation 

change), or a feature change and no feature change (e.g. orientation 

change, no change). This resulted in 52 to 141 events per stimulus change 

condition. The second GLM analysed the contribution of attentional focus 

(15s blocks of directed attention to orientation, contrast, shape or passive 

viewing). This resulted in a vector of 24 average beta weight estimates for 

each voxel at the multivariate level. 

 

Participants with >5% average variance explained across the visual ROIs 

were retained for further analysis (no participants were discarded on the 

basis of percentage variance explained). 

 

4.3.4 Statistical analysis 
 
4.3.4.1 Univariate Analyses 

Feature-specific attentional modulation univariate beta weights (orientation, 

contrast and shape) were averaged (per participant) and compared with the 

passive beta-weight through Wilcoxon signed-rank tests for each ROI. 

Independently for event and attentional modulation analyses, feature-specific 
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univariate betas were also analysed through one-way repeated measures 

ANOVAs to assess stimulus-driven and attentional modulation differences in 

BOLD signal modulation across orientation, contrast and shape conditions.  

 

4.3.4.2 Multivariate Analyses 

In each ROI we selected the 100 voxels that explained the largest amount of 

variance across conditions. These multivariate beta weights were z-scored 

across voxels and used as input to a support vector machine (SVM) 

(‘LIBSVM’ toolbox optimised for Matlab with a radial basis function) (Chang & 

Lin, 2011) to decode either bottom-up stimulus change or featural attentional 

focus in two separate analyses using leave-one-out cross validation for each 

participant. We first assessed multi-class decoding accuracy, supplying 

orientation, contrast and shape data simultaneously using the ‘one-against-

one’ approach to produce a single classification accuracy score for each 

participant (Knerr, Personnaz, & Dreyfus, 1990). For the attentional 

modulation data, pairwise classification was also performed assessing 

classification accuracy for each combination of attentional conditions 

(orientation versus contrast, orientation versus shape, contrast versus 

shape) to identify the driving forces behind successful multi-class decoding. 

Classification accuracies were then assessed against chance performance 

through one-sample Wilcoxon signed-rank tests for each ROI.  

 

To investigate the spatial localisation of feature-specific attentional 

modulation across voxels, additional pairwise SVM classification was 

performed between each attentional focus condition and the passive viewing 
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data. The weighted mean of support vectors from these classifications was 

calculated to provide a feature-specific attention ‘preference’ for each voxel 

in an ROI. These voxel ‘preference’ weights were back-projected onto an 

interpolated polar grid (6° eccentricity, 360° polar angle, across 500 

samples) to reflect voxel activation as a function of each voxels preferred 

visual angle and eccentricity, extracted from pRF analysis. This voxel-data 

was then presented visually in polar co-ordinates to reflect this 

representative visual space. Voxel preference for each visual feature was 

thresholded at +/-1.7 z-score (p <.05) and displayed to indicate the spatial 

distribution of attentional modulation. We averaged data over eccentricities 

between 1.5° and 3.5° of visual angle and plot the resulting average 

activation as a function of polar angle to provide an intuitive summary of 

spatial attentional focus. For reference, a standard RF pattern (0° orientation, 

0.2 radial amplitude modulation) was overlaid. This back-projection analysis 

was performed for V1, V2, V3 and hV4 ROIs, as other ROIs lack a high-

resolution representation of the full visual field.  

 

4.3.4.3 Timeseries analyses 

To quantify functional connectivity between ROIs, participant-specific 

multivariate timeseries data were extracted (grouping TRs by attentional 

focus condition) and underwent noise removal (fit and removal of a grand 

mean) to eliminate scan-to-scan differences in raw amplitude intensity. 

These multivariate data were then averaged across all voxels in an ROI to 

provide a single univariate timeseries for each attention condition. Non-

parametric Kendall’s tau correlations were performed for all pairwise 
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combinations of ROI (V1, V3A/B, hV4, LO-1, LO-2 and IPS0) – generating a 

correlation matrix for each condition. To assess the overall similarity of 

connectivity patterns, the correlation matrix for each attentional focus 

condition was itself converted to a vector (removing self-to-self correlations) 

and normalised via participant-specific global mean extraction and Fisher-z 

transformation. The average (Fisher-z transformed) correlation coefficient 

was then computed to provide a single number summarising group 

connectivity in each attentional task. The difference in correlations between 

conditions was analysed via a one-way repeated measures ANOVA with 

Bonferroni-corrected post-hoc tests.  

 

Additionally, we investigated ROI-specific connectivity patterns as a function 

of attentional condition. For each of the ROIs; V1, V3A/B, hV4, LO-1, LO-2 

and IPS0, we extracted the data reflecting the correlation of this ROI with all 

others (e.g. V1-V3A/B, V1-hV4, V1-LO-1, V1-LO-2, V1-IPS0) for every 

participant. We then sampled data from all participants (12 samples with 

replacement) with a sample reflecting a full complement of ROI-specific 

correlation data for each attentional focus condition and calculated the mean 

across these samples. To simulate noise/chance data in this analysis, we 

took the same 12 samples selected with replacement for each condition, and 

for each pairwise comparison of conditions, we switched the condition labels 

approximately 50% of the time, keeping ROI-ROI relationships constant and 

calculated the average across these scrambled condition-specific datasets. 

For both the observed and noise data, we calculated the root mean squared 

error (RMSE) distance between each pairwise combination of condition 
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vectors as a measure of difference in patterns of connectivity across the ROI 

profile of interest between different attentional modulation conditions. This 

process was repeated across 10,000 iterations for each ROI comparison (5 

comparisons). Across all iterations, we then calculated the percentage of 

observed RMSEs for a pairwise comparison falling below the RMSE of the 

comparable simulated noise distribution. Any percentile below 5% indicates a 

difference in ROI-specific patterns of connectivity between two attentional 

modulation conditions significantly larger than predicted by chance (p <0.05).  

 

4.4 Results 
 
4.4.1 Univariate analysis: stimulus-driven events 
 
We first asked whether our near-threshold stimulus modulations altered the 

BOLD signal at a univariate level. The one-sample Wilcoxon-signed rank test 

of average BOLD signal across orientation, contrast and shape conditions 

was significantly different from zero in almost all ROIs examined (Benjamini-

Hochberg adjusted p-values reported) (V1: Z(11) = 2.27, p = 0.034, V3A/B: 

Z(11) = 2.35, p  = 0.034, LO-1: Z(11) = 3.06, p = 0.009, LO-2: Z(11) = 2.98, p 

= 0.009, A1: Z(11) = -2.12, p = 0.041). The only exception was hV4 where 

averaged bottom-up stimulus-driven activity was not significantly different 

from zero (Z(11) = 1.88, p = 0.060). Overall, we find that our subtle stimulus 

modulations do generate a small but significant change in BOLD contrast in 

most visual areas while auditory cortex ROI (A1) demonstrated small but 

significant negative BOLD responses on average. 
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We then asked whether this BOLD modulation changed depending on the 

type of stimulus change. For example, BOLD signal changes in LO-1 and 

LO-2 have been associated with bottom-up changes in orientation and shape 

respectively (Larsson & Heeger, 2006; Silson et al., 2013) although the 

stimulus manipulations in these reports were far larger than those used in 

this study.  

 

One-way repeated measures ANOVAs Benjamini-Hochberg corrected for the 

number of ROIs revealed no significant differences in univariate BOLD 

modulation between stimulus-driven changes in orientation, contrast and 

shape in any visual ROI (p > 0.05) (see Figure 4.2B). Negative BOLD 

responses were found across all three stimulus-driven change conditions in 

A1, again with no significant differences related to particular stimulus 

manipulations.  

 

4.4.2 Univariate analysis: attentional modulation 
 
In the absence of differential BOLD responses relating to stimulus change, 

we looked for evidence of BOLD modulation as a function of attentional task. 

Although the majority of visual ROIs examined (excluding V3A/B and hV4) 

exhibited, on average, greater positive BOLD modulation during directed 

attention versus passive viewing, Wilcoxon-signed rank tests revealed these 

trends were not significant (adjusted p > 0.05) (see Figure 4.2A). A1 

demonstrated a trend towards greater positive modulation during passive 

viewing versus averaged directed attention, but again this was not significant 

(adjusted p > 0.05).  
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Although on average we found no evidence of attentionally-driven BOLD 

modulation, it is possible that such changes were present for individual 

attentional condition types. We therefore conducted one-way repeated 

measures ANOVAs, Benjamini-Hochberg corrected for the number of ROIs, 

which revealed no significant differences in attentional modulation across the 

three featural attentional focus conditions (orientation, contrast and shape) in 

across almost all visual ROIs examined (p > 0.05) (see Figure 4.2C). There 

was a single exception to this null finding: In LO-2, Bonferroni-corrected post-

hoc tests revealed significantly greater attentional modulation  for attention to 

orientation compared to either shape (F(2,22) = 6.61, p = 0.034, post-hoc p = 

0.011) or contrast  (p = 0.026). Again, no significant differences in attentional 

modulation were evident in A1 (F(2,22) = 3.29, p = 0.112).  

 

Broadly, our univariate analysis showed that neither the bottom-up stimulus 

manipulations nor the top-down attentional demands had strong differential 

effects on the BOLD signal in early visual cortex. Area LO-2 was an 

exception, demonstrating a weak but significant differential response for 

attention to orientation compared to the other task conditions.   

 
 
 
 
 
 
 
 
 
 
 
 



 123 

  

Fi
gu

re
 4

.2
 U

ni
va

ria
te

 re
sp

on
se

s 
to

 b
ot

h 
at

te
nt

io
n 

an
d 

st
im

ul
us

 m
od

ul
at

io
n 

ar
e 

w
ea

k.
 A

) M
ea

n 
BO

LD
 m

od
ul

at
io

n 
du

e 
to

 a
tte

nt
io

n:
 

po
si

tiv
e 

va
lu

es
 re

fle
ct

 g
re

at
er

 B
O

LD
 a

m
pl

itu
de

 d
ur

in
g 

di
re

ct
ed

 a
tte

nt
io

n 
(a

ve
ra

ge
d 

ac
ro

ss
 a

tte
nt

io
na

l c
on

di
tio

ns
). 

D
at

a 
ar

e 
sh

ow
n 

fo
r 5

 v
is

ua
l R

O
Is

: V
1,

 V
3A

/B
, h

V4
, L

O
-1

 a
nd

 L
O

-2
 a

s 
w

el
l a

s 
a 

co
nt

ro
l a

re
a 

(a
ud

ito
ry

 c
or

te
x-

 A
1)

. N
o 

ar
ea

s 
ex

hi
bi

t s
ig

ni
fic

an
tly

 la
rg

er
 

BO
LD

 m
od

ul
at

io
n 

th
e 

at
te

nd
 v

s 
pa

ss
iv

e 
co

m
pa

ris
on

. 
B)

 M
ea

n 
bo

tto
m

-u
p 

st
im

ul
us

 r
es

po
ns

es
 t

o 
in

di
vi

du
al

 m
od

ul
at

io
n 

ev
en

ts
 

av
er

ag
ed

 o
ve

r 
al

l a
tte

nt
io

na
l c

on
di

tio
ns

. N
o 

ar
ea

s 
ex

hi
bi

t d
iff

er
en

tia
l r

es
po

ns
es

 to
 b

ot
to

m
-u

p 
st

im
ul

us
 m

od
ul

at
io

ns
. C

) 
Fe

at
ur

e-

sp
ec

ifi
c 

at
te

nt
io

na
l m

od
ul

at
io

ns
 a

ve
ra

ge
d 

ov
er

 a
ll 

m
od

ul
at

io
n 

ty
pe

s.
 A

re
a 

LO
-2

 s
ho

w
s 

a 
sl

ig
ht

 in
cr

ea
se

 in
 B

O
LD

 a
m

pl
itu

de
 w

he
n 

su
bj

ec
ts

 a
tte

nd
 to

 s
ha

pe
. A

ll 
er

ro
r b

ar
s 

ar
e 

+/
- 1

 S
EM

 a
nd

 s
ig

ni
fic

an
ce

 a
st

er
is

ks
 in

di
ca

te
 B

en
ja

m
in

i-H
oc

hb
er

g 
co

rre
ct

ed
 v

al
ue

s.
 

 



 124 

4.4.3 Multivariate Analysis: pattern classification 
 
The stimulus modulations that subjects detected were extremely subtle. 

Nevertheless, as shown in Figure 4.2B, we detected BOLD activity with an 

amplitude significantly greater than zero time-locked to these modulations. 

We therefore asked if we could decode the identity of these bottom-up 

responses based on the pattern of responses they elicited in each ROI. To 

do this, we performed a three-way multivariate pattern classification analysis 

on the event-related responses, simultaneously classifying orientation, 

contrast and shape modulations. One-sample Wilcoxon signed-rank tests 

versus chance (33.33%) Benjamini-Hochberg corrected for the number of 

ROIs (6), revealed that the type of bottom-up stimulus driven modulations 

could not be decoded at rates significantly above chance in any ROI 

examined (p >0.05). Mean decoding accuracy ranged from 31.81 to 34.18% 

(see Figure 4.3A).  

 

The overall BOLD activity linked to attentional modulation was also 

significantly greater than zero (Figure 4.2C). However, in comparison to the 

bottom-up results, multivariate pattern classification of attentional state 

achieved accuracies significantly greater than chance in all visual ROIs 

examined (V1: Z(11) = 2.90, p = 0.014, V3A/B: Z(11) = 3.06, p = 0.014, hV4: 

Z(11) = 2.75, p = 0.018, LO-1: Z(11) = 3.06, p = 0.014, LO-2: Z(11) = 2.94, p 

= 0.014) (see Figure 4.3B). Mean classification accuracy ranged from 35.49 

to 54.96% across ROIs. As expected, classification was not significantly 

different from chance in the auditory control ROI A1 (Z(11)= 1.42, p = 0.382).  
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To further analyse these significant, attentionally-driven classification 

patterns, we performed pair-wise pattern classification to determine which 

attentional states generated different voxel-level responses. Significance was 

assessed using one-sample Wilcoxon signed-rank tests versus chance 

(50%), Benjamini-Hochberg corrected for the number of comparisons across 

ROIs.  

 

 

Figure 4.3 Multivariate Support Vector Machine Decoding. Voxel-level 

responses with individual ROIs are modulated by attentional state, but not by 

bottom-up changes in stimulus features. A) Overall three-way decoding 

accuracies. Stimulus change cannot be accurately decoded in an ROI 

examined. B) Attentional state can be decoded above chance in all ROIs 

except A1. Error bars reflect +/- 1 SEM. C) Two-way classification accuracies 

across pairwise combinations of attentional focus (orientation versus shape, 

orientation versus contrast and contrast versus shape). Voxel patterns in all 

areas differ significantly between attention to orientation and shape. 

Significance asterisks indicate Benjamini-Hochberg corrected values. 
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In V1, we found above-chance classification of attention to orientation versus 

shape and contrast versus shape. In both V3A/B and LO-1, classification 

accuracies were significantly above chance for orientation versus contrast 

and orientation versus shape conditions. In LO-1, the classification of 

contrast versus shape data was also significantly above chance. In hV4, 

successful classification of orientation versus shape and contrast versus 

shape above change level was identified. In LO-2, classification of both 

orientation versus contrast and orientation versus shape above chance level 

was identified (see Figure 4.3C and Table 4.1).  

4.4.4 Multivariate Analysis: spatial pattern analysis 
 
Previous reports have shown that some types of bottom-up stimuli generate 

patterns of retinotopically-biased responses in individual areas at relatively 

large spatial scales. For example, vertical and horizontal gratings drive 

voxels near the vertical and horizontal midline respectively (Freeman et al., 

2011; Tootell et al., 1998). Other researchers however, suggest many early-

visual voxels contain more complex tuning properties than predicted by 

coarse-scale biases such as radial bias or cardinal orientation selectivity, and 

these voxels with varying preferences are intermingled in V1 (e.g. Alink, 

Table 4.1 Attention directed toward orientation, contrast and shape can be 
decoded through two-way classification in visual ROIs.   

 Orientation vs. Contrast Orientation vs. Shape Contrast vs. Shape 
ROI Z p Z p Z p 
V1 2.45 .051 3.06 .028* 2.94 .028* 

V3A/B 2.63 .042* 2.94 .028* 2.51 .050 
hV4 2.39 .055 2.75 .037* 2.99 .028* 
LO-1 2.98 .028* 2.83 .034* 2.67 .042* 
LO-2 2.59 .043* 2.93 .028* 2.48 .051 

* p <.05, ** p<.01, *** p<.001 
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Walther, Krugliak, & Kriegeskorte, 2017; Kamitani & Sawahata, 2010; Kay et 

al., 2008; Mannion et al., 2009; Pratte, Sy, Swisher, & Tong, 2016). We 

asked whether coarse-scale biases, or fine-grain patterns of voxel selectivity 

might be responsible for the top-down, attentionally-driven multivariate 

classification results that we found here. Subjects, might, for example, 

always attend preferentially to a particular part of visual space in order to 

solve different types of shape or orientation discrimination tasks.  

 

To answer this question, we identified the voxels that were most informative 

for each type of classification decision and back-projected these into visual 

space. This allowed us to average spatial patterns of voxel preferences 

across observers. If all subjects used a common strategy (for example, 

attending to the vertical meridian) for a particular task, these averages would 

reveal a consistent non-zero response in this location. If, on the other hand, 

no changes in the large-scale pattern of responses was generated by 

attention, these maps would average to zero. Figure 4.4 shows mean values 

were computed across participants and thresholded (+/- 1.7 z-score, p < 

0.05) to produce feature-specific attentional modulation maps. No significant 

patterns of attentional modulation are evident for any featural attentional 

focus across ROIs, and the 2° annulus of averaged attentional modulation 

revealed no clear peak of spatial attentional focus as a function of polar 

angle (see Figure 4.4). 

 

We conclude that while the stimulus modulations that we use to drive 

attentional tasks may be too subtle to drive different voxel-level BOLD 
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responses, the different attentional states that subjects employ to detect 

these changes do select different neuronal populations in early visual areas. 

Our back-projection analysis indicates that these different populations are 

not consistent at a large-spatial scale across subjects. Our results are 

consistent with the hypothesis that subjects are selecting neurons from 

interdigitated populations that are optimal for particular tasks. 

 

 
Figure 4.4 Group-averaged voxel feature-specific weights as a function of 

eccentricity (6°) and polar angle (360°) reveal no large-scale biases in voxel 

weights across location. The gray annulus reflects averaged voxel modulation 

at 1° intervals across 1.5-2.5° visual space. Deviations from circularity indicate 

positive (feature-specific) or negative (passive viewing) preferring clusters of 

voxels. A radial frequency pattern stimulus overlay is provided for reference. 

Activation is thresholded at +/- 1.7 z-score (p <0.05). 
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4.4.5 Timeseries Connectivity Analysis 
 
Attention had relatively little effect on time-averaged univariate BOLD 

responses in individual visual areas. In our final analysis, we asked whether 

attention altered the way that individual ROIs communicate with each other. 

Specifically, asked whether functional connectivity (as measured by the 

similarity of time courses in different ROIs) might be altered when subjects 

change their attentional state. 

 

We first performed non-parametric Kendall’s Tau correlations between 

univariate (ROI-averaged) timecourses from each pairwise combination of 

visual ROIs (V1, V3A/B, hV4, LO-1, LO-2 and IPS0) for each featural 

attention condition. These inter-ROI correlation patterns represent a 

‘fingerprint’ for each task (see Figure 4.5A). We asked if this overall 

fingerprint was altered by attentional task and then examined more detailed, 

pairwise combinations of attentional condition through a one-way repeated 

measure ANOVA with Bonferroni-corrected post-hoc tests, conducted on 

normalised and Fisher-z transformed coefficients.  

 

Most strikingly, our analysis revealed significantly greater positive correlation 

between ROIs during passive viewing than any attentional task condition 

(F(3,42) = 11.03, p <0.001, Bonferroni-corrected post-hoc tests, orientation 

versus passive; p = .003, contrast versus passive; p = 0.006, shape versus 

passive; p = 0.002). On average, there were no differences in the total level 

of connectivity between attentional conditions although, as shown below, 
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individual pairs of areas do show significantly different levels of functional 

correlation in different attentional tasks.  

 

To identify the specific ROI-ROI connectivity patterns driving these 

differences in correlation ‘fingerprint’ across attentional tasks, we calculated 

the Euclidian distance (RMSE) between pairwise comparisons of attentional 

task condition (averaged across a subsample of participants for each 

condition), for both observed and noise (scrambled attention-condition label) 

datasets, bootstrapped across 10,000 iterations. 

 

Comparing patterns of connectivity associated with IPS0 (IPS0-V1, IPS0-

V3A/B, IPS0-hV4, IPS0-LO-1, IPS0-LO-2) revealed a difference between 

orientation and shape attentional focus conditions significantly larger than 

expected by chance (p <.001). We also discovered significant differences in 

IPS0 connectivity between shape versus passive attentional focus conditions 

(p <0.001). hV4 connectivity across conditions revealed a similar pattern of 

results, with significant differences in connectivity between orientation and 

shape attention conditions (p = 0.004) and shape versus passive conditions 

(p = 0.004). There was an additional significant difference between activation 

patterns across hV4 connectivity between the contrast and passive 

conditions (p = 0.015). Analysis across LO-1-correlated ROIs revealed a 

significant difference in patterns of connectivity between orientation and 

passive conditions (p = 0.006) and we identified a significant difference 

between contrast and shape attentional focus conditions across LO-2-

correlated ROIs (p = 0.025). However, connectivity to and from V1 (V1-
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V3A/B, V1-hV4, V1-LO-1, V1-LO-2, V1-IPS0), and V3A/B (V3A/B-V1, V3A/B 

-hV4, V3A/B -LO-1, V3A/B -LO-2, V3A/B -IPS0), did not appear to change as 

a function of task (p > 0.05) (see Figure 4.5B). 
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Figure 4.5 Greater overall connectivity during passive viewing compared to 

directed attention. A) Group feature-specific averaged attentional modulation 

connectivity values, indicating significantly greater mean connectivity during 

passive viewing than in the attentional tasks. B) Bootstrapped measures of 

distance between pairwise combinations of attentional focus conditions, for V1, 

V3A/B, hV4, LO-1, LO-2 and IPS0 ROIs. The matrices demonstrates the 

percentage overlap between the distribution of RMSE scores across 10,000 

iterations of randomly-selected samples of the observed data and scrambled 

correlation ‘noise’ data, for each ROI across multiple pairwise comparisons. 

Significant overlap (less than 5%) between pairwise combinations of condition 

are indicated with asterisks. 
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4.5 Discussion 
 
Here, we show that both within-area neuronal activity and between-area 

connectivity change as subjects switch between visual tasks. Perhaps 

surprisingly, at the univariate level we identify no differences in bottom-up 

BOLD signal modulation in response to differences in the visual features 

themselves: brief changes in orientation, contrast and shape all elicited 

essentially the same pattern of activation at the level of individual areas. 

Additionally, we identify very few areas that exhibit attentionally-driven 

changes in averaged BOLD signal, supporting the findings of previous 

attentional modulation literature (Brouwer & Heeger, 2009; Kamitani & Tong, 

2006; Seymour et al., 2009, 2010; Song et al., 2011; Xing et al., 2013). This 

null finding is not due to neuronal response saturation: We see both robust 

bottom-up and top-down modulations in all visual regions in our data: areas 

are modulated by both subtle stimulus changes and differing attentional 

focus. However, these modulations are not dependent on the nature of the 

change. Reassuringly, we also identify no significant differences in univariate 

modulation between attention to orientation, contrast and shape in our 

control auditory cortex ROI (A1), suggesting any univariate differences we do 

identify are restricted to visually-responsive regions of cortex. Univariate 

changes in individual visual areas are therefore relatively uninformative 

about either bottom-up stimulus parameters or attentional state.  

 
As an example, area LO-1 responds robustly to changes in all three stimulus 

parameters. This result is intriguing because visual areas are often 

characterised by their response to bottom-up changes in specific stimulus 

features and this area has been identified previously as having a causal role 
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in orientation processing (Larsson & Heeger, 2006; Silson et al., 2013). Our 

data suggest that measuring univariate BOLD activity in visual cortex as a 

function of either stimulus type or task may not provide a complete picture of 

the computations that are being performed in each area. This finding is 

consistent with a model of visual cortex where areas typically contain 

multiple, overlapping feature maps in which activity depends both on the 

stimulus and, to an equal degree, on the attentional state. However, from 

univariate analysis alone, it is unclear whether there are simply no feature-

specific attentional modulation effects, or whether by reducing ROI activity to 

a single number, potential fine-grain differences in feature-specific patterns 

of attentional modulation are lost.  

 

To answer this question, we then analysed pattern changes at the voxel 

level. We showed that response patterns in individual visual areas are highly 

selective for the visual task and can, therefore, be used to decode attentional 

state. This supports the findings of previous decoding analyses (Brouwer & 

Heeger, 2009; Freeman et al., 2011; Kamitani & Tong, 2005, 2006; Song et 

al., 2011).  

 

Classification performance depends both on area and conditions: For 

example, in V1 successful classification was evident for all pairwise 

combinations of attentional modulation, supporting literature demonstrating 

the influence of attention at the earliest stage of the cortical hierarchy 

(Lauritzen et al., 2010; Serences & Boynton, 2007; Seymour et al., 2009, 

2010; Tootell et al., 1998; Verghese et al., 2012). We believe these 
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successful classifications reflect allocation of top-down attentional focus as 

oppose to bottom-up stimulus driven effects of selection history as suggested 

by Awh et al., (2012) and Theeuwes, (2013). In our experiment, each 

attentional block was repeated the same amount of times, with the 

presentation order randomised across runs and participants. Additionally, 

changes in stimulus feature were randomised (in their 20% probability of 

change occurrence) hence stimulus information and task difficulty remained 

constant across blocks. Therefore, we believe our findings reflect voluntary 

allocation of top-down attentional focus, rather than any by-product of 

differential priming, arousal or selection history across conditions. 

 

The more selective patterns of decoding performance in V3A/B and hV4 

suggest that attentional exerts feature-specific effects along both the dorsal 

and ventral pathways of visual cortex. It clearly demonstrates that both 

streams possess neuronal populations with feature-specific preferences and 

that these neuronal populations are responsive to attentional demands (or 

else inherit attentionally-driven modulations from earlier in the visual 

pathway). In LO-1, successful classification was evident across all pairwise 

combinations of visual task, but LO-2 exhibited successful decoding of 

orientation versus contrast and orientation versus shape only, partial support 

for the original conclusions of previous literature, with differing patterns of 

activation across orientation and shape attention (Larsson & Heeger, 2006; 

Silson et al., 2013). In A1, we demonstrate no classification accuracies 

significantly greater than would be expected by chance, adding strength to 

our findings and demonstrating the specificity of our results in the visual 
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cortex. Overall, these findings extend those from more traditional univariate 

analyses, and indicates the brain is able to up- and down- weight activity of 

specific neurons in particular visual regions in a task-dependent manner, in 

agreement with many previous reports (Treue and Martínez Trujillo, 1999; 

Martinez-Trujillo and Treue, 2004; Serences and Boynton, 2007; Serences et 

al., 2009; Verghese et al., 2012).  

 

There is some debate in the literature about the origin of the information that 

drives fMRI multivariate analyses. Although the ability to decode at above 

chance rates from a visual area demonstrates that voxel activation patterns 

in that area depend on the experimental condition, the spatial scale of this 

change is important for interpreting the results. It has been shown that 

certain types of information are decoded from changes in voxel activity at a 

far coarser scale: In particular, researchers have demonstrated that grating 

orientation is encoded largely by retinotopically-driven, low spatial frequency 

patterns of response that switch from the vertical to the horizontal midline for 

vertical and horizontal gratings respectively (Freeman et al., 2011). Yet, if 

changes occur at the level of individual voxels, they may be driven by 

neuronal modulations at the level of columnar-scale tuning maps: for 

example, it has been hypothesised that the ability to decode local radial 

biases from primary visual cortex is driven by selective activation of 

orientation-selective neurons in the orientation pinwheels (Mannion et al., 

2009). Additionally, recent work has provided evidence for the complexity of 

voxel tuning profiles in the early visual cortex and demonstrated that 

experimental task design can influence the conclusion that radial bias is the 
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only source of orientation information in fMRI signals, for example (Pratte et 

al., 2016). Hence, global areal maps are unlikely to fully account for the 

ability to decode orientation signals in early visual cortex (e.g. Alink et al., 

2017).  

 

Although the stimuli used here varied only slightly in their physical 

characteristics, it is possible that MVPA performance was still driven by 

gross changes in attentional focus. Subjects might have adopted a spatially-

driven strategy to solve different featural tasks – focusing on the very top of 

the radial frequency pattern, for example, to detect orientation changes. In 

Figure.4 we demonstrate that decoding does not depend solely on large-

scale biases in sensitivity in visual areas. We find no evidence of a 

consistent spatial bias in the voxels used for different types of decoding. 

Although in principle, it is possible that such biases exist on a subject-by-

subject (or even trial to trial) basis, our data are consistent with the 

hypothesis that attention selects sub-populations of relatively fine-scaled 

maps in individual visual areas. We suggest multivariate pattern classification 

shown here is derived from changes in activation at a relatively fine scale 

although we do not rule out coarser-scale topographically-determined 

responses that may vary across subjects (Kamitani and Sawahata, 2010; Op 

de Beeck, 2010; Freeman et al., 2011). 

 

Our connectivity results show that visual processing is a dynamic, interactive 

process that is dependent on the task. While attentional effects have been 

noted in fMRI research since the late 1990s (Kastner, De Weerd, Desimone, 
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& Ungerleider, 1998; Tootell et al., 1998), investigating connectivity between 

regions of visual cortex as a function of task is a relatively novel approach.   

 

Connectivity changes dramatically as a function of attentional state: Overall, 

we identify significantly greater average connectivity between ROIs during 

passive viewing than directed attentional focus. This enhanced overall 

connectivity during passive viewing is similar to the pattern of connectivity 

observed in the ‘default mode’ network (DMN) (e.g. Gusnard and Raichle, 

2001; Raichle et al., 2001; Christoff et al., 2009), which is abolished by 

attentional task – and indeed the DMN includes parts of visual cortex. Once 

a visual task is provided, the brain switches to a more specific connectivity 

pattern and this pattern is task dependent. We identify different patterns of 

connectivity when subjects change attentional state for orientation, contrast 

and shape.  

 

A previous fMRI experiment demonstrated that attention to a particular object 

category (faces or scenes) lead to strengthened coupling between category-

selective visual areas (FFA and PPA respectively) and early visual cortex 

(e.g. Al-Aidroos, Said, & Turk-Browne, 2012). For example, they 

demonstrated attention to faces increased the proportion of intrinsic variance 

shared between regions of the occipital cortex and the FFA. In unpublished 

research, examining patterns of connectivity across the visual cortex during 

attention directed towards face stimuli, we also identify increased 

connectivity between visual areas in comparison with attention directed to 

low-level visual features. However, here, we identify reduced connectivity 
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between visual areas during attention to low-level visual stimulus attributes in 

comparison to passive viewing. We believe this reflects the nature of our 

experimental design. In this experiment, participants directed attention 

towards highly controlled low-level stimulus attributes in a challenging task, 

in comparison to attention directed towards relatively higher level, complex 

features (faces and scenes) that are relatively independent of low-level cues. 

Here, we also have an explicit passive viewing condition for comparison. 

Therefore, it is likely we see differing effects of attention on functional 

connectivity in the visual cortex as a reflection on the type of stimulus 

attended and the task employed.  

 

We examined these different connectivity patterns across ROIs as a function 

of task and identify different patterns of connectivity between certain ROIs for 

different visual tasks. Intriguingly, V1 is not one of those areas; correlations 

between V1 and other areas do not appear to change significantly depending 

on visual task (although they are reduced overall compared to the passive 

condition). However, we identify a difference in correlation between 

attentional tasks in IPS0, supporting a wealth of previous literature indicating 

the role of IPS in the modulation of top-down attention (e.g. Di Russo et al., 

2003; Bressler et al., 2008; Lauritzen et al., 2009; Buffalo et al., 2010). Areas 

hV4, LO-1 and LO-2 have different patterns of connectivity across ROIs in 

directed attention. These findings indicate different fingerprints of attention 

across ROIs: not all ROIs and their connections are modulated the same 

way in all attentional tasks. Perhaps these regions selectively disengage or 

de-correlate with other networks during feature-specific directed attentional 
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focus in order to process these features most effectively as previous 

cognitive flexibility research suggests (e.g. Spadone et al., 2015; Vatansever 

et al., 2016; Reineberg et al., 2018). Future research could seek to identify 

the link between specific patterns of attentional modulation across time in the 

visual cortex and indices of participant ability, through a network, as oppose 

to more traditional region-specific approach.  

 

We believe our findings here are not a reflection of gross physiological 

differences between our four attentional conditions. For example, it is unlikely 

factors such as extraneous eye movements or changes in heart rate were 

responsible for differences we see in fine-grain voxel-level activation maps or 

patterns of functional connectivity. Our experiment recruited experienced 

observers, who are well-trained in maintaining a constant central fixation in 

10-20 minutes of arc (Kowler, 1990). Additionally, our visual stimuli were 

present for 200ms, shorter than the time needed to make a visual saccade 

(Carpenter, 1988). Finally, if such gross-scale differences were apparent 

between attentional conditions, we would expect to see these differences 

evident at a univariate level. Instead, we identify relatively few significant 

univariate differences between our featural attention conditions and with 

passive viewing data, hence, our results likely reflect differences in 

attentional focus, rather than any consistent differences in gross-scale 

measures of arousal. 

 

To conclude, we have used a relatively novel approach for investigating top-

down attentional modulation signals in visual cortex. We show clear evidence 
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of attentional modulation from the earliest stage of the visual cortical 

hierarchy and suggest that directed attention produces local voxel-level 

changes in activation as oppose to reflecting global topographical 

organisation of visual regions. Connectivity analyses demonstrate that 

attention causes a strong decorrelation of ROI responses relative to the 

passive state, which appears to be mediated by top-down signals processed 

in specific visual regions. This paradigm is a useful tool to probe the 

influence of a common confound in visual neuroscience, examining 

activation in response to shifting attentional focus rather than stimulus driven 

changes.  
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5. Feature and Colour-Specific 
Patterns of Attention and Functional 
Connectivity in Human Visual 
Cortex 

 

5.1 Abstract 
 
Attention directed towards low-level visual features can alter the activity of 

neurons across the visual cortex. However, less is understood regarding the 

effects of attentional modulation when focus is directed towards stimuli of 

different chromaticities. An outstanding question remains as to whether 

attentional modulation effects differ in respect to the chromaticity of the 

attended stimulus. Here, we use functional magnetic resonance imaging 

(fMRI) and visual psychophysics to investigate the patterns of attentional 

modulation across the visual cortex in response to attention directed to low-

level visual features (orientation, contrast and shape) in combination with 

differing stimulus chromaticity (red-green, blue-yellow and achromatic). At 

the univariate level, we find few clear differential top-down attentional 

responses in the visual areas we examine. However, we do identify 

significantly greater attentional modulation during attention directed towards 

red-green stimuli than blue-yellow. Multivariate analyses reveal a complex 

pattern of voxel-level modulation driven by attentional task. In addition, 

connectivity analyses demonstrate flexible and selective patterns of 

connectivity between early visual areas as a function of attentional focus.   
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5.2 Introduction 
 
Visual attention is a highly important mechanism for successful interaction 

with our environment. Attention acts as filter, increasing the processing of 

task-relevant information at the expense of the remaining visual field, to allow 

for targeted and efficient processing of an otherwise overwhelming amount of 

information (e.g. Posner, Snyder, & Davidson, 1980). Attention has been 

demonstrated to increase activation in the visual cortex in regions associated 

with a particular spatial location in the visual field (Lauritzen et al., 2010; 

Luck et al., 1997; Moran & Desimone, 1985; Tootell et al., 1998b; Verghese 

et al., 2012), or to boost the activation of neurons associated with the 

encoding of an attended visual feature (Corbetta et al., 1990; Martínez-

Trujillo & Treue, 2002; Reynolds et al., 2000; Saenz et al., 2002; Serences & 

Boynton, 2007). For example, colour-preferring areas such as hV4 

demonstrate a significant increase in activation during attention directed 

towards stimulus chromaticity (e.g. Chawla, Rees, & Friston, 1999; Liu, 

Slotnick, Serences, & Yantis, 2003; Schoenfeld et al., 2007).  

 

Here, we wished to expand upon our previous experiment, investigating 

attentional modulation effects during manipulation of the low-level visual 

feature attended, and also of the stimulus chromaticity. The segregation of 

chromatic information begins with the three cone photoreceptors types in the 

retina, where information is then transported via the lateral geniculate 

nucleus (LGN) to the initial locus of cortical processing (primary visual 

cortex) through distinct magnocellular and parvocellular pathways, which 

segregate luminance from chromatic information respectively. The 
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parvocellular pathway contains information from the comparison of long- and 

medium-wavelength sensitive cone activation (L-M), signalling the red-green 

dimension of colour, whereas the magnocellular pathway contains 

information about the sum of L- and M-cone signals (L+M), coding 

achromatic information (see Wandell, 1995 for a review). A further, separate 

S-cone (koniocellular) pathway carries information from a third type of cone 

photoreceptor, sensitive to short-wavelengths of light. This pathway 

compares S-cone activation with L and M-cone responses (S-(L+M)) to 

signal the blue-yellow dimension of colour space (Casagrande, 1994; 

Chatterjee & Callaway, 2003). Each of these pathways project to distinct 

layers of the primary visual cortex. The primary visual cortex (V1) has also 

been demonstrated to possess cytochrome oxidase (CO) blobs, considered 

to have weak orientation tuning, but a robust response to isoluminant colour 

(Livingstone & Hubel, 1984), though the extent these blobs are explicitly 

dedicated to colour as opposed to form vision is debated (see Economides, 

Sincich, Adams, & Horton, 2011).  

 

Beyond these initial synapses in V1, the segregation of chromatic information 

is less clearly understood. Some suggest segregation of chromatic 

information may persist higher in the visual cortex, with projections from V1 

colour-sensitive blobs thought to input to distinct thin stripe regions of V2 

(Levitt et al., 1994; Livingstone & Hubel, 1984). Previous research has also 

identified area V4, as a specific locus of relatively higher-order colour 

processing (see Zeki, 1973). This suggestion was supported by evidence 

from cerebral achromatopsia; macaques with V4 lesions exhibited severe 
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deficits in colour perception (Meadows, 1974). However, the notion of a 

complete functional specialisation for chromatic tuning in V4 is also 

questioned, for example, other researchers found that lesioning macaque V4 

did not produce significant negative impacts on colour perception (Heywood, 

Gadotti, & Cowey, 1992). Hence, the extent strict segregation of chromatic 

information exists across the visual pathway is unclear. In this experiment, 

we employed a relatively novel approach, identifying patterns of attentional 

modulation across the visual cortex in response to shifts in attentional focus, 

with a particular focus on the investigation of the distributed effects of 

attention with changing stimulus chromaticity. 

 

Signals from the magno-, parvo- and konio-cellular pathways are combined 

in the first few synapses in V1. Evidence currently suggests attention exerts 

different influences on information in the distinct colour channels. For 

example, Wang & Wade, (2011) identified robust amplitude increases in 

response to contrast with both achromatic and S-cone-defined gratings, 

however, they identified no effects of attention on the amplitude or phase of 

SSVEP responses during attention to S-cone stimuli in any visual area 

examined. Additionally, Highsmith & Crognale, (2010) find no evidence of 

attention modulating the amplitude or phase L-M or S-(L+M) chromatic 

stimuli. These relatively weak attentional modulations of S-cone stimuli 

provides some support for the work of previous researchers who identify a 

generally weaker response to S-cone-defined stimuli across the dorsal visual 

pathway (e.g. Mullen, Chang, & Hess, 2015). For example, Liu & Wandell, 

(2005) examined responses to chromatically-defined motion stimuli across 
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the visual cortex, and identified strong responses to all chromatic stimuli in 

ventral area VO, but a very weak response to S-cone motion in dorsal areas 

V3A and MT+. Hence, previous literature predicts we should identify different 

patterns of attentional modulation across visual areas with chromatically-

defined stimuli, in comparison to our previous experiment with a purely 

achromatic stimulus (see Chapter 4).  

 

Previous literature has demonstrated the existence of interactions between 

low-level visual features and stimulus chromaticity on activation in the visual 

cortex. For example, Sumner, Anderson, Sylvester, Haynes, & Rees, (2008) 

found no evidence of different patterns of modulation between attended 

orientations for luminance, red-green or blue-yellow defined stimuli at the 

univariate level. However, they demonstrated successful classification of 

orientation for each of the three stimulus chromaticities at the multivariate 

level in V1, V2 and V3 early visual areas. These classification accuracies 

were significantly greater within-group than between-group suggesting 

different patterns of voxel-level attentional modulation in response to 

orientation defined by different stimulus chromaticities. Additionally, 

Seymour, Clifford, Logothetis, & Bartels, (2010) demonstrated specific 

pairings of colour and orientation could be decoded at the multivariate (but 

not univariate) level across many early visual ROIs.  

 

The vast majority of attentional modulation studies in the human 

neuroimaging literature use achromatic stimuli (as noted in Wang & Wade, 

2011). Here, we investigate patterns of attentional modulation to low-level 
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visual features and their associated chromaticities at univariate and 

multivariate spatial scales. We predict differing patterns of attentional 

modulation across the three chromatic channels, with a reduced response 

with attention directed towards S-cone stimuli particularly along the dorsal 

visual pathway. As in our previous experiment, we identify distinct feature-

specific patterns of attentional modulation in multivariate and connectivity 

analyses. We identify significantly reduced BOLD signal modulation during 

attention towards S-cone versus red-green defined stimuli at the univariate 

level, and differences in the patterns of modulation for each chromatic 

channel in our multivariate and connectivity analyses. We provide support for 

the varying effects of attentional modulation as a function of both low-level 

visual feature and stimulus chromaticity.  

 

5.3 Methods 
 
5.3.1 Participants 
 
12 University of York staff and students (8 females, mean age 26.92 years) 

were recruited for this study. All participants possessed population receptive 

field (pRF) mapping data, collected in a previous scanning session using 

standardised protocols (see 2.3.4) and two high-resolution structural scans. 

Each participant completed 30-minutes of psychophysical testing, and one 

90-minute fMRI scanning session, completing an average of 8 attentional 

modulation runs. All participants had normal or corrected-to-normal vision. 

Participants provided informed consent and ethical approval was granted by 

the University of York Department of Psychology and York Neuroimaging 

Centre ethics boards.   
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5.3.2 Behavioural Psychophysics 
 
5.3.2.1 Stimulus presentation 

Stimuli were presented on a ViewPixx monitor (120Hz, 1920x1220 pixels 

resolution) at 57cm viewing distance. Stimulus presentation was performed 

on a Shuttle XPC SZ87RG high-end graphics system with an Intel Core i7-

4790K processor at 40GHx and a NVIDIA GeForce GTZ970 graphics card 

with 4G DDR5 memory. All stimuli and experimental procedures were 

controlled by Psychtoolbox 3.0.12 (Brainard, 1997; Pelli, 1997).  

 
 
5.3.2.2 Isoluminance testing 

In order to ensure our L-M and S-(L+M) stimuli stimulated only colour and 

not luminance-sensitive mechanisms for each individual, all 12 participants 

first completed minimum motion isoluminance testing (see section 2.2) 

(Anstis & Cavanagh, 1983; Lu et al., 1999). Participants also completed the 

same isoluminance testing procedure prior to the fMRI scanning session in 

the scanner bore to ensure stimuli were presented with isoluminance values 

specific to the display.  

 

Both the display systems used in the psychophysical and fMRI testing 

sessions were photometrically calibrated using a fibre-optic 

photospectrometer (Ocean Optics, Dunedin, FL), which measured both the 

gamma and spectral irradiance of the red, green and blue channels as seen 

by the eye. To achieve this, the tip of the fibre-optic cable was positioned to 

match the viewing distance and position of a human observer using a 

polystyrene mannequin head. 
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The isoluminance stimuli were initially specified in LMS cone excitation 

space and transformed to RGB values using the product of the Stockman 

Sharpe 10° cone fundamentals for the L-, M- and S-sensitive photoreceptors 

and the spectral power distribution of the RGB phosphors for each eye. In a 

darkened room, participants viewed a central Gaussian window annulus, in 

which a sine-wave (2.33 cycles/°, 3.8° diameter) was presented, with a 

cyclical phase (pulsing back and forth in space) through a range from 0 to 

π/2 radians in 6° increments, on a mid-grey luminance background and with 

a white central fixation cross. Participants fixated centrally and increased or 

decreased the amount of luminance contamination in the stimulus until the 

minimum amount of flicker was perceived. Audio feedback informed the 

participants if they had reached the minimum or maximum extent of L+M 

adjustment. Participants completed the testing procedure three times for L-M 

and S-(L+M) conditions respectively and an average was taken to produce 

the average isoluminance setting for each chromaticity used to calibrate the 

presentation of stimuli in the psychophysical and fMRI testing sessions.  

 

5.3.2.3 Experimental Design 

In order to gain each participants’ individual threshold detection values for 

each combination of stimulus chromaticity (L+M, L-M and S-(L+M)) and low-

level visual feature (orientation, contrast and shape), the same 12 

participants initially completed a 30-minute psychophysical testing session, 

very similar to the screening procedure employed in our first, achromatic 

experiment (see Chapter 4). We utilised a RF pattern stimulus (see section 
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2.1) demonstrated to be an effective stimulus in probing visual attentional 

mechanisms (see Chapter 3).  

 

This threshold testing used a Bayesian staircase to efficiently estimate 

participants’ feature- and colour-specific detection thresholds (Watson & 

Pelli, 1983). Initial estimates of mean threshold were provided for each low-

level visual feature (orientation 0.3 radians and 0.08 radial amplitude 

modulation (shape)) with a 0.5-unit standard deviation. Stimulus chromatic 

contrast was specified on the basis of standardised LMS values, to ensure 

equal cone excitation across the three stimulus chromaticities (L+M 5%, L-M, 

4%, S-(L+M) 15%) (as in Welbourne, Morland, & Wade, 2018). These values 

were then multiplied by 1.5 to increase stimulus visibility. Initial estimates of 

contrast detection threshold were specified on the standardised LMS values 

specified above (5% L+M, 4% L-M and 15% S-(L+M)), which modulated 

above and below the baseline contrast value.  

 

Participants completed 75 trials, and an additional 10 initial practice trials at 

the start of each run (discarded from analysis) to provide a 75% correct 

detection threshold for each combination of low-level visual feature and 

stimulus chromaticity. Testing order was randomised for each participant. 

Each participant was presented with a visual attention cue at the start of 

each staircase to specify the attended feature for each staircase and a 

central white fixation letter presented on a mid-grey luminance background 

throughout the run matched the staircase feature (O, C and S).  Trials began 

with a 500ms presentation of a mid-grey luminance screen. This was 
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followed by a 150ms presentation of a reference radial frequency (RF) 

pattern stimulus. As in the previous psychophysical staircase procedure (see 

Chapter 4), this reference RF pattern had a 2.0° average radius, with a 

constant 0° orientation, colour-specific contrast (specified above) and shape 

(0.5 amplitude). Chromatic stimuli (L-M, S-(L+M)) were presented with 

participant-specific isoluminance settings. This was followed by a 600ms 

inter-stimulus interval, with presentation of a mid-grey luminance 

background. The target stimulus was then presented for 150ms with the 

extent of change in the low-level visual feature derived from participant’s 

previous performance using the Bayesian staircase procedure. The target 

RF pattern differed from the reference in only the attended feature. The 

direction of change was randomly specified with approximately 50% of trials 

occurring in each change direction (clockwise versus anticlockwise 

orientation, high versus low contrast and spikier versus smoother shape) 

(see Figure 5.1A).  

 

Presentation of both the target and the reference stimuli were preceded with 

an audible beep to help maintain participants’ directed attention. Participants 

then made a yes/no judgement indicating the direction of change between 

the reference and the target stimulus (‘U’ or ‘N’ keyboard press). The 

participant’s response initiated the next trial. A maximum 900ms ‘wait’ period 

was included, in which if a response was not recorded, the next trial 

commenced. Participants were informed via a toned beep if their response 

was correct or incorrect. At the end of 75 trials, the Bayesian staircase 

provided an estimate of each participants’ 75% correct detection threshold 
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for that visual feature. 9 staircases in total were performed, one for each 

combination of stimulus chromaticity and low-level visual feature, with each 

staircase lasting approximately 3 minutes.  

 
5.3.3 Functional Neuroimaging 
 
5.3.3.1 fMRI stimulus display 

Visual stimuli were presented using a PROpixx DLP LED projector (Vpixx 

Technologies Inc. Saint-Bruno-de-Montarvile, QC, Canada) with a long throw 

lens which projected the image through a waveguide behind the scanner 

bore and onto an acrylic screen. Images were presented at 57cm viewing 

distance with a resolution of 1920x1080 pixels and a 120Hz refresh rate.  

 

A Shuttle XPC SZ87RG high-end graphics system with Intel Core i7-4790K 

processor at 4GHz and a NVIDIA GeForce GTX970 graphics card with 4GB 

DDR5 memory were used to control the fMRI experiment. All stimuli and 

experimental procedures were controlled by MATLAB 8.5.0 (2016a) in 

conjunction with Psychtoolbox 3.0.12 routines (Brainard, 1997; Pelli, 1997). 

During scanning, behavioural responses and scanner trigger pulses (used to 

synchronise stimulus onset) were acquired using a fibre-optic response pad 

Forp-932 (Current Designs, Philadelphia, PA).  

 

5.3.3.2 fMRI data acquisition  

fMRI data were collected at the York Neuroimaging Centre using a GE 3T 

Excite MRI scanner (GE Healthcare, Milwaukee, WI). Structural scans were 

obtained using an 8-channel head coil (MRI Devices Corporation, 
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Waukesha, WI) to minimise magnetic field inhomogeneity (see Chapter 4 for 

details regarding structural scan acquisition and pre-processing). pRF and 

attentional modulation scans were instead collected with a 16-channel 

posterior head coil (Nova Medical, Wilmington, WI) to improve signal-to-

noise in the occipital lobe. At the beginning of both the pRF and attentional 

modulation scanning sessions, a single 16-channel coil T1-weighted 

structural scan was acquired with the same spatial prescription as the 

functional scans was acquired to aid alignment of the functional data to the 

T1-weighted anatomical scan (TR = 2100ms, TE = 8.6ms, field-of-view = 

19.2cm3, matrix size = 512 x 512, voxel resolution = 0.38 x 0.38 x 2.5mm, flip 

angle = 90°, 39 slices).  

 

The same 12 participants who completed both psychophysical and 

isoluminance testing also completed an average of 8, 5:06 minute attentional 

modulation runs, containing 102 volumes of data, including 3 dummy TRs 

which were discarded prior to pre-processing, to allow for the scanner 

magnetisation to reach a steady state. 39 slices were acquired in a bottom-

up interleaved acquisition order (TR = 3000ms, TE = 30ms, field-of-view = 

19.2cm3, matrix size = 96 x 96, voxel size = 2.0 x 2.0 x 2.5 mm, flip angle = 

90°).  

 

5.3.3.3 Defining regions of interest (ROIs) 

Participant ROIs were defined using population receptive field (pRF) 

mapping data collected prior to the attentional modulation scans. Following 

Dumoulin & Wandell, (2008) and Wandell, Dumoulin, & Brewer, (2007) we 
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manually delineated 9 bilateral ROIs (V1, V2, V3, V3A/B, hV4, LO-1, LO-2, 

MT+ and IPS0) on the basis of polar angle reversals and eccentricity for 

each participant (see section 2.3.4 and Chapter 4 for a detailed explanation 

of pRF procedures).  

 

Some participants also possessed previously-collected MT+ localiser data, 

from which MT+ was defined on the basis of responses to motion versus 

static stimuli (see section 2.3.5). For these participants, we used the motion-

defined as oppose to pRF-defined MT+ ROIs. We ensured consistency 

between these differing ROI specification methods; we created a spherical 

MT+ ROI from standardised Talairach co-ordinates for each participant and 

ensured each MT+ ROI overlapped with the standardised control ROI (see 

Chapter 4 for full description of this process).  

 

Finally, a bilateral primary auditory cortex (A1) ROI was defined, to use as a 

control region throughout experimental analysis. This was created through 

the same process as above, defining a 5mm spherical ROI (for each 

hemisphere) on the basis of standardised Talairach coordinates centred on; 

LH: 49 -20 9, RH: 48 -21 10 (Lacadie et al., 2008).  

 

5.3.4 Attentional Modulation Scans 
 
5.3.4.1 Experimental Design 

Prior to attentional modulation scanning, participants completed the same 

minimum motion isoluminance testing as in the psychophysics session in the 
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fMRI scanner. This was to ensure participants settings of isoluminance were 

calibrated to each stimulus display setup.  

 

The fMRI experiment followed a similar procedure as employed in Chapter 4. 

We used a block design, and in blocks, cued participants to attend to a 

specific low-level visual feature (orientation, contrast, shape) or to passively 

view the stimulus without attention directed towards any specific visual 

feature. Each 1.5 second trial in a stimulus block began with a 200ms 

presentation of the same reference RF pattern as used in the psychophysics 

testing session on a mid-grey luminance background. A white central fixation 

letter directed participants’ attentional focus towards a single stimulus 

dimension (O, C, S or P). This was followed by a 200ms inter-stimulus 

interval, during which the white central fixation letter was presented.  

 

A target RF pattern was then presented for 200ms, which could vary in any 

combination of the low-level visual stimuli (orientation, contrast or shape), or 

have no change.  The extent of change in each of the features was set as 

double the participants previously collected 75% correct detection thresholds 

for each combination of stimulus chromaticity and low-level visual feature to 

ensure that task difficulty (and associated levels of attention) was consistent 

across attentional blocks and also across participants. Each visual feature 

altered in only one direction to ensure the task remained of a manageable 

difficulty (anticlockwise orientation, high contrast and spikier shape). For 

each feature, the target RF pattern differed from the reference on 

approximately 20% of trials, hence a constant level of visual information was 



 156 

presented across blocks, helping to distinguish attentional modulation effects 

from any bottom-up stimulus driven activation.  

 

A central fixation letter was then presented for 800ms, during which 

participants made a yes/no response. Participants were instructed to 

respond ‘different if the target RF pattern has changed in the attended 

stimulus dimension (with respect to the reference RF pattern), and to 

respond ‘same’ if no change in the attended stimulus feature had occurred 

(regardless of changes in the other stimulus dimensions) (see Figure 5.1B). 

Each trial lasts 1.5 seconds, and each block contained 10 trials. Each block 

was followed by a black central fixation cross (7.5 seconds), which allowed 

BOLD signal to return to baseline. The order of block presentation was 

pseudo-randomised, such that each of the four feature conditions (in a 

randomised order) were presented before repetition. The order of stimulus 

chromaticity was randomised. Each fMRI run contained one repetition of 

every low-level visual feature and stimulus chromaticity combination (12 

blocks).  
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5.3.4.2 Data acquisition and analysis 

Functional data were pre-processed using the same procedure as used in 

Chapter 4, using MATLAB 2016a (Mathworks, MA) and VISTA software 

(https://vistalab.stanford.edu/software/) (Vista Lab, Stanford University). 

Between- and within-scan motion correction first compensated for any 

motion artefacts occurring during the scanning session. No run exhibited 

>3mm movement for any participant. The mrVista rxAlign tool was then used 

to co-register the 16-channel coil T1-weighted structural scan to the 8-

channel coil T1-weighted full-brain anatomical scan. A manual alignment was 

applied using landmark points to position the two volumes in approximate 

register. We then used a robust EM-based registration algorithm to fine-tune 

the alignment (Nestares & Heeger, 2000). The final alignment was checked 

by eye to ensure the automatic registration procedure optimised the fit. This 

alignment was used as a reference to then align the functional data to the 

full-brain anatomical scan, which were then interpolated to the anatomical 

segmentation of grey and white matter.   

 
Multiple General Linear Model (GLM) analyses were then performed to test 

the contribution of stimulus condition to the BOLD time course (Friston et al., 

1998). We used the double-gamma HRF from the SPM8 toolbox 

(http://www.fil.ion.ucl.ac.uk/spm/) and fit the model to an averaged time 

course of BOLD signal, changed for each stimulus condition by minimising 

the sum of squared errors (RSS) between the predicted time series and the 

measured BOLD response.  
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As in Chapter 4, we performed multiple GLM analyses in order to divide our 

BOLD timeseries data into multiple sets of conditions in order to investigate a 

wide range of hypotheses. Our first GLM analysed bottom-up stimulus 

feature change events. As in our previous achromatic analysis, events were 

classified according to the nature of the stimulus change occurring in a 1 TR 

(3s) period, regardless of attentional focus or stimulus chromaticity 

(orientation, contrast, shape, no change and multiple change events). 

Multiple change events reflected two or more different feature stimulus 

changes occurring in a single TR. Feature change events (orientation, 

contrast and shape) reflected when both trials in a TR contained a change in 

the same feature (e.g. both trials contained an orientation change) or a 

feature change and no feature change. This resulted in 41 to 172 events per 

feature change condition.  

 

The second GLM analysed the contribution of featural attentional focus in 15 

second blocks, combined across the three chromatic conditions (orientation, 

contrast, shape and passive). This resulted in an average of 24 beta weight 

estimates for each voxel at the multivariate level. The third analysed the 

contribution of stimulus chromaticity, combined across the three feature-

specific attentional focus conditions (orientation, contrast and shape) (L+M, 

L-M and S-(L+M)). This produce an attention and passive dataset for each 

chromatic condition. This resulted in 48 beta weight estimates for each voxel 

at the multivariate level.  
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5.3.5 Statistical analysis 
 
Participants with >5% average variance explained across the visual ROIs 

were retained for further analysis (no participants were discarded on the 

basis of percentage variance explained). In line with analysis in Chapter 4, 

only ROIs V1, V3A/B, hV4, LO-1, LO-2, IPS0 and A1 were retained for 

further analysis on the basis of previous literature providing hypotheses 

regarding the process of (particularly chromatic) information in these regions.  

 
5.3.5.1 Univariate attentional modulation 

 
For each participant, feature-specific beta weights were averaged (across 

orientation, contrast and shape), and compared with passive beta weights 

through a Wilcoxon signed-rank test for each ROI independently. For the 

chromatic analysis, each set of chromatic attention beta weights were 

compared with their respective chromatic passive beta weighted through a 

Wilcoxon signed-rank test for each ROI. Univariate betas (independently for 

feature and chromatic datasets) were analysed through one-way repeated 

measures ANOVAs to identify significant differences in BOLD signal 

modulation between either orientation, contrast and shape, or between L-M, 

L+M and S-(L+M) chromatic conditions.  

 

5.3.5.2 Multivariate pattern classification 

To investigate patterns of activation in ROIs, beta weights were calculated 

for each attentional focus predictor timeseries (for both feature and chromatic 

analyses respectively), for each voxel, using deconvolution to examine the fit 

of the HRF to the timeseries data. This deconvolution involved estimating the 
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haemodynamic response which best predicts a measured fMRI signal, 

reducing the influence of noise within the data. Voxels in each ROI were 

ranged by largest percentage variance explained in the GLM, and only the 

top 100 voxels by variance explained per ROI were retained for further 

analysis to ensure comparable results across ROIs of differing size.  

 

For each ROI, the 100 top voxel beta weights were z-scored (across voxels) 

and fed to a ‘LIBSVM’ support vector machine (SVM) classifier (Chang & Lin, 

2011), to decode featural attentional focus or attended stimulus chromaticity. 

The SVM used a radial basis function kernel and leave-one-out cross-

validation procedure (across beta weights for each participant). For both the 

feature and chromatic analysis, we first assessed three-way decoding 

accuracy, supplying the classifier with information about all three data 

classes (orientation, contrast and shape or L-M, L+M and S-(L+M)) 

simultaneously. The classifier used the ‘one-against-one’ approach to 

provide a single classification accuracy score (across many cross-

validations) for each participant (Knerr et al., 1990). We then assessed these 

multi-class classification accuracies for each participant against change 

performance through one-sample Wilcoxon signed-rank tests for each ROI.  

 

Following this, we also performed pairwise classification, to pin-point the 

differences in patterns of BOLD signal modulation between particular classes 

of attentional focus. This pairwise classification assessed decoding accuracy 

between two conditions at a time. For the feature analysis we compared 

decoding of orientation versus contrast, orientation versus shape and 
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contrast versus shape respectively. For the chromatic analysis we compared 

voxel-level patterns of activation between red-green versus blue-yellow, red-

green versus achromatic and blue-yellow versus achromatic.  

 

5.3.5.3 Multivariate spatial back-projection 

In addition to examining voxel-level patterns of response with changing 

attentional focus, we also wished to examine the spatial localisation of these 

attentional effects across feature- or chromatic-specific conditions. To 

achieve this, we ran an additional set of SVM classifications, assessing 

decoding accuracy between each attentional focus condition and passive 

viewing data. For the chromatic analysis, each chromatic attentional 

condition was compared with its chromatic passive counterpart. From these 

classifications, we calculated the weighted mean of the support vectors to 

provide an attention-specific ‘preference’ for each stimulus feature or 

chromaticity for each voxel in an ROI.  

 
Following the same strategy as implemented in Chapter 4, these support 

vector weighted means were then back-projected onto an interpolated grid 

(6° eccentricity, 360° polar angle across 500 samples) representing voxel 

activation as a function of each voxels visual angle and eccentricity 

preference in visual space, extracted from pRF data. We additionally plotted 

an annulus of activation, which was formed from an average of voxel 

activations between 1.5-3.5° eccentricity, across all polar angles, to provide 

a clear summary of the locations of any spatially-focused attention. For 

reference, a standard RF pattern (0° orientation, 0.2 amplitude) was overlain. 

These back-projection analyses were performed for V1, V2, V3 and hV4 
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ROIs, as other regions of interest lacked a rich representation of the entire 

visual field.  

 

5.3.5.4 Timeseries connectivity analysis 

To quantify feature- or chromatic-specific connectivity between ROIs, 

participant-specific multivariate timeseries data (grouping TRs by attentional 

focus condition) and underwent noise removal (the fitting and removal of a 

grand-mean) to eliminate scan-to-scan differences in raw amplitude intensity.  

These data were then averaged across all voxels in an ROI to provide a 

single univariate timeseries for each attentional condition. Non-parametric 

Kendall’s tau correlations were then performed for all pairwise combinations 

of ROI (V1, V3A/B, hV4, LO-1, LO-2 and IPS0), generating a correlation 

matrix for each attentional condition.  

 

To assess the similarity of connectivity patterns, for each attentional focus 

condition, the correlation matrix was vectorised. This involved removing self-

to-self correlations, and ‘stacking’ ROI-to-ROI correlations such that we 

produce a single column of correlation data as oppose to a matrix, without 

altering the correlation values previously computed. This vector of correlation 

values was then normalised through participant-specific global mean 

extraction and Fisher-z transformation. The average (Fisher-z transformed) 

correlation coefficient was then computed to produce a single number, which 

summarised connectivity across all ROIs in each attentional condition. The 

difference in correlations between conditions was then analysed via one-way 
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repeated measures ANOVA with Bonferroni-corrected post-hoc tests for the 

feature- and chromatic-specific analysis pipelines respectively.  

 

We further investigated ROI-specific connectivity patterns as a function of 

attentional focus. For each of the ROIs, we extracted data reflecting the 

correlation of this ROI with all others for every participant. From all 

participants, data was then sampled with replacement, with a sample 

reflecting a full complement of ROI-specific correlation data for each 

attentional condition, and we calculated the mean across these samples. In 

order to simulate noise in this analysis, we took the same 12 samples 

selected with replacement for each condition, and for each pairwise 

comparison of conditions, we switched the condition labels approximately 

50% of the time, keeping ROI-ROI relationships constant and calculated the 

average across these scrambled condition-specific datasets.  

 

For both the observed and noise data, we calculated the root mean squared 

error (RMSE) distance between each pairwise combination of condition 

vectors as a measure of difference in patterns of connectivity across the ROI 

profile of interest between different attentional modulation conditions. This 

process was repeated across 10,000 iterations for each ROI comparison (5 

comparisons). Across all iterations, we then calculated the percentage of 

observed RMSEs for a pairwise comparison falling below the RMSE of the 

comparable simulated noise distribution. Any percentile below 5% indicated 

a difference in ROI-specific patterns of connectivity between two attentional 
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modulation conditions which was significantly larger than predicted by 

chance (p <.05).   

 
5.4 Results 
 
5.4.1 Univariate: Stimulus-Driven and Attentional Modulation 

Analyses 
 
5.4.1.1 Feature Analysis 

We first asked whether BOLD modulation dependent on bottom-up stimulus-

driven changes in low-level visual feature. As noted in Chapter 4, BOLD 

signal changes in many visual areas have been reported in response to 

bottom-up stimulus driven changes in low-level visual features such as 

orientation and shape, however, these stimulus manipulations are typically 

far larger than the near-threshold changes used in this study.  

 

Multiple one-way repeated measures ANOVAs, Benjamini-Hochberg 

corrected for the number of ROIs revealed no significant differences in 

univariate BOLD modulation between stimulus-driven changes in orientation, 

contrast or shape in any ROI examined, including our control auditory cortex 

region (p > .05) (see Figure 5.2B).  

 
As we identified no clear differential BOLD signal modulation in response to 

bottom-up changes in stimulus feature, we then sought to examine effects of 

feature-specific attention on modulation of fMRI activity. Whilst previous 

research has demonstrated the effectiveness of RF stimuli in probing 

attentional modulation effects in the visual cortex (see Chapters 3 and 4), we 

first asked whether our chromatic RF stimuli were also effective in eliciting 
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robust attentional modulation effects. To assess this, we compared averaged 

attentional activation (across orientation, contrast and shape stimuli of all 

chromaticities) with activation in the passive condition though paired-sample 

Wilcoxon signed-rank tests, Benjamini-Hochberg corrected across ROIs. 

These comparisons revealed averaged attention BOLD signal was 

significantly greater than activation during passive viewing of the same visual 

stimulus in all visual ROIs examined (V1: Z(11) = 2.83, p = .010, V3A/B: 

Z(11) = 2.20, p = .034, hV4: Z(11)= 2.51, p = .018, LO-1: Z(11) = 2.82, p = 

.010, LO-2: Z(11) = 2.90, p = .010). No significant difference in BOLD signal 

modulation between directed attention and passive viewing was identified in 

the control auditory cortex ROI (Z(11) = 0.55, p = .583) (see Figure 5.2A).  

 

We next sought to examine any feature-specific differences in attentional 

modulation in our visual ROIs. Our previous analysis, averaging across 

feature-specific attentional focus conditions demonstrated a robust 

attentional modulation effect, but revealed nothing regarding the specificity of 

an attentional response versus a global mechanism boosting activation in 

individual areas. To examine differences in BOLD signal across featural 

attention task, we performed multiple one-way repeated measures ANOVAs, 

Benjamini-Hochberg corrected for the number of ROIs. These analyses 

revealed no significant difference in attentional modulation between 

orientation, contrast and shape conditions in V1, LO-1 and A1 ROIs (p > 

.05). In V3A/B, we identified a significant main effect of attentional 

modulation across conditions (F(2,22) = 5.29, p = .027), however, no 

significant differences between conditions were identified in Bonferroni-
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corrected post-hoc tests. In hV4, analysis revealed significantly reduced 

BOLD signal modulation during attention to orientation, in comparison to 

contrast and shape conditions (F(2,22) = 5.51, p = .027, post-hoc p = .037 

and p = .047 respectively). In LO-2, directed attention toward shape elicited 

significantly greater BOLD signal modulation than attention directed towards 

orientation or contrast (F(2,22) = 10.22, p = .004, post-hoc p = .015 and p = 

.009 respectively) (see Figure 5.2C).  

 

In summary, our feature-specific univariate analyses demonstrated neither 

bottom-up stimulus manipulations nor top-down attentional demands had 

strong differential effects on BOLD signal modulation in the visual cortex. 

However, areas hV4 and LO-2 demonstrate relatively weak, but significant 

differential responses for attention to orientation (hV4) and to shape (LO-2) 

compared to other task conditions.  
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5.4.1.2 Chromatic Analysis 

In addition to analysing feature-specific attentional modulation effects, we 

also wished to investigate the effects of attending to stimuli of different 

chromaticies to examine the extent of segregation of chromatic information in 

the visual cortex. Initially, to ensure our chromatic stimuli produced clear 

modulation of the BOLD signal, we repeated the same analysis pipeline as 

used for the feature-specific attention analysis. We conducted multiple 

paired-sample Wilcoxon comparing averaged attentional modulation 

(averaged across orientation, contrast and shape) with the chromatic-specific 

passive viewing condition, Benjamini-Hochberg corrected for the number of 

ROIs, independently for each stimulus chromaticity condition.  

 
For the red-green and achromatic stimulus conditions, we identify 

significantly greater BOLD modulation during directed attentional focus than 

in passive viewing in all visual ROIs (red-green: Z(11) = 2.43, p = .027, 

V3A/B: Z(11) = 2.28, p = .034, hV4: Z(11) = 2.51, p = .024, LO-1: Z(11) = 

2.35, p = .030, LO-2: Z(11) = 2.67, p = .024, achromatic: V1: Z(11) = 2.60, p 

= .024, V3A/B: Z(11) = 2.51, p = .024, hV4: Z(11) = 2.60, p = .024, LO-1: 

Z(11) = 2.82, p = .021, LO-2: Z(11) = 2.98, p = .021). In all three stimulus 

conditions, the control auditory cortex ROI reveals no significant difference in 

level of BOLD modulation between attention and passive viewing conditions 

(p > .05). In the blue-yellow stimulus condition, paired-sample Wilcoxon 

signed-rank tests revealed significantly greater BOLD signal modulation 

during directed attention versus passive viewing in V1 (Z(11) = 2.12, p = 

.047), LO-1 (Z(11) = 2.90, p =.021) and LO-2 (Z(11) = 2.82, p = .021). 

However, we identify no significant difference in BOLD signal modulation 
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during directed attention versus passive viewing in V3A/B or hV4 (p > .05) 

(see Figure 5.3A).  

 
We then sought to identify differences in BOLD signal modulation with 

attention directed to different stimulus chromaticity. As in the feature-specific 

analysis, we conducted multiple one-way repeated measures ANOVAs, 

comparing BOLD signal during attention toward red-green, blue-yellow and 

achromatic stimuli, Benjamini-Hochberg corrected across the number of 

ROIs. This analysis revealed significantly greater BOLD signal modulation 

during attention to red-green versus blue-yellow stimuli in all visual ROIs 

examined V1: F(2,22) = 7.86, p = .013, post-hoc p = .024 V3A/B: F(2,22) = 

5.84, post-hoc p = .040, p = .032, hV4: F(2,22) = 5.34, p = .037, post-hoc p = 

.026, LO-1: F(2,22) = 8.25, p = .020, post-hoc p = .020, LO-2: F(2,22) = 

10.58, p = .013 post-hoc p = .013). In LO-2, we also identify significantly 

greater BOLD signal modulation during attention to achromatic stimuli versus 

blue-yellow stimuli (post-hoc p = .032) (see Figure 5.3B). Here, our analysis 

reveals robust evidence of attentional modulation versus passive viewing for 

all three stimulus chromaticities, and a relatively weaker attentional 

modulation to blue-yellow versus red-green stimuli across the visual 

hierarchy.  
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5.4.2 Multivariate Analysis 
 
5.4.2.1 Feature Analysis 

The overall BOLD activity during attentional focus was significantly greater 

than passive viewing in all visual ROIs. However, we identified relatively little 

evidence of differential patterns of BOLD signal modulation when comparing 

attention to orientation, contrast and shape at the univariate level. We then 

sought to investigate whether we could decode attention focus through 

examination of fine-grain patterns of activation across voxels. To do this, we 

performed a three-way multivariate pattern classification analysis on the 

feature-attention responses, simultaneously classifying orientation, contrast 

and shape modulations (averaged across chromatic conditions). One-sample 

Wilcoxon signed-rank tests versus chance (33%) revealed it was possible to 

decode the feature held in attentional focus in all visual ROIs  (V1: Z(11) = 

3.06, p = .015, V3A/B: Z(11) = 2.83, p = .015, hV4: Z(11) = 2.80, p = .015, 

LO-1: Z(11) = 2.95, p = .015, LO-2: Z(11) = 2.98, p = .015). Classification 

accuracy ranged from 50.18 to 60.35%. In control ROI A1, classification 

accuracy was not significantly above chance level performance (Z(11) = 

0.31, p = 1.85) (see Figure 5.4A).  

 

To further analyse these significant classifications of attentional state, we 

conducted multiple pair-wise SVM decoding analyses to determine the 

driving forces behind successful multi-class decoding. Classification 

accuracies were compared with chance-level performance (50%) through 

one-sample Wilcoxon signed-rank tests, adjusted for multiple comparisons 

(number of comparisons across ROIs) using Benjamini-Hochberg correction.  



 173 

In all visual ROIs, we demonstrated successful classification of attention to 

orientation versus. In almost all ROIs, we also identified successful 

classification between attention to orientation and contrast. Additional above-

chance classification accuracies were demonstrated between attention to 

contrast and attention to shape in V1,V3A/B and LO-2 (see Figure 5.4B and 

Table 5.1).  

 

 
Previous research has demonstrated that some types of stimuli can generate 

retinotopically-based patterns of response in individual ROIs at coarse 

spatial scales. For example, clear maps of orientation preference have been 

demonstrated in primary visual cortex, which have been suggested to 

influence multivariate pattern classification techniques (see Freeman, 

Brouwer, Heeger, & Merriam, 2011). We asked whether our stimuli may also 

evoke relatively large-scale biases in spatial attention, which may inform our 

classification analyses.  

 

We identified the voxels most informative for each low-level visual feature 

classification (versus passive) and back-projected these into visual space 

Table 5.1 Attention directed toward orientation, contrast and shape can be 
decoded through two-way classification in visual ROIs.   

 Orientation vs. Contrast Orientation vs. Shape Contrast vs. Shape 
ROI Z p Z p Z p 
V1 2.67 .034* 3.06 .027* 2.83 .029* 

V3A/B 2.47 .051 3.06 .027* 2.98 .027* 
hV4 2.74 .033* 2.87 .029* 2.35 .066 
LO-1 2.98 .027* 2.95 .027* 2.31 .069 
LO-2 2.63 .035* 2.71 .033* 3.06 .027* 

* p <.05, ** p<.01, *** p<.001 
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coordinates. These representations were then averaged across participants 

to reveal average spatial patterns of voxel preference across individuals. If all 

participants employed a consistent spatial strategy for a particular low-level 

visual feature task, these averaged plots would reveal a consistent non-zero 

response in a particular location. If no large-scale patterns of response were 

generated by attention in a consistent fashion across observers, these maps 

would average to zero. We identify no significant patterns of attentional 

modulation are evident for any feature of attentional focus across ROIs, with 

no clear peak of spatial attentional focus as a function of polar angle also 

identified in the annulus overlays (see Figure 5.4C).   
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Figure 5.4 Feature-specific multivariate Support Vector Machine Decoding 

and Group-averaged voxel feature-specific weights as a function of 

eccentricity (6°) and polar angle (360°). Voxel-level responses with individual 

ROIs are modulated by attentional state. A) Overall three-way decoding 

accuracies. Attentional state can be decoded above chance in all ROIs 

except A1. Error bars reflect +/- 1 SEM. B) Two-way classification accuracies 

across pairwise combinations of attentional focus (orientation versus shape, 

orientation versus contrast and contrast versus shape). Voxel patterns in all 

areas differ significantly between attention to orientation and shape. 

Significance asterisks indicate Benjamini-Hochberg corrected values. C) 

Spatial backprojection analyses reveal no large-scale biases in voxel weights 

across location. The gray annulus reflects averaged voxel modulation at 1° 

intervals across 1.5-2.5° visual space. Deviations from circularity indicate 

positive (feature-specific) or negative (passive viewing) preferring clusters of 

voxels. An RFP stimulus overlay is provided for reference. Activation is 

thresholded at +/- 1.7 z-score (p <.05). 
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5.4.2.2 Colour Analysis 

We performed the same analysis pipeline for our chromatic data, in order to 

identify differential patterns of voxel-level modulation when attention 

switched between three stimulus chromaticities. We performed a three-way 

pattern classification analysis, simultaneously supplying data from red-green, 

blue-yellow and achromatic attention conditions (excluding data from the 

passive chromatic conditions). One-sample Wilcoxon signed-rank tests 

versus chance (33.33%) Benjamini-Hochberg corrected for the number of 

ROIs, revealed above-chance classification in almost all visual ROIs 

examined V1: Z(11) = 3.06, p = .011, V3A/B: Z(11) = 3.06, p = .011, hV4: 

Z(11) = 3.06, p = .011, LO-1: Z(11) = 2.85, p = .016). In visual area LO-2 and 

control auditory cortex ROI (A1) classification accuracy was not significantly 

greater than chance (LO-2: Z(11) = 2.27, p = .068, A1: Z(11) = 1.57, p = 

.285). Across the visual ROIs, mean classification accuracy ranged from 

42.22 to 57.64% (see Figure 5.5A).  

 
Again, we performed further pairwise classification analyses to determine 

which chromatic states generated different voxel-level responses. We 

conducted multiple one-sample Wilcoxon signed-rank tests versus chance 

(50%), Benjamini-Hochberg corrected for the number of comparisons across 

ROIs. In almost all visual ROIs, successful classification of red-green versus 

achromatic stimuli was evident. Above-chance classification was also evident 

between blue-yellow and achromatic stimuli in V3A/B, hV4 and LO-1. In V1, 

hV4 and LO-1, decoding accuracies also exceed chance performance when 

comparing red-green activation with blue-yellow. In LO-2, not successful 
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classification of any pairwise comparison of stimulus chromaticity was 

evident (see Figure 5.5B and Table 5.2).  

 
Finally, the spatial backprojection analysis was also performed for visual 

ROIs V1, V2, V3 and hV4, to identify if any large-scale biases in the 

organisation of chromatic preference were driving our multivariate 

classification results. We calculated he mean chromatic-specific support 

vector weights for each voxel and back-projected these values into their 

eccentricity and polar angle coordinates, and these maps were averaged 

across participants. Again, we identify no large-scale biases in voxel 

preference for any stimulus chromaticity condition in any of the early visual 

ROIs examined (see Figure 5.5C).  

Table 5.2 Attention directed toward red-green, blue-yellow and achromatic stimuli 
can be decoded through two-way classification in visual ROIs.   

 Red-Green vs. Blue-
Yellow 

Red-Green vs. 
Achromatic 

Blue-Yellow vs. 
Achromatic 

ROI Z p Z p Z p 
V1 3.07 .028* 2.59 .047* 2.36 .083 

V3A/B 1.29 .065 2.75 .037* 2.76 .037* 
hV4 3.07 .028* 2.95 .028* 3.06 .028* 
LO-1 2.63 .047* 2.94 .028* 2.94 .028* 
LO-2 1.80 .258 2.28 .088 2.28 .088 

* p <.05, ** p<.01, *** p<.001 
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Figure 5.5 Colour-specific Multivariate Support Vector Machine Decoding and 

Group-averaged voxel feature-specific weights as a function of eccentricity (6°) and 

polar angle (360°). Voxel-level responses with individual ROIs are modulated by 

attentional state. A) Overall three-way decoding accuracies. Chromatic attentional 

state can be decoded above chance in all ROIs except LO-2 and A1.  Error bars 

reflect +/- 1 SEM. B) Two-way classification accuracies across pairwise combinations 

of attentional focus (red-green versus blue-yellow, red-green versus achromatic and 

blue-yellow versus achromatic). Voxel patterns in all almost areas differ significantly 

between attention to red-green and achromatic-defined stimuli, with successful 

classifications also evident for red-green versus blue-yellow-defined stimuli and blue-

yellow versus achromatic activation comparisons. Significance asterisks indicate 

Benjamini-Hochberg corrected values. C) Spatial backprojection analyses reveal no 

large-scale biases in voxel weights (chromatic preference) across location. The gray 

annulus reflects averaged voxel modulation at 1° intervals across 1.5-2.5° visual 

space. Deviations from circularity indicate positive (feature-specific) or negative 

(passive viewing) preferring clusters of voxels. An RFP stimulus overlay is provided 

for reference. Activation is thresholded at +/- 1.7 z-score (p <.05). 
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5.4.3 Timeseries Connectivity Analysis 
 
5.4.3.1 Feature 

Our univariate analysis demonstrated that overall, attention had relatively 

little effect on time-averaged BOLD responses in individual visual areas. In 

our final analysis, we asked whether attention may exert a clearer effect at a 

slightly coarser scale; influencing the way that individual ROIs communicate 

with each other. Specifically, we investigated differing functional connectivity 

between ROIs as a function of attentional state.  

 

We first conducted non-parametric Kendall’s Tau correlations between ROI-

average (univariate) timecourses from each pairwise comparison of visual 

ROIs for each featural attention condition. These correlation patterns across 

visual ROIs (V1, V3A/B, hV4, LO-1, LO-2 and IPS0) represent a ‘fingerprint’ 

for each attentional task (see Figure 5.6A).  We examined if these 

connectivity fingerprints were altered by attentional task, though a one-way 

repeated measures ANOVA with Bonferroni-corrected post-hoc tests, 

conducted on normalised and Fisher-z transformed coefficients. This 

analysis revealed significantly greater positive correlation between ROIs 

during passive viewing compared to attention to orientation (F(3,42) = 5.05, p 

= .015, post-hoc p = .002). No other differences in patterns of connectivity 

between attentional conditions were identified (p > .05).  

 
Next, we asked whether differences in connectivity fingerprints between 

attentional task may be driven by connections with a particular ROI, rather 

than examining patterns of connectivity across all ROIs simultaneously. For 
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this, we calculated the Euclidian distance (RMSE) between pairwise 

comparisons of attentional task condition (averaged across a subsample of 

participants for each condition), for both observed and noise (scrambled 

attention-condition label) datasets, bootstrapped across 10,000 iterations.  

 
Correlations with visual ROIs V1, hV4, LO-2 and IPS0 show revealed no 

significant differences in patterns of connectivity across all attentional states 

(p > .05). However, correlations from both V3A/B and LO-1 to all other visual 

areas demonstrated significant differences in patterns of connectivity 

between attention to contrast and passive viewing (p = .024 and p = .004 

respectively). Partial correlations with V3A/B also revealed a significant 

difference in connectivity during attention to shape and passive viewing (p = 

.037) (see Figure 5.6B).  
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Figure 5.6 Greater overall connectivity during passive viewing compared to 

directed attention. A) Group feature-specific averaged attentional modulation 

connectivity values, indicating significantly greater mean connectivity during 

passive viewing in the attentional tasks. B) Bootstrapped measures of 

distance between pairwise combinations of attentional focus conditions, for 

V1, V3A/B, hV4, LO-1, LO-2 and IPS0 ROIs. The figure demonstrates the 

percentage overlap between the distribution of RMSE scores across 10,000 

iterations of randomly-selected samples of the observed data  and scrambled 

correlation ‘noise’ data for each ROI across multiple pairwise comparisons. 

Significant overlap (less than 5%) between pairwise combinations of 

condition are indicated with asterisks. 

 
 



 182 

5.4.3.2 Colour 

Finally, we repeated this connectivity analysis pipeline for the chromatic data 

subset. Firstly, we wished to investigate whether overall patterns of 

connectivity differ between chromatic attention and passive viewing 

conditions, as identified in the feature-specific analysis and in Chapter 4. We 

replicated the same process, performing non-parametric Kendall’s Tau 

correlations between univariate timecourses from each pairwise combination 

of visual ROIs for each chromatic attention conditions (see Figure 5.7A). To 

assess the differences between these correlation matrices, we performed a 

one-way repeated measures ANOVA with Bonferroni-corrected post-hoc 

tests on these vectorised, normalised and Fisher-z transformed correlation 

coefficients. Here, we identified significant a main effect of attentional task 

condition on patterns of connectivity across visual ROIs (F(5,70) = 62.19, p 

<.001). Bonferroni-corrected post-hoc tests revealed significantly greater 

positive connectivity during each chromatic passive condition in comparison 

with all directed attention conditions (p < .001) (e.g. red-green passive 

versus red-green attention, blue-yellow attention and achromatic attention 

condition respectively).  We also identified a significantly greater negative 

correlation during attention to achromatic stimuli than red-green attention (p 

= .043).  

 
We also repeated the same partial correlation analysis as above, examining 

whether differences in connectivity fingerprint between attentional task 

condition were driven by a subset of regions of interest. We calculated the 

distance between pairwise comparisons of attentional task condition, for both 

observed and noise datasets, bootstrapped across 10,000 iterations.  
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Across all visual ROI partial correlations examined, we identified significantly 

different patterns of connectivity between red-green attention and red-green 

 
Figure 5.7 Greater overall connectivity during passive viewing compared to 

directed attention in all stimulus chromaticity conditions. A) Group feature-

specific averaged attentional modulation on connectivity values, indicating 

significantly greater mean connectivity during passive viewing in the 

attentional tasks. B) Bootstrapped measures of distance between pairwise 

combinations of attentional focus conditions, for V1, V3A/B, hV4, LO-1, LO-

2 and IPS0 ROIs. The figure demonstrates the percentage overlap between 

the distribution of RMSE scores across 10,000 iterations of randomly-

selected samples of the observed data and scrambled correlation ‘noise’ 

data, for each ROI across multiple pairwise comparisons. Significant overlap 

(less than 5%) between pairwise combinations of condition are indicated with 

asterisks. 
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passive viewing (V1: p <.001, V3A/B: p <.001, hV4: p <.001, LO-1: p <.001, 

LO-2: p <.001, IPS0: p <.001). We also identify significant differences 

between blue-yellow attention and blue-yellow passive viewing (all p <.001), 

and between achromatic attention and achromatic passive viewing 

conditions (all p <.001) (see Figure 5.7B).  

 
5.5 Discussion 
 
Here, we demonstrate clear evidence that the human visual cortex alters 

both within-area and between-area activity as a function of attentional task 

(both when attending to low-level visual feature and to stimulus chromaticity). 

In support of our previous findings (see Chapter 4) at the univariate level, we 

identify no differences in bottom-up stimulus-driven BOLD signal modulation 

in response to small changes in the visual stimulus. Additionally, in support 

of recent literature (Brouwer & Heeger, 2009; Seymour et al., 2009, 2010; 

Song et al., 2011; Sumner et al., 2008; Xing et al., 2013) we identity 

relatively little clear evidence of differential univariate BOLD signal 

modulation as a function of task.  

 

In the feature-based analysis, hV4 demonstrates a significantly reduced 

signal modulation when attending to orientation, which may be reflective of 

the fact that hV4 has been reported to contain a reduced percentage of 

orientation-selective neurons in comparison with early visual ROIs (V1, V2 

and V3) (Zeki, 1978).  LO-2 analysis also identified a significantly greater 

BOLD signal modulation when attending to shape, partially fitting with the 

suggestion of Silson et al., (2013) regarding LO-2 as a specialised shape-

processing area.  
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In the chromatic analysis, we identify significantly reduced BOLD signal 

modulation during attention to S-cone defined blue-yellow stimuli than red-

green in all visual ROIs examined. This weaker response during attention to 

S-cone defined stimuli is in fitting with previous research such as Liu & 

Wandell, (2005), Mullen et al., (2015) and Wang & Wade, (2011) however, 

are findings are not limited to the dorsal stream. Hence, in both the feature- 

and chromatic- analysis, overall univariate findings are relatively 

uninformative about feature-specific changes in the visual stimulus or 

attentional state. Our univariate analysis suggests the study of attentional 

modulation at an average, ROI-level scale may not be informative regarding 

the computations performed in and across visual areas a function of 

attentional focus.  

 

Our univariate analysis provides little evidence the existence of feature- or 

chromatic-specific attentional modulation effects. However, we show that 

multivariate, voxel-level scale patterns of modulation in individual visual 

areas differ significantly as a function of attentional task for both the feature- 

and chromatic analyses. Our ability to classify featural attentional state 

supports previous decoding literature (see Brouwer & Heeger, 2009; Clifford, 

Mannion, & McDonald, 2009; Freeman et al., 2011; Kamitani & Tong, 2005, 

2006; Mannion, McDonald, & Clifford, 2009; Sumner et al., 2008) and 

demonstrates attentional focus can modulate voxel-level patterns of 

activation in a distinct and feature-specific manner, supporting our findings 

with achromatic stimuli in Chapter 4.  
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We were also able to classify chromatic attention condition in almost all 

visual ROIs, and differential patterns of pairwise classification were evident 

across the ROIs examined. In all visual ROIs (excluding LO-2), we were able 

to classify red-green attentional data from achromatic data. This provides 

evidence for segregation of L-M and L+M information across the visual 

hierarchy. In V1, hV4 and LO-1 we also demonstrate above-chance 

classification of attention to red-green versus blue-yellow defined stimuli, in 

support of Sumner et al., (2008). These data imply that the information being 

used for each of these discriminations comes from different neuronal 

populations (even when collapsed across different low-level stimulus feature 

attention conditions) and again suggests some level of segregation of blue-

yellow and red-green chromatic channels across the visual cortex. In V3A/B, 

hV4 and LO-1, it was also possible to classify blue-yellow from achromatic 

stimuli, suggesting again that attentional mechanisms are chromatic-specific 

and that different populations of neurons exist for encoding stimulus 

chromaticity across the visual cortex which are preferentially modulated by 

attentional mechanisms.  

 
Across both our feature- and chromatic- analyses, our above-chance 

classifications demonstrate that attention elicits differing voxel-level patterns 

of modulation as a function of task, highlighting the importance of multiple 

spatial scales of analysis in attentional paradigms and the fine-grain nature 

of attentional modulation effects. The ability of the visual cortex to alter the 

activation of specific neurons in particular visual ROIs supports the findings 

of a range of previous researchers (such as Corbetta et al., 1990; Martinez-

Trujillo & Treue, 2004; Martínez-Trujillo & Treue, 2002; Reynolds et al., 2000; 
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Saenz et al., 2002; Serences & Boynton, 2007; Treue & Martínez Trujillo, 

1999).  

 
As in our previous experiment (see Chapter 4) we demonstrate that these 

above-chance classification results do not depend solely on large-scale 

biases in feature- or chromatic-sensitivity in a visual area, which have been 

demonstrated in the past to drive classification performance in some types of 

task (see Clifford et al., 2009; Freeman et al., 2011 and section 1.3.4). 

Instead, our data are consistent with the hypotheses attention selects sub-

populations of relatively fine-scaled maps in individual visual areas, although 

we do not rule out a coarser-scale topographic mapping which may vary 

across subjects (supporting Kamitani & Sawahata, 2010; Kamitani & Tong, 

2005; Kay, Naselaris, Prenger, & Gallant, 2008; Mannion et al., 2009; 

Sumner et al., 2008).  

 
Finally, in both our feature and chromatic connectivity analyses, we identify 

greater average connectivity between ROIs during passive viewing than 

directed attentional focus. This trend supports our previous findings with 

achromatic stimuli (see Chapter 4). This effect is striking in the colour 

analyses, where we identified significant differences between all chromatic 

passive viewing and all chromatic attention conditions. We suggest this 

positive connectivity between visual ROIs during passive viewing is reflective 

of ‘default mode’ style communication between areas (see Raichle, 2015; 

Raichle et al., 2001), at a cm as oppose to typically-studied multi-cm scale. 

We propose once a visual task is provided, particular visual regions 

disengage from this passive connectivity network in order to process most 
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effectively the attended feature, supporting the ideas of Dajani & Uddin, 

(2015); Li et al., (2017); Reineberg, Gustavson, Benca, Banich, & Friedman, 

(2018); Spadone et al., (2015) and Vatansever, Manktelow, Sahakian, 

Menon, & Stamatakis, (2016). Perhaps our connectivity and partial 

correlation findings for colour are more robust as they reflect a combining of 

data across all three low-level visual feature attention conditions, or maybe 

colour is a more salient or engaging stimulus than orientation, achromatic 

contrast or shape, and as such we see a clearer effect in this analysis.  

 

In the partial feature-specific correlation analysis, we identify a significant 

difference in patterns of connectivity between contrast and passive in V3A/B 

and LO-1 and between shape and passive viewing conditions in V3A/B. 

These findings indicate, in support of our previous experiment (see Chapter 

4) that not all ROIs and their connections are modulated in the same way in 

all attentional tasks. The differences we identify between this experiment and 

our previous achromatic experiment may reflect a by-product of combining 

data across stimulus chromaticity. However, we still support an overall trend 

of greater connectivity between visual ROIs during passive viewing than 

versus directed attentional focus.  

 

In conclusion, here, we have employed a relatively novel approach for 

investigating attentional modulation both to low-level stimulus feature and 

chromaticity across the visual cortex, at a range of spatial scales. We 

demonstrate clear evidence of attentional modulation across the visual 

hierarchy and identify patterns of attentional modulation across voxels in 
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individual areas. We also demonstrate that attention elicits a strong 

decorrelation of ROI responses in comparison with passive viewing of a 

stimulus. This paradigm can reveal a wealth of information regarding the 

spatial extent of attentional modulation across the visual cortex in response 

to shifting attentional focus in oppose to more traditionally-studied bottom-up 

stimulus driven changes.  
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6. Investigating patterns of attentional 
modulation in the visual cortex with 
a naturalistic visual stimulus 

 
 
6.1 Abstract 
 
Humans constantly interact with a complex and dynamic visual environment. 

However, the majority of studies probing visual attention use highly 

controlled, low-level visual stimuli, which have little similarity with our natural 

environment. Here, we examined visual cortex activation with fMRI in 

response to shifting attentional focus, during viewing of an uncontrolled, 

relatively naturalistic stimulus (the animated movie Frozen).  We identify 

relatively little evidence of differential patterns of attentional modulation to 

low-level visual features at both the univariate level and multivariate level. 

However, we identify distinct and robust effects of attention on patterns of 

connectivity between a range of visual areas. We identify significantly greater 

positive connectivity between visual regions when attending to faces or 

passively viewing a stimulus in comparison with conditions of directed 

attention. We also provide evidence of differing patterns of network-level 

connectivity in the visual cortex when directing attention towards fine-scale 

differences in a feature category (e.g. vertical, horizontal and diagonal 

orientations). We demonstrate naturalistic stimuli are effective in probing 

mechanisms of visual attention, identifying a synchronisation and 

desynchronization of visual areas a function of attentional task, and these 

differences emerge even at a relatively fine scale of stimulus selectivity.  
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6.2 Introduction 
 
The human brain has evolved to allow for successful navigation through an 

immensely stimulating, complex and dynamic visual world (Spiers & Maguire, 

2007). Typically, visual research focuses on using isolated, highly controlled 

stimuli to investigate a precise aspect of visual processing. However, such 

stimuli do not provide an accurate reflection of how humans interact with 

visual information in their external environment on a day-to-day basis. 

Recently, visual researchers have begun to experiment with naturalistic, real-

world stimuli, to better reflect the rich visual environment we are constantly 

immersed in and to allow for stronger generalisation of findings to real-world 

scenarios. The use of dynamic naturalistic stimuli such as movies in visual 

research is important to ensure the findings obtained with simplified and 

controlled low-level visual stimuli are valid and applicable to the complex and 

dynamic visual world.  

 
Previous research has shown that naturalistic, ‘rich’ visual stimuli can 

produce greater activation of the visual cortex than similar studies with 

relatively low-level visual stimuli (Bartels & Zeki, 2004b). Research has also 

demonstrated that canonical responses of specialised visual regions and 

patterns of connectivity are preserved with the use of naturalistic stimuli 

(Bartels, Zeki, & Logothetis, 2008; Bartels & Zeki, 2004b, 2004a, 2005; Russ 

& Leopold, 2015; Spiers & Maguire, 2007). The effectiveness of naturalistic 

stimuli in providing clear and consistent findings, despite their varying and 

uncontrolled nature has been demonstrated in a number of studies. For 

example, Bartels & Zeki, (2004a) demonstrated highly similar patterns of 

feature-specific and anatomically-localised activity across participants 
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viewing two halves of a film independently. Additional research has also 

demonstrated clear and consistent patterns of functional organisation and 

connectivity (even at the voxel level) through the use of naturalistic 

paradigms, demonstrating the effectiveness of such a stimulus in probing 

mechanisms of attention in the visual cortex (Bartels & Zeki, 2004b; Hasson, 

Nir, Levy, Fuhrmann, & Malach, 2004). 

 

The use of naturalistic stimuli provides clear evidence of functional specificity 

in the visual cortex, such as the identification of colour-specific responses in 

hV4 (Bartels et al., 2008; Bartels & Zeki, 2004a). However, there has not 

been an explicit analysis of the effects of changing attentional focus during 

viewing of a naturalistic stimulus, with researchers instead preferring to 

employ reverse correlation techniques to examine connectivity between 

regions in an unrestricted paradigm (e.g. Bartels & Zeki, 2004b; Hasson et 

al., 2004). In this experiment, we wished to extend our previous findings of 

distinct, feature-specific patterns of attentional modulation with low-level, 

highly controlled visual stimuli (see Chapters 4 and 5), using a naturalistic 

stimulus to examine differential patterns of within- and between-area activity 

as a function of shifting attentional state with a dynamic and complex 

stimulus. We also extended our analysis to explore the effects of directed 

attention to a relatively higher-level visual stimulus (faces), examining 

functional specialisation and changing network connectivity across the visual 

cortex.  
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The fusiform face area (FFA) has been identified as a locus of face-specific 

processing in the visual cortex, demonstrating preferential processing of face 

stimuli in comparison to visual stimuli of other categories, such as scrambled 

faces, houses and hands (Kanwisher, McDermott, & Chun, 1997). Many 

researchers consider the FFA to be a key area in a specialised face-

processing network across the visual cortex (termed the face-specificity 

hypothesis) (Kanwisher et al., 1997; Kanwisher & Yovel, 2006). However, 

other research suggests the FFA is a more generalized region selective for 

fine-grain discriminations in a category, rather than specifically selective for 

faces (Gauthier et al., 1999). Despite this, previous research used 

naturalistic stimuli to demonstrate that an overwhelming majority (94%) of 

movie frames eliciting the greatest FFA activation contained face images, 

supporting the notion of functional specialisation in this region (Hasson et al., 

2004).  Attention directed toward face stimuli has also been shown to 

modulate the response of the FFA (Wojciulik, Kanwisher, & Driver, 1998; Yi, 

Kelley, Marois, & Chun, 2006), boosting its activation preferentially to face 

versus house stimuli. Hence, we wished to examine modulation in the FFA in 

response to attention directed toward different visual stimuli, comparing 

responses when attending to faces with modulation when viewing relatively 

lower-level visual stimulus attributes.  

 

Additional regions such as the occipital face area (OFA) and superior 

temporal sulcus (STS) have also been implicated in face-processing. The 

OFA region has been demonstrated to possess greater responsivity to faces 

versus objects (Gauthier et al., 2000), and the STS has been identified as a 
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region responsive to dynamic faces and bodies, and emotional expressions 

(Allison et al., 2000; O’Toole, Roark, & Abdi, 2002). Like the FFA, attentional 

modulation effects have been noted in the OFA and in the STS, where 

attention directed toward simulated biological motion has been demonstrated 

to modulate activity (Chiu, Esterman, Han, Rosen, & Yantis, 2011; Safford, 

Hussey, Parasuraman, & Thompson, 2010). Evidence of signal modulation in 

the visual cortex in response to face stimuli has been noted across the lateral 

fusiform gyrus (including the FFA), STS and along the middle temporal 

gyrus, forming a face-processing network (Bartels & Zeki, 2004a). Hence, 

attention directed toward face-stimuli produces widespread, yet specific 

activation across the visual cortex and beyond, and examination of these 

regions in response to attention to faces versus attention to low-level visual 

stimulus attributes will allow for investigation of the specialisation of 

processing along this face-specific network.  

 
Further research has investigated attentional modulation during natural 

vision at a finer spatial scale than the level of connectivity between different 

functionally specialised regions. For example, Çukur, Nishimoto, Huth, & 

Gallant, (2013) identified voxels in the occipito-temporal and fronto-parietal 

cortex that shifted their tuning toward an attended category and compressed 

representation of categories semantically unrelated to the attended target. 

Additionally, Chiu et al., (2011) demonstrated differential patterns of voxel-

level activity during attention to race or gender of a perceptually ambiguous 

face, respectively in the rFFA and bilateral OFA. Hence, we also planned to 

investigate the effect of shifting attentional focus at the voxel-level examining 

patterns of activation in individual visual ROIs. Despite the uncontrolled 
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nature of this naturalistic stimulus in comparison to our previous experiments 

(see Chapters 4 and 5), we were hopeful regarding our ability to identify 

similar multivariate activation patterns as identified in Chapters 4 and 5. As 

naturalistic stimuli have been suggested to produce an improved signal-to-

noise ratio, allowing for a better chance of revealing neuronally-specific 

interactions (Bartels & Zeki, 2005).  

 

In light of our previous research and the literature surrounding the use of 

naturalistic paradigms as effective stimuli to probe visual attentional 

mechanisms, we made four predictions. Firstly, we expected little difference 

in BOLD signal modulation at the univariate level in response to attention 

directed towards low-level visual features, given the findings of previous 

literature reflecting the relative fine-scale influence of attentional modulation 

(e.g. Brouwer & Heeger, 2009; Seymour, Clifford, Logothetis, & Bartels, 

2009; Seymour et al., 2010; Song, Rowland, McPeek, & Wade, 2011; 

Sumner et al., 2008). However, we predicted univariate differences in 

activation when attending to faces versus attending to other visual features, 

in the proposed face-specialised regions (FFA, OFA and STS). We predicted 

differences in voxel-level patterns of activation when participants shifted their 

attention between different visual stimuli, and finally, we also predicted 

differing patterns of connectivity between visual regions as a function of 

attentional focus. In short, we predicted we would see evidence of within- as 

well as between-area differences in attentional modulation, though as in 

previous research, these differences may not be wholly evident at the 

coarse-scale level of univariate analysis.  
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6.3 Methods 
 
6.3.1 Participants 

 
14 participants, all University of York staff and students volunteered for the 

study (9 female, mean age 26.71 years). All participants had normal or 

corrected-to-normal vision. Informed consent was collected from participants 

prior to scanning and the study was granted ethical approval by the York 

Neuroimaging Centre Ethics Committee. All participants also possessed 

previously collected population receptive field mapping data (see section 2.2. 

and Chapter 4).  

 

6.3.2 Stimulus presentation 
 
Stimuli were projected onto a screen at the back of the scanner and were 

viewed via an angle mounted mirror on the head coil, at approximately 57cm 

viewing distance. Audio commands were received by participants via padded 

air-based headphones (MR Confon Mkll system), that were fitted in the 

scanner driven by a MOTU 2408mk3 soundcard.  

 
Stimulus presentation was controlled by Psychopy v1.9 (Peirce et al., 2019) 

and stimulus randomisation was controlled by MATLAB 9.4.0 (2018a) 

(MathWorks, Inc., Natick, Massachusetts, United States). Visual stimuli were 

presented using a PROpixx DLP LED projector (Vpixx Technologies Inc., 

Saint-Bruno-de-Montarvile, QC, Canada) with a long-throw lens which 

projected the image through a waveguide behind the scanner bore and onto 

an acrylic screen. Presented images had a 120Hz refresh rate and 1920 x 

1080 resolution. During scanning behavioural responses and scanner trigger 
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pulses were acquired using a USB, 4-button fibre-optic response pad Forp-

932 (Current Designs, Philadelphia, PA).  

 

6.3.3 Data Acquisition 
 
Structural and functional data were collected using a 3T Siemens Magnetom 

Prisma MRI scanner with a 64-channel transmit head and neck coil with a 

frequency of 123.26 MHz. For participants lacking a previously collected 

high-resolution T1 anatomical scan, a high-resolution T1 MPRAGE scan was 

collected (TR = 2300ms, TE = 2.26ms, flip angle = 8°, field-of-view (FOV) = 

256mm3, voxel size = 1.0 x 1.0 x 1.0 mm, 176 slices) in a 5:21 minute scan.  

 

Functional data were collected via 150 T2*- weighted volumes, collecting 30 

axial slices in a bottom-up interleaved acquisition order (TR = 2000ms, TE = 

30ms, flip-angle = 80°, FOV = 19.2cm3, voxel size = 2.0 x 2.0 x 2.5 mm) in a 

5:08 minute scan. To aid alignment between the functional data and high-

resolution structural images, T1-weighted (FLAIR) anatomical images were 

acquired (TR = 3000ms, TE = 9.1ms, flip angle = 150°, FOV = 19.2cm3, 

voxel size = 0.8 x 0.8 x 2.5mm) in a 2:26 minute scan.  

 

6.3.4 Experimental Design 
 
Video clips (without audio) from the popular Disney animated film Frozen 

(Buck & Lee, 2013) were used as the naturalistic stimuli, selected for its 

clearly distinguishable low-level visual feature categories, in comparison with 

non-animated films.  
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We conducted a block design experiment in the fMRI scanner. Participants 

completed an average of 8 runs, each lasting 5:08 minutes, with a full 

scanning session lasting approximately 1 hour. Each run began with 8 

dummy volumes to control for scanner magnetisation effects during which a 

mid-grey luminance background was presented to participants. At the 

beginning of each 30 second block, participants were provided with an audio 

cue directing their attention towards a specific visual feature (i.e. during an 

‘attend to vertical’ block, participants should actively seek vertically-oriented 

stimuli). For each low-level visual feature, there were three possible 

dimensions to attend to; orientation (horizontal, vertical or diagonal), 

chromatic colour (red, green or blue) and shape (square, circular or 

triangular). Faces and passive viewing periods were also included. 

Participants were instructed to press and hold a button whenever they 

identified the target feature in the naturalistic stimuli. They were also 

instructed to release their button press if the stimulus disappeared or if they 

shifted their attention to a different example of the target feature and to only 

press the button again when they detected an example of the particular 

attended stimulus. During passive viewing, participants were instructed to 

view the stimulus without explicitly directing attention to any single stimulus 

feature.  

 

The order of attention cues was semi-randomised in each run. Each run 

always contained an attend to faces and a passive viewing block, and at 

least one instance of each of the three low-level visual feature categories. 

There were 3 possible orders of randomisation for each run, which were 
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counterbalanced across participants. Additionally, the order of video clips 

was randomised across participants (see Figure 6.1). 

 

6.3.5 Defining regions of interest (ROIs) 
 

As in previous experiments, visual regions V1, V2, V3A/B, hV4, LO-1, LO-2, 

MT+ and IPS0 were manually delineated on the basis of polar angle 

reversals and eccentricity for each participant (Dumoulin & Wandell, 2008) 

 
Figure 6.1 Naturalistic fMRI Attentional Modulation Experimental Design. At 

the start of each 30 second block an audio cue directed participants attention 

towards a particular stimulus feature. Participants freely viewed the Pixar 

movie Frozen (individual frames shown here for demonstration) and 

responded whenever they identified the feature of cued attentional focus. The 

order of attention cues and movie clips were randomised across participants.  
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(for full details see section 2.2 and Chapter 4). For each participant, we 

produced a control auditory cortex 5cm spherical ROI from standardised 

Talairach coordinates centred on LH: -49, -20, 9, RH: 48, -21, 10 (Lacadie et 

al., 2008). In the same format, we specified three 5cm spherical ROIs in 

regions known for their involvement in face stimuli. The STS was defined 

from average Talairach coordinates stated in Vander Wyk, Voos, & Pelphrey, 

(2012), LH; 56.9, -42.6, 7.6, RH: 54.8, -40.9, 13.4. OFA ROIs were centred 

on LH: -34, -81, -14, RH: 38, -80, -7 Talairach coordinates (Rossion et al., 

2003). Finally, FFA coordinates were extracted from Goffaux, Schiltz, Mur, & 

Goebel, (2012), LH: -38, -45, -18, RH: 37, -42, -19.  

 

6.3.6 fMRI pre-processing 
 

Functional data were analysed using MATLAB 2016a (MathWorks, MA) and 

VISTA software (https://vistalab.stanford.edu/software/) (Vista Lab, Stanford 

University). The first 8 seconds of each run were manually discarded prior to 

analysis to mitigate T1 saturation effects. Between- and within-scan motion 

correction was performed to compensate for motion artefacts occurring 

during the scan session. Any scans with > 3mm movement were removed 

from further analysis (no attentional modulation runs were removed on the 

basis of excessive movement). The VISTA rxAlign tool was then used to co-

register the T1-weighted FLAIR scan to the high-resolution T1-weighted full-

brain anatomical scan. We applied a manual alignment using landmark 

points to bring the two volumes into approximate register, followed by a 

robust EM-based registration algorithm to fine-rune the alignment (Nestares 

& Heeger, 2000). The final alignment was visually inspected to ensure the 
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automatic registration procedure optimised the fit. These functional data 

were then interpolated to the anatomical segmentation. 

 

General linear models (GLM) were then implemented to test the contribution 

of each stimulus contribution to the BOLD time course (Friston et al., 1998). 

We used the double-gamma Boynton HRF from the SPM8 toolbox, and fit 

the model to an averaged time course of BOLD signal of each stimulus by 

minimising the sum of squared errors (RSS) between the predicted 

timeseries and measured BOLD response (Penny et al., 2006). In this GLM, 

beta weights for each condition were obtained by multiple linear regression.  

 
The first GLM analysed attentional modulation across general low-level 

visual feature categories (3-feature). Data were summarised as 30 second 

blocks of attention to orientation, colour or shape (collapsed across the 

subcategories of each condition respectively, e.g. orientation was averaged 

across vertical, horizontal and diagonal blocks). 30 second blocks of 

attention to faces and passive viewing were also entered into the GLM. This 

resulted in between 8 and 24 beta weight estimates for across conditions at 

the multivariate level.  

 

The second GLM split analysis into the individual subcategories of each low-

level visual feature (3x3-feature). 30 second blocks were classified as 

attention to vertical, horizontal, diagonal, red, green, blue, circular, square, 

triangular, face or passive viewing conditions. This resulted in between 4 and 

8 beta weights across conditions at the multivariate level.  

 



 202 

6.3.7 Statistical Analysis 
 
6.3.7.1 Univariate 

We performed very similar univariate, multivariate and connectivity analysis 

pipelines as employed in Chapters 4 and 5. Firstly, we extracted the 

percentage variance explained in our GLMs from each ROI. Participants with 

less than 5% variance explained (averaged across all visual ROIs; V1, V2, 

V3A/B, hV4, LO-1, LO-2 and MT+) were removed from further analysis. This 

resulted in the removal of two participants from the 3-feature analysis 

pipeline. Hence, data from 12 participants was included in the 3-feature 

analysis, and data from all 14 participants was included in the 3x3-feature 

analysis. Attentional modulation data were then analysed through multiple 

one-way repeated ANOVAs, Benjamini-Hochberg corrected across the 

number of ROIs to assess attentional modulation differences in both signal 

modulation across conditions, for both the 3-feature and 3x3-feature 

analyses respectively.  

 

6.3.7.2 Multivariate 

To investigate voxel-level patterns of activation in each visual ROI, beta 

weights were calculated for each attentional focus predictor timeseries (for 

both the 3-feature and 3x3-feature analyses) for each voxel, using 

deconvolution to examine the fit of the HRF to the timeseries data. In each 

ROI, we selected the 100 voxels that explained the largest amount of 

variance in the GLM across conditions. These multivariate beta weights were 

z-scored across voxels and input into a weighted support vector machine 

(SVM) classification, employing a radial basis function kernel and leave-one-
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out cross validation to decode attentional focus (Chang & Lin, 2011). We 

initially assessed multi-class decoding accuracy across the attention 

conditions, supplying data from multiple conditions simultaneously using the 

‘one-against-one’ approach (Knerr et al., 1990). This analysis yielded a 

single classification score for each participant for the 3-feature analysis. For 

the 3x3-feature analysis we performed a separate multi-class classification 

for each low-level visual feature, e.g. classifying horizontal, vertical and 

diagonal orientations simultaneously. One-sample Wilcoxon signed rank 

tests were then performed to assess if classification accuracies differed 

significantly from chance level performance, which were Benjamini-Hochberg 

corrected across ROIs to control for false discovery rate.  

 
Following this, in order to identify the driving forces behind any differential 

patterns of BOLD signal modulation as a functional of attentional state, we 

performed pairwise classification between comparisons of two attentional 

conditions in turn. For the 3-feature condition, weighted classification was 

performed between pairwise combinations of orientation versus colour, 

orientation versus shape, orientation versus faces, colour versus shape, 

colour versus faces and shape versus faces. For the 3x3-analysis, a 

weighted classification was performed for each of the three low-level 

stimulus conditions individually. For example, in the orientation analysis, we 

assessed classification accuracies between vertical versus horizontal, 

vertical versus diagonal and horizontal versus diagonal orientations 

independently.   
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6.3.7.3 Timeseries connectivity analysis 

To examine featural attention-specific connectivity between ROIs, we 

performed the same connectivity analyses as used in Chapters 4 and 5. 

However, as in Chapter 5, in both the 3-feature and 3x3-feature analyses, 

there were not an equal number of repetitions across all attentional 

conditions. Therefore, we performed bootstrapping analyses to simulate data 

for particular conditions. We calculated the minimum and maximum number 

of condition repetitions (in TRs) across all attention categories. For each 

category, we then calculated the number of bootstrapped runs required to 

reach the maximum number of repetitions. For each of these required 

bootstrapped runs, we sampled (with replacement) half of the data across 

TRs for that condition and calculated the mean across those TRs to provide 

a simulated timeseries across all voxels for that TR. We repeated the same 

process across all condition repetitions for each participant to ensure every 

attentional condition had the same number of repetitions. The same process 

was performed for both the 3-feature and 3x3-feature analyses.  

 

We then employed the same connectivity analysis as used in our previous 

experiments. This involved extracting each participant’s multivariate 

timeseries data, removing noise from and averaging across all voxels in an 

ROI to yield a single univariate timeseries (see Chapter 4 for a detailed 

explanation).  

 

Kendall’s tau correlations were then performed for all pairwise combinations 

of ROI (V1, V3A/B, hV4, LO-1, LO-2 and IPS0), producing a correlation 
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matrix for each attentional condition. We then assessed the similarity of 

these patterns of connectivity across ROIs in each condition, though a one-

way repeated measure ANOVA with Bonferroni-corrected post-hoc tests for 

the 3-feature and the three, 3x3-feature analyses respectively.  

 
Next, we wished to investigate if particular ROIs were driving potential 

differences in connectivity across visual regions as a function of attentional 

task. For each ROI, we extracted data reflecting the correlation of that ROI 

with all other ROIs for each participant. From all participants, we then 

sampled data with replacement, with a sample reflecting a full complement of 

ROI-specific correlation data for each attentional condition, and we 

calculated the mean across these samples. To simulate noise, from those 

same samples, for each pairwise comparison of conditions, we switched the 

condition labels approximately 50% of the time, keeping ROI-ROI 

relationships constant. We then calculated the average across these 

scrambled condition-specific datasets.  

 

Following this, we calculated the root mean squared error (RMSE) distance 

between each pairwise combination of condition vectors for both the 

observed and noise data. This provided a measure of differences in 

connectivity associated with a particular ROI across featural attention 

conditions. We repeated this process across 10,000 iterations for each ROI 

comparison.  Across all iterations, we calculated the percentage of observed 

RMSEs for a pairwise comparison falling below the RMSE of a comparable 

simulated noise distribution. Any percentile below 5% indicated a difference 
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in ROI-specific patterns of connectivity between two attentional modulation 

conditions which was significantly larger than predicted by chance (p <.05).  

 

6.4 Results 
 

6.4.1 Univariate- 3 feature attentional modulation 
 

We wished to examine changes in BOLD signal modulation as a function of 

attentional focus directed toward orientation, colour, shape or face attributes 

in a complex, dynamic visual stimulus. Previous research suggests some 

visual regions (particularly the FFA, OFA and STS) possess particular 

preferences for a single visual feature, and as such we predicted we may 

see significant differences in fMRI activity for these particular features in 

those ROIs (e.g. Allison et al., 2000; Gauthier et al., 2000; Kanwisher et al., 

1997; Silson et al., 2013).  

 

We first sought to identify evidence of attentional modulation with this 

uncontrolled, naturalistic stimulus. We calculated an average beta value for 

each participant across the four attentional conditions (orientation, colour, 

shape and faces) and performed multiple Wilcoxon signed-rank tests to 

assess if the average level of attentional modulation was significantly 

different from zero, for all ROIs examined. The resulting significance values 

were Benjamini-Hochberg corrected across ROIs to control for the increased 

risk of a false positive error.  In almost all visual ROIs examined, average 

attentional modulation of the BOLD signal was significantly greater than zero 

(V1: W(11) = 3.06, p = .004, V3A/B: W(11) = 3.06, p = .004, hV4: W(11) = 

3.06, p = .004, LO-1: W(11) = 2.98, p = .004, LO-2: W(11) = 3.06, p = .004, 
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OFA: W(11) = 2.90, p = .005). In our control auditory cortex ROI (A1), 

average attentional modulation was significantly below zero (W(11) = -2.98, 

p = .043). In both the FFA and STS, averaged attentional modulation of the 

BOLD signal was not significantly different from zero (p > .05).  

 

We then performed multiple one-way repeated measures ANOVAs, 

Benjamini-Hochberg corrected for the number of ROIs, with Bonferroni-

corrected post-hoc tests to assess differences in BOLD signal modulation 

during attention to orientation, colour, shape or faces in our naturalistic 

stimulus. Across almost all visual ROIs examined we see no significant 

difference in BOLD signal modulation between attention to orientation, colour 

and shape (p > .05) (see Figure.2A). In V3A/B, we identify significantly 

greater signal modulation during attention to orientation than to colour or 

shape respectively (F(3,33) = 52.24, p <.001, post-hoc p = .005, p = .047 

respectively). In LO-2, we identify significantly increased BOLD signal 

modulation during attention to shape than colour (F(3,33) = 19.07, p <.001, 

post-hoc p = .003). In regions V1, LO-1, FFA, OFA, STS and A1, we identify 

no significant differences in patterns of BOLD modulation across attentional 

states (p > .05).  

 

Despite, detecting relatively little evidence of univariate BOLD signal 

changes across our three low-level visual feature attention conditions, in 

V3A/B, hV4, and LO-2, we identify significantly reduced BOLD signal 

modulation during attention to faces than to any other visual feature (V3A/B; 

versus orientation, p <.001, versus colour, p = .001 and versus shape, p 
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<.001, hV4; (F(3,33) = 16.39, p <.001, versus orientation, p = .002, versus 

colour, p = .043 and versus shape p <.001, LO-2; versus orientation, p = 

.012, versus colour, p = .041 and versus shape p <.001). In our control 

auditory cortex ROI (A1), we identify no significant difference in BOLD signal 

modulation across all attentional conditions (F(3,33) = 1.60, p = .256) (See 

Figure 6.2). 
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6.4.2 Univariate- 3x3 feature attentional modulation 
 

In our analysis of fine-scale stimulus dimensions in an individual visual 

feature, we again wished to assess if attention directed towards these 

relatively small differences in a category elicited BOLD signal modulation 

significantly greater than zero. For each stimulus category (orientation, 

colour and shape), we calculated the average beta value across the three 

feature dimensions (e.g. across vertical, horizontal and diagonal orientations) 

for each participant. We performed multiple Wilcoxon signed-rank tests; 

Benjamini-Hochberg corrected across ROIs to assess if levels of averaged 

BOLD signal attentional modulation were significantly different from zero. 

 

In all analyses, almost all visual ROIs (excluding the STS) exhibited 

significantly greater BOLD signal modulation during attention versus an 

absence of signal modulation (0). In A1, in all conditions, averaged 

attentional BOLD signal modulation was significantly below zero (see Table 

6.1).  

Table 6.1 Almost all visual ROIs exhibit significantly greater BOLD signal 
modulation during attention versus an absence of signal.    

 Orientation Colour Shape 
ROI W p W p W p 
V1 3.30 .002** 3.30 .002** 3.30 .002** 

V3A/B 3.30 .002** 3.30 .002** 3.30 .002** 
hV4 3.30 .002** 3.30 .002** 3.30 .002** 
LO-1 3.23 .002** 3.17 .002** 3.23 .002** 
LO-2 3.30 .002** 3.23 .002** 3.30 .002** 
OFA 3.04 .003** 3.23 .002** 3.17 .002** 
FFA 2.10 .040* 2.29 .025* 2.17 .034* 
STS -0.09 .925 0.28 .778 0.28 .778 
A1 -3.23 .002** -3.17 .002** -3.17 .002** 

* p <.05, ** p<.01, *** p<.001 
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Next, we performed multiple one-way repeated measures ANOVAs, with 

associated Bonferroni-corrected post-hoc tests to compare BOLD signal 

modulation across the three stimulus dimensions in each low-level visual 

feature category respectively.  

 

In the orientation analysis, in V1, V3A/B, FFA, OFA, STS and A1, we identify 

no significant differences in BOLD signal modulation across attention to 

vertical, horizontal and diagonally-oriented stimulus conditions (p > .05). In 

both visual areas hV4 and LO-1, we identify significantly greater modulation 

to horizontal than vertically-oriented stimuli (hV4: F(2,26) = 6.27, p = .018, 

post-hoc p < .001, LO-1: F(2,26) = 7.17, p = .015, post-hoc p = .015). In LO-

2, we demonstrate significantly reduced modulation during attention to 

vertical than attention to both horizontal- and diagonally-oriented stimuli 

(F(2,26) = 9.09, p = .009, post-hoc p = .015, p = .024 respectively) (see 

Figure 6.3A).  

 

In our chromatic analysis, we identified no significant differences in BOLD 

signal modulation during attention directed toward red, green, or blue stimuli 

in any ROI examined (p > .05) (see Figure 6.3B). In almost all ROIs (V1, 

hV4, LO-1, LO-2, FFA, OFA and A1), we also identify no significant 

differences in fMRI activation across attention to circular, square and 

triangular shape conditions. In V3A/B however, we demonstrate significantly 

reduced modulation during attention to circular stimuli in comparison to 

attention to square or triangular stimulus attributes (F(2,26) = 6.85, p = .004, 

post-hoc p = .040 and p = .019 respectively). In the STS, we identify 
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significantly reduced modulation during attention directed towards triangular 

stimuli than to circular stimuli (F(2,26) = 7.54, p = .003, post-hoc p = .012) 

(see Figure 6.3C). 
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6.4.3 Multivariate- 3 feature attentional modulation 
 
Using a complex, dynamic, naturalistic stimulus in this experiment provided a 

wealth of visual information for our participants to selectively to attend to. Our 

univariate analyses revealed however, that we can predominantly only 

distinguish attention to faces, versus attention to low-level stimulus attributes 

in a limited subset of visual ROIs. We therefore asked, as identified in 

Chapters 4 and 5, if attentional modulation exerts a differential influence on 

voxel-level patterns of activation in visual ROIs.  

 

We performed weighted four-way support vector machine multivariate 

pattern classification analysis, simultaneously classifying orientation, colour, 

shape and face attention data. One-sample Wilcoxon signed rank tests 

versus chance performance (25%), Benjamini-Hochberg corrected for the 

number of ROIs, revealed attentional state could be decoded at rates 

significantly greater than chance in almost all ROIs examined (V1: W(11) = 

2.67, p = .032, V3A/B: W(11) = 2.82, p = .024, hV4: W(11) = 2.51, p = .044, 

LO-1: W(11) = 2.94, p = .023, FFA: W(11) = 3.06, p = .023, OFA: W(11) = 

2.98, p = .023 and STS: W(11) = 2.90, p = .023). In LO-2 and A1, 

classification accuracies did not significantly exceed chance (p > .05). Mean 

decoding accuracy across ROIs ranged from 27.86 to 38.91% (see Figure 

6.4A).  
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In order to identify which attentional conditions specifically were driving these 

above chance classifications, we then performed multiple pairwise 

classification analyses, comparing patterns of activation across two 

attentional conditions at a time. Significance was again assessed using one 

sample Wilcoxon signed-rank tests versus chance (50%), Benjamini-

Hochberg corrected for the number of comparisons across ROIs. In V1, it 

was possible to decode attention to faces versus orientation (W(11) = 3.07, p 

= .028) and colour (W(11) = 2.99, p = .031) at rates significantly above 

chance (see Figure 6.5).  

 
Figure 6.4 Multivariate Support Vector Machine decoding. Simultaneous 

classification of face, orientation, contrast and shape attention data reveal 

attentional state can be accurately decoded in almost all visual ROIs 

examined. Error bars reflect +/- 1 SEM and significance asterisks indicate 

Benjamini-Hochberg corrected values.  
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In V3A/B, hV4, LO-2, FFA and OFA, successful classification was evident 

between attention to faces versus orientation, colour and shape respectively. 

In the STS, successful classification was identified between faces and 

 
Figure 6.5 Two-way support vector machine decoding. Within all visual ROIs 

examined, successful classification was predominantly evident between 

attention to face and attention to low-level visual feature conditions. Within 

V3A/B and hV4, voxel patterns differ significantly between attention to 

orientation and attention to shape conditions. Significance asterisks indicate 

Benjamini-Hochberg corrected values.  
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orientation and faces and colour. Finally, in both V3A/B and hV4, successful 

classification was evident between orientation and shape (see Table 6.2).  
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Hence, the vast majority of these successful classifications at the pairwise 

level were driven by differences in patterns of activation between attention to 

faces and attention to low-level visual stimuli. To support this, a further multi-

class (three-way) SVM decoding analysis was performed, classifying 

orientation, colour and shape data simultaneously. This identified no 

classification accuracies significantly above chance (33.33%) in any ROI 

examined (p > .05).  

 

6.4.4 Multivariate- 3x3 feature attentional modulation 
 

We then repeated the SVM analysis for each low-level visual feature 

category independently to investigate if was possible to detect fine-scale, 

voxel-level patterns of modulation which differed across dimensions in a 

feature category. We first performed multi-class classification and performed 

multiple one-sample Wilcoxon signed-rank tests assessing classification 

performance versus chance (33.33%). These analyses revealed no above-

chance classification performance across vertical, horizontal or diagonal 

orientations, red, green or blue stimulus chromaticities or circular, square or 

triangular shapes respectively (p > .05). Mean classification accuracy ranged 

from 29.29-37.59% for the orientation analysis (see Figure 6.6A), 29.86- 

36.27% for attention to colour (see Figure 6.6B) and 35.57-47.71% for 

attention to shape conditions (see Figure 6.6C).  

 

We again performed classification on all pairwise combinations of conditions 

in each feature category. In all classifications performed, we identified no 
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significantly above-chance (50%) decoding accuracies for any of the stimulus 

feature conditions (p > .05).  

 

 
Figure 6.6 3x3 feature multivariate support vector machine decoding. Across 

orientation (A), colour (B) shape (C) low-level feature analysis conditions, no 

significant classification of attentional state was evident within multiclass or 

pairwise support vector machine decoding. Error bars reflect +/- 1 SEM.  

22 
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6.4.5 Timeseries connectivity analysis 
 
6.4.5.1 3-feature  

 
Our univariate analysis demonstrated that, differences in BOLD responses 

across attentional conditions were driven largely by a reduction in BOLD 

signal modulation during attention to faces. Hence, we identified relatively 

little evidence of feature-specific attentional modulation at the univariate 

level. In our final analysis, we asked whether attention may influence the way 

individual ROIs interact across the visual cortex, examining changes in 

functional connectivity as a function of attentional state.  

 

We performed non-parametric Kendall’s Tau correlations between univariate 

time-courses from each pairwise combination of visual ROIs, for each 

participant and attentional state. We averaged these normalised, Fisher-z 

transformed correlation matrices across individuals to demonstrate group-

level changes in connectivity between ROIs as a function of attentional task 

(see Figure. 6.7A). A one-way repeated-measures ANOVA with Bonferroni-

corrected post-hoc tests revealed significantly greater positive correlation 

between ROIs during passive viewing than during all low-level visual feature 

conditions (orientation, colour and shape) (F(4,56) = 45.09, p <.001, post-hoc 

p <.001 for all comparisons). We also identified significantly greater positive 

connectivity between ROIs during attention to faces than low-level visual 

features (all p <.001). Finally, we also identified significantly greater negative 

correlation between ROIs during attention to colour than to orientation (p 

<.001).  
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We then asked whether these differences in connectivity between attentional 

task conditions were driven by a particular subset of ROIs, or whether 

patterns of connectivity were consistent across visual ROIs. We calculated 

the Euclidean distance (RMSE) between pairwise comparisons of attentional 

task condition (averaged across a subsample of participants for each 

condition) for both observed and noise (scrambled attention-condition label) 

datasets, bootstrapped across 10,000 iterations. In almost all ROIs 

examined, we identify similar patterns of partial correlation as a function of 

attentional task. Almost all regions investigated demonstrate significantly 

greater connectivity during attention to faces versus all low-level visual 

attention conditions (V1: p = .018, p = .002, p = .001, V3A/B: colour p = .014, 

shape p = .030, hV4: p = .008, p <.001, p <.001, LO-1: p = .009, p <.001, p = 

.006, LO-2: p = .011, p <.001, p <.001, IPS0: all p <.001 respectively). 

Almost all ROI partial correlations also show significantly greater positive 

connectivity during passive viewing compared with attention to low-level 

visual features  (V1: p = .004, p = .002, p = .001, V3A/B: colour p = .002, 

shape p = .012, hV4: p = .012, p = .001, p <.001, LO-1: all p <.001, LO-2: p = 

.013, p <.001, p <.001, IPS0: p = .001, p <.001, p <.001). Almost all ROIs 

also show significant differences in connectivity between orientation and 

colour conditions (hV4: p = .012, LO-1: p <.001, LO-2: p = .001, IPS0: p = 

.008) (see Figure 6.7B).  
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Figure 6.7 Greater overall connectivity during passive viewing and attention 

directed to faces than attention directed to low-level stimulus features. A) 

indicates group feature-specific averaged attentional modulation connectivity 

values. These correlation matrices indicate significantly greater positive 

connectivity during attention to faces and passive viewing. B) Bootstrapped 

measures of distance between pairwise combinations of attentional focus 

conditions, for V1, V3A/B, hV4, LO-1, LO-2 and IPS0 ROIs. The figure 

demonstrates the percentage overlap between the distribution of RMSE scores 

across 10,000 iterations of randomly-selected samples of the observed data 

and scrambled correlation ‘noise’ data, for each ROI across multiple pairwise 

comparisons. Significant overlap (less than 5%) between pairwise 

combinations of condition are indicated with asterisks. 
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6.4.5.1 3x3-feature  

 
We also sought to examine patterns of connectivity across ROIs as a 

function of fine-grain differences in a low-level visual feature category (e.g. 

comparing patterns of connectivity during attention to vertical, horizontal and 

diagonally-oriented lines). We computed non-parametric Kendall’s Tau 

correlations between ROI-averaged time courses from each pairwise 

combination of visual ROIs for each featural attention condition, separately 

for orientation, colour and shape analyses. One-way repeated measures 

ANOVAs with Bonferroni-corrected post-hoc tests conducted on these 

normalised, Fisher-z transformed correlation coefficients revealed differing 

patterns of connectivity as a function of attention to different stimulus 

dimensions in a feature category. We identified significantly greater negative 

connectivity during attention to diagonal than to vertical or horizontal stimuli 

(F(2,28) = 16.86, p <.001, all post-hoc p <.001) (see Figure 6.8A). We also 

identified significantly greater connectivity during attention to red than to 

green or blue coloured stimuli (F(2,28) = 23.37, p <.001, all post-hoc p 

<.001) (see Figure 6.8B). Finally, in the shape analysis, we detected 

significantly greater connectivity during attention to square stimuli than 

attention to circular or triangular (F(2,28) = 83.27, p <.001, post-hoc p <.001) 

(see Figure 6.8C).  

 
We then asked whether these differences in patterns of connectivity were 

driven by correlations with particular ROIs, calculating the RMSE distance 

between pairwise comparisons of attentional task conditions (averaged 
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across a subsample of participants for each condition), for both observed 

and noise datasets, bootstrapped across 10,000 iterations.  

 

For the orientation analysis, in almost all ROIs examined, we demonstrated a 

significantly greater positive connectivity during attention to vertical versus 

attention to diagonal stimuli (hV4: p = .001, LO-1: p = .005, LO-2: p <.001, 

IPS0: p <.001). We also identified significant negative connectivity during 

attention to diagonal versus horizontally-oriented stimuli in many visual areas 

(V1: p = .007, hV4: p = .021, LO-1: p = .015, LO-2: p = <.001). Finally, we 

demonstrate significant differences between vertically- and horizontally-

oriented stimuli in V1 (p = .050) and LO-2 (p = .045) (see Figure 6.8A).  

 

In the colour analysis, almost all ROI partial correlations demonstrate a 

significantly greater positive connectivity during attention to red versus green 

stimuli (V3A/B: p =.022, hV4: p <.001, LO-1: p = .005, LO-2: p = .006, IPS0: 

p = .004). In hV4, we also see a significant difference in connectivity between 

attention to green and blue stimuli (p = .019) (see Figure 6.8B). 

 

Finally, for the shape analysis, all ROIs examined demonstrate a significant 

greater positive connectivity during attention to square versus circular stimuli, 

and also between attention to square and attention to triangular stimuli (all p 

<.01) (see Figure 6.8C). 
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6.5 Discussion 
 

Here, we investigated patterns of attentional modulation during the viewing of 

a relatively naturalistic stimulus. We demonstrate little difference in univariate 

fMRI signal modulation across attentional tasks conditions, both at coarse 

(orientation, colour and shape) and relatively finer (e.g. vertical, horizontal 

and diagonal orientations) scales. Strikingly, we see no evidence of face-

selective responses, indexed by different patterns of modulation for attention 

to faces than attention to low-level stimulus features, in any of the face-

specific regions examined (FFA, OFA and STS).  

 

We believe this is likely a reflection of the fact these face-specific regions 

have been identified traditionally through manipulation of the stimulus, rather 

than of attentional focus. For example Kanwisher et al., (1997) identified 

face-selective regions through comparison of activation elicited from passive 

viewing of photographs with faces compared with photographs containing 

common objects. Additionally, previous research demonstrating attentional 

modulation of the FFA employed differing paradigms to our own, such as 

covert attention and repetition attenuation effects (Wojciulik et al., 1998; Yi et 

al., 2006). Hence, we believe differences between our task design, in which 

participants were presented with constant information across all of our 

stimulus categories and were asked to overtly attend to stimulus features in a 

dynamic and uncontrolled stimulus, in comparison to previous attention 

studies presenting relatively more controlled faces in comparison to scene 

stimuli, may provide a suggestion as to why we fail to detect face-selective 

responses in these regions.  
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In V3A/B, hV4 and LO-2, we identify significantly reduced BOLD signal 

modulation during attention to faces than low-level stimulus attributes, which 

may reflect the relatively more complex and higher-order nature of face 

stimuli, with reduced processing in earlier visual areas. In V3A/B, we also 

identify significantly greater attentional modulation during attention to 

orientation, versus when attention is directed towards stimulus colour or 

shape. In the literature, there is no clear consensus regarding the role of 

V3A/B in the processing of any single visual feature, hence it’s differential 

activation here, which we have not identified in our previous experiments 

(see Chapters 4 & 5) is likely a reflection of the nature of the dynamic, 

uncontrolled relatively naturalistic stimulus used here, which provides a far 

richer source of visual stimulation than our highly-controlled RF pattern 

stimulus.  

 

We also identify significantly greater BOLD modulation during attention to 

shape versus colour in LO-2, which supports our previous findings (see 

Chapters 4 & 5), and provides partial support for the double-dissociation of 

LO-1 and LO-2, identified by Silson et al., (2013). We identify no significant 

changes in BOLD signal modulation in response to differing attentional task 

in V1 and LO-1. Overall, examining differences in signatures of attentional 

modulation across task at the level of individual ROIs is relatively 

uninformative regarding feature-specific attentional effects across the visual 

cortex, particularly so for the processing of relatively lower-level stimulus 

attributes (e.g. orientation, colour and shape).  
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In the 3x3 analysis, where we break down the overarching low-level stimulus 

categories into their three respective dimensions (e.g. red, green and blue), 

we again find relatively little evidence of differences in attentional modulation 

across the visual cortex when attending to different low-level stimulus 

dimensions. In our orientation analysis, we identify no evidence of differing 

patterns of attentional modulation when switching between attention to 

vertical, horizontal and diagonally-oriented stimuli in V1, V3A/B, FFA, OFA or 

the STS. In hV4, LO-1 and LO-2 however, we identified significantly greater 

BOLD modulation during attention to horizontal than to vertically-oriented 

stimuli. In LO-2, we also identified significantly greater signal modulation 

during attention to horizontal than to diagonally-oriented stimuli. These 

regions have been implicated in the relatively higher-level processing of form 

(see Loffler, 2008 for a review; Silson et al., 2013), and it is likely attending to 

different directions of orientation may stimulate form-selective mechanisms in 

some capacity, such as the processing of curvature. Orientations in this 

naturalistic stimulus are heavily associated with form and structure, likely to a 

greater extent than is the case in our comparison highly-controlled RF 

pattern stimulus.  

 

We identify no significant differences in BOLD signal modulation when 

attention switched between red, green and blue stimuli. This again, is likely a 

reflection of our visual stimulus. In our previous research (see Chapter 5) we 

used isoluminant stimuli (which equated only the relevant chromatic, and not 

luminance channel) to identify a robust difference in univariate attentional 

modulation between red-green and blue-yellow stimuli. However, in this 
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experiment, our stimuli were not isoluminant, and we did not probe attention 

to distinct chromatic channels (e.g. L-M, S+(L-M)). Hence, our lack of 

difference in univariate attentional modulation between red-, green- and blue-

stimuli is likely a reflection of the fact we did not probe clear and segregated 

channels of chromatic information in the visual cortex.  

 

Finally, in our univariate analysis identifying differences in patterns of 

attentional modulation across shape dimensions, we identify no clear 

evidence of differential patterns of modulation across circular, square or 

triangular-shape attentional focus. In V3A/B, we identified significantly 

reduced modulation to circular than to square or triangular stimuli, and in the 

STS, we identified reduced modulation to triangular than to circular oriented 

stimuli.   

 

Next, we sought to identify if feature-specific patterns of attentional 

modulation could be better distinguished when examining activation across 

many voxels in a particular ROI, rather than taking a relatively coarse-scale 

average measure to summarise activity in a visual region. We first 

demonstrated we could decode attentional state successfully in almost all 

ROIs examined, when simultaneously classifying data from attend to 

orientation, colour, shape and face conditions. However, further analysis 

demonstrated these successful classifications were predominantly driven by 

voxel-level differences in patterns of activation during attention to faces, 

versus attention to lower-level stimulus attributes (orientation, colour or 

shape). For example, in hV4, LO-1, LO-2, FFA and OFA, it was possible to 
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decode faces from orientation, colour and shape at rates significantly higher 

than expected by chance. In V1 and the STS, the pattern was very similar; 

we were able to decode multivariate voxel-level activation during attention to 

faces versus attention to orientation or colour. The only successful 

classifications not driven by differences in patterns of activation in 

comparison with faces, were evident in hV4, LO-1, LO-2 and IPS0 where it 

was possible to decode patterns of modulation across attention to orientation 

and colour conditions.  

 

Overall, unlike our previous findings (see Chapters 4 & 5), and past research 

(e.g. Brouwer & Heeger, 2009; Kamitani & Tong, 2005, 2006; Mannion, 

McDonald, & Clifford, 2009; Sumner et al., 2008), we identify little evidence 

of our ability to decode attentional state when attending to low-level stimulus 

characteristics in patterns of voxel-level activation (across orientation, colour 

and shape). We repeated this multivariate classification analysis, also 

examining patterns of activation across finer-scale dimensions in an 

overarching stimulus category. Previous research has demonstrated the 

ability to decode relatively small differences in a stimulus category, such as 

the ability to correctly predict which of eight different stimulus orientations or 

directions of motion was attended (Kamitani & Tong, 2005, 2006). However, 

in all three low-level visual feature analyses we detect no evidence of 

differential patterns of voxel-level activation when we switch our focus 

between these relatively fine-grained differences in a low-level visual 

stimulus category (e.g. vertical, horizontal and diagonal orientations). These 

findings may reflect the uncontrolled nature our naturalistic stimuli; we did not 
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ask our participants to maintain central fixation, and our stimulus covered a 

far greater proportion of the visual field in comparison to our RF pattern 

stimuli. Alternatively, the previous results identified (e.g. Kamitani & Tong, 

2005) may have been driven by artefactual responses linked to spatial 

attention or large-scale spatial biases. Attention to vertical versus horizontal 

central gratings might, for example, drive the vertical versus horizontal 

midline. Our naturalistic stimulus has no consistent spatial display of 

attended stimuli, and participants were free to fixate anywhere in the visual 

scene, therefore, our findings are unlikely to reflect any such large-scale 

spatial biases.  

 

These factors, in combination with the dynamic nature of a movie stimulus 

may mean we do not see consistent patterns of activation across voxels, 

which is far likelier to result from fixed viewing of a highly controlled low-level 

visual stimulus. This greater variation in voxel-level activation is likely to have 

negatively impacted the ability of our classifier to identify consistent patterns 

in activation across attention to different low-level stimulus attributes. As 

noted in previous literature, natural stimuli do not always replicate results 

obtained in artificial settings (Bartels et al., 2008).  

 
Finally, we investigated effects of attentional modulation across multiple 

ROIs, rather than considering any single visual region in isolation. In our 3-

feature, overall visual feature category analysis, we identify relatively little 

evidence of attentional modulation at both the univariate and multivariate 

analysis levels when we remove the robust differential modulations, we see 

in response to relatively high-level face stimuli. Hence, as we have identified 
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in previous experiments (see Chapters 4 & 5), differential effects of 

attentional modulation in response to a naturalistic stimulus may be better 

characterised in measures of functional connectivity (i.e. the relative 

synchronisation or desynchronization of task-specific activity in particular 

visual regions over time). To examine this prediction, we correlated 

timeseries of activations for each visual feature and analysed the relative 

correlations between areas a function of attentional focus. 

 

This connectivity analysis replicated a robust effect identified in our previous 

experiments (see Chapters 4 & 5). We demonstrated a significantly greater 

positive correlation between visual ROIs during passive viewing than during 

attention directed towards any of our low-level visual feature conditions 

(orientation, contrast or shape). We believe this high relative connectivity 

across visual areas is akin to a default-mode network type of activation, in 

which during rest, or during undemanding tasks, regions across the cortex 

possess synchronised activity, which decreases during completion of a 

demanding task (see Buckner, Andrews-Hanna, & Schacter, 2008, for a 

review).  

 

We also identified significantly greater positive connectivity between visual 

ROIs during attention to faces versus all other attention conditions. These 

similar patterns of positive connectivity across ROIs both in the passive 

viewing and attend to faces conditions is likely reflective of the nature of our 

task. During passive viewing, participants were asked to view the stimulus, 

without explicitly directing attention towards any one stimulus feature. 
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However, faces are inherently attention-grabbing, and humans attend to 

faces frequently in day-to-day life for successful social interaction. 

Additionally, attention directed towards faces as oppose to relatively lower-

level stimulus features may have resulted in more consistent eye 

movements, due to the inherent nature of a movie stimulus (where faces are 

typically the key focus of attention). These differing patterns of eye 

movements between faces and relatively lower-level stimuli may be reflected 

within both our classification and connectivity findings here. We believe in 

our passive viewing condition, participants’ attention is likely to have been 

drawn towards faces in the scenes, providing a suggestion as to why 

patterns of connectivity in the passive and face conditions are so similar.  

 

Our partial correlation connectivity analysis revealed that all regions of 

interest had significantly different patterns of connectivity across ROIs in the 

face and passive conditions, in comparison to attention towards low-level 

visual features.  Additionally, in almost all visual ROIs, we also identified 

significantly different patterns of connectivity between orientation and colour 

attention conditions.  

 
Analysis also revealed significant differences in patterns of connectivity 

across categories in a stimulus dimension (e.g. vertical, horizontal and 

diagonal orientations). In the orientation analysis, we identified significantly 

reduced relative connectivity during attention to diagonally-oriented stimuli in 

comparison with vertically- or horizontally-oriented stimuli. From our partial 

correlation analyses, we demonstrated these differing patterns of 

connectivity between diagonally oriented versus vertical or horizontal stimuli 



 234 

were present in correlations with almost all visual ROIs.  Finally, V1and LO-2 

ROI correlations with all other ROIs exhibited significant differences in 

connectivity during attention to vertical versus horizontally-oriented stimuli. 

This provides clear evidence for differential patterns of attentional modulation 

in response to attending to relatively fine-grain changes in a stimulus 

dimension, when we study activation across several ROIs simultaneously; a 

result that we were unable to clearly identify at univariate or multivariate 

levels of analyses with this complex, naturalistic stimulus.  

 

In the colour analysis, we also identified significantly greater overall positive 

connectivity during attention to red stimuli than attention to green or blue. 

This difference in connectivity between red- and green-attention was 

identified in patterns of correlation across almost all ROIs examined in our 

partial correlation analysis. When examining correlations across visual ROIs 

with hV4, we also identified significant differences in connectivity during 

attention to green versus attention to blue. The different patterns of 

correlation between hV4 and other ROIs in all chromatic conditions is 

reflective of previous research demonstrating a clear role for hV4 in the 

processing of colour (e.g. Meadows, 1974; Zeki, 1990).  

 
Finally, in our shape analysis, we identified significantly greater overall 

positive connectivity during attention to square stimuli versus attention to 

circular, or triangular shaped features. This was reflected in the partial 

correlation analysis; all visual ROIs examined had different patterns of partial 

correlation between attention to square versus circular, or triangular-shaped 

stimuli.  
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In conclusion, here we used a relatively novel approach for investigating 

visual attention, using a dynamic, uncontrolled and relatively naturalistic 

stimulus, to assess the extent our previous findings with highly controlled, 

low-level visual stimuli generalise to a real-world context. We identify 

relatively little evidence of differential patterns of attentional modulation at 

both the univariate and multivariate levels when attending to low-level visual 

features. However, we do identify significant differing patterns of attentional 

modulation to a relatively higher-level face stimulus in comparison to low-

level visual ROIs in many early visual areas. When examining patterns of 

attentional modulation across many visual ROIs simultaneously however, we 

identify robust differences in patterns of connectivity across attentional 

conditions. We demonstrate here the importance of analysing activity at 

multiple spatial scales to gain a more informative picture of the influence of 

featural attention across the visual cortex. 
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7. Conclusions 
 
 
7.1 Overview of the thesis findings 
 
This thesis includes four experiments which have examined the existence 

and spatial scale of feature-specific patterns of attentional modulation across 

the visual cortex. In our first psychophysical experiment, we sought to 

replicate the findings of the well-established selective versus distributed 

attentional paradigm to validate the use of the RF pattern as an effective 

stimulus to probe mechanisms of visual attention. The three remaining 

experiments investigated the existence of differential patterns of modulation 

across the visual cortex in response to attention directed towards different 

stimulus features and chromaticities in in both situations with low-level, highly 

controlled and dynamic, uncontrolled and relatively naturalistic visual stimuli. 

The four experiments described in this thesis make novel contributions in 

their findings and in the methods used.  

 

Firstly, we demonstrated we were able to replicate the well-established 

results of the selective versus distributed attentional paradigm of Corbetta, 

Miezin, Dobmeyer, Shulman, & Petersen, (1990), using an RF pattern 

stimulus. The use of these RF patterns allowed us to not only to manipulate 

both the contrast and orientation of stimulus, as is the case with many 

traditional visual stimuli such as Gabors, but we could also manipulate the 

shape (‘spikiness’) of our stimulus as an effective measure to probe shape 

processing across the visual cortex. We demonstrated significant decreases 

in accuracy (indexed by loglinear d’) and increases in response time, when 
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participants made responses whilst their attention was distributed across 

multiple stimulus features, in comparison to conditions in which they were 

attending to changes in only a single visual feature. This simple, clear result 

validates the use of the relatively novel RF pattern stimulus as an effective 

stimulus to probe attentional mechanisms in future work.  

 

Secondly, we investigated patterns of attentional modulation across the 

visual cortex when participants shifted attention between orientation, 

contrast, shape and passive viewing conditions in the presence of a constant 

RF pattern stimulus, in an fMRI scanner. At the univariate level of analysis, 

we identified relatively little evidence of differential patterns of attentional 

modulation in any visual ROI examined. We also identified no differences in 

BOLD signal modulation driven by changes in the stimulus features, 

suggesting bottom-up stimulus changes were not driving any attentional 

effects we identified.  

 

However, at the multivariate level, we were able to demonstrate that 

attention directed towards different stimulus features produced robust, 

distinguishable patterns of attentional modulation across voxels in a 

particular visual ROI. These differential patterns of attentional modulation 

differed as a function of the ROI examined, suggesting attentional 

mechanisms do not exert the same patterns of modulations in all areas 

across the visual hierarchy. Importantly, we demonstrated that these 

successful classifications were not driven by group-level coarse scale 

topographical maps of the organisation of particular visual features, and we 
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instead suggest attentional modulation alters the fine-scale voxel-level 

patterns of activation in an ROI. Finally, we analysed patterns of connectivity 

across multiple visual ROIs simultaneously and demonstrate a significantly 

greater positive connectivity between ROIs during passive viewing in 

comparison to directed attention conditions, which we suggest is reflective of 

a default-mode type network activation, and regions selectively disengage 

from this synchronised network during attentionally demanding tasks. This 

identification of differential patterns of connectivity across different attentional 

tasks is one of the first demonstrations of this analysis in the visual literature 

and highlights the importance of probing multiple spatial scales of activation 

in the visual cortex when examining attentional effects.  

 

In our third experiment, we used fMRI and psychophysical methods to again 

measure differential patterns of attentional modulation, but this time, we 

probed responses during attention directed towards different stimulus 

colours. We performed two different analyses, the first, examining differential 

patterns of attentional modulation across features (irrespective of the 

stimulus chromaticity). Here, we replicated the main findings of our previous 

experiment, finding relatively little difference in attentional modulation across 

features at the univariate level, but robust differences in patterns of BOLD 

signal modulation at both the multivariate and connectivity levels, which were 

not driven by any coarse-scale spatial maps in ROIs.    

 

We then repeated our analysis pipeline, examining patterns of activation 

when attention was directed towards the chromaticity of the stimulus (in three 
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segregated dimensions; L+M, L-M and S-(L+M)). At the univariate level, we 

identified a significant difference in BOLD signal modulation between red-

green and blue-yellow attentional conditions in almost all visual ROIs 

examined, in fitting with previous literature suggesting a relatively weaker 

blue-yellow signal across the visual cortex (e.g. Liu & Wandell, 2005; Mullen, 

Chang, & Hess, 2015; Wang & Wade, 2011). At the multivariate level 

however, we identify significant differences in voxel-level patterns of 

attentional modulation across all three stimulus chromaticities in almost all 

visual ROIs. Again, these differences do not appear to be driven by 

underlying coarse-scale organisations of chromatic information in the visual 

cortex. Finally, we clearly replicate our previous findings demonstrating 

significantly greater connectivity between visual ROIs during passive viewing 

versus directed attention in all three of our stimulus chromaticity conditions. 

This demonstrates the robust nature of our ‘visual default-mode’ effect and 

provides clear evidence of differential effects of attentional modulation in 

response to the attended chromaticity of the stimulus.  

 

Finally, in our fourth experiment, we used a relatively naturalistic, dynamic 

and uncontrolled visual stimulus to assess the extent our findings with low-

level controlled stimuli generalised to a more real-world visual environment. 

Our fMRI analyses demonstrated that the vast majority of differences in 

feature-specific attentional modulation we identified at the univariate level 

were driven by reduced BOLD signal modulation during attention to faces in 

low-level visual areas. We also identified relatively little evidence of 

differential attentional modulation at the univariate level when we examined 
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attentional modulation to relatively fine-grain dimensions with a stimulus 

category (e.g. vertical, horizontal and diagonal orientations).  

 

In contrast with our previous two fMRI experiments, at the multivariate level, 

any successful classification of voxel-level patterns of attentional modulation 

were predominantly driven by comparison with attention to faces. When 

excluding activation associated with attention to faces, we identified almost 

no multivariate differences in patterns of attentional modulation across voxels 

in any visual area for both the overarching stimulus category (e.g. orientation 

versus shape) or fine-grain (e.g. vertical versus horizontal comparisons). We 

believe this difference in reflective of the unconstrained nature of this 

naturalistic experiment and the dynamic and uncontrolled nature of the 

stimulus.  

 

Finally, we again identified clear evidence of significantly greater positive 

correlation between ROIs during passive viewing that directed attention 

towards low-level stimulus features. We also identified a similar pattern of 

positive connectivity between ROIs during attention to faces, which we 

believe is a reflection of a task design; it is likely during passive viewing 

participants’ attention was drawn to the inherently salient face stimuli in the 

movie. We also identify significant differences in patterns of connectivity 

between the fine-grain stimulus dimensions, and these patterns differed to 

some extent as a function of the ROI partial correlations examined. Hence, 

even when using an uncontrolled, dynamic, rich visual stimulus, we were still 
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able to detect differential patterns of attentional modulation when examining 

patterns of connectivity at the fine-grain within-feature level.  

 

7.2 Future work 
 
Our investigation into signatures of featural attention across the visual cortex 

suggests many directions for future research. For example, our connectivity 

analysis identifies patterns of communication between ROIs that differ as a 

function of the attentional task. We have also revealed that particular ROIs 

decorrelate or disengage from our ‘visual default mode’ passive, highly 

correlated network when attention is directed towards a specific visual 

feature. Given the fact that previous research has demonstrated positive 

effects associated with an ability to efficiently shift between different patterns 

of connectivity (i.e. the shift from passive, default-mode to task-focused 

networks) (e.g. Dajani & Uddin, 2015; Li et al., 2017; Reineberg, Gustavson, 

Benca, Banich, & Friedman, 2018; Vatansever, Manktelow, Sahakian, 

Menon, & Stamatakis, 2016), future work should seek to investigate whether 

the changing patterns of connectivity across ROIs as a function of attentional 

task demonstrated here can predict individual participants’ abilities on 

particular visual tasks. For example, perhaps participants who demonstrate a 

bigger shift in patterns of connectivity between passive viewing and attention 

to orientation, may have better performance on an orientation discrimination 

task for example.  

 

Recent research by Semedo, Zandvakili, Machens, Yu, & Kohn, (2019) has 

identified a low-dimensional communication subspace, which characterises 
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the activity patterns relayed between early visual areas (V1 and V2). 

Measuring firing rate distributions (at a single neuron level) in both V1 and 

V2, these researchers were able to demonstrate fluctuations in V2 activity 

were related to a small subset of V1 neuronal activity patterns, and these 

patterns were distinct from the largest fluctuations shared among neurons in 

V1. This identification of important dimensions characterizing the types of 

communication between visual areas has interesting avenues for the study of 

attentional mechanisms.  

 

Previous research has identified changing patterns of communication 

between cortical areas as a function of attention. For example, Gregoriou, 

Gotts, Zhou, & Desimone, (2009), demonstrated attention toward a stimulus 

in the joint receptive fields of the frontal eye fields (FEF) and area V4 

increased the oscillatory coupling between the two visual areas in monkeys. 

Additionally, Oemisch, Westendorff, Everling, & Womelsdorf, (2015) 

identified correlations in firing rate across a sustained time window after 

covert attention to one of two peripheral visual stimuli in a subset of cell pairs 

from the anterior cingulate cortex (ACC) to dorsal prefrontal cortex (PFC), 

and these changing connectivity patterns between neurons carried 

information about the direction of attentional shift.  

 

However, no research has attempted to use this technique of dimensionality 

reduction to investigate activity between visual areas as a function of 

attentional task. For example, the technique of reduced rank regression 

described by (Semedo et al., 2019) could be used to reduce activity in areas 
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V1 and V3A/B for example to a small set of dimensions which represent a 

characteristic way in which the activities of the two visual ROIs covary, and 

this communication subspace could be examined for changes when 

participants’ switch attentional focus. For example, we may see different 

communication subspaces between visual areas as a function of feature-

specific attentional task, or communication subspaces may be altered in a 

more general fashion by attention, with contrast to communication 

subspaces characterising passive viewing. Our findings in this thesis have 

demonstrated changing patterns of connectivity across visual ROIs as a 

function of attentional task. Future research should seek to extend these 

current findings, perhaps employing this new methodology of Semedo et al., 

(2019) to characterise the relationship between early visual areas in terms of 

the number of explanatory variables and examine how this communication 

varies as a function of attentional task in an extension of our current 

functional connectivity findings.  

 

This relationship between the extent of differences in connectivity and task 

performance opens further avenues for future research. For example, 

attention deficit hyperactivity disorder (ADHD) is thought to affect 3.62% of 

boys and 0.85% of girls of school age (Ford, Goodman, & Meltzer, 2003). It 

is a disorder associated with inattentiveness, hyperactivity and 

impulsiveness. Importantly, individuals with ADHD have been demonstrated 

to have a reduced ability effective switch between tasks (e.g. Cepeda, 

Cepeda, & Kramer, 2000). Cortical signatures of this reduced task switching 

ability have been typically investigated in terms of executive control network 
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across relatively large expanses of the cortex. However, the paradigms we 

establish here, assessing differential patterns of univariate, multivariate and 

connectivity across ROIs as a function of attentional focus, may be effective 

in identifying differential responses in ADHD sufferers. For example, 

individuals with ADHD may demonstrate a reduced distinction between 

patterns of connectivity between passive viewing and attentional task, as we 

have identified in our three experiments here using participants who do not 

suffer from ADHD. This hypothesis is supported by recent work at a coarser 

scale, which demonstrated increased variability in default mode network 

activation and associated lower task performance in ADHD patients in 

comparison with controls (Mowinckel et al., 2017).  

 

Hence, the relatively novel paradigm we have established here may be a 

simple and effective method for examining patterns of connectivity in patients 

with ADHD. The validation of our use of naturalistic stimuli in identifying 

these differences in patterns of connectivity suggests a potential use as an 

ADHD screening procedure for young children, who are likely to better 

engage with this dynamic and interesting stimulus.  Identifying differences in 

connectivity across ROIs in attentional tasks, may help to reveal a potential 

locus for the control of task switching. For example, the IPS, an area known 

to be involved in the top-down control of visual attention (e.g. Bressler, Tang, 

Sylvester, Shulman, & Corbetta, 2008; Di Russo, Martínez, & Hillyard, 2003; 

Lauritzen, D’Esposito, Heeger, & Silver, 2009), may demonstrate different 

patterns of activity in ADHD patients comparison with healthy controls.  

 



 245 

7.3 Conclusion 
 
This thesis has investigated feature-specific patterns of attentional 

modulation across the visual cortex, using psychophysical and fMRI 

methods. We have established a novel paradigm, probing attentional 

mechanisms with a relatively constant visual stimulus, and have 

demonstrated our findings are not driven by bottom-up changes in our visual 

stimulus. We demonstrate clear evidence of differential voxel-level patterns 

of attentional modulation with our highly controlled, low-level RF patterns, but 

not with the use of a relatively naturalistic, rich, dynamic movie stimulus. In 

all experiments, we identify significantly different patterns of connectivity 

across ROIs as a function of attentional focus and demonstrate a robust 

visual ‘default mode’ network with relatively greater positive correlation 

across ROIs during an undemanding task. We demonstrate a generalisation 

of findings across low-level and naturalistic testing paradigms. We suggest 

this novel paradigm can be used to predict participants’ performance on 

feature-specific tasks, on the basis of differences in patterns of connectivity 

and suggest a potential use for this paradigm in probing mechanisms of 

ADHD in the visual cortex.  
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