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ABSTRACT

Device-independent randomness expansion protocols aim to expand a short uniformly
random string into a much longer one whilst guaranteeing that their output is
truly random. They are device-independent in the sense that this guarantee does

not dependent on the specifics of an implementation. Rather, through the observation of
nonlocal correlations we can conclude that the outputs generated are necessarily random.
This thesis reports a general method for constructing these protocols and evaluating their
security. Using this method, we then construct several explicit protocols and analyse their
performance on noisy qubit systems. With a view towards near-future quantum technologies,
we also investigate whether randomness expansion is possible using current nonlocality
experiments. We find that, by combining the recent theoretical and experimental advances,
it is indeed now possible to reliably and securely expand randomness.
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INTRODUCTION AND SYNOPSIS

C lassical mechanics offers a deterministic explanation of the macroscopic world. If

one is able to precisely model a classical system then all future observations are

determined. Still, if a fair1 coin is tossed behind an agent’s back then, without

additional information, the agent will struggle to correctly predict the outcome more than

50% of the time. Therefore, even though classical mechanics does not prescribe random

events, a lack of predictability can still arise from sufficient ignorance. In stark contrast

to this, quantum mechanics asserts that randomness is a fundamental feature of nature.

In general, for quantum mechanical experiments, even complete knowledge of the system

does not allow one to perfectly predict its outcomes. The existence of truly random events

has profound consequences for applications like cryptography, where the unpredictability

of a random sequence can be imprinted onto data which we wish to keep secret. By using a

source of true randomness, we can ensure that even the most powerful adversaries are not

privy to our secrets.

A demand for randomness was present long before Schrödinger’s cat, with the earliest

evidence of dice dating back several millennia. Ancient Athenians used lotteries as a means

of electing officials [1] and gambling has been a prevalent feature within many historical

cultures. A desire to better understand gambling and games of chance, drove 17th century

mathematicians towards a development of probability theory [2]. Then, as the disciplines of

probability and statistics matured, scientific applications of randomness began to emerge.

For example, random sampling is a key component of hypothesis testing and Monte Carlo

simulations. More recently, owing to the seminal work of Shannon [3], randomness has

found a plethora of applications to information processing and cryptography.

In cryptography one seeks to describe the ability of agents to complete some task whilst

1Here, fair means not purposefully weighted, i.e. the coin’s density is approximately uniform.
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CHAPTER 1. INTRODUCTION AND SYNOPSIS

in the presence of an adversary. For example, in a data encryption scheme an agent applies

a randomly selected reversible transformation to some data such that no adversary is able

to deduce the contents of the original data from the transformed data. However, for this to

be possible, we require an additional feature from our source of randomness, namely we

require a notion of privacy. That is, the output of a source of private randomness should

be unpredictable from the perspective of all parties – including any would-be adversaries.

This requirement presents a problem with building a random number generator suitable

for cryptography: how can one ever ensure privacy?

When working with a classical source of randomness then evidently our privacy must

come from some limitations placed on an adversary. Indeed, so-called cryptographically-

secure pseudorandom number generators derive privacy from a computational perspective.

Roughly, these are deterministic algorithms that when fed a short random seed produce a

sequence of numbers that is computationally difficult to distinguish from a source of truly

random numbers. These pseudorandom sources are by far the most commonly used sources,

a consequence of their speed and low implementation costs (they do not require specialist

hardware). However, popularity is not necessarily a good measure of security. In particular,

the derivation of security from a computational perspective places privacy at the mercy

of technological progress. The prime example of this is integer factoring [4], a task widely

believed to be computationally difficult2 was found to admit a polynomial time algorithm

on a quantum computer [5].

Still, even if we base our randomness generation on a computational assumption which

is valid, how can a user of such a source verify that an adversary does not have additional

information that would render its outputs predictable? Without the technical expertise

required to verify the source’s construction, one is left to trust the manufacturer’s claim of

security. However, trust is not always warranted and this assumption could leave a user

at the peril of incompetent or malicious manufacturers. It should be noted that alleged

backdoors in standardised ‘cryptographically-secure’ random number generators have been

reported [6].

Fortunately, the nonlocal characteristic of quantum theory provides a means to ad-

dressing the problem of generating certifiably private randomness. Entangled quantum

systems can exhibit correlations between distant parties that are necessarily random (and

private). Thus, through the observation of these correlations one is able to verify a source

of randomness that is a priori private. Pioneered by the insights of [7,8], this connection

has developed into what is now known as device-independent quantum cryptography: the

study of cryptographic procedures whose security can be established independently of the

internal workings of any devices involved. The cryptographic primitives that have been

tackled in the device independent setting are numerous and ever growing. Much of the early

work [9, 10] focussed on quantum key distribution where two parties look to establish a

2A problem is computationally difficult if it cannot be solved using a polynomial time algorithm.
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secret key between two distant locations. Other primitives that have been analysed include:

randomness amplification [11, 12], the conversion of a source of randomness containing

dependencies into a source of independent random bits; self-testing [13], certifying (up to

local transformations) the internal quantum state and measurements present within some

system; and bit-commitment [14, 15], a scenario wherein one party sends (commits) an

encoded value to another which, at some point later, is revealed.

In this thesis, we focus on the task of randomness expansion. A procedure wherein one

assumes access to a short private source of randomness and attempts to use it to generate a

much larger (still private) source. Randomness expansion was originally proposed in [16,17]

with further development and experimental testing following shortly after [18]. Subsequent

work provided rigorous security proofs against classical adversaries [19, 20]. Security

against quantum adversaries—who may share entanglement with the internal state of

the device—came later [21–23], progressively increasing in noise-tolerance and generality,

with the recently introduced entropy accumulation theorem (EAT) [24,25], on which this

work is based, providing asymptotically optimal rates [26,27]. A new proof technique which

is also asymptotically optimal has recently appeared [28].

The EAT has been applied to several cryptographic tasks [26,27,29–31]. All of these

applications rely, at their core, on the CHSH test of nonlocality [32] or close variants

thereof.3 Special properties of the CHSH test are able to greatly simplify the analysis (for

example, it can be shown that it is sufficient to consider the untrusted devices sharing

qubit systems) [10]. However, these techniques cannot be directly generalized to the vast

majority of other nonlocality tests. With respect for the ethos of device-independence, we

should not assume that we can modify the untrusted devices to better suit the pre-existing

protocols. Instead, in order to maximise randomness throughput, we should look to tailor

the protocols to the devices under consideration.

In [26], it was suggested that one could look to use the device-independent guessing

probability (DIGP) [37–39] in conjunction with the semidefinite hierarchy [40,41] to obtain

computational constructions of particular randomness bounding functions required by the

EAT. In this thesis we detail precisely such a method, allowing us to apply the EAT to a wide

range of nonlocality tests beyond CHSH (including the possibility of looking at multiple

non-locality tests simultaneously and the inclusion of additional parties). We present this

result in the form of a template randomness expansion protocol with security statements

that can be evaluated numerically. Moreover, as this construction is both computationally

efficient and robust, we are able to iteratively fine-tune the template protocol to best fit a

given scenario. We apply the result to several different tests of nonlocality and compare

their randomness expansion rates on entangled qubit pairs subject to noisy detectors.

For each protocol considered we are able to generate close to two bits of randomness per

3In [29] the authors use a multipartite generalisation of CHSH known as an MABK inequality [33–35]
and in [31] the authors use the tilted CHSH inequality [36].
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CHAPTER 1. INTRODUCTION AND SYNOPSIS

entangled qubit pair (in the low noise regime).

In order to facilitate the understanding of this thesis, the relevant mathematical

preliminaries have been collated to form Chapter 2. The expert reader may wish to skip this.

The remaining chapters contain the main results of the thesis. Let us briefly summarise

them here.

Chapter 3: In this chapter we introduce and prove security of a template randomness

expansion protocol which can be adapted to the requirements of a user. We achieve this

by establishing a connection between two powerful theoretical tools, the semidefinite

hierarchy [40, 41], which is used to bound the device-independent guessing probability

(DIGP) [37–39], and the entropy accumulation theorem EAT [24,25]. We also provide a full

analysis of the cost of seeding the protocol. In addition, a python package implementing

the construction is provided [42]. This chapter is based on [43].

Chapter 4: In this chapter we apply our technique to several example protocols. In partic-

ular, we look at randomness expansion using the complete empirical distribution as well as

a simple extension of the CHSH protocol, showing noise-tolerant rates of up to two bits per

entangled qubit pair, secure against quantum adversaries. We also compare the achievable

rates for these protocols to the protocol presented in [26] which is based upon a direct

von Neumann entropy bound. Our comparison demonstrates that some of the protocols

from the framework are capable of achieving higher rates than the protocol of [26], in both

the low and high noise regimes. We conclude with a short analysis on the feasibility of

randomness expansion with current experimental technologies. This analysis forms the

theoretical basis of an upcoming manuscript [44].

We conclude in Chapter 5 with a discussion of the results presented and elaborate on some

possible directions of further research.
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PRELIMINARIES

This chapter introduces the relevant mathematical tools required for understanding

the remainder of this thesis. We begin by establishing some of the more general

notation before providing a quick introduction to quantum information theory in

Sec. 2.1. In Sec. 2.2 we define the relevant entropy measures and following this, in Sec. 2.3,

we introduce several large deviation bounds including the entropy accumulation theorem.

We then overview Bell nonlocality and device-independence in Sec. 2.5 and Sec. 2.6. Finally,

in Sec. 2.7 we finish the preliminary material with an overview of semidefinite programming

and its application to approximating the set of quantum correlations.

Notational conventions

Throughout this work, the calligraphic symbols A, B, X and Y denote finite sets (alphabets).

We will use the notational shorthand AB to denote the Cartesian product alphabet A×B.

Given two random variables X and X ′, taking values in some common alphabet X , the

statistical distance between X and X ′, is defined as

∆(X , X ′) := 1
2

∑
x∈X

|pX (x)− pX ′(x)|. (2.0.1)

We make frequent use of the bijective mapping between distributions and a subset of

vectors in some real vector space. More specifically, after choosing some orthonormal basis

{eabxy} of R|ABXY | we may identify some distribution p :ABXY → [0,1] on these alphabets

with the vector p =∑
abxy p(a,b, x, y)eabxy. We refer to an element of our vector using the

notation p(a,b, x, y)= p · eabxy. Given some subset of our indexing alphabets, C ⊆ABXY ,

a restriction of p to C, denoted p(C), is the result of applying the map ΠC :R|ABXY | →R|C|

17



CHAPTER 2. PRELIMINARIES

defined by the action on the basis vectors as

ΠC : eabxy 7→
eabxy if (a,b, x, y) ∈ C

0 otherwise.

Given an alphabet C and a sequence Cn
1 = (ci)n

i=1, with ci ∈ C for each i = 1, . . . ,n, we denote

the frequency distribution induced by Cn
1 by

FCn
1
(x)=

∑n
i=1δxci

n
, (2.0.2)

where δab is the Kronecker delta on the set C. If Cn
1 is a sequence of random variables

then we say that Cn
1 is i.i.d. if all the random variables in the sequence are independent

and identically distributed. For some event Ω⊆ C, we write P [Ω] to denote the probability

that the event occurs. We denote the set of all probability distributions on the set C by

PC . We shall use a tilde to denote subnormalisation, e.g. p̃ ∈ P̃C denotes a possibly non-

normalised distribution over C,
∑

c∈C p(c)≤ 1. In certain contexts we may refer to probability

distributions as behaviours or strategies.

For a linear operator M on some Hilbert space H, we define the trace of M to be

Tr[M] =∑
x 〈x|M |x〉 where {|x〉} is any orthonormal basis of H. Furthermore, for a linear

operator N on the tensor product of two Hilbert spaces HA⊗HB, we define the partial trace

over system A as TrA [N]=∑
x(〈x|⊗ 1B)N(|x〉⊗ 1B), where {|x〉}x is an orthonormal basis of

HA . We refer to an operator M ∈L(H) as positive semidefinite if 〈ψ|M |ψ〉 ≥ 0 for all |ψ〉 ∈H.

We denote positive semidefiniteness by M º 0. This relation also induces a partial order on

the space of linear operators (Loewner order), for M, N ∈L(H) we say M º N if M−N º 0.

We write the natural logarithm as ln(·) and the logarithm base 2 as log(·). The function

sgn(x) :=
0 for x = 0

x
|x| otherwise

(2.0.3)

is the sign function for x ∈ R. We will also make use of the notation [n] := {1,2, . . . ,n} for

n ∈N.

2.1 Quantum information

Quantum information theory is the study of information processing tasks on quantum-

mechanical systems. The purpose of this section is to define precisely what we mean by a

quantum system and the physical laws that constrain it. We shall motivate these definitions

from an operational viewpoint, introducing concepts from the perspective of agents (or

experimentalists), typically referred to as Alice and Bob, who are capable of interacting

with these systems. To begin with, we give an abstract definition of a physical system.

Definition 2.1. A physical system is a collection of objects (S,T ,M) that are defined as

follows.

18



2.1. QUANTUM INFORMATION

• S – States: Possible values that can be attributed to the internal degrees of freedom

of the system.

• T – Transformations: A collection of mappings T :S →S ′ from the system’s current

state space to another.

• M – Measurements: A collection of mappings M :S →S ′×X , where X is some finite

set labelling the possible outcomes of the measurements. Measurements probe the

internal state of the system, returning some outcome x ∈X and transforming the

system’s state.

Remark 2.1. When dealing with multiple physical systems it will be useful to give them

labels to help with distinguishing. For example, we may refer to systems A and B that

have state spaces S(A) and S(B) respectively. As transformations may alter the state

space of a system (effectively defining a new system), we can also use these labels to keep

track of a system at different times, i.e. A1 may be the initial system then after applying

a transformation or measurement we have a system A2. Systems will be labelled using

upper-case Roman characters.

Let us now introduce the states, transformations and measurements that constitute a

quantum system.

Quantum states
A quantum state is a trace-one positive-semidefinite operator acting on some Hilbert

space H. Unless otherwise stated, a Hilbert space is assumed to be finite dimensional.

We denote the set of all quantum states on the Hilbert space H by S(H). We say a state

ρ ∈S(H) is pure if it satisfies Tr
[
ρ2]= 1. After identifying some distinguished orthonormal

basis {|x〉}x of H we refer to a state as classical if it is diagonal in this basis, i.e., ρclassical =∑
x p(x) |x〉〈x|. Note that the unit trace condition, combined with the positive semidefinite

property ensures that the vector p = (p(x))x is a probability distribution. Representing

random variables as quantum states allows for us to model standard (discrete) probability

theory using the same language as quantum systems, hence the terminology ‘classical’.

The joint state space of several quantum systems is the state space of the tensor

products of the individual Hilbert spaces. More precisely, if we have a collection of n ∈N
quantum systems with the state space of the ith quantum system being S(Hi), then the

state space of their joint system is S(H1⊗·· ·⊗Hn). We refer to a state ρsep ∈S(H1⊗·· ·⊗Hn)

as separable if it can be written as a convex combination of tensor products of states from

the individual subsystems, that is, ρsep = ∑
iλiρ i,1 ⊗ ·· · ⊗ρ i,n with

∑
iλi = 1, λi ≥ 0 and

ρ i, j ∈S(H j) for every (i, j). A state which is not separable is called entangled.

A particular class of states which shall play an important role in the forthcoming work

are so-called classical-quantum (cq) states. We say that a state ρcq ∈S(X E) is a cq-state if it
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CHAPTER 2. PRELIMINARIES

takes the following form ρcq =∑
x p(x) |x〉〈x|⊗ρx

E, where {|x〉}x is the distinguished ‘classical’

basis of HX and ρx
E ∈S(E) for each x.1 Letting Ω⊆X be an event on the alphabet X , we

define the conditional state (conditioned on the event Ω) by

ρX E|Ω = 1
P [Ω]

∑
x∈Ω

p(x) |x〉〈x|⊗ρx
E. (2.1.1)

We denote the identity operator of a system E by 1E.

Quantum channels
The set of allowed transformations (channels) is the set of linear mappings that preserve

the state spaces. Precisely, these are any linear mappings Λ : S(A) → S(B) which satisfy

the following two properties.

1. Λ is trace-preserving: for any ρA ∈S(A) we have Tr
[
ρA

]=Tr
[
Λ(ρA)

]
.

2. Λ is completely-positive: for any ρAC ∈S(AC), if ρAC º 0 then (Λ⊗IC)(ρAC)º 0.

These two conditions ensure that all quantum states are mapped to quantum states. This

includes situations when we apply a transformation to only part of a system. Hence, we

require not just positivity but also complete-positivity. We denote the set of all quantum

channels between systems A and B by T (A,B) and we use the shorthand T (A) to denote

T (A, A).

Quantum measurements
A measurement M with outcomes in the set X is described by a collection of positive-

semidefinite operators M = {Mx}x∈X acting on some Hilbert space H. In addition to being

positive, these operators are required to satisfy
∑

x∈X Mx = 1. Applying the measurement M

to a system in the state ρ, we receive the outcome x ∈X with probability p(x)=Tr
[
ρMx

]
.

We refer to such a measurement as a positive operator valued measure (POVM). If in

addition the measurement operators are also projectors, i.e. M2
x = Mx for all x ∈X , we refer

to this as a projection valued measure (PVM). We denote the set of all measurements for a

Hilbert space HA by M(A).

The state transformation accompanying the measurement can be specified by a col-

lection of quantum channels {Λx}x∈X , where Λx is applied to the state upon receiving the

measurement outcome x. The exact structure of the channels associated with a measure-

ment will depend upon the context. For example, physical constraints may dictate that

a system ceases to exist post-measurement. In such a case we can treat the Λx as trivial

channels, i.e. Λx(ρ)= 1 for all x ∈X and ρ ∈S.

1Classical is a contextual concept: the spectral theorem tells us that for any state there exists a basis in
which it is ‘classical’. Rather, given some basis (say, defined by some measurement of interest) we can refer to
states which are classical in this basis.
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2.2. ENTROPIES

Definition 2.2. A quantum system A is a physical system with a state space S(A), the

allowed transformations are quantum channels with domain S(A) and the allowed mea-

surements are M(A) defined for some Hilbert space HA.

The trace norm specifies a norm on the space of linear operators acting on some Hilbert

space. Let H,H′ be two Hilbert spaces and let L(H,H′) be the set of linear operators from

H to H′. Then for any A ∈L(H,H′), the trace norm of A is defined as

‖A‖1 =Tr
[√

A† A
]

. (2.1.2)

From this, we also define the trace distance between two operators A,B ∈ L(H,H′) as

‖A−B‖1.2

Remark 2.2. The trace distance has a useful operational interpretation as a quantity

characterising the distinguishability of two quantum states [45]. Let λ ∈ [0,1] and ρ0,ρ1 ∈
S(H) for some Hilbert space H. Suppose that Alice sends either ρ0 or ρ1 to Bob with

probability λ and 1−λ respectively. Upon receiving the state Bob is allowed to perform a

measurement and subsequently guess which state he was sent.

The trace distance between the two states characterises this optimal probability of

guessing exactly. Precisely, the maximum probability with which Bob can guess correctly is

given by
1
2
+ 1

2
‖λρ0 − (1−λ)ρ1‖1.

Furthermore, the measurement that achieves this is projective [46].

2.2 Entropies

In the context of this thesis, ‘entropy’ is semantically equivalent to ‘randomness’ and we

will often use the two terms interchangeably. However, by taking such a linguistic stance

we must remain vigilant of how our definition of randomness is related to the choice of

entropy measure. In the following we precisely pin down our definition of randomness

and its relation to entropy, drawing inspiration from the operational interpretations of the

entropy measures that we introduce.

2.2.1 Classical entropy measures

Entropy, in the information-theoretic setting, was introduced by Shannon in his seminal

work [3]. Guided by several information-theoretic questions, his strive to characterise a

useful measure of information led him to define his now eponymous entropy.

2For classical states this definition coincides with the statistical distance (cf. (2.0.1)) up to a factor of 1
2 .
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Definition 2.3. Let X be a random variable taking values in X with a probability distri-

bution p. The Shannon entropy of X is

H(X ) :=− ∑
x∈X

p(x) log p(x), (2.2.1)

where we also define 0log0 := 0.3

Remark 2.3. As noted by Shannon, the entropy is defined independently of any meaning

of X , depending only on the underlying distribution. Despite this, we use the standard

notation H(X ) instead of H(p).

Another relevant quantity is that of the self-information (or surprisal) S :X →R∪ {∞},

which is defined as

S(x) :=− log p(x). (2.2.2)

It is related to the Shannon entropy by H(X ) = E [S]. One interpretation of the self-

information is that of a function characterising the amount of surprise experienced by a

rational agent upon observing some outcome x ∈X . That is, − log(p) is a monotonically

decreasing function on the unit interval, with − log(1)= 0 and limp→0+ − log(p)=∞: events

that occur with certainty produce no-surprise whereas impossible events are associated

with infinite surprise. Moreover, for independent random variables the surprisal is additive.

From this perspective, we can view the Shannon entropy as a measure of the expected

surprisal experienced by the agent.

Several years later, in [47] Rényi reviewed Shannon’s axioms of a ‘good’ entropy measure

and relaxed what he referred to as the mean value property of entropy. This led him to

define a one-parameter family of entropies which we refer to as the Rényi entropies.

Definition 2.4. Let X be a random variable taking values in X with a probability distri-

bution p and let α ∈ [0,1)∪ (1,∞). Then, the α-Rényi entropy of X is defined as

Hα(X ) := 1
1−α log

∑
x∈X

pα(x). (2.2.3)

Additionally, we define the limiting cases,

H1(X ) := H(X ) (2.2.4)

and

H∞(X ) :=min
x∈X

− log p(x). (2.2.5)

Remark 2.4. We refer to the measure H∞ as the min-entropy, denoting it by Hmin.

The Shannon entropy may differ substantially from other Rényi entropies as the follow

example demonstrates.

3This choice follows from the identity lim
x→0+

x log x = 0.
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Example 2.1. Let X be a random bit string of length m, X = {0,1}m, such that

P [X = b]=
1−δ if b = 0m

δ
2m−1 otherwise

(2.2.6)

for some 0< δ≤ 1/2. For this distribution we have

H(X )= h(δ)+δ log(2m −1)

≈ h(δ)+δm

and

Hmin(X )=− log(1−δ)

where h(δ) :=−δ log(δ)− (1−δ) log(1−δ) is the binary entropy function. Here, we see that

the Shannon entropy grows linearly in the number of bits whereas the min-entropy stays

at a constant value. Furthermore, setting δ= 1/
p

m and taking the limit m →∞, we have

H(X )→∞ whereas Hmin → 0.

2.2.2 Quantum entropy measures

In the following we generalise the Shannon entropy and min-entropy to quantum systems.

Let ρ ∈S(A) be a quantum state, the von Neumann entropy of ρ is

H(A)ρ :=−Tr
[
ρ log(ρ)

]
. (2.2.7)

If ρ is a classical state, i.e. ρ =∑
x p(x) |x〉〈x| for some orthonormal set of vectors {|x〉}x, we

recover the Shannon entropy of the distribution {p(x)}x,

H(A)ρ =−∑
x

p(x) log p(x). (2.2.8)

For a bipartite state ρAE ∈ S(AE), let ρE = TrA
[
ρAE

]
and define the conditional von

Neumann entropy of system A given system E when the joint system is in state ρAE by

H(A|E)ρ := H(AE)ρ−H(E)ρ . (2.2.9)

In addition, for a tripartite system ρABE ∈ S(ABE), the conditional mutual information

between A and B given E is defined as

I(A : B|E)ρ := H(A|BE)ρ−H(A|E)ρ . (2.2.10)

We drop the state subscript whenever the state is clear from the context.

For cq-states it is useful to consider the conditional min-entropy [48] in its operational

formulation [39]. Given a cq-state ρX E =∑
x p(x) |x〉〈x|⊗ρx

E, the maximum probability with

which an agent holding system E can guess the outcome of a measurement on X is

pguess(X |E) := sup
{Mx}x

∑
x

p(x)Tr
[
Mxρ

x
E
]
, (2.2.11)
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where the supremum is taken over all POVMs {Mx}x on system E. Using this we can define

the min-entropy of a classical system given quantum side information as

Hmin(X |E) :=− log
(
pguess(X |E)

)
. (2.2.12)

Another quantity of importance is the ε-smooth conditional min-entropy. Given some

ε≥ 0 and ρX E ∈S(X E), the ε-smooth min-entropy Hε
min is defined as the supremum of the

min-entropy over all states ε-close to ρX E,

Hε
min(X |E)ρ := sup

ρ′∈Bε(ρ)
Hmin(X |E)ρ′ , (2.2.13)

where Bε(ρ) is the ε-ball centred at ρ defined with respect to the purified trace distance

(see [49]). The interested reader is referred to [50] for a comprehensive overview of smooth

quantum entropies.

2.3 Large deviation bounds

Let (X i)i∈N be a sequence of i.i.d. random variables, assuming the expectation value exists

let µ= E [X1] and define the partial sum Sn := 1
n

∑n
i=1 X i. The law of large numbers, in its

weak and strong forms, establishes a connection between long-term empirical observations

Sn and the expected observation µ. More specifically, the weak law of large numbers states

that [51], for every t > 0 we have

lim
n→∞P

[|Sn −µ| > t
]= 0. (2.3.1)

That is, in the limit of infinitely many observations, the probability that the empirical

average Sn deviates from the mean tends to zero. Probabilistic bounds on deviations for

finite n also exist and are known in the wider literature as concentration inequalities,

see [52]. We now introduce two such bounds that will prove useful in the later analysis.

The first is commonly known as the Chernoff bound [53], although we source our

formulation from [54].

Lemma 2.1 (Chernoff bound). Let X i be independent binary random variables for i =
1, . . . ,n, S =∑

i X i and µ= E [S]. Then for 0≤ t ≤ 1

P
[
S ≥ (1+ t)µ

]≤ e−t2µ/3

P
[
S ≤ (1− t)µ

]≤ e−t2µ/2 .

Corollary 2.1. For r ≤µ we have P
[∣∣S−µ∣∣≥ r

]≤ 2e−r2/(3µ).

In addition to this, we also make use of Hoeffding’s inequality [55].

Lemma 2.2 (Hoeffding’s inequality). Let X i be independent random variables, such that

ai ≤ X i ≤ bi with ai,bi ∈R for i = 1, . . . ,n. In addition, let S =∑
i X i and µ= E [S]. Then for

t > 0

P
[|S−µ| ≥ t

]≤ 2e
− 2t2∑

i (bi−ai )2 .
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2.3.1 The AEP and its entropic generalisations

A statement analogous to the weak law of large numbers can be made if we consider

the average surprisal of our observations In :=− 1
n log p(X1, . . . , Xn). Note that due to the

independence of the random variables we may rewrite the average surprisal as the sum of

the individual surprisals In = 1
n

∑n
i=1− log(p(X i)). Writing Yi =− log(p(X i)), we have (Yi)i∈N

is a sequence of independent random variables with E [Y1]= H(X1). Applying the weak law

of large numbers, we find that for all t > 0

lim
n→∞P

[|− 1
n log p(X1, . . . , Xn)−H(X )| > t

]= 0. (2.3.2)

This result is known as the asymptotic equipartition property (AEP).

An equivalent entropic reformulation of the AEP can be made about the convergence of

smooth Rényi entropies to the Shannon Entropy in the i.i.d. limit, see Chapter 6 in [56] for

a complete discussion regarding this connection. In particular, for the smooth min-entropy

we have

lim
ε→0

lim
n→∞

1
n Hε

min(X1, . . . , Xn)= H(X ). (2.3.3)

The advantage of considering the entropic form of the AEP is twofold. Firstly, entropies

are operationally relevant quantities, bounds on their values imply bounds on operational

problems. In addition, the entropic form allows us to avoid the problem of not having a

well-defined generalisation of conditional probability due to the presence of incompatible

joint events in quantum theory. Thus, a generalisation of (2.3.3) to quantum entropies in

the presence of quantum side-information is possible [57]. The main result of [57] may be

summarised as follows: for a quantum state ρ ∈S(AB) consider the i.i.d. state ρ⊗n :=⊗n
i=1ρ

on the system AnBn comprised of n copies of AB, then

lim
ε→0

lim
n→∞

1
n Hε

min(An|Bn)ρ⊗n = H(A|B)ρ. (2.3.4)

Furthermore, for finite n the authors provide an explicit lower bound of the form

1
n Hε

min(An|Bn)ρ⊗n ≥ H(A|B)ρ− cp
n , (2.3.5)

where c is a constant dependent on ε but independent of n. Lower bounds on the smooth

min-entropy are of critical importance to later applications (c.f. Sec. 2.4).

Remark 2.5. The above bound (2.3.5) illustrates the power of entropy smoothing. Recall in

Example 2.1 we saw that the Shannon entropy could be made to be arbitrarily larger than

the min-entropy. The AEP states that for a long enough sequence of i.i.d. experiments we

can account for this difference by smoothing. Intuitively, this can be seen as a consequence

of typicality [51]. That is, for sufficiently large n almost all of the mass of pX n
1

will be on

the typical set An
δ

:= {xn
1 ∈X n | 2−n(H(X )+δ) ≤ p(xn

1 )≤ 2−n(H(X )−δ)}. Therefore, one can find a

distribution close to pX n
1

such that 1
n Hmin(X n

1 )&H(X )−δ.
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2.3.2 The entropy accumulation theorem

The final bound in the previous subsection (2.3.5) is structured in a manner that is particu-

larly appealing for our purposes. It lower bounds a global quantity of interest Hε
min(An|Bn)

in terms of smaller, more easily computable quantities H(A|B)ρ . Unfortunately, the bound is

derived from the assumption of an i.i.d. structure to the sequence of experiments. This i.i.d.

assumption in cryptography is overly restrictive. When characterising the possible actions

of an adversary we would much rather be overly generous than overly restrictive.4 Thus, we

look for a bound similar to (2.3.5) which is derived from weaker assumptions. Fortunately,

this is precisely what the entropy accumulation theorem (EAT) provides [24,25].

The EAT relaxes the i.i.d. assumption by replacing it with a structural assumption

which states that the random experiments are performed sequentially. That is, we conduct

experiment one, then experiment two, then three and so on. The only additional a priori

restriction that the sequential scenario imposes is that we should be able to explain any

dependencies between two experiments by the information present at the earlier one. The

remaining part of this section is dedicated to precisely defining this sequential interaction

and stating the generalisation of (2.3.5) offered to us by the EAT. It should be noted here

that we are not considering the EAT in its full generality, but a restricted version tailored

to our application, e.g. some systems will be restricted to be classical.

In the sequential scenario our experiment begins with a bipartite system R0E in a

(possibly entangled) quantum state ρR0E ∈S(R0E). We can think of the subsystem R0 as

the initial system in our laboratory, i.e. the system with which we shall be interacting

sequentially. Whereas, system E refers to a system held by an adversary. During each

interaction some classical systems A i X iCi will be produced along with a quantum system

Ri. The sequential interaction is then described by the application of a sequence of quantum

channels (Ni ⊗IE)n
i=1, where Ni :S(Ri−1)→S(A i X iCiRi) which transform the system in

the laboratory to produce the relevant experimental data. We refer to the channels used as

EAT channels and the following definition gives their precise characterisation.

Definition 2.5 (EAT channels). A set of EAT channels {Ni}n
i=1 is a collection of quantum

channels Ni :S(Ri−1)→S(A i X iCiRi) such that for each i ∈ [n]:

1. A i, X i and Ci are finite dimensional classical systems. Moreover, the state of Ci is a

deterministic function of the states of A i and X i. Ri is an arbitrary quantum system.

2. For any initial state ρR0E, the final state ρAn
1 X n

1 E =TrCn
1 Rn

[
((Nn ◦ · · · ◦N1)⊗IE)ρR0E

]
obeys the collection of conditional independence constraints I(A i−1

1 : X i|X i−1
1 E)= 0.

Remark 2.6. The EAT channels formalise the notion of interaction within the protocol.

The first constraint is a straightforward restriction on the nature of the information

4Furthermore, any innocent fluctuations in the experimental setup would render the i.i.d. assumption
invalid.
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present within the experiment. In the applications to come one can interpret these systems

as follows: the systems (A i) refer to outputs of measurements on the quantum systems

(Ri−1) present in the laboratory at the beginning of the ith interaction, we will use the

EAT to bound the total entropy of these systems; the systems (X i) correspond to any

additional classical information entering the experiment during each interaction, e.g. a

choice of measurement to make on the laboratory’s system; finally (Ci) are systems that

help evaluate the quality of the data produced during the interaction, e.g. the evaluation of

some Bell-inequality for (A i, X i). We refer to the Ci systems as scores. Crucially, we will be

able to evaluate our lower bound on the total entropy accumulated whilst conditioning on

the observation of some event, i.e. Cn
1 ∈Ω. For example, this could be the observation of a

sufficiently large average score.

The independence constraints impose the idea that the outputs generated in the sequen-

tial interactions should only depend upon the information present up to that point in time.

If these conditional independence conditions were abandoned then we could artificially

construct these dependencies by choosing X i+1 based upon the value of some past output A i.

An explicit example showing the necessity of this condition for the general EAT statement

is provided in the appendix of [24].

To fully state the EAT we require one additional object known as a min-tradeoff function.

Such a function acts as a lower bound on the minimum von Neumann entropy accrued

during a single interaction when we presuppose that the score will behave according to

some distribution. Formally, it is defined as follows.

Definition 2.6 (Min-tradeoff function). Let Ni be an EAT channel and let R′ be a quantum

system isomorphic to the system Ri−1. A min-tradeoff function for the channel Ni is an

affine function fmin :PC →R satisfying

fmin(p)≤ inf
ω∈Σp

H(A i|X iR′)Ni(ω) (2.3.6)

where

Σp :=
{
ω ∈S(Ri−1R′) : (Ni ⊗IR′)(ω)Ci =

∑
c

p(c) |c〉〈c|
}

. (2.3.7)

When Σp =; the infimum is defined to be +∞. For a given min-tradeoff function fmin, we

are also concerned about the following properties.

• Maximum over all distributions:

Max[ fmin] := max
p∈PC

fmin(p). (2.3.8)

• Minimum over all distributions:

Min[ fmin] := min
p∈PC

fmin(p). (2.3.9)
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• Minimum over all Σ-compatible distributions:

MinΣ[ fmin] := min
p:Σp 6=;

fmin(p). (2.3.10)

• Maximum variance over all Σ-compatible distributions:

VarΣ[ fmin] := max
p:Σp 6=;

∑
c

p(c) ( fmin(δc)− fmin(p))2 . (2.3.11)

Remark 2.7. As a min-tradeoff function f is an affine function, we may decompose its

action on a probability distribution p as f (p)=∑
c p(c) f (δc).

The sequential interaction scenario imposes little structure on the experiment: we have

a sequence of experiments obeying some statistical properties. At the end of the experiment

we will have collected the statistics Cn
1 , which gives rise to a frequency distribution over

the set C which we denote by FCn
1
. Loosely, the EAT states that the total entropy gained

throughout the series of interactions should, with high probability, be close to the minimum

entropy accumulated in a series of experiments whose scores are all i.i.d. according to FCn
1
.

The EAT was originally stated in [24], here we use the recently improved statement [25]

wherein a better error dependence was established.

Theorem 2.2 (EAT).
Let (Ni)n

i=1 be a collection of EAT channels and let ρAn
1 X n

1 Cn
1 E =TrRn

[
((Nn ◦ · · · ◦N1)⊗IE)ρR0E

]
be the output state after the sequential application of the channels (Ni ⊗IE)i to some input

state ρR0E. Let Ω⊆ Cn be some event that occurs with probability pΩ and let ρ|Ω be the final

state conditioned on Ω occurring. Finally let εs ∈ (0,1) and fmin be a min-tradeoff function

for each (Ni)i. If for all Cn
1 ∈Ω, with P

[
Cn

1
]> 0, we have fmin(FCn

1
) ≥ t for some t ∈ R then

for any β ∈ (0,1) we have

Hεs
min(An

1 |X n
1 E)ρ|Ω > nt−n(εV +εK )−εΩ, (2.3.12)

where

εV := β ln2
2

(
log

(
2|A|2 +1

)+√
VarΣ[ fmin]+2

)2
, (2.3.13)

εK := β2

6(1−β)3 ln2
2β(log |A|+Max[ fmin]−MinΣ[ fmin]) ln3

(
2log |A|+Max[ fmin]−MinΣ[ fmin] +e2

)
(2.3.14)

and

εΩ := 1
β

(1−2log(pΩ εs)) . (2.3.15)

2.4 Randomness extraction

Many applications require some source of uniform (or almost uniform) random bits. How-

ever, it may be the case that we only have access to a source of partially random bits. In
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addition, these bits may not be independent of each other or, worse, they may be correlated

with some other random source held by an adversary. Randomness extractors are proce-

dures that allow us to process partially random sources into sources of independent and

uniformly random bits.

The first extractor is attributed to von Neumann [58] who proposed a simple method for

converting a source of biased but i.i.d. random bits into a uniformly random source.5 More

modern extractors began with technical results like the leftover hash lemma (LHL) [59].

The LHL states that if our partially random source of bits has min-entropy larger than k > 0

and we apply a function chosen randomly from a set of pairwise-independent universal hash

functions6 then the resulting bit string is approximately uniformly distributed over {0,1}k.

This result was later extended to the case where our random source may be correlated with

some quantum system [60], proving that the results of quantum measurements could also

be used as a source of extractable randomness. We now present the formal definition of a

randomness extractor that will be used throughout the rest of this thesis. This definition

is the combination of Lemma 3.5 from [61] and the quantum-proof randomness extractor

definition presented in [62].

Definition 2.7 (Quantum-proof strong extractor). We say that a function Rext : {0,1}n ×
{0,1}d → {0,1}r is a quantum-proof (k,εext +2εs)-strong extractor, if for all cq-states ρX E

with Hεs
min(X |E)ρ ≥ k for some εs > 0 it maps ρX E ⊗τd to ρ′Rext(X ,D)DE where

1
2
‖ρ′Rext(X ,D)DE −τr ⊗τd ⊗ρE‖1 ≤ εext +2εs, (2.4.1)

where τr is the maximally mixed state on a system of dimension 2r.

Although in general the amount of randomness extracted will depend on the extractor,

Hεs
min(An

1 Bn
1 |E) provides an upper bound on the total number of εs-close to uniform bits that

can be extracted from An
1 Bn

1 and a well-chosen extractor will result in a final output bit-

string of length r ≈ Hεs
min(An

1 Bn
1 |E). We denote any loss of entropy incurred by the extractor

by `ext = k− r. Entropy loss will differ between extractors but in general it will be some

function of the extractor error, the seed length and the initial quantity of smooth min-

entropy. The extractor literature is rich with explicit constructions, with many following

Trevisan’s framework [63]. For an in-depth overview of randomness extraction, we refer

the reader to [64] and references therein.

5His idea is as follows: take the outputs of the source and group them into pairs. Each pair (b1,b2) takes one
of four possible values {00,01,10,11} and, as the sequence was produced in an i.i.d. manner, P [(b1,b2)= (0,1)]=
P [(b1,b2)= (1,0)]. If we discard all pairs taking values (0,0) or (1,1) we are left with a sequence of uniformly
random i.i.d. binary-outcome events.

6Here, a hash function is just some map h : {0,1}n → {0,1}k where n is the number of bits produced by
our partially random source. In addition, we say a collection of hash functions H is a pairwise-independent
universal family if for all x, y ∈ {0,1}n with x 6= y if we select h ∈ H uniformly at random then we have (h(x),h(y))
is uniformly distributed over {0,1}2k.
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BobAlice

Λ

X Y

A B

Figure 2.1: An artist’s interpretation of two agents conducting a Bell-test.

Remark 2.8. By using a strong quantum-proof extractor, the output of the extractor will

remain uncorrelated with the string used to seed it. Since the seed acts like a catalyst,

we need not be overly concerned with the amount required. Furthermore, if available, it

could just be acquired from a trusted public source immediately prior to extraction without

compromising security.

2.5 Bell Nonlocality

Consider the following scenario (see Fig. 2.1) wherein two agents, Alice and Bob, are

tasked with generating distant correlations. At the beginning of the experiment they will

be separated and unable to communicate.7 They will then each receive a symbol, Alice

receives some x ∈X and Bob receives some y ∈Y , chosen independently of the rest of the

experiment. We denote the symbols which Alice and Bob receive by the random variables

X and Y respectively. After receiving X and Y , they will each announce another symbol,

A and B chosen from the sets A and B respectively. The outcome of a single run of the

experiment, i.e. the tuple (A,B, X ,Y ), can be modelled by some conditional probability

distribution pAB|XY .8

The separation of the agents enforces what are known as no-signalling constraints on

the distribution p,

∑
a

p(a,b|x, y)= p(b|y), for each b, x and y, (2.5.1)∑
b

p(a,b|x, y)= p(a|x), for each a, x and y. (2.5.2)

7This assumption can be physically justified through spacelike separation of the two agents.
8The distribution over the inputs is fixed and cannot be influenced by the agents. Our attention is therefore

focussed on the conditional distribution: we want to observe how the agents act upon receiving different inputs.
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That is, the input received by one agent cannot influence the marginal distribution of the

other agent.

Note that we allow the two agents, prior to being separated, to discuss how they

will react upon receiving their inputs e.g. they could exchange some random bit string

which would influence their choice of responses. What we are assuming here is that any

dependencies between the outcomes A and B must be mediated by some underlying hidden

random variable (HRV) Λ that was shared prior to the experiment. Mathematically, this

corresponds to their probability distribution decomposing as

p(a,b|x, y)= ∑
λ∈Λ

q(λ)p(a|x, y,λ)p(b|x, y,λ)

= ∑
λ∈Λ

q(λ)p(a|x,λ)p(b|x,λ),
(2.5.3)

where on the second line we used the assumption that A is independent of Y and B is

independent of X .

Henceforth, a behaviour refers to a bipartite conditional probability distribution of the

form {p(a,b|x, y)}abxy with (a,b, x, y) ∈ABXY which satisfies the no-signalling constraints

(2.5.1) and (2.5.2). We denote the set of local behaviours, i.e. those which can be decomposed

as (2.5.3), by L. The set of local behaviours forms a bounded convex polytope in R|ABXY |.
Convex polytopes can be described in two equivalent ways: either as the convex hull of a set

of extremal vertices or as the intersection of a collection of halfspaces, with the halfspaces

being defined by the hyperplanes that lie across the facets of the polytope. For the polytope

L, the extremal vertices are the deterministic behaviours [65], i.e. a behaviour of the form

p(a,b|x, y)= p(a|x)p(b|y) with p(a|x), p(b|y) ∈ {0,1} for each (a,b, x, y) ∈ABXY .

Whilst the vertex-description of L is simple to define, it is the halfspace description that

has proven vastly more useful in practice.9 Consider a hyperplane H that rests on a facet

of L, it may be written as {p ∈ R|ABXY | | ∑a,b,x,y sabxy p(a,b|x, y) = c} for some sabxy, c ∈ R.

This hyperplane defines the linear functional S : p 7→∑
a,b,x,y sabxy p(a,b|x, y) such that for

p ∈ L we have S(p) ≤ c.10 This necessary criterion for membership of L is known as a

Bell-inequality and its usefulness comes from the fact that checking S(p)> c is sufficient to

conclude p ∉L.

In his seminal work, [67], Bell extended the EPR argument [68] to conclude that

the predictions of quantum theory could not always be described by the LHV model, i.e.,

quantum theory allows for probability distributions that cannot be decomposed in the

manner depicted in (2.5.3). Such distributions are referred to as nonlocal. Since then, a

plethora of work has been devoted to the study of nonlocality from both the foundational

9The process of converting a vertex description of a polytope to a hyperplane description is known as facet
enumeration. Whilst polynomial time algorithms exist [66], a significant problem is that the number of vertices
scales exponentially in the size of the input-output alphabets – the number of deterministic distributions is
|A||X ||B||Y |.

10We will always have the our inequalities directed in this way. If required, we can make the replacements
sabxy 7→ −sabxy and c 7→ −c.
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perspective as well as its implications for information processing tasks. We refer the

reader to [69] and references therein for a broad overview of the topic. We refer to a

behaviour p as quantum, denoted by p ∈Q, if there exists a Hilbert space HAB, a density

operator ρ ∈S(AB) and a collection of POVMs, {{Fa|x}a∈A}x∈X and {{Gb|y}b∈B}y∈Y such that

p(a,b|x, y) = Tr
[
ρ(Fa|x ⊗Gb|y)

]
for each (a,b, x, y) ∈ABXY . Finally, the set of behaviours

that are restricted only by the no-signalling constraints is denoted by N.

Example 2.2 (CHSH). Let us consider the simplest non-trivial example of Bell-nonlocality,

where A = B = X = Y = {0,1}. In this scenario there is a unique (up to relabelling) Bell

inequality, the CHSH inequality [32]. The inequality takes the form

〈A0B0〉+〈A0B1〉+〈A1B0〉−〈A1B1〉 ≤ 2, (2.5.4)

where
〈
AxBy

〉
:= ∑

ab(−1)a⊕b p(a,b|x, y) for each x, y ∈ {0,1}. Its maximum violation for

quantum systems, known as its Tsirelson bound [70], is 2
p

2 .

Remark 2.9. The crucial property of nonlocal correlations, that enables their application to

cryptographic tasks, is the fact that they imply the existence of private randomness [9,71].

More precisely, let p be a behaviour such that p ∉L. Then, by the definition of L, there

cannot exist a random variable Λ such that conditioned on knowing the value of Λ, A is a

deterministic function of X and B is a deterministic function of Y . Thus, for some values of

(x, y) we have maxab p(a,b|x, y,Λ)< 1 and therefore private randomness.

2.5.1 Nonlocal games

An alternative way of thinking about Bell-experiments is through the guise of a nonlocal

game. From this viewpoint, a Bell-experiment is a cooperative game wherein two agents

are separated and then a referee sends each agent a question to which they respond with

an answer. Based upon their interaction, the two agents receive a score which is a function

of their question and answers.

Definition 2.8. Let A,B,X ,Y and V be finite sets. A (two-player) nonlocal game G =
(µ,V ) (on ABXY) consists of a set of question pairs (x, y) ∈XY chosen according to some

probability distribution µ : XY → [0,1], a set of answer pairs (a,b) ∈AB and a scoring

function V :ABXY →V .

Remark 2.10. We will abuse notation and use the symbol G to refer to both the nonlocal

game and the set of possible scores. I.e., we may refer to the agents receiving a score c ∈G.

Furthermore, we denote the number of different scores by |G|.

As before, the actions of our agents are modelled by some conditional probability

distribution p ∈N, which we may refer to as a strategy. By playing according to the strategy
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p, the agents induce a frequency distribution ωG over the set of possible scores. That is,

ωG(c)= ∑
abxy

µ(x, y)p(a,b|x, y)δV (a,b,x,y),c (2.5.5)

for each c ∈ G. We denote the set of possible frequency distributions achievable by the

agents whilst playing according to quantum strategies by QG .

Example 2.3 (CHSH game). We may recast the CHSH inequality as a nonlocal game. In

this game µ is the uniform distribution over XY and the scoring function is

V (a,b, x, y)=
1 if a⊕b = xy

0 otherwise.
(2.5.6)

Interpreting a score of 1 as a win, the maximum probability with which the agents can win

the CHSH game whilst using a local strategy is

sup
p∈L

ω(1)= 3
4

and whilst playing according to a quantum behaviour is

sup
p∈Q

ω(1)= 1
2 +

p
2

4 .

We finish this section with another example of a nonlocal game, one which will be

important for the analysis later in the thesis.

Example 2.4 (Extended CHSH game (GCHSH)). The extended CHSH game has appeared

already in the device-independent literature [26, 72, 73]. It extends the standard CHSH

game to include a correlation check between one of Alice’s CHSH inputs and an additional

input from Bob. It is defined by the question-answer sets X = {0,1}, Y = {0,1,2} and

A=B = {0,1}, the scoring set V = {cCHSH, calign,0} and the scoring rule

VCHSH(a,b, x, y) :=


cCHSH if x · y= a⊕b and y 6= 2

calign if (x, y)= (0,2) and a⊕b = 0

0 otherwise.

(2.5.7)

The input distribution we consider is defined by µCHSH(x, y)= 1
8 for (x, y) ∈ {0,1}2, µCHSH(0,2)=

1
2 and µCHSH(x, y) = 0 otherwise. This game is equivalent to choosing to play either the

CHSH game or the game corresponding to checking the alignment of the inputs (0,2) uni-

formly at random and then proceeding with the chosen game. The frequency distribution

then tells us the relative frequencies with which we win each game. The motivation behind

GCHSH can be understood by considering a schematic of an ideal implementation on a

bipartite qubit system as given in Fig. 2.2. If we observe the maximum winning probability

for the CHSH game, as well as perfect alignment for the inputs (0,2), then the inputs

(x̃, ỹ)= (1,2) should produce two perfectly uniform bits.
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Figure 2.2: A measurement schematic for a qubit implementation of GCHSH. Measurements
are depicted in the x-z plane of the Bloch-sphere with σϕ = cos(ϕ)σz+sin(ϕ)σx for ϕ ∈ (−π,π].
Using the maximally entangled state |ψ〉AB = (|00〉 + |11〉)/p2 with the measurements
depicted, one has a frequency distribution of ωG = 1

2

(
1
2 +

p
2

4 ,1, 1
2 −

p
2

4

)
, where the scores

are ordered (cCHSH, calign,0). The setup achieves Tsirelson’s bound for the CHSH game
as well as perfect correlations for the X = 0 and Y = 2 inputs. In addition, self-testing
results [74] give a converse result: these scores completely characterize the devices up to
local isometries. This implies that the state used by the devices is uncorrelated with an
adversary and that the measurement pair (X ,Y )= (1,2) yields uniformly random results,
certifying the presence of 2 bits of private randomness in the outputs.

2.5.2 Loopholes

Loopholes in Bell-experiments are failures to exactly adhere to the given assumptions.

In such a situation, the conclusions that we are able to draw from our observations are

naturally subject to change. We shall now review two loopholes that will influence how

we conduct the later analysis, for an in-depth discussion of the various loopholes in Bell-

experiments we refer the reader to [75]. It should also be noted at this point that loophole-

free11 Bell-experiments have been performed [76–78].

Locality loophole

In a Bell-experiment we made the explicit assumption that, once separated, neither

agent is capable of sending information to the other. This is often referred to as an as-

sumption of locality: the result of one agent’s experiment should not be influenced by the

actions of another distant agent. This supersedes the assumption that the agents input

11Well, one can never rule out superdeterminism, but we won’t discuss that here: the universe forbids it.
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choices are independent of one another – this is also sometimes referred to separately as

an assumption of free choice. The concept of a ‘distant agent’ can be made precise, we say

agent B is distant from agent A if agent B is located at a spacetime point outside of the

causal past of agent A.

When conducting a Bell-experiment we do not observe the underlying joint distribution

that governs the observed statistics. Instead, we are only privy to an empirical distribution.

Due to the effects of finite statistics, coupled with the fact that we cannot guarantee that

the experiment’s statistics were produced in an i.i.d. manner, we are unable to retroactively

check that the locality assumption was upheld, e.g. by attempting to factor the distribution

as per (2.5.1) and (2.5.2). Therefore, we must trust that the experiment performed upheld

this assumption. In practice, this is done by forcing spacelike separation of the parties

during interactions.12

Detection loophole

Suppose that during one of the trials of a Bell-experiment an input is provided to a

device but the device fails to produce an output. What data should be recorded for this trial?

Those of a non-conspiratorial disposition may be inclined to ignore the trial. However, such

an action opens what is sometimes referred to as the post-selection, detection or coincidence

loophole.13 To highlight the problem, consider the following example wherein we have two

agents play the CHSH game. Their strategy is simple, always output zero; except, when

agent A receives the input 1 from the referee, then agent A refuses to respond. By ignoring

these events, the only question pairs that contribute to the game score are (0,0) and (0,1)

and for these question pairs a joint response of (A,B)= (0,0) will result in a score of 1. By

post-selecting on certain inputs, one can guarantee to win the game on all recorded runs.

In order to close the detection loophole one must take all of the trials into account. The

most general method for doing so is to introduce a new symbol ��A (�B ), which is recorded

when Alice’s (Bob’s) detection event fails. This method increases the size of the output

alphabets A 7→A∪ {��A } and B 7→B∪ {�B }, opening up the possibility of using different Bell-

inequalities. However, the original Bell-inequality may also be used by ‘lifting’ it to the

new scenario [79]. Alternatively, instead of introducing a new symbol, one can record a

pre-existing outcome upon observing a failed detection event. Whilst this is clearly less

general than the previous method, there are contexts in which it may be advantageous to

not increase the size of the output alphabets. For example, when optimizing over probability

distributions achieving some Bell-inequality violation a larger alphabet results in a more

12In cryptographic scenarios we must assume that our devices cannot signal to an adversary, otherwise
secrecy is non-existent. We can therefore extend this assumption to include that the devices within the
laboratory do not signal to each other – if we can block the devices from signalling to an adversary then we
should be able to block them from signalling to each other. As such, we do not look to close the locality loophole
within our randomness expansion protocols.

13The various terms come from deficiencies in different implementations of Bell-experiments. However,
they are all concerned with the same problem of incomplete data.
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computationally intensive problem (see Appendix A).

2.6 Device-independence

Device-independence is a paradigm in which one attempts to draw conclusions about the

outcomes of information processing tasks whilst relying as little as possible on the specific

details of their implementation.14 Instead, one looks to use readily available information to

try and infer properties about the outcomes of some procedure. For example, as was noted

in Remark 2.9, we may use the observation of nonlocal correlations to certify the existence

of private randomness. Crucially, this can be done without reference to the actual system

used to generate the nonlocal correlations, we need only to check that the assumptions

required for a Bell-experiment are upheld to ensure the privacy.

Within a device-independent protocol, tasks are completed through a series of interac-

tions with some untrusted devices. A device D refers to some physical system that receives

classical inputs and produces classical outputs. Describing such systems in the language of

Def. 2.2, inputs correspond to a choice of state preparation and/or measurement procedure

and the outputs would be the results of some measurements performed on the system. We

say that D is untrusted if the mechanism by which D produces the outputs from the inputs

is unknown. During the protocol, the agents interact with their untrusted devices within

the following scenario:15

1. The protocol is performed within the confines of a secure lab from which information

can be prevented from leaking.

2. This lab can be partitioned into two disconnected sites (one controlled by Alice and

one by Bob).

3. The agents can send information freely and securely between these sites, Moreover,

they are capable of preventing any unwanted information transfer between the

sites.16

4. The agents each have their own device to which they can provide inputs (taken from

alphabets X and Y) and receive outputs (from alphabets A and B).

5. These devices operate according to quantum theory, i.e., pAB|XY ∈ QAB|XY . Any

eavesdropper is also limited by quantum theory. We use DABE to denote the collection

of devices (including any held by an eavesdropper).

14Of course, we must make some assumptions about the implementation. For example, in cryptographic
schemes we assume that our secrets are not broadcast to an adversary, else cryptography is a moot concept.
Rather, device-independence strives to make as few assumptions about the implementation as possible.

15One does not have to recreate this scenario exactly in order to perform the protocol. Instead, the given
scenario establishes one situation in which the protocol remains secure.

16This imposes the locality restriction required for Bell-experiments.
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6. The user has an initial source of private random numbers and a trusted computer for

classical information processing.

One of the main advantages a device-independent protocol possesses over other cryp-

tographic procedures, are its minimalist assumptions on the implementation. Moreover,

through the observation of nonlocal correlations it has the capability of determining whether

or not the untrusted devices are performing adequately. The protocols hence remain imper-

vious to many side-channel attacks, malfunctioning devices or prior tampering.

2.6.1 The device-independent guessing probability problem

In the device-independent scenario we do not know the quantum states or measurements

being performed. Instead, our entire knowledge about these must be inferred from the

observed input-output behaviour of the devices used. In particular, observing correlations

that violate a Bell-inequality provides a coarse-grained characterisation of the underlying

system. As formulated in the definition of the min-entropy, the guessing probability (2.2.11)

is not a device-independent quantity because its computation requires knowledge of the

states ρx
E. However, the guessing probability can be reformulated in a device-independent

way [37,38,80,81].

Consider a tripartite system ρABE shared between two devices in the agents’ lab and

Eve. Because we are assuming an adversary limited by quantum theory, we can suppose

that, upon receiving some inputs (x, y) ∈XY , the devices work by performing measurements

{Ea|x}a and {Fb|y}b respectively, which give rise to some probability distribution p ∈QAB|xy,

and the overall state post-measurement is the cq-state

∑
ab

p(a,b|x, y) |a〉〈a|⊗ |b〉〈b|⊗ρabxy
E ,

where

ρ
abxy
E = TrAB

[
(Ea|x ⊗Fb|y ⊗ 1E)ρABE

]
Tr

[
(Ea|x ⊗Fb|y ⊗ 1E)ρABE

] .

Note that the agents are not aware of the inner workings of the devices, they only observe

the results of the measurements on their systems.

Consider the best strategy for Eve to guess the value of AB using her system E.

She can perform a measurement on her system to try to distinguish the ensemble of

states {ρabxy
E }ab. Denoting Eve’s POVM {Me}e with outcomes in one-to-one correspon-

dence with the values AB can take (say eab being the value corresponding to a best

guess of AB = (a,b))17, then given some values of a,b, x and y, Eve’s outcomes are dis-

tributed as p(ea′b′ |a,b, x, y)=Tr
[
Mea′b′ρ

abxy
E

]
, and her probability of guessing correctly is

17Without loss of generality we can assume Eve’s measurement has as many outcomes as what she is trying
to guess.
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p(eab|a,b, x, y)=Tr
[
Meabρ

abxy
E

]
. For a fixed quantum strategy q = {ρABE, {Ea|x}, {Fb|y}}, the

overall probability of guessing AB correctly given E and XY = (x, y) is

pguess(AB|x, y,E, q)= sup
{Me}e

∑
ab

Tr
[
(Ea|x ⊗Fb|y ⊗Meab )ρABE

]
= sup

{Me}e

∑
ab

p(a,b, eab|x, y, q)

= sup
{Me}e

∑
ab

p(eab|a,b, x, y, q)p(a,b|x, y, q) .

Note that the guessing probability depends on the inputs x, y. In the protocols that we will

consider later, there will only be one pair of inputs for which Eve is interested in guessing

the outputs. We denote these inputs by x̃ and ỹ.

In the device-independent scenario, Eve can also optimize over all quantum states

and measurements that could be used by the devices. However, she wants to do so while

restricting the devices to obey certain relations which the agents will be using to check the

quality of their devices (for example, the agents may look for a CHSH violation greater

than some value). For the moment, without specifying these relations precisely, call the set

of quantum states and measurements obeying these relations R. Hence, we seek

pguess(AB|x̃, ỹ,E)= sup
q∈R,{Me}e

∑
ab

p(a,b|x̃, ỹ, q)p(eab|a,b, x̃, ỹ, q) .

Because Eve’s measurement commutes with those of the devices (due to no signalling), we

can use Bayes’ rule to rewrite the optimization as18

sup
q∈R,{Me}e

∑
ab

p(eab|x̃, ỹ, q)p(a,b|eab, x̃, ỹ, q) .

With this rewriting it is evident that we can think about Eve’s strategy as follows: Eve

randomly chooses a value of E = e and then prepares the device according to the choice e,

trying to bias A,B towards the values a,b corresponding to the chosen e. We can hence

write

pguess(AB|x̃, ỹ,E)= sup
{pe}e

∑
ab
P [E = eab] peab (a,b|x̃, ỹ, q) ,

where
∑

e p(e)pe satisfies some relations (equivalent to the restriction to the set R) and

pe ∈QAB|XY for each e.

The constraints imposed for the remainder of this thesis are those implied by assuming

an expected frequency distribution ω for some nonlocal game G, e.g.∑
abxy

µ(x, y)p(a,b|x, y)δV (a,b,x,y),c =ω(c)

for each c ∈ G. Note that these constraints are linear functions of the probabilities pe.

The optimization is then a conic program (the set of un-normalized quantum-realisable
18This rewriting makes sense provided no information leaks to Eve during the protocol, which is reasonable

for randomness expansion since it takes place in a single secure laboratory.
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distributions forms a convex cone). By introducing the subnormalised distributions p̃e =
P [E = e] pe, the problem can be expressed as

sup
{p̃e}e

∑
ab

p̃eab (a,b|x̃, ỹ)

subj. to
∑
e

∑
abxy

µ(x, y)pe(a,b|x, y)δV (a,b,x,y),c =ω(c) ∀c ∈G

p̃e ∈ Q̃AB|XY ∀ e .

(2.6.1)

Note that the normalization constraint on
∑

e p̃e is implied by the nonlocal game constraints

as
∑

cω(c)= 1.

Example 2.5. The guessing probability program for a pair of devices playing the CHSH

game with an expected winning probability of ω ∈
[

3
4 , 1

2 +
p

2
4

]
is

sup
{p̃e}e

∑
ab

p̃eab (a,b|x̃, ỹ)

subj. to
1
4

∑
abxy:

a⊕b=xy

∑
e

pe(a,b|x, y)=ω

1
4

∑
abxy:

a⊕b 6=xy

∑
e

pe(a,b|x, y)= 1−ω

p̃e ∈ Q̃AB|XY ∀ e .

Optimizing over the set of quantum correlations is a difficult problem, in part because

the dimension of the quantum system achieving the optimum could be arbitrarily large. In

order to get around this problem we consider a computationally tractable relaxation of the

problem, which the next subsection is dedicated to introducing.

2.7 Semidefinite programming

This final section of the preliminaries covers the topic of semidefinite programs (SDPs). We

will briefly introduce the general topic before covering a particular application which will

allow us to make the optimization problem (2.6.1) computationally tractable. We denote

the set of symmetric n×n real-valued matrices by Sn(R).

2.7.1 The basics

Definition 2.9 (Primal SDP). Let C,F1, . . . ,Fr ∈Sn(R) and b1, . . . ,br ∈R. The collection

(C,F1, . . . ,Fr,b1, . . . ,br) defines the optimization problem

sup
X∈Sn(R)

Tr[CX ] ,

subject to Tr[Fi X ]= bi for all i ∈ 1, . . . , r,

X º 0,

(2.7.1)
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which we refer to as a semidefinite program (SDP) in its primal form.

By the principle of Lagrangian duality [82] there exists a secondary optimization prob-

lem, known as the dual problem, which offers an alternate perspective on the optimization.

It may be derived by considering the Lagrangian of (2.7.1)

L(X ,λ,Y )=Tr[CX ]+
∑

i
λi(bi −Tr[Fi X ])+Tr[XY ] (2.7.2)

where λ ∈ Rr and Y º 0 are dual variables. The primal problem is recovered from the

Lagrangian by considering the primal functional f (X ) := infλ,Y L(X ,λ,Y ). The constraints

imposed by the primal problem emerge from requiring that f (X ) is bounded. That is, for

X ∈Sn(R) we have

inf
Yº0

Tr[XY ] =
0 if X º 0

−∞ otherwise
(2.7.3)

and

inf
λi∈R

λi(bi −Tr[Fi X ]) =
0 if Tr[Fi X ]= bi

−∞ otherwise.
(2.7.4)

Therefore, by enforcing that supX∈Sn(R) f (X ) is bounded from below we recover precisely

the primal problem.

We derive the dual problem by switching the order with which we take the supremum

and infimum of the Lagrangian. By the linearity of the trace, we may rearrange the

Lagrangian

L(X ,λ,Y )=∑
i
λibi +Tr

[
(C−∑

i
λiFi +Y )X

]
,

and we define the dual functional g(λ,Y ) := supX L(X ,λ,Y ). As before, the constraints of

the problem emerge from the requirement that the functional is bounded. This is precisely

when C−∑
iλiFi +Y = 0 and as we are already imposing Y º 0, this is equivalent to the

condition C −∑
iλiFi ¹ 0 with Y = ∑

iλiFi −C now implicit. Subject to these conditions

holding, the Lagrangian dual functional becomes g(λ)=∑
iλibi and we arrive at the dual

formulation of our problem.

Definition 2.10 (Dual SDP). Let C,F1, . . . ,Fr ∈Sn(R) and b1, . . . ,br ∈R. The collection

(C,F1, . . . ,Fr,b1, . . . ,br) defines the optimization problem

inf
λ∈Rm

λ ·b

subject to C−∑
i
λiFi ¹ 0

(2.7.5)

which we refer to as a semidefinite program (SDP) in its dual form.
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Remark 2.11. We refer to a matrix X ′ ∈Sn(R) or a vector λ′ ∈ Rm as feasible points of

the primal and dual SDPs respectively, if they satisfy the constraints imposed by the

respective optimization problems. Additionally, any such points that satisfy the respective

strict versions of the inequality constraints are referred to as strictly feasible points. If the

set of feasible points of an optimization problem is empty, then we refer to that problem as

infeasible and consider its value to be −∞ if the problem’s objective is a supremum and ∞
if it is an infimum.

We shall now review several properties of the primal and dual formulation of SDPs.

• Weak duality: SDPs (and all optimization problems in general) satisfy a property

known as weak duality. That is, if p∗ and d∗ denote the optimal values of the primal

and dual problems, respectively. Then we have the ordering

p∗ ≤ d∗. (2.7.6)

This follows immediately from the construction of the primal and dual programs from

the Lagrangian, together with the max-min inequality [82]: for any f :Rn ×Rm →R

and any V ⊆Rn and W ⊆Rm we have

sup
v∈V

inf
w∈W

f (v,w)≤ inf
w∈W

sup
v∈V

f (v,w). (2.7.7)

• Strong duality: We say that the primal and dual formulations of the optimization

problem are strongly dual, whenever p∗ = d∗. Unlike linear programming, strong

duality may not always occur in feasible SDPs. However, there exist sufficient con-

ditions for strong duality to hold (more generally known as constraint qualification

conditions). One such condition is Slater’s condition [83], which states that if one of

the formulations is strictly feasible then the other achieves its optimum exactly and

the two formulations as a pair are strongly dual.

• Inequality constraints: Note that the primal and dual formulations do not con-

tain any linear inequality constraints. However, any inequality constraint can be

implemented using an equality constraint together with an augmentation of the

semidefinite constraint. That is, to implement the constraint Tr[F X ] ≤ b, we can

introduce an additional variable s ∈R into the problem, known as a slack variable.

We then rewrite the inequality as the equality Tr[F X ] = b− s together with s ≥ 0.

The constraint s ≥ 0 can be implemented by modifying the semidefinite constraint

X º 0 to be X
⊕

s º 0.19

19Depending on the algorithm used to solve the SDP, all equality constraints may be converted to two
inequality constraints, i.e. Tr[F X ]= b becomes Tr[F X ]≤ b and Tr[F X ]≥ b. The constraints imposed by the
program can then be viewed as one large semidefinite constraint. This conversion is used in the primal-dual
interior point method implemented by the sdpa solvers [84].
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• Dual functional as a bounding hyperplane: Let D(b) := {X ∈Sn(R) | Tr[Fi X ] =
bi, X º 0} be the set of feasible points for the primal problem (2.7.1) parametrized by

the vector b ∈Rr, let p∗(b)= supX∈D(b) Tr[CX ] denote the optimum primal value and

let λb be a feasible point in the dual program. Then define the function gb : c 7→λb ·c
for any c ∈Rr. Then, for any c ∈Rr we have

p∗(c)≤ gb(c). (2.7.8)

That is, a dual functional derived from any parametrization of the dual program20 can

be evaluated to give an upper bound on the optimal solution to a primal problem. To

see this, take the dual constraint for the program parametrized by b, i.e. C−∑
iλiFi ¹

0, and for some X ∈ D(c) apply the map M 7→Tr[MX ] for M ∈Sn(R). This implies,

Tr[CX ]≤
∑

i
λi ci

and (2.7.8) follows from taking the supremum over all X ∈ D(c).

2.7.2 Semidefinite relaxations of quantum correlations

Given the ubiquity of positive semidefinite matrices within the field quantum information,

it comes with little to no surprise to find that SDPs have wide ranging applications in the

area [46]. In this thesis, we are interested in how SDPs can be used to approximate the

set of quantum correlations QAB|XY . This allows us to compute quantities such as the

device-independent guessing probability (2.6.1) without having to directly optimise over

Q. Interestingly, this particular application of semidefinite programming did not begin

with quantum information in mind. Rather, it started with the problem of optimizing

multivariate polynomials [85,86] and the techniques developed were later generalised to

the case of non-commutative multivariate polynomials [87]. The latter problem can then be

used to approximate the set of quantum correlations [40,41].

Recall that for a distribution p ∈PAB|XY to be quantum, there must exist a Hilbert

space H, a state ρ ∈S(H) and measurement operators {{Ea|x}a∈A}x∈X , {{Fb|y}b∈B}y∈Y ∈M(H)

such that p(a,b|x, y) = Tr
[
ρEa|x ⊗Fb|y

]
for all (a,b, x, y) ∈ ABXY . The purpose of this

section is to define a collection of converging outer approximations Q(1) ⊇Q(2) ⊇ ·· · ⊇Q,

such that membership of Q(k) is equivalent to the existence of some positive semidefinite

matrix Γ(k), this hierarchy of necessary conditions is sometimes referred to as the NPA

hierarchy. Therefore, given an optimization problem we can replace membership of Q with

the computationally more appealing constraint, the existence of a positive semidefinite

matrix, to get a bound on the solution of the problem.

20The dual functional will however be trivial if the parametrization has an empty feasible set.
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As we place no dimension restriction on H,21 the Naimark and Stinespring dilation theo-

rems22 [88] tell us that without loss of generality we may restrict our considerations to that

of pure states and projective measurements. Let W (1) = {1}∪ {Ea|x}(a,x)∈AX ∪ {Fb|y}(b,y)∈BY .

We refer to a product of elements of W (1) as a word, e.g. w = Ea|xFb|yEa′|x is a word.

Due to algebraic constraints on the operators; e.g. impotency E2
a|x = Ea|x, commutativity

Ea|xFb|y = Fb|yEa|x and orthogonality Ea|xEa′|x = 0, many words will be equivalent. For-

mally, we can define an equivalence relation ∼ where w1 ∼ w2 if they correspond to the

same operator. We define the length of a word w, denoted |w|, to be the shortest product of

elements in the equivalence class [w]. For example, |1Ea|xFb|yEa|xFb|y| = |Ea|xFb|y| = 2.

Now we define the sets W (k) for k ∈N to be all words, up to equivalences, of length no

greater that k. For example, one possible identification of W (2) is

W (2) =W (1)∪{Ea|xEa′|x′}a,a′∈A,x,x′∈X :x 6=x′∪{Fb|yFb′|y′}b,b′∈B,y,y′∈Y :y6=y′∪{Ea|xFb|y}(a,b,x,y)∈ABXY .

We refer to W (k) as the monomial set of level k. Now given W (k) we define the certificate of

level k to be the matrix Γ(k) indexed by elements of W (k) such that

Γ(k)
v,w =Tr

[
ρv†w

]
, (2.7.9)

for each v,w ∈W (k) and some ρ ∈S(H). Then we say a distribution p ∈P has a certificate

of level k, denoted by p ∈Q(k), if there exists a Γ(k) with entries that are consistent with p,

i.e. the following all hold

Γ(k)
1,Ea|x

= p(a|x), (2.7.10)

Γ(k)
1,Fb|y

= p(b|y), (2.7.11)

Γ(k)
Ea|x,Fb|y

= p(a,b|x, y). (2.7.12)

Remark 2.12. As each level of the hierarchy adds additional constraints to the problem

we have the inclusion chain Q(1) ⊇Q(2) ⊇ . . . . Moreover, the hierarchy provides necessary

and sufficient conditions for a behaviour to be quantum: p ∈Q iff p ∈Q(k) for all k ∈N.

The conic program (2.6.1) now becomes a semidefinite program which can be solved in

an efficient manner, at the expense of possibly not obtaining the same optimum value. The

corresponding relaxed problem is

p(k)
guess(ω) := sup

{p̃e}e

∑
ab

p̃eab (a,b|x̃, ỹ)

subj. to
∑
e

∑
abxy

µ(x, y)pe(a,b|x, y)δV (a,b,x,y),c =ω(c) ∀c ∈G

p̃e ∈ Q̃(k) ∀ e .

(2.7.13)

21The NPA hierarchy also applies to infinite dimensional Hilbert spaces.
22Both dilation theorems ascertain the existence of an isometry V :H→H′, ‘dilating the Hilbert space’,

such that the objects of interest under this mapping take an arguably simpler form. In particular, Naimark’s
theorem dilates POVMs to projective measurements and Stinespring’s theorem dilates completely positive
maps to unitary maps.
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where we have now explicitly parametrized the program by some expected frequency

distribution ω ∈QG . Since the NPA hierarchy forms a sequence of outer approximations to

the set of quantum correlations, Q1 ⊇Q2 ⊇ ·· · ⊇Q, the relaxed guessing probability provides

an upper bound on the true guessing probability, i.e., pguess(ω) ≤ p(k)
guess(ω). Combined

with (2.2.12), one can use the relaxed programs to compute valid device-independent lower

bounds on Hmin. We denote a feasible point of the dual of (2.7.13), when parametrized by

ω, by λω. Note that for our later analysis we only need λω to be a feasible point of the dual

program, we do not require it to be optimal.23 Any feasible point allows us to construct

functions that upper bound the guessing probability (cf. (2.7.8)) and in turn lower bound

the min-entropy.

23The optimal point may not even be achievable unless the program is strongly dual.
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3
A FRAMEWORK FOR CONSTRUCTING RANDOMNESS EXPANSION

PROTOCOLS

This chapter presents a method for constructing quantum-secure randomness ex-

pansion protocols. We begin by introducing the task of randomness expansion and

the generic spot-checking protocol. In Sec. 3.2 we present a numerical construction

of min-tradeoff functions and show how this can be applied to the spot-checking protocol

to generate the relevant security statements. We conclude the chapter in Sec. 3.3 with an

analysis of the cost of seeding the protocol.

3.1 Randomness expansion

A device-independent randomness expansion protocol is a procedure by which one attempts

to use a private and uniform seed to produce a longer private and uniform output, through

repeated interactions with some untrusted devices. We begin by introducing the generic

structure of the spot-checking protocol which we will build upon to produce our quantum

randomness expansion (QRE) protocol (see Fig. 3.3).

3.1.1 The spot-checking protocol

Randomness expansion consists of three main subprocedures: accumulation, evaluation and

extraction. During the accumulation phase, agents interact with their untrusted devices in

an attempt to generate entropy. Next, the evaluation phase acts as the quality control step

in the protocol. During evaluation the statistics produced during the accumulation step are

checked against some preselected nonlocality test. If the untrusted devices fail to display

a sufficient level of nonlocality then the protocol is abandoned. However, if the protocol

does not abort then the agents can use the EAT to place a probabilistic lower bound on the
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private randomness produced during the accumulation phase. Finally, with a lower bound

on the total entropy produced the agents can apply a randomness extractor to compress

the long, partially random output string into a shorter string of almost uniformly random

bits. Let us now elaborate on these three subprocedures.

Accumulation
During the accumulation step, the agents interact with their respective devices in

order to generate randomness. Before beginning this subprocedure the agents place their

untrusted devices in secure laboratories subject to the conditions detailed in Sec. 2.6. Then,

a nonlocality test G = (µ,V ) is chosen, which will be used to evaluate the quality of the

devices in the next step.

The accumulation procedure consists of n ∈N separate interactions with the untrusted

devices. We refer to a single interaction with the devices as a round. A round consists of

the agents selecting and supplying inputs to the devices, receiving outputs and recording

this data. During the ith round, a random variable Ti ∼Bernoulli(γ) is sampled, for some

fixed γ ∈ (0,1), indicating whether the round will be a generation round or a test round.

With probability 1−γ we have Ti = 0 and the round is a generation round. During a

generation round, the agents supply their respective devices with the fixed generation

inputs (x̃, ỹ) ∈ XY , recording X iYi = (x̃, ỹ). They record the outputs they receive from

their devices as A i and Bi respectively and they record the round’s score as Ci =⊥. With

probability γ, Ti = 1 and the round is a test round. During a test round, inputs X iYi are

sampled according to the distribution specified by the nonlocal game. The sampled inputs

are fed to their respective devices and the outputs received are recorded as A iBi. The

score is computed and recorded as Ci =V (A i,Bi, X i,Yi). The transcript for round i is the

tuple (A i,Bi, X i,Yi,Ti,Ci). After n rounds, the complete transcript for the accumulation

procedure is (An
1 ,Bn

1 , X n
1 ,Y n

1 ,Tn
1 ,Cn

1 ).

Remark 3.1. Let us expand on several aspects of the accumulation procedure.

1. The generation inputs should be chosen in order to maximize the randomness gener-

ated, e.g. in the extended CHSH game (cf. Fig. 2.2) one should choose (x̃, ỹ)= (1,2).

2. By choosing the rounds randomly according to a distribution heavily favouring

generation rounds, we are able to reduce the size of the seed whilst sufficiently

constraining the device’s behaviour, guaranteeing the presence of randomness within

the outcomes (except with some small probability). This allows us to maximize our

net gain in entropy.

3. From the description of the accumulation procedure above, it may see that the

spot checking protocol is not compatible with a loophole free test of nonlocality. As

information about the round type propagates to the agents, which influences their
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choice of input, it is entirely possible that this information could also propagate to the

devices and influence their behaviour. This would render moot any inference about the

devices’ behaviour during generation rounds from observations of its behaviour during

test rounds. This can be remedied by either introducing the additional assumption

that the devices are shielded from this information (see Sec. 2.6) or by selecting the

round types in a manner that avoids this loophole (see the supplementary material

of [89]).

Evaluation
The accumulation step sees the agents produce a transcript (An

1 ,Bn
1 , X n

1 ,Y n
1 ,Tn

1 ,Cn
1 ).

Next, they look to determine the quality of this transcript and, in turn, certify a lower

bound on the total entropy produced, Hε
min(An

1 Bn
1 |X n

1 Y n
1 E). To this end, the agents compute

their empirical frequency distribution

FCn
1
(c)= 1

n

n∑
i=1

δc,Ci . (3.1.1)

Prior to the accumulation step, the agents fix some frequency distribution ω that they

expect (or hope) the devices to behave like in each round. Should the devices actually behave

in an i.i.d. manner according to ω, then concentration bounds tell us that the empirical

frequency distribution FCn
1

should be close to this. With this in mind, we define the event

that the protocol does not abort by

Ω= {Cn
1 | γ(ω(G)−δ)< FCn

1
(G)< γ(ω(G)+δ)}, (3.1.2)

where δ ∈ (0,1)|G| is a vector of confidence interval widths satisfying 0<δ<ω(G) with all

vector inequalities being interpreted as element-wise constraints.

If the agents have not aborted the protocol, then they may apply the EAT conditioned on

the eventΩ to lower bound the total smooth min-entropy produced during the accumulation

phase. In order to do this the agents require a min-tradeoff function for their accumulation

procedure. A method by which one can construct these min-tradeoff functions is the focus

of Sec. 3.2.1.

Remark 3.2.

1. In order to fix a sensible expected frequency distribution prior to accumulation, the

agents must have some knowledge about the expected behaviour of the devices. In

practice, this could be communicated by the manufacturer of the devices. Note that

a malicious manufacturer does not gain anything by providing the agents with an

inaccurate behaviour. Such an action would only lead to a larger probability of abort.1

1And, in turn, one would expect a large reduction in sales.
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2. The success event Ω does not constrain the value of FCn
1
(⊥). This is because the

value of FCn
1
(⊥) is not indicative of the devices’ nonlocal behaviour. Moreover, as the

sampling of the test rounds is a trusted i.i.d. procedure the value FCn
1
(⊥) takes should,

except with some small probability, be within a small region centred about (1−γ).

3. The success event Ω consists of upper and lower bounds on each element of the

frequency distribution. If the certifiable entropy is monotonic with respect to an

element of the frequency distribution then we only require a one sided bound.2 For

example, a higher score in the CHSH game allows us to certify more entropy and so

it is sufficient to assume just a lower bound (see (4.3.11)).

Extraction

If the protocol does not abort during the evaluation stage, then the agents will have

produced a string of bits An
1 Bn

1 that they are confident has at least k bits of smooth min-

entropy, i.e. except with some small probability we have Hεs
min(An

1 Bn
1 |X n

1 Y n
1 E) > k. They

are now free to apply a quantum-secure randomness extractor (see Sec. 2.4) to An
1 Bn

1 to

produce approximately k, close to uniformly random bits.

Remark 3.3. There is a question of whether the quantity we are actually interested in

is Hεs
min(An

1 Bn
1 |X n

1 Y n
1 E), rather than Hεs

min(An
1 Bn

1 |E) or Hεs
min(An

1 Bn
1 X n

1 Y n
1 |E). In common

key-distribution protocols (such as BB84), the first of these is the only reasonable choice

because the information X n
1 Y n

1 is communicated between the two parties over an insecure

channel and hence could become known by Eve. For randomness expansion, this is no longer

the case: this communication can all be kept secure within a single laboratory. Whether

the alternative quantities can be used then depends on where the seed randomness comes

from. If a trusted beacon is used then the first case is needed. If the seed randomness

can be kept secure until such time that the random numbers need no longer be kept

random then the second quantity could be used3. If it is also desirable to extract as much

randomness as possible, then the third quantity could be used instead. However, due to

the spot-checking structure of the protocols, the amount of seed required for the entropy

accumulation procedure is small enough that its reuse will not be of practical significance

(see the discussion in Sec. 3.3).

2In fact, as min-tradeoff functions are required to be affine, they will necessarily be monotonic in each
element of the empirical frequency distribution. Therefore, after selecting a min-tradeoff function one could
modify Ω to only include one sided bounds. In turn, one could gain approximately a factor of two in the
completeness error. In spite of this we presentΩ in manner seen above as it is conceptually clearer and requires
no additional knowledge of the min-tradeoff function structure.

3This is a reasonable requirement, because there are other strings that have to be kept secure in the same
way, e.g., the raw string An

1 .
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3.1.2 Security definitions

The security definitions for our randomness expansion protocols are based on the distin-

guishability paradigm introduced in [90, 91] for classical cryptography. The idea is that

one can define an ideal system that performs our cryptographic task securely. Then, we

say a real system is secure if it is, except with some small probability, indistinguishable

from the ideal system. This notion of security allows for the composition of secure protocols,

without compromising the security of the overall procedure. To make this more precise,

consider a hypothetical device that outputs a string Z that is uniform and uncorrelated

with any information held by an eavesdropper. In other words, it outputs τm ⊗ρE, where

τm is the maximally mixed state on m qubits. The ideal protocol is defined as the protocol

that involves first doing the real protocol, then, in the case of no abort, replacing the output

with a string of the same length taken from the hypothetical device. The protocol is then

said to be εsound-secure if, when the user either implements the real or ideal protocol with

probability 1
2 , the maximum probability that a distinguisher can guess which is being

implemented is at most 1+εsound
2 . If εsound is small, then the real and ideal protocols are vir-

tually indistinguishable. For an overview of composable security, with a focus on quantum

cryptography, we refer the reader to [92].

The soundness error alone does not capture all of the features of a secure protocol.

For example, one can construct a vacuously secure randomness expansion protocol by

demanding that during the evaluation step the protocol always aborts. In this case, the real

and ideal protocols are indistinguishable as they will both only ever abort. However, this

is clearly not a very useful procedure. To avoid these scenarios we have a second security

parameter, the completeness error, which is the probability that an ideal implementation of

the protocol leads to an abort. Combining soundness and completeness we arrive at the

security definition for our protocol.

Definition 3.1. Let R be a randomness expansion protocol producing an output Z and

let Ω be the event that the protocol does not abort. Then, we say R is an (εsound,εcomp)-

randomness expansion protocol if it satisfies the following two conditions.

1. Soundness:
1
2
P [Ω] · ‖ρZE −τm ⊗ρE‖1 ≤ εsound, (3.1.3)

where E is an arbitrary quantum register (which could have been entangled with the

devices used at the start of the protocol), m is the length of the output string Z and

τm is the maximally mixed state on a system of dimension 2m.

2. Completeness: There exists a set of quantum states and measurements such that if

they are used to implement protocol R then

P [Ω]≥ 1−εcomp. (3.1.4)
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Remark 3.4. Although we use a composable security definition to ensure that any ran-

domness output by the protocol can be used in any scenario, importantly, this may not

apply if the devices used in the protocol are subsequently reused [93]. Thus, after the

protocol the devices should be kept shielded and not reused until the randomness generated

no longer needs to be kept secure. How to best resolve this remains an open problem:

the Supplemental Material of [93] presents ideas for modifications to the protocol (and

modifications to the notion of composability) that may circumvent such problems.

3.2 A template randomness expansion protocol

In this section we introduce a method for constructing randomness expansion protocols that

can be tailored to devices with different specifications. Our template protocol, Protocol QRE

(see Fig. 3.3), follows the general spot-checking structure introduced above and is proven to

be secure when used with any nonlocal game G. We begin by showing how min-tradeoff

functions can be constructed numerically and then apply this to the task of randomness

expansion.

3.2.1 Numerical constructions of min-tradeoff functions

We now present a constructible family of min-tradeoff functions for a general instance

of Protocol QRE. The construction is based on the following idea. As noted in Sec. 2.6.1

one can numerically calculate a lower bound on the min-entropy of a system based on its

observed statistics. Pairing this with the relation, Hmin(X |E) ≤ H(X |E), we have access

to numerical bounds on the von Neumann entropy. In particular, we can extract a linear

functional from the dual of program (2.7.13), in order to construct a min-tradeoff function

for the protocol.4 However, in order to capture the spot-checking structure of the protocol,

we must extend the domain of our function to include the no-test symbol ⊥. We perform

this extension by following the procedure detailed in [25].

As the rounds are split into testing and generation rounds, we may decompose the

EAT-channel for the ith round as Ni = γN test
i + (1−γ)N gen

i , where N test
i is the channel

that is applied if the round is a test round and N gen
i if the round is a generation round.

Importantly, this splitting separates the no-test symbol ⊥ from the nonlocal game scores.

That is, if N test
i is applied then P [Ci =⊥]= 0 whereas if N gen

i is applied then P [Ci =⊥]= 1.

The following lemma, Lemma 5.5 in [25], explains how one can extend the domain of our

entropy bounding functions to capture the spot-checking structure of our protocols.

4In fact, by relaxing the dual program to some level of the NPA hierarchy, the single round bound is
valid against super-quantum adversaries. However, the security of the full protocol may not extend to such
adversaries: to show that we would need to generalise the EAT and the extractor.
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Lemma 3.1 (Min-tradeoff extension [25] ). Let g :PG →R be an affine function satisfying

g(p)≤ inf
σRi−1R′ :N test

i (σ)Ci (G)=τp
H(A iBi|X iYiR′)Ni(σ) (3.2.1)

for all p ∈QG . Then, the function f :PG∪{⊥} →R, defined by its action on trivial distributions

f (δc)=Max[g]+ g(δc)−Max[g]
γ

, ∀c ∈G,

f (δ⊥)=Max[g],

is a min-tradeoff function for the EAT-channels {Ni}i. Furthermore, f satisfies the following

properties:

Max[ f ]=Max[g],

MinΣ[ f ]≥Min[g],

VarΣ[ f ]≤ (Max[g]−Min[g])2

γ
.

We now have all the relevant machinery to state our numerical construction of min-

tradeoff functions. The following lemma details precisely how one can use the relaxed

dual of the guessing probability program in order to construct a min-tradeoff function for

Protocol QRE.

Lemma 3.2 (Min-tradeoff construction). Let G be a nonlocal game and k ∈ N. For each

ν ∈ Q(k)
G , let λν be a feasible point of the dual of Prog. (2.7.13) when parameterized by

ν and computed at the kth relaxation level. Furthermore, let λmax = maxc∈G λν(c) and

λmin = minc∈G λν(c). Then, for any set of EAT channels {Ni}n
i=1 implementing an instance

of Protocol QRE with the nonlocal game G, the set of functionals Fmin(G)=
{

fν(·) |ν ∈Q(k)
G

}
forms a family of min-tradeoff functions, where fν :PC →R are defined by

fν(δc) := (1−γ)
(
Aν−Bν

λν(c)− (1−γ)λmin

γ

)
for c ∈G (3.2.2)

and

fν(⊥) := (1−γ) (Aν−Bνλmin) ,

(3.2.3)

where Aν = 1
ln2 − log(λν ·ν) and Bν = 1

λν·ν ln2 are constants defined by the solution to the

dual program.

Moreover, these min-tradeoff functions satisfy the following relations.

• Maximum:

Max[ fν]= (1−γ)(Aν−Bνλmin) (3.2.4)

51



CHAPTER 3. A FRAMEWORK FOR CONSTRUCTING RANDOMNESS EXPANSION PROTOCOLS

• Σ-Minimum:

MinΣ[ fν]≥ (1−γ)(Aν−Bνλmax) (3.2.5)

• Σ-Variance:

VarΣ[ fν]≤ (1−γ)2B2
ν(λmax −λmin)2

γ
(3.2.6)

Proof. Consider the entropy bounding property (3.2.1) but with C restricted to the scores of

G, i.e., we have an affine function gν :PG →R such that

gν(q)≤ inf
σRi−1R′ :N test

i (σ)Ci (G)=τq

H(A iBi|X iYiR′)Ni(σ),

for all q ∈QG .

As conditioning on additional side information will not increase the von Neumann

entropy,5 we may condition on whether or not the round was a test round,

H(A iBi|X iYiR′)Ni(σ) ≥ H(A iBi|X iYiTiR′)Ni(σ)

= γH(A iBi|X iYi,Ti = 1,R′)Ni(σ) + (1−γ)H(A iBi|X iYi,Ti = 0,R′)Ni(σ)

> (1−γ)H(A iBi|X i = x̃,Yi = ỹ,Ti = 0,R′)Ni(σ)

where in the final line we have used the fact that the inputs are fixed for generation rounds.

As the min-entropy lower bounds the von Neumann entropy, we arrive at the bound

H(A iBi|X iYiR′)Ni(σ) > (1−γ)Hmin(A iBi|X i = x̃,Yi = ỹ,Ti = 0,R′)Ni(σ).

Using the relaxed guessing probability program and its dual, we can lower bound the

right-hand side. Specifically, for a single generation round

Hmin(AB|X = x̃,Y = ỹ,T = 0,R′)=− log(pguess(q))

≥− log(λ(k)
ν ·q),

holds for all k ∈N, any ν ∈Q(k)
G and any quantum system realising the expected statistics

q ∈QG . In the final line we used the monotonicity of the logarithm together with the fact

that a solution to the relaxed dual program, for any parameterization ν ∈Q(k)
G , provides

a linear function q 7→λν ·q that is everywhere on Q(k)
G greater than pguess. Note that this

bound is independent of the quantum state for which the entropy is evaluated and therefore

automatically bounds the infimum. Dropping the (k) for notational ease, we may recover

the desired affine property by taking a first order expansion about the point ν,

−(1−γ) log(λν ·ν)− (1−γ)
∑
c∈G

λν(c)
λν ·ν ln2

(q(c)−ν(c)).

5This is a consequence of the strong subadditivity property of the von Neumann entropy [46]. For any
ρ ∈S(ABC), we have

H(ABC)+H(B)≤ H(AB)+H(BC).

After rearranging this expression we find that H(A|BC)≤ H(A|B).
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Introducing, the constants Aν = 1
ln2 − log(λν ·ν) and Bν = 1

λν·ν ln2 we may rewrite this

expansion as the function

gν(q) := (1−γ)(Aν−Bνλν ·q),

which satisfies

gν(q)≤ inf
σRi−1R′ :N test

i (σ)Ci (G)=τq

H(A iBi|X iYiR′)Ni(σ),

for all q ∈QG . The statement then follows from applying Lemma 3.1 to gν, noting Max[gν]=
(1−γ)(Aν−Bνλmin) and Min[gν]= (1−γ)(Aν−Bνλmax). �

Example 3.1. Taking the nonlocal game GCHSH introduced in Example 2.4, we can use

the above lemma to construct a min-tradeoff function. Fixing the probability of testing,

γ = 5×10−3, we consider a device which behaves (during a test round) according to the

expected frequency distribution ω= (ωalign,ωCHSH,1−ωalign −ωCHSH). In Fig. 3.1, we plot

the certifiable min-entropy of a single generation round for a range of ω. We see that as the

scores approach ω= 1
2

(
1, 2+p2

4 , 2−p2
4

)
, we are able to certify almost6 two bits of randomness

using GCHSH.

3.2.2 Application to the spot-checking protocol

After fixing the parameters of the protocol and constructing a min-tradeoff function fmin,

the user proceeds with the remaining steps of Protocol QRE: accumulation, evaluation

and extraction. Recall that if the protocol does not abort, then with high probability the

generated string An
1 Bn

1 should contain at least some computable quantity of smooth min-

entropy. The following lemma applies the EAT to deduce a lower bound on the amount of

entropy produced by the devices.

Lemma 3.3 (Accumulated entropy). Let the randomness expansion procedure and all of its

parameters be as defined in Fig. 3.3. Furthermore, let Ω be the event that the protocol does

not abort (cf. (3.1.2)) and let ρ|Ω be the final state of the system conditioned on Ω. Then, for

any β, εs, εEAT ∈ (0,1) and any choice of min-tradeoff function fν ∈Fmin, either Protocol QRE

aborts with probability greater than 1−εEAT or

Hεs
min(An

1 Bn
1 |X n

1 Y n
1 E)ρ|Ω > (1−γ)n

(
Aν−Bνλν · (ωG −δ±)

)−n(εV +εK )−εΩ, (3.2.7)

where

εV := β ln2
2

(
log

(
2|AB|2 +1

)+
√

(1−γ)2B2
ν(λmax −λmin)2

γ
+2

)2

, (3.2.8)

εK := β2

6(1−β)3 ln2
2β(log |AB|+(1−γ)Bν(λmax−λmin)) ln3

(
2log |AB|+(1−γ)Bν(λmax−λmin) + e2

)
, (3.2.9)

6Due to the infrequent testing we are actually only able to certify a maximum of 2·(1−γ) bits per interaction.
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Figure 3.1: A plot of a lower bound on the certifiable min-entropy produced during a single
round of the protocol. This lower bound was calculated using Prog. 2.7.13 relaxed to the
second level of the NPA hierarchy. In addition, we plot a min-tradeoff function fν evaluated
for distributions of the form p = (γω,1−γ) for ω ∈QG , i.e. expected frequency distributions
over G∪ {⊥} that are compatible with the spot-checking structure of the rounds. Since fν
is the tangent plane to the surface at the point ν it forms an affine lower bound on the
min-entropy of any quantum distribution compatible with the protocol, i.e. any q ∈QG such
that Σq 6= ;.

εΩ := 1
β

(1−2log(εEAT εs)) (3.2.10)

and δ± is the vector with components δi ·sgn(−λi).

Proof. Let {Ni}i∈[n] be the set of channels implementing the entropy accumulation sub-

procedure of Protocol QRE. Comparing this procedure with the definition of the EAT chan-

nels Def. 2.5, we have Ni : S(Ri−1) → S(A iBi X iYiTiCiRi) with A i,Bi, X i,Yi,Ti,Ci finite

dimensional classical systems, Ri an arbitrary quantum system and the score Ci is a deter-

ministic function of the values of the other classical systems. Furthermore, the inputs to the

protocol for the ith round, (X i,Yi,Ti), are chosen independently of all other systems in the

protocol and so the conditional independence constraints I(A i−1
1 Bi−1

1 : X iYi|X i−1
1 Y i−1

1 E)= 0

hold trivially. The conditions necessary for {Ni}i∈[n] to be EAT-channels are satisfied and
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by Lemma 3.2 fν is a min-tradeoff function for these channels. We now satisfy all of the

prerequisites required to use the EAT.

Consider the pass probability of the protocol, P [Ω]. There are two possibilities: either,

P [Ω]< εEAT in which case the protocol will abort with probability greater than 1−εEAT, or

εEAT ≤P [Ω]. In the latter case we can replace the unknown P [Ω] in (2.3.15) with εEAT as

this can only increase the error term εΩ. The EAT then asserts that

Hεs
min(An

1 Bn
1 |X n

1 Y n
1 E)ρ|Ω > n inf

Cn
1∈Ω

fν(FCn
1
)−n(εV +εK )−εΩ,

for any choice of min-tradeoff function fν ∈Fmin.

As the min-tradeoff functions are affine, a lower bound on the infimum over region of

possible scores specified by the success event,

Ω= {Cn
1 | γ(ωG −δ)< FCn

1
(G)< γ(ωG +δ)},

can be readily computed. In particular, taking p = (γ(ωG −δ±),1− γ) we have fν(p) ≤
infCn

1∈Ω fν(FCn
1
). Note that p may not correspond to a frequency distribution that could

have resulted from a successful run of the protocol – it may not even be a probability

distribution. However, it is sufficient for our purposes as an explicit lower bound on the

infimum. Furthermore, noting that fν(p)= gν(ωG −δ±), this lower bound may be written

as

fν(p)= (1−γ)
(
Aν−Bνλν · (ωG −δ±)

)
.

Inserting the min-tradeoff function properties: (3.2.4), (3.2.5) and (3.2.6); into the the EAT’s

error terms we get the explicit form of the quantities εV , εK and εΩ as seen above. �

If the protocol does not abort during the accumulation procedure, the user may proceed

by applying a quantum-proof strong extractor to the concatenated output string An
1 Bn

1 re-

sulting in a close to uniform bit-string of length approximately (1−γ)n
(
Aν−Bνλν · (ωG −δ±)

)−
n(εV +εK )−εΩ.

Example 3.2. Continuing from Ex. 3.1, we look at the bound on the accumulated entropy

specified by (3.2.7) for a range of choices of fν ∈Fmin. We consider a quantum implementa-

tion with an expected frequency distribution ωG = (0.49,0.4225,0.0875), see the indicated

point in Fig. 3.1. In Fig. 3.2 we see that our choice of min-tradeoff function can have a

large impact on the quantity of entropy we are able to certify. The rough appearance of

the EAT-rate surface is an artefact of obtaining local optima when we optimize over β.

However, the plot gives some reassuring numerical evidence that, for the case of GCHSH,

the certifiable randomness is continuous and concave in the family parameter ν.

The min-tradeoff function, fωG , certifies just under 0.939 bits per round. By applying

a gradient-ascent algorithm we were able to improve this to 0.946 bits per round. In an

attempt to avoid getting stuck within local optima we applied the algorithm several
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Figure 3.2: A plot of the randomness certification rate as we vary the min-tradeoff function.
At each point ν we evaluate the lower bound on Hεs

min(An
1 Bn

1 |X n
1 Y n

1 E)/n as specified by
(3.2.7) for the corresponding choice of min-tradeoff function fν, numerically optimizing the
parameter β each time. The rough appearance of the surface results from finding local
optima in the β optimization. For reference, we include a plot of the asymptotic min-entropy
rate, i.e., the bound as n →∞, γ→ 0 and δ→ 0. The protocol parameters used during the
calculations are: n = 1010, γ= 5×10−3, δCHSH = δalign = 10−3 and εs = εEAT = 10−8.

times, starting subsequent iterations at randomly chosen points close to the current

optimum. The optimization led to an improved choice of min-tradeoff function fν∗ , where

ν∗ = (0.491,0.421,0.088).

3.2.3 Security of Protocol QRE

We refer to the pair of untrusted devices DAB as honest if during each interaction, the

underlying quantum state shared amongst the devices and the measurements performed

in response to inputs remain the same (i.e., the devices behave as the user expects). The

following lemma provides a bound on the probability that an honest implementation of

Protocol QRE aborts.

Lemma 3.4 (Completeness of Protocol QRE). Let Protocol QRE and all of its parameters be

as defined in Fig. 3.3. Then, the probability that an honest implementation of Protocol QRE
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Protocol QRE

Parameters and notation:
DAB – a collection of two untrusted devices with inputs X , Y and outputs A, B
G = (µ,V ) – a nonlocal game compatible with DAB

ωG ∈QG – an expected frequency distribution for G
δ – vector of confidence interval widths (satisfying 0≤ δk ≤ωk for all k ∈ [|G|])
n ∈N – number of rounds
γ ∈ (0,1) – probability of a test round

(x̃, ỹ) – distinguished inputs for generation rounds

fmin – min-tradeoff function

εext > 0 – extractor error

εs ∈ (0,1) – smoothing parameter

εEAT ∈ (0,1) – entropy accumulation error

Rext – quantum-proof (k,εext +2εs)-strong extractor

`ext – entropy loss induced by Rext

Procedure:

1: Set i = 1.

2: While i ≤ n:
Choose Ti = 0 with probability 1−γ and otherwise T1 = 1.

If Ti = 0:
Gen: Input (x̃, ỹ) into the respective devices, recording the inputs X iYi and outputs

A iBi. Set Ci =⊥ and i = i+1.

Else:
Test: Play a single round of G on DAB using inputs sampled from µ, recording the

inputs X iYi and outputs A iBi. Set Ci =V (A iBi X iYi) and i = i+1.
3: Compute the empirical frequency distribution FCn

1
.

If γ(ωG −δ)< FCn
1
(G)< γ(ωG +δ):

Ext: Apply a strong quantum-proof randomness extractor Rext to the output string An
1 Bn

1

producing fmin(ωG −δ±)−`ext bits (εext +2εs)-close to uniformly distributed.

Else:
Abort: Abort the protocol.

Figure 3.3: Template quantum-secure randomness expansion protocol

aborts is no greater than εcomp where

εcomp = 2
|G|∑
k=1

e−
γδ2

k
3ωk

n. (3.2.11)

Proof. During the parameter estimation step of Protocol QRE, the protocol aborts if the

observed frequency distribution FCn
1

fails to satisfy

γ(ωG −δ)< FCn
1
(G)< γ(ωG +δ).
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Writing FCn
1
(G) = (rk)|G|k=1, ωG = (ωk)|G|k=1 and δ = (δk)|G|k=1, the probability that an honest

implementation of the protocol aborts can be written as

P
[
Ωc]=P[ |G|⋃

k=1

{∣∣rk −γωk
∣∣≥ γδk

}]
≤

|G|∑
k=1

P
[∣∣rk −γωk

∣∣≥ γδk
]
.

Restricting ourselves to a single element rk of FCn
1
(G), we can model its final value as

the binomially distributed random variable rk ∼ 1
n Bin

(
n,γωk

)
. As a consequence of the

Chernoff bound (see Corollary 2.1) and δk ≤ωk, we have

P
[∣∣rk −γωk

∣∣≥ γδk
]≤ 2e−

γδ2
k n

3ωk .

Applying this bound to each element of the sum individually, we arrive at (3.2.11). �

Remark 3.5. The completeness error in the above lemma only considers the possibility of

the protocol aborting during the parameter estimation stage. However, if the initial random

seed is a limited resource then this may pose an additional restriction on the protocol. In

Lemma 3.7 we analyse the probability of failure of a specific algorithm for sampling the

inputs of Protocol QRE. If required, the probability of failure for that algorithm could be

incorporated into the completeness error.

Lemma 3.5 (Soundness of Protocol QRE). The soundness error of Protocol QRE is

εsound =max(εext +2εs,εEAT) .

Proof. Recall from (3.1.3) that the soundness error is an upper bound on 1
2P [Ω] · ‖ρZE −

τm ⊗ρE‖1. In the case P [Ω]≤ εEAT, we have 1
2P [Ω] · ‖ρZE −τm ⊗ρE‖1 ≤ εEAT.

In the case P [Ω]> εEAT, Lemma 3.3 gives a bound on the accumulated entropy. Com-

bining this with the definition of a quantum-proof strong extractor (Def. 2.7) and noting

that the norm is non-increasing under partial trace (tracing out the extractor’s seed) we

obtain 1
2P [Ω] · ‖ρZE −τm ⊗ρE‖1 ≤ εext +2εs, from which the claim follows. �

Remark 3.6. By choosing parameters such that εEAT ≤ εext+2εs we can take the soundness

error to be εext +2εs.

Combining all of the previous results we arrive at the full security statement concerning

Protocol QRE.

Theorem 3.1 (Security of Protocol QRE). Protocol QRE is an (εcomp,εsound)-secure random-

ness expansion protocol producing

((1−γ) (Aν−Bνλν · (ω−δ±))−εV −εK )n−εΩ−`ext (3.2.12)

random bits at least εsound-close to uniformly distributed, where εcomp, εsound are given as

in Lemma 3.4 (cf. Remark 3.5) and Lemma 3.5.
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Remark 3.7. The expected number of uniformly random bits required to execute Proto-

col QRE is d ≈ (
γH(µ)+h(γ)

)
n (cf. Lemma 3.7).

Example 3.3. In Ex. 3.1 (cf. Fig. 3.1) and Ex. 3.2 (cf. Fig. 3.2) we used the protocol

parameters: n = 1010, γ = 5×10−3, δ(c) = 10−3 for each c ∈ G and εs = εEAT = 10−8. The

resulting implementation of Protocol QRE, using the nonlocal game GCHSH with an expected

distribution over the scores ωG = (0.49,0.4225,0.0875), exhibits the following statistics.

Quantity Value
Total accumulated entropy before extraction (no abort) 9.46×109

Expected length of required seed before extraction 5.54×108

Expected net-gain in entropy (no abort) 8.91×109 −`ext

Completeness error (εcomp) 8.77×10−8

3.3 Bookkeeping

Let us now investigate the amount of initial randomness required to run protocols within

the framework. This supply of random bits is necessary for selecting the devices’ inputs

and seeding the extractor. In the forthcoming analysis we focus our attention on the former

since the latter is dependent on the choice of extractor. Moreover, if one chooses to use

a strong extractor, then the seed acts in a catalytic manner and thus, in this sense, can

be regarded as free. Therefore, we restrict our considerations to the process of converting

a uniform private seed into the device inputs required for running Protocol QRE. We

begin by introducing an efficient algorithm for simulating the sampling of a target random

variable T by sampling another random variable S [94]. We then apply this algorithm to the

spot-checking protocol and use it to bound the size of the seed required to run Protocol QRE.

3.3.1 The interval algorithm

Let S and T be random variables taking values from their respective alphabets S and T .

The interval algorithm proposes a method by which we can use repeated samples of S to

simulate a sample of T.

The distributions of the random variables S and T both form a partition of the unit

interval: that is, to each outcome s ∈S (t ∈ T ) we associate a subinterval of length P [S = s]
(P [T = t]). Similarly, if we repeatedly sample S, i.e. sample the product distribution Sk

for some k ∈N, then this defines another, more fine-grained, partition of the unit interval.

To execute the interval algorithm we repeatedly sample S, recording the outcomes s =
(s1, s2, . . . ) until the interval corresponding to our sequence of outcomes is contained entirely

within one of the intervals defined by the distribution of the random variable T. Once this

termination criterion is met, the algorithm returns the label t ∈ T of the interval that our

sequence is entirely contained within.
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Intuitively, the algorithm can be seen to converge, since, after k samples of S, Sk defines

a fine-grained partition of the unit interval with |S|k subintervals, the largest of which has

size (maxs∈S P [S = s])k. Considering then the subinterval corresponding to an outcome t

of T, as k becomes large the subintervals of Sk contained entirely inside the subinterval

corresponding to t have a combined length that is close to P [T = t] with an error that

decreases exponentially in k. As this holds for all t ∈ T , for large enough k the algorithm

returns t with probability that is close to P [T = t] and thus the procedure provides a good

approximation for sampling T.

For simplicity we shall now restrict ourselves to the case where S corresponds to

sampling a uniformly random bit. The question remains as to how efficient this procedure

is in terms of the number of random bits required. Denoting the length of seed required for

the interval algorithm to terminate by N, we have, by Theorem 3 in [94],

E [N]≤ H(T)+3. (3.3.1)

The sampling procedure defined by the interval algorithm does not bound the maximum

value that N can take (although the probability that the algorithm does not terminate

decreases exponentially in the number of samples). In order to produce large deviation

bounds on the number of bits required to execute our protocol, we place an upper limit

on the maximum seed length. We thus propose an adapted sampling procedure which we

call the rounded interval algorithm (RIA), which forcefully terminates if the seed length

reaches the upper bound of kmax bits. Should the RIA fail to terminate after kmax steps,

then the output sequence generated will correspond to the subinterval I(r)=
[

r
2kmax , r+1

2kmax

)
,

for some r ∈ {0,1, . . . ,2kmax −1}, that is not entirely contained within one of the subintervals

defined by T. If this occurs, we round down: selecting the interval I t for which r
2kmax ∈ I t.

Remark 3.8. The rounding procedure bounds the maximum seed length as N ≤ kmax and

therefore, the inequality (3.3.1) also holds for the RIA.

The truncation of the interval algorithm, described in the RIA, does not significantly

hinder the convergence of the procedure as the following lemma shows.

Lemma 3.6. Let T be a random variable taking values in some alphabet T . Let T ′ be the

distribution sampled using the RIA with target distribution T. Then

∆(T,T ′)≤ |T |2−(kmax+1),

where kmax is the maximum number of input bits that can be used by the RIA.

Proof. Consider the partitions of the unit interval {I(t)}t∈T and {I ′(t)}t∈T corresponding to

the distributions pT and qT ′ of T and T ′ respectively. The intervals of T ′ take the form

I ′(t)=⋃
r

[
r

2kmax
,

r+1
2kmax

)
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where the (potentially empty) union is taken over all r ∈N0 such that r2−kmax ∈ I(t). The

intervals within the union are either contained fully within the corresponding outcome

interval of T, i.e.,
[

r
2kmax , r+1

2kmax

)
⊆ I(t), or they are included as a result of rounding. Thus we

may write

|I ′(t)| = |{r | r2−kmax ∈ I(t), r ∈N0}|2−kmax .

By a straightforward counting argument, there are at least
⌊|I(t)|2kmax

⌋
such values of r,

and at most
⌈|I(t)|2kmax

⌉
. We hence have

|I(t)|2kmax −1≤ |I ′(t)|2kmax ≤ |I(t)|2kmax +1,

and therefore

|pT (t)− pT ′(t)| ≤ 2−kmax ,

holds for all t ∈ T . Applying this bound to each term within the ∆(T,T ′) sum completes the

proof. �

3.3.2 Input randomness for Protocol QRE

Following Protocol QRE, we look to use the RIA to sample the devices’ inputs for each

round. In adherence with the conditional independence constraints of Def. 2.5, the natural

procedure would be to sample at the beginning of each round. However, sampling many

inputs at once turns out to be much more efficient in terms of the length of seed required.

This can be seen by considering the bound (3.3.1) together with the property H(Tn)= nH(T):

by sampling the joint distribution, Tn, the expected saving is about 3n bits when compared

to repeating a single sample n times. This is significant as the bound on the entropy we

accumulate also grows linearly in n.

Fortunately, this joint sampling can be implemented while maintaining the conditional

independence assumption required for the EAT analysis. Within the assumptions of Pro-

tocol QRE we allow the honest parties access to a trusted classical computer, which also

contains some trusted data storage—we assume that the parties can record their output

strings without leakage. Thus, the honest parties may select the devices’ inputs prior to

the device interaction phase, store them securely within the classical computer and, at

the beginning of each round, feed the corresponding inputs to their devices. In such a

scenario we retain the conditional independence assumption specified in Def. 2.5. Due to

potential computational constraints we will not assume that all n rounds are sampled at

once. Instead, we split the n rounds into at most dn/me blocks of size m and apply the RIA

to sample the inputs of each block separately. For simplicity, we assume that n/m ∈N and

henceforth remove the ceiling function from the analysis.

Recall that for the ith round, the user first uses Ti to decide whether the round is a test

round, and, if so, they choose inputs according to the input distribution µ of their chosen

nonlocality test. Otherwise, if Ti = 0, they supply their devices with the fixed inputs x̃ and
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ỹ. The probability mass function of the joint random variables X iYiTi, representing the ith

round’s inputs, is therefore

P [(X i,Yi,Ti)= (xi, yi, ti)]=


γµ(x, y) for (xi, yi, ti)= (x, y,1),

(1−γ) for (xi, yi, ti)= (x̃, ỹ,0)

0 otherwise

. (3.3.2)

Following (3.3.1), if M is the seed length required to sample one of the m blocks of rounds,

then we have

E [M]≤
(
γH(µ)+h(γ)

)
n

m
+3 (3.3.3)

where H(µ) is the Shannon entropy of the distribution µ and h(·) is the binary entropy.

The following lemma gives a probabilistic bound on the total length of the random seed

required to sample the inputs for the devices.

Lemma 3.7. Let the parameters of Protocol QRE be as defined in Fig. 3.3 and let kmax ∈N
be the maximum permitted seed length for an instance of the RIA. Then, with probability

greater than (1−εRIA), we can use m instances of the RIA to simulate the sampling of every

device input required to execute Protocol QRE with a uniform seed of length no greater than

Nmax, where

Nmax = 2κ (3.3.4)

εRIA = e−2κ2/mk2
max (3.3.5)

and κ= (
γH(µ)+h(γ)

)
n+3m. Moreover, the sampled distribution lies within a statistical

distance of

εdist = m2n log(supp(µ)+1)/m−(kmax+1), (3.3.6)

from the target distribution, where supp(µ) := |{(x, y) ∈XY |µ(x, y)> 0}|.

Proof. Consider the sequence (Mi)m
i=1 of i.i.d. random variables representing the number of

random bits required to choose the inputs for the ith block and the corresponding random

sum N =∑m
i=1 Mi. By (3.3.3), the expected number of bits required to select all of the inputs

for the protocol can be bounded above by κ = (
γH(µ)+h(γ)

)
n+ 3m. Using Hoeffding’s

inequality Lemma 2.2, we can bound the probability that N greatly exceeds this value,

P [N ≥ κ+ t]≤ e−2t2/mk2
max ,

for some t > 0. Setting t = κ this becomes

P [N ≥ 2κ]≤ e−2κ2/mk2
max .

Although κ is not exactly the expected value of N, which is the quantity appearing in

Hoeffding’s bound, the bound still holds as κ≥ E [N].

62



3.3. BOOKKEEPING

It remains to bound the statistical distance between the sampled random variable

Îm
1 = (X̂ m

1 , Ŷ m
1 , T̂m

1 ) and the target random variable Im
1 = (X m

1 ,Y m
1 ,Tm

1 ). For each block of

rounds, the corresponding random variable I i can take one of a possible (supp(µ)+1)n/m

different values. Therefore, by Lemma 3.6, we have for the ith block of rounds

∆(I i, Î i)≤ (supp(µ)+1)n/m2−(kmax+1)

= 2n log(supp(µ)+1)/m−(kmax+1)

Since ∆(P,Q) is a metric and hence satisfies the triangle inequality [51], the statistical

distance between independently repeated samples can grow no faster than linearly, i.e.,

∆(Im, I ′m)≤ m∆(I, I ′).7 This completes the proof. �

7More specifically, we can iteratively apply the triangle inequality as follows

∆(Pn,Qn)≤∆(Pn,Pn−1Q)+∆(Pn−1Q,Qn)

=∆(P,Q)+∆(Pn−1,Qn−1).
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4
NOISE ROBUSTNESS OF THE FRAMEWORK AND FEASIBILITY OF

RANDOMNESS EXPANSION

This chapter looks at some explicit constructions of randomness expansion proto-

cols. We model their implementation on systems of entangled qubits and compare

their respective randomness expansion rates when exposed to inefficient detectors.

Towards the end of the chapter, we also investigate the question of whether net-positive

randomness expansion rates can be achieved using current technology.

4.1 Additional nonlocality tests

We begin by introducing two different nonlocality tests that will be included in the con-

structions alongside the extended CHSH game GCHSH (cf. Example 2.4). The first game,

which we refer to as the empirical behaviour game, provides the strongest possible device-

independent characterization of the untrusted devices.

Empirical behaviour game (GEB). The empirical behaviour game (GEB) is a nonlocal

game that estimates the underlying behaviour of DAB, i.e., it attempts to characterise

each individual probability p(a,b|x, y). We may construct this by associating with each

input-output tuple (a,b, x, y) ∈ABXY a corresponding score cab|xy ∈ G and defining the

scoring rule

VEB(a,b, x, y) := cab|xy,

for each (a,b, x, y) ∈ABXY . Then, for any input distribution µEB with full support on the

alphabets XY , the collection GEB = (µEB,VEB) forms a nonlocal game. Moreover, for agents

playing according to some strategy p ∈Q, the expected frequency distribution over the
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scores is precisely the joint distribution,

ωEB(a,b, x, y)=µEB(x, y)p(a,b|x, y)

= p(a,b, x, y).

As GEB can be defined for any collection of input-output alphabets, we indicate the size of

these alphabets as superscripts, i.e., G |X ||Y ||A||B|
EB .1

Remark 4.1. The scoring rule for GEB, as defined above, has several redundant components,

see Fig. 4.1. In fact, there are only [(|A|−1)|X |+1][(|B|−1)|Y |+1]−1 free parameters [95].

Knowing this we can reduce the number of scores in our nonlocal game and, in turn, the

number of constraints we impose in our SDPs.2 Using the table presented in Fig. 4.1, we

can associate a score with every element that is not coloured. For the coloured elements we

can assign a score cnorm which normalizes the resulting frequency distribution.

In practice we are limited to collections of finite statistics and so we face a tradeoff

between how fine-grained of a characterization of our devices we choose to pursue and

how confident we are that our observations are not skewed by statistical fluctuations. As

a consequence, we may be required to collect substantially more test data if we want to

use nonlocality tests with larger score alphabets. The joint correlators game, which we now

introduce, offers an intermediate step between GCHSH and GEB.

Joint correlators game (G〈AB〉). Specifically, for each (x, y) ∈XY we define a score cxy

and a scoring rule

V〈AB〉(a,b, x, y) :=
cxy if a = b

cnorm otherwise.

That is, for a pair of inputs (x, y) the score is recorded as cxy whenever the agents’ outcomes

agree. Otherwise, they record some normalization score cnorm. The input distribution can

then be specified as one sees fit: we shall use the uniform distribution over XY . We refer to

this game by the symbol G〈AB〉 and as before we will indicate the sizes of the input-output

alphabets as superscripts.

4.2 Comparison of protocols on noisy qubit systems

Let us now introduce a qubit implementation of the protocols that we will use to analyse

the noise robustness of the framework. We retain the protocol parameter choices from

the previous examples: n = 1010, γ= 5×10−3 and εs = εEAT = 10−8, except we now set the

1As we consider only binary output alphabets, we will not include their sizes in the superscript, i.e., we
will write G23

EB instead of G2322
EB .

2It is important to remove redundant constraints in practice as they can lead to numerical instabilities.
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Value determined from
∑

a p(a,b|x, y)=∑
a p(a,b|x′, y) for all (b, x, y) ∈BXY

Value determined from
∑

b p(a,b|x, y)=∑
b p(a,b|x, y′) for all (a, x, y) ∈AXY

Value determined from
∑

ab p(a,b|x, y)= 1 for all (x, y) ∈XY

Figure 4.1: Table showing redundant elements of a no-signalling distribution p ∈N.

confidence interval width parameter to

δk =
√

3ωk ln(2/εcomp)
γn

, (4.2.1)

in order to have a similar completeness error εcomp ≈ 10−12 across the different protocols.3

We suppose that the joint state of the devices at the start of each round is given by a pure,

non-maximally entangled state of the form

|ψ(θ)〉AB = cos(θ) |00〉+sin(θ) |11〉 , (4.2.2)

for θ ∈ (0,π/2). We denote the corresponding density operator by ρθ = |ψ(θ)〉〈ψ(θ)|. For

simplicity we restrict to projective measurements within the x-z plane of the Bloch-sphere,
3In practice one would fix the soundness error of the protocol. However, because the soundness error is also

dependent on the extraction phase we instead assume independence of rounds and fix the completeness error.
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i.e., measurements {Π(ϕ),1−Π(ϕ)}, where

Π(ϕ)=
(

cos2(ϕ/2) cos(ϕ/2)sin(ϕ/2)

cos(ϕ/2)sin(ϕ/2) sin2(ϕ/2)

)
(4.2.3)

for ϕ ∈ (0,2π]. We denote the projectors associated with the jth outcome of the ith mea-

surement by A j|i and B j|i. The elements of the devices’ behaviour can then be written

as

p(a,b|x, y)=Tr
[
ρθ(Aa|x ⊗Bb|y)

]
. (4.2.4)

Noise within a randomness expansion protocol may come from several different sources:

within the creation and transmission of the states, as well as during the measurement

process. Whilst one can use heralding to account for losses incurred during state transmis-

sion, losses that occur within the secure laboratories (i.e. during the measurement process)

cannot be ignored without opening a detection loophole (cf. Sec. 2.5.2). Inefficient detectors

are a major contributor to the total experimental noise, so robustness to inefficient detectors

is a necessary property for any practical randomness expansion protocol. We characterize

detection efficiency by a single parameter η ∈ (0,1], representing the (independent) proba-

bility with which a measurement device successfully measures a received state and outputs

the result.4 We deal with failed measurements by assigning the outcome 0. Combining this

with (4.2.4), we may write the behaviour as

p(a,b|x, y)= η2 Tr
[
ρθ(Aa|x ⊗Bb|y)

]+ (1−η)2δ0aδ0b

+η(1−η)
(
δ0a Tr

[
ρθ(1⊗Bb|y)

]+δ0b Tr
[
ρθ(Aa|x ⊗ 1)

])
.

(4.2.5)

For each protocol we consider lower bounds on two quantities: the min-entropy produced

from a single interaction (before applying the EAT), Hmin(AB|XY E), and the EAT-rate,

Hεs
min(An

1 Bn
1 |X n

1 Y n
1 E)/n. The former quantity, which we refer to as the asymptotic rate,

represents the maximum accumulation rate achievable with our numerical technique. It

is a lower bound on Hεs
min(An

1 Bn
1 |X n

1 Y n
1 E)/n, specified by (3.2.7), as n →∞ and γ, δ→ 0.5

Comparing the asymptotic rate with the EAT-rate gives us a clear picture of the amount of

entropy that we lose due to the effect of finite statistics.

With inefficient detectors, partially entangled states can exhibit larger Bell-inequality

violations than maximally entangled states [96]. To account for this we optimize both

the state and measurement angles at each data point using the iterative optimization

procedure detailed in [97]. We relax all programs to the second level of the NPA hierarchy

and solve the resulting SDPs with the SDPA solver [84].

4For simplicity, we make the additional assumption that the detection efficiencies are constant amongst all
measurement devices used within the protocol.

5In principle, we would rather characterise H(AB|XY E) and the corresponding EAT-rate derived from
it. However, in general we don’t have suitable techniques to access these quantities in a device-independent
manner.
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(a) Comparison of G〈AB〉 protocols (b) Comparison of GEB protocols

(c) Comparison of protocols in the (2,3)-scenario

Figure 4.2: A plot of the asymptotic and EAT-rates for protocols using the nonlocal game
families G〈AB〉, GEB and GCHSH.

In Fig. 4.2a and Fig. 4.2b we see that in both families of protocols considered, an increase

in the number of inputs leads to higher rates. This increase is significant when moving

from the (2,2)-scenario to the (2,3)-scenario. However, continuing this analysis for higher

numbers of inputs we find that any further increases appear to have negligible impact on

the overall robustness of the protocol.6 Whilst all of the protocols achieve asymptotic rates

of 2 bits per round when η= 1,7 their respective EAT-rates at this point differ substantially.

In Fig. 4.2c we see a direct comparison between protocols from the different families. The

plot shows that, as expected, entropy loss is greater when using the nonlocality test G23
EB as

opposed to the other protocols. In particular, for high values of η we find that we are able

6This could also be an artefact of the assumed restriction to qubit systems.
7More precisely, the asymptotic rates are 2(1−γ) bits per round.
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Figure 4.3: Comparison of the EAT-rates (cf. (3.2.7)) and their convergence to the asymptotic
rates for protocols based on different nonlocality tests. The rates were derived by assuming
a qubit implementation of the protocols with a detection efficiency of η= 0.9, optimizing the
state and measurement angles in order to maximise the asymptotic rate. Then, for each
value of n we optimized the min-tradeoff function and β parameter, recording the resulting
bound on Hεs

min. To ensure that we approach the asymptotic bound for increasing n, we
set γ= δ1 = ·· · = δ|G| = n−1/3. This choice also forces the completeness error to be constant
across all values of n.

to increase the certifiable entropy by considering fewer scores. However, it is still worth

noting that this entropy loss could be reduced by choosing a more generous set of protocol

parameters, e.g., increasing n and decreasing δ.

In practice, increasing n can be difficult due to restrictions on the overall runtime of the

protocol. Not only does it take longer to collect the statistics within the device-interaction

phase, but it may also increase the runtime of the extraction phase [98]. In Fig. 4.3 we

observe how quickly the various protocols converge on their respective asymptotic rates as

we increase n. Again we find that, due to finite-size effects, entropy loss is far greater for

G23
EB than for the other protocols. In particular, we see that for protocols with fewer than 1010

rounds, it is advantageous to use G23
〈AB〉. From the perspective of practical implementation,

Fig. 4.2c and Fig. 4.3 highlight the benefits of a flexible protocol framework. Looking at the

results, there is no best protocol for all scenarios. Rather, in order to maximise the quantity

of randomness gained, the user should utilise the flexible construction and design their

own protocol tailored to the scenario under consideration.

It is also important to compare the rates of instances of Protocol QRE with other proto-

cols from the literature, in particular the protocol of [26] (ARV). In [26], the min-tradeoff
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Figure 4.4: Comparison between the certifiable accumulation rates of QRNE protocols
based on GCHSH, G23

EB and Protocol ARV from [26] on qubit systems with inefficient detec-
tors (cf. Fig. 4.2). The rates of Protocol ARV are also evaluated using the improved EAT
statement [25]. For Protocol ARV, we use the one-sided von Neumann entropy bound, so the
maximum rate is one bit per round, but because we can directly get the single-round von
Neumann entropy, the rate initially falls more slowly with decreasing detection efficiency
than for the other protocols.

functions are constructed from a tight bound on the single-party von Neumann entropy,

H(A|X E), which is given in terms of a CHSH inequality violation [72]. In Fig. 4.4 we

compare the rates of ARV with G22
〈AB〉 and G23

EB for entangled qubit systems with inefficient

detectors. To make our comparison fair, we have also computed the rates for Protocol ARV

using the improved EAT bound8. As the rates of Protocol ARV are derived from the entropy

accumulated by a single party their rates are capped at one bit per round.

In contrast, the semidefinite programs grant us access to bounds on the entropy pro-

duced by both parties and we are therefore able to certify up to two bits per round. In

Fig. 4.4, this advantage is observed in the high detection efficiency regime. Fig. 4.4 also

highlights a significant drawback of our technique, which stems from our use of the inequal-

ity H(AB|XY E) ≥ Hmin(AB|XY E). In particular, we see that for η < 0.9, the H(A|X E)

bound for the CHSH inequality is already greater than the Hmin(AB|XY E) established for

the empirical behaviour. Therefore, in the asymptotic limit (n →∞) the min-entropy bounds

for these protocols will produce strictly worse rates in this regime. For the finite n we have

chosen, n = 1010, it appears that for the majority of smaller η, it is advantageous to use the

8Note that we always use the direct bound on the von Neumann entropy when considering Protocol ARV,
rather than forming a bound via the min-entropy
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ARV protocol over the protocols derived from the framework. Nevertheless, looking at the

threshold detection efficiencies, i.e. the minimal detection efficiency required to achieve

positive rates, we find that some protocols from our framework are able to again beat the

rates established for Protocol ARV. Looking at the inset plot in Fig. 4.4 we see that G22
〈AB〉

has a smaller threshold efficiency than that of Protocol ARV for the chosen protocol parame-

ters. Interestingly, this shows that G22
〈AB〉 is capable of producing higher rates than Protocol

ARV in both the low and the high detection efficiency regimes, with the improvement for

low detection efficiencies being of particular relevance to experimental implementations.

Importantly, this shows that protocols from the framework are of practical use for finite n

in spite of the losses coming from the use of H(AB|XY E)≥ Hmin(AB|XY E).

4.3 Net-positive expansion rates with current technologies

In recent years, a few experiments have reported implementations of randomness expan-

sion protocols [89,99] and the successful device-independent certification of randomness.

However, none of these experiments managed to fully account for the cost of seeding their

protocol and so a net-gain in entropy (or ‘expansion’) is yet to be seen.9 Here we investigate

the question as to whether expansion is possible using current technologies. By optimising

the protocol of [26], we find that net-positive rates are indeed within the capabilities of

current nonlocality experiments.

For this analysis we choose to move away from our framework and adapt the protocol of

Arnon-Friedman, Renner and Vidick [26] (Protocol ARV). In the security proof of Protocol

ARV a direct analytical bound on the von Neumann entropy for a single agent’s outputs is

established using the results of [72].

4.3.1 Protocol ARV

For clarity let us very briefly review the Protocol introduced in [26]. The protocol follows

the same spot-checking structure presented in Chapter 3, with both agents having binary

inputs and outputs. On test rounds the agents play the CHSH game and their respective

generation inputs are (x̃, ỹ)= (0,0). We denote by ω ∈ [3
4 , 1

2 +
p

2
4 ] the agents’ expected score

for the CHSH game. By Equation (4.7) in [26] we can lower bound the von Neumann

entropy of a single interaction as

inf
σRi−1R′ :N test

i (σ)Ci=τω
H(A iBi|X iYiR′)Ni(σ) ≥ 1−h

(
1
2
+ 1

2

√
16ω(ω−1)+3

)
(4.3.1)

where τω = (1−ω) |0〉〈0|+ω |1〉〈1|.
9In [99] the authors argue that costs of seeding the protocol are moot if one uses a public source of

randomness such as the NIST randomness beacon [100]. Whilst this may be true, one is then limited by the
speed of the public source. For the case of the NIST beacon this seed generation rate is 512 bits every 60
seconds. At this speed, for the protocol in Example 3.3 the accumulation stage would need to run for around
106 minutes or just under 2 years!
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In [26] this bound is used in conjunction with the original statement of the EAT [24].

To further improve upon the rates we use the improved EAT bound [25]. We note that the

adaptation of Protocol ARV to the improved EAT bound was already constructed in [25].

Our adaptation follows roughly the same procedure, with a few additional modifications to

further increase its practicality in the high noise regime.

Min-tradeoff function construction
Let g(ω) := 1−h

(1
2 + 1

2
p

16ω(ω−1)+3
)
, we can construct affine, entropy-bounding functions

from g by taking linear approximations at some point ν ∈
(

3
4 , 1

2 +
p

2
4

)
. That is, we define

gν(ω) := g(ν)+ g′(ν)(ω−ν), (4.3.2)

with g′ = d g
dω . As g is a convex function, gν will also lower bound the von Neumann

entropy H(A iBi|X iYiR′). Writing this in the language used within Chapter 3, we define

the constant αν = g(ν)−νg′(ν) and then

gν(δc)=
αν+ g′(ν) for c = 1

αν for c = 0
. (4.3.3)

As g′(ν)> 0 for all ν ∈ (3
4 , 1

2 +
p

2
4 ) we immediately have Max[gν]=αν+ g′(ν).

Instead of applying Lemma 3.1 to gν in order to construct a min-tradeoff function, we

consider a more general extension. Let α,λ0,λ1,λ⊥ ∈R and define

fν(δc)=


α+λ1 for c = 1

α+λ0 for c = 0

α+λ⊥ for c =⊥
. (4.3.4)

The function fν is an arbitrary affine function on distributions over C = {1,0,⊥}. For fν to

also be a min-tradeoff function we require that if it is evaluated for any protocol respecting

distributions then it should bound the von Neumann entropy (cf. (2.3.6)). A sufficient

condition for this is that fν and gν are equal when evaluated at (γω,γ(1−ω),1−γ) and

(ω,1−ω) respectively. More explicitly, we require that for ω ∈ (3
4 , 1

2 +
p

2
4 ],

αv +ωg′(ν)=α+γωλ1 +γ(1−ω)λ0 + (1−γ)λ⊥. (4.3.5)

As this must hold for all ω simultaneously, we may split this into two conditions:

αν =α+γλ0 + (1−γ)λ⊥ (4.3.6)

and

g′(ν)= γλ1 −γλ0. (4.3.7)

Rearranging (4.3.6) we find that

λ0 = αν−α− (1−γ)λ⊥
γ

. (4.3.8)
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We may now also solve for λ1 in (4.3.7),

λ1 = g′(ν)
γ

+ αν−α− (1−γ)λ⊥
γ

. (4.3.9)

Therefore, we may parametrize our extension by the pair (α,λ⊥), i.e.

fν(δc)=


α+ g′(ν)

γ
+ αν−α−(1−γ)λ⊥

γ
for c = 1

α+ αν−α−(1−γ)λ⊥
γ

for c = 0

α+λ⊥ for c =⊥
. (4.3.10)

We can then optimize our choice of min-tradeoff function not only over ν but also over the

parameters α and λ⊥.

Remark 4.2. The extension presented in Lemma 3.1 is equivalent to choosing α=αν and

λ⊥ = g′(ν).

4.3.2 A sharper completeness error

For δ> 0 and an expected CHSH score ω, the event that protocol ARV does not abort after

n rounds is

ΩARV = {Cn
1 | γ(ω−δ)< FCn

1
(1)}. (4.3.11)

In order to minimize the required runtime of the experiment we employ a stronger con-

centration bound to the task of computing the completeness error than that which was

used for the framework. The following lemma from [101] gives a good approximation to the

cumulative distribution function of a binomial process.

Lemma 4.1. Let X ∼Bin(n, p), then for every k = 0,1, . . . ,n−1 and every p ∈ (0,1), we have

Cn,p(k)≤P [X ≤ k]≤ Cn,p(k+1) (4.3.12)

where

Cn,p(k) :=Φ
(
sgn

(
k
n − p

)√
2nD(k/n||p)

)
, (4.3.13)

with D(x||p) := x ln(x/p)+ (1− x) ln((1− x)/(1− p)) and Φ(x) := 1p
2π

∫ x
−∞ e−t2/2dt.

Corollary 4.1 (Completeness error). For 0< δ<ω, Protocol ARV has a completeness error

εcomp = Cn,γω
(⌈
γ(ω−δ)n

⌉+1
)
. (4.3.14)

Proof. If an implementation of Protocol ARV is honest then FCn
1
(1)∼ 1

n Bin
(
n,γω

)
. So, the

probability the protocol aborts can be bounded above as

P
[
Ωc]=P[

FCn
1
(1)≤ γ(ω−δ)

]
=P

[
nFCn

1
≤ γ(ω−δ)n

]
≤P

[
nFCn

1
≤ ⌈

γ(ω−δ)n
⌉]

≤ Cn,γω
(⌈
γ(ω−δ)n

⌉+1
)
.

(4.3.15)

�
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4.3.3 Application to realistic parameter regimes

Through correspondence with the experimental group at the University of Science and

Technology of China [102] we gathered estimates for the current capabilities of photonics

based nonlocality experiments. They report a laser pulse of 2MHz (2×106 rounds per

second) with an expected CHSH score of 0.75132. Restricting the completeness error to

be no larger than 10−3 and εs = εEAT = 10−4, we used a numerical search to find a set

of parameters (n,γ,δ) which gave a positive net gain in entropy and, at the same time,

minimized n. This search was fairly rudimentary, we defined a lattice of points for (n,γ,δ)

and proceeded to calculate the net gain in entropy and the completeness error at each point.

We then took the point with the smallest n that had a completeness error less that 10−3

and which produced a positive net-rate. This numerical search found that the following

parameter choices,

Quantity Value

n 9.55×1011

γ 1.50×10−4

δ 2.24×10−4

εcomp 9.86×10−4

achieved a net-gain in entropy of 1.93×10−5 bits per round, with a total accumulation

procedure time of around 5 days. Which is within the bounds of current nonlocality exper-

iments – longer experiments would begin to suffer from stability issues and impractical

runtimes.

Fixing γ and δ, we can vary n to illustrate how the various improvements pushed the

rates into experimentally achievable regimes. In Fig. 4.5 we compare the two separate

derivations of the completeness errors. Observing where the two curves drop below a

completeness error of 10−3, we see that using the improved bound allows us to half the

overall number of rounds in our experiment. Similarly, in Fig. 4.6 we compare the two

separate statements of the EAT, [25] and [24]. By using the improved statement of the

entropy accumulation theorem we are able to achieve a net-gain in randomness using a

whole order of a magnitude fewer rounds.
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Figure 4.5: A comparison between the completeness error derived from Lemma 4.1 and the
completeness error derived from the Chernoff bound.
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Figure 4.6: A comparison of the net gain/loss in randomness certified when using the two
different statements of the EAT. The green line (DF bound) refers to the net randomness
rate certified using the improved EAT statement [25] whereas the orange line (DFR
bound) refers to the bound established in the appendix of [26], which relies on the original
statement of the EAT [24].



C
H

A
P

T
E

R

5
CONCLUSIONS AND OUTLOOK

This thesis sought progress towards a more practical future for device-independent ran-

domness expansion. In Chapter 3, we introduced a framework for building quantum-secure

randomness expansion protocols. By combining device-independent bounds on the guessing

probability with the EAT, we were able to achieve full quantum security for spot-checking

protocols based on any nonlocality tests. Moreover, through semidefinite programming

techniques this procedure can be made computationally efficient. A key advantage of this

approach is that it allows a user to freely modify their choice of nonlocality test in order to

better accommodate the scenario within which they are generating randomness. This is

especially useful within the context of device-independence as we cannot assume an ability

to tune our untrusted devices to better fit pre-existing protocols. However, through this

flexible protocol construction, we may now tune our protocol to better fit the devices.

In Chapter 4 we introduced examples of protocols built within the framework. We

modelled their implementation on entangled qubit systems and analysed their robustness

to inefficient detectors – a significant source of noise in photonics-based implementations.

Our analysis showed a tradeoff between the complexity of the chosen nonlocality test and

our confidence in the resulting statistics collected over a finite number of trials. Whilst the

more complex nonlocality tests provide a stronger characterisation of the untrusted devices,

we found that their requirement for a large number of trials led them to be outperformed

by simpler tests when used within protocols with smaller numbers of rounds. Further

reinforcing the need for a user to be able to adapt the protocol to fit their available resources.

We also compared the rates of a selection of our protocols to the protocol presented in [26]

(ARV). Interestingly, we found that some of the protocols from the framework are able

to achieve higher rates than Protocol ARV in both the high and low detection efficiency

regimes. In particular, the higher rates for low detection efficiencies is of great importance
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Figure 5.1: A plot of tight lower bounds on H(A|X E) and Hmin(A|X E) in terms of the
CHSH score. The bound on H(A|X E) is given by (4.3.1) and the bound on Hmin(A|X E) is
taken from [18].

for actual experimental implementations.

Our analysis also led us to investigate the performance of current randomness expan-

sion experiments. Previous experiments [89,99] have reported successful device-independent

certification of randomness. However, no experiment has yet to demonstrate full random-

ness expansion, i.e. a net increase in total entropy. Through careful application of the

improved EAT statement [25] to the protocol of [26] we were able to find a set of protocol

parameters that could achieve full randomness expansion which were, crucially, within the

realms of current experimental capabilities [102].

Although the framework produces secure and robust protocols, there remains scope

for further improvements. For example, optimising the choice of min-tradeoff function

is a non-convex and not necessarily continuous problem [103]. Our analysis in Sec. 4.1

used a simple probabilistic gradient ascent algorithm to approach this problem. A more

sophisticated approach to this optimization could yield higher EAT-rates, particularly for

protocols with a higher number of scores, e.g., those which used the full behaviour as their

nonlocality test (GEB).

The construction of min-tradeoff functions using SDPs was made possible by the rela-

tion H(AB|XY E)≥ Hmin(AB|XY E). Unfortunately, this inequality is not generally tight.

One can observe this difference in the context of the CHSH game, where H(AB|XY E)

and Hmin(AB|XY E) both admit an analytical form (see Fig. 5.1).1 Several alternative

approaches could be taken in order to reduce this loss. Firstly, the von Neumann entropy

1More recently, the authors of [104] showed that for this particular scenario one can also derive a tight
bound on the Rényi entropy of order 2, H2(A|X E). Moreover, their bound coincides with the bound for
Hmin(A|X E).
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and the min-entropy are special cases of a larger family of entropies, the Rényi entropies

Hα(AB|XY E) [50] and the relation H(AB|XY E)≥ Hmin(AB|XY E) is part of a more gen-

eral ordering on this family,2 So, if we are able to develop efficient computational techniques

for computing device-independent lower bounds on some of these other entropies (those ly-

ing between H(AB|XY E) and Hmin(AB|XY E)) then this would likely lead to an immediate

improvement on the rates of certifiable randomness. In general, these quantities are more

difficult to evaluate than Hmin as they are nonlinear expressions of the quantum state.

One possible approach to this problem would be to introduce a density operator, which

acts as the quantum state shared between the untrusted devices, into the set of operators

considered within the NPA hierarchy. This would permit relaxations of expressions that

are nonlinear in the state, which could allow one to approximate Hα for fractional values

of α. Alternatively, one could directly introduce state nonlinear terms by including oper-

ators akin to 1〈Ma|x〉. This was recently proposed in [105] as a method of approximating

correlations emerging from quantum networks.

In certain scenarios, dimension-dependent bounds may also be applicable. For example,

it is known that for the special case of n-party, 2-input, 2-output scenarios it is sufficient

to consider qubit systems [72]. It may therefore be possible to derive results, analogous

to those of [72], for nonlocality tests such as the GHZ game [106]. Furthermore, with a

dimension bound one may be able to adapt the recent numerical techniques of [107] which

give robust lower bounds on the von Neumann entropy for device-dependent protocols.

As the framework permits protocols that rely on any nonlocality test, it is natural to

then search for tests that provide high randomness certification rates. Investigations into

the randomness certification properties of nonlocality tests with larger output alphabets or

additional parties could be of interest. However, increasing either of these parameters is

likely to increase the influence of finite-size effects. Alternatively, one could try to design

more economical nonlocality tests by combining scores that are of a lesser importance to

the task of certifying randomness. Intuitively, for a score c ∈ C, the magnitude of of λ(c) in

the min-tradeoff function indicates how important that score is for certifying entropy. If

|λ(c)| is large then this score is ‘important’ in the sense that any small deviations in the

expected frequency of that score, ω(c), will have a large impact on the amount of certifiable

entropy. Another approach to designing good nonlocality tests would be to take inspiration

from [37,38] wherein the authors showed how to derive the optimal Bell-expressions for

certifying randomness. A nonlocal game could then be designed to encode the constraints

imposed by this optimal Bell-expression. An example of such a game would be to assign a

score +1 to all (ABXY ) that have a positive coefficient in the optimal Bell-expression and

a score of −1 to all those with negative coefficients. The input distribution of the nonlocal

game could then be chosen as such to encode the relative weights of the coefficients.

2The Rényi entropies are one of many different entropic families that include the von Neumann entropy as
a limiting case. Any such family could be used if they satisfy an equivalent relation.
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Finally, our computational approach to the EAT considered only the task of randomness

expansion. Our work could be extended to produce adaptable security proofs for other

device-independent protocols. Given that the EAT has already been successfully applied to

a wide range of problems [29–31,73,108], developing good methods for robust min-tradeoff

function constructions represents an important step towards practical device-independent

security.
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Protocol notation

Notation Description
D A collection of untrusted devices.

G A nonlocal game.

QG Set of expected distributions over scores of G using quantum strategies.

Q(k)
G Set of expected distributions over scores of G using strategies from Q(k).

ν,ω Expected distributions over scores of some nonlocal game G.

λν Dual feasible point of the guessing probability program parametrized by ν.

δ Vector of statistical confidence interval widths.

δ± δ with elements signed in accordance with a given λν.

A,B Devices’ output alphabets.

X ,Y Devices’ input alphabets.

n ∈N Number of rounds in the device-interaction phase.

γ ∈ (0,1) Probability that any given round is a test round.

A i,Bi Devices’ outputs for the ith round.

X i,Yi Devices’ inputs for the ith round.

Ci Score recorded for the ith round.

Ω Event that the protocol does not abort.

FCn
1

Empirical frequency distribution arising from Cn
1 .

εcomp Completeness error of Protocol QRE.

εsound Soundness error of Protocol QRE.

εs Smoothing parameter for Hmin.

εEAT Tolerance of unlikely success events.

εV EAT error term (Variance).

εK EAT error term (Remainder).

εΩ EAT error term (Success probability).

Rext Strong quantum-secure randomness extractor.

εext Extractor error.

`ext Entropy lost during extraction.
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FINITE PRECISION SECURITY

T framework of Chapter 3 bases its security on a numerical computation which,

in practice, is at the mercy of finite precision computing. Rounding errors will be

present within the computations and in the worst case they could surreptitiously

collude to overestimate the accumulated entropy, falsifying any subsequent security state-

ments. In this section we will show how to account for these errors, making the min-tradeoff

functions robust to finite precision computation.

Recall the generic semidefinite program

sup
X∈Sn(Rn)

Tr[CX ] ,

subject to. Tr[Fi X ]= bi for i ∈ 1, . . . , r,

X º 0,

(A.0.1)

and its dual form
inf
λ∈Rm

λT ·b

subject to. C−∑
i
λiFi ¹ 0

(A.0.2)

We would like to know how well the dual functional b′ 7→λ ·b′ preserves its upper-bounding

property (cf. (2.7.8)) when we allow for small perturbations in the constraints. To model

this we introduce an error parameter δ≥ 0. We then rewrite the dual program as

inf
λ∈Rm

λT ·b

subject to. C−∑
i
λiFi ¹ δ1

(A.0.3)

Now let b̂ be another constraint vector, let X̂ be any feasible point of the primal program

constrained by b̂ and let p̂ =Tr
[
CX̂

]
. In the error free dual program (A.0.2), we can apply
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the map M 7→Tr
[
X̂ M

]
to the linear matrix inequality constraint to find that

p̂ ≤λ · b̂, (A.0.4)

i.e. the upper bounding property of the dual functional. Applying the same map to the

perturbed dual (A.0.3) we get

p̂ ≤λ · b̂+δTr
[
X̂

]
. (A.0.5)

Therefore, the amount to which the dual functional can fail to satisfy the upper bounding

property (A.0.4) is exactly δTr
[
X̂

]
. We now explain how to bound δ and Tr

[
X̂

]
.

Since most semidefinite programming solvers will report back the degree to which the

various constraints have been satisfied, the value of δ can be readily observed. A problem

is considered feasible in practice, if each of its constraints have been satisfied up to some

small perturbation. Roughly, an off-the-shelf SDP solver would consider a solution feasible

if δ is no greater than 10−5 ∼ 10−8. By using high precision solvers, e.g. those of the sdpa

family [84], one can further reduce the value of δ.

To bound the expression Tr
[
X̂

]
it helps to consider the actual SDP of interest, i.e. the

guessing probability program (2.7.13) relaxed to the kth level of the NPA hierarchy. In

this context, each element of X̂ represents some expression of the form 〈ψ|M1M2 . . . Mn |ψ〉,
where |ψ〉 ∈H and M1, . . . , Mn are bounded, self-adjoint operators on some Hilbert space H.

For M ∈L(H), the operator norm of M is ‖M‖ = sup|ψ〉∈H{‖M |ψ〉‖ | ‖|ψ〉‖ ≤ 1}, if in addition

M is self-adjoint then we also have ‖M‖ = sup|ψ〉∈H{|〈ψ|M |ψ〉| : ‖|ψ〉‖ ≤ 1} (see Proposition

2.2 in [109]). Note that the operator norm is also sub-multiplicative, i.e. for M, N ∈L(H) we

have ‖MN‖ ≤ ‖M‖‖N‖. Therefore, for the element 〈ψ|M1M2 . . . Mn |ψ〉 of X̂ we have

| 〈ψ|M1M2 . . . Mn |ψ〉 | ≤ ‖ψ‖‖M1M2 . . . Mn |ψ〉‖
≤ ‖M1M2 . . . Mn‖
≤ ‖M1‖‖M2‖ . . .‖Mn‖

(A.0.6)

where the first line follows from the Cauchy-Schwarz inequality | 〈ψ||φ〉 | ≤ ‖|ψ〉‖‖|φ〉‖.

Furthermore, as each Mi is POVM element, we have 0≤ 〈ψ|Mi |ψ〉 ≤ 1 and so ‖Mi‖ ≤ 1. It

follows that every element of X̂ is bounded by 1. If X̂ is a d×d matrix, we have Tr
[
X̂

]≤ d.

It remains to bound the size of X̂ . Recall that for the kth level of the hierarchy, X̂ is

indexed by all unique products of operators of length no larger than k. The generating set

of operators forms the 1st level of the hierarchy, in our case this is W (1) = {1}∪{Ea|x}(a,x)∈AX∪
{Fb|y}(b,y)∈BY , i.e. the POVM elements that form our distribution p(a,b|x, y)=Tr

[
ρ(Ea|xFb|y)

]
.

In fact, we are at liberty to use a slightly smaller set: after choosing some (a′,b′) ∈AB, let

A′ =A\{a′} and B′ =B\{b′} and define

W̃ (1) = {1}∪ {Ea|x}(a,x)∈A′X ∪ {Fb|y}(b,y)∈B′Y .

Where we have removed the operators {Ea′|x}x∈X∪{Fb′|y}y∈Y as they can be constructed from

linear combinations of the remaining operators, i.e. Ea′|x = 1−∑
a∈A′ Ea|x. This reduction of
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the generating set is a consequence of Lemma 7 in [41], which states that if a certificate

exists for a word set W then a certificate will also exist for a word set W̃ where each word

in W̃ is a linear combination of words from W . By decreasing the size of X̂ we speed up the

computation and reduce the impact of floating point errors.

For the 1st level of the hierarchy, X̂ is a d(1) ×d(1) matrix with

d(1) = 1+ (|A|−1)|X |+ (|B|−1)|Y |.

The second level of the hierarchy is indexed by all words present at the first level together

with all unique, non-trivial products of operators of length 2. There are two sources of

redundancy here: we assume that our measurements are projective and the measurement

operators for separate parties commute. The projective assumption means that when we

only consider a single party, the only nontrivial products are those formed from operators

that correspond to different inputs. Therefore, at the second level of the hierarchy there are

(|A|−1)|X |× (|A|−1)(|X |−1) new words of the form Ea|xEa′|x′ ; (|B|−1)|Y |× (|B|−1)(|Y |−1)

new words of the form Fb|yFb′|y′ and (|A| −1)(|B| −1)|X ||Y | words of the form Ea|xFb|y.

Meaning that,

d(2) = 1+ (|A|−1)|X |+ (|B|−1)|Y |
+ (|A|−1)2|X |(|X |−1)+ (|B|−1)2|Y |(|Y |−1)+ (|A|−1)(|B|−1)|X ||Y |.

In general d(k) will grow exponentially with the level of the hierarchy. This means that

for higher levels of the hierarchy we may have to use a higher precision solver to curb

non-negligible error propagation.1 Fortunately, all of our computations were performed at

the 2nd level of the hierarchy and so the product δTr
[
X̂

]
was always small for the size of

input and output alphabets.

Remark A.1. Actually, for the guessing probability program (2.7.13), the certificate X̂ is

composed of |AB| blocks, i.e. X̂ =⊕
ab∈AB X̂ab – one block for each subnormalized distribu-

tion p̃ab ∈Q(k), with the block X̂ab corresponding to a NPA certificate for the distribution

p̃ab. To account for the subnormalization of p̃ab, each block is weighted by the norm

|p̃ab| =
∑

a′b′ p̃ab(a′,b′|x, y). However, as Tr
[
X̂

] = ∑
ab |p̃ab|Tr

[
X̂ab

]
, we can upper bound

Tr
[
X̂

]
by just considering a single (normalized) block.

1Larger matrices and higher precision solvers will have a compounding negative effect on the speed of
computation.
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AN IMPLEMENTATION OF THE FRAMEWORK IN PYTHON

To facilitate the framework’s use, a python implementation was developed and re-

leased [42]. The package provides a user-friendly means of designing and computing

the relevant security quantities of framework based protocols. We now provide a

short overview of the package including its basic structure and functionality.

The package is built around three core objects: games, devices and protocols.

Games
The game object allows a user to specify a real-valued nonlocal game, an expected score for

this game and a statistical confidence in that expected score. The scoring rule V :ABXY →
R is specified by supplying a matrix of coefficients following the same indexing pattern

present in Fig. 4.1. E.g., for the CHSH game (cf. Ex. 2.3) this would be


0.25 0 0.25 0

0 0.25 0 0.25

0.25 0 0 0.25

0 0.25 0.25 0

 . (B.0.1)

To implement games with multiple scores one would create a collection of game objects, one

for each score. For example, the game G〈AB〉 for binary ABXY can be implemented with 4
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APPENDIX B. AN IMPLEMENTATION OF THE FRAMEWORK IN PYTHON

game objects for each of its separate scores whose coefficient matrices are
0.25 0 0 0

0 0.25 0 0

0 0 0 0

0 0 0 0

 ,


0 0 0.25 0

0 0 0 0.25

0 0 0 0

0 0 0 0

 ,


0 0 0 0

0 0 0 0

0.25 0 0 0

0 0.25 0 0

 ,


0 0 0 0

0 0 0 0

0 0 0.25 0

0 0 0 0.25

 .

As we have weighted the coefficients with the input distribution (assumed uniform), the

expected scores for these individual games refer to the relative frequency of the score they

represent. The normalization score will be handled automatically by the program.

Devices
The devices object is initialized by supplying a list of attributes including: the input-output

configuration, the generation inputs, any nonlocal games played by the device and a desired

SDP relaxation level. Once initialized, the code uses another package ‘ncpol2sdpa’ [110]

to create a relaxation of the guessing probability program corresponding to the specified

attributes. A user may then request the guessing probability or min-entropy generated

when the generation inputs are used, the program then solves the SDP and returns the

relevant value. A user is free to alter the devices’ attributes post-initialization, upon

doing so the program automatically updates the guessing probability program and any

subsequent requests for the min-entropy will take into account these changes.

Protocol
The protocol object stores all of the additional protocol parameters required by Protocol QRE

including: number of rounds, testing probability, εs and εEAT.

Usage
Once the protocol and device objects have been initialized, a user can begin to compute

quantities relevant to Protocol QRE. In particular, the completeness error and all of the

relevant EAT quantities (3.2.7) – (3.2.10) may be computed for a specified min-tradeoff

function from Fmin. The default min-tradeoff function is the one indexed by the expected

scores provided. The code also implements a rudimentary gradient ascent algorithm to

optimize the choice of min-tradeoff function, this was used in Ex. 3.2 and Fig. 3.2.
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BLOCKING THE SPOT-CHECKING PROTOCOL

The original statement of the entropy accumulation theorem [24] was released

alongside an accompanying work, [26], which detailed its application to security

proofs of device-independent protocols. Within the appendix of [26] it was shown

that one could increase the quantity of entropy certified by the original EAT through a

modification to the structure of the spot-checking protocol. In light of this the authors

of [25] improved the second order term of the EAT in order to account for the suboptimal

dependence on the testing probability that was highlighted by the structural modification.

In the sections that follow, we show how the family of min-tradeoff functions Fmin can

be adapted to this structural change. Furthermore, we compare the accumulation rates

achievable with the different structures and EAT statements. In particular, we show that

this structural change provides no clear benefits when using the improved EAT statement.

To clearly distinguish the different statements of the EAT, we shall indicate with the

subscript DFR16, quantities associated with the original EAT [24] and similarly we shall

indicate with the subscript DF18, quantities associated with the newer EAT statement [25].

C.1 Blocked min-tradeoff functions

Let us briefly review the structural modification that was introduced in [26]. Instead of

distinguishing the statistics from each interaction separately, rounds are grouped together

to form blocks. The number of rounds within a block can vary: a new block begins when

either a test-round occurs or when the maximum number of rounds permitted within a

block, smax, is reached. On expectation there are s̄ = 1−(1−γ)smax

γ
rounds within a block. The

device-interaction phase of the protocol concludes after some specified number of blocks

m ∈ N have terminated. We shall use the superscripts R and B to indicate whether a
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quantity is concerned with the round-by-round or block structured protocols respectively.

The collected information is now defined at the level of blocks and not rounds. In

particular, at the end of the ith block the user records some tuple (A i,Bi, X i,Y i,C i), where

(A i,Bi, X i,Y i) ∈AsmaxBsmaxX smaxY smax and the scoring alphabet remains the same as in the

main text C i ∈G∪ {⊥}. The EAT-channels are now defined for each block and the entropy

bounding property of min-tradeoff function (cf. (2.3.6) and (2.3.7)) becomes

f B
min(p)≤ inf

σRi−1R′ :Ni(σ)Ci=τp
H(A iBi|X iY iR′)Ni(σ), (C.1.1)

for each i ∈ [m]. The expected frequency distributions for a block’s score take the form

pB =
(

γs̄q
(1−γ)smax

)
(C.1.2)

for q ∈QG .

Lemma C.1 (Blocked variant of Lemma 3.1). Let g :PG →R be an affine function satisfying

g(q)≤ inf
σRi−1R′ :N test

i (σ)Ci=τq
H(A iBi|X iY iR′)Ni(σ) (C.1.3)

for all q ∈QG . Then the function f :PG∪{⊥} →R, defined by

f (δc)=Max[g]+ g(δc)−Max[g]
γs̄

, ∀c ∈G,

f (δ⊥)=Max[g],

is a min-tradeoff function for any EAT-channels implementing Protocol QREB. Furthermore,

f satisfies the following properties:

Max[ f ]=Max[g],

MinΣ[ f ]≥Min[g],

VarΣ[ f ]≤ (Max[g]−Min[g])2

γs̄
.

Proof. This follows from replicating the original proof [25] with the block channels decom-

posed into the testing and generation channels, Ni = γs̄N test
i + (1−γs̄)N gen

i . �

Lemma C.2 (Min-tradeoff construction). Let G be a nonlocal game and k ∈ N. For each

ν ∈ Q(k)
G , let λν be some feasible point of the dual of Prog. (2.7.13) when parametrized

by ν and computed at the kth relaxation level. Furthermore, let λmax = maxc∈G λν(c) and

λmin =minc∈G λν(c). Then, for any set of EAT channels {Ni}m
i=1 implementing an instance of

Protocol QREB with the nonlocal game G, the set of functionals FB
min(G) = { fν(·) | ν ∈Q(k)

G }
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forms a family of min-tradeoff functions, where fν :PC →R are defined by

fν(δc) := (1−γ) s̄
(
Aν−Bν

λν(c)− (1−γs̄)λmin

γs̄

)
for c ∈G,

(C.1.4)

fν(δ⊥) := (1−γ) s̄ (Aν−Bνλmin) ,

(C.1.5)

where Aν = 1
ln2 − log(λν ·ν) and Bν = 1

λν·ν ln2 .

Moreover, these min-tradeoff functions satisfy the following identities.

• Maximum:

Max[ fν]= (1−γ)s̄(Aν−Bνλmin) (C.1.6)

• Σ-Minimum:

MinΣ[ fν]≥ (1−γ)s̄(Aν−Bνλmax) (C.1.7)

• Σ-Variance:

VarΣ[ fν]≤ (1−γ)2 s̄B2
ν(λmax −λmin)2

γ
(C.1.8)

Proof. The proof follows the same structure as the proof of Lemma 3.2. The only significant

difference is the construction of the function g : PG → R satisfying (C.1.3) so we shall

explain this part here. Following Appendix B of [26], by repeated application of the chain

rule we may decompose a block’s entropy as

H(A iBi|X iY iT iR′)Ni(σ) =
smax∑
j=1

(1−γ) j−1H(A i, jBi, j|X iY i,T
j−1

i,1 = 0,T smax
i, j A j−1

i,1 B j−1
i,1 R′),

where Ti, j is the random variable indicating whether a test occurred on the jth round of

the ith block. Considering the individual terms within the sum, we can absorb the majority

of the side information into some arbitrary quantum register E leaving us with terms of

the form

(1−γ) j−1H(A i, jBi, j|X i, jYi, jTi, jE).

As before, we can use the inequality H(A|B)≥ Hmin(A|B) and conditioning on Ti, j to lower

bound each term in the sum by a feasible point of the semidefinite program,

(1−γ) j−1H(A i, jBi, j|X i, jYi, jTi, jE)= (1−γ) j−1P
[
Ti, j = 0

]
H(A i, jBi, j|X i, j = x̃,Yi, j = ỹ,Ti, j = 0,E)

+ (1−γ) j−1P
[
Ti, j = 1

]
H(A i, jBi, j|X i, jYi, jTi, j = 1 E)

≥ (1−γ) jH(A i, jBi, j|x̃ ỹE)

≥ (1−γ) jHmin(A i, jBi, j|x̃ ỹE)

≥−(1−γ) j log(λν ·qi, j),

91



APPENDIX C. BLOCKING THE SPOT-CHECKING PROTOCOL

where qi, j ∈QG is the expected frequency distribution over the game scores for round j of

block i. Noting that − log(·) of an linear function is convex [82], we can establish a bound

on the entire block i through an application of Jensen’s inequality1

(γ−1)
smax∑
j=1

(1−γ) j−1 log(λν ·qi, j)≥ s̄(γ−1)log

(
λν ·

∑smax
j=1 (1−γ) j−1qi, j

s̄

)

we have used the fact that
∑

j∈[smax](1−γ) j−1 = s̄. Let qi ∈QG be the expected nonlocal game

score for the ith block conditioned on a test occurring. We may write qi as

qi =
∑

j∈[smax]γ(1−γ) j−1qi, j

1− (1−γ)smax
,

=
∑

j∈[smax](1−γ) j−1qi, j

s̄
.

Thus, we have so far established that

H(A iBi|X iY iT iR′)Ni(σ) ≥ s̄(γ−1)log
(
λν ·qi

)
,

where qi ∈QG is the expected frequency distribution over the nonlocal game scores for the

ith block. Taking a first order expansion about the point ν we arrive at the bound

H(A iBi|X iY iT iR′)Ni(σ) ≥ (1−γ)s̄(Aν−Bνλν ·qi),

where Aν = 1
ln2 − log(λν ·ν) and Bν = 1

λν·ν ln2 . Note that the right hand side is a device-

independent bound (does not refer to the state and measurements of the system), therefore

it is also a bound on infσRi−1R′ :N test
i (σ)Ci=τq

H(A iBi|X iY iT iR′)Ni(σ). The prerequisites of

Lemma C.1 are now satisfied and the result follows from applying the lemma to the

constructed entropy-bounding function above. �

Remark C.1. The min-tradeoff functions for the blocked protocol are very similar to those

of Lemma 3.2. If p ∈QG then

f B
ν (γs̄p,1−γs̄)= s̄ f R

ν (γp,1−γ).

That is, evaluating the corresponding min-tradeoff functions for distributions which respect

the structure of the protocols, we get that the blocked function’s bound is precisely s̄ times

the round-by-round bound.

1Jensen’s inequality [111] states that for a function ϕ : R→ R, continuous and convex on some interval
I ⊆R, we have

ϕ

(∑n
i=1αi xi∑n

i=1αi

)
≤

∑n
i=1αiϕ(xi)∑n

i=1αi
,

where xi ∈ I and αi > 0 for each i ∈ [n].
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C.2 Blocking with the improved second order

The error term in the original EAT bound is

εR
DFR16 := 2(log(1+2|A||B|)+d‖∇ fmin‖∞e)

√
1−2log(εsεEAT) . (C.2.1)

The disadvantage of using this bound without modification is that the gradient of fmin

scales like 1/γ and so the total error
p

n εR
DFR16 scales as O(

p
n /γ). What was noticed in [26]

is that by collating the statistics into m ∈ N blocks, one can redistribute some of the γ

dependence from the gradient term to the log(1+2|A||B|) term such that the total error

scales as O(
√

n
y ). Moving to the blocked structure and setting smax = ⌈

1/γ
⌉
, the output

alphabets grow exponentially with the size of the blocks and therefore logarithmic term

acquires a 1/γ scaling. In contrast, the scaling of the derivative of the min-tradeoff function

is found to be independent of the block size. Fortunately, as our error is now defined for an

entire block, we reduce the multiplicative factor on the total error from
p

n to
p

m ≈p
n/s̄ .

As s̄ ∈O(1/γ), we find that the total error term
p

m εB
DFR16 now scales as

√
n/γ . By increasing

the size of the blocks we have effectively redistributed the testing probability dependence

evenly amongst the components of εDFR16.

In light of this block-induced improvement, it is natural to investigate whether similar

advantages can be obtained by applying this technique to the improved EAT statement [25].

Recall the error terms

εR
V := β ln2

2

(
log

(
2|AB|2 +1

)+√
VarΣ[ f ]+2

)2
, (C.2.2)

εR
K := β2

6(1−β)3 ln2
2β(log |AB|+Max[ f ]−MinΣ[ f ]) ln3

(
2log |AB|+Max[ f ]−MinΣ[ f ] + e2

)
(C.2.3)

and

εR
Ω := 1

β
(1−2log(pΩ εs)) . (C.2.4)

Using the explicit form of the blocked min-tradeoff functions Lemma C.2, we can calculate

the approximate size of the error terms for large smax, small γ and m ≈ nR /s̄. In particular,

we find

m ·εB
V ≤ βm ln2

2

(
log

(
2|AB|2smax +1

)+
√

(1−γ)2 s̄B2
ν(λmax −λmin)2

γ
+2

)2

=O(βnsmax)+O(βn/γ),

(C.2.5)

m ·εB
K ≤ mβ2

6(1−β)3 ln2
2β(log |AB|smax+(1−γ)s̄Bν(λmax−λmin)) ln3

(
2log |AB|smax+(1−γ)s̄Bν(λmax−λmin) + e2

)
=β22O(βsmax)O(ns2

max),
(C.2.6)

εB
Ω =O(1/β), (C.2.7)
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and therefore the total error scales as

O
(
βnsmax + βn

γ
+β2ns2

max2O(βsmax) + 1
β

)
. (C.2.8)

In order for εB
K to have any sensible scaling, we need the exponent to grow no faster

than O(1). Combining this with the inverse dependence of β in εB
Ω, we would like β≈

p
γp

n smax
.

Such a choice results in the total error scaling as O
(
smax

√
n/γ

)
which suggests that a large

block size is not advantageous with the improved second order statement.

A comparison between the expansion rates obtained when using the improved second

order statement [25] and the blocked variant of the original EAT are presented in Fig. C.1.

The faster convergence to the asymptotic rate is indicative of the new EAT statement’s

strength. Additionally, in Fig. C.2 we extend Fig. 4.6 from Sec. 4.3 to compare the four

variants of the EAT, i.e. each statement with and without blocking.
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Figure C.1: Comparison of the certifiable accumulation rates using the two different
statements of the EAT: DFR16B [26] and DF18R (3.2.7). The rates were derived using the
following procedure. We assumed a qubit implementation of the protocols with a detection
efficiency η= 0.9, optimizing the state and measurement angles in order to maximise the
asymptotic bound. Then, for each value of n an optimization of the min-tradeoff function
choice was performed – for the rates calculated using (3.2.7) we also optimized the β

parameter at each value of n. To ensure that we approached the asymptotic bound as n
increased we set γ= δ1 = ·· · = δ|G| = n−1/3 as such a choice provides a constant completeness
error across all values of n.
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Figure C.2: Comparison between the certifiable accumulation rates of Protocol ARV (see
Sec. 4.3) using the blocked and non-blocked variants of the two EAT statements. The
dashed lines indicate that the EAT statement was applied to the blocked version of the
spot-checking protocol whereas the filled lines indicate the EAT statement was applied
round-by-round.
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Lemma D.1. Let X ,Y ∈Sn(R) then

inf
Yº0

Tr[XY ] =
0 if X º 0

−∞ otherwise
(D.0.1)

Proof. By the spectral theorem we can rewrite X as X =∑
iλi |xi〉〈xi|.

Case: X º 0.

As X º 0 we have that λi ≥ 0 for each i ∈ [n] and we may define X1/2 = ∑
i
√
λi |xi〉〈xi|,

which satisfies X = X1/2X1/2 and X1/2 º 0. By the cyclic property of the trace we have

Tr[XY ] = Tr
[
X1/2Y X1/2]

which is non-negative as X1/2Y X1/2 º 0: for |v〉 ∈ Rn we have

〈v|X1/2Y X1/2 |v〉 = 〈w|Y |w〉 ≥ 0 with |w〉 = X1/2 |v〉.
Case: X � 0.

If X � 0 then at least one of its eigenvalues {λi} is negative. Let λ be one of those negative

eigenvalues and define Y = yΠλ where Πλ is the projector onto the eigenspace of λ. For

y≥ 0 we have Y º 0. Moreover, Tr[XY ]= yλdλ where dλ is the dimension of the eigenspace

of λ. Then infYº0 Tr[XY ]= infy≥0 yλdλ =−∞ as λ< 0. �

Lemma D.2. Let f :Rn ×Rm →R, V ⊆Rn and W ⊆Rm, then

sup
v∈V

inf
w∈W

f (v,w)≤ inf
w∈W

sup
v∈V

f (v,w). (D.0.2)

Proof. Let g−(v) := infw∈W f (v,w) and g+(w) := supv∈V f (v,w). Then, by definition, for any

(v,w) ∈VW we have

g−(v)≤ f (v,w)≤ g+(w).

As g−(v)≤ g+(w) holds for all (v,w) ∈VW , we must also have g−(v)≤ infw∈W g+(w) and in

turn supv∈V g−(v)≤ infw∈W g+(w). �
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Lemma D.3. Let λ ∈Rn and let Λ= {x ∈Rn |λ · x> 0}. Then,

f (x) :=− log(λ · x) (D.0.3)

is a convex function on Λ.

Proof. Firstly, note that Λ is a convex set. Furthermore, f is a smooth function on Λ and so

we can compute its Hessian,

H = 1
ln2

(
λiλ j

(λ · x)2

)
i, j

.

We may rewrite this as H = 1
ln2 |v〉〈v| with |v〉 = 1

λ·x
∑

iλi |i〉. Consequently, H is a rank one

matrix with a single non-zero eigenvalue 1
ln2‖|v〉‖2 =

∑
i λ

2
i

ln2(λ·x)2 . This eigenvalue is manifestly

non-negative and thus H º 0 and f is a convex function on Λ. �
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