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Abstract

Mutation generates new genetic material on which evolutionary processes, such as selec-

tion and genetic drift, can act. Consequently, understanding mutations, and the forces

that determine their fate, is vital for understanding how the variety of life seen today

evolved. Technological and methodological advances over the past decade have lead to

a growing availability of whole genome sequencing and re-sequencing datasets, allowing

existing questions in genome evolution to be addressed more broadly, and previously

understudied topics to be addressed. Two such areas are the selective landscape of in-

sertions and deletions (INDELs), and the impact of GC biased gene conversion (gBGC)

on non-coding base composition. To date, INDELs have remained understudied relative

to point mutations, despite being the second most common form of variation. In part,

this is due to the challenges of calling and correctly orientating INDELs, and in part

due to a lack of methods available to quantify the selective pressures acting on them.

Work on gBGC has largely concentrated on its action in coding regions, often with a

view of how it confounds inferences of selection in these regions. In this thesis I make

use of a number of publicly available datasets to extend the present state of knowledge

in these two areas. Chapter 2 introduces a new method for inferring the distribution

of fitness effects for INDELs, demonstrating its accuracy through simulations and using

it to characterise the selective pressures on INDELs in coding sequences in Drosophila

melanogaster. Chapter 3 applies the method to a dataset of great tit (Parus major)

genomes and extends it to the non-coding regions in this species. Finally, Chapter 4 ad-

dresses the role and strength of gBGC across the non-coding genome of the great tit and

the zebra finch (Taeniopygia guttata), and how gBGC and INDELs have contributed to

base composition in these species.
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1.1 Introduction

Mutation is the primary process by which new genetic variation arises. It generates the

raw material on which evolutionary processes, such as selection and genetic drift, can

act. Consequently, understanding the process of mutation, the fate of new mutations and

the forces that determine that fate, is vital for understanding how the variety of life seen

today evolved. Genetic studies, along with most of human endeavours, are constrained

by the technologies of their time. Historically this has confined population genetic studies

to small datasets, representing only a small proportion of a genome, such as individual

genes or groups of genes (e.g. Blake et al., 1992; Hess et al., 1994), or short marker

regions like microsatellites (e.g. Primmer et al., 1997). Furthermore, the generation of

these datasets and of initial larger scale genetic datasets was constrained to a select few

species, such as humans (International Human Genome Sequencing Consortium, 2001)

and model organisms such as Caenorhabditis elegans (C. elegans Sequencing Consortium,

1998).

However, with the advent of next generation sequencing technology (NGS) making

cheap, high throughput sequencing possible (Zhang et al., 2011), sequencing projects

have exploded, with initiatives such as the Genome 10K project aiming to sequence

10,000 vertebrate genomes (Genome 10K Community of Scientists, 2009), the i5K Ini-

tiative aiming to sequence 5000 arthropod genomes (i5K Consortium, 2013), the Bird

10K project aiming to sequence 10,500 bird genomes (Zhang, 2015), the first 45 of which

are already published (Jarvis et al., 2014; Zhang et al., 2014), and the Sanger Institute

recently announced plans to sequence the genomes of 66,000 species native to the UK

(Sanger Communications Team, 2018). However, these efforts are largely focussing on

breadth, rather than depth, attempting to compare sequences from across the tree of life,

but at the expense of high quality genome assemblies and the availability of individual

resequencing data for a given individual species. Whilst this new scale of data available

is allowing many core questions to be addressed more broadly, much of this work is still

focused on selection operating on the most commonly studied form of mutation, point

mutations, both substitutions and single nucleotide polymorphisms (SNPs).
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Two topics with the potential to be greatly advanced by the availability of high quality

resequencing datasets are the impact of selection on insertion and deletion mutations

(INDELs), which have largely been overshadowed by SNPs, and GC biased gene con-

version, the neutral process that behaves like selection favouring GC alleles. Here, I

outline the present state of knowledge for both INDEL mutations and their selective

landscape, as well as the process of GC biased gene conversion in the context of its role

in the evolution of base composition. I also discuss these processes in the context of

avian genomes, an ideal study system for advancing our knowledge of these topics.

1.2 Insertions and Deletions

1.2.1 Mechanism and Characteristics

The study of mutation and genetic variation in general has traditionally had SNPs in

the limelight, as demonstrated by the development of SNP chips, making SNP analysis

possible on an industrial scale (Syvänen, 2005). This focus has persisted through the

paradigm shift that was the advent of next generation sequencing technology (Zhang

et al., 2011) to the present. Consequently, other forms of polymorphism, whilst not

overlooked, have received less attention, and are consequently less well understood. A

prime example is insertions and deletions (INDELs). In humans, INDELs are the second

most common form of mutation after SNPs, and thus constitute a significant amount

of genetic variation (Montgomery et al., 2013). However, INDEL investigations face a

number of stumbling blocks, perhaps explaining their lower level of research attention.

One such difficulty is the need for multispecies alignments in order to distinguish inser-

tion from deletion (for example see: Kvikstad and Duret, 2014). INDELs often occur

in repetitive regions of the genome (Ananda et al., 2013; Montgomery et al., 2013), yet

species alignment algorithms are weakest when aligning such regions (Earl et al., 2014).

Yet, with work towards resolving such issues underway (Earl et al., 2014), and with the

broad and expanding availability of whole genomes (Genome 10K Community of Scien-

tists, 2009; i5K Consortium, 2013; Zhang, 2015), there is the unprecedented opportunity

for more in-depth analysis of INDELs.
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A number of mechanisms have been proposed for the generation of INDELs, including

polymerase slippage (Garcia-Diaz and Kunkel, 2006; Levinson and Gutman, 1987) and

improper repair of double stranded breaks (DSBs) (Chu, 1997). Polymerase slippage

occurs when DNA denatures during replication, enabling the replicated and template

strands to become misaligned. The resolution of such an event can give rise to an

insertion if the replicated sequence ‘slips’ resulting in previously replicated bases be-

ing ‘re-replicated’, or a deletion if the template strand slips and un-replicated bases

are omitted (Figure 1.1) (Garcia-Diaz and Kunkel, 2006; Levinson and Gutman, 1987).

Polymerase slippage has been suggested as the dominant force behind INDEL genera-

tion. Montgomery et al. (2013) analysed the sequence context of INDELs in a sample

of 179 human genomes, revealing that 48% of INDELs fell within homopolymer runs,

predicted hotspots near repeat regions, or tandem repeats. Furthermore, they demon-

strate that 75% of all identified INDELs can be characterised as ‘local changes in copy

count’, that is the loss or gain of a tandem duplicate. This percentage ranged from 56%

outside of repetitive regions up to 95% within dinucleotide tandem repeats. These pat-

terns are consistent with polymerase slippage driving the majority of INDEL mutation.

Montgomery et al. (2013) suggest the remaining 25% of INDELs are likely a result of

improper repair of DSBs (see Chu, 1997, for review). This is supported by Drosophila

mutants with reduced DSB repair capabilities demonstrating a correlation between DSB

repair errors and large deletions (McVey et al., 2004). Additionally, a small number of

INDELs (∼ 1.3% in humans) contain palindromic repeats, consistent with a brief switch,

and subsequent recovery, of the template strand as a mechanism of formation for these

INDELS (Montgomery et al., 2013).

If polymerase slippage is the main mechanism driving INDEL generation, then it could

explain the bias towards deletions over insertions observed in many organisms. This

bias, calculated as the ratio of deletions to insertions (rDI) is reported from both poly-

morphism data (rDIpol) and divergence data (rDIdiv). Both measures of rDI are around

2 in humans (Kvikstad and Duret, 2014; Nam and Ellegren, 2012). In Arabidopsis spp.

rDIdiv is 1.4 and rDIpol is as high as 8 (Hu et al., 2011). In Drosophila spp. rDIdiv is

0.8 and 2.7 for D. melanogaster and D. simulans respectively, whilst rDIpol is 1.18 in
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Figure 1.1: INDEL formation through polymerase slippage. During replication (a)
template and replicated strands can denature, resulting in strand slippage at the poly-
merase and formation of loops (b), giving rise to a deletion or insertion if the template

or replicated strand respectively slips (c).

D. melanogaster (Presgraves, 2006). As generation of deletions requires DNA to dena-

ture at a single position only, whereas insertions require a duplicated strand the length

of the insertion to denature, deletions might be expected to occur more often by this

mechanism (Petrov, 2002b). This deletion bias, and the magnitude of the rDI have

been suggested to be the fundamental driving force behind the evolution of genome size,

with higher ratios resulting in more rapid genome contraction (Petrov, 2002b). Petrov’s
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(2002b) mutational equilibrium hypothesis suggests that genome expansion is predom-

inantly determined by the size of small deletions. This is based on two assumptions;

firstly that selection quickly removes long deletions and secondly that selection prevents

large increases in INDEL error rate. Thus, Petrov (2002b) proposes that genome retrac-

tion or expansion is determined by the balance between small deletion size and large

insertions (required to make up for the low insertion rate). The model gains support

from a correlation between genome size and deletion bias (Petrov, 2002b). However, it

has also been the subject of contention. Gregory (2003, 2004) suggests that this correla-

tion is primarily driven by Drosophila spp. and does not extend well to other organisms.

Even if this is not the case, it has been proposed that deletion bias and the action of

small deletions would bring about changes in genome size so slowly that it is not suffi-

cient to explain genome size variation between species within known divergence times.

Large insertions and deletions however could explain more rapid size changes (Gregory,

2003, 2004).

The rDIdiv, however, may not solely be the product of biased mutation (i.e. under neu-

trality rDIdiv should equal rDIpol, but this is often not the case), but due to variation

in fixation probabilities of insertions and deletions. In Arabidopsis spp. deletions are

observed to have elevated fixation rates (Hu et al., 2011). However, in humans, fixation

rate is generally higher for insertions, but with some non-repetitive regions showing ev-

idence for both deletions experiencing increased fixation (Kvikstad and Duret, 2014).

These observed differences in fixation probability between INDELs could be driven by

either selection or biased gene conversion. Analysis of Drosophila melanogaster introns

and intergenic sequences revealed a higher insertion fixation rate in introns than inter-

genic sequence. This is theorised to be due to selective constraint on intron length, with

insertions selected for to prevent intron length being reduced below a minimum length

(Ometto et al., 2005). The role of this elevated fixation rate in driving intron length

change is supported in a comparison of D. melanogaster and Drosophila simulans in-

trons. The amount of deletions in each species is seen to be similar, but D. melanogaster,

with the longer introns of the two species, has a significantly greater number of fixed

insertions. However, this trend was most pronounced on the X chromosome, which has

an elevated crossing-over rate, suggesting that insertion biased gene conversion (iBGC)
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may be a better explanation for elevated insertion fixation rates than selection (Pres-

graves, 2006). Conversely, intron length has also been seen to negatively correlate with

recombination rate in D. melanogaster (Comeron and Kreitman, 2000).

More recently, iBGC has garnered support from an analysis of non-coding INDELs in

humans, D. melanogaster and Saccharomyces cerevisiae. In agreement with previous

work, these species were seen to have increased fixation probabilities for insertions. Yet,

in an advancement on previous studies, the relationship of this fixation bias with re-

combination was investigated, with rDIdiv for small (1-4bp) INDELs showing a negative

correlation with recombination rate, whilst rDIpol is nearly independent. Thus, fixa-

tion probability for small insertions is highest in highly recombining regions, a trend

indicative of iBGC (Leushkin and Bazykin, 2013). Whilst both selection and iBGC

have been suggested to be responsible for this trend, Kvikstad and Duret (2014) offer

a third explanation. They show that incorrect polarisation of INDELs resulting from

misidentification of derived and ancestral sequences could also explain the observed in-

sertion fixation bias. This parallels the issue with evidence for GC biased gene conversion

(gBGC, discussed later) (Hernandez et al., 2007). Inaccurate polarisation of INDELs

is further compounded by the possibility of INDEL hotspots, as suggested in humans,

where multiple occurrences of INDELs at a single locus confuses polarisation (Kvikstad

and Duret, 2014). That said, there is support from mutation accumulation experiments

for a deletion bias in both Drosophila spp. (Keightley et al., 2009) and Arabidopsis spp.

(Ossowski et al., 2010), where incorrect INDEL polarisation is unlikely, suggesting that

the phenomenon is not purely artefactual.

As mentioned above, INDELs cluster in particular genetic regions, or hotspots. In anal-

yses of a dataset of 179 human genomes, 40 to 48 percent of identified INDELs were

seen to occur in repeat regions, even though these repeat regions comprise only three

to four percent of the genome (Ananda et al., 2013; Montgomery et al., 2013). This is

not surprising, as polymerase slippage is positively correlated with the length of iden-

tical repeat sequences (Klintschar and Wiegand, 2003). However, INDEL hotspots are

not confined to repetitive regions. Work on chimpanzee (Pan troglodytes), orangutan

(Pongo abelii), rhesus macaque (Macaca mulatta) and human genomes established that
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14% of INDEL loci in non-repetitive regions are ‘complex’. That is, they have been

subject to two or more INDEL events, and thus can be considered hotspots (Kvikstad

and Duret, 2014). In addition, there is evidence that INDELs themselves may generate

SNP hotspots. Tian et al. (2008), in a broad study comparing genomes of primates,

rodents, rice and yeasts, showed that nucleotide diversity increases in regions neigh-

bouring INDELs. They constructed a model based on the concept that if INDELs are

mutagenic, they should be so only when they are in a heterozygous individual, so as

to disrupt chromosomal pairing during recombination. The model predicts that there

should be significantly more SNPs associated with the INDEL containing allele than the

ancestral allele. Indeed, this is what the authors report in an analysis of 1027 INDELs

in three yeast strains (Tian et al., 2008).

1.2.2 Insertions and Deletions in Birds

INDEL research thus far has predominantly been focused on model organism such as

Drosophila (Keightley et al., 2009; Leushkin and Bazykin, 2013; Petrov, 2002b; Pres-

graves, 2006), Arabidopsis (Hu et al., 2011; McVey et al., 2004; Ossowski et al., 2010)

and chimpanzees, along with other primates, including humans (Ananda et al., 2013;

Kvikstad and Duret, 2014; Montgomery et al., 2013). However, with the ongoing explo-

sion in available bird genomes (Jarvis et al., 2014; Zhang, 2015; Zhang et al., 2014), it

is now possible to investigate INDELs genome wide in multiple bird species. Birds are

particularly suited for such investigation for two main reasons. Firstly, they have very

stable genomes with conserved karyotypes (see van Oers et al., 2014) and few repeat el-

ements (Primmer et al., 1997). Hence, it is interesting how INDEL variation evolves in

a system where changes in genome length are not common and repeats are less frequent.

Secondly, birds are noted for their highly variable recombination rates, with recombi-

nation being elevated on micro-chromosomes and towards telomeres, and reduced on

macro-chromosomes and towards centromeres (Backström et al., 2010; Stapley et al.,

2008; van Oers et al., 2014). As such, birds present a good opportunity to understand

the importance of proposed phenomena such as iBGC (Leushkin and Bazykin, 2013)

and selection on INDELs to maintain a minimum intron length (Ometto et al., 2005).
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To date there are only a handful of published studies on INDELs in birds. Of these

studies, those that investigate INDELs at the whole genome level are focussed on identi-

fying INDELs in chicken, with a view of uncovering their role in commercially important

traits and disease (Boschiero et al., 2015; Yan et al., 2014). These analyses report an

rDIpol in chicken of around 1.3 (Boschiero et al., 2015; Yan et al., 2014), in agreement

with earlier work reporting an rDIpol of 1.4 (Brandstrom and Ellegren, 2007), but not as

high as the estimate of rDIdiv by Nam and Ellegren (2012) of 3.2. In addition, estimates

of the deletion to insertion ratio in other avian species vary hugely, rDIdiv is estimated

at 6.3 in pigeons and doves (Johnson, 2003), 3.5 in zebra finch (Taeniopygia guttata)

(Nam and Ellegren, 2012) and with two studies of more than 40 species reporting mean

rDIdiv estimates of 2.5 (Paśko et al., 2011; Sundström et al., 2003). Variation in deletion

bias has also been reported between chromosomes, with estimates for rDIdiv on the Z

and W chromosomes of 1.9 and 7.3 respectively (Sundström et al., 2003). Thus, though

there is much variation in the reported magnitudes of avian deletion bias, its occurrence

is clear.

Beyond deletion bias, a number of studies have also reported intra-genomic variation

in INDEL density in birds. INDEL density is reportedly lowest on micro-chromosomes

(Boschiero et al., 2015; Brandstrom and Ellegren, 2007; Yan et al., 2014), with Brand-

strom and Ellegren (2007) estimating INDEL density on macro-chromosomes to be 20%

higher. However, they also report a strong correlation between INDEL density and SNP

density, a finding at odds with that of Boschiero et al. (2015) who report both low INDEL

density and high SNP density on micro-chromosomes. In addition, elevated mutation

rates have been reported on micro-chromosomes (Axelsson et al., 2005), in-keeping with

the latter scenario. It has been suggested that the lower INDEL density on micro-

chromosomes is due to elevated gene density on shorter chromosomes, making INDELs

more likely to be strongly deleterious (Yan et al., 2014). In support of this idea, the rate

of insertions in chicken and zebra finch has been found to negatively correlate with gene

density (Nam and Ellegren, 2012). However, the opposite relationship has been reported

for the rate of small deletions, which correlates positively with gene density. In addition,

both gene density and the small deletion rate are seen to correlate with recombination

rate. It has therefore been suggested that there may be a causal relationship driving the
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small size of micro-chromosomes. Where, as a chromosome shrinks, recombination rate

increases, in turn increasing the small deletion rate, resulting in further chromosome

shrinking and so on (Nam and Ellegren, 2012). Such a mechanism, would lend support

to the theory proposed by Petrov (2002b) to explain the evolution of genome size.

In addition to INDEL density being lower on micro-chromosomes (Boschiero et al., 2015;

Brandstrom and Ellegren, 2007; Yan et al., 2014), INDEL density has been shown to

be reduced on the Z chromosome (Brandstrom and Ellegren, 2007; Yan et al., 2014).

This reduction in INDEL density over autosomes has been estimated at 45% (Yan et al.,

2014). Furthermore, analysis of INDEL fixation rates on the avian sex chromosomes

reveals the Z chromosomes INDEL fixation rate to be twice that of the W chromosome.

Considering that males are homogametic, ZZ, this suggests a male INDEL bias in birds

(Sundström et al., 2003). Interestingly, in addition to having lower INDEL density

than autosomes, and elevated INDEL rate relative to W, the Z chromosome also has

a markedly lower deletion bias of 1.9 than the W chromosomes 7.3 (Sundström et al.,

2003). The W chromosomes history is marked by chromosome reduction following the

prevention of recombination with Z (Sundström et al., 2003). Therefore, the elevated

deletion bias on W could be taken as indirect evidence for the action of iBGC, where the

lack of recombination has stopped iBGC, allowing deletions to occur unchecked, driving

W chromosome reduction. Some weak support can be derived for iBGC in birds from a

reported positive correlation between GC content and INDEL density (Brandstrom and

Ellegren, 2007), as GC content is also correlated with recombination rate, a relationship

suggested to be due to gBGC (Boĺıvar et al., 2016). However, there is also evidence

against this, with a negative correlation between recombination and insertion fixation

rate also reported in birds (Nam and Ellegren, 2012).

Finally, work on avian INDELs supports polymerase slippage as the main mechanism

for INDEL generation. Chicken INDELs are reported to be A rich, consistent with in-

creasing AT content lowering sequence melting temperature and increasing the chance of

misalignment slippage (Brandstrom and Ellegren, 2007; Fryxell and Zuckerkandl, 2000).

The findings discussed here clearly show many conflicting narratives in the existing avian

INDEL literature. With agreement only on the existence of a deletion bias (Boschiero
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et al., 2015; Brandstrom and Ellegren, 2007; Johnson, 2003; Nam and Ellegren, 2012;

Paśko et al., 2011; Sundström et al., 2003; Yan et al., 2014) and lower INDEL density on

micro-chromosomes (Boschiero et al., 2015; Brandstrom and Ellegren, 2007; Yan et al.,

2014). In addition, most of the published avian INDEL studies focus on domesticated

species such as chicken (Boschiero et al., 2015; Brandstrom and Ellegren, 2007; Nam

and Ellegren, 2012; Yan et al., 2014) and zebra finch (Nam and Ellegren, 2012), with

little work on the selective pressures on INDELs in a wild system. However, the recent

availability of whole genomes for many wild bird species (Jarvis et al., 2014; Zhang

et al., 2014) has created an unprecedented opportunity to study the role of selection on

INDELs in the evolution of avian genomes.

1.3 The Determinants of Genomic Base Composition

Most work to date has made use of point mutations to investigate the evolution of

GC content within genomes. From this perspective changes in base composition are

ultimately the result of biases in the fixation rate, if more G and C polymorphisms fix

than As and Ts, then GC content will increase, and vice versa. Under neutrality the

fixation rate is equal to the mutation rate, thus mutational biases translate into fixation

biases and can alter GC content. However, if the sequence in question is not evolving

truly neutrally, then fixation rates can be biased independently of mutation. In this

section I will review mutation rate variation and fixation biasing processes as drivers of

base composition evolution, with a focus on GC biased gene conversion.

1.3.1 Mutation Rate Variation

Since the 1960s it has been known that mutation rate is not constant within genomic

sequences (Benzer, 1961), since then, much has been revealed. Mutation rate variation

has been characterised within and between mammalian mitochondrial genomes, and is

seen to evolve rapidly (Galtier, 2005). However, it was not until the advent of next gener-

ation sequencing (NGS) that the question of mutation rate variation could be addressed
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more comprehensibly (for review see Zhang et al., 2011). NGS made it possible to se-

quence whole genomes for a previously unimaginable range of species. This explosion in

obtainable whole genome data has allowed research to more thoroughly investigate the

mechanisms and causes of mutation rate variation.

Fine scale genomic variation in mutation rates has been largely explained by a number

of contextual explanations. Firstly, transitions, mutations between purines (A and G

nucleotides) or between pyrimidines (T and C nucleotides) are twice as common as

transversions (mutations between purines and pyrimidines), despite there being twice

as many types of the latter than the former (Blake et al., 1992; Keightley et al., 2009;

Ossowski et al., 2010; Ségurel et al., 2014). Secondly, strong bases, that is C or G, are

twice as likely to mutate to weak bases, T or A, than weak are to strong (Hodgkinson and

Eyre-Walker, 2011; Hwang and Green, 2004; Ségurel et al., 2014). Both these trends are

seen across a wide range of organisms, including mammals (Blake et al., 1992; Hwang and

Green, 2004), Drosophila melanogaster (Keightley et al., 2009) and Arabidopsis thaliana

(Ossowski et al., 2010). The trend of strong-to-weak mutation bias is largely driven by

CpG sites. Methylated C readily mutates to T, resulting in an under-representation of

CpG in the human genome (Bird, 1980). Interestingly, CpG mutability has a negative

relationship with GC content, with methylated C stability declining with GC content,

as DNA melting temperature is also reduced (Fryxell and Zuckerkandl, 2000). This has

been suggested to result in an escalating cycle of GC decrease. Reductions in GC content

lower the sequences melting temperature, promoting C to T mutations, which further

reduces GC content. The reverse can occur when GC content experiences an increase,

raising melting temperature and reducing C to T mutations (Fryxell and Zuckerkandl,

2000). Thus, when it is considered that CG sites have a 15-fold increase in mutation rate

relative to other sites (Hodgkinson and Eyre-Walker, 2011), and that C to T mutation

increases two fold when GC content is reduced by 10 percent (Fryxell and Zuckerkandl,

2000), this cycle can bring about significant variation in mutation rates within and

between genomes. It is therefore unsurprising that CpG hypermutability is implicated in

an ongoing reduction in GC content in mammalian genomes (Duret et al., 2002), though

it has more recently been suggested this may not hold across all mammals (Romiguier

et al., 2010). Additionally, mutation accumulation experiments in Arabidopsis thaliana
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show unmethylated GC sites also had elevated mutability, suggesting other mechanisms

may be contributing to this trend (Ossowski et al., 2010).

Whilst CpG sites are among the strongest contextual determinants of mutation rate,

accounting for 19% of mutations despite making up less than 2% of sites in humans,

there are a number of other important context dependent effects (Ségurel et al., 2014).

One such phenomenon is ‘neighbour effects’; the impact of base content on the mutation

rate of the adjacent base (see Hwang and Green, 2004). This has been studied by

comparing nucleotide frequencies neighbouring neutral substitutions with expected base

frequencies, and has yielded conflicting results. Early research on human pseudogenes

suggested that neighbour effects were strongest when the 5′ neighbour was A or the

3′ neighbour was G, and weakest when the 3′ neighbour was C, though conflicting

results were obtained for the weakest 5′ neighbour effect (Blake et al., 1992; Hess et al.,

1994). Later genome wide analysis supports the relative strength of the neighbour

effect of a 3′ G (Zhao and Boerwinkle, 2002), as might be expected with the high

mutability of methylated C at CpG sites (Bird, 1980), but disagrees with the effect of

all other bases (Zhao and Boerwinkle, 2002). It may be that disagreement stems from

the oversimplification of context effect scenarios. Hwang and Green (2004) advocate the

separation of neighbour effects into 14 classes, based on the analysis of context effects

in 19 mammal species. Whilst, GC content aside, agreement has yet to be reached on

the importance of individual bases and base contexts, neighbour effects are undeniably

influencing local substitution rates. Although A and T nucleotides, on average, have

a reduced mutability relative to G and C (Hodgkinson and Eyre-Walker, 2011; Hwang

and Green, 2004; Ségurel et al., 2014), they are not beyond implication in mutation rate

variation. Blake et al. (1992) observed an increased frequency of TA to CG transitions

than expected in humans. Similarly, A to G transitions are seen 40 percent more often

on the coding strand than the non-coding strand in humans (see Ségurel et al., 2014).

Thus overall mutation rates tend to be biased towards strong to weak mutations as

driven by CpG mutability and act to reduce genomic GC content.
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1.3.2 Fixation Rate Variation

Whilst under neutrality the fixation rate is equal to the mutation rate, large swathes of

genomes do not behave neutrally, both in coding and non-coding regions. As a result,

fixation rates can deviate from mutation rates under such conditions. Yet, generally

selection is not expected to favour GC alleles over AT alleles, so should not unduly

influence genomic base composition. However, there is an exception in the case of

translational selection driving biases is synonymous codon usage (Sharp et al., 1995) as

well as with the neutral process of GC biased gene conversion (Chen et al., 2007).

1.3.2.1 Codon Usage Bias and Translational Selection

One phenomenon that may cause biased fixation rates in coding regions is translational

selection resulting in codon usage bias. The degeneracy of the genetic code results in

synonymous codons, i.e. codons that differ in sequence but code for the same amino

acid. The translational selection model proposes that preferred codons (those synony-

mous codons occurring at elevated frequency) are those for which tRNAs are most

abundant, and thus those that can be translated most efficiently (Duret, 2002; Sharp

et al., 1995). Under the translational selection model, preferred codon usage should

correlate with expression level, and indeed this is supported by evidence of codon bias

increasing with gene expression in a number of model organisms such as Drosophila spp.,

Caenorhabditis elegans and Arabidopsis thaliana (Bierne and Eyre-Walker, 2006; Duret

and Mouchiroud, 1999). More recently, Galtier et al. (2018) used a dataset consisting of

30 species, each from a separate metazoan family, to identify a general preference for C

over G terminating codons and T over A ending codons, when analysing GC conserva-

tive synonymous codon pairs. The authors suggest this preference for pyrimidines may

be linked to them sharing a tRNA unlike purines. Whilst translational selection is likely

an important component of codon usage bias and thus influences base composition, GC

biased gene conversion is emerging as an increasingly important determinant of codon

usage bias (Galtier et al., 2018; Jackson et al., 2017), as well as genome evolution in

general (Chen et al., 2007).
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1.3.2.2 GC Biased Gene Conversion

GC biased gene conversion (gBGC), unlike codon usage bias, is not confined to coding

regions. gBGC drives increases in GC allele frequency and occurs during recombination

as follows. Firstly, recombination is initiated by a double stranded break (DSB) in one of

a pair of homologous chromosomes (figure 1.2b). One strand of the broken chromosome

invades its counterpart leading to the formation of a ’D loop’ (figure 1.2c). At which

point recombination and gene conversion can proceed in a number of directions (for

more information see: Chen et al., 2007; Duret and Galtier, 2009), here for simplicity

I focus on the process that results in a crossover. DNA synthesis proceeds along the

length of the D loop, resulting in a crossover, which leaves heteroduplex regions, where

the two stands of a sequence are from different parent chromatids (figure 1.2d). If there

are heterozygous sites within this heteroduplex, it results in miss-paired bases (outlined

bases in figure 1.2d). The repair of these mismatches, gene conversion, favours GC alleles

over AT alleles, hence ’GC biased’ gene conversion, allowing these alleles to increase in

frequency in heterozygotes in a selection mimicking manner (Chen et al., 2007; Duret

and Galtier, 2009; Galtier and Duret, 2007).

As gBGC operates like selection and occurs during recombination, both recombination

rate and the effective population size (Ne) are determinants of its strength and impact.

As recombination rate increases, so should the number of gene conversions. Whereas Ne

modulates the strength of genetic drift, and thus how effectively gBGC can increase the

frequency of GC alleles. Therefore, in areas of low Ne and areas of low recombination,

the impact of gBGC should be negligible, and in areas where these parameters are high

the effects of gBGC should be pronounced. To explore the role of gBGC in genomic

evolution, studies largely contrast the rate of substitution for three categories of site.

Firstly, substitutions from weak bases (A and T) to strong bases (G and C) (WS), which

are elevated by gBGC. Secondly, substitutions in the opposite direction from strong to

weak bases (SW), for which gBGC reduces the fixation probability. Finally weak to weak

and strong to strong substitutions (WWSS), also known as GC conservative changes,

which will not be impacted by gBGC. Comparison of the ratios of WS substitutions

to SW substitutions across 19 mammals, showed higher ratios, indicative of gBGC, in
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A C G C C T G C A C G G T A G A T G A T 

T G C G G A C G T G C C A T C T A C T A 

A C A C C T G C A C G G T A G G T G A T 

T G T G G A C G T G C C A T C C A C T A 

(a) 

A C G C C T G C A C G G T A G A T G A T 

T G C G G A C G T G C C A T C T A C T A 

A C C G G T G A T 

T G T G G A C T A 

A C G C C T G C A C G G T A G A T G A T 

G T G G A  C T A 

A C C G G T G A T 

G C G G A C G T G C C A T C T C T A 

(b) 

(c) 

A C G C C T G C A C G G T A G G T G A T 

T G C G G A C G T G C C A T C T A C T A 

T G T G G A C G T G C C A T C T A C T A 

A C G C C T G C A C G G T A G A T G A T 
(d) 

A C G C C T G C A C G G T A G G T G A T 

T G C G G A C G T G C C A T C C A C T A 

T G C G G A C G T G C C A T C T A C T A 

A C G C C T G C A C G G T A G A T G A T 
(e) 

Figure 1.2: A simple overview of gene conversion. Recombination is initiated by
a double stranded break (b), which is followed by the formation of a ‘D loop’ and
strand invasion (c) which is resolved leading to a crossover (d), finally the heteroduplex

mismatches (outline bases in black) are resolved (e).
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species with higher Ne (Hwang and Green, 2004). WS substitution rates have also

been shown to positively correlate with recombination rate in the fly catcher (Ficedula

albicollis) (Boĺıvar et al., 2016), and with GC content in Drosophila melanogaster and

Drosophila simulans (Jackson et al., 2017). Evidence for the action of gBGC can be seen

through WS polymorphic SNPs segregating at higher frequency than other mutation

types across a range of birds and mammals (Rousselle et al., 2019). gBGC also provides

an explanation for the relationship between recombination rate and GC content reported

across a broad range of taxa (Boĺıvar et al., 2016; Glémin et al., 2015; Rousselle et al.,

2019; Wallberg et al., 2015; Weber et al., 2014).

An alternative, but less applied approach, is to make use of polymorphism datasets and

estimate the population scaled strength of gene conversion B (where B = 4Neb). This

is analogous to estimating the population scaled selective coefficient (γ = 4Nes) for

WS mutations. Long et al. (2018) recently calculated B across a wide range of species,

spanning multiple taxa, yielding a range of B from 0.4 to 5. When considering previous

estimates, humans are at the lower end of this range, with a mean B of 0.38 (Glémin

et al., 2015), D. melanogaster and D. simulans span the lower half of the range with

B values ranging from 0.5 to 2.5 within their genomes (Jackson et al., 2017) and the

honey bee (Apis mellifera) sits at the top with a mean B of 5.7 (Wallberg et al., 2015).

Although, as indicated by the large range of intra-genomic B estimates in Drosophila

(Jackson et al., 2017), B will vary depending on genomic context, and so localised B

values may fall greatly outside the range reported by Long et al. (2018), such as in

humans where B in recombination hotspots is as high as 18 (Glémin et al., 2015). In

keeping with analyses of WS substitution patterns, B correlates with recombination rate

(Glémin et al., 2015; Wallberg et al., 2015) GC content (Jackson et al., 2017) and Ne

(preprint: Borges et al., 2018).

In addition to characterising how historical (substitution based methods) and contempo-

rary (polymorphism based methods) gBGC proceeds, many studies also assess the long

term impact of gBGC on base composition, by calculating the equilibrium GC content

(GC∗). GC∗ is an estimate of the GC content if gBGC continues at the same strength

over an indefinite branch length. GC∗ can be estimated from either polymorphism or
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substitution based methods. Studies to date generally report strong correlations be-

tween GC∗ and predictors of gene conversion, such as recombination rate (Muyle et al.,

2011; Singhal et al., 2015), GC content (Gossmann et al., 2018) and Ne (Weber et al.,

2014). Such findings show how elevated gBGC levels are driving GC content to higher

proportions in some regions and species.

1.3.2.3 GC Biased Gene Conversion in Birds

As discussed previously, avian genomes are a particularly useful tool in addressing many

population genetic questions in part due to their conserved synteny and karyotype (Hans-

son et al., 2010; Stapley et al., 2008; van Oers et al., 2014; Zhang et al., 2014), facilitating

between species comparisons, and their variable recombination landscape (Backström

et al., 2010; Stapley et al., 2008; van Oers et al., 2014), making them particularly suited

to studying recombination driven processes like gene conversion. Furthermore, it has

been suggested that birds lack the gene PRDM9, which determines the location of re-

combination hotspots, and thus their recombination landscapes are more conserved than

in other taxa, potentially allowing for clearer and longer term signals of gBGC (Singhal

et al., 2015).

Indeed, a number of studies have shown convincing evidence for the impact of gBGC in

avian genomes. Recombination rates correlate with GC content of 3rd codon positions

(GC3 content) in chicken (Rousselle et al., 2019), GC content of fourfold degenerate

sites (GC4 content) in flycatcher (Boĺıvar et al., 2016) and with GC∗ in zebra finch and

long tailed finch (Singhal et al., 2015) consistent with the action of gBGC. Additionally,

Weber et al. (2014) recently made use of the large number of sequenced avian reference

genomes to look at gBGC across the avian phylogeny, showing GC3 content correlates

with a number of proxies for Ne, including body mass, longevity and female age at ma-

turity, largely a result of elevated GC content in smaller species, consistent with stronger

gBGC. Estimates of ancestral population sizes across this phylogeny also correlate with

GC∗ (Weber et al., 2014).

Overall, GC content is increasing in birds (Webster, 2006), towards a higher equilibrium

level, likely as a result of pervasive gBGC (Boĺıvar et al., 2016; Nabholz et al., 2011).
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However, studies are largely focused on GC3 and GC4 and almost entirely confined to

coding regions, and so may not be representative of the genome at large. Furthermore,

work using ancestral repeat elements as a neutral reference suggests that there is a

selective constraint of up to 40 percent on fourfold degenerate sites in birds (Kunstner

et al., 2011). This could be problematic for studies such as those discussed that rely on

fourfold degenerate sites and third codon positions (which include all fourfold degenerate

sites). Additionally, all of these approaches are based on substitution data, leaving the

short-term dynamics unknown.

1.4 Quantifying Selection and the Strength of gBGC

The site frequency spectrum (SFS) is the population genetic workhorse for the analysis

of polymorphism datasets. It summaries the allele frequencies of polymorphic variants

in the population, providing both information on the mutation rate and selective forces

operating. In its simplest form the SFS can be constructed from the frequencies of the

least common allele of a variant (minor allele frequency). This results in a ‘folded’ SFS

where the lower end of the distribution contains the variants segregating at high and

low frequency in the population, and the upper end represents those at intermediate

frequency. The folded SFS contains useful information for inferences about selection.

For example, the classic measure of Tajima’s D (Tajima, 1989) measures skews in the

folded SFS, yielding negative values when it is enriched in low frequency and/or high

frequency variants, which can be indicative of purifying or positive selection, whereas

positive values reflect an enrichment of intermediate frequencies such as from balancing

selection, and values close to zero reflect a neutral SFS. The folded SFS can also be used

in more sophisticated quantification of the strength of selection through estimation of

the distribution of fitness effects (DFE). The DFE is a means of categorising the selective

pressures acting on new mutations, providing an estimate of the proportion of variants

that are positively selected, neutral or deleterious within a population (see Eyre-Walker

and Keightley, 2007, for review).
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The folded SFS however is not always sufficient. The characterisation of the directional

forces of selection on INDELs and gBGC on SNPs shares one methodological hurdle,

namely the need to determine the ancestral states of the variants. Variant calling re-

turns insertions and deletions relative to the reference genome, but without knowing

if the longer variant or the shorter variant is ancestral, insertion events and deletion

events cannot be teased apart. Similarly with gBGC, we are interested in estimating

the strength of ‘selection’ for SW and WS polymorphisms separately, requiring knowl-

edge of whether the S allele or the W allele is ancestral. In terms of the SFS this requires

we obtain the derived allele frequency spectrum or ’unfolded’ SFS. Inferring the ances-

tral state is relatively trivial conceptually, especially when using parsimony. Through

the use of alignments between the study species and a number of out groups the most

common state can be identified at a given position and taken to be ancestral. However,

such approaches require good quality genome assemblies of closely related species and

are prone to error. Errors in inferring the ancestral state, or ’polarisation errors’ are

particularly an issue for methods that use the unfolded site frequency spectrum to esti-

mate population genetic parameters. This is due to the fact that a miss-orientated low

frequency variant appears in the SFS as a high frequency variant, as well as the fact

that for INDELs it also may switch mutation type from an insertion to a deletion, or

vice versa which can confound estimates of selection (Hernandez et al., 2007) (see figure

2.1 for a more detailed explanation). As such, until recently (e.g. Glémin et al., 2015)

these topics have largely been avoided, from the perspective of quantifying selection.

1.5 Thesis Chapters

In this thesis I take advantage of the public availability of high quality, whole genome

resequencing datasets to address two understudied aspects of genome evolution, namely

the quantification of selective pressures on small insertions and deletions and the impact

of gBGC in the non-coding genome.

Chapter 2 presents a novel method for inferring the distribution of fitness effects from
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polymorphism data derived by Kai Zeng. The method is broadly applicable to combina-

tions of SNP and INDEL data from a variety of genomic scales. The main advancement

on previous methods is the possibility to derive the DFE for insertions and deletions sep-

arately whilst controlling for ancestral state misidentification. In this chapter I assess the

model’s performance with simulated datasets, before applying it to an INDEL dataset

from publicly available resequenced Drosophila melanogaster genomes (Pool et al., 2012).

I demonstrate the model performs well, providing accurate results across a broad range

of simulated parameters. My analysis of the D. melanogaster dataset reveals a bimodal

DFE for INDELs in the coding regions of this species. Additionally I calculate the pro-

portion of INDEL fixations that have been driven by positive selection (α) at ∼ 70 to

80%, a similar proportion to previously reported estimates for non-synonymous SNPs

(Andolfatto et al., 2011; Schneider et al., 2011).

In Chapter 3 I investigate how natural selection has shaped INDEL variation in the

genome of a wild passerine bird, the great tit (Parus major). I apply the model from

Chapter 2 to an INDEL dataset derived from published resequencing data for 10 Eu-

ropean great tits (Corcoran et al., 2017). Analysis of coding sequence INDELs yields a

bimodal DFE characterised by strong purifying selection, resulting in only ∼ 4% of IN-

DEL events segregating in the population. Additionally, I estimate α at 71% and 86%,

for insertions and deletions respectively. These results are in line with those reported in

Chapter 2. Here I also extend my analysis to non-coding regions were I show that IN-

DELs are still exposed to purifying selection but at a greatly reduced level, with ∼ 80%

of insertions and ∼ 52% of deletions effectively neutral. I also show that in proximity to

exons and in areas of low recombination INDEL diversity is reduced through the action

of linked selection, and present some evidence for the mutagenic effect of recombination

increasing INDEL mutation rates.

In Chapter 4, I shift my focus to the evolution of base composition in the great tit and

an additional passerine, the zebra finch, focussing on the role of gBGC and INDELs.

I generate a dataset of 1 megabase orthologous windows of non-coding data from the

great tit genomes used in Chapter 2 and 10 zebra finch genomes from Singhal et al.

(2015). I estimate the population scaled strength of gBGC (B) using the model from
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Glémin et al. (2015) and assess gBGC’s contribution to the base composition of the two

species’ genomes. I also evaluate the impact of small insertions and deletions on the

genomes’ base composition. The analysis demonstrates remarkable conservation in the

underlying strength of conversion bias, with increased B estimates in the zebra finch of

the same magnitude of the species’ larger Ne. Overall, the analysis shows non-coding B

values are weak (< 1), and INDELs have not been GC conservative in their impact on

the lineages leading to the two species.



Chapter 2

New methods for inferring the

distribution of fitness effects for

INDELs and SNPs

Authors: Henry J. Barton and Kai Zeng
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2.1 Abstract

Small insertions and deletions (INDELs; ≤50bp) are the most common type of variabil-

ity after SNPs. However, compared to SNPs, we know little about the distribution of

fitness effects (DFE) of new INDEL mutations and how prevalent adaptive INDEL sub-

stitutions are. Studying INDELs has been difficult partly because identifying ancestral

states at these sites is error-prone and misidentification can lead to severely biased esti-

mates of the strength of selection. To solve these problems, we develop new maximum

likelihood methods, which use polymorphism data to simultaneously estimate the DFE,

the mutation rate, and the misidentification rate. These methods are applicable to both

INDELs and SNPs. Simulations show that they can provide highly accurate results. We

applied the methods to an INDEL polymorphism dataset in Drosophila melanogaster.

We found that the DFE for polymorphic INDELs in protein-coding regions is bimodal,

with the variants being either nearly neutral or strongly deleterious. Based on the DFE,

we estimated that 71.5% – 83.7% of the INDEL substitutions that took place along the

D. melanogaster lineage were fixed by positive selection, which is comparable to the

prevalence of adaptive substitutions at non-synonymous sites. The new methods have

been implemented in the software package anavar.

2.2 Introduction

New mutations can have a range of effects on an organism’s fitness, ranging from being

strongly harmful, through being only slightly deleterious, to being neutral, and finally

on to being either mildly or highly beneficial. The relative frequencies of mutations with

different selective effects is known as the distribution of fitness effects (DFE). The DFE

is an important parameter as it is required for addressing many fundamental questions

(Eyre-Walker and Keightley, 2007). Examples include understanding determinants of

the efficacy of natural selection (Corcoran et al., 2017; Galtier, 2016), the genetic ba-

sis of polygenic traits (Zuk et al., 2014), and the evolutionary advantage of sex and

recombination (Hartfield and Keightley, 2012).
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Taking advantage of the massive increase in data availability, many methods have been

proposed for estimating the DFE using polymorphism data (Eyre-Walker and Keightley,

2009; Eyre-Walker et al., 2006; Keightley et al., 2009; Kim et al., 2017; Kousathanas and

Keightley, 2013; Tataru et al., 2017). Their development in turn allows more reliable

inferences about other important quantities such as α, the proportion of adaptive sub-

stitutions (Eyre-Walker and Keightley, 2009). However, all these methods are concerned

with estimating the DFE for single nucleotide polymorphisms (SNPs). Consequently,

much less is known about the DFE and α for other types of genetic variation such as

small insertions and deletions (INDELs; ≤ 50bp), despite the fact that INDELs are

the second most common type of variants (e.g., Montgomery et al., 2013), and hence

represent an important source of raw materials for selection to act on.

A major difficulty in studying INDELs lies with ancestral state identification. This re-

quires multi-species genome alignments. However, INDELs occur disproportionately in

repetitive genomic regions (Ananda et al., 2013; Montgomery et al., 2013), where align-

ment algorithms perform poorly (Earl et al., 2014). Furthermore, there is evidence that

homoplasy is a significant issue outside repetitive regions, probably due to the existence

of cryptic INDEL mutation hotspots (Kvikstad and Duret, 2014). Thus ancestral state

identification can be expected to be particularly error prone for INDELs. It is well es-

tablished that misidenfication of ancestral states can lead to severely biased estimates

of the strength of selection using the site-frequency spectrum (SFS) (Hernandez et al.,

2007). For SNPs, this difficulty can be avoided by using the folded SFS (e.g., Eyre-

Walker et al., 2006; Keightley and Eyre-Walker, 2007). However, to determine whether

a length variant is an insertion or a deletion, we have to know what the ancestral state

is, meaning that the issue of polarisation error is inherent for INDELs. As a result,

applying existing methods for estimating the DFE to INDEL data may be liable to

biases.

Another challenge is that the SFSs for insertions and deletions may be affected by

polarisation errors to different extents. This is because when the ancestral state of an

insertion segregating at low frequency is misidentified, it will be incorrectly inferred as

a deletion segregating at high frequency (and vice versa). There is direct experimental
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Figure 2.1: The SFSs for insertions and deletions may be affected to different extents
by polarisation errors. We assume that the population size is constant, that INDELs are
neutral, and that the sample size is 10. In the genomic region under consideration, the
total scaled mutation rate towards insertions, 4Neum, is 10, where Ne is the effective
population size u is the insertion mutation rate per site per generation, andm is that size
of the focal region. The total scaled mutation rate towards deletions is 20. The expected
SFSs were generated using standard neutral theory. The SFSs with polarisation errors
were generated by assuming that the ancestral state of an INDEL was wrongly identified

with probability 0.1.

evidence that the deletion mutation rate is higher than the insertion mutation rate

(Besenbacher et al., 2015; Keightley et al., 2009; Schrider et al., 2013; Yang et al., 2015).

This mutational bias means that there are more deletions segregating in the population

than insertions. The larger number of deletions may lead to the SFS for insertions

being disproportionally affected by polarisation errors (Figure 2.1). This asymmetry can

cause the insertion SFS to have a more pronounced, but artificial, uptick at the high-

frequency end, which can be misinterpreted as stronger positive selection on insertions

over deletions. As pointed out by Kvikstad and Duret (2014), this methodological issue

can, at least in principle, compromises the results of previous studies, which suggest

that insertions are more likely to be under positive selection than deletions to prevent

the genome size from unconstrained contraction caused by the mutational bias towards

deletions (Parsch, 2003). Similarly, it will make it difficult to test the possibility that

insertions have a higher fixation probability because they are favoured by insertion-

biased gene conversion (Leushkin and Bazykin, 2013).
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Towards resolving the confounding efforts ancestral state misidentification have on the

study of INDELs, we propose new maximum likelihood methods for inferring the DFE

using polymorphism data. These methods are based on recent studies on SNPs which

show that polymorphism data contains enough information for simultaneous estimation

of the mutation rate, the DFE, and the polarisation error rate (Glémin et al., 2015;

Tataru et al., 2017). Our methods are more general than the existing methods in the

following aspects. First, they can handle both INDELs and SNPs. Second, insertions and

deletions can have different polarisation error rates, mutation rates, and DFEs. Third,

for both INDELs and SNPs, the new methods allow the mutation and polarisation error

rates to vary across the genome. Incorporating these heterogeneities may be particularly

important for INDELs (Kvikstad and Duret, 2014). We carried out extensive simulations

to examine the performance of the new methods. As an example, we applied the methods

to an INDEL polymorphism dataset in Drosophila melanogaster we obtained by re-

analysing the raw short-read data published by the Drosophila Population Genomics

Project (Pool et al., 2012). Through model comparisons, we tried to find the DFE

that best described the observed pattern of INDEL polymorphism within protein-coding

regions of the genome. Finally, using the best-fitting DFE, we estimated the proportion

of INDEL substitutions fixed by positive selection (α).

2.3 New Approach

For ease of presentation, we will start with a description of the SNP models. The INDEL

models will be presented later as an extension.

2.3.1 The SNP models

Consider a diploid population with effective size Ne. The size of the genomic region of

interest is m base pairs, and the sample size is n.



28

2.3.1.1 The discrete model:

Assume that there are C different classes of sites in the focal region. These sites can

be different with respect to their mutation rates, the fitness effects of new mutations,

and polarisation error rates. This discrete model has several advantages. First, it does

not assume that the DFE follows a specific probability distribution, and is therefore

able to accommodate complex scenarios such as a multi-modal DFE (Kousathanas and

Keightley, 2013). Second, by allowing the mutation and polarisation error rates to vary

freely between site classes, the method can include situations whereby these two variables

co-vary (e.g., hypermutable regions may have a higher polarisation error rate).

We assume that the mutation process can be approximated by the infinite-sites model.

Let the total scaled mutation rate for sites of class c be mθc, where c ∈ {1, 2, ..., C}

and θc = 4Neuc. To understand uc, consider an alternative formulation whereby the

mutation rate for the cth class of sites is vc per site per generation, and sites of class

c account for a fraction pc of all sites in the focal region (i.e.,
∑

c pc = 1). We have

mθc = mpc4Nevc, which leads to uc = pcvc. By using θc, we can perform searches for

maximum likelihood estimates (MLEs) of the parameters without having to deal with

the constraint
∑

c pc = 1. Define

θ =
C∑
c=1

θc = 4Ne

C∑
c=1

pcvc. (2.1)

Thus, θ is the average scaled mutation rate per site, and the total scaled mutation rate

is mθ. If the per-site mutation rate is uniform across the focal region (i.e., vi = vj for

i 6= j and 1 ≤ i, j ≤ C), then θc/θ = pc.

To model selection, we assume that, for mutations arising at sites of class c, the fitnesses

of the wild-type, heterozygote, and mutant homozygote genotypes are 1, 1 + sc, and 1

+ 2sc, respectively. The corresponding scaled selection coefficient γc is defined as 4Nesc.

Positive and negative γc values signify beneficial and deleterious mutations, respectively.

The site-frequency spectrum (SFS) for the cth site class, which is defined as the expected

number of polymorphic sites of size i (i.e., sites where the derived allele is represented i
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times; 1 ≤ i < n), is given by

Ψc,i = mθcτi(γc) (2.2)

where

τi(γ) =

∫ 1

0

(
n

i

)
xi(1− x)n−i

1− e−γ(1−x)

x(1− x)(1− e−γ)
dx. (2.3)

Polarisation errors distort the SFS. Specifically, when the ancestral state of a polymor-

phic site of size i is mis-identified, it will be regarded as a polymorphic site of size n− i.

To model polarisation errors, we let εc be the probability that the ancestral state of a

polymorphic site of class c is incorrectly identified (Glémin et al., 2015). The final SFS

for sites of class c is then

ψc,i = (1− εc)Ψc,i + εcΨc,n−i. (2.4)

In what follows, we refer to the SFS with and without the correction of polarisation

errors as the corrected and uncorrected SFS, respectively. The corrected SFS for the

focal region is simply the sum of all the contributions from the sites in different classes

ψi =
C∑
c=1

ψc,i. (2.5)

Existing models either do not model polarisation error (Eyre-Walker and Keightley,

2009; Keightley and Eyre-Walker, 2007; Kim et al., 2017) or assume that the error rate

is constant across the focal region (Glémin et al., 2015; Tataru et al., 2017). The model

described above is therefore more general. Allowing variation in the polarisation error

rate can be important. For instance, sites under stronger selective constraints tend to

evolve slower, and are less likely to be polarised incorrectly due to homoplasy. It should,

however, be noted that, when γc ≡ γ for ∀c ∈ {1, 2, ..., C}, not all the parameters are

identifiable. To see this, we rewrite (2.5) as

ψi = m

C∑
c=1

(1− εc)θcτi(γ) +m

C∑
c=1

εcθcτn−i(γ). (2.6)
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Appealing to (2.1) and defining ε∗ such that

ε∗θ =
C∑
c=1

εcθc (2.7)

we can rewrite (2.6) as

ψi = (1− ε∗)mθτi(γ) + ε∗mθτn−i(γ). (2.8)

Thus, when there is no difference in fitness effects between mutations arising at sites of

different classes, we cannot detect variation in the scaled mutation rate and polarisation

error rate because the model reduces to one that depends on θ, γ and ε∗. This result

has important implications for data analysis by pointing out that a model with a small

number of site classes may provide an adequate description of the data even when the

underlying biological process features complex variation in the mutation rate across the

genome.

2.3.1.2 The continuous model:

Instead of assuming that the focal region is composed of several classes of sites, we

can assume that the fitness effects of new mutations follows a continuous distribution

characterised by parameters Ω. Let θ be the scaled mutation rate per site, and ε be the

polarisation error rate. The uncorrected SFS becomes

Ψi = mθ

∫
τi(γ)f(γ|Ω)dγ (2.9)

where f(γ|Ω) is the probability density function. The corrected SFS is analogous to

(2.4) with c in the subscripts omitted.

Although the modelling framework allows the DFE to follow arbitrary probability dis-

tribution (including those mixture distributions considered by Galtier (2016)), here we

only consider the reflected Γ distribution, i.e., −γ ∼ Γ(a, b), where γ ≤ 0 and a and b

are the shape and scale parameters, respectively.
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2.3.1.3 Parameter estimation:

Let X = (x1, x2, ..., xn−1) represent the observed SFS, where xi is the number of

polymorphic sites of size i in the sample. Let Θ denote all the parameters in the model

(i.e., θc, γc, and εc for c ∈ {1, 2, ..., C} for the discrete model and θ, Ω, and ε for the

continuous model). To obtain MLEs of Θ, we use the Poisson random field model

(Bustamante et al., 2001; Sawyer and Hartl, 1992). Omitting constants that have no

effects on the shape of the likelihood surface, the log likelihood function is defined as

L(Θ|X) =

n−1∑
i=1

(
− ψi + xi ln(ψi)

)
. (2.10)

2.3.1.4 Controlling for demography:

We have so far assumed that the population is panmictic and of constant size Ne. To

control for demography, we employ the method of Eyre-Walker et al. (2006). Take the

continuous model as an example. First, we define augmented SFSs as

Ψ∗i = riΨi (2.11a)

ψ∗i = (1− ε)Ψ∗i + εΨ∗n−i (2.11b)

Next, a set of neutral variants is added to the model, which introduces two additional

parameters θ(0) and ε(0), which are the scaled mutation rate per site and the polarisation

error rate, respectively, for the neutral sites. Let Θ(0) denote these new parameters and

X(0) denote the neutral SFS. The log likelihood of the observed data can be calculated

as

L(Θ,Θ(0), R|X,X(0)) = L(Θ, R|X) + L(Θ(0), R|X(0)) (2.12)

where R = (r2, r3, ..., rn−1) and the two log likelihood functions on the right-hand side

are calculated in the same way as (2.10) with ψi replaced by ψ∗i .

The above method for controlling for demography has been used extensively (Eyre-

Walker et al., 2006; Galtier, 2016; Glémin et al., 2015; Jackson et al., 2017; Muyle
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et al., 2011; Tataru et al., 2017). These previous efforts have gathered clear theoretical

and empirical evidence that the method is robust against a wide range of demographic

processes, as well as the effects caused by selection at linked sites (e.g., background

selection and/or selective sweeps). For instance, in a recent analysis of selection on

codon usage bias in Drosophila, Jackson et al. (2017) showed that the estimates of γ

produced by an estimation method that corrects for demography using the r parameters

as set out above closely matched those produced by another estimation method that

considers an explicit one-step change in population size (see Figure 4A in Jackson et al.

(2017)).

It should be noted that (2.12) accommodates the possibility that the focal region and the

neutral region have different mutation rates. This is more general than several previous

models (Eyre-Walker and Keightley, 2009; Keightley and Eyre-Walker, 2007; Kim et al.,

2017; Tataru et al., 2017). However, it may be challenging to distinguish this model

from one in which the two regions have the same mutation rate, but a proportion of

new mutations in the focal region are so strongly deleterious that they make negligible

contributions to the observed SFS.

2.3.2 The INDEL models

2.3.2.1 The discrete model:

First consider insertions. Assume that there are Cins different classes of sites. The

total scaled mutation rate towards insertions for sites of class c is mθinsc , and the fitness

effect and polarisation error rate are γinsc and εinsc , respectively (1 ≤ c ≤ Cins). The

uncorrected SFS for insertions of class c can be calculated using (2.2), and is denoted by

Ψins
c,i . For deletions, we can similarly assume that there are Cdel different classes of sites.

The associated parameters are θdeld , γdeld , and εdeld , and the uncorrected SFS is denoted

by Ψdel
d,i (1 ≤ d ≤ Cdel).

When the ancestral state of a derived insertion of size i is misidentified, it will be wrongly

identified as a deletion of size n − i, and vice versa for deletions (note that size in this

context refers to the frequency of the derived allele, not the number of base pairs inserted
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or deleted). Thus, the corrected SFSs for insertions and deletions are


ψinsi =

Cins∑
c=1

(1− εinsc )Ψins
c,i +

Cdel∑
d=1

εdeld Ψdel
d,n−i

ψdeli =
Cdel∑
d=1

(1− εdeld )Ψdel
d,i +

Cins∑
c=1

εinsc Ψins
c,n−i

(2.13a)

(2.13b)

2.3.2.2 The continuous model:

For insertions, define the per-site scaled mutation rate and the polarisation error rate

as θins and εins, respectively. The DFE for insertions is determined by parameters Ωins.

For deletions, we similarly define the following parameters: θdel, Ωdel and εdel. Finally,

the corrected SFSs are

ψ
ins
i = (1− εins)Ψins

i + εdelΨdel
n−i

ψdeli = (1− εdel)Ψdel
i + εinsΨins

n−i

(2.14a)

(2.14b)

where Ψins
i and Ψdel

i are the uncorrected SFSs for insertions and deletions, respectively,

and are calculated in the same way as (2.9). As in the SNP case, we only consider cases

where the DFE follows a reflected Γ distribution. The shape and scale parameters for

insertions and deletions are denoted by ains, bins, adel, and bdel, respectively.

2.3.2.3 Parameter estimation:

Let Xins = (xins1 , xins2 , ..., xinsn−1) and Xdel = (xdel1 , xdel2 , ..., xdeln−1) be the observed SFSs

for insertions and deletions, respectively. The log likelihood of the data is calculated as

L(Θ|Xins, Xdel) =
∑

z∈{ins, del}

n−1∑
i=1

(
− ψzi + xzi ln(ψzi )

)
. (2.15)



34

2.3.2.4 Controlling for demography:

Take the continuous model as an example. The augmented SFSs are



Ψins,∗
i = riΨ

ins
i (2.16a)

Ψdel,∗
i = riΨ

del
i (2.16b)

ψins,∗i = (1− εins)Ψins,∗
i + εdelΨdel,∗

n−i (2.16c)

ψdel,∗i = (1− εdel)Ψdel,∗
i + εinsΨins,∗

n−i (2.16d)

As for the neutral reference, we can in principle use any combinations of SNPs, insertions,

and deletions collected from putatively neutrally evolving regions. Assume that we

have access to both neutral insertions and neutral deletions, and the observed SFSs

are denoted by Xins,(0) and Xdel,(0), respectively. The additional parameters needed to

model the neutral variants include θins,(0), εins,(0), θdel,(0), and εdel,(0), which are denoted

collectively by Θ(0). The log likelihood is

L(Θ,Θ(0), R|Xins, Xdel, Xins,(0), Xdel,(0))

= L(Θ, R|Xins, Xdel) + L(Θ(0), R|Xins,(0), Xdel,(0)) (2.17)

where the two terms on the right are calculated using (2.15) with ψzi replaced by ψz,∗i

(z ∈ {ins, del}).

2.4 Results and Discussion

2.4.1 Simulation results

We evaluate the statistical properties of the new models using computer simulations.

Unless stated otherwise, the sample size (n) is 50 and the results are based on 100

replicates. In all cases, we assume the population size is constant and only analyse data

from the selected region (see Materials and Methods for justification). For the SNP

models, we only present results for the discrete SNP model with C > 1 site classes,
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Table 2.1: Maximum likelihood estimates (MLEs) of the parameters of discrete SNP
models with C = 2 classes of sites. Simulated data were generated using the parameter
values shown in the “True value” rows, with two different region sizes, m. For each
parameter combination, 100 samples of size 50 were simulated and analysed to obtain

MLEs.

m C θ γ ε

True value – 1 0.005 -5 0.05
2 0.01 -20 0.01

Mean (SD) of MLEs 106 1 0.0050 (0.0007) -5.0 (0.4) 0.051 (0.006)
2 0.010 (0.001) -20.2 (1.9) 0.009 (0.006)

105 1 0.0044 (0.0017) -4.4 (1.5) 0.042 (0.022)
2 0.011 (0.001) -20.0 (5.7) 0.016 (0.014)

because both the C = 1 case and the continuous model have been analysed before

(Glémin et al., 2015; Tataru et al., 2017).

2.4.1.1 Properties of the discrete SNP model:

First consider a model with C = 2 site classes. As can be seen from Table 2.1, there

is information in the SFS for simultaneously estimating all the parameters to a high

degree of accuracy. Before discussing more simulation results, it should be pointed

out that, when C > 1, the order of the site classes is arbitrary. That is, the model

considered in Table 2.1 is equivalent to one with parameters θ1 = 0.01, γ1 = −20,

ε1 = 0.01, θ2 = 0.005, γ2 = −5, and ε2 = 0.05. For both cases shown in Table 2.1,

all the MLEs can be sorted such that θ̂1 < θ̂2 and γ̂1 > γ̂2. In other words, the MLEs

can be assigned unambiguously to site classes according to the order given in the “True

value” row. However, if we were to reduce the amount of data, parameter estimates will

become more uncertain, and cases such as those with θ̂1 < θ̂2 and γ̂1 < γ̂2 will occur,

which makes assigning the MLEs to site classes impossible. Thus, presenting mean and

standard deviation of the MLEs may give misleading information about the performance

of the model.

In light of the above discussion, we investigate the statistical properties of the model

using two alternative methods. First, we compare the full model to the following reduced

models using the χ2 test: “Equal ε” (all site share the same polarisation error rate),

“ε = 0” (no polarisation error), and “C − 1” (a model with C − 1 site classes, where

C is the true number of site classes). Second, we assess how well these various models
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Table 2.2: Statistical properties of the discrete SNP model. The parameters used in
Case 3 were θ1 = 0.002, γ1 = 0, ε1 = 0.05, θ2 = 0.006, γ2 = −5, ε2 = 0.02, θ3 = 0.002,
γ3 = −30, ε3 = 0.01, and n = 100. A large sample size was used for Cases 3 and 4
due to the inclusion of strongly deleterious mutations (i.e., γ3 = −30). Values under
“Percent significant” show how often the full model fitted the data better than the three
reduced models (see the main text for more details). The µ̄ (see (2.18) in Materials
and Methods) obtained under the ε = 0 model are large because ignoring polarisation

error results in the inference of a site class with a strongly positive γ.

Case Parameters m
Percent significant µ̄

Equal ε ε = 0 C − 1 True Full Equal ε ε = 0 C − 1

1 Same as Table 2.1 106 93 100 100 0.0113 0.0114 0.0171 > 1 0.0022
2 Same as Table 2.1 105 15 92 100 0.0113 0.0158 0.0204 > 1 0.0022
3 See legend above 107 3 100 100 0.2204 0.2267 0.2613 > 1 0.1755
4 Same as Case 3 2× 106 0 33 55 0.2204 0.2271 0.2580 > 1 0.1768

predict the average fixation probability µ̄ (see (2.18) in Materials and Methods), which

is essential for estimating the prevalence of adaptive substitutions (i.e., α and ωa).

Considering the two pairs of cases in Table 2.2, and focusing on the data presented

under “Percent significant”, we make the following observations. First, as the amount

of data reduces, the ability of the model to infer separate ε for different site classes

drops more rapidly than its ability to detect the existence of either polarisation error

or more than one site class. This suggests that estimating heterogeneity in ε may

be challenging. Considering all four cases, it appears that the tests for detecting the

presence of polarisation error (i.e., the full model versus “ε = 0”) and for detecting the

existence of more site classes (i.e., the full model versus “C − 1”) are more powerful,

especially the latter. It should be noted that the likelihood surface appears to be rather

flat when C = 3 such that different parameter combinations may produce very similar

log likelihoods. This is particularly evident when the amount of data is limited (Case

3 versus Case 4), leading to a reduction in power of the tests. A similar observation

was made by Keightley and Eyre-Walker (2010), who also showed that it can be partly

alleviated by increasing the sample size. Nonetheless there may well be a limit as to

how many site classes can be included. This identifiability problem is analogous to that

discussed extensively in the context of using SNP-based methods for estimating past

demographic changes (e.g., Myers et al., 2008).

Interestingly, the reduced model “Equal ε” makes worse predictions of µ̄ than the full

model in all cases presented in Table 2.2, even when the full model does not normally
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Table 2.3: MLEs of the parameters of several INDEL models

Model m Parameters

Discrete 2× 106 Name θins1 γins1 εins1 θdel1 γdel1 εdel1

True 0.0005 -5 0.02 0.001 -15 0.02
Mean MLE 0.00050 -5.0 0.021 0.0010 -15.0 0.020

Continuous 2× 107 Name θins ains bins εins θdel adel bdel εdel

True 0.0005 0.5 10 0.08 0.001 0.25 50 0.04
Mean MLE 0.00050 0.51 10.4 0.080 0.0010 0.251 51.2 0.040

Continuous 2× 106 Name θins ains bins εins θdel adel bdel εdel

True 0.0005 0.5 10 0.08 0.001 0.25 50 0.04
Mean MLE 0.00054 0.51 144.7 0.082 0.0010 0.253 93.2 0.041

provide a better fit to the data (Cases 2 and 4). The same applies to the other two

reduced models. Thus, despite the statistical difficulties discussed above, fitting the full

model to the data may be important for obtaining accurate estimates of α and ωa.

2.4.1.2 Properties of the INDEL models:

Table 2.3 contains simulation results based on a discrete model (with Cins = Cdel = 1)

and two continuous models (differing from each other in terms of the size of the focal

region m). The mutation rates are about 10 times lower than those used in the SNP

cases (Tables 2.1 and 2.2), and polarisation error rates are about 2 times higher. These

choices are to reflect the fact that INDELs are generally less prevalent than SNPs, and

are potentially more difficult to polarise. As can be seen, with a reasonable amount

of data, all the parameters can be reliably estimated. Comparing the two continuous

models, we notice that, with limited data, the scale parameter b of the Γ distribution

may be overestimated, but estimates of the shape parameter a and the polarisation error

rate remain unbiased.

The true values of µ̄ins and µ̄del for the discrete model are 0.0339 and 4.59 × 10−6,

respectively. The mean (SD) of the estimates is 0.0345 (0.0055) for µ̄ins, and 5.27×10−6

(2.91 × 10−6) for µ̄del. Thus, the true values are well within the observed ranges of

variability. The true values of µ̄ins and µ̄del for the two continuous cases are 0.384 and

0.429, respectively. The mean (SD) of the estimates for the case with more data is 0.382

(0.012) for µ̄ins and 0.429 (0.008) for µ̄del. Encouragingly, for the continuous case with

less data, despite the tendency to overestimate the scale parameter, estimates of the
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Table 2.4: Summary statistics for the INDEL and SNP data

Data Type Diversity (π) Tajima’s D

INDELs CDS 5.20× 10−5 -1.208
Frameshift 2.06× 10−5 -1.253
Non-frameshift 3.14× 10−5 -1.177
Intron 0.0016 -0.729
Intergenic 0.0017 -0.704
Non-coding 0.0017 -0.718

SNPs Nonsense 5.83× 10−6 -1.510
0-fold degenerate sites 0.0016 -0.868
4-fold degenerate sites 0.0165 -0.210

average fixation probabilities are still highly accurate: 0.388 (0.050) for µ̄ins and 0.418

(0.028) for µ̄del, suggesting that the reliability of estimates of α and ωa is unlikely to be

compromised.

2.4.2 Application to D. melanogaster data

2.4.2.1 A summary of the data

Using the variant calling pipeline detailed in Materials and Methods, a total of 370,217

INDELs (≤ 50bp) and 1,789,367 SNPs were identified from the 17 Rwandan individuals.

Our analysis primarily focuses on INDELs because SNPs have been analysed extensively

before (Eyre-Walker and Keightley, 2009; Keightley and Eyre-Walker, 2007; Schneider

et al., 2011). Similar to previous reports (e.g., Ptak and Petrov, 2002), smaller INDELs

are more prevalent than larger ones (supplementary Figure A.1). INDEL diversity is

about 30 times lower in protein-coding (CDS) regions than in either intronic or intergenic

regions (Table 2.4). Additionally, frameshift INDELs are rarer than non-frameshift ones

(Table 2.4; supplementary Figure A.1). Interestingly, nonsense mutations are somewhat

rarer than frameshift INDELs, an observation also made by Leushkin et al. (2013). These

results indicate strong purifying selection against INDELs in protein-coding regions.

INDEL diversity patterns appear to be similar between intronic and intergenic regions.

They are combined and referred to as non-coding INDELs in what follows to increase

statistical power.
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Comparing between INDELs and SNPs, we notice that INDEL diversity in non-coding

regions is about 10 times lower than π4 (4-fold site diversity; Table 2.4), consistent

with the fact that the INDEL mutation rate is lower than the point mutation rate

(Haag-Liautard et al., 2007; Schrider et al., 2013). However, Tajima’s D calculated on

non-coding INDELs is more negative than that calculated on 4-fold sites (Table 2.4),

probably reflecting the fact that many non-coding DNA in the D. melanogaster genome

are under selection (Andolfatto, 2005). Furthermore, π0 (0-fold site diversity; Table 2.4)

is only about 10 times smaller than π4. This level of reduction is much smaller than

the 30-fold difference observed between CDS and non-coding INDELs. This suggests

that, in protein-coding regions, INDEL mutations are under much stronger purifying

selection than 0-fold mutations, which is consistent with the more negative Tajima’s D

value calculated on CDS INDELs (Table 2.4).

To further investigate the data, we calculated dN , substitution rate at nonsynonymous

sites, using PAML and the reference genomes of D. simulans and D. yakuba (see Mate-

rials and Methods). The genes were then divided into 20 equal-sized bins. For each bin,

we calculated average π0 and πINDEL. Both statistics decrease as dN decreases (Figure

A.2), consistent with the expectation that mutations are on average more deleterious

in more conserved genes (Jackson et al., 2015). The results in this and the preceding

paragraphs suggest that our INDEL dataset is of high quality.

2.4.2.2 Inferring the DFE and α using non-coding INDELs as the neutral

reference

To infer the DFE for INDELs in CDS regions, we used non-coding INDELs as the neutral

reference. Following previous efforts in estimating the DFE for SNPs (Eyre-Walker and

Keightley, 2009; Galtier, 2016; Keightley and Eyre-Walker, 2007; Schneider et al., 2011;

Tataru et al., 2017), we also assumed that the mutation rate towards insertions and

deletions, respectively, were the same between the neutral and selected regions. The

best-fitting DFE is one with C = 2 classes of selected sites (Table 2.5 and supplementary

Table A.1). The MLEs of γ suggest that polymorphic INDELs are either nearly neutral

or are so strongly deleterious that they contribute little to polymorphism. This seems to
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Table 2.5: Results based on the best-fitting models for INDELs in the CDS regions of
the D. melanogaster genome. The DFE for polymorphic INDELs in the CDS regions
were inferred using either non-coding INDELs or 4-fold sites as the neutral reference.
A series of different DFEs were fitted to the data, and the best-fitting models pre-
sented above were determined by using the Akaike information criterion (AIC) (see
supplementary Tables S1 and S3). When non-coding INDELs were used as the neutral
reference, α was estimated using INDEL divergence in noncoding regions. When 4-fold
sites were used as the neutral reference, the mutation rate ratio between SNPs and
INDELs, and that between deletions and insertions, were fixed at values obtained from
a mutation accumulation experiment (Schrider et al., 2013). α was estimated using a
method based on divergence in the 8–30bp region of short introns < 66bp long (see the

main text).

Model Parameters for CDS INDELs α

Noncoding INDELs θins1 γins1 εins1 θdel1 γdel1 εdel1 83.7%
Discrete C = 2 1.8× 10−5 1.98 0.023 5.3× 10−5 -1.69 0.016
Uniform mutation rate θins2 γins2 εins2 θdel2 γdel2 εdel2

7.2× 10−4 -1566.4 3.6× 10−5 0.0011 -642.5 1.6× 10−5

4-fold degenerate sites θins1 γins1 εins1 θdel1 γdel1 εdel1 71.5%
Discrete C = 2 1.6× 10−5 -1.31 0.0092 4.9× 10−5 -3.77 0.0082
Fixed mutation ratios θins2 γins2 εins2 θdel2 γdel2 εdel2

1.9× 10−4 -284.1 1.2× 10−4 0.0010 -454.8 6.2× 10−5

be consistent with the 30-fold difference in INDEL diversity level between CDS and non-

coding regions, which is more substantial than the 10-fold difference between 0-fold and

4-fold sites (Table 2.4). Fitting the data to a discrete model with C = 3 classes of sites

also reveals a bimodal DFE, suggesting that the conclusion is robust (supplementary

Table A.1). With a larger sample containing hundreds or even thousands of alleles, and

by fitting a DFE with more site classes, it should be possible to obtain further details

of the relative frequencies and fitness effects of strongly selected variants, which tend

not to segregate in our current sample of size 17. However, this additional information

about the strongly selected end of the DFE is unlikely to affect our estimation of α (see

below) because these variants make effectively no contribution to divergence.

To better understand the effects of length, we separated the INDELs in CDS regions

into the following length categories: 1bp, 2bp, 3bp, frameshifting (≥4bp), and non-

frameshifting (≥6bp). We analysed the data in each category separately. As above, non-

coding INDELs with the same length were used as the neutral reference and the mutation

rate was assumed to be constant across neutral and selected sites. Considering the dearth

of variants, we only fitted a DFE with C = 1 class of selected sites. Viewing the γ in this

model as the “average” selection coefficient, frameshift INDELs are consistently more
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deleterious than non-frameshift INDELs (supplementary Figure A.3). Consistent with a

prevous study (Leushkin et al., 2013), there is no obvious evidence that longer INDELs

are under stronger selection.

Using the best-fitting DFE (Table 2.5), the proportion of INDEL substitutions in the

CDS regions fixed by positive selection in the D. melanogaster lineage, α, is 83.7% (100%

for insertions and 81.8% for deletions). These α estimates are comparable to previous

estimates for SNP substitutions in CDS regions (Andolfatto et al., 2011; Schneider et al.,

2011).

As mentioned above, some non-coding INDELs are probably non-neutral, as suggested

by the negative Tajima’s D value (Table 2.4). Our use of these variants as the neutral

reference are for several practical reasons. Although using INDELs in “dead-on-arrival”

transposable elements as neutral reference may be preferable (Petrov, 2002a), calling

variants from repetitive regions using short-read data is highly prone to error (Li, 2014).

Using data from the 8-30bp region of short introns ≤ 65bp, which are also putatively

neutral (Parsch et al., 2010), is also problematic because of evidence for selection main-

taining intron size (Leushkin et al., 2013; Parsch, 2003; Ptak and Petrov, 2002). Note

that Tajima’s D is more negative for INDELs in CDS regions than for those in non-

coding regions, suggesting that the latter are probably under weaker purifying selection

(Table 2.4). If this is the case, our method tends to underestimate the strength of

purifying selection on INDELs in CDS regions, as suggested by the simulation results

presented in supplementary Table A.2. This should lead to an overestimation of µ̄, the

average fixation rate (Eq. (2.18)), which should in turn put a downward pressure on the

estimation of α (Eq. (2.19)). However, biases in α also depend on the way selection on

non-coding INDELs alters divergence. For example, if fixations of beneficial non-coding

INDELs are so common that dS is greater than the divergence level expected under neu-

tral evolution, then this combined with the overestimation of µ̄ can lead to a substantial

underestimation of α. In contrast, if most non-coding INDELs are selected against and

dS is much smaller than the neutral expectation, it may offset the effect caused by the

overestimation of µ̄ and result in an overestimation of α.
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2.4.2.3 Inferring the DFE and α using 4-fold degenerate sites as the neutral

reference

To check the robustness of our results, we conducted a second set of analyses without

using non-coding INDELs. We extended our model such that it can infer the DFE for

INDELs in CDS regions using 4-fold sites as the neutral reference. We chose 4-fold sites

instead of the 8-30bp region of short introns ≤ 65bp because 4-fold sites are probably

not under ongoing selection on codon usage in D. melanogaster, and are similar to short

introns in multiple aspects of polymorphism patterns (Jackson et al., 2017). Considering

the parameter richness of the models, using 4-fold SNPs as the neutral reference should

help statistical inference because they are much more numerous than short-intron SNPs.

We used the following approach to obtain neutral divergence for INDELs along the D.

melanogaster lineage. The nucleotide divergence in the 8-30bp region of short introns ≤

65bp is 0.0674 (B. Jackson personal communication). In a mutation accumulation exper-

iment (Schrider et al., 2013), it was found that the rate to point mutations is 12.2 times

higher than that to short INDELs, and that the rate to deletions is 5 times higher than

that to insertions (averaging across the two genetic backgrounds considered therein).

Thus, an estimate of neutral INDEL divergence can be obtained as 0.0674/12.2 = 0.0055,

and the corresponding estimates for insertions and deletions are 9.2× 10−4 and 0.0046,

respectively.

Due to the use of 4-fold sites as the neutral reference, it is no longer appropriate to

assume that the mutation rate is the same between the selected and neutral regions.

Given the evidence that the DFE for INDELs probably features a class of strongly dele-

terious mutations that make little contribution to polymorphism, allowing the selected

and neutral regions to have their separate mutation rates is likely to cause the model to

underestimate both the mutation rate in the selected region and strength of purifying

selection, as confirmed by simulation results presented in supplementary Table A.3. An

underestimation of the strength of purifying selection is likely to cause an underesti-

mation of α. We observed this in our dataset – α for all INDELs obtained from the

best-fitting DFE for this analysis (supplementary Table A.4) is only 21.7%, much smaller
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than the value of 83.7% when non-coding INDELs were used as the neutral reference

(Table 2.5).

To resolve the above problem, we again made use of the information reported in the

aforementioned mutation accumulation experiment (Schrider et al., 2013). Specifically,

we further extended our model, so that the mutation rate ratio between SNPs and

INDELs, and that between deletions and insertions, were fixed at 12.2 and 5, respectively.

As shown in Table 2.5 (see also supplementary Table A.5), the best-fitting DFE has C =

2 class of sites, with one under weak selection, and the other being strongly deleterious.

The α estimates for all INDELs, insertions and deletions are, respectively, 71.5%, 59.7%,

and 81.3%.

To make sure that the above results are not dependent on our use of the mutation

rate ratios estimated by Schrider et al. (2013), we repeated the analysis using ratios

obtained by either Petrov and Hartl (1998) (SNP/INDEL = 6.9 and deletion/insertion

= 8.7) or Haag-Liautard et al. (2007) (SNP/INDEL = 4.2 and deletion/insertion = 3.0)

(supplementary Table A.6). In both cases, the best-fitting DFE has C = 2 classes of

selected sites, under weak and strong selection, respectively (supplementary Tables A.7

and A.8). Furthermore, estimates of the strength of purifying selection acting on sites

in the weakly selected class are almost identical regardless of the choice of mutation

rate ratios (supplementary Table A.9). Thus, unsurprisingly, all three analyses also

produce very similar α estimates (supplementary Table A.9). Overall, these results

are consistent with those based on non-coding INDELs and suggest that a substantial

fraction of INDEL substitutions were fixed by positive selection.

2.5 Materials and Methods

2.5.1 Numerical details

We used numerical routines provided by the GNU Scientific Library (GSL; https:

//www.gnu.org/software/gsl/) to perform the integration in (2.3) numerically. For

the continuous model (e.g., (2.9)), the integral was evaluated using Gaussian quadrature,

https://www.gnu.org/software/gsl/
https://www.gnu.org/software/gsl/
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which was implemented based on a routine included in the R package statmod (https:

//cran.r-project.org/web/packages/statmod/index.html). Maximum likelihood

estimates of the model parameters were obtained by both gradient-based and derivative-

free optimization algorithms implemented in the NLopt package (http://ab-initio.

mit.edu/wiki/index.php/NLopt). To ensure the global maximum was found, we ini-

tialised the search algorithm using multiple randomly selected starting points.

2.5.2 Simulations

We performed parameter estimation using our program, anavar, on random samples

simulated using Mathematica (http://www.wolfram.com/). Because the generation of

simulated data is separate from the numerical routines we used to implement anavar,

this set-up can help verify the numerical robustness of anavar. Note that, in all simu-

lations, we only used the models to analyse variants from selected regions because we

wanted to find out how much information we could obtain by analysing them alone.

Including neutral variants, as routinely done in real data analysis, may help to increase

the accuracy of parameter estimation. So our choice should give us a rather conservative

assessment of the methods’ performance.

In addition to testing whether the data contained enough information for all the pa-

rameters to be estimated, we also assessed how well a model could predict the average

fixation rate, µ̄ (expressed in units of 2Ne generations). As an example, if nonsyn-

onymous polymorphism data are fitted to the discrete SNP model, µ̄ can be estimated

as

µ̄ =
1

θ̂

C∑
c=1

θ̂cγ̂c
1− e−γ̂c

(2.18)

where Ẑ signifies the MLE of parameter Z and θ is defined by (2.1). Understanding the

ability to accurately estimate µ̄ is important because it is needed for estimating α, the

proportion of substitutions fixed by positive selection, which can be written as,

α =
dN − dSµ̄

dN
(2.19)

https://cran.r-project.org/web/packages/statmod/index.html
https://cran.r-project.org/web/packages/statmod/index.html
http://ab-initio.mit.edu/wiki/index.php/NLopt
http://ab-initio.mit.edu/wiki/index.php/NLopt
http://www.wolfram.com/
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where dN and dS are the numbers of selected (e.g., nonsynonymous) and neutral (e.g.,

synonymous) substitutions per site, respectively (Eyre-Walker and Keightley, 2009).

We did not generate simulated data from models with demographic changes and selection

at linked sites because the effectiveness of the method of Eyre-Walker et al. (2006) in

controlling for these confounding factors have been studied extensively (Eyre-Walker

et al., 2006; Galtier, 2016; Glémin et al., 2015; Jackson et al., 2017; Muyle et al., 2011;

Tataru et al., 2017).

2.5.3 The Drosophila melanogaster dataset

This dataset consisted of 17 Rwandan individuals as described in Jackson et al. (2015,

2017) and made available by the Drosophila Population Genomics Project (Pool et al.,

2012).

2.5.3.1 Variant calling

INDEL realigned BAM files were obtained from Jackson et al. (2017). Initial geno-

type calling was performed with the HaplotypeCaller and GenotypeGVCF (with the

-includeNonVariantSites flag to output genotype calls at both variant and non-variant

positions) tools from GATK 3.7 (DePristo et al., 2011; Van der Auwera et al., 2013).

Variant quality score recalibration (VQSR) requires one ‘truth set’ for SNPs and one

for INDELs. To generate the truth sets, we intersected the raw variants called from

GATK with variants called from SAMtools (version 1.2) (Li et al., 2009). The consen-

sus data was further filtered using the GATK best practice hard filters (for SNPs: QD

< 2.0, MQ < 40.0, FS > 60.0, SOR > 3.0, MQRankSum < -12.5, ReadPosRankSum <

-8.0; for INDELs: QD < 2.0, ReadPosRankSum < -20.0, FS > 200.0, SOR > 10.0;

see https://software.broadinstitute.org/gatk/guide/article?id=3225). Vari-

ants with coverage more than twice, or less than half, the mean coverage of 20X

were excluded, along with variants falling into regions identified by RepeatMasker

(http://www.repeatmasker.org). Multiallelic sites were excluded along with SNPs

falling within INDELs and INDELs greater than 50bp. We ran VQSR separately for

https://software.broadinstitute.org/gatk/guide/article?id=3225
http://www.repeatmasker.org
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SNPs and INDELs, retaining variants that fell within the 95% tranche cut-off as in Jack-

son et al. (2017). The passing variants were then re-filtered as above with the exception

of the GATK hard filters which were not reapplied.

2.5.3.2 Multi-species alignments and polarisation

Multi-species alignments were generated between D. melanogaster (v5.34), D. simulans

(Hu et al., 2013) and D. yakuba (v1.3) using D. melanogaster as reference. Firstly pair-

wise alignments were created using LASTZ (Harris, 2007). These were then chained and

netted using axtChain and chainNet, respectively (Kent et al., 2003). Single coverage

was ensured for the reference genome using single cov2.v11 from the MULTIZ package

(Blanchette et al., 2004) and the pairwise alignments were aligned with MULTIZ.

Variants were polarised using the whole genome multi-species alignment and a parsimony

approach, where either the alternate or the reference allele had to be supported by all

outgroups in the the alignment to be considered ancestral. The site-frequency spectra

for insertions and deletions in different genomic regions are presented in supplementary

Figure A.4.

2.5.3.3 Annotation

Variants were annotated as either intronic, intergenic or CDS using the D. melanogaster

GFF annotation file (version 5.34, available from: ftp://ftp.flybase.net/genomes/

Drosophila_melanogaster/dmel_r5.34_FB2011_02/gff/). Fourfold degenerate and

zerofold degenerate SNPs in CDS regions were annotated using coordinates obtained

from the D. melanogaster CDS fasta sequences (version 5.34, available from: ftp://ftp.

flybase.net/genomes/Drosophila_melanogaster/dmel_r5.34_FB2011_02/fasta/

dmel-all-CDS-r5.34.fasta.gz).

2.5.3.4 Summary statistics

Nucleotide diversity (π) (Tajima, 1983), Watterson’s θ (Watterson, 1975) and Tajima’s

D (Tajima, 1989) were calculated for variants in non-coding (intronic and intergenic)

ftp://ftp.flybase.net/genomes/Drosophila_melanogaster/dmel_r5.34_FB2011_02/gff/
ftp://ftp.flybase.net/genomes/Drosophila_melanogaster/dmel_r5.34_FB2011_02/gff/
ftp://ftp.flybase.net/genomes/Drosophila_melanogaster/dmel_r5.34_FB2011_02/fasta/
ftp://ftp.flybase.net/genomes/Drosophila_melanogaster/dmel_r5.34_FB2011_02/fasta/
dmel-all-CDS-r5.34.fasta.gz
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and coding regions, as well as for 0-fold and 4-fold degenerate SNPs. The numbers of

callable sites used to obtain per-site estimates was taken to be the number of sites in

each region that were called in the “all sites” VCF file and passed the filters described

previously. Additionally for polarised variants the number of callable sites was reduced

to those that could be polarised by our parsimony approach.

To obtain rates of divergence at nonsynonymous and synonymous sites, denoted by

dN and dS , CDS regions were extracted from the multi-species alignment using the

coordinates from the D. melanogaster CDS fasta alignment file. CDS alignments were

removed if they were not in frame, did not start with a start codon, did not end with a

stop codon or contained premature stop codons. Additionally any codons with missing

data were dropped. For each gene we retained only the longest transcript. This data

was then analysed using codeml in PAML (Yang, 2007) with a one ratio model to obtain

dN and dS .

2.6 Supplementary Material

The new models have been implemented in a user-friendly package anavar, which is

freely available at http://zeng-lab.group.shef.ac.uk. In addition to the models

developed herein, anavar also contains implementations of several other widely-used

models for estimating the DFE (i.e., Eyre-Walker et al., 2006) and for studying GC-

biased gene conversion (gBGC) (i.e., Glémin et al., 2015). All scripts used for the

anavar simulation analyses are available at https://github.com/henryjuho/anavar_

simulations. Additionally, all scripts used in the D. melanogaster analyses can be

found at https://github.com/henryjuho/drosophila_indels.

http://zeng-lab.group.shef.ac.uk
https://github.com/henryjuho/anavar_simulations
https://github.com/henryjuho/anavar_simulations
https://github.com/henryjuho/drosophila_indels
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3.1 Abstract

Insertions and deletions (INDELs) remain understudied, despite being the most common

form of genetic variation after single nucleotide polymorphisms. This stems partly from

the challenge of correctly identifying the ancestral state of an INDEL and thus identifying

it as an insertion or a deletion. Erroneously assigned ancestral states can skew the site

frequency spectrum, leading to artificial signals of selection. Consequently, the selective

pressures acting on INDELs are, at present, poorly resolved. To tackle this issue, we

have recently published a maximum likelihood approach to estimate the mutation rate

and the distribution of fitness effects (DFE) for insertions and deletions. Our approach

estimates and controls for the rate of ancestral state misidentification, overcoming issues

plaguing previous INDEL studies. Here we apply the method to INDEL polymorphism

data from 10 high coverage (∼ 44X) European great tit (Parus major) genomes. We

demonstrate that coding INDELs are under strong purifying selection with a small

proportion making it into the population (∼ 4%). However, among fixed coding INDELs,

71% of insertions and 86% of deletions are fixed by positive selection. In non-coding

regions we estimate ∼ 80% of insertions and ∼ 52% of deletions are effectively neutral,

the remainder show signatures of purifying selection. Additionally, we see evidence of

linked selection reducing INDEL diversity below background levels, both in proximity

to exons and in areas of low recombination.

3.2 Introduction

Insertion and deletion mutations (INDELs) are an important source of genetic variation,

often separated into long and short INDELs due to different calling approaches required

for longer variants. There is one short INDEL (here ≤50bp) for every 8 single nucleotide

polymorphisms (SNPs) in humans (Montgomery et al., 2013), representing a significant

proportion of variation. Short INDELs have been implicated in a range of genomic

evolutionary processes, such as the evolution of genome size (Hu et al., 2011; Nam and

Ellegren, 2012; Petrov, 2002b; Sun et al., 2012). INDELs arguably contribute more to

sequence divergence, in terms of the number of base differences, than SNPs (Britten,
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2002). Additionally it has been suggested that short INDELs may be instrumental in

maintaining an optimal intron size (Parsch, 2003; Presgraves, 2006).

INDEL studies, however, are under-represented in the literature. In part, this is due to

the need to categorise INDELs into insertions and deletions, which requires knowledge

of the ancestral state for each variant. This can be obtained using multi-species genome

alignments. However, INDELs disproportionately occur in repetitive sequence contexts

(Ananda et al., 2013; Montgomery et al., 2013), which are notoriously problematic to

align (Earl et al., 2014). Where alignments are successful they are hampered by high

rates of ancestral allele misidentification, due to homoplasy. The result is a proportion

of deletions are mistakenly identified as insertions (and vice versa), which can confound

estimates of selection (Kvikstad and Duret, 2014) (see figure 2.1).

Despite the difficulty of analysing INDEL data, a number of characteristics have been

widely reported for INDELs. INDEL mutation is consistently biased towards deletions

across a diverse range of organisms (Hu et al., 2011; Keightley et al., 2009; Kvikstad and

Duret, 2014; Nam and Ellegren, 2012; Presgraves, 2006; Taylor et al., 2004). Addition-

ally, polymerase slippage has emerged as the predominant force driving short INDEL

generation, explaining ∼ 75% of events in repetitive hotspot regions (Montgomery et al.,

2013) and∼ 50% of events in non-hotspot regions (Montgomery et al., 2013; Taylor et al.,

2004).

In terms of the selective pressures acting on INDELs, deletions consistently segregate at

lower frequencies than insertions, both in genes (Sjödin et al., 2010) and genome-wide

(Chintalapati et al., 2017), which has been interpreted as stronger purifying selection

acting on deletions. A mechanistic explanation is that deletions have two breakpoints

relative to an insertion’s one, so are more likely to hit an important motif (Petrov,

2002b; Sjödin et al., 2010). The difference in mean allele frequencies of the two types of

variation has also been explained as selection acting on insertions (Ometto et al., 2005).

Concordantly, a number of studies have inferred elevated fixation rates for insertions from

comparisons of the ratio of deletion to insertion events (rDI) between polymorphism data

and divergence data (Chintalapati et al., 2017; Leushkin and Bazykin, 2013; Presgraves,

2006; Sjödin et al., 2010). This fixation bias is in line with a number explanations such
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as selection on insertions to maintain intron lengths (Ometto et al., 2005; Parsch, 2003;

Presgraves, 2006) or insertion biased gene conversion (Leushkin and Bazykin, 2013).

However, Kvikstad and Duret (2014) demonstrate the existence of mutation hotspots in

repetitive regions, and cryptic hotspots in non-repetitive regions, which could explain the

fixation biases by elevating rates of ancestral state misidentification. They also show

that differences in the rate of ancestral misidentification between polymorphism data

and divergence data make McDonald-Krietman type tests (McDonald and Kreitman,

1991), which in an INDEL context compare polymorphic and fixed numbers of deletions

and insertions (for example see Chintalapati et al., 2017), particularly prone to false

signatures of fixation bias.

Avian genomes provide a good system for working on INDELs, thanks to their markedly

conserved karyotypes and synteny, characterised by having few large macro-chromosomes

and many smaller micro-chromosomes (Hansson et al., 2010; Stapley et al., 2008; van

Oers et al., 2014; Zhang et al., 2014). Not only does this facilitate genome alignments

for ancestral state identification, but obligate crossing over elevates recombination rates

on micro-chromosomes, driving large intra-genomic variation in recombination (Back-

ström et al., 2010; Stapley et al., 2008; van Oers et al., 2014). This provides power for

associating diversity levels with recombination rates. As a result, birds have been the

focus of a number of INDEL studies. Nam and Ellegren (2012) propose that high re-

combination rates drive elevated small deletion rates on micro-chromosomes and might

have caused genome contraction along the lineage leading to birds. Additionally, Rao

et al. (2010) show a positive correlation between INDEL density and recombination

rate in chicken (Gallus gallus) introns. Whilst this may suggest the impact of linked

selection, the use of unpolarised INDEL data means it cannot be distinguished from

the impact of a recombination driven mutational bias, such as proposed by Nam and

Ellegren (2012). Furthermore, previous work has been constrained by utilising partial

sequencing approaches and neutral markers, negating the formation of a genome wide

picture of INDEL diversity (Brandstrom and Ellegren, 2007; Nam and Ellegren, 2012;

Rao et al., 2010). Thus, despite the advantages of an avian system, the role of natural

selection in shaping INDEL diversity in birds is poorly resolved.
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Most existing work looking at selection on INDELs has relied upon approaches suscep-

tible to the confounding effects of ancestral state misidentification. There also has been

little effort to directly infer unbiased selection coefficients for INDELs, in different ge-

nomic contexts. To bridge this gap we recently published our maximum likelihood model

‘anavar’ for estimating the mutational and selective parameters for INDELs, whilst si-

multaneously estimating and controlling for ancestral state misidentification and the

confounding effects of demography (Barton and Zeng, 2018). Here, we apply this ap-

proach to INDEL polymorphism data from 10 European great tit (Parus major) genomes

from Corcoran et al. (2017). We investigate the selective pressures acting on INDELs

across the great tit genome and estimate selection coefficients and the proportion of

substitutions fixed by positive selection (α) in coding regions. We also seek to address

how INDEL diversity changes with distance from coding regions and assess the impact

of linked selection on INDEL variation, an area understudied in the literature so far.

The great tit genome is particularly well positioned to address these questions with an

abundance of current genomic resources available including a well annotated reference

genome, high coverage resequencing data, and replicated linkage maps (Corcoran et al.,

2017; Laine et al., 2016; van Oers et al., 2014).

3.3 Materials and Methods

3.3.1 The great tit dataset

The great tit dataset consisted of 10 European males (1280, 1485, 15, 167, 249-R, 318,

61, 917, 943-R and TR43666) from a subset of sampling locations in Laine et al. (2016)

as described in Corcoran et al. (2017). The mean coverage of the sample is 44X.
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3.3.2 Data preparation and variant calling

Base quality score recalibrated and INDEL realigned BAM files, and an all-sites VCF

file containing raw variant calls produced by GATK (version 3.4) (DePristo et al., 2011;

McKenna et al., 2010; Van der Auwera et al., 2013) were obtained from Corcoran et al.

(2017).

Variant quality score recalibration (VQSR) was then performed for INDELs. This step

requires a set of high confidence variants. To generate this data set, we intersected the

raw variants called from GATK with variants called with SAMtools (version 1.2) (Li

et al., 2009). The resulting variants were filtered using the GATK best practice hard

filters (QD < 2.0, ReadPosRankSum < −20.0, FS > 200.0, see https://software.

broadinstitute.org/gatk/guide/article?id=3225; last accessed October 1, 2018).

Variants with coverage more than twice, or less than half, the mean coverage of 44X

were excluded, along with variants falling in repeat regions identified by RepeatMasker

(Smit et al., 2013). INDELs with more than two alleles of different length (multiallelic

sites) were excluded and INDELs greater than 50bp. Post VQSR, we retained variants

that fell within the 99% tranche cut-off. The passing variants were then re-filtered as

above with the exception of the GATK hard filters, which were not reapplied.

For SNPs, variants passing the 99% tranche cut-off in the data set of Corcoran et al.

(2017) were obtained and subject to the same post VQSR hard filters as described above

for INDELs.

3.3.3 Multispecies alignment and polarisation

We created a multispecies alignment between zebra finch (Taeniopygia guttata) (War-

ren et al., 2010) (version: TaeGut3.2.4, available from: ftp://ftp.ensembl.org/pub/

release-84/fasta/taeniopygia_guttata/dna/; last accessed October 1, 2018), fly-

catcher (Ficedula albicollis) (Ellegren et al., 2012) (version: FicAlb1.5, available from:

http://www.ncbi.nlm.nih.gov/genome/?term=flycatcher; last accessed October 1,

https://software.broadinstitute.org/gatk/guide/article?id=3225
https://software.broadinstitute.org/gatk/guide/article?id=3225
ftp://ftp.ensembl.org/pub/release-84/fasta/taeniopygia_guttata/dna/
ftp://ftp.ensembl.org/pub/release-84/fasta/taeniopygia_guttata/dna/
http://www.ncbi.nlm.nih.gov/genome/?term=flycatcher
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2018) and great tit (version 1.04) (Laine et al., 2016) with the MULTIZ package (Blanchette

et al., 2004) per chromosome, following the pipeline described in Corcoran et al. (2017).

The ancestral states of each variant were then inferred using a parsimony approach

where all out-groups were required to match either the reference, or the alternate, allele

in the great tit in order to assign it as ancestral.

3.3.4 Variant annotation

All variants were annotated as coding, intronic or intergenic using the great tit annota-

tion (version 1.03) (available from: ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/

001/522/545/GCF_001522545.1_Parus_major1.0.3/GCF_001522545.1_Parus_major1.

0.3_genomic.gff.gz; last accessed October 1, 2018). Additionally the possible loca-

tions of fourfold degenerate sites, zerofold degenerate sites and nonsense mutations were

identified using the great tit coding sequence fasta file (version 1.03) (available from:

ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/522/545/GCF_001522545.1_P

arus_major1.0.3/GCF_001522545.1_Parus_major1.0.3_cds_from_genomic.fna.gz;

last accessed October 1, 2018) SNPs at these positions were then identified.

We identified ancestral repeats (specifically, LINEs) by intersecting the RepeatMasker

coordinates for each species with our whole genome alignment and identifying positions

annotated as LINEs in all three species. Variants within these regions were identified

from the VCF files prior to filtering and were then filtered as described previously, with

the exception of the repeat filtering.

We identified callable sites for use in the calculation of summary statistics and our anavar

analyses by applying our filters to the original all-sites VCF file and restricting the sites

to those that we could polarise.

ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/522/545/GCF_001522545.1_Parus_major1.0.3/GCF_001522545.1_Parus_major1.0.3_genomic.gff.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/522/545/GCF_001522545.1_Parus_major1.0.3/GCF_001522545.1_Parus_major1.0.3_genomic.gff.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/522/545/GCF_001522545.1_Parus_major1.0.3/GCF_001522545.1_Parus_major1.0.3_genomic.gff.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/522/545/GCF_001522545.1_P
arus_major1.0.3/GCF_001522545.1_Parus_major1.0.3_cds_from_genomic.fna.gz


56

3.3.5 Summary statistics

We calculated nucleotide diversity (π) (Tajima, 1983) and Tajima’s D (Tajima, 1989) for

INDELs and SNPs both genome-wide and in ancestral repeats (ARs), introns, intergenic

regions and coding sequences (CDS). In coding regions we analysed mutations that

preserve the reading frame (in-frame: SNPs, and INDELs a multiple of three in length)

and those that shift the reading frame (frame-shift: remaining INDELs) separately. For

SNPs we also calculated these statistics for fourfold degenerate sites, zerofold degenerate

sites and nonsense mutations. Additionally, we calculated Tajma’s D for each INDEL

length group separately. Note that while classically π refers to the average number of

nucleotide differences (Tajima, 1983), for INDELs we are measuring the average number

of mutation differences without accounting for the number of bases a given INDEL

encompasses.

We also calculated Tajima’s D and π using the site frequency spectrum corrected for

orientation errors. We took the model estimates of polarisation error for the regions

under consideration (see table B.1), and solved the system of linear equations:

φins,obsi = (1− εins)φinsi + εdelφdeln−i (3.1)

φdel,obsn−i = (1− εdel)φdeln−i + εinsφinsi (3.2)

for 1 ≤ i < n, where φins,obsi (φdel,obsi ) is the observed number of insertions (deletion) of

frequency i, εins (εdel) the probability that the ancestral state of an insertion (deletion)

is incorrectly identified, and φinsi (φdeli ) the underlying (unobserved) site frequency spec-

trum for insertions and deletions. Tajima’s D and π were then calculated using φinsi and

φdeli .

We calculated the distribution of INDEL lengths from our VCF file, both genome-wide

and in CDS regions. Within CDS regions we calculated the proportion of in-frame
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INDELs per gene. We calculated this proportion both for all genes and for a set of

conserved genes identified in Corcoran et al. (2017).

Divergence estimates for INDELs were calculated by counting the number of fixation

events unique to the great tit lineage in our whole genome alignment, and dividing by

the number of sites that were aligned in all three species for each region analysed (CDS,

AR, intron and intergenic). For SNPs we created concatenated FASTA files for each

region (CDS, AR, intron and intergenic), and obtained a pairwise distance matrix using

APE (Paradis et al., 2004) in R (R Core Team, 2015). The pairwise distance estimates

were then used to get an estimate for the branch leading to the great tit.

3.3.6 DFE analysis

To estimate the distribution of fitness effects (DFE) for insertions and deletions we

used the “neutralINDEL vs selectedINDEL” model in the anavar package (Barton and

Zeng, 2018) (available from: http://zeng-lab.group.shef.ac.uk/wordpress/?page_

id=28; last accessed October 1, 2018). The package controls for the confounding effects

of polarisation error and demography (Barton and Zeng, 2018). We fitted two types of

models for the DFE. The first type fits a discrete number of site classes (c) to the data,

each class having its own scaled selection coefficient, γ = 4Nes. The per-site scaled

mutation rate, θ = 4Neµ, may be equal across sites (the equal mutation rate model),

or be different between the neutral sites and the focal sites (the variable mutation rate

model). Finally, the model has polarisation error parameters, εins and εdel, for both

insertions and deletions. The second type of model is similar, but assumes continuous

gamma distributions for the selection coefficients for insertions and deletions. Different

variants of these two types of model were fitted (e.g., with different numbers of site

classes and with the mutation rate being either equal or variable) and were compared

using Akaike information criterion (AIC).

We used INDELs in ancestral repeats (as described previously) as neutral reference, and

applied the models separately to CDS INDEL data and to non-coding INDEL data. For

coding sequence data we assumed the equal mutation rate model. This is necessary in

http://zeng-lab.group.shef.ac.uk/wordpress/?page_id=28
http://zeng-lab.group.shef.ac.uk/wordpress/?page_id=28
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order to estimate the proportion of substitutions fixed by positive selection (α), as well

as estimating the proportion of strongly deleterious variants that do not contribute to

polymorphism. We calculated α using equation 19 from Barton and Zeng (2018). For

non-coding data we employed the variable mutation rate model, which fitted the data

better than the equal mutation rate model. We will explore the effects of model choice

on our results in the Discussion.

3.3.7 Exon proximity analysis

To investigate the impact of linked selection on INDEL diversity patterns in regions

adjacent to coding sequences we extracted INDELs and numbers of callable sites in

2kb adjacent windows moving away from exons up to a maximum distance of 100kb.

The data from all windows at each distance was then binned, creating 50 distance

bins. We ran each of the resulting datasets through the anavar package. We fitted the

“neutralINDEL vs selectedINDEL” model with a continuous γ distribution and variable

mutation rates, as this was the best fitting model for non-coding INDELs (table B.4).

We used the same neutral reference as in our previous analysis. The relationship between

the model’s θ estimates and distance from exons was tested with Spearman’s correlations

using the ‘cor.test’ function in R (R Core Team, 2015). We repeated this analysis using

π estimates for insertions and deletions instead of the model’s mutation rate estimates.

To look at the relative contributions of different selective site classes to INDEL diversity

in each window, we separated our θ estimates into θ for sites with 0 ≤ γ ≤ 1 and θ for

γ > 1 using the model outputs, we repeated the correlation analysis for these datasets.

To assess to what extent the relationship between distance from exon and diversity was

driven by bins close to exons, we generated downsized datasets by progressively remov-

ing bins, starting by removing the nearest bin, and then the next nearest, and so on,

up until only the furthest two bins were left. We reported the Spearman’s correlation

coefficient (ρ) and the significance for each down-sampled dataset.
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3.3.8 Recombination correlation analysis

To investigate the relationship between local recombination rate and the action of linked

selection we divided the great tit genome into 2Mb non-overlapping windows. We ex-

tracted non-coding INDEL calls for each window from our VCF file, excluding windows

with less than 500 polarisable INDELs. As we lacked sufficient data to obtain a regional

neutral reference for each window, we were unable to apply our model based approach.

Instead we calculate π and Tajima’s D for each window. We also estimated non-coding

INDEL divergence per window as described previously.

Mean recombination rate was estimated per window. This was achieved by estimating

a point recombination rate for every INDEL in the window, along with positions 2kb

up and down stream of each variant and taking a mean across all these values. The site

specific recombination rates were estimated using the pipeline described in Corcoran

et al. (2017). Briefly, we fitted 3rd order polynomials as a function of physical position

versus map length for each chromosome using the great tit linkage map data (van Oers

et al., 2014). The derivative of each chromosome’s polynomial was then used to estimate

recombination rate at a given genomic position.

The relationships of Tajima’s D and π with local recombination rate were analysed with

Spearman’s correlations using the ‘cor.test’ function in R (R Core Team, 2015). The

relationship between π and recombination rate was also analysed using partial Spear-

man’s correlations, with divergence estimates as a confounding variable, to control for

the mutagenic effect of recombination, using the ‘ppcor’ package (Kim, 2015) in R.

3.3.9 Data Availability

Detailed documentation of the analysis pipeline along with all scripts used is avail-

able at https://github.com/henryjuho/parus_indel (last accessed October 1, 2018).

The python scripts make use of the pysam python package (https://github.com/

pysam-developers/pysam; last accessed October 1, 2018) and the anavar utils pack-

age (https://henryjuho.github.io/anavar_utils/; last accessed October 1, 2018).

https://github.com/henryjuho/parus_indel
https://github.com/pysam-developers/pysam
https://github.com/pysam-developers/pysam
https://henryjuho.github.io/anavar_utils/
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Table 3.1: Nucleotide diversity (π) for SNPs, INDELs (unpolarised), insertions (ins)
and deletions (del) in different genomic contexts. Estimates in brackets corrected for

polarisation error.

Context π πindel πins πdel
Genome 0.00310 0.000356 0.000113 (0.000112) 0.000142 (0.000144)
ARs 0.00432 0.000363 0.000117 (0.000119) 0.000175 (0.000177)
Intergenic 0.00333 0.000378 0.000121 (0.000119) 0.000154 (0.000157)
Introns 0.00306 0.000361 0.000116 (0.000115) 0.000143 (0.000145)
CDS 0.00145 1.87× 10−5 3.61× 10−6 (4.36× 10−6) 5.25× 10−6 (5.09× 10−6)
In-frame - 9.43× 10−6 1.71× 10−6 (1.86× 10−6) 3.00× 10−6 (3.04× 10−6)
Frame-shift - 9.28× 10−6 1.90× 10−6 (2.17× 10−6) 2.24× 10−6 (2.27× 10−6)
4-fold 0.00369 - - -
0-fold 0.000586 - - -
Nonsense 2.45× 10−5 - - -

3.4 Results

3.4.1 Summary of the dataset

Using the high coverage resequencing data from Corcoran et al. (2017) we called poly-

morphic INDELs and SNPs according to a GATK based pipeline (Van der Auwera et al.,

2013). We polarised variants using a custom multi-species genome alignment and a parsi-

mony based approach. Application of our data calling pipeline to the 10 European great

tit samples yielded 10,259,689 SNPs and 1,162,517 short INDELs (≤ 50bp), of which

we could polarise 254,040 insertions and 329,506 deletions. This reduction in variants

in the polarised dataset is mainly a result of gaps in the whole genome alignment and

‘hotspots’ where the INDEL breakpoints differ between species in the alignment (figure

B.1).

Genome-wide diversity (π) for INDELs is around tenfold lower than that for SNPs.

This scale of difference between the two forms of variation was found in all genomic

regions analysed other than in CDS regions where INDEL diversity is close to 80 times

lower than SNP diversity. Additionally, we see that within INDELs π is biased towards

deletions in all regions (table 3.1).

When considering INDEL sequence length we observe that the length distribution is en-

riched in shorter variants, with 80% of INDELs less than 5bp long. Additionally, within

coding sequences (CDS) we note that the length distribution is enriched in variants that



61

Table 3.2: Maximum likelihood parameter estimates for the best-fitting models for
INDELs in CDS regions and non-coding regions. C defines the number of site class,
θ the population scaled mutation rate, γ the population scaled selection coefficient, ε
the polarisation error and α the proportion of INDEL substitutions driven by positive
selection. Note where γ values are presented for the continuous model these are mean

γ estimates and the product of the scale and shape parameters.

Model and DFE Type C θ γ scale shape ε α

CDS: Equal θ INS 1 4.92× 10−6 −1.14 - - 0.0799
Discrete C = 2 INS 2 0.000134 −801 - - 0.000307 71%
AR reference DEL 1 8.32× 10−6 −2.70 - - 0.0368

DEL 2 0.000206 −649 - - 3.12× 10−7 86%

CDS: Equal θ INS 1 4.79× 10−6 −0.264 - - 0.0729
Discrete C = 2 INS 2 0.000156 −897 - - 0.000526 63%
NC reference DEL 1 7.79× 10−6 −1.70 - - 0.0366

DEL 2 0.000205 −629 - - 0.00587 79%

Non-coding: Free θ INS - 0.000170 −53.6 1553 0.0345 0.0110 -
Continuous DEL - 0.000293 −75.5 715 0.106 0.0166 -

are a multiple of three in length, in other words, mutations that preserve the reading

frame (in-frame) (figure B.2). This enrichment is even more pronounced in conserved

genes (figure B.3). To further investigate the differences between in-frame and frame-

shifting INDELs, we first note that it is far more likely for an INDEL mutation to have a

length that is not a multiple of three than otherwise. This can be seen by the fact that,

in putatively neutrally evolving ancestral repeat (AR) regions, π values for insertions

and deletions with lengths not a multiple of three are 9.8× 10−5 and 1.4× 10−4 respec-

tively, whereas for those with lengths a multiple of three, the values are 1.9× 10−5 and

3.4× 10−5. When we consider this in terms of the ratio of AR to CDS diversity (using

the CDS π values in table 3.1), for mutations that shift the reading frame we get a ratio

of 52 for insertions and 63 for deletions, whereas for in-frame mutations the ratios are

both 11. This indicates a much larger reduction in diversity for frame-shifting INDELs,

and this reduction is more pronounced for deletions, supporting the idea that they are

more deleterious.

In general, ancestral repeats have the highest diversity level and the least negative

Tajima’s D for both INDELs and SNPs (table 3.1 and figure 3.1a). This supports our

decision to use them as a putatively neutral reference in the subsequent analyses. The

fact that Tajima’s D values are consistently negative in AR regions (figure 3.1a) is

consistent with a recent population expansion for the great tit, as previously reported



62

−1.0

−0.5

0.0

AR

int
er

ge
nic

int
ro

ns

no
ns

en
se

0fo
ld

CDS

In
−f

ra
m

e

Fra
m

e−
sh

ift

Ta
jim

a'
s 

D

DEL
INDEL
INS
SNP

(a)

0.000

0.002

0.004

0.006

AR

int
er

ge
nic

int
ro

ns
CDS

In
−f

ra
m

e

Fra
m

e−
sh

ift

di
ve

rg
en

ce

(b)

Figure 3.1: Tajima’s D estimates for SNPs, INDELs (unpolarised), insertions (INS)
and deletions (DEL) in different genomic contexts. Divergence estimates for SNPs are

presented as the true divergence divided by 10.

(Corcoran et al., 2017; Laine et al., 2016). Intronic and intergenic regions have similar

diversity patterns across all mutation types, so we grouped them as ‘noncoding’ in

subsequent analyses. Tajima’s D values for the unpolarised INDELs in CDS regions are

similar to those for 0-fold SNPs and SNPs that cause premature stop codons (nonsense

mutations). However when polarised, we see that deletions in CDS regions have the most

negative Tajima’s D of all (figure 3.1a). In non-coding regions, Tajima’s D is negatively

correlated with INDEL size for both insertions (Spearman’s ρ = −0.95, p < 2.2×10−16)

and deletions (Spearman’s ρ = −0.40, p = 0.0038), suggesting that longer variants are

probably more deleterious (figure B.4). In coding regions we lack power when sub-setting

INDELs by length (figure B.4).

The patterns reported above are mirrored by the divergence estimates. The highest

divergence is seen in ARs. Intergenic and intronic regions have similar divergence levels,

and both have lower divergence than ARs. In CDS regions divergence is lowest, 14

times lower than the genome-wide average for INDELs. SNP divergence is around

tenfold higher than INDEL divergence in non-coding regions, in line with π estimates.

In CDS regions SNP divergence is seventyfold higher than INDEL divergence (figure

3.1b). These results are robust to polarisation error (table 3.1, figure B.5).
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variants, as show in table 3.2.

3.4.2 The distribution of fitness effects

To describe the distribution of fitness effects (DFE) for INDELs we fitted 4 distinct

DFEs to coding and non-coding data separately. For coding data the model assumes

equal mutation rates between neutral and focal sites, a requirement to calculate the

proportion of substitutions fixed by positive selection (α). For non-coding data where

α was not calculated, this assumption was relaxed and mutation rates were free to vary

(see Materials and Methods 3.3). The best-fit model for each case is reported in table

3.2.

The best-fit INDEL DFE (according to AIC, see table B.2) in coding regions is bimodal,

characterised by a class of strongly deleterious insertions and deletions making up 96%

of sites and a class of weakly deleterious insertions and deletions for the remaining 4% of

sites (figure 3.2). For those variants with weakly negative γ estimates (i.e. those segre-

gating in our sample) deletions are more deleterious, however for the strongly deleterious

class of INDELs insertions have the more negative selection coefficient. We subsequently

estimate the proportion of INDEL substitutions fixed by positive selection (α) at 71%
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Figure 3.4: The relationship between local recombination rate (log transformed) and
π (a) and Tajima’s D (b) for both insertions (turquoise) and deletions (purple)

for insertions and 86% for deletions (table 3.2). When we run this analysis using a non-

coding neutral reference we recapture a very similar bimodal DFE, but with slightly

lower α values, 63% for insertions and 79% for deletions (table 3.2 and table B.3).

The non-coding INDEL data is best fit by a continuous gamma distribution of fitness

effects (table B.4). We see small shape parameter estimates of 0.0345 for insertions and

0.106 for deletions (table 3.2), describing a DFE enriched in effectively neutral variants.

When binning this gamma distribution into four −γ categories (0− 1, 1− 10, 10− 100

and > 100) we see that ∼ 80% of insertions and ∼ 52% of deletions in non-coding regions

have γ estimates between 0 and −1 and can be considered as effectively neutral. The

remaining proportions of variants are evenly distributed between the other 3 selective

categories (figure 3.2). For non-coding and coding data there is a marked deletion bias

with the deletion to insertion ratio (rDI) estimated at 1.5 in coding regions and 1.7 in

non-coding regions.
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3.4.3 The impact of linked selection

To test for evidence of linked selection acting on INDELs, we obtained estimates of

the scaled insertion and deletion mutation rates (θins and θdel respectively) in 2kb non-

overlapping bins with increasing distance from exons, up to 100kb away.

We find significant positive correlations between our model estimates of both θdel (Spear-

man’s ρ = 0.47, p = 0.00058) and θins (Spearman’s ρ = 0.28, p = 0.046) with distance

from exons (figure 3.3). This relationship is corroborated when using π estimates for

deletions and insertions (deletions: Spearman’s ρ = 0.79, p = 2.2 × 10−16, insertions:

Spearman’s ρ = 0.84, p = 2.2× 10−16, see figure B.6). We separated variants into two γ

ranges, 0 to −1 and < −1 and re-analysed this relationship. For the putatively neutral

sites we recapture this significant correlation between θ and distance from exons (θdel:

Spearman’s ρ = 0.54, p = 7.9 × 10−5, θins: Spearman’s ρ = 0.57, p = 2.3 × 10−5).

However, for the more deleterious category we see no relationship (θdel: Spearman’s

ρ = −0.027, p = 0.85, θins: Spearman’s ρ = −0.15, p = 0.30) (figure B.7). Addition-

ally, to assess how these correlations held up when using data further from exons we

performed correlations on down-sampled datasets by cumulatively removing each bin

nearest to exons in turn, progressively reducing our number of bins from 50 to 2. We see

that for π we recover significant positive correlations (for both deletions and insertions)

for datasets starting up to ∼35kb from exons. For θ we recover this relationship for dele-

tions up to ∼40kb from exons, however for insertions we lack statistical power from the

model estimates, probably due to there being relatively fewer insertion polymorphisms

(figure B.8).

3.4.4 Recombination rate and INDEL diversity

To obtain additional evidence for linked selection we separated our non-coding INDEL

data into 322 2Mb genomic windows, each with a mean recombination rate estimate.

As a lack of a regional neutral reference per window precluded the use of our model we

instead obtained estimates of π and Tajima’s D for each window.
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We report positive relationships between πins and recombination rate (Spearman’s ρ =

0.18, p = 0.0010), and πdel and recombination rate (Spearman’s ρ = 0.12, p = 0.027)

(figure 3.4a). However, when introducing INDEL divergence as a covariate in a partial

correlation analysis (to control for the possible mutagenic effects of recombination), we

only maintain the relationship between πins and recombination rate (partial Spearman’s

ρ = 0.15, p = 0.0076) and not πdel (patial Spearman’s ρ = 0.077, p = 0.17). Additionally

we see a significant enrichment of low frequency variants in low recombining regions, as

measured by Tajima’s D, for both insertions (Spearman’s ρ = 0.30, p = 3.7× 10−8) and

deletions (Spearman’s ρ = 0.33, p = 1.5× 10−9) (figure 3.4b).

3.5 Discussion

Insertions and deletions often remain unanalysed in sequencing studies, despite consti-

tuting a large proportion of genetic variation (Brandstrom and Ellegren, 2007; Mont-

gomery et al., 2013). This is largely a result of the difficulty of working with INDELs

compared to SNPs (see Introduction). Yet, when INDELs do get analysed, studies are

hampered by the issue of ancestral state misidentification confounding signatures of se-

lection (Kvikstad and Duret, 2014), leaving the selective landscape for INDELs poorly

defined. Here we seek to overcome this hurdle using our recently published model (Bar-

ton and Zeng, 2018), to estimate the DFE for insertions and deletions in an avian

genome. We use high coverage resequencing data from 10 European great tits from Cor-

coran et al. (2017), to quantify the levels of purifying and positive selection for INDELs

in coding regions and report evidence of linked selection acting on non-coding INDELs.

3.5.1 Coding sequence INDELs

The majority of INDELs in our dataset are less than 5bp in length. The most common

length is 1bp genome-wide, but 3bp within coding regions (figure B.2). This enrichment
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of in-frame INDELs is even more pronounced in conserved genes (figure B.3). Consis-

tently we report that frame-shifting INDELs have a more severe reduction in diversity

and more negative Tajima’s D than in-frame INDELs. In non-coding regions we see

strong negative correlations between INDEL length and Tajima’s D. Taken together

these results provide confidence in the genome annotation, show the importance of IN-

DEL length in coding regions with frame-shifting INDELs more deleterious, and provide

evidence that longer non-coding INDELs are more deleterious. These results are con-

sistent with previous studies (Barton and Zeng, 2018; Montgomery et al., 2013; Sjödin

et al., 2010).

From the application of our model, we see that the majority (96%) of deletions and in-

sertions occurring in CDS regions are strongly deleterious (γ < −100) (table 3.2, figure

3.2). This proportion corresponds to our previous estimates for INDELs in Drosophila

melanogaster of between 92% and 97% (Barton and Zeng, 2018). Additionally, our val-

ues are similar to those reported for SNPs in a number of organisms, including zerofold

degenerate (0-fold) SNPs in the great tit (∼ 80% with γ < −10) and zebra finch (Tae-

niopygia guttata) (∼ 85% with γ < −10) (Corcoran et al., 2017), and non-synonymous

SNPs in D. melanogaster (78% with γ < −100) and Mus musculus castaneus (69% with

γ < −100) (Kousathanas and Keightley, 2013). We estimate the proportion of INDEL

substitutions fixed by positive selection, α, at 86% for deletions and 71% for insertions

(or 79% and 63% respectively when using non-coding INDELs as neutral reference)(table

3.2). This is comparable to our previous estimates of α for deletions (81%) and inser-

tions (60%) in D. melanogaster (Barton and Zeng, 2018), and α estimates for SNPs in

D. melanogaster of between 74% and 95% (Schneider et al., 2011). However, our esti-

mates are higher than the α estimate for 0-fold SNPs of 48% obtained by Corcoran et al.

(2017) using the same great tit dataset. This may reflect stronger purifying selection

acting on INDELs than SNPs (in line with our Tajima’s D and divergence estimates),

which provides a stronger opposing force to genetic drift and hence reduces the number

of INDEL fixations by drift relative to SNPs. Both our γ estimates for weakly selected

sites and α estimates point to deletions being more deleterious than insertions, in line

with theoretical expectations that deletions impact more sequence than insertions, and

are thus more likely to hit an important motif (Petrov, 2002b; Sjödin et al., 2010), as
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reported in other studies (Chintalapati et al., 2017; Montgomery et al., 2013; Sjödin

et al., 2010).

A number of potential caveats are worth noting however. First, the great tit has likely

experienced a recent population expansion (Corcoran et al., 2017; Laine et al., 2016),

consistent with our negative Tajima’s D values across the genome. Population expan-

sion can lead to an excess of weakly deleterious fixations relative to the amount seen in

polymorphism data, which can artificially inflate estimates of the proportion of muta-

tions fixed by positive selection (Eyre-Walker, 2002; Eyre-Walker and Keightley, 2009).

Here, we have used the method of Eyre-Walker et al. (2006) to control for demography.

Existing evidence suggests that this approach is effective in alleviating biases on the

estimation of selection intensity on weakly selected variants caused by demography (see

Figure 4a in Jackson et al., 2017). Since the best fitting model suggests that the DFE

for both insertions and deletions in coding regions is bimodal, with segregating variants

subject to weak purifying selection (Table 3.2), our α estimates should be robust.

Second, the formula for estimating α (e.g., eq. 19 in Barton and Zeng, 2018) assumes

that the mutation rate is the same between the neutral reference and the focal sites. For

this reason, we employed the equal mutation rate model in our analysis of the coding

INDELs. However, we note that the model that assumes a gamma DFE and allows the

neutral sites and the coding sites to have different mutation rates fits the data better

than the equal mutation rate model presented in Table 3.2 [∆AIC = AIC(best fitting

equal mutation rate model) - AIC(best fitting variable mutation rate model) = 4.50].

As demonstrated in Barton and Zeng (2018), this difficulty can be readily alleviated if

we know both the point mutation rate and the INDEL mutation rate, which is currently

unavailable for the great tit, but can be obtained by direct sequencing of parents and

offspring. It should also be noted that both models lead to similar conclusions regarding

the DFE. To see this, we calculate p(|X| ≤ x) for x = 1.5, 5, and 10, where |X| follows

a gamma distribution. Using the MLEs (table B.5), for insertions, the proportions are

0.12, 0.18, and 0.23, whereas for deletions, they are 0.052, 0.094, and 0.132. These results

are congruent with those shown in Table 3.2 as they indicate that, in coding regions,

deletions tend to be under stronger purifying selection, and that only a small fraction
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INDEL mutations are sufficiently weakly selected that they contribution to observed

polymorphism.

Thirdly as repetitive regions of the genome are notoriously difficult to call variants in

and align (Earl et al., 2014), it is possible that our elevated diversity and divergence es-

timates in ancestral repeats could be the result of an increased number of false positive

calls in these regions. To assess the impact of our choice of neutral reference on the DFE

we reran our coding analysis using non-coding INDELs as neutral reference. We find

that the use of either neutral reference results in a very similar bimodal DFE, with a

majority of INDELs being strongly deleterious, and a minority weakly deleterious (Table

3.2). With non-coding INDELs as neutral reference, we observe a slight reduction in

the estimated selection pressure on the weakly deleterious site class. This is probably

due to the presence of weakly selected variants in the non-coding dataset, as we have

previously shown (table B.2, Barton and Zeng, 2018). As the fixation rate is higher

when the estimated selection coefficient is smaller, our α estimates are also lower in this

case, but are still well above zero. Overall, it seems that our use of ancestral repeats as

neutral reference does not unduly impact our results.

3.5.2 Non-coding INDELs and linked selection

The DFE for non-coding INDELs is best described by a gamma distribution. The shape

parameter estimates we obtain for both insertions and deletions are small (0.0345 and

0.106 respectively, table 3.2), corresponding to 76% of insertions and 52% of deletions

having γ values between 0 and −1, and thus effectively neutral (figure 3.2). The propor-

tion of neutral insertions in non-coding regions (76%) is comparable to the proportion

of intronic SNPs with γ estimates between 0 and −1 (70%) in D. melanogaster (Eyre-

Walker and Keightley, 2009). However, the proportion of deletions falling into this

selective range is markedly lower at 52%, more in line with SNPs in untranslated re-

gions in birds, where in the great tit ∼ 50%, and in the zebra finch ∼ 40% of variants

fall within the 0 to −1 γ range (Corcoran et al., 2017). This mirrors and reinforces the

trend seen in coding regions supporting the more deleterious nature of deletions. It also
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suggests that overall a substantial proportion of INDELs (24% of insertions and 48% of

deletions) in non-coding regions are experiencing purifying selection.

To understand how non-coding INDEL diversity changes around coding regions, we

investigated how θ varies with distance from exons. Our analysis shows that non-coding

θ estimates adjacent to exons are lower than the genome-wide non-coding estimates.

As distance from exons increases, both θins and θdel increase significantly returning

to the genome-wide level by 100kb from exons (figure 3.3). As the scaled mutation

rate (θ = 4Neµ) is the product of the per site mutation rate (µ) and the effective

population size (Ne) changes in θ can be the result of changes in either parameter.

However, as we do not expect there to be a systematic variation in µ between our

distance bins, changes in θ should be driven by corresponding changes in Ne. This

relationship between distance and θ could be explained through increasing proximity

to functional sequence, and therefore increased linkage to sites either under purifying

or positive selection, resulting in reduced Ne close to exons (see Cutter and Payseur

(2013) for review). Alternatively, it could be driven by a higher density of regulatory

elements under selective constraint in non-coding sequence near exons, making INDELs

closer to exons more deleterious, and thus reducing diversity in these regions. However,

two lines of evidence presented here support the former explanation. Firstly, we can

recapture the relationship between INDEL diversity and distance from exons when re-

analysing our dataset after removing data up to as much as the nearest 30kb to exons for

πins, πdel and θdel (although for θins we lack statistical power). This demonstrates that

the correlation is not solely driven by regions directly neighbouring exons, as might be

expected if driven by purifying selection on regulatory elements, but extends over larger

distances, more indicative of linked selection (figure B.8). Secondly, when we analyse

nearly neutral variants (−1 ≤ γ ≤ 0) and deleterious variants (γ < −1) separately we

see that the relationship between distance from exons and θ is driven by a significant

increase in nearly neutral variants as distance from exons increases. We see no increase

in deleterious variants close to exons as would be expected if regulatory elements were

disrupted (figure B.7). Additionally, this suggests that while a proportion of INDELs

in non-coding regions seem to be experiencing negative selection, in agreement with our
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reported genome-wide non-coding DFE, these variants are not driving the reduction of

diversity in proximity to exons.

The possibility of linked selection reducing diversity is further supported by the signif-

icant positive correlations we see between local recombination rate and πins, πdel and

Tajima’s D (figure 3.4). Linked selection can be expected to generate such a pattern,

with linkage decreasing as recombination rates increase, which should drive higher π

in high recombining regions (Corcoran et al., 2017) and a greater enrichment of low

frequency variants in low recombining regions. However, the mutagenic effect of recom-

bination can also be expected to generate a relationship between π and recombination

(Arbeithuber et al., 2015). To disentangle these two forces, we conducted partial correla-

tion analyses using INDEL divergence as a covariate. The partial correlation coefficient

between πins and recombination is 0.15, which is significant and close to the value of 0.18

obtained without using divergence as a covariate. In contrast, the partial correlation co-

efficient between πdel and recombination rate is 0.077, which is non-significant and more

different from the value of 0.12 obtained without partial correlation. This suggests that

the mutagenic effect of recombination has probably played a role in driving increased

INDEL mutation rates in high recombining regions, and that this effect is likely stronger

for deletions than insertions. This is in line with results previously reported in zebra

finch (Nam and Ellegren, 2012). Yet, the greater enrichment in low frequency variants

in low recombining regions is not an expected outcome of reduced mutation rates. Thus,

it seems likely that the true picture is a combination of both linked selection and muta-

tion variation shaping patterns of INDEL variability in regions of varying recombination.

3.5.3 Conclusion

In summary, we see that genome-wide INDELs appear to be having detrimental effects,

with most coding INDELs strongly deleterious, and a sizeable minority of non-coding

INDELs showing signatures of purifying selection. We also show that non-coding IN-

DEL diversity is constrained through linkage to selected sites near exons and in low

recombining regions, though some of this can be attributed to the mutagenic effect of
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recombination. However, we cannot separate how much of this trend is driven by posi-

tive selection and how much is due to purifying selection, which would be an interesting

avenue for future INDEL studies.
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4.1 Abstract

Understanding the determinants of genomic base composition is fundamental to under-

standing genome evolution. GC biased gene conversion (gBGC) is a key driving force

behind genomic GC content through the preferential incorporation of GC alleles over

AT alleles during recombination, driving them to fixation. To date, the majority of work

on gBGC has focussed on its role in coding regions, largely to address how it confounds

estimates of selection. More generally, the evolution of base composition has predom-

inantly been viewed from the perspective of point mutations. To address these biases,

we investigate how the strength of gBGC (B) varies within the non-coding genome of

two wild passerines. We also characterise the impact of both polymorphic and fixed

small INDELs on genomic base composition. Using a dataset of 20 previously published

high coverage genomes (10 great tits and 10 zebra finches) we estimate recombination

rate and B in 1Mb homologous windows in each species. We demonstrate remarkable

conservation of both B and recombination between species. Additionally, we show the

mean strength of gBGC in the zebra finch is more than double that in the great tit,

consistent with its twofold greater effective population size. We estimate equilibrium

GC content from both divergence and polymorphism data which indicates that equi-

librium GC content has increased as a result of recent population expansions in both

species. Finally we show that neither polymorphic or fixed INDELs are GC conservative

in nature and have the ability to shape genomic base composition.

4.2 Introduction

A large proportion of many organisms’ genomes are non-coding; 99% in humans, 91% in

Drosophila melanogaster, 73% in Caenorhabditis elegans and 71% in Arabidopsis thaliana

(Rajic et al., 2005). The non-coding genome offers the opportunity to study evolutionary

processes away from the interference of the direct impacts of natural selection, and can

allow us to study forms of variation, such as insertions and deletions, that segregate at

too low a frequency in coding regions to address many questions statistically. One such

process is the evolution of genomic base composition. The evolution of base content
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and its variation within genomes has been the focus of intrigue for many years, such as

the question of mammalian isochore evolution (Eyre-Walker and Hurst, 2001). Predom-

inantly, research into the evolution of genomic GC content has focussed on the balance

between the strong to weak substitution rate (S→W), in part underpinned by CpG

hypermutabiliy (Hodgkinson and Eyre-Walker, 2011; Hwang and Green, 2004; Ségurel

et al., 2014), and the weak to strong substitution rate (W→S), which is heavily influ-

enced by the role of GC biased gene conversion (gBGC) which has been shown to be

a major determinant of GC content evolution in a broad range of organisms (Boĺıvar

et al., 2016, 2018, 2019; Corcoran et al., 2017; Glémin et al., 2015; Gossmann et al.,

2018; Jackson et al., 2017; Muyle et al., 2011; Ratnakumar et al., 2010; Wallberg et al.,

2015).

The process of gBGC is the preferential incorporation of GC alleles over AT alleles during

the resolution of heteroduplex DNA resulting from the repair of double stranded breaks

during recombination. This elevates the number of gametes containing GC alleles, as

observed in humans (Williams et al., 2015) and birds (Smeds et al., 2016). As such,

gBGC acts to increase the frequency of G and C alleles over A and T alleles, in a

manner that mirrors positive selection (Duret and Galtier, 2009; Galtier and Duret,

2007). As a result, gBGC is an inconvenient complication when looking for signatures

of selection in genomes. For example over 20% of identified positively selected genes in

the human lineage are possibly instead just the focus of elevated gBGC (Ratnakumar

et al., 2010). Furthermore, a growing body of literature has demonstrated that gBGC

confounds our ability to estimate parameters such as the rate of adaptation (ω = dN/dS)

(Boĺıvar et al., 2018, 2019; Corcoran et al., 2017; Gossmann et al., 2018; Ratnakumar

et al., 2010; Rousselle et al., 2019) and the proportion of substitutions fixed by positive

selection (α) (Boĺıvar et al., 2018; Corcoran et al., 2017; Rousselle et al., 2019). Equally

this can be framed as studying gBGC in coding regions is inconvenienced by the action

of natural selection also acting on those regions, forcing studies to use putatively neutral

sites like third codon positions (Rousselle et al., 2019; Weber et al., 2014) and 4-fold

degenerative sites (Boĺıvar et al., 2016; Corcoran et al., 2017; Gossmann et al., 2018)

reducing the amount of data available as well as potentially being confounded by codon

usage bias (Galtier et al., 2018; Jackson et al., 2017).
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As gBGC is a recombination mediated process, it has the potential for as much variation

in strength as recombination rate, at different genomic scales and between species, as

supported by a large body of literature demonstrating correlations between recombina-

tion rate and GC content (Boĺıvar et al., 2016; Glémin et al., 2015; Rousselle et al.,

2019; Wallberg et al., 2015; Weber et al., 2014), recombination rate and equilibrium

GC content (GC*) (Duret and Arndt, 2008; Muyle et al., 2011; Singhal et al., 2015),

and recombination rate and the population scaled strength of gBGC, B = 4Neb, where

Ne is the effective population size and b is the raw strength of conversion bias (Glémin

et al., 2015; Wallberg et al., 2015). With recombination processes varying greatly be-

tween organisms (Stapley et al., 2017) this can be expected to give a similarly broad

range of impacts and strength of gBGC. For example, in mammals the recombination

landscape is largely determined by the location of recombination hotspots, determined

by the PRDM9 gene (Baudat et al., 2010; Parvanov et al., 2010). This results in ar-

eas of greatly elevated recombination rate and thus strength of gene conversion relative

to background levels, for example in humans mean B is estimated at ∼ 0.4 (Glémin

et al., 2015), while inside recombination hotspots it reaches as high as ∼ 18 (Glémin

et al., 2015). In birds, the combination of a karyotype consisting of a few long macro-

chromosomes and many smaller micro-chromosomes (Hansson et al., 2010; Stapley et al.,

2008; van Oers et al., 2014; Zhang et al., 2014) and obligate crossing over causes large

chromosomal differences in recombination rate (Backström et al., 2010; Stapley et al.,

2008; van Oers et al., 2014). Additionally, it has been suggested that birds’ lack of

PRDM9, has resulted in stable recombination hotspots and conserved recombination

characteristics between species (Singhal et al., 2015). Together this is suggested to allow

strong gBGC to act on the same region of the genome over a longer time period than in

mammals (Rousselle et al., 2019; Singhal et al., 2015), driving GC content increases, with

studies reporting that GC content is below GC* content in most avian lineages (Boĺıvar

et al., 2016; Mugal et al., 2013; Rousselle et al., 2019; Weber et al., 2014). Furthermore,

some organisms, such as the honey bee Apis mellifera, lack pronounced recombination

hotspots, yet have very high genome-wide recombination rate with 5 crossovers per arm

and correspondingly elevated mean B estimates of ∼ 5 (Wallberg et al., 2015). Overall,

gBGC is seemingly an ubiquitous force with mean B estimates varying from 0.4 to 5
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across the tree of life (Long et al., 2018).

As B is defined as 4Neb, not only is its strength modulated by recombination rate

increasing b (the strength of conversion) as outlined above but also by the effective

population size (Ne). As such species with larger Ne should have larger B and a reduced

impact of genetic drift. This has been reported in a few studies, with correlations

between Ne and GC content at 3rd codon positions (GC3) in birds, largely driven by

increased GC in smaller bodied, larger Ne species, as well as correlations between Ne

and GC∗ (Weber et al., 2014). More recently B at fourfold degenerate sites (4-fold

sites) has been shown to correlate with Ne in great apes (preprint: Borges et al., 2018).

However, analysis of B more broadly across animal taxa, failed to yield a relationship

between B and Ne (Galtier et al., 2018). Furthermore, to date the role of Ne is a less

well empirically studied aspect of gBGC and little work has looked at fine scale variation

in the strength of gBGC between species of differing Ne.

Another intriguing, but so far largely un-addressed, potential contributor to GC content

evolution is small insertions and deletions (small INDELs, here ≤ 50bp). As the fixation

of small insertions results in the addition of bases and the fixation of deletions the loss of

nucleotides, differences between deletion and insertion base content, and/or differences

in fixation rate between insertions and deletions, have the potential to influence base

composition. Indeed an insertion fixation bias has been reported in a number of studies

(Chintalapati et al., 2017; Leushkin and Bazykin, 2013; Presgraves, 2006; Sjödin et al.,

2010), although the root cause of this relationship is a source of contention, with a

number of explanations put forward, including selection on insertions to prevent intron

length decreasing below an optimum (Ometto et al., 2005; Parsch, 2003; Presgraves,

2006), insertion biased gene conversion (Leushkin and Bazykin, 2013) and ancestral

state misidentification (Kvikstad and Duret, 2014). Secondly, chicken INDELs have

been seen to be enriched in A containing motifs (Brandstrom and Ellegren, 2007), and

there is some limited evidence that the ratio of deletions to insertions is greater in GC

rich introns in humans (Wang and Yu, 2011). The interaction of relative deletion and

insertion rates and variable INDEL base content has the potential to influence genomic

base composition, and warrants further investigation.
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The avian system has been the model of choice for many studies addressing GC evolu-

tion and biased gene conversion (Boĺıvar et al., 2016, 2018, 2019; Corcoran et al., 2017;

Gossmann et al., 2018; Rousselle et al., 2019; Weber et al., 2014) as well as address-

ing questions relating to small INDELs (Barton and Zeng, 2019; Boschiero et al., 2015;

Brandstrom and Ellegren, 2007; Johnson, 2003; Nam and Ellegren, 2012; Paśko et al.,

2011; Sundström et al., 2003; Yan et al., 2014). The suitability of avian genomes for ad-

dressing these topics stems from their variable intra genomic recombination landscapes

(Backström et al., 2010; Stapley et al., 2008; van Oers et al., 2014) and conserved recom-

bination hotspots (Singhal et al., 2015) providing a natural experiment for addressing

the role of recombination and Ne in gBGC and GC content evolution. In addition birds’

conserved karyotype and synteny (Hansson et al., 2010; Stapley et al., 2008; van Oers

et al., 2014; Zhang et al., 2014) allow for straightforward whole genome alignments to

create orthologous window datasets and infer ancestral states and polarise variants such

as small INDELs.

To date most work has focussed on exploring the impact of gBGC and its interaction

with the above described genomic traits within genes and coding regions, largely with

a view of addressing how it confounds signatures of selection (Boĺıvar et al., 2019; Cor-

coran et al., 2017; Gossmann et al., 2018; Ratnakumar et al., 2010; Rousselle et al.,

2019). As such, there has been little attention paid to the action of gene conversion

in the non-coding genome, although there are some notable exceptions (Glémin et al.,

2015; Jackson et al., 2017; Muyle et al., 2011; Wallberg et al., 2015), and little work

investigating fine scale variation in gBGC across the genome between species. Further-

more the role of small INDELs in the evolution of GC content remains un-addressed.

Here we investigate variation in the strength of gBGC within the non-coding genome

of two passerine species, the great tit (Parus major) and the zebra finch (Taeniopygia

guttata), using previously published whole genome resequencing data (Corcoran et al.,

2017; Singhal et al., 2015). We seek to address how conserved the gBGC landscape is

between these species and how gBGC has influenced the evolution of base composition

in these lineages. Additionally, we attempt to characterise how small INDELs have

influenced base composition dynamics in these birds.
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4.3 Materials and Methods

4.3.1 The dataset

The dataset consisted of 10 European great tits from across the sampling locations

in Laine et al. (2016), sequenced to a mean coverage of 44X and 10 Australian zebra

finches sequenced to a mean coverage of 22X, a subset of ten individuals from the Fowlers

Gap population in Australia from the dataset published in Singhal et al. (2015). The

dataset is as described in Corcoran et al. (2017). For both species we obtained VCF

files for SNPs and monomorphic sites from Corcoran et al. (2017). A VCF file for

small INDELs (≤ 50bp) for the great tit dataset was obtained from Barton and Zeng

(2019). For the zebra finch we downloaded INDEL realigned and base quality score

recalibrated BAM files for each of the ten zebra finch, prepared as described by Singhal

et al. (2015), from http://www.ebi.ac.uk/ena/data/view/PRJEB10586 (last accessed

05/03/19) and called insertions and deletions following the pipeline in Barton and Zeng

(2019). Additionally, a three species whole genome alignment between zebra finch, great

tit and flycatcher (Ficedula albicollis) was obtained from Barton and Zeng (2019), and a

three species alignment between chicken (Gallus gallus), zebra finch and great tit from

Corcoran et al. (2017).

4.3.2 Annotation and filtering

We assigned the ancestral states for the SNPs and INDELs using the whole genome

alignment and parsimony based approach, where for each species either the reference

allele or the alternate allele had to supported by both out-groups to be assigned as

ancestral.

We downloaded the great tit genome annotation (version 1.03) from ftp://ftp.ncbi.

nlm.nih.gov/genomes/all/GCF/001/522/545/GCF_001522545.1_Parus_major1.0.3/

GCF_001522545.1_Parus_major1.0.3_genomic.gff.gz (last accessed 05/03/19) and

the zebra finch annotation from ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/

151/805/GCF_000151805.1_Taeniopygia_guttata-3.2.4 (last accessed on 05/03/19).

http://www.ebi.ac.uk/ena/data/view/PRJEB10586
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/522/545/GCF_001522545.1_Parus_major1.0.3/GCF_001522545.1_Parus_major1.0.3_genomic.gff.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/522/545/GCF_001522545.1_Parus_major1.0.3/GCF_001522545.1_Parus_major1.0.3_genomic.gff.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/522/545/GCF_001522545.1_Parus_major1.0.3/GCF_001522545.1_Parus_major1.0.3_genomic.gff.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/151/805/GCF_000151805.1_Taeniopygia_guttata-3.2.4
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/151/805/GCF_000151805.1_Taeniopygia_guttata-3.2.4
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We used the annotations to remove variants falling within exons. Additionally coor-

dinates for ultra-conserved non-coding elements (UCNEs) in the zebra finch genome

(taeGut1) were obtained from ftp://ccg.vital-it.ch/UCNEbase/custom_tracks_UCSC/

UCNEs_taeGut1.bed (last accessed 05/03/19). We identified the corresponding positions

in the great tit in the whole genome alignment, before removing any variants falling

within UCNEs. Additionally we restricted our analysis to the autosomes, removing the

Z chromosome. This left non-coding datasets of putatively neutral variants, numbering

9,800,315 SNPs plus 1,096,350 INDELs for great tit, and 29,973,954 SNPs plus 3,587,939

INDELs for zebra finch.

From our non-coding SNP dataset we generated an additional subset, with CpG sites

excluded, where a CpG site was defined as any site where at least one of the alleles of

the site was in a 5′ → 3′ CpG dinucleotide or in a 3′ → 5′ GpC dinucleotide.

4.3.3 Orthologous window preparation

The zebra finch genome was divided into 1Mb non-overlapping windows and we used

the three species whole genome alignment (zebra finch, great tit, flycatcher) to identify

the aligned sequence and coordinates in the great tit genome and extracted variants

and numbers of callable sites from our VCF files. For each window in each species

we calculated the GC content using the respective reference genomes. GC content was

calculated for all sites in the window, and for non-CpG sites. Secondly, we calculated

recombination rate for each window, using the available linkage map data for each species

(Stapley et al., 2008; van Oers et al., 2014, for zebra finch and great tit respectively)

and the pipeline outlined in Corcoran et al. (2017).

4.3.4 Estimating the strength of gene conversion

We extracted the number of callable site for weak bases (A and T nucleotides) and

strong bases (G and C nucleotides) along with the site frequency spectra for weak to

strong mutations (WS), strong to weak mutations (SW ) and weak to weak and strong

to strong mutations (WWSS) in all windows and datasets. We then applied the M1∗

ftp://ccg.vital-it.ch/UCNEbase/custom_tracks_UCSC/UCNEs_taeGut1.bed
ftp://ccg.vital-it.ch/UCNEbase/custom_tracks_UCSC/UCNEs_taeGut1.bed
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model of Glémin et al. (2015), implemented in the anavar package (Barton and Zeng,

2018). Briefly, the model estimates the population scaled mutation rate (θ = 4Neµ),

the population scaled selection coefficient (γ = 4Nes) and estimates and controls for

polarisation error for both SW and WS mutations using WWSS sites as a neutral

reference unaffected by gBGC. The selection coefficient for WS mutations (γWS) can

also be thought of as the population scaled strength of biased gene conversion, B, where

B = 4Neb.

We performed partial correlations of B against GC content, and recombination rate,

across windows, with nucleotide diversity (π) (Tajima, 1983) as a confounding factor

to control for the contribution of effective population size (Ne) to the correlation. The

partial correlations were performed using the ‘ppcor’ package (Kim, 2015) in R (R Core

Team, 2015).

4.3.5 Equilibrium GC content

We estimated the ancestral GC content per window for the lineage leading to great tits

and zebra finches using the whole genome alignment (containing chicken, zebra finch and

great tit) and the GTR-NHb model in baseml within PAML (Yang, 2007). The model

allows for non-stationary base content and for independent substitution rates on each

branch. From the model we obtained the posterior probabilities of the ancestral states

and weighted each ancestral nucleotide by this probability (as in Matsumoto et al., 2015)

to reconstruct ancestral GC content with uncertainty incorporated. We then estimated

the rate of WS substitutions

rWS =
nWS

nW
(4.1)

the rate of SW substitutions

rWS =
nSW
nS

(4.2)
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and the equilibrium GC content

GC∗div =
rWS

rWS + rSW
(4.3)

The GTR-NHb model was a better fit then the GTR model, which assumes base compo-

sition is at equilibrium, for all but five windows as judged by likelihood ratio tests (data

not shown). Additionally, the model estimates of GC∗div correlated strongly with those

derived from parsimony estimates of the substitution rates for both great tit (Pearson’s

r = 0.94, p < 2.2×10−16) and zebra finch (Pearson’s r = 0.96, p < 2.2×10−16), although

the mean GC∗div was lower for the model estimates than the parsimony estimates in

both species (0.39 versus 0.43 respectively for great tit and 0.38 versus 0.42 respectively

for zebra finch). Additionally we calculated the distance from equilibrium GC content

for each window, where distance from equilibrium was defined as: GC ∗div −GCcurrent.

To obtain a more recent view of the base composition evolution and gBGC we also

calculated GC∗pol from our application of the Glémin et al. (2015) model to our poly-

morphism dataset. This was achieved using the selection coefficients and mutation rates

estimated per window to estimate the fixation rates for W → S and S →W mutations

and to substitute these into equation 4.3

rij = θij
γij

1− e−γij
(4.4)

where rij is the fixation rate of mutations from i to j.

4.3.6 INDEL base content

To assess if there were any GC or AT trends in insertion and deletion content, we es-

timated the scaled mutation rate (θ = 4Neµ) for small INDELs (≤ 50bp) consisting of

only GC nucleotides, those containing only AT nucleotides, and the remainder of vari-

ants which contained a mix of AT and GC nucleotides. For each group of INDELs we
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obtained the site frequency spectra for non-coding, UCNE filtered, insertions and dele-

tions. For each of the three categories we fit the ‘neutralSNP vs selectedINDEL’ model

with 1 site class (C = 1) in the anavar package (Barton and Zeng, 2018), using WWSS

SNPs as neutral reference (as in the biased gene conversion analysis described earlier).

The model provides estimates of the mutation rate after correcting for ancestral state

misidentification when separating INDELs into insertions and deletions, and controls for

demography using the set of neutral variants. We also calculated diversity (π) for this

dataset (Tajima, 1983).

To see how much small INDELs have contributed to the evolution of base composition

since the common ancestor of the great tit and zebra finch we estimated the change in

GC content due to small insertion fixations (∆GCins)

∆GCins =
∑ GCanc +GCins

l + lins
− GCanc

l
(4.5)

where GCanc is the ancestral GC content, GCins is the insertion GC content, l is the

ancestral sequence length and lins is the insertion length. Similarly, for deletion fixations

we estimated ∆GCdel

∆GCdel =
∑ GCanc −GCdel

l − ldel
− GCanc

l
(4.6)

where GCdel is the deletion GC content and ldel is the deletion length. We calculated

∆GCins and ∆GCdel for each window from our whole genome alignment dataset. We

removed windows with fewer than 200bp of INDELs.

4.3.7 Data availability

All scripts and command lines used in the analysis pipeline can be found at: https:

//github.com/henryjuho/biased_gene_conversion.

https://github.com/henryjuho/biased_gene_conversion
https://github.com/henryjuho/biased_gene_conversion
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Table 4.1: Summary of the window dataset, showing means and the 2.5 and 97.5
percentiles in brackets. Recombination rates are log10 transformed.

Measure great tit zebra finch

windows 898 904
callable sites 523858 (21580, 726488) 498785 (79743, 711346)
nSNP 5895 (239, 9766) 21321 (989, 37847)
nINS 257 (10, 484) 869 (46, 1447)
nDEL 331 (3, 661) 1602 (71, 2874)
GC content 0.41 (0.34, 0.51) 0.41 (0.35, 0.51)
Recombination rate (cM/Mb) 0.48 (0, 0.97) 0.41 (0, 0.96)

Table 4.2: Results of partial Spearman’s correlations of the strength of gene conversion
(B) with GC content and recombination rate, with π as a covariate, using both the

main dataset and the dataset after removing CpG sites.

x y dataset species Spearman’s ρ p value

Recombination rate (cM/Mb) B full great tit 0.43 9.09× 10−40

Recombination rate (cM/Mb) B full zebra finch 0.56 6.02× 10−74

Recombination rate (cM/Mb) B CpG filtered great tit 0.50 1.15× 10−52

Recombination rate (cM/Mb) B CpG filtered zebra finch 0.55 1.49× 10−70

GC content B full great tit 0.50 9.61× 10−55

GC content B full zebra finch 0.75 9.18× 10−157

GC content B CpG filtered great tit 0.54 2.2× 10−62

GC content B CpG filtered zebra finch 0.75 2.46× 10−158

4.4 Results

4.4.1 Summary of the window dataset

Application of our pipeline resulted in 904 1Mb windows in zebra finch genome and 898

orthologous windows in the great tit genome (table 4.1). The lower number of great

tit windows is due to gaps in the whole genome alignment. We see similar numbers of

callable sites in both species, roughly 500,000 bp per 1 Mb window, this drop is a result

of our maximum parsimony approach to assigning ancestral states, which is dependant

on coverage of all species in our whole genome alignment and no ambiguity between

out-groups. When considering variants per window we see that the mean number of

variants is higher in zebra finch for all mutation classes (SNPs, insertions and deletions),

consistent with a larger effective population size in zebra finch (Corcoran et al., 2017).

We see very similar mean GC content and mean recombination rates in both species,

with strong correlations between the two species’ GC content (Pearson’s r = 0.83, p =

1.6×10−230, figure C.1a) and recombination rate (Spearman’s ρ = 0.72, p = 2.6×10−140,
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Figure 4.1: The relationship between mean window recombination rate and the
strength of gene conversion (B) in the great tit and zebra finch. Spearman’s corre-

lation results can be seen in the top two rows of table 4.2.

figure C.1b) across the dataset, as well as positive correlations between GC content and

recombination within each species (great tit: Spearman’s ρ = 0.57, p = 3.8 × 10−79,

zebra finch: Spearman’s ρ = 0.53, p = 4.2× 10−67, figure C.2).

4.4.2 Strength of gene conversion correlates with recombination

The strength of GC-biased gene conversion (B) positively correlates with recombination

rate in both the great tit and the zebra finch (table 4.2, figure 4.1). This relationship is

stronger when using mean GC content as a proxy for recombination rate in both species

(table 4.2, figure C.3) and all correlations are maintained when performed on a dataset

filtered for CpG sites (table 4.2).

4.4.3 B conserved between the species

Comparison of the model estimates of B between zebra finch and great tit show a

significantly larger mean B value in zebra finch (B̄ = 0.90) than great tit (B̄ = 0.40)

(Wilcoxon rank sum, W = 491903, p = 2.5 × 10−49 ; figure 4.2a). However, when

we standardise our B estimates by π as a measure of Ne the distributions are similar
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Figure 4.2: Comparison of the distribu-
tion of B values (strength of biased gene
conversion) (a) and B standardised by π
as a proxy of the effective population size
Ne (b) between the great tit (GT) and ze-
bra finch (ZF). The y axis for b has been

cropped for clarity.
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Figure 4.3: The relationship between
the strength of biased gene conversion
(B) in the zebra finch and the great tit.

between the two species (figure 4.2b), although the species’ means remain significantly

different (Wilcoxon rank sum, W = 305880, p = 6.1 × 10−10). We also see a positive

correlation between the ratio of the species’ nucleotide diversity (πZF /πGT ) and the

ratio of the species’ B (BZF /BGT ) (Spearman’s ρ = 0.44, p < 2.2× 10−16), supporting

the idea that the Ne drives the between species differences in B. Furthermore, we see

a strong correlation between B in the great tit and B in the zebra finch (Spearman’s

ρ = 0.45, p = 9.84 × 10−42, figure 4.3) as well as between B/π in great tit and B/π

in zebra finch (Spearman’s ρ = 0.47, p = 1.91 × 10−46), in keeping with the conserved

recombination rate and GC content between species reported above.

4.4.4 Equilibrium GC content

To assess the longer term GC dynamics of both the great tit and zebra finch genomes we

calculated the equilibrium GC content (GC∗div) for each lineage using the substitution

rates estimated in PAML (see methods). This gave a mean GC∗div of 0.39 for great tit

and 0.38 for zebra finch, both of which are significantly below the mean GC contents in

our alignment datasets of 0.40 for both great tit (Wilcoxon rank sum, W = 282790, p =
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Table 4.3: Correlations between the distance from equilibrium GC content (GC∗div
- GC) and other genomic variables across the window dataset.

variable species correlation p value method

Recombination rate great tit 0.21 1.83× 10−14 Spearman’s
Recombination rate zebra finch 0.59 9.95× 10−137 Spearman’s
B great tit 0.28 1.18× 10−23 Spearman’s
B zebra finch 0.61 9.96× 10−151 Spearman’s

1.1× 10−8) and zebra finch (Wilcoxon rank sum, W = 241190, p < 2.2× 10−16) (figure

C.7). Note the alignment dataset is a subset of the main dataset (as coverage is required

across all species in the chicken/zebra finch/great tit alignment) and yields slightly lower

mean GC. B positively correlates with GC∗div in both great tit (Spearman’s ρ = 0.50,

p < 2.2× 10−16) and zebra finch (Spearman’s ρ = 0.87, p < 2.2× 10−16), and a similar

relationship is seen for recombination (Spearman’s ρ = 0.55, p = 6.02× 10−62 for great

tit and Spearman’s ρ = 0.66, p = 3.85× 10−98 for zebra finch).

To look at base composition evolution in a more recent time scale we also calculated

equilibrium GC content using our θ andB estimates derived from the polymorphism data

(see methods), henceforth GC∗pol. This approach yielded markedly higher equilibrium

GC content estimates than the substitution rate based approach, for both great tit

(Wilcoxon rank sum, W = 518421, p = 1.48 × 10−225, ¯GC∗pol = 0.63) and zebra finch

(Wilcoxon rank sum, W = 575196, p = 1.24× 10−245, ¯GC∗pol = 0.72).

4.4.5 Distance from equilibrium GC

To further quantify the impact of biased gene conversion on GC content, we calculated

the distance from equilibrium (GC∗div) for each window, in each species. This results in

a mean distance from equilibrium of −0.0034 in great tit and −0.015 in zebra finch (also

see figure C.7). Additionally, both B and recombination rate positively correlate with

the distance from equilibrium in both species (table 4.3, figure 4.4, figure C.8). This

suggests that regions that substitution based analysis predicts to increase in GC content

(i.e., GC ∗div −GC > 0) are also under stronger recent selection, with larger B values,

supporting our use of the longer term GC∗div over the shorter term GC∗pol in this anal-

ysis. As the distance from equilibrium ranges from values below equilibrium to values
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Figure 4.4: The relationship between distance from equilibrium GC (GC∗div - GC)
and the strength of biased gene conversion (B) in both the great tit (GT) and the zebra

finch (ZF).

above equilibrium we binned the estimates into 3 categories, below equilibrium, above

equilibrium and at equilibrium (current GC content within 2.5% of GC∗div) to assess

how much these relationships were driven by the above equilibrium and below equilib-

rium windows. This binning suggests that the correlations between B and distance from

equilibrium (table 4.3) is largely driven by elevated B estimates in windows with below

equilibrium GC content in both species (figure C.9a). Similarly the correlations between

recombination rate and distance from equilibrium GC (table 4.3) is largely driven by

higher recombination rates in windows with below equilibrium GC (figure C.9b).

4.4.6 Impact of small INDEL mutations on GC

To understand how INDEL mutation rates might be influencing base content we esti-

mated the population scaled mutation rate (θ = 4Ne) for INDELs containing only GC

bases, INDELs containing only AT bases and INDELs containing both AT and GC bases

(mixed INDELs). Mean GC content of mixed INDELs (0.43 in great tit, 0.45 in zebra

finch, figure C.4) is slightly higher than the mean non-coding GC content (table 4.1).

The nature of our INDEL binning means that AT and GC INDELs share similar length

distributions (predominantly comprising of 1bp INDELs), whereas mixed INDELs differ
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Table 4.4: Correlations between INDEL ∆GC and ancestral GC content across the
window dataset.

species INDEL type correlation p value method

great tit INS 0.74 4.23× 10−127 pearson
zebra finch INS 0.67 4.64× 10−97 pearson
great tit DEL -0.81 2.27× 10−171 pearson
zebra finch DEL -0.89 4.04× 10−251 pearson
great tit INDEL 0.18 9.08× 10−7 pearson
zebra finch INDEL -0.65 6.76× 10−89 pearson

as they must be at least 2bp long to contain a mix of GC and AT bases, and constitute

the majority of the overall distribution of INDEL lengths above 1bp (figure C.5). We

see that for both GC and mixed INDELs θ is greater for deletions than insertions in

both species (figure 4.5). However, AT INDELs show a strikingly contrasting pattern

with θins exceeding θdel, where θdel/θins = 0.84 in the great tit, and θins is a very similar

magnitude to θdel in the zebra finch with θdel/θins = 1.1. For comparison the ratios of

θdel/θins for GC and mixed INDELs are 1.8 and 2.2 respectively in the great tit and both

3.2 in the zebra finch. These relationships are corroborated when using π estimates (fig-

ure C.6). Our estimates of the population scaled selection coefficient (γ = 4Nes) show

that in both species GC containing and mixed INDELs are characterised by deletions

with negative γ estimates and insertions with positive γ estimates (table C.1). Con-

versely, for AT containing variants deletions have more positive γ values than insertions,

however these estimates are both negative in the great tit and both positive in the zebra

finch (table C.1).

4.4.7 GC content change from INDEL fixation

To quantify how small INDELs have influenced GC content since the common ancestor

of the great tit and zebra finch we calculated the change in GC content (∆GC, see

methods) per window due to insertions and due to deletions for both lineages. For the

great tit, fixed deletions have acted to both increase GC content in some windows and

decrease it in others, with the mean ∆GC = −0.88 × 10−4, though median ∆GC =

0.22× 10−4. Insertions fixed in great tit windows however have largely acted to reduce

GC content with mean ∆GC = −1.21× 10−4 and median ∆GC = −2.79× 10−4. ∆GC
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Figure 4.5: Estimated population
scaled mutation rates (θ = 4Neµ) for AT,
GC and AT and GC mixed (MIX) inser-
tions (INS) and deletions (DEL) in both
the great tit (GT) and the zebra finch

(ZF).
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Figure 4.6: Change in GC content
(∆GC) on the branches leading to ze-
bra finch (ZF) and great tit (GT) since
their divergence, as a result of the fixa-
tion of small insertions (INS) and dele-

tions (DEL).

for insertions is significantly lower than for deletions in the great tit (Wilcoxon rank

sum, W = 419554, p = 1.87× 10−21). In the zebra finch this picture differs with similar

∆GC for both insertions and deletions (Wilcoxon rank sum, W = 310832, p = 0.056),

where for deletions mean ∆GC = −0.37 × 10−4 and median ∆GC = 1.07 × 10−4, and

for insertions mean ∆GC = −1.55× 10−4 and median ∆GC = 0.54× 10−4.

When considering how ∆GC varies across the windows within our dataset, we see a

positive correlation between ∆GC for insertions and ancestral GC content of the window,

for both species, whilst for deletions we see the opposite, with negative relationships in

both species (table 4.4, top panel figure 4.7). However, when we combine ∆GC for

insertions and deletions to get an overall impact of small INDELs on GC content we see

a different picture, with a slight positive correlation with ancestral GC content in the

great tit, seemingly driven by elevated GC gain in the highest GC windows, with the

bulk of windows demonstrating an overall GC reduction due to small INDELs (table 4.4,

bottom panel figure 4.7). In the zebra finch, we instead report a negative correlation

between ∆GC due to INDELs and ancestral GC content, generally with windows below

mean GC content (ḠC = 0.4, table 4.1) experiencing GC gains due to small INDELs and

windows above mean GC experiencing GC reductions (table 4.4, bottom panel figure

4.7). We recapture these relationships when comparing ∆GC against recombination
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Figure 4.7: The relationship of ∆GC for insertions and deletions (top row) and delta
GC for combined INDELs (

∑
∆GC, bottom row) against ancestral GC content in both

great tit (GT) and zebra finch (ZF).

rate, and against B instead of ancestral GC content, other than for ∆GC for INDELs

in the great tit where we only see negligible relationships (table C.2, figure C.10, figure

C.11).

4.5 Discussion

Most contemporary studies addressing the role of GC biased gene conversion (gBGC) in

genome evolution have focussed on its action within coding regions where it is confounded

by the action of selection (Boĺıvar et al., 2019; Corcoran et al., 2017; Gossmann et al.,

2018; Ratnakumar et al., 2010; Rousselle et al., 2019) and processes like codon usage bias

(Jackson et al., 2017). Additionally few of these studies have looked at the impact of Ne

on the strength of gBGC. Futhermore, research into the evolution of base composition

has largely focussed on SNPs, influenced by gBGC and CpG hypermutability. To address

these gaps, here we analyse 20 re-sequenced avian genomes from two species, the great
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tit (Corcoran et al., 2017), and the zebra finch (Singhal et al., 2015). Using a dataset of

1Mb orthologous windows we investigate the action of gBGC in the non-coding regions

of these birds since their divergence, as well investigating the impact of small INDELs

on base content evolution, a topic so far unaddressed.

4.5.1 Strength of gene conversion modulated by Ne

Our non-coding 1Mb orthologous window dataset yielded similar mean GC content (0.41,

0.41) and recombination rates (0.48, 0.41) in the great tit and zebra finch respectively.

From our application of the Glémin et al. (2015) model to our dataset we obtained

mean B estimates of 0.40 for the great tit and 0.90 for the zebra finch. Our estimate are

similar to genome wide mean estimates of B in humans of 0.38 (Glémin et al., 2015),

falling at the lower end of the B range of 0.4 to 5 reported by Long et al. (2018) in a

comparative study with taxa from across the tree of life. These B values are below 1 in

both species, and thus at a level, particularly in the great tit, which may not be able to

predominate over SW mutational biases. McVean and Charlesworth (1999) demonstrate

that for synonymous codons, Nes much below 1 can lead to fixation of un-preferred over

preferred codons when there is a mutational bias towards the un-preferred codon, here

this parallels SW mutation biases and WS fixation biases due to gBGC. Additionally,

the authors demonstrate that a greater proportion of un-preferred codons are fixed until

Nes ' 0.25, and for 0.25 < Nes < 1 selection for preferred codons can still be hampered

by mutation favouring un-preferred codons. Thus it is likely gBGC in non-coding regions

in these species is operating at reduced efficiency, particularly in the great tit.

When looking at variation in B within the genome we see significant correlations between

B and recombination rate in both the great tit and zebra finch (table 4.2), consistent

with gBGC being stronger in regions of higher recombination, as has been reported in

humans (Glémin et al., 2015) and as implied by correlations between GC content at

4-fold sites and recombination in flycatchers (Boĺıvar et al., 2016). This relationship is

stronger when using GC content as proxy for recombination, possibly as it is a better

measure of long term recombination rate, but also likely as our recombination rate

estimates are constrained by the density of the linkage maps available (Stapley et al.,
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2008; van Oers et al., 2014), whereas the calculated GC content is not. As local Ne also

likely correlates with recombination rate these relationships were analysed with partial

correlations using π as a confounding variable, precluding it as a driver for these trends.

When comparing between species we see a conserved biased gene conversion landscape,

with per window B estimates correlated significantly between species (figure 4.3). In

light of the strong correlations reported between both GC content and recombination

rate between the species (correlation coefficients 0.83 and 0.72 respectively), this is per-

haps unsurprising and likely a result of birds’ conserved recombination hotspots (Singhal

et al., 2015), karyotype and synteny (Hansson et al., 2010; Stapley et al., 2008; van Oers

et al., 2014; Zhang et al., 2014). However, whilst correlating strongly, B values are

higher in zebra finch (figure 4.2a). As B is the product of b (the strength of biased gene

conversion) and Ne, either parameter could be driving this increase. To separate the

effects of these parameters we standardised our B estimates by π as a proxy for Ne.

B/π estimates are similar in zebra finch and great tit whilst mean B is around twofold

higher in the zebra finch (figure 4.2) consistent with the twofold larger Ne in this species

(Corcoran et al., 2017). This combined with our reported correlation between the ratio

of the species’ π estimates and the ratio of the species’ B estimates supports the idea

that the larger Ne in the zebra finch is driving the increased population scaled strength

of gBGC in this species, and that by extension b has remained relatively stable since the

species diverged. Additionally, this is in keeping with a number of previous studies. In

birds, GC3 content has been reported to correlate with Ne (using life history traits as

proxies) across the avian phylogeny (Weber et al., 2014). Similarly, in great apes, B for

4-fold sites correlates with Ne (preprint: Boĺıvar et al., 2018) and in rice species (Oryza

spp.), selfers, which have reduced Ne, also have lower B estimates (Muyle et al., 2011).

However, analysis between more diverged species has failed to produce a relationship

between B and Ne, with the authors suggesting that B only responds to Ne over small

time-scales (Galtier et al., 2018).
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4.5.2 Non-coding equilibrium GC content

Our divergence based estimates of the mean non-coding equilibrium GC content, GC∗div,

are lower than the current GC content in both the great tit (0.39 versus 0.40) and the

zebra finch (0.38 versus 0.40), and this trend extends to the majority of windows in

the dataset (figure C.7). This finding is at odds with previous avian studies reporting

that current GC content is below GC∗ in most avian lineages (Boĺıvar et al., 2016;

Rousselle et al., 2019; Weber et al., 2014). However, these studies are largely focussed

on GC3 content in coding regions. In birds, coding regions have been seen to have higher

GC content (Weber et al., 2014) and higher recombination rates (Singhal et al., 2015)

possibly as a result of higher gene density on micro-chromosomes which have elevated

recombination rates and GC content (Burt, 2002; Stapley et al., 2008; van Oers et al.,

2014). Indeed this is supported in our dataset where non-coding GC content is ∼ 10%

lower than coding sequence GC content (table C.3).

Our B estimates correlate strongly with GC∗div as well as with the distance from GC

equilibrium (GC∗div - GC) suggesting that areas of high B have elevated GC∗div and

are further from equilibrium. This is consistent with correlations between GC∗ and

recombination rate previously reported in zebra finch and long-tailed finch (Poephila

acuticauda) (Singhal et al., 2015), as well as in rice species (Muyle et al., 2011). Fur-

thermore, both recombination rates and B estimates are highest in windows that are still

increasing towards GC∗div and lower in regions close to, or decreasing towards GC∗div

in both species (figure C.9). Taken together these results suggest that non-coding GC

content has been decreasing towards a lower GC∗div in low recombining regions since

the great tit zebra finch split. This may be a result of a decreased efficacy of gBGC,

with median B estimates below 0.5 in regions above GC∗div (figure C.9a), reducing the

proportion of GC alleles fixing and allowing for more AT biased fixation patterns (see

McVean and Charlesworth, 1999) and a slight erosion of ancestral GC levels, possibly

stemming from historically lower Ne, with both species showing evidence of recent pop-

ulation increases (Balakrishnan and Edwards, 2008; Corcoran et al., 2017; Laine et al.,

2016). Additionally, with lower recombination rates in non-coding regions than in cod-

ing regions (Singhal et al., 2015) it also raises the possibility that non-coding and coding
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GC content have been diverging in these species, such as may also be occurring in some

species of rice where non-coding GC content is above equilibrium when GC3 is below

equilibrium (Muyle et al., 2011).

Our estimates of GC∗pol derived from our application of the Glémin et al. (2015) model

applied to the polymorphism dataset paints a different picture. The mean GC∗pol esti-

mates from this approach are much higher, 0.63 versus 0.39 for great tit and 0.72 versus

0.38 for zebra finch. The two approaches differ in the time frame they analyse, with

the divergence approach estimating a more long term GC∗ spanning the entire branch

length from the great tit - zebra finch split, where as the polymorphism approach pro-

vides more recent information only going as far back as 2Ne generations. As such,

comparing the two approaches can provide an indication of how B has changed towards

the present. Our elevated estimates for the polymorphism based GC∗pol suggests an in-

crease in B over the past 2Ne generations. As recombination rates are relatively stable

and conserved in these species it seems likely this is a result of increased Ne due to a

population expansion as has been previously reported for the great tit (Corcoran et al.,

2017; Laine et al., 2016) and the zebra finch (Balakrishnan and Edwards, 2008; Corcoran

et al., 2017). Additionally the increase in GC∗ is greater for the zebra finch which also

shows evidence of a larger population growth (Corcoran et al., 2017). Interestingly, the

converse has been reported in Drosophila melanogaster, where longer term estimates of

B are higher than those from the Glémin et al. (2015) model, suggesting a reduction in

B over time (Jackson et al., 2017). Our GC∗ estimates from these two methods suggest

that increases in Ne have shifted non-coding base composition from moving towards

reduced GC content to increased GC content in these birds. Although, this is likely an

oversimplified picture with Ne likely fluctuating, and consequently B, since the great tit

and the zebra finch split ∼ 40 million years ago (Barker et al., 2004).

4.5.3 Small INDELs contribute to GC content change

Our θ and π estimates for INDELs in different genomic contexts were higher for the

zebra finch than the great tit, consistent with a larger Ne in this species. We see a

marked deletion bias for INDELs containing only GC bases and for INDELs containing
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a mix of AT and GC bases (figure 4.5) consistent with previously reported deletion

biases in a wide range of species (Hu et al., 2011; Keightley et al., 2009; Kvikstad and

Duret, 2014; Nam and Ellegren, 2012; Presgraves, 2006; Taylor et al., 2004). However,

for AT containing INDELs this relationship disappears, with a rDI (ratio of insertions to

deletions) of 1.1 in zebra finch and 0.84 in the great tit; an insertion bias. Whilst striking,

this difference is in line with previously reported higher rDIs in GC rich introns in humans

(Wang and Yu, 2011). Through polymerase slippage it is energetically more expensive

to create an insertion than a deletion as it requires a previously duplicated strand of

DNA to denature and be re-replicated along the whole length of an insertion, but not

for deletions (Petrov, 2002b). Additionally, sequence melting temperature reduces with

increase AT content, making AT rich regions less stable (Fryxell and Zuckerkandl, 2000).

As such, it may be that in AT rich regions, where INDELs are more likely AT rich (as

seen in our alignment dataset: figure C.12), the energetic cost of insertion formation is

reduced relative to deletion formation, allowing for an erosion of the deletion bias.

When we consider the selective pressures acting on these INDELs, our analysis provides

evidence for selection or a selection like force favouring insertions and disfavouring dele-

tions for GC containing and mixed non-coding INDELs in both species (table C.1). The

more negative γ estimates for deletions relative to insertions is consistent with previous

reported estimates in the great tit (Barton and Zeng, 2019) and D. melanogaster (Bar-

ton and Zeng, 2018). However, as with the mutation rate estimates, γ for AT containing

INDELs shows a different relationship, where deletions show more positive estimates

than insertions, although in the zebra finch both seem to be weakly selected for where

as in the great tit they are weakly selected against (table C.1).

The fixation of small INDELs since the common ancestor of the zebra finch and great

tit has on net acted as a GC decreasing force in the great tit, and an increasing one in

the zebra finch (figure 4.6, figure 4.7). When considering the per window change in GC

content (∆GC) due to insertions and deletions separately we see that as ancestral GC

content increases, intuitively so does the amount of GC lost and gained through small

INDELs. If the GC content of INDELs is above the window GC content (figure C.12),

then this results in deletions reducing GC content and insertions increasing it. This



97

indeed appears to be the case in windows with above 40% GC content, in both species

(figure 4.7, figure C.12), though the reason behind this is unclear.

4.5.4 Conclusion

In summary we show marked conservation of the underlying strength of gBGC, b in

the zebra finch and great tit, with the population scaled strength of gBGC, B, larger

in the zebra finch in proportion to the species’ larger Ne. Additionally, B seems weak

(B < 1) in the majority of our non-coding data, and non-coding GC has seemingly

been decreasing since the two species diverged, contrary to previous work on coding

regions. Furthermore, we demonstrate that neither polymorphic or fixed INDELs are

GC conservative in nature and have the ability to shape genomic base composition, it

would be interesting to incorporate this into future modelling frameworks addressing

GC content evolution, although this is non-trivial.

4.6 Supplementary Material

Supplementary figures and tables are available in Appendix C.
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5.1 Selection and small INDELs

Insertions and deletions (INDELs) have not received the same level of attention as sin-

gle nucleotide polymorphisms (SNP), leaving them understudied in comparison. Whilst

their mutation rate is markedly lower than that of SNPs (Barton and Zeng, 2019; Mont-

gomery et al., 2013), they nonetheless contribute new genetic variation on which selection

can act. Arguably they may even contribute more to divergence when their length is

considered (Britten, 2002; Britten et al., 2003). Thus, understanding the selective forces

operating on INDELs is of great interest. However, to date, there has been little at-

tempt to directly quantify the strength of selection acting on them, largely due to a

lack of methods available and the challenges in doing so. One such challenge is the need

to separate called INDELs into insertions and deletions, which requires determining if

the long or short variant is ancestral. However, this process is error prone, and when

combined with a mutational bias towards deletions over insertions (Besenbacher et al.,

2015; Keightley et al., 2009; Schrider et al., 2013; Yang et al., 2015) could cause spuri-

ous signatures of selection on insertions (Barton and Zeng, 2018; Hernandez et al., 2007;

Kvikstad and Duret, 2014).

In this thesis I apply a novel model described in Chapter 2 to estimate the distribution

of fitness effects (DFE) for small INDELs (≤ 50bp) in coding regions in Drosophila

melanogaster (Chapter 2) and the great tit (Parus major) (Chapter 3). Additionally, I

characterise the INDEL DFE in non-coding regions in the great tit (Chapter 3) and the

zebra finch (Taeniopygia guttata) (Chapter 4). The model estimates the population

scaled mutation rate (θ = 4Neµ), selection coefficient (γ = 4Nes) and the rate of

ancestral misidentification (ε), it controls for this error and for demography using a

set of putatively neutral sites as reference as in Eyre-Walker et al. (2006). In Chapter 2

I demonstrate that the model performs well, providing accurate estimates across a wide

range of parameters.

Through application of the model to a D. melanogaster resequencing dataset (Pool et al.,

2012), I demonstrate that the DFE for INDELs in coding regions is bimodal, charac-

terised by a class of strongly deleterious INDELs, accounting for the majority of coding
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INDEL events, and a class of weakly selected sites accounting for the remaining minority

of INDELs. Of the weakly selected variants, deletions are more deleterious with more

negative γ estimates. There is also some evidence for weak positive selection operating

on insertions, however this result is dependant on the model used. The best fit DFE

for coding INDELs in the great tit obtained from a high coverage great tit resequencing

dataset (Corcoran et al., 2017) is markedly similar, again being best explained by a

bimodal distribution. Consistent with the D. melanogaster DFE the majority (96%)

of coding INDELs are strongly deleterious with the remainder weakly selected against,

again with deletions in this class having more negative γ estimates than insertions.

These results are consistent with the more deleterious nature of deletions as theorised

due to their larger base impact (Petrov, 2002b; Sjödin et al., 2010) and as previously

inferred from allele frequencies and divergence levels (Chintalapati et al., 2017; Leushkin

and Bazykin, 2013; Presgraves, 2006; Sjödin et al., 2010). In D. melanogaster we also

demonstrate that INDELs that shift the reading frame (i.e. those not a multiple of 3

in length) have more negative γ estimates, a finding that is also reflected in the INDEL

length distribution in the great tit, with in-frame INDELs more numerous. Additionally,

there is a reduction in the proportion of frame-shifting INDELs in more conserved genes.

I extended the coding region analysis beyond the polymorphism data and incorporated

divergence data in order to estimate the proportion of fixations driven by positive se-

lection (α) for insertions and deletions. In the D. melanogaster dataset this yielded

estimates of 100% for insertions and 82% for deletions. In the great tit α for inser-

tions is 71% and for deletions 86%. The higher value for deletions is consistent with

them being more deleterious than insertions, and thus having lower fixation probabil-

ities, yielding higher estimates of α. Whilst the Drosophila data shows the opposite

trend with α at 100%, this is a result of the best fit bimodal model having positive γ

values for the weakly selected class of deletions, which can not be used to estimate a

neutral fixation probability, leaving only the strongly deleterious class to be used in the

calculation, but they are too deleterious to contribute to divergence. The truth is likely

more complex, with some effectively neutral insertions present in the Drosophila data,

but we lack power with only 17 haplotypes (discussed in more detail in section 5.3). The

two species deletion α estimates are however, very similar.
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My analysis of non-coding INDELs was largely confined to the great tit dataset. Here

we see that the DFE is best described by a gamma distribution. In non-coding regions

∼ 80% of insertions and ∼ 52% of deletions are effectively neutral, with γ estimates

between 0 and 1. The remaining INDELs are evenly split between the other, more

deleterious, selective categories (−1 > γ > −10, −10 > γ > −100 and γ < −100). In

Chapter 4, I apply a one class model to both the great tit and the zebra finch data, in

both species the majority of deletions are more deleterious than insertions. However, in

this analysis we see positive γ estimates for insertions in a number of models, similar

to the coding DFEs for great tit and D. melanogaster. If these positive non-coding γ

estimates are a signature of a neutral ‘selection like’ process such as insertion biased gene

conversion (Leushkin and Bazykin, 2013), it is conceivable that this would not have been

detected in the Chapter 3 analysis which uses INDELs in ancestral repeats as neutral

reference. This reference would also have been subject to such a force, obscuring its

signature, whereas through the use of weak to weak and strong to strong SNPs as neutral

reference, which are not influenced by any form of gene conversion, it can be detected. In

the great tit I also demonstrated that non-coding INDEL diversity is reduced near exons

and in areas of low recombination as a result of linked selection, though how much can

be attributed to purifying selection versus positive selection is unresolved. Additionally,

I present some evidence for the mutagenic effect of recombination on INDEL diversity

and stronger selection against longer INDELs, particularly insertions.

5.2 GC biased gene conversion and INDELs’ contribution

to base composition

Base composition and its determinants are central to understanding how genomes evolve

(Eyre-Walker and Hurst, 2001). Base composition is largely shaped by mutational biases,

generally biased towards AT mutations, and fixation biases of point mutations. The

latter can be distorted by selection, such as selection on codon usage (Duret, 2002; Sharp

et al., 1995) or ‘selection like’ processes such as GC biased gene conversion (gBGC).

Additionally, base composition has the potential to be impacted by the fixation of small

INDELs. Most work to date on gBGC has focussed on its role in coding regions, and
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a large portion of that work with a view of understanding how it confounds signatures

of selection, rather than studying gBGC itself. Additionally, there is little work to date

addressing the role of small INDELs. In this thesis I address these themes through the

application of the Glémin et al. (2015) model to estimate the strength of GC biased

gene conversion (B = 4Neb) in the great tit and in the zebra finch, across orthologous

non-coding windows in the two species. Furthermore, I apply the model from Chapter

2, to characterise INDELs of different base composition and assess their contribution to

genomic base composition.

The dataset of orthologous windows in the zebra finch and great tit demonstrated a

remarkably conserved recombination and GC content landscape between the species,

consistent with birds conserved karyotype and synteny (Stapley et al., 2008; van Oers

et al., 2014) and stable recombination hotspots (Singhal et al., 2015). Concordantly, B

estimates are also correlated in the two species, although the mean magnitude is around

twofold higher in the zebra finch (B̄ = 0.9) than the great tit (B̄ = 0.4), consistent with

its twofold greater effective population size (Corcoran et al., 2017). This suggests that

the larger Ne is the driver for its larger B and the underlying rate of gene conversion

(b) is probably similar between the species, this is consistent with studies in great apes

(preprint: Borges et al., 2018), birds (Weber et al., 2014) and rice (Muyle et al., 2011),

which also provide support for the role of Ne modulating the strength of gBGC, although

it has been suggested that this only holds over short evolutionary distances (Galtier et al.,

2018).

Using this dataset I also estimated the per window equilibrium GC content (GC∗),

using both substitution rates (yielding GC∗div) and the fixation rates inferred from the

θ and γ estimates obtained for the polymorphism dataset (yielding GC∗pol) . These

two methods reflect different times scales, with the divergence based approach covering

everything from the species split to recent fixations, whilst the polymorphism based

approach goes only as far back as the past 2Ne generations so is more contemporary.

Mean GC∗div estimates are lower than current GC levels, suggesting that the GC content

of these birds has been decreasing, contrary to reports of GC dynamics in coding regions

in birds (Boĺıvar et al., 2016; Rousselle et al., 2019; Weber et al., 2014). Our mean GC∗pol
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estimates however are much higher, and above current GC levels. This is consistent with

previously reported evidence for population expansions in these birds (Balakrishnan and

Edwards, 2008; Corcoran et al., 2017; Laine et al., 2016), which may have increased the

efficacy of GC biased gene conversion and thus increased GC∗. Additionally as our mean

estimates of B which reflect the recent strength of gBGC are relatively low (B̄ < 1),

it stands to reason that historical B is likely to have been even lower with smaller Ne,

thus allowing for the erosion of the non-coding GC content through inefficient gBGC.

Finally, I analysed small INDELs contribution to base composition in these two species.

My θ estimates for GC INDELs and INDELs containing a mix of AT and GC bases

support the deletion bias trend seen in previous chapters and elsewhere (Besenbacher

et al., 2015; Keightley et al., 2009; Schrider et al., 2013; Yang et al., 2015). However,

for solely AT containing INDELs there is not a marked deletion bias. I suggest this may

be a result of the higher energetic cost of insertions over deletions (Petrov, 2002b) being

reduced in less thermodynamically stable AT rich regions. My γ estimates for GC and

mixed insertions are consistently positive in both species whereas those for deletions are

negative, this is consistent with previous work suggesting the more deleterious nature

of deletions (Petrov, 2002b; Sjödin et al., 2010), and the positive values for insertions

may reflect the action of a force such as insertion biased gene conversion (Leushkin and

Bazykin, 2013). I analysed the INDELs fixed on each lineage since the divergence of the

great tit and zebra finch, showing they have acted to reduced GC content in the great

tit and increase it in the zebra finch.

5.3 Current limitations

Throughout this thesis a number of methodological limitations have emerged, the pre-

dominant of which are statistical power, the importance of neutral reference choice and

calling constraints on INDEL length.

Firstly, statistical power. For the analyses of INDELs in coding regions in Chapters 2

and 3, statistical power is an issue. As INDELs in genes are generally strongly deleterious

the majority are extremely rare and thus not segregating in our relatively small samples
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(17 haplotypes for D. melanogaster, 20 haplotypes for the great tit). As a result we

lack information on the deleterious end of the DFE. Equally as only the minority of

coding INDEL events (∼ 4% according to my Chapter 3 analysis) are segregating in the

samples, sub-setting the coding data is problematic, so making comparisons based on

INDEL length, or genomic region, or on the level of individual genes or groups of genes

is unrealistic without much larger sample sizes. Additionally it raises the possibility that

the true best fit DFEs may differ from those reported.

Secondly, choice of neutral reference. Deciding on a neutral reference for INDEL anal-

yses is non trivial, with fewer/no suitable sites within coding regions like SNPs (i.e.

fourfold degenerate sites). However, non-coding regions likely contain functionally im-

portant and conserved sites, and there is some evidence for selection on INDEL length

in introns (Ometto et al., 2005), making them problematic. In Chapter 2 I estimate

the INDEL DFE separately using non-coding sites and fourfold SNPs as neutral ref-

erence. However to use the SNP reference and still be able to estimate the strongly

deleterious end of the DFE is only possible due to the existence of previous mutation

experiments (Schrider et al., 2013) to determine the SNP-INDEL mutation rate ratio in

D. melanogaster. Obviously, the same depth of literature is not readily available in less

studied organisms. In Chapter 3 I instead use ancestral repeat elements in the great tit

which should not be under any selective constraint, however INDEL rates can be higher

in repetitive sequence contexts (Ananda et al., 2013; Montgomery et al., 2013), thus this

choice is also not perfect, however similar results are obtained when using non-coding

INDELs as neutral reference. Using a neutral reference with selective sites within it

can impact the resulting DFE, this is discussed in detail in Chapters 2 and 3, briefly,

simulation results show the presence of selected sites in the neutral reference can lead

to an underestimation of purifying selection and an overestimated fixation rate which

can result in an underestimate α, but this depends on how strong the selection is on the

neutral reference relative to the focal sites.

Finally INDEL length. In this thesis I have restricted my analysis to ’small’ INDELs,

here ≤ 50bp, a somewhat arbitrary cut off, but necessary due to the poor ability to

call longer variants reliably from short read data. Although dedicated packages exist
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for calling large INDELs and structural variants from this type of data, when multiple

packages were applied to the great tit dataset they showed remarkably little overlap in

called variants (P. Corcoran personal communication). As a result our analyses are not

a full representation of INDELs role in the genome. Additionally, it makes addressing

questions relating to genome length problematic, as demonstrated by Petrov (2002a)

and Gregory (2003, 2004).

5.4 Concluding remarks

This thesis has advanced our knowledge of the selective landscape of small insertions and

deletions in both coding and non-coding regions, providing evidence for strong purifying

selection in coding regions, weak purifying, positive and linked selection in non-coding

regions, as well as demonstrating that INDELs impact the GC content of two passerines.

Additionally it has added to the small body of literature quantifying GC biased gene

conversion in non-coding regions.

Moving forward, applying the models used in this thesis to a much larger sample of

haplotypes, such as the 1000 genomes project (1000 Genomes Project Consortium, 2010),

would allow for a more informative view of the INDEL DFE, providing more power to

generate a higher resolution DFE. Additionally, it would be interesting to supplement

the growing body of avian resequencing data with longer read data, such as from PacBio

sequencing, to enable higher accuracy calling of larger INDELs and to generate a more

complete view of INDEL dynamics across a broader, more speciose phylogenetic sample.
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Table A.2: The effects of the presence of selected variants in the neutral reference
on the estimation of the strength of selection on variants in the selected dataset. The
sample size is 17 in all cases, the mutation rate is uniform across the genome, and
the polarisation error rate is zero. The neutral reference dataset was generated with
γ = −3.5. The selected dataset was generated using three different γ values. The
simulated data were analysed by a model that considers a single class of selected sites,
involves the use of the r parameters (see Eq. (11)), and assumes uniform mutation rate.

The results are based on 50 replicates. µ̄ is the average fixation probability.

γ for selected variants µ̄
True Mean (MLEs) True Mean (MLEs)

-1.5 6.997 0.431 7.004
-3.5 -0.018 0.109 0.992
-10 -7.268 4.5× 10−4 0.005
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Table A.6: Estimates of the mutation rate ratios between SNPs and INDELs and
between deletions and insertions.

Paper SNP/INDEL deletions/insertions

Petrov & Hartl (1998, Mol Biol Evol 15:293-302) 6.9 8.7
Haag-Liautard et al. (2007, Nature 445:82-85) 4.2 3.0
Schrider et al. (2013, Genetics 194:937-953) 12.2 5.0
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Table A.9: A comparison of parameter estimates obtained from analyses based on
different mutation rate ratio estimates.

Source of mutation rate ratios Weakly selected sites α (%)
γins γdel INDELs insertions deletions

Petrov and Hartl (1998) -1.29 -3.81 71.6 59.5 81.6
Haag-Liautard et al. (2007) -1.45 -3.89 72.9 61.5 82.3
Schrider et al. (2013) -1.31 -3.77 71.5 59.7 81.3
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Table B.1: Estimates of polarisation error used to correct the site frequency spectrum
prior to calculating the summary statistics. CDS estimates are from the best fit model
in table B.2, from the weakly deleterious site class, the ancestral repeat (AR) estimates
are also from this model. Non-coding estimates are from the best fit model in table

B.4.

Region εins εdel
CDS 0.0799 0.0368
Non-coding 0.0110 0.0166
AR 0.0302 0.0261
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INDELs (left panel, −γ between 0 and 1) and negatively selected INDELs (right panel,
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Table B.5: Maximum likelihood parameter estimates for the best-fit model with mu-
tation rates free to vary between neutral and focal sites, fitted to coding INDELs.

Model Variants C θ γ scale shape ε

Continuous insertions 1 2.22× 10−5 −336 986 0.341 0.0339
deletions 1 5.38× 10−5 −374 758 0.494 0.0169
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Figure C.1: Relationships between zebra finch GC content and great tit GC content
(a) and zebra finch recombination rate and great tit recombination rate (b) across the

1Mb window dataset.
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Figure C.2: Relationships between GC content and recombination rate across the
1Mb window dataset in both the great tit (GT) and the zebra finch (ZF).
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Figure C.3: The relationship between mean window GC content and the strength of
gene conversion (B) in the great tit and zebra finch.



139

0.00

0.25

0.50

0.75

1.00

GT ZF

G
C

 c
on

te
nt

 o
f m

ix
ed

 IN
D

E
Ls

Figure C.4: Distribution of GC content within non-coding mixed INDELs (INDELs
comprised of GC and AT bases) for both great tit (GT) and zebra finch (ZF).
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Figure C.5: Length distribution for non-coding INDELs, split by base category (AT,
GC or MIX) for both zebra finch and great tit.
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Figure C.6: Estimated INDEL diversity (π) for AT, GC and AT and GC mixed (MIX)
insertions and deletions in both the great tit (GT) and the zebra finch (ZF).



142

Table C.1: Maximum likelihood estimates of the population scaled mutation rate
(θ = 4Neµ), selection coefficient (γ = 4Nes) and polarisation error rate (ε) for AT, GC

and mixed (MIX) content insertions and deletions.

base content species INDEL type θ γ ε

AT great tit insertions 8.24× 10−5 −0.391 0
AT great tit deletions 6.89× 10−5 −0.141 0.0165
GC great tit insertions 2.32× 10−5 0.353 0.0148
GC great tit deletions 4.25× 10−5 −0.717 0
MIX great tit insertions 4.83× 10−5 0.109 4.80× 10−6

MIX great tit deletions 0.000106 −1.15 0.00226
AT zebra finch insertions 0.000504 0.313 0.00261
AT zebra finch deletions 0.000554 0.717 0.00273
GC zebra finch insertions 0.000167 3.27 0
GC zebra finch deletions 0.000541 −0.0927 0.00178
MIX zebra finch insertions 0.000260 > 10 0.0230
MIX zebra finch deletions 0.000843 −1.22 3.56× 10−14
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Figure C.7: Per window estimates of ancestral GC content, current GC content,
equilibrium GC content and the present distance from equilibrium for both species.
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Figure C.8: The relationship between distance from equilibrium GC (GC∗ - GC) and
recombination rate in both the great tit (GT) and the zebra finch (ZF).
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Figure C.9: Estimates of strength of gene conversion, B (a) and recombination rate
(b) in 1Mb windows in the bins of distance from GC equilibrium, ’below’ (current GC
is below equilibrium), ’equilibrium’ (current GC is within 2.5% of equilibrium GC) and
’above’ (current GC is above equilibrium GC) for both the great tit (GT) and zebra

finch (ZF)
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Table C.2: Correlations between INDEL ∆GC and other genomic variables across
the window dataset.

variable species INDEL type correlation p value method

recombination great tit INS 0.40 2.95× 10−30 spearman
recombination zebra finch INS 0.35 3.48× 10−23 spearman
recombination great tit DEL -0.61 3.64× 10−78 spearman
recombination zebra finch DEL -0.58 2.89× 10−69 spearman
recombination great tit INDEL -0.085 0.0220 spearman
recombination zebra finch INDEL -0.49 7.48× 10−46 spearman
B great tit INS 0.33 7.59× 10−21 spearman
B zebra finch INS 0.54 < 2.2× 10−16 spearman
B great tit DEL -0.49 < 2.2× 10−16 spearman
B zebra finch DEL -0.82 < 2.2× 10−16 spearman
B great tit INDEL -0.054 0.146 spearman
B zebra finch INDEL -0.62 < 2.2× 10−16 spearman
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Table C.3: GC content in coding and non-coding regions in the great tit and zebra
finch genomes.

region species GC

non-coding great tit 0.41
coding great tit 0.52
non-coding zebra finch 0.41
coding zebra finch 0.48
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Figure C.10: The relationship of ∆GC for insertions and deletions (top row) and
delta GC for combined INDELs (

∑
∆GC, bottom row) against recombination rate in

both great tit (GT) and zebra finch (ZF).
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Figure C.11: The relationship of ∆GC for insertions and deletions (top row) and
delta GC for combined INDELs (

∑
∆GC, bottom row) against the strength of gBGC

(B) in both great tit (GT) and zebra finch (ZF).
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(from concatenated fixed INDELs) per window in both great tit (GT) and zebra finch

(ZF) from the alignment dataset. The blue line is the y=x line.
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Boĺıvar, P., Mugal, C. F., Rossi, M., Nater, A., Wang, M., Dutoit, L., and Ellegren, H.

2018. Biased Inference of Selection Due to GC-Biased Gene Conversion and the Rate

of Protein Evolution in Flycatchers When Accounting for It. Molecular Biology and

Evolution, 35(10): 2475–2486.
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