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Abstract

By using an efficient adjoint-based aerodynamic optimisation method,
both the 2D and 3D bumps are optimised on an unswept wing with
either a natural laminar flow aerofoil or a turbulent aerofoil. The
mechanisms of the shock control bumps are analysed through pres-
sure drag analysis, as well as wave drag analysis that uses a far-field
method. It is shown that the bumps reduce both the wave drag and
the form drag. Comparisons of the performance of these two types of
bumps indicate that the 3D bump has an advantage over the 2D bump
at lower-lift off-design conditions. A low-order geometrical model for
the 3D bump is derived based on the correlations of the design para-
meters with respect to the strength and position of the original normal
shock wave on the datum wing. A finite number of 3D shock control
bumps are placed on a full 3D transonic swept wing. The designs of
the 3D bumps have been optimised in advance on an infinite swept
wing with a constant aerofoil section that is extracted from the mid-
span of a chosen 3D transonic wing. Further drag analysis exhibits
the effects of the 3D bumps on the various drag components. The
combined wing shape with 2D bump optimisations demonstrates the
potential of designing a wing with low sweep angle. The feasibility of
carrying out a large aerodynamic optimisation is demonstrated in the
combined optimisation study of a BWB aircraft with 3D bumps.
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Chapter 1

Introduction

1.1 Review in Aircraft Drag Reduction

With the prospect of substantial growth in future passenger demand, and a gain-
ing awareness of climate change issues particularly global warming, the European
Commission has issued the VISION 2020 document in 2001 [1], In this document,
by the year 2020, it is envisioned to achieve a reduction of thé C02 emissions by
50% and of the NO* emissions by 80%. Part of the reduction will lie achieved
by improved engine design with higher bypass ratio, by increased use of ad-
vanced materials, i.e. carbon fibre, and by better multidisciplinary optimisation.
However, the expected benefits from these technologies is limited and might be
insufficient to meet the stated target. Thus, drag reduction technologies are es-
sential in meeting the VISION 2020 targets.

Recent surging fuel prices have also motivated the investigations and implemen-
tation of drag reduction technologies in the aerospace industry. The average price
for one gallon of kerosene in Rotterdam over the period from mid 1980 to the end
of 2001 was 59 US-Cents. However, between 2002 and 2005, the price of kerosene
surged above 180 US-Cents. When it was 60 US Cents per gallon, the fuel for a
typical 6000 nautical miles mission of a long-range aircraft cost about 17% of the
DOC. With all the other parameters kept constant, the fuel share rises to 38%
of the DOC when the fuel price hits 180 US-Cents per gallon [2], Consequently,
a small drag reduction implies substantial fuel economy benefits. For example,
a drag reduction of 1% can lead to a DOC decrease of about 0.2% for a large

transport aircraft [3].



1.2 Skin Friction Drag Reduction

A typical drag breakdown of a civil transport aircraft in Figure 1.1 shows that
the skin friction drag and the lift-induced drag or vortex drag constitute about
45% and 40% of the total drag respectively [2]. Even though from this figure, the
wave drag contribution to the total drag is not that high compared to friction
drag (around 3%) , there is still room for significant improvements in this area
on the off-design performance of the aircraft. These presented data is averaged
from difference sources, the amount of each component may vary by a few per-
cent. For example, the percentage of wave drag can go as high as 10% on an
executive jet. In the following sections, various drag reduction technologies and
recent progress in these areas will be briefly presented to provide a context for
this project. The focus will be on wave drag reduction technologies particularly
shock control methods.

O Skin friction drag
m Lift-induced drag
O Interference drag
OWave drag

m other

Figure 1.1: A typical drag breakdown of an aircraft.

1.2 Skin Friction Drag Reduction

Since the late 1930s, researchers have looked into innovative ways to reduce skin
friction drag. In the 1970, the Arab oil embargo triggered further research in this
area. Skin friction drag reduction technology is generally categorised into two
major methods: 1) Delaying transition to maintain large extent of laminar flow
and 2) Reducing turbulent skin friction drag.

2



1.2 Skin Friction Drag Reduction

1.2.1 Laminar Flow Control

In order to delay transition efficiently, it is essential to identify the mechanisms
responsible for transition in the particular application, especially whether lin-
ear instability mechanisms dominate or whether non-linear/bypass mechanisms
are the primary concerns. Non-linear/bypass transition refers to any transition
process not dominated by a single linear instability mechanism, i.e. early tran-
sition induced by the development of crossflow and Tollmien-Schlichting insta-
bilities. These instabilities can be weakened to delay transition by choosing an
appropriate pressure gradient, by removing the slowest part, of the boundary layer
via suction through slots or small holes, 0L by cooling the' suiface.

For small aircraft with a low-sweep wing, laminar flow can be maintained by
shaping the aerofoil to provide a favourable pressure gradient up to an extent.
This is regarded as the Natural Laminar Flow (NLF) concept. However, at a
higher Reynolds number, larger civil transport aircraft with a highly swept wing
need other ways to achieve transition delays, such as suction near the leading
edge. Suction has been proved to be an efficient LFC tool. For minimal fabri-
cation and inspection problems, iesoarchers have developed the Hybrid Laminar
Flow concept. In the HLF concept, suction is applied at the region of the leading
edge with favourable pressure gradients in the spar box region. Since both active
control (suction) and shaping (NLF) have been employed, the concept is regarded

as “hybrid”.

Although using suction to control boundary layer transition has long been un-
derstood, the technologies to produce very small holes with acceptable surface

3



1.2 Skin Friction Drag Reduction

finish and accuracies were not available until about fifteen years ago in the early
1990s. Small holes may now be drilled using laser or electron beams. An early
typical suction system (Figure 1.2) was then designed in order to control accu-
rately the suction distributions for flight test demonstrations. Early test flights
[4, 5 utilising the earlier suction system design have demonstrated the potential
and feasibility of the HLF concept in modern civil transport aircraft. Critical
issues in the certification, design and manufacture of a HLF aircraft have been
investigated in the flight tests, lhe demonstrations were also aimed at analysing
the behaviour of the HLF devices during operation. Although the experimental
suction system on the A320 [4] was much too heavy to obtain a net benefit, the
flight tests have nevertheless shown that for high sweep and Reynolds number
conditions, a large extent of laminar flow can be achieved at cruise.

Figure 1.3: New revised suction system design.

In order to make the HLF system more attiactive and economically viable, the
suction system design has to become simpler and lightei. A new approach with a
simplified suction system for an A320 fin was designed and developed by Airbus
Deutschland and DLR within the AL1 LA progiamine [6, 7j. As shown in Figure
1.3, the complex substructures as seen in the earlier suction system design (Figure
1.2) are removed and the whole leading edge box is used as a single suction duct.
The revised design has much less complexity and hence reduced the maintenance
costs and weight. Furthermore, the new system is also self-adapting, for exam-
ple, it is automatically switched on when a predefined altitude has been reached.
Hence, it works without controlling the internal flow with the help of valves and
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flow meters.

Surface imperfections such as isolated roughness, gaps, steps, waviness clue to
manufacturing, i.e. holes drilling for the suction system, can provoke premature
transition. It is then necessary to study their effects on transition and to de-
velop calculation methods and criteria in order to estimate these effects [8, 9],
However, recent studies have shown that modern manufacturing techniques can
provide smooth surfaces, compatible with laminar flow requirements.

W ith all the promising results shown above, there are still some unresolved issues
with the HLF system. Laminar surfaces might easily be contaminated by insect
debris or other types of dirt when it is in operation. The HLF system will also need
to have an integrated anti/de-icing system. Potential solutions were proposed to
tackle these issues [2]. For example, cleaning/de-icing by pressing liquid or foam
out through suction holes. Although these systems were demonstrated to work,
the additional weight and maintenance requirements might again outweigh the

benefits gained from HLF control.

1.2.2 Turbulent Drag Reduction

Although LFC can achieve substantial drag reduction in many applications and
flow conditions, it is very difficult to establish and maintain laminar flow. There-
fore, turbulent drag reduction is also a key issue in aeronautics even though the
possible drag reduction that can be achieved is lower than that of LFC. Turbu-
lent skin friction drag can be defined as the area integral of the local skin friction
coefficient multiplied by the dynamic pressure. Thus, from this definition, a gen-
eral way of reducing turbulent drag is cutting down the total wetted area, skin
friction coefficient and local dynamic pressure, Reduction of wetted area can be
achieved by various means such as introducing innovative technologies, i.e. thrust
vectoring, to the aircraft design to reduce the control surface area, and by novel
aircraft configurations such as the blended wing body that obviate much of the

fuselage wetted area [10].

For a given wetted area, TDR can be achieved by active or passive boundary layer

manipulations. One of the active control methods of the turbulence boundary
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layer structure is surface air mass injection that is tangential or normal distrib-
uted blowing. Other methods include interactive wall-turbulence control as can
be achieved by zero-mass air jets (synthetic jets) or MEMS actuator arrange-
ments [11]. The latter approach is similar to that of controlling 'FS-waves. Since
it is known that high skin friction regions in turbulent boundary layers are closely
related to the near-wall streamwise structures, Refs. [12, 13] have investigated
effective ways to control the near-wall turbulent structures through proper inter-
active manipulation. The studies address the design concept of an adaptive TDR
control and it is shown that the streamwise mean velocity is reduced and hence

the turbulent skin friction drag.

Passive boundary layer manipulators for 'FDR include surface modifiers, such as
riblets and outer boundary layer devices to break up the large structures within
the boundary layer. The mechanisms of such devices is aimed to reduce the span-
wise strong exchange of high speed and low speed flow in the turbulent boundary
layer, where such exchange of fluid normal to the surface generates the enhanced
shear stress of a turbulent flow. Thus, obstructing this motion may significantly

reduce momentum transfer and skin friction [11].

Of all the various investigated devices, V-groove riblets have demonstrated up to
8% reductions of the local skin friction. However, there is also some indication
that the riblets perform well only within a particular velocity range [14]. Thus,
the spacing between the riblets have to be optimised for a given flight condition.
Nevertheless, experiments have been conducted to verify the performance of the
V-groove riblets in a large wind tunnel on a 1/11 scale complete model of the
Airbus A320 [15]. In this experiment, two-thirds of the model is covered with
the selected riblets and total drag reductions up to 1.6% have been obtained at
simulated cruise conditions. Based on the results gathered from the wind tunnel
tests, a flight test with the riblet film installed covering 75% of the wetted surface
of an Airbus A320 has taken place. Comparisons between the performance of the
aircraft with and without riblets have confirmed the drag reduction predictions

based on the wind tunnel tests.

Ref. [16] has then investigated the operational aspect and maintenance prob-
lems of these types of devices. Based on that, Cathay Pacific Airways airline has
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already implemented this device on an in-service Airbus A340. Although signifi-
cant fuel consumption benefits have been obtained, it is indicated that the riblet
film has a service lifespan of around two to three years. In order to obtain a net
benefit from the application of this technology, the quality of the riblet film needs
to be improved to sustain a longer service lifespan of at least 5 years.

1.3 Lift-Induced or Vortex Drag Reduction

As shown earlier from the drag breakdown in Figure 1.1, drag due to lift or vortex
drag comprises about a third of the total drag, hence it is a second major drag
component. Classical linearised theories [17] indicates that elliptical loading and
increased aspect ratio are the primary approaches to vortex drag reduction. How-
ever, the wing aspect ratio requires structural feasibility. In fact, modern civil
transport aircraft such as the Airbus A340 wing design already has a reasonably
high aspect ratio of 9.3. Therefore, alternative approaches to this problem were
considered. For example, various wing tip devices were developed to weaken the

tip vortex, which is the origin of vortex drag.

Tipfercfr
Figure 1.4: Conventional wing tip devices.

In recent years, there have been extensive research into many types of wing tip
devices in Europe. Besides wind tunnel testing, advanced CFD has also emerged
as an important tool in designing and optimising these devices. Improved far-held
drag extraction techniques have allowed drag predictions with greater accuracy
[18]. Some examples of conventional wing tip devices investigated are shown
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above in Figure 1.4. Unconventional novel wing tip designs have also been de-
signed and investigated, such as blended winglet and spiroid (Figure 1.5). Ref.
[19] studies these two unconventional wing tip devices using an Euler solver and
a numerical optimisation approach. The study found that compared to a wing
without any devices, vortex drag is reduced by 4% and 3.3% with the blended

winglet and spiroid respectively.

Figure 1.5 Unconventional wing tip devices, (a) blended winglet and (b) spiroid

The M-DAW Project, which aims to deliver to the European aerospace industry
a novel wing tip device, was launched in the year 2002 [20]. Recent progress from
the project have been reported in Refs. [21, 22]. In order to take into account
various other multi-disciplinary trades, for example, additional weight from the
device and bending moment of the wing, an “Equivalent Drag” function has been
defined. Although assumptions have been made, this function enables a quick
assessment of the overall design issues, not just aerodynamic performance but
also implications of the design impact on the whole aircraft system. As part of

the M-DAW project objectives, which is to assess the capabilities of advanced

CFD to predict the effects of these devices, Ref. [22] investigates the effects

of aeroelastic wing deformations and half model consideiations on the previous
CFD results analysing various wing tip devices. It is found that by introducing
wing twist data from the wind tunnel into the CFD calculations, the results from
the simulation is greatly improved. Additionally, the studies also realise that
the discrepancies of the results at the inbornd wing between the simulation and
experiment are due to the experiment using a half-model mounted on the wind
tunnel wall, whereas in CFD, a half-model with a symmetry boundary condition
is adopted. Therefore, comparisons of the results can be improved by simulating

the wind tunnel with the half-model.
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From the M-DAW project, the detailed data of the performance and character-
istics of two conventional wing tip devices (a large canted winglet and an Airbus
tip fence) has confirmed much of the understanding of the aerodynamics of the
devices and has been used for extensive CFD validation. A design exercise from
this project has achieved advances in the capability to manage wing tip loads
to provide drag improvements with reduced structural weight penalties. Future
project stages have then been planned to explore the most promising wing tip

device design.

1.4 Wave Drag Reduction

A typical Mach number region defined as transonic is between 0.7 to 1.2. From
there and with speeds up to Mach 3, it is considered as supersonic. Beyond that,
it is then hypersonic. For years, the SR-71 “Blackbird” has been officially the
fastest jet-powered aircraft, which has reached a record speed of Mach 3.3. In the
year 2004, this record has been broken by NASA’s X-43 Hyper-X experimental
aircraft. It uses an advanced scramjet engine and reached Mach 9.68. It was
during these pursuit of ever higher speed that engineers and designers realised
that another form of drag is imposed on transonic, supersonic and hypersonic
aircraft, which was later found to be caused by shock waves. Shock waves are
strong mechanical waves due to rapid compression of the air. Across the shock
wave, there is a large entropy increase, which is paid for in terms of a large drag
acting on the aircraft. This drag is then known as “wave drag”.

During transonic flight, even when the aircraft is travelling slightly below the
speed of sound or just below Mach 1, there are “patches” of local supersonic flow
on the wing. The supersonic flow is then terminated as a normal shock wave.
When this shock wave gains strength, not only will the wave drag increase sub-
stantially, there could be eventual boundary layer separation due to the severe
adverse pressure jump across the shock. Therefore, shock-boundary layer inter-
action basically ascertain the flight performance of a transonic aircraft. Shock
control methods are the main focus here and the various methods will be reviewed
in the next subsection. In the meantime, let us look at some, other technologies
with basically the same aim of reducing wave drag for transonic flight.
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A widely spread concept for wave drag reduction for transonic flight, is the intro-
duction of supercritical wing, in which the lift vector is moved rearward overall
with considerable lift carried by the aft portion of the aerofoil. The aerofoil has
little curvature over the forward portion downstream of the nose and is highly
cambered in the aft region to produce a reasonable amount of lift whilst the
strength of the shock wave formed on the upper-wing-surface is greatly reduced
at a given speed [23]. Thus, a thicker wing (structural benefits) can be designed
without reducing the design Mach number. Most modern civil transport aircraft
such as the Airbus A3XX series, have well-designed supercritical aerofoil sections

for their wings.

For transonic aircraft wings, another widely adopted method for reducing wave
drag is to sweep the wing back. This concept is originally dated back to the time
of the second world war. With a sweep angle, only the velocity component at
right angles to the leading edge of the wing contributes to the aerodynamic per-
formance. Consequently, aircraft can be designed to operate at a high transonic

Mach number while reducing the effective Mach number seen by the wing section

to a value just below the transonic drag rise. However, swept wings perform

worse at low speed [24].

Research by Whitcomb et al. (Ref. [17]) Inis shown that smooth variations in
the axial cross-sectional area of the whole aircraft can substantially delay the
divergence Mach number, which is known as the “area rule”. This finding has
then given rise to the famous “coke-bottle” design in some of the fighters.

With the design concepts introduced above, new materials, improved jet engines
and modern manufacturing technologies, global civil air travel, particularly long
haul intercontinental flights are then started to emerge to be more a feasible and
economical way of travelling. Although supersonic transport seems to be next log-
ical step. However, due to the combination of economic reality and environmental
concerns, modern transport aircrafts are still limited in the transonic regime. An
early version of supersonic transport aircraft, Concorde, has not proven to be
economically viable. Even though most military aircraft were designed to fly su-
personically, but these fighters are only capable of supeisonic, cruise over a limited
distance due to the wave drag. During most of the flight distance and in combat,
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they still cruise in transonic speeds [23]. Thus, the preceding discussions have
mainly focused on the transonic flight regime.

1.4.1 Shock Wave/Boundary-Layer Control Methods

In theory, shock-boundary layer control methods can greatly enhance transonic
flight performance in terms of cruise drag, hence speed and/or fuel consumption,
and with respect to the drag-rise and buffet boundaries. Shock-boundary layer
control can also be utilised to design wings of simpler geometry, e.g., thicker wings,
without the penalty of performance degradation, allowing a reduction in weight
and increase in payload [25]. In addition to that, control of shock strength and
buffet also provides scope for noise reduction on rotorcraft and improved agility

for military aircraft [26].

The potential benefits of shock and boundary layer control has motivated the
investigation of a wide range of devices and strategies. These can be broadly
categorised into two main types, passive and active shock control. The basic
principles underlying the development of such control methods are to raise the
energy of the boundary layer flow immediately ahead of the interaction region
and to achieve compression of the flow immediately ahead of the shock wave via
local modification of the aerofoil or streamline contours [26].

1.4.1.1 Passive Shock Control

[EAT IR

Figure 1.6: Illustration of a typical passive control with underlying cavity.
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Passive control, which means here control via a perforated surface with underlying
cavity in areas of strong shocks without applying suction (Figure 1.6). Promising
results from the preliminary investigations of such devices have initiated extensive
research activities. In Europe, the EC Project EUROSHOCK(I) was launched
[27, 28). Investigations conducted in the EUROSHOCK (I) Project were con-
centrated on laminar-type aerofoils. Laminar-type aerofoils were considered to
be more suitable for shock control, hence of higher potential for control, because
the inherent acceleration of the flow on the aerofoil/wing upper surface leads to

strong shock waves even at design conditions [11],

The investigations by Fulker et al. [27] have shown that the passive control sur-
face has the effect of replacing the single straight shock of the datum case with
a multi-shock system, and thus the wave drag is significantly reduced due to the
multi-shock system. However, it is also observed that there is a viscous drag
penalty is due to the aerodynamic roughness of the porous surface and/or the
flow through the surface causing excess thickening of the boundary layer. There-
fore, the reduced wave drag is overcompensated by this viscous drag penalty
Consequently, the total drag increases. Further numerical and experimental re-
sults from the thorough investigations of these devices in the EUROSHOCK (I)
Project [28] have confirmed that an increase in total drag is consistently observed
due to the dominating increase in viscous drag as discussed above. It is then
concluded that passive shock control is ruled out as an effective means of reduc-
ing drag of laminar wings. Nevertheless, it still remains as a potential for other
applications where aspects such as shock induced boundary layer separation is of

primary concern instead of drag reduction, e g. to delay buffet on-set.

1.4.1.2 Active Shock Control

Active shock control may include several control mechanisms: perforated plates
with underlying cavity but with part-suction from the cavity, discrete slot suction,
local contour modification (i.e. bumps) and even using spoilers. A hybrid control
concept, which combines a passive ventilation cavity in the shock region with
a discrete slot suction downstream of the passive cavity has also been proposed
and investigated. Although applying suction downstream of the device reduces
the viscous drag penalty due to the thickened boundary layer after the control
device, but the datum total drag level is difficult to obtain, at least not for a
feasible suction rate [25]. Bur et al. [29] also studied active and hybrid control
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experimentally and numerically. They concluded that a possible way to reduce
the viscous drag penalty when employing hybrid control is to reduce the distance
between the interaction region and the suction slot placed downstream of it.

In other investigations, Zhu suggests that when discrete slot suction is employed
ahead of the interaction region, the solution tends towards the inviscid solution,
resulting in the occurrence of a strong shock normal to the wall. Thus reduction
in viscous drag is achieved through re-energisation of the boundary layer are off-

set by an increase in wave drag [30, 31].

Figure 1.7: lllustration of an active control using “smart” flap piezoelectric actu-

ators.

There are other innovative concepts, such as active control using “smart” flap
actuators reported in Refs. [32, 33]. An illustration of the concept is shown in
Figure 1.7. The control is similar to a typical passive control with a perforated
plate covering a plenum chamber. The amount of bending of the piezoelectric
flap can be controlled and hence the rate of mass transfer going in and out of
the plenum chamber, hence it is considered as an active control device. The ex-
perimental results of this control concept indicate that due to limited achievable
deflection of the piezoelectric material, the level of shock control is limited though
favorable. However, the position of the flaps relatively to the shock wave can be

improved to provide a better performance.

Due to the fact that spoilers are already widely used within the aircraft industry,
there is potential for solving many of the system integration issues that troubled
other shock control strategies. Thus, Shaw et al. investigated the potential of

13
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using spoilers for shock control purpose [20]. It is found that there are no drag re-
duction benefits identified for the spoiler in comparison with the contour bumps,

due to a base drag penalty associated with the spoiler. However, the study is

far from complete since there are still a large number of parameters that can be

altered.

As part of the EC Project EUROSHOCK(II), Dima et al. [34] compared the
performances of a contour bump and a novel suction/blowing plenum chamber
arrangement or a “multi-box” device in the shock region. It is then concluded
that both contour bump and the “multi-box” device are very effective in reducing
wave drag and alleviating buffet. However, both devices will need to be adap-
tive for optimum performance. The EUROSHOCK (I1) Project has also involved
thorough investigations on various shock control devices as mentioned and con-
cluded that local contour modification is the most effective shock control methods
when drag reduction is the main driver and with additional potential benefits re-
lated to buffet and without significant viscous drag penalty [25]. The following
subsections will then present a more detailed review of the research on reducing
wave drag and hence shock wave-boundary layer control utilising local contour
modifications or shock control bumps, which include both two-dimensional and

three-dimensional shock control bumps.

1.4.1.3 Two-Dimensional Shock Control Bumps

Shock control by local contour modifications or bumps was proposed by Fulker
et al. [35]. A simple illustration of the basic principle of a shock control bump is

shown in Figure 1.8.
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Figure 1.8: Mechanisms of shock control bump.
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The upstream concave part of the bump induces an isentropic. compression wave
leading to a pre-shock compression and thus decreases the Mach number ahead
of the shock. Note that the design of the shock control bump is two dimensional
in the sense where the shape of the bump is the same along the span, thus it is
referred as “2D bump” for the rest of the thesis. Encouraging preliminary results
from Fulker et al. [35 27] were then extended to further investigations of the
effect of 2D bumps on drag and high-speed performance boundaries of transonic
aerofoils and wings in the EUROSHOCK (Il) Project [25].

Zhu [30] has also conducted some investigations on 2D shock control bumps. His
findings suggest that its effectiveness is strongly dependent on the shock position,
which therefore implies that this type of device is very suitable for a laminar flow
aerofoil, for which the shock wave position is relatively steady. In addition, the
height of the bump also imposes significant impact on its performance and is
largely dependent on the original shock strength. The beneficial effects of the
bump is directly proportional to the shock strength.

Investigations from Ref. [36], which is part of the EUROSHOCIv(II) Project,
studied the influence of sweep on the 2D bum]) effectiveness. The influence has
been found to be rather small. This is consistent with the findings from Kutzbach
et al. [37], who have also investigated the effects of sweep of a 2D bump on in-
finite swept wings numerically using various turbulence models. Effectiveness of
the 2D bump placed in the shock region in reducing wave drag has been further
confirmed and that the parameters of the 2D bump, i.e. height and position have
to be optimised, in terms of drag, with respect to the shock strength, which agrees
with the findings by Zhu [30], It has also been found that a 2D bump positioned
at the downstream of the shock reduces viscous drag and postpone buffet onset

to higher lift coefficients.

Since the effectiveness of the 2D bump relies strongly on the bump height with re-
spect to the shock strength and on the relative location of the bump with respect
to the shock location, the 2D bump has to be adaptive. A bump optimisation
study carried out by EADS-Airbus for the laminar-type aerofoil DA LVA-1A sug-
gested the following geometric characteristics of the 2D bump. Effects of the
bump shape are found to be insignificant in terms of drag. At a structurally
feasible optimum of 20% chord bump length, the crest location at 70% of the
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bump length to achieve a reduced sensitivity to shock movement, bump crest
located about 2-5% downstream of the inviscid-outer-flow shock position, and
bump height to be adjusted according to the lift coefficient or shock strength [11].

A research group at Stuttgart University has also carried out extensive research
on 2D bumps [38, 39, 40, 37]. Sommerer ct al [38] have employed a direct numer-
ical optimisation strategy using a commercial optimisation package (The Pointer
Code of Synaps Inc. [41]) on several different bump shapes, including a shape
based on a loaded beam on two ends, a triangular shape, a concave polynomial
and a polynomial of 11th order. The optimisation results obtained indicate that
the shape of the 2D bumps has a minor effect on the performance of the bumps
with the best being the triangular and high-order polynomial bumps. The 2D
bumps have also been optimised at multiple design-points to obtain a more com-

promised performance over a larger range of operating conditions.

For further improvements, the team has also looked at the possibility of employ-
ing both variable camber and shock control bumps on an aerofoil, Research by
Coustols et al [42] has shown that a thick cambered trailing edge, which in-
creases the rear loading whilst reduces the upper surface pressure recovery, can
reduce wave drag significantly. Thus, with this wave drag reduction capability
from the cambered trailing edge, an additional 2D bump promises a further in-
crease in aerodynamic efficiency. The optimisation of this combination produces
substantial gains in terms of lift-drag ratio. It is also noticed that the height of
the optimised 2D bump in this combination with variable camber is lower than

that without variable camber.

Some structural design concepts have been proposed to implement an adaptive
2D bump structure into the aircraft design [40, 43]. In order to retain the prin-
cipal design of the aircraft and to avoid too much additional complexity and
weight penalties, the adaptive shock control bump system can be integrated in
the wing spoilers. An illustration of the system is shown in Figure 1.9. The wing
adaptive system also includes a variable camber and a feedback control system
to control the shape of the 2D bump on the spoiler. Both studies utilise “smart
structure” shape memory alloys as the micro-actuators in the bump shape control
mechanism. Shape memory alloys have the advantage of extremely high power to
volume ratio and good mechanical properties [44]. It is then demonstrated that
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impediments from the adaptable structural side can be solved and implementing
an adaptive 2D bump into the aircraft system is feasible.
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Figure 1.9: Adaptive wing system.

In the EUROSHOCK(II) Project, the benefits and penalties of implementing 2D
bump on wings have also been evaluated via introducing bump control into a
hybrid-laminar-flow (HLF) wing of a long-range A340-type aircraft [25]. The
wing is designed to have fairly strong shocks but limited shock movements with

changing Mach number and lift coefficients, hence, chordwise bump adaptation

was not considered in this demonstration. The bump designs were based on

the optimised geometric characteristics mentioned earlier for an off-design Mach
number. The results indicate that the bump is not as effective as expected at
the design point of the wing section due to the bump crest being located too
far downstream. Furthermore, it is also indicated that at off-design Mach num-
ber and at off-design lift coefficients, a variable-height bump is still required to

achieve optimum drag reduction.

With all the information obtained on shock control on the HLF wing, the long-
range mission benefits of such implementation are estimated to give a reduction in
fuel consumption per year of about 353 tons or 1.23%. However, a final assessment
of the bump control benefits and penalties can only be made after a much more

detailed device-integration study.
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1.4.1.4 Three-Dimensional Shock Control Bumps

As discussed in the previous section, although the wave drag reduction capabil-
ity of a 2D bump is confirmed, it is also realised that 2D bump is only effective
over a narrow operating range. This setback could be tackled by introducing
an adaptive device, which implies a further increase of system weight load that
might overcompensate the benefit of the drag reduction. Thus, other alternative
potential three-dimensional shock control devices have been proposed for possible

wider operating range, such as three-dimensional bumps.

In contrast to 2D bumps, three-dimensional bumps introduce geometric vari-

ations in the spanwise direction. Additional design parameters, the width of

the three-dimensional bump in the spanwise direction and also the spacing be-
tween the bumps are considered. Figure 1.10 illustrates the differences between
a 2D and three-dimensional bump. As shown from Figure 1.10, the 2D bump
has constant XY-plane in the Z-direction (or spanwise direction), while for the
three-dimensional bump, the cross-sectional XY-plane shrinks gradually in the
Z-direction, thus it is considered “three dimensional” and will be referred to as

“3D bump” for the rest of this work.

Figure 1.10: a) 2D bump and b) 3D bump

Physically, the most important differences are that the shock wave is now three-
dimensional, and that the flow and the boundary layer can now go around the
bump, thus, the shock-boundary layer interactions will differ. It is this third di-
mension geometry variation that might provide further improvement of the shock
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control bumps over a wider range of operating conditions.

So far, there have only been a limited number of works reported on shock control
studies using 3D bumps. Takahashi [45] briefly studied the inviscid effects of a
3D ramp bump on a RAE 5225 supercritical aerofoil. His results show that at the
design point, the 3D ramp bump seems to give a great reduction in wave drag,
probably more effective than a 2D bump. These encouraging inviscid results lead
to further investigations of the viscous effects of the 3D bump in Refs. [46, 47).
Instead of using the previous supercritical aerofoil employed in Takahashi’s inves-
tigations, a NLF aerofoil, the RAE 5243 was adopted. Results from Refs. [46, 47]
show that unlike 2D bumps, where wave drag reduction is always accompanied
by viscous drag or skin friction drag penalty, 3D bumps can reduce wave drag
as well as skin friction drag. Thus, these results indicate that the 3D bumps
might potentially have a greater drag reduction capability than the 2D bumps.
However, it should be noted that the performance of the 3D bump from Monet’
investigations has not reached the level of that of the 2D bump. Therefore, it
has laid down the groundwork for the present work in this thesis to optimise the
design of the 3D bump and also to provide further analysis of its mechanisms and

performances.

Additionally, Holden et al. have also carried out parallel experimental studies
[48, 49], where the 3D devices, including 3D bumps of different shapes, such as
ramp and wedge-like, were mounted on the working section of a supersonic wind
tunnel. The investigations have demonstrated that these 3D bumps are effective
in wave drag reduction by bifurcating the shock-wave. This effect is favourable in
shock control since a A-shock structure reduces the total pressure losses relative
to the case of a single strong normal shock wave. The results also suggest that
3D bumps might be a very beneficial device since they appeared to cause little
boundary layer thickening compared to the other 3D devices such as slots and

grooves.

1.5 Objectives

The encouraging preliminary results of the 3D bumps gives the main motivation
behind this project. The objectives of this thesis include the following.
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Validation of the numerical flow solutions with existing wind tunnel exper-
imental data.

Optimisation of the designs of a three-dimensional hump on infinitely unswept
and swept wings.

Investigations of the mechanisms and performance of the three-dimensional
bumps, including detailed drag analyses.

Applications of the three-dimensional bumps on three-dimensional tran-
sonic wings.

Several novelties of this thesis can be derived from this list of objectives. Besides
the preliminary work that have been carried out for the initial design of three-
dimensional shock control bumps at Cranfield, at least to the author’s knowledge,
this work is the first to provide detail investigations into the mechanisms and
performance of this device. This work has then been extended to applying this
device on full three-dimensional transonic wings to demonstrate its feasibility in

“real-life” applications.

1.6 Outline of this Thesis

The context of various aircraft drag reduction technologies presented in this chap-
ter should provide some knowledge on recent advancements of these methods. The
following Chapter 2 provides the descriptions of the numerical flow solver, which
is the main numerical tool employed in this project, with details including the
MPI parallelisation and a far-held drag analysis method. The results from the
validation of the how solutions for 3D shock control bumps are presented and
discussed in Chapter 3. Before presenting the main results, details of the rest of
the numerical tools developed for the adjoint-based aerodynamic optimisation are
presented in Chapter 4 The tools include the grid modeller, the adjoint solver
and the Sequential-Quadratic-Programming optimiser. The last three chapters is
the core of the thesis, which present the optimisation results and analyses of both
the 2D and 3D shock control bumps. Chapter 5 presents the work carried out for
2D bumps on unswept wings. The results of the 2D bumps from this chapter are
then compared with the 3D bumps applied on the same unswept wings in Chapter
6. Both chapters detail the optimisations and analysis work carried out for the
shock control bumps. Chapter 7 investigates the performances and optimisations
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of employing 3D bumps on an infinite span, a full three-dimensional swept wings
and a Blended-Wing-Body. The very last chapter concludes the achievements
and findings of this thesis and some suggestions for future work.
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Chapter 2

Numerical Flow Solver

As mentioned in the previous chapter, the investigations conducted in this project
are numerical based. This chapter is aimed at presenting descriptions of the nu-
merical flow solver employed in this project - MERLIN. It is an in-house CFD
code developed at the Centre for Computational Aerodynamics of Cranfield Col-
lege of Aeronautics by Qin et al. [26, 50]. MERLIN is a 3D Reynolds averaged
Navier-Stokes flow solver. The version employed in this project is a structured
multiblock code. The unstructured version of MERLIN has also been developed
in Refs. [561, 52]. The author has contributed some modifications to the code
including adding some additional boundary conditions and implementing parallel
computing capability using MPI into this structured version of MERLIN.

In the code, the governing equations are cast in a cell-centred finite-volume form,
the convective flux calculations utilise Osher’s approximate Riemann solver [53] to
capture flow discontinuity such as shock waves and employs a MUSCL scheme [54]
for higher order accuracy. As for time discretisation, both explicit and implicit
methods have been implemented. The algebraic turbulence model of Baldwin-
Lomax [55], the k> two equation turbulence model [56] and a curvature-based
algebraic turbulence model [57] are employed in this work. Before detailing the
numerical methods, it is necessary to present the fundamental equations that
govern the physics of the flow, which are described in the following section.

2.1 The Governing Equations

The Navier-Stokes equations are derived by applying the conservation laws of
mass, momentum and energy to an infinitesimally small, moving fluid element.
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2.1 The Governing Equations

Complete derivation details are beyond the scope of this thesis and can be found
in the literature [17, 58, 59, 60]. In integral form, the full 3D Navier-Stokes

equation can be written as below:

(2-
where F is the flux vector, S is the source term vector and Q is the vector of five

conserved variables,

q = (p pu pl) pw pE y (2.2)

p is the fluid density, w v & w are the three velocity vectors and E is the total

energy,

E—;A(u2+ v2-fur) +e (2.3)

and e is the specific internal energy, given by,

e= P 2.4
7~ 1P 24)

where p is the static pressure and 7 is the ratio of specific heats, given as 7=1.4.
However, note that when the k-u turbulence model is employed, an additional
two more conserved variables need to be solved for and the vector in Egn. (2.2)

becomes

Q=(p pu pv pw pE pk fxuy

where k is the turbulence kinetic energy and u is the specific dissipation rate,
which will be discussed in more detail in a later section of this chapter. Addi-
tionally, it should also be noted that the k-u; turbulence model is not strongly

coupled with the flow equations and is solved sequentially.

The flux vector F from Eqgn. (2.1) may be subdivided into inviscid and viscous

terms:



2.1 The Governing Equations

Fl- F”
F= G- G" 2.5)
H - H"

Further details of the flux vector in Egn. (2.5) can be found in Appendix A.

The molecular viscosity is calculated using Sutherland’s law in non-dimensional

form,

00 a

where T is the static temperature and the turbulence viscosity fit, will be deter-
mined by the turbulence models employed as will be presented in the later section.

The heat flux vector g as seen in the flux matrices (Egn. (A.l)) is given by

where n is the coefficient of thermal conductivity.

As for the source term vectors S in Eqgn. (2.1), when the flow is inviscid or

laminar, or zero equation turbulence models/algebraic turbulence models like the
Baldwin-Lomax and the curvature based turbulence models are employed, this
term is simply 0. Otherwise, if a two-equation model such as the k-u model is

employed, the source term is given by

s=(00 000 SK (2.6)

In order to close this mathematical system and to enable the solution of Eqgn.
(2.1) for the components of vector Q, another equation is needed, which is the

equation of state of a perfect gas, p —pRT.
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2.2 Primitive Variables & Non-dimensionalisation

In MERLIN, the code is actually solving for the vector of primitive variables P,

which is defined as

pP=(0 uvwpy

instead of the vector of conservative variables Q in Eqn. (A.1). The reasons

behind this choice is that it will enhance the robustness of the solver. The trans-
formation between these two sets of variables is achieved via a straightforward

matrix multiplication.

All of the mean flow variables, including the turbulence variables are non-dimensionalised.
In the current version of MERLIN used in this project, the variables are non-
dimensionalised by the freestream conditions as shown below:

$*=Fp-| u-* u
© " VZ
« * w
' w
v = v~ ' =vZ
p P . P
Poo(Ke) PnolM'i P Poo

where P«, = yjn2 + + wlo an(i the turbulence variables:

1jl

and
Vo

where | is the turbulence length scale.

The non-dimensionalised variables will have a similar order magnitude, which
increases the accuracy of the calculations because it avoids the computations of
numbers of drastically different order of magnitude. The superscript asterisk (*)
that denotes non-dimensional variables will be dropped in the following sections

for convenience.
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2.3 Domain Spatial Discretisation

Basically, it is difficult to obtain an analytical solution for the full 3D Navier-

Stokes equations (Egn. (2.1)). Hence, in order to solve this set of equations
numerically and efficiently, they are spatially discretised using a finite volume

formulation.

2.3.1 Finite Volume Formulation

The whole domain is sub-divided into a large finite number of small volumes/cells,
and the Navier-Stokes Egn. (2.1) are applied locally to each of these volumes. In
this project, the computational mesh is generated using a commercial meshing
package called GRIDGEN [61]. Since the Navier-Stokes equations are satisfied
locally at the level of each cell, it would also be valid for the entire domain if the
equations were to be applied directly to this domain. Consequently, Eqn. (2.1)
is sub-divided into i number of cells and can be simplified as

Vi-gp = -(Ri + SiVt) (2.7

where V is the cell volume size, Q, and S* are the cell-averaged state variables

for cell i and the residual vector R, is the sum of all the fluxes passing through

the six cell faces of the cell, as written below

(2.8)
faces
with n as the vector normal to the face pointing outwards and S is the area of

the corresponding face.

It is also necessary to point out that the cell-averaged values of the primitive
variables are stored at the centre of the cell. Figure 2.1 illustrates a cell (a six-
faces hexahedron) with all the eight corresponding grid points, which is defined
by GRIDGEN and the metric/normal vectors on the cell faces, where £, rj and C

represent the i, j and k directions respectively.

The right hand side vector R from Egn. (2.7), is needed in both the explicit
and implicit algorithms that will be described in latter sections. Hence, the next
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subsection details the calculations of the flux terms F(Q,), for the right hand side

vector R in Egn. (2.8).

2.3.2 Convective Flux

Osher’s approximate Riemann solver is implemented in MERLIN in order to
capture flow discontinuities such as shock waves efficiently, thus, it is particularly
useful for most of the aerodynamic cases in this work, which deal with high speed

compressible flow with shock waves.

2.3.2.1 Osher’s Approximate Riemann Solver

In the approximate Riemann solver, the flux terms at a cell interface are evaluated
by incorporating local information on the flow characteristics at this interface.
This is achieved by solving an approximate one-dimensional Riemann problem or
more trivially known as the shock-tube problem at this interface [62]. The cell
interface represents the membrane of the problem with two different flow condi-
tions Q1 and QR on each side of the membrane. Depending on the state of the
flow on each side of the interface, different expressions are provided to calculate
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the flux. As a result, any flow discontinuity can be captured with this method.

In contrast to the Godunov method [63, 64] for the exact solution of the Rieinann
problem, this Riemann solver employs the Osher’s flux difference splitting method

[63] and assumes that the flux can be split as

F(Q) = F+(Q) + F-(Q) (2.9)

The original Riemann solver can then be written in the form of

F(QI,Qn)=F+(QJ + F-(Q,,) (2.10)

Therefore, Egn. (2.10) can also be re-written as

F(Q1,0r)— 2 F(QI)+F(Qr)~ J[ ?n\A(Q)\dQ (2.11)
q
where

AQ) = = B(Q) -diag[Ai(Q), A2(Q), A3(Q)] *B_1(Q)

SO,

IA(Q)] = B(Q) +diag[|A.(Q)I, IA2(Q)I, IA3(Q)I] +B " Q) (2.12)

As a result, the Riemann solver is independent of the flux splitting and the flux
Jacobian A(Q) has to be integrated in the state space.

The integrals depend on the particular chosen integration path of A(Q). Conse-
quently, the Riemann solver is regarded as approximate. This chosen integration
path is laid upon where it is tangential to the eigenvectors B(Q) of A(Q).

Figure 2.2 illustrates the integration path for a P-variant scheme for the one-
dimensional approximation made at the cell interface as described above. The
path connects the left and right states QL and via three sub-paths P*, k=1,2,3.
The points where the waves A], A3intersect with the path defines the sonic points
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2.3 Domain Spat,ial Discretisation

Figure 2.2: Integration path for Osher’ approximate Riemann solver (P-variant).

Q50 and Q9 while Qi and are the intersection points between the three

sub-paths. Along each sub-path Tk, the corresponding Riemann invariants are
constants. Thus, the intermediate states Qi and Qa can be evaluated from the
initial and final conditions, QL and Qn respectively. Therefore, calculating the
integrals along the sub-paths is possible and the end results of Eqgn. (2.11) are

presented in Appendix D.

2.3.2.2 MUSCL Scheme

The numerical accuracy for the approximate Riemann solver described in the
previous section is just la order, leading to poor accuracy in smooth regions of
the flow. Hence, the MUSCL scheme is utilised as proposed in Refs. [65, 54],
in order to obtain higher-order spatial accuracy. Consider the interface between
cells i and id-1, the numerical scheme performs a linear extrapolation of the flow
properties in the two cells adjacent to the interface (cells i and i + 1) and an
additional third cell from each side of the interface (cell i - 1or i+ 2), for each
respective left and right state. Thus, the generic form of the equation is written

as



2.3 Domain Spatial Discretisation

P1—Pj+~[(1_ K(Pi—Pi-i) + (1 + ~)(Pi+i - Pi)] (2.13)
Ptf —Pf+i ~ j [(1 ~ tBh(P-i+i —P») + (1 + ft)(Pj+2 - Pj+i)] (2.14)
for cell i = 1,2,3- «-n. The value of the parameter k is chosen as | for a third

order accuracy in space. Also note that, as shown in Eqn. (2.13) and (2.14), the
MUSCL scheme interpolates for the primitive variables.

Although this method can provide improved accuracy in the smooth regions of the
flow field, it will however generate oscillations around discontinuities and could
even prevent convergence of the solution. Therefore, the solution to this problem
is to retain third order accuracy in the smooth flow field regions whilst switching
to the first order scheme in the vicinity of discontinuities. This is achieved by

introducing a slope limiter, defined as

2(Pi+1-P ) (P,-P,-)+£
* (PH-i-PO’ +iPi-Pi-i™ +e 1

where e is a smallvalue to prevent the denominator from becomingzero in the

smooth flow regions.

Thus, by introducing the limiter above (Egn. (2.15)) into the MUSCL scheme,
Egn. (2.13) and 2.14 are then re-written as

P1=Pi+\ [L- SiK)Pi- Pi-,) + (L+ SiK)(Pi+i - Pi)] (2.16)
P/i = Pi+l - [1- Si«)(Pi+l - Pi) + (L + SiK)(Pi+2- Pi+I)I (2.17)

In the smooth flow regions, s, is close to 1 and the scheme remains inthird order
accuracy. While in the presence of discontinuities where flow gradient is large, st
is close to 0 and it reverts back to first order scheme.

2.3.3 Diffusive Flux

The diffusive flux terms are evaluated directly from F", G" and H" (Eqgn. (A.l))
using central discretisation at the centre of the acquired cell face. In order to
calculate the stress tensor r, the velocity and temperature gradients have to be
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2.3 Domain Spatial Discretisation

calculated at this cell face centre. To achieve that, an auxiliary cell is formed at
this cell face between the two adjacent cells. Figure 2.3 illustrates the auxiliary
cell, which is bounded in dashed lines and the shaded area is the cell face where the

fluxes are to be evaluated. With this approach, the gradients are then calculated
using Gauss’ theorem. So, for the velocity component u in the x direction, from

Gauss’ theorem,

+ V eudQ — () u *ndS
n

which, once discretised on the auxiliary cell, becomes

V-u="YMiir niSi (2.18)
Vv =i
where V is the volume of this domain or the averaged value of the volumes of
these two cells, Ui is the averaged value of u at the centre nodes of the six faces,
illustrated by diagonal crosses in Figure 2.3, iii is the normal pointing outwards
on these faces and Si is the area of the corresponding faces. The multiplication
of niSi is also the corresponding metric vectors £/, r// or G-

The averaged value ui is evaluated using the known quantities from the four
neighbouring cell centres. Take the evaluation of ujx for example,

Uji = T Ui+l k + uid+l,k T

As for the metric vectors, at this auxiliary cell face at j 1,

Viji ~ 9(rh,j,k T rii+i,j,k)

Finally, with all the needed values calculated at the six auxiliary cell faces, a
gradient, for example, — , expanded from Eqn. (2.18), is given by

du
dx

\—/ [Ui2$ixi2 ~uil€xil T UfTIxj2 uj\r)yxj\ 17 uk2Cxk2 ukICx A‘l]
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Figure 2.3: The dual volumes for viscous flux calculations.

This is done for the rest of the velocity and temperature gradients. The calcula-
tions of the diffusive flux terms in F,;, Gwk IT" are then straightforward.

Up to this point, the domain spatial discretisation and the calculations of both
convective and diffusive flux terms for the right hand side vector R, have been
presented. In order to march the solution in time, Eqn. (2.7) has to be discretised

in time as well.

2.4 Time Discretisation

In this work, only the steady state of the solution is considered. However, it
is common practise in CFD to march the solution in pseudo-time step to the
acquired steady state. In MERLIN, a choice of an explicit or implicit method is

available.

2.4.1 Explicit Update

The spatial discretised Navier-Stokes equation (Egn. (2.7)) can be re-written as
a system of ordinary differential equations that are continuous in time,
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vi =-R(Q) (2.19)

Note that the source term vector S, is not included here. Recall from Eqgn. (2 6)

S=(0 0000 y

the first five values in the vector, which corresponds to the five conservative

variables that define the essential fluid flow state, are nil. Besides that the

convergence criteria for the steady state requires that

R(Q)=0

and this criteria does not take the flux terms contribution from the turbulence

variables into account.

The temporal discretisation of Egn. (2.19) can be written as

Q"+ - Q»

-R(Qn) (2.20)
where the cell volume is incorporated in the time step At. As a result, by re-
arranging Eqgn. (2.20), the update of the conservative variables at the next time

step is simply

Qu+tl= Qn- AfR(Qn) (2.21)
A local time-stepping method is employed to evaluate the value of At. There-
fore, its value is not uniform across the domain at the instantaneous global time
iteration and is dependant on its volume size and local flow properties. This lo-

cal time-stepping method can, substantially speed up the convergence rate. Also
note that, nevertheless, the turbulence variables (k and cu) are updated using the

same Eqgn. (2.21), only that the additional source terms Sk and Sm are added in

the RHS of the equation.
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Although this explicit updating method is quite simple, it is only subjected to a
small time step At due to numerical stability restrictions. So, a stability condition
where the CFL number is to be less than unity is required in the local time step
calculation. However, the speed of the convergence using explicit updates is still
considered slow though stable, especially when complex 3D problems are to be
dealt with. Hence, a more efficient implicit method is implemented.

2.4.2 Implicit Update
In contrast to the explicit method, the implicit method evaluates the residual

vector at a future time level, so re-writing Eqn. (2.20),

"al- O
0 +A| 0 -R(Q"+1) (2.22)

The RHS residual vector is then expanded using Taylor’s expansion,

mL(Q"+l - Q") + higher order terms (2.23)

R(QAH = R@") 4

By truncating the higher order terms and substituting Eqgn.
(2.22) and defining nAQ = Qr+1 —Qn,

(2.23) into Eqgn.

[ <9R(Qn) B .,
Atsrg - (AQ=-RE@M (2.24)
or in primitive variables form,
f10Q dR(Qn) .. _
Atap 4P ("AP) = -R(Qn) (2.25)

The linearised system of Eqn. (2.25) is now solving for "AP and the Jacobian
or>

——needs to be constructed. Instead of the constructing the exact Jacobian, the
Jacobian is actually approximate and Eqgn. (2.25) is again re-written as

| 9 <RQ) (map) = -R(Q" -
rtan ) AP = -R(@QY) (2.20
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where the symbol (~) is added to the LHS Jacobian, which denotes the approxi-

mation.

With the matrix constructed, the large linear system can also be expressed as the

following

Ax = b 2.27)

By using an approximate direct inversion method, the Block Incomplete Lower-
Upper decomposition with no fill-in or BILU(O), the block diagonal LHS matrix

A is then approximated as

A « LU

where L is a lower triangular matrix and the U is an upper triangular matrix.
Hence, the original system (Eqn. (2.27)) can then be inverted as below

x SU-1L-1b

Finally, with the solutions of NAP obtained, the update of the primitive variables

is just straightforward, where

pn+l _ pn | u™p

The main numerical schemes employed in MERLIN solving for the main flow
properties have now been presented. The following subsection will then present
the boundary condition treatments implemented in the code.

2.5 Boundary Conditions

The physical boundary conditions are actually the main driver on the way the

solutions evolve. In order to properly simulate the physical boundaries required

at each different case, i.e. wall, appropriate numerical treatments have to be
implemented at, the boundaries. In the current version of MERLIN, ten types of

boundary conditions have been employed, including a periodical and a subsonic
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outflow boundary condition added by the author.

Before introducing these various boundary conditions, it is necessary to point
out that two auxiliary cells or the so-called halo cells are actually added at the
boundaries, so that the calculations of the flux terms at these boundaries are
practically the same as the ones inside the domain. A schematic diagram of these
halo cells at the start of the boundary is depicted in Figure 2.4. The geometry
information of these fictitious halo cells are either extrapolated from inside the
domain linearly or through mirroring. The numerical treatments are then applied
to these halo cells. The various boundary conditions are detailed in Appendix C.

* pr

m m nm
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2

S 11S l«

Figure 2.4: Schematic diagram of Imlo-cells.

2.6 Turbulence Models

As presented in Egn. (A.3), which is for the calculation of the stress tensor,
besides the molecular viscosity //, the turbulence viscosity //, needs to be evaluated
as well by using the turbulence models available in the code, lo start with, the
Baldwin-Lomax algebraic turbulence model will be presented in the following

subsection.
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2.6.1 Baldwin-Lomax Algebraic Turbulence Model

This turbulence model is the most widely used in this project, mainly due to the
fact that it takes less time to compute than the two-equation model and that it
is currently the only turbulence model implemented in the adjoint solver. This
model is based on the turbulence mixing-length hypothesis proposed by Prandtl
and is significantly modified from the Cebeci-Smith model [55, 50]. It also has the
advantage of modelling the turbulent boundary layer without having to search
for the boundary layer edge to determine a length scale for the model. Just like
the Cebeci-Smith model, it is a two-layer model, where the turbulence viscosity

is divided into an inner and outer layer as given by:

(tk) inner> Vh ~ \h, crossover>
= 2.28
tk (tk)outerl Lh ” Uh crossover- (2.28)

where yn is the normal distance from the wall measured at the cell centre and
yn, crossover is the point which the calculated inner and outer /q are equal.

In the inner layer, the mixing-length hypothesis is applied, hence the turbulence
viscosity is defined as
(tk) inner —P mix\L\ (2.29)

and by using the van Driest damping function, the mixing length /,,#* is given by

mix = KN [1 - e~»"AH (2.30)

where k h A+are the von Karmann constant and van Driest constant respectively.

While y+ is the non-dimensional normal wall distance,

= APTUN \Rekv
PW Y

with uT as the friction velocity and r as the shear stress at the wall. The subscript
w above denotes the values evaluated at the wall. Finally, the vorticity magnitude
\o\in Egn. (2.29), is evaluated as below for a three-dimensional flow
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The turbulence viscosity in the outer layer is given by

(PHouter = P&CIC)Pwaite FKie)(yn) (2.31)

where a is the Clauser constant, Cep is an additional closure coefficient, and the

wake function

GnakeVinekeU dxf f
wake  min ( UmaxFr El (2.32)

Here, Udiff is the maximum difference of the velocity magnitude across the bound-

ary layer

Udiff —max (Vu2+ v2+ u/g - min +Vv2+ u;g

and the value of Finax is given by the maximum of the function
F(vn) = yn\u\ (I - e Vf,AD (2.33)
Thus, Umex refers to the value oi yn where Fmax is found. The Klebanoff function

from Eqgn. (2.31) is defined as

FAlcb(ln) 1+ 55 v ymex | (2.34)

The closure coefficients that have been presented above are summarised as follows:

k=041 A+ =26 a = 0.0168

Cep= 1.6 Cxieb —6.3 (‘wake ~ 0.25
Although the Baldwin-Lomax model is easy to implement and efficient, it is more
suitable for steady flows with little or no separation since it performs relatively
poor when there is large separation, i.e. vortical separation, in the flow. Con-
sequently, the curvature-based turbulence model was proposed to improve the

ability of the algebraic model in capturing vortical flow structure.
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2.6.2 Curvature-Based Algebraic Turbulence Model

Degani and Schiff have proposed some modification on the Baldwin-Lomax alge-
braic turbulence model that has significantly improved the turbulent vortical flow
simulation for many vortical flow test cases [66]. The modification is based on
the observation that under the separated vortical flow, there remains an attached
boundary layer, which the Baldwin-Lomax model works well on. Therefore, it
is important to select the appropriate length scale for these attached boundary

layers.

In the Degani-Schiff model, the criterion is that the first peak of the moment of
vorticity distribution away from the wall should be used to represent the underly-
ing attached boundary layer. However, weaknesses of the model is realised within
the vicinity of the crossflow separation where the peak representing the attached
boundary layer and the vortical sheet are very close to each other. Besides that,
the accuracy of the model decreases as the region with a frozen length increases

[67].

Another study by Panaras and Steger suggested that the Degani-Schiff model
might have picked up the wrong peak in the F(yn) profile, hence they proposed
an empirical way called the Kent method to separate the outside vortical flow
from the attached boundary layer [68]. By doing so, an absolute maximum can
be found between the wall and the Kent position. As a result, both the vortex
and the possible sublayer peaks can be avoided in the search. However, again,
the possible setback of this approach is the difficulty in determining the corre-
sponding Kcut position in advance for different streainwise stations or different

flow conditions.
Consequently, based on the same basic concept as that of the Degani-Schiff model
and with the findings from the Kcut method, Qin and Jayatunga [57] suggested

that a more well-established and accurate criterion needs to be defined to search

for the appropriate length scale using the F{yn) profile. Instead of using the
peaks in the F(yn) curve, it is then proposed to use the curvature of the F(yn)

curve, which is defined as
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R\ (2.35)
[ + (™(fC)2j3r2 '

where the derivatives are evaluated using central differencing. By assuming that
regardless of the number of possible peaks that could exist in the F(yn) profile,
the second convex region in the profile or the second minimum dip in the curva-
ture function profile will represent the appropriate length scale for the attached
boundary layer. Thus, the idea is then to search for the second negative region in
the Keurve profile, which will refer to the second convex region in the F(yn) profile

and hence where ymax and Fmex are to be defined.

So, it is practically easy to implement this concept into the code, because most
of the existing numerical routines in the Baldwin-Lonlax model do not need to
be modified. Only minor parts of the code need to be added, which is where the
values of ymax and Fmex are determined by the above curvature-based criterion
instead of the original Baldwin-Lomax approach that will always lead to a global

maximum in F(yn).
The numerical noise in the straight part of F(yn) could cause misjudgement of

the second minimum dip during the numerical search s Keurve could oscillates in
a very small band around the 0-axis. This problem is tackled by introducing a

noise band,

eurve| » £noise 2.36
| (2.36)

where £noise is a small number but greater than the numerical noise associated
with the curvature. This noise band value is case dependent though but with
some trial and error, the reasonable value for £noise was found in this work to be

0.75.

2.6.3 The k-u; Turbulence Model

The k-u) model is developed by Wilcox [56], it is wall distance free and should
be able to accurately predict flows with various characteristics including adverse
pressure gradient and free shear layers. This model is also advantageous over
other high Reynolds number k-e models since it can be integrated through the
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viscous sublayer without having to use some damping functions.

Referring back to Egn. (2.6), the source terms in the vector are given here by

. Sk . Al lijgx. t (KUK
Y, Pt TGS - Plsope? (2-37)

Hence, the governing equations for the two conserved turbulence variables can be

written as:
dk dk d 1/, Ptx om'
a +phdxj= k+ dxj (2.38)
du du T d '

where the constants are given by

CM= 10 C*2=0.09 ok=20
CLi = 0555 Cu2=0.075 ow= 20

Finally, the turbulence viscosity is calculated with the following relationship

(2.40)

2.7 Far-field Drag Analysis

The most straightforward approach to computations of drag from CFD solutions
are by surface integration of pressure and shear stresses, which is also known as
the near-field method. In contrast, far-field methods, often used in experiments,
provide breakdown of the drag into other useful components, such as viscous drag
(also known as profile drag or the sum of form and skin friction drag), wave drag

(associated with shock waves) and lift-induced or vortex drag.

Giles & Cummings [69] and Hunt et al [70] introduced a far-field method that
uses a Trefftz-plane situated downstream of the wing to integrate the drag com-
ponents. Therefore, this method requires the extraction of a downstream cutting

plane orthogonal to the direction of the flow using flow visualisation techniques.
UNi\V/r- .

QFSHEFh i

library
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2.7 Far-field Drag Analysis

Instead another method developed by Paparone k Tognaccini [71], which is based
on a Taylor expansion of the far-field drag expression has been chosen. This
method does not require the computation of intersections of the flowiield with
given planes, thus it is easier to implement. Its ability to identify local shock wave
and viscous regions for the computation of the two drag components reduces the

contribution of numerical errors to the physical drag.

As a result, it is possible to evaluate the wave drag accurately even on a coarse
grid using this method. The only drawback of this method is that it does not
incorporate the evaluation of vortex drag. Nevertheless, at the moment, we are
mainly concern of extracting wave drag in this study and combining it with sur-
face drag integration method for this further drag analysis. The following part

introduces some details of the method.

2.7.1 Derivation of the Far-Field Method

Define Sfar as the external surface bounding the volume 0, if this surface is
sufficiently far from the body, the viscous stresses can be neglected and the far-

field expression of the drag is given by,

Dfar=- [/ [(p- Poo)nx T pu (V en)] (IS (2.41)

dSfar

where u is the x-component of the velocity. In three-dimensional flows, Eqn.

(2.41) can be re-written as

1 A w VvV T
Dfc K -r"—p+Voo-p|V'-n3( ds (2.42)
L[ 7AftRo v
For a perfect gas, it is possible to express the velocity term #
variations of total enthalpy A//, entropy As, and static piessuie Ap. By ex-
panding this terra in Taylor’s series and substituting it (with third and higher

order truncated) into Egn. (2.42), to give the entropy drag with the other two

in teims of

terms ignored:

(2.43)
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Here, the coefficients f8 and fa2 are defined as

1 1+ (7- )M |

B M la2 2y2Mi

Furthermore, with the function
(2.44)

Eqn. (2.43) can be expressed in divergence form by applying the Gauss’s theorem
to the vector field pg V in the finite flow domain Q. Since on Shodn Ven ~ 0, the

entropy drag expression becomes

ldas—V OJC;if V'’ (pg V)dQ (2.45)
Further analysis indicates that the integrand in Eqn. (2.45) can be defined as the
local production rate of entropy drag, therefore allowing the breakdown of the
domain Q into three separate regions, the shock wave, viscous (boundary layer
and wake) and spurious regions. The spurious entropy production associated
with the artificial dissipation and with the discretisation error of the numerical

scheme. Separating this spurious region thus cut down the level of numerical

error contributed to the physical entropy drag evaluation.

2.7.2 Algorithm for Region Selection

A hierarchy has been employed in the selection criteria of each computational
cell for the various regions. First, the shock wave region test is performed; if not
satisfied, the viscous region test follows and if it is not satisfied as well, the cell
is then assumed to belong to the spurious region. The shock wave region sensor

is based on the following non-dimensional function:

Fahok = (V'Vp)/(a\Vp\) (2.46)

where a is the local speed of sound. This sensor is negative in the expansion

zones and positive in the compression zones. Given the knowledge of the up-

stream Mach number of the shock wave, the Mach number downstream of the
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2.7 Par-field Drag Analysis

shock wave can be estimated using Rankine-Hugoniot relations. This downstream
Mach number value is adopted as the value Kaow for the selection criterion of func-
tion Fshock. Therefore, the selection of the cells in the shock wave region is based

on the satisfactory of the criterion FHok > Kcw.

Next for the selection of the cells in the boundary layer and wake region, the

following sensor works for turbulent flows:

Foi = (// + Ih)IIH (2.47)

where /// and /it are the molecular and eddy viscosities respectively. From Eqgn.
(2.47), it can be perceived that the value of Fu is very high in the boundary layer
and wake, whereas it remains around the value 1 in the remaining parts of the
domain. The criterion adopted is to select cells that satisfy FM> KMx Fw, where
Kbi is a cutoff value. Since Paparone & Tognaccini found that the drag region
breakdown is not sensitive to the cutoff value Kbi, in all present studies; a value

of 1.1 has been selected [71].

2.7.3 Validation with NACAOQ0012 Test Cases

In order to test the algorithm implemented, two cases at different lift conditions
have been tested on the NACAOQ0012 aerofoil as investigated in the experiments by
McCroskey [72] and Paparone and Tognaccini [71]. The flow solutions are com-
puted at freestream conditions, Moo —0.7 and Rec = 9x 106. The computational
grid is a C-type grid with a very fine resolution of 640 x 256 cells, which corre-
sponds to the highest grid resolution level as tested in Ref. [71]. The computed
wave drag and viscous drag from the present study, Paparone and Tognaccini and
the total drag from the experiment are compared in Table 2.1 below:

CL = 0.000 Ci1 =0.424
Cow Cav Cptotal Cpui Cpv Cl)total
0.00781 0.00781 0.00169 0.00853 0.01022
0.00786 0.00786 0.00175 0.00868 0.01043
- 0.00780 - - 0.01030

Present study  0.000
Paparone et al. 0.000
Experiment -

Table 2.1: Comparisons of the drag components with previous studies.
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At zero lift, no shock waves are formed on the aerofoil at this freestream condi-
tion, thus, no shock wave region is detected and the computed wave drag is nil.
On the other hand, the predicted viscous drag by the present study agrees very
well with that of Paparone’s. For a two-dimensional flow, with no lift-induced
drag, the total drag is then the sum of the wave drag and the viscous drag. The
predictions from both studies agree particularly well with the experiment with

less than 1 drag count difference.

As the lift coefficient is increased to 0.424, a reasonably strong normal shock is
formed on the upper surface of the aerofoil. The selection of shock wave region

is shown in Figure 2.5.

Figure 2.5: Selection of the shock wave region.

Again from Table 2.1, the computed wave and viscous drag from the present study
agrees very well with that of Paparone’s with less than 1 drag count difference
for the wave drag and just around 1 drag count for the viscous diag. As for the
total drag, the discrepancies between the experiment and the computations are
still low, retaining about one drag count difference. Although both results from
present study and Paparone’s were computed with the same level of grid resolu-
tion, the discrepancy occurs might be due to a slightly different grid distribution

strategy adopted.



2.8 Parallel Implementation

Figure 2.6: Sensitivity of the farfield drag analysis with the flow solution conver-

gence.

Figure 2.6 plots out the sensitivity of the computed drag components with respect
to the order of convergence of the flow solution. It is suggested by the plot that
the wave drag is not sensitive to the level of convergence of the flow solution,

which also implies that even with a bad level of convergence, the predicted wave

drag is still reasonably accurate. In contrast, the computed viscous drag only

starts to converge when the flow solution converges to fourth order or less. In
this report, all the flow solutions are converged to at least fourth order or lower.

2.8 Parallel Implementation

MERLIN had already been parallelised with OpenMP [74, 50j. OpenMP is a

directive based language for simplified implementations of application level par-
allelism [75]. It is hence easier to implement in the code. However, in order for
the code to achieve good data parallel efficiency when solving very large prob-
lems on the available distributed-memory clusters, it was decided to implement
Message-Passing-Interface (abbreviated as MPI) into MERLIN.

MPI allows efficient information exchange via a fast internal network between

the nodes of the computing cluster. Extensive literature of implementing MPI

can be found on the web [81, 82]. In this work, the Intel, Portland Group or
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IBM compilers have been employed. The IBM compiler is only available on the
HPCx. The parallel environment in which the MPI code runs, is the common
MPICH environment. In addition to that, for the nodes that consist of more than
one processor, the processors within the node still maintain the shared-memory
architecture as that of a typical shared-memory system as discussed above. Con-
sequently, a code can in fact be parallised with mixed MPI-OpenMP calls. In this
project, the author has only implemented MPI into MERLIN. In fact, many clus-
ters do make use of this shared-memory advantage via enhancing the efficiency
of message exchange between the processors located on the same node.

The approach of implementing MPI into MER LIN is straightforward. The idea is
to exploit the multiblocks structure of MERLIN, where the blocks are exchang-
ing information using the interface boundary condition as presented in Section
2.5.5. Therefore, the domain is decomposed into a number of node-balanced
sub-domains that correspond to the number of processors used on a computing
cluster, thus each processor is assigned to a block. Each processor then only has
to calculate the block that it has been assigned to. The computer routine will
determine which other blocks are adjacent to each particular blocks and the in-
formation at the interface are “sent” and “received” via MPI between the blocks.
Thus, only the original interface boundary condition is needed to be extensively
modified with additional MPI routines, the rest of the MERLIN main routines
just require some degree of modifications to work properly in the MPI parallel
environment, i.e. the routine that reads in the grid information.

In order to assess the parallel efficiency of the code on HPCx, the wall-clock
time taken to run on 32 processors is taken as the reference. A node on HPCx
consists of 32 processors; hence it is reasonable that the scaling of the number of
processors is a multiple of 32. Thus, the speed-up expression is written as

Sspeedup,N — ~ (2.48)
32

where the subscript N is the number of processors and t is the wall-clock time
required to perform 100 implicit iteration for this number of processors. Note
that the chosen test case has a resolution of around 2 million grid points. Figure
2.7 shows the parallel efficiency of the code with comparison to the ideal speed-up
values. From the graph, by scaling the flow solver up to 128 processors, the actual
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speed-up is quite close to the ideal value. Thus, from this test, it is shown that
the parallel efficiency of the flow solver is reasonably good. It is obvious that, for
domain decomposition based parallelisation, the efficiency depends strongly on
the overall grid size. Although the current problem is very large in the sense of
design variables and CPU time, the grid size of 2 million points is not large enough
for high parallel efficiency beyond 256 processors. Nevertheless, this parallel
version of MERLIN has been awarded a Bronze level award by the HPCx team
for its scaling capability of running more than 1.7 times faster on 256 processors

than on 128 processors.

Figure 2.7: Speed-up with respect to the number of processors for the flow solver.

Finally, here ends this long chapter that provide details of the CFD code-MERLJN,
which is used to compute all the numerical solutions in this work. Understanding
a code that is not largely written by the author from scratch is important as
it provide some level of confidence for the author to conduct any modifications.
The code has been parallelised successfully with MPI. Although MERLIN has
already been validated extensively with various aerodynamic test cases, e.g. the
RAE 2822 aerofoil and ONERA M6 wing [83], it is still essential to validate this
code on its ability to simulate the transonic flow over 3D bumps, which will be

presented and discussed in the next chapter.



Chapter 3

Validation and Numerical Study
of Transonic Flow Over 3D

Bumps

3.1 Introduction

The mutual validation and verification between numerical simulations and the
wind tunnel tests of such complex flows is essential and complementary. The
aims of the investigation presented in this chapter were then to determine the
ability of computations to capture the complex physics of transonic shock wave
/ boundary layer interactions with bump control as well as improving the under-

standing of such devices.

In previous investigations involving wind tunnel computational modelling [84, 85],
periodical boundary conditions have been implemented in the spanwise direction.
However, this assumption has been found to be inadequate for both uncontrolled
(empty tunnel tests) and controlled cases in a transonic flow wind tunnel, because
the lack of modelling of the blockage effect of the side wall boundary layer causes
the backpressure to be greater than the experimentally observed value at a given
shock-wave position. As a result, it is difficult to make a quantitative comparison
between the experiment and computation. Hence, in this study, the sidewall and
its associated boundary layers were taken into account for a closer match of the

wind tunnel and the simulation conditions.



3.2 Experimental Arrangements

Since the experimental measurements did not provide all of the required boundary
layer properties to completely specify the inflow conditions, a flat plate bound-
ary layer was computed under wind tunnel conditions to be used as the initial
boundary condition. The study highlights the importance of matching the sim-
ulation and experimental conditions as closely as possible in validation studies.
The combined surface and flowficld data provide insight into the flow physics on

the shock control bump.

3.2 Experimental Arrangements

The numerical results are compared with experimental data obtained in a su-
personic wind tunnel at the Engineering Department of Cambridge University.
The tunnel arrangement and control region are shown in Figure 3.1 where the
thick-dashed lines outline the domain modelled numerically. Shaped liners on the
upper and lower faces of the tunnel were used to generate supersonic flow in the
working section. A manual control valve regulates the tunnel reservoir pressure,
which allows a recovery shock to be held at a given streamwise location in the

tunnel.

Figure 3.1: Cambridge supersonic wind tunnel.

All results presented here were obtained with the shock positioned above, the
centre of the control region, at x = 0 mm. The tunnel was operated at a Mach
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number of 1.29, a total temperature of 300 I<and a freestream Reynolds number
of 28 x 106 m“ 1. The control devices are fitted on the floor of the working section.
Schlieren photography and surface oil-flow visualisation are used to determine the
flow structure. Surface pressures were measured using surface pressure tappings
connected to pressure transducers mounted just underneath the wind tunnel floor
(all results presented here are time averaged mean flow values). Boundary layer
velocity profiles and stagnation pressure profiles were obtained using Pitot pres-
sure probes attached to a mechanical traverse system. However, when the tra-
verse system is mounted downstream of the bump devices the additional blockage
caused tunnel unstart. For this reason, profile data downstream of the bumps
could only be recorded with only a single device in the tunnel. The lack of outer
bumps was found not to affect the overall flow features around the control, but

it did change the spanwise development of the flow downstream as discussed in

a later section.

The shape and the geometry details of the bumps used in this study can be seen
in Figure 3.2. This particular bump geometry has been selected for its relative
simplicity and because it bears close resemblance to the 3D bump investigated in
Refs. [46, 47]. The streamwise length of the bumps is 100 mm (centred around X
= 0 mm) with a maximum height of 5.25 mm, which is lower than the thickness of
the incoming boundary layer (about 7 mm). Generally, three devices were fitted
side by side along the tunnel floor with a spanwise spacing between the device
centrelines being 44 mm. Figure 3.3 also illustrates the coordinate system that
have been employed in the experiment, which is useful as a reference to pinpoint
the acquired positions in the discussion of the results later.

The largest source of experimental error is caused by the difficulties of accurately
controlling the shock location. At the centre of the bump, the shock did experi-
ence some unsteadiness, which was found to be of the order of i3mm. Surface
pressure measurements were subject to an uncertainty of i2%, while Pitot pres-
sures traverses are subject to uncertainties of i 4% close to the suiface and il/o

outside the boundary layers.
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Figure 3.2: Geometries of the ramp bump

Figure 3.3: Coordinate system of the experiment.

52



3.3 Numerical Approach

3.3 Numerical Approach

For the uncontrolled case, only a quarter of the wind tunnel spanwise geometry
has been modelled, where the top plane of the computational mesh is specified as
a symmetry plane. This is shown in Figure 3.4, which depicts the computational
mesh employed for the empty wind tunnel calculations. The mesh consists of
three separate blocks with a total resolution of 69x48x48. The outflow plane of
the computational domain for the uncontrolled case extends 100 mm downstream
of the shock position; the most aft location where the experimental wall pressure
data is available for the specification of the subsonic boundary condition. The
full detailed dimensions for this mesh are illustrated in the schematic diagram of

Figure 3.5.

Figure 3.4: Computational mesh for the clean wind tunnel.

However, the assumption of setting the boundary condition at the top plane as
symmetry is inappropriate for the controlled case and hence half of the full wind
tunnel is modelled with a single spanwise symmetry plane specified in the middle
of the wind tunnel as shown in Figure 3.6. The computational mesh generated for
the controlled case has more blocks in order to cope with the complex geometries
and it has around a million cells. The closeup of the generated one and a half
ramp bumps is also shown in Figure 3.7. The dimension details for the controlled
case mesh are similar to those of Figure 3.5, only the height of the mesh is now
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3.3 Numerical Approach

Figure 3.5: Dimensions for the clean wind tunnel mesh.

the full height of the wind tunnel working section, which is 179 mm. Note that
for the controlled case, the experimental wall pressure data is only available up
to x = 70 mm.

Figure 3.6: Computational mesh for the controlled case.
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Figure 3.7: Closeup of the ramp bumps mesh.

The inflow plane for both of the cases is situated at x = -70 mm. The incoming
flow is specified at the inflow plane where the boundary layer profile is extracted
from a flat plate turbulent boundary layer simulation. The boundary layer profiles
for all three walls are assumed to be identical. At the outflow plane, a subsonic
boundary condition has been specified where all the conservative variables are al-
lowed to float except for the pressure, which is specified at the given experimental

value.

3.3.1 Implementation of the Algebraic Turbulence Mod-

els

Both the Baldwin-Lomax and the curvature-based algebraic models are wall-
distance dependant, therefore, in the controlled case, three values of the tur-
bulence viscosity m for a cell in the flowfield have to be calculated using the
distances from all the three walls. The fit that is calculated from the nearest wall

to this cell centre is then selected as the final value.

Figure 3.8 illustrates the topology and the front view of the initially generated
structured grid at the vicinity of the edge of a 3D bump, where all the numbered
areas shown in the figure are separated into different blocks. This topology works

fine for the k-u; model, however, it causes trouble for the algebraic models, since
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the [it for the cells at the vicinity of the sharp edge of the 3D bump in block 2
have to be copied from block 1 & 3 to maintain the continuity of the value of [it
in that area. Unfortunately, this solution did not work particularly well. Thus,
to tackle this problem, the whole solid surface of the 3D bumps and the bottom
walls are integrated as a single bottom surface and hence merged as one block
as illustrated in Figure 3.9. The [it for the cells at the vicinity of the sharp edge
of the 3D bump in block 2 are now calculated from the solid surface distances

instead of being copied from different blocks.

Figure 3.8: Topology of the initially generated grid

Figure 3.9: Topology of the revised grid



3.4 The Flat Plate Simulation

3.4 The Flat Plate Simulation

In order to match the wind tunnel experimental conditions, it is necessary to
simulate the boundary layer at the inlet of the computational domain. While the
streamwise mean velocity profile was available from experiment, the numerical
simulation also required knowledge of wall normal velocities, density, pressure,
turbulence viscosity for the algebraic models and an additional two turbulence
variables for the k-u; model. For this reason, it was decided to extract the inflow
boundary layer profiles from a flat plate simulation at the wind tunnel conditions.

The computational mesh generated for this flat plate simulation is shown in Fig-
ure 3.10. Note that the flow direction is from left to right. The downstream of
the mesh is extended to a sufficient distance to allow the boundary layer to fully
develop. The distribution of the grid near the wall has also been adjusted so that

the near wall mesh spacing has a y+ value of 1

Figure 3.10: The mesh for flat plate simulation.

The simulation is run at a freestream Mach number of 1.29 and a Reynolds Num-
ber of 28 million per meter, both matching the experimental conditions. The
boundary layer is then extracted at the station where the thickness is around 7
mm in accordance with the experimental data. Here, it was decided to slightly
scale the inflow boundary layer to achieve the correct shock position because
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the shock location proved to be highly sensitive to this parameter, which will
be further discussed in later sections (and thus only small modifications were re-
quired). Figure 3.11 shows an y+ vs U+ graph that is plotted at a station where
the boundary layer is fully developed to demonstrate that the simulations from
both models have as expected (see Ref. [56]) captured the log-law region of a

typical turbulent flow well.

1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04 1.00E+05

Non-dimensional wall distance, Y +

Figure 3.11: y+ vs U+ graph plot.

3.5 Results
3.5.1 Uncontrolled Case (Empty Wind Tunnel)

Figure 3.12 shows the comparison between the simulations and the experiment
data of the incoming flow velocity profiles at x= -30mm. Note that in the exper-
iment, the incoming boundary layer is developed through a converging-diverging
nozzle instead of a flat plate, and this is likely to contribute to the differences be-
tween the computation and the experiments, in particular the slightly increased
shape factor of the experimental profile. To achieve the correct shock position
in the simulations, it was necessary to adjust the incoming flow boundary layer,
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i.e. to extract the turbulent boundary layer solution at a particular streamwise
location. The incoming boundary layer determined in this way has a boundary
layer thickness of about 7mm, consistent with the experiment data. This also
corresponds to a displacement thickness of 0.928mm, closely matching that of

the experimental value of 0.94mm.

Figure 3.12: Incoming velocity profile at x=-30mm.

The streamwise surface pressure along the tunnel floor (z=Omin) is plotted in
Figure 3.13. Previous simulations by Schumacher [85] as well as the present

study have shown good agreement with the experiment in the upstream part of
the interaction. In particular, the upstream influence length is reasonably well
captured. However, downstream of the shock, x > Omm, the surface wall pres-
sure predicted by Schumacher’s calculations recovered to a value greater than
that of the experiment. This is because a higher backpressure has to be speci-
fied to match the shock position in the absence of the sidewall blockage effect.
In contrast, the results from the present study are in very good agreement with
the experiment and the surface wall pressure recovers to the specified level of
the experiment. Figure 3.14 shows the static pressure contours for the controlled
case. Along the floor and side-wall, the smearing at the foot of the normal shock

wave can be observed, which is typical for weak shock boundary layer interactions.
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Streamwise distance (mm)

Figure 3.13: Comparisons of streamwise wall pressure distribution (z=0mm).
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Figure 3.14: Pressure contour plot for the uncontrolled case.
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Figure 3.15: Velocity profiles at x=50mm.

Velocity profile at x=70mm

Figure 3.16: Velocity profiles at x=70mm.
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Shown in Figures 3.15 and 3.1G are the velocity profiles downstream of the shock
/ boundary layer interaction along the symmetry plane in the streamwise direc-
tion at x = 50mm and 70mm respectively. Although the profiles are found in
reasonably good agreement, the computed boundary layer after the interaction
is found to be slightly thicker than that of the experiment.

3.5.2 Controlled Case (with 3D Ramp Bumps)

3.5.2.1 Grid Sensitivity

A study on grid sensitivity was conducted for the controlled case with the 3D
bumps. Solutions have been obtained from a fine grid with a resolution of around
1 million cells and relatively coarser grid with around 300 thousand cells. It is
found that, by using the same inflow boundary layer profile and backpressure for
both cases, the position of the shock wave (a sensitive parameter to boundary
conditions as mentioned earlier) is relatively insensitive to the grid resolution.
The streamwise pressure distribution plots in Figure 3.17 show that the result
from the coarser grid is in good agreement with the experimental data. However,
a lack of streamwise grid resolution in the vicinity of the shock wave is depicted
by the pressure rise discrepancy in the region between 10mm and 30mm.

The boundary layer development station also shows some sensitivity to the grid
resolution, especially with the presence of vortical flow as shown in velocity pro-
files from Figure 3.19. Nevertheless, generally, the study provides some grid sen-
sitivity information indicating a reasonable resolution on the grids used. Based
on the balanced requirements of numerical accuracy and computational time, the
fine grid has been used for all the cases. Even finer grids have not been attempted

in the present study due to computational resources available.

3.5.2.2 Results and Discussions

For the controlled case, the shock wave position was found to be even more sen-
sitive to flow field variations and the experimental data was subject to an error
band of £3mm. As a result, the incoming flow boundary layer prescribed in the
simulations needed some readjustments to match the experimental shock posi-
tion for a given backpressure. Figure 3.20 compares the experimental Schlieren
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Figure 3.17: Wall surface pressure distribution at z—17mm, for a fine and a coarse
grid.

Velocity at x=55mm, z=0mm

Figure 3.18: Velocity profile at x=55mm, z=0mm.
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Velocity at x=55mm, z=5mm

Figure 3.19: Velocity profiles at x=55mm, z=5mm.

picture with numerically generated density gradients in the x and y directions
using CFD data at the symmetry plane. It can be seen that the CFD simula-
tion has been successful in capturing the flow features seen in the experimental
image. The main shock is split into a lambda-structure, where the leading leg is
attached to the upstream edge of the bumps. The rear shock leg appears slightly
smeared close to the bump surface in both images and there is a clear evidence
of a post-shock expansion, with a secondary shocklet, over the rear of the device
just after the second corner of the bump. The density gradient in the wall normal
direction on the symmetry plane in Figure 3.20 (c) shows the boundary layers
on the bottom and top walls of the wind tunnel. It can be seen that the ramp
bump is fully immersed in the incoming flow boundary layer. The thickening of
the boundary layer due to the shock/boundary layer interaction is also clearly

visible.

Figure 3.21 compares experimental and numerical streamwise pressure distribu-
tions at z = 17 mm, which is located in between the 3D bumps. Generally, the
turbulence models give good agreement with the experiment. The initial pressure
increase due to the leading leg of the lambda-shock is well predicted and the sub-
sequent pressure rise across the rear shock leg is also captured in its magnitude
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as well as in its streamwise location. This suggests that the computations have
captured the shock structure above the bumps in its geometry as well as in the
relative strengths of both shock legs.

Figure 3.20: Images of flow over bump (a) Experimental Schlieren (b) CFD x-
density gradient (c) CFD y-density gradient.

Figure 3.21: Wall surface pressure distribution at z—17mm.
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Figure 3.22 and 3.23 compare the surface oil-flow visualisation from the exper-
iment with surface skin friction lines from the simulation. In the enlargement
of the upstream section it can be seen that the oil-flow just after the leading
edge of the bump slightly diverges on the ramp surface. The same flow pattern
is observed from the computed skin friction lines. This suggests that the flow is
spilling’ over the sides, which is likely to cause flow separation and the generation
of streamwise vortices. This is confirmed in the flow field plots from numerical
simulation as shown in Figure 3.24. A weak vortical flow is observable on the side
of the ramp bump. Similarly, both the oil flow pattern and the skin friction lines
downstream of the bump show clear separation lines and traces of cross flow sep-
aration and vortical flow. Once again, the presence of vortical flow is confirmed
by the streamlines in Figure 3.25. Note that this downstream vortex is stronger
and has the opposite sense of rotation from the weaker vortex generated upstream.

Figure 3.22: Surface oil flow visualisation of the flow with control.

Figure 3.23: Surface skin friction lines of the flow with control from CFD.

In addition to revealing the vortical structure of the flow, the skin friction lines
at the rear of the bump also show some degree of reversed flow near the foot of
the bump, which indicates a small separation bubble at the intersection between
the bump and the wind tunnel floor. Therefore, Figure 3.26 presents a clearer
picture of this separation bubble with an enlargement of the region downstream
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Figure 3.24: Strearntraces of the vortices

Figure 3.25: Streamtraces of the downstream vortex.
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of the bump shown previously in Figure 3.23. A closer examination of Figure 3.26
indicates that the sharp geometric change at the intersection between the bump
and the wind tunnel floor contributes to separation of the flow. However, recall-
ing the shape of the bump in Figure 3.2, where the height of the bump gradually
shrinks at the downstream end of the bump and by backtracking the separation
line, it shows that the cross flow separation also bears significant influences from
the vortex shed from the sharp edge of the bump since the sharp edge is relatively
closer to the foot of the bump in this downstream region. Viewing this region in
a different angle with Figure 3.27 gives a clearer picture of the skin friction line
spilling” off the sharp edge and into the separation bubble before converging to
form the separation line downstream. Another plot of the skin friction line of the
same region but at the side of the bump is presented in Figure 3.28. It again
shows the reversed flow at the foot of the bump and that it spans across almost
the entire length of the bump. This is undesirable in the bump design and can
be avoided with a smoother geometry change at the mounted base of the bump.

Figure 3.26: Enlargement of the skin friction line at the downstream of the bump.

As mentioned earlier, the velocity profiles were measured with only a single bump
in the tunnel. In order to eliminate the potential difference in these profiles
caused by the bump numbers for a more reasonable quantitative comparison of
the velocity profiles, calculations have also been done with just one bump in the
working section using the k-0> turbulence model. According to the experimental
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Figure 3.27: Oblique view of the downstream separation region.
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conditions, the backpressure and the inflow boundary layer profile are set to be
the same as that of the multiple bumps case. Observations on the position of
the shock wave in the flow field suggested that the main normal shock in the
freestream has not displaced much relative to the multiple bumps case. This is
consistent with what was observed in the experiments. It is also observed that
the bifurcated A-shock structure is less pronounced, which is expected since the
flow displacement is slightly reduced with just one bump in place. This is further
confirmed in the streamwise pressure distribution plot shown in Figure 3.29. It is
obvious from the plot that the normal branch of the shock from the single bump
control is significantly stronger, which implies that an array of 3D bumps clearly
work better than one and that the spacing between them is crucial. Besides that,

the overall flow field did not change significantly.

Figure 3.29: Pressure distribution plot with single bump.

Figures 3.30, 3.31 and 3.32 compare velocity profiles at various spanwise locations
immediately downstream of the interaction at x = 55 mm. For clarity, velocity
profiles comparison for the multi and single bump cases are plotted separately in
Figures 3.33, 3.34 and 3.35. On the whole it can be seen that the simulations
have slightly over-predicted the boundary layer growth through the interaction.
A closer examination of Figures 3.31 and 3.32 reveals significant inflexion in the
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Velocity at x=55mm, z=0mm

Figure 3.30: Velocity profiles at x=55mm, z=0mm.

Velocity at x=55mm, z=5mm

Figure 3.31: Velocity profiles at x=55mm, z=5mm.
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Figure 3.32: Velocity profiles at x=55mm, z=8mm.

Velocity at x=55mm, z=0mm

Figure 3.33: Velocity profiles with single bump at x=55mm, z=0mm.
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Velocity at x=55mm, z=5mm

Figure 3.34: Velocity profiles with single bump at x=55mm, z=5mm.

Figure 3.35: Velocity profiles with single bump at x=55mm, z=8mm.
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profiles, which indicates the presence of crossflow separation and vortical flows.
While in general the shape of the profiles is well captured by the k-u and the
curvature models, there are no obvious inflexions in the results obtained with the
Baldwin-Lomax model. The improved performance of the curvature model is due
to the modified criterion in the model, which carefully chooses the appropriate
length scales for the attached turbulent boundary layer under the vortical struc-

ture.

There are no significant changes in the velocity profiles extracted from the single
bump calculation compared to the multiple bump case. Further examination of
Figure 3.34 reveals that the velocity profiles from both calculations are seemingly
close with just some minor difference, suggesting that the spanwise position of
the vortices generated from the centre bump is not displaced significantly from a

single bump to multiple bumps.

Finally, the origin and trajectories of streamwise vortices can be determined again
from Figures 3.24 and 3.25. This shows that the flow separates over the trailing
edge of the bump, which leads to the generation of a pair of counter-rotating

vortices downstream.

3.6 Concluding Remarks

This chapter has demonstrated that careful matching of the experimental pa-
rameters and the boundary conditions of a numerical simulation is crucial for
mutual validation and further understanding of the flow physics. In the study of
a transonic shock wave / boundary layer interaction it was found that the back
pressure, the wind tunnel sidewall and the incoming flow boundary layers all had
to be matched closely due to the sensitivity of the shock position and structure to
these conditions. In the numerical simulation, the incoming flow boundary layer
was obtained from a flat plate turbulent boundary layer simulation, which is an
approximation of the realistic wind tunnel boundary layers from the supersonic
nozzle. This approximation was found to work reasonably well.

All turbulence models used in the computation have captured the flow features
well for the uncontrolled baseline case. They also correctly resolved the shock
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structure and streamwise wall pressure distribution in the controlled case. How-
ever, the Baldwin-Lomax algebraic model was not successful in capturing the
details of the viscous flow, particularly the streamwise vortices generated by flow
separations downstream of the three-dimensional bump. In contrast, the k-u;
model and the curvature model were both able to model this How feature.

This study shows how difficult a seemingly straightforward validation can be. For
complicated turbulent flow problems, detailed quantitative comparison is crucial.
This in turn requires careful matching of the simulation with the experimental
conditions. Incorporating the correct backpressure, the sidewall boundary layers
and the incoming boundary layer, made it possible to improve the quantitative
agreement between the experiments and the numerical simulation. However, the
final solution is still short of an “exact” match, due to the lack of detailed in-
formation about the incoming boundary layers on all sides of the wind tunnel.
To improve the simulations it is necessary to either measure detailed boundary
layer profiles at these walls or model the whole converging-diverging nozzle with

detailed geometrical input.

Nevertheless, the study demonstrates how the combination of experiments and
a careful numerical investigation can provide additional insight into a complex
flow, which might not have been obtained from either approach alone. Based
on the agreements with the surface pressure and oil flow provide confidence, the
fiowfield plots from the simulation have greatly assisted in the interpretation of
the experimental oil-flow patterns by revealing the existence of upstream weak
vortices that cause the oil-flow pattern to diverge towards the side of the bump.
Further evidence of the strong downstream vortex and indications of flow sepa-
ration near the rear of the bump are significant for the design of improved shock
control bumps. These findings suggest a possible design of a shock control bump
that also incorporates the benefits of a sub-boundary layer vortex generator in
controlling or suppressing trailing edge separation. On the other hand, if signif-
icant viscous drag is to be avoided the current ramp bump shape is unlikely to
be a successful design due to the number of separations observed along the sharp
edges. An optimum design is likely to feature a more curved shape to avoid flow

separation.



3.G Concluding Remarks

With the numerical flow solver proven to be able to capture the complex flow
features of transonic flow over 3D bumps, we can now move on to investigating
and optimising the performance of the 3D bumps on wings. However, before
that, it is necessary to include the descriptions of the additional numerical tools
needed to perform aerodynamic optimisation in the following chapter.
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Chapter 4

Adjoint-based Aerodynamic
Optimisation

4.1 Introduction

Progressive improvements in CFD over the years and powerful computing re-
sources that are readily available at affordable costs have made it possible to
evaluate alternative designs rapidly and effectively through computer simulations
without the need to build numerous wind tunnel models. However, it is almost
impossible for the designer to find an optimum design through trial and error.
Therefore, numerical optimisation procedures are used in conjunction with CFD
to optimise aerodynamic design problems. In recent years, aerodynamic optimi-
sations and even multidisciplinary optimisations has been emerging as essential

design tools in both academia and the industry.

The various aerodynamic optimisation methods can be largely divided into two
main categories, gradient and non-gradient-based methods. For the gradient-
based methods, the sensitivities are calculated by finite-difference methods, com-
plex variable methods, automatic differentiation methods and quasi-analytical
methods. The adjoint method employed in this project is one of the quasi-
analytical methods. In the other category, the non-gradient-based or function
evaluation methods consist of the response surface technique [86] and genetic al-

gorithms [87, 88].

The function evaluation methods have the advantage over the gradient-based
methods of finding the possible global optimum of the objective function, but
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the methods require a large number of CFD calculations. The computing cost
will be very high as well, especially when complex three-dimensional aerodynamic
problems are involved. As for the adjoint method, the sets of adjoint equations
derived from differentiating the governing equations of the flow field only need to
be solved once for each objective function and constraints [89]. Therefore, when
the number of design variables is greater than that of the number of constraints
plus objective function, which is likely to be the case in most aerodynamic op-
timisation problems, the adjoint method is quite efficient compared to the other
methods. For example, for the optimisation of the blended wing-body configura-
tion as investigated in Ref. [83], there are hundreds of control points or design
variables that define the shape of the wing, while the aerodynamic constraints
considered only include the lift and pitching moment and the objective function

is the drag.

The aim of this chapter is to present the numerical optimisation tools that have
been employed in this project, instead of introducing and detailing the various
optimisation methods. Thus, besides the discrete adjoint solver developed by Le
Moigne and Qin [74, 83] that will be described in later sections, the other meth-
ods listed above are considered to be beyond the scope of this thesis.

Figure 4.1: Schematic of the optimisation chain.
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The optimisation chain is an automatic iterative process as shown in the schematic
diagram in Figure 4.1. To Kick-start the optimisation process, an initial design is
fed into the top of the chain, which is the grid modeller that updates the com-
putational grid from the provided design sets. The flow solver MERLIN, then
solves for the flow on the updated grid including the objective functions and con-
straints, i.e. drag and lift. Moving on, provided with the converged flow solution,
the adjoint solver can then solve for the gradients of the objective functions or
constraints. Note that the flow solver and the adjoint solver do not run simulta-
neously although they are placed in parallel in the schematic diagram. Finally,
all the essential information including the objective functions, constraints and
gradients are supplied to the Sequential-Quadratic-Programming or SQP opti-
miser. The optimiser then searches for the subsequent improved designs which
will be updated by the grid modeller again and the whole process iterates until

the optimiser find the best converged design.

One by one, all the four main elements in the optimisation chain excluding the
flow solver, which has already been presented earlier in Chapter 2, will be intro-
duced in the following sections. Starting with the grid modeller at the top of the

chain.

4.2 The Grid Modeller

As mentioned in the previous section, the grid modeller automatically updates
the computational grid with the new design sets acquired by the optiiniser. It
modifies the surface geometries of the aerofoil or wing and updates the whole
volume grid with respect to these shape changes. In addition to the ability of
modifying a 2D aerofoil shape, the grid modeller is also extend to add either a 2D
bump or a 3D bump onto an unswept or swept wing. The details of the aerofoil
shape and bumps parameterisations will be presented at later appropriate stages.

By considering a typical orientation where the chordwise direction is the x-

direction and y is direction normal to it. Basically, only the y-coordinates of

the grid points on the x-y planes are modified to define the shape of the bumps,
i.e. 2D bumps on un-swept wings. In the case of swept wings where the sweep
angle can be considered ¢is a variable, the x-coordinates ol the surface grid points
¢ire displaced accordingly with respect to the defined sweep angle. On the other
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hand, when defining the shape of the 3D bump, not only the y-coordinates of the
x-y planes have to be modified, but the z-coordinates (spanwise direction) too
because one of the 3D bump parameters defines the width or spanwise spacing
between the subsequent 3D bumps (further details of the parameterisations of
the bumps will be presented in a later chapter), which will therefore be shrink-
ing or expanding the width of the grid. With sufficient spanwise grid resolution,
the z-coordinates are just distributed equally with respect to the width of the grid.

As for the wake surface grid for a C-type grid, again, this usually need not be
dealt with when the sweep angle is disregarded as a variable. In case it is, since
the grid lines connecting both the symmetry boundaries should be straight, so
the distance between the trailing edge and the corresponding wake surface grid
points are kept constant. Thus, considering the grid points along the grid line
connecting the trailing edge and the outer far-field boundary, with i —2,eee ,in
and xte —%u the x-coordinates of these grid points are simply

MOV (4.1)

Once the surface grids are generated, the modifications to it will have to be
propagated to the volume grid. This is done by updating the grid points along
the grid lines that connect the surface boundary and the far-field boundary using
an analytical method as employed by Le Moigne [83]. Therefore, the deformation
of the y-coordinate of one of these grid points, where j = 1,%¢¢ jn are achieved

by

(4.2)

where

arc(j) ="

and
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U = V(xi- xi-nz2+ (ui- 1JI-\)2+ zi- o 1)~

Note that ysurface. — 2i. If the x-coordinates of the surface grid were modified,
the volume grid is updated using the same idea from Eqgn. (4.1), only that xte is
now replaced with atw/oce- When z-coordinates are modified, in order to keep the

grid lines connecting the surface boundary and the far-field boundary in parallel

as they have been initially, instead of using Eqn. (4.2), the volume grids are

updated by copying the z-coordinates of the spanwise-displaced surface grid,

ynew __ yneu>
Zj "surface

4.3 Discrete Adjoint Solver

The discrete adjoint solver developed by Le Moigne and Qin [74, 83] has several
unique features. The solver has been entirely hand-differentiated for the calcu-
lations of the components of the Jacobians and the grid sensitivities. It is also

one of the rare adjoint solvers developed that uses Osher’ approximate Riemarm

solver to calculate the inviscid fluxes. Besides that, the adjoint solver is also

novel for its choice of turbulence model, which is the Baldwin-Lomax algebraic
turbulence model. In Ref. [74], Le Moigne noted that the rarity of adjoint solvers
implemented with algebraic turbulence models might be due to the reasons that
two-equation turbulence models are relatively easier to implement. Although
there were some difficulties in the linearisation of the turbulence model, never-
theless, this adjoint solver has been successfully used in the optimisation of both
2D and 3D aerodynamic problems including the blended-wing body configuration

as published in Ref. [83].

Due to the requirements of this project, the author has also contributed some
modifications to the adjoint solver. This includes the periodical boundary con-
dition and adding in the influence of the reference area (which is required in the
calculations of the aerodynamic coefficients, i.e. lift and drag coefficients) on the
sensitivity derivatives. Besides this, the adjoint solver has also been parallelised
with the same MPI implementation that has been used on the flow solver.
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At the start of this section, the derivation of the adjoint equations will be pre-
sented. A few chosen examples on the calculation of the exact RHS Jacobian are
also presented. After showing some details on the linearisation of the turbulence
model, the calculations of the sensitivity derivatives when the adjoint solution
is converged will be discussed. Finally, some remarks are made on the way the

adjoint solver is parallelised using MPI.

4.3.1 The Adjoint Variable Formulation

This formulation is one of the quasi-analytical methods that are based on the
differentiation of the governing equations of the flow field. The objective function

is written as

F=F(Qmx(/J),/3) (4.3)

where Q is the vector of fluid variables. The superscript * indicates that this
vector is the converged values from the flow solution. The vector X is for the
grid variables and (3 is the vector of design variables. As presented, F, Q and X

are functions of p.

By differentiating Eqn. (4.3), the gradients or the sensitivity derivatives can be

expressed as

g (OFV ilQ’OF
m ~ Uqg/ + ox dfh + apk (‘A

Since the differentiation of the governing flow equations is in a residual form,

dR ORdQ* c)RdX OR

dpk ~ c)Q dpk + OX dpi  Opk ( J
and adding this equation to Eqn. (4.4) by multiplying it with an adjoint vector
A givas

dF ® dF'dX OF / 9R rfQ’ 3R\

Wk =100QJ W k+OX dpk + dih b>Q dPk dXdfo 0(h)

which is rearranged as
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dF dF\* R dQ' dX dF  tdR
dftk dQ) +AO0Q dpk’  <9X) AOX fifh  Ofh + ditk
(4.6)

To solve for the adjoint vector, the following term in the RMS of Eqn. (4.0) is

simply set to zero,

+\|dQ =0

which then leads to the adjoint equation

/m y _OF
\dQj A 4.7

Once Eqn. (4.7) 1ms been solved for A the sensitivity derivatives are calculated

by

dF /IO Fy OR dX dF ,OR 49)
dik ~ (ax) FTAax dpt 100k * dpk '

Note that in the form of Egn. (4.7), the adjoint equation is presented in the
discrete formulation since the residual vector R has been discretised as in Eqn.
(2.8) and that the Jacobian is of the same form as in Eqn. (2.24), which justify
the formulation above as a discrete adjoint method since the adjoint equation has
been discretised before being differentiated.

4.3.2 Solution Methodology

In the adjoint solver, the vector of conservative variables Q in Eqgn.
actually replaced by the vector of primitive variables P. Thus, rewriting the

4.7) is

adjoint equation again,
dRV
dPj A~ OP (49)

A major advantage of using the discrete adjoint method is that the same solution
methodology as employed in the flow solver can lie applied to the adjoint Eqn.
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(4.9). Hence, in order to use the same Jacobian as in the flow solver, the adjoint
equation is expressed in the incremental form:

<9I§_9*) nAA fIR(Q") (4.10)

dP

with

Antl = Au+ nAA

Here, again note that the LHS Jacobian has a tilde symbol ~ above it, which
indicates that it is simplified and approximated. This approximation is acceptable
since it is the RIIS of Egn. (4.10) that carries the physics of the equation whilst
the LHS is only driving nAA to zero. Therefore, by adding a fictitious time term,
Eqgn. (4.10) is transformed into

1d0 #R(Q* oF  <RQY s
iR R e or, ) @)

It, can now lie noticed that Egn. (4.11) has actually the same structure as that
of Eqn. (2.26), where both equations can be expressed in the form Ax = b with
the same banded matrix A. As a result, the same implicit solution methodology
is employed to solve the adjoint equations, which is the approximate direct inver-
sion method or BILU(O) technique as presented in Section 2.4.2. To save some

computing time, the terms  jjp ~ ~10"HS and 7 at the RHS in Egn.
(4.11) are calculated once at the beginning of the computation and then stored
in the memory for the rest of the iterations. The time-term on the LHS depends
on At that changes at each iteration with respect to the value of the total resid-
ual as in the flow solver. As for the RHS term, a term by term multiplication is
performed and the Jacobian has to be exact. Examples on the calculation of this

exact RHS Jacobian are presented in Appendix D.

4.3.3 Sensitivity Derivatives

Finally, once the solution of the adjoint vector A has converged, the sensitivity
derivatives can then be evaluated using Eqn. (4.8). However, for a pure aero-
dynamic shape optimisation, the design variables fik only influence the flow field
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solution, and hence the objective function through the modifications of the com-
putational grid. Consequently, the terms i and ok can be discarded, so that
the sensitivity Eqn. (4.8) is rewritten as P

dFAfdFVdX  tdR dX
dfa ~ dok + dx dpk

Instead of a first differentiation with respect to the coordinates of the grid points

and then a multiplication between the resulting matrix and the grid sensitivity

X
matrix ok as suggested above in Egn. (4.12), the differentiation is done directly
p

in the code by the use of chain rule. Consider the term — as an example.
OX dpk

it is actually calculated in the form

OR  fltt,rj,C)r/X
0 OX  d(3k
where (£, r/, C) are "ie metric terms. All these terms are already present in the
flow solver and can be differentiated directly by hand in the code.

As mentioned earlier in Section 4-3, one of the modifications contributed by the
author is adding the influence of the reference area on the sensitivity derivatives.
Since the total projected area in the 7~direction is taken as the reference area,
this is achieved simply by adding another term into Eqn. (4.13) as

OR O{£, mC) OAarea dX
0(Z,I’7,0 OAarea OX d(3k

where Aarea is the reference area.

4.3.4 Parallel Implementation

Similar to the serial version of the flow solver, the adjoint solver has already been
implemented with OpenMP. In addition to the task of speeding up the calcula-
tions of the adjoint vector, a certain amount of effort has also been put in to
parallelise the calculation of the derivatives. The reasons are that the calculation
of the sensitivity derivatives in Eqn. (4.12) is looped over the number design vari-
ables. As indicated in this equation, each calculation of the derivatives involves
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large and time-consuming matrix multiplications. Therefore, parallelisation of
this part is essential to avoid a bottleneck in the optimisation process when the
grid resolution and the number of design variables are very large.

Section 4-3-2 and 4-3-3 have already shown that the structure of the adjoint
solver is similar to that of the flow solver MERLIN, i.e. the boundary conditions
set-up and the usage of halo cells. Therefore, when solving for the adjoint vector,
the same approach to that of parallelising MERLIN has been employed, which is
to exploit the multiblock structure and hence the interface boundary condition.
As a result, generally, the modifications involved in the code are very similar to
what has been described in Section 2.8, only that now, instead of exchanging the
flow variables, the blocks are exchanging the adjoint vector A

The parallel efficiency of the adjoint solver has also been tested using the similar
assessment method of Eqn. (2.48). The speed-up graph for the adjoint solver
is shown in Figure 4.2. From this graph, it is observed that the parallelisation
performance of the adjoint solver is found to be at similar level as that of the
flow solver. Consequently, this parallel version of the adjoint solver has also been
awarded a Bronze level award by the HPCx team for this level of scaling capability.

However, it should be pointed out that the interface boundary condition in the
adjoint solver actually involves an extra layer of halo cells for an inviscid higher-
order scheme (as described in Section 4-3.3.J). This did not cause any further
difficulties in the coding since the same solution methodology can be used.

The calculations of the sensitivity derivatives are only carried out after the solu-
tion of the adjoint solver is converged and can be considered as a separate module
from the main core of the adjoint vector calculations. As discussed earlier in this
section, it is necessary to parallelise this part to avoid a bottleneck in large op-
timisation problems. Again, from Eqn. (4.12), the grid sensitivities ~  of the
whole volume grid, which is updated by employing an analytical grid deforma-
tion technique as pointed out in Section 4X has to be recalculated for each of
the design variables fh- For the code to be data-parallel efficient, each processor
only stores the grid for its own block. However, each ftk could have influences in
multiple blocks because the wing surface has to be modified as a whole. Take the
twisting angle of a master section and a block that is situated across this section
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Figure 4.2: Speed-up with respect to the number of processors for the adjoint
solver.

as shown in Figure as an example.

Figure 4.3: Dependency of the grid sensitivities in a block.

A change in this design variable will affect at least the whole section, which in
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turn spans across multiple blocks. Thus, the grid sensitivities in the volume grid
of this block are influenced by this design variable and also several other design
variables as well, such as the Bézier control points on the master sections that
are located within this block. Consequently, each processor has to be provided
with the complete surface grid modified by fik so that the grid sensitivities in
its block can be computed properly. Each processor then computes Eqn. (4.12)
independently but simultaneously, lhe values from each processors are summed
up on the master node to form the final value of the sensit ivity derivatives for (3"

Here terminates the descriptions of the adjoint solver employed in this project
which has basically explained how the sensitivity derivatives have been calculated
Referring back to the optimisation chain (Figure 4.1) again, by following the route
of the chain, first the grid modeller, followed by the flow solver MERLIN which
has already been detailed in Chapter 2 and then the adjoint solver. We have now
reached the bottom of the chain or rather the essential part of the optimisation
chain, that is the Sequential Quadratic Programming or SQP optimiser, which

will be presented in the next section.

4.4 Sequential Quadratic Programming Optimiser

A general problem of a constrained optimisation can be expressed mathematically
as [90]:
Minimise F{R) objective function

B

Subject to:  gt(B) <0 _i —1/ inequglity const'raints
hj(B) = 0 J=1m equality constraints
PL<Rk< Ri k=1NDV side constraints
(4.14)
R\
where 3 fa is the vector of design variables.
fiubVv

For aerodynamic optimisation, the objective function can be the drag coefficient
(whirl, is mostly the case in this thesis) or the lift-drag ratio. Although the ex-
pressions above indicate that the objective function is to be minimised, bear in
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mind that minimising -F{/3) is the same as maximising it, which shall be em-
ployed if the lift-drag ratio were chosen to be maximised. An example for the
inequality constraints is the limit on the volume of a wing. One of the most com-
mon practise in aerodynamic optimisation is to minimise drag at a given fixed
lift, hence here, the lift is an equality constraint. Finally, the side constraints are
just the lower and upper bound limits for the design variables in the design space.

As indicated in the introduction of this chapter and Figure 4.1, throughout this
project, the optimisation problem is solved using an iterative method. The op-
timisation process starts from an initial value of the vector of design variables
/3, which is commonly referred as the baseline configuration, the design is then
updated iteratively until a minimum of the objective function F is reached. The

vector of design variables are updated by:

= +n (4.15)

Here, q is the iteration number, aq is a scalar which defines the step-size taken
in the search direction within the design space that is defined by the vector S".
Consequently, two unknown values of aq and Sq need to be solved for. This is
where the SQP optimiser comes in. Detailed descriptions of the SQP optimiser

can be found in Appendix E.

In this project, two SQP optimiser subroutines have been employed; They are
the subroutine EO4UCF from the NAG library [91] and the subroutine FFSQP
provided by AEMDesign [92]. Both the subroutines are designed to solve the
non-linear programming problem of minimising a smooth non-linear objective
function of n variables subject to some constraints. These constraints are lower
and upper bounds on the variables, linear and non-lineai inequality or equality
constraints. As already stated, both of them require the gradients of the objective
function and of the constraint, which are provided by the adjoint solver.

The main difference between these two subroutines is that the subroutine EO4UCF
allows designs that do not satisfy the non-linear constraints during the optimi-
sation process until the final optimal design point is reached. In contrast, the
subroutine FFSQP, which is mi abbreviation for FORTRAN Feasible Sequential
Quadratic Programming, will always generate a feasible design that satisfies the
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non-linear constraints for every optimisation iteration.

Despite this difference, an investigation conducted by Le Moigne in Ref. [74] has
shown that, at the same design conditions and starting from the same design sets,
the optimal aerofoil design found by the two optimises were very similar with
little discrepancies. In this project, the FFSQP is the chosen subroutine for most
of the optimisations. Nevertheless, the possible inconsistencies on the outcome
of the results of using different subroutines are then minimal.

This chapter has introduced the optimisation methodologies employed to optimise
the performance of both the 2D and 3D shock control bumps, which is the main
interest of this project. In the following chapter, the results on the performance

of the 2D bump will first be presented.



Chapter 5

Mechanisms and Optimisations
of 2D Bumps on Unswept Wings

Extensive research has already been carried out on the performance of 2D bump
including optimisation, and it has been proven to work particularly well. How-
ever, the author has not so far encountered literature that involved optimisation of
the 2D bump using adjoint methods. Therefore, this chapter sets out to optimise
the performance of the 2D bump using the adjoint-based optimisation method
and to provide some insight into the mechanism of this kind of device as well.
Besides that, this is also a reasonable way to start the project, gaining essential
experiences in using the numerical tools.

The following results will only include the performance of a 2D bump on an
unswept wing with two different types of aerofoil sections. The chosen aerofoil
types include the RAE 5243 NLF aerofoil and the RAE 2822 turbulent aerofoil.
The next section presents the parameterisation of the 2D bump employed in this
project.

5.1 Initial 2D Bump Parameterisations

There are various possible shapes for 2D bumps, i.e. loaded beam, triangular
shape or ramp, concave polynomial and polynomial as investigated by Sommerer
et al. [38]. However, it has been concluded that the shape of the bump has minor
effects on the drag reduction [38, 11]. Consequently, for simplicity, the author
has chosen to define the shape of the bump with a simple cubic polynomial as

written below:
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y = bxA+ ex2+ dx + e (5.1)

As shown in Figure 5.1, the bump is paraineterised by four essential design vari-
ables, the upstream and downstream points of the bump, xat/c and xen(i/c, the
position of the crest of the bump, xcre/c and the maximum height of the bump,
Avyh/c. Here, the subscripts si, ere and h are abbreviations denoting start, crest

and height respectively.

Figure 5.1: Parameterisations of 2D bump.

Note that the 2D bump is added on top of the aerofoil profile. Hence, the gradi-
ent at the crest of the 2D bump is evaluated such that it is aligned with a hue
connecting xat/c and xend/c, hence tangential to the local aerofoil profile. The
gradients at both ends of the 2D bump are evaluated such that the local curva-
ture is maintained. Therefore, the cubic spline equation (Egn. (5.1)) can then
be solved via a set of equations with these known design parameters and gradients.

For the sake of convenience, the designation of the 2D bump can be expressed
in abbreviated form, for example, st48.5-e68.5-cre60-h0.0 defines a bum]) that
starts at xH/c = 48.5%, ends at xemt/c = 68.5%, its bump crest is located at
%cre/c —60% and with a height of Ayh/c —0.6%.

These are the parameters that have been defined at the preliminary stage of
the investigations. However, in order to tackle several optimisation issues, the
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parameters have indeed been revised, which will be discussed in further detail at
appropriate stages of this chapter.

5.2 Unswept Wing with RAE 5243 NLF Aero-
foil Section

The RAE 5243 NLF blunt trailing edge aerofoil has been adopted in various ref-
erences involving investigation into shock control [26, 31, 30, 27, 47]. It has a
maximum thickness to chord ratio of 14% and was designed at a freestream Mach
number of 0.68. This type of aerofoil is of particular interest for shock control
purposes for several reasons. First of all, it will be even more beneficial to com-
bine the potential of wave drag reduction from the shock devices with the laminar
flow nature of the aerofoil that reduces the skin friction drag. Besides that, the
position of the shock wave is less sensitive to the change of flow conditions for
this type of aerofoil. This is important since the performance shock control bump
largely depends on the relative position between them and the shock wave.

In order to save some computational effort and to enable the turbulent viscosities
at the wake to be copied from the neighbouring block, the blunt trailing edge of
the aerofoil has been sharpened by employing the method suggested by Zhu [30].
As a result, without the extra block that would have been needed if the trailing
edge were blunt, Figure 5.2 shows a typical C-type grid with four blocks. Note
that the grid shown here is generated for inviscid two-dimensional investigations,
therefore the grid only consists of around 248x31 cells. Here, the far-field bound-
ary is more than 20 times chord distance away from the aerofoil surface. On
the other hand, Figure 5.3 shows the trailing edge of the aerofoil that has been
sharpened. The grid resolution is not clustered close to the aerofoil surface since
the boundary layer need not be modelled yet. The grids are however clustered at
the vicinity of the known location of the shock wave to enable better capturing
of the shock structure.

The freestream Mach number is set to 0.68 and a Reynolds number of 19 million
based on chord. These conditions correspond to the cases studied in the literature
mentioned in the earlier paragraph of this section. Without the viscous effects, at
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Figure 5.2: A typical C-type grid with four blocks. (RAE 5243)

Figure 5.3: The sharpened TE on the RAE 5243 aerofoil.
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an angle of attack of 1.5°, the calculated lift coefficient is 0.823. Hence, through-
out the investigation of the inviscid performance of the 2D bump, CL —0.823
serves as the target lift coefficient that has to be constrained.

5.3 Inviscid Effects of 2D Bump on RAE 5243

5.3.1 Initial Designs

Before starting the optimisation, some preliminary investigations were carried
out. A design of st48.5-e68.5-cre60-h,0.2 is derived from Monet’s brief 2D bump
viscous investigation [46]. However, the bump is modified to have the bump crest
located at 62% chord instead of 60% chord, due to the following reasons. With
the absence of a boundary layer, a strong normal shock is formed on the aero-
foil, so the position of the shock is located further downstream compared to the
position of the shock in viscous flow. Besides that, as suggested by Birkemeyer
et al. [36], the bump crest has to be located slightly downstream relative to
the position of the shock for good performance. The computed pressure distribu-
tion on the surface of the aerofoil with and without bumps is shown in Figure 5.4.

For the bump st.48.5-e68.5-cre62-h0.2, the pressure distribution plot shows that
a compression wave is indeed generated since the flow just upstream the shock
is slowed down. However, the flow re-accelerates before reaching the bump crest
and hence shifting the shock downstream. As the bump height is increased to
0.3% chord, a stronger compression wave is generated. However, the flow still
re-accelerates like the previous bump st48.5~e68.5-cre62-h.0.2.

Since the long upstream concave part of the bump seems to be the reason behind
the severe re-acceleration of the flow, so the design of the bump is revised to
consist of a short upstream concave and a long downstream concave. Hence a
steeper gradient at the upstream concave of the bump to generate stronger com-
pression wave but with less severe re-acceleration of the flow. The revised bumps
are st55-e80-cre61.9-h0.2 and st55-e80-cre61.9-hO.S. Their computed pressure
distribution plots are shown in Figure 5.5.

Figure 5.5 indicates that the previous hypothesis on the revised bump is sensible.
Without the severe re-acceleration of the flow, the maximum Mach number is
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Figure 5.4: Computed pressure distribution for the preliminary designed bumps.
(RAE 5243, M«, = 0.68, CL = 0.82)

lowered, hence the strength of the shock is weakened. Note that the speed of
the flow after the shock or at the long downstream concave part of the bump
is higher compared to the clean aerofoil; hence the entropy increase across the
shock is lowered. Consequently, wave drag is reduced.

5.3.2 Optimisation Results
5.3.2.1 Unconstrained and Constrained Bump Length

The context of this optimisation task is to minimise the objective function, which
is here the total drag coefficient, Cx>, while constrained at the target lift coeffi-
cient, C1 = 0.823 by changing the incidence a. Initially the four design variables
to be optimised are the four essential parameters that define the shape of the
bump as described in Section 5.1. So, the four design variables are able to move
freely and independently. Subsequently, it was soon realised that the optimiser
would then allow the bump to grow over almost the whole aerofoil upper surface,
starting from 36%c to 80%c. In other words, the optimiser is optimising the
geometry of the whole aerofoil upper surface using the geometrical definition of
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-2.00

Figure 5.5: Computed pressure distribution for the revised designed bumps.
(RAE 5243, M«, = 0.68, CL = 0.82)

the bump. Thus, obviously, the length of the bump has to be constrained for a
more reasonable optimisation.

The first attempt was to constrain the upper and lower boundaries of xst/c and
Xend/c within a specific region, e.g. bounded within 55%c and 80%c. By doing
so, the bump is fixed within a definite region with the maximum length of 25%
chord, but still allowed to shrink. Both these design parameters are not allowed
to move freely over the aerofoil, because they might crossover with each other
and possibly with Xcre/c too. This approach was first considered because minor
modifications were only needed in the optimiser. Hence, in this case, xst/c has
a maximum upstream boundary at 55% chord and xend/c is allowed to grow up
to 80% chord. Figure 5.6 displays the computed pressure distribution plots for
the optimised bump found using this method and also the case where the bump

length was not constrained.

For the 2D bump optimised with the bump length as a constraint, the upstream
maximum Mach number of the shock is further reduced, and the speed of the flow

97



5.3 Inviscid Effects of 2D Bump on RAE 5243

Figure 5.6: Computed pressure distribution for the optimised bumps with and

without bump length constraint. (RAE 5243, = 0.68, C1 = 0.82)

CDpressurc  Total Drag Reduction

Datum aerofoil 0.011681 -
Unconstrained bump length  0.006747 42.2%
Constrained bump length 0.007442 36.3%

Table 5.1: Comparisons of performance for the optimised 2D bump without and
with constrained bump length. (RAE 5243, M@= 0.68, C1 = 0.82)
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aft of the shock is higher than before, hence resulting in a relatively weakened
shock. The inviscid drag reduction achieved by this optimised bump is up to
36%. As observed from the pressure distribution plot for the optimised bump
that is unconstrained by the bump length, instead of weakening the shock by
a compression wave, the geometry of the aerofoil was optimised to weaken the
shock such as that of a supercritical aerofoil. Thus, the strength of the shock is
lowered so that the upstream pressure distribution tends to be a “rooftop” trend.
Comparisons of the performance in Table 5.1 indicate that it also performs better
than the bump with constrained bump length. This method of constraining the
bump length is further revised and discussed in the following section.

5.3.2.2 Revised Method for Constraining Bump Length

Although the previous optimisation results look promising, the bump is not opti-
mised yet. Recall that the location of the bump is restricted to a particular region
between 55%c and 80%c, even though xst/c and xeiui/c are allowed to translate
within this region, but it does not allow the entire bump to move freely elsewhere
on the aerofoil. Instead, for a better and more sensible optimisation, the location
of the bump should be allowed to move freely within the aerofoil upper surface
while the maximum bump length is still constrained. The method should also
be able to avoid possible crossovers between x8t/c, xend/c and x(re/c effectively.
By referring to Birkemeyer’s efforts in Ref. [36], an additional bump parameter,
which is the relative position of the bump crest with respect to the bump length,
is defined ¢is

Xcrc/c Xst/C
bumpreiative (5.2)
Xend/(" Xst/C

Consequently, the origimil design variables xst/c and xaxi/c are then replaced
by the bump length, bumpi,,ngth = xtmdic, - xal/c and bum preiative respectively in
the optimiser. Therefore, the total number of design variables still remains ¢is
four. Although the two original bump design variables have been replaced in the
optimiser, the bump is actually still generated by the grid modeller using the
same four parameters as described in Section 5.1. In other words, the two new
parameters described above, bumpiength and bumpreiatiw actually define the values
of both xst/c and xen(i/c. As a result, the parameterisations illustrated in Figure
5.1 cire being replaced with the following illustration:
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Without having to define the upper and lower boundaries for x8t/c and x,,ui/c,
the bump length and the shape of the bump (i.e. bump with longer upstream
and shorter downstream shape) being defined by bumpicngth and bumprciati\e re-
spectively and that the location of the bump is determined by xcrJc\ the bump
is now allowed to move anywhere within the aerofoil upper surface whilst having
the length constrained. Any possible crossover or violation between the design
parameters is also avoided with this approach. The designation of the bump is
modified as, for example, a 120-cre63-cb50-h0.6 bump has a bump length of 20%e
with the bump crest located at 63%c and at 50% of the bump length (hence a
symmetrical bump), and a bump height of 0.6%c. There are additional benefits
to these modifications as well. As demonstrated in this bump designation exam-
ple, it would provide a more convenient mid direct interpretation of the shape of
the bump, i.e. symmetrical or asymmetrical with longer upstream, etc.

Two optimisation cases have been run using this revised method, one with a
maximum allowable bump length of 20%c and another with 25%c. Note that
the previous optimised bump has a designation of 120-cre63.2-ch33-h0.6 and by
taking this as the initial design for the optimisation, Figure 5.8 below plots the
convergence history of the objective function (total drag coefficient, Co) for the
optimisation case with 25%c maximum allowable bump length.

The optimised bumps obtained from both cases have the designation 120-cre63.3-
cb66.8-1x0.61 and 125-cre63.6-cb54.5-h0.75. The location of the bump crest is
similar to that of the previous effort, but the shape of the bump has now changed.
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Figure 5.8: Convergence history of the objective function.

Instead of an asymmetric short upstream shape, both bump crests of the opti-
mised bumps are located at 67% and 55% relative to the bump length, hence
they are still asymmetric but with longer upstream and shorter lee side. A fur-
ther pressure drag reduction of about 43% and 45% have been achieved by the
optimised bumps with maximum allowable bump length of 20%c and 25%c re-

spectively.
CDpreasure Total Drag Reduction
Datum aerofoil 0.011681
120-cre63.3-ch66.8-h0.61  0.006582 43.1%
125-cre63.6-cb54.5-h0.75 0.006338 45.2%

Table 5.2: Comparisons of performance for the optimised 2D bump with revised
bump length constraint method. (RAE 5243, Moo = 0.68, Ci —0.82)

The predicted pressure distribution plots in Figure 5.9 depict the generation of
a strong isentropic compression wave. The remaining shock waves shown in the
pressure contour plots in Figures 5.11 (a) and (b) for both the optimised 2D
bumps are relatively much weaker compared to the datum aerofoil shown in Fig-
ure 5.10 since the isobar contours are not as dense as before at the vicinity of
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Figure 5.9: Computed pressure distribution plots for both the optimised 2D
bumps in inviscid flow. (RAE 5243, M~ = 0.68, C1 —0.82)

Figure 5.10: Pressure contour plots for the datum aerofoil. (RAE 5243, M«, =
0.68, CL = 0.82)
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Figure 5.11: (a) Pressure contour plots for the optimised 2D bump with maximum
20%c allowable bump length, (b) Pressure contour plots for the optimised 2D
bump with maximum 25%c allowable bump length. (RAE 5243, = 0.68,
CL=10.82)

the shock. It is demonstrated here that proper design of the 2D bump can be
achieved through appropriate bump parameterisations and aerodynamic optimi-
sations. Both the optimised 2D bumps are found to be effective in weakening
the shock wave. Building on the experiences gained from this inviscid study, we
optimise the design the of the 2D bump with the presence of the boundary layer
in the following section. Viscous effects from the 2D bump and its mechanisms
are then investigated and analysed.

5.4 Viscous Effects of 2D Bump on RAE 5243

5.4.1 Preliminary Investigations

By taking the viscous effects into account, at the same flow conditions of MO =
0.68, Rec = 19 x 106 and a = 1.5°, the computed lift coefficient, C1 becomes
0. 69. Note that it is assumed that the boundary layer is fully turbulent right
from the LE of the aerofoil. The resolution in the direction normal to the flow or
the 7/direction has to be refined to properly model the turbulent boundary layer.
Therefore, grid points are clustered near the aerofoil surface so that y+ is around
1. As a result, the total resolution of the grid is increased to around 248x61 cells.
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The position of the shock wave has displaced about 3%c upstream compared to
the inviscid case. Hence, one of the 2D bumps optimised in the previous section
for the inviscid investigations, bump 120-cre63-cb67-h0.6 was modified as 120
cre60-ch67-n0.6 and tested under the lift condition mentioned above, CL —0.69.
However, the result shows that there are deterioration effects from the 2D bump,
a strong double-shock system is formed on the aerofoil upper surface, which has
led to a severe drag penalty as shown in Table 5.3. Since the location of the
2D bump and the position of the bump crest should be reasonable, this suggests
that the bump height might be too high. Through some numerical tests, a more
sensible bump height for this flow condition and bump configuration was found
to be around 0.25%c, which gives around a 6% reduction of drag from the datum
case as listed in Table 5.3.

c ptotal  Copressure da fricion T Otal Drag
Reduction

Datum aerofoil 0.01282 0.007023 0.005794 -
120-cre60-cb67-h0.6  0.01725 0.011746 0.005503 -34.6%
120-cre60-cb67-h0.25 0.01205 0.006255 0.005837 6.3%

Table 5.3: Comparisons of the viscous test cases for 2D bump, = 0.68,
CL = 0.69.

& Diotal  CDpresaure  C afriction 1 O0tal Drag
Reduction

Datum aerofoil 0.01622 0.010630 0.005586 -
120-cre60-ch67-h0.6  0.01764 0.012165 0.005474 -8.8%
120~cre60-cb67-h0.4 0.01398 0.008555 0.005425 16.2%

Table 5.4: Comparisons of the viscous test cases for 2D bump, M = 0.68,
CL = 0.82.

The same bump 120-cre60-cb67-h0.6 is again tested under a relatively higher
lift coefficient at CL - 0.82, where the strength of the shock is consequently
stronger as well. In terms of performance in drag reduction, the results in Table
5.4 indicates that this bump height is still inappropriate, which has a 8% drag
penalty compared to the datum case. 1lhe double-shock incurred by this bump
is depicted in Figure 5.12 (a), with the secondary shock formed at the 2D bump.
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Figure 5.12: (a) Pressure contour plots for the bump 120~cre60-cb67-h0.6. (b)
Pressure contour plots for the bump 120-cre60-cb67-h0.4, C1 = 0.82.

Again, with some trial and errors, the possible “optimum®™ bump height for this
2D bump configuration at this higher lift condition is around 0.4%c. From Table
5.4, this 2D bump with a lowered height can provide 16% reduction in drag.
Figure 5.12 (b) demonstrates that with the appropriate bump height, there is
no double-shock and the original main shock is smeared and weaken. Therefore,
these preliminary investigations suggest that the optimum height of the 2D bump
varies with respect to the lift coefficient and the strength of the shock wave. These
findings correspond to the conclusions in Birkemeyer’s report [36]. In other words,

for optimum performance, the 2D bump has to be adaptive to the flow conditions.

5.4.2 Optimisation Results

The constrained lift coefficient is chosen as CL = 0.82, to provide a stronger
shock wave and hence highlights the off-design performance of the 2D bump. In
addition, instead of confining the maximum bump length to 25%c, it was decided
to relax the design space constraint and allow the bump to grow to up to 40%c.

The obtained optimised 2D bump has a designation of 131.3-cre59.7-cb66.1-h0.59.

Figure 5.13 (a) illustrates the optimised 2D bump generated on the upper surface
of the aerofoil with figure 5.13 (b) showing a closeup picture of the 2D bump. By
referring back to the 2D bump designation of 131.3-cre59.7-cb66.1-h0.59, it can

be observed that the shape of the 2D bump has a longer upstream concave with
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a height of ~6%c. Recalling that in the preliminary investigations, the tested 2D
bump with such a height gave increased drag and had to be lowered. However,
through optimisation, with a slight change in bump shape and size, the flow can
now sustain a height of 6%c without a strong double-shock and hence substan-
tially lower drag.

Figure 5.13: (a) Aerofoil with the optimised 2D bump generated on the surface,
(b) Closeup on the 2D bump.

Cotwtal  Copreasure catriction ToOtal Drag
Reduction
Datum aerofoil 0.01622 0.010630 0.005586 -
Optimised 2D bump 0.01326 0.007563 0.005700 18.2%
120-cre60-ch67-h0.4 0.01398 0.008555 0.005425 16.2%

Table 5.5: Comparisons of the drag components for the optimised 2D bump.
(RAE 5243, M«, = 0.68, CL = 0.82)

Table 5.5 compares the computed drag components for the datum aerofoil, the
optimised 2D bump and also along with the 2D bump from the preliminary in-
vestigations. From the table, the optimised 2D bump achieved a 18% total drag
reduction from the datum aerofoil or about 30 drag counts. Compared to the
manually designed 2D bump 120-cre60-cb67-h0.5, a further reduction of 13 drag
counts has been obtained from the optimisation. Although there is a 1~2% in-
crease in skin friction drag, nonetheless, this viscous drag penalty is insignificant
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when compared to the huge pressure drag reduction achieved by the optimised
2D bump, which is over 25%.

Figure 5.14: Pressure contour plots for the (a) datum aerofoil and the (b) opti-
mised 2D bump. (RAE 5243, = 0.68, C1 = 0.82)

Figure 5.14 (a) depicts clearly a reasonably strong normal shock formed on the
upper aerofoil surface. With the presence of the optimised 2D bump, a com-
pression wave is generated upstream of the bump, which substantially weakens
the normal shock wave. Therefore, it can be seen that even in the presence of a
boundary layer, the effects of the 2D bump on the flow is largely inviscid. The
streamwise pressure distribution plot for the optimised 2D bump as shown in
Figure 5.15 reassembles some similarities observed from the preceding inviscid
investigations in Figure 5.9. The upstream flow ahead of the bump is slowed
down before re-accelerating to the crest of the bump, hence shifting the position
of the main shock. The speed of the flow on the lee side of the bump is slightly
higher compared to the datum, which explains the slight increase in skin fric-
tion drag. The modified local curvature could induce flow separations, however,
a closer view of the streamtraces around the 2D bump in Figure 5.16 confirms
there are no such feature in the flowfield.

5.4.2.1 Mechanisms and Further Drag Analysis

In this section, we will try to analyse the mechanism of the optimised 2D bump
from flowfield visualisations and with the help of some further pressure drag analy-
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.2.00

Figure 5.15: Streamwise pressure distribution for the optimised 2D bump. (RAE
5243, Al«, = 0.68, CL = 0.82)

Figure 5.16: Closeup view of the streamtraces around the optimised 2D bump.
(RAE 5243, Mx = 0.68, CL = 0.82)
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sis. Figure 5.17 presents the pressure contour lines of the datum case without the
2D bump. In this figure, the solid red-line represents the would-be position of the
optimised 2D bump superimposed on top of the solid blue-line of the datum wing.
The position of the bump crest is marked in this figure, which is placed ~3%c
downstream from the original strong normal shock wave. Notice that part of the
upstream region of the 2D bump lies within the supersonic region of the normal
shock, which will generate an isentropic compression wave to weaken the normal
shock. Concurrently, the remaining upstream region of the 2D bump lies between
the terminated normal shock and the crest of the 2D bump. In this region, recall
that the speed of a subsonic flow will increase when going through a compression
such as that of a compressor (decreasing cross-sectional area); thus, the subsonic
flow will re-expand to supersonic flow and terminate as a weaker shock in the

vicinity of the bump crest.

Figure 5.17: Closeup of the pressure contour lines of the datum case without 2D
bump. (RAE 5243, M«, = 0.68, CL = 0.82)

These described effects of the 2D bump on the original normal shock are depicted
in Figure 5.18. It can be seen here that the original normal shock is converted
into a weaker “knee”-shape shock. Its position has also displaced slightly down-

stream close to the bump crest.
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Figure 5.18: Closeup of the pressure contour lines of the case with 2D bump.
(RAE 5243, = 0.68, CL = 0.82)

Recall the streamwise pressure plots and the contour plots from Figures 5.15 and
5.14. Locally within the vicinity of the 2D bump, it is observed that the upstream
flow disturbed by the 2D bump has slowed down (higher pressure compared to
the datum aerofoil), whilst the speed of the downstream flow aft the bump crest
has slightly increased (lower pressure). Therefore, in this sense, the flow field
modified by the bump should have increased the drag. However, it has already
been proved by various calculations and also in experiments that the effects of
the 2D bump are beneficial. As a result, a somewhat paradoxical situation arises
on the mechanism of the 2D bump. Therefore, the following analysis is carried

out to clarify this.

With reference to Figure 5.19 [93], integration of the enclosed areas of both cases
(datum aerofoil and 2D bump) in Figure 5.15 will give the force component Cy:

(5.3)

It can be observed from the plot that the enclosed areas from both cases are quite
similar. Whilst from calculations, for a given lift, the calculated Cy component
from both the datum aerofoil and the one with the 2D bump are very close (Table
5.6). Due to the change of camber imposed by the 2D bump on the aerofoil, the
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Figure 5.19: Aerodynamic forces.

wing can now achieve the same lift coefficient at a lower incidence 2.207°, which
is about 0.2° lower compared to 2.417° of the datum case.

Datum, g = 2.417° 2D Bump, a = 2.207°
Cx= -0.02393 Cx= -0.02400

Cy6.81899 C,= 0.81904

Table 5.6: Calculated values for the Cx and Cy components. (RAE 5243, him =
0.68, CL = 0.82)

On the other hand, the streamwise pressure distribution can be comprehended
through a different plotting approach. Figure 5.20 demonstrates this.method by
plotting the ~-coordinates of the sections against pressure Cp. The integration of
the areas in this figure will provide the other force component Cx (with reference

to Figure 5.19 as well):

In this plot, it is shown that for the datum aerofoil, after the point of maximum
y/c of the datum aerofoil, the existence of a fairly strong shock wave pushes
the minimum pressure further and hence increases the drag contribution of this
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component. The bump significantly weakens the shock strength and pulls the
minimum Cp back to a lower value. Consequently, the small enclosed area at the
upper right of the plot, which is the drag contribution from the shock wave is
now considerably smaller than the datum aerofoil. Calculations shown in Table
5.6 suggest that the Cx component from them are quite similar too. Once again,
both cases are at the same lift condition, where the 2D bump case is calculated

at a lower incidence.

Figure 5.20: y/c vs Cp plot. (RAE 5243, Ma) = 0.68, C1 = 0.82)

Since the actual drag coefficient Cp is calculated via

CD = Cysina + Cxcosa (5.5)

and the bump could sustain the same lift at a lower incidence a, therefore even
with a similar magnitude of Cy and Cx, the drag component Cysina is now
much smaller with a reduced incidence, a. In contrast, the component Cxcosa
that actually provides thrust has now increased. As a result, substantial drag
reduction has been achieved by the 2D bump. Note that, this analysis did not
take the skin friction contributions into account, nonetheless, the contributions

are relatively insignificant anyway.
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Figure 5.21: y7c vs Cp plot. (RAE 5243, MM = 0.G8, C1 = 0.82)

As indicated in Figure 5.19, the coordinate system can be adjusted such that the
axes, x> and y’ are aligned with the direction of the freestream. Figure 5.20 is
then re-plotted to give Figure 5.21. From here, ignoring skin friction drag, the
integration of the enclosed areas in this figure will then lead directly to the drag
coefficient, Co, which is the dominant drag component here. This plot also gives
a clearer and straightforward projection of the forces (drag or thrust) acting on
the aerofoil, which are labeled in this figure. Once again, the upper region that
provides drag is significantly reduced and that the thrust regions on the upper
surface from both cases had slightly varied between them. In addition, the lowest
enclosed region at the lower surface of the aerofoil, which actually provides thrust
slightly increases compared to the datum case.

The analysis carried out here has provided deeper insight into the mechanisms of
the 2D bump on drag. It has also clarified the paradox stated earlier by looking
at the contribution of the local forces to the total drag such as that in Figure
5.21. The y-pressure distribution analysis shows how the 2D bump alters the
various contributions to drag at different part of the wing. The fact that both
the shock wave is weakened by the 2D bump and the wing is at a lower incidence

explains the substantial drag reduction gained.
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5.4.2.2 Wave Drag Analysis

In order to assess the wave drag reduction performance of the 2D bump. The
entropy contour plots from the optimised 2D bump are compared to those of
the datum aerofoil in Figures 5.22 over the same range of contour levels. Note
that the computed entropy shown in the figures is non-dimensionalised by the
freestream value. Thus, besides the boundary layer region with high contour
values (red regions) in Figure 5.22 (a), it is observed that there is a substantial
increase in entropy across the original strong normal shock wave, which forms
the red region at the back of the shock. On the other hand, Figure 5.22 (b)
demonstrates the effectiveness of the 2D bump in reducing wave drag, where the
originally red region behind the shock wave is mostly converted to a lower contour
level. Therefore, wave drag is clearly reduced by the 2D bump since the entropy
increase behind the shock wave is now much lower than the datum aerofoil.

Figure 5.22: Entropy contour plots for the (a) datum aerofoil and the (b) opti-
mised 2D bump. (RAE 5243, Moo = 0.68, C1 = 0.82)

By employing the far-field method introduced in Chapter 2, the wave drag and
viscous drag (form + skin friction) components extracted from this optimised 2D
bump are shown in Table 5.7 below:

From the table above, the computed values again confirm the substantial wave
drag reduction achieved by the 2D bump. This corresponds to the previous
entropy contour plots of Figure 5.22, which have already suggested that the shock
wave has been largely eliminated. In addition to that, viscous drag is also being
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r'i fv_ |
D wave Dviscous

Datum aerofoil 0.003126  0.01026
Optimised 2D bump 0.000848 0.01011

Table 5.7: Comparisons of the wave drag component for the optimised 2D bump.
(RAE 5243, = 0.68, CL= 0.82)

reduced compared to the datum case. Since viscous drag comprises of form drag
and skin friction drag, this reduction should be contributed by a reduced form
drag because it has already been shown earlier that skin friction drag actually

increases slightly.

5.4.3 Performance over a Range of ci

The performance of the optimised 2D bump has been tested over a range of lift
coefficients at the same freestream Mach number of 0.68. This is plotted out in

the drag polar in Figure 5.23.

Note that the bump is optimised at the design point of C1 —0.82, Higher than
this point, the effects of the 2D bump are still beneficial. However, at lower lift
coefficients, the performance of the bump rapidly deteriorate. Nevertheless, it
indicates the potential of 2D bump in delaying buffet onset. Figure 5.24, which
plots the lift-drag ratio against CL gives a clearer picture of the performance

range of the 2D bump.

Beyond the optimisation design point at higher lift, coefficients, the lift-drag ratio
of the bump has substantially improved from the datum aerofoil. At low lift
coefficients, the lift-drag ratio of the bump is lower than that of the datum case.
As a result, the study here again implies the requirement of employing an adaptive
2D bump for optimum performance especially within the lift coefficients range

that is below the design point.

5.4.4 Performance over a Range of Mach Number

This section investigates the performance of the optimised 2D bump over a range
of freestream Mach numbers. A range of Mach number cases weie run with a
fixed incidence at a = 2.42° Since the lift coefficients are not fixed, the results
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Figure 5.23: Drag polar for the optimised 2D bump. (RAE 5243, = 0.68)

Figure 5.24: Lift-drag ratio against CL for the optimised 2D bump. (RAE 5243,
Moo = 0.68)
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are plotted in Figure 5.25 as the lift-drag ratio against the range of Mach number.

Figure 5.25: Performance over a range of Mach number for the optimised 2D
bump. (RAE 5243, fixed at a = 2.42°)

Note that the optimised design point is M«, = 0.68, which has a significant
improvement in performance. There are still some beneficial effects from the
2D bump up to 0.77. However, its performance dropped off slightly at lower
Mach number off-design points. Nonetheless, it is shown here that the one-point-
optimised 2D bump are still operable over quite a considerable range of freestream
Mach number conditions. The inability of the 2D bump to perform well at some
of the off-design points can be explained by the observation of the displacement
of shock location when the Mach number varies, i.e. at 0.85, the shock wave has
moved very close to the TE. Since the 2D bump performance is largely dependant
on the relative location between it and the shock wave, thus the shifting locations
of the shock wave at off-design Mach numbers have undermined its performance.
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55 Unswept Wing with RAE 2822 Transonic
Acerofoil Section

5.5.1 Validation

The RAE 2822 transonic aerofoil is one of the most widely investigated aerofoils
in the research community. It has a maximum thickness to chord ratio of 12%
and it is designed for a higher Mach number at 0.729, as compared to the previous
RAE 5243 aerofoil. Nonetheless, it still exhibits a fairly strong normal shock on
the upper-surface. A different aerofoil is chosen to demonstrate the versatility
of using bumps on wings with different type of aerofoil section. A C-type grid
with a resolution of 220 x 61 cells was generated. Once again, the grid resolution
near the aerofoil surface is adjusted to obtain y+ values at around 1 The flow
conditions for the validation case are Al«, = 0.729, Rec —6.5 x 106 and ov= 2.31,
which correspond to the case study #4 found on the NPARC Alliance Validation

Archive website [94].

The experimental pressure distribution data plotted in Figure 5.26 shows ex-
tracted from the NPARC website and the solid line is the results predicted bv
MERLIN. The comparison of the pressure distributions has shown good agree-
ment between these two sets of data. Although the suction peak at the LE of
the aerofoil is slightly under-predicted by MERLIN, but the position of the shock
wave and the suction peak at the shock wave are predicted reasonably well.

Nevertheless, this is yet another brief validation exercise in conjunction with the
main validation study already presented in Chapter 3. Once again, this exercise
Ims demonstrated the ability of MERLIN to resolve transonic flow features with

reasonable accuracy.

5.5.2 Optimisation Results

Instead of carrying out the optimisations at = 0.729, the author decided to
increase the freestream Mach number slightly to 0.75. The Mach number is now
significantly higher than the Mach number design point chosen for the previous
RAE 5243 NLF aerofoil cases and hence the strength of the shock wave is con-
siderably stronger. As a result, at flow conditions of M(D= 0.75, o, —2.31, the
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Figure 5.26: Comparison of the pressure distributions computed by MER LIN and
experiment for R.AE 2822 transonic aerofoil, = 0.729

calculated C1 is 0.75, which is taken as the target lift-coefficient for the optimi-

sations.

The maximum allowable bump length is still 40%c, by employing the same op-
timisation methods as before, the final optimised bump has a designation of
140-cre70.6-cb57.5-hl. 14- Note that the designation indicates that the optimised
bump has a height of around 1%c. The aerofoil with the optimised 2D bump on
the upper surface is shown in Figure 5.27 (a). The following Figure 5.27 (b) is the
close-up of this 2D bump on the aerofoil. The bump designation indicates that
this optimised 2D bump is asymmetric and consists of a longer upstream concave.

The obtained optimised 2D bump achieved around 32% total drag reduction from
the datum reference case. Table 5.8 below provides further details on the com-
puted drag components. Similar to that of the NLF aerofoil studies, it is noticed
that there is a slight increase in skin friction drag. However, this viscous drag
penalty is again eclipsed by a pressure drag reduction achieved by the optimised

2D bump, which is around 42%.
Figures 5.28 (a) & (b) compare the pressure contour plots from both the datum
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Figure 5.27: (a) RAE 2822 aerofoil with the optimised 2D bump generated on

the surface, (b) Closeup on the optimised 2D bump.

(-'Dtotal dDpressure.  Cad friction Total Drag
Reduction
Datum aerofoil 0.02296 0.017146 0.005813 -
Optimised 2D Bump 0.01555 0.009576 0.005978 32.3%

Table 5.8: Comparisons of the drag components for the optimised 2D bump.

(RAE 2822, A/» = 0.75, CL = 0.75)
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5.5 Unswept Wing with RAE 2822 Transonic Aerofoil Section

reference case and the optimised 2D bump. It can be observed that the strong
normal shock wave on the upper aerofoil surface in Figure 5.28 (a) is very much
weakened by the presence of upstream compression wave generated by the 2D
bump as shown in Figure 5.28 (b). The effects of the 2D bump on the shock wave
is further confirmed in the streamwise pressure distribution plots of both cases in
Figure 5.29. Once again, with the presence of the 2D bump, the suction side of
the aerofoil is left with a significantly weaker shock wave since the suction peak
is greatly reduced. The position of the main shock has been displaced about 5%c
downstream, thus increasing the supersonic region on this suction side. Conse-
quently, the aerofoil with the optimised 2D bump is able to sustain the same level
of lift coefficient at a lower incidence. Here, the incidence for the 2D bump case

is 0.4° lower than that of the datum case.

Figure 5.28: (a) Pressure contour plots for the datum reference case and (b) the
optimised 2D bump. (RAE 2822, M@= 0.75, C1 = 0.75)

Accompanying the pressure distribution plot of Figure 5.29 is the alternative y’~
coordinates against pressure plot of Figure 5.30. Since the y-coordinates are
aligned normal to the direction of the freestream, the integration of the enclosed
areas in Figure 5.30 directly relates to the drag. As before, skin friction drag
is ignored here in the analysis. Nevertheless, it can be seen in Figure 5.30 that
at the shock wave drag pocket (upper-right corner), the original normal shock is
undergoes a re-compression and expansion before terminated as a much weakened
shock. The thrust areas of both the upper and lower surface increase slightly as
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Figure 5.29: Comparison of the streamwise pressure distribution plots. (RAE
2822, Moo = 0.75, CL = 0.75)

Figure 5.30: Comparison of the y vs Cp plots. (RAE 2822, Af@—0.75, Cr, —
0.75)
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well. In addition to that, the main drag region on the lower surface is reduced

considerably.

5.5.3 Wave Drag Analysis

Table 5.9 lists out the wave and viscous drag components extracted using the
far-held method. It indicates that the bump has significantly reduced the wave
drag on the datum aerofoil by more than 69 drag counts. This corresponds to
the entropy contour plots of Figure 5.31, which suggests that the shock wave has
been largely eliminated. Additionally, it is also implied by the reduced viscous
drag that the form drag has been reduced as well.

CDwave CDviscous

Datum aerofoil 0.009494  0.01097
Optimised 2D bump 0.002543 0.01031

Table 5.9: Comparisons of the wave & viscous drag components for the optimised
2D bump. (RAE 2822, A/« = 0.75, CL = 0.75)

The effects of the 2D bump on the wave drag are shown in the entropy plots
of Figures 5.31. Without the 2D bump, there is a substantial entropy increase
across the original strong normal shock wave as shown in Figure 531 (a). While
employing the 2D bump, in Figure 5.31 (b), it is clear that the normal shock wave
has been bifurcated into a A-shock which has less severe entropy increase across it.

5.5.4 Performance over a Range of ci

The performance of the 2D bump at off-design points is assessed by plotting out
the drag polar whilst fixing the freestream Mach number at 0.75. The drag po-
lar as shown in Figure 5.32 indicates that beyond the optimised design point at
CL - 0.75, the 2D bump can still provide substantial drag reduction from the
reference datum case. This beneficial effect however turn into a penalty at the

lower Ci region.

Figure 5.33, which is the lift-drag ratio plot against CL again highlights the
performance of the 2D bump over the range of C/,. Nevertheless, this result also
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Figure 5.31: (a) Entropy contour plots for the datum reference case and (b) the
optimised 2D bump. (RAE 2822, M@= 0.75, C1 = 0.75)
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Figure 5.32: Drag polar for the optimised 2D bump on RAE 2822, = 0.75.
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Figure 5.33: Lift-drag ratio plot against lift coefficient for the optimised 2D bump
on RAE 2822, M«, = 0.75.

implies the potential of employing the 2D bump to delay buffet onset and that
the 2D bump needs to be adaptive as discussed earliei in Section 0.J\3.

5.5.5 Performance over a Range of m »

The performance of the 2D bump within the range of freestream Mach number
of 0.72 to 0.85 is plotted in Figure 5.34. Note that the incidence is fixed at
a = 2.31°. From this lift-drag ratio against Mach number plot, it is shown that
besides the optimised design point at M«, = 0.75, the 2D bump maintains its
beneficial effects over the range of Af» = 0.74 to 0.82. The possible explanations
behind the performance of the 2D bump over a limited range of Mach numbers
areas discussed in Section 5.11 where the shifting locations of the shock wave
due to the varying Mach numbers have significant impact on its performance.

5.6 Combined Aerofoil Shape with 2D Bump
Optimisation

Chapter 4 has already discussed some aspects of aerodynamic optimisation. In
Ref. [83], Le Moigne et al have successfully optimised an aerofoil shape based on
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Figure 5.34: Performance over a range of Mach number for the optimised 2D
bump on RAE 2822, incidence fixed at 2.31°

the RAE 2822 aerofoil section at its design condition using the efficient adjoint
method. While Nemec and Zingg have also attempted to optimise aerofoils based
on the NACA 0012 aerofoil [95]. Even though most of the efforts are successful
in shaping the aerofoil that would give little or no remaining shock wave, the
optimisation is mostly limited within a relatively low transonic Mach number
range about 0.7~0.75. It is very difficult to eliminate the shock wave on a unswept
wing at higher transonic Mach numbers over 0.8 or 0.85, which are usually the
cruising speed range for current modern aircraft. Therefore, it is proposed to
conduct a preliminary study on coupling the optimisation of the aerofoil shape

with the 2D bump on an unswept wing.

5.6.1 Aerofoil Shape Parameterisation

The Bézier-Bernstein parameterisation is employed to represent the variation
around an initial 2D aerofoil shape. The parameterisation is applied to a pertur-
bation that is added to the original shape. For a two-dimensional aerofoil, only
the vertical coordinates y are considered for deformation, thus

Vcurrent Vinitial 1
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where

N

Sy = ~2 Bw(u)Pyk
k=0

Here, Pyk are the Bezier control points and the Bernstein polynomials are

Bicn (u) k\(NM- k)\uk(l- u) Nk
where the arclength u = y/x, with x the non-dimensionalised chordwise position
of the point of ordinate yinitial for an aerofoil section. This arclength has been
chosen such that design changes are concentrated at the leading edge region of
the aerofoil where x is small. Prom this representation, the design variables are
then the Bezier control points, Pyk. In the present study, the upper and lower
shapes are represented with 10 Bezier control points each. Note that the leading-
and trailing-edge points are kept fixed, therefore only a total of 16 Bezier control

points are active design parameters.

5.6.2 Optimisation Results

The initial aerofoil shape chosen is the RAE 2822 transonic aerofoil. This aerofoil
is preferred to the RAE 5243 NLF aerofoil because it is designed at a higher Mach
number. At this Mach number and o0 = 1.0, the computed lift is CL = 0.498. This
is a reasonable choice of target lift coefficient such that the shock wave on the up-
per surface is strong but without severe shock-induced boundary layer separation.

In addition to the lift constraint, a geometrical constraint has also been imposed
in the optimisation, where the internal volume of the aerofoil excluding the 2D
bump is to be no less than the initial volume. By excluding the additional vol-
ume of the 2D bump, the possible thinning of the original aerofoil profile can then
be avoided. The objective function remains to reduce the total drag and lift is
constrained at the target value stated above. The initial bump has a chordwise
length of 20%c and a height of 0.3%c. The maximum allowable bump length is
still set to 40%c. In addition to the optimised aerofoil shape, the designation of
the optimised 2D bump for this case is 125.b-cvc79.6~cb51.7-h0.55. IThus, it is
shown that the size of the bump has grown about 6%c in the streamwise length
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and 0.2%c in height.

An aerofoil shape optimisation has also been carried out without the 2D bump.
The freestream conditions and constraints remain the same. Comparisons of the
performance of each of the cases are shown in Table 5.10 below:

*

Lowtal  prensure  ~ ptriction  Total Drag
Reduction
Datum aerofoil shape 0.03183 0.02615 0.005684
Coupled optimised shape 0.01477 0.00869 0.006084 53.6%

and bump
Coupled optimised shape 0.01553 0.00952 0.006006 51.2%

and bump (bump removed

manually)
Optimised shape 0.01480 0.00873  0.006075 53.5%

Optimised shape (bump 0.01355 000739 0.006157 57.4%

added manually)

Table 5.10: Comparisons of the drag components for the combined aerofoil shape-
bump optimisations, M = 0.8, C1 —0.498.

From this table, in addition to the two optimisation cases, there are two other
manually tested cases. For the coupled optimised shape and bump case, the
bump is removed manually to investigate the level of drag reduction contributed
by the bump. It is found that the bump contributes an additional 2% of drag
reduction to the improved aerofoil shape. Overall, this coupled optimisation of
aerofoil shape and bump achieves around 53% improvement from the datum case.
On the other hand, the aerofoil shape optimisation without bump optimisation
can also achieve the same level of improvement at 53%. By adding a bump at
the vicinity of the remaining shock on the upper surface, a further 4% of drag

reduction can be obtained.

The streamwise pressure distribution plots of the various cases are analysed in
Figure 5.35. Both optimisations have modified the aerofoil shapes to increase the
suction peak at the LE, such that a flatter or “roof-top” like pressure distribu-
tion can be achieved. Consequently, the strength of the original normal shock is
reduced. As for the case of the coupled shape-bump optimisation, the shock is
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e *- Optimised-shape-bump (without bump)
Optimised shape
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Figure 5.35: Pressure distribution plots for the optimised aerofoil shape and

bump, Mog= 0-8, C1 = 0.498.

also weakened and displaced downstream due to the existence of the bump. This
is observable in the two calculations of the coupled optimised shape-bump case,
where the bump is manually removed. As for the pure aerofoil shape optimisa-
tion case, further weakening of the shock can be achieved by manually adding
a bump as shown by the purple-line plot. In these freestream conditions, the
datum aerofoil shape has a fairly strong shock on the lower surface. Each opti-
mised shape has largely eliminated this lower-surface shock, particularly the pure
aerofoil shape optimisation, where there is virtually no remaining shock on the
lower surface. The removal of this lower-surface shock also contributes to much

of the attained improvement.

The effects of the evolved aerofoil shapes and 2D bumps as discussed in the pre-
vious paragraph are also reflected in the Mach number contour plots presented
in the series of Figures 5.36, 5.3/ and 5.38. The distinct difference of the flow-
field from the two optimisation cases is obser\ed from these plots. The beneficial
effects of the 2D bumps on the remaining shock is clearly shown here too.

The evolved aerofoil shapes and bump from the optimisation cases are shown in
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Figure 5.39. Here, it is observed that both of the cases have reduced the camber
at the front part of the aerofoil. As for the downstream part of the aerofoil, the
coupled shape-bump case still retains the amount of camber such that the level of
rear loading is maintained. In contrast, the pure aerofoil shape case reduces the
camber at this portion of the aerofoil. These effects can be seen in the streamwise
pressure distribution plots in Figure 5.35. Notice that for the pure aerofoil shape
case, the upper and lower surface pressure distribution lines converges close to
each other before reaching the TE. In addition, the local contour modification due
to the 2D bump on the coupled shape-bump case is observable at the 80%c region.

Figure 5.36: Mach number of the datum case for the coupled shape-bump opti-
misations, Megp= 0-8, C1 = 0.498.

Figure 5.40 presents the y ’vs Cp plots for the various cases. In this figure, the first
obvious changes to the datum case is the huge shrinkage of the upper-right area,
which actually corresponds to the strong upper-surface shock as seen in Figure
5.36. It is obviously converted into a much weakened shock as indicated by the
remaining small area at the upper-right region. With the presence of 2D bumps,
this remaining shock is further weakened through a series of re-compressions
and expansions. The rest of the drag and thrust regions also undergo significant
changes. The area at the bottom of the plot that corresponds to the lower-surface
original normal shock has also been virtually eliminated. 1he pure aerofoil shape
optimisation case has a much lower maximum y as compared to the others since
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Figure 5.37: Mach number contours of the (a) coupled optimised shape with
bump and (b) the optimised shape with the bump manually removed, M~ = 0.8,
CL = 0.498.

Figure 5.38: Mach number contours of the (a) optimised shape and (b) the opti-
mised shape with a bump manually added, = 0.8, Ci = 0.498.
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Figure 5.39: Shape changes of the optimised aerofoil shapes and bump, =

CL = 0.498.

------ Datum case Y7C~ 0-060
----- Optimised-shape-bumyp

e X 0ptimised-shape-bump (withoutbumyp)

------ 0ptimised shape

...... Optimised shape (added bump)
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Figure 5.40: Y *vs Cp plots of the optimised aerofoil shapes and bump, Af«, = 0.8,

CL = 0.498.
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it has a much higher incidence than the others, which also contributes to the total

elimination of the lower-surface shock.

5.6.3 Optimisation Issues

In this preliminary study of combining aerofoil shape of an unswept wing with
shock control bump optimisations at a much higher off-design freestream Mach
number, it is realised that there are several issues that have to be tackled. The
flow for an unswept wing at such high speed (e.g. Al«, = 0.8) has very strong
shock wave/boundary layer interaction, which could lead to large separation at
the rear part of the aerofoil. Thus, during this study, convergence issues occur
quite frequently for the flow solution. The robustness of the adjoint solver for
separated flows needs to be improved. Relative scaling of the different design

variables has to be studied further.

5.7 Concluding Remarks

Various parameters of the 2D bump have been optimised on an unswept, wing
with two different types of aerofoil section, including a NLF type and a tur-
bulent type. Both efforts have demonstrated the effectiveness of 2D bumps in
drag reduction and the important aspects of a well-designed bump in terms of
its location on the aerofoil, the relative position of the bump crest and its height.
For optimal performance at different flow conditions, the height of the 2D bump
needs to be adaptive. Detailed pressure and wave drag analysis have been carried
out to analyse the mechanisms of the 2D bump. In addition to the weakening
of the shock wave through upstream compression waves, a well-placed 2D bump
also displaces the original main shock downstream. As a result, lilt is enhanced
and the incidence is lowered to match the lift condition. Thus, a wing with a 2D
bump can sustain the same level of lift at a lower incidence than the correspond-
ing datum reference case and this lowered incidence contributes to further drag
reduction. The wave drag analysis indicates that the 2D bump also reduces form

drag.
A preliminary study of a coupled optimisation of the aerofoil shape of an unswept

wing with the 2D bump at a high off-design freestream Mach number has been
presented at the end of this chapter. It is demonstrated that a fairly strong
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shock still remains on the optimised aerofoil shapes. With the 2D bump, further
improvement can be obtained. Nonetheless, some optimisation issues have been
addressed that could help to improve the optimisations for this problem. The
following chapter will then present the results on the performance of a three-
dimensional shock control device, 3D bumps on unswept wings.



Chapter 6

Mechanisms and Optimisations
of 3D Bumps on Unswept Wings

This chapter will present the optimisation results of a 3D bump on unswept wings
by employing the same adjoint-based optimisation method. Both pressure and
wave drag analysis are carried out along the investigations. The performance of
both the 2D and 3D bumps are then compared and analysed. The chosen aerofoil
sections for the infinite unswept wing are still the RAE 5243 NLF aerofoil and the
RAE 2822 turbulent aerofoil. First, the 2D bump parameterisations are extended
to model the 3D bump, which will be presented in the following section.

6.1 Initial Parameterisations

The initial design of the 3D bump was proposed by Qin et al. [47, 46], and is
shown in Figure 6.1. A cutoff area from one of the x-y planes across the 3D bump
would resemble the shape ofa 2D bump. The area of this shape gradually shrinks
from the maximum size at the 3D bump centreline to virtually a sharp end tip.
For a structured three-dimensional surface grid, the appioach of generating a 3D
bump of such design in Figure 6.1 is relatively simple. For an unswept wing with
infinite span, only half of the 3D bump is required due to the symmetry plane.
Starting from the symmetry plane, which is located at the spanwise centreline
of the 3D bump, at each spanwise sections, a 2D bump is generated using Eqn.
(5.1) but shrinking them gradually towards the tip. The gradient, at the crest is
set to zero and the intersection of the base of the bump with the surface of the
Wing are devised such that the continuity of the slope at the point of the wing
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surface is maintained.

Figure 6.1: Initial design of 3D bump with the six design variables.

As a result of that, in addition to the four design variables that have been defined
for the 2D bump, two more design variables are added to define the shape of the
3D bump. Figure 6.1 also illustrates these six design variables on the halved 3D
bump. Since the symmetry boundary condition is employed at both spanwise
boundaries, the last design variable, ztouii.span/ c>which is actually the total span
width of the computational grid, also defines the spanwise spacing between the
array of consecutive 3D bumps on the infinite span unswept wing. However, the
technical issues revolving the ability to expand and shrink this design variable
and hence the whole computational grid appropriately and efficiently; has only
been solved at certain stage of this project. Therefore, some of the preliminary
optimisation results that are presented later, do not take this design variable into

account.

The fifth design variable is the width of the 3D bump, defined as — —- x 100%,

ctotaLapan

which is in the percentage of the total width (ztotai.apan/c)' 1 his strategy has been
chosen so that it is guaranteed that the width of the 3D bump will not cross-over
with the total width. For example, if the fifth design variable were the absolute
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value defining the width of the 3D bump, €S zbumpspan/c, it is possible that
zbumpspanic > ztotaispan/c, Where the grid generation will then end up with errors.

The designation of a 3D bump example that has a spanwise width covering 60%
of the total span width of 1%c, which can also be interpreted as a 2%c distance
between the centrelines of the consecutive 3D bumps can be expressed 5 120-
cre60-ch50-h0.6-s60-widl. Note that the sp¢Inwise width of the 3D bump and the
total span width correspond to the last two terms in the designation respectively.
An example of a fine structured grid generated with a 3D bump of this design
is shown in Figure 6.2. In order to save computational time, the actual adopted
spanwise resolution for the calculations is less than this example.

j

Figure 6.2: Example of a fine surface grid with 3D bump.

6.2 Inviscid Effects of 3D Bumps on RAE 5243

6.2.1 Effects of the Spanwise Width of the 3D Bump

The initially generated 3D bump has a designation of 120-cre62-cb50-h0.6-s60-
widl. For an infinite span wing with half of the 3D bump generated, it can be
seen here that the grid spans 1%c, which can also be translated to ¢12%c distance
between the centrelines of the array of consecutive 3D bumps. The fifth design
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variable indicates that the bump spans 60% of the total width.

By adopting the 3D bump 120-cre62-cb50-h0.6-s60-widl and fixing widl and the
other parameters, whilst increasing the bump width gradually by an increment
of 10% from s60 to s90, the drag reduces gradually too. This is shown in Table
6.1. The results are compared under the same lift condition of CL '= 0.823 at
Moo = 0.68. Note that the grid employed here actually bears the same streamwise
grid resolutions and distribution strategy as the computational grid employed in
the investigations of the 2D bumps. The difference is obviously the additional
spanwise resolutions required to resolve the 3D bump shape in the spanwise di-
rection. Here, ten additional grid points are added in the /¢-direction, giving a

resolution of 248 x 31 x 11.

rli!)preaaure Total Drag Reduction

Datum aerofoil 0.011681 -
120-cre62-cb50-h0.6-s()0-widl  0.009519 18.6%
120-crc62-ch50-h0.6-s70-widl  0.009260 20.8%
120-crc62-ch50-h0.6-s80-widl  0.008994 23.1%
120-c7'e62-cb50-h0.6~s90-widl ~ 0.008731 25.3%

Table 6.1: Inviscid effects of the 3D bumps with respect to the bump span width,
Moo = 0.68, CL = 0.823.

This is rather expected because the smaller the remaining unmodified flat surface
of the wing, the closer is the distance between the adjacent bumps due to the sym-
metry boundary conditions of the computational grid and hence, providing larger
interaction surface with the shock wave. However, since this parameter should
have significant effects on the boundary layer, so the optimum characteristic of
this parameter has yet to be concluded from this parametric study.

6.2.2 Cross-sectional Area Hypothesis

This hypothesis suggests that if the maximum cross-sectional area (y-z plane as
referred to Figure 6.1) of the 3D bump were about the same as the maximum
cross-sectional area of the 2D bump, the 3D bump would be as affective as the 2D
bump in reducing drag at a design point. 1hus, in three-dimensional sense, con-
sider cutting off a spanwise section of 1%c width from an infinite span wing with
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a continuous 2D bump of optimised design stretching across the wing as shown in
Figure 6.3 (a) with the blue-dashed line. Therefore, the maximum cross-sectional
rectangular area of the 2D bump with a 0.6%c height across this cutoff section is

6 x 10~5.

Next, consider the cutoff for the maximum cross-sectional area of the 3D bump
with similar width of 1%c as shown in Figure 6.3 (b). For simplicity, the maxi-
mum cross-sectional area of a halved 3D bump is approximated as a right triangle
as indicated by the blue-dashed line. Thus, if the position and the shape of the 3D
bump were optimised, for a halved 3D bump with 0.6%c spanwise width, a bump
height of 2%c chord would be needed to match the maximum cross-sectional area

of the aforementioned effective 2D bump.

Subsequently, the 3D bump 120-cre62-cb50-h2-s60-widl was tested. However the
result was disappointing, resulting in a strong double-shock system. Hence, the
bump height should be slightly relaxed. However, in order to retain the same
level of maximum cross-sectional area with a reduced bump height, the width of
the bump itself has to be increased. Therefore, the bump width is increased and
fixed at 0.8%c, while the bump height is increased progressively. Consequently,
the bump height can now reach up to 1.2%c. Hie computed drag reduction
for this 3D bump design is an encouraging 37%. At the same lift coefficient,
CL = 0.82, the data from this brief study is shown in Table 6.2. This study has
implied that a relatively higher or larger size would be necessary for the 3D bump
to be effective in reducing drag. Results from the latter section on the viscous
effects will refer back to this assumptions with more discussions.
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( Doesare  Total Drag Reduction

Datum aerofoil 0.011681 -
120-cre62-ch50-h0.8-s60-widl  0.008972 23.1%
120-cre62-cb50-h0.8-s80-widl  0.008230 29.6%
120-cre62-cb50-h0.9-s80-wdl  0.007862 32.8%
120-cre62-cb50-hl. 2-s80-widl  0.007356 37.1%

Table 6.2: Maximum cross-sectional area hypothesis studies, MY —0.68, (i —
0.823.

6.2.3 Optimisation Results

In this optimisation task, the chosen target, lift coefficient is still 6;, = 0.823 as

before. As discussed in Section ithe last design parameter

wise width of the grid is actually not included in this optimisation effort. The
maximum chordwise bump length is limited to only 20%c and that the bump
spanwise width is subjected to a maximum of 90% of the total spanwise width.

The designation of the optimised 3D bump is 120-cre62.5-cb62.5-h1.07-s90-wtdl.
The improvement gained from this design is about 40% reduction i.i drag, as
shown in Table 6.3. Its performance is comparable to that of the optimised 2D
bump, which has a designation of 120-cre63.3-cb66.8-h0.61. It can be seen here
that the optimiser also “favours” a wider 3D bump where the bump span is at
the allowable maximum of 90%. The 3D bump has an asymmetrical bump shape
that comprises a longer upstream concave. The 3D bump reaches a height of
more than 1%c in this case, which is roughly twice the size of the 2D bump. This
result fairly agrees with the cross-sectional area hypothesis that an effective 3D
bump needs to match the maximum cross-sectional area of the 2D bump.

CDprcsaure  Total Drag Reduction

Datum aerofoil 0.011681 -
Optimised 3D bump 0.007074 39.5%
Optimised 2D bump  0.006582 43.1%

Table 6.3: Comparisons of the inviscid performance for the optimised 3D bump,

Aloo = 0.68, CL = 0.823.
In Figure 6.4, the chordwise pressure distribution at three spanwise sections of

140



6.2 Inviscid Effects of 3D Bumps on RAE 5243

the wing with the optimised 3D blimp are plotted and compared along with the
datum wing. These chosen spanwise sections include the symmetry plane that
is situated along the centreline of the bump and the other one that sits on the
unmodified surface. In addition, another section that is situated at the mid-span
position between the bump crest and tip is also selected. It is noticed here that
although the shape of the 3D bump inflicts geometrical variation in the span-
wise direction, the variation of the chordwise pressure distribution between these
three different spanwise sections is comparatively negligible. This suggests that
the inviscid flow field of the 3D bump is largely two-dimensional. The effect of
the 3D bump on the shock wave is quite similar to that of the 2D bump, where
the upstream maximum Mach number of the shock wave is significantly reduced

and hence so is the wave drag.

Figure 6.4: Chordwise pressure distributions at various span of the Euler opti-
mised 3D bump, Moo = 0.68, C1 —0.823.

The pressure contour plofé & b vielny af the shock wave are shown in Fig
ures 6 5 (a) and (b). It is obvious from the comparisons that the strong normal

shock wave on the datum wing is significantly weakened by the presence of the
3D bump Notice that the pressure contour lines are less clustered and spread
out in Figure 6.5 (b). In the pressure distribution plots of Figure 6.4, it is shown

that the minimum suction peaH or hi]i@ shock wave is lowered and hence so is the
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upstream maximum Mach number ahead of the shock wave. The position of the
shock has also been displaced slightly downstream. Additionally, one can observe
that there are virtually no spanwise variations for the contour lines across the 3D

bump surface.

This inviscid optimisation study shows that the 3D bump has the potential to
perform as well as the 2D bump. Although the sixth design variable or the total
span width has not been included here, it is demonstrated that the modified grid
modeller and the adjoint solver for the 3D bump optimisation work reasonably
well. The next section will focus on the results of the viscous effects of the 3D
bump on the unswept wing with the same aerofoil section.

Figure 6.5: (a) Pressure contour plots for the datum wing, (b) Pressure contour
plots for the optimised 3D bump , M® = 0.68, C1 = 0.823.

6.3 Viscous Effects of 3D Bump on RAE 5243

6.3.1 Preliminary Investigations
A 3D bump design of 120-cre60-cb57.5-h0.5-s60-widl has been investigated by

Qin et al. [47] at freestream conditions of = 0.68, 15and = 1.9x10°.
The lift coefficient computed at these freestream conditions with the current grid
is C, = 0.69. The present computation for this design indicated that around

1.7% improvement in drag reduction has been achieved. The design from the
Euler optimisation is also adopted but with the position of the bump shifted
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slightly upstream to match the shock wave location in viscous (low and with a
lower height (120-cre60-cb62.3-h0.5-s90-widl) provides a 2.5% reduction in drag.
The drag reduction is relatively low, considering that the 2D bump can achieve
a drag reduction around 6% for this level of lift coefficient.

An optimisation has then been carried out at this lift coefficient of ( /, —0.69
in an attempt to explore whether a much better design could be achieved even
without considering the spacing between the 3D bumps as a design parameter.
So the optimisation retains only five design variables as investigated in the Euler
optimisation presented earlier. Similarly, the maximum chordwise bump length
is limited to only 20%c and the bump spanwise width is subjected to a maximum
of 98% of the total spanwise width. The optimiser could only uncover an im-
proved design of EritRthat would only provide a 2.7%

drag reduction.

Even though the results from the optimisation are not that encouraging, these
are just preliminary investigations and up to this point, we have not implemented
the bump spacing as a design variable yet, which should have significant impact
on the performance. Therefore, for further improvement, the grid modeller and
the adjoint solver have to be implemented with the ability to modify the total
span width properly and effectively. Furthermore, analysis of the effects of this
type of 3D bump design in the flowfield is carried out.

6.3.2 Flowfield Analysis and Issues

Detailed flowfield analysis of the 3D bump (120.cvc60-cb57.5-h0.5-s60.wzdl) has
revealed some interesting results. Figure 6.6 depicts the surface streamline at. the
downstream half of the 3D bump. It can be observed from the streamlines that
there is streamwise separation along the downstream foot or the base of the bump
and with some ‘swirling” too. This is undesirable from the performance point
of view. It is suggested that the separation is largely due to the irregularities
along the foot of the hump. These irregularities emerge at the foot of the bump
is not defined by the grid lines as shown in the closeup of these areas in Figure 6.7.

These surface geometry anomalle§ B8R be Fesglved by adopting an alternative grid
generation strategy that ensure® the grid lines be defining the boundary of the
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Figure 6.6: Surface streamline on a 3D bump with original design.

Figure 6.7: Closeup on the surface giid ef a 3D bump with original design.
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base of the bump. After going through some tests by employing the different grid
distribution strategies available in Rei. [96], the re-generated 3D bump of the
same designation (120-cre60-cb57.5-h0.5-s60-widl) with a smooth base is demon-
strated in Figure 6.8 (a) and compared with the earlier original grid in Figure 6.8
(b). The revised 3D bump is then tested under the same freestream conditions.
Figure 6.9 plots out the surface streamline of this “smoothen” 3D bump. The
“swirling” as seen earlier in Figure 6.4 has been eliminated. However, further
downstream of the 3D bump, there is still some degree of reverse flow close to

the base.

Figure 6.8: (a) Surface grid of the “smoothen” 3D bump, (b) Surface grid of the
original 3D bump.

Although the surface grid anomalies have been resolved, the drag reduction per-
formance of this revised 3D bump did not improve. As a result, it is considered
to change the whole design of the 3D bump, which is discussed in the following

section.

6.3.3 Further Revised 3D Bump Design

Following the experiences from the Previgys section, a revised 3D bump should

meet these two requirements.

1. Smooth. continuous base {8 é\y&@ undesirable viscous effects in the flowfield.
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Figure 6.9: Surface streamline on a revised 3D bump with a “smooth” base.

2. A revised shape that provides further improvement in the generation of an

upstream compression wave for wave drag reduction.

It is suggested that the sharp upstream shape of the original 3D bump (Figure
G.I) may be modified to a “blunt” shape. Therefore the sharp bump tip is to
be removed and the planform of the 3D bump base will represents a rectangu-
lar shape instead of a curvilinear one as before. These descriptions are depicted
more clearly in Figure 6.10, which illustrates this updated shape. Note that even
though the shape has been revised, the original six parameters remain the same.

A surface grid showing this revised 3D bump design is shown in Figure 6.11.

These modifications will at least satisfy 1 as stated earlier. This is

proven in the visualisation of the surface streamline for this 3D bump in Figure
6 12 Asshown in Figure 6.12, the undesirable “swirling” and chordwise flow sep-
aration have altogether been removed. The somewhat “blunt” upstream shape
could also provide more compression since there are more interacting regions with
the How, which should result in an increase in flow displacement.

A 3D bump with a designation of 120-¢,M57.5-h0.4-S90-wi<U has been gen-
erated via both the revised version and original 3D bump. Both of the designs
are then computed at the same flow conditions and compared. The results are
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Figure 6.11: Surface grid for the revised design of the 3D bump.
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Figure 6.12: Surface streamline for the revised design of the 3D bump.

shown in Table 6.4. It is demonstrated in this table that the present revised
design outperforms the original design by 2% in total drag reduction. Although
the skin friction drag from both of the designs has slightly increased compared
to the datum aerofoil, the revised design induces slightly less skin friction drag
penalty than the original design. These results seem promising and suggest that
the present revised design could satisfy requirement 2, which is to improve gener-
ation of the upstream compression wave and hence drag reduction performance.
Since this revised design of the 3D bump has fairly satisfied all the requirements,
it is decided to use this design for upcoming investigations.

0 D total porcasure C:)friction Total Drag
Reduction

Datum aerofoil 0.01282 0.007023  0.00579
Original design 0.01238 0.006485 0.00590 3.4%

Revised design 0.01213  0.006249 0.00588 5.4%

Table 6.4: