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Abstract

Theory of Wavelet Monte Carlo (WMC) - a novel sampling algorithm is presented

and analysed. It is shown howWavelet theory and Survival analysis can be combined

together, producing a method that is able to generate independent samples from

a non-standard multimodal distribution when a direct sampling approach is not

viable. It is demonstrated that due to the way the algorithm is constructed it could

be easily parallelised, to boost the execution time. Several issues regarding the

implementation of WMC are presented and discussed. In particular, the choice of

the wavelet family, curse of dimensionality and computation of wavelet coe�cients

is investigated in detail revealing critical problems with certain wavelet families.

Two possible modi�cations to the original WMC are outlined with their strengths

and weaknesses highlighted. Finally, an important connection between Besov spaces

and WMC theory is established, revealing intriguing implications of the implicit

assumptions made in WMC theory.
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Chapter 1

Introduction

1.1 History of sampling methods - from Metropolis-

Hastings to Wavelet Monte Carlo

To be able to e�ciently calculate the probabilities of speci�c events and moments

given a probability distribution of interest is essential for the statistical community.

During the rise of Bayesian statistics in the 1970s, it was especially important

to tackle this task, as it is known that the key component in Bayesian inference

is a posterior distribution that encapsulates all the required information from a

probability model being analysed. Given the usual complexity of high-dimensional

integrals involved in the computation of a normalisation constant and a non-standard

nature of an associated probability density function (pdf), direct inferences about

moments and event probabilities were restricted. However, with improvements in

computational power and motivation to analyse complicated posterior distributions

in Bayesian analysis, sampling algorithms were introduced to produce realisations

from desired probability distributions, either exactly or approximately, using random

variate generating procedures.
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In the 1990s the boost in computing power opened the door for the Metropolis-

Hastings (M-H) algorithm (Metropolis et al. 1953, Hastings 1970) to be used

e�ciently in practice. M-H utilises a Markov Chain, that in theory, should converge

to a required target distribution and with each single jump in the Markov Chain

produce a sample from a target probability distribution. The outstanding feature

of the M-H algorithm is the requirement that one should only be able to evaluate

function f(θ), which is proportional to the true density of a target distribution.

This condition allows a user to bypass the normalisation constant of the target

distribution and using an unnormalised version f(θ) still produce good quality

samples from the target. This feature is especially useful in a high-dimensional

setting. In Roberts et al. (1997), the product form structure is discussed for the

target distribution and a more general setting for target is analysed in Beskos et al.

(2009), ensuring the e�ciency of M-H in multidimensional problems. A few decades

later, after the publication of M-H algorithm, a special version of it was introduced

which allows one to produce approximate samples from a target distribution by

sampling from full conditional distributions rather than the joint target itself. By

essentially setting an acceptance probability equal to 1 and exploring the conditional

structure of the posterior distribution, the M-H algorithm could be transformed

into what is now known as the Gibbs sampler (Geman & Geman 1984). These two

algorithms serve as roots for a majority of the algorithms stemming from the Markov

Chain Monte Carlo (MCMC) family of methods (Smith & Roberts 1993).

Aside from MCMC methods, there are several other forms of `black box' algorithms

that utilise random number generating nature and produce samples from a target

distribution of interest. Key examples of such algorithms include rejection sampling

(RS) (Devroye 1986), adaptive rejection sampling (ARS) (Gilks &Wild 1992) for log-

concave densities and the ratio-of-uniforms method (Kinderman & Monahan 1977).

Time has shown that many of the sampling algorithms could be used jointly in the

same problem to signi�cantly improve results. In particular, if in the Gibbs sampler



Chapter 1. Introduction 21

setting, certain conditionals are non-conjugate or simply non-standard, an ARS

step could be utilised to produce samples from a conditional distribution e�ciently,

similarly, M-H could be used to deal with the non-log-concave situation in ARS

implementations as shown in Gilks, Best & Tan (1995).

It is quite clear that all sampling algorithm families mentioned above have their

strengths and weaknesses and tend to work best under certain speci�c conditions.

In particular, MCMC methods tend to be popular if the dimensionality of a problem

is quite high; however, they su�er from the inherent Markov Chain nature, leading

to dependence of samples, the di�culty of tuning the proposal density (Gilks,

Richardson & Spiegelhalter 1995) and ine�cient exploration of any multimodal

structure in the posterior (Neal 1993, Celeux et al. 2000, Sminchisescu & Welling

2011). In the RS set-up poor choice of an envelope function leads to a high number

of samples being rejected in a process producing an ine�cient algorithm, ARS deals

with this situation much better by adapting the envelope with each realisation,

nevertheless the curse of a dimensionality is relevant as the number of low probability

regions increase rapidly with the dimension of a problem, leading to a signi�cant

decrease in the acceptance probability.

The most recent sampling algorithms that show big potential of being able to deal

with high dimensionality are modi�cations of Hamiltonian Monte Carlo (HMC)

(Mark & Ben 2011), an algorithm that utilises the geometry of the sample space

and augments the posterior by introducing an additional momentum parameter. In

particular, Wormhole Hamiltonian Monte Carlo (WHMC) (Lan et al. 2014) and

Generalized Darting Monte Carlo (Sminchisescu & Welling 2011) demonstrate that

by introducing additional jumping rules multimodality could also be dealt with

under reasonable computational complexity costs. Even though the results are quite

promising regarding recent developments in sampling algorithms, the majority of

them are still built on an underlying nature of a Markov Chain, which leads to a
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dependency structure between samples produced, the necessary tuning of a proposal

density and an unpleasant di�culty in parallelising the algorithm for utilisation of

several CPU or GPU cores available.

Wavelet Monte Carlo (WMC), discussed in this thesis, will not be treated as a

`panacea' of sampling algorithms, but as a novel approach towards sampling methods

that produces independent samples from a known target and entirely circumvents the

problem of multimodality by allowing wavelets ψji to represent a local information

about a sample space at resolution j and location i. The hope is that ideas

introduced in WMC will be carried over to other families of sampling algorithms

to pool the best features of both families and produce a much better alternative.

History has shown that the best methods have been produced by exactly following

this approach.

WMC is a Monte Carlo type algorithm where, by a repeated procedure, a sample

from a target is generated. The most distinct feature of WMC is the utilisation of

wavelet theory (Mallat 2008) in a completely new and non-standard manner, which

places the algorithm into an entirely new family of sampling methods. Wavelets

were mainly developed for image, sound or generally any signal processing techniques

(Grossmann & Morlet 1982, Mallat 1989b). Signi�cant highlights of the development

of wavelet theory include the construction of the Multi-Resolution Analysis (MRA)

by Mallat and Meyer (Meyer 1986-1987a, Mallat 1989a). MRA can be considered

as a framework in which functions f ∈ L2(Rd) can be considered as a limit of

successive approximations, f = limj→−∞ Pjf , where di�erent Pjf ∈ Z correspond

to smoothed versions of f , where the smoothing radius is of order 2j. Wavelet

coe�cients fψj,i = 〈ψj,i, f〉, where ψj,i is a wavelet of resolution j and location i,

correspond to the di�erence between the two successive approximations Pj−1f and

Pjf . More details regarding MRA will be given in Chapter 2.

Another important point in the history of wavelets was the construction of
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Daubechies wavelets (Daubechies 1988), which is an orthogonal wavelet family

de�ning a discrete wavelet transform and characterized by a maximal number of

vanishing moments for some given compact support. Due to their compact support

structure and characterisation involving the number of vanishing moments, this

family will be used quite extensively in our WMC theory and implementation.

1.2 Outline of the thesis

After introducing reader to the theory of wavelets (�2), WMC will be outlined

and key theorems (3.3.2, 3.2.1) presented. In addition to WMC implementation

(�4) and other practical aspects, a lot of attention will be given to theoretical and

practical issues (�5) that arise in WMC. A unique connection to Besov spaces (�7)

will be established and it will be shown how results from Besov space theory could be

directly transferred to WMC theory to explain some important phenomena of WMC

(7.3). Finally, possible modi�cations of WMC will be introduced in �8, suggesting

two alternative versions of the original WMC; a theoretical approach to analyse a

distribution of jumps will be presented in �6, providing necessary conditions for the

validity of WMC theory.
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Chapter 2

Wavelet theory

This chapter will focus on giving a reader an easy introduction to wavelet theory and

in particular the motivation to transition from Fourier to wavelet based methods.

Details, derivations and proofs of various statements and theorems will be skipped as

these could be referred to in Mallat (2008). The goal of this chapter is to familiarise

the reader with the orthonormal wavelet expansion of a function f ∈ L2(R).

2.1 Short history

The roots of a signal decomposition into separate components go back to 1807 when

Fourier presented a memoir to the Institut de France, claiming that any periodic

function can be represented as a series of harmonically related sinusoids. Given the

outstanding practical implications of this discovery, throughout the next 160 years

this theory was improved and generalised. In particular, the Fourier transform

(FT) is not able to cope with signals that frequency depends on time, i.e. FT is

not able to deal with the time-frequency localisation. To solve this problem, the

Windowed-Fourier transform (WFT) (Gabor 1946) was invented by Gabor in 1946.

The trick was to use a Gaussian distribution function as a window function that
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would localise FT, and, by shifting the window, one would extract the information

about the signal at separate time steps. FT was cemented as one of the most useful

and widely used algorithms in 1965 when Cooley and Tukey created the Fast Fourier

Algorithm (FFA) (Cooley & Tukey 1965).

However, even with such great success, these Fourier analysis (FA) based algorithms

faced one big issue - they were using the same window function for an entire signal. In

the late 1970s, Morlet was faced with the problem of analysing signals that had very

high-frequency components with short time spans, and low-frequency components

with long time spans. WFT was able to analyse either high-frequency components

using narrow windows, or low-frequency components using wide windows, but not

both. This led to a discovery of windows that are localised both in time and

frequency domains. Morlet used the same Gaussian function but by dilating and

compressing it he was able to precisely analyse di�erent frequency levels. These basis

functions were named as `wavelets of constant shape'. Noticing the importance of

this wavelet transform Alex Grossman came up with the exact inversion formula

for it. Given the similar interest, Morlet and Grossman started working jointly and

contributed to the continuous wavelet transform (CWT) and its applicability.

French mathematician Yves Meyer quickly noticed an underlying connection between

the constructed Morlet-Grossman wavelet transform and Calderon formula in

Harmonic analysis. Using the knowledge of Calderon-Zygmund operators and

Littlewood-Paley theory, Meyer produced a mathematical foundation for wavelet

theory (Meyer 1986-1987b). Although Meyer was one of the �rst who started laying

the basis for wavelet theory, the �rst orthonormal wavelet basis was constructed by

German mathematician Alfred Haar back in 1909 (Haar 1910).

Following Meyer's formalisation of wavelet theory, the next signi�cant contribution

came from Daubechies (Daubechies et al. 1986) with the development of wavelet

frames for the discretisation of time and scale parameters in wavelet transform.
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Daubechies together with Mallat initiated the transition from analysing continuous

signals to discrete ones. In 1986 Mallat developed the idea of Multi-Resolution

Analysis (MRA) which later became his PhD thesis in 1988. Important details

of MRA will be discussed in later section 2.3. Furthermore, in 1988 Daubechies

created her celebrated and still most widely used compactly supported, orthonormal

wavelet basis (Daubechies 1988), which also allowed for the control of the wavelet

smoothness. The latter two discoveries by Mallat and Daubechies could be treated

as a marker for the modern theory of wavelets.

2.1.1 Applications

To put wavelet theory (WT) into a context of applications, several �elds will be

mentioned here where wavelets have shown great potential and performed really

well.

Data compression (Rao & Bopardikar 1998): Due to the resolution level nature

and sparsity of wavelet coe�cients many signals could be easily compressed

using the discrete wavelet transform (DWT). Given that energy of a signal is

mainly concentrated in few wavelets, tiny coe�cients could be discarded without

introducing large errors into the approximation.

Denoising: WT could be also applied for denoising problems. This was explored

by Donoho & Johnstone (1994) and �nalised by Donoho (1995) which led to

the construction of wavelet shrinkage denoising (WSD). Similarly, as in data

compression, noise is usually detected at �ner scales, therefore coe�cients associated

with those levels could be set to zero to remove the noise from a signal.

Genomic sequences: Saini & Dewan (2016) showed that based on the calculation

of the energy of wavelet decomposition coe�cients of complete genomic sequences,

the similarity between di�erent sequences of Mycobacterium tuberculosis could be
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determined without the use of conventional methods such as the Basic Local

Alignment Search Tool (BLAST).

Numerical Solution of partial di�erential equations: Cohen et al. (2001)

showed strong convergence results for wavelet-based algorithms for solving PDEs.

This particular discovery led to new methods in �nite element analysis.

Fractals (Rao & Bopardikar 1998): Some types of wavelets, such as Daubechies

wavelets have a self-similar structure, and when combined with Multi-Resolution

Analysis, they provide a very natural way of analysing fractals. Farge (Farge 1992),

Wornell and Oppenheim (Wornell & Oppenheim 1992) have successfully applied

wavelets to fractal analysis.

These are just a few, but there are many more other �elds to which WT has and

could be applied. In particular, analysis of �nancial data (Gallegati 2012), analysis of

turbulent �ows of low viscosity �uids (Camussi & Guj 1997), neural networks (Zhang

& Benveniste 1992), analysis of distant universes (Bijaoui et al. 1996), biomedical

engineering (Akay 1995), etc.

As it will be apparent throughout this thesis, wavelets will potentially add a further

�eld of applications - random variate generation.

2.2 Fourier bases versus wavelet bases

Here, we brie�y describe and discuss key di�erences between Fourier and wavelet

type transforms and bases associated with them.
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2.2.1 Fourier transform

Using Fourier analysis (FA), any function f(t) with �nite energy:

‖f‖L2 =

√∫
R
|f(t)|2dt <∞

can be represented as a sum of trigonometric waves eiωt:

f(t) =
1

2π

∫ ∞
−∞

f̂(ω) dω,

where i =
√
−1. The amplitude f̂(ω) is equal to the inner product between

the function being analysed f(t) and the trigonometric wave eiωt, where ω is the

frequency of the wave. This inner product is known as the Fourier transform (FT):

f̂(t) =

∫ +∞

−∞
f(t)eiωt dt.

The decay properties of the amplitude |f̂(ω)| are characterised by the regularity of

f(t). The smoother f(t), the faster the decay as ω increases.

Furthermore, {ei2πmt}m∈Z forms a Fourier orthonormal basis (FOB) of L2[0, 1].

Therefore, if function f(t) lives on this interval, it can be decomposed using FOB.

High di�erentiability of f(t) also implies the rapid decay of Fourier coe�cients with

the increase of frequency 2πm; therefore, FT de�nes a sparse representation of

uniformly regular functions.

As long as one is analysing uniformly regular signals, FA provides a su�cient set of

tools to solve most of the problems. However, FA is not able to cope with transient

features � events in a signal where the frequency changes rapidly over time. In

short, time-frequency localisation in FT is poor, and other types of analyses need

to be used to solve these problems.

As one can see, supp{eiωt} = R, so f̂(ω) combines all the frequency information

extracted from f(t) at all times t ∈ R. Therefore, f̂(ω) does not represent any local

information about the signal f(t).
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2.2.2 Windowed Fourier transform

An attempt to overcome certain issues of FT can be made by introducing a window

function that would localise waveforms in both time and frequency. Let g(t) be

a time window centred at t = 0 with unit norm ‖g‖ = 1, then one can de�ne a

windowed Fourier dictionary of waveforms:

D =
{
gu,ξ(t) = g(t− u)eiξt

}
(u,ξ)∈R2 .

The windowed Fourier transform (WFT) is performed by projecting f(t) onto each

gu,ξ:

Sf(u, ξ) = 〈f, gu,ξ〉 =

∫ +∞

−∞
f(t)g(t− u)e−iξt dt.

Paying the cost of disrupting the basis structure one creates an atom gu,ξ that has

a good localisation in time and frequency domains. However, it can be shown that

the time-frequency variation of gu,ξ is independent of u and ξ and the window is

always of �xed size and frequency, i.e. the WFT decomposes signals over waveforms

that have the same time and frequency localisation. Therefore, WFT is only useful

at analysing signals that do not have structures having di�erent time-frequency

resolutions, i.e. some being very localised in time and others very localised in

frequency. Unfortunately, the majority of signals in fact contain structures that

vary in the time-frequency domain.

Wavelets address this problem by introducing atoms that change in both time and

frequency resolution.

2.2.3 Wavelet transform

To address the fact that signals incorporate structures of very di�erent sizes, it

is essential to use time-frequency atoms of di�erent time support. The wavelet

transform (WT) decomposes a signal over dilated and translated wavelets. A wavelet



Chapter 2. Wavelet theory 31

Figure 2.1: Heisenberg box.

is a function ψ ∈ L2(R) that satis�es certain speci�c conditions. It is normalised

‖ψ‖ = 1, centred around t = 0 and has zero average:∫ +∞

−∞
ψ(t) dt = 0.

By translating ψ by u and scaling by s, one obtains a dictionary of time-frequency

atoms:

D =
{
ψu,s(t) =

1√
s
ψ
(t− u

s

)}
u∈R,s∈R+

. (2.2.1)

These translated and scaled versions ψu,s maintain the same norm as ψ, ‖ψu,s‖ = 1.

So, we have that the WT of f ∈ L2(R) at time u and scale s is

Wf(u, s) = 〈f, ψu,s〉 =

∫ +∞

−∞
f(t)

1√
s
ψ
(t− u

s

)
dt.

It is clear from the construction that the time localisation of ψu,s depends on the

scale s. An increase in s is associated with coarser wavelets, and, for small values of

s, we get highly-concentrated wavelets in time. It can be shown using FT, that the

energy spread of a wavelet atom ψu,s corresponds to a Heisenberg box (Figure 2.1)

centred at (u, η/s), of size sσt along time and σω/s along frequency. Therefore, by

controlling s, one is able to get clearer localisation in frequency or time. Wavelets

with coarser scales are responsible in detecting average behaviour of a signal and

with �ner scales � sharper transitions within it.

However, given the redundancy of dictionary D in (2.2.1), we look for a sub-

dictionary of D that forms a basis for L2(R) and allows for sparse representations
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of function of interest.

2.3 Multi-Resolution Analysis

Given that a function of interest f ∈ L2(R), a Multi-Resolution Analysis (MRA)

(Mallat 2008) can be performed and function f can be decomposed into a series of

orthonormal, compactly supported wavelets.

A MRA is an increasing sequence of closed subspaces {Vj}j∈Z that approximate

L2(R). The construction of a MRA starts with a smart choice of a scaling function

φ. It is chosen to satisfy some regularity conditions, these will not be covered here

in detail, but most importantly it is chosen such that a family {φ(x − i)}i∈Z forms

an orthonormal basis for the reference space V0. The following relations describe

the analysis.

0. {0}... ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ ... ⊂ L2(R),

1. ∀(j, i) ∈ Z2, f(t) ∈ Vj ⇐⇒ f(t− 2ji) ∈ Vj,

2. ∀j ∈ Z, f(t) ∈ Vj+1 ⇐⇒ f( t
2
) ∈ Vj,

3. lim
j→−∞

Vj =
+∞⋂
j=−∞

Vj = {0},

4. lim
j→+∞

Vj = closure
{ +∞⋃
j=−∞

Vj

}
= L2(R),

5. ∃φ ∈ V0 a scaling function, such that {φ(t− i)}i∈Z forms a Riesz basis of V0.

Assuming the subspaces Vj in (0), relation (1) describes that, if f(t) ∈ Vj, then

translated versions of the original function still belong to the space Vj. Relation

(2) shows that function can climb the resolution ladder by being scaled, i.e. if
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f(t) ∈ Vj+1 then by scaling it down by dyadic factor function jumps down to

coarser approximation space Vj. Relations (3) and (4) show that limiting coarsest

approximation is basically a constant function space and �nest approximation space

coincides with the space of interest L2(R). Finally, (5) is a technical part that

requires the existence of the basis on a reference space V0, from which basis for

L2(R) can be constructed.

De�nition 2.3.1. A countable set {fn} of a Hilbert space is a Riesz basis if every

element f of the space can be written uniquely as f =
∑

n cnfn, and positive

constants A and B exist such that

A‖f‖2 ≤
∑
n

|cn|2 ≤ B‖f‖2. (2.3.2)

Since φ ∈ V0 ⊂ V1, a sequence (hi) ∈ l2(Z) exists such that the scaling function

satis�es the re�nement equation

φ(x) =
∑
i

hiφ(2x− i). (2.3.3)

The collection of coe�cients h = {hi}i∈Z is called a conjugate mirror �lter and

it is responsible for characterising the scaling function. It is quite clear that the

collection of functions {φj,i}i∈Z, with φj,i(x) = 2j/2φ(2j − i), is a Riesz basis of Vj.

By integrating both sides of (2.3.3) and normalising by the integral of φ we get∑
i

hi = 2. (2.3.4)

Now, let Wj denote the orthogonal complement of the space Vj in the space Vj+1,

so that Vj+1 = Vj ⊕Wj. Relations (3) and (4) above for Vj spaces imply that

i. ⊕j∈ZWj = L2(R),

and similarly it can be shown that
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ii. ∀(j, i) ∈ Z2, f(t) ∈Wj ⇐⇒ f(t− 2ji) ∈Wj,

iii. ∀j ∈ Z, f(t) ∈Wj+1 ⇐⇒ f( t
2
) ∈Wj.

Now any f ∈ L2(R) has a sequence of orthogonal decompositions

f = vk +
+∞∑
j=k+1

wj =
∑
k∈Z

wk (2.3.5)

where vk ∈ Vk and wk ∈Wk.

Theorem 2.3.1 (Mallat, Meyer). Let φ be a scaling function and h the

corresponding conjugate mirror �lter. Let ψ be the function having a Fourier

transform

ψ̂(ω) =
1√
2
ĝ
(ω

2

)
φ̂
(ω

2

)
, (2.3.6)

with

ĝ(ω) = e−iωĥ∗(ω + π), (2.3.7)

where ĥ∗ denotes a conjugate of discrete Fourier transform of h coe�cients. Let us

denote

ψj,i(t) = 2j/2ψ(2j − i). (2.3.8)

For any scale 2j, {ψj,i}i∈Z is an orthonormal basis ofWj. For all scales, {ψj,i}(j,i)∈Z2

is an orthonormal basis for L2(R).

Functions ψj,i will be called wavelets at resolution j and location i, and with ψ we

will denote a standard mother wavelet. The scaling function φ is sometimes also

called a father wavelet.

The theorem (2.3.1) by Mallat and Meyer gives speci�c conditions for the

construction of the orthonormal basis {ψj,i}. It is clear that there is no unique

basis {ψj,i}; the next section will give a brief introduction to possible families of

wavelets {ψj,i}.
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From (2.3.5), we can see that there are mainly two ways of representing functions

using wavelets - with the scaling function or without it:

f(x) =
∑
i∈Z

〈f, φj0,i〉φj0,i(x) +
+∞∑
j=j0

∑
i∈Z

〈f, ψj,i〉ψj,i(x) (2.3.9)

gives the representation of a function using father wavelets at reference resolution

j0, while

f(x) =
∑
j,i∈Z

〈f, ψj,i〉ψj,i(x) (2.3.10)

gives representation of a function using mother wavelets ψj,i only. Throughout this

dissertation we will mainly focus on the later form.

We will also denote mother wavelet coe�cients (later we will refer to these as just

wavelet coe�cients) by

fψj,i := 〈f, ψj,i〉 =

∫ +∞

−∞
f(x)ψj,i(x) dx, (2.3.11)

and similarly we denote father wavelet coe�cients by

fφj,i := 〈f, φj,i〉 =

∫ +∞

−∞
f(x)φj,i(x) dx. (2.3.12)

2.4 Wavelet families

Here a few wavelet families will be presented. All wavelets form an orthonormal

basis for L2(R) and satisfy

∫ ∞
−∞

ψj,i(t)ψ`,k(t) dt =

1, i = k, j = `

0, otherwise
. (2.4.13)
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2.4.1 Haar wavelets
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Figure 2.2: Mother and father wavelets of the Haar basis.

De�nition 2.4.1 (Haar wavelets). For every pair j, i of integers in Z, the Haar

mother wavelet ψj,i(t) is de�ned on the real line R by the function

ψj,i(t) = 2j/2ψ(2jt− i) t ∈ R (2.4.14)

with supp{ψj,i(t)} = Ij,i = [i2−j, (i+ 1)2−j), where

ψ(t) =


1 0 ≤ t < 0.5,

−1 0.5 ≤ t < 1,

0 otherwise.

Similarly, we de�ne the Haar father wavelet φ(t) to be

φ(t) =

 1 0 ≤ t < 1,

0 otherwise.

This is the most simple form of a wavelet (Figure 2.2), �rst constructed by Haar in

1909 (Haar 1910). Despite the simplistic step-like nature, it still does form a basis
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for the L2(R) space and allows for the approximation of functions. However, one big

issue with Haar wavelets is that they are discontinuous and hence not di�erentiable

everywhere, which could be a desired property in the analysis of more complicated

and speci�c signals. From a statistical point of view Haar wavelets might seem

very attractive as they are scaled combinations of uniform distributions along �nite

intervals. It will be demonstrated later in the future chapters that there is other

important reason why Haar wavelets cannot be used in a general WMC setting.

2.4.2 Daubechies wavelets

Probably the most signi�cant wavelet family ever constructed was created by I.

Daubechies in 1988 (Daubechies 1988). These are orthogonal wavelets referred to

simply as Daubechies wavelets (Figure 2.3), characterized by a maximal number of

vanishing moments for some given compact support.

De�nition 2.4.2 (Vanishing moments). A wavelet ψ(x) has K vanishing moments

if ∫
R
xkψ(x)dx = 0 for 0 ≤ k < K.

The vanishing moment is a criterion about how a function decays toward in�nity. A

theorem in Mallat (2008) on page 288 shows that if ψ(x) has K vanishing moments,

then

|ψ(x)| = O
(
(1 + x2)−K/2−1

)
(2.4.15)

Hence, with the increase in a number of vanishing moments functions could be

approximated more sparsely (using less wavelet coe�cients).

Daubechies wavelets are not de�ned in terms of scaling and wavelet functions; in

fact, they cannot be written down in closed form. Daubechies wavelets have a

support of minimum size for any given number K of vanishing moments, and the

size of the support is 2K − 1.
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Figure 2.3: Examples of Daubechies mother wavelets with a di�erent number of

vanishing moments (K = 2, 3, 5, 10). One can observe that wavelets get smoother as

the number of vanishing moments increases.

It also turns out that Daubechies wavelets with K = 1 produce the Haar family.

So Haar wavelets are orthonormal wavelets of the worst possible smoothness but

shortest compact support.
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Figure 2.4: Shannon wavelet as de�ned in (2.4.16).

2.4.3 Shannon wavelets

The Shannon wavelet (Figure 2.4) is constructed by taking φ̂(ω) = 1[−π,π] and

ĥ(ω) =
√

21[−π/2,π/2](ω) for ω ∈ [π, π]. Using (2.3.7), one can derive that

ψ̂(ω) =

 e−iω/2 if ω ∈ [−2π,−π] ∪ [π, 2π] ,

0 otherwise.

and thus,

ψ(t) =
sin 2π(t− 1/2)

2π(t− 1/2)
− sin π(t− 1/2)

π(t− 1/2)
. (2.4.16)

The constructed wavelet belongs to the C∞ space, but decays very slowly as t →

±∞. In addition to that, it has an in�nite number of vanishing moments.
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2.4.4 Coi�ets

Coi�ets are special types of wavelets which were constructed by Daubechies following

a request from Coifman for applications in numerical analysis. In addition to the

wavelets having K vanishing moments, coi�ets were constructed such that scaling

functions φ also satisfy conditions for a number of vanishing moments∫ +∞

−∞
φ(t) dt = 1 and

∫ +∞

−∞
tkφ(t) dt = 0 for 1 ≤ k < K. (2.4.17)

Apparently, such properties of scaling functions allow for the construction of

accurate quadrature formulas. Also, at �ne resolutions scaling coe�cients can be

approximated as samples from a signal itself:

2−J/2〈f, φJ,n〉 ≈ f(2Jn) +O(2(k+1)J), k < K. (2.4.18)

Here only a few wavelet families have been mentioned, however, there are

many others, in particular: Symmlets, Morlet wavelets, Meyer wavelets, Ricker

(Mexican hat) wavelets, Beta wavelets, which involves the beta distribution in their

construction, and several others. Throughout this thesis, the focus will be mainly

given to Daubechies wavelets, due to their good energy localisation features, possible

control of smoothness, but, most importantly, their compact support.
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Chapter 3

Theory of Wavelet Monte Carlo

This chapter will focus on describing the theory of WMC and the �rst three sections

will closely follow material from Gilks (2017), the last Section 3.4 and everything

onward is the original work of the author of this thesis. A non-standard notation

will be introduced �rst, together with a provisional-WMC (pWMC) algorithm. The

pWMC algorithm will then be used as a prerequisite to construct our main WMC

algorithm.

3.1 Notation and set-up of a framework

We wish to produce samples from a non-standard probability distribution with

density proportional to g(·). The non-standard distribution should be interpreted as

one from which direct sampling is not possible. Through a sequence of steps, WMC

transforms samples from a starting distribution f(·) to samples from the target g(·).

Ideally, f(·) is chosen such that it is as similar to g(·) as possible and the user is

able to directly sample from f(·). However, even if f(·) is a substantially di�erent

distribution from g(·), as long as direct sampling from f(·) is available, WMC will

produce samples from the target. We will be working with wavelet expansions of
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the densities f(·) and g(·):

f(x) =
∑
j∈Z

∑
i∈Z

fψj,iψj,i(x), g(x) =
∑
j∈Z

∑
i∈Z

gψj,iψj,i(x), (3.1.1)

where we denote the associated mother wavelet coe�cients by

fψj,i =

∫ +∞

−∞
f(x)ψj,i(x) dx and gψj,i =

∫ +∞

−∞
g(x)ψj,i(x) dx. (3.1.2)

Throughout this chapter, we will be working extensively with positive and negative

parts of certain values. Therefore, we introduce a notation that allows us to

conveniently operate with these parts.

De�nition 3.1.1. For any scalar a ∈ R, let

a+ =

 a, a ≥ 0

0, a < 0
, a− =

 0, a ≥ 0

−a, a < 0.

Following the notation described in De�nition 3.1.1, we have the equalities:

a = a+ − a− and |a| = a+ + a−. (3.1.3)

Given that each mother wavelet ψj,i integrates to zero, we make a trivial observation:

Aj =

∫ +∞

−∞
ψ+
j,i(x) dx =

∫ +∞

−∞
ψ−j,i(x) dx. (3.1.4)

The value Aj will be known as a normalisation constant of the positive and negative

part of the wavelet ψ+
j,i and ψ−j,i. As location shifts do not a�ect the value of the

integral, the constant Aj depends only on the resolution level j and the choice of

the wavelet.

Let us also de�ne r to be the ratio of normalising constants

r =

∫
g(x) dx∫
f(x) dx

. (3.1.5)

The methodology below assumes that a functional form of both f(·) and g(·) is

known up to a normalisation constant and there is a way to accurately estimate the

ratio of the normalisation constants r.
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We also de�ne a di�erence function between g(x) and f(x):

d(x) = g(x)− rf(x). (3.1.6)

We have a wavelet expansion of d(x):

d(x) =
∑
j∈Z

∑
i∈Z

dψj,iψj,i(x). (3.1.7)

From equation (3.1.6), it follows that

dψj,i = gψj,i − rf
ψ
j,i. (3.1.8)

The WMC algorithm uses positive and negative parts of the wavelet ψ+
j,i and ψ

−
j,i to

construct probability distributions, from which points will be sampled, to update a

sample point x ∼ f(·) to produce y ∼ g(·). In addition to this, a single wavelet ψj,i

itself will be sampled from the sub-collection of wavelets {ψj,i(x)}(j,i)∈Z2 , which are

supported at the sampled point x, to determine which wavelet will be used to do

the updating process. Wavelet coe�cients dψj,i together with the value ψj,i(x) will be

used to construct weights to sample ψj,i. The next section will describe in detail a

method that incorporates the notation described here to produce a novel sampling

algorithm.

3.2 Provisional Wavelet Monte Carlo

In this section, we present an algorithm which will in a single step transform a sample

x ∼ f(·) to produce a sample y ∼ g(·). However, two rather strong assumptions

need to be satis�ed:

A1. r is known,

A2.
∑
j∈Z

∑
i∈Z

[dψj,iψj,i(x)]− ≤ rf(x) ∀x ∈ R.
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The reason for the inequality in A2 will be apparent soon.

pWMC method. Let x ∼ f(x).

Step 1. Sample a pair (j, i) with probability

pj,i(x) =
[dψj,iψj,i(x)]−

rf(x)
, (3.2.9)

where (j, i) ∈ Z2. A2 ensures that
∑

j,i pj,i(x) ≤ 1. With probability

1−
∑
j∈Z

∑
i∈Z

pj,i(x) (3.2.10)

no pair (j, i) is selected.

Step 2. If pair (j, i) is selected at Step 1, sample

y ∼

 ψ+
ji(y)/Aj , if dψji ≥ 0

ψ−ji(y)/Aj , if dψji < 0
,

otherwise set

y = x. (3.2.11)

END.

Proposition 3.2.1. The pWMC algorithm above is guaranteed to produce y ∼ g(y).

Next, a proof will be given to show that the correct normalised marginal density

g(y) is obtained after applying the pWMC algorithm to x ∼ f(x). For convenience,

we will use
∑

j,i notation as a shorthand for
∑

j∈Z
∑

i∈Z, and similarly integrals with

no limits should be interpreted as integrals over the full support of the integrand.
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Proof of Proposition 3.2.1. By construction, the goal is to work out the marginal

distribution p(y). By δ we denote a Dirac measure and by 1(·) an indicator function.

p(y) =

∫
x∈R

f(x)∫
f(z) dz

{(
1−

∑
j,i

pj,i(x)
)
δ(x− y)

+
∑
j,i

pj,i(x)
[
1(dψj,i ≥ 0)

ψ+
j,i(y)

Aj
+ 1(dψj,i < 0)

ψ−j,i(y)

Aj

]}
dx

=

∫
x∈R

f(x)∫
f(z) dz

{(
1−

∑
j,i

[dψj,iψj,i(x)]−

rf(x)

)
δ(x− y)

+
∑
j,i

[dψj,iψj,i(x)]−

rf(x)

1

Aj

[
1(dψj,i ≥ 0)ψ+

j,i(y) + 1(dψj,i < 0)ψ−j,i(y)
]}

dx

substituting pji(x) as in (3.2.9),

=
1∫

f(z) dz

{
f(y)− 1

r

∑
j,i

[dψj,iψj,i(y)]−

+
∑
j,i

1

Ajr

∫
x∈R

[
dψ−j,i ψ

+
j,i(x) + dψ+

j,i ψ
−
j,i(x)

][
1(dψj,i ≥ 0)ψ+

j,i(y) + 1(dψj,i < 0)ψ−j,i(y)
]

dx
}

=
1∫

f(z) dz

{
f(y)− 1

r

∑
j,i

[
dψ−j,i ψ

+
j,i(y) + dψ+

j,i ψ
−
j,i(y)

]
+
∑
j,i

1

r

[
dψ−j,i + dψ+

j,i

][
1(dψj,i ≥ 0)ψ+

j,i(y) + 1(dψj,i < 0)ψ−j,i(y)
]}

integrating over x and using (3.1.4), now we will expand the brackets and apply the

indicator function property

=
1∫

f(z) dz

{
f(y)− 1

r

∑
j,i

[
dψ−j,i ψ

+
j,i(y) + dψ+

j,i ψ
−
j,i(y)− dψ+

j,i ψ
+
j,i(y)− dψ−j,i ψ−j,i(y)

]}
=

1∫
f(z) dz

{
f(y)− 1

r

∑
j,i

[
dψ+
j,i − d

ψ−
j,i

][
ψ−j,i(y)− ψ+

j,i(y)
]}

=
1∫

f(z) dz

{
f(y) +

1

r

∑
j,i

dψj,iψj,i(y)
}

(3.2.12)

=
1∫

f(z) dz

{
f(y) +

1

r
d(y)

}
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using (3.1.6) and (3.1.7),

=
1∫

f(z) dz

1

r
g(y)

=
g(y)∫
g(z) dz

from (3.1.5).

We see that the marginal distribution is equal to the target g(y).

Figure 3.1: Visual comparison between a starting density of a standard normal

distribution N (0, 1) and c(x) =
∑

j,i[d
ψ
j,iψj,i(x)]− using Daubechies wavelets with

two vanishing moments. The target distribution was chosen to be N (0, 1 + 10−10).
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Figure 3.2: Shape of the target density (3.2.13) with δ = 0.05 for which pWMC is

applicable.

Although this algorithm does work theoretically, it is highly dependent on the strong

assumptionA2. If the inequality is not satis�ed, a negative no-pair probability could

be encountered in Step 1.

As one can see in Figure 3.1, even by choosing target distribution extremely close to

the starting one, we have clear regions where c(x) > f(x) and therefore assumption

A2 on page 43 is not satis�ed. Now we present an example of a starting distribution

and the target for which pWMC would be applicable and assumption A2 would be

satis�ed. Let the starting distribution be N (2, 4) with density f(x) and the target
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Figure 3.3: For the starting distribution N (2, 4) and the target density as in (3.2.13)

with δ = 0.05 the assumption A2 is always satis�ed, as c(x) ≤ f(x) ∀x ∈ R.

be a distribution with density

g(x) = f(x) + δ
1∑

j=−1

ψj,0(x), (3.2.13)

where ψj,0(x) for j = {−1, 0, 1} are Daubechies wavelets with two vanishing

moments. Compared to the starting normal distribution the shape of the target

could be inspected in Figure 3.2.

Using the limited number of compactly supported Daubechies wavelets and scaling

parameter δ, we are able to arti�cially construct a target density for which A2

assumption always holds (Figure 3.3). We could have chosen Daubechies wavelet

with a di�erent number of vanishing moments to construct a valid example. For
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di�erent choices of wavelets the acceptable ranges for δ would change, but due to

a �nite support feature of Daubechies wavelets, the acceptable ranges for δ would

always exist.

As it could be seen from examples above, pWMC is highly impractical and requires

speci�c conditions for the target density. Fortunately, it is possible to mitigate

restrictions of the assumption A2 by discretising pWMC and approaching g(x)

from f(x) in a large number of small steps.

3.3 Wavelet Monte Carlo

Let us de�ne a target density at time t:

ft(x) = rf(x) + td(x), (3.3.14)

where t is an arti�cial time parameter that indexes all intermediate distributions

between f(x) and g(x) in the linear form. We can see that for t = 0 and for t = 1

we recover the starting and target distributions:

f0(x) = f(x), f1(x) = g(x).

Suppose we were to apply pWMC at each time t ∈ {dt, 2 dt, 3 dt, ..., 1}, where dt > 0

is an arbitrarily small value. At each time n dt, n ∈ N, pWMC would be applied to

decide whether to stay at our current point or to sample a new point according to

the sampling rules de�ned in the pWMC algorithm.

Let xt denote the x-value current at time t. Then, according to the pWMC method,

a transition intensity for moving via wavelet (j, i) from x = xt to y = xt+dt, where

y 6= x, is:

λt,j,i(y|x) =
[dψj,iψj,i(x)]−

ft(x)

{
1(dψj,i ≥ 0)

ψ+
j,i(y)

Aj
+ 1(dψj,i < 0)

ψ−j,i(y)

Aj

}
(3.3.15)
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which could be written in a slightly simpli�ed form, avoiding indicator functions,

λt,j,i(y|x) =
1

Ajft(x)

{
dψ+
j,i ψ

−
j,i(x)ψ+

j,i(y) + dψ−j,i ψ
+
j,i(x)ψ−j,i(y)

}
. (3.3.16)

Using equation (3.3.16) we are able to write down a total transition intensity for

moving from x = xt to y = xt+dt:

λt(y|x) =


∑

j,i λt,j,i(y|x), x 6= y

−
∫
z 6=y
∑

j,i λt,j,i(dz|x), x = y
(3.3.17)

Lemma 3.3.1 (Kolmogoro�, 1931). For a general state-space, and general

continuous-time Markov process,

d

dt
ft(y) =

∫ +∞

−∞
ft(x)λt(y|x) dx, (3.3.18)

where ft(y) is the marginal probability density function of the event y at time t and

λt(y|x) is the transition intensity from x to y.

Theorem 3.3.2 (Gilks, 2017). Assume that at time t = 0 we draw a sample x0 ∼

f(x), and that transition intensities at each time t ≥ 0 are de�ned by (3.3.15,

3.3.17), where ft(x) is de�ned by (3.3.14) and dψj,i is de�ned by (3.1.8). Furthermore,

assume that if f(x) = fs(x) and g(x) = fs+δt(x), then ∃δt > 0 such that assumption

A2 on page 43 holds true always. Given these assumptions, the marginal distribution

of the state xt at any time t ≥ 0 is given by (3.3.14).

Proof of Theorem 3.3.2 Gilks (2017). From (3.3.14), f0(x) = rf(x). Hence, (3.3.14)

holds at t = 0. Assume (3.3.14) holds at a given t ≥ 0. Then the RHS of the general

formula (3.3.18) is, upon substituting λt(y|x) as de�ned in (3.3.17),∫ +∞

−∞
ft(x)λt(y|x) dx =

∫ +∞

−∞
ft(x)

{
− δ(x− y)

∫
z 6=y

∑
j,i

λt,j,i(z|x) dz

+ (1− δ(x− y))
∑
j,i

λt,j,i(y|x)
}

dx
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as before, we are using Dirac measure δ to concentrate mass at y,

= −ft(y)

∫
z 6=y

∑
j,i

λt,j,i(z|y) dz +

∫
x 6=y

ft(x)
∑
j,i

λt,j,i(y|x) dx

now using the previously expanded form of λt,j,i in (3.3.16),

= −ft(y)

∫
z 6=y

∑
j,i

1

Ajft(y)

{
dψ+
j,i ψ

−
j,i(y)ψ+

j,i(z) + dψ−j,i ψ
+
j,i(y)ψ−j,i(z)

}
dz

+

∫
x 6=y

ft(x)
∑
j,i

1

Ajft(x)

{
dψ+
j,i ψ

−
j,i(x)ψ+

j,i(y) + dψ−j,i ψ
+
j,i(x)ψ−j,i(y)

}
dx

now after completing all integrals, which all evaluate to Aj and after canceling Aj

terms, we end up with

=
∑
j,i

{
− dψ+

j,i ψ
−
j,i(y)− dψ−j,i ψ+

j,i(y) + dψ+
j,i ψ

+
j,i(y) + dψ−j,i ψ

−
j,i(y)

}
noticing common factors, we get

=
∑
j,i

(
dψ+
j,i − d

ψ−
j,i

)(
ψ+
j,i(y)− ψ−j,i(y)

)
using (3.1.3),

=
∑
j,i

dψj,iψj,i(y)

from (3.1.7) we �nally arrive at

= d(y)

=
d

dt
ft(y).

Hence, at a given time t, the Markov process equation (3.3.18) holds with the

marginal distribution given by (3.3.14).

Therefore, by induction, ft given in (3.3.14) is the marginal distribution of xt for all

time t ≥ 0.
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If we were to apply pWMC scheme with the transition intensity λt,j,i (3.3.15), an

algorithm would involve small probabilities of transition at each of a large number

of stages, and hence can not be implemented in practice. However, by noting that

point xs sampled at time s will remain unchanged over many stages, the scheme

could be simulated exactly by employing survival analysis theory.

3.3.1 Survival analysis

When a transition rate is involved in the analysis of states of a process, survival

analysis theory can be applied to calculate probabilities of leaving certain states or

of hitting them.

Let s be any time at or after time 0. We will evaluate the probability that xs does

not move up to a time t > s. At any time t ≥ s, assuming the current point xt = xs,

the total moving intensity is,

λt(xs) =

∫
y/∈dxs

λt(y|xs) dy =
∑
j,i

∫
y/∈dxs

λt,j,i(y|xs) dy

=
∑
j,i

1

Ajft(xs)

∫
y/∈dxs

{
dψ+
j,i ψ

−
j,i(xs)ψ

+
j,i(y) + dψ−j,i ψ

+
j,i(xs)ψ

−
j,i(y)

}
dy

=
∑
j,i

1

ft(xs)

{
dψ+
j,i ψ

−
j,i(xs) + dψ−j,i ψ

+
j,i(xs)

}
=

1

rf(xs) + td(xs)

∑
j,i

[dψj,iψj,i(xs)]
−

=
c(xs)

rf(xs) + td(xs)
,

where for future convenience we de�ne

c(xs) =
∑
j,i

[dψj,iψj,i(xs)]
−. (3.3.19)

From survival analysis theory (Kartsonaki 2016), it is known that, the probability
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of a particle not leaving a state xs in the half-open interval (s, t] is

S(s,t](xs) = exp
{
−
∫ t

s

λt∗(xs) dt∗
}

= exp
{
−
∫ t

s

c(xs)

rf(xs) + t∗d(xs)
dt∗
}
. (3.3.20)

The value of S[s,t)(xs) can be computed explicitly by considering three separate cases:

for c(xs) > 0 when d(xs) = 0, c(xs) > 0 when d(xs) 6= 0 and when c(xs) = 0.

Case d(xs) = 0: Assuming c(xs) > 0,

S(s,t](xs) = exp
{
−
∫ t

s

c(xs)

rf(xs)
dt∗
}

= exp
{
− (t− s) c(xs)

rf(xs)

}
. (3.3.21)

Then the CDF of a survival variable is

Fs(t|xs) = 1− S(s,t](xs) = 1− exp
{
− (t− s) c(xs)

rf(xs)

}
. (3.3.22)

By di�erentiating Fs(t|xs) we obtain the PDF

fs(t|xs) =
c(xs)

rf(xs)
exp

{
− (t− s) c(xs)

rf(xs)

}
, (3.3.23)

which is a shifted exponential distribution with support t ∈ [s,+∞) and rate

parameter γ(xs) =
c(xs)

rf(xs)
.

Case d(xs) 6= 0: Again, assuming c(xs) > 0,

S(s,t](xs) = exp
{
− c(xs)

[ 1

d(xs)
ln
(
rf(xs) + t∗d(xs)

)]t
s

}
= exp

{
− c(xs)

d(xs)

[
ln
(
rf(xs) + td(xs)

)
− ln

(
rf(xs) + sd(xs)

)]}
= exp

{
ln
(rf(xs) + sd(xs)

rf(xs) + td(xs)

) c(xs)
d(xs)

}
=

(
rf(xs) + sd(xs)

rf(xs) + td(xs)

)c(xs)/d(xs)

.

Similarly, we derive the CDF of the survival variable,

Fs(t|xs) = 1−
(
rf(xs) + sd(xs)

rf(xs) + td(xs)

)c(xs)/d(xs)

. (3.3.24)



Chapter 3. Theory of Wavelet Monte Carlo 54

Hence, the PDF is

fs(t|xs) =
c(xs)

f(xs) + td(xs)

(
f(xs) + sd(xs)

f(xs) + td(xs)

)c(xs)/d(xs)−1

. (3.3.25)

Here, we note that t has a scale-location shifted generalised Pareto distribution

(SGP). This could be seen by looking at a standard form of a CDF for SGP variable

and matching parameters. The CDF is

Fξ(z) = 1− (1 + ξz)−1/ξ, ξ > 0, (3.3.26)

which has a support on [0,∞). If we let

ξs =
d(xs)

c(xs)
and zs =

c(xs)(t− s)
f(xs) + sd(xs)

after substituting ξs, zs into (3.3.26) we end up with exactly (3.3.24).

Case c(xs) = 0:

Setting c(xs) = 0, we have S(s,t](xs) = 1 ∀t > s. This could be interpreted as the

scenario in which there is no force of moving to a di�erent value of x, and so the

survival time t =∞.

3.3.2 Sampling a survival time

In the WMC algorithm we will have to be able to sample a survival time t from

fs(t|xs), where the functional form of fs depends on the value of d(xs).

It is straightforward to produce samples from an exponential distribution. This can

be achieved by using standard functions in statistical computing software R (R Core

Team 2013) or by applying the inverse sampling formula:

t = s− rf(xs)

c(xs)
log us, (3.3.27)

where us ∼ U [0, 1] is a sample from a uniform distribution on the interval [0, 1].
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In the case of d(xs) 6= 0, the same inverse sampling technique could be applied

t = s+
(rf(xs)

d(xs)
+ s
)(
u−c(xs)/d(xs)
s − 1

)
. (3.3.28)

3.3.3 WMC scheme

Assume that r is known and that we have sampled a point x0 ∼ f(x). We set

our initial time s = 0 and will perform the steps below repeatedly by replacing the

previous time s by t whenever a new point is generated. The process will stop when

we have a point xt whose survival time is t ≥ 1. At that point, we will set y := xt,

and will use it as a sample from g(x).

1. Calculate c(xs) as in (3.3.19) and d(xs). If c(xs) = 0, stop and return y = xs.

Otherwise, sample us ∼ U [0, 1] and set t as in (3.3.27) or (3.3.28), depending

on whether d(xs) = 0 or not.

2. If t ≥ 1, stop and return y = xs. Otherwise, sample a pair (j, i) with

probability

qj,i(xs) =
[dψj,iψj,i(xs)]

−

c(xs)

then sample

xt ∼

 ψ+
j,i(x)/Aj, if dψji ≥ 0

ψ−j,i(x)/Aj, if dψji < 0
,

set s = t and return to step 1.

3.4 Comments on WMC

Here we dive into certain peculiarities of the WMC algorithm and try discuss and

analyse them.
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3.4.1 Approximate computation of d̂j,i

As long as one is able to implement the sampling scheme above correctly, samples

from a non-standard target distribution will be produced.

One of the goals of any sampling method is to avoid repeated computations of

certain integrals. The WMC algorithm, at Step 2, depends on the values of dψj,i

wavelet coe�cients, which involves the computation of an integral∫ +∞

−∞
d(x)ψj,i(x) dx. (3.4.29)

This problem could be overcome by applying another sampling method to compute

an estimated value of a wavelet coe�cients d̂ψj,i. Let us rewrite the integral of (3.4.29)

in a slightly di�erent form:∫ +∞

−∞
d(x)ψj,i(x) dx =

∫ +∞

−∞
d(x)(ψ+

j,i(x)− ψ−j,i(x)) dx

rewriting ψj,i as a combination of a positive and negative part

= Aj

∫ +∞

−∞
d(x)(ψ+

j,i(x)/Aj) dx− Aj
∫ +∞

−∞
d(x)(ψ−j,i(x)/Aj) dx

after splitting integrals and by multiplying and deviding by a normalisation constant

Aj, integrals could be reformulated as expectation

= Aj

(
Eψ+

j,i
[d(x)]− Eψ−j,i [d(x)]

)
,

where Eψ+
j,i

and Eψ−j,i denote expectations with respect to ψ+
j,i/Aj and ψ−j,i/Aj

distributions respectively. This reformulation suggests a possible estimate for dψj,i

d̂ψj,i = Aj

( 1

N

N∑
l=1

d(πj,il )− 1

M

M∑
k=1

d(νj,ik )
)
, (3.4.30)

where πj,il and νj,il are samples from distributions
ψ+
j,i

Aj
and

ψ−j,i
Aj

respectively, i.e.

{
πj,il
}N
l=1
∼
ψ+
j,i

Aj

{
νj,ik
}M
k=1
∼
ψ−j,i
Aj

. (3.4.31)
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Step 2 of the WMC algorithm involves drawing samples xt from ψ−j,i or ψ
+
j,i depending

on the sign of the wavelet coe�cient dψj,i. A technique for drawing samples from a

positive and negative parts of a wavelet could be also applied in computation of d̂ψj,i,

as the value of an estimate only depends on the number of samples drawn from ψ−j,i

and ψ+
j,i, and on the values of those samples.

If we were to replace dψj,i with d̂
ψ
j,i in the proof of pWMC (page 44), the argument

�ow would be exactly the same, however at (3.2.12) we would have

p(y|{d̂ψj,i}) =
1∫

f(z) dz

{
f(y) +

1

r

∑
j,i

d̂ψj,iψj,i(y)
}
. (3.4.32)

Now marginally integrating over the estimates d̂ψj,i,

p(y) =

∫
p(y|{d̂ψji})p({d̂

ψ
j,i})dd̂

ψ
j,i

= E[p(y|{d̂ψj,i})]

= f(y) +
∑
j,i

E[d̂ψj,i]ψj,i(y),

assuming that estimate d̂ψj,i is unbiased (E[d̂ψj,i] = dψj,i), we get,

= f(y) +
∑
j,i

dψj,iψj,i(y).

So, all we require is that d̂ψj,i is unbiased. By construction, our estimate (3.4.30) is

indeed unbiased.

Clearly, using an estimator will a�ect the total probability of leaving a state xt

∑
j,i

[d̂ψj,iψj,i(xt)]
−

rf(xt)
(3.4.33)

and, in turn, will a�ect the total number of d̂ψj,i that need to be estimated in order

to achieve a sample from the target.
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3.4.2 Implications of Theorem 3.3.2

Theorem 3.3.2 proves that, under certain conditions using the transition rate λt,ji

de�ned by (3.3.15) the Kolmogorov forward equation holds, and, hence, ft(·) is the

correct marginal distribution for all times t ∈ [0, 1]. The Markov process induced by

λt,ji is essentially applying pWMC algorithm (Section 3.2) at in�nitely small time

steps. To avoid applying this algorithm at in�nitely small increments of time, a

survival analysis theory was applied to make the algorithm practical. Although the

goal of WMC is to produce samples from the target density g(·), there are points

xs being sampled from intermediate distributions fs(·), s ∈ [0, 1) which have an

associated survival time t > s. What exactly does it mean for a point xs to have

survived for δs = t− s amount of time?

At the core of WMC, the transition intensity density λt,ji dictates how the process

will unfold and λt,ji is constructed based on pWMC. So, looking from the pWMC

perspective, pWMC was applied on point xs sequentially between times s ≥ 0 and

t > s, for δs = t − s amount of time. As time was evolving from s to t > s, at

all instances the point xs was never `rejected' because the event of `no pair (j, i) is

selected' was always occurring with probability

1−
∑
j∈Z

∑
i∈Z

pj,i(xs), 0 ≤ s < t. (3.4.34)

Except at the very last point, at time t, a pair (j, i) was sampled indicating that

point xs has survived for δs = t− s and now a new point needs to be sampled.

As time was evolving, under the pWMC algorithm the starting sample point xs ∼

fs(·) was `accepted' as a sample from all intermediate distribution fl(·), where s ≤

l < t. So, as a consequence of Theorem 3.3.2 a sampled survival time t > s for a

point xs with s ≥ 0 indicates that xs ∼ fl(·) for s ≤ l < t. However, we make

an observation that we can only make the claim that point xs is a representative

sample from all distributions fl(·) for s ≤ l < t if we do not condition the point xs
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on the fact that it did not move for the t− s amount of time, or in other words, xs

point's history from s to t, H t
s(xs).

Figure 3.4: Illustrative example for (3.4.35). Both, fs(·) and fk(·) are densities of

uniform distributions U(0, 0.66) and U(0.33, 1) respectively. Although xs survives

until point in time t and under the standard WMC if we do not condition on the

history of the point xs we would also conclude that xs ∼ fk(·). However, if we

do condition on the history of the point xs at time k, Hk
s (xs), it is very clear that

xs 6∼ fk(·), due to the limited range of support it passes through.

De�nition 3.4.1. Given any point xs with 0 ≤ s ≤ 1 and time interval I = (t1, t2),

we denote the history ofxs over the interval I as H t2
t1 (xs).

In general, we have that if xs survives until some point in time t > s, then

xs|H t
s(xs) 6∼ fl(·), s < l < t. (3.4.35)
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Figure 3.4 presents an example in which the conditioning issue is rather clearly

demonstrated.

On the subject of conditioning, the �nal target density g(·) could be interpreted

as an in�nite mixture of distributions, each corresponding to a particular particle

history,

g(x) =
∑
H(x)

f
(
x|H(x)

)
p
(
H(x)

)
, (3.4.36)

where H(x) is a full history of a point x up to a point in time t = 1 and f
(
x|H(x)

)
is the conditional density of a point x.

3.4.3 Finite range of resolution levels

TheWMC theorems are proved to hold if one has access to in�nite range of resolution

levels j ∈ (−∞,+∞) as for example in the decomposition of the di�erence function

d(x) in 3.1.7, it is clear that, in practice, we will restrict ourselves to coarsest jmin

and �nest jmax resolution levels when implementing WMC. How does this restriction

a�ect samples produced from the target and in particular given this restriction from

which exactly target samples are being produced?

The moment the restriction is made, we no longer have access to j > jmax and

j < jmin levels and it is clear that samples produced by WMC using a limited

range of resolution levels cannot be from the target
∑

j,i g
ψ
j,iψj,i(x). As we start

with samples from f(x) =
∑

j,i f
ψ
j,iψj,i(x) all we really doing in WMC is changing

coe�cients from fψj,i to g
ψ
j,i. If we have access to an in�nite range of resolution levels,

eventually all coe�cients could be changed; however, working with a limited range

certain levels are restricted and therefore some fψj,i coe�cients stay the same. For

this reason, our actual distribution at t = 1 in practice becomes,

ĝ(x) =

jmax∑
j=jmin

∑
i

gψj,iψj,i(x) +
∑
j<jmin

∑
i

fψj,iψj,i(x) +
∑
j>jmax

∑
i

fψj,iψj,i(x). (3.4.37)
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Assuming that ĝ(·) above satis�es the probability density properties, if we were to

replace g(·) with ĝ(·) in Theorem 3.3.2, the proof would still hold and in addition

our resolution range across which WMC would be performed would be limited to

j ∈ [jmin, jmax]. This would mean that algorithm could be implemented exactly.

Generally, ĝ(x) will not satisfy density properties, speci�cally non-negativity

everywhere; for this reason, g(·) will be used as the target in practice, but WMC

samples will be treated as though they are from ĝ(x).

3.4.4 WMC visually

Given a rather complicated nature of the WMC algorithm it might be at �rst tricky

to visualise the process of WMC in action. In Figure 3.5, we present a scheme

of what is happening at each step of the algorithm. The example is presented in

a situation when we are interested in producing samples from some concentrated

normal distribution (red) using samples from a more shallow normal distribution

(blue). Samples from blue are being propagated in time until the point they die,

and a random wavelet is used to sample a new point to continue a process to the

target.
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Figure 3.5: A visual representation of the WMC algorithm. Starting with a sample

x0 from f(x) a point survives until time t1, when a new point x1 needs to be sampled

according to Step 2 in the WMC scheme. The process is repeated until a point x2

which survival time is t ≥ 1 at which point the algorithm ceases, producing a sample

y := x2 ∼ g(x).
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Chapter 4

Implementation of WMC

In this chapter, we will demonstrate how the WMC algorithm could be implemented

in practice. The statistical software environment R (R Core Team 2013) will be used

as a platform to test and benchmark the algorithm. WMC could be implemented

in much faster programming languages like C or Python; however, for purposes of

fast coding and easy access to other statistical packages that will be used in the the

further analysis, only R will be used here.

A few one-dimensional and two-dimensional examples will be presented here to

fully demonstrate some key features of WMC. Given the exponential growth

of computational cost with the dimensionality of a problem, three and higher

dimensions will not be explored.

4.1 Examples

4.1.1 1D

In the �rst example, we will focus on a one-dimensional problem. We will be

interested in producing samples from a mixture of standard distributions. Usually
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one would try to chose a starting distribution similar to the target; however,

here, we will choose the starting distribution to be a uniform de�ned outside

the e�ective support of the target g(·). The idea of the following example is to

demonstrate that even by picking a starting distribution which is substantially

di�erent from the target, correct samples can still be obtained using WMC.

Throughout these examples, target distributions will be picked such that their

normalisation constant is known, and we have an access to a ratio of normalising

constants r. Clearly, perfect knowledge of r is unrealistic in practice and this will

be covered in Chapter 5. Figure 4.1 presents 1000 samples produced by the WMC
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Figure 4.1: Output of the WMC algorithm produced from using starting distribution

U [−13,−10] and the target distributions de�ned by (4.1.1). The blue histogram

depicts a sample of 1000 points from the WMC algorithm.

algorithm performed using U [−13,−10] as a starting distribution and target being
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a mixture of standard distributions g(y) =
∑5

k=1 ωkgk(y). Weights were picked to

be {ωk}5
k=1 = {0.2, 0.1, 0.4, 0.1, 0.2} and the mixture components are:

g1(y) =
1√
2π

exp
{
− (y − 2)2

2

}
, y ∈ R;

g2(y) =
1√
8π

exp
{
− y2

8

}
, y ∈ R;

g3(y) =

 1 y ∈ [−4,−3],

0 otherwise;
(4.1.1)

g4(y) = 2 exp
{
− 2(y − 4)

}
, y ∈ [4,+∞); and

g5(y) = 3 exp
{
− 3(y + 8)

}
, y ∈ [−8,+∞).

The Daubechies wavelet with 5 vanishing moments was used to produce results in

Figure 4.1. The coarsest resolution level was set to be jmin = −7 and the �nest one

to jmax = 12. Sparsity of the wavelet coe�cients allowed for the transition from an

in�nite sum
∑+∞

j=−∞ to a �nite one
∑12

j=−7 by still capturing the information about

the most relevant di�erences between the target g(·) and a starting distribution f(·).

The WMC algorithm seems to be performing quite well even with a starting

distribution being chosen from the outside of the e�ective support of the target. The

Kolmogorov-Smirnov test was performed to test the di�erence between the direct

sample form the target g(y) and the WMC one. A p-value of 0.4 was obtained

suggesting no signi�cant di�erence between both. In addition to this, the choice of

the multi-modal target did not seem to in�uence the quality of the samples produced.

In the next one-dimensional example we will consider starting from a standard

normal and will try to produce samples from a target that has disjoint probability

masses. We again, as before, construct the target distribution as the mixture

of standard ones � g(y) =
∑3

k=1 ωkgk(y). We picked weights to be {ωk}3
k=1 =
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{2/3, 1/6, 1/6} and the mixture components as:

g1(y) =
1

9
√

2π
exp

{
− (y − 30)2

2× 92

}
, y ∈ R;

g2(y) =
1

0.5
√

2π
exp

{
− (y + 20)2

2× 0.52

}
, y ∈ R; (4.1.2)

g3(y) =

 1 y ∈ [40, 41],

0 otherwise;

Results of this example could be observed in Figure 4.2. Wavelet families and
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Figure 4.2: Output of the WMC algorithm produced from using starting distribution

N (0, 1) and the target distributions de�ned by (4.1.2). The blue histogram depicts a

sample of 10000 points from the WMC algorithm.

resolution parameters were kept to be the same as in the previous example, the

only di�erence now being that we produced 10000 points. Visual inspection again

suggests satisfactory results; however, this time the p-value associated with the K-S
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test is 0.01, so according to the hypothesis test, the sample produced via WMC

is not from the target. The associated mean of the target distribution is 23.42

and the standard deviation is 21.13, the WMC sample mean is 22.37 and sample

standard deviation is 21.92. As we can see, there is a slight discrepancy in the

location parameter and it was high enough for K-S test to �nd WMC sample to be

signi�cantly di�erent from the target. Given the limited range of resolution levels

used in the WMC, it is expected to observe a slight discrepancy between WMC

sample and the target distribution statistics. Nevertheless, WMC algorithm was

able to produce satisfactory samples from the target distribution that had disjoint

probability masses across its support. The next step is to investigate how WMC

performs in two dimensional space.

4.1.2 2D
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Figure 4.3: First 2-D WMC example. Although the majority of points are located in

the target regions there are some points rather too far from the target, these outlier

points will be discussed in Chapter 5.
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In a �rst two-dimensional example, we will implement WMC to sample from a

mixture of normal distributions. The starting density f(·) is going to be that of a

two dimensional normal distribution with parameters

µ =

3

0

 and Σ =

1 0

0 1

 , (4.1.3)

and for the target mixture we will have g(y) =
∑4

k=1 ωkgk(y), where ωk = 0.25 for

k = 1, 2, ..., 4. Next, we will list parameters of normal distributions k = 1 to k = 4

associated with densities gk(y):

µ =

1

1

 ,Σ =

2 2

2 3

 , for k = 1;

µ =

4

4

 ,Σ =

7 2

2 3

 , for k = 2;

µ =

−2

3

 ,Σ =

4 1

1 3

 , for k = 3;

µ =

 5

−5

 ,Σ =

6 2

2 3

 , for k = 4.

The wavelet used in this example was the two dimensional Daubechies wavelet with

K = 3:

ψj,i(x) = ψj1,i1(x1)ψj2,i2(x2), (4.1.4)

where ψj1,i1(x1) and ψj2,i2(x2) both have 3 vanishing moments.

The coarsest resolution levels were set to be jmin = (−2,−2)T and the �nest ones to

jmax = (12, 12)T . In this particular example resolution levels were set symmetrically

in both directions, however in general one is able to choose di�erent coarsest and

�nest levels for each direction in Rd space. Results of the �rst example in two

dimensions can be seen in Figure 4.3.
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Figure 4.4: Second 2-D WMC example. After picking starting distribution in the

extremely low probability region points are still being sampled appropriately from the

multi-modal target distribution.

For the second example we construct our target using four normal distributions in

such a way that there are extremely low probability regions in between the modes.

The starting distribution will be chosen to be a highly concentrated normal centred

at (0, 0). The target distribution will be again of the form g(y) =
∑4

k=1 ωkgk(y),

with ωk = 0.25 ∀k. Each gk(y) will have Σ = diag(1, 1) (a covariance matrix with

diagonal components being equal to 1, and o�-diagonal components 0). Means of

distributions associated with each density gk(y) will be µ1 = (4, 4)T , µ2 = (4,−4)T ,

µ3 = (−4,−4)T , µ4 = (−4, 4)T . The resolution levels were chosen to be jmin =

(−2,−2)T and jmax = (8, 8)T , and wavelet of choice was Daubechies with K = 3.

Results of 1000 WMC samples for this particular case could be observed in Figure

4.4.



Chapter 4. Implementation of WMC 70

4.2 Discrete inverse sampling (DIS)

4.2.1 Sampling from the discrete density approximation

Given the non-probabilistic nature of wavelets ψj,i, treating them as probability

distributions might sound a bizarre idea. However, as demonstrated in the theory of

WMC, after normalisation of ψ+
j,i and ψ

−
j,i new samples need to be drawn from these

parts in order to proceed through the WMC algorithm. In this section a method for

producing samples from ψ+
j,i and ψ

−
j,i will be covered.

Let us discretise both ψ+
j,i(·) and ψ−j,i(·). Denote the support Ij,i = [a, b] =

supp{ψj,i(·)}. We will denote the discretised version of the interval Ij,i by

x =

(
x1 = a, x2 = a+

(b− a)

n
, x3 = a+

2(b− a)

n
, ..., xn = a+

(n− 1)(b− a)

n
, xn+1 = b

)
.

(4.2.5)

We will also de�ne vectors Ψ+ and Ψ−, which contain the evaluations of ψ+
j,i(·) and

ψ−j,i(·) at points of x:

Ψ+ =
(
ψ+
j,i(x1), ψ+

j,i(x2), ..., ψ+
j,i(xn+1)

)
, (4.2.6)

Ψ− =
(
ψ−j,i(x1), ψ−j,i(x2), ..., ψ−j,i(xn+1)

)
. (4.2.7)

By setting a large value of n, numerical integration could be performed using Ψ+,

Ψ−, x and δx = b−a
n

as a �nite di�erential to get a value of the normalisation

constant Aj of the functions ψ+
j,i(·) and ψ−j,i(·). By applying cumulative sums to

elements of vectors Ψ+ and Ψ−, a discretised version of the cumulative distribution

functions P+ and P− for densities ψ+
j,i(·)/Aj and ψ−j,i(·)/Aj can be obtained:

P− =
(
p−l =

l∑
k=1

ψ−j,i(xk)δx
)n+1

l=1
, (4.2.8)

P+ =
(
p+
l =

l∑
k=1

ψ+
j,i(xk)δx

)n+1

l=1
. (4.2.9)
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We shall now assemble a discrete version of an inverse sampling algorithm (DIS)

which can be performed on vectors P+ and P− to produce samples from ψ+
j,i(·)/Aj

and ψ−j,i(·)/Aj.

4.2.2 Pseudo code

Steps for producing samples from positive and negative parts of the wavelets will be

presented here.

0. Obtain values of x, P+ and P+.

1. Sample u ∼ U [0, 1] and compute k+
min for producing a sample from ψ+

j,i(·)/Aj

k+
min = arg min

k∈{1,2,...,n+1}
|p+
k − u|, (4.2.10)

or compute k−min for producing a sample from ψ−j,i(·)/Aj

k−min = arg min
k∈{1,2,...,n+1}

|p−k − u|. (4.2.11)

2. Having obtained k+
min or k−min, we report samples from positive and negative

parts of the wavelet ψj,i to be

xk+min
∼ ψ+

j,i(·)/Aj, xk−min
∼ ψ−j,i(·)/Aj, (4.2.12)

where values xk+min
and xk−min

are the appropriate entries of vector x.

4.2.3 DIS in d dimensions

Here we will demonstrate how the DIS algorithm can be applied for sampling

from a multidimensional wavelet ψj,i(x). Here x ∈ Rd, j = {j1, j2, ..., jd} and

i = {i1, i2, ..., id}, where j and i are resolution and location vectors in Rd. Recall
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that the construction of a multidimensional wavelet involves taking a product of

wavelets {ψjk,ik(xk)}dk=1:

ψj,i(x) = ψj1,i1(x1)ψj2,i2(x2) · · ·ψjd,id(xd). (4.2.13)

Now we are interested in �nding the normalisation constant

Aj =

∫
x∈Rd

ψ+
j,i(x) dx =

∫
x∈Rd

ψ−j,i(x) dx. (4.2.14)

Given that

Ajk =

∫ +∞

−∞
ψ+
jk,ik

(xk) dxk =

∫ +∞

−∞
ψ−jk,ik(xk) dxk, (4.2.15)

we only need to work out how many terms there are in the expanded version

of [ψj1,i1(x1)ψj2,i2(x2)...ψjd,id(xd)]
+ and [ψj1,i1(x1)ψj2,i2(x2)...ψjd,id(xd)]

− to get the

expression of Aj.

We observe that given a product ψj,i(x) of length d, where each term could have

a sign of +1 or −1, there are 2d possible combinations of signs in a product. The

value of a sign sub-product of the �rst (d − 1) terms is either +1 or −1, therefore

only the last term in a product determines whether ψj,i(x) > 0 or ψj,i(x) < 0. For

this reason [ψj,i(x)]+ and [ψj,i(x)]− will both have 2d−1 terms in the expanded form.

Combining this observation with (4.2.15), we get that

Aj = 2d−1

d∏
k=1

Ajk = 2d−1− 1
2

∑d
k=1 jkAd0, (4.2.16)

where we have used Ajk = 2−jk/2A0. Now, given the normalisation constant, how

do we produce samples from [ψj,i(x)]+/Aj and [ψj,i(x)]−/Aj? We sample a d − 1

dimensional vector of signs sk from a Bernoulli distribution,

{sk}d−1
k=1 ∼ 0.51(s = −1) + 0.51(s = +1). (4.2.17)

We sample

xk ∼ [ψjk,ik(xk)]
sk/Ajk , for k = 1, 2, ..., d− 1, (4.2.18)
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where sk denotes a sign. Now, if we are interested in producing a sample from

[ψj,i(x)]+/Aj, sample

xd ∼

 [ψjd,id(xd)]
+/Ajd if

∏d−1
k=1 sk = 1;

[ψjd,id(xd)]
−/Ajd otherwise,

(4.2.19)

and let x = (x1, x2, ..., xd) be a sample from [ψj,i(x)]+/Aj. However, if we are

interested in producing a sample from [ψj,i(x)]−/Aj, then

xd ∼

 [ψjd,id(xd)]
−/Ajd if

∏d−1
k=1 sk = 1;

[ψjd,id(xd)]
+/Ajd otherwise,

(4.2.20)

and x = (x1, x2, ..., xd) will be a sample from [ψj,i(x)]−/Aj.

As we can see, the independent product structure of a multidimensional wavelet

allows for quite convenient sampling procedures. This method for producing samples

from positive and negative parts of wavelets could be used in the future to implement

WMC in a multidimensional setting.

4.3 Parallelisation

Given the independent structure in the WMC between separate realisations y from

the target density g(·), the algorithm could be easily parallelised to utilise several

central processing units (CPUs) or graphics processing units (GPUs) to speed up

the computation.

In our setting R packages `doParallel' and `foreach' will be used to parallelise WMC.

A sample code is presented bellow, demonstrating the procedures that should be

taken to initiate a `for' loop using several cores. In this scenario 6 CPU cores are

used and `WMC1d_approx' function is used within a `foreach' loop to produce N

samples from the target of interest.
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library(foreach) # for parallel comp

library(doParallel) # foreach backend

cl = makeCluster(6) #set the number of CPU cores

registerDoParallel(cl) #register cores

start = Sys.time()

message('Start ',start)

g.wmc.nona <- foreach(i=1:N, .combine = c) %dopar% {

WMC1d_approx(x = f[i], filtnr = fnr , res = 4096, lowrez = -8,

maxrez = 11, d_of_x_FUN = d_of_x, dFUNg = FUNg ,

dFUNf= dunif , parFUNg = NULL ,

parFUNf = list(min = -13, max = -10),

PosA = PosA , posx = posx , posy = posy , negx = negx ,

negy = negy , xy =xy, time = 1, reps = 200)

}

finish = Sys.time()

message('End ',Sys.time ())

message('Total running time:',finish - start)

stopCluster(cl) #detach cores

We can investigate the relative gain in the computational speed by comparing two

identical WMC set-ups, but one being run in a standard for loop and the other in a

parallelised one. For this particular benchmarking experiment Daubechies wavelets

with K = 5 will be used, the starting density and the target one will be chosen as

in the 1-D examples subsection 4.1.1. This particular set-up will be run by varying
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Nd parameter that is responsible for the accuracy of the estimate d̂ψj,i used in the

computation,

d̂ψj,i = Aj

( 1

Nd

Nd∑
l=1

d(πj,il )− 1

Nd

Nd∑
k=1

d(νj,ik )
)
. (4.3.21)

The only di�erence of the above estimate (4.3.21) to (3.4.30) is that this time we

are sampling an equal amount of Nd points from the positive and negative parts of

a wavelet. Finally, code will be run for N = 100 and N = 200, where N is the

number of samples, to investigate the dependence of time taken to execute code and

the number of samples being generated.

As we can see in Figure 4.5 with parallel computing utilised we can get twice as

●●

●

●

●

●

●

0 50 100 150 200 250 300

0
20

40
60

80
10

0

Nd

E
xe

cu
tio

n 
tim

e 
(m

in
ut

es
)

●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

N=200, NP
N=200, P
N=100, NP
N=100, P

Figure 4.5: Benchmarking results of 1D WMC for di�erent choices of Nd, N and

parallelisation option. Where NP stands for `not parallel' and P for `parallel' in the

legend.
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many samples for approximately the same waiting time. Furthermore, the biggest

computational cost savings occur when we decide to increase the value Nd which

is responsible for the accuracy in estimating d̂ψj,i coe�cients. On the other hand,

time execution savings for Nd = 1 seem to be very marginal; nevertheless, parallel

computation always seems to dominate the non-parallel one and, hence, is always

highly recommended.

4.4 Computational cost

Given any sampling method, the computational cost of executing an algorithm is

one of the key factors that determines the quality of a method. In this section we

will explore the computational cost of WMC algorithm and will analyse how this

cost scales with a dimension of a problem.

Most of the computational power used is spent on the estimation of wavelet

coe�cients d̂ψj,i. We can approximate the total computational load of a single WMC

run by the total number of wavelet coe�cients that need to be estimated. Here we

will focus on Daubechies wavelets, due to the dependence of their support length

on the number of vanishing moments K (see section 2.4.2). Given that a chosen

Daubechies wavelet has K vanishing moments, the length of support supp(ψ0,·(x))

of a standard mother wavelet in one dimension is 2K − 1, which means that for a

given x ∈ R and �xed resolution level j ∈ Z there are exactly 2K − 1 wavelets that

include point x in their support. This means that at each resolution level 2K − 1

wavelet coe�cients need to be estimated every time a point is being sampled.

Theoretically, WMC would need to include all resolution levels j ∈ Z, however as

our computation power is �nite we will have to pick coarsest and �nest resolution

levels, they will be denoted jmin and jmax. Naturally, by restricting the resolution

range we specify the total number of resolution levels jmax−jmin at which coe�cients
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need to be estimated.

We also observe that a total number of coe�cients that needs to be estimated in

a single WMC run depends on the total number of jumps J ∈ N0 that need to be

performed to reach a target y ∼ g(·). Taking all factors mentioned above together

we can get an expression for the total number of wavelet coe�cients that need to

be estimated every time WMC is run on a x0 ∼ f(·). In particular,

(2K − 1)(jmax − jmin)(J + 1) (4.4.22)

turns out to be the total number of coe�cients hψj,i that need to be estimated. In a

d-dimensional setting, when g(x) ∈ Rd, this expression generalises to

(2K − 1)d
d∏

k=1

(jk,max − jk,min)(J + 1), (4.4.23)

where jk,max, jk,min are the coarsest and the �nest resolution levels of the associated

direction xk.

We can clearly see that the number of coe�cients required for WMC grows

geometrically with the dimension d, which is unfortunately an unfavourable feature.

Furthermore, smoother Daubechies wavelets with more vanishing moments would

improve the quality of transition from a starting point x0 ∼ f(·) to y ∼ g(·), as

there are more wavelets to choose from which could perform a transition, hence

more precision in performing a single jump. However it does increase the total

number of coe�cients that need to be estimated. So, although fewer wavelets with

high number of vanishing moments are required to approximate a signal accurately,

in a WMC setting more vanishing moments mean more computational load.

It is clear that J (total number of jumps) is not deterministic and does follow some

probability distribution π(·). Given f(·) and g(·), we are interested in drawing some

inference about

J ∼ π(·|x0, K), (4.4.24)
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where we assume the number of jumps is dependent on the choice of Daubechies

wavelet only through the number of vanishing moments K. The analysis of

π(·|x0, K) will be presented in Chapter 6. However, here we only make an

observation that given the target g(·), the expected computational cost of computing

a collection of coe�cients d̂ψj,i purely depends on our choice of a starting distribution

f(·), the number of vanishing moments K and the total range of resolution levels

being used at each direction xk.
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Figure 4.6: Results of the time (in hours) taken to execute one-dimensional WMC

and the average number of jumps made per each sample x0 ∼ f(·) with respect to

the choice of Daubechies wavelet and accuracy of estimating d̂ψj,i . Functions were

taken to be the same as in Figure 4.1. As we can clearly see, the choice of wavelets

with more vanishing moments increase the average number of jumps required to

reach a target and in turn increases the total execution time required to perform

WMC. Although more accurate estimation of wavelet coe�cients does decrease the

average number of jumps, it signi�cantly increases the execution time. Due to the

high computation costs it seems that one should stick to Daubechies wavelets with

low number of vanishing moments.
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Figure 4.7: Similarly as in one-dimensional case example the relations between

parameters analysed are identically the same in two-dimensional case. Execution

time increases even more drastically, greatly supporting an idea of avoiding wavelets

with large supports.

4.4.1 Empirical analysis

Here we analyse the relationship between the choice of the number of vanishing

moments K, the execution time of WMC and the average number of jumps µJ

required to reach a target:

E[J ] = µJ . (4.4.25)

Given that dψj,i coe�cients need to be estimated, Nd will denote the number of

samples being drawn from ψ+
j,i and ψ

−
j,i for computation of d̂ψj,i as in (4.3.21).

These results should only be used for purposes of analysing relative computational

load but not benchmarking execution speed of WMC itself as computations were

not parallelised, choices of f(·) were not optimal with regards to target g(·) and

the number of samples N drawn in 1D (Figure 4.6) and 2D (Figure 4.7) examples

di�ered.
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4.5 Choice of the wavelet family and overall set-up

In this section, we will focus on describing what values should be chosen for various

parameters of WMC initialisation. In particular, the choice of the number of

vanishing moments K and the coarsest and the �nest resolution levels jmin and

jmax. As it was presented in the previous section, the choice of large K values does
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Figure 4.8: The coarsest resolution level is not coarse enough, leading to the

unnecessarily high number of jumps required to move a point to a high density region.

not seem to bring any positive contributions towards the overall quality of WMC

execution. Therefore, K should be kept to the minimum of 2 for the most optimal

performance, as this would guarantee the smallest number of jumps required to

reach a target in the shortest execution time.

Wavelets in WMC act as tools that transition probability mass from one location

to another, for this reason the coarsest and the �nest resolution levels need to be
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Figure 4.9: The chosen coarsest resolution level is good enough, providing ability for

a point to reach a high density region in a single jump.

picked carefully to guarantee that every sample point with a starting density f(·)

could reach the full range of the e�ective support of a target g(·) via a single wavelet.

This would guarantee that only a single jump is required for a starting point to be

moved to the region of high density. If the coarsest resolution level is chosen to

be not coarse enough, computational power is going to be wasted for the �rst few

jumps in each WMC run. This issue is illustrated in Figures 4.8 and 4.9.

Choice of the �nest resolution level is equally as important. The �nest resolution

level is going to be responsible for picking up �ne details and modes of the target

density. If the �nest resolution level is too coarse, a sample from WMC is not going

to be a representative enough sample from the density g(·). To avoid this, we must

make sure that points can be moved freely within the high density regions; this is

illustrated in Figure 4.10.
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In summary, we want to have jmax as high as possible, given the computational

power limits, as this resolution level will be responsible for extremely �ne details of

a target. However, choice of jmin purely depends on where f(·) is located relatively

from g(·). The coarsest resolution level jmin should be chosen such that ∃ψjmin,i,

where supp{ψjmin,i} for some i ∈ Zd contains all high density regions of both f(·)

and g(·).

De�nition 4.5.1 (High density regions). Let f(·) be a density, then we will call Hr

a high density region if ∫
x∈Hr

f(x) dx ≈ 1− ε, (4.5.26)
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Figure 4.10: The chosen �nest resolution level on the left is good enough, allowing

for points to be moved within the high density region and allowing �ne wavelets to

pick gradual changes in density, however the one on the right side is too coarse, and

points will be jumping in and out of the high density region, leading to faulty samples

being produced by WMC.
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where 0 < ε� 1.

For example, for a standard normal density N (µ = 0, σ2 = 1), if we de�ne Hr :=

{x ∈ [−2.5, 2.5]}, this would ensure that ≈ 99% of data falls to Hr,∫
x∈Hr

N (x;µ = 0, σ2 = 1) dx ≈ 0.99.

In the one dimensional example in Subsection 4.1.1, the coarsest resolution level is

chosen to be jmin = −7, which actually could be reduced to jmin = −2. This would

still ensure that ∃ψjmin,i for some i ∈ Z that contains f(·) and g(·) (Figure 4.11).
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Figure 4.11: Coarsest wavelet ψjmin,i covers both Hr regions of f(·) and g(·). In this

example K = 5 and jmin = −2.
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4.6 Comparison to other MCMC methods

In this section, we compare quality of 1000 samples obtained via WMC to the

ones obtained using Metropolis-Hastings (M-H) and Adaptive Rejection Metropolis

Sampling (ARMS). We will mainly focus on the out-of-the-box performance of these

three algorithms in one-dimensional setting. Kolmogorov-Smirnov test statistic will

be used to determine any signi�cant departures from the target distribution. In

addition to this, mean and variance together with autocorrelation will be compared

across methods. The target density will be chosen to be the one in one-dimensional

example in Figure 4.2 (�4.1.1).

-20 0 20 40 60

-2
5

-2
0

-1
5

-1
0

-5

log-target
Initial Envelope

Figure 4.12: Logarithm of the target density together with a starting envelope for

ARMS algorithm.

Given the nature of one dimension and the choice of a target density, out-of-the-

box M-H is doomed to fail as good mixing conditions can not be be achieved with
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non-adaptive proposal density in the M-H. Simple Rejection Sampling (RS) is not

ideal here, as a huge number of samples is going to be rejected due to poor choices

of possible envelopes. ARMS should be able to cope with the target density, as

long as we provide a good starting piece-wise envelope for a logarithm of the target

density. Starting density for WMC will be N (0, 1), which is on purpose picked as a

poor choice of a starting density, wavelet family was chosen to be Daubechies with

4 vanishing moments and coarsest and �nest resolution levels were set to jmin = −7

and jmax = 12. For the ARMS algorithm, local and global modes of the target

density where provided as initial construction points for the log-envelope (Figure

4.12). A proposal density for M-H algorithm was chosen to be N (xi, 452), where xi

is a current point in the Markov Chain.
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Figure 4.13: Comparison of means and associated con�dence intervals of di�erent

sampling methods together with di�erences in sample standard deviations.

Inspecting results in Figure 4.14, we can clearly see that both samples produced by
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Figure 4.14: Comparison of results for WMC, ARMS and M-H samples. Associated

K-S test statistic is attached to each plot together with autocorrelation function below

for in-sample dependence comparison.
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WMC and ARMS did pass the K-S test for the sample comparison with the target

density, while M-H algorithm failed as expected. In addition to this, from the

autocorrelation function plots, we can observe that samples produced by WMC

indicate no dependences within samples, while in ARMS there is a clear correlation

present with �rst two lags, as expected again for M-H case, the algorithm indicates

high correlation for all lags up to 20. In addition to these results, we can compare

sample means and standard deviations of the methods to the ones of the target

density in Figure 4.13. As we can observe in WMC case the con�dence interval of

the sample mean includes the truth, which could not be observed in other two cases.

Similarly for standard deviations, WMC seems to be producing samples with spread

that is the closest to the target distribution of all three used methods.

All in all, the out-of-the-box performance of the WMC in the one dimensional

setting, using non-optimal choice of a starting distribution, looks to be a very

satisfactory one. Compared to a couple of more classic choices of ARMS and M-H,

the dependence of samples is eliminated. Furthermore, the ease of implementation

of WMC does not require a user to tinker much with starting envelopes, adaptive

proposal distributions to ensure the optimal acceptance rates and mixing.
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Chapter 5

Practical issues of WMC

In this chapter, we will analyse issues surrounding WMC. Some of the issues

discussed here will be related to problems encountered more generally in stochastic

simulation, such as computing normalising constants and ratios of those (�5.1) and

practicality of the algorithm in a high dimensional setting (�5.2). However, some

of the problems that we discuss here are unique to WMC: attractor regions (�5.3),

ghost points (�5.4) and outliers (�5.5).

5.1 Ratio of normalising constants

5.1.1 Background

Access to the normalisation constant of the unnormalised probability density π(x)

of interest usually also implies access to the perfect knowledge about moments of

the density itself. The ability to e�ciently integrate a density and compute

Kπ =

∫
π(y) dy, (5.1.1)
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means that E[Y ], Var[Y ] and higher moments could be known explicitly by

performing similar integration procedures. In the scenario where this type

of integration can be performed analytically, sampling algorithms are usually

redundant. Given a high dimensional problem, numerical integration techniques

give way to sampling methods. In particular, MCMC methods such as Metropolis-

Hastings (M-H) avoid computation of the normalisation constant. In the M-H

algorithm, the acceptance probability α, only depends on the unnormalised target

density π(·) and transition kernels q(·|·);

α = min
(

1,
π(x∗)q(x∗|x)

π(x)q(x|x∗)

)
. (5.1.2)

The normalisation constant Kπ cancels out and hence does not need to be known

explicitly to guarantee that correct samples are being generated from the target.

This particular feature is one of the most useful qualities of the MCMC approach,

that allows us to completely disregard complex integrals when the dimensionality of

a problem is high.

On the other hand, WMC seems to be highly dependent on the value of ratio of

normalising constants r (equation (5.1.3)). The intermediate density

ft(x) = rf(x) + td(x)

must integrate to 1 for the WMC algorithm to work. Therefore, poor estimates

of r will produce samples that are not from the target distribution. It seems that

before even implementing the WMC scheme, a quite complicated task of estimating

the ratio of normalising constants needs to be performed. The literature regarding

estimation of normalising constants and their ratios is extensive (Meng & Wong

1996) and deserves separate investigation. In this thesis, this issue will not be

addressed fully; however, a possible method of estimating r will be given later in

this section.
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TheWMC theory is proved to hold (proofs on pages 44 and 50) under the assumption

that there exists access to the ratio of normalising constants

r =

∫
g(y) dy∫
f(x) dx

. (5.1.3)

In practice, Kf =
∫
f(x) dx is usually known to beKf = 1 because we tend to choose

convenient density from which we can sample directly and it is already normalised.

In this case, although we are only interested in the ratio r, we implicitly need to

estimate the normalisation constant of the target density g(·). In a more general

setting, the density f(·) of a starting distribution could be unnormalised and in fact

the sampling procedure with which samples are obtained from f(·) is not direct,

leading to a situation where both Kf and Kg are unknown. However, even with

both normalisation constants unknown, only the ratio itself needs to be estimated,

leaving us with only one unknown quantity to be estimated rather than two.

5.1.2 Estimation of normalisation constant

Recall (2.3.9) that any function g(·) ∈ L2(R), in our case g(·) is a density, can be also

written in terms of both φj0,i and ψj,i wavelets rather than only using the mother

wavelet ψj,i,

g(x) =
∑
i

gφj0,iφj0,i(x) +
J∑

j≥j0

∑
i

gψj,iψj,i(x). (5.1.4)

Integrating both sides of (5.1.4) we obtain the representation of the normalisation

constant in terms of wavelets and their coe�cients,

Kg =

∫
g(y) dy = cj0

∑
i

gφj0,i, (5.1.5)

using
∫
ψj,i(x) dx = 0 ∀ j, i and noting that

∫
φj0,i(x) dx = cj0 ∀ i. In the previous

step, we have assumed the exchangeability in the order of in�nite sums and in�nite

integrals, however the validity of this action cannot be guaranteed.
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Knowing that we are able to produce samples from a starting distribution, we will

use this fact to estimate gφj0,i, which can be written as

gφj0,i =

∫
g(x)φj0,i(x)dx =

∫
g(x)

f(x)
φj0,i(x)f(x)dx. (5.1.6)

From (5.1.6), we can rewrite the coe�cient gφj0,i in terms of the expectation with

respect to a starting density f(·),

gφj0,i = Ef
[
g(x)

f(x)
φj0,i(x)

]
. (5.1.7)

Let {xk,i}nk=1 be a sample from a probability distribution with density f(·), where

the subscript i denotes that this is the sample for the estimation of the coe�cient

gφj0,i. Then

ĝφj0,i =
1

n

n∑
k=1

g(xk,i)

f(xk,i)
φj0,i(xk,i) (5.1.8)

forms an estimate for the father wavelet coe�cient gφj0,i. Therefore, using this

estimate directly in Equation (5.1.5), we get

Kg ≈
cj0
n

∑
i

n∑
k=1

g(xk,i)

f(xk,i)
φj0,i(xk,i). (5.1.9)

This particular method could be seen as a direct application of the Importance

sampling (IS) algorithm (Kahn & Harris 1951). The estimation of normalisation

constants and ratios of constants has been a relevant topic and advanced methods

have been developed to tackle this issue. E�cient MCMC methods could be

employed to estimate ratio of normalising constants (Neal 2005, de Valpine 2008).

However, given that MCMC itself needs to be used just to get accurate estimate of

r, it raises a question why not stick to MCMC sampling directly, skipping the step

of estimating the ratio r beforehand. The answer to this di�cult question will be

apparent in the future chapters of this thesis.
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5.1.3 Results under the misspeci�cation of the ratio of

normalising constants

Here, we present the analysis of how sensitive results of WMC are to the

misspeci�cation of the ratio of normalising constants,

r =
Kg

Kf

.

In practice, we would normally start with f(·) that is normalised, Kf = 1, so usually

we would face a situation when r = Kg, and the misspeci�cation in Kg is equivalent

to the misspeci�cation in r. We will use the univariate example presented in �4.1.1

to perform the analysis. We will also stick to the same choice of parameters as

before; however, this time we will on purpose misspecify the normalisation constant

of the target g(·), in �4.1.1 we had it set to Kg = 1. In a perfect scenario, when both

f(·) and g(·) are normalised, we end up with r = 1. Here, we will run simulations

of WMC with,

0.5 ≤ r ≤ 1.5.

In each WMC simulation run, we will produce 10000 samples and will compute

metrics, to measure the discrepancy from the ideal target. The metrics that we

will look at, will be � mean, median, standard deviation, and a p-value from the

Kolmogorov�Smirnov test for a two-sample comparison. Results of simulations could

be inspected in Figure 5.1.

From the results, we can clearly see that for r = 1, across all metrics, we produce

results that are in satisfactory ranges from the target. In particular, the target mean

is within the expected range of the error bars for the sample mean and the standard

deviation together with the median are relatively close to the target as well. Given

that we are able to produce samples from g(·), with Kg = 1, directly (due to a

construction) we can perform a two sample K-S test to test the hypothesis, if two

samples were produced from the same distribution. For r = 1, with p-value > 0.6
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Figure 5.1: Four plots of four di�erent metrics; mean, median, standard deviation

and p-value of K-S test � plotted against the ratio of normalising constants r.

Each value of the metric for a given r was calculated over a sample of 10000 points

produced via WMC.
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we fail to reject the hypothesis that samples came from di�erent distributions. So,

for r = 1 the WMC algorithm is indeed performing satisfactory. Unfortunately, in

practice we must face cases where we do not have a perfect information about the

normalisation constant of our target density g(·). At best, we are able to workout

an estimate for the normalisation constant Kg. Results show that for sample mean

we get a linear decrease in mean as r ranges from 0.5 to 1.5. From this experiment

we can see that the penalty for underestimating r seems to be greater compared to

overestimating � tests would conclude that WMC samples were produced from the

desired target for all cases 0.9 ≤ r ≤ 1.2.

We can also observe that for this particular choice of f(·) and g(·) the

misspeci�cation in r mainly a�ects the location metrics and has relatively small

e�ect on the variation. In particular, the maximum departures from the target for

sample standard deviation seem to be less than 1%.

In summary, we can see that having a slight misspeci�cation in a ratio r can still

lead to surprisingly positive results. Clearly, `slight misspeci�cation' is a case-

dependent statement. A more analytic approach towards the analysis of how the

error in r translates to errors in samples at this moment seems intractable, therefore

conclusions can only be drawn on the case-speci�c level.

5.2 Curse of dimensionality

As was already discussed in the Section 4.4, the number of wavelet coe�cients dψj,i

that needs to be computed grows geometrically with the dimension of the space d

that target density g : Rd 7→ R is de�ned on.

Given a point xt at time t, we require

(2K − 1)d
d∏

k=1

(jk,max − jk,min) (5.2.10)
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coe�cients to be estimated at every intermediate step of the WMC run. By

calculating these coe�cients, we are essentially locally integrating∫
d(x)ψj,i(x) dx (5.2.11)

for all values of j ∈
⊗d

k=1[jk,min, jk,max] and {i : xt ∈ supp(ψj,i(x)}. As the

dimensionality of the space grows, the space gets more complex and the total

number of coe�cients required to capture details of the space grows geometrically.

This feature could not be avoided, which poses serious e�ciency issues for the

implementation of WMC in high dimensional settings.

5.3 Haar wavelets and attractor region

So far, we have only focused on working with wavelets from Daubechies family and

more precisely with those wavelets whose number of vanishing moments is K ≥ 2.

The question arises � what is the problem of choosing wavelets withK = 1? It turns

out that Daubechies wavelets with only one vanishing moment are Haar wavelets.

The major problem with Haar wavelets is that, due to their construction, they are

not able to transition probability mass across the origin. Figure 5.2 demonstrates

the origin crossing problem associated with Haar family.

So, we would like to avoid families of wavelets ψj,i(x) whose integer shifts do not

overlap. In particular, we must pick ψj,i(x), such that

supp{ψj,i(x)} ∩ supp{ψj,i+1(x)} 6= ∅. (5.3.12)

If this condition is not satis�ed wavelets are not able to transition a probability mass

across the origin, in addition to this, attractor regions will be created. If wavelets

used in the WMC algorithm do not meet the condition (5.3.12) of overlapping

supports, then it is guaranteed that attractor regions will be created in which points
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Figure 5.2: On the left side have been plotted Haar wavelets ranging from resolution

levels jmin = −4 to jmax = 4 and location i ∈ {−1, 0}. It could be observed that

not a single Haar wavelet plotted contains the origin x = 0 (red vertical line) inside

its support, such that it is not a boundary point of a support region. On the other

hand, Daubechies wavelet with K = 2 on the right at each resolution level contains

3 wavelets that envelope the origin. For demonstration purposes the plotted wavelet

is ψ1,−2 and it clearly contains the origin inside its support, allowing for probability

mass transfer across x = 0.

will be stuck during the WMC run and will no longer have any chance of reaching

a target.

De�nition 5.3.1. Let IA = (a, b) be an interval for some a, b ∈ R, a < b, such that,

jmax∑
j=jmin

∑
i∈Z

[dψjiψji(x)]− = 0, ∀x ∈ IA, (5.3.13)
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then IA is an attractor region.

Proposition 5.3.1. Let IA = (a, b) for some a, b ∈ R be an attractor region, then

∀x ∈ IA the associated survival time is t =∞.

0.
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Starting

Figure 5.3: A starting and the target distribution were both chosen to be normal

ones with the same variance but di�erent location parameter. Wavelets used in the

WMC were set to be Haar with the coarsest resolution level jmin = −3 and the �nest

one jmax = 8. As one can notice, the attractor region was formed around the point

x = 16, which is a support boundary that is being shared across all resolution levels

between jmin and jmax for the Haar wavelet.

From the proposition above it follows that points x ∈ IA will never move and

automatically will be accepted as samples from the target. The only known wavelet

family that exhibits the attractor region phenomena is Haar, Figure 5.3 demonstrates

this problem. Given that IA exists, it is quite clear that condition (5.3.13) leads to

an in�nite survival time being sampled.
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Proof of Proposition 5.3.1. For each xt on which the WMC is being performed, the

survival time is going to be sampled via the inverse transform from the Exponential

distribution or the Generalized Pareto distribution (3.3.2),

t = s− f(xs)

c(xs)
log us

for the exponential case, where us ∼ U(0, 1) and

t = s+
(f(xs)

d(xs)
+ s
)(
u−d(xs)/c(xs)
s − 1

)
for the GPD case, where as before we denote

c(xs) =

jmax∑
j=jmin

∑
i∈Z

[dψj,iψj,i(x)]−,

with the only di�erence that the sum over resolution levels is restricted, accounting

for the limited computational power. If c(xs) = 0, in both cases time becomes

in�nite t =∞.

However, a more important part is to prove that attractor regions do exist. Before

going into a technical proof, it is not di�cult to convince oneself of the existence of

these regions by inspecting Figure 5.4. Although, only Haar wavelets are doomed

to experience the attractor region problems, in practice one would like to pick a

wavelet family with many vanishing moments to avoid the possibility of introducing

regions where points are likely to stay much longer than needed.

Proposition 5.3.2 (Existence of attractors in 1-D). Let the coarsest and the �nest

resolution levels be jmin ∈ Z and jmax ∈ Z respectively, with jmax > jmin.

(a) Let H={ψj,i(x)} for j ∈ {jmin, ..., jmax} and i ∈ Z be a set of Haar wavelets.

(b) Let d(x) ∈ L2(R) be a di�erence function, as in (3.1.6), with an in�nite

support, such that for |x| > N , N ∈ R, it decays monotonically to 0 as

|x| → ∞.
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Figure 5.4: For Haar wavelets there will always be a dyadic point which is going

to be shared by exactly one wavelet from each resolution level as a boundary of the

wavelet support. In this illustration the restricted range of the resolution levels is

j ∈ {0,−1,−2} and as we can see point x = 4 is the common support boundary point

for exactly one wavelet from each resolution level. Due to a monotonic decrease in

the di�erence function the associated wavelet coe�cients dψji with wavelets depicted

in this plot will be strictly positive. Furthermore, the attractor region strip is the

only region where for all values of x in the strip we have ψj,i(x) > 0. If we denote

the attractor region strip IA, then ∀x ∈ IA,
∑0

j=−2

∑
i[d

ψ
j,iψj,i(x)]− = 0, which would

lead to the t = ∞ survival time associated with all points in the IA. Magnitudes of

the wavelets in the plot were scaled down for the illustration purposes.

If the above conditions (a) and (b) hold, then there exist an in�nite number of

attractor regions which take the form of IA = (a, b), each with di�erent values of

a ∈ R and b ∈ R.
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Proof of Proposition 5.3.2. Let us split the proof into three parts.

1. Given any point x ∈ R and the set of Haar family wavelets ψj,i, j, i ∈ Z,

|j| < ∞, we have that at each resolution level j there is only a single Haar

wavelet ψj,i for some speci�c i, which envelopes the point x, i.e. supp(ψj,i) 3 x.

For each Haar wavelet ψj,i the support is of the form

Ij,i = [i2−j, (i+ 1)2−j).

So, for the coarsest resolution level jmin, locations of the left boundary of

supports are located at points i2−jmin . We make a key observation � the left

boundary of the support i2−jmin of the wavelet ψjmin,i is going to be shared by

exactly one wavelet ψn,k for each �ner resolution level jmin < n ≤ jmax and

some speci�c value k(n) ∈ Z. The value of k is dependent on the resolution

level n and here could be seen as a function of n. By sharing a support point

we mean that if supp
(
ψj,i
)

= [a, b) and supp
(
ψn,k

)
= [a, c), then wavelets ψj,i

and ψn,k share a common support boundary a.

Let our coarsest wavelet be ψjmin,i1 for some value i1. Then we have i12−jmin

for the left boundary of the support. Now, let jf > jmin be a �ner resolution

level and so a wavelet ψjf ,i at the �ner resolution jf has the support of the

form [i2−jf , (i+ 1)2−jf ). For these two wavelets ψjmin,i1 and ψjf ,i to share left

boundary of the support we require

i2−jf = i12−jmin (5.3.14)

i.e. i = i12jf−jmin . So, the value of i depends on the resolution levels and the

reference location i1. Therefore, for given resolution levels jmin and jmax, and

the reference location i1, there will always exist a set of wavelets

{ψjmin,i1 , ψjmin+1,i2 , ..., ψjmax,ijmax−jmin+1
}, (5.3.15)
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with some speci�c computable values {i2, ..., ijmax−jmin+1}, that depend on

the reference location i1, whose supports will satisfy the following inclusion

principle,

[C, (i1 + 1)2−jmin) ⊃ [C, (i2 + 1)2−(jmin+1)) ⊃ · · · ⊃ [C, (ijmax−jmin+1 + 1)2−jmax).

(5.3.16)

C ∈ R highlights the idea that the left part of the support is always the same,

C ≡ i12−jmin in this case.

If d(x) ∈ R is a di�erence function that ∀|x| > N , N ∈ R, decays to 0

monotonically as |x| → ∞, then ∃M ∈ R, M > N , and i1 ∈ Z such that

max
|x|>M

ψjmin,i1(x) > d(x). From which follows,

max
x

ψjmax,ijmax−jmin+1
(x) > · · · > max

x
ψjmin,i1(x) > d(x). (5.3.17)

By the construction of Haar wavelets, maximum and minimum values of each

ψj,i(x) are attained on intervals [i2−j, (i+1)2−j−1) and [(i+1)2−j−1, (i+1)2−j)

respectively. Given that we have a set of wavelets as described in (5.3.15), and

both (5.3.16) and (5.3.17) hold, we can conclude that the part of the support

IA = [ijmax−jmin+12−jmax , (ijmax−jmin+1 + 1)2−jmax−1)

of the �nest resolution wavelet ψjmax,ijmax−jmin+1
on which this wavelet takes

its maximum value, will also be contained by all coarser wavelets and those

coarser wavelets will attain their maximums at this part of their support as

well. Hence, we have found explicitly for a given coarsest resolution level and

location pair (jmin, i1), and the �nest resolution level jmax a corresponding

interval IA = (a, b), such that if x ∈ IA, then

ψji(x) > d(x) > 0, ∀ψj,i(x) ∈
{
ψj,i(·) ∈ H | supp

(
ψj,i(·)

)
3 x
}
. (5.3.18)

2. For the second part, let us write down the de�nition of a mother wavelet

coe�cient explicitly,

dψj,i =

∫
x∈R

d(x)ψj,i(x)dx. (5.3.19)
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If we are working with Haar wavelets, then the Equation (5.3.19) could be

written as

dψj,i = 2j/2
∫
x∈[i2−j ,(i+1)2−j−1)

d(x)dx− 2j/2
∫
x∈[(i+1)2−j−1,(i+1)2−j)

d(x)dx.

Given that (b) in the proposition holds, we can set N = i12−jmin , for i1 � 0

(i.e. when monotonic decay property of d(x) starts to apply), and now ∀x > N

it implies that

2j/2
∫
x∈[i12−j ,(i1+1)2−j−1)

d(x)dx > 2j/2
∫
x∈[(i1+1)2−j−1,(i1+1)2−j)

d(x)dx, (5.3.20)

which in turn implies dji > 0 for all wavelets ψj,i ∈ H in the region x > N .

Therefore, combining the result in part 1 with this observation we conclude

that if

x ∈ IA =
[
i12−jmin , (ijmax−jmin+1 + 1)2−jmax−1

)
for some given jmin, jmax, and the reference location i1, then ψji(x) > 0 and

dji > 0 for j ∈ {jmin, ..., jmax} and i ∈ Z. Therefore, ∀x ∈ IA

[ψji(x)dji]
− ≡ 0,∀j ∈ {jmin, ..., jmax},∀i ∈ Z.

Hence,
jmax∑
j=jmin

∑
i∈Z

[dψj,iψji(x)]− = 0, ∀x ∈ IA. (5.3.21)

3. Finally, given that (5.3.18) and (5.3.21) are proved to hold under the

required conditions and for the arbitrary choice of a reference location i1, the

generalisation of an in�nitely many attractor regions IA is straightforward.

Let the reference location be i1 + l for l ∈ N, a new attractor region will be

found following steps described above. Hence, this completes the proof of the

proposition.



Chapter 5. Practical issues of WMC 104

5.4 Ghost points

Compared to points being stuck in attractor regions permanently, we now describe

`ghost points', which could be seen as the complete counter part to attractor regions.

De�nition 5.4.1. A point xg is called a ghost point if, after being sampled via some

wavelet ψj,i, it has an associated survival time tg ≡ 0.

From an inverse sampling algorithm for d(xs) = 0, where s is a current point in time

and t ≥ s is a survival point in time of xs,

t = s− rf(xs)

c(xs)
log us, (5.4.22)

we can clearly see that for c(xs) > 0 and f(xs) = 0 the associated survival time is

equal to the previous one t = s, indicating that a point xs has not advanced the

process in time at all. So ghost points could be seen as intermediate sample points

xg that were sampled from the zero probability region, xg /∈ supp(f) ∪ supp(g).

A sampled ghost point xg exists for a zero amount of time and although it is sampled,

the WMC process leaves that point immediately. Clearly, these points are not

desired, as computational power is wasted on sampling them in the �rst place only

to �nd out that this survival time is zero and hence WMC has not advanced in time

towards the target sample. The most important question here is, why are these

points being sampled in a �rst place?

This phenomena could be demonstrated using two uniform distributions. In Figure

5.5 intermediate points were sampled in regions of zero probability. This is a very

serious issue as it contradicts the claim that all intermediate points xt come from

intermediate distributions ft(·), t ∈ [0, 1]. The only way that a point sampled

from f(·) is moved to the region of g(·) is if chosen wavelet ψj,i envelopes at least

partially supports of a starting and the target distribution. Figure 5.6 shows an
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Figure 5.5: Demonstration of the existence of ghost points using two uniform

distribution with K = 2 and Nd = 200. Given that PDF and survival time takes

values between 0 and 1, the vertical axis corresponds to both. Given that f(xg) = 0

and g(xg) = 0, the survival time of ghost points is 0.

example where a chosen wavelet includes a zero density region in its support. This

means that there exists a non-zero probability that a sampled intermediate point

will fall in the zero density region of ft(·). This is exactly what happens in practice,

leading to many points being sampled from regions of zero density. As intermediate

points xt generated by the WMC process do not necessarily come from a distribution

with density ft(·), Theorem 3.3.2 is put into question, requiring one to update and

reformulate assumptions of Proof 3.3.

A simulation was performed using two uniform distributions identical to as in Figure

5.5. The idea was to produce 100 samples from the target distribution U [5, 6]

using samples from U [−5,−3] and to monitor how many intermediate points were

produced from zero density regions, i.e. how many points were generated that did



Chapter 5. Practical issues of WMC 106

−5 0 5 10

−
0.

5
0.

0
0.

5
1.

0

● ●

Figure 5.6: Daubechies K = 2 transition wavelet ψ−2,−1 partially envelopes f(·) and

fully envelope g(·), however it also covers the zero density region in between. The

selection of such a wavelet would potentially lead to points being sampled from the

zero-density region.

not follow ft(·) at a given particular time. Daubechies wavelets with K = 2 and

Nd = 200 were used. Out of 910 sample points generated, 772 were sampled from

the zero-density region. That means that around 84% of the computing power was

wasted on points that should not have been generated in the �rst place. On average,

there were 7.72 ghost points generated to produce one sample from the target g(·).

In a situation when the choice of a starting and a target distribution creates zero

density regions, points that fall into them are immediately classi�ed as ghost points.

However, the situation is less clear when the starting and target densities have

in�nite support but there are regions of near zero-density. For instance, if we choose

the starting distribution to be N (−5, 1) and the target to be N (5, 1), then all

intermediate densities ft(·) formed will have a near zero-density region in between
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Figure 5.7: Example of semi-ghost points being generated in a situation when the

support is in�nite, supp(ft) = R, and there are regions of very low density.

x = −5 and x = 5 and as |x| → ∞ regions. Although intermediate points sampled

via WMC do belong to the support of the density ft(·), it should be quite unlikely

that points are sampled from regions of low density. Unfortunately, for the same

exact reason as before, points are being generated from low density regions and

Figure 5.7 illustrates this problem quite clearly. Instead of taking an optimal path,

semi-ghost points were generated leading to an ine�cient algorithm.

De�nition 5.4.2. A point xsg is called a semi-ghost point if after being sampled

via some wavelet ψj,i it has an associated survival time 0 < tsg � 1.

The examples demonstrated in Figure 5.5 and 5.7 use Daubechies wavelets with

K = 2, jmin = −8 and jmax = 11, which is more than enough to cover all the details

of the di�erence function. One might speculate that the ghost point phenomena

could be tied to the �nite computing power nature and imprecise implementation,
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however it is not the case. For example, what if wavelet coe�cients dj,i could be

computed exactly and one had an access to levels jmin = −∞ and jmax = +∞? Even

in this perfect scenario, there would always exist a positive probability q−2,−1 > 0

for the wavelet ψ−2,−1 to be selected as in Figure 5.6, therefore there would always

exist a possibility that an intermediate point would be sampled from a region that

does not belong to the support of the intermediate density ft(·).

5.5 Outliers

In the WMC setting, we call a point an outlier if it was falsely assigned a survival

time t = ∞. Previously, we have discussed attractor regions, places where points

could be stuck forever simply due to WMC having a �nite range of resolution levels

and using Haar wavelets. The only way that a point x could be assigned a survival

time of t =∞ is if
jmax∑
j=jmin

∑
i∈Z

[dψj,iψji(x)]− = 0, (5.5.23)

as discussed previously. However, in practice, we work with estimates of wavelet

coe�cients d̂ψj,i. This means that one bad estimate of dψj,i could determine whether

a point will be assigned a survival time t = ∞ or not. If for some j, i ∈ Z,

[dψj,iψji(x)]− > 0 with dψj,i < 0 and ψji(x) > 0, then a bad estimate with the opposite

sign d̂ψj,i > 0 would make [d̂ψj,iψji(x)]− = 0, which potentially could lead to the total

sum (5.5.23) being equal to 0. The idea to use estimates d̂ψj,i instead of true values

was to avoid complex integrals involved in computation of dψj,i. Unfortunately, by

doing so we introduce randomness in the estimates of wavelet coe�cients that could

lead to incorrect samples being produced via WMC. The only possible solution to get

rid of outliers is to increase the value of Nd that is responsible for how many values

are sampled from a positive ψ+
j,i and negative part ψ

−
j,i of the wavelet in computation

of the estimate d̂ψj,i. However, as discussed in Section 4.4, the execution time is highly
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dependent on the choice of Nd and large values slow down WMC signi�cantly.
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Figure 5.8: Left: kernel density (KD) estimate of the distribution associated with

estimate of Daubechies K = 2 wavelet coe�cient d̂ψj,i for j = 2, i = 1, being

sampled with Nd = 50. KD estimate was based on 5000 realisations of d̂ψj,i. The

di�erence function d(·) was constructed using f(·) and g(·) from the example in

�4.1.1. The distribution resembles a normal with µ = −0.0002 and σ = 0.0002,

which includes both positive and negative values of d̂ψj,i. Right: KD estimate of

ĉ(x) =
∑jmax

j=jmin

∑
i∈Z[d̂ψj,iψji(x)]− for x = −256 and jmax = 11, jmin = −8. The

density is concentrated around value 0 meaning that most of the time point x = −256

would be assigned t = ∞. Similarly KD estimate of ĉ(x) was based on 5000

realisations.

In Figure 5.8 we can examine the consequences of using d̂ψj,i estimates instead of

true values. As we go far away from the high density regions of a starting and a

target density, wavelets that cover high density regions of both f(·) and g(·) become

extremely stretched and require many more samples Nd to accurately estimate the

associated wavelet coe�cients. In Figure 5.8, kernel density estimation was used to

approximate the density function of the ĉ(x = −256) estimate, where as before for
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we use

ĉ(x) =

jmax∑
j=jmin

∑
i∈Z

[d̂ψj,iψji(x)]−,

but instead of c(x) we have ĉ(x), which highlights the fact that we are working with

estimates of the wavelet coe�cients and our resolution range is �nite. It is quite

clear that there is a positive probability that the point x = −256 will be accepted

as a sample from the target distribution even though it is far away from the high

density region and has practically zero probability of being a realistic sample from

the target g(·).

To see the e�ect of using estimates of wavelet coe�cients, we can investigate how

the value of ĉ(x) changes around high and low density regions of ft(·) (Figure 5.9

and 5.10), where ft(·) is as in the 1-D example from �4.1.1.
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Figure 5.9: The sampled version ĉ(x), computed around the high density region

x ∈ (−16, 16), using Nd = 1. Even when estimating d̂ψj,i by using a single value from

the positive and negative part of the wavelets, not a single outlier was detected.
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Figure 5.10: The sampled version ĉ(x), computed around the low density region

x ∈ (−260,−240), using Nd = 100. As one can see, there are many values for which

c(x) = 0, which would lead to outliers being produced. The only way to avoid this is

to lower the coarsest and increase the �nest resolution levels in addition to boosting

the value of Nd. For regions far away from the target, accurate computation needs

to be performed to get good quality estimates of wavelet coe�cients. In this case,

raising value to Nd = 100 has not helped at all, which in high density region would

be more than enough.

Outlier points are purely a consequence of using d̂ψj,i instead of true values dψj,i.

Introduced variance around the estimate does not always guarantee that

sgn(dψj,i) = sgn(d̂ψj,i),

where

sgn(x) =


1 , x > 0

0 , x = 0

−1 , x < 0
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This leads to situations where for certain values of x, ĉ(x) = 0, which in turn

implies an in�nite survival time for the point. Unfortunately, this issue could only be

suppressed but not tackled completely. The only possible solution is to increase the

value of Nd for very coarse wavelets, in a sense to make Nd adaptive to the resolution

level being used. Essentially, Nd(j) ∈ N becomes a function of a resolution level j.

This sort of set up requires separate analysis and potentially will be investigated in

the future.

5.6 Summary

In conclusion, there are a couple of key issues surrounding this topic that could be

dealt with and there are others that at this point are bound to the theory of WMC

and require further theoretical development.

In particular, the number of outlier points could be minimised or even potentially

reduced down to zero if careful analysis of Nd reveals an appropriate method for how

Nd should be controlled with respect to resolution levels. Ideally, making Nd(j) as

a function of the current resolution level should solve the outlier problem, as more

care would be given for coarse wavelet coe�cients.

The problem of attractor regions is tackled by not choosing the Haar wavelet.

Although attractor regions were proved to exist only for the choice of Haar wavelet

family, one might speculate the existence of these regions for wavelets with K > 1.

So far, simulation has not revealed any clues for the existence of IA when wavelets are

much smoother and their supports overlap. In addition to this, given the complex

theoretical nature of Daubechies wavelets, the proof for the existence/non-existence

of attractor regions for K > 1 seems to be intractable.

Furthermore, ghost points seem to be tied to the theory of the WMC itself and
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eradication of these points requires a theoretical �x. The good point is that a

solution to this issue could potentially decrease the execution time of the algorithm

substantially, as demonstrated with the example of two uniform distributions.

Finally, the ratio of normalising constants r and the curse of dimensionality are

likely to be the two major problems that need to be addressed directly before trying

to solve the outlier and ghost point issues. As was shown, the normalisation ratio r

stands as a separate di�cult problem that needs to be tackled before the execution of

WMC. Therefore, from this perspective WMC looks unattractive compared to other

sampling methods, for example MCMC family methods that completely ignore any

type of integrals. Lastly, the curse of dimensionality also is an intrinsic issue for

WMC. As the dimension grows, the total number of coe�cients d̂ψj,i required for the

algorithm grows geometrically. Therefore, at this stage of the development of WMC

theory, the algorithm is not able to e�ciently tackle problems of a dimensionality

d > 2.
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Chapter 6

Probability distribution of jumps

6.1 Motivation

In this chapter, we will focus on investigating the probability distribution of the total

number of jumps performed in a single WMC run. When a survival time t < 1 is

sampled for any point xs, a new point needs to be sampled to replace the old point.

The sampling of a new point represents a jump from a previous point. The total

number of jumps performed in WMC is related to the e�ciency of the algorithm

as was discussed brie�y in Section 4.4. It is important to be able to analyse the

probability distribution properties of the total number of jumps in WMC given a

starting distribution f(·) and some target g(·). Ideally, information on the average

number of jumps and the variance could be used as a tuning parameter for the choice

of a starting distribution, wavelet family and resolution levels.

We will investigate jump distribution in steps. Firstly, we will focus on a no-

jump probability, by asking a question � given a point xs, at time s, what is the

probability that no jumps will be performed and that point will be accepted right

away? Secondly, we will focus on a one jump probability and will try to generalise
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results to the n-jump case. Before going into the analysis, we brief the reader with

the most relevant notation that will be used throughout this chapter.

6.2 Notation and set-up

At �rst we will be interested in a probability distribution p(J = n|xs, s), where

n ∈ N0 is the number of jumps required to reach a target sample y ∼ g(·), given

we are at the point xs at a time 0 ≤ s < 1. In particular, we would like know the

expectation of the total number of jumps to the target from the point xs at time s,

E[J |xs, s] =
∞∑
n=0

np(J = k|xs, s). (6.2.1)

Here we will recap on the notation that will be used extensively in this chapter, the

list could be used to assist a reader following derivations in the next section:

� d(x) := g(x)− f(x): a di�erence function with r = 1,

� c(x) =
∑

ji[d
ψ
jiψji(x)]−: as de�ned in (3.3.19),

� ρ(x) := c(x)/d(x): we de�ne new function ρ(·) to simplify notation,

� fs(t|xs): the survival time density at a time s for a point xs as in (3.3.25),

� Fs(t|xs): the CDF of fs(t|xs), identical to (3.3.24).

6.3 Probability of zero jumps

Let the PDF and CDF of the survival time density for a point xs at a time s

be denoted fs(t|xs) and Fs(t|xs) respectively. In particular, they take form of a
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Generalised Pareto Distribution, �rst introduced in Section 3.3.1,

fs(t|xs) =
c(xs)

f(xs) + td(xs)

(
f(xs) + sd(xs)

f(xs) + td(xs)

)ρ(xs)−1

, t ∈ [s,∞),

and

Fs(t|xs) = 1−
(
f(xs) + sd(xs)

f(xs) + td(xs)

)ρ(xs)

, t ∈ [s,∞).

Then, the probability that we are interested in is

1− p(survival time for the point xs is t s.t. s ≤ t ≤ 1|xs, s),

which is,

p(J = 0|xs, s) = 1− Fs(t = 1|xs)

=

(
f(xs) + sd(xs)

f(xs) + d(xs)

)ρ(xs)

=

(
f(xs) + sd(xs)

g(xs)

)ρ(xs)

. (6.3.2)

Now that we have a functional form for p(J = 0|xs, s), we can investigate it in more

detail. This probability approaches 1 as s→ 1,

lim
s→1

p(J = 0|xs, s) = 1.

Given that we are at a starting point x0 ∼ f(·), we know that the probability for

this point to perform zero jumps and be accepted as a sample from the target g(·)

is

p(J = 0|x0, s = 0) =

(
f(x0)

g(x0)

)ρ(x0)

(6.3.3)

and from the expression of p(J = 0|x0, s = 0) we can clearly see that probability

of making zero jumps approaches 1 as f(x) becomes more similar to g(x). Having

chosen the starting distribution f(·), the exponent ρ(x) remains the only object that

could in�uence the value of the probability as the value of ρ(x) depends on the choice

of the wavelet family. After exploring Figure 6.1, where Daubechies wavelets with
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Figure 6.1: Plot of p(J = 0|x0, s = 0) for the starting distribution U(−10, 10) and

the target same as in equation (4.1.1), using Daubechies wavelets with K = 2.

K = 2 vanishing moments were used, we are interested in comparing how signi�cant

the di�erence is between pK=6(J = 0|x0, s = 0) and pK=2(J = 0|x0, s = 0), where

by K = 6 and K = 2 subscripts we are referring to the Daubechies wavelet family

used. From Figure 6.2, it is quite clear that in this scenario the choice of the

Daubechies wavelet family does not impact the zero-jump probability signi�cantly,

where the maximum di�erence is approximately around±1%. Given the dependence

of p(J = 0|x0) on both f(·) and g(·), a more theoretical investigation of jump

probabilities becomes highly dependent on the assumptions of the families of both

distributions, for this reason we will try to simplify the problem as much as possible

to begin with.

We investigate jump probabilities when the target distribution g(·) is close to the
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Figure 6.2: Comparison of the zero jump probabilities for a starting point x0 ∼ f(·)

between K = 6 and K = 2 Daubechies wavelets. Plotted is di�erence pK=2(J =

0|x0, s = 0)− pK=6(J = 0|x0, s = 0).

starting distribution f(·). For this reason, we de�ne our target density to be

g(x) = f(x) + δh(x), 0 < δ � 1, (6.3.4)

where we have assumed r = 1 for simplicity and where h(x) is some reasonably well

behaved function in L2(R), with∫ +∞

−∞
h(x) dx = 0, (6.3.5)

such that, ∫ +∞

−∞
g(x) dx = 1, g(x) ≥ 0, ∀x ∈ R. (6.3.6)

So, using (6.3.4), we have

d(x) = δh(x).
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With δ parameter in (6.3.4), we can control how close the target is to the starting

distribution (and for δ = 0 we recover our starting distribution). Therefore, we are

interested in investigating the behaviour of p(J = 0|x0, s = 0) for small values of δ.

We note that, if g(x) is of the form (6.3.4), then ρ(x) is independent of δ,

ρ(x) =

∑
j,i[δh

ψ
j,iψj,i(x)]−

δh(x)
=

∑
j,i[h

ψ
j,iψj,i(x)]−

h(x)
.

The �rst-order Taylor expansion of equation (6.3.2) at δ = 0 is,

=

(
f(x) + sδh(x)

f(x) + δh(x)

)ρ(x)

= 1 + δ

[
ρ(x)

(
f(x) + sδh(x)

f(x) + δh(x)

)ρ(x)−1
sh(x)(f(x) + δh(x))− h(x)(f(x) + sδh(x))

(f(x) + δh(x))2

]
δ=0

+O(δ2),

= 1 + δ

(
ρ(x)

sh(x)f(x)− h(x)f(x)

f(x)2

)
+O(δ2),

= 1 + δ(s− 1)
ρ(x)h(x)

f(x)
+O(δ2),

and from the de�nition of ρ(x) we obtain,

= 1 + δ(s− 1)

∑
j,i[h

ψ
j,iψj,i(x)]−

f(x)
+O(δ2).

Substituting this Taylor expansion into (6.3.2), we obtain,

p(J = 0|xs) = 1 + δ(s− 1)

∑
j,i[h

ψ
j,iψj,i(xs)]

−

f(xs)
+O(δ2). (6.3.7)

We also note that the second term in (6.3.7) is closely related to the underlying

assumption A2 of the pWMC method on p.43,

A2 :
∑
j∈Z

∑
i∈Z

[dψj,iψj,i(x)]− ≤ rf(x) ∀x ∈ R. (6.3.8)

For convenience, we de�ne

σ(x) :=
∑
j,i

[hψj,iψj,i(x)]−. (6.3.9)
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Then, using (6.3.9), expansion (6.3.7) becomes

p(J = 0|xs, s) = 1 + δ(s− 1)
σ(xs)

f(xs)
+O(δ2). (6.3.10)

As expected, the probability of zero jumps in WMC approaches 1 as δ → 0.

Furthermore, as time parameter s→ 1, this probability also approaches 1.

6.4 Probability of one jump

To start the analysis of the probability of one jump given we are at xs0 at time

s0, we will derive the �rst-order Taylor expansion of the joint probability p(J =

1, xs1|xs0 , s0), where xs1 denotes the point to which we jump next at time s1. Based

on the expression (6.3.10) for p(J = 0|xs, s), we would expect the �rst leading term

to be proportional to

1− p(J = 0|xs0 , s0) ≈ δ(1− s0)
σ(xs0)

f(xs0)
.

The joint probability that we are interested in is

p(J = 1, xs1|xs0 , s0) =

∫ 1

s0

fs0(s1|xs0){1− Fs1(t = 1|xs1)} ds1, (6.4.11)

where fs0(s1|xs0) and Fs1(t = 1|xs1) are as described in recap on notation in Section

6.2. The integral (6.4.11) comes from the observation that we sample a survival

time s1, s0 ≤ s1 < 1, for point xs0 and then point x(s1) survives past t = 1. Given

that s0 ≤ s1 < 1, we need to integrate s1 to get the probability p(J = 1, xs1|xs0 , s0).

It is clear, that for general f(·) and g(·), computations of the integral above become

intractable. Therefore, this motivates using a similar approach to simpli�cation as

in (6.3.4).

We will �rst derive the Taylor expansion of the integrand of (6.4.11) and then will

focus on its integration. In the previous section we derived the Taylor expansion of
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1 − Fs(t = 1|xs) in (6.3.10), so we now need only to expand fs0(s1|xs0) up to the

�rst order:

fs0(s1|xs0) =

(
c(xs0)

f(xs0) + td(xs0)

)(
f(xs0) + s1d(xs0)

f(xs0) + td(xs0)

)c(xs0 )/d(xs0 )−1

after substituting c(xs0) = δσ(xs0) and d(xs0) = δh(xs0) we obtain

=

(
δσ(xs0)

f(xs0) + tδh(xs0)

)(
f(xs0) + s1δh(xs0)

f(xs0) + tδh(xs0)

)ρ(xs0 )−1

expanding the �rst and the second part of the product separetely we get

=

(
δ
σ(xs0)

f(xs0)
+O(δ2)

)(
1− δs1

σ(xs0)

f(xs0)
+O(δ2)

)
.

We are only interested in the �rst leading term, therefore after multiplying terms in

two brackets above we end up with

fs0(s1|xs0) = δ
σ(xs0)

f(xs0)
+O(δ2). (6.4.12)

Now taking a product of (6.3.10) and (6.4.12), and plugging values into the integral

(6.4.11), we get the Taylor expansion that we were aiming for:

p(J = 1, xs1|xs0 , s0) = δ
σ(xs0)

f(xs0)

∫ 1

s0

ds1 +O(δ2).

After evaluating the integral we obtain the �nal form

p(J = 1, xs1|xs0) = δ(1− s0)
σ(xs0)

f(xs0)
+O(δ2), (6.4.13)

as predicted at the start of this section. Given the absence of xs1 in the leading term

of the expression (6.4.13), we can also conclude that from (6.4.11)

p(J = 1|xs0 , s0) =

∫ +∞

−∞
p(J = 1, xs1|xs0)fs1(xs1) dxs1 = δ(1− s0)

σ(xs0)

f(xs0)
+O(δ2),

(6.4.14)

where fs1(xs1) is the PDF for the point xs1 and we used it to integrate this

intermediate point out.
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6.5 Generalised probability of n jumps

6.5.1 Probability of 2 and n jumps

To investigate probability of 2 jumps, we extend expression (6.4.11), to obtain

p(J = 2, xs1 , xs2|xs0 , s0) =

∫ 1

s0

∫ 1

s1

fs0(s1|xs0)fs1(s2|xs1){1− Fs2(t = 1|xs2)} ds2 ds1.

(6.5.15)

Where the logic behind the integral is the same as before, except we have an

additional jump to point xs2 which introduces an additional integral for the time

point s2. Although integral becomes more complex, the repeating pattern of the

integral allows us to solve this problem rather easily. Similarly as before for (6.4.11),

after performing �rst-order Taylor expansion we multiply all necessary integrand

parts and obtain

p(J = 2, xs1 , xs2|xs0 , s0) = δ2σ(xs0)

f(xs0)

σ(xs1)

f(xs1)

∫ 1

s0

∫ 1

s1

ds2 ds1 +O(δ3). (6.5.16)

We can observe that expression (6.5.16) could be generalised quite straightforwardly

to the n-case,

p(J = n, xs1 , ..., xsn|xs0 , s0) = δn
n−1∏
i=0

σ(xsi)

f(xsi)

∫ 1

s0

∫ 1

s1

...

∫ 1

sn−1

dsn... ds2 ds1 +O(δn+1).

(6.5.17)

To �nalise general formula (6.5.17) we require to solve the integral∫ 1

s0

∫ 1

s1

...

∫ 1

sn−1

dsn... ds2 ds1. (6.5.18)

Given the apparent symmetry of the integral (6.5.18), we will �rst focus on working

out the value of

IJ=n(s0) =

∫ 1

s0

...

∫ 1

sn−1

dsn... ds1,
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for the �rst few values of n:

IJ=1(s0) =

∫ 1

s0

ds1 = 1− s0,

IJ=2(s0) =

∫ 1

s0

∫ 1

s1

ds2 ds1 =
1

2
− s0 +

s2
0

2
,

IJ=3(s0) =

∫ 1

s0

∫ 1

s1

∫ 1

s2

ds3 ds2 ds1 =
1

6
− s0

2
+
s2

0

2
− s3

0

6
,

IJ=4(s0) =

∫ 1

s0

∫ 1

s1

∫ 1

s2

∫ 1

s3

ds4 ds3 ds2 ds1 =
1

24
− s0

6
+
s2

0

4
− s3

0

6
+
s4

0

24
.

At �rst the pattern might not be so apparent, however rewriting coe�cients in a

more convenient way might reveal it:

IJ=1(s0) =
1

1!

(s0
0

0!

)
− 1

0!

(s1
0

1!

)
,

IJ=2(s0) =
1

2!

(s0
0

0!

)
− 1

1!

(s1
0

1!

)
+

1

0!

(s2
0

2!

)
,

IJ=3(s0) =
1

3!

(s0
0

0!

)
− 1

2!

(s1
0

1!

)
+

1

1!

(s2
0

2!

)
− 1

0!

(s3
0

6!

)
,

IJ=4(s0) =
1

4!

(s0
0

0!

)
− 1

3!

(s1
0

1!

)
+

1

2!

(s2
0

2!

)
− 1

1!

(s3
0

3!

)
+

1

0!

(s4
0

4!

)
.

Putting coe�cients in this form the pattern is clear, hence we can write down the

formula for IJ=n(s0),

IJ=n(s0) =
n∑
i=0

(−1)i
1

(n− i)!

(si0
i!

)
=

1

n!

n∑
i=0

(
n

i

)
(−s0)i1n−i

observing that this is a binomial expansion we �nalise our result

=
(1− s0)n

n!
. (6.5.19)
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Having worked out the value of IJ=n(s0) for n ∈ N0 we �nally arrive at the �nal

form of the joint probability of n ≥ 1 jumps together with visiting points xs1 , ..., xsn ,

conditional on a starting point xs0 ,

p(J = n, xs1 , ..., xsn|xs0) = δnIJ=n(s0)
n−1∏
i=0

σ(xsi)

f(xsi)
+O(δn+1), n ≥ 1. (6.5.20)

We are interested in p(J = n|xs0), therefore we next proceed to integrate

intermediate points xs1 , ..., xsn to get a functional form for p(J = n|xs0) up to a

�rst leading term. Essentially we need to solve the integral

p(J = n|xs0 , s0) =

∫ +∞

−∞
...

∫ +∞

−∞
p(J = n, xs1 , ..., xsn|xs0)

n∏
i=1

fsi(xsi) dxsn ... dxs1 ,

(6.5.21)

up to a �rst leading term, where each fsi(xsi) is a p.d.f of a point xsi of the form as

before,

fsi(xsi) = f(xsi) + siδh(xsi).

Due to the product structure in (6.5.20), integrals

Isi =

∫ +∞

−∞

σ(xsi)

f(xsi)
fsi(xsi) dxsi (6.5.22)

can be solved independently.

Isi =

∫ +∞

−∞

σ(xsi)

f(xsi)

(
f(xsi) + siδh(xsi)

)
dxsi ,

=

∫ +∞

−∞
σ(xsi)

(
1 + siδ

h(xsi)

f(xsi)

)
dxsi ,

=

∫ +∞

−∞

∑
j,i

[hψj,iψj,i(xsi)]
− dxsi + δsi

∫ +∞

−∞

σ(xsi)h(xsi)

f(xsi)
dxsi ,

=

∫ +∞

−∞

∑
j,i

[hψ,+j,i ψ
−
j,i(xsi) + hψ,−j,i ψ

+
j,i(xsi)] dxsi +O(δ),

=
∑
j,i

[hψ,+j,i Aj + hψ,−j,i Aj] +O(δ),
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where Aj is the normalisation constant of ψ+
j,i(xsi) and ψ

−
j,i(xsi), and we have assumed

the exchangeability of in�nite sums and in�nite integrals,

=
∑
j,i

Aj|hψj,i|+O(δ), (6.5.23)

using |hψj,i| = hψ,+j,i + hψ,−j,i .

Now we �nalise our results, from (6.5.20), (6.5.21) and (6.5.23) we have

p(J = n|xs0 , s0) = δnIJ=n(s0)
σ(xs0)

f(xs0)

(∑
j,i

Aj|hψj,i|
)n−1

+O(δn+1), n ≥ 1. (6.5.24)

Integrating over the intermediate points xs1 , ..., xsn we have arrived at (6.5.24), which

provides the �rst leading term of the probability p(J = n|xs0). However, we are still

able to ask, what is the probability of reaching target in J jumps given we �nd

ourselves at time s0, and avoiding conditioning on a speci�c point xs0 , which we do

next.

6.5.2 Generalising probability of jumps and expectations

In this subsection we will focus on investigating a more general probability of jumps

required to reach a target, also we will be proving the result of Proposition 6.5.1.

Proposition 6.5.1. If we have a starting distribution with density f(x) and the

target with density g(x) as de�ned in equation (6.3.4), then

E[J |s0 = 0] = δβ +O(δ2), Var[J |s0 = 0] = δβ +O(δ2),

where

β =
∑
j,i

Aj|hψj,i|. (6.5.25)
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In the previous subsection we have derived (6.5.24), which still conditions on the

point present at the start of WMC, it is possible to further generalise the jump

probability by integrating over the starting point and conditioning only on the time

present in WMC:

p(J = n|s0) =

∫ +∞

−∞
p(J = n|xs0 , s0)fs0(xs0) dxs0

using expression (6.5.24) for p(J = n|xs0 , s0) and performing identical integral

calculation as in (6.5.22), we obtain

= δnIJ=n(s0)

(∑
j,i

Aj|hψj,i|
)n

+O(δn+1), n ≥ 1.

If we are interested in the probability distribution at p(J = n|s0) for s0 = 0, a

starting point of WMC, then

p(J = n|s0 = 0) =
δn

n!

(∑
j,i

Aj|hψj,i|
)n

+O(δn+1), n ≥ 1, (6.5.26)

where for s0 = 0 we have IJ=n(s0 = 0) = 1
n!
. We can use this probability to �nd an

expression for the expected number of jumps to the target given that we are at the

starting time of WMC, s0 = 0, using (6.5.26)

E[J |s0 = 0] =
∞∑
n=1

np(J = n|s0 = 0)

= δ

(∑
j,i

Aj|hψj,i|
) ∞∑

n=1

δn−1

(n− 1)!

(∑
j,i

Aj|hψj,i|
)n−1

+O(δ2)

taking δ
∑

j,iAj|h
ψ
j,i| in front of the summation,

= δβeδβ +O(δ2),

where we have denoted

β =
∑
j,i

Aj|hψj,i|,
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and used the Taylor expansion of the exponential function ex at x = 0. Therefore,

up to the �rst order of δ we can claim that,

E[J |s0 = 0] ≈ δβ. (6.5.27)

We have consistency for δ → 0 and h(x) ≡ 0, where �rst term becomes 0. Term

β acts as a slope coe�cient that controls how fast �rst term grows linearly as δ

increases away from 0. Applying the same technique we are also able to workout

expression of Var[J |s0 = 0],

Var[J |s0 = 0] = E[J2|s0 = 0]− E[J |s0 = 0]2. (6.5.28)

Similarly as before,

E[J2|s0 = 0] =
∞∑
n=1

n2p(J = n|s0 = 0)

=
∞∑
n=1

n
δn

(n− 1)!

(∑
j,i

Aj|hψj,i|
)n

+O(δ2)

keeping only the �rst term of the sum that involves δ,

= δβ +O(δ2).

Therefore, we have

Var[J |s0 = 0] = δβ +O(δ2), (6.5.29)

so the �rst δ term of variance scales identically to the one for the expectation. Next

we explore how these �rst order approximations perform in practice. To test them

we chose the starting distribution to be N (0, 1) with density f(x) and we build our

target as,

g(x) = f(x) + δ1[−1<x<1]sin(9x). (6.5.30)

As long as we keep 0 ≤ δ ≤ 0.25, g(x) is a proper density (Figure 6.3).



Chapter 6. Probability distribution of jumps 129

Figure 6.3: Target density (6.5.30) for two di�erent choices of δ.

Figure 6.4: Comparison of practical and theoretical results of the average number of

jumps µJ and the variance of jumps σ2
J . The green line is δβ line with β computed

beforehand using theoretical results, while the red line is the regression line over

simulated points in practical experiment.
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We perform WMC with N = 10000 over a set of δ values ranging from 0 to 0.25 and

record the average number of jumps µJ required to reach a target and the variance

of jumps σ2
J for each simulation.

As we can see in Figure 6.4, the �rst order approximation for E[J |s0 = 0] is a very

accurate one, where the relationship between the average number of jumps and δ is

linear and the β = 2.14 slope coe�cient is almost identical to the one predicted from

the regression β̂ = 2.1. However, even though the relationship between Var[J |s0 = 0]

and δ seems to be linear for the limited range of δ values in the simulation, the

predicted slope coe�cient β̂ = 3.4 is signi�cantly di�erent from the theoretical

β = 2.14. We conclude that for small values of δ �rst order linear approximation δβ

is a good estimator for E[J |s0 = 0]; however, higher order terms need to be included

for approximation of Var[J |s0 = 0].

Side note on β coe�cient

In the previous section, we have focused on Proposition 6.5.1. The main results

of it being that �rst order approximations of both E[J |s0 = 0] and Var[J |s0 = 0]

scale linearly in δ with slope coe�cient being β =
∑

j,iAj|h
ψ
j,i|. So, β controls how

small changes in δ translate to changes in the expected number of jumps in WMC.

Throughout Chapter 3, the explicit condition for WMC to produce a sample from

the target in a �nite number of jumps was not discussed. Here using theoretical

results from the expected number of jumps we can deduce one of the necessary

conditions rather trivially.

If the slope coe�cient β is not �nite, then for any δ > 0 we end up with E[J |s0 =

0] =∞ and WMC is not able to produce a sample from a target in a �nite number

of jumps. Therefore, we conclude that one of the necessary conditions for WMC to
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`converge' in a �nite number of jumps is∑
j,i

Aj|dψj,i| <∞, (6.5.31)

where we have substituted coe�cients hψj,i in β de�nition with a more general

di�erence function coe�cients dψj,i without loss of generality. Inequality (6.5.31)

is closely related to the norm of Besov spaces and will be discussed in more detail

in Chapter 7.

6.6 Tuning heuristic for the choice of f (·)

From Section 6.3, we will use equation (6.3.3) as a tuning heuristic to �nd an optimal

starting distribution for WMC algorithm. We will use a Monte Carlo estimate

p̂(J = 0|s0 = 0) =
1

N

N∑
i=1

(
f(xi)

g(xi)

)ρ(xi)

, (6.6.32)

where xi ∼ f(·) to aid us in this task. In (6.6.32), we performed a Monte Carlo

integration of Equation 6.3.3 to �nd an approximate probability of performing

zero jumps at the start of the algorithm. The idea here is that a better starting

distribution for particular choice of the target g(·) should produce the higher

probability values p̂(J = 0|s0 = 0). These could be inspected before implementing

WMC, at a much smaller computational cost than running WMC with a blind

choice of f(·), to chose a more optimal starting distribution. Figure 6.5 presents an

example where the target distribution is N (0, 1):

g(x;µ = 0, σ = 1) =
1√
2π
e−

x2

2

and the starting distribution was set to be also normal but with di�erent choices of

µ and σ. Naturally, the highest zero-jump probability is observed around µ = 0 and

= 1 and other grid point evaluations suggest a choice of parameters around those

values.
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Figure 6.5: Grid search over µ and σ parameters for the optimal choice of a starting

distribution.

In cases where WMC will have to bet set to run for a long time, it is important

to choose the best possible starting distribution to not waste time on unnecessary

jumps, this method could be applied apriori as a cost-e�cient way of tuning a

starting distribution. Performing a grid search over parameters of the starting

distribution could reveal the most optimal combination.

In this example, WMC was set to run for N = 2000 with N (1, 1.52) as the starting

distribution and N (0, 1) as the target. The run took 2.6 minutes of running time,

producing on average 2.2 jumps with a standard deviation of 4. Keeping the same

target a starting distribution N (−3, 42) was chosen, the execution time was 4.2

minutes, producing on average 3.6 jumps with a standard deviation of 9.8. The

overall di�erence was a 61% increase in the execution time and 63% increase in the
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size of the average jump. An optimal choice of the starting distribution for WMC

is one of the key tasks that needs to be completed to ensure the minimal execution

cost of the algorithm.

6.7 Summary

In this chapter, we have attempted to investigate the probability distribution

associated with the total number of jumps in WMC algorithm. At �rst, the

functional form for the p(J = 0|xs) (6.3.3) was presented and later it was used

to construct the MC estimate for p̂(J = 0|s0 = 0) (6.6.32). The constructed MC

estimate could be used as a tuning heuristic for the choice of the more optimal

starting distribution in WMC.

Given the theoretical complexity induced by the presence of wavelets ψj,i(·),

intractability of integrals (6.5.15) and general choices of starting and target densities

f(·) and g(·), the decision was made to reduce the di�culty of the problem by

considering the target density of the form

g(x) = f(x) + δh(x), 0 < δ � 1.

The introduction of the δ parameter allowed us to apply Taylor expansion techniques

to investigate how certain probabilities behave up to certain order of δ. Probabilities

p(J = n|xs) (6.5.24) were worked out up to a �rst leading term for n ∈ N0.

Furthermore, probabilities were generalised even further by removing conditioning

on a certain starting point and only keeping the conditioning on the time s0 in

the algorithm. Finally, p(J = n|s0 = 0) was used to investigate E[J |s0 = 0] and

Var[J |s0 = 0], it was demonstrated that leading terms for both, expectation and

variance were

δβ, (6.7.33)



Chapter 6. Probability distribution of jumps 134

with

β =
∑
j,i

Aj|hψj,i|.

The next step involving the analysis of distribution of jumps would be to restrict

both f(·) and g(·) to certain families of densities and explore how these relations

translate to probabilities of jumps.
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Chapter 7

Haar wavelets and Besov spaces in

WMC

In this chapter, an analysis of the necessary assumption A2 on page 43 will be

presented from a novel perspective, revealing an underlying connection between

Besov spaces and the WMC set-up. The smoothness of functions in Besov spaces

(Sawano 2018, Triebel 1992) will be discussed, suggesting why Haar wavelets are

unable to satisfy assumption A2 and be used in WMC.

7.1 Investigation of the assumption A2

In Section 5.3, it was demonstrated that there is an underlying issue with Haar

wavelets, in particular that if Haar wavelets are used in WMC, then no probability

mass can be transitioned across the origin. The WMC theory presented in �3.2,

�3.3 and proofs of Proposition 3.2.1 and Theorem 3.3.2 involving the validity of

the algorithm do not explicitly rule out the usage of Haar wavelets in principle.

Therefore, the Haar issue demonstrated in �5.3 could be the consequence of the

Haar wavelet failing to satisfy assumptions required to implement WMC. The �rst
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requirement ever imposed on functions f(·), g(·) and wavelets ψj,i(·), was in pWMC

theory (page 43), in particular that

A2.
∑
j∈Z

∑
i∈Z

[dψj,iψj,i(x)]− ≤ rf(x) ∀x ∈ R.

The restriction above was only imposed so that the law of total probability is still

satis�ed, i.e. if with probability

qj,i(x) =
[dψj,iψj,i(x)]−

rf(x)

we select a new wavelet in pWMC, then
∑

j,i qj,i(x) ≤ 1 ∀x ∈ R. Given the strictness

of this assumption, the pWMC algorithm was upgraded to WMC by allowing points

to jump several times before reaching a target. If the pWMC algorithm is applied

to the starting distribution with density

ft(x) = f(x) + td(x)

and a target with density

ft+ε(x) = f(x) + (t+ ε)d(x), 0 < ε� 1,

then we have that a di�erence function for this particular case is

d∗(x) = ft+ε(x)− ft(x) = εd(x).

Using functions above the assumption A2 takes the form of∑
j∈Z

∑
i∈Z

[dψj,iψj,i(x)]− ≤ rft(x)

ε
∀x ∈ R, (7.1.1)

after dividing both sides by ε. Given that, in the WMC case, we work with

in�nitesimally small time steps, implemented via the survival analysis approach,

inequality (7.1.1) should be analysed in the limit as ε → 0. Therefore, the actual

restriction that is imposed on the wavelet representation of the di�erence function

in standard WMC is ∑
j∈Z

∑
i∈Z

[dψj,iψj,i(x)]− <∞ ∀x ∈ R. (7.1.2)
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Given the signi�cant relaxation on the condition required to implement WMC

successfully, it seems that the only issue which could arise occurs if, for certain choice

of wavelet family ψj,i(·) and/or functions f(·), g(·), the value
∑

j∈Z
∑

i∈Z[dψj,iψj,i(x)]−

becomes in�nite for some x ∈ R.

Equivalently, if we integrate both sides of (7.1.2), assuming the exchangeability of

in�nite sums and in�nite integrals,∫ +∞

−∞

∑
j∈Z

∑
i∈Z

[dψj,iψj,i(x)]− dx =
∑
j∈Z

∑
i∈Z

(
dψ,+j,i

∫ +∞

−∞
ψ−j,i(x) dx+ dψ,−j,i

∫ +∞

−∞
ψ+
j,i(x) dx

)

=
∑
j∈Z

∑
i∈Z

Aj(d
ψ,+
j,i + dψ,−j,i )

=
∑
j∈Z

∑
i∈Z

Aj|dψj,i|,

where Aj =
∫ +∞
−∞ ψ+

j,i(x) dx =
∫ +∞
−∞ ψ−j,i(x) dx as before. Using the identity |dψj,i| =

dψ,+j,i + dψ,−j,i , then we arrive at the new condition∑
j∈Z

∑
i∈Z

Aj|dψj,i| <∞. (7.1.3)

Condition (7.1.3) is not necessarily always true even if (7.1.2) is true, as the integral

can still diverge. However, we recall that (7.1.3) is exactly the same condition as

the one on the �niteness of the slope coe�cient β in �6.5.2 where we analysed the

expected number of jumps. We showed that β < ∞ was a necessary condition for

WMC, therefore we must have both conditions∑
j∈Z

∑
i∈Z

[dψj,iψj,i(x)]− <∞ ∀x ∈ R and
∑
j∈Z

∑
i∈Z

Aj|dψj,i| <∞ (7.1.4)

satis�ed if we want WMC to work. The key question here is whether (7.1.2) is a

su�cient condition for WMC which would also imply (7.1.3). To better understand

the regularity conditions imposed on the starting distributions and wavelets used in

WMC, we will focus our attention on (7.1.3).
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For (7.1.3) to be satis�ed, we essentially require that there is a fast enough coe�cient

decay across the resolution levels, i.e., coe�cients go to zero when |j| → ∞. Let us

de�ne the energy at resolution level j to be

Ej :=
∑
i∈Z

|dψj,i|. (7.1.5)

What type of energy decay should we have across levels if we want the necessary

condition (7.1.3) to be satis�ed? Let us for the moment consider that Ej decays

geometrically with increasing |j|. We also assume that there exists

jmax := arg max
j∈Z

Ej (7.1.6)

and

Ej ≤ Cα−|j−jmax|, ∀j ∈ Z and C, α ∈ R. (7.1.7)

Is this a reasonable assumption? Let us investigate what is the distribution of Ej

across a range of levels in the one-dimensional example of �4.1.1. As we can see in

Figure 7.1, the distributions of energy levels for K ≥ 2 do indeed have a peak at

same jmax = −1 and they decay rather rapidly. We also make an observation, that

distributions of Ej for K ≥ 2 are almost identical as plots for K ≥ 2 seem to overlap

almost perfectly. However, for K = 1 (Haar) the distribution is signi�cantly shifted

and does not seem to have a maximum between the resolution levels -5 to 5. We

note, that given the limitations of the computational power a �nite number of shifts

i were taken to compute Ej at each resolution, however given the sparsity of wavelet

coe�cients it should be the case that at some point for location i signi�cantly far

from the high density region, the contribution towards Ej is negligible. We repeat

the experiment by increasing the number of resolution levels from j ∈ [−5, 5] to

j ∈ [−15, 15] and we also increase the e�ective support size to x ∈ [−20, 15]. From

Figure 7.2 we can conclude that for DaubechiesK ≥ 2 wavelets the inclusion of extra

locations did not change the di�erences between energy distributions signi�cantly

� energies Ej continue to decay as j increases with no hint of forming another
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Figure 7.1: Distribution of energies Ej across resolution levels j for the di�erence

function from the one dimensional example of �4.1.1. Energies were computed using

Daubechies wavelets with K = 1, 2, ..., 10 vanishing moments. The range of locations

used at each resolution level j to compute energies Ej was −10 × 2j ≤ i ≤ 8 × 2j.

Values -10 and 8 were chosen arbitrary but large enough to make sure that the

e�ective support of the di�erence function is fully covered.

maximum peak. Furthermore, the energy level for the Haar wavelet is blowing up

much more rapidly with no hint towards its jmax. These observations suggest for

K ≥ 2 energies Ej seem to have a global maximum and could be modelled by a

uni-modal distribution that decays rapidly. At this point we assume that inclusion

of more resolution levels and locations will not change overall results dramatically.

From these results we conclude that Daubechies wavelets K ≥ 2 should most likely
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Figure 7.2: Similar to Figure 7.1, but with larger choice of locations and resolution

levels.

have no problems with the validity of∑
j∈Z

∑
i∈Z

Aj|dψj,i| <∞,

due to the overall decay of Ej for |j| → ∞, however a much more detailed theoretical

investigation must be carried out to con�rm it. The most concerning issue as

we can see from �gures is Haar wavelets, where the total energy
∑

j Ej have a

tendency to increase very rapidly if more locations and resolutions are added into

the computation of Ej. This suggests that Haar wavelets could have some serious

problems with necessary conditions (7.1.4).
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7.2 Introduction to Besov spaces

Here, we will give a short introduction to Besov spaces together with required

background information and de�nitions. Most of the concepts describe here come

from the theory of functional analysis and at �rst sight might look alien and

unintuitive for a �rst time reader coming from statistics background. To keep

focus on WMC related issues only the necessary de�nitions will be given together

with theorems without proofs. The key goal of this section is to understand the

environment of functional analysis surrounding Besov spaces and transfer results of

Besov space theory to WMC.

The main result of this section is Theorem 7.2.2 on page 149. The lead up to

this result is rather heavy, requiring some technical de�nitions from the theory of

functional analysis. Before going into more theoretical background of functional

analysis, we will try to give an intuition on the signi�cance of the results provided

in this section. Let G be some general function space and f ∈ G any function that

could be decomposed into a series of orthonormal wavelets,

f(·) =
∑
j,i

fψj,iψj,i(·).

G has an associated space norm ‖·‖G and similarly we can consider coe�cients

{fψj,i} ∈ G be part of some coe�cient space G. Theorem 7.2.2 provides us with the

conditions under which we are allowed to approximate norm ‖·‖G using norm of

the coe�cient space ‖·‖G. In other words there exist a norm equivalence and we

are able to conclude the characteristics of our functions of interest by analysing the

associated wavelet coe�cients. Using these results we will be able to draw conclusion

on what type of wavelets we are allowed to use in the WMC setting.

So far we have only mentioned and used the space of square integrable functions

L2(R) in one dimension, as this is the requirement for a function to be decomposed
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into a series of orthonormal wavelets. In practice however, there are many other

interesting functional spaces, for example: Ck - the space of continuous functions

with k continuous derivatives, C∞ - smooth function space, C∞c - space of smooth

functions with compact support, Cs - Holder-Zygmund spaces,W k,p - fractional/non-

fractional Sobolev spaces, Ḃs
p,q/B

s
p,q - homogeneous/inhomogeneous Besov spaces,

Ḣp/Hp - homogeneous/inhomogeneous Hardy spaces, BMO - bounded mean

oscillation spaces, S - Schwartz spaces, O(C) - the space of holomorphic functions.

Each of the spaces mentioned deals with di�erent types of regularity, smoothness,

di�erentiability and integrability properties of functions. In this section, we will

mainly focus on homogeneous Besov spaces Ḃs
p,q (as described in Sawano (2018))

and how they are connected to WMC theory.

Besov spaces were �rst introduced by O.V. Besov in 1959/60, see Besov (1959, 1961).

The idea was to extend and create a more general space that would include the Cs

andW k,p spaces which were extensively studied at that time. Naturally, a space that

involves many parameters in its characterisation is able to describe di�erent kind of

regularity properties of a function. From the function spaces mentioned above we

have that:

� Lp, W k,p, Ḃs
p,q/B

s
p,q, Ḣ

p/Hp deal with the size of functions, while

� Ck, C∞, C∞c , O(C), Cs, W k,p, Ḃs
p,q/B

s
p,q, deal with the di�erentiability of

functions.

As we can see, Sobolev and Besov spaces are able to describe both size and

di�erentiability. Consequently, the more �exible the space becomes the more

intricate its de�nition becomes. Here we understand, that in both, homogeneous and

inhomogeneous Besov spaces Ḃs
p,q, B

s
p,q, the parameter p is responsible for describing

the size (total energy) of a function, s (also know as index of regularity) is for

control of smoothness and q is used for describing additional levels of smoothness
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via di�erences of a function. The parameter q appears via more detailed construction

of a Besov space and for the sake of not diving too deep in to the realm of functional

analysis it will not be explained in detail. Before moving to de�nitions of Ḃs
p,q, B

s
p,q,

we qualitatively state di�erences between homogeneous and inhomogeneous spaces.

Essentially, homogeneous spaces are function spaces whose norms are described by

a set of partial derivatives of the same order; otherwise the space is inhomogeneous.

Let us de�ne α = (α1, ..., αn) with αj ∈ N0 (N0 = N ∪ {0}) to be n-dimensional

multi-index, |α| :=
∑n

j=1 αj and

∂αf =
∂|α|f

∂xα1
1 · · · ∂xαnn

(x).

Example 7.2.1. Let m ∈ N and 1 ≤ p ≤ ∞.

1. The homogeneous Sobolev norm is ‖f‖Ẇm,p ≡
∑
|α|=m ‖∂αf‖Lp .

2. The inhomogeneous Sobolev norm is ‖f‖Wm,p ≡
∑
|α|≤m ‖∂αf‖Lp .

We also observe that, since via di�erentiation we annihilate polynomials or decrease

their order, the homogeneous norms lose some information about functions, hence

they are not complete. However, despite this observation, homogeneous norms are

good at describing certain speci�c properties of functions, and a typical one would be

dilation f 7→ f(t·), inhomogeneous norms cannot be used in describing this property.

We next proceed by de�ning some necessary function spaces required for the

construction of Ḃs
p,q and B

s
p,q.

De�nition 7.2.1 (Smooth function space, C∞). A function f is said to be smooth

and belong to C∞ if it is di�erentiable for all degrees of di�erentiation.

De�nition 7.2.2 (Schwartz function space, S). We denote the space

S(R) = {f ∈ C∞(R) : ‖f‖α,β <∞, ∀α, β ∈ N where ‖f‖α,β = sup
x∈R
|xαf (β)(x)|}

as the space of Schwartz functions.
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The map ‖·‖α,β is called a semi-norm as it has most properties of the norm, however

it does not satisfy the positive de�niteness property, i.e. non-zero vectors could be

mapped to zero.

De�nition 7.2.3 (Functional). We call a map f a functional if

f : Ω→ R, where Ω is a function space.

Example 7.2.2. Let I : C(R) → R be de�ned as I[u] =
∫ +∞
−∞ u(x)2 dx. I is a

functional.

From De�nition 7.2.2, we can see that the elements in S(R) are in�nitely

di�erentiable and partial derivatives decay rapidly. These functions are very well

behaved and most likely too well behaved to be encountered in practice, for

this reason we will investigate the space of tempered distributions S ′(R). The

object tempered distribution here has no connection to the standard de�nition of

a probability distribution in the probability theory, therefore these should not be

confused together.

De�nition 7.2.4 (Tempered distributions space, S ′(R)). Let T : S(R) → R be a

functional. We say T is part of S ′(R) and is a tempered distribution if it is both

linear and continuous. One equips S ′(R) with the weakest topology so that the

mapping

Tf ∈ S
′
(R) : f ∈ S(R) 7→ 〈f, φ〉 ∈ R

is continuous for all test functions φ ∈ S.

We note that by 〈f, φ〉 we mean a standard inner product
∫
f(x)φ(x) dx and test

functions φ should not be confused with father wavelet. We also remark that in

general the space of linear and continuous functionals on a vector space is called the

continuous dual of the space.
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Example 7.2.3. Let f be a function such that the product fφ is integrable on

R for all φ ∈ S(R). Then we denote the tempered distribution induced by f as

Tf : S(R)→ R and de�ne it as

Tf (φ) =

∫
R
f(x)φ(x) dx.

It can be shown that Tf is indeed a tempered distribution, by con�rming a

linearity property (linearity of integrals), homogeneity and �nally continuity of Tf

by considering an arbitrary sequence of Schwartz functions {φn}∞n=0 that converges

to φ.

Finally, let us denote P to be the set of all polynomials and by φ̂ we denote a Fourier

transform of a function φ(·),

φ̂(ξ) = Fφ(ξ) =

∫
x∈R

φ(x)e−ixξ dx. (7.2.8)

De�nition 7.2.5 (Homogeneous Besov spaces, Ḃs
p,q). Let us denote φ ∈ S so that

supp{φ̂} ⊂ {ξ : 1
2
≤ |ξ| ≤ 2} and |φ̂(ξ)| ≥ c > 0 if 3

5
≤ |ξ| ≤ 5

3
. For s ∈ R,

0 < p, q ≤ ∞ and f : Tf ∈ S
′
/P we de�ne

‖f‖Ḃsp,q =

{∑
j∈Z

(
2js ‖φj ∗ f‖Lp

)q}1/q

. (7.2.9)

We de�ne Ḃs
p,q to be the set of all such f for which quasinorm (7.2.9) is �nite.

In De�nition 7.2.5 above, we have

φj(·) = 2jn/2φ(2j·), (7.2.10)

where n corresponds to the dimension of the space we consider Ḃs
p,q over, i.e.

Ḃs
p,q(Rn). We also note that although `∗' is a standard notation for the convolution,

in De�nition 7.2.5 the convolution is taken between φ ∈ S and f ∈ S ′/P and because

f is a tempered distribution, a convolution is non-standard and will be de�ned now.

Before doing so we remind the reader of a standard convolution.
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De�nition 7.2.6 (Convolution). Let f, g be functions. We de�ne their convolution

as

f ∗ g(x) =

∫ +∞

−∞
f(x− y)g(y) dy. (7.2.11)

De�nition 7.2.7 (Convolution of a distribution). Let ψ, φ ∈ S(R) and T ∈ S ′(R)

then the convolution of ψ and T is a distribution and acts on φ as

ψ ∗ T [φ] := T [ψ̃ ∗ φ] (7.2.12)

where ψ̃(x) = ψ(−x) is the re�ection about 0.

To be more explicit, let us consider Tf ∈ S
′
(R), then we have that

ψ ∗ Tf [φ] = Tf [ψ̃ ∗ φ] (7.2.13)

= Tf

[∫
ψ(y − x)φ(y) dy

]
(7.2.14)

=

∫ ∫
ψ(y − x)φ(y) dyf(x) dx. (7.2.15)

For De�nition 7.2.7 the fact that convolution of Schwartz function is Schwartz was

used, however it will not be proved here.

Example 7.2.4. It can be shown that the Dirac δ function is a tempered distribution

and belongs to S ′ , here we will assume this fact and will show how δ behaves when

interacting with a convolution. Let ψ, φ ∈ S(R) then

ψ ∗ δ[φ] = δ[ψ̃ ∗ φ]

= δ

[∫ +∞

−∞
ψ̃(x− y)φ(y) dy

]
using re�ection ψ̃(x) = ψ(−x),

= δ

[∫ +∞

−∞
ψ(y − x)φ(y) dy

]
using δ property f(y) =

∫
f(y − x)δ(x) dx,

=

∫ +∞

−∞
ψ(y)φ(y) dy = Tψ[φ].
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As discussed in Frazier et al. (1991), Kyriazis & Petrushev (2002), Triebel (2004)

and Sawano (2018), the space of functions Ḃs
p,q also accepts a multi-resolution

decomposition, very similarly to L2. Naturally, multi-resolution decomposition leads

to the set of coe�cients that are associated with `atoms' used as building blocks of

the decomposition. The set of all coe�cients used in a decomposition could be

considered as a space of coe�cients, in particular, given that f ∈ Ḃs
p,q, the space of

associated decomposition coe�cients of function f will be denoted as ḃsp,q.

De�nition 7.2.8 (Dyadic cubes). We say that a cube Qj,k ⊂ Rn is a dyadic cube if

Qj,k = {x ∈ Rn : 2−jki ≤ xi ≤ 2−j(ki + 1), i = 1, 2, ..., n} (7.2.16)

for some j ∈ Z and k = (k1, k2, ..., kn) ∈ Zn. Let Q = {Qj,k, j ∈ Z, k ∈ Zn}, we also

denote Qj, j ∈ Z, for the collection of all cubes I ∈ Q of side-length l(I) = 2−j. For

any dyadic cube I ∈ Q, we use xI for its lower-left corner and |I| for its volume.

De�nition 7.2.9 (Test functions). We will call a function φ : Rn 7→ R a test

function and say that it belongs to set D(Rn) if it is smooth and has compact

support.

De�nition 7.2.10 (Smooth K-atoms). A function aj,k ∈ D(Rn) is a smoothK-atom

for Qj,k if and only if

(1) supp{aj,k} ⊂ 3Qj,k,

(2)
∫
x∈Rn

xγaj,k(x) dx = 0 for |γ| ≤ K,

(3) |∂γaj,k(x)| ≤ cγl(Qj,k)
−|γ|−n/2 ∀γ ∈ Nn.

Theorem 7.2.1 (Atomic Decomposition Theorem, Frazier et al. (1991)). Suppose

s ∈ R, 0 < p, q < ∞ and K ∈ N. If f ∈ Ḃs
p,q then there exists a sequence

d = {dj,k} ∈ ḃsp,q and smooth K-atoms {aj,k} such that f =
∑

j,k dj,kaj,k and

‖d‖ḃsp,q ≤ C ‖f‖Ḃsp,q . (7.2.17)



Chapter 7. Haar wavelets and Besov spaces in WMC 148

Atomic decomposition theorem gives a relation between norm of functions and

sequences and in turn provides an equivalence relation between Ḃs
p,q and ḃ

s
p,q. We

next proceed in giving a proper de�nition of Besov sequence space ḃsp,q and its

associated norm ‖·‖ḃsp,q .

De�nition 7.2.11 (Homogenerous Besov sequence space, ḃsp,q). For s ∈ R and 0 <

p, q ≤ ∞ the space ḃsp,q consists of all sequences s := {sI}I∈Q, such that

‖s‖ḃsp,q :=

{∑
j∈Z

(∑
I∈Qj

[
|I|−s/n+1/p−1/2|sI |

]p)q/p}1/q

<∞. (7.2.18)

One of the key features of the wavelet representations is the fact that the

wavelet coe�cients implicitly contain valuable information about the size and the

smoothness of the function being decomposed. In other words, if we have

f(x) =
∑
j,i

fψj,iψj,i(x)

one can determine from fψj,i coe�cients whether f is contained in certain smoothness

spaces, such as Besov or Sobolev spaces. Let us now proceed to the main result of

this section.

We recall that multivariate wavelet bases are constructed as tensor products of

a univariate scaling function ψ0 := φ and associated wavelet ψ. Namely, let E

(|E| = 2n − 1) denote the set of nonzero vertices of the unit cube in Rn. For each

vertex e = (e1, ..., en) ∈ E we let

ψe(x) := ψe1(x1) · · ·ψen(xn) (7.2.19)

and de�ne Ψ := {ψe : e ∈ E}. So each ei, i ∈ {1, ..., n}, takes value 0 or 1 and for

ei = 0 we recover φ and for ei = 1 we get ψ, ensuring we get all the mixtures of

possible types of wavelets. Then the collection

W := {ψeI : I ∈ Q, e ∈ E} (7.2.20)
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forms an orthonormal basis for the space L2(Rn).

Now, let Ψ := {ψe : e ∈ E} be a set of orthonormal wavelets for L2(Rn) which

satisfy the following two conditions:

C1. Ψ ⊂ CK and

|∂|α|ψe(x)| ≤ ρ(1 + |x|)−M , |α| ≤ K, e ∈ E, (7.2.21)

C2. ∫
x∈Rn

xαψe(x) dx = 0, |α| ≤ K, e ∈ E. (7.2.22)

Then the following Theorem 7.2.2 holds (Kyriazis 2003).

Theorem 7.2.2. Let s ∈ R, 0 < p, q ≤ ∞, T := n/min{1, p}, K > max{T − n −

s, s} and M > max{T , n + K}. For every f ∈ Ḃs
p,q there exist unique coe�cients

cI,e(f), (I, e) ∈ Q× E, such that

f =
∑
I∈Q

∑
e∈E

cI,e(f)ψeI with cI,e(f) := 〈f, ψeI〉. (7.2.23)

Moreover,

‖f‖Ḃsp,q ≈

{∑
e∈E

∑
j∈Z

(∑
I∈Qj

[
|I|−s/n+1/p−1/2|cI,e(f)|

]p)q/p}1/q

, (7.2.24)

where by ≈ we mean `could be approximated by'.

Theorem 7.2.2 provides us with exact conditions for the existence of a wavelet

system which decomposes a function f ∈ Ḃs
p,q into a series of orthonormal wavelets.

Furthermore, theorems 7.2.2 and 7.2.1 give us the equivalence relation between

norms of the function space Ḃs
p,q and the corresponding sequence space ḃsp,q,

‖·‖Ḃsp,q � ‖·‖ḃsp,q . (7.2.25)



Chapter 7. Haar wavelets and Besov spaces in WMC 150

This norm equivalence allows us to make critical deductions about functions we

analyse given we have information about the corresponding wavelet coe�cients. In

the next section, we connect key results about Besov function spaces and sequence

spaces with WMC theory.

7.3 Connecting Besov spaces and WMC

In Section 7.1, we deduced that one of the necessary conditions for the validity of

the WMC algorithm is (7.1.3):∑
j∈Z

∑
i∈Z

Aj|dψj,i| <∞.

Let us rewrite this inequality in a form that will be convenient for us later. Using

Aj = 2−j/2A0, where as before A0 =
∫
ψ+(x) dx =

∫
ψ−(x) dx, we obtain∑

j∈Z

∑
i∈Z

2−j/2|dψj,i| <∞. (7.3.26)

Inequality (7.3.26) gives a speci�c restriction on the wavelet coe�cients dψj,i of the

di�erence function d. Furthermore, if we consider the set of coe�cients {dψj,i} over

all j, i, (7.3.26) has a pseudo-norm resemblance on some coe�cient space. Noticing

this similarity we make the �rst connection with homogeneous Besov sequence spaces

ḃsp,q. From De�nition (7.2.11), we know that the norm �niteness condition for ḃsp,q

sequence space is,from 7.2.11,{∑
j∈Z

(∑
I∈Qj

[
|I|−s/n+1/p−1/2|sI |

]p)q/p}1/q

<∞. (7.3.27)

If we set space parameters to be p = q = 1 and s = 0 with dimensionality n = 1,

Inequality (7.3.27) becomes ∑
j∈Z

∑
I∈Qj

|I|1/2|sI | <∞.
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Instead of using the dyadic cube notation, we can rewrite indices in terms of

resolution levels and locations,∑
j∈Z

∑
i∈Z

2−j/2|sj,i| <∞,

which is identical in form to (7.3.26). From this we conclude that the necessary

condition (7.3.26) can be guaranteed if wavelet coe�cients {dψj,i} live in the

homogeneous Besov sequence space ḃ0
1,1. Under the norm equivalence and Theorem

7.2.2, we have that

{dψj,i} ∈ ḃ0
1,1 ⇐⇒ d(x) ∈ Ḃ0

1,1(R),

where {dψj,i} are wavelet coe�cients and d(x) a di�erence function as de�ned in

(3.1.6). We can also see that for Theorem 7.2.2 to hold certain smoothness and

decay conditions need to be satis�ed on the wavelet system we are using. In Ḃ0
1,1(R)

we have that T = 1, K > 0 and M > max{1, 1 +K}. So, if we want the necessary

WMC condition (7.3.26) to hold, we must have a wavelet system that at least has

wavelets ψ ∈ C1(R), i.e. wavelets are continuous and at least one time di�erentiable.

As it was already pointed out in Section 5.3, Haar wavelets are not able to transition

probability mass across the origin. However, the WMC theory and the proofs

regarding it, given in Chapter 3, do not explicitly state conditions on the wavelet

system being used, so it is not really clear where the implicit assumption on the

wavelets is made and why Haar wavelets fail at theoretical level.

Via the necessary condition (7.3.26) we are able to connect that the norm

restriction on the wavelet coe�cients {dψj,i} also restricts our function space and

most importantly wavelets that we are allowed to use in the decomposition. We

next provide an example in which condition (7.3.26) fails to hold.

Example 7.3.1. Let a starting density be f(x) we then de�ne our target density

to be

g(x) = f(x) + a{1(−1 ≤ x < 0)− 1(0 ≤ x < 1)}. (7.3.28)



Chapter 7. Haar wavelets and Besov spaces in WMC 152

So the shape of the di�erence function is a similar to an ordinary Haar wavelet;

however, it has a scaling coe�cient a and positioned such that it overlaps the origin,

also a support is twice as big. Just a reminder, that due to the integer shifts in a

typical wavelet decomposition, there is no Haar wavelet that overlaps the origin.

Assuming that we are working with Haar wavelet family let us compute the di�erence

function wavelet coe�cients {dψj,i},

dψj,i =

∫ +∞

−∞
d(x)ψj,i(x) dx = a

∫ 0

−1

ψj,i(x) dx− a
∫ 1

0

ψj,i(x) dx. (7.3.29)

First, we investigate levels j ≥ 0. Given the nature of Haar wavelets, with Ij,i :=

supp{ψj,i(x)} = [i2−j, (i+ 1)2−j), where

ψ(x) =


1 0 ≤ x < 0.5,

−1 0.5 ≤ x < 1,

0 otherwise,

we have that ∀j ≥ 0 and ∀i ∈ Z there are only 3 possible possibilities:

1. Ij,i ⊂ [−1, 0),

2. Ij,i ⊂ [0, 1),

3. Ij,i ∩ [−1, 0) = ∅ and Ij,i ∩ [0, 1) = ∅,

where ∅ denotes an empty set. The �rst two options mean that integrals of wavelets

over their full support will be equal to zero and the third option implies that wavelets

de�ned outside the integral limits will evaluate to zero and integrals will be zero too.

All in all, this leads to the fact that for j ≥ 0,

dψj,i = 0. (7.3.30)

Now we investigate resolution levels j < 0. We again observe that there are only

three possibilities:



Chapter 7. Haar wavelets and Besov spaces in WMC 153

1. Ij,i ∩ [−1, 0) 6= ∅ and Ij,i ∩ [0, 1) = ∅, for i = −1,

2. Ij,i ∩ [−1, 0) = ∅ and Ij,i ∩ [0, 1) 6= ∅, for i = 0,

3. Ij,i ∩ [−1, 0) = ∅ and Ij,i ∩ [0, 1) = ∅, for i 6= {−1, 0}.

So at each resolution level j < 0 there will be two non-zero integrals involving

wavelets with locations i = −1 and i = 0. Given the shape of a di�erence function

and a Haar wavelet, all integrals turn out to be just areas of rectangles with �xed

width of 1 and varying height a2j/2. Therefore, integrals for all wavelets with j < 0

and i = −1 or i = 0 will evaluate to −a2j/2, where the negative sign comes in from

the construction of a di�erence function in one integral and from the negative limit

in the other one. So, we have that for j < 0,

dψj,i = −a2j/2 for i = −1, 0 and dψj,i = 0 otherwise. (7.3.31)

To sum up, we have,

dψj,i =

 −a2j/2 if j < 0 and i = {−1, 0},

0 j ≥ 0.

Now let us check if the necessary condition (7.3.26) for this particular example holds.

Here, we have, ∑
j∈Z

∑
i∈Z

2−j/2|dψj,i| = a
∑
j<0

2−j/2+1|2j/2|

given that there are only two locations per each resolution level that are non-zero,

= a
∑
j<0

2

=∞, for a ∈ R\{0}.

As we can see, for this particular choice of the target density we can explicitly

evaluate coe�cients and �nd out that the necessary condition is not satis�ed,

indicating that the choice of Haar wavelets is not allowed.
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7.4 Implications of Besov theory on WMC

Given the results on the existence of decomposition and assumptions about wavelets

of Theorem 7.2.2, what types of wavelets are we allowed to use in practice and, what

are the implications on the distributions that we are allowed to use in WMC? In

particular what sort of wavelet systems satisfy conditions C1 and C2 on page 149?

7.4.1 Wavelets

It was shown in Almeida (2005) and Triebel (2004) that Daubechies wavelets ψ ∈

CK(Rn) form an orthonormal basis for the inhomogeneous Besov space Bs
p,q(Rn)

with K > |s|. Without giving a reader a full de�nition of Bs
p,q space we give a taste

for the norm of this space,

‖f‖Bsp,q = ‖f‖Lp +

{∑
j≥0

(
2js ‖φj ∗ f‖Lp

)q}1/q

. (7.4.32)

As we can tell, by inhomogeneous spaces it is meant that a di�erent norm is applied

to the coarser resolution levels. However, norm-wise spaces Bs
p,q and Ḃs

p,q are not

totally di�erent, suggesting a possibility of usage of Daubechies wavelets in the

decomposition of functions f ∈ Ḃs
p,q. From conditions C1 and C2, we know we need

to pick continuous and at least one time di�erentiable wavelets due to restriction

K > 0, leading to the minimum requirenment of C1 space. From the construction

of Daubechies wavelets in Daubechies (1988) (Proposition 4.7), it is known that

if Daubechies wavelet ψ ∈ CαK , then it has K vanishing moments and relation

between αK and K is linear,

αK = µKK, (7.4.33)

with a the proportionality factor limited by µK > 0.2. In the same paper it was

shown that for K ≥ 3, αk > 1, which means that Daubechies wavelets with more
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that 3 vanishing moments are in fact continuously di�erentiable. So in our Ḃ0
1,1(R)

case, if we pick any Daubechies wavelet with K ≥ 3 conditions C1 and C2 will be

satis�ed, where decay condition C1 is trivially satis�ed due to compactness.

We also observe that from the formulation of Theorem 7.2.2 it seems that conditions

for wavelets to be a valid system for the decomposition depend on the dimensionality

parameter n. This might imply that regularity of wavelets needs to be adapted as

n gets larger suggesting that smoother wavelets need to be used in WMC in high

dimensions. Given that our Besov space of interest is Ḃ0
1,1, we have that for n ∈ N,

T ≡ n, K > s and M > n + K. So, as dimension increases we require wavelets

with a more rapid decay conditions, however if we limit ourselves to working with

compactly supported Daubechies wavelets, these requirements do not a�ect us as

due to compactness the condition C1 is always satis�ed.

7.4.2 Densities f and g

The convergence of a decomposition in Ḃs
p,q is considered in S

′
/P . It could be shown

(Kyriazis 2003) that in the Ḃ0
1,1 setting the convergence is actually considered in S ′

and not S ′/P . Even under this convergence we require our starting distribution

and target to be a smooth function, not mentioning that derivatives have to be

bounded with a rapid decay. It is clear that we have a generally unrestricted choice

for a starting density and given that density of a normal distribution belongs to

C∞ we have an option for a density of mixture of normals as a starting f , although

densities of distributions like Beta(a, b) and Cauchy could be chosen too. A much

bigger issue comes when we are not able to determine the regularity of our target

density g. However, given the one dimensional example in �4.1.1 we can see that

even if the target is not part of C∞, WMC still performs well.
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7.5 Summary

In this chapter we, presented how Besov spaces are connected to the necessary

condition (7.3.26) in WMC. Observing that (7.3.26) is the norm of ḃ0
1,1 coe�cient

space in disguise, we were able to relate the restriction of coe�cients to the restriction

of functions and wavelets being used in WMC. In particular, we presented that Haar

wavelets are not a valid wavelet system for the decomposition of functions in a WMC

setting via the theory of Besov spaces, uncovering the hidden assumption in WMC.

Furthermore, we also showed that one of the optimal choices of the wavelet system

is Daubechies with at least K = 3 vanishing moments, as in this case assumptions

of Theorem 7.2.2 are satis�ed and decomposition is possible. It was observed that

for the decomposition in Ḃ0
1,1 to be possible we require function of interest to be in

S ′ , which is a strong assumption; however, we have no choice, since via the norm

equivalence we know that

{dψj,i} ∈ ḃ0
1,1 ⇐⇒ d(x) ∈ Ḃ0

1,1(R),

and we must have {dψj,i} ∈ ḃ0
1,1 for the necessary condition (7.3.26) to hold. Although,

theoretically assumption on a di�erence function being part of S ′ is strong, we

practically saw in �4.1.1 that even having a not continuously di�erentiable function

everywhere can lead to good WMC results, suggesting that restrictions on d(·) could

be relaxed. However, this claim requires additional research and could be a topic of

interest in the future.
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Chapter 8

Modi�ed WMC

In this chapter, two possible improvements to the WMC algorithm will be presented.

The �rst one, described in �8.1, will be the Multiple Importance Sampling WMC

(MIS-WMC), where the goal is to not discard intermediate samples xt ∼ ft(·),

t ∈ [0, 1), produced by the WMC, but to save them for use in the future computation

of moments of the target density g(·).

In Section 8.2, we discuss a second modi�cation of a standard WMC, a Level WMC

algorithm (LWMC), where the goal is to approach the target sample y ∼ g(·) by

sequentially moving samples up the resolution ladder.

8.1 Multiple Importance Sampling WMC

8.1.1 Motivation

During a typical run of the WMC algorithm, for each starting x0 ∼ f(·), there will

generally be several intermediate points xt ∼ ft(·), t ∈ [0, 1), sampled before reaching

a target y ∼ g(·). In the standard WMC, these intermediate points act only as a pit-
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stop points to recalculate parameters necessary to continue WMC, sample a survival

time s ≥ t and potentially a new point xs. After a new point is sampled, previous

values and calculations of wavelet coe�cients d̂ψj,i and parameters of the generalised

Pareto survival distribution are discarded. Due to the high computational load

required to reach target samples, as discussed in Chapter 5, it is important to

e�ciently utilise every computation performed during each WMC run.

The key idea in MIS-WMC is not to discard intermediate values xt but store them

for the computation of moments of the density g(·) later. Given the generally costly

production of target samples via WMC, intermediate points with a survival time

close to t = 1 could be involved in the estimation of moments with an appropriate

weighting scheme applied. This would partially mitigate the issue of small samples

at the cost of error and variance introduced in estimation of moments.

In the conventional IS algorithm, it is crucial to pick a good covering distribution

from which sampling will be performed, similar to picking a suitable envelope

distribution in rejection sampling. If, in WMC, we are able pick a starting density

f(·) that closely resembles the target, then all intermediate densities ft(·) will

be good approximations of the target g(·), leading to a large number of valuable

intermediate samples that could be used in the analysis of the target density.

Due to the fact that samples from several di�erent intermediate distribution will be

used in the construction of estimators of moments, theMultiple Importance Sampling

(MIS) method (Veach & Guibas 1995, Veach 1997) will be adopted to accommodate

this. Before going into more details of how MIS and WMC could be used together,

an overview of the MIS methodology will be presented, mainly focusing on the

construction of MIS estimators.



Chapter 8. Modi�ed WMC 159

8.1.2 MIS estimator

Here the construction of the MIS estimator will be outlined. In the MIS setting,

samples are produced from several distributions rather than from a single one as in

IS. The change from one to several distributions leads to the extra layer of complexity

when samples need to be combined and even potentially weighted.

We denote r to be the number of densities fk(·) used, i.e. k ∈ {1, 2, ..., r}, i.e. where k

indexes intermediate distributions and is not related to time parameter t. Also r here

is used only locally and should not be confused with ratio of normalising constants.

Let Nk be the total number of samples {xn,k}Nkn=1 produced from a distribution fk(·),

and let N =
∑r

k=1Nk be the total number of samples across all distributions. Now

we de�ne a MIS estimator for
∫
g(x) dx, which is useful if g(x) is an unormalised

density,

G =
1

N

r∑
k=1

Nk∑
n=1

g(xn,k)

fk(xn,k)
. (8.1.1)

We show that G is unbiased,

E[G] =
1

N

r∑
k=1

Nk∑
n=1

∫
g(x)

fk(x)
fk(x) dx

=
1

N

r∑
k=1

Nk

∫
g(x) dx

=

∫
g(x) dx,

using N =
∑r

k=1Nk and assuming fk(x) 6= 0,∀x, ∀k ∈ {1, 2, ..., r}. In a very

straightforward way G might be used to estimate moments of g(x), since

Eg[xm] ≈ 1

GN

r∑
k=1

Nk∑
n=1

xmn,k
g(xn,k)

f(xn,k)
. (8.1.2)

The key issue with this estimator is that samples are not being weighted and

therefore this form of the estimator is not immediately applicable to WMC as it
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does not address the importance of samples from the intermediate distribution,

fk(·). Due to the fact that we are not able to control the sampling procedure of the

WMC algorithm, it is important to try to weigh samples correctly. Furthermore,

samples that are produced from intermediate distributions ft(·) when t ≈ 1 are much

more important than those with t ≈ 0. Therefore, in the next section, a weighted

form of the estimator will be presented that addresses the importance of samples

that are closer to the target g(·).

8.1.3 Weighted MIS

Due to the nature of the process that generates WMC we are not able to control

how many samples from which intermediate distributions are going to be produced.

Therefore, it is important to build an estimator that prioritises samples that were

drawn from distributions closer to the target g(·). Let wk(·) be a weighting function

that gives a weight to samples {xn,k}Nkn=1 ∼ fk(·). Our weighted estimator of∫
g(x) dx is parametrised by a set of functions w1(·), ..., wr(·); in particular,

Gw =
r∑

k=1

1

Nk

Nk∑
n=1

wk(xn,k)
g(xn,k)

fk(xn,k)
. (8.1.3)

If we assume that
∑r

k=1 wk(x) = 1 and wk(x) = 0 whenever fk(x) = 0, then

estimator Gw becomes unbiased.

Following ideas from Veach & Guibas (1995), consider the weight function

ŵk(x) =
ckfk(x)∑
k ckfk(x)

, (8.1.4)

with ck = Nk/N . Then it can be proved that this estimator is �almost� optimal in

the sense that one cannot improve much on the variance of G if one chooses other

ŵk(x).

Theorem 8.1.1 (Veach and Guibas, 1995). Let w1(x), ..., wr(x) be any non-negative

functions with
∑

k wk(x) = 1, ∀x ∈ R and let ŵ1(x), ..., ŵr(x) be the weight functions
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de�ned in (8.1.4). Let Gw be an estimator of the form given in (8.1.3) and Ĝw be

the estimator (8.1.3) using ŵk(x) described in (8.1.4). Then

Var[Ĝw] ≤ Var[Gw] +
( 1

minkNk

− 1∑
kNk

)
G2,

where

G =

∫ +∞

−∞
g(x)dx.

This theorem says that no choice of wk(x) can improve upon the variance of the

estimator de�ned by (8.1.4) by more than
(
1/minkNk−1/

∑
kNk

)
G2. This variance

di�erence is very small relative to the variance caused by a poorly chosen sampling

distribution.

We can modify this estimator proposed by Veach and Guibas (1995), to include the

time parameter to prioritise samples coming from distributions that are closer to

the target. This type of modi�cation would address WMC directly. To be more

clear while explaining MIS-WMC, we will deviate from our standard notation of

ft(·) for intermediate distributions and will use ftk(·), where tk ∈ [0, 1], however

now we are able to index intermediate densities ftk(·) with k ∈ N0. We will also

have that ft0(·) ≡ f(·) and ftr+1(·) ≡ g(·). It will be demonstrated later in �8.1.5

that in MIS-WMC we have the case that Nk = N − 1 ∀k, for this reason we have

ck ≡ N−1
N

and this will simplify the form of the estimator. Using this new notation

we introduce a weighting scheme adapted for MIS-WMC,

w̃k(x) =
tkftk(x)∑
l tlftl(x)

. (8.1.5)

Weighting scheme (8.1.5) assigns more weight to samples that are produced from

distributions with greater tk value, i.e. distributions that are closer to the target.

Using this weighting method, the estimator remains unbiased as the unity criteria∑
k w̃k(x) = 1 still holds together with w̃k(x) = 0 when ftk(x) = 0. We will refer to

estimator Gw with the weighting scheme w̃k(x) as G̃w.
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The dependence of intermediate samples of a single WMC run complicates the

variance estimation problem. Although samples across di�erent WMC runs are

independent, intermediate samples within the same WMC run are dependent due to

the inherent Markov chain structure. In particular, if a �ne scale wavelet is selected

to generate new intermediate point, it will have a positive correlation with an old

one, however if the coarse scale wavelet is selected it is very likely that the sampled

new point will be far from the old one and the correlation will be negative. The

overall correlation structure between intermediate points is very complicated and will

not be addressed here in detail. However, even assuming the overall independence

across all samples, the closed form for the variance of G̃w is still intractable. For

convenience, let us de�ne

µk =

∫
w̃k(x)g(x) dx. (8.1.6)

Now let us try to get a closed form for the variance of the estimator, conditioning

on the set of intermediate distributions {tk},

Var[G̃w|{tk}] =
r∑

k=1

1

N − 1
Var
[
w̃k(xn,k)

g(xn,k)

ftk(xn,k)

]
assuming the independence over all intermediate samples,

=
r∑

k=1

1

N − 1

∫
w̃k(x)2g(x)2

ftk(x)
dx−

r∑
k=1

1

N − 1
µ2
k

=
r∑

k=1

1

N − 1

∫
t2kftk(x)g(x)2(∑

l tlftl(x)
)2 dx−

r∑
k=1

1

N − 1
µ2
k

=
1

N − 1

(∫ ∑
k t

2
kftk(x)(∑

l tlftl(x)
)2 g(x)2 dx−

r∑
k=1

µ2
k

)
.

The involvement of tk restricts the obvious simpli�cation that would be possible

otherwise in the expression of the variance above. The intractability of the functional

form of the variance means that we require a numerical approach which we shall

consider in �8.1.7.
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8.1.4 Other types of weightings

Weighting scheme (8.1.5) could be modi�ed further to suit particular WMC settings.

The following types of weighting are appropriate for scenarios when even more weight

should be put towards samples closer to the target density. These methods are

relevant when the starting f(·) density is signi�cantly di�erent in shape and/or

location from the target.

1. Cut-o� method. Discard samples with low weight:

wk(x) =

 0 if tkftk(x) < αfmax(x),
tkftk (x)∑

l{tlftl (x)|tlftl (x)≥αfmax(x)} otherwise.

where fmax(x) = maxk tkftk(x). The constant α ∈ [0, 1] determines how small

tkftk(x) must be compared to fmax(x) before we assign it a zero weight.

2. Power method. Raise all weights to a power, β > 1, and then normalise:

wk(x; β) =
(tkftk(x))β∑
l(tlftl(x))β

.

3. Time threshold method.

wk(x;λ) =

 0 if tk < λ,
tkftk (x)∑
l tlftl (x)

otherwise.

With the cuto� method, initial samples and samples from intermediate distributions

that have barely moved from the starting density will be completely discarded from

the estimation of moments, similar to the `burn-in' process of MCMC methods.

The power method allows for the precise control of weights. Not only are sample

points closer to the target given more weight but through the choice of β ∈ R we

can control how much more weight is assigned to samples. In the limit, as β →∞,

we essentially restrict ourselves to only using samples from the target g(x) in the

estimation of moments,
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lim
β→∞

wk(x; β) =

 1 if tk = 1,

0 otherwise.

However relaxing this parameter we allow for the inclusion of samples that come

from distributions that are relatively close to the target.

Similar to the Cuto� method, the Time threshold one disregards all intermediate

distributions ftk(x) and samples associated with them if tk < λ, where λ ∈ (0, 1]

is the time threshold parameter. Given the usually large number of intermediate

distributions created throughout MIS-WMC process it is important to have an

option to focus on only distributions that are closer to the target.

Furthermore, these heuristics could be modi�ed even further to re�ect particular

WMC scenarios, for example it would also be possible to combine the Cuto� or

Time threshold with the Power one.

8.1.5 Controlling samples from intermediate distributions

In a conventional MIS set up, we have several importance densities picked in advance

from which sampling is going to be performed directly to estimate moments of

a target distribution. However, in the WMC scenario, we are not able to pick

intermediate distributions a priori and sample from them directly; the sampling

procedure from intermediate distributions is uncontrolled and determined by a

random process. Nonetheless, from the WMC theory (�3.4.2) we know that if a

given point xs at a time t = s has an associated survival time t = t?, then xs could

be treated as a sample from any distribution between fs(·) and ft?(·) excluding the

density at t = t?,

x ∼ fl(·), s ≤ l < t?, (8.1.7)

which means that sample x is a representative sample from all intermediate

distributions between fs(·) and ft(·), t > s, excluding the density at time t. Figure
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8.1 demonstrates this process for a starting point x0. Firstly we sample x0 ∼ f(·)

at time t = 0, secondly we sample a survival time t? after which we would sample a

new point xt? ∼ ψj,i(x) if t? < 1. Having observed that point x0 existed at all times

0 ≤ s < t?, we conclude that x0 ∼ fs(x) for any 0 ≤ s < t?.

Figure 8.1: Diagram showing how randomly sampled intermediate points in a WMC

are going to be assigned to a distribution. Point x0 had a survival time t = t?, where

0 ≤ s < t?, hence we conclude x0 ∼ fl(·), 0 ≤ l < t?.

The question remains, how to decide to which ft(·) distribution intermediate sample

points should be assigned to during the full run of WMC for a starting sample size

of N points from f(·).

The idea is to create checkpoints tk with each single WMC run, which will indicate

the intermediate distributions ftk to which points xs, s ∈ [0, 1), should be assigned

to. For the �rst sample x ∼ f(·) a survival time t is sampled and if t < 1 a new point

x? ∼ ψj,i(·) is sampled according to the WMC algorithm. The sampled survival time

t becomes a checkpoint created by the initial point from a starting distribution f(·),

after this a survival time t? for the point x? is sampled and if t? < 1 we record t? as

another checkpoint and carry on until we sample a survival time greater than one.
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So, each starting point xk ∼ f(·) and its associated intermediate points will create a

set of checkpoints tk,l(k) , where k ∈ {1, 2, ..., N} indicates at which run the checkpoint

was created and l(k) ∈ N indicates the l-th checkpoint in k-th WMC run. Therefore,

after the total of N runs we will end up with a pooled collection of checkpoints

{tk,l(k)}, where k ∈ {1, 2, ..., N} and l(k) = 1, ..., l
(k)
max. It could be the case that no

checkpoints are created in the k-th run, in that case we would have l(k)
max = ∅ and

tk,l(k) = ∅. Checkpoint creation procedure could be inspected in Figure 8.2.

Figure 8.2: Illustrating how checkpoints are created over several WMC runs. With

each run new checkpoints are created then pooled into a single collection.

Having created all the checkpoints, we next allocate points to intermediate

distributions. Given any starting point xn ∼ f(·), where n ∈ {1, ..., N}, and its

associated intermediate points that were created in n-th run, the allocation process

is as follows:
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1. Given a point, observe its initial time tI , so for xn ∼ f(·) we have tI = 0, we

also take note of a survival time of xn which let us say is tn,1 < 1.

2. From the full collection of checkpoints {tk,l(k)}, k ∈ {1, 2, ..., N}, l(k) =

1, ..., l
(k)
max we discard all checkpoints created by n-th run to create a new sub-

collection of checkpoints with k 6= n, {tk,l(k)}k 6=n

3. We allocate point xn to all intermediate distributions ft
k,l(k)

(·) for which the

inequality tI ≤ tk,l(k) < t is satis�ed, where tk,l(k) ∈ {tk,l(k)}k 6=n.

The same exact steps above are taken in allocating intermediate points x ∼ ψj,i(x).

Figure 8.3: After creating a full collection of checkpoints after N runs, each starting

point x0 ∼ f(·) and associated intermediate points x ∼ ψj,i(·) are allocated to

intermediate distribution based on those checkpoints that the point has survived

through. The point x0 has survived past the time t1 and hence is assigned to ft1(·).

On the other hand, the point x1 is not assigned to any intermediate distribution

because there are no checkpoints in between initial time and survival time to which

this point could be allocated. Furthermore, points could be allocated to several

intermediate distributions at the same time, points x2 and x3 both survive through

two checkpoints and hence are assigned to both intermediate distributions.

Using the method described above, after a full WMC run of N sample points from
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Samples in Figure 8.3

x0 ∼ f(·) x3 ∼ ft4(·)

x0 ∼ ft1(·) x3 ∼ ft5(·)

x2 ∼ ft2(·) y := x3 ∼ g(·)

x2 ∼ ft3(·)

Table 8.1: Table summarising the samples produced in Figure 8.3. In addition to a

starting sample x0 ∼ f(·) and a target sample y ∼ g(·), there was exactly one point

assigned to every intermediate distribution.

a starting distribution we end up with:

1. {xi}Ni=1 ∼ f(x)

2. {yi}Ni=1 ∼ g(x)

3. {xn,k}N−1
n=1 ∼ ftk(x), for k = {1, ..., r}, where as before, r is the total number

of intermediate distributions used (checkpoints created) and xn,k is the nth

sample from the distribution ftk(x).

As we can see in Figure 8.3, due to a continuity of the time parameter t each

checkpoint needs to be passed exactly one time in each WMC run; this means

that if we start with N samples from a starting distribution, there are going to

be N − 1 points assigned to every intermediate distribution that was de�ned by

a checkpoint. There are going to be N − 1 samples because as described in the

allocation process above, when allocating intermediate sample point to intermediate

distributions, checkpoints that were created from that particular WMC run are not

being used, hence leaving us with N − 1 samples for each intermediate distribution.

There also exists a possibility to prede�ne checkpoints in advance, manually. The

manual grid selection of checkpoints would signi�cantly reduce the total number
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of intermediate distributions used in construction of the estimator G̃w and would

reduce the correlation present across samples from ft(·) and fs(·) where t ≈ s, i.e. s

and t are almost equal. On the other hand, manual selection of checkpoints assumes

that user has knowledge of distribution of survival points and can select checkpoints

in a meaningful manner. The dynamic allocation of checkpoints presented in this

section is not uniform and is highly in�uenced by the discrepancy present between

starting distribution f(·) and the target g(·). If f(·) and g(·) are highly similar it is

expected that checkpoints could be more concentrated towards t = 1 and therefore

a uniform grid would not be a meaningful way of creating checkpoints as a lot of

information would be wasted and not directed towards more accurate computation

of G̃w.

A thinned out, informative grid could be constructed after checkpoints have been

collected and analysed. The idea would be to reduce the number of checkpoints on

the original grid but still maintain the overall distribution and structure created on

the original grid. In this way the grid would still represent patterns where points

usually tend to get extinct but also it would be coarse enough to mitigate the present

correlation between points that were assigned to several intermediate distributions.

8.1.6 Ghost points in MIS-WMC

Taking issues described in Section 5.4 into consideration, how one would deal with

the inevitable presence of ghost points in a MIS-WMC scheme? At �rst glance, the

creation of ghost points xg might seem a severe problem that would contaminate

intermediate samples xt ∼ ft(·), t ∈ [0, 1), and would ruin the possibility of including

them in the estimation of moments of the target density. Fortunately, the associated

survival time 0 for a ghost point xg at time t = s essentially means that

xg ∼ fl(·), s ≤ l < s, (8.1.8)
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but {l : s ≤ l < s} = ∅. Slightly abusing the mathematical notation in (8.1.8),

we demonstrate the importance of the survival time associated with the sampled

intermediate point. A sampled intermediate point xt with a survival time zero

does not belong to any intermediate distribution and is automatically discarded.

Therefore, the ghost point problem is almost surely not an issue in the MIS-WMC

set up.

Nevertheless, there might still be some problems surrounding semi-ghost points,

points that have a small but non-zero survival time (�5.4). The allocation of an

intermediate point to an intermediate distribution involves the criterion (�8.1.5)

that checks if there is a checkpoint between an initial time tI of a point and a

�nal time t when it dies out, if a checkpoint or several checkpoints have been

detected the point is assigned to all intermediate distributions associated with those

checkpoints. However, if no checkpoints are found, the point is deemed to be a

ghost point/semi-ghost point of no value and is discarded. Given the extremely

short survival time of a semi-ghost point, the probability of assigning those points

to any intermediate distribution is very small. A probability of assigning a semi-

ghost point to a distribution could be viewed as trying to sample two identical points

from U(0, 1). Although the analogy is not perfect as the probability of assigning a

semi-ghost point to an intermediate distribution is positive, practically this event

never happens and if it does it could be easily detected and dealt with.

8.1.7 Numerical analysis

To investigate properties of the estimator produced by MIS-WMC algorithm, the

starting distribution was chosen to be U(−10, 10) and the target was set to be a

mixture of standard distributions as in the one-dimensional example of �4.1.1, this

set-up is visualised in Figure 8.4.
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Figure 8.4: Starting and target densities for the MIS-WMC numerical analysis.

The starting density f(·) was chosen such that it covers the target density g(·) and is

similar in location. The main idea for doing this is that intermediate densities ftk(·)

will be covering the high density areas of g(·) and produced samples from these

intermediate densities will be of more value. If f(·) is chosen to be signi�cantly

di�erent in location from the target g(·), then a signi�cant amount of time is

required for a starting distribution to transform into something of a similar shape and

location as the target. This would imply that samples produced from intermediate

distributions that are closer to the starting one will be of substantially lesser value.

In this particular example, after MIS-WMC is performed we end with a sample

of size N = 500 from the target g(·) and with 2276 intermediate distributions

between t = 1 and t = 1 each with 499 samples. Given that throughout 500 WMC

runs, 2276 checkpoints were created it is important to investigate the di�erence

between samples. The reason for doing this is, if there is a cluster of checkpoints,
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an intermediate point will survive through all of them and will be assigned to each

intermediate distribution of each of those corresponding checkpoints. This means

that majority of samples from intermediate distributions are sharing the same sample

points, making an e�ective sample size smaller.

We examine the sample similarity by constructing a percentage based index Sβ(α),

α, β ∈ (0, 1) and α ≤ β that measures what percentages of samples of fα distribution

is identical to those of fβ.

Sβ(α) =
γ(tk = β, tl = α)

N − 1
× 100%, (8.1.9)

where γ(tk, tl) is the function which returns the number of duplicate samples between

ftk and ftl , with tk ≥ tl. Fixing β, we can investigate how similarity between

samples changes as we keep reducing α to 0. As we can see (Figure 8.5), the

sample similarity percentage decays quite slowly with each `lag', which means that

given any distribution ftk and two neighbouring distributions ftk−1
and ftk+1

, the

samples associated with each of those distributions are almost the same, with only

few sample points being unique for each distribution. This observation suggests that

it is relevant to include thinning options before using all intermediate distributions

in the computation of statistics using MIS-WMC.

Furthermore, we can see that approximately 15% of samples from a starting

distribution ended up surviving to the target, i.e. no intermediate jumps were

required in those cases to generate a sample from the target. The e�ciency of the

WMC run on N points could be also judged on the amount of starting points that

were not required to do any intermediate jumps. For this reason, it is important

to pick the best possible starting distribution which would be similar in shape and

location.

Figure 8.6 presents samples from couple of intermediate distributions that were

created using the checkpoint procedure. Not ignoring the intermediate points
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produced by WMC, we ended up with 2276 intermediate distributions each

containing 999 samples, which could be used for statistic computation purposes

of the target distribution.

To analyse distribution properties of the MIS-WMC mean estimator Mw,

Mw(λ) =
1

G

r∑
k=1

1

Nk

Nk∑
n=1

wk(xn,k;λ)xn,k
g(xn,k)

fk(xn,k)
, (8.1.10)

we will focus on using the time threshold weight function wk(x;λ). To explore the

variance of the estimator, we will set up a simulation that will run 100 times for

N = {10, 25, 100, 1000} and for each of N we will record the Mw(λ) estimator value

Figure 8.5: Each trace indicates at what Time (intermediate distribution) what the

present sample similarity value is. For example, f1 trace indicates that approximately

75% of samples of f0.8 distribution are identical to samples from f1.
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for λ = {0.8, 0.9, 0.95}. The goal of the simulation is to spot what e�ect the λ value

together with N has on the variance of the estimator. As expected the empirical

mean of the estimator Mw(λ) converges to the true value of the target distribution.

For λ = 0.95 the mean of the estimator seems to be the most consistent around

the true value, however it has the highest variance for N = 10 but lowest one for

N = 25.

As it could be seen in Figure 8.7, as value of N increases, the bene�ts of using MIS-

Figure 8.6: By not discarding intermediate samples and using the intermediate

sample allocation procedure described in �8.1.5 we are able to produce samples

from intermediate distributions. The �gure presents histograms of samples from

the starting distribution, two intermediate distributions and the target based on

N = 1000 points from a starting distribution.
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Figure 8.7: Empirical mean of the estimators is plotted after 100 simulation runs

together with error bars. Dashed line indicates the actual mean of the target

distribution.

WMC are not that clear, however MIS-WMC is doing arguably better than a default

mean of the pure WMC for lower values of N . For the small price of the increase in

variance, MIS-WMC should be utilised in the situations when computational cost

of producing samples from the target is high. In those cases, intermediate samples

could play a big role of producing better estimators at almost no additional cost.

8.2 Level WMC

8.2.1 Motivation

In this section, we introduce another possible modi�cation to the standard WMC, a

Level WMC (LWMC). The key motivation for this sort of algorithm is to minimise
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the total number of wavelet coe�cients dψj,i that are required for estimation at each

iteration of WMC run. Furthermore, we are also interested in incorporating the

approximate knowledge of the normalisation constant of the target and introducing

the possibility of improving the quality of samples even after a target sample has

been reached via WMC.

As it was mentioned before in �3.4.3, proofs for the validity of the WMC theory

assume that a summation over all resolution levels j ∈ (−∞,+∞) could be

performed, in practice we must restrict ourselves to some coarsest jmin and some

�nest jmax resolution levels. At this point it is clear that the moment this restriction

is made the samples produced by the WMC algorithm change from g(x) to being

from

ĝ(x) =

jmax∑
j=jmin

∑
i

gψj,iψj,i(x) +
∑
j<jmin

∑
i

fψj,iψj,i(x) +
∑
j>jmax

∑
i

fψj,iψj,i(x) (8.2.11)

at best. This `best case' scenario occurs when we have a good estimate of the ratio

of normalising constants and good estimates of wavelet coe�cients, we will refer to

equation (8.2.11) as a practical target of WMC. However, mother wavelets ψj,i(·)

are not able to capture the `average' behaviour of a function. In particular, if we try

to compute the expectation of ĝ(·), assuming that K̂g is the normalisation constant,

we get

1

K̂g

∫ +∞

−∞
xĝ(x)dx =

∫ +∞

−∞

∑
j<jmin

∑
i

fψj,ixψj,i(x) dx+

∫ +∞

−∞

∑
j>jmax

∑
i

fψj,ixψj,i(x) dx

(8.2.12)

where we used,
jmax∑
j=jmin

∑
i

gψj,i

∫ +∞

−∞
xψj,i(x)dx = 0, (8.2.13)

assuming ψ(·) has K ≥ 1 vanishing moments. Due to the in�nite sums and in�nite

integrals, we are not able to work out the closed form for the expectation, clearly

this is not the desired outcome and this issue needs to be addressed. Therefore,
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in this `level-by-level' case we will assume the form of ĝ(x) involving the scaling

function φjmin,i(x) as well (see equation (2.3.9) for more detail),

ĝ(x) =
∑
i

fφjmin,i
φjmin,i(x) +

jmax∑
j=jmin

∑
i

gψj,iψj,i(x) +
∑
j>jmax

∑
i

fψj,iψj,i(x), (8.2.14)

where we have used ∑
j<jmin

∑
i

fψj,iψj,i(x) =
∑
i

fφjmin,i
φjmin,i(x). (8.2.15)

Given that we are free to chose our starting distribution f(·), we assume that

the starting density is behaving regularly, without sharp spikes and discontinuities.

Assuming regularity and sparsity of wavelet coe�cients,∣∣∣∣ ∑
j>jmax

∑
i

fψj,iψj,i(x)

∣∣∣∣ ≤ ε,∀x ∈ R, (8.2.16)

and therefore under these assumptions we will disregard O(2jmax+1) terms. Now

we are able to estimate the normalisation constant and higher moments quite

straightforwardly,

K̂g =

∫ +∞

−∞
ĝ(x)dx =

∑
i

fφjmin,i

∫ +∞

−∞
φjmin,i(x)dx = c

∑
i

fφjmin,i
, (8.2.17)

where c =
∫ +∞
−∞ φjmin,i(x)dx, ∀i ∈ Z. Furthermore, if we decide to add

extra resolution levels j > jmax to the approximation ĝ(x), the estimate of the

normalisation constant (8.2.17) will not change because all mother wavelets ψj,i(x)

integrate to 0, so only the coarsest resolution with a scaling function (the �rst term

of (8.2.19)) will determine the estimate of the normalisation constant.

So, using a standard WMC we are able to produce samples from a distribution with

an approximate density

g̃(x) =
∑
i

fφjmin,i
φjmin,i(x) +

jmax∑
j=jmin

∑
i

gψj,iψj,i(x), (8.2.18)
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assuming that g̃(x) satis�es probability density properties. The key issue with g̃(x)

is the involvement of scaling coe�cients of a starting density f(·). By setting the

coarsest resolution level parameter jmin to a very low value in a standard WMC we

are able to produce approximate samples from the density

g̃(x) =
∑
i

gφjmin,i
φjmin,i(x) +

jmax∑
j=jmin

∑
i

gψj,iψj,i(x). (8.2.19)

The reason for this approximation is that we are able to use scaling functions to

represent j < jmin levels

jmax∑
j=−∞

∑
i

gψj,iψj,i(x) =
∑
i

gφjmin,i
φjmin,i(x) +

jmax∑
j=jmin

∑
i

gψj,iψj,i(x). (8.2.20)

Mainly using the assumption that ĝ(x) and g̃(x) are densities, we are able to produce

approximate samples from (8.2.19). We next will will introduce a method which

allows to systematically improve samples by applying WMC level-by-level.

8.2.2 Set up of the algorithm

1. Begin with

f(x) =
1

K̂g

∑
i

gφjmin,i
φjmin,i(x) (8.2.21)

with K̂g = c
∑

i g
φ
jmin,i

. So the starting distribution is going to be the coarsest

possible approximation of g(x) and our target is going to be

ĝjmax(x) =
1

K̂g

∑
i

gφjmin,i
φjmin,i(x) +

jmax∑
j=jmin

∑
i

gψj,iψj,i(x), (8.2.22)

where ĝjmax(x) denotes the level jmax estimate of the theoretical target g(x).

2. Assume we are able to produce samples {xn}Nn=1 ∼ f(·). This could be

approximately achieved by running WMC a priori for jmin reasonably low

and jmax = jmin∗ , where jmin∗ is the future LWMC jmin value.
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In the LWMC case we will try to approach target ĝjmax(x) sequentially, by �rst

applying the WMC to produce samples from ĝjmin+1(x) using f(x) and then using

samples from ĝjmin+1(x) to move up to samples from ĝjmin+2(x) etc. until we reach

our desired target level jmax.

Moving from f(x) = ĝjmin
(x) to ĝjmin+1(x):

ĝjmin+1(x) = f(x) +
∑
i

gψjmin+1,iψjmin+1,i(x), (8.2.23)

so our di�erence function becomes only a sum of details at level jmin + 1,

d(x) = ĝjmin+1(x)− f(x) =
∑
i

gψjmin+1,iψjmin+1,i(x). (8.2.24)

Therefore, applying LWMC algorithm we will have to only worry about coe�cients

at the next �ner level,

pji,t(x) =


[gψjmin+1,iψjmin+1,i(x)]−∑
i[g

ψ
jmin+1,iψjmin+1,i(x)]−

if j = jmin + 1,

0 otherwise,

where pji,t(x) are the probabilities associated with picking a mother wavelet ψj,i

as in the standard WMC, however this time the only relevant resolution level is

j = jmin + 1. In addition to this, if we are working with Daubechies wavelets with

K vanishing moments, we are only required to estimate 2K − 1 wavelet coe�cients,

because there are only that many locations i at level j for which wavelet ψj,i

envelopes any given point x.

After moving to jmin +1 from jmin we will end up with a sample from ĝ
¯
j+1(x) and we

will be able to apply the same technique described above again to keep on moving

up the resolution levels. The main issue of this algorithm is the precondition of

being able to e�ciently produce samples from a starting f(·) distribution.
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8.2.3 Dangers of LWMC

As a concept, LWMC presents a very systematic algorithm that sequentially grows

samples being from the coarsest approximation to being from the �nest possible

approximation to the target. However, given a rather strong assumption that

starting density f(·) in (8.2.21) is in fact the probability density that satis�es

non-negativity property and integrates to one, LWMC algorithm faces some serious

issues.

As it was commented before, WMC practical target is (8.2.11) and it is not

guaranteed to be non-negative everywhere, even after choosing jmin and jmax

values low and high enough. Nonetheless, samples are still being generated via

WMC process even from regions where practical density might be negative. This

present discrepancy between what samples are being produced via WMC and what

distribution they belong to still remains unexplained.

In step one of LWMC method we start with samples from the chosen coarsest

approximation of the target g(·), in particular we de�ne a starting density in LWMC

to be of this form,

f(x) =
1

K̂g

∑
i

gφjmin,i
φjmin,i(x).

If in a standard WMC with a starting density f(·) and target g(·) we set our coarsest

level to be −∞ and �nest to jmin, under present understanding of WMC theory we

will be generating samples from the practical target

ĝ(x) =

jmin∑
j=−∞

∑
i

gψj,iψj,i(x) +
∑
j>jmin

∑
i

fψj,iψj,i(x). (8.2.25)

Under approximations described in �8.2.1 we claim that

ĝ(x) ≈ 1

K̂g

∑
i

gφjmin,i
φjmin,i(x). (8.2.26)
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In practice this approximation seems to be very reasonable, Figure 8.8 presents an

example how similar

g−20:0(x) =
0∑

j=−20

∑
i

gψj,iψj,i(x) (8.2.27)

is to

ĝ(x) =
0∑

j=−20

∑
i

gψj,iψj,i(x) +
∑
j<−20

∑
i

fψj,iψj,i(x) +
∑
j>0

∑
i

fψj,iψj,i(x). (8.2.28)

However, as it could be seen in Figure 8.8 the practical target does not satisfy the

Figure 8.8: Comparison between practical WMC target density with jmin = −20 and

jmax = 0, and approximate version g−20:0(x).

density property of non-negativity and would introduce technical problems if used

directly in LWMC as a starting density. Negative density values of a starting density

f(·) imply improper survival time densities. The sign of the rate parameter c(xs)
rf(xs)
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in the exponential distribution depends on the value of a starting distribution f(·),

ft(t|xs) =
c(xs)

rf(xs)
exp

{
− (t− s) c(xs)

rf(xs)

}
, (8.2.29)

for this reason starting densities that produce negative values cannot be used in

LWMC.

Similarly, as in Provisional WMC (Section 3.2), a strong assumption A2,∑
j∈Z

∑
i∈Z

[dψj,iψj,i(x)]− ≤ rf(x) ∀x ∈ R,

needs to be satis�ed in order to make an algorithm valid; here, we have a strong

assumption on the non-negativity of a starting density f(·). Although, LWMC

algorithm is far from being practical it does open a new way of thinking about

resolution levels in the WMC itself. It might be possible to limit the range of

resolution levels at each iteration and sequentially update the quality of samples

later without the non-negativity assumption, however it needs further investigation.

This particular modi�cation of WMC could easily serve as a future research topic

that would also investigate and compare computational costs of LWMC against a

standard WMC.

8.3 Summary

In this chapter, two possible alternatives to the standard WMC were presented,

MIS-WMC and LWMC.

The former, MIS-WMC, motivated by the large amount of intermediate points

being computed was constructed to incorporate those intermediate points in the

computation of moments of the target density. Together with the method how points

should be allocated to intermediate distributions (�8.1.5), ghost points avoided

and �nally intermediate points weighted when combining into MIS-WMC estimate
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(�8.1.4), the algorithm was tested and estimates were numerically analysed (�8.1.7).

For the particular example analysed, results revealed that there is not so much

di�erence in utilising MIS-WMC when the number of samples being produced is

large, however results were somewhat positive for smaller values of N , which is the

desired outcome. The ultimate goal is that in a situation when the cost to produce

standard N samples from WMC is high, MIS-WMC could be used with a smaller

amount of points from the target M < N , but still keeping approximately the same

accuracy for the estimates computed.

The next algorithm discussed was the LWMC. This algorithm was outlined only

in a theoretical manner. Given that in a standard WMC at each iteration, for

every intermediate point xs, wavelet coe�cients at all resolution levels need to be

computed, LWMC was designed in such a way that that samples from a starting

distribution are upgraded to samples that incorporate �ner resolution levels. Using

this level-by-level updated method, the algorithm would be accessing one resolution

layer at the time and potentially converging to the desired sample more rapidly.

Furthermore, knowing that samples produced by the standard WMC are from

ĝ(x) =

jmax∑
j=jmin

∑
i

gψj,iψj,i(x) +
∑
j<jmin

∑
i

fψj,iψj,i(x) +
∑
j>jmax

∑
i

fψj,iψj,i(x),

The LWMC algorithm could be always applied on top of those standard

WMC samples to improve the quality. However, given the strong assumption

that expression in Equation 8.2.21 is density, the algorithm requires addition

modi�cations to be viable in practice.
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Chapter 9

Conclusions

Here we will give a summary of the main results presented throughout the thesis.

Where relevant, possible future work will be discussed and potential improvements

outlined.

9.1 Problems and advantages

In Chapter 5, core problems of WMC were discussed. The ability to properly

implement the algorithm seemed to be the main concern, in particular, the

assumption of access to the ratio of normalising constants (3.1.5):

r =

∫
g(x) dx∫
f(x) dx

.

Throughout all chapters, there was not much attention given to the estimation of r,

and it was mainly assumed to be known. However, in practice we are faced with non-

standard target distributions that are not integrable and the normalisation constant

is not accessible via standard integration techniques. Clearly, certain estimation

methods (Section 5.1) could be used to �nd good quality estimates of r, but in

general this is a di�cult task, as was discussed in Section 5.1. Furthermore, as was
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pointed out in Section 4.4, WMC scales poorly with the dimension of a space, as

the number of wavelet coe�cients that need to be estimated grows geometrically

with the dimension. This is an unwelcome feature that simply can not be avoided

due to the nature of the wavelet decomposition. The number of unique building

blocks (wavelet type combinations) increases, in turn leading to a more complex

decomposition. In addition to the number of coe�cients growing geometrically,

poor estimation of wavelet coe�cients leads to faulty samples being produced via

WMC (Section 5.5).

Compared to other sampling algorithms, WMC is very clear to operate and does not

require a lot of subjective tuning. For example, the majority of MCMC methods

require a user to tinker with a proposal distribution to make an algorithm work

properly. The choice of this distribution is not usually a trivial task and it requires

careful analysis by specialists. On the other hand, for any starting distribution and

wavelet family with compact support, the WMC algorithm will produce independent

samples from any target of choice, subject to the computational cost that depends

on the range of resolution levels and the dimensionality. Choices of the starting

distribution and wavelet family are not critical tasks. A uniform distribution could

be always chosen to be a starting one and Daubechies family was shown to be an

optimal choice for wavelets. Therefore, at this stage WMC potential could be best

utilised by professional programmers who are able to optimise the execution time of

the code involved to run the algorithm. Given that decisions made before running

WMC do not require much theoretical tuning and a priori analysis, WMC is a

very straightforward method and with clear instructions could be handled by many

non-professional statisticians.

All in all, it is quite clear that, at this stage of its development, WMC should be

approached more as a prototype for future algorithms, rather than a �nal version

itself. From the implementation Chapter 4, we also know that WMC is constructed
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in such a way that it ensures the independence of samples and it treats multi-modal

distributions in the same way as uni-modal ones, guaranteeing the full exploration

of a target distribution and access to convenient parallelisation techniques. In order

to make the algorithm fully practical, the future WMC versions will have to �nd a

compromise between the positives (independence and multi-modality) and negatives

(curse of dimensionality and normalisation constant).

9.2 Theoretical analysis of jumps

Given that the e�ciency of the WMC algorithm is highly dependent on the number

of jumps taken to produce a sample from the target, a theoretical analysis of a

distribution of jumps was carried out in Chapter 6. Unfortunately, due to the

complexity introduced by the wavelet decomposition, a simpli�cation (6.3.4) had

to be made. It was shown how the expected number of jumps is related to a

parameter δ that controls the discrepancy between the starting and the target

density. Simulations showed agreement between the empirical results and theoretical

ones for the expected number of jumps, but not for the associated variance (Figure

6.4). Furthermore, the condition (6.5.31),∑
j,i

Aj|hψj,i| <∞,

was found to be a necessary one for the validity of the WMC theory. Understanding

the jump distribution is the key to optimising WMC and making it practical.

The functional forms of jump probabilities could be used to �ne tune a starting

distribution as explained in Section 6.6.
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9.3 Besov spaces

In Chapter 7, we investigated the WMC assumption A2 (Section 3.2):∑
j∈Z

∑
i∈Z

[dψj,iψj,i(x)]− ≤ rf(x) ∀x ∈ R, (9.3.1)

in more detail. In particular, we tried to show how this assumption is related to

the issue of Haar wavelets, which are not able to transition probability mass across

the origin. The analysis led to the connection of WMC theory with Besov spaces.

The assumption A2 restricts the space that we are allowed to operate on from L2

to Ḃ0
1,1. The theory related to the decomposition of functions using wavelets in Ḃ0

1,1

clearly shows that due to continuity and di�erentiability reasons Haar wavelets are

not a valid system to be used in WMC. The link of Besov space theory and WMC is

at the core of the algorithm. This connection should lead to a better understanding

of how wavelet systems should be used in the implementation of WMC in higher

dimensions.

9.4 Algorithm alternatives

In Chapter 8, we have considered modifying the original WMC algorithm and

exploiting certain features. Given that a lot of intermediate samples are being

produced during a standard WMC run, a Multiple Importance Sampling WMC

(Section 8.1) was constructed with a method to allocate intermediate points to

intermediate distributions and instead of discarding these points, use them for

the estimation of moments of the target distribution. This method showed small

improvements in the estimation of mean of the target density, however at the cost

of increased variance in the estimate. The method could be explored and �ne tuned

further by improving the e�ective utilisation of recycled intermediate points. In
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particular, careful analysis could be carried out investigating the appropriate cut-

o� point of intermediate distributions that can be included in the estimation of

moments of the target density.

The second proposed alternative to WMC was Level-WMC (Section 8.2). This new

algorithm was only outlined theoretically, suggesting the possibility of approaching

samples from the approximate target distribution in levels. Samples would �rst be

produced from a coarser approximation and later upgraded to �ner ones, potentially

lowering the computational load and saving some computational time. However, as

pointed out in Section 8.2, the algorithm is highly dependent on the non-negativity

assumption of a starting density and, therefore, the idea requires �ner re�nements

to be fully functional.

If we are interested in producing N samples from the target distribution, we are free

to pick whatever starting density we want to achieve this result via WMC. Certain

densities will lead to samples being produced in a shorter time and more e�cient

way. A new modi�cation could be considered in the future that suggests using an

adaptive WMC, a method that adjusts the starting distribution adaptively, to better

suit the target. The decision to switch to a better choice of starting distribution

could be made by monitoring the average number of jumps required to reach a target

and using it as a criterion that constantly needs to be minimised.

As with many other sampling algorithms, an original version is usually far from

being optimised and in general could be improved. Similarly here, we note several

possible modi�cations to the original WMC, and, hope that in the future, they could

be explored even more in detail to produce a superior sampling method.
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9.5 Future work

Given the signi�cant computational cost attached to the implementation of

the WMC, the future work related to WMC should be highly focused on the

computational optimisation of the algorithm. In particular, e�cient ways how to

construct and produce samples from the desired wavelet of interest in real time is a

top priority. The same could be said about the computation of wavelet coe�cients,

required to construct sampling distributions for wavelet resolution levels. If these

two goals could be achieved, WMC algorithm has real chances of becoming one of

the more popular sampling algorithms in the scienti�c community.
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