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Abstract   

 

I 

 

Abstract 

 

Large reinforced concrete (RC) structures can be subjected to significant lateral loads and 

deformations. To prevent the development of large moments, highly deformable and high 

strength elements can be utilised, such as elastomeric bearings. These elements are currently 

expensive and not as durable as the structure itself. Extensive research carried out at The 

University of Sheffield propose a novel and cost-effective alternative solution, which is utilising 

FRP-confined rubberised concrete (CRuC). 

Since the determination of deformation in RC depends on knowledge of the stress-strain 

characteristics, this research aimed to develop a comprehensive understanding of the stress-

strain behaviour of CRuC and develop effective modelling methods that can be used for the 

development of high-strength high-deformability concrete elements.  

Notched three-point bending tests are used to characterise the Mode I fracture behaviour of 

rubberised concrete (RuC). Test result shows that rubber particles enhance energy absorption 

capacity and ductility of concrete. The tensile stress-strain curves of RuC are obtained through 

inverse finite element analysis. 

The compressive behaviour of CRuC in circular and non-circular sections is examined 

experimentally under uniaxial compression. Test results show that the confinement 

effectiveness in RuC elements is better than in regular concrete. An analytical model is 

proposed based on a new definition of the effective confinement area. 

The shear behaviour of CRuC is assessed by axisymmetric four-point bending tests. Test results 

indicate that CRuC shows ductile and stable performance that allows the development of high 

shear deformations. By adopting a nonlinear numerical approach for the practical 

implementation of the smeared, fixed-angle crack approach in finite element analysis, the shear 

response of CRuC can be correctly predicted. 

The experimental results support the idea that CRuC can be effectively used to develop highly 

ductile RC structural components for deformable elements and structures located in high 

seismicity regions. The proposed constitutive relations and models provide the necessary 

information for the development of design tools. 
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1.1 RESEARCH MOTIVATION 

In EU countries, more than 3 million tonnes of tyres reach the end of their lives each year [1] and 

worldwide 17 million tonnes [2]. Waste tyres are often disposed of in landfills, leading to 

significant threats to the environment and public health in particular developing countries [3]. The 

European Landfill Directive (Council Directives 1991/31/EC) prohibits the disposal of waste tyre 

products in landfills, whilst the Council Directive 2008/98/EC favours reusing or recycling scrap 

tyre components. 

Tyres are made of high-quality vulcanised rubber belts, placed in several layers, many of which 

are structurally reinforced with corded steel wire or polymer textiles (see Fig. 1 – 1). The recycled 

rubber particles (see Fig. 1 - 2) can be extracted from car (sizes up to 10 mm) and truck (sizes in 

the range of 10–20 mm) end-of-life tyres, through a variety of chemical and mechanical means 

(e.g. shredding and granulating). These rubber particles are highly durable, and it has good 

strength, flexibility and a remarkable ability to maintain its volume under stress. As a result, there 

is a drive for finding new applications for recycled rubber, particularly in construction. This is 

due to the construction industry consumes more than 25 gigatons concrete per annum [1]. As a 

result, utilising recycled tyre compotes in concrete can create a significant impact on this 

worldwide problem. 

In the past few decades, the feasibility of using recycled rubber in the concrete application has 

been assessed by many studies [2-5]. The use of rubber in concrete is mainly applied for non-

structural applications [6, 7] (e.g. crash barriers[8-11], flowable fill [12], pavement [13-17], blast 

panels [18, 19] and acoustic or thermal insulation units [20, 21]). This is attributed to the 

characteristics of rubberised concrete (e.g. low strength and stiffness [22, 23], high toughness and 

impact resistance and good thermal and sound insulation [24-29]). More recently, researchers 

have found that the inclusion of rubber in concrete can enhance lateral strain of concrete under 

axial loading [22, 30], thus led researchers to confine rubberised concrete (RuC) in an attempt to 

improve axial strength and strain capacity [30]. The hypothesis is that confined RuC could be 
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used in the regions with high deformation demands. The research at The University of Sheffield, 

within the EU funded “Anagennisi” project [31], proved that fibre reinforced polymer (FRP) 

Confined Rubberised Concrete (CRuC) with up to 60% total aggregate replacement is able to 

withstand high levels of stress (up to 90 MPa) at large levels of deformation (up to 6%) [23, 30, 

32-35]. Moreover, the experimental study within“Anagennisi” project examined the long-term 

performance and durability of RuC exposed to various environments (e.g. water or saltwater, 

normal (20 oC) and high temperature (40 oC)) for different exposure periods (100 h and 1000 h). 

Compared with the compressive strength of unconditioned specimens, the performance of 

conditioned RuC specimens was found slightly enhanced after a long exposure period [36]. The 

durability of FRP jackets has also been proved to be durable enough when exposed to water or 

alkaline environments up to 40 oC, comprising only a small portion of their tensile strength. 

Hence, CRuC is proposed for use in structural applications, such as base isolation columns and 

bridge bearings, where high-strength and high-deformability are needed. 

 

Fig. 1 - 1. Cross-section of the tyre, reproduced from [37]. 
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Fig. 1 - 2. Rubber particles used in the concrete mix to replace sand (size:0-4 mm) and gravel 

(sizes: 4-10 mm and 10-20 mm). 

Elements of large reinforced concrete (RC) structures can be subjected to significant lateral loads 

and or deformations either due to shrinkage and thermal moments or accidental actions, such as 

arising from the differential settlement or seismic motion. To prevent the development of large 

moments, highly deformable component, often made with elastomeric materials, are utilised, such 

as rubber bridge bearings or base isolation elements. Such components are required to carry high 

axial loads and at the same time be sufficiently flexible to allow large deformations. These 

components are, in general, not as durable as the structure itself and, hence, require inspection 

and regular replacement, adding costs and service disruption. Furthermore, forming plastic hinge 

zones at beams and columns to develop large inelastic deformations plays an important role in 

enhancing the ductility and deformation capacity of RC structures under extreme events. It is 

normally required to carefully design and detail the reinforcement to achieve ductility. However, 

due to the quasi-brittle behaviour of concrete, the potential deformation capacity of RC elements 

is still limited unless a massive amount of confinement provided. CRuC elements can potentially 

result in more deformable and resilient structural systems and improve the integrity of structures, 

which will have a big impact on RC structural design. 



Chapter 1  Introduction 

 

5 

 

1.2 AIM AND OBJECTIVES 

The aim of this research is to understand the mechanical characteristics of FRP-confined and 

unconfined rubberised concrete and propose effective modelling methods that can be used for the 

development of high-strength high-deformability concrete elements.  

To achieve this aim, experimental and numerical work was performed. The list of the main 

objectives of this research is given below: 

1. Examine the tensile characteristics of rubberised concrete using three-point bending beam 

tests along with splitting test and propose tensile stress-crack opening relations for 

rubberised concrete.  

2. Assess the accuracy of propose relations through finite element (FE) modelling of three-

point bending beam tests and compare to the performance of Model code relations. 

3. Examine the compressive behaviour of FRP-confined and unconfined columns using 

uniaxial compressive test and assess the applicability of existing constitutive models for 

conventional confined concrete in the case of FRP-confined rubberised concrete. 

4. Develop an analytical model for FRP-confined rubberised concrete. 

5. Examine the shear behaviour of FRP-confined and unconfined rubberised concrete using 

asymmetric shear test and assess the capability of existing shear behaviour models for 

conventional reinforced concrete to describe the behaviour of FRP-confined rubberised 

concrete. 

6. Propose a shear behaviour model by incorporating the developed tensile and compressive 

relations.  

7. Implement the shear behaviour model in a FE analysis program. 

1.3 METHODOLOGY 

The research methodology includes experimental programme and numerical investigation. The 

experimental studies were performed to determine fundamental material properties and essential 
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behaviours. The experimental data will be analysis then used to calibrate the numerical model or 

develop the modelling tools. Fig. 1 – 4 shows the main stages of this study. 

1.3.1 Experimental methods 

Two rubberised concrete mixes and a reference regular concrete mix were adopted in this research 

to manufacturing all the specimens for different tests (Fig. 1 - 3).  

To achieve objective 1, the following tests were performed: 

• (a) Three-point bending beam test 

This test is developed to examine Mode I fracture of rubberised and regular concrete 

and determine the corresponding fracture energy, as well as complete load-deflection 

curve. The test results along with the determined tensile splitting strength are utilised 

to drive tensile stress-crack opening relations that can be implemented in finite 

element analysis.  

• (b) Cylindrical splitting test 

This test is used to obtain the splitting tensile strength of rubberised and regular 

concrete. 

To achieve objective 3, the following test was conducted: 

• (c) Uniaxial compressive test 

This test is designed to assess the uniaxial compressive behaviour of unconfined and 

confined rubberised and regular concrete. The stress-strain behaviours (axial and 

lateral), as well as dilation behaviour, were investigated.  

To achieve objective 5, the following experimental test was conducted: 

• (d) Asymmetric shear test 
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This test is selected to study the shear behaviour of unconfined and confined 

rubberised concrete, as well as used to assess the feasibility of using CRuC to develop 

high-shear strength high-deformability elements suitable for structural applications.  

 

Fig. 1 - 3. Schematic of selected experimental set-up: a) Three-point bending beam test; b) 

Cylindrical splitting test; c) Uniaxial compressive test; and d) Asymmetric shear test) 

1.3.2 Numerical Methods 

Two parts of FE analyses are conducted. The first part built FE models in ABAQUS to assess the 

behaviours (flexural, compression and shear) of unconfined and FRP-confined rubberised 

concrete. Based on the FE results, objective 2 can be achieved. In the second part, two different 

types of material model are established:   

To achieve objective 4,  

• An analytical stress-strain model is programmed using MATLAB based on a new 

definition of an effective confinement area and considers the properties of both RC and 

RuC based on a series of experimentally determined relationships and the stress-strain 

behaviours. 

To achieve objectives 6 and 7,  
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• A shear behaviour model of CRuC and RuC is programmed using FORTRAN and 

implemented in Abaqus/Standard finite element software package using the user-defined 

material subroutine.  

 

Fig. 1 - 4. Outlines of research  
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1.4 THESIS LAYOUT 

This thesis will be presented in seven chapters and three appendices. A brief description of the 

thesis chapters and how they contribute to the objectives is provided as follows:  

Chapter Two presents the review of the state-of-the-art in research on current study of CRuC 

structural application and mechanical behaviour of unconfined and confined RuC. 

Chapter Three addresses objectives 1-2 and comprise an experimental investigation on the Mode 

I fracture behaviour of concrete incorporating different volumes of rubber particles obtained from 

recycled end-of-life tyres. Tensile stress-crack opening relation for RuC is proposed based on the 

modification of relation for conventional concrete. The performance of the proposed relation is 

then compared with Model Code 2010 through the general FEA package ABAQUS. 

Chapter Four addresses objective 3. 128 samples, including cylinders and square columns, cast 

by regular concrete and rubberised concrete, are tested in axial compression. The stress-strain and 

dilation behaviours are examined to develop a deep understanding of the confinement mechanism 

over the non-circular section.  

Chapter Five addresses objective 4. The effectiveness of Lam and Teng’s model for FRP-

confined rectangular columns and Concrete Damage Plasticity Model is assessed. An analysis-

oriented model for FRP-confined concrete (RC or RuC) in the circular and non-circular section 

is proposed based on a new understanding of effective confinement area and volumetric strain-

to-axial stress relationship. 

Chapter Six is based on Wang et al. [38] and addresses objectives 5-7. It includes experimental 

and numerical investigations on shear behaviour of FRP-confined and unconfined RuC. It 

examines the suitability of existing shear behaviour models for reinforced concrete and assesses 

their potential use for modelling FRP-confined RuC. It proposes a shear behaviour model for 
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FRP-confined and unconfined RuC, which is implemented in Abaqus/Standard finite element 

software package using the user-defined material subroutine. 

Chapter Seven comprises concluding remarks based on Chapters 3-6. Additional comments and 

recommendations for future work are also provided. 

Appendix A includes detailed information on all experiments (A1. Flexural tests; A2. 

Compressive tests and A3. Asymmetric shear tests).  

Appendix B provides established finite element models for the experiments reported in Appendix 

A.  

Appendix C shows the developed code for the implantation in the FEA package ABAQUS (C1. 

Shear behaviour model of FRP-confined and unconfined RuC and C2. Compressive behaviour 

model of FRP-confined concrete columns).  
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2.1 STRUCTURAL APPLICATIONS OF FRP-CONFINED RUC 

In recent years, researchers investigate the feasibility of utilising FRP-confined RuC to develop 

high strength and high deformable elements that can be used in high-value structural applications: 

1) Coupling beam 

Coupling beams (Fig. 2 - 1) in the couple wall system, which often implemented in medium to 

high rise buildings to enhance structure performance under large lateral loads or seismic. The 

coupling beam requires to transfer high shear forces and develop large shear deformations, must 

have excellent ductility and not progressively loss strength under cyclic load [1]. The 

investigations on the coupling beam are mainly focused on developing an appropriate 

reinforcement detailing to improve the strength and ductility [2, 3]. However, its performance is 

limited by the brittle behaviour of concrete. Furthermore, the complicated reinforcement detailing 

(Fig. 2 - 2) developed by Paulay at el. [4] and adopted by current codes (EC8 [5] and ACI 318-

14 [6]) is difficult to assemble and requires a significant amount of reinforcement. 

Recently, researchers at the University of Sheffield have developed a highly deformable concrete 

(HDC) by replacing the mineral coarse and fine aggregates in concrete with rubber particles 

external bonded by FRP. The proof-of-concept study (Fig. 2 - 3) to use HDC in the coupling beam 

has been studied by [7]. The results in Fig. 2 - 4 confirm that confining RuC with CFRP jackets 

can lead to highly deformable elements under shear conditions and increase the strength of RuC 

to levels required from structural elements, hence opening the possibility of using CRuC in 

applications where large strength and shear deformation are required. 

Based on the promising results found on the pilot study, large scale experimental study (Fig. 2 - 

5) were conducted by Escolano-Margarit et al. [8] to assess the feasibility of using HDC in the 

coupling beam. Four coupling beams were tested under cyclic displacement reversal. The 

experimental results showed the HDC could develop a high level of shear stress (4 MPa), which 

was 1.5 times higher than required in current codes. Furthermore, HDC coupling beam 
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demonstrated a very stable hysteresis response with minimum pinching and maximum energy 

dissipation among those four beams (see Fig. 2 - 6). Moreover, HDC coupling beam showed a 

gradual failure behaviour with an ultimate rotation up to 8%, which resulted in a value of ductility 

up to 6. 

 

Fig. 2 - 1. Reinforced Concrete structural coupled walls adopted from [8]. 

 

 Fig. 2 - 2. Reinforcement detailing of coupling beam, adopted from [4]. 
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Fig. 2 - 3. Specimen dimensions and reinforcement layout. 

 

Fig. 2 - 4. Shear Force VS Deflection and failure modes. 
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Fig. 2 - 5. Test setup of large scale coupling beam test, adopted from [8]. 

 

Fig. 2 - 6. Shear force vs displacement hysteretic curve, adopted from [8]. 

2) High deformable short columns  

Son et al. [9] assessed the pure axial compressive behaviour of rectangular reinforced RuC 

columns in terms of compressive strength and deformation capacity. To avoid excessive strength 

degradation, only 15 % of rubber replacement volume of fine aggregates was used. As expected, 

the load-carrying capacity of the column specimens decreased with increasing the rubber content. 

However, the reinforced RuC columns achieved twice larger lateral deformations when compared 
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to regular concrete columns. This lead to a much higher energy dissipation capacity and ductility, 

which are two key parameters in seismic considerations. 

Youssf et al. [9] examined the behaviour of FRP-confined reinforced RuC circular columns under 

a combination of axial and incrementally increasing reversed cyclic loads. The RuC manufactured 

the specimens with 20 % rubber replacement by volume of fine aggregates. Damping, snap-back 

tests and cyclic test were carried out. Compared with reinforced regular concrete columns, the 

FRP-confined reinforced RuC column exhibit larger hysteric damping ratio (+13%) and energy 

dissipation capacity (+150%) (Fig. 2 - 7). The longitudinal reinforcement strains recorded in FRP-

confined reinforced RuC were higher than those in the regular concrete column, making better 

use of reinforcement. 

 

Fig. 2 - 7. Hysteretic behaviour of FRP-confined reinforced RuC column, adopted from [9]. 

Elghazouli et al. [10] investigate the cyclic performance of reinforced rubberised concrete (up 60 % 

rubber replacement by volume of fine and coarse aggregates) circular columns (see Fig. 2 - 8) 

with and without external FRP confinement. The investigation found reinforced RuC columns 

have a soft crushing behaviour resulting in a preferable energy dissipation and ductility properties. 

The test results indicate the reinforced RuC columns able to achieve a better balance between 

ductility and bending capacity compared with their regular concrete counterparts, especially 
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subject to low axial load. Particularly, the reinforced RuC columns strengthened by AFRP shows 

a recovered high axial strength and provides a more stable hysteretic response than regular 

concrete columns (see Fig. 2 - 9). 

 

Fig. 2 - 8. Specimen details: reinforced rubberised concrete column (left) and AFRP-confined 

reinforced rubberised concrete column (right), adopted from [10]. 

 

Fig. 2 - 9. Load-deformation (V-δ) response for regular concrete columns (top) and AFRP-

confined rubberised concrete column (bottom), adopted from [10]. 

Regular concrete 

AFRP CRuC 
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2.2 MIX DESIGN OF RUC 

Table 2 – 1 summarises the mix proportions for RuC adopted from a detailed mix optimisation 

study conducted by Raffoul et al.[11], in which acceptable strength loss and desirable workability 

were achieved. The RuC mix was developed on the basis of a reference regular concrete mix (ρvr 

= 0), which is typically used in bridge piers design with target 28-day compressive strength of 60 

MPa. In the RuC mixes, 20% of the cement (CEM II - 52.5N) was replaced by 50% fly ash [12] 

and 50% silica fume [13]. Silica fume and fly ash were added to increase flowability and strength 

and to improve particles packing. In this study, two RuC mixes were used with 30% and 60% of 

rubber contents, respectively. The specific gravity of mineral aggregates was considered to be 

2.65, and that of rubber was 0.8 [11]. The quantities of rubber particles consumed in the mixes 

were 165 kg/m3 and 330 kg/m3, respectively.  

Table 2 - 1. Mix proportions for optimised mix used in this study. 

vr  
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(MPa
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Silic
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Pulverize

d Fuel 

Ash 
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Plasticize

r 

Superplasticize

r 

Wate

r  

Designe

d 

density 

0/5 

m

m 

5/1

0 

mm 

10/2

0 

mm 

0/4 

m

m 

4/1

0 

mm 

10/2

0 

mm 

 kg/m3 L/m3 kg/m3 

0 340 42.5 42.5 820 364 637 - - - 2.5 5.1 150 2396 

30% 340 42.5 42.5 574 255 456 74 17 75 2.5 5.1 150 2026 

60% 340 42.5 42.5 328 146 255 149 33 148 2.5 5.1 150 1634 

2.3 TENSILE BEHAVIOUR OF RUC 

To date, there are still no standardised test procedures to obtain the direct tensile strength of 

concrete [14], owing to local stress concentration. However, the tensile strength of concrete is 

crucial to determine the cracking resistance and one of the essential properties of concrete in 

design and research. The tensile characteristics of RuC are even more difficult to obtain from 

direct tensile tests as the uneven distribution of rubber particles, means that the tensile strength, 

even of a small linear element, is non-uniform [15]. Hence, the tensile performance of RuC is 

normally derived from splitting or flexural tensile tests [16-18]. Experimental evidence [11, 15, 

19] has shown that the tensile strength (splitting or flexural) of RuC decreases with increasing of 
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rubber content. Furthermore, the tensile strength values obtained from the two types of tests are 

not equivalent [14]. The maximum strength derived from flexural tests is governed by the concrete 

strength on the tension surface of the beam and can be calculated according to the formulas in 

ASTM C 293 and ASTM C 78, which assume concrete is a linear elastic material throughout the 

loading history. This assumption is not correct when specimens are approaching failure and lead 

to higher failure stress. However, the influence of this assumption has been proven not significant 

compared with concrete variability. The flexural strength can be affected more pronounced by 

other several factors, such as specimen dimensions and size, coarse aggregate size, loading rate 

and moisture conditions [20]. The flexural strength decreases with increasing specimens size, 

depth of beam and size of coarse aggregate size, but increases with increasing loading rate [21-

24]. The moisture condition has a significant effect on flexural strength. The flexural strength 

obtained in a saturated condition has been found higher than the strength determined in a drying 

condition (up to 33 % [25]) [26-28]. This is due to the drying shrinkage induces cracks, which act 

as stress concentrators and minimise the effective cross-section of the specimens. Thus the 

specimens should be cured under the same condition as the concrete structure but tested in a 

saturated condition [14]. Furthermore, for a certain beam size, the flexural strengths determined 

by four-point bending tests are lower than those determined by three-point bending tests 

(differences should under 15%) [22-24]. The three-point bending tests are recommended by 

RILEM to measure the fracture energy of motor and concrete [29]. In the case of the splitting test, 

the majority of the concrete perpendicular to the loading direction is under constant tensile stress, 

thus the splitting tensile strength is closer to the strength determined from direct tensile tests and 

much less affected by specimen length and moisture condition [30], but this test does not provide 

much information in the σ-ε characteristics. On the other hand, flexural tests produce a more stable 

load-deflection curve than splitting tests and can demonstrate the ability of RuC in energy 

dissipation after cracking [15]. Such test results prove that the flexural post-cracking performance 

of RuC is enhanced by the replacement of aggregates with rubber particles [31]. This can be 

explained by the ability of rubber particles to store elastic energy and dissipate it through pull-
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out. Since both indirect tensile tests do not provide a direct measure of the tensile stress-strain or 

stress-crack opening relations, there is a lack of a tensile constitutive model for this novel material. 

This limits the development of numerical models that could demonstrate the applicability of RuC 

in structural applications. 

The Concrete Damage Plasticity (CDP) model is widely used to simulate the failure behaviour of 

concrete in finite element analysis [32, 33]. The CDP treats cracked concrete as a continuum and 

cracks are represented by cracking strains smeared over a certain width of fracture zone, or the 

width of a finite element. Thus the constitutive behaviour of cracked concrete is modelled using 

the stress-strain relations combined with a damage parameter [34]. The successful finite element 

modelling of RuC using CDP also requires the complete uniaxial tensile stress-strain or stress-

crack opening relationships. Although these relationships cannot be obtained from direct tensile 

tests, it is possible to obtain indirectly using flexural test result. In addition, if a softening material 

model is only described on the basis of stress-strain relationships, strain-softening can lead to 

spurious sensitivity with respect to the size of elements due to the localisation of deformation [35, 

36]. Mesh refinement leads to a smaller strain localisation band width and reduces global energy 

dissipation. One remedy for this spurious mesh sensitivity issue is to use the crack band technique 

[37], in which the crack opening displacement distribute within crack band with (the effective 

width of the fracture zone) or characteristics length of the element in FE analysis. This ensures 

that different size elements dissipate identical fracture energies [38].  

2.4 COMPRESSIVE BEHAVIOUR OF UNCONFINED AND FRP-CONFINED 

RUC 

External confinement by FRP jacketing provides an efficient method to increase the load and 

deformation capacities of RC elements. Extensive studies were conducted to examine the 

compressive behaviour of FRP-confined regular concrete (CRC) in both circular and non-circular 

sections and evaluate the confinement effectiveness of FRP jackets [39-44]. For circular sections, 
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the effect of FRP jacketing in the stress-strain behaviour is well understood as the concrete is 

uniformly confined, leading to the same stress-state over the section. On the contrary, for non-

circular sections, the concrete is non-uniformly confined, which results in variations in stress-

state in different parts of the section. This is due to variable confinement pressure with higher 

pressure at the corners and practically no pressure at the central part of the flat sides. Thus the 

confinement action depends mainly on the curvature of the corner and tests reported in the 

literature show that corner radius can also significantly affect the eventual confinement 

effectiveness [45-47]. Rounding the corners of the cross-section is typically recommended to 

improve confinement effectiveness and reduce the detrimental effect of sharp corner on the 

rupture strength of FRP due to biaxial stresses.  

Raffoul et al. [41] showed that for CRuC specimens, the confinement provided by FRP jacket is 

activated earlier than in normal concrete and results in a more uniform FRP strain distribution. 

By utilising these advantages, the confinement effectiveness in CRuC in circular sections has 

been observed to be higher than that in CRC. Therefore, it is expected that the effectiveness of 

confinement for RuC elements in non-circular cross-section would be considerably higher than 

CRC elements. However, this enhancement has not been assessed experimentally. 

Since the determination of the moment-curvature of reinforced concrete elements depends on 

knowledge of accurate stress-strain relationship for the FRP-confined concrete, extensive studies 

have been carried out and many stress-strain models have been developed. Although the 

behaviour of FRP-confined circular columns can be closely predicted by several models [48-51], 

many stress-strain models have been proposed for FRP-confined columns. this is not the case for 

FRP-confined non-circular columns. Researchers normally relate the behaviour of rectangular 

columns to that of circular columns through the use of a geometrically defined shape factor (e.g. 

Lam and Teng’s model [40]). This shape factor is based on the assumption that the rectangular 

cross-section can be sub-divided into an unconfined and a confined area (see Fig. 2 - 10). 

However, this assumption does not reflect the actual stress distribution over the section [52]. 

Moreover, the FRP rupture strain in FRP-confined columns is always lower than the FRP failure 
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tensile strain from direct coupon tests, and it is affected by the presence of sharp corners. This 

detrimental effect is usually considered by an empirically determined reduction factor instead of 

through the mechanical properties of concrete and FRP. 

Several researchers attempted to gain a better understanding of the confinement mechanism 

through finite element analysis using concrete damaged plasticity model (CDPM) [42, 44, 53, 

54]. It was found that an accurate lateral strain-to-axial strain relationship is crucial to yield a 

reliable prediction for FRP-confined concrete and that the dilation angle is the main influencing 

parameter. Moreover, the CDPM cannot predict the behaviour of heavily confined concrete [44, 

53]. That implies that the CDPM may not be successfully used for FRP-confined RuC (CRuC). 

Therefore, the feasibility of using CDPM to predict the behaviour of CRuC need to be verified.  

 

Fig. 2 - 10. Effective confinement area for rectangular section reproduced from Lam and Teng 

[40]. 

2.5 SHEAR BEHAVIOUR OF UNCONFINED AND FRP-CONFINED RUC 

In the past century, the understanding of the structural performance of concrete in shear has grown 

significantly around the concept of the truss analogy. A significant step forward was the 

development of softened concrete struts by Robinson and Demorieux [55], which have reduced 

compressive strength in the presence of principal tensile stress. Various rational softened truss 

models have been proposed on the basis of the smeared-crack concept. Vecchio and Collins [56] 

proposed the compression field theory (CFT) to predict the non-linear behaviour of reinforced 
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concrete (RC) elements by implementing softened stress-strain characteristics for concrete in 

compression. This was the first attempt to quantify the softening parameter as a function of the 

two principal strains. The rotating-angle softened truss model (RA-STM) was generalized by Hsu 

and his co-workers [57, 58] for shear and torsion of RC members. This model considered both 

concrete compression softening and tension stiffening effect. It assumed cracks will develop in a 

direction perpendicular to the principal tensile stress and “rotate” to follow the changing principal 

stress during loading. Since the crack angle assumed coincides with the principal stress direction, 

neither the CFT nor the RA-STM can adequately represent shear behaviour, as concrete shear 

resistance cannot be developed along the principal direction. In contrast, the fixed-angle softened 

truss model (FA-STM) [59, 60] assumes cracks to be oriented in the direction of the applied 

principal compressive stresses and are fixed at this angle thereafter. As shear stresses can develop 

along the crack direction, the FA-STM can account for the concrete contribution in shear 

resistance. The predictions of these rational shear models are in good agreement with various 

types of conventional RC structures subjected to shear or torsion. 

In the past two decades, engineers started to use more advanced materials to strengthen reinforced 

concrete, such as FRP [61-64], owing to its superiority, such as corrosion-resistant properties,  

high strength-to-weight ratio and excellent thermo-mechanical. The FRP strengthened reinforced 

concrete structures exhibit a more ductile behaviour and can develop larger deformations compare 

to conventional structures. In addition, there are several implementation methods of FRP sheets 

for shear strengthening, which shown in Fig. 2 - 11. Thus the shear resistance mechanism in FRP 

strengthened elements is different from that in conventional concrete [62, 65, 66] and expected to 

be more complicated. Several analytical models [67] were proposed to consider shear contribution 

of FRP. However, the prediction of those models shows a large scatter compared to experimental 

data. This is attributed to the total shear capacity of FRP strengthened RC members is the sum of 

shear contribution of each component (Vc for concrete, Vs for steel and VFRP for FRP sheets) [68]. 

However, there is a certain level of interaction exist between these components. For example, 

tension stiffening can be observed for the concrete in RC members and the steel reinforcement in 
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FRP strengthened RC members may not reach the yielding point [69]. Hence, a rational shear 

model for FRP strengthened RC members should consider the constitutive models of each 

material as well as the interactions between each component. Until now, no study on shear 

behaviour of CRuC has been reported and the applicability of the shear theories for conventional 

concrete has not been assessed for CRuC. It is clear that there is lack of knowledge on the material 

properties of CRuC and an absence of the numerical analytical models that can be used to analyse 

structures and imposes a barrier for the use of CRuC in structural applications. 

 

Fig. 2 - 11. Implementation methods for FRP shear strengthening, picture adopted from [70]. 

2.6 STATE OF THE ART ON MATERIAL SHEAR TEST 

Similar to direct tensile test, there is no standard shear test and procedures for determining the 

shear strength of concrete, owing to its complexity [71, 72]. Several shear testing methods have 

been proposed to determine the shear characteristic of concrete. Therefore, a finite element 

analysis has been performed to provide evidence to chose the most suitable test. Fig. 2 - 12 shows 

the damage (a) and stress contours (b) of the double shear test. Fig. 2 - 13 shows the stress state 

of the midpoint at the shear plane. As can be seen, the double shear test has a relatively simple 

geometry that allows fairly easy to carry out. However, the stress state of the midpoint at the shear 

plane is a combination of high normal and shear stress, thus results in the shear strength obtained 

from this test is higher than the other test, occupying 17%-25% of cubic compressive strength 

[73]. 

a) Fully wrap b) U-wrap c) Side bonding 
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(a) Crack pattern  

 
(b) Shear stress 

Fig. 2 - 12. FE analysis of the double shear test.  

 

Fig. 2 - 13. Stress state of the mid-point at shear plane of the double shear test.  

The “Z” push-off shear test can be processed with simple preparation, but FE analyses (see Fig. 

2 - 14 and 15) have shown that the specimens have tensile stress exist at the crack tips, which is 

a mixed stress condition causes mixed-mode failure [74]. Due to high normal stresses exist on 
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the. The finite element analyses by the author have shown that the push-off specimen has tensile 

stresses at the crack tips, which is a mixed stress condition[74].  

  

    (a) Crack pattern                                                (b) Shear stress      

Fig. 2 - 14. FE analysis of the “Z” push-off shear test. 

 

Fig. 2 - 15. Stress state of the mid-point at the shear plane of the “Z” push-off shear test. 

Fig. 2 – 16 and 17 show the numerical modelling of axisymmetric shear test with 90-degree 

notches. This loading configuration was initially proposed by Iosipescu [75] and very attractive. 

However, due to the stress concentration at the notch, crack normally starts from the tip of the 

notch, are not at the position where has maximum shear stress. Some researchers [76-78] found 
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the failure of this test is governed by mode I fracture. It worth to be noticed that the stress state of 

the mid-pint at shear span shows a pure shear stress state (see Fig. 2 – 17). Thus indicates the 

loading configuration of this test is suitable for determining pure shear strength. 

 

(a) Crack pattern 

 

(b) Shear stress 

Fig. 2 - 16. FE analysis of the axisymmetric shear test with 90-degree notches. 

 

Fig. 2 - 17. Stress state of the mid-point at shear plane of the axisymmetric shear test with 90-

degree notches. 
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In Fig. 2 – 18 and 19, a modified axisymmetric shear test by replacing notches with reduced width 

in mid-span has been studied, which was proposed by [79]. This test set-up is especially suitable 

to characterise the shear strength of concrete as the stress state in the mid-span section approaches 

pure shear stress, with a uniformly distributed shear stress and low normal stress in both X and Y 

direction. Therefore, the shear strength obtained from this test can be trusted with comparatively 

accurate. 

 

Fig. 2 - 18. FE analysis of the axisymmetric shear test with reduced width in mid-span 

 

Fig. 2 - 19. Stress state of the mid-point at the shear plane of the axisymmetric shear test with 

reduced width in mid-span 
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2.7 DISCUSSION AND CONCLUSION 

➢ Need for constitutive laws for unconfined and FRP-confined RuC 

The current experimental studies mainly forced on the compressive performance of RuC and 

CRuC in circular cross-section, but there is little work on the tensile and shear behaviours of 

this flexible concrete, as well as its compressive behaviour in non-circular section. Thus 

corresponding experimental programmes present in chapter 1, section 1.3.1 need to be carried 

out to achieve objectives 1, 3 and 5. 

➢ Need for effective numerical models for unconfined and FRP-confined RuC 

i) RuC demonstrate a much softer post-cracking behaviour than regular concrete, thus 

indicating the tensile constitutive model for conventional concrete no longer be able to apply 

in the case of RuC directly. Therefore, a new tensile constitutive law for RuC is necessary to 

achieve objective 2. 

ii) Rectangular or square cross-sections are very common shapes can be observed in 

structures. Due to the confinement mechanism in the non-circular cross-section differs from 

that in the circular section, a robust model is needed to predict the behaviour of FRP-confined 

non-circular columns (to achieve objective 4).  

iii) One of the main functions of FRP-confined RuC is sustaining the larger lateral load. To 

predict the response of RuC under such loading condition, an accurate shear behaviour model 

is required to achieve objective 6 and 7. 
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3.1 INTRODUCTION 

In this chapter, notched three-point bending tests are used to characterise Mode I fracture 

behaviour of concrete incorporating high volume of rubber particles obtained from post-

consumer tyres. A new tensile constitutive model for rubberised concrete (RuC) is proposed and 

implemented in the ABAQUS concrete damaged plasticity model (CDPM) to predict the 

flexural behaviour of RuC. The chapter initially describes an experimental program on which 

three-point bending (TPB) and splitting tensile tests are utilised to determine the tensile 

characteristics of RuC. The next sections describe the methodology applied for the 

determination of tensile stress-crack opening displacement relationships. The key material 

parameters introduced in the constitutive model are tensile strength and fracture energy. Finally, 

to demonstrate the efficiency of the proposed model, the predicted mechanical response using 

the proposed tensile σ-w relationships and relationships obtained from Model Code 2010 are 

compared. This work will lead to a better understanding of the behaviour of RuC, and the 

relationship can be used for improved FE simulation of the behaviour of the rubberised concrete 

elements and structures. 

3.2 EXPERIMENTAL PROGRAM 

45 samples consisting of 36 cylindrical specimens (Ø100×200 mm) and 9 prisms 

(L500×W150×H150 mm) were manufactured to examine the compressive and tensile 

characteristics. All the samples were divided into three sets by rubber contents (ρvr = 0%, 30% 

and 60%) and labelled as R0, R30 and R60, respectively. The rubber content ρvr is defined as 

the volume of mineral aggregates in the reference regular concrete mix replaced by rubber [1, 

2]. The detail of RuC mix and incorporated rubber particles can be found in Chapter 1. 
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3.2.1 Test procedure and methodology 

3.2.1.1 Compressive and splitting tests 

The compressive (see Fig. 3 - 1a) and splitting tests (see Fig. 3 - 1b) on cylindrical specimens 

were carried out under load control using a 3000 kN cube crusher. The loading rate was 0.4 

MPa/s [3] and 0.01 MPa/s [4] for the two types of tests, respectively. For the compressive tests, 

three laser sensors (an accuracy of 0.005 mm) were used to measure global axial displacement. 

The sensors were mounted radially at 120° on two aluminium rings with 100 mm gauge length. 

Local axial strains were measured by using strain gauges placed at mid-height of the specimen. 

The possible initial rotations were accommodated by a top loading plate fitted with a hinge. The 

dimensions of each specimen were measured before testing. The specimen ends were 

strengthened with pre-tensioned metal straps with a thickness of 0.8 mm and a width of 25 mm 

to avoid local failure. 

 

Fig. 3 - 1. View of testing for a) Compression tests and b) Splitting tests. 

The splitting tensile strength (fct,sp) can be calculated by Eq. (1) using the maximum load (Pmax) 

[4]: 

 
,

2 max
ct sp

P
f

ld
=


 (1) 

where L is the length of the specimen, dcy is the diameter of the cylinder. 
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The load in Eq. (1) is assumed to be concentrated along a line. However, the load is practically 

applied on a sheet of plywood or compact cardboard. Rocco et al. [5] showed that the loading 

area width (t) can affect the tensile strength of the cylinders up to 25%. Tang et al. [6] proposed 

the following equation to consider the effect of the loading area width on the splitting tensile 

strength. 

 

1.5
2

,

2 2
1max

ct sp

P t
f

ld d

  
=  −     

 (2) 

Bompa et al. [2] proposed Eqs. (3) to predict the splitting tensile strength (fct,sp), tensile strength 

(fct) and elastic modulus (Ec) as a function of the compressive strength (fco) of RuC. These 

equations will be evaluated by comparing with test data in this study. 

 2/3
, 0.26ct sp cof f= ; 2/3  0.24ct cof f= ; /cr ct cf E = ;

2/3

12
10

co
c

f
E

 
=  

 

 (3) 

3.2.1.2 Three-point bending tests 

Before testing, the geometrical dimensions of each specimen were measured and a 5mm wide 

and 25 mm deep notch was sawn at mid-span of the prisms and perpendicular to the cast surface 

using a diamond impregnated rotating [7]. All specimens were tested subject to a TPB loading 

arrangement using a 300 kN electromagnetic testing machine (see Fig. 3 - 2). Two Linear 

Variable Differential Transducers (LVDTs) were mounted on an aluminium yoke to measure 

central deflections [8] and a clip gauge was mounted on either side at the notch to obtain the 

crack mouth opening displacement (CMOD) [9]. In order to achieve a stable result, the tests 

were CMOD-controlled at a constant rate of 0.02 mm/min [10]. The load, central deflection and 

CMOD were recorded throughout loading history.  



Chapter 3 Tensile Stress-Crack Opening Characteristics of Rubberised Concrete 

 

41 

 

 

Fig. 3 - 2. Set-up of the three-point bending tests. 

The flexural tensile strength (fctm,fl) can be determined as the equivalent elastic tensile flexural 

stress corresponding to the maximum load recorded, as: 

 
( )

, 2

3

2

max
ctm fl

P l
f

b d a
=

−
 (4) 

where l is the span of the prism, b is the width of the prism, d is the depth of the prism, and a is 

the effective depth of the notch. 

The flexural modulus of elasticity (Kfm) is determined by using the elastic flexural deformations, 

as given below: 

 
3

48
fm

l P
K

I
=   (5) 

where /P   (N/mm) is the slope of the load-deflection curve at 40% of the peak load and 

3( ) 12I b d a= − (mm4) is the second moment of area of the mid-span cross-section. 

3.2.1.3 Total fracture energy from the work-of-fracture method 

Hillerborg’s work-of-fracture method assumes that the energy required for crack formation is 

equivalent to the work of the external load. Thus the complete load-deflection curve of the 

specimen is necessary to estimate the work of the external load, which can be represented as the 
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area under the load-deflection curve. The fracture energy (GF) can be then calculated using the 

following equation [11]: 

 0 1 2 02

F

lig

S
W m m g

L
G

A


 

+ + 
 =

 (6) 

where W0 is deformation energy capacity, which represents the area under the load-deflection 

curve during the bending test; m1 is the mass of the beam between supports; m2 is the mass of 

the unattached loading apparatus; L and l are the length and span of the specimen, respectively; 

g is the gravity acceleration; δ0 represents the maximum recorded deflection; and Af = (d − a)b 

denotes the area of the fracture surface. 

3.2.2 Experimental results  

3.2.2.1 Changes in unit weight 

As a result of the low unit weight of rubber particles, the unit weight of rubberised concrete 

reduces by increasing the rubber content. Fig. 3 - 3 shows the expected linear relationship 

between unit weight (dRuC) and rubber contents (ρvr). Compared with the unit weight of concrete 

mixes without rubber, the average unit weight of the concrete mix with a rubber content of 30% 

and 60% decreased by 15.4% and 31.8%, respectively. 
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Fig. 3 - 3. Unit weight of RuC with different rubber volume replacement ratio ρvr. 

3.2.2.2 Compressive and splitting tensile strength 

The compressive test results are summarised in Table 3 - 1. The mean cylindrical compressive 

strengths (fco) of R30 and R60 were about 29% and 10% of that of regular concrete R0 (75 

MPa), respectively. The compressive stress-strain curves are shown in Fig. 3 - 5. The elastic 

modulus (Ec) of R30 and R60 was 41% and 21% of that of R0 (41 GPa), respectively. The post-

peak behaviour was also strongly influenced by the percentage of rubber replacement of the 

mineral aggregates. The compressive failure patterns of cylinders are shown in Fig. 3 - 6a. As 

expected, all plain (ρvr = 0%) specimens failed suddenly in a brittle manner. The failure of RuC 

cylinders with ρvr = 30% and 60% was more gradual as the cylinders developed a large number 

of macro-cracks and bulging at mid-height prior to failure. Rubber particles have high level of 

lateral strain at lower displacements than mineral aggregates due to their low modulus of 

elasticity and high Poisson’s ratio. This dilation helps produce internal splitting tensile stresses 

that are perpendicular to the loading direction. This causes the concrete to fail at an earlier stage. 
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Table 3 - 1. Experimental results of examined concrete mixes 

ρvr 
fco Ec fct,sp fctm,fl Kfm GF 

MPa GPa MPa MPa GPa N/mm 

0 75 (5.6) 41 (2.3) 4.1 (0.82) 5.9 (0.5) 44 (9) 0.12 (0.02) 

30 21.9 (3.6) 17 (3.5) 1.8 (1.29) 3.9 (1.86) 20 (8) 0.46 (0.14) 

60 7.7 (0.3) 8.5 (1.2) 0.9 (0.52) 2.1 (0.22) 10 (0.3) 0.93 (0.06) 

Note: Standard Deviation is presented in brackets. 
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Fig. 3 - 4.  Detail test results reported in Table 3 - 1. 

 

Fig. 3 - 5. Compressive stress-strain curves of R0, R30 and R60. 
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Fig. 3 - 6. Typical failure modes for a) Compression; b) Splitting tension and c) Flexural. 

During the splitting tests, as expected all samples failed due to wedge formation and splitting as 

shown in Fig. 3 - 6b. Compared to the brittle failure mode of plain concrete, the RuC samples 

exhibited a slower axial splitting process and higher capacity in absorbing plastic energy. The 

regular concrete specimens split into two halves immediately upon reaching their ultimate load 

capacity, while the RuC specimens were capable of withstanding at least 80% of the ultimate 

load for about 30 seconds (R30) and 55 seconds (R60) after splitting. The RuC specimens 

underwent large displacements before the loading stopped, and the deformation was partially 

recovered upon unloading. All the RuC specimens maintained their integrity even for highly 

cracked specimens. The splitting tensile strength (fct,sp) results are reported in Table 3 - 1, which 

shows a clear degradation in tensile strength with increasing rubber content. However, the trend 
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in tensile strength loss is less severe than in compressive strength. The splitting tensile strengths 

of R30 and R60 were 44% and 22% of that of R0 (4.1 MPa), respectively.  

3.2.2.3 Three-point bending tests 

The flexural failure patterns of all specimens are shown in Fig. 3 - 6c. The average flexural 

strength (fctm,fl) and modulus (Kfm) of three replicates are listed in Table 3 - 1. Fig. 3 - 7 shows the 

photos of typical sections obtained after the bending test (upper row for each mix) as well as the 

pictures obtained by digital image processing techniques (lower row) to examine rubber particle 

distribution along the casting direction. The images show that the rubber tended to float towards 

the cast face (left in the pictures) during vibration of the fresh concrete leading to an 

agglomeration of rubber particles. However, this tendency is less obvious at the rubber content 

of ρvr = 60%. 

 

Fig. 3 - 7. The fracture surface of three-point bending tests. 
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Fig. 3 - 8 shows the individual and average P δ− curves from three TPB specimens for each of 

the ρvr tested. The mid-span deflection of each beam was derived by averaging the deflection 

values measured by the two LVDTs. The response of the TPB test can be described by three 

typical phases: 1) an elastic phase up to cracking; 2) a short flexural hardening response up to 

the maximum flexural capacity; and 3) a reduction of the load with increasing 

CMOD/deflection. The comparative assessment of load-deflection curves from Fig. 3 - 8 shows 

a significant reduction in flexural strength and stiffness with increasing rubber content. The 

flexural strengths (fctm,fl) of concrete with ρvr = 30% and 60% are 66% and 35.6% of the 

reference concrete, respectively. The flexural modulus (Kfm) of R30 and R60 were reduced to 

45% and 20% of that of R0, respectively. However, the ratio of cracking stress to flexural 

strength (fcr/fctm,fl) are 54%, 68% and 72% for R0, R30 and R60, respectively. Around the peak, 

RuC specimens showed a stable transition from the pre- to post-cracking regimes, while the 

reference (plain concrete) beams showed a brittle behaviour after the maximum capacity was 

reached. Beyond the peak, the descending branch showed reducing gradients (Ed,R0 = −143, 

Ed,R30 = −24 and Ed,R60 = −7 MPa) and increasing fracture energy (GF,R0 = 0.15, GF,R30 = 0.51 and 

GF,R60 = 0.93 N/mm2) as the rubber content increased (see Fig. 3 - 9). This enhancement 

indicates that the capability of rubberised concrete in deformation energy is significantly better 

than regular concrete beam as more than 20 times deflection developed. The higher 

deformability of rubberised concrete elements can potentially result in more resilient structural 

systems and improve the integrity of the structure under extreme load conditions. 
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Fig. 3 - 8. Load-deflection of TPB specimens: (a) average stress-deflection curves, (b) R0, (c) 

R30 and (d) R60. 

The fracture energy (GF) in N/mm2 for regular concrete can be determined using the CEB-FIB  

Model Code 2010 [12]: 

 0.180.073F coG f=   (7) 

Using the results of this study, a parametric equation is developed to calculate the fracture 

energy (GF,RuC) of RuC based on Eq. (7). The rubber volume replacement ratio (ρvr) is 

incorporated in Eq. (8) and results shown in Fig. 3 - 9: 

 , 1 10.8 )(F RuC FvrG G+=   (8) 

(a) (b) 

(c) (d) 
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Fig. 3 - 9. Fracture energy with different rubber content. 

Further inspection of the fractured surfaces revealed a different degree of roughness depending 

on the percentage of rubber volume replacement. At 60% rubber replacement, no broken 

mineral aggregates were found on the fracture surface. At 30% rubber replacement, the majority 

of mineral aggregates were found broken on the fracture surface. At 0% rubber replacement, 

almost all the aggregates were found broken. The flexural failure mode of RuC can be explained 

as follows. When a tension crack propagates to a rubber particle, it keeps its direction instead of 

bypassing the aggregate as the rubber has the ability to withstand large elastic deformation 

under small tensile stress. As rubber can withstand much higher tensile stress and strain until 

failure than cement and mineral aggregates, the primary failure mechanism of rubber particles is 

pull-out. This failure mechanism results in the energy dissipation enhancement discussed above. 

3.3 TENSILE STRESS-CRACK OPENING RELATIONSHIP 

In order to obtain the tensile stress-crack opening curves of RuC using the TPB experimental 

results, the following assumptions are used, the first three proposed by Uchida et al. [13] 

i. A single main crack exists through a fracture area (see Fig. 3 - 10). A rotational axis 

exists on the top of the fracture area. The distribution of the crack opening is linear. 
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ii. The mean crack opening (wt,m) at the fracture area is represented by half of the crack 

mouth opening displacement (CMOD) at the notch. This opening can be smeared over a 

crack band width (wcb) to obtain cracking strain (εck) [14]. The crack band width (wcb) 

indicates the effective width of the strain-softening damage zone. In FE analysis, crack 

band width refers to the characteristic length of an element [15, 16]. 

iii. The externally applied energy is equivalent to the energy needed for crack development. 

iv. The shape of the tensile stress-crack opening curve of concrete is exponential, and the 

function proposed by Hordijk [17] can be adopted (Eq. (9)). The efficiency of this 

relationship has been evaluated by Tao and Chen [15]. 
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      where wt and wcr are crack opening and ultimate crack opening, respectively; σt is tensile 

stress; fct is and tensile strength and can be determined by Eqs. (3); GF and GF,RuC are the 

fracture enegry of rugular concrete and rubebrised concrete, which can be calculated by 

Eq. (7) and Eq. (8), respectively; c1 = 3.0 and c2 = 6.93 for rugular concrete are 

recommended by [15] and c1 = 2.6 and c2 = 4.7 have been found for rubberised 

concrete. 

 

Fig. 3 - 10. Model of fracture area reproduced from Uchida et al. [33] 
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3.4 NUMERICAL MODELLING 

A finite element model has been developed using Abaqus/Standard finite element software 

package [18]. The “Concrete Damaged Plasticity (CDP)” [19] developed by Lubliner et al. [20] 

and elaborated by Lee and Fenves [21] is adopted as it allows the use of a custom tensile 

characteristic for concrete in tension. CDP uses the modified Drucker-Prager criterion and the 

yield surface F in the deviatoric plane and assumes isotropic damage d. The details can be found 

in [22]. 

The CDP model requires the following material functions and parameters: 

• Stress-strain relation for uniaxial behaviour in compression and stress-crack opening 

relation for tension. The compressive stress-strain relations proposed by Bompa et al. 

[2] are adopted in this study, and the tensile stress-crack opening relations obtained by 

proposed relation and the relation recommended by Model code 2010 are used (see Fig. 

3 - 11).  

 

Fig. 3 - 11. Comparison of stress-crack opening curves for Model Code 2010 and proposed 

model. 

• The damage variables dc and dt represent the portion of normalised energy dissipation 

for damage in compression and tension, respectively [20]. The values of dc and dt are 
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determined using Eqs. (11), and the curves of dt vs wt are shown in Fig. 3 - 12 (zero 

means no damage and one means fully damaged). 

 
0 0

/ ; /
ch tw

c c t F

ε

c ch t td σ dε d σ dg Gw= =   (11) 

• The CDP model assumes non-associated plastic flow with a default eccentricity 𝜖 = 0.1. The 

yield surface is controlled by a shape parameter Kc and the ratio between the biaxial and 

uniaxial compressive strength fb0/fc0, which were taken as the recommended default values 

of 2/3 and 1.16, respectively [18]. A low viscosity parameter of 2 × 10-6 was chosen to 

avoid convergence problems. It should be noted that the non-associative plastic volume 

deformation of the concrete is controlled by the dilation angle ψ, while the lateral dilation of 

concrete increases with increasing ψ. As replacing the mineral aggregates with rubber 

particles can dramatically increase the lateral dilation of RuC by up to 300% over the plain 

concrete [23], a relatively high dilation angle ψ = 40° was chosen for RuC [24, 25].  

  

Fig. 3 - 12. Tensile damage variables (dt) vs crack opening (wt). 
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3.4.1 Verification of the material model  

3.4.1.1 Splitting tests 

The finite element modelling of splitting tests was performed to examine whether Eq. (3) can 

provide a reasonable prediction of the splitting tensile strength. The diametric compression load 

was applied experimentally through a plywood strip (width: 10 mm and thickness: 3 mm); and 

therefore, numerically the load was applied directly on the surface of the cylinder across the 

same area of the plywood strip. Since maximum capacity is mesh-independent, an arbitrary 

mesh size of 15 mm was chosen [26]. Fig. 3 - 13 shows the comparison between numerical and 

experimental results, which confirms the effectiveness of Eq. (3). 

 

Fig. 3 - 13. Comparison of the predicted splitting tensile strength with experimental results. 

3.4.1.2 TPB tests 

The finite element meshes shown in Fig. 3 – 14 are used to model the beams failing in bending. 

In the TPB tests, the load was applied via a steel roller in displacement control. In the numerical 

study, the steel roller was modelled as a rigid body and a displacement was applied at the 

relative reference point. A frictionless surface-to-surface interaction was assigned to the steel 

roller-concrete interface. 
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Fig. 3 - 14. Discretisation of the three-point bending beam. 

For each rubber volumetric replacement ratio, the load-deflection curves were calculated by 

using the bilinear stress-crack opening relations suggested by Model Code 2010 [27] (Eqs. (12)) 

and the proposed relations (Eq. (9)). 

 

1
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1
1
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w
f w w

w

w
f w w w

w





=  −  

=  −  

 (12) 

where w1 = GF/fct is the crack opening at σt = 0.2fct; w2 = 5GF/fct is the crack opening at σt = 0 and 

fct =0.3(fct)2/3. 

The accuracy of the two models was evaluated by the errors in the FE predictions for peak load 

and deformation energy capacity as well as the Mean Square Error (MSE) between the predicted 

load-deflection behaviour over the entire loading range and the corresponding experimental 

results (average of three tests). 

 ( ) ( )
2

exp

1
[ ]

N anal

i iiMSE
N

 
=

−
=
  (13) 

where (χ)i
anal represents the predicted values of flexural load (fctm,fl), (χ)i

exp shows the 

corresponding experimental values and N is the total number of collection data. 

The comparisons between the average experimental and numerical load-deflection curves of all 

tested TPB specimens are shown in Fig. 3 – 15. It can be seen that the numerical curves using 
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the proposed relations show a considerably better agreement with the experimental data for both 

normal and rubberised concrete (RuC) specimens. For better comparison, the calculated errors 

are also summarised in Table 3 - 2. The results indicate that the Model Code stress-strain 

relation led to, on average, 32% and 63 % overestimation of the peak flexural load and the 

deformation energycapacity, respectively. It should be mentioned that similar observations were 

reported in [28, 29]. However, by using the proposed relation, the average errors reduced to 3% 

and 11% for peak flexural load and the deformation energy capacity, respectively. The MSE 

results also confirm that the proposed relation is capable of proving accurate simulation of the 

flexural behaviour of concrete over the entire loading range.  

Fig. 3 - 15 demonstrates that the bilinear relation of the Model Code model provides less 

detailed softening behaviour compared to the proposed exponential relations, and can 

considerably overestimate the coefficients gt.  

Fig. 3 - 16 displays the tensile damage variables (dt) vs CMOD plots obtained from R0, R30 and 

R60. The dt of reference concrete R0 remains at low level until the CMOD reaches 0.11 mm and 

increases rapidly in a narrow CMOD range due to its relative tougher and higher brittleness. 

The dt of RuC (R30 and R60) starts to increase once the crack is developed. However, the 

severity of crack development decreases with increasing rubber content. The rubber particles 

enable the concrete to behave in a ductile manner by controlling the crack development and 

increasing the ultimate CMOD.  

In general, the results of this study indicate that the proposed tensile stress-crack opening 

relation can provide considerably better accuracy compared to conventional models, and 

therefore, should prove useful for finite element modelling and design of rubberised concrete 

elements and structures. 
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Fig. 3 - 15. Comparison of the load-deflection curves using proposed relations and Model code 

2010 relations ((a) regular concrete, (b) RuC with 30 % rubber replacement ratio and (c) RuC 

with 60 % rubber replacement ratio). 
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Table 3 - 2. Errors in predicting peak load, deformation energy and load-deflection response. 

𝜌𝑣𝑟 
(%) 

Error in peak load Error in energy absorption MSE of load-deflection response 

MC 2010 Proposed MC 2010  Proposed MC 2010  Proposed 

R0 26% 2.6% 70% 10% 78% 5.1% 

R30 25% 5.6% 58% 17% 21% 7.4% 

R60 49% 0.2% 50% 16% 9% 4.8% 

 

 

Fig. 3 - 16. Evolution of damage variable dt. 

3.5 CONCLUSIONS 

In this chapter, the fracture energy of the rubberised concrete incorporating rubber particles 

recycled from end-of-life tyres has been investigated by conducting three-point bending tests. 

The primary parameter investigated was the rubber volume replacement ratio of fine and coarse 

mineral aggregates. The experimental results showed that replacing mineral aggregates with 

rubber particles leads to an apparent reduction in strength (compressive, tensile and flexural) 

and elastic modulus. However, a less serve reduction was observed in the tensile and flexural 

properties. Replacing aggregates with rubber also enhanced the fracture energy and deformation 

energy capacity and led to a more ductile post-cracking behaviour. The test results enabled the 

development of an fracture energy-based method to indirectly obtain the tensile stress-crack 
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opening relation of rubberised concrete. The proposed material laws were implemented in the 

concrete damage plasticity model in ABAQUS to analyse the tensile strain-softening behaviour 

numerically. It was shown that the proposed relations can provide significantly more accurate 

predictions compared to Model Code 2010 in terms of the peak load, deformation energy 

capacity and load-deflection response over the loading range.  
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4.1 INTRODUCTION 

This chapter investigates the axial behaviour of square and circular concrete columns confined by 

externally bonded Fibre Reinforced Polymer (FRP) jackets. This paper first introduces the details 

of the comprehensive experimental programme. Axial compression tests were performed on 128 

regular and rubberised concrete specimens. The parameters considered were rubber volumetric 

replacement ratio (0% and 60%), section shape (circular and square), FRP type (Carbon or 

Aramid) and the number of FRP layers (1, 2 and 3). Next, a discussion is carried out on the 

experimental behaviour in terms of stress-strain and dilation. The behaviour of the specimens in 

both axial and lateral directions, as well as their dilation characteristics, were investigated. Then 

the influence of various parameters on the confinement effectiveness is examined. The test results 

indicate that the confinement effectiveness of Aramid-FRP is better than that of Carbon-FRP. It 

is also shown that the detrimental effect of sharp corner on confinement effectiveness is less 

critical when using high rubber contents as the element can develop large lateral expansion at 

unprecedented axial deformation. Finally, the ability of selected design-oriented stress-strain 

models to capture the behaviour of for rubberised concrete square columns is assessed and found 

that existing design-oriented models fail to predict the behaviour of confined rubberised concrete, 

indicating the need for developing more refined confinement models. 

4.2 EXPERIMENTAL PROGRAMME 

One hundred and twenty-eight samples, including cylinders (Ø100mm × 200mm) and square 

columns (100 × 100mm in cross-section by 200mm in height), were manufactured using regular 

and rubberised concrete. Only one size of specimens was adopted owing to the fact that the size 

has negligible effects on the confinement effectiveness as long as similar confining pressure 

provided [1] (i.e. 2L FRP-confined cylinder with a dimension of Ø100mm × 200mm have same 

confining pressures as 3L FRP-confined cylinder with a dimension of Ø150mm × 300mm). To 

assess the compressive characteristics, a minimum of three replicates were tested for each of the 

examined parameters. The main parameters investigated were:  
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1) The radius of the corner (12mm and 50mm) (see Fig. 4 - 1);  

2) Rubber volume replacement ratio (ρvr = 0 and 60%). This is defined as the ratio of the volume 

of mineral aggregates replaced by rubber to the total volume of mineral aggregates in the reference 

regular concrete mix;  

3) The type of FRP fibre (Carbon or Aramid FRP) and confinement pressure (number of FRP 

layers).  

 

Fig. 4 - 1. Cross-sections of samples. 

4.2.1 Fibre reinforced polymer jacket 

Before applying the FRP confinement, the corners of the square specimens were ground to ensure 

a smooth transition with the flat sides and to improve adherence with the FRP jacket. The 

specimens were externally confined with one, two or three layers of Carbon FRP (CFRP) or 

Aramid FRP (AFRP) sheets using the wet lay-up technique. The unidirectional fabrics were 

oriented in the hoop direction and overlapped by a length of 100mm. The mean mechanical 

properties of the unidirectional FRP sheets shown in Table 4 – 2 were obtained using direct tensile 

tests on 12 FRP coupons.  

Table 4 - 1. Material properties of FRP 

 1-layer thickness (tf) Tensile strength (ff) Ultimate Strain (εfu) Modulus of Elasticity (Ef) 

 mm MPa % GPa 

Aramid-FRP 0.185 2400 (24*) 2.06 (0.07*) 122 (25*) 

Carbon-FRP 0.15 2040 (39*) 0.90 (0.05*) 225 (17*) 

*Standard Deviation 
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4.2.2 Test setup and instrumentation 

All samples were subjected to axial compressive load using a servo controlled ESH Universal 

Testing Machine. The test rig (see Fig. 4 - 3) was designed to measure global axial displacement 

using three laser sensors (LS) with an accuracy of 0.005 mm, placed radially at 120 degrees and 

100 mm gauge length. The global lateral deformations of the cylindrical specimens were 

measured using three Linear Variable Differential Transformers (LVDTs), placed radially around 

the specimens (120 apart, see Fig. 4 – 3 (a)). Local axial strains (V1 and V2) and local lateral 

strains (H1, H2 and H3) were also measured by using strain gauges placed at mid-height of the 

specimen (see Fig. 4 – 3 (b)). The lateral expansion at mid-height of the square column specimens 

was measured with four LVDTs mounted on an aluminium frame (see Fig. 4 – 3 (c)). The 

transverse strains were measured at the centre of two opposite faces (LVDT1 and LVDT3) and at 

two opposite corners of the section (LVDT2 and LVDT4). Local axial strains (V1 and V2), local 

flat side lateral strain (H1, H2, H3 and H4) and local corner lateral strain (CH1, CH2 and CH3) 

were also measured using strain gauges placed at mid-height of the specimen (see Fig. 4 – 3 (d)). 

The lateral strain in the overlap area was not measured during the tests. To prevent possible local 

failure the specimen ends were confined using high strength high ductility post-tensioned metal 

straps of thickness 0.8 mm and width 25 mm [2]. The specimens were tested in displacement 

control at a rate of 0.5 mm/min up to failure [3]. 
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Fig. 4 - 2. Set-up of compressive tests: (a) front view and (b) top view of cylinder compressive tests,; (c) 

front view and (d) top view of square column compressive tests.  

4.3 EXPERIMENTAL RESULTS 

Table 4 - 3 summarises the mean-values of the compression test results of the FRP-confined 

specimens. The specimens are separated into two groups by rubber volumetric replacement ratios 

of ρvr = 0% (regular concrete) and 60% (rubberised concrete) and labelled as R0 and R60, 

respectively. In each group, the samples are identified according to the number of confining layers 

(1L, 2L or 3L), confining material (A=AFRP or C=CFRP) and shape of the cross-section 

(C=circular or S=square). For example, 2LA-S-R60 stands for rubberised concrete square column 

wrapped with two layers of AFRP.  

Table 4 - 3 lists the material properties of FRP jacket (fabric thickness (tf) , elastic modulus (Ef) 

and average hoop rupture strain (εh,rup)), confining jacket stiffness (Kj) (see Eq. (1)), critical stress 

(fcr), ultimate compressive strength (fcc), ultimate axial strain (εcu), ultimate area strains (εau), 



Chapter 4 Axial Behaviour of FRP-Confined Concrete Columns: An Experimental Investigation 

 

67 
 

 

confinement effectiveness (fcc/fco), ductility (εcu/εco) and crushing energy (gc) obtained from the 

experimental tests. Critical stress (fcr) is defined as the stress at which the secant modulus (Esec) 

drops to around 70% of the concrete initial stiffness (Ec). fcc/fco and εcu/εco were calculated as the 

ratio of the ultimate stress and strain of the FRP-confined specimens to the average peak stress 

and peak strain of the unconfined specimens, respectively. The average peak stress (fco) and peak 

strain (εco) of the unconfined regular concrete (RC) specimen were 74.5 MPa and 0.225%, 

respectively; while the fco and εco of the unconfined RuC specimen were 7.9 MPa and 0.133%, 

respectively. gc is the area under the uniaxial compressive stress-strain curves. Fig. 4 – 4 shows 

the aforementioned parameters schematically. 

 
2 2

;
f f

j j

co eq co

f fnt E nt E
K K

Df D f
= =  (1) 

where D is the diameter of the circular section and Deq = 2 ( 2 1)2 ca R− − is the equivalent 

circular diameter for the square section (a is the side length of square section and Rc is the size of 

the corner). 

 

Fig. 4 - 3. Schematic representation of typical stress-strain behaviour of FRP-confined concrete. 

In Fig. 4 - 4, the vertical strain gauges readings (V1 and V2) were used to determine the axial 

strains within the elastic region (O-A) and the axial strains beyond the critical stress (fcr) (A-C) 

were derived from the laser sensors readings (LS1-LS3). This was due to the excessive localised 

bulging on the FRP jacket, which led to spurious strain gauge readings after fcr (point A). In order 
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to directly compare the stress-strain behaviour of FRP-confined cylinders with that of FRP-

confined square columns, the area strain was analysed instead of lateral strain and the value was 

calculated as following: 

For circular cross-sections, the area strain with in region O-A and A-C can be determined by Eq. 

(2) and (3), respectively. 

Using strain gauge measurements: 
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Using LVDT measurements: 
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For square cross-sections, the expansion of the cross-section can be divided into two parts: Ac and 

Af. Ac stands for the expansion of the circumference and Af indicates the expansion of the fan-

shaped area (see Fig. 4 - Error! Reference source not found.). Therefore, the total area 

expansion of square cross-section is Ac + 4Af. The value of εA can be obtained using measurements 

recorded by strain gauge (Eq. (4)) and LVDTs (Eq. (5)), respectively. Eq. (6) can be used to 

calculate the value of Af . 
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Fig. 4 - 4. Schematic representation of deformation for the square cross-section. 

Using strain gauge measurements 
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Using LVDT measurements 
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where the value of fan-shaped area Af  can be determined as follows: 
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Table 4 - 2. Mean-values of experimental results. 

ρvr Specimen 
D or Deq tf Ef εh,rup Kj fcr fcc εcu εau 

fcc/fco εcu/εco 
gc 

mm mm GPa %  MPa MPa % % N/mm2 

R0 

1LA-C 100 0.185 122 1.515 6.06 59.5 85 1.48 3.03 1.14 6.58 1.07 

2LA-C 100 0.37 122 1.505 12.12 79.8 114 1.66 3.01 1.53 7.38 1.45 

3LA-C 100 0.555 122 1.575 18.18 98.14 140.2 2.07 3.15 1.88 9.2 2.15 

1LA-S 129 0.185 122 0.772 4.7 43.575 62.25 0.76 1.83 1 3.38 0.46 

2LA-S 129 0.37 122 0.896 9.39 67.9 75 1.26 2.52 1.06 5.6 0.96 

3LA-S 129 0.555 122 1.007 14.09 69.79 99.7 1.73 3.03 1.34 7.69 1.42 

1LC-C 100 0.15 225 0.69 9.06 56.7 81 0.8 1.32 1.09 3.56 0.62 

2LC-C 100 0.3 225 0.72 18.12 77 110 1.1 1.44 1.48 4.89 0.92 

3LC-C 100 0.45 225 0.74 27.18 91 130 1.29 1.52 1.74 5.73 1.27 

1LC-S 129 0.15 225 0.382 7.02 48.65 69.5 0.5 0.91 1 2.22 0.31 

2LC-S 129 0.3 225 0.414 14.05 58.8 84 0.67 1 1.13 2.98 0.46 

3LC-S 129 0.45 225 0.483 21.07 67.2 96 0.79 1.2 1.29 3.51 0.52 

R60 

1LA-C 100 0.185 122 1.68 50.72 19.18 27.4 3.12 3.03 3.08 23.46 0.85 

2LA-C 100 0.37 122 1.785 101.44 29.4 42 3.81 3.31 4.72 28.65 1.04 

3LA-C 100 0.555 122 1.798 152.16 42.35 60.5 4.89 3.38 6.8 36.77 1.59 

1LA-S 129 0.185 122 1.281 39.32 14.42 20.6 3.76 3.61 2.58 27.14 0.71 

2LA-S 129 0.37 122 1.496 78.63 24.43 32.2 4.95 4.45 4.03 33.46 1.26 

3LA-S 129 0.555 122 1.632 117.95 35.7 47 5.71 5.06 5.88 38.05 2.14 

1LC-C 100 0.15 225 0.78 75.84 16.59 23.7 1.52 1.43 2.66 11.43 0.26 

2LC-C 100 0.3 225 0.805 151.69 25.13 35.9 1.84 1.63 4.03 13.83 0.44 

3LC-C 100 0.45 225 0.795 227.53 33.11 47.3 2.05 1.59 5.31 15.41 0.6 

1LC-S 129 0.15 225 0.619 58.79 10.15 14.5 1.32 1.08 1.63 8.35 0.12 

2LC-S 129 0.3 225 0.741 117.59 14.35 20.5 1.67 1.45 2.3 12.56 0.26 

3LC-S 129 0.45 225 0.811 176.38 19.95 28.5 2.1 1.63 3.2 15.79 0.41 

4.3.1 Failure mode and ultimate condition  

All FRP-confined specimens failed abruptly by tensile rupture of the FRP jackets (see Fig. 4 - 6). 

In the case of CRC, the rupture of both Aramid and Carbon FRP always happened in the corner 

region. However, in the case of CRuC, rupture of the Carbon-FRP rupture was observed at either 

the corner or flat region, while rupture of the Aramid-FRP always occurred at the flat side. This 

will be discussed in more detail in the following sections. 
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Fig. 4 - 5. Failure modes of square columns. 

Fig. 4 - 7 shows that for both CRC and CRuC specimens, the average FRP hoop rupture strain 

(εh,rup) is below the failure tensile strain of the FRP coupons (εfu) (i.e. εfu = 2.06% and 0.9% for 

aramid and carbon, respectively). This premature rupture was also reported in many other studies 

[4-9] and can be attributed to several factors (e.g. non-homogeneous deformations of the cracked 

concrete that lead to stress concentrations in the FRP, triaxial stress states of FRP during loading, 

geometrical imperfections, and nonuniform supports in test setup, as well as fibre misalignment 

and overlap length). Chen et al. [8] have discussed in detail about the failure models of and defined 

17 contributory factors fall into 5 categories. Nevertheless, these factors may interact with each 

other and lead to a more complicated mechanism and there is still no available rational model can 

be used to predict this phenomenon.  

It can be seen from Fig. 4 - 7 that the εh,rup of CRuC specimens was higher than that of CRC 

specimens. More specifically, CFRP CRC and CRuC cylinders failed at around 75-80% and 80-

90% of εfu, respectively. AFRP CRC and CRuC cylinders failed at around 70-80% and 85-90% 

of εfu, respectively. This phenomenon is more pronounced in square columns, in which the εh,rup 

of CRuC was up to 1.8 times higher than that of CRC. It is worth noting that the εh,rup of the three-

layer CRuC square columns nearly reached the value developed in cylinder columns. This 

confirms that replacing mineral aggregates with rubber particles can lead to an enhancement in 
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FRP efficiency. For circular columns, the εh,rup was found to be independent of the number of FRP 

layers, whilst for square columns, it increases with an increasing number of FRP layers.  

 

Fig. 4 - 6. The average FRP hoop rupture strains 

4.3.2 Hoop strain at corner vs flat side 

Fig. 4 - 8 shows the mean value of the FRP hoop strain on the flat side (εh_F) and in the corner 

region (εh_C), as determined by the strain gauge readings H1-H4 and CH1-CH3, respectively. The 

significant difference between these two hoop strains indicates high variability in strain 

distribution along the circumference of the jacket. The strain distribution in CRC shows higher 

values of εh_C, while higher values of εh_F are typically seen in CRuC. This confirms that the FRP 

hoop strain is considerably influenced by location and concrete type. The development of higher 

εh_C in CRC can be attributed to the arch effect in the confined section, as the concrete in the 

diagonal direction is under significantly higher confinement pressure than the concrete close to 

the flat side. The difference between εh,rup_F and εh,rup_C decreases with increasing number of FRP 
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layers, as a higher expansion of the flat side is developed. In the CFRP CRuC specimens, the 

difference between εh,rup_F and εh,rup_C is smaller when compared to CFRP CRC. This indicates 

that CFRP CRuC deformed more uniformly than CFRP CRC. However, a more non-uniform 

strain distribution was unexpectedly observed in AFRP CRuC specimens. In these specimens, the 

εh_C is significantly lower than εh_F and slightly decreases with increasing number of FRP layers. 

This may be the result of considerable lateral expansion of the flat side of AFRP CRuC specimens 

(up to 6 mm), which creates opposite curvature and reduces the relative bending strain at the 

corner. It is worth noting that if εh,rup was determined by readings H1-H4, its value would reach 

εfu; if εh,rup was determined through readings CH1-CH3, the value would only be 48% of εfu. 

 

 
Fig. 4 - 7. Comparison between the average FRP hoop rupture strains at the flat side and the corner of 

square columns. 
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In most existing stress-strain models, failure is controlled by εh,rup, which is normally related to 

εfu through an FRP strain reduction factor (kεf). For CRC, a value of kεf should be determined from 

the hoop rupture strain at the round corner, rather than the strain measured on the flat side [10]. 

However, in CRuC, this will lead to a significant underestimation of strength and ultimate strain 

capacity. Hence, a more rational way to calculate the value of kεf is needed. 

4.4 KEY RESPONSE PARAMETERS 

4.4.1 Stress-strain behaviour 

Fig. 4 - 8 and 3 - 9 present the average experimental stress-strain behaviour of CRC and CRuC in 

circular and square cross-sections, respectively. Yellow lines and black lines indicate AFRP-

confined and CFRP-confined specimens, respectively. Solid lines and dashed lines represent 

cylinders and square columns, respectively. The axial compressive stress fcc was determined by 

normalising the compressive force with respect to the cross-sectional area at mid-height of the 

specimen. The axial strain (εc) is shown on the right of the figure (positive side), and the area 

strain (εA) is shown on the left (negative side). A detailed discussion of these results is presented 

in the following sections. 

 

Fig. 4 - 8. Stress-strain curves of CRC in circular and square sections. 
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Fig. 4 - 9. Stress-strain curves of CRuC in circular and square sections. 

4.4.2 CRC vs CRuC 

In Fig. 4 - 8 and 9, two types of behaviour can be identified. Some CRC specimens (1LA-C-R0, 

1LC-C-R0, 1/2LC-S-R0 and 1/2LA-S-R0) show a strain-softening behaviour, which indicates 

insufficient confinement. The remaining CRC specimens and all CRuC specimens show strain-

hardening. Although the strength of unconfined RuC was only 10% of that of the unconfined RC, 

the use of FRP confinement led to an increase in strength up to 51% of the strength of the 

corresponding CRC specimens. 

Table 4 – 3 indicates that the influence of confinement stiffness on the behaviour of CRuC is 

more pronounced than CRC. For example, compared with the 3-layer AFRP CRC square 

columns, the corresponding CRuC columns show 250% and 170% increases in axial and area 

strain, respectively. The maximum ratio of fcc/fco of CRC is 1.88, while the CRuC reaches 6.8. 

More importantly, the maximum ratio of εcu/εco of CRC is 9.2, while it reaches 38 for CRuC. 

These improvements result in greater crushing energy for CRuC specimens as measured by the 

area under the axial stress-strain curve. For instance, the crushing energy of 3-layer AFRP CRC 

square column is 1.42×10-3 J, while the corresponding CRuC column dissipates a total of 2.14×10-

3 J. This greater crushing energy can be exploited, for example, in seismic applications.  
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4.4.3 CFRP vs AFRP confinement  

Fig. 4 - 8 and 9 indicate that the use of the same number of carbon or aramid FRP layers, which 

means that CFRP jacket stiffness is about 1.5 times higher than an AFRP jacket (see Table 4 – 

3)), leads to a stiffer hardening response for CFRP (about 1.8 times higher). However, due to the 

higher rupture strain of aramid, the AFRP-confined specimens show higher ultimate compressive 

stress and strain. As a result, the confinement effectiveness of AFRP is significantly higher than 

that of CFRP.  

Despite the fact that the CRC specimens confined with AFRP or CFRP have similar strengths 

(fcc/fco), the specimens confined with AFRP exhibit much higher axial deformability (εcu/εco). On 

the contrary, the CRuC specimens confined with AFRP are considerably stronger, as well as being 

more deformable than CFRP-confined specimens, especially in square columns. For example, the 

fcc/fco of 3-layer AFRP CRuC square columns is almost 2 times that of the corresponding CFRP 

specimens. Although superior confinement effectiveness of AFRP in terms of εcu/εco has also been 

reported in the literature [19, 25, 26], the improvement in fcc/fco was only observed before in CRuC 

[5]. This may be attributed to the very high axial deformability of CRuC, which results in large 

axial loads being transferred to the CFRP jacket, which loses strength under the biaxial stress-

state (compression-tension). This shows that aramid, which is more tolerant to biaxial stresses, is 

more suitable when developing high-strength high-deformability elements for structural 

applications.  

4.4.4 Circular vs Square section 

As expected the confinement effectiveness of FRP on square columns is less than on circular 

sections (see Fig. 4 - 8 and 9). In the case of CRC, the increase in confinement stiffness produces 

less improvement in the strength and deformability of square columns than the corresponding 

cylinders. In the case of CRuC, thus reduction of confinement effectiveness is also observed, but 

unlike CRC, the deformability of CFRP CRuC is less affected by the section shape. The AFRP 

CRuC exhibit even better deformability in square sections than circular sections, as a larger area 
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strain develops. A recovery in confinement effectiveness is also observed at large deformation 

levels, which indicates that the confined shape is becoming more efficient. 

4.4.5 Area strain vs Axial strain 

In general, the curves of area strain-to-axial strain can be characterised by three phases (see Fig. 

4 – 11): I) an initial elastic phase up to the axial compressive strain of around 0.6-0.8 of the peak 

strain of unconfined concrete; II) a transition phase where the stiffness drops and then stabilises 

or slightly increases; and III) a linear phase until the hoop rupture strain is reached. In Phase I, 

the initial slope is in agreement with Poisson’s ratio of concrete within its elastic range. At the 

axial strain of 0.001, the area strain of RuC (6.4×10-4) was higher than that of RC (3.5×10-4), 

confirming that the use of high rubber contents in concrete can increase lateral expansion. In 

Phase II, the unstable microcrack propagation occurs and leads to a rapid increase in the lateral 

strain and results in the loss of cohesion with the concrete. In Phase III, the gradient of the slope 

depends on the confinement stiffness. However, this effect reduces at high strain levels for CRuC 

square columns. Furthermore, based on the results shown in Fig. 4 - 12 (a-d), the ultimate area 

strain of FRP-confined cylinder does not appear to be greatly affected by the number of FRP 

layers and the strength of the concrete. However, the ultimate area strain of FRP-confined square 

columns increases with increasing confinement level (see Fig. 4 - 12 (e-h)). 

 

Fig. 4 - 10. Schematic representation of a typical curve of area strain-to-axial strain. 
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Fig. 4 - 11. Axial strain vs area strain of FRP-confined concrete. 

4.4.6 Volumetric behaviour and Poisson’s ratio 

To provide further insight into the mechanical behaviour of regular and rubberised concrete under 

passive FRP confinement, the volumetric behaviour and Poisson’s ratio v of the tested specimens 

are examined in this section. Fig. 4 - 12 compares the average axial stress of FRP-confined 

specimens and their corresponding volumetric strains (εV), which are calculated as: 

 AV c  = −  (7) 

where εA and εc are the absolute values of area and axial strains measured during the test, 

respectively. In Eq. (7), negative εV values denote volumetric contraction, whilst positive values 

indicate volumetric expansion.  
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Fig. 4 - 12. Volumatic strain vs Axial stress: (a) CRC; (b) CRuC cylinders and (c)FRP-confined square 

columns. 

Fig. 4 - 12 indicates that all FRP-confined specimens exhibit volumetric contraction at the initial 

elastic stage up to the critical stress fcr with a similar rate to the bulk modulus of the unconfined 

concrete. For CRuC, fcr increases with increasing confinement level, while the critical stress fcr of 

CRC is equal to around 95% of the strength of the unconfined RC. During this stage, the Poisson’s 

ratio v remains in the range of 0.15-0.25 for RC and 0.22-0.35 for RuC. Beyond this stage, the 

volumetric strain of CRC increases and becomes zero at axial stress 20 % higher than the 

compressive strength of unconfined concrete. This dilation behaviour continues to increase until 

failure. This dilatancy phenomenon appears to be affected by the level of confining pressure, thus 

the higher FRP confinement, the less volumetric expansion. When compared with the behaviour 

of CRC, CRuC shows entirely different behaviour. Apart from AFRP CRuC square columns, for 
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which initial contraction is followed by a temporary expansion, all the CRuC samples contract 

continuously. This contraction behaviour may be attributed to the “fluidity” of rubber particles, 

which possibly fill in the voids left by the crushed concrete. Similar behaviour was observed in 

the literature [12]. This double volumetric reversal has also been reported in the literature [11, 

12], for regular concrete confined by very large amounts of FRP (e.g. 10 layers and 14 layers 

FRP). Therefore, volumetric behaviour is also strongly influenced by the confinement stiffness 

(Kj). However, due to the limited test data, the critical confinement stiffness (Kj) that leads to zero 

volume change cannot be determined accurately. 

Fig. 4 – 14 compares the secant dilation ratio against axial strain. The secant dilation ratio is 

calculated by: 

 
h

c

v



= −  (8) 

Fig. 4 - 13a shows that the secant dilation ratio of CRC starts at 0.18 at low axial strain and 

increases rapidly beyond 1.0 with increasing axial strain, which indicates that the concrete 

experiences significant volume expansion due to unstable crack propagation. The secant dilation 

ratio then tends to stabilise once the FRP jacket is fully activated. In the case of CRuC, the secant 

dilation ratio starts around 0.2 and increases to around 0.4, then stabilises at an asymptotic value 

in the range of 0.35 to 0.4 (see Fig. 4 - 13b). This unique behaviour indicates that CRuC stops 

dilating due to cracking and behaves almost like a hydrostatic material. The high and constant 

value of secant dilation ratio results in a low and constant shear modulus, which can lead to high 

shear deformability. This was investigated in a previous numerical and experimental study by the 

authors [13]. 
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Fig. 4 - 13. Secant dilation ratio of CRC (a) and CRuC (b). 

4.5 ASSESSMENT OF EXISTING DESIGN-ORIENTED MODELS FOR CRC 

RECTANGULAR COLUMNS 

In the literature, many stress-strain models have been developed for CRC and can be classified 

into two categories: 1) analysis-oriented models and 2) design-oriented models [14]. Analysis-

oriented models are generally more versatile as they consider the interaction between concrete 

and confining device. The accuracy of prediction highly relies on the accurate dilation 

characteristic of FRP-confined concrete (i.e. lateral strain to axial strain relationship). However, 

due to non-uniform strain distribution around the perimeter of the rectangular cross-sections, there 

is no available model that can describe the dilation behaviour of FRP-confined rectangular 

columns. Design-oriented models consider the FRP-confined concrete as a uniform material and 

only require several experimental-determined material properties (e.g. FRP properties (thickness 

(tf), tensile stress (ff) and elastic modulus (Ef)) and concrete properties (compressive strength (fco) 

and corresponding strain (εco)). The majority of design-oriented models focus on relating the 

compressive behaviour of FRP-confined rectangular columns to that of circular columns through 

a geometrically defined efficiency factor. This allows the use of a unified approach based on the 

simple and robust formulations of σ-ε developed for circular sections. The selected designed-
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oriented stress-strain models for rectangular columns are summarised in Table 4 - 4 [6, 15-18]. 

The main difference between those models revolves around the definitions of diameter (Deq) of 

an equivalent circular column and an FRP strain reduction factor (kεf). For example, according to 

ACI 440 [15] and Youssef et al. [6], Deq can be calculated as 2bh/(b+h), while Lam and Teng use 

2 2
eq b hD = + . In this study, the accuracy of the models was evaluated using three statistical 

indicators ((1) Mean Square Error (MSE), (2) Average Absolute Error (AAE) and (3) Standard 

Deviation (SD)), as determined by Eqs. (9)-(11). 

 
4

ω
f f f h ,rup

w

eq co

n t E

D f


=  (9) 

 

2

1

pre exp
[ ]

exp
MSE

N i i

i i

N

=

−

=
  (10) 

 1

pre exp

exp
AAE

N i i

i i

N

=

−

=
  (11) 

 

2

1

pre pre

exp exp
SD

N i avg

i avg

N

 
− 

 =

  (12) 

where pre and exp represent the predicted and experimental values of fcc/fco or εcu/εco, respectively; 

the subscript avg indicates the average value and N is the total number of the tests data. 

Figs. 3 - 15 and 3 - 16 show the performance of selected models through comparing the test results 

(summarised in Table 4 - 5) of CRC and CRuC square columns to the theoretical predictions in 

terms of fcc/fco and εcu/εco, respectively; while the error indicators of the models are presented in 

Figs. 17 and 18. 

In general, all selected models successfully predict an increase in strength gained with increasing 

confinement. The selected models provide better predictions for the ultimate strength and strain 

of CRC compared to that of CRuC specimens and better performance can be observed in CFRP 

confined specimens rather than AFRP confined specimens. As can be seen in Figs. 15 and 16, the 
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ACI 440.2R significantly underestimates the confinement effectiveness of CRuC (up to 2 times 

in strength and 16 times in strain). Due to the limitation of k (0≤ k ≤ 0.8%), the model proposed 

by Chaallal et al. [16] cannot be applied to CRuC, but a good correlation has been found for one 

layer confined CRC. The model of Youssef et al. [6] shows a close prediction with the ultimate 

strain of CFRP CRC and tends to underestimate the ultimate strength of CRC and CRuC. Lam 

and Teng [17] and Wang and Restrepo [18] offer the best agreement with test results for CFRP 

CRC and can predict the fcc/fco ratio for CFRP CRuC with acceptable accuracy. However, both of 

them dramatically underestimate the ultimate strength and strain of AFRP confined specimens, 

especially for AFRP CRuC. By evaluating the error indicators (MSE, AAE and SD) of each model 

(see Fig. 17 and 18), it is shown that Lam and Teng’ model [17] produces the most accurate 

prediction among these five selected models. Therefore, its performance in terms of stress-strain 

history will be evaluated in the next section. 

Table 4 - 3. Selected designed-oriented stress-strain models for FRP-confined rectangular 

columns 
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Fig. 4 - 14. Experimental results vs existing model predictions in terms of fcc/fco. 

 

Fig. 4 - 15. Experimental results vs existing model predictions in terms of εcu/εco. 
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Fig. 4 - 16. Accuracy of the selected models for CRC. 

 

 

Fig. 4 - 17. Accuracy of the selected models for CRuC. 
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Table 4 - 4. Performance of selected models. 

  Youssef et al. Lam & Teng Wang & Restrepo ACI 440.2R Chaallal et al. 

fcc/fco of CRC 

MSE 7.34% 3.04% 1.70% 7.92% 2.01% 

AAE 26.34% 12.84% 10.22% 26.39% 11.86% 

SD 6.98% 14.82% 9.43% 10.81% 14.47% 

εcu/εco of CRC 

MSE 9.93% 7.26% 29.26% 15.35% 41.85% 

AAE 23.92% 22.97% 52.67% 38.30% 63.37% 

SD 29.93% 16.69% 13.64% 45.08% 15.38% 

fcc/fco of CRuC 

MSE 24.97% 3.47% 3.67% 8.72% - 

AAE 48.50% 16.41% 15.24% 25.89% - 

SD 13.94% 10.15% 13.37% 32.64% - 

εcu/εco of CRuC 

MSE 31.66% 23.36% 33.17% 76.41% - 

AAE 51.93% 33.20% 52.44% 87.12% - 

SD 65.95% 16.84% 26.86% 8.64% - 

4.6 CONCLUSION 

This chapter examined the axial behaviour of FRP-confined circular and square rubberised 

concrete columns, using rubber particles obtained from recycled end-of-life tyres. In total 128 

uniaxial compression tests were conducted to investigate the effects of a range of design 

parameters, including rubber volumetric replacement ratio, section shape, FRP type and number 

of FRP layers. The experimental results were then used to assess the efficiency of existing 

confinement models. On the basis of the discussion presented above, the following conclusions 

can be drawn: 

• The ultimate confinement condition of CRC is governed by the corner hoop rupture 

strain, whilst for CRuC the flat side hoop rupture strain dominates its behaviour. 

• The confinement effectiveness of CRuC is higher than that of CRC in both circular and 

square sections. The effect of the corner geometry on the effectiveness of confinement in 

CRuC is less severe than in CRC. 

• Rubber aggregates significantly reduce concrete strength, but a large amount of strength 

is recovered with FRP-confinement. CRuC specimens exhibit significantly higher 

deformability (ultimate axial strains up to 5.7%) and absorb more energy than CRC 

specimens. 
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• Unlike confined regular concrete, CRuC exhibits volumetric contraction throughout the 

loading history.  

• The confinement effectiveness of CFRP is lower than that of AFRP. Furthermore, for the 

same FRP confinement level, the AFRP CRuC square sections show higher deformability 

(up to 19%) than the circular sections with an acceptable sacrifice in strength (less than 

20%). 

• The secant dilation ratio of CRuC stabilises at around 0.4, which makes this material 

suitable for the development of high-strength highly-deformability elements under shear. 

• Existing prediction models for conventional concrete are highly inaccurate (up to 85% 

error) in the prediction of the behaviour of CRuC, which indicate the need for further 

model development. 
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5.1 INTRODUCTION 

This chapter presents an investigation on the axial behaviour of regular concrete (RC) and 

rubberised concrete (RuC) columns in circular and non-circular sections confined with fibre 

reinforced polymer (FRP) composites. The efficiency of two of the most widely used models a) 

Lam and Teng’s model for FRP-confined rectangular columns and b) concrete damage plasticity 

model (CDPM) are assessed. It was found that existing designed-oriented stress-strain model 

and concrete damage plasticity model cannot accurately predict the behaviour of FRP-confined 

RuC, due to its unique behaviour (high deformation, constant Poisson’s ratio and volumetric 

contraction). Hence, an analysis-oriented model for circular and non-circular sections FRP-

confined concrete (RC or RuC) is proposed based on a new understanding of effective 

confinement area and volumetric strain to axial stress relationship. The model includes the 

properties of both RC and RuC through a series of relationships developed from experimental 

data and the fundamental stress-strain behaviours. Confining stiffness plays a critical role in the 

development of the model. The performance of the proposed model is validated against the 

experimental data reported in Chapter 3, as well as the published experimental results [1, 2]. 

This work will enable a deeper understanding of the behaviour of FRP-confined elements and 

will assist in developing applications for highly deformable elements. 

5.2 DISCUSSION ON LAM AND TENG’S MODEL FOR FRP-CONFINED 

RECTANGULAR COLUMNS 

Lam and Teng’s model [2] is selected as a representative design-oriented stress-strain model for 

FRP-Confined regular concrete (CRC) in rectangular sections according to the evaluation 

results reported in Chapter 3 and used to assess its applicability in CRuC. The stress-strain 

curves of Lam and Teng’s model consist of two smoothly connected parts: 1) a parabolic 

ascending part and a straight-line ascending part [2] (see Fig. 5 – 2).  
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Fig. 5 - 1. Lam and Teng’s stress-strain model for FRP-confined concrete [2]. 

The initial slope of the parabolic part is determined by the modulus of elasticity of unconfined 

concrete (Ec). The slope of the linear part (E2) is used to reflect different FRP confinement 

levels and ends at a point where the ultimate states (εcu and fcc) are reached. The intercept stress 

(ftr) is defined as the stress where the linear hardening branch intercept with the stress axis and 

its value is considered independent from the confinement ratios and equal to fco for simplicity. 

The expressions of the model are given in Eq. (1 – 5): 
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where σc and εc are the axials tress and axial strain of confined concrete, respectively; 
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where , ,2l a f f h rup eqf E t D= is the actual confining pressure;
2 2

eqD b h= + is the diameter of 

equivalent circular section; ks1 and ks2 are the shape factors for strength enhancement and strain 

enhancement, respectively, defined as follows: 
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where Ae/Ac is the ratio of effective confined area to total cross-sectional area. 

As can be seen in Fig. 5 - 2 (a and b), the Lam and Teng’s model provide a reasonable 

prediction for CFRP CRC but much less accuracy is observed for AFRP CRC. Moreover, it 

cannot predict the behaviour of low confinement columns, in which concrete has a softening 

branch. 

For FRP confined RuC, Fig. 5 - 2 (c and d) shows that the model underestimates massively the 

ultimate stress and strain. Furthermore, the use of a constant value of ftr means that the model 

cannot capture the transition between the initial linear behaviour and the stage at which 

confinement becomes fully active. The use of critical stress (fcr) as proposed by Raffoul et al. [3] 

appear to be more rational for use in CRuC modelling. This can be attributed to the volumetric 

behaviour of CRuC is completed different from that of CRC. After the critical stress (fcr), CRC 

exhibit a volumetric expansion behaviour, while CRuC experience a volumetric contraction 

behaviour. Therefore, at the same level of axial strain, CRuC develops larger lateral strain than 

CRC, which results in higher confining pressure. This behaviour has been discussed in chapter 3, 

as well as the experimental study by Raffoul et al. [4]. 
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Fig. 5 - 2. Performance of Lam and Teng’s model for FRP-confined square columns. 

5.3 NUMERICAL MODELLING OF FRP-CONFINED RUBBERISED 

CONCRETE 

The Concrete damaged plasticity model (CDPM) available in the finite element software 

package ABAQUS has been widely used to model CRC under axial load. In this section, a 

numerical model has been developed to assess if the CPDM can be used in the case of CRuC. 

The results of finite element analysis are compared with experimental data and used to inspect 

the stress-state over the square section. 
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5.3.1 Concrete Damaged Plasticity Model (CDPM) 

The CDPM uses the modified Drucker-Prager criterion and the yield surface F in the deviatoric 

plane and assumes isotropic damage. The details can be found in ABAQUS Analysis User's 

Guide (6.14) [5]. The parameters needed to define the yield function F are Kc, φ, 𝜖 , fcb/fco and 

viscosity. 

The eccentricity (𝜖) and a small enough value of viscosity have a negligible influence on the 

prediction accuracy [6-8]. Therefore, the default value of 𝜖 = 0.1 is assigned and a value of 2 × 

10-6 was chosen for viscosity to avoid convergence problems. 

The parameter Kc controls the slope of the yield surface in the deviatoric plane and affects the 

behaviour of concrete under non-uniform biaxial confinement. The value of Kc is related to fcb/fco 

and can be determined by the following equation [7, 9]: 

 ( )
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co cb

f
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f f
=

+
  (6) 

where fco the unconfined concrete strength and fcb is the strength of concrete under biaxial 

compression. The ratio of fcb/fco was determined empirically by Papanikolaou and Kappos [10]: 
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The non-associative plastic volumetric deformation of the material is controlled by the dilation 

angle φ [7, 11-13]. The dilation angle φ influences the tangent slope of the lateral strain-axial 

strain curve of concrete (i.e. the lateral dilation of FRP-confined concrete increases with 

increasing φ). The traditional CDPM shows some limitations when applied to passive confined 

concrete as it uses a constant dilation angle. That results in almost the same lateral strain-to-

axial strain curve for FRP jacket of different stiffness, which is inconsistent with experimental 

observations where the increase in the FRP stiffness results in a reduction of the lateral strain. 

The value of the dilation angle could be defined as a function of the ratio of FRP jacket stiffness 
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to concrete strength (
2 f

j
co

fnt E
K

Df
= ) [8, 9, 12]. For circular sections, a reasonable estimate 

of the dilation angle can be calculated by the simple equation suggested by Hany et al. [8] (

1.43 57.3jK = − + ). The non-uniform distribution of confinement pressure over rectangular 

sections makes the definition of dilation angle more complex. The dilation angle of each 

element in the cross-section should be determined as a function of the elements’ stress state [7]. 

Furthermore, the value of Kj = 40 corresponds to the minimum dilation angle (0.1°) allowed in 

Abaqus (0° to 56°) [5]. Since the unconfined strength of RuC is significantly less than that of 

RC, the ratio of Kj is normally larger than 40 (e.g., one-layer AFRP CRuC, Kj = 60) and the 

minimum value of φ = 0.1° is used to perform the FE analysis. 

5.3.2 FE modelling 

Full-scale specimens wrapped with Aramid-FRP are modelled in ABAQUS. The concrete was 

modelled using 8-node solid elements (C3D8R) while the FRP jacket was modelled with 4-node 

shell elements (S4R) and attached to the solid elements in the circumferences (see Fig. 5 - 3a). 

The mesh displayed in Fig. 5 - 3 was selected after a mesh-sensitivity study was conducted to 

achieve an accurate solution with reasonably short analysis time as well as prevent any 

discontinuity in the stresses and strains distribution (see Appendix). A uniform displacement 

was imposed on the top surface of the specimen and a fixed boundary condition was assigned to 

the bottom surface (see Fig. 5 - 3b). A tie constraint was assigned to the concrete-FRP jacket 

interface under the assumption that perfect bond developed between the FRP and the concrete 

and thus the nodes on both surfaces have the same displacement [7]. A local coordinate system 

was assigned to the FRP jacket and the hoop direction and the axial direction were adopted as 

the 1-principal and 2-principal material orientations, respectively (see Fig. 5 - 3b). 
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Fig. 5 - 3. FE models of the square and circular confined specimens tests (a) Mesh geometry for concrete 

and FRP and (b) Boundary and loading conditions. 

5.3.3 Material properties 

5.3.3.1 FRP jacket 

The FRP is modelled as a linear elastic material before brittle rupture. The stiffness of FRP in 

the transverse direction (i.e., the loading direction) is negligible. The stiffness of FRP in the 

hoop direction was obtained from direct tensile coupon tests. The actual rupture strains of FRP 

in the compressive test (presented in chapter 4) are used to determine the ultimate condition of 

simulation. The elastic behaviour of the FRP jacket was modelled using the elastic lamina 
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option in ABAQUS, which is used to model isotropic elastic materials. The modulus of 

elasticity E1 in the hoop direction was obtained from direct tensile coupon tests (see Chapter 3), 

while E2, G12, G13 and G23 are negligible and were assigned small values. The “no compression” 

option of elastic material was activated, so the jacket does not carry any of the axial load. 

5.3.3.2 Concrete 

The compressive strength (fco), tensile strength (fct) and elastic modulus (Ec) of rubberised 

concrete with different rubber contents can be calculated by Eqs. (8) [14], which were found to 

provide a reasonable prediction of the test results presented in Chapter 3. 
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Uniaxial stress-strain relationship: 

The compressive stress-strain relations of RuC suggested by Bompa et al. [14] (see Eq. (9)) and 

the cracking stress-strain relation in tension proposed by Wang et al. [15] (see Eq. (10)) are used 

to perform the numerical analysis. 
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where 
g 1

2

t ct
t

ct c

f

f E
 = − , The coefficient gt is equal to the area under 

p −  curves in uniaxial 

tension. 

5.3.4 FE modelling vs Experimental results 

Fig. 5 - 4 indicates that the CDPM cannot give an accurate prediction for AFRP CRuC in either 

circular or square sections in terms of overall stress-strain response. The prediction of ultimate 

strength capacity is 15% higher than the experimental results, while the axial strain capacity is 

dramatically underestimated. Fig. 5 - 5 shows a comparison between experimental and 

numerical area strain-to-axials strain of AFRP CRuC cylinders. It can be seen that the slope of 

the numerical curve is much steeper than the experimental one. This is caused by the fact that 

the theoretical lateral dilation cannot be predicted accurately for high levels of confinement (Kj 

>40). This was also reported by other researchers [7, 8, 12] Moreover, the inflexion of the 

numerical area strain-to-axials strain curves happens at a much lower level of the axial strain 

than seen experimentally, which also results in an unrealistic volumetric behaviour of CRuC 

(see Fig. 5 - 6). This is due to the volumetric behaviour of CRuC being completely different 

from that of CRC. 
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Fig. 5 - 4. FE results vs experimental results of stress-strain curves of AFRP CRuC in the circular 

sections (a) and rectangular sections (b).  

 

Fig. 5 - 5. FE results vs. experimental results of area strain-to-axial strain curves of AFRP CRuC in the 

circular sections. 

 

Fig. 5 - 6. FE results vs. experimental results of Poisson’s ratio v of AFRP CRuC. 

5.3.5 Evaluation of stress states over the square cross-sections 

Although CDPM is unable to trace the experimental behaviour of CRuC, it proved its capability 

in predicting the response of CRC. Moreover, the FE model can capture the increasing gradient 
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in the stress-strain curve of the AFRP CRuC square column and provide an insight into the 

stress states of square columns. 

Fig. 5 - 7 shows a typical stress-strain response of FRP-confined concrete. Stage 1 indicates the 

end of elastic behaviour and Stage 2 represents the failure of the specimens. Fig. 5 – 8 shows 

the distribution of minimum principal stresses (compressive stress) obtained from the FE model 

in Stage 1 and 2. As expected, in the elastic stage (Stage 1), the whole cross section experiences 

an almost uniform compressive stress distribution. At failure (Stage 2), the corner and the centre 

of the section exhibit the highest compressive stresses. 

 

Fig. 5 - 7. Typical stress-strain response of FRP-confined concrete. 
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Fig. 5 - 8. Axial stress distribution of the cross-section at the mid-height of the column. 
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To further investigate the confinement mechanism, the principal stresses were obtained from the 

marked red elements in Fig. 5 - 9 and plotted to quantify the local confinement. Fig. 5 - 9 

indicates that the confining stresses are not distributed uniformly across the section. The 

elements located at the corner and centre of the section are subjected to uniform bi-directional 

confining pressure. From corner to centre, the confining pressures in the direction of the 

diagonal of the cross-section is significantly higher than the confining pressure perpendicular to 

this direction. For the elements from the flat side to the centre, the confining pressures along the 

direction parallel to the flat side are significantly higher than the confining pressure in the 

perpendicular direction.  

stress-states in every point of the square section: 
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Fig. 5 - 9. Stress states of selected elements. 
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Table 5 - 1. Summary of the stress states of the elements highlight in Fig. 5 - 9. 

 Stage 1 Stage 2 

 
Max.Principal 

Stress 

Mid.Principal 

Stress 
Stress state 

Max.Principal 

Stress 

Mid.Principal 

Stress 
Stress state 

 MPa  MPa  

C1 -0.019 -0.190 BC -4.125 -4.277 BC 

C2 0.041 -0.222 UC -0.824 -4.156 BC 

C3 0.082 -0.231 UC -0.284 -3.305 BC 

C4 0.068 -0.197 UC -0.269 -2.859 BC 

C5 0.009 -0.165 UC -0.427 -2.084 BC 

C6 -0.073 -0.130 BC -0.904 -1.480 BC 

M -0.110 -0.110 BC -1.231 -1.231 BC 

S1 0.164 0.011 UN 0.091 -0.531 UC 

S2 0.083 -0.004 UC 0.065 -0.780 UC 

S3 0.021 -0.011 UC -0.135 -1.283 BC 

S4 -0.027 -0.031 BC -0.364 -1.512 BC 

S5 -0.068 -0.094 BC -0.74726 -1.48085 BC 

S6 -0.098 -0.109 BC -1.09813 -1.31179 BC 

Note: + means tensile stress; - means compressive stress; UN means unconfined; UC means uniaxial 

confinement; BC means biaxial confinement. 

5.4 MODELLING OF FRP-CONFINED CONCRETE IN SQUARE SECTIONS 

According to the results of the numerical study, the stress distribution within the cross-section is 

more complex than the simple division of the section into a confined and an unconfined section 

(see Fig. 5 – 1). Therefore, in order to accurately model the compressive behaviour of FRP-

confined concrete square sections, the whole section is divided into four regions, as shown in 

Fig. 5 - 10. For the rectangular section, the same partition is applied, except the shape of 

Region-2 is replaced by an ellipse. For each region, an equivalent circular cylinder is assigned 

to reflect the state of confinement (see Fig. 5 - 11). The equivalent circular cylinders have been 

used by Mirmiran et al. [16] and Al-Salloum [17] to calculate the equivalent confining pressure 

in a square or a rectangular section. 
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Fig. 5 - 10. Defining the different regions in the section. 

 

Fig. 5 - 11. Equivalent circular cylinders. 

5.4.1 Calculation of equivalent lateral strain (εa,eq) for non-circular 

sections 

In order to simplify the problem caused by the nonuniform distribution of FRP hoop strain, a 

uniform area expansion is assumed (see Fig. 5 - 12) and the equivalent lateral strain (εa,eq) can 

be calculated by Eq. (11). 
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Fig. 5 - 12. Schematic representation of equivalent area expansion.  
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5.4.2 Definition of different regions: 

Region 1: This is the most effectively confined zone with the highest axial stresses. This region 

is considered under triaxial stress state (biaxial confinement) and the confining pressures (f1) 

along the two directions are considered identical and calculated by Eq. (12). The area of this 

region can be determined by Eq. (13). 

 

Fig. 5 - 13. Force equilibrium in Region 1. 
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Region 2: This is the central portion of the cross-section. This region has equivalent biaxial 

confining stresses that lead to the second highest axial stresses. For the square section, the 
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confining pressures (f2) in the two directions are considered to be identical and can be calculated 

by Eq. (14) using an equivalent radius, R2 = a/4. For the rectangular section, the confining 

pressures (f2_1 and f2_2) in the two directions are different and can be calculated using the 

corresponding equivalent radii R2_1 and R2_2, respectively (see Eq. (14)). The corresponding area 

A2 is calculated by Eq. (15). 
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Region 3: within this region, confinement along the diagonal direction of the cross-section is 

significantly higher than the perpendicular direction, and post-peak descending behaviour is 

expected. Hence, this region is considered to be subjected only to one-directional confinement. 

The confining pressure (f3) in this region is calculated by Eq. (16). The corresponding area A3 is 

calculated by Eq. (17). 

 

Fig. 5 - 14. Schematic representation of confining pressure in Region 3. 
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Region 4: confinement is dominated by the deformation of the flat sides and can be determined 

as a function of the radii of the relevant circumscribed circles, R4 for a square section or R4_1 and 

R4_2 for a rectangular section. The confining pressure (f4) and the area of this region can be 

calculated by Eq. (18) and (19), respectively. 
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where Af is the fan-shaped area (Eq. (20)) representing the area expansion of the cross-sections. 
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where an is the elongation of the flat side, R is the equivalent circular radius of Region 4 and θ is 

the chord length.  

Based on the experimental work conducted as part of this research, the deformation of the flat 

side (hf) varies linearly with the area strain (εA) and can be described by Eq. (21). 
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5.4.3 The relationship of volumetric strain-to-axial stress 

The model proposed by Pantazopoulou and Mills [18] to describe concrete dilation shown 

below has been taken as a basis for this study as it considers progress damage to the material: 
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 (22) 

where *
c coa = represents the compressive axial strain at zero volumetric strain, which for 

normal strength concrete commonly occurs at strains of 0.002 to 0.0035; The parameters a, b 

and c are a function of both concrete type (such as normal strength, high strength or rubberised 

concrete) and level of confinement; b can be used to reflect the degree of passive confinement 

and a value of 1 is used for unconfined concrete under uniaxial compressive load, while its 

value decreases with increasing confinement level. Pantazopoulou and Mills suggested the use 

of a = 1. The value of c can be used to modify the descending part of the curves, a higher value 

describes a more brittle behaviour, whilst a lower value describes a more ductile behaviour (e.g. 

fibre reinforced concrete and rubberised concrete).  

In order to comply with the mechanical model of generalised springs and abovementioned 

differently confined regions, the model has been modified to relate the volumetric strain to axial 

stress (see Eq. (23)).  
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 (23) 

where fcr is the critical stress, which RuC can be determined using the equation proposed by 

Raffoul et al. [19] ( 6 2 3( 6.5 10 5.8 10 0.8)cr co j jf f K K− −= −  +  + and for RC can be considered 

equal to the unconfined strength; *
cf indicates the axial stress at which the volumetric strain 

becomes zero, which is 1.2 and 1.5 times the unconfined strength of RC and RuC, respectively. 
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Based on the regression analysis of experimental data presented in Chapter 3, the parameters b 

and c can be determined by Eq. (24). Parameter b is a function of confinement stiffness. The 

value of c = 2 is used for RC, as recommend by Pantazopoulou and Mills, whilst the value of 

1.5 is adopted for RuC, as RuC has lower strength than RC with a more ductile post-peak 

behaviour. 

 
( )

( )

2

2

3.05 18.9; 1.5 for RuC   (  = 84%)

1.98 6.2; 2 for RC     (  = 93%)

j

j

b Ln c RK

b Ln c RK

= − =

= − + =
 (24) 

5.4.4 Strain reduction factor kεf 

The hoop rupture strain (εh,rup) of an FRP jacket has been shown to be smaller than the ultimate 

tensile strain (εfu) and these two strains can be related by using a strain reduction factor (kεf) [20, 

21]. Lim and Ozbakkaloglu [20] suggested an equation for kεf for FRP-confined cylinders as a 

function of the elastic modulus of FRP composite (Ef) and unconfined concrete strength (fco). 

According to the experimental results presented in Chapter 4 and collected from [1, 22], the 

value of kεf has been found to be affected by the properties of FRP jacket (such as the elastic 

modulus (Ef) and number of layers (nf)), unconfined concrete strength (fco) and section 

characteristics (circular and non-circular, size of corner and aspect ratio of cross-section). Based 

on regression analysis of experimental results, the following equation is proposed to determine 

the value of kεf: 

 ( ), 0.06 20.7

                                          

a
h rup r

f j
fu

k K



= =   (25) 

where Kj is the ratio of FRP jacket stiffness to concrete strength, r is the radius of the corner and 

a is the side length of the square or the long side length of the rectangular cross-section. 
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Fig. 5 - 15. Regression analysis of experimental results. 

 

Fig. 5 - 16. Performance of Eq. (25) against experimental data. 
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5.4.5 Biaxial compressive stress-strain relationship 

Test results [23-25] indicate that the strength of concrete under biaxial compression is 

dependent on the ratio of principal stresses. The stress-strain relation for concrete under biaxial 

compression suggested by [26] is adopted in this study (see Eq. (26)).  
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 (26) 

where σc_biaxial and εc are the stress and strain under biaxial loading, respectively; Ec is the 

modulus of elasticity of concrete under uniaxial loading; v is the Poisson’s ratio under uniaxial 

loading; εp is the strain at maximum stress of concrete under biaxial compression (for RC, εp = 

0.0025; for RuC, εp = 0.0015); λ is the ratio of the two principal stresses; Es is the secant 

modulus at maximum stress and fcb is the ultimate strength of concrete under biaxial 

compression and can be determined by Eq. (27). 
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5.4.6 Multiaxial compressive stress-strain relationship 

5.4.6.1 Strength under multiaxial states of stress 

The maximum compressive strength (fcc) at a given confining pressures can be determined from 

the failure criterion (Eq. (28)) recommended by Mode Code 2010 [27].  

 22 1

2
1 0

co co co

JJ I

f f f
  + + − =  (28) 

where the invariants of the stress tensor (I1) and the stress deviators (J2 and J3) can be calculated 

according to Eq. (29). 
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and 
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The coefficients α, β, c1 and c2 in Eq. (30) are material parameters that depend on the uniaxial 

compressive strength, the biaxial compressive strength (fcb) and the triaxial compressive strength 

at one point on the compressive meridian (σ1 = σ2 ≥ σ3). Those parameters value have been 

studied in detail study by Ottosen [28] for different ratios of k = fct / fco. In this study, the ratio of 

k is 0.12. Therefore, the following values are adopted: 

 
1 20.9218; 2.5969; 9.9110 and 0.9647c c = = = =  

5.4.6.2 Strain under multiaxial states of stress 

As suggested by Mirmiran and Shahawy [29], the ultimate compressive strain (εcu) is obtained 

from the analysis of the dilation rate (Eq. (31)), which defines the ratio of ultimate area strain 

(εAu) to axial strain ratio (εcu) and can be determined experimentally. The theoretical ultimate 

area strain (εAu) can be determined by the ultimate lateral hoop strain (εh,rup) through Eq. (11). 

 
Au

cu





= −  (31) 

The parameter η depends on the normalised effective confining stiffness (Kj) and given by: 

 2
1

C
jC K −=   (32) 
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where C1 and C2 are experimental constants. Values of C1 = 2.8 and C2 = 0.26 are used in this 

study and for the tests conducted as part of this research and others [1, 3] provide R2 =94.  

 

Fig. 5 - 17. Performance of Eq. (32) against experimental data. 

5.4.6.3 Stress-strain relation under multiaxial states of stress 

The stress-strain curve of concrete under multiaxial stress state is described using the model 

proposed by Mander et al. [30], as shown below: 
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5.4.7 Proposed Model – General procedure 

The proposed analytical model assumes that at a given confinement ratio, concrete with passive 

or active confinement exhibits similar axial stress and strain values [31, 32]. A full-range stress-

strain curve for non-circular sections FRP-confined concrete can be obtained using the 

incremental procedure shown below:  
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1. An initial increment of axial strain (εc) is imposed (for example, εc = 500µε). The axial 

strain is increased incrementally by εc for each iteration.  

2. Set an assumed value to target compressive stress (σc_target). 

3. Calculate volumetric strain (εV), then area strain (εA) and equivalent lateral strain (εa,eq). If 

εa,eq > ksεfu, the specimen failed; if εa,eq < ksεfu, go to step 4. 

4. Calculate confining pressures for each region (f1, f2, f3 and f4). 

5. Calculate ultimate compressive stress (fcc1 and fcc2) for Region 1 and 2 using 

corresponding confining pressures (f1 and f2).  

6. Corresponding to the specific stress-strain relationship, compressive stresses (σc1, σc2, σc3 

and σc4) for each region are calculated. The average compressive stress (σc) is 

determined. 

7. If the average compressive stress (σc) coincides with the target compressive stress 

(σc_target). applied in step 2, update target compressive stress and go back to step 1. 

Otherwise, steps 2-6 are repeated until the two stresses converge. 
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Fig. 5 - 18. Iterative procedure. 

5.5 PROPOSED MODEL VS EXPERIMENTAL RESULTS 

The stress-strain curves predicted by the proposed model are compared with the experimental 

results presented in Chapter 4. The performance of the proposed model in predicting the 

behaviour of FRP-confined rectangular RC columns and with different corner radii are validated 

by comparing with test data obtained from [1, 2, 33]. 

Fig. 5 - 19 and 5 - 20 compare the curves predicted by the proposed model and the average 

experimental results for FRP-confined RC and RuC, respectively. As can be seen, the overall 
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results show a good correlation for the different confinement level and concrete type. In general, 

the model predicts well in terms of the average initial stiffness, critical stress and strain, gradient 

of the curve and the ultimate stress and strain values of the tested specimens. In Fig. 5 - 19, it 

can be seen that the behaviour of poorly confined RC specimens is correctly reproduced by the 

proposed model. Fig. 5 - 20 indicates that the model can capture well the unique behaviour of 

FRP-confined RuC, including the increasing stiffness observed in the case of AFRP CRuC.  

Fig. 5 - 21 compares the predicted curves against the experimental results of a series of FRP-

confined square RC sections with different corner radii tested by Wang and Wu [11]. This test 

was chosen for comparison as the stress-strain curves were clearly reported in the original 

paper. It can be seen that the predictions agree reasonably well with experimental results. 

However, a degree of overestimation is shown in the case of C50, which was confined with one-

layer of CFRP. Fig. 5 - 22 illustrates the predicted and experimental stress-strain curves of FRP-

confined rectangular RC section with two different corner radii tested by Lam and Teng [5]. The 

initial slope of the stress-strain curve and ultimate axial strain is correctly predicted by the 

proposed model, but the second portion of the curve is only approximately predicted. 
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Fig. 5 - 19. Experimental stress-strain curves and model predictions for FRP-confined RC 
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Fig. 5 - 20. Experimental stress-strain curves and model predictions for FRP-confined RuC  
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Fig. 5 - 21. Comparison of experimental stress-strain curves of FRP-confined RC in the square section 

with various corner radius tested by Wang and Wu (2008) with analytical predictions. 

 

Fig. 5 - 22. Comparison of experimental stress-strain curves of FRP-confined RC in the rectangular 

section with various corner radius tested by Lam and Teng (2003) with analytical predictions. 
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5.6 CONCLUSIONS 

In this Chapter, the existing design-oriented model and CDPM have been assessed using the test 

results obtained in Chapter 3. It has been found that they cannot predict the behaviour of FRP-

confined rubberised concrete. A rational model for FRP-confined concrete columns is presented 

based on the new understanding of the confinement mechanism in non-circular sections. The 

distribution of axial stress and the interaction between the FRP jacket and the concrete are 

explicitly considered in the proposed model. An axial stress-to-volumetric strain relationship 

has been developed to reflect the influence of confinement stiffness on the volumetric behaviour 

of FRP-confined concrete columns. The specific volumetric contraction behaviour of FRP-

confined RuC are particularly considered. By using the equivalent hoop strain as characteristic 

hoop strain, the ultimate point of the stress-strain model is defined. Comparisons of the 

predictions of the proposed stress-strain model with test results have shown the model provides 

a close prediction of the experimental stress-strain responses. However, further research should 

validate the accuracy of this model for the rectangular columns with different aspect cross-

section ratio or confined by different types of FRP (e.g. glass or basalt sheets).  
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6.1 INTRODUCTION 

This paper presents experimental and numerical results of an ongoing investigation aiming to 

develop high-strength high-deformability fibre reinforced polymer (FRP) confined rubberized 

concrete (CRuC) suitable for structural applications. The rubberized concrete (RuC) utilises 

recycled rubber particles as a replacement for both fine and coarse aggregates. Rubber 

aggregates reduce the compressive strength and stiffness of RuC thus limiting its application for 

structural purposes. Confining RuC with FRP jackets recovers strength and enables the 

development of high deformability, ductility and energy dissipation capacity. Recent research 

mainly focuses on axial performance of RuC and CRuC, but there is little work on the shear 

behaviour of this flexible concrete. This paper adopts a nonlinear numerical approach for the 

practical implementation of the smeared, fixed-angle crack approach in finite element analysis 

to predict the shear response of RuC and CRuC. Constitutive models are proposed on the basis 

of fundamental test results. The model is validated through a simulation of a series of shear tests 

on RuC and CRuC with different shear span-to-depth ratios (a/d). The predictions of the model 

are then compared against experimental results and a good agreement is found. 

The primary objective of this chapter is to assess if the Fixed-Angle Softened Truss Model for 

RC proposed by Pang and Hsu [1] can be used in the case of RuC and CRuC and modify it if 

necessary. The work is presented in four parts: The first part describes the original FA-STM and 

introduces a modification considering the properties of RuC and CRuC. The second part 

discusses the required constitutive models for the implementation of the modified FA-STM and 

how they are determined, including: 1) concrete in compression; 2) concrete in tension; 3) 

concrete in shear; and 4) FRP in tension. In the third part, a UMAT is developed to enable the 

implementation of the proposed model in ABAQUS. Finally, an experimental program on 18 

prismatic samples is described and the accuracy of the proposed model is assessed. This work 

will lead to the development of numerical tools that will enable a deeper understanding of the 

behaviour of RuC and CRuC and will assist in developing applications for highly deformable 

elements. The results presented in this study are part of the FP7 EU-funded project Anagennisi 
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which aims to develop solutions to reuse all tire components in high value innovative concrete 

applications. 

6.2 APPLICATION OF FA-STM IN RUC AND CRUC  

The FA-STM theory is based on six equations derived from two-dimensional equilibrium and 

Mohr compatibility conditions. These theoretical equations, along with constitutive material 

laws, can be used in numerical analysis to predict the performance of structures subjected to 

external loading [1]. When dealing with RC 2-D elements subjected to in-plane shear and 

normal stresses ( lt and l , t ), the FA-STM defines three coordinate systems (see Fig. 6 - 1a). 

a) l-t: the directions of longitudinal and transverse steel bars, respectively; b) 2-1: the directions 

of the principal stresses of RC element; c) d-r coordinates: the directions of principal stresses in 

the concrete alone. The governing equations are derived by assuming that cracks in concrete are 

oriented at a fixed angle 2 , which is the angle between the 2-axis and the l-axis. The angle 

between the d-axis and the l-axis is the rotating angle , which continues to rotate away from 

the fixed angle 2 as load increases. The angle between 2 and is defined as the deviating 

angle 2  = − . 

In order to apply FA-STM for unreinforced RuC and CRuC, the coordinate systems have to be 

redefined (see Fig. 6 - 1b) as follows: a) l-t: the directions of the longitudinal and transverse 

beam, respectively; b) 2-1: the directions of the principal stresses of RuC or CRuC element. The 

angle between the 2-axis and l-axis is called the principal angle
p ; c) n-m: the parallel and 

perpendicular directions of the crack plane. Fixed angle 2 is replaced by the angle of inclined 

strut; d) the principal directions in concrete at any stage are still represented by d-r coordinates, 

resulting in a rotating angle c . The deviating angle β is redesignated as the difference between

f and c . In RuC, the 2-1 coordinate coincides with the d-r coordinate. 
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Fig. 6 - 1. Coordinate systems in the FA-STM (a) and proposed model (b). 

6.2.1 The angle of the inclined strut  

For members with a shear span-to-depth ratio (a/d) less than 2.5 to 2, a significant portion of the 

applied shear force can be transferred directly to the support through an inclined strut. This 

load-carrying mechanism is normally referred to as direct strut (one-panel model) [2, 3]. 

Experimental observations [4] indicate that a direct strut is the primary load mechanism for 

specimens with a/d of 1.85. ACI 318 [5] recommends using a one-panel strut when a/d is less 

than or equal to 2.1. The model presented here is based on this loading mechanism and 

developed for the D-Region (Deep beam shear region). The governing equations of the 

proposed model are derived by the angle of the inclined concrete strut (θf), which is defined by: 

 

2
f

a
arctan

d


 = −  (1) 

where a is the distance between the applied load and support, d is the depth of specimen. 

6.2.2 Governing equations 

Fig. 6 - 1b shows the coordinate systems in a RuC element subjected to applied stresses l , t  

and lt . Fig. 6 - 2a presents the stress state of a CRuC element under in-plane pure shear stress

lt . The stress in concrete and FRP are shown in Fig. 6 - 2b and Fig. 6 - 2c. It is assumed that 

the FRP can only resist the tensile stress,
t frpρ f , and the concrete is subjected to a set of in-
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plane stresses
t frpρ f− and ltτ Stresses

c

n ,   c

m and
c

nm are the average normal stresses and average 

shear stress of the concrete strut in the n and m directions. Equilibrium and compatibility 

equations for the RuC ( =0t ) and CRuC elements are derived by transforming the stresses and 

strains from the n-m to the l-t coordinate (Eq. (2) to (7)). 

 

Fig. 6 - 2. The stress state in CRuC element under pure shear. 

Stress equilibrium equations 

 2 2 2c c c

l n f m f nm f fcos sin sin cos       = + +  (2) 

 2 2 2c c c

t n f m f nm f f t frpsin cos sin cos f        = + − +  (3) 

 ( ) ( )2 2c c c

lt n m f f nm f fsin cos cos sin       = − + + −  (4) 

Strain compatibility equations 

 2 2

l n f m f nm f fcos sin sin cos       = + +  (5) 



Chapter 6 Shear Behaviour Model for FRP-Confined and Unconfined Rubberised Concrete 

 

132 

 

 2 2

t n f m f nm f fsin cos sin cos       = + −  (6) 

 ( )2 2( )
2 2

lt nm
n m f f f fsin cos cos sin

 
     = − + + −  (7) 

To solve Eqs. (2)-(7), four constitutive laws are required: 1) concrete in compression, relating 

the average concrete stress
c

n and average strain n in n-direction, 2) concrete in tension, 

relating the average concrete stress
c

m and average strain m in m-direction, 3) concrete in shear, 

relating the average concrete shear stress
c

nm and average shear strain nm in the n-m coordinate, 

and 4) FRP in tension (t-direction).  

For RuC, the assumption that the constitutive relation in the direction of the inclined strut (

c

n n-  ,
c

m m  -  relation) is identical to that in the principal direction of concrete ( d d-  ,   r r- 

relation) can be considered accurate when a/d is less than or equal to 2.1 (Pang, 1996). 

However, the deviating angle β in CRuC will increase as the confining stress increases, which 

will lead to an increase in the difference between
c

n and d  as well as
c

m and r . Therefore, the 

constitutive relation of cracked concrete in the direction of the inclined strut (
c

n n-  ,   c

m m-  ) 

cannot be replaced with the constitutive relation in the principal direction ( rd -  ,   r r-  ). The 

stresses ,c c

n m  of concrete in the n-m coordinate and corresponding strains ,n m  should be 

calculated by stress and strain transformation from the principal d-r coordinate using the 

equation shown below: 

 

c 2 2

m r

c 2 2

n d

c 2 2

nm

c s 2cs

s c -2cs

-cs cs c - s 0

 

 



     
     

=    
         

;

2 2

m r

2 2

n d

2 2

nm

c s cs

s c -cs

-2cs 2cs c - s 0

 

 



    
    

=    
        

 (8) 

where c=cosβ and s=sinβ. 
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6.3 CONSTITUTIVE LAWS 

All tested specimens (cylinders and prisms) were manufactured using rubberized concrete with 

rubber particles replacing 60% of both fine and coarse mineral aggregates by volume. This 

‘optimized’ mix was chosen from a detailed study on 40 mixes carried out by Raffoul et al. [6], 

which achieved the best balance between strength retention and deformability. Table 6 - 1 

shows the properties of this particular mix. 

Table 6 - 1. Summary of material properties 

RuC Basalt bars Carbon fibres 

𝑓𝑐
′ 

(MPa) 

𝜀𝑐𝑜 

(× 10−3) 

Elastic modulus 

(GPa) 

Rupture strain 

(%) 

Elastic modulus 

(GPa) 

Ultimate strain 

(%) 

Thickness of 1-

layer (mm) 

7.5 1.307 39 (5*) 2.81 (0.08*) 227 (17*) 0.9 (0.05*) 0.185 (0.01*) 

*Standard Deviation 

6.3.1 Compressive constitutive law 

The uniaxial compressive stress-strain relations of RuC and CRuC can be obtained from 

compression tests. The details of the test setup and instrumentation have been discussed in 

chapter 4, section 4.2.3.  

 

Fig. 6 - 3. Set-up overview of cylinder compression. 
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6.3.1.1 RuC 

Up to the peak load, the experimental data matches well the modified stress-strain model (Eq. 

(9)) (see Fig. 6 - 4), which was initially proposed for FRP-confined concrete by Lam and Teng 

[6] (with 02E = , see Eq. (19)). In order to capture the principal compressive behaviour of RuC 

under biaxial compression-tension, the model has been modified by introducing parameter ζ (a 

compressive capacity reduction factor). 

 
2

2

'4

c
c c c c

co

E
E

f
  


= −  (9) 

The descending portion of the stress-strain model is based on Guo’s model (Guo, 2014). It is 

represented as follows: 

 
( )

( 1)
1

x
y x

x x



= 

− +
  (10) 

where c

’

co

σ
y =

ζf
and c

co

ε
x =

ζε
. 

 

Fig. 6 - 4. Compressive constitutive laws of RuC and CRuC. 

The parametersα,β can be calibrated using experimental data. For the concrete tested in this 

study, these parameters were found to be α=1 and β=1.55 as shown in Eq. (11). 
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 1.55'

1

c

c co

co
c c

co co

f



 

  

 

=
 

− + 
 

 (11) 

The following equations, proposed by Bompa et al. [7], are used to determine the modulus of elasticity 

and crushing strain of RuC. 

 

2/3

12
10

'

co
c

f
E

 
=  

 

; '0.310.7co cof =  (12) 

6.3.1.2 Compressive capacity reduction factor 

Since there is a biaxial stress state in the beam shear span, the resistance of the diagonal 

compression struts developed in that region is governed by the failure criterion in the 

compression-tension branch (see Fig. 6 - 5). Hence, the strength of the inclined strut ( )’

,maxcf is 

lower than the uniaxial concrete compressive strength due to the existence of lateral tensile 

strain. A compressive capacity reduction factor ζ is used to account for this effect, which is 

defined as the ratio of maximum principal compressive stress to the uniaxial compressive stress 

of concrete ( )’ ’

,max /c cof f = . The biaxial failure criterion for concrete and ζ can be determined 

by testing square concrete panels subjected to various in-plane loading stress ratios /2 1  . The 

general Drucker-Prager failure criterion is adopted here, as it captures well the interaction 

between tension and compression, and it can reflect the fact that the shear strength of concrete is 

higher than its tensile strength Eq. (13). 

 
1 2 0 0F I J = + − =  (13) 

where α and τ0 are determined from the experiment, 1I is the first invariant and 2J is the second 

deviatoric. 
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Fig. 6 - 5. Biaxial strength envelopes for concrete under combined tension and compression. 

The parameters α and τ0 for the failure surface in tension-compression quadrants are obtained by solving 

the stress states in uniaxial compression and tension, given as: 

 
'

'

1

3

co ct

co ct

f f

f f


−
=

+
;

'

0 '

2

3

co ct

co ct

f f

f f
 =

+
 (14) 

For plane stress conditions ( 3 0 = ), Eq. (13) can be written as: 

 ( ) ( ) ( ) ( )2 2

01 3 1 6 6 3 02 2

1 2 1 2 1 2 0          − + − + + + − =  (15) 

Eq. (15) can be rewritten in the form: 

 ( ) ( ) 02 2

1 2 1 2 1 2A B C D     + + + + + =   (16) 

where 
21 3A = − , ( )21 6B = − + , 06C  =  and 03D = −  

Substituting loading stress ratio 2 1/  = and
'

1 cof = into Eq. (16) yields, 

 ( ) ( )2

' ' 2

1
1 1 0

( )co co

D
A B C

f f
  

 
+ + + + + =   (17) 

where is the loading stress ratio. The principal tensile stress
1 and principal compressive stress

2 can 

be calculated by the corresponding principal strains
1 and

2 through relative constitutive laws, then the 

loading stress ratio is obtained. Solving Eq. (17) leads to: 
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( ) ( ) ( )

' 2

2 2

' ' ' 2

2

11 1
4

co

co co co

D

f

A B DC C

f f f


  

−

=
 + ++ +   − − 

 

  ( 0 1  ) (18) 

With Eq. (18), the softening compressive stress-strain curve of RuC under different biaxial 

loading stress ratios (tension and compression) can be obtained (see. Fig. 6 - 6). 

 

Fig. 6 - 6. Softening compressive stress-strain curve of RuC under different loading stress ratios. 

6.3.1.3 CRuC 

The model proposed by Lam and Teng [6] can also capture well the uniaxial compressive 

behaviour of CRuC (see Fig. 6 - 4).  

 
( )

2

2 2

'4

c

c c c c

co

E E
E

f
  



−
= −    for 0 c tr     (19) 

    '

2c co cf E  = +                  for 
tr c cu      (20) 

where c and   cε are the compressive stress and strain of CRuC, respectively, cE is the elastic 

modulus of RuC, tr is the axial strain at the transition point, 2E is the slope of the straight 

second portion, and
'

cof is the compressive strength of RuC. In order to capture the principal 
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compressive behaviour of CRuC under biaxial compression-tension, the model has been 

modified by introducing parameter . The parameters tr and 2E are given by 

 
( )

'

2

2 co
tr

c

f

E E


 =

−
; 

' '

2
cc co

cu

f f
E





−
=  (21) 

where
cu is the ultimate strain (Eq. (22)) and '

ccf is the compressive strength of CRuC (Eq. (23)), 

respectively.  

 

0.45

,,

2 '
1.75 12

h rupl acu
s

co co co

f
k

f



  

  
= +   

  

 (22) 

 
'

,

1' '
1 3.3 l acc

s

co co

ff
k

f f 
= +   (23) 

where
,h rup is the actual hoop rupture strain of FRP jacket, co is the axial strain at compressive 

strength of RuC,
,l af is the actual maximum confining pressure, 1sk and 2sk are the shape factor 

for strength and strain enhancement, respectively, and defined as follows: 

 

2

1
e

s

c

b A
k

h A

 
=  
 

 ; 

0.5

2
e

s

c

b A
k

h A

 
=  
 

 (24) 

where h and b are the depth and width of the rectangular section, respectively. Ae/Ac is the effective 

confinement area ratio (Eq. (26)). 

6.3.1.4 FRP jacket 

Substantial research [8-12] shows that FRP confinement can lead to an enhancement of the 

compressive strength and deformability of concrete. These enhancements rely mainly on: 1) the 

characteristics of FRP material; 2) section shape (circular or square); and 3) fibre orientation. 

According to experimental results [6, 13, 14], FRP jackets rarely fail at the ultimate tensile 

strain obtained from direct tensile coupon tests. Hence, Lam and Teng [6] use the actual hoop 

rupture strain
,h rup in their model, which relates to the ultimate tensile strain

frp through an 
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efficiency factor k [13]. An average value of 0.586 for k is recommended by Lam and Teng 

[6]. 

 
,h rup fk =  (25) 

It is commonly accepted that the concrete is uniformly confined in a circular section (Ae = Ac), 

while in a rectangular section, only part of the concrete is effectively confined by the FRP (Ae < 

Ac). The effective confinement area ratio (Ae/Ac) is given by Lam and Teng (2003): 

 
( ) ( )

2 2
1 2 2 / 3

1

c c g sc

e

c sc

b h
h R h R A

h bA

A





    
− − + − −    

    =
−

  (26) 

where cR is the size of round corner. sc refers to the ratio of vertical reinforcement, if implemented. 

When FRP ruptures, the confining pressure reaches its maximum value given by  

 
,

,

2 f f f h rup

l a

eq

E n t
f

D


=  (27) 

where
eqD is the diameter of the equivalent circular section, which circumscribes the rectangular section.

fn and ft are the number of layers and thickness of FRP jacket, respectively. 

 2 2

eqD h b= +   (28) 

When FRP with fibre oriented at an angle from the loading direction, the maximum confining 

pressure is modified as: 

 
, 2

,

2 f f f h rup

l a f

eq

E n t
f cos

D


=  (29) 

6.3.2 Tensile constitutive law 

There are three main methods for determining the tensile characteristic of concrete 

experimentally: 1) direct tensile test; 2) Brazilian-split cylinder test; 3) three-point bending test. 

The direct tension test, theoretically, should yield the stress-strain relationship ( ) - or stress-
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crack width relationship ( )w - of concrete under pure uniaxial tension. However, this test is 

difficult to carry out, due to multiaxial stress at the boundary conditions, load eccentricity and 

uncertain crack location. The Brazilian-split cylinder test is the simplest method to obtain 

tensile strength, but it can provide neither the stress-strain nor the stress-displacement relation. 

However, this method was used by Bompa et al. [7] to predict the direct tensile strength of RuC 

(see Eq. (30)). 

 ' 2/30.26ct cof f=   (30) 

Cracking strain of RuC can be calculated as:  

 /cr ct cf E =   (31) 

The three-point bending test (see Fig. 6 - 7) is easier to perform and able to produce a stable 

load-deflection curve. Therefore, an inverse Finite Element Analysis (FEA) method is proposed 

to obtain the tensile stress-strain relation by taking advantage of data obtained from both 

Brazilian tests and three-point bending tests, as described below. 

 

Fig. 6 - 7. Set-up overview of three-point bending test. 

1. Calculation of fracture energy. The fracture energy of concrete FG can be determined by 

energy sU dissipated by fracturing in the specimens over the fracture surface area

( )0/F sG U A= . In the Crack Band theory [15], which used the “smeared crack” 

approach, assumes that cracks are distributed along a defined width of the fracture 

process zone. Bažant and Oh [15] assumed that the width ( )cbw of the fracture process 
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zone is equal to 3 times the nominal maximum aggregate size. The balance of energy 

requires that the toughness ( )( )0

ult

s ct ctW d


  =  can be calculated by dividing FG by

cbw . 

   F
s

cb

G
W

w
=   (32) 

2. Calculation of ultimate tensile strain. The ultimate tensile strain of concrete can be 

determined by dividing the ultimate crack mouth opening by cbw  

 
2

ult
ult

cb

w

w
 =   (33) 

3. Determination of -  curves. The general form of the tensile stress-strain model 

proposed by Guo [16] is adopted in this work as it has been known to simulate the 

tensile behaviour of concrete reasonably well. 

 
( )

1.7
( 1)

1

x
y x

x x
= 

− +
  (34a) 

where ,ct ct

cr ct

x y
f

 


= = . 

4. The damage variable td represents the portion of normalized energy dissipation for 

damage. The value of td is determined using Eq. (34b), where a value of 0 indicates no 

damage, while a value of 1 indicates that the material is fully damaged. 

 
0

/
ct

t ct ct sd d W


 =     ( )0 1td   (34b) 

Using fracture energy values determined from load-deflection curves from flexural tests on 

RuC, the parameter “ ” was determined to be 0.036. The resulting -  curve is shown in Fig. 6 

- 8. The three-point bending tests have been modelled in Abaqus/Standard finite element 
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software package. The Concrete Damage Plasticity (CDP) model, utilizing the proposed tensile 

stress-strain curve of RuC and relative damage factor, was used to predict the load-deflection 

curve of the tested prisms. The load was applied experimentally via a steel roller in 

displacement control. In the numerical study, the steel roller was modelled as a rigid body and a 

displacement was applied to its reference point (see Fig. 6 - 9). A frictionless surface-to-surface 

interaction was assigned to the steel roller-concrete interface. The concrete was modelled using 

2D 4-node linear plane stress (CPS4) elements with a mesh size of 5 mm within the fracture 

zone. Fig. 6 - 9 indicates the distribution of the tensile damage variable at failure (higher 

damage corresponds to red coloured area), whilst Fig. 6 - 10 shows a comparison between 

numerical and experimental results in terms of a typical load-displacement behaviour of RuC. 

 

Fig. 6 - 8. Tensile stress-strain curve of RuC. 

 

 

Fig. 6 - 9. The distribution of damage dt at final state of the three-point bending tests. The red coloured 

area represents highly damage. 
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Fig. 6 - 10. Comparison of the load-deflection curves between inverse FEA and test (ϕ = 0.036). 

6.3.3 Shear constitutive law 

Variables
c

nm and nm (introduced in Eq. (2) through Eq. (7)) can be obtained from shear tests. 

6.3.3.1 Shear stress
c

nmτ and shear strain nm
 in RuC 

By substituting Eq. (3) – Eq. (2) into Eq. (4) with pure shear state ( 0, 0l t = = ): 

 ( )2 2

nm

c

lt f fcos sin   = −   (35) 

By substituting Eq. (6) – Eq. (5) into Eq. (7) with pure shear state ( 0, 0l t = = ): 

 ( )2 2

nm lt f fcos sin   = −  (36) 

 nm

nm

c

lt

lt

G
 

 
= =   (37) 

As Eq. (37) does not include the angle
f , the shear modulus of smeared crack concrete should 

be the same in any coordinate system. The shear stress-strain curve ( )lt ltτ - can be obtained 

from an asymmetric shear test as discussed in the next section. 
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6.3.3.2 Shear stress c

nmτ and shear strain nm
 in CRuC 

The average concrete shear stress
c

nm can be obtained by writing the equilibrium condition along 

the n-direction of the triangular free body in Fig. 6 - 11 (Eq. (38)). 

 
1

2 2
2

c

nm t t f lt ff sin cos    = +  (38) 

 

Fig. 6 - 11. Triangular free body. 

The average shear strain nm can be obtained from the compatibility relation and the measured 

four-average strain ( m , n , l and   t ) along the m ,  n ,  l  and t  directions. This compatibility 

relation is derived by subtracting Eq. (6) from Eq. (5). 

 ( ) ( )2 2nm l t f m n fcsc cot      = − + −   (39) 

When 45f =  , Eq. (38) and Eq. (39) simplify to
1

2

c

nm t ff = and
nm t = − , respectively. The 

shear modulus of CRuC beam is given by: 

 
 ( )

1
12

  2

c t f t
nm

t f

nm t

E
G E

 



 

−
= = =

−

 (40) 
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6.3.3.3 Asymmetric shear test  

The -lt lt  relation is obtained from the asymmetric shear test (see Fig. 6 - 12). The test was 

conducted on rectangular concrete prisms in which the central part (where the maximum shear 

forces are expected) was cast using RuC and had a reduced section of 70 mm, whereas the sides 

were cast with regular concrete and were reinforced with 6 mm steel bars (see Fig.5 - 12). 

The tests were carried out in an electromagnetic universal testing machine applying load 

monotonically in displacement control at a rate of 0.1 mm/min until failure. The measurement 

set-up is shown in Fig. 6 - 13. LVDTs and potentiometers (POT) were used to measure the 

deflections during the tests: LVDT 1 and 2 were situated on an aluminium yoke (fixed at the 

middle height of the prism) to measure the relative deflection at the mid-span of each side of the 

prism. Four potentiometers were used to measure absolute deflection. POT 1 measures the 

deflection at the free end of the prism. POT 2 and 4 measure the deformations at the supports. 

POT 3 measures the deflection at the mid-span externally. Two 10 mm 120 ohms strain gauges 

were placed at mid-span and oriented 45 degrees to the centreline of the prisms to measure the 

shear strains.  



Chapter 6 Shear Behaviour Model for FRP-Confined and Unconfined Rubberised Concrete 

 

146 

 

 

Fig. 6 - 12. Schematic of test set-up, angle of inclined strut, reinforcement details, and shear and bending 

moment diagrams (dimensions in mm). 

 

Fig. 6 - 13. Set-up overview of asymmetric shear test. 
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Using data from tests undertaken in this study (Fig. 6 - 14), Eq. (41) is suggested for predicting 

the shear strength of RuC with 60% rubber replacement as a function of the compressive 

strength. Eq. (41) has an average test-to-prediction strength ratio of 1.02 and COV of 4.3% 

 ' 0.570.36p cof =   (41) 

The relation between the value of shear strain
p at peak and shear strength

p (N/mm2) of RuC 

with 60% rubber replacement can be represented by a regression equation (Eq. 42). Eq. (42) has 

an average test-to-prediction ratio of 1.08 and COV of 16.5%.  

   p = ( ) 6

1 2 2160 766.6 10p p p   −− = −  (
p in MPa) (42) 

The initial shear modulus of RuC is determined from the secant modulus at 0.3
p . The average value 

obtained is 2.687 GPa with a standard deviation at 0.25 GPa. The ratio between initial modulus 
0G  and 

secant modulus at peak stress ( )/p p pG  = varies from 2.3 to 2.7 and an average value of 2.51 is 

adopted (standard deviation is 0.064). 

 

Fig. 6 - 14. The average principal compressive/tensile and shear strain versus corresponding stress (PC is 

the principal compressive strain, PT is the principal tensile strain and S is the shear strain). 

6.3.3.4 Complete shear stress-strain curve 

The complete stress-strain curve of RuC in shear comprises of two parts, as shown in Fig. 6 -

15a and Fig. 6 - 15b, representing the ascending and descending branches, respectively. 
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6.3.3.5 Ascending branch 

Using the known boundary conditions, the ascending branch can be represented by a cubic 

equation of Eq. (43). The four boundary conditions are: 1) 0, 0x y= = ; 2) 00,
p

dy G
x

dx G
= = ; 3)

  1, 1x y= = ; and 4) 1, 0
dy

x
dx

= = (where ,
p p

x y
 

 
= = ). 

 
2 32.5 2 ( ) 0.5 ( )

p p p p

   

   
=  −  +   (43) 

The comparative assessment between predicted and experimental constitutive response (see Fig. 6 - 15a) 

shows good agreement. The tangent shear modulus can also be determined from Eq. (44):  

 

2

2.5 4 1.5
p

t

p p p

d
G

d

  

   

 
  
 

 
 = = −  + 




 (44) 

 

Fig. 6 - 15. Normalized shear stress-strain behaviour obtained from (a) axisymmetric shear test up to peak 

and (b) inverse FEA after peak. 

6.3.3.6 Descending branch 

An equation similar to that for concrete in tension is adopted, 
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This equation again satisfies the four known boundary conditions: 1) 1, 1x y= = ; 2)

1, 0
dy

x
dx

= = ; 3) , 0x y→ → ; and 4) , 0
dy

x
dx

→ → . Since strain gauges normally fail at 

or before peak load, the parameter  was determined to be 0.05 based on the numerical 

investigations in the present study (Fig. 6 - 16), 

 
( )

1.7
( 1)

0.05 1

x
y x

x x
= 

− +
 (45) 

 
Fig. 6 - 16. Comparison of the load-deflection curves between inverse FEA and test (φ=0.05). 

6.4 NUMERICAL IMPLEMENTATION 

The proposed shear behaviour model of CRuC and RuC has been implemented in 

Abaqus/Standard finite element software package using the user defined material subroutine 

(UMAT). The numerical integration algorithms update the Cauchy nominal stresses and 

solution dependent state variables, as well as the consistent tangent matrix, which ensures 

quadratic convergence rate of the Newton-Raphson method in the FEA. The solution scheme is 

based on the incremental form of strain. The loading history is discretized into a sequence of 

load steps [ i i+1F ,F ], 𝑖 ∈ 0,1,2,3 … 𝑛. Each step is referred to as load increment. Driven by the 

strain increment ∆𝜀, the discrete problem in the context of back Euler scheme can be stated as: 
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for a given variable set { n nε ,σ } at the beginning of the (n+1)th increment, find the updated 

variable set { n+1 n+1ε ,σ } at the end of the (n+1)th increment. The updated stresses and solution-

dependent state variables are sorted at the end of the (n+1)th increment and are passed on to the 

UMAT at the beginning of the next increment. The interactive procedure is summarized as in 

Appendix. 

6.5 EXPERIMENTAL PROGRAM  

Eighteen prismatic samples (500   100   100 mm) were tested to assess the shear performance 

of CRuC and RuC. Fig. 6 - 17 shows the geometry and reinforcement details of the prisms as 

well as the loading and support conditions. The central parts of prisms were cast with RuC (with 

a rubber content replacing 60% of aggregate by volume), whereas the sides were cast with 

regular concrete. The prisms were reinforced with four basalt FRP bars (4 mm) along the 

length of the prism. Basalt-FRP bars were chosen for their low shear and axial stiffness, so as to 

enable the development of expected higher deformations within shear span. Three different 

shear span-to-depth ratios (a/d = 0.5, 0.75 and 1) were considered. For each ratio, tests were 

conducted on three unconfined samples and three additional specimens confined with one layer 

of Carbon-FRP by using a wet lay-up technique. The overlap length is 90 mm and located on 

the top of the prism. Table 6 - 1 shows the material properties of the Basalt-FRP bars and 

Carbon fabric used in this research as obtained from direct tensile coupon tests. The adopted test 

setup was the same as described in Fig. 6 - 13 and used to obtain the shear stress-strain curve. 



Chapter 6 Shear Behaviour Model for FRP-Confined and Unconfined Rubberised Concrete 

 

151 

 

 
Fig. 6 - 17. Configuration of specimens (a), reinforcement detail (b) and experimental set-up overview (c) 

(dimensions in mm). 

Fig. 6 - 18 and 19 show the average experimental shear stress-strain and shear force-deflection 

plots for various a/d ratios of RuC and CRuC, respectively. The shear stress τ was determined 

by normalizing the shear force with respect to the cross-sectional area at mid-span. The shear 

strain γ was measured by two strain gauges boned on the surface of the beam or the CFRP 

jacket and oriented  45 degrees to the centre line of the prisms. Due to the pure shear stress 

state at mid-span, it is assumed that the directions of  45 degrees are the principal directions of 

strain. Therefore, the shear strain  can be determined by the two strain gauge readings,

p p1 2  = − . The deflection was the average reading of LVDT 1 and 2 (see Fig. 6 - 13). The 

grey shaded area of the curve in Fig. 6 - 19 represents the range of experimental results. This 

variability can be attributed to the manufacturing quality of the FRP jackets and the inherent 

variability of concrete. 
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Fig. 6 - 18. Comparisons between numerical and experimental shear stress-strain curves (left) and load-

deflection curves (right) of RuC specimens ((a) a/d =0.5; (b) a/d =0.75; (c) a/d =1). 
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Fig. 6 - 19. Comparisons between numerical and experimental shear stress-strain curves (left) and load-

deflection curves (right) of CRuC specimens ((a) a/d =0.5; (b) a/d =0.75; (c) a/d =1). 
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By comparing the results shown in Fig. 6 - 18 and 19, it can be seen that both stress and strain at 

failure for confined specimens are higher than for unconfined specimens, clearly indicating that 

CFRP confinement enhances the load-carrying capacity and deformability. The hardening 

behaviour of CRuC can be explained by the fact that the confinement pressure provided by the 

CFRP jacket maintains the integrity of the concrete and enhances its ability to carry load. 

Although the load-deflection curves of unconfined specimens are heavily influenced by their a/d 

ratio (i.e. increasing a/d increases the moment in the flexural region), the a/d ratio does not have 

a significant influence on the shear stress-strain curves. The shear deformation of confined 

specimens increases with increasing a/d ratio and results in both higher ultimate shear strain and 

deflection. Table 6 - 2 summarizes the average experimental data for both RuC and CRuC. In 

comparison to RuC, 0,CRuCG is similar to 0,RuCG (without considering the abnormal value 0,RuCG = 

4407 in the case of a/d=1.0). An estimated value 1200 με for the peak shear strain of RuC (
p ) 

was obtained from numerical analysis as the strain gauges crossing the shear cracks failed 

prematurely and no experimental results were available. The ultimate shear strain of CRuC ( cu

) is enhanced by more than 20 times compared to
p , whilst the ultimate shear stress of CRuC (

cc ) is increased by 35%. This enhancement enables the CRuC specimens to dissipate about 12 

times more energy than their respective RuC specimens (see Fig. 6 - 20). Since a complete 

stress-strain relationship could not be obtained, RuCΓ is calculated by integrating Eq. (43) and 

(45), and is found to be 0.006 N/mm3.  

Table 6 - 2. Comparison between numerical and average experimental result of parameters used in Fig. 6 

- 21. 

    G0,RuC G0,CRuC G2 τcr,RuC τcr,CRuC τp τt τcc γcr,RuC γcr,CRuC γt γcu ΓCRuC 

    N/mm2 MPa με N/mm2 

a/d=0.5 
Avg.Exp 2782 2873 22 0.7 0.5 1.4 1.75 2 247 174 9086 21751 0.058 

Numerical 3547 2600 28 0.5 0.65 1.3 1.56 2.1 129 250 6212 22808 0.067 

a/d=0.75 
Avg.Exp 2492 2100 21 0.8 0.7 1.3 1.82 2.1 305 330 6968 23163 0.069 

Numerical 4703 2458 24 0.6 0.74 1.4 1.79 2.2 129 301 5317 25057 0.072 

a/d=1.0 
Avg.Exp 4407 2216 16 0.5 0.86 1.4 1.94 2.2 118 388 8773 26689 0.082 

Numerical 5833 2693 17 0.8 0.94 1.5 1.88 2.3 132 349 4332 29453 0.095 
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The shear stress-strain responses of RuC and CRuC are characterized by three phases: I) an 

elastic phase up to the cracking shear stress ( cr ). cr defines the shear stress at which onset of 

microcracking occurs; II) a hardening response up to the maximum shear capacity of RuC (
p ) 

or the transition point of CRuC ( t ); and III) this phase is a function of confinement level and 

that is characterized by a softening branch for RuC and a linear hardening branch for CRuC up 

to failure. In Phase I, the initial slope of CRuC is the same as the initial shear modulus of RuC. 

The responses of RuC and CRuC in Phase II and III are affected by the presence of an FRP 

jacket. The linear hardening behaviour of CRuC can be explained by the fact that the 

confinement pressure provided by the CFRP jacket maintains the integrity of the concrete and 

enhances its ability to carry load. The slope ( 2G ) of this hardening portion is affected by the 

number of layers or type of FRP jacket. Based on this experimental observation, the 

assumptions proposed by Lam and Teng (2003b) for the behaviour of FRP-confined concrete 

under compression are used for shear response of CRuC, that is, the -  model consists of a 

parabolic first portion and a straight line second portion (see Fig. 6 - 21). The parabolic first 

portion intersects the linear second portion smoothly. 
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Fig. 6 - 20. Comparison of energy dissipation between RuC and CRuC. 

 

Fig. 6 - 21. Shear stress (τ)-strain (γ) model for RuC and CRuC. 

6.6 VERIFICATION OF THE MATERIAL MODEL  

The finite element mesh used to perform the simulation of the beams failing in shear is 

illustrated in Fig. 6 - 22. In the experiment, the load was applied via a loading beam in 

displacement control and was transferred to the specimen by two steel rollers (see Fig .5 - 17b). 

In the numerical study, a displacement was applied at a reference point, which was coupled with 

two nodal points on the beam (see Fig. 6 - 22). Four-node quadrilateral elements were used to 

model the concrete, while two-node truss elements were used to model the basalt bars. The 

perfect bond between the concrete and the basalt bars was assumed. The total mesh consists of 

130 plane stress quadrilateral elements for concrete, 25 linear truss elements for basalt bars.  

 

Fig. 6 - 22. Finite element mesh used in the numerical modelling of asymmetric shear test. 

Fig. 6 - 18 and Fig. 6 - 19 compare the curves predicted by the proposed model and the average 

experimental shear stress-strain and load-deflection curves for RuC and CRuC, respectively. For 
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the case of RuC, the comparative assessment indicates that numerical modelling predicts 

reasonably well the ascending branch of the stress-strain curves. However, the initial stiffnesses 

of predicted curves are generally higher than that observed experimentally. Furthermore, the 

numerical model fails to predict the load-deflection behaviour of the specimens (a/d =0.75 and 

1.0) beyond the load causing extensive flexural cracking (see Fig. 6 - 18), due to the low 

amount of flexural reinforcement provided. For the case of CRuC, the comparative assessment 

between predicted and average experimental curves shows well agreement. 

Table 6 - 2 compares the critical material parameters, which are obtained from experimental 

data and numerical modelling. For the case of RuC, the numerical values of initial shear 

modulus ( 0,RuCG ) are higher than the experimental ones, while cracking shear stress and shear 

strength ( cr,RuC and
p ) are similar to the experimental observations. For the case of CRuC, the 

predicted 0,CRuCG and 2G agrees well with the experimental values. The tendency of 2G to 

decrease with increasing a/d is also demonstrated. The cracking shear stress cr,CRuC is higher 

than cr,RuC because the FRP helps may control cracking in the concrete. The transition between 

nonlinear and linear behaviour ( t t,  ) in the numerical model occurs earlier than that in the 

experiment. This may be attributed to the fact that no gap between the jacket and concrete is 

allowed in the numerical model, thus the jacket is mobilized earlier. The numerical ultimate 

stress/strain values ( cc and cu ) are higher than the corresponding experimental values. This 

may be attributed to the fact that the effectiveness of FRP in confining concrete subjected to a 

combination of moment and shear is substantially different from the case of concrete under 

compression only. Hence, this aspect requires further investigation. 

6.7 CONCLUSIONS 

This paper presents the development and implementation of constitutive material models for 

RuC and CRuC into nonlinear FEA using a smeared, fixed crack approach. The material 
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constitutive laws were determined by combining the experimental methods (uniaxial 

compression test, three-point bending test and asymmetric four-point bend test) with inverse 

FEA. The experimental work used to calibrate and validate the model is also discussed in detail. 

On the basis of the results presented here, the following conclusions can be drawn: 

• CRuC made with high rubber volumes (60% of aggregate replacement) and confined 

with one layer of carbon fibres shows ductile and stable performance that allows the 

development of high shear deformations (up to 40 times of RuC) at shear strength 

values are up to two times higher than for RuC. This innovative concrete can be used to 

develop highly deformable RC components for structures. 

• By modifying the FA-STM, a new material model was developed, which can be used to 

provide a reasonable characterization of the shear behaviour of RuC and CRuC. The 

abilities of the model to portray the load-displacement relation and the shear stress-

strain relation are verified. 

• The model can be used to examine the shear performance of highly deformable CRuC 

elements, such as bridge bearings, shear wall coupling beams or base isolation columns. 

6.8 APPENDIX 

Step 1: Provide material properties of concrete (
'

cof ) and FRP (
fE ,

fn ,
ft and

,h rup ). 

Eqs. (12)(29)(30)(31)(41)(42) are used to solve 7 unknown material properties: elastic modulus,

cE , crushing strain, co , FRP-confinement pressure,
,l af , tensile strength, ctf , cracking strain,

cr , shear strength,
p , and corresponding shear strain,

p . 

Step 2: Extract strain and strain increment in current load step. 

 
-1= +n n    

Step 3: Transform the strain [ , , ]T

x y xy   to the strain [ , , ]T

1 2 12   on the crack plane. 
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 

    
    

=    
        

 

where cos , sin = =c s and 180 f = − . 

Step 4: Select stress state from seven cases. 

Case Stress states 

Uncracked tension - Uncracked tension  1 2,cr cr      

Uncracked tension - Uncrushed compression  1 2, 0cr cu       

Uncrushed compression - Uncrushed compression  1 20, 0co cu        

Cracked tension - Cracked tension  1 2,cr cr      

Cracked tension - Uncracked tension  1 2,cr cr      

Cracked tension - Uncrushed compression  1 2, 0cr cu       

Crushed compression - Crushed compression  1 2,co cu      

The components of tangential stiffness matrix can be determined by corresponding constitutive 

laws (Eqs. (9)(11)(18)(19)(20)(34)(40)(44)(45)).  

 

    
    =    
        

1 1 1 1

2 2 2 2

12 12 12

E E 0

E E 0

0 0 G

  

  

 

 

Step 5: Transfer the stiffness matrix in 1-2 coordinate back to x-y coordinate. 

      =   
c -1

xy 12E T E T  

  

 
 

=  
 
 

2 2

2 2

2 2

cos θ sin θ cosθsinθ

T sin θ cos θ -cosθsinθ

-2cosθsinθ 2cosθsinθ cos θ-sin θ

 

Step 6: Determine the Jacobian for FRP-confined concrete in x,y direction 

 

 
 

     = + = +       
 
 

c c c

xx xy x

c frp c c frp c

xy xy yy yx yy yy y

c c c

x y

E E E

E E E E E E E

E E E





  
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Step 7: Update stress and strain. 

 
+ = +i 1 i xy iE d    

Step 8: Check the convergence at the current load step. If it is satisfied, go to the next load step. 

Otherwise, go to step 2. If loading completed or the limit state criteria are reached, stop the 

computation. 
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7.1 SUMMARY AND CONCLUSIONS 

The aim of this research was to understand the behaviour of FRP-confined and unconfined RuC 

and to develop stress-strain models that can be used for finite element modelling of CRuC in 

structural applications. This aim was achieved through extensive experimental and numerical 

work on the behaviour of RuC externally confined with FRP under various loading conditions. 

This chapter summarises the main conclusions from this thesis and recommends future research 

in the field. All of the research objectives set out in Chapter 1 were achieved.  

7.1.1 Tensile behaviour of RuC 

The tensile behaviour of RuC was examined by three-point bending tests and splitting tests to 

develop an understanding of the effect of rubber contents on the flexural behaviour of concrete. 

The following conclusions are drawn:  

➢ Replacing mineral aggregates with rubber particles leads to an apparent reduction in 

strength (compressive, tensile and flexural) and elastic modulus. A less severe reduction 

is observed in the tensile and flexural compared to the compressive properties. 

➢ Replacing mineral aggregates with rubber particles enhances the fracture energy and 

energy absorption capacity and leads to a more ductile post-cracking behaviour.  

➢ A tensile stress-crack opening relation for rubberised concrete is proposed, which can 

provide significantly more accurate predictions compared to the σ-w model derived 

using the Model Code 2010 in terms of the peak load, energy absorption capacity and 

load-deflection response over the loading range. 

7.1.2 Compressive behaviour of CRuC and RuC 

128 circular and square columns were tested under axial compression to investigate their stress-

strain response. 

Experimental conclusions: 
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➢ Replacing mineral aggregates with high volume rubber aggregates can significantly 

reduce concrete strength, whilst dramatically enhance deformability. By utilising the 

advantages of rubber inclusions, a large amount of strength can be recovered if FRP-

confinement provided as well as improving the effectiveness of FRP confinement. As a 

result, CRuC specimens exhibit significantly higher deformability (ultimate axial strains 

up to 5.7%) and absorb more energy than CRC.  

➢ CRuC exhibits volumetric contraction throughout the loading history, while CRC shows 

volumetric expansion. This is due to the flowable behaviour of rubber, and it can fill up 

the crack or voids in CRuC. 

➢ The effect of the corner geometry on the effectiveness of confinement in CRuC is much 

less severe than in CRC due to the enhanced lateral strain. For the same FRP 

confinement level, the AFRP CRuC square sections show higher deformability (up to 

19%) than the circular sections with an acceptable sacrifice in strength (less than 20%). 

This may imply the CRuC square column is preferable than the circular column,in 

where high deformation is needed. 

➢ The secant dilation ratio of CRuC stabilises at around 0.4. This makes this material 

suitable for the development of high-strength highly-deformability elements under 

shear. 

Modelling conclusions: 

➢ The simple division of non-circular sections into two areas of confined and unconfined 

sections cannot reflect the actual stress distribution and leads to inaccurate results. 

Therefore, a new understanding of effective confinement area is proposed based on a 

more rational mechanism.  

➢ The CDPM and existing stress-strain models for CRC are unable to predict the 

behaviour of FRP-confined rubberised concrete owing to the CRuC elements have 

completely different volumetric behaviour as that of CRC. 
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➢ A new σ-ε model is developed for CRC and CRuC, as well as circular and non-circular 

sections. It provides more accurate prediction as the model includes the microstructure 

properties of concrete through a series of relations established from experimental data 

and essential stress-strain response. 

7.1.3 Shear Behaviour of CRuC and RuC 

The axisymmetric four-point bending test was adopted to examine the shear performance of 

FRP-confined and unconfined RuC. 

➢ The shear strength of RuC is close to its direct tensile strength. 

➢ Replacing mineral aggregates with rubber particles can make shear failures of more 

ductile. 

➢ CRuC made with high rubber volumes (60% of aggregate replacement) and confined 

with one layer of carbon fibres shows ductile and stable performance that allows the 

development of high shear deformations (up to 40 times of RuC) at shear strength 

values are up to two times higher than for RuC. This confirms that this innovative 

concrete can be used to develop highly deformable RC components for structures. 

➢ By modifying the FA-STM, a new material model is developed for the characterisation 

of the shear behaviour of RuC and CRuC. The abilities of the model to portray the load-

displacement relation and the shear stress-strain relation are verified. 

7.2 RECOMMENDATIONS FOR FUTURE RESEARCH 

This section presents recommendations for future research related to this study.  

7.2.1 Tension 

➢ The proposed model needs to be evaluated for other rubber contents. Due to time limits, 

only two rubber contents were examined and a limited number of specimens were 

tested. Additional experiments are necessary to cover a wide range of rubber contents.  
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➢ The relationship between the crack band width and rubber contents need to be further 

investigated. 

➢ Errors caused by assuming a linear distributed crack can be reduced by adopting a 

nonlinear assumption.  

➢ Despite spurious mesh sensitivity being eliminated by a simple mesh related 

modification of the material properties, local deformation is not reliably simulated. This 

defect could be addressed by utilising more advanced methods, such as non-local 

damage theory and the nonlinear strain-gradient softening and localization. Size effects 

also need to be taken into account. 

7.2.2 Compression 

➢ Due to time limits, only one rubber content and a single corner radius were examined. 

The knowledge in the behaviour of FRP-confined rubberised concrete in non-circular 

sections with various rubber contents, corner radius and cross-section aspect ratios is 

still limited or blank. More tests are needed to fill this gap. 

➢ Due to the limited database, the performance of the proposed model has not been fully 

assessed. Future research should evaluate the applicability of the proposed model to 

other rubber contents and various cross-section shapes. 

➢ There is little or no knowledge in the behaviour of rubberised concrete under biaxial or 

triaxial stress state. More tests are needed in this field. 

➢ The axial behaviour of FRP-confined reinforced RuC needs to be examined in order to 

explore the potential use in structural applications. 

➢ Some parameters in the proposed model are obtained by curve-fitting of the database of 

experimental stress-strain results. However, a more rational model should recognise and 

incorporates the physical properties of material microstructure, such as water-cement 

ratio, age, the volume fraction of mineral or rubber aggregates, paste porosity and paste-

aggregates interface properties. 
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➢ The reasons for the premature FRP rupture and a rational explanation of why the 

performance of the concrete columns confined by different types of FRP sheets with 

identical stiffness differs, remains uncertain. 

➢ Experimental work is needed to compare the behaviour of confined and unconfined 

rubberised concrete with conventional concrete having a similar strength. 

7.2.3 Shear 

➢ Due to time limits only small scale shear tests were carried out. Full-scaled shear tests 

are also needed. 

➢ The shear performance of RuC confined by different types of FRP (e.g. aramid and 

glass) and various confinement stiffness needs to be examined. 

➢ More experimental work needs to be done on FRP-confined RuC beam of different 

sizes and a wide range of shear span to depth ratios or effective depths in order to 

investigate the shear behaviour in a more systematic manner. 

➢ The proposed model relies on the angle of an inclined struct which limits the application 

of the model to deep shear beams. Therefore, a more advanced definition of crack angle 

needs to be determined. 
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A1. Asymmetric shear tests on FRP-confined and unconfined 

rubberised concrete 
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Figure. A1 – 1. Experimental results of asymmetric shear tests. 
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Table A1 – 1. Main results of asymmetric shear tests.  

*Note: R = reduced width in mid-span, AD = the shear-span-to-depth ratio, C = FRP-

confined specimen, U= unconfined specimen 

 

 

 

Table A1 – 2. Properties of rubberised concrete  

 

Cube 

compressive 

strength 

Cylinder 

compressive 

strength 

Splitting 

tensile 

strength 

Average 

shear stress 

(RuC) 

Average 

shear stress 

(CRuC) 

MPa 

Average 

Value 
11.5 7.2 1.3 1.12 2.2 

Standard 

deviation 
1.05 1.21 0.18 0.93 1.06 

 

Specimen 
Shear Capacity 

(kN) 
Height (mm) Width (mm) 

Ultimate shear 

stress (MPa) 

RC-1 15.67 101.5 73.2 2.11 

RC-2 18.90 104.7 74.7 2.41 

AD1C-1 20.97 101.2 100.0 2.07 

AD1C-2 21.40 101.9 100.1 2.10 

AD1.5C-1 28.62 106.9 100.0 2.68 

AD1.5C-2 23.43 102.3 100.3 2.29 

AD2C-1 18.68 100.8 100.0 1.85 

AD2C-2 21.80 104.1 100.0 2.09 

RU-3 4.95 100.1 68.2 0.73 

RU-4 6.05 102.2 70.7 0.83 

AD1U-3 12.34 104.4 100.1 1.18 

AD1U-4 15.33 107.1 100.1 1.42 

AD1.5U-3 12.00 103.6 100.0 1.16 

AD1.5U-4 12.36 104.1 100.3 1.19 

AD2U-3 14.49 106.5 100.0 1.36 

AD2U-4 11.53 101.4 100.0 1.14 
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Figure. A1 – 2. Summary of asymmetric shear tests. 
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A2. Three-Point Bending Tests on Rubberised Concrete 
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Figure. A2 – 1. Experimental results of three-point bending tests. 
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A3. Axial compression tests on FRP-confined Rubberised 

Concrete 
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Figure. A3 – 1. Failure mode of FRP-confined concrete. 
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Carbon-FRP confined regular concrete in circular section 
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Aramid-FRP confined regular concrete in circular section 
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Carbon-FRP confined rubberised concrete in circular section 
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Aramid-FRP confined rubberised concrete in circular section 
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Carbon-FRP confined regular concrete in square section 
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Aramid-FRP confined regular concrete in square section 
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Carbon-FRP confined rubberised concrete in square section 
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Aramid-FRP confined rubberised concrete in square section 
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Figure. A3 – 2. Experimental results of FRP-confined concrete under axial compression. 
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B1. THREE-POINT BENDING TEST 

 

*Heading 

** Job name: r0-5-model Model name: R0-5-mode 

** Generated by: Abaqus/CAE 6.14-2 

*Preprint, echo=NO, model=NO, history=NO, contact=NO 

** 

** PARTS 

** 

*Part, name=TPB 

*Element, type=CPS4R 

** Section: concrete 

*Solid Section, elset=Set-77, material=RuC 

*End Part 

**   

** 

** ASSEMBLY 

** 

*Assembly, name=Assembly 

**   

*Instance, name=beam-1, part= TPB 

*End Instance 

**   

** Constraint: Constraint-1 

*Coupling, constraint name=Constraint-1 

*Kinematic 
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2, 2 

*End Assembly 

**  

** MATERIALS 

**  

*Material, name= RuC 

*Elastic 

*Concrete Damaged Plasticity 

*Concrete Compression Hardening 

*Concrete Tension Stiffening 

**  

** INTERACTION PROPERTIES 

**  

*Surface Interaction, name=IntProp-1 

1., 

*Frictionless 

*Surface Behavior, pressure-overclosure=HARD 

**  

** BOUNDARY CONDITIONS 

**  

** Type: Displacement/Rotation 

**  

** INTERACTIONS 

**  

** Interaction: Int-1 

*Contact Pair, interaction=IntProp-1, type=SURFACE TO SURFACE 

** ---------------------------------------------------------------- 

**  

** STEP: Step-1 

**  

*Step, name=Step-1, nlgeom=YES, inc=10000 

*Static 

0.01, 1., 1e-7, 0.1 
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**  

** BOUNDARY CONDITIONS 

**  

** Type: Displacement/Rotation 

*Boundary 

**  

** OUTPUT REQUESTS 

**  

*Restart, write, frequency=0 

**  

** FIELD OUTPUT: F-Output-1 

**  

*Output, field 

*Node Output 

CF, RF, U 

*Element Output, directions=YES 

DAMAGEC, DAMAGET, ELEDEN, ELEN, ENER, EVOL, IVOL, LE, PE, PEEQ, 

PEMAG, S 

*Contact Output 

CDISP, CSTRESS 

**  

** HISTORY OUTPUT: H-Output-1 

**  

*Output, history, variable=PRESELECT 

*End Step 
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B2. COMPRESSION TESTS 

 

*Heading 

** Job name: cyy Model name: Cylinder compression tests 

** Generated by: Abaqus/CAE 6.14-2 

*Preprint, echo=NO, model=NO, history=NO, contact=NO 

** 

** PARTS 

** 

*Part, name=FRP 

** Section: FRP 

*Shell Section, elset=Set-1, material=aramid/carbon 

*End Part 

**   

*Part, name=Concrete 

** Section: RuC 

*Solid Section, elset=Set-4, material=RuC 

*End Part 

**   

** 

** ASSEMBLY 

**   

** Constraint: Constraint-1 
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*Coupling, constraint name=Ref to Concrete 

*Kinematic 

** Constraint: Constraint-2 

*Tie, name=FRP to Concrete 

*End Assembly 

**  

** MATERIALS 

**  

*Material, name=aramid/carbon 

*Material, name="RuC" 

*Concrete Damaged Plasticity 

*Concrete Compression Hardening 

*Concrete Tension Stiffening 

**  

** BOUNDARY CONDITIONS 

**  

** Name: BC-2 Type: Displacement/Rotation 

*Boundary 

** ---------------------------------------------------------------- 

**  

** STEP: Step-1 

**  

*Step, name=Step-1, nlgeom=YES, inc=10000 

*Static 

0.01, 1., 1e-07, 0.1 

**  

** OUTPUT REQUESTS 

**  

*Restart, write, frequency=0 

**  

** FIELD OUTPUT: F-Output-1 

**  

*Output, field 
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*Node Output 

CF, RF, U 

*Element Output, directions=YES 

DAMAGEC, LE, PE, PEEQ, PEMAG, S 

*Contact Output 

CDISP, CSTRESS 

**  

** HISTORY OUTPUT: H-Output-1 

**  

*Output, history, variable=PRESELECT 

*End Step 
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B3. ASYMMETRIC SHEAR MODEL  

 

*Heading 

** Job name: Asymmetric shear model  

** Generated by: Abaqus/CAE 6.14-2 

*Preprint, echo=NO, model=NO, history=NO, contact=NO 

** 

** PARTS 

** 

*Part, name= Reinforcement 

*Node      

*Element, type=T2D2 

** Section: Reinforcement 

*Solid Section, elset=Set-1, material=basalt 

*Part, name=Concrete 

*Node 

*Element, type=CPS4 

** Section: RuC 

*Solid Section, elset=Set-26, material= UMAT 

, 

*End Part 

**   

** 

** ASSEMBLY 

** 

*Assembly, name=Assembly 
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**   

*Instance, name 

*End Instance 

** Constraint: Constraint-1 

*Coupling, constraint name=Constraint-1 

*Kinematic 

** Constraint: Constraint-2 

*Embedded Element 

*End Assembly 

**  

** MATERIALS 

**  

*Material, name=UMAT 

*Depvar 

*User Material, constants 

*Material, name=basalt 

*Material, name=RuC 

**  

** INTERACTION PROPERTIES 

**  

*Surface Interaction, name=IntProp-1 

1., 

*Friction 

0., 

*Surface Behaviour, pressure-overclosure=HARD 

**  

** BOUNDARY CONDITIONS 

**  

** Name: BC-2 Type: Displacement/Rotation 

*Boundary 

** Name: BC-3 Type: Displacement/Rotation 

** ---------------------------------------------------------------- 

**  
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** STEP: Step-1 

**  

*Step, name=Step-1, nlgeom=YES, inc=10000 

*Static, stabilize, factor=0.0002, allsdtol=0, continue=NO 

0.001, 1., 1e-15, 0.001 

**  

** OUTPUT REQUESTS 

**  

*Restart, write, frequency=0 

**  

** FIELD OUTPUT: F-Output-1 

**  

*Output, field 

*Node Output 

CF, RF, U 

*Element Output, directions=YES 

E, LE, PE, PEEQ, PEMAG, S, SDV, STATUS, UVARM 

*Contact Output 

CDISP, CSTRESS 

**  

** HISTORY OUTPUT: H-Output-1 

**  

*Output, history, variable=PRESELECT 

*End Step 
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C1. UMAT FOR SHEAR BEAHVIOUR MODEL OF FRP-CONFINED AND 

UNCONFINED RUBBERISED CONCRETE 

          SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,RPL,DDSDDT, 

     1 DRPLDE,DRPLDT,STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED, 

     2 CMNAME,NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT, 

     3 PNEWDT,CELENT,DFGRDO,DFGRDl,NOEL,NPT,LAYER,KSPT,KSTEP,KINC) 

        

        include 'aba_param.inc' 

         CHARACTER*8 CMNAME 

          DIMENSION STRESS(NTENS),STATEV(NSTATV),DDSDDE(NTENS,NTENS), 

     1 DDSDDT(NTENS),DRPLDE(NTENS),STRAN(NTENS),DSTRAN(NTENS), 

     2 TIME(2),PREDEF(1),DPRED(1),PROPS(NPROPS),COORDS(3),DROT(3,3) 

          DIMENSION DFGRD0(3,3),DFGRDl(3,3),PEPS(3),PSIGC(2),TRM(3,3), 

     1 SIGC(3),TM(3,3),TTM(3,3),D(3,3),E(3,3),DD(3,3),STRANT(3) 

         PARAMETER (ZERO=0.D0, ONE=1.D0, TWO=2.D0, THREE=3.D0, FOUR=4.D0, 

     1 SIX=6.D0,PI=3.14159265359) 

         INTEGER*4 NTENS,NDI,K1,K2 

         REAL*8 EMOD,ENU,ELAM,EG,EC,ET,ES,FC,FT,FS,A1T,A1C,A2C,A1S,PHI, 

     1 KF,E11,E12,E13,E21,E22,E23,E31,E32,E33,TR1,CR1,CR2,SR,SS, 

     2 SPAN,HH,A2S,CP,TP,SP,DT1,DC1,DT2,DC2,CC,FCC,ECC,ECS,FCS,YEF,T,N, 

     3 EF,S,SEMOD,AF,f2 

      

C UMAT FOR ISOTROPIC ELASTICITY 

 

C 

C STATE VARIABLES 

C 

      STATEV(16)=DSTRAN(1) 

      STATEV(17)=DSTRAN(2) 

      STATEV(18)=DSTRAN(3) 

C   

      STATEV(19)=STRAN(1) 

      STATEV(20)=STRAN(2) 

      STATEV(21)=STRAN(3) 

       

 

C     PROPS(1) - UNIAXIAL COMPRESION STRENGTH   

      FC=PROPS(1) 

C     PROPS(2) - BETA_C   

      A2C=PROPS(2) 

C     PROPS(3) - RHO_C   

      CP=PROPS(3) 

C     PROPS(4) - BETA_T   

      A1T=PROPS(4) 

C     PROPS(5) - RHO_T   

      TP=PROPS(5) 

C     PROPS(6) - ALPHA_S  

      A1S=PROPS(6)    

C     PROPS(7) - BETA_S   

      A2S=PROPS(7) 

C     PROPS(8) - RHO_S  

      SP=PROPS(8) 

C     PROPS(9) - FRP LAYERS   

      N=PROPS(9) 

C     PROPS(10) - FRP MODULUS      
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      YEF=PROPS(10) 

C     PROPS(11) - FRP ULTIMATE STRAIN   

      EF=PROPS(11) 

C   PROPS(12) - HEIGHT OF SPECIMEN  

      HH=PROPS(12) 

C   PROPS(13) - SHEAR SPAN OF SPECIMEN 

      SS=PROPS(13) 

C     PROPS(14) - FRP EFFICIENCY FACTOR  

      KF=PROPS(14) 

C     PROPS(15) - SHAPEFACTOR  

      S=PROPS(15) 

C     PROPS(16) - THICKNESS OF FRP  

      T=PROPS(16) 

    

C 

C ELASTIC PROPERTIES 

C 

C     YOUNG'S MODULUS  

      EMOD = 12*(PROPS(1)/10)**0.67*1000 

       

C     CRUSHING STRAIN  

      EC = -0.7*PROPS(1)**0.31/1000 

 

C     TENSILE STRENGTH    

      FT= 0.26*PROPS(1)**0.67 

 

C     CRACKING STRAIN 0.0001   

      ET=FT/EMOD   

 

C     SHEAR STRENGTH    

      FS= 0.36*PROPS(1)**0.57 

 

C     SHEAR STRAIN    

      ES=(2160*FS-766)/1000000 

 

C     INITIAL SHEAR MODULUS    

      YEG=2.5*FS/ES  

     

C     TOTAL STRAIN 

      DO K1=1,NTENS 

         STRANT(K1)=STRAN(K1)+DSTRAN(K1) 

      ENDDO 

       

C 

C ELASTIC STIFFNESS 

C       

      CALL ASET(DDSDDE,ZERO,NTENS*NTENS) 

       

      DO K1=1,NDI 

         DO K2=1,2 

            DDSDDE(K2,K1)=ELAM 

         END DO 

         DDSDDE(K1,K1)=EG2+ELAM 

      END DO 

       

      DO K1=NDI+1, NTENS 

         DDSDDE(K1,K1)=YEG 

      END DO 
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      IF (STRANT(1).EQ.ZERO.AND.STRANT(2).EQ.ZERO.AND. 

     1 STRANT(3).EQ.ZERO) THEN  

 

              GOTO 10 

      ELSE  

      IF (STRANT(1).EQ.ZERO.AND.STRANT(2).EQ.ZERO) THEN 

          PEPS(1)=0.5*STRANT(3) 

          PEPS(2)=-0.5*STRANT(3) 

          PHI=45.0*PI/180.0 

      ELSE 

          A1=(STRANT(1)+STRANT(2))/2 

          B1=-STRANT(1)*STRANT(2)+(STRANT(3)/2)**2 

          IF(STRANT(1).EQ.STRANT(2)) THEN 

             PHI=45.0*PI/180.0 

          ELSE 

             C1=STRANT(3)/(STRANT(1)-STRANT(2)) 

             PHI=ATAN(C1)/TWO 

          ENDIF 

          IF (B1.LE.ZERO) THEN 

              WRITE(6,*)'B1=NEG.',A1**TWO+B1 

              PEPS(1)=A1 

              PEPS(2)=A1 

          END IF  

          IF (STRANT(2).GT.STRANT(1)) THEN 

                 PEPS(1)=A1-SQRT(A1**2+B1) 

                 PEPS(2)=A1+SQRT(A1**2+B1) 

          ELSE 

                 PEPS(1)=A1+SQRT(A1**2+B1) 

                 PEPS(2)=A1-SQRT(A1**2+B1)  

          ENDIF 

      ENDIF 

      IF(PEPS(1).LE.ZERO) THEN 

          CR1=PEPS(1)/EC 

          IF(CR1.GT.ZERO.AND.CR1.LE.ONE) THEN 

             PSIGC(1)=(A1C*CR1+(3-2*A1C)*CR1**2+(A1C-2) 

     1 *CR1**3)*FC 

          ELSE 

             PSIGC(1)=(CR1/(A2C*(CR1-1)**2+CR1))*FC 

          ENDIF 

      ENDIF 

           

      IF(PEPS(2).LE.ZERO) THEN 

          CR2=PEPS(2)/EC 

          IF(CR2.GT.ZERO.AND.CR2.LE.ONE) THEN 

             PSIGC(2)=(A1C*CR2+(3-2*A1C)*CR2**2+(A1C-2) 

     1 *CR2**3)*FC 

          ELSE  

             PSIGC(2)=(CR2/(A2C*(CR2-1)**2+CR2))*FC 

          ENDIF 

      ENDIF 

           

      IF(PEPS(1).GT.ZERO) THEN 

          TR1=PEPS(1)/ET 

          IF(TR1.LE.ONE.AND.TR1.GE.ZERO) THEN 

             PSIGC(1)=EMOD*PEPS(1) 

          ELSE  

             PSIGC(1)=TR1/(A1T*(TR1-1)**TWO+TR1)*FT 
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          ENDIF 

      ENDIF 

           

      IF(PEPS(2).GT.ZERO) THEN 

          TR2=PEPS(2)/ET 

          IF(TR2.LE.ONE.AND.TR2.GE.ZERO) THEN 

             PSIGC(2)=EMOD*PEPS(2) 

          ELSE  

             PSIGC(2)=TR2/(A1T*(TR2-1)**TWO+TR2)*FT 

          ENDIF 

      ENDIF 

c     Fix angle 

      FA=ATAN(SS/HH) 

       

c     Principal strain 

      PEPS(1)=STRANT(1)*COS(FA)**2+STRANT(2)*SIN(FA)**2 

     1 +STRANT(3)*SIN(FA)*COS(FA) 

      PEPS(2)=STRANT(1)*SIN(FA)**2+STRANT(2)*COS(FA)**2 

     1 -STRANT(3)*SIN(FA)*COS(FA) 

      PEPS(3)=2*(STRANT(2)-STRANT(1))*SIN(FA)*COS(FA) 

     1 +STRANT(3)*(COS(FA)**2-SIN(FA)**2) 

       

C 

C SOFTEN COEFFCIENT 

C      

        

      IF(PEPS(1).LT.ZERO.AND.PEPS(2).GT.ZERO) THEN 

 

      IF (PEPS(2).LT.ET) THEN 

             R=PEPS(2)/ET 

         ELSE 

       R=1 

         END IF 

      END IF 

      IF(PEPS(2).LT.ZERO.AND.PEPS(1).GT.ZERO) THEN 

 

      IF (PEPS(1).LT.ET) THEN 

       R=PEPS(1)/ET 

         ELSE 

       R=1 

         END IF 

      END IF 

       SCO=(0.1*R-0.95*R**2)+1    

       SKF=SCO*KF 

      IF (PEPS(2).GE.ZERO.AND.PEPS(1).GE.ZERO) THEN 

 

       SCO=1 

       SKF=KF 

      ELSE IF (PEPS(2).LE.ZERO.AND.PEPS(1).LT.ZERO) THEN 

       SCO=1 

       SKF=KF 

      END IF 

  

      AF=ATAN(HH/SS) 

      WRITE(6,*) AF*180/PI 

C   FRP 

      IF (N.GT.O) THEN   

      FCS=-SCO*FC 

   SEMOD = 12*(-FCS/10)**0.67*1000 
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      ECS = -(0.7*(-FCS)**0.31/1000 )     

   ED=0.5*HH/COS(AF) 

   CC=2*YEF*N*T*EF*KF*COS(AF)**2/ED 

   ECC=(1.75+5.53*0.58*(CC/-FCS)*(EF*KF/-ECS)**0.45)*ECS 

   FCC=-(-FCS+3.3*0.58*CC) 

   YE2=((-FCC+FCS)/-ECC)/2 

   E2=2*FCS/(SEMOD-YE2) 

       

      ELSE 

   CC=0 

      ECC=0 

      FCC=0    

      YE2=0 

   E2=0 

      END IF 

 

C  

C 1 COMPRESSION AND COMPRESSION 

C      

       

      IF (PEPS(1).LT.ZERO.AND.PEPS(2).LT.ZERO) THEN 

 

         CR1=PEPS(1)/EC 

         CR2=PEPS(2)/EC 

         F1=A2C*(CR1-1)**CP+CR1 

         F2=A2C*(CR2-1)**CP+CR2 

       

      IF (CR1.GT.ZERO.AND.CR1.LE.ONE) THEN 

         E11=EMOD-EMOD**2/(2*FC)*PEPS(1) 

      ELSE 

         E11=-FC/EC*(1/F1-(CR1*(A2C*CP*(CR1-1)**(CP-1)+1))/F1**2)   

      END IF 

      IF (CR2.GT.ZERO.AND.CR2.LE.ONE) THEN 

         E22=EMOD-EMOD**2/(2*FC)*PEPS(2) 

      ELSE   

         E22=-FC/EC*(1/F2-(CR2*(A2C*CP*(CR2-1)**(CP-1)+1))/F2**2) 

      END IF 

         E12=0.0D0 

         E13=0.0D0 

         E21=0.0D0 

         E23=0.0D0 

      END IF 

C 

C 2A  UNCRACK TENSION AND COMPRESSION  

C            

       

      IF (PEPS(1).GT.ZERO.AND.PEPS(2).LT.ZERO.AND.PEPS(1).LT.ET) THEN 

     

         E11=SEMOD 

         CR2=PEPS(2)/ECS     

         F2=A2C*(CR2-1)**CP+CR2 

 

         IF (N.NE.ZERO) THEN  

            IF (PEPS(2).LT.ZERO.AND.PEPS(2).GT.E2) THEN 

                E22=SEMOD-(SEMOD-YE2)**2/(2*-FCS)*PEPS(2) 

            ELSE IF (PEPS(2).LT.E2) THEN 

                E22=YE2 

            END IF 
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         ELSE 

            IF (CR2.GT.ZERO.AND.CR2.LE.ONE) THEN 

                E22=SEMOD-SEMOD**2/(2*-FCS)*PEPS(2) 

            ELSE  

                E22=FCS/ECS*(1/F2-(CR2*(A2C*CP*(CR2-1)**(CP-1)+1))/F2**2) 

            END IF 

         END IF 

            E12=0.0D0 

            E13=0.0D0 

            E21=0.0D0 

            E23=0.0D0 

       END IF 

C 

C 2B COMPRESSION AND UNCRACKED TENSION 

C    

       

      IF(PEPS(1).LT.ZERO.AND.PEPS(2).LT.ET.AND.PEPS(2).GT.ZERO) THEN 

               

    CR1=PEPS(1)/ECS 

          F1=A2C*(CR1-1)**CP+CR1 

          IF (N.NE.ZERO) THEN  

             IF (PEPS(1).LT.ZERO.AND.PEPS(1).GT.E2) THEN 

                E11=SEMOD-(SEMOD-YE2)**2/(2*-FCS)*PEPS(1) 

             ELSE IF (PEPS(1).LT.E2) THEN 

                E11=YE2 

             END IF 

          ELSE 

             IF (CR1.GT.ZERO.AND.CR1.LE.ONE) THEN 

                E11=SEMOD-SEMOD**2/(2*-FCS)*PEPS(1) 

             ELSE  

                E11=FCS/ECS*(1/F1-(CR1*(A2C*CP*(CR1-1)**(CP-1)+1))/F1**2) 

             END IF 

          END IF 

           

            E22=SEMOD 

            E12=0.0D0 

            E13=0.0D0 

            E21=0.0D0 

            E23=0.0D0 

 

       END IF 

C 

C 3A CRACKED TENSION AND COMPRESSION 

C       

       

       IF(PEPS(1).GE.ET.AND.PEPS(2).LT.ZERO) THEN  

    

    TR1=PEPS(1)/ET 

          CR2=PEPS(2)/ECS 

 

          F1=A1T*(TR1-1)**TP+TR1 

          F2=A2C*(CR2-1)**CP+CR2 

          IF (N.NE.ZERO) THEN  

                E11=SEMOD*(1/F1-(TR1*(A1T*TP*(TR1-1)**(TP-1)+1))/F1**2) 

          ELSE 

                E11=SEMOD*(1/F1-(TR1*(A1T*TP*(TR1-1)**(TP-1)+1))/F1**2) 

          END IF  

 

          IF (N.NE.ZERO) THEN  
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             IF (PEPS(2).LT.ZERO.AND.PEPS(2).GT.E2) THEN 

                E22=SEMOD-(SEMOD-YE2)**2/(2*-FCS)*PEPS(2) 

             ELSE IF (PEPS(2).LT.E2) THEN 

                E22=YE2 

             END IF 

          ELSE 

             IF (CR2.GT.ZERO.AND.CR2.LE.ONE) THEN 

                E22=SEMOD-SEMOD**2/(2*-FCS)*PEPS(2) 

             ELSE  

                E22=FCS/ECS*(1/F2-(CR2*(A2C*CP*(CR2-1)**(CP-1)+1))/F2**2) 

             END IF 

          END IF 

            E12=0.0D0 

            E13=0.0D0 

            E21=0.0D0 

            E23=0.0D0 

       

      END IF 

C 

C 3B COMPRESSION AND CRACKED TENSION 

C         

       

      IF(PEPS(1).LT.ZERO.AND.PEPS(2).GE.ET) THEN  

      

    CR1=PEPS(1)/ECS  

          F1=A2C*(CR1-1)**CP+CR1 

          TR2=PEPS(2)/ET 

          F2=A1T*(TR2-1)**TP+TR2 

          IF (N.NE.ZERO) THEN  

             IF (PEPS(1).LT.ZERO.AND.PEPS(1).GT.E2) THEN 

                E11=SEMOD-(SEMOD-YE2)**2/(2*-FCS)*PEPS(1) 

             ELSE IF (PEPS(1).LT.E2) THEN 

                E11=YE2 

             END IF 

          ELSE 

             IF (CR1.GT.ZERO.AND.CR1.LE.ONE) THEN 

                E11=SEMOD-SEMOD**2/(2*-FCS)*PEPS(1) 

             ELSE  

                E11=FCS/ECS*(1/F1-(CR1*(A2C*CPS*(CR1-1)**(CPS-1)+1))/F1**2) 

             END IF 

          END IF 

          IF (N.NE.ZERO) THEN  

                E22=SEMOD*(1/F2-(TR2*(A1T*TP*(TR2-1)**(TP-1)+1))/F2**2) 

          ELSE 

                E22=SEMOD*(1/F2-(TR2*(A1T*TP*(TR2-1)**(TP-1)+1))/F2**2) 

          END IF 

             

            E12=0.0D0 

            E13=0.0D0 

            E21=0.0D0 

            E23=0.0D0 

      END IF 

C 

C 4 UNCRACKED TENSION AND UNCRACKED TENSION 

C         

       

      IF (PEPS(1).GT.ZERO.AND.PEPS(2).GT.ZERO.AND.PEPS(1).LT.ET 

     1 .AND.PEPS(2).LT.ET) THEN 
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            E11=SEMOD 

            E22=SEMOD 

            E12=0.0D0 

            E13=0.0D0 

            E21=0.0D0 

            E23=0.0D0 

  

      END IF 

C 

C 5A CRACKED TENSION AND UNCRACKED TENSION 

C         

       

      IF (PEPS(2).GT.ZERO.AND.PEPS(1).GE.ET.AND.PEPS(2).LT.ET) THEN 

 

            TR1=PEPS(1)/ET 

            F1=A1T*(TR1-1)**TP+TR1 

          IF (N.NE.ZERO) THEN  

                E11=SEMOD*(1/F1-(TR1*(A1T*TP*(TR1-1)**(TP-1)+1))/F1**2) 

          ELSE 

                E11=SEMOD*(1/F1-(TR1*(A1T*TP*(TR1-1)**(TP-1)+1))/F1**2) 

          END IF  

    

            E22=SEMOD 

            E12=0.0D0 

            E13=0.0D0 

            E21=0.0D0 

            E23=0.0D0 

      END IF       

C 

C 5B UNCRACKED TENSION AND CRACKED TENSION 

C  

        

      IF (PEPS(1).GT.ZERO.AND.PEPS(2).GE.ET.AND.PEPS(1).LT.ET) THEN 

 

            E11=SEMOD 

            TR2=PEPS(2)/ET 

            F2=A1T*(TR2-1)**TP+TR2 

          IF (N.NE.ZERO) THEN  

                E22=SEMOD*(1/F2-(TR2*(A1T*TP*(TR2-1)**(TP-1)+1))/F2**2) 

          ELSE 

                E22=SEMOD*(1/F2-(TR2*(A1T*TP*(TR2-1)**(TP-1)+1))/F2**2) 

          END IF 

             

            E12=0.0D0 

            E13=0.0D0 

            E21=0.0D0 

            E23=0.0D0 

      END IF       

C 

C 6  CRACKED TENSION AND CRACKED TENSION 

C     

         

      IF (PEPS(1).GE.ET.AND.PEPS(2).GE.ET) THEN 

 

            TR1=PEPS(1)/ET 

            F1=A1T*(TR1-1)**TP+TR1 

            TR2=PEPS(2)/ET 

            F2=A1T*(TR2-1)**TP+TR2 

            E22=SEMOD*(1/F2-(TR2*(A1T*TP*(TR2-1)**(TP-1)+1))/F2**2) 
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   E11=SEMOD*(1/F1-(TR1*(A1T*TP*(TR1-1)**(TP-1)+1))/F1**2) 

            E12=0.0D0 

            E13=0.0D0 

            E21=0.0D0 

            E23=0.0D0 

      END IF  

       

      IF (STRANT(2).LT.SKF*KF*EF) THEN 

            E31=0.0 

            E32=0.0 

            E33=425*SCO*3 

      END IF 

         

 

      DO K1=1,3 

          DO K2=1,3 

              DDSDDE(K1,K2)=ZERO 

          END DO 

      ENDDO 

C Stiffness matrix in Prin-D     

      DDSDDE(1,1)=E11 

      DDSDDE(1,2)=E12 

      DDSDDE(1,3)=E13 

      DDSDDE(2,1)=E21 

      DDSDDE(2,2)=E22 

      DDSDDE(2,3)=E23 

      DDSDDE(3,1)=E31 

      DDSDDE(3,2)=E32 

      DDSDDE(3,3)=E33 

 

C Stiffness matrix in xy-D    

      PHI=FA 

      TM(1,1)=COS(PHI)**2 

      TM(1,2)=SIN(PHI)**2 

      TM(1,3)=COS(PHI)*SIN(PHI) 

      TM(2,1)=SIN(PHI)**2 

      TM(2,2)=COS(PHI)**2 

      TM(2,3)=-COS(PHI)*SIN(PHI) 

      TM(3,1)=-2*COS(PHI)*SIN(PHI) 

      TM(3,2)=2*COS(PHI)*SIN(PHI) 

      TM(3,3)=COS(PHI)**2-SIN(PHI)**2 

 

      TTM(1,1)=COS(PHI)**2 

      TTM(1,2)=SIN(PHI)**2 

      TTM(1,3)=-2*COS(PHI)*SIN(PHI) 

      TTM(2,1)=SIN(PHI)**2 

      TTM(2,2)=COS(PHI)**2 

      TTM(2,3)=2*COS(PHI)*SIN(PHI) 

      TTM(3,1)=COS(PHI)*SIN(PHI) 

      TTM(3,2)=-COS(PHI)*SIN(PHI) 

      TTM(3,3)=COS(PHI)**2-SIN(PHI)**2 

 

        

      DO K1=1,3 

          DO K2=1,3 

              D(K1,K2)=ZERO 

              DO K3=1,3 

                    D(K1,K2)=D(K1,K2)+TTM(K1,K3)*DDSDDE(K3,K2) 

              END DO 
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          END DO 

      END DO 

 

      DO K1=1,3 

          DO K2=1,3 

              DD(K1,K2)=ZERO 

              DO K3=1,3 

                    DD(K1,K2)=DD(K1,K2)+D(K1,K3)*TM(K3,K2) 

              END DO 

          END DO 

      END DO 

       

      DO K1=1,3 

          DO K2=1,3 

               DDSDDE(K1,K2)=DD(K1,K2) 

          END DO 

      END DO 

 

      IF (STRANT(2).LT.SKF*KF*EF) THEN 

          DDSDDE(2,2)=DDSDDE(2,2)+800        

      END IF 

      END IF 

      DO K1=1,NTENS 

          DO K2=1,NTENS 

              STRESS(K2)=STRESS(K2)+DDSDDE(K2,K1)*DSTRAN(K1) 

          END DO 

      END DO 

 

10    RETURN 

      END SUBROUTINE 
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C2. ANALYTICAL-ORIENTED MODEL FOR FRP-CONFINED COLUMNS 

clear all 

clc 

close all 

%Section type Sqaure-1;Rctangular-2;Circular-3 

H=150; 

W=150; 

R=30; 

   if H == W && R ~= 0 

   Section = 1 

   elseif H ~= W && R ~= 0 

   Section = 2 

   elseif H == W && R == 0 

   Section = 3 

   end 

    

pvr = 0; 

%concrete property 1-RC;2-RuC 

if pvr == 0; 

c_type = 1; 

else 

c_type = 2; 

end 

  

%concrete compressive strength fc 

fco=30; 

if pvr ~= 0 

fc=(1/(1+2*(8.7*pvr/2)^(3/2)))*fco 

else 

fc=fco 

end 

%concrete tensile strength ft 

ft=0.26*fc^(2/3); 

%Poisson ratio v 

if pvr ~= 0 

   v = 0.35; 

else 

   v = 8e-6*(fc)^2+0.0002*fc+0.138 

end 

%Elastic modulus 

Ec=12000*(0.1*fc)^(2/3); 

%peak compresive strain 

eco1=0.7*fc^0.31/1000; 

eco=(1-pvr)*eco1; 

%FRP property 

nf=1; 

Ef=222000; 

tf=0.165*nf; 
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efu=0.02; 

if Section == 1 || Section == 2 

   Di = sqrt(H^2+W^2) 

elseif Section == 3  

   Di = H 

end 

%confining stiffness 

kj=2*Ef*tf/Di; 

%strain reduction factor ke 

if pvr ~= 0 

   ke = (1-2.3*fc*10^-3-0.75*Ef*10^-6)*(4*R/H)^0.288 

else  

   ke = (1-2.3*fc*10^-3-0.75*Ef*10^-6)*(2*R/H)^0.288 

end 

step=0.0005; 

assumption=1; 

  

%Area partion 

if Section == 3 

   A=(H/2)^2*3.14; 

elseif Section == 1 || Section == 2 

   A=3.14*R^2+2*(H-2*R)*R+2*(W-2*R)*R+(H-2*R)*(W-2*R); 

end 

if Section == 1 

   A1=1.14*R^2; 

   A2=3.14*H^2/16; 

   A4=((H-2*R)^2+(W-2*R)^2)/3; 

   A3=A-A1-A2-A4; 

elseif Section == 2 

   A1=1.14*R^2; 

   A2=3.14*H*W/16; 

   A4=((H-2*R)^2+(W-2*R)^2)/3; 

   A3=A-A1-A2-A4; 

end   

  

fc0=assumption; 

P=zeros(5000,16); 

tic 

a=0.7; 

if pvr ~= 0 

   b=1.2; 

   c=2; 

   DC=-1.98*log(kj)+6.2; 

   fcr=fc; 

else 

   b=1.5; 

   c=1.5; 

   DC=3.05*log(kj)-18.9; 

   fcr=fc*(-6.5*10e-6*kj^2+5.8e-3*kj+0.8; 

end 
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fcr=fc*(-6.5*10e-6*kj^2+5.8e-3*kj+0.8; 

for r=1:2000 

    ec=r*step 

    fc_initial=fc0; 

    if fc_initial<=fcr 

       eV=-(1-2*v)/Ec*10^-4*fc_initial; 

    elseif fc_initial>fcr 

       eV=-(1-2*v)/Ec*10^-4*b*fc*((fc_initial/(b*fc))-

DC*((fc_initial-fcr)/(b*fc-fcr))^c); 

    end 

    eA=eV+ec; 

    el=sqrt(eA+1)-1; 

  

    if el>ke*efu 

       break 

    end 

     

    Fl=Ef*el*tf*sqrt(2); 

    %confining pressure circular 

    fcc = Fl*2/Di; 

    %confining pressure f1 

    fl_1triaxial=Fl/R*sqrt(2); 

    %confining pressure f2 

    if Section == 1  

       R2 = H/2; 

       fl_2triaxial = Fl/R2; 

       fl_3triaxial = Fl/R2; 

    elseif Section == 2 

       R2 = H/2; 

       R3 = W/2; 

       fl_2triaxial = Fl/R2; 

       fl_3triaxial = Fl/R3; 

    end 

    %confining pressure f3 

    f1_biaxial=Fl/2/R; 

    %confining pressure f4 

    fan=(H-2*R)*(1+el); 

    if pvr ~= 0 

       fan2=110*eA; 

    elseif pvr == 0 

       fan2=10*eA; 

    end 

    AFAN=4*fan*fan2*0.7; 

    R4=(fan^2+4*fan2^2)/8/fan2; 

    f2_biaxial=Fl/R4/sqrt(2); 

  

%ultimate fcc for A1 and A2 

fcc_1triaxial=ottosen(-fc,ft,-fl_1triaxial,-fl_1triaxial); 

fcc_2triaxial=ottosen(-fc,ft,-fl_2triaxial,-fl_3triaxial); 

fcc_ctriaxial=ottosen(-fc,ft,-fcc,-fcc); 
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%compressive stress 

fc_1triaxial=mander(Ec,fc,ec,eco,-fcc_1triaxial); 

fc_2triaxial=mander(Ec,fc,ec,eco,-fcc_2triaxial); 

fc_1biaxial=liu(Ec,ec,fc,v,f1_biaxial); 

fc_2biaxial=liu(Ec,ec,fc,v,f2_biaxial); 

fccc=mander(Ec,fc,ec,eco,-fcc_ctriaxial); 

%unconfined 

%fc_uniaxial=uni(fc,ec,eco); 

%total 

  

if Section == 1 || Section == 2   

   

fc_total=fc_1triaxial*A1/A+fc_2triaxial*A2/A+fc_1biaxial*A3

/A+fc_2biaxial*(A4)/A; 

elseif Section ==3 

  fc_total=fccc; 

end 

fc0=fc_total; 

while abs(fc_total-fc_initial)>0.01 

      

    fc_initial=fc0; 

    if fc_initial<=a*fc 

       eV=-(1-3*v)*10^-4*fc_initial; 

    elseif fc_initial>a*fc 

       eV=-(1-3*v)*10^-4*b*fc*((fc_initial/(b*fc))-

((fc_initial-a*fc)/(b*fc-a*fc))^c); 

    end 

    eA=eV+ec; 

    el=sqrt(eA+1)-1; 

  

    if el>ke*efu 

       break 

    end 

     

    Fl=Ef*el*tf*sqrt(2); 

    %confining pressure circular 

    fcc = Fl*2/Di; 

    %confining pressure f1 

    fl_1triaxial=Fl/R*sqrt(2); 

    %confining pressure f2 

    if Section == 1  

       R2 = H/2; 

       fl_2triaxial = Fl/R2; 

       fl_3triaxial = Fl/R2; 

    elseif Section == 2 

       R2 = H/2; 

       R3 = W/2; 

       fl_2triaxial = Fl/R2; 

       fl_3triaxial = Fl/R3; 

    end 
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    %confining pressure f3 

    f1_biaxial=Fl/2/R; 

    %confining pressure f4 

    fan=(H-2*R)*(1+el); 

    if pvr ~= 0 

       fan2=110*eA; 

    elseif pvr == 0 

       fan2=10*eA; 

    end 

    AFAN=4*fan*fan2*0.7; 

    R4=(fan^2+4*fan2^2)/8/fan2; 

    f2_biaxial=Fl/R4/sqrt(2); 

  

%ultimate fcc for A1 and A2 

fcc_1triaxial=ottosen(-fc,ft,-fl_1triaxial,-fl_1triaxial); 

fcc_2triaxial=ottosen(-fc,ft,-fl_2triaxial,-fl_3triaxial); 

fcc_ctriaxial=ottosen(-fc,ft,-fcc,-fcc); 

%compressive stress 

fc_1triaxial=mander(Ec,fc,ec,eco,-fcc_1triaxial); 

fc_2triaxial=mander(Ec,fc,ec,eco,-fcc_2triaxial); 

fc_1biaxial=liu(Ec,ec,fc,v,f1_biaxial); 

fc_2biaxial=liu(Ec,ec,fc,v,f2_biaxial); 

fccc=mander(Ec,fc,ec,eco,-fcc_ctriaxial); 

%unconfined 

%fc_uniaxial=uni(fc,ec,eco); 

%total 

  

if Section == 1 || Section == 2   

   

fc_total=fc_1triaxial*A1/A+fc_2triaxial*A2/A+fc_1biaxial*A3

/A+fc_2biaxial*(A4)/A; 

elseif Section ==3 

  fc_total=fccc; 

end 

  

end 

fc0=fc_total; 

P(r,1)=-eA; 

P(r,2)=-el; 

P(r,3)=ec; 

P(r,4)=fc_total; 

P(r,5)=f1_biaxial; 

P(r,6)=f2_biaxial; 

P(r,7)=fc_1biaxial; 

P(r,8)=fc_2biaxial; 

P(r,9)=fl_1triaxial; 

P(r,10)=fl_2triaxial; 

P(r,11)=fl_3triaxial; 

P(r,12)=-fcc_1triaxial;  

P(r,13)=-fcc_2triaxial; 
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P(r,14)=fc_1triaxial; 

P(r,15)=fc_2triaxial; 

P(r,16)=Fl; 

if el>efu 

    break 

end 

end 

m=1; 

while P(m,1)>0 

    m=m+1; 

end 

k=m-1; 

K=P(1:k,:); 

Vertical_Strain=[0 ; K(:,3)]; 

Lateral_Strain=[0 ; K(:,2)]; 

Vertical_Stress=[0; K(:,5)]; 

Biaxial_Lateral_stress1=[0; K(:,6)]; 

Biaxial_Lateral_stress2=[0; K(:,7)]; 

Biaxial_Vertical_stress1=[0 ; K(:,8)]; 

Biaxial_Vertical_stress2=[0 ; K(:,9)]; 

Triaxial_one_Lateral_stress1=[0 ; K(:,10)]; 

Triaxial_two_Lateral_stress=[0 ; K(:,11)]; 

Triaxial_Maximum_Vertical_stress_fcc1=[0 ; K(:,12)]; 

Triaxial_Maximum_Vertical_stress_fcc2=[0 ; K(:,13)]; 

Traxial_Vertical_stress1=[0 ; K(:,14)]; 

Traxial_Vertical_stress2=[0 ; K(:,15)]; 

if 

max(Vertical_Stress)>Vertical_Stress(length(Vertical_Stress

)) 

    Maximum_Vertical_Stress=max(Vertical_Stress); 

    

Ultimate_Vertical_Stress=Vertical_Stress(length(Vertical_St

ress)); 

end 

if 

max(Vertical_Stress)==Vertical_Stress(length(Vertical_Stres

s)) 

    

Maximum_Vertical_Stress=Vertical_Stress(length(Vertical_Str

ess)); 

end 

Maximum_Lateral_Strain=Lateral_Strain(length(Lateral_Strain

)); 

q=1; 

if 

max(Vertical_Stress)>Vertical_Stress(length(Vertical_Stress

)) 

    while K(q+1,5)>K(q,5) 

     q=q+1; 

    end 
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    Strain_at_Peak_Stress=K(q,1); 

    

Ultimate_Vertical_Strain=Vertical_Strain(length(Vertical_St

rain)); 

end 

if 

max(Vertical_Stress)==Vertical_Stress(length(Vertical_Stres

s)) 

    

Maximum_Vertical_Strain=Vertical_Strain(length(Vertical_Str

ain)); 

end 

plot(Vertical_Strain,Vertical_Stress,-

Lateral_Strain,Vertical_Stress); 

grid 

xlabel('Axial Strain (+),Lateral Strain (-)'); 

ylabel('Axial Stress (MPa)'); 

title('Stress-Strain'); 

toc; 

 

 

function fc_biaxial=liu(Ec,ec,fc,v,s2) 

q=1; 

a0=0.00001; 

a=a0; 

  

if a<0.2 

fcp=(1+a/(1.2-a))*fc; 

end 

if a>=0.2 && a<=1 

  fcp=1.2*fc; 

end 

if a<=1 

ecp=0.0025; 

end 

x=s2/a; 

fc_biaxial=(ec*Ec)/((1-v*a)*(1+(Ec/(fcp*(1-v*a))-

2/(ecp))*ec+(ec/(ecp))^2)); 

if a>1 

    break 

end 

end 

 

    

function fc_triaxial=mander(Ec,fc,ec,eco,fcc) 

ecc=eco*(1+5*(fcc/fc-1)); 

x=ec/ecc; 

Esec=fcc/ecc; 

r=Ec/(Ec-Esec); 
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fc_triaxial=(fcc*x*r)/(r-1+x^r); 
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