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ABSTRACT

Amyloid formation is a predominant feature of many human diseases including 

Alzheimers’ disease, Parkinsons’ disease, type II diabetes and Creutzfeldt-Jacob 

disease. The process of amyloidogenesis involves the self-assembly of soluble 

protein into insoluble fibrous material. Amyloidogenic proteins, which share no 

common sequence, structure or function, form amyloid fibres which have a 

common morphology. Neither a detailed structure of mature amyloid or the 

mechanism by which it forms is fully understood. The work presented in this 

thesis uses the cystatins as a model system for probing the mechanism of amyloid 

formation.

#

The formation of amyloid requires a refolding event as the protein involved 

refolds from its native structure to the cross-P structure common to amyloid. 

Characterisation of the folding pathway of human cystatin C indicates that it folds 

via a partially folded kinetic intermediate, in an analogous manner to chicken 

cystatin. Analysis of the early stages of amyloidogenesis in cystatins indicates 

domain-swapped dimers are the building block of cystatin amyloid. As is 

observed with chicken cystatin, the dimerisation of human cystatin C is a 

bimolecular process, m-value analysis indicates that the structure of the 

dimerisation transition state is very close to the structure of the unfolded state and 

is more unfolded than the kinetic intermediate identified in the human cystatin C 

folding pathway. No terameric species are observed in the amyloidogenesis of 

human cystatin C, supporting evidence that tetramers are an off-pathway 

intermediate in the amyloidogenesis of chicken cystatin. Following the formation 

of dimer, isomerisation of the proline conserved across the cystatins is required 

prior to the formation of amyloid fibres.

A preliminary study of the interaction between human cystatin C and A|3 shows 

that there is no interaction between monomeric hCC and monomeric APmo- 

Given that hCC has been shown to inhibit AP amyloid formation, hCC must 

interact with one of the oligomeric species of Ap that is populated during 

amyloidogenesis. Further experimentation is required to determine the exact 

nature of the interaction between hCC and Ap.
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CHAPTER ONE 
INTRODUCTION

1

1.1 CYSTATINS

1.1.1 The Cystatins

Members of the cystatin superfamily are non-covalent competitive inhibitors of 

papain-like cysteine proteases. Cystatins bind to cysteine proteases in an 

equimolar, tight, reversible manner forming a complex that lacks proteolytic 

activity. Amongst other functions the cystatins protect host tissues from 

proteolysis by cysteine proteases of host, bacterial and viral origin j 1-41 Although 

the cystatins share a common “hot-dog” fold, the superfamily has been divided 

into smaller families based on the localisation, size and complexity of the 

polypeptide chain. Cystatins were originally categorised into three types, the 

stefins (type I), the cystatins (type II) and the kininogens (type III).11’41 Figure 1.1 

highlights the main structural differences between these subfamilies.

Stefins are mainly located intracellularly and are the lowest molecular weight 

subfamily. Although they have the general cystatin fold, they lack disulphide 

bonds and carbohydrate residues. The cystatins are generally slightly larger than 

the stefins and, as they are translated with a secretory peptide leader sequence, are 

considered to be extracellular. Cystatins contain four cysteine residues that are 

involved in the formation of two characteristic disulphide bonds. The cystatins 

are described as non-glycosylated although there are some exceptions to this rule. 

For example, cystatin F and E/M contain functional N-glycosylation sites and 

approximately 20% of rat cystatin is N-glycosylated. The kininogens are mainly 

intravascular proteins and consist of three cystatin-like domains. Each domain 

contains the characteristic disulphide bonds found in type II cystatins as well as 

additional disulphide bonds. Kininogens are glycosylated and have an additional 

polypeptide at the C-terminus containing the bradykinin sequence.11,5,61

More recently a group of important fetal proteins known as fetuins have been 

identified as an additional cystatin subfamily. The fetuins are N- and O- 

glycosylated and phosphorylated. The N-terminal contains two tandem type 2 

cystatin domains and the C-terminal region contains a histidine-rich domain 

flanked by proline-rich domains.171
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Figure 1.1 A. Line representation of the three main cystatin families. Loops represent the 

presence of a disulphide bond. For type 3 cystatins each segment represents a type 2 cystatin 

like domain.1’1 B. An example of a type I cystatins. stefin A (PDB ID: lgd3,8J) C. An example 

of a type II cystatins, chicken cystatin (PDB ID: lccw*91)

Human Cystatin C

Human cystatin C (hCC) is a typical member o f the type II cystatin family.1' 1 It is 

encoded by a single copy gene located on chromosome 20 and is synthesised as a 

proform with a hydrophobic leader sequence.1'01 Once the leader sequence is 

cleaved, a 120 residue protein remains with a calculated molecular weight of 13 

359 Da.1" 1 As is typical o f the type II cystatins, hCC is not glycosylated and 

contains two disulphide bonds towards the C terminus.1' 1 hCC synthesis is not



tissue specific, all nucleated cells constitutively express and secrete hCC.l5] For 

experimental use hCC can be either isolated from urine[12] or recombinant hCC 

can be synthesised and purified from E. co//.[13' l8] hCC is present at a relatively 

high concentration in most body fluids, as summarised in Table 1.1[U1

3

Concentration [nM]
Plasma 105 ±30
CSF 545 ± 180
Urine 7.5 ± 0.5
Saliva 135 ±70
Seminal plasma 3810 ±600

Table 1.1 Typical concentration o f hCC found in the main bodily fluids. Data taken from [ul.

Through the mechanism of three dimensional domain swapping, human cystatin C 

has been shown to self associate under mildly denaturing conditions, such as the 

presence of dénaturant, low pH or high temperature.^19, 20̂ Domain swapping is 

further discussed later in this chapter but, briefly, in this process a dimer is formed 

which has two monomer-like domains that are structurally similar to chicken 

cystatin. The main exception is the linker region that unfolds to form the open 

interface of the dimer.[19] Figure 1.2 shows the structure of domain swapped hCC 

and the positions of the open and closed interfaces.
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Figure 1.2 Domain swapped hCC dimer, with each monomer coloured blue or green. The 

“closed interface” is formed between the swapped domains and is the main adhesive force. In 

addition an “open interface” is formed in the linker region which provides some additional 

stabilization to the dimer.12'1 The red dot marks the position of the L68Q mutation. Image 

adapted from Il9l

L6HQ Variant hCC
hCC is associated with the disease hereditary cerebral haemorrhage with 

amyloidosis -  Icelandic type (HCHWA-I), where it is present as a L68Q variant. 

HCHWA-I is discussed further later in the chapter. The L68Q mutation is caused 

by a point mutation changing the codon for residue 68 from CTG to CAG.'22' The 

L68Q mutation results in a reduced hCC concentration in the cerebrospinal fluid 

and in the deposition o f hCC amyloid in the brain.121' There is no difference in the 

ability of wild type or L68Q mutant to inhibit cathepsins. Both normal and 

mutant are expressed and cleared from the cell at a similar rate.'24' L68Q variant 

cystatin C has a 'H -15N heteronuclear single quantum coherence spectroscopy 

(HSQC) spectrum very similar to wild type cystatin C suggesting that they fold in 

a similar way.'23'

The L68Q mutant is stable between pH 7.5 and 9.0, but outside this range 

dimérisation occurs. At a concentration o f 0.1 mg/ml hCC and under conditions 

where dimérisation is strongly favoured such as pH 6 or 1M NaCl, an equilibrium



is reached where approximately eighty percent of the variant cystatin is in the 

dimeric form. L68Q dimers will convert to monomers when dialysed against 

physiological buffer. Therefore, it is likely that an equilibrium between monomer 

and dimer is reached for L68Q under physiological conditions. The L68Q 

mutation destabilises the cystatin enough that the mildly denaturing conditions 

required for dimerisation occur with a small increase in temperature or pH change 

from physiological conditions. In contrast, wild type cystatin C tends not to 

dimerise under physiological conditions. Under conditions where both will 

dimerise, only the variant will form fibrils in vitro

L68Q is on the central p-strand on the concave face covered by the a-helix. The 

position of L68Q is marked on Figure 1.2 and 1.3. The substitution puts a 

hydrophilic residue into a hydrophobic environment and makes the van der Waals 

interactions prohibitively close, thus putting a repulsive force on the a-helix.1191 

The energy difference corresponding to the unfolded state is lower as 

unfavourable solvent contacts in the newly exposed interface are reduced. The 

variant may be stabilised in the dimeric state by the additional stability provided 

by the open interface.1211

1.1.2 Cystatin structure

The cystatin superfamily share a common structural motif composed of a single 

a-helix lying across a five stranded antiparallel p-sheet, often refered to as a “hot- 

dog” fold.191 The monomeric structure of hCC has not been published, but the 

crystal structure of the dimer has been determined.1191 hCC has 41% sequence 

identity and 62.5% similarity with the better characterised chicken cystatin, 

making chicken cystatin a suitable molecular model for hCC.1211 Figure 1.3 shows 

the primary and secondary structure of hCC and the tertiary structure of chicken 

cystatin (cC) showing the numbering of the strands, helix and loops. The 

secondary structure of hCC shows an a-helix and five P-strands, with three p- 

bulges within the P-sheet and a unstructured highly mobile N-terminus.1251

5
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1.1.3 Biological role of Cystatins

Several biological functions have been proposed for the cystatins. In addition to 

their main function as protease inhibitors, cystatins have been identified as 

signalling molecules and are thought to play a role in the inflammation response.

Cl Cysteine Protease Inhibitory Activity

hCC is an effective, reversible inhibitor of papain-like cysteine proteases 

including cathepsin B, H, K, L and S as well as papain, ficin and dipeptidyl 

peptidase 1J2' n * hCC is arguably the most physiologically important extracellular 

human cystatin and is the controlling inhibitor for cathepsin B in almost all bodily 

fluids examined including CSF, seminal plasma and milk.12- I2* Based on the 

dissociation constant (Kj), hCC is predicted to contribute to physiological 

inhibition of any cysteine proteases that pass from the lysosomal system to the 

extracellular fluid.11261 Table 1.2 shows Kj for common hCC-enzyme complexes.
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Papain Cathepsin B Cathepsin H Cathepsin L Cathepsin S
0.000011 0.25 0.28 <0.005 <0.008

Table 1.2 The dissociation constant, KM of common cystatin-enzyme complexes [nM], Data 

taken from

Titration of papain with hCC shows a decreased enzymatic activity as a linear 

function of hCC concentration, suggesting an equimolar stoichiometry/ 261 The 

mechanism of cysteine protease inhibition by cystatins is a one step process that is 

a simple, reversible, second order type/ 21 The highly conserved region from Q53- 

G57 of chicken cystatin forms a tight beta-hairpin loop which binds to the 

cysteine proteinases. Similarly, a second hairpin loop made up of the conserved 

region P103-W104 along with the N-terminal segment both bind to the cysteine 

proteinase. These three regions form a wedge shape which is complimentary to 

the active site of papain as shown in Figure 1.4a. Although the active site is 

blocked, the cystatin remains too far from the reactive site of papain to be 

attacked by it/ 91 The crystal structure of stefin A in complex with cathepsin H is 

shown in Figure 1.4.1281

When hCC is exposed to an excess of papain, hCC is cleaved between residues 11 

and 12 thus weakening its inhibitory activity. Truncation at G11-G12 decreases 

the affinity for papain by three orders of magnitude. This highlights the 

contribution of the N-terminal region, which contains the conserved G11, V10, L9 

and R8, to cysteine protease binding. [2,29,301 The contribution of the N terminus 

to affinity for the peptidase varies with the different peptidases/ 301
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Figure 1.4 A. A model o f the monomeric structure o f  hCC with the region involved in the Cl 

protease inhibition site circled. The C13 protease inhibition site is less well defined; it is 

thought to involve the region around residue N39. Image adapted from * '1. B. Crystal 

structure o f stefm A in complex with cathepsin H, images taken from [28].

Cl 3 Cysteine Protease Inhibitory Activity
hCC is unusual in that it has an additional legumain-inhibiting site. Legumain, a 

recently discovered lysosomal endopeptidase in mammals, is member of the Cl 3 

cysteine protease family. Legumain shows restricted hydrolysis o f asparaginyl 

bonds, with unidentified factors preventing the hydrolysis o f many of the 

asparaginyl bonds in the protein.132' The legumain inhibitory interaction is 

different to the papain inhibitory site. Whereas dimérisation causes a loss of 

papain inhibition, legumain inhibition is still as active as the monomeric form.'31' 

It has been suggested that the loop around N39 followed by the conserved alpha 

helix is the site of interaction with legumain.131 ' The backside loop (39-41) that is 

thought to be crucial for C13 protease inhibition is not perturbed by dimérisation, 

consistent with its preserved activity in the dimeric form.'19'

Paracrine/autocrine cofactor

Although hCC has not been shown to be glycosylated, it is worth noting that a cell 

signalling role has been suggested for a glycosylated form of rat cystatin C. The 

glycosylated form of rat cystatin C has been shown to act as a paracrine /autocrine 

eo-factor for the mitogenic activity of fibroblast growth factor-2 (FGF-2) on 

neural stem cells. Furthermore, a combined delivery o f FGF-2 and glycosylated 

cystatin C will stimulate neurogenesis.'331
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Inflammation

It has been proposed that cystatins play a role in the inflammation response 

following the observation that raised levels of protease and protease inhibitors are 

found at sites of inflammation.141 Cystatins have been identified in several process 

that are involved in the inflammation response. Secretion of hCC by monocytes 

and macrophages is down-regulated by proinflammatory lipopolysaccharide and 

interferon y.1341 The N-terminal tetrapeptide of hCC is thought to have an 

inhibitory effect on superoxide anion release and phagocytosis in human 

neutrophils.135,361 Leukocytes are involved in the initiation and maintenance of 

inflammation and must get from their usual location in the blood to the site of 

injury. hCC has been found to have an effect on polymorphonuclear leukocyte 

locomotion.1361

1.1.4 Cystatins and disease

The ability of cystatins to inhibit exogenous cysteine proteases results in cystatins 

being identified as protective agents against several diseases. In contrast to this, 

cystatins have been identified as the causative agent in certain amyloid diseases. 

Further to this hCC has been shown to colocalise with amyloid P peptide (AP) 

amyloid deposits in several diseases including Alzheimers’ disease. Cystatins 

have also been identified in several cancers where it is not known whether they 

play a protective or causative role.

Antimicrobial and antiviral activity

Cystatins exhibit antiviral and antimicrobial activity by inhibiting exogenous 

proteinases. Derivatives mimicking the proposed proteinase-binding centre of 

cystatin C, which irreversibly inhibit cysteine proteinases, have been found to 

inhibit specifically the growth of all strains of group A Streptococci Cystatin 

isolated from Horseshoe crab haemocytes show antimicrobial activity against 

Gram negative bacteria such as S. typhimurium, E.coli and K. pneumoniae.

Several studies identify cystatins as inhibitors of viral replication. hCC has been 

shown to inhibit Herpes simplex virus type I replication.1381 Chicken cystatin has 

been shown to alter intracellular proteolytic processing of poliovirus proteins.1391



hCC is a powerful inhibitor of cysteine proteases of Leishmania Mexicana, a 

protozoan parasite^10’261 Both hCC and chicken cystatin are potent inhibitors of 

congopain and cruzipain. These are important cysteine peptidase virulence factors 

from the parasitic protozoa Trypanosoma Congolese and Trypanosoma cruzi, both 

of which cause major diseases in the developing world.

Cancer

Lysosomal cysteine proteases have been implicated in multiple steps of tumour 

progression, from immortilization and transformation through tumour invasion 

and angiogenesis to metastasis and drug resistance.[40'451 The involvement of 

lysosomal cysteine proteases in the development of tumours suggests that 

cystatins may play a protective role against tumour progression. However, the 

scenario is more complex as there is increasing evidence supporting a role for 

cystatins in the promotion and suppression of tumour growth, invasion and 

metastasis.̂ 461 Stefin A has been shown to modulate growth and metastatic 

potential of human angiosarcomas, malignant fibrous histiocytomas and poorly 

differentiated ovarian carcinomas.151 hCC and cathepsin B have been suggested as 

having a role in both benign and malignant ovarian cancers where a significantly 

high serum concentration of hCC is associated with malignancy.[471

Increased levels of cathepsin B, but decreased levels of cathepsin B-hCC 

complexes have been observed in the sera of patients with lung cancer. This 

could be interpreted as a loss of control of hCC over serum cathepsin B during 

lung cancer. However, cystatin C, and its complex with cathepsin B, may 

accumulate in pleural effusions rather than in the sera of cancer patients.[48,491
f

Other cysteine proteases are overexpressed in tumours and some can compete 

with cathepsin B in complex formation with hCC. For example, in conditions 

where cathepsin L and cathepsin B are present, cathepsin L would displace 

cathepsin B from the hCC-cathepsin B complex.1501

hCC has been identified as a novel TGF-P type II receptor antagonist that inhibits 

TGF-P binding and signalling in normal and cancer cells. There is evidence that 

TGF-P stimulation of initiating metastatic events, including decreased cell
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polarization, reduced cell-cell contact and elevated cell invasion and migration, 

can be prevented by hCC treatment.1511

Hereditary Cerebral Haemorrhage with Amyloidosis -  Icelandic type

Studies on Icelandic families with HCHWA have identified the responsible gene 

as a single, dominant gene showing marked anticipation and almost complete 

penetration.1521 The L68Q variant of hCC has been shown to be the amyloid 

precursor protein HCHWA-I.1531 Amyloid material is found in the intima and/or 

outer wall of the small arteries and arterioles of the leptomeningea, cerebral 

cortex, basal ganglia, brainstem and cerebellum in all autopsied cases and 

asymptomatic deposits have occasionally been found in peripheral tissues. 

However, there is no association with neurite plaques or tangles. 122,52,541

The mean age of onset for HCHWA-I has been reported as somewhere between 

22.5-27.3 years, with 50% of fatalities occurring between the ages of 20 and 30. 
[52, 54, 55] h c h WA-I patients suddenly take ill with signs of central nervous 

system (CNS) damage including acute onset of headache, nausea, focal 

neurological signs, loss of consciousness, paralysis and sensory disturbances, but 

no hypertension. 152' 551 The first haemorrhage is usually fatal, if it is not the 

patient faces cognitive decline and dementia, with the dementia occurring in a 

stepwise fashion. A slow progressive dementia can also occur and the dementia 

may even precede stroke. 154, 551 The CSF level of hCC is much lower in 

HCHWA-I patients than in individuals with wild type protein, so much so that a

3.5 mg/1 concentration in the CSF is a discrimination value that can diagnose 

HCHWA-I.[U> 541

AlzJteimers’ disease

hCC has been found to co-localise with AP amyloid deposits in the brains of 

patients with AD, hereditary cerebral haemorrhage with amyloidosis - Dutch type 

(HCHWA-D) and sporadic cerebral amyloid angiopathy (CAA).155'581 Co­

localisation of AP and hCC also occurs in the muscular amyloid deposits found in 

cases of sporadic inclusion body myositis, the most common muscular disease of 

elderly.1591 When hCC is the main amyloidogenic protein, such as the cases of 

HCHWA-I, there is no evidence of co-immunostaining.155, 581 The connection
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between hCC and Alzheimers’ disease is discussed in further detail later in this 

chapter (section 1.2.5) and in chapter 6.

1.2 AMYLOID

1.2.1 History

Rudolph Virchow first introduced the term amyloid in 1854 to describe waxy 

macroscopic tissue abnormalities found in cerebral tissue that stained positively 

with an iodine staining reaction. The staining property meant that deposits were 

originally identified as being starch-like and therefore given the name amyloid, 

derived from the greek amylon meaning starch. By 1859 Friedrich and Kekule 

had demonstrated that the deposits actually had a high protein content and lacked 

carbohydrate.1271

Today, several major incurable diseases are characterised by the deposition of 

amyloid including Alzheimer’s disease, Parkinson’s disease, Huntington’s 

disease, type II diabetes and the transmissible spongiform encephalopathies. 

Many of the diseases associated with amyloid deposition are late-onset diseases 

that are prevalent in the developed world. As the population surviving until old 

age expands, the medical importance of understanding the mechanism of 

amyloidogenesis increases. In the 150 years since Virchow studied amyloid there 

have been many advances in our knowledge of amyloid structure and function and 

its role in disease. However, amyloid remains an important area of research as 

there are still many unanswered questions regarding the mechanism of 

amyloidogenesis, its significance in disease and the development of treatments for 

amyloidosis.

1.2.2 Structure

Although amyloid precursor proteins are distinct in their amino acid sequence and 

native fold, they aggregate into mature amyloid fibres that share a similar 

structure, implying a common mechanism of fibril formation. t60,611 Amyloid is 

identified by staining with specific dyes, electron microscopy (EM) and a 

characteristic X-ray fibre diffraction pattern. Although amyloid is generally 

defined as being extracellular, intracellular structures with the same core structure 

have been observed. For example, Lewy bodies found in Parkinson’s diseases are 

intracellular deposits of a-synucleinJ621 Amyloid-like fibrils can also be formed
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in vitro from proteins unconnected to amyloidoses.'6’1 In fact, it has been 

suggested that nearly all proteins have the ability to form amyloid, provided they 

are put under suitable conditions.1621 The overall morphology of amyloid depends 

on the conditions in which amyloidogenesis takes place and different 

morphologies can be observed in the same preparation.1641 Fibril insolubility and 

inability to form crystals prevents structural studies by solution nuclear magnetic 

resonance (NMR) and X-ray crystallography. Instead, models o f amyloid have 

been developed based on structural information on the amyloid fibre ascertained 

from several techniques which are described in the following section.'661

Dye binding

Amyloid is characterised by its binding properties with certain dyes, most notably 

congo red and thioflavin T. Congo red staining is one o f the key diagnostic tests 

for amyloid. Fibres appear pink-orange after congo red staining when viewed by 

light microscopy and turn an apple-green colour under polarised light due to 

birefringence. Birefringence is the decomposition of light into two rays when it 

passes through certain types of material depending on the polarisation of the light. 

As this effect only occurs if the structure is anisotropic, the birefringence 

associated with congo red stained amyloid indicates an ordered submicroscopic 

structure.'27, 62, 66, 671 Figure 1.5 shows the binding of congo red to amyloid 

deposits and the characteristic apple-green birefringence under polarized light.
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Figure 1.5 A. Congo-red staining o f amyloid material around blood vessels viewed without 

polarised light. B. The same sample of congo-red stained amyloid viewed under polarised 

light. Image taken from [6S|.



Thioflavin T is a benzothiazole dye that exhibits enhanced fluorescence upon 

binding to amyloid fibres. The free dye has an excitation maximum of 385 nm 

and emission of 445 nm, binding to amyloid gives rise to a new excitation 

maximum at 450 nm and enhanced emission at 482 nm. Monitoring the shift in 

fluorescence that is observed upon staining amyloid with Thioflavin T can be 

used to follow aggregation in solution.̂ 27,62,66,67,691

Electron microscopy

Amyloid is also identified by certain features that are seen by electron 

microscopy. Amyloid fibres are uniform, straight, rigid and unbranched. A 

typical fibre diameter is between 60-130 A and length is usually around 1000- 

16000 A, although length depends heavily on solution conditions.127,621 Figure

1.6 shows an example of a typical image of amyloid fibres produced by EM. EM 

imaging has also identified the 25-35 A diameter filamentous subunit structure of 

amyloid fibres known as protofilaments.[2?1 Protofilaments assemble themselves 

into pairs or larger groupings by coiling around each other with a long range 

twist.f641 By averaging multiple EM images of cross sections of fibres under 

cryogenic conditions, the substructure of amyloid from several precursor proteins 

has been identified. Amyloid formed from insulin, a fragment of A0, APmo and 

the SH3 domain of phosphatidylinositol-39-kinase have been visualized in this 

way.[64,70'721 Cryo-EM images of AP11.25 fibres at high resolution show striations 

running across the fibril corresponding to 4.7 A. This direct visualisation of the 

P-sheet supports the cross-P model and indicates that more than one p-sheet must 

be arranged so that p-stands are in direct register perpendicular to the fibre axis.165,
72]
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100 nm

Figure 1.6 Electron microscopy (EM) of negatively stained islet amyloid polypeptide (IAPP) 

amyloid fibrils. Image taken from |62'.

X-ray fibre diffraction

Amyloid fibres are characterised by their X-ray fibre diffraction pattern which 

shows an ordered, repeating p-sheet conformation perpendicular to the fibre axis 

known as a "cross-P" structure. X-ray diffraction data provides information on 

the distances between different features of the fibre. Crystalline order in fibres is 

usually much lower in directions perpendicular to the fibre axis than in those 

parallel to the axis therefore equatorial reflections are much weaker and 

broader.1631 A strong reflection at 4.7 Â in the meridian direction of the X-ray 

diffraction pattern reflects the hydrogen bonding distance between p-strands 

perpendicular to the fibre axis. A more diffuse reflection on the equator 10-11 À 

represents the distance between the P-sheets. Higher order reflections in the 

meridian direction reflect the helical twist of the p-strands.121 ’ 63' 65) Figure 1.7 

shows a typical X-ray diffraction pattern of amyloid fibres and highlights the 

reflections mentioned above.
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4.7 À

Fibre
axis

Figure 1.7 X-ray fibre diffraction pattern from aligned 1APP amyloid fibrils, showing the 

positions o f the 4.7 A meridional and approx. 10 Â equatorial reflections in a cross-p pattern. 

Image taken from |62l

Solid state NMR

Solid state NMR (ssNMR) data is able to show the distance between selectively 

labelled residues and is very accurate for distances less than 6 Â.1731 The 

constraints produced from ssNMR experiments can provide information on the 

secondary, tertiary and quaternary structure of the amyloid fibre.1741

Each of the techniques mentioned above have limitations in the information they 

can provide about the structure of amyloid. However, by combining the 

constraints produced by ssNMR with the results of other experiments a model has 

been produced of the A|3 protofilament. The structure, shown in Figure 1.8, 

agrees with most of the data already gatherered on A|3 fibrils.175' 761



17

Figure 1.8 Structural model for Ap,^,o fibrils, consistent with ssNMR constraints on the 

molecular conformation and intermolecular distances and incorporating the cross-p motif common 

to all amyloid fibrils. Residues 1-8 are considered fully disordered and are omitted. Image 

adapted from '75)

Similarly, the combination of information from several techniques has enabled 

model structures of other amyloid fibres to be produced, for example 

transthyretin177', p2-microglobulin fragment'7*' or A p.'70’75,76’79'

1.2.3 AP and amyloid 

A p  peptide

Ap is the amyloidogenic protein associated with Alzheimers’ disease. It has been 

shown to be derived from Ap precursor protein (APP), a cell surface receptor for 

which there is limited knowledge of its function. APP is cleaved by a-secretase 

into secreted APPtx (sAPPa) and c83 or by P-secretase into secreted APPp 

(sAPPP) and c99. c83 or c99 can then be cleaved by y-secretase into p3 or AP 

respectively. sAPPa has a protective function as it reduces the effects of 

molecules such as Ap and glutamate. Cell death may result either from an 

increase o f AP or a decrease in sAPPu. Cleavage o f APP is thought to occur at 

the cell surface and involve plasma membrane invaginations.'80'

Neuronal and non-neuronal cells have been shown to process APP differently. 

Neuronal cells secrete APmo through the trans-Golgi, but Ap42 is found in the 

endoplasmic reticulum (ER) and nuclear envelope requiring cell death before it is 

released. Non-neuronal cells however, produce both at the cell membrane and



secrete them. The majority of Ap produced is Api.40 with only 5-20% being the 

more amyloidogenic APi^ / 81,821

Structure o f A (3

Extrinsic factors such as pH, temperature and solvent have a marked effect on the 

conformation of Ap/ 801 In water Ap can be described as random coil, with only 

small populations of local non-random structure/ 831 A three-dimensional solution 

structure of APmo has been determined using NMR spectroscopy at pH 5.1 in 

aqueous sodium dodecyl sulfate (SDS) micelles. In this environment the peptide 

is unstructured between residues 1 and 14 which are mainly polar and likely 

solvated by water. The rest of the protein adopts an alpha-helical conformation 

between residues 15 and 36 with a kink or hinge at 25-27. This largely 

hydrophobic region is likely solvated by SDS/ 841

Ap amyloid

Fibrillogenesis of Ap is highly concentration dependent, consistent with a 

nucleation dependent mechanism, and proceeds via a partially folded 

intermediate.1851 Fibrillisation of Ap involves a transient population of a-helical 

structures, while P-sheet content has been linked to fibrillogenesis and is related to 

neurotoxicity/85, 861 The nucleus for fibrillisation is likely to be oligomeric Ap/ 871

Examination of the formation of Ap amyloid by EM shows the formation of short, 

wavy protofibrils at early time points, followed by mature amyloid fibres at later 

time points/ 881 Transient formation of protofibrils of several morphologies such 

as spheres, rings and short filaments have been observed in in vitro preparations 

of AP fibrils/ 891 Protofibrils may be on- or off-pathway intermediates in the 

formation of Ap amyloid. Hydrogen exchange data suggests that the P-sheet 

elements comprising the amyloid fibril are already present in protofibrils, but are 

expanded into some adjacent residues upon the formation of mature amyloid/ 901

Negative staining TEM of mature Ap amyloid shows a mixture of straight and 

twisted fibres, with an average diameter of approximately 70 A /911 Platinum 

shadowing TEM of the fibres reveals the periodicity and the crossover structure of 

the fibrils associated with a fibril supertwist/ 701
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Image processing of electron micrographs has shown that amyloid fibrils are 

composed of protofilaments wound around one another.1881 The environment in 

which amyloid formation takes place can greatly affect the macromolecular 

morphology of the fibrils, often showing variation in the number or twists of 

protofilaments.170’74,881

Cross-sections of A|3 amyloid indicate that fibrils consist of several 

protofilaments.|92' The fibril cross section comprises three core regions of higher 

density, each being approximately 8nm long and 3.5nm wide, that may represent 

the individual protofilaments.'70' Within the cross section the core regions are 

joined by end to end contacts. The size of the core region fits with the U-turn like 

structure described for A|3 (see below). Depending on whether the central core 

contains a separate protofilaments, the cross section can be fitted to two or three 

peptide units in cross section.'701 Scanning TEM suggests that each 

protofilaments contains two |3-sheet layers.'88' Figure 1.9 shows diagrammatically 

how the Afi fibre is formed from several protofilaments.
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Figure 1.9 A representation o f the components of the Ap amyloid fibre. Top diagrams 

represent the end on view of the fibre, while the lower images are the axial view o f the fibre. 

Image adapted from 1721



Proline and cysteine mutant scanning of Ap in amyloid fibres has identified 

regions of AP that are likely to be a turn as well as unstructured regions when AP 

becomes incorporated into amyloid. The thermodynamic stabilities of amyloid 

fibrils formed from these mutants were used to characterize the susceptibility of 

different residue positions of the AP sequence to proline or cysteine substitution. 

Both experiments suggest an unstructured N and C termini and two regions 

between 16-19 and 31-34 that form P-sheet, with the residues in between forming 

a turn region.[93,941

A 3D structure of AP1.42 fibrils has been modelled using hydrogen-bonding 

constraints from quenched hydrogen/deuterium-exchange NMR, side-chain 

packing constraints from pairwise mutagenesis studies, and parallel, in-register 

beta-sheet arrangement from solid-state NMR studies. Residues 18-42 form a p- 

strand-turn-p-strand motif that contains two intermolecular, parallel, in-register 

beta-sheets that are formed by residues 18-26 (pi) and 31-42 (P2). At least two 

molecules of AP1-42 are required to achieve the repeating structure of a 

protofilament. Intermolecular side-chain contacts are formed between the odd- 

numbered residues of strand pi of the nth molecule and the even-numbered 

residues of strand P2 of the (n - l)th molecule. This interaction pattern leads to 

partially unpaired beta-strands at the fibrillar ends, which explains the sequence 

selectivity, the cooperativity, and the apparent unidirectionality of Ap fibril 

growth.[79]

Models of APi^o fibres, such as that shown in figure 1.8, based on constraints 

from solid state NMR spectroscopy, x-ray fibre diffraction and EM show a similar 

structure to AP1-42. Residues 12-24 and 30-40 adopt P-strand conformations and 

form parallel P-sheets. Residues 25-29 contain a turn region that brings the two 

P-sheets in contact through sidechain-sidechain interactions. The only charged 

sidechains in the core are those of D23 and K28, which form salt bridges. 7̂5,95]

1.2.4 Amyloid and disease

Many diseases, known as amyloidoses, are associated with the deposition of 

amyloid. Table 1.3 shows a summary of these diseases and the amyloidogenic 

protein associated with the disease. Each clinical syndrome is associated with a 

specific protein, which is normally soluble, but in the disease state undergoes a
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conformational change that causes it to aggregate into insoluble amyloid fibres.121' 

27, 541 A range of other components such as proteins and carbohydrates are also 

incorporated in the deposits in vivo. However, self assembly into amyloid will 

occur in vitro without these other components being present.1601

Most amyloid is deposited extracellularly and may be either isolated to a single 

organ or found systemically.127,601 The quantity of the deposit can vary greatly 

from almost undetectable levels in certain neurodegenerative diseases to 

kilograms found in some systemic diseases.1601 Most mutations in amyloidogenic 

proteins are associated with enhanced fibril formation due to destabilising the 

native fold, thus increasing the steady state concentration of the partially unfolded 

species.
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Amyloidogenic Native Disease Location of
protein structure amyloid

deposits
a-synuclein Unfolded Parkinson’s disease Brain

Amyloid 0 and 
fragments of

Unfolded Alzheimer’s disease Brain

Cerebrovascular amyloidosis 
Down’s syndrome

Apolipoprotein A1 a-helical Hereditary systemic amyloidosis Eyes
variants Familial visceral amyloid

Atrial natriuretic factor 
(ANF)

Unfolded Atrial amyloidosis Heart

p2-Microglobulin p-sheet Haemodialysis-related amyloidosis Musculosceletal
system,
gastrointestinal and 
urogenital tracts, 
tongue, heart.

BR1 protein variants Unfolded Familial British dementia 
Familial Dutch dementia

Brain

Calcitonin Unfolded Medullary carcinoma of the thyroid Thyroid

Cystatin C variant o/p Hereditary cystatin C amyloid 
angiopathy (HCCAA)

Brain

Fibrinogen Aa-chain 
variants and fragments 
of

Unknown Hereditary renal amyloidosis Kidney

Gelsolin variants o/p Hereditary systemic amyloidosis A number of
visceral organs and 
tissues

Huntingtin a-helical / 
unfolded

Huntingdon’s disease Brain

Immunoglobulin light P-sheet Systemic amyloid light chain (AL) Virtually all tissues
chain variable domains amyloidosis 

Nodular amyloidosis
and organs

Insulin a-helical
(mostly)

Injection-localised amyloidosis Site of injection

Islet amyloid 
polypeptide (IAPP, or 
amylin)

Unfolded Type II diabetes Pancreas

Lysozyme variants a + P Hereditary systemic amyloidosis A number of -
visceral organs and 
tissues

Prion protein and N-terminal Creutzfeldt-Jakob disease (CJD) Brain
fragments of unfolded, C- Gerstmann-Straussler-Schneiker

terminal mostly syndrome (GSS)
a-helical Fatal familiar insomnia 

Kuru
Bovine spongiform encephalopathy 
(BSE)

Prolactin a-helical Ageing pituitary-gland amyloidosis Pituitary

Serum amyloid A and a-helical Reactive systemic amyloid A Bladder, stomach,
fragments of amyloidosis thyroid,

Chronic inflammatory disease gastrointestinal tract, 
kidney, liver, spleen

Tau protein Unfolded Frototemporal dementia 
Alzheimer’s disease 
Pick’s disease
Progressive supranuclear palsy

Brain

Transthyretin (TTR) p-sheet (mostly) Senile systemic amyloidosis (wild- Virtually all tissues
(wild type (WT) and type TTR) and organs
many variants) Familial amyloid polyneuropathy

(type 0_____________________
Table 1.3 Summary o f amyloidogenic proteins and the related amyloidoses.
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Toxicity

There is a correlation between amyloid deposition and disease indicating that fibre 

formation is pathogenic.1611 However, it is not known whether it is the fibres 

themselves or an intermediate in fibre formation that is the toxic species. There is 

evidence that soluble oligomeric intermediates are the toxic species rather than 

insoluble fibrils.182, 961 A protofibril only fraction has been shown to be 

neurotoxic.1821 Amyloid has been suggested as a protective measure as early 

prefibrillar aggregates associated with neurodegenerative diseases can be highly 

damaging to the cell while mature fibrils are relatively benign.1821 In experiments 

with non-disease associated proteins under amyloid forming conditioned, early 

species in aggregation were found to be cytotoxic. This evidence has been used to 

suggest a common mechanism of pathogenicity in protein folding diseases which 

is related to the structure of the early aggregates.1971

Alzheimers’ disease
Alzheimers’ disease (AD) is the most common form of dementia in the elderly, 

affecting over 4 million patients in the US alone.181, 821 The risk of being 

diagnosed with AD increases with age from a less than 0.05% chance for those 

under sixty, to over 20% chance in those over eighty. In the developed world the 

survival rate is approximately six years after diagnosis.1811 Although there are 

specific criteria used to diagnose AD, at present diagnosis can only be confirmed 

by autopsy. Hopefully magnetic resonance imaging (MRI) and/or single photon 

emission computed tomography (SPECT) imaging may allow diagnosis before 

autopsy and identify presymptomatic patients in the future.

Over 90% of the cases of AD are sporadic, the remainder are familial cases, which 

usually involve a mutation that increases the amount of ApM2, or the propensity 

of it to form fibres.1821 Missense mutations in presenilin-1 gene are the most 

common cause of early onset familial AD due to an increase in extracellular and 

brain concentration of AP1-42. Polymorphisms in presenelin-1 are also associated 

with late onset AD and CAA.198,991 Down’s syndrome patients in their forties 

nearly always develop AD, most likely due to the trisomy of chromosome 21 

where the APP gene is located.1821



AD is characterised by a progressive loss of cognitive function as well as the 

presence of amyloid plaques and neuro fibrillar tangles.[82] The pyramidal 

neurons of cortical layers III and V and often layer II are the neurons most 

susceptible to loss in AD.1571 Thinning of the cortical gyri, widening of the sulci 

and enlarging of the ventricles result in an overall loss of grey matter. A|3 

amyloid plaques in neurophil and cerebral vessel walls are a hallmark of the AD 

brain, although A0 deposits are also present in unaffected individuals.182,85,1001

A|3 can bind to membrane lipids, which may have a detrimental effect on cell 

function. A(3 disrupts membranes with acidic phospholipids which are present in 

higher numbers at slightly acidic pH (such as that found in the endosomes).11011 

There is significant evidence of AP-GM1 ganglioside interactions being involved 

in A|3 aggregation and may even act as a seed for aggregation.11021 The ability of 

A|3 to disrupt endosomal and plasma membranes may be one of the causes of A(3 

toxicity.11011 A(3 is toxic to vascular smooth muscle cells and there is good 

correlation between the toxic effect of A(3 and the ability to bind membranes. 

Oligomers have an increase toxicity and increased binding of lipids. Membrane 

binding is influenced by the cholesterol concentration of the membrane, with 

reduced cholesterol content being associated with reduced A(3 binding.11031

Chronic inflammation plays an important role in AD pathogenesis. There is 

evidence of AP being an inflammatory stimuli to microglia resulting in neuronal 

loss and cognitive decline. Cathepsin B has been identified as one of over five 

hundred genes transcriptionally induced by APm2 in murine microglia cells. A 

high percentage of these genes encode enzymes, particularly hydrolases such as 

cathepsin B and L. Inhibiting cathepsin B by various means leads to a diminished 

toxic effect on primary neurons. Inhibiting only extracellular cathepsin B was 

sufficient to abolish the neurotoxic effects.11041

Cerebral amyloid angiopathies (CAA)

In cases of CAA, amyloid is deposited in the walls of blood vessels of the 

CNS.1541 Several proteins are known to form cerebrovascular amyloid including 

AP, hCC, prion protein, transthyretin, gelsolin and ABri.1981 Amyloid deposits 

affect the leptomeningeal and cortical arteries and arterioles most frequently. 

Initially amyloid fibrils are deposited in the abluminal aspect of the basal lamina
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around smooth muscle cells, then gradually spread towards the internal elastic 

lamina of arteries and endothelium of arterioles. In capillaries, fibrils are found 

within basal lamina with larger deposits extending into adjacent neurophils. This 

results in a loss of smooth muscle cells and the appearance of vascular changes. 

Mutations in different amyloidogenic proteins have been associated with severe 

CAA. Polymorphisms in several risk factors have also been reported that are 

associated with either an increase in risk of CAA or CAA related haemorrhage.[54,
98]
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A range of elderly patients with either AD, Downs syndrome, intracranial 

haemorrhage, cerebral infarction or elderly with no evidence of neurological 

disorders were all found to have some degree of cerebrovascular amyloid deposits 

in the leptomeningeal and cortical vessels.1'051 The majority of CAA cases are 

sporadic and are found in elderly individuals with and without AD. 46% of those 

over the age of seventy have some CAA. CAA associated lobar cerebral 

haemorrhage accounts for 12-15% of all cerebral haemorrhages in the elderly J541 

Hypertension is not believed to be important factor in CAA. Changes due to 

CAA can co-exist with atherosclerotic or arteriosclerotic cerebrovascular 

disease.1'061 The usual location of CAA related haemorrhage is the cerebral 

cortex, most commonly in lateral ganglia, and involves underlying white matter. 

Haemorrhage is usually accompanied with a high frequency of meningeal signs 

and symptoms such as headache, vomiting and nuchal rigidity, which are due to 

rupture into the subarachnoid space.1'071

Alzheimers ’ Disease related Cerebral Amyloid Angiopathy 

The incidence of both CAA and AD increase with age and AD increases the 

frequency and severity of CAA. Vascular amyloid deposits in the leptomeninges 

and cortices are found in over 80% of all AD cases, with over 25% of these 

having moderate or severe GAAP4,81,1081 The mean age of onset of dementia is 

significantly greater in subjects with high levels of CAA than those with low 

level, but the duration of AD is not influenced by CAA. The frequency of CAA is 

also age dependant with severity increasing with age. Severity of CAA has been 

shown to correlate with atherosclerosis and arteriosclerosis in cerebral vessels.1'081
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Hereditary Cerebral Amyloid Angiopathy

Hereditary CAA has been described in Icelandic and Dutch families showing 

autosomal, dominant inheritance of recurrent haemorrhage. In Icelandic families 

the amyloidogenic protein is hCC, whereas in Dutch families it is Ap.[55] 

Although carriers occasionally reach old age, it is not common as a fatal 

haemorrhage usually occurs in the first few decades of life. Haemorrhage lesions 

in these patients are most common in the basal ganglia region but are not 

infrequent in other locations. Occasionally areas of infarction are also found. 

Hyalinisation and thickening of walls of small arteries and arterioles occurs in the 

meninges and within brain tissue itself. Similar changes are also seen in the 

spinal cord. Commonly the intima is separated from the rest of the wall by a 

definitive space, empty except for delicate strands and the occasional macrophage. 

An abnormal immune response has been reported and a reduced number of 

monocytes in the blood.11091

Human cystatin C and Afi amyloid

There is a significant correlation between a coding polymorphism in the hCC 

gene (CST3) and the age of onset of AD. There is also some evidence of a 

correlation between the CST3 gene and ApoE in increasing the risk of AD.[U01 

Three polymorphic sites have been identified in the promoter region of hCC, 

homozygosity in one of these alleles (A/A) is significantly associated with late- 

onset AD, whereas heterozygosity is not.11111

Co-localisation of AP and hCC has been studied by immunostaining tissue 

sections with specific antibodies to AP or hCC in brain sections from several AP 

amyloid diseases. Immunostained AD brain sections showed co-localisation of 

Ap and hCC within arterial walls, but rarely in senile plaques or amyloidotic 

arteriolar walls. [56'58] Strong anti-hCC and anti-Ap staining occurs in the 

pyramidal neurons mainly in the third and fourth layers of the cerebral cortex, the 

areas associated with AD.[561 hCC staining is sometimes observed within the 

cytoplasm of pericytes, but predominantly stains the adventitial component of 

arteriolar walls. However, AP staining is usually more diffuse throughout the 

vessel wall.1581 hCC is deposited less frequently than Ap, with approximately one 

fifth of the deposits that are immunoreactive to Ap co-staining with anti-hCC 

antibody. Where Ap immunoreactivity was observed throughout the blood vessel,



cystatin C was found mainly in the outer media to the adventitia o f larger cortical 

and leptomeningeal vessels. 156 ICb| hCC associated with Ap is not an intrinsic 

part of the amyloid fibril.

27

Figure 1.10 Laser confocal microscopy showing distict layering o f  the plaque. Green 

represents antibody binding to Ap, whilst red represent antibody binding to hCC. A and B are 

images o f two different plaques while C-D are different optical sections o f B. Imaging shows a 

immunonegative plaque core, surrounded by a layer o f hCC that is enclosed by a layer of 

amyloid. Image taken from 11121

As shown in Figure 1.10, laser confocal microscopy shows distinct layering to the 

plaque. An immunonegative core is surrounded by a layer of hCC and a top layer 

o f A pJ112* Immunoprécipitation assay indicate that hCC binds to full length APP 

and secreted APP. Deletion mutants of APP localise the binding site to the Ap 

region of APP. Analysis of the association between hCC and Ap suggests a 

specific, saturable high affinity 1:1 binding between hCC and Ap. The 

association o f hCC and Ap results in a concentration dependent inhibition of AP 

fibril formation. Co-incubation of hCC with monomeric Ap significantly reduces 

formation of Ap oligomers and protofibrils, but hCC is not able to dissolve AP 

oligomers.1 Il3,1141
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The colocalisation of hCC and A(3 is not limited to AD. In patients with 

HCHWA-D a majority of patients co-stained for hCC in blood vessels that stained 

for Ap. A third of patients with sporadic Ap CAA co-stained for hCC.[55] In 

cases of sporadic inclusion body myostitis, the most common muscular disease of 

the elderly, pathology includes vacuolar degeneration of muscle fibres, intrafibre 

AP deposits and focal cytoplasmic paired helical filaments containing 

phosphorylated tau, both of which are congophilic. 80-90% of the vacuolated 

fibres show numerous, well defined plaque-like inclusions that are strongly 

immunoreactive with anti-hCC antibody. The hCC either co-localised or was 

adjacent to Ap immunoreactive inclusions.^591 When hCC is the main 

amyloidogenic protein, such as the cases of HCHWA-I, no co-immunostaining 

has been reported, deposits immunostain only with anti-hCC despite using several 

anti-Ap.[55’58]

1.3 FOLDING AND AMYLOID

1.3.1 Folding intermediates and amyloid

In order to understand the process of amyloid formation, it is important to 

consider what causes amyloidogenic proteins to form amyloid. It is believed that 

the initiation of amyloid formation is dependant on the formation of a partially 

unfolded intermediate.^87, 1151 This is not surprising considering that 

amyloidogenic proteins of diverse structures all rearrange into a cross-p structure 

in the amyloid fibre. For proteins that are predominantly p-sheet in the native 

state this may require relatively minor structural changes. However, a 

considerable proportion of amyloidogenic proteins have a high a-helical content 

(as shown in table 1.3). In such cases it is clear that the amyloidogenic protein 

must break native contacts prior to aggregation.

Further evidence supports the role of partially folded intermediates in the 

formation of amyloid. Many mutations that are associated with amyloidosis, 

including the L68Q mutation in hCC, reduce the stability of the protein relative to 

the wild-type protein.1" 61 Whether the mutation destabilised the native state or 

stabilises the unfolded or partially folded state, the result is a reduction in protein 

in the native state and an increase in partially folded intermediates and unfolded 

protein.1" 71 In addition to this, amyloid formation is often induced in vitro by



incubating in conditions that destabilise the native state. It has been found that 

many proteins that are not associated with the formation of amyloid in vivo will 

form amyloid in vitro if placed under suitably denaturing conditions.1123,1631

1.3.2 Models of amyloid formation

The structural studies of amyloid mentioned earlier in the chapter provide us with 

valuable information about the end point of amyloidogenesis, but provide little 

information on the mechanism of amyloidogenesis. Kinetic experiments are able 

to provide information on the process of amylodogenesis. The formation of 

amyloid can be followed using a fibril sensitive probe such as thioflavin T or 

congo red or by following changes in secondary structure.

Multiple models of the common core structure of amyloid fibres have been 

proposed. These models can be grouped into three classes; refolding models, gain 

of function models and natively disordered models. Although each model class 

proves some insight into how amyloid fibres form, no single model is yet to 

provide a full explanation of amyloid behaviour.11181

Refolding model

Refolding models propose that the fibrillogenic protein exists in two distinct 

states, the native state and the fibrillar state. In order to convert between these 

two states the protein must unfold then refold in the alternative conformation. It 

has been suggested that backbone interactions, which are available to all protein 

sequences, dominate the fibrillar state.1119J The insulin protofilament model is an 

example of such a model. Although the disulphide bonds in the native structure 

are maintained, insulin has to completely unfold from its native a-helical structure 

to form the cross-P structure of the amyloid fibreJ641

Natively disordered models

Natively disordered models are based on proteins where the native state is 

unstructured. They generally describe only segments of proteins so the full 

protein may have structured regions in the native state but the region responsible 

for fibril formation is unstructured. An example of this type of model is the 

expanded polyglutamine region of huntingtin protein. Several models of the
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huntingtin amyloid fibre have been proposed, each one proposes the polyQ region 

as a nucleation site for amyloid formation.1120'1221

Gain o f function models

Gain of function models propose that fibre formation is driven by a 

conformational change in a limited region of the native structure of the 

amyloidogenic protein which exposes an interaction surface that would otherwise 

be inaccessible in the native state. This group of models can be further divided 

into four groups; direct stacking, cross-p spine, 3D domain swapping and 3D 

domain swapping with cross-P spine.f1181

Direct stacking models

Direct stacking models require a small conformational change to the native state 

that allows fibril formation via the stacking of subunits. For example, in the 

transthyretin model, a conformational change displaces the terminal p-strand of 

the P-sheet exposing the penultimate strand that can form novel p-sheet 

interactions between transthyretin subunits. Transthyretin subunits stack up head- 

to-head and tail-to-tail producing the repeating P-sheets of the amyloid fibred77,
123,124]

30

Cross-fl spine model

The cross-P spine model proposes that short segments of the native protein change 

conformation to form one or more p-strands of a cross-P spine. The atomic 

structure of a seven-residue peptide of Sup35 which forms amyloid-like fibres has 

been determined. The structure reveals a double P-sheet bound by a steric zipper, 

with each sheet formed from parallel segments stacked in register.11251 A cross-P 

spine model of p2-microglobulin (P2m) has been proposed where residues 83-97 

form a P-hairpin in the fibril that stack into antiparallel p-sheets. Two sheets pack 

together to form the cross-P spine.11261 A direct stacking model has also been 

proposed for P2m in which the N and C terminal strands are displaced and form 

the core from native-like P2nJ1271

3D domain swapping models

Eisenberg was the first to observe the process known as three-dimensional domain 

swapping after studying diphtheria toxin.[21,861 In 3D domain swapping two or



more subunits exchange domains. The domain can be any part of the protein, 

from a short segment of secondary structure to a large complete functional 

globular domain. A flexible linker or hinge region is needed to allow partial 

unfolding, this region is the only region where the structure is different to the 

monomer. The main adhesive force is the “closed interface” between the 

swapped domains. The linker region forms the “open interface” which provides 

some additional stabilisation to the dimer.[211 hCC and human prion protein are 

two examples of domain swapped proteins that are also known to form 

amyloid.119,1281 3D domain swapping and the cystatins are discussed in detail later 

in the chapter.

Models of domain swapping can be based on a closed ended swap, where the 

swap is reciprocal and there are no exposed domains. Models have also been 

proposed where an open ended “runaway” domain swap occurs. In such models 

there are exposed domains at each terminus of the domain swapped oligomer that 

allow propagation o f the oligomer. Figure 1.11 shows a representation of 3D 

domain swapping and possible mechanisms of propagation in the amyloid fibre.
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Figure 1.11 A representation of how a closed monomer unfolds into an open monomer prior to 

forming a domain swapped dimer. Alternatively the open monomer could form a non 

reciprocal domain swap causing an open or closed oligomeric structure. Image taken from [i291.
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3D domain swapping with cross-/} spine model

A 3D domain swapping with cross-P spine model has been proposed for a 

polyglutamine insertion mutant of RNAse A. The model incorporates a runaway 

domain swap of the C-terminal strand and the cross-P spine is formed from the 

polyglutamine insertion. The polyglutamine spine' is comprised of 2 P-sheets 

forming a steric zipper. The remainder of the protein remains in its native state 

and packs around the outside of the cross-P spine. Although this model 

incorporates a runaway domain swap, the data does not exclude fibril formation 

by direct stacking of domain swapped dimers or oligomers.1' 18,1301

1.3.3 3D domain swapping

Domain swapped oligomers are made up of subunits that are identical in structure 

to the monomer with the exception of the hinge loop and the secondary interface. 

These conformational differences can either favour or disfavour domain swapping 

and will greatly influence the equilibrium between monomer and domain- 

swapped forms.1'3'1 Studies on the mechanism of domain swapping reveal that 

domain swapping is closely linked with the folding reaction. Generally there is a 

large kinetic barrier separating the interconversion between monomer and 

domain-swapped species. For interconversion to occur many native interactions, 

often in the hydrophobic core, must be disrupted to be replaced with by identical 

interactions with another protein chain.11311

The more independent the structure of the swapping elements the later during the 

folding pathway they can associate. In many cases the swapping elements are 

highly intertwined and not independently stable. Consequently association will 

occur before too much of the structure is present. [1311 In the case of barnase, the 

structures that domain swap can only fold partially in an independent manner. 

Therefore it has been proposed that association must occur at the latest at an 

intermediate stage of folding.^1321 In the case of sucl the domain swap occurs in 

the central hydrophobic core. The interactions that connect the domain swapped 

region are formed very early in the folding reaction, in order to break these 

interactions substantial unfolding is required. A model has been proposed in 

which a sucl molecule can fold from the denatured state to either monomer or a 

domain-swapped dimer.1'331
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Domain swapping and the cystatins

Members of both of the main subfamilies of cystatins have been shown to form 

dimers via 3D domain swapping.11341 In the ’H-1̂  HSQC spectrum of the hCC 

dimer sixty-nine percent of the residues show no significant change in chemical 

shift relative to the monomer. The changes that do occur are found to be in 

residues close to the protease binding site. The three regions that show changes in 

chemical shift are R8-G11 in the N terminus, Q55-N61 in the first hairpin loop 

and Y102-L112 in the second hairpin loop.1251 The dimer is symmetrical as there 

are no extra signals in the a ]H-15N HSQC spectrum of the dimer compared to the 

monomer.1251 A minimum requirement for domain-swapping is the unfolding of 

the monomer so that the a-helix is separated from the P-sheet and P2 and P3 are 

torn apart. When domain swapping occurs the open interface forms two new long 

antiparallel P-strands running from P2-P3 incorporating LI into the P sheet.119,21* 

1341 The P bulges that cause the sheet to curve slightly are preserved in the 

dimer.1211

The structure of the transition state en route to dimer is closer to the unfolded state 

than the folded state showing that a considerable disturbance of structure is 

required for transition from monomer to dimer.11341 The reaction is limited by a 

bimolecular process, most likely limited by the association of predominantly 

unfolded proteins.11341 The hinge region must account for any favourable energy 

changes, the most likely source of stability is alleviation of a distortion in the turn 

connecting strands two and three of the monomers. End to end distance in the 

crystallographic dimer structure (60-80 A) closely matches the width of the 

amyloid fibrils.11341

1.3.4 Further aggregation

The kinetics of fibril formation has a lag phase which disappears, or is reduced, if 

a seed or preformed nucleus is present in the supersaturated solution.1861 Models 

of fibril growth based on the principles of nucleated processes suggest that the 

first phase of aggregation is the formation of oligomers as a result of non-specific 

interactions or domain swapping.1861 Large amorphous aggregates are formed 

early in amyloid formation and may provide a high local concentration to 

facilitate nucleation.1611 The earliest species detectable by EM and AFM are



beadlike amorphous aggregates or micelles, which anneal to form chain-like 

protofibrils, then proceed to form annular species and/ or amyloid.160,821 

Protofibrils are thought to be on-pathway intermediates in the formation of 

amyloid. Ap protofibril elongation involves both the incorporation of monomers 

and the association of immature protofibrils, these dissociate via the release of 

monomers only.16'1

The structural similarity that defines amyloid fibres is principally at the level of |3- 

sheet folding within the protofilament, while the different types vary in the 

assembly of their protofilaments.11351 While protofilaments may assemble into 

fibres with variable packing, the protofilament interactions are maintained along 

the length of the fibril. This suggests that protofilaments adopt a series of 

interchain interactions during their assembly that propagate during fibrillar 

growth.1641

Further aggregation o f cystatins

The crystal structures of hCC revealed interesting packing interactions between 

dimers that may be significant for further aggregation, specifically four dimers 

arranged in a crystallographic tetrad.1211 Prolonged incubation of chicken cystatin 

under destabilizing, but predenaturing conditions leads to further self association 

into dimers and tetramers, but no trimeric or pentameric species have been 

reported. • Non-reducing sodium dodecyl sulfate-poly acrylamide gel 

electrophoresis (SDS-PAGE) and mass spectrometry (MS) shows no 

intermolecular disulphide bonds are present. The overall cystatin fold can be 

observed in the tetramer using far-UV-circular dichroism (far-UV-CD). Only 

marginal differences in tryptophan residues are seen by near-UV-CD. 1-anilino- 

8-naphthalene sulfonate (ANS) binding shows an increased solvent exposure of 

protein core in tetramer.11361

The guanidine hydrochloride (GdnHCl) dependence of the tetramerization 

reaction indicates that monomer to dimer rate is limited by a major unfolding 

event whereas ■ tetramer formation is limited by a slow conformational 

rearrangement within the dimer. The hydrodynamic radius of the tetramer 

(approximately 46 A) is appropriate for dimensions of the amyloid fibril of 

cystatins (7-13 nm) suggesting it could be the building block of the fibril.11361
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Studies on the tetramer of stefin B indicate that two domain swapped dimers form 

tetramer by a process that occurs with a trans- to c/s-proline isomerisation in the 

loop between strands 4 and 5. This isomerisation shifts the position of the loop 

sufficiently to allow the formation of an interface between the two domain 

swapped dimers involving the loop and the N-terminus. This is not the first time 

a proline isomerisation has been suggested as a key step in the amyloidogenesis 

pathway. Studies of P-2-microglobulin have identified a folding intermediate 

containing a non native trans-proline isomer as a direct precursor of fibril 

elongation. Structural analysis of this intermediate shows that it is highly native 

like in structure but contains perturbations of the edge strand which increase the 

likelihood of self aggregation.[137, 1381

1.3.5 In vivo factors

Amyloid deposits in vivo have also been found to contain accessory molecules, 

such as serum amyloid P, ai-antichymotrypsin and apolipoprotein E, in addition 

to the main amyloidogenic protein.1271 However, amyloid fibres that appear 

identical to their in vivo counterparts can be produced in vitro without the 

requirement for accessory molecules. Whilst not essential for amyloid formation 

the role of these accessory molecules could be analogous to the molecular 

chaperones found in protein folding.^541

Serum Amyloid-P

Serum amyloid-P (SAP) has been shown to bind all amyloid like fibres formed in 

vitro and is found ubiquitously associated with amyloid deposits in vivo. In vitro 

SAP stabilises amyloid deposits from phagocytic and proteolytic degradation. 

SAP requires the presence of calcium, at a concentration of 0.1 mg/ml SAP 

pentamer binds every 50 apoC-II monomer in the fibril. The effect of SAP on 

fibril sedimentation suggests a higher order reaction than a one-to-one binding. In 

the presence of SAP EM analysis shows a distinct “clumping” of fibrils without 

changing the morphology of the fibres. In the absence of SAP fibre-fibre 

interactions are weak and more susceptible to shear.11391
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a i-antichymotrypsin

The 45KDa serine protease inhibitor, known as ai-antichymotrypsin, has been 

identified through screening for amyloid and paired helical filaments (PHF) 

binding, ai-antichymotrypsin staining of aging and AD brains shows plaques and 

vascular deposits almost identical to the anti-amyloid pattern. Colloidal gold 

labelled secondary antibodies localised ai-antichymotrypsin to Ap in neuritic 

plaque cores from AD showing that ai-antichymotrypsin is an integral part or 

very tightly bound to the amyloid.^1401

Apolipoprotein E  (ApoE)

ApoE is a circulating secretory protein which, although synthesised primarily in 

the liver, is synthesised locally by astrocytes and microglia in the brain. There is 

an absence of most other plasma apolipoproteins in the brain, making ApoE the 

major apolipoprotein of the cerebrospinal fluid (CSF). Brain ApoE is believed to 

play a role in the redistribution of lipid and cholesterol during membrane repair 

and synaptic plasticity as well as transport of ApoE containing lipids in the CSF. 
[8i, h i , 142] Ap0g has been shown to bind all amyloid like fibres formed in vitro 

and is found ubiquitously associated with amyloid deposits in v/vo.[139]

There are three common alleles of ApoE, e2 (8%), e3 (78%) and e4 (14%). 

ApoEe4 has been suggested as a risk factor for AD, AD associated CAA and 

sporadic CAAJ54, l43'145] ApoEe4 has been shown to increase the risk of AD in 

younger age groups, while ApoEe2 confers a reduced risk.fU0,1411 In AD brains 

the number and size of Ap deposits increases in ApoEe4 carriers. It is also 

associated with amyloid burden in other brain disorders and in normal aging. 

Transgenic mice studies show an increased ApoE mRNA with aging and a great 

elevation in insoluble ApoE.[81,1411 ApoEe4 has also been reported as increasing 

the risk of CAA associated haemorrhage independently of AD.[1461 The severity 

of CAA has been linked with a significant increase in the ApoEe4 genotype 

reporting that single ApoEs4 allele increased the odds of moderate or severe CAA 

by almost 3 fold and two copies of the allele increased the odds by over 13 

fold.11441
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OVERVIEW OF THESIS

The overall aim of this project is to characterise the mechanisms that lead to the 

formation of cystatin amyloid fibres. cC has proved a useful model in studying 

cystatin amyloid, but relatively little information regarding the human counterpart 

hCC is known. Studying the folding and oligomerisation of hCC and relating it to 

cC adds to the developing model of cystatin amyloid formation. A second aim to 

this project is to characterise the interaction between hCC and A(3.

The initial stages of this project were devoted to the development of a protocol to 

produce recombinant hCC. The strategy used in the development of this protocol 

is described in detail in Chapter 3. The characterisation of the folding pathway of 

hCC and comparison with the folding pathway of cC is the basis of Chapter 4. 

Chapter 5 discusses the oligomerisation observed in the early stages of cystatin 

amyloid formation. Chapter 6 describes the use of NMR to study the interaction 

between hCC and A(3mo.



CHAPTER TWO 
MATERIAL AND METHODS
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2.1 INTRODUCTION

This chapter includes the details of the common experimental procedures used 

throughout the work presented in this thesis. Further details of the material and 

methods that are relevant to specific chapters are found at the end of each chapter.

2.2 BUFFERS AND REAGENTS

Unless otherwise stated all reagents were purchased from BDH or Sigma-Aldrich. 

Deionised water from a Sartorius 611VF water purifying system was used 

throughout all experiment. Phosphate and Tris-HCl buffer was made according to 

the protocol in Sambrook et al.[147]

2.3 DNA MANIPULATION

2.3.1 Expression vectors 

Wild type hCC

Wild type hCC cloned into the pIN-III-ompA expression system was provided by 

Dr, R.A. Staniforth. Expression and purification of hCC is discussed further in 

chapter 3.

PI 03A chicken cystatin

Recombinant cC cloned into the pIN-III-ompA periplasmic expression system 

was provided by E.A. Auerswald (Ludwig-Maximilians-University, Munich, 

Germany).117' Expression was carried out in E. coli TGI strain for which an 

efficient purification protocol had been established.'1481 Mutagenesis on the wild 

type plasmid was carried out by Dr. M. El-baghdady to produce the PI03A 

mutant.

2.3.2 Plasmid extraction

Plasmid DNA was extracted from 5ml overnight growths using QIAprep Spin 

Miniprep kits (Qiagen), according to the protocol provided by the manufacturer. 

Plasmid was eluted using 10 mM Tris-HCl pH 8.5, quantified and stored at -20°C.
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2.3.3 Evaluating DNA concentration

The concentration of plasmid and oligonucleotide solutions was calculated using 

absorbance at 260 nm where an absorbance reading of 1 is equivalent to a DNA 

concentration of 50 pg/ml. The purity of plasmid preparations was assessed by 

comparing the ratio of absorbance at 260 nm and 280 nm assuming a pure DNA 

sample has a ratio of approximately 2. All absorbance readings were taken on a 

Varian Cary spectrophotometer.

2.3.4 Agarose gel electrophoresis 

1% Agarose gel

A 1% agarose gel was prepared by placing 0.5 g electrophoresis grade agarose in 

50 ml lx TAE buffer and gently heating in a loosely stoppered conical flask until 

all the agarose had dissolved. The solution was poured into the taped gel tray of a 

Biorad mini sub DNA cell, the well comb inserted and allowed to cool. Once the 

gel has set the tape was removed from the tray prior to it being placed in the gel

tank and submerged in lx TAE buffer. The apparatus was ran at 50 V for

approximately 1 hour. Gels were stained in lx TAE containing 0.5 pg/ml

ethidium bromide for approximately 1 hour. Gels were viewed on a

transilluminator and photographed using a Polaroid instant camera.

DNA molecular weight standards

Gene Ruler 1 kb DNA ladder (Fermentas) was prepared and used according to the 

manufacturers protocol. The ladder contains 14 fragments of 10000, 8000, 6000, 

5000, 4000, 3000, 2500, 2000, 1500, 1000, 750, 500 and 250 base pairs.

2.3.5 Competent cells 

Preparation o f  competent cells

The E. coli strain XL 10 Gold was routinely used for plasmid production and XL1 

Blue were used during mutagenesis experiments. TGI, Rosetta, Origami and 

Rosetta-gami strains of E.coli were used during the optimisation of the expression 

of human cystatin C which is discussed further in chapter three. The TGI strain 

was used for expression of chicken cystatin. Supercompetent XL1 Blue cells 

were purchased from Stratagene, competent Rosetta and Rosetta-gami cells were 

purchased from Novagen, all other strains were made competent using the



following technique. In order to maintain their phenotype Rosetta require 34 

pg/ml chloramphenicol, Origami require 12.5 pg/ml tetracycline and 15 pg/ml 

kanomycin, Rosetta-gami have to combined antibiotic requirements of Rosetta 

and Origami cells. XL1 Blue, XL10 Gold and TGI cells were purchased from 

Stratagene. Rosetta, Origami and Rosetta-gami cells were purchased from 

Novagen.

Glycerol stocks of cells stored at -80°C were streaked onto Luria Bertani media- 

agar (LB-agar) containing any antibiotics required to maintain the strain and 

incubated at 37°C overnight. A single colony was picked to inoculate 5 ml of 

Luria Bertani media (LB) which was then incubated overnight at 37°C, shaking at 

250 rpm. 10 ml of LB was inoculated with 200 pi of the overnight growth and 

left shaking at 37°C until the optical density at 600nm (ODeoo) reached 0.6. Cells 

were centrifuged at 1663 g for 10 minutes to pellet the cells. The supernatant was 

discarded and the cells gently resuspended in 3.3 ml RF1 buffer. After incubation 

on ice for 30 minutes the cells were again pelleted by centrifugation. The 

supernatant was discarded and the cell pellet resuspended in 1 ml RF2 buffer. 

Following incubation on ice for a further 30 minutes cells were divided into 200 

pi aliquots and either transformed immediately or frozen in liquid nitrogen prior 

to storage at -80°C.

RF1 buffer

30 mM KCH3CO2, 100 mM RbCl, 10 mM CaCl, 50 mM MnC14, 15% glycerol, 

pH 5.8

RF2 buffer

10 mM MOPS, 10 mM RbCl, 75 mM CaC12,15% glycerol, pH 6.5

2.3.6 Transformations

0.5 pi of plasmid DNA at an approximate concentration of 50 pg/ml was put into 

a chilled 14 ml polypropylene tube. 100 pi of competent cells were added and the 

tube and gently mixed prior to being left on ice for 30 minutes. Tubes were 

placed at 42°C for 90 seconds then returned to ice for a further 30 seconds. After 

adding 900 pi of warmed LB tubes were incubated at 37°C for 1 hour shaken at
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250 rpm. Where cells were purchased a supercompetent or competent cells 

transformations were carried out following the protocol provided by the supplier. 

20 pi was streaked and 20 pi and 100 pi cells plated onto selective LB-agar plates 

and incubated at 37°C overnight.

2.4 Growth media and solutions

2.4.1 LB media (Luria Bertani media)

41

Per litre of water, 

Bacto- tryptone 10g (Difco)

Bacto- yeast extract 5 g (Difco)

NaCl 10g

The solution was sterilised by autoclaving at 121°C for 20 minutes. LB-agar was 

produced by adding 15 g/1 of agar to the LB prior to autoclaving.

2.4.2 M9 minimal media

Per litre of water, 

Na2HP04 6g

k h 2p o 4 3 g
NaCl 0.5 g

The media solution was adjusted to pH 7.4, then made up to 1 1 before being

sterilised by autoclaving at 121°C for 20minutes. The following were added to

the above solution after autoclaving:

trace elements* 650 pi

glucose* 3g
1 mg ml'1 thiamine* 1 ml

0.5 mg ml'1 (I5NH4)2S04* 2 ml (Cambridge Isotope Laboratories)

IM M gSO/ 1 ml

1 M CaCl2r 0.1ml

* autoclaved at 121°C for 20 mins, * 0.2 pm syringe filter sterilised, AAdded last. 

The flask was swirled immediately to disperse precipitate. The preparation was 

abandoned if precipitate did not disperse.

Trace elements 

Per 100 ml of water: 

CaCl2.2H20 550 mg
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M11SO4.H2C) 140 mg

C11SO4.5H2O 40 mg

ZnS04.7H20 220 mg

C0CI2.6H2O 45 mg

Na2Mo04.2H20 26 mg

H3B04 40 mg

KI 26 mg

The above were added to 70 ml of water and the solution adjusted to pH 8.0 

before adding:

EDTA 500 mg

The solution was adjusted to pH 8.0 before adding:

FeS04.7H20 375 mg

The solution was then made up to 100 ml with water before autoclaving at 121 °C 

for 20 mins.

2.4.3 Antibiotic solutions

Ampicillin (Melford)

A 1 OOOx stock solution was produced by dissolving in water at a concentration of 

lOOmg ml'1, then filter sterilised with a 0.2 pm syringe filter. 1 ml aliquots of the 

stock solution were stored at -20°C until required when they were gently thawed 

and added to growth media at a final concentration of 100 pg ml'1.

Chloramphenicol

A 1 OOOx stock solution was produced by dissolving in ethanol at a concentration 

of 34 mg ml'1. 10 ml aliquots of the stock solution were stored at -20°C until 

required when they were added to growth media at a final concentration of 34 pg 

ml'1.

Tetracyclin

A 400x stock solution was produced by dissolving in ethanol at a concentration of 

5 mg ml'1. 10ml aliquots of the stock solution were stored at -20°C until required 

when they were added to growth media at a final concentration of 12.5 pg ml'1.
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Kanomycin

A lOOOx stock solution was produced by dissolving in water at a concentration of 

15 mg ml'1, then filter sterilised with a 0.2 pm syringe filter. 1 ml aliquots of the 

stock solution were stored at -20°C until required when they were gently thawed 

and added to growth media at a final concentration of 15 pg ml'1.

2.4.4 Isopropyl-f3-D-gaIactosidase (IPTG) (Melford)

A lOOOx stock solution was produced by dissolving in water at a concentration of 

120 mg ml'1, then filter sterilised with a 0.2 pm syringe filter. 1 ml aliquots of the 

stock solution were stored at -20°C until required when they were gently thawed 

and added to growth media at a final concentration of 120 pg ml'1.

2.5 PROTEIN EXPRESSION AND PURIFICATION

2.5.1 Human cystatin C

The development and optimisation of the protocol for expression and purification 

of wild-type human cystatin C is described in full in chapter three.

2.5.2 15N-Iabelled P103A chicken cystatin 

Protein expression and extraction

The OmpA signal sequence in the chicken cystatin plasmid targets the expressed 

protein to the periplasm from where protein Can be extracted using osmotic shock. 

Competent E.coli strain TGI were transformed with the pIN-III-OmpA chicken 

cystatin plasmid and plated onto LB-agar plates containing 100 pg ml'1 

ampicillin. A single colony was selected from the plate and used to inoculate 5 

ml M9 media containing 100 pg ml'1 ampicillin which was then grown over night 

at 37°C shaking at 250 rpm. 2 ml/1 of overnight growth was added to fresh M9- 

ampicillin and grown at 37°C, shaking at 250 rpm until the optical density at 600 

nm is 0.5, this takes approximately 6 hours. Cells were induced with a final 

concentration of 120 pg ml'1 IPTG using a lOOOx stock solution and left in growth 

conditions overnight. Cells were harvested by centrifuging at 4402 g for 40 

minutes. The growth media was discarded and cells were resuspended in 35 ml 

20% sucrose, 25 mM Tris-HCl pH 8.0 per litre of original growth media. Cells 

were left to stand for 10 minutes before being centrifuged at 48384 g for 15 

minutes at 20°C. The sucrose solution was discarded and cells were resuspended



on ice in an equal volume of ice cold 2 mM EDTA, pH 8.0. Cells were left to 

stand for a further 10 minutes before being centrifuged at 48384 g for 15 minutes 

at 4°C. The supernatant was recovered and 1 complete protease inhibitor cocktail 

tablet (Roche diagnostics) per 50 ml was added.

Protein purification

The protocol established by Anastasi et aPÂ  describes the use of a Cm-Papain- 

Sepharose affinity column to purify chicken cystatin from ovomucin. This 

protocol was adapted so that chicken cystatin could be purified from the 

periplasmic extract. A papain affinity column was equilibrated at room 

temperature with binding buffer, 50 mM potassium phosphate buffer pH 6.5, 0.5 

M KC1. The buffer concentration, pH and conductivity of the periplasmic extract 

were adjusted so that they matched the binding buffer by adding the necessary 

amount of K2HPO4 and KH2PO4 stock solutions and solid KC1. The adjusted 

periplasmic extract was then loaded onto the top of the papain affinity column at a 

rate of 2 ml/min and the breakthrough eluent collected. The column was washed 

with the binding buffer until the optical density at 280 nm of the eluent was less 

than 0.1. Chicken cystatin was then eluted from the column by washing it with 

the eluting buffer, 0.5 M KC1, 50 mM potassium phosphate buffer pH 11.5, 2 mM 

sodium azide, until the OD280nm of the eluent was less than 0.05. The affinity 

column was re-equilibrated in binding buffer for storage. The pH of the cystatin 

containing fraction was adjusted to a neutral pH prior to concentrating it to 5-10 

mis using an Amicon ultrafiltration device.

The chicken cystatin was further purified by size exclusion chromatography 

(SEC) using superdex-75 resin. The column was equilibrated with the eluting 

buffer used for the papain affinity column prior to loading the chicken cystatin. 

Eluting buffer was run through the column at a rate of 3 ml/min and 2.5 min 

fractions were collected. The pH of fractions thought to contain chicken cystatin 

was neutralised, then the presence of chicken cystatin confirmed by SDS-PAGE. 

Once identified chicken cystatin fractions were pooled and buffer exchanged to 10 

mM potassium phosphate buffer pH 7.0,2 mM sodium azide by dialysis.
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2.6 PROTEIN PROCEDURES 

2.6.1 SDS-PAGE

Buffers

4x upper gel buffer 

4x lower gel buffer 

5x running buffer

lx loading buffer

Stain

De-stain

0.5 M Tris/HCl, 0.4% (w/v) SDS, pH 6.8 

1.5 M Tris/HCl, 0.4% (w/v) SDS, pH 8.8 

25 mM Tris/HCl, 250 mM glycine, 0.1% (w/v) 

SDS, pH 8.3

50 mM Tris/HCl pH 6.8, 100 mM DTT, 2% (w/v) 

SDS, 0.1% (w/v) Bromophenol blue, 10% (v/v) 

glycerol

0.25% (w/v) Coomassie brilliant blue R250, 10% 

(v/v) acetic acid, 45% (v/v) methanol, 45% water 

10% (v/v) acetic acid, 45% (v/v) methanol, 45% 

water.

16% resolving gel 

4x lower buffer 

40 % Bis acrylamide 

dH20

10 % (w/v) APS 

TEMED

2.5 ml

4 ml (Biorad)

3.5 ml 

100 pi

10 pi (Biorad)

4 % stacking gel 

4x upper buffer 

40 % Bis acrylamide 

dH20

10 % (w/v) APS 

TEMED

2.5 ml

1.1 ml (Biorad) 

6.4 ml 

110 pi

11 pi (Biorad)

SDS-PAGE molecular weight markers 

Sigma, low molecular weight range:

Bovine serum albumin (BSA) 66 000 Da

Ovalbumin (chicken egg) 45 000 Da
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Glyceraldehyde-3-phosphate dehydrogenase 36 000 Da

Carbonic anhydrase (bovine erythrocytes) 29 000 Da

Trypsinogen (bovine pancreas) 24 000 Da

Trypsin inhibitor (soybean) 20 000 Da

a-lactalbumin (bovine milk) 14 200 Da

Aprotinin 6 500 Da

200 000 Da'

116 250 Da 

97 400 Da 

66 200 Da 

45 000 Da 

31 000 Da 

21 500 Da 

14 400 Da 

6 500 Da

SDS-PAGE was carried out using a Bio-Rad mini-protean II apparatus. A 16% 

polyacrylamide resolving gel was prepared and overlain with a 4% 

polyacrylamide stacking gel containing 10 large or 15 small wells. Protein 

samples were prepared with a 1:1 ratio of protein solution: SDS loading buffer, of 

which 5 -  20 pi was loaded onto the gel. Gels were electrophoresed at a constant 

voltage of 200V for 50 -  60 minutes. Gels were stained with agitation at room 

temperature for a minimum of 1 hour before de-staining. Rapid de-staining was 

carried out by boiling the gels in water for 15 -  20 minutes, changing the water at 

intervals, followed by shaking at room temperature in de-stain for a minimum of 1 

hour. The de-stained gels were placed on a light box and photographed using a 

Polaroid instant camera or scanned and stored as jpeg files using a HP scanjet 

3670.

2.6.2 Protein concentration determination

The concentration of protein solutions was calculated using absorbance at 280 nm 

and the Beer-Lambert law:

Biorad, broad range molecular weight standards: 

Myosin

ß-galactosidase 

Phosphorylase b 

Serum albumin 

Ovalbumin 

Carbonic anhydrase 

Trypsin inhibitor 

Lysozyme 

Aprotinin
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(Eq 2.1.1) A = eel

Where A = Absorbance, c = Concentration (M), 1 = pathlength (cm), e = molar 

extinction coefficient (NT'cm'1). The molar extinction coefficient of human 

cystatin C is 11050, P I03A chicken cystatin is 11745 and Abetai.40 is 1490. Each 

were calculated from their sequences using the “ProtParam” tool available on the 

expasy website (http://au.expasy.org/tools/protparam.html). All absorbance 

readings were taken on a Varian Cary spectrophotometer.

2.6.3 Protein concentration and buffer exchange

Protein solutions were concentrated using an Amicon ultrafiltration device in 

conjunction with a Millipore ultrafiltration membrane with a 10 000 Da molecular 

weight cut off. When the volume of the protein solution was less than 10 ml a 

Vivaspin centrifugal concentrator with a 5 000 Da molecular weight cut off was 

used (Vivascience). If the volume of the protein solution was less than 0.5 ml a 

Microcon centrifugal concentrator with a 10 000 Da molecular weight cut off was 

used (Millipore). Both the ultrafiltrtion device and the centrifugal concentrators 

were used according to the manufacturers instructions. The preferred method of 

buffer exchange was dialysis at 4°C against the desired buffer using Spectra/Por 

molecular porous membrane tubing, 6-8 KDa molecular weight cut off 

(SPECTRUM). When small volumes of protein solution required buffer 

exchange several rounds of concentrating and diluting in the required buffer were 

carried out until the original buffer was diluted to an insignificant concentration.

2.6.4 Analytical Size exclusion chromatography

The purity and molecular weight of cystgjjn preps was determined by SEC-high 

pressure liquid chromatography (HPLC) using a Shodex KW-800 HPLC column 

and KWG guard column (Shodex, Japan) with a Perkin Elmer Series 200 HPLC 

instrument. The column was equilibrated with 50 mM sodium phosphate buffer 

pH 7.0, 2 mM sodium azide at a flow rate of 1 ml/min. The sample injection 

volume was 20 pi and the elution time was determined by recording absorbance at 

280 nm. The column was regularly calibrated using standard proteins and a 

calibration graph was produced by plotting the elution time against the logarithm 

of the molecular weight of the standards. Cystatins show a retarded elution time 

relative to their molecular weight suggesting that there is some interaction with

http://au.expasy.org/tools/protparam.html


the matrix in the column. SEC-HPLC was also used to follow decrease in 

monomer and appearance of oligomers under dimerising condition, further details 

are found in the material and methods section of the relevant chapters.

2.7 SPECTROSCOPIC TECHNIQUES

2.7.1 Fluorescence

Tryptophan fluorescence measurements were taken on either a Varian Cary 

Eclipse or a Shimadzu RF-5301PC fluorescence spectrometer. The excitation 

wavelength was set at 280 nm and emission spectra were recorded between 300- 

420 nm. Slit widths of 5 nm were used for both excitation and emission. Further 

details are available in chapter 4.2.2

2.7.2 Circular Dicroism (CD)

CD measurements were taken on a Jasco J-810 Spectropolarimeter. For 

equilibrium unfolding experiments the protein concentration was 20 pM. 

Temperature was maintained at 20°C and a 0.1 cm pathlength cuvette was used 

throughout the experiment. Spectra were recorded over the range of 190-300 nm. 

Further details are available in chapter 4.2.1

2.7.3 Stopped flow

An Applied Photophysics SX-18MV stopped flow reaction analyser was used to 

follow the change in fluorescence caused by cystatin folding or unfolding. All 

reactions were carried out at 25°C in 10 mM sodium phosphate buffer pH 8.0 and 

varying concentrations of GdnHCl. The monochromator slit widths were set at 5 

mm and a wavelength 280 nm was used. Spectra were fitted to a single 

exponential to provide determine the amplitude change and the observed rate. 

Further details are available in chapter 4.2.3

2.7.4 EM

Carbon coated copper grids were glow-discharged with 3x15  second pulses. 2 pi 

of sample was adsorbed onto a grid for 1 minute then the edge blotted on filter 

paper. This was followed by three washes, two in water and one in 2 % (w/v) 

uranyl formate, pH 4.4 with blotting between washes. Grids were held in a drop 

of uranyl formate for 20 seconds then removed by blotting and any remaining 

fluid was removed by gentle vacuum. Micrographs were recorded on a Philips
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CM 100 microscope operating at an acceleration voltage of 100 kV equipped with 

a 1024x1024 CCD camera. Further details can be found in chapter 5.2.3
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2.7.5 NMR

NMR spectra were recorded on Bruker DRX spectrometers operating at proton 

frequencies of 500, 600 or 800 MHz controlled using XWinNMR (Bruker). NMR 

data was processed using Felix (Accelrys). Further details are available in chapter 

6.
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CHAPTER THREE

PURIFICATION AND CHARACTERISATION OF HUMAN 

CYSTATIN C EXPRESSED IN E . C O L I  pIN-III-OMPA2 

EXPRESSION SYSTEM

3.1 INTRODUCTION

A number of expression systems for hCC are reported in the literature. A low 

level of hCC expression (0.05 mg hCC/1 culture) was achieved when using an E. 

coli cytoplasmic expression system, probably due to a high level of proteolysis of 

hCC in the cytoplasm or the reducing environment of the cytoplasm disfavouring 

disulphide bond formation. The periplasm provides a different environment to the 

cytoplasm and Abrahamson and co-workers produce a substantial amount of hCC 

using a periplasmic expression s y s t e m I n  this system, transport of 

recombinant proteins to the periplasm is achieved by fusing the desired gene to 

the signal sequence of the E. coli outer membrane protein A (ompA), which in 

their case is under the control of the major rightward promoter of phage X.II6'18] 

With this system expression is temperature induced as the promoter is repressed at 

temperatures below 35°C.^16̂ Dimérisation and further aggregation of L68Q hCC 

is highly temperature dependant, raising the temperature from 37°C to 40°C 

results in a 150% increase in the dimérisation rate.[14] Therefore, an expression 

system that is not temperature induced expression system would be more suitable 

for the expression of L68Q hCC.

The pIN-III-ompA periplasmic expression system has successfully been used to 

produce a chicken analogue of hCC with a high yield.1171 The system is IPTG 

induced as pIN-III-ompA is under the control of the lipoprotein promoter and the 

lactose promoter and operator. To create an IPTG inducible expression system 

hCC was cloned into the pIN-III-ompA vector.

With an ompA expression system production of recombinant protein should be 

confined to the periplasm. Cell lysis is therefore not required as periplasmic 

extraction is sufficient to release recombinant protein. Extraction from the 

periplasm can be achieved using osmotic shock. Periplasmic extraction is a 

favourable method of protein extraction as the concentration of bacterial proteins



in the periplasm is lower than in the cytoplasm, therefore reducing the amount of 

purification stages required to produce pure recombinant protein. In this chapter 

the development of a pIN-III-ompA2-hCC periplasmic expression system is 

described. The final protocol for the production of hCC shown in section 3.4 

yields approximately 4 mg of monomeric hCC per litre of cell culture.

3.2 MATERIALS AND METHODS

3.2.1 Manipulation of the pIN-III-ompA2-hcc plasmid

The pIN-III-ompA2-linker-hCC plasmid was produced by Dr. R.A. Staniforth and 

has a short linker sequence inserted between the ompA2 signal sequence and the 

hCC gene to provide the natural ompA cleavage site and the required restriction 

site to allow cloning of the hCC gene into the pIN-III-ompA2 plasmid. Briefly, 

an IMAGE consortium clone of hCC in the pBluescript SK vector was supplied 

by American Type Culture Collection and used to amplify the hCC gene with a 

short sequence containing an EcoRl restriction site immediately upstream of the 

hCC gene and a BamHl restriction site immediately downstream of the hCC 

gene. The amplified sequence and the pIN-III-ompA2 were cut with EcoRl and 

BamHl restriction enzymes and ligated together. Sequence analysis confirmed 

the correct insertion of hCC into the pIN-III-ompA2 vector. Figure 3.1 shows the 

pIN-III-ompA2-linker-hCC plasmid map and the DNA sequence of the region 

containing the hCC insert.

Expression of the pIN-III-ompA2-linker-hCC plasmid results in production of a 

modified hCC with an additional five amino acids at the N-terminus. Although it 

is not its natural cleavage site, it has been shown that E. coli signal peptidase is 

able to cleave between the C-terminal alanine of the ompA sequence and the N- 

terminal serine of mature hCC.[16, 181 The pIN-III-ompA2-linker-hCC plasmid 

was therefore manipulated to produce a plasmid with no linker sequence, pIN-III- 

ompA2-hCC (Figure 3.1).

In order to remove the linker sequence two primers were designed that only 

partially annealed to the plasmid. Primer 1 is complementary to the start of the 

hCC gene and has a 5’ sequence that is complementary to the end of the ompA2 

signal sequence. Primer 3 is complementary to the start of the non-coding strand 

of the ompA2 signal sequence and has a 5’ sequence that is complementary to the
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3' end of the non-coding strand of the hCC gene. Two other primers were 

designed “2” and “4”, that bind to the downstream of the BamHl site and 

upstream of the Xbal site respectively (Figure 3.2A).
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A B

C

CTTTGAGCGA ACGATCAAAA ATAAGTGCCT TCCCATCAAA AAAATATTCT 
CAACATAAAA AACTTTGTGT AATACTTGTA ACGCTACATG GAGATTAACT 
CAATCTAGCT AGAGAGGCTT TACACTTTAT GCTTCCGGCT CGTATAATGT 
GTGGAATTGT GAGCGGATAA CAATTTCACA CAGGAAACAG CTATGACCAT 
GATTACGGAT TCACTGGAAC TCTAGATAAC GAGGGCAAAA AATGAAAAAG 
ACAGCTATCG CGATTGCAGT GGCACTGGCT GGTTTCGCTA CCGTAGCGCA 
GGCCGCTGAA TTCCATATGT CCAGTCCCGG CAAGCCGCCG CGCCTGGTGG 
GAGGCCCCAT GGACGCCAGC GTGGAGGAGG AGGGTGTGCG GCGTGCACTG 
GACTTTGCCG TCGGCGAGTA CAACAAAGCC AGCAACGACA TGTACCACAG 
CCGCGCGCTG CAGGTGGTGC GCGCCCGCAA GCAGATCGTA GCTGGGGTGA 
ACTACTTCTT GGACGTGGAG CTGGGCCGAA CCACGTGTAC CAAGACCCAG 
CCCAACTTGG ACAACTGCCC CTTCCATGAC CAGCCACATC TGAAAAGGAA 
AGCATTCTGC TCTTTCCAGA TCTACGCTGT GCCTTGGCAG GGCACAATGA 
CCTTGTCGAA ATCCACCTGT CAGGACGCCT AGGGATCCGG CTGAGCAACG 
ACGTGAACGC AATGCGTTCC GACGTTCAGG CTGCTAAAGA TGACGCAGCT 
CGTGCTAACC AGCGTCTGGA CAACATGGCT ACTAAATACC

Figure 3.1. A. Plasmid map of the pIN-III-ompA2-linker-hCC plasmid provided by Dr. R.A. 

Staniforth. B. Plasmid map of plN-lll-ompA2-hCC plasmid produced following the removal 

of the linker sequence. C. The DNA sequence o f the region containing the hCC insert. The 

sequence shows part o f the plN-lII vector (black), the ompA signal sequence (grey), the linker 

sequence (pink) and the mature hCC gene (blue). Xbal (orange), BamHl (green) and EcoRl 

(pink) restriction sites are underlined. Bold regions show the binding position o f primers used 

to amplify the hCC sequence and the ompA2 sequence.
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A  B in d in g  s ite  o f p r im e rs

B  M a in  p ro d uc t o f P C R  1

r m

&amH1 j

C  M a in  p rod uc t o f  P C R  2 

Xbal

om oA2 — ]

om oA2 a n

P o s s ib le  o u tc o m e s  o f P C R  3 

D  R ean ne a l to  P C R  1 p ro d u c t

R ean ne a l to  P C F  

X

2  p ro d uc t

om pA2 H |

ompA2 ■ ■

F  A n n e a ls  to o p p o s ite  P C R  p roduct, but n o  inbuilt o r iin e rs

J ompA2 r

G Anneals to opposite PCR product with inbuilt primers
X b a l BamHI

: ~ !------------------- w e ___________

om pA2 ■ _ > '__________________________________

Figure 3.2. In all o f the above diagrams the key features are represented by the following 

colours, hCC (blue), linker (pink), ompA2 (grey), pIN-IIl (black). A. Annealing positions of 

primers 1-4. B. The main polymerase chain reaction (PCR) product from PCR o f the hCC 

gene consisting of the full hCC gene with the C-terminal end o f the ompA2 sequence. C. The 

main PCR product from the PCR o f the ompA2 sequence consisting of the full ompA2 

sequence and the N-terminal end of the hCC gene. D-E. Unwanted annealing o f ssDNA during 

the third PCR, strands either reanneal to their original sequence (D-E) or anneal to the opposite 

PCR product in a manner than prevents 3 ’ extension. G. Desired annealing o f  ssDNA that 

allows amplification o f the ompA2-hCC sequence beyond the Xbal and BamHl sites.
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The hCC gene was amplified using primers 1 and 2 producing the coding strand 

of the hCC gene with the final 18 bases of the ompA2 signal sequenced attached 

at the 5’ end (Figure 3.2B). The ompA2 signal sequence was then amplified 

using primers 3 and 4 producing the non-coding strand of the ompA2 signal 

sequence with the first 20 bases of the non-coding strand of the hCC gene 

attached at the 5’ end (Figure 3.2C). The two purified PCR products were used in 

a third PCR where no additional primers were included. The four DNA strands 

may anneal in four different conformations (Figure 3.2D-G). When they anneal 

as in Figure 3.2G the annealing region is sufficient to act as internal primers and 

allow 3’-extension. The final PCR product contained the Xbal site, the ompA2 

signal sequence, no linker sequence, the hCC gene and the BamHl site.

The original plasmid and the PCR product was cut at the Xbal and BamHl 

restriction sites, purified and ligated together. The EcoRl site in the linker 

sequence provided a useful means of testing for successful removal of the linker 

sequence. BamHl single digests and BamHl and EcoRl double digest were used 

to identify plasmid that cut once with BamHl and once with BamHl and EcoRl. 

Successful ligations were transformed into XL-1 Blue supercompetent cells and 

plasmids sequenced to confirm removal of the linker sequence.

Primers

Primer 1: 5'-gct acc gta gcg cag gcc tcc agt ccc ggc aag ccg cc-3'

Primer 2: 5'-cgg tat tta gta gcc atg ttg tcc aga cgc-3'

Primer 3: 5'-gg egg ett gcc ggg act gga ggc ctg ege tac ggt agc-3'

Primer 4: 5’-g age gaa ega tea aaa ata agt gcc t-3’

Primers were analysed by the DNA calculator tool available on the Sigma- 

Genosys website (http://www.sigma-genosvs.com/calc/DNACalc.asn'). No 

secondary structure or primer dimer were predicted for primers 2 and 4, a 

moderate chance of secondary structure was predicted for primers 1 and 2.

PCR o f human cystatin C gene (PCR 1)

Distilled H20

I O x  Pfu reaction buffer

40.6 pi 

5.0 pi

http://www.sigma-genosvs.com/calc/DNACalc.asn'
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dNTPs (25 mM of each) 0.4 pi (Fermentas)
hCC plasmid (100 ng/pl) 1.0 pi

Primer 1 (100 ng/pl) 1.0 pi

Primer 2 (100 ng/pl) 1.0 pi
PfuTurbo DNA polymerase (2.5 U/pl) 1.0 pi (Stratagene)

No of cycles Temperature (°C) Time (mins)

1 95 2

30 95 0.5

60 0.5

72 0.5

1 72 10

PCR product was analysed on a 1% agarose gel (see chapter 2.3.4) and extracted 

using a QIAquick gel extraction kit according to the manufacturers’ instructions.

PCR o f ompA2 signal sequence (PCR 2)

Distilled H20 40.6 pi

1 Ox Pfu reaction buffer 5.0 pi

dNTPs (25 mM of each) 0.4 pi

hCC plasmid (100 ng/pl) 1.0 pi

Primer 3 (100 ng/pl) 1.0 pi

Primer 4 (100 ng/pl) 1.0 p i.

PfuTurbo DNA polymerase (2.5 U/pl) 1.0 pi

(Fermentas)

No of cycles Temperature (°C) Time (mins)

1 95 2

30 95 0.5

55 0.5

72 0.5

1 72 10

PCR product was analysed on a 1% agarose gel (see chapter 2.3.4) and extracted 

using a QIAquick gel extraction kit according to the manufacturers’ instructions.
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PCR o f  hCC and ompA2 (PCR 3) 
dH20 41.6 pi
lOx Pfu reaction buffer 5.0 pi
dNTPs (25 mM of each) 0.4 pi (Fermentas)
hCC PCR product (100 ng/pl) 1.0 pi

ompA2 PCR product (100 ng/pl) 1.0 pi

PfuTurbo DNA polymerase (2.5 U/pl) 1.0 pi

No of cycles Temperature (°C) Time (mins)

1 95 2

30 95 0.5

87 0.5

72 1

1 72 10

PCR product was analysed on a 1% agarose gel (see chapter 2.3.4) and extracted 

using a QIAquick gel extraction kit according to the manufacturers’ instructions.

Xbal and BamHl double digest 
1 Ox buffer 2 pi
BSA 0.2 pi

DNA (1 pg/pl) lp l

BamH 1 0.5 pi (Promega)
Xbal 0.5 pi (Promega)

dH20 15.8 pi

The pIN-III plasmid and the ompA2-hCC PCR product were cut with Xbal and 

BamHl. In each reaction samples were centrifuged briefly then incubated at 37°C 

for 1 hour. Digested plasmid was analysed on a 1% agarose gel (see chapter 

2.3.4) and extracted using a QIAquick gel extraction kit according to the 

manufacturers’ instructions.

Ligation

Plasmid

Insert
2.1 pi 

0.4 pi
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lOxligase buffer lp l
T4 DNA ligase 0.3 pi (Promega)
dH20 6.2 pi

Reactions were centrifuged briefly then incubated at 4°C overnight.

BamHl single digest

lOx buffer 2 pi

BSA 0.2 pi

DNA (1 pg/pl) lp l

BamHl 0.5 pi

Distilled H20 16.3 pi

Ligated plasmid was digested with BamHl to determine whether the linker

sequence had been successfully removed. Original plasmid was also cut as a

positive control. Digest were centrifuged for a few seconds then left at 37°C for 1

hour.

EcoRl and BamHl double digest
1 Ox buffer 2 pi
BSA 0.2 pi

DNA (1 pg/pl) lp l

BamHl 0.5 pi

EcoRl 0.5 pi

Distilled H20 15.8 pi

Ligated plasmid was digested with BamHl and EcoRl to determine whether the 

linker sequence had been successfully removed. Original plasmid was also cut as 

a positive control. Digest were centrifuged for a few seconds then left at 37°C for 

1 hour.

Successful ligations were transformed into XL 1-blue supercompetent cells 

(Stratagene) according to manufacturers' instruction. Plasmid was extracted from 

the transformed supercompetent cells according to the method in chapter 2.3.6. 

The plasmids were sequenced by Lark technologies.
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3.2.2 Western blot analysis

Western blot analysis is an immunological technique that provides a method of 

probing cell fractions for the presence of a specific protein. Initially proteins were 

separated using gel electrophoresis, then electrophoretically transferred onto a 

nitrocellulose membrane. The membrane was first blocked with non-fat milk 

powder to prevent non-specific binding to the membrane. The membrane was 

then probed with a primary antibody specific to hCC, rabbit anti-human cystatin C 

(Upstate biotechnology). The membrane was thoroughly rinsed to remove any 

primary antibody that had bound non-specifically. The membrane was then 

probed with horseradish peroxidase conjugated pig anti-rabbit secondary 

antibody, this bound to the species-specific portion of the primary antibody. 

When the membrane was exposed to a chemiluminescent agent the HRP 

conjugated to the secondary antibody reacted with the agent producing localised 

luminescence. An image of the membrane showing the points of luminescence 

was visualised by exposing the membrane to light sensitive film.

Tris-glycine transfer buffer (Towbin buffer)
Per litre,

Glycine 14.4 g
Tris 3 g
Methanol 200 ml

The buffer was made up to 1 1 with water, then sterilised by autoclaving at 121°C 

for 20 minutes.

Phosphate buffered saline-Tween 20 wash buffer

Per litre,

NaCl 8g
KC1 0.2 g

Na2HP04 1.44 g

KH2PO4 0.24 g

Tween 20 1 ml

The pH of the buffer was adjusted to pH 7.4 using HC1, before making up to 1 1 

with water.
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Cellfractions

Growth media pre-induction and 3 hours post-induction were diluted with equal 

volumes of SDS-PAGE loading buffer. Whole cell fraction pre-induction and 3 

hours post-induction prepared by pelleting 1 ml of culture in a microcentrifuge, 

resuspending in 100 pi loading buffer and boiling for 10 minutes. Periplasmic 

extract prepared as described in section 3.4.1. 1 ml of culture was sonicated for 

3x 30 secs then pelleted in a microcentrifuge. The cell pellet was prepared as the 

whole cell fraction. hCC provided by Dr. M. Abrahamson was used as a positive 

control.

Electrophoretic transfer

SDS-PAGE was carried out on two identical gels according to the method 

described in chapter 2.6.1. The gel used in the transfer was not stained, the 

second gel was stained so that it could be used as a reference. The components of 

a Biorad mini-trans blot cell were soaked in tris-glycine transfer buffer prior to 

being loaded into the cassette according to the manufacturers’ instructions. To 

ensure good gel-membrane contact, care was taken to remove any trapped air 

bubbles from the cassette prior to loading into the cell. The buffer tank was filled 

with tris-glycine transfer buffer cooled to 4°C. Electrotransfer was achieved by 

applying a constant voltage of 30 V overnight at 4°C.

Protein detection

Following electrophoretic transfer the membrane was transferred into a blocking 

solution of phosphate buffered saline (PBS)-Tween 20 buffer containing 50 g/1 of 

non-fat milk powder and gently agitated for 1 hour. The membrane was rinsed in 

PBS-Tween 20 buffer for 1 minute, then incubated in PBS-Tween 20-milk with 1 

pl/ml anti-cystatin for 1 hour during which time it was gently agitated. PBS- 

Tween 20 was used to wash the membrane for 1 minute twice, followed by 15 

minutes once, then 5 minutes three times. Incubate the membrane for 1 hour with 

gently agitation in a 1:1000 dilution of HRP conjugated pig anti-rabbit IgG in 

PBS-Tween 20-milk buffer. Unbound HRP conjugated pig anti-rabbit IgG was 

removed by washing in PBS-Tween 20 for 1 minute twice, followed by 15 

minutes once, then 5 minutes three times. The membrane was exposed to an 

electrochemiluminescence (ECL) solution according to the manufacturers’



instructions, then dried and sealed in a plastic sleave. The membrane was 

exposed to photographic film for 1 minute, 30 and 10 seconds. The film was 

developed according to manufacturers instructions.

3.2.3 Optimising the expression of hCC

The pIN-III-ompA2-cC plasmid expresses chicken cystatin well in TGI cells 

grown at 37°C in LB media yielding 10-15 mg chicken cystatin/1 of cell culture. 

Initial expression trials indicated that when the pIN-III-ompA2-hCC is induced 

under these conditions there is only a very low level of hCC expression (Figure 

3.6A).

Phosphate buffered Luria Bertani media 

Per litre,

Tryptone 10 g (Difco)

Yeast extract 5 g (Difco)

1M KC1 100 mis

1M Buffer* 100 mis

* For pH 7.0 use 1M MOPS (3-(N-morpholino)propanesulphonic acid), for pH

9.1 use 1M AMPSO (3-[l,l-dimethyl-2hydroxyethyl)amino]-2- 

hydroxypropanesulfonic acid). pH was adjusted using potassium hydroxide then 

the volume made up to 1 1 with water. The media was sterilised by autoclaving at 

121 °C for 20 minutes.

3.2.4 Expression trials

2 ml/1 overnight starter culture was used to inoculate 50 ml of the appropriate 

growth media in a 250 ml conical flask. All trials contained 100 pg/ml ampicilin 

and any additional antibiotics required to maintain the E.coli strain. Cultures 

were grown to an OD600 of 0.5, then induced with 120 pg/ml IPTG. 1 ml samples 

were taken prior to induction with IPTG, then at hourly intervals and finally after 

overnight growth. Samples were prepared for SDS-PAGE immediately by 

centrifuging for 5 minutes in a desktop microcentrifuge, resuspending the cell 

pellet in 100 pi of loading buffer, followed by boiling for 10 minutes. Samples 

were electrophoresed according to the method in chapter 2.6.1.
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Enhancing expression o f rare E. coli tRNAs

The expression of recombinant proteins in E. coli is decreased when the codon 

use in the recombinant gene differs from the codon usage in the host cell. This 

occurs because high-levels of expression of genes that require rare tRNAs causes 

a depletion in the internal tRNA pool. The result of this is an increase in 

expression time which may result in RNA being degraded before it is translated. 

Several host cell lines are commercially available which have enhanced 

expression of the codons that are rarely used by E. coli, these include the Rosetta 

strains (Novagen) and the CodonPlus stains (Stratagene). Both strains are derived 

from BL21 and enhance the expression of the rare E. coli tRNAs genes that 

decode the AGG, AGA, AUA, CUA, CCC. Rosetta cells contain an additional 

tRNA gene that decodes GGA and Rosetta 2 one that decodes CGG. The 

presence of these codons in the mature hCC gene sequence is highlighted in 

Figure 3.3.
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TCC AGT CCC GGC AAG CCG CCG CGC CTG GTG GGA
S e r
12

S er Pro G ly Lys Pro Pro Arg Leu V al G ly

GGC CCC ATG GAC GCC AGC GTG GAG GAG GAG GGT
G ly
23

Pro Met Asp A la S e r V al G lu G lu Glu G ly

GTG tO g CGT GCA CTG GAC TTT GCC GTC GGC GAG
V al
34

Arg Arg A la Leu Asp Phe A la V al G ly G lu

TAC AAC AAA GCC AGC AAC GAC ATG TAC CAC AGC
Tyr
45

Asn Lys A la S e r A sn A sp Met Tyr H is S e r

CGC GCG CTG CAG GTG GTG CGC GCC CGC AAG CAG
Arg
56

A la Leu G in V al V a l Arg A la Arg Lys G in

ATC GTA GCT GGG GTG AAC TAC TTC TTG GAC GTG
H e
67

V al A la G ly V al Asn Tyr Phe Leu Asp V al

GAG CTG GGC CGA ACC ACG TGT ACC AAG ACC CAG
Glu
78

Leu G ly Arg Thr Thr Cys Thr Lys Thr G in

CCC AAC TTG GAC AAC TGC CCC TTC CAT GAC CAG
Pro
89

Asn Leu Asp Asn Cys Pro Phe H is Asp Gin

CCA CAT CTG AAA AGG AAA GCA TTC TGC TCT TTC
Pro
100

H is Leu Lys Arg Lys A la Phe Cys S e r Phe

CAG ATC TAC GCT GTG CCT TGG CAG GGC ACA ATG
Gin
111

l i e Tyr A la V al Pro Trp G in G ly Thr Met

ACC TTG TCG AAA TCC ACC TGT CAG GAC GCC TAG

Thr Leu S e r Lys S e r Thr Cys G in Asp A la s t o p

Figure 3.3. The presence o f  rare E. coli tRNAs in the hCC gene sequence. Rosetta (Yellow), 

Rosetta (Yellow and red) and Codonplus (underlined) enhance the expression o f the codons 

highlighted in the sequence.

Expression in trxB/gor mutants

Under physiological conditions the E.coli cytoplasm is maintained in a reduced 

state that strongly disfavours the formation of disulfide bonds. The cytoplasm 

contains thioredoxins and glutaredoxins that in their oxidised form catalyse the 

formation of disulfide bonds in peptides. However, both are maintained in the 

reduced state by the action o f thioredoxin reductase (trxB) and glutathione 

respectively. Glutathione reductase (gor) is required to reduce oxidised 

glutathione and complete the catalytic cycle of the glutathione-glutaredoxin 

system. Mutants defective in the trxB and gor genes have been shown to enhance 

the efficiency of disulphide bond formation by maintaining thioredoxins and 

glutaredoxins in the oxidised stated149' The commercially available Rosetta-gami



host strain (Novagen) have the features of the Rosetta strain but are also defective 

in the trxB/gor genes.

pH

The periplasm is a favourable environment for the formation of disulphide bonds, 

providing oxidising conditions and members of the Dsb family which are efficient 

catalysts of disulphide bond formation. DsbA is the most important oxidase of 

free sulfhydryl groups in the periplasm so choosing conditions that increase its 

cellular concentration may aid disulphide bond formation. Expression of DsbA 

occurs across the range of pH that E. coli grows, but the conditions that favour 

expression most are pH 9.0 and pH 4.I.1'49'1521

Reduced temperature

The Cpx signal transduction system has been shown to activate both dsbA and 

degP, the major periplasmic protease in E. coli. DegP is activated at high 

temperatures and is essential for viability at temperatures above 42°C.tl53, 1541 

Increasing the concentration of dsbA or decreasing the concentration of degP by 

varying growth temperature should affect the cellular concentrations of hCC by 

enhancing folding or minimising degradation respectively.

Selecting a highly expressing starter culture

Although optimising growth conditions made a significant improvement on the 

level of hCC expression there was still a considerable variation in the level of 

expression between cells grown under the same conditions but from different 

starter colonies. Rather than choosing a starter colony at random, 10 starter 

colonies were selected and the most highly expressing one chosen for a large scale 

growth.

10 x 5 ml phosphate buffered Luria Bertani media (LBK) pH 7.0 with 100 pg/ml 

ampicillin and 34 pg/ml chloramphenicol were inoculated with a single colony 

and shaken at 250 rpm overnight at 37°C. 10 x 10 ml selective LBK pH 7.0 were 

inoculated with 30 pi of the corresponding overnight growth. Overnight cultures 

were stored at 4°C until they were required to inoculate further starter cultures. 

Starter cultures were shaken at 37°C until the ODeoo reached 0.5 when they were

63



induced with 120 pg/ml IPTG. Following induction cultures were incubated at 

37°C for a further hour.

Whole cell extracts were prepared by pelleting the starter cultures, then 

resuspending in 200 p.1 SDS-PAGE loading buffer. Samples were boiled for 10 

minutes prior to being loaded onto an SDS-PAGE gel. Periplasmic extractions 

were prepared by pelleting starter cultures by centrifugation at 1663 g for 10 

minutes. Growth media was discarded and the cell pellets resuspended in 350 pi 

of 20% sucrose, 100 mM EDTA, 200 mM TrisHCl pH 9.0. Cells were pelleted in 

a microcentrifuge at 13400 g for 10 minutes and the supernatant discarded. To 

release the periplasm, cells were resuspended in 350 pi cold 10 mM TrisHCl pH 

9.0. Cells were centrifuged again and the supernatant containing the periplasm 

recovered. The presence of hCC in the periplasm was analysed by SDS-PAGE 

according to the method described in chapter 2.6.1.

3.2.5 Purification trials 

Papain affinity chromatography

The method was adapted from Abrahamson et al, 1986 as a means to efficiently 

purify human cystatin C from the periplasmic extract.112' A carboxymethylated 

papain-sepharose 4B affinity column was equilibrated with buffer A, 50 mM 

TrisHCl, pH 7.4, containing 0.5 M NaCl, 2 mM EDTA, 1 mM sodium azide. The 

periplasmic extract was adjusted so that it was the same pH and conductivity as 

buffer A. The column was washed with buffer A until the OD280 of the elute was 

below 0.1. Under these conditions hCC is folded so binds to inactivated papain 

through the hCC inhibitory site. Material bound to the carboxymethylated papain 

was eluted with 0.20 M trisodium phosphate, pH 12.1 containing 0.5 M NaCl, 2 

mM EDTA, 1 mM sodium azide until the OD280 of the elute was below 0.01. At 

this very basic pH hCC unfolds and can no longer bind papain via its inhibitory 

site. The pH of the elute was neutralised with 2 M TrisHCl, pH 8.6.

Q-sepharose anion exchange chromatography

Most bacterial proteins have a pi value below 6, whereas hCC has a predicted pi 

value of 8.75. This difference in pi value can be utilised in Q-sepharose anion 

exchange chromatography to provide an effective method for purifying hCC from 

the majority of bacterial proteins. In the method adapted from that described
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previously, hCC will not bind to the Q-sepharose at pH 9.5 whereas most of the 

other proteins in the periplasm willJ12̂ Periplasmic extract was dialysed against 

an approximate 200 fold greater volume of 20 mM ethanolamine pH 9.5. A Q- 

sepharose ion exchange column was equilibrated with equilibrated with the 

dialysis buffer at a rate of 2 ml/min. Dialysed periplasmic extract was loaded 

onto the column and the elute containing human cystatin C collected. Initially a 

salt gradient between 0 M and 0.5 M NaCl was included followed by a step 

increase to 1 M NaCl to elute any protein bound to the Q-sepharose. Human 

cystatin C does not bind to the Q-sepharose column under these conditions so the 

salt gradient step was later removed from the procedure.

SP-sepharose cation exchange chromatography

SP-sepharose cation exchange chromatography follows the same principles as Q- 

sepharose anion exchange chromatography to separate proteins according to their 

charge. Periplasmic extract was dialysed against an approximate 200 fold greater 

volume of 10 mM sodium phosphate buffer, pH 7.0, 2 mM sodium azide. A SP- 

sepharose column was equilibrated with the dialysis buffer at a flow rate of 2 

ml/min. Dialysed periplasmic extract was loaded onto the SP-sepharose and the 

elute collected. Bound protein was eluted from the SP-sepharose using two step 

increases in salt concentration, initially to 200 mM then to 1 M NaCl.

Size exclusion chromatography

Size exclusion chromatography was used as a final purification step. Superdex-75 

resin contained in a Amersham biosciences XK26/70 column was run at a flow 

rate of 3 ml/min. Once equilibrated, a maximum volume of 10 ml was loaded 

onto the column. Absorbance of the elute was recorded at 280 nm and 2.5 min 

fractions were collected. The following buffers were tested for use in SEC, 50 

mM sodium phosphate buffer pH 7.0, 200 mM NaCl, 2 mM sodium azide, 50 mM 

sodium phosphate buffer pH 8.0, 100 mM NaCl, 2 mM sodium azide, 50 mM 

ammonium bicarbonate buffer pH 7.8, 100 mM NaCl, 2 mM sodium azide, 0.2 M 

trisodium phosphate, pH 12.1 containing 0.5 M NaCl, 2 mM EDTA, 1 mM 

sodium azide and PBS. PBS was found to be the most suitable buffer.
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3.2.6 Nucleic acid contamination 

Nuclease treatment - RNase A

A 10 mg/ml stock solution of bovine pancreatic RNase A was made up in 10 mM 

TrisHCl, pH 7.5, 15 mM NaCl and heated to 100°C for 15 minutes. RNase A was 

added to the periplasmic extract at a final concentration of 40 pg/ml and incubated 

at room temperature for 1 hour.

Nuclease treatment - DNase 1

The periplasmic extract was made up to 20 mM magnesium chloride and 

approximately 10 pg of bovine pancreatic DNase 1 was added per ml of extract. 

Samples were incubated at room temperature for approximately 1 hour.

Nuclease treatment - Benzonase

The periplasmic extract was made up to 20 mM magnesium chloride and 1.5 U of 

benzonase (Novagen) was added per ml of extract. Samples were incubated at 

37°C for 15 minutes then dialysed overnight at 4°C during which time the 

benzonase was still active.

Polyethyleneimine precipitation

Polyethyleneimine (PEI) is positively charged at neutral and basic pH and is very 

efficient at precipitating nucleic acids and other acidic macromolecules. This 

procedure should be carried out at a pH of -7.5 to 8, where PEI amine groups are 

fully cationic and nucleic acids are fully anionic. hCC has a pi of 8.75 whereas 

most bacterial proteins are predominantly acids with pi values below 6. Addition 

of PEI at pH 8.0 should therefore precipitate nucleic acid contaminants and many 

bacterial proteins without precipitating hCC. 3 pl/ml of 5% PEI, pH 8 solution 

was added to the periplasmic extract and immediately mixed by invertion. 

Following gentle agitation for 5 minutes the samples were centrifuged for 10 

minutes at 48384 g .f155,1561

3.2.7 Proteolytic activity 

Pit enylmethylsulfonyljluoride

Phenylmethylsulfonylfluoride (PMSF) irreversibly inhibits serine proteases by 

sulfonylation of serine residues in the protease active site. It is inactivated in 

aqueous solution, the rate of which increases with pH and temperature, the half- -



life of a 20 pM aqueous solution of PMSF is approximately 35 minutes at pH 8.0. 

Due to its instability in aqueous solution a 100 mM stock solution is prepared in 

isopropanol and stored at -20°C. The stock solution must be warmed slightly to 

bring it back into solution prior to adding 100 pg/ml immediately before bursting 

the periplasm with osmotic shock.

Starter culture

Overgrown (15-17 hours) starter culture is likely to contain a higher level of 

proteolytic enzymes than a starter culture that has been grown to OD600 = 0.5 as 

the overgrown culture will have more dying cells in it which are releasing the 

enzymes as they die. 50 mis of starter culture grown to ODeoo = 0.5 was used to 

induce 550 mis growth medium rather than 3 ml/1 of overgrown culture.

Protease inhibitors

Complete Inhibitor Cocktail tablets (Roche) were added to the periplasmic extract 

as standard. A 25x stock solution of Complete (Roche) was made up by 

dissolving one tablet in 2 ml water immediately prior to use. 40 pi of stock 

solution was added per ml of periplasmic extract.

Protease Inhibitor Cocktail set VI (Calbiochem) was used at a 1:100 dilution as an 

alternative inhibitor cocktail. This inhibitor cocktail contained 200 mM AEBSF,

10 mM bestatin, 3 mM E-64 protease inhibitor, 2 mM leupeptin, 2 mM pepstatin 

A and 500 mM o-phenanthroline.

3.2.8 Characterising purified hCC 

SEC-HPLC

Unless stated otherwise 50 mM sodium phosphate buffer pH 7.0, 2 mM sodium 

azide was used as the mobile phase. See materials and methods section 2.6.4 for 

experimental detail.

Mass spectrometry

Mass analysis was performed by Dr. A. Moir using an ABI Voyager-DE STR 

MALDI Mass Spectrometer operating in positive ion mode. Protein analysis was 

performed in reflector mode using Sinapinic acid (ABI and Fluka) as the matrix. 

Matrices were prepared immediately before use at a concentration of 10 mg/ml in
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50% acetonitrle/0.05% trifluoroacetic acid (TFA). Typically, protein samples 

were diluted 3-5x with matrix & 1 pi spotted on to the MALDI plate. The 

spectrometer was calibrated using commercially available calibrations standards 

(ABI and Sigma).

'h -n m r

4 mg/ml hCC in 50 mM sodium phosphate buffer pH 7.0, 2 mM sodium azide 

was prepared for NMR by adding 10% DiO and transferring into a glass NMR 

tube. 'H-NMR spectra were recorded at 298K on a Bruker DRX-500 

spectrometer controlled using XWinNMR (Bruker). NMR data was processed 

using Felix (Accelrys).

3.3 RESULTS AND DISCUSSION

3.3.1 Analysis of the pIN-III-onipA2-hCC product

N-terminal protein sequencing of the purified product of the pIN-IH-ompA2-hCC 

plasmid determined the first 5 amino acids to be SSPGK. This is consistent with 

the first 5 amino acids of mature hCC and thus confirms the correct cleavage of 

the ompA2 signal sequence (Figure 3.3). Mass analysis confirms the mass of full 

length mature hCC with no additional amino acids from the linker sequence 

(Figure 3.4).
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Figure 3.4. MALDI-MS analysis o f hCC identifies a species with a molecular mass of the 

predicted mass o f hCC (13347 Da)
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3.3.2 Western blot analysis

hCC is retarded on SDS-PAGE so appears at a higher molecular weight than 

expected. Therefore western blot analysis was used to confirm that the band 

appearing at approximately 15 kDa is hCC. In addition to identifying the hCC 

band on the SDS-PAGE gel, western blot analysis was used to ensure the correct 

functioning of the pIN-III-ompA2-hCC expression system (Figure 3.5).

Analysis of the whole cell extracts immediately before and 3 hours after induction 

shows that although there is some expression of hCC prior to induction, the 

majority of hCC that is produced occurs after induction with IPTG. hCC is not 

present in the growth media prior to induction, but is. present at low levels 3 hours 

after induction. Targeting of hCC to the periplasm has been successful, although 

a significant amount of hCC remains in the cell pellet and is not extracted. The 

sonicated cell fractions show hCC in the soluble fraction and in the cell pellet. 

This suggests that the hCC found in the cell pellet is in the form of insoluble 

inclusion bodies. This analysis confirms that hCC is targeted to the periplasm and 

periplasmic extraction provides an efficient method of extracting the majority of 

the soluble hCC from the cells.
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Figure 3.5. A. Duplicate SDS-PAGE gel of the gel used to transfer onto the nitrocellulose 

membrane. From left to right, hCC (1), LB pre-induction (2), cell pellet pre-induction (3), LB 

3hrs post-induction (4), cell pellet 3hrs post-induction (5), periplasm 3hrs post-induction (6), 

cell pellet from periplasm extract (7), sonication supernatant (8), sonication cell pellet (9), 

Sigma low molecular weight markers (10). B. Image produced when the nitrocellulose 

membrane is treated with ECL solutions and exposed to a light sensitive film for 10 seconds.

3.3.3 Optimising the expression of hCC

In optimising the expression of hCC a high level of expression can be achieved 1 

hour after induction with IPTG. Figure 3.6 shows how expression of hCC was 

increased significantly by enhancing the expression of rare E. coli tRNAs. 

Despite having an increased ability to form disulphide bonds, expression trials 

using Rosetta-gami cells showed no significant improvement in hCC expression 

when compared to Rosetta or TGI host strains. In fact, Figure 3.6C shows that 

expression o f hCC is actually decreased compared to expression in the Rosetta 

strain. This may be because the Rosetta-gami strain is modified to enhance



disulphide bond formation in the cytoplasm whereas the formation of the disulfide 

bonds in hCC should occur after hCC has been targeted to the periplasm.
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Figure 3.6. SDS-PAGE of whole cell extracts prepared as described in chapter 3.2.3. 20pl of 

whole cell extract was loaded onto each lane of each SDS-PAGE gel. A. Expression of hCC in 

TGI cells grown at 37°C, pH 7.0. Lane 2 uninduced cells, lane 3-6 1 hour, 2 hours, 3 hours and 

overnight after induction with IPTG. B. Expression of hCC in Rosetta cells grown at 37°C, 

pH7.0. Lane 2 uninduced cells, lane 3-7 1 hour, 2 hours, 3 hours, 4 hours and overnight after 

induction with IPTG. C. Expression of hCC in Rosetta-gami cells grown at 37°C, pH 7.0. Lane 

I : uninduced cells, lane 2: 1 hour post-induction, lane 4-5: 2 hours and overnight after induction 

with IPTG. D. Expression o f hCC in Rosetta cells grown at 30°C, pH7.0. Lane 2 uninduced 

cells, lane 3-7 1 hour, 2 hours, 3 hours, 4 hours and overnight after induction with IPTG.

Expression trials indicated that pH reduced the growth rate of cells whilst 

showing no improvement in hCC expression. Therefore, LBK media pH 7.0 was 

favoured for all hCC expression experiments.

As Figure 3.6 shows, reducing the growth temperature from 37°C to 30°C reduces 

expression o f hCC. This may be partially accounted for by the decreased growth 

rate at 30°C, however expression is still reduced several hours after induction.
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Selecting a highly expressing starter culture significantly increases the hCC yield. 

Initially whole cell extracts were used to select a highly expressing colony. 

However, this method does not select against cultures that express hCC well but 

do not target it to the periplasm correctly. To overcome this problem it was found 

that the level o f hCC in the periplasm was a better indicator of a highly expressing 

culture. Figure 3.7 shows a typical example of the variation in expression of hCC 

between 10 starter colonies.

A.

It.

Figure 3.7. A. Variation in the presence of hCC in the whole cell extract of different starter 

colonies. Lane 3-14 whole cell extracts, lane 15: hCC. B. Variation in the presence o f hCC in 

periplasmic extracts o f different starter colonies. Lanes 2-10 periplasmic extracts.
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3.3.4 Purification trials 

Papain affinity chromatography

Although affinity chromatography has proven to be a very efficient method of 

isolating chicken cystatin from a periplasmic extract it was much less effective at 

purifying hCC. High levels of nucleic acids were eluted along with hCC 

indicating non-specific binding of the nucleic acids to either hCC or the column 

matrix under the conditions used for the experiment. The high level of nucleic 

acid contamination prevented the concentration of the sample required to prepare 

the hCC solution for size exclusion chromatography. A second disadvantage to 

using this purification method is that hCC purified by this method was extremely 

susceptible to protein degradation. This may be due to incomplete inactivation of 

the papain used to produce the affinity column. Alternatively it may be because 

hCC is unfolded at the very basic pH used to elute hCC from the column and 

under these conditions it is more susceptible to protein degradation. Figure 3.8A 

shows the purification of hCC from the periplasm using papain affinity 

chromatography. The presence of heavy low molecular weight blurs in lanes 2-5 

and the lack of the larger molecular weight bands normally seen in the 

periplasmic extract indicates the level of protein degradation found using this 

purification method.

Q-sepharose anion exchange chromatography

This method effectively purified hCC from most of the other proteins in the 

periplasm and removed the protein degradation problem associated with the 

papain affinity method (Figure 3.8B). However, the nucleic acid contaminant was 

not removed so there were still complications when concentrating the hCC sample 

in preparation for size exclusion chromatography.

SP-sepharose cation exchange chromatography

At pH 7.0 hCC will bind to the SP-sepharose whereas the acidic bacterial proteins 

will not. hCC can be eluted by increasing the ionic strength of the buffer to 200 

mM. This method effectively purified hCC from the majority of the other 

proteins in the periplasm and separates the majority of the nucleic acid 

contamination from the hCC solution (Figure 3.8C).
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Figure 3.8. Purification trials o f hCC. A. Purification using papain affinity. Lane 1: Sigma 

low molecular weight markers, lane 2-5: Elute in buffer A, lane 6-7: Elution o f hCC in buffer 

B. Note the low molecular weight smearing of lanes 2-5 indicating proteolysis. B. Purification 

using Q-sepharose. Lane I: elution of hCC in 20mM ethanolamine pH 9.5, lane 2: elute in 20 

mM ethanolamine pH 9.5, 500 mM NaCl, lane 3: elute in 20 mM ethanolamine pH 9.5, 1 M 

NaCI, lane 4: Sigma low molecular weight markers. C. Purification using SP-sepharose. Lane 

1: biorad broad range markers, lane 2: periplasmic extract, lane 3: elute in 50 mM sodium 

phosphate buffer pH 7.0, lane 4: elute in 50 mM sodium phosphate buffer pH 7.0, 200 mM 

NaCl, lane 5: elute in 50 mM sodium phosphate buffer pH 7.0, 1 M NaCI. D. Typical elution 

profile with preparative SEC. E. Typical SDS-PAGE gel o f fraction collection on elution of 

the main peak seen in D.
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Size exclusion chromatography

The concentration method used to prepare the protein solution for size exclusion 

chromatography separated a small amount of low molecular weight nucleic acids 

from the sample. hCC eluted as a single peak which was free from any other 

protein when analysed by SDS-PAGE and analytical HPLC as seen in Figure 

3.8D-E and Figure 3.9. Absorbance spectra indicated that nucleic acid 

contamination has successfully been separated from the hCC. Several buffers 

were tested, the most suitable being PBS, under these conditions there was no 

evidence of interaction with the superdex matrix and hCC was not prone to 

degradation or precipitation.

Figure 3.9. Typical analytical SEC chromatagram of purified hCC.

3.3.5 Nucleic acid contamination

Absorbance spectra of the periplasmic extract showed it to be heavily 

contaminated with nucleic acids. Analysis o f the periplasmic extract on a 1% 

agarose gel stained with ethidium bromide showed the contamination to be 

nucleic acids approximately 200-250 bases in length. In theory both ion exchange 

and papain-affinity chromatography should separate hCC from the nucleic acid 

contaminant under the conditions used. However, in practice, the fraction 

containing hCC from either purification method was still heavily contaminated 

with nucleic acids. Size exclusion chromatography provided an effective method 

of purifying hCC from the contaminants, however, in order to prepare the protein 

sample it had to be concentrated from a volume of approximately 500 ml (for a 

150 ml periplasmic extract) to a final volume of less than 10 mis which caused



heavy precipitation of the protein. The majority of the nucleic acid contamination 

had to be removed from the protein sample prior to preparing the sample for size 

exclusion chromatography. Nuclease treatment was used to degrade the 

contamination and then remove it by dialysis, but didn’t prove to be as effective 

as precipitating the nucleic acids with PEI. Altering the ion exchange method 

used to purify was chosen as the most suitable method as it reduced the time 

required to purify hCC.

Nuclease treatment

Deoxyribonuclease I (DNAse 1) acts on double and single stranded DNA, 

preferentially at phosphodiester linkages adjacent to pyrimidines, yielding on 

average tetranucleotides. Incubating the periplasmic extract with DNAse 1, 

followed by dialysis reduced the level of nucleic acid contamination, but was not 

sufficient to enable preparation of the sample for SEC. DNAse 1 will only 

degrade DNA and it is possible that the contamination was RNA rather than 

DNA. Ribonucléase A (RNase A) is an endonuclease that cleaves single-stranded 

RNA. However, digestion with RNAse A was also insufficient at reducing the 

concentration of nucleic acid contamination. Incubating the periplasmic extract 

with both DNAse 1 and RNAse A, followed by dialysis to remove reduced the 

concentration of contaminants sufficiently that they no longer caused precipitation 

during concentration. Benzonase endonuclease is a genetically engineered 

endonuclease from Serratia marcescens that degrades both DNA and RNA 

whether in single stranded, double stranded, linear, circular or supercoiled form. 

Treatment of periplasmic extract with benzonase removed enough of the nucleic 

acid contamination to allow purification of hCC. In order to remove enough of 

the contamination using either the DNAse/RNAse combination or benzonase 

required many hours of dialysis which significantly extend the time required for 

the preparation of hCC.

Polyethyleneimine (PEI) precipitation

As shown in Figure 3.10, a final concentration of 0.25% PEI in the periplasmic 

extract, followed by centrifugation to remove the precipitant, is sufficient to 

remove a large proportion of the nucleic acid contamination and most of the 

bacterial proteins in the periplasm.
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Figure 3.10. PEI precipitation of bacterial proteins and nucleic acids. Lane 1: Biorad broad 

range markers, lane 2-5: periplasmic extract and SP-sepharose purification of hCC at 0 M, 200 

mM and 1 M NaCl respectively. Lane 6-10: periplasmic extract treated with PEI and SP- 

sepharose purification o f hCC at 0 M, 200 mM and 1 M NaCl respectively.

3.3.6 Proteolytic activity

Throughout the purification process hCC is very susceptible to protein 

degradation despite all buffers containing 2 mM sodium azide and the immediate 

addition of Complete protease inhibitor cocktail to the periplasmic extract. The 

time taken to purify hCC from the periplasmic extract was always kept to a 

minimum in an attempt to reduce the amount of proteolysis. When more than one 

purification method was available, the quickest method was often chosen in order 

to reduce proteolysis. Ion exchange and affinity chromatography were used at 

room temperature as standard, reducing the temperature to 4°C made no 

difference to the level of proteolysis. However, when concentration of the sample 

in preparation for SEC was carried out at 4°C the loss of protein between the two 

purification steps was significantly reduced.

Without using PMSF during the periplasmic extraction SDS-PAGE gels of the 

periplasmic extract and further purified fractions appear smeared indicating 

protein degradation during the extraction and purification process. The use of 

PMSF reduces the amount of smearing of SDS-PAGE gels and increases the yield 

ofhCC 2-5 fold.

Despite the use of Complete protease inhibitor cocktail in the periplasmic extract 

proteolysis was observed during the purification process. As the composition of 

the Complete protease inhibitor cocktail is unavailable an alternative protease



inhibitor cocktail of known composition was used as an alternative. Protease 

Inhibitor Cocktail set VI (Calbiochem) contains protease inhibitors with broad 

specificity for the inhibition of aspartic, cysteine, serine, and metalloproteases as 

well as aminopeptidases. Protease Inhibitor Cocktail set VI caused the 

periplasmic extract to become a pale pink colour which proved difficult to 

separate from the hCC fraction using the SP-sepharose purification method 

described above. Protease Inhibitor Cocktail set VI proved not more effective 

than the Complete protease inhibitor cocktail so the combination of Complete and 

PMSF was used as the standard method of protease inhibition.

Inoculating flasks with starter culture with an ODeoo of 0.5 rather than an 

overgrown starter culture improves the overall yield of hCC. Increased yield is in 

part due to enhanced expression of hCC and in part due to a reduction in 

proteolysis during purification.

3.3.7 Characterising purified hCC •
The purity of prepared hCC was confirmed using analytical SEC as described in 

chapter 2.6.4. Both hCC supplied by Dr. M. Abrahamson and synthesised hCC 

elute at 11.7 minutes under these conditions, a typical chromatogram of pure hCC 

is shown in Figure 3.9. Mass analysis of hCC produced using the pIN-III-ompA2 

expression system confirmed it to be full length protein with a mass equal to the 

mass of mature hCC. The 'lI-NMR spectra of hCC produced using the pIN-III- 

ompA2 system is that of a folded protein as indicated by the broad dispersion 

across the amide region and the upfield shifted methyl peak observed below 0.5 

ppm. A comparison of the 'H-NMR spectra of synthesised hCC and that of hCC 

provided by Dr. M. Abrahamson confirm the production of hCC (Figure 3.11). ■
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Figure 3.11. A. 'H-NMR spectra of hCC produced using the plN-III-ompA2 system. B. 'H- 

NIVIR spectra of hCC produced using the pIN-IU-ompA2 system (red) overlayed with 'H-NMR 

spectra o f hCC provided by Dr. M. Abrahamson (black).

3.4 OPTIMISED PROTOCOL FOR HCC PRODUCTION USING THE 

PIN-III-OMPA2-HCC EXPRESSION SYSTEM

3.4.1 Unlabelled hCC

Expression

E. coli strain Rosetta cells (Novagen) were transformed with the plN-III-ompA2- 

hCC plasmid according to the protocol provided with the cells. Transformants are 

selected on LB-agar plates containing 100 pg/ml ampicillin and 34 pg/ml 

chloramphenicol at 37°C overnight. 10 x 5 ml selective LBK pH 7.0 were 

inoculated with a single colony and shaken overnight at 37°C. 10 x 10 ml

selective LBK pH 7.0 were inoculated with 30 pi of the corresponding overnight 

growth. Overnight cultures were stored at 4°C until they were required to 

inoculate further starter cultures. Starter cultures were shaken at 37°C until the 

01)600 is 0.5 when they were induced with 120 pg/ml IPTG. Cultures were 

incubated at 37°C for a further hour. Starter cultures were pelleted by 

centrifugation at 1663 g for 10 minutes. The growth media was discarded and the 

cell pellets resuspended in 350 pi of 20% sucrose, 100 mM EDTA, 200 mM 

TrisHCl pH 9.0. Cells were pelleted at 13400 g for 10 minutes and the 

supernatant discarded. To release the periplasm, cells were resuspended in 350 pi 

cold 10 mM TrisHCl pH 9.0. Cells were centrifuged again and the supernatant



containing the periplasm recovered. The presence of hCC in the periplasm was 

analysed by SDS-PAGE according to the method described in chapter 2.6.1. The 

periplasm with the highest expression of hCC was identified and the 

corresponding overnight growth used to inoculate 3x 5 ml LBK pH 7.0 with 

selective antibiotics.

1.2 mis of overnight growth of the highly expressing culture was used to inoculate 

400 mis LBK in a baffled 2 1 conical flask and shaken at 37°C until the ODeoo -  

0.5. Cell growth was suspended by storing the flask at 4°C overnight. 8x 50 mis 

of the ODeoo = 0.5 starter culture was used to inoculate 550 mis selective LBK pH 

7.0 and then shaken at 37°C until the ODeoo -  0.5. Cells were induced with IPTG 

at a final concentration of 120 pg/ml and incubated at 37°C for a further hour.

Periplasmic extraction

Cultures were centrifuged at 17696 g for 40 minutes and resuspended in 35 ml/1 

20% sucrose, 100 mM EDTA, 200 mM TrisHCl pH 9.0. After 10 minutes cells 

were pelleted by centrifuging at 48384 g for 15 minutes at 20°C. Cells were 

gently resuspended in 35 ml/1 10 mM TrisHCl pH 9.0 containing 100 pg/ml 

PMSF at 4°C, then allowed to stand for 10 minutes. Cells were removed from the 

periplasmic extract by centrifuging at 48384 g for 15 minutes at 4°C. The 

supernatant was pooled and the appropriate volume of complete inhibitor cocktail 

stock solution was added.

Chromatography

The periplasmic extract was diluted into 1110 mM sodium phosphate buffer pH 

7.0, 2 mM azide then loaded onto an SP-sepharose column equilibrated in 10 mM 

sodium phosphate buffer pH 7.0, 2 mM azide. Once the periplasmic extract was 

loaded the column was washed with 10 mM sodium phosphate buffer until the 

OD280 was below 0.05. hCC was eluted using 10 mM sodium phosphate buffer 

pH 7.0, 200 mM NaCl, 2 mM azide until the OD280 was below 0.05. The SP- 

sepharose column was washed with 10 mM sodium phosphate buffer pH 7.0, 1 M 

NaCl, 2 mM azide to elute any remaining protein bound to the column.

The fraction eluted from the SP-sepharose column with 200 mM NaCl was 

concentrated to between 5-10 mis with an Amicon concentrator as described in
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chapter 2.6.3. The protein solution passed through a 0.2 pm syringe filter prior to 

being loaded onto a superdex-75 SEC preparative column (400-500 ml volume) 

equilibrated in PBS. As a final conformation of purity prepared hCC was 

analysed on SEC-HPLC to confirm the presence of a single peak at 11.7 minutes.

3.4.2 lsN-labelled human cystatin C \

15N-labelled hCC was prepared using the 15N-M9 media as the growth media (see 

M&M). Growth was significantly slower in M9 media so cells were left for 6 

hours after induction rather than 1 hour. All other conditions were the same as for 

the preparation of unlabelled hCC.

3.4.3 Average yields

The yield of hCC has varied from 0.2-5 mg/1 culture while optimising the 

expression and purification of hCC using the pIN-III-ompA2 system. Using the 

optimised protocol described in section 3.4 a yield of up to 4 mg/1 bacterial 

culture can be expected with 15N-labelled hCC production and 5 mg/1 for 

unlabelled production.
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Figure 3.12. Outline of the optimised protocol for hCC production.
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CHAPTER FOUR

CHARACTERISATION OF THE FOLDING PATHWAY OF

HUMAN CYSTATIN C

4.1 INTRODUCTION

The folding pathways of a number of cystatins have been studied to date, 

including stefin A, stefin B and chicken cystatin.[157' ,59] Each of these cystatins, 

as well as hCC, are known to form domain swapped dimers and will form 

amyloid at least in vitro if not in vivo. An understanding of the folding pathway 

of a protein can provide some insight into the relationship between folding, 

dimerisation and further aggregation.

In order for cystatins to form domain swapped dimers a major unfolding event is 

required. The a-helix must break contacts with the P-sheet and the contacts 

between the p-strands at the domain-swapping interface must break to allow 

unfolding and the formation of the dimer interface. The domain swapping 

reaction is slow relative to the folding and unfolding rates and requires a high 

level of exposure of hydrophobic side chains in the domain swapping transition 

state, implying that the reaction is rate limited by the association of predominantly 

unfolded protein.11341

hCC has been shown to dimerise under conditions that induce the formation of 

amyloid. Prevention of domain swapping has also been shown to inhibit amyloid 

formation.11601 Therefore, the relationship between folding, dimerisation and 

further aggregation needs to be better characterised, beginning with an 

understanding of the folding pathway.

To date only limited studies on the relationship between folding and amyloid 

formation have been carried out for hCC. NMR spectroscopy together with size 

exclusion chromatograpy and gel electrophoresis techniques have shown that hCC 

dimerises under mildly denaturing conditions and that hCC is unfolded at 

temperatures above 85°C, pH lower than 2.6 and at a GdnHCl concentration 

above 1.6 M.1201 'H-NMR spectra show that hCC retains the dispersion signals 

that are characteristic of folded protein in up to 1 M GdnHCl, but are lost between



1 M and 2 M GdnHCl indicating unfolding of the protein. When pH is used to 

unfold hCC, there is little change in NMR spectra in the pH range 5.7-3.3, below 

pH 3.3 characteristic changes indicate the unfolding of hCC.f20J Features of the 

NMR spectra that indicate whether hCC is folded, unfolded or dimerised are 

discussed further in chapter five.

The preliminary experiments described above provides us with some indication of 

the conditions under which hCC dimerises and the conditions under which it 

unfolds, but provide no details of the hCC folding pathway. The experiments 

described in this chapter allow thermodynamic parameters to be determined from 

both equilibrium and kinetic data. The information these parameters provide has 

been used to generate a detailed description of the folding reaction of hCC.

Several optical spectroscopic techniques are widely used to monitor structural 

transitions such as unfolding or refolding of a protein, as the spectral properties of 

a protein depend on the molecular environment and mobility of its chromophores. 

Each technique can reveal different aspects of the protein folding reaction. This 

chapter describes the use of far-UV CD and tryptophan fluorescence as probes of 

protein folding to characterise the folding pathway of hCC.

4.2 MATERIALS AND METHODS

Unless otherwise stated all the experiments in this chapter were carried out using 

10 mM sodium phosphate, pH 8.0, 2 mM sodium azide as standard buffer.

4.2.1 Circular Dichroism (CD)

Circular dichroism (CD) is used to measure the optical activity of asymmetric 

molecules in solution. Plane polarised light can be considered to be composed of 

two components that are circularly polarised, one component is polarised in the 

clockwise direction (right handed) and the other in the anticlockwise direction 

(left handed). When a chromophore is part of an asymmetric structure it absorbs 

left and right handed circularly polarised light differently. This difference in the 

extinction coefficients of the right and left circularly polarised light gives the CD 

signal. The polypeptide backbone is optically active in the far ultraviolet region 

(170-250 nm). Tryptophan and tyrosine can give CD signals in the near UV range 

(270-300 nm), whereas disulphide bonds give minor bands around 250 nm.
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Different secondary structures produce characteristic CD spectra, a-helices show 

a strong characteristic CD spectrum in the far-UV region whereas signals from P- 

sheets are weaker and more easily obscured.

GdnHCl equilibrium unfolding o f hCC

CD measurements were recorded on a J-810 spectropolarimeter (Jasco) 

maintained at 20°C, using a 0.1 cm pathlength cuvette. Spectra were recorded 

between 190-300 nm using 20 jiM hCC in standard buffer containing between 0 

M and 6 M GdnHCl.

pH  equilibrium unfolding o f hCC

CD measurements were recorded on a J-810 spectropolarimeter (Jasco) 

maintained at 20°C using a 0.1 cm pathlength cuvette. Specra were recorded 

between 190-300 nm with 10 pM hCC in 2 mM citrate buffer between pH 1 and 

pH 7, 2 mM sodium azide.

4.2.2 Tryptophan fluorescence

Fluorescence occurs when a photon is absorbed by a compound to give an excited 

state that decays by re-emmision of a photon. Fluorescence emission in proteins 

originates from the aromatic amino acids, the major fluorophore being tryptophan. 

Although tyrosine and phenylalanine fluoresce, their absorbance at the 

wavelength of excitation and their quantum yield of emission are considerably 

lower than that of tryptophan. Tryptophan is approximately 5 times more 

sensitive than tyrosine, whereas tyrosine is approximately 25 times more sensitive 

than phenylalanine. The maximum absorbance of light by tryptophan is at 280 

nm and emits it with a maximum between 330-340 nm. In proteins that contain 

all three aromatic amino acids (such as hCC), fluorescence is dominated by the 

contribution of the tryptophan residue. In proteins that contain tryptophan shifts 

in wavelength and changes in intensity are generally observed upon unfolding. 

Tryptophan emission of a native protein can be greater or smaller than the 

emission from a free tryptophan in aqueous solution (as found in the unfolded 

state). Tryptophan fluoresces relatively weakly in aqueous solution, but its 

fluorescence may be enhanced in non-polar regions of the protein. Therefore, as a 

protein unfolds, fluorescence intensity tends to decrease as the tryptophan moves 

from a buried non-polar region to aqueous solution. However, if energy is
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transferred to another group that is close to the fluorophore in the folded state then 

the fluorescence is said to be quenched. Fluorescence intensity will increase as 

the protein unfolds and is no longer close to the quenching group. In a 

hydrophobic environment, such as the interior of a protein tryptophan emission 

occurs at shorter wavelengths. As the protein unfolds, the emission maximum is 

usually shifted from shorter wavelengths to 350 nm, the fluorescence maximum 

of tryptophan in aqueous solution.

GdnHCl equilibrium unfolding o f hCC

Tryptophan fluorescence measurements were recorded using either a Cary Eclipse 

(Varian, U.K.) or RF-5301PC (Shimadzu) fluorescence spectrophotometer. The 

excitation wavelength was 280 nm, emission spectra were recorded between 300 

and 420 nm using 4 pM hCC in standard buffer containing between 0 M and 6M 

GdnHCl. Spectra were recorded approximately 10 minutes and 24 hours after 

exposure to dénaturant.

pH  equilibrium unfolding o f It CC
r

Tryptophan fluorescence measurements were recorded using either a Cary Eclipse 

(Varian, U.K.) or RF-5301PC (Shimadzu) fluorescence spectrophotometer. The 

excitation wavelength was 280 nm, emission spectra were recorded between 300 

and 420 nm. hCC samples used in the pH CD experiment described above were 

diluted with identical buffer to a final hCC concentration of 2.5 pM. Spectra were 

recorded approximately 10 minutes after exposure to dénaturant.

4.2.3 Stopped-flow

The protein folding and unfolding reaction can be followed using a stopped-flow 

instrument. The stopped-flow instrument is essentially a rapid mixing device 

coupled to a fluorescence spectrometer. Whilst the dead time of manually mixing 

two reagents and observing the change with a spectrometer is several seconds, the 

rapid mixing of the stopped-flow machine reduces the dead time to approximately 

5 millisecond when mixing buffers of different viscosity (as is the case with 

denaturing buffer containing GdnHCl and the non-denaturing buffer). By rapidly 

mixing denatured protein with a non-denaturing buffer the change in fluorescence 

can be recorded as the protein folds from the unfolded to the folded state. 

Likewise, by mixing folded protein with a dénaturant the change in fluorescence
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can be recorded as the protein unfolds from the folded to the unfolded state. The 

observed change in fluorescence can be fitted to determine the rates of the 

folding/unfolding reaction. When plotted as a function of denaturant activity and 

fitted to an appropriate folding mechanism, the folding rate in the absence of 

denaturant can be obtained by extrapolation.

Single-jump stopped-flow

All stopped-flow reactions were carried out using an Applied Photophysics SX- 

18MV stopped flow reaction analyser maintained at 25°C. The excitation 

wavelength was 280 nm and slit width 5 nm. In the single jump experiment 

refolding data were acquired by a 1:11 dilution of 22 pM hCC in standard buffer 

containing 3.3 M GdnHCl with standard buffer containing varying concentrations 

of GdnHCl to produce a final GdnHCl concentration between 0.3 and 1.8 M. 

Unfolding data were acquired by a 1:11 dilution of 22 pM hCC stock in standard 

buffer into standard buffer containing GdnHCl so that the final concentration of 

GdnHCl was between 1.3 M and 6 M.

Double-jump stopped-flow

Peptidyl-proline isomerisation can be demonstrated by double-jump stopped flow 

experiments. In the single jump experiments described previously protein is left 

under unfolding conditions for several hours. During this time the structural 

constraints found in the native state are not present so the conformation of the 

prolyl bond seen in the native state is free to interconvert between the cis and 

trans conformations. When the protein is refolded an equilibrium mixture of both 

proline isomers are present, the native isomer will rapidly refold whereas 

refolding of the non native isomer is decelerated to allow for the re-isomerisation 

to occur. In a double jump stopped-flow experiment folded protein is transferred 

into denaturing conditions for enough time for the protein to unfold, but restored 

to renaturing conditions before the prolines have had time to isomerise. As the 

prolines remain in their native conformation the slow transition caused by re­

isomerisation is no longer observed.

The stopped-flow machine used for the single jump experiment was reconfigured 

for the double jump experiment. In the first push 24 pM hCC in standard buffer 

was mixed with an equal volume of 7 M GdnHCl in standard buffer. After 5
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seconds, the second push resulted in a 1:6 dilution of the unfolded hCC with 0.02 

M GdnHCl in standard buffer to produce a final GdnHCl concentration of 0.6 M. 

The fluorescence change was recorded over 2 and 100 seconds. All other 

parameters were kept the same as for the single jump experiment.

Sodium sulphate

Sodium sulphate (NaaSO-t) is a commonly used protein stabilising agent that can 

be used to gain thermodynamic parameters for protein folding intermediates that 

are not populated in water alone. Na2S04 reduces the free energy of solvation of 

protein hydrocarbon but does not alter the molar ability of GdnHCl to increase 

solvation of hydrocarbon. Therefore the effects of GdnHCl and Na2S04 on 

solvation of hydrocarbon can be considered additive and independent. The total 

denaturant activity is discussed in detail later in the chapter, but the way 

denaturant activity relates to GdnHCl concentration and Na2SC>4 concentration 

enables kinetic analysis at negative denaturant activity.[161]

All experimental detail was kept the same as for the single jump stopped flow 

experiment other than the presence of 0.4 M sodium sulphate in all protein stocks 

and buffers.

Concentration dependence

All experimental detail was kept the same as for the single jump stopped flow 

experiment other than the final protein concentration which was either 10 pM or 

0.4 pM hCC.

4.3 DATA FITTING

4.3.1 Denaturant activity 

Guanidine hydrochloride activity

The effect of increasing concentrations of denaturant on the stability of the 

unfolded state can be explained by the increase in solubility of the parts of the 

protein exposed upon denaturation. It has been shown that there is a non-linear 

relationship between GdnHCl concentration and the free energy of solvation of 

non-polar amino acids and the polypeptide backbone. The non-linearity of the 

free energy of solvation with GdnHCl concentration is described by the 

denaturant constant, C0.5. For GdnHCl a denaturant constant of 7.5 M has been
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determined and has been used to calculate the linear dénaturant activity according 

to the equation:11621

(Eq. 4.1.1) Dénaturant activity = Co.stGdnHCl] / (C0.5 +[GdnHCl])

The use of dénaturant activity rather than dénaturant concentration allows a more 

reliable extrapolation from high dénaturant to conditions where no dénaturant is 

present.11621

Guanidine hydrochloride and sodium sulphate activity

For a given concentration of sodium sulphate dénaturant activity can be calculated 

according to the equation:

(Eq. 4.2.1) Dénaturant activity = (Co.5[GdnHCl] / (C0.5 +[GdnHCl])) +

Co.5AGs,o/(AG s, max” AGs,o)

89

AGs,o represents the free energy of solvation of JV-acetyltryptophanamide (NATA) 

or iV-acetyltyrosineamide (NAYA) relative to water at a specified Na2SC>4 

concentration and in the absence of GdnHCl. AGS, max represents the maximum 

difference in the free energy of solvation of NATA or NAYA at an infinite 

GdnHCl concentration and a specified Na2SC>4 concentration, measured relative to 

water. Values for sodium sulphate activity (Co.5AGs,o/(AGs> max-AGs,o)) calculated 

for NATA and NAYA between 0-0.4 M sodium sulphate are the same within 

error. Sodium sulphate activity values in the presence of 0. 0.1, 0.2, 0.3 and 0.4 

M sodium sulphate have been calculated as 0, -0.27, -0.51, -0.78 and -1.03 M, 

respectively.11611 The sodium sulphate concentration used experimentally varies 

between 0.4 and 0.35 M. As there is a linear relationship between Na2SC>4 activity 

Na2SC>4 concentration, values for sodium sulphate activity were calculated for 

each experimental sodium sulphate concentration by extrapolating the activity 

between 0.3 and 0.4 M.



90
4.3.2 Fluorescence data 

Equilibrium fluorescence data

Equilibrium GdnHCl unfolding fluorescence data reports a single structural 

transition, therefore the simplest model that can be assumed is a two-state folding 

mechanism according to the equation:

(Eq. 4.3.1) F ^ U

The observed signal intensity, I, can be described according to the equation:

(Eq. 4.3.2) I = oifIf + aulu

Where of and au are the fractional proportions of molecules in the folded and 

unfolded states respectively and I, If and Iu are the fluorescence intensities of the 

measured, folded and unfolded states respectively. In a two state folding 

mechanism it is assumed that only the folded and unfolded states are observed, 

therefore:

(Eq. 4.3.3) au = 1 - aF

Therefore,

(Eq. 4.3.4) I = Iu + Of(If - Iu)

As aF is also determined according to the equation:

(Eq. 4.3.5) of = [F]/([F] + [U])

Where [F] and [U] represent the concentration of the folded and unfolded state 

respectively. Equation Eq. 4.3.5 can be rearranged into:

(Eq. 4.3.6) aF = K(f/u> / (1 + K(f/u))

Where K(f/u) is the equilibrium constant at a given solvent condition. K(f/u) at a 

particular dénaturant concentration is calculated according to the equation:
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(Eq. 4.3.7) K(f/u> ~ exp(ni(FA;)(D-[D]i/2))

Where K<F/u) is the equilibrium constant, m(F/u) is the m-value for the unfolded 

species, D is the denaturant activity and [D]\n is the activity of denaturant at the 

midpoint of unfolding. The sloping baseline for U have been baseline corrected.

Kinetic fluorescence data

Transients of fluorescence intensity versus time were fitted to a single exponential 

according to the equation:

(Eq. 4.4.1) I = Io.exp(-kobs.t) + 1®

Where Io is the fluorescence amplitude of the reaction, kobs is the observed rate 

constant for the reaction and I® is the endpoint fluorescence intensity. The 

amplitude represents the difference in signal between the initial and final 

equilibrium position of the system. The endpoint fluorescence is used as the 

offset of the fluorescence intensity.

Transient for the refolding limb were recorded over a split time course to 

determine the fast and slow folding rates. The fast folding rate was determined by 

fitting the first 2 seconds of the transient whereas the slow folding rate was 

determined by fitting the transient recorded over second, longer time course (100 

s ).

Chevron plots

The plot of lnkobs versus denaturant activity for both the folding and unfolding 

transients produces the rate profile. In a simple two-state process the observed 

rate (kobS) is the sum of the folding (Iqu-o) and unfolding rates (k(F-t>). The rate 

profile is V-shaped, hence it is often known as a chevron plot. The low 

denaturant side of the V-shape is referred to as the folding limb while the high 

denaturant side is referred to as the unfolding limb. In the case of hCC the 

chevron plot shows a distinct curvature of the folding limb at low denaturant 

concentrations. One explanation of this curvature is the presence of an



intermediate in the folding pathway. The formation and decay of the native state 

can be defined by the equation:,

(Eq. 4.5.1) kobs = k(F-t) + k(i-t)

Where k^s is the observed rate, kq.t) and k(F-t> are the rate constants describing the 

forward and reverse transitions, respectively, between the folded and intermediate 

states. However, because the protein must fold through a rapidly formed 

intermediate, I, the folding reaction is described as:

K<iaj) k(F-o

(Eq. 4.5.2) U ^  I -  F

k < u >

Where U, I and F represent the unfolded, intermediate and folded states, 

respectively, and K(i/u> is the equilibrium constant for the conversion between the 

intermediate and unfolded states. The rate of folding is determined by the rate 

limiting step, k(i.t), and by the population of the I state. Therefore:

(Eq. 4.5.3) kobs = k(F.,) + k(,.t).([I]/([U] + [I]))

As the equilibrium ratio [I] / [U] is represented by the constant K<i/u> this equation 

can be rewritten as:

(Eq. 4.5.4) kobs= k(F-t) + kq-t) / (1 + l/Kq/u))

The dénaturant dependence of k(F-t), kq.t), and IQuu) are calculated using the 

following equations:

(Eq. 4.5.5) k(F-t) = k(F.t)(w).exp(-m(t).D)

(Eq. 4.5.6) kq-t) = k(i-t)(W).exp((m(i)- m(t)).D)

(Eq. 4.5.7) K(i/u) = K(i/u)(w)-exp((m(U)-ni(i)).D)

The subscript (w) indicated the rate or equilibrium constant in water. m(t) 

represents the m values of the transition state, mq) and m(u) represent the m-values 

for the intermediate and unfolded state respectively.
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4.3.3 CD data 

Residue ellipticity

CD data obtained from the J-810 spectropolarimeter was outputted in as 

millidegrees (mdeg). All CD data has been converted to residue ellipticity using 

the following equation:

(Eq. 4.6.1) Residue ellipticity = 9 x 100

[c] x d x Na

Where 0 is elipticity in degrees, [c] is molar protein concentration, d is the path 

length in cm, Na is the number of amino acids per protein. The factor 100 

originates from the conversion of molar concentration to dmol/cm concentration 

units.

Equilibrium CD data

Equilibrium CD data reports a single structural transition, therefore, a two state 

folding mechanism is assumed and data have been fitted using equation Eq. 4.3.4 

with equation Eq. 4.3.6 and Eq. 4.3.7 as temporary variables. The sloping baseline 

. for U have been baseline corrected.

4.4 RESULTS

4.4.1 Equilibrium data 

GdnHCl unfolding - fluorescence

GdnHCl increases the stability of the unfolded state by increasing the solubility of 

the parts of the protein that become exposed upon unfolding. Figure 4.2A shows 

the fluorescence spectra of the folded (0 M GdnHCl) and unfolded state (6 M 

GdnHCl) of hCC. The fluorescence of the unfolded state is red-shifted relative to 

the folded state and has a greater quantum yield. This indicates that the 

fluorescence in the folded state is quenched more than in the unfolded state. hCC 

contains single tryptophan residue at position W106 which is predominantly 

responsible for the fluorescence signal seen in Figure 4.2A. The increased 

fluorescence associated with the unfolded state suggests that this residue is in 

• close proximity to quenching groups in the folded state. Tryptophan fluorescence 

can be quenched by arginine, aspartic acid, cysteine, glutamic acid, histidine, 

lysine and methionine. Exactly which of these residues is the quenching group
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cannot be determined from this data. However, the close proximity (less than 5 

A) of Q107 to W106 makes it a likely candidate for the quenching group. The 

position of W 106 and the amino acid side chains within 5 A are shown in Figure 

4.1.

Figure 4.1 The position of W 106 in the loop between strands 4 and 5 o f the hCC structure 

(coloured red). V I04, PI05 and Q107 (coloured green) are the only amino acid side chains 

within 5 A of W106.

The difference in tryptophan fluorescence between the folded and unfolded state 

can be used as a probe to follow the equilibrium unfolding of hCC in increasing 

concentrations of GdnllCl. Figure 4.2B shows the change in fluorescence 

intensity at 375 nm with increasing dénaturant activity both 10 minutes and 24 

hours after addition o f dénaturant. The dénaturation curve after 10 minutes and 

24 hours overlay with each other indicating that equilibrium had been reached 

after 10 minutes.



95

A . B.
1 1 1 1 1 1 1 1 1 1 ----1----1---- 1----1----1----1----1----

••
•

800
700

• •

i  .
4

: /  : 
■ •/

3¿ 600 
itw
cit 
cn it

§ 400
E

- /  \  \

3
os

î  «00Veit
£
1  50»

200

— 0 .0 M  GdnHCl X . 400

— 6.0 M  GdnHCl ■ 1 1 1 . 1 ■
300 320 340 360 380 400 420 1 2  3  4

W avelength  (nm ) G d n H C l activity (M )

Figure 4.2 A. Fluorescence spectra of folded hCC in standard buffer (black) and unfolded

hCC in 6 M GdnHCl, standard buffer (red). B. Fluorescence intensity at 375 nm plotted as a 

function of GdnHCl activity, 10 minutes (black dots) and 24 hours (red dots) after exposure of 

hCC to denaturant. The black line represent the fit o f the data points recorded after 10 minutes

o f exposure to denaturant.

The single transition between the folded and unfolded states indicates that a two- 

state equilibrium is observed. In order to determine the fD] 1/2, the dénaturant 

activity at the midpoint o f unfolding, and the m-value for the transition (m^/u)) 

these data have been fitted to equation Eq. 4.3.4 with equation Eq. 4.3.6 and Eq.

4.3.7 as temporary variables. The m-value for the unfolding transition is a 

measure of the solvent accessibility during unfolding. [D]i/2 and the m-value are 

used to calculate lnKn-vuxw), according to the equation:

(Eq. 4.7.1 ) [D]i/2 = -lnK(F/u)(W) / m(F/u)

lnK(F/u)(W) is used to calculate AG(w> according to the equation:

(Eq. 4.7.2) AG(W) = -RTlnK(F/u)(W)

The thermodynamic parameters attained from the unfolding curve of hCC using 

tryptophan fluorescence as a probe are summarised in the table 4.1.
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Time from addition lnK(F/uxw) m-value AG(W) [D]i/2
of denaturant (W 1) (Kcalmol'1) (M)

10 minutes 9.0 ± 1.8 -7.1 ± 1.2 -5.4 ± 1.1 1.3 ±0.1

24 hours 6.8 ± 1.1 -5.7 ±0.8 -4.1 ±0.6 1.2 ±0.1

Table 4.1. Summary of parameters determined from the equilibrium fluorescence unfolding 
curve of hCC induced by GdnHCl.

The analysis of the protein folding reactions decribed above enables the 

calculation of several useful parameters for the folding reaction, one of which is 

m-values. m-values are determined using the assumtion made in the linear free 

energy principle that the dependence of the free energy of the state/s involved is 

linear with respect to the denaturant activity. The gradient of the plot of free 

energy versus denaturant activity defines the m-value which has the units M'1. m- 

values have been shown to be proportional to the change in solvent exposure on 

unfolding.1'631 As the level of solvent exposure refects how folded a protein is rn- 

values are used as a measure of how “folded” a state in the folding pathway is.

The subscript associated with equilibrium constants, denoted in the standard form 

K, indicates the product state as the numerator and the reactant state as the 

denominator (e.g. Kp/u)- The subscript following rate constants, denoted in the 

standard form k, defines the reactant and the transition state (e.g. kF.t). An 

additional subscript, (W), denotes an equilibrium or rate constant in water (e.g. kF. 

t(w>). m-values are denoted by the symbol m with a subscript indicating the 

relevant state (e.g. mp).

GdnHCl unfolding - CD
Figure 4.3A shows the far-UV CD spectra of the folded (0 M GdnHCl) and 

unfolded state (6 M GdnHCl). Far-UV CD reports the conformation of the amide 

backbone so is a useful probe in following the loss of secondary structure as a 

protein unfolds. Although hCC contains a single a-helix and a 5 stranded P-sheet 

the far-uv CD spectrum is dominated by CD signal from the a-helix.



97

As far-uv CD reports on secondary structure it can be used as a probe to follow 

equilibrium unfolding of hCC. Figure 4.3B shows the CD signal at 220 nm 

plotted against dénaturant activity. As is observed with the fluorescence 

unfolding curve, the CD unfolding curve reports a two-state folding mechanism.

The [D] 1/2 and the m-value for the transition (m(F/u)) have been determined by 

fitting to equation Eq. 4.3.4 with equation Eq. 4.3.6 and Eq. 4.3.7 as temporary 

variables. The [D]i/2 is used to calculate lnK(w) according to equation Eq. 4.7.1. 

lnK(F/u)(W) is used to calculate AG(W) according to the equation Eq. 4.7.1. The 

thermodynamic parameters attained from the unfolding curve of hCC using far-uv 

CD as a probe are summarised in the table 4.2.

Time from addition lnK(p/u)(W) m-value AG(W) [D]i/2

of dénaturant (M-1) (Kcalmol'1) (M)

10 minutes 8.7 ± 1.4 -6.5 ±0 .9 -5.2 ±0.8 1.3 ±0.1

Table 4.2. Summary of parameters determined from the equilibrium CD unfolding curve of 

hCC induced by GdnHCl.
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The presence o f a single transition in the unfolding curve of hCC in the presence 

of GdnHCl indicates that a simple, two-state equilibrium is observed. The far-UV 

CD unfolding curve is a measure o f change in secondary structure where the 

fluorescence unfolding curve is a measure of change in tertiary structure. As 

shown in Figure 4.4, the unfolding curves measured by CD and fluorescence 

change simultaneously which is indicative of a two-state transition between the 

folded and unfolded states. The similarity of the unfolding transitions followed 

by CD and fluorescence is reflected in the parameters summarised in tables 4.1 

and 4.2, which are within error o f each other. Although a two-state transition has 

been observed at equilibrium it does not mean that no intermediate species are 

formed in the protein folding reaction. Rather it shows that these states are not 

the most populated species at equilibrium.

G cln llf 'l  A ctiv ity  (M )

i

Figure 4.4 Overlay o f the equilibrium unfolding curve o f hCC followed by CD (red points) and 

fluorescence (black points)

pH unfolding -  fluorescence

In addition to using a denaturant, such as GdnHCl, unfolding can be induced by 

lowering pH. At low pH protein becomes highly positively charged due to the 

protonation of aspartates and glutamates. The protein is therefore destabilised by 

electrostatic repulsion. In addition to this, proteins usually have buried groups 

that have highly perturbed pKas due to the formation of salt bridges. At low pH 

the denatured state becomes protonated which causes a shift in the equilibrium 

towards the denatured state. Figure 4.5A shows the fluorescence spectra of the 

folded (pH 7) and unfolded state (pH 1). As with GdnHCl denaturation the
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fluorescence o f the unfolded state is red-shifted relative to the folded state and has 

a greater quantum yield. However, the increase in quantum yield seen with acid 

unfolding o f hCC is significantly less than that seen with GdnHCl unfolding of 

hCC. This suggests that there may not be a complete loss of structure during the 

acid unfolding o f hCC.

A. B.

Figure 4.5 A. Fluorescence spectra o f  folded hCC in 2 mM citrate buffer pH 7.0, 2 mM azide 

(red) and unfolded hCC in 2 mM citrate pH 1.0, 2 mM sodium azide (black). B. Fluorescence 

intensity at 375 nm o f hCC plotted as a function of pH, 10 minutes (red dots) and 24 hours 

(black dots) after adjusting to pH.

The difference in tryptophan fluorescence between the folded and unfolded state 

has been used as a probe to follow the equilibrium unfolding o f hCC with pH. 

Figure 4.5B shows the change in fluorescence intensity at 350 nm with pH, 10 

minutes and 24 hours after adjusting to the desired pH. The two data sets do not 

directly overlay although they both pass through a similar transition. It is possible 

that the reduction in fluorescence intensity is caused by fluctuations in the lamp of 

the fluorescence spectrophotometer. The reduced fluorescence intensity may also 

be caused by aggregation of hCC. It is know that partially denaturing conditions 

destabilise hCC enough for dimérisation and further aggregation to be induced. 

The prolonged period over which hCC is incubated at lowered pH may provide 

sufficiently denaturing conditions to induce dimérisation and further aggregation 

of hCC. As the dimeric form is very similar in structure to the monomeric form it 

is likely that the fluorescence intensity would be quenched relative to the unfolded



form. Therefore, any dimerisation would result in a reduction in the fluorescence 

intensity.

It is also clear from Figure 4.5 that lowering the pH to 1.0 is not sufficient to 

completely unfold hCC. In Figure 4.2B a clear sigmoidal curve is seen that 

represents the change from folded protein, through the transition region to the 

unfolded protein. In the case o f Figure 4.5B, the folded protein and the majority 

of the transition region is observed, however, there is no levelling out of the 

transition region to represent the unfolded protein.

pH unfolding -  CD

Far-UV CD can be used to study acid unfolding o f hCC. Figure 4.6A shows the 

far-UV CD spectra o f the folded (pH 7) and unfolded state (pH 1). As hCC 

unfolds due to acid unfolding there is a loss o f CD signal due to a loss of 

secondary structure. Figure 4.6B shows the CD signal at 220 nm plotted against 

pH.
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A. B.

Figure 4.6 A. CD spectra o f  folded hCC in 2 mM citrate buffer pH 7.0, 2 mM azide (black) 

and unfolded hCC in 2 mM citrate buffer pH 1.0, 2 mM sodium azide (red). B. Ellipticity at 

220 nm o f hCC plotted as a function o f pH.

Figure 4.3A shows that when GdnHCl is used as a dénaturant there is a complete 

loss of CD signal at 220 nm indicating that there is a complete unfolding of hCC. 

In contrast, Figure 4.6A shows that there is still residual CD signal at pH 1.0,



indicating that there is not a complete loss of secondary structure at pH 1.0 during 

the acid unfolding of hCC.

Together the pH unfolding data presented here indicates that lowered pH is not 

sufficient to completely unfold hCC. Although the level of tertiary and secondary 

structure is significantly reduced in comparison to the folded protein, there is still 

some residual structure at pH 1.0. GdnHCl is considered to be a very strong 

dénaturant and, as the data presented above shows, is sufficient to completely 

unfold hCC as shown by a complete loss of secondary and tertiary structure.

4.4.2 Kinetic data 

Stopped flow

Fluorescence has been used to take kinetic measurements of the folding and 

unfolding of hCC. Folded hCC was rapidly mixed with dénaturant using a 

stopped flow machine and the change in fluorescence recorded over time. 

Likewise, unfolded hCC was rapidly transferred into folding conditions and the 

fluorescence change recorded over time. Figure 4.7 shows a typical example of 

the folding and unfolding transitions recorded with stopped flow. Each unfolding 

transient was fitted to a single exponential according to equation Eq. 4.4.1 to
c

calculate the observed rate and the fluorescence amplitude. Refolding transients 

were recorded over a split timescale as two rates were observed, one seen in the 

first 2 seconds of the refolding reaction and a second much slower rate recorded 

over 100 seconds. The refolding transients were treated as two transients and 

each fitted to a single exponential according to equation Eq. 4.4.1.

101
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Figure 4.7 Typical folding (red) and unfolding (black) transients observed by stopped-flow 

fluorescence.

Chevron plot

The observed rates produced from fitting the fluorescence transients have been 

plotted against denaturant activity to produce the chevron plot seen in Figure 4.8. 

The characteristic V-shape is seen in the chevron plot indicating a 2-state folding 

reaction. If this was the case equation Eq. 4.5.1 would apply and the curve can be 

fitted using k(F_t) = k(F.,)(W).exp(-mt.D) and k(U-t) = k(U-t)(W)-cxp((m(ll)-m (t)).D). 

However, the non-linearity of the folding limb (left-hand side o f the V-shape) of 

the chevron plot at low denaturant concentration suggests the presence of an 

intermediate. The chevron plot is poorly defined at low levels of GdnHCl 

activity, but the GdnHCl concentration can not be lowered further to better define 

the chevron plot due to the limiting dilution factor of the asymmetric mix o f the 

stopped-flow machine. In order to determine folding rates at lower denaturant 

activity the folding and unfolding rates have been determined in the presence of 

the stabilizing agent sodium sulphate.

The amplitude change associated with each of the kobS shown on the chevron plot 

provide us with some useful information about the folding reaction. Once both 

the fast and slow folding rates were identified the total amplitude change for the 

folding limb could be calculated by adding the amplitude associated with both 

rates. There is no amplitude difference between the unfolded protein and the start 

o f the folding transients indicating that no burst phase amplitude is observed on 

folding. This indicates that there is no significant amplitude loss during the dead



time of the stopped-flow machine. When plotted as a function of GdnHCl activity 

the amplitude change seen upon folding and unfolding is equal. Although this 

information supports the presence of a two state system it does not rule out the 

possibility of a three state system. In fact, as seen later in this chapter, the 

curvature of the folding limb observed in the presence of sodium sulphate 

indicates the presence of at least one intermediate in the folding pathway. The 

fact that the amplitude of the folding reaction is the same under conditions where 

the intermediate is populated and where it is not indicates that the fluorescence of 

the intermediate and the unfolded state are the same.
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Figure 4.8 A. Chevron plot o f  2 pM hCC in standard buffer. The black line represents the 

fitting to a two state system. Note the slight curvature o f the folding limb at low denaturant 

concentration. B. Total amplitude change for folding and unfolding limbs, the total amplitude 

change for the folding limb was produced by the sum o f the amplitude change for both the slow 

and fast folding rates.

Sodium sulphate

Sodium sulphate can be considered to act in an analagous, but opposite way to 

GdnHCl. As the effects of GdnHCl and sodium sulphate are additive and 

independent it is possible to produce conditions where the denaturant activity is 

very low and even negative. The stabilizing effect of sodium sulphate can be seen 

in Figure 4.9A where it effectively shifts the whole chevron plot to the right. 

When kobs are plotted against denaturant activity determined by equation Eq. 

4.2.1, the chevron plots in the presence and absence of sodium sulphate do not 

superimpose. The values used to calculate the denaturant activity of sodium



sulphate are an average value derived from the GdnHCl dependence of the free 

energy of change of solvation of JV-acetyltryptophanamide and N- 

acetyltyrosineamide. The relationship between the solvation energy and the 

denaturant concentration will vary for each amino acid side chain so the actual 

sodium sulphate activity may vary depending on the composition of a protein. 

The calculation of the denaturant activity of sodium sulphate is also subject to an 

average error of 20%. The chevron plots in the presence and absence of sodium 

sulphate will superimpose if the stabilising activity of sodium sulphate is reduced 

by half as seen in Figure 4.9B. Figure 4.9C shows the plot of amplitude against 

denaturant activity in the presence and absence of sodium sulphate. The 

associated amplitudes overlay indicating that there is no difference in the 

amplitude change at each denaturant activity. Together this demonstrates that the 

addition of sodium sulphate does not significantly alter the conformation of the 

different states on the folding pathway.
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Figure 4.9 A. Chevron plot o f hCC in the presence (red data points) and absence (black data 

points) of sodium sulphate. In the presence of sodium sulphate the data points have been fitted 

to a three state system, in the absence o f sodium sulphate data points have been fitted to a two 

state system. B. Chevron plots of hCC in the presence and absence o f  sodium sulphate plotted 

as a function o f dénaturant activity. C. Associated amplitude changes in the presence and 

absence o f sodium sulphate plotted as a function o f dénaturant activity.

The rollover of the folding limb of the chevron plot produced in the presence of 

sodium sulphate is much better defined indicating the presence o f at least one 

intermediate in the folding pathway. The chevron plot can be fitted to equation 

Eq. 4.5.4 with Eq. 4.5.5, Eq. 4.5.6 and Eq. 4.5.7 as temporary variables. The fit 

can be seen by the solid black line in Figure 4.9B and 4.10.
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Figure 4.10 Chevron plot o f hCC. Dashed lines represent lines A-C, the solid black line

represents the fitting o f the data points to equation Eq. 4.5.4.

The curve can be split into 3 lines, A, B and C that represent the transition I-F, U- 

F and F-U respectively which are marked as dashed lines in Figure 4.10. For each 

line the slope is the difference between the m-value of the ground state and the m- 

value of the transition state and the intercept is the lnk(w). For line A, the slope is 

defined as m(i) -  m(t) and its intercept defines k(i.txw). The gradient of B is defined 

as m(u) -  m(t) with intercept k(i.,xw)-K(i/uxw> The slope of C is defined as -m (t) 

with the intercept defined as k(F-t). In the case of line C the ground state is m(F> 

which, as the other m-values are measured relative to m^), is defined as 0. The 

thermodynamic parameters ascertained from the fitting are summarised in table

4.3

AG(i-f) -5.6 kcalmol'1

AG(u-i) -Ukcalm ol'1

AG(i-t) 8.3kcalmor‘

AG(F-t) 13.9kcalmor‘

k(F-t) 9.4 ± 0.9 s’1

K(i-t) 8.5x10'4 ± 

3 xlO'4 s 1

K(i/u) 16.7 ± 12

m(t) -3.6 ± 0.2 M'1

m (U) -10.5 ±0.7 M‘‘

“ko -4.4 ± 0.5 M'1

Table 4.3 Kinetic folding parameters for human cystatin C
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Proline isomerisation

The equilibrium constant for the normal peptide bond in proteins favours the tram 

conformation by a factor of 103-104. The peptidyl-prolyl bond is an exception 

with in the region of 2-20% in the cis conformation. The interconversion of cis to 

tram in solution at room temperature and neutral pH is quite slow, with a half life 

of 10-100 s. In the native protein each prolyl peptide has a unique conformation, 

either cis or tram. During unfolding the conformational restraints found in the 

native state are no longer present and the prolyl bonds are free to isomerise 

leading to a mixture of unfolded states with either the correct or incorrect prolyl 

isomer. Refolding of the unfolded state with the non-native isomer is slowed 

because of the coupling of refolding with the isomerisation of the incorrect prolyl 

bond.

In addition to the fast folding rates that are observed for hCC a second slow 

folding rate, shown in Figure 4.11, is also observed. During the single jump 

stopped-flow experiment hCC is unfolded for a prolonged period of time. In this 

time it is possible for a post-unfolding modification, such as proline isomerisation, 

to occur. In order for the protein to fold correctly, molecules with the proline in 

the cis conformation need to isomerise to the tram conformation. As the 

conversion from cis to tram takes around 10-100 s, proline isomerisation will be 

the rate limiting step in the folding reaction. Therefore, proline isomerisation is 

proposed as the cause of the slow folding rate of hCC. This hypothesis has been 

tested using a double jump stopped-flow experiment. In this experiment folded 

hCC is transferred into unfolding conditions for sufficient time for it to unfold, 

but insufficient time for proline isomerisation to occur, it is then transferred back 

to folding conditions and the fluorescence transient recorded. In transients 

recorded when hCC is refolded to 1M GdnHCl and 0.6 M GdnHCl a similar fast 

rate is observed but there is no evidence of the slow folding rate, as seen in Figure 

4.11. This confirms that a post-unfolding modification occurs to hCC when it is 

unfolded for a prolonged period of time.
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A. B.

C.
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Figure 4.11 A. Chevron pot o f hCC showing both the fast folding rate (black data points) and 

the slow folding rate (red data points). B. Transient recorded over 100 seconds after prolonged 

unfolding of hCC (black line) and after rapid unfolding and refolding o f hCC (red line) showing 

the absence o f the slow folding rate C. Transient recorded over 2 seconds after prolonged 

unfolding o f hCC (black line) and after rapid unfolding and refolding of hCC (red line) showing 

the similarity of the fast folding rate.

Concentration dependence

Folding intermediates and denatured states are prone to aggregation because of 

exposed hydrophobic surfaces. Intermediate states may be wrongly identified 

because of artefacts in the kinetics caused by aggregation. Therefore kinetic 

measurements should be carried out over a range o f protein concentrations to 

check for aggregation. As two or more protein molecules need to meet in order 

for aggregation to occur, aggregation is concentration dependant. Protein folding 

is a unimolecuiar process so folding is not concentration dependant. In order to
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show that there is no significant aggregation during the timescale of the kinetic 

experiments, kinetic measurements have been recorded at 0.4 pM, 2 pM and 10 

pM hCC. Figure 4.12 shows an overlay of chevron plots of hCC at 0.4 pM, 2 pM 

and 10 pM. There is no significant variation in the rates of folding and unfolding 

across this concentration range indicating that the rollover seen on the refolding 

limb is not an aggregation artefact.

Figure 4.12 Overlay o f  the chervron plots at 0.4 pM, 2 pM and 10 pM hCC. The red line 

represents the fit o f 2 pM hCC chevron plot to equation Eq. 4.5.4.

4.5 DISCUSSION

The kinetic data indicates the presence of an intermediate and has been modelled 

to the folding pathway:

(Eq. 4.8.1) U -  1 — F

However, these studies can not determine whether this intermediate is on-pathway 

or off-pathway. In the on-pathway model shown above (4.8.1), I is a productive 

intermediate that serves as the ground state from which the rate-limiting transition 

state is acquired. The same kinetic profile would be observed if the intermediate 

was off pathway:

(Eq. 4.8.2) 1 U F



In this model, I is a misfolded species and the rate-limiting step results from a 

combination of creating a more unfolded ground state by the breaking of non­

native interactions and the slow conversion to the folded state. If I needs to 

unfold before hCC can fold then the rate of conversion from U to F can be 

calculated by multiplying the observed folding rate with the folding equilibrium 

constant. In the case of hCC, if the intermediate is off-pathway then the rate of 

conversion between U and F would be approximately 160 s'1. Whilst this is a 

feasible rate for the folding of humancystatin, in the case of cC this rate is 4 

orders of magnitude faster making the folding rate so large that it unlikely to be 

applicable to the formation of a complex a/p structure such as cystatin.1157, 1641 

Given the similarity of the structures and folding pathways of hCC and cC it is 

unlikely that an intermediate would be on-pathway in the case of cC and off- 

pathway in the case of hCC. Therefore, it is most likely that the folding 

intermediate is an obligatory, on pathway intermediate in the folding of hCC.

The folding pathway is further complicated by proline isomerisation that occurs 

when hCC is in the unfolded state:

(Eq. 4.8.3) Uiso — U — I — F

Where UiS0 represent the unfolded state with the incorrect proline isomer to allow 

folding and U, I and F represent the unfolded, intermediate and folded with the 

correct proline isomer. The incorrect proline isomer could be permitted in the 

intermediate state so that:
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(Eq. 4.8.4) U ^  I — F

Analysis of the m-values of hCC indicates that the rapidly formed intermediate is 

relatively compact, with approximately half of the solvent excluded from the 

protein interior. Whether the relatively compact intermediate can form with the 

incorrect proline isomer present can not be determined from this data.



Comparison of the folding pathways of hCC and cC

The folding pathway deduced for hCC shows many similarities with that of cC. 

Table 4.4 shows a summary of the thermodynamic parameters for both cystatins 

at equilibrium.

Cystatin
m-value

CM'1)

AG(W)

(KcalmoF1)

[D]l/2

(M)

hCC -6.6 ± 1.7 -5.0 ± 1.5 1.3 ± 0.1

cC -8.6 ±0.3* -15.6 ± 1.0* 3.1 ±0.3*

Table 4.4 Comparison o f the thermodynamic parameters determined from the equilibrium 

unfolding of hCC and cC. * data taken from 115,1

The similarity of the m-values indicates that the solvent exposure during 

unfolding is similar for both proteins, which is consistent with the similarity o f the 

structures of hCC and cC. The values of AG(W) and [D] 1/2 are significantly larger 

for cC compared to hCC which reflects the increased stability of cC relative to 

hCC.

Figure 4.13 Comparison o f the chevron plots o f hCC (black data points) fitted to a three state 

system (black line) and cC (red data points) fitted to a three state system (red line).

Figure 4.13 shows an overlay of the chevron plots of hCC and cC. The 

comparison of the equilibrium unfolding of hCC and cC has already demonstrated



that hCC is significantly less stable than cC. Therefore, hCC unfolds at lower 

dénaturant concentrations effectively shifting the chevron plot to the left of the cC 

plot. However, the similarity in the shape of the chevron plot indicates that hCC 

and cC fold through very similar pathways. Table 4.5 summarises the parameters 

ascertained from the kinetic analysis of each protein.
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hCC cC

K ( f . ,)  ( s 1) 9.4 ± 0.9 192 ±30

K<m) (s ‘) 8.5 xl0"4± 3 xlO'4 1.4x10° ± 4 x 1 0-6

K{i/u) 16.7 ± 12 8755 ± 8200

M(t) (M-1) -3.6 ± 0.2 -3.26

M(f) (NT1) -10.5 ±0.7 -8.43

M<,) (M-1) -4.4 ± 0.5 -3.65

AG(u) (kcalmof1) 0 0

AG(i) (kcalmof1) -1.69 -5.28

AG(t) (kcalmof1) 6.64 1.31

AG(F) (kcalmof1) -7.28 -10.25

Table 4.5 Comparison o f the parameters determined from the kinetic analysis o f hCC and cC. 

cC data is taken from [l57]. AG values are calculated using the equation AG = -RTlnK. AG® is 

calculated from K(i/u). In order to determine AG(f), K®® is calculated by from k(F)/k(i). AG®,) 

and AG(F-t) were calculated from the equation k = (kT/A)e("AG/RT) where k is the Boltzmann 

constant, h is the Planks constant. An empirical estimate o f 107 is assumed for (AT/A).1'65'

The AG and m-values have been used to produce the free energy profile seen in 

Figure 4.14. The profile shows the difference in stability between cC and hCC, 

but also highlights the similarities between the two folding pathways. Both fold 

via a relatively compact intermediate before passing through a transition state 

barrier to the folded state.

It has been proposed that the major contributor to the folding barrier of cC is the 

removal of water. Two processes are required for the I to F transition to occur, 

the removal of water from the protein core and the immobilisation of sidechains. 

Reduced cC has a highly compact, molten globule structure in which side chains 

are mobile across - the whole molecule, but the secondary structure and
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analogous pathways to closely related structures, it is interesting to consider what 

factors influence the folding rates the two proteins.

One obvious difference between hCC and cC is the difference in their amino acid 

sequences. Figure 4.15 shows the sequence alignment o f hCC and cC, 

highlighting that there is only 42% sequence identity between the two proteins. 

However, it has been reported that large changes in amino acid sequence that 

don’t alter the overall topology of a protein don’t greatly effect the folding 

rate.1'661 Rather, theoretical and experimental studies of protein folding indicate 

that the topology of the native state, not its amino acid sequence, is the most 

important factor in determining the folding pathway o f a protein.1167’1681

A.
hCC SSPGKPPR—LVGGPMDASVEEEGVRRALDFAVGEYNKASNDMYHSRALQWRARKQIVAGVNYFLDVELG 

cC  -AEFMEDRSRLLGAPVPVDENDEGLQRALQFAMAEYNRASNDKYSSRWRVISAKRQLVSGIKYILQVEIG

■Jr *  *  *  * *  * * *  * *  * * *  * * * *  *  * *  -Jr *  *  *  *  *  *  * *  *

hCC RTTCTKTQPNLDNCPFHDQPHLKRKAFCSFQIYAVPWQGTMTLSKSTCQDA 

cC RTTC PKSSGDLQSCE FHDE PEMAKYTTCT FW Y SIPWLNQIKLLESKCQ—
■ J r * * *  *  *  *  * * *  *  *  *  *  * *  *  *  *

Figure 4.15 A. Amino acid sequence alignment of hCC and cC, * indicate residues conserved 

in both proteins. B. Structural alignment of hCC (PDB ID: lg96)[19] and cC (PDB ID: lcew)[9]



Relative contact order can be used as a measure of topological complexity as it 

reflects the relative importance of local and non-local contacts to a proteins native 

structure. It is calculated by averaging sequence distance between all pairs of 

contacting residues normalised by the total length of the protein. Proteins with 

predominantly long range interactions have high contact order whilst 

predominantly local interactions are of a low contact order. For small, two-state 

proteins the natural logarithm of the folding rate is well correlated with relative 

contact order. This correlation holds for small proteins that fold according to a 

two-state model, but additional factors may complicate the folding of larger non- 

two-state proteins.1166'1681 While topology is a critical determinant of folding 

kinetics, mutations that alter the folding rate but don’t significantly change the 

contact order show that other factors clearly contribute.tl68]

Although it is possible to have two proteins with similar topologies, but quite 

different contact order values, this is not the case for hCC and cC. hCC and cC 

not only share a common topology they also share a common pattern of contacts 

between amino acids in the polypeptide chain. Clearly in the case of these two 

cystatins other factors than contact order strongly influence the folding rate of the 

two proteins.

It has been proposed that global stability can play a key role in dictating the 

folding rates among members of a structurally similar family. The correlation 

between folding rate and stability suggests that stability plays an important role in 

determining the folding rates of a/(3 proteins or (3-sheet proteins. Stability has 

also been used to predict relative folding rates across sets of homologous proteins 

and topologically similar proteins lacking significant sequence identity.^68'1701 

Stability may reflect an important secondary determinant of folding kinetics as, at 

least among structurally similar proteins, stability-specific effects can account for 

up to 2 orders of magnitude in the range of the characterised folding rates.[168J 

The difference in folding rates between hCC and cC may be attributed to the 

difference in stability between the two cystatins. This suggests that it is the 

relative strength of native-like contacts rather than the distribution of contacts that 

dictates the folding rate of these two proteins.
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CHAPTER FIVE

EARLY AGGREGATES IN THE FORMATION OF CYSTATIN

AMYLOID

5.1 INTRODUCTION

Amyloid deposits are a hallmark of several common, incureable diseases 

including Alzheimers’ disease, Parkinsons’ disease and type II diabetes. Each 

clinical syndrome is associated with a specific protein that, although normally 

soluble, in the disease state undergoes a conformational change that causes it to 

aggregate into insoluble amyloid fibres. Identifying the factors that influence the 

initiation and progression of amyloid formation remains a central issue in the 

development of treatments against amyloid disease. Emerging evidence indicates 

that pre-fibrillar oligomeric species rather than amyloid fibres are the toxic 

species in amyloid disease.182, 961 This highlights the need for a detailed 

understanding of the molecular mechanism of amyloidogenesis prior to the 

development of targeted therapies against amyloid disease.

In studying the mechanism of amyloidogenesis it is important to gain an 

understanding of the early stages of protein assembly. The cystatins have proven 

to be a good model system for characterising the initial stable species in the 

amyloid pathway. In the case of cC, monomers associate to form dimers, 

tetramers and larger molecular weight species under conditions where the native 

state is destabilised.1'361 This indicates that dimers and tetramers are 

intermediates, whether on- or off- pathway, that preceed the formation of amyloid. 

Dimeric cC has been proposed as the assembly competent species as cC 

multimers are formed from dimers in a similar manner to tetramers.1681 Tetramers 

are thought to be an off-pathway species that is formed from an early termination 

or cyclisation event.1681

hCC has been shown to form domain swapped dimers under mildly denaturing 

conditions but no tetrameric species have been isolated.1201 Mutants of hCC 

stabilised against domain swapping by the insertion of disulphide bridges across 

the domain swapping interface have a drastically reduced ability to produce 

dimers and amyloid fibres under conditions known to induce fibrillisation of wild-
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type hCC.[I60] Prevention of amyloid formation by blocking domain swapping 

indicates that dimer is an obligatory intermediate in the formation of amyloid. 

hCC will also form doughnut shaped oligomers that are fibril-assembly 

intermediates. Mutants of hCC that are stabilised against domain swapping do not 

produce oligomers, indicating that domain swapping is involved in their 

formation.[17l]

In this chapter size exclusion chromatography-high pressure liquid 

chromatography (SEC-HPLC) has been used to characterise the early stages of 

amyloidogenesis of both wild-type hCC and P I03A cC. Whilst it has the 

advantage of being able to resolve the size of early cystatin aggregates, it is 

limited in the detection of larger aggregates. For this reason, when necessary, EM 

has been used for the detection of larger aggregates and amyloid.

5.2 MATERIALS AND METHODS

5.2.1 Formation of domain swapped hCC dimers

A 200 pM hCC sample in 50 mM sodium phosphate pH 6.0, 2 mM sodium azide 

was prepared for NMR by the addition of 10% D2O. A 'H-NMR spectrum was 

recorded of the monomeric sample prior to the induction of dimerisation by the 

addition of aliquots of a 7 M GdnHCl stock solution in 50mM sodium phosphate 

pH 6.0 to a final concentration of 1 M GdnHCl. 1 H-NMR spectra were recorded 

to determine whether the dimerisation of hCC was complete in 1 M GdnHCl, and 

following the removal of GdnHCl by buffer exchange. A second 50 pM hCC 

sample was prepared and the protein was allowed to dimerise in the same 

conditions. All spectra were recorded at 298°K on a Bruker DRX-500 

spectrometer controlled using XWinNMR software (Bruker). Spectra were 

processed using Felix (Accelerys). Both samples were buffer exchanged into 50 

mM sodium phosphate pH 7.0 to remove GdnHCl and stored at 25°C.

5.2.2 Analytical size exclusion chromatography (SEC)

Analytical SEC is a chromatographic method that can be used to separate proteins 

based on their molecular size, which for globular proteins is generally 

approximately proportional to their molecular weight. During SEC there is a 

continual partitioning of the sample, and therefore the resolution is dependant on 

the column length. In order to reduce the run time the column is packed with an



efficient matrix that is able to withstand the high operating pressures used in SEC- 

HPLC. This enables the analytical SEC-HPLC column to be relatively short and 

operate at a higher flow rate than a low pressure SEC column, while producing 

equivalent resolution. This reduces the run time of the column to around 20 

minutes whereas an equivalent resolution using a low pressure SEC column 

would take 1-2 hours. SEC-HPLC is therefore a quick, efficient method of 

analysing the oligomeric state of proteins during the early stages of aggregation.

Testing hCC dimer stability

A portion of the dimeric 50 pM hCC sample described in section 5.2.1 was 

diluted to prepare a 5 pM sample of dimeric hCC. This dimeric sample, and the 

two described in section 5.2.1 were analysed using SEC-HPLC according to the 

method described in section 2.6.4 to confirm that dimérisation remained complete. 

Aliquots of each dimeric sample were removed at regular time intervals and 

analysed immediately by SEC-HPLC for up to 4 days after dimérisation.

Guanidine hydrochloride dependence o f hCC dimérisation 

60 pM hCC in 50 mM sodium phosphate pH 7.0 was incubated at 25°C with 

either 0.5 M, 0.75 M, 1 M, 1.25 M, 1.5 M or 1.75 M GdnHCl. Aliquots were 

removed and immediately analysed using SEC-HPLC for up to 43 days after 

induction of dimérisation. Samples were gently agitated prior to the removal of 

aliquots to ensure the removal of a representative distribution of species.

P103A cC aggregation

100 pM PI03A cC in 10 mM potassium phosphate buffer, pH 7.0 was incubated 

at 85°C to induce aggregation. 25 pi aliquots were removed at regular time 

intervals and transferred into 25 pi ice-cold 50 mM potassium phosphate buffer 

pH 7.0 to quench the reaction. Samples were stored at 4°C for up to 24 hours 

until they were analysed by SEC-HPLC. To prevent evaporation, the sample was 

incubated in a parafilm sealed Eppendorf tube. To maintain a uniform sample for 

analysis the sample tube was gently agitated prior to aliquot removal. In order to 

minimise any dilution error, the same pipette, was used throughout.
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5.2.3 Transmission Electron Microscopy

In transmission electron microscopy (TEM) an electron beam is transmitted 

through a specimen that is semitransparent to electrons. The electrons that pass 

through the specimen can be used to provide structural information about the 

specimen. Electrons that remain in the beam are detected on a fluorescent screen 

where dark areas represent areas where the electrons have been scattered. 

Contrast can be enhanced by the use of heavy metal compounds such as uranyl 

formate. Such stains enhance structural detail because their dense nuclei scatter 

the electrons out of the optical path.

Wt hCC grids

2 pi aliquots of each dimerisation reaction were used to prepare EM grids 

according to the method described in section 2.7.4. Grids were analysed and 

photographed with the help of Dr. M. Conroy.

PI 03A cC grids

Dimerisation an oligomerisation of PI03A cC was induced according to the 

method described above. 2 pi of the quenched sample 81 hours after induction of 

dimerisation was used to prepare an EM grid according to the method described in 

section 2.7.4. Grids were analysed and photographed by Dr. C. Jelinska.

5.3 DATA FITTING

Unless otherwise stated data manipulation and fitting was carried out using Grafit 

software (Erithacus software Ltd).

HPLC data — rates

In the dimerisation reaction two monomers (M) become a dimer (D):

(Eq. 5.1.1) 2M D

For a bimolecular reaction the rate at which the reactants meet is proportional to 

their concentration so that:

(Eq. 5.1.2) d[M]/dt = -k[M]2

)



The change in monomer concentration can be integrated between the 

concentration at the start of the reaction, [M]o (represented in equation Eq. 5.1.3 

as x) and the concentration at time t, [M]t (represented in equation Eq. 5.1.3 as y). 

The change in rate can be integrated between time at the start of the reaction, i.e. 

0, and time t.

(Eq. 5.1.3) fxYd[M] / [M]2 = J0*k dt or (l/[M]t) -  (1/[M]0) = kt 

This rearranges to

(Eq. 5.1.4) [M], = [M]0 / (1 + kt[M]0)

According to equation Eq. 5.1.1 the rate of dimer formation should be equivalent 

to the rate of monomer loss. In which case

(Eq. 5.1.5) [D]t = [M ],-[M ]0

By combining equations Eq. 5.1.4 and Eq. 5.1.5

(Eq. 5.1.6) [D], = ([M]0 / (1 + kt[M]„)) -  [M]0

Which can be rearranged to

(Eq. 5.1.7) [D], = ([M]o -  [M]0.(l + kt[M]0)) / (1 + kt[M]0)

or

(Eq. 5.1.8) [D], = -kt[M]02 / (1 + kt[M]0)

Equation Eq. 5.1.8 has been used to fit the appearance of dimer. In order to fit to 

the dissapearance of monomer, equation Eq. 5.1.5 and Eq. 5.16 are combined and 

rearranged to:

120

(Eq. 5.1.9) [M],= [M]0/(l+kt[M ]o)
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GdnHCl dependence o f  rates

Bimolecular rate constants for dimérisation vary logarithmically with GdnHCl 

concentration according to the equation:

(Eq. 5.2.1) lnkobs = lnlqw) + m.[GdnHCl]

Where kobS, kw, m, [GdnHCl] represents the observed rate constant, the rate 

constant in the absence of dénaturant, the m-value and the GdnHCl concentration 

respectively. The bimolecular rate constants have been plotted against dénaturant 

activity and fitted to equation Eq. 5.2.1 to extrapolate to a rate constant in the 

absence of water (lqw))- GdnHCl activity rather than GdnHCl concentration has 

been used to take into account the nonlinear dependence of the free energy of 

folding with GdnHCl (see equation Eq. 4.1.1)[1621. The m-value for dimérisation 

provides information on the solvent exposure of hydrophobic groups in the 

transition state relative to the folded monomer.

5.4 RESULTS

5.4.1 Dimérisation of hCC

hCC has been shown to self associate to dimers through three dimensional domain 

swapping under mild denaturing conditions, such as the presence of dénaturant, 

low pH or high temperatureJ19’20! 'H-NMR spectra confirm the formation of a 

domain swapped dimer of hCC in the sample used here upon induction of 

dimérisation with 1 M GdnHCl (within 1 hour for a 200 pM sample). Figure

5.1 A shows an overlay of the 'H-NMR spectra of monomeric and dimeric hCC. 

As would be expected of a domain swapped dimer, the overall features of the two 

spectra look remarkably similar. However, certain characteristic signal shifts are 

associated with the formation of dimer that can be used to identify the domain 

swapped dimer.120! The clearest signal shifts in the 'H-NMR spectra are those of 

Val104 and Trp106. Figure 5.IB and 5.1C show the change upon dimérisation in 

the peaks associated with Val104 and Trp106 respectively.



122

A.

Figure 5.1 A. 'H-NMR spectra of monomeric (black) and dimeric (red) hCC in 50 mM 

sodium phosphate pH 6.0. B. The ratio of signals associated with V104, marked with black 

arrows, vary in the monomer (black) and dimer (red). C. The signal from W106, marked by an 

arrow, is upfield shifted in the dimer (red) relative to the monomer (black).



The elution profile o f monomeric and dimeric hCC, shown in figure 5.2, shows 

that monomer and dimer can clearly be resolved using SEC-HPLC at the chosen 

flow-rate o f 1 ml/min. Monomeric hCC elutes in 11.7 mis whilst dimeric hCC 

elutes in 11 mis. For globular proteins the elution volume is approximately 

proportional to the logarithm of its molecular weight. When compared against a 

calibration curve the elution volumes o f both monomeric and dimeric hCC are 

retarded relative to their molecular weights. The predicted molecular weight of 

dimeric hCC from the calibration curve, 20 kDa, shows that it is double the 

predicted molecular weight o f monomeric hCC, 10 kDa. The molecular weight of 

monomeric hCC has been confirmed by MS (section 3.2.7).
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Figure 5.2 SEC-HPLC elution profiles o f monomeric (black) and dimeric (red) hCC.

Dimer stability

The stability o f hCC dimers in 50 mM sodium phosphate pH 7.0 was determined 

by analysing aliquots o f dimerised hCC by SEC-HPLC. In four days SEC-HPLC 

chromatograms showed no evidence o f monomeric species or larger oligomeric 

species over the hCC concentration range that was studied (5 pM -  200 pM). 

Although dimerisation may occur under these conditions over a significantly 

longer time scale, this experiment proves the stability o f isolated hCC dimer over 

the time scale required for the experiments described below. The high stability o f 

the domain swapped dimer is consistent with what is observed for cC where the 

formation of dimer is irreversible under the experimentally accessible conditions. 

This contrasts with the general case where the free energy difference between 

monomers and domain-swapped dimers is small.*1141
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Guanidine hydrochloride induced dimérisation of hCC
The ability to clearly resolve between monomer and dimer using analytical SEC- 

HPLC makes it a useful method for characterising the dimérisation reaction of 

hCC. Following the induction o f dimérisation by the addition o f GdnHCl, the 

dimérisation reaction was followed by regularly removing aliquots from the 

reaction and analysing by SEC-HPLC. Figure 5.3 shows the gradual appearance 

of the dimer paired with the gradual decrease of the monomer over time. No other 

species are observed by SEC-HPLC despite prolonged incubation under dimer 

inducing conditions.

Figure 5.3 Elution profiles o f monomeric hCC incubated in 50 mM sodium phosphate pH 7, 1 

M GdnHCl. The colour or the profiles change from red through the colour spectrum to violet 

and finally a lighter shade of red over the course of the dimérisation reaction. The monomer 

peak (marked with a black arrow) decreases over the time course while the dimer peak (marked 

with a red arrow) increases over the time course.

The concentration of monomer and dimer at each time interval has been 

determined from the peak height scaled to the peak height of 60 pM hCC in the 

absence o f dénaturant. A series o f GdnHCl concentrations were used to induce 

dimérisation over a range that destabilises the monomer, but does not cause 

complete unfolding. For each reaction at a given GdnHCl concentration, the 

concentration o f monomer and dimer has been plotted as a function o f time 

(figure 5.4). Monomer and dimer are the only species that are observed by SEC- 

HPLC. However, the sum of the monomer and dimer concentrations does not 

account for the original protein concentration at the start o f the reaction. In the 

case o f cC this “missing” protein concentration is accounted for by large 

oligomeric species that are unable to penetrate the matrix of the SEC column
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Therefore, the “missing” protein concentration representing multimers has been 

plotted alongside the concentration of monomer and dimer in figure 5.4. No 

significant dimérisation was observed in the dimérisation reaction in 0.5 M 

GdnHCl. Extrapolating the GdnHCl dépendance o f the dimérisation rate (shown 

later in the chapter) indicate that at 0.5 M GdnHCl dimérisation would not be 

observed during the time course o f the experiment. No population o f dimer is 

seen in the dimérisation reaction in 1.75 M GdnHCl. As shown in chapter 4, the 

equilibrium between folded and unfolded protein is significantly shifted towards 

unfolded protein at this concentration of dénaturant. The monomeric protein that 

is observed by SEC-HPLC is likely to be unfolded protein that has refolded when 

the dénaturant is removed during the SEC. In each time course shown in figure

5.4 there remains a residual amount o f  monomeric protein. As the level o f 

monomer is greater the higher the concentration o f GdnHCl it is likely that this 

reflects the proportion o f unfolded protein present in the sample.
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Figure 5.4 SEC-HPLC analysis o f the formation of dimer when incubated in 50 mM sodium 
phosphate pH 7 with 0.75 M (A.), 1.0 M (B.), 1.25 M (C.) or 1.5 M (D.) GdnHCl. Monomer, 
dimer and large oligomers arc represented by black, red and blue data points respectively.______



126
Guanidine hydrochloride dependence o f the bimolecular rate constants 

For each dimerisation reaction shown in figure 5.4 the bimolecular rate constant 

has been determined by fitting the appearance of dimer to equation Eq. 5.1.8 and 

the depletion of monomer to equation Eq. 5.1.9. The rates determined from fitting 

this data are summarised in table 5.1.

[GdnHCl] Ink monomer decrease Ink dimer formation

1.50 M 3.52 ±0.20 3.78 ± 0.49

1.25 M 2.16 ± 0.12 1.08 ±0.64

LOOM -2.07 ±0.12 -1.13 ±0.91

0.75 M -2.40 ±0.19 -5.77 ± 0.59

Table 5.1 Summary o f the bimolecular rate constants (k) determined from fitting the 

dimerisation reactions in figure 5.4 to equation Eq. 5.1.8 and Eq. 5.1.9. The units o f  k are M'V  

'. Errors are taken from the standard deviation o f the fit calculated by Grafit software.

The rate constant for the transition from monomer to dimer is dependant on 

several factors including temperature, pressure and denaturant concentration. The 

dependance of the reaction rate on GdnHCl activity reports the degree of 

hydrophobic group exposure of the transition state for the reaction. This is often 

taken as a measure of how folded the transition state is relative to the folded state, 

the greater the effect on the observed rate the more unfolded is the transition state. 

The rate constants in table 5.2 have been plotted against GdnHCl activity and 

fitted to equation Eq. 5.2.1 to determine the GdnHCl dependence of the rate and 

the rate in the absence of denaturant (figure 5.5). In the reaction in 0.75 M 

GdnHCl very few data points define the appearance of dimer which may lead to 

an inaccurate calulation of the dimerisation rate. For this reason, the data points 

in figure 5.5 have been fitted including the 0.75 M data point and also excluding 

the 0.75 M data point. The fit of all the data points excluding the 0.75 M data 

provides an m-value of 11.9 ±1 .5 M'1 and a k<w) of 1.1 x 10'5 M^s'1.
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Figure 5.5 GdnHCl dépendance o f dimérisation rates. The black data points shown the 
dimérisation rate calculated from the decrease in monomer concentration, the thin black line 
represents the fit o f these points to equation Eq. 5.2.1. Red data point show the dimérisation 
rates calculated from the increase in dimer concentration, the dashed line represent the fit of 
these points to equation Eq. 5.2.1. The heavy black line represents the fit of both sets of data 
points excluding the rate determined from the appearance of dimer at 0.75 M GdnHCl._________

The m-values shown in table 5.2 are a measure o f the level o f folding in the 

transition state. If the transition state o f the bimolecular reaction was as solvent 

exposed as the unfolded monomer then the m-value for the dimérisation reaction 

would be twice the m-value of the unfolding equilibrium constant, 2m(F/u) = 15.4 

± 1.4 M '1. Therefore, structure o f the transition state of the bimolecular reaction 

is very close to the structure o f the unfolded state and is more unfolded than the 

kinetic intermediate identified in the hCC folding pathway. This data reflects the 

high level of disruption o f the monomeric structure that is required to form the 

domain swapped dimer.

Monomer decrease Dimer formation

m-value (M '1) 11.6 ±2 .7 16.4 ± 1.7

Lnk<vv) -10.9 ±2.7 -16.4 ± 1.7

K<W) ( M V ) 1.8 x 10° 7.5 x 10'y

Tabic 5.2 Summary of the parameters determined from the GdnHCl dependence of the 

bimolecular rate constants.
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5.4.2 Proline isomerisation 

Introduction to P103A cC
A recent crystal structure o f tetrameric cystatin B (PDB ID: 2oct)*172' shows that it 

is assembled from two domain swapped dimers with P74 (equivalent to P I03 in 

cC or P I05 in hCC) in the cis conformation (figure 5.6). With P74 in the cis 

conformation a new interface is formed between the two dimers with interactions 

involving loop II and the N-terminus.|m | As shown in figure 5.10, this proline is 

widely conserved throughout the cystatins where it is found in the tram  

conformation in monomeric structures.

Figure 5.6 The structure o f tetraincric cystatin B formed from two domain swapped dimers 
coloured in red/bluc or grccn/orangc. P74 is represented in slick form to mark the position of 
P103 on the loop between strands 4 and 5. P74 is in the cis-forin allowing the formation of a 
new interface that involves the loop between strands 3 and 4,________________________________

m-value analysis o f cC oligomerisation indicates that the transition state of 

tetramerisation is significantly more folded than the transition state of 

dimérisation. Under the conditions described above, tetramerisation o f cC is a 

unimolecular process so is rate limited by a slow conformational rearrangement of 

the dimer rather than the association of assembly-competent dimers. It was 

originally proposed that the conversion o f dimer to tetramer was rate limited by 

partial unfolding o f the dimer that would allow the propagation o f domain 

swapping.1' 361 However, in light of the recent tetramer structure, it is possible that



the rate limiting step in tetramerisation is the isomerisation of the conserved 

proline from the native trans- conformer to the cis- conformer.

SEC-HPLC analysis o f  the PI 03A cCfibrilisation reaction 

In contrast to previously described experiments, analysis of the effect of mutating 

the conserved proline in the cystatins has been carried out using cC rather than 

hCC. Given the difficulties in producing recombinant hCC described in detail in 

Chapter 3, P I03A cC was chosen as an alternative to P I05A hCC. The initial 

stages of amyloid formation have been previously well characterised.1681 As is 

discussed later in this chapter there are many similarities in the initial stages of 

aggregation of cC and hCC.

A mutant of cC with the conserved proline, P I03, mutated to an alanine has been 

studied in order to determine whether isomerisation of P I03 is necessary for the 

formation of tetramer and amyloid. Although the cis orientation of the peptide 

bond is not exclusive to proline, for other residues it is so rarely populated that if 

necessary for tetramer or amyloid formation the rate of formation would be 

drastically reduced.

Differences in the fibrillisation reaction of wt and P I03A cC are instantly seen by 

a comparison of the elution profiles of wt and PI 03 A cC (figure 5.7). In contrast 

to wt cC, P I03A cC does not form tetramers but forms a significant amount of 

resolvable aggregates. The size of these aggregates range from approximately 

200 kDa to 1000 kDa, the upper limit of the column.
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Figure 5.7 Elution profiles o f the fibrilisation o f A. WT and B. P103A cC measured by SEC- 

HPLC. For each protein the dotted lines represents the starting point o f the fibrillisation 

reaction, time 0. The solid lines and dashed lines represent the mixture o f  oligomeric species 

present 5 hours and several days, respectively. Each species observed by SEC-HPLC is labelled 

with M, D, T or O to identify monomer, dimer, tetramer or oligomer, respectively. The 

differences in elution volumes between figures A and B are due to the use o f  different HPLC 

columns that have different column dimensions.

At each time interval the concentration of monomer, dimer and oligomer PI03A 

cC has been determined from the peak area scaled to the peak area of 100 pM 

monomeric P I03A cC at 25°C. In figure 5.8, the concentration of monomer, 

dimer and oligomer has been plotted as a function of time. For comparison the 

time course of wild-type cC under the same conditions is also shown in figure 5.8.

Once formed, the dimer population assembles to higher order species making 

fitting of the dimérisation time curves difficult. As dimers are formed from the 

aggregation of monomers the dimérisation rate can be determined by fitting the 

depletion of monomer rather than the appearance of dimer. Although



significantly less dimer is populated in the P I03A reaction, the bimolecular rate 

constant for P103A at 85°C is 7.7 ± 0.7 NT's'1. This is within error of the 

biomolecular rate constant determined for wt cC under these conditions (6.6 ± 0.7

M V ).
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Figure 5.8 A. Analysis o f the oligomerisation of 100 pM P103A cC in 10 mM potassium 
phosphate pH 7.0 at 85°C determined by SEC-HPLC. Black, red and blue data points represent 
monomer, dimer and oligomeric species respectively. B. Analysis o f the oligomerisation of 
100 pM wild-type cC in 10 mM potassium phosphate pH 7.0 at 85°C determined by SEC- 
HPLC. Black, red, blue and green data points represent monomer, dimer, tetramer and 
oligomeric species respectively. Data taken from |681._______________________________________

Electron microscopy analysis o f the PI 03A fihrilisation reaction

At the end o f the wild-type cC time course shown in figure 5.8B, the most 

predominant species are large aggregates that are unable to penetrate the matrix of 

the SEC column. These large aggregates have been visualised by EM and found 

to have the expected dimensions o f amyloid (figure 5.9A). The morphology of 

the oligomeric species populated during the P103A cC time course is strikingly 

different to WT cC (figure 5.9B). There is no evidence o f amyloid fibres, rather 

the grids are evenly distributed with short curly filaments with an average 

diameter of 7.85 ± 0.8 nm and no longer than 100 nm in length.
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Figure 5.9 A. Amyloid fibres of WT cC present in the end point o f the time course shown in 
figure 5.8B. Individual fibrils have average diameters o f 1 lnm and measure several microns in 
length. B. In contrast to WT cC, only short, curly structures are observed in the end point of 
the time course shown in figure 5.8A. These species average 8 nm in diameter with a length no 

1 longer than 100 nm. Scale bars in both images are 200 nm.__________________________________

5.5 DISCUSSION

5.5.1 Analysis of the early stages of amyloidogenesis of hCC

The initial process in the aggregation of hCC into amyloid is the formation of a 

domain-swapped dimer. The high Gdnl lCl dependence of dimerisation indicates 

that dimerisation occurs via a predominantly unfolded transition state. The 

dimerisation reaction can be considered to occur in two phases. The first phase is 

unimolecular as it involves the unfolding of monomeric hCC (M) into an 

aggregation competent species (M*), because it is a unimolecular process the rate 

at which M* is formed is independent of the protein concentration. The second 

phase is bimolecular as it requires the successful collision of two aggregation 

competent species resulting in the formation of dimer (D). The rate at which this 

process occurs is dependent on protein concentration as the aggregation 

competent species are more likely to collide at high protein concentration. *H- 

NMR spectra used to follow dimerisation at various concentrations of hCC (as 

described in section 5.2.1) suggest that dimerisation of hCC is concentration 

dependant at the concentration used for the experiment described in section 5.2.2. 

Therefore, the dimerisation of hCC described in section 5.2.2 is rate limited by the 

bimolecular phase o f the reaction. The dimerisation process is described by the 

following scheme:

(Eq. 5.3.1) 2M 2M* ~ 2D



If the rate at which this bimolecular process occurs becomes faster than the rate at 

which monomer unfolds to aggregation competent species then the dimerisation 

reaction becomes limited by a unimolecular transition. To estimate the monomer 

concentration at which this transition occurs the unfolding rate is used as an 

estimate of the rate the aggregation competent species is formed. In the case of 

hCC the concentration required for the bimolecular rate to be faster than the 

unimolecular rate is beyond the upper limits of the accessable protein 

concentration range.

hCC further aggregates into large oligomeric species that are too large to penetrate 

the matrix of the SEC column indicating that they have a molecular weight above 

1000 kDa. Attempts to view the large oligomeric species by EM proved 

unsuccessful. The grids generally had very little material on them. What little 

was present was in the form of amorphous aggregate. Previously, cC amyloid 

fibres have also proved difficult to analyse by EM, with grids also having very 

little material or amorphous aggregate on them. Additional experiments, such as 

further attempts at EM analysis or staining with Congo red or thioflavin T, are 

required to determine whether the large oligomeric species are amyloid.

5.5.2 Comparison between hCC and wild type cC aggregation 

SEC-HPLC has been used to characterise the initial stages of cC amyloid 

formation, where not only monomer and dimer, but also tetramer can easily be 

resolved.11345 The dimerisation reation of wt cC shows many similarities to that of 

hCC, validating the use of cC as a model for hCC amyloidogenesis. The 

dimerisation of cC has been shown to be limited by a bimolecular transition over 

the range of experimentally accessible protein concentration. hCC has been 

estimated to be limited by a bimolecular transition of the experimentally 

accessible protein concentrations, but further study is required to confirm this.

The m-value of the dimerisation reaction reflects the level of solvent exposure of 

hydrophobic groups in the transition state relative to the folded monomer. The m- 

value for the hCC and wt cC dimerisation reactions are within experimental error 

of each other (12 ± 1.5 M'1 and 10 ± 2 M'1̂1345, respectively). The similarity of the 

m-value indicates that both proteins have the same level of solvent exposure in the 

transition state of the dimerisation reaction. For both hCC and cC the structure of
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the transition state of dimérisation is closer to the unfolded state than the folded 

state, being less folded than the kinetic intermediate populated in the monomeric 

folding pathway.

Whilst there are many similarities in the dimérisation reaction of hCC and wt cC, 

SEC-HPLC analysis shows that wt cC populates a tetramer structure in addition to 

monomer and dimer. No tetramer structure is observed by SEC-HPLC for hCC. 

Kinetic data suggests that tetramer formation is possibly off-pathway to amyloid 

formation.f 1361 As no tetrameric species is observed in the early aggregation of 

hCC and the cystatins are likely to aggregate through a similar pathway, the hCC 

data supports a model of amyloidogenesis where tetramer is a non-obligatory 

intermediate.

5.5.2 Proline isomerisation

The tetramerisation and multimerisation of wt cC has been shown to be a first 

order process so is rate-limited by a unimolecular event. M-value analysis 

indicates that the transition state of both the tetramerisation and multimerisation 

reaction of wt cC is considerably more folded than the transition state of the 

dimérisation reaction. Whilst this clearly shows that a major unfolding event such 

as domain swapping is not involved in the tetramerisation and multimerisation 

processes, at least a partial unfolding event is required.1681 It is proposed that the 

first order event that limits tetramerisaton and multimerisation of cystatin is a 

partially unfolding event that allows isomeration of a proline that is conserved 

throughout the cystatins (see figure 5.10).
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Figure 5.10 A. Structure based sequence alignment of stefin A, stefin B, chicken cystatin and 

human cystatin C. Dark blue arrows above the sequence alignment indicate the position o f the 

p-sheets, whilst the light blue arrow marks the position o f the a-helix. The conserved proline 

(P103 cC, P105 hCC) is highlighted in red. B. Structural alignment of hCC in cyan (PDB ID: 

1 g96)[l9) and cC in magenta (PDB ID: lcew),9!, the conserved proline in each structure is 

coloured red. C. Structural alignment o f stefin A in green (PDB ID: lgd3)[8! and stefin B in 

lilac (PDB ID: lstf)117’1, the conserved proline in each structure is coloured red.

Characterisation of the multimerisation pathway of PI 03A cC along with several 

pieces of data from the study of other cystatins has led to the development of a 

model of cystatin amyloid formation in which the rate limiting process is proline 

isomerisation.



No tetrameric P I03A cC is observed by SEC-HPLC, which suggests that proline 

isomerisation is essential for the formation of tetramers. This is consistent with 

the published crystal structure of tetrameric stefin B in which P I03 is in the cis- 

conformation rather than the trans- conformation that is observed in the 

monomer. For proline isomerization to occur a partial unfolding is required, this 

is consistent with the m-value analysis of the tetramerisation reaction where a 

relatively small unfolding event is required in the tetramerisation process.

In the developing cystatin amyloid model, the tetramer is an off-pathway 

intermediate in the formation of amyloid. This conclusion is supported data from 

several other cystatin experiments. Firstly, kinetic analysis of wt cC indicated 

that multimerisation is dependent on the concentration of dimer rather than 

tetramerJ1361 This suggests that cystatin amyloid is formed through further 

aggregation of dimers, not the aggregation of tetramers. Secondly, no tetramer 

has been observed in the multimerisation of hCC although data suggests a 

common mechanism of cystatin amyloid formation. In addition to this, the (3- 

strands between the dimers do not align to form a continuous (3-sheet in the 

tetrameric structure. This prevents the tetramers stacking together into the cross-(3 

structure that is observed in the amyloid fibre.

Although P I03A cC forms oligomers, striking differences are observed in the 

oligomeric species populated by the PI03A cC mutant and wt cC. SEC-HPLC 

resolves a population of broad range mid-molecular weight oligomers that are not 

observed in wt cC. EM analysis indicates that mid-molecular weight PI03A cC 

oligomers are not intermediates in the formation of amyloid as no PI03A cC 

amyloid is observed under conditions in which wt cC does form amyloid. These 

data suggest that proline isomerisation plays a role in the aggregation of dimers 

into multimers.

Hydrogen exchange measured on cystatin B shows that loop I is protected in the 

fibril. Therefore, it is likely that the domain swapped interface is maintained 

within the fibril.^174-* This observation is consistent with the rate of fibrilisation 

being dependent on dimer concentration. However, the formation of cystatin 

amyloid by the aggregation of dimer is prevented by the inherent twist in the (3- 

sheet of the dimer. Considerable flattening of the twist in the (3-sheet is required
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to form amyloid. The helix, which is protected in the monomer and dimer 

structure, shows no measurable protection in the fibrilJ174' Figure 5.11 A. shows a 

model of a dimer-like unit in which the domain-swapping interface is maintained 

and a (3-sheet is formed from strands 2-5. If these dimer-like units are stacked 

together the result is a steric clash between the loop IIs of adjacent dimers, as is 

shown in figure 5.1 IB. This steric clash is alleviated if the PI 03 in loop II adopts 

the cis- conformation, as is shown in figure 5.11C..

A.

Figure 5.11 A. A model o f a dimer-like stacking unit based on hydrogen exchange data.|W41 

The helicies are shown for clarity but their exact position has not been determined. Each 

cystatin is shown in either red or blue. The (3-sheet is formed from strand 2 from one cystatin 

and strand 3, 4 and 5 of the second cystatin. B. Two perpendicular representations of the steric 

clash in between adjacent loop 2s if the stacking unit has the conserved proline in the trans- 

conformation. C. The steric clash represented in B is alleviated if  the conserved proline is in the 

cis- conformation as this cause the position of loop 2 to move.
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CHAPTER SIX

ANALYSIS OF THE INTERACTION BETWEEN HUMAN 

CYSTATIN C AND Ap^0

6.1 INTRODUCTION

Several immunological observations and a genetic link between hCC and AD has 

led to the proposal that hCC may play a role in the pathology of AD and several 

other A(3 amyloid diseases. These observations and the subsequent experiments 

to define the interaction between hCC and AP are discussed briefly here, further 

details can be found in chapter 1.2.5.

Immunostaining has identified the co-localisation of AP and hCC in several Ap 

amyloid diseases.156'581 However, where hCC is the main amyloidogenic protein, 

no co-immunostaining could be detected.155,581 Although they co-localise, hCC is 

not an intrinsic part of the AP amyloid fibril.1981 Rather, a distinct layering of hCC 

and Ap has been observed where an immunonegative core surrounded by a layer 

of hCC is covered with a further layer of Ap.11121 Further evidence of a role of 

hCC in Ap amyloid diseases is that polymorphisms in the hCC gene have been 

identified as risk-factors for late-onset AD.[110,1111

Several experiments have been devised to determine the biochemical interaction 

between hCC and Ap and what effect this may have on the formation of amyloid. 

Immunoprécipitation assays indicate that hCC binds to full length APP and 

secreted APP in the AP region of APP. Analysis of the association between hCC 

and Ap using ELISA suggests a specific, saturable high affinity 1:1 binding 

between hCC and Ap, with a dissociation constant in the nM range. A binding 

competition assay has identified that the amino-terminus of Ap binds to hCC.11131

The association of hCC and AP results in a concentration dependent inhibition of 

Ap fibril formation. Co-incubation of hCC with monomeric AP significantly 

reduces formation of AP oligomers and protofibrils. These observations suggest 

that hCC is playing a protective role against the formation of AP amyloid.1’13,1141 

As hCC inhibits the formation of Ap amyloid, the interaction site is potentially a 

useful target in the development of drug therapies against Ap diseases.



Despite recent interest in this area of research, there is little structural information 

available regarding the formation of the complex between hCC and A(3. NMR 

enables residue-specific information about protein structure, stability and 

interactions to be easily obtained. Therefore, it is an excellent tool for studying 

the interaction between hCC and A(3.

6.2 MATERIALS AND METHODS

I5N-labelled hCC was expressed and purified according to the method described 

in section 3.4.2. The purity and monomeric state of samples was confirmed by 

SEC-HPLC (described in chapter 2.6.4) prior to initiating NMR experiments. All 

NMR spectra described in this chapter were recorded on a Bruker DRX 

spectrometer operating at 500 MHz, controlled using XWinNMR (Bruker). 

Spectra were processed using Felix 2004 (Accelrys). All heteronuclear single 

quantum coherence (HSQC) experiments were acquired using 1024 increments in 

the proton dimension and 512 increments in the nitrogen dimension. The spectral 

widths of the proton and nitrogen dimensions were 7507.5 Hz and 2128.4 Hz, 

respectively.

6.2.1 ’H-^N HSQC spectrum of hCC

A HSQC experiment measures the chemical shifts of the proton and nitrogen 

nuclei of every bonded 15N-H pair. This is achieved by modulating each proton 

signal with the signal of the attached nitrogen. Processing software is used to 

deconvolute the two frequencies and generate a two dimensional plot with a peak 

for every amide at the intersection of the proton and nitrogen chemical shifts. The 

chemical shift of a nucleus is directly related to its chemical environment. 

Therefore, factors that alter the chemical environment of the amide can be 

detected by changes in the HSQC spectrum. Peaks may shift position, but can 

also broaden, change intensity or disappear completely. In order to make sense of 

any changes in the spectrum it is necessary to determine which amide is 

responsible for which peak in the spectrum in a process known as resonance 

assignment. An assignment has been published for 200 pM hCC in 50 mM 

sodium phosphate pH 6.0, recorded at 303°K.p5J A 500 pi sample of 200 pM 

hCC in 50 mM sodium phosphate pH 6.0 was prepared for NMR by the addition 

of 10% D2O. A ID 'H-spectrum was recorded prior to recording the HSQC 

spectrum at 303°K.
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6.2.2 Assignment of hCC

The backbone assignment of hCC under the desired experimental conditions, 15 

mM tris-TFA, pH 7.5, 278°K, was determined by tracking changes in the HSQC 

spectra as conditions were gradually changed from the previously assigned 

conditions. The new assignment was determined in two-phases, first the pH was 

gradually increased, and then the temperature was gradually lowered, as decribed 
below.

pH  titration

The sample prepared for section 6.2.1 was used in the pH titration. The sample 

was removed from the NMR tube so that the pH could be adjusted by the addition 

of aliquots of 0.5 M Na2HPC>4. Spectra were recorded at pH 6.0, pH 6.5, pH 7.0 

and pH 7.5. At each pH interval a ID ^-spectrum was recorded prior to 

recording the HSQC spectra at 303°K.

Temperature titration

A 500 pi sample of 50 pM hCC in 15 mM tris-TFA, pH 7.5 was prepared for 

NMR by the addition of 10% D2O. The initial spectrum was recorded once the 

sample was equilibrated to 303°K. The assignment of 200 pM hCC, 50 mM 

sodium phosphate pH 7.5, 303°K transferred well onto this spectrum. Following 

this, spectra were recorded as the temperature was lowered in 5°K intervals to 

278°K. At each new temperature the sample was allowed to equilibrate to the 

lower temperature before spectra were recorded. At each temperature interval a 

1D 'H-spectrum was recorded prior to recording the HSCQ spectra.

6.2.3 Preparation of APmo

APmo was purchased as a TFA salt (rPeptide) and prepared using an adaptation of 

the Teplow procedure.11751 A(3mo undergoes time and concentration dependent 

aggregation in the acetonitrile-water used in its preparation.11761 Therefore, it is 

important to dissagregate A(3mo and generate a monomeric, random coil structure 

when preparing A|3 samples. The Teplow procedure is designed to prevent the pH 

falling between pH 4 and pH 7, the pH range where A(31.40 aggregation is 

maximised. This method was not suitable for preparing A(3mo in the desired



buffer condition for NMR so was adapted maintaining the principles of the 

Teplow method.

1 mg Api-40 was dissolved in HFIP, divided into 0.5 mg samples and sonicated for 

15 minutes. Samples were freeze-dried with the help of Dr. A. Moir. APmo was 

resuspended in 375 pi 20 mM tris and the pH adjusted to pH 7.5 using TFA. 

Finally, the volume was made up to 500 pi with water to produce a 15 mM tris- 

TFA buffer, pH 7.5. The concentration of APmo was determined using the 

method described in chapter 2.6.2 and where necessary adjusted to 50 pM APmo 

by the addition of 15 mM tris-TFA, pH 7.5. The A(3mo sample was prepared for 

NMR by the addition of 10% D2O. A ID 'H spectra was recorded at 278°K.

6.2.4 Titration of unlabelled ApMo into lsN-hCC

The sensitivity of the NMR spectra to changes in the chemical environment of a 

nuclei make it a useful method for mapping regions of proteins that are involved 

in binding to a ligand. The regions of hCC that interact with APmo have been 

determined by titrating A(3mo into a 15N-labelled hCC sample. The hCC sample 

used in the temperature titration described 6.2.2 was subsequently used for the 

A|3mo titration described here. All spectra were recorded at 278°K. At each stage 

of the titration, 50 pi of 50 pM A(31.40 prepared according to the method described 

in 6.2.3 was added to the NMR tube containing the hCC sample, and gently 

inverted to produce a homogenous sample. After reaching a 1:1 stoichiometry, an 

additional 100 pi of A|3mo was added to the hCC sample which equates to a 1:1.2 

stoichiometry. At each stage a ID *H spectrum and 9 HSQC spectra were 

recorded. Once processed, the 9 HSQC matrix files were combined linearly into a 

single matrix file. Spectra were aquired in this manner rather than as a single 

HSQC spectrum to ensure that any changes in the HSQC spectrum resulting from 

the addition of APmo were complete prior to a further addition of APmo-

As a control, the experiment was repeated replacing the addition of APmo with 15 

mM tris-TFA pH 7.5. Less data points were recorded as buffer was added in 100 

pi aliquots rather than 50 pi aliquots. All other experimental details remained the
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6.3 RESULTS

6.3.1 ‘H-,5N HSQC spectrum of hCC

The initial 'H spectrum of 200 pM hCC in 50 raM sodium phosphate pH 6.0 at 

303°K shows a wide dispersion of amide proton resonances (6-10 ppm) and 

upfield (below 0 ppm) aliphatic proton peaks indicating that hCC is folded. In 

addition to this, the wide dispersion of amide chemical shifts observed in HSQC 

spectra also indicate that hCC is folded under these conditions (see figure 6.1). 

The distribution of amide peaks in the HSQC spectrum aligns well with the 

published assignment of hCC under these conditions so that each amide in the 

published assignment could be assigned to a peak in the HSQC spectrum.

The reproducibility of the published data is a useful quality control measure in the 

preparation, recording and processing of the hCC NMR sample. Even relatively 

minor changes in the chemical environment of the amides are reflected in the 

HSQC spectra. Therefore, the similarity of the two spectra indicates that the two 

hCC samples are in an almost identical chemical environment despite being 

prepared in separate laboratories using alternative methods. It is an additional 

indication of the quality of hCC prepared using the new method described in 

chapter 3. This also gives confidence in the published assignment, which is an 

essential element to nearly all the conclusions presented in this chapter.
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Figure 6.1 'H-I5N HSQC spectrum o f 200 pM hCC in 50 mM sodium phosphate pH 6.0, 2 

mM sodium azide at 303°K. D1 represents the 'H dimension, D2 represents the 15N dimension.

6.3.2 Assignment of 50 pM hCC in 15 mM tris-TFA pH 7.5, 278°K

A(31.40 has been described as “the peptide from hell” because of the difficulty in 

preparing and maintaining a homogenous, un-aggregated sample.11771 Buffer type, 

ionic strength, pH, temperature and peptide concentration are all factors that will 

influence the ability of A0 to aggregate. Therefore, they must be considered when 

determining the conditions of an experiment in which A(3 is involved.^1771 

Unfortunately, the experimental conditions in which hCC was assigned 

previously1251 are conditions in which A(3 is highly prone to aggregate. A two- 

phased approach was used to assign hCC in conditions in which A(3 is stable, 15 

mM tris-TFA pH 7.5, 303°K.

pH

In the first phase of the assignment, changes in the HSQC spectrum were 

successfully tracked as the pH was gradually adjusted from pH 6.0 to pH 7.5. 

Figure 6.2 shows the change in chemical shift of each amide in the HSQC
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spectrum. The majority o f peaks can be tracked from their position at pH 6 to 

their position at pH 7.5. However, a few peaks fade or completely disappear 

during the course o f the titration. This is seen more clearly in figure 6.3, which 

shows the change in intensity of each assigned amide. The majority of residues 

change very little in intensity, the gentle decrease that is observed can be 

attributed to the minor dilution factor caused by adjusting the pH of the sample. 

However, several residues show a marked decrease in intensity as the pH is lower. 

For example, residues N39, R93 and Cl 17 completely disappear whereas residues 

in the N-terminal region show a significant reduction in intensity, but are still 

present in the HSQC spectrum. The peaks of residues H43 and V60 and K75 and 

N82 merge so they are indistinguishable in the HSQC spectrum.

Figure 6.2 The associated chemical shift changes observed in the 'H-I5N HSQC spectra of 

hCC as the pH is adjusted from pH 6.0 by half pH unit steps (blue positions) to pH 7.5 (black 

positions). The spectra were recorded at 303°K using 200 pM hCC in 50 mM sodium 

phosphate, 2 mM sodium azide. D1 represents the 'H dimension, D2 represents the l5N 

dimension.

The amide hydrogen in each amino acid residue can exchange with hydrogen 

atoms in the solvent by a base catalysed mechanism. The rate of exchange



depends on several factors including temperature and the composition and pH of 

the solvent. Amides in a protein are often found to exchange at different rates due 

to the protection caused by secondary and tertiary structure. Hydrogen bonds 

within the protein significantly reduce the exchange rate and steric effects reduce 

solvent access to the core of the protein.

The amide cross peaks that show a significant decrease in intensity during the pH 

titration can be mapped to regions of hCC that are solvent exposed. Residues that 

are hydrogen bonded, and therefore protected against solvent exchange, show 

very little intensity decrease (coloured blue in Figure 6.3). This evidence strongly 

suggests that the observed changes during the pH titration are due to solvent 

exchange.
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Figure 6.3 A. The intensity change observed in the 'H-i5N HSQC experiment o f hCC as the 

pH is adjusted from pH 6.0 by half pH unit steps to pH 7.5. The upper and lower limit o f  the 

x-axis is pH 8.0 and pH 5.5, respectively. The upper and lower limit of the y-axis is the relative 

intensity o f 5 and -1 respectively. The squares coloured in blue indicate hydrogen bonded 

amides observed in the dimeric hCC structure (PDB ID: lg96)||g|. The squares coloured red 

indicate residues where signal intensity is lost during the titration. B. A structural 

representation o f hCC (based on the domain swapped dimer of hCC (PDB ID: 1 g96)'1 

showing the residues that change intensity as pH is adjusted to pH 7.5. A58, which is present in 

the loop between strands 2  and 3 , is not shown in this representation because of its position of 

the domain swapped dimer. Blue colouring represents areas of little intensity change, through 

white to red, which shows areas o f strong intensity change. The spheres represent the relative 

size of the intensity change. Purple residues represent proline residues.



Proteins in solution do not have a fixed, rigid structure, rather they are dynamic 

molecules that can adopt a number of different conformations. The probability of 

a particular structural state being populated is dependant on the stability of that 

conformation. In NMR, data is recorded on a vast number of molecules, and 

because of this, the spectra can give an indication of the state of this population. 

If two states are in fast exchange then a single peak is observed at a position that 

reflects an average of the two conformations. This is because the exchange is so 

rapid a group flipping between two states will experience both conformations 

many times in the spectral time scale (i.e. the time when the FID is being 

recorded). In contrast, when the exchange rate is slow two discrete peaks are 

observed. Two peaks are observed because in the time scale of the spectra the 

group in exchange does not have time to move between states. However, if two 

states exchange at an intermediate rate peaks generally broaden or disappear. 

Therefore, if the pH titration caused a shift in the conformational exchange rate 

between different states it could produce a similar result to that seen in Figure 6.3.

Either solvent exchange or conformational exchange, or a combination of both, 

could cause the changes observed in the HSQC spectra. However, the behaviour 

of the four disulphide bonded cysteine residues suggests that solvent exchange is 

the major cause of the observed changes. The two cysteines in each disulphide 

bond, C73-C83 and C97-C117, behave quite differently to each other. Given that 

there is a physical link between the two residues it seems unlikely that a 

conformational change would occur that affects each cysteine substantially 

differently.

Temperature

The assigned peaks in the 200 pM hCC, 50 mM sodium phosphate pH 7.5, 303°K 

spectrum were all identified in the 50 pM hCC in 15 mM tris-TFA pH 7.5, 303°K 

spectrum. Only minor chemical shift changes were observed between the two 

spectra, and these can be attributed to the difference in solvent and protein 

concentration.

The second phase of the assignment titration was to follow chemical shift changes 

as the temperature was lowered from 303°K to 278°K. Figure 6.4 shows the 

temperature induced change in chemical shift of each amide in the HSQC
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experiments. Clearly, the assignment o f the majority of peaks can be determined 

at low temperature, although some residues are lost during the temperature 

titration. For example, the peaks of residues S44 and T111 completely dissapear 

from the spectrum whereas the peaks o f residues K5 and V I0 and N35 and D81 

merge so they are indistinguishable from each other.

The rate at which a protein tumbles in solution is proportional to the temperature 

of the sample. As temperature is reduces the tumbling rate slows due to the 

reduced energy available in the system. The rate at which the NMR signal decays 

reflects the rate at which the protein tumbles, the slower the tumbling the faster 

the decay rate o f the NMR signal. The result is general broadening of the signal 

as the temperature is reduced.

Figure 6.4 The chemical shift changes observed in the 'H-i5N HSQC spectra o f hCC as the 

temperature is lowered from 303°K (initial blue position) to 278°K (black position) in 5°K 

steps. The spectra were recorded using 50 pM hCC in 15 mM tris-TFA pH 7.5, 2 mM sodium 

azide. Dl represents the 'H dimension, D2 represents the l5N dimension.



Figure 6.5 shows the temperature induced changes in intensity for each assigned 

cross peak. The intensity of some residues appears relatively unaffected by the 

change in temperature. For example, many residues in the N-terminal region, 

SI7, G22,156 and L80 show very little change in intensity despite changing the 

temperature. This is somewhat unexpected as lowering temperature should result 

in a decrease in intensity. The regions that show very little intensity change can 

again be mapped to areas of hCC that are solvent exposed. Lowering temperature 

reduces the rate of solvent exchange, which should be reflected in an increase in 

intensity. As two factors are present, one that is lowering intensity and one that is 

increasing intensity, the two factors counteract each other and the result is only a 

very small change in intensity. Mobile residues may also be affected only a little 

by cooling.
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Figure 6.5 A. The intensity change observed in the 'H-I5N HSQC spectra o f hCC as the 

temperature is lowered in 5°K steps from 303°K to 278K. The upper and lower limit o f  the x- 

axis is 308°K and 273°K, respectively. The upper and lower limit o f the y-axis is the relative 

intensity o f 10 and -1 respectively. The squares coloured in blue indicate hydrogen bonded 

amides observed in the dimeric hCC structure (PDB ID: 1 g96)^191. The red squares represent 

residues where signal intensity is lost during the titration. B. A structural representation of hCC 

(based on the domain swapped dimer o f  hCC (PDB ID: lg96)(l91) showing the residues that 

change intensity as temperature is reduced. A58, which is present in the loop between strands 2 

and 3, is not shown in this representation because o f its position o f  the domain swapped dimer. 

Blue colouring represents areas of little intensity change, through white to red, which shows 

areas o f  strong intensity change. The spheres represent the relative size o f  the intensity change.
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Assignment o f SO jiM h C C 15 mM tris-TFA pH  7.5, 278°K  

The HSQC spectrum of 50 pM hCC, 15 mM tris-TFA pH 7.5, 278°K is shown in 

figure 6.6. The *H spectum recorded under these conditions shows a wide 

dispersion of amide proton resonances and upfield aliphatic proton peaks 

indicating that hCC is folded under these conditions. No evidence of the 

characteristic peak shifts associated with dimérisation of hCC can be identified in 

either the ID or 2D spectra.I25]

The published assignment of hCC identifies 110 amide cross peaks out of the 120 

residues of hCC. The effect of increasing pH and decreasing temperature on the 

amide cross peaks of hCC has resulted in disappearance of cross peaks for 

residues G4, Gi l ,  N39, M41, A58, C83, R93, T i l l  and Cl 17. Further to this, 

several peaks that are clearly resolvable in the conditions of the published 

assignment are now overlapped including K5/V10, N35/D81, H43/V60, E67/A95, 

K75/N82 and H90/M110.
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Figure 6 . 6  'H-I5N HSQC spectrum o f 50 pM hCC in 15 mM tris-TFA pH 7.5, 2 mM sodium 

azide at 278°K. Dl represents the 'H dimension, D2 represents the 15N dimension.
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6.3.3 Titration with Af3 mo

Figure 6.7A shows, somewhat surprisingly, there are only very minor chemical 

shift changes observed in the titration of APmo into hCC as described in section 

6.2.4. It is remarkable that despite the addition of beyond a 1:1 equivalence, there 

appears to be virtually no difference in the chemical environment of each amide 

of hCC. The few changes that are observed are due to the emergence of peaks 

that occurs as APmo is titrated into the sample. Figure 6.7B shows the chemical 

shift changes of the control experiment in which buffer is titrated into the hCC 

sample.

Figure 6.8 shows the intensity change of each amide in the Ap titration and in the 

control experiment. The majority of the hCC amides show no change in intensity 

with the exception of the N-terminal region and A58. There is some indication of 

peaks emerging that representing the amides of M41 and C83 although is difficult 

to distinguish from the background noise of the experiment. The control 

experiment shows no intensity changes in any of the amides.

Figure 6.9 shows the individual amide peak for each residue that shows an 

increased intensity change following the addition of APmo- In addition the amide 

peak of E20 is shown as an example of a peak that shows no change in intensity. 

For each residue the expanded HSQC spectra from the APmo titration and buffer 

titration are shown. Amide signals from G4, G11 and A58 are not observed in the 

absence of APmo- Amide signals from K5/V10, R8, L9, and G12 appear as 

relatively broad peaks that sharpen and increase in intensity following the addition 

of APmo-

In the absence of APmo, amide peaks of the N-terminal region are broadened or 

not present. The broadening and disappearance of peaks in the relatively 

unstructured N-terminal region would imply that this region is exchanging at an 

intermediate rate between two or more conformations. Following the addition of 

Api.40, these peaks gradually appear and sharpen. This indicates that APmo has 

influenced the ability of hCC to change between these conformations.
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Figure 6.7 The changes in chemical shift observed in the 'H-^N HSQC spectra of 50 pM hCC 

in 15 mM tris-TFA pH 7.5, 2 mM sodium azide at 278°K following the addition of ApM 0  (A.) 

or buffer ( B.). The x-axis shows the volume of APi.40/buffer added ranging from 0 to 600 pi. 

The y axis shows the chemical shift change ranging from -0.01 to 0.1. To account for the 

dilution factor in the titration and necessary changes in receiver gain during the titration, data 

have been normalised against residue A120.
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C.

Figure 6 . 8  The changes in intensity observed for each amide in the 'H-i5N HSQC spectra o f  50 

pM hCC in 15 mM tris-TFA pH 7.5, 2 mM sodium azide at 278°K following the addition of 

APi-4 o (A.) or buffer ( B.). The x-axis shows the volume o f APi_4 0/buffer added ranging from 0 

to 600 pi. The y axis shows the relative intensity ranging from 0 to 10. To account for the 

dilution factor in the titration and necessary changes in receiver gain during the titration, data 

have been normalised against residue A 120. C. A structural representation o f hCC (based on 

the domain swapped dimer o f hCC (PDB ID: lg96)119') showing the residues that change 

intensity following the addition of Ap^o. A58, which is present in the loop between strands 2 

and 3, is not shown in this representation because o f its position o f  the domain swapped dimer. 

Blue colouring represents areas o f little intensity change, through white to red, which shows 

areas o f  strong intensity change. The spheres represent the relative size o f  the intensity change. 

Purple residues represent proline residues.
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Figure 6.9 Figures A-G track the changes o f residues that show a difference between the APmo 

titration and the control buffer titration. Figure H. is included as an example of a residue that 

shows no significant difference between the AP1 . 4 0  titration and the control titration. At the top 

of each column is the HSQC of 50 pM hCC in 15 mM tris-TFA pH 7.5, 2 mM sodium azide at 

278°K, descending down the column each HSCQ is recorded following the addition of a further 

100 pi of ApM0 /buffer. A.-F. represent G4, K.5/V10, R8 , L9, Gi l ,  G12, A58 and E20, 

respectively.
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6.4 DISCUSSION

The data obtained from the A[3mo titration has been used to build a model 

describing the interaction between hCC and A|3mo- The broadened or missing 

peaks of amides in the N-terminal region and residue A58 suggests that in the 

absence of A(3mo these residues populate at least two conformations. The 

simplest scenario is represented in Figure 6.10A. Here, two conformations can be 

populated, one in which the N-terminal region interacts with A58 and the other in 

which it does not interact. If the two conformations are in intermediate exchange 

then the amide peaks for each residue will broaden or disappear.

In this model, as A(3 mo is titrated into the hCC sample it prevents the interaction 

between the N-terminal region of hCC and A58, thus favouring the alternative 

conformation. As the N-terminus can no longer interact with A58, the effects 

caused by intermediate exchange are removed. The result of this would be a 

sharpening of amide peaks as is observed in the titration data.

The chemical shift data shown in figure 6.7 does not support such a simple model. 

Unless the chemical shift differences between the two conformations were 

unresolvable, then a change in chemical shift should be observed as the 

conformation where the N-terminus does not interact with A58 becomes the 

predominant species. It seems unlikely that approximately 10 residues would 

have no resolvable chemical shift changes between the two conformations. 

Therefore, the model has been adapted to account for the chemical shift data. 

Rather than two conformation being populated, multiple conformations can be 

populated. This is represented by the cartoon in figure 6.1 OB.

In the adapted model, the idea that APmo prevents the interaction between the N- 

terminus and A58 still holds. However, rather than preventing the population of 

one out of two possible conformation, it is preventing the population of one out of 

many conformations. The observed chemical shift represents an average of all the 

chemical environments that an amide populates. Therefore, preventing the 

exposure to one chemical environment out of many will have a minimal effect on 

the observed chemical shift.



In order for the model to account for the change in intensity presented in Figure 

6.8, the conformation that interacts with A58 must exchange with other states at 

an intermediate rate. However, the rest of the conformations need to be in fast 

exchange with each other. This is observed in the HSQC spectrum as a single 

sharp peak that is broadened only when the conformation that interacts with A58 

can be populated.

The interaction that prevents the N-terminus interacting with A58 must occur 

within the N-terminal region. The three mechanisms by which this can occur are 

illustrated in Figure 6.10C-E. Either APmo causes the N-terminus to interact with 

itself (6.10C), with another N-terminal region (6.10D) or with APmo itself 

(6.10E).

The data presented in this chapter conflicts with previously published data that 

suggests that hCC binds tightly to the N-terminus of APmo.11131 APmo is highly 

prone to aggregation, readily forming both oligomeric species and amyloid. The 

model discussed above only describes the interaction between monomeric hCC 

and monomeric APmo- A specific interaction may occur between hCC and 

oligomeric species of APmo which would not be observed in the experiments 

described in this chapter. Further experimentation is required to determine 

whether hCC interacts specifically with oligomeric APmo species and APmo 

amyloid.
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A.

Figure 6.10 A. A cartoon o f an equilibrium between two conformations of hCC, on the left the 

N-terminus o f hCC does not interact with A58 whereas on the right the N-terminus o f  hCC does 

interact with A58. B. A representation o f hCC which is able to form many conformations due 

to the flexibility o f the unstructured N-terminus, only in one of these conformations can the N- 

terminus interact with A58. C.-E. Three mechanisms by which ApM0 can prevent the

interaction o f the N-terminus o f  hCC with A58, the formation of interactions within the N- 

terminus (C.), an interaction between N-termini of a second cystatin (D.) or an interaction 

between AflM0 and (he N-terminus (E.).



CHAPTER SEVEN

FINAL CONCLUSIONS AND FUTURE WORK
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The main aim of this project was to compare the amyloidogenicity of hCC with 

that of other members of the cystatin superfamily. Identifying common behaviour 

across the cystatins helps to validate the use of other, better characterised cystatins 

in the development of a model of cystatin amyloidogenesis. Given that at least 

partial unfolding of the folded state is required to produce amyloid precursor 

states that trigger the formation of amyloid, a detailed understanding of the 

folding pathway is a first step to the identification of these states. For this thesis, 

the folding pathway of hCC was characterised and compared with that of cC 

(chapter 4). Following on from that, the initial stages of amyloidogenesis of hCC, 

including dimérisation by domain-swapping, were observed in order to identify 

behaviour common to all cystatins and factors that may increase the general 

propensity of proteins to form amyloid.

Prior to conducting the experiments described in chapters 4, 5 and 6 it was 

necessary to produce sufficient quantities of recombinant hCC. The expression 

and purification protocol described in chapter 3 was adapted from a cC protocol 

and optimised to produce a yield of approximately 5mg/L growth media. Despite 

the optimisation of the protocol there remains a significant variation in the yield 

of hCC. The hCC gene contains several codons that are rarely used in E. coli, 

within this group of rare codons one proline codon is particularly favoured. In 

order to compensate for this bias E. coli expressing rare tRNAs were used in the 

production of recombinant hCC. The expression of hCC was significantly 

improved, but there were a number of inconsistencies with the behaviour of this 

cell line. The growth rate of the cells varied considerably, which could 

significantly increase the time taken to produce recombinant hCC. Time is 

probably the most important factor when considering the role of contaminants in 

the degradation of hCC. Producing the rare tRNAs and the antibiotic resistance 

needed to maintain their production adds additional stress to the cells. A high 

concentration of nucleic acids were found in the periplasmic extract which caused 

difficulties in the purification process. The need to use this cell line would be 

removed if the rare codons were replaced with codons that are used more 

frequently in E. coli. Alternatively the whole hCC gene could be replaced with a



synthetic gene that favours the codon bias of E. coli. In conclucsion, improved 

expression levels and the removal of nucleic acids from the periplasmic extract 

should improve the overall yield of hCC.

The folding pathway of cC has been well characterised, but there was previously 

very little information available on the folding pathway of hCC. Analysis of the 

data described in chapter 4 shows that the folding pathway of hCC is in fact very 

similar to that of cC. hCC and cC both fold via a relatively compact intermediate 

before passing through a transition state barrier to the folded state. The stability of 

the folding intermediate of hCC is very poor (-1.7 kcal mole'1), predictably so 

considering the difference in stability of the folded proteins (AAGf/u = 10.6 kcal 

mole'1, for hCC vs. cC). Other cystatins whose folding behaviour has been 

characterized are less stable than hCC, with a AGf/u of 4.3 kcal mole'1 for 

cystatins B.11781 This suggests that although other cystatins may well be 

undergoing similar structural changes during folding, for a number of these 

proteins, 2-state folding is observed as Ikin becomes too unstable to be populated.

Amyloid precursor states are the link between the folding and misfolding 

pathways. For disordered states to become involved in bimolecular reactions, 

they need to exist for sufficient time for these to interact. Short of stabilising 

disordered states of proteins, another way of encouraging these states is to make it 

kinetically difficult for the protein to get out of this state, in other words, a 

“kinetic trap”. An example of this is seen for (3-microglobulin where the amyloid 

precursor state is believed to be trapped as a partially folded state by the 

isomerisation of a proline residue.1137, 1381 In the case of cystatins, there are 

several different hypotheses. Native state hydrogen exchange (Staniforth et al., 

unpublished data) has been used to investigate any population of species that are 

in exchange with the native state of cC. The GdnHCl dependence of the exchange 

rates have been determined and this has led to the suggestion that the reduced 

state may be a precursor to dimerisation and amyloid formation (unpublished 

data).11341 A reduced state has been identified as a amyloid precursor state of 

human prion protein. Human prion protein switches from the native a 

conformation to a monomeric form rich in (3 structure following the reduction of 

the disulphide bond. The soluble (3 form of human prion protein is a direct 

precursor amyloid fibres.11791 In vivo it is certainly plausible that the necessary
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reducing conditions are encountered for the reduced state to be a realistic amyloid 

precursor state. Whether or not the reduced state is a feasible amyloid precursor 

in hCC remains to be determined. Other members of the cystatin superfamily, 

specifically cystatins A and B have been studied using hydrogen exchanged134,1801 

The overall picture that is emerging may, in fact, be that these proteins exchange 

their hydrogens through local structural fluctuations, rather than by any 

cooperative unfolding event. Examining the behaviour of a cystatin with a stable 

intermediate between that of cystatin B and cC, i.e. hCC may help resolve these 

conflicting hypotheses.

As well as the reduced state of hCC or cC, a proline isomer populated during the 

refolding of this protein may provide an ideal candidate for an amyloid forming 

precursor. In chapter 4, I show that proline isomerisation is responsible for the 

slow folding (5.5 x 10'2 s’1) of a population of the unfolded hCC. A recent study 

of cystatin B amyloidogenesis suggests that the isomerisation of proline 74 is 

essential for the formation of a tetrameric form of this protein. The structural 

change in the protein, caused by this isomerisation has been proposed to be 

essential for amyloid formation by cystatins.[ 1721 In this thesis, I contribute to 

resolving this issue by mutating the proline that is conserved across the cystatins, 

P I03 in cC. I show that this significantly alters the propensity for fibrillisation 

whilst having no effect on the ability to dimerise. In the future, when problems of 

availability of hCC, are resolved, analysis of the equivalent mutant in hCC, 

P I05A, will determine whether this behaviour is common to all cystatins, and 

more importantly, determine whether the slow folding rate that is observed in the 

wt hCC folding pathway is due to the isomerisation of this conserved proline 

(PI05). If isomerisation of PI05 is required for hCC amyloid formation, the 

population of a partially folded state with the correct PI 05 isomer for aggregation 

may be an important factor in the propensity for fibrillisation.

Prior to the experiments described in chapter 5, it was known that the domain- 

swapped dimers of hCC and cC are structurally very similar.119,1341 hCC and cC 

both form domain swapped dimers by incorporating loop 1 of the active site into 

the P-sheet thus forming a continuous P-strand from strands 2 and 3. Although 

the end product of the dimerisation reaction, the domain-swapped dimers, are 

structurally similar no information was available on the mechanisms by which
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they are formed. Over the range of conditions studied in this thesis, the 

dimérisation of hCC was shown to be rate limited by a bimolecular process. 

Furthermore, m-value analysis indicated that the structure of the dimérisation 

transition state is very close to the structure of the unfolded state and is more 

unfolded than the kinetic intermediate identified in the hCC folding pathway. The 

analysis of the hCC dimérisation reaction shows it to be very similar to that of cC. 

The difference in the observed rates of dimérisation between hCC and cC are 

directly related to the difference in unfolding rates and are thus predictable from 

the observed difference in the stability of the folded proteins. Evidence of a 

common behaviour of dimérisation in cystatins lends support to the use of several 

cystatins in the development of a model of amyloidogenesis in cystatins. It also 

provides additional routes to the characterisation of the domain-swapping 

phenomenon in proteins as very few domain-swapping proteins have 

experimentally accessible dimérisation reactions. Dimérisation of the cell cycle 

regulatory protein pl3sucl is one of the few domain-swapping reaction that has 

been well characterised, here the monomer-dimer equilibrium is controlled by two 

conserved prolines in the hinge loop that connects the exchanging domains.113'5

cC has been shown to form dimers, tetramers and oligomers under fibrillisation 

conditions prior to the formation of amyloid fibres. Under dimérisation 

conditions, there was no evidence of a tetrameric hCC species. Further work is 

required to determine conditions under which hCC can be induced to form 

amyloid fibres. Analysis of the initial stages of amyloidogenesis of hCC is 

required to determine which oligomeric species are populated under 

amyloidogenic conditions. A comparison of the amyloidogenesis of hCC and cC 

will indicate what behaviour is common to the cystatin superfamily and help 

identify what factors influence the amyloidogenicity of the different cystatins.

The work described in chapter 6 is a series of preliminary experiments 

investigating the nature of the interaction between monomeric hCC and 

monomeric APmo. By assigning the 'H-15N HSQC spectrum of hCC any changes 

due to the interaction with AP can be mapped onto the structure of hCC. Analysis 

of this data shows quite clearly that there is no interaction between monomeric 

hCC and monomeric APmo under these conditions. Given that hCC has been 

shown to inhibit AP amyloid formation, hCC must interact with one of the
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oligomeric species of AP that is populated during amyloidogenesis. Further 

experimentation is required to determine the exact nature of the interaction 

between hCC and Ap. The bound state of hCC to either oligomeric Ap or AP 

amyloid would exceed the upper size limit of NMR experiment described in 

chapter 6 and cause a complete loss of NMR signal. However, although the exact 

residues involved the interaction could not be identified the loss of the NMR 

signal in itself could be used as evidence of the interaction between hCC and Ap. 

Alternatively, analytical ultracentrifugation (AUC) in combination with diffusion 

experiments or light scattering, including quasi-elastic light scattering (QLS)[1811, 

may shed light on this problem.

The main limitation to the work described in this thesis has been the ability to 

produce sufficient quantities of recombinant hCC. Despite the optimisation of the 

protocol for hCC expression and purification, there is still significant variation in 

the yield of hCC. Future modification of the pINIII-ompA2-hCC plasmid should 

significantly improve the yield and reduce the variability in the yield, providing a 

reliable, high yield source of hCC (consistently ^ 5mg/L culture). Given 

sufficient recombinant hCC, there are a number of useful experiments that would 

add support to the data presented in this thesis. Despite the limited supply of 

hCC, the analysis of the folding and dimérisation of hCC presented in this thesis 

highlights common features in the folding and aggregation of the cystatin 

superfamily.
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