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Abstract 

Approximately 45% of the human genome is comprised of mobile, or transposable, 

DNA elements (TEs). Of this, 11% is attributed to Alu elements. Alu elements are 

approximately 300 base pairs in length and are primarily located in the introns of 

non-coding DNA. However, in some cases, the introduction of an alternative splice 

site, as a result of an Alu insertion in a protein-coding region, leads to the exonisation 

of a partial Alu sequence. This exonisation can lead to the expression of an 

alternative protein isoform which may have disrupted or altered function and 

therefore, could have the potential to be cause disease.  

Through the use of bioinformatics, this project firstly aimed to predict the extent of 

Alu exonisation and subsequent translation in the human proteome. Additionally, 

through the use of local sequence alignments, the nature of observed insertions could 

also be studied. Once prior aims were established, a series of techniques were used 

to study the possible effects of translated Alu insertions on the structure and function 

of proteins. A number of protein variants were expressed and purified from E. coli. 

Using biophysical techniques, such as ITC and CD, Alu structure and any effects of 

Alu insertions on the ligand binding and stability of MBP were studied. Additional 

binding experiments were performed as a means to explore a potential binding 

interaction between an Alu-like sequence with geldanamycin, an interaction which 

was initially observed using phage display. 

A secondary avenue of research was performed in collaboration with the Aspden 

and Wurdak groups at the University of Leeds to investigate the difference in 

translation levels of ‘Alu’ and ‘non-Alu’ mRNAs in human cells. Analysis was 

performed using a combination of polysome profiling, reverse transcription and 

quantitative PCR. 
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Chapter 1  
An introduction to Alu elements 

Overview 
Retrotransposable DNA elements have been reported to contribute to a variety of 

different diseases, most interestingly, cancer. Among them, Alu elements, a subclass 

of retrotransposable elements previously considered to be ‘junk DNA’, have been 

observed to be exonised, resulting in the expression of alternative protein isoforms 

which have been implicated in disease. It has only recently been acknowledged that 

Alu elements may contribute more to the genome than mere expansion, and as a 

result they may also have a larger effect on the human proteome than previously 

thought. 

1.1 Transposable elements 
The human genome is made up of a large assortment of DNA, some of which is able 

to actively move to and replicate in different genomic locations. These mobile 

elements, also known as transposable elements (TEs), constitute 45% of the human 

genome.1-2 They are a principal contributor to the genetic variation of an ever-

changing genome and helped to mould the behaviour and formation of human 

genes.3-4 As it stands, TEs are present in every eukaryotic genome that has been 

sequenced so far. 

In the human genome, TEs are categorised into two main classes; Class I and Class 

II. Class II elements are referred to as DNA transposons and constitute 3% of the 

human genome.5 In early evolution, DNA transposons replicated via a mechanism 

most easily described as being similar to the ‘cut and paste’ function on a modern 

computer (figure 1.1A).6-7 That is to say that a DNA sequence was ‘cut’ from one 

part of the genome and ‘pasted’ into an entirely new genomic site, thus, moving the 

element. As far as it is known, there are currently no active DNA transposons left in 

the human genome. 

Class I elements are referred to as retrotranspositional elements, or RNA 

retrotransposons.8, 9, 10 RNA retrotransposons make up a much larger percentage of 



Chapter 1 

 2 

the genome totalling approximately 42%.11 Unlike DNA transposons, RNA 

retrotransposons replicate via a mechanism similar to the ‘copy and paste’ function 

of a computer and occurs through the generation of an RNA intermediate (figure 

1.1B).12 In other words, the DNA element is copied into RNA via transcription, 

relocated to a second genomic site where the RNA is converted back into cDNA 

(complementary DNA) via reverse transcription and inserted into the new location.13 

 

 

Figure 1.1 Mechanisms of DNA transposition and RNA retrotransposition 

(A) DNA transposition. DNA is ‘cut’ from one genomic location, translocated and is 

‘pasted’ in another region. (B) RNA retrotransposition. DNA is ‘copied’ into an RNA 

intermediate which moves to a new genomic region where the RNA is reverse transcribed 

into cDNA and inserted into the new location.  

 

1.1.1 Retrotransposons in the human genome 

Once DNA has been categorised as Class I or Class II TEs, Class I RNA 

retrotransposons can be further subcategorised (figure 1.2). The first level of sub-

categorisation is the splitting of long terminal repeats (LTRs) and non-LTRs. LTR 
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simply refers to the presence of identical repeating units that flank the 

retrotransposon sequence.14, 15, 16 Long terminal repeats are much less abundant (9%) 

than their non-LTR counterparts, which constitute 33% of the genome. It has been 

reported than non-LTR elements evolved as early as the first multicellular 

organisms.17 

 

 

Figure 1.2 Categorisation of mobile DNA elements 

Mobile DNA elements can be sorted into several subcategories dependent on their origin, 

features and replication mechanisms.  

 

A further sub-categorisation of non-LTR elements splits DNA into Short- (SINEs) 

and Long Intersperse Nuclear Elements (LINEs), contributing 16% and 17% to the 

human genome, respectively.18 LINE-1, or L-1, is the only autonomous mobile DNA 

that remains active in the human genome; however, there are fragments of extinct 

L-2 and L-3 which can be traced.19 Approximately 12 million years ago, the 

expansion of L-1 elements in the human genome slowed, so most L-1 insertions are 

truncated, rearranged or mutated.20 SINEs can be further subcategorised into Alu, 

SVA and other small elements, with Alu elements being the most abundant 

comprising 11% of the genome, with over 1 × 106 copies.21 On average, 5% of new 

born babies will be born with a brand new retrotransposon insertion. 
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1.2 The origin of Alu elements 
Alu elements, as we know them today, are the most abundant TEs in our genome, 

the majority of which were produced over 40 million years ago.22 The first Alu-like 

sequence evolved from 7SL RNA and, through a series of evolutionary mutations, 

gave rise to the generation of many different Alu subfamilies. 

1.2.1 Evolution from 7SL RNA 

7SL RNA is a key component of the signal recognition particle (SRP), involved in 

the secretion and translocation of proteins in the endoplasmic reticulum (ER).23 A 

study comparing the homology of insect 7SL RNA with mammalian 7SL RNA and 

Alu sequences revealed that the presence of the Alu sequence in the RNA arose prior 

to the divergence of mammals on the evolutionary tree of life.24 The sequence of 

7SL RNA is composed of an Alu sequence split by a 155-base pair (bp) sequence 

which is exclusive to 7SL RNA. This leaves approximately 100 bp and 45 bp at the 

5’ and 3’ ends of 7SL RNA, respectively, which are homologous to the Alu right 

arm monomer.25 This homology also accounts for the conservation of an RNA 

polymerase III promoter region.26  

The first evolutionary step from 7SL RNA towards today’s recognised Alu structure, 

involved the central deletion of the aforementioned 155 bp sequence of 7SL RNA 

giving the fossil Alu monomer (FAM).27 This monomer is the oldest common 

ancestor of all SINEs derived from 7SL RNA.28 Further mutation of FAM gave rise 

to the free right Alu monomer (FRAM) and the free left Alu monomer (FLAM), also 

known as the free Alu right and left arms, respectively. Combination of these 

monomers resulted in the consensus Alu sequence we know today (figure 1.3).29  
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Figure 1.3 Evolution of Alu elements from 7SL RNA 

The fossil Alu monomer (FAM) was formed through the deletion of the S-domain of 7SL 

RNA (purple/orange). Further sequence deletions resulted in the formation of the free left 

arm monomer (FLAM; deletion = grey/aqua, pink/yellow) and the free right arm monomer 

(FRAM; deletion = pink/yellow). The FLAM and FRAM combined to form a dimeric Alu 

element split by a poly-A sequence. 

 

1.2.2 Alu subfamilies 

Modern Alu elements are only observed in the genomes of primates, though they 

give rise to many different subfamilies within those genomes.30 The broadest 

categorisation of Alu elements is into three main classes; AluJ, AluS and AluY, which 

can then be subcategorised further, dependent on the location of base mutations 

(figure 1.4).31 The AluJ class is the oldest dimeric Alu approximated to have arisen 

around 80 million years ago. AluS subfamilies are of an intermediate age having 
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evolved approximately 30 – 50 million years ago and AluY subfamilies are the 

youngest subfamilies and are less than 15 million years old. Of these subfamilies, 

AluS subfamilies are the most common, with AluSx being the most abundant Alu in 

primate genomes.32 AluY subfamilies, due to their youth, are the only Alu class that 

are still retrotranspositionally active. That is to say, they are the only subfamilies 

that are still retrotransposed to create new insertions. For older subfamilies, which 

no longer undergo active retrotransposition, new Alu-like insertions are likely to 

have instead occurred through DNA recombination events. 

 

 

Figure 1.4 Divergence of Alu subfamilies 

The AluJ class of Alu elements is the oldest, arising approximately 80 million years ago. 

From this, the AluS class of subfamilies diverged 30 – 50 million years ago. AluS 

subfamilies remain the most abundant Alu class in the human genome, with AluSx being the 

most common. AluY subfamilies are less than 15 million years old and remain the only 

active Alu class. 
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1.3 Alu structure 
Alu elements (figure 1.5) are dimeric structures that are approximately 300 bp in 

length.33 They are comprised of two monomers, left and right, which are identical to 

one another other than an approximately 34* base pair insert which is present only 

in the right monomer.34, 35 The monomers are connected via a poly-A linker region; 

a second poly-A region acts as a tail at the 3’ end of the element, which is responsible 

for active retrotransposition.36 Younger AluY subfamilies have longer poly-A tails 

which account for their conserved activity. However, older classes, AluJ and AluS, 

have significantly shortened tails which is assumed to contribute to their loss of 

activity.37 

The left Alu monomer hosts an RNA polymerase III (RNAP III) promotor region 

composed of an A- (TGGCTCACGCC) and B- box (GTTCGAGAC).38 The 

presence of the approximately 34 bp insert in the right monomer splits the B-box 

thus, the right monomer does not have RNAP III activity. 

 

 

Figure 1.5 Alu element structure 

Alu elements are approximately 300 base pairs in length, comprising of a left and right 

monomer. Monomers are split by a poly-A tract and similarly, have a poly-A tail at the 3’ 

end. Monomers are identical to one another aside from an approximately 34 bp insert in the 

right arm monomer. The left arm hosts an RNA polymerase III promoter region required for 

retrotranspositional activity. 

  

                                                
* Literature quotes insert length at approximately 31 bp; observations made upon alignments of Dfam 
Alu sequences calculated an average of 34 bp in this work. 
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1.4 Alu movement and replication in the genome 
Alu elements are non-autonomous SINEs.39 As a result, they do not host the 

‘machinery’ required for active retrotransposition. For active AluY subfamilies, 

retrotransposition occurs through the ‘hijacking’ of LINE-1 (L-1) machinery.40 L-1 

elements are responsible for the insertion of over 1 × 106 non-autonomous SINEs.41 

The generation of new insertions arising from older, inactive classes, AluJ and AluS, 

are usually a result of DNA recombination events which have used Alu sequences 

as homologous templates for DNA repair.42 

1.4.1 Retrotransposition 

The retrotransposition of active Alu elements occurs through utilisation of L-1 

machinery. LINE-1 elements host ORF1 and ORF2 genes, which encode the ORF1p 

and ORF2p proteins, respectively, required for their own autonomous 

retrotransposition.43, 44 ORF1 encodes the approximately 40 kDa (kilodalton) 

protein, ORF1p, about which relatively little is known. Its origins appear to be 

associated with retrotransposition, however, it shares very low sequence homology 

with any sequences in databases of known proteins.45 ORF2 encodes a much larger, 

approximately 150 kDa, protein that exhibits both endonuclease46 and reverse 

transcriptase activity.47 ORF2p has two conserved domains, the Z-domain and a 

cysteine-rich (C-domain). The C-domain has unknown function, however, it has 

been observed that mutations in this domain eradicate L-1 retrotranspositional 

activity.48 Alu elements require only ORF2p for retrotransposition, which they 

‘borrow’ from LINE-1.49 They achieve this through binding with the SRP9/14 

subunit of the signal recognition particle (SRP) which localises them to the 

ribosome.50, 51 This mode of action is supported by the fact that mutations in the Alu 

SRP 9/14 binding sequence eliminates its binding interaction.52 It is this localisation 

which brings the Alu element within close enough proximity of L-1 elements to 

interact with ORF2p using both its L-1 endonuclease and L-1 reverse transcriptase 

activity.53 

Since Alu elements use the same protein as L-1 elements for active 

retrotransposition, it is assumed that the process proceeds via the same mechanism 

(figure 1.6).54 
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Figure 1.6 L-1 mediated retrotransposition of Alu elements 

L-1 endonuclease (L1 EN; from N-terminus of ORF2p) cuts the reverse (-) strand of double 

stranded DNA (dsDNA) at the Alu target site. RNA anneals to the reverse stand and using 

L-1 reverse transcriptase (L1 RT) extends cDNA in the 5’ – 3’ direction, copying the second 

Alu strand. L1 EN cuts the forward (+) strand of the original DNA at a second target site 

located at the opposite end of the Alu. The original Alu ‘jumps’ along the DNA where the 

extended cDNA from the reverse strand anneals to the dsDNA of the insert. The RNA 

template dissociates, and cDNA is synthesised to fill in the gap. 
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Retrotransposition occurs through a series of steps. Firstly, L-1 endonuclease (L1 

EN), which arises from the N-terminus of the ORF2p and shares sequence homology 

with AP endonuclease, determines the site of Alu insertion through the generation 

of a single strand break in the target DNA. This is usually in the form of a 5’ 

TT|AAAA motif.55 RNA anneals to the free single stranded (ss) Alu element and L-

1 reverse transcriptase (L1 RT), the characteristic motifs for which lie at the C-

terminus of ORF2p, initiates target-primed reverse transcription (TPRT) at the 

insertion site. Elongation uses the 3’ end of the target site, which was released by 

L1-EN, as a primer. A second cut is made on the Alu forward (+) single strand at a 

second cut site located at the opposite end of the Alu element. The Alu ‘jumps’ along 

the gene and inserts itself into a new location. The 5’ end of the reverse strand 

anneals at the first cut site. The RNA template dissociates, and the gaps are filled in 

by complementary DNA (cDNA).56, 57 

As previously stated, only younger Alu subfamilies (AluY) still have the ability to 

actively undergo retrotransposition in this way. The rate of Alu retrotransposition is 

approximately one in every twenty births,58 which is similar to that of LINE-1 

elements.59, 60, 61 

1.4.2 DNA recombination events 

Despite no longer undergoing active retrotransposition with L1 machinery, new 

insertions from older, inactive Alu elements, such as AluJ and AluS, still arise in the 

genome. When this occurs, it is usually the result of a DNA recombination event at 

the point of a DNA double strand break.62 

In cases were DNA damage results in a double strand break (DSB), one of two 

mechanisms can occur to repair the damage; non-homologous end-joining (NHEJ) 

or homologous recombination.63 NHEJ involves the direct ligation of broken DNA 

ends and therefore often results in deletions.64 Homologous recombination events 

involve the use of homologous DNA template. Due to the high abundance of Alu 

elements in the human genome, it is likely that Alu elements share high sequence 

homology with certain genomic locations, also known as ‘hot spots’, and as a result, 

they are used as templates in DNA repair (figure 1.7).65 Additionally, the similarity 

between the two Alu arms also provides a way in which mistakes in DNA repair 

could arise. The most common example of this is Alu mismatch, which is the mis-

pairing of Alu elements for recombination and often results in either duplication or 
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deletion.66 Homologous recombination starts with 5’ resection to produce single 

stranded DNA (ssDNA) overhangs at the site of the DSB. The homologous Alu DNA 

then anneals and is used as a template for DNA repair, resulting in a new Alu 

insertion at the repair site.67 In cases where an Alu mismatch has been made, this 

results in a sequence different to the original being introduced, or in some cases, 

parts of the sequence being missed out during repair, resulting in an Alu 

recombination-mediated deletion (AMRD).68 

 

 

Figure 1.7 Alu insertion through DNA recombination events 

DNA damage results in a double strand break (DSB). DNA resection occurs at the 5’ ends 

of the break to give single stranded DNA (ssDNA) overhangs. An Alu element with high 

homology with the break site acts as a temple for DNA repair then dissociates leaving a 

copy of itself at the repair site. 
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1.5 Transcription and translation of Alu Elements 
Proteins are produced via the central dogma of molecular biology, which states that 

there are two steps to protein production; transcription and translation. Transcription 

refers to the copying of DNA into an mRNA intermediate, and translation refers to 

the ‘reading’ of mRNA and production of the amino acid chain which makes up the 

protein. However, this description is some-what simplified, and the overall 

mechanism is much more complicated.69 

1.5.1 Transcription of mRNA 

Transcription refers to the process which copies DNA into pre-messenger RNA 

(mRNA). The process occurs through a reaction catalysed by RNA polymerase II 

(RNAP II). Transcription by RNAP II begins with the binding of regulatory 

transcription factors to the DNA strand at the site of transcription initiation.70 Unlike 

DNA polymerases, RNA polymerases do not need primers to initiate synthesis.71 

RNAP II is positioned at the site via a promotor at which point the DNA helix is 

unwound to reveal 11 – 15 bases on a single stranded DNA template. Sequential 

addition of nucleoside triphosphates (ATP, GTP, CTP and UTP) and phosphodiester 

bond formation (catalysed by RNAP II) results in the extension of an mRNA coding 

strand in the 5’ – 3’ direction.72 This strand is identical to the complementary strand 

of the DNA template with the minor difference that thymine (T) nucleotides are 

substituted for Uracil (U) nucleotides. Each RNA polymerase II is capable of adding 

20 – 50 bases per second,73 and with over 100 RNA polymerases working at any one 

time, it is possible to generate over 100 transcripts per hour.74 Unlike with DNA 

synthesis, the synthesis mRNA does not remain hydrogen bonded to the transcript, 

instead it dissociates, allowing for the DNA helix to reform. Therefore, RNAP II 

moves along the DNA template unwinding the helix just ahead of its active site and 

allow it to reform behind it (figure 1.8). 

RNA polymerase has an error rate of 1 in every 104 nucleotides, which is much 

higher than for DNA polymerases (1 in every 107 nucleotides). Errors made by RNA 

polymerases can lead the changes in exon splicing.75 
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Figure 1.8 mRNA transcription by RNAP II 

RNA polymerase II (RNAP II), moves along the DNA strand sequentially adding bases (A, 

U, G, C) to the extending mRNA chain. 11 – 15 bases on the DNA helix are unwound at 

any one time to reveal the DNA template. mRNA dissociates and the DNA helix reforms 

once the RNA polymerase has moved on. 

 

1.5.2 The spliceosome 

Simply put, splicing is the mechanism which removes introns from pre-mRNA 

transcripts resulting in a mature mRNA transcript which includes only exonised 

RNA. This mechanism occurs through cleavage at points called slice sites, which 

are conserved RNA sequences found at the 5’ and 3’ ends of introns.76 The most 

common splice site is GU a the 5’ end of an intron and AG at the 3’ end. Splicing of 

the major (U2) class of introns generally occurs at CAG|G at the 3’ end. Conversely, 

splicing tends to occur at X1AG|GUX2AGU at the 5’ end, where X1 and X2 are A/C 

and A/G, respectively.77 However, other classes of introns give rise to alternative 

splice sites.78, 79, 80 Changing any one of the bases contributing to a splice site can 

result in complete inhibition of splicing. 

Aside from the splice sites themselves, a secondary sequence, called the branch 

point, is also very important in the splicing mechanism. The branch point, which is 

located 18 – 40 nucleotides upstream of the 3’ splice site, is responsible for the 

initiation of nucleophilic attack on splice sites.81 The branch point has very loose 

conservation in comparison to the splice sites themselves; however, it always 

contains an adenine (A). 

Splicing is a multi-step mechanism (figure 1.9) which is catalysed by small nuclear 

ribonucleoproteins (snRNPs), a major class of uridine (U)-rich non-coding RNAs 

which are bound by specific proteins to give an RNA-protein complex.82 U1 snRNPs 
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attach to the 5’ end of the complementary strand of the intron, at the splice site, and 

cleave it. The free end then attaches to the branch point through the pairing of 

guanine (G) to adenine (A) via transesterification to form a looped structure known 

as a lariat.83 Additional snRNPs (U2 and U4/U6) aid in placing the 5’ end and the 

branch point in close proximity of one another. Following initial transesterification, 

U5 snRNPs bring the 3’ splice site within proximity of the 5’ end and a second 

transesterification reaction cleaves the 3’ end and joins it with the 5’.84 The 

mechanism results in the joining of the two exons either side of the spliced intron 

and a lariat-snRNP complex which dissociates. 

 

 

Figure 1.9 mRNA splicing 

(A) An intron, flanked by two exons contains a 5’ splice site, a branch point and a 3’ splice 

site (left to right). (B) Catalysed by snRNPs, the 5’ splice site is cut and joins to the branch 

point via transesterification. (C) By a second transesterification reaction, the 3’ splice site 

is cut and joined to the free 5’ end (D) to form a lariat and the two connected exons. 

 

In addition to snRNPs, splicing is also regulated by a number of different splicing 

factors. These include trans- and cis-acting proteins, which can be activators or 

repressors, or silencers and enhancers, respectively.85 Together, these factors 

determine how splicing occurs under different cellular conditions such as in different 

tissue types or under stress. 
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1.5.3 Alu inclusion in introns and exons 

In most cases, Alu insertions occur in the introns of genes and therefore have no 

effect on the protein-coding DNA of a gene.86 However, sometimes Alu insertions 

can introduce an alternative splice site into a protein coding region, leading to an 

alternative splicing event and hence, the partial exonisation of the Alu sequence.87 

This exonisation leads to the translation of the sequence as part of a protein, leading 

to the formation of an alternative protein isoform (figure 1.10).88, 89, 90 In some cases, 

this insertion can lead to the formation of a disease-causing isoform. 

 

 

Figure 1.10 Alternative splicing of exonised Alu elements 

Alu insertions can introduce a new splice site into protein coding regions. (A) The new splice 

site is ignored forming the non-Alu protein isoform. (B) The new splice site is incorporated 

resulting in translation of the Alu element into an alternative protein isoform. 

 

Aside from the introduction of alternative splice sites, there are also other ways by 

which Alu elements can affect splicing and transcript formation and regulation. In 

some cases, the formation of inverted Alu pairs can lead to the circularisation of 

mRNA transcripts.91 The inclusion of Alu elements in introns can sometimes 

interrupt silencers and enhancers and therefore affects the inclusion of downstream 

exons.92 In the same way, they can affect activators and repressors altering the 

recognition of splice sites.93 

1.5.4 Other effects of Alu mRNAs 

Though many Alu elements are incorporated into introns and exons, free Alu RNAs 

are also generated.94 Free Alu RNA has been observed to do a number of multiple 

things. Synthesis of synthetic Alu ribonucleoproteins (RNPs comprising of Alu-

SRP/14 complexes) observed enhanced translation of reporter Alu mRNAs, but saw 

a general decrease in protein translation.95, 96 Alu mRNAs have also been observed 

to have selective stimulation of translational expression.97  
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1.6 Alu elements in humans and their relation to disease 

1.6.1 Current studies of Alu elements in humans 

A large amount of interest with respect to Alu elements is the study of their 

polymorphisms as a means to greater understand human population genetics and 

diversity.98 This is most easily observed in the introduction of younger, AluY, 

subfamilies which can only be traced in the human genome and not in that of other 

primates.99 The incorporation of a new Alu mutation into a population is highly 

dependent on genetic drift. For example, if an insertion is introduced into a smaller 

population, it is less likely that the mutation will be lost. Additionally, the more an 

insertion is amplified over time, the more set it becomes in the genome. 

Polymorphisms of Alu elements can be traced through primate genomes. As 

previously mentioned, some polymorphisms are so new that they are only present in 

the human genome.100 Though there are only a few, there are some cases where 

polymorphisms are present in the genome of one human but absent in another. These 

are known as Alu-insertion polymorphisms.101 In rare cases, an individual Alu may 

be found in a single population, family or even individual (de-novo insertion) 

dependent on genetic drift. 

A study into the frequency of Alu polymorphisms among populations revealed that 

the frequency varies between populations.102 It was observed that the highest number 

of polymorphisms was observed in Africans, and the lowest in Europeans. As human 

evolution is known to be of African origin, this is result was consistent with the 

current model of human evolution. From a timescale perspective, it is difficult to say 

how often new Alu polymorphisms arise as the rate is constantly changing not across 

the entire human population but also in individual populations. 

In most cases, there does not appear to be any negative impact of Alu elements with 

respect to genomic diversity; however, some have been implicated in disease. 
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1.6.2 Alu elements in disease 

There are an increasing number of discoveries that link Alu elements to disease, with 

over sixty reported disease-causing Alu insertions.103 In addition, the rate of 

retrotransposition of disease-based Alu elements is much higher than that of their 

evolutionary retrotransposition rate, indicating that they may be in a phase of higher 

activity than usual. Alu contribution to disease has be reported to occur at both the 

nucleotide level (mRNAs/DNA)104,as a well as at the proteome level. However, 

there appears to have been less research into the level of effect Alu elements have 

on the proteome. 

There are a number of reports that link Alu elements to disease whether it be through 

disease regulation105 or the direct impact of exonised Alu elements in protein 

isoforms.106 One example of the latter lies in Alu-specific deletions in the cyclin-

dependent kinase like 5 (CDKL5) gene, which leads to a frame shift in the translated 

protein and leads to early-onset seizure disorder in females.107 In another report, the 

insertion of an Alu element into the porphobilinogen deaminase (PBGD) gene 

disrupts its fifth exon leading to the expression of an alternative protein variant with 

abolished enzyme activity. This is a detrimental insertion that leads to acute 

intermittent porphyria (AIP).108 There have been many other reports of Alu 

insertions leading to disease via the formation of alternative protein isoforms 

including links to Alzheimer’s disease109, 110, Apert Syndrome111 and cancer.112, 113 

  



Chapter 1 

 18 

1.7 Project aims 
Currently, the majority of research into Alu elements is centred around the evolution 

of Alu elements and their impact at the nucleotide level. There are still may questions 

about the true impact of Alu elements on the human genome, and even more about 

their effects on the human proteome. Though a lot of research has been done on the 

impact of intronic Alu elements, very little has been done on exonised Alu elements. 

Moreover, extending the study of Alu exonisation to their incorporation into proteins 

and how they impact protein structure and function leaves a fairly open gap in the 

scientific field. 

As a result, this project first aimed to analyse the extent of Alu exonisation in the 

human genome which leads to the formation of alternative Alu-containing protein 

isoforms. Secondary aims involved the study of how the insertion of such Alu 

elements in proteins affected their structure and function. Initial analysis into the 

abundance of Alu elements in protein coding exons was performed through the use 

of bioinformatic techniques based around the sequence alignment of both Alu-

related nucleotide and protein sequences. Research into the effect of Alu elements 

on protein structure was performed through peptide binding assays, protein 

expression in Escherichia coli (E. coli) and a series of biophysical analytical 

techniques. Additional work to decipher the differing translation levels of Alu and 

non-Alu mRNAs arising from the same gene in ‘cancerous’ and ‘non-cancerous’ 

human cells was performed using a combination of polysome profiling, reverse 

transcription and qPCR. 
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Chapter 2  
Bioinformatic analysis of Alu elements 

Overview 
Alu elements have been reported to be present in high abundance within the human 

genome, contributing approximately 11% to total genomic DNA. Until fairly 

recently, Alu elements were described as ‘junk DNA’;114 however, recent studies 

have revealed this to be untrue. Although research by groups such as Mitchell et 

al115 and Sorek et al116 revealed that Alu elements in protein-coding regions can be 

exonised so as to be incorporated into proteins, the extent to which this happens 

remains unstudied. 

Through use of a series of bioinformatic techniques, 57 protein hits were initially 

identified to contain translated Alu-like regions. This was refined with further 

bioinformatics to 46 different proteins, giving rise to 65 individual isoforms. Of the 

total 46 identified proteins, 32 could be translated as multiple isoforms which could 

be either Alu-containing or non-Alu-containing. Analysis of 65 Alu-containing 

protein isoforms concluded that sequences arising from Alu insertions were more 

common at protein termini than within internal protein regions. Bioinformatic 

studies of hits at the nucleotide level revealed that insertions primarily arose from 

the Alu left arm and corresponded to sequences copied from the antisense (-) strand 

of the parental Alu. Alignment of primary reading frames revealed a conserved 

amino acid sequence present in the majority of protein hits. Building upon the work 

of Lev-Maor et al,117 six possible 3’ AG splice sites were identified in hit mRNAs 

as an insight into the origin of the Alu insertions observed. 

2.1 Identification of Alu-containing protein sequences 
Most of the human genome is made up of non-coding DNA. As this research aimed 

to identify Alu insertions within protein coding-regions, consensus sequences were 

translated into open reading frames (ORFs) for analysis. At the time of this 

bioinformatic analysis, only the eight Alu consensus sequences obtained from the 

National Centre for Biotechnology Information (NCBI)118 were readily available for 
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sequence comparison. Alignment of these consensus sequences showed 80% 

conservation between subfamilies with differences arising only from minor base 

mutations that had accumulated over evolutionary time (figure 2.1). Sequences were 

translated and screened against a database of human proteins to give a total of 57 

protein hits. Due to the aforementioned sequence conservation between Alu 

subfamilies, in many cases the same protein matches were observed with multiple 

subfamilies. Upon translation of Alu consensus sequences, similar ORFs were 

yielded from each subfamily. 

 

 

Figure 2.1 Summary of differences between Alu subfamilies upon alignment 

Over eight Alu subfamilies, we see a conservation of a total of 235 bases. As the full length 

of each Alu subfamily ranges from 287 – 296, approximately 80% of the sequence is 

conserved between Alu subfamilies. 

 

2.1.1 Creating a database of Alu-containing proteins 

All eight of the Alu consensus sequences (J, Sx, Sp, Sq, Sc, Sb, Sb1, Yb) were 

translated into their respective six possible ORFs using ExPASy translate,119 to give 

a total of 48 translated sequences. Alu consensus sequences can be found in 

Appendix 1. ORFs were individually screened against a library of known human 

proteins (UniProtKB/Swiss-Prot) using the NCBI basic local alignment search tool 

(BLAST).120 A total of 57 protein hits with a sequence identity match† above 68% 

were identified. Search results with a sequence identity below 68% tended to be 

shorter sequences or include significant gaps between matched regions therefore, 

                                                
† The amount of characters exactly matched between two sequences in relation to the shorter 

sequence, excluding gaps. 
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sequences matching less than 68% of the ORF sequence were disregarded as a way 

to reduce partial matches. Approximately 17 uncharacterised and putative proteins 

were omitted. 

 

Protein Matched Alu Percentage Identity Isoforms 
NANGN J Sx Sp Sq Sc Sb Sb1 Yb 97 1 

PKP2 J Sx Sp Sq Sc Sb Sb1 Yb 95 2 
OR1FC Sx Sp Sq Sc Sb Sb1 Yb 95 1 
ZN429 Sx Sp Sq Sc Sb Sb1 Yb 95 1 
MOST1 J Sx Sp Sq Sc Sb Sb1 Yb 94 1 
TV23C J Sx Sp Sq Sb Sb1 Yb 94 3 
HS905 J Sx Sp Sq Sc 94 1 
RABX5 J Sx Sp Sq Sc Sb Sb1 Yb 93 4 
MYL10 J Sx Sp Sq Sc Sb Sb1 Yb 93 1 
ZN701 J Sx Sp Sq Sc Sb Sb1 Yb 92 2 
GLOD4 J Sx Sq Sc Sb Sb1 92 3 
CK5P1 J Yb 92 6 
ZN283 J Sx Sp Sq Sc Sb Sb1 Yb 92 1 
ZN415 J Sx Sp Sq Sc Sb Sb1 Yb 91 6 

Table 2.1 The 15 hits with the highest percentage identity match to Alu ORFs 

Many of the proteins listed have hits with multiple Alu subfamilies due to 80% sequence 

similarity between Alu consensus sequences. The recorded percentage identity is that of the 

best matched subfamily. 

 

The 15 hits with the highest percentage identity match are recorded in table 2.1. A 

full list of hits is contained in Appendix 1. Of the 57 proteins identified, only five 

were found to match solely with one subfamily; TEX11, GLYG2, PRR34, YA021 

and PPP5D1. These matches are likely to be shorter sequences and/or arise from less 

conserved regions of Alu elements. 15 proteins were found to match with all of the 

eight Alu subfamilies, though at different percentage identities. As previously 

discussed, this is unsurprising due to high sequence similarity between Alu 

subfamilies. The percentage identity values listed in table 2.1 correspond to those of 

the highest matching subfamily. 
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2.1.2 Database refinement 

Protein hits with each Alu consensus sequence were individually analysed. All six 

ORFs were aligned with each isoform of their respective hits. In addition to a 

percentage identity of > 68%, hits were refined so as to only include those with an 

expect value (E-value)‡ of 1 x 10-8 or lower. These cut-offs were chosen so as to 

limit the overall number of hits to between 50 and 100. Though some hits may have 

been unidentified due to these cut-offs, in addition to those lost due to the use of a 

single database (UniProt KB/Swiss-Prot), for the purpose of this work the number 

of hits obtained was sufficient. 

Database refinement resulted in a reduction of hits from 57 to 46 (figure 2.2A). 

Those lost included; CK5P1, CASC5, ZNF91, TEX11, MTO1, CBPC2, NPCL1, 

MY15B, PRR34, TTF1 and YA021. As noted previously, TEX11, PRR34 and 

YA021 were likely to have matched with shorter sequences due to only matching 

with one Alu subfamily. As a result, it is unsurprising that a stricter cut-off resulted 

in their loss. The 46 Alu-containing (AC) proteins gave rise to 65 isoforms which 

each contained an Alu-like insertion. In addition to this, there were also 68 non-Alu-

containing isoforms (nAC) arising from the same list of proteins. Of the total 46 hits, 

32 hits could be translated as both AC and nAC protein isoforms (figure 2.2B). 

After database refinement, only two hits matched with a single Alu subfamily; 

PPP5D1 and GLYG2. Over half (54%) of all refined hits matched to six or more of 

the eight Alu subfamilies. As a result, the resulting translated ORFs observed to arise 

in proteins tended to arise from very similar sequences. This is discussed further in 

section 2.4. 

  

                                                
‡ The number of hits expected to arise from chance in a database of a certain size. The closer the E-

value lies to zero, the more significant the hit. 
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Figure 2.2 Summary of hits after database refinement 

(A) Of a total of 57 original hits with above 68% identity match were refined to 46 after the 

loss of 11 hits that had an E-value of above 1 x 10-8. (B) Although 46 proteins were identified 

to contain Alu insertions, this gave rise to a total of 65 Alu-containing (AC) isoforms. There 

was also a total of 68 non Alu-containing (nAC) isoforms for the same list of proteins. 32 of 

the 46 proteins hits could be translated as both AC and nAC isoforms. 

 

2.2 Studying the locations of Alu insertions within proteins 
In order to determine whether there was a trend in the locations of Alu insertions 

within proteins, 75 insertions from the refined database were studied. 

Proteins were defined as having three distinct regions: N-terminal, internal and C-

terminal. Insertions located in the first 20% of residues in the protein were defined 

as N-terminal, whereas those located in the last 20% were defined as C-terminal. 

Those arising in the middle 60% of residues (20 – 80%) were defined as internal. 

2.2.1 Alignment of AC proteins with Alu ORFs 

AC protein sequences were directly aligned with their corresponding Alu ORF using 

NCBI BLAST. As previously stated, the use of only one database, 

(UniProtKB/Swiss-Prot) may have resulted in a number of unidentified hits. Due to 

the nature of analysis performed in this project, this is unlikely to affect the overall 

results obtained. However, the list of hits obtained is likely only a partial 

representation of the full extent of Alu presence in the human proteome. The 

resulting alignments showed regions of similarity between the protein sequence and 

the Alu ORF alongside numbers defining the start and end residues of the sequence 

match (figure 2.3). Further alignments of protein hits and their translated Alu ORFs 

are contained in Appendix 1.  
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Figure 2.3 Example alignment of Alu ORF with protein isoform 

Alignment of BCAS4 isoform 1 (ISO 1) and AluSx ORF 1 revealed a matched region as 

shown. Numbers on either end of each sequence indicate the residues at the start at end of 

the matched region. Conserved residues are shown in red. Blue (+) indicate where the two 

residues maintain similar characteristics and mutation between the two is unlikely to have a 

‘knock-on’ effect. 

 

As the number of residues of each protein hit were readily available, the region of 

the protein in which the insertion was located could be easily derived. This analysis 

was carried out for all AC hits for each ORF of all Alu subfamilies and results were 

combined. Multiple matches with the same protein hit were classed as a single hit 

unless there was a distinct shift in the location of the matched region (i.e. the matches 

arose from different Alu monomers) between subfamily, ORF or protein isoform. 

Taking this into account, a total of 75 different insertions were observed due to 

duplicated hits, despite only 68 different AC isoforms being identified in earlier 

stages of analysis. 

2.2.2 Analysis of protein alignments to determine insertion site preference 

For all 75 AC isoforms, the mid-point of the Alu insertion was calculated by taking 

the average of the start and end point of the insertion. The total size (number of 

residues) was obtained from the NCBI database and a ratio was calculated (table 

2.2). Values lying below 0.199 (blue) were classed as N-terminal, those lying 

between 0.200 and 0.799 (green) were classed as internal and those above 0.800 

(orange) were classed as C-terminal. 
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Protein Isoform Size AA 
AluJ 

Mid-point Ratio 

NEK4 
1 841 479 0.57 
3 752 390 0.52 

YS049 1 238 132 0.55 
PPP5D1 1 171 145 0.85 
TMM78 1 136 119 0.88 
ZMAT1 1 638 25 0.04 

ZN195 
1 629 94.5 0.15 
5 606 94.5 0.16 
6 610 98.5 016 

ASCC1 1 400 367 0.92 
M4K1 1 833 814.5 0.98 
SGT1 1 365 126 0.35 
ZN701 1 531 19.5 0.04 

ZN415 
1 603 77 0.13 
2 567 40.5 0.07 

Table 2.2 Example of ten proteins matching a single ORF of AluJ 

All Alu-containing isoforms were analysed and ratios were calculated using the total 

sequence length and insertion mid-point. N-terminal, internal and C-terminal insertions are 

been colour-coded as blue, green and orange, respectively. In all the cases shown here, 

different isoforms of the same protein have the same insertion region. 

 

In all cases, we see that different isoforms of the same protein contain Alu insertions 

that lie in the same region. For example, for the three AC isoforms of ZN195, all 

insertions are N-terminal. The calculated ratios differ in value due to a difference in 

total length of the isoform. It is expected that this would be the case as multiple AC 

isoforms of the same protein are translated from mRNA containing the same Alu 

insertion and differ due to alternate splicing elsewhere in the protein. 

Combined results and deletion of duplicate hits resulted in a total of 75 different 

insertions. Calculated ratios were used to make a histogram (figure 2.4A). If no bias 

for insertion between the three defined regions; N-terminal, internal and C-terminal, 

was present, an even distribution of insertions would be observed throughout 

proteins. For the 75 studied insertions, 7 – 8 insertions would be predicted to arise 

in each 10% of the protein. Scaled up, 45 internal insertions would be expected, and 

15 insertions would be predicted to arise at each of the N- and C-termini. 

However, results reveal a distinct bias towards Alu insertions at protein termini, with 

a total of 29 and 23 insertions the N- and C-termini, respectively. This is equal to 

approximately 70% of the studied insertions. In the case of N-terminal insertions, 
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this is double the amount of insertions predicted for non-biased insertion. There also 

appears to be a small bias for insertions at the N-termini over the C-termini, but this 

is less prominent when studying individual subfamilies (figure 2.4B). 

When studying insertion locations within individual subfamilies, again, an obvious 

bias towards terminal insertions is observed. There appears to be a preference for N-

terminal insertions in older subfamilies (J, Sx, Sp, Sq and Sc); however, this seems 

to shift towards the C-terminus in younger subfamilies (Sb, Sb1 and Y). It should be 

noted that younger subfamilies had fewer protein hits than evolutionary older 

subfamilies, so it is unclear whether this observation is due to a true preference for 

C- over N- terminal insertions or whether it is due to analysis of limited data in these 

subfamilies. 

 

 

Figure 2.4 Histograms outlining the number of insertions found in different protein 

locations 

(A) Combined insertions from all Alu subfamilies. (B) Histograms for insertions in 

individual subfamilies. If no insertion bias occurred, an even distribution of insertions across 

protein regions was expected. However, a lower number of insertions are observed at 

internal regions (0.2 – 0.8) and higher insertion numbers arise at each of the protein termini; 

N (0.0 – 0.2) and C (0.8 – 1.0). 
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2.2.3 Determining the locations of Alu insertions in protein secondary 

structure 

Using data available from the RSCB Protein Data Bank (PDB)121, the secondary 

structures of protein hits were examined and the site of Alu insertions within these 

structures was determined. For proteins which did not have structures available in 

the PDB, the Phyre2 web portal122 was used to predict the secondary structure of 

protein hits. Exceptions to this are the structures of Alu and non-Alu isoforms of 

ASCC1, BCAS4, NEK4 and ZMAT1 which were predicted using the I-TASSER123 

server (structures shown in Chapter 4). Due to the large number of hits and the high 

demand for this server, not all structures could be predicted this way. By identifying 

the locations of insertions in well predicted Alu-containing protein isoforms, or if a 

suitable prediction could not be obtained for the AC isoform, identifying where the 

insertion would lie by looking at a well-predicted (high confidence) non-Alu-

containing isoform, the tolerance of Alu insertions in secondary structure elements 

such as α-helices, transmembrane helices or β-strands could be predicted. A 

summary of the predicted secondary structure of Alu insertions and Alu insertion 

sites within protein hits in shown in table 2.3. 
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Protein Matched 
Region 

Length of 
Insertion (AA) 

Secondary Character 
of Alu Insertion 

Secondary Character 
of Insertion Site Source AC/nAC 

MOST1 68 – 98 31 α-helix (15) α-helix Phyre2 AC 
NANGN 6 – 20 15 α-helix (11) N/A Phyre2 AC 
ZN714 536 – 554 19 N/A Coil Phyre2 AC 
PKP2 472 – 492 21 α-helix (19) α-helix PDB (ID: 3TT9) AC 
NEK4 456 – 502 47 α-helix (6), β-strand (2) α-helix I-TASSER AC/nAC 
YS049 94 – 179 86 β-strand (11) Coil Phyre2 AC 

PPP5D1 119 – 171 53 α-helix (2) Coil Phyre2 AC 
TMM78 102 – 136 35 β-strand (7) α-helix Phyre2 AC 
ZMAT1 8 – 42 35 α-helix (9) Coil I-TASSER AC/nAC 
ZN195 76 – 113 37 N/A Coil Phyre2 nAC 
ASCC1 347 - 387 41 α-helix (7), β-strand (2) α-helix I-TASSER AC/nAC 

M4K1 797 – 832 36 α-helix (3) N/A Phyre2 AC 
nAC 

SGT1 110 – 142 33 α-helix (18) Coil Phyre2 AC 
ZN701 2 – 37 36 N/A Coil Phyre2 AC 
ZN415 61 – 93 33 N/A N/A Phyre2 nAC 
PACRG 210 – 240 31 α-helix (5) Coil Phyre2 AC 
UBP19 42 – 79 38 α-helix (4), β-strand (2) N/A Phyre2 AC 
BCAS4 164 – 195 32 α-helix (4) α-helix I-TASSER AC/nAC 

REL 308 – 339 32 N/A N/A Phyre2 nAC 
GLYG2 3 – 33 31 N/A Coil Phyre2 AC 
CCNJL 99 – 122 24 α-helix (11) α-helix Phyre2 AC 
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Protein Matched 
Region 

Length of 
Insertion (AA) 

Secondary Character 
of Alu Insertion 

Secondary Character 
of Insertion Site Source AC/nAC 

MKNK1 189 – 210 22 α-helix (1) α-helix PDB (ID: 2HW6) AC 
RABX5 377 – 409 33 N/A N/A PDB (ID: 4N3Z) AC 
MYL10 2 – 27 26 α-helix (6) Coil Phyre2 AC 
AKD1A 495 – 522 28 α-helix (15) Coil Phyre2 AC 
ZN283 3 – 40 38 N/A Coil Phyre2 AC 
BEND2 80 – 126 47 N/A N/A Phyre2 AC 
CP089 320 – 373 54 α-helix (6) Coil Phyre2 AC 
OR1FC 308 – 328 21 N/A Coil Phyre2 AC 
ZN429 646 – 667 22 N/A Coil Phyre2 AC 
FTM 456 – 502 47 α-helix (45) α-helix Phyre2 AC 

CBPC3 704 – 744 45 β-strand (6) α-helix Phyre2 AC/nAC 
ITCH 162 – 204 43 N/A Coil Phyre2 AC 
F193A 1172 – 1208 37 α-helix (3) N/A Phyre2 AC/nAC 

CNTLN 1373 – 1396 24 α-helix (11) α-helix Phyre2 AC 
TV23C 159 – 187 29 β-strand (4), TM helix (1) α-helix Phyre2 AC 
DSCR8 28-49 22 N/A α-helix Phyre2 AC 
HS905 2 – 19 18 β-strand (3) Coil Phyre2 AC 
FXL18 755 – 784 30 β-strand (3) β-strand Phyre2 AC 
MAGI3 363 – 387 25 N/A Coil Phyre2 AC 
KANK3 794 – 840 47 α-helix (7), β-strand (3) Coil Phyre2 AC 
GVQW1 100 – 151 52 β-strand (3) N/A Phyre2 AC 

NEK5 530 – 549 20 α-helix (13) N/A Phyre2 AC 
RGS3 2 – 27 26 α-helix (5) Coil Phyre2 AC 
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Protein Matched 
Region 

Length of 
Insertion (AA) 

Secondary Character 
of Alu Insertion 

Secondary Character 
of Insertion Site Source AC/nAC 

GLOD4 38 – 49 12 N/A Coil PDB (ID: 3ZI1) AC 
LMO7D 68 - 105 38 β-strand (8) N/A Phyre2 AC 

Table 2.3 Determination of Alu insertion sites within protein secondary structure 

Secondary structures of proteins were obtained from the RSCB Protein Data Bank, or if no structure was available, secondary structures were predicted using 

Phyre2 or I-TASSER. If a suitable prediction of the Alu-containing (AC) isoform could not be obtained, then the non-Alu-containing (nAC) isoform was used 

and assessed according to where the Alu insertion would arise. N/A is written for cases where secondary structure could not be obtained of was of low confidence. 

Results for the secondary character of Alu insertions are followed by the number of amino acids (AA) attributed to the secondary structure listed with high 

confidence. Unlisted residues are attributed to coiled/unstructured regions. The secondary character of the insertion site refers to the secondary structure present 

in the protein hit directly before the first residue of the Alu insertion. Note: TM helix refers to a transmembrane helix. 



Chapter 2 

 31 

Alu insertions, on a whole, did not appear to have any obvious secondary structure 

specific to the insertion as a mix of α-helices and β-strands were observed in 

predicted structures. In many cases, any predicted secondary structure was part of a 

much larger coiled region and hence, had no distinct secondary structural elements.  

Additionally, in cases where a high confidence secondary structure could be 

obtained, Alu insertions seemed to occur in either coiled regions or α-helices. No 

Alu insertions were observed to be inserted in known functional/structural motifs 

(e.g. zinc fingers, active sites). This indicated that Alu insertions are generally well 

tolerated and may potentially mould to any secondary structure present in the 

protein, as long as the insertion site lies away from any well-established functional 

or structural motifs. This tolerance may account for the number of hits observed 

during these analyses.  

Note: This data analysis was performed at the end of the PhD project and therefore, 

occurred after expression of the MBP-Alu mutants. As a result, it was not used to 

decide upon the insertion sites chosen in MBP. A retrospective rationale and 

discussion is given in Chapter 5. 

2.3 Determining the origin of Alu insertions 
In all of the observed matches, only partial insertions of Alu elements are observed. 

This is likely due to the introduction of an alternative splice site (discussed further 

in section 2.5). The aim of this analysis was to determine whether a conserved region 

of Alu elements was being inserted into protein-coding regions, through the study of 

insertions at the nucleotide level. 

For the purpose of this analysis, the term Alu domain is used to refer to either the 

Alu left arm or the Alu right arm. The Alu left arm contains an RNA polymerase III 

promoter region, whereas the Alu right arm contains an approximately 34 bp 

sequence§ unique to each Alu subfamily. At the time of this analysis, a new database 

of Alu sequences had been made available by Dfam.124 This database allowed access 

to a total of 37 different Alu consensus sequences as opposed to the original eight 

available in our earlier analysis. 

                                                
§This value differs from that of the 31 bp that is quoted in most literature. Alignment of the Dfam 

database of Alu consensus sequences (containing more sequences from younger Alu subfamilies than 

previously analysed) revealed longer ‘inserts’ averaging approximately 34 bp in length. 
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2.3.1 Re-alignment of hits with Dfam consensus sequences 

As discussed in section 2.2.1, AC protein isoforms were directly aligned with their 

corresponding Alu ORF. Previously, focus was on the location of the protein in 

which the Alu insertion was present. Here, focus lay on the Alu insertion itself, and 

as such, Alu insertions were studied at the nucleotide level as well as the protein 

level. 

Due to expansion of data from eight Alu consensus sequences to the 37 available 

from Dfam, Alu insertions were re-categorised according to the subfamily from 

which they arose (i.e. according to parental Alu). The Dfam search tool allows for 

direct alignment of Alu insertion sequences with the Dfam database of transposable 

elements, and as a result the most likely parental Alu sequence for each hit could be 

determined. This allowed to further analysis of the sequences which may have led 

to Alu exonisation as well as better analysis of Alu insertions at the nucleotide level. 

A ratio of the insertion mid-point and the full length Alu from which the insertion 

originated could then be calculated. Through knowledge of the parental strand 

orientation and mid-point, it could be determined whether each insertion arose from 

the Alu left or right arm (figure 2.4). 

 

 

Figure 2.5 Determination of Alu left and right arm insertions 

Ratios were calculated using the insertion mid-point and the length of the full Alu consensus. 

Sense and antisense insertions with a calculated value of < 0.5 and > 0.5, respectively, arise 

from the Alu left arm. In contrast, sense and antisense insertions of > 0.5 and < 0.5, 

respectively, arise from the Alu right arm. 
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Searches with the Dfam database resulted in a loss of five hits. RABX5, CBPC3, 

TV23C and MAGI3 yielded no match with the Dfam database of Alu sequences. 

This is likely due to the different parameters used in Dfam alignments (E-value < 1 

x 105 and sequence identity > 75%). CNTLN was also discarded from the list of hits 

as a nucleotide sequence for the gene was not available from the NCBI database and 

therefore, the gene could not be analysed. As a result, a total of 41 genes were 

studied. 

2.3.2 Insertion bias towards the Alu left arm 

In previous analysis of insertions, additional hits were observed due to changes in 

ORF and protein isoform. However, in this case, there are no additional hits as 

insertions are being studied at the nucleotide level. As changes in ORF and isoforms 

rely on translation of the nucleotide sequence, they are irrelevant to this stage of 

analysis.  

UBP19, MKNK1 and MYL10 did not directly match with any Alu subfamily. 

Instead they matched with the FLAM (free left Alu monomer) sequence; an 

evolutionary precursor to the Alu subfamilies known today. As a result, no ratios 

were calculated, and they were categorised as left arm insertions. 

Database results showed a strong bias towards left arm Alu insertions in the protein-

coding regions of hits (figure 2.6). Of a total of 41 Alu insertions, 36 arose from the 

Alu left arm, or FLAM. It was also observed that insertions tended to arise from the 

antisense strand of the parental Alu template, amounting to 34 of the total 41 

insertions. Although 17% of insertions did arise from transcription of the Alu sense 

strand, they all corresponded to the Alu left arm. 
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Figure 2.6 Analysis of Alu left arm and right arm insertions 

88% of insertions arose from the Alu left arm revealing a distinct bias over insertions from 

the Alu right arm. 83% of insertions were observed to match the antisense strand of the 

parental Alu. Though 17% of insertions did arise from the sense strand of their parental Alu, 

all corresponded to the Alu left arm. 

 

This observation, coupled with the known mechanism for gene splicing, could 

suggest that a new 5’ splice site is introduced in the sense strand resulting in 

exonisation of the left arm but not the right arm. It could also indicate that though 

some splicing does occur to include right arm insertions, the efficiency of splicing 

out right arm-derived pre-mRNA is greater than that of splicing out left arm-derived 

pre-mRNA. Therefore, it is possible that any splice sites introduced by the Alu are 

well-recognised within the spliceosome. As Alu elements have been recognised to 

be promotors/repressors and have also been known to form Alu ‘hotspots’, it could 

be theorised that free Alu mRNAs within proximity of the splicing event may 

promote the exonisation of the Alu element either through promotion of the Alu-

introduced splice site, or suppression of those downstream. 

2.4 Identifying a conserved Alu insertion sequence in proteins 
As already discussed, 80% sequence similarity between Alu consensus sequences 

results in the translation of very similar ORFs. In addition to this, it was observed 

that the majority (88%) of Alu insertions correspond to translation of the Alu left arm 

and 83% arise from sequences copied from the antisense strand of the parental Alu. 

As a result, a relatively well conserved Alu-encoded sequence in the majority of 

protein hits would be expected. 
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It should be noted that during the original search for Alu-containing proteins, a large 

majority of hits corresponded to a single ORF, read in the 3’5’ direction. In all cases, 

this ORF yielded no stop codons, or had fewer stop codons when compared with 

alternate reading frames. The introduction of stop codons via frame shifts, produced 

shorter sequences which were unlikely to meet the match parameters used in 

database searches (figure 2.7). As a result, it is unsurprising that the majority of hits 

arose from a singular ORF which retained its similarity between subfamilies. This 

ORF was referred to as the primary reading frame. 

 

 

Figure 2.7 Effect of frame shift on length of interrupted AluJ translation 

Translation of the antisense strand of double stranded DNA element, AluJ, in the 3’5’ 

direction gives three possible open reading frames (ORFs). ORF 1 is the primary reading 

frame and is uninterrupted by STOP codons. Frame shifts in ORF 2 and 3 result in the 

introduction of STOP codons, leading to shorter sequences which are less likely to be 

present in protein hits. 

 

2.4.1 Alignment of Alu insertions in protein hits 

Translated Alu insertion sequences were extracted from protein hits through 

application of matched region start and end points to full isoform sequences using 

ExPASy ProtParam. As Alu insertions in different isoforms of the same protein 

resulted in the same insertion sequence, only one Alu sequence was used per protein. 

This avoided biased alignment through identical repeats of the same sequence. A 

total of 46 insertion sequences were aligned. 

Aligned sequences were subjected to JackHMMER125 analysis and a model position 

diagram was generated highlighting the conservation of residues between sequences. 
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Model position diagrams show colour-coded residues in an alignment in which their 

size is dependent upon their conservation between sequences. Larger single-letter 

amino acid codes represent more conserved residues. From the model position 

generated using all Alu insertions sequences (figure 2.8), a conservation of residues 

in four regions (boxed) begins to become clear. 

 

 

Figure 2.8 Model position for all Alu insertion sequences 

Amino acids are represented by colour-coded single-letter amino acid codes. The larger the 

single-letter code, the more conserved the residue. At this stage of analysis, some conserved 

residues were clearly observed (boxed). The longer sequence shown in this model, which 

extends beyond the fourth boxed region, is due to the presence of longer insertion sequences 

in a low number of hits. 

 

In order to try to identify a more conserved sequence, analysis was refined to study 

only the Alu insertion sequences from proteins found to match primary reading 

frames. Refinement gave rise to 26 insertion sequences. The generated model 

position (figure 2.9) shows a much more clear-cut conservation of residues between 

sequences.  
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Figure 2.9 Model position for insertion sequences arising from proteins matching the 

primary reading frames of Alu subfamilies 

Alignment of 26 insertion sequences results in a model position in which clear residue 

conservation can be observed. From this data, a conserved sequence of 

LEC-X1-GAISAHCNLRLLGSSD-X2-PASASQ-X3-AGITG can be observed, where X1, X2 

and X3 could be N/S, S/P and V/A, respectively. 

 

From these analyses the following conserved sequence was defined: 

 

LEC-X1–GAISAHCNLRLLGSSD-X2–PASASQ-X3-AGITG 

 

where X1 = N/S, X2 = S/P and X3 = V/A. Conserved residues are observed in the 

model position shown in figure 2.8 which lay beyond the 33 amino acid sequence 

identified in figure 2.8. These arise from the presence of longer sequence matches 

in a low number of protein hits which have been included in the model position 

generated through JackHMMER, but these additional residues are not present in the 

majority.  The average insertion length, calculated from 46 insertion sequences, was 

calculated to be 34 amino acids. As a result, the conserved sequence was limited to 

33 amino acids which was representative of the majority of protein hits. 

From this, it was concluded that Alu insertions in our identified genes lead to the 

translation of a relatively well conserved insertion sequence in their expressed 

proteins. This is unsurprising due to the similarity between Alu subfamilies and 

agrees with previous conclusions of insertion origin. Direct alignment of this 

sequence with hits (figure 2.10) confirmed sequence conservation. 
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Figure 2.10 Alignment of proposed conserved sequence with hits 

Alignment of the proposed conserved sequence with five different hits confirmed 

conservation. For the proposed 33 residue sequence, 52% of residues are fully conserved 

(yellow) upon alignment with the above 5 proteins. Another 42% of residues are relatively 

well conserved (green) in that they can be one of two residues with respect to each site. 

 

2.5 Identification of 3’ splice sites leading to Alu exonisation 
In 2003, Lev-Maor et al published that ‘proximal’ and ‘distal’ AG base doublets in 

Alu elements led to 3’ splicing. Their study examined a dataset of exonised Alu 

elements in the human genome which led to the identification of 3’ splice sites at 

positions 279 (proximal) and 275 (distal)**. It was proposed that Alu insertions into 

protein-coding genes may lead to the introduction of the same splice sites allowing 

for alternative splicing and as a result, providing an explanation for the formation of 

the alternate protein isoforms identified in early bioinformatic analyses. Observation 

of 3’ splice sites would be concurrent with evidence for the conservation of 

sequences copied from the antisense Alu strand resulting in translation of the Alu left 

arm. 

2.5.1 Identification of 3’ splice sites in Dfam Alu subfamilies 

The reverse complement of each Dfam Alu consensus sequence was obtained, giving 

the sequences for the antisense DNA strand of each Alu subfamily. Antisense 

sequences were aligned and compared to those of Lev-Maor et al to confirm the 

reported 3’ AG splice sites (figure 2.10).  

                                                
**Positions were numbered according to the alignments performed by Lev-Maor et al and differ 

slightly from those used in this research. Note that the same proximal and distal splice sites are being 

referenced despite slightly different numbering. 
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Splice site positions differ slightly from those reported; however, this is due to a 

difference in numbering due to different sequence lengths used in alignments and 

does not represent a different series of splice sites. Proximal (279) and distal (275) 

splice sites will from here on be numbered as 290 and 286, respectively. The 

proximal and distal splice sites observed match those reported by Lev-Maor. A shift 

of distal splice sites from position 286 to position 284 between AluJ and AluS/AluY 

subfamilies is also observed. This is likely due to an A/G mutation at position 288 

and is consistent with the observations reported by Lev-Maor. 

 

 

Figure 2.11 Proximal and distal 3’ AG splice sites in Dfam Alu consensus sequences. 

The proximal splice site at 290 (red) and distal splice site at 286 (blue) match those reported 

by Lev-Maor (279 and 275). The distinct shift in distal splice site between AluJ and AluS 

subfamilies, also reported, due to an A/G mutation at position 288 (yellow) and G/A 

mutation at 286, can also be observed. This shift continues throughout AluY subfamilies 

due to the same mutation. Note that not all aligned sequences are shown but were aligned. 

Shown subfamilies act as a representative sample. Numbers (-1 to -10) refer to distance 

from the distal splice site. 

  

Alu 
subfamily 
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2.5.2 Analysis of Alu-derived 3’ AG splice sites in protein-coding genes 

Previous research into insertion bias (section 2.3) identified 35 insertions copied 

from the antisense Alu strand in protein-coding genes. Nucleotide sequences for 

genes containing these insertions were aligned with the consensus sequence of their 

parent Alu. 12 antisense insertions were found to contain the same 3’ AG splice sites 

reported by Lev-Maor (figure 2.11). 

ITCH, showed a range of mutations which resulted in none of the predicted proximal 

nor distal splice sites being present, instead a possible splice site at position 293 was 

observed. As seen previously, A/G mutations at position 288 lead to a shift in distal 

AG to position 284. This shift can be observed in 7 of the 13 sequences. 

 

 

Figure 2.12 Proximal and distal 3’ AG splice sites in antisense Alu insertions. 

Sequences for AluJ, AluS and AluY are representative of multiple subfamilies. 13 of 35 

identified antisense insertions were found to have proximal (red) and/or distal (blue) 3’ AG 

splice sites are observed to match those previously reported. As before, a mutation at 

position 288 (yellow) results a shift in distal AG. Several mutations in ITCH led to the 

observation of a potential 3’ splice site at position 293 (grey). 

 

Lev-Maor stated that if the distal AG is less than 4 nucleotides away from a proximal 

AG then preference is towards splicing at the distal AG, as is the case for FXL18. 

In cases such as those of YS049, PPP5D1, ASCC1, CCNJL, CP089 and F193A, a 

mutation that removes the proximal AG leads to splicing at the remaining distal site. 

Lev-Maor also stated that if the gap between proximal and distal AG is 6 or more 

nucleotides, then the proximal AG splice site is preferred, as is the case where A/G 



Chapter 2 

 41 

mutations and position 288 have occurred. Exceptions to this arise when mutation 

has removed the proximal AG splice site. In the case of TMM78, where the distal 

AG is observed at 285, it is difficult to predict whether splicing would be proximal 

or distal. It is reported that splicing has a preference for the following triplets CAG 

> TAG > AAG > GAG.126 This would lead to the prediction that the distal splice site 

would be preferred, especially as a preference for a distance of five nucleotides 

between proximal and distal AG splice sites is not reported by Lev-Maor. 

 

2.5.3 Identification of new potential 3’ AG splice sites in exonised Alu 

sequences 

Although we see 12 exonised Alu sequences in genes which match the splice sites 

reported by Lev-Maor, and one additional sequence likely resulting from mutations 

around these sites, this accounts for less than half of the observed 35 antisense 

insertions. During analysis, three other potential 3’ AG splices sites were identified 

downstream of those already identified. Potential splice sites were observed at 

positions 265, 258 and 116 (figure 2.12). 

 

 

Figure 2.13 Potential 3’ AG splice sites in exonisation Alu insertions. 

Alignment of Alu consensus sequences led to the identification of potential 3’ AG splice 

sites at positions 265 (purple), 258 (green) and 116 (orange). It is also possible that splicing 

could occur at positions 119 (gold) and 110 (pink), though the sites appear to be less 

conserved and may be due to single base mutations. 
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A total of six genes were identified to have a potential 3’ AG splice site at position 

258. Of these six, three appeared to have a potential alternative splice site at position

265. As CAG splice triplets are preferential to GAG triplets, it is likely that the AG

at position 265 is preferentially spliced in the case of M4K1 and ZN415. By the

same reasoning, that CAG is the preferred triplet for splicing, CASC5 is likely to be

spliced at position 258.

Alignments of NEK4, ZN195 and REL seem to point towards splicing much further

downstream at around position 116. There appear to be many possible AG splice

sites around this region though position 116 appears to be more conserved.

2.5.4 Evidence of the expression of protein hits in human cells 

Using data available from the Human Protein Atlas,127, 128, 129 a brief search of 

evidence of the expression of identified hits within human cells was conducted. Of 

the 46 identified hits, 36 were identified to have evidence of expression at the protein 

level.130, 131 Of these 36, 33 were identified to have evidence of both Alu and non-

Alu isoform expression at the protein level. MOST1, YS049, UBP19, OR1FC and 

HS905 had no evidence of expression at either the transcript or protein level. 

NANGN, TMM78, AKD1A, GVQW1 and LMO7D has evidence of transcript 

expression, but not protein expression. Overall, most hits identified via 

bioinformatic analyses appear to be viable hits which have both AC and nAC 

isoforms expressed in human tissues. 

2.6 Conclusions from bioinformatic analysis 
Sequence alignment of eight Alu subfamilies (J, Sx, Sp, Sq, Sc, Sb, Sb1 and Yb), 

available from the NCBI database, showed 80% sequence conservation between 

subfamilies. Translation of the eight Alu consensus sequences into all six of their 

possible open reading frames, and subsequent BLAST analysis with a cut-off of > 

68% identity match, identified 57 human proteins containing an Alu-like insertion. 

Further refinement through introduction of an additional parameter of E-value < 1 × 

10-8, reduced hits to a total of 46. A number of hits gave rise to multiple Alu-

containing isoforms, totalling 65 isoforms over the 46 proteins. Of the identified

proteins, 32 could be expressed as both AC and nAC isoforms.

Work by Lin et al (Genome Biology, 2016) used RNA-seq as a way to identify

highly spliced putative coding Alu exons. The results obtained from their work
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overlapped with the following proteins identified through the bioinformatic 

analysis used in this project: SGT1, NEK4, ZN415 and ZN195. The overlap 

between the lists, though minimal, shows that Alu exons do appear to be highly 

spliced in some cases. For both techniques, it is possible that many hits were not 

identified. However, this is likely due to the limitations of the databases used in 

each case. Lin et al used the PRIDE database, whereas this work used the Swiss-

Prot/UniProtKB database. Dependent on the databases used, and the limitations 

of the chosen database it is possible that many exonised Alu sequences have not 

been identified. 

Analysis of Alu insertions within protein hits revealed a clear bias towards 

insertions located at protein termini over those located internally. Non-biased 

insertion would be expected to result in even distribution of insertion sites 

throughout protein hits. However, we observed that only 30% of insertions were 

internal to protein hits and 70% occurred at protein termini. A bias towards N- 

over C-terminal insertions appeared to be present in older subfamilies (J, Sx, Sp, 

Sq and Sc) which seemed to slowly move towards a C-terminal preference in 

younger subfamilies (Sb, Sb1 and Yb). However, a lower number of hits for 

younger subfamilies may have contributed to this observed shift. 

Analysis of the locations of Alu insertions within the secondary structures of 

protein hits using protein modelling software and the Protein Data Bank revealed 

that the majority of Alu insertions arose in coiled regions. Although some were 

observed to arise in α-helices, few were observed to arise in β-strands, and none of 

the insertions lay in or nearby defined structural motifs. Modelling of AC isoforms 

of protein hits revealed that the Alu insertions themselves did not appear to give 

rise to a definitive secondary structure. 

The release of the Dfam database allowed for re-categorisation of insertions 

through the recognition of their parental Alu. Alignment of insertions with this new 

database, containing 37 Alu consensus sequences, revealed that 88% arose from 

the Alu left arm. It was also observed that 83% of insertions matched the antisense 

(-) strand of the parental Alu. Though 17% of hits matched the sense (+) strand of 

parental Alu sequence, it should be noted that all of these lead to left arm insertions. 

It is therefore likely that insertions copied from the sense strand lead to the 

introduction of a splice site which prevents the exonisation of the Alu right arm. 

Frame shifts between ORFs result in the introduction of premature STOP codons. 

As a result, a clear primary reading frame could be observed for each Alu subfamily 
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which gave rise to either no STOP codons, or fewer STOP codons when compared 

with alternative reading frames. Alignment of insertions arising from primary 

reading frames identified a conserved sequence between the majority of protein hits: 

LECS-X1-GAISAHCNLRLLGSSD-X2–PASASQ-X3-AGITG 

The observation of this conserved sequence was in agreement with earlier 

conclusions that the majority of Alu insertions arose from the Alu left arm and were 

copied from the antisense strand of parental Alu DNA. Alignment of the proposed 

conserved sequence with insertion sequences from hits confirmed sequence 

conservation.  

Building upon the work of Lev-Maor, 35 insertion sequences matching the antisense 

strand of Alu DNA were studied for identification of 3’ AG splice sites. 12 genes 

were found to observe the same splices sites as those identified by Lev-Maor, at 

positions 290 and 286. In addition to these, an additional three potential 3’ splice 

sites were identified at positions 265, 258 and 116. 

Analysis of Alu insertions in the human genome at both the nucleotide and proteomic 

level provided insight into the nature of such insertions and identified a conserved 

sequence that can be observed in the majority of protein hits. This sequence provided 

a basis for in-vitro studies of Alu elements. 

A brief search of the Human Protein Atlas database revealed 33 of the 46 refined 

hits had evidence of expression at the protein level in human tissues, for both AC 

and nAC isoforms.  

During the last 20 years, a surge in Alu research has been observed as the elements 

have lost their “junk DNA” status. However, the majority of work which focuses of 

the study of Alu elements remains at the nucleotide level. For example, there is a 

large amount of work focussed around Alu methylation132, 133, 134 and gene 

regulation. However, there is relatively little work which studies Alu elements at that 

protein level. In most cases, when Alu elements have been studied at the protein 

level it has been in the context of an insertion in a specific protein and as a result, 

research has been limited to this context.135, 136 

The main exception this was the AluGene database (Dagan, et al. 2004), which 

looked at Alu elements incorporated within protein-coding genes. It would have been 

interesting to compare the database discussed in this chapter with the one produced 
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by AluGene, unfortunately, the AluGene database is no longer accessible. At this 

time, another database of Alu-containing proteins (other than the one produced in 

this work) is not available. 

The database produced from this work provides a platform to study the extent of Alu 

presence at the protein level, an area which appears to be relatively understudied 

within the field. The further work contained in this chapter then begins to probe the 

nature of the insertions which, again, contributes a new angle to the research of Alu 

elements. Through identification of a sequence which is well conserved between 

many Alu insertions, it may be easier for others to identify protein regions which 

have originated from Alu elements.  This may be beneficial in ruling out functional 

protein regions as we have observed that Alu insertions do not tend to occur in 

functional domains. By looking at the regions of the parental Alu elements from 

which insertions occur, this work begins to understand why the sequence observed 

in protein hit is observed. Additionally, by expanding on the work of Lev-Maor and 

studying the splice sites, further evidence of sequence conservation is observed.
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Chapter 3  
A potential binding interaction between a translated Alu 

and geldanamycin 

Overview 
Previous work by Taylor and Dilly used Magic Tag® immobilisation137, an ‘in-

house’ phage display technique, to identify a potential binding interaction between 

geldanamycin and a translated Alu sequence. As geldanamycin is a bioactive 

molecule with potent anti-cancer activity,138 it was hypothesised that the translated 

Alu sequence could show potential for use as a therapeutic target or biomarker. 

Using the translated Alu sequence discussed in Chapter 2, several biophysical 

techniques were used to study the proposed interaction.  

In initial binding experiments, the free Alu peptide, SEA-001, was used. 

Fluorescence intensity was measured using immobilised biotin-geldanamycin and 

FITC-labelled SEA-001. Fluorescence anisotropy measurements were also obtained 

using FITC-labelled derivatives of both geldanamycin and SEA-001. Due to limited 

amounts of each compound, it was determined that more sensitive techniques would 

be used to further study the potential binding interaction. In SPR studies, biotin-

labelled derivatives of SEA-001 and geldanamycin were used. SPR relies on the 

immobilisation of one of the binding partners and, in this case, the high binding 

affinity of biotin to a streptavidin-functionalised chip was utilised. In ITC studies, 

labelled compounds were not required.

Further investigation into the binding interaction was performed using MBP 

(maltose binding protein) Alu-mutants, which allowed for the Alu peptide to be 

constrained in a way that might mimic the peptide displayed on the phage surface in 

Magic Tag®. Geldanamycin pull-down assays were performed using biotin-labelled 

geldanamycin immobilised on NeutrAvidin resin.
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3.1 Geldanamycin and Magic Tag® immobilisation 

3.1.1 Geldanamycin and its prominence in drug discovery 

Geldanamycin (GM; figure 3.1) was the first known benzoquinone ansamycin 

antibiotic.139, 140 Prior to this, all characterised ansamysin antibiotics tended to be 

macrocyclic compounds containing an aliphatic ansa bridge with a napthalenic 

linkage.141 Geldanamycin is a natural product isolated from the gram-positive 

bacterium, Streptomyces hygroscopicus var. -geldanus and –nova.142, 143, 144 GM is 

well-known for its potent anti-cancer activity.  

Figure 3.1 Chemical structure of geldanamycin (GM) 

Geldanamycin is a benzoquinone (blue) ansomycin antibiotic isolated from Streptomyces 

hygroscopius var. – geldanus and –nova. 

GM was labelled as a ‘wonder drug’ due to its capacity to target multiple hits145 and 

it remains prevalent in current drug discovery programs as a scaffold for GM-

derivatives used in cancer treatment.146 The most noted derivative is 17-AAG, which 

maintains the potent anti-cancer activity of GM but gives a better toxicity profile.147, 

148 Though GM was originally thought to be a tyrosine kinase inhibitor,149 it was 

later discovered that it had no direct effect on the Src kinase family and instead 

targeted the molecular chaperones in its extracellular environment.150 It is now 

proposed that the anti-cancer properties of geldanamycin arise from its ability to 

inhibit the molecular chaperone HSP90 (heat-shock protein 90), through binding to 

its ATP-binding site151 and by extension, restricting its conformational flexibility.152 
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HSP90 is responsible for the stabilisation of ‘client’ proteins during their folding 

process through the formation of an HSP90-client complex.153 This complex 

protects the client from the ubiquitin proteasome pathway (UPP), which would lead 

to ubiquitination of the clients and subsequent protein degradation.154 The HSP90 

chaperone recognises hundreds of different types of client proteins155 including 

signalling proteins, kinases, viral enzymes and telomerase components.156 More 

importantly, it also recognises many oncogenic proteins and as a result, inhibition 

of oncogenic HSP90- client complexes can result in the depletion of oncogenic 

proteins to give clinical benefit.157 HSP90 is highly expressed in several human 

cancers, including colon, prostate and breast cancer.158, 159, 160 As geldanamycin is a 

strong inhibitor of HSP90, it has great importance in cancer drug discovery 

programs. 

Geldanamycin binds within the binding pocket of HSP90 with the benzoquinone 

group binding at towards the entrance and the ansamycin ring pointing into the 

binding pocket (figure 3.2).161  

Figure 3.2 Crystal structure of HSP90 bound to geldanamycin 

Geldanamycin bound to HSP90. Residues which interact via hydrogen bonding are 

highlighted. D93 (pink) at the base of the binding pocket interacts with the GM carbamate. 

K58 (red) interacts with both the hydroxy group and the methoxy group of the 

benzoquinone. K112 (blue) interacts with a carbonyl group of the benzoquinone and F138 

interacts with the carbonyl adjacent to the benzoquinone. [PDB entry: 1YET.] 
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The binding pocket of HSP90 is largely hydrophobic with its hydrophobicity 

increasing with the depth of the pocket. However, the pocket does contain some 

polar and charged residues. Complementarity between the pocket residues and the 

GM allows for the presence of Van der Waal’s interactions which aid in binding. 

There are five hydrogen bonds which contribute to the binding of GM to HSP90. 

The most important of these is between the carbamate group of geldanamycin and 

the Asp93 in the bottom of the binding pocket. Towards the centre of the pocket, an 

additional hydrogen bond is made between the O5 hydroxyl group of GM and the 

Lys58 residue of HSP90. Three of the five hydrogen bonds are formed at the pocket 

entrance. The first is formed between the carbonyl of the ansa ring with the backbone 

amide of Phe138. Additionally, one of the oxygens of the benzoquinone binds to 

Lys112 and the C29 methoxy group binds with Lys58 (figure 3.3). 

Figure 3.3 HSP90 residues which hydrogen bond to geldanamycin 

The most important hydrogen bond is in the base of the HSP90 binding pocket and forms 

between the Asp93 residue and the carbamate of GM. The Lys58 residue of HSP90 

contributes to hydrogen bonds to the methoxy group of the benzoquinone and the hydroxy 

group. An additional bond is made between the K112 residue and one of the benzoquinone 

carbonyls. The final bond is formed between Phe138 residue and the carbonyl group 

adjacent to the benzoquinone. 
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Though geldanamycin shows potent anti-cancer activity, it is inadequate for use at 

a clinical level due to problems with hepatotoxicity and solubility.162 The source of 

its toxicity lies in the reduction of the GM benzoquinone moiety by NADPH-

cytochrome P450 reductase to form a GM semiquinone and superoxide radicals, 

resulting in oxidative stress.163 

In addition to its high toxicity, GM also has poor solubility in water, a poor quality 

in a drug-like molecule. As a result, many drug discovery programs focus on the 

synthesis of GM analogues with better drug-like properties. 

3.1.2 Magic Tagâ immobilisation of geldanamycin 

Prior to the start of this project, the Magic Tag® chemical genomics tool was 

developed at the University of Warwick. The results obtained from this tool were 

not part of this project but did provide a basis for the work carried out. Although it 

was firstly used to work towards better understanding biochemical pathways in 

plants,164 its use has since been extended to the field of biomedical research, more 

specifically, in the repurposing of medicinal drugs natural products. 

Magic Tagâ (figure 3.4) used light at a wavelength of 254 nm to photochemically 

immobilise natural products, in this case geldanamycin, to a pre-derivatised 

Corningâ Stripwell 96-well plate. In previous work, prior to this project, plates were 

derivatised with one of five tags, of which the scaffolds cannot be discussed. 

Immobilised natural products were then screened against a T7â Select phage-display 

library of human lung cDNA,165 representative of the proteome of the human lung. 

Phage display allows for the expression of short peptides, in this case, derived from 

human lung cDNA, to be expressed as a fusion product with phage surface 

proteins.166 Hence, small peptides of 1 – 20 residues, encoded by cDNA libraries of 

choice, can be expressed on the surface on bacteriophages and screened for possible 

binding interactions.167 The screen involved three rounds of bio-panning, with 

amplification in E. coli strain BLT5615 after each round. This was followed by PCR 

and subsequent sequencing to identify hits. The Magic Tagâ method minimises non-

specific binding through the use of oligo(ethylene glycol) groups which are 

described as ‘protein resistant’.168 Immobilisation of the natural product aims to 

maximise the specific interactions observed. The combination of photo-

immobilisation and bio-panning has often been known to yield false positives.169 

These were minimised using a quick bioinformatic screen of all six possible open 
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reading frames of the observed ‘hits’ against the known protein database (NCBI) 

via protein-BLAST (blast-p). The translation of all reading frames of input cDNA 

accounts for possible frame slips upon expression upon the phage surface. 

Sequences that had reasonable similarity with the human proteome and were of 

suitable length (> 100 amino acids) were deemed as acceptable hits. The hits 

identified by the bioinformatic screen were re-exposed to the Magic Tagâ 

conditions in which the hit was originally observed. Those which could be 

selectively eluted were considered to be true positive results. By using a cDNA 

library only partial sequences from genes are expressed and can be expressed as 

one of six open reading frames. Therefore, ‘hits’ identified with this technique 

could correspond to shortened regions of any reading frame translated from the 

cDNA.170 The hit identified by this method was shorter than the 100 amino acid 

limit of the bioinformatic screen as the sequence retrieved from phages post-screen 

corresponded to only the first half of the AluS element before sequencing of output 

DNA became convoluted.

Figure 3.4 Outline of the Magic Tag® chemical genomics tool 

Geldanamycin (GM) was photo-immobilised on a pre-derivatised 96-well plate using light 

at a wavelength of 254 nm. A T7® Select phage library was screened via three rounds of 

biopanning with intermediate wash and amplification steps. Successful binders were 

identified via PCR and subsequent sequencing.  

A Magic Tagâ screen of immobilised geldanamycin against a human lung library 

yielded a nucleotide hit corresponding to an Alu sequence (unpublished result). 

Through methods discussed in Chapter 2, a peptide sequence, SEA-001, 

representative of the translated Alu observed to bind geldanamycin using Magic 
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Tagâ was obtained. Comparison between the original Magic Tagâ hit and the 

peptide sequence ascertained from the bioinformatic analysis can be observed 

below. Residues where the sequences differ are shown in red. 

Magic Tag® hit    L E C S G A I S A H C K L R L P G S C H S P A S A S R V A G T T G 

SEA-001    L E C S G A I S A H C N L R L L G S S D S P A S A S R V A G I T G 

For the purpose of this work, SEA-001 was used in binding experiments as a way to 

represent a conserved sequence which could represent Alu-containing protein hits as 

a whole. As a result, the Magic Tag hit itself was not used in the binding assay. The 

Magic Tag hit is the translation of a single Alu subfamily (S) and therefore is not 

representative of hits which arise from J and Y subfamilies.  

3.2 Using the free Alu peptide, SEA-001, to study the observed 

binding interaction with geldanamycin 
The free Alu peptide, SEA-001 (shown below), was used in various binding studies 

in an attempt to re-create and investigate the observed binding interaction with 

geldanamycin discovered using Magic Tagâ. The peptide and its fluorescein 

isothiocyanate (FITC)- and biotin-labelled derivatives were purchased from 

Proteogenix. Geldanamycin and its FITC- and biotin-labelled derivatives were 

purchased form Sigma Aldrich. For both labelled-GM derivatives, the biotin or 

FITC- label was attached at the C-terminus via a PEG linker. 

Based on the interactions observed between HSP90 and geldanamycin, it is likely 

that any strong interactions between the translated Alu and GM would be due to 

hydrogen bonding with the carbonyl groups of, and adjacent to, the benzoquinone 

or the hydroxyl, methoxy groups of GM. These could be formed by the Asp residue 

of the peptide. Weaker interaction could be made between hydrophobic residues of 

the peptide; however, due to the undefined secondary structure of the free peptide, 

these may be weaker than those observed in a more conformationally locked 

structure such as HSP90. 

SEA-001 H2N – LECSGTISAHCNLRLPGSSDSPASASRVAGITG – COOH 
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The interaction between labelled and non-labelled derivatives of both compounds 

were studied using fluorescence assays, surface plasmon resonance and isothermal 

titration calorimetry. 

3.2.1 Fluorescence studies of the binding interaction between SEA-001 and 

geldanamycin 

Binding interactions were studied using a combination of fluorescence anisotropy 

and fluorescence intensity experiments. Assays were performed in standard black 

96-well polypropylene plates (Greiner Bio-One), and streptavidin-coated black 96-

well polypropylene plates (Sigma Aldrich), respectively, on an EnVision Multiplate

reader (Perkin Elmer) accessible from the School of Chemistry (University of

Leeds). Fluoroscein isothiocyanate (FITC) was used a fluorescent marker giving and

excitation wavelength of 490 nm and an emission wavelength of 525 nm.171

3.2.1.1  Fluorescence anisotropy 

Fluorescence anisotropy (FA), or fluorescence polarisation (FP), is a solution-based 

technique commonly used in drug discovery programs to study a broad range of 

molecular interactions.172 Since its first theoretical description in 1926,173 

fluorescence polarisation has evolved from simple binding isotherms to high-

throughput (HTP) screening assays to investigate complex enzymatic activity.174 

FA involves the excitation of a fluorophore, in this case attached to a ligand, with 

polarised light, which leads to the subsequent emission of perpendicular polarised 

light. The term ‘anisotropy’ refers to the extent of polarisation of the emitted light.175 

FA can be observed due to the presence of emission and absorption transition 

moments which lie in certain directions within the fluorophore structure.176 Prior to 

excitation with polarised light, fluorophores in the ground state are randomly 

orientated in solution. Upon excitation, fluorophores with transition moments which 

lie in the same direction as the incident light become selectively excited leading to 

an excited population which lies in one overall direction. As a result, the emitted 

light also lies predominantly in one direction, at 90° to the direction of the incident 

light.177 The electrical vector of excitation light lies parallel to the z-axis.178 Emission 

is measured through a polariser in two direction directions, parallel and 

perpendicular to the excitation light.179 Combination of these measurements can be 
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used to calculate anisotropy (r),180 using equation 3.1, where I∥ and I⟂	 are the 

intensities of emitted parallel and perpendicular light, respectively. 

"#$%&'()	3.1	 	. = 	
0∥ −	0⟂
0∥ + 20⟂

Depolarisation of the fluorophore occurs due to the rotational diffusion of the species 

in solution. This in turn contributes to the average angular displacement of the 

fluorophore between absorption and emission, which corresponds to anisotropy.181 

Rotational diffusion is dependent on a number of factors, most notably the size and 

shape of the rotating species.182 Generally, a protein bound to a ligand will be larger 

and will therefore rotate slower in solution than either of the species in the unbound 

state, leading to a higher fluorescence signal.183 

3.2.1.2 Fluorescence anisotropy measurements of FITC-labelled geldanamycin 

and SEA-001 

Buffer conditions for fluorescent anisotropy measurements were optimised so as to 

obtain the best conditions for monitoring the binding of FITC-geldanamycin (FITC-

GM) and SEA-001, showing minimal non-specific binding to plates. Optimum 

conditions were determined by observation of a constant reading of fluorescence 

intensity of FITC-GM across all wells, whilst maintaining a constant concentration 

across the plate. The optimised buffer conditions used were phosphate buffered 

saline (PBS tablets; Sigma Aldrich) with either 0.1 mg/mL bovine serum albumin 

(BSA) or 0.05% Tween and 1 mM dithiothreitol (DTT). Three repeats of each 

dilution series were performed in order to minimise the impact of human error on 

the results. 

The Envision Multiplate reader reads the relative amount of light refracted into the 

detector from the well, in comparison to the amount of light originally directed into 

the well. Light is measured in two directions to give an overall emission reading. As 

a result, the reading produced by the equipment must be manually converted into 

intensity (I) and anisotropy values using equations 3.2 and 3.3, respectively. 

"#$%&'()	3.2	 	0 = 245 + 6 
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"#$%&'()	3.3	 	. = 	
6 − 45
0

Readout data was processed in Microsoft Excel as above; where P is the 

perpendicular intensity, S is the parallel intensity and G is the instrumental factor (in 

this case, G=0.8). 

In earlier experiments, a 33 nM concentration of FITC-GM was added to all wells. 

However, this concentration yielded weak intensity signals leading to an increase in 

concentration to 100 nM in order to obtain more observable readings. A serial 

dilution series of SEA-001 ranging from 0.95 nM to 500 µM resulted in small 

incremental increases in anisotropy as a result of increasing peptide concentration 

(figure 3.5A). However, due to the limited concentration range of peptide used, a 

binding curve representing only a partial S-shaped curve was obtained, as opposed 

to the full S-shaped curve usually obtained from successful FA experiments. 

In an attempt to obtain a full S-shaped binding curve, a broader concentration range, 

1.47 nM to 775 µM, of SEA-001 was used. However, a similar partial S-shaped 

curve was observed under these conditions (figure 3.5B). 

It was determined that in order to obtain a full S-shaped curve for binding between 

the two species much higher concentrations of peptide would need to be used, 

indicating weak binding. It may be that binding was hindered by the presence of the 

FITC label on the geldanamycin. Weak binding may also be attributed to that fact 

that the peptide is free in solution and therefore, lacks any conformational locks that 

would have been present when expressed on the surface of the phage, as in the Magic 

Tag® experiments. It is also possible that there is simply a low binding affinity 

between the two species. 

Due to the cost associated with the purchase of large amounts of peptide, no further 

fluorescence anisotropy experiments were carried out. 
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Figure 3.5 Fluorescence anisotropy plots of FITC-GM binding to SEA-001 

(A) Addition of a serial dilution of 0.95 – 500 µM of FITC-GM to 100 nM SEA-001 yielded

a partial S-shaped curve. (B) A broader concentration range of 1.47 nM – 775 µM of FITC-

GM in 100 nM SEA-001 was used in an attempt to obtain more of the curve, however, a

similar result was obtained.

3.2.1.3 Fluorescence intensity 

Fluorescence intensity experiments rely on the binding of a fluorescently labelled 

species to another species that is immobilised on the surface of a 96-well plate, and 

the unbound species being washed away. Therefore, the higher the fluorescence 

intensity, the better the binding. 

The experiments discussed here utilise the strong binding affinity between 

streptavidin and biotin.184 Immobilisation was achieved through the binding of 

biotin-labelled SEA-001 (ProteoGenix) to streptavidin-coated 96-well black 
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polypropylene plates (Sigma Aldrich). As for the fluorescence anisotropy 

experiments, FITC-labelled geldanamycin was used. 

3.2.1.4 Fluorescence intensity measurements of FITC-labelled geldanamycin 

and biotinylated SEA-001 

Fluorescence intensity experiments were performed to determine whether an 

increase in fluorescence could be observed in correlation with increasing 

concentration of FITC-GM. This was achieved by immobilising biotinylated SEA-

001 in experimental wells, washing any unbound peptide from the plate, loading 

FITC-labelled GM into the wells and washing any unbound FITC-GM from the 

plate. Fluorescence of wells was then measured. 

Biotinylated peptide was immobilised on the plate at a concentration of 100 nM. A 

serial dilution of FITC-GM ranging from 0.24 µM to 1 mM was added. Results from 

non-specific binding was minimised though the use of relevant controls; a serial 

dilution of FITC-GM with no bound SEA-001, immobilised SEA-001 with buffer 

only, and a well containing only buffer. The buffer used was phosphate buffer saline 

(PBS tablets; Sigma Aldrich) containing 0.05% Tween-20 and 0.05% BSA. 

The expected result, based on FA experiments, was that there would be an 

observable increase in fluorescence with increasing concentration due to higher 

binding to the immobilised species. However, the results obtained showed no sign 

of binding affinity between the two species. It is possible that either the FITC-label 

on the geldanamycin or the biotin-label on SEA-001 hindered binding or, as 

discussed earlier, the lack of conformational lock in the free peptide cannot recreate 

that binding interaction observed via Magic Tag®.  

Fluorescence anisotropy experiments, discussed earlier, predicted only a weak 

binding interaction between the two species, and as such, the nature of this 

experiment may not be suitable for its observation. 

3.2.1.5 Conclusions from fluorescence experiments with geldanamycin and 

SEA-001 

From the above experiments, it was predicted that the binding interaction between 

geldanamycin and the free peptide, SEA-001 either did not exist or was too weak to 

be observed by these means. Increasing concentrations to study it further using these 

methods would not have been time- or cost-effective. As a result, more sensitive 

techniques were used to probe the binding interaction. 
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3.2.2 Studying the binding between SEA-001 and geldanamycin using SPR 

Surface plasmon resonance (SPR) was performed on sensor chip SAs (GE 

Healthcare) which are pre-labelled with streptavidin for the immobilisation of 

biotinylated species. As discussed below, biotin-labelled variants of both 

geldanamycin (Sigma Aldrich) and SEA-011 (ProteoGenix) were used as the 

immobilised species. SPR experiments were performed on a Biacore 3000 SPR 

system (GE Healthcare) accessible through the Astbury Centre for Structural 

Molecular Biology (University of Leeds). 

3.2.2.1 Surface Plasmon Resonance 

Surface plasmon resonance (SPR) is an optical technique commonly used to detect 

biospecific interactions between proteins and ligands.185 It relies on the oscillation 

of mobile electrons, or surface plasmons, on a reflective surface.186 Polarised light 

is projected through a prism onto the thin metal surface of a sensor chip, which acts 

as a mirror and reflects the light and an angle termed the angle of incidence (θ).187 

By changing the angle of incidence and monitoring the intensity of reflected light, 

the intensity can be observed to pass through a minimum. It is at this minimum that 

the surface plasmons are excited which causes a dip in reflected intensity, resulting 

in surface plasmon resonance. The angle which leads to this minimum, or maximum 

loss of intensity, is termed the resonance angle (θspr).188 The resonance angle can be 

affected by the surrounding system such as medium and temperature, as a result, 

both must be kept consistent throughout experiments.189 More importantly, it is 

affected by changes in refractive index (RI) on the metal surface of the chip (i.e. the 

accumulation of molecules to the chip surface).190 Although the RI of the light on 

the prism side of the system remains unchanged, the RI on the metal surface changes 

upon the accumulation of adsorbed molecules to the surface, or through the binding 

of a second species to that which is immobilised. This change in RI directly affects 

θspr (figure 3.6). 
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Figure 3.6 Outline of surface plasmon resonance 

A flow channel contains protein or peptide (in this case, SEA-001) which is flowed over a 

chip with immobilised ligand (in this case, GM). Upon binding of protein, the refractive 

index (RI) of the surface is altered, resulting in a change in the angle of incidence light (θ) 

to give the resonance angle (θspr). This change is monitored via a photo-detector. 

The change in θspr can be detected by the system using a photo-detection array and 

measured in resonance units (RU), where 1 RU is equal to an angle change of 1 × 

10-4 degrees. Using these measurements, the association constant (kon or ka) and

dissociation constant (koff or kd) can be obtained using Bioeval 3.0 (Biacore). These

can be calculated over a range of concentrations using a dRU/dt versus RU plot,

followed by a further plot of ks versus C using equation 3.4, where ks is the slope and

C is the concentration of ligand (M) in solution.191 

"#$%&'()	3.4	 	89 = 	8:;< +	8:==  

From this second plot, the y-intercept gives a value for koff and the slope gives a 

value for kon. Using these values, KD and subsequently, KA can be calculated using 

equations 3.5 and 3.6. 

"#$%&'()	3.5	 	?@ = 	
8:==
8:;

"#$%&'()	3.6	 	?B = 	
1
?@



Chapter 3 

60 

Affinity can also be expression in terms of Gibbs Free Energy (ΔG°) using equation 

3.7, where C° is the standard state concentration. Over a range of temperatures, this 

can also be used to calculate enthalpy (ΔH) and entropy values (ΔS). 

"#$%&'()	3.7	 	∆5° = F) GH
I°

 

3.2.2.2 SPR binding studies using immobilised SEA-001 

Due to the associated costs of the biotinylated compounds, SPR was first carried out 

using biotinylated SEA-001 as the immobilised species. This meant that the 

expected change in RI upon binding of geldanamycin to the peptide would be 

smaller than if the GM was the immobilised species. Immobilisation of 

approximately 250 RU of biotinylated SEA-001, gave a chip concentration of 250 

pg/mm2 and a volume concentration of approximately 100 nM, as calculated using 

equation 3.8, approximating a 100 nm thickness for the pre-existing layering on the 

chip.192 

"#$%&'()	3.8	 	<KLL:MKNK9OP 	(R	STU) = 	
<KLL:MKNK9OP	(WX)

100	Z	R[

Using equation 3.9, this predicts and Rmax of approximately 40 RU, where Rmax 

defines the increase in surface thickness upon binding of 100% of geldanamycin 

binding to the immobilised SEA-001, taking into account their difference in mass. 

"#$%&'()	3.9							WL]^ = 	
R[(_.``	ab`c'`a)

R[('dd(e'F'a`f	ab`c'`a)
	Z	<KLL:MKNK9OP	(WX) 

Earlier runs of the experiment observed increases of approximately 50 RU when 

compared to the blank control flow cell. However, closer analysis and subsequent 

experimental repeats revealed the interference of dimethyl sulfoxide (DMSO), 

present in the buffer, with the observed signals. Large spikes were produced at points 

when flow solutions were changed, likely due to a minor mismatch between DMSO 

concentration between the buffer and geldanamycin solution or the poor solubility 

of geldanamycin. As a result of these spikes, negative responses were also observed. 

Though significant efforts were made to match the two concentrations, due to the 
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sensitive nature of the technique spikes still occurred, rendering the software-

predicted association and dissociation curves inadequate for predicting kon and koff 

rates. 

An additional experiment monitoring the effects of a serial dilution of DMSO in 

buffer also revealed that a response was observed between DMSO and the chip 

and/or immobilised species. This resulted in signals of up to 25 RU, similar to those 

observed in experiments with geldanamycin (figure 3.7). As there was no significant 

difference between the background DMSO signals and the Rmax of the bound GM, 

it was determined that immobilisation of SEA-001 onto the flow cell would be 

insufficient to obtain reliable binding curves. Unfortunately, due to the poor 

solubility of GM in water, it was also not possible to remove DMSO from the 

experiment. 
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Figure 3.7 Comparison of raw SPR data for DMSO and GM dilution series 

(A) Raw SPR data yielded large spikes at points corresponding to a change of flow solution 

and also yielded a response of up to 25 RU. The signals observed were comparable in 

response to those observed for geldanamycin (B). Note: the dilution range of DMSO quoted 

corresponds to the amount matching what would be present in corresponding micromolar 

concentrations of GM samples. 

 

3.2.2.3 SPR binding studies using immobilised geldanamycin 

As there appeared to be a background interference of up to 25 RU from the DMSO 

present in the buffer and analyte solutions, it was determined that a higher Rmax 

would be needed to obtain more reliable results. The easiest way to achieve this, 

without using excessive amounts of reagents, was to immobilise the geldanamycin 

on the chip instead of the peptide. As predicted by equation 3.9 (above), the 
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immobilisation of 100 RU (100 nM) of biotinylated GM predicted an Rmax of 

approximately 280 RU, which was expected to be high enough to observed any 

interaction between peptide and GM despite the background interference of DMSO. 

Earlier experiments appeared to observe some interaction between the two species, 

in that initial solutions of lower peptide concentrations appeared to show and 

incremental increase in RU with increasing concentration. However, as runs 

continued, there appeared to be no obvious link between the concentration of the 

peptide and the observed RU, with buffers also yielding signals (figure 3.8). 

All curves appeared to follow a similar association and dissociation trend, including 

those corresponding to buffer only, indicating that the buffer used was not suitable 

for these experiments and was likely the reason for the observed change in RU. This 

theory was reinforced by the observation that all curves seemed to lie between 0 and 

50 RU, which was significantly lower than the predicted Rmax for binding between 

the two species. 

 

 

Figure 3.8 Raw SPR data for SEA-001 dilution series 

Response signals were observed up to approximately 70 RU. However, increase in response 

did not relate to an in increase in concentration of SEA-001, with responses also being 

observed from buffer only samples. 
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3.2.2.4 Conclusion from SPR experiments with geldanamycin and SEA-001 

Throughout all the SPR runs, a very fast off rate (koff) was observed, usually 

indicative of transient binding. Upon further evaluation, it was concluded that this 

rapid off rate was a result of the change in DMSO concentration between the injected 

analyte and the running buffer. As a result, no significant binding could be observed 

between the species using this technique. As with the fluorescence studies, it is 

possible that the presence of the additional tag (in this case, biotin) interferes with 

binding. However, in this case, there is no conclusive way to know whether the two 

species bind due to the number of other factors contributing the increase in RU 

associated with the observed results. 

3.2.3 Studying the binding between SEA-001 and geldanamycin using ITC 

Isothermal titration calorimetry (ITC) was performed using an iTC200 (Malvern) 

accessible through the Astbury Centre for Structural Molecular Biology. Unlike 

previous binding techniques, additional tags such as FITC and biotin were not 

needed, eliminating them as a cause of limited binding. 

3.2.3.1 Isothermal Titration Calorimetry 

ITC is a technique used to observe the direct binding between two species.193 One 

advantage of ITC over other binding techniques is that it does not rely on the use of 

fluorescent or chemical labels, such as those needed for fluorescence experiments 

and SPR. In addition to measuring binding, it is also capable of measuring 

stoichiometry and changes in enthalpy (ΔH) and entropy (ΔS).194 ITC measures the 

energy associated with binding through measurement of the amount of heat released 

or absorbed upon the addition, and subsequent binding of an analyte to a protein,195 

or in this case, peptide.  

The ITC instrument itself (figure 3.9) measures the amount of power that is required 

to maintain a constant temperature difference (as close to zero as possible) between 

a sample cell and reference cell upon addition of a titrant to the sample.196 The 

temperature difference is maintained through the use of a thermostatted heat jacket 

within the machine, and the power is measured in µcal/sec. The reference cell 

usually contains water or a buffer matching that of the sample and titrant. Generally, 

the protein is contained in the cell and the ligand is titrated into the protein in small 

increments using a syringe. 
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Once the full volume of the syringe has been added to the cell, heat (Q) in kcal/mol 

of titrant versus [titrant]T/[cell]T (molar ratio) can be plotted from the results; where 

[titrant]T and [cell]T are the total concentrations of species in the syringe and cell, 

respectively. This plot can usually be processed directly using ITC software, in this 

case a combination of Nitpic,197 SEDPHAT198 and GUSSI were used. From the 

generated plots, enthalpy (ΔH), dissociation constant (KD) and stoichiometry (n) can 

be obtained (figure 3.10). 

 

 

Figure 3.9 Outline of isothermal titration calorimetry 

Sample (usually ligand) is titrated into the sample cell (usually containing protein) over the 

course of 20 injections with constant stirring. The amount of power needed to maintain a 

constant temperature difference (ΔT = 0°C) between the sample cell and reference cell 

(usually containing water) is measured. 

 

  



Chapter 3 

 66 

 

Figure 3.10 Example of plotted ITC results 

A plot of heat (Q) against the molar ratio ([titrant]T/[cell]T) gives an s-shaped curve with a 

gradient of the dissociation constant, KD. Stoichiometry, n, can be taken from the curve’s 

midpoint and enthalpy, ΔH, from the difference in heat. 

 

As the ΔH and KD (and therefore KA; see equation 3.6) are known, entropy (ΔS) and 

Gibbs energy (ΔG) can also be calculated using equation 3.10, where T is 

temperature and R is the universal gas constant. 

 

"#$%&'()	3.10													∆5(g) = 	∆h(g) − g∆6(g) = 	−WgF)(?B)	 

 

3.2.3.2 Titration of geldanamycin into SEA-001 

Geldanamycin (1 mM) was titrated into SEA-001 (100 µM) via a series of 20 

injections over 50 minutes. This gave an initial readout of approximately 1.80 

µcal/sec which gradually decreased to approximately 1.20 µcal/sec with sequential 

titrations. This gave an overall power change of 0.6 µcal/sec over the course of the 

experiment. However, the fitting of these changes resulted in a straight-line graph 

(figure 3.11) instead of the normal S-shaped curve obtained from ITC experiments. 

This straight line is usually attributed to a heat of dilution due to buffer mismatch, 

rather than a binding interaction. However, the pulses observed upon each injection 

of the experiment was much higher (1.20 – 1.80µcal/sec) than the pulses observed 

from injections in the control experiments; buffer into buffer (0.05 µcal/sec) and 

GM into buffer (0.04 µcal/sec). In addition to this, all samples were dialysed and 

diluted in the same buffer; PBS, 0.01% TCEP and 5.0% DMSO. As a result, it 

seemed unlikely that the results could be a result of such buffer mismatch. 
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It is possible that, as in SPR, the DMSO in the experiment had an unforeseen effect. 

Though GM needs the DMSO to solubilise, it is possible that the peptide is 

destabilised or precipitates over time at this concentration. In contrast, it may be that 

the GM, which is insoluble in water, precipitates out due to the low concentration of 

DMSO throughout the course of experiment and as a result it is not a heat of dilution, 

but a heat of precipitation effect that is observed. 

 

 

Figure 3.11 ITC plot of geldanamycin (1 mM) titrated in SEA-001 (100 µM) 

Titration resulted in the observation of a partial curve indicating a potential binding 

interaction between the two species. Heat pulses were ten times higher than those observed 

in background experiments indicating that the observed change was not a result of heat of 

dilution. Due to problems with the solubility of geldanamycin, a full curve could not be 

obtained. 

 

Another interpretation is that only the beginning, or end, of an S-shaped curve (as 

seen in fluorescence experiments) is being observed and, by optimising reagent 

concentrations, a full curve could be obtained. However, due to the solubility issues 

and the time and cost associated with continuing this work, other avenues were 

explored. 
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3.2.3.3 Titration of SEA-001 into geldanamycin  

It was established that the solubility of GM was increased at lower concentrations 

and as such, it was less likely to precipitate during the ITC run. However, in order 

to facilitate the change in concentration, it was necessary to swap the reagents of the 

cell and syringe over. Hence, the syringe now held SEA-001 (360 µM) and the cell 

now contained GM (50 µM). As for previous titrations, a series of 20 injections 

occurred over the course of 50 minutes. Injections gave heat pulses of approximately 

2.0 µcal/sec per injection, which was once again much higher than that control 

readings of 0.05 and 0.10 µcal/sec for buffer into buffer and SEA-001 into buffer, 

respectively. However, this power input remained constant throughout the 

experiment, which showed no real trend upon plotting (figure 3.12). Once again, this 

may be attributed to either heat of dilution or precipitation and are unlikely to be 

attributed to a real binding interaction. 

  



Chapter 3 

 69 

 

 

Figure 3.12 ITC plot from titration of SEA-001 (360 µM) into GM (50 µM) 

Titration of peptide into geldanamycin showed no binding interaction. Though heat pulses 

ten times larger than those observed in control experiments were observed, there was no 

trend between concentration of titrant and the power needed to maintain a constant 

temperature. As a result, heat pulses were assumed to be attributed to heat of precipitation 

due to the poor solubility of GM. 

 

3.2.3.4 Conclusions from ITC with SEA-001 and geldanamycin 

Results from ITC experiments remained somewhat inconclusive, showing a 

potential partial binding interaction. However, due to the poor solubility of 

geldanamycin, it is possible that such results arise from reagent precipitation rather 

that a binding interaction. As mentioned previously, it is possible that the 

unconstrained nature of the free peptide SEA-001 does not mimic the phage-

displayed sequence which showed binding during Magic Tag® experiments. 
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3.3 Exploring the binding interaction between MBP-constrained 

SEA-001 and geldanamycin 
The SEA-001 peptide sequence was expressed as part of the E. coli protein, maltose 

binding protein (MBP). Several variants were produced in order to cover several 

different sites within the protein. More information on this can be found in Chapter 

4. 

Three variants, His6-MBP-G6, His6-MBP-D178 and His6-MBP-T367, were used in 

a geldanamycin pull-down assay so as to probe the binding between the constrained 

SEA-001 peptide and geldanamycin. Variants represented N-terminal, internal and 

C-terminal insertions, respectively. 

3.3.1 Geldanamycin pull-down assay with SEA-001 constrained within 

histidine-tagged MBP variants 

The pull-down assay exploited the strong binding interaction between 

NeutrAvidin™, a deglycosylated avidin derivative, and biotin. NeutrAvidin™ 

agarose resin (Pierce) was used in conjunction with a gravity flow column. 0.5 mL 

of resin allowed for a maximum immobilisation of 33.5 µg or biotinylated 

geldanamycin. Assuming 100% immobilisation of biotin-GM, a maximum binding 

of 2.6 mg of H6-MBP-D178 was calculated. A standard dilution/wash buffer; 0.1 M 

phosphate, 0.15 M NaCl, 5% DMSO, pH 7.2, was used to accommodate the 

solubility of both species. A total of 1 mg protein was loaded onto the column, giving 

a maximum binding capacity of 1 mg. Step-wise binding, washing and elution with 

8.0 M Urea steps were monitored by SDS-PAGE (figure 3.13).  

It was observed that the protein was washed from the column before the elution step 

and therefore, showed no binding to the immobilised geldanamycin. The 

geldanamycin was known to be bound to the column due to the presence of the 

pinkish hue of the compound. 

The assay was repeated under the same conditions for H6-MBP-G6 and H6-MBP-

T367, yielding the same result. As the pull-down assays were performed much later 

than the original binding assays, the geldanamycin was checked for degradation via 
1H NMR and was determined to be intact and suitable for use in the assay. 
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Figure 3.13 SDS-PAGE analysis of GM pull-down with H6-MBP-D178 

All protein (~44 kDa) was observed to leave the column in flow-through (FT) and wash (W) 

phases. No protein was observed in elution (E) phases. Post elution, beads were boiled in 

SDS-PAGE buffer; no H6-MBP-D178 remained bound to beads. 

 

3.3.2 Conclusions for geldanamycin pull-down experiment with MBP-

constrained SEA-001 

Though the presence of a biotin tag on the geldanamycin still remains a possible, 

reason for the lack of observed binding, it is much more likely that the binding 

interaction between geldanamycin and SEA-001 is either non-existent or too weak 

to be observed via this method. Immobilisation of biotinylated GM and subsequent 

analysis of MBP-constrained SEA-001 showed no observable interaction between 

the two species. 

3.4 Conclusions on the binding interaction between SEA-001 and 

geldanamycin 
The binding interaction of SEA-001 and geldanamycin was studied in an attempt to 

mimic the binding interaction between a phage-expressed Alu sequence and 

immobilised geldanamycin during a Magic Tag® experiment at the University of 

Warwick. Though initial fluorescence anisotropy results showed hope, the binding 

interaction appeared to be too weak to be studied by this method due to the cost 

impact of the large quantities of reagents needed. Fluorescence intensity 

experiments with immobilised SEA-001 showed no binding interaction. Though 

SPR experiments were attempted, the DMSO needed to counteract the poor 

solubility of geldanamycin interfered with the results. Nonetheless, although no 

plottable data was obtained, raw data indicated no, or extremely weak binding 
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between the species. ITC experiments showed a potential weak interaction between 

the two species, however the resultant heat spikes from titration of GM into SEA-

001 may have been the result of reagent precipitation as opposed to a real binding 

interaction. A geldanamycin pull-down experiment using NeutrAvidin™ resin, 

biotinylated GM and MBP-constrained SEA-001 showed no binding interaction 

between the two species. 

In the cases of fluorescence experiments, it remains true that the presence of the 

bulky FITC label may interfere with the binding interaction of the two species, 

especially if the binding interaction was not particularly strong to begin with. In SPR 

and geldanamycin pull-down experiments, it is also possible that the biotin label 

interferes with the binding interaction. However, this possibility seems unlikely due 

to the use of the similar immobilisation techniques in the Magic Tag® experiments. 

However, a consistent concern with any immobilisation technique is that there may 

be binding to the linker and/or tag instead of the desired immobilised species. It 

remains that poor solubility of geldanamycin made experiments difficult and 

therefore, could not be properly representative of the behaviour of the species in 

physiological conditions. However, the combination of the above results shows that 

the interaction observed in the Magic Tag® experiment could not be replicated 

through a broad range of binding experiments. 

It possible that the differences in one or more of five residues between the Magic 

Tag® hit and the SEA-001 sequence may have been a major contributor to the 

binding interaction (see 3.1.2).199 It is possible that the cysteine (C) from serine (S) 

substitution would have affected binding as although C and S share a similar 

arrangement in chemical space, C has the capacity to form disulfide bonds and 

cannot act as a hydrogen bond donor as S can. In addition, substitution of leucine 

(L) for proline (P) may cause a ‘kink’ in the spacial arrangement of the sequence as 

well as introducing a potential hydrogen bond acceptor. In the case of the 

substitution of isoleucine (I) for threonine (T), a hydrophobic residue has been 

substituted for a polar residue which may again have an effect. The histidine (H) 

from aspartic acid (D) results in a swap from positive to negative charge so it is 

possible that this may also affect binding. The substitution of asparagine (N) for 

lysine (K) may also have an impact as the changing of these residues would result 

in a change in charge from neutral to positive. 
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Though no defined binding interaction between SEA-001 and geldanamycin was 

observed, it is still possible that Alu elements could be exploited in drug discovery 

via other methods.  

In retrospect, and if given more time, it would have been interesting to observe 

whether the binding interaction between GM and the Alu-derived sequence could be 

observed with a peptide matching the exact Magic Tag sequence. As we know that 

several hydrogen bonding interactions are involved in the binding of HSP90 to GM, 

it is possible that the substitution of K for N may have affected the binding 

interaction. However, it is also possible that the reading frame that we have used for 

studying the Magic Tag hit, as directed by bioinformatic analyses, does not match 

the reading frame that was expressed on the surface of the phage in the Magic Tag 

experiments.
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Chapter 4  
Translated Alu elements in human proteins 

Overview 
The extent of the effect of translated Alu elements in proteins is largely unknown, 

with reports of both advantageous and disadvantageous protein mutations.200 

However, it is known that they produce a source of protein variability through the 

expression of alternative protein isoforms as a result of alternative splicing.201 Five 

target human recombinant proteins were chosen for expression trials in E. coli; 

ZMAT1, NEK4, BCAS4, PPP5D1 and ASCC1. Human proteins were cloned via 

PCR into a series of vectors for overexpression in E. coli. A number of different 

solubility tags and purification methods were performed in an attempt to obtain 

naturally occurring Alu-containing proteins. 

 

4.1 Overexpression of naturally occurring Alu-containing human 

recombinant proteins 
Generally, it is often difficult to express human recombinant protein in non-

mammalian cell cultures such as E. coli. Many proteins fold incorrectly either due 

to degradation or accumulation to form an insoluble inclusion body.202 Even if a 

protein can be expressed within the system, it is still possible that the protein will be 

inactive.203 E. coli is often used for protein expression as large quantities of protein 

can be produced quickly at a relatively low cost.204 However, there are a number of 

reasons that the expression of human recombinant proteins from E. coli can be 

challenging. 

The first is that human genes contain rare codons which cannot be recognised by E. 

coli transfer RNAs (tRNAs).205 This problem can be easily overcome by optimising 

genes for expression in E. coli and/or using specialised cell lines such as Rosetta™ 

(DE3). Secondly, expression of the foreign protein may be toxic to the host system 

and may slow or kill the E. coli by interfering with normal proliferation and 

homeostatic function.206 The human body is a complex system and as such, the 
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normal expression of proteins within it may require the aid of co-factors and 

chaperones. Therefore, it may not be possible to express the protein of choice 

without co-expression with additional proteins which aid folding.207 Additionally, 

the protein of choice may require post-translational modifications (PTMs) in order 

to fold correctly or maintain activity. For example, E. coli expression systems do not 

have the ability to perform PTMs such as O- or N-linked glycosylation, 

hydroxylation or sulfation.208 As a result, the expression of human Alu-containing in 

E. coli was expected to be challenging. 

4.1.1 Selection of human proteins for overexpression in E. coli 

Of the 46 Alu-containing hits identified during bioinformatic analysis (outlined in 

chapter 2), only a select few were chosen for overexpression in E. coli. One of the 

main questions concerning translated Alu elements in this project was whether or 

not they were linked with human disease, in particular, cancer. As such, the main 

focus of the proteins chosen was based upon previous reports of their implications 

in cancer or as precursors to cancer. At the beginning of the project, the main protein 

of interest was M4K1 (Mitogen-activated protein kinase kinase kinase kinase 1) due 

to reports linking it to cancer., However, due to the large size of the gene (2,631 bp) 

and no reports of previous overexpression in any system, it was determined that 

cloning (via PCR), and subsequent overexpression and purification, of the 91.2 kDa 

(canonical isoform; 833 residues) recombinant protein from E. coli was likely to be 

challenging. Research into other protein hits found four proteins with cancer 

implications which showed promise; BCAS4, NEK4, ASCC1 and ZMAT1. The 

protein structures for these proteins, as predicted by I-TASSER, can be observed in 

figure 4.1. 

BCAS4 (breast cancer amplified sequence 4), as stated by its name, is overexpressed 

in breast cancer.209 NEK4 (never in mitosis gene A (NIMA)-related kinase 4), 

though not directly linked to cancer, has been linked to DNA repair. As a result, 

mutations or the expression of alternative isoforms may result in inefficient DNA 

repair and subsequent additional mutations could potentially lead to cancer.210 

ASCC1 (activating signal cointegrator 1 complex subunit 1) has been associated 

with Barrett’s Esophagus (BE), a pre-cursor to esophageal adenocarcinoma (EAC), 

through germline gene mutations.211 ZMAT1 (zinc finger matrin-type protein 1) has 

been reported to serve as a prediction of poor prognosis in gastric cancer patients.212 
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All of the proteins have been reported to be translated and expressed in the cell as 

two or more different isoform variants with at least one Alu-containing isoform (AC) 

and one non-Alu-containing (nAC) isoform. 

ZMAT1 and NEK4 were high risk proteins and were expected to have a lower 

chance of successful overexpression in E. coli. According to the Human Protein 

Atlas, NEK4 RNA is ubiquitously expressed; however, protein expression occurs 

within the cytoplasm and nucleus and is most abundant in the testes. Both the AC 

and nAC isoforms are predicted to express but no preference for the expression of 

one over the other is reported. NEK4 (figure 4.1A) had been reported to have been 

overexpressed before; however, this was from human HEK293T cells, not E. coli.213 

This, in addition to its large size (841 residues), predicted that overexpression in E. 

coli may prove challenging. However, NEK7, another kinase which shares 40% 

sequence similarity to NEK4, can be overexpressed in E. coli.214 It should be noted 

that NEK7 is a much smaller protein than NEK4 at only 34.5 kDa. ZMAT1 RNA is 

detected in all tissue types, but protein expression is observed only in the cytoplasm 

of the epididymis, adrenal gland and testes. Expression of the protein is localised to 

the nucleoplasm. ZMAT1 RNA is detected in multiple cancers but shows low cancer 

specificity. Both the AC (figure 4.1B) and nAC isoforms of ZMAT1 are predicted 

to be expressed with no recorded bias towards expression of one over the other. 

Though expression protocols could not be found, can be purchased (MyBioSource) 

and has been quoted to be purified from multiple systems including E. coli. Due to 

the presence of four zinc fingers contained within the structure of ZMAT1, it was 

predicted that purification may be more of an issue in this case. Each zinc finger in 

ZMAT1 contains two histidine residues and two cysteine residues, each making a 

possible contribution to the binding to Ni-NTA (Nickel-nitrilotriacetic acid). 

Conversely, the polyhistidine purification tag may interact with the Zn2+ ions present 

in the buffer reducing binding to Ni-NTA.215 Therefore, purification of such a 

protein may become difficult using polyhistidine tags. However, purification of zinc 

fingers using polyhistidine tags has been achieved.216 

The Human Protein Atlas reports that BCAS4 RNA expression in enhanced in blood 

and lymphoid tissue, and protein expression generally occurs in the cytoplasm. RNA 

is also enhanced in memory and naive B-cells. Both AC and nAC isoforms of 

BCAS4 are expressed, but no preference is reported. BCAS4 (figure 4.1C) is a much 

smaller gene (1,404 bp) making it a good candidate for restriction free cloning. 
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Though BCAS4 itself has not been reported to have been expressed before, its much 

larger predicted functional partner BCAS3 can be purchased (MyBioSource). Due 

to its small size (canonical isoform; 22.8 kDa; 211 residues) and prominence in 

breast cancer cell lines, BCAS4 remained a protein of interest for overexpression in 

E. coli. 

ASCC1 RNA is reported to be ubiquitous and protein expression occurs in the 

cytoplasm and nucleus of all tissues. ASCC1 has low cell line specificity. No 

preference for the expression of the AC or nAC isoform is reported. ASCC1 (figure 

4.1D) is a 45.5 kDa protein (canonical isoform; 400 residues) which can be 

purchased (MyBioSource) as an overexpression product from E. coli. However, the 

protein isoform that can be purchased is the non-Alu (nAC) variant. It was predicted 

that ASCC1 may be the easiest to express of the four cancer-associated proteins due 

to one of its isoforms already having been overexpressed (though no published 

protocols were available). However, this prediction assumed that the translated Alu 

did not destabilise the Alu-containing (AC) isoform. 

Though it has no known association with cancer, PPP5D1 (PPP5 TPR repeat 

domain-containing protein 1) was also chosen for overexpression due to its small 

size (19.6 kDa; 171 residues) and cytoplasmic expression in most tissues, including 

most cancerous tissues. PPP5D1 has only one described isoform but has two 

computationally mapped potential isoforms.217 
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Figure 4.1 I-TASSER structure predictions of human proteins 

The structures of Alu-containing isoforms of NEK4, ZMAT1, BCAS4 and ASCC1 were 

predicted using I-TASSER. Alu insertions are represented in colour. In most cases, the 

element appears to have either coiled or α-helical structure. All four proteins are predicted 

to be largely made up of α-helical character. Alu insertions in NEK4 and BCAS4 are fairly 

central to the structure, whereas they lie on the outside of ZMAT1 and ASCC1. 
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4.2 Cloning of human genes into E. coli expression vectors 
The Alu-containing variants of human genes, NEK4, ASCC1, ZMAT1 and BCAS4 

and the non-Alu-containing variant of ASCC1 were purchased in TrueORF® 

pCMV6-entry vectors from OriGene. It should be noted that these genes were not 

codon-optimised for overexpression in E. coli. Bacterial expression vectors for all 

proteins were generated via a combination of purchase and restriction-free (RF) 

cloning. The five gene variants listed above were subcloned into either pET-28a or 

pET-SUMO-28a (figure 4.2) to generate a N-terminal His6 tag or His6-SUMO fusion 

proteins. PPP5D1 was purchased (GenScript) as a custom, codon-optimised gene in 

pGEX-4T-1 to generate a GST fusion protein. 

  



Chapter 4 

 80 

 

Figure 4.2 pET-SUMO-28a vector 

pET-SUMO-28a was obtained from the Edwards Group (University of Leeds). Genes that 

were subcloned (red) into pET-SUMO-28a were inserted directly after the SUMO gene and 

ended in a terminated in a STOP codon. Proteins inserted into pET-28a were inserted in the 

same way without the presence of the SUMO gene. 
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4.2.1 4.2.1 Restriction-free cloning 

Restriction-free (RF) cloning is a two-step polymerase chain reaction (PCR) cloning 

method which allows for the insertion of a gene into any region of a target vector 

without the use of restriction enzymes or DNA ligases.218 The technique relies on 

the design of specific primers which contain regions matching both the target gene 

and the desired insertion location within the destination vector. The forward primer 

is composed of two parts; the desired point of insertion in the destination vector (ca. 

21 bp) followed by the start of the gene of interest (ca. 21 bp) beginning with ATG. 

The reverse primer is a reverse complement composed of three parts; the end of the 

gene of interest (ca. 21 bp) followed by a stop codon and the desired point of 

insertion in the destination vector. 

The designed primers were used in an initial PCR amplification round (RF1) in 

which they annealed to the target gene and were amplified to give a ‘megaprimer’. 

This megaprimer was comprised of the target gene flanked by sequences 

complementary to the desired insertion point in the destination vector. The 

megaprimer was gel extracted and used in a second PCR amplification round (RF2) 

in which the flanking ends annealed to the destination vector and formed a gene-

containing ‘loop’. The primer then extended around the outside of the destination 

vector to give a final PCR product of the target gene contained within the destination 

vector (figure 4.4).219 Dpn1 treatment was used to digest any methylated parental 

plasmid. The reaction mixture was used directly in standard transformation in E. 

coli. Following the isolation of individual colonies, inserted sequences were 

confirmed by sequencing (GeneWiz) across the whole gene and can be found in 

Appendix 2. A list of cloned constructs is shown in table 4.1. 

 

 

Figure 4.3 RF1 amplification of NEK4 

Observed bands corresponded to the NEK4 ‘megaprimer’ and were excised and purified for 

use in amplification round 2 (RF2). The two lanes represent two identical reactions that took 

place side by side.  
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Figure 4.4 Restriction-free (RF) cloning 

The gene of interest, confined within an entry vector (A), is amplified using specifically 

designed primers in amplification round 1 (RF1: B). The resulting ‘megaprimer’ is used in a 

second amplification round (RF2) which extends around the whole destination vector (C). 

The result is the gene of interest contained within the desired vector for use in immediate 

transformation, with no ligation steps required. 

 

Gene Variant Vector Predicted protein construct Mass (kDa) 
ASCC1 Alu pET-SUMO-28a His6-SUMO-ASCC1 58.9 
ASCC1 Alu pET-28a His6-ASCC1 48.1 
ASCC1 Non-Alu pET-28a His6-ASCC1 43.8 
BCAS4 Alu pET-28a His6-BCAS4 24.9 
NEK4 Alu pET-SUMO-28a His6-SUMO-NEK4 108.0 
PPP5D1 Alu pGEX-4T-1 GST-PPP5D1 45.9 
ZMAT1 Alu pET-SUMO-28a His6-SUMO-ZMAT1 88.2 

Table 4.1 Human gene constructs 

Further information on sequences of plasmids and proteins can be found in Appendix 2. 

4.3 Trial expression of human recombinant proteins 

4.3.1 Fusion partners and purification tags 

Genes cloned into the pET-28a vector (BCAS4) generated an N-terminal His6 tag. 

The use of a polyhistidine tag is a widely-used purification method based on its 

interaction with Ni2+ metal ions immobilised on Ni-NTA (nickel-nitrilotriacetic 

acid) resin.220 Due to the small size and charge of the polyhistidine tag relative to 

the attached protein, it was unlikely that it would interfere with protein activity and 

thus, it was not necessary to cleave it post-purification. However, had the 
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polyhistidine tag needed removed, it could be cleaved from the protein product via 

a thrombin cleavage site (LVPRGS). 

Genes cloned into the pET-SUMO-28a vector (ZMAT1, NEK4, ASCC1) generated 

His6-SUMO fusion proteins. SUMO (small ubiquitin-like modifier) family proteins 

are approximately 97 residues in length, giving a molecular weight of approximately 

11 kDa, and have approximately 18% sequence similarity with ubiquitin (Ub).221 

Unlike Ub, the surface charge topology of SUMO has very distinct positively and 

negatively charged regions.222 The fusion of SUMO proteins to partner proteins has 

been reported to improve their expression and solubility.223 The expression of human 

proteins in E. coli expression systems is often challenging; as such, it was proposed 

that overexpression of the desired protein as part of a larger SUMO fusion product 

would improve solubility. As SUMO is generally used to improve solubility and not 

to aid purification, a polyhistidine tag was also incorporated at the N-terminus to 

enable protein purification using nickel affinity chromatography. SUMO has a C-

terminal Gly-Gly motif through which cleavage could be achieved using Ubiquitin-

like-specific protease 1 (Ulp1).224 

PPP5D1 was overexpressed as a glutathione S-transferase (GST) fusion protein. 

GST is a eukaryotic protein which has a molecular weight approximately 26 kDa.225 

As well as aiding in solubilisation of its fusion partner, GST can also act as a 

purification tag through utilisation of its natural binding affinity for glutathione. As 

a result, no polyhistidine tag was required for purification of GST fusion proteins. 

GST could be easily cleaved from its fusion partner via a thrombin cleavage site. 

4.3.2 Overexpression of His6-SUMO-NEK4 

NIMA (Never in Mitosis A) related kinase 4 is a serine/threonine protein kinase 

which is part of a larger protein family termed NIMA-related kinases (Nrks) which 

constitutes approximately 2% of the entire human kinome†† (NEK1 through to 

NEK11).226 Despite sharing approximately 40 - 45% sequence identity with NimA, 

a protein involved in mitotic entry through catalytic kinase domains at their N-

termini, their sequences vary greatly elsewhere, in particular at their C-termini. 

Variations at the non-catalytic C-terminus are believed to be the cause of possible 

varied functionalities of Nrks which are not under mitotic control.227 Relatively little 

                                                
†† The kinome refers to all of the protein kinases encoded by the genome. 
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is known about the exact function and structure of NEK4, though more research has 

been performed on other members of the Nrk family. However, it has been observed 

the NEK4 is present in most primary carcinomas.228 There is limited structural data 

on NEK4 and previously reported expression has only been achieved in HEK293 

cells. 

The Alu-containing (AC) NEK4 transcript (variant 1, OriGene) was cloned into 

pET-SUMO-28a. The gene-containing plasmid was transformed into E. coli 

Rosetta™ (DE3) competent cells. Initial expression tests showed no overexpression 

of the desired protein product (figure 4.5).  

 

 

Figure 4.5 SDS PAGE analysis of His6-SUMO-NEK4 overexpression 

Polyhistidine-tagged SUMO-NEK4 fusion protein (ca. 108 kDa) test expression was 

performed in LB media with IPTG induction. SDS-PAGE analysis showed no 

overexpression of a protein product of the expected mass. Strong bands were observed at 

approximately 73 kDa in both the induced supernatant (Induced (S)) and induced pellet 

(Induced (P)); however, this corresponded to neither His6-SUMO nor NEK4 alone and was 

also present in the control pellet (Control (P)). 

 

The polyhistidine-tagged SUMO-NEK4 fusion protein had a calculated molecular 

weight of approximately 108 kDa. No protein of this size was observed upon SDS-

PAGE analysis. Prominent bands could be observed at approximately 73 kDa which 

correlated to neither NEK4 alone (ca. 94.5 kDa) nor polyhistidine-tagged SUMO 

protein (ca. 13.3 kDa). This band could also be observed in the control pellet (no 

IPTG induction). Unfortunately, no MS analysis was obtained to verify the absence 

of the desired protein. 



Chapter 4 

 85 

Due to the large size of NEK4 and the even larger size of the SUMO-NEK4 fusion 

protein, it is possible that this construct cannot be overexpressed from an E. coli 

expression system. Generally, it is difficult to express proteins over 100 kDa in E. 

coli. Though genes were not optimised for overexpression in E. coli through the 

substitution of rare codons, Rosetta™ cells were used. It is possible that NEK4 is 

glycosylated when expressed in humans. E. coli is limited in that it does not have 

the machinery to efficiently carry out this post-translational modification.229 

Note: Data for His6-SUMO-NEK4 was revisited towards the end of the PhD project 

and it was determined that we cannot say for certain that this protein was not 

overexpressed. It is possible that a truncated protein product was formed or that the 

presence of charged residues (constituting approximately 1/7 of the protein) affected 

mobility in SDS-PAGE. Given more time, large scale overexpression, purification 

and MS analysis would have been carried out to confirm the identity of the protein 

product. 

4.3.3 Overexpression of His6-SUMO-ZMAT1 

Relatively little is known about the structure and function of zinc finger matrin-type 

protein 1 (ZMAT1); however, it is known that it contains four Cys2-His2 (C2H2)-

type zinc fingers and is localised to the nucleus. The STRING database (ELIXIR)230 

predicts eight protein binding partners for the protein but generally the presence of 

C2H2 zinc finger motifs in the structure predicts DNA binding activity.231 In terms 

of disease, the majority of reports relate ZMAT1 to gastric cancer,232, 233 though this 

is usually in reference to the non-Alu long non-coding ZMAT1 RNA transcript. 

The Alu-containing (AC) ZMAT1 transcript (variant 1, OriGene) was cloned into 

pET-SUMO-28a. The gene-containing plasmid was transformed in E. coli Rosetta™ 

(DE3) competent cells for overexpression. Overexpression of the polyhistidine-

tagged SUMO-ZMAT1 protein (ca. 88 kDa) was tested via IPTG induction and 

auto-induction (figure 4.6), both of which resulted in the overexpression of an 

insoluble inclusion body. 
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Figure 4.6 SDS-PAGE analysis of His6-SUMO-ZMAT1 auto-induction 

Auto-induced overexpression of polyhistidine-tagged SUMO-ZMAT1 fusion protein (ca. 

88 kDa) was performed in LB auto-induction media over the course of 96 hours. Though 

overexpression was observed in auto-induced (AI) samples and not control samples, the 

protein appeared to be overexpressed in the cell pellet (P), not the supernatant (S). As such, 

the protein product was an insoluble inclusion body. 

 

Due to the insolubility of the protein, it was not possible to purify it via normal 

methods, i.e. purification of solubilised protein via nickel affinity chromatography 

and subsequent size exclusion chromatography (SEC). Instead, purification was 

attempted through solubilisation as a result of denaturation with urea, purification 

via nickel affinity chromatography and subsequent refolding with L-arginine. 

Protein solubilisation and purification was successful (figure 4.7A). Unfortunately, 

upon dialysis of the refolded protein to remove urea, the majority of the protein 

precipitated (figure 4.7B), despite the presence of Zn2+ ions in all buffers. For the 

small amount of soluble protein that was recovered, cleavage of ZMAT1 from 

SUMO with Ulp1 was tested. Cleavage resulted in insoluble ZMAT1 protein 

product. No further avenues were explored for the purification of this protein. 
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Figure 4.7 SDS-PAGE analysis of denaturation, refolding and Ulp1 cleavage of His6-

SUMO-ZMAT1 

(A) Polyhistidine-tagged SUMO-ZMAT1 protein (ca. 88 kDa) was denatured in 8 M urea 

and purified via nickel affinity chromatography. Soluble protein was successfully obtained 

from column elution. (B) Polyhistidine-tagged SUMO-ZMAT1 (ca. 88 kDa; red) was 

refolded with L-arginine and dialysed to remove urea. Dialysis resulted in the majority of 

protein precipitating (Post-dialysis (P)). A small amount of soluble fusion protein was 

obtained; however, cleavage with Ulp1 resulted in the precipitation of ZMAT1 (Ulp1 (P); 

ca. 75 kDa; blue). 

 

4.3.4 Overexpression of GST-PPP5D1 

PPP5 tetratricopeptide repeat domain containing 1 (PPP5D1) is a small protein with 

partial sequence similarity with the serine/threonine phosphatase, PPP5C. However, 

unlike PPP5C, PPP5D1 does not contain a catalytic pseudo-phosphatase domain. As 

for previous proteins, there is very limited information available on the structure and 

function of PPP5D1. 
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Codon-optimised PPP5D1 in pGEX-4T-1 (GenScript) was transformed in E. coli 

Rosetta™ (DE3) supercompetent cells and overexpressed using IPTG induction. Cell 

lysate was purified via chromatography with Pierce ™ glutathione agarose (Thermo 

Scientific) which utilises the binding interaction between GST and glutathione to 

purify GST fusion proteins. SDS-PAGE analysis (figure 4.8) showed that a small 

amount of GST-PPP5D1 (ca. 46 kDa) was eluted with reduced-glutathione. 

However, the bulk of eluted protein was approximately 26 kDa which likely 

corresponded to the overexpression of GST alone rather than as part of the fusion 

protein. Bands of 46 kDa were also observed in the flow-through and wash phases. 

This could be attributed to one of two things; either there was another protein present 

in large amounts with a similar mass to the target protein, or the fusion protein was 

misfolded and therefore, could not bind to the column. No further avenues were 

explored for the expression and purification of GST-PPP5D1. 

 

 

Figure 4.8 SDS-PAGE analysis of GST-PPP5D1 purification 

A small amount of GST-PPP5D1 (ca. 46 kDa; red) appeared to elute from the column; 

however, the bulk of eluted protein was approximately 26 kDa (blue), likely corresponding 

to lone GST as opposed to the GST-PPP5D1 fusion protein. Bands at approximately 46 kDa 

in the flow-through and wash phases may indicate misfolding of the fusion protein. 

 

4.3.5 Overexpression of His6-BCAS4 

Breast carcinoma amplified sequence 4 (BCAS4) is, again, a protein about which 

relatively little is known, other than its reported overexpression in a large number of 

breast cancer cell lines. In addition to this, it has been reported that, in some cell 

lines, the BCAS4 gene fuses with that of BCAS3 as a result of chromosome 
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rearrangement.234, 235 The function of BCAS4, BCAS3 and the BCAS3/4 fusion 

protein is still something to be speculated about as homology studies find no obvious 

functional domains. 

The Alu-containing (AC) BCAS4 transcript (variant 1, OriGene) was cloned into 

pET-28a. The gene-containing plasmid was transformed in E. coli Rosetta™ (DE3) 

competent cells for overexpression. Overexpression in LB media with IPTG 

induction yielded an insoluble inclusion body (figure 4.9). A series of lysis buffers 

were tested in an attempt to solubilise the protein, however, each resulted in an 

insoluble product. 

 

 

Figure 4.9 SDS-PAGE analysis of His6-BCAS4 overexpression in E. coli 

Overexpression of polyhistidine-tagged BCAS4 (ca. 25 kDa) in E. coli with IPTG induction 

resulted in the formation of the protein as an insoluble inclusion body (Induced (P)). No 

soluble protein was observed (Induced (S)). 

 

As with His6-SUMO-ZMAT1, polyhistidine-tagged BCAS4 was solubilised via 

denaturation with urea and purified using nickel affinity chromatography. SDS-

PAGE analysis confirmed elution of the protein product. His6-BCAS4 was diluted 

in refolding buffer containing L-arginine. However, upon dialysis to remove urea, 

the protein precipitated and therefore, could not be carried forward. The absence of 

soluble protein was confirmed via mass spectrometry. No further avenues were 

explored for the purification of His6-BCAS4. 
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Figure 4.10 SDS-PAGE analysis of nickel affinity purification of denatured His6-

BCAS4 

Urea-denatured polyhistidine-tagged BCAS4 (ca. 25 kDa) was purified via nickel affinity 

chromatography and eluted in a pH-dependent manner. SDS-PAGE analysis confirmed 

elution of the desired protein product. Some protein was observed to be washed from the 

column prior to elution due to column overloading. 

 

4.3.6 Overexpression of His6-SUMO-ASCC1 

Activating signal cointegrator 1 complex subunit 1 (ASCC1) is probably the most 

studied protein of the selection explored in this project. Located in the nucleus, it is 

part of the activating signal cointegrator 1 (ASC-1) complex which is composed of 

three other protein subunits in addition to ASCC1; thyroid hormone receptor 

interactor 4 (TRIP4) and activating signal cointegrator 1 complex subunits 2 and 3 

(ASCC2 & ASCC3).236 Though the complex remains quite poorly understood, it has 

been reported to have links with rheumatoid arthritis (RA) through inhibition of the 

protein complex NF-κB (nuclear factor kappa-light-chain-enhancer of activated B-

cells),237 links with neuromuscular degeneration through truncation of ASCC1 

variants,238 and links with Barrett Esophagus (BE) and through germline mutations 

in the ASCC1 gene. 

The Alu-containing (AC) ASCC1 transcript (variant 1, OriGene) was cloned into 

pET-SUMO-28a. The gene-containing plasmid was transformed in Rosetta™ (DE3) 

competent cells for expression from E. coli. Overexpression in LB media with IPTG 

induction gave an insoluble protein product (figure 4.11). 

  



Chapter 4 

 91 

 

Figure 4.11 SDS-PAGE analysis of His6-SUMO-ASCC1 overexpression with IPTG 

induction 

Analysis showed a band at approximately 60 kDa corresponding to the poly-histidine tagged 

SUMO-ASCC1 fusion protein (ca. 59 kDa) as an insoluble inclusion body (Induced (P)). 

No soluble protein was observed. 

 

As with previous insoluble protein products, purification was attempted via 

denaturation with urea and subsequent nickel affinity chromatography. Though 

purified His6-SUMO-ASCC1 remained stable through refolding with L-arginine and 

subsequent dialysis to remove urea, cleavage of the SUMO tag Ulp1 yielded 

insoluble protein product. The product produced also appeared to be of a higher 

molecular weight (ca. 54 kDa) than that of the expected cleavage products; 

polyhistidine-tagged SUMO (ca. 13 kDa) and ASCC1 (ca. 47.5 kDa). Though 

ASCC1 could be purified as a SUMO fusion protein, for the type of studies we 

wished to perform, cleavage was necessary to ensure that folding of ASCC1 was 

correct and not influenced by or a result of SUMO fusion. 
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Figure 4.12 SDS-PAGE analysis of purification and subsequent cleavage of His6-

SUMO-ASCC1 

(A) Denaturation of His6-SUMO-ASCC1 (ca. 59 kDa) with 8 M urea and subsequent 

purification using nickel affinity chromatography yielded purified protein product which 

remained stable through re-folding and dialysis to remove urea. (B) Cleavage of the His6-

SUMO tag (ca. 13 kDa) from ASCC1 (ca. 47.5 kDa) resulted in the formation of an insoluble 

cleavage product of approximately 54 kDa (red) which corresponded to neither of the 

expected cleavage products. 

 

After the observation that the non-Alu-containing (nAC) ASCC1 variant could be 

purchased as a polyhistidine-tagged protein overexpressed in E. coli, both the AC 

ASCC1 transcript and the nAC ASCC1 transcript (variant 3, OriGene) were cloned 

into pET-28a so as to contain a similar linker to the purchasable variant of the 

protein. This linker introduced a TEV (tobacco etch virus) cut site for cleavage of 

the polyhistidine tag. The gene-containing plasmids were transformed in E. coli 

Rosetta™ (DE3) competent cells for overexpression. Expression tests for both 

protein variants were carried out with both auto-induction and IPTG induction. The 

optimal conditions of those tested were determined to be 48 hour auto-induction in 

terrific broth (TB) with lysis via sonication in a high-salt phosphate buffer 
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containing dithiothreitol (DTT). Protein was purified via nickel affinity 

chromatography (figure 4.13) and subsequent size exclusion chromatography. 

 

 

4.13 SDS-PAGE analysis of ASCC1 isoforms purified by nickel affinity 

chromatography 

(A) Purification of ASCC1 transcript variant 1 (TV1; Alu containing) yielded a range of 

protein products upon column elution. The most prominent protein product was 

approximately 60 kDa (black) which did not correspond to His6-ASCC1 TV1 (ca. 48 kDa). 

A band corresponding to this molecular weight (blue) can be observed but it was 

considerably fainter. (B) Purification of ASCC1 transcript variant 2 (TV2; non-Alu-

containing) again saw a range of eluted products. A very prominent band can be observed 

at approximately 50 kDa however, this does not correspond to His6-ASCC1 TV2 (ca. 43.7 

kDa). 

 

SDS-PAGE analysis showed that multiple protein products were eluted via nickel 

affinity chromatography. Interestingly, for both protein variants, the most prominent 

protein purified was approximately 10 kDa above the mass of the expected protein 

product. In the case of His6-ASCC1 transcript variant 1 (TV1; Alu containing), faint 



Chapter 4 

 94 

bands were observed at approximately 50 kDa which were assumed to correspond 

to the desired protein product (ca. 48 kDa). However, the main product was observed 

to be approximately 60 kDa. For His6-ASCC1 transcript variant 2 (TV2; non-Alu-

containing), the main protein product was observed to be approximately 50 kDa. 

Though faint bands were observed between 40 and 45 kDa which had the potential 

to correspond to the desired product (ca. 43.7 kDa), the bands could also be observed 

in elution products of TV1 lysate. Sequencing of the expression plasmids showed 

no sequence errors which would result in protein elongation and therefore, larger 

protein products that expected. 

Elution products for both ASCC1 protein variants were further purified by size 

exclusion chromatography (SEC) and analysed via mass spectrometry (MS) for 

traces of the desired protein product. The trace obtained from size exclusion of His6-

ASCC1 TV1, as expected from SDS-PAGE analysis of the nickel elution product, 

showed multiple protein products (figure 4.14). MS analysis of products confirmed 

the absence of desired product in all elution fractions as no protein was observed in 

the range of 40 and 45 kDa. 

 

 

Figure 4.14 SEC trace for His6-ASCC1 TV1 

Size exclusion chromatography showed multiple protein products after purification via 

nickel affinity chromatography. Protein products were analysed via mass spectrometry to 

confirm the absence of desired protein product in all fractions. 
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Size exclusion of His6-ASCC1 TV2 also showed the presence of multiple protein 

products. MS analysis of product peaks revealed a protein product with a molecular 

weight of 41100.1 Da (figure 4.15). The molecular weight of the polyhistidine-

tagged ASCC1 TV2 was calculated to be 43771.5 Da, and the TEV-cleavage product 

had a calculated molecular weight of 41560.1 Da, neither of which corresponded to 

the observed mass. It was determined that the desired protein products for ASCC1 

variants had not be obtained and no further avenues were explored for their 

expression and purification. 

 

 

4.15 MS analysis of His6-TEV-ASCC1 TV2 

The expected protein mass for His6-TEV-ASCC1 TV2 was 43771.5 Da; however, the 

observed protein mass = 41100.15 Da (deconvoluted) indicating the overexpression and 

purification of an incorrect protein product. 

4.4 Conclusions on the overexpression of Alu-containing 

recombinant proteins 
Five human genes were selected for cloning and overexpression in E. coli; NEK4, 

ZMAT1, PPP5D1, BCAS4 and ASCC1. Targets were selected dependent on the 

availability of the gene for purchase, the gene/protein’s reported implications in 

disease, in particular cancer, and the predicted ease of expression of the protein. 

Each gene was cloned into an E. coli expression vector using restriction free cloning 

aside from PPP5D1 which was purchased in a pGEX-4T-1 E. coli expression vector. 

For NEK4, ZMAT1, PPP5D1 and BCAS4, only the Alu containing (AC) transcript 

variants were cloned. In the case of ASCC1, both the AC and non-Alu-containing 

(nAC) transcript variants were cloned. 

MS 

Deconvoluted 
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PPP5D1 was overexpressed as a fusion protein with GST and purified using 

glutathione agarose resin. Protein was observed to elute from the column in the wash 

phase indicating that the protein product was misfolded. SDS-PAGE analysis 

revealed a protein of approximately 26 kDa to be eluted from the column, likely 

corresponding to lone GST. 

Expression tests of NEK4 in E. coli showed overexpression of a protein product of 

approximately 73 kDa via SDS-PAGE analysis. Initially, this was assumed not to be 

His6-SUMO-NEK4 which had a calculated mass of approximately 108 kDa. 

Unfortunately, no MS data was obtained to determine the identity of the observed 

protein product. In hindsight, it is possible that the protein observed via SDS-PAGE 

may have been due to truncated product formation or unforeseen effects of charged 

residues on protein mobility. Overexpression of ZMAT1 as the fusion protein, His6-

SUMO-ZMAT1 gave an insoluble protein product when auto-induced for 96 hours. 

The protein was denatured with 8.0 M urea for purification via nickel affinity 

chromatography. SDS-PAGE analysis revealed elution of the desired product; 

however, re-folding with L-arginine, dialysis to remove urea and subsequent 

cleavage of the SUMO fusion tag with Ulp1 resulted in protein precipitation. His6-

BCAS4 was purified in the same way as His6-SUMO-ZMAT1; however, refolding 

with L-arginine and dialysis to remove excess urea again resulted in the precipitation 

of the protein product. 

Initially, expression tests for ASCC1 were attempted by which the AC variant of 

ASCC1 was over expressed as part of a fusion protein with polyhistidine-tagged 

SUMO. Overexpression resulted in the formation of an insoluble protein product 

and so purification via denaturation with urea was performed. Though the protein 

remained soluble through re-folding with L-arginine and dialysis to remove excess 

urea, cleavage of the His6-SUMO tag resulted in protein precipitation. After 

observing that the nAC isoform of ASCC1 could be purchased as a recombinant 

protein from E. coli, both the AC and nAC variants were re-transformed into a pET-

28a vector and mutated to contain a TEV cut-site to mimic the purchasable variant. 

Both variants were overexpressed and purified via nickel affinity chromatography 

followed by size exclusion chromatography. SDS-PAGE analysis after nickel 

elution showed the main elution products in both cases to be of a higher molecular 

weight than the expected product. In the case of His6-ASCC1 TV1, a faint band at 

approximately 50 kDa was believed to be the desired product; however, size 
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exclusion and subsequent MS analysis of eluted proteins showed no trace of the 

desired product. MS analysis of protein products obtained from overexpression of 

His6-ASCC1 TV2, revealed a product at 41100 kDa. Unfortunately, this 

corresponded neither to the polyhistidine-tagged protein (ca. 43.7 kDa) nor the TEV-

cleavage product (41.5 kDa). Plasmid sequencing for both constructs revealed no 

mutations which would account for protein elongation. 

For the most part, only Alu-containing isoforms of protein were used in expression 

trials, with the exception of ASCC1 for which overexpression of both AC and nAC 

variants was attempted. As previously stated, only the nAC variant of ASCC1 is 

commercially available as a purification product from E. coli. It is possible that the 

presence of the Alu in protein isoforms may affect the protein in such a way that it 

destabilises the protein sufficiently to make purification difficult. In most cases, 

overexpression in an E. coli expression system was successful and most difficulties 

lay in the purification of the selected proteins. Proteins precipitated at various steps 

of purification and as a result, final purified protein products could not be produced. 

Due to the difficulty in purification of the chosen human targets, it was determined 

that a different route would be taken to study the effect of Alu elements on the 

structure and function of proteins. As a result, no further work was carried out on 

the overexpression of human proteins. 



Chapter 5 

 98 

Chapter 5  
MBP as a model system for Alu expression 

Overview 
Due to the difficulties arising from the overexpression and purification of naturally 

occurring Alu-containing proteins, maltose binding protein (MBP) was used as a 

model system. The SEA-001 Alu sequence (discussed in Chapter 2) was cloned into 

eight different regions within MBP and studied for its effect on the protein folding 

and subsequent binding to ligands; D-(+)-maltose, maltotriose and β-cyclodextrin. 

The effect of translated Alu elements on the structure and function of MBP was 

studied through the use of protein expression studies, circular dichroism, differential 

scanning calorimetry and amylose purification studies. 

5.1 Overexpression of MBP-Alu protein mutants 
As an alternative to the expression of naturally-occurring Alu-containing proteins 

from E. coli, a well-studied and easy to express protein could be mutated to contain 

the Alu insertion as identified by bioinformatics. The gene for maltose binding 

protein (MBP) was mutated to give eight different variants, each containing the Alu 

sequence, SEA-001, at a different location within its sequence. Three additional 

mutants were cloned to contain a ‘scrambled’ variant of the Alu element. Each 

variant, in addition to the wild-type, was overexpressed and purified for use in 

folding and binding studies. 

5.1.1 MBP as a model system for investigating translated Alu elements 

Maltose binding protein (MBP) is an approximately 43 kDa periplasmic protein 

expressed from the malE gene of E. coli. It is involved in the transport of maltose in 

E. coli and as such, it has several potential high affinity ligands including maltose, 

maltotriose and β-cyclodextrin.239 It is often utilised as a fusion partner in the 

overexpression of recombinant proteins due to its high solubility.240 Due to ease of 

overexpression at high concentrations in E. coli, multiple binding partners241 and 

good solubility, MBP (figure 5.1) was chosen as a model protein to study the effects 

of translated Alu elements in proteins. 
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Figure 5.1 Structure of MBP 

The crystal structure of maltose binding protein (MBP) when bound to maltose determined 

by crystallography (1ANF)242 and breakdown of secondary structure. For this study an N-

terminal His6 tag was used; therefore, MBP begins at the Lys2 (K2) residue. A C-terminal 

stop codon was also introduced. 

 

5.2 Site-directed mutagenesis of MBP-Alu constructs 

Site-directed mutagenesis (SDM) was performed to introduce a C-terminal STOP 

codon into a commercially available pDB.His.MBP vector (DNASU; ID: 
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eVNO00085130) so as to encode a polyhistidine-tagged MBP variant. Further 

polymerase chain reactions (PCR) were performed on the resulting plasmid to 

introduce Alu sequences. 

Alu insertions were introduced into the MBP gene via PCR-based SDM, derived 

from an inverse PCR technique.243 Eight mutants were cloned to contain the desired 

Alu sequence, SEA-001. Three mutants were cloned to contain a scrambled variant 

of the desired Alu sequence, SEA-002. 

 
SEA-001    L E C S G A I S A H C N L R L L G S S D S P A S A S R V A G I T G 

SEA-002    I A R L H G P S A S N G T S S S T C A P D L G V G E S A L C I S R 

 

A total of twelve constructs were subcloned including the wild-type (WT) MBP 

construct. 

5.2.1.1 Site-directed mutagenesis 

All site-directed mutagenesis was performed using a Quikchange mutagenesis kit 

(Agilent). Primers for introduction of a STOP codon into the pDB.His.MBP vector 

were designed so as to be complementary to one another and overlap the site of 

insertion (figure 5.2).244 Following non-exponential amplification of the parental 

plasmid, template DNA was digested with Dpn1 and PCR products were 

transformed into E. coli XL1-Blue supercompetent cells. Plasmids were isolated and 

confirmed via sequencing of the whole gene. 

 

 

Figure 5.2 SDM to introduce a STOP codon into pDB.His.MBP 

The three base STOP codon, TAG (X), was central to both the forward and reverse primers 

which were designed complementary to one another. PCR was performed using Quikchange 

mutagenesis with extension around the template plasmid to give the product, 

pDB.His.MBP.STOP, which required no ligation prior to transformation. 
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Introduction of Alu insertions was achieved via an adaption of inverse PCR using 

site-directed mutagenesis. All Alu and scrambled Alu insertions were introduced into 

the pDB.His.MBP.STOP vector. Primers pairs were designed so that one half of the 

desired 99 bp insertion sequence was contained within each of the forward and 

reverse primers, in addition to a sequence corresponding to the desired insertion site 

(figure 5.3). 

 

 

Figure 5.3 Outline of SDM as an adaption of inverse PCR 

Alu insertions were introduced into pDB.His.MBP.STOP via an adapted inverse PCR 

method. (A) Forward and reverse primers were designed to each contain half of the desired 

99 bp insertion sequence and a sequence matching the desired insertion site and (B) were 

annealed, extended around the outside of the vector template and amplified to give a PCR 

product containing the full insertion. The PCR product was annealed with T4 ligase and 

treated with Dpn1 to remove parental plasmid prior to transformation. 

 

PCR was performed via mutagenesis by which primers were extended around the 

vector template to give a construct which was treated with T4 polynucleotide kinase 

(PNK) and ligated prior to Dpn1 digestion and subsequent transformation. Prior to 

sequencing, constructs were checked for the desired insertion via enzyme double 

digests. Samples were cut with restriction enzymes and analysed on a 1% agarose 

gel to observe digestion products of successful and unsuccessful mutagenesis 

reactions. A difference of 99 bp was observed between digestion products (figure 

5.4). Samples which showed the correct digestion product were sequenced for 

confirmation of successful mutagenesis. 
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Figure 5.4 Example of enzyme double digest (His6-MBP-T81) 

Double digest analysis of Alu insertions in MBP constructs were performed with enzymes 

corresponding to the site of insertion. Successful mutagenesis reactions gave rise to a 

digestion product 99 bp larger than those that were unsuccessful. Note: Non-Alu refers to 

where the band would be observed – all reactions were successful. 

 

5.2.1.2 Cloned MBP-Alu constructs 

A total of twelve MBP constructs (table 5.1) were cloned via site-directed 

mutagenesis. A STOP codon was introduced into pDB.His.MBP (figure 5.4) which 

served as the expression vector for wild-type (WT) MBP. 
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Figure 5.5 Vector map for pDB.His.MBP.STOP 

The plasmid encodes a His6 purification tag prior to the malE (MBP encoding) gene. A C-

terminal stop codon was introduced at the end of the gene. 
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Insertion Location Insertion Type Predicted Protein 
None None His6-MBP 
G6 Alu His6-MBP-G6 
T81 Alu His6-MBP-T81 
P126 Alu His6-MBP-P126 
D178 Alu His6-MBP-D178 
G253 Alu His6-MBP-G253 
A293 Alu His6-MBP-A293 
N333 Alu His6-MBP-N333 
T367 Alu His6-MBP-T367 

D178* Scrambled Alu His6-MBP-D178* 
G253* Scrambled Alu His6-MBP-G253* 
N333* Scrambled Alu His6-MBP-N333* 

Table 5.1 Cloned MBP constructs 

Constructs were cloned via site directed mutagenesis. The WT construct was cloned through 

introduction of a STOP codon to pDB.His.MBP. The resulting vector 

(pDB.His.MBP.STOP) was mutated to contain Alu insertions at eight different sites. Three 

of the same sites were also used to introduce scrambled Alu insertions. Note: * refers to 

scrambled Alu sequences. 

 

Eight Alu insertions of LECSGAISAHCNLRLLGSSDSPASASRVAGITG (SEA-

001) and three scrambled Alu insertions of the sequence 

IARLHGPSASNGTSSSTCAPDLGVGESALCISR (SEA-002) were cloned into 

the pDB.His.MBP.STOP vector. Constructs were named after the residue of MBP 

encoded directly after the insertion sequence. In the case of pDB.His.MBP.STOP, 

the polyhistidine insert, GSSHHHHHHGT, does not contribute to the numbering of 

residues. Insertions were generally confined to parts of the gene which resulted in 

expression as part of a loop within the proteins secondary structure, with the 

exception of D178/D178*, which was located within a β-sheet and A293 which was 

located within an α-helix (figure 5.6). 

Retrospective analysis of the tolerance of protein secondary structure in Chapter 2 

revealed that though the majority of Alu insertions did arise in coiled regions, many 

were tolerated within alpha helices and some were even tolerated within beta strands. 

This practical work discussed in the Chapter worked with MBP constructs in which 

Alu insertions were placed in coiled regions of the protein in most cases (exceptions: 

A293, D178) as it was theorised that these would be less likely to be detrimental to 

protein expression. With the observed tolerance of insertions in mind, it may have 

been possible to place more insertions in alpha helices, and maybe some beta strands, 
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within the protein structure and still have obtained successful expression. 

Bioinformatic analysis shows that Alu insertions never arose near known structural 

domains of protein, such as binding sites, and as such, it is likely that any insertion 

in the binding site would not be tolerated, as originally predicted. 

 

 

 

Figure 5.6 Locations of Alu insertions in the secondary structure of MBP 

A total of eight locations within MBP were chosen to host Alu insertions. Most were located 

within protein loops, with the exception of D178, which was located within a β-sheet and 

A293, which was located within an α-helix. Scrambled Alu sequences were also inserted at 

D178, G253 and N333 locations. (Note: numbering refers to the original MBP structure 

without a polyhistidine tag - the first lysine residue observed is K2).  
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5.3 Overexpression and purification of MBP-Alu protein mutants 
Wild-type MBP and MBP-Alu mutants were overexpressed in E. coli Rosetta cells 

via auto-induction at 25 °C for approximately 48 hours. Cells were lysed via 

sonication and purified either by manual nickel affinity chromatography coupled 

with automated size-exclusion chromatography (SEC), or by fast protein liquid 

chromatography (FPLC) using a double column (Crude HisTrap followed by SEC) 

method. Protein products were analysed by SDS-PAGE (figure 5.7) and MS (figure 

5.8) for purity and confirmation of the correct protein product. 
 

 

Figure 5.7 SDS-PAGE analysis of purified MBP variants 

Proteins were purified via nickel affinity and size exclusion chromatography and analysed 

via SDS-PAGE. Alu-containing MBP constructs were approximately 44.6 kDa and wild-

type MBP was approximately 41.4 kDa. Note: structures contained scrambled Alu 

sequences are marked with an Asterix (*). 

 

Analysis by mass spectrometry observed the correct masses (ca. 44.6 kDa) for MBP 

variants G6 through to N333* when taking into account cleavage of the N-terminal 

formylmethionine (- 160 Da). Oddly, wild-type (WT) MBP and the T367 variant of 

MBP had an observed mass approximately 112 Da lower than their calculated 

masses of 41.4 and 44.6 kDa, respectively, when taking into account the cleavage of 

the N-formylmethionine. As plasmid sequencing had confirmed the absence of any 

unwanted mutations, the loss in mass was attributed to small truncations. For the 

wild-type, this corresponded to the loss of an N-terminal glycine and a C-terminal 

threonine. For the T367 variant, the loss corresponded to a loss of the final Thr-Gly 

residues of the Alu insertion at the C-terminus. As the truncations were small, protein 

products were carried through to further analyses. 
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Figure 5.8 MS analysis of MBP constructs 

Wild-type MBP showed a mass of 41,270 kDa, 112 kDa less than the predicted 41.4 kDa, 

corresponding to a loss of an N-terminal glycine and a C-terminal threonine. Similarly, the 

112 kDa loss in mass observed for the T367 variant corresponded to a loss of the final Thr-

Gly residues of the C-terminal Alu insertion. MS for all other Alu-MBP constructs yielded 

the correct mass and looked similar to the spectra observed for the T81 variant. Full MS 

data for all variants can be found in Appendix 4. 
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5.4 The effect of a translated Alu on MBP overexpression, folding 

and stability 

5.4.1 Effect of Alu insertions on MBP overexpression  

Expression tests were performed in order to determine whether the introduction of 

an Alu insertion, and the respective site of Alu insertion, affected the overexpression 

levels on MBP variants. Cells were grown in LB, 5 mL of each cell solution was 

adjusted to OD600 = 0.75 ± 0.05 and cells were induced with IPTG and incubated 

overnight. Cells were pelleted, lysed and analysed via SDS-PAGE. SDS-PAGE 

samples were prepared with equal amounts of loading buffer and lysate then equal 

volumes of each sample were loaded on to the gel to maintain consistency between 

samples. SDS-PAGE gels were stained with Coomassie blue and analysed via 

densitometry (figure 5.9). 

 

 

Figure 5.9 Densitometric analysis of MBP variant overexpression 

(A) D178, N333 and T367 variants showed similar overexpression to wild-type MBP. All 

other variants were overexpressed at lower levels. (B) There was no difference in the 

overexpression of scrambled and non-scrambled Alu variants of the D178 construct. Error 

bars are calculated from the standard deviation of three biological repeats. No statistical 

difference was found between any of the MBP variants and the control (p < 0.05). Note: 

constructs marked with an Asterix (*) contain scrambled Alu sequences.  

 

Insertions at D178, N333 and T367 sites made very little difference to the 

overexpression of MBP. Insertions at all other sites led to reduced overexpression. 

In five of eight cases, significant reduction in overexpression was observed. This 

result was further confirmed during large scale over expression (1 L) by which large 
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amounts of WT, D178 and T367 variants were obtained at a concentration of > 1.0 

mM at volumes exceeding 1 mL. 1 L overexpression of other MBP variants yielded 

purified protein products of < 500 µM at lower volumes. In particular, only 100 µL 

of 25 µM A293 was obtained from 1 L of media. Reduced overexpression with the 

A293 variant was expected due to the insertion being located in an α-helix. As a 

reduction in overexpression was not observed in all cases, it was likely that the 

difference was due to the location of the insertion and was independent of the 

insertion sequence. In order to confirm this hypothesis, scrambled variants of D178, 

G253, and N333 were analysed. Unfortunately, overexpression of G253 and N333 

variants was too weak to be studied under these conditions. However, minimal 

change in overexpression between D178 and D178* MBP variants confirmed that 

changes in overexpression were sequence independent. 

5.4.2 Folding and stability analysis through circular dichroism 

Circular dichroism is a biophysical technique which can be used to predict the 

secondary structure of proteins through the linear combination of absorption 

measurements between 180 and 260 nm wavelengths. In combination with a 

temperature gradient, it can also be used to predict the melting temperature (Tm) of 

a given protein sample and hence, predict thermal stability. MBP variants were 

analysed via CD to primarily, predict any distinct secondary structure attributed to 

Alu insertions and secondarily, to determine the effect of Alu insertions on the 

thermal stability of proteins. 

5.4.2.1 Circular dichroism 

Circular dichroism (CD) is an established method for the prediction of protein 

conformation and associated conformational changes in solution.245 It refers to 

differential absorption of the left-handed (counter-clockwise, L) and right-handed 

(clockwise, R) circularly polarised components of plane polarised light.246 

Normally, the magnitudes of L and R circularly polarised light are equal. However, 

upon passage of light through a sample which possesses chirality (e.g. a protein), the 

absorbance magnitudes of L and R are no longer equal, and a CD signal is 

observed.247 

CD spectra are obtained by plotting the ellipticity (θ, °) as a function of wavelength 

(λ, nm) which generally spans a range of approximately 180 – 260 nm, where 

possible.248 The CD spectra obtained from protein samples primarily arise from the 
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far-UV absorption of the amide backbone.249 Three distinct regions in the CD spectra 

of proteins can be attributed to secondary structure.250 Two clear negative 

absorptions can be observed at approximately 222 nm and 208 nm, which 

correspond to α-helix folding. These arise due to n → π* electron transitions of the 

amide bond. The third absorption is an intense positive absorption at approximately 

192 nm, arising as a result of π → π* electron transitions and corresponding to β-

sheet folding.251 These β-sheet-associated absorptions also overlap with negative 

random coil-associated absorptions at approximately 198 nm. 

Protein samples consist of a mixture of all three structural elements, the ratio of 

which varies between proteins and protein states (e.g. ligand-bound). CD data 

analysis assumes that the CD spectrum of a protein is a linear combination of each 

of its secondary structural elements. As a result, three main regions of a proteins CD 

spectra are studied in relation to one another to predict the percentage of α-helical, 

β-sheet and random coil character (figure 5.10). 

 

 

Figure 5.10 The linear combination of secondary elements in protein CD 

Protein CD assumes that the spectra of a given protein sample is the linear combination of 

the protein’s secondary structural elements; α-helix, β-sheet and random coil. The 

comparison of three distinct absorptions (192 nm, 208 nm and 222 nm) with respect to one 

another allows for prediction of the secondary structure of a sample. 
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Degradation of a protein sample results in a decrease in absorption. Generally, this 

leads to a decrease in α-helical and β-sheet CD signals. The introduction of a 

temperature gradient to CD experiments and the subsequent measurement of the 

change in secondary character can be used to predict thermal stability of a protein 

sample.252 A plot of the concentration of folded versus unfolded protein as a function 

of temperature reveals the calculated melting point (Tm, °C) of a given sample and 

as a result, gives an indication of its thermal stability. 

5.4.2.2 The effect of a translated Alu on the secondary structure of MBP 

CD spectra of wild-type MBP (WT), Alu-containing variants and scrambled Alu 

variants were obtained using a Chirascan™ CD spectrometer (Applied Photophysics) 

available through the Astbury Centre of Structural Molecular Biology (University 

of Leeds). Protein samples (0.2 mg/mL) in 50 mM sodium phosphate (pH 7.5) were 

scanned over a wavelength range of 180 – 260 nm. Comparison of the resultant CD 

spectra for each variant showed minimal difference from the wild-type spectra. This 

indicated no overt effect of the Alu insertion on the secondary structure of MBP and 

also indicated that the Alu sequence itself was unlikely to present its own distinct 

secondary structure. It also confirmed correct protein folding of each of the MBP-

Alu variants in most cases. 

In general, little to no change in θ222/θ208 ratio was observed for most Alu variants. 

The A293 α-helix appeared to have the most effect on secondary character. A slight 

decrease in the θ222/θ208 ratio from 1.22 (WT) to 1.05 (A293) was observed, which 

would be expected upon direct disruption of α-helical character (i.e. insertion of an 

predominantly unstructured Alu sequence into the centre of an α-helix). 

Interestingly, insertion of an Alu sequence at the G253 position also showed a 

decrease in θ222/θ208 from 1.22 to 1.05, similar to that observed for the A293 α-helical 

insertion. However, introduction of a scrambled Alu at G253 positions seemingly 

led to a further reduction in θ222/θ208 to 1.00 (figure 5.11). This indicated that simple 

insertion of a sequence at this position was enough to partially disrupt its α-helical 

character. It should be noted that the effect was not sequence specific. 
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Figure 5.11 Observed changes in θ222/θ208 for MBP variants A293, G253 and G253* 

Generally, most CD spectra observed were similar to that of wild-type MBP with minimal 

changes of up to 0.08 in θ222/θ208 ratio. Insertion of an Alu sequence at position A293, located 

within an α-helix, showed an expected change in α-helical character. Insertions of both Alu and 

scrambled Alu sequences at the G253 position result in a similar change in θ222/θ208. Note: 

constructs marked with an Asterix (*) contained scrambled Alu sequences. 

 

Though CDNN (Circular Dichroism analysis using Neural Networks; Böhm 1997) 

and DichroWeb software253 were used in an attempt to predict secondary structure, 

both programmes provided inaccurate analysis of α-helical content of MBP variants, 

including wild-type MBP, when compared with structural data recorded in the 

Protein Data Bank (PDB). As a result, any predictions made using either software 

were disregarded. 
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5.4.3 The effect of a translated Alu on the thermal stability on MBP 

Two methods were used to determine the thermal stability of MBP variants and, by 

extension, any changes in stability upon insertion of Alu sequences. Melting points 

of all variants were determined using CD. Differential scanning calorimetry (DSC) 

of the wild-type and D178 variant was performed as a means to determine the 

accuracy of CD Tm calculations. 

5.4.3.1 Melting point analysis using CD 

Melting point analysis of MBP variants was performed using Global3 software 

(Applied Photophysics). CD spectra of protein samples were obtained over a 

temperature gradient of 20 – 70 °C. Subsequently, folded (%) and unfolded (%) 

protein was plotted against temperature to give an intercept equivalent to the Tm of 

the sample. However, the Tm of all Alu-containing MBP variants were determined 

to be higher than that of the wild-type protein. Further examination of CD data at 20 

°C and 70 °C showed that even at 70 °C, proteins were not fully unfolded (figure 

5.12). Even with the A293 MBP variant, which would be expected to be destabilised 

due to the location of the insertion within a protein α-helix, α-helical character is 

still observed at 70 °C. As Global3 assumes that the end point of the temperature 

gradient, in this case 70 °C, corresponds to a fully unfolded protein (with no α-helical 

character), Tm values calculated using this software were dismissed. 

 

 

Figure 5.12 CD spectra for folded and unfolded WT and A293 variants 

At 70 °C, proteins are still observed to have some α-helical character and thus, accurate Tm 

determination, which assumes full unfolding at the end of the temperature gradient, was not 

possible with CD data.  
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5.4.3.2 Thermal stability determination using DSC 

Since CD data was insufficient to determine melting point, WT and D178 variants 

were analysed via differential scanning calorimetry (DSC) as a means to measure 

any difference in thermal stability upon Alu insertion. D178 was used as a 

comparison to wild-type MBP as this insertion lies at the end of a distinct secondary 

structure (β-sheet) within MBP and as such, would be expected to exhibit a decrease 

in thermal stability. 

DSC is a biophysical method which can be used to assess the thermal stability of 

proteins upon mutation,254 ligand-binding255 and folding.256 It measures the heat 

flow applied to a sample at constant ΔT/Δt. Upon melting, a sample requires the 

application of more heat in order to maintain constant ΔT/Δt and to accommodate 

the endothermic state change and as a result, the heat capacity (Cp) is higher at this 

point. Measuring Cp as a function of temperature results in a sharp peak at the 

samples melting point. For a more thermally stable protein, the maximum of this 

peak would be observed at a higher temperature than a less thermally stable sample. 

In contrast, the exothermic aggregation of protein results in a dip in Cp.257 

DSC was performed on 1.0 mg/mL protein samples in a buffer of 15 mM phosphate, 

50 mM NaCl at pH 7.2. The predicted result was that wild-type MBP should yield a 

higher Tm and also a more stable re-folding pattern when cooled before the point of 

aggregation, when compared to D178. Heating of samples from 10 – 90 °C, past the 

point of aggregation, revealed a slightly lower Tm for D178 of approximately 50 °C 

when compared to wild-type MBP with a Tm of approximately 53 °C. However, both 

variants had a similar aggregation temperature at around 75 °C (figure 5.13). 
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Figure 5.13 DSC analysis of WT and D178 MBP variants 

Scanning between 10 and 90 °C, past the point of protein aggregation showed D178 to have 

a slightly lower Tm (50 °C) than wild-type MBP (53 °C). Both protein variants showed a 

similar aggregation temperature at approximately 75 °C. 

 

Melting points obtained through DSC lay closer to published Tm values for MBP.258, 

259 It should be noted that the quoted Tm for maltose binding protein is approximately 

63.4 °C and the values measured in this study are approximately 10 °C less than this. 

However, this may be due to the introduction of the cleavable N-terminal 

polyhistidine tag into the structure which has been observed to decrease thermal 

stability with other proteins.260 

A second experiment was performed to monitor how well each protein re-folded 

after melting. This involved the heating and cooling of each sample between 10 and 

70 °C with three repetitions. The highest temperature was 70 °C so as to refold the 

protein prior to protein aggregation. With each round of refolding a protein tends to 

become more destabilised and hence, it unfolds more easily requiring less energy to 

maintain constant ΔT/Δt. Figure 5.18 shows that the D178 scaffold refolds less 

efficiently than the wild-type. This indicates that the Alu thermally destabilises the 

protein, once again contradicting the Tm values obtained from CD and following the 

expected observation for the insertion. As DSC was only performed on two MBP 

variants and not the scrambled D178* variant, it cannot be determined whether it is 

simply the insertion the destabilises the protein or the actual sequence that has an 
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effect. However, these results did lead to the dismissal of the conclusions drawn 

from Tm data obtained through CD. 

 

 

Figure 5.14 DSC analysis of wild-type and D178 re-folding 

Protein samples were heated and cooled between 10 and 70 °C three times. A higher Cp was 

observed for wild-type MBP over D178 in addition to a higher Tm indicating better thermal 

stability. The wild-type protein was also observed to refold more efficiently. 

 

5.4.3.3 Conclusions on Alu effect on the expression, folding and stability of MBP 

The effect of Alu insertions on the thermal stability of MBP was probed using CD 

and DSC. Analysis of melting points (Tm) via CD were dismissed as Tm calculation 

relied on the assumption that full unfolding occurs at the top end (70 °C) of the 

temperature gradient, which was not achieved. DSC was performed on wild-type 

MBP and the D178 variant. As the Alu insertion in the D178 variant lies at the edge 

of a β-sheet, this would be likely to destabilise the protein and thus, have a lower 

Tm. Through DSC analysis, a slight decrease in Tm of approximately 3 °C was 

observed; a result which agreed much more with what was expected. A predicted Tm 

value for wild-type MBP, only 10 °C lower than those quoted in the literature, was 

also observed which could be partially attributed to the presence of a cleavable 

polyhistidine tag at the N-terminus of our MBP scaffold. Upon thermal unfolding 

and re-folding of the protein, more efficient refolding was also observed for the wild-

type, further indicating that the Alu insertion slightly decreases thermal stability. 

DSC does seem to indicate that a slight decrease in thermal stability is observed 

upon insertion of an Alu sequence into MBP; however, it is possible that this is due 

to the size and/or locations of the insertion as opposed to the Alu sequence itself.  



Chapter 5 

 117 

5.5 Functional consequences of Alu insertions in MBP 

5.5.1 Using amylose purification to predict correct protein folding 

MBP has a binding affinity for amylose,261 and a higher binding affinity for maltose, 

as indicated by its name. 1 mg of each purified protein variant (Ni-NTA/SEC), was 

loaded onto an amylose column. Flow-through and wash fractions were collected 

prior to elution in buffer containing 10 mM maltose. The addition of maltose 

displaces amylose in the binding site of MBP and allows elution of bound protein. 

Elution fractions were collected, and all fractions were analysed via SDS-PAGE 

(figure 5.15). Correct folding of MBP variants would expect to see minimal/no 

protein elution in the flow-through and wash stages and elution of protein only upon 

the addition of maltose. Protein unfolding, or partial unfolding, would result in 

protein product observed in the wash phases of chromatography. 

 

 

Figure 5.15 Amylose purification of MBP variants 

MBP variants were purified via amylose column chromatography, utilising the binding 

interaction between amylose and MBP to predict correct protein folding. Bulk elution in 

wash phases (W) indicated that incorrect or disrupted protein folding had occurred, as 

observed by insertions at positions G253/*, A293 and N333/* (red). Bulk elution in the 

elution phases (E) indicated ligand binding and hence, correct protein folding as observed 

by wild-type MBP and insertions at G6 through D178* and T367. Note: constructs labelled 

with an Asterix (*) contained scrambled Alu sequences. 
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In most cases, proteins were eluted from the column upon addition of maltose and 

therefore, the bulk of the protein sample was observed in E1/E2 fractions. In the case 

of WT, G6, T81 and D178 insertions minor elution in the first wash (W1) was 

observed; however, this is likely as result of oversaturation of the amylose resin. 

Interestingly, the insertion at D178, located at the end of a β-sheet, does not seem to 

have any effect on protein folding. However, the insertion at A293, within an α-

helix, does result in protein misfolding. In addition to this, insertions at the G253 

and N333 positions also disrupts amylose binding function, which may indicate 

incorrect folding. 

Previous studies, from other groups, into the structure of maltose-binding protein262, 

263, 264 revealed that its structure consists of two domains (I and II), attributed to the 

proteins N- and C- terminus, respectively, bridged by three short loops (3 – 5 

residues) which act as a hinge (figure 5.16). 
 

 

Figure 5.16 Insertion sites with respect to MBP domains and hinge 

The two domains of MBP, I (N-terminal; purple) and II, (C-terminal; green) are hinged by 

three short loops ranging from 3 – 5 residues in length (yellow). The hinges contribute to 

the binding of MBP to ligands, such as maltose (light blue), and insertions affecting these 

loops may contribute to loss of binding affinity. Affected insertion sites are highlighted in 

pink. Structure adapted from PDB (1ANF). 
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As these loops contribute to the binding of MBP to its ligands, it is feasible to assume 

that insertions affecting this hinge would affect the binding of MBP variants to 

amylose. From this perspective, judging from the locations of our insertions, the 

only ones that may interfere with this hinge are N333/*, which lie above the loops 

and close to the maltose binding site. It has previously been reported than mutations 

at N333 may disrupt the packing of the interface between MBP domains I and II 

which is formed when MBP is in its open conformation.265 As a result, the lack of 

binding observed for N333/* variants to amylose resin is likely attributed to the 

simple presence of an insertion at this site and not the nature of the insertion. 

Additionally, the lack of binding observed for the insertion at A293, within a protein 

α-helix, is unsurprising as this insertion was predicted to disrupt function. 

Interest lies in the result that the insertion at G253, which lies in an outer loop of 

domain II of MBP, does not bind directly to amylose and therefore, loss of binding 

affinity indicates incorrect protein folding. This is concurrent with the previously 

observed reduction in protein overexpression and shift in α-helical character. It is 

yet more interesting that the insertion of a scrambled Alu at the same site, seems to 

slightly restore binding. For the G253 Alu variant, bulk protein is observed to elute 

from amylose resin almost immediately in protein wash phases. In contrast, for the 

G253* scrambled variants, the protein elutes evenly throughout wash and elution 

phases indicating that some weak binding may have occurred, though binding has 

not been fully restored. This result implies that the Alu sequence itself may have a 

small effect on protein folding in combination with insertion location. 

In most cases, the insertion of an Alu sequence in MBP does not appear to have an 

effect on the binding of the protein to amylose. This is surprising in the case of the 

D178 insertion, located at the end of a β-sheet, which would be expected to disrupt 

folding. In contrast, the A293 insertion, within an α-helix, disrupts protein folding 

as expected. 

Two other insertion sites were observed to disrupt protein folding for both the Alu 

and scrambled variants; G253 and N333. The N333 site has previously been reported 

to be involved in forming the open conformation of MBP and hence, it is not 

surprising that an insertion at this site, especially such a large one, would affect 

binding to amylose. In addition, this insertion lies close to the N333 binding site and 

so it is possible that the large insertion loop may cause steric hindrance at the binding 

site. There was no observed improvement to binding when substituting the Alu for 
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its scrambled variant (N333*). An interesting result was observed for insertions at 

G253, which lies on the outside on domain II of MBP. An Alu insertion at this site 

results in no binding to the amylose column and hence, predicts protein misfolding. 

More interestingly, substitution of the Alu sequence for its scrambled variant 

(G253*) resulted in a slight improvement in binding, though binding was not 

restored in full. This indicated that though insertion site may be the primary factor 

contributing to effect of Alu insertions, the sequence itself may also contribute to 

changes in protein folding and function. 

5.5.2 Analysis of protein function using ITC 

To further probe the effect of Alu insertions on protein function, the binding of wild-

type MBP and four variants; G6 (N-terminal insertion), D178/* (internal, edge of β-

sheet insertion) and T367 (C-terminal insertion), was analysed via isothermal 

titration calorimetry (ITC; discussed in Chapter 3). Binding interactions between 

protein variants and three MBP substrates; D-(+)-maltose, maltotriose and β-

cyclodextrin (figure 5.17) were analysed. Ideally, ITC experiments with G253/* and 

N333/* would have been performed; however, due to problems which arose in the 

overexpression and purification of sufficient amounts of these MBP variants for ITC 

analysis, this was not possible. 
 

 

Figure 5.17 Ligands of MBP 

Three ligands of MBP were used in binding studies; D-(+)-maltose, maltotriose and β-

cyclodextrin.  
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5.5.2.1 Investigating the effect of a translated Alu on the binding of MBP to its 

ligands 

Binding curves for our wild-type MBP variant with D-(+)-maltose, maltotriose and 

β-cyclodextrin were obtained so as to observe whether our variant gave Kd values 

similar to those in literature and hence, could be used as a suitable comparison. It 

should be noted that literature values for Kd of MBP to maltose ranges between 2.0 

and 4.0 µM.266, 267 The Kd for maltotriose is quoted as 0.15 – 0.4 µM268 and 1.8 µM 

for β-cyclodextrin. Our ITC experiments observed values for binding of ligands to 

wild-type MBP of 8.6 ± 3.8 µM, 5.6 ± 1.3 µM and 4.0 ± 0.3 µM, respectively (figure 

5.18). Though our values differ slightly from those quoted in literature, differences 

are relatively small and be attributed to a difference in buffer systems. 
 

 

Figure 5.18 ITC curves for wild-type MBP and sugars 

ITC curves gave Kd values for wild-type MBP with D-(+)-maltose, maltotriose, β-

cyclodextrin of 8.6 µM, 5.6 µM and 4.0 µM, respectively. These values are in concurrence 

with those quoted in literature. 

 

In the same way, binding affinity (Kd) of sugars to G6, D178 and T367 variants was 

measured as a way to represent N-terminal, internal and C-terminal insertions, 

respectively (table 5.2). For the most part, no significant change in Kd was observed 

for variants, with most differences being no more than 5.0 µM away from the wild-
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type value. In addition, there was no change in the stoichiometry of binding; N = 1 

for D-(+)-maltose and β-cyclodextrin and N = 2 for maltotriose. One exception to 

this lay in the binding of T367 to D-(+)-maltose with a Kd of 23.0 µM, compared to 

1.6 µM when bound with wild-type. However, the large error on the fitting of this 

data is likely to be cause of this rather than a real change in binding affinity due to 

the insertion. The same can be said for the binding of maltotriose to the D178 variant 

from which outliers provided an error in the plotting of the curve in Sedphat. This 

change is slightly over a 10-fold decrease in binding. Insufficient data for D-(+)-

maltose to the G6 variant was obtained; however, as minimal changes in binding 

affinity were observed for this variant with maltotriose and β-cyclodextrin, the same 

result was assumed for binding to D-(+)-maltose. Binding curves for all ITC 

experiments can be found in Appendix 5. 

 

MBP Variants 
Kd (µM) 

D-(+)-maltose Maltotriose β-cyclodextrin 
WT 8.6 ± 3.8 5.3 ± 1.3 4.0 ± 0.3 
G6 - 2.9 ± 1.4 6.2 ± 2.1 

D178 4.6 ± 1.2 27.5 ± 21.9 5.2, 4.8 
T367 23.0 ± 15.4 2.8 ± 1.2 4.9 ± 0.8 

Table 5.2 Kd values for binding of MBP variants to sugars 

Kd values for binding of MBP variants to sugars calculated from ITC. The result highlighted 

in orange shows a change from exothermic to endothermic binding, resulting in two Kd 

values. 

 

A second, more interesting, change is observed in the D178 insertion. Instead of the 

usual S-shaped exothermic binding curve observed for binding to β-cyclodextrin, an 

endothermic curve is observed (figure 5.19). Usually, this kind of binding curve is 

attributed to a conformational change of the protein in order to accommodate ligand 

binding. This insertion does lie relatively close to the ligand binding site of MBP 

and as such it is understandable that such a large insertion would affect binding. Due 

to the nature of the observed curve and the decrease in binding with increasing ligand 

size, it is proposed that an insertion at this location favours the closed conformation. 

Thus, the more open conformation required for the binding of larger ligands is 

unfavourable and an endothermic, two-step interaction is observed. ITC with the 

scrambled Alu variant, D178*, and β-cyclodextrin was performed in order to analyse 
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whether it was the insertion site or the insertion sequence itself that resulted in this 

change in binding. The scrambled Alu variant yielded a similar binding curve 

indicating that the change in binding was sequence independent and was solely 

related to the site at which the insertion occurred. 

 

 

Figure 5.19 ITC binding curve for β-cyclodextrin with His6-MBP-WT and His6-MBP-

D178 

The curve showed an endothermic binding very dissimilar for the exothermic S-shaped 

curve observed for wild-type MBP with β-cyclodextrin. The switch in binding was likely 

attributed to a conformational change which is undergone in order for the protein variant to 

accommodate ligand binding. 

 

5.5.2.2 Conclusions from ITC 

Overall, ITC revealed that the insertion of Alu elements into MBP had minimal 

effect on ligand binding with D-(+)-maltose, maltotriose and β-cyclodextrin. An 

exception to this was observed with the D178 insertion site with β-cyclodextrin, 

which resulted in a switch from exothermic to endothermic binding, usually 

attributed to conformational change; however, the same switch was observed with 

the scrambled Alu variant, D178*. This indicated that it was the insertion site that 

was the primary cause of the change in binding and the sequence of insertion was 

relatively unimportant. Unfortunately, the most interesting insertions at G253 and 
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N333 locations could not be studied by ITC due to problems in overexpressing and 

purifying sufficient amounts of protein. 

As bioinformatic analysis showed that Alu insertions generally do not occur 

naturally near known binding sites of structural motifs, it is unsurprising that the 

insertion at N333, near the hinge of MBP was disruptive to binding. 

5.6 Conclusions on the effect of translated Alu elements in MBP 
Wild-type MBP, eight Alu-containing MBP variants and three scrambled Alu MBP 

variants were sub-cloned and successfully overexpressed and purified from E. coli. 

A summary of the effects of Alu insertions on the overexpression, structure and 

function of MBP can be found in table 5.2.  

 

Variant Insert location Effect on 
expression 

Effect on 
binding Quantitative binding 

WT None None None N/A 

G6 N-terminal Reduction None Minimal changes to Kd 
(all ligands) 

T81 Loop Reduction None  
P126 Loop None None  

D178 β-strand None None 
Higher Kd 

(D-(+)-maltose and maltriose) 
Endothermic binding 

(β-cyclodextrin) 

D178* β -strand Reduction None Endothermic binding 
(β-cyclodextrin) 

G253 Loop Reduction Loss of binding N/A 
G253* Loop Reduction Loss of binding N/A 
A293 α-helix Reduction Loss of binding N/A 
N333 Potential hinge region Reduction Loss of binding N/A 
N333* Potential hinge region Reduction Loss of binding N/A 

T367 C-terminal None None Minimal changes to Kd 
(all ligands) 

Table 5.2 Summary of changes to MBP overexpression and binding upon Alu insertion 

Effects on expression were determined via densitometry experiments. Effects on binding 

were determined by analysis of binding to an amylose column, with quantitative analysis of 

some constructs performed via ITC. Note: constructs marked with an Asterix (*) contain 

scrambled Alu sequences. 
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Small scale overexpression tests were performed which showed that insertion of Alu 

sequences within MBP generally lowered overexpression levels in E. coli. However, 

replacement of Alu sequences with scrambled sequences did not restore levels of 

overexpression and therefore, any loss was attributed to insertion site and not 

insertion sequence. A reduced level of overexpression was also observed using 1 L 

media, with much lower protein yields being obtained in the majority of cases 

(excluding G6, D178 and T367 insertions). 

Quick analysis of protein binding to amylose resin showed that most Alu-containing 

MBP variants folded correctly and hence, bound to amylose. Interestingly, this also 

included the D178 insertion which was located at the edge of a β-sheet. The A293 

insertion, located within an α-helix, did not bind to amylose and, as predicted, was 

not correctly folded. In addition to A293, insertions at G253 and N333 also showed 

no binding. Insertion of a scrambled Alu at the N333 location did not result in 

restoration of binding. As previous reports suggested that the N333 location may 

affect the three-loop hinge associated with open conformation of MBP, this result 

was not surprising. However, substitution of the Alu sequence for a scrambled 

variant at G253 seemed to partially, though not fully, restore binding. As this 

insertion was located on the outside of the protein and not in the vicinity of the 

binding site, it was interesting that this would have such a large effect and that the 

sequence itself seemed to contribute to that effect as opposed to just insertion 

location. 

Study of MBP variants by CD revealed that there was no definitive secondary 

structure to the Alu insertion. Information on thermal stability of MBP variants 

obtained from CD was inconclusive; however, results from DSC saw a slight 

decrease in thermal stability when comparing the D178 insertion with wild-type 

MBP. Due to the insertion size (33 residues) this is not unexpected and cannot be 

attributed to the Alu sequence itself. 

Isothermal titration calorimetry of wild-type MBP and G6, D178/* and T367 

variants revealed that, in most cases, minimal changes to the binding of D-(+)-

maltose, maltotriose and β-cyclodextrin were observed in the presence of Alu 

insertions. The exception to this was the binding of the D178 variant which had a 

lower affinity for all ligands, except maltose. Titration with β-cyclodextrin resulted 

in a switch from exothermic to endothermic binding, most likely attributed to the 

open conformation becoming unfavourable with this insertion site. The same switch 
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was observed upon the analysis of β-cyclodextrin binding to the scrambled Alu 

variant, D178*, indicating that the location of the insertion was the primary cause of 

the switch and that the observed result was sequence independent. 

Overall, it appears that the sequence of the Alu insertion has minimal to no effect on 

the structure and function of proteins and any effects observed lies primarily with 

the location of the insertion independent of the insertion sequence. As such, it is 

likely that any effect that Alu sequences have upon proteins will be as a secondary 

effect in combination with a detrimental insertion site. It is likely that in most cases, 

Alu insertions in proteins will be mostly harmless unless the site in which they are 

inserted has an important role in structure or function. This is not to say that the 

insertion would not result in a disease-causing protein isoform; however, this 

probably occurs in the minority of cases. 
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Chapter 6  
Assessing translation of Alu mRNAs in human cell lines 

and primary cells by polysome profiling 

Overview 
A combination of polysome profiling, reverse transcription and qPCR was used to 

assess the number of ribosomes attached to mRNAs of interest to determine the 

distribution of individual transcripts across the different translation complexes. Alu-

containing and non-Alu-containing transcripts of BCAS4 and NEK4 were analysed 

and compared between two cell types; one cancer cell line, SH-SY5Y, and one non-

cancer set of primary cells, NP-1. A second set of primary cancer cells was also 

analysed via polysome profiling, but transcript analysis was not performed. 

This work had two mains aims: The first was to determine whether a difference in 

translation could be observed between Alu- and non-Alu-containing transcripts in a 

single cell type. The second was to observe whether a difference in translation was 

observed between ‘cancer’ and ‘non-cancer’ cell types indicating translation bias of 

one transcript over the other. 

6.1 Polysome profiling of human cells 

6.1.1 Polysome profiling 

Modulation of protein levels occurs through a number of different mechanisms 

including, but not limited to, mRNA splicing, transport and translation.269 Of these, 

mRNA translation is the most energy consuming and uses over 50% of a cell’s 

energy.270 Translation, or more importantly, the dysregulation of translation has 

been associated with cancer271 and neurodegenerative disease272 and as such, it is an 

important research area in further understanding both the causes and treatments of 

such diseases. 
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Polysome profiling (figure 5.1) is a molecular biology technique used to assess 

translation levels and global translation, i.e. all the mRNA translated at a single time 

within a cell.273 It provides a means to measure the extent of active translation of 

transcripts of interest through the separation of ribosome-associated mRNA via 

sedimentation through a sucrose gradient.274 

 

 

Figure 6.1 Outline of polysome profiling 

Cell were treated with cycloheximide to inhibit the elongation stage of translation, then 

treated with trypsin to enable harvesting. Cells were lysed in the presence of MgCl2 and 

RNase inhibitor to maintain RNA complexes and prevent RNA degradation (rRNA and 

mRNA), respectively. Cytoplasmic lysate was loaded onto a sucrose gradient (18 – 60%)275 

prior to ultracentrifugation, which separated mRNAs according to the number of ribosomes 

bound. Gradients were fractionated and a polysome profile was generated from absorbance 

readings at 254 nm. 
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The technique was performed by first inhibiting the second stage of translation, 

termed elongation, by treatment of cells with cycloheximide which binds to the 60S 

ribosomal subunit and effectively ‘freezes’ translation at its elongation step.276, 277 It 

is important to halt the process at the elongation step as this allows for mRNA 

splicing to have occurred. Cells were lysed and RNA-ribosome complexes were 

separated by ultracentrifugation through a sucrose gradient based on their 

sedimentation.278 Subsequent fractionation of centrifuged gradients collected 

mRNA according to its ribosomal-association, with free mRNA and ribosomal 

subunits present in lower percentage sucrose fractions and increasingly larger 

subunits present in higher percentage sucrose fractions. This was mapped through 

absorbance at 254 nm, generating a polysome profile.279  

In these experiments, RNA fractions were precipitated, DNase treated and purified, 

in this case via phenol/chloroform extraction and ethanol precipitation, prior to 

analysis. Reverse-transcription was performed to obtain cDNA for use in real-time 

quantitative PCR (qPCR). 

6.1.2 Cell lines 

Translation of Alu and non-Alu mRNA was initially planned to be assessed in three 

cell types; SH-SY5Y, GMB1 and NP-1 to determine any difference in translation of 

each transcript in ‘cancer’ and ‘non-cancerous’ cells. SH-SY5Y, a neuroblastoma 

cell line derived from a bone marrow biopsy, was obtained from the Aspden group 

(Faculty of Biological Sciences, University of Leeds).280 GBM1 (glioblastoma 

multiforme), primary glioblastoma cells obtained from patients undergoing surgery 

at Stanford Medical Centre,281 and NP-1, primary brain cells obtained during surgery 

on epilepsy patients at Stanford Medical Centre, were obtained from the Wurdak 

group (St. James’ Hospital, University of Leeds).282 

For the purpose of this work, SH-SY5Y and GMB1 samples are referred to as 

‘cancerous’ and NP-1 samples are referred to as ‘non-cancerous’ thus, giving a 

comparison between cancer and non-cancer cell-derived mRNA. 

The minimum number of cells which could be used for reasonable detection was 

determined with SH-SY5Y cells. Samples containing 3 × 106, 5 × 106, 6 × 106, 7 × 

106 and 9 × 106 were fractionated and analysed for suitable absorbance and polysome 

separation at a reasonable detection limit (above 0.1). All samples yielded good 

separation up to 6 + ribosomes. The resulting RNA obtained from fractionation of 
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the 5 × 106 cell sample was too minimal to be detected via absorbance at 260/280 

nm. Therefore, it was determined that samples of more than 5 ×106 cells would be 

needed, and ideally 1 ×107 to 2 ×107 cells would be needed in order to perform 

analyses on multiple transcript targets via qPCR. 

6.1.3 Target transcripts 

Initially, two transcripts for each of ASCC1, BCAS4 and NEK4 were chosen as 

targets for qPCR analysis to compare the translation level of the Alu transcript of 

each gene in comparison to the non-Alu transcript.  

As Alu and non-Alu variants of mRNA transcripts differ through their alternative 

splicing patterns, primers for BCAS4 and NEK4 were designed using Ensembl to 

match exons specific to the Alu and non-Alu transcripts so as to amplify 100 – 200 

bp corresponding to each variant individually. 

6.1.4 Polysome graphs for cells 

Polysome profiling was performed on each cell type; SH-SY5Y, GBM1 and NP-1. 

For SH-SY5Y and NP-1 samples, 2 × 107 and 2.2 × 107 cells, respectively, were 

used for each of three replicate gradients. Each cell type yielded three near-identical 

polysome profiles. A representative profile for each can be observed in figure 6.2 – 

all polysome profiles obtained can be found in Appendix 6. SH-SY5Y appeared as 

previously observed by the Aspden group. To enable precise separation of ribosome-

mRNA complexes across the gradient, 0.5 mL fractions were generated (table 6.1). 
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Figure 6.2 Polysome graphs for SH-SY5Y and NP-1 cells 

Polysome graphs obtained for harvested SH-SY5Y and NP-1 cells. Polysome graphs were 

obtained in triplicate. All polysome graphs obtained can be found in Appendix 6. Ascending 

ribosome-association can be observed for both samples, beginning at approximately 38 mm 

along the gradient length. 

 

As a result of the small fractionation volume, each fraction contained a majority of 

mRNA bound by a specific number of ribosomes (e.g. one ribosome, two ribosomes, 

etc.). This was true up to the association of approximately six ribosomes at which 

point peak absorbance became convoluted. Fractions past this point were labelled as 

being associated to ‘6 +’ ribosomes. 
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Fraction Distance (mm) Association 
1 – 4 0 – 14.2 Free mRNA 
5 – 6 14.2 – 21.3 40S 

7 21.3 – 24.8 60S 
8 24.8 – 28.4 80S 
9 28.4 – 31.9 < 1 ribosome 

10 31.9 – 35.5 1 ribosome 
11 35.5 – 39.0 2 ribosomes 
12 39.0 – 42.6 3 ribosomes 
13 42.6 – 46.1 4 ribosomes 
14 46.1 – 49.7 5 ribosomes 

15 - 21 49.7 – 78.6 6+ ribosomes 

Table 6.1 Distribution of ribosome-bound mRNA across gradient fractions in SH-

SY5Y and NP-1 samples 

 

Unfortunately, the GBM1 cells did not reach suitable confluence during cell culture. 

Significant efforts were made to recover GBM1 cells to a healthy confluence, 

however, minimal progress was made. Nonetheless, approximately 0.7 × 106 cells 

were harvested, loaded onto a single gradient in a minimal amount of lysis buffer 

and fractionated, measuring absorbance at a more sensitive detection limit of 0.05 

(figure 6.3). 

The polysome graph for GBM1 cells required a more sensitive detection limit than 

those for SH-SY5Y and NP-1 due to the low number of cells used. The 80S peak 

(ca. 28 mm) was significantly smaller than for SH-SY5Y or NP1. Though clear 

polysome signals can be observed, no efforts were made to reverse transcribe GBM1 

mRNA samples. Previous work had determined that sample sizes of less than 3 × 

106 cells did not yield sufficient mRNA for qPCR analysis. However, mRNA was 

precipitated with isopropanol and stored for potential future work with higher 

sensitivity assays. Unfortunately, as no GBM1 mRNA samples were obtained, a 

direct comparison of ‘cancerous’ and ‘non-cancerous’ brain cells could not be made. 

The fact that both NP-1 and GBM1 cells were obtained from brain samples would 

have made a better comparison than with SH-SY5Y samples that were obtained from 

bone marrow. Nonetheless, a ‘cancerous’ and ‘non-cancerous’ sample was still 

obtained and analyses were carried out on these. 

Though polysome profiling has been performed with primary tissue samples 

before,283 there are no reports of use with these cells lines. The NP-1 cells used were 

culture as a ‘healthy’ cell culture by the Wurdak group. With these cell types, it is 
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possible to begin comparing translation between them; however, they are not ideal. 

For more accurate conclusions to be drawn, much more information on the cell 

origin would be required, such as age, gender and ethnicity. This work provides a 

basis for further research in this area. 

 

 

Figure 6.3 Polysome graph for GMB1 

Polysomes can be observed and were fractionated accordingly. The absorbance detection 

limit for GBM1 cells was set at 10% of that used for NP1 and SH-SY5Y cells. Previous 

experiments indicated that insufficient mRNA would be obtained from this number of cells 

(0.7 × 106) for qPCR analysis. 

 

Fractions from SH-SY5Y (‘cancerous’) and NP-1 (‘non-cancerous’) samples were 

DNase treated and RNA was extracted using acidic phenol/chloroform, followed by 

ethanol precipitation. Reverse transcription was performed to yielded cDNA for use 

in qPCR. 

6.2 Comparing the translation of Alu: non-Alu transcripts within 

cells 
For the comparison of Alu and non-Alu mRNA translation in NP-1 and SH-SY5Y 

cells, primers for Alu (AC) and non-Alu-containing (nAC) mRNAs for BCAS4 and 

NEK4 were designed. Translation of NEK4 nAC mRNA was insufficient to obtain 

a suitable standard curve. A suitable standard curve was defined as having an R2 of 

0.9 – 1.0 upon fitting and a primer efficiency of 100 – 112%. As a result, only 
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BCAS4 AC and nAC transcripts could be compared to one another at the polysome 

level in these cell samples. Standard curves for all qPCR analysis can be found in 

Appendix 6. 

6.2.1 Translation of NEK4 AC mRNA in SH-SY5Y and NP-1 cells 

Due to the low level of translation of NEK4 nAC mRNA in both NP-1 and SH-

SY5Y samples, a suitable standard curve was not obtained to quantify translation of 

this transcript at the polysome level. However, quantification was possible for the 

AC transcript in both cell types. NEK4 AC translation in SH-SY5Y cells (figure 6.4) 

showed approximately 50% of mRNA bound to two or fewer ribosomes, indicating 

poor translation efficiency. 35% of mRNA was bound to three to five ribosomes and 

only 10% was bound to 6+ ribosomes. This in unsurprising, as publicly available 

RNA-Seq data (Human Protein Atlas) reported low NEK4 RNA expression in bone 

marrow. 
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Figure 6.4 Ribosomal distribution of NEK4 AC mRNA in SH-SY5Y cells 

50% of mRNA was bound to two or fewer ribosomes indicating poor translation efficiency. 

Ribosome-bound mRNA began in fraction 10 and increased in a fraction-based manner until 

approximately 6+ ribosomes at which point absorbance became convoluted. Error bars 

represent the standard error of three technical repeats. 

 

In contrast, NEK4 AC mRNA has a higher translation efficiency in NP-1 cells 

(figure 6.5), with 39.5% of mRNA bound to 6+ ribosomes and only 18% of mRNA 

bound to two or fewer. This result is unexpected as publicly available RNA-Seq data 

suggests relatively low RNA expression in brain tissue. 
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Figure 6.5 Ribosomal distribution of NEK4 AC mRNA in NP-1 cells 

39.5% of mRNA was bound to six or more ribosomes indicating high translation efficiency. 

Only 18% of mRNA was bound to two or fewer ribosomes. Ribosome-bound mRNA began 

in fraction 10 and increased in a fraction-based manner until approximately 6+ ribosomes 

at which point absorbance became convoluted. Error bars represent the standard error of 

three technical repeats. 

 

As translation of NEK4 nAC was insufficient to obtain quantitative data, and 

sufficient translation of NEK4 AC mRNA was possible, we can assume that the AC 

mRNA is the predominant transcript in both SH-SY5Y and NP-1 cell types. 
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6.2.2 The ratio of BCAS4 AC and nAC mRNA translation in SH-SY5Y and 

NP-1 cells 

SH-SY5Y cells, as previously stated, are a neuroblastoma cell line derived from 

human bone marrow. There are three reported mRNA transcripts for BCAS4, two 

AC and one nAC. Due to the differences in transcripts, it was only possible to design 

primers to target both the AC transcripts at once.  

For BCAS4, a similar ribosomal distribution of AC and nAC transcripts in 

polysomes was observed (figure 6.6) indicating similar translation levels when 

measured as a percentage of the all ribosomal mRNA. Ribosome-associated mRNA 

began from fraction 10; increasing ribosome count was consistent with increasing 

fraction number until there were over six ribosomes bound to mRNA. 

It is reported in literature that mRNA bound to three or more ribosomes is generally 

translated efficiently in the cell. Both BCAS4 AC and nAC mRNAs were translated 

in SH-SY5Y neuroblastoma cells at a low level, with approximately 60% of mRNA 

bound to two or fewer ribosomes, respectively. Similar amounts of mRNA were 

observed to be bound by 3-5 ribosomes (26% and 30%, respectively) and 6+ 

ribosomes (5% and 4%, respectively). Performance of a Student’s T-test* gave p 

values of 0.74, 0.63, and 0.37 for < 2, 3-5 and 6+ ribosomes, respectively, 

confirming no significant difference in translation of BCAS4 AC and nAC mRNAs 

in SH-SY5Y cells. Poor translation efficiency of BCAS4 mRNA in SH-SY5Y was 

unsurprising as publicly available RNA-Seq data reported low BCAS4 RNA 

expression in bone marrow. 
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Figure 6.6 Ribosomal distribution of BCAS4 AC and nAC mRNAs in SH-SY5Y 

A similar ribosomal distribution was observed in AC and nAC BCAS4 mRNAs indicting 

similar translation levels of both mRNAs in SH-SY5Y cells (p > 0.3 in all cases.). 

Ribosome-bound mRNA began in fraction 10 and increased in a fraction-based manner until 

approximately 6+ ribosomes at which point absorbance became convoluted. Error bars 

represent the standard error of three technical repeats. 

  



Chapter 6 

139 

There is generally a higher translation of both AC and nAC BCAS4 mRNAs in NP-

1 cells than in SH-SY5Y. This can be observed in figure 6.7, where 45% and 51% 

of mRNA is bound by 3-5 ribosomes, respectively. However, unlike in SH-SY5Y, 

a difference in mRNA bound by two or fewer or 6+ ribosomes was observed. A 

small difference is observed in the case of mRNA bound to two or fewer ribosomes, 

with 20% of AC mRNA bound and 25% of nAC bound. However, the AC has 30% 

of mRNA bound to 6+ ribosomes in comparison to only 18% for the nAC, indicating 

more efficient translation of the AC variant. Performance of a Student’s T-Test gave 

p values of 0.53, 0.50, and 0.07 for < 2, 3-5 and 6+ ribosomes, respectively. Though 

this showed no significant difference in mRNA bound to 0-5 ribosomes, there may 

be a significant difference in amount of BCAS4 AC and nAC mRNA bound by 6+ 

ribosomes in NP-1 cells. The difference in size of mRNAs is less than 100 bases 

which would account for only one additional bound ribosome. Taking this into 

account, AC BCAS4 mRNA may be more efficiently translated in NP-1 cells. 

However, in order to determine this, three biological repeats would need to be 

performed rather than three technical repeats. Unfortunately, due to time constraints, 

three biological repeats were not possible. 
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Figure 6.7 Ribosomal distribution of BCAS4 AC and nAC mRNAs in NP-1 cells 

A different ribosomal distribution was observed for AC and nAC BCAS4 mRNAs 

indicating different translation efficiency of both mRNAs in NP-1 cells (p = 0.07 for 6+ 

ribosomes). Ribosome-bound mRNA began in fraction 10 and increased in a fraction-based 

manner until approximately 6+ ribosomes at which point absorbance became convoluted. 

Error bars represent the standard error of three technical repeats. 

  

6+ 
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6.3 Conclusions on the translation of Alu and non-Alu mRNAs in 

cancerous and non-cancerous tissue samples 
Three mRNA targets were initially chosen for polysome profiling by qPCR; ASCC1, 

BCAS4 and NEK4. Primers were designed to individually amplify Alu-containing 

(AC) or non-Alu-containing (nAC) isoforms via qPCR. mRNA trancript translation 

was measured in two human cell types: NP-1 (primary brain cells derived from 

epilepsy patients) and SH-SY5Y (stable neuroblastoma cell line derived from patient 

bone marrow). A third cell type, GBM1 (primary glioblastoma cells) was cultured 

and fractioned from a sucrose gradient. Due to the low number of cells obtained 

from fractionation, qPCR was not performed on these samples at this time. However, 

samples were stored for potential future use in higher sensitivity assays. Given more 

time, more cells would have been cultured and gradients would have been repeated. 

Both AC and nAC mRNAs for ASCC1 were insufficiently translated in both NP-1 

and SH-SY5Y cells to obtain a standard curve for analysis of ribosomal distribution. 

This was surprising as publically available RNA-Seq data reported ASCC1 mRNA 

to be expressed in all tissues, and particularly well expressed in brain tissue (Human 

Protein Atlas). The same was true for the nAC variant of NEK4. As a result, it was 

confirmed that in both cell lines, the Alu-containing mRNA of NEK4 was 

predominantly translated. A translation of NEK4 AC mRNA was observed in NP-1 

cells with the 39.5% of transcript mRNA bound to six or more ribosomes, compared 

to 9% in SH-SY5Y. Both AC and nAC BCAS4 mRNAs are translated at a similar 

level in SH-SY5Y cells, with approximately 60% of mRNA bound by two or fewer 

ribosomes, indicating low translation efficiency. However, in NP-1 cells, a higher 

proportion of Alu-containing mRNA isoform was observed to be bound by six or 

more ribosomes (39.5%) when compared than for the non-Alu-containing isoform 

(17.9%). Although, 3 + ribosomes is generally considered to represent a well 

translated transcript, the more associated ribosomes, the better the translation. As 6+ 

ribosomes is the point at with the polysome graphs in this project reach their upper 

limit is 6+ ribosomes, this is used as the upper limit for highly translated species. 

Unfortunately, due to time constraints, only three technical repeats could be obtained 

for BCAS4 results in a p-value of 0.07. In order to truly determine significant 

difference between AC and nAC BCAS4 transcripts, at least three bioligcal repeats 

would be required. This indicated higher translation level of the AC than the nAC 
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mRNA isoform. As the difference in transcript length is only 97 bp, only one 

additional ribosome can be attributed to the change in size. This indicated that as for 

BCAS4, the Alu-containing transcript is predominant in non-cancerous brain cells 

(NP-1).  

Polysome profiling techniques coupled with qPCR provides a good basis for the 

study of alternative gene transcripts which arise as a result of Alu insertions. It was 

possible to study mRNA translation in different cell samples, including those that 

are patient-derived, providing that translation levels were high enough for detection 

by qPCR. Cell lines that can be cultured to a high cell concentration are more 

feasible for these studies. Unfortunately, in this case the GBM1 cell batch did not 

replicate efficiently and hence, an insufficient number of cells was obtained for 

analysis. However, cells were stored for potential use in future, higher-sensitivity 

assays. With more time and carefully chosen cell samples, it could be possible to 

directly compare any differences in translation of AC and nAC mRNAs from the 

same gene in different tissues. Ideally, cell samples would be patient-derived and 

would be matched dependent on host. With carefully chosen cells, it could be 

possible to compare the translation of AC and nAC transcripts between different cell 

types which not only relate to disease but also trends in gender, ethnicity and age 

could be studied. As the extent of Alu-containing protein-coding transcript still 

remains an understudied area within the field, it may be important to study the 

changes in Alu translation between different cell types/cell origins, not only to 

discover disease but also to understand the way their translation may change over 

time or with geographic location. This may provide more insight into their diversity 

in the human population. So far, no research has been reported which compares the 

translation efficiency of Alu and non-Alu transcripts which arise from protein-coding 

genes. 
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Chapter 7  
Conclusions and future work 

 

The aim of this work was to establish the extent of Alu exonisation and hence, 

explore the abundance and nature of translated Alu elements in the human proteome. 

The abundance of Alu exonisation and any related trends were studied via 

bioinformatic methods strongly based around local alignment of nucleotide and 

protein sequences. The nature and effect of translated Alu sequences on protein 

structure and function was explored via peptide binding studies, protein expression 

in E. coli and subsequent biophysical studies. Additionally, the changes in the 

expression of Alu and non-Alu mRNA in ‘cancerous’ and ‘non-cancerous’ human 

cell samples was studied using a combination of polysome profiling and quantitative 

PCR. 

7.1 Individual conclusions 

7.1.1 Bioinformatic analysis 

Initial bioinformatic analyses compared nucleotide consensus sequences, and 

respective translated open reading frames (ORFs), of eight Alu subfamilies; J, Sx, 

Sp, Sq, Sc, Sb, Sb1 and Yb (formerly Sb2). Sequence alignment showed 80% 

conservation between subfamilies. Translation of each consensus sequence into its 

six possible ORFs and subsequent BLAST analysis (sequence identity > 60%, E-

value < 1 × 10-8) identified 46 human proteins containing an Alu-like insertion. Of 

the identified hits, 32 gave rise to both AC and non-Alu-containing (nAC) isoforms. 

Analysis of the locations of Alu insertions within protein hits revealed a bias towards 

terminal insertions over insertions internal to the protein sequence.  

Further analyses using larger a dataset of 37 Alu consensus sequences, made 

available by the Dfam database, allowed for identification of the parent Alu of each 

insertion. Alignment of insertions with Alu sequences at the nucleotide level 

revealed that 88% of Alu insertions were derived from the Alu right arm. In addition 

to this, 83% of insertions were copies of the antisense (-) strand of the parental Alu. 
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Alignment of Alu insertions revealed a sequence of residues which was conserved 

between most protein hits: 

LECS-X1-GAISAHCNLRLLGSSD-X2–PASASQ-X3-AGITG 

Direct alignment with protein hits confirmed conservation. This result was 

concurrent with previous observations that the majority of Alu insertions arose from 

the left arm and were copies of the antisense (-) strand of their parental Alu. 

Following on from the work of Lev-Maor et al. which identified 3’ AG splice sites 

at positions 290 and 286 of antisense Alu strands, an additional three new potential 

3’ AG splice sites were identified at positions 265, 258 and 116. Most splice sites 

lay relatively close together and therefore, accounted for the sequence conservation 

observed in Alu insertions. This bioinformatic work provides an origin for the extent 

and tolerance of Alu insertions within the human proteome. As a result, it may be 

easier to identify translated Alu sequences within proteins and predict their origin. 

7.1.2 Alu binding with geldanamycin 

The conserved Alu sequence identified during bioinformatic analysis was purchased 

as a peptide, SEA-001, and used in binding studies with geldanamycin, a potent anti-

cancer molecule. Previous work at Warwick University had used phage display to 

identify a binding interaction between geldanamycin and a translated Alu sequence 

displayed on the surface of a phage. This work aimed to recreate the interaction and 

utilise it as a potential target for cancer therapeutics. Though several biophysical 

binding techniques (FA, FI, SPR, ITC) were used, the binding interaction between 

geldanamycin and the Alu-like sequence could not be recreated. 

7.1.3 Alu-containing human proteins 

Initially, five human proteins were chosen for overexpression in E. coli; NEK4 

(Never in mitosis A (NIMA)-related kinase 4), ZMAT1 (Zinc finger matrin-type 

protein 1), PPP5D1 (PPP5 TPR repeat domain-containing protein 1), BCAS4 (breast 

cancer amplified sequence 4) and ASCC1 (activating signal cointegrator 1 complex 

subunit 1). Proteins were chosen dependent on availability of gene purchase, the 

association of the protein with disease and the predicted ease of protein expression. 
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Genes were cloned into a series of expression plasmids and transformed into E. coli. 

A number of different overexpression and purification methods were attempted to 

express the Alu-containing (AC) variant of each protein, however, no purified 

soluble protein products were obtained.  

Unfortunately, as none of the above proteins could be produced, it was not possible 

to assess the effect of the Alu on their structure and function. Due to their previous 

links with disease, it would have been insightful to determine whether the Alu 

insertion contributed to faults in the protein. 

7.1.4 Effect of Alu insertions on MBP 

Due to the difficulties arising in the purification of human proteins from E. coli, 

maltodextrin binding protein (MBP) was used as a model system to study the effect 

of Alu elements on proteins. The peptide sequence, SEA-001, was inserted into 

seven different locations within MBP, labelled by the residue lying directly after the 

insertion: G6 (N-terminal), T81, P126, D178 (β-sheet), G253, A293 (α-helix), N333 

and T367 (C-terminal). A second sequence, a scrambled variation of SEA-001, 

labelled SEA-002, was inserted at the D178, G253 and N333 locations to give a total 

of twelve constructs including wild-type MBP. 

SEA-001  L E C S G A I S A H C N L R L L G S S D S P A S A S R V A G I T G 

SEA-002  I A R L H G P S A S N G T S S S T C A P D L G V G E S A L C I S R 

Circular dichroism (CD) revealed that the Alu insertion had no distinct secondary 

structure. Thermal stability studies using CD were inconclusive and further analysis 

using differential scanning calorimetry (DSC) showed minimal effect of the Alu on 

the thermal stability of MBP. 

Quick purification of the MBP constructs via amylose affinity chromatography 

showed that most variants bound to maltose indicating correct protein folding. 

Exceptions to this were the α-helix insertion at position A293 which was expected 

to disrupt folding, and insertions at G253 and N333 positions. Previous reports have 

suggested that mutations at the N333 positions affect the hinge movement of MBP 

and therefore, the lack of binding with an insertion at this position was not 

surprising. Insertion of the scrambled Alu sequence (N333*) at the same position 

showed no restoration of binding. The insertion at G253 lies further from the binding 
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site and replacement of the Alu sequence with a scrambled variant (G253*) appeared 

to slightly restore binding. 

Isothermal titration calorimetry (ITC) showed minimal changes in the binding of 

MBP with its ligands; D-(+)-maltose, maltotriose and β-cyclodextrin, upon the 

insertion of an Alu sequence at positions G6 and T367. The binding of β-

cyclodextrin to both Alu and scrambled Alu (*) insertions at the D178 position 

observed an endothermic binding event which contradicted the usual exothermic 

curve. Due to the location of the insertion, relatively close to the binding site of 

ligands, it was concluded that insertions at this position appeared to favour a closed 

protein conformation and as such, the binding of larger ligands such as β-

cyclodextrin required an unfavourable conformational change. As the same effect 

was observed for the scrambled variant, it was determined that this change was a 

result of the insertion site and was independent of the Alu sequence. 

This work provides an insight into the effect of Alu elements on human proteins and 

hence begins to predict how such insertions may influence protein structure and 

function. Combined with the list of known Alu insertions in human proteins 

identified via bioinformatics, and Alu insertions which may be identified in other 

work, it may be possible to predict whether their presence may disrupt the function 

alternate protein isoforms, and therefore, could be used as a means to begin to predict 

faulty proteins or disease. 

7.1.5 Polysome profiling 

Polysome profiling provided a way in which to separate ribosome-bound mRNA via 

sedimentation through a sucrose gradient and subsequent fractionation. Analysis of 

this mRNA using qPCR, with primers for selected targets, allowed for determination 

of Alu and non-Alu transcript expression within different cell lines. 

Three targets were chosen for analysis by qPCR; ASCC1, BCAS4, NEK4. Primers 

were designed so as to selectively target AC and nAC mRNAs for each gene. Three 

cell samples, SH-SY5Y, NP-1 and GBM1, were chosen for this work. qPCR analysis 

of mRNAs from GMB1 cells was not performed due to low cell count, which yielded 

too little mRNA for subsequent analysis, according to previous experiments. 

AC and nAC mRNAs of ASCC1 were not studied as translation levels were too low 

to obtain a sufficient standard curve for quantification. Similarly, a suitable standard 

curve for NEK4 nAC was not obtained. However, as the AC mRNA was translation 
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to a sufficient level, it can be concluded that, in both SH-SY5Y and NP-1 cells, the 

AC NEK4 transcript is predominantly translated. A higher translation efficiency of 

Alu-containing NEK4 was observed in NP-1 cells (brain tissue) than in SH-SY5Y 

(bone marrow), with the highest proportion of mRNA being bound by six or more 

ribosomes.  

Both BCAS4 AC and nAC mRNAs were translated at a similar level in SH-SY5Y 

cells, with 60% of mRNA bound to two or fewer ribosomes in both cases. In NP-1 

cells, more efficient translation of AC mRNA is seen compared to the nAC mRNA 

with 30% of mRNA bound to six or more ribosomes, compared to 18%, respectively. 

This indicated that in non-cancer brain cells, the Alu-containing variant of BCAS4 

is predominately translated. 

Polysome gradienting coupled with qPCR provided a novel way to compare the 

study of alternative mRNAs of Alu-associated genes, whereby the translation 

efficiency of AC and nAC transcripts can be compared within a single cell line, 

provided that translation is of a high enough level to obtain a suitable standard curve 

for quantification. In addition to this, the study can also be applied to Alu-associated 

mRNAs within patient-derived cell lines allowing for the potential examination of 

Alu elements in a wide variety of diseases, including cancer. Unfortunately, in this 

case, the cancerous brain cell line, GBM1, was insufficient to make a direct study of 

the change, if any, of AC and nAC translation levels between ‘healthy’ and 

‘cancerous’ brain cells. However, by choosing carefully selection patient-

derived cell samples, it should be possible to perform such comparisons. 
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7.2 Overall conclusions 
Using bioinformatic analysis, a well conserved Alu sequence that was incorporated 

into protein-coding regions of human DNA hits was identified. This conservation 

arose from the incorporation of 3’ splices sites associated with the antisense Alu left 

arm which led to Alu exonisation. In addition to two 3’ AG splice sites earlier 

identified by Lev-Maor et al. (positions 290 and 286), three other potential 3’ AG 

splice sites were observed which could lead to Alu exonisation (265, 258 and 116). 

In many cases, the exonisation of Alu sequences led to an alternative splicing event 

which resulted in the expression of an Alu-containing (AC) protein isoform; 32 

proteins were identified to have both AC and non-AC (nAC) isoforms in this study. 

Though the effect of natural Alu insertions in human proteins could not be studied 

due to problems arising in protein overexpression and purification, the Alu sequence 

SEA-001 appeared to have minimal effect when inserted into multiple different sites 

within maltodextrin binding protein (MBP). Sites which appeared most effected 

were N333, which is reported to affect the hinge motion of MBPs open binding 

conformation, G253 and D178. Insertions at D178 showed hindrance to MBP’s 

binding of β-cyclodextrin and were assumed to contribute to a unfavourable open 

binding conformation which was required to accommodate the large ligand. 

However, this interaction was sequence-independent and arose due to the position 

of the Alu insertion as opposed to the Alu sequence itself. Ligand binding at position 

G253 was also abolished upon Alu insertion and appeared to be minorly restored 

upon insertion of a scrambled sequence at the same position. However, in all cases, 

the location of the insertion had a predominant contribution to changes in protein 

function and any minor contributions from the Alu sequence occurred as a secondary 

factor. 

In most cases, the presence of an Alu sequence in a protein is likely to have a minimal 

effect as most insertions occur at protein termini and hence, are unlikely to be in 

locations that greatly contribute to protein function. However, in the small number 

of cases were insertions occur in an internal protein region, it is possible that the 

insertion could lead to a disease-causing isoform with limited function. It should be 

noted, that any functional changes that may arise would likely be as a result of the 

insertion location not the sequence. Nonetheless, if the sequence can be recognised 
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as an Alu and is not present in an alternative functional protein isoform, it could be 

speculated that the Alu sequence could still be used as a drug target. 

Using a combination of polysome profiling, reverse transcription and qPCR, it was 

possible to selectively target AC and nAC mRNAs arising from the same gene and 

hence, compare their translation levels in both primary cells and stable cell lines. 

Through the application of this to carefully selected patient-derived cells, it should 

be possible to measure difference in translation of such transcripts in a range of 

disease-associated cells and their ‘healthy’ counterparts. This would give scope for 

the prediction of whether increased or decreased translation efficiency of Alu-

associated mRNAs could be an indicator of certain diseases. 

In general, the extent of Alu translation in human proteins is understudied. This 

project has provided a basis to probe the extent and effect of translated Alu elements 

on the human proteome. This work builds on previous work to provide insight as to 

how Alu elements can lead to the production of alternate transcripts and are 

translated into alternate protein isoforms. Furthermore, it begins to predict how such 

isoforms may be affected by the insertion in terms of structure and functionality. 

This could be used as a way to predict how Alu insertions, identified in disease-

related proteins might contribute to the disease. Through the study of translational 

efficiency of AC and nAC transcripts using polysome-profiling, this project has 

provided a toolkit to study Alu transcripts and their translation in comparison to non-

Alu transcripts arising from the same gene. Through careful selection of cell 

samples, it could be possible to not only study changes in the translation of Alu 

transcripts in relation to disease, but it may also be possible to study trends in their 

translation with respect to gender, age or ethnicity. Overall, the project provides a 

deeper understanding of Alu elements and their importance to the human genome 

and proteome. 
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7.3 Future work 
The bioinformatic work associated with this project, in combination with other 

reported computational analyses, has provided a basis for the study of Alu effects on 

the human proteome. As studies into the physical effects of Alu transcripts are still 

limited, this leaves a large area still to be explored. Ideally, AC and nAC isoforms 

of naturally occurring human proteins would be overexpressed and studied for 

changes in their structure and function, in particular, those known to be disease-

related. However, it is likely that a different expression system such as insect cells 

or human cells would be required to obtain a purified protein product for many of 

the hits observed in bioinformatic analysis. This would yield lower concentrations 

of protein. In addition, expanding polysome profiling techniques to a variety of cell 

types and Alu-associated targets would not only highlight potentially disease-

associated Alu insertions, but may also provide a means to direct which proteins 

should be studied. 
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Chapter 8  
Bioinformatic Methods 

8.1 Building and refinement of an Alu database 
The bioinformatic methods used in this research were a series of informative 

techniques by which comparisons could be made between nucleotide or protein 

sequences. Sequences, or partial sequences, were either be directly compared to 

another sequence, or multiple sequences; or screened against a known database of 

sequences. Bioinformatic analyses were carried out using NCBI BLAST, ExPASy 

Translate and ProtParam, Clustal Omega, JackHMMER, Dfam and MEGA7. The 

eight Alu consensus sequences initially used to identify Alu-containing proteins were 

obtained from the NCBI database. This was later expanded to 37 subfamily 

sequences from the Dfam database. 

8.1.1 BLAST analysis of translated Alu sequences 

Eight Alu consensus sequences (J, Sx, Sp, Sq, Sc, Sb, Sb1 and Sb2) were obtained 

from the National Centre for Biotechnology Information (NCBI) database. Each Alu 

consensus was translated into its corresponding six open reading frames (ORFs) 

using ExPASy Translate. This gave a total of 48 translated Alu sequences. Individual 

ORFs for each Alu consensus were screened against the UniProt/Swiss-Prot 

database3 of known human proteins using NCBI protein BLAST (Basic Local 

Alignment Search Tool). Full BLAST parameters are outlined in table 8.1. Protein 

‘hits’ were recorded in a Microsoft Excel database. Putative and uncharacterised 

proteins were dismissed. Proteins with an identity match of less than 68% were also 

omitted. For each protein hit, the following information was recorded in the 

database; protein name, protein accession number, the number of protein isoforms 

and the differences between them. For isoforms matching translated Alu sequences, 

the following was also recorded; expect value, location of the match in both the 

protein hit and the translated Alu sequence, the percentage identity match and the 

number of bases matched. 57 protein matches were identified. An example database 

entry is shown in figure 8.2. 
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Search Set 
Database UniProt/Swiss-Prot (swissprot) 
Organism Humans (taxid: 9605) 
Program selection 
Algorithm blastp (protein-protein blast) 
General parameters 
Max. target sequences 100 
Expect threshold 10 
Word size 6 
Max. matches in query 
range 0 

Scoring parameters 
Matrix BLOSUM62 
Gap costs Existence: 11 Extension: 1 

Compositional adjustments Conditional compositional score matrix 
adjustment 

Filters and masking None 

Table 8.1 NCBI BLAST search parameters 

The parameters used for initial screening of translated Alu ORFs to identify potential 

proteins containing regions encoded by Alu-like sequences. 

Figure 8.1 Example of a database entry from refined search results 

Entries showed the name and accession number of hits as well as information on different 

isoforms. Red markers next to isoforms indicated where protein sequences have been 

recorded (B). AC isoforms also had details listed about the matched region. Red markers 

next to column headings indicated where additional information (e.g. heading definition) 

could be observed as a ‘pop-up’ in the database. 
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8.1.2 Database refinement 

Translated Alu sequences were individually aligned with each isoform of their 

corresponding protein hits to confirm matched regions. In addition to the original 

percentage identity threshold of  > 68%, an additional threshold of an E-value of less 

than 1 × 108 was used. This additional threshold reduced hits from 57 to 46. A 

secondary database was built for each Alu consensus to contain the refined data, as 

well as additional information on possible protein function, the tissue in which it is 

expressed and any disease association (information obtained from UniProt). 

 

8.2 Alignments to determine Alu locations in proteins 
Proteins were defined as three distinct regions; N-terminal (0 – 20% of residues), 

internal (20 – 80%) and C-terminal (80 – 100%). Translated Alu sequences and 

individual protein hits were aligned with one another using the NCBI protein 

BLAST parameters outlined in table 7.1. The resulting alignments defined start and 

end regions (residue numbers) of each match. Using the insertion mid-point and the 

total length of the protein hit (obtained from NCBI database and UniProt), the 

location of the insertion in the protein could be calculated as a decimal (equation 

8.1). 

 

"#$%&'()	8.1					0)a`.&'()	F(c%&'()	')	b.(&`') =
0)a`.&'()	d'fb(')&	(W`a'f$`	)(. )
g(&%F	F`)i&ℎ	(_	b.(&`')	(kk)

 

 

Calculated values below 0.20 ( < 20%) were labelled as N-terminal insertions. Those 

between 0.21 and 0.79 (21 – 79%) were labelled as internal and those lying above 

0.80 ( > 80%) were classed as c-terminal. 

 

8.3 Alignments to determine which Alu region leads to insertions 
Bioinformatic analysis was performed on nucleotide sequences of identified hits. 

For each hit, the cDNA sequence was obtained from the NCBI database. Through 

direct alignment with the corresponding Alu consensus sequence using NCBI 

nucleotide BLAST, the region of the Alu from which the insertion arose could be 
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identified. As well as identifying the matched region, it was also important to note 

the strand orientation (sense/antisense).  

The nucleotide at the mid-point of the matched region was compared to the total 

length of the Alu consensus to give a ratio between 0 and 1 (equation 8.2) 

 

"#$%&'()	8.2									S(c%&'()	')	kF$ = 	
R'fb(')&	(_	d%&cℎ`f	.`i'()	
g(&%F	F`)i&ℎ	(_	kF$	(eb)

 

 

Mid-points giving a ratio of 0 – 0.5 in the sense direction, or 0.5 – 1.0 in the antisense 

direction, corresponded in insertions from the Alu left arm. Mid-points giving a ratio 

of 0 – 0.5 in the antisense direction, or 0.5 – 1.0 in the sense direction, corresponded 

in insertions from the Alu right arm. 

8.4 8.4 Alignments to identify sequence conservation between hits 
NCBI alignments of translated Alu sequences and protein hits gave the location of 

matched residues within the protein. Using ProtParam to view the protein sequence, 

the exact matched region was procured for each hit. Matched regions for each 

protein were aligned using JackHMMER. For proteins with multiple isoforms of the 

same matched region, only one copy of the sequence was analysed to give a total of 

46 insertion sequences. Model positions were generated using JackHMMER to show 

sequence conservation. 

Further sequence conservation analysis was performed using only hits obtained from 

primary reading frames, totaling to a JackHMMER alignment of 26 insertion 

sequences. A generally well conserved sequence was obtained through analysis of 

model positions generated through JackHMMER. 

8.5 Comparison of 3’ splice sites 

8.5.1 Examining 3’ splice sites in Dfam consensus sequences 

50 Alu subfamily consensus sequences were obtained from the Dfam database. For 

each sequence, the reverse complement was obtained to give the antisense strand 

sequence. Alu sequences were aligned using MEGA7 software and examined for 

AG splice sites matching those reported by Lev Maor et al (see chapter 2). 3’ AG 

splice sites were identified manually through visualisation in Microsoft Excel. 



Chapter 8 

 155 

 

8.5.2 Examination of 3’ splices sites in matched genes 

Nucleotide sequences for matches genes were compared to the Dfam database using 

their online search tool, resulting in the identification of the parent Alu for each 

insertion and the direction of the parent Alu strand (sense/antisense). Genes with 

insertions corresponding with antisense strand insertions were directly aligned with 

their parent Alu consensus sequence using MEGA7 software. AG splice sites were 

identified manually through visualisation in Microsoft Excel. New 3’ AG splice sites 

were identified through direct comparison of the parent Alu sequence and the AG 

doublets located around the site of insertion in the gene. 
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Chapter 9  
Biological materials and methods 

9.1 Cloning methods 

9.1.1 Site-directed mutagenesis of pDB.His.MBP 

The pDB.His.MBP plasmid was mutated using a Quikchange II site-directed 

mutagenesis (SDM) protocol to introduce a c-terminal STOP codon in the MBP-

encoding gene. The resulting plasmid will from hereon be referred to as 

pDB.His.MBP.Stop. 

9.1.1.1 Parental plasmid 

The parental pDB.His.MBP plasmid (Clone ID: EvNO00085130) was purchased 

from DNASU plasmid repository. 

9.1.1.2 Primer design 

Primers SA128 and SA129 were designed in accordance with the Quikchange II 

SDM protocol. Primers were made complementary to one another and were 47 bp 

in length with a melting temperature (Tm) of 67.7 ºC and a GC content of 49%. The 

desired mutation was contained in the middle of the primer flanked by 15 or more 

bases of correct sequence on both sides. 

 
SA128: 
TCG ATG AAG CCC TGA AAG ACG CGC AGA CTT AGA CCG ATT ACG ATA TC 

 

SA129: 
GAT ATC GTA ATC GGT CTA AGT CTG CGC GTC TTT CAG GGC TTC ATC GA 

 

9.1.1.3 Polymerase chain reaction (PCR) 

PCR reactions were performed using a Techne™ TC-512 Gradient Thermal Cycler 

(Bibby Scientific). Site-directed mutagenesis was performed using the polymerase 

chain reaction (PCR) parameters outlined below. 
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Component Amount 
10 × reaction buffer 5.0 µL 
Primer A: SA128 (10 µM) 2.5 µL 
Primer B: SA129 (10 µM) 2.5 µL 
Plasmid DNA (pDB.His.MBP) 10 - 20 ng 
PfuUltra High Fidelity DNA 
polymerase (2.5 U/µL) 1.0 µL 

Deionised water Make up to 50 µL 

Table 9.1 Composition of Quikchange II site-directed mutagenesis (SDM) mixture 

 

Step Temperature Time Cycle 
Initial denaturation 95 °C 30 sec 1 
Denaturation 95 °C 30 sec 

18 Annealing 55 (± 10) °C 1 m 30 sec 
Extension 68 °C 8 m 00 sec 
Storage 4 °C - - 

Table 9.2 PCR cycling parameters for Quikchange II site-directed mutagenesis (SDM) 

 

9.1.1.4 PCR analysis 

PCR products were treated with DpnI (1 µL; 10 U) and incubated at 37 °C for 2 

hours to remove parental plasmid DNA. PCR product (5 µL) was mixed with 6 ´ 

purple loading dye (NEB) and separated on a 1% agarose (in 1 ´ TAE buffer) gel 

treated with SYBR safe gel stain (1:100) at 100 V for 30 minutes. Gels were 

analysed under UV light using a ChemiDocTM imaging system (BioRad). 

9.1.1.5 Transformation of PCR product in XL1-Blue Supercompetent cells 

PCR product (5 µL) was added to XL1-Blue Supercompetent cells (50 µL; Agilent 

Technologies) and cooled on ice for 30 minutes. Cells were heat-shocked in a 42 °C 

water bath for 45 seconds then cooled on ice for a further 5 minutes. LB (300 µL) 

was added and cells were incubated at 37 °C for 1 hour, with shaking. Cells were 

centrifuged at 17,000 ´ g for 1 minute. Supernatant (200 µL) was removed and cells 

were re-suspended in the remaining volume. Cells were spread on an LB agar plate 

treated with kanamycin (50 µg/mL) and incubated at 37 °C overnight. Plates were 

stored at 4 °C. 
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9.1.1.6 DNA purification 

Single colonies were picked and added to LB (10 mL) treated with kanamycin (50 

µg/mL). Mini-cultures were incubated at 37 °C overnight, with shaking. Overnight 

mini-culture (4 mL) was centrifuged at 4500 ́  g and the supernatant discarded. DNA 

was extracted using a QIAprep® Spin Miniprep kit (Qiagen) following the 

manufacturer’s instructions. DNA was eluted in buffer EB (30 µL) and stored at -20 

°C. 

9.1.1.7 Glycerol stocks 

Single colonies were picked, added to LB (10 mL) treated with kanamycin (50 

µg/mL) and mini-cultures were incubated at 37 °C overnight, with shaking. 

Overnight mini-culture (1 mL) was added to 50% glycerol solution in water (0.5 

mL) and stored at -80 °C. 

9.1.2 Cloning of MBP-Alu constructs 

Alu regions were inserted into the pDB.His.MBP.Stop plasmid using site-directed 

mutagenesis via inverse PCR. PCR was performed following a Phusion® High-

Fidelity Master Mix (NEB) protocol. Resulting MBP-Alu constructs are labelled via 

the encoded amino acid directly after the point of Alu insertion, with the exception 

of the c-terminal Alu insertion which is labelled by the threonine (T367) at the c-

terminus of MBP. 

9.1.2.1 Primer design 

Primers SA152 – SA167 were designed to meet the criteria outlined below. 

The forward primer was comprised of the second half of the Alu sequence (48 bp) 

followed by 18 – 20 bp of correct plasmid sequence that lay directly after the desired 

site of insertion (shown in red). The reverse primer was the reverse compliment of 

18 – 20 bp of correct plasmid sequence that lay directly before the desired site of 

insertion (shown in blue) followed by the first half of the Alu sequence (51 bp). 

Examples of forward and reverse primers are shown below: 
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Forward primer (e.g. SA152): 
TCA TCC GAC TCG CCC GCC AGC GCG AGC CGC GTA GCA GGC ATC ACC GGA 
GAC ATT AAA GAC GTG GGC 

 

Reverse primer (e.g. SA153): 
GCC CGG TAA GCG AAG GTT GCA GTG AGC TGA AAT AGT CCC TGA GCA CTC CAA 
GTA CTT GCC GTT TTC ATA C 

 

Annealing primer ends (i.e. those matching the destination plasmid) terminated in 

one or more C/G bases and had a melting temperature (Tm) between 52 and 69 °C, 

with no more than a 6 °C difference between the Tm of primer pairs. 

9.1.2.2 Polymerase chain reaction (PCR) 

PCR reactions were performed using a Techne™ TC-512 Gradient Thermal Cycler 

(Bibby Scientific). Site-directed mutagenesis via inverse PCR was performed using 

the parameters outlined below. 

 

Component Amount 
2 × Phusion® Master Mix 25.0 µL 
Forward primer (10 µM) 2.5 µL 
Reverse primer (10 µM) 2.5 µL 
Plasmid DNA (pDB.His.MBP) 10 - 20 ng 
DMSO 1.5 µL 
Deionised water Make up to 50 µL 

Table 9.3 Composition of Phusion® High-Fidelity (HF) Master Mix PCR mixture 

 

Step Temperature Time Cycle 
Initial denaturation 95 °C 30 sec 1 
Denaturation 95 °C 10 sec 

35 Annealing 55 °C 30 sec 
Extension 72 °C 8m 00 sec 
Storage 4 °C - - 

Table 9.4 PCR cycling parameters for site-directed mutagenesis (SDM) via inverse 

PCR using Phusion® HF Master Mix. 
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9.1.2.3 PCR analysis 

PCR product was treated with DpnI (1 µl; 10 U) and incubated at 37 °C for one hour 

to remove parental plasmid. PCR product (50 µL) was mixed with 6 ́  purple loading 

dye (NEB) and separated on a 1% agarose (in 1 ́  TAE buffer) gel treated with SYBR 

safe gel stain (1:100) at 100 V for 30 minutes. Gels were analysed under UV light 

using a ChemiDocTM imaging system (BioRad). Successful PCR products were 

excised and DNA was extracted using a QIAquick gel extraction kit (Qiagen) 

following the manufacturer’s instructions and eluted in buffer EB (30 µL). 

9.1.2.4 Phosphorylation and ligation of PCR product 

PCR product (approx. 200 ng) was phosphorylated through the addition of T4 

ligation buffer (0.5 µL) and T4 polynucleotide kinase (PNK: 0.5 µL; 5 U) at 37 °C 

for 30 minutes. The reaction was cooled to room temperature and T4 ligation buffer 

(0.5 µL), T4 DNA ligase (0.5 µL; 200 U) and deionised water (3.0 µL) were added. 

Ligation occurred for 1 hour at room temperature. 

9.1.2.5 Transformation of ligation product in XL1-Blue Supercompetent cells 

Ligation product (10 µL) was added to XL1-Blue Supercompetent cells (100 µL; 

Agilent Technologies) and cooled on ice for 30 minutes. Cells were heat-shocked in 

a 42 °C water bath for 45 seconds then cooled on ice for a further 5 minutes. LB 

(300 µL) was added and cells were incubated at 37 °C for 1 hour, with shaking. Cells 

were centrifuged at 17,000 ´ g for 1 minute. Supernatant (200 µL) was removed and 

cells were re-suspended in the remaining volume. Cells were spread on an LB agar 

plate treated with kanamycin (50 µg/mL) and incubated at 37 °C overnight. Plates 

were stored at 4 °C. 

9.1.2.6 Cloning analysis 

Single colonies were randomly selected and added to LB (10 mL) treated with 

kanamycin (50 µg/mL). Mini-cultures were incubated at 37 °C overnight, with 

shaking. Overnight mini-culture (4 mL) was centrifuged at 4500 ´ g and supernatant 

was discarded. DNA was extracted using a QIAprep Spin Miniprep kit (Qiagen) 

following the manufacturer’s instructions. DNA was eluted in buffer EB (30 µL). 
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9.1.2.7 Glycerol stocks 

Single colonies were picked, added to LB (10 mL) treated with kanamycin (50 

µg/mL) and mini-cultures were incubated at 37 °C overnight, with shaking. 

Overnight mini-culture (1 mL) was added to 50% glycerol solution in water (0.5 

mL) and stored at -80 °C. 

9.1.3 Restriction-free cloning of human genes into E. coli compatible plasmids 

Human genes were cloned into plasmids for expression in E. coli using restriction-

free (RF) cloning. The BCAS4 gene was cloned into a pET-28a plasmid and ZMAT1 

and ASCC1 genes were cloned into a modified pET-SUMO-28a plasmid. 

9.1.3.1 Primer design 

Forward and reverse primers were designed so as to be no longer than 50 bp in 

length. The forward primer contained two regions; 20-26 bp matching the desired 

insertion site of with the cloning plasmid (red) followed by 24 bp in length, matching 

the beginning of the target gene, starting with ATG (blue). 

The reverse primer incorporated three regions to give the reverse complement of the 

last 24 bp of the target gene (red), followed by a STOP codon (black) and 20-23 bp 

matching the desired insertion site within the cloning plasmid (blue). 

Examples for BCAS4 in pET-28a are shown below: 

SA030 (Forward): 
GCT CAC AGA GAA CAG ATT GTT GGA ATG CAG CGG ACC GGG GGC GGG GCT 

SA031 (Reverse): 
TCG ACG GAG TCT GAA TTC GGA TTA TAC AGT GTG GGC AGC TCG TAC 

9.1.3.2 PCR amplification 

Restriction-free (RF) cloning consists of two rounds of PCR amplification, separated 

by a PCR purification step prior to Dpn1 treatment and transformation. PCR 

reactions were performed using a Techne™ TC-512 Gradient Thermal Cycler 

(Bibby Scientific). PCR amplification round 1 (RF1) was performed using the 

parameters outlines in tables 9.5 and 9.6. 
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Component Amount 
2X Phusion® Master Mix 25.0 µL 
Forward primer (10 µM) 2.5 µL 
Reverse primer (10 µM) 2.5 µL 
Template DNA* 2.5 µL 
DMSO 1.5 µL 
Deionised water Make up to 50 µL 

Table 9.5 Composition of Phusion® High-Fidelity (HF) Master Mix PCR mixture for 

RF amplification round 1 (RF1) 
*Template DNA as made up to 20 ng/µL 

 

Step Temperature Time Cycle 
Initial denaturation 98 °C 30 sec 1 
Denaturation 98 °C 10 sec 

35 Annealing 68 °C 30 sec 
Extension 72 °C 30 sec/kb template DNA 
Final extension 72 °C 5 minutes 1 
Storage 4 °C - - 

Table 9.6 PCR cycling parameters for RF amplification round 1 (RF1) 

 

RF1 amplification product was analysed by electrophoresis on a 1% agarose gel. 

Successfully amplified samples were purified using a QIAquick PCR purification 

kit (Qiagen). 

In RF amplification round 2, the product from RF1 acts a mega primer for the 

reaction. PCR amplification round 2 (RF2) was performed using the parameters 

outlines in tables 9.7 and 9.8. 
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Component Amount 
2X Phusion® Master Mix 25.0 µL 
RF1 amplification product Variable* 
Destination plasmid 1.0 µL 
DMSO 1.5 µL 
Deionised water Make up to 50 µL 

Table 9.7 Composition of Phusion® High-Fidelity (HF) Master Mix PCR mixture for 

RF amplification round 2 (RF2) 
*RF1 amplification product concentration was measured using a Nanodrop 2000 (Thermo 

Scientific) and the volume used was calculated at a molar ratio of 20:1 of insert to plasmid 

with 20 ng of parental plasmid starting material. 

 

Step Temperature Time Cycle 
Initial denaturation 98 °C 30 sec 1 
Denaturation 98 °C 10 sec 

20 Annealing 68 °C 30 sec 

Extension 72 °C 2 min/kb destination 
plasmid 

Final extension 72 °C 5 minutes 1 
Storage 4 °C - - 

Table 9.8 PCR cycling parameters for RF amplification round 2 (RF2) 

 

9.1.3.3 Transformation of RF2 amplification product in XL1-Blue 

Supercompetent cells 

Dpn1 (1 µL) was added to RF2 amplification product (10 µL) and incubated at 37 

°C for 1 hour, with shaking. The resulting solution was added to XL1-Blue 

Supercompetent cells (100 µL) and cooled on ice for 30 minutes. Cells were heat-

shocked at 42 °C for 45 seconds and cooled on ice for a further 5 minutes. LB media 

(300 µL) was added and cells were incubated at 37 °C for 1 hour, with shaking. Cells 

were centrifuged at 17,000 ´ g for 1 minute. Supernatant (200 µL) was removed and 

cells were re-suspended in the remaining volume. Cells were spread on an LB agar 

plate treated with kanamycin (50 µg/mL) and incubated at 37 °C overnight. Plates 

were stored at 4 °C. 
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9.2 Protein Expression 

9.2.1 Expression of His-tagged MBP-Alu proteins 

All His-tagged MBP-Alu variants were transformed into Rosetta 2(DE3) competent 

cells (Novagen), grown in standard LB media (see 9.6.3 for recipe), and proteins 

were expressed using IPTG induction. 

9.2.1.1 Transformation of plasmid DNA in Rosetta 2(DE3) Competent cells 

Plasmid DNA (1 µL) was added to Rosetta 2(DE3) competent cells (50 µL) and 

cooled on ice for 30 minutes. Cells were heat-shocked in a 42 °C water bath for 45 

seconds then cooled on ice for a further 5 minutes. LB (300 µL) was added and cells 

were incubated at 37 °C for 1 hour, with shaking. Cells were centrifuged at 17,000 

´ g for 1 minute. Supernatant (200 µL) was removed and cells were re-suspended in 

the remaining volume. Cells were spread on an LB agar plate treated with kanamycin 

(50 µg/mL) and chloramphenicol (25 µg/mL) and incubated at 37 °C overnight. 

Plates were stored at 4 °C. 

9.2.1.2 Glycerol stocks 

Single colonies were picked, added to LB (10 mL) treated with kanamycin (50 

µg/mL) and chloramphenicol (25 µg/mL) and mini-cultures were incubated at 37 °C 

overnight, with shaking. Overnight mini-culture (1 mL) was added to 50% glycerol 

solution in water (0.5 mL) and stored at -80 °C. 

9.2.1.3 Cell growth and protein expression 

A small amount of glycerol stock (or single plated colony) was added to LB (10 mL) 

treated with kanamycin (50 µg/mL) and chloramphenicol (25 µg/mL) and mini-

cultures were incubated at 37 °C overnight, with shaking. Overnight mini-culture 

was added to LB (1 L) treated with kanamycin (50 µg/mL) and chloramphenicol (25 

µg/mL). Large cultures were incubated at 37 °C, with shaking until OD600 was 

between 0.6 and 0.8. Cultures were cooled to 18 °C, induced with IPTG (0.5 mM) 

and incubated at 18 °C overnight, with shaking. Cultures were centrifuged at 10,000 

´ g for 20 minutes and supernatant was discarded. Pellets not undergoing immediate 

lysis and subsequent purification were stored at -80 °C. 

  



Chapter 9 

 165 

9.2.2 Differential expression of MBP constructs 

A small amount of glycerol stock was added to LB media (5 mL) treated with 

kanamycin (50 µg/mL) and chloramphenicol (25 µg/mL) and mini-cultures were 

incubated at 37 °C overnight, with shaking. Overnight mini-culture (150 µL) was 

added to auto-induction LB (15 mL) and incubated for 24 hours at 37 °C with 

shaking. OD600 for each sample was corrected to 1.0 ± 0.05. OD600-corrected cultures 

(1.5 mL) were centrifuged at 13,000 ´ g for 10 minutes. Supernatant was removed 

and cells were resuspended in lysis buffer (20 mM Tris HCl, 150 mM NaCl, 2 mM 

MgCl2, 1 mg/mL lysozyme, 3 mM deoxycholic acid, 16 U DNAse I, pH 7.5) and 

incubated at 37 °C for 1 hour, with shaking. Cells were centrifuged at 13, 000 ´ g 

for 10 minutes. Lysate (50 µL) was added to loading buffer (30 µL) and boiled at 95 

°C for 3 minutes. SDS-PAGE samples (20 µL) were loaded on a 10% acrylamide 

gel, and run at 180 V for 1 hour. Gel was stained in InstantBlue™ Coomassie stain 

and imaged using a ChemiDoc™ MP imaging system (Bio-Rad). 

9.3 Protein purification 
Proteins were purified in one of two ways. Lysate was either directly purified using 

a double column (HisTrap and SEC) via FPLC. Or lysate was first purified manually 

via nickel affinity chromatography prior to further purification via size exclusion 

chromatography. 

9.3.1 Purification via FPLC: double column (HisTrap and SEC) 

Cell pellets were suspended in lysis buffer (approx. 30 mL: 20 mM Tris HCl, 150 

mM NaCl, Pierce™ EDTA-free protease inhibitor (Thermo Fisher Scientific); pH 

7.5). Cells were lysed via sonication on ice (60% power, 3 ´ 2 minutes) and 

centrifuged at 16,000 ´ g for 40 minutes. Supernatant was sterile filtered through a 

Minisart 0.45 µM syringe filter (Sartorius UK). Protein was purified from cell lysate 

via FPLC on an NGC™ Chromatography system (BioRad) using a HisTrap™ FF 

column (5 mL; GE Healthcare) and a HiLoad™ 16/60 Superdex™ 200 Prep Grade 

column (GE Healthcare). The following FPLC buffers were used: running buffer A 

(20 mM Tris HCl, 150 mM NaCl, pH 7.5) and elution buffer B (20 mM Tris HCl, 

150 mM NaCl, 500 mM imidazole, pH 7.5). The resultant protein was concentrated, 

aliquoted and stored at -80 °C.  
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9.3.2 Purification via manual nickel affinity column prior to SEC 

Cell pellets were suspended in lysis buffer (approx. 30 mL: 20 mM Tris HCl, 150 

mM NaCl, Pierce™ EDTA-free protease inhibitor (Thermo Fisher Scientific); pH 

7.5). Cells were lysed via sonication on ice (60% power, 3 ´ 2 minutes) and 

centrifuged at 16,000 ´ g for 40 minutes. Lysate was loaded onto Ni-NTA agarose 

resin (Generon) and washed with 10 ´ CV wash buffer (20 mM Tris HCl, 150 mM 

NaCl, 20 mM imidazole, pH 7.5). Protein was eluted with 1.5 ´ CV elution buffer 

(20 mM Tris HCl, 150 mM NaCl, 300 mM imidazole, pH 7.5). Eluted protein was 

immediately purified in wash buffer via FPLC on an NGC™ Chromatography 

system (BioRad) using a HiLoad™ 16/60 Superdex™ 200 Prep Grade column (GE 

Healthcare). The resultant protein was concentrated, aliquoted and stored at -80 °C. 

9.3.3 Purification of MBP constructs via amylose affinity chromatography (as 

a prediction of MBP folding) 

Amylose binding resin was used to predict whether Alu insertions into MBP affected 

the folding and subsequent ligand binding of the protein. Constructs containing the 

Alu insertion were compared with wild-type MBP. 

Protein (1.0 mg) was loaded on equilibrated amylose resin (1.0 mL; New England 

Biolabs) and flow-through (FT) was collected. Resin was washed with three column 

volumes of column buffer CB (20 mM Tris HCl, 150 mM NaCl, 1 mM EDTA, pH 

7.2) and washes were collected as 1 mL fractions. Bound protein was eluted with 

three column volumes of elution buffer (20 mM Tris HCl, 150 mM NaCl, 1 mM 

EDTA, 10 mM D-(+)-maltose, pH 7.2) and eluent was collected as 1 mL fractions. 

Fractions were analysed via SDS-PAGE. 

9.4 Biophysical methods 
Biophysical methods were performed using FITC- and biotin-labelled derivatives of 

geldanamycin and the SEA-001 peptide as well as the unlabelled species. The 

structures of the GM derivatives are shown in figure 9.1. 
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Figure 9.1 Structures of FITC-labelled and biotin-labelled GM 

 

9.4.1 Fluorescence assays 

Fluorescence assays were performed using an Envision Multiplate reader (Perkin 

Elmer) accessible from the School of Chemistry (University of Leeds). Fluoroscein 

isothiocyanate (FITC) was used as a fluorescent marker giving and excitation 

wavelength of 490 nm and an emission wavelength of 525 nm. 

9.4.1.1 Fluorescence anisotropy 

Fluorescence anisotropy experiments were performed in standard 96-well black 

polypropylene plates (Greiner Bio-One). Stock solutions of FITC-GM (1 mM) and 

SEA-001 (1 mM) were prepared in DMSO. Serial dilutions of SEA-001 were 

performed in the plate using buffer (PBS, 0.1 mg/mL BSA, 1 mM EDTA, 1 mM 

DTT). Earlier experiments gave a concentration range of 0.95 nM to 500 µM. Later 

experiments gave a concentration range of 1.47 nM to 775 µM. Three serial dilution 

repeats were performed per plate. FITC-GM was diluted to give a final concentration 

of 33 nM in each well. The following controls were used: buffer only, FITC-GM 

with buffer (no SEA-001) and a serial dilution of SEA-001 with buffer (no FITC-

GM). Plates were read for fluorescence anisotropy immediately, after 1 hour and the 

next morning. 
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9.4.1.2 Fluorescence intensity 

Fluorescence intensity experiments were performed in streptavidin-coated 96-well 

black polypropylene plates (Sigma Aldrich). Stock solution of biotinylated SEA-

001 (1 mM) and FITC-GM (1 mM) were prepared in DMSO. Biotinylated SEA-001 

was diluted to a final concentration of 100 µM in PBS. A serial dilution of FITC-

GM in PBS buffer was made to give a range of concentrations from 0.24 – 750 µM. 

Streptavidin-coated plated were washed three times with blocking buffer (PBS, 

0.05% Tween-20, 0.05% BSA) and three times with PBS. Biotinylated SEA-001 

(100 µM) was added to well and allowed to bind at room temperature for 1 hour. 

Unbound SEA-001 was washed from the plate three times with PBS. FITC-GM 

dilutions were added to wells to give three dilution replicates. The plate was 

incubated at room temperature for three hours to allow for binding. Unbound FITC-

GM was washed from the plate three time with PBS. The plate was read for 

fluorescence. 

9.4.2 Surface plasmon resonance 

SPR experiments were performed using a Biacore 3000 (Biacore). For each 

experimental run, one flow cell remained blank to allow for measurements of 

background response and any non-specific binding to the chip. 

Stock solutions of GM (1 mM), biotinylated GM (1 mM), SEA-001 (1 mM) and 

biotinylated SEA-001 were prepared in DMSO. All buffers and samples were 

prepared to match the following buffer conditions; PBS, 0.1 mg/mL BSA, 0.01% 

Tween-20, 5% DMSO. 

9.4.2.1 Immobilised SEA-001 

Biotinylated SEA-001 (10 nM) was immobilised on a sensor chip SA (GE 

Healthcare) at a flow rate of 5 µL/min to give a response of approximately 250 RU. 

Injections of GM (ascending serial dilution; 0.39 µM – 10 µM) were passed over 

the flow cells at a flow rate of 40 µL/min for 2 minutes, followed by a 3 minute 

dissociation, with an injection of buffer before and after each series replicate. 

Injection series were repeated three times. 

9.4.2.2 DMSO only controls 

Biotinylated SEA-001 (10 nM) was immobilised on a sensor chip SA (GE 

Healthcare) at a flow rate of 5 µL/min to give a response of approximately 250 RU. 
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Injections of DMSO matching the DMSO concentrations present in a serial dilution 

of GM (0.39 – 10 µM) were passed over the flow cells at a flow rate of 40 µL/min 

for 2 minutes, followed by a 3 minute dissociation, with an injection of buffer before 

and after each series replicate. Injection series were repeated three times. 

9.4.2.3 Immobilised GM 

Biotinylated GM (100 nM) was immobilised on a sensor chip SA at a flow rate of 5 

µL/min to a response of approximately 100 RU. Injections of SEA-001 (ascending 

serial dilution; 0.39 – 50 µM) were passed over flow cells at a flow rate of 40 

µL/min, with an injection of buffer before and after each series replicate. Injection 

series were repeated three times. 

9.4.3 Isothermal titration calorimetry 

All ITC experiments were performed using a MicroCal iTC200 (Malvern). Prior to 

experimental runs, syringe, sample cell and reference cell were rinsed with 

surfactant, several cell volumes of water and finally buffer. The reference cell was 

filled with degassed water. Initial control runs: buffer into buffer and ligand into 

buffer, were performed to ensure that any background was kept to a minimum. All 

samples and buffers were matched through overnight dialysis prior to experimental 

runs. 
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9.4.3.1 ITC analysis of binding between geldanamycin and free Alu peptide, 

SA001 

ITC was used to detect the presence of a potential binding interaction between the 

free Alu peptide, SA001, and geldanamycin (GM). Samples were dialysed in PBS 

buffer (PBS tablets; Sigma Aldrich) containing 5% DMSO and 0.01% TCEP. 

The sample cell was loaded with 200 µL of peptide at a concentration of 

approximately 100 µM. Excess liquid was removed from around the cell. The 

syringe was filled with 40 µL of geldanamycin at a concentration of 1 mM. Cells 

were pre-heated to 25 ºC before lowering of syringe into sample then maintained at 

25 ºC whilst DP (data signal) was measured. Ligand was titrated into protein over 

20 ´ 4 s injections (1 ´ 0.5 µL sacrificial injection then 19 ´ 2 µL injections). There 

was a 120 s recovery time between injections. All data was fitted and analysed using 

NITPIC and SEDPHAT and results were displayed using GUSSI (NIH). 

9.4.3.2 ITC analysis of binding between MBP constructs and native MBP 

ligands 

Isothermal titration calorimetry (ITC) was used to study the effect of Alu insertion 

on the binding affinity of MBP to its native binding partners; D-(+)-maltose, β-

cyclodextrin and maltotriose.250 Mutated MBP-Alu constructs were compared with 

wild-type MBP. Samples were dialysed in a buffer containing 15 mM sodium 

phosphate and 50 mM NaCl at pH 7.2. 

The sample cell was loaded with 200 µL of protein at a concentration of 

approximately 200 µM. Excess liquid was removed from around the cell. The 

syringe was filled with 40 µL of ligand at a concentration dependent on each ligand: 

D-(+)maltose (3.0 mM), β-cyclodextrin (2.4 mM) and maltotriose (3.6 mM). Cells 

were pre-heated to 25 ºC before lowering of syringe into sample then maintained at 

25 ºC whilst DP (data signal) was measured. Ligand was titrated into protein over 

20 ´ 4 s injections (1 ´ 0.5 µL sacrificial injection then 19 ´ 2 µL injections). There 

was a 120 s recovery time between injections. All data was fitted and analysed using 

NITPIC and SEDPHAT and results were displayed using GUSSI (NIH). 

9.4.4 Circular dichroism 

Circular dichroism (CD) was measured using a Chirascan™ Circular Dichroism 

spectrometer (Applied Photophysics) made available by the Astbury Centre of 

Structural Molecular Biology. CD data was analysed using CDNN and Global3 
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software (Applied Photophysics) and DichroWeb. Each sample was provided as 200 

µL of ca. 0.2 mg/mL protein in 50 mM sodium phosphate. 

CD for each construct was measured using Pro-Data Chirascan (Applied 

Photophysics) as the difference in absorbance of right-handed circularly polarised 

light and left-handed circularly polarised light between 180.0 and 260.0 nm at a 

bandwidth of 2.0 nm. Two repeats were performed per construct at a temperature of 

20 °C. Secondary structure was then analysed using CDNN and DichroWeb 

software. 

Time-dependent CD was performed between 180.0 nm and 260.0 nm at a bandwidth 

of 2.0 nm and a path length of 1.0 cm. A step-wise temperature ramp was performed 

at a range of 20 – 90 °C increasing at 1 °C/min. Temperature was cooled back to 20 

°C between samples. The melting temperature (Tm) of each sample was calculated 

using Global3 software. 

9.5 Polysome profiling 
Polysome profiling was used to determine whether there was a change in transcript 

number of Alu and non-Alu transcripts between cancerous and non-cancerous cell 

lines. The following genes were studied; ASCC1, NEK4, BCAS4 and RPGRIP1L. 

Polysome profiling was performed in collaboration with the Aspden Group 

(University of Leeds), with cells provided by the Wurdak Group (St. James’ 

Hospital, Leeds). All centrifugation was carried out at 4 ºC and after the harvesting 

of cells, all samples were kept on ice unless otherwise stated. Approximately 10 ´ 

106 cells were used for each polysome gradient. 

9.5.1 Cell preparation 

9.5.1.1 SH-SY5Y cells 

SH-SY5Y neuroblastoma cells were provided by the Aspden group (University of 

Leeds). Cells were grown in Dulbeco’s modified eagle medium (DMEM) 

supplemented with 10% fetal bovine serum (FBS) and 1% penicillin streptomycin 

(Pen-Strep). All incubation periods were performed at a maintained temperature of 

37 ºC. 

Cells were thawed and added to pre-warmed growth media (12 mL) in a vented T75 

flask. Cells were allowed to attach for 2-3 hours. Media was removed and fresh 

media (12 mL) was added. Prior to splitting, media was removed and 1 ´ trypsin (3 
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mL; Lonza) was added to cells and incubated for 5 minutes at 37 °C. Media (5 – 6 

mL) was added to quench trypsin. Cells were split at a ratio of 1:11 every 5-7 days, 

allowing for no more than four passages (P4) before plating. 

Three days prior to polysome gradienting, 1.0 – 1.5 ´ 106 cells were added to 

medium (12 mL) in 10 cm plates. 

9.5.1.2 GBM1 Cells 

GBM1 glioblastoma cells were provided by the Wurdak group (University of 

Leeds). All GBM1 cells were grown on coated flasks prepared in the following way. 

Poly-l-ornithine (10 mg/mL) was added to T75 flasks at a dilution of 1:2000 (10 

mL) and incubated at room temperature for 1 hour. Flasks were washed with sterile 

water. Laminin at a dilution of 1:500 (10 mL) was added and cells were incubated 

at room temperature overnight. Flasks that were not for immediate use were stored 

at -20 °C for up to two months. Prior to cell seeding, flasks were washed with PBS. 

GBM1 cells were grown in a Neurobasal+ medium containing the following; 

neurobasal medium (Thermo Fisher Scientific) supplemented with 40 ng/mL 

recombinant human EGF protein (EGF; R&D Systems), 40 ng/mL human 

recombinant FGF-basic (FGF; Thermo Fisher Scientific), 0.5 ´ B-27 supplement 

(Thermo Fisher Scientific) and 0.5 ´ N-2 supplement (Thermo Fisher Scientific). 

Cells were thawed, added to media (5 mL) and centrifuged at 300 ´ g for 5 minutes. 

Pellet was resuspended in fresh media (12 mL) and added to a vented T75 flask. 

Cells were incubated at 37 °C. Prior to splitting, media was removed and 1 ´ trypsin 

(3 mL; Lonza) was added to cells and incubated for 5 minutes at 37 °C. Media (5 – 

6 mL) was added and cells were centrifuged at 300 ´ g for 5 minutes. Media was 

discarded and cells were resuspended in fresh media. Cells were split at a ratio of 

1:11 every 5-7 days, allowing for no more than four passages (P4) before plating. 

9.5.1.3 NP1 Cells 

NP1 brain cells were provided by the Wurdak group (University of Leeds). All NP1 

cells were grown on coated flasks prepared in the following way. Poly-l-ornithine 

(10 mg/mL) was added to T75 flasks at a dilution of 1:2000 (10 mL) and incubated 

at room temperature for 1 hour. Flasks were washed with sterile water. Laminin at a 

dilution of 1:500 (10 mL) was added and cells were incubated at room temperature 

overnight. Flasks that were not for immediate use were stored at -20 °C for up to 

two months. Prior to cell seeding, flasks were washed with PBS. 
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Cells were grown in NP medium containing the following; DMEM-F12 (Thermo 

Fisher Scientific) supplemented with 20 ng/mL FGF, 20 ng/mL EGF, 0.5 ´ B-27 

supplement, 0.5 ´ N-2 supplement, 1 ´ Glutamax-1 supplement (Thermo Fisher 

Scientific) and 5% FBS. 

Cells were thawed, added to media (5 mL) and centrifuged at 300 ´ g for 5 minutes. 

Pellet was resuspended in fresh media (12 mL) and added to a vented T75 flask. 

Cells were incubated at 37 °C. Prior to splitting, media was removed and 1 ´ trypsin 

(3 mL; Lonza) was added to cells and incubated for 5 minutes at 37 °C. Media (5 – 

6 mL) was added and cells were centrifuged at 300 ´ g for 5 minutes. Media was 

discarded and cells were resuspended in fresh media. Cells were split at a ratio of 

1:11 every 5-7 days, allowing for no more than four passages (P4) before plating. 

9.5.2 Gradient preparation 

Sucrose stock solutions were prepared at the following sucrose percentages (w/v ); 

18%, 26%, 34%, 42%, 47%, 50% and 60%. Stock solutions also contained 50 mM 

Tris HCl pH 8.0, 150 mM NaCl and 10 mM MgCl2. Stock solutions were stored at 

4 ºC for up to one month. 

The day prior to polysome gradienting, sucrose aliquots were prepared. To the 

necessary amount of stock solution for the number of gradients prepared, the 

following was added; cycloheximide (100 µg/mL), DTT (1 mM) and 1 ´ 

cOmplete™ protease inhibitor cocktail (Roche). Gradients of decreasing sucrose 

concentration (bottom to top) were made to give a total of 11.7 mL per tube. The 

composition of the gradient is outline in table 9.9. 

 

Aliquot 60% 50% 47% 42% 34% 26% 18% 
mL 0.5 2.0 2.0 2.0 1.4 1.4 1.4 

Table 9.9 Composition of sucrose gradients for polysome profiling. 

 

Layers were flash frozen using liquid nitrogen between the addition of each aliquot. 

Gradients were stored carefully at 4 ºC overnight. 
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9.5.3 Polysome gradients 

9.5.3.1 Cell harvesting and lysis 

All wash steps were carried out using PBS supplemented with cycloheximide 

(100µg/mL) but will be referred to as PBS. Fresh lysis buffer (10 mM Tris HCl pH 

8.0, 150 mM NaCl, 10 mM MgCl2, 1 mM DTT, 1% IGPAL, 100 ug/mL 

cycloheximide, 24 U/mL Turbo™ DNase, 90 U RNasin® Plus, 1 ´ cOmplete™ 

protease inhibitor cocktail) was prepared and kept at 4 ºC. 

Cells were treated with cycloheximide (100 µg/mL) at 37 ºC for 3 minutes. Medium 

was removed and plates were washed with PBS (2 - 3 mL). 1 ´ trypsin (2 – 3 mL) 

was added as cells were incubated at 37 ºC for 5 minutes. Media (5 – 6 mL) was 

added to quench trypsin and cells were harvested. Cells were pelleted at 800 x g for 

8 minutes and media was discarded. Cells were washed with PBS and pelleted as 

before. PBS was discarded and cells were re-suspended in lysis buffer (300 µL) and 

incubated on ice for 40 minutes. Cell debris was pelleted at 13,000 ´ g for 5 minutes. 

Lysate (300 µL) was loaded onto each gradient and centrifuge tubes were balanced 

using 18% sucrose solution (from aliquots). Gradients were centrifuged at 31,000 

rpm for 3.5 hours at 4 ºC.  

9.5.3.2 Gradient fractionation 

All gradients were fractionated using a Piston Gradient Fractionater™ (BioComp) 

coupled with an automated fraction collector and an EM-1 Econo UV monitor (Bio-

Rad). Profiles were generated using Gradient Profiler software (BioComp). 

Fractionator was rinsed thoroughly with RNAse-free water prior to each gradient. 

Gradients were fractionated into 0.5 mL aliquots. Gradient remnants were collected 

as an additional fraction, and the fractionator was aired to collect any solution 

remaining in the machine. “Air” was collected as the final fraction. 

9.5.3.3 9.5.3.3 RNA precipitation 

To each gradient fraction, an equal volume (0.5 mL) was added. NaCl solution was 

added to a final concentration of 0.3 M, followed by GlycoBlue™ Coprecipitant (1 

µL; Invitrogen). RNA was precipitated at -80 ºC for at least 12 hours. 

Samples were thawed and RNA was pelleted at 13,000 x g for 30 minutes. 

Supernatant was removed and pellets were washed twice with 70% ethanol via 

centrifugation. Pellets were air-dried for ca. 10 minutes. Pellets were resuspended in 

RNAse-free water (30 µL) and concentrations were measured using a Nanodrop™ 
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8000 (Thermo Fisher Scientific). To each sample, an appropriate amount of Turbo™ 

DNAse (1 µL per 10 µg RNA) was added. Turbo™ DNAse reaction buffer (1 ´) 

and water were added to a final volume of 100 µL. Solution was mixed well and 

incubated at 37 ºC for 30 minutes. 

Sample was diluted to 200 µL with RNAse-free water. Acidic phenol/chloroform 

(200 µL) was added and samples were mixed thoroughly. Samples were centrifuged 

at 13,000 ´ g for 5 minutes. Aqueous phase was added to 100% ethanol (500 µL). 

NaCl solution was added to a final concentration of 0.3 M followed by addition of 

GlycoBlue™ Coprecipitant (1 µL; Invitrogen). RNA was precipitated at -80 ºC for 

at least 12 hours. 

Samples were thawed and RNA was pelleted at 13,000 ´ g for 30 minutes. 

Supernatant was removed and pellets were washed twice with 70% ethanol via 

centrifugation. Pellets were air-dried for ca. 10 minutes then resuspended in RNAse-

free water (30 µL). Concentrations were measured using a Nanodrop™ 8000 

(Thermo Fisher Scientific). Purified RNA was stored at -80 ºC. 

9.5.4 Reverse transcription PCR 

Reverse transcription PCR (RT-PCR) was carried out using a qScript™ cDNA 

synthesis kit (QuantaBio) in a T100™ Thermal Cycler (Bio-Rad). 

RT-PCR was performed using the parameters outlined below. 

 

Component Amount 
RNA 1 µg - 10 pg * 
Nuclease-free water Make up to 20 µL 
5X qScript™ reaction buffer 4.0 µL 
qScript™ RT 1.0 µL 

Table 9.10 Composition of qScript™ RT-PCR reaction mixture 
*Equal volumes of RNA were added to each reaction so as to fit a range of 1 µg to 10 pg 

across all fractions. 
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Cycle Temperature (°C) Time 
1 22 5 min 
1 42 30 min 
1 85 5 min 
Hold 4 - 

Table 9.11 PCR cycling parameters to RT-PCR using qScript™ reverse transcriptase 

 

The resulting cDNA concentration was measured using a Nanodrop™ 8000 

(Thermo Fisher Scientific) and stored at -20 °C. 

9.5.5 Quantitative PCR 

Quantitative PCR (qPCR) was performed in a 96-well PCR reaction plate using a 

CFX Connect™ Real-Time PCR Detection System (Bio-Rad). qPCR was run and 

analysed using Bio-Rad CFX Manager™ software. 

9.5.5.1 Primer design 

Primers were designed to individually target Alu and non-Alu transcripts of NEK4, 

BCAS4, ASCC1 and RPGRIP1L. Exon-exon junctions specific to each transcript 

type were identified using Ensemble and primers were designed to span the 

appropriate junctions accordingly. Primers were 18-25 nt in length with a GC 

content of 40-60%. Primer melting point (Tm) was between 50 and 70 °C, with no 

more than 5°C difference between primer pairs. The predicted transcript produced 

by primer pairs spanned from 100 – 150 nt. Examples of forward and reverse primers 

are shown below: 

 

SAQ001: BCAS4 AC Forward 

Sequence corresponding to part of exon 5 
GGG TTC AAG TGA TTC TCC TGC 

 

SAQ002: BCAS4 AC Reverse 

Sequence corresponding to reverse complement of part of exon 6 
CTA TAC AGT GTG GGC AGC TC 
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Predicted transcripts were checked for undesired amplification products using basic 

local alignment tool (BLAT) analysis available from the UCSC Genome Browser. 

Primers were ordered from Integrated DNA Technologies (IDT). 

9.5.5.2 qPCR setup 

Prior to qPCR, cDNA samples were diluted equally so that the highest sample 

concentration was approximately 2.5 ng/µL. A sample of combined cDNA was 

prepared by combining a small amount of each fraction cDNA in a 1/5 dilution. 

Serial dilutions of 1/50, 1/500 and 1/5000 were then made. RNA corresponding to 

each cDNA sample was diluted to the same concentration as samples. A reaction 

master mix was made up so as to meet the reaction components outlined in table 

9.12. 

 

Component Amount 
2X PowerUp™ SYBR™ Green Master Mix 10 µL 
Forward primer (10 µM) 0.6 µL 
Reverse primer (10 µM) 0.6 µL 
Deionised water 3.8 µL 

Table 9.12 Reaction master mix components per well for qPCR using PowerUp™ 

SYBR™ Green 

 

In each well, 15 µL of master mix was added to 5 µL of samples and mixed well. 

The plate was filled so as to accommodate the samples outlined in table 9.13. 

 

Type Sample No. Wells 
Standard curve 1/2.5 dilution 3 
Standard curve 1/12.5 dilution 3 
Standard curve 1/62.5 dilution 3 
Standard curve 1/312.5 dilution 3 
Samples cDNA for each fraction 3 
No RT control (NRT) RNA for each fraction 1 
No template control (NTC) Water 1 

Table 9.13 Overview of 96-well PCR plate for qPCR with PowerUp™ SYBR™ Green. 

 

Plate was covered and centrifuged at < 1000 rpm for 30 seconds. qPCR was carried 

out using the parameters outlined in table 9.10.  
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Step Temperature Time Cycle 
UDG activation 50 °C 2 minutes 1 
Dual-Lock™ DNA 
polymerase 95 °C 2 minutes 1 

Denaturation 95 °C 15 seconds 
40 Annealing 55-60 °C* 15 seconds 

Extension 72 °C 1 minute 

Table 9.14 Cycling conditions of real-time quantitative PCR (RT-qPCR) 
*Annealing temperature should be set to the melting temperature of the primer used. 

 

9.5.5.3 qPCR data analysis 

Data obtained from qPCR was analysed using Microsoft Excel. Standard curves 

were generated by plotting log (starting quantity) against quantification cycle (Cq). 

Trend lines were fitted and standard curves were excepted for an R2 value between 

0.9 and 1.0. Primer efficiency was calculated using equation 9.1. Primers with an 

efficiency between 100 and 110% we accepted. 

 

"#$%&'()	9.1														"__'c'`)cl	(%) = (10(
TU

9N:nOo ) − 1) 	× 100 

 

Starting quantities (SQ) for fractions was calculated through the rearrangement of 

the equation associated with the standard curve trend line (equation 9.2). 
 

"#$%&'()	9.2														6q = 	10(
IrTstuv

9N:nOo ) 

 

SQ mean and standard error were calculated from fraction triplicates. Results were 

plotted as histograms of fraction versus SQ mean. Secondary histograms were 

generated showing transcript expression per fraction as a percentage of total 

expression. 

Data for fractions 9 – 10, representative of polysome population and discounting 

free mRNA and ribosomal subunits, was plotted as a percentage of total polysomal 

RNA. Ascending and descending cumulative percentages were plotted on a x-axis 

of ribosome number and the intercept between the two plots represented the mean 

ribosomal distribution of each target transcript. 
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9.6 General recipes 

9.6.1 Agarose (1%) gel 

Agarose (0.5 g; Thermo Fisher Scientific) was added to deionised water (50 mL) 

and microwaved for 1 minute 30 seconds. SYBR™ Safe gel stain (0.5 µL; 

Invitrogen) was added and gel was poured into mould (BioRad) and allowed to set 

at room temperature. 

9.6.2 Tris acetate EDTA (TAE) buffer 

A 50 ´ TAE buffer stock solution was prepared by adding Tris (244 g), acetate (57.1 

mL) and 0.5 M Na4EDTA (100 mL) to deionised water (up to 1L). 1 ´ TAE buffer 

was prepared freshly for use. 

9.6.3 Luria-Bertani (LB) media 

LB Broth – Miller (25 g; Formedia) was added to deionised water (1 L) and 

autoclaved. The amount of powder was scaled for the amount of media required. 

9.6.4 LB agar 

LB Broth – Miller (2.5 g; Formedia) and agar (1.2 g; Formedia) were added to 

deionised water (100 mL) and autoclaved. Autoclaved LB agar was cooled until 

touchable by hand. Necessary antibiotics were added and LB agar was poured into 

sterile petri dishes and allowed to set at room temperature. Plates were seal with 

parafilm and stored top-down at 4 °C. 

9.6.5 SDS-PAGE (10% acrylamide) gel 

SDS-PAGE gel solutions were prepared as outlined in table 9.15. 
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 Separating gel Stacking gel 
Deionised water 5.0 mL 6.26 mL 
Tris HCl pH 6.8 - 2.5 mL 
Tris HCl pH 8.8 2.5 mL - 
40% acrylamide solution 2.5 mL 1.24 mL 
10% SDS 100 µL 100 µL 
10% APS 100 µL 100 µL 

Table 9.15 Components for SDS-PAGE gel (10% acrylamide) solutions 

 

TEMED (10 µL) was added to separating gel solution, mixed and loaded in a 1.0 

mm plates using a gel casting kit (BioRad). Isopropanol was added to maintain an 

even gel. Gel was allowed to set at room temperature. Isopropanol was removed. 

TEMED (10 µL) was added to stacking gel solution and mixed. Stacking gel was 

loaded, well comb added and gel was allowed to set at room temperature. 

9.6.6 SDS-PAGE running buffer 

A 5 ´ SDS-PAGE buffer was prepared by adding Tris (15.1 g), glycine (94 g) and 

sodium dodecyl sulfate (SDS; 5 g) to deionised water (1 L). 1 ´ buffer was prepared 

freshly prior to gel runs. 

9.6.7 SDS loading buffer (2 ´) 

Loading buffer was made up according to table 9.16. 

 

Component Amount 
Tris HCl 100 mM 
SDS 4% 
Bromophenol blue 0.2% 
Glycerol 20% 
DTT 20 mM 

Table 9.16 Components of SDS-PAGE loading buffer 
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9.6.8 Antibiotic stocks 

Antibiotic stocks (1000 ´) were made up to according to table 9.17. 

 

Antibiotic Concentration Solvent 
Kanamycin 50 mg/mL Water 
Chloramphenicol 25 mg/mL Ethanol 
Ampicillin 125 mg/mL Water 

Table 9.17 Antibiotic stock concentrations 
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Appendix 

1 Bioinformatic data 

 
  

Subfamily Consensus sequence
J GGCCGGGCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGG

CGGGAGGATCACTTGAGCCCAGGAGTTCGAGACCAGCCTGGGCAACATAGTG
AAACCCCGTCTCTACAAAAAATACAAAAATTAGCCGGGCGTGGTGGCGCGCG
CCTGTAGTCCCAGCTACTCGGGAGGCTGAGGCAGGAGGATCGCTTGAGCCCG
GGAGGTCGAGGCTGCAGTGAGCCGTGATCGCGCCACTGCACTCCAGCCTGGG
CGACAGAGCGAGACCCTGTCTCAAAAAAAA

Sx GGCCGGGCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGG
CGGGCGGATCACCTGAGGTCAGGAGTTCGAGACCAGCCTGGCCAACATGGTG
AAACCCCGTCTCTACTAAAAATACAAAAATTAGCCGGGCGTGGTGGCGCGCG
CCTGTAATCCCAGCTACTCGGGAGGCTGAGGCAGGAGAATCGCTTGAACCCG
GGAGGCGGAGGTTGCAGTGAGCCGAGATCGCGCCACTGCACTCCAGCCTGGG
CGACAGAGCGAGACTCCGTCTCAAAAAAAA

Sp GGCCGGGCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGG
CGGGCGGATCACCTGAGGTCGGGAGTTCGAGACCAGCCTGACCAACATGGAG
AAACCCCGTCTCTACTAAAAATACAAAAATTAGCCGGGCGTGGTGGCGCATG
CCTGTAATCCCAGCTACTCGGGAGGCTGAGGCAGGAGAATCGCTTGAACCCG
GGAGGCGGAGGTTGCGGTGAGCCGAGATCGCGCCATTGCACTCCAGCCTGGG
CAACAAGAGCGAAACTCCGTCTCAAAAAAAA

Sq GGCCGGGCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGG
CGGGTGGATCACCTGAGGTCAGGAGTTCGAGACCAGCCTGGCCAACATGGTG
AAACCCCGTCTCTACTAAAAATACAAAAATTAGCCGGGCGTGGTGGCGGGCG
CCTGTAATCCCAGCTACTCGGGAGGCTGAGGCAGGAGAATCGCTTGAACCCG
GGAGGCGGAGGTTGCAGTGAGCCGAGATCGCGCCACTGCACTCCAGCCTGGG
CAACAAGAGCGAAACTCCGTCTCAAAAAAAA

Sc GGCCGGGCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGG
CGGGCGGATCACGAGGTCAAGAGATCGAGACCATCCTGGCCAACATGGTGAA
ACCCCGTCTCTACTAAAAATACAAAAATTAGCTGGGCGTGGTGGCGCGCGCC
TGTAGTCCCAGCTACTCGGGAGGCTGAGGCAGGAGAATCGCTTGAACCCGGG
AGGCGGAGGTTGCAGTGAGCCGAGATCGCGCCACTGCACTCCAGCCTGGCGA
CAGAGCGAGACTCCGTCTCAAAAAAAA
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A1.1 Consensus sequences for NCBI database Alu subfamilies 

 

 

 

A1.2 List of Dfam Alu sequences used in analysis 

Subfamily Consensus sequence
Sb GGCCGGGCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGG

CGGGCGGATCACGAGGTCAGGAGATCGAGACCATCCTGGCTAACACGGTGAA
ACCCCGTCTCTACTAAAAATACAAAAATTAGCCGGGCGTGGTGGCGGGCGCC
TGTAGTCCCAGCTACTCGGGAGGCTGAGGCAGGAGAATGGCGTGAACCCGGG
AGGCGGAGCTTGCAGTGAGCCGAGATCGCGCCACTGCACTCCAGCCTGGGCG
ACAGAGCGAGACTCCGTCTCAAAAAAAA

Sb1 GGCCGGGCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGG
CGGGCGGATCACGAGGTCAGGAGATCGAGACCATCCCGGCTAAAACGGTGAA
ACCCCGTCTCTACTAAAAATACAAAAATTAGCCGGGCGTAGTGGCGGGCGCC
TGTAGTCCCAGCTACTTGGGAGGCTGAGGCAGGAGAATGGCGTGAACCCGGG
AGGCGGAGCTTGCAGTGAGCCGAGATCCCGCCACTGCACTCCAGCCTGGGCG
ACAGAGCGAGACTCCGTCTCAAAAAAAA

Yb GGCCGGGCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGG
CGGGTGGATCATGAGGTCAGGAGATCGAGACCATCCTGGCTAACAAGGTGAA
ACCCCGTCTCTACTAAAAATACAAAAAATTAGCCGGGCGCGGTGGCGGGCGC
CTGTAGTCCCAGCTACTGGGGAGGCTGAGGCAGGAGAATGGCGTGAACCCGG
GAAGCGGAGCTTGCAGTGAGCCGAGATTGCGCCACTGCAGTCCGCAGTCCGG
CCTGGGCGACAGAGCGAGACTCCGTCTCAAAAAAAA

Class Subfamilies analysed
Alu J Jb, Jo, Jr, Jr4
AluS Sc, Sc5, Sc8, Sg, Sg4, Sg7, Sp, Sq, Sq2, Sq4, Sq10, Sx, Sx1, Sx3, Sx4, Sz, Sz6
AluY Y, Ya5, Ya8, Yb8, Yb9, Yc, Yc3, Yd8, Ye5, Yf1, Yg6, Yh9, Yk4, Yk11, Yk12
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ID Protein Full name Match (% ) Isoforms Strand Location
Q7Z5D8 NANGN NANOG neighbour homeobox 97 1 + N
Q99959 PKP2 Plakophilin-2 95 2 + I

Q8NHA8 OR1FC Olfactory receptor 1F12 95 1 + C
Q86V71 ZN429 Zinc finger protein 429 95 1 + C
Q9NRJ1 MOST1 Protein MOST-1 94 1 + C
Q96ET8 TV23C Golgi apparatus membrane protein TVP23 homolog C 94 3 N/A I
Q58FG0 HS905 Putative heat shock protein HSP 90-alpha A5 94 1 - N
Q9UJ41 RABX5 Rab5 GDP/ GTP exchange factor 93 4 N/A I
Q9BUA6 MYL10 Myosin regulatory light chain 10 93 1 - N
Q9NV72 ZN701 Zinc finger protein 701 92 2 - N
Q9HC38 GLOD4 Glyoxalase domain-containing protein 4 92 3 - N
Q8N7M2 ZN283 Zinc finger protein 283 92 1 - N
Q09FC8 ZN415 Zinc finger protein 415 91 6 - N
Q5TCQ9 MAGI3 Membrane-associated guanylate kinase, WW and PDZ domain containing protein 3 90 4 N/A I
Q92918 M4K1 Mitogen-activated protein kinase kinase kinase kinase 1 89 2 - C
Q05481 ZNF91 Zinc finger protein HPF7 88 2 - C
Q8N9N2 ASCC1 Activating signal cointegrator complex subunit 1 88 2 - C
O14628 ZN195 Zinc finger protein 195 85 8 - N
Q96N38 ZN714 Zinc finger protein 714 84 3 + C

Q8TDM0 BCAS4 Breast cancer amplified sequence 4 84 3 - C
Q04864 REL Proto-oncogene c-rel 84 2 - I
Q8N7I0 GVQW1 GVQW motif-containing protein 1 84 1 - I
P49796 RGS3 Regulator of G-protein signalling 3 84 9 + N
Q5T7P6 TMM78 Transmembrane protein 78 83 1 - C
Q5H5K5 ZMAT1 Zinc finger matrin-type protein 1 83 2 - N
Q8IV13 CCNJL Cyclin-J-like protein 83 2 - I

Q8NEM8 CBPC3 Cytosolic carboxypeptidase 3 83 4 N/A I
Q6P3R8 NEK5 Never in mitosis A-related kinase 5 83 1 - I
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A1.3 Refined list of Alu-containing protein matches 

List contains the Alu matches identified using a percentage identity of 68% or above and an E-value of 1 × 108 or lower. Protein IDs are taken from the NCBI 

database. Stands are listed at sense (+) or antisense (+) dependent on the orientation of the parent Alu and location refers to the area of the protein in which the 

insertion was located; N-terminal (N), internal (I) or C-terminal (C).

ID Protein Full name Match (% ) Isoforms Strand Location
Q9Y2ZO SGT1 Protein SGT1 homolog 82 2 - I
Q495B1 AKD1A Ankyrin repeat and death domain-containing protein 1A 82 4 - C
Q6UX73 CP089 UPF0764 protein C16orf89 81 2 - C
Q96J02 ITCH E3 ubiquitin-protein ligase Itchy homolog 81 3 - N
P51957 NEK4 Never in mitosis A-related kinase 4 80 3 - I

Q8WTZ3 YS049 Zinc finger protein ENSP00000375192 78 1 - I
Q96M98 PACRG Parkin coregulated gene protein 77 2 - I
Q9BUB5 MKNK1 MAP  kinase-interacting serine/ threonine-protein kinase 1 77 3 - I
Q68CZ1 FTM Protein fantom 77 2 - C
P78312 F193A Protein FAM193A 76 6 - C

Q9NXG0 CNTLN Centlein 75 3 N/A C
O15488 GLYG2 Glycogenin 74 6 - N
F2Z398 LMO7D LMO7 downstream neighbour protein 74 1 - I
Q96T75 DSCR8 Down syndrome critical region protein 8 73 4 - I
O94966 UBP19 Ubiquitin carboxyl-hydrolase 19 71 7 - N
E7EU14 PPP5D1 PPP5 TPR repeat domain-containing protein 1 70 1 - C
Q8NDZ0 BEND2 BEN domain-containing protein 2 70 2 - N
Q96ME1 FXL18 F-box/ LRR-repeat protein 18 70 4 - C
Q6NY19 KANK3 KN motif and ankyrin repeat domain-containing protein 3 68 2 - C
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Alignment SID E-Val. 

AKD1A   495  GWSTMARSQLTATSASRVQMILVPQPPE  522 

AluSz6  9    ...AV...R..........A........  36 
86% 1 × 10-14 

ASCC1   351  LLPRLEYNDAISAHCNLCLPGSSDSPASASQVAGITG  387 

AluSq   6    ......CSG........R............R......  42 
86% 3 × 10-19 

BCAS4   164  VECSGTIPARCNLRLPGSSDSPASASQVAGIT  195 

AluSq   10   L....A.S.H................R.....  41 
84% 3 × 10-16 

BEND2   80   GSGSVTQAGVQWHDHSSLQPQPLGLKQFFHLSLPSSWDDRRTPPCP  125 

AluJr   4    ..R..A......R.......RTP...RSSR........Y..A..R.  49 
72% 3 × 10-14 

CBPC3   704  AHCKLRLPGSRHSPASASRVAGTTGTRHHTWLIFVFLVEMG  744 

AluSc   18   ...N......SD.............A...AQ........T.  58 
83% 8 × 10-22 

CCNJL   94   NGVSLLSPRLKCSGMISAHCNLHLPGSSNSPASA  127 

AluSq   1    D.....L...E...A.......R.....D.....  34 
82% 4 × 10-16 

CNTLN   1373  QSLTLSPRLKCNGAIVAHQNLRLPDSSSS-ASAS  1405 

AluSx   2     R..A.....E.S...S..C.....G..D.P....  35 
74% 6 × 10-12 

CP089   367  FYIFLVETGFHHVAHAGLELLISRDPPTSGSQSVGL  402 

AluSz   50   IFV..........GQ......T.S...A.A...A.I  85 
69% 8 × 10-16 

DSCR8  28  LFLSPRLECSGSITDHCSLHLP  49 

ALUSz6 4   .A.........A.SA..N.R..  25 
73% 5 × 10-10 

F193A  1167 DGVSLLLPSLGYNGAILAHCNLRLPGSSDCAASASQVVGIT  1207 

AluSq2 1    ......S.R.EC....S............SP....R.A...  41 
78% 2 × 10-16 

FTM    1096 IKQSLALSPGLGCSSAISAHCNFRLPGSSDFPASASQVDGITGACHHTQ  1144 

AluSg4 1    LRR......R.E..G.......L.......S.....R.A.....R.RAR  49 
71% 8 × 10-22 

FXL18  757  ETESHSVVQAGVQWRDLSSLQPLLSGLQ  784 

AluSz6 1    ....R..A.........G....PPP.FK  28 
71% 4 × 10-11 

GLOD4  30  KVESCSVARLECSGAISAHCS  50 

AluSc5 1   ET..R...............N  21 
81% 1 × 10-9 

GLYG2  3   ETEFHHGAQAGLELLRSSNSPTSASQSAGMT  33 

AluJb  56  ..G...V........G..DP.A.......I.  86 
77% 9 × 10-12 

ITCH   159  NGVSLCLPRLECNSAISAHCNLCLPGLSDSPISASRVAGFTGASQN  204 

ALUSQ2 1    D....LS......G........R...S....A.......I...RHH  46 
76% 2 × 10-21 

M4K1   797  SPRLECSGTISPHCNLLLPGSSNSPASASRVAGITG  832 

AluSx  7    ........A..A....R.....D.............  42 
89% 2 × 10-18 

MKNK1  189  LGSSDPPTSASQVAGTTGIAHR  210 

AluJb  70   .......A....S..I..VS..  91 
77% 7 × 10-9 
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Alignment SID E-Val. 

NEK4   456  QSLALSPKLECSGTILAHSNLRLLGSSDSPASASRVAGITGVCHHAQ  502 

AluSx  2    R......R.....A.S..C....P.................AR...R  48 
81% 5 × 10-22 

PACRG  210  PRLECSGAIMARCNLDHLGSSDPPTSASQVA  240 

AluJo  8    .........I.H.S.EL.......A...R..  38 
77% 3 × 10-15 

REL    308  VETGFRHVDQDGLELLTSGDPPTLASQSAGIT  339 

AluSz6 55   .....C..G.A.....A.S...AS........  86 
78% 2 × 10-13 

RGS3   2   PVIPALWEVEMGRSQGQEIETILAN  26 

AluYk4 8   ........A.A.G.R..........  32 
84% 3 × 10-11 

SGT1   110  IETGFHRVGQAGLQLLTSSDPPALDSQSAGITG  142 

AluSz  55   V.....H......E.........SA........  87 
85% 2 × 10-17 

ZMAT1  2   ESCSVTRLECSGAISAHCSLHLPGSSDSPASASQIAGTTDA  42 

AluSc  3   ..R..A............N.R............RV....G.  43 
83% 2 × 10-20 

ZN195  76   EMGFHHATQACLELLGSSDLPASASQSAGITGVNHRAQ  113 

AluJb  56   .T....VA..G........P.............S...R  93 
82% 1 × 10-18 

ZN415  61  RLECNGAISAHCNLRLPDSNDSPASASRVAGIT  93 

AluSq2 9   .................G.S.............  41 
94% 9 × 10-19 

ZN701  2   GFLHVGQDGLELPTSGDPPASASQSAGITGVSHRTQ  37 

AluSz  58  ..H....A....L..S..................AR  93 
83% 8 × 10-17 

ZN714  504  GMVAHACNPNTLRGLGEQIARSGVQDQPGQHGKTPSLLKIQKFAGCGGRRL 554 

AluSg  2    .A.......S..G.R.GR.T....R.......E.........L..R..A.. 52 
76% 4 × 10-24 

A1.4 Alignments of protein hits with a single ORF from the parental Alu
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2 Human proteins DNA and protein data 

Plasmid sequences for human proteins 

Genes were cloned into plasmids followed by a stop codon with no addition 

mutations to the gene. In cases were plasmids encoded fusion proteins, the fusion 

partner interest is highlight in red. 

 

pET.SUMO.28a.NEK4 transcript variant 1 sequence 5’-3’ 
ATGGGCAGCAGCCATCATCATCATCATCACAGCAGCGGCCTGGTGCCGCGCGGCAGCCATATGTCG

GACTCAGAAGTCAATCAAGAAGCTAAGCCAGAGGTCAAGCCAGAAGTCAAGCCTGAGACTCACATC

AATTTAAAGGTGTCCGATGGATCTTCAGAGATCTTCTTCAAGATCAAAAAGACCACTCCTTTAAGA

AGGCTGATGGAAGCGTTCGCTAAAAGACAGGGTAAGGAAATGGACTCCTTAAGATTCTTGTACGAC

GGTATTAGAATTCAAGCTGATCAGACCCCTGAAGATTTGGACATGGAGGATAACGATATTATTGAG

GCTCACAGAGAACAGATTGGTGGAATGCCCCTGGCCGCCTACTGCTACCTGCGGGTCGTGGGCAAG

GGGAGCTATGGAGAGGTGACGCTTGTGAAGCACCGGCGGGACGGCAAGCAGTATGTCATCAAAAAA

CTGAACCTCCGAAATGCCTCTAGCCGAGAGCGGCGAGCTGCTGAACAGGAAGCCCAGCTCTTGTCT

CAGTTGAAGCATCCCAACATTGTCACCTACAAGGAGTCATGGGAAGGAGGAGATGGTCTGCTCTAC

ATTGTCATGGGCTTCTGTGAAGGAGGTGATTTGTACCGAAAGCTCAAGGAGCAGAAAGGGCAGCTT

CTGCCGGAGAATCAGGTGGTAGAGTGGTTTGTACAGATCGCCATGGCTTTGCAGTATTTACATGAA

AAACACATCCTTCATCGAGATCTGAAAACTCAAAATGTCTTCCTAACAAGAACAAACATCATCAAA

GTAGGGGACCTAGGAATTGCCCGAGTGTTGGAGAACCACTGTGACATGGCTAGCACCCTCATTGGC

ACACCCTACTACATGAGCCCTGAATTGTTCTCAAACAAACCCTACAACTATAAGTCTGATGTTTGG

GCTCTAGGATGCTGTGTCTATGAAATGGCCACCTTGAAGCATGCTTTCAATGCAAAAGATATGAAT

TCTTTAGTTTATCGGATTATTGAAGGAAAGCTGCCAGCAATGCCAAGAGATTACAGCCCAGAGCTG

GCAGAACTGATAAGAACAATGCTGAGCAAAAGGCCTGAAGAAAGGCCGTCTGTGAGGAGCATCCTG

AGGCAGCCTTATATAAAGCGGCAAATCTCCTTCTTTTTGGAGGCCACAAAGATAAAAACCTCCAAA

AATAACATTAAAAATGGTGACTCTCAATCCAAGCCTTTTGCTACAGTGGTTTCTGGAGAGGCAGAA

TCAAATCATGAAGTAATCCACCCCCAACCACTCTCTTCTGAGGGCTCCCAGACATATATAATGGGT

GAAGGCAAATGTTTGTCCCAGGAGAAACCCAGGGCCTCTGGTCTCTTGAAGTCACCTGCCAGTCTG

AAAGCCCATACCTGCAAACAGGACTTGAGCAATACCACAGAACTAGCCACAATCAGTAGCGTAAAT

ATTGACATCTTACCTGCAAAAGGGAGGGATTCAGTGAGTGATGGCTTTGTTCAGGAGAATCAGCCA

AGATATTTGGATGCCTCTAATGAGTTAGGAGGTATATGCAGTATTTCTCAAGTGGAAGAGGAGATG

CTGCAGGACAACACTAAATCCAGTGCCCAGCCTGAAAACCTGATTCCCATGTGGTCCTCTGACATT

GTCACTGGGGAAAAGAATGAACCAGTGAAGCCTCTGCAGCCCCTAATCAAAGAACAAAAGCCAAAG

GACCAGAGTCTTGCCCTGTCGCCCAAGCTGGAGTGCAGTGGCACAATCTTGGCTCACAGCAACCTC

CGCCTCCTGGGTTCAAGTGATTCTCCAGCCTCAGCCTCCCGAGTAGCTGGGATTACAGGCGTGTGC

CACCACGCCCAGGATCAAGTTGCTGGTGAATGTATTATAGAAAAACAGGGCAGAATCCACCCAGAT

TTACAGCCACACAACTCTGGGTCTGAACCTTCCCTGTCTCGACAGCGACGGCAAAAGAGGAGAGAA
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CAGACTGAGCACAGAGGGGAAAAGAGACAGGTCCGCAGAGATCTCTTTGCTTTCCAAGAGTCGCCT

CCTCGATTTTTGCCTTCTCATCCCATTGTTGGGAAAGTGGATGTCACATCAACACAAAAAGAGGCT

GAAAACCAACGTAGAGTGGTCACTGGGTCTGTGAGCAGTTCAAGGAGCAGTGAGATGTCATCATCA

AAGGATCGACCATTATCAGCCAGAGAGAGGAGGCGACTAAAGCAGTCACAGGAAGAAATGTCCTCT

TCAGGCCCTTCAGTGAGGAAAGCGTCTCTGAGTGTAGCAGGGCCAGGAAAACCCCAGGAAGAAGAC

CAGCCCTTGCCTGCCCGACGGCTCTCCTCTGACTGCAGCGTCACTCAGGAAAGGAAACAGATTCAT

TGTCTGTCTGAGGATGAGTTAAGTTCTTCTACAAGTTCAACTGATAAGTCAGATGGGGATTACGGG

GAAGGGAAAGGTCAGACAAATGAAATTAATGCCTTGGTACAATTGATGACTCAGACCCTGAAACTG

GATTCTAAAGAGAGCTGTGAAGATGTCCCGGTAGCAAACCCAGTGTCAGAATTCAAACTTCATCGG

AAATATCGGGACACACTGATACTTCATGGGAAGGTTGCAGAAGAGGCAGAGGAAATCCATTTTAAA

GAGCTACCTTCAGCTATTATGCCAGGTTCTGAAAAGATCAGGAGACTAGTTGAAGTCTTGAGAACT

GATGTAATTCGTGGCCTGGGAGTTCAGCTTTTAGAGCAGGTGTATGATCTTTTGGAGGAGGAGGAT

GAATTTGATAGAGAGGTACGTTTGCGGGAGCACATGGGTGAAAAGTATACAACTTACAGTGTGAAA

GCTCGCCAGTTGAAATTTTTTGAAGAAAACATGAATTTT 

 

pET.SUMO.28a.ZMAT1 transcript variant 1 sequence 5’-3’ 
ATGGGCAGCAGCCATCATCATCATCATCACAGCAGCGGCCTGGTGCCGCGCGGCAGCCATATGTCG

GACTCAGAAGTCAATCAAGAAGCTAAGCCAGAGGTCAAGCCAGAAGTCAAGCCTGAGACTCACATC

AATTTAAAGGTGTCCGATGGATCTTCAGAGATCTTCTTCAAGATCAAAAAGACCACTCCTTTAAGA

AGGCTGATGGAAGCGTTCGCTAAAAGACAGGGTAAGGAAATGGACTCCTTAAGATTCTTGTACGAC

GGTATTAGAATTCAAGCTGATCAGACCCCTGAAGATTTGGACATGGAGGATAACGATATTATTGAG

GCTCACAGAGAACAGATTGGTGGAATGGAGTCTTGCTCTGTCACCAGGCTGGAGTGCAGTGGCGCA

ATCTCGGCTCACTGCAGCCTCCACCTCCCGGGTTCAAGCGATTCCCCTGCCTCAGCCTCCCAAATA

GCTGGGACTACAGACGCCATTTGGAATGAACAGGAAAAGGCTGAACTTTTTACAGATAAGTTTTGT

CAAGTATGTGGAGTGATGCTACAGTTTGAATCACAAAGAATTTCACATTATGAGGGTGAAAAACAT

GCTCAAAATGTTAGTTTTTATTTTCAAATGCATGGGGAACAAAATGAAGTGCCTGGTAAGAAAATG

AAGATGCATGTTGAGAATTTTCAGGTGCATAGGTATGAAGGAGTGGACAAAAACAAATTTTGTGAT

CTCTGCAACATGATGTTTAGCTCTCCACTTATTGCTCAGTCTCACTATGTGGGAAAGGTCCATGCT

AAAAAACTGAAGCAATTAATGGAGGAACATGATCAGGCATCTCCATCAGGATTTCAACCAGAGATG

GCATTTAGTATGAGAACCTATGTTTGCCATATTTGTAGTATTGCTTTTACATCTTTAGATATGTTC

CGGTCCCACATGCAAGGAAGTGAACATCAAATTAAAGAATCCATTGTTATCAATCTAGTGAAGAAT

TCAAGGAAGACACAAGACTCTTACCAAAATGAGTGTGCAGATTACATCAATGTGCAGAAAGCCAGA

GGACTAGAGGCCAAGACTTGTTTCAGAAAGATGGAAGAGAGTTCTTTGGAAACCCGTAGATACAGA

GAAGTGGTCGATTCCAGACCCAGACATAGAATGTTTGAACAAAGACTCCCATTTGAGACTTTCCGG

ACATACGCAGCACCATACAATATTTCACAAGCAATGGAAAAGCAGTTACCTCATTCAAAGAAGACA

TATGACTCTTTCCAAGATGAACTTGAAGATTACATCAAAGTACAGAAAGCCAGAGGACTAGATCCA

AAGACTTGTTTCAGAAAGATGAGAGAGAACTCTGTGGATACTCATGGGTACAGAGAAATGGTTGAT

TCTGGACCCAGATCAAGAATGTGTGAGCAAAGATTTTCACATGAGGCTTCCCAGACCTACCAACGA

CCATACCATATTTCACCAGTGGAAAGCCAGTTACCTCAGTGGCTACCAACCCATTCAAAGAGGACA

TATGATTCTTTCCAAGATGAACTTGAAGATTACATAAAAGTGCAGAAAGCCAGAGGACTAGAGCCA
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AAAACTTGTTTCAGAAAGATAGGAGATAGCTCTGTAGAAACACACAGGAACAGAGAAATGGTTGAT

GTCAGACCCAGACATAGAATGTTGGAGCAAAAGCTCCCATGTGAGACTTTCCAGACCTATTCAGGA

CCATATAGTATTTCACAAGTAGTGGAAAACCAGTTACCTCATTGCTTACCAGCTCATGATAGCAAA

CAGAGACTAGATTCTATTAGCTACTGTCAACTCACCAGAGACTGTTTCCCAGAAAAACCAGTACCC

TTGAGCCTTAATCAGCAAGAAAATAACTCTGGCTCATACAGTGTAGAATCTGAAGTTTACAAGCAC

CTCTCTTCAGAAAACAATACTGCTGACCATCAAGCAGGTCATAAACGGAAACATCAGAAGAGAAAA

CGACACCTAGAAGAAGGCAAAGAAAGGCCAGAGAAAGAGCAGTCCAAGCATAAAAGGAAAAAGAGT

TATGAAGATACAGATTTAGACAAAGACAAGAGCATCAGACAAAGGAAAAGAGAGGAGGATAGAGTC

AAGGTCAGTTCAGGAAAGCTTAAGCATCGAAAAAAGAAAAAAAGCCATGATGTACCCTCCGAGAAA

GAAGAACGTAAGCACAGGAAAGAGAAAAAGAAATCTGTTGAAGAAAGGACAGAAGAGGAAATGCTT

TGGGATGAGTCTATTCTTGGATTT 

 

pGEX.4T.1.PPP5D1 transcript sequence 5’-3’ 
ATGTCCCCTATACTAGGTTATTGGAAAATTAAGGGCCTTGTGCAACCCACTCGACTTCTTTTGGAA

TATCTTGAAGAAAAATATGAAGAGCATTTGTATGAGCGCGATGAAGGTGATAAATGGCGAAACAAA

AAGTTTGAATTGGGTTTGGAGTTTCCCAATCTTCCTTATTATATTGATGGTGATGTTAAATTAACA

CAGTCTATGGCCATCATACGTTATATAGCTGACAAGCACAACATGTTGGGTGGTTGTCCAAAAGAG

CGTGCAGAGATTTCAATGCTTGAAGGAGCGGTTTTGGATATTAGATACGGTGTTTCGAGAATTGCA

TATAGTAAAGACTTTGAAACTCTCAAAGTTGATTTTCTTAGCAAGCTACCTGAAATGCTGAAAATG

TTCGAAGATCGTTTATGTCATAAAACATATTTAAATGGTGATCATGTAACCCATCCTGACTTCATG

TTGTATGACGCTCTTGATGTTGTTTTATACATGGACCCAATGTGCCTGGATGCGTTCCCAAAATTA

GTTTGTTTTAAAAAACGTATTGAAGCTATCCCACAAATTGATAAGTACTTGAAATCCAGCAAGTAT

ATAGCATGGCCTTTGCAGGGCTGGCAAGCCACGTTTGGTGGTGGCGACCATCCTCCAAAATCGGAT

CTGGTTCCGCGTGGATCCATGGCGGAAATGAGAGCTTGGCGCCCATTGGTCCGACCTTCCCTGCAA

TGCGTCAAACTGGGGCGAGCCACTGCAAGGTGGTGGTGGGTGGTCAAGGTGAAGCCCCACGACAAG

GATGCCAAAATGGAATACCAGGAGTGCAACAAGATCGTGAAGCAGAAGGCCTTTGAGCGGGCCATC

GCAGGCGACGAGCACAAGCGCTCCGTGGTGGACTCGCTGGACATCGAGAGCATGACCATCGAGGGT

GAGTACAGCGGACCCAAGCTTGAGGACGACAAAGTGACAATCACCTTCATGAAGGGGCTCATGCAG

TGGTACAAGGACCAGAAGAAACTGCACCAGAAATGCGCCTACCAGGGTCTTGCTCTATCACCCAGG

CTGAAGTGCAGTGGTACGGTCACGGCTCACTGCAGCCTCAACCTCCTGGGCCCACGTGATCCTCCC

GCCTCAGCATCCCAAGTAGCTGTGACCGAGGGCATGCACCACCACACCTGGCTAATTTTTTTATTT

TTATAG  

 

 

pET.28a.BCAS4 transcript variant 1 sequence 5’-3’ 
ATGGGCAGCAGCCATCATCATCATCATCACAGCAGCGGCCTGGTGCCGCGCGGCAGCCATATGCAG

CGGACCGGGGGCGGGGCTCCGAGGCCCGGGCGCAACCACGGGCTCCCAGGCAGCCTCCGCCAGCCG

GACCCCGTCGCCCTCCTGATGCTGCTCGTGGACGCTGATCAGCCGGAGCCCATGCGCAGCGGGGCG

CGCGAGCTCGCGCTCTTCCTGACCCCCGAGCCTGGGGCCGAGGCGAAGGAGGTGGAGGAGACCATC

GAGGGCATGCTCCTCAGGCTGGAAGAGTTTTGCAGCCTGGCTGACCTGATCAGGAGTGATACTTCA
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CAGATCCTGGAGGAAAACATCCCAGTCCTTAAGGCCAAACTGACAGAAATGCGTGGCATCTATGCC

AAAGTGGACCGGCTAGAGGCCTTCGTCAAGATGGTTGGACACCACGTCGCCTTCCTGGAAGCAGAC

GTGCTTCAGGCTGAGCGGGACCATGGGGCCTTCCCTCAGGCCCTGCGGAGGTGGCTGGGATCCGCA

GGGCTCCCCTCCTTCAGGAACGTGGAGTGCAGTGGCACAATCCCAGCTCGCTGCAACCTCCGCCTC

CCGGGTTCAAGTGATTCTCCTGCCTCCGCCTCCCAAGTAGCTGGGATTACAGAAGTCACCTGCACC

GGTGCCCGTGACGTACGAGCTGGCCACACTGTA  

 

pET.SUMO.28a.ASCC1 transcript variant 1 sequence 5’-3’ 
ATGGGCAGCAGCCATCATCATCATCATCACAGCAGCGGCCTGGTGCCGCGCGGCAGCCATATGTCG

GACTCAGAAGTCAATCAAGAAGCTAAGCCAGAGGTCAAGCCAGAAGTCAAGCCTGAGACTCACATC

AATTTAAAGGTGTCCGATGGATCTTCAGAGATCTTCTTCAAGATCAAAAAGACCACTCCTTTAAGA

AGGCTGATGGAAGCGTTCGCTAAAAGACAGGGTAAGGAAATGGACTCCTTAAGATTCTTGTACGAC

GGTATTAGAATTCAAGCTGATCAGACCCCTGAAGATTTGGACATGGAGGATAACGATATTATTGAG

GCTCACAGAGAACAGATTGGTGGAATGGAAGTTCTGCGTCCACAGCTTATAAGAATTGATGGCCGG

AATTACAGGAAGAATCCAGTCCAAGAACAGACCTATCAACATGAAGAAGATGAAGAGGACTTCTAT

CAAGGCTCCATGGAGTGTGCTGATGAGCCCTGTGATGCCTACGAGGTGGAGCAGACCCCACAAGGA

TTCCGGTCTACTTTGAGGGCCCCCAGCTTGCTCTATAATCTCATTCACTTGAACACATCAAACGAC

TGTGGGTTCCAGAAGATAACTTTGGATTGTCAGAATATTTATACTTGGAAGTCCAGGCATATAGTT

GGAAAGAGAGGGGACACTAGGAAGAAAATAGAAATGGAGACCAAAACTTCTATTAGCATTCCTAAA

CCTGGACAAGACGGGGAAATTGTAATCACTGGCCAGCATCGAAATGGTGTAATTTCAGCCCGAACA

CGGATTGATGTTCTTTTGGACACTTTTCGAAGAAAGCAGCCCTTCACTCACTTCCTTGCCTTTTTC

CTCAATGAAGTTGAGGTTCAGGAAGGATTCCTGAGATTCCAGGAGGAAGTACTGGCGAAGTGCTCC

ATGGATCATGGGGTTGACAGCAGCATTTTCCAGAATCCTAAAAAGCTTCATCTAACTATTGGGATG

TTGGTGCTTTTGAGTGAGGAAGAGATCCAGCAGACATGTGAGATGCTACAGCAGTGTAAAGAGGAA

TTCATTAATGATATTTCTGGGGGTAAACCCCTAGAAGTGGAGATGGCAGGGATAGAATACATGAAT

GATGATCCTGGCATGGTGGATGTTCTTTACGCCAAAGTCCATATGAAAGATGGCTCCAACAGGCTA

CAAGAATTAGTTGATCGAGTGCTGGAACGTTTTCAGGCATCTGGACTAATAGTGAAAGAGTGGAAT

AGTGTGAAACTGCATGCTACAGTTATGAATACACTATTCAGGAAAGACCCCAATGCTGAAGGCAGG

TACAATCTCTACACAGCGGAAGGCAAATATATCTTCAAGGAAAGAGAATCATTTGATGGCCGAAAT

ATTTTAAAGAGCTTTGCCTTGTTGCCCAGGCTGGAGTACAATGATGCAATCTCCGCTCACTGCAAC

CTGTGCCTCCCGGGTTCAAGTGATTCTCCTGCCTCAGCCTCCCAAGTAGCTGGGATTACAGGTGTC

TCTGATGCATATTCTCAGAGCCTACCAGGAAAATCC 

 

pDB.His.ASCC1 transcript variants 

ASCC1 transcript variant genes (Origene) were cloned into pDB.His.MBP.Stop 

using restriction free (RF) cloning. Primers were designed in such a way that the 

MBP encoding gene of pDB.His.MBP was ‘overwritten’ by the ASCC1 gene. A 

TEV (tobacco etch virus) cut site (shown in red) was then added between the 6X 
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histidine tag (shown in blue) and the protein start codon (shown in green) using 

Quikchange II site-directed mutagenesis (SDM). 

 

pDB.His.TEV.ASCC1 transcript variant 1 sequence 5’-3’ 
ATGGGCAGCAGCCATCATCATCATCATCACTCCTCAGGTGAGAATCTGTATTTTCAGGGCATGGGA

TCGATGGAAGTTCTGCGTCCACAGCTTATAAGAATTGATGGCCGGAATTACAGGAAGAATCCAGTC

CAAGAACAGACCTATCAACATGAAGAAGATGAAGAGGACTTCTATCAAGGCTCCATGGAGTGTGCT

GATGAGCCCTGTGATGCCTACGAGGTGGAGCAGACCCCACAAGGATTCCGGTCTACTTTGAGGGCC

CCCAGCTTGCTCTATAATCTCATTCACTTGAACACATCAAACGACTGTGGGTTCCAGAAGATAACT

TTGGATTGTCAGAATATTTATACTTGGAAGTCCAGGCATATAGTTGGAAAGAGAGGGGACACTAGG

AAGAAAATAGAAATGGAGACCAAAACTTCTATTAGCATTCCTAAACCTGGACAAGACGGGGAAATT

GTAATCACTGGCCAGCATCGAAATGGTGTAATTTCAGCCCGAACACGGATTGATGTTCTTTTGGAC

ACTTTTCGAAGAAAGCAGCCCTTCACTCACTTCCTTGCCTTTTTCCTCAATGAAGTTGAGGTTCAG

GAAGGATTCCTGAGATTCCAGGAGGAAGTACTGGCGAAGTGCTCCATGGATCATGGGGTTGACAGC

AGCATTTTCCAGAATCCTAAAAAGCTTCATCTAACTATTGGGATGTTGGTGCTTTTGAGTGAGGAA

GAGATCCAGCAGACATGTGAGATGCTACAGCAGTGTAAAGAGGAATTCATTAATGATATTTCTGGG

GGTAAACCCCTAGAAGTGGAGATGGCAGGGATAGAATACATGAATGATGATCCTGGCATGGTGGAT

GTTCTTTACGCCAAAGTCCATATGAAAGATGGCTCCAACAGGCTACAAGAATTAGTTGATCGAGTG

CTGGAACGTTTTCAGGCATCTGGACTAATAGTGAAAGAGTGGAATAGTGTGAAACTGCATGCTACA

GTTATGAATACACTATTCAGGAAAGACCCCAATGCTGAAGGCAGGTACAATCTCTACACAGCGGAA

GGCAAATATATCTTCAAGGAAAGAGAATCATTTGATGGCCGAAATATTTTAAAGAGCTTTGCCTTG

TTGCCCAGGCTGGAGTACAATGATGCAATCTCCGCTCACTGCAACCTGTGCCTCCCGGGTTCAAGT

GATTCTCCTGCCTCAGCCTCCCAAGTAGCTGGGATTACAGGTGTCTCTGATGCATATTCTCAGAGC

CTACCAGGAAAATCC 

 

pDB.His.TEV.ASCC1 transcript variant 2 sequence 5’-3’ 
ATGGGCAGCAGCCATCATCATCATCATCACTCCTCAGGTGAGAATCTGTATTTTCAGGGCATGGGA

TCGATGGAAGTTCTGCGTCCACAGCTTATAAGAATTGATGGCCGGAATTACAGGAAGAATCCAGTC

CAAGAACAGACCTATCAACATGAAGAAGATGAAGAGGACTTCTATCAAGGCTCCATGGAGTGTGCT

GATGAGCCCTGTGATGCCTACGAGGTGGAGCAGACCCCACAAGGATTCCGGTCTACTTTGAGGGCC

CCCAGCTTGCTCTATAAGCATATAGTTGGAAAGAGAGGGGACACTAGGAAGAAAATAGAAATGGAG

ACCAAAACTTCTATTAGCATTCCTAAACCTGGACAAGACGGGGAAATTGTAATCACTGGCCAGCAT

CGAAATGGTGTAATTTCAGCCCGAACACGGATTGATGTTCTTTTGGACACTTTTCGAAGAAAGCAG

CCCTTCACTCACTTCCTTGCCTTTTTCCTCAATGAAGTTGAGGTTCAGGAAGGATTCCTGAGATTC

CAGGAGGAAGTACTGGCGAAGTGCTCCATGGATCATGGGGTTGACAGCAGCATTTTCCAGAATCCT

AAAAAGCTTCATCTAACTATTGGGATGTTGGTGCTTTTGAGTGAGGAAGAGATCCAGCAGACATGT

GAGATGCTACAGCAGTGTAAAGAGGAATTCATTAATGATATTTCTGGGGGTAAACCCCTAGAAGTG

GAGATGGCAGGGATAGAATACATGAATGATGATCCTGGCATGGTGGATGTTCTTTACGCCAAAGTC

CATATGAAAGATGGCTCCAACAGGCTACAAGAATTAGTTGATCGAGTGCTGGAACGTTTTCAGGCA
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TCTGGACTAATAGTGAAAGAGTGGAATAGTGTGAAACTGCATGCTACAGTTATGAATACACTATTC

AGGAAAGACCCCAATGCTGAAGGCAGGTACAATCTCTACACAGCGGAAGGCAAATATATCTTCAAG

GAAAGAGAATCATTTGATGGCCGAAATATTTTAAAGTTGTTTGAGAACTTCTACTTTGGCTCCCTA

AAGCTGAATTCAATTCACATCTCTCAGAGGTTCACCGTAGACAGCTTTGGAAACTACGCTTCCTGT

GGACAAATTGACTTCTCCTAA 

Human protein sequences 

All protein sequences are given in ProtParam format. Fusion partners and 

purification tags are highlighted in red. 

 

His6-SUMO-NEK4 
    10     20     30     40     50     60  

MGSSHHHHHH SSGLVPRGSH MSDSEVNQEA KPEVKPEVKP ETHINLKVSD GSSEIFFKIK  

 

    70     80     90    100    110    120  

KTTPLRRLME AFAKRQGKEM DSLRFLYDGI RIQADQTPED LDMEDNDIIE AHREQIGGMP  

 

    130    140    150    160    170    180  

LAAYCYLRVV GKGSYGEVTL VKHRRDGKQY VIKKLNLRNA SSRERRAAEQ EAQLLSQLKH  

 

    190    200    210    220    230    240  

PNIVTYKESW EGGDGLLYIV MGFCEGGDLY RKLKEQKGQL LPENQVVEWF VQIAMALQYL  

 

    250    260    270    280    290    300  

HEKHILHRDL KTQNVFLTRT NIIKVGDLGI ARVLENHCDM ASTLIGTPYY MSPELFSNKP  

 

    310    320    330    340    350    360  

YNYKSDVWAL GCCVYEMATL KHAFNAKDMN SLVYRIIEGK LPAMPRDYSP ELAELIRTML  

 

    370    380    390    400    410    420  

SKRPEERPSV RSILRQPYIK RQISFFLEAT KIKTSKNNIK NGDSQSKPFA TVVSGEAESN  

 

    430    440    450    460    470    480  

HEVIHPQPLS SEGSQTYIMG EGKCLSQEKP RASGLLKSPA SLKAHTCKQD LSNTTELATI  

 

    490    500    510    520    530    540  

SSVNIDILPA KGRDSVSDGF VQENQPRYLD ASNELGGICS ISQVEEEMLQ DNTKSSAQPE  

 

    550    560    570    580    590    600  

NLIPMWSSDI VTGEKNEPVK PLQPLIKEQK PKDQSLALSP KLECSGTILA HSNLRLLGSS  
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    610    620    630    640    650    660  

DSPASASRVA GITGVCHHAQ DQVAGECIIE KQGRIHPDLQ PHNSGSEPSL SRQRRQKRRE  

 

    670    680    690    700    710    720  

QTEHRGEKRQ VRRDLFAFQE SPPRFLPSHP IVGKVDVTST QKEAENQRRV VTGSVSSSRS  

 

    730    740    750    760    770    780  

SEMSSSKDRP LSARERRRLK QSQEEMSSSG PSVRKASLSV AGPGKPQEED QPLPARRLSS  

 

    790    800    810    820    830    840  

DCSVTQERKQ IHCLSEDELS SSTSSTDKSD GDYGEGKGQT NEINALVQLM TQTLKLDSKE  

 

    850    860    870    880    890    900  

SCEDVPVANP VSEFKLHRKY RDTLILHGKV AEEAEEIHFK ELPSAIMPGS EKIRRLVEVL  

 

    910    920    930    940    950  

RTDVIRGLGV QLLEQVYDLL EEEDEFDREV RLREHMGEKY TTYSVKARQL KFFEENMNF  

 

His6-SUMO-ZMAT1 
    10     20     30     40     50     60  

MGSSHHHHHH SSGLVPRGSH MSDSEVNQEA KPEVKPEVKP ETHINLKVSD GSSEIFFKIK  

 

    70     80     90    100    110    120  

KTTPLRRLME AFAKRQGKEM DSLRFLYDGI RIQADQTPED LDMEDNDIIE AHREQIGGME  

 

    130    140    150    160    170    180  

SCSVTRLECS GAISAHCSLH LPGSSDSPAS ASQIAGTTDA IWNEQEKAEL FTDKFCQVCG  

 

    190    200    210    220    230    240  

VMLQFESQRI SHYEGEKHAQ NVSFYFQMHG EQNEVPGKKM KMHVENFQVH RYEGVDKNKF  

 

    250    260    270    280    290    300  

CDLCNMMFSS PLIAQSHYVG KVHAKKLKQL MEEHDQASPS GFQPEMAFSM RTYVCHICSI  

 

    310    320    330    340    350    360  

AFTSLDMFRS HMQGSEHQIK ESIVINLVKN SRKTQDSYQN ECADYINVQK ARGLEAKTCF  

 

    370    380    390    400    410    420  

RKMEESSLET RRYREVVDSR PRHRMFEQRL PFETFRTYAA PYNISQAMEK QLPHSKKTYD  
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    430    440    450    460    470    480  

SFQDELEDYI KVQKARGLDP KTCFRKMREN SVDTHGYREM VDSGPRSRMC EQRFSHEASQ  

 

    490    500    510    520    530    540  

TYQRPYHISP VESQLPQWLP THSKRTYDSF QDELEDYIKV QKARGLEPKT CFRKIGDSSV  

 

    550    560    570    580    590    600  

ETHRNREMVD VRPRHRMLEQ KLPCETFQTY SGPYSISQVV ENQLPHCLPA HDSKQRLDSI  

 

    610    620    630    640    650    660  

SYCQLTRDCF PEKPVPLSLN QQENNSGSYS VESEVYKHLS SENNTADHQA GHKRKHQKRK  

 

    670    680    690    700    710    720  

RHLEEGKERP EKEQSKHKRK KSYEDTDLDK DKSIRQRKRE EDRVKVSSGK LKHRKKKKSH  

 

    730    740    750  

DVPSEKEERK HRKEKKKSVE ERTEEEMLWD ESILGF 

 

 

GST-PPP5D1 
    10     20     30     40     50     60  

MSPILGYWKI KGLVQPTRLL LEYLEEKYEE HLYERDEGDK WRNKKFELGL EFPNLPYYID  

 

    70     80     90    100    110    120  

GDVKLTQSMA IIRYIADKHN MLGGCPKERA EISMLEGAVL DIRYGVSRIA YSKDFETLKV  

 

    130    140    150    160    170    180  

DFLSKLPEML KMFEDRLCHK TYLNGDHVTH PDFMLYDALD VVLYMDPMCL DAFPKLVCFK  

 

    190    200    210    220    230    240  

KRIEAIPQID KYLKSSKYIA WPLQGWQATF GGGDHPPKSD LVPRGSMAEM RAWRPLVRPS  

 

    250    260    270    280    290    300  

LQCVKLGRAT ARWWWVVKVK PHDKDAKMEY QECNKIVKQK AFERAIAGDE HKRSVVDSLD  

 

    310    320    330    340    350    360  

IESMTIEGEY SGPKLEDDKV TITFMKGLMQ WYKDQKKLHQ KCAYQGLALS PRLKCSGTVT  

 

    370    380    390  

AHCSLNLLGP RDPPASASQV AVTEGMHHHT WLIFLFL  
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His6-BCAS4 
    10     20     30     40     50     60  

MGSSHHHHHH SSGLVPRGSH MQRTGGGAPR PGRNHGLPGS LRQPDPVALL MLLVDADQPE  

 

    70     80     90    100    110    120  

PMRSGARELA LFLTPEPGAE AKEVEETIEG MLLRLEEFCS LADLIRSDTS QILEENIPVL  

 

    130    140    150    160    170    180  

KAKLTEMRGI YAKVDRLEAF VKMVGHHVAF LEADVLQAER DHGAFPQALR RWLGSAGLPS  

 

    190    200    210    220    230  

FRNVECSGTI PARCNLRLPG SSDSPASASQ VAGITEVTCT GARDVRAGHT V  

 

His6-SUMO-ASCC1 
    10     20     30     40     50     60  

MGSSHHHHHH SSGLVPRGSH MSDSEVNQEA KPEVKPEVKP ETHINLKVSD GSSEIFFKIK  

 

    70     80     90    100    110    120  

KTTPLRRLME AFAKRQGKEM DSLRFLYDGI RIQADQTPED LDMEDNDIIE AHREQIGGME  

 

    130    140    150    160    170    180  

VLRPQLIRID GRNYRKNPVQ EQTYQHEEDE EDFYQGSMEC ADEPCDAYEV EQTPQGFRST  

 

    190    200    210    220    230    240  

LRAPSLLYNL IHLNTSNDCG FQKITLDCQN IYTWKSRHIV GKRGDTRKKI EMETKTSISI  

 

    250    260    270    280    290    300  

PKPGQDGEIV ITGQHRNGVI SARTRIDVLL DTFRRKQPFT HFLAFFLNEV EVQEGFLRFQ  

 

    310    320    330    340    350    360  

EEVLAKCSMD HGVDSSIFQN PKKLHLTIGM LVLLSEEEIQ QTCEMLQQCK EEFINDISGG  

 

    370    380    390    400    410    420  

KPLEVEMAGI EYMNDDPGMV DVLYAKVHMK DGSNRLQELV DRVLERFQAS GLIVKEWNSV  

 

    430    440    450    460    470    480  

KLHATVMNTL FRKDPNAEGR YNLYTAEGKY IFKERESFDG RNILKSFALL PRLEYNDAIS  
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    490    500    510  

AHCNLCLPGS SDSPASASQV AGITGVSDAY SQSLPGKS  

 

His6-TEV-ASCC1 Isoform 1 (Alu) 
    10     20     30     40     50     60  

MGSSHHHHHH SSGENLYFQG MGSMEVLRPQ LIRIDGRNYR KNPVQEQTYQ HEEDEEDFYQ  

 

    70     80     90    100    110    120  

GSMECADEPC DAYEVEQTPQ GFRSTLRAPS LLYNLIHLNT SNDCGFQKIT LDCQNIYTWK  

 

    130    140    150    160    170    180  

SRHIVGKRGD TRKKIEMETK TSISIPKPGQ DGEIVITGQH RNGVISARTR IDVLLDTFRR  

 

    190    200    210    220    230    240  

KQPFTHFLAF FLNEVEVQEG FLRFQEEVLA KCSMDHGVDS SIFQNPKKLH LTIGMLVLLS  

 

    250    260    270    280    290    300  

EEEIQQTCEM LQQCKEEFIN DISGGKPLEV EMAGIEYMND DPGMVDVLYA KVHMKDGSNR  

 

    310    320    330    340    350    360  

LQELVDRVLE RFQASGLIVK EWNSVKLHAT VMNTLFRKDP NAEGRYNLYT AEGKYIFKER  

 

    370    380    390    400    410    420  

ESFDGRNILK SFALLPRLEY NDAISAHCNL CLPGSSDSPA SASQVAGITG VSDAYSQSLP  

 

 

GKS 

 

 

His6-TEV-ASCC1 Isoform 2 (Non-Alu) 
    10     20     30     40     50     60  

MGSSHHHHHH SSGENLYFQG MGSMEVLRPQ LIRIDGRNYR KNPVQEQTYQ HEEDEEDFYQ  

 

    70     80     90    100    110    120  

GSMECADEPC DAYEVEQTPQ GFRSTLRAPS LLYKHIVGKR GDTRKKIEME TKTSISIPKP  

 

    130    140    150    160    170    180  

GQDGEIVITG QHRNGVISAR TRIDVLLDTF RRKQPFTHFL AFFLNEVEVQ EGFLRFQEEV  

 

    190    200    210    220    230    240  
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LAKCSMDHGV DSSIFQNPKK LHLTIGMLVL LSEEEIQQTC EMLQQCKEEF INDISGGKPL  

 

    250    260    270    280    290    300  

EVEMAGIEYM NDDPGMVDVL YAKVHMKDGS NRLQELVDRV LERFQASGLI VKEWNSVKLH  

 

    310    320    330    340    350    360  

ATVMNTLFRK DPNAEGRYNL YTAEGKYIFK ERESFDGRNI LKLFENFYFG SLKLNSIHIS  

 

    370    380  

QRFTVDSFGN YASCGQIDFS 

 

3 MBP DNA and protein sequences 

MBP plasmid sequences 

pDB.His.MBP.Stop 

The pDB.His.MBP.Stop plasmid was created through site-directed mutagenesis of 

the pDB.His.MBP plasmid (Clone ID: EvNO00065130, DNASU) to introduce a 

STOP codon (shown in red) directly after the MBP-coding gene (shown in blue). 

The vector also encodes a polyhistidine (shown in green) at the beginning of the 

MBP coding gene. 

The pDB.His.MBP.Stop plasmid and subsequent Alu-containing plasmids were used 

to express Alu-containing histidine-tagged MBP variants in E.coli cells. 

 

Full pDB.His.MBP.Stop sequence 5’-3’ 
TGGCGAATGGGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGT

GACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCAC

GTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTT

ACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATA

GACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGG

AACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTTTGCCGATTCGGCCTAT

TGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGTTTACA

ATTTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACAT

TCAAATATGTATCCGCTCATGAATTAATTCTTAGAAAAACTCATCGAGCATCAAATGAAACTGCAA

TTTATTCATATCAGGATTATCAATACCATATTTTTGAAAAAGCCGTTTCTGTAATGAAGGAGAAAA

CTCACCGAGGCAGTTCCATAGGATGGCAAGATCCTGGTATCGGTCTGCGATTCCGACTCGTCCAAC

ATCAATACAACCTATTAATTTCCCCTCGTCAAAAATAAGGTTATCAAGTGAGAAATCACCATGAGT

GACGACTGAATCCGGTGAGAATGGCAAAAGTTTATGCATTTCTTTCCAGACTTGTTCAACAGGCCA
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GCCATTACGCTCGTCATCAAAATCACTCGCATCAACCAAACCGTTATTCATTCGTGATTGCGCCTG

AGCGAGACGAAATACGCGATCGCTGTTAAAAGGACAATTACAAACAGGAATCGAATGCAACCGGCG

CAGGAACACTGCCAGCGCATCAACAATATTTTCACCTGAATCAGGATATTCTTCTAATACCTGGAA

TGCTGTTTTCCCGGGGATCGCAGTGGTGAGTAACCATGCATCATCAGGAGTACGGATAAAATGCTT

GATGGTCGGAAGAGGCATAAATTCCGTCAGCCAGTTTAGTCTGACCATCTCATCTGTAACATCATT

GGCAACGCTACCTTTGCCATGTTTCAGAAACAACTCTGGCGCATCGGGCTTCCCATACAATCGATA

GATTGTCGCACCTGATTGCCCGACATTATCGCGAGCCCATTTATACCCATATAAATCAGCATCCAT

GTTGGAATTTAATCGCGGCCTAGAGCAAGACGTTTCCCGTTGAATATGGCTCATAACACCCCTTGT

ATTACTGTTTATGTAAGCAGACAGTTTTATTGTTCATGACCAAAATCCCTTAACGTGAGTTTTCGT

TCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCG

TAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGC

TACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAG

TGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAA

TCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGAT

AGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGC

GAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAG

GGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTC

CAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGAT

TTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGT

TCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATA

ACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGT

CAGTGAGCGAGGAAGCGGAAGAGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTT

CACACCGCATATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGTATAC

ACTCCGCTATCGCTACGTGACTGGGTCATGGCTGCGCCCCGACACCCGCCAACACCCGCTGACGCG

CCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGC

ATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGGCAGCTGCGGTAAAGCTCATCAGCG

TGGTCGTGAAGCGATTCACAGATGTCTGCCTGTTCATCCGCGTCCAGCTCGTTGAGTTTCTCCAGA

AGCGTTAATGTCTGGCTTCTGATAAAGCGGGCCATGTTAAGGGCGGTTTTTTCCTGTTTGGTCACT

GATGCCTCCGTGTAAGGGGGATTTCTGTTCATGGGGGTAATGATACCGATGAAACGAGAGAGGATG

CTCACGATACGGGTTACTGATGATGAACATGCCCGGTTACTGGAACGTTGTGAGGGTAAACAACTG

GCGGTATGGATGCGGCGGGACCAGAGAAAAATCACTCAGGGTCAATGCCAGCGCTTCGTTAATACA

GATGTAGGTGTTCCACAGGGTAGCCAGCAGCATCCTGCGATGCAGATCCGGAACATAATGGTGCAG

GGCGCTGACTTCCGCGTTTCCAGACTTTACGAAACACGGAAACCGAAGACCATTCATGTTGTTGCT

CAGGTCGCAGACGTTTTGCAGCAGCAGTCGCTTCACGTTCGCTCGCGTATCGGTGATTCATTCTGC

TAACCAGTAAGGCAACCCCGCCAGCCTAGCCGGGTCCTCAACGACAGGAGCACGATCATGCGCACC

CGTGGGGCCGCCATGCCGGCGATAATGGCCTGCTTCTCGCCGAAACGTTTGGTGGCGGGACCAGTG

ACGAAGGCTTGAGCGAGGGCGTGCAAGATTCCGAATACCGCAAGCGACAGGCCGATCATCGTCGCG

CTCCAGCGAAAGCGGTCCTCGCCGAAAATGACCCAGAGCGCTGCCGGCACCTGTCCTACGAGTTGC

ATGATAAAGAAGACAGTCATAAGTGCGGCGACGATAGTCATGCCCCGCGCCCACCGGAAGGAGCTG

ACTGGGTTGAAGGCTCTCAAGGGCATCGGTCGAGATCCCGGTGCCTAATGAGTGAGCTAACTTACA

TTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGA
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ATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCCAGGGTGGTTTTTCTTTTCACCAG

TGAGACGGGCAACAGCTGATTGCCCTTCACCGCCTGGCCCTGAGAGAGTTGCAGCAAGCGGTCCAC

GCTGGTTTGCCCCAGCAGGCGAAAATCCTGTTTGATGGTGGTTAACGGCGGGATATAACATGAGCT

GTCTTCGGTATCGTCGTATCCCACTACCGAGATATCCGCACCAACGCGCAGCCCGGACTCGGTAAT

GGCGCGCATTGCGCCCAGCGCCATCTGATCGTTGGCAACCAGCATCGCAGTGGGAACGATGCCCTC

ATTCAGCATTTGCATGGTTTGTTGAAAACCGGACATGGCACTCCAGTCGCCTTCCCGTTCCGCTAT

CGGCTGAATTTGATTGCGAGTGAGATATTTATGCCAGCCAGCCAGACGCAGACGCGCCGAGACAGA

ACTTAATGGGCCCGCTAACAGCGCGATTTGCTGGTGACCCAATGCGACCAGATGCTCCACGCCCAG

TCGCGTACCGTCTTCATGGGAGAAAATAATACTGTTGATGGGTGTCTGGTCAGAGACATCAAGAAA

TAACGCCGGAACATTAGTGCAGGCAGCTTCCACAGCAATGGCATCCTGGTCATCCAGCGGATAGTT

AATGATCAGCCCACTGACGCGTTGCGCGAGAAGATTGTGCACCGCCGCTTTACAGGCTTCGACGCC

GCTTCGTTCTACCATCGACACCACCACGCTGGCACCCAGTTGATCGGCGCGAGATTTAATCGCCGC

GACAATTTGCGACGGCGCGTGCAGGGCCAGACTGGAGGTGGCAACGCCAATCAGCAACGACTGTTT

GCCCGCCAGTTGTTGTGCCACGCGGTTGGGAATGTAATTCAGCTCCGCCATCGCCGCTTCCACTTT

TTCCCGCGTTTTCGCAGAAACGTGGCTGGCCTGGTTCACCACGCGGGAAACGGTCTGATAAGAGAC

ACCGGCATACTCTGCGACATCGTATAACGTTACTGGTTTCACATTCACCACCCTGAATTGACTCTC

TTCCGGGCGCTATCATGCCATACCGCGAAAGGTTTTGCGCCATTCGATGGTGTCCGGGATCTCGAC

GCTCTCCCTTATGCGACTCCTGCATTAGGAAGCAGCCCAGTAGTAGGTTGAGGCCGTTGAGCACCG

CCGCCGCAAGGAATGGTGCATGCAAGGAGATGGCGCCCAACAGTCCCCCGGCCACGGGGCCTGCCA

CCATACCCACGCCGAAACAAGCGCTCATGAGCCCGAAGTGGCGAGCCCGATCTTCCCCATCGGTGA

TGTCGGCGATATAGGCGCCAGCAACCGCACCTGTGGCGCCGGTGATGCCGGCCACGATGCGTCCGG

CGTAGAGGATCGAGATCTCGATCCCGCGAAATTAATACGACTCACTATAGGGGAATTGTGAGCGGA

TAACAATTCCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACCATGGGCAGCAGCC

ATCATCATCATCATCACGGTACCAAAACTGAAGAAGGTAAACTGGTAATCTGGATTAACGGCGATA

AAGGCTATAACGGTCTCGCTGAAGTCGGTAAGAAATTCGAGAAAGATACCGGAATTAAAGTCACCG

TTGAGCATCCGGATAAACTGGAAGAGAAATTCCCACAGGTTGCGGCAACTGGCGATGGCCCTGACA

TTATCTTCTGGGCACACGACCGCTTTGGTGGCTACGCTCAATCTGGCCTGTTGGCTGAAATCACCC

CGGACAAAGCGTTCCAGGACAAGCTGTATCCGTTTACCTGGGATGCCGTACGTTACAACGGCAAGC

TGATTGCTTACCCGATCGCTGTTGAAGCGTTATCGCTGATTTATAACAAAGATCTGCTGCCGAACC

CGCCAAAAACCTGGGAAGAGATCCCGGCGCTGGATAAAGAACTGAAAGCGAAAGGTAAGAGCGCGC

TGATGTTCAACCTGCAAGAACCGTACTTCACCTGGCCGCTGATTGCTGCTGACGGGGGTTATGCGT

TCAAGTATGAAAACGGCAAGTACGACATTAAAGACGTGGGCGTGGATAACGCTGGCGCGAAAGCGG

GTCTGACCTTCCTGGTTGACCTGATTAAAAACAAACACATGAATGCAGACACCGATTACTCCATCG

CAGAAGCTGCCTTTAATAAAGGCGAAACAGCGATGACCATCAACGGCCCGTGGGCATGGTCCAACA

TCGACACCAGCAAAGTGAATTATGGTGTAACGGTACTGCCGACCTTCAAGGGTCAACCATCCAAAC

CGTTCGTTGGCGTGCTGAGCGCAGGTATTAACGCCGCCAGTCCGAACAAAGAGCTGGCGAAAGAGT

TCCTCGAAAACTATCTGCTGACTGATGAAGGTCTGGAAGCGGTTAATAAAGACAAACCGCTGGGTG

CCGTAGCGCTGAAGTCTTACGAGGAAGAGTTGGCGAAAGATCCACGTATTGCCGCCACCATGGAAA

ACGCCCAGAAAGGTGAAATCATGCCGAACATCCCGCAGATGTCCGCTTTCTGGTATGCCGTGCGTA

CTGCGGTGATCAACGCCGCCAGCGGTCGTCAGACTGTCGATGAAGCCCTGAAAGACGCGCAGACTT

AGACCGATTACGATATCCCAACGACCGAAAACCTTTACTTCCAGGGCCATATGGCTAGCATGACTG
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GTGGACAGCAAATGGGTCGCGGATCCGAATTCGAGCTCCGTCGACAAGCTTGCGGCCGCACTCGAG

CACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCT

GCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTG

CTGAAAGGAGGAACTATATCCGGAT 

 

pDB.His.MBP.Stop Alu sequences 

The following codon-optimised Alu sequence (shown in red) was inserted into eight 

different locations within the MBP coding gene using site-directed mutagenesis via 

inverse PCR. 
TTGGAGTGCTCAGGGACTATTTCAGCTCACTGCAACCTTCGCTTACCGGGCTCATCCGACTCGCCC

GCCAGCGCGAGCCGCGTAGCAGGCATCACCGGA 

The following sequences show only the region of plasmid encoding the histidine-

tagged MBP protein containing Alu insert. The remainder of the plasmid is identical 

to that pDB.His.MBP.Stop shown previously. 

Sequences are labelled by the amino acid encoded directly after the site of Alu 

insertion, with the exception of T367 which corresponds to an Alu insertion at the 

end of the MBP coding gene directly before the STOP codon. (Note: amino acids 

are numbered from the beginning MBP, not from the beginning of the histidine tag.) 

 

G6 Alu 5’-3’ sequence 
ATGGGCAGCAGCCATCATCATCATCATCACGGTACCAAAACTGAAGAATTGGAGTGCTCAGGGACT

ATTTCAGCTCACTGCAACCTTCGCTTACCGGGCTCATCCGACTCGCCCGCCAGCGCGAGCCGCGTA

GCAGGCATCACCGGAGGTAAACTGGTAATCTGGATTAACGGCGATAAAGGCTATAACGGTCTCGCT

GAAGTCGGTAAGAAATTCGAGAAAGATACCGGAATTAAAGTCACCGTTGAGCATCCGGATAAACTG

GAAGAGAAATTCCCACAGGTTGCGGCAACTGGCGATGGCCCTGACATTATCTTCTGGGCACACGAC

CGCTTTGGTGGCTACGCTCAATCTGGCCTGTTGGCTGAAATCACCCCGGACAAAGCGTTCCAGGAC

AAGCTGTATCCGTTTACCTGGGATGCCGTACGTTACAACGGCAAGCTGATTGCTTACCCGATCGCT

GTTGAAGCGTTATCGCTGATTTATAACAAAGATCTGCTGCCGAACCCGCCAAAAACCTGGGAAGAG

ATCCCGGCGCTGGATAAAGAACTGAAAGCGAAAGGTAAGAGCGCGCTGATGTTCAACCTGCAAGAA

CCGTACTTCACCTGGCCGCTGATTGCTGCTGACGGGGGTTATGCGTTCAAGTATGAAAACGGCAAG

TACGACATTAAAGACGTGGGCGTGGATAACGCTGGCGCGAAAGCGGGTCTGACCTTCCTGGTTGAC

CTGATTAAAAACAAACACATGAATGCAGACACCGATTACTCCATCGCAGAAGCTGCCTTTAATAAA

GGCGAAACAGCGATGACCATCAACGGCCCGTGGGCATGGTCCAACATCGACACCAGCAAAGTGAAT

TATGGTGTAACGGTACTGCCGACCTTCAAGGGTCAACCATCCAAACCGTTCGTTGGCGTGCTGAGC

GCAGGTATTAACGCCGCCAGTCCGAACAAAGAGCTGGCGAAAGAGTTCCTCGAAAACTATCTGCTG

ACTGATGAAGGTCTGGAAGCGGTTAATAAAGACAAACCGCTGGGTGCCGTAGCGCTGAAGTCTTAC

GAGGAAGAGTTGGCGAAAGATCCACGTATTGCCGCCACCATGGAAAACGCCCAGAAAGGTGAAATC
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ATGCCGAACATCCCGCAGATGTCCGCTTTCTGGTATGCCGTGCGTACTGCGGTGATCAACGCCGCC

AGCGGTCGTCAGACTGTCGATGAAGCCCTGAAAGACGCGCAGACTTAG 

 

T81 Alu 5’-3’ sequence 
ATGGGCAGCAGCCATCATCATCATCATCACGGTACCAAAACTGAAGAAGGTAAACTGGTAATCTGG

ATTAACGGCGATAAAGGCTATAACGGTCTCGCTGAAGTCGGTAAGAAATTCGAGAAAGATACCGGA

ATTAAAGTCACCGTTGAGCATCCGGATAAACTGGAAGAGAAATTCCCACAGGTTGCGGCAACTGGC

GATGGCCCTGACATTATCTTCTGGGCACACGACCGCTTTGGTGGCTACGCTCAATCTGGCCTGTTG

GCTGAAATCTTGGAGTGCTCAGGGACTATTTCAGCTCACTGCAACCTTCGCTTACCGGGCTCATCC

GACTCGCCCGCCAGCGCGAGCCGCGTAGCAGGCATCACCGGAACCCCGGACAAAGCGTTCCAGGAC

AAGCTGTATCCGTTTACCTGGGATGCCGTACGTTACAACGGCAAGCTGATTGCTTACCCGATCGCT

GTTGAAGCGTTATCGCTGATTTATAACAAAGATCTGCTGCCGAACCCGCCAAAAACCTGGGAAGAG

ATCCCGGCGCTGGATAAAGAACTGAAAGCGAAAGGTAAGAGCGCGCTGATGTTCAACCTGCAAGAA

CCGTACTTCACCTGGCCGCTGATTGCTGCTGACGGGGGTTATGCGTTCAAGTATGAAAACGGCAAG

TACGACATTAAAGACGTGGGCGTGGATAACGCTGGCGCGAAAGCGGGTCTGACCTTCCTGGTTGAC

CTGATTAAAAACAAACACATGAATGCAGACACCGATTACTCCATCGCAGAAGCTGCCTTTAATAAA

GGCGAAACAGCGATGACCATCAACGGCCCGTGGGCATGGTCCAACATCGACACCAGCAAAGTGAAT

TATGGTGTAACGGTACTGCCGACCTTCAAGGGTCAACCATCCAAACCGTTCGTTGGCGTGCTGAGC

GCAGGTATTAACGCCGCCAGTCCGAACAAAGAGCTGGCGAAAGAGTTCCTCGAAAACTATCTGCTG

ACTGATGAAGGTCTGGAAGCGGTTAATAAAGACAAACCGCTGGGTGCCGTAGCGCTGAAGTCTTAC

GAGGAAGAGTTGGCGAAAGATCCACGTATTGCCGCCACCATGGAAAACGCCCAGAAAGGTGAAATC

ATGCCGAACATCCCGCAGATGTCCGCTTTCTGGTATGCCGTGCGTACTGCGGTGATCAACGCCGCC

AGCGGTCGTCAGACTGTCGATGAAGCCCTGAAAGACGCGCAGACTTAG 

 

P126 Alu 5’-3’ sequence 
ATGGGCAGCAGCCATCATCATCATCATCACGGTACCAAAACTGAAGAAGGTAAACTGGTAATCTGG

ATTAACGGCGATAAAGGCTATAACGGTCTCGCTGAAGTCGGTAAGAAATTCGAGAAAGATACCGGA

ATTAAAGTCACCGTTGAGCATCCGGATAAACTGGAAGAGAAATTCCCACAGGTTGCGGCAACTGGC

GATGGCCCTGACATTATCTTCTGGGCACACGACCGCTTTGGTGGCTACGCTCAATCTGGCCTGTTG

GCTGAAATCACCCCGGACAAAGCGTTCCAGGACAAGCTGTATCCGTTTACCTGGGATGCCGTACGT

TACAACGGCAAGCTGATTGCTTACCCGATCGCTGTTGAAGCGTTATCGCTGATTTATAACAAAGAT

CTGCTGCCGAACTTGGAGTGCTCAGGGACTATTTCAGCTCACTGCAACCTTCGCTTACCGGGCTCA

TCCGACTCGCCCGCCAGCGCGAGCCGCGTAGCAGGCATCACCGGACCGCCAAAAACCTGGGAAGAG

ATCCCGGCGCTGGATAAAGAACTGAAAGCGAAAGGTAAGAGCGCGCTGATGTTCAACCTGCAAGAA

CCGTACTTCACCTGGCCGCTGATTGCTGCTGACGGGGGTTATGCGTTCAAGTATGAAAACGGCAAG

TACGACATTAAAGACGTGGGCGTGGATAACGCTGGCGCGAAAGCGGGTCTGACCTTCCTGGTTGAC

CTGATTAAAAACAAACACATGAATGCAGACACCGATTACTCCATCGCAGAAGCTGCCTTTAATAAA

GGCGAAACAGCGATGACCATCAACGGCCCGTGGGCATGGTCCAACATCGACACCAGCAAAGTGAAT

TATGGTGTAACGGTACTGCCGACCTTCAAGGGTCAACCATCCAAACCGTTCGTTGGCGTGCTGAGC
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GCAGGTATTAACGCCGCCAGTCCGAACAAAGAGCTGGCGAAAGAGTTCCTCGAAAACTATCTGCTG

ACTGATGAAGGTCTGGAAGCGGTTAATAAAGACAAACCGCTGGGTGCCGTAGCGCTGAAGTCTTAC

GAGGAAGAGTTGGCGAAAGATCCACGTATTGCCGCCACCATGGAAAACGCCCAGAAAGGTGAAATC

ATGCCGAACATCCCGCAGATGTCCGCTTTCTGGTATGCCGTGCGTACTGCGGTGATCAACGCCGCC

AGCGGTCGTCAGACTGTCGATGAAGCCCTGAAAGACGCGCAGACTTAG 

 

D178 Alu 5’-3’ sequence 
ATGGGCAGCAGCCATCATCATCATCATCACGGTACCAAAACTGAAGAAGGTAAACTGGTAATCTGG

ATTAACGGCGATAAAGGCTATAACGGTCTCGCTGAAGTCGGTAAGAAATTCGAGAAAGATACCGGA

ATTAAAGTCACCGTTGAGCATCCGGATAAACTGGAAGAGAAATTCCCACAGGTTGCGGCAACTGGC

GATGGCCCTGACATTATCTTCTGGGCACACGACCGCTTTGGTGGCTACGCTCAATCTGGCCTGTTG

GCTGAAATCACCCCGGACAAAGCGTTCCAGGACAAGCTGTATCCGTTTACCTGGGATGCCGTACGT

TACAACGGCAAGCTGATTGCTTACCCGATCGCTGTTGAAGCGTTATCGCTGATTTATAACAAAGAT

CTGCTGCCGAACCCGCCAAAAACCTGGGAAGAGATCCCGGCGCTGGATAAAGAACTGAAAGCGAAA

GGTAAGAGCGCGCTGATGTTCAACCTGCAAGAACCGTACTTCACCTGGCCGCTGATTGCTGCTGAC

GGGGGTTATGCGTTCAAGTATGAAAACGGCAAGTACTTGGAGTGCTCAGGGACTATTTCAGCTCAC

TGCAACCTTCGCTTACCGGGCTCATCCGACTCGCCCGCCAGCGCGAGCCGCGTAGCAGGCATCACC

GGAGACATTAAAGACGTGGGCGTGGATAACGCTGGCGCGAAAGCGGGTCTGACCTTCCTGGTTGAC

CTGATTAAAAACAAACACATGAATGCAGACACCGATTACTCCATCGCAGAAGCTGCCTTTAATAAA

GGCGAAACAGCGATGACCATCAACGGCCCGTGGGCATGGTCCAACATCGACACCAGCAAAGTGAAT

TATGGTGTAACGGTACTGCCGACCTTCAAGGGTCAACCATCCAAACCGTTCGTTGGCGTGCTGAGC

GCAGGTATTAACGCCGCCAGTCCGAACAAAGAGCTGGCGAAAGAGTTCCTCGAAAACTATCTGCTG

ACTGATGAAGGTCTGGAAGCGGTTAATAAAGACAAACCGCTGGGTGCCGTAGCGCTGAAGTCTTAC

GAGGAAGAGTTGGCGAAAGATCCACGTATTGCCGCCACCATGGAAAACGCCCAGAAAGGTGAAATC

ATGCCGAACATCCCGCAGATGTCCGCTTTCTGGTATGCCGTGCGTACTGCGGTGATCAACGCCGCC

AGCGGTCGTCAGACTGTCGATGAAGCCCTGAAAGACGCGCAGACTTAG 

 

G253 Alu 5’-3’ sequence 
ATGGGCAGCAGCCATCATCATCATCATCACGGTACCAAAACTGAAGAAGGTAAACTGGTAATCTGG

ATTAACGGCGATAAAGGCTATAACGGTCTCGCTGAAGTCGGTAAGAAATTCGAGAAAGATACCGGA

ATTAAAGTCACCGTTGAGCATCCGGATAAACTGGAAGAGAAATTCCCACAGGTTGCGGCAACTGGC

GATGGCCCTGACATTATCTTCTGGGCACACGACCGCTTTGGTGGCTACGCTCAATCTGGCCTGTTG

GCTGAAATCACCCCGGACAAAGCGTTCCAGGACAAGCTGTATCCGTTTACCTGGGATGCCGTACGT

TACAACGGCAAGCTGATTGCTTACCCGATCGCTGTTGAAGCGTTATCGCTGATTTATAACAAAGAT

CTGCTGCCGAACCCGCCAAAAACCTGGGAAGAGATCCCGGCGCTGGATAAAGAACTGAAAGCGAAA

GGTAAGAGCGCGCTGATGTTCAACCTGCAAGAACCGTACTTCACCTGGCCGCTGATTGCTGCTGAC

GGGGGTTATGCGTTCAAGTATGAAAACGGCAAGTACGACATTAAAGACGTGGGCGTGGATAACGCT

GGCGCGAAAGCGGGTCTGACCTTCCTGGTTGACCTGATTAAAAACAAACACATGAATGCAGACACC

GATTACTCCATCGCAGAAGCTGCCTTTAATAAAGGCGAAACAGCGATGACCATCAACGGCCCGTGG

GCATGGTCCAACATCGACACCAGCAAAGTGAATTATGGTGTAACGGTACTGCCGACCTTCAAGTTG
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GAGTGCTCAGGGACTATTTCAGCTCACTGCAACCTTCGCTTACCGGGCTCATCCGACTCGCCCGCC

AGCGCGAGCCGCGTAGCAGGCATCACCGGAGGTCAACCATCCAAACCGTTCGTTGGCGTGCTGAGC

GCAGGTATTAACGCCGCCAGTCCGAACAAAGAGCTGGCGAAAGAGTTCCTCGAAAACTATCTGCTG

ACTGATGAAGGTCTGGAAGCGGTTAATAAAGACAAACCGCTGGGTGCCGTAGCGCTGAAGTCTTAC

GAGGAAGAGTTGGCGAAAGATCCACGTATTGCCGCCACCATGGAAAACGCCCAGAAAGGTGAAATC

ATGCCGAACATCCCGCAGATGTCCGCTTTCTGGTATGCCGTGCGTACTGCGGTGATCAACGCCGCC

AGCGGTCGTCAGACTGTCGATGAAGCCCTGAAAGACGCGCAGACTTAG 

 

A293 Alu 5’-3’ sequence 
ATGGGCAGCAGCCATCATCATCATCATCACGGTACCAAAACTGAAGAAGGTAAACTGGTAATCTGG

ATTAACGGCGATAAAGGCTATAACGGTCTCGCTGAAGTCGGTAAGAAATTCGAGAAAGATACCGGA

ATTAAAGTCACCGTTGAGCATCCGGATAAACTGGAAGAGAAATTCCCACAGGTTGCGGCAACTGGC

GATGGCCCTGACATTATCTTCTGGGCACACGACCGCTTTGGTGGCTACGCTCAATCTGGCCTGTTG

GCTGAAATCACCCCGGACAAAGCGTTCCAGGACAAGCTGTATCCGTTTACCTGGGATGCCGTACGT

TACAACGGCAAGCTGATTGCTTACCCGATCGCTGTTGAAGCGTTATCGCTGATTTATAACAAAGAT

CTGCTGCCGAACCCGCCAAAAACCTGGGAAGAGATCCCGGCGCTGGATAAAGAACTGAAAGCGAAA

GGTAAGAGCGCGCTGATGTTCAACCTGCAAGAACCGTACTTCACCTGGCCGCTGATTGCTGCTGAC

GGGGGTTATGCGTTCAAGTATGAAAACGGCAAGTACGACATTAAAGACGTGGGCGTGGATAACGCT

GGCGCGAAAGCGGGTCTGACCTTCCTGGTTGACCTGATTAAAAACAAACACATGAATGCAGACACC

GATTACTCCATCGCAGAAGCTGCCTTTAATAAAGGCGAAACAGCGATGACCATCAACGGCCCGTGG

GCATGGTCCAACATCGACACCAGCAAAGTGAATTATGGTGTAACGGTACTGCCGACCTTCAAGGGT

CAACCATCCAAACCGTTCGTTGGCGTGCTGAGCGCAGGTATTAACGCCGCCAGTCCGAACAAAGAG

CTGGCGAAAGAGTTCCTCGAAAACTATCTGCTGACTGATGAAGGTCTGGAATTGGAGTGCTCAGGG

ACTATTTCAGCTCACTGCAACCTTCGCTTACCGGGCTCATCCGACTCGCCCGCCAGCGCGAGCCGC

GTAGCAGGCATCACCGGAGCGGTTAATAAAGACAAACCGCTGGGTGCCGTAGCGCTGAAGTCTTAC

GAGGAAGAGTTGGCGAAAGATCCACGTATTGCCGCCACCATGGAAAACGCCCAGAAAGGTGAAATC

ATGCCGAACATCCCGCAGATGTCCGCTTTCTGGTATGCCGTGCGTACTGCGGTGATCAACGCCGCC

AGCGGTCGTCAGACTGTCGATGAAGCCCTGAAAGACGCGCAGACTTAG 

 

N333 Alu 5’-3’ sequence 
ATGGGCAGCAGCCATCATCATCATCATCACGGTACCAAAACTGAAGAAGGTAAACTGGTAATCTGG

ATTAACGGCGATAAAGGCTATAACGGTCTCGCTGAAGTCGGTAAGAAATTCGAGAAAGATACCGGA

ATTAAAGTCACCGTTGAGCATCCGGATAAACTGGAAGAGAAATTCCCACAGGTTGCGGCAACTGGC

GATGGCCCTGACATTATCTTCTGGGCACACGACCGCTTTGGTGGCTACGCTCAATCTGGCCTGTTG

GCTGAAATCACCCCGGACAAAGCGTTCCAGGACAAGCTGTATCCGTTTACCTGGGATGCCGTACGT

TACAACGGCAAGCTGATTGCTTACCCGATCGCTGTTGAAGCGTTATCGCTGATTTATAACAAAGAT

CTGCTGCCGAACCCGCCAAAAACCTGGGAAGAGATCCCGGCGCTGGATAAAGAACTGAAAGCGAAA

GGTAAGAGCGCGCTGATGTTCAACCTGCAAGAACCGTACTTCACCTGGCCGCTGATTGCTGCTGAC

GGGGGTTATGCGTTCAAGTATGAAAACGGCAAGTACGACATTAAAGACGTGGGCGTGGATAACGCT

GGCGCGAAAGCGGGTCTGACCTTCCTGGTTGACCTGATTAAAAACAAACACATGAATGCAGACACC
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GATTACTCCATCGCAGAAGCTGCCTTTAATAAAGGCGAAACAGCGATGACCATCAACGGCCCGTGG

GCATGGTCCAACATCGACACCAGCAAAGTGAATTATGGTGTAACGGTACTGCCGACCTTCAAGGGT

CAACCATCCAAACCGTTCGTTGGCGTGCTGAGCGCAGGTATTAACGCCGCCAGTCCGAACAAAGAG

CTGGCGAAAGAGTTCCTCGAAAACTATCTGCTGACTGATGAAGGTCTGGAAGCGGTTAATAAAGAC

AAACCGCTGGGTGCCGTAGCGCTGAAGTCTTACGAGGAAGAGTTGGCGAAAGATCCACGTATTGCC

GCCACCATGGAAAACGCCCAGAAAGGTGAAATCATGCCGTTGGAGTGCTCAGGGACTATTTCAGCT

CACTGCAACCTTCGCTTACCGGGCTCATCCGACTCGCCCGCCAGCGCGAGCCGCGTAGCAGGCATC

ACCGGAAACATCCCGCAGATGTCCGCTTTCTGGTATGCCGTGCGTACTGCGGTGATCAACGCCGCC

AGCGGTCGTCAGACTGTCGATGAAGCCCTGAAAGACGCGCAGACTTAG 

 

T367 Alu 5’-3’ sequence 
ATGGGCAGCAGCCATCATCATCATCATCACGGTACCAAAACTGAAGAAGGTAAACTGGTAATCTGG

ATTAACGGCGATAAAGGCTATAACGGTCTCGCTGAAGTCGGTAAGAAATTCGAGAAAGATACCGGA

ATTAAAGTCACCGTTGAGCATCCGGATAAACTGGAAGAGAAATTCCCACAGGTTGCGGCAACTGGC

GATGGCCCTGACATTATCTTCTGGGCACACGACCGCTTTGGTGGCTACGCTCAATCTGGCCTGTTG

GCTGAAATCACCCCGGACAAAGCGTTCCAGGACAAGCTGTATCCGTTTACCTGGGATGCCGTACGT

TACAACGGCAAGCTGATTGCTTACCCGATCGCTGTTGAAGCGTTATCGCTGATTTATAACAAAGAT

CTGCTGCCGAACCCGCCAAAAACCTGGGAAGAGATCCCGGCGCTGGATAAAGAACTGAAAGCGAAA

GGTAAGAGCGCGCTGATGTTCAACCTGCAAGAACCGTACTTCACCTGGCCGCTGATTGCTGCTGAC

GGGGGTTATGCGTTCAAGTATGAAAACGGCAAGTACGACATTAAAGACGTGGGCGTGGATAACGCT

GGCGCGAAAGCGGGTCTGACCTTCCTGGTTGACCTGATTAAAAACAAACACATGAATGCAGACACC

GATTACTCCATCGCAGAAGCTGCCTTTAATAAAGGCGAAACAGCGATGACCATCAACGGCCCGTGG

GCATGGTCCAACATCGACACCAGCAAAGTGAATTATGGTGTAACGGTACTGCCGACCTTCAAGGGT

CAACCATCCAAACCGTTCGTTGGCGTGCTGAGCGCAGGTATTAACGCCGCCAGTCCGAACAAAGAG

CTGGCGAAAGAGTTCCTCGAAAACTATCTGCTGACTGATGAAGGTCTGGAAGCGGTTAATAAAGAC

AAACCGCTGGGTGCCGTAGCGCTGAAGTCTTACGAGGAAGAGTTGGCGAAAGATCCACGTATTGCC

GCCACCATGGAAAACGCCCAGAAAGGTGAAATCATGCCGAACATCCCGCAGATGTCCGCTTTCTGG

TATGCCGTGCGTACTGCGGTGATCAACGCCGCCAGCGGTCGTCAGACTGTCGATGAAGCCCTGAAA

GACGCGCAGACTTTGGAGTGCTCAGGGACTATTTCAGCTCACTGCAACCTTCGCTTACCGGGCTCA

TCCGACTCGCCCGCCAGCGCGAGCCGCGTAGCAGGCATCACCGGATAG 

 

pDB.His.MBP.Stop scrambled Alu sequences 

The following codon-optimised Alu sequence (shown in blue) was inserted into eight 

different locations within the MBP coding gene using site-directed mutagenesis via 

inverse PCR. 
ATAGCGCGTCTGCATGGTCCTTCCGCAAGTAATGGGACTTCCTCCTCTACTTGTGCGCCCGATCTT

GGCGTGGGGGAATCAGCCTTGTGTATTTCCCGC 
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The following sequences show only the region of plasmid encoding the histidine-

tagged MBP protein containing Alu insert. The remainder of the plasmid is identical 

to that pDB.His.MBP.Stop shown previously. 
 

D178* Scrambled Alu 5-3’ Sequence 
ATGGGCAGCAGCCATCATCATCATCATCACGGTACCAAAACTGAAGAAGGTAAACTGGTAATCTGG

ATTAACGGCGATAAAGGCTATAACGGTCTCGCTGAAGTCGGTAAGAAATTCGAGAAAGATACCGGA

ATTAAAGTCACCGTTGAGCATCCGGATAAACTGGAAGAGAAATTCCCACAGGTTGCGGCAACTGGC

GATGGCCCTGACATTATCTTCTGGGCACACGACCGCTTTGGTGGCTACGCTCAATCTGGCCTGTTG

GCTGAAATCACCCCGGACAAAGCGTTCCAGGACAAGCTGTATCCGTTTACCTGGGATGCCGTACGT

TACAACGGCAAGCTGATTGCTTACCCGATCGCTGTTGAAGCGTTATCGCTGATTTATAACAAAGAT

CTGCTGCCGAACCCGCCAAAAACCTGGGAAGAGATCCCGGCGCTGGATAAAGAACTGAAAGCGAAA

GGTAAGAGCGCGCTGATGTTCAACCTGCAAGAACCGTACTTCACCTGGCCGCTGATTGCTGCTGAC

GGGGGTTATGCGTTCAAGTATGAAAACGGCAAGTACATAGCGCGTCTGCATGGTCCTTCCGCAAGT

AATGGGACTTCCTCCTCTACTTGTGCGCCCGATCTTGGCGTGGGGGAATCAGCCTTGTGTATTTCC

CGCGACATTAAAGACGTGGGCGTGGATAACGCTGGCGCGAAAGCGGGTCTGACCTTCCTGGTTGAC

CTGATTAAAAACAAACACATGAATGCAGACACCGATTACTCCATCGCAGAAGCTGCCTTTAATAAA

GGCGAAACAGCGATGACCATCAACGGCCCGTGGGCATGGTCCAACATCGACACCAGCAAAGTGAAT

TATGGTGTAACGGTACTGCCGACCTTCAAGGGTCAACCATCCAAACCGTTCGTTGGCGTGCTGAGC

GCAGGTATTAACGCCGCCAGTCCGAACAAAGAGCTGGCGAAAGAGTTCCTCGAAAACTATCTGCTG

ACTGATGAAGGTCTGGAAGCGGTTAATAAAGACAAACCGCTGGGTGCCGTAGCGCTGAAGTCTTAC

GAGGAAGAGTTGGCGAAAGATCCACGTATTGCCGCCACCATGGAAAACGCCCAGAAAGGTGAAATC

ATGCCGAACATCCCGCAGATGTCCGCTTTCTGGTATGCCGTGCGTACTGCGGTGATCAACGCCGCC

AGCGGTCGTCAGACTGTCGATGAAGCCCTGAAAGACGCGCAGACTTAG 

 

G253* Scrambled Alu 5-3’ Sequence 
ATGGGCAGCAGCCATCATCATCATCATCACGGTACCAAAACTGAAGAAGGTAAACTGGTAATCTGG

ATTAACGGCGATAAAGGCTATAACGGTCTCGCTGAAGTCGGTAAGAAATTCGAGAAAGATACCGGA

ATTAAAGTCACCGTTGAGCATCCGGATAAACTGGAAGAGAAATTCCCACAGGTTGCGGCAACTGGC

GATGGCCCTGACATTATCTTCTGGGCACACGACCGCTTTGGTGGCTACGCTCAATCTGGCCTGTTG

GCTGAAATCACCCCGGACAAAGCGTTCCAGGACAAGCTGTATCCGTTTACCTGGGATGCCGTACGT

TACAACGGCAAGCTGATTGCTTACCCGATCGCTGTTGAAGCGTTATCGCTGATTTATAACAAAGAT

CTGCTGCCGAACCCGCCAAAAACCTGGGAAGAGATCCCGGCGCTGGATAAAGAACTGAAAGCGAAA

GGTAAGAGCGCGCTGATGTTCAACCTGCAAGAACCGTACTTCACCTGGCCGCTGATTGCTGCTGAC

GGGGGTTATGCGTTCAAGTATGAAAACGGCAAGTACGACATTAAAGACGTGGGCGTGGATAACGCT

GGCGCGAAAGCGGGTCTGACCTTCCTGGTTGACCTGATTAAAAACAAACACATGAATGCAGACACC

GATTACTCCATCGCAGAAGCTGCCTTTAATAAAGGCGAAACAGCGATGACCATCAACGGCCCGTGG

GCATGGTCCAACATCGACACCAGCAAAGTGAATTATGGTGTAACGGTACTGCCGACCTTCAAGATA

GCGCGTCTGCATGGTCCTTCCGCAAGTAATGGGACTTCCTCCTCTACTTGTGCGCCCGATCTTGGC
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GTGGGGGAATCAGCCTTGTGTATTTCCCGCGGTCAACCATCCAAACCGTTCGTTGGCGTGCTGAGC

GCAGGTATTAACGCCGCCAGTCCGAACAAAGAGCTGGCGAAAGAGTTCCTCGAAAACTATCTGCTG

ACTGATGAAGGTCTGGAAGCGGTTAATAAAGACAAACCGCTGGGTGCCGTAGCGCTGAAGTCTTAC

GAGGAAGAGTTGGCGAAAGATCCACGTATTGCCGCCACCATGGAAAACGCCCAGAAAGGTGAAATC

ATGCCGAACATCCCGCAGATGTCCGCTTTCTGGTATGCCGTGCGTACTGCGGTGATCAACGCCGCC

AGCGGTCGTCAGACTGTCGATGAAGCCCTGAAAGACGCGCAGACTTAG 

 

N333* Scrambled Alu 5-3’ Sequence 
ATGGGCAGCAGCCATCATCATCATCATCACGGTACCAAAACTGAAGAAGGTAAACTGGTAATCTGG

ATTAACGGCGATAAAGGCTATAACGGTCTCGCTGAAGTCGGTAAGAAATTCGAGAAAGATACCGGA

ATTAAAGTCACCGTTGAGCATCCGGATAAACTGGAAGAGAAATTCCCACAGGTTGCGGCAACTGGC

GATGGCCCTGACATTATCTTCTGGGCACACGACCGCTTTGGTGGCTACGCTCAATCTGGCCTGTTG

GCTGAAATCACCCCGGACAAAGCGTTCCAGGACAAGCTGTATCCGTTTACCTGGGATGCCGTACGT

TACAACGGCAAGCTGATTGCTTACCCGATCGCTGTTGAAGCGTTATCGCTGATTTATAACAAAGAT

CTGCTGCCGAACCCGCCAAAAACCTGGGAAGAGATCCCGGCGCTGGATAAAGAACTGAAAGCGAAA

GGTAAGAGCGCGCTGATGTTCAACCTGCAAGAACCGTACTTCACCTGGCCGCTGATTGCTGCTGAC

GGGGGTTATGCGTTCAAGTATGAAAACGGCAAGTACGACATTAAAGACGTGGGCGTGGATAACGCT

GGCGCGAAAGCGGGTCTGACCTTCCTGGTTGACCTGATTAAAAACAAACACATGAATGCAGACACC

GATTACTCCATCGCAGAAGCTGCCTTTAATAAAGGCGAAACAGCGATGACCATCAACGGCCCGTGG

GCATGGTCCAACATCGACACCAGCAAAGTGAATTATGGTGTAACGGTACTGCCGACCTTCAAGGGT

CAACCATCCAAACCGTTCGTTGGCGTGCTGAGCGCAGGTATTAACGCCGCCAGTCCGAACAAAGAG

CTGGCGAAAGAGTTCCTCGAAAACTATCTGCTGACTGATGAAGGTCTGGAAGCGGTTAATAAAGAC

AAACCGCTGGGTGCCGTAGCGCTGAAGTCTTACGAGGAAGAGTTGGCGAAAGATCCACGTATTGCC

GCCACCATGGAAAACGCCCAGAAAGGTGAAATCATGCCGATAGCGCGTCTGCATGGTCCTTCCGCA

AGTAATGGGACTTCCTCCTCTACTTGTGCGCCCGATCTTGGCGTGGGGGAATCAGCCTTGTGTATT

TCCCGCAACATCCCGCAGATGTCCGCTTTCTGGTATGCCGTGCGTACTGCGGTGATCAACGCCGCC

AGCGGTCGTCAGACTGTCGATGAAGCCCTGAAAGACGCGCAGAC 

TTAG 

MBP Protein sequences 

All protein sequences are given in ProtParam format. Protein regions encoded by 

Alu sequences are shown in red, and scrambled Alu insertions are shown in blue. 

 

MBP-Alu Constructs 
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His6-MBP 
    10     20     30     40     50     60  

MGSSHHHHHH GTKTEEGKLV IWINGDKGYN GLAEVGKKFE KDTGIKVTVE HPDKLEEKFP  

 

    70     80     90    100    110    120  

QVAATGDGPD IIFWAHDRFG GYAQSGLLAE ITPDKAFQDK LYPFTWDAVR YNGKLIAYPI  

 

    130    140    150    160    170    180  

AVEALSLIYN KDLLPNPPKT WEEIPALDKE LKAKGKSALM FNLQEPYFTW PLIAADGGYA  

 

    190    200    210    220    230    240  

FKYENGKYDI KDVGVDNAGA KAGLTFLVDL IKNKHMNADT DYSIAEAAFN KGETAMTING  

 

    250    260    270    280    290    300  

PWAWSNIDTS KVNYGVTVLP TFKGQPSKPF VGVLSAGINA ASPNKELAKE FLENYLLTDE  

 

    310    320    330    340    350    360  

GLEAVNKDKP LGAVALKSYE EELAKDPRIA ATMENAQKGE IMPNIPQMSA FWYAVRTAVI  

 

    370  

NAASGRQTVD EALKDAQT 

 

His6-MBP-G6 
    10     20     30     40     50     60  

MGSSHHHHHH GTKTEELECS GTISAHCNLR LPGSSDSPAS ASRVAGITGG KLVIWINGDK  

 

    70     80     90    100    110    120  

GYNGLAEVGK KFEKDTGIKV TVEHPDKLEE KFPQVAATGD GPDIIFWAHD RFGGYAQSGL  

 

    130    140    150    160    170    180  

LAEITPDKAF QDKLYPFTWD AVRYNGKLIA YPIAVEALSL IYNKDLLPNP PKTWEEIPAL  

 

    190    200    210    220    230    240  

DKELKAKGKS ALMFNLQEPY FTWPLIAADG GYAFKYENGK YDIKDVGVDN AGAKAGLTFL  

 

    250    260    270    280    290    300  

VDLIKNKHMN ADTDYSIAEA AFNKGETAMT INGPWAWSNI DTSKVNYGVT VLPTFKGQPS  

 

    310    320    330    340    350    360  

KPFVGVLSAG INAASPNKEL AKEFLENYLL TDEGLEAVNK DKPLGAVALK SYEEELAKDP  
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    370    380    390    400    410  

RIAATMENAQ KGEIMPNIPQ MSAFWYAVRT AVINAASGRQ TVDEALKDAQ T 

 

His6-MBP-T81 
    10     20     30     40     50     60  

MGSSHHHHHH GTKTEEGKLV IWINGDKGYN GLAEVGKKFE KDTGIKVTVE HPDKLEEKFP  

 

    70     80     90    100    110    120  

QVAATGDGPD IIFWAHDRFG GYAQSGLLAE ILECSGTISA HCNLRLPGSS DSPASASRVA  

 

    130    140    150    160    170    180  

GITGTPDKAF QDKLYPFTWD AVRYNGKLIA YPIAVEALSL IYNKDLLPNP PKTWEEIPAL  

 

    190    200    210    220    230    240  

DKELKAKGKS ALMFNLQEPY FTWPLIAADG GYAFKYENGK YDIKDVGVDN AGAKAGLTFL  

 

    250    260    270    280    290    300  

VDLIKNKHMN ADTDYSIAEA AFNKGETAMT INGPWAWSNI DTSKVNYGVT VLPTFKGQPS  

 

    310    320    330    340    350    360  

KPFVGVLSAG INAASPNKEL AKEFLENYLL TDEGLEAVNK DKPLGAVALK SYEEELAKDP  

 

    370    380    390    400    410  

RIAATMENAQ KGEIMPNIPQ MSAFWYAVRT AVINAASGRQ TVDEALKDAQ T 

 

His6-MBP-P126 
    10     20     30     40     50     60  

MGSSHHHHHH GTKTEEGKLV IWINGDKGYN GLAEVGKKFE KDTGIKVTVE HPDKLEEKFP  

 

    70     80     90    100    110    120  

QVAATGDGPD IIFWAHDRFG GYAQSGLLAE ITPDKAFQDK LYPFTWDAVR YNGKLIAYPI  

 

    130    140    150    160    170    180  

AVEALSLIYN KDLLPNLECS GTISAHCNLR LPGSSDSPAS ASRVAGITGP PKTWEEIPAL  

 

    190    200    210    220    230    240  

DKELKAKGKS ALMFNLQEPY FTWPLIAADG GYAFKYENGK YDIKDVGVDN AGAKAGLTFL  

 

    250    260    270    280    290    300  
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VDLIKNKHMN ADTDYSIAEA AFNKGETAMT INGPWAWSNI DTSKVNYGVT VLPTFKGQPS  

 

    310    320    330    340    350    360  

KPFVGVLSAG INAASPNKEL AKEFLENYLL TDEGLEAVNK DKPLGAVALK SYEEELAKDP  

 

    370    380    390    400    410  

RIAATMENAQ KGEIMPNIPQ MSAFWYAVRT AVINAASGRQ TVDEALKDAQ T 

 

His6-MBP-D178 
    10     20     30     40     50     60  

MGSSHHHHHH GTKTEEGKLV IWINGDKGYN GLAEVGKKFE KDTGIKVTVE HPDKLEEKFP  

 

    70     80     90    100    110    120  

QVAATGDGPD IIFWAHDRFG GYAQSGLLAE ITPDKAFQDK LYPFTWDAVR YNGKLIAYPI  

 

    130    140    150    160    170    180  

AVEALSLIYN KDLLPNPPKT WEEIPALDKE LKAKGKSALM FNLQEPYFTW PLIAADGGYA  

 

    190    200    210    220    230    240  

FKYENGKYLE CSGTISAHCN LRLPGSSDSP ASASRVAGIT GDIKDVGVDN AGAKAGLTFL  

 

    250    260    270    280    290    300  

VDLIKNKHMN ADTDYSIAEA AFNKGETAMT INGPWAWSNI DTSKVNYGVT VLPTFKGQPS  

 

    310    320    330    340    350    360  

KPFVGVLSAG INAASPNKEL AKEFLENYLL TDEGLEAVNK DKPLGAVALK SYEEELAKDP  

 

    370    380    390    400    410  

RIAATMENAQ KGEIMPNIPQ MSAFWYAVRT AVINAASGRQ TVDEALKDAQ T 

 

His6-MBP-G253 
    10     20     30     40     50     60  

MGSSHHHHHH GTKTEEGKLV IWINGDKGYN GLAEVGKKFE KDTGIKVTVE HPDKLEEKFP  

 

    70     80     90    100    110    120  

QVAATGDGPD IIFWAHDRFG GYAQSGLLAE ITPDKAFQDK LYPFTWDAVR YNGKLIAYPI  

 

    130    140    150    160    170    180  

AVEALSLIYN KDLLPNPPKT WEEIPALDKE LKAKGKSALM FNLQEPYFTW PLIAADGGYA  
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    190    200    210    220    230    240  

FKYENGKYDI KDVGVDNAGA KAGLTFLVDL IKNKHMNADT DYSIAEAAFN KGETAMTING  

 

    250    260    270    280    290    300  

PWAWSNIDTS KVNYGVTVLP TFKLECSGTI SAHCNLRLPG SSDSPASASR VAGITGGQPS  

 

    310    320    330    340    350    360  

KPFVGVLSAG INAASPNKEL AKEFLENYLL TDEGLEAVNK DKPLGAVALK SYEEELAKDP  

 

    370    380    390    400    410  

RIAATMENAQ KGEIMPNIPQ MSAFWYAVRT AVINAASGRQ TVDEALKDAQ T 

 

H6-MBP-A293 
    10     20     30     40     50     60  

MGSSHHHHHH GTKTEEGKLV IWINGDKGYN GLAEVGKKFE KDTGIKVTVE HPDKLEEKFP  

 

    70     80     90    100    110    120  

QVAATGDGPD IIFWAHDRFG GYAQSGLLAE ITPDKAFQDK LYPFTWDAVR YNGKLIAYPI  

 

    130    140    150    160    170    180  

AVEALSLIYN KDLLPNPPKT WEEIPALDKE LKAKGKSALM FNLQEPYFTW PLIAADGGYA  

 

    190    200    210    220    230    240  

FKYENGKYDI KDVGVDNAGA KAGLTFLVDL IKNKHMNADT DYSIAEAAFN KGETAMTING  

 

    250    260    270    280    290    300  

PWAWSNIDTS KVNYGVTVLP TFKGQPSKPF VGVLSAGINA ASPNKELAKE FLENYLLTDE  

 

    310    320    330    340    350    360  

GLELECSGTI SAHCNLRLPG SSDSPASASR VAGITGAVNK DKPLGAVALK SYEEELAKDP  

 

    370    380    390    400    410  

RIAATMENAQ KGEIMPNIPQ MSAFWYAVRT AVINAASGRQ TVDEALKDAQ T 

 

 

H6-MBP-N333 
    10     20     30     40     50     60  

MGSSHHHHHH GTKTEEGKLV IWINGDKGYN GLAEVGKKFE KDTGIKVTVE HPDKLEEKFP  

 

    70     80     90    100    110    120  
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QVAATGDGPD IIFWAHDRFG GYAQSGLLAE ITPDKAFQDK LYPFTWDAVR YNGKLIAYPI  

 

    130    140    150    160    170    180  

AVEALSLIYN KDLLPNPPKT WEEIPALDKE LKAKGKSALM FNLQEPYFTW PLIAADGGYA  

 

    190    200    210    220    230    240  

FKYENGKYDI KDVGVDNAGA KAGLTFLVDL IKNKHMNADT DYSIAEAAFN KGETAMTING  

 

    250    260    270    280    290    300  

PWAWSNIDTS KVNYGVTVLP TFKGQPSKPF VGVLSAGINA ASPNKELAKE FLENYLLTDE  

 

    310    320    330    340    350    360  

GLEAVNKDKP LGAVALKSYE EELAKDPRIA ATMENAQKGE IMPLECSGTI SAHCNLRLPG  

 

    370    380    390    400    410  

SSDSPASASR VAGITGNIPQ MSAFWYAVRT AVINAASGRQ TVDEALKDAQ T 

 

His6-MBP-T367 
    10     20     30     40     50     60  

MGSSHHHHHH GTKTEEGKLV IWINGDKGYN GLAEVGKKFE KDTGIKVTVE HPDKLEEKFP  

 

    70     80     90    100    110    120  

QVAATGDGPD IIFWAHDRFG GYAQSGLLAE ITPDKAFQDK LYPFTWDAVR YNGKLIAYPI  

 

    130    140    150    160    170    180  

AVEALSLIYN KDLLPNPPKT WEEIPALDKE LKAKGKSALM FNLQEPYFTW PLIAADGGYA  

 

    190    200    210    220    230    240  

FKYENGKYDI KDVGVDNAGA KAGLTFLVDL IKNKHMNADT DYSIAEAAFN KGETAMTING  

 

    250    260    270    280    290    300  

PWAWSNIDTS KVNYGVTVLP TFKGQPSKPF VGVLSAGINA ASPNKELAKE FLENYLLTDE  

 

    310    320    330    340    350    360  

GLEAVNKDKP LGAVALKSYE EELAKDPRIA ATMENAQKGE IMPNIPQMSA FWYAVRTAVI  

 

    370    380    390    400    410  

NAASGRQTVD EALKDAQTLE CSGTISAHCN LRLPGSSDSP ASASRVAGIT G 
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Scrambled MBP-Alu Constructs 

His6-MBP-D178* 
    10     20     30     40     50     60  

MGSSHHHHHH GTKTEEGKLV IWINGDKGYN GLAEVGKKFE KDTGIKVTVE HPDKLEEKFP  

 

    70     80     90    100    110    120  

QVAATGDGPD IIFWAHDRFG GYAQSGLLAE ITPDKAFQDK LYPFTWDAVR YNGKLIAYPI  

 

    130    140    150    160    170    180  

AVEALSLIYN KDLLPNPPKT WEEIPALDKE LKAKGKSALM FNLQEPYFTW PLIAADGGYA  

 

    190    200    210    220    230    240  

FKYENGKYIA RLHGPSASNG TSSSTCAPDL GVGESALCIS RDIKDVGVDN AGAKAGLTFL  

 

    250    260    270    280    290    300  

VDLIKNKHMN ADTDYSIAEA AFNKGETAMT INGPWAWSNI DTSKVNYGVT VLPTFKGQPS  

 

    310    320    330    340    350    360  

KPFVGVLSAG INAASPNKEL AKEFLENYLL TDEGLEAVNK DKPLGAVALK SYEEELAKDP  

 

    370    380    390    400    410  

RIAATMENAQ KGEIMPNIPQ MSAFWYAVRT AVINAASGRQ TVDEALKDAQ T 

 

 

His6-MBP-G253* 
    10     20     30     40     50     60  

MGSSHHHHHH GTKTEEGKLV IWINGDKGYN GLAEVGKKFE KDTGIKVTVE HPDKLEEKFP  

 

    70     80     90    100    110    120  

QVAATGDGPD IIFWAHDRFG GYAQSGLLAE ITPDKAFQDK LYPFTWDAVR YNGKLIAYPI  

 

    130    140    150    160    170    180  

AVEALSLIYN KDLLPNPPKT WEEIPALDKE LKAKGKSALM FNLQEPYFTW PLIAADGGYA  

 

 

    190    200    210    220    230    240  

FKYENGKYDI KDVGVDNAGA KAGLTFLVDL IKNKHMNADT DYSIAEAAFN KGETAMTING  

 

    250    260    270    280    290    300  



Appendix 

 214 

PWAWSNIDTS KVNYGVTVLP TFKIARLHGP SASNGTSSST CAPDLGVGES ALCISRGQPS  

 

    310    320    330    340    350    360  

KPFVGVLSAG INAASPNKEL AKEFLENYLL TDEGLEAVNK DKPLGAVALK SYEEELAKDP  

 

    370    380    390    400    410  

RIAATMENAQ KGEIMPNIPQ MSAFWYAVRT AVINAASGRQ TVDEALKDAQ T 

 

His6-MBP-N333* 
    10     20     30     40     50     60  

MGSSHHHHHH GTKTEEGKLV IWINGDKGYN GLAEVGKKFE KDTGIKVTVE HPDKLEEKFP  

 

    70     80     90    100    110    120  

QVAATGDGPD IIFWAHDRFG GYAQSGLLAE ITPDKAFQDK LYPFTWDAVR YNGKLIAYPI  

 

    130    140    150    160    170    180  

AVEALSLIYN KDLLPNPPKT WEEIPALDKE LKAKGKSALM FNLQEPYFTW PLIAADGGYA  

 

    190    200    210    220    230    240  

FKYENGKYDI KDVGVDNAGA KAGLTFLVDL IKNKHMNADT DYSIAEAAFN KGETAMTING  

 

    250    260    270    280    290    300  

PWAWSNIDTS KVNYGVTVLP TFKGQPSKPF VGVLSAGINA ASPNKELAKE FLENYLLTDE  

 

    310    320    330    340    350    360  

GLEAVNKDKP LGAVALKSYE EELAKDPRIA ATMENAQKGE IMPIARLHGP SASNGTSSST  

 

    370    380    390    400    410  

CAPDLGVGES ALCISRNIPQ MSAFWYAVRT AVINAASGRQ TVDEALKDAQ T 
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4 High resolution mass spectrometry 

 

 

A4.1 Mass Spectrometry – His6-MBP (WT) 

Expected protein mass = 41,541.0 Da; observed protein mass = 41268.27 Da 
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A4.2 Mass Spectrometry – His6-MBP-G6 

Expected protein mass = 44737.6 Da; observed protein mass = 44603.05 Da 
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A4.3 Mass Spectrometry – His6-MBP-T81 

Expected protein mass = 44737.6 Da; observed protein mass = 44601.37 Da 
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A4.4 Mass Spectrometry – His6-MBP-P126 

Expected protein mass = 44737.6 Da; observed protein mass = 44599.88 Da 
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A4.5 Mass Spectrometry – His6-MBP-D178 

Expected protein mass = 44737.6 Da; observed protein mass = 44603.05 Da 
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A4.6 Mass Spectrometry – His6-MBP-D178* 

Expected protein mass = 44737.6 Da; observed protein mass = 44602.49 Da 
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A4.7 Mass Spectrometry – His6-MBP-G253 

Expected protein mass = 44737.6 Da; observed protein mass = 44602.47 Da 
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A4.8 Mass Spectrometry – His6-MBP-G253* 

Expected protein mass = 44737.6 Da; observed protein mass = 44602.35 Da 
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A4.9 Mass Spectrometry – His6-MBP-A293 

Expected protein mass = 44737.6 Da; observed protein mass = 44603.52 Da 
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A4.10 Mass Spectrometry – His6-MBP-N333 

Expected protein mass = 44737.6 Da; observed protein mass = 44602.17 Da 

  



Appendix 

 225 

 

A4.11 Mass Spectrometry – His6-MBP-N333* 

Expected protein mass = 44737.6 Da; observed protein mass = 44603.69 Da 
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A4.12 Mass Spectrometry – His6-MBP-T367 

Expected protein mass = 44737.6 Da; observed protein mass = 44466.32 Da 
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5 ITC Data 

 

A5.1 ITC curves for His6-MBP (WT) with sugar ligands 

Concentrations: His6-MBP (0.21 mM), D-(+)-maltose (3.0 mM), maltotriose (1.8 mM), β-cyclodextrin (1.2 mM)  
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A5.1 ITC curves for His6-MBP-G6 binding with sugar ligands 

Concentrations: His6-MBP-G6 (0.21 mM), maltotriose (3.6 mM), β-cyclodextrin (2.4 mM) 
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A5.3 ITC curves for His6-MBP-D178 with sugar ligands 

Concentrations: His6-MBP-D178 (0.21 mM), D-(+)-maltose (3.0 mM), maltotriose (3.3 mM), β-cyclodextrin (2.2 mM) 
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A5.4 ITC curves for His6-MBP-T367 binding with sugar ligands 

Concentrations: His6-MBP-T367 (0.20 mM), D-(+)-maltose (2.3 mM), maltotriose (3.6 mM), β-cyclodextrin (2.4 mM)  
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6 Polysome profiles and Standard Curves 

SH-SY5Y profiles 
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NP-1 profiles 
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qPCR standard curves 
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