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Abstract 

Poorer communities tend to be located within lower quality natural environments, 

experiencing greater environmental burdens and fewer benefits. These environmental 

benefits are critical for human health and wellbeing and can be effectively conveyed as 

ecosystem services derived from natural capital. This thesis presents a multiscale 

spatial analysis in England which addresses a knowledge gap regarding the social 

distribution of ecosystem services and natural capital assets in a high-income country 

context. Understanding how equally natural capital and ecosystem services are 

distributed is important for informing their equitable management, required by the 

Convention on Biological Diversity.  

Nationally, differences in deprivation are found across a natural capital classification of 

districts. Higher deprivation is often associated with a lower natural capital, but the 

pattern is not consistent for all types of natural capital or places. This implies equitable 

management of ecosystems should be driven at a local level.  

To realise this, case study analysis is needed and is carried out for three regions; 

Leeds, Northampton and the South Pennines. Analysis addresses three ecosystem 

services, thus accounting for the flows of benefits from natural capital including from 

assets outside the district boundaries.  

The distribution of air pollutant removal is unequal across all regions; service is lower 

for more deprived areas. Ecosystem services are also lower for more deprived areas in 

Leeds with respect to surface water runoff reduction, and in Northampton with respect 

to recreation. Indicating their social distribution is location dependent. Sensitivity tests 

further show that that social distribution of ecosystem services may depend on how 

they are quantified.   

This thesis provides evidence of some inequalities in the social distribution of 

ecosystem services, emphasising the need to better account for inequalities within 

management of natural capital. The mixed results demonstrate a need for further 

distributional analysis of ecosystem services encompassing more locations and 

services.  
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Glossary  

 

1. Terms 

Abiotic  Physical, non-biological (components/processes). 

Biodiversity  Variety and variability of living organisms. 

Biotic  Living (components/processes). 

Bluespace  Visible water, usually considered within an urban context. 

Ecosystem A community of living organisms, their interactions and 

the non-living components of their environment. 

Ecosystem services The direct and indirect contributions of ecosystems to 

human health and well-being 

Ecosystem service flows The spatially explicit transfer of the ecosystem service 

from its source to the area which it benefits.  

Environmental Inequality Differences in environmental conditions (hazards and 

amenities) across different social, demographic or ethnic 

groups of the population.   

Greenspace Areas of non-agricultural vegetated land, such as parks, 

sports fields, woodland, and other undeveloped vegetated   

land. Where unspecified ‘greenspace’ refers to public 

greenspaces, gardens are considered ‘private’ 

greenspace.   

Health Inequality  The avoidable differences in human health across social, 

demographic, ethnic or location based groups of the 

population.  

Natural Capital The stocks and assets of the natural environment 

Procedural justice Concern with the ‘fairness’ and transparency of processes 

and meaningful participation in decision making. 

(Social) deprivation The extent an individual or community lack necessities for 

a ‘reasonable’ life e.g. financially, employment, living 

conditions, education and other services. 

Social distribution The distribution (or ‘share’) of a phenomena across 

different social groups.  
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Socio-ecological A linked system of humans and the natural environment 

comprising of multiple units, actors, processes and 

institutions.  

2. Abbreviations – general terms & datasets 

ANGSt  Accessible Natural Greenspace Standard 

BAME  Black, Asian and Minority Ethnic (population) 

CIR   Colour Infrared Imagery 

CN  Curve Number 

EIA  Environmental Impact Assessment 

EJ  Environmental Justice 

ES  Ecosystem Service 

GIS  Geographical Information System  

GLUD  Generalised Land Use Database 

HOST  Hydrology of Soil Types dataset 

IHDTM  Integrated Hydrological Digital Terrain Model 

IMD  Index of Multiple Deprivation 

IPC  Integrated Pollution Control 

LAD  Local Authority District 

LCM  Land cover Map 

LISA  Local Indicators of Spatial Association 

LSOA  Lower Super Output Area (small area census unit) 

MAUP  Modifiable Areal Unit Problem 

MENE  Monitor of Engagement with the Natural Environment (survey) 

NDVI  Normalised Difference Vegetation Index 

NFM  Natural Flood Management 

PES  Payment for Ecosystem Services 

PROW  Public Rights of Way 

RoFMS Risk of Flooding from Multiple Sources  

SA  Sustainability Appraisal  
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SBA  (Ecosystem) Service Benefitting Area 

SEA  Strategic Environmental Assessment 

SPA  (Ecosystem) Service Providing Area 

SPU  (Ecosystem) Service Providing Unit 

SSSI  Site of Special Scientific Interest 

SWRR  Surface Water Runoff Reduction 

 

3. Abbreviations - organisations and projects 

3.1 International 

CBD  Convention on Biological Diversity 

CICES  Common International Classification of Ecosystem Services 

EC  European Council 

EEA  European Environment Agency 

ESPA  Ecosystem Services for Poverty Alleviation 

IPBES Intergovernmental Science-Policy Platform on Biodiversity and 

Ecosystem Services 

MA  Millennium Ecosystem Assessment 

PEER  Partnership for European Environmental Research 

PRESS Partnership for European Environmental Research on Ecosystem 

Services 

TEEB  The Economics of Ecosystems and Biodiversity 

UN   United Nations 

UNECE UN Economic Commission for Europe 

USDA NRCS United States Natural Resources Conservation Service 

US EPA United States Environmental Protection Agency 

WAVES Wealth Accounting and Valuation of Ecosystem Services 

WFD  Water Framework Directive 

WHO  World Health Organisation 
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Chapter 1 Introduction 

 

1.1 Background and research justification 

The natural environment meets basic human needs, enhances wellbeing and is 

inherently connected to people culturally. Its forces threaten humans whilst also 

offering protection from its natural hazards. Environmental change and degradation has 

been a longstanding concern (see for example Marsh, 1874), but societal pressures, in 

particular from population growth and consumption, now increasingly threaten the 

health of the world’s ecosystems with biodiversity “declining faster than any time in 

human history” (IPBES, 2019 p.2). The latest Global Assessment on Biodiversity and 

Ecosystem Services depicts a critical situation; “The biosphere, upon which humanity 

as a whole depends, is being altered to an unparalleled degree across all spatial 

scales”. Furthermore adverse changes are occurring despite international 

commitments, such as the EU’s Biodiversity Strategy which aimed to halt the loss of 

biodiversity and the degradation of ecosystem services by 2020 (EC, 2011).  

Explicit framing of human’s dependency on nature as a series of ‘Ecosystem Goods 

and Services’ provided by ‘Natural Capital’ aimed to emphasise the importance of 

ecosystems to human health and wellbeing. Thus compelling greater action to prevent 

further degradation to ecosystems (although preserving ecosystem services is not 

necessarily consistent with conserving biodiversity; Harrison et al., 2014). Specifically, 

the Millennium Ecosystem Assessment describes Ecosystem Goods and Services (ES) 

as the “benefits people obtain from ecosystems” (MA, 2005). The ES are further 

grouped by the MA (2005) with respect to the different ways they contribute to human 

health and wellbeing;  

 Provisioning ES are those which provide essential goods including water and 

those for nutrition and shelter. 

 Regulating ES are those which help to moderate potential hazards 

 Cultural ES are non-material benefits which may be important to people 

spiritually or for enhancing wellbeing 

 Supporting ES are the ecological functions and processes which underpin the 

other services 
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Natural Capital is defined as “the world’s stocks of natural assets which include 

geology, soil, air, water and all living things”. It is considered as the capital from which 

humans obtain the wide range ecosystem services which provide economic, social, 

cultural and environmental benefits (Natural Capital Coalition, n.d.). Whilst a contested 

notion, defining the natural environment as a type of ‘capital’ facilitates integration of 

the value of the natural environment within economic decision-making processes 

(Costanza et al., 2017). Thus ultimately, the ES and natural capital conceptualisations 

are intended to promote more sustainable decision making and can now be considered 

mainstream within environmental policy (Schleyer et al., 2015). 

Sustainable decision making is concerned with addressing a range of global challenges 

with the overarching ambition to create a better future for all. Such vision is defined by 

the UN’s 17 Sustainable Development Goals to which 193 countries are signatories. 

Notably, five of these goals explicitly address the need to reduce inequalities, in 

particular Goal 10 which has a broad remit to “Reduce inequality within and among 

countries”. Addressing inequalities is crucial as more equal societies are demonstrated 

to be more successful overall socially, economically and ecologically (Wilkinson & 

Pickett, 2009). Inequalities may exist in relation to income, health, environmental 

conditions, access to decision making and access to public resources. These factors 

are inter-related. Thus inequalities in health are socially determined by (amongst other 

factors) the variable conditions in which people live and work, including the socio-

economic, cultural and environmental setting that influences health and wellbeing 

(Marmot et al., 2010). In consideration of natural capital and ES, poorer and ethnic 

minority communities tend to be located within lower quality natural environments, 

experiencing greater environmental burdens and fewer environmental amenities 

(Agyeman et al., 2016). Moreover the burdens from declining conditions in the natural 

environment are disproportionately borne by poorer communities, thus exacerbating 

existing inequalities (Islam & Winkel, 2017).  

Concern with these environmental inequalities is the focus of the Environmental Justice 

(EJ) discourse, which examines issues of fair intra-generational, inter-generational and 

inter-species distribution in environmental conditions and in meaningful access to, and 

consideration within, environmental decision making. Environmental Justice has been 

defined as “Equal access to a clean environment and equal protection from possible 

environmental harm irrespective of race, income, class, or other differentiating feature 

of socio-economic status” (Cutter, 1995). Whilst a broader definition is given by the 

United States Environmental Protection Agency; “Fair treatment and meaningful 

involvement of all people regardless of race, color, national origin, or income with 



 - 3 - 
 

respect to the development, implementation & enforcement of environmental laws, 

regulations and policies. Fair treatment means no group of people should bear a 

disproportionate share of the negative environmental consequences resulting from 

industrial, governmental and commercial operations or policies” (US EPA, n.d.). 

Thus there are three key components of EJ relating to distributional, procedural and 

recognition justice. To date, research has centred on distributional concerns, with a 

wealth of studies demonstrating inequality in the distribution of environmental hazards 

(Walker, 2009). More recent widening of the scope of EJ research has similarly 

revealed evidence of inequality in the distribution of environmental benefits. This is of 

concern given the contribution of greenspace (private or public vegetated areas such 

as woodland, grassland, street trees) to health and wellbeing, and thus potential 

exacerbation of health inequalities (Jennings et al., 2016).  

Analysis of the inequalities in environmental benefits tend to focus on availability or 

coverage of greenspace in particular in urban areas (Jennings et al., 2016). These 

studies assume that those who benefit from these greenspaces are located locally. 

Whilst this holds true for some benefits derived from greenspaces, the ES framework 

demonstrates that there are a many benefits which may be derived from those 

greenspaces, some of which may also be of benefit to people located distant from the 

greenspace. For example, vegetation can reduce the risk of flooding to communities 

downstream (Villa et al., 2014). On this basis, the contribution of a range of natural 

capital beyond urban greenspace is important for the distribution of environmental 

benefits. Framing analysis of inequalities in environmental benefits in terms of ES can 

facilitate a clearer, more structured and more representative understanding. 

Additionally, it can explicitly account for the spatial dependencies in the delivery of 

benefits to human health and wellbeing from the natural environment. Despite these 

advantages, there are few inequality analysis of the distribution of ES (Lakerveld et al., 

2015), particularly within high-income countries where there is less direct dependence 

on local environments for the provisioning ES vital for fulfilling basic human needs. 

Addressing this knowledge gap through socio-spatial analysis of the distribution of ES 

can provide a new insight with regards to the inequalities of environmental benefits.  

With regards to the ES discourse, the concept is fundamentally based on nature’s 

contribution to human health, but spatial analysis of ES have focused on the production 

of services with much less attention given to the beneficiaries of ES (Geijzendorffer et 

al., 2017). There are few empirical analysis addressing distributional justice issues in 

the natural capital and ESs literature although recently there have been calls for ES 

analyses to address the complexity of the socio-ecological system and recognise the 
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importance of benefit distribution (Daw et al., 2011; Bennett et al., 2015; Schröter et al., 

2017). Such calls for equitable management are rooted in international policy, 

specifically the Convention on Biological Diversity (CBD) which aims for; “the 

conservation of biological diversity, the sustainable use of its components and the fair 

and equitable sharing of the benefits arising out of the utilization of genetic resources, 

including by appropriate access to genetic resources“ (CBD, 1992; Article 1). 

Spatial analysis is critical to understanding and managing the interface between 

humans and nature through for example land planning and management of natural 

capital (Blaschke, 2006). Understanding the spatial connections between where ES are 

produced, where the beneficiaries are, and how equally the ES are distributed across 

different sub-groups of the population is therefore essential if we are to manage natural 

capital in a sustainable and equitable manner. Evaluation of the social distribution of 

ES thus extends current approaches in ES spatial analysis in line with providing the 

necessary information for decision making in line with the CBD (1992) and the UN’s 

Sustainable Development Goals (2017). 

This research aims to: 

Determine the social distribution of natural capital and ecosystem services in England, 

United Kingdom.  

Assessments of the social distribution of ES are rare in high-income countries, 

including England, which is chosen as an appropriate study area due to the extensive, 

but as yet largely unconnected, past work on natural capital, and environmental 

inequality. A well-established EJ literature has demonstrated inequalities in 

environmental hazards (Lucas et al., 2004) and in greenspaces (CABE, 2010) with 

respect to socio-economic status, which are of concern in the context of persistent 

health inequalities (PHE, 2018). From a policy perspective, the UK has embraced a 

natural capital/ES approach to management of the natural environment (HMG, 2018) 

and has made international commitments to fairness in planning and management of 

the natural environment (UNECE Aarhus Convention, 1998; CBD, 1992). Together this 

demonstrates a need for greater understanding of how specific ES are socially 

distributed. Whilst the research is situated in England, there is broader relevance to the 

ES and EJ discourses with respect to the approach taken and implications for 

sustainable decision making. 

This research is focused upon the distributive aspect of EJ, employing multiscale 

spatial analysis to facilitate analysis nationally and sub-nationally. The spatial extent of 

case study regions and scales of analysis are chosen to be relevant for spatial planning 
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and to ensure adequate data are evaluated for robust assessments of inequality. More 

detailed information with regards to the study areas are provided in subsequent 

chapters.  

1.2 Thesis structure 

This section describes the structure of the thesis, and summarises the content of its 

chapters. Further detail, including the research objectives and justifications for the 

approach taken, is provided in the relevant chapters.  

Chapter 2 presents a review of literature and details the research objectives. The 

context for the research is provided through summaries of the historic development of 

the ES and EJ discourses. The extensive array of research in these fields necessitates 

a subsequent focus upon the research most relevant to this analysis. This includes 

spatial assessments of ES and of analysis of environmental inequalities.  

Chapter 3 provides an in depth account of the research design, developing the 

conceptual framework for analysis from review of existing ES frameworks and 

modifying these to account for the distribution of benefits from ES. The structure of the 

research and the corresponding objectives outlined in Chapter 2 (section 2.5) are 

driven by the spatially dependent aspects of ES and inequality analysis, which are 

discussed in detail in this chapter. Once the research structure is established the 

chapter continues by clarifying the scope of the research and providing an overview of 

the methodological approach. This includes consideration of the selection of ESs and 

natural capital for analysis, the approach to mapping ESs and the methods applied for 

assessing inequality. All these are discussed in the context of relevant literature. 

 

Chapter 4 is the first of four analytical chapters and is based upon published work 

(Mullin et al., 2017). This is a local authority district level analysis analysing national 

patterns of natural capital and deprivation, and corresponds to objective 1. It indicates 

the type and quality of natural environments available at the district level and whether 

these characteristics relate to levels of deprivation. As a generalisation of 

environmental benefits it provides a broad insight into the potential distribution of ES 

(derived from natural capital) nationally. It thus provides the context for more detailed 

work, and is used to inform the selection of the subsequent regional ES case studies. 

Given the different scales of analysis, methods adopted in Chapter 4 necessarily differ 

to the approaches taken in Chapters 5-7. 

 

Chapters 5 - 7 Present results of the analysis of the social distribution of three 

ecosystem services in three case study regions. Chapter 5 commences with 
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descriptions of the case study sites which are selected to provide insight across 

districts with different natural capital deprivation profiles. Analysis of these case 

studies, Leeds, Northampton and the South Pennines, also generates new knowledge 

relevant for the local areas. 

 

Results for each ES across the three case studies are each the basis of a separate 

chapter. Thus Chapter 5 addresses air pollutant removal, Chapter 6 addresses 

recreation and Chapter 7 addresses surface water runoff reduction. The chapters are 

structured to first provide ES specific information regarding data and methods, followed 

by presentation and description of analysis outputs.  

 

Chapter 8 discusses the evidence, generated across Chapters 5-7, on the social 

distribution of ES. This chapter commences with a review of findings seeking 

commonalities and differences across ES and case studies and provides further 

context for interpreting the results, in particular that provided by the district level 

analysis of natural capital in Chapter 4.  

 

Chapter 9 concludes the thesis, confirming the broader relevance of the research prior 

to a synthesis and summary of findings with respect to the main research aim. The 

chapter also addresses the supplementary research questions established at the 

outset, highlighting insight with regards to new knowledge generated and the wider 

implications of the research findings. These complement and add the necessary detail 

to the main research aim. This chapter also highlights the key take home messages for 

policy and practice, and the main contributions to the development of ES and EJ 

research in England, and more widely, before discussing further research needs.  
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Chapter 2 Literature Review 

 

Chapter 2 provides a more detailed introduction to the ecosystem service (ES) and 

environmental justice (EJ) research fields, including their development historically, the 

characteristics of empirical research undertaken and the limitations to current work. 

Section 2.1 addresses ES and section 2.2 addresses EJ, and section 2.3 reviews the 

current, relatively limited literature which jointly addresses ES and EJ, specifically 

inequalities in ES. Section 2.4 provides an account of current knowledge of both fields 

in England, providing the context for this research, of which the aims and objectives are 

detailed in the final section (2.5).  

2.1 Ecosystem Services 

2.1.1 A brief history of ecosystem services 

Whilst the notion of human’s reliance upon the natural environment is not new, the 

continued decline of natural habitats, biodiversity and resources led to the re-framing of 

its role as a series of benefits provided to humans which could and should be valued 

(King, 1966; Odum and Odum, 1972; Schumacher, 1973; Westman, 1977; Braat et al., 

1979). Whilst these texts include the terms ‘natural capital’ and ‘ecosystem services’, it 

is Paul R. Ehrlich and Harold A. Mooney who are often attributed with coining the term 

‘ecosystem services’ in their 1981 book “Extinction: The Causes and Consequences of 

the Disappearance of Species” (Ehrlich & Mooney, 1981). 

Alongside these theoretical developments, political support for sustainable 

development increased towards the end of the 20th Century, moving to the forefront of 

international agenda at the 1992 UN Rio Earth Summit (Cornell, 2011), where 

commitments to the Convention on Biodiversity (CBD) were made (CBD, 1992). In this 

context, during the 1990s, the concept of ecosystem services (ES) became more 

apparent in the literature, in particular through seminal works by Costanza & Daly 

(1992), Perrings et al. (1992) and Daily (1997). Concurrently, the field of ‘ecological 

economics’, an area of economics concerned with environmental resource use which 

developed in the 1960s (Pearce, 2002) from earlier concepts such as Arthur Pigou’s 

theory of externalities (Pigou, 1920), became more prominent in the 1980s (Costanza 
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et al., 2017). Costanza et al. (2017) emphasise that ecosystem services are integral to 

ecological economics research, which conceptualises the economic system as 

operating within the bounds of the natural environment (see Brat & de Groot, 2012 for a 

review of ES development in the distinct fields of economics and ecology).  

A detailed discussion of the integration of ES within economic concepts and practice is 

provided by Gómez-Baggethun et al. (2010). It is the economic perspective of 

ecosystem services which sets it apart from traditional approaches to conserving the 

natural environment but which simultaneously attracts critiques (Chaudhary et al., 

2015). Thus whilst arguably advancing the agenda of recognition of nature’s 

importance to human health and wellbeing (Costanza et al., 2017), Costanza et al.’s 

(1997) assessment of the global economic values of ESs and natural capital was also 

criticised for ‘putting a price’ on nature and for producing an unrepresentative value. 

Nonetheless, this can be considered a critical juncture at which ESs became a 

mainstream concept (Costanza et al., 2017 detail press coverage). Chaudhary et al. 

(2015) also go beyond the high-income country focus of the majority of ES historical 

accounts to recognise that, in 1997, another key development occurred in Costa Rica 

where national policy was the first to initiate a Payments for Ecosystem Services 

initiative.  

ES based research began to rise after this point, but it wasn’t until after the publication 

of UNEP’s Millennium Ecosystem Assessment (MA) in 2005, that literature examining 

ESs proliferated (Seppelt et al., 2011). Drawing on an extensive research base, the MA 

provided insight and structure to the idea of nature underlying human health and 

wellbeing, harmonising with the broader sustainability agenda. The ES framework 

established in the MA (2005), despite developments and critiques (which are reviewed 

in detail in Chapter 3, section 3.1.1), has endured in current research and practice.   

In the years since, academic literature utilising the concept of ‘ecosystem services’ has 

consistently increased (Figure 2.1). In 2018 5,336 peer reviewed articles contained the 

term ‘ecosystem services’ based on a search of the Web of Science database. As the 

term has gained popularity this is increasingly likely to include articles that briefly use 

the term without fully integrating the concept of ES throughout the work. Nonetheless, 

its use is significant as it demonstrates the popularity and the scope of topics which 

ESs encompasses. Figure 2.1 also indicates the acceleration of ES based research in 

2012 coinciding with the establishment of the journal ‘Ecosystem Services’ (Braat & de 
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Groot, 2012). By 2018, this was ranked by Scopus’ Citescore system as having the 

most cited articles in the area of ‘Nature and Landscape’ Journals.  

 

 

Figure 2.1 Increase in use of the term ‘Ecosystem Services’ within academic literature 
since 1994. Source: Web of Science search results, based on the search 
terms ‘Ecosystem’ AND ‘Service’. Total number of records found = 30,589. 

 

Similarly in the policy arena, an ES approach was given international support through 

the establishment of the Intergovernmental Platform on Biodiversity and Ecosystem 

Services (IPBES) in 2012 (IPBES, n.d.). In particular in Europe, the EU has driven 

large-scale projects such as PRESS (Partnership for European Environmental 

Research on Ecosystem Services) (Maes et al., 2011) and The Economics of 

Ecosystems and Biodiversity study (TEEB, 2010). These collaborations sought to 

advance the conceptual underpinnings and practical implementation of ESs with 

emphasis upon application in policy and economics. Nationally, and aligning 

commitments to the EU’s Biodiversity Strategy 2020, numerous European countries 

have carried out national ecosystem assessments (NEAs) which incorporate 

assessments of ES, although achieved to varying standards (Schröter et al., 2016). 

Such work has also been carried beyond the EU, with China’s (Ouyang et al., 2016) 

assessment for the period 2000-2010 being one of the world’s largest evaluation of the 

status and changes in ecosystems. To help unify the growing diversity of ES research 
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the European Environment Agency (EEA) also developed the Common International 

Classification of Ecosystem Services (CICES) (Haines-Young and Potschin, 2013).  

Whilst science and policy have driven the natural capital and ecosystem service 

concepts, better accounting for the natural environment in decision-making also 

requires involvement of businesses. The link to business is vital given their direct 

dependence and impact on natural capital assets, for example as primary users of 

some services (e.g. forest timber, commercial fisheries), as beneficiaries of a wider 

range of ES such as those which protect business assets from natural hazards and as 

investors in large scale projects (TEEB, 2010). This naturally lends itself to use of the 

term ‘natural capital’1 in particular given a focus upon valuing a company’s natural 

assets. Chapter 3 section 3.1.1 and section 3.2 provide a more detailed breakdown of 

account of what natural capital and ES encompass. Internationally, examining how the 

concept of natural capital can be utilised within business, the Natural Capital Coalition 

set out its Natural Capital Protocol in 2016. As another example, Wealth Accounting 

and Valuation of Ecosystem Services (WAVES) is a partnership led by the World Bank 

to implement Natural Capital Accounting within ministries for planning and finance and 

central banks globally (WAVES, n.d.). 

The rapid growth in popularity of the natural capital and ES concepts has not gone 

unquestioned. The validity of conceptualising nature as ‘capital’ and ‘services’ is 

considered by some as too anthropocentric and utilitarian and it is argued that ethics 

not economics should primarily inform justifications for conservation research (Foster, 

1997; Potschin and Haines-Young, 2011). Placing a value on an ES (monetary or 

otherwise) can neglect its social construction and does not fully account for nature’s 

intrinsic values (Wallace, 2007). Whilst respecting these concerns are legitimate, it is 

believed by many that these are outweighed by the potential of the ES framework to 

give “‘political’ purchase (Luisetti, 2014, p.685) to environmental concerns, facilitate 

communication with relevant stakeholders (Guerry et al., 2015) and to open new 

opportunities for funding (Goldman et al., 2007). Moreover the use of imperfect 

techniques is preferable to the omission of ESs (Troy and Wilson, 2006; TEEB, 2010), 

especially in the context of growing environmental challenges.  

                                            

1 see Missemer, 2018 for review of the development of the concept of natural capital 
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The concepts of ecosystem services and natural capital have thus sought to formalise 

age old ideas of human’s reliance in the context of a modern era where decision 

making is dominated by neoclassical economics and where the traditional conservation 

focus has not had enough impact to reverse an overall trend of deteriorating natural 

environments. Although the idea of ‘valuing’ nature has not gone unchallenged, the 

concepts have nevertheless been widely adopted in research and policy. From the 

early research which formulated the concepts, and used them to illustrate the 

importance of the natural environment to human health and wellbeing, research over 

the past 20 years has sought to develop, refine and explore the uses of the concepts, 

and particularly in the last decade, has considered how to implement the concepts in 

practice. The next section (2.1.2) therefore briefly addresses the links between ES and 

human health, and the subsequent section (2.1.3) summarises the key aspects of ES 

research, and in particular highlights the current challenges faced. 

 

2.1.2 The contribution of ecosystem services to human health and 

wellbeing 

ESs are conceived of with respect to their contribution to human health and wellbeing. 

Human health is defined as “a state of complete physical, mental and social well-being” 

by the World Health Organisation (WHO, 1948). The world’s ecosystems provide the 

basic resources necessary for life and also the resources that enhance human health 

and wellbeing (WHO, 2015). The contribution of ESs should however be set in a 

broader context in recognition of the other ‘social determinants of health’ which include 

socioeconomic, cultural and individual factors (Dahlgren and Whitehead, 1991). 

Barton’s (2005) model of the determinants of health and wellbeing in neighbourhoods 

(Figure 2.2) effectively conveys these factors within seven spheres, from a global to 

individual level, which combine to create sustainable and healthy settlements. Of these, 

the global natural environment forms the outer sphere, emphasising its position as a 

critical dependency for healthy people and communities. The local environment is 

presented as the next sphere, as the setting within which the built environment is 

located, where activities take place and from which local resources may be drawn. The 

inner spheres convey the contributions of the economy, local communities and of 

individuals to health and wellbeing. Thus Barton’s model conveys the multiple 
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conditions and activities which may moderate or facilitate the impacts of the natural 

environment on, and otherwise contribute to, an individual’s health and wellbeing. 

 

Figure 2.2 Determinants of health and wellbeing in settlements (Barton, 2005) 

 

Evidence of specific linkages between ESs and health are summarised in Table 2.1, 

and have been previously reviewed by Jackson et al. (2013). The contribution of ESs to 

human health in high-income countries is mediated by the determinants highlighted by 

Barton (2005). Therefore, the direct contributions are often dominated by aspects 

which enhance health and wellbeing as opposed to providing basic resources, to which 

their contribution is indirect. It is for this reason that the ES-health impacts which are 

highlighted in Table 2.1. focus upon regulating and cultural ESs rather than 

provisioning ESs, which are primarily moderated by socioeconomic conditions and 

activity. 
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Table 2.1 Ecosystem services and links to health and wellbeing. Impacts of regulation and cultural ES are given with a focus on a high-
income country context. Provisioning ES are explicitly linked to basic needs of food, water and shelter and are thus not explored 
further. * Impact of negative environmental conditions to which ES ameliorate.  

 

Ecosystem 
Service 

Relevant natural 
capital/setting 

Response to 
environmental 

setting 

Links to health and wellbeing Health 
Concern 

Source 

Recreation Accessible public 
greenspace 
Good quality public 
greenspace (e.g. facilities 
available, lower incivilities) 

Increase in physical 
activity  
Increase contact with 
nature. 

Increase in 5-year survival rate for older 
people 
Decreased rates of depression. 
Lower obesity 
Reduced symptoms of ADHD 
Better development of motor skills in 
children 
Reduced feelings of stress 
Increase levels of microbiota 
Improved social cohesion 
 

Obesity 
Child 
development 
Mental health 

Humpel et al. (2002) 
Takano et al. (2002) 
Addy et al (2004) 
Biddle and Ekkekakis 
(2005) 
Duncan and Mummery 
(2005) 
Giles-Corti et al. (2005) 
Coen and Ross (2006) 
Gordon-Larsen et al. 
(2006) 
Bird (2007) 
Nielsen and Hansen (2007) 
Cooper et al. (2008) 
Taylor et al.(2009) 
Coombes et al. (2010) 
 

Other cultural - 
spiritual/ 
aesthetic/ 
 

Presence of natural 
features (within living/ 
working environment and 
viewshed) 
Moderately open grassy 
spaces interspersed with 
trees. 

Increase in preference for 
view 
Increase contact with 
nature. 
 

Increase feelings of calmness, relaxation 
Increase in 5-year survival rate for older 
people 
Reduction in health complaints 
Increased resilience e.g. to poverty 
Reduced stress 
Increased recovery from operations 
Increase in self-reported levels of 
happiness 
Improved mental health 
 

Mental health Ulrich (1984) 
Schroeder and Green 
(1985) 
Kaplan & Kaplan (1989)  
Butterfield and Relf (1990) 
Randall et al. (1990) 
Purcell et al (1994) 
DeVries et al. (2002) 
Wells & Evans (2003) 
Bird (2007) 
White et al. (2013) 
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Air purification Increased levels of 
vegetation; leaf area, 
canopy cover 
Dependent on 
configurations and species 
 

Decrease in pollutants - 
lower risk of exposure to 
polluted air 

Living close to busy roads associated with  
50% increase in risk childhood asthma* 
Long-term exposure to air pollutants, 
especially particulates increases mortality.* 
Air pollution linked to negative  
effects on pulmonary, cardiovascular  
and neurological systems* 
Reduced hospital admissions 

Mortality rates 
Cardiovascular 
& pulmonary 
diseases 

Pope et al. (2002) 
Powe and Willis (2004) 
Nowak et al. (2006) 
Tiwary et al. (2009) 
COMEAP (2010) 
Nowak et al. (2014) 

Noise 
regulation  

Increase in vegetation 
cover e.g. trees near roads 

Decrease in noise 
pollution - lower risk of 
exposure 

Traffic sounds penetrating homes and 
schools impairs verbal and reading 
development of children* 
Disruption of sleep patterns, reduced 
concentration, increased stress. 
High traffic noise linked to heart disease 
and higher mean blood pressure. 
Noise levels >80dBA linked to lower social 
cohesion and aggression, >120dB to 
hearing impairment.  

Child 
development 
Mental health 

Regecova and Kellerova 
(1995) 
Babisch et al. (2000) 
Ng (2000) 
Stansfield et al., 2000) 
Haines et al. (2001) 
Ising and Kruppa (2004) 
 

Climate 
regulation 
(local) 

Presence of vegetation. 
Trees in urban 
environments; leaf area 
and transpiration rates. 

Modifies microclimate - 
less risk of exposure to 
extreme heat i.e. 'urban 
heat effect'  

Excess summer deaths associated with 
rapid changes in heat* 
Higher air temperatures linked to poorer air 
quality. 
Heatwaves relate to several illnesses 
including heatstroke and heat exhaustion. 

Mortality rates 
Heat related 
illnesses 
 

Chang et al. (2007) 
Heisler et al. (2007) 
NHS (2014) 

Hazard 
regulation 
(flood control) 

Presence of wetlands, 
peatlands, vegetation 
cover, permeable surfaces 

Reduces risk of exposure 
to flooding which may 
expose individuals to 
water, waterborne 
pollutants, restrict access 
to healthcare, cause 
structural damage, 
restrict access to clean 
water 

Deaths have occurred as a result of 
flooding, including in the UK* 
Risk of injury, disease, infection, stress 
associated with flood events 
Flooding can exacerbate or provoke mental 
health issues. 
Flooding damage to infrastructure can limit 
access by emergency health services. 

Mortality rates 
Mental health 
Security 

Wheater (2006) 
Horwitz and Finlayson 
(2011) 
Zsamboky et al. (2011) 
Brown and Murray (2013) 
Menne and Murray (2013) 
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2.1.3 Broad trends in ecosystem services research 

ES research is highly varied, drawing on a multiplicity of disciplines but dominated by 

the physical sciences. A Web of Science search for the term “ecosystem services” 

reveals the vast majority (78%) of publications are related to environment 

science/studies and ecology, with a further 5% related to various physical sciences and 

4.6% assigned to multidisciplinary and economics fields respectively2. Despite the 

essence of ESs being the link between nature and people, and a growing awareness of 

ESs beyond environmental fields, in particular in policy, there remains a lack of social 

science research with the ES discipline (Fisher, 2008; Nicholson et al. 2009). 

Types of ES studies include but are not limited to conceptual development of 

frameworks (e.g. De Groot et al., 2002; Jackson et al., 2013; Villa et al., 2014) mapping 

and assessment (e.g. Baró et al., 2016), valuation (e.g. Troy & Wilson, 2006), linkages 

with decision making (e.g. Daily et al., 2009), investigation of the links between 

biodiversity, natural capital, ecosystem functions and the production of ESs (e.g. 

Balvanera et al., 2006), and measuring the impacts of ESs on health and wellbeing 

(e.g. Jackson et al., 2013). Studies may be concerned with a single ES (e.g. air 

pollutant removal; Nowak et al., 2006), ESs produced within specific habitats (e.g. 

forests; Aznar-Sānchez et al., 2018), identifying trade-offs and synergies between ESs 

(e.g. Raudsepp-Hearne et al., 2010, Casalegno et al., 2014), ES supply only (e.g. Egoh 

et al., 2008) or supply and demand (e.g. Nedkov et al., 2012), establishing or 

evaluating Payment for Ecosystem Services (PES) schemes (e.g. Farley and 

Costanza, 2010) or developing modelling and assessment tools (e.g. Villa et al., 2014). 

Daily (1997) and the MA (2005) laid out the conceptual basis of ESs, providing lists of 

ES and describing their association with human health and wellbeing. Subsequently 

much research has evaluated, modified and refined the conceptualisations (e.g. 

Wallace, 2008; Fisher et al., 2009) but ultimately are adaptations of this earlier work. 

One consequence has been the production of an array of definitions, conceptual 

models and approaches to ES assessment which some consider to cause confusion 

potentially limiting application of the concept in practice (Martínez-Harms and 

Balvanera, 2012). Conversely, this an important process in a nascent field which joins 

multiple themes and also demonstrates the adaptability of the concept for differing 

                                            

2 Note that this in broad categorisation, derived from web of science analysis, articles were not 

individual reviewed to verify their focus. 

https://www.sciencedirect.com/science/article/pii/S0143622813002166#bib69
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perspectives (Crossman et al., 2013). Further evaluation of ES conceptualisations, 

classifications and definitions is given in Chapter 3. Perhaps one of the most influential 

conceptualisations since the MA (2005) is the cascade model proposed by Haines-

Young and Potschin (2011). This describes the flows of ES from habitats and 

ecosystem functions through to benefits and values for humans. This has formed the 

basis of multiple assessments (Potschin-Young et al., 2018) but has attracted criticism 

for underrepresenting non-natural capital inputs and socio-economic feedbacks which 

co-produce and alter ES and their values (Van Riper and Kyle, 2014; Chaudhary et al., 

2015). The lack of socioeconomic perspective is perhaps understandable given the 

previous observation of low involvement in ES research by social scientists. However, 

in recent years increasing attention has been given to ensuring representation of these 

interactions, in particular drawing on the socio-ecological systems literature (Reyers et 

al., 2013; Andersson et al. 2015; Partelow & Winkler, 2016). Operationalising these 

complex conceptual models will however require greater multidisciplinary research.  

Application of the ES concept is wide-ranging and far-reaching, but several reviews 

have identified where efforts have concentrated and where key challenges remain. The 

total number of individual ES usually mapped within a study is five or less (Seppelt et 

al., 2011) although some simpler approaches facilitate mapping of greater numbers 

(e.g. Burkhard et al., 2012). The selection of ES assessed tends to reflect the 

dominance of disciplines operating within the ES discourse, the availability of data and 

methods and context, but often lacks justification. The most frequently mapped ES 

include carbon storage/sequestration, food production, recreation, regulation of water 

flows and provision of water (Egoh et al., 2012; Martinez-Harms and Balvanera, 2012). 

In urban areas, air pollutant removal (e.g. Escobedo and Nowak, 2009; Jim and 

Chen, 2009; Gomez-Baggethun et al., 2013) and local cooling from trees and shrubs 

(Shashua-Bar and Hoffman, 2000) are also commonly mapped (Haase et al., 2014).  

Despite being largely overlooked within the MA (2005), urban areas are increasingly 

examined as a key interface for ES, where the need for ES is considered to be greatest 

and availability of natural capital lowest (Haase et al., 2014). However, there remains a 

lack of research examining marine ES (Liquete et al., 2013). Vihervaara et al. (2010) 

also established a lack of attention to cultural ecosystem service assessments in earlier 

studies. Whilst this has been more widely addressed in the past decade, the focus on 

easier to quantify cultural ESs (e.g. recreation, ecotourism, educational values) means 

that knowledge of some of the less tangible but potentially most important services to 

humans (e.g. spiritual) remains limited (Milcu et al., 2013). Nevertheless, there is much 

research taking place in parallel (e.g. psychological) disciplines, which is directly 

https://link.springer.com/article/10.1007/s13280-014-0504-0#CR44
https://link.springer.com/article/10.1007/s13280-014-0504-0#CR67
https://link.springer.com/article/10.1007/s13280-014-0504-0#CR114
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relevant to ESs but where the ES term is not specifically used (Milcu et al., 2013). 

These could be better utilised to account for plurality of views in the assessment of all 

ES (Wallace, 2007; Van Riper et al., 2014). 

Most assessments are carried out at the regional or national level; there are much 

fewer local or site scale studies (Shägner et al., 2013), and assessments at multiple 

scales is particularly rare. The prevalence of regional/national studies correlates with 

the more frequent use of coarser resolution secondary data rather than the collection of 

primary data (Martinez-Harms and Balvanera, 2012) and with the use of proxies as the 

most popular method for mapping provision of ESs (Shägner et al., 2013). More 

detailed discussion of methodologies for mapping ESs is given in Chapter 3 section 

3.3.1.1. However, a lack of multiscale evaluations is problematic given the cross-scale 

interactions of ES, the context dependencies of management of natural capital, the 

diverse scales of social and ecological processes and of ES trade-offs and synergies 

(Birkhofer et al., 2015; Raudsepp-Hearne & Peterson, 2016; Spake et al., 2019). In 

response, there have been some notable advances in developing techniques for the re-

scaling and multi-scale analysis necessary to encompass a full range of knowledge into 

ES assessment (e.g. Raudsepp-Hearne & Peterson, 2016; Graham et al., 2019; Spake 

et al., 2019).  

The majority of ES assessments focus upon the supply of ES (service produced by 

ecosystems) as opposed to their demand (the need or desire for an ES) (Syrbe and 

Walz, 2012; Bagstad et al., 2013; Burkhard et al., 2014; Haase et al., 2014). Again, this 

may be partially attributed to the environmental as opposed to social science 

dominance within ES research, but this imbalance is being addressed as the research 

base evolves (e.g. García-Nieto et al., 2013; Stürck et al., 2014; Schulp et al, 2014; 

Parrachini et al., 2014; Baró et al., 2015). Where empirical ES research has better 

incorporated a social dimension, it is generally with respect to its impact on the 

production of, and demand for, provisioning ES only (e.g. Hamann, et al., 2016; Dittrich 

et al., 2017). There remains little empirical understanding about the diversity of 

stakeholders, their motivations and preferences for a wide range of ecosystem 

services, or of the distribution of benefits across different social groups considering 

their demand for a service (Bennett et al., 2015). In addition, more evidence and 

integration of the mediating effects of human technology and infrastructure upon the 

production of ES is needed, particularly within urban areas (Birkhofer et al., 2015). 

Further complication arises with the divergent understanding of ES demand and how it 

may be quantified (Wolff et al., 2015), different approaches are detailed in Chapter 3, 

section 3.3.1.1 and with respect to the individual ES within the analysis Chapters 5-7. 

https://www.sciencedirect.com/topics/social-sciences/diversity
https://www.sciencedirect.com/topics/social-sciences/motivation


18 
 

Mapping ES demand is critical for several reasons notably that some (primarily 

regulating) services (e.g. noise reduction) only exist where there is demand, and where 

there is low demand the ES may not be considered critical. It is also necessary for land 

planning and management to understand where current or future demand is unmet 

(Wolff et al., 2015). Consideration of demand necessitates acknowledgement of the 

different scales of ES which is essential for understanding how management of natural 

capital in one location may impact on people’s health and wellbeing in another (García-

Nieto et al., 2013; Geijzendorffer & Roche, 2014). Ultimately, knowledge of demand 

and the beneficiaries of ESs is necessary to understand the impacts on health and 

wellbeing (Bagstad et al., 2013; Villa et al., 2014). Therefore mapping demand in 

conjunction with supply is important for generating analysis relevant for policy and 

facilitates sustainable management of ES (for example, it can be used to examine 

thresholds, Bennett et al., 2015). The lack of attention given to demand is therefore 

likely a factor leading some to conclude that the ecosystem services discourse has had 

limited impact upon land management policy and decision making (Vihervaara et al., 

2010; Milcu et al., 2013; Guerry et al., 2015).  

Other critiques have highlighted a lack of evidence regarding the causal links between 

biodiversity and ecological structure and functions and between ESs received and the 

actual impact upon health and wellbeing, which is often assumed rather than 

demonstrated (Milcu et al., 2013; Bennett et al., 2015; Guerry et al., 2015). Despite 

considerable research regarding these health links (Balvanera et al., 2006), the 

measurable changes tend not to be incorporated within wider assessments relevant for 

management since these tend to be at coarser and larger scales than the evidence 

relates to (Quijas et al., 2012; Portman, 2013), whilst knowledge of ecological linkages 

in an urban context remains limited (Kremer et al., 2016).  

There are however also good examples of research which is better aligned with 

challenges in management and planning. Several studies evaluate impacts of different 

policies or approaches to managing natural capital upon ESs, for example from 

rewilding, maintenance of Sites of Special Scientific Interest (SSSIs) or large scale 

conservation schemes (Christie & Rayment, 2012; Hodder et al., 2014; Cerqueira et 

al., 2015). Others model impacts from land cover change scenarios (Eigenbrod et al., 

2011; Bateman, 2013), thus informing policies for sustainable outcomes and future 

provision of services (Birkhofer et al., 2015). The ES framework is also particularly 

useful for revealing trade-offs and synergies in outcomes (Raudsepp-Hearne et al., 

2010; Howe et al., 2014; Anderson et al., 2015), which can also enable appraisal of 

particular management interventions (García-Nieto et al., 2013). Despite considerable 
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ES research being driven by international and national organisations seeking to 

understand how to implement the natural capital/ES approaches, there is little evidence 

of how results from ES based policy compares to other approaches (Bennett et al., 

2015). 

Historically both uncertainty analysis and validation of results have been neglected in 

ES studies (Eigenbrod et al., 2010; Seppelt et al., 2011; Hou et al., 2013; Schulp et al., 

2014). Increased evaluation and communication of uncertainties and validation of ES 

research would better ensure its reliability and applicability for decision-making. ESs 

deal with ‘messy’ problems, and some approaches to their assessment, such as land 

cover based proxies (e.g. Burkhard et al., 2012), have been criticised as overly 

simplistic and even erroneous (Eigenbrod et al., 2010). Jax et al. (2017) from their 

evaluation of 27 case studies which aimed to improve the operational function of ES 

based approaches (the EU-funded OpenNESS project), recommend that the 

complexity of the problems should be accepted if they are to be pertinent for decision 

making. Evaluating and communicating uncertainty can help achieve this (Hamel & 

Bryant, 2017) and is essential for making robust contributions to scientific knowledge. 

In particular economic values and maps of ES, are risk of being perceived as ‘fact’, and 

thus awareness of their reliability is critical (Hauck et al., 2013). There has been some 

action to address this issue, as shown by incorporation of uncertainty analysis within 

more recent ES assessments (e.g. Grêt-Regamey et al., 2013; Kandziora et al, 2013; 

Zhao & Sander, 2018), however currently such testing is still inconsistent. 

Overall ES research has rapidly expanded since 2005. Such rapid growth has created 

a diverse literature, but one which has neglected certain aspects including the need to 

examine ES demand, and the beneficiaries of ES in addition to supply, closer 

engagement with social science, more advanced modelling techniques and estimations 

of uncertainty, and through these better integration with land planning and 

management. Many of these knowledge gaps are now starting to be addressed, but  

they continue to be a challenge going forward.  

2.2 Environmental Justice 

2.2.1 Development of the environmental justice discourse 

Early observations of inequality in environmental conditions were reported by A.M. 

Freeman in 1972 who established that poorer communities and racial minorities had 

greater exposure to pollution in the United States (Freeman, 1972). However, the issue 

of environmental justice (EJ) took hold politically in the 1980s through a civil rights 
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movement (Mohai et al., 2009). A report “Toxic wastes and race in the United States” 

by the United Church of Christ (1987), which demonstrated that ethnic minority 

populations were subject to disproportionate environmental risk, may be considered a 

pivotal moment which increased the profile of environmental inequalities. A growing 

evidence base, for example Bullard (1983, 1990), Gould (1986), Charlier (1993) and 

Chakraborty and Armstrong (1997)3, ultimately led to a 1994 US Presidential Executive 

Order requiring each federal agency to establish an environmental justice strategy (The 

President, 1994). 

Internationally, recognition of environmental justice as a requirement for sustainable 

development was first formalised in the 1992 Rio declaration (UN, 1992) and 

subsequently by the UNECE Aarhus Convention (1998) which required signatories to 

protect “ the right of every person of present & future generations to live in an 

environment adequate to his or her health & well-being” (Article 1, UNECE, 1998). 

Three principal components of the convention; access to environmental information, 

public participation and access to justice in environmental matters were later translated 

into EU Directives (2003/4/EC, 2003/35/EC) and regulation (No 1367/2006). 

The academic basis of EJ first developed in the US, with a focus upon distributional 

inequalities. This principally considers whether environmental hazards are 

disproportionately located proximal to low-income and ethnic minority populations 

(Brown, 1995). Early debates examined whether inequality is also evidence of 

discrimination (Been and Gupta, 1997), for example, were polluting facilities actively 

located in certain communities or did those communities move to areas of lower 

environmental quality? (Charlier, 1993; Been and Gupta, 1997; Pastor et al., 2001). 

Thus leading to broader set of EJ concerns constituting procedural justice (Cutter, 

1995; Mitchell and Walker, 2007). Procedural justice examines the deeper social, 

economic and political production of inequalities within complex historical and 

                                            

3 Reviews of environmental justice research include Mohai et al (2009) and Agyeman et al. 

(2016) 
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geographical settings (Holifield, 2012). It addresses questions such as how 

communities are involved in the decision making process, whether there is sufficient 

access to information for all, and what remedial action would be appropriate when 

unfair conditions exist (Cutter, 1995; Agyeman and Evans, 2004; Mitchell and Walker, 

2007). However, ultimately judgement of whether injustices exist is highly dependent 

upon the normative construct of what ‘fair’ is; whether a utilitarian, egalitarian, social 

contractarian or liberal view is taken.  

From the late 1990s, EJ research extended beyond the US (e.g. Cambra et al. 2013; 

Pearce & Kingham, 2008; Stevens et al. 2008; Viel et al., 2011; Walker et al., 2003; 

Wong et al., 2016; Chakraborty & Basu, 2019) encompassing a broader set of issues. 

In Europe, in particular the UK where earlier European research was concentrated 

(Elvers et al., 2008), EJ has primarily been a top-down rather than grassroots agenda 

(Agyeman, 2002). There has also been greater focus on injustices incurred by lower 

socio-economic groups than ethnic minority groups (Mitchell and Walker, 2007) and an 

introduction of concern for inequalities in environmental benefits as well as harms 

(Agyeman and Evans, 2004). Interest in inequalities in environmental benefits has now 

taken hold in many countries (Schüle et al., 2019). This includes distribution analysis 

of access to public greenspaces (Astell-Burt et al., 2014; Xiao et al., 2017; Hoffiman et 

al., 2017; Wüstemann et al., 2017), urban tree cover (Van Herzele et al., 2005), urban 

greenspace cover (Pham et al., 2012), bluespace (Raymond et al., 2016), woodland 

(Morris et al. 2011), biodiversity (Davis et al. 2012) and tranquil places (Mitchell and 

Norman, 2012). Overall, Watkins & Gerrish (2018) find in their review that regardless of 

methodology there was consistent evidence that greenspace coverage is lower in low 

income areas. The work on urban greenspaces is now extensive, but there remains 

much unknown regarding distribution of a wide range of benefits in different contexts, in 

particular beyond urban areas. 

Through the development of scope of EJ and inclusion of other dimensions such as the 

vulnerability of different socio-economic groups (e.g. Moreno-Jiménez et al., 2016), of 

inter-generational equity and even inter-species justice (Lele et al., 2013), EJ is 

increasingly regarded as a key element of environmental sustainability (as 

demonstrated by its inclusion within the UN’s Sustainable Development Goals). 

Moreover, environmental injustice is now better understood to manifest at multiple 

scales, through for example increasing concern with these complexities of transnational 

and global (in)justices, especially in the context of climate change (Mohai et al., 2009; 

Holifield, 2012).  
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2.2.2 Challenges in assessments of inequalities in environmental 

hazards and benefits  

Despite a strong evidence base supporting a presence of inequality in both 

environmental hazards and benefits in a range of contexts, location and scales, there 

are inconsistencies. For example, Wen et al. (2013) examined greenspace distribution 

in US cities finding that more deprived neighbourhoods tend to be closer to public 

parks but overall are characterised by less vegetated land. Mears et al. (2019) find that 

access to greenspace is greater for more deprived areas in Sheffield, but quality of 

greenspace is lower. McLeod et al. (2000) and Pye et al. (2001) described the varying 

strength of association between deprivation and environmental indicators and Walker 

et al. (2003), Briggs et al. (2008) and Huby et al. (2009) illustrated how results changed 

given different scales of analysis. The lack of current agreement regarding to what 

extent environmental injustices exist can be attributed to the complexity of the 

relationship between environmental and social factors and robustness of 

methodologies.  

Historically, studies have been criticised with regards to the quality of environmental 

data used, a lack of clear causal relationships, the limited understanding of actual 

impacts, the assumptions made in spatial analysis and the spatial scale and scope of 

the studies (Bowen, 2002; Maantay, 2002; Wheeler, 2004; Baden et al., 2007; Schule 

et al., 2017). For example, the majority of environmental justice studies have focussed 

upon establishing the distribution of sources of pollution and not concentration, 

exposure and health impact. This is due to challenges such as paucity of 

comprehensive data sources, such as environmental monitoring data, and adequacy of 

techniques for modelling exposure beyond proximity (Maantay, 2002; Buzzelli, 2007). 

Whilst observations of limitations have typically been made with respect to studies 

examining environmental hazard distribution, they are relevant to assessments of 

benefits, since such studies have focused upon proximity to greenspaces. However, 

the distribution of benefits is dependent upon different types of greenspaces in different 

locations since they provide different ES at different scales. 

Walker (2009) more fundamentally criticised the limited scope of the spatial distribution 

approach, which inhibits analysis of the complex interactions between the environment 

and health whilst potentially concealing some inequalities. However, if understood to be 

one of many aspects of justice to be considered, spatial analysis of environmental 

inequalities, is a valuable exercise; forming the basis of further assessment, enabling 

analysis across large geographical areas and exploration of many variables, and 



23 
 

therefore can reveal much information with regards to (in)equalities. For example, 

Curtis (2004) highlighted that in considering disease risk factors, knowledge of 

proximity forms part of our understanding of exposure to environmental factors. 

Additionally, spatial analysis can be extended longitudinally to help infer causality i.e. 

whether a hazardous or beneficial land use is sited within a particular community or a 

community moves in to that area subsequent to change in environmental conditions 

(Maantay, 2000; Mohai et al., 2009; Macedo and Haddad, 2015). Longitudinal analysis 

is therefore desirable (Mitchell and Walker, 2007) but is highly dependent upon data 

availability. 

Most distributional EJ analysis focus upon a single hazard or type of greenspace, thus 

better acknowledgement of complexities would be enabled through analysis of multiple 

or cumulative hazards (Krieg and Faber, 2004; Grineski et al., 2015), although some 

studies have achieved this (e.g. Wheeler, 2004; Pearce et al., 2010). Notably, Pearce 

et al. (2010) included environmental benefits alongside hazards and found that a social 

gradient existed with respect to multiple environmental deprivation and that this could 

be associated with health inequalities. However, only two environmental benefits were 

included in their analysis. Grineski et al. (2015) further highlighted the nuanced 

relationship between the distribution of hazards and benefits. For example, higher 

property values have been revealed in the US for properties located proximal to coasts 

with associated risks of flooding (Bin & Kruse, 2006; Grineski et al., 2015). In this case 

it is considered that exposure to the environmental hazards is a choice made in the 

context of a wider set of environmental benefits such as aesthetically pleasing views 

and surroundings.  

The EJ discourse has thus become more comprehensive in its reach than its original 

conceptions. Its present conceptualisation usually incorporates procedural and 

distributional aspects, and hazards and benefits amongst many other considerations. 

Spatial analysis has revealed much evidence of inequalities in both hazards and 

benefits, but several challenges exist including the methods used, the effects of spatial 

scales, evidence of impacts upon health inequalities, the lack of consideration of 

cumulative effects and of changes over time. Further discussion regarding measuring 

inequalities is given in Chapter 3, section 3.3.2. The next section focusses upon how 

EJ is jointly considered with ES within research and policy.  
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2.3 Intersection of environmental justice and ecosystem 

services  

EJ research is concerned with the environment as a source of benefit, not just an 

absence of hazard, which aligns with the concept of natural capital and ES supporting 

health and wellbeing. This therefore suggests there is a clear case for addressing 

natural capital/ES and EJ within a common framework. In practical terms, social 

inequality in natural capital/ES distribution has implications for sustainable 

management of natural capital with respect to the production of ES (Andersson et al., 

2007; Ernstson, 2013; Bennett et al., 2015), and trade-offs between welfare and 

conservation objectives (Daw, 2011). The social distribution of ES is especially 

pertinent for impacts upon health inequalities, and feedbacks upon natural capital and 

its management. Furthermore, it is of growing importance to consider how justice is 

considered within ESs as natural capital/ES concepts are increasingly advocated as a 

means for informing land planning and management decisions.  

Such joint consideration of ES and EJ is encompassed by the ecosystem approach 

advocated by the Convention on Biological Diversity, signed at the 1992 Rio Earth 

Summit (CBD, 2004). Consideration of fairness in all valuations of ESs was also an 

important concern within initial conceptions of ESs as asserted by Daly (1992), Daily 

(1997) and Costanza & Folke (1997). Despite these early assertions, understanding 

who benefits from ESs has not been widely addressed within ES literature (Daw et al., 

2011; Haase et al., 2014; Bennett et al., 2015). This knowledge gap has received 

attention recently (Fisher et al. 2013; Berbés-Blázquez et al., 2014; Jones et al., 2016), 

and particularly on a conceptual basis (e.g. Ernstson, 2013; Lehmann et al., 2018; 

Laterra et al., 2019). Bennett et al. (2015) determine the distribution of ES socially to be 

one of the key challenges for future ES research and drawing on Daw et al. (2011) they 

highlight it as a “prerequisite for effective ecosystem services assessments” (p. 80). 

More specifically they note a need to address multiple concerns, familiar to EJ 

discourse, including the need to understand stakeholder diversity, capabilities, rights 

and plurality of their values, relationships to each other and within the context of 

governance.  

With respect to spatial assessments of ESs, a need to identify winners and losers at 

different spatial scales and in different regions and spatial mismatches between supply 

and demand, in particular along rural-urban gradients, is expressed. This information is 

critical for understanding how policy and management of natural capital in one location 

effects more distant locations (Bennett et al., 2015). Ernston (2013) proposed a 
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framework that seeks to do this based on social-ecological networks. This emphasises 

how integrated ESs and justice research should be informed by studies at different 

scales and from different perspectives, illustrating the importance of multi-scale work.  

A lack of attention given to distributive justice concerns in ESs research may be 

partially attributed to more general trends in ES research such as the focus on mapping 

the supply of ESs at its source, and not on the beneficiaries nor the links between the 

areas of ES supply and demand (Serna-Chavez et al., 2014). However, more 

fundamentally, it may be attributed to the goal of maximising ESs for overall wellbeing 

of a population (no net loss or gain of natural capital/ biodiversity) and the lack of 

inclusion of justice in many developments of the ES framework, as exemplified by the 

MA. Lele et al. (2013) observe that the MA only refers to justice through the inclusion of 

‘freedom of choice’ as a component of human health and wellbeing and there is no 

further reference to intra-generational justice, equity or fairness. 

Despite these critiques, there are some areas of research which have focussed upon 

explicit linkages between ES and EJ. Most notably, inequalities and injustices of ES 

have been explored in the context of poorer subsistence-based global communities 

(e.g. MA, 2005; Sikor, 2013; Suich et al. 2015), for example, in the establishment of the 

Ecosystem Services for Poverty Alleviation programme (ESPA, 2018). There has also 

been a focus upon equity appraisal of payment for ecosystem services (PES) schemes 

(McDermott et al. 2013; Martin et al. 2014; Pascual et al., 2014), given that 

identification of winners and losers is a prerequisite of such schemes. Moreover, social 

equity within ES studies is commonly addressed with respect to fair representation and 

participation (e.g. Wilson & Howarth, 2002; Plieninger et al., 2013; Raum, 2018). As 

discussed above, within EJ literature there has been attention to greenspace access / 

coverage based on assumed benefits but these studies lack explicit use of the ES 

framework.  

In recent years, studies have sought to address the lack of empirical research 

regarding the distribution of ES benefits, revealing mixed patterns. Escobedo et al. 

(2015) and Jenerette et al. (2011) found that regulating service supply (air pollutant 

removal in Bogotá, Columbia and vegetative cooling in Phoenix, USA respectively) 

increased with socio-economic status; conversely Escobedo & Nowak (2009) found air 

pollutant removal in Santiago, Chile was greater in low income areas - although as a 

function of ambient pollutant concentration - tree cover itself was more extensive in 

higher income areas. For Florida, USA, Soto et al. (2016) found forest carbon 

sequestration increased with income, educational attainment and proportion of non-
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minority population. Hamann et al. (2016) found greater ecosystem service use in low-

income areas in South Africa, emphasising the reliance of poorer communities on their 

natural surroundings. Whilst a national spatial analysis in China revealed forest based 

provisioning ESs and biodiversity are greater in poorer areas, but agricultural 

provisioning ESs and water availability are lower (Eigenbrod et al., 2017).  

Distributional analyses have also examined how benefits are distributed across scales. 

For the Niger Delta, Nigeria, Adekola et al. (2015) showed that locally, in the delta 

states many people are directly dependent on local ecosystems services, the exception 

being for oil, where the benefits accrued nationally and internationally (whilst local 

people suffered the externality costs of oil production). Nahuelhual et al. (2019) sought 

to infer causality in their evaluation of the distribution of ES in Chile. Water regulation 

and recreation opportunities were found to be concentrated in larger properties, critical 

in the context of land ownership being concentrated in the hands of a few and 

demonstrative of the structural influence on inequalities in ES arising from historically 

based systems. Conversely, for Portugal, Gomes Lopes et al. (2015) showed how local 

people received about 45% of all benefits derived from common land ecosystems, with 

40% and 15% of benefits flowing to national and global beneficiaries respectively. It is 

evident that given the focus upon beneficiaries, distributional analysis also necessarily 

examine demand for ES as well as supply. For example, a disproportionate access to 

cultural (heritage and recreation) services was found in Finland using analysis explicitly 

linking the location of ES supply and demand. Although this study by Ala Hulkko et al. 

(2015) looks at difference across the whole population, it does not examine whether ES 

are stratified across social or demographic groups. More generally, it can be observed 

that an increasing emphasis upon beneficiaries and the spatial dependency of ESs 

within ES research more readily aligns ESs analysis with assessment of environmental 

inequalities. 

Within the context of EJ focused research, there has been little acknowledgement of 

the relevance of developments in ES. Despite the definition of specific services, 

offering an opportunity to better understand the nuances in distributional environmental 

equality and more explicitly link to health and wellbeing. To date, the few analyses of 

inequality in ES distribution (Lakerveld et al., 2015), mean that the body of evidence 

remains too small and heterogeneous to draw general conclusions (e.g. as to who are 

the main beneficiaries under given contexts). However, the studies do commonly 

reveal asymmetry in distribution of ES benefits, and also point to the importance of 

socio-economic factors in ES provision (via management of natural capital), and raise 
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questions about how to assess equity in the context of ES which are so scale 

dependent.  

The EJ and ESs discourses share key concerns, notably with respect to the importance 

of connections between society and the environment and how land planning 

management decisions impact upon human health and wellbeing. Moreover, they are 

predominantly anthropocentric and interdisciplinary. The spatial distribution of 

environmental factors, recognition of who the different stakeholders are and 

participation in decision making are also important features of studies in both fields. As 

a result of these common factors, they have also faced many similar difficulties in terms 

of methodology and conceptual underpinnings. Overall there is opportunity to more 

firmly link ESs and environmental justice. Moreover further empirical work assessing 

inequalities in natural capital/ES distribution is necessary, addressing a range of 

contexts (natural capital and ES, social factors, places and landscapes), and including 

high income countries which tend to be highly urbanised with people less directly 

dependent upon the supporting environment. It is reasonable to assume that natural 

capital and ES are socially distributed in these high income countries, but this remains 

to be tested, which is the focus of this research. Specifically, this research uses 

England, UK as an example of a high-income country, and thus the next section 

provides the country’s background with respect to ES and EJ research and policy. 

2.4 Natural capital, ecosystem services and environmental 

justice in England, UK. 

The UK can be considered a country with a substantial interest in natural capital, ES 

and EJ. It is the first country within Europe where interest in EJ took hold, one of the 

first countries to complete a national ecosystem assessment and there are policy 

drivers for developing the knowledge base of ES distribution across socio-economic 

and demographic groups. Since the environment is a devolved responsibility of the 

separate nations within the UK, and data availability and social metrics differ between 

countries, it is appropriate to examine the nations independently. This section 

examines knowledge of ES and EJ, and the policy context for each within England, 

although some research discussed may be part of a wider UK study.  

The UKNEA (2011) and follow-on (UKNEA, 2014) have made arguably the most 

notable contribution to understanding and raising the profile of ESs in the UK (Schroter 

et al., 2016). This national assessment concluded that the declining extent and quality 

of multiple habitats over the last 60 years is associated with decreases in the supply of 

most ESs (UKNEA, 2011). Spatially explicit representation of the distribution of ESs 
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was however limited in the UKNEA (2011), although carried out for case-studies in the 

follow-on reports. In the wider literature, ES mapping studies in England have been 

produced for a range of scales.   

Nationally, ES assessments may be focused upon a singular ES and knowledge 

regarding spatial distributions of single services can highlight particular issues (e.g. 

Breeze et al., 2011). However, inclusion of a range of services is necessary for fully 

informed decision making (Martinez-Harms and Balvanera, 2012). Spatial models of 

multiple ES, and in some studies their change in response historically or to future land 

cover scenarios, have been effective in highlighting trade-offs between different ESs 

(Anderson et al., 2009; Eigenbrod et al., 2011; Haines-Young, 2011; Holland et al., 

2011; Christie and Rayment, 2012;  Firbank et al., 2013; Maskell et al., 2013;). In 

particular these point to potential conflict between agricultural productivity and other 

ESs (Eigenbrod et al., 2011; Firbank et al., 2013). Whilst these studies begin to 

address where the winners and losers of the trade-offs are located, they do not provide 

insight regarding who the winners and losers are. 

Regional and local case studies enable examination of ESs which are most relevant for 

a particular area or habitat. In England, case studies have been undertaken at the 

county level in Cornwall (Caselegno et al., 2014), at the river catchment level in Dorset 

(Newton et al., 2012), for upland areas (Grand-Clemet et al., 2013), lowland areas 

(Posthumus et al., 2010; Cerqueira et al., 2015) for wetlands (Acreman et al., 2011; 

McInnes, 2013) and for urban areas (Hölzinger et al., 2014; Speak et al., 2015). 

Primarily these generate locally relevant knowledge but more widely demonstrate the 

complexities of ES spatial modelling and the need for prioritisation of some services as 

they ascertain win-win scenarios are unlikely. Local case studies tend to acknowledge 

some aspects of procedural and participatory EJ since they facilitate increased 

stakeholder involvement and typically give greater consideration of the socially 

constructed values placed on local ESs (Dick et al., 2014).  

Research in the UK echoes international recognition of the growing importance of 

urban ESs. The provision of areas which may provide ESs within the city have been 

shown to be decreasing (Perry and Nawaz, 2008) and the total value of ESs provided 

within UK cities is low comparative to other European cities (Larondelle et al., 2014). 

Urban based studies have focussed on specific ES including flood protection, space for 

recreation, and climate regulation (Whitford et al., 2001; Speirs, 2003; Donovan et al., 

2005; Davies et al., 2011; Hall et al., 2012; DEFRA, 2013). The spatial distributions of 

multiple ESs are less commonly assessed, although there are some exceptions; 

Tratolos et al. (2007) determined how different urban forms can influence ecosystem 
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service provision regardless of housing density. Radford & James’ (2013) assessment 

along an urban-rural transect shows that supply of most ESs increase with decreasing 

urbanisation, but recreation and pollination exhibit an opposing trend. Although this 

study only addressed one transect at a single point in time. Hölzinger et al. (2014), in 

their assessment for the city of Birmingham, contributed to the limited research base 

which models spatial overlaps between supply of and demand for several services, but 

do not account for their flows between different areas.  

With regards to environmental inequity multiple UK studies have determined a positive 

relationship between indicators of lower socioeconomic status and several aspects of 

poorer quality physical environments (see review by Lucas et al., 2004), but this is not 

apparent for all types of environmental hazard. The most prolific body of work for 

England has found inequalities with respect to the distribution of air pollutant 

concentration (Stevenson et al, 1998; Pye et al., 2001; Brainard et al., 2002; Mitchell 

and Dorling, 2003; Jephcote and Chan, 2012). Although recently, Tonne et al. (2018) 

revealed low income groups were burdened with higher pollution at their place of 

residence whilst longer commutes leads to greater individual exposure for high income 

groups. Inequalities have also been demonstrated with respect to landfill sites (Walker 

et al, 2005b; Damery et al., 2007), coastal flood risk (Fielding and Burningham, 2005; 

Walker et al.,2006), IPC sites (Friends of the Earth, 2004; Walker et al., 2005b), noise 

(Brainard et al., 2004), environmental intrusion (Mitchell & Norman, 2012) water quality 

(Damery et al., 2008) and a combination of such factors (Walker et al., 2003; Wheeler, 

2004; Pearce et al., 2010). However, Walker et al. (2003, 2006) found fluvial flooding 

was not consistently associated with higher deprivation, leading Wheeler (2004) to 

conclude that environmental inequalities are dependent upon the measure considered.  

Numerous studies have sought to better understand the drivers of inequality (Van der 

Horst and Toke, 2010; McDonald et al., 2010; Cotton and Devine-Wright, 2013). In this 

respect evaluations of changing patterns of distribution can contribute valuable insight, 

thus Mitchell and Norman (2012) established that increases in environmental intrusion 

1960-2007 were greater in more deprived areas, whilst Mitchell et al. (2015) found air 

quality improvements 2001-2011 were least for more deprived areas. However, 

examples of longitudinal analysis are rare given data limitations.  

Attention on the social distribution of environmental benefits has focussed on 

accessible greenspace (CABE, 2010; Natural England, 2015), urban green 

infrastructure (Ferguson et al., 2018) and more specifically for parks (Barbosa et al. 

2007) and woodland (O’Brien & Morris, 2014). Overall it is apparent that that ethnic 

minorities and people of lower socio-economic status visit greenspace less often, 

however unequal distributions of greenspaces are not always apparent. Ferguson et al. 
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(2018) found that in Bradford street tree density was highest in areas with a greater 

proportion of ethnic minority residents and those with lower socio economic status, but 

an inverse pattern was found with respect to public greenspace. Morse et al. (2011) 

utilised several indicators of countryside quality for a national assessment and found 

lower quality is significantly associated with higher deprivation, although only a weak 

correlation was observed. Church et al. (2014), in a rare example of specifically utilising 

an ES frame for assessing the social distribution of environmental benefits, found that 

for cultural ESs there is some evidence that the least deprived have better access to 

natural culturally important landscapes, but evidence was inconclusive. In summary, 

evidence for an unequal social distribution of greenspace in England exists but it is 

equivocal. Furthermore, it is not possible to draw conclusions on the distribution of a 

fuller range of natural capital in a range of contexts, or the multiple services they 

provide. Thus, for the UK there is a general lack of knowledge on the social distribution 

of natural capital and particularly the ecosystem services that flow from it.  

Inequalities in the distribution of ES are relevant to a range of UK policies and 

guidance. UK Government inquiries report environmental inequalities as a material 

factor in explaining UK health inequality (Acheson, 1998; Marmot, 2010). In the UK, the 

health ‘gap’ has continually widened and lower socioeconomic groups currently 

experience disproportionately higher mortality rates from heart and respiratory 

diseases and lung cancer and are more likely to die prematurely from cardiovascular 

disease. There are also inequalities reported for mental health and childhood obesity 

(PHE, 2018). Past assumptions that overall improvements to social determinants of 

health would reduce inequalities (Acheson, 1998) have proven to be invalid (Exworthy 

et al., 2003), hence there is now support for a ‘proportionate universalism’ approach, 

whereby the action to improve public health should be proportionate to the 

requirements of the vulnerability of population and the inequalities present (CSDH, 

2008). Commissioned by the Department of Health, the 2010 Marmot review advised 

that reducing environmental inequalities is necessary for reducing these health 

inequalities (Marmot, 2010).  

Addressing environmental inequalities was introduced as a key element in the UK 

Government Sustainable Development Strategy (HMG, 2005). Principles of 

environmental justice were also embedded within the Government’s Department for 

Environment and Rural Affairs’ ‘The Third Sector Strategy’ for England and Wales 

(DEFRA, 2008) and the Environment Agency’s social policy (EA, 2005). HM Treasury’s 

Green Book guides best practice in assessment of equality of environmental and health 

impacts in the policy, project and programme appraisal process (HM Treasury, 2018). 
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Building on requirements for the Equality Act (2010) (which does not include 

consideration of equity with regards to socioeconomic status), The Department for 

Transport and the National Institute for Health and Care Excellence include guidance 

on appraisal of impacts on environmental inequality. Public Health England (2014) also 

aims to improve health equity, but this was largely reasoned through associated 

increases in physical activity and a wider range of ESs were not considered. 

With respect to natural capital and ES, policies relating to the management of the 

environment in England have increasingly looked to use the concept of natural capital 

and ES frameworks. In 2011, the Natural Environment White Paper (DEFRA, 2011) 

established the Natural Capital Committee (NCC) whose ‘State of Natural Capital’ 

reports have proposed frameworks for integrating natural capital within accounting 

(NCC, 2013; 2015). Consequently, the Office for National Statistics (ONS) is currently 

integrating natural capital within its environmental accounting (ONS, 2015a). Most 

recently the 25 Year Environment Plan (25YEP) for England is built upon the concept 

of natural capital (HMG, 2018), with an aim to have ‘Net Gain’ in natural capital. The 

25YEP also gives some explicit consideration to environmental inequalities stating “we 

want to ensure an equal distribution of environmental benefits, resources and 

opportunities”, and specifically addressing the need to connect people from minority 

ethnic and low-income groups to nature and the sustainable management of land. 

However, in line with research of inequalities in environmental benefits it remains 

largely focussed upon cultural ES and people’s time spent in nature, with little attention 

given to the potential inequalities in multiple ES.  

The UK can thus be characterised as a country with substantial interest in EJ, but with 

analyses that neglect natural capital and ecosystem services, and conversely 

substantial interest in natural capital and the benefits to people from ecosystem 

services, but with little consideration of how those benefits are socially distributed.  

2.5 Research aims and objectives  

The ES and EJ concepts both examine aspects of the human-nature relationship and 

are ultimately concerned with impacts on human health and wellbeing; established in 

the latter half of the 20th Century they have rapidly developed to comprise a large 

literature base. Despite significant progress, there remains challenges in both fields, 

with several challenges common to both. This includes for example, debate 

surrounding their theoretical basis, the balance between biophysical and social science 
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analysis approaches, model oversimplification, data availability, sensitivity to spatial 

scales, uncertainties of results, and a lack of temporal analysis.  

It is also evident that within the ES discourse there is a lack of empirical analysis 

establishing the distributions of ES across different socio-economic and demographic 

groups, most notably in high income countries where linkages between people and 

their natural environment are less direct. This neglects the importance of equitable 

distribution conveyed within early developments of the ES concept. Concurrently, 

distributional concerns within the EJ discourse have traditionally focused upon 

differential exposure to environmental hazards, although there is now significant 

attention awarded to the importance of inequalities in environmental benefits. Yet 

analysis tends be based upon proximity to various types of greenspace, normally within 

an urban context and with inconsistent conclusions. Few spatial assessments have 

recognised the distribution of a range of specific benefits, and their spatial complexities 

i.e. that benefits may be generated by natural capital both nearby and distant, and by 

different types of natural capital, as depicted by the natural capital/ES frameworks. 

Ultimately, this overlooks opportunities for the distributional aspect of justice to be 

better incorporated within spatial planning and environmental management processes.  

This is the focus of this research, which aims to provide insight into the following 

question;  

Is there inequality in the social distribution of ecosystem services in 

England? 

A spatial analysis is used to generate new knowledge to address this question. Spatial 

analysis is fundamental to both assessment of ES and of distributional EJ 

assessments. England provides an example of a high-income country which at policy 

level is adopting a natural capital/ES approach to natural environment management, 

with awareness of the need to address environmental inequalities in the context of 

notable health inequalities, yet a lack of comprehensive understanding of inequalities in 

environmental benefits. Based on existing studies of urban greenspace distribution, it is 

hypothesised that some inequalities will be observed. 
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The analysis seeks to achieve the following objectives;  

Objective 1: To assess the social distribution of natural capital across England. 

Objective 2: To assess the social distribution of multiple ecosystem services for 

case study regions in England. 

Objective 3: To evaluate the robustness of results to ecosystem service model 

assumptions and uncertainties.  

Fulfilling these objectives comprises a multi-scale approach providing insight from 

national and regional analysis, which is to the author’s knowledge unique in the context 

of the research aim. A multi-scale approach aligns with recommendations within both 

EJ and ES literature, although to achieve the national insight, it is necessary to focus 

solely on natural capital as ES are overly complex to assess nationally (ES are 

addressed via regional case studies). Moreover, insight nationally and regionally will go 

beyond urban areas, which have been the focus of greenspace inequalities. This is 

important since there are indications that some ES (e.g. recreation) reduce along urban 

to rural transects. Multiple ES are sought to be assessed for the second objective since 

there may be trade-offs between some ES, particularly at different scales. Assessment 

of the robustness of results is critical given the critique that many ES assessments do 

not account for uncertainties, whilst environmental inequality has been shown to be 

sensitive to measurement approach.  

In carrying out these objectives, answers to these more specific questions are sought; 

 Which ES are appropriate to be assessed from the perspective of equitable 

management of natural capital in England? 

 How can the different scales at which ESs are delivered from natural capital to 

beneficiaries be accounted for? 

 Are inequalities in natural capital and ES present at different scales? 

 Are inequalities consistent across different ES? 

 Is there a rural-urban gradient in inequalities?  

 Are findings robust to uncertainties and model assumptions? 

 Can opportunities for synergistic social and ecological outcomes be identified? 

 Are there opportunities for closer integration of distributive justice concerns and 

ES assessments within land planning policy and management?  

This chapter has introduced the concepts of ES and EJ in greater detail, reviewing their 

historic basis, current research challenges and how the two discourses have been 

examined jointly within the current literature. Specifically, knowledge of these two fields 
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and their relevance to policy in England has been reviewed to provide insight into the 

country level context relevant for this research. The main research question and 

accompanying aims have been presented, which seek to address some of the 

weaknesses within the existing literature base.  

The next chapter (3), sets out the theoretical frameworks of EJ and ES and how these 

may be related, it provides a review of methodologies and the approach that is taken to 

accomplish the research objectives.  
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Chapter 3 Research design 

 

Chapter 2 discussed the concepts of natural capital, ecosystem services (ESs), and 

distributional justice, reviewing the historical basis, current knowledge and relevance of 

these discourses. This set out the context and significance of this research. The focus 

of Chapter 3 is how the natural capital and ES concepts are operationalised for 

analysis; this entails presenting the research design and methodological approach.  

There is abundant literature which addresses the conceptualisation, classification and 

quantification of ESs and natural capital. Critiques of ES research often refer to 

confusion caused by the multiplicity of terms, and varied understanding of ESs and 

methods (Boyd and Banzhaf, 2007; Wallace, 2008; Fisher et al., 2009; Seppelt et al., 

2011; La Notte et al., 2017). However, as Crossman et al. (2013) argue, much of the 

ambiguity of findings may be avoided by clarification at the outset of the approach 

taken and terminology adopted. This chapter therefore appraises the range of 

approaches within ES research and clarifies the conceptual basis, adopted terminology 

and modelling approach taken in this research, thus clearly defining the scope of the 

research. 

The chapter is organised as follows: The research framework is established in the first 

section (3.1). This includes the evaluation of some of the most common 

conceptualisations of natural capital and ES leading to the presentation of the 

conceptual foundation of this research in section 3.1.2. This also includes clarification 

of the terminology adopted. Given the research aim, the analysis is inherently spatial 

hence the overall research design, which takes a spatial analysis approach, is 

presented in section 3.1.3.  

Subsequently, more detailed accounts are provided regarding the selection of natural 

capital and ES for analysis (section 3.2), potential methods applied for mapping these 

(section 3.3.1) and associated challenges and limitations. The discussion of methods 

for mapping natural capital and ES presented in this chapter is an overview account of 

the approaches taken in the study. Bespoke methods, specific to natural capital overall 

and to individual ESs, are related in their corresponding chapters which follow 

(Chapters 4-7). The final section (3.3.2) specifies methods for assessing inequalities. 

These methods are common for all natural capital and ES studied.   
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3.1 Conceptual framework 

3.1.1. Review of ecosystem services and natural capital frameworks 

As defined in the introductory chapter (Chapter 1, section 1.1), natural capital is “the 

stock of renewable and non-renewable resources (e.g. plants, animals, air, water, soils, 

minerals) that combine to yield a flow of benefits to people” (Natural Capital Coalition, 

n.d.). Whilst ESs are commonly defined as “the benefits people obtain from 

ecosystems" (MA, 2005). How these relate, are produced and become contributions to 

human health and wellbeing are established by conceptual models. As a highly multi-

disciplinary subject, there are multiple perspectives incorporated within the natural 

capital, and ES literature (La Notte, 2017) and there is no consensus on an optimal 

conceptual model. The diversity of models (e.g. Daily, 1997; Costanza, 1997; MA, 

2005; Boyd and Banzhaf, 2007; Fisher et al., 2009; TEEB, 2010; Haines-Young & 

Potschin, 2013; see figures 3.1-3.3) has created inconsistences which limit broader 

conclusions being drawn from across different studies (La Notte et al., 2017). La Notte 

et al. (2017) further argue that a more consistent approach would ensure rigor in ES 

analysis. However as simplifications of reality, limitations of conceptual models are 

unavoidable (Boyd and Banzhaf 2007; Fisher and Turner 2008; Wallace 2008; 

Potschin and Haines-Young, 2011; Gomez-Baggethun and Barton, 2013) and the 

relative advantages and disadvantages of different models should be considered. 

Ultimately, the multiplicity of conceptual models allows flexibility meaning that the 

chosen ES model can be suited to the purpose of the research.  

Whilst natural capital is often understood to be the foundation of ESs, ES conceptual 

models may not explicitly reference natural capital and natural capital conceptual 

models may not explicitly reference ESs. Generally, less attention in the scholarly 

literature has been awarded to explicit framing of natural capital than for ES. However, 

it has been addressed more widely in policy and practice, in particular as it is promoted 

as a concept to be utilised within business (e.g. Bonner et al., 2012; NCC, 2015; 

Petersen et al., 2015). ‘Natural capital benefits’ is one example of an alternative term to 

ES used in natural capital models (e.g. Mace et al., 2015; NCC, 2015), whilst the term 

ES isn’t used it’s evident that the concepts are consistent. The use of different terms 

may be considered more appropriate given that natural capital assets may also include 

abiotic (non-biological) based assets such as geology and wind. Confusingly some 

reports include ESs alongside natural assets under natural capital as an umbrella term 

(e.g. Bonner et al., 2012). This conflicts with the definition of natural capital as ‘physical 
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natural assets’ not services and could lead to double counting when valuing that 

natural capital.  

Others convey the concept of natural capital through an economics lens; as the 

foundation upon which the economy and key components of the socio-ecological 

system are built upon. This has been demonstrated by Herman Daly’s ‘Triangle’ (Daly, 

1973 and subsequently adapted by Meadows, 1998; Figure 3.1). It is a broader view of 

natural capital which doesn’t specify benefits as ESs and more closely ties in with the 

common usage of ‘capital’ as an economic term. The simplicity of the model 

emphasises the reliance of humans upon natural capital but does not consider the 

explicit pathways between natural capital and the benefits to human wellbeing. More 

detailed models which examine these pathways illustrate that benefits do not simply 

arise from natural capital but are co-produced by it together with other forms of capital 

e.g. human capital, financial capital (Palomo et al., 2016; Costanza et al., 2017). These 

are considered more representative conceptualisations of natural capital since they 

reflect the connectivity of socio-ecological systems. 

 

Figure 3.1. Modified ‘Daly’s triangle’ from Meadows (1998). Natural capital is the 
foundation for human health and wellbeing. 
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Figure 3.2. Costanza et al.’s (2017) representation of the complex linkages between 
natural capital, ESs and social and built capital with human health and 
wellbeing. Interactions are conceptualised as a series of energy flows. 
Benefits from ES are co-produced by ecological and social inputs and 
interactions.  

 

 

Figure 3.3  ES cascade model (Potschin-Young et al., 2018; adapted from Potschin 
and Haines-Young, 2011). 
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Overall, despite some differences in the complexity of conceptual models, natural 

capital is consistently considered a critical component of the socio-ecological system 

upon which human wellbeing relies. In this study, the focus is upon natural capital as 

assets from which ESs are generated, whilst for benefits to be generated other forms of 

input are required. It is also acknowledged that there are wider benefits beyond this 

(e.g. energy created from wind power) but these aspects are beyond the focus of this 

research.   

As observed above, conceptual models of ESs may or may not explicitly refer to 

natural capital. The accelerated growth in ES research has brought about many 

conceptualisations and classifications of ES (e.g. Boyd and Banzhaf, 2007; Wallace, 

2007; Fisher et al., 2009; Haines-Young and Potschin, 2012; Landers and Nahlik, 

2013). Several of the most common ES classifications (i.e. lists of individual ES such 

as those given by TEEB and CICES) are based on Haines & Potschin’s (2011) 

cascade framework (La Notte et al., 2017). This depicts a linear ‘production’ chain 

where ecosystem structures and processes generate goods and services which are 

converted into benefits for humans and can be valued if desired (Figure 3.3). This 

conceptualisation is useful for showing different stages in the production of benefits 

from ESs and for depicting the reliance of humans upon ecosystems (La Notte et al., 

2017). A key criticism of the cascade is that it largely negates the socio-economic 

feedbacks important for the generation of ESs. Adaptations which better incorporate 

these feedbacks have been proposed by De Groot et al. (2010) for TEEB and 

Spangenberg et al. (2014). Nevertheless, it is still argued that the cascade neglects the 

co-production of ESs by socio-economic and bio-physical processes (Villa et al., 2014). 

Further concerns with the model is that it implies all ESs generated are converted into 

benefits for humans, not accounting for the depletion of goods and services before they 

reach the beneficiaries (Villa et al., 2014). Whilst Costanza et al. (2017) point out that it 

actually overcomplicates the concept of ES. The cascade separately defines ES and 

benefits but Costanza et al.’s (2017) stance is that there should be no distinction since 

ES are defined as the benefits obtained from ecosystem functions and processes.  

Alternative models aim to convey the non-linear nature of the socio-ecological system, 

providing greater detail regarding the components of the social system which are 

important for the generation and moderation of ESs and the complexity of interactions 

(e.g. Felipe-Luci et al., 2015; Costanza et al., 2017). This includes for example, the 

importance of the preferences and desires of the human population in addition to the 

more formal roles of governance, economic production, and management in the co-

production of ESs (Figure 3.2; Costanza et al., 2017). Ernston (2013) takes this a step 
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further by proposing a framework based on a socio-ecological network. For city-wide 

and larger analysis, the network comprises of nodes representing the natural capital 

and its management (its ‘protective capacity’) whilst the network connections between 

nodes represent the spatial flows of socio-ecological processes. The framework aims 

to demonstrate the social production of ESs whilst emphasising the spatial links 

between locations and how changes in one area affect the wider production of ESs.  

 

 

Figure 3.4  Laterra et al’s (2019) ES framework; an ES framework (left) which 
recognises the distribution of benefits and its connection with a socio-
ecological system (right) which emphasises the impact of benefit 
distribution.  

 

Until recently these frameworks placed greater emphasis upon role of social processes 

within the production of ES, giving no explicit reference to the importance of a fair or 

equal distribution in ES. Although this may be implicitly assumed with consideration of 

the perceptions and needs of people, governance, policies and the management of 

natural capital. The frameworks tend to convey benefits to humans as a whole, 

perhaps encouraging consideration of ‘net benefits’. Within the ES discourse there has 

thus been growing recognition of the need to better identify ES beneficiaries (Bagstad 

et al., 2013; Villa et al., 2014) and who these beneficiaries are (Bennett et al., 2015). 

Despite this, until very recently (Mullin et al., 2018; Laterra et al., 2019) the social 
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distribution of ES benefits was an omission within the ES frameworks. However, in their 

2019 paper reviewing inequalities in ES in Latin America,  

 

 

Figure 3.5 Laterra et al.’s (2019) “ecosystem services inequality trap”, which 
emphasises the socio-ecological feedbacks from inequality in ES, which 
reinforce such inequalities.  

 

Laterra et al. present an ES framework which emphasises the need to understand the 

social distribution of ES (Laterra et al., 2019; Figure 3.4). In addition they demonstrate 

the impact of an unequal distribution as three cycles which it perpetuates and which 

ultimately lead to increasing inequalities (Figure 3.5). These includes negative impacts 

upon natural capital, upon social vulnerabilities and upon access to decision making 

(thus linking with participatory and procedural justice) (Laterra et al., 2019). Explicit 

recognition of the socially disaggregated benefits of ESs can be considered a first step 

in addressing these feedbacks and so to adopt an equitable approach to the 

management of natural capital.  

3.1.2 Incorporating benefit distribution within an ecosystem service 

framework 

Figure 3.6 illustrates a conceptual framework which emphasises the importance of 

disaggregating benefits from natural capital and ESs by social factors. Through 

quantifying ESs in a disaggregated manner, the (in)equality in their distribution can be 

determined. This represents the conceptual basis for this research. Whilst it simplifies 



42 
 

some of the components of the socio-ecological system as presented by Costanza et 

al. (2017) its purpose is to convey how inequality assessments align with the general 

natural capital and ES frameworks. The framework understands humans as both co-

producers and beneficiaries of ES. Quantification of ES’s net contribution to wellbeing 

may be important to consider in some contexts but quantifying how it differs for 

different social groups enables land use planning and management of ecosystems in a 

way which proactively addresses issues of equity.  

 

Figure 3.6. Conceptual framework integrating social distribution analysis within ES and  
                   natural capital concepts. 
 

Critical to assessing social distributions, analysis needs to be spatially explicit and the 

next section (3.1.3) addresses the importance of this within modelling and analysis of 

ESs. It further addresses how this leads to the structure of the research as a multiscale 

analysis.  

3.1.3 Spatial scale as a concept central to research design 

There are multiple reasons why spatial scale is integral within ES and EJ research and, 

as highlighted in Chapter 1, the approach in this research is based upon spatial 

analysis. This section explains in greater detail how ES models are conceptualised 

spatially and hence how spatial scale is fundamental to the design and structure of this 

study.  

The conceptual models explained in the previous section depict the connections and 

processes between social, economic and ecological processes. However, they do not 
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depict the spatial dependency of these processes which is crucial for assessing the 

distribution of an ES and thus considering the equity of that distribution (TEEB, 2010; 

Syrbe and Walz, 2012; Ernstson, 2013,). Villamagna et al. (2013), Bagstad et al. 

(2013) and Villa et al. (2014) present frameworks which focus upon spatially explicit 

non-linear pathways from natural capital as the source of ESs to the beneficiaries of 

these ESs. 

Derived from these models, Figure 3.7 illustrates the spatially explicit conceptualisation 

of ESs which is used to map ESs in this research. Since the concepts and terminology 

used to convey the spatially explicit components of ES models, including ES supply, 

demand and flows are not used in a consistent manner (Schröter, 2014), the definitions 

applied are also clarified in Table 3.1. Figure 3.7 illustrates the spatially distinct ‘service 

providing areas’ or SPAs (where ES supply is generated) and ‘service benefitting 

areas’ or SBAs (where the ESs are used). ES demand reflects the needs or desires of 

people located within the SBAs. ES flows are the spatial and temporal connections 

between the SPAs and the SBAs (Bagstad et al., 2013; Villamagna et al., 2013). These 

may be driven by direct or indirect social, economic or ecological processes. Bagstad 

et al. (2013) emphasise the non-linearity of ES flows demonstrating that the ES initially 

supplied may be depleted prior to reaching some beneficiaries through ES sinks or 

rivalry between beneficiaries. Additionally, Villamagna et al. (2013) emphasise that the 

need or desire for a particular ES may exceed that which is supplied, or that the 

reverse may be true. This is important when we consider how beneficial an ES may be, 

i.e. if there is no demand for a service in a particular area then is the ES supplied there 

beneficial? ES supply relative to ES demand is conveyed by the term ‘net ES’.  
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Table 3.1. Definitions of terms commonly used in ESs literature * Italic font denotes alternative definition not adopted in this study 

Term Definition* 

Ecosystem goods and services  
 

"The benefits people obtain from ecosystems" (MA, 2005).  
“The direct and indirect contributions of ecosystems to human well-being” (TEEB, 2010).  
"Ecosystem services are the specific results of those processes that either directly sustain or enhance human life (as does 
natural protection from the sun's harmful ultraviolet [UVI rays) or maintain the quality of ecosystem goods (as water 
purification maintains the quality of streamflow)" (Brown et al., 2007). 
 

Ecosystem processes Changes or reactions occurring in ecosystems; either physical, chemical or biological (MA, 2005).  
Operations, reactions and interactions between and within different abiotic and biotic elements of ecosystems. Regardless 
of whether humans benefit (Costanza et al., 2017). Quantified in terms of rates. (Wallace, 2007).  
 

Ecosystem structures Biophysical architecture of ecosystems; species composition making up the architecture may vary (TEEB, 2010). 
 

Ecosystem functions "A subset of the interactions between ecosystem structure and processes that underpin the capacity of an ecosystem to 
provide goods and services. The building blocks of ecosystem functions are the interactions between structure and 
processes, which may be physical (e.g. infiltration of water, sediment movement), chemical (e.g. reduction, oxidation) or 
biological (e.g. photosynthesis and denitrification)" (TEEB, 2010) OR 
Synonymous with ecosystem processes (Wallace, 2007; Brown et al., 2007). 
 

Ecosystem capacity "Long-term potential of ecosystems to provide services appreciated by humans in a sustainable way" (Schröter et al., 2014). 
 

Intermediate ecosystem 
services 

Biological, chemical, and physical interactions between ecosystem components lead to final ecosystem services, these are 
not end-products (Boyd and Banzhaf, 2007). 
 

Final ecosystem services Direct contributions to human well-being (Fisher et al., 2009). 
 

Ecosystem service supply Refers to the capacity of a particular area to provide a specific bundle of ecosystem goods and services within a given time 
period (Burkhard et al., 2012).  
Level of supply is dependent on different sets of landscape properties that influence the level of service supply (Willemen et 
al., 2012) and the ecosystem structures and processes (Bastian et al., 2013) 
Potential provision of ecosystem benefits, irrespective of whether humans actually use or value the function at that point in 
time (Tallis et al., 2011; Villa et al., 2014). 
 



45 
 

(continued)  

Term Definition 

Ecosystem service provisioning 
areas (SPA) 

Commensurate with ecosystem service supply. Source or supply regions (Villa et al., 2014). 

Ecosystem service benefitting 
areas  (SBA) 

The area which can take advantage of an ecosystem service. Ecosystem service benefiting areas may be spatially disparate 
to the providing areas. (Syrbe and Walz, 2012). Commensurate with ecosystem service demand. Use or demand regions 
(Villa et al., 2014).  
 

Ecosystem service providing 
units 

Spatial units that are the source of ecosystem service (Syrbe and Walz, 2012). Includes the total collection of organisms and 
their traits required to deliver a given ecosystem service at the level needed by service beneficiaries (Vandewalle et al. 
2009). 
 

Ecosystem service trade-offs The way in which one ecosystem service responds to a change in another ecosystem service (Millennium Ecosystem 
Assessment, 2005). 
 

Ecosystem benefits "Ecosystem service benefit as the outcome of the set of processes that join a beneficiary group with specified source 
ecosystem(s) through a clearly identified spatio-temporal flow" (Villa et al., 2014). 
 

Ecosystem service flows How an ecosystem service supply is transported to its beneficiaries, defined in space and time by physical or information 
processes. (Villa et al., 2014). "the transmission of a service from ecosystems to people." (Bagstad et al., 2013) OR 

 "The actual use of ES…a conceptual ideas that focuses on a point in time and space of the last contribution of the 
ecosystem to human well-being" (Schröter et al., 2014). 
 

Sink regions Areas where the ecosystem service is reduced partially or completely prior to reaching the beneficiaries. (Villa et al., 2014). 

  

Rival ecosystem service A user or beneficiary will reduce the amount of ecosystem service benefit available to other users or beneficiaries (Villa et 
al., 2014). Note difference with ‘exclusivity’ whereby use of an ecosystem service excludes the use by another potential 
beneficiary, provisioning services are exclusive (Brown, 2007).  
 

Non-rival ecosystem service The ecosystem service benefit received by one user does not 'appreciably' impact upon the benefit received by another. 
(Villa et al., 2014) 
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Figure 3.7 also demonstrates how ES flows operate at different scales, depending on 

the specific physical and social processes involved, meaning that SPAs and SBAs are 

specific to an ES (Hein et al., 2006; Crossman et al., 2013; Larondelle & Lauf, 2016). 

For example, an area of woodland defined as a SPA, may produce several benefits to 

different areas (the SBAs). One benefit may be the improved air quality which directly 

benefits people present in the local area. At the same time the woodland may be a 

desirable place to visit for cultural reasons and the SBA in this case is potentially larger 

and/or more distant. At the largest scale, the woodland can provide global benefits by 

sequestering carbon and thereby contributing to climate regulation. Additionally, unique 

to each ES, there is a minimum supply unit for ES service supply. For example a single 

tree may have a cooling effect but the larger spatial unit of a woodland is required to 

provide recreational opportunity (Andersson et al., 2015; Raudsepp-Hearne & 

Peterson, 2016). Following this, a spatially explicit approach to mapping ES, including 

accounting for different SBAs and SPAs, is taken throughout the research design, in 

particular with respect to the selection of ES (section 3.2.2) and to the methodology 

applied (section 3.3.1.2). 

 

 

Figure 3.7 Spatial connections between natural capital which supplies ES (SPAs) and 
the location of the beneficiaries (SBAs). The ES flows may occur via natural 
or anthropogenic means (e.g. river or road). They may operate at different 
scales and SBAs may or may not be spatially discrete from SPAs.  
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Similarly, spatially explicit processes and scale of analysis are important considerations 

in EJ distributional analysis. Identification of the most pertinent scale for analysing a 

particular environmental hazard is important (Birkmann, 2007). However data 

availability may be a constraint to assessment at the desired scale and scales of social 

and environmental data and processes do not necessarily align (this is also a 

constraint for mapping ES). This is dependent on the environmental and social metrics 

selected. For example some social data such as household income is available at 

household level (e.g. ‘Understanding Society Longitudinal Study’; University of Essex, 

2018), others such as Census data are aggregated to small areas (although these may 

be then assigned to household locations). Available data on environmental hazards is 

often modelled across coarser resolutions (e.g. 1km background air pollutant 

concentration, DEFRA) or estimated based on proximity to a hazardous sites (e.g. 

landfill sites). Thus a key challenge for EJ distributional analysis is deciding on an 

appropriate scale to use for comparing social and environmental data. This should also 

consider the sensitivity of the magnitude of (in)equality to the scale used (Baden et al., 

2007); a well-recognised methodological complexity inherent to distributional analysis 

(Baden et al., 2007; discussed further in section 3.3.2.2).  

To account for the potential impact of scale upon results, assessment at multiple scales 

can be undertaken. A single scale analysis uncovers patterns typical of only the 

selected scale (Wilbanks, 2006). Whilst multi-scale studies can lead to a more in-depth 

understanding of phenomena because socio-ecological processes, pressures and 

structures operate at multiple, nested scales and often transcend these. Moreover, the 

size of the study area is usually inversely related to the scale of analysis; analysis 

across larger areas usually involves generalisation of information. This necessary 

compromise is due to the higher complexity, data and time requirements of finer scale 

studies which are not feasible for much larger areas (Norton et al., 2016). Multi-scale 

analysis combines the benefits of both large area and detailed (but small area) 

analysis. 

The overarching aim of this study is to better understand how benefits from the 

environment are socially distributed in England. Recognising the advantages of a 

multiscale analysis this research is structured so that analysis with national coverage, 

which is necessarily coarse, is complemented by more detailed case study analysis 

(Figure 3.8). A national analysis provides a full picture, but reliably mapping ES 

nationally whilst accounting for the complexities in ES supply, demand and flows and 

the data required to achieve this is not viable (Norton et al., 2016). Therefore the 

national analysis is coarser and assesses the co-occurrence of natural capital and 

deprivation in English districts (objective 1). This is a descriptive approach addressing 
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the social and environmental conditions that the conceptual framework (Figure 3.6) is 

based upon. The results provide an important context for policy and may help to 

identify priorities and linkages between regions. Additionally, they can be used to 

inform the selection of case study regions. 

 

Figure 3.8  Multi-scale structure of research objectives. Case study analysis is situated 
within the wider context of a national analysis. More in-depth, spatially 
resolved analysis carried out within case study regions which also accounts 
for the benefits gained from natural capital extending beyond the case 
study boundaries.  

 

Analysis within case study regions can utilise higher resolution data and more 

accurately reflect the spatially explicit ecological and/or social processes which 

generate ES and affect their distribution. The case study analysis itself will also 

incorporate multiple scales to account for different ES flows and utilise different input 

data dependent on the minimum service supply units. The case studies have a 

narrower focus (as it is not feasible to study all ESs) but provide a more detailed, 

reliable and locally relevant insight into who benefits from ESs by incorporating the key 

elements of ES supply, flow and demand as described by Figure 3.7. This information 

has greater relevance for potential planning and management interventions. This 

section of the analysis addresses objectives 2 (and 3).  

Collectively, the national and local case study analyses help to inform whether or not 

environmental inequalities are more pervasive at a particular scale or location or with 
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regards to a particular type of natural capital or ES. In turn this can inform what the 

focus should be of further distributional assessments, and to what extent and at what 

level should policy and delivery seek to redress any inequalities.  

The conceptual model is used to inform the different components of ES which need to 

be quantified. In this case methods need to be established to quantify and map ES 

supply (incorporating spatial flows) and ES demand for each of the selected ES within 

the case study regions. As highlighted, the scales of analysis underlie the decisions 

regarding the methodologies applied. Considering the conceptual models and research 

structure established, the subsequent sections in this chapter expand upon the 

methodological approach. 

3.2 Selection of natural capital and ecosystem services 

To ensure an appropriate selection of natural capital and ESs are included within the 

study, the full range of natural capital and ES must first be recognised. As discussed 

previously there are numerous conceptual models within ES research, in addition (and 

often arising from these) there are numerous ES classification systems. Classification 

systems facilitate modelling, assessment and discussion of ES (Costanza et al., 2017). 

Selection of natural capital (for objective 1: a national analysis) and ES (for objectives 2 

& 3: case study analysis) should be realised from a clear and comprehensive 

classification. Therefore this section first reviews key classification systems and 

outlines the classifications used to select the natural capital and ES, before reasoning 

the ES chosen for analysis.  

3.2.1 Natural capital 

Natural capital tends to be described as a series of categories, as opposed to 

classifications of ES which are normally extensive lists of specific ES. More detailed 

definitions of natural capital tend to be associated with the study purpose, scale and 

location. The UK’s Natural Capital Committee (NCC) (2015) lists 10 categories of 

natural capital assets; species, ecological communities, soils, freshwater, land, 

atmosphere, minerals, sub-soil assets, coasts, oceans. This incorporates both biotic 

(living) and abiotic (non-living) natural capital however the focus of this research is on 

biotic natural capital since it is this that generates ESs. 

For biotic assets, the NCC (2015) framework references the MA global habitats 

classification, however the UK Broad Habitats (Table 3.2; Jackson, 2000) are better 

suited to the English context of this research. The UK Broad Habitats were established 

as part of the UK Biodiversity Action Plan to act as a framework for monitoring the 
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ecological condition of land and water of the UK. They were designed to be 

comprehensive and exclusive (i.e. a particular location only fits into one class) with 

simple definitions (Jackson, 2000). The broad habitats facilitate quantification of the 

extent of different aspects of several natural capital categories; the land, freshwater, 

coast, soil and ecological communities. Therefore, these constitute the natural capital 

included for objective 1’s analysis (Chapter 4). The broad habitats were designated to 

broader groups in the UK NEA assessment (2011; see Table 3.2) and it is this 

classification which the indicators of natural capital are based upon (see Chapter 4, 

section 4.2.1).  In addition to these, Chapter 4 section 4.2.1 outlines indicators related 

to species and soil categories. Detailed information of how the spatial distribution of 

this natural capital is quantified is also provided in section 4.2.2. Inclusion of this wide-

range of natural capital provides a comprehensive overview of its distribution in 

England. It is focused on the living natural capital assets which provide ESs and 

ultimately benefit human health and wellbeing, however the natural capital selected 

also need to be quantifiable and within English boundaries therefore oceans are 

excluded.  

 

Table 3.2 Types of natural capital defined by NCC’s (2015) categories which includes 

abiotic assets and by UK broad habitats following UK NEA (2011). Italics 

indicates those not incorporate within this study. 

Natural capital categories UK broad habitats 

 
Species 

Ecological communities 
Soils 

Freshwater 
Land 

Atmosphere 
Sub-soil assets 

Oceans 
Coasts 

Minerals 

 
Woodlands 

Urban 
Coastal margins 

Semi-natural grassland 
Enclosed farmland 

Mountain, moorlands and heath 
Freshwaters 

Marine 

 

3.2.2 Ecosystem services 

ES classification systems are usually driven by an underlying conceptualisation (La 

Notte et al., 2017), such as those discussed in section 2. Quantification of multiple ES 

is important to ensure equality or fairness in outcomes (Tallis et al., 2008). However, 

for practical reasons, not all ES can be included within this study, rather the most 
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relevant and quantifiable ES must be selected. To make this selection it is first 

necessary to consider all potential ES and this is achieved through review of existing 

ES classification system.  

The major ES classification systems include Daily (1997), MA (2005), TEEB (2010), 

UKNEA (2010), CICES (Haines-Young & Potschin, 2013). The MA (2005) is perhaps 

the most well-known classification and TEEB (2010) presents an update on this, whilst 

CICES was developed primarily for accounting purposes. All classifications group ES 

into provisioning, regulating, cultural and sometimes supporting services. In general 

provisioning services are ‘biomass’, or ‘goods’ such as food and timber. Regulating 

services tend to be based on interactions within ecosystems and describe processes 

which improve environmental quality such as improving soil quality. Cultural services 

describe any socially important uses or perceptions of ecosystems by humans and 

supporting services are ecological functions (La Notte et al., 2017).  

The ES classifications list many of the same individual services within these categories, 

with just semantic differences (e.g. air purification compared to air quality regulation). 

However, there are some differences in content, especially notable between CICES 

and the other schemes (which principally align). One critique of the MA classification, is 

that it has limited scope, for example by focussing upon terrestrial ecosystems 

(Beaumont et al., 2007; Liquete et al., 2013). This range of ES defined was broadened 

by CICES through inclusion of abiotic factors, however this does not adhere to the 

definition of ESs as being produced by ecological processes (Fisher et al., 2009). 

CICES also provides a more comprehensive classification by presenting a hierarchical 

system and employs more technical descriptions of each ES (CICES, 2017). Although 

many of these are less suited to the presentation and reporting of results compared to 

the simpler class descriptions of other classifications.  

The most distinct differences in ES classifications occur with respect to the cultural and 

supporting services. In the cultural services group, TEEB and CICES include multiple 

ES such as ‘education’, ‘recreation’ and ‘spiritual’ (Table 3.3) but often others such as 

heritage are used. The UKNEA (2010) which is based on MA (2005) aggregates these 

to a single service of ‘environmental settings’ and Daily (1997) omits several of these 

individual ES. Including the multiple, individual cultural ES is beneficial since they will 

have different ES flows, supply and demand and trade-offs can be identified. 

Supporting services introduced by the MA, are modified and included as a ‘habitat’ 

category by subsequent classifications such as TEEB, but are not recognised as a 

separate set of services by CICES (and included within the regulating category). A lack 

of consistency in how to incorporate supporting services is potentially due to the limited 

understanding of the complex relationship between biodiversity and other ES (Naidoo 
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et al., 2008; Anderson et al., 2009; TEEB, 2010) and also of ecological thresholds and 

resilience (TEEB, 2010). Supporting services are not included by some to avoid double 

counting and also because they may be considered ‘invaluable’. 

No single classification is optimal. Overall, the CICES and TEEB classes are clearly 

defined and comprehensive for each service category, although the ES included within 

each do differ. Principally, the TEEB classification is referred to for consideration of 

potential services for inclusion within this analysis (see the list of ES in Table 3.3). I 

select a subset of ES for distributional analysis in case study regions for objective 2 

since some ES are more important than others, not all are possible to map across 

larger areas (e.g. city-wide), and methodological and practical constraints require a 

focus upon a selection of ES.  

It is desirable that the selected ES: 

 Have direct ES flows and therefore its SPAs and SBAs can be clearly identified 

 Are important for the general population’s health and wellbeing in England (i.e. 

are not solely beneficial to a population sub-group, e.g. farmers) 

 Have ES flows which operate at different scales (and therefore different SPAs) 

 Can be mapped across regions using nationally available existing datasets 

 Incorporate different categories of ES 

 

Supporting services and provisional services are not selected for further analysis in the 

case study regions. Regarding supporting services, by definition they underpin the 

provision of other services and their inclusion can potentially result in ‘double-counting’; 

they do not directly provide benefits to human health and wellbeing (La Notte et al., 

2017). Provisioning services are critical for life, supplying water, food and shelter. 

However, in high-income countries, the ES flows from source to beneficiary are 

indirect, highly diverse and based around complex socio-economic interactions. The 

welfare of an individual is reliant upon, for example, the type of food outlets available, 

ability to purchase nutritious food (Patteron et al., 2012) and the pricing of clean water 

(McDonald et al., 2010). The health and wellbeing of the general public is not generally 

dependent on the production of food in the local area rather the local benefits from 

these provisioning ES are primarily to business/land owners and employees. 
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Table 3.3. ES classification based on TEEB (2010) and with equivalent class from CICES (Haines-Young & Potschin, 2013). 

I - international, N - national, R - regional, L – local indicate most dominant scales upon which the ES flows are important. 
Lowercase italics (i, n, r, l) represent scales upon which the ES flows have some importance. Scales assigned primarily 
based on Geijzendorffer and Roche (2014) and are relevant for high-income countries.  

 

Ecosystem services CICES class examples Dominant 
scales 

PROVISIONING 

Food Biomass (nutrition), wild plants, algae and their outputs N, I, r, l 

Fresh water Surface water for drinking  Surface water for non-drinking purposes R, l, n 

Raw materials (e.g. wood) Fibres and other materials from plants, algae and animals for direct use or processing R, N, I, l 

Fodder & fertilizer Materials from plants, algae and animals for agricultural use L, R, N, I 

Genetic resources Genetic materials from all biota N, I 

Medicinal resources Fibres and other materials from plants, algae and animals for direct use or processing N, I 

Ornamental resources Fibres and other materials from plants, algae and animals for direct use or processing N, I 

REGULATING 

Air pollutant removal Filtration/sequestration/storage/accumulation by micro-organisms, algae, plants, and animals and 

ecosystems 

L 

Climate regulation Atmospheric composition and climate regulation L, I 

Noise regulation Mediation of smell/noise/visual impacts L 

Flood regulation Mediation of liquid flows L, R 

Drainage & natural irrigation 

(drought prevention) 

Hydrological cycle and water flow maintenance R, l, n 
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Ecosystem services CICES class examples Dominant 
scales 

Water purification Mediation of waste, toxics and other nuisances by biota/ecosystems R, l 

Erosion prevention Mass stabilisation and control of erosion rates L, R 

Soil detoxification & soil 

fertility maintenance 

Decomposition and fixing processes R, l 

Pollination Pollination and seed dispersal R, l 

Pest & disease control Pest control & disease control L, R, n 

   

CULTURAL 

Appreciated scenery Aesthetic L, R, n, i 

Tourism Physical use of land-/seascapes in different environmental settings N,  I 

Recreation Physical use of land-/seascapes in different environmental settings L, R 

Use in science & education Scientific, entertainment, educational L, R, n, i 

Inspiration for art etc. 
Symbolic 

L, R, N, I 

Cultural heritage L, R, N 

Spiritual & religious use Sacred of religious L, R, N, I 

HABITAT/SUPPORTING 

Maintenance of genetic 

diversity 
Lifecycle maintenance, habitat and gene pool protection 

L, R, N, I 

Habitats for species  



- 55 - 

Cultural services are directly important for human health and wellbeing, however, many 

of these services such as “spiritual” or “inspiration for art” are less tangible. Their social 

construction and basis on individual preference and emotional response mean that 

these services are difficult to quantify across large areas. Rather small area qualitative 

analysis are best suited to these ES (Gomez-Baggethun and Barton, 2013). The most 

commonly mapped cultural service is recreation (Milcu et al., 2013). Although 

individually and culturally shaped preferences are still important for recreation, the 

supply of this service is fundamentally based on availability of accessible spaces 

(Nicholls, 2001). Given these physical requirements, it is possible to map recreation 

flows, supply and demand across large areas (e.g. Ala-Hulkko et al, 2016).  

Regarding regulating services, some have more direct relevance to people’s health and 

wellbeing, whilst others are more indirectly beneficial because they underpin 

provisioning services. This includes pollination, maintenance of soil fertility, erosion 

prevention, water purification and natural irrigation and pest & disease control. These 

are primarily required for raw material, food and drinking water supply. Although it is 

acknowledged that erosion control is directly important for health and wellbeing of 

inhabitants of some coastal land, and water purification is directly important for the 

health and wellbeing of inland water recreational users. Climate regulation has benefits 

extending globally, however once more the spatial distribution of benefits is a result of 

indirect feedbacks, for example from the reduction of damage from extreme weather 

events. Due to the indirect ES flows of these services, as discussed for provisioning 

services, they are not included in this study.  

With respect to the other regulating services included in Table 3.3; air pollutant 

removal, climate regulation (microclimate), flood regulation, noise regulation; they have 

direct benefits to human health and wellbeing. Considering the selection criteria, the 

dominant scales of these ES, as listed in Table 3.3, are considered. Examining ES 

which are pertinent at different scales enables consideration of the role of different 

areas of natural capital and ES flows, which in turn produce different spatial and 

potentially social distributions, and best demonstrate potential trade-offs between 

services.  

Locally provided ES include air pollutant removal, climate regulation (microclimate only) 

and noise regulation. Local to regional scale services include flood regulation and 

recreation, disturbance prevention, regulation of water flows and recreation. Since flood 

regulation and recreation have different ES flows and represent both regulating and 

cultural ES they are both included in the analysis. Of the locally provided ES, air 

pollutant removal is of the greatest and most widespread concern for the health and 
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wellbeing of people in England. Selection of three services (air pollutant removal, flood 

regulation, recreation) is considered to be adequate to explore different ES categories 

and a range of scales and is achievable for multiple case study regions. The following 

sub-sections present a more detailed discussion regarding the relevance of these ES 

for health and wellbeing in England.  

3.2.2.1 Flood prevention  

Weather related hazards are the most common type of natural hazard in England; 

flooding specifically is classed as a major risk (HMG, 2015). Approximately 8% of the 

English population (12% land area) has greater than 0.1% annual chance of flooding 

from rivers and the sea. Impacts from recent flood events include the flooding of 20,000 

properties in northern England in 2015/16, 11,000 properties in southern England in 

2013/14 and 55,300 properties were flooded across many areas of the country in 

summer 2007. Government estimates the total cost of these events as roughly £5.8 

billion (HMG, 2016).  

Beyond the high financial costs, flooding impacts local communities and residents’ 

quality of life, health and wellbeing. For example by limiting access to basic goods and 

services, including healthcare. Physical illnesses and deterioration of mental health 

may also result, adding strain to healthcare resources. Displacement and extended 

recovery processes can bring further strain in personal relationships (Menne & Murray, 

2013). The Pitt Review commissioned by the UK Government to learn from 2007 floods 

found that 67% of the flood victims questioned felt repercussions for their or their 

partner’s emotional health. Personal accounts also reported greater difficulty in 

managing existing illnesses and leading a healthy lifestyle (Pitt, 2007).  

The implication of these potential effects from flood events is that a reduction of flood 

hazard as may be provided by natural environments, is an ES of particular importance 

to health and wellbeing in England. Consideration of the role of ecosystems is also 

necessary for managing flood risk in a more holistic manner as required by the 2007 

European Floods Directive (Council Directive, 2007/60/EC).  

Amounts of surface water runoff are a key factor in flood hazard (Whitford et al., 2001). 

Surface water runoff is determined by interactions between land cover, soil 

permeability, antecedent ground conditions, geology, topography and the water 

channel network (Duku et al., 2015). Reducing and slowing the flow of surface water 

can contribute to lesser and delayed flood peaks (although this is dependent upon the 

spatial and temporal interaction of hydrological processes) and reduce the pressure on 

constructed drainage systems (Whitford et al., 2001). Permeable natural land cover 



- 57 - 

and soils contribute to a flood regulation ES, mediating flood hazard from rivers and 

surface water flooding. The relevance of this ES is echoed by the recent direction of 

UK flood management policy towards ‘natural flood management’ in addition to 

engineering solutions (Dadson et al., 2017) as illustrated by the Environment Agency’s 

recent project “Working with Natural Processes” (Environment Agency, 2017b). 

The flows of flood regulation ES are direct based on hydrological processes which 

operate at the catchment scale. The beneficiaries of this ES are those who are located 

downstream or in the immediate vicinity where runoff is reduced (in the case of surface 

water flooding) (Syrbe & Walz, 2010). Several studies have demonstrated how surface 

water runoff reduction by ecosystems may be mapped (e.g. Whitford et al., 2001; 

Tratalos et al., 2007; Zeng et al., 2017). The term surface water runoff reduction 

(SWRR) is preferred and used hereafter since potential methods demonstrated 

explicitly quantify this, with the assumption that flood hazard will consequently be 

reduced. Considering the aims and scope of the research, quantification of SWRR as 

opposed to intensive full hydrological modelling is deemed appropriate for fulfilling the 

study objectives.  

3.2.2.2 Air pollutant removal 

Outdoor air pollution is a major public health concern globally. Lelieveld et al. (2015) 

project global premature deaths from outdoor air pollution to reach 6.6 million annually 

by 2050. Airborne particulates which can penetrate the respiratory system are believed 

to pose the greatest risk to health, with an estimated 391,000 premature deaths from 

long-term exposure in the EU in 2015 (EEA, 2018). Additionally, based on 

concentrations in 2015, 76,000 and 16,400 premature deaths from NO2 and O3 

exposure respectively are estimated annually in the EU (EEA, 2018). For England, it is 

estimated that premature deaths attributed to exposure to PM2.5 are 29,000 annually (at 

2008 pollutant concentrations) (COMEAP, 2010) and to NO2 are between 28,000 and 

36,000 annually (COMEAP, 2018). Air pollutants not only reduce length of life but also 

have lifelong health impacts with high vulnerabilities for children and elderly. Issues in 

childhood include harmful effects to the heart, immune system and respiratory 

problems (Arden Pope, 2000; RCPCH, 2016). Together the health costs burden of air 

pollution in England is estimated at £20 billion annually (RCPCH, 2016).  

Given the severity of the issues arising from poor air quality, the Air Quality Directive 

(2008/50/EC) was implemented in the EU to define air quality standards and requires 

the monitoring of sulphur dioxide, nitrogen dioxide, particulates, lead, benzene and 

carbon monoxide against these standards. The Air Quality Standards Regulations 2010 
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implement these standards in UK law. Whilst overall emissions of air pollutants 

decreased from 2000 to 2016, exceedances of standards are common. In 2014 daily 

limits of concentrations were exceeded with respect to PM10 in 19 EU countries, O3 in 

17 EU countries (more than 25 times) and NOx annual limits were exceeded in 17 EU 

countries (EEA, 2018).  

Although air quality standard exceedances tend to be of greatest concern in urban 

areas, it is not solely an urban concern. Pollutant concentrations higher than legal limits 

have been recorded in rural areas, for example, 15% rural areas in the EU recorded 

exceedances of the PM10 daily limit in 2011 (twice that recorded in 2009) (EEA, 2018). 

There is also no known ‘safe’ level of air pollutants - standards are set on the basis of 

health risks being ‘acceptable’ – and even in areas where levels are lower, there may 

be a degree of health risk, especially for the most vulnerable (WHO, 2006). 

Approaches to tackling poor air quality necessarily focus on reduction of emissions 

from major sources such as road transport (e.g. via emission technology and clean air 

zones, DEFRA, 2019). However, vegetation plays a role in improving air quality 

through either absorbing gaseous pollutants or through the deposition of particles onto 

the vegetation itself, which constitutes the air pollutant removal ES.  

Given the potential role of vegetation in helping to address the major issues faced 

nationally and internationally regarding air quality and which have direct consequences 

to health, the air pollutant removal ES in included for analysis in case study regions. 

The decision to assess the social distribution of this ES has further relevance given the 

known issues regarding inequalities in exposure to poor air quality (e.g. Mitchell et al., 

2015). Furthermore, ES flows are local, contrasting with the catchment scale of SWRR, 

thus providing a more comprehensive insight into the social distribution of ESs.  

3.2.2.3 Recreation 

When referred to as an ES, recreation incorporates any leisure activity in outdoor 

natural environments such as woodland, rights of ways and alongside rivers and 

coastlines. Recreational activities range from sedentary to physically vigorous, and 

examples include appreciating scenery, fishing, playing with children or adventure 

sports (Natural England, 2018b).  

In England, the annual Monitoring Engagement with the Natural Environment (MENE) 

survey has recorded details of and changes over time in outdoor recreational visits 

since 2009 (Natural England, 2018b). This emphasises the broad and increasing 

participation, and thus the importance of this ES to people’s wellbeing. The last annual 

report for the period 2017/18 found 62% of the adult population visit the natural 
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environment at least once a week, whilst 93% consider close to home greenspace is 

important. However, notable inequalities have also been revealed, with BAME 

populations and lower socio-economic groups less likely to undertake recreation in the 

natural environment. Specifically, for 2017/18 51% of respondents in the 10% most 

deprived areas visited the natural environment at least once a week, compared to a 

higher 72% for the 10% least deprived (Natural England, 2018b). 

The benefit of outdoor recreation for human health and wellbeing has long been 

recognised. For example, in 1833 a UK Government Select Committee on Public 

Walks sought to safeguard open spaces for public walks near towns for “the health and 

comfort of the inhabitants” (HC, 1833). To this day, the most common activity recorded 

by MENE is walking (Natural England, 2015). There are numerous mechanisms by 

which outdoor recreation facilitates improvements in health and wellbeing. The most 

direct physical link is that exposure to natural environments helps to develop a healthy 

internal biome, promoting healthy immune systems and reducing inflammatory-based 

diseases (e.g. asthma) (Rook, 2013; Sandifer et al., 2015). Others have found lower 

mortality in the greenest areas (van den Berg et al., 2015) and lower rates of obesity 

for those with greater exposure to natural environments (Coombes et al., 2010), 

although the strength of the relationship is dependent on other socio-demographic 

factors.  

There is also some evidence of positive impacts on mental health; studies have found 

reduced stress, anxiety, fatigue and improved self-esteem and mood through 

recreation in natural environments, particularly in green environments which are 

perceived to be high quality (Weimann et al., 2015; Houlden et al., 2018) compared to 

outdoor recreation in non-green surroundings (Barton and Petty, 2010; Bowler et al., 

2010). There are however some inconsistencies in the evidence; for example 

Buchecker et al. (2015) found only a marginal, but significant, impact of regular outdoor 

recreation in a natural environment with self-reported well-being and psychological 

resilience. Other studies have noted that mental-health benefits are often short-term 

(Alcock et al., 2014; Hartig et al., 2014) and Gascon et al. (2015) found no significant 

relationship for children. Considering broader aspects of wellbeing, recreation in parks 

and other local community settings is also considered important for social cohesion 

(Jennings & Bamkole, 2019). 

Typical of developing countries, in England, mental health and non-communicable 

diseases are now the main causes of years of life lost or worsening quality of life (PHE, 

2018). Given the potential links to health outcomes recreation ES plays an important 

part of a holistic solution to increased prevention of such illnesses. Recognising its 
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importance, guidelines regarding the minimum access to recreation have been 

produced for England (Handley et al., 2003). Internationally, the UN Convention on the 

Rights of the Child asserts the rights of children to participate in recreational activities. 

Recreation is selected for analysis within case study regions given the context of its 

importance (increasingly so) for human health and wellbeing, but also since mapping 

access to recreation has been widely achieved, providing a set of methods to draw 

upon (e.g. Wood, 1961; Rossi et al., 2015; Liu et al., 2017). These studies observe that 

recreation usually takes place close to home, but that travel across short distances 

often occurs. Therefore, analysis of recreation ES considers a contrasting scale of ES 

flows to both SWRR and air pollutant removal.  

To summarise, the natural capital assets considered for assessment of their social 

distribution nationally (objective 1) are as wide-ranging as possible. For assessing the 

social distribution of ES within case study regions (objectives 2 & 3) the ES included for 

analysis require a more selective approach. This considers factors such as who the 

immediate beneficiaries of the service are, the feasibility of mapping the spatial (and 

social) distribution of the service across large areas, their importance for the health and 

wellbeing of the general population in England and that different spatial scales of ES 

flows may affect the distribution of services. The ES to be included are air purification, 

recreation and SWRR. The approach to mapping these ES are discussed in the next 

section whilst detailed methods are provided in the respective chapters (Chapters 5, 6 

& 7) since reliable mapping of ES requires a tailored approach. Similarly, the specific 

methods for mapping natural capital are detailed in Chapter 4.  
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3.3 Methodology 

This section addresses the main approach to mapping ES and assessing their social 

distribution within the case study regions. The methods for determining the spatial 

distribution of natural capital are detailed in Chapter 4. The spatial model presented in 

Figure 3.7 guides the approach to mapping ES. Given a review of existing 

methodologies, I also discuss the tests that could best reveal the sensitivity of results to 

modelling assumptions and potential uncertainties. Once the spatial distribution of 

natural capital and ES are established, the final stage in analysis for each objective is 

to determine how they are socially distributed. Since this analysis is carried out in the 

same way for all ES the common details of the methods are presented here, avoiding 

repetition in the individual analysis chapters 

For this research, the analysis will be quantitative, utilising secondary data and 

relatively simple spatial analysis techniques. These characteristics are largely driven by 

the large geographical areas of interest as well as the practical considerations such as 

data availability and resources. However, as highlighted, this approach also enables a 

range of variables to be explored and the use of secondary data enables 

methodologies to be adopted for other areas.  

3.3.1 Modelling ecosystem services  

3.3.1.1 A review of ecosystem service modelling approaches 

Methods for quantifying and mapping ESs and natural capital may broadly be either 

monetary or non-monetary and biophysical or socio-cultural (Harrison et al., 2018). 

Monetary based valuations of natural capital and ESs are important for furthering 

“conservation efforts in the real world” (Luisetti et al., 2014, p.685). As public goods 

and services, they are usually market externalities, thus economic valuation enables 

their incorporation within economic based decision making and national accounting.  

ESs are an inherently utilitarian conception, hence monetisation of ES is widely 

accepted. However, the limitations of methods applied for economic valuation have 

been widely recognised, and include the inability to separate market and policy 

influences from individual preferences (Pascual et al., 2010), the lack of ability to 

calculate societal values in addition to individual values and the lack of time and 

support for participants to carefully consider complex issues (Whittington et al., 1992; 

Pascual et al., 2010). In general, monetary values are derived for specific geographies, 

beyond which it is presumptuous to apply them (the value transfer problem); natural 

capital and ES provide multiple benefits, which may vary in importance to different 
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people in different places and for different reasons. Monetary values may also confuse 

non-experts and stakeholders who have limited knowledge of how these are calculated 

(Costanza et al., 2017) 

Given these limitations and that to better understand the social distribution of ES, 

knowledge of relative ES supply and demand is of greater importance than monetary 

values, monetary valuation is not required hence non-monetary methods are adopted. 

Advantages of non-monetary approaches include an ability to more easily incorporate a 

wider variety of ES enabling a more comprehensive analysis recognising trade-offs, 

synergies and cumulative effects (Burkhard et al., 2012). Less data and resources may 

also be required (Burkhard et al., 2014). There are multiple methods for mapping ESs 

in non-monetary terms, and often assessments focus upon supply (Bagstad et al., 

2013), but the majority of approaches can be applied to model demand too, and the 

merits and limitations of potential methods are relevant for both supply and demand 

(see Martínez-Harms and Balvanera, 2012; Wolff et al., 2015 and Harrison et al., 2018 

for reviews of approaches mapping ES supply, demand and both respectively). 

In their review of 43 methods available for quantifying ES, Harrison et al. (2018) list 7 

main types of broadly biophysical method and 8 main types of broadly socio-cultural 

method, but note that often methods are difficult to classify or are a hybrid. The socio-

cultural methods are of particular importance for accounting for procedural and 

participatory aspects of justice. However, the aim here is to establish whether 

inequalities exist over relatively large case studies (i.e. relevant to local planning) and 

results from participatory techniques are not suitable for extrapolation across large 

areas. Furthermore, biophysical methods are appropriate for the selected ES.  

Biophysical methods include process-based modelling (e.g. hydrological modelling), 

the use of direct measurement (e.g. of air quality), simple proxies (e.g. matrix of values 

for all ES assigned to land cover classes based on expert opinion), proxies based on 

causal relationships (e.g. values for carbon storage based on multiple environmental 

datasets and known relationships between them), and simple GIS mapping (e.g. 

mapping recreation sites) (Martínez-Harms and Balvanera, 2012; Harrison et al., 

2018). A combination of methods may also be applied (Harrison et al., 2018). Factors 

which commonly determine the selected method include the study purpose, size of 

study area, desired accuracy and spatial scales, ESs included, whether novel or 

established techniques are desirable and practical constraints such as time, costs, data 

availability, and expertise drive the selection of methods (Harrison et al., 2018). 

Proxy-based methods are the most common approach. Of these, the use of look-up 

tables is the simplest, whereby an index is usually assigned to each land cover type 
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(Maes et al., 2011; Burkhard et al., 2012). The indexes can indicate ES supply or 

demand and may be derived from other studies, expert opinion or stakeholder 

consultations (Martínez-Harms and Balvanera, 2012). The key advantage of this 

approach is its simplicity and it is often a solution when practical constraints are 

limiting. It is especially useful for mapping ES across large areas since data 

requirements and processing times are lower than other methods (Naidoo et al., 2008, 

Burkhard et al., 2012). Furthermore, it’s an approach which can be easily understood 

by stakeholders, making it useful for raising awareness of potential impacts of changes 

in land cover (Vihervaara et al., 2010; Burkhard et al., 2012). On the other hand, 

several authors have doubted the accuracy of results from application of this method 

(Kienast et al., 2009, Eigenbrod et al., 2010, Lautenbach et al., 2011, Geijzendorffer 

and Roche, 2013 and Hou et al., 2013). ES are modelled as homogenous across large 

areas with the same land cover type, producing a uniformity error; indices based on 

stakeholder or expert opinion are highly subjective and inappropriate transfer from 

other study areas can lead to sampling and regionalisation errors (Troy and Wilson, 

2006; Plummer, 2009; Martínez-Harms and Balvanera, 2012).  

Alternatively, proxies developed from known causal relationships retain the advantage 

of being straightforward to apply across large areas, but are more complex and may 

have more specific dataset requirements. The accuracy will vary depending upon the 

ES, reliability of the causal model and datasets and applicability to the study area. A 

review by Martínez-Harms and Balvanera (2012) found that casual models were the 

most commonly applied method, although this contrasts with Shӓgner et al. (2013) who 

found that the simpler proxy estimations were more frequently used. In their critique of 

proxy based approaches Eigenbrod et al. (2010a) did note some increased accuracy 

when causal models are used. 

Extrapolation of primary data across larger areas can also be subject to uniformity 

error, thus not fully representing the distribution of ES (Martínez-Harms & Balvanera, 

2012). As a validated approach, it is advocated by Shӓgner et al. (2013) as a means of 

improving ES quantification, however increased complexity and its reliance upon 

primary data leads to greater resource requirements (Seppelt et al., 2011). Biophysical 

models also tend to be discipline specific applying knowledge of processes and 

functions, examples include soil erosion and hydrology models. Although these better 

represent complex processes, they are available for a limited number of ESs and tend 

to require intensive resources and discipline specific expertise (Rieb et al., 2017). 

There are several tools developed specifically for modelling ES (see Sharps et al, 2017 

and the ‘Tool Assessor’ at https://ecosystemsknowledge.net/tool for a comparison of 

https://ecosystemsknowledge.net/tool
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tools). These employ a variety of the techniques discussed above depending on study 

purpose and which ES are addressed. Several also explicitly incorporate both ES 

supply and demand (e.g. ARIES, Villa et al., 2014; Eco-Serv, Winn et al., 2015; Invest, 

Sharp et al., 2018). Furthermore some are based upon more novel approaches to ES 

quantification which are emerging. For example, the ARIES project 

(www.ariesonline.org) combines agent-based modelling with Bayesian Belief Networks. 

This is especially effective at modelling ES flows (including their complexities such as 

the concepts of sinks and rivalry) (Villa et al., 2014) and in situations where data is 

insufficient (Vigerstol and Aukema, 2011). Its implementation is currently limited by the 

requirement for a high level of technical skill and involvement with its creators (Sharps 

et al., 2017). In general the limitation to the use ES toolkits is whether they are suited to 

the particular study including the ES to be assessed, scale, size of study and data 

availability (Harrison et al., 2018).   

Regardless of methods used, ES assessments have been criticised for a lack of 

accuracy, validation testing and sensitivity testing (Plummer, 2009; Shӓgner et al., 

2014). Several studies have attempted to quantify potential errors resulting from 

particular methods (Eigenbrod et al. 2010a, b; Lautenbach et al., 2011; Martínez-

Harms and Balvanera, 2012; Geijzendorffer and Roche, 2013; Hou et al., 2013; 

Shägner et al., 2013; Van der Biest, 2015). There is a general consensus that simple 

proxy based methods based on land cover tend to produce the poorest estimates of ES 

supply. Although the reliability of simple proxies was shown to be dependent upon the 

ES (Van der Biest et al., 2015) and these studies have not examined the accuracy of 

proxies for several ESs. The proxies tested by Eigenbrod et al. (2010) corresponded to 

only three ESs and were applied to a coarse (10 km2 resolution) dataset and therefore 

it can perhaps be expected that there was only weak correlation with extrapolated 

primary data. Some argue that modelling ES using potentially unreliable methods may 

lead to detrimental land management decisions or inappropriate application of findings 

(Eigenbrod et al., 2010; Seppelt et al. 2011). Others, responding to the urgent need to 

account for ES within decision making, prefer the use of potentially less reliable 

methods to a ‘do nothing scenario’, but emphasise that the limitations are clearly 

communicated and the potential inaccuracies are carefully considered (TEEB, 2010). 

Therefore overall, where possible approaches which better account for the complexity 

of production of ESs than the use of simple land cover proxies should be taken.  

The quality and credibility of ES modelling should also be better addressed by applying 

validation and/or sensitivity analysis as standard practice (Martinez-Harms and 

Balvanera, 2012; Hamel and Bryant, 2017). This is demonstrated by some of the 
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available ES modelling tools; ARIES shows the spatial variations in errors of ES 

estimations (Villa et al., 2014), INVEST provides optional uncertainty analysis through 

for example the use of Monte Carlo simulations (Sharp et al., 2018). However, there 

remains a lack of studies which incorporate uncertainty analysis; Seppelt et al. (2011) 

found one third of studies reviewed (153 in total) included basic quantitative analysis of 

uncertainty. Hamel and Bryant (2017) attribute this to the emerging nature of the field 

which is interdisciplinary and requires consideration of complex socio-ecological 

interactions and the perception that uncertainty analysis is inherently complex and 

time-consuming amongst other factors. Indeed, Hamel and Bryant (2017) propose that 

relatively simple approaches to uncertainty analysis are still effective and compel 

researchers to evaluate model assumptions and the robustness of results. One 

approach they advocate involves recognition and ranking of potential sources of 

uncertainties and focussing only those which are likely to have the most notable 

impact. For these, assessing the effects on results can be achieved by rerunning 

models for upper and lower bounds.  

3.3.1.2 Study methods overview 

A spatial analysis approach is taken in this study to assess how natural capital is 

socially distributed nationally (objective 1) and how air pollutant removal, recreation 

and SWRR are socially distributed in case study regions (objectives 2 & 3). Analysis of 

spatial data is undertaken in ESRI ArcGIS 10.3, QGIS 3.0, Geospatial Modelling 

Environment (Hawthorne, 2001) and GeoDa 1.10 (Anselin, 2003). This section 

summarises the approaches to modelling each of the selected ES for this analysis, with 

more detailed accounts given in the respective ES chapters (5-7). 

Multiple case study regions are used to address objective 2 as this provides insight into 

a range of natural and social environments. They should also be large enough to 

statistically assess the social distribution of the selected ES and to have relevance for 

local planning. Objective 3 addresses the concerns raised in the previous section 

regarding the need to be aware of how robust outputs are to uncertainties and how 

underlying model assumptions may impact on the results. This will require sensitivity 

analysis which entails re-running ES models multiple times using alternative inputs. 

Since the social data and ES estimates are linked by their location, models which best 

convey the spatial variability of ES are desirable. Furthermore, following the conceptual 

basis for modelling, it is essential that the ES supply, demand and ES flows are fully 

accounted for in the ES models applied. Since the scale of ES flows for recreation and 

SWRR are deemed as local to regional, the potential size of areas across which ES 

supply may need to be modelled could be extended considerably. Since multiple and 
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potentially large case study regions will be assessed, the use of secondary data which 

is readily available nationally is preferable. This also demonstrates replicability of the 

analysis in other areas.  

Given the scope of the analysis, the methods applied will need to consider practical 

constraints such as time and data availability. Ideally ‘off the shelf’ models provided by 

ES toolsets would be applied, however review of available tools revealed that this 

would not be suitable. Reasons include, that some do not include the selected ES, 

extensive or primary data requirements, a lack of applicability in these areas, or an 

approach which was considered inappropriate. For example, INVEST models 

recreation on the basis on photos uploaded to an online sharing platform; this however 

is not suitable for assessing all types of recreation space, such as a local sports field. 

Eco-serv addresses all of the ES selected but social data is in-built in many of the 

models and this would prevent independent comparison of ES estimates to social data.  

Therefore methods used for modelling ES are developed specifically for this analysis, 

utilising other studies such as Whitford et al. (2001), Holt et al. (2015), and Tratalos et 

al. (2007) who mapped multiple ES for city-wide case studies in the UK. The outputs of 

the methods need to indicate where ES supply and demand is higher and lower, 

however, absolute values are not produced. Methods will be tailored for each ES and 

ideally go beyond the use of simple land cover proxies, given their limitations 

highlighted above. However, considering the requirements observed above, practical 

constraints such as the time taken to implement each method preclude the use of 

complex bio-physical models. In general, for air pollutant removal and SWRR the input 

data for modelling supply consists of land cover classifications tailored to match the key 

drivers of the ES supply and the minimum service providing unit. In addition, 

knowledge of causal relationships is applied which considers interactions of the land 

cover with other environmental factors such as soil type (SWRR) and air pollutant 

concentrations (air pollutant removal). For recreation a simple mapping approach is 

used, which combines existing datasets with mapping from aerial imagery to identify 

recreation supply. With respect to ES demand modelling approaches are largely based 

on the concepts of demand reviewed by Wolff et al. (2015). For example, demand for 

regulating services is based on the need to reduce a particular hazard. For the selected 

ES, this information is readily available from secondary datasets.  

To fully account for ES supply, ES flows must be considered, as described in section 

3.1.3. For this analysis, the case study regions define the area where the beneficiaries 

are located (i.e. the SBA). It is for this area (i.e. within the case study boundaries) that 

ES demand is modelled. Knowledge of the spatial ES flows of each service is used to 

define the potential SPA, for which ES supply is computed. Once supply and demand 
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maps are generated, their values are aggregated to administrative units. The 

aggregated values (x) are normalised to rescale values from 0-10, whereby 0 indicates 

the lowest supply or lowest demand and 10 indicates the highest supply or highest 

demand (Equation 3.1). It should be noted that the values are relative, for example a 

value of ‘5’ assigned to supply does not mean the needs are met if a value of ‘5’ is also 

assigned to demand. 

 

The use of normalised values facilitates their comparison and enables demand to be 

subtracted from supply to generate a single net ES index. A net ES index of ‘0’ 

therefore indicates the area(s) with the greatest negative difference between supply 

and demand (i.e. higher demand and lower supply). Net ES index of ‘10’ indicates the 

area(s) with the greatest positive difference supply and demand (i.e. lower demand and 

higher supply). 

Sensitivity tests are undertaken for all ES and address issues of uncertainty and in 

underlying assumptions. The tests involve re-calculating the social distribution of the 

ES given variations applied to supply and demand models. Sources of uncertainty 

include the spatial, thematic and temporal accuracy of datasets. For air pollutant 

removal and SWRR there is uncertainty regarding the accuracy of values assigned to 

land cover classes to indicate their contribution to ES supply. For recreation there is 

uncertainty in the identification of which recreation spaces should be included. In 

addition there are assumptions that the selected methods are a reasonable 

representation of a complex set of processes regarding ES supply, demand and ES 

flows. The sensitivity tests for ES supply are bespoke to the service but are based 

upon the estimations of ES applied to the data. This is considered the greater potential 

source of error rather than uncertainties inherent in the data itself. Accounts of the 

specific variations applied are given in the individual ES chapters (5-7). 
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Table 3.4. Summary of methods for modelling ES supply and demand. Methods are 
tailored to each ES and explained in detail in Chapters 5-7.  

 

 

For demand, the greatest potential impact upon results is likely due to its 

conceptualisation. For the baseline scenarios, the demand is not based on per capita 

needs as the services are deemed as non-rival and non-exclusive (see Schröter et al., 

2012). However, from a utilitarian perspective the number of people who 

need/potentially benefit from the ES is important, specifically for making economically 

based decisions (e.g. Burkhard et al., 2012; Holzinger et al., 2013). Therefore 

sensitivity to models of ES demand is tested for all ES by adding a weighting based on 

population density. 

 

3.3.2 Determining environmental equality 

Once ES supply, demand and net ES index are quantified, their values are compared 

to socio-economic data to determine their social distribution. The following section 

describes the data and methods used to achieve this. Section 3.3.2.2 discusses the 

need in the first instance for establishing a common scale for the environmental and 



- 69 - 

social data. The final section in this chapter (3.3.2.2) examines the methods used to 

evaluate inequality and highlights those applied in this analysis.  

3.3.2.1 Socio-economic data 

In the UK, environmental inequalities have largely been shown with respect to socio-

economic status and/or multiple deprivation (Briggs et al., 2008), and comparisons of 

the mapped ES to deprivation form the basis of the inequality assessment carried out 

in this study. Measures of deprivation summarise relative disadvantage across a range 

of material and non-material factors. People may be deprived of income, adequate 

housing, employment opportunities and environmental amenities (Dorling, 1996). 

Deprivation cannot be directly measured, hence small area input variables are used to 

construct composite indices. Several deprivation indices and measures of socio-

economic status have commonly been used in England, these are summarised in 

Table 3.5 (also see Mitchell et al., 2015; Fairburn et al., 2016). 

Those based on data from the national census (Townsend deprivation index, Jarman 

Underprivileged score, NS-SEC, Breadline Britain Index) have the advantage of being 

nationally available for several nested geographies and comparable over time 

(Norman, 2010). The disadvantages of census based measures include that the data is 

only updated every 10 years and that they may omit other available relevant indicators 

in particular those which address rural deprivation (Higgs & White, 2000).  

The IMD has been developed since 2000 and is the key deprivation index for UK 

central and Local Government, for example, in local needs assessments and for 

allocation of funding for economic and social programmes (Fairburn et al., 2016). 

Fairburn et al. (2016) give a detailed account of its development and application within 

in UK based environmental justice research. The index is constructed from indicators 

covering seven domains, weighted prior to aggregation, including income, employment, 

education, skills and training, health and disability, crime, barriers to housing and 

services, and living environment (DCLG, 2015). The data used to generate the 

domains are derived from various administrative sources and comprise of 37 individual 

indicators, for example, claimants for jobseekers allowance, recorded crime and school 

exam results (DCLG, 2015). This study uses the IMD to assess inequality since this is 

a comprehensive, regularly updated and commonly used measure of deprivation. IMD 

2015 was the most current release available at the time of analysis and is primarily 

constructed from 2012-2013 data (Smith et al., 2015). For each area, the IMD provides 

a relative ranking whereby the lowest ranks indicate the most deprived areas and the 

highest ranks, the least deprived. 
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Table 3.5 Common metrics of deprivation in England 
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One limitation to the use of the IMD 2015 is the inclusion of the living environment 

variable which incorporates air quality (and thus will not be completely independent for 

assessment of the social distribution of the air pollutant removal ES). However, this 

domain is one of the three with the lowest weighting (9.3%) and thus should not 

substantially change the results. Moreover, the various deprivation indices are known 

to be correlated (Norman, 2010). 

3.3.2.2 Matching scales of environmental and socio-economic data  

Spatial analysis concerned with environmental equity require socio-economic and 

environmental data to be spatially linked. Social and environmental data may be 

spatially represented in multiple different ways according to the differences in the 

phenomena they represent, how the data has been collected and its likely purpose. 

The data may be of different quality in terms of accuracy, coverage, sample size, 

spatial resolution or temporal currency, it may also be of different type (e.g. continuous 

or discrete) and formats (e.g. raster surface or vector). All of these factors influence 

how an analysis can be carried out including the scales at which data can be 

compared, which in turn may influence the degree to which (in)equalities are revealed 

(Mitchell & Walker, 2003; Baden et al., 2007).  

Deprivation indexes and other socio-economic data are usually aggregated datasets. 

Data corresponding to individuals or households are aggregated to a coarser spatial 

unit in order to preserve the respondents’ anonymity (ONS, n.d.). The smallest 

geographical boundaries for which IMD data is available are Lower Super Output Areas 

(LSOAs). LSOAs are delimited in a way which aims for consistency in the population 

they contain (a mean of 1500), but are variable in physical size (ONS, n.d.). IMD2015 

indices aggregated to Local Authority District (LAD) boundaries, which are much larger 

areas relevant to local government, are also available. In 2011, there were 32844 

LSOAs in England and 326 LADs.  

Some indicators of environmental conditions are similarly aggregated, for example, the 

percentage of LSOA area covered by greenspace (e.g. Generalised Land Use 

Database, 2005). However, it is usually presented in the manner most appropriate for 

the features and characteristics it describes. For modelling ES supply and demand a 

range of input spatial datasets are combined and the scale of mapping is relative to the 

service considered, consistent with the ES SPUs. For example, air pollutant removal 

supply and demand are mapped as continuous raster surfaces at a fine scale on the 

basis that the minimum SPU is a single tree. Conversely, recreation supply is mapped 

as a series of discrete polygons a minimum of 300 m2 in size. However, for almost all 
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datasets, environmental data are represented at a finer scale than the IMD (LSOAs).  

Thus the scale of the inequality assessment is guided by the administrative units for 

which IMD data is available. Specifically, LADs are used for the national analysis and 

the use of this coarser spatial unit is discussed in greater detail in Chapter 4. For 

analysis at a finer scale in the case study regions, LSOAs are used. 

Therefore, once mapped, it is necessary to aggregate natural capital indicators to LADs 

(objective 1) and ES supply and demand to LSOAs (objectives 2 & 3). Results will 

therefore be subject to the effects of data aggregation, including the Modifiable Areal 

Unit Problem (MAUP) and ecological fallacy (Gehlke and Biehl, 1934; Openshaw, 

1984). MAUP describes two effects; a scale effect whereby the size of aggregated 

areas impacts upon the results and the zone effect where the placement of the 

aggregated area boundaries impacts upon the results. As a consequence of MAUP, 

correlation has been shown to increase with larger areal units (Gehlke and Biehl, 1934; 

Fotheringham et al., 2000). Baden et al. (2007) find that the magnitude of correlation 

changes with aggregation, but they note that the direction of the relationship does not 

and that correlation is also dependent upon the chosen size of study area. 

Fotheringham and Wong (1991) also observed that the impact of aggregation varies 

depending on variables. It is thus expected that the boundary effects will also differ for 

each ES modelled in this analysis. Whilst a boundary effect cannot be eliminated, it is 

mitigated in this analysis through the consideration of ES flows and therefore supply 

beyond the LSOA boundaries which better accounts for the different scales upon which 

social and biophysical processes operate. Ecological fallacy refers to the inference that 

a statistical outcome, for example the correlation between variables or the level of 

deprivation for a group, also applies to at an individual level, and vice-versa (Robinson, 

1950). Careful interpretation of results can mitigate against this concern.  

To aggregate ES supply and ES demand to LSOAs, an area weighted mean (Equation 

3.2) is computed. This better reflects the dominance of values within an area, with 

lower sensitivity to low coverage of extreme values. Recreation ES is determined by 

areal coverage only and therefore average coverage per km2 is computed.  

 

         = area weighted mean, 

C = area within polygon covered by x,  

x = continuous value (ES) 
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Aggregation of ES supply and demand prior to merging into a single index enables 

their comparison to IMD ranks in addition to net ES index. This can reveal more about 

the factors determining the social distribution of the ESs. The net ES index is 

calculated at the aggregated level.  

It should also be noted that reliable results also require social and environmental data 

to correspond as closely as possible temporally (Haining, 2003). Datasets used in this 

analysis are not all available for the same years, therefore the most recent versions of 

the data at the time of analysis are used. 

3.3.2.3 Measuring inequality 

Numerous statistical measures have been applied to assess degrees of inequality in 

relation to multiple concerns including income, health and the environment (e.g. Harper 

et al., 2013). Table 3.6 summarises those commonly employed in EJ studies to 

determine how (un)equal the distribution of environmental benefits or hazards are 

across different socio-economic groups. There is no ‘correct’ way of measuring 

inequality and results can depend on the statistical technique used. To avoid this and 

to develop a strong understanding patterns of any inequalities, most EJ studies employ 

a range of techniques (e.g. Chakraborty et al., 2011; Boyce et al., 2016; Pope & 

Boone, 2016). For this analysis, associations between deprivation and ES are 

examined in several ways, combining descriptive statistics with inequality indices.  

Descriptive statistics 

Descriptive statistics provide overviews of distributions in a manner which is widely 

understood. For this analysis, boxplots are used to visualise the distributions of ES 

across population-weighted deprivation deciles. Boxplots are effective since they 

convey a large amount of information, including; changes in ES across deprivation 

deciles (including non-linear), central tendency, the dispersion of values, and the 

presence of any outliers across deprivation deciles. In this case the ‘boxes’ show the 

median, upper and lower quartiles of LSOA ES values, with outliers indicating values 

beyond 1.5 x interquartile range. Population-weighted deprivation deciles are 

generated by ordering LSOAs by IMD ranks and assigning these to 10 groups (deciles) 

with approximately equal populations. Population weighting produces deciles which 

represent roughly 10% of the total population rather than 10% of the number of LSOAs. 

Boxplots are generated with respect to ES supply, demand and net ES index. 
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Correlations 

Regression and correlation are common ways of assessing inequalities in 

environmental justice literature (Miao et al., 2015). Regression models are not used in 

this instance since they requires five strong assumptions (rarely tested for in the 

literature) and infer causality (Bowen, 2002) which is not the intention of this research. 

For quantifying statistically significant association between deprivation and ES, 

Spearman Rank correlation coefficients are calculated. Spearman Ranks are used 

here since, despite being a statistically weaker test, it is non-parametric and therefore 

appropriate for applying to ranked deprivation data.  

 

Concentration curve & concentration index 

In addition to correlation, relative inequality is assessed using concentration curves and 

the related concentration index, which are developments of the Lorenz Curve and Gini 

index (Gini, 1912). Initially applied to assess health inequalities (Wagstaff et al., 1991), 

Walker et al. (2005a) and Su et al. (2009) first demonstrated the use of the 

concentration index to assess inequalities in the distribution of environmental hazards. 

Whilst the Gini index is one of the most commonly used metrics for evaluating 

inequalities (Maguire & Sheriff, 2011), their adaptation as concentration curves/indexes 

enable inequality assessment in an additional dimension, in this case deprivation.  

Concentration curves (Kakwani, 1997; Wagstaff et al., 1991) plot the cumulative 

distribution of ES across population-weighted deprivation quintiles referenced against a 

hypothetical perfectly equal distribution. The population weighted deprivation quintiles 

from most to least deprived are plotted along the x-axis and cumulative percentage of 

net ES index is plotted on the y-axis. The closer the concentration curves lie to the line 

of perfect equality (a 45o line, showing each quintile to have a 20% share of ES), the 

more equal the distribution. If the concentration curve falls below the line of equality, 

the corresponding deciles have less than an equal proportion of ES (Figure 3.9). 
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Table 3.6   Summary of statistical techniques used to evaluate inequalities of environmental outcomes within the environmental justice 
discourse. This is not an exhaustive list but includes the most commonly applied measures. Composed from reviews by 
Maquire & Sheriff (2011), Harper et al. (2013), and Miao et al. (2015).  Example of studies which have applied the techniques 
are also given.  

Type of statistical 
measure Examples of measures Purpose 

Visual presentations Histograms, boxplots, scatterplots Visual comparison of changes in environmental phenomena across social groups (and vice-
versa). e.g. Jenerette et al. (2011), Mitchell & Norman (2012), Escobedo et al. (2015) 

Summary statistics Mean, median, standard deviation Descriptive statistics which provide initial insights into differences in environmental 
phenomena across social groups (and vice-versa) e.g. Lakerveld et al. (2015). 

Difference tests t-test, Wilcoxon-Mann-Whitney 
test, ANOVA 

Tests if differences between means/medians are statistically significant. e.g. Barbosa et al. 
(2007), Abercrombie et al. (2008) 

Ratios Ratio of medians, ration of 90th 
percentiles 

Identifies differences between highest and lowest socio-economic groups. e.g. Boyce et al. 
(2016) 

Correlation coefficients Pearson’s or spearman rank 
correlation coefficient 

Tests for statistically significant associations between two variables, indicator strength of 
linear relationship and direction. e.g. Chakraborty et al. (2014) 

Regression models  Logit regression, multiple 
regression, Probit regression 

Examines relationships between two or more variables. Inferring the influence of one or more 
independent variable on a dependent variable. Varied set of models to suit different data 
types e.g. Pope & Boone (2016), Soto et al. (2016) 

Visual ranking tools Lorenz curve, concentration curve Graphs show cumulative ‘exposure’ to an environmental condition (y-axis) against the 
cumulative percent of population ranked by ‘exposure’ (Lorenz) or socio-economic variable 
(concentration). Visualises how equally a phenomena is shared across the population using a 
hypothetical perfectly equal scenario for comparison. e.g. Su et al. (2009) 

Inequality indices Gini index, concentration index, 
Atkinson index, Kolm-Pollak 
index, Thell index 

Summary statistics of the degree of inequality experienced. Gini and concentration indexes are 
numerical summaries of how actual distributions differ from a ‘perfectly equal’ scenario as 
shown in their corresponding graphs. The Atkinson index can be modified to become more 
sensitive to different parts of the distribution (e.g. changes for low socio-economic groups). 
Kolm-Pollak indicates absolute differences. e.g. Gomes-Lopes et al., 2015; Boyce et al. (2016) 
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The concentration index (-1 ≤ C ≤ 1), is a summary index which quantifies the degree 

of inequality. It is represented by double the area between the concentration curve and 

line of equality (Figure 3.9; Kakwani et al., 1997). C = 0 represents an equal distribution 

(line of equality), positive values of C indicate the concentration curve lies below the 

line of equality and negative above the line of equality. 

 

Figure 3.9 Illustrative example of concentration curves. Deciles represent 10% of total 
population, with decile 1 most deprived following IMD2015. Negative 
inequality indicates a lower share of ESs for more deprived populations. 

 

However, since ES are beneficial, careful interpretation of the concentration index is 

required. Typically it has been used to evaluate inequality of environmental hazards, in 

which case a negative value would indicate a greater burden of hazard for more 

deprived populations, which would normally be considered undesirable (e.g. Su et al., 

2009). For this analysis, a positive value is undesirable, since this represents more 

deprived areas receiving a lower share of ES.  

Since the values of the concentration curve are provided at intervals, the concentration 

index is approximated by calculating the area of trapezoids underneath the curve, and 

using this to calculate the ratio a: b (eq. 3.3).   
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𝐶1 =  1 − 2 ∑ (𝑋𝑘 −  𝑋𝑘−1)(𝑌𝑘 +  𝑌𝑘−1) 𝑛
𝑘=1 ………..Equation 3.3 

 

Where: 

𝑋𝑘 = cumulative proportion of population for k = 0, …, n, with 𝑋0 = 0, 𝑋𝑛 = 1. Note since 

each quintile has an approximately equal population, 𝑋𝑘 will increase by 

increments of 0.2. 

𝑌𝑘 = cumulative proportion of Net ES for k = 0, …, n, with 𝑌0 = 0, 𝑌𝑛 = 1 

 

Overall, these measures were selected to examine the distribution of ES across the 

whole population (i.e. including ‘middle income’ groups), which is considered important 

since we know very little regarding the distribution of ES. For example, if ratios were 

used, the differences between the most and least deprived areas would be assessed, 

but may overlook important differences between the most, least and ‘middle’ deprived 

areas. This limitation was illustrated by Brunt et al. (2017), who found that air pollution 

was actually highest for both the least and most deprived areas; using only ratios would 

not uncover this pattern. 

The statistical techniques described thus far do not account for potential spatial 

autocorrelation (Fotheringham et al., 2000; Cushing et al., 2015). That is, observations 

adjacent in space are more likely to be similar, as described by Tobler’s first law of 

Geography ““everything is related to everything else, but near things are more related 

than distant things” (Tobler, 1970, 236). A spatially explicit approach will uncover the 

spatial variation in any relationship between ES and deprivation. The method I adopt is 

the Local Indicators of Spatial Association (LISA) (Anselin, 1995). This is a bivariate 

technique, extended from the computation of Moran’s I which can identify hotspots, 

coldspots and where there is no significant relationship between variables. This can 

also help inform whether particular areas have a greater influence on the global 

statistics (Anselin, 1995).  

The measures of inequality are computed in ‘r’ and SPSS for descriptive statistics and 

correlations, Microsoft Excel is used to generate the concentration curve and index, 

finally GeoDa is used to generate maps of local associations.  
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3.4 Research design and methodology: A summary 

This chapter has introduced the conceptual basis for the research, illustrating the need 

for disaggregating the benefits gained from natural capital and ESs, which can enable 

assessment of inequalities. This conveys how knowledge of the social distribution can 

become part of the feedback mechanisms which drive change in natural capital 

management and therefore changes the distribution of that natural capital and the ESs 

it generates. Additionally this chapter has outlined the spatially explicit models required 

to map the distribution of ESs. This entails consideration of where the supply of ESs is 

generated relative to where the beneficiaries of the services are. The complexity of the 

spatial interactions limits the potential for mapping multiple ESs nationally, and 

therefore a multiscale approach to the research design is taken. This combines a 

coarser assessment of associations between natural capital and deprivation nationally 

(objective 1 – Chapter 4) with detailed analysis of ESs’ social distribution (objective 2 – 

Chapters 5-7) carried out for case study regions.  

The conceptual basis for this research has informed the research methodology, which 

the subsequent sections of this chapter have been dedicated to. This has provided an 

overview of the methods relevant to multiple aspects of the analysis including details of 

which natural capital and ESs are assessed, a summary of the approach to modelling 

ES which is spatially explicit, the approach to sensitivity testing corresponding to 

objective 3 and an account of how inequality is assessed. The environmental data and 

the specific methods used to map natural capital and ES differ for objectives 1 and 2, 

and for each ES within objective 2, they are therefore addressed in their corresponding 

chapters. The next chapter presents the methods and results from analysis of the 

national distribution of natural capital. This forms a comprehensive overview which 

provides context for and informs the selection of case studies for fulfilling objective 2.  
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Chapter 4  A national analysis of deprivation and natural 

capital  

 

Distributive analysis of natural capital provides an essential first step in understanding how 

that natural capital may be equitably managed within an ecosystems approach, including 

informing development of spatial strategies that address social, economic and ecological 

challenges. The aim of this chapter is to present analysis which addresses the first 

research objective; examining the social distribution of natural capital assets which 

underlie the provision of ES, at a coarse scale but with national coverage. As outlined in 

Chapter 3, this analysis is part of a multi-scale approach which provides a national 

perspective but also provides the context for more detailed case study analysis presented 

in subsequent chapters which examine the distribution of flows of ES from natural capital. 

This chapter corresponds to a peer-reviewed paper in Landscape and Urban Planning 

(Mullin et al., 2018).  

Section 4.1.1 provides a brief overview of the status of natural capital across England, and 

building on Chapter 3 section 3.3.1, section 4.1.2 describes the mapping of indicators of 

natural capital. The Index of Multiple Deprivation is used to indicate socio-economic 

conditions - the choice of this indicator was discussed in greater detail in Chapter 3 section 

3.3.2.1. Section 4.1.3 further explains the use of IMD at the coarser district scale, as 

different IMD measures are available at this scale. Section 4.2 details the computation of 

natural capital indicators from the input datasets and the spatial clustering methods which 

are used to aggregate these to district level. Section 4.3 presents the results with section 

4.3.3 illustrating how natural capital varies by deprivation, and the final sections 4.4, 4.5 

and 4.6 consider implications of this analysis, including a review of methods and 

implications for environmental equity and planning and land management nationally. 

These discussion are extended in Chapter 8, following the regional case studies presented 

in Chapters 5-7. 
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4.1 Study area and data 

4.1.1 England’s natural environment 

Key features of England’s landscape are summarised in Table 4.1. State of the 

environment reporting (UKNEA, 2011; ONS, 2015b) reveals a mixed picture with indicators 

variously revealing improving status (e.g. surface water abstraction, surface water quality, 

greenhouse gas emission, use of construction materials), little change (use of non-

construction materials, sea- and wetland birds), or continued decline (forest and farmland 

birds). A general trend for an increase in cultural and regulating ESs and some decreases 

in provisioning services has been observed from 1993-2012 across 9 UK monitoring sites 

(Dick et al., 2016). Rising consumption, demographic change and climate change are the 

principal forces placing natural capital at further risk (NCC, 2013). 

Table 4.1  Characteristics of England’s landscape  

Type Extent* Observations 

Urban 9% of land cover 81.2 % of the population live in urban areas 

Agricultural 70% of land cover Most is privately owned 

Woodland 9% of land cover One of the lowest afforestation rates in Europe 

Wetland 

Upland 

4% of land cover 

5% of land cover 

Almost half are protected 

Rivers and streams 136,000 km   

Canals 2,600 km   

Lakes and reservoirs 5700 (number) In addition to an extensive coastline 

* England covers approximately 130,000 km2. Percentages are approximate. Source: 

UKNEA (2011), DCLG (2013) 

 

4.1.2 Natural capital datasets 

As defined in Chapter 1, natural capital are considered as the natural assets which 

produce benefits or are of value to people or the stock of non-renewable and renewable 

natural resources. In Chapter 3 section 3.2.1, it is specified that given the purposes of our 

study, the assets of interest are only those which are ecosystem based, giving rise to ES. 

Specifically, this includes species, ecological communities, soils, freshwaters, land, natural 

processes and function (following Mace et al., 2015; NCC, 2015).  
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Natural capital indicators have largely been developed for monetary valuation (e.g. , 

Costanza et al., 1997; ONS, 2015a) or for assessing its criticality (e.g. De Groot et al., 

2003; Ekins et al., 2003; Mace et al., 2015). Discussion in Chapter 3 highlighted that for 

the purposes of quantifying how natural capital is distributed socially, we require spatially 

disaggregated, objective and relative measures of natural capital but a monetary value is 

not required. Nevertheless, existing approaches applied to determine monetary values, or 

the risks and thresholds of natural capital, are utilised to inform the selection of indicators 

used in this analysis (as listed in Table 4.2).  

The first steps of ‘Principals for Natural Capital Accounting’ established in the UK by the 

ONS (ONS, 2017) require assessment of natural capital stock extent and condition. For 

creation of a risk register, Mace et al. (2015) add a requirement for knowledge of ‘spatial 

configuration’, whilst De Groot et al. (2003) consider the condition of the assets including 

naturalness, biodiversity, uniqueness, fragility, value for supporting life and renewability as 

‘critical’ factors. On this basis, indicators of both the extent and quality (condition) of 

natural capital were sought; these are understood to be important for the supply of multiple 

ESs. Spatial configuration, natural processes and functions are not incorporated as these 

are specific to individual ESs and the flows of goods and services from the asset to the 

beneficiaries (Andersson et al., 2015). As highlighted previously, these cannot be reliably 

modelled for the full range of services nationally. However, inclusion of the spatial extent of 

built-up areas is used to provide context, and this also provides some indication of the 

number of potential beneficiaries of or actors in the production of local services. 

‘UK broad habitats’ are used to categorise different types of natural capital, an approach 

consistent with Mace et al. (2015) and the UKNEA (2011), see also Chapter 3 section 

3.2.1. Data on the extent of each broad habitat are available from a single source (Land 

Cover Map of Great Britain, LCM 2007). Data for freshwater extents is obtained using 

Ordnance Survey vector data since rivers are the dominant freshwater features in many 

areas and these are not well identified by the LCM which has a 25m spatial resolution. 

‘Urban’ and ‘suburban’ land cover are included because, whilst these do not describe 

natural capital directly, they provide an important context, aiding the interpretation of 

results, and are strongly associated with private residential garden area (Generalised Land 

Use Database, 2006) and also population density, a key factor in ES demand.  
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Table 4.2 Natural capital indicators. 1 Extents of natural capital follow UK Broad Habitats (Jackson, 2000)2As defined by MA 
(2005) and UKNEA (2011). 3LCM 2007 – Land Cover Map of Great Britain 2007. 

 

 Natural Capital  Natural Capital Indicator1 Relevant ecosystem service(s)2 Data source(s) 

In
d

ic
a

to
rs

 o
f 
 q

u
a

n
ti
ty

 

Land 
 
 
 

 
 
Broadleaved and coniferous woodland 
(% total area covered)  

 

Fuel, fibre, climate regulation, hazard regulation, 
air, soil & water purification, noise regulation, 
aesthetic and education. 

 

LCM 20073 (www.ceh.ac.uk) 

Wetland and coastal land  
(% total area covered) 

Hazard regulation, water purification, climate 
regulation, recreation, aesthetic and education.  

LCM 2007 ( www.ceh.ac.uk) 

Low density built-up land  (% total area 
covered by suburban land cover class) 

Recreation, noise regulation, hazard regulation.  LCM 2007 (www.ceh.ac.uk) 

High density built-up land  (% total area 
covered by urban land cover class) 

 - LCM 2007 (www.ceh.ac.uk) 

Semi- natural grassland 
(% total area covered) 

Soil & water purification, recreation, aesthetic, 
hazard regulation.  

LCM 2007 (www.ceh.ac.uk) 

Agricultural land (% total area covered by 
enclosed farmland broad habitat) 

Food, fuel, hazard regulation, aesthetic. LCM 2007 ( www.ceh.ac.uk) 

Mountain (% total area covered) 

 

Climate regulation, food, water purification, 
hazard regulation, aesthetic.  

LCM 2007 (www.ceh.ac.uk) 

Freshwater Freshwater (length of river or lake 
shoreline per km2) 

 

 

 

 

Freshwater, food, recreation, aesthetic. OS OpenRivers, OS Meridian 2015 
(www.ordnancesurvey.co.uk) 
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 Natural Capital  Natural Capital Indicator1 Relevant ecosystem service(s)2 Data source(s) 

In
d

ic
a

to
rs

 o
f 
q

u
a
lit

y
 

 
Land 
 
 

 
Land with protected status (% total area 
covered) 

 

Wild species diversity, pollination, educational. 

 
Boundary datasets, all data regularly 
updated & downloaded 2015 - ‘Local 
Nature Reserves’, ‘National Nature 
Reserves’, ‘Ramsar Sites’, ‘Sites of 
Special Scientific Interest’, ‘Special 
Areas of Conservation’, ‘Special 
Protection Areas’ 
(www.gis.naturalengland.org.uk)  
‘RSPB UK reserves 2015’ 
(www.rspb.org.uk)    

Publically accessible spaces (% total 
area covered) 

Recreation, education, cultural heritage. Boundary datasets: ‘Country parks’, 
‘CROW 4, 16, 15, access’, ‘Doorstep 
greens’, ‘Local Nature Reserves’, 
‘National Nature Reserves’, ‘Millennium 
Greens’, ‘Registered parks and 
gardens’. All datasets downloaded 
2015. (Natural England; 
gis.naturalengland.org.uk).  
Accessible woodland dataset (The 
Woodland Trust, BG v.11, 2014  
enquiries @woodlandtrust.org.uk) 
 

Agricultural land quality (% agricultural 
land modelled as good to excellent – 
grades 1 & 2) 

Food Agricultural land classification 2013 
(gis.naturalengland.org.uk) 

Land, soil Density of carbon in topsoil (area 
weighted mean of carbon density tha-1) 

Climate regulation. Soil carbon natural capital map 2007 
(catalogue.ceh.ac.uk) 

Ecological 
communities 
and species 
 

Ecological status 
(area weighted mean of ecological 
status) 

Wild species diversity, pollination. Ecological status grid 2014 - a modelled 
biodiversity index adjusted for recorder 
effort and environmental zone 
(catalogue.ceh.ac.uk) 

Freshwater Water quality (% total length of 
waterbodies with good or high overall 
status) 

Freshwater, recreation, food, aesthetic.  Water Framework Directive waterbodies 
2013 status 
(www.geostore.com/environment-
agency) 

 

http://www.gis.naturalengland.org.uk/
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Ideally indicators would be used which describe the quality of all types of broad habitat and 

which are relevant for a range of ES including provisioning, cultural, regulating and 

supporting services. From a review of sources, some datasets were found to be explicit 

measures of the quality of specific types of natural capital e.g. water quality, quality of 

agricultural land and topsoil carbon. Although some of these potential data were omitted 

for reasons of parsimony. For example, multiple datasets are available which indicate soil 

quality (available from: eip.ceh.ac.uk/naturalengland-ncmaps) but once aggregated to 

districts they correlate closely with soil carbon (ρmin = 0.7, ρmax = 0.956). Of these, soil 

carbon was selected for use since this is also relevant for climate regulation.  Other quality 

indicators are applicable across multiple broad habitats and are relevant to conditions 

defined by De Groot et al. (2003); Ecological status provides insight into the level of 

biodiversity of each type of natural capital (relative to that which is expected). Coverage of 

protected areas e.g. Sites of Special Scientific Interest, whilst a designation for 

management purposes, by definition relates to naturalness, biodiversity, uniqueness 

and/or fragility. Coverage of publicly accessible land is included as this is an important 

condition for several cultural ESs.  

4.1.3 District-level deprivation data 

As set out in Chapter 3, Local Authority Districts are the spatial units used for this analysis 

as the key unit of land use planning and which largely coincide with areas defined for 

ecological management and economic growth. Deprivation is determined from the relative 

IMD ranks which are calculated by the Office for National Statistics initially for Lower Super 

Output Areas (LSOA, areas defined to contain a mean population of 1500). From this, 

various IMD metrics are calculated for the 325 English Local Authority Districts (LAD) 

(Table 4.3). These measures reflect LAD deprivation in terms of a whole district average, 

and the amount and severity of deprivation relative to other LADs. A district average may 

hide within district extremes, and thus use of the two additional measures ensures within 

district variation in deprivation is better accounted for. This is especially relevant since 

there are some notable changes in district deprivation ranks dependent on the measure 

used, only six districts are ranked in the 20 most deprived districts for all three measures. 

For each measure LADs were ranked (low ranks represent high deprivation) then grouped 

into deciles of equal population for subsequent analysis.  
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Table 4.3 District level representation of IMD data  
 

IMD measure Description 

Average rank A population weighted mean of all LSOA ranks within the LAD.  A whole 
area measure, but neglects within LAD variability. 

Extent Percentage of LAD population in the 30% most deprived LSOAs 
nationally. Within the 30%, progressively more weight is given to the more 
deprived LSOAs.  

Local 
Concentration 

Average rank of the most deprived LSOAs within which 10% of the 
population of the district live. Measure focuses on most severe 
deprivation.  

 

 

Figure 4.1 Deprivation in English Local Authority Districts (IMD average ranks). ONS 
(2015)  
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4.2 Methods 

Having sourced relevant data, indicators were computed for LADs with subsequent 

analysis comprising of comparison of deprivation against individual natural capital 

indicators, then with an aggregation of those indicators. ESRI ArcGIS for Desktop 10.3.1 

and QGIS were used, with statistical analysis and aggregation of natural capital indicators 

executed using IBM SPSS Statistics 22 and R software. 

4.2.1 Computation of natural capital indicators 

Computation of natural capital indicators at the LAD level required a range of geospatial 

processing steps dependent on the resolution and format of the input data. Given the 

variable size of LADs, indicators had to be made comparable; where possible percentages 

were computed, otherwise per unit area and area-weighted means were calculated. The 

extents of each type of natural capital (broad habitats), except freshwater, within each LAD 

were calculated using zonal statistics tools. The length of rivers and lake shorelines were 

calculated using a sum line length tool. 

To generate values for quality indicators, different calculations were required to handle the 

different data types. In general, there were three approaches; for publicly accessible areas 

and land with protected status, the extent was given as a percentage of total LAD area. 

These areas were defined by multiple independent datasets which were merged before 

total extent was computed. For quality of water and agricultural land, the features 

classified as the highest and second highest quality were extracted and their extent 

relative to total classified waterbodies/agricultural land within each LAD were computed as 

a percentage. Soil carbon and ecological status are provided as continuous data values 

and therefore the area-weighted means were calculated.  

4.2.2 Aggregate natural capital 

The approach for aggregating the natural capital indicators for equity analysis should 

identify the relative similarities and differences of aggregate natural capital. Since the units 

of the indicators vary and placing them on a single scale requires further value 

judgements, a simple additive method was avoided. Instead, area classification using 

clustering methods was implemented, providing a comprehensive, quantitative and spatial 
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summary of natural capital which is less driven by value judgements, although such 

judgements cannot be wholly avoided. Clustering is a well-known geographical technique 

used to describe areas in terms of key characteristics, described by the mean value of 

each indicator, thus unlike aggregation to a single index, clustering allows information 

about component characteristics to be simultaneously conveyed. 

Clustering techniques have been used previously to assess bundles of ESs (e.g. Hamann 

et al., 2015; Raudsepp-Hearne et al., 2010; Turner et al., 2014). Hamann et al. (2016) 

further demonstrate how creating clusters is a useful way to facilitate the comparison of ES 

bundles to social data. Whilst in the context of social equity and environmental benefits, 

several studies use clustering to explore who benefits from urban greenspace (Barbosa et 

al., 2007; Ibes, 2015 and Xiao et al., 2017).  

Prior to applying a clustering algorithm, several techniques used within these studies were 

adopted to facilitate a more in-depth understanding of the spatial patterns and multivariate 

relationships of the natural capital. Firstly, the Moran’s I global statistic was calculated for 

each indicator using a 150km threshold distance to test the degree to which they are 

spatially clustered and secondly (Appendix A1), pairwise relationships using Spearman 

Rank correlation were determined.  

Clustering is sensitive to the algorithm applied, so to address some limitations of the 

different clustering methods, a two-step clustering approach was taken (Figure 4.2), similar 

to Green et al. (2014). Specifically, a hierarchical algorithm established the initial 

parameters and likely optimal number of clusters for subsequent k-means clustering. This 

reduces sensitivity to outliers and ensures replicability (Krieger & Green, 1999) but retains 

the advantage of the iterative k-means clustering algorithm. The k-means algorithm was 

repeatedly applied for between 2 and 15 clusters, from which the optimal solution was 

selected. Criteria for an optimal number of clusters includes relatively equal sized clusters, 

compact clusters, maximum separation between clusters and a stable solution (Green et 

al. 2014). Various cluster number optimisation metrics exist (see review by Halkidi et al. 

2001), of which 30 were accessed in the NBClust Package in R (Charrad et al., 2014). 

Beyond these metrics, the number of clusters selected should be based on results that are 

sensible, interpretable and resolved to an appropriate level of detail (Green et al. 2014).  
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There was no single optimal clustering of England’s natural capital. Metrics computed 

within NBClust most commonly indicate only three clusters is optimal, but this primarily 

identifies an urban/rural divide and the natural capital classification must reveal greater 

detail. The peaks in the NBClust plots for Hubert’s Statistics (cluster compactness) and D 

Index (cluster homogeneity) (Figure 4.a and 4b) indicate stronger clustering performance 

for the corresponding number of clusters. The highest peak corresponds to 3 clusters, 

subsequent to this 5 or 6 clusters perform best. ANOVA showed that 14 clusters are 

required to obtain lower within cluster variation than between cluster variation for all 

indicators. However, in practice, such a high number of clusters could not all be clearly 

differentiated and interpreted. Variation in cluster size was also lowest with a greater 

number of clusters, however, this also creates multiple small clusters. The variation was 

greatest when less than 5 clusters are created.  

 

Figure 4.2 Natural capital classification of LADs using hierarchical and k-means clustering 
techniques  
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A final classification of six clusters was selected as this provides a clear classification that 

reveals an appropriate level of detail with acceptable clustering performance. Six clusters 

have a more evenly distributed cluster size (Figure 4.c), can be easily interpreted, and 

perform well in the Hubert’s Statistics and D Index plots. Critically, the six clusters are 

meaningful, retaining sufficient distinction between clusters for descriptions to be assigned 

to each (Figure 4.), but are not overly complex. The clustering results were replicated for 

subsets of the data, thus indicating the classification is robust. For comparison, results for 

5 and 7 clusters are given in Appendix A2. 

 

 

a) Hubert Statistic (Hubert & Arabie, 1985) second difference plot. Indicates cluster 
compactness with increasing number of clusters      
 

Figure 4.3 Graphical indicators of optimal number of clusters using k-means clustering. 
The first significant peak on the second difference plots indicates the statistical 
optimal solution (Charrad et al. 2014).   
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b) D-Index (Lebart et al., 2000) second difference plot. Indicates ‘cluster gain’ which is 

change in homogeneity relative to increasing number of clusters 

 

 

 

c) Cluster size by cluster frequency.  

Figure 4.3  Cont..Graphical indicators of optimal number of clusters using k-means 
clustering. The first significant peak on the second difference plots indicates 
the statistical optimal solution (Charrad et al. 2014).   
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The distinct natural capital profile of each cluster identifies which districts have a high or 

low extent or quality of each type of natural capital. The variation of deprivation with 

respect to natural capital was explored using the mean values of each IMD measure for 

the districts assigned to each cluster, a comparison of which clusters contain the most and 

least deprived districts, and visualisation of the distribution of IMD ranks in each cluster 

using boxplots. Kruskal-Wallis tests were applied to determine whether differences in 

deprivation between clusters are statistically significant. Sensitivity testing was carried out 

in which the clustering was re-run with each indicator removed (Appendix A3). 

 

4.3 Results: The social distribution of natural capital in England 

4.3.1 Natural capital indicators’ Moran’s I and pairwise correlations 

All natural capital indicators exhibited significant spatial clustering (Appendix A1, with 

clustering greatest at 50km). High-density built-up areas are the most tightly clustered, 

whilst semi-natural grassland, soil carbon ecological status, agricultural land and quality of 

water have greater clustering tendency than the other indicators.  

Pairwise correlations are listed in Table 4.4. Each natural capital indicator exhibits 

significant moderate correlation (ρ<-0.4, ρ>0.4) with at least one other indicator 

(wetland/coastal and agricultural land quality) and with as many as eight (soil carbon). 

Independent variables are not a prerequisite for clustering but highly correlated variables 

may add ‘weight’ to a particular division. Whilst soil carbon is closely negatively correlated 

with built up areas (ρ = -0.802 and ρ = -0.855 for low density and high density respectively) 

this indicator is retained for clustering since it indicates quality rather than quantity and it 

emphasises  differences beyond the rural/urban divide. Low and high density built-up 

areas, ecological status and agricultural land quality have predominantly negative 

correlations with other indicators, suggesting that these may form clusters distinct from 

areas with high levels of the other natural capital indicators. 
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Table 4.4 Spearman Rank correlation coefficients between natural capital indicators 

 
 

Mountain Coastal Woodland Ecological 
Status 

Agricultural 
land 

Quality of 
agricultural 
land 

Fresh 
water 

Water 
quality 

Publically 
accessible 

Protected 
status 

Semi-
Natural 
Grassland 

Soil 
carbon 

Low-
density 
built up 

High 
density 
built up 

Mountain 1 - - - - - - - - - - - - - 

Coastal -0.053 1 - - - - - - - - - - - - 

Woodland  .305** -0.095 1 - - - - - - - - - - - 

Ecological 
Status 

-.223** -.209** -0.025 1 - - - - - - - - - - 

Agricultural 
land 

.141* -0.022 .162** -.467** 1 - - - - - - - - - 

Quality of 
agricultural 
land 

-.152** .242** -0.093 -.149** .421** 1 - - - - - - - - 

Freshwater .439** -.230** .137* -0.089 0.083 -.110* 1 - - - - - - - 

Water quality .461** -0.074 .123* -.379** .309** 0.015 .374** 1 - - - - - - 

Publically 
accessible 

.332** 0.004 .514** 0.042 -.330** -.317** 0.105 0.078 1 - - - - - 

Protected 
status 

.165** .532** .148** -0.048 -.271** -0.032 -0.032 0.03 .496** 1 - - - - 

Semi-Natural 
Grassland 

0.669** 0.076 0.276** -0.454** 0.349** -0.129* 0.389** 0.451*
* 

0.273** 0.129** 1 - - - 

Soil carbon .531** -0.023 .524** -.445** .642** 0.004 .306** .449** .240** 0.098 0.707** 1 - - 

Low-density 
built up 

-.305** -.129* -.243** .555** -.745** -.172** -.124* -.417** -0.018 -0.093 -0.536** -.802** 1 - 

High density 
built up 

-.333** -0.036 -.411** .469** -.781** -.189** -.155** -.425** -0.046 -0.045 -0.536** -.855** .860** 1 

Significance levels **p<0.05 ***p<0.01 
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4.3.2 Clustering  

Characteristics of the six clusters generated are described in Table 4.5. The descriptions 

are based on the z-scores of the natural capital indicators for each cluster as shown in 

Figure 4.. These are generalisations for the clusters overall and there will be some 

variation from these descriptions within clusters with respect to the individual LADs.  Error! 

Reference source not found. maps the six natural capital clusters and thus indicates the 

spatial distribution of natural capital nationally.  

Table 4.5 Cluster descriptions based on average values of natural capital indicators 
across all LADs within each cluster. Clusters have been assigned simple labels 
which correspond to the most dominant natural capital indicator. 

Cluster  Number of LADs  Key characteristics 

1. Urban 13 Dominated by high density built-up land but also 
characterised by the highest ecological status. Lowest 
extent and quality of natural capital with respect to all 
individual indicators used except the extent of publically 
accessible land.  

2. Suburban 90 Dominated by lower density built-up land. Further 
characterised by above national average of high density 
built-up land and ecological status. Low coverage of 
agricultural land and soil carbon.  

3. Mountain 28 Dominated by montane broad habitats and semi-natural 
grassland. This cluster also features the highest extent 
of publically accessible land, extent of freshwater, large 
extents of land with protected status and highest water 
quality and soil carbon. Ecological status is lowest in 
this cluster.  

4. Coast 9 Dominated by coastal habitats and land with protected 
status. Agricultural land is of the highest quality in this 
cluster but the extent of agricultural land is low. Soil 
carbon and freshwater extent and quality are also low.  

5. Agriculture 138 Dominated by agricultural land, with high quality of 
agricultural land and water. Largely rural with the lowest 
extent of built up land but also the lowest extent of 
publically accessible land.   

6. Woodland 47 Dominated by woodland with low extent of 
built up land. High extents of publically 
accessible land.  
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Figure 4.4  Mean z-scores for each indicator by cluster. A z-score of zero represents the 
national average, whilst a score of +1 is one standard deviation above the 
average. Mean values of natural capital indicator z-scores for each of the six 
clusters describe the characteristics of each cluster.  

 

Clusters 1 (‘urban’) and 2 (‘suburban’) are characterised by higher proportions of built-up 

land and lower natural capital. The ‘urban’ cluster with the greatest extent of high density 

built-up land overall exhibits the lowest extent and quality of natural capital, but notably 

has the highest ecological status. Few LADs are assigned to the ‘urban’ cluster and these 

are spatially concentrated in central London only. The ‘suburban’ cluster has the highest 

extent of low density and above average high density built-up land, the type and extent of 

the majority of natural capital indicators is below average, except for ecological status. The 

second highest number of LADs are assigned to this cluster, and are they located in major 

towns and cities across England.  

Clusters 3 (‘mountain’) and 4 (‘coast’) have the highest extent and quality of natural 

capital. The rural ‘mountain’ cluster exhibits the highest extent of mountain, freshwater, 

semi-natural grassland, land that is publicly accessible and has protected status. It also 

has the highest levels of soil carbon and water quality but the lowest ecological status. 

Although only 28 LADs are in this cluster, their rural character means they cover a large 

area, predominantly in northern England. The ‘coast’ cluster is characterised by the 

highest area of coastal habitat and land with protected status and whilst it has the highest 

quality of agricultural land, it has a low extent of agricultural land. This is the smallest 
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cluster which is scattered spatially in the northwest and southeast. The extents of built-up 

areas and ecological status are slightly above average for these areas.  Clusters 5 and 6 

are characterised by the highest extent of agriculture and woodland respectively. The 

‘agriculture’ cluster, is the most commonly assigned cluster, predominantly rural it also has 

above average quality of agricultural land, water and soil carbon. The ‘woodland’ cluster, 

also rural, is further characterised by above average extent of freshwater, mountains, 

ecological status and soil carbon.  

 

Figure 4.5 Natural capital clusters in England (see text). Parenthesis denote number of  
         LADs within each cluster. 
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Systematic removal of individual indicators to test the sensitivity to indicator selection 

reveals overall a robust clustering (see Appendix A3, although some sensitivity was noted 

to the exclusion of high and low density built up land (resulting in 19% and 15% LADs 

changing cluster membership, respectively, compared to a maximum of 5% changing with 

the exclusion of other indicators).  

4.3.3 Deprivation and natural capital 

IMD values for districts in each cluster are shown in Figure 4.7 (higher ranks indicate lower 

deprivation). In general, districts of lowest deprivation are located predominantly in 

southeast England, on the periphery of London and beyond. The most deprived districts 

are primarily, but not solely, in central London, Birmingham and the Northwest (Figure 

4.1).  

Prior to comparison of deprivation across natural capital clusters, boxplots were used to 

explore changes in deprivation against individual natural capital indicators. These 

illustrated that there is a clear decline in high density built-up area with declining 

deprivation reflecting a known predominance of high deprivation within urban areas 

relative to rural areas (ONS, 2009). However, none of the natural capital indicators show a 

similarly distinct social distribution, but differences in natural capital between most and 

least deprived districts exist. The most deprived districts have the lowest extents of 

woodland, agricultural land, semi-natural grassland and soil carbon. Conversely, the least 

deprived districts have the highest extent of woodland, whilst the highest soil carbon and 

extent of agricultural land is in the relatively un-deprived 2nd least deprived districts. 

Districts with mid-levels of deprivation tend to have higher quality natural capital compared 

to the most and least deprived deciles. Significant differences in median values for each 

IMD measure and the distribution of IMD values (Kruskal Wallis 1-Way Anova) across 

clusters are observed. Differences are consistently found to be significant under sensitivity 

testing whereby single indicators were systematically removed from the clustering process.  
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a) Average IMD values for each cluster 
 

 
b) Number of the most and least deprived LADs assigned to each cluster 
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c) Boxplots of the values of each IMD measure for the 6 clusters.  

Figure 4.4 Variation in IMD across clusters. 
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‘Urban’ districts are on average the most deprived and rural ‘agriculture’ and ‘woodland’ 

districts the least deprived. 78% of the 10% most deprived districts are assigned to ‘urban’ 

and ‘suburban’ clusters compared to 88% of least deprived districts assigned to the 

‘agriculture’ and ‘woodland’. None of the 30% least deprived districts are assigned to 

cluster 1 and only 5 (5%) of the 30% most deprived districts are assigned to the woodland 

cluster. The mean ranks (higher ranks indicate lower deprivation) of the three IMD 

measures - average rank, extent and local concentration - are consistently lowest for the 

‘agriculture’ and ‘woodland’ clusters. The ‘urban’ cluster has the lowest mean and median 

IMD average rank and extent, the mean and median of IMD local concentration is lowest 

for the ‘coast’ cluster. This suggests that the severity of deprivation is highest in coastal 

areas which are moderately built-up. Although these are the smallest clusters with a much 

lower range of IMD values.  

Of the more rural districts, the ‘mountain’ cluster has the highest deprivation (mean and 

median for all IMD measures), and has higher severity of deprivation than the ‘urban’ and 

‘suburban’ clusters when median IMD rank average and local concentration are observed. 

Whilst the least deprived areas have higher extents of woodland (cluster 6), ecological 

status (cluster 6) and agricultural land (cluster 5 & 6) and agricultural land quality (cluster 

5), they do not exhibit as diverse and overall as high quality and extent of natural capital. 

Overall, the most deprived districts tend to have lower natural capital, but there are 

nuances and exceptions depending on the IMD measure used and with respect to some 

indicators of natural capital. Notably, some areas with very high extent and quality of a 

diverse set natural capital have higher levels of deprivation.  The observed differences are 

largely noted with respect to measures of central tendency and there are large ranges in 

IMD ranks for most clusters. Thus the level of deprivation of districts within a particular 

cluster should not be assumed.  
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4.4 Evaluation of methodology 

Selection of indicators has depended upon availability of data and consistent with other 

reporting (NCC, 2015), data availability beyond indicators of natural capital extent is 

limited. Future work would ideally encompass additional indicators of natural capital quality 

and other characteristics such as ‘uniqueness’ as identified by De Groot et al. (2003), and 

examine other social and demographic patterns.  

The application of a classification technique has allowed spatial patterns of the types, 

quality of individual natural capital indicators, the mix of natural capital and overall natural 

capital, to be quantified and visualised. Although there may be some sensitivity to indicator 

selection and subjectivity in this selection and in the selection of an appropriate number 

and interpretation of clusters. Clustering is also subject to generalisation and indicators 

have been aggregated to administrative boundaries, an approach criticized by Dittrich et 

al. (2017). However, some degree of aggregation is necessary for comparability of 

economic and ecological data and districts were purposefully selected as they are 

coincident with local planning boundaries. They are also pertinent in the context of 

increased responsibility of local authorities, who have recently been critiqued by the Royal 

Town Planning Institute for neglecting issues of inequality (Pinoncely, 2016).  Nonetheless, 

exploring the pattern of natural capital and deprivation for other administrative or 

landscape based scales may be revealing. 

Data and methodological constraints of a national study mean only broad insight into the 

social distribution of natural capital assets is given. The actual benefits gained and 

services produced will depend on whether goods and services are directly or indirectly 

produced (Rova and Pranovi, 2017). Whilst other national studies (Turner et al. 2014; 

Dittrich et al. 2017) classify ES bundles rather than natural capital, these focus on service 

supply and do not include flows to beneficiaries for most services. At this scale, it is 

reasonable to speculate that the social distribution of natural capital reflects the social 

distribution of some ESs (with direct and local flows) generated by that capital, although 

this remains to be tested. As discussed in Chapter 3, section 3.1.3 scale dependent 

physical, social and economic processes will act to distribute benefits more widely, up to 

the global scale (Hein et al., 2006). 
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4.5 Implications for environmental equity 

There is substantial environmental inequality in the UK but to date the evidence base 

neglects a full range of environmental benefits (see Chapter 2, section 2.4). The 

hypothesis that more deprived communities would occur in areas with less, and lower 

quality, natural capital, is supported by this district level analysis for some forms of capital, 

but a national social gradient is not universal across all forms natural capital. These 

findings echo the lack of a consistent conclusion across existing environmental justice 

analysis in the UK (Chapter 2, section 2.4). 

Deprivation is found to be lowest in districts characterised by high woodland cover with 

greater accessibility and lower built-up land, with highest deprivation in urban areas with 

less natural capital, although high ecological status. In contrast, high deprivation occurs in 

coastal areas with large swathes of protected land and in upland rural areas which have 

high amounts of multiple types of high quality natural capital, this finding is consistent with 

literature discussing issues of and potential mechanisms behind rural poverty (e.g. 

Shucksmith, 2012). There are also some rural areas with lower deprivation but also lower 

aspects of several indicators of natural capital. For example, some urban districts have 

higher ecological status compared to agricultural dominated, rural districts, which also tend 

to be the least accessible. The higher ecological status in urban and suburban areas is 

likely due to their positive association with garden area and evidence of the high potential 

biodiversity of urban gardens (Goddard et al., 2010). It is therefore possible that benefits 

provided by urban gardens in more deprived areas could exceed those provided by 

agricultural land in less deprived areas, although this depends on how the land is 

managed (Power, 2010). These opposing patterns demonstrate the importance of 

exploring environmental inequality for different contexts, including within and between 

urban and rural areas, and for multiple types of natural capital.  

Some of the observed associations between deprivation and natural capital are spatially 

driven and correspond with known north-south economic inequalities (Whitehead, 2014). 

However, social, political, economic and environmental processes have interacted 

historically and continue to shape variation in deprivation and natural capital across the 

country. To disentangle such complex intertwined processes is beyond the scope of this 
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analysis. Rather, I have sought to draw attention to current social patterns in natural 

capital distribution which have relevance for social objectives of natural capital strategies. 

 

4.6 Implications for planning and land management  

Building on Ostrom’s (2009) socio-ecological system, Rova and Pranovi (2017) detail how 

people are both users and actors, and operate governance systems in the production and 

consumption of the goods and services derived from natural capital. On this basis, 

inequality in natural capital distribution has implications for sustainable management of 

natural capital in terms of the production of and demand for ESs (Andersson et al., 2007; 

Bennett et al., 2016; Ernstson, 2013).   

De Groot et al. (2010) discuss the potential for the ecosystem approach to identify 

synergies for investments which produce ecological, social and economic benefits. An 

understanding of the relationship of natural capital (and ESs) to social characteristics of 

communities is an important aspect of identifying such synergies and maximising these 

benefits. This is especially so as not all ESs can be maximised concurrently and some 

trade-offs between social and ecological outcomes are inevitable (Daw et al., 2011; 

Seppelt et al., 2011).  

For England, this chapter has shown that deprived districts have both high and low natural 

capital, and so emphasises that different, location specific approaches to maximising 

social, ecological and economic benefits are needed. This includes those focussed on 

encouraging the use of the available services from natural capital by deprived communities 

(O’Brien & Morris, 2014), and those where investment may be needed to increase 

potential natural capital and its services available to the poor. More in-depth discussion 

regarding synergies and trade-offs between natural capital, ESs, spatial scales and social 

and ecological outcomes is provided in Chapter 8, section 8.5. 
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4.7 Summary 

This national analysis has developed some preliminary insights into the social distribution 

of ecosystem goods and service of a high-income, urbanised country through an 

environmental inequality analysis of natural capital in England, fulfilling objective 1 as 

established in Chapter 2 section 2.5. Overall, considering a wider range of natural capital 

than in previous EJ analysis reveals some interesting patterns nationally, and whilst some 

inequalities in the social distribution of environmental ‘goods’ are evident, this is not 

consistent in all places, nor for all types of natural capital. Thus a ‘one-size fits all’ national 

policy to address inequalities in ecosystem goods and services would not be appropriate, 

rather national policy should require incorporation of equity concerns within ecosystem 

management at sub-national scales. This aligns with the second research objective, 

analysis of the social distribution of ESs at sub-national scale, which has also been 

determined as necessary for enabling more spatially sophisticated modelling of a complex 

set of social, economic and ecological interactions which drive the production of ESs and 

environmental inequalities, as discussed in Chapter 3 section 3.1.3. The next three 

Chapters begins to address this challenge through analysis in English case study regions, 

whose selection is informed by national analysis presented in this chapter, as discussed in 

Chapter 5.   
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Chapter 5 The social distribution of air pollutant removal in 

regional case studies 

 

5.1 Introduction to the analysis of the social distribution of 

ecosystem services 

As the first of four analysis chapters within this thesis, Chapter 4 provided insight into 

the variation in natural capital characteristics and deprivation across the whole of 

England. This revealed that at the district level rural deprived areas featured some of 

the highest extent and quality of natural capital yet the converse is found in dense 

urban areas where deprivation and low natural capital coincide. The geographical 

variation in results supports the need for local analysis to better understand the social 

distribution of benefits which may be provided by the natural environment. This 

analysis is presented in the subsequent three chapters (5-7). These chapters present 

methods and results from the assessment of the social distribution of selected ESs for 

three diverse case study regions and address objective 2 (the social distribution of 

ESs) and objective 3 (sensitivity testing).  

As outlined in the research design (Chapter 3, section 3.1.3), the approach to analysis 

in case study regions is more detailed than applied in the preceding national 

assessment. It uses the spatially defined flows of ESs to map the supply of benefits 

from natural capital to the population within the case study regions, how this is 

balanced with demand for ESs in those areas and in turn how these change across 

more and less deprived areas. The ESs selected for analysis are air pollutant removal, 

recreation and surface water runoff reduction (attenuation) (SWRR). These are chosen 

since they are pertinent for health and wellbeing in an English context, are key services 

for consideration in management of our natural environment and can offer insight into 

the effect of the spatial scale of ES flows on the social distribution of ESs. Reasons for 

selecting of these ESs were elaborated on in Chapter 3 section 3.2.2.  

The results are grouped according to ES and thus are presented for all three case 

regions together. Descriptions of the study regions and reasons for their selection- 

Northampton, the South Pennines and Leeds – are given in the subsequent section 

(5.2). This chapter continues by presenting the analysis for the social distribution of air 



- 105 - 

pollutant removal. Chapter 6 and Chapter 7 examine recreation and SWRR 

respectively.  

As highlighted in Chapter 3 section 3.3.1, a similar approach based on a common 

framework is used for mapping all ESs, however specific methods are individual to 

each ES, developed to provide a reliable estimate of the spatial distribution of that 

particular ES, given differences in their physical construct. Therefore Chapters 5-7 

provide detail of the data and methods used to map the respective ES in terms of ES 

supply and flows, ES demand and the net ES index (objective 2), and the variants to 

these applied for sensitivity testing (objective 3). Each then continue by presenting 

results including a spatial description of the distribution of the ES supply, demand and 

resultant net ES index. Changes in ES across areas of higher and lower deprivation 

are reported using several global and spatial statistics (details provided in Chapter 3, 

section 3.3.2.3). These establish whether net ES increases or decreases with 

increasing deprivation and if so, what underlies this distribution (the spatial pattern of 

supply, demand or both), or if there is a more nuanced non-linear relationship between 

ES and area deprivation. Finally the sensitivity of results to the ways in which ES 

supply and demand are mapped is described for all case study regions collectively. 

Here I answer the question of whether the social distribution of ES changes if different 

values are assumed when quantifying ES supply, or when population density features 

as an element of ES demand. Specifically, the direction of any change is noted and 

implications for interpretation of the results are deliberated.  

The primary aim of this chapter and Chapters 6-7 is to communicate the findings of all 

case studies together, for all ESs, so that a full narrative is presented. For this reason, 

the text is primarily descriptive; links to related research and the wider literature are 

drawn upon and the implications of the results examined in detail in the subsequent 

discussion chapter.  

 

5.2 Case study region selection and descriptions 

Case studies appropriate for assessing a social gradient in ESs should include areas of 

high and low deprivation and a range of natural capital. As highlighted in Chapter 2, 

section 2.5 inclusion of rural and urban areas is desirable to extend existing studies 

which have concentrated upon the distribution of environmental benefits within urban 

settings. Ideally, for extending current knowledge base of environmental inequalities, 
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the cases should be locations where previous analysis of inequalities in greenspace 

have not been undertaken.  

The natural capital clusters established in Chapter 4 (Figure 4.4 & 4.5) and associated 

levels of deprivation provided the initial framework from which potential case studies 

could be identified. The rationale for case study selection firstly regards the clusters 

from which case study regions would be selected from, and subsequently the choice of 

specific location and boundary. 

5.2.1 Selecting case study locations 

Clusters 2, 3 and 5 were identified as the key clusters from which to select cases 

studies. Whilst high deprivation and diverse natural capital characteristics are observed 

for clusters 1 and 4, these comprise of few districts, with those in cluster 1 solely 

concentrated in London. The unique nature of these clusters indicates that analysis of 

these districts would be less relevant more broadly. Areas in cluster 6 are not 

considered since deprivation is lowest in these areas, whilst pockets of higher 

deprivation do exist, analysis of distributional environmental justice is most pertinent in 

areas where high deprivation is experienced.  

Cluster 5 is the largest cluster, with the greatest geographical spread throughout 

England. Average deprivation of districts in cluster 5 is lower than clusters 2 and 3 and 

most indicators of natural capital lie close to the national mean, apart from agricultural 

land indicators which are higher than average. In contrast, districts in cluster 3 have 

been demonstrated to have the highest mean level of deprivation of a rural area and 

the greatest range in types of natural capital. Cluster 2 represents the more urban 

English districts which experience lower than average natural capital (except with 

respect to ecological status) and higher deprivation (which is similar to cluster 3). Three 

case study locations were therefore identified (Figure 5.1) to encompass these three 

clusters – the South Pennines (cluster 3), Northampton (clusters 2 & 5) and Leeds 

(cluster 5). Three case studies were deemed to be suitable on the basis that they 

provide insight into the social distribution of ESs in a range of contexts and were 

feasible to undertake within the research timeframe.  

South Pennines 

The South Pennines was selected as a region of interest on the basis that areas of 

high deprivation across cluster 3 are concentrated in this area. Moreover, across the 

area higher deprivation occurs in both rural and urban locations. It may therefore be 

expected that deprived areas experience similar levels of or higher ES than areas with 

a lower deprivation. This contrasts with areas with a clearer urban-rural gradient in 

deprivation (where high deprivation is concentrated in inner urban areas), where a 
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similar gradient in ESs may be expected. Unlike the majority of areas encompassed by 

the mountain clusters it is not designated as a National Park or Area of Outstanding 

Natural Beauty (which are subject to specific planning constraints). It is however under 

pressure from human activity as it lies close to many large urban conurbations, which 

through numerous ecological and social connections it also plays a critical role in 

supporting. In particular the extensive, openly accessible moorlands are important for 

their peat which stores carbon, the habits and species they support, for reducing 

flooding downstream and providing opportunity for recreation (Natural England, 2014). 

 

Figure 5.1  Case study locations 

 

Northampton 

The town of Northampton was selected as an example of a ‘typical’ large town in 

England. Northampton is one of England’s largest towns with a population of >212,000 

(ONS Census, 2011). A historic county town, it has since experienced major 

development from industrialisation arising with the construction of Grand Union Canal 

in the 19th Century and planned expansion following New Town status designation in 

the 1960s. Its location between the UK’s largest population centres of London and 
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Birmingham and connection with key infrastructure makes it attractive for but also 

under pressure from continued growth (West Northamptonshire Joint Planning Unit, 

2014). Comparable to numerous urban areas in England, Northampton is surrounded 

by predominantly agricultural districts with small settlements (cluster 5), with those 

surrounding Northampton (e.g. South Northamptonshire) including some of the least 

deprived areas in England. These rural landscapes are characterised by gently 

undulating hills, mixed agriculture with historic hedgerow patterns and houses and 

wetland mosaics created from flooded gravel pits (Natural England, 2014). Therefore a 

case study in this location which includes the town and neighbouring rural areas 

surrounding Northampton can provide insight into whether a gradient in ESs is 

consistent with a rural-urban gradient in deprivation.  

Northampton is situated within the Nene Valley, as such maps of ESs have been 

produced across the area as part of the development of a Nene Valley Nature 

Improvement Area (Rouquette, 2016). ES supply and demand maps at high resolution 

were made available subsequent to analysis for this research having commenced, 

these however do not spatially connect SPAs with SBAs or account for flows of 

services from natural capital beyond the immediate boundaries of the NIA.  

 

Leeds 

The city of Leeds is the only large urban area which is not assigned to cluster 1 or 2 in 

the national classification. This is due to the unique nature of the Local Authority 

District boundaries which are delimited beyond the city boundaries incorporating rural 

areas and small settlements. More commonly district boundaries are defined at the 

urban fringes. Consequently, Leeds district falls within cluster 5, however this conceals 

significant variation in natural capital and the presence of densely built-up areas. Thus, 

Leeds is a similar case study location in some respects to Northampton. However, it 

was selected because it also contrasts Northampton. Specifically, the district is 

surrounded by areas of high natural capital (cluster 3 to the north and west, cluster 6 to 

the south) and it is located close to the Yorkshire Dales National Park and therefore 

there is potentially high supply of ESs which may benefit Leeds district including the 

city. There are several distinct landscape characterisations across the district but the 

area covering the city itself and to the south is primarily a low lying urban landscape, 

with farmed open country. To the east the landscape is dominated by arable farmland 

based on fertile soils, with several country houses and large parklands with woodland 

areas. To the north of the district the area moves towards upland fringes and features 

more varied topography and greater woodland cover (Natural England, 2014). Despite 

a strong and growing economy overall (Centre for Cities, 2019) there are significant 
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clusters of high deprivation in Leeds city, which has prompted longstanding concerns 

regarding social inequalities (Boyle & Alvanides, 2003).   

5.2.2 Case study extents 

Following identification of case study locations, boundaries incorporating areas of 

higher and lower deprivation were determined. The case study extents were chosen to 

facilitate analysis of whether inequalities occur along a rural-urban gradient and to 

include a large enough sample size of LSOAs for robust statistical analysis (the 

minimum number of LSOAs included is 142 for the South Pennines region). Maps of 

the boundaries and of variations in deprivation across each case study are provided in 

Figure 5.2 to Figure 5.7. 

For Leeds, as highlighted above, the district boundary extents more widely than for 

other large conurbations in England and thus incorporates the city and more rural 

surroundings characterised by smaller market towns. This boundary meets the 

requirements above and is thus used to define the Leeds case study region. 

 

 

 

Figure 5.2 Leeds case study region boundary 

Meanwood 
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Figure 5.3  Patterns of deprivation across the Leeds case study region based on 
population weighted IMD deciles whereby 1 = most deprived 10% 
population, 10 = least deprived 10% population. Spatial units are LSOAs, 
and represent the spatial units for analysis of inequalities in ESs. 

 

Boundaries of the Northampton and South Pennine case studies necessarily extended 

beyond a single district to meet the requirements set above and to cover a similar 

aerial extent. The South Pennines area is typically defined by the South Pennine Local 

Nature Partnership’s (LNP) boundary (partnerships established to facilitate 

improvements to local natural environments), however analysis of the entire LNP area 

is not feasible in conjunction with other case studies. Thus a subsection of this was 

defined to primarily incorporate two districts - Calderdale and Rossendale – which 

correspond to cluster 3 only. This focussed analysis upon the southern part of the 

South Pennine LNP to maintain distinction from analysis for the Leeds case studies 

(ES supply to the northern areas of the LNP would likely overlap with ES supply areas 

for Leeds. The boundary of the Northampton Local Authority District formed the basis 

of the Northampton study, however, once more to meet the requirements above, this 

was extended to incorporate rural areas surrounding the town to the North and South. 

The boundary was not extended to the east of Northampton to retain a focus in West 

Northamptonshire, which is treated as a single unit from a planning perspective (West 

Northamptonshire Joint Planning Unit, 2014). 
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Figure 5.4 South Pennines case study boundary 

 

 

Figure 5.5  Patterns of deprivation across the South Pennines case study region based 
on population weighted IMD deciles whereby 1 = most deprived 10% 
population, 10 = least deprived 10% population. Spatial units are LSOAs, 
and represent the spatial units for analysis of inequalities in ESs. 
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Based on these case study extents, Table 5.1 and Figure 5.8 further characterise the 

districts encompassed by the case studies with respect to deprivation levels and the 

types of and quality of natural capital as determined by the indicators developed in the 

previous chapter.  

Overall, the selected case study regions encompass urban deprived and rural deprived 

areas, together with wealthier areas in both contexts. The natural characteristics vary 

considerably, with some rural areas dominated by high quality agriculture and 

waterways and others which are largely accessible moorlands and semi-natural 

grasslands. Critically, in all regions there is considerable interest in managing the 

natural capital assets with respect to the ESs they can provide, the broader human-

nature relationship and the need to provide suitable habitats to support biodiversity.  

 

 

 

Figure 5.6 Northampton case study boundary 
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Figure 5.7  Patterns of deprivation across the Northampton case study region based 
on population weighted IMD deciles whereby 1 = most deprived 10% 
population, 10 = least deprived 10% population. Spatial units are LSOAs, 
and represent the spatial units for analysis of inequalities in ESs. 

 

For example, in the South Pennines, Pennine Prospects together with the Local Nature 

Partnership drive numerous projects such as the ‘Watershed Landscape’ and the 

‘Woodland Heritage Project’ (Pennine Prospects, 2019). Including the Leeds region 

and Calderdale in the South Pennines, iCASP (Yorkshire Integrated Catchment 

Solutions Programme, 2019) seeks to find effective solutions using the natural 

environment to challenges (such as flooding and climate change impacts in urban 

areas) faced with the Ouse Drainage Basin. With regards to Northampton, the 

development of the River Nene Nature Improvement Area emphasises the importance 

placed in the area on conserving habitats, primarily the wetlands in this case and 

promoting access to nature for the large nearby population (Bedfordshire, 

Cambridgeshire & Northamptonshire Wildlife Trusts, n.d.). Despite these interests, no 
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existing spatial analysis of inequalities in environmental benefits have been identified. 

The chapter now turns to the analysis of the social distribution of ES within these three 

regions. The next section presents analysis of air pollutant removal.  

 

Table 5.1 IMD 2015 ranks for each district included within the case study regions. 
Lowest rank (1) indicates highest deprivation, highest rank (326) indicates 
lowest deprivation. District level IMD are aggregated from small area ranks; 
average indicates the mean IMD rank, extent indicates the prevalence of 
deprivation and local concentration indicates how clustered areas of high 
deprivation are.   

    IMD ranks 

Case study Population No. 
LSOAs 

Local Authority 
District 

Average Extent Local 
Concentration 

Northampton 

267,506 167 Northampton 108 71 77 

South 
Northamptonshire 

317 302 324 

Daventry 238 198 192 

South 
Pennines 

223,421 142 Rossendale 98 109 117 

Calderdale 96 83 58 

Leeds 751,485 482 Leeds 100 58 24 

 

 

Figure 5.8  Natural capital characteristics of districts included in the case study 
regions (as derived in Chapter 4) indicated by mean z-scores for each 
natural capital indicator. A z-score of zero represents the national 
average, whilst a score of +1 is one standard deviation above the 
average.  
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5.3 Air Pollutant Removal 

The air pollutant removal ES refers to the contribution of vegetation to improving air 

quality. Its importance in the context of this study arises from the considerable and 

unequal health impacts of air pollutants and thus its potential contribution to improving 

health, as reviewed in Chapter 3 section 3.2.2.2. Delimiting vegetation, in particular 

trees, is critical to mapping this service. Therefore input datasets should ideally be of 

higher resolution than is required for the other ESs addressed; these are detailed in the 

next section (5.3.1). Methods for mapping air pollutant removal ES (section 5) are 

based on the understanding that the spatial flows of air pollutant removal ES are local. 

Consequently supply is mapped within case study LSOA boundaries, using methods 

detailed in section 5. Methods for mapping ES demand are detailed in section 5.3.2.3, 

and are based on locating areas of higher air pollutant concentration. Calculation of a 

net ES index and the sensitivity tests applied are also outlined in these sections. 

Methods for assessing how equally the ES is distributed were detailed in Chapter 3 

section 3.3.2.3.  

The final sections in this chapter (5.3.3) present the findings from the analysis for 

Leeds (5.3.3), South Pennines (5.3.2.2) and Northampton (5.3.2.3). Responses to 

sensitivity tests are reviewed for all regions together in section 5.3.2.4.  

5.3.1. Data 

Vegetation is more effective at scavenging air pollutants compared to any other surface 

(Smith, 1981) and trees more so than other vegetation (Fowler et al., 2004), specifically 

coniferous trees which are not affected by seasonal variations (Freer-Smith et al., 

2005). Thus the datasets required for mapping air pollutant ES supply must facilitate 

classification of land cover and in particular the identification of tree canopies and any 

additional information regarding tree characteristics. Existing data presenting land 

cover information such as the Land Cover Map of Great Britain LCM2007 (NERC CEH, 

2011) and Ordnance Survey Mastermap Topographic Vectors (OS, 2014) only identify 

areas of woodland, not individual or small groups of trees. Whilst some studies of tree 

cover have been facilitated by data provided by local authorities (e.g. Barbosa et al., 

2007), such datasets are not provided nationwide. On the other hand, high resolution 

aerial imagery is widely available across England and is therefore utilised for 

classification of vegetation. Notably, to distinguish trees from other vegetation and from 

manmade land covers.  
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For the academic community, colour infrared (CIR) aerial imagery at 0.5m resolution is 

freely available from the archived Landmap project (Landmap; Bluesky, 2014). Funded 

by the Joint Information Systems Committee, this imagery was acquired 2006-2010 by 

Bluesky (www.bluesky-world.com) and has good but incomplete coverage across 

England. The majority of imagery covering the case study regions was captured in 

2009. Due to the commercial role in capturing the data, the imagery is also available to 

purchase for all of England and thus is also accessible by others and for areas not 

covered by the Landmap project. For large areas, image classification needs to be 

automated, this is best achieved using CIR imagery compared to imagery in the visible 

spectrum alone. This is due to the inclusion of Near InfraRed in addition to Red and 

Green bands; reflectance by green vegetated canopies is much greater for NIR 

wavelengths, which also penetrate deeper into the canopy thus revealing more 

regarding the density of vegetation canopies (Campbell & Wynne, 2011). As live green 

plants appear relatively dark in the photosynthetically active spectral radiation region 

and relatively bright in the near-infrared, differences in NIR reflectance can be used to 

emphasise and better differentiate denser vegetation from other land covers.  

This is achieved using a Normalised Difference Vegetation Index (NDVI) where:  

NDVI = (NIR-RED) / (NIR+RED) 

Campbell & Wynne (2011) 

The highest resolution imagery is desirable for achieving the highest classification 

accuracy, but given the total size of study regions imagery was resampled to a lower 

5m resolution. This enabled classification for the case study regions to be to be 

undertaken within approximately one week for each region and to decrease the high 

data storage requirements. For a 10km2 test area, classification accuracy for 5m 

opposed to 0.5m was only 5% lower when assessed against ‘ground truth points’ 

assigned through visual interpretation of the higher resolution imagery.  

Image classification was carried out using the rule based feature extraction workflow in 

ENVI 5.2 software. This utilised spectral information including NDVI and textual 

information across a 7 pixel distance to distinguish between trees, grass and non-

vegetated land. Classification rules were tailored to each case study region on account 

of the diversity of land covers, such as the moorland in the South Pennines and highly 

variable land cover of urban Leeds. Classification was verified as 80% accurate using 

ground truth points assigned by visual interpretation of 50cm resolution imagery. Image 

classification did not reliably differentiate coniferous and deciduous trees, which are 

ideally distinguished since coniferous trees have a longer leaf-on period during which 

http://www.bluesky-world.com/
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pollutants can be sequestered. For larger areas of trees OS Mastermap topographic 

vectors provide this information. Individual and small areas of trees were therefore 

assigned as deciduous, a conservative approach to ensure ES supply is not 

overestimated. OS Mastermap data is further applied to refine the boundaries of 

buildings and roads of the classification.  

Mapping air pollutant ES demand requires identification of areas of higher 

concentration of air pollutants. This is also applicable for ES supply since vegetation is 

more effective at removing air pollutants where there is a higher concentration of 

pollutants. Estimates of relative air pollutant concentrations are generated using OS 

Mastermap Integrated Transport Network (ITN) vector layer and Average Annual Daily 

Flow traffic (AADF) count data from the Department for Transport (DfT, 2017). Section 

5.3.2.3. details reasons for not using available national air quality data. The ITN data 

comprises vectors of all types of roads from motorways to pedestrianised streets. 

Attributes of these provide road classifications and names (OS, 2007). AADF data 

gives the average number of vehicles per day of major roads. 2017 AADF data was 

assigned to ITN roads using spatial joins, giving mean annual traffic counts for 

motorways and major roads. Since traffic count data are available for only a sample of 

minor roads, the mean traffic count is assigned to these.   

The next sections outline the methods used for quantifying the ES from these datasets 

to producing maps of ES supply, demand and net ES index.  

 

5.3.2 Methods 

5.3.2.1 Air pollutant removal flows and supplies 

Air pollutant removal, in the context of ES supply, describes the role of vegetation in 

removing pollutants from the air, thus providing cleaner air. The ES supply benefits the 

immediate area (Burkhard et al., 2014) and therefore the service providing areas 

(SPAs) share the same boundaries as service benefitting areas (SBAs) i.e. the case 

study regions’ LSOAs. Air pollutants are more effectively scavenged by vegetation than 

other land surfaces (Smith, 1981).  

Vegetation absorbs gaseous pollutants and intercepts or dissolves air particulates (in 

dry and wet conditions respectively) (Vos et al., 2013). Given the weather dependence 

of wet deposition, the effectiveness of vegetation at removing pollutants is normally 

considered with respect to their dry deposition rates (Nowak et al., 2006). These rates 
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are dependent upon several factors, which include (Broadmeadow & Freer-Smith, 

1996; Beckett et al., 2000; UKNEA, 2011; Tallis et al., 2011; Vos et al., 2013): 

1. Vegetation type and species – large trees have been shown to remove between 

two and ten times the amount of particulates from the air compared to grassland 

(Broadmeadow & Freer-Smith, 1996). 

2. Tree canopy area and tree structure – the exterior area of trees controls the air 

turbulence and the impact of pollutants with the tree which enables their 

deposition. 

3. Length of leaf-on period - the continual leaf area of evergreen trees enables more 

consistent removal of pollutants than deciduous trees. 

4. Air pollutant concentration - greater concentrations lead to greater pollutant 

removal 

5. Distribution of the pollutant particle sizes - very large and very fine particles 

deposit faster. 

6. Windspeed 

 

Detailed modelling which estimates how much air pollutants are scavenged by 

vegetation ideally utilises knowledge of these conditions combined with known 

deposition rates for a particular species and air pollutant. In addition to these factors, 

larger vegetation can act as a physical barrier to air flow which impacts the 

dispersion/concentration of pollutants. However, this is not often incorporated in 

models covering city-wide and larger areas since this is a highly localised process, 

usually modelled at street level (e.g. Vos et al., 2013).  

The i-Tree modelling toolset would be an ideal means of modelling air pollutant 

removal to incorporate these factors (Nowak & Crane, 2000; Nowak et al., 2006). 

Originally developed for the USDA Forest Service using deposition rates appropriate to 

North America, its application has been focussed on this region (e.g. Nowak et al., 

2006; 2007a,b; Nowak et al., 2013; Ning et al., 2015) but is expanding worldwide (e.g. 

Escobedo & Nowak, 2009; Selmi et al., 2016; Tiwary et al., 2016). However, in 2015, 

when the analysis for this research commenced, application in the UK was limited to 

two completed projects in Torbay, Devon and London (Rogers et al., 2011 & 

Treeconomics London, 2015). Subsequently Forest Research, the principal 

organisation for forest research in the UK, in collaboration with external researchers 

and organisations have developed the applicability of the toolset in the UK (see 

www.forestresearch.gov.uk/research/i-tree-eco; Hand & Doick, 2018). Despite this, the 

data requirements present a limitation to the use of this toolset for this analysis, in 

http://www.forestresearch.gov.uk/research/i-tree-eco
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particular, the requirement for knowledge of tree species and structures. Therefore for 

large areas, sampling strategies are used which result in aggregate estimates of 

pollutant removal. For this reason – given data regarding tree structure is not 

ubiquitously available across the study regions and a sampling approach will not 

accurately generate spatially explicit results - these tools were not used in this analysis. 

Beyond the use of i-Tree software and in the absence of inventories detailing tree 

species and structure information, a dry deposition equation (Equation 5.1) using more 

generalised tree cover information can be applied (Jim & Chen, 2008; Zulian et al., 

2014; Escobedo et al., 2015; Baró et al., 2016; Manes et al., 2016; Song et al., 2016). 

This approach combines data regarding the local or regional air pollutant concentration 

and averaged dry deposition rates with either the leaf-area index (ratio of leaf-area 

compared to the canopy size when projected onto the ground) and/or the canopy cover 

combined with data (Vos et al., 2013).  

The dry deposition equation is given as:  

Fii = Fi x A x T …………………… Equation 5.1 

 

Where: 

Fii = total flux  

A = tree cover  

T = time  

Fi = pollutant flux (g/cm2/ s) 

 

Pollutant flux Fi is calculated as:  

Fi = Vdi x Ci…………..Equation 5.2 

Where:  

Vd = deposition velocity (cm/s) 

Ci = concentration of pollutant (g/m3) 

Normally, Equation 5.2 would be applied individually with respect to one or more air 

pollutant(s) of concern using known deposition rates. Deposition rates may be 

determined through laboratory based experiments using methods appropriate to the 

pollutant, such as washing and filtering of particulates from sample leaves to compute 

their mass of deposited particulate, e.g. Dzierżanowski et al. (2011), Liu et al. (2018). 
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However, for modelling air pollutant removal across streets, cities and regions rates are 

commonly transferred from other studies or databases. Consequently, rates are subject 

to issues of value transfer as discussed in Chapter 3 section 3.3.1. Potential 

uncertainties arise due to the high variation of reported deposition rates, given the 

varied environmental contexts in which they are measured. For example in Norway, 

deposition rates for particulates varied by up to a factor of 15 dependent on tree 

species, whilst in Poland differences were observed across species by up to a factor of 

20 (Sæbø et al., 2012). Broadmeadow & Freer-Smith (1996) estimate the effectiveness 

of trees they cover in removing particulates compared to the ground varies between 2 

and 12 fold. In addition some tree species are greater emitters of biogenic volatile 

organic compounds (BVOCs), which decrease air quality (Tiwary et al., 2016). 

Therefore the reliability of deposition rates is contested (Grundström and Pleijel, 2014).  

Nevertheless, the use of average deposition rates reflects a consensus that trees are 

more effective than other vegetation types and land covers at removing air pollutants. 

The dry deposition model (Equation 5.1) estimates the actual mass removal rate of 

pollutants, however for this analysis only relative removal across the study region and 

not absolute quantities are required. Therefore actual deposition rates are not 

calculated and an alternative approach is taken which accounts for the effectiveness of 

vegetation at removing pollutants and an increase in this effectiveness in areas of 

higher pollutant concentration. The method adopted in this analysis applies a proxy to 

land cover data to account for the influence of vegetation presence and type upon the 

removal of pollutants. An additional weighting is then applied according to areas of 

higher of lower air pollutant concentration based on road proximity. It therefore is a GIS 

based approach which is informed by the relationships expressed in equations 5.1 and 

5.2.  

As Escobedo & Nowak (2009) observe, this relationship between tree cover, tree type 

and ambient air pollutant concentration is the foundation of the majority of studies 

examining the effect of urban forests on air quality. The chosen method is  considered 

appropriate since ambient air pollutant concentration data covering all case study 

regions has a 1km2  spatial resolution, hence use of this data (i.e. as required for direct 

calculations of the dry deposition equation) could potentially conceal differences in 

relative pollutant sequestration between neighbouring LSOAs in urban areas, where 

LSOA areas are often smaller. In addition, spatially resolved data on tree types is not 

available for the case study regions which limits the accuracy with which the deposition 

equations could be applied. That is, the derivation of average deposition rates for a 

broad classification (e.g. presence of coniferous or deciduous trees) from a large range 
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of estimates would be akin to assigning proxies to tree cover data. It should also be 

noted that land cover proxies have previously been applied for quantifying air pollutant 

removal ES (Burkhard et al., 2012; Ecoserv ES mapping tools, Winn et al., 2018). The 

approach taken in this study builds on these since it further accounts for the influence 

of ambient air pollutant concentration. It is accepted that this approach leads to 

inclusion of proximity to roads within estimates of ES supply and demand, and 

therefore the net ES index is subject to some ‘double counting’. However, the supply of 

air pollutant removal is dependent on where the vegetation is, not only its extent, and 

therefore is it considered that this is reflective of actual processes.   

Table 5.2 Scores assigned as proxies for the effectiveness of land cover classes at 
removing pollutants for the baseline ‘best estimate’ scenario and two additional 
scenarios used for testing uncertainties (sensitivity testing). 

 Air pollutant removal scores 
 

Land cover class Best estimate Low influence Tree dominant 
 

Coniferous trees 
 

10 
 

10 
 

10 
Deciduous trees & shrubs 1.5 0.8 4 
Grassland 0.5 0 0 
Non vegetated land covers 0 0 0 

 

To implement the method a unitless score between 0-10 is applied to a highly spatially 

resolved land cover dataset; a tailored classification for estimating air pollutant removal 

(Table 5.2). This indicates the effectiveness of the vegetation in removing air pollutants; 

10 denotes the most effective and 0 indicates no pollutant removal. Scores were 

derived from multiple sources which provide information of tree species’ and land 

covers’ deposition rates considering multiple pollutants (primarily PM10, PM2.5, SO2, 

NO2 and O3), notably Nowak et al. (2013), Tiwary et al. (2016) and Zhang et al. (2002). 

The groups of vegetation were established based on those that could be identified from 

available data and in acknowledgement of the key determinants in different deposition 

rates. Notably, the difference between coniferous and non-coniferous trees (Freer-

Smith et al., 2005). Aligning with the information regarding tree cover which can be 

extracted from available data (discussed in greater detail below), deposition rates were 

compared for species grouped as coniferous trees, deciduous trees, shrubs and 

grassland. The average differences in deposition rates across these groups were then 

compared to determine their scores. This revealed differences between coniferous and 

deciduous from approximately 2.5 fold to 13 fold, aligning with the observations for 

deposition of particulates made by Tiwary et al. (2009). Indexes which consider the 

overall contribution to air quality by examining deposition rates and emission of BVOCs 

given by Tiwary et al. (2015) indicated little difference between deciduous trees and 
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shrubs and therefore these were grouped together. Overall consensus regarding the 

much greater influence of trees in removing air pollutants means that little information 

is available regarding the influence of grasslands. However Fowler et al. (2004) 

observe that woodland is more effective than grassland by a factor of approximately 3.  

As stated above, in line with the dry deposition model, the land cover scores are 

multiplied by a road density surface which serves as a proxy for air pollutant 

concentration. This generates air pollutant removal supply values as a 5m raster 

surface. The use of the road density surface for estimating ES demand leads to an 

inextricable link between supply and demand which Hegetschweiler et al. (2017) 

observe is a common occurrence. Details of how this surface is generated are provided 

in section 5.3.2.3 below. Briefly, values between 0-1 are assigned based on the density 

of the road network combined with traffic count data. A value of 1 is assigned to 

locations proximal to the greatest number of roads with the highest traffic counts, this 

decreases with distance until a threshold of 500m, beyond which locations are given a 

value of 0. The use of a proxy for air pollutant concentration is preferred due to the high 

spatial resolution which can be achieved, ensuring that the importance of the location 

of vegetation is accounted for. For example, a high proportion of coniferous trees within 

an LSOA, would not necessarily mean that there is high ES supplied by this LSOA. 

Rather, ES supply is highest in areas where there is a relatively high presence of this 

vegetation within the proximity of roads (i.e. vegetation which is in the ‘right’ place). 

Available air pollutant concentration data at 1km2 resolution would not provide the 

detail required to achieve this. 

The area weighted mean of ES supply values are computed for LSOA polygons using 

the intersect tools available in Geospatial Modelling Environment software. Final ES 

supply for LSOAs is given as values normalised from 0-10, whereby 0 indicates the 

lowest and 10 the highest supply.  

5.3.2.2 Air pollutant removal sensitivity testing 

Vegetation’s role in improving air quality is considered both potentially underestimated 

(UKNEA, 2011) and overestimated (Grundström and Pleijel, 2014). In addition, 

potential errors arise from the use of simple proxies to quantify ES, as highlighted by 

Eigenbrod et al. (2010) and deliberated in greater detail in Chapter 3 section 3.3.1. On 

this basis, and given the range of deposition rates encountered in the literature, 

potential uncertainties in the proxies applied are addressed in sensitivity testing. A 

social distribution of air pollutant removal ES that is robust to these uncertainties will 
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provide greater confidence that the conclusions reached are not simply a product of the 

chosen model.  

The baseline ES supply is considered to be a ‘best estimate’ scenario; variants of the 

scores applied represent a ‘tree dominant’ scenario whereby all trees and shrubs are 

given a greater weight in comparison to grassland and manmade land covers; and a 

‘low influence’ scenario where overall the effectiveness of grassland, shrubs and 

broadleaved trees in removing air pollutants is minimised (Table 5.2). It is necessary to 

place values on a scale of 0-10, since it is consistently shown that coniferous trees are 

the most effective pollutant scavengers they are assigned a value of 10 for all 

scenarios. The different scenarios were constructed to enable mapping of possible 

variations in the spatial distribution of ES supply and thus whether the social 

distribution was sensitive to these different estimates. It was further tested how results 

from the use of readily available statistics on land use such as the generalised land use 

statistics correlate with the more detailed approach used for this assessment. This can 

help inform whether these datasets can be used reliably when resources or availability 

of data is limited. This comparison is also pertinent as many studies concerned with 

inequalities in the distribution of environmental benefits solely use data on coverage of 

greenspace (as reviewed in Chapter 2 section 2.2).  

5.3.2.3 Air pollutant removal demand 

A risk reduction perspective is normally adopted by studies examining the demand for 

regulating ESs (Wolff et al., 2015). Thus the higher the risk comparative to the desired 

conditions, the greater the demand. For air pollutant removal, the level of risk is directly 

related to the level of air pollution since a higher concentration of air pollutants leads to 

greater potential harm to human health (see Chapter 2, section 2.1.2). Additional 

factors may also be included in the definition of risk, including the number of people 

potentially affected and the vulnerability of those people (Wolff et al., 2015).  

Few studies modelling air pollutant removal by vegetation simultaneously account for 

the demand for this service. This is exemplified by Wolff et al.’s (2015) review of 

studies mapping ES demand, which contains no specific reference to studies mapping 

demand for air pollutant removal. Furthermore, Wei et al (2017) select only one study 

examining air pollutant removal - Baró et al. (2015) - in their review of ES literature 

integrating both supply and demand. That said, there are several studies which do 

account for air pollutant removal demand including Burkhard et al. (2012), Baró et al. 

(2015), Larondelle & Lauf (2016), Song et al. (2016) and Verhagen et al. (2016). Each 

take a different approach, although they all relate to Burkhard et al.’s (2014) selection 
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of three appropriate indicators of air pollutant removal ES demand:  air pollutant 

concentrations, air quality standard deviation and critical loads exceedance.  

Baró et al. (2015) provide an example of equating demand to exceedance of air quality 

standards, which can be viewed as the desired environmental condition. They estimate 

city-wide demand for five European cities as the reduction in air pollutant concentration 

for three pollutants (PM10, NO2, O3) required to reach standards defined by EU Air 

Quality Directive (2008/50/EC) and WHO air quality guidelines (2006) from current 

pollutant concentrations. Verhagen et al.’s (2016) continental scale assessment offers 

an example of demand based on ambient air pollutant concentration by using modelled 

concentrations of NO2. Song et al. (2016) build on this by incorporating population 

density together with ambient air pollutant concentrations in their analysis of the spatial 

distribution of air pollutant reduction by South Korean forests.  

Alternatively, Larondelle & Lauf (2016) equate demand for PM10 removal in Berlin with 

modelled traffic emissions on the basis that this represents the biggest single source of 

PM10 city wide emissions. This assumes that locations with greater traffic emissions 

have a greater concentration of air pollutants. This aligns with reporting by DEFRA 

(2017) that when UK Air Quality Management Areas are declared for exceedances of 

Clean Air Strategy targets, traffic is the major source of PM10 (75%) and NO2 (96%). 

DEFRA (2017) further identifies road traffic as the main or a key contributor of PM2.5, 

Benzene and Carbon Monoxide. Furthermore, pollution from road traffic is a key 

concern as particulates (PM10 and PM2.5) which penetrate the respiratory system are 

identified by WHO (2013) as presenting the greatest risk to human health.  

Other sources of pollution include power stations, industrial facilities, households and 

agriculture (Guerreiro et al., 2014; DEFRA, 2017) and these may be more important in 

some, especially rural, areas. There are national datasets available which present 

modelled concentrations of multiple air pollutants (DEFRA: https://uk-

air.defra.gov.uk/data/pcm-data) and account for these various pollutant sources. 

However these datasets are not used in this study since they are spatially resolved to 

1km only, which is lower than the area of many LSOAs, especially the dense urban 

areas within Leeds (376/482 LSOAs < 1km2) and Northampton (127/167 LSOAs < 

1km2). Use of these datasets would generalise demand across urban areas, thus 

limiting identification of differences between neighbouring LSOAs. Identification of 

these spatial differences is important since the supply and deprivation of neighbouring 

LSOAs can diverge considerably. Instead, for this study, as Larondelle & Lauf (2016), 

an approach based on the importance of traffic related emissions for air quality is used 

since it enables creation of a more spatially resolved dataset. This aligns also more 

https://uk-air.defra.gov.uk/data/pcm-data
https://uk-air.defra.gov.uk/data/pcm-data
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closely with the spatially detailed assessment of air pollutant removal ES supply. 

Additionally, as expressed in Chapter 3 section 3.3.1.2, it is the relative pollution level 

which is important, actual pollutant concentration information is not required.  

To estimate traffic emissions, Larondelle & Lauf (2016) use a detailed modelled 

incorporating traffic counts with the types of streets, engines and fuel. Although this 

data is not available for all streets and they use a simple buffer analysis to extrapolate 

to adjacent streets. In this analysis, a simplified model is used given the availability of 

data across the study sites. This includes the road network, road type and traffic count 

data. A gridded 5m resolution surface representing road density weighted by traffic 

counts (see section 5.3.2.3) is created by application of the kernel density tool in ESRI 

ArcGIS 10.3. This assumes greater air pollutant concentration given a closer proximity 

to roads with high traffic flows and in areas where there is a dense road network. A cut-

off distance of 500m is applied which assumes that pollutants emitted from road traffic 

disperse no further than this distance. 

As Song et al. (2016) highlight, for the removal of air pollutants to be an ES – that is 

beneficial to human health – there must also be a human presence. Therefore only the 

areas which are considered as locations used by people are considered in the 

calculation of ES demand. Data on the actual presence of people across the entire 

study area is not feasible and is highly variable in time, instead this analysis uses 

locations where a human presence is likely at some time on a daily basis. This 

comprises of a 25m buffer surrounding built-up areas extracted from the OS 

Mastermap Topographic datasets and areas accessible for recreation purposes as 

determined for analysis of the recreation ES (Chapter 6). Demand for air pollutant 

removal is therefore based on these areas extracted from weighted road density 

surface. For all other areas, primarily agricultural fields where there is no public right of 

way or open access rights, demand is set to 0. The area weighted mean demand is 

computed for each LSOA using intersect tools in Geospatial Modelling Environment 

(GME).  

As highlighted in Chapter 3, section 3.3.1.2, for each ES, a utilitarian concept of 

demand, whereby population is incorporated within demand estimation, is also 

computed. Thus areas of highest demand are where air pollutant concentration 

modelled by the road density surface, and number of people per km2, are greatest 

A net ES index is calculated for each LSOA through subtraction of demand from 

supply, rescaled to 0-10, whereby 0 indicates in relative terms the area of highest 

demand/lowest supply and 10 indicates lowest demand/highest supply. 
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5.3.3. Results 

5.3.2.1 The spatial and social distribution of air pollutant removal in 

Leeds 

The highest supply of the air pollutant removal ES is in the northeast of the study area 

covering the small town of Wetherby, to the west on the outskirts of Leeds city, 

covering Yeadon, in some city suburbs to the north, covering parts of Cookridge, 

Meanwood and Roundhay, and to the southeast of the study area covering Garforth 

(Figure 5.9). Low supply can be found in the city centre and in larger rural districts to 

the northwest. There are however scatterings of higher and lower supply across the 

district. Demand is highest in the more densely populated LSOAs, notably near the city 

centre, this is expected given that demand is based on the road network. When 

combined into an overall ES Index this creates a spatial pattern where the air pollutant 

removal ES index is low in Leeds City centre and highest in rural areas to the north and 

east. Compared to LSOAs within the city, the ES index remains higher for some of the 

small towns in the district, such as Wetherby and Garforth, although there are a few 

LSOAs with a lower ES index in Yeadon and Otley in the west. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 The spatial distribution of air pollutant removal supply 
aggregated to LSOAs across Leeds case study region 
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Figure 5.10  The spatial distribution of demand for air pollutant 
removal aggregated to LSOAs across Leeds case 
study region 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11 The spatial distribution of air pollutant removal 
net ES index aggregated to LSOAs across 
Leeds case study region 
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Correlation between ES demand and IMD ranks is significant, strong and negative (ρ = 

-0.489), and there is weak significant correlation between supply and deprivation (ρ = 

0.144) (Table 5.3), thus demand is greater and supply is lower for the most deprived 

areas. This combines to generate a significant moderate positive correlation between 

the air pollutant removal net ES index and IMD ranks (ρ = 0.514, Table 5.3), meaning 

that net ES indexes (i.e. exceedance of supply relative to demand) are higher for 

LSOAs with lower deprivation. This pattern is further illustrated by the boxplot (Figure 

5.14), showing a relatively linear increase in ES for each increasingly deprived 

population weighted decile. The interquartile range of net ES index values are similar 

for each decile. Computation of the concentration index (0.18) also confirms an 

unequal distribution, although this is relative low (with 0 indicating an equal 

distribution). The concentration curve illustrated in Figure 5.30, being closely tied to the 

concentration index, shows a similar pattern as cumulative air pollutant removal (based 

on net ES index) very closely matches the line of equality for the three least deprived 

deciles and falls below this line for the more deprived deciles, but there is still not a 

large disparity. 

ES demand is the main driver of the observed correlation between the air pollutant 

removal net ES index and deprivation; a stronger magnitude of correlation is exhibited 

between demand and deprivation compared to supply and deprivation. Additionally, 

Figure 5.13 shows median demand values for deprivation deciles almost consistently 

decrease as deprivation increases, in comparison Figure 5.12 shows low median 

values and interquartile ranges for supply values across all deprivation deciles. LSOAs 

with higher supply tend to be outliers, but once more these are present across most 

deciles despite being slightly less common amongst the four most deprived deciles. 

The area with the greatest supply – a notable outlier- is in the 8th decile (less deprived), 

this is a relatively small LSOA in the suburban village of Yeadon and it’s likely that the 

high supply is due to the lower amount of built-up area relative to LSOA size (it’s 

located on the edge of open countryside) yet proximal to roads where the pollution is 

generated which increases efficiency of air pollutant removal.  
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Figure 5.12 Air pollutant removal supply per population weighted IMD deciles for 
Leeds case study region. Deprivation decreases from decile 1 to 10. 

 

 

 

Figure 5.13  Air pollutant removal demand per population weighted IMD deciles for 
Leeds case study region. Deprivation decreases from decile 1 to 10 
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Figure 5.14  Air pollutant removal net ES index per population weighted IMD deciles 
for Leeds case study region. Deprivation decreases from decile 1 to 10.  

 

 

Figure 5.15 identifies LSOAs with significant local indicators of spatial associations 

(LISA) between IMD ranks and net ES index for air pollutant removal. This further 

confirms the patterns in deprivation and air pollutant removal described above and 

potentially identifies target areas for prioritising intervention which addresses issues of 

air pollutant removal if it is deemed desirable to prioritise more deprived areas. 

Spatially, the LSOAs which experience both higher deprivation and lower air pollutant 

removal ES are clustered in Leeds’ inner city to the north, east and south of the centre 

(Figure 5.15). Conversely, significant spatial association between low deprivation and 

high ES is found in the LSOAs located in the city peripheries to the north, east and 

south. There is only a scattering (11 LSOAs) of areas where local associations are 

significant between low deprivation and low ES.  
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Figure 5.15  Leeds LSOAs with significant local spatial associations between IMD 
ranks and air pollutant removal. Identifies clusters of areas where there 
are significant associations between ES indexes and IMD ranks in the 
same direction (95% confidence level). The direction of associations are 
given in the map legend. Parenthesis indicate the number of LSOAs 
within each class. 

 

5.3.2.2 The spatial and social distribution of air pollutant removal in the 

South Pennines 

Highest air pollutant removal by vegetation (Figure 5.16) occurs linearly from the centre 

of the case study region to the western edge, in particular in Rossendale from 

Todmorden to Haslingdon; this largely follows the valleys and consequently also the 

roads. Highest supply is also found in two small areas, specifically on the edge of the 

towns of Rochdale to the south and Hebden Bridge in the north, in general it is also 

higher in Halifax. Low supply is evident across large rural areas of the study area. The 

spatial pattern of demand (Figure 5.17) is parallel to that of supply; low in rural areas 

and high in the small valley towns and the larger town of Halifax.  
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However, ES supply values tend to be closer to the maximum value of 10, whilst most 

demand values are closer to zero. Thus once subtracted from each other to produce a  

 

Figure 5.16  The spatial distribution of air pollutant removal supply aggregated to 
LSOAs across South Pennine case study region 

 

Figure 5.17  The spatial distribution of demand for air pollutant removal aggregated to 
LSOAs across South Pennine case study region 
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Figure 5.18  The spatial distribution of air pollutant removal net ES index aggregated to 
LSOAs across South Pennine case study region 

 

relative ES index, relatively higher supply compared to demand is found in the rural 

areas and supply is lower relative to demand in the more urbanised areas. LSOAs with 

the lowest net ES index are found scattered across the study area in Bacup, Constable 

(near Haslingdon), Hebden Bridge and Halifax (Figure 5.11). 

There is significant moderate correlation between air pollutant removal ES index and 

IMD ranks (ρ=0.444), thus there is some increase in the ES as deprivation decreases. 

This is driven almost entirely by the pattern of demand (correlation coefficients between 

net ES index and demand and supply are -0.999 and -0.711 respectively). ES demand 

has a moderate negative correlation with IMD ranks (ρ=-0.434), indicating that demand 

increases with deprivation. There is no significant correlation between ES supply and 

deprivation levels. These findings are reflected in the boxplots (Figure 5.20 and Figure 

5.19), which show little variation in ES supply across population weighted deprivation 

deciles but a higher ES demand for the four most deprived deciles. There is however 

no clear decrease in demand as deprivation decreases across the other deciles 

(deciles 5-10). The concentration index for air pollutant net ES index is 0.16, which 

similarly indicates some inequality in the social distribution of this ES for the South 

Pennines. The associated concentration curve (Figure 5.30) lies below the line of 

equality for more deprived LSOAs, indicating that they have a lower share of ES. 
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Although there is only a small disparity between the concentration curve and line of 

equality and the relatively low concentration index echoes this, indicating that the 

inequalities present are not acute.  

 

 

Figure 5.19 Air pollutant removal supply per population weighted IMD deciles for South 
Pennines case study region. Deprivation decreases from decile 1 to 10. 
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Figure 5.20  Air pollutant removal demand per population weighted IMD deciles for 
South Pennines case study region. Deprivation decreases from decile 1 to 
10. 

 

Figure 5.21  Air pollutant removal net ES indexes per population weighted IMD deciles 
for South Pennines case study region. Deprivation decreases from decile 
1 to 10.  
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Local indicators of spatial association (Figure 5.22) indicate that areas where high 

deprivation is significantly associated with low air pollutant removal ES (a total of 17 

LSOAs) are concentrated solely in the large town of Halifax in the east of the study site 

and the centrally located small town of Bacap. There are slightly more (22) LSOAs 

whereby significant local association between low deprivation and high ES are found. 

Since these are primarily rural, they also cover a large proportion of the South Pennine 

region.  

 

Figure 5.22  South Pennine LSOAs with significant local spatial associations between 
IMD ranks and air pollutant removal. Identifies clusters of areas where 
there are significant associations between ES indexes and IMD ranks in 
the same direction (95% confidence level). The direction of associations 
are given in the map legend. Parenthesis indicate the number of LSOAs 
within each class. 

 

5.3.2.3 The spatial and social distribution of air pollutant removal in 

Northampton 

There is a distinct rural-urban spatial pattern in the Northampton region’s air pollutant 

removal. Areas with the lowest supply of (Figure 5.23) and lowest demand for (Figure 

5.24) air purification are rural areas lying outside of Northampton town. Conversely, the 

highest supply and demand is present in LSOAs within Northampton and Towcester.  
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Figure 5.23  The spatial distribution of air pollutant removal 
supply aggregated to LSOAs across Northampton 
case study region  

 

Figure 5.24  The spatial distribution of demand for air pollutant 
removal aggregated to LSOAs across 
Northampton case study region 
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Figure 5.25  The spatial distribution of air pollutant removal net 
ES index aggregated to LSOAs across 
Northampton case study region 

  

Figure 5.26 Northampton LSOAs with significant local spatial 
associations between IMD ranks and air pollutant 
removal. Local indicators of spatial association  
(LISA) identify clusters where there are significant 
associations between net ES indexes and IMD ranks in 
the same direction (95% confidence level). Directions 
of associations are given in the map legend. 
Parenthesis indicate the number of LSOAs within each 
class
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Lower supply in rural areas can be attributed to fewer trees amongst the agricultural 

fields compared to the urban parks and gardens combined with its reliance upon 

demand. ES demand is greater in the urban areas due to the higher density of road 

network, which dominates the smaller urban LSOAs. Once subtracted to generate the 

net ES index, this presents a more spatially fragmented pattern (Figure 5.25). Rural 

areas have moderately higher supply and lower demand in comparison to other areas. 

LSOAs with the highest supply relative to lowest demand are scattered within 

Northampton town as are those with the lowest supply relative to highest demand.  

Overall there is a significant but modest linear relationship whereby air pollutant 

removal net ES index decreases as deprivation increases (ρ=0.322). The distribution of 

net ES indexes across IMD population weighted deciles (Figure 5.29) shows the 

relatively consistent increase in ES as deprivation decreases, but that the most and 

least deprived deciles (1st and 10th respectively) are inconsistent with this pattern. The 

median of net ES indexes for LSOAs within the most deprived decile (1st) is higher than 

those in the 2nd – 5th deciles. LSOAs within the 9th deprivation decile (low deprivation) 

have the highest ES indexes overall as indicated by the highest median value. 

Consistent with these findings the concentration curve (Figure 5.30) shows some 

divergence from the line of equality, suggesting that the 2nd-7th deprivation deciles have 

less than an equal proportion of that service. The concentration index (0.12) quantifies 

this, indicating some inequality but that these inequalities are modest.  

Local indicators of spatial association (Figure 5.26) show a distinct rural-urban pattern, 

whereby significant association between high deprivation and low ES is clustered 

within central Northampton, whilst significant association between low deprivation and 

high ES is experienced across the majority of rural LSOAs.  
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Figure 5.27 Air pollutant removal supply per population weighted IMD deciles for 
Northampton case study region. Deprivation decreases from decile 1 to 
10. 

 

 

Figure 5.28  Air pollutant removal demand per population weighted IMD deciles for 
Northampton case study region. Deprivation decreases from decile 1 to 
10. 
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Figure 5.29  Air pollutant removal net ES indexes per population weighted IMD deciles 
for Northampton case study region. Deprivation decreases from decile 1 
to 10.  

 

5.3.2.4 Sensitivity tests  

For all case studies, different ES supply parameters (Table 5.1) had negligible effect on 

the association between net ES index and deprivation. Regarding correlation 

coefficients maximum variation of ρ is 0.044 (Table 5.3) and maximum variation of the 

concentration index is 0.02. This indicates that the results are relatively robust to 

reasonable variations in values (based on other studies) describing the effectiveness of 

different land cover in supply of air pollutant removal. This confirms the finding that a 

net ES index in air pollutant removal is unequally distributed in the case study regions. 

Nevertheless, it is important to note that there other factors which have potential to 

contribute to this limited sensitivity of the social distribution of net ES index to variations 

in ES supply estimates  including; the consistency in assigning coniferous trees as the 

most effective scavenger of air pollutants and the weighting of supply by road density 

which is consistent across all three scenarios, dominance of ES demand not supply in 

determining the social distribution of net ES, aggregation to LSOAs. 

Correlation coefficients given in Table 5.3 indicate there is inequality in the social 

distribution of greenspace coverage as determined using the GLUD 2005 database for 

all case studies. This aligns with the correlations determined for the air pollutant 
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removal net ES Index, although the strength of association is found to be much lower 

than that for the net ES index for Leeds and slightly lower for Northampton. These 

findings suggest that the assumption often encountered within environmental justice 

research that local greenspace coverage is representative of environment benefits 

available (Chapter 2 section 2.2) is reasonable in consideration of air pollutant removal, 

but risks underestimating inequalities. Furthermore, this is largely due to the 

association of the proportion of greenspace with demand for air pollutant removal, and 

not supply. For example, the proportion of greenspace is very strongly correlated with 

population weighted demand (ρ= -0.931) for the South Pennines. The use of proportion 

of greenspace as a proxy for environment benefits is further considered with respect to 

the results for recreation and SWRR ES in the subsequent chapters.  

Assuming a utilitarian conceptualisation of demand for air pollutant removal, whereby 

the number of potential beneficiaries is also accounted for, has a notable impact upon 

results for Leeds (Table 5.2). However, for Northampton and the South Pennines 

results were similar to those for baseline net ES indexes. For Leeds, the magnitude of 

the correlation coefficient between demand and IMD rank only slightly reduces (ρ= -

0.433 compared to ρ= - 0.489) as ES demand is population weighted. However, the 

population weighting impacts upon the spatial distribution of ES demand, and thus 

once subtracted from ES supply to produce the net ES index, there is a substantial 

effect on the correlation between deprivation and net ES index. Specifically, the 

direction of association between net ES index and deprivation changes, thus a net ES 

index incorporating a population weighted demand is higher for more deprived areas. 

This suggests that land use change to increase net ES index for more deprived areas 

would not benefit the greatest number of people.  

Conversely, for South Pennines and Northampton the strength of correlation between 

deprivation and net ES index is reduced slightly once demand is weighted by 

population density, but significant positive correlation coefficients persist (ρ=0.326 and 

ρ=0.208 for South Pennines and Northampton respectively). This suggests that 

changes in land cover to improve air pollutant removal that focus upon more deprived 

areas would simultaneously reduce inequality in its distribution and benefit more 

people.  
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Table 5.3 Spearman rank correlations between air pollutant removal and IMD, for the 
three case study regions ranks, and including results of sensitivity tests.  

(a) Leeds 
 

S
e

n
s
it
iv

it
y
 

‘Tree dominant’ ES index 0.516**    
‘Low influence’ ES index 0.512**    
Population weighted ES demand -0.433**    
Population weighted ES index -0.206**    
% Greenspace (GLUD) 0.239** 

 
   

 
(b) South Pennines 
 

S
e

n
s
it
iv

it
y
 

‘Tree dominant’ ES index 0.442**    
‘Low influence’ ES index 0.441**    
Population weighted ES demand -0.466**    
Population weighted ES index 0.326**    
% Greenspace (GLUD) 0.424** 

 
   

 
 
(c) Northampton 
 

S
e

n
s
it
iv

it
y
 

‘Tree dominant’ ES index 0.299**    
‘Low influence’ ES index 0.366**    
Population weighted ES demand -0.417**    
Population weighted ES index 0.208**    
% Greenspace (GLUD) 0.227** 

 
   

 

IMD ranks increase as area deprivation decreases; a positive correlation indicates ES 
increases with decreasing deprivation.  

Correlations between IMD and net ES index, supply and demand separately are 
provided for ‘best estimate’ calculations. For sensitivity tests (Table 5.1), correlation 
with only IMD ranks are computed for net ES index given variations in supply (‘tree 
dominant’ and ‘low influence’) and in demand (‘population weighted demand’).  In 
addition, for comparison correlation is computed between IMD and percentage 
greenspace coverage obtained from GLUD. 

NS- no significant correlation **Correlation significant at 99% confidence level 
*Correlation significant at 95% confidence level.  

  IMD ranks ES supply ES demand ES index 

 IMD ranks - 0.144** -0.489** 0.514** 
 ES supply 0.144** - NS NS 
 ES demand -0.489** NS - -0.985 
 ES index 0.514** NS -.0985 - 

  IMD ranks ES supply ES demand ES index 

 IMD ranks - NS -0.434** 0.444** 
 ES supply NS - 0.733** -0.711 
 ES demand -0.434** 0.733** - -0.999** 
 ES index 0.444** -0.711** -0.999** - 

  IMD ranks ES supply ES demand ES index 

 IMD ranks - -0.231** -0.370 0.37** 
 ES supply -0.231** - 0.656** -0.286** 
 ES demand -0.376** 0.656** - -0.862** 
 ES index 0.322** -0.286** -0.995** - 
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5.4 The social distribution of air pollutant removal in the case 

study regions 

The results discussed in the previous sections reveal that air pollutant removal ES is 

unequally distributed across areas of high and low deprivation in all case study regions. 

In addition to the results reported above Figure 5.30 portrays the similarity in social 

distribution of air pollutant removal ES for Northampton, Leeds and South Pennines. In 

all cases the concentration curves lie below the line of equality for the more deprived 

deciles, converging with the line of equality for the least deprived deciles. Thus there is 

statistically strong evidence that more deprived deciles receive a disproportionately 

lower share of the air pollutant removal net ES, although the relatively close proximity 

to the line of equality and associated low concentration indexes indicate a more modest 

inequality comparative to other known inequalities, for example in income (ONS, 2019). 

 

 

Figure 5.30 Air pollutant removal net ES index concentration curves. 

IMD decile 1 represents most deprived population-weighted decile; IMD decile 10 
represents least deprived population-weighted decile.  

Line of equality shows theoretical equal distribution across all deciles. Concentration 
curves show actual distribution of air pollutant removal net ES index according to 
deprivation for each case study. Less than ‘equal’ share is indicated by the curve falling 
below the line of equality. 

 

Importantly, it is observed that in all regions the social distribution is driven by the 

unequal distribution of demand as approximated by proximity to road networks 

weighted by average traffic flows. It should be noted that IMD 2015 which is used to 

assess the inequalities does incorporate air quality, it is therefore likely that the 
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association between ES demand and deprivation is slightly emphasised. However, the 

results are still considered reliable since the weighting given to air quality is very low (it 

forms one aspect of the environmental domain which contributes 9.3% to the overall 

index) and since the results align with findings from previous studies (e.g. Mitchell et 

al., 2015).  

The air pollutant removal which is supplied by vegetation is lower for more deprived 

areas for Leeds only, and regardless demand is still the dominant factor in determining 

the distribution of this service. For the South Pennines, there was no significant 

association between the supply of air pollutant removal ES and deprivation. Whilst in 

Northampton more deprived areas were demonstrated to have greater supply than the 

less deprived areas. These findings were consistent under sensitivity testing of 

uncertainties in the proxies describing the effectiveness of vegetation in removing air 

pollutants. Nevertheless, given demand is higher in the more deprived areas, 

interventions which change the distribution of supply to favour the more deprived areas 

in all case study regions could help reduce the overall inequalities observed. This is 

illustrated in Northampton where the supply is greater for more deprived areas and 

helps to offset the higher demand in these areas, although it is acknowledged that this 

has not been determined in absolute terms.  

Given the importance of demand in the social distribution of this ES, the normative 

position which dictates how demand is conceptualised plays an even greater role. The 

sensitivity tests revealed that this can (such as for Leeds) change the direction of 

association between the ES and area-level deprivation. It is therefore crucial, that the 

normative position is explicit in any social distribution assessment of air pollutant 

removal ES and with regards to the desired outcomes in increasing this ES in any 

location.  

The social distribution of air pollutant removal as described in this chapter provides an 

example of a regulating ES which is supplied locally. The implications of this scale 

factor will be discussed further in Chapter 8. The role of more distant areas on the 

supply and distribution of an ES is addressed in the Chapters 6 and 7, with the next 

chapter examining the social distribution of recreation ESs. 
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Chapter 6  The social distribution of recreation in regional case 

studies 

 

Recreation is an activity carried out for enjoyment, in leisure time and may or may not 

involve physical activity. Chapter 2, section 2.1.2 highlighted evidence regarding the 

importance of recreation in natural environments for human health and wellbeing 

through, for example, reducing stress or reducing obesity due to physical exercise. The 

following section examines the supply and demand for recreation as an ES across all 

three case studies. As outlined in Chapter 5’s introduction this includes a description of 

data, methods and results which describe both the spatial and social distribution of 

recreation ES and how the latter changes under different modelling assumptions.   

It is first necessary to clarify how recreation ES is defined in this research. Here 

recreation is perceived as a general ‘day-to-day’ activity which is conducted by a more 

local population, whilst tourism may occur in distant, more specific locations. There is 

considerable overlap between the two terms with the difference largely due to the 

participant (McKercher, 1996), therefore some spaces for local recreation may 

simultaneously provide opportunities for tourism. Only outdoor nature-based recreation 

constitutes an ES (i.e. leisure centres and other ‘grey’ infrastructure provide 

opportunities for recreation but are not an ES); this includes greenspaces and 

bluespaces. Provision for recreation ES may be via public or private greenspace or 

bluespace, however since this study is concerned with inequalities in the context of 

spatial planning and environmental management, I focus upon public spaces. 

Importantly, everybody has access rights to these spaces without entry cost. A focus 

on public areas only is also pragmatic since contemporary data on private garden area 

and its’ vegetation coverage is not readily available nor practical to identify across 

several large areas. Despite this, private green and blue spaces are relevant for 

environmental equity and this is acknowledged when the findings here are discussed. 

Henceforth recreation will refer to recreation ES which takes place in green or blue 

spaces where the general public have free access rights.  

Recreation is one of the most tangible and commonly mapped cultural ES (Hernández-

Morcillo et al., 2013). Mapping access to and monitoring the recreational use of green 

and blue spaces has a long history that predates its attention with the ES discourse 

(see Butler, 2004 for a review). In England, several organisations, concerned with the 

health and economic benefits of outdoor recreation, have made notable contributions in 

this regard (e.g. CABE Space, 2010; Sport England, 2016; Natural England’s MENE 

surveys e.g. 2018a). From an equity perspective, accessibility of parks, woodland or 
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urban greenspace for recreational purposes is one of the more commonly mapped ES 

(e.g. Barbosa et al., 2007; Molteno et al., 2012; Woodland Trust, 2017; see Chapter 2 

section 2.4 for a more detailed review). Consequently, there are multiple existing 

methodologies and datasets; these are drawn upon for informing the selection of 

datasets (discussed in the next section) and for quantifying recreation supply and 

demand for the case study LSOAs (discussed in section 6.2).  

6.1. Data  

Mapping recreation service providing areas (SPAs) requires identification of any 

greenspace or bluespace where the general public can access for free and carry out 

recreational activities. In England, this is most appropriately achieved using a site 

based approach where a range of datasets are used to identify all sites and their 

boundaries which match this description. Alternative approaches use land cover data 

combined with other indicators of ‘quality’ or ‘naturalness’ such as presence of 

protected areas or water quality. However these tend to cover very large areas (e.g. 

Maes et al., 2011; Willemen et al., 2008), identify landscape potential (also termed 

recreation suitability mapping) rather than existing ES supply (e.g. Haines-Young et al. 

(2012), Kienast et al. (2012), Weyland & Laterra (2014)), or are appropriate given the 

context of their study area, such as Lankia et al.’s (2015) analysis in Finland where 

‘Everyman’s rights” in principal gives access to all public and private greenspace, 

although there are constraints on activities.. 

To fully quantify recreation supply, it is desirable that the SPAs constitute the full range 

of greenspace types used for a variety of recreation activities relevant to the 

preferences of individuals of different socio-cultural backgrounds. Identification of 

recreation sites and corresponding datasets to be included here is based on those 

identified in UK based research and surveys including Barbosa et al. (2007), CABE 

space (2010) and Natural England (2018). All types included are listed in Table 6.1. 

In addition to sites designated for recreation, other greenspaces which may have a 

different primary purpose but are nonetheless used for recreation activities are 

included. This includes, for example, cemeteries which are openly accessible 

maintained greenspaces for which evidence of everyday recreational use, such as dog 

walking, has been documented in Scandinavia, a comparable high-income European 

country (Swensen et al., 2016; Nordh & Evensen, 2018). Informal spaces, such as 

larger areas of grass in housing estates which may not offer a full variety of functions 

are often overlooked, but are included here since they may nonetheless be used by 

children, dog walkers or others.  
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Public right of ways (PROWs) which include paths, cycleways and bridleways are 

recorded as the second most popular type of destination for recreation in England, 

representing 14% of total visits in the 2017/18 MENE survey (Natural England, 2018c). 

They are of particular importance in this analysis given that both urban and rural areas 

are included, and in some areas dominated by agricultural land, footpaths may 

constitute the main access for outdoor recreation. This approach is more 

representative of actual access compared to those studies which have assigned all 

open countryside, including agricultural areas, as publicly accessible (e.g. Ferguson et 

al., 2018).  

PROWs also provide access points to inland waterways and lakes. Hegetschweiler et 

al. (2017) identify 45% studies in their review of recreational ES mapping that account 

for water or access to water, with identification of footpaths proximal to water 

accounting as water access points. Thus blue spaces, including lakes, streams and 

rivers are not separately defined, but are accounted for through the inclusion of 

PROWs proximal to them. This avoids double counting and is appropriate since access 

rights are not assigned to all blue spaces and data showing boundaries on where rights 

are granted are not available for all areas. Additionally, where blue spaces occur within 

other defined greenspaces such as country parks, they are already included within the 

boundaries. It should also be noted that none of the case studies are close to a 

coastline.  
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Table 6.1 Land uses/land covers where public recreation may take place (service providing areas).  

 

Service providing area Example activities Dataset/source 

Parks, town or village greens Walking, playing with children, running, sitting 
enjoying surroundings, fieldsports 

defra.opendata.arcgis.com (Doorstep Greens, Local 
Nature Reserve, Millennium Greens, National Nature 
Reserves, Registered Parks and Gardens, Registered 
Common Land)  
Ordnance Survey Points of Interest, Ordnance Survey 
Mastermap Topography: digimap.edina.ac.uk 
Manual digitisation Google Earth 

Path, bridleway, cycleway 
(PROWs) 

Walking, running, cycling, horse riding www.rowmaps.com or www.openstreetmap.org 
(PROWs) 
defra.opendata.arcgis.com (National Trails) 

Woodland, forest Walking, cycling, horse-riding, sitting enjoying 
surroundings, wildlife watching 

england@woodlandtrust.org.uk 
(Woods for people) 

Country park Walking, running, playing with children, sitting 
enjoying surroundings, wildlife watching 

naturalengland-defra.opendata.arcgis.com 

Playing field, recreational area Playing with children, fieldsports, informal 
sports 

Ordnance Survey Points of Interest, Ordnance Survey 
Mastermap Topography: digimap.edina.ac.uk 
Manual digitisation Google Earth 

Cemetery, church grounds Walking, sitting Ordnance Survey Points of Interest, Ordnance Survey 
Mastermap Topography: digimap.edina.ac.uk 
Manual digitisation Google Earth 

Open countryside Walking, running, hiking, wildlife watching CRoW Act 2000 layers: naturalengland-
defra.opendata.arcgis.com 

Other informal greenspace Walking, playing with children, informal 
sports 

Manual digitisation: Google Earth 

River, lake, canal Swimming, fishing, watersports Ordnance Survey Meridian 

 

Developed from Natural England (2018) and Barbosa et al. (2007). Note that any type of location is included only if the general public 

have access without charge. 

http://www.rowmaps.com/
http://www.openstreetmap.org/
mailto:england@woodlandtrust.org.uk
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To obtain data regarding all these recreation SPAs requires use of a variety of sources 

and necessitates generation of some new data (a full list of data sources is given in 

Table 6.1). Where possible freely available GIS datasets with national coverage are 

used. These identify the majority of formally designated parks, country parks, nature 

reserves, woodland and open access land. Whilst such data is relatively plentiful for 

England in comparison to other countries, comprehensive spatial data on many smaller 

or informal sites such as cemeteries, recreation grounds and sports grounds is lacking. 

In an approach similar to Barbosa et al. (2007), these latter SPAs were primarily 

extracted from OS Points of Interest data combined with feature boundaries defined by 

OS Mastermap topographic polygons. Validation using Google Earth imagery revealed 

that many informal spaces, as well as some parks and cemeteries remained 

unidentified, and were thus manually vectorised to ensure the completeness of the final 

dataset. Only spaces with visible open access points (verified if necessary in Google 

Street View or via internet searches) were added.  

Recent data were available for the majority of datasets as most are regularly 

maintained by the relevant organisations. Manually defined areas were based on 

imagery from 2015 onwards. The final dataset is thus considered representative of 

current recreation SPAs.  

Assimilation of data for analysis required conversion to shapefile format, merging of 

individual datasets and dissolving of boundaries to ensure areas were not double 

counted. Data was cleaned to ensure correct topology and clipped to a 10 km 

boundary around the study areas (a threshold discussed below).  

6.2. Methods 

Recreation, as with many cultural ESs, requires physical interaction with the ecosystem 

(Hegetschweiler et al. 2017). Unlike other ESs whereby benefits may be passed onto 

humans passively, recreation requires a user to actively choose to access the benefits 

of recreation. This then generates user related movements that constitute ES flow 

between Service Benefitting Areas SBAs (i.e. where the demand is) and SPAs (the 

recreation sites) which are not necessarily in the same location (Hegetschweiler et al., 

2017). Increasingly, the need to model this ES flow, and explicitly address supply by 

assessing the accessibility of SPAs, and demand by accounting for the factors which 

influence the decision to use this ES, has been acknowledged, although 

conceptualisations of this flow and methods used to assess it vary considerably 

(Hegetschweiler, 2017). In the next section the approach taken to conceptualising and 

mapping ES flow and supply is explained, and subsequent sections discuss ES 
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demand with sensitivity tests applied to address the third objective. Methods applied to 

test the social distribution of recreation are not outlined below since these are 

consistent for all ESs and are therefore described in detail in Chapter 3. 

6.2.1. Mapping recreation flows and supply 

As indicated previously, recreation supply requires identification of accessible 

greenspace (and/or blue space). The criteria set above states that this includes spaces 

which are free and open for public use, but ‘accessibility’ is an ambiguous concept 

(Lotfi & Kooshari, 2009). It may more broadly be conceived as how ‘easily’ the 

greenspace can be used for recreational purposes (Nicholls, 2001). This ‘ease of use’ 

is constructed through multiple factors including physical characteristics, human 

perception and preference, and interaction of these factors, important for ES supply, 

flows and demand.  

A key factor in assessing whether a particular greenspace is accessible is its distance 

from the potential user (often equated with travel time) (Bateman et al., 1996; Erkip, 

1997; Rossi et al., 2015; Liu et al., 2018). Most visits to the natural environment occur 

to nearby locations (Paracchini et al., 2014).  Hooper (2015) found that the recreational 

service of parks decreases with increasing distance (Liu et al 2017), although there is a 

threshold distance beyond which the greenspaces would not be considered for use 

(Spinney et al., 2013). Using distance as the key determinant for modelling the 

availability of greenspaces for recreation for an area enables a clear method for 

establishing ES flows between SPAs and SBAs for larger study areas.  

Whilst the nuances which in reality shape recreation supply, demand and flows are 

important, basing recreation supply and flows primarily on distance is a reasonable 

generalisation across larger areas. Distance has long been considered an important 

factor in studies of recreation access, value and demand (e.g. Wood, 1961). Indeed 

more than one third of studies examined in Hegetschweiler et al. (2017) review of 

approaches to modelling supply and demand of cultural ESs include distance to 

greenspace. Consideration of the characteristics which influence more subjective 

notions of accessibility is rarer and would require an understanding of how these are 

shaped through socio-cultural, economic and demographic factors as well as the 

psychophysical relationship between the user and greenspace characteristics (Casado- 

Arzuaga et al., 2014; Hegetschweiler et al., 2017). As Hegetschweiler et al., 2017 

emphasise, this requires a linked supply-demand model.  

Whilst preferences for some greenspace characteristics are near universal, for 

example tidiness (Gobster & Westphal, 2004), most are user or place specific. For 
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example, greater ‘naturalness’ or biodiversity, is often assumed to be a positive 

characteristic, but several studies find no evidence between sites with designated 

conservation status, greater species richness nor ‘attractiveness’ and their use for 

recreation (Qiu et al., 2013; Casado-Arzuaga et al., 2014; Dallimer et al., 2014; Andrew 

et al., 2015; Hornigold, et al., 2016). Moreover as Hornigold et al. (2016) observe, 

greater biodiversity does not preclude the use of a site for most recreational purposes. 

There is a wealth of literature attempting to tease apart psychophysical linkages but 

they often relate to specific areas (e.g. Giles-Corti et al., 2005; Dallimer et al., 2014) or 

specific greenspace types such as parks (Kaczynski et al., 2014). Generalisations on 

preferences developed from more comprehensive sources such as the MENE surveys 

(e.g. Hornigold et al., 2016) are based on existing usage and therefore are linked to 

existing supply, notwithstanding the recent study by Boyd et al. (2018) attempting to 

tease apart these factors. Thus findings from this research cannot be appropriately 

extrapolated for this analysis given its concern with distributional equity. Further 

incorporation of socio-economic data in the quantification of ES supply could preclude 

an independent assessment of the social distribution of ES supply and net ES (i.e. 

there would be some circularity). Moreover, data on these types of characteristics are 

not available across large areas for a full range of greenspace types. Given these 

constraints distance is used as the main criterion is a simplification of recreation ES 

flows, with recognition that this is a simplified model.  

Studies which similarly employ a distance based approach vary with respect to the 

distance considered relevant and how distance is measured. Talen (1998) offers an 

early example of a methodology for assessing equity in access to parks using spatial 

analysis but there have since been a wealth of studies generated which build on this, 

including Barbosa et al., 2007; Oh & Jeong, 2007; Paracchini et al., 2014; Macedo & 

Haddad, 2015; Zank et al., 2016, and Ferguson et al. (2018). Kim and Nicholl’s (2016) 

review classifies the algorithms used into five main approaches. These include network 

analysis which models actual travel distance/time from origin to the greenspace point of 

access (e.g. Comber et al., 2008; Ala-Hulkko et al., 2016), which is considered a more 

accurate way to model distances (Comber et al., 2008). However this is less applicable 

in this analysis since LSOAs are used as the minimum spatial unit for the SBAs and 

therefore there is no single point of origin, and to define one would be especially 

problematic for larger LSOAs. The network method also overlooks the multiple possible 

modes of transport, and in particular walking time which is critical for nearby 

greenspace access, and travel by public transport, and personal vehicle (Chen et al., 

2017). A ‘minimum distance’ approach identifies the nearest greenspace, but discounts 

use of a variety of greenspaces and so is again less appropriate for larger LSOAs (Kim 
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and Nicholls, 2016). A ‘container approach’  which calculates the number or areal 

coverage of greenspace within a chosen spatial unit (e.g. Larondelle & Lauf, 2016; 

Nesbitt et al., 2019) is commonly used to assess differences across census tracts but 

does not account for the availability of more distant, although often still nearby, 

greenspace.  

The method applied in this study is most akin to Kim and Nicholl’s (2016) ‘spatial 

interaction model approach’ whereby consideration is given to a additional criteria such 

as size, attractiveness combined with distance from origin. This approach is used since 

it aligns with criteria used by policy guidance on minimum provision of greenspace for 

England.  Specifically, this minimum standard is the ANGSt specification, outlined by 

Handley et al. (2003). This standard is used to define recreation ES flows and 

considers two related factors – greenspace size and distance from user - since 

distances to larger parks tend to be further than for smaller parks (Liu et al., 2017; 

Giles-Corti et al., 2005), although they also serve the local population. ANGSt 

guidelines present a minimum standard stating at least one space of a certain size 

within a defined distance should be available: 

 

 “no person should live more than 300m from their nearest area of natural 

greenspace of at least 2 ha in size” (Rule 1); 

 “there should be at least one accessible 20 ha site within 2 km from home” (Rule 

2); 

 “there should be one accessible 100 ha site within 5 km” (Rule 3); and 

 “there should be one accessible 500 ha site within 10 km” (Rule 4).  
 

(Handley et al., 2003) 
 
The maximum distance used assessed is 10km and this is suitable given that the latest 

MENE survey reports 82% of visits to the natural environment in England occurring 

within 8 km (note that the survey reports in miles and visits within 10 km are not 

defined) (Natural England, 2018c). Importantly, the use of ANGSt encompasses 

multiple distances, considered more revealing than use of a single distance (Kim & 

Nicholls, 2016), since it realises the contribution of both the closest and slightly more 

distant greenspace. For example, findings from MENE 2017-2018 indicate that whilst 

42% of outdoor recreation visits occur within 1 mile (1.6 km), a further 40% occur within 

5 miles (8 km). Other studies in England which have in some way adopted the use of 

ANGSt guidelines to assess access to public greenspace include Comber et al. (2008) 

for Leicester, Holt et al. (2015) for Sheffield and Ferguson et al. (2018) for Bradford. 

Larondelle & Lauf‘s (2016) study in Germany offers an example of a policy-led 
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approach to determining recreation supply in a different country through application of 

Berlin’s policy requirement of 6 m2 per capita of close to home greenspace, where 

close to home is specified as within 500 m (Senatsverwaltung für Stadtentwicklung und 

Umwelt, 2013). More widely, Hegetschweiler et al. (2017) find that over half of studies 

researching recreational ES supply and demand use data regarding the size and/or 

shape of the recreational spaces to determine ES supply.  

To implement the ANGSt specification, distance is measured using Euclidean distance 

calculated for multiple buffers around each LSOA boundary. The boundaries of LSOAs 

are used as opposed to the centroids as some of the rural LSOAs cover large areas. 

The use of buffers has been applied in several studies such as Nicholls and Shafer 

(2001), Ferguson et al. (2018), Wüstermann et al. (2017). Using the SPAs as defined in 

section 6.1, the percentage of total area of all SPAs within each buffered distance that 

meet the respective specified minimum size is calculated and rescaled to a 0-10 scale.   

ANGsT does not cover requirements for the provision of PROWs, yet as highlighted in 

section 6.1, their inclusion is important given their high usage and role in providing 

access to open countryside and bluespace. Since it is likely that footpaths beyond the 

immediate LSOA are used, an appropriate distance for considering the provision of 

PROW needed to be identified. The furthest (10 km) buffer is used since the MENE 

survey (Natural England, 2018b) reported 87% visits along paths/bridleways occurred 

up to 6 miles (10 km) in 2013-2016, compared to 69% for up to 3 miles (5 km). The 

distance of 10km is consistent with the limit of the ANGSt guidelines for greenspaces 

and thus it is appropriate to combine both the footpath and space analysis within a 

single ES index. All PROWs within a 10 km buffer of each LSOA and located within or 

alongside natural land cover (including bluespace) are accounted for. The PROW data 

is filtered using a 5 m buffer around non-manmade land cover in OS Mastermap 

Topographic vectors and those running through the identified greenspaces are omitted 

to avoid double counting. The length of PROW per km2 of the buffered LSOA area is 

calculated, which accounts for the diverse sizes of LSOAs, this figure is then 

normalised to a 0-10 scale.  

The final recreation supply value is calculated through weighted addition of the 

normalised PROW per km2 and greenspace per km2 values: 

Recreation net ES index = 0.75 x Greenspacenm + 0.25 x PROWnm 

The weighting aligns with the assumption that greenspaces are the most important 

locations for recreation, and that they also offer opportunity for a greater variety of 

activities. The specific weighting was based on the different proportion of visits 

according to MENE survey results from 2013-2016 whereby visits to paths/bridleways 

https://www.sciencedirect.com/science/article/pii/S1470160X16300504#bib0001
https://www.sciencedirect.com/science/article/pii/S1470160X16300504#bib0001
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and farmland (it is assumed that farmland is primarily accessed using PROWs) 

constitute 24% of all visits recorded (Natural England, 2018b).  

6.2.2. Recreation sensitivity testing 

Sensitivity tests can reveal how the metrics indicating the social distribution change 

according to how recreation supply is conceived or quantified. Here sensitivity tests are 

applied to understand how the two main types of recreation SPAs and the criteria for 

measuring access to them influence the findings.  

ES supply is based on two main types of SPAs: PROWs and greenspaces. Since these 

fulfil different functions and are managed in different ways, it is pertinent to explore the 

social distribution of these separately. This not only provides greater knowledge 

regarding the social distribution of recreation within the study areas but also 

substantiates findings given the selection of a single weighting for combining these into 

a single index. Furthermore PROWs are often overlooked in studies assessing 

recreation equity, thus comparing the distributions of each in addition to their combined 

value could also help inform methodological choices in future work. 

The key factor in defining ES supply is the use of the distance criteria with previous 

studies showing that the distribution of recreation is sensitive to distance (Comber et 

al., 2008; Kim & Nicholls, 2016). Therefore additional quantification of ES supply for 

three separate distances is carried out; within LSOAs only, within 1 mile (1.6 km) from 

LSOA boundary and within 2 miles (3.2 km) from LSOA boundary. Assessment at the 

LSOA level is important since many studies report the distribution of greenspace with 

respect to its coverage over census tracts with the implication that this is representative 

of access to ESs, including recreation (e.g. Larondelle & Lauf, 2016; Nesbitt et al., 

2019). The 1-mile and 2-mile distances represent 42% and 25% of all trips to the 

natural environment as reported by the 2013-16 MENE surveys (Natural England, 

2018b). They are also considered representative of ‘walking distance’, important given 

that 63% recorded visits were made on foot for the same time period (Natural England, 

2018). Furthermore the area of parks within 1 mile has been linked to greater physical 

park use and is thus important for health outcomes (Kaczynski et al., 2014). Only a 

single distance is used in the calculations which are again measured using buffers with 

all greenspaces above 2ha in size and footpaths included. The use of different distance 

criteria is methodologically important since whether or not each of these reveal a 

similar social distribution can help shape development of future assessments and 

facilitate comparisons to findings from other studies. Finally, it can enable greater 

consideration of the equity of recreation distribution for all groups since it is known that 
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socio-economic, cultural, health and demographic factors can influence distances 

travelled to greenspace.  

Although additional sensitivity tests could investigate other methodological decisions 

(e.g. potential errors in input data, use of buffers to estimate travel distance), additional 

scenarios or subsets of data. It is believed that the tests outlined above will provide a 

strong insight into the robustness of the results and the implications of methodological 

decisions for policy and other research.  

6.2.3. Mapping recreation demand 

Demand for recreation ES is typically modelled with respect to the number of people 

requiring the services, people’s socio-demographic and socio-economic characteristics 

and their individual values and preferences, or the actual recorded use of a greenspace 

(Wolff, 2015; La Rosa et al., 2018). As highlighted in section 6.2.1, this creates an ES 

supply-demand interdependency whereby actual characteristics of greenspaces (e.g. 

their facilities, condition and accessibility) contribute to the demand for recreation 

(Brainard et al., 2001; Plieninger et al., 2013; Hegetschweiler et al., 2017). 

Hegetschweiler et al (2017) find that when supply and demand are linked (58% of 

studies identified in their literature search) they use on site questionnaires, or 

interviews combined with GIS data. These approaches are less appropriate for larger 

scale studies across a range of landscapes in different locations, especially when data 

on characteristics of all the greenspaces is lacking. Whilst there are examples of 

studies across large areas which have estimated recreation demand based on a 

population’s socio-economic characteristics, these are based on knowledge of current 

use (through for example MENE survey) which are influenced by the current ES supply 

and may therefore not be a true representation of people’s desires or needs. Recent 

work by Boyd et al. (2018) has started to disentangle this, seeking to understand the 

factors influencing lack of visitation to the natural environment controlling for 

environmental conditions. 

In this thesis recreation demand is, in the first instance, considered uniform, regardless 

of social-economic profiles and population density. Several factors informed the 

decision to not base demand on socio-economic, cultural or demographic 

characteristics of populations. Specifically, that it is not considered appropriate to make 

assumptions across the study areas, data availability is a limiting factor, and such an 

approach would also confound subsequent comparison to deprivation data for equity 

assessment. Of concern is the assumption that particular socio-demographic groups 

have lower demand for accessible greenspace which could result in underestimating 

their demand (e.g. Natural England (2018a) finds that those from lower socio economic 
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groups have been shown to make fewer visits to the natural environment). Furthermore 

the characteristics of sites have not been found to influence demand in consistently the 

same way across different studies (Dallimer et al., 2014; Hegetschweiler et al., 2017). 

The approach taken here is in line with numerous studies mapping recreation which 

simply examine physical availability of greenspace and do not examine characteristics 

nor preferences similarly (e.g. Laurendelle & Lauf, 2016). Nonetheless, the many 

socio-economic and cultural factors which shape recreation demand are important for 

equity and will be reflected on in the interpretation and discussion of results.  

Although recreation demand models are most commonly based on population 

distribution (e.g. Bateman, 1995; Lankia et al., 2015; Larondelle and Lauf, 2016), such 

studies are based on a utilitarian conception of demand. By not assuming population 

density shapes recreation demand it is assumed that each member of the population 

has an equal requirement for recreation whether they live in a high or low populated 

areas. This is also in line with the application of ANGSt in quantifying recreation supply, 

since this is intended as a minimum standard, and is consistent with the approach used 

for the other ESs in this study. However, as noted in section 3.3.1.2, the effect of this 

assumption on the social distribution of recreation ES is also tested. This involves 

additionally mapping recreation demand as population density and including this within 

an alternative calculation of net ES index. The population weighted net ES index is 

computed by scaling LSOA population density values between 0-10 and subtracting 

these from ES supply.  

 

6.3. Results 

The following sections present the main results from analysis of the social distribution 

of recreation for all three case study regions. This comprises: maps of the spatial 

distribution of the net ES Index for LSOAs and of the association with deprivation using 

Local Indicators of Spatial Association (LISA); statistics indicating the association (or 

lack of) between recreation and deprivation including correlation coefficients and 

concentration indexes; and graphs to provide further insight including boxplots and 

concentration curves. Findings for Leeds, Northampton and the South Pennines are 

described in turn, providing the key information in relation to objective 2. Subsequently 

for objective 3, the results of sensitivity testing are described for all case studies 

together. A summary synthesising similarities and differences in how recreation ES is 

socially distributed across all three regions concludes the recreation analysis.  
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6.3.1. The spatial and social distribution of recreation in Leeds 

In terms of spatial distribution, there is a clear gradient in recreation with highest supply 

in the northwest of the study area and lowest supply in the east (In terms of spatial 

distribution, Figure 6.1). This is likely due to the proximity of the north western areas to 

larger open access spaces in the Yorkshire Dales and the South Pennines. The higher 

values continue in a south eastern direction covering large areas of Leeds city, due to 

the higher number of smaller, more local spaces in the form of city parks. Conversely 

the land cover in the east is more rural but dominated by agricultural fields where 

accessible recreational areas are sparser. 

 

 

Figure 6.1  The spatial distribution of recreation ES aggregated to LSOAs across 
Leeds case study region.  

 

The dominant spatial pattern of deprivation in Leeds is radial and thus when set against 

the dominant east—west pattern of recreational ES, there is no clear social distribution 

of recreation. There is no significant correlation between the recreation index and IMD 

ranks (Table 6.2), the concentration index is 0.01 as visualised by the concentration 
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curve closely following a line of equality (Figure 6.11) and ANOVA tests indicate no 

significant difference in mean recreation across deprivation deciles. For the majority of 

LSOAs (378 out of a total 482) there is no significant association between IMD ranks 

and recreation when Local Moran’s I is computed. Together these indicate that overall 

there is a relatively equal distribution of recreation across the Leeds study area.  

However, once the separate types of SPAs are examined separately, it’s evident that 

there are differences in recreation ES for areas of high and low deprivation. When only 

greenspaces are considered, there is weak but significant correlation, meaning that the 

more deprived areas have lower access to recreation. Conversely, there is greater 

availability of PROWs in the more deprived areas, due to a large network of footpaths 

in the urban areas (with natural land cover).  

Interestingly, recreation accessibility is more variable for the least deprived areas, likely 

due to these areas being located in both the northwest and east of the study area. For 

instance, the boxplot (Figure 6.2) shows relatively consistent median values across 

each population weighted deprivation decile, but the range of values (considering both 

the interquartile range and outliers) increases as deprivation decreases. 

 

 

Figure 6.2  Recreation ES indexes per population weighted IMD deciles for Leeds 
case study region. Deprivation decreases from decile 1 to 10.  
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Figure 6.3  Leeds LSOAs with significant local spatial associations between IMD ranks 
and recreation. Identifies clusters of areas where there are significant 
associations between ES indexes and IMD ranks in the same direction 
(95% confidence level). The direction of associations are given in the map 
legend. Parenthesis indicate the number of LSOAs within each class. 

 

This is further exemplified by the local indicators of spatial association (Figure 6.3). For 

example, there are a relatively high number (52 out of 482) of LSOAs with significant 

local association between low deprivation and low ES supply. These are solely located 

in the east of the study area. Only 11 out of 482 LSOAs are found to have a significant 

local association between high deprivation and low ES. Principally these are scattered 

in the south east of the study area. Even so, it is pertinent to note that even fewer 

LSOAs (4) have a significant local association between high deprivation and a high 

recreation (compared to 32 LSOAs with low deprivation and high ES). 
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6.3.2. The spatial and social distribution of recreation in the South 

Pennines 

High recreation in the South Pennines case study region is found centrally stretching 

from north to south across many of the rural LSOAs and is lowest in the east across 

the more densely populated LSOAs in the large town of Halifax (Figure 6.4). The high 

supply in the central areas is created by the large (>500ha) openly accessible 

moorlands of the Pennine uplands which run in a north-south direction across northern 

England and across the centre of the study area. There are further open access 

spaces in the West Pennine Moors to the west of the study which also contribute to the 

recreation supply for LSOAs in the west of the study area, compared to Halifax in the 

east which although it has many smaller spaces for recreation has large conurbations 

within the 10 km radius to the east. The mean ES index for rural areas is 5.3 compared 

to 3.2 for urban areas (scale 0-10).  

 

 

Figure 6.4  The spatial distribution of recreation ES aggregated to LSOAs across 
South Pennines case study region. 
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Figure 6.5  Recreation ES indexes per population weighted IMD decile for South 
Pennines study area. Deprivation decreases from decile 1 to 10.  

 

Considering the social distribution of recreation in the South Pennines, the most 

deprived LSOAs within the case study are concentrated in Halifax and in rural areas 

around the centre and west of the study area. Whilst the least deprived LSOAs are 

scattered in the south west and south east. Thus the spatial pattern of deprivation is 

not wholly coincident with the spatial pattern of recreation. This is reflected in the 

significant but weak Spearman Rank correlation coefficient (ρ = 0.207) and a 

concentration index of 0.04. The differences in recreation are confirmed as significant 

by ANOVA tests of the mean ES index of deprivation deciles. Examination of PROWs 

and greenspaces separately reveals that the distribution is driven solely by 

greenspaces (ρ = 0.287) whereas there is no significant correlation between PROWS 

and IMD ranks (Table 6.2).  

Plotting the distribution of recreation indexes across IMD deciles, as shown in Figure 

6.5’s boxplot, reveals a non-linear relationship where low recreation indexes are 

experienced by both the most and least deprivation deciles. Recreation values peak for 

the 4th – 8th deciles. Correspondingly, the concentration curve fluctuates so that for the 

four most deprived deciles the curve lies below the line of equality (a less than ‘equal’ 

share), before rising for the deprived 5-8th deciles, indicating their greater ‘share’ 

(Figure 6.11). Local Moran’s I calculations reveal significant association between high 

deprivation and low recreation for 29 of 142 LSOAs, all concentrated in eastern urban 
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LSOAs in Halifax. In contrast, significant local spatial association between low 

deprivation and low recreation are found in several areas on the outskirts of Halifax. 

Where recreation is highest in the central region of the study area there is significant 

local spatial association with both high and low deprivation (21 and 19 LSOAs 

respectively) (Figure 6.6).  

 

Figure 6.6  South Pennine LSOAs with significant local spatial associations between 
IMD ranks and recreation. Identifies clusters of areas where there are 
significant associations between ES indexes and IMD ranks in the same 
direction (95% confidence level). The direction of associations are given in 
the map legend. Parenthesis indicate the number of LSOAs within each 
class. 

 

Interestingly, these results indicate that access to public outdoor recreation spaces is 

lowest for those in the most deprived areas as well as those in the least deprived 

deciles. Since this was contrary to expectation, it was pertinent to further explore 

whether these areas also had similar private garden space. It was expected that the 

least deprived deciles have more expansive private spaces which in some ways 

compensate for lower public spaces. Whilst it’s not feasible to produce a detailed 

mapping of garden area across the entirety of the case studies, there is an existing 

database (GLUD) which does give some indication of garden coverage (in 2005) which 

can be supported by an assessment of housing types (with detached and semi-

detached housing typically providing greater garden area than terraced 

housing/apartments). Average garden area was calculated from GLUD 2005 and 

Census 2011 data as ‘total garden area/total number of dwellings’ and plotted as a 

boxplot against deprivation deciles (Figure 6.7).  
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Figure 6.7 South Pennine LSOA garden area per population weighted IMD deciles. 
Values are percentage of total area covered by gardens as determined by 
GLUD 2005, data.go.uk.  

 

As expected, this illustrates a lower average garden area for the four most deprived 

deciles, which then increases as deprivation decreases. Similarly, the mean and 

median proportion of detached dwellings steadily increase with decreasing deprivation; 

lowest for the most deprived decile (mean - 5%, median – 4%) and highest (mean - 

47%, median – 46%) for the least deprived decile. There is a notable difference in the 

mean and median proportion of apartments for the most deprived decile (24% and 21% 

respectively) compared to all other deciles. These results confirm that least deprived 

areas have greater access to private garden space, which can fulfil several of the 

recreation based roles that public greenspace performs. Thus, the most deprived areas 

suffer from the lowest public and private recreation ES.  

6.3.3. The spatial and social distribution of recreation in 

Northampton 

There is a clear gradient in recreation across the Northampton case study region with 

lowest values in the northwest in the district of Daventry, and highest values in the 

southeast district of South Northamptonshire (Figure 6.8). There are a range of lower 

and higher values across Northampton town. Thus there is no clear distinction in 

recreation ES across rural and urban LSOAs. This is primarily due to the higher density 

of PROWs and of larger recreation areas (>100ha) to the south of the case study 
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region within 10km Euclidean distance of the more southern LSOAs. There are only 

two areas with an areas greater than 500ha and these are located to the south and 

south east of the study area.  

 

 

Figure 6.8  The spatial distribution of recreation ES aggregated to LSOAs 
Northampton case study region. 

 

There is no significant correlation between recreation and IMD ranks (Table 6.2) whilst 

the concentration index lies close to 0 at -0.02 as further illustrated by the 

concentration curve which lies close to the line of equality and very slightly rises above 

this for some mid deciles (Figure 6.11). ANOVA tests confirm there is no significant 

difference in mean recreation ES indexes across deprivation deciles. Visualisation of 
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the distribution of recreation ES values using a boxplot indicates no consistent pattern 

(Figure 6.9); median values are lowest for the ‘upper middle’ deciles (5th, 7th, 8th and 9th) 

and the least deprived decile shares similarly high recreation values as the more 

deprived (1st-4th) deciles.  

 

Figure 6.9  Recreation ES indexes per population-weighted IMD deciles for 
Northamptonshire study area. Deprivation decreases from decile 1 to 10.  

 

Of those LSOAs with significant local spatial association between IMD ranks and 

recreation ES (Figure 6.10), only a few (14 out of 167 LSOAs) have significant 

association between high deprivation and low ES, and are concentrated in western 

areas of Northampton town. Conversely, the majority of significant local associations 

are areas of low deprivation with low ES, these are located in the northern rural areas 

of the study area – predominantly in the district of Daventry. 

Once greenspaces and PROW are considered separately (Table 6.2), it is evident that 

their contrasting social distributions effectively ‘cancel’ each other out. There is an 

increase in greenspace availability with increasing deprivation yet a decrease in 

PROWs. Although this correlation is significant, it is weak. Of note, is that the 

interquartile ranges for the values in each decile tend to be larger for this service than 

for the other services in Northampton.  
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Figure 6.10  Northampton LSOAs with significant local spatial associations between 
IMD ranks and recreation. Identifies clusters of areas where there are 
significant associations between ES indexes and IMD ranks in the same 
direction (95% confidence level). The direction of associations are given in 
the map legend. Parenthesis indicate the number of LSOAs within each 
class. 

 

6.3.4. Sensitivity tests 

Three variations in how recreation supply is calculated, and one in the way recreation 

demand is calculated, were applied and from these revised ES indexes produced. ES 

association with deprivation was then tested by re-computing correlation coefficients 

(Table 6.2) and via visualisation using boxplots (where this revealed further information 

this is discussed below, but boxplots are not presented).   
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For recreation supply, as explained in section 6.2.2, this involved calculating the 

amount of greenspace available within a distance of 1 mile and 2 miles of the LSOAs, 

and within the LSOAs only. There is no indication that more deprived areas have lower 

recreation opportunities than wealthier areas in Northampton and Leeds following 

ANGSt guidelines. This remains the case for Leeds for all variations in distances, and 

when only greenspace within the LSOAs is accounted for Northampton. Yet when 

greenspace within 1 and 2 miles are accounted for in Northampton, there is a 

moderately strong negative correlation with IMD ranks. The implication is that for 

Northampton more deprived areas actually have greater access to recreation at 

walkable distances but not necessary within their immediate area, nor access to the 

largest greenspaces at a further distance. Some of this sensitivity is likely attributable 

to the concentration of more deprived areas within Northampton town, which are close 

to urban parks.  

There is a notable contrast with the results of the South Pennines case study region, 

where a significant positive correlation between recreation ES index and IMD ranks is 

consistently found, irrespective of how ES supply is quantified. Therefore it is evident 

that there is a persistent inequality whereby the most deprived areas suffer from the 

lowest accessibility of recreation.  

Once demand is included, whereby areas with denser populations have a greater 

demand for recreation ES, the strength of association in all case areas increases. The 

direction of association in each case aligns with that established for the greenspaces 

not for the PROWs. For Leeds and the South Pennines, there is a decrease in ES as 

deprivation increases, meaning that for these areas demand is relatively high and 

supply is relatively low. In contrast, a moderate to strong negative correlation is 

revealed in Northamptonshire indicating that the more deprived areas have a relatively 

lower demand and higher supply.  

To summarise, the social distribution of recreation is dependent on how recreation 

supply and demand is quantified. The effects observed are diverse across the study 

areas. 
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Table 6.2 Spearman rank correlation coefficients showing linear associations between 
recreation and IMD ranks.  

a) Leeds 

   IMD ranks ES index Greenspace index 
(ANGSt) 

PROW density 

 IMD ranks - NS 0.155** -0.322** 

 ES index NS - 0.618** 0.150** 

 Greenspace index (ANGSt) 0.155** 0.618** - -0.625** 
 PROW density -0.322** 0.150** -0.625** - 

S
e

n
s
it
iv

it
y
 ‘LSOA only’ ES index NS    

‘1 mile radius’ ES index NS    
‘2 mile radius’ ES index NS    
Population density -0.388**    
Population weighted ES index 0.263**    

 

b) South Pennines 

  IMD ranks ES index Greenspace index 
(ANGSt) 

PROW density 

 IMD ranks - 0.207* 0.282** NS 
 ES index 0.207* - 0.978** 0.700** 
 Greenspace index (ANGSt) 0.282** 0.978** - 0.552** 
 PROW density NS 0.700** 0.552** - 

S
e

n
s
it
iv

i

ty
 

‘LSOA only’ ES index 0.345**    
‘1 mile radius’ ES index 0.367**    
‘2 mile radius’ ES index 0.291**    
Population density -0.434**    

 Population weighted ES index 0.301**    

 
c) Northampton 

  IMD ranks ES index Greenspace index 
(ANGSt) 

PROW density 

 IMD ranks - NS -0.180* 0.186* 
 ES index NS - 0.970** 0.337** 
 Greenspace index (ANGSt) -0.180* 0.970** - NS 
 PROW density 0.186* 0.337** NS - 

S
e

n
s
it
iv

it

y
 

‘LSOA only’ ES index NS    
‘1 mile radius’ ES index -0.43**    
‘2 mile radius’ ES index -0.36**    

Population density -0.679**    

 Population weighted ES index -0.416**    

 

IMD ranks increase as area deprivation decreases; a positive correlation indicates ES 
increases with decreasing deprivation.  

Correlations between IMD and ES index and greenspaces and public rights of way 
PROWs separately are provided for initial calculations. For sensitivity tests, correlation 
with only IMD ranks are computed for variations in ES supply (LSOA only, 1-mile and 
2-mile radius) and for population weighted demand.  

NS- no significant correlation **Correlation significant at 99% confidence level 
*Correlation significant at 95% confidence level. 
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6.4. The social distribution of recreation ES in the case study 

regions 

For the Leeds and Northamptonshire case studies, there is no evidence that more 

deprived areas have lower recreation access than wealthier areas. Both are similarly 

large urban areas surrounded by countryside and small towns. For both there is a 

predominantly radial pattern of deprivation whereby most deprived areas are located in 

the centre of the study area, contrasting with a linear pattern of recreation ES.  

Similarly, in both Leeds and Northamptonshire, there are significant correlations 

between deprivation and PROWs and greenspaces when assessed individually. 

However, these occur in different directions, thus effectively negating each other when 

combined to a single index. Interestingly, the direction of correlations are opposing for 

the different case study regions. More deprived areas in Northampton benefit from 

greater availability of greenspaces yet fewer PROWs. In contrast for Leeds, more 

deprived areas experience lower availability of greenspaces but have accessibility to 

PROWs. Further differences are observed in the sensitivity testing, where in Leeds, 

social distributions are not dependent on the distances applied, whilst for Northampton 

there is indication that for some definitions of recreation supply there is actually lower 

recreation access for wealthier areas.  

Greater complexity in the associations between recreation and deprivation are found in 

the South Pennines. Whilst overall access to greenspace (not PROWs) is unequal and 

there is a decrease in access as deprivation increases, the most as well as the least 

deprived areas experience lower access. Further analysis did however reveal that for 

the least deprived this is somewhat compensated by having the greatest area of private 

gardens. Inequality is evident in the distribution of recreation in the South Pennines 

regardless of the distances used to estimate ES supply or if population density is used 

to indicate ES demand. Moreover for each of these sensitivity tests the strength of 

association becomes greater between decreasing recreation ES and increasing 

deprivation, in comparison to the initial calculation of recreation ES using ANGSt. 
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Figure 6.11 Recreation net ES index concentration curves.  

IMD decile 1 represents most deprived population-weighted decile; IMD decile 10 
represents least deprived population-weighted decile.  

Line of equality shows theoretical equal distribution across all deciles. Concentration 
curves show actual distribution of recreation ES according to deprivation for each case 
study. Less than ‘equal’ share is indicated by the curve falling below the line of equality, 
a greater share is indicated by curve rising above the line of equality.  

 

 

Overall, the social distribution of recreation is place specific (Figure 6.11). Inequalities 

are most prevalent in the South Pennines, largely due to the comparatively low 

availability of recreation spaces in the more deprived urban areas compared to the 

rural areas which are close to large areas of open access moorlands. However, when 

only rural areas are considered it is the wealthiest areas which have the lowest 

recreation accessibility. In all cases the social distribution of PROWs is converse to the 

social distribution of greenspaces, and some significant correlation is found. In addition, 

sensitivity testing is useful in some cases for developing a deeper understanding of the 

patterns of recreation for more and less deprived areas. Furthermore, for each case 

study region, areas with significant local association between high deprivation and low 

recreation have been identified; these are key areas when considering social outcomes 

of land management.  
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Chapter 7  The social distribution of surface water runoff 

reduction in regional case studies 

 

This is the third and final chapter presenting analysis which corresponds to the second 

and third objectives of the thesis; assessing the social distribution of a specific ES 

within the case study regions and evaluating the sensitivity of this distribution to the 

way in which the ES is modelled. The ES considered in this chapter is surface water 

runoff reduction (SWRR), which describes the degree to which the natural environment 

reduces runoff that contributes to both pluvial and fluvial flood risk. Runoff is influenced 

by land cover characteristics that affect surface water infiltration, storage, interception 

and evapotranspiration (Weng, 2001; Whitford et al., 2001). Greater surface runoff, 

such as that associated with impermeable urban surfaces, may be realised as 

increases in discharge volume and peak flow (Whitford et al., 2001) which can exceed 

the capacity of manmade drainage systems (Kaźmierczak & Cavan, 2011). Therefore 

reduction of this runoff contributes to a reduction in flood risk (Whitford et al., 2001). 

Greater understanding of how equitably SWRR ES is distributed is important due to the 

social, health and economic implications of the associated flood risk, as highlighted in 

Chapter 3 section 3.2.2.1.  

This chapter characterises areas of higher (and lower) runoff reduction, and how this 

surface water runoff attenuation is associated with more or less deprived areas. To 

achieve this, it is necessary to first identify spatial patterns in land cover and soil types 

associated with surface water runoff. Section 7.1 describes the data used for doing so. 

Subsequent sections discuss specific methods applied to mapping SWRR ES, building 

on the methodology outlined in Chapter 3 section 3.3.1.2. Section 7.2.1 commences 

with an explanation of how the ES flows and thus how the service provisioning areas 

(SPAs) are defined - specifically this addresses the delimitation of LSOA river 

catchments. This section continues by outlining how ES supply for the catchment areas 

is calculated through application of a soil curve number approach. Methodological 

consideration given in section 7.2.2 to the third thesis objective - sensitivity testing – 

where variations applied consider uncertainty and alternative conceptualisations in 

modelling of surface water reduction ES supply. Section 7.2.3 explains the approach 

for quantifying demand for SWRR in the LSOAs using flood hazard data and gives a 

brief description of its combination with ES supply to generate a net ES index.  

Results addressing objective 2 (social distribution of ESs) are given for each case 

region individually (sections 7.3.1 - 7.3.3). For each, the spatial and social distributions 

of surface water runoff are described and visualised through a series of maps, boxplots 

and statistics. Section 7.3.4 examines, across all three case studies collectively, the 
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sensitivity of the revealed social distributions to uncertainties in quantifying ES supply 

and the alternate conceptualisations of supply and demand.  

 

7.1 Data 

The Land Cover Map of Great Britain 2007 (LCM2007: NERC CEH, 2011), released in 

2011, forms the main basis of land cover information used to quantify SWRR supply. 

This is a 25m resolution raster dataset which provides continuous coverage of 20 land 

cover classes across Great Britain. Whilst an updated map for 2015 is now available, 

this was not the case when the analysis commenced. One limitation of the LCM2007 

dataset is that the resolution does not reveal the detail of highly variable land cover in 

built-up areas. OS Mastermap Topographic vectors (2014) are therefore used to 

enhance the detail of the classification. The LCM2007 land cover class covering the 

highest percentage of total area of each OS Mastermap polygon is assigned to the 

respective polygon. A final land cover class is assigned according to which dataset 

provided the most information. For example, all buildings and roads delimited by OS 

Mastermap were classified as impervious land cover, and woodland defined by OS 

Mastermap was assigned as woodland for the final classification. For all areas defined 

as ‘natural’ or ‘general surface’ by OS Mastermap, the LCM classification was used. 

Land cover data was supplemented by information on soil types, obtained from the 

Hydrology of Soil Types (HOST) (Boorman et al., 1995) reclassification of National Soil 

Map of England and Wales; this was provided by the Centre for Ecology and Hydrology 

(CEH; www.ceh.ac.uk). The limitation of this dataset is its lower resolution (1km), 

however, it has national coverage and provides accessible information on how the soil 

may influence hydrological processes. This is based on the physical soils type and 

conceptual models of hydrological processes (Boorman et al., 1995). HOST data was 

matched to land cover data according to the HOST class with the highest coverage of 

each OS Mastermap land cover polygon. 

As discussed in the next section, mapping ES supply also required delimitation of 

catchment areas of the case study LSOAs. As a minimum, this requires data depicting 

watercourses and elevation, both of which were obtained from the Centre for Ecology 

and Hydrology (www.ceh.ac.uk). This comprised a hydrologically corrected digital 

terrain model (IHDTM) (Morris & Flavin, 1990) at a 50m resolution and a 1:50,0000 

watercourse vector dataset, both derived from 1:50,000 OS Mapping.  

Mapping of ES demand drew on the Environment Agency’s Risk Band layer from their 

Risk of Flooding from Multiple Sources (RoFMS) datasets. This national map integrates 

individually produced sets of data; Risk of Flooding from Rivers and Sea and Risk of 

http://www.ceh.ac.uk/
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Flooding from Surface Water (Environment Agency, 2017a). The Risk of Flooding from 

Rivers and Sea is a 50m resolution gridded dataset which is derived from local flood 

models and accounts for the influence of flood defences and the dependency between 

coastal and fluvial sources. This allocates each cell to a flood risk category denoting 

the likelihood of flooding in any given year (Environment Agency, 2017a). The Risk of 

Flooding from Surface Water datasets include three separate maps showing the 

surface water depth from rainfall with a 1 in 30, 1 in 100 and 1 in 1000 chance of 

occurring in any given year. From these a 2m gridded dataset is extrapolated to give a 

probability of flooding from surface water. To generate the Risk of Flooding from 

Multiple Sources, the probability maps for each source of flooding are added together, 

this therefore does not account for any dependencies between surface water flooding 

and fluvial/coastal flooding and may overestimate the combined chance of flooding 

(Environment Agency, 2017). Risk of flooding from groundwater, reservoirs or 

drainage/sewers is not accounted for. The resulting dataset is 2m gridded dataset with 

each cell assigned to four risk bands: 1- greater than 1 in 30, 2 - between 1 in 30 and 1 

in 100, 3 - between 1 in 100 and 1000 and 4 - less than 1 in 1000 in any given year 

(Environment Agency, 2017). The dataset was accessed in 2017 from 

environment.data.gov.uk.  

 

7.2 Methods 

7.2.1 Mapping surface water runoff reduction supply and flows  

For SWRR, ES flows from service providing areas (SPAs) to service benefitting areas 

(SBAs) are determined through physical, hydrological processes (Syrbe & Walz, 2012) 

and occur at the catchment scale. Since the LSOAs are the spatial unit required for 

analysing inequalities, the LSOA boundaries within the case study define the SBAs, 

consistent with analysis of the other ESs.  The river catchment for each LSOA are then 

defined, these delineate the SPA extents. This identifies all the natural capital upstream 

from the LSOA which may reduce runoff and thus be of benefit to those downstream by 

reducing the risk of flooding (Syrbe & Walz, 2012). Figure 3.7 in Chapter 3 provides an 

illustration of these spatial linkages.  

ArcGIS 10.3 Arc Hydro Tools (downloads.esri.com/archydro) were used to define 

catchment boundaries following the ESRI (2011) workflow. Model inputs were the 

IHDTM and watercourse data. Catchment extents were verified by comparison of a 

sample from each case study to extents presented in the Flood Estimation Handbook 

Web Service viewer (fehweb.ceh.ac.uk). Individual catchments were linked to their 
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corresponding LSOA via a unique Hydro ID. The combined extent of catchments was 

used to extract the relevant data required for quantifying ES supply (as described in 

section 7.2.1).  

A storm-runoff coefficient (USDA-NRCS, 1986), also known as the soil curve number 

method (SCS CN method), is used to quantify ES supply. This estimates the amount of 

runoff from defined land cover/soil type combinations under a selected precipitation 

scenario and pre-condition (i.e. dry or wet soils). Originally devised by the United 

States Natural Resources Conservation Service (NRCS), the method is empirically 

based; derived from observations of rainfall, runoff, land use, soil permeability and 

antecedent wetness. Observations were made for US land cover and soils but it is now 

the most widely used runoff model (Zeng et al., 2017) and has been applied globally 

(e.g. Laterra et al., 2012;  Fu et al., 2013; Sjöman & Gill, 2014; Zeng et al., 2017). In 

the UK, this method has been used to estimate the reduction in runoff by natural land 

cover in various urban areas including Edinburgh, Glasgow, Leicester, Oxford, 

Sheffield (Tratalos et al., 2007; Holt et al., 2015), Manchester (Gill, 2005), Leeds (Perry 

and Nawaz, 2008) and Merseyside (Whitford et al., 2001). Whilst typically the 

application of curve numbers has been to urban areas in the UK, it was originally 

developed in the US for agriculture watersheds (USDA-NRCS, 1986). A 2011 pilot 

study for the Scottish Environment Protection Agency (SEPA) set the precedent for its 

use in UK rural catchments, using the method as part of a more detailed assessment of 

potential natural flood management in Scotland (Halcrow, 2011). This was carried out 

for a dominantly upland catchment which features some agricultural land and smaller 

settlements downstream. A similar approach was then taken by Thomas & Nisbet 

(2016) for the Pickering Beck catchment in rural North Yorkshire.  

There is however some caution required regarding the application of the curve number 

method in the UK, especially with respect to transfer of US values to UK land covers, 

particularly in rural areas, where it has been found to underestimate runoff (Halcrow, 

2011). However, there are factors which lend itself to being an appropriate method for 

this study, not least that it allows for a relatively straightforward quantification of the role 

of natural land cover in runoff generation. Furthermore, our goal is to develop a spatial 

comparative analysis, rather than estimate runoff volumes for use in subsequent 

inundation analysis, which would require a higher degree of accuracy and more 

complex hydrological modelling (e.g. Nedkov & Burkhard, 2012). Such an intensive 

approach was not adopted given the context of the wider analysis concerned with 

mapping of multiple ESs in multiple regions. Thus in this analysis, where approximate 

runoff values are sufficient to derive the important relative spatial differences, estimated 

runoff volume is not given, and ES supply values are provided on a relative scale. As 

Thomas and Nisbet (2016) conclude, whilst the empirically based CN method does not 
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have the sophistication of physically based hydrological models, it does nevertheless 

offer a clear way of identifying locations of high and low runoff generation. The scope 

for error in estimates of the relative difference in ES identified using the CN method is 

tested for in the sensitivity analysis (section 7.2.2).  

To implement the CN method, discharge (runoff depth) for a rainfall event is calculated 

as (from Holt et al., 2015):  

 

𝑄 = {
(𝑃−0.2𝑆)2

𝑃+0.8𝑆 ,  

Q = 
(𝑃−0.2𝑆)2

𝑃=0.8𝑆
 if P > 0.2S, else Q = 0………………………………….Equation 7.1 

 

𝑆 =  
2540 

𝐶𝑁 
− 25.4……………………………….………………….…Equation 7.2  

Where: 

Q = runoff depth 

P = precipitation 

CN = curve number 

S = maximum potential retention of water.  

CNs range from 0 to 100, where 100 indicates a completely impermeable surface 

where 100% rainfall becomes runoff. Natural grassland tends to have the lowest curve 

number due to it allowing infiltration into soils (Armson et al., 2013), although this is 

dependent on the permeability of the underlying soils. Some natural land covers may 

have high CN such as bare soil, which may be highly compacted and allow little 

infiltration, in addition to not intercepting rainfall or enabling evapotranspiration.  

To apply equation 7.1, CNs are first assigned to each OS Mastermap land cover 

polygon based on the final land cover class and soil type (see Table 7.2). Typically, 

CNs are transferred from those calculated by the USDA-NRCS (1986) for US land 

covers to UK land covers based on their closest match. However the land cover 

classes used and CNs assigned to these in the UK have differed across studies. 

Classification schemes and associated CNs used by Whitford et al. (2001), Tratalos et 

al. (2007), Halcrow (2011) and Holt et al. (2015) in addition to those originally 

determined by USDA-NRCS (1986) were used to inform those selected in this study. 

The classification was determined as one which can be depicted from LCM2007 

combined with OS Mastermap data. Whilst it represents a simplification of the UK 

Broad Habitat classification, it presents a similar level of detail to those used in other 
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studies (e.g. Holt et al., 2015). Furthermore, similar classes which have the same CNs 

are combined into a single class (e.g. broadleaved and coniferous woodland are 

assigned to a single ‘woodland’ class). Assigned CNs are based on mid values from 

across the studies referred to above. Suburban and urban LCM2007 classes are used 

where more detailed classification is not possible, since within this class actual land 

cover varies the CNs assigned based on a weighted average. This weighting is derived 

by calculating the percentage of land cover types within the ‘urban’ and ‘suburban’ 

classes for a sample area using the more detailed 5m resolution classification derived 

for computation of the air pollutant removal ES (see Chapter 5).  

For each land cover CNs further depend on four soil hydrologic groups. Following Perry 

and Nawaz (2008) and Halcrow (2011), HOST soil types are assigned to the four 

groups used by USDA-NRCS (1986). Table 7.1 lists the soil groups, and Table 7.2 and 

Table 7.3 list the land cover classes and associated CNs.  

 

Table 7.1 Conversion from HOST soil types to NRCS Hydrological Group based on  
        Halcrow (2011) 
 

 

Standard Percentage Runoff 
(HOST) (%) 

 

NRCS Hydrological 
Group 

 

HOST soil class 

 

<10 
 

A 
 

1,2,4,11,13 
10-20 B 3,5 
20-40 C 6,9,10,14,16,17,18,24 
>40 D 7,8,12,15,19,20,21,22,23,25,26,27,28,29 

 

 

Table 7.2  Curve numbers assigned to land cover classes and underlying soil group for 
dry antecedent conditions.  

Land cover class 
Soil Hydrological Group                                             

A B C D 

Impervious 98 98 98 98 
Water 100 100 100 100 
Bare soil 77 86 91 94 
Arable 64 75 82 85 
Improved grassland 49 69 79 84 
Semi-natural grassland 35 60 73 79 
Scrub 45 66 77 83 
Marsh/bog 95 95 95 95 
Woodland 36 60 73 79 
Suburban 58 74 82 86 
Urban 60 75 83 87 

 

Curve numbers range from 0-100. Low numbers indicate high permeability, 100 indicates 

impermeable land. 
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Table 7.3 Curve numbers assigned to land cover and soil groups for wet antecedent  
        conditions 
 

Land cover class 
Soil Hydrological Group 

A B C D 

Impervious 99 99 99 99 
Water 100 100 100 100 
Bare soil 88 93 95 97 
Arable 80 87 91 92 
Improved grassland 68 83 89 92 
Semi-natural grassland 55 77 86 89 
Scrub 65 81 88 91 
Marsh/bog 97 97 97 97 
Woodland 56 77 86 89 
Suburban 76 86 91 93 
Urban 77 87 91 93 

 

Curve numbers range from 0-100. Low numbers indicate high permeability, 100 indicates 

impermeable land. 

 

To isolate the effect of natural land cover in reducing runoff, a hypothetical scenario 

where all land cover is impermeable is used (following Holt et al., 2015; Maragno et al., 

2018). Runoff (Q) is calculated for actual land cover and for the hypothetical scenario 

based on a rainfall depth of 1.2 cm and normal antecedent conditions (using CN values 

in Table 7.2) as considered by Holt et al., (2015) to be a heavy event for their study 

location of Sheffield. This is a reasonable scenario to transfer to this study given the 

geographical location of the case studies, which are typically wetter (South Pennines) 

and drier (Leeds and Northampton) than Sheffield. They are however within reasonable 

proximity to the south and north of Sheffield. A heavy rainfall event is used since it is in 

these instances that the ES has a greater importance. Subtraction of the two gives the 

runoff reduction made by natural land cover.  

The antecedent ground condition, i.e. the saturation of soil prior to a rainfall event, 

influences how effective natural land cover is at reducing runoff. This may alter the 

spatial distribution of SWRR ES and therefore needs to be taken into account. CN 

values based on wet conditions (Table 7.3) are used to calculate runoff under wet 

conditions (Qwet). As with the previous scenario, rainfall depths used by Holt et al. 

(2015) are applied. Thus, for the wet scenario an extreme event where rainfall occurs 

to a depth of 6 cm is used. Whilst such high rainfall is less likely in Northampton, this 

was exceeded for many parts of the South Pennines and Leeds regions during a 2015 

storm which caused widespread flooding (Met Office, 2016), and is thus considered 

realistic. Again, the difference between the actual and hypothetical scenarios is 

calculated. Average runoff reduction from both normal and wet antecedent conditions 

are calculated (following Holt et al., 2015). 
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The final stage in the production of an ES supply index for SWRR is to aggregate the 

mean runoff reduction across each catchment. This is achieved by calculating the area 

weighted mean using the polygon intersection tool in Geospatial Modelling 

Environment software (www.spatialecology.com/gme). The results are rescaled 

between 0 and 10, where 0 represents the lowest supply and 10 represents the highest 

supply (section 3.3.1.2). This enables relative ES supply to be compared to relative ES 

demand.  

 

7.2.2 Surface water runoff reduction sensitivity testing 

Sensitivity tests address sources of uncertainty made in the quantification of surface 

water runoff ES supply. There are various potential sources of uncertainty in the 

computation of ES supply including the spatial and thematic resolution of land cover 

and soil classification data, and the CNs applied. The input datasets are widely 

available with detailed land cover given the areal coverage required and so have been 

applied in other studies adopting a similar approach (e.g. Tratalos et al., 2007; Holt et 

al., 2015). However, as noted above, the CNs applied have varied quite considerably 

across all such studies. This could impact upon the spatial distribution of modelled ES 

supply hence sensitivity tests were conducted to address variability in CNs selected.  

 

http://www.spatialecology.com/gme/
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Table 7.4   Curve numbers applied for ‘high influence’ ES supply scenario. 
Comparative to the ‘best estimate’ scenario curve numbers for vegetated 
land are reduced to represent a greater effectiveness of vegetation in 
reducing runoff. These are determined using the lowest curve numbers 
applied in the studies referenced in section 7.2.1.  

 

Table 7.5 Curve numbers applied for ‘low influence’ ES supply scenario. Comparative 
to the ‘best estimate’ scenario curve numbers for vegetated land are 
increased to represent a lower effectiveness of vegetation in reducing 
runoff. These are determined using the highest curve numbers applied in 
the studies referenced in 7.2.1. 

 

Two variants of CNs are tested (Table 7.4 and Table 7.5); firstly where vegetation is 

more effective than the baseline scenario at reducing runoff (‘high influence’ scenario) 

 
   

 Wet antecedent conditions  Dry antecedent conditions 

Land cover class 

Soil groups  Soil groups 

A B C D  A B C D 

Impervious 98 98 98 98  99 99 99 99 
Water 100 100 100 100  100 100 100 100 

Bare soil 72 82 87 89  86 91 94 95 
Arable 51 67 76 80  71 82 88 90 

Improved grassland 39 61 74 80  60 78 87 90 
Semi-natural 

grassland 30 58 71 78  50 76 85 89 
Marsh 85 85 85 85  93 93 93 93 
Scrub 45 66 77 83  65 82 89 92 

Woodland 30 55 70 77  50 74 84 89 
Suburban 53 69 77 82  72 83 89 91 

Urban 57 72 81 85  75 86 91 93 

 
   

 Wet antecedent conditions  Dry antecedent conditions 

Land cover class 

Soil groups  Soil groups 

A B C D  A B C D 

Impervious 98 98 98 98  99 99 99 99 
Water 100 100 100 100  100 100 100 100 

Bare soil 77 86 90 91  88 93 95 97 
Arable 76 85 90 93  88 92 95 97 

Improved grassland 68 79 86 89  83 90 93 95 
Semi-natural 

grassland 30 58 71 78  50 76 85 89 
Marsh 95    95 95 95  98 98 98 98 
Scrub 48 67 77 83  68 82 89 92 

Woodland 45 66 77 83  65 82 89 92 
Suburban 62 74 81 84  79 87 90 93 

Urban 68 79 86 89  83 90 93 95 
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and; secondly where vegetation is less effective at reducing runoff (‘low influence’ 

scenario). The CNs used in the sensitivity tests are the highest and lowest values 

assigned to respective land covers in the same UK studies the baseline CNs were 

established from. They are therefore still considered to be a realistic representation. 

These alternative CNs are applied to calculations of ES supply and ultimately net ES 

index.  

 

7.2.3 Mapping surface water runoff demand 

The demand for regulating ESs may be conceived as the “amount of regulation needed 

to meet predetermined conditions” (Villamagna et al., 2013). In their review of how 

studies have operationalised ES demand, Wolff et al. (2015: p163) find that demand for 

regulating services tends to be quantified in terms of “exposure and vulnerability of 

society and economy to potential changes of ecosystem conditions”. Specifically, for 

flood regulation (and thus for SWRR) a common approach is to combine flood hazard 

with vulnerability of assets and/or population density, often termed ‘flood risk’ (e.g. 

Stürck et al., 2014). Thus the service is deemed to be ‘needed’ more if there are more 

people or higher potential for economic loss (e.g. Verhagen et al., 2016). There is also 

a large literature regarding social vulnerabilities, where certain social groups 

experience greater flood risk or have lower ability to recover from flooding (see 

Kuhlicke et al., 2011 for a review). There is thus potential to incorporate this research 

within the concept of demand for SWRR, which would involve shaping ES demand 

according to socio-economic characteristics (e.g. Nedkov & Burkhard, 2012; Maragno 

et al., 2018). 

For this analysis, however, neither the value of assets or socio-economic factors are 

incorporated into the quantification of ES demand. Accounting for greater monetary 

values of assets (e.g. housing) would bias demand to wealthy areas, potentially 

concealing demand in poorer areas (where more vulnerable households often reside). 

Similarly consideration of socio-economic conditions which characterise vulnerability 

would coincide with the subsequent comparison to deprivation data and so risks 

introducing a ‘double counting’ effect in the social distribution analysis. 

Therefore, in this study, ES demand in the first instance is determined using flood 

hazard only, in line with Villamagna et al.’s (2013) description of demand for regulating 

services. Therefore demand is greatest where flood hazard is greatest irrespective of 

whether a location has 1 or 100 people, or property worth £70,000 or £700,000. 

Sensitivity testing subsequently assesses ES demand with a consideration of the 

number of people exposed to the flood hazard. This enables social distributions to be 
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tested in accordance with different normative stances on what ‘fair’ means, as 

discussed in section 8.3.  

The case study LSOAs define the extents of SBAs, i.e. the location of demand for 

SWRR ES. Syrbe & Walz (2012) limit the SWRR SBA as the ‘built area within the 

floodplain’, however in this analysis non-built up areas accessible for recreation 

purposes (as defined in Chapter 6) and agricultural land are included. This is because 

of potential social and economic impacts from flooding of this land in additional to 

urban land cover. To compute an ES demand for each LSOA, the area-weighted mean 

flood hazard, obtained from RoFMS Risk Band dataset (see section 7.1) is calculated 

using intersection tools in Geospatial Modelling Environment software. Since the 

highest risk in the RoFMS dataset is assigned as the lowest band, the values in the 

RoFMS dataset were reversed prior to calculation of mean hazard. The results are 

rescaled between 0 and 10 to give a final ES demand index which can then be 

compared to ES supply for creation of the net ES index (section 3.3.1.2). Areas at risk 

of flooding  (>0.1% chance of flooding in any given year) as defined by the ROFMS 

dataset are included on maps of ES demand to emphasise the spatial extent of 

demand within each LSOA.  

Finally, the net SWRR index is computed by subtraction of demand from supply, both 

of which have been aggregated to LSOAs and have values rescaled between 0-10. 

LSOAs with the lowest values are where there is greater flood risk combined with lower 

amount of runoff reduced by natural land covers across the whole catchment. The 

highest values indicate areas where there is lower flood risk but higher interception, 

infiltration and evapotranspiration of runoff by natural land covers and soil. It should be 

noted that a value of 0 does not necessarily mean that runoff reduction is such that it 

negates flood risk.  

7.3 Results 

7.3.1 The spatial and social distribution of surface water runoff 

reduction in Leeds 

Highest SWRR ES supply is clustered in the north-east of the Leeds region (Figure 

7.1), a largely rural area dominated by arable farmland and woodland. Supply is also 

moderately higher along the River Aire, which crosses the region northwest to 

southeast. Lower supply radiates from near the city centre to the edge of the city in 

several linear sections. Highest ES demand is also predominantly along the River Aire; 

particularly in the southeast of the study site, in the west of the city and around the 

periphery town of Otley in the very northwest of the region (Figure 7.2). Notably, there 
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is also moderately higher demand in the rural north-eastern LSOAs. Overall there is 

moderately strong and significant correlation between ES supply and ES demand 

(Table 7.6).    

 

 

 

 

 

 

 

 

  

 

 

Figure 7.1 The spatial distribution of SWRR supply aggregated to LSOAs (using areal 
weighted mean) across Leeds. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2  The spatial distribution of demand for SWRR aggregated to LSOAs (using 
areal weighted mean) across Leeds. Shaded areas indicate the extent of all 
areas at risk of flooding within the LSOAs.  
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Figure 7.3 The spatial distribution of SWRR net ES index aggregated to LSOAs across 
Leeds. 

 

The net ES index (supply less demand) is lowest in the northeast (but with pockets of 

high ES scattered across the district) and highest in the southeast, along further 

sections of the River Aire in Leeds city and in Otley (Figure 7.3). Spearman Rank 

correlation coefficients indicate that net ES index is more strongly associated with the 

ES demand (ρ = -0.647) compared to ES supply (ρ = 0.275) (Table 7.6). Overall for 

Leeds, SWRR ES is lower in more deprived LSOAs than in less deprived areas. 

Spearman Rank correlation coefficients between the ES and deprivation are given in 

Table 7.6 (below p. 198). These reveal a small but significant linear relationship 

between the net ES index and IMD ranks (ρ = 0.226), thus ES increases as deprivation 

decreases. This is primarily driven by the significant moderate positive correlation 

between ES supply and IMD ranks (ρ = 0.386). Correlation between ES demand and 

IMD ranks is positive and weak (significant at the 95% rather than 99% confidence 

level). The concentration index, computed using the net ES index, is close to zero 

(0.09), indicating a relatively equal distribution of surface water runoff ES across 

deprivation deciles.  
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Figure 7.4  SWRR supply values per population weighted IMD deciles for Leeds. 
Deprivation decreases, decile 1 to 10. 

 

 

Figure 7.5  SWRR demand values per population weighted IMD deciles for Leeds. 
Deprivation decreases, decile 1 to 10.  
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Figure 7.6  SWRR net ES index per population weighted IMD deciles for Leeds. 
Deprivation decreases, decile 1 to 10.  

 

Boxplots provide a more detailed insight into how inequalities indicated by the 

correlation are manifest. Specifically, that net ES index tends to be slightly higher for 

the three least deprived deprivation deciles, but with no discernible pattern across the 

seven more deprived deciles (Figure 7.6). The distribution of ES supply across 

deprivation deciles is visualised as a boxplot in Figure 7.4. Supply is lowest for the two 

most deprived deciles and highest for the three least deprived deciles, reaching a 

maximum for the least deprived (10th) decile. There is no discernible change in ES 

demand across deprivation deciles (Figure 7.5). 
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Figure 7.7  Leeds LSOAs with significant local spatial associations between IMD ranks 
and SWRR. Identifies clusters of areas where there are significant 
associations between ES indexes and IMD ranks in the same direction 
(95% confidence level). The direction of associations are given in the map 
legend. Parenthesis indicate the number of LSOAs within each class. 

 

Spatial correlations indicate that LSOAs where there is both low net ES index and high 

deprivation, are located in more built up areas. Specifically along a section of the River 

Aire northwest from Leeds city centre, to the east of the city centre and beyond the city 

boundaries around Allerton Bywater/Methley in the southeast of the region and Otley in 

the northwest (Figure 7.7). This constitutes the greatest number (42) of all LSOAs with 

significant local correlation between deprivation and net ES index. There are only three 

LSOAs where there is significant local correlation between high deprivation and high 

net ES index.   

7.3.2 The spatial and social distribution of surface water runoff 

reduction in the South Pennines 

Supply for SWRR in the South Pennines tends to be highest in the urban areas, 

notably around Halifax in the east of the study area (Figure 7.8). This appears counter 

intuitive but is likely due to the large proportion of total catchment area by HOST group 
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B soils (which allow for greater infiltration than the other soil groups present in the 

region). ES supply is lower in the rural areas, which have a greater coverage of HOST 

group D soils (the least permeable), whilst peatlands are also widespread. Peatlands 

have high CNs since the ground is considered to be permanenekt saturated and thus 

has less capacity to reduce runoff.  

Highest demand for SWRR is concentrated along the River Calder, in the east of the 

study region running from Hebden Bridge in a southeast direction towards Sowerby 

Bridge (south of Halifax), and more centrally around Todmorden (Figure 7.9). LSOAs 

with lower demand are predominantly clustered in urban areas of Halifax north of the 

River Calder and in rural areas between the outskirts of the towns of Huddersfield and 

Rochdale in the south and stretching through the region northwards. 

 

 

Figure 7.8 The spatial distribution of SWRR supply aggregated to LSOAs (using areal 
weighted mean) across the South Pennines. 
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Figure 7.9  The spatial distribution of SWRR demand aggregated to LSOAs (using 
areal weighted mean) across the South Pennines. Shaded areas indicate 
the extent of all areas at risk of flooding within the LSOAs.  
 

 

Figure 7.10 The spatial distribution of SWRR net ES index aggregated to LSOAs 
across the South Pennines. 
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There is spatial disparity between areas of high supply and high demand, as indicated 

by their strong significant negative correlation (ρ = -0.521). Thus ES supply does not 

seemingly satisfy demand, which is evident in the net ES index (Figure 7.10). Both 

supply and demand have very strong significant correlations with the net ES index. 

Therefore spatially, the net ES index is distributed as described above for supply and 

demand. It’s can also be observed that in the rural LSOAs there is a north to south 

gradient of higher to lower net ES index.  

A significant moderate negative correlation (ρ = -0.320) between IMD rank and net ES 

index coupled with a concentration index of -0.22 indicate ES decreases as deprivation 

decreases. This is driven by both supply and demand, whereby supply decreases and 

demand increases as deprivation decreases (ρ = -0.316 and ρ = 0.275 respectively) 

(Table 7.6). Thus the most deprived areas tend to benefit more from SWRR and have 

less need for this service. Boxplots show that the net ES index is highest for LSOAs in 

the most three deprived deciles, whilst the middle decile tends to have the lowest net 

index (Figure 7.1). Supply is highest for LSOAs in the two most deprived deciles, 

although there is also a large range of values for the 9th decile (second least deprived), 

including LSOAs with highest ES supply. Demand is lowest for LSOAs in three most 

deprived deciles; median demand peaks for the 5th decile but is generally higher for all 

of the middle to low deprivation deciles (Figure 7.12).  

 

 

Figure 7.11 SWRR supply per population weighted IMD deciles for South Pennines. 
Deprivation decreases, decile 1 to 10.  
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Figure 7.12 SWRR demand per population weighted IMD deciles for South Pennines. 
Deprivation decreases, decile 1 to 10.  

 

Figure 7.13 SWRR net ES indexes per population weighted IMD deciles for South 
Pennines. Deprivation decreases, decile 1 to 10.  
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Local statistics showing spatially dependent associations are, for the majority of 

LSOAs, not significant (Figure 7.12). Most notably there are very few areas where 

there is significant local association between high deprivation and low net ES index, 

this was also the case when tested separately for low ES supply and high ES demand. 

Where these do occur, they are located around Halifax. 

 

 

Figure 7.14  South Pennine LSOAs with significant local spatial associations between 
IMD ranks and SWRR. Identifies clusters of areas where there are 
significant associations between ES indexes and IMD ranks in the same 
direction (95% confidence level). The direction of associations are given in 
the map legend. Parenthesis indicate the number of LSOAs within each 
class. 

 

 

7.3.3 The spatial and social distribution of surface water runoff 

reduction in Northampton 

SWRR supply is spatially variable across the Northamptonshire study area (Figure 

7.15). Generally, the catchments for Northamptonshire LSOAs are not extensive due to 

its location near the head of the River Nene and its relatively flat topography. 

Consequently ES supply is largely determined by the land cover and soil types within 

and close to the respective LSOAs. There is a single area which has much greater 

supply compared to all other LSOAs - this is located south of Northampton town in the 

east of the region and comprises both urban and rural LSOAs.  
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Figure 7.15 The spatial distribution of SWRR supply 
aggregated to LSOAs (using areal weighted mean) across the 
Northampton region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.16  The spatial distribution of SWRR demand aggregated 
to LSOAs (using areal weighted mean) across the 
Northampton region. Shaded areas indicate the extent 
of all areas at risk of flooding within the LSOAs.  
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Figure 7.17 The spatial distribution of SWRR net ES index 
aggregated to LSOAs across the Northampton 
region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.18  Northampton LSOAs with significant local 
spatial associations between IMD ranks and 
SWRR. Local indicators of spatial 
association (LISA) identify clusters of areas 
where there are significant associations 
between net ES index values and IMD ranks 
in the same direction (95% confidence 
level). The direction of associations are 
given in the map legend. 
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These LSOAs share the same catchment and higher supply is attributed to the greater 

coverage of woodland compared to other catchments. Otherwise rural areas to the 

west of Northampton town have a comparatively higher supply than elsewhere in the 

study region.  

The spatial pattern of ES demand echoes that of supply, in particular, it is highest along 

the River Nene to the southeast of Northampton town (Figure 7.16). There is also high 

demand in South Northamptonshire’s rural LSOAs located at the southern tip of the 

study region. Here, higher demand is attributed to the presence of Wootton Brook, a 

tributary of the River Nene. 

Comparable spatial distributions of ES supply and demand is confirmed by their very 

strong significant correlation (ρ = 0.872). This produces a net ES index that is spatially 

scattered (Figure 7.17), since places of high supply and high demand effectively 

‘cancel’ each other out (although note that they are based on relative and not absolute 

values). Whilst there is some clustering of similar net ES index values in rural areas, for 

example of lower supply and higher demand in the very north and southwest of the 

study area, there is no distinguishable pattern in ES index across Northampton town. 

Deprived areas are spatially concentrated in Northampton, with only a few pockets of 

lower deprivation dotted around the rural areas in South Northamptonshire and 

Daventry. There is therefore low spatial coincidence with the SWRR net index across 

the majority of the region (Figure 7.18). The lack of association between net ES index 

and deprivation levels is confirmed by correlation coefficients (Table 7.6) and a 

concentration index close to zero (-0.04). These indicate no significant relationship 

between deprivation and net ES index, and no significant relationship between 

deprivation and ES supply and ES demand individually. The distribution of the net ES 

index across deprivation deciles is visualised in the boxplot in Figure 7.21. There are 

slightly higher net ES index values for the middle deciles and interquartile ranges 

indicate more LSOAs in the most deprived deciles have lower net ES. However, in 

general the boxplot confirms there are no major differences in net ES across 

deprivation deciles.  

The result from the local analysis are shown in Figure 7.18. There are few LSOAs with 

significant spatial correlation between deprivation and ES (26 out of 167 LSOAs). Only 

one LSOA with spatial correlations indicating a significant association between high 

deprivation and low ES occurs outside of Northampton. Whilst the majority of less 

deprived areas with high deprivation occur in the south of the study region.  
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Figure 7.19 SWRR supply per population weighted IMD deciles for the Northampton 
region. Deprivation decreases from decile 1 to 10.  

 

 

Figure 7.20 SWRR demand per population weighted IMD deciles for the Northampton 
region. Deprivation decreases from decile 1 to 10.  
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Figure 7.21 SWRR net ES indexes per population weighted IMD deciles for the 
Northampton region. Deprivation decreases from decile 1 to 10.  
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Table 7.6 Spearman rank correlation coefficients showing linear associations between 
SWRR ES and IMD ranks.  

a) Leeds 

  IMD ranks ES supply ES demand ES index 

 IMD ranks - 0.386** 0.113* 0.226** 
 ES supply 0.386** - 0.454** 0.275** 
 ES demand 0.113* 0.454** - -0.647** 
 ES index 0.226** 0.275** -0.647** - 

S
e

n
s
it
iv

it
y
 ‘High influence’ ES index NS    

‘Low influence’ ES index -0.133**    
Population weighted ES demand -0.319     
Population weighted ES index 0.435**    

 

 
b) South Pennines 

  IMD ranks ES supply ES demand ES index 

 IMD ranks - -0.316** 0.275** 0.320** 
 ES supply -0.316** - -0.521 0.858** 
 ES demand 0.275** -0.521 - -0.860 
 ES index -0.320** 0.858** -0.860** - 

S
e

n
s
it
iv

it
y
 ‘High influence’ ES index     

‘Low influence’ ES index     
Population weighted ES demand -0.269**    
Population weighted ES index NS    

 
c) Northampton 

  IMD ranks ES supply ES demand ES index 

 IMD ranks - NS NS NS 
 ES supply        NS - 0.872** -0.337** 
 ES demand NS 0.872** - -0.622** 
 ES index NS -0.337** -0.622** - 

S
e

n
s
it
iv

it
y
 ‘High influence’ ES index 0.169*    

‘Low influence’ ES index NS    
Population weighted ES demand -0.362**    
Population weighted ES index 0.210**    

  

IMD ranks increase as area deprivation decreases; a positive correlation indicates net 
ES index increases with decreasing deprivation.  

Correlations for baseline calculations are given for IMD and net ES index, and IMD and 
ES supply and demand separately. 

For sensitivity tests, correlation with only IMD ranks are computed for sensitivity of net 
ES index given variations in ES supply (including a ‘high influence’ scenario where 
vegetated land is assigned a greater capacity to reduce runoff; a ‘low influence’ 
scenario where vegetated land is assigned a lower capacity to reduce runoff; and a 
scenario where the SPA is defined as the LSOA only, not for catchments – see section 
7.2.1). Correlations with IMD ranks are given for variation in demand given a population 
weighting and the net ES index given this weighted demand. 

NS no significant correlation **Correlation significant at 99% confidence level 
*Correlation significant at 95% confidence level.  
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7.3.4 Sensitivity tests 

The sensitivity of the social distribution of SWRR net ES index is tested with respect to 

assumptions in the conceptualisation of supply and demand and to the uncertainties in 

CNs assigned to describe the relative abilities of different land covers to reduce runoff.  

Tests of the uncertainties in assigned CNs were conducted only for Northampton and 

Leeds, the first case studies analysed (Table 7.6), as the long processing times 

involved limited the opportunity to conduct sensitivity tests all the case studies. For 

Northampton, there was no change in the results given CNs that represent an 

enhanced influence of vegetated land cover on SWRR (the ‘high influence’ scenario – 

see Table 7.3). In this case there remained no significant correlation between the ES 

and deprivation. Similarly, under this scenario for Leeds no significant correlation was 

found, however, this contrasts with significant positive correlation between the ES 

index and IMD determined under the ‘best estimate’.  

For the ‘low influence’ scenario whereby vegetation has less impact on SWRR, a 

different social distribution is revealed from that determined under the ‘best estimate’ 

scenario. In Northampton, there is weak positive correlation (95% confidence level), 

indicating some inequality, with net ES index decreasing as deprivation increases. This 

compares to no significant relationship given a ‘best estimate’ of CNs. For Leeds, the 

SWRR ES spatial distribution is notably changed, with a higher net ES index in many of 

the suburban and urban areas. This is likely due to the much lower impact assigned to 

the agricultural land in the northern areas in reducing runoff. As a result, for the ‘low 

influence’ scenario the relationship between net ES index and IMD is reversed, 

indicating a weak association between lower deprivation and higher ES. 

Overall, there is some sensitivity to the parameters assigned within the SWRR ES 

modelling which can result in a different interpretation of its social distribution. This 

indicates a need for further, more detailed analysis. Chapter 5 presented results of the 

correlation analysis of deprivation and percentage greenspace derived from the 

Generalised Land Use Database (GLUD). This provides some insight as to how well 

assessing inequalities using this easily accessible metric is representative of 

inequalities in some of the actual ESs generated by greenspace. Comparison to the 

correlations with deprivation for all variations of SWRR index reveals similar results 

only for the net ES index in Leeds and the net ES index for the South Pennines which 

incorporates population density within demand. Otherwise results are inconsistent, 

indicating proportion of greenspace to be a poor proxy to use in assessing the 

inequality of SWRR. 
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Sensitivity to the conceptualisation of ES demand is carried out consistent with 

previous analysis, i.e. where surface water regulation ES is demand not by an 

individual, but by an area’s population. This involves reassessing ES demand as a 

function of the size of the benefiting population. This test was conducted for all case 

study regions. Crucially, this test shows greater consistency in the findings across the 

three regions, namely, a significant moderate negative correlation is found between ES 

demand and IMD ranks. Thus once population weighted demand is considered in 

conjunction with ES supply, there is an apparent increase in inequality in the 

distribution of net ES index compared to the ES index original calculations. This results 

is a stronger degree of inequality for Leeds (ρ = 0.435 compared to ρ = 0.226) and 

indication of some inequality for Northampton (ρ = 0.210 compared to non-significant 

results). Whilst for the South Pennines, no significant correlation is found but this 

compares to a previous finding of negative correlation (a higher ES index for more 

deprived areas). The implication of this sensitivity test is that reducing ES demand (i.e. 

the risk of flooding) for the more deprived areas would also meet the needs of the 

many, rather than the needs of the few.  

 

7.4. The social distribution of surface water runoff reduction in 

the case study regions 

The results described above reveal that the social distribution of SWRR is different for 

each case region, in addition the findings should be used with caution since they have . 

Figure 7.22 provides a visual comparison of the three regions using concentration 

curves, associated with the concentration indexes, where increasing divergence of a 

curve from the line of perfect equality, indicates rising inequality. These findings,  

The concentration curves reinforce the finding of inequality, whereby more deprived 

areas benefit least from SWRR, only occurs within the Leeds region. This association 

was consistent regardless of the changes in estimates of net ES index as applied in the 

sensitivity tests. However, the concentration curve for Leeds lies closest to the line of 

equality compared to those for the other regions. For Northampton there was no strong 

indication of inequality, although under two scenarios (when ES demand is population 

weighted, and when the role of vegetation in reducing runoff is increased) a decrease 

in net ES index with increasing deprivation was detected. 
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Figure 7.22 SWRR concentration curves for net ES index. 

 
IMD decile 1 represents most deprived population-weighted decile; IMD decile 10 
represents least deprived population-weighted decile.  

Line of equality shows theoretical equal distribution across all deciles. Concentration 
curves show distribution of SWRR net ES index according to deprivation for each case 
study. Less than ‘equal’ share is indicated by the curve falling below the line of equality, 
a greater share is indicated by curve rising above the line of equality.  

 

This is reflected in the concentration curve, which does not fall below the line of 

equality but does show the less deprived share a greater proportion of the ES. A 

reverse association was revealed in the South Pennines, as shown by the greatest 

divergence of the concentration curve above the line of equality for the most deprived 

deciles. Although the sensitivity tests indicate that this finding varies given different 

model estimates of supply and under different conceptualisations of demand. When 

demand is based solely on flood hazard, it is greatest for the least deprived areas. 

However, under a utilitarian perspective (greatest benefit for most number of people), if 

demand is considered higher for areas which have a higher flood hazard and 

population density then it is greatest for the most deprived areas. It is noted however 

that once considered in conjunction with ES supply, there is no significant correlation 

with deprivation. Overall the results indicate that the social distribution of the ES of 

SWRR in England is place specific, but these findings should be used with caution 

given sensitivities to model inputs and due to issues of ecological fallacy arising from 

generalisation across LSOAs.  
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Chapter 8 Discussion 

 

Preliminary insights into inequalities in the distribution of ecosystem goods and services 

were determined through the first national analysis of a comprehensive set of natural 

capital indicators and subsequent comparison to deprivation at the district level in England 

(Chapter 4). The characteristics explored can be considered as two of the ‘states’ 

underpinning the socio-ecological system illustrated by the research conceptual framework 

(Figure 3.6; Chapter 3). The analysis revealed that the most deprived communities in 

urban areas are characterised by an overall low extent and quality of natural capital, but 

that simultaneously there are rural deprived areas characterised by the highest quality and 

extent of natural capital. Deprivation is lowest in districts typically featuring the highest 

proportion of woodland coverage and publically accessible spaces and also in districts 

which are largely agricultural but with inaccessible natural environments. These findings 

demonstrate that the distribution of natural capital does vary by social deprivation, 

however, a lack of consistent pattern of inequality at the national level implies that 

equitable management of ecosystems should be addressed at a sub-national level. This 

emphasises the need for a more in-depth analysis at a more local level as presented by 

the case study analyses in Chapters 5-7.  

The case studies of the Leeds, Northampton and South Pennine regions were used to 

examine the distribution of ES by deprivation. Natural capital classification carried out in 

Chapter 4 provided a broad insight into the different types and quality of natural capital 

characteristics of these districts, comprising of rural and urban areas with varied natural 

capital profiles and strong gradients in socio-economic deprivation. Distributions of two 

regulating ES – air pollutant removal and surface water runoff reduction, and one cultural 

ES – recreation were assessed (the selection of which were discussed in section 3.2). 

Each of these exhibit direct, quantifiable ES flows (of particular relevance to high income 

countries) from natural capital to beneficiaries on local to regional scales, with distributions 

which are affected by local and national land planning policy.  

Variations in ES supply, demand and the net ES index (supply less demand) within the 

study regions were modelled in relative terms and aggregated to small area geographies 
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(LSOAs). This accounted for the flows of ES from more distant natural capital. Typically 

the supply side has dominated the literature, but increasingly, there is greater recognition 

for ES research to better consider the beneficiaries and their demand for ES. This is 

critical to the concept of ES which is based upon the benefits of ES to human health and 

wellbeing, and in particular for quantifying and addressing potential inequalities. In this 

case, the beneficiaries were defined as the population living within the case study LSOAs, 

with the Index of Multiple Deprivation (IMD) used to differentiate their socio-economic 

conditions. Demand for the ESs was determined as the level of need (i.e. exposure to a 

hazard) for the selected ESs. This need criteria was applied because it is considered that 

in the absence of need (e.g. no flood risk) then there is no benefit from a service (e.g. 

which reduces flood risk) supplied to that area.  

Results from the analyses, which address objectives 2 (characterising the social 

distribution of ES) and 3 (sensitivity tests), were detailed for each ES individually in 

Chapters 5-7, with further reflection on these results detailed below. Sections 8.1 and 8.2 

review results on a case study basis and per ES respectively, thus considering the wider 

implications of results. Any inequalities observed may be perceived as fair or unfair hence 

these different perspectives, which are important for understanding how inequalities may 

(or may not) be addressed, are discussed in section 8.3. The discussion then broadens to 

consider opportunities for policy and practice to address ESs within an inequalities 

framework. This discussion first addresses better accounting for distributional justice with 

respect to ESs, through for example national policy and guidance (section 8.4.1), and in 

practice through ES assessments and tools (section 8.4.2), taking methodological insights 

from the assessment carried out in this research. Section 8.5 then considers how 

information regarding the social distributions of ESs can then be considered in decision 

making for sustainable land management and planning. The final section (8.6) concludes 

by considering some limitations of the analysis and opportunities to refine and build upon 

the research.  
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8.1 How equally are the selected ESs socially distributed in three 

case study regions? 

8.1.1 Leeds 

ES inequality was found to be most prevalent in Leeds compared to the other case study 

regions. Both air pollutant removal and surface water runoff reduction ES decline with 

increasing deprivation (with respect to net ES indexes). Notably, the strongest association 

between deprivation and air pollutant removal is revealed for Leeds and it is the only case 

study whereby surface water runoff reduction is lowest for most deprived areas. No 

significant relationship is found between recreation net ES index and deprivation: as 

deprivation increases availability of public greenspace declines, but this effect is offset by 

increasing provision of public rights of way.  

Supply is the key factor in the association between surface water runoff reduction and 

deprivation in Leeds. Leeds is also the only case study whereby air pollutant removal 

supply decreases with increasing deprivation. Considering patterns across all ESs jointly, 

Figure 8.1 shows the proportions of total supply/total demand in Leeds for deprivation 

quintiles. This illustrates overall ES supply is lowest for LSOAs containing the most 

deprived 20% of the population, whilst simultaneously demand is highest. By contrast the 

least deprived 20% population have the greatest share of benefits but lowest demand. 

Although values for supply are relative to overall supply across the region and similarly, 

values of demand are relative to overall demand across the region, they are not relative to 

each other (i.e. even if supply and demand have the same value this does not mean that 

the ES supply fulfils demand). Regardless, it remains evident that there is a 

disproportionate distribution of ESs in Leeds.  

Overall the economy in Leeds is strong, but for considerable time Leeds City Council has 

been concerned by its two-speed economy whereby robust economic growth overall has 

not benefitted most inner city residents, who live in areas of severe deprivation (Boyle & 

Alvanides, 2004). Indications of an unequal economy persist, for example, Leeds has an 

above average employment rate and the 8th greatest increase in private sector jobs 2016-

2017 (Centre for Cities, 2019). However in 2015, Leeds was also identified as the third 

most unequal city on the basis of Job Seeker’s Allowance claimant rates (Centre for Cities, 
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2015) and 22% of Leeds LSOAs are in the 10% most deprived neighbourhoods nationally 

(LCC, 2016). 

 

 

Figure 8.1 Flows of ES supply and demand stratified per population weighted deprivation 
quintiles in Leeds 

Flows of ES supply and demand as percentage of totals of each service going 
to each deprivation quintile (based on IMD). Thickness of grey lines denotes 
share of flow. Deprivation is represented by the central coloured nodes, and 
decreases towards the bottom. The numbers in black show that for the three 
ES combined, overall supply increases as deprivation decreases, whilst 
demand decreases. See Appendix A4 for further guidance on interpretation of 
this diagram. 

 

In comparison to other city local authority district boundaries, the Leeds district extends 

beyond the city boundaries and incorporates more woodland than typical of other cities. 

Furthermore it is located close to the Yorkshire Dales National Park and is considered to 

have good coverage of greenspace within the city. Despite this, district level analysis 

showed that natural capital extent and quality is close to the national average (Chapter 5, 
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section 5.2). In comparison to the town of Northampton as another densely built up area, 

several of the natural capital indicators in Leeds (e.g. woodland) are slightly higher but 

natural capital across the whole Northampton case study region is higher overall (Chapter 

5, Figure 5.8).  

Thus in comparison to our other case study regions Leeds suffers from greater inequalities 

in the assessed ESs and lower overall natural capital within the district boundaries, 

indicating a greater need for both net, and more equitable, increases in natural capital and 

ESs. The need to improve access to environmental benefits for all within the district is 

asserted within the Green and Blue (GBI) Infrastructure Strategy (West Yorkshire 

Combined Authority, 2017) and the Health and Wellbeing Strategy (Leeds Health & 

Wellbeing Board, 2016). In particular equal access to the benefits of recreation, flood risk 

reduction and clean air are noted. Specifically, the strategy aims for everybody to be 

“within easy reach (1km) of an outstanding, diverse, well used GBI network” (West 

Yorkshire Combined Authority, 2017 p.2). It also highlights the need for more integrated 

flood management using natural flood management approaches, explicitly recognising the 

importance of these benefits flowing from areas beyond the district boundaries.  Despite 

these assertions, there has been little research regarding the distribution of greenspace 

within Leeds, and none which examines the social distribution of the ESs. It is therefore 

considered that the knowledge generated from this analysis is of particular relevance and 

potential use to the current challenges faced within the district.  

 

8.1.2 Northampton 

For Northampton, the case study region was extended beyond the town’s district 

boundaries to encompass some of the rural, less deprived LSOAs within surrounding 

districts. However compared to Leeds, which is bordered by uplands, woodland and 

agriculture, Northampton is a smaller urban area and surrounded by districts where 

agriculture dominates. Throughout the study region there is also a higher than national 

average extent and quality of inland water (Figure 5.8), which is significant in terms of 

recreation ES. As with Leeds, deprivation is concentrated within the denser urban areas, 

but in comparison to Leeds wealthier areas located outside Northampton town are 

characterised by overall lower natural capital and are also proximal to areas with lower 
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natural capital from which less ESs can flow from. It is likely that this contributes to the 

lower inequality in ESs observed in this region. This observation is supported by analysis 

of the distribution of greenspace recorded in the Generalised Land Use Database (GLUD) 

which shows a similar weak positive correlation with IMD (0.239 & 0.277 for Leeds and 

Northampton respectively). This shows that the different distributions of ESs are driven by 

natural capital beyond the case study boundaries, not just within them.   

For Northampton, a lower social gradient in net ES index is found compared to both the 

Leeds and South Pennines case studies. Notably, Figure 8.2 illustrates that supply for all 

the ESs assessed is actually greater for the most deprived areas although demand is also 

greater.

 

Figure 8.2  Flows of ES supply and demand stratified per population weighted deprivation 
quintiles in Northampton. Flows of ES supply and demand as percentage of 
totals of each service across Northampton going to each deprivation quintile 
(based on IMD). Thickness of grey lines increase as service supply or demand 
increases. Deprivation is represented by the central nodes, decreasing 
towards the bottom. Overall supply decreases and demand decreases as 
deprivation decreases. See Appendix A4 for further guidance on interpretation 
of this diagram. 
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Across the case study regions, air pollutant removal net ES index is consistently lower in 

more deprived areas, however association is weakest in Northampton. Only 9% of LSOAs 

exhibit significant local association between high deprivation and low air pollutant removal 

ES (compared to 15% and 16% for the South Pennines and Leeds respectively). However, 

metrics for air quality related health concerns overall in Northampton fall below English 

averages (Northamptonshire Local Nature Partnership, n.d.), thus the presence of any 

inequality in air pollutant removal ES remains pertinent for this region. With regards to 

recreation, as with Leeds, there are no significant differences across deprivation levels in 

the Northampton case study. However, converse to Leeds and the South Pennines, more 

deprived areas have greater access to open greenspaces and lower access to public right 

of ways. The creation of the large Nene Valley Nature Improvement Area (NIA) 

(Collingwood Environmental Planning, 2015), which increased availability of accessible 

greenspace has likely had some impact upon the social distribution of ES given its 

proximity to Northampton. Longitudinal analysis would be required to confirm this. The 

distribution of recreation becomes more favourable for more deprived areas when 

assessed at distances of 1.6km and 3.2km. Therefore it can be asserted that there is a 

higher presence of accessible greenspace within the town itself and the smaller spatial 

extent of the town compared to Leeds, leading to lower travel distances to recreational 

spaces on the edges of the town. This supports the finding from Ala-Hulkko et al. (2016) 

that opportunities for cultural ESs tend to be greater near urban areas. However, this 

difference may be less significant if the many historic houses and grounds around 

Northampton are accounted for. These have been excluded since they charge entry fees, 

but this may not be a barrier to access for those with higher incomes. These locations are 

also likely to offer high quality natural environments and provide other cultural services 

such as cultural heritage, inspiration for art and appreciated scenery.  

In contrast to Leeds and the South Pennines, there is no significant association between 

deprivation and surface water runoff reduction net ES index, supply or demand in 

Northampton. Interestingly woodland cover and semi-natural grassland which, based on 

SCS curve numbers (USDA-NRCS, 1986; see Chapter 7, section 7.2.1) are the most 

effective land covers in reducing runoff, have low coverage in the Northampton region. 

This indicates that the relatively equal distribution observed, could potentially be attributed 
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to low variability in runoff reduction across much of the region which has low coverage of 

the natural capital important for this service. In addition the size of catchment areas are 

more consistent, reducing the likelihood of differences in ES supply. That said, careful 

consideration should be given to the interpretation of results regarding the social 

distribution of surface water runoff reduction as there is some indication of sensitivity to 

uncertainty in ES estimates. Specifically, when the relative influence of vegetation in 

reducing runoff is enhanced to align with less conservative estimates of curve numbers 

(see section 7.2.2), net ES index is lower for more deprived areas.  

The analysis for Northampton is not the first which has examined ESs in Northamptonshire 

(see Rouquette, 2016), however, previous work did not account for the spatial flows of ES 

nor the implications of ES spatial distribution for inequalities. Overall it is evident that 

notable inequalities in the social distribution of the three ESs evaluated in the Northampton 

case study region are not present; and wealthier areas benefit less from recreation ES. 

This however is in the context of an area where overall many aspects of natural capital 

tend to be lower (excepting agricultural land and blue spaces). Therefore, if investment is 

made to increase the extent and quality of certain aspects of natural capital which are 

lower (see Figure 5.8), such as trees and hedgerows, this would ideally be achieved in a 

way which does not introduce inequalities.  

There are also more nuanced findings showing the presence of some inequalities in some 

contexts and these should be recognised nonetheless, and potentially addressed 

dependent on how fairness is perceived (see section 8.3). Perhaps the principle concern 

of the ESs examined for Northampton case study is air quality which overall is poor, and 

where the most deprived neighbourhoods have greater exposure and could therefore 

benefit the most from increase air pollutant removal ES.  

 

8.1.3 South Pennines 

In contrast to Leeds and Northampton, the South Pennines case study region is 

predominantly rural. The natural capital classification undertaken in Chapter 4 indicates 

the districts included in the case study are amongst the richest in natural capital across 

England, with the exception of high quality agricultural land. Nonetheless, the South 

Pennines also incorporates towns where the most deprived areas are concentrated, 
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although these lie close to areas of high natural capital. In contrast to the other case 

studies higher deprivation is also observed across several rural areas. Given these spatial 

patterns it was expected that inequalities would be lower in the South Pennines.  

Analysis reveals that in some respects this hypothesis holds true. For example, Figure 8.3 

shows that supply of the three ESs is overall greater for the more deprived areas. Similar 

to Northampton demand for the three ESs considered is also greater in more deprived 

areas.  

 

Figure 8.3  Flows of ES supply and demand stratified per population weighted deprivation 
quintiles in South Pennines.  

Flows of ES supply and demand as percentage of totals of each service across 
the South Pennines going to each deprivation quintile (based on IMD). 
Thickness of grey lines increase as service supply or demand increases. 
Deprivation is represented by the central nodes, decreasing towards the 
bottom. Overall supply decreases and demand decreases as deprivation 
decrease. See Appendix A4 for further guidance on interpretation of this 
diagram. 

 



211 
 

With respect to air pollutant removal, net ES index is lower for more deprived areas, 

aligning with the results for Leeds and Northampton. Similar to Northampton, this is driven 

by demand but is not lessened by the distribution of ES supply, which shows no significant 

difference across levels of deprivation. Overall concerns regarding air pollution are lower 

across this predominantly rural landscape compared to the dense urban areas of Leeds 

and Northampton. However, air pollution in rural areas is of growing concern, given 

pollution from multiple sources such as agriculture and household burning of fuels 

(DEFRA, 2019). Moreover, the quality of natural capital in the uplands may be adversely 

impacted by low air quality (Caporn & Emmett, 2009). These factors may have some 

distributional impacts not accounted for in this analysis.  

The South Pennines is the only area where recreation is lower in more deprived areas, 

and this is emphasised once the number of people requiring the service is accounted for. 

This social distribution is driven solely by the distribution of greenspaces (not public rights 

of way). Spatial correlations do indicate that areas with significant association between low 

recreation and high deprivation are located in the largest town in the case region, Halifax. 

Therefore, the inequalities present are largely driven by a rural-urban gradient, with much 

greater access concentrated in rural areas due to the availability of large openly accessible 

upland nearby. This contrasts with the district of Leeds whereby low recreation and high 

deprivation was found only for areas outside the city boundaries. It also contrasts with 

other studies which have found recreation supply increases in more urbanised areas 

compared to rural areas (e.g. Manchester, UK, Radford & James, 2013). Thus natural 

capital in the South Pennines overall is more accessible compared to other regions 

(Chapter 5 section 5.2 shows that the South Pennines have higher than average publically 

accessible green and blue spaces, whilst Leeds and Northampton have lower than 

average), but this is concentrated in wealthier areas.  

This inequality may also be confounded if the ‘open’ uplands which although may be within 

‘reasonable’ travel distance (i.e. 10km) are perceived as less accessible by those from 

lower socio-economic backgrounds; the notion of the English countryside as ‘exclusive’ for 

the wealthier was promoted by artists in the Romantic period such as the poet William 

Wordsworth and there are indications, for example from questionnaire responses, that this 

has left a legacy in today’s society (Suckall et al., 2009). In addition, through greater 

access, higher socioeconomic groups may also benefit from other potential benefits from 
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upland natural capital, such as other cultural benefits (e.g. appreciated scenery) and 

general health and wellbeing benefits (e.g. Maas et al., 2006). A social gradient can also 

be considered exacerbated by the smaller extents of private gardens found in more 

deprived communities (see Figure 6.7). Conversely, not all recreation sites are 

substitutable (De Valck et al., 2017) and opportunities in rural areas, provided primarily by 

open countryside, do not necessarily fulfil all recreation needs. For example, for people 

with limited physical ability (see Seeland & Nicolé, 2006 for insight into recreational needs 

of disabled users) or for carrying out a particular activity (De Valck et al., 2017), or for 

socialising (Jennings and Bamkole, 2019). Further analysis of preferences for those from 

different socioeconomic, demographic, ethnic and cultural backgrounds in the local area 

would be beneficial for teasing apart these desires and needs (e.g. Riechers et al., 2016).  

In contrast surface water runoff reduction net ES index is lowest for the least deprived 

areas in the South Pennines, driven by both ES supply and demand. It has previously 

been shown in England that residential areas with higher flood risk from rivers tend to be 

wealthier (Walker et al., 2006). Results for South Pennines ES demand align with this, 

potentially driven by the general desirability of waterside locations and appeal of culturally 

desirable towns within the region such as Hebden Bridge (Smith & Philips, 2001) which 

are at higher risk of flooding given their location in the upland valleys. However, 

vulnerabilities to flooding tend to be lower for the wealthier who have greater resources 

and are more able to take out adequate insurance (Walker & Burningham, 2011). 

Accounting for these vulnerabilities within ES demand could potentially reduce the strength 

of, or reverse the direction of association between SWRR net ES index and decreasing 

deprivation. Moreover, once the number of people affected is accounted for within ES 

demand there is no significant gradient across social groups.  

The South Pennines case study covers two Local Authority Districts, however, joined up 

approaches for improving the socio-economic and environmental conditions across the 

South Pennines landscape are facilitated through organisations such as the South 

Pennine Local Nature Partnership and Pennine Prospects. Multiple projects coordinated 

by these organisations such as the ‘Woodland Heritage’ project (www.celebrate-our-

woodland.co.uk/) seek to connect more communities from a range of demographic, ethnic 

and socioeconomic backgrounds with their natural landscape. However, such initiatives 

require a strong evidence base to help obtain funding. The patterns of inequality in ESs 

http://www.celebrate-our-woodland.co.uk/
http://www.celebrate-our-woodland.co.uk/
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are mixed in the South Pennines, thus understanding the locations or services of greatest 

concern can contribute to this evidence base (Pennine Prospects, pers. comms). 

Overall, analysis within the case study regions shows the importance of natural capital 

beyond the immediate boundaries of an area. They also demonstrate that where they may 

be greater inequalities there may simultaneously be greater natural capital within or near 

to the region overall (e.g. Leeds compared to Northampton).  

 

8.2 Are there consistent patterns of inequality in air pollutant 

removal, recreation and surface water runoff reduction in 

England? 

8.2.1 Air pollutant removal 

There is substantial evidence that air pollution in England is greater for those of lower 

socio-economic status (Mitchell et al., 2015). The analysis presented in Chapter 5 adds 

further weight to these findings for different areas, and shows that demand for air pollutant 

removal increases as deprivation increases in the Northampton, South Pennine and Leeds 

regions. Although, air pollutant concentration is estimated using a simple distance decay 

approach accounting for proximity to roads weighted by traffic flow, the consistency of 

results with studies based on more accurate modelling gives confidence that the observed 

patterns are reliable. 

The analysis presented in this thesis does, however, extend these existing studies by 

examining how inequalities in the distribution of air pollutants may be mitigated by natural 

capital. Across the three case studies, it is found that the distribution of natural capital 

does not contribute substantively to the inequality in distribution of net ES, but neither does 

it help compensate for inequalities in ES demand. Moreover, woodland cover was found to 

be socially distributed at the district level nationally, suggesting that at this scale air 

pollutant removal ES supply is greater for wealthier areas (in addition to other benefits 

associated with woodland) although this remains to be fully tested. This presents an 

opportunity for tree planting for multiple benefits, to be targeted to more deprived areas as 

part of a holistic approach to reducing social inequalities in air quality, both nationally and 
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locally. This aligns with criteria for Government funding for planting initiatives in England 

(Forestry Commission, 2019).  

Sensitivity testing for a greater (or lesser) effectiveness of vegetation in removing 

pollutants has no notable effect on the ES social distribution, indicating results are robust. 

However, sensitivity testing was not carried out to test the reliability of vegetation mapping 

from remotely sensed imagery. Evidently, the distribution of trees is critical to the social 

distribution of this service and greater spatial accuracy of tree distribution and knowledge 

of tree species and structure could provide more accurate assessment of the distribution of 

this ES (e.g. Escobedo & Nowak, 2009), and of other ES.   

Supply of air pollutant removal is found to be low in rural areas, this may be surprising but 

can attributed to two factors. Proximity to roads is a factor in ES supply since effectiveness 

of vegetation in removing air pollutants increases in areas with higher concentrations of 

ambient pollutants. Tree planting in urban or suburban areas often occurs along streets, 

thus creating an enhanced supply of ES compared to trees planted along field boundaries, 

for example. This echoes arguments that it is essential that the right trees or hedgerows 

are planted where they can be most effective (Vogt et al., 2017) considering the ES they 

are intended to supply. As a local ES, whereby the greatest supply is provided by trees 

near to road networks there is also potential that the distribution of air pollutant removal 

supply correlates with noise reduction ES, although separate analysis would be required to 

confirm this.   

8.2.2 Recreation 

In general across the three case study regions, there is only some evidence of inequality in 

the distribution of recreation ES, being lower for more deprived areas in the South 

Pennines only. This contrasts with the common assertion that wealthier areas tend to have 

more public greenspace (Boone et al., 2009; Dai, 2011), but does support other findings in 

the UK (e.g. in Bristol - Jones et al., 2009). There is strong evidence from national surveys 

in England and Denmark that that those from lower socio-economic backgrounds and 

ethnic minorities visit natural environments less often (e.g. Schipperijn et al., 2010; Natural 

England, 2018a). Jones et al. (2009) and Boyd et al. (2018) find that accessibility is not the 

primary reason for this, which the results for this analysis in Leeds and Northampton 

support. For example, the MENE headline report 2016-2018 states only 5% of 
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respondents quoted ‘accessibility’ as the principle reason for not visiting the natural 

environment more often (Natural England, 2018a). However, 34% of respondents also 

state time limitations as a reason, thus greenspace which can be accessed within a short 

timeframe and sufficient public rights of way evidently remains important. This is supported 

by Dallimer et al.’s (2014) assessment for Sheffield, England, where higher use of 

greenspace is associated with shorter travel times. Overall, physical accessibility is a 

prerequisite for ensuring access to recreation for all, but strategies for increasing access 

by lower socio-economic and ethnic minority groups will require a more nuanced approach 

considering many features of the greenspace (e.g. facilities) and other social factors which 

influence visitation (Boyd et al., 2018).  

The minimum requirements set out by ANGSt do not necessarily account for the time or 

distance people are willing to spend travelling for recreational purposes (Ala Hukko et al., 

2016), thus examining patterns of inequality at different travel distances is important. 

Schule et al. (2017) found relatively consistent patterns of association between deprivation 

and recreation at different travel distances. Macedo and Haddad (2015) and Ferguson et 

al. (2018) also reached similar conclusions under sensitivity testing of the distances 

applied to model recreation, although they observe that applying distance buffers can 

overestimate the service supply. In contrast, this analysis revealed different patterns of 

inequality are revealed depending on location and the way in which recreation is 

measured, consistent with findings by Wen et al. (2013). In Northampton, when accessible 

greenspaces and footpaths are considered within walking distances (up to 3.2 km) only 

compared to use of the ANGSt criteria more deprived areas have greater access. 

Conversely, for the South Pennines, shorter travel distances increase the gradient of 

inequality already observed, emphasising that more deprived areas have less access to 

recreation opportunities within ‘walking distance’.  

In addition, the association between public rights of way and deprivation differs to that 

between greenspaces and deprivation. Most studies of accessible greenspace are 

confined to urban areas and often neglect the role of public rights of way (a review of 

relevant literature is given in Chapter 2 sections 2.2 and 2.4). The focus upon distribution 

of open greenspace recognises their support of a wide array of activities for different 

users. However the role of public rights of way is also important since they improve access 

to a range of different types of natural capital in areas where open greenspaces are not 
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viable. Notably, in agricultural production areas (for example in wealthier rural agricultural 

areas on the outskirts of Northampton) and alongside waterways (for example in Leeds 

footpaths along waterways provide access to natural capital for more deprived 

communities who have lower greenspaces). Greater understanding of how different socio-

economic and ethnic groups use footpaths in rural and urban areas, and the impacts on 

health and wellbeing, is needed to fully inform equitable planning of access to recreation. 

In this analysis it is also assumed that recreation is a non-rival service, however there is a 

threshold at which the use by a certain number of users impacts upon the use of the space 

by others (Norton et al., 2016). Sister et al. (2010) demonstrated a GIS based method for 

assessing social gradients in potential park congestion, finding for Los Angeles that parks 

are more likely to be congested in ethnic minority and low income communities. However 

thresholds will likely depend on the potential user, their perceptions, and the type of space 

and potential use of space (Wilkerson et al, 2018). For example, the threshold will likely be 

lower for a space perceived as more ‘natural’ with less landscaping, maintenance and 

human infrastructure, since the expectation is that the experience of such spaces should 

be tranquil (Fischer et al., 2018), although this in itself will depend on the user and their 

experiences. In contrast to ANGSt guidelines, other guidelines such as those applied in 

Berlin (Larondelle & Lauf, 2016) incorporate the idea of rivalry since they are based on 

greenspace provision per capita (Macedo and Haddad, 2015). 

Recreation differs to the other ESs assessed in this study as it is only beneficial if a 

decision is actively made to access the service; surface water runoff reduction and air 

pollutant removal are passive services. Therefore, the implications of the different social 

distributions for public rights of way compared to greenspaces and for different distances 

are dependent upon the needs or preferences of the potential beneficiaries (Jones et al., 

2009). As explained in Chapter 6 section 6.2, other characteristics such as the quality, 

safety and facilities are also important for the perception of greenspace accessibility and 

the likelihood that the spaces will actually be used (Beichler, 2015). Whilst there is some 

evidence of a greater likelihood that these characteristics are less favourable in more 

deprived areas (Wilkerson et al., 2018), this is not universal (Li & Liu, 2016; Ferguson et 

al., 2018). The case study of Northampton in some ways contrasts with these findings 

since recreation is as equally accessible physically by more deprived as less deprived 

communities. However, this does not account for the quality of greenspaces which may 
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remain lower for more deprived communities. More detailed analysis, involving 

stakeholders is needed to establish whether recreation provision fulfils the range of needs 

of local residents across socio-economic groups.   

8.2.3 Surface water runoff reduction 

Inequalities in surface water runoff reduction are location dependent, with different results 

for each case study region and are sensitive to uncertainties in models of service supply. 

There are however some commonalities, firstly, for Leeds and the South Pennines 

demand increases as deprivation decreases. This aligns with findings more widely across 

England (Walker et al., 2006). Secondly, there are indications of some inequality in 

Northampton, in addition to those more evident for Leeds. Specifically, in Northampton 

once the influence of vegetation in reducing runoff is increased (within upper estimates in 

the literature) then weak correlation is observed whereby there is some reduction in ES 

with increasing deprivation.  

These findings should be treated with caution in consideration of the ecological fallacy, 

modelling method and sensitivity to curve numbers applied. The supply and demand for 

surface water runoff reduction ES are based upon area weighted averages for whole 

LSOAs, however not all locations within the LSOAs are at risk of flooding and analysis at a 

finer resolution for example which focusses on households at risk of flooding (e.g. Fairburn 

et al., 2009) or which uses social metrics available at finer spatial scales could improve the 

accuracy of results. In addition, the approach taken here does not involve quantifying the 

actual reduction in flood risk through more comprehensive hydrological modelling, for 

example as used to map changes in ESs by Eigenbrod et al. (2011) and Warhurst et al. 

(2014). The change in social distribution in Northampton and Leeds under sensitivity 

testing suggests that hydrological modelling would help to clarify the social distribution of 

surface water runoff reduction ES across the case study regions, and any potential 

impacts on this from development and changes in flood management. Given the efficiency 

of the curve number approach for assessing surface water runoff reduction ES, it would be 

beneficial to further evaluate the uncertainties arising. Ideally this would entail clarification 

of most suitable curve numbers to apply to UK land cover and soil data, given the range of 

values which have been applied (Tratalos et al., 2007, Holt et al., 2015). 
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Natural flood management (NFM) whilst not a new concept, has received increasing 

recognition for its potential to build greater resilience to flooding whilst providing multiple 

additional benefits (Environment Agency, 2017b; HMG, 2018). The Environment Agency in 

their management of river catchments, also accept social responsibilities, of which one is 

“Addressing environmental inequalities” (Environment Agency, 2004). In line with these 

commitments, implementation of NFM schemes through investment in natural capital 

presents an opportunity to more widely examine and, if required, address inequalities in 

surface water runoff reduction ES and concurrently other ESs. This is of particular 

relevance to Leeds where inequalities have been demonstrated and there is a strong 

interest in NFM (West Yorkshire Combined Authority, 2017).  

 

8.3 What is a fair distribution of ESs?  

Justice may be conceived with respect to participation, recognition and/or the distribution 

of outcomes (see Chapter 2, section 2.2.1; Agyeman, 2002). For some, the implication is 

that distributions of ESs observed are not as important as the means through which they 

arose (Cutter, 1995). For example under libertarianism, economic based mechanisms and 

processes guide environmental management and decision making, and the distribution of 

benefits is of no concern. However, the natural and socioeconomic processes which have 

shaped the urban and rural landscapes and thus the distribution of ESs are complex and 

historical. Byrne (2012) & Wolch et al. (2014) highlight park design philosophy, historic 

land development, changing cultures of recreation and histories of minority and socio-

economic class oppression as some causal mechanisms explaining inequality in urban 

greenspace. Another, mechanism often observed within environmental justice literature is 

that of house pricing and residential mobility which is greater for high-income households 

who may choose to locate in greener areas. Simultaneously they also tend to benefit from 

conservation policy and have greater collective resistance to development (Lovell & 

Taylor, 2013; Wilkerson et al., 2018). Insight from longitudinal analysis is needed to better 

understand causality (Mitchell et al., 2015), although is constrained by data availability. 

Understanding these mechanisms is a particular challenge for these case study regions 

given their size, the inclusion of rural-urban landscapes and the diverse set of natural 

capital which contribute to the three ESs analysed. 
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Notwithstanding the influence of historic and modern processes and procedures, the 

current distribution of ESs is relevant for understanding how to manage ecosystems in an 

equitable manner, for the future and with respect to fair procedures, participation and 

outcomes. Judgement of what constitutes a fair distribution of ESs is dependent on the 

ethical stance taken, whether utilitarian, egalitarian or contractarian. In a recent review 

Lehmann et al. (2018) reflect on how these normative positions underline decisions of ES 

trade-offs and determines what constitutes a fair distribution of ES benefits. 

Under utilitarianism, ESs would ideally be maximised for the greatest number of people. 

The concern is to maximise ES benefits, so the decision is dependent on location and ES 

of concern, rather than equality considerations. As outlined in Chapter 3, this is likely to 

inform an economic based argument for a particular intervention. Population count or 

density is therefore also often used to model ES demand (Wolff, 2015). On this basis 

sensitivity analysis, which conceived demand weighted to population density was 

undertaken (since population was not accounted for within initial calculation of demand). 

For the three ESs assessed in all regions there is significant correlation between 

population weighted demand and IMD, whereby demand decreases with decreasing 

deprivation. The resulting change to the social distribution of net ES index is variable. 

Therefore in some instances, areas with more people who have greater need for a service 

but lower supply are also the most deprived (air pollutant removal ES - Northampton, 

South Pennines; surface water runoff reduction – Northampton, Leeds; recreation – Leeds, 

South Pennines), but others are less deprived (air pollutant removal – Leeds, surface 

water runoff reduction – South Pennines, recreation - Northampton).  

The consequence of this is that under utilitarianism, action to increase net ES may be 

directed to areas which are more or less deprived. This does depend on how ‘greatest 

benefit’ is defined since greater potential health and social benefits may be gained from 

increasing ESs for lower socio-economic groups who tend to be more vulnerable and have 

a lower baseline wellbeing (e.g. for recreation, Wilkerson et al., 2018). Greater vulnerability 

- the susceptibility to be harmed by and the ability to cope with environmental stresses – is 

a function of multiple factors, including socio-economic status (Cutter & Finch, 2008). 

Mechanisms which lead to an increased vulnerability of lower socio-economic groups can 

be illustrated in the context of recovery from flooding. They include a lower financial 

capacity to aid recovery, fewer opportunities for alternative employment or housing, less 
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access to assistance due to power dynamics, social relations and structural organisation 

and a lower ability to have prepared and mitigated against potential impacts prior to the 

event (Rufat et al., 2015). Post-flood impacts on health and wellbeing are wide ranging 

and may be physical but are often psychological in the form of anxiety and stress in 

response to the event and ability to recover. Ultimately, these impacts on health and 

wellbeing are likely to be greater for those with higher social vulnerability (Tapsell et al., 

2002). On this basis it may therefore be argued that under utilitarianism the greatest 

benefit is achieved through focussing on increasing the ES benefits to the most deprived 

communities since this will improve resilience to environmental stresses.  

Under utilitarianism compensation mechanisms such as payments for ecosystem services 

may be used to ensure delivery of the ESs to benefit the most people, whilst adjusting for 

the potential loss to a minority. Commonly this would involve awarding payment from 

beneficiaries to stewards of land for production of services, to compensate for loss of 

earnings from the land from other types of production (Sikor, 2013). To implement these 

schemes identification of a suitable ‘buyer’ of services is required (DEFRA, 2016). In the 

case of directing to services to poorer areas, depending on the ES and local situation, 

buyers may be difficult to find and financing projects may rely upon Local Authorities or 

other State actors.   

An egalitarian justice perspective embraces the most literal concept of an equal 

distribution. Since both ES supply and demand considered together reveal the benefits 

important for health and wellbeing, an egalitarian perspective would advocate an equal 

distribution of both across all levels of deprivation. Although it should be recalled that in 

analysis such as this, which uses relative values, a net ES index of zero does not mean 

that supply fulfils demand. For non-rival ES, including air pollutant removal, surface water 

runoff reduction and recreation (up to a threshold), demand under this perspective should 

not be shaped by population counts but is equal regardless of where that person resides. 

Thus the initial concepts of demand used in this study, which are risk based for the 

regulation services or assumed uniform for recreation, follow an egalitarian approach.  

On this basis, the distribution of ESs in Leeds may be considered the least fair of all case 

studies as the greatest difference between the least and most deprived quintiles occurs. 

This would suggest that land planning and management in Leeds should have a strong 

focus on addressing inequalities. More widely, in national policy, priorities for addressing 
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inequalities on an individual service basis are more difficult to establish when jointly 

considering supply and demand, and the wider ecological implications, compared to 

considering the distribution of a hazard or benefit alone. Regarding ES supply, no single 

ES is found to be unequally distributed across every study region. However since demand 

for air pollutant removal is unequally distributed in each case study region, indications are 

that this poses the greatest concern from an egalitarian perspective despite the supply of 

this service being equally distributed.  

Under a social contractarianism conception of justice a fair distribution would be based on 

an enforceable minimum standard applied to all. Statutory requirement for protection of 

natural capital tends to focus on conservation of particular habitats and species (Wildlife & 

Countryside Act 1981) or landscapes and natural beauty (National Parks and Access to 

the Countryside Act 1949). Although not designed with respect to ESs, these offer some 

protection of natural capital, and hence will have an impact on ES benefits and their social 

distribution. However, with respect to ESs, minimum standards may be impractical given 

challenges of measurement and enforcement, they may also not be appropriate.  

There are minimum standards in the UK relevant to the specific ESs evaluated in the 

research. With respect to the regulation services, the statutory focus of the relevant Acts is 

upon the reduction of the hazard; there is, nor can there be, no minimum requirement for 

the degree to which natural capital is used to contribute to a reduction in a hazard since 

this is dependent on a wide range of local factors and may not always be the most 

appropriate mechanism. For instance, mandatory standards exist for air quality, with 

maximum ambient pollutant concentration levels set under the Clean Air Act (2010), and 

whilst natural capital can contribute towards improved air quality ,the principle means for 

meeting these standards remains through management of emissions (DEFRA, 2019). As 

another example, the Flood and Water Management Act 2010 is relevant to SWRR ES, in 

this case sustainable strategies which promote the use of natural capital and its services 

are a key element of effective flood management required by the Act, but these strategies 

need to be locally appropriate.  

With respect to recreation, guidance on appropriate minimum standards related to 

proximity and some physical aspects are relatively simple, but minimum standards for 

quality or facilities given the possible range of functions and user perceptions are not 

feasible (Wolch et al., 2014). Access standards (ANGSt) formed the basis for defining the 
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ES supply in this analysis (as detailed in Chapter 6 section 6.2.1), but these do not have 

statutory basis. As Ekkel and De Vries (2016) highlight, minimum greenspace standards 

would ideally be developed on the basis of what is sufficient for health and wellbeing, but 

despite significant research regarding the mechanisms between greenspace availability 

and heath (James et al., 2015), these remain undefined. Statutory requirements on 

greenspace may also be difficult to meet retrospectively in dense built-up areas, and whilst 

there are many examples of creative solutions for greening dense cities, for example the 

extensive planting of vegetation on buildings in Singapore (Yok Tan et al., 2013), open 

spaces are still needed to fulfil a range of recreational activities. Minimum standards for 

cultural services may also be considered inappropriate, potentially negating the diverse 

social and cultural needs and place-specificity (Wilkerson et al., 2018). Overall a statutory 

perspective which may be considered a suitable approach to ensuring distribution of an 

environmental hazard, is more complex and less suited for ensuring fair management of 

natural capital assets and an equitable distribution of the ESs that arise from it.  

In summary, evaluation of the fairness of ES distribution is especially complex given the 

direct and indirect contributions of ESs to human health and wellbeing, the synergies and 

trade-offs between ESs which could potentially arise from the same natural capital asset, 

and the importance of natural capital assets beyond their services contributing to human 

health and wellbeing. Further difficulties arise through the interlinkages between ES supply 

and demand thus adding a layer of complexity to the traditional concerns of environmental 

justice with hazards. For example, is there inequality where deprived areas are 

characterised by lower supply coupled with lower demand, or where supply is higher but 

demand is also higher? Or is it the absolute supply and demand values which would be 

important in these cases? Does the interpretation of fairness also depend on the ES, and 

whether for example more deprived populations are also more vulnerable? Overall, there 

is no single conclusion regarding what constitutes a fair distribution of ESs. However, 

empirical evidence of the social distribution of ESs, combined with knowledge regarding 

the different philosophical interpretations of fairness, can facilitate more explicit 

consideration of how inequalities in ESs can be and should be accounted for in decision 

making (Lehmann et al., 2018). 
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8.4 Integrating ESs and distributional justice in policy and 

practice 

8.4.1 National policy and guidance 

The social distribution of ESs can potentially be modified via numerous mechanisms at 

national and local level including legislation, incentives, voluntary action and changing 

technologies and attitudes. Frameworks for management of ecosystems and/or their 

services are set out through international and national policies. Increasingly within these 

policies is a growing focus on interconnectedness and the need to recognise the whole 

socio-ecological system and several address the importance of equity.  

Internationally, this is exemplified by the Ecosystem Approach set out by Biodiversity 

2020, the UN’s SDGs and the catchment based approach set out by the WFD. Notably, 

the UK, as part of the WHO European Region, is committed to the Ostrava Declaration 

and thus to “consider equity, social inclusion and gender equality in our policies on the 

environment and health, also with respect to access to natural resources and to the 

benefits of ecosystems” (UNECE, 2017 p.2). For England, DEFRA’s 25 Year Environment 

Plan (25YEP) (HMG, 2018), informs the strategic approach and focus for managing 

England’s natural environment. Centred on the concept of natural capital it is of particular 

relevance to how these issues of distributive (and other forms) of justice acknowledged 

within international policies are integrated within current approaches to managing the 

natural environment. 

A key focus of the 25YEP is the principle of ‘environmental net gain’; whilst this aim in itself 

has merit its focus neglects distributional issues. This can be exemplified by the UK 

Government’s Equality Impact Assessment of a revised National Planning Policy 

Framework (NPPF) which is the basis for England’s local planning and development. 

Within the NPPF it is clarified that improvements to the natural environment are not 

expected to have differential impacts, that “protecting and enhancing the natural 

environment should benefit all groups” (MHCLG, 2018 p.19). Socio-economic status is not 

a protected characteristic in England and therefore not required to be considered within 

this assessment, nonetheless the perception is that improvements in natural capital are 

not a distributional justice concern. This contrasts with knowledge, for example, that 

improvements in air quality between 2001 and 2011 were beneficial to all but that it was 
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poorer communities who benefitted least (Mitchell et al., 2015) and with 

acknowledgements made within the Ostrava Declaration. 

Nevertheless, in addition to the principle of net gain, the 25 YEP further states “we want to 

ensure an equal distribution of environmental benefits, resources and opportunities” 

(HMG, 2018 p.16). One of the ten 25YEP goals incorporates issues of justice “Enhanced 

beauty, heritage & engagement with the natural environment” (HMG, 2018 p.10). Under 

this goal, one of the indicators developed to measure progress is “Engagement with the 

natural environment”. This is intended to establish whether people from a full range of 

socio-economic and demographic groups are spending time in natural environments 

(HMG, 2019) and thus addresses the importance of considering inequalities with respect 

to cultural ES.  

However, there are additional 65 indicators developed to measure progress against all 

goals within the 25 YEP (HMG, 2019).  None of these indicators address inequalities in the 

distribution of environmental hazards or in ESs which people benefit from passively. Such 

inequalities could be important for other 25YEP goals such as the sustainable use of 

resources and increased resilience to natural hazards. Although with respect to reducing 

risks from natural hazards, the 25YEP does incorporate commitments, as originally 

committed to through the Aarhus Convention, to access for everyone to information on the 

risks posed by flooding and coastal erosion. The 25YEP also echoes commitment to 

provide clean air in line with legally binding targets (HMG, 2018) but there is a lack of 

acknowledgement regarding the distributional issues which have been clearly 

demonstrated with respect to air quality. 

Overall, there is a policy focus upon net benefits but some recognition of issues of 

inequality in access to environmental benefits. With respect to the 25YEP this is focused 

upon culturally derived benefits, with emphasis on addressing issues of engagement with 

nature through community involvement and in urban areas. Notwithstanding the 

importance of such engagement, this analysis demonstrated that, at least with respect to 

the regions and ES analysed, access to nature is not solely an urban concern (note for 

example that urban deprived areas in Northampton had greater access to public 

greenspace) and social inequalities in the distribution of regulating ESs are potentially a 

greater concern than of cultural ESs (acknowledging that analysis of recreation did not 

incorporate social preferences nor quality of greenspaces). Therefore there is a risk that a 
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wider scope of distributional concerns relevant to multiple health and wellbeing and 

ecological outcomes are being neglected in policy. This is perhaps to be expected given a 

well-developed research base which examines unequal access to greenspaces, but which 

similarly does not address a wider range of natural capital and ES. Based on insights from 

the analysis in this research, it is unlikely that there is a universal pattern of inequality with 

respect to the supply of ESs across England, but inequalities are present.  

Regardless of whether there currently exists an unequal social distribution of ESs, 

measuring change in inequalities could still be considered essential for monitoring 

equitable management in natural capital and its services and for meeting sustainability 

goals. For example, it may be desirable to increase ES for more deprived communities or 

as a minimum not reduce ES in the most deprived communities. Thus it can be argued 

that it is appropriate to incorporate an environmental inequalities measure(s) with a wider 

scope than people’s engagement with nature within the 25YEP set of indicators. This is 

consistent with previous recommendations from the Environmental Audit Committee who 

advised DEFRA to reverse the decision to remove ‘environmental equality’ from its 

Sustainable Development Indicators (it was included previously 2007-2009) (EAC, 2012) 

and more recently with the recommendations arising from the 2017 Ministerial Conference 

on Environment and Health (which culminated in the Ostrava Declaration; UNECE, 2017). 

This thesis has demonstrated an approach for measuring both regulating and cultural ES 

at different scales, however a cruder means of evaluating changes in environmental 

inequalities would likely be needed for inclusion in a set of national indicators. Since it has 

been shown that analysis of inequalities in environmental benefits using simple 

greenspace coverage metrics does not adequately reflect the social distribution of different 

ESs, the limitations of any simpler approach would need to be made explicit. Additionally, 

the scale dependencies of environmental inequalities (Baden et al., 2007) make 

establishing a single metric difficult.  

There are other opportunities to better acknowledge impacts on inequalities in ESs. For 

example, the 25YEP proposes that progress against the plan is also assessed through 

continuation of the UKNEA (2011) on an approximate 10 year cycle (HMG, 2019). As an 

update to previous work, and given the more extensive scale of research involved this 

would be an ideal opportunity to better incorporate aspects of distributional justice within 

the ES evaluations. An increased academic research base, which develops a clearer 
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picture of how ESs are socially distributed across the country, and development of the 

tools which would facilitate this, would provide a stronger basis for such assessment. 

Although, within the environment sector there is also general lack of awareness of 

distributional concerns with respect to a full range of environmental hazards and benefits, 

and as such, a first step of such research may involve raising awareness of these issues 

and their importance through communication and collaboration.  

With respect to regional and local decision making processes which impact upon the 

distribution of ESs, there are several mechanisms which could be used to better examine 

and address social distributional impacts of the benefits generated. This includes through 

local plans, the use of equity impact assessment alongside other decision making tools 

and through development of approaches to ES tools and assessments. 

With respect to spatial planning in England, responsibility is devolved to Local Authorities 

and thus is a localised process (MHCLG, 2019). Given the diversity in the social 

distribution of natural capital and ESs established by this analysis, a local approach is 

likely to be better suited to land planning which generates equitable outcomes with respect 

to access to natural capital and ES. This would also be facilitated through further regional 

assessments of inequalities in ES such as that undertaken in this thesis, in collaboration 

with local authorities, which would increase awareness, provide empirical evidence of 

which inequalities are most pertinent in the local region and could utilise local knowledge 

to inform more nuanced assessments.  

It is important to recognise, however, that local planning is carried out in line with the 

National Planning Policy Framework (NPPF). The NPPF sets a social objective for 

achieving sustainable development which includes “accessible services and open spaces 

that reflect current and future needs and support communities’ health, social and cultural 

well-being” (MHCLG, 2019 p5) and requires provision of sufficient greenspace. Akin to 

approaches in the 25YEP, this addresses participatory aspects of justice and access to 

greenspace but neglects the importance of the distribution of a wider range of natural 

capital and the services this provides. A key aspect of the NPPF with respect to natural 

capital is it’s requirement for preservation of the ‘green belt’ i.e. open land surrounding 

towns and cities which limits development unless required given the lack of other 

possibilities and given certain conditions (MHCLG, 2019). Whilst this preserves rural 

landscapes, it promotes densification of urban areas and thus has implications for the 
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distribution of ESs, environmental hazards and social equity (see Echenique et al., 2012 

for assessment of different patterns of urban growth upon sustainability outcomes). Thus, 

there is opportunity for spatial planning to address issues of distributional justice in ES, 

however there is a lack of a driver in national policy to do so with respect to a range of 

natural capital and ESs and policy constraints may also preclude the ability of local 

planning to do so.  

For development projects and investments, social and environmental impact assessments 

present an opportunity to ensure the distributional effects of decisions which change 

natural capital and which ultimately alter the supply (or demand) of ES are evaluated. 

Walker et al. (2005) and Walker et al. (2007) review 16 different impact assessments of 

relevance to environmental justice which may be carried out in the UK, of these three are 

statutory: Environmental Impact Assessment (EIA), Strategic Environmental Assessment 

(SEA) and Sustainability Appraisal (SA), but these do not give much attention to 

distributive issues. Conversely those which give much stronger consideration to 

distributive issues are not statutory. This includes those related to health (e.g., Health 

Impact Assessment) and Equality Impact Assessment, which aligning with the Equality Act 

defines protected characteristics as beliefs, race, age, sexual orientation but not socio-

economic status (Walker, 2010). Of these only the Health Impact Assessment forms 

official policy but given the indirect links between ESs and health outcomes, inclusion of 

ESs may be difficult. Overall Walker et al. (2005, 2007) and Walker (2010) conclude that 

there is a ‘distributional deficit’ in impact appraisals in the UK. Specifically, Walker (2010) 

observed a lack of systematic evaluation of distributional concerns within key 

environmental decision making. Nevertheless, these do illustrate that there is guidance, 

but its use could be enhanced in particular with respect to environmental benefits. Notably, 

the wealth of methods and tools now available given the growth of interest in ESs, means 

that mapping distributions of environmental benefits is now more accessible. The Treasury 

Green Book (HM Treasury, 2018) which provides guidance for publicly funded bodies to 

evaluate investments in projects also includes guidance on socio-economic distributive 

impact appraisal. Notably in the 2018 update more emphasis is given to environmental 

appraisal including impacts on natural capital and ESs. This illustrates that some guidance 

is available to promote and support the distributional impact assessment aspect of ESs. 
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8.4.2 Research and practice 

Policies provide the stimulus for addressing issues of equitable management of natural 

capital and ESs, but the responsibilities to implement in practice are devolved to others. 

This is echoed by analysis at both national and regional scale undertaken for this 

research. This section examines the scope for better integration of EJ distributional 

concerns and natural capital and ES assessments within practice and academic research, 

and uses the regional analysis of inequalities in ESs to inform suggestions.  

8.4.2.1. Environmental justice distributional assessments 

As highlighted in Chapters 2 and 3, assessments of inequalities in environmental benefits 

tend to focus on distribution of greenspaces or coverage of vegetation. This thesis has 

demonstrated that application of the ES framework produces a more nuanced 

understanding of environmental inequalities through clearer acknowledgement of the flows 

which deliver ES from their supply areas to benefitting areas. Specifically it was revealed 

that use of simple greenspace metrics in analysis of inequality does not represent the 

distribution of different types of ESs in all locations. Although there are benefits of these 

spaces which may not be conveyed within the ES framework. This echoes findings by 

Escobedo & Nowak (2009) who found air pollutant removal in Santiago, Chile was greater 

in low income areas as it was modelled as a function of ambient pollutant concentration, 

but tree cover itself was more extensive in higher income areas. For the case study 

regions in this analysis greenspace coverage (as a percent of total area using the GLUD 

dataset) was found to be lower in more deprived areas for all case study regions. This is 

consistent with the direction of association between air pollutant removal and the Index of 

Multiple Deprivation for all case studies, although the strength of association is 

underestimated using GLUD data for Leeds and Northampton. It is also reflective of the 

distribution of three ESs assessed in Leeds, but not in Northampton and the South 

Pennines. This suggests that studies finding inequalities in greenspace coverage may 

overestimate the inequalities in individual benefits derived from those spaces. This is 

particular pertinent since many assessments of health inequalities and their linkages to 

greenspace tend to be based on the proportion of neighbourhood greenspace (e.g. Astell-

Burt et al., 2014). Accounting for the different spatial scales of ES flows also helps to 

address the issue of examining environmental processes within administrative boundaries.  
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8.4.2.2 Ecosystem Service Assessments 

Issues of participation have been the focus of justice concerns within ES discourse (in 

high-income countries). This thesis has provided an example of how distributional justice 

can be incorporated within ES assessments and the importance of the philosophical 

construction of ESs (which drive how they are modelled) for EJ.  

For quantitative spatial assessments of ESs across larger scales, justice issues may 

appear largely disconnected from the quantitative, biophysical methods applied to 

modelling ESs. Whilst the ethical stance relating to the concept of ESs itself (i.e. valuing 

nature on the basis of its contribution to humans as opposed to its intrinsic value) is 

contested, less attention has been given to value based construction of ES measurement 

in non-economic empirical ES analysis (Lehmann et al., 2018). Ideally, greater 

consideration should be given to how different conceptualisations of ES are based on 

normative positions and the consequences of this for fairness and equality. This is of 

particular relevance to how ES demand is considered.  

Increasingly attention has been given to the need to quantify ES demand in relation to 

supply, however, there is inconsistency in the way in which demand is conceptualised and 

quantified (Wolff et al., 2015; Harrison et al., 2018), often aligning with the different 

categories of ESs. As observed in section 3.3.1.2, demand is often conceptualised in 

terms of the number of people who desire or need an ES. This aligns with a utilitarian 

perspective, in contrast to assuming an equal demand for each person aligns which is an 

egalitarian perspective. Other studies have examined demand of regulation services with 

respect to the amount of ES required to meet particular standards or guidelines (e.g. Baró 

et al., 2016) which more closely aligns with the social contractarian perspective. In 

addition, there is a growing literature regarding vulnerabilities and resilience to 

environmental hazards (Cutter, 2009), and as Fisher et al. (2013) observe there is much 

scope for vulnerability and resilience to be incorporated within ES demand models. More 

comprehensive and consistent integration of vulnerabilities within the conceptualisation of 

ES demand could enhance consideration of justice issues.  The sensitivity tests applied in 

this research demonstrate clear implications for ES justice of adopting these different 

constructs (i.e. utilitarian versus egalitarian conception).  

With respect to explicit assessments of social distributions of ESs, as carried out in this 

research, those undertaken tend to be limited to a single service, with emphasis on 
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recreation and other cultural ESs (see Chapter 2 section 2.3). This analysis has 

demonstrated that greater attention should be given to the importance of all types of 

natural capital and the social distribution of a range of ESs arising from this. In England, in 

addition to cultural ESs, regulating ESs were identified as particular direct relevance for 

health and wellbeing. Unlike cultural ESs, regulating services are passive hence require no 

active engagement by the user to access, and as they are driven by biophysical 

processes, the value of these services may be less recognised or understood by the 

general public (Brown et al., 2012). This is especially likely with ESs provided by 

vegetation in locations distant from the beneficiaries.  

However, as illustrated for Leeds, the distribution of regulating ESs may be of greater 

concern for inequalities than cultural ESs (recreation), although there are uncertainties 

associated with this finding. Nevertheless distributional analysis of regulating ESs, as 

undertaken here, can play an important role complementing participatory methods and 

stakeholder engagement. ES distribution maps, in particular where spatially dependent 

correlations are used to identify areas of low ES within highly deprived areas, can be used 

to identify target areas for stakeholder engagement and are an effective communication 

and engagement tool (Norton et al. 2016). ES distribution maps could also be integrated 

within other participatory tools such as Participatory GIS (PGIS) (e.g. PGIS tool developed 

by Natural England, ADAS and theresearchbox; http://web1.adas.co.uk/pgis_algol/). An 

alternative approach, could use stakeholder engagement to identify the environmental 

issues of greatest concern for which assessments of inequalities in ESs could 

subsequently be carried out in the most appropriate way, including spatial distributive ES 

analysis.  

Practically, the modelling of ESs is supported by a diverse set of tools and guidance 

(Bagstad et al., 2013) which offer the means to facilitate inequality assessment. ORVAL 

(Day et al., 2018) is one example of a tool which explicitly disaggregates benefit by social 

group. In line with existing analysis of inequality of greenspaces, this is focused on cultural 

ESs only. Sites can be explored through ORVAL, existing or proposed, based on their 

welfare contribution to each socio-economic group. On the one hand this emphasises the 

diverse needs of different users and distributional issues, on the other hand it is 

problematic because it generates values based on existing patterns of usage which are 

potentially influenced by current provision of accessible spaces.  

http://web1.adas.co.uk/pgis_algol/
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Other tools which already account for the flows of ESs from natural capital and 

consequently the spatial distribution of benefits of multiple ESs such as Aries (Villa et al., 

2014) offer the greatest potential to facilitate more comprehensive analysis of inequalities. 

These could for example be extended to enable generation of some global statistics (e.g. 

boxplots and correlation coefficients) or even local statistics (e.g. maps of local 

associations) as carried out in this analysis which compare the ESs to social or 

demographic data. Some tools including Aries and Ecoserv incorporate socio-economic 

data and population density into estimates of demand for some ESs, thus are already 

based on the idea that the most deprived and populated areas have the greatest need for 

ESs. As discussed, this is one of several perspectives and tools that would benefit from 

enabling demand (or supply) to be adaptable by users. Enabling users to define demand 

differently would make the implications of a particular perspective explicit. This would also 

enable flexibility depending on the objectives of a particular intervention.  

Other tools are more tailored to identifying areas for maximising ES supply and conserving 

biodiversity (e.g. Co$ting Nature, LUCI, Natural Capital Planning Tool). Nonetheless 

outputs could be used to cross reference against maps which identify areas which supply 

ESs to the most deprived populations to identify any win-win opportunities. These would 

also likely be most useful for showing the trade-offs between social and ecological 

outcomes. Tools currently designed to produce global (not spatially explicit) outputs e.g. I-

Tree, are being increasingly adapted to produce spatial outputs (Bottalico et al., 2017) 

which will ensure that they can be utilised in conjunction with other spatial information such 

as maps of deprivation.  

Overall, then, we see that inequalities would be better accounted for within the ES 

discourse with greater awareness of these more implicit factors relating to measurement 

and interpretation, in addition to the more fundamental need to more routinely address 

distributive impact appraisal in ES analysis. There is also potential for better integration of 

who the beneficiaries of ESs are, and recognition or even explicit modelling of inequalities 

within existing ES modelling tools and guidance. This complements existing approaches 

actively undertaken such as stakeholder engagement and promotes the idea that social 

distribution of ESs should consider a wider range of ESs and not be restricted to cultural 

ESs. 

 



232 
 

8.5 Sustainable decision making: balancing social equity and 

ecological outcomes  

Ultimately, the aim of assessing the social distributions of natural capital and its services is 

to facilitate their more equitable management. Wilkerson et al. (2018) suggest that whilst 

this is of some use to enhancing greenspace supply where it may be most needed, 

community based action is more effective. However, in the case of the social distribution of 

multiple ESs, little is known regarding how equally they are distributed, and thus in the first 

instance such assessments can indicate what concerns there may be. For example, 

mapping of more locations and at different scales may (or may not) reveal more consistent 

patterns of inequality in certain environments or for particular ES. For example, in their 

comparison of greenspace availability and distribution across multiple European cities, De 

Sousa Silva et al. (2018) found patterns according to city location on the continent. This is 

particularly relevant for equity considerations over larger areas. Walker (2010) further 

argues that distributional analysis can raise the profile of equity issues within decision 

making, and as part of an impact assessment can raise attention regarding the 

implications of a particular intervention and enable mitigation measures to be developed.  

However, even when it is known that unequal distributions of ESs in a particular location 

exist, and that these should be addressed, there are multiple socio-economic and 

ecological implications of planning and management decisions against which such 

consideration needs to be balanced.  

Sustainable interventions in management of natural capital are ideally generated through 

the production of synergistic social and ecological outcomes (De Groot et al., 2010). One 

practical example of this may be drawn in relation to the Northampton case study region; 

the Nene Valley Nature Improvement Area (NIA) (over 41,000ha) to the southeast of 

Northampton. This is one of 12 NIAs established by the UK Government in their 2011 

Natural Environment White Paper with the aim of improving local wildlife, community and 

economies through reconnecting natural areas and naturalised gravel pits along the River 

Nene. In particular wildlife in these areas was increasingly disturbed by growing visitor 

numbers whilst a 2013 assessment revealed a deficiency of recreation opportunities for 

Northampton and nearby towns where ANGSt standards were not fulfilled.  

Evaluation of the Nene Valley NIA (Collingwood Environmental Planning, 2015) revealed 

ecological successes, including 4km of river restoration and the creation, restoration and 
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improved ecological connectivity of 148ha of habitat. Overall, through effective community 

engagement (‘Community Panels’) cultural and recreational use of the area by different 

users was facilitated whilst limiting disturbances to wildlife. Interestingly, a visitor’s centre, 

facilities and accessible pathways were developed to encourage recreation in the Nene 

Wetlands adjacent to a shopping centre development. This provided a focal point for 

recreation and a familiar environment to encourage those from different cultural and social 

backgrounds who are more likely to perceive natural environments as less accessible. It 

should also be noted that improving access to nature is not only considered a benefit to 

human health and wellbeing but also a conduit for increasing environmentally friendly 

behaviours (Wilkerson et al., 2018). The spatial distribution of recreation in the 

Northampton case study region was revealed in this analysis for this thesis to be 

concentrated in the South, to which the development of the Nene NIA has contributed. 

However, the NIA lies within 10km of many of the more deprived areas of Northampton 

and thus is not considered to have adversely impacted upon inequalities in the social 

distribution of ES in Northampton, especially given the concentration of public 

greenspaces closer to more deprived areas.  

There are however two key challenges to equitable management of natural capital 

highlighted in the literature. Firstly, synergistic outcomes may not always be possible, 

requiring trade-offs both between different ESs, and between conserving natural capital 

and addressing inequalities (Daw et al., 2011; Seppelt et al., 2017). Moreover, some 

outcomes may be considered by some as synergistic but as trade-offs by others, 

depending on the perspective they are viewed from. This has been a key debate in the EJ 

literature where arguments have been developed from both theoretical (Dobson, 2003; 

Agyeman, 2004) and empirical perspectives (Mitchell et al., 2015) regarding whether 

social justice and environmental sustainability are compatible objectives.  

Trade-offs between equitable outcomes and increases to natural capital extent and quality 

likely arise from policies which are based on the principal of net gain (of biodiversity or 

natural capital), e.g. the 25YEP (HMG, 2018). It is likely that development will occur near 

urban areas where the need is greatest, this may incur local losses in natural capital and 

its services which, under the principal of net gain, may be ‘offset’ in a different location. 

This will generate clear ‘winners’ and ‘losers’ with respect to the benefits obtained from 

natural capital and thus has implications for inequalities. Although, it should be noted that 
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there may be potential for developments to improve local natural capital (Holt & Rouquette, 

2018). Analysis nationally and regionally in this thesis provides further insight into where 

other potential conflicts may exist.  For example, accessible greenspace has been found to 

be higher in the more deprived districts (e.g. uplands) or within travel distances of more 

deprived LSOAs. Increasing publically accessible spaces where it is lowest (districts and 

LSOAs dominated by agriculture) may therefore not be relevant from a distributional 

justice perspective and may conflict with food provision objectives. Similarly, planting trees 

to reduce areas of highest flood risk in the South Pennines would primarily benefit 

wealthier areas and therefore be limited in terms of addressing issues of equity, although 

additional benefits may also effect the distributions of other ESs.  

Another example can illustrate where there may be more subtle conflicts across scales; 

Recent Government initiatives supporting the aim of the 25YEP plan to plant over 130000 

trees, prioritises funding for planting in more socially deprived areas (Forestry 

Commission, 2019). This may help to address the inequalities in air pollutant removal ES 

observed for the three case study regions in addition to providing other local benefits to 

people and nature. However, Morse et al. (2011) suggest that deprivation impacts upon 

environmental degradation and lower socio-economic status has been determined as a 

factor in reduced effectiveness of woodland management for carbon sequestration (Soto 

et al., 2016). If this holds true in England, carbon sequestration could be maximised 

through planting in less deprived areas. This in turn comes with risks, as Ernstson (2013) 

highlights that higher land values and development pressure in desirable less deprived 

areas can be a threat to natural capital. These examples are intended to illustrate that 

whilst there are synergistic outcomes (e.g. carbon sequestration will occur wherever the 

tree planting takes place), there remain subtle trade-offs. 

Secondly, where there are synergistic outcomes, positive actions can result in unforeseen 

consequences with ultimately adverse effects socioeconomically or ecologically. Wolch et 

al. (2014) give a comprehensive account of the issue of green gentrification, using the 

example of the New York Highline, whereby investment in developing natural capital which 

provided a locally deprived community with various ESs (recreation, aesthetic etc.), led to 

very substantial land value uplift with financial benefits flowing to private real estate from 

the green infrastructure investment made by the local community groups. Wolch et al. 

(2014) suggest that green gentrification could be avoided if areas are made ‘just green 
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enough’. There is some concern regarding this approach as it ignores the social 

distribution of the multiple ESs of greenspaces which may also be delivered to distant 

locations, and may also limit potential increases in biodiversity. One alternative approach 

would be to increase ESs for all, but implications of such a strategy for inequalities are 

unclear, and likely unsatisfactory for some dependent on their ethical stance. Practically, 

this is difficult since management of the natural environment requires investment with 

associated prioritisation and protection, all of which have distributional outcomes. ‘Just 

green enough’ may also be unsatisfactory from an equity perspective if the implication is a 

less aspirational vision for more deprived areas. More equitable approaches could 

incorporate involvement of local residents to ensure the creation or management of 

greenspaces is tailored to their needs (Haase et al., 2017; Wilkerson et al., 2018).  

Guidance which recognises these multiple considerations for sustainable decision making 

are given by the 12 Principles of the ecosystem approach established by the EU’ 

Biodiversity Strategy in accordance with the Convention on Biological Diversity (2004). 

Although this focuses on addressing participatory justice and not distributional justice. 

Schröter’s (2017) criteria for sustainable outcomes offer an alternative example which do 

give attention to distributional issues. These are underpinned by concepts of ecological 

limits, distributional and procedural justice (Schröter, 2017), A minimum requirement for a 

sustainable approach would hold that inequalities in ESs are not created nor worsened 

and/or would require ESs use to be within ecological limits (Schröter, 2017), accounting for 

the many different ESs including provisional and supporting. Thus essentially, a baseline 

acceptability of socio-economic, distributional and ecological impacts of different 

management or intervention options needs to be recognised. Overall, information 

regarding distributional outcomes is a necessary component of sustainable and equitable 

decision making and actions, but this knowledge needs to be considered alongside the 

nuanced links between equality, natural capital and sustainability (Haase et al., 2017). 

 

8.6 Methodological limitations and scope for further analysis 

The analysis presented in this thesis represents the first which assesses the social 

distribution of multiple types of natural capital and several ESs at multiple scales - 

accounting for ES spatial dependencies and for case study regions with markedly different 
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natural capital profiles. However, there are limitations to the work undertaken, alternative 

approaches which could be explored and ways in which the work could be developed or 

extended to generate further knowledge and insight. Evaluation of the main limitations of 

the approach taken for the national assessment of natural capital distribution were 

principally covered in Chapter 4, section 4.4, so here the issues of the local level analyses 

of ESs are reviewed.   

With regards to the reliability of ES mapping, there are necessarily assumptions made and 

uncertainties introduced (Martínez-Harms & Balvanera, 2012), although sensitivity tests 

have examined the impacts of some of these assumptions and uncertainties. More 

advanced sensitivity testing techniques such as Monte Carlo analysis and Bayesian 

approaches could give further insight into sensitivities (see Hamel & Bryant (2017) for a 

review of sensitivity analysis in ES mapping) including spatially explicit confidence levels of 

ES estimates.  

Model accuracies would likely be improved through use of more complex models such as 

full hydrological modelling, inclusion of quality indicators of greenspaces (e.g. Hoffiman et 

al., 2017) or network based computation of travel times (e.g. Comber et al., 2008). 

Alternative methods available through modelling tools such as ARIES are becoming more 

accessible and could offer more effective means of modelling ES complexities. That said, 

the value of carrying out more detailed analysis of ES should be balanced against the 

subsequent generalisation to census tracts. Establishing the differences between ES 

supply and demand in absolute terms could provide an insight useful for interpreting how 

fair a distribution is and in particular for comparisons between areas. To facilitate this, 

greater coverage of more refined datasets would be needed e.g. higher resolution ambient 

air pollutant concentrations beyond city boundaries or spatially explicit tree structure data. 

One of the advantages of the data used in this analysis is it is free to access for those 

working in academic and public funded organisations (many are free to all), with 

predominantly national coverage and thus increases opportunity for replication elsewhere. 

For more advanced modelling, the increasingly free-to-access availability and coverage of 

remotely sensed data such as LiDAR could be utilised (e.g. Bottalico et al., 2017). Non-

traditional data sources such as social media offer alternative means of modelling cultural 

ESs (Richards & Friess, 2015) but need to ensure fair representation of different social, 

cultural and demographic groups 
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An alternative perspective for those seeking to evaluate inequalities in ESs given limited 

resources and time, would be that the methods used in this research for modelling ESs 

need to be simplified or made more efficient (e.g. Burkhard et al., 2014). One example is 

that ES supply maps differ for each service, whilst often ES analysis utilise a single land 

cover map (e.g. Baró et al., 2016). A tailored approach was taken given the variable 

importance of different aspects of land cover and natural capital for each service. For 

example recreation relied upon accessibility assessment, air pollutant removal upon an 

accurate representation of tree canopy cover and surface runoff reduction upon 

permeability of land covers and soil types. This provides more reliable results but is less 

efficient. Other datasets more recently made available e.g. OS Greenspace map 

(www.ordnancesurvey.co.uk), Natural England’s natural capital maps 

(https://eip.ceh.ac.uk/naturalengland-ncmaps) offer newer means of quickly obtaining input 

data required.  

With regards to assessments of inequalities, the main limitations of this analysis relate to a 

lack of direct linkage to health inequalities and a lack of temporal component. 

Development of the analysis to address these limitations could provide valuable 

information for effective policy and planning. Comparisons to health metrics could better 

tease apart some linkages (e.g. Pearce et al., 2010), between the social distribution of ESs 

and health inequalities, although determining actual impacts requires epidemiological 

studies which tend to be complex and costly (Mitchell & Walker, 2007). This analysis is a 

snapshot relating to the most recent data available at the time, however establishing the 

change in distribution over time can provide further insight into how ESs and health 

inequalities are related, and what may underlie observed associations. This can also aid 

evaluations of the fairness of distributions and policy successes and failures.  

Although analysis was carried out at different scales, evaluating the social distribution of 

ESs relied upon aggregation of data to LSOAs. This suffers from the limitations commonly 

faced within distributional assessments, such as the modifiable areal unit problem and 

ecological fallacy as discussed in Chapter 3, section 3.3.2. The distributions established 

cannot be assumed to be reflective of distributions at different scales, nor for all locations 

and people within the LSOAs. Further work could assess inequalities using different spatial 

units, for example through the use of interpolation to generate socio-economic data at finer 

spatial resolutions (Schüle et al., 2017). Critically the boundary of case study regions can 

have a notable impact upon whether inequality is detected (Baden et al., 2007). In this 

https://eip.ceh.ac.uk/naturalengland-ncmaps
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analysis, it was determined that going beyond the urban boundaries would provide insight 

into rural-urban gradients, thus providing new insight to existing studies of inequalities in 

greenspace coverage which are often limited to urban boundaries, and testing the 

assumption that ESs are lower in urban areas. Modification to the boundaries and analysis 

of different areas is needed to better make generalisations regarding inequalities beyond 

the specific boundaries selected for this analysis. The case studies were selected to 

encompass a range of natural and social environments, however, there were few 

consistent patterns revealed which could reasonably be assumed as reflective of the 

distributions more widely across England and the UK. Inequality analysis across other 

areas in England and in other countries is therefore necessary to develop a more 

comprehensive understanding of how ESs are socially distributed within high income 

countries. There also remain knowledge gaps regarding the social distributions of other 

ESs, which could be developed where appropriate (e.g. noise reduction, local climate 

regulation).  

Currently, the outputs offer insights into inequalities in ESs for the particular case study 

regions. However as static maps and outputs these can be difficult to compare, whilst it 

cannot be assumed that users have the technical skills to examine maps within GIS 

software. For those delivering projects which manage natural capital and stakeholder 

engagements, a web-based tool to explore data could be useful. This could be particularly 

effective in making the links between ES supply and benefitting areas explicit and as a 

decision making tool for exploring trade-offs and synergies.  

 

 

8.7 Summary 

This chapter commenced with examination of results from analysis of the social 

distribution of ESs within the context of their respective case study regions building on a 

national distributive analysis of natural capital. It was determined that inequalities in ESs 

are not pervasive for all ESs across all areas, but are widespread in Leeds and are 

common to all case areas for the air pollutant removal ES.  

Various initiatives and strategies, some though not all of which have been detailed above, 

will likely change such ES distributions. This highlights that, regardless of whether any 
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unequal distributions observed are fair, there is a need to address inequalities, a need that 

is increasingly evident within government policy and associated frameworks.  

Nevertheless, there is also need and opportunity for closer connection between discourses 

of natural capital and distributional justice, particularly within policy and practice and in ES 

appraisal (i.e. outside of purely academic discourse). Increased awareness and knowledge 

of the social distribution of ESs is an important first stage, but in seeking to address 

inequalities, it must be recognised that the decision making process is complex. Balancing 

ecological and socio-economic needs is a cornerstone of sustainable decision-making, 

however win-win decisions are not always attainable.  

Having concluded this chapter with some caveats and considerations regarding the 

limitations of the research (and how some of these may be addressed), the next and final 

chapter seeks to conclude the thesis by extracting the key findings and conclusions to be 

drawn from this discussion and the wider research, reflecting on the original research aims 

and secondary research questions.  
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Chapter 9  Conclusion 

 

This thesis has provided a unique insight into social inequalities in natural capital and 

ecosystem service (ES) distributions. To the author’s knowledge this is the first example of 

a multiscale spatial analysis in a high-income country which assesses how a range of 

natural capital assets and the services they provide are distributed across socio-economic 

groups. Findings indicate that with respect to a comprehensive range of natural capital 

nationally across England, and with respect to two regulating and one cultural ES across 

three case study regions, there exists some inequalities but these are dependent on 

context and model assumptions and are not unequivocal across all ESs and types of 

natural capital.  

This final chapter firstly reflects upon the context of this research and provides a brief 

review of the thesis (9.1), before (section 9.2) identifying key contributions and implications 

from the analysis and discussion, responding to the research questions posed in Chapter 

2 section 2.5. These provide a more nuanced response to the overarching research aim, 

to “Determine the social distribution of natural capital and ecosystem services in England, 

United Kingdom” (p.4). Section 9.3 extracts the principal contributions of the research to 

advancing knowledge relating to the environmental justice and ESs fields, then section 9.4 

identifies implications for policy and practice. Section 9.5 then outlines opportunities to 

build upon the thesis in future work before the final section (9.6) presents a closing 

summary.   

9.1 Research context and overview 

The dominance of human activity is threatening the world’s ecosystems upon which 

human health and wellbeing also depends (IPBES, 2019). This challenge has resulted in 

the proliferation of research exploring the human-environment relationship, including that 

which reframes the natural environment as natural capital and ecosystem goods and 

services (ESs) (Seppelt et al., 2011) and which explores how access to these benefits is 

shared across society (Agyeman et al., 2016). This thesis began by exploring the array of 

ESs and environmental justice (EJ) research, both of which consider the impact of 

changes in the natural environment upon human health and wellbeing. ES discourse is 
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primarily focused upon managing ecosystems in a way which conserves and enhances 

them and the services they provide to people. EJ discourse is focused upon disparities for 

lower socio-economic, ethnic minority and other marginal demographic groups with 

respect to their natural environment and meaningful participation in the processes which 

shape it. However, for sustainable outcomes from land planning and management, both 

discourses are key considerations, as exemplified by principles set by the internationally 

agreed UN Sustainable Development Goals (UN, 2015) and the Convention on Biological 

Diversity (CBD, 2010).  

There are commonalities in ES and EJ research and a demonstrable need for their closer 

alignment, in particular with respect to empirical analysis and within high-income countries, 

where few spatial analyses address both concepts together. This gap in knowledge was 

confirmed through Chapter 2 and 3’s review of the theoretical development of concepts, 

implementation and challenges in the spatial analysis of ESs and of inequalities in 

environmental hazards and benefits. Specifically it is established that ES analysis has 

concentrated on assessing ES supply, thus neglecting ES demand and the beneficiaries of 

ESs (Villa et al., 2014; Bennett et al., 2015). EJ distributional analysis of environmental 

benefits has been dominated by studies examining differences in urban greenspace 

coverage and access to recreation. Overall, this EJ research has indicated that there is 

lower urban greenspace extent and quality in poorer areas but that this is not a consistent 

finding across all studies. Thus it is asserted that knowledge of inequalities in 

environmental benefits could be developed using the clarity and spatial explicitness of the 

ES framework. This holds true for country specific research in England, which although 

quick to adopt the concepts and develop an extensive knowledge base in both disciplines, 

does not include evaluations of ES inequalities.  

Conceptually, analysis of the social distribution of ESs can be considered as an extension 

to existing natural capital and ES frameworks which conceptualise the generation of ‘ES 

benefits’ from natural capital through socio-economic and ecological processes. By 

conveying ES benefits as ‘disaggregated’, the importance of the distribution of ESs can be 

brought to the fore.  

Chapter 3 developed the understanding of the conceptual approach and how to 

operationalise this with respect to the objectives. In practice, spatial assessments of 

environmental inequalities and of ES face multiple challenges, as discussed in Chapters 2 
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and 3. Many of these challenges are common to both fields, including data availability, 

appropriate scales of analysis, oversimplification of socio-economic and ecological 

processes and related uncertainties. The research objectives (Chapter 2 section 2.5; Box 

1), were established with the aim of undertaking analysis which best addresses these 

concerns. Thus the spatial analysis in this thesis is conducted for different areas and 

resolution, incorporates the spatial flows of ESs from natural capital where possible, and is 

tested for sensitivity to several model assumptions and uncertainties.  

The analysis chapters (4-7) addressed the three research objectives (Box 1) with Chapter 

4 dedicated to Objective 1 and Chapters 5-7 addressing objectives 2 and 3 with a single 

ES explored in each chapter which also conducts sensitivity testing. The discussion 

chapter (8) reviewed these results in greater detail before widening the discussion to link 

to theoretical conceptualisations of how social distributions may be interpreted, and the 

wider implications for integrating EJ distributional concerns and ESs into policy and 

practice, and sustainable decision making.  

 

Box 1 Research objectives 

 

In addressing these objectives, a series of secondary research questions were identified 

(Chapter 2, section 2.5). In answering these questions, current knowledge of ESs and EJ 

in England and perspectives for research and policy which examine ES inequalities are 

developed. The next section addresses these questions, drawing upon the analysis and 

discussions presented across Chapters 3-8.  

Objective 1: To assess the social distribution of natural capital across England. 

Objective 2: To assess the social distribution of multiple ecosystem services for case 

study regions in England. 

Objective 3: To evaluate the robustness of results to model assumptions and 

uncertainties.  
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9.2 Summary of findings 

9.2.1 Which ESs are appropriate for assessment from the perspective 

of equitable management of natural capital in England? 

 

For England three ESs were selected for analysis - recreation, air pollutant removal and 

surface water runoff reduction. These ESs were identified as the most appropriate for 

analysis of social distributions given their likely contribution towards addressing key health 

challenges in the English context and also more widely. For example, non-communicable 

diseases and air pollution are two of the global threats in 2019 as identified by WHO 

(2019) (see Chapter 3, section 3.2.2).  

It is also possible to map these ES. Primarily the feasibility of mapping relates to whether 

services have direct, spatial links between natural capital and beneficiaries. Three services 

were selected as an appropriate number to assess for three case study regions; together 

they provide insight into inequalities in both cultural and regulating (and therefore active 

and passive) ESs, into services which are important at different scales and which are 

driven by different characteristics of natural capital. The different social distributions 

revealed for each ES across the case studies demonstrates this selection was important 

for developing a wide-ranging knowledge of inequalities in environmental benefits. From 

this, broad assumptions can be made with regards to services at similar scales and based 

upon similar modelling approaches. For example noise regulation is likely to have a similar 

distribution to air pollutant removal. However, there remains a challenge that only a subset 

of services are examined in this thesis and there is a need to understand how issues of 

equity can be incorporated into management of natural capital that produces numerous 

services, with indirect flows to beneficiaries, and which is of value irrespective of these 

ESs. There are other services, which may be appropriate to map in particular areas (e.g. 

urban or coastal areas); in a high-income country context these may include noise 

regulation, local climate regulation, education and regulation of mass movement (e.g. of 

soils).  
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9.2.2 How can the different scales at which ESs are delivered from 

natural capital to beneficiaries be accounted for within analysis 

of their inequalities? 

 

Scale dependency is a critical characteristic of ESs, and even more so when seeking to 

understand the distribution of services; this issue was introduced in Chapter 3, section 

3.1.3. The analysis (Chapters 5, 6 & 7) demonstrated that for large areas (>600 km2) it is 

feasible to account for the diverse flows of ESs individual to small area administrative units 

(LSOAs) within the study areas. To achieve this each administrative unit is identified as a 

location of beneficiaries, the flows individual to each service are then mapped for each 

LSOA in order to identify their, often unique and distant, ES source areas. This identifies 

the areas of natural capital where changes are pertinent for services within the case study 

region. This approach accounts for greater spatial complexities than existing analysis of 

inequalities in greenspace distribution. Different correlations with deprivation are revealed 

for the ESs and for greenspace coverage within the LSOAs, demonstrating the importance 

of accounting for the natural capital beyond the immediate case study boundaries for 

reliably assessing inequalities. However, as previously noted, this approach is only 

appropriate to those services with direct spatial linkages.  

Assessment of social distributions of ESs nationally is approximated in this thesis through 

analysis of natural capital; the main reason for this is consideration of analytical practicality 

including resources and time. If these can be addressed, the same methods used for case 

studies could be applied nationally, although these would need to consider natural capital 

beyond the country border which may be impacted by data availability.    

In addition there is potential to develop and combine the spatially explicit outputs from this 

thesis. Specifically, the source areas of ES for areas identified as highly deprived with low 

ES (i.e. developing outputs from Local Indicators of Spatial Association) can be identified 

using the information generated during the analysis. Overlapping these source areas will 

identify the areas of natural capital important for addressing inequalities across the three 

ESs.  
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9.2.3 Are inequalities in natural capital and ESs present at different 

scales? 

Scale is a key factor in this research. Observed inequalities in environmental hazards and 

benefits are known to be scale sensitive, i.e. they may be revealed at some scales and not 

at others (Baden, 2007). However Baden et al. (2007) argue that even if inequalities are 

only established at a single scale, these findings remain valid evidence of the existence of 

inequality.  

For this research, a national overview of inequalities in natural capital was provided. This 

national analysis, implemented using the Local Authority Districts as the spatial unit, 

benefited from use of multiple indicators of natural capital quality and extent to provide a 

comprehensive insight. It was established that whilst the most deprived areas tended to 

have the lowest extent and quality of natural capital, this did not hold true for all types of 

natural capital. Moreover, deprived areas were also found to have the highest extents and 

quality of natural capital. This suggested that there is not a consistent social gradient in 

natural capital extent and quality nationally at a coarse scale.  

A similar finding has been echoed through more detailed analysis of selected ESs in case 

study regions. Thus at national and regional scales there is evidence of inequalities in 

environmental benefits, but that this is not universal for all areas or across all types of 

natural capital or ESs. However, the finding of some inequalities remains pertinent, in 

particular considering Baden’s (2007) assertion. This again suggests that a greater 

knowledge base is required. It further suggests that policies and actions need to be scale 

appropriate, i.e. a ‘one size fits all’ policy is not appropriate for national policy which 

instead should require tailored approaches at regional and other sub-national scales.  

9.2.4 Are inequalities consistent across different ESs? 

Discussion in Chapter 8, section 8.2, examines the differences and commonalities in the 

distribution of each ES across all three case study regions. Consistency was found across 

the three areas only for air pollutant removal. This emphasises the importance of 

examining inequalities in multiple locations and in different contexts for building a 

comprehensive picture of inequalities in ESs nationally and internationally. Moreover, 

contextualising the case studies, as achieved in this analysis through characterisation of 
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districts based on indicators of natural capital and deprivation, can provide some indication 

of what is driving particular patterns of social distribution in ESs in different areas. For 

example, deprivation is concentrated within the built up areas in Leeds and overall there is 

higher availability of natural capital at, and beyond Leeds district boundaries, compared to 

Northampton; this therefore generates greater inequality in ESs in Leeds. The lack of 

consistency in the social distribution of these ESs aligns with other findings that in some 

urban areas access to public greenspaces is higher in more deprived areas, e.g. for Bristol 

(Jones et al., 2009) and Sheffield (Barbosa et al., 2007; Mears et al., 2019) but is lower for 

more deprived areas in others (e.g. Bradford, Ferguson et al. 2018).  

9.2.5 Is there a rural-urban gradient in inequalities?  

As highlighted in Chapter 2 sections 2.2.2 and 2.4, the focus of research internationally 

and within England has been on examining inequalities in environmental benefits in urban 

areas. Notwithstanding the importance of this research, it remains an assumption that 

inequality in environmental benefit is largely an urban concern. The national analysis 

presented in this thesis (Chapter 4) supports this to an extent showing that overall urban 

deprived areas tend to have the lowest extent and quality of natural capital, whilst there is 

high natural capital in more deprived rural areas. There is a wide range of evidence of the 

health benefits of living in overall greener environments (Twohig-Bennett & Jones, 2018), 

however, it cannot be assumed that all ESs are higher in rural areas since these may be 

dependent on accessibility or upon more distant natural capital, as demonstrated by 

Radford et al. (2018). Analysis in the case study regions shows that for air pollutant 

reduction there is a rural-urban gradient, although this is to be expected given the higher 

demand for this ES within urban areas. There is no consistent urban-rural gradient in 

inequalities in ES for surface water runoff reduction and recreation across the case 

studies. However, it is notable that when considering access to open greenspaces 

(excluding public rights of way), recreation opportunities may be greater within urban and 

more deprived areas compared to rural agricultural land, as established for Northampton 

and surrounding areas.  
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9.2.6 Are findings robust to uncertainties and model assumptions? 

There has been much criticism of early research of ESs and of environmental inequalities 

with respect to overlooking uncertainties inherent in their analysis (e.g. Mohai et al., 2009; 

Eigenbrod et al., 2010). More recent studies show how this issue can be addressed 

through testing for sensitivity to assumptions and uncertainties (e.g. Schulp et al., 2014; 

Ferguson et al., 2018). Therefore to ensure findings of this research are robust, sensitivity 

tests were conducted. With respect to the national analysis of natural capital, testing was 

carried out to assess sensitivity of results to methodological choices, such as the number 

of natural capital clusters created. This demonstrated that results were largely robust to 

the method decisions made.  

Regarding analysis of the social distribution of the selected ESs, various sensitivity tests 

were undertaken, specific to key sources of uncertainty for each ES. It was established 

that the pattern of inequality demonstrated for air pollutant removal was consistent given 

variation in the effectiveness assigned to vegetation. However, changes to the social 

distributions occurred in response to variability in the assumed effectiveness of different 

land covers in reducing surface water runoff. This was observed with respect to the 

Northampton (slight change only) and Leeds case studies, but the extensive nature of this 

testing precluded testing for the South Pennines. Although the social distributions in the 

first instance were based upon ‘best estimates’, the sensitivity of results revealed in this 

testing indicates that findings should be treated with caution, and ideally used alongside 

additional evidence, which should also address issues of ecological fallacy.  

Moreover, considerable changes occurred in response to different distances used in 

modelling access to recreational greenspace. Therefore sensitivity to different distances at 

which greenspace is considered ‘accessible’ has important implications for establishing 

equitable approaches to greenspace management. For example, shorter travel times 

which incorporate only the greenspaces within walking distance increase the strength of 

association observed between deprivation and recreation for the South Pennines and 

Northampton and Leeds case regions. This suggests that it is important to establish the 

distances most critical to the communities in these areas based on stakeholder 

engagement. There also remain further uncertainties inherent within the analysis, related 

to data sources, generalisations and measures of inequality. 
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Sensitivity tests were also carried out with respect to the conceptualisation of ES demand, 

which is considered an approach unique to this research. The many different ways in 

which demand is conceived are discussed in respect to the methods for modelling each 

ES (Chapters 5-7). Initial analyses were based on demand that ignores population density; 

this conceptualisation sees ES demand as non-rivalrous, and the same for every individual  

However economically driven ES management decisions likely need to consider the 

number of people potentially affected. Therefore, by examining sensitivity of social 

distributions in ESs to population weighted demand, it is possible to determine how this 

new conceptualisation of ES demand modifies the social distribution of ES. It was 

established that this change is significant for some ESs in some locations (e.g. increasing 

recreation access in the South Pennines and Leeds for the more deprived areas also 

increases access for more people) but not in all instances (for example increasing air 

pollutant removal in Leeds for the more deprived areas does not coincide with improving it 

for the most number of people) (see section 8.3). This is critical for considering what are 

‘fair outcomes’ and demonstrates how the conceptualisation of demand can modify our 

understanding of inequalities in environmental benefits.  

 

9.2.7 Can opportunities for synergistic social and ecological outcomes 

be identified? 

Targeted increases in ESs to more deprived areas which are lacking in particular services, 

or which have a greater need for them, may facilitate synergistic social and ecological 

outcomes. This aligns with the original conceptions of ESs in enabling sustainable decision 

making (Schröter, 2017). Information on where these areas are located and where the 

corresponding natural capital is which produces the ESs is essential for achieving this. In 

this analysis, local indicators of spatial association are used to generate output maps 

which pinpoint areas within each case study whereby there is significant local association 

between high deprivation and low ES (with respect to each ES assessed individually). 

Regardless of whether global measures of inequality indicate an unequal social distribution 

of ESs, such target areas were identified for all services in all case study regions. This 

demonstrates a practical means for establishing opportunities for synergistic outcomes, in 

particular once considered alongside the supply areas as defined by flows of ESs 

(calculated as part of the processing steps within this analysis).   
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However, as conveyed in discussion (Chapter 8 section 8.5) this information should be 

used in conjunction with a wider knowledge base which examines the synergies and trade-

offs from increasing supply of a particular ES in a particular area against the impacts this 

has upon other benefits, their social distribution, and whether this is appropriate 

ecologically and culturally. Moreover, consideration of what fairness in the distribution of 

ESs constitutes is critical for judging outcomes. Thus whilst this analysis presents 

information which can facilitate such decision making within the specific case study 

regions, and illustrates an approach applicable elsewhere, such information forms only a 

part of the understanding required for delivering sustainable outcomes (Bennet et al., 

2015).  

9.2.8 Are there opportunities for closer integration of distributive 

justice concerns and ES assessments within land planning 

policy and management? 

Current considerations of environmental justice embedded within land planning policy and 

practice are concerned primarily with participatory and procedural forms of justice as 

recognised by commitments to the Aarhus Convention (UNECE, 1998). Legal protection 

for equality is available with respect to certain social and demographic characteristics 

through the UK’s Equality Act 2010 and legally binding air quality standards (EU Directive 

2008/50/EC and The UK Air Quality Standards Regulation 2010) provide protection for all 

with respect to this specific hazard. However, as discussed with particular reference to the 

UK Government’s 25 Year Environment Plan and of the National Planning Policy 

Framework, which set the current policies for managing natural capital in England 

(Chapter 8 section 8.4.1), distributional inequalities with respect to environmental benefits 

are less recognised beyond consideration of access to greenspace. Specifically, there is a 

lack of recognition of potential inequalities in ESs which do not require actively accessing 

greenspace, such as surface water runoff reduction or air pollutant removal. For example, 

greater emphasis could be given to interventions which increase provision of air pollutant 

removal ES in the more deprived areas which currently exceed legally binding air pollutant 

concentration limits. Thus policies could be developed to encompass a broader scope of 

concerns with respect to inequalities in ESs, and link these to relevant legislation where it 

exists.  
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The thesis highlights that some non-statutory forms of appraisal provide guidance for 

assessing distributional impacts of investments. The most notable of these with respect to 

environmental inequalities across socio-economic groups is HMG’s Treasury’s Green 

Book (2018). At the local and regional scales, other non-statutory impact assessments 

such as Equality Impact Assessments offer some guidance with regards to considering 

issues of inequalities within decision making processes. These do not specifically address 

differences across socioeconomic groups or with respect to impacts upon environmental 

benefits, but they could be enhanced to do so.  

The development of existing ES assessment tools to facilitate analysis of inequalities in 

their distribution, and a more developed scholarly research base at all scales from which 

policy and practice can draw upon, are also critical. This thesis presents a starting point for 

such research but developments are needed to further establish how pervasive and 

severe inequalities in ESs are and how these can be assessed with limited resources. This 

is necessary to raise awareness and enable implementation of assessments of the social 

distribution of ESs within policy and practice.  

 

9.3 Key contributions to ecosystem services and environmental 

justice research 

This thesis has contributed new knowledge to the ecosystem services and environmental 

justice disciplines in several ways. In summary, the key contributions include: 

 An understanding of how natural capital is socially distributed in England, the first 

such analysis for England, and the only national analysis conducted for a high 

income country where population dependency on natural capital is less obvious 

(direct, local) than for low income countries where natural capital - livelihoods 

dependency is more immediate. 

 

 New knowledge on the spatial distribution of three key ecosystem services, 

addressing ES supply, flows and demand, derived from analysis of three English 

regions (Leeds, the South Pennines and Northampton). Whilst maps of multiple 
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ESs have previously been produced for Northampton (Rouquette, 2016), these do 

not account for the spatial flows between ES supply and benefitting areas.  

 

 New knowledge of the social distribution of three ecosystem services in England. 

This extends previous environmental inequality assessments in England through 

the application of an ES framework which establishes spatial flows of benefits from 

both distant and nearby natural capital, and examines these benefits (ES supply) in 

the context of demand for them (e.g. air pollutant and flood hazards). The analysis 

also addresses both rural and urban areas, a broader scope than most 

assessments of inequalities in environmental benefits (i.e. greenspace) which focus 

upon urban areas. Moreover, no prior analysis exists of the social distribution of 

ESs addresses the services of air pollutant removal, surface water runoff reduction 

and recreation, for a high-income country. The thesis develops a method for 

assessing the social distribution of each of these ESs, which are critical globally. It 

also demonstrates that scales of ES flows are important for distributional justice. 

 

 The development of spatial analysis techniques applicable to the ES framework 

and able to generate insights into environmental inequalities. Examining how ES 

assessments can incorporate an equity dimension, aligns with calls for developing 

ES research to better account for social impacts, specifically equity.  

 

 An improved understanding of the importance of sensitivity testing in ES 

distributional analysis. Analysis shows that for some services the uncertainties in 

proxies can alter the association between the ES and deprivation. Moreover, the 

study provides empirical evidence of the sensitivity of distributional assessments to 

assumptions in modelling ESs, specifically some of the ES flows and approach to 

modelling ESs demand on ESs. The sensitivity to flows is important given the large 

body of literature which examines inequalities in environmental benefits using 

metrics of localised greenspace cover.   
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9.4 Key recommendations for policy and practice 

There are several aspects of this research which are relevant to policies and practice of 

natural capital management - these were highlighted in the preceding section and 

discussed in detail in Chapter 8. There are however two overarching policy/practice 

messages which are derived from this thesis. These are the need to:  

 Give added emphasis to equity considerations within decision making for natural 

capital and ES management.  

- This involves further raising awareness of the need to increase access to 

greenspaces for all, through recognition of the potential impacts of inequalities 

in the social distribution of passive, regulating services upon health and 

wellbeing and health inequalities that are generated by a wide range of natural 

capital.  

- To achieve this in practice requires an increased focus upon beneficiaries - 

who are the winners and losers of changes in ES flows? This will entail 

quantifying ES flows, including those from distant natural capital, as well as ES 

demand.  

 

 Generate greater understanding of what an equitable management of natural 

capital is, through equity assessment, evaluation and visioning. This implies that 

explicit consideration is needed of the normative conceptualisations of ES – i.e. 

what is ‘fair’ in ES management?  

- This involves recognising equity as an important consideration within large 

scale ES assessments in addition to local, participatory based assessments. 

Specifically, a clearer understanding of how inequalities may be revealed 

dependent on how ESs are conceptualised and modelled should be 

developed. For example, social distributions of recreation may change if 

different distances to recreation sites are used. Thus if a desired outcome is 

improved access for all, clarification of what measure is appropriate and why 

needs to be made.  
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- Similarly, the conceptualisation of ES demand is based on ethical choices 

(justice conception subscribed to) which should be considered explicitly to 

ensure interventions align with the intended and sustainable outcomes.  

 

9.5 Future research developments  

There is much scope for closer integration of ESs and EJ research. Doing so will improve 

understanding of linkages between the two discourses important to the provision of 

information needed for sustainable policy and decision making. This thesis has explored 

the links between distributional EJ justice, natural capital and a selection of ESs, and how 

these can be integrated within spatial assessment. The limitations to this analysis 

(discussed in Chapter 8, section 8.6) align with existing critiques of environmental 

inequality and ES assessments, and the discussion also highlighted how future analysis 

may address such limitations. Drawing on these prior assertions it is possible to reflect 

more broadly on the potential of further research to advance social justice and 

environmental sustainability.  

Primarily, the evidence base with regards to the social distribution of ESs needs to be 

developed, in England and internationally. At present, general conclusions cannot be 

drawn with regards to existence of inequalities in specific ESs, and how pervasive and 

severe they may be. Establishing this evidence base is important for understanding the 

potential contribution of ESs to health inequalities. Developing the evidence base will 

involve further empirical analysis, examining different ESs, different social and 

demographic sub-groups, and at different scales, incorporating data to evaluate impacts 

on health and wellbeing and using different methods. Notably, modelling historical 

changes in the social distributions of ESs and how they respond to future scenarios are 

important for establishing unpicking causality and judging fairness (Mitchell et al., 2015; 

Wilkerson et al., 2018); this cannot be achieved via cross sectional inequality analysis 

alone  (see section 8.3 for discussion of what is a fair distribution). Efficient ways to 

achieve this may involve building on existing natural capital and ES data and analysis, and 

extending existing ES tools to facilitate distributional analysis. Such developments would 

also benefit from enabling users to define changes in modelling parameters to test for 
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sensitivities. Moreover all approaches to analysis should incorporate sensitivity testing to 

ensure the evidence base is robust. As discussed by Hamel & Bryant (2017) and 

exemplified in this analysis, sensitivity tests do not need to be complex to be revealing.  

Multidisciplinary approaches are needed to improve understanding of how the complex 

and indirect linkages between natural capital, ESs and beneficiaries can be better 

accounted for within assessments of the social distributions of ESs. This could better 

integrate knowledge from other literature, for example vulnerability research (e.g. Boone, 

2010). This aligns with recommendations of previous studies, and with the increasing 

acknowledgement within ES discourse of the need to account for the full socio-ecological 

system. Multidisciplinary teams of researchers and practitioners can also facilitate the 

integration of knowledge for increasing impact. For example distributional ES assessments 

could be used to enhance other forms of knowledge and stakeholder perceptions, 

consistent with requirements of the Aarhus Convention and Convention on Biological 

Diversity.  

9.6 Concluding statement 

The aim of this research was to establish whether inequalities in the distribution of 

ecosystem services in England exist. Equality is an important element of sustainable 

decision making which must addresses both social and ecological outcomes. Addressing 

inequalities and managing ecosystems in an equitable manner is thus embedded in 

international initiatives, such as the UN Sustainable Development Goals (UN 2015). The 

justification for this research is based on the premise that information regarding the social 

distribution of ecosystem services is necessary to facilitate equitable natural capital 

management. However, currently there is little research on high-income countries which 

provides such empirical evidence. This thesis has provided a unique example of an 

approach to integrating distributional justice concerns and the ecosystem service 

framework in the context of large scale spatial assessments across multiples areas and 

scales.  

England was selected as the research focus, being a high-income country with strong 

research and policy interest in both ecosystem services and environmental justice, but no 

previous study of the social distribution of multiple ESs or natural capital. A broad national 
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analysis of natural capital and deprivation, and detailed analysis of the social distribution of 

three ecosystem services in case study regions revealed that some inequality exists. Most 

notably it was established that inequalities are present across all assessed ecosystem 

services in the district of Leeds, encompassing a major English city. Inequalities were also 

consistently found with respect to the removal of air pollutants, and whilst driven by the 

demand for this ecosystem service - proximity to roads as a pollutant source – the 

distribution of vegetation was such that it does nothing to reduce these inequalities.  

Thus overall, a mixed picture was revealed with the presence and severity of inequalities 

varying according to location, ecosystem service, natural capital and ES modelling 

assumptions. This aligns with prior findings on environmental inequalities more widely, 

which for some hazards and benefits (greenspace) are inconsistent. This demonstrates a 

need for greater understanding of links between ecosystem services and environmental 

justice in high income countries, developed via an increased evidence base across all 

ecosystem services and considering alternative conceptions of justice. Ultimately, whilst 

improvement in quality and extent of natural capital assets is a critical aim in itself, greater 

consideration of who is affected by natural capital change is needed.  
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Appendix A 

 

A.1  Moran’s I global statistic  

Moran’s I calculated with 50, 100, 150 and 200km threshold (p<0.001) 
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A.2. Sensitivity to number of clusters 

Overall, both the natural capital clusters and association between deprivation and 

natural capital are relatively robust to changes in the number of clusters created. 

a. 5-cluster solution i) spatial distribution ii) indicator z-scores for each cluster iii) IMD 

average ranks of districts in each cluster.  

 

Note that in comparison to the 6-cluster solution there is one cluster for urban areas 

as opposed to separate urban and suburban clusters and slightly more districts 

assigned to the woodland cluster and slightly less to the agricultural cluster. Overall 

a similar spatial pattern emerges. Changes in average deprivation across clusters 

indicate woodland and agricultural areas are the least deprived and urban/suburban 

and mountainous areas are the most deprived.  

i)  
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b. 7-cluster solution i) spatial distribution ii) indicator z-scores for each cluster iii) IMD 

average ranks of districts in each cluster.  

 

Note that there are three clusters for urban areas compared to the two clusters in 

the 6-cluster solution, specifically a new suburban cluster with greater natural 

capital (higher than average freshwater features and water quality). There are also 

slightly more districts assigned to the woodland cluster and slightly less to the 

agricultural cluster. Overall a similar spatial pattern emerges. Changes in average 

deprivation across clusters indicate woodland and agricultural areas are the least 

deprived and urban/suburban and mountainous areas are the most deprived. 

Deprivation values (both median and distribution) show minor difference between 

the two suburban clusters. 

 

i) 
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ii) 

 

 

iii) 
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A.3. Sensitivity to selection of indicators 

 

 Natural capital indicator 
Change in cluster membership (% total 
number of districts) 

Ecological status 4.3 

Quality of agricultural land 0.9 

Agricultural 4.3 

Coastal 0.9 

Mountain 1.2 

Low density built-up 1.9 

High density built-up 14.8 

Woodland 19.1 

Freshwater 0.3 

Quality of water 1.2 

Publically accessible 1.2 

Semi-natural grassland 0.9 

Soil carbon 0.3 

Protected status 4.3 
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A.4. Guidance on the interpretation of ES inequality Sankey diagrams presented in Chapter 8.  
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