FLOW OVER SIDE WEIRS

by D.J. Balmforth. B.Sc.

Submitted for the Degree of

DOCTOR OF PHILOSOPHY

- UNIVERSITY OF SHEFFIELD

Department of Civil and Structural Engineering

AUGUST 1978

IMAGING SERVICES NORTH

Boston Spa, Wetherby West Yorkshire, LS23 7BQ www.bl.uk

BEST COPY AVAILABLE.

POOR PRINT QUALITY

IMAGING SERVICES NORTH

Boston Spa, Wetherby West Yorkshire, LS23 7BQ www.bl.uk

TEXT BOUND CLOSE TO THE SPINE IN THE ORIGINAL THESIS

CONTENTS

		rage number
List of Tables		7
List of Figures		9
Acknowledgement	S	14
Nomenclature		15
Summary		19
CHAPTER 1. IN	TRODUCTION	21
1.1	Introduction	21
1.2	Review of Previous Work	23
CHAPTER 2. TH	EORY	45
2.1	Classification of Side Weir Flow	45
2.2	Development of the General Differential Equation	51
2.3	Computation of the Side Spill Discharge	<i>5</i> 8
2.4	Allowance for Channel Roughness	59
2.5	The Effect of Curvature of the Water Surface	60
2.6	Distribution of Curvature	68
2.7	Distribution of Velocity	75
2.8	Modification of the Side Spill Discharge Equation to Allow for Curvature Effects	77

n an		
		Page Number
CHAPTER 3.	THE MATHEMATICAL MODEL	82
3.1	Arrangement of the General Differential Equation	82
3.2	Numerical Integration Methods	86
3.3	The Runge Kutta Method	89
3.4	The Hamming Predictor Corrector Method	92
3.5	Solution for Subcritical Flow	. 100
3.6	Solution for Supercritical Flow	106
3.7	Solution for Supercritical Flow with Curvature	107
CHAPTER 4.	PRELIMINARY EXPERIMENTAL INVESTIGATIONS	111
4.1	Scope of the Investigation	111
4.2	Criterion for a Constant Head	112
4.3	Description of the Apparatus	114
4.4	Experimental Procedure	126
4.5	Computation of Results	128
CHAPTER 5.	MAIN EXPERIMENTAL INVESTIGATIONS	129
5.1	Scope of the Investigations	129
5.2	Description of the Apparatus	130
5.3	Experimental Procedure	142
5.4	Computation of the Results	144

•		Page Number
CHAPTER 6.	DISCUSSION OF THE EXPERIMENTAL RESULTS	145
6.1	The Coefficient of Discharge	145
6.2	The Energy and Momentum Coefficients	153
6.3	A Qualitative Discussion of Side Weir Flow	157
6.4	A Quantitative Discussion of Side Weir Flow	176
6.5	Longitudinal Surface Profiles	199
6.6	Transverse Surface Profiles	210
6.7	Performance of the Mathematical Model for Subcritical Flow	214
6.8	Performance of the Mathematical Model for Supercritical Flow	216
6.9	Effect of Modifying the Model to Allow for Curvature	217
6.10	Starting Values	219
6.11	Assessment of Possible Errors	221
6.12	Performance of the Mathematical Model with Engels' and Gentilini's Data	225
6.13	Performance of De Marchi's Method and Chow's Numerical Integration Method	228
		•
CHAPTER 7.	CONCLUSIONS	231
References		234
APPENDICES		238
Appendix I.	Discussion of "Experimental Investigation of Flow over Side Weirs"	239
1. , ·		
4 · · · · · · · · · · · · · · · · · · ·		

				Page Number
	Appendix II.			242
		(a)	Details of the Computer Program used to obtain the Theoretical Distribution of Curvature and Velocity	243
•		(Ъ)	Computed Curvature and Velocity Distributions	249
	Appendix III.	to C Curv	ils of the Computer Program used alculate Surface Slope and ature from the Measured itudinal Surface Profiles	259
	Appendix IV.	for	ing of the Computer Programs the Mathematical Model and imen Printouts	264
	Appendix V.	Resu	lts of the Preliminary Investigation	277
		(a)	Head, Discharge and Coefficient of Discharge Values	278
		(b)	Velocity Traverse Readings	307
		(c)	Details of the Method of Computing α and β Values	352
•	Appendix VI.		r Analysis for the Coefficient ischarge	358
	Appendix VII.		lts of the Main Experimental stigation	360
•		(a)	Depth and Discharge Measurements	361
•••		(b)	Longitudinal Surface Profiles	376
•		(c)	Transverse Surface Profiles	392
	Appendix VIII.	Perf	ormance of the Mathematical Model	395
	Appendix IX.	(a)	Effect of Changing the Position of the Starting Station	412
		(Ъ)	Effect of Fixing the Value of the Surface Slope at the upstream end of the weir	414
		(c)	Effect of Using the Manning Equation for Computing the Friction Gradient	417
				•
•				

Page Number

Appendix X.

Peformance of the Mathematical Model using the Data of Engels and Gentilini

Appendix XI

Performance of De Marchi's Method and Chow's Numerical Integration Method

420

TABLES

		Page Number
3.1	Results of Step Length Analysis	90
5.1	Principal Dimensions of the Side Weirs used in the Main Investigations	134
6.1	Coefficients of Discharge - Side Weir with Constant Head	146
6.2	Velocity Energy Coefficients and Momentum Flux Correction Factors	154
6.3	Pressure Head Distributions at Upstream End of Weir	201
6.4	Mean and Standard Deviations of Error, Subcritical Flow	214
6.5	Mean and Standard Deviations of Error, Supercritical Flow	216
6.6	Error Analysis - Mathematical Model	221
6.7	Comparison between Methods of Computing the Friction Gradient s _f	223
6.8	Performance of the Model with Engels' Data	226
6.9	Performance of the Model with Gentilini's Data	227
6.10	Performance of De Marchi's Method	228
6.11	Performance of Chow's Numerical Integration Method	229
11.1	Principal Equations used in DISTN and RDISTN	243
11.2	Theoretical Velocity and Curvature Distributions, Positive Curvature	249
11.3	Theoretical Velocity and Curvature Distributions, Negative Curvature	254

Numb

ъ

		Page Number
۷.	Results of the Preliminary Investigations	277
V.1	Computed Values of Momentum Flux Correction Factor β	355
VII	Results of the Main Experimental Investigations	360
VIII	Performance of the Mathematical Model	395
IX	(a) Effect of Changing the Position of the Starting Station	412
	(b) Effect of Fixing the Value of the Surface Slope at the Upstream End of the Weir	414
	(c) Effect of Using the Manning Equation for Computing the Friction Gradient	417
X	Performance of the Mathematical Model using the Data of Engels and Gentilini	420
XI	Performance of De Marchi's Method and Chow's Numerical Integration Method	426

FIGURES

		rage Number
2.1	Case I Flow Profile	49
2.2	Case II Flow Profile	49
2.3	Case III Flow Profile	49
2.4	Case IV Flow Profile	50
2.5	Case V Flow Profile	50
2.6	Sectional Views of Element of Flow	52
2.8	Sectional View of Element Moving in a Curved Path	61
2.9	Flow Net for Positive Curvature	69
2.10	Flow Net for Negative Curvature	69
2.11	Graph of Proportional Curvature against Proportional Depth	74
2.12	Sectional View of Flow Passing Over the Side Weir	78
3.1	Step Length Analysis	91
3.2	Curvature of the Water Surface	93
3.3	Rate of Change of Curvature/Upstream Critical Depth	95
3.4	Flow Chart Showing the Use of the Hamming Predictor Corrector Method	99
3.5	Flow Chart for the Mathematical Model Computer Program - No Allowance for Curvature	101
3.6	Typical Stage-Discharge Curve for Downstream Channel	104
3.7	Typical Side Weir Discharge Characteristic	104

		Page Number
3.8	Typical Stage-Discharge Curve for the Upstream Channel	104
3.9	Flow Chart for the Mathematical Model Computer Program - with Curvature Allowance	110
4.1	General Arrangement of the Preliminary Apparatus	115
4.2	(a) Dahl Tube Flow Meter on Delivery Pipe	117
	(b) Dahl Tube Differential Manometer	117
4.3	Graded Pebble at Inlet to the Flume	118
c 4. 4	General View of the Apparatus used in the Preliminary Investigations, Looking Downstream	118
4.5	The Tapering Channel Section	120
4.6	The Downstream Sluice Gate	120
4.7	The Side Spill Channel Depth Gauge	121
4.8	The Miniature Current Meter, Depth Gauge and Carriage	121
4.9	The Current Meter Recorder	123
4.10	Weir being Tested Transversely	123
4.11	Section through Weir Crest	125
5.1	General Arrangement of the Main Apparatus	131
5.2	The Apparatus used in the Main Investigations	132
5.3	The Apparatus used in the Main Investigation	132
5.4	The Differential Manometers	133
5.5	The Side Spill Channel Showing the Vee Notch and Stilling Tube	133
and the second second		

· · · ·		Page Number
5.6	The Upstream Sluice Gate	135
5.7	The Downstream Sluice Gate	135
5.8	Downstream Sluice Gate Raised	137
5.9	Downstream Sluice Gate Lowered	137
5.10	Downstream Weir Fitted	138
5.11	Stilling Well and Pointer Gauge	138
5.12	Alternative Downstream Pressure Tappings	139
5.13	Depth Gauge, Carriage and Electronic Integrator	139
5.14	The Five Point Depth Gauge	141
6.1	Relationship between C_{D} and h/c	147
6.2	Velocity Profile, Reading 16	148
6.3	Velocity Profile, Reading 16	149
6.4	Velocity Profile, Reading 16	150
6.5	Velocity Profile, Reading 16	151
6.6	Velocity Profile, Reading 16	152
6.7	Velocity Energy and Momentum Coefficients	156
6.8	Weir 1, First Spill, Case II Flow, Clinging Nappe	160
6.9	Weir 1, Low Flow Case II, Free Nappe	160
6.10	Weir 1, Intermediate Flow, Case II	161
6.11	Weir 1, Undular Jump, Case III	161
6.12	Weir 1, Broken Jump, Case III	162
6.13	Weir 1, Case I Flow	162
6.14	Weir 2, First Spill, Case II Flow, Clinging Nappe	163

. 11 .

		Page Number
6.15	Weir 2, Intermediate Flow, Case II	163
6.16	Weir 2, High Flow Case II	164
6.17	Weir 2, Maximum Flow Case II	164
6.18	Weir 2, Maximum Flow Case I	165
6.19	Weir 3, Case II Flow with Severe Downstream Throttle (part of nappe clinging)	165
6.20	Weir 3, Weak Jump Forming, Case III	166
6.21	Weir 3, Increased Flow, Stronger Jump Case III	166
6.22	Weir 3, Strong Broken Jump, Case III (some instability)	167
6.23	Weir 3, as Fig. 6.22 but with the downstream throttle removed, Case I	167
6.24	Weir 3, High Flow Case I	168
6.25	Weir 4, Low Flow Case II	168
6.26	Weir 4, Intermediate Flow Case II	169
6.27	Weir 4, as Fig. 6.26 but with increased flow, Case II	169
6.28	Weir 4, Broken Jump, Case III	170
6.29	Weir 4, Intermediate Flow Case I	170
6.30	Weir 4, High Flow Case I	171
6.31	Weir 5, Low Flow Case II	171
6.32	Weir 5, Intermediate Flow Case II	172
6.33	Weir 5, High Flow Case II	172
6.34	Weir 5, Broken Jump, Case III	173
6.35	Weir 5, Intermediate Flow, Case I	173
6.36	Weir 5, High Flow Case I	174
6.37	Weir 3, High Flow Case IV (upstream sluice gate controlling flow)	174

		Page Number
6.38	Weir 3, as Fig. 6.37 but with the upstream sluice gate set lower, Case IV.	175
6.39 - 6.46	Discharge Characteristics	180 - 187
6.47	Case IV Flow: Reduction in Side Spill Discharge from Case I Flow due to Reduction in Upstream Depth: Weir 3.	188
6.48 - 6.55	Depth-Discharge Relationships.	189 - 196
6.56	Dimensionless Depth-Discharge Relationship for Supercritical Case I Flow: Weir 3.	197
6.57	Downstream Control Depth-Discharge Rating Curves.	198
6.58 - 6.63	Longitudinal Surface Profiles	203 - 208
6.64	Dimensionless Surface Profiles Upstream of Weir 3: Case I Flow.	209
6.65	Typical Transverse Surface Profiles: Case II Flow.	211
6.66	Typical Transverse Surface Profiles: Case I Flow.	212
6.67	Surface Wave Disturbance at Downstream Edge of Weir.	213
II.1	Flow Chart for Program DISTN and RDISTN.	244
III.1	Flow Chart for Program SLP1.	261
V.1	Vertical Distribution of u.	354
۷.2	Cross-Sectional Distribution of Area 1.	354
۷.3	Stepped Approximation to Velocity Distribution Curve.	356

13

. (

ACKNOWLEDGEMENTS

The author wishes to thank Dr E.J. Sarginson for his help and encouragement as supervisor, Mr B. Wardle for his assistance in the construction of the experimental apparatus, and Mrs J. Patrick for typing this script.

NOMENCLATURE

and the second	•
	Cross-sectional area of flow; constant in the law of curvature distribution.
A _m	Average value of A.
AJ	Value of surface curvature in iteration j.
AJ1	Value of surface curvature for the previous step $(x_{n-1} to x_n)$.
8.	Streamline constant = $c.\cos\psi$
B	Width of rectangular section channel.
B _w	Width of the channel at crest level (Allen ¹³).
Ъ	Streamline constant = $c.\sin\psi$
C	Weir coefficient (Ackers ⁵) = $\frac{2}{3}\sqrt{2g}$ C _D
C •	Dimensionless constant (Allen ¹³).
c _D	Coefficient of discharge.
C _{II}	Constant (Frazer ¹⁵).
C	Height of weir crest above channel bed; streamline constant
° _r	Ratio c/y_c .
D	Diameter of circular section.
đ	Distance below free surface.
d _r , d ₂ , d ₃ , d ₄ , d ₅	Depth ratios (Frazer ¹⁵)
E	Specific energy.
Ec	Critical specific energy.
El	Specific energy at the upstream end of the weir.
E ₂	Specific energy at the downstream end of the weir.
Fr	Froude Number
f	A function
B	A function
g	Gravitational acceleration
h	A function
h	Step Length
• • •	

h _f	Head loss due to friction.
1	A function.
j	A suffix used as a counter.
K	Pressure force correction factor; streamline constant = $\cos \psi$
K ₈	Value of the streamline constant at the water surface.
K1.K2	Constants used in modified formula for q.
ko, k1, k2, k3	Values computed in the Runge Kutta method.
L	Length of the weir.
1	Ratio L/B
ML .	Momentum flux of flow passing over the weir in length Δx .
^א ۲	Momentum flux of the mainstream at the upstream end of Δx .
M2	Momentum flux of the mainstream at the downstream end of Δx .
n	Indice in curvature distribution law.
m o ^{,m} 1 ^{,m} 2 ^{,m} 3	Values computed in the Runge Kutta method.
n	Manning roughness value; a suffix used as a counter; indice in velocity distribution law; side slope of trapezoidal section; proportional depth = z/y .
P	Wetted perimeter; pressure force.
P	Pressure.
Q	Discharge.
Qa	Available flow (Allen ¹³).
Qw	Discharge over the side weir.
Q 1	Discharge in the upstream channel; discharge at the upstream end of a short length of channel.
Q	Discharge in the downstream channel; discharge at the downstream end of a short length of channel.
9 2	

16

ſ

q	Discharge over the side weir per unit length.
92,93,94,95,9 ₀₀	Discharge ratios (Frazer ¹⁵).
R	Hydraulic mean depth.
Re	Reynolds' number.
R	Average hydraulic mean depth.
r	Radius of curvature.
r *	Radius of curvature of the water surface.
s _f	Friction gradient.
8 o	Slope of the channel bed.
t	Curvature of the water surface = $d^2y/dx^2 = dz/dx$
u	Longitudinal component of velocity at a distance d below the water surface.
u _o	Longitudinal component of velocity at the water surface.
α	Longitudinal component of the side spill flow.
V	Mean longitudinal component of velocity at a section.
v m	Mean value of $v_1 = \frac{1}{2}(v_1 + v_2)$
v _l	Value of v at the upstream end of the weir; value of v at the upstream end of a short length of channel.
v ₂	As v ₁ but at the downstream end.
W	Width of the water surface.
W	Discharge per unit width of channel = vy.
x	Distance along the channel bed.
У	Depth of flow.
У _с	Critical depth.
У _m	Mean value of $y_1 = \frac{1}{2}(y_1 + y_2)$
y ₁	Depth of flow at the upstream end of weir; depth of flow at the upstream end of a short length of channel.

.

•	
y ₂	As y ₁ but at the downstream end.
Z	Slope of the water surface = dy/dx ; distance above the channel bed.
æ	Velocity energy coefficient.
β	Momentum flux correction factor.
8	Indice in Engels' formula ⁸ , and Coleman and Smith formula ⁹ .
ΔM	Change in momentum flux over length Δx .
ΔQ	Discharge passing over the weir in length $\Delta x = Q_2 - Q_1$.
Δv	v ₂ - v ₁ .
Δx	Short length of channel.
Δy	Increase in y over Δx .
8	Indice in Engels' formula and the Coleman and Smith formula.
5	A function (Schmidt ¹²).
r	Constant = $(n + 1)^2 / (n + 2n + 1)$.
θ	Constant = $2y_{1/y_c} + (y_c/y_1)^2$; angle of inclination of bed to horizontal
λ.	Friction factor.
ų	Weir coefficient (De Marchi ^{3,4}).
Ms	Empirical value of μ .
V	Kinematic viscosity of water.
P	Density of water.
T_{ox}	Shear stress at the boundary.
ø	Slope angle of a streamline; potential function; a function.
ψ	Stream function; a function.

18

. ^

SUMMARY

A literature survey has been carried out to assess the merits of the diverse methods of analysis of side weir flow previously available. Two of these appeared to have potential as practical methods of analysis and they were tested against the data obtained during this investigation.

A momentum analysis of the flow in the main channel yielded a general differential equation which, for supercritical flow, included terms to allow for the effect of curvature on the vertical pressure distribution. The discharge over the side weir, per unit length, was obtained using the transverse weir equation. These two simultaneous equations formed the basis of a mathematical model incorporating standard integration techniques.

Preliminary tests were conducted in a large rectangular channel which tapered uniformly so as to produce a constant head along the weir. This enabled values of the coefficient of discharge to be obtained for use in the transverse weir equation, and values were found to lie within 2% of those given by the Rehbock equation. Velocity distributions were measured to establish values of the momentum flux correction factor, and these were found to correspond to normal values.

In the main experimental investigations five side weirs were tested in a prismatic rectangular channel. The most significant parameters that affected the discharge over the weir were the settings of the channel controls and the crest height. Substantial variations in the weir length were required to affect the side spill discharge significantly, whilst the effect of the channel slope was almost negligible.

A comprehensive set of experimental data was obtained and this was used to test the accuracy of the mathematical model. It was found to give extremely good simulation of the flow with both mean and standard deviation of errors in the computed discharge less than 5% in all cases.

CHAPTER 1. INTRODUCTION

1.1 Introduction

1.1.1 The side weir and side spillway have been widely used since the end of the 19th century for diverting a proportion of the mainstream flow in a channel or watercourse into a secondary chamber alongside. By far the most common application has been as storm sewage overflows and Victorian engineers were responsible for the construction of a large number of such overflows on combined sewer systems in most cities and towns in the British Isles. Originally these overflows consisted of no more than a slot in the side of the sewer pipe, but soon they developed into proper side weirs constructed in special chambers. The channel was normally rectangular in section with either a single side weir, or double side weirs where space was restricted. More recently side weirs have been used to distribute flows to settling tanks in sewage treatment works and side spillways can be seen let into river banks as part of flood relief schemes.

1.1.2 In the majority of cases the use of a side weir as a storm sewage overflow has proved unsatisfactory in the long term. There are several reasons for this:-

(a)	The existing sewers now carry flows well in excess
	of their original design values.
(b)	The inability of the traditional side weir overflow
	to provide a separation of solid particles.
(c)	A lack of understanding of the various characteristics
	of side weir flow.

The absence of a satisfactory theoretical or empirical treatment to enable the engineer to design a new installation or analyse an existing system.

(d)

1.1.3 Accurate prediction of sewer flows and redesigning of overflow chambers has done much to alleviate the problems listed under (a) and (b) above, but despite numerous published works on the subject the engineer was still without proper means of design or analysis unless he resorted to an over-simplified theoretical or limited empirical approach. Naturally this led to errors in design.

It is the purpose of this investigation, therefore, to develop a satisfactory theoretical analysis of side weir flow and provide the engineer with a design method capable of dealing with a wide variety of side weir and spillway configurations and flow conditions.

1.2 <u>Review of Previous Work</u>

1.2.1 Over the past eighty years there have been a large number of contributions to the field of side weir flow. Some have been similar in nature to more major works whilst others have been limited to very specific applications. In general these works have been excluded from this review. The more significant contributions have been divided, for ease of reference, into empirical and theoretical categories, though in a few cases this is somewhat arbitrary as both approaches have been considered.

(a) Theoretical

1.2.2

Parmley W.C.

By assuming that the discharge per unit length over a side weir is given by the transverse weir equation Parmley developed an expression for the time required to reduce the head on the weir by a given amount:-

1

He then assumed that the longitudinal velocity v along the weir was constant, and thus the length of weir required is

Parmley did not support this equation by experimental data nor did he indicate how the value of v was to be determined. Since the formula may only be applied to supercritical flow conditions (Fig. 2.1),

where the mean velocity varies substantially along the length of the weir, it is unlikely to give accurate results.

A detailed momentum analysis is given for a trapezoidal section by considering the channel to be divided into a number of small finite sections each Δx in length. The discharge over the weir is computed for each section from the transverse weir equation

$$Q = C (y - c)^{3/2} \Delta x$$
(1.3)

and a finite difference formula is derived for computing the changes in depth, and hence in discharge, along the length of the weir:-

$$\frac{\Delta y}{\Delta x} = \left\{ {}^{s}f - {}^{s}o - \frac{Q}{g (by + ny^{2})^{2}} \cdot \frac{\Delta Q}{\Delta x} + \frac{Q^{2}}{g} \cdot \frac{y}{(by + ny^{2})^{3}} \cdot \frac{\Delta b}{\Delta x} \right. \\
\left. + \frac{Q^{2}}{g} \cdot \frac{y^{2}}{(by + ny^{2})^{3}} \cdot \frac{\Delta n}{\Delta x} \right\} / \left\{ 1 - \frac{Q^{2}}{g} \cdot \frac{(b + 2ny)}{(by + ny^{2})^{3}} \right\} \dots (1.4)$$

The validity of the method was determined by comparing computed longitudinal surface profiles and discharges with those measured in a 54m trapezoidal timber flume, and there was found to be a reasonably good correlation. The value of the weir coefficient C used in equation (1.3) was first obtained by measuring the mean head and discharge over each 1.2m length of flume. For general application of the method the same value of C as used for a transverse weir of the same type is suggested but this is not supported by experimental data.

1.2.4 <u>De Marchi G</u>. 3,4

The discharge per unit length of weir is given by a form of the transverse weir equation, such that

$$q = -\frac{dQ}{dx} = \mu \sqrt{2g} (y - c)^{3/2}$$
(1.5)

The same value for μ as a transverse weir could be used, in which case $\mu = \frac{2}{3} C_{D}$, although no recommendation is given by De Marchi. By neglecting energy losses and slope of the channel bed the following differential equation is derived

Inspection of this equation enabled De Marchi to distinguish between the falling supercritical flow profiles (Figs. 2.1 and 2.4) and the rising subcritical profile (Fig. 2.2). After substituting the terms of the transverse weir equation for dQ/dx in equation (1.6), the latter is integrated to

where

$$\oint \left(\frac{y}{E}\right) = \frac{2E - 3c}{E - c} \int \frac{E - y}{y - c} = 3 \sin^{-1} \int \frac{E - y}{E - c} \dots (1.8)$$

Values of $\oint \left(\frac{Y}{E}\right)$ are given graphically enabling the method to be used easily for analysing existing weirs or for computing the length of a weir required to remove a given proportion of the mainstream flow. Although it has been shown to give good results in certain cases¹¹ (section 6.13) significant errors have also been observed with this method, particularly when applied to supercritical flow (section 6.13).

Ackers P. 5

This method also neglects energy losses and the effect of a sloping channel bed. In this case energies are related to the weir crest and similar equations for side spill discharge and surface slope are derived to those given by De Marchi. The equations are integrated using a similar integration function to that given in equation (1.8) and it may be concluded that there is no advantage to be gained in using this method over the one summarised in the previous section. A number of important conclusions are drawn by Ackers however.

By inspection of the theoretical equations it was shown that the subcritical flow upstream of the weir would be drawn down sufficiently to form supercritical flow on the weir itself (Fig. 2.1) if the crest height was less than a half of the specific energy at the upstream end of the weir. This has been verified by the current investiation (section 6.4).

It was also shown that if energy losses and bed slope are neglected then the condition for a constant head along the weir is

$$\frac{dB}{dx} = -C \frac{(y-c)^{3/2}}{yy} \qquad(1.9)$$

It follows that if a constantly tapering channel is used to produce a constant head then the mean velocity remains constant along the length of the weir (ref: section 4.2). Ackers recommended that no allowance for longitudinal velocity should be made in computing the value of the weir discharge coefficient which should be the same as if the weir were transverse. This has also been verified during the present investigation (section 6.1)

26

1.2.5

Chow V.T. 6

1.2.6

By dividing the channel into small finite sections Δx in length, and applying a momentum analysis, Chow developed a numerical integration technique in which the rise in water surface elevation Δy^* is given by the equation

$$\Delta y^* = \frac{\propto \frac{Q_1 (v_1 + v_2)}{g (Q_1 + Q_2)}}{\Delta v \left\{ 1 - \frac{\Delta Q}{2Q_1} \right\}} - s_f \Delta x \qquad \dots \dots (1.10)$$

Suffixes 1 and 2 refer respectively to the upstream and downstream ends of the section under consideration. The side spill discharge ΔQ is computed from a form of the transverse weir equation;

$$\Delta Q = \frac{2}{3} \sqrt{2g} \quad C_D \quad \left\{ \frac{y_1 + y_2}{2} - c \right\}^{3/2} \cdot \Delta x \quad \dots \quad (1.11)$$

and the gradient of the total energy line s_f may be computed from the Manning equation or by any other suitable method. The performance of Chow's Numerical Integration Method has been studied as part of this investigation and the findings are discussed in section 6.13. Although Chow makes no recommendation for values of C_D or \propto the method was found to work reasonably well in most cases when the normal values of C_D and \propto were used. It is recommended for use when a digital computer is not available as the computations can easily be arranged into tabular form. The method is applicable to both subcritical and supercritical flow profiles where a hydraulic jump is not formed along the weir section.

Smith K.V. 7

1.2.7

A general differential equation for spatially varied flow over side weirs is derived from energy considerations:

$$\frac{dy}{dx} = \frac{s_o - s_f - \frac{\alpha Q}{gA^3} \cdot \frac{dQ}{dx} + \frac{\alpha Q^2 y}{gA^3} \cdot \frac{dB}{dx}}{1 - \frac{\alpha Q^2 W}{gA^3}} \dots$$

where $\frac{dQ}{dx}$ is given by the transverse weir equation,

.....(1.12)

Equation (1.12) is applicable to most artificial sections, and an extended form of the equation is given for irregular section natural channels.

The solution of equations (1.12) and (1.13) is simultaneously effected by dividing the channel into small incremental lengths and working along the weir in steps from known conditions at one end. Each step length is dealt with successively and solutions obtained iteratively for that length. Although tedious by long hand calculation the method is readily handled by a digital computer. It is claimed that convergence to a solution is rapidly reached at each step for both subcritical and supercritical flows, although difficulty is experienced in the region of critical flow. Worked examples are included but the results are not supported by experimental data. No recommendations are given for suitable values of the weir coefficient C_n or the velocity energy coefficient \propto .

This is the first method to apply a generalised

theoretical approach to the problem of flow over side weirs.

(b) Empirical

1.2.8 <u>Engels H</u>. ⁸

By neglecting the effects of friction and channel slope Engels suggests a simple formula for the side spill discharge,

$$Q_{w} = \frac{2}{3} \sqrt{2g} \cdot C_{D} \cdot V_{D} \cdot (y_{2} - c)^{\delta}$$
(1.14)

in which the indices δ and δ are related by the equation

$$\chi + \delta = 2.5$$
(1.15)

Equation (1.15) ensures that equation (1.14) is dimensionally homogenous.

A series of 25 tests were performed on a wide variety of side weirs in prismatic rectangular channels, in which the flow was subcritical throughout (Fig. 2.2). From the results Engels concludes that δ should have a value of 0.831 and δ a value of 1.669. The data from these tests has been used in section 6.12 to help to evaluate the performance of the mathematical model developed as a part of the current investigation.

Engels undertook a further series of tests on weirs set in a tapering rectangular channel. Values of X and S were found to be 0.9 and 1.6 respectively, and these values were not affected by the ratio of upstream to downstream width. However, since a prismatic channel can be thought of as a special case of a tapering channel, there is clearly some inconsistency in the recommended values for X and S. A value of C_D of 0.855 is recommended for a round crested weir and 0.735 for a sharp crested weir, which do not agree with accepted values for transverse weirs.

1.2.9 <u>Coleman S. and Smith D.</u> 9

The usual form of the transverse weir equation is abandoned in favour of an empirical equation of the type

$$Q_{W} = C L^{V} (E_{1} - c)^{\delta}$$
(1.16)

where the upstream specific energy E_1 is computed by adding the velocity head $\frac{v^2}{2g}$ to the depth at the start of the weir, y_1 . The formula is only applied to cases where supercritical flow occurs along the length of the weir (Fig. 2.1) and having conducted a series of tests for that condition Coleman and Smith suggest suitable values for C, χ and δ such that

$$Q_w = 0.316 \text{ L}^{0.72} (E_1 - c)^{1.645} \text{ m}^3/s$$
(1.16.1)

This is further developed by including the channel width B,

$$Q_{w} = 2.583 \text{ B L}^{0.72} (E_{1} - c)^{1.645} \text{ m}^{3/s}$$
(1.17)

although this is not supported by experimental data.

Finally, by a semi-empirical analysis, a formula for the length of weir is obtained:

L = 1.158 B v
$$(y_2 - c)^{0.13} \left\{ \frac{1}{\sqrt{y_1 - c}} - \frac{1}{\sqrt{y_2 - c}} \right\} m$$
 (1.18)

It can be seen that equation (1.18) is similar to that developed by Parmley (equation (1.2)). Again no indication is given as to how the value of **v** is to be calculated. Furthermore, none of the equations given above allow for the draw-down effects in the upstream channel. Despite these drawbacks, however, the equations were used as the principal design method in Great Britain for a number of years.

1.2.10 Favre H. and Braendle F. 10

By applying a momentum analysis to a short length of channel the following differential equation for spatially varied flow with decreasing discharge is developed:

where \bar{u} represents the longitudinal component of the side spill flow. Since equation (1.19) cannot be integrated directly it is written as a difference equation relating to a small finite length of channel $\Delta x_{,}$ with the friction gradient s, computed from the Manning equation:

A preliminary series of 9 tests were undertaken to establish suitable roughness values n for the channel and to determine the head/discharge characteristics for the side weirs. The latter was achieved by testing the weirs as transverse weirs under constant head.

A second series of 19 tests were conducted on 2m long round crested weirs in a 20lm wide horizontal rectangular channel. The first 9 tests used a double side weir installation. In each case the flow was subcritical throughout (Fig. 2.2).

Data from the preliminary tests was used for computing n and $(Q_2 - Q_1)$ for use in equation (1.20). The velocities \overline{u} and \mathbf{v}_{m} were assumed to be the same, thus putting the last term in equation (1.20) equal to zero, and theoretical longitudinal profiles were computed by applying equation (1.20) to successive short increments of channel along the weir. At the same time the side spill discharge was computed. Computed longitudinal surface profiles are found to lie

within about \pm 10% of measured values, while computed discharges differ by about \pm 5%. The effect of friction is found to be small. The effect of a sloping channel bed is not considered and the tests have not been extended to different sized weirs or channels, nor to cover supercritical flow. The validity of this method for general application is therefore uncertain.

1.2.11 <u>Gentilini</u> B. 11

Gentilini conducted a series of 12 experiments in a . 214mm wide rectangular channel in order to assess the validity of De Marchi's theory ^{3,4}. The first 8 tests were conducted with subcritical flow along the weir (Fig. 2.2) and the remainder with supercritical flow occurring (Fig. 2.4). De Marchi's assumption that energy losses along the weir were negligible is investigated by plotting values of $100\left\{\frac{E_1 - E_2}{E_2}\right\}$ against $\frac{C}{E_2}$ for subcritical flow. Values of $100\left\{\frac{E_1 - E_2}{E_2}\right\}$ are found to reduce from 2.80 to zero as $\frac{C}{E_2}$ increases:

from 0.70 to 0.95. Gentilini concludes therefore that the assumption of zero energy loss is reasonable for subcritical flow. He further substantiates this by computing mean values for the weir discharge coefficient μ (equation (1.5)) and comparing them with measured values.

Experimental $\mu_{s} = \frac{Q_{1} - Q_{2}}{\sqrt{2g} \int_{L} (y - c)^{3/2} dx}$ (1.21)

For subcritical flow the ratio μ_s/μ varies from 0.903 to 0.981 as y₂ increases.

For supercritical flow, however, the ratio μ_{s}/μ varies from 0.381 to 0.575 showing a substantial discrepancy between theoretical and experimental values. It is concluded that De Marchi's method is not suitable for application to supercritical flow. The experimental work was not extended to investigate the effect of sloping the channel bed, although this has subsequently been found to introduce further errors into De Marchi's method (section 6.13). The data from Gentilini's experiments has been used in section 6.12.

1.2.12 <u>Schmidt M</u>. 12

Schmidt identifies four possible flow cases as shown in Figs. 2.1 to 2.4, and investigates the value of the weir discharge coefficient and energy loss along the length of the weir using the results of a series of tests undertaken in a large rectangular channel.

Using an average value for the head on the weir, $y_m - c_r$, the discharge over the side weir is obtained from the formula

$$Q_w = \frac{2}{3} \sqrt{2g} C_D L (y_m - c)^{3/2}$$
(1.22)

Values of the coefficient of discharge, C_D , are found to be well scattered within $\pm 5\%$ of Rehbock's¹⁹ values.

The energy of the flow is represented by the dimensionless function f, such that

where \approx_1 and \approx_2 are taken as 1.1 and h_f is an average head loss for the main channel computed from a form of the Manning equation:

$$h_{f} = \frac{n^2 v_m^2 L}{R_m^4/3}$$
(1.24)

Values of $\frac{f}{2}$ are plotted against $\frac{y_m - c}{y_m}$ for various conditions of flow and the data of Engels ⁸ and Gentilini ⁹ are also included. Although relationships are indicated on the graphs the points are far too scattered for reliable conclusions to be drawn. This is not surprising since in many cases a hydraulic jump formed on the weir.

Experiments were conducted on a side weir formed in the side of a 150mm circular pipe. The main channel, therefore, had a circular invert which was adjusted to slopes varying between horizontal and 1 in 70. Weir lengths varied from 235mm to 762mm.

The tests were only conducted for supercritical flow along the weir (Fig. 2.1) and the subcritical flow in the upstream channel was observed to draw down by up to 30%.

Allen considers the flow in the upstream pipe as being made up of two parts, namely the 'unavailable' flow which passes along the main channel below the crest, and can be computed from proportional depth-discharge curves, and the remainder which he terms the 'available' flow, Q_a . He shows that the discharge over the weir, Q_w is proportional to Q_a and deduces the following formula for computing its value:

where C[•] is a dimensionless constant. The effect of channel slope is found to be negligible.

An attempt is made to correlate the experimental results with a simple theory. The shape of the water surface profile is approximated by a square law of the type

 $(y - c) \propto \frac{1}{\sqrt{x}}$ (1.26)

where x = distance from the upstream end of the weir.

Equation (1.26) does not give good agreement with the measured water surface profile at the upstream end of the weir and it leads to an expression for side spill flow per unit length of the form

$$dQ = C (y - c)^{2/3} dL$$
(1.27)

It can be seen that equation (1.27) is contrary to the findings of previous research where the value of the head over the weir (y - c) is raised to the power 3/2.

Finally an empirical formula is deduced for computing the value of the coefficient C° in equation (1.25):

$$c^{\bullet} = \frac{0.22 \text{ D}}{B_{W}}$$
(1.28)

where B, is the width of the channel at crest level.

Although the formulae above are given in dimensionless form there is no reason to suppose that they will give good correlation with wiers of different proportions to those used for the experiments, particularly bearing in mind the novel form of equation (1.27).

1.2.14 Collinge V.K. ¹⁴

Collinge conducted tests in a 102mm and a 305mm wide flume in order to observe the types of water surface profiles that could occur, to check if the De Marchi theory could be applied to side weirs and the limits of its applicability, to determine whether the coefficient of discharge of the weir is affected by the longitudinal velocity, and to determine the nature of the bed load movement.

Measurements of discharges and surface profile co-ordinates were made for a variety of flows in each flume for both subcritical and supercritical conditions (Figs. 2.1 and 2.2), although from the observations recorded it would appear that an unbroken hydraulic jump occurred on the weir in a number of cases (Fig. 1.3).

A preliminary series of tests were undertaken to establish values of the weir coefficient μ (equation (1.5)) for use with the De Marchi method. The downstream channel was sealed and an average head over the crest determined from equations (1.29) and (1.30) below.

For small variations of head,

fean head =
$$\frac{y_1 + y_2}{2}$$
 - c(1.29)

For larger variations of head,

Mean head =
$$\left\{\frac{1}{L}\int_{0}^{L}(y-c)^{3/2} \cdot dx\right\}^{2/3}$$
 ...(1.30)

The mean head is then used in equation (1.5) to obtain a value of μ . Since equation (1.5) is strictly only applicable to short lengths of weir where the head may be considered constant, its use with equation (1.30) to produce a value of weir coefficient must be questioned, and it is not surprising that the test results produce values of weir coefficients of 0.352 and 0.374 for the 305mm and 102mm flumes respectively which are substantially different from the usual transverse weir coefficient of 0.415 recommended by De Marchi. A value of μ of 1.33 is obtained for a clinging nappe using the 102mm flume, but the value of the indice in equation (1.5) rises from 1.5 to 1.8 in this case.

In the main programme of tests the measured discharge is compared with computed values using the empirical weir coefficients obtained from the preliminary tests. For subcritical flow (upstream Froude Number ranging from 0.3 to 0.98) the computed side spill discharges are about 20% greater than the measured values but this rises to over 150% greater as the flow becomes supercritical ($Fr_1 = 1.0$) and then falls to about 30% greater as the upstream Froude Number rises to 1.3. It is unfortunate that the theoretical discharges were computed using the empirical weir coefficients since the more generally accepted value of of 0.415 would have given better correlation.

Collinge, however, attributed the discrepancies to the effects of longitudinal velocity on the weir coefficient and proceeded to obtain values for μ from the main series of tests in the same manner used for the preliminary tests. The values of μ thus produced are found to be up to 20% less than those previously computed and a graph showing the percentage reduction in μ with longitudinal velocity is given. Although relationships are indicated for both free and clinging nappes on the graph there is too much scatter and insufficient data for firm conclusions to be reached.

The present investigation has shown the weir coefficient to be unaffected by longitudinal velocity and the discrepancies between theoretical and measured values that Collinge observed can be wholly attributed to the inability of the De Marchi method to take friction and channel slope into account, as discussed in section 6.13.

1.2.15 Frazer W. 15

Frazer was the first investigator to identify all of the five possible flow types that can occur in a channel fitted with a side weir. He denotes the types as Cases I to V and they are shown in Figures 2.1 to 2.5 respectively.

After a series of qualitative tests on a small pilot rig the main investigations were carried out in a rectangular flume with a width that could be varied up to a maximum of 229mm. This was fitted with a sharp crested weir whose length and crest height were varied during the course of the experiment.

An attempt at a conventional analysis of side weir flow is made but it amounts merely to a statement of constant specific energy when applied to a prismatic channel. Further attempts at a theoretical analysis are abandoned in favour of a semi-empirical approach.

The experimental results are shown in dimensionless form and for each flow case an attempt is made to give a correlation of quantity with depth of flow, and quantity with length of weir.

The following dimensionless parameters are defined:-

For supercritical flow (Case I) the relationship between quantity and depth of flow is shown to be

$$q_5 = d_5 \sqrt{2.5 - 1.5 d_5}$$
(1.31)

and the relationship between quantity and length

$$\frac{L-q_5}{L-q_m} = 1 - 10^{-\frac{L}{8B}}$$
(1.32)

Equation (1.31) implies an energy loss of $\frac{1}{4}$ (y₁ - y₂).

For subcritical flow (Case II) equation (1.31) becomes

$$q_5 = d_5 \sqrt{0.990 - 2d_5}$$
(1.33)

where $\theta = \frac{2y_1}{y_c} + \left\{\frac{y_c}{y_1}\right\}^2$

In order to correlate quantity with weir length the transverse weir equation is assumed to apply

$$Q_1 - Q_2 = C_D \cdot \frac{2}{3} \sqrt{2g} (y_m - c)^{3/2} \cdot L$$

where ym represents the mean depth of flow along the weir.

In dimensionless form,

$$1 - q_5 = C_{II} (d_r - c_r)^{3/2} \cdot 1$$

where $C_{II} = C_D \frac{2}{3} \sqrt{2g}$, $d_r = \frac{y_m}{y_c}$
 $c_r = \frac{c}{y_c}$ and $1 = \frac{L}{B}$

Values of C_{II} are shown graphically and vary between 0.3 and 0.6, but there is too much scatter for reliable values of C_{II} to be obtained. In addition, all the tests were conducted on a horizontal channel so the effect of channel slope was not observed. This limits the range of application of the method considerably.

...(1.34)

Perhaps the most interesting aspect of Frazer's work was his attempt to deal with the formation of an hydraulic jump on a side weir (Case III) and he is the only person known to have included this case in his investigations. It is considered as a combination of Cases I and II. Suffixes 1 and 2 refer to the upstream and downstream end of the weir respectively in this case, and suffixes 3 and 4 to the upstream and downstream ends of the hydraulic jump. The latter is assumed to occur instantaneously and the sequent depth formula is therefore applied. In dimensionless form this states that

$$d_4 = \frac{d_3}{2} \left\{ \sqrt{\frac{8q_3^2}{d_3^3} + 1} - 1 \right\}$$
(1.35)

This is clearly a simplification of the phenomenon since it was observed during the present investigation that a significant flow passed over the weir along the length of an hydraulic jump.

The flow downstream of the jump is treated as a Case II profile, and upstream of the jump as Case I where equations (1.31) and (1.32) can be used to compute d_3 and q_3 . d_4 is obtained from equation (1.35) and the dimensionless specific energy just downstream of the jump is defined as

$$\psi = 2d_4 + \frac{q_3^2}{d_3^2}$$

The conditions at the downstream end of the weir are computed from the following expressions

For $0.882 > q_2 > 0.700$, $q_2 = d_2 / (1.01 \psi - 2d_2)$ (1.37) For $0.700 > q_2 > 0.473$, $q_2 = d_2 / (0.383 \psi^2 - 2d_2)$ (1.38)

Equations (1.37) and (1.38) are obtained by curve fitting data which exhibits a good deal of scatter, and it is questionable whether they are applicable even within their limited ranges of q_2 . Furthermore, an attempt to obtain a weir discharge coefficient for the section downstream of the jump by a similar method to that used with the Case II profile met with the same problem of widely scattered results. This coefficient is required to provide the additional relationship between q_2 and d_2 needed for the solution of equation (1.37) or (1.38).

1.2.16 El-Khashab A. and Smith K.V.H. ¹⁶

The experimental work reported by El-Khashab and Smith was undertaken concurrently with the present investigation.

.....(1.36)

Side wéir flow is analysed using both an energy and a momentum approach in a similar fashion to the more detailed analysis attributed to Yen and Wenzel¹⁸. The energy analysis yields an equation identical to that already proposed by Smith but simplified for a prismatic channel:-

 $\frac{dy}{dx} = \frac{s_o - s_f - \alpha Q}{gA^2} \cdot \frac{dQ}{dx}$ $1 - \alpha \frac{Q^2 W}{gA^3}$

.....(1.39)

Results of the experimental tests, which were conducted in a 0.46m wide rectangular flume, show the total energy line to deviate considerably from the theoretical line even after allowing for friction losses. This was at first thought to be due to the effect of secondary flows induced by the flow over the weir but three dimensional velocity measurements, used to compute the total kinetic energy at each section, did little to alleviate the problem. The discrepancy was finally attributed to the acceleration of the flow passing over the weir where the longitudinal velocity component of \bar{u} was observed to be greater than the mean velocity v in the main channel at that section.

A momentum approach was therefore adopted which yielded the following differential equation:

42

This equation was solved by the step by step procedure of Smith⁷ in which the discharge over the weir per unit length is computed from the transverse weir equation (1.13). No recommendation is given for a suitable value of the coefficient of discharge however.

The value of \bar{u} used in equation (1.40) was first obtained experimentally. For subcritical flow the value of \bar{u} is obtained from one of two relationships, shown graphically. For $Q_W/Q_1 < 0.5$ the ratio \bar{u}/v is shown to be proportional to y/c, and for $Q_W/Q_1 > 0.5$ the ratio v_1/\bar{u} is shown to be proportional to $(y - c)/(y_1 - c)$. For supercritical flow a single relationship between \bar{u}/v and the upstream Froude Number Fr_1 is concluded from the results.

There are two important drawbacks to the use of these relationships in computing side spill discharges and surface profiles. Firstly there is no reason to suppose that these empirical correlations can be extrapolated for weirs whose dimensions differ appreciably from those used in the experiments. Secondly, for subcritical flow a preliminary computation is required to estimate \bar{u} . Neither of these drawbacks apply to the mathematical model developed as the result of the present investigation.

It is also doubtful whether it is correct to distinguish between the longitudinal component of the side spill flow \bar{u} and the mean velocity of the mainstream v in equation (1.40). The momentum analysis is conducted along the centre line of the channel and the longitudinal velocity of particles which ultimately pass over the weir, as they initially deviate from the mainstream, is clearly equal to the mean velocity of the mainstream at that point (i.e. $\bar{u} = v$). Once a particle has passed over the weir, however, it will have travelled some distance downstream and the mean velocity in the mainstream will be less at that downstream section in most cases. At that point the particle is remote from the mainstream flow and no longer involved in the analysis.

For supercritical flow (Case I) an upstream depth of y₁ equal to 0.93 y_c is recommended as a starting value for computations, but results of the present investigation showed y₁ to vary between 0.84y_c and 0.98y_c, which has a significant effect on any computed values. El-Khashab and Smith state that their method of analysis

showed "excellent agreement" with observations but no values for the mean or standard deviation of errors are quoted. A discussion on this published paper has been submitted by the author¹⁷, and a copy is contained in Appendix I.

CHAPTER 2. THEORY

2.1 Classification of Side Weir Flow

2.1.1 Before conducting an investigation into the behaviour of flow over side weirs it is important to identify the various flow categories that can occur. There are five possible flow configurations and these were first classified by $Frazer^{15}$ who denoted them as Cases I to V respectively. The flow profile for each case is shown in Figures 2.1 to 2.5 and the conditions under which each occurs are discussed below.

2.1.2 <u>Case I</u> (Fig. 2.1)

If a low side weir is installed in a channel where the flow regime is normally subcritical then the water surface will be drawn down as the flow approaches the weir and the Froude Number progressively increases until critical conditions are reached a short distance upstream of the weir. The surface continues to fall so that at the start of the weir the depth is a little less than the critical depth (normally between 0.84 and 0.98 of the critical depth).

The flow along the weir is supercritical for the whole length, with a falling profile, and despite the discharge over the weir the flow accelerates in the main channel and the Froude Number progressively increases. Initially the curvature of the water surface is negative, but a point of contraflecture is reached a short distance downstream of the start of the weir and the curvature becomes positive (a sag-curve profile) for the remainder of the length of the weir.

Due to the high longitudinal velocities the side spill flow makes a small angle with the weir as it passes over the crest, and the magnitude of the angle reduces progressively as the flow passes downstream.

The flow is entirely controlled by the conditions that exist at the upstream end of the weir and the surface profile along the upstream section of the weir is not affected by the length of the weir. With long weirs the water surface may fall sufficiently for the nappe to cling at the downstream end of the weir and in extreme cases side spill may cease altogether before the downstream end of the weir is reached. If the downstream channel cannot sustain supercritical flow an hydraulic jump will form in the downstream channel.

It is shown in section 6.4 that the Case I condition only occurs if the crest height is less than half of the Specific Energy of the flow at the upstream end of the weir.

2.1.3 <u>Case II</u> (Fig. 2.2)

In the case where the flow in the channel upstream of the weir is subcritical, but the crest height is greater than a half of the Specific Energy at the upstream end of the weir, subcritical flow will occur along the whole length of the weir. The entire flow in the channel is controlled by conditions in the downstream channel and the water surface rises along the weir despite the reduction in discharge due to the side spill flow. The surface curvature is negative over virtually the whole length of the weir and the Froude Number progressively decreases along the weir.

The longitudinal velocities are much less than those observed with Case I flows and the angle that the side spill flow makes with the weir is correspondingly greater and increases progressively as the flow passes downstream.

46.

The water surface in the upstream channel is again drawn down as the flow approaches the weir but this is not as severe as in Case I, and the critical depth is not reached.

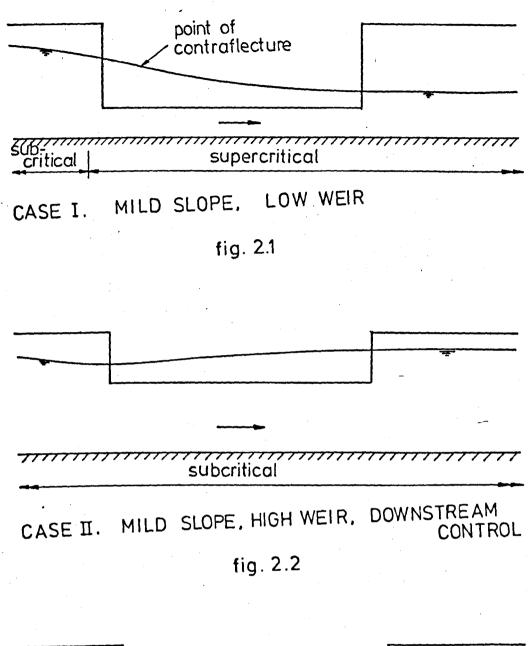
In practical applications this flow case often occurs when there is a control structure, such as a weir or sluice, in the downstream channel. It is possible in such a case to vary the downstream depth by adjusting the settings of the control structure thereby regulating the proportion of flow that passes over the weir. This is dealt with in more detail in section 6.3.

2.1.4 <u>Case III</u> (Fig. 2.3)

This case is strictly a combination of the Case I and Case II profiles. Like the Case I flow it can only occur if the crest height is less than a half of the Specific Energy of the flow at the upstream end of the weir, and in fact the two cases are identical up to the hydraulic jump. However in this case the downstream flow is throttled, either by a control structure or by the downstream channel itself, so that the hydraulic jump, which occurred downstream of the weir in Case I, now moves upstream to form on the weir. The flow profile on the latter part of the weir is essentially the same as the Case II profile and is regulated by the downstream control in exactly the same fashion.

A slight relaxing of the downstream throttle causes the jump to move downstream and less flow passes over the weir. Conversely increased throttling moves the jump upstream and increases the side spill discharge. In many cases the jump is observed to oscillate in position resulting in fluctuating side spill and downstream discharges. For this reason, and because of the difficulty in analysis, it is advisable to avoid this case in practice.

Case IV (Fig. 2.4)


In certain circumstances supercritical flow will occur upstream of a side weir, for example, when the channel is steep sloping or when the upstream flow is regulated by a sluice. If the downstream channel does not throttle the flow then supercritical flow will occur along the whole length of the weir with a falling profile similar to that of Case I. In this case, however, the depth at the start of the weir is not directly related to the critical depth, but is regulated by the upstream channel control which governs the whole of the flow along the weir. If the downstream channel cannot sustain supercritical flow an hydraulic jump will form in the downstream channel.

2.1.6 <u>Case V</u> (Fig. 2.5)

In the same way as the Case III profile is formed by a combination of Case I and Case II so the Case V profile is formed by a combination of Case IV and Case II. The supercritical profile upstream of the hydraulic jump is regulated by the upstream channel control and is identical to the corresponding Case IV profile. The subcritical profile downstream of the hydraulic jump is regulated by the downstream channel control and is identical to the corresponding Case II profile. The Case V profile is formed because the downstream throttle is sufficiently severe to move the hydraulic jump upstream so that it forms on the weir. The jump has also been observed to oscillate in position in this situation, and again it is advisable to avoid this case in practice.

48

2.1.5

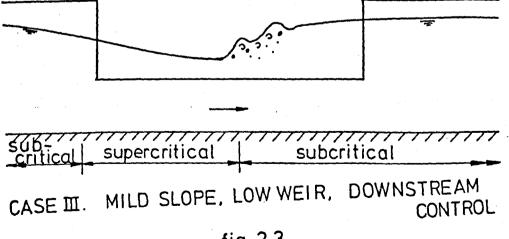
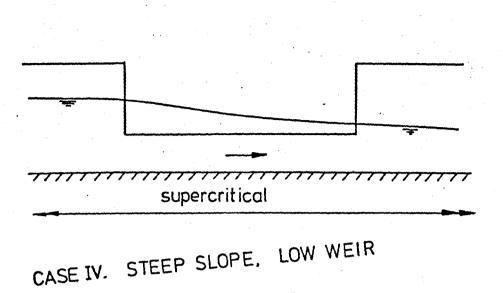
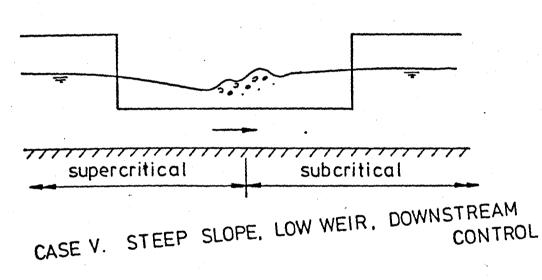




fig. 2.3

2.2. Development of the General Differential Equation

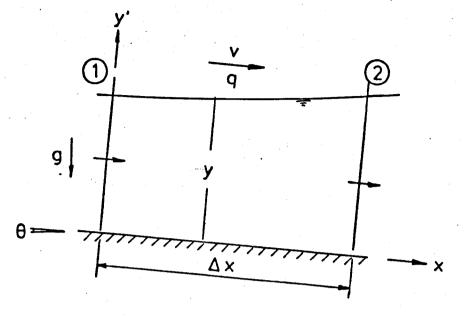
2.2.1 The analysis that follows is based on the Principles of Conservation of Momentum and Continuity and is similar to a more general analysis of spatially varied flow performed by Yen and Wenzel¹⁸.

Figure 2.6 shows a small finite length of channel, length Δx , with the upstream and downstream cross-sections defined as sections 1 and 2 respectively.

If
$$q = discharge passing over the weir perunit length of channelthen $\frac{dQ}{dx} = -q$ $(2.1)$$$

The change in momentum over the length Δx is given by

the equation


where M_L is the momentum of the water lost over the weir between sections 1 and 2.

$$M_2 - M_1 = \Delta(\rho \beta A v^2)$$
(2.3)

where β is the momentum flux correction factor (or momentum coefficient) defined by

$$\int_{A} \rho u^2 dA = \rho \beta A v^2$$

If each particle that ultimately passes over the weir initially deviates from the mainstream with a longitudinal velocity equal to the mean velocity at that section then

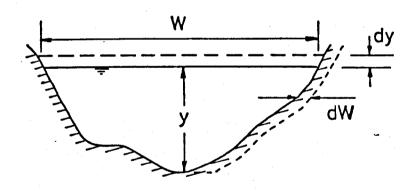


fig. 2.7

According to Newtons Second Law of Motion the rate of change of momentum is balanced by three forces. These are:-

The component weight of water between sections

1 and 2

•••

= $\rho g A \sin \Delta x$ = $\rho g A S_0 \Delta x$ (2.5)

(Ъ)

(a)

= $- T_{ox} P \Delta x$ where P is the wetted perimeter.

The opposing effect of friction

(c)

= $-\Delta(\rho g \text{ KAy } \cos \theta) + \rho g \text{Ky}^2 \Delta W \cos \theta$ (2.8) where K is the pressure force correction factor defined by

 $\int_{A} p \, dA = K \rho gAy \cos \theta$

Putting equations (2.5), (2.7), (2.8), and (2.3) and (2.4) into equation (2.2) gives

$$\rho g A = \delta \Delta x - \rho g A = \delta f \Delta x - \Delta (\rho g K A y \cos \theta) + \rho g K y^2 \Delta W \cos \theta$$
$$= \Delta (\rho \beta A v^2) + \rho q v \Delta x$$

 $pgA = \delta \Delta x - \rho gA = \Delta x - \rho q v \Delta x = \Delta (\rho \beta A v^2) + \Delta (\rho \beta K A y \cos \theta)$ + $\rho g K y^2 \Delta W \cos \theta$

In the limit as Δx tends to zero,

$$\frac{d}{dx} \left\{ \rho \beta A v^{2} + \rho g K A y \cos \theta \right\} - \rho g K y^{2} \cos \theta \cdot \frac{dW}{dx} = \rho g A \cdot (B_{0} - B_{f}) - \rho q v \dots (2.9)$$
Expanding equation (2.9)
$$\rho A v^{2} \cdot \frac{d\beta}{dx} + \rho \beta^{2} v^{2} \cdot \frac{dA}{dx} + 2\rho \beta A v \cdot \frac{dv}{dx} + \rho g A y \cdot d \left(\frac{K \cos \theta}{dx} \right)$$

$$+ \rho g K y \cos \theta \cdot \frac{dA}{dx} + \rho g K A \cos \theta \cdot \frac{dy}{dx} - \rho g K y^{2} \cdot \cos \theta \cdot \frac{dW}{dx}$$

$$- \rho g A \left(B_{0} - B_{f} \right) - \rho q v$$
Dividing throughout by $\rho g A$

$$\frac{v^{2}}{g} \cdot \frac{d\beta}{dx} + \frac{\beta v^{2}}{g A} \cdot \frac{dA}{dx} + 2 \frac{\beta v}{g} \cdot \frac{dv}{dx} + y \cdot \frac{d(K \cos \theta)}{dx}$$

$$+ \frac{K y \cos \theta}{A} \cdot \frac{dA}{dx} + K \cos \theta \cdot \frac{dy}{dx} - \frac{K y^{2} \cos \theta}{A} \cdot \frac{dW}{dx}$$

$$= B_{0} - B_{f} - \frac{q v}{g A}$$
For the generalised cross-section shown in figure 2.7

$$\frac{d\Lambda}{dx} \approx \begin{array}{c} W \cdot \frac{dy}{dx} + y \cdot \frac{dW}{dx} \\ \frac{dX}{dx} = \frac{W}{dx} \end{array}$$

$$\frac{dQ}{dx} = \mathbf{v} \cdot \frac{dA}{dx} + \mathbf{A} \cdot \frac{d\mathbf{v}}{d\mathbf{x}} = -\mathbf{q}$$

$$\frac{d\mathbf{v}}{d\mathbf{x}} = -\frac{1}{\mathbf{A}} \cdot \left\{ \mathbf{q} + \mathbf{v} \frac{dA}{d\mathbf{x}} \right\}$$

$$\frac{d\mathbf{v}}{d\mathbf{x}} = -\frac{1}{\mathbf{A}} \cdot \left\{ \mathbf{q} + \mathbf{v} \left(\frac{\mathbf{W} \cdot d\mathbf{y}}{d\mathbf{x}} + \frac{\mathbf{y} \cdot d\mathbf{W}}{d\mathbf{x}} \right) \right\}$$

.....(2.12)

.(2.11)

Substituting equations (2.11) and (2.12) into equation (2.10)

$$\frac{y^{2}}{g} \cdot \frac{d\rho}{dx} + \frac{\rho}{gA} \left(\frac{W \cdot \frac{dy}{dx}}{dx} + y \cdot \frac{dW}{dx} \right) - \frac{2\rho}{gA} \left\{ q + v \left(\frac{W \cdot \frac{dy}{dx}}{dx} + y \cdot \frac{dW}{dx} \right) \right\} + y \cdot \frac{d(K \cos \beta)}{dx} + \frac{Ky \cos \beta}{A} \cdot \left(\frac{W \cdot \frac{dy}{dx}}{dx} + y \cdot \frac{dW}{dx} \right) + K \cos \beta \cdot \frac{dy}{dx} - \frac{Ky^{2} \cos \beta}{A} \cdot \frac{dW}{dx} - \frac{s_{0} - s_{f} - \frac{qy}{gA}}{gA} + \frac{\sigma v}{gA} - \frac{2\rho v^{2}W}{gA} \cdot \frac{dy}{dx} - \frac{2\rho v^{2}W}{gA} \cdot \frac{dw}{dx} - \frac{2\rho v^{2}$$

(2.13)

Equation (2.13) is the general differential equation for steady spatially varied flow with decreasing discharge over a side weir in a non-prismatic channel with a varying bod slope.

2.2.2. Equation (2.13) may be simplified for different applications as follows.

For a constant bed slope

$$d\left(\frac{K\cos\theta}{dx}\right) = \cos\theta \cdot dK$$

Equation (2.13) becomes

$$\frac{dy}{dx} = \frac{s_0 - s_T - \frac{qv}{gA} \cdot (1 - 2\beta) - \frac{v^2}{g} \cdot \frac{d\beta}{dx} - y \cos \theta \cdot \frac{dK}{dx} + \frac{\beta \frac{v^2 y}{gA} \cdot \frac{dW}{dx}}{K \cos \theta \left(1 + \frac{Wy}{A}\right)} - \frac{\beta \frac{v^2 W}{gA}}{\frac{\beta v^2 W}{gA}}$$

For a shallow sloping rectangular section, where the curvature of the flow is small,

$$W = B = \frac{A}{y}, \frac{d\beta}{dx} = 0, \frac{dK}{dx} = 0, K = \frac{1}{2}, \text{ and}$$

$$\frac{dy}{dx} = \frac{s_0 - s_f - \frac{qv}{EBy}}{\cos \theta} \cdot \frac{(1 - 2\beta) + \frac{\beta v^2}{gB} \cdot \frac{dB}{dx}}{\cos \theta} - \frac{\beta v^2}{Ey}$$
.....(2.14)

.(2.15)

For a rectangular prismatic channel

5s

$$\frac{dy}{dx} = \frac{s_0 - s_f - \frac{av}{gBy}}{\cos \theta - \frac{\beta v^2}{gy}}$$

Equation (2.15) is the form of the general differential

equation used for formulating the model for applications where the curvature of the water surface is negligible. Note that this equation reduces to the general differential equation for gradually varied flow when q is put equal to zero:-

 $\frac{dy}{dx} = \frac{s_0 - s_f}{\cos \theta - \beta v^2}$

.....(2.16)

Computation of the Side Spill Discharge 2.3

Before equation (2.14) can be used as a basis for a 2.3.1 mathematical model an expression for q, the discharge over the weir per unit length, has to be derived.

The complex three dimensional flow over the weir may conveniently be considered as consisting of two parts; the longitudinal flow passing down the main channel, and a transverse flow passing over the weir. The latter may be considered as being independent of the mainstream flow in that it is determined at any section solely by the head over the crest at that section and the geometric characteristics of the weir (excluding length). In other words, the discharge per unit length over the side weir may be computed from the transverse weir equation.

 $q = \frac{2}{3} \sqrt{2g} C_D (y - c)^{3/2}$

.....(2.17)

2.4 Allowance for Channel Roughness

2.4.1 The term s_f in equation (2.15) also has to be computed at each point along the channel. It accounts for the resistance due to boundary shear stress in the x direction, T_{ox} , and is related to the latter by equation (2.6).

Ideally T_{ox} should be measured directly or computed from the velocity profile near the boundary. However, in practical applications the necessary information is not usually available and the value of s_{f} must be estimated by other means. It is normal practice to assume s_{f} to be equal to the gradient of the total energy line and to compute its value from the Chezy, Manning, or Darcy-Weisbach formulae.

For the smooth channels used in the experimental tests the Darcy-Weisbach equation was chosen:

$$a_{f} = \frac{\lambda}{4R} \cdot \frac{v^{2}}{2g}$$
(2.18)

in which the friction factor λ was computed from the Blasius formula:

$$\lambda = \frac{0.3164}{R_{e}^{4}}$$
(2.19)

where R_e = Reynolds Number = $\frac{4vR}{v}$

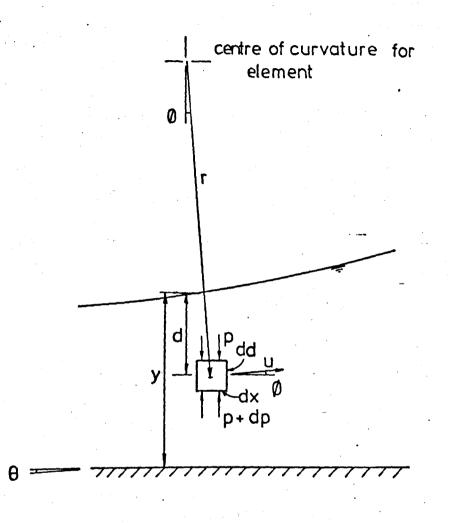
For larger channels with rougher walls constructed in brick or concrete the Chezy or Manning equations would be more appropriate.

Chezy :
$$s_{f} = \frac{v^{2}}{c^{2}R}$$
(2.20)
Manning : $s_{f} = \frac{n^{2}v^{2}}{R^{4}/3}$ (2.21)

The Mathematical Model was also tested with s_f computed by the Manning equation and a comparison of the results is made in section 6.11.

2.5 The Effect of Curvature of the Water Surface

2.5.1 When supercritical flow forms along all or part of the weir there is an appreciable curvature of the water surface in the vicinity of the upstream end of the weir. This is particularly significant for the Case I and III profiles due to the draw-down of the water surface upstream of the weir. The curvature of the streamlines has the effect of modifying the pressure distribution and the magnitude of the pressure force. For a negative curvature (hog-curve) the centrifugal effects of curvature reduce pressures below their hydrostatic values, and for positive curvature (sag-curve) the pressures increase. The assumptions inherent in equation (2.15) no longer apply and a further analysis of the flow is required to incorporate curvature effects.


2.5.2 Consider a small elemental cuboid of width B, length dx and height dd, a distance d below the water surface, as shown in Figure 2.8. The element is travelling, at the instant considered, with a velocity u in the direction of flow.

Equating the forces acting on the element in a direction perpendicular to the channel bed

(p + dp) B.dx - (p) B.dx - βg B.dd.dx. $\cos \theta$ = βg B.dd.dx. $u^2 \cos \phi$

$$dp = \rho g.dd. \cos \theta + \rho u^2 .dd. \cos \phi$$

It can be seen from Fig. 2.8 that β varies from a maximum at the surface to zero at the channel bed. Since the maximum surface slope recorded during the experiments was -0.2, corresponding to a cos β of 0.98 at the water surface, the value of cos β is nearly

always very close to 1.0, so that

$$dp \simeq \rho g.dd.cos \theta + \rho \frac{u^2}{r}.dd$$
(2.22)

2.5.3 Assume now that the velocity distribution is of the form

 $\frac{\mathbf{u}}{\mathbf{u}_{0}} = \left\{ \frac{1-\frac{\mathbf{d}}{\mathbf{y}}}{\mathbf{y}} \right\}^{n}$

where u is the velocity at the water surface.

The discharge passing any one section can be computed by integration,

$$Q = \int_{0}^{y} u_{0} \left\{ 1 - \frac{d}{y} \right\}^{n} B.dd$$

 $\frac{u_0 B y}{n+1}$ for a rectangular section.

Now Q = v By

 $u_0 = (n+1) v$ and $u = (n+1) v \left\{1 - \frac{d}{v}\right\}^n$

.....(2.24)

2.5.4 Assume also that the distribution of curvature $\binom{1}{r}$ is of the form

where r' is the radius of curvature of the water surface.

The radius of curvature of the water surface is given by the expression

$$x^{*} = \left\{ \frac{1 + (\frac{dy}{dx})^{2}}{\frac{d^{2}y/dx^{2}}{d^{2}}} \right\}^{3/2}$$

•••••(2.26)

In practice the value of dy/dx is small so that

Specimen computations were made using both equation (2.26) and (2.27). The mathematical model was found to perform equally well with either equation, the results being virtually indistinguishable. Equation (2.27) was therefore adopted for general application, so that

Equation (2.22) now becomes

dp = ρ g.dd.cos + $\rho(n+1)^2 v^2 \cdot \frac{d^2 y}{dx^2} \left\{ 1 - \frac{d}{y} \right\}^m + \frac{2n}{y} dd \dots (2.29)$

At a distance d below the water surface

$$p = \int dp$$

$$\int \left\{ \rho g \cos \theta + \rho (n+1)^2 v^2 \cdot \frac{d^2 y}{dx^2} \left(1 - \frac{d}{y} \right)^{m+2n} \right\} dd$$

$$\rho g d \cos \theta - \frac{\rho (n+1)^2 v^2}{(n+2n+1)} y \cdot \frac{d^2 y}{dx^2} \left(1 - \frac{d}{y}\right) + Constant$$

When d = 0, p = 0

2.5.5

Constant =
$$\frac{\rho(n+1)^2 v^2 y}{(n+2n+1)} \cdot \frac{d^2 y}{dx^2}$$

and $p = \rho g d \cos \theta + \rho \frac{(n+1)^2 v^2 y}{(n+2n+1)} \cdot \frac{d^2 y}{dx^2} \left\{ 1 - \left(1 - \frac{d}{y}\right)^{n+2n+1} \right\}$

Pressure force P =

For a rectangular section, therefore,

$$P = \frac{1}{2} \rho g B y^{2} \cos \theta + \frac{\rho (u+1)^{2} v^{2} y B}{(u+2n+1)} \frac{d^{2} y}{dx^{2}} \cdot \left[d + \frac{y}{(u+2n+2)} (1-\frac{d}{y})^{u+2n+2} \right]_{0}^{u}$$

y J p B.dd

$$= \frac{1}{2} \rho g B y^2 \cos \theta + \frac{(n+1)^2}{(m+2n+1)} \rho v^2 y B \cdot \frac{d^2 y}{dx^2} \left\{ y - \frac{y}{(m+2n+2)} \right\}$$

Let
$$i = \frac{(n+1)^2}{(n+2n+2)}$$
(2.32)

:
$$P = \frac{1}{2} \rho g B y^2 \cos \theta + \frac{1}{2} B v^2 y^2 \cdot \frac{d^2 y}{dx^2}$$
(2.33)

2.5.6 The change in pressure force over a finite length of channel Δx now becomes

$$\Delta \left(\frac{1}{2} \rho_{gBy}^{2} \cos \theta + \tilde{\gamma} \rho_{Bv}^{2} y^{2} \cdot \frac{d^{2} y}{dx^{2}}\right)$$

Equation (2.9) may thus be rewritten to incorporate the effects of curvature. For a rectangular section channel

$$\frac{d}{dx} \left\{ \rho^{\beta Byv^{2}} + \frac{1}{2} \rho^{g By^{2}} \cos \theta + \eta^{\beta Bv^{2}y^{2}} \cdot \frac{d^{2}y}{dx^{2}} \right\}$$
$$= \rho^{g By} (s_{o} - s_{f}) - \rho^{qv} \qquad \dots \dots (2.34)$$

Equation (2.34) may be expanded and the terms regrouped

in the same generalised way as equation (2.9) in section 2.2.1. However β and $\hat{\gamma}$ may be assumed to be sensibly constant, and limiting the application of equation (2.34) to a prismatic channel with a constant bed slope gives

For a prismatic rectangular channel equation (2.12)

.....(2.12.1)

becomes

$$\frac{dv}{dx} = -\frac{q}{By} - \frac{v}{y} \cdot \frac{dy}{dx}$$

Substituting into equation (2.35).

$$\rho\beta Bv^2 \cdot \frac{dy}{dx} - 2\rho\beta vq - 2\rho\beta Bv^2 \frac{dy}{dx} + \rho gBy \cos\theta \cdot \frac{dy}{dx}$$

$$+ \left\{ \rho B v^{2} y^{2} \cdot \frac{d^{3} y}{dx^{3}} + 2 \gamma \rho B v^{2} y \cdot \frac{d^{2} y}{dx^{2}} \cdot \frac{d y}{dx} - 2 \gamma \rho v y q \cdot \frac{d^{2} y}{dx^{2}} \right\}$$
$$- 2 \left\{ \rho B v^{2} y \cdot \frac{d^{2} y}{dx^{2}} \cdot \frac{d y}{dx} - \rho g B y \left(s_{0} - s_{f} \right) + \rho q v = 0 \right\}$$

Dividing equation (2.36) by pgBy,

gBy

Equation (2.37) is the general differential equation

for spatially varied flow in a prismatic rectangular channel where the curvature of the water surface is significant. It can be seen, by comparison with equation (2.15) that curvature has the effect of raising the order of the differential equation from 1st to 3rd.

When curvature ceases to be significant both $\frac{d^3y}{d}$ and 2.5.7 tend to zero, so that equation (2.37) reduces to equation dx^{2} (2.15). $\frac{d^2 y}{dx^2}$

For gradually varied flow q = 0, and equation (2.37) reduces to

$$3\frac{v^2y}{g}\cdot\frac{d^3y}{dx^3} + \left(\frac{\cos\theta}{gy}-\frac{\delta v^2}{gy}\right)\cdot\frac{dy}{dx} - \left(\frac{g}{g}-g\right) = 0 \dots (2.38)$$

Assuming a linear distribution of curvature (n = 1)and uniform velocity (n = 0), $\chi = \frac{1}{3}$, so that equation (2.38) becomes

$$\frac{1}{3} \frac{\mathbf{v}^2 \mathbf{y}}{\mathbf{g}} \cdot \frac{\mathrm{d}^3 \mathbf{y}}{\mathrm{dx}^3} + \left(\frac{\cos \theta - \frac{\delta \mathbf{v}^2}{\mathbf{g} \mathbf{y}}}{\mathrm{g} \mathbf{y}} \right) \frac{\mathrm{d} \mathbf{y}}{\mathrm{dx}} - \left(\mathbf{s}_0 - \mathbf{s}_f \right) = 0 \quad \dots (2.39)$$

which is essentially the same as the equation given by Jaeger²⁰. Before equation (2.37) can be used in a mathematical model a value of 2 must be established. This entails obtaining values of m and n by determining the distributions of curvature and

velocity over the depth of flow.

2.6 Distribution of Curvature

2.6.1 If potential flow is assumed then curvature distributions can be obtained by producing flow nets for varying degrees of surface curvature. Although this is possible by graphical construction or electrical analogue the direct measurement of curvature of a streamline is open to substantial errors and an analytical representation of the flow net was therefore established.

For positive surface curvature the streamlines at any section are approximated to hyperbolae, and hence the equipotential lines are represented by ellipses. It should be noted that this approximation is only made over a very short length of channel (Fig. 2.9).

For negative surface curvature the streamlines at any section are approximated to ellipses, and hence the equipotential lines become hyperbolae.

Positive Surface Curvature

For the streamlines

$$\frac{z^2}{c^2 \cos^2 \psi} - \frac{x^2}{c^2 \sin^2 \psi} = 1 \cdots (2.40)$$

.....(2.41)

where c is a constant and ψ is the stream function.

Along a particular streamline

$$\frac{x^2}{a^2} - \frac{x^2}{b^2} = 1$$

where $a = c \cos \psi$ and $b = c \sin \psi$

2.6.2

$$z^{2} = a^{2} \left(1 + \frac{x^{2}}{b^{2}}\right)$$

$$z = a \left(1 + \frac{x^{2}}{b^{2}}\right)^{\frac{1}{2}}$$

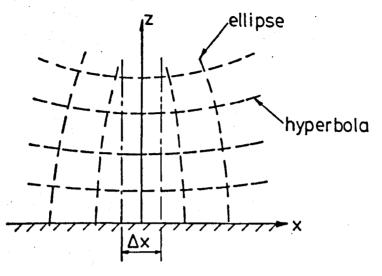
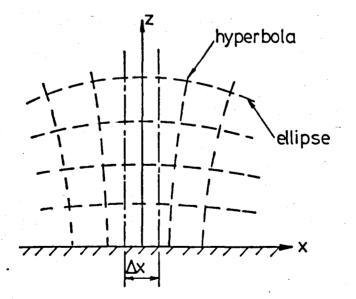



fig. 2.9

FLOW NET FOR NEGATIVE CURVATURE

fig. 2.10

$$\frac{dz}{dx} = \frac{ax}{b^2} \left(\frac{1 + \frac{x^2}{b^2}}{b^2} \right)^{-\frac{1}{2}}$$

$$\frac{d^2z}{dx^2} = -\frac{ax^2}{b^4} \left(\frac{1 + \frac{x^2}{b^2}}{b^2} \right)^{-\frac{3}{2}} + \frac{a}{b^2} \left(\frac{1 + \frac{x^2}{b^2}}{b^2} \right)^{-\frac{3}{2}}$$

Along the centreline of the element Δz (the z axis)

$$\frac{d^2 z}{dx^2} = \frac{a}{b^2}$$
$$= \frac{c \cos \psi}{c^2 \sin^2 \psi}$$
$$\frac{d^2 z}{dx^2} = \frac{\cos \psi}{c (1 - \cos^2 \psi)}$$

and $z = a = c \cos \psi$

.....(2.43)

Let $K = \cos \psi$,

 $K_s =$ value of K at the water surface, and K = nK_s

Substituting into equations (2.42) and (2.43)

 $z = cK = cnK_{s}$

At the water surface

$$y = cK_g$$
$$z = ny$$
$$c = \frac{y}{K}$$

·····(2.44) ·····(2.45)

$$\frac{d^2 z}{dx^2} = \frac{nK_s^2}{y(1 - n^2K_s^2)}$$

.....(2.42.1)

and at the water surface, n = 1

...

For a given depth y and surface curvature $\frac{d^2y}{dx^2}$, the value of K_g may be computed by inverting equation (2.42.2),

Thus for values of n ranging from 0 to 1 the values of z and $\frac{d^2 z}{dx^2}$ (the curvature of the streamline) may be computed from equations (2.44) and (2.42.1) respectively.

2.6.3. Negative Surface Curvature For the streamlines $\frac{z^2}{c^2 \sinh^2 \psi} + \frac{x^2}{c^2 \cosh^2 \psi} = 1$...(2.47)

Along a particular streamline

$$\frac{z^{2}}{a^{2}} + \frac{x^{2}}{b^{2}} = 1$$

$$z = a \left(1 - \frac{x^{2}}{b^{2}}\right)^{\frac{1}{2}}$$

$$\frac{dz}{dx} = -\frac{ax}{b^{2}} \left(1 - \frac{x^{2}}{b^{2}}\right)^{-\frac{1}{2}}$$

$$\frac{d^{2}z}{dx^{2}} = \frac{ax^{2}}{b^{4}} \left(1 - \frac{x^{2}}{b^{2}}\right)^{-\frac{3}{2}} - \frac{a}{b^{2}} \left(1 - \frac{x^{2}}{b^{2}}\right)^{-\frac{1}{2}}$$

Along the centreline of the element Δz (the z axis),

$$\frac{d^2z}{dx^2} = -\frac{a}{b^2}$$

$$\frac{c^2 \sinh \psi}{c^2 \cosh^2 \psi}$$

and $z = a = c \sinh \psi$

X

- 0

•••

Let $K = \sinh \psi$ $K_g = \text{value of } K \text{ at the water surface}$ and $K = nK_g$

Substituting into equations (2.48) and (2.49)

 $z = cK = cnK_s$

At the water surface

...

$$y = cK_g$$
$$z = ny$$
$$c = \frac{y}{K_g}$$

 $\frac{d^{2}z}{dx^{2}} = \frac{nK_{B}^{2}}{y(1 + n^{2}K_{B}^{2})}$

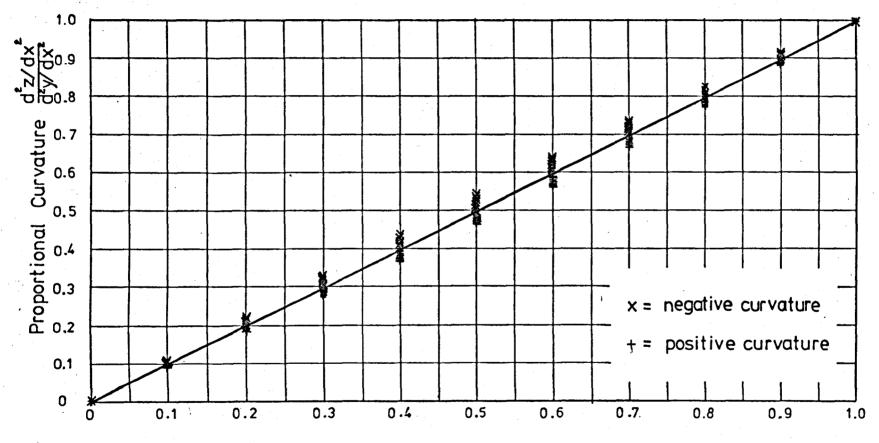
.....(2.44)

.....(2.49)

and at the water surface, n = 1

Inverting equation (2.48.2) to give the required expression for computing K_{g}

For values of n ranging from 0 to 1 the values of z and $\frac{d^2z}{dx^2}$ may be computed from equations (2.44) and (2.48.2) respectively.


2.6.4 Two computer programs were written to calculate curvature distributions for positive and negative surface curvatures. The listings of these programs are given in Appendix II.

Curvature distributions were computed for surface curvatures ranging from + 1.0 to - 1.0 for a standard depth of 0.1m, which well covers the range of measured values. The distributions are tabulated in Appendix II also.

The tabulated curvature distributions show that the curvature of the streamlines is distributed approximately linearly with depth. This is well illustrated by Fig. 2.11 which shows the proportional curvature $\frac{d^2z}{dx^2}$ plotted against the proportional depth n = z/y.

Thus the value of m in equation (2.25) is 1.

FIG. 2.11 GRAPH OF PROPORTIONAL CURVATURE AGAINST PROPORTIONAL DEPTH

Proportional Depth N = z/y

Distribution of Velocity

2.7.1 Velocity distributions can also be obtained from the flow net method described in section 2.6.

For two adjacent depths z_n and z_{n-1} the respective stream function values ψ_n and ψ_{n-1} can be computed from

 $\psi_n = \cos^{-1} K_n$ for positive curvatures and $\psi_n = \sinh^{-1} K_n$ for negative curvatures.

For positive curvatures, therefore,

and for negative curvature,

2.7.2 Velocity distributions were also calculated by the computer programs mentioned in section 2.6 and they are included in the tables in Appendix II. Although the mean velocity does not correspond directly with any measured value, all the velocities may be scaled up or down without affecting the velocity distributions.

75

2.7

There is clearly little change in the value of u over the depth and the velocity distribution may be assumed to be uniform, i.e. n = 0 in equation (2.24).

2.7.3 With values of m = 1 and n = 0, equation (2.32) gives a value of $\frac{7}{2}$ of $\frac{1}{3}$. This value is therefore used in equation (2.37) in the mathematical model.

2.8 <u>Modification of the Side Spill Discharge Equation to</u> <u>Allow for Curvature Effects</u>

2.8.1 The transverse weir equation (2.17) used to compute the side spill discharge per unit length of the weir is derived assuming a hydrostatic pressure distribution. When curvature significantly alters the pressure distribution an allowance must be made and equation (2.17) modified.

2.8.2 Consider a small element dd in depth and Δx in length (Fig. 2.12)

Mean velocity through element = $\sqrt{2g(P/\rho_g)}$ Discharge through element = $\sqrt{2g(P/\rho_g)}$. $\Delta x dd$

Total discharge through section $\Delta x = \int_{0}^{h} \sqrt{2g(P/\rho g)} \cdot \Delta x dd$

$$-\Delta Q = \Delta x \sqrt{2g} \int_{0}^{h} {\binom{p}{\rho g}}^{\frac{1}{2}} \cdot dd \qquad \dots \dots (2.53)$$

As $\Delta x \rightarrow 0$, and applying a coefficient of discharge,

$$q = -\frac{dQ}{dx} = C_D \sqrt{2g} \int_0^h {p/\rho g}^{\frac{1}{2}} dd \dots(2.54)$$

From equation (2.30), with m = 1 and n = 0,

$$p = \rho g d \cos \theta + \frac{1}{2} \rho v^2 y \cdot \frac{d^2 y}{dx^2} \left\{ 1 - \left(1 - \frac{d}{y}\right)^2 \right\} \dots (2.30.1)$$

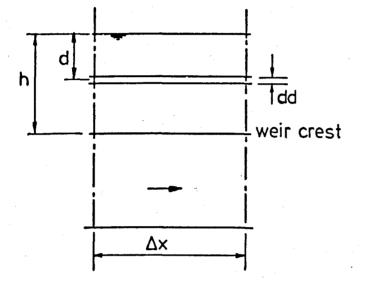


fig. 2.12

$$\frac{\mathbf{p}}{\rho \mathbf{g}} = d\left\{ \cos\theta + \frac{\mathbf{y}^2}{\mathbf{g}} \cdot \frac{\mathrm{d}^2 \mathbf{y}}{\mathrm{dx}^2} \right\} - d^2\left\{ \frac{1}{2} \frac{\mathbf{y}^2}{\mathbf{gy}} \cdot \frac{\mathrm{d}^2 \mathbf{y}}{\mathrm{dx}^2} \right\} \quad \dots (2.30.2)$$

2.8.3 Negative Curvature. Let $K_1 = \left\{ \cos \theta + \frac{v^2}{g} \cdot \frac{d^2 y}{dx^2} \right\}$ $K_2 = -\left\{ \frac{1}{2} \frac{v^2}{gy} \cdot \frac{d^2 y}{dx^2} \right\}$

Then from equation (2.30.2)

Substituting into equation (2.54)

$$a = c_{D} \sqrt{2g} \int_{0}^{h} (K_{1}d + K_{2}d^{2})^{\frac{1}{2}} dd$$

= $c_{D} \sqrt{2g} K_{2}^{\frac{1}{2}} \int_{0}^{h} (d^{2} + \frac{K_{1}}{K_{2}}d)^{\frac{1}{2}} dd$
= $c_{D} \sqrt{2g} K_{2}^{\frac{1}{2}} \int_{0}^{h} \left\{ \left(d + \frac{K_{1}}{2K_{2}} \right)^{2} - \left(\frac{K_{1}}{2K_{2}} \right)^{2} \right\}^{\frac{1}{2}} dd$

$$= \frac{1}{2} C_{D} \sqrt{2g} K_{2}^{\frac{1}{2}} \left[\left(\frac{d + K_{1}}{2K_{2}} \right) \sqrt{\frac{d^{2} + K_{1}d}{K_{2}}} - \left(\frac{K_{1}}{2K_{2}} \right)^{2} \cosh^{-1} \left(\frac{2K_{2}d}{K_{1}} + 1 \right) \right]_{0}^{h}$$

$$= \frac{1}{2} c_{D} \sqrt{2g} K_{2}^{\frac{1}{2}} \left[\left(h + \frac{K_{1}}{2K_{2}} \right) \sqrt{h^{2} + \frac{K_{1}h}{K_{2}}} - \left(\frac{K_{1}}{2K_{2}} \right)^{2} \cosh^{-1} \left(\frac{2K_{2}h}{K_{1}} + 1 \right) \right]$$

$$q = \frac{1}{2} c_{D} \sqrt{2g} K_{2}^{\frac{1}{2}} \left[\left(h + \frac{K_{1}}{2K_{2}} \right) \sqrt{h^{2} + \frac{K_{1}h}{K_{2}}} - \left(\frac{K_{1}}{2K_{2}} \right)^{2} \right]$$

$$\ln \left\{ \left(\frac{2K_2h}{K_1} + 1 \right) + \frac{2K_2}{K_1} \sqrt{h^2 + \frac{K_1h}{K_2}} \right\} \right] \dots (2.55)$$

....(2.30.4)

2.8.4 Positive Curvature

Let
$$K_1 = \left(\frac{\cos \theta}{g} + \frac{v^2}{g} \cdot \frac{d^2 y}{dx^2} \right)$$

 $K_2 = \left(\frac{1}{2} \frac{v^2}{gy} \cdot \frac{d^2 y}{dx^2} \right)$

Then from equation (2.30.2)

$$\frac{p}{\rho g} = K_1 d - K_2 d^2$$

Substituting into equation (2.54)

$$q = c_{D} \sqrt{2g} \int_{0}^{h} (K_{1}d - K_{2}d^{2})^{\frac{1}{2}} dd$$

= $c_{D} \sqrt{2g} K_{2}^{\frac{1}{2}} \int_{0}^{h} (\frac{K_{1}}{K_{2}} d - d^{2})^{\frac{1}{2}} dd$
= $c_{D} \sqrt{2g} K_{2}^{\frac{1}{2}} \int_{0}^{h} \{(\frac{K_{1}}{2K_{2}})^{2} - (d - \frac{K_{1}}{2K_{2}})^{2}\}^{\frac{1}{2}} dd$

$$= \frac{1}{2} C_{D} \sqrt{2g} K_{2}^{\frac{1}{2}} \left[\left(\frac{K_{1}}{2K_{2}} \right)^{2} \sin^{-1} \left(\frac{2K_{2}d}{K_{1}} - 1 \right) + \left(d - \frac{K_{1}}{2K_{2}} \right) \sqrt{\frac{K_{1}d}{K_{2}} - d^{2}} \right]_{0}^{h}$$

$$q = \frac{1}{2} C_{D} \sqrt{2g} K_{2}^{\frac{1}{2}} \left[\left(\frac{K_{1}}{2K_{2}} \right)^{2} \left\{ \frac{\pi}{2} + \sin^{-1} \left(\frac{2K_{2}h}{K_{1}} - 1 \right) \right\}$$

$$\left(h - \frac{K_1}{2K_2}\right) \sqrt{\frac{K_1 h}{K_2} - h^2} \qquad \dots \dots (2.56)$$

2.8.5 To show the effect of curvature the following data may be used in equations (2.55) and (2.56) as appropriate and compared with the results obtained from

v = 1.2 m/s $d^2y/dx^2 = -0.5\text{m}^{-1} \text{ and } + 0.5\text{m}^{-1}$ y = 0.105m c = 0.036m h = 0.069m $c_2 = 0.0349$ $c_3 = 0.0$ $c_3 = 0.6$

For Negative Curvature $q = 0.0312m^2/s$ (equation(2.55))For Positive Curvature $q = 0.0330m^2/s$ (equation (2.56))For No Curvature $q = 0.0321m^2/s$ (equation (2.17))

Thus, negative curvature of $-0.5m^{-1}$ leads to a 2.8% decrease in q, whilst a positive curvature of $0.5m^{-1}$ leads to a 2.8% increase in q.

CHAPTER 3. THE MATHEMATICAL MODEL

3.1 Arrangement of the General Differential Equations

3.1.1 The general differential equation for gradually varied flow in a prismatic rectangular channel (equation (2.16)) is of the form

since the velocity may be expressed as a function of depth at any section, the discharge being constant. This first order differential equation may then be integrated by one of the standard numerical integration methods, such as a Runge Kutta method. This technique was adopted by Humpidge and Moss²¹ in formulating a mathematical model describing gradually varied flow.

In spatially varied flow, however, the problem is complicated by the varying channel discharge. The mean velocity at any section v is not only a function of the depth y but also of the discharge Q which is a variable and depends, in this case, on the amount of flow that has passed over the weir up to the section under consideration. The differential equation (2.15) may be written in the form

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \phi(\mathbf{v}, \mathbf{y})$$

where V

Q By

At any section, a distance x from the start of the

.....(3.2)

••••••(3•3)

weir

$$Q = Q_1 - \int_0^x q \, dx$$

so that $v = \frac{Q_1 - \sigma}{By} q \, dx$

Let
$$W = Vy$$

 $\therefore W = \frac{Q_1 - \sqrt{x}}{B}$

Differentiating equation (3.4.1) with respect to x.

.....(3.4)

.....(3.4.1)

.....(3.7)

Substituting for $v = \frac{W}{Y}$ in equation (2.15),

s, may be computed by making the same substitution into equation (2.18),

 $s_{f} = \frac{\lambda}{4R} \cdot \frac{w^{2}}{2gy^{2}}$ (2.18.1)

Since q is a function of y only, equations (2.15.1) and (3.5) may be respectively written in the form

 $\frac{dy}{dx} = f(y, w) \qquad \dots \dots \dots (3.6)$

$$\frac{\mathrm{d}w}{\mathrm{d}x} = g(y)$$

Equations (3.6) and (3.7) are two simultaneous first order differential equations for y and w, and they may be solved by applying one of the numerical integration techniques suitable for dealing with simultaneous first order differential equations.

3.1.2 When curvature of the water surface is significant, equation (2.15) is replaced by equation (2.37) which is a 3rd order differential equation. Making the substitution $v = \frac{W}{V}$,

 $\frac{4w^2}{gy} \cdot \frac{d^3y}{dx^3} - \frac{24wq}{gBy} \cdot \frac{d^2y}{dx^2} + \begin{pmatrix} \cos\theta - \frac{\delta w^2}{gy^3} \end{pmatrix} \cdot \frac{dy}{dx}$

 $-(s_{0} - s_{f}) + \frac{q_{W}}{g_{By}^{2}} (1 - 2\beta) = 0 \qquad \dots \dots (2.37.1)$

Let
$$z = \frac{dy}{dx}$$
, and $t = \frac{dz}{dx} = \frac{d^2y}{dx^2}$

Equation (2.37.1) becomes

$$\frac{1w^2}{gy} \cdot \frac{dt}{dx} - \frac{21wqt}{gBy} + \left(\frac{\cos\theta - \frac{\beta w^2}{gy^3}}{gy^3}\right)z - (s_0 - s_f)$$

+
$$\frac{qw}{gBy^2}$$
 (1 - 2 β)(2.37.2)

$$\frac{dt}{dx} = \frac{2qt}{wB} - \frac{gyz}{w^2} \left\{ \begin{array}{c} \cos\theta - \frac{\beta w^2}{gy^3} \right\} + \frac{gy}{hw^2} \left(\begin{array}{c} s_0 - s_f \end{array} \right) \\ - \frac{q \left(1 - 2\beta \right)}{hwBy} \end{array} \quad(3.8)$$

Hence,

 $\frac{dt}{dx} = f(t, z, y, w) \qquad \dots \dots (3.9)$ $\frac{dz}{dx} = g(t) \qquad \dots \dots (3.10)$ $\frac{dy}{dx} = h(z) \qquad \dots \dots (3.11)$ $\frac{dw}{dx} = i(y) \qquad \dots \dots (3.7.1)$

Equations (3.9), (3.10), (3.11) and (3.7.1) are four simultaneous first order differential equations for t, z, y and w, and again these can be solved using an appropriate numerical integration method.

3.2 <u>Numerical Integration Methods</u>

(i)

(ii)

3.2.1 The simultaneous differential equations arising from the theoretical analysis of the previous chapter may not be solved analytically, and therefore a numerical approximation to the solutions must be made. In choosing an appropriate method consideration must be given to the accuracy and stability of the solution and to the efficiency of the method in terms of computing time and required storage.

Numerical integration methods may be divided into two types:

Runge Kutta methods, which are single step methods using information at the current step only in progressing to the next step, predictor-corrector methods, which are multi-step methods using information at a number of locations up to the current step, and normally requiring iteration in in progressing to the next step.

In all the cases considered in this investigation the depth, discharge, slope and curvature of the water surface may all be specified at a particular point along the channel so that, whether curvature effects are included or not, adequate starting values are available and boundary value problems are thus avoided.

3.2.2 Runge Kutta methods have the advantage of being self starting, and the intervals between each step may readily be changed, although this was found to be unnecessary in this case. In general they are particularly straightforward to apply on a digital computer. Also, Runge Kutta methods are comparable in accuracy, and are often more accurate, than predictor-corrector methods of the same order but because of difficulties in estimating the per step error, the step size h must generally be chosen conservatively (i.e. smaller than is actually necessary).

However, once the derivative expressions become anything but simple arithmetical expressions their evaluation becomes the most time consuming part of the computation. A fourth order Runge Kutta method normally requires four evaluations of each derivative expression per step, whereas a predictor-corrector method of the same order will usually require only two. Under these circumstances therefore a predictor-corrector method will be approximately twice as fast at arriving at a solution.

3.2.3 In choosing a suitable predictor-corrector method it is important to carefully consider stability. Two types of instability may be identified: inherent instability and induced instability.

Inherent instability is concerned with the physical problem itself, and occurs when small variations in the conditions of the problem cause large variations in the true solution, and this instability must inevitably be reflected in the numerical solution.

Induced instability of multi-step methods occurs due to the formation of spurious solutions to the equations at each step. Ideally these spurious solutions will be small and will remain small throughout the computations, but in certain cases some predictorcorrector methods produce spurious solutions which accumulate until they dominate the true solution and produce serious errors.

Induced instability may be avoided by using a stable predictor-corrector method. Ralston²² shows the Manning predictorcorrector method to be stable in virtually all applications. The method makes use of an intermediate 'modifier' between the predictor and corrector stages which leads to rapid convergence and good stability.

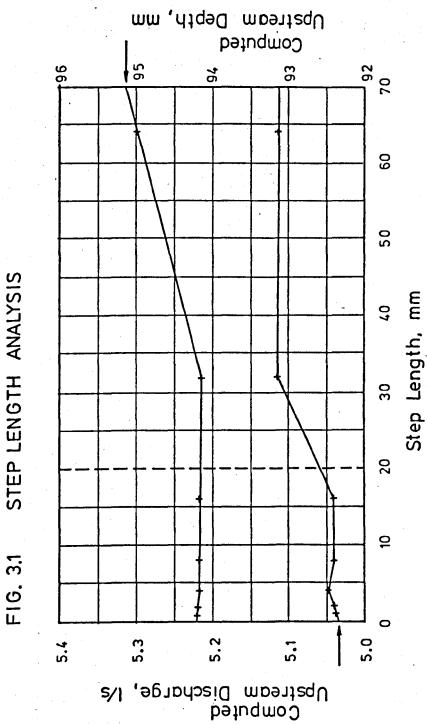
Inherent instability cannot be removed by choice of method of solution since it is concerned with the physical problem. It can only be dealt with by reformulating the differential equations in a way that will produce a satisfactory solution.

3.3 The Runge Kutta method

3.3.1 A fourth order Runge Kutta method was chosen for solution where curvature effects are negligible. For the two simultaneous differential equations

and $\frac{dy}{dx} = f(y, w)$ (3.6) $\frac{dw}{dx} = g(y)$ (3.7)

solutions are obtained at a section $x_{r+1} (= x_r + h)$ from previously computed values at section x_r only, using the equations


y _{r+1}		y _r	+ $\frac{1}{6}$ (k ₀ + 2k ₁ + 2k ₂ + k ₃)	(3.12)
and w _{r+1}	-	wr	+ $\frac{1}{6}$ (m ₀ + 2m ₁ + 2m ₂ + m ₃)	(3.13)
in which	k _o		h.f (y _r , w _r)	(3.14.1)
	mo		h.g (y _r)	(3.14.2)
	k ₁	=	h.f $(y_r + \frac{1}{2}k_0, w_r + \frac{1}{2}m_0)$	(3.14.3)
	. ^m l	-	h.g $(y_r + \frac{1}{2}k_o)$	······(3.14.4)
	^k 2		h.f $(y_r + \frac{1}{2}k_1, w_r + \frac{1}{2}m_1)$	(3.14.5)
	m 2		h.g $(y_r + \frac{1}{2}k_1)$	(3.14.6)
	k3	-	h.f $(y_r + k_2, w_r + m_2)$	(3.14.7)
	™ 3	-	h.g $(y_r + k_2)$	(3.14.8)

3.3.2 This method was found to be efficient in both computing time and storage requirements and no instability problems were encountered. In order to determine a suitable step size a step length analysis was undertaken using the data from reading 23 (main series) and step lengths varying between lmm and 64mm. The results are summarised in Table 3.1 and Figure 3.1.

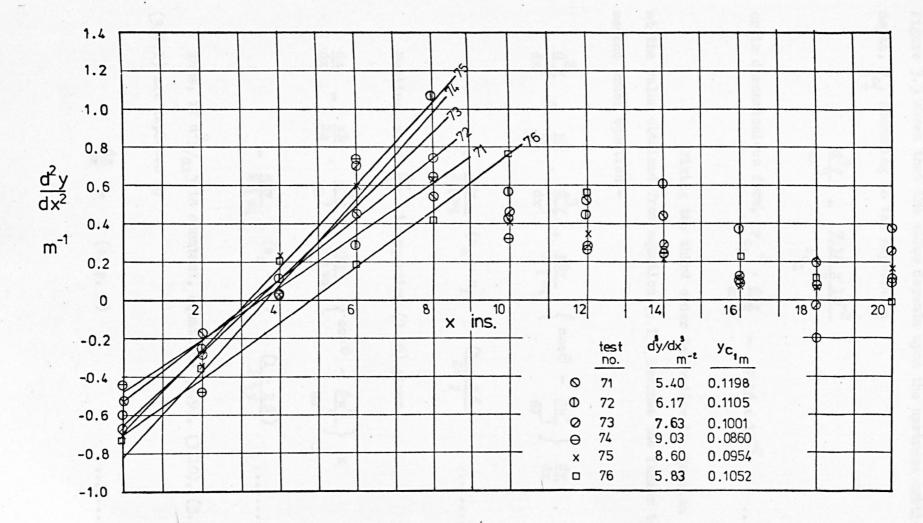
Step Length mm	Computed Upstream Discharge Q ₁ 1/s	Computed Upstream Depth y _l mm
1	5.220	92.36
2	5.218	92.39
4	5.218	92.48
8	5.217	92.39
16	5.217	92.39
32	5.215	93.15
64	5.298	93.14

Table 3.1 Results of Step Length Analysis.

The largest step length consistent with steady computed values was chosen and rounded up to give a step length of 0.02m.

STEP LENGTH ANALYSIS

3.4


The Hamming Predictor Corrector Method

3.4.1 When curvature effects become significant, and are included in the analysis (equations (3.9), (3.10), (3.11) and (3.12)), the Hamming Predictor Corrector method is used. Since the fourth order method requires three sets of values prior to the step under consideration another method is required to start the solution. A Runge Kutta method is used for this purpose.

Ralston²² showed that it is pointless to iterate to a high degree of accuracy at each step and that it is more efficient to achieve the required accuracy by reducing the step size rather than by using a large number of iterations. Also, when the required accuracy is readily attained, rounding errors may be reduced by increasing the step size. A facility for changing the step length was therefore incorporated into this method.

3.4.2 When the Hamming Predictor Corrector method was applied to equations (3.9), (3.10), (3.11) and (3.7.1) the solution rapidly became unstable, the computed water surface diverging from the measured profile with the depth approaching infinity. The instability was identified as inherent instability (section 3.2.3) and it appeared from inspection of the computer printout that unrealistically large values of d^3y/dx^3 (dt/dx) were being calculated. Actual values of d^2y/dx^2 were therefore computed from the measured surface profiles for readings 71 to 76 using the method described in Appendix III. Graphs showing the distribution of curvature along the weir were plotted from these values (Fig. 3.2) and it became apparent that d^2y/dx^2 increases uniformly over the upstream part of the weir (i.e. d^3y/dx^3 is constant).

FIG. 3.2 CURVATURE OF THE WATER SURFACE

The constant value of d^3y/dx^3 varies from reading to reading, and Figure 3.3 shows that the value depends upon the upstream critical depth, y_{c_1} , according to the expression

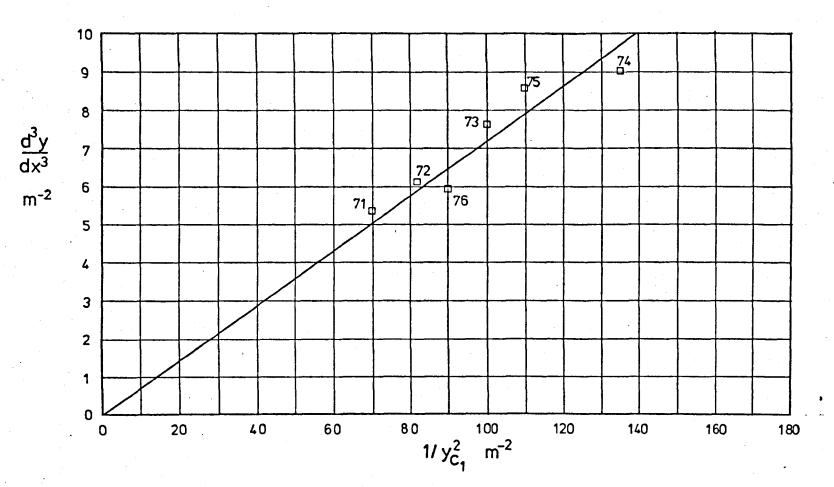
$$\frac{d^3y}{dx^3} = \frac{7.16 \times 10^{-2}}{y_{c_1}^2}$$

or in dimensionless form, $y_{c_1}^2 \cdot \frac{d^3y}{dx^3} = 7.16 \times 10^{-2}$ (3.15)

Fixing the third order derivative in equation (2.37.1) at the value obtained from equation (3.15) reduces the former to a second order equation:-

Putting $z = \frac{dy}{dx}$ in equation (3.16) gives

$$\frac{dz}{dx} = \frac{wB}{2q} \cdot \frac{d^3y}{dx^3} + \frac{gBy}{2 \sqrt{2} wq} \left\{ \cos \theta - \frac{\beta w^2}{gy^3} \right\} z$$


$$-\frac{gBy}{2 \frac{1}{2} wq} (s_0 - s_f) + \frac{(1 - 2\beta)}{2 \frac{1}{2} y} \dots (3.17)$$

3

Thus, if d^3y/dx^3 is constant, equations (3.9), (3.10), (3.11) and (3.7.1) are replaced by

$$\frac{dz}{dx} = f(z, y, w)$$
(3.18)

FIG.3.3 RATE OF CHANGE OF CURVATURE / UPSTREAM CRITICAL DEPTH

$$\frac{dy}{dx} = g(z) \qquad(3.11.1)$$

$$\frac{dw}{dx} = h(y) \qquad(3.7.2)$$

This modification proved successful in removing the inherent instability.

3.4.3 The Hamming Predictor Corrector method uses the following expressions to solve equations (3.18), (3.11.1), and (3.7.2) simultaneously.

Denoting $f(z_n, y_n, w_n)$ as f_n

and

$$h(y_n) as h_n$$

 $g(z_n)$ as g_n

Predictors:-

$$z_{n+1}^{(o)} = z_{n-3} + \frac{\mu_h}{3} (2f_n - f_{n-1} + 2f_{n-2}) \dots (3.19.1)$$

$$y_{n+1}^{(o)} = y_{n-3} + \frac{\mu_h}{3} (2g_n - g_{n-1} + 2g_{n-2}) \dots (3.19.2)$$

$$w_{n+1}^{(o)} = w_{n-3} + \frac{\mu_h}{3} (2h_n - h_{n-1} + 2h_{n-2}) \dots (3.19.3)$$

Modifiers:-

$$\overline{z}_{n+1}^{(o)} = \overline{z}_{n+1}^{(o)} + \frac{112}{121} \left(z_n - \overline{z}_n^{(o)} \right) \qquad \dots (3.20.1)$$

$$\overline{y}_{n+1}^{(0)} = y_{n+1}^{(0)} + \frac{112}{121} (y_n - y_n^{(0)}) \dots (3.20.2)$$

$$\overline{w}_{n+1}^{(0)} = w_{n+1}^{(0)} + \frac{112}{121} (w_n - w_n^{(0)}) \dots (3.20.3)$$

and

and

$$\bar{f}_{n+1}^{(o)} = f\left(\bar{z}_{n+1}^{(o)} - y_{n+1}^{(o)}, \bar{w}_{n+1}^{(o)}\right) \dots (3.21.1)$$

$$\bar{g}_{n+1}^{(o)} = g\left(\bar{z}_{n+1}^{(o)}\right) \dots (3.21.2)$$

$$\bar{h}_{n+1}^{(o)} = h\left(\bar{y}_{n+1}^{(o)}\right) \dots (3.21.3)$$
Correctors:- $z_{n+1}^{(j+1)} = \frac{1}{8}\left(9z_n - z_{n-2}\right) + \frac{3h}{8}\left(f_{n+1}^{(j)} + 2f_n - f_{n-1}\right) \dots (3.22.1)$

$$y_{n+1}^{(j+1)} = \frac{1}{8}\left(9y_n - y_{n-2}\right) + \frac{3h}{8}\left(g_{n+1}^{(j)} + 2g_n - g_{n-1}\right) \dots (3.22.2)$$

$$w_{n+1}^{(j+1)} = \frac{1}{8} \left(9w_n - w_{n-2} \right) + \frac{3h}{8} \left(h_{n+1}^{(j)} + 2h_n - h_{n-1} \right) \dots (3.22.3)$$

Figure 3.4 indicates the sequence of steps required to use the above formulae in proceeding from x_n to x_{n+1} . The convergence tolerances used in the computation are

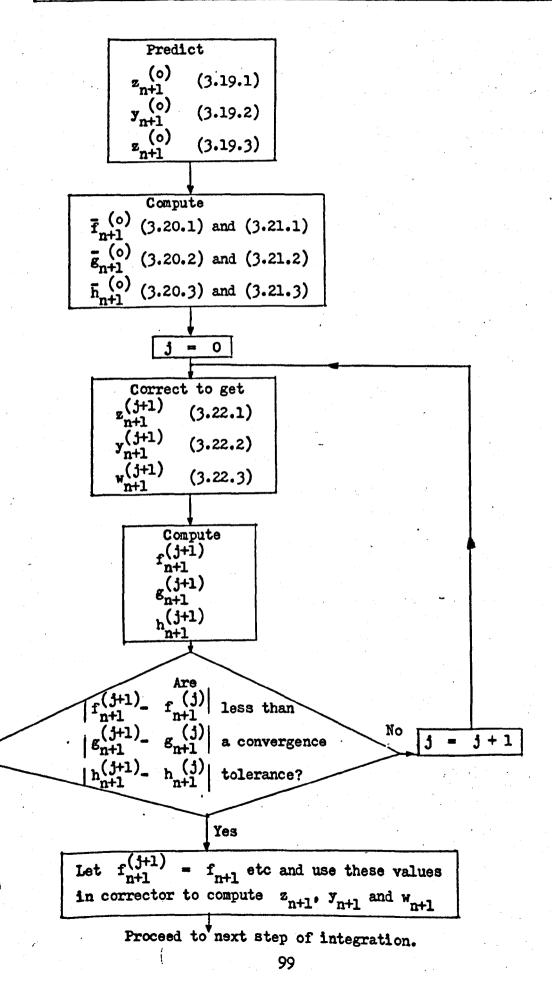
> $0.0250 \times y_{c_1}$ for f_{n+1} 0.0085 x y_{c_1} for g_{n+1} 0.0165 x y_{c₁} for h_{n+1}

Large variations in the tolerance levels were found to have little effect on the computed values and length of computation.

3.4.4 In using this method there is an additional complication arising from the use of equations (2.55) and (2.56) in computing the side spill discharge q. Since the modification to q due to curvature is small it was felt that it would be sufficiently accurate to use the

value of curvature from the previous step in computing q. However this led to values of surface curvature oscillating between positive and negative values in the region of the point of contraflecture, instead of producing a smooth transition from negative to positive. To overcome this the actual value pertaining at that point in time in the iterative process of Hamming's method was tried, but this lead to physically unacceptable solutions. Finally an under-relaxation process was adopted, as described below.

Let AJ = value of the surface curvature during a particular iteration j of Hamming's method, and AJI = value of the surface curvature for the


previous step $(x_{n-1} to x_n)$

Then the value of curvature

for the next iteration $j + 1 = AJ + 0.5 \times (AJI - AJ)$ (3.23) used in computing q.

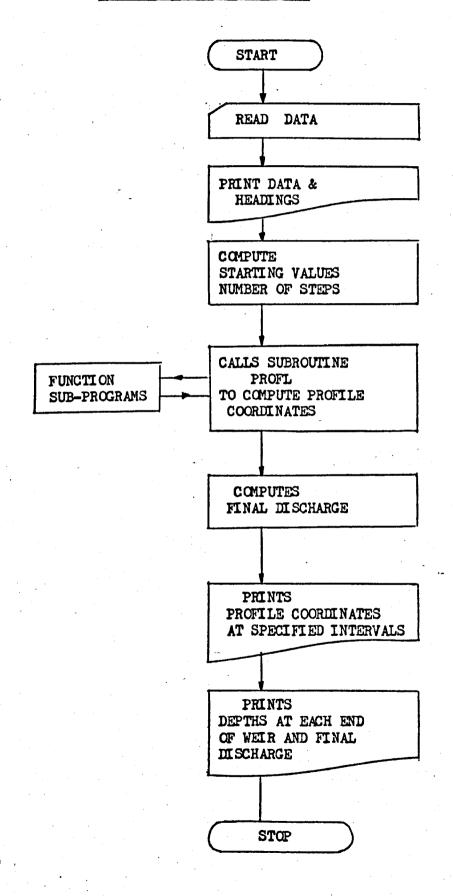
Figure 3.4

Flow Chart Showing the Use of the Hamming Predictor Corrector Method

This was found to give good stability and accurate computations.

3.5

Solution for Subcritical Flow


3.5.1 For all subcritical flows the effect of surface curvature is negligible and the model based on equations (3.6) and (3.7) with the Runge Kutta method of integration is used, as described in section 3.3. Starting values are given by the conditions in the downstream channel, as governed by the downstream control, which in this investigation was either an adjustable sluice gate or transverse weir. It was found advantageous to start the computation some distance downstream (usually 428nm downstream) and compute the gradually varied flow profile back as far as the weir, which was achieved by putting the weir discharge coefficient equal to zero up to this point. This overcame the errors in the measured depth at the downstream end of the weir arising from the presence of a small transverse wave caused by the interference of the vertical downstream edge of the weir plate. This phenomenon is discussed more fully in section 6.10.

3.5.2 The computer program consists of a main program which reads and subsequently prints the data, computes starting values and prints the surface profile coordinates and computed discharges. The main program calls the subroutine PROFL which contains the Runge Kutta method of integration, and this in turn makes use of two function subprograms FUNI and FUN2 which describe the derivative functions of equations (3.6) and (3.7). Figure 3.5 shows the flow chart for the program and a listing and specimen printout are contained in Appendix IV.

Figure 3.5

Flow Chart for Mathematical Model Computer Program -

No allowance for curvature

3.5.3 The program requires the following input data:-Test run number Channel width (rectangular sections) m Channel slope (as a real value e.g. 0.003) Viscosity of the water ⁺

Weir crest height, m

Chainage of the upstream end of the weir, m

Chainage of the downstream end of the weir, m

Chainage at which the computation is to start, m F

Chainage at which the computation is to finish, m #

Depth at the starting point, m

Discharge at the starting point, m³/s

Step length for the computations, m (negative for subcritical flow)

Water may be assumed to be at 15°C for design purposes without significant error.

The program will automatically compute gradually varied flow profiles upstream and downstream of the weir.

3.5.4 Output data is printed as follows:-

A list of all input data

Ł

ेः

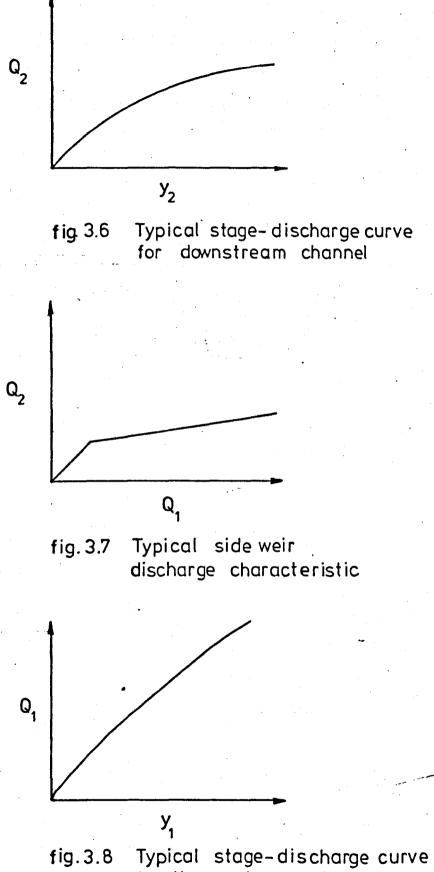
A table of profile coordinates (if desired) consisting of

Station chainage, m

Depth, m

Mean velocity, m/s

Froude number


(This table includes a separate statement of the depths at the start and finish of the weir at the appropriate places).

The discharge, m^3/s , and the depth, m, at the end of the computation (see Appendix IV).

3.5.5 The program uses about 18 seconds C.P.U. time in compilation and about 2 seconds C.P.U. time per test run, depending upon the step size chosen.

3.5.6 In practical application of the program to the design or analysis of subcritical side weir flow several computations will usually be necessary. This is because the conditions in the channel downstream of the weir will not in general be known. Apart from the weir and channel dimensions only the discharge in the upstream channel will be known. It will first be necessary to compute, or estimate the stage-discharge relationship for the downstream channel control. A typical stage-discharge curve is shown in Figure 3.6. The following procedure is then adopted.

Choose at least six points on the downstream stagedischarge curve (Fig. 3.6) and use the corresponding values of Q_2 and y_2 in turn as input data to the model. Use the printed output data to draw the side weir discharge characteristic Q_1 against Q_2 (Fig. 3.7) and the upstream stage-discharge curve Q_1 against y_1 (Fig. 3.8). For any specified upstream discharge, Figure 3.8 can be used to determine the degree of draw down in the upstream channel, followed by Figure 3.7 to obtain the residual flow in the downstream channel (and hence the side spill discharge) and finally Figure 3.6 to obtain the depth in the downstream channel. This graphical approach is considered to be superior to extending the mathematical model to include iterative procedures for such cases.

for the upstream channel

3.5.7 The computer program may easily be modified to enable other crest geometries to be dealt with, including side spillways, providing the transverse discharge properties of such crest shapes are known. The model may also be extended to cover non-rectangular sections.

In all computations it is important to ensure that the results are physically possible and that a Case III profile is not formed in practice. The computed conditions at the upstream end of the weir should therefore be tested to ensure that a subcritical profile will actually form. The conditions under which subcritical profiles form is fully discussed in section 6.4.

3.6 Solution for Supercritical Flow

3.6.1 The program described in section 3.5 above may also be used for computing supercritical flow profiles. The input data is the same, except that the step length is positive as the computation commences from the upstream end of the weir and proceeds in the downstream direction. When curvature of the water surface is significant, errors can be expected using this model, but it was found that when the Froude Number at the start of the weir exceeded 1.5 curvature of the surface was not sufficient to significantly affect the problem, and this model gave acceptable results.

3.6.2 In practical applications the same information listed in section 3.5.6 will be available. In this case, however, this does not present the same problem. Using the known upstream discharge and the known weir and channel dimensions, the depth at the start of the weir may be found using the method described in section 6.10.

Since the starting values are now known the downstream discharge and depth, and hence the side spill discharge, may be computed directly. Only one computation is necessary.

3.6.3 The computed downstream values should be tested to ensure that the supercritical flow can exist in the downstream channel, and that the latter does not throttle the flow causing a Case III or Case V profile to occur along the weir.

3.7 Solution for Supercritical Flow with Curvature

3.7.1 When curvature effects are significant, i.e. when the Froude number at the upstream end of the weir is less than 1.5, the model is based on equations (3.18), (3.11.1), and (3.7.2) and the Hamming Predictor-Corrector method is used, as described in section 3.4.3.

3.7.2 The input data required is identical to that specified for the previous model in sections 3.5 and 3.6 but the method of solution also requires an initial estimate for surface slope. A fixed value of -0.12 is used for this, and the effect of this is fully discussed in section 6.10. Although the input data includes a step length value the program reduces this in size to reach the required accuracy at each step.

3.7.3 Although this method gives good simulation of curvature effects along the upstream section of the weir, errors are introduced along the downstream section because the model uses the fixed value of d^3y/dx^3 obtained from equation (3.15), which is strictly only applicable to the upstream section of the weir. These errors are small, but since curvature effects are not significant along the downstream section the results can be improved by changing over to the no-curvature model once curvature effects have ceased to be significant. This is achieved using the following change-over criteria.

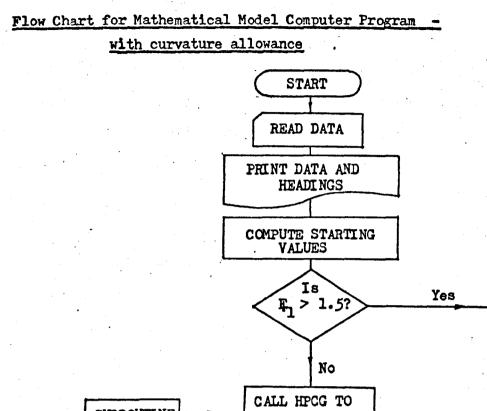
3.7.4 (a) The change over should not occur prematurely,i.e. the Froude Number must be at least 1.2.

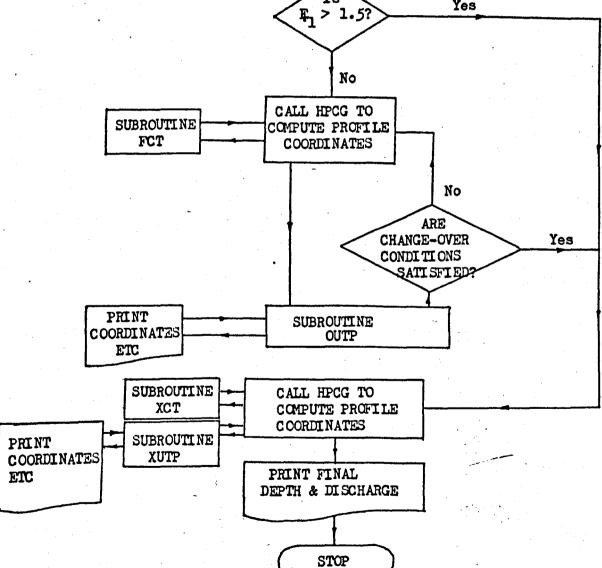
(b) The point of contraflecture must have been reached.

(c) The positive curvature must have passed its maximum value.

(d) The surface slopes computed by each model must lie within 10% of each other.

3.7.5 The computer program consists of a main program which reads and writes the input data, computes starting values, and calls the subroutine HPCG containing the Hamming predictor-corrector method. This is generally called twice; firstly for the curvature analysis, where it uses the subroutine FCT to compute the derivative functions, and the subroutine OUTP to print the output data, and secondly for the no-curvature analysis, where it uses subroutines XCT and XUTP in a similar fashion. A flow chart for the program is given in Figure 3.9 and a listing and specimen printout are contained in Appendix IV.


3.7.6 The print-out is essentially the same as that described in section 3.5.4 except that additional information is printed for the curvature analysis, namely,


at each station chainage, the curvature m^{-1} d^3y/dx^3 m^{-2} a factor FAC

FAC denotes the ratio of the value of q computed from equation (2.55) or (2.56), and equation (2.17), thus showing the effect of curvature on the side spill discharge.

3.7.7 The same practical considerations and restraints discussed in sections 3.6.2 and 3.6.3 also apply to this model. The program can be readily adapted to suit different crest geometries and non-rectangular sections. 3.7.8 The program uses about 20 seconds C.P.U. time in compilation and about 5 seconds C.P.U. time per test run depending mainly upon the convergence tolerances chosen.

Figure 3.9

CHAPTER 4. PRELIMINARY EXPERIMENTAL INVESTIGATIONS

4.1 Scope of the Investigation

4.1.1 Before the mathematical model can be used to simulate side weir flow reliable estimates of the coefficient of discharge C_D , and the momentum flux correction factor β , are required. De Marchi^{3,4} recommends the use of the same value of C_D as for a transverse weir, but Collinge¹⁴ reports a significant reduction in the value of the coefficient which he attributes to the effects of longitudinal velocity. However, the results of Collinge's tests are based on the application of De Marchi's theory which has been shown to give substantial errors in computation (section 6.13). Thus, it is not clear whether the differences between the computed and measured values of the side spill discharge are due to errors inherent in his method of analysis, or to an actual reducation in the coefficient of discharge.

4.1.2 It is important to remove any such sources of error in determining values of the discharge coefficient and therefore the mathematical model cannot be used to evaluate C_D . Instead a completely independent method of determining C_D values is required.

4.1.3 If the geometric properties of the channel and side weir can be arranged in such a way as to produce a constant head along the length of the weir then the side spill discharge and the head are directly related by the transverse weir equation (2.17). Thus, by measuring the head and the side spill discharge, values of the coefficient of discharge can be obtained without reference to the mathematical model or any other method of side weir analysis.

4.1.4 At the same time the main channel should be sufficiently large in cross-section to enable velocity profiles to be measured from which values of the momentum flux correction factor may be obtained.

4.2 Criterion for a Constant Head

4.2.1 Ackers⁵ showed that a constant head will occur along a side weir in a rectangular channel if the width is reduced uniformly along the length of the weir at a rate given by equation (1.9).

where $C = \frac{2}{3} \sqrt{2g} C_n$

Although his analysis neglects the effects of friction and channel slope it was found to be reasonably accurate so that only small adjustments were required to achieve a constant head.

4.2.2 Inspection of equation (1.9) shows that if d^{B}/dx and y are constant then the mean longitudinal velocity v is also constant, and this was confirmed by the measured velocity profiles.

Let B_1 = width of channel at the upstream end of the weir, and B_2 = width of channel at the downstream end of the weir.

For a weir of length L,

$$\frac{B_1 - B_2}{L} = -\frac{dB}{dx} = \frac{C(y - c)^{3/2}}{yv}$$

Now $Q_1 = B_1 y v$

$$\frac{B_1 - B_2}{L} = C \frac{B_1 (y - c)^{3/2}}{Q_1}$$

$$(y - c)^{3/2} = \frac{Q_1}{CL} \left(1 - \frac{B_2}{B_1}\right)$$

$$y = c + \left\{\frac{Q_1}{CL} \left(1 - \frac{B_2}{B_1}\right)\right\}^{2/3} \dots (4.1)$$

4.2.3 Thus for a particular taper and upstream discharge, a constant head may be achieved by regulating the downstream depth to the value given by equation (4.1). In calculating this value, the value of C was obtained by assuming a coefficient of discharge C_D equal to the transverse weir value. Only a small adjustment to the estimated downstream depth was required in practice to achieve a constant head.

4.2.4 It is apparent from equation (4.1) that for a fixed taper a range of upstream discharges Q_1 can be chosen, each with a corresponding value of y (obtained from equation (4.1)), so that a series of values of C_D may be obtained. Further series of C_D values may be obtained for different channel tapers.

4.3 <u>Description of the Apparatus</u>

4.3.1 An existing flume, 15.24m long and with a rectangular section 1.067m wide and 0.914m deep, was adapted to contain both the main channel and the side spill channel, as shown in Figure 4.1. The floor and walls of the flume had a smooth concrete surface and the bed was horizontal. Water entered the flume from a large stilling tank which was connected to the flume by a short uniformly tapering rectangular channel and this effectively stilled the turbulence caused by the jet of water leaving the delivery pipe. The downstream end of the flume was unrestricted and thewater was allowed to flow freely into a vertical shute which transferred the water to the sump tank below.

4.3.2 The water supply for the flume was taken from a large header tank via a 203mm diameter pipe to the stilling tank. The water in the header tank was kept at an approximately constant head by recirculating water from the sump through two rising mains and two overflow pipes. The 203mm delivery pipe was fitted with a control valve adjacent to the flume, and a Dahl tube flow meter. This arrangement was found to give a steady discharge through the flume over long periods of time.

4.3.3 The vertical shute at the downstream end of the weir was fitted with a deflector enabling all of the flow to be diverted into a large measuring tank $2.74m \times 3.96m \times 3m$ deep. This was fitted with a stilling well and float which was connected to a sliding scale adjacent to the flume enabling the water level in the measuring tank to be easily recorded. The tank was fitted with a valve in the floor through which the water could be drained into the sump tank below.

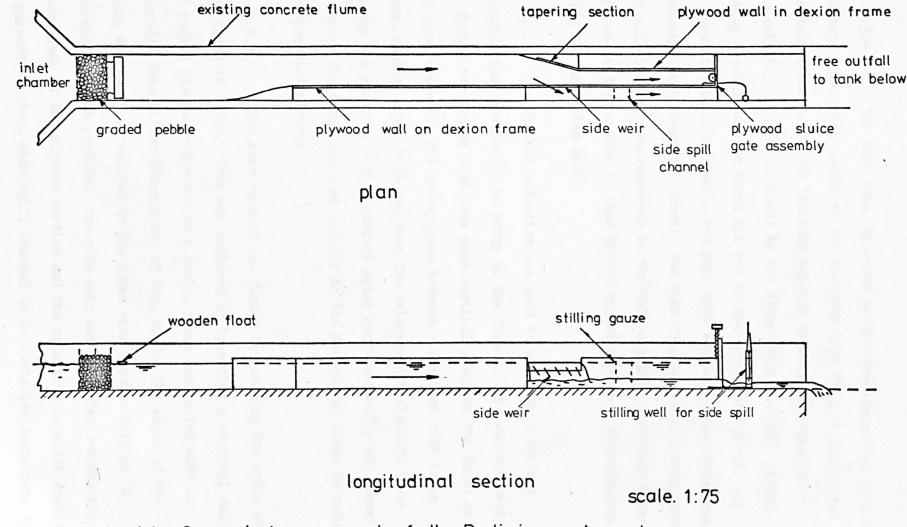


fig. 4.1 General Arrangement of the Preliminary Apparatus

Ц

4.3.4 The Dahl tube, situated at the downstream end of a long straight horizontal length of the delivery pipe (Fig. 4.2(a)), was remotely connected to an inclined mercury differential manometer conveniently situated adjacent to the flume (Fig. 4.2(b)). After taking special care to bleed air out of the connecting pipes, and to correctly zero the scale, the Dahl tube was calibrated using the measuring tank described above. The Dahl tube was subsequently used for all discharge measurements in the delivery pipe, although these were checked from time to time by additional discharge measurements using the measuring tank.

4.3.5 Special attention was paid to ensuring a uniform distribution of velocity on entry to the flume. This was achieved by fixing two frames with 12mm mesh vertically across the flume at its upstream end. The 300mm space between was filled with large round pebbles (Fig. 4.3) and when the velocity distribution downstream was measured with a current meter good uniformity was observed. A timber float was fastened loosely to the downstream frame to reduce surface disturbances.

4.3.6 The main channel was formed by reducing the width of the flume to 735mm. This was achieved by inserting a vertical wall of marine plywood supported on a dexion frame and sealed with an expanded foam filler (foreground of Fig. 4.4). The width of the flume was smoothly reduced to the 735mm wide section with an 'S'shaped aluminium profile. The side weir was installed immediately downstream of the plywood section and the reduction in width enabled a galvanised steel side spill channel to be installed downstream of the weir (Figs. 4.1 and 4.4.)

fig. 4.2(a) Dahl Tube FlowMeter on Delivery Pipe .

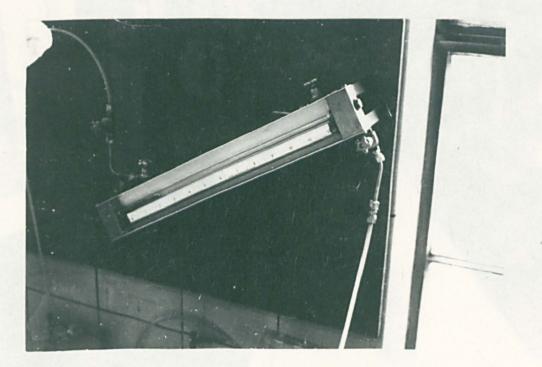
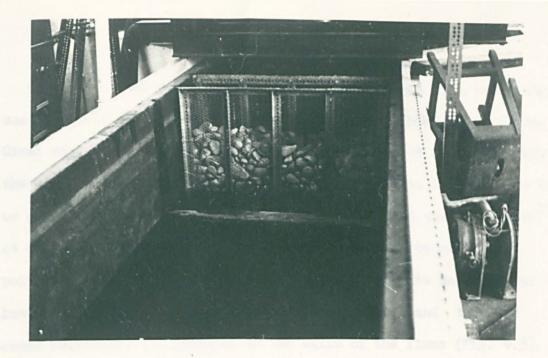
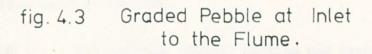




fig. 4.2(b) Dahl Tube Differential Manometer.

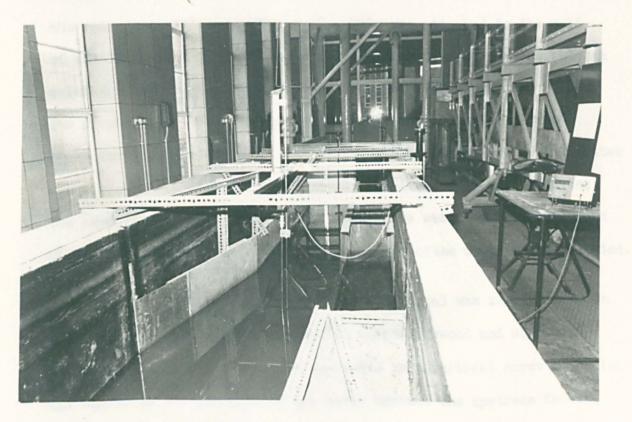


fig. 4.4 General View of the Apparatus used in the Preliminary Investigations, Looking Downstream. 4.3.7 The weir was fabricated from a 50nm x 25mm brass angle section which was set carefully on top of a 19mm thick steel plate. Great care was taken in aligning the outside face of the angle with the surface of the steel to ensure a smooth vertical face with no lips or grooves. The weir crest was machined to BS 3680 specifications²³ as shown in Figure 4.11 and the surface kept clean by careful polishing with a non-abrasive polish. The weir plate assembly was installed in the flume with its back face vertical and the weir crest horizontal and parallel to the walls of the flume (Fig. 4.5). The joints around the weir plate assembly were thoroughly sealed with a flexible sealing compound.

4.3.8 The tapering channel section was constructed by installing a vertical marine plywood board on the opposite side of the channel to the weir (Fig. 4.5). This was attached to the wall of the flume at the upstream end with an aluminium sheet bent into an existing chase in the wall of the flume, and sealed with plasticene. The downstream end of the board was hinged to the marine plywood board forming the left-hand wall of the downstream channel. The latter was supported on transverse dexion runners (Fig. 4.4) and by moving the supporting frames along these runners the width of the downstream channel could be altered, enabling the angle of the taper to be adjusted.

4.3.9 The flow in the downstream channel was regulated by an adjustable sluice gate constructed in marine plywood and supported in aluminium runners. The gate was moved by a vertical screw mechanism and sealed by the pressure of the water against the upstream face. This arrangement enabled the depth in the downstream channel to be accurately regulated.

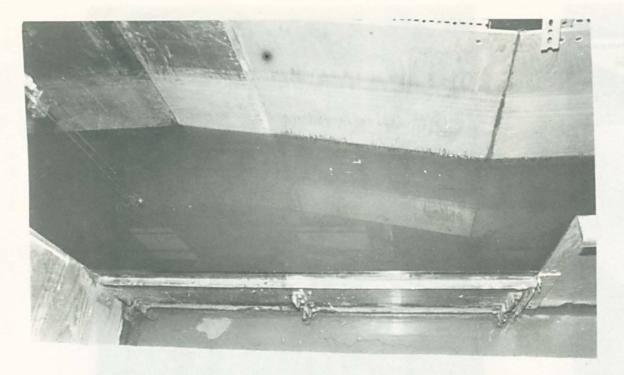


fig. 4.5 The Tapering Channel Section. fig. 4.6 The Downstream Sluice Gate.)

fig. 4.7 The Side Spill Channel Depth Gauge.

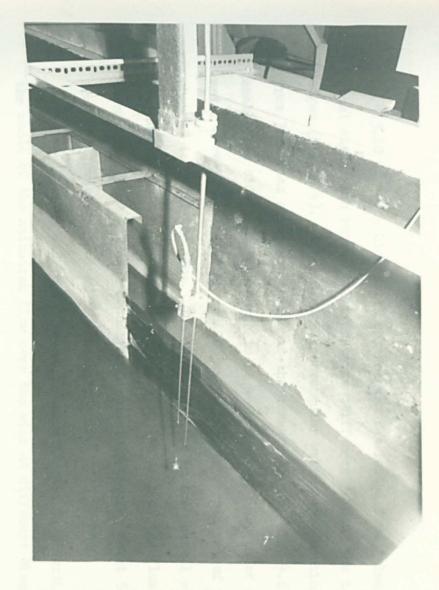


fig. 4.8 The Miniature Current Meter, Depth Gauge and Carriage.

4.3.10 The side spill channel was fabricated from galvanised steel sheet with horizontal transverse stiffeners joining the top edges (Fig. 4.4). A sharp edged rectangular weir plate, machined from 3mm brass sheet was bolted to the downstream end (Fig. 4.6) to enable the side spill discharge to be measured. Two sheets of expanded metal were installed 765mm and 1065mm from the upstream end of the channel to still the flow. The depth of water in the channel was measured using a stilling tube fastened to the wall of the flume downstream (Fig. 4.7) and connected to pressure tapping point 620mm from the downstream end of the channel.

The side spill channel was calibrated by diverting the whole of the mainstram flow over the wier at different discharges and recording the water levels in the stilling tube with a pointer gauge.

4.3.11 The head above the crest of the side weir was measured using a pointer gauge and carriage (Figs. 4.4 and 4.8). The carriage was cut from aluminium channel section and was machined to run smoothly and accurately on a longitudinal aluminium runner supported on two transverse dexion runners. The runners were carefully levelled using aluminium shims. Using the carriage, the pointer gauge could be positioned over any point in the tapering section of channel along the length of the weir. Its exact position was determined from scales fastened to the longitudinal and transverse runners. The pointer gauge was fitted with a vernier scale to ensure accurate recordings of the water surface level.

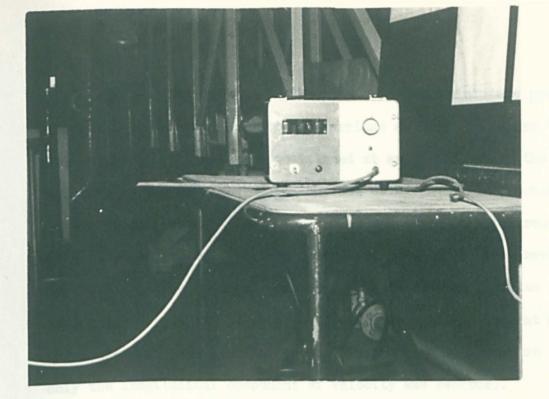


fig. 4.9 The Current Meter Recorder

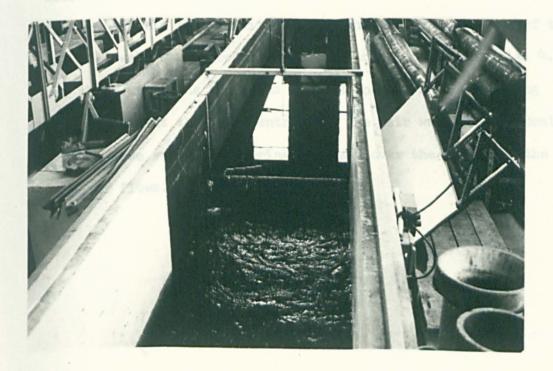
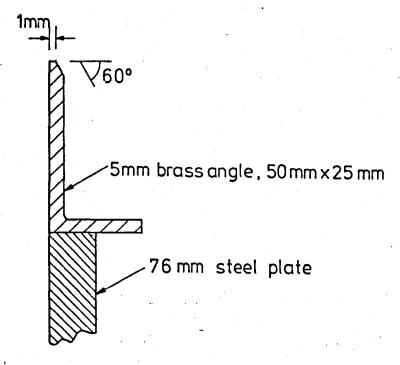
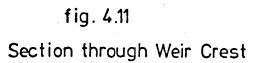




fig. 4.10 Weir being Tested Transversely

4.3.12 In addition to the pointer gauge a miniature propeller current meter was attached to the carriage as shown in Figure 4.8. Not only could the meter be positioned at any point behind the weir, but also at any depth below the surface using the slider mechanism of the pointer gauge. The meter was attached to a digital recorder (Fig. 4.9) and velocity measurements were made by counting revolutions over a fixed time interval and using the calibration formulae provided. Particular attention was paid to the alignment of the current meter whose axis was kept parallel to the crest of the side weir so that only the longitudinal component of velocity was recorded.

4.3.13 The apparatus was found to give good steady flow conditions. Both the head over the crest of the weir and the mean longitudinal velocity were sensibly constant along the length of the weir for all readings, and the apparatus could readily be adjusted to give repeatable test conditions. At the end of the series of tests the side weir was placed transversely across the flume (Fig. 4.10) and the rest of the apparatus removed apart from the stilling arrangements at the flume entrance. The weir was then calibrated as a transverse weir by measuring the head over the crest for the full range of flows.

4.4 Experimental Procedure

4.4.1 The channel taper was set approximately in the middle of the range of adjustment at 1 in 4.08.

The pointer gauge was positioned directly over the weir crest at its centre, and the zero of the scale was set by carefully lowering the pointer onto the crest and adjusting the scale zero clamp. The weir crest height was then measured using a steel metre rule.

4.4.2 The range of upstream discharges that could be run satisfactorily through the apparatus was divided into 9 increments. The discharge was adjusted to the first of these values by slowly opening the control value on the delivery pipe and noting the reading on the Dahl tube manometer.

The pointer gauge carriage was traversed to the centre of the downstream channel, level with the downstream end of the weir, and the pointer set to the level corresponding to the depth of flow computed from equation (4.1). The flow in the downstream channel was then regulated by careful adjustment of the sluice gate until the water surface just touched the pointer.

The gauge carriage was moved to a longitudinal section 300mm behind the weir crest and the pointer moved slowly along the channel to ensure that the water surface was horizontal. If necessary, minor adjustments were made to the downstream sluice gate to ensure that a horizontal water surface (i.e. a constant head) was formed.

4.4.3 The flow was then allowed to settle for a few minutes, after which time the upstream discharge was measured by recording the reading on the Dahl tube manometer, and the side spill discharge was obtained by recording the level in the stilling well attached to the wall of the flume downstream.

4.4.4 Using the gauge carriage the pointer was traversed across the channel at successive cross-sections 200mm apart along the length of the weir, starting at the upstream end. The head was recorded each 100mm behind the weir crest and, when appropriate, a velocity traverse was made over the whole depth immediately after taking a head reading.

4.4.5 The current meter was carefully lowered and velocity readings taken at increments of 50mm starting at 30mm below the crest. Each velocity reading was made by recording the number of propeller revolutions over a period of 15 seconds using the digital recorder and then applying the calibration formulae supplied by the manufacturer. About 10 seconds was allowed after moving the meter before a reading was taken.

4.4.6 After completion of the head recordings and velocity traverses the upstream discharge and side spill discharge were measured again to check that the flow conditions had remained steady during the test. If the readings were found to differ appreciably from those taken at the start of the test, then the test was repeated.

The upstream discharge was then adjusted to each of the remaining 8 flow rates in turn and the above measurements repeated. Two further series of results were obtained for channel tapers of 1 in 3.42 and 1 in 4.90.

4.5 Computation of Results

4.5.1 The discharge in the downstream channel was obtained by deducting the side spill discharge from the upstream discharge.

4.5.2 Although the head over the crest of the weir remained constant along the length of the weir some variation was observed over the cross-sections. This was principally due to the drawdown of the water surface as it passed over the weir causing a reduction in the head in the region immediately behind the weir. Small variations in the head were also observed adjacent to the opposite wall of the channel due to boundary effects. The head over the crest was therefore taken as the mean of the measured values along the 200nm, 300nm and 400nm longitudinal sections.

4.5.3 The results of the velocity traverses are given in Appendix V. Values of velocity energy coefficient and the momentum flux correction factor were obtained by numerical computation with the aid of a programmable calculator. The method of computation is discussed in Appendix V and a table of results is included.

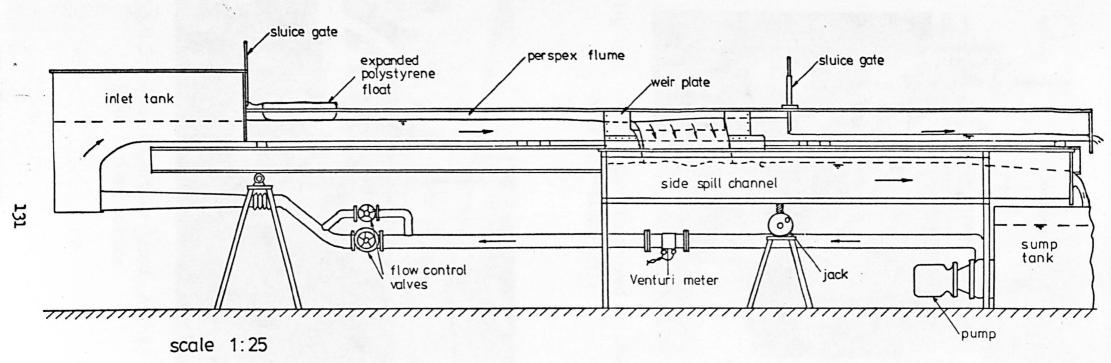
4.5.4 Values of the coefficient of discharge were obtained from the transverse weir equation using the measured values of side spill discharge and mean head over the crest. The results of the preliminary investigations are fully discussed in Chapter 6.

CHAPTER 5. MAIN EXPERIMENTAL INVESTIGATIONS

5.1 Scope of the Investigations

5.1.1 Having obtained reliable values of the Coefficient of Discharge and Momentum Flux Correction Factor the Mathematical Model described in Chapter 3 could now be tested. It was essential that the model be proven for as many different channel configurations as possible. The apparatus was therefore designed with a variable channel slope, a means of controlling the flow upstream and downstream of the weir, and a facility for incorporating a number of weirs of differing dimensions.

5.1.2 Using the full range of discharges available the effects of weir length and crest height, channel slope and regulation of the flow by the channel control structures were investigated. For each reading the measured discharges were compared with values obtained by the appropriate mathematical model, and for selected readings measured and computed surface profiles were also compared.


5.2 Description of the Apparatus

5.2.1 An existing 102mm wide x 204mm deep rectangular flume was modified so that any of five different side weirs could be fitted. This was achieved by replacing the central section with a specially constructed unit in which 915mm of the channel wall had been removed. The edges of the opening were flanged and accurately drilled so that a weir could easily be bolted into place with its crest parallel to the bed of the channel and the inside surface of the weir plate flush with the face of the perspex channel wall (Figs. 5.1, 5.2 and 5.3).

5.2.2 The flume was supplied by a centrifugal pump which pumped water from a sump tank through a lOOmm delivery pipe to a specially shaped inlet section designed to still the flow on entry to the flume. An expanded polystyrene float was loosely connected to the flume at entry to reduce surface disturbances (Fig. 5.3).

The delivery pipe was fitted with a Venturi meter which was connected to two differential manometers, an air/water manometer used for low flows, and a water/mercury manometer, used for higher flows (Fig. 5.4). The Venturi meter and manometers were calibrated by weighing, for the full range of flows, prior to the start of the main series of tests.

The flow in the delivery pipe was regulated by a 76mm sluice valve and a 38mm sluice valve fitted on a short by-pass pipe (Fig. 5.3).

General Arrangement of the Main Apparatus, (manometers and depth gauges omitted).

fig. 5.2 The Apparatus used in the Main Investigations.

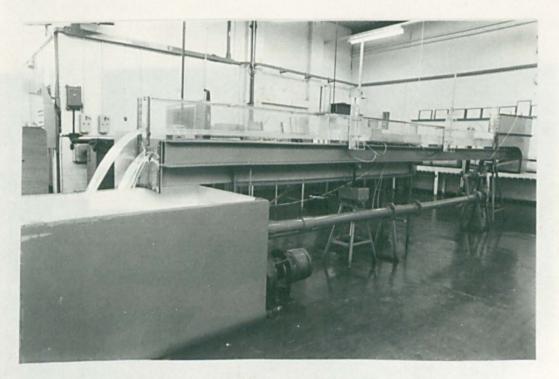
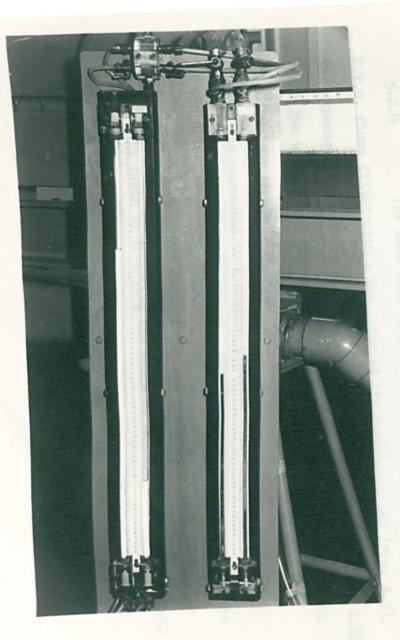
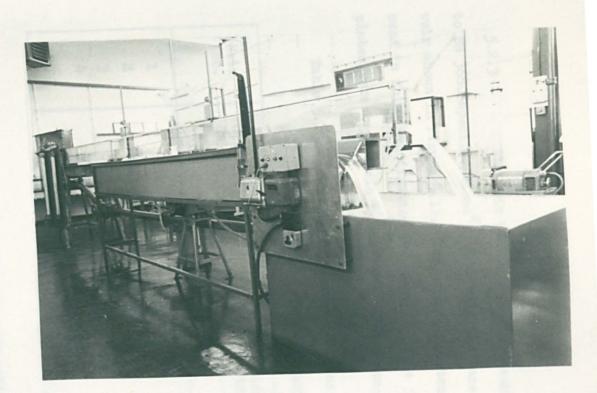
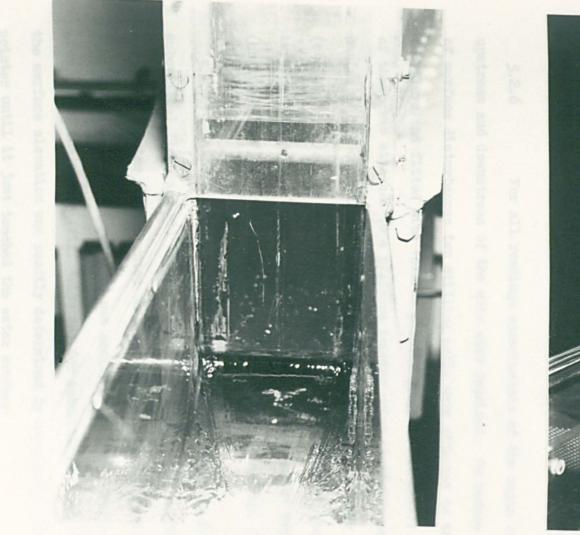




fig. 5.3 The Apparatus used in the Main Investigations.

 → fig.5.5 The Side Spill Channel Showing the Vee Notch and the Stilling Tube.


1 fig. 5.4 The Differential Manometers.

5.2.3 The weir plates were each machined from 5mm sheet brass to BS 3680 specifications²³, i.e. with the same crest geometry as the weir shown in Figure 4.11. The principal dimensions of the five weirs used in this investigation are given in Table 5.1 below. The weir plates were kept clean by polishing with a non-abrasive polish.

Table 5.1	Principal	Dimensions	of	the	Side	Weirs
	used in th	he Main Invo	esti	gati	Lon.	

Weir No.	Crest Height mm	Length	Chainage at Upstream End inches	Chainage at Downstream End inches
1	80.0	0.6096	96	120
2	118.0	0.6096	96 -	120
3	36.0	0.6096	96	120
4	79.5	0.4572	99	- 117
. 5	80.5	0.7620	93	123

5.2.4 The side spill flow was collected in a 305mm x 305mm P.V.C. flume fitted with a Vee notch at its downstream end (Fig. 5.5). Two expanded metal meshes were placed transversely across the flume 1.67m and 1.84m upstream of the Vee notch to still the flow, and a vertical stilling tube and pointer gauge were fastened to the side of the channel and connected to a central pressure tapping, 530mm upstream of the notch, to enable accurate recordings of the water level in the channel to be made. The channel and Vee notch were calibrated prior to the main tests by diverting the whole of the upstream flow over the side weir and then passing the outflow through the Vee notch into a weigh tank.

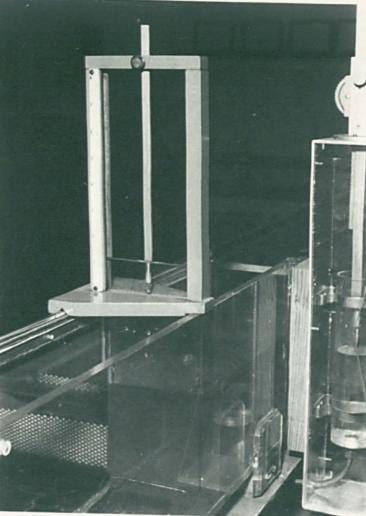


fig. 5.6 The Upstream Sluice Gate.

fig. 5.7 The Downstream Sluice Gate.

5.2.5 A sluice gate was installed at entry to the flume so that supercritical flow could be formed in the channel upstream of the weir (Case IV). The sluice gate was adjustable enabling a range of Froude Numbers to be attained in the upstream flow. A second sluice gate was installed downstream of the side weirs (Fig. 5.7) to regulate the flow in the downstream channel. Thus the flow immediately downstream of the weir could be free flowing supercritical flow (Fig. 5.8) or regulated subcritical flow with the downstream sluice gate lowered (Fig. 5.9). In addition the flow in the downstream channel could be regulated using an adjustable rectangular weir clamped to the downstream end of the flume. (Fig. 5.10)

5.2.6 For all readings measurements of the depth of flow upstream and downstream of the weir were required. To reduce the effect of surface disturbances two stilling wells were attached to the wall of the flume and fitted with Vernier pointer gauges (Fig. 5.11). The first of these was attached to a pressure tapping point carefully set in the centre of the channel bed level with the upstream end of Weir 1 (chainage 96"). The second could be attached to either of two such tapping points, one being level with the downstream end of Weir 1 (chainage 120") and the other 398mm further downstream (Fig. 5.12).

5.2.7 In addition surface profiles were measured for selected subcritical flows and all supercritical flows. This was achieved using a Vernier pointer gauge mounted on a perspex carriage (Fig. 5.13). Its longitudinal position (chainage) was easily determined from the scale attached to the runner (Fig. 5.13) and for subcritical flow profiles the surface elevation was readily determined by carefully lowering the pointer until it just touched the water surface.

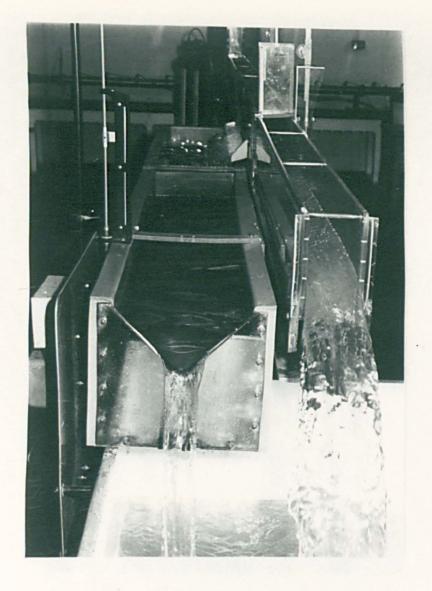


fig. 5.8 Downstream Sluice Gate Raised

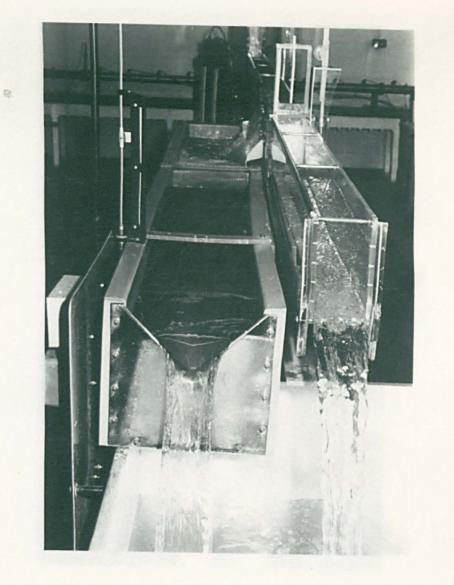


fig. 5.9 Downstream Sluice Gate Lowered.

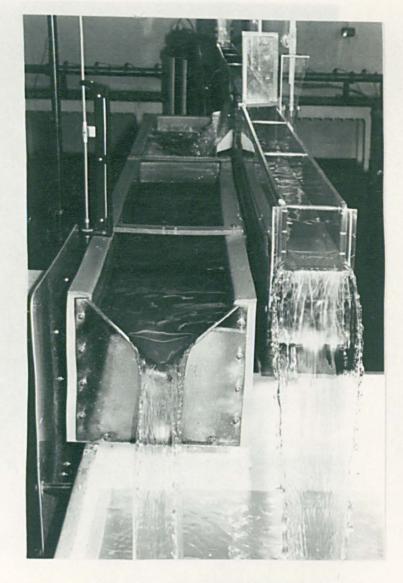


fig. 5.10 Downstream Weir Fitted

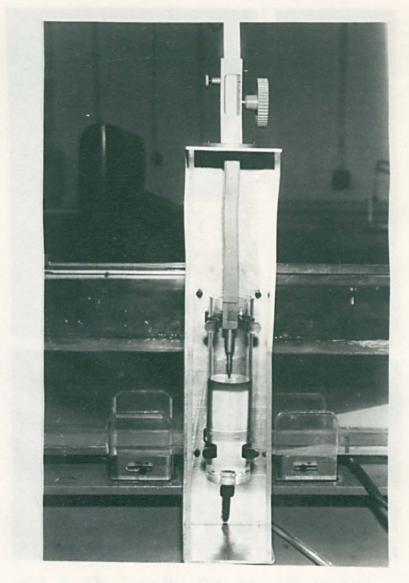
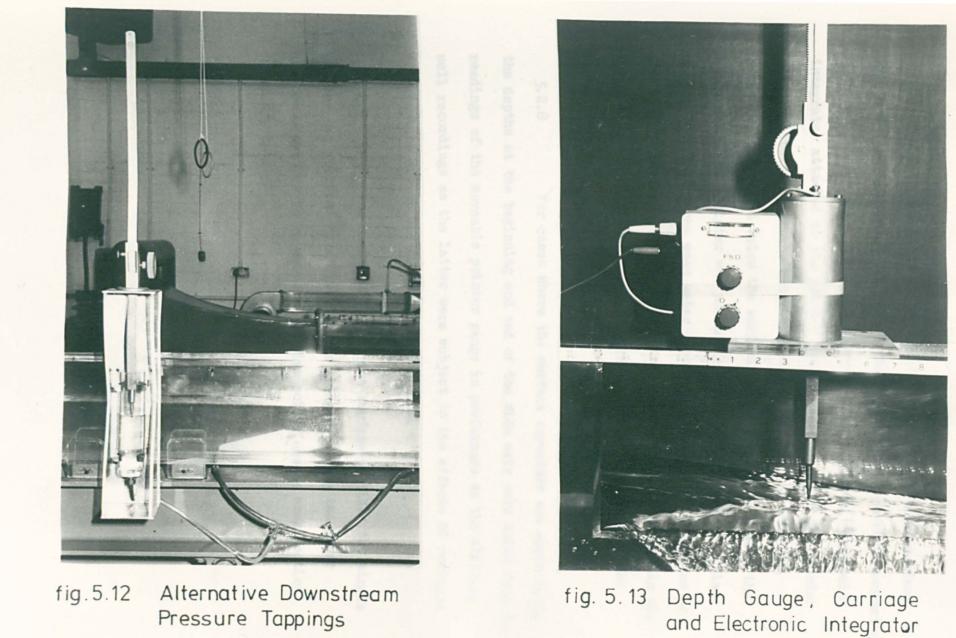
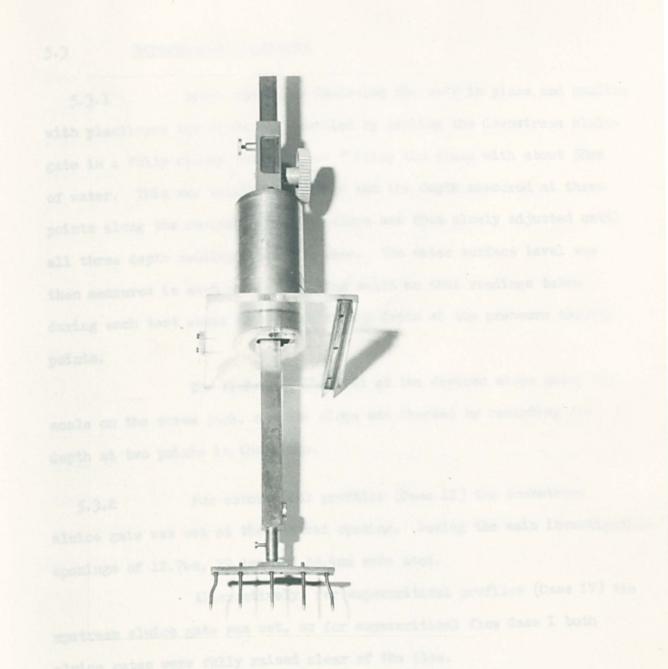



fig. 5.11 Stilling Well and Pointer Gauge.



For supercritical flow, however, the water surface was disturbed by small waves and difficulty was experienced in measuring the surface elevation. This was overcome using a simple electronic integrator attached to the pointer gauge carriage. When the pointer was completely out of the water the scale read zero and when the pointer was immersed below the surface the scale read 10. When the scale read 5 the pointer was partially immersed for 50% of the time, thereby indicating the mean water surface level. Some fluctuation of the scale reading was observed but provided the reading was within the range 4 to 6 the pointer accurately gave the mean elevation of the water surface.

5.2.8 For cases where the surface curvature was appreciable the depths at the beginning and end of the side weir were taken from the readings of the moveable pointer gauge in preference to the stilling well recordings as the latter were subject to the effects of vertical acceleration due to the curvature of the flow.

5.2.9 For measuring transverse surface profiles the single pointer was replaced by a five pointer bridge enabling the water surface elevation to be measured at five points across each section (Fig. 5.14).

140.

fig.5.14 The Five Point Depth Gauge.

was not by carefully signating the control valves on the delivery of until the desired remains on the appropriate manoes for one endersed The flow was then allowed to nottle for a few singers for the state discharge was recorded. The side spill discharge was some for the of using the stilling tons and pointer gauge situated to instance of channel.

5.3 Experimental Procedure

5.3.1 After carefully fastening the weir in place and sealing with plasticene the flume was levelled by sealing the downstream sluice gate in a fully closed position and filling the flume with about 50mm of water. This was allowed to settle and the depth measured at three points along the channel. The bed slope was then slowly adjusted until all three depth readings were the same. The water surface level was then measured in each of the stilling wells so that readings taken during each test could be related to the depth at the pressure tapping points.

The flume was then set at the desired slope using the scale on the screw jack, and the slope was checked by recording the depth at two points in the flume.

5.3.2 For subcritical profiles (Case II) the downstream sluice gate was set at the desired opening. During the main investigation openings of 12.7mm, 19.1mm and 25.4mm were used.

Alternatively, for supercritical profiles (Case IV) the upstream sluice gate was set, or for supercritical flow Case I both sluice gates were fully raised clear of the flow.

5.3.3 For each configuration a series of 9 readings was generally taken, for a full range of flows. The upstream discharge was set by carefully adjusting the control valves on the delivery pipe until the desired reading on the appropriate manometer was obtained. The flow was then allowed to settle for a few minutes before the upstream discharge was recorded. The side spill discharge was also recorded using the stilling tube and pointer gauge attached to the side spill channel.

5.3.4 The depths upstream and downstream of the weir were then measured using the stilling wells described in 5.2.6, or where appropriate the travelling pointer gauge. The surface profile was then obtained by traversing the carriage along the runners and recording the water surface level and bed elevation every 2" between chainage 76" and chainage 138". For supercritical flow profiles the electronic integrator was used to position the pointer, as described in 5.2.7.

5.3.5 The temperature of the water flowing over the side weir was recorded using a thermometer installed at the upstream end of the side spill channel.

5.3.6 The upstream and side spill discharges were measured again at the end of the test to ensure that the flow had remained steady throughout. Provided that sufficient time had been allowed to establish steady flow before readings commenced, the flow was found to remain steady during each test run. The test results were found to be fully repeatable.

5.4 <u>Computation of the Results</u>

5.4.1 The downstream discharge was obtained by subtracting the side spill discharge from the upstream discharge. The viscosity of the water flowing was computed from the recorded temperature using standard tables.

5.4.2 For subcritical flow conditions the depth downstream of the weir and the downstream discharge are used as input data to the Mathematical Model. For each configuration these values of depth and discharge were checked by plotting a depth-discharge rating curve for the downstream channel.

5.4.3 For supercritical flow the upstream depth and discharge are required as input data. Because of curvature effects the former was obtained from the travelling pointer gauge recordings.

5.4.4 The appropriate Mathematical Model was then used to compute theoretical profiles and discharges and the results are fully discussed in Chapter 6.

CHAPTER 6 DISCUSSION OF THE EXPERIMENTAL RESULTS

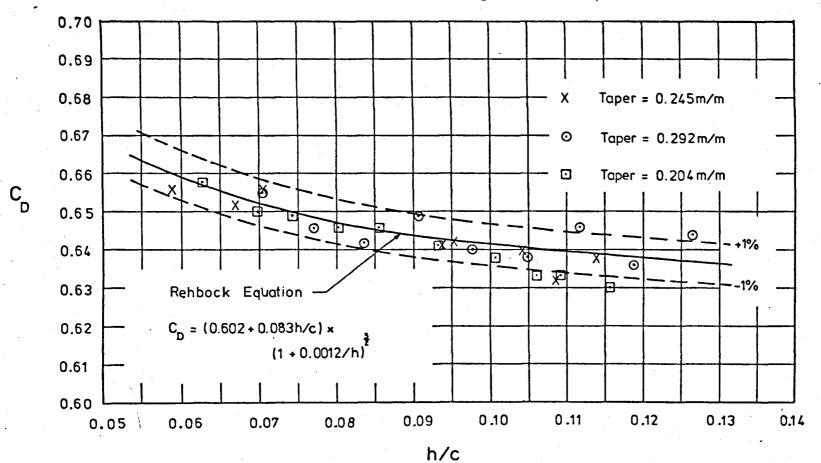
6.1 The Coefficient of Discharge

6.1.1 The results of the preliminary investigations are contained in Appendix V. The head above the crest of the side weir was found to be virtually constant over the whole of the tapering section except the region immediately behind the weir where drawdown of the water surface was, observed, and the region immediately adjacent to the channel wall. Values for the 200nm, 300nm and 400nm longitudinal sections, used to compute the mean head, showed little variation.

6.1.2 Values of the coefficient of discharge obtained from the preliminary investigations are given in Table 6.1 and Figure 6.1. The latter also contains a plot of C_D values obtained from the Rehbock equation¹⁹.

and the experimental results generally fall within $\frac{1}{2}$ 1% of the values given by this equation. An error analysis (Appendix VI) revealed a possible error due to the scale divisions on the apparatus of $\frac{1}{2}$ 0.5% which would account for a substantial part of the deviations shown. There is no systematic error in the results nor any trends to indicate that the coefficient of discharge is affected by the longitudinal velocity, as suggested by Collinge¹⁴. The results of the supplementary tests in which the weir was tested transversely also gave C_D values within $\frac{1}{2}$ 1% of the Rehbock values, and they were indistinguishable from the side weir results. The Rehbock equation was therefore used to compute values of the coefficient of discharge in the mathematical model, and in the other methods tested.

145.


Table 6.1

Coefficients of Discharge - Side Weir with Constant Head.

Read Mean LongitudcD <u>h</u> C_D inal Head ing Remarks Ċ Measured Rehbock Velocity h No. m/s mm 0.0670 0.652 0.654 0.098 23.95 1 0.647 0.0817 0.658 0.102 2 29.19 0.641 0.643 33.55 0.0938 0.117 1st Series 3 0.642 0.642 0.0954 0.133 4 34.11 0.632 0.640 Channel taper 0.148 38.78 0.1085 5 0.638 0.639 = 0.245m/m 0.158 6 40.72 0.1139 0.640 0.640 0.136 37.28 0.1043 7 0.0706 0.656 0.652 0.077 8 25.24 0.660 21.01 0.0588 0.656 0.057 9 0.652 0.0703 0.655 0.065 25.15 10 0.646 0.649 0.076 0.0770 27.52 11 0.646 0.642 0.087 2nd Series 29.93 0.0837 12 0.649 0.644 0.0906 0.097 32.38 13 0.642 0.640 0.108 Channel taper 0.0978 14 34.96 0.646 0.639 = 0.292m/m 0.1117 0.130 39.95 15 0.638 0.640 0.120 37.46 0.1048 16 0.636 0.638 0.143 0.1189 42.51 17 0.644 0.637 0.1263 0.153 45.14 18 0.658 0.657 0.081 22.42 0.0627 19 0.650 0.652 0.0699 0.092 24.98 20 0.649 0.650 3rd Series 26.48 0.0741 0.103 21 0.646 0.647 0.114 0.0802 28.67 22 0.646 0.645 0.126 Channel taper 0.0855 30.56 23 0.641 0.643 = 0.204 m/m0.141 0.0931 24 33.29 0.641 0.638 0.1006 0.160 35.97 25 0.640 0.633 0.1060 26 37.90 0.633 0.639 0.1093 0.179 27 39.09 0.630 0.638 0.1156 0.196 41.31 28

FIG. 6.1 RELATIONSHIP BETWEEN C AND h/c.

Sharp Crested Side Weir, length = 1107.2mm crest height = 357.5mm

FIG.6.2 VELOCITY PROFILE: Reading 16

Cross Section 200mm, 100mm behind weir.

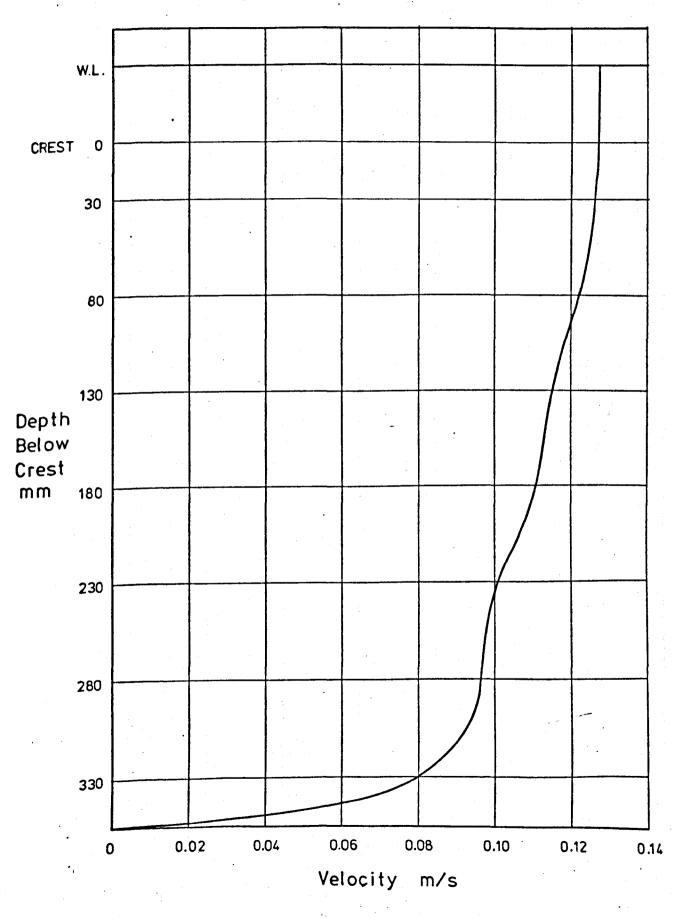


FIG. 6.3 VELOCITY PROFILE : Reading 16 Cross Section 200mm, 200mm behind weir.

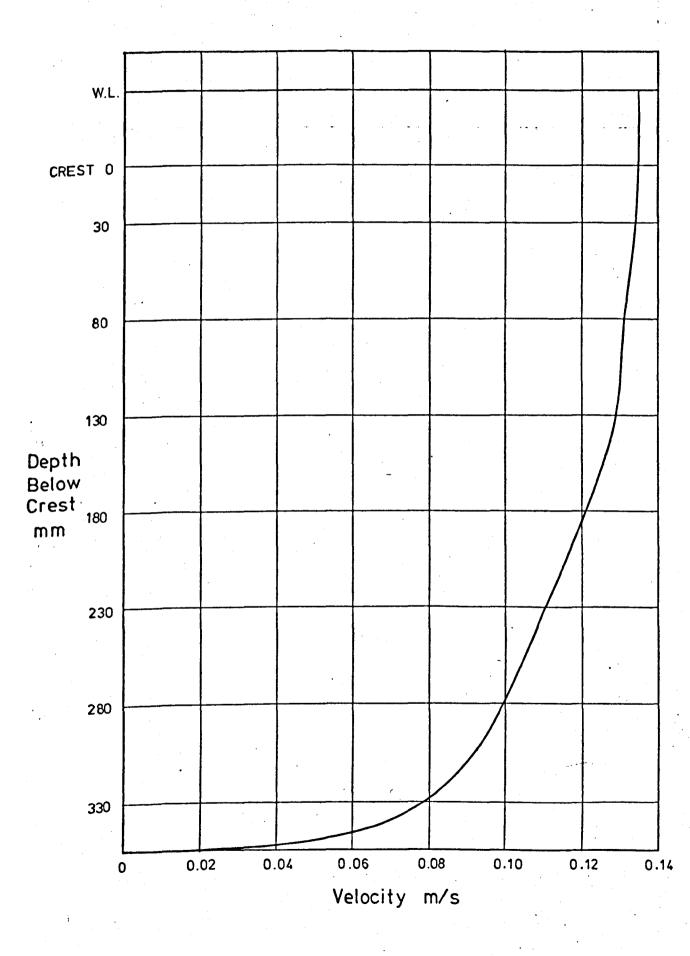
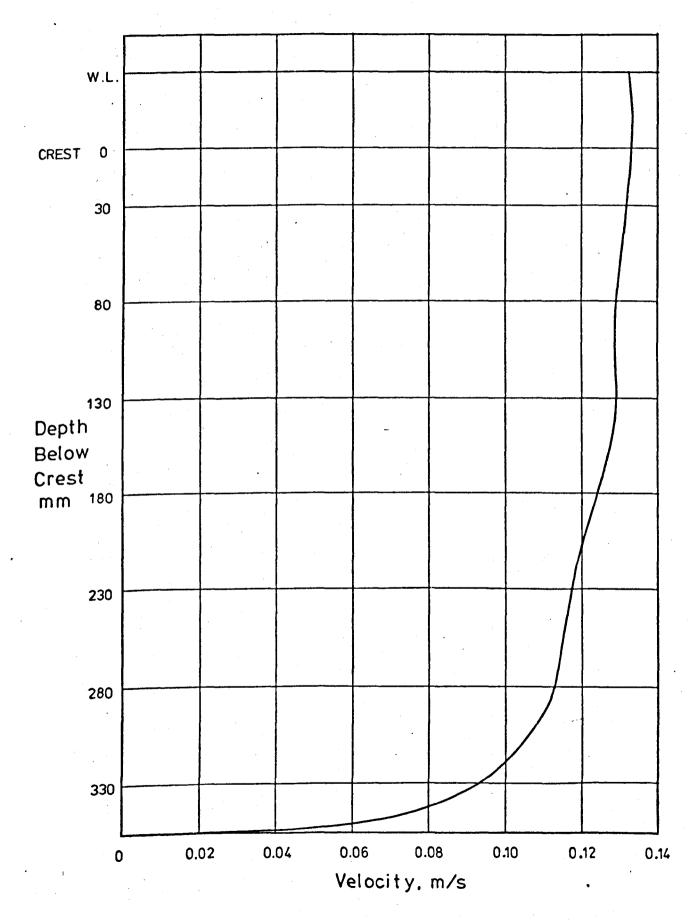



FIG.6.4 VELOCITY PROFILE: Reading 16

Cross Section 200mm, 400mm behind weir.

FIG. 6.5 VELOCITY PROFILE: Reading 16 Cross Section 200mm, 500mm behind weir.

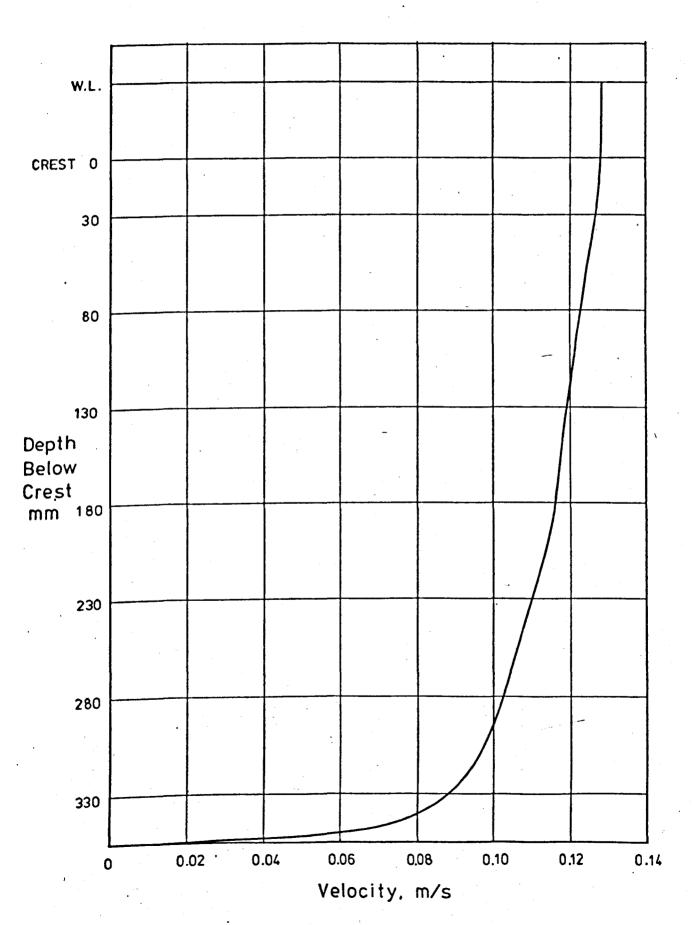
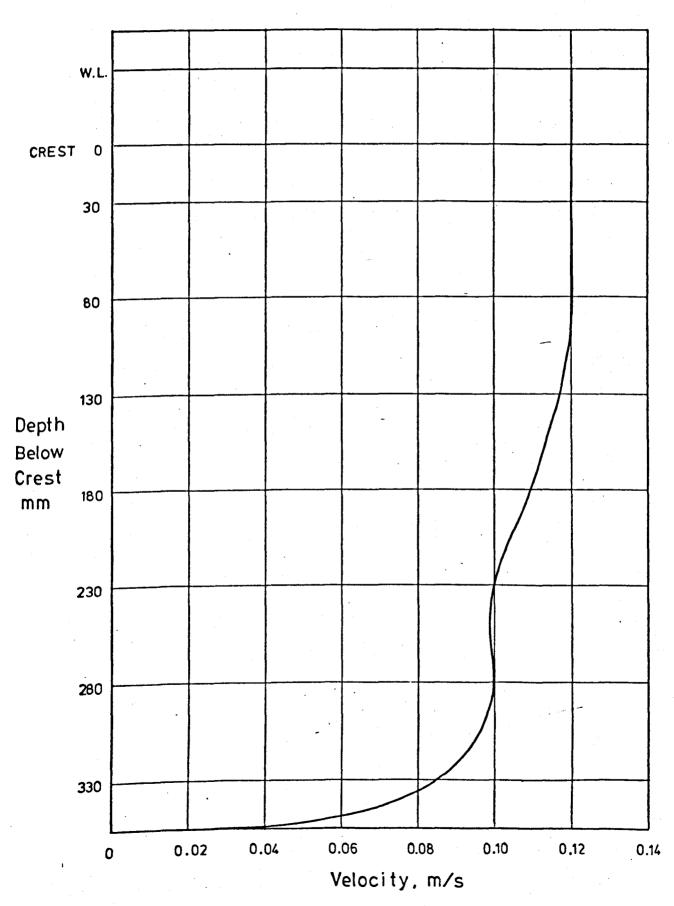



FIG.6.6 VELOCITY PROFILE: Reading 16

Cross Section 200mm, 600mm behind weir.

The Energy and Momentum Coefficients

6.2

6.2.1 Appendix V also contains the results of the velocity traverses undertaken with the current meter in the tapering channel, and typical velocity distributions, for test No. 16, are plotted in Figures 6.2 to 6.6. Velocity energy coefficients and momentum coefficients were calculated at each cross-section numerically, using the method described by Chow^{24} and outlined in Appendix V. The results are summarised in Table 6.2, which shows that the mean velocity and \propto and β all remain sensibly constant along the length of the weir in each case.

6.2.2 The values of \propto and β obtained compare favourably with those quoted by Chow²⁴, and although neither \propto nor β vary a great deal over the whole series of tests, there is some indication that they decrease in magnitude with increasing longitudinal velocity, as shown in Figure 6.7. A least squares regression analysis gave the following expressions for \propto and β with correlation coefficients of about 0.83.

of =	1.14 - 0.28v	•	(6.2)
β =	1.06 - 0.10v	• •	(6.3)

Equation (6.3) was used to obtain values of β in the mathematical model for values of v not exceeding 0.6m/s.

Table 6.2

Velocity Energy Coefficients and Momentum Flux Correction Factors.

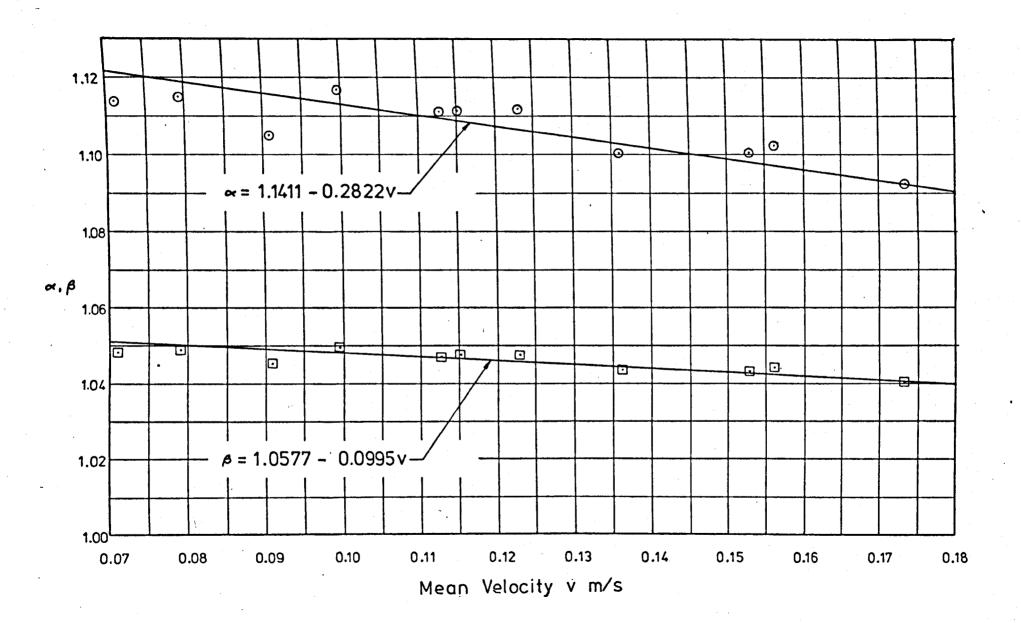

v m/s	8	ß	Read ing No.	v n/s	Å	β
0.0855	1.1176	1.0490		0.1163	1.0955	1.0413
		_				1.0396
			3			1.0450
			н. н. Пология			1.0528
0.0843	1.1864	1.0716			1.1197	1.0497
0.0876	1.2083	1.0796		0.1161	1.1334	1.0541
0.0852	1.1779	1.0699	Mean	0.1151	1.1117	1.0471
v	ł	ß	Read ing	v n/s	ø	β
m/s			NO.	ur 2		
0.1519	1.0995	1.0424		0.0729	1.0849	1.0381
0.1530	1.0846	1.0379		0.0704	1.0944	1.0414
0.1545	1.0730	1.0339	8	0.0699	1.1173	1.0497
0.1499	1.0965	1.0417		0.0698	1.1459	1.0595
0.1508	1.1139	1.0474		0.0700	1.1096	1.0464
0.1580	1.1370	1,0551		0.0720	1.1321	1.0540
0.1530	1.1008	1.0431	Mean	0.0708	1.1140	1.0482
v m/s	r	ß	Read ing No.	v m/s	ł	ß
0.0809	1.1220	1.0517		0.0913	1.1292	1.0536
						1.0403
		1.0427	13	0.0892	1.1032	1.0446
	1.1321	1.0551		0.0897	1.1060	1.0454
		1.0450		0.0908	1.0995	1.0430
0.0796	1.1435	1.0576		0.0930	1.1010	1.0433
0.0792	1.1150	1.0487	Mean	0.0907	1.1051	1.0450
	0.0855 0.0864 0.0844 0.0828 0.0843 0.0876 0.0876 0.0852 v m/s 0.1519 0.1530 0.1545 0.1530 0.1545 0.1499 0.1508 0.1580 0.1580 0.1530 0.1530 0.1530 0.0799 0.0799 0.0799 0.0793 0.0793 0.0796	m/s 0.0855 1.1176 0.0864 1.1215 0.0844 1.1613 0.0828 1.2723 0.0843 1.1864 0.0876 1.2083 0.0852 1.1779 v e m/s 1.0995 0.1519 1.0995 0.1530 1.0846 0.1545 1.0730 0.1550 1.0965 0.1530 1.0846 0.1545 1.0730 0.159 1.0965 0.1508 1.1139 0.1530 1.1008 v e m/s 1.1008 0.1530 1.1220 0.0799 1.0893 0.0799 1.0893 0.0799 1.0893 0.0799 1.0893 0.0799 1.0893 0.0793 1.1050 0.0793 1.1050 0.0796 1.1435	m/s	v \propto β ing No.n/s1.11761.0490 $No.$ 0.08551.11761.0490 $No.$ 0.08641.12151.0508 3 0.08441.16131.06355 3 0.08281.27231.1050 0 0.08431.18641.0716 0 0.08761.20831.0796Meanv ϵ β Reading No.0.05521.17791.0699Meanv ϵ β Reading No.0.15191.09951.0424 $No.$ 0.15191.09951.0424 $No.$ 0.15301.08461.0379 8 0.14991.09651.0417 $No.$ 0.15801.13701.0339 8 0.15301.10081.0431Meanv κ β Reading No.0.15301.10081.0431Meanv κ β Reading No.0.15301.10081.0431Mean0.05091.12201.0517 $No.$ 0.07991.08931.0398 $No.$ 0.07821.09781.0427130.07931.10501.0450 13 0.07931.10501.0450 13 0.07961.14351.0576 13	v m/s \varkappa β ing No. v m/s0.08551.11761.0490 μ 0.08640.11630.11630.08641.12151.05080.11360.08281.27231.10500.11410.08281.27231.10500.11410.08431.18641.07160.11410.08761.20831.0796Mean0.11510.08521.17791.0699Mean0.11510.08521.17791.0699Mean0.1151v \checkmark ρ m/sRead ing No.vm/s1.09951.04240.07290.15191.09951.04240.07290.15301.08461.037980.06990.15451.07301.033980.06990.15801.13701.033980.06990.15801.13701.05510.07000.15301.10081.0431Mean0.0708v \varkappa β Read ing No.vm/s1.00551Mean0.09130.15301.12201.05170.09130.07991.03931.03981.04270.07991.03931.0427130.07921.05910.08970.07931.10501.04500.09080.07931.10501.04500.09080.07961.14351.05760.0908	v m/s α β β $\log No.$ ing m/s v m/s 0.0855 1.1176 1.0490 1.0215 0.0163 1.0955 0.6864 1.1215 1.0508 0.0828 0.1163 1.0896 0.0828 1.2723 1.1050 0.1164 1.0480 0.1141 0.0828 1.2723 1.1050 0.1144 1.1048 0.1141 0.0828 1.2723 1.0506 0.1141 1.1273 0.1140 0.0843 1.1864 1.0716 0.1140 1.1197 0.1611 0.0876 1.2083 1.0796 Mean 0.1151 1.1117 v $ \rho$ Read ing No. v $ m/s$ 1.0799 1.0699 Mean 0.1151 1.1117 v $ \rho$ Read ing No. v $ 0.1519$ 1.09955 1.0424 ρ 0.0729 1.0849 0.1530 1.0846 1.0379 0.0700 1.10944 0.1545 1.0730 1.0339 8 0.0699 1.1273 0.1499 1.0955 1.0417 0.0698 1.1459 0.1530 1.1370 1.0551 0.0700 1.1966 0.1530 1.1200 1.0474 0.0708 1.1140 v $ \rho$ Read ing No. v $ 0.0809$ 1.1220 1.0517 0.0913 1.1292 0.0779 1.0293 1.0427 13 0.0928

Table 6.2 continued

X

	r		1	<u> </u>			
Read- ing No.	v m/s	ď	β	Read ing No.	v m/s	~~~	β
	0.1116	1.1546	1.0625		0.1348	1.1559	1.0641
	0.1140	1.0905	1.0397		0.1366	1.0790	1.0358
16	0.1111	1.1033	1.0440	17	0.1338	1.0933	1.0409
	0.1108	1.1134	1.0478		0.1330	1.1064	1.0453
	0.1121	1.1038	1.0441		0,1376	1.0852	1.0379
	0.1158	1.1041	1.0441		0.1415	1.0830	1.0370
Mean	0.1126	1.1116	1.0470	Mean	0.1362	1.1005	1.0435
Read- ing	v	e x	β	Read ing	v	R	ß
No.	m/s			No.	m/s		
	0,1021	1.1237	1.0506		0,1220	1.1324	1.0552
	0.1018	1.0834	1.0378	_	0.1247	1.0853	1.0383
21	0.0987	1.0941	1.0415	23	0.1227	1.0915	1.0403
	0.0984	1.1163	1.0492		0.1234	1.1056	1.0454
	0.0978	1.1286	1.0535		0.1215	1.1281	1.0530
	0.0980	1.1561	1.0623		0.1238	1.1285	1.0530
Mean	0.0995	1.1170	1.0492	Mean	0.1230	1.1119	1.0475
Read- ing No.	v m/s	r	β	Read ing No.	v m/s	K	ß
	0.1546	1.1087	1.0467		0.1718	1.1153	1.0485
	0.1600	1.0756	1.0350		0.1760	1.0776	1.0354
25	0.1579	1.0784	1.0358	27	0.1737	1.0743	1.0344
	0.1557	1.0931	1.0407		0.1739	1.0758	1.0348
	0.1556	1.1038	1.0443		0.1724	1.0909	1.0400
	0.1537	1.1543	1.0613		0.1720	1.1203	1.0496
Mean	0.1563	1.1023	1.0440	Mean	0.1733	1.0924	1.0405

FIG. 6.7 VELOCITY ENERGY AND MOMENTUM COEFFICIENTS.

A Qualitative Discussion of Side Weir Flow

6.3.1 Using the apparatus described in Chapter 5 it was possible to produce all the five flow cases identified by Frazer¹⁵ and described in section 2.1, although it was not possible to achieve all the flow cases on each weir independently. The full range of conditions achieved is shown in Figures 6.8 to 6.37.

6.3.2 Figures 6.8 to 6.12 show Weir I (whose dimensions are given in Table 5.1) with the downstream sluice gate lowered and controlling the flow. The discharge progressively increases from Figure 6.8, which shows the first spill condition for a Case II subcritical profile, to Figure 6.11 where the upstream flow has been sufficiently drawn down to form supercritical flow along the upstream section of the weir, with an undular hydraulic jump forming on the weir (Case III).

6.3.3 A further increase in the flow rate produced a broken jump on the weir (Figure 6.12). Although Case III (and Case V) profiles were observed during the tests readings were not taken when a hydraulic jump formed on the weir as this condition was beyond the scope of the current investigation.

6.3.4 Similar results were obtained when the transverse weir was used instead of the sluice gate as the downstream control. With the downstream control removed a supercritical flow profile formed (Case I) (Figure 6.13).

157

6.3

6.3.5 Figures 6.14 to 6.18 show a similar set of conditions occurring on Weir 2, but because of the increased crest height the subcritical profiles existed up to a much greater discharge. Also, when the downstream control was removed it was only just possible to produce a falling supercritical profile at the maximum channel discharge (Fig. 6.18). Figures 6.17 and 6.18 clearly show the importance of a downstream throttle. In both cases the upstream discharge is about the same, but in the former case the downstream flow is throttled by the sluice gate which substantially increases the discharge over the weir.

6.3.6 With the lower crest height of Weir 3, however, it was only possible to produce a subcritical profile at low discharges, and with a severe downstream throttle (Fig. 6.19). Any significant increase in the flow lead to a hydraulic jump forming on the weir (Figs. 6.20 to 6.22) and quite strong jumps could be achieved. The stronger jumps were observed to be unstable and oscillated up and down the weir by up to 0.3m. Although moving the sluice gate further downstream tended to reduce the magnitude of the oscillations the effect could not be entirely eliminated.

Fig. 6.23 shows the same upstream conditions as Fig. 6.22, but with the downstream throttle removed, forming a supercritical flow profile. Again the side spill discharge is reduced but the effect is not as dramatic as with Weir 2.

6.3.7 The effect of changing the length of the weir is shown in Figs. 6.25 to 6.30 with Weir 4, a shorter version of Weir 1, and in Figs. 6.31 to 6.36 with Weir 5, a longer version of Weir 1. In each case the flow profiles follow the same pattern as the Weir 1 profiles, but

with shorter Weir 4 a greater range of subcritical profiles is possible, whereas with Weir 5 the range is reduced.

6.3.8 The effect of changing the weir length is clearly less significant than varying the crest height, and this conclusion is supported by the discharge characteristics and depth-discharge relationships discussed in section 6.4.

6.3.9 Finally the effect of lowering the upstream sluice gate was observed on Weir 3. This produced supercritical flow both along the weir and in the upstream channel (Case IV). The longitudinal velocities along the weir increased and the upstream depth and side spill discharge decreased (Figs. 6.37 and 6.38).

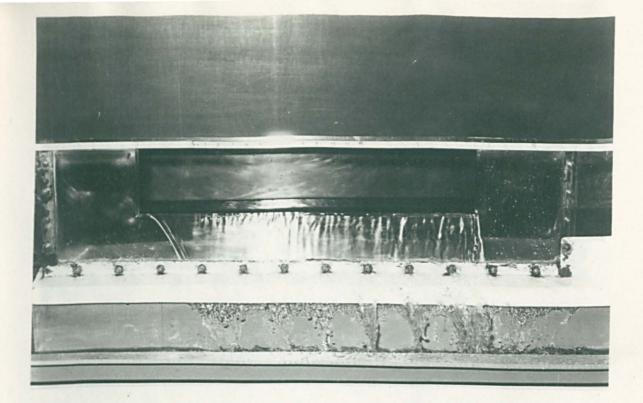


fig. 6.8 Weir1, First Spill, CaseI Flow, Clinging Nappe.

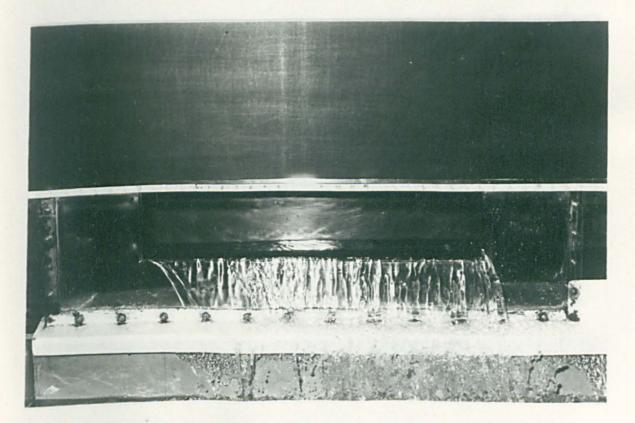


fig. 6.9 Weir1, Low Flow CaseII, Free Nappe.

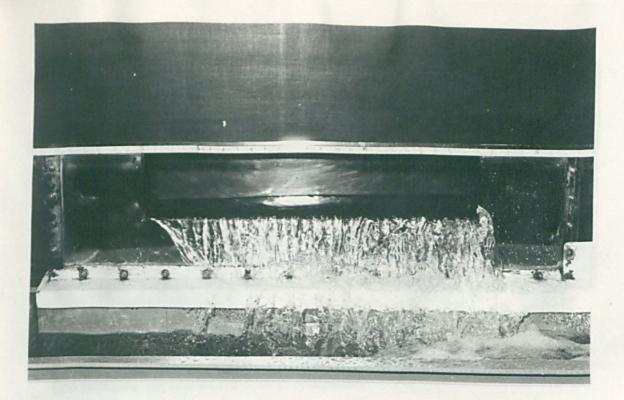


fig. 6.10 Weir 1, Intermediate Flow, CaseII.

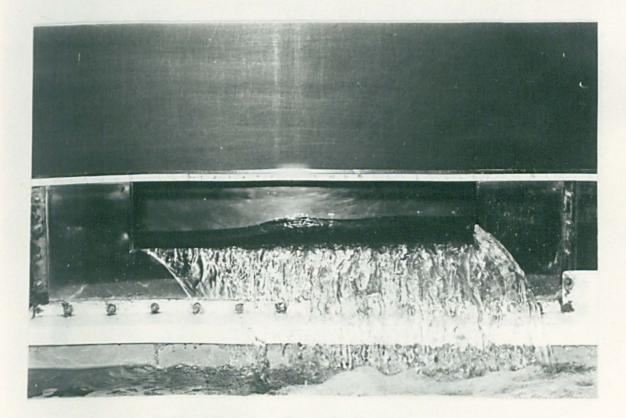


fig. 6.11 Weir1, Undular Jump, Case III.

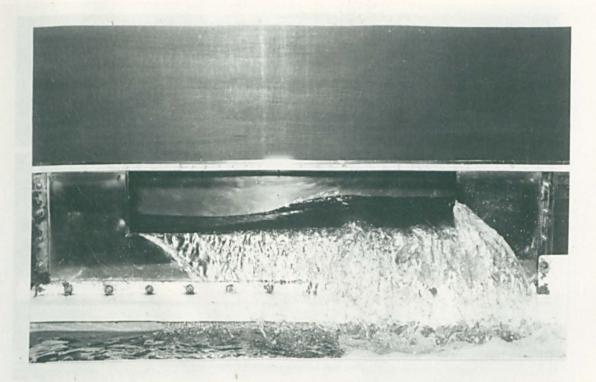


fig. 6.12 Weir 1, Broken Jump, Case III.

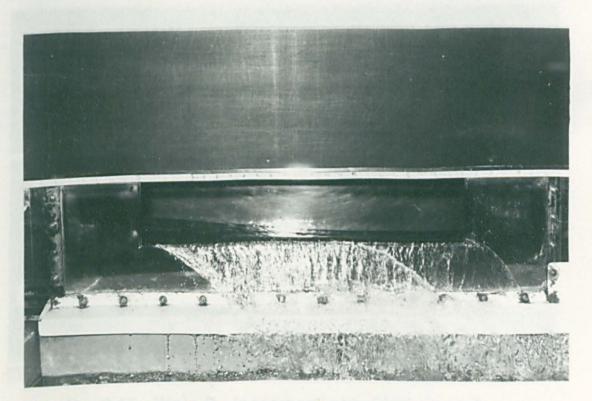


fig.6.13 Weir1, CaseI Flow.

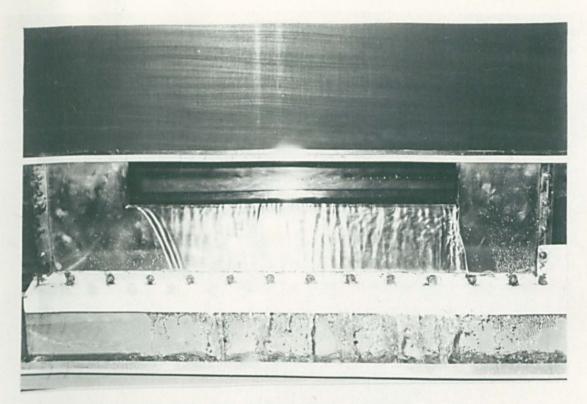


fig.6.14 Weir 2, First Spill, CaseI Flow, Clinging Nappe.

fig.6.15 Weir 2, Intermediate Flow Case II.

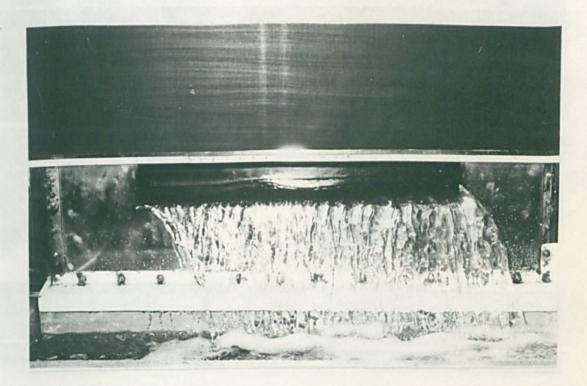


fig. 6.16 Weir 2, High Flow CaseII.

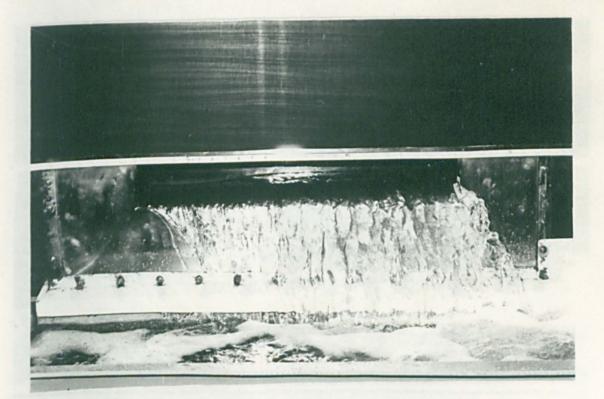
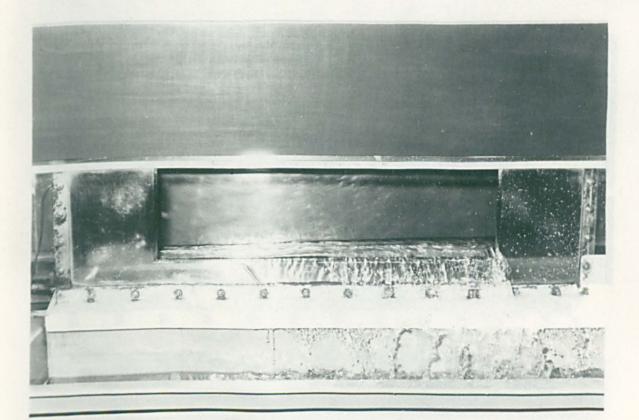



fig. 6.17 Weir 2, Maximum Flow Case II.

fig. 6.18 Weir 2, Maximum Flow CaseI

fig. 6.19 Weir3, Case I Flow with Severe Downstream Throttle (part of nappe clinging)

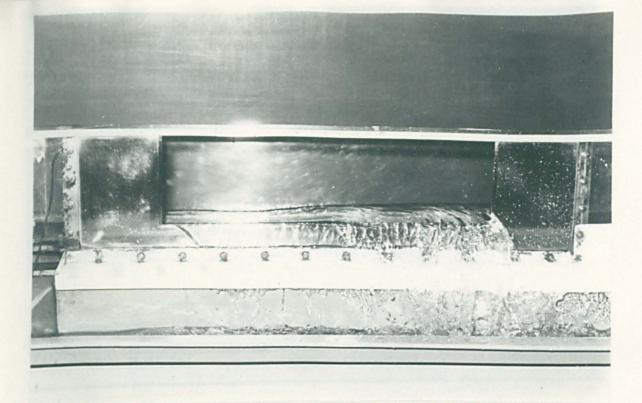


fig. 6.20 Weir 3, Weak Jump Forming, Case III.

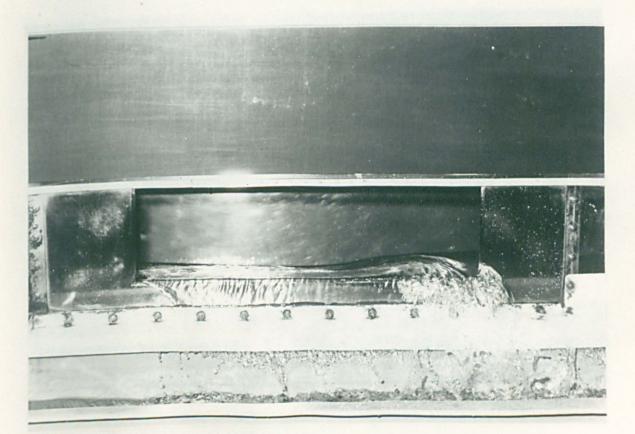


fig. 6. 21 Weir 3, Increased Flow, Stronger Jump Case III.

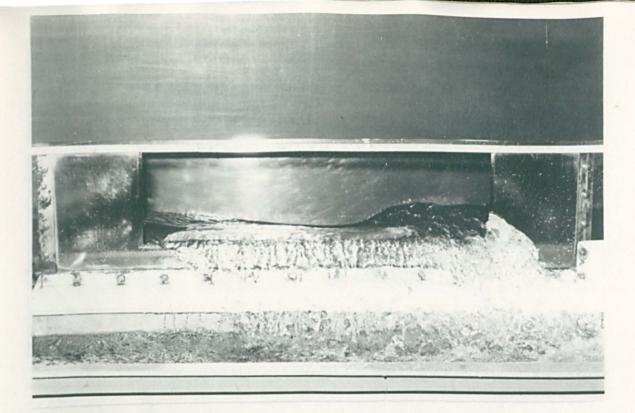


fig. 6.22 Weir 3, Strong Broken Jump, Case III (some instability)

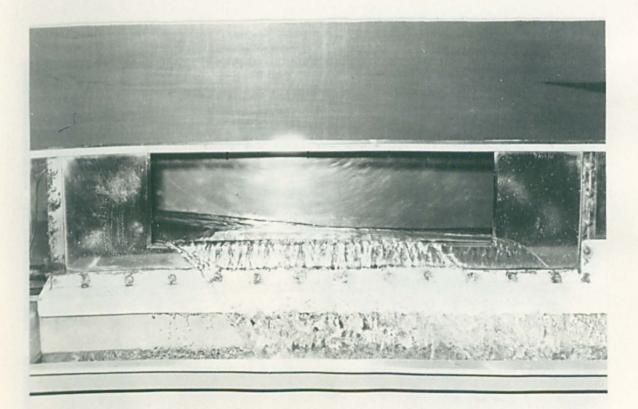


fig. 6.23 Weir 3, as fig. 6.22 but with downstream throttle removed, Case I.

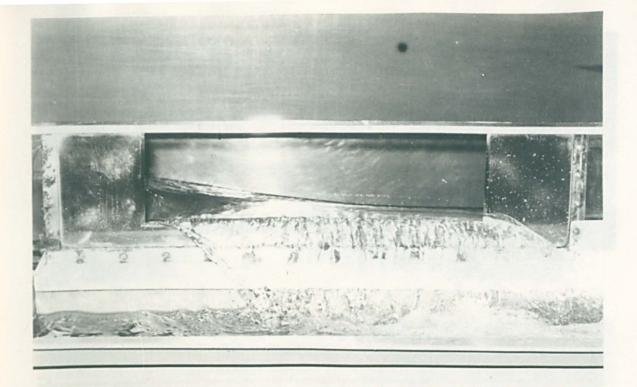


fig. 6.24 Weir 3, High Flow CaseI.

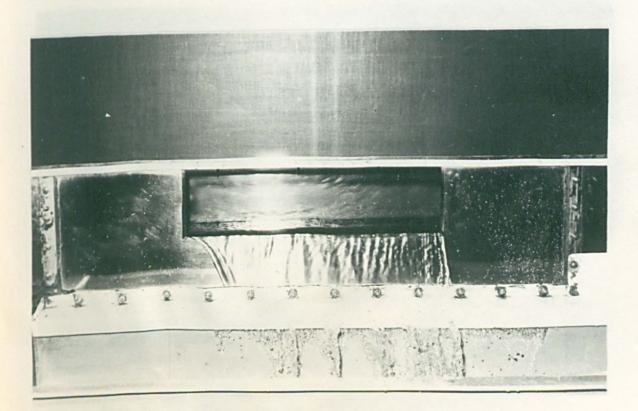


fig. 6.25 Weir 4, Low Flow Case II.

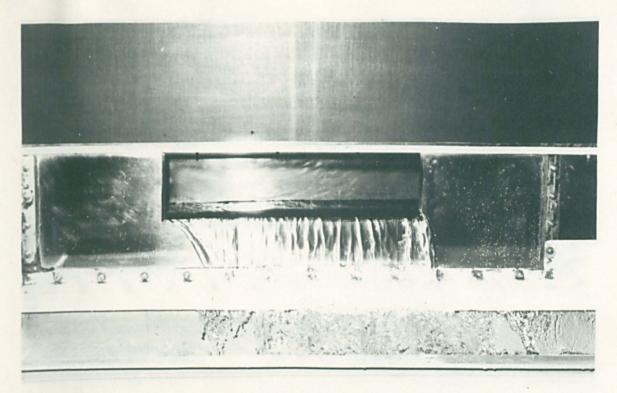


fig. 6.26 Weir 4, Intermediate Flow Case II.

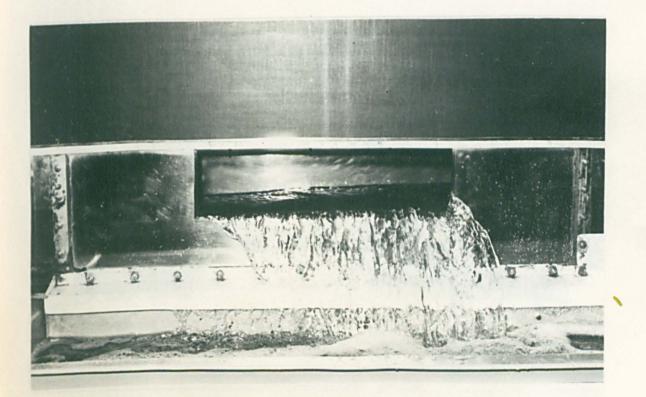


fig. 6.27 Weir 4, as fig. 6.26 but with increased flow, Case II.

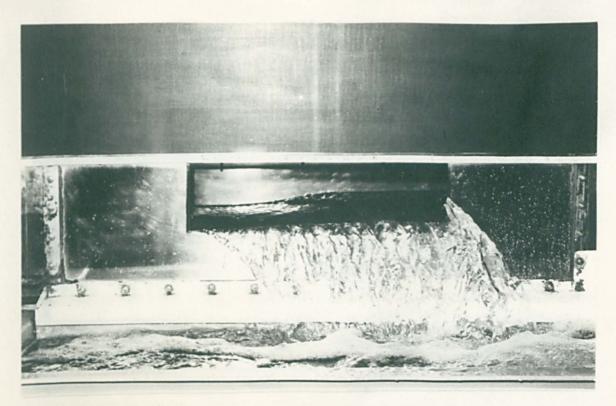


fig. 6.28 Weir 4, Broken Jump, Case III.

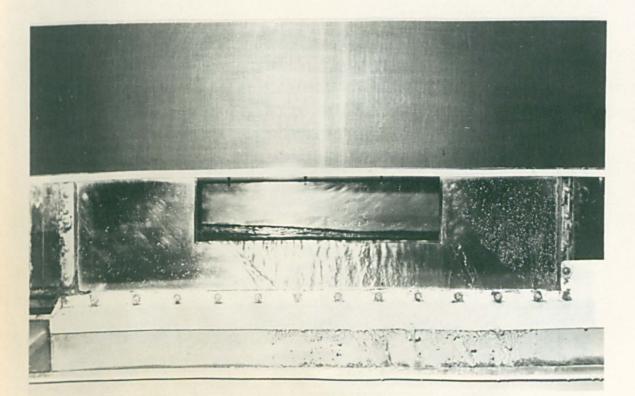


fig. 6.29 Weir4, Intermediate Flow CaseI

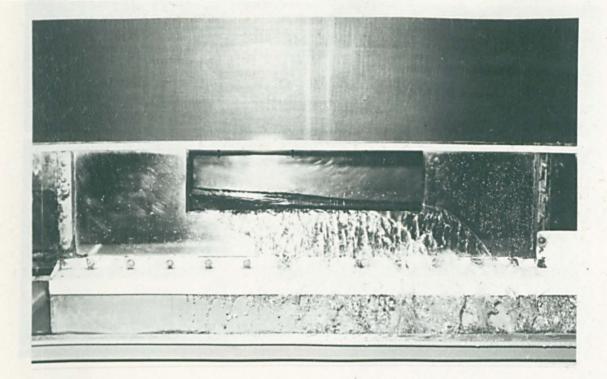


fig. 6.30 Weir 4, High Flow Case I

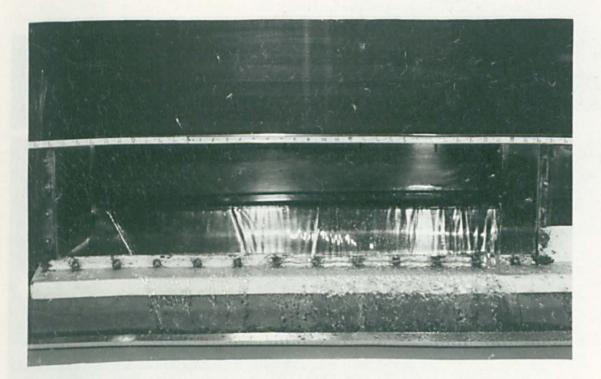


fig. 6.31 Weir 5, Low Flow CaseII.

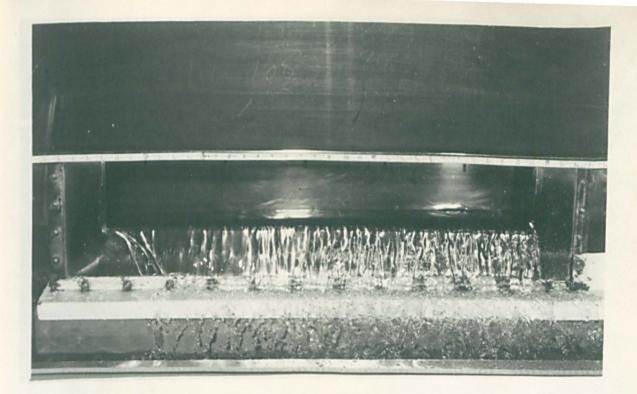


fig.6.32 Weir 5, Intermediate Flow Case II

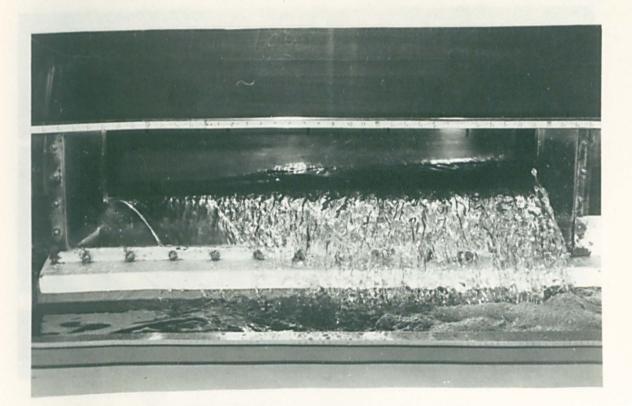


fig. 6.33 Weir 5, High Flow Case II.

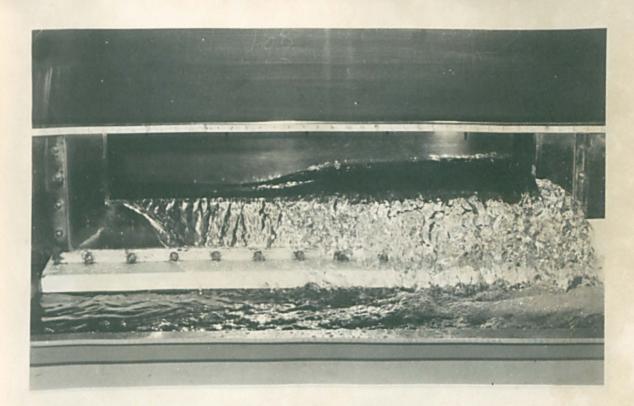


fig. 6.34 Weir 5, Broken Jump, Case III.

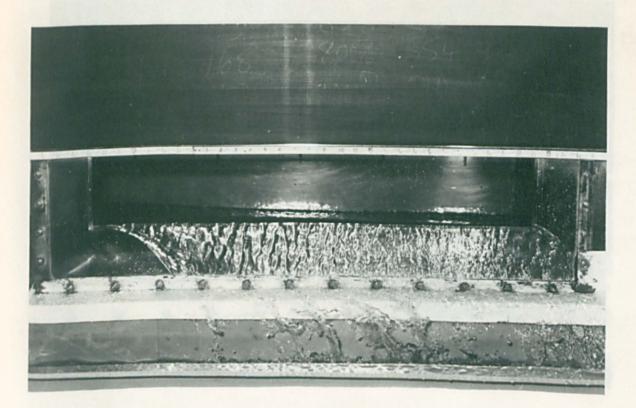


fig. 6.35 Weir 5, Intermediate Flow CaseI.

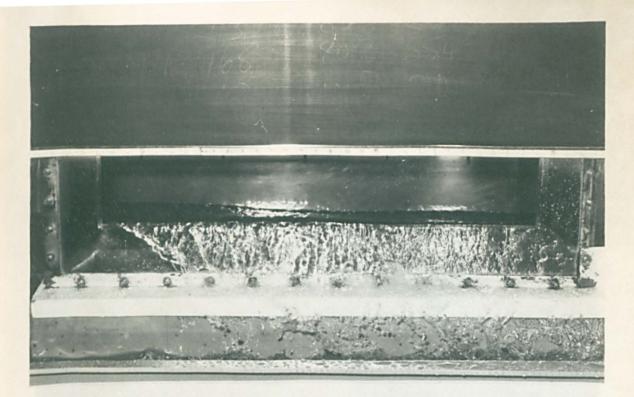


fig. 6.36 Weir5, High Flow, CaseI.

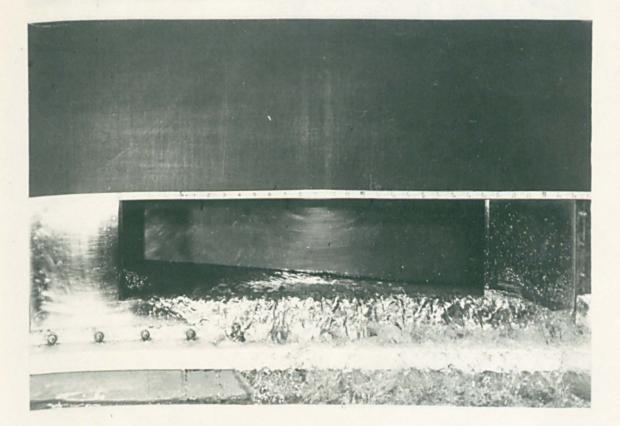


fig. 6.37 Weir 3, High Flow Case IV, (upstream sluice gate controlling flow)

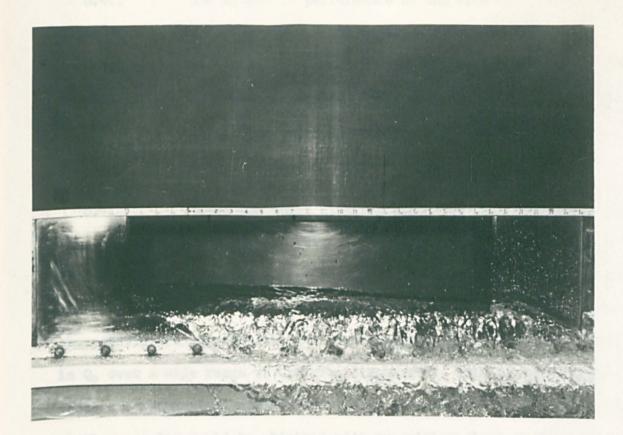


fig. 6.38 Weir 3, as fig.6.37 but with the upstream sluice gate set lower, Case IV.

6.4.4 For supercritical flow (Fig. 6.46) and anaracteristi are also straight but in this case the residual asinctron discharge

6.4 A Quantitative Discussion of Side Weir Flow

6.4.1 The hydraulic performance of the side weirs tested is shown graphically in Figures 6.39 to 6.55. The former half, Figs. 6.39 to 6.46, show the discharge characteristics whilst the remainder show the relationship between the depths at the upstream and downstream ends of the weir and the upstream discharge. The experimental data used in plotting these graphs is included in Appendix VII.

6.4.2 There are three distinct discharge characteristics that can be identified. With subcritical flow along the weir, controlled by the downstream sluice gate (Figs. 6.39, 6.40 and 6.42 to 6.45), the discharge characteristics form a family of straight lines. The Q_2/Q_1 characteristics approach the horizontal indicating only small changes in Q_2 over a wide range of upstream discharges. This is a desirable feature for practical applications, e.g. as storm sewage overflows, and similar results would be obtained with an orifice plate or throttle pipe as the downstream control.

6.4.3 When the sluice gate is replaced by a transverse weir, however, the discharge characteristics become curved (Fig. 6.41) and in this case pass through the origin as the transverse weir crest was set level with that of the side weir. Values of Q_2 at the upper end of the range increase significantly with increasing Q_1 , with is generally undesirable.

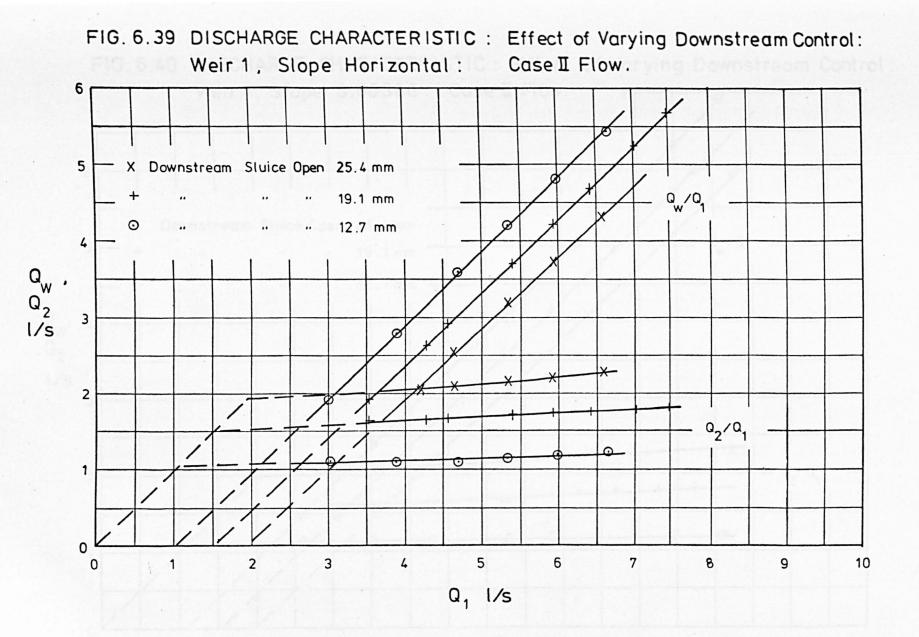
6.4.4 For supercritical flow (Fig. 6.46) the characteristics are also straight but in this case the residual mainstream discharge Q_2 is greater than the side spill discharge Q_2 in every case due to the

higher longitudinal velocities and smaller depths resulting from the absence of the downstream throttle.

6.4.5 In every case the Q_w/Q_1 characteristic has been extrapolated to give the first spill discharge. Thus for Weir 1 with a horizontal bed and the downstream sluice gate open 19.1mm first spill occurs at 1.50 1/s (Fig. 6.39). The Q_2/Q_1 characteristics have also been extended to the first spill values, where $Q_2 = Q_1$. Below this point Q_2 is always equal to Q_1 and the characteristics form a 45° straight line. A further property of all the discharge characteristics is their symmetrical placing about the line $Q_w = \frac{1}{2}Q_1$.

6.4.6 The discharge characteristics clearly indicate the effects of variations in the bed slope, weir length, crest height, and downstream control. The latter has the most significant effect on both discharge over the weir and drawdown in the upstream channel for subcritical flow profiles. Reference to Figure 6.57 (the depth-discharge rating curve for the downstream sluice gate) shows that lowering of the sluice gate substantially increases the downstream depth. This leads to an increase in depth along the weir and, therefore, an increase in the side spill discharge. The shift in the characteristics in Figures 6.39 and 6.40 clearly reflects this. The effect is also shown in the depthdischarge relationships in Figures 6.48 and 6.49. Note that in the former the y_1/Q_1 curve tends to level off at the higher discharges so that any increase in Q_1 leads to a corresponding increase in v_1 and the Froude number rapidly increases until it exceeds one and supercritical flow occurs. This feature is not evident with Weir 2 as the slope of the y_1/Q_1 curve is steeper, and increases in Q_1 are offset by corresponding increases in y₁, leading to only small changes in v₁.

6.4.7 Figures 6.41, 6.42 and 6.43 show that the channel's slope has little effect on the subcritical discharge relationships. This effect can be explained by Figures 6.51 and 6.52. An increase in the channel slope has the effect of decreasing y_1 and increasing y_2 . Thus the side spill discharge over the first part of the weir is reduced whilst over the latter part of the weir the discharge is increased. The net result is that the total side spill discharge remains virtually unchanged.


6.4.8 The effect of varying the crest height is shown in Figure 6.44 and is the second most important variable to affect the discharge. An increase in crest height clearly reduces the side spill discharge Q_w , all other variables remaining constant. Figure 6.53 shows that the surface profile is also affected by crest height. The depthdischarge curves are not merely shifted by the change in crest elevation, but the gradients and first spill points also differ, as shown when the Weir 2 results are reduced to Weir 1 level, as denoted by the broken line.

6.4.9 For subcritical profiles Figure 6.45 shows that variation in the weir length produces surprisingly little variation in the discharge characteristic, despite changes in length of $\pm 25\%$. This phenomenon can be explained to some extent by Figure 6.54. For a given upstream discharge a decrease in weir length leads to an increase in both y_1 and y_2 . This gives a greater discharge per unit length of weir, thus compensating for the reduction in the length. The converse is true for the longer weir.

6.4.10 The discharge characteristics for supercritical profiles shown in Figure 6.46 clearly show the channel slope to be significant in this case. An increase in the bed slope leads to a reduction in the upstream depth (Fig. 6.55) which in turn reduces the side spill discharge. Q_2 is substantially greater than corresponding values for subcritical flow and generally exceeds $Q_{\rm w}$ in practical cases. Figure 6.56 shows the depth-discharge relationship in dimensionless form. Extrapolation of the curve to the point where supercritical flow is just formed at the upstream end of the weir, i.e. $y_1 = y_c$, gives a value of $\frac{c}{y_c} = 0.75$. Since $y_c = \frac{2}{3}E_c$ then $E_c = 2c$. Thus, as first stated by Ackers⁵, the condition for formation of supercritical flow at the upstream end of the weir is that the specific energy of the upstream flow exceeds twice the crest height.

6.4.11 Lowering of the upstream sluice gate to produce Case IV profiles has the effect of reducing both the upstream depth and the side spill discharge. The depth at the upstream end of the weir is now governed by the gradually varied flow profile in the upstream channel. A relationship was found between the percentage reduction in y_1 and the percentage reduction in Q_w from their respective values for Case I profiles at the same upstream discharge. This relationship is shown graphically in Figure 6.47 and is unaffected by the channel slope.

6.4.12 In all cases the first spill conditions shown on the depth-discharge relationships indicate a first spill depth 1 to 2mm greater than the crest height. This was observed during the experiments and is due to surface tension effects.

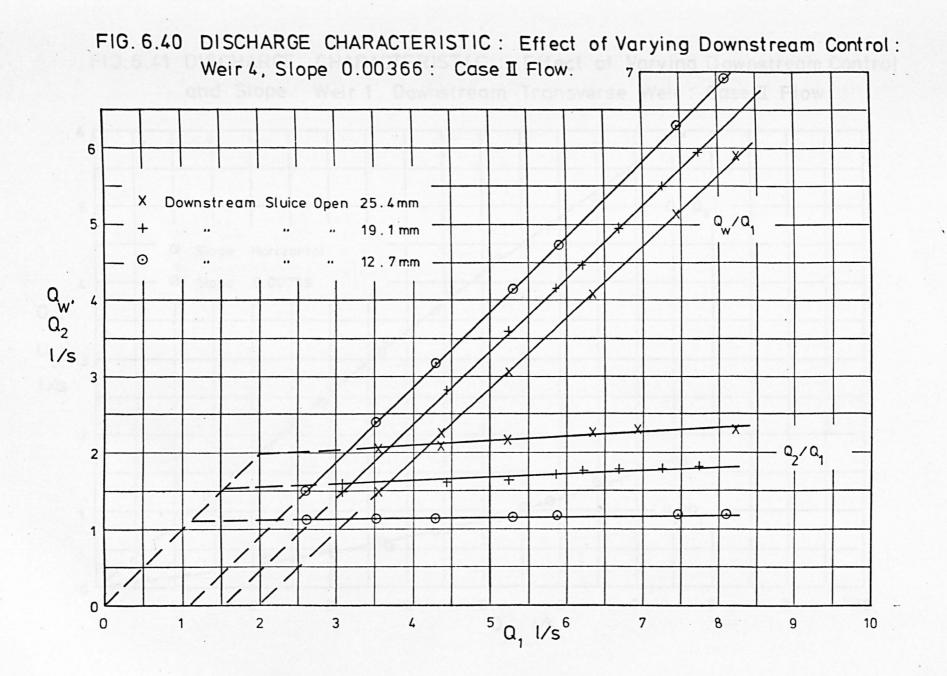
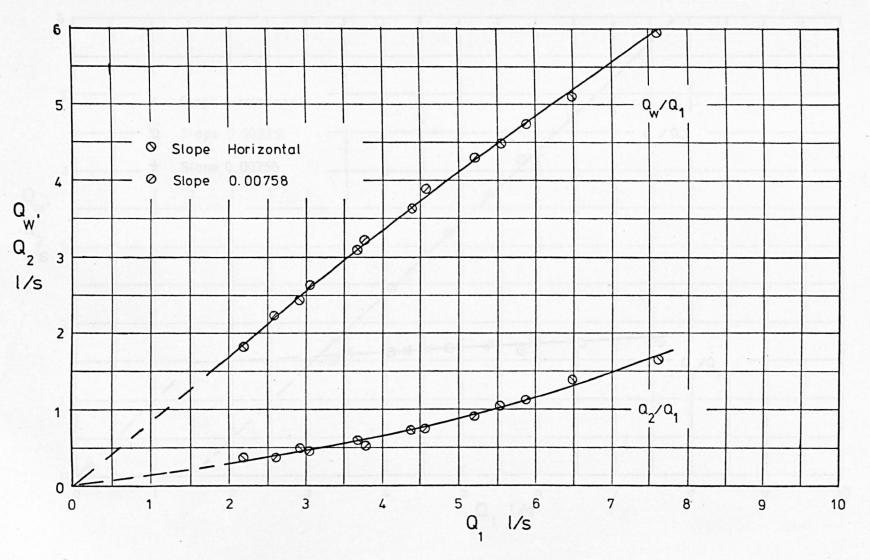
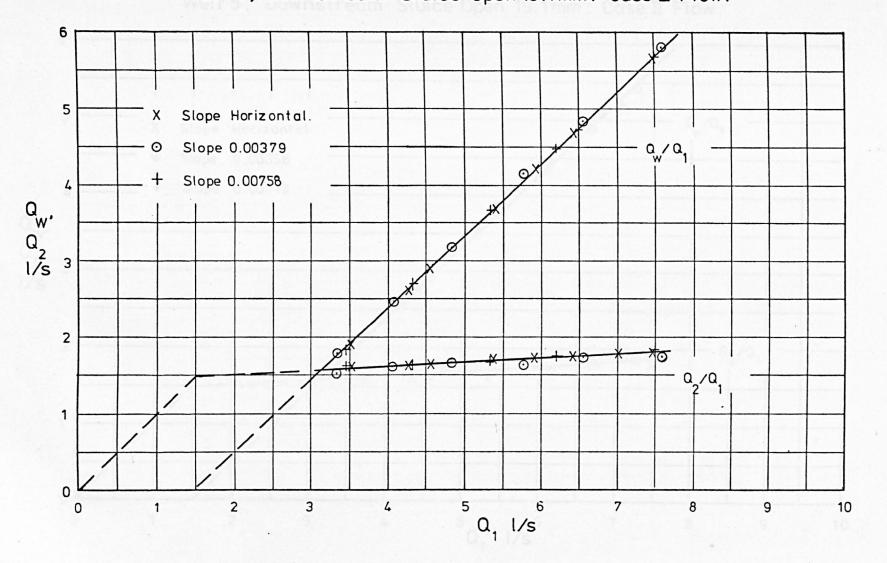




FIG.6.41 DISCHARGE CHARACTERISTIC : Effect of Varying Downstream Control and Slope : Weir 1, Downstream Transverse Weir : Case I Flow.

182

FIG. 6.42 DISCHARGE CHARACTERISTIC: Effect of Varying Bed Slope: Weir 1, Downstream Sluice Open 19.1mm: Case I Flow.

FIG. 6.43 DISCHARGE CHARACTERISTIC: Effect of Varying Channel Bed Slope:

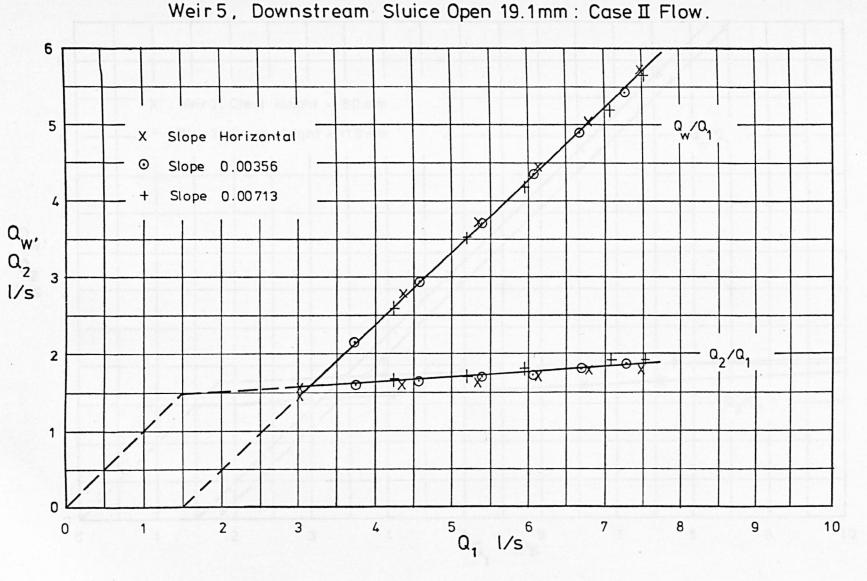


FIG.6.44 DISCHARGE CHARACTERISTIC: Effect of Varying Crest Height: Weir Length = 0.6096m, Downstream Sluice Open 19.1mm : Case II Flow.

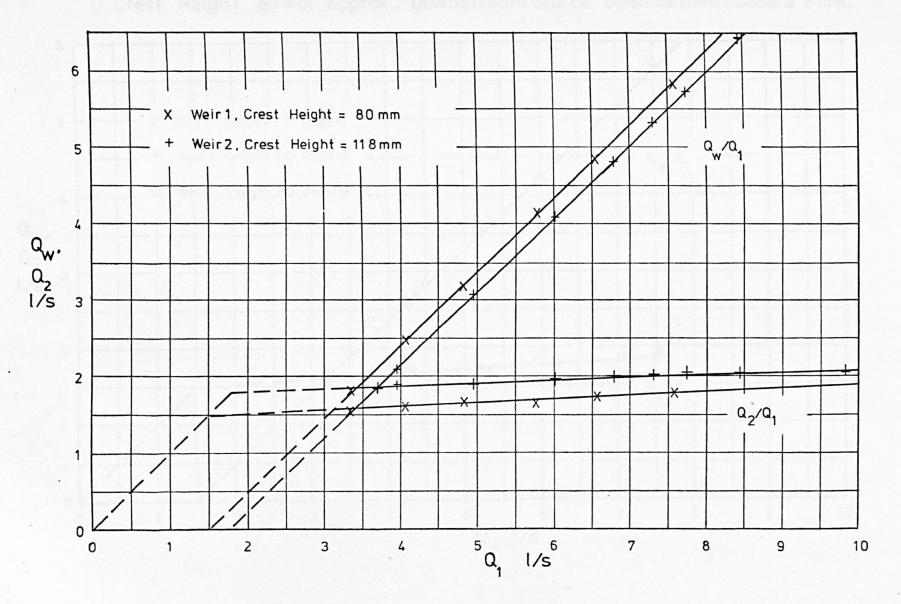


FIG. 6.45 DISCHARGE CHARACTERISTIC : Effect of Varying Weir Length: Crest Height 80mm approx., Downstream Sluice Open 19.1mm : Case II Flow.

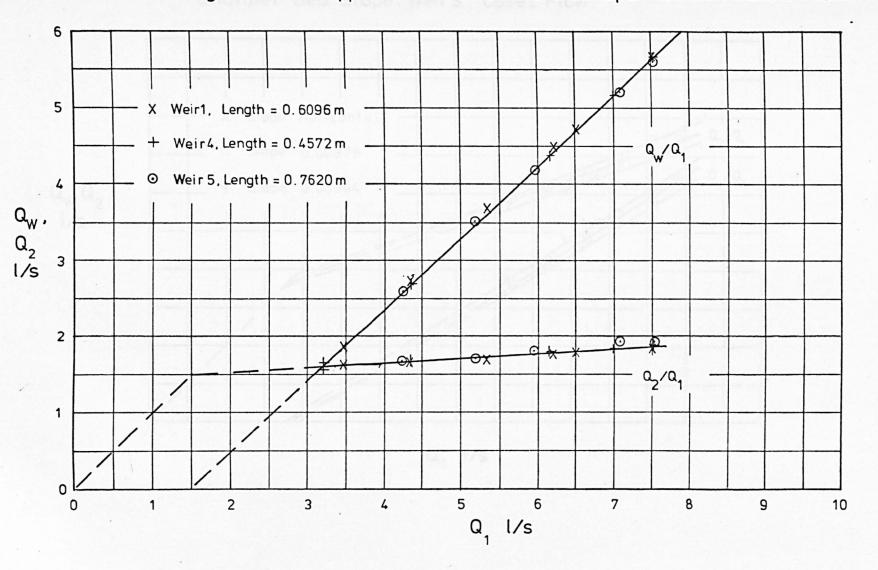
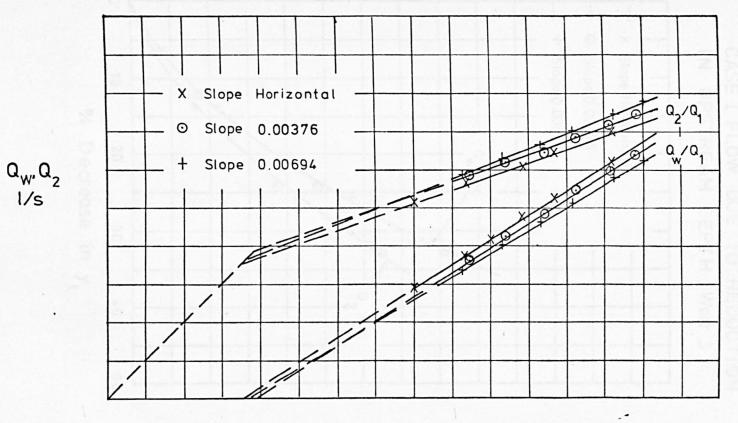



FIG. 6.46 DISCHARGE CHARACTERISTIC : Effect of Varying Channel Bed Slope: Weir3: CaseI Flow.

Q, 1/s

FIG. 6.47 CASE IV FLOW: REDUCTION IN SIDE SPILL DISCHARGE FROM CASE I FLOW DUE TO REDUCTION IN UPSTREAM DEPTH: Weir 3.

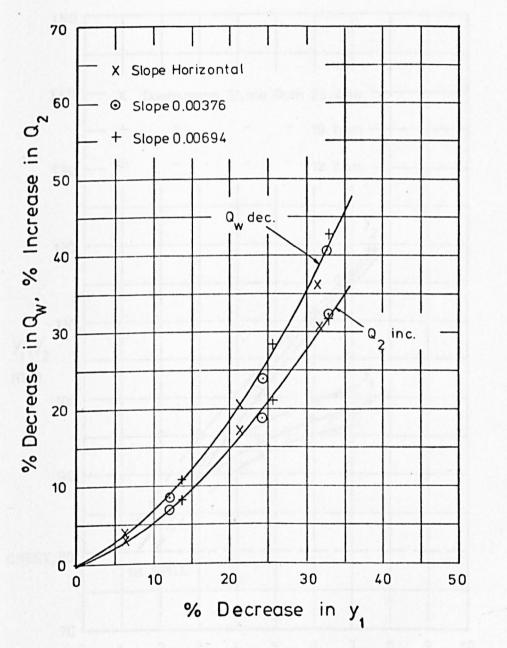


FIG. 6.48 DEPTH - DISCHARGE RELATION-SHIP: Effect of Varying Downstream Control: Weir 1, Slope Horizontal: Case I Flow.

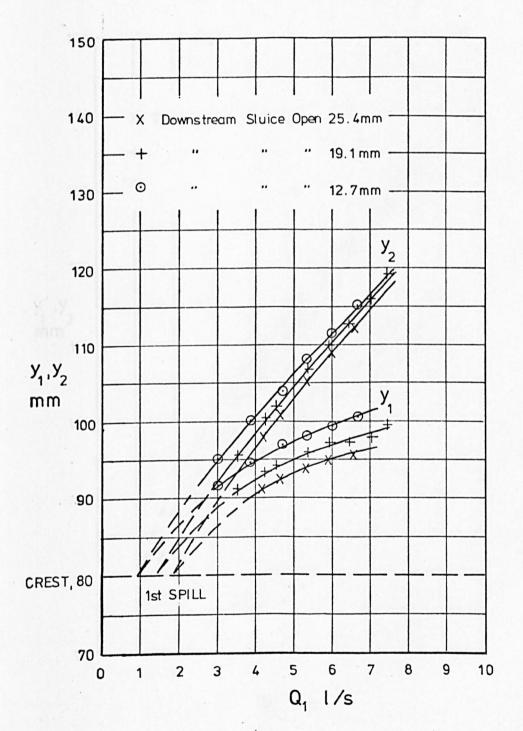


FIG. 6.49 DEPTH - DISCHARGE RELATION -SHIP : Effect of Varying Downstream Control: Weir 4, Slope 0.00366 : Case II Flow.

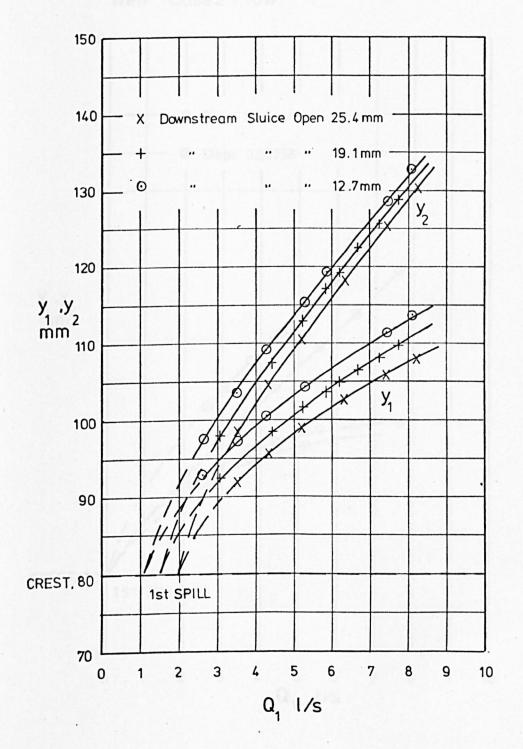


FIG.6.50 DEPTH-DISCHARGE RELATION-SHIP: Effect of Varying Downstream Control and Slope: Weir 1, Downstream Transverse Weir: CaseII Flow.

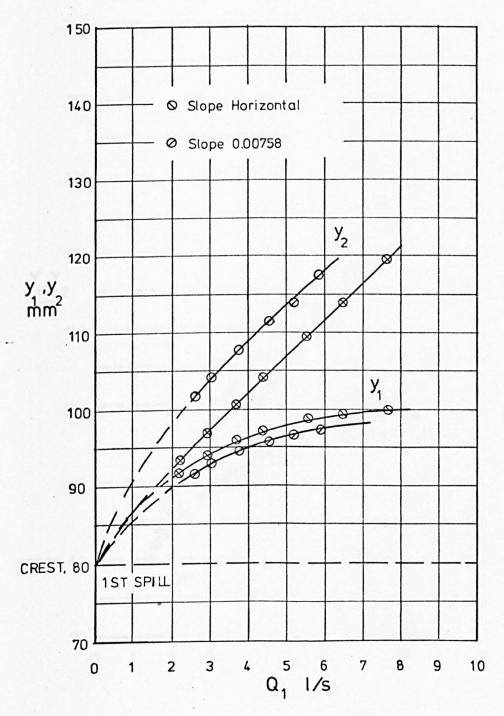


FIG. 6.51 DEPTH - DISCHARGE RELATION -SHIP: Effect of Varying Channel Slope: Weir1, Downstream Sluice Open 19.1 mm: Case II Flow.

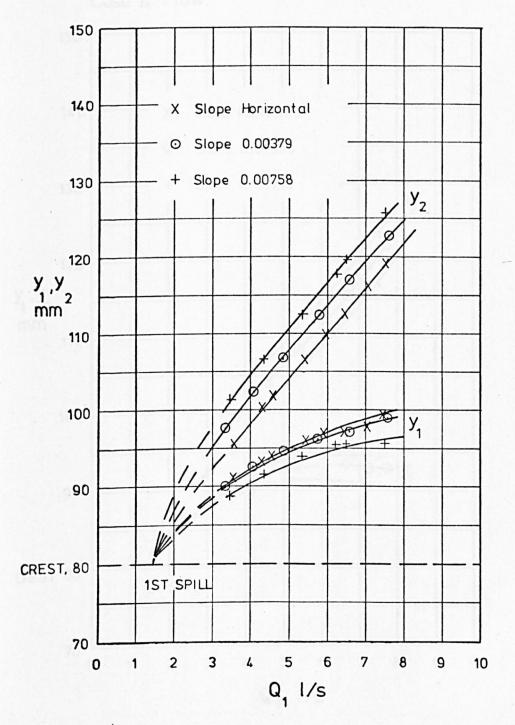


FIG. 6.52 DEPTH - DISCHARGE RELATION -SHIP: Effect of Varying Channel Slope : Weir 5, Downstream Sluice Open 19.1 mm: Case II Flow.

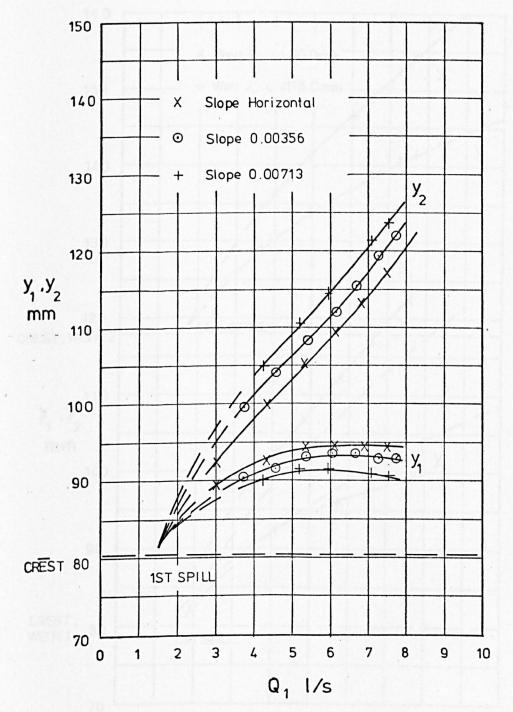


FIG.6.53 DEPTH-DISCHARGE RELATION-SHIP: Effect of Varying Crest Height: Weir Length = 0.6096m; Case II Flow

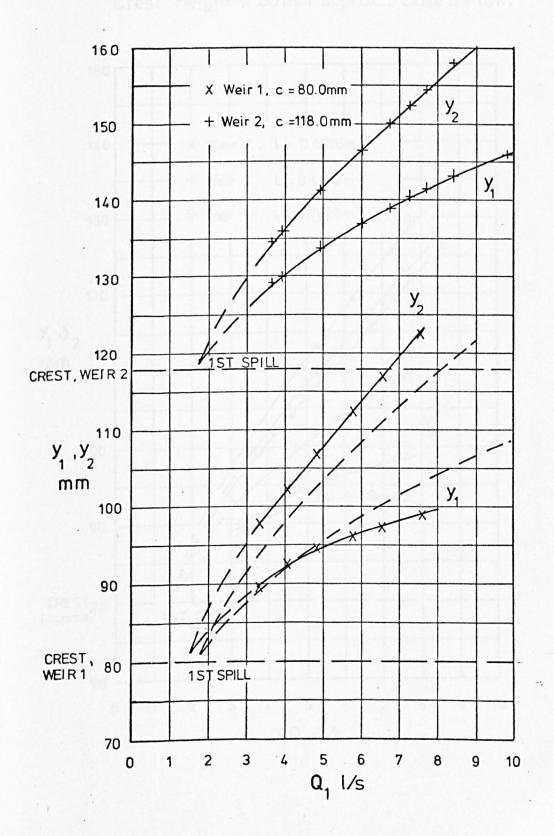


FIG. 6.54 DEPTH - DISCHARGE RELATION-SHIP: Effect of Varying Weir Length: Crest Height = 80 mm approx.: Case II Flow.

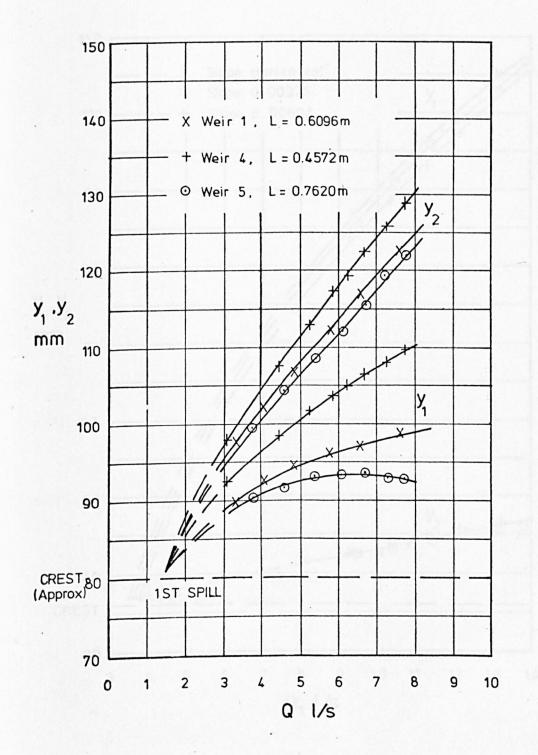


FIG. 6.55 DEPTH - DISCHARGE RELATION-SHIP : Effect of Varying Channel Slope : Weir 3 : Case I Flow

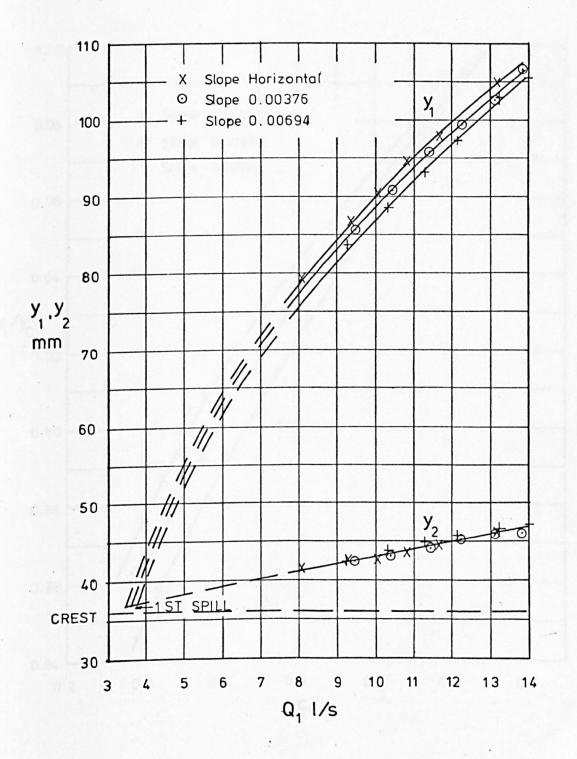


FIG.6.56 DIMENSIONLESS DEPTH - DISCHARGE RELATIONSHIP FOR SUPERCRITICAL CASEI FLOW : Weir 3 .

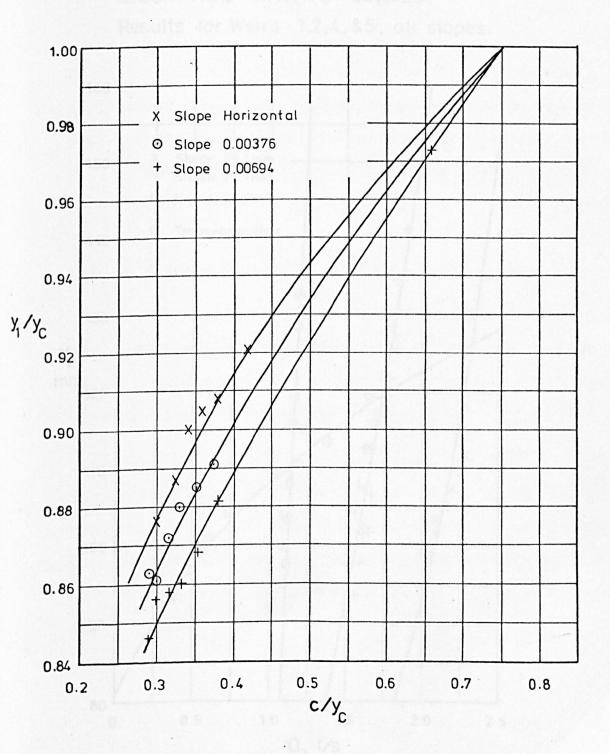
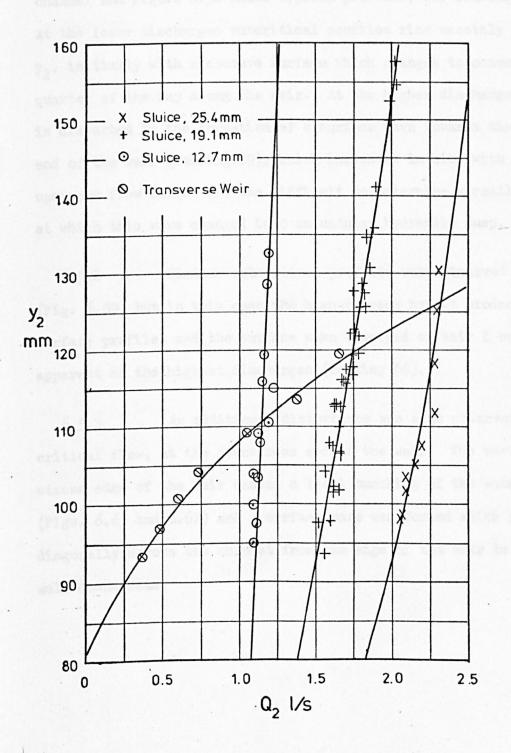



FIG.6.57 DOWNSTREAM CONTROL DEPTH-DISCHARGE RATING CURVES:

Results for Weirs 1,2,4, &5, all slopes.

6.5 Longitudinal Surface Profiles

6.5.1 Longitudinal surface profiles were measured along the centreline of the channel for a number of the subcritical flow readings and the profile coordinates are tabulated in Appendix VII. The shape of the surface profile is not appreciably affected by the slope of the channel and Figure 6.58 shows typical profiles, for readings 19 and 29. At the lower discharges subcritical profiles rise smoothly from y_1 to y_2 , initially with a concave surface which changes to convex about a quarter of the way along the weir. At the higher discharges the profile is disturbed by the formation of a surface wave towards the upstream end of the weir (reading 29), which increases in size with increasing upstream flow rates. It was difficult to determine visually the point at which this wave changed into an undular hydraulic jump.

6.5.2 Similar subcritical profiles were observed on Weir 2 (Fig. 6.59) but in this case the higher crest height produced smoother surface profiles and the surface wave observed on Weir 1 only became apparent at the highest discharges (reading 66).

6.5.3 An additional disturbance was also observed in subcritical flow, at the downstream end of the weir. The vertical downstream edge of the weir caused a local bunching of the water surface (Figs. 6.65 and 6.67) and a surface wave was formed which passed diagonally across the channel from the edge of the weir to the opposite wall downstream.

6.5.4 Supercritical surface profiles were measured for each supercritical reading, the results also being tabulated in Appendix VII. On Weir 1, Case I profiles only could be produced with a clinging nappe formed over most of the length of the weir (Fig. 6.60). With Weir 3 however it was possible to achieve a range of profiles (with free nappes) of both the Case I and Case IV types, the latter being achieved by lowering the upstream sluice gate.

6.5.5 Figures 6.61 and 6.62 show two typical Case I profiles. The water surface falls rapidly as it approaches the weir with appreciable curvature of the flow. This curvature is sufficient to affect the hydrostatic pressure distribution, as shown in Table 6.3, so that the incorporation of curvature effects in the mathematical model is justified. The 'S-shaped' surface profile is similar to that observed by Frazer¹⁵ and its shape is unaffected by the length of the weir.

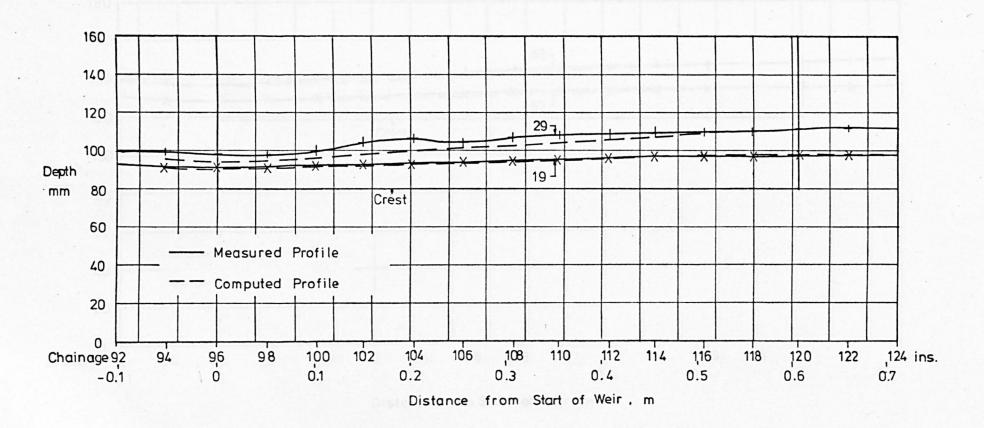
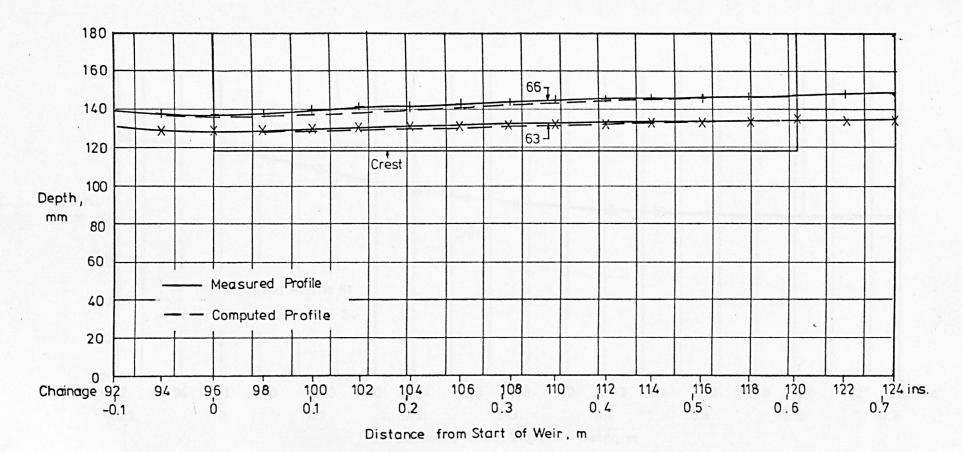

6.5.6 Figure 6.64 shows the shape of the surface profiles for the Case I condition upstream of the weir. The profiles are in dimensionless form and upstream of the critical depth $({}^{y/y}_{c} = 1.0)$ the flow is gradually varied and the dimensionless profiles are virtually identical. On approaching the critical depth, however, the profiles diverge slightly to give unique conditions at the upstream end of the weir. The position of the critical depth varies between 0.8 and 1.1 times the critical depth upstream of the weir.

TABLE 6.3							
Read- ing No.	Flow Case	y _l mm	$\frac{p_1}{\rho g}$ measured mm	$\frac{P_1}{\rho g}$ computed + mm			
132	I	106.7	97.4	98.6			
133	I	102.8	93•7	95.6			
134	I	99.4	91.3	93.6			
135	I	95•7	88.2	90.8			
136	I	90.5	85.6	87.2			
137	I	85.5	81.2	82.7			
138	IV	89.0	81.7	84.7			
139	IV	76.2	69.6	72.3			
140	IV	68.0	61.1	62.3			
141	I	105.5	96.0	98.5			
142	I	103.0	93•3	96.3			
143	I	97.4	89.1	92.1			
144	I	93.1	85.7	88.6			
145	I	88.4	81.6	85.3			
146	I	83.5	77.4	80.9			
147	IV	85.2	76.4	80.1			
148	IV	73.5	63.7	69.8			
149	IV	66.2	55.2	62.6			


+ These values are computed from the theory used to formulate the mathematical model with curvature.

6.5.7 The Case IV profiles (Fig. 6.63) show the same 'Sshaped curve but with less pronounced curvature. Upstream of the weir the supercritical flow is gradually varied, being controlled by the upstream sluice gate, and this determines the value of the depth at the start of the weir.

6.5.8 The supercritical profile coordinates were used to compute values of curvature and slope which helped to formulate the mathematical model described in section 3.4. The method of computation is described in Appendix III. FIG. 6.58 LONGITUDINAL SURFACE PROFILES: Weir 1: Case I Flow.

FIG. 6.59 LONGITUDINAL SURFACE PROFILES: Weir 2: Case I Flow.

FIG. 6.60 LONGITUDINAL SURFACE PROFILES : Weir1: Case I Flow.

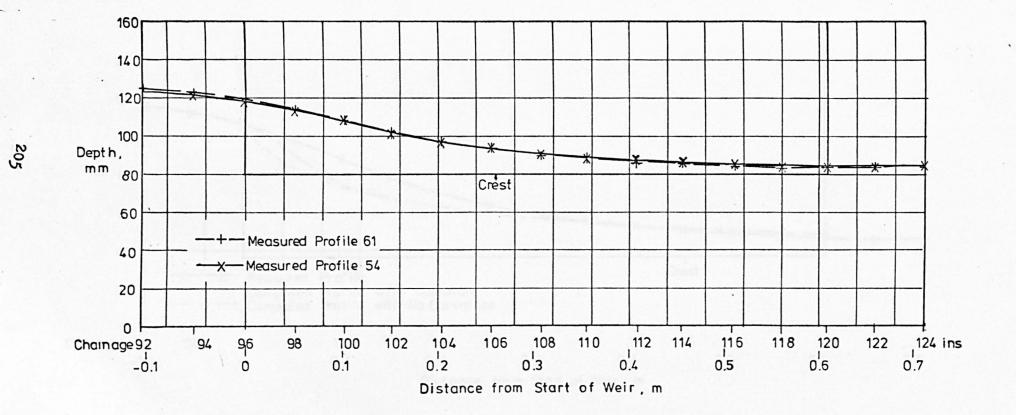
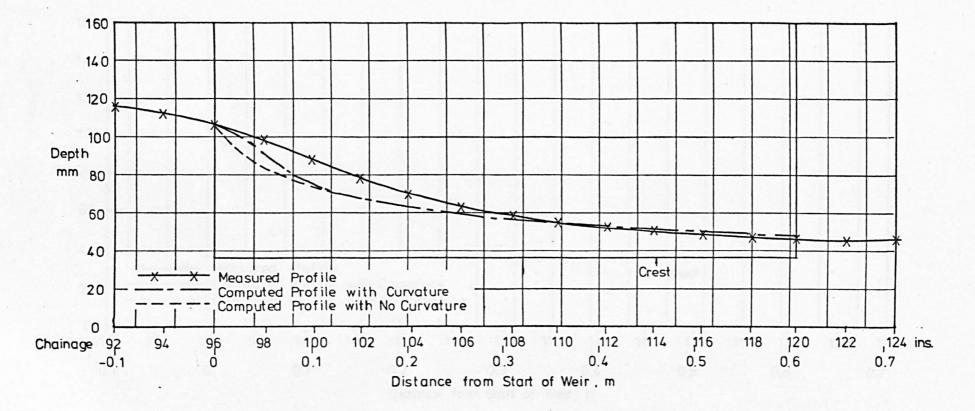
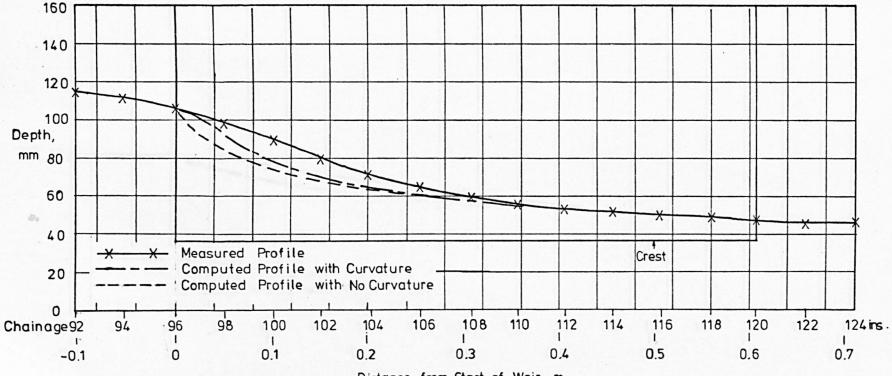
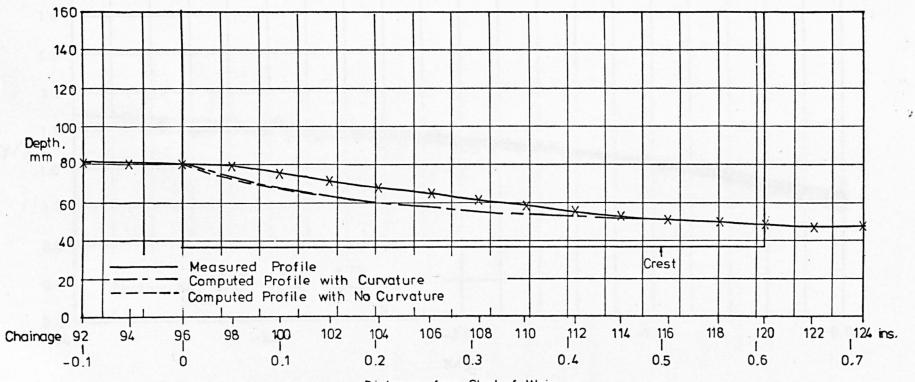


FIG. 6.61 LONGITUDINAL SURFACE PROFILES: Weir 3: CaseI Flow: Reading No. 132.


FIG. 6.62 LONGITUDINAL SURFACE PROFILES : Weir 3 : Case I Flow : Reading No. 141.

Distance from Start of Weir, m

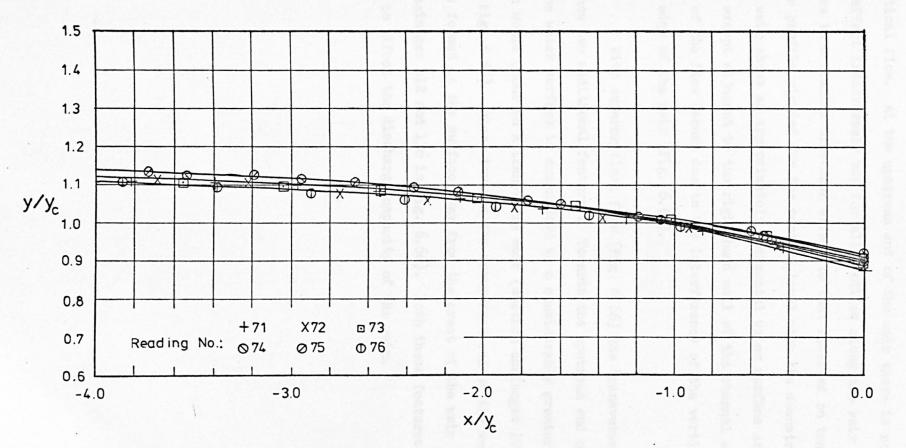

TIG 5.64 DIMENSIONLESS SURFACE PROFILES UPSTREAM OF WEIRS

FIG. 6.63 LONGITUDINAL SURFACE PROFILES: Weir 3: Case IV Flow: Reading No. 78.

Distance from Start of Weir, m

FIG. 6.64 DIMENSIONLESS SURFACE PROFILES UPSTREAM OF WEIR3: Case I Flow.

209

.

6.6 Transverse Surface Profiles

6.6.1 Figure 6.65 shows typical transverse surface profiles for subcritical flow. At the upstream end of the weir there is no draw-down effect transversely but for all profiles along the weir itself there is a similar draw-down effect to that observed on transverse weirs. The profile plotted for the section level with the downstream end of the weir shows an approximately horizontal water surface at this point except adjacent to the right hand wall of the channel where a bunching of the flow occurs due to the interference of the vertical downstream edge of the weir (Fig. 6.67).

6.6.2 With supercritical flow (Fig. 6.66) the transverse profiles show two additional features. Towards the upstream end of the weir the water surface is drawn down to a considerably greater extent than would occur on a transverse weir (section chainages 100 and 104 in Fig. 6.66). Also, towards the downstream end of the weir a trough is formed in the surface away from the crest of the weir (section chainages 112 and 116 in Fig. 6.66). Both these features are likely to affect the discharge capacity of the weir.

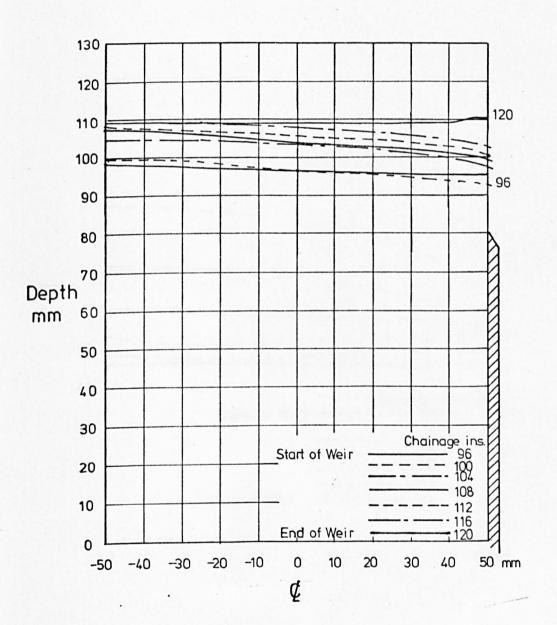
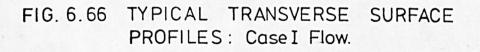



FIG. 6.65 TYPICAL TRANSVERSE SURFACE PROFILES : Case I Flow.

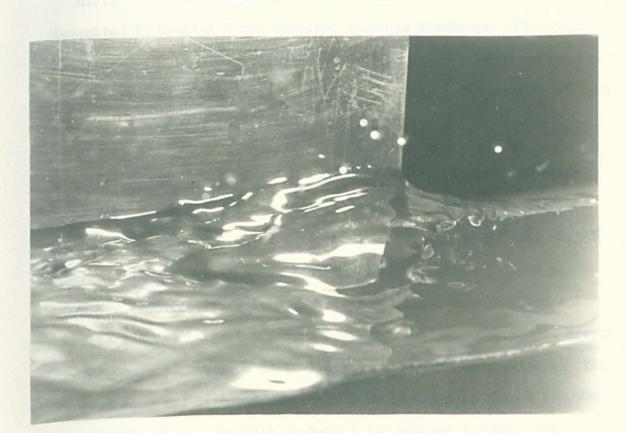


fig. 6. 67 Surface Wave Disturbance due to the Downstream Edge of the Weir.

Performance of the Mathematical Model for Subcritical Flow

6.7.1 In assessing the performance of the mathematical model described in Chapter 3 the computed upstream discharge, side spill discharge, and upstream depth were compared with measured values for all subcritical readings on Weirs 1, 2, 4 and 5. The results of this comparison are contained in Appendix VIII.

6.7

6.7.2 The mean and standard deviation of the percentage errors in Q_1 , Q_w and y_1 were computed for each weir. The largest mean errors in Q_1 and Q_w were recorded on Weir 2 (-4.26% and -6.37%) but this weir showed the smallest standard deviation (0.90% and 0.87%). Conversely, Weir 5 showed the smallest mean (-2.18% and -2.71%) and the largest standard deviation (3.15% and 4.82%). Errors in the computed upstream depth did not follow the same pattern. The largest mean and standard deviation were recorded on Weir 4 (-5.94% and 4.24%) and the smallest on Weir 2 (-2.56% and 1.39%). The variation in the mean and standard deviation of errors followed a random pattern and there were no trends that indicated a relationship between the magnitude of error and the dimensions of the weir.

6.7.3 The overall means and standard deviations of errors for all the subcritical results are given in Table 6.4 below.

Means and Standard I	TABLE 6 Deviations of		ical Flow
	Mean % Error	S.D. % Error	No. of Readings
Upstream Discharge Q	- 2.54	2.46	
Side Spill Discharge Q	- 3.39	3.52	104
Upstream Depth y1	- 4.80	3.26	

Both the mean and standard deviation are small in each case showing that the mathematical model performs well. Furthermore, a comparison between measured and computed surface profiles showed excellent agreement (Figs. 6.58 and 6.59) although the model did not simulate the surface wave that formed at the higher flow rates on Weir 1.

6.7.4 The inclusion of an allowance for curvature made virtually no difference to the computed values confirming that curvature effects are negligible for subcritical flow.

Performance of the Mathematical Model for Supercritical Flow

6.8.1 In assessing the performance of the mathematical model for supercritical flow the computed downstream discharge, side spill discharge, and downstream depth were compared with measured values, for both Case I and Case IV profiles, and the results are also contained in Appendix VIII. The overall mean and standard deviation of errors are tabulated below.

6.8

TABLE 6.5 Mean and Standard Deviations of Error. Supercritical Flow.								
	No Curv Allowa		With Cu Allow	No. of				
Case I Profiles	Mean % Error	S.D. % Error	Mean % Error	S.D. % Error	Readings			
Downstream Discharge Q_2 Side Spill Discharge Q_w Downstream Depth y_2	6.39 - 8.76 4.13	1.80 2.27 1.12	3.64 - 5.03 2.88	1.71 2.30 1.18	18			
Case IV Profiles								
Downstream Discharge Q_2 Side Spill Discharge Q_w Downstream Depth y_2	1.18 - 0.77 0.29	3.21 5.73 1.30	0.71 - 0.14 - 0.39	2.47 4.97 1.13	9			

6.8.2 When no allowance is made for curvature effects the model shows reasonably good correlation for Case IV profiles but for the Case I results the mean errors are larger. This additional error is further illustrated by the comparison of computed and measured surface profiles shown in Figures 6.61 and 6.62. The slope of the computed profile at the upstream end of the weir is too great when the model does not allow for curvature. This leads to a profile substantially lower than is actually the case and the side spill discharge is therefore underestimated.

Effect of Modifying the Model to Allow for Curvature.

6.9.1 In order to improve the simulation of supercritical flow the mathematical model was modified to incorporate an allowance for curvature, as described in Chapter 2. The effect was to considerably improve the computations for all the Case I results, as shown in Table 6.5, giving mean and standard deviation of errors of a similar order to those achieved for subcritical flow. An improvement to the computed longitudinal profiles was also observed (Figs. 6.61 and 6.62), the computed curve now following the same shape as the measured profile but still with significantly smaller depths at the upstream end of the weir.

6.9.2 For Case IV profiles, once the Froude Number at the upstream end of the weir exceeds 1.5, curvature effects become negligible and the modified model gives virtually the same profile and computed values of Q_2 , Q_w and y_2 as the model not modified for curvature (Fig. 6.63). Thus the modified model was only used for simulating Case IV profiles where the Froude Number was less than 1.5 at the upstream end of the weir, but this still significantly improved the overall accuracy of computation, as shown in Table 6.5.

6.9.3 As an independent check of the theory on which the curvature analysis is based the modified pressure head at the upstream end of the weir was computed for readings 132 to 149 using equation (2.30.3). The computed values are compared with measured values (using the stilling well), and measured depths, in Table 6.3. The curvature analysis significantly modifies the pressure head from its hydrostatic value (equal to the depth) and there is good correlation with measured values for Case I profiles. The theory does, however,

217

underestimate the effects of curvature to some extent which would account for the deviation of the measured and computed profiles shown in Figures 6.61 to 6.63.

6.9.4 In order to verify the distribution of curvature obtained by theoretical analysis (Section 2.6) an attempt was made to measure the curvature of the streamlines directly in the test flume. Streaks of permanganate dye were injected into the flow at various depths a short distance upstream of the weir. Although the curvature effects could be seen to extend below the level of the weir crest, the magnitude of turbulent and secondary currents was sufficient to cause rapid dispersal of the dye and prevent any direct measurements being made.

6.9.5 Specimen velocity traverses were performed in the test flume using a miniature propellor current meter. There was no variation in the velocity over the depth that could be attributed to curvature effects.

6.10 Starting Values

6.10.1 When the mathematical model was initially tested against measured data for subcritical flow the depth at the downstream end of the weir was used as a starting value. The agreement between the measured and computed surface profiles was not as good as had been expected, but inspection of the water surface in the vicinity of the downstream end of the weir revealed the presence of a surface wave (described earlier in section 6.5) and this was found to be affecting the depth measurements locally.

6.10.2 The performance of the mathematical model was significantly improved by starting the computations some distance downstream of the weir, where the depth could be measured without being affected by surface disturbances. The model was modified to compute the gradually varied flow profile back as far as the weir in addition to computing the spatially varied flow profile along the weir itself.

6.10.3 When taking readings on Weir No. 4, depth recordings were made at 76mm and 505mm downstream of the weir so that the effect of the position of the starting depth could be established. A comparison of the two sets of computations is given in Appendix IX. Despite a substantial shift in the position of the starting station of 429mm the mean and standard deviation of errors are only changed slightly, the 76mm values giving errors a little larger than those for the 505mm results.

6.10.4 For supercritical flow computations the depth and discharge at the upstream end of the weir were used as starting values. The starting slope of the water surface was fixed at -0.12 for computations involving an allowance for curvature, and to test the effect of this duplicate computations were performed for readings 71 to 79 using the actual slope at the start of the weir. The actual surface slope was obtained from measured longitudinal surface profiles using a standard finite difference technique as described in Appendix III. The results (Appendix IX) show the effects of this approximation to be negligible.

6.10.5 In practical applications the starting depth at the upstream end of the weir would be obtained from Figure 6.56 for Case I supercritical flow computations.

Assessment of Possible Errors

6.11.1 The effect of possible errors in readings, due to the scale divisions of the apparatus, on the measured value of C_D has been assessed by conventional error analysis, details of which are given in Appendix VI. A similar analysis for the main results and computations is not possible, however, due to the complex nature of the mathematical model.

6.11.2 In order to assess the possible error in computed values a typical reading was chosen (No. 23) and the possible range of error for each piece of input data was assessed in the usual way. A separate computation was then performed to assess the effects of possible errors in each piece of data in turn on the computed values Q_1 and Y_1 . The results of those computations are given in Table 6.6 below.

TABLE 6.6 Error Analysis - Mathematical Model							
Measured Value	Possible Error	Input Data Affected	Possible Error	Resultant+ Error in Ql	Resultant + Error in dl		
U-tube Manometer	± 1mm	Upstream Discharge	±0.063 1/s				
Vee Notch Stage	± 0.05mm	Side Spill Discharge	±0.005 1/s				
	· · ·	Downstream Discharge	±0.068 1/s	±0.041 1/s	±0.172mm		
Depth of Flow	<u>+</u> 0.05mm	Downstream Depth	±0.05mm	± 0.008 1/s	±0.005mm		
Temper- ature	± 0.05°c	Viscosity	+0.002	Zero	Zero		
			x 10 ⁻⁶ kg/ms				

221

. See overleaf.

+ The resultant error in Q_1 and y_1 is equal to the difference between the computed value of Q_1 (or y_1) with the input data as measured, and the computed value with the input data $\stackrel{+}{=}$ the possible error.

6.11.3 In addition to the possible errors in the computed values in Table 6.6 the possible errors in the measured upstream discharge and depth must also be considered when assessing the performance of the mathematical model.

If the total possible errors between measured and computed values of Q_1 and y_1 are denoted as dQ_1 and dy_1 respectively then

 $= \frac{1}{2} \left\{ \left(\frac{0.063}{5.400} \right)^2 + \left(\frac{0.041}{5.193} \right)^2 + \left(\frac{0.008}{5.193} \right)^2 \right\}^{\frac{1}{2}}$ Possible Errors in Possible Error in Measured Computed Value Value 0.0142 or <u>+ 1.42%</u> ± $\frac{1}{2} \left\{ \left(\frac{0.05}{95.90} \right)^2 + \left(\frac{0.172}{92.58} \right)^2 + \left(\frac{0.005}{92.58} \right)^2 \right\}^{\frac{1}{2}}$ Possible Error Possible Errors in Computed Value in Measured Value

= \pm 0.0019 or \pm 0.19%

Thus 1.42% of the observed errors in computed values of Q_1 and 0.19% of the observed errors in computed values of y_1 could be attributed to errors in the readings taken from the experimental apparatus.

6.11.4 It is arguable that the Blasius and Darcy-Weisbach formulae for computing the friction gradient s_f are generally applicable. In view of the smooth surface of the experimental flume and the range of Reynolds' numbers encountered the use of the Blasius equation can be justified in this case, but in practical applications another method of assessing s_f , such as the Manning equation, might be appropriate. Further computations were therefore performed, for readings 15 to 40, using the Manning equation with an appropriate roughness value, instead of the Blasius and Darcy-Weisbach equations, and the results are tabulated in Appendix IX. Table 6.7 summarises the effect of using the Manning equation, and the differences between both the means and the standard deviations is seen to be negligible.

TABLE 6.7 Comparison between Methods of Computing the Friction Gradient sf							
		s from Blasius & s from Manning Darcy-Weisbach f					
	Mean % Error	S.D. % Error	Mean % Error	S.D. % Error	Readings		
Upstream Discharge Q	- 4.20	1.85	- 4.15	1.91			
Side Spill Discharge Q	- 5.65	2.11	- 5.51	2.14	26		
Upstream Depth y ₁	- 3.69	2.22	- 3.34	1.97			

6.11.5 Chow²⁴ recommends an additional term in the computation of the energy gradient to allow for increased eddy effects in diverging or converging flow. Also, it may be argued that the transverse components of the flow alter the velocity distributions and thus affect the value of s_{f} , but it should be remembered that the magnitude of s_{f} has only a small effect on the computed values obtained from the mathematical model.

An attempt was made, however, to improve the performance of the mathematical model by applying multiplying factors to s_f to account for any possible increase in its value due to secondary current effects. The result was that the mean errors in the computed values were reduced slightly in certain cases whilst there was a significant overall increase in the standard deviations of the errors.

Attempts to improve the computations in this way were therefore abandoned.

6.12 <u>Performance of the Mathematical Model with Engel's</u> and Gentilini's¹¹ Data

6.12.1 The performance of the mathematical model, when applied to side weir installations with substantially different dimensions from those used in this investigation, was assessed using the experimental data of Engels⁸ and Gentilini¹¹.

Engels tested single side weirs ranging from 0.5m to 6.12.2 10.Om in length in prismatic rectangular channels with widths varying between 205mm and 2m. His experiments were conducted for subcritical flow and a comparison between his measured values, and corresponding values computed by the mathematical model, is given in Appendix X. Table 6.8 below gives the means and standard deviations of the computed There is excellent agreement between computed and measured values. values of depth and discharge at the upstream end of the weir. The agreement between the measured and computed side spill discharge is not so good, however, the mean error exceeding 20%. Inspection of the actual values of the side spill discharge reveals the reason for this. In all the tests the side spill discharge is very small in comparison with the upstream flow. For reading E 19, for example, the upstream discharge is 103.7 1/s whereas only 8.2 1/s of that passes over the weir. The error in the computed value of Q of 1.543 1/s is small in comparison with Q_1 , but it also appears in the computed value of Qwsince $Q_1 = Q_1 - Q_2$, and as Q_1 is only 8.2 1/s the percentage error is appreciable.

Performance of	TABLE 6.8 f the Model w	with Engels Dat	ta
	Mean %	S.D. %	No. of
	Error	Error	Readings
Upstream Discharge Q ₁	3.17	5.53	
Side Spill Discharge Q _w	20.23	28.68	19
Upstream Depth y ₁	0.24	1.74	

6.12.3 Differences in crest geometry will also affect the value of the coefficient of discharge and this will be reflected in the accuracy of computation.

6.12.4 Using Gentilini's¹¹ data, results for both subcritical and supercritical flow were available for weirs in a 214mm wide prismatic rectangular channel, with weir lengths of 499mm and 1068mm, and crest heights ranging from 50.9mm to 252.3mm.

6.12.5 A table comparing measured values with those computed from the model appears in Appendix X and the means and standard deviations of errors are given in Table 6.9 below. The computed supercritical values were calculated using upstream depths obtained from Figure 6.56, which would be the method used in practice. Values were also computed, however, using the measured upstream depths, and these also appear in Appendix X. There is little difference between the two sets of computed values.

The mathematical model gives excellent results in this

case.

Subcritical			ini's Data No. of
	Readings		
Upstream Discharge Q ₁ Side Spill Discharge Q _w Upstream Depth y ₁	- 1.40 - 2.01 - 0.86	1.76 2.70 1.03	8
Supercritical	Flow ⁺	· ·	No. of
	Mean % Error	S.D. % Error	Readings
Downstream Discharge Q ₂ Side Spill Discharge Q _w Downstream Depth y ₂	2.48 - 7.60 - 1.47	0.69 2.00 3.99	4

227

I

6.13 <u>Performance of De Marchi's⁴ Method and Chow's Numerical</u> Integration Method

6.13.1 De Marchi's graphical method has been widely used for analysing side weir flow, and it is appropriate that its accuracy is established and compared with that of the mathematical model. The De Marchi Method was therefore tested against the experimental data obtained during this investigation and the results are given in Appendix XI and summarised below in Table 6.10. In computing the results tabulated in the Appendix, the values of the coefficient of discharge were computed from the Rehbock equation (6.1).

TABLE 6.10 Performance of De Marchi's Method								
Subcritical Flow	No. of							
	Mean % Error	S.D. % Error	Readings					
Upstream Discharge Q ₁ Side Spill Discharge Q _W Upstream Depth y ₁	4.95 7.57 - 3.63	9.17 13.51 4.55	103					
Supercritical Fl	OM		No. of					
	Mean % Error	S.D. % Error	Readings					
Downstream Discharge Q ₂ Side Spill Discharge Q _W Downstream Depth Y ₂	6.00 - 8.42 0.11	3.48 4.87 2.00	27					

6.13.2 Comparison between Table 6.10 and Tables 6.4 and 6.5 show De Marchi's method to be substantially worse than the mathematical model and in particular errors in Q_W as high as 43% were recorded for subcritical flow, and 15% for supercritical flow. This is not surprising since the method does not account for the slope of the channel or for friction. In addition it was not possible to compute values for five of the results.

6.13.3 However, De Marchi's method does in general give errors less than 10% so it could prove useful for establishing approximate weir dimensions in design.

6.13.4 Chow's Numerical Integration method⁶ was found to give fairly good results for subcritical flow, somewhat worse than the mathematical model but significantly better than De Marchi's method. The accuracy is summarised in Table 6.11 and the detailed results are given in Appendix XI. Values of the coefficient of discharge were again computed from the Rehbock equation (6.1).

TABLE 6.11 Performance of Chow's Numerical Integration Me								
Subcritical H	No. of							
	Mean % Error	S.D. % Error	Readings					
Upstream Discharge Q ₁ Side Spill Discharge Q _w Upstream Depth y ₁	2.34 3.87 - 4.71	5.86 8.88 3.94	103					
Supercritical	Flow	•	No. of					
	Mean % Error	S.D. % Error	Readings					
Downstream Discharge Q ₂ Side Spill Discharge Q _w Downstream Depth Y ₂	5.00 - 6.69 2.81	3.27 4.88 2.18	27					

6.13.5 The method can be easily arranged into tabular form and is recommended for the computation of side weir flow when access to a digital computer is not available.

CHAPTER 7. CONCLUSIONS

7.1.1 Whatever method of analysis is used to determine the discharge over a side weir reliable values of the coefficient of discharge are required. It has been shown conclusively that the coefficient of discharge is unaffected by longitudinal velocity components and that it takes the same value as if the weir were a full width transverse weir. Thus, for the sharp crested weir used in this investigation, the Rehbock equation would be appropriate for computing C_D . If a different crest geometry were to be used then an expression for C_D under transverse conditions would have to be established prior to any computations.

7.1.2 The values of the velocity energy coefficient \approx and momentum flux correction factor β were found to be within the range of values normally applicable to open channel flow, although some reduction in their values was observed with increasing longitudinal velocity.

7.1.3 The formula proposed by Ackers⁵, that defines the uniform taper of a rectangular channel which produces a constant head along a side weir, performed well, and only minor adjustments to the downstream discharge were required to achieve a constant head and constant longitudinal velocity in practice.

7.1.4 When subcritical flow occurs along a side weir with a downstream orifice or sluice control the relationship between the upstream and side spill discharge is linear. The increase in downstream discharge is only small for large increases in upstream discharge. A downstream weir does not give such good control to the flow and the downstream discharge rises appreciably with increasing upstream flow.

7.1.5 Subcritical flow conditions will exist along a side weir until the upstream discharge rises to a value where the upstream specific energy exceeds twice the crest height whereupon the subcritical flow changes to supercritical flow and the surface profile falls. If the downstream flow is throttled a hydraulic jump will form on the weir, but otherwise the flow will generally be supercritical over the whole length of the weir.

7.1.6 When subcritical flow in the upstream channel is drawn down to form supercritical flow along the weir there is a relationship between the depth at the upstream end of the weir, the crest height, and the critical depth in the upstream flow. This relationship is dependent upon the slope of the channel and is shown in dimensionless form in Figure 6.56. Both the side spill and downstream discharges increase linearly with increasing upstream discharge, the downstream discharge always exceeding the side spill flow. Towards the upstream end of the weir there is an appreciable curvature of the flow which affects the distribution of pressure with depth.

7.1.7 A mathematical model has been developed capable of simulating both subcritical and supercritical flow to a high degree of accuracy (both mean and standard deviations of errors being less than 5%). The model incorporates an allowance for curvature which is used for supercritical flows where the Froude Number at the upstream end of the weir does not exceed 1.5.

7.1.8 The theory on which the mathematical model is based follows well established analytical techniques which agree with the work of previous investigations. Standard integration techniques have been used and the model only requires empirical values of the coefficient of discharge and momentum flux correction factor, both of which have been thoroughly investigated and found to agree with well established values.

7.1.9 The mathematical model gives significantly better results than methods previously available and has been shown to perform well using data from previous investigations not undertaken by the author. The model may therefore be applied with confidence to any size of side weir installation in a prismatic rectangular channel.

7.1.10 Since the theory is based on a generalised momentum analysis of the flow it may readily be extended to cover non-prismatic and non-rectangular channels.

REFERENCES

1.

2.

3.

4.

5.

6.

Parmley W.C., "The Walworth Sewer, Cleveland, Ohio", Transactions of the American Society of Civil Engineers, Paper No. 1011, 1905.

Nimmo W.H.R., "Side Spillways for Regulating Diversion Canals", Transactions of the American Society of Civil Engineers, Paper No. 1694, 1928.

De Marchi G., "Saggio di teoria del funzionamento degli stramazzi laterali", L'Energia Elettrica, Vol XI, Nov. 1934.

De Marchi G, "Des Formes de la Surface Libre de Courants Permanents avec Debit Progressivement Croissant ou Progressivement Decroissant daus un Canal de Section Constante", Revue Generale de l'Hydraulique, March/ April 1947.

Ackers P., "A Theoretical Consideration of Side Weirs as Storm Water Overflows", Proceedings of the Institution -of Civil Engineers, Vol. 6, Feb. 1957.

Chow V.T., Discussion of "Flood Protection of Canals by Lateral Spillways", by H. Tults, Proceedings of the American Society of Civil Engineers, Journal of the Hydraulics Division, Vol. HY2, pp 47 to 49, April 1957. Smith K.V., "Computer Programming for Flow Over Side Weirs", Proceedings of the American Society of Civil Engineers, Journal of the Hydraulics Division, Vol. HY3, March 1973.

234

Engels H., "Mitteilungen ausdem Dresdener Flußbau-Laboratorium", Forschungsarbeiten auf dem Gebiete des Ingenieurwesens, Dec. 1917.

Coleman S. and Smith D., "The Discharging Capacities of Side Weirs", Proceedings of the Institution of Civil Engineers, 1923.

Favre H. and Braendle F., "Expériences sur le Mouvement Permanent de l'Eau daus les Canaux Découverts, avec Apport ou Prélèvement le long du Courant", Bulletin Technique de la Suisse Romande, No. 8, April 1937. Gentilini B., "Ricerche Sperimentali Sugli Sfioratori Longitudinali", L'Energia Elettrica, Vol. 15, Sept. 1938.

Schmidt M., "Zur Frage des Abflusses uber Streichwehre", Institut fur Wasserbau, Universitat Berlin -Charlottenburg, 1954.

Allen J.W., "The Discharge of Water over Side Weirs in Circular Pipes", Proceedings of the Institution of Civil Engineers, Vol. 6, Feb. 1957.

Collinge V.K., "The Discharge Capacity of Side Weirs", Proceedings of the Institution of Civil Engineers, Vol. 6, Feb. 1957.

Frazer W., "The Behaviour of Side Weirs in Prismatic Rectangular Channels", Proceedings of the Institution of Civil Engineers, Vol. 6, Feb. 1957.

10.

8.

9.

12.

11.

13.

14.

El-Khashab A. and Smith K.V.H., "Experimental Investigation of Flow over Side Weirs", Proceedings of the American Society of Civil Engineers, Journal of the Hydraulics Division, Vol. HY9, Paper No. 12402, September 1976.

Balmforth D.J. and Sarginson E.J., Discussion of "Experimental Investigation of Flow over Side Weirs", by El-Khashab and Smith, Proceedings of the American Society of Civil Engineers, Journal of the Hydraulics Division, Vol. HY8, pp 941 to 943, August 1977. Yen B.C. and Wenzel H.G., "Dynamic Equations for Steady Spatially Varied Flow", Proceedings of the American Society of Civil Engineers, Journal of the Hydraulics Division, Vol. HY3, Paper No. 7179, March 1970.

Rehbock T., "Wassermessung mit Scharf Kautigen uber fallwehren, Z. Ver. dt Ing, 1929, Vol. 73, pp 817-823. Jaeger C., "Engineering Nuid Mechanics", Trans. by P.O. Wolf, Blackie, 1961.

Humpidge H.B. and Moss W.D., "The Development of a Comprehensive Computer Program for the Calculation of Flow Profiles in Open Channels", Proceedings of The Institution of Civil Engineers, Paper 7406, September 1971.

Ralston A., "A First Course in Numerical Analysis", McGraw-Hill Ltd., London, 1965.

18.

16.

17.

19.

20.

21.

22.

British Standard BS3680 Part 4A "Methods of Measurement of Liquid Flow in Open Channels", H.M.S.O. 1965.

24.

23.

Chow V.T., "Open Channel Hydraulics", McGraw-Hill Ltd., London, 1959, page 267.

APPENDICES

ſ

APPENDIX I

Balmforth, D.J. and Sarginson, E.J. Discussion of "Experimental Investigation of Flow over Side Weirs", by El-Khashab, A. and Smith, K.V.H., Proceedings of the American Society of Civil Engineers, Journal of the Hydraulics Division, Vol HY8, pp 941 to 943, August 1977.

EXPERIMENTAL INVESTIGATION OF FLOW OVER SIDE WEIRS*

Discussion by David J. Balmforth⁴ and Edward J. Sarginson⁴

The authors have developed an interesting method of analyzing side weir flows; the writers would like to compare the authors' findings with the results of similar investigations carried out in Sheffield, England. The authors' use of a longitudinal velocity component of the side spill flow, u, involves the use of empirical correlations that cannot be extrapolated with certainty beyond the range of the authors' tests. Also, for subcritical flow, a preliminary computation is required to estimate u. The computational method suggested (6) involves a step procedure requiring an iterative solution at each step. The writers suggest the following method that overcomes these drawbacks.

In the momentum analysis, if d is the depth at the center line, it may be assumed that the longitudinal velocity with which the side spill flow initially deviates from the mainstream is equal to the mean velocity of the mainstream. Eq. 14 then becomes

40

dd	$S_o - S_f + \frac{Vq}{gA} (2\beta - 1)$	· · · ·							•	•	(17)	
dx =	$1 - \beta \frac{Q^2 T}{g A^3}$	• • • • •	• •	 •••	•••	•••	••	••	••	• •	(17)	•

The assumption inherent in Eq. 17 is compatible with the authors' findings. since at any cross section the value of u corresponds to the mean velocity some distance upstream. This is generally greater than the mean velocity at the section under consideration. For a rectangular section:

$V = \frac{Q_1}{Q_2} = \frac{Q_1}{Q_1} = \frac{Q_2}{Q_2}$				•••		• • • •	• • • •	(18)
- · ·	Bd					•	•	
Let $w = vd = -$	$\frac{Q_1 - \int_{B}}{B}$	qdx	1	• • • • •	• • •	• • •	••••	(19)
Differentiating:	$\frac{dw}{dx} =$	$\frac{q}{B}$	$-\frac{C_{u}}{B}\sqrt{g}(d)$	- c) ^{1.5}	• • • •	• • • •	• • • •	(20)

Sr. Lect. in Civ. Engrg., Univ. of Sheffield, Sheffield, England.

$$\frac{g_{42}}{Eq. 17 \text{ becomes}} \qquad AUGUST 1977 \qquad HY$$

$$\frac{dd}{dx} = \frac{S_o - S_f + \frac{q_w}{gBd^2} (2\beta - 1)}{1 - \frac{\beta w^2}{gd^3}} \qquad (21)$$

The friction slope, S_f , is determined by a suitable channel flow formula (e.g., Manning). The writers used a fourth-order Runge-Kutta method for the simultaneous solution of Eqs. 20 and 21. It was necessary to find the coefficients, C_w and β , experimentally before the method could be used. The former was found by measuring the discharge over a sharp-edged side weir. A constant

TABLE 1.—Accuracy of Writers' Method of Computation

		Number	Computed		a percentage
Upstream flow (1)	Flow along weir section (2)	of channel tests flow (3) (4)	channel flow	Mean value (5)	Standard deviation (6)
Subcritical Supercritical Subcritical	Subcritical Supercritical Supercritical	105 9 18	Upstream Downstream Downstream	-2.8 +1.4 +6.6	2.3 3.2 1.8

241

TABLE 2.—Values of d_1/d_e

		c/c	l ₁	
<i>S</i>	0.3	0.35	0.4	0.6
(1)	(2)	(3)	(4)	(5)
0	0.877	0.898	0.915	0.957
0.0038	0.864	0.886	0.905	
0.0069	0.849	0.871	0.892	

head was achieved by tapering the channel over the length of the weir, and C_{w} was found to be unaffected by longitudinal velocity components, and came within $\pm 1\%$ of Rehbock's values for a transverse sharp-edged weir. Values of β were found from velocity traverses to vary between 1.04 and 1.05.

Tests were made over a wide range of weir lengths and heights, and the results are summarized in Table 1. In the third case the mean error is significantly larger, and this was attributed to streamline curvature at the upstream end of the weir. Also in this case, the writers found that the ratio d_1/d_c depended on the weir height and channel bed slope, as summarized in Table 2. These values gave more accurate flow computations than the authors' recommended value of 0.93 (see Fig. 10).

The writers' method gives good correlation with measured values. Since the only empirically derived values used in the computation are C_w and β , which

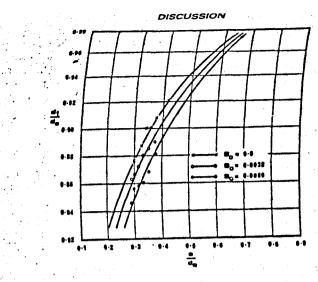


FIG. 10.—Relationship for d_1 , Upstream Channel Flow Subcritical, Weir Channel Flow Supercritical

were found to correspond with well established values, the method is applicable to any side weir installation in a rectangular channel. The method can also be adapted to suit nonrectangular sections.

APPENDIX.-NOTATION

The following symbols are used in this discussion:

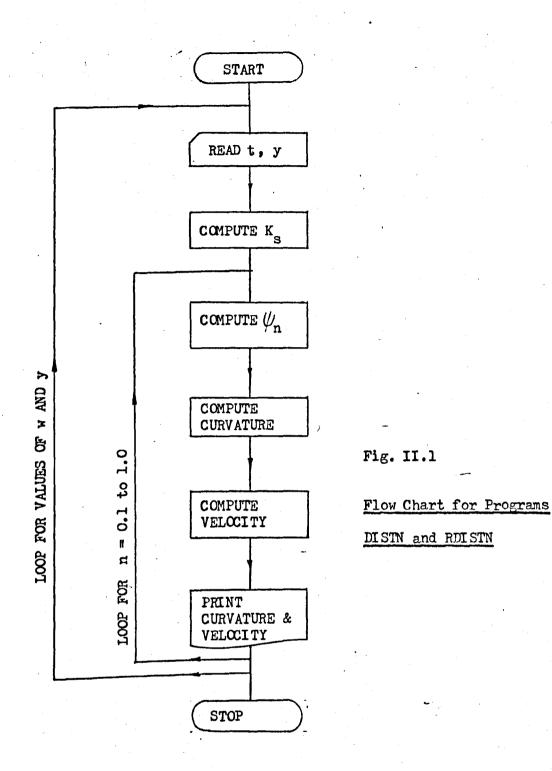
 $Q_x =$ mainstream discharge at section x; and $w = V \times d$.

EXACT SOLUTION OF GRADUALLY VARIED FLOW*

Discussion by John Allen⁴ and Keith J. Enever⁴

The writers wish to compliment the author on producing such a versatile method for solving the problem of calculating water surface profiles in open channels of complex cross-sectional shape. In his introduction, the author suggests that nothing significant has been achieved in the derivation of exact solutions

*September, 1976, by Mohammad Akram Gill (Proc. Paper 12406). *Sr. Lect. in Civ. Engrg., Queen Mary Coll., Univ. of London, London, England. *Lect. in Civ. Engrg., The City Univ., London, England.


APPENDIX II

- (a) Details of the Computer Program used to obtain the Theoretical Distributions of Curvature and Velocity.
- (b) Computed Curvature and Velocity Distributions.

(a) <u>Details of the Computer Program used to obtain the Theoretical</u> <u>Distributions of Curvature and Velocity</u>.

II.1 Two computer programs were used to obtain theoretical distributions of velocity and curvature. For positive surface curvatures the programme DISTN was used, whilst for negative surface curvatures RDISTN was used. Both programs follow the same logical progression as shown in the flow chart below (Fig. II.1), and only differ in the form of the mathematical expressions used, after the theory given in Chapter 2. The principal mathematical equations used are tabulated in Table II.1.

TABLE II.1.	TABLE II.1. Principal Equations used in DISTN and RDISTN						
Variable Computed	Equation used in DISTN	Equation used in RDISTN					
K _s Ųn Curvature Velocity	$ \frac{\sqrt{yt/(1+yt)}}{\cos^{-1}(n K_{s})} \\ \frac{n K_{s}^{2}}{y(1 - n^{2}K_{s}^{2})} \\ \frac{\psi_{n} - \psi_{n-1}}{y_{n} - y_{n-1}} $	$ \frac{\sqrt{-yt/(1+yt)}}{\sinh^{-1}(n K_{s})} - \frac{n K_{s}^{2}}{y(1 + n^{2}K_{s}^{2})} - \frac{\psi_{n} - \psi_{n-1}}{y_{n} - y_{n-1}} $					

A listing and specimen printout for programs DISTN and RDISTN are given overleaf.

Tables of velocity and curvature distributions are contained in part (b).

. /	/1D D-J-PALMFORTH 010 050 /ETC 729 MUSIC JOB	7		2	10H07m	HON MAR 06.	1978
<i>.</i>	/LOAD FORTGI		· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •			•
1	FORTRAN IV GI RELEASE 2.0	MATN'	DATE = MO	N MAR 06, 197	8	PAGE	E 0001
1		0),CURV(10),U(10)					
	0002 WRITE(6,3) 0003 3 FCRMAT(5X.*PR(
	0003 3 FCRMAT(5X,*PR(0004 5 READ(5,10)D2Y(• • •			· · ·
	0005 10 FORMAT(2F10.0)		•			•	
	C006 IF(D2YDX.LT.O.		t	•		• *	
	0007 WRITE(6,12)	0,00,0100	•	·		· ·	
		+10X, *U*,10X, *CUR	V*+8X+*N*+5X+	PROP CURV /)			
	0009 A=C2YDX+Y						
	0010 AKS=SGRT(A/(1.	+ 4 1 1					
	0011 CUM=0.0						
	0012 CC50 N=1+10				, .		
	0013 EN=N/10.						
	0014 . IF(N.GT.1)EM=(N-1)/10.		•		•	
	0015 Z(N)=EN*Y			e e			
•		*AKS/(Y*(1EN*EN			×		
		=10.+(1.5709-ARCO		(/ W			
	0019 PRDP=CURV(N)/D	=10.*(ARCUS(EM*AK	SI-ARCUSTENTAR	51171			•
	0020 WRITE(6,22)U(N				•	÷	÷
		I), CURV (N), EN, PROP					
	0022 20 FORMAT(10X,F10					•	11 July 10 Jul
	0023 22 FORMAT(20X,F10						
	0024 CUM=CUM+U(N)			· · · · · · · · · · · · · · · · · · ·			
	0025 50 CENTINUE	•					
•	0026 AMEAN=CUM/10.0	0		•			•
	0027 WRITE(6,55)AM	EAN					· · · · ·
		EAN VELOCITY= ++FI	10.7///)		- -		
N	0029 GOTO5		C − 1 to the total sector to the total sector to the total sector total sector to the total sector total s				
542	0030 100 CALL EXIT						
_ `	0031 END						
	+OPTIONS IN EFFECT+ NOTERM, ID, EBC	DIC.SOURCE.NOLIST	.NODECK .LOAD .N	IOMAP.NOTEST	•		
	OPTIONS IN EFFECT NAME = MAIN	+ LINECNT =	56				
	STATISTICS SOURCE STATEMENTS	= 31, PROGRA	M SIZE = 0004F	-2			
	STATISTICS NO DIAGNOSTICS GENER	ATED			1	•	• ·
	/DATA	• • • • • • • • • • • • • • • • • • •		3.4S			
1. ·	DO3BBO BYTES USED		and a set of the set of			•	-
	EXECUTION BEGINS 3.95	•		•		1.	the second states of the second
-	PROGRAM DISTN -			•			
1.							e de la companya de l
ŧ.	Y U CURV	N PROP	CURV ,				
÷.,	Y U CURV	N FRUF					
ł	2.1927824					· · · · · · · · · · · · · · · · · · ·	
• 		17 0.1000000 0.095	52834				•
Í.	2.1833410	•••••••••••••••••••••••••••••••••••••••					$\sim 10^{-1}$
ł		98 0.2000000 0.190	08396				
e e	2.1855345	and the second states where					
1.	0.0300000 0.14347	20 0.300000 0.28	69439				
	2.1885862						
		85 0.4000000 0.38	38770				
1 1	2.1927824		10370				
i .		39.0.5000000 0.48	19279				
1.	2.1981230	74 0 4000000 0 50	12053				
1	n.0600000 0.29069	76 0.600000 0.58	13733				
:							

1 - 4°

1

• 1

.

÷ 11

. . .

•

:•

2.2045126 0.0700000 2.2120466 0.0800000 0.3929274 0.8000000 0.7858548 2.2208204 0.0900000 0.4457655 0.9000000 0.8915310 2.2306433

0.1000000 0.5000003 1.0000000 1.0000000 MEAN VELOCITY= 2.2009153

7

.

:

1. 1.

12

51 - 53 - 355 - 74

- ;

- ; *

FCRTRAN IV	GI RELEASE	2.0	MAIN	DATE	MON MAR 06,	1978	· ·	PA	E 0001		
0001		DIMENSION Z(10))						-	
0002		REAL*8 X1,X2,EM,	EN+AKS								· ·
CO03		COMMON EM, EN, AKS									
0004		EXTERNAL FUNI, FU								•	
0005		WRITE(6.3)			· · · · · · · · · · · · · · · · · · ·						
0006	A	FORMAT(5X, PROGR	AN DETETNIZZI								• '
				and the state of the		•					
0007		REAC(5,10)D2YDX+'	Y		•						
0008		FORMAT(2F10.0)		a di kara kara da kara Na kara da kara d				· ·	•		
0009	· · · · · · · · · · · · · · · · · · ·	IF(Y+LT+0+0)GOT0:	100	1. •		-					
0010		WRITE(6,12)									
0011	12	FORMATI6X, 'Y', 10	X. *U*. 10X. *CUR	V*.8X.*N*.5	X. PROP CURV	•71	•	•	•		
0012		4=02YUX*Y				· · ·					
		AKS=SQRI(-A/(1.+)									
0013			A)) ,		•						
0014		CUM=0.0						1. J.			
0015		DC50 N=1,10									
0016		EN=N		· · · ·	1 () () () () () () () () () (
0017	•	EN=EN/10.				•					
0018	•	IF(N.GT.1)EM=EN-	0.1	1 a.					•		
0019		$Z{N}=EN*Y$			• * * *						
	2000 C. 1997							•			
0020		CURV(N)=-EN*AKS*									
J021		CALL COS AAFI-10						- 11 - E	e e construction de la construct		
0022	and the second	CALL COS AAFI-10	.000+10+000+0	.0000100.0.	000001D0,FUN2	+X2+1)					
0023		IF(IFAIL.GT.O)WP	ITE(6,15)	No. 19							
0024	15	FCRMATISX, FUNCI	TICN HAS SAME	SIGN AT INT	ERVAL LIMITS.	11					
0025		IF(N.EQ.1)U(N)=1				••					
0026		IF(N.GT.1)U(N)=									
					•						
0027		PROP=CURV(N)/D2	YUX								
0028		WRITE(6,22)U(N)									
0029	•	WRITE(6,2C)Z(N)	,CURV[N],EN,PR	OP						•	
2 0029 5 0030	20	FORMAT(5X,F10.7	,10X,3F10.7)								
0031		FORMAT(15X,F10.			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· · ·					
0032	~ .	CUM=CUM+U(N)									1 S.
	e/			• •							
0033	כו	D CONTINUE	and the second	· · · ·							
0034		AMEAN=CUM/10.0									
0035		WRITE(6,55)AMEA		•							
0036	5	5 FURMAT(5X, MEAN	VELOCITY =',1	F10.7///)							
0037		GOTO5				·					
0038	10	O CALL EXIT			•					1	
0039		END	•								
0034		ENU	· · · · · · · · · · · · · · · · · · ·							•	
	IN EFFECT*				UAU, NUMAP, NUT	EST					
OPTIONS	IN EFFECT	NAME = MAIN	LINECNT =	56	1. S. S. M. (1997)						
STATIS	ICS SOU	RCE STATEMENTS =	39, PROG	RAM SIZE =	000586						
STATIS	ICS NO DI	AGNOSTICS GENERA'	TED							•	
						•					
FORTRAN TI	G1 RELEAS	F 2.0	FUNI	DATE	= MON MAR 06,	1978		PA	SE 0001		
1001000.10	ALL NELLAS										
0003	•		THE CHARTENAL PL								
0001		DOUBLE PRECISIO		NICAL		the second second		•			1.0
0002		REAL*8 EM+EN+A									
0003	te station and	COMMON EM+EN+A	KS States							_	
0004		FUN1=DSINH(X)-	EN#AKS							•	
0005		PETURN		이 가슴도 같이 많이						· · · · ·	
	•	END		and the second second					• • • •		
0006		LNU									
			· · · · · · · · · · · · · · · · · · ·								
	IN EFFECT*	NCTERM, ID, EBCD	TC COUNCE NOT	CT NUDCCY 4	GAD NOMAD NOT	ECT .					

	TISTICS 15TICS			GRAM SIZE = 000152		
FURTRAN	IV 61	RELEASE 2.0	FUN2	DATE = MON MA	IR 06, 1978	
0001 0002 0003 0004 0005		COMMON EI	RECISION FUNCTION FUN M.EN.AKS.X M.EN.AKS HIXJ-EM*AKS	2(X)		

PAGE 0001

OPTIONS IN EFFECT NOTERM, ID, EBCDIC, SOURCE, NOLIST, NODECK, LOAD, NOMAP, NOTEST *OPTIONS IN EFFECT* NAME = FUN2 + LINECNT = 56 *STATISTICS* SOURCE STATEMENTS = 6, PROGRAM SIZE = 000152 *STATISTICS* NO DIAGNOSTICS GENERATED

STATISTICS NO DIAGNOSTICS THIS STEP

8.85

END

/DATA 004920 BYTES USED EXECUTION BEGINS

· •

248

0006

PROGRAM REISTN

٠

Y U CURV PROP CURV N 2.2939358 0.0100000 -0.0526039 0.1000000 0.1052077 2.2929535 0.0200000 -0.1050420 0.2000000 0.2100840 2.2909355 0.0300000 -0.1571503 C.3000000 0.3143007 2.2868271 0.0400000 -0.2087682 0.4000000 0.4175365 2.2821083 0.0500000 -0.2597402 0.5000000 0.5194805 2.2762518 0.0600000 -0.3099173 0.6000000 0.6198347 2.2692871 0.0700000 -0.3591586 0.7000000 0.7183172 2.2612448 0.0800000 -0.4073320 0.8000000 0.8146640 2.2521620 0.0900000 -0.4543160 0.9000000 0.9086320 2.2420797 0.1000000 -0.5000000 1.0000000 1.0000000 MEAN VELOCITY = 2.2747784

END OF JOB D.J.BALMFORT AT 10H07M MON MAR 06, 1978 EXE 6 CARDS READ 105 LINES PRINTED 0 CARDS PU

AT 10H07M MON MAR 06. 1978 EXECUTE TIME 0.16 MINS. INES PRINTED 0 CARDS PUNCHED 0 TAPE MOUNTS 0 DISK MOUNTS

(b) Computed Curvature and Velocity Distributions.

TABLE II.2. Theoretical Velocity and Curvature Distributions Positive Curvature.									
У _т	u _{m/s}	Curv. _m -1	N	Prop Curv					
0.010	1.005 0.995	0.0099 0.0198	0.1 0.2	0.099 0.193					
0.030	0.995	0.0297	0.3	0.297					
0.040	0.996 0.996	0.0397	0.4	0.397					
. 0. 050	0.997	0.0496	0.5	0.496					
0.060	0.997	0.0596 0.0696	0.6 0.7	0.596 0.696					
0.070 0.080	0.998	0.0898	0.8	0.898					
0.090	0.999	0.0898	0.9	0.898					
0.100	0.999	0.1000	1.0	1.000					
MEAN VELCC	MEAN VELOCITY = 0.998 m/s								
y m	u _{m/s}	Curv. _m -1	N	Prop Curv					
0.010	1.411	0.0196	0.1	0.098					
0.020	1.401	0.0392	0.2	0.196					
0.030	1.401	0.0589	0.3	0.295					
0.040	1.402	0.0787	0.4	0.393					
0.050	1.403	0.0985	0.5	0.493					
0.060	1.404	0.1185	0.6	0.592					
0.070	1.406	0.1386	0.7	0.693					
0.080	1.408	0.1589	0.8	0.794					
0.090	1.410	0.1793	0.9	0.897					
0.100	1.413	0.2000	1.0	1.000					
MEAN VELOCITY = 1.406 m/s									

TABLE II.2. continued

У _т	u _{m/s}	Curv. _m -1	N	Prop Curv					
0.010	1.717	0.0291	0.1	0,097					
0.020	1.707	0.058	0.2	0.194					
0.030	1.708	0.0876	0.3	0.292					
0.040	1.710	0.1170	0.4	0.390					
0.050	1.712	0.1466	0.5	0.489					
0.060	1.714	0.1766	0.6	0.589					
0.070	1.717	0.2068	0.7	0.689					
0.080	1.721 1.725	0.2374	0.8	0.791					
0.090	1.730	0.2684	0.9	0.895					
0.100	1.750	0.3000	1.0	1.000					
MEAN VELCC	MEAN VELCCITY = 1.716 m/s								
y m	u _{m/s}	Curv. _{m-1}	N	Prop Curv					
0.010	1.972 1.962	0.0384	0.1	0.096					
0.020	1.963	0.0770	0.2	0.193					
0.030	1.966	0.1157	0.3	0.289					
0.040	1.969	0. 1 <i>5</i> 48	0.4	0.387					
0.050	1.973	0.1942	0.5	0.485					
0.060	1.977	0.2340	0.6	0.585					
0.070	1.983	0.2744	0.7	0.686					
0.080	1.989	0.3155	0.8	0.789					
0.090	1.996	0.3573	0.9	0.893					
0.100		0.4000	1.0	1.000					
MEAN VELOCITY = 1.975 m/s									

250

. .

TABLE II.2. continued

У _т	u m/s	Curv. _{m-1}	N	Prop Curv	
0.010 0.020 0.030	2.193 2.183 2.186	0.0477 0.0954 0.1435	0.1 0.2 0.3	0.095 0.191 0.287	
0.040 0.050	2.189 2.193	0.1919 0.2410	0.4 0.5	0.384 0.482	
0.060	2.198 2.205	0.2907 0.3413	0.6	0.581 0.683	
0.080 0.090	2.212 2.221	0.3929 0.4458	0.8 0.9	0.786 0.891	
0.100 2.231 0.5000 1.0 1.000 MEAN VELOCITY = 2.201 m/s					
MEAN VIELCO.					
y m	u _{m/s}	Curv. _m -1	N	Prop Curv	
y m 0.010		Curv. _m -1 0.0566	0.1	0.094	
y m 0.010 0.020 0.030	u _{m/s} 2.390	Curv. _m -1 0.0566 0.1135 0.1707	0.1 0.2 0.3	0.094 0.189 0.284	
y m 0.010 0.020 0.030 0.040 0.050	u m/s 2.390 2.381 2.384	Curv.m-1 0.0566 0.1135 0.1707 0.2285 0.2871	0.1 0.2 0.3 0.4 0.5	0.094 0.189 0.284 0.381 0.478	
y m 0.010 0.020 0.030 0.040	^u m/s 2.390 2.381 2.384 2.387 2.393	Curv.m-1 0.0566 0.1135 0.1707 0.2285 0.2871 0.3467 0.4075	0.1 0.2 0.3 0.4 0.5 0.6 0.7	0.094 0.189 0.284 0.381	
y m 0.010 0.020 0.030 0.040 0.050 0.060	^u m/s 2.390 2.381 2.384 2.387 2.393 2.400 2.408	Curv. _m -1 0.0566 0.1135 0.1707 0.2285 0.2871 0.3467	0.1 0.2 0.3 0.4 0.5 0.6	0.094 0.189 0.284 0.381 0.478 0.578	

TABLE II.2. continued

y m	u _{m/s}	Curv. m-1	N	Prop Curv
	2.569			
0.010	2.560	0.0655	0.1	0.094
0.020	2.563	0.1312	0.2	0.187
0.030	2.568	0.1974	0.3	0.282
0.040		0.2645	0.4	0.378
0.050	2.575	0.3325	0.5	0.475
0.060	2.584	0.4020	0.6	0.574
0.070	2.594	0.4731	0.7	0.676
·	2.606			
0,080	2.621	0.5462	0.8	0.780
0.090	2.637	0.6217	0.9	0.888
0.100		0.7000	1.0	1.000
MEAN VELCO	ITY = 2.588	m/s		

У _т	u _{m/s}	Curv. m-1	N	Prop Curv
0.010	2.732 2.724	0.0741	0.1	0.093
0.020	2.728	0.1436	0.2	0.186
0.030	2.734	0.2237	0.3	0.280
0.040	2.742	0.2998	0.4	0.375
0.050	2.753	0.3774	0.5	0.472
0.060		0.4566	0.6	0.571
0.070	2.765 2.780	0.5380	0.7	0.673
0.080		0.6221	· 0.8	0.778
0.090	2.798	0.7092	0.9	0.887
0.100	2.818	0.8000	1.0	1.000
MEAN VELOC	ITY = 2.757	m/s		- <u></u>

TABLE II.2. continued

y m	u m/s	Curv. m-l	N	Prop Curv
0.010	2.884	0.0826	0.1	0.092
0.020	2.876	0.1657	0.2	0.184
0.030	2.881	0.2496	0.3	0.277
0.040	2.888	0.3347	0.4	0.372
0.050	2.898	0.4215	0.5	0.468
0.060	2.910	0.5106	0.6	0.567
0.070	2.925	0.6024	0.7	0.669
0.080	2.943	0.6974	0.8	0.775
0.090	2.963	0.7964	0.9	0.885
0.100	2.987	0.9000	1.0	1.000
MEAN VELCC	ITY = 2.916	m/s		
Уm	u _{m/s}	Curv. m-1	N	Prop Curv
••••••••••••••••••••••••••••••••••••••	3.026	Curv. m-1 0.0910	N 0.1	Prop Curv 0.091
у _т 0.010 0.020	JIL/ 5		,	
0.010 0.020	3.026	0.0910	0.1	0.091 0.182
0.010	3.026 3.018	0.0910 0.1825	0.1 0.2	0.091 0.182 0.275
0.010 0.020 0.030 0.040	3.026 3.018 3.024	0.0910 0.1825 0.2750	0.1 0.2 0.3	0.091 0.182
0.010 0.020 0.030 0.040 0.050	3.026 3.018 3.024 3.032	0.0910 0.1825 0.2750 0.3690	0.1 0.2 0.3 0.4	0.091 0.182 0.275 0.369 0.465
0.010 0.020 0.030 0.040 0.050 0.060	3.026 3.018 3.024 3.032 3.043	0.0910 0.1825 0.2750 0.3690 0.4651	0.1 0.2 0.3 0.4 0.5 0.6	0.091 0.182 0.275 0.369 0.465 0.564
0.010 0.020 0.030 0.040 0.050 0.060 0.070	3.026 3.018 3.024 3.032 3.043 3.058	0.0910 0.1825 0.2750 0.3690 0.4651 0.5639	0.1 0.2 0.3 0.4 0.5	0.091 0.182 0.275 0.369 0.465 0.564 0.666
0.010 0.020 0.030 0.040 0.050 0.060 0.070 0.080	3.026 3.018 3.024 3.032 3.043 3.058 3.075	0.0910 0.1825 0.2750 0.3690 0.4651 0.5639 0.6660 0.7722	0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8	0.091 0.182 0.275 0.369 0.465 0.564 0.666 0.772
0.010 0.020 0.030 0.040 0.050 0.060 0.070	3.026 3.018 3.024 3.032 3.043 3.058 3.075 3.095	0.0910 0.1825 0.2750 0.3690 0.4651 0.5639 0.6660	0.1 0.2 0.3 0.4 0.5 0.6 0.7	0.091 0.182 0.275 0.369 0.465 0.564 0.666

TABLE II.3	Theoretical Negative Curv	Velocity and Ca vature.	urvature Dist	ributions
У _т	u m/s	Curv. m-1	N	Prop Curv
0.010	1.005	-0.0101	0.1	0.101
0.020	1.005	-0,0202	0.2	0.202
0.030	1.005	-0.0303	0.3	0.303
0.040	1.005	-0.0403	0.4	0.403
0.050	1.004	-0.0504	0.5	0.504
0.060	1.004	-0.0604	0.6	0.604
0.070	1.007	-0.0704	0.7	0.704
0.080		-0.0803	0.8	0.803
0.090	1.002	-0.0902	0.9	0.902
0.100	1.001	-0.1000	1.0	1.000
MEAN VELCCI	ITY = 1.104	m/s		
У _т	u m/s	Curv. m-1	N	Prop Curv
0.010	1.429 1.428	-0.0204	0.1	0.302
			0.1	0,102
0.020	·	-0.0408	0.2	0.204
0.020 0.030	1.428	-0.0408 -0.0611		
	1.428 1.427		0.2	0.204
0.030	1.428 1.427 1.426	-0.0611	0.2 0.3	0.204 0.306
0.030 0.040	1.428 1.427 1.426 1.424	-0.0611 -0.0814	0.2 0.3 0.4	0.204 0.306 0.407
0.030 0.040 0.050	1.428 1.427 1.426 1.424 1.423	-0.0611 -0.0814 -0.1015	0.2 0.3 0.4 0.5	0.204 0.306 0.407 0.508
0.030 0.040 0.050 0.060	1.428 1.427 1.426 1.424 1.423 1.421	-0.0611 -0.0814 -0.1015 -0.1216	0.2 0.3 0.4 0.5 0.6	0.204 0.306 0.407 0.508 0.608
0.030 0.040 0.050 0.060 0.070	1.428 1.427 1.426 1.424 1.423 1.421 1.418	-0.0611 -0.0814 -0.1015 -0.1216 -0.1414	0.2 0.3 0.4 0.5 0.6 0.7	0.204 0.306 0.407 0.508 0.608 0.707
0.030 0.040 0.050 0.060 0.070 0.080	1.428 1.427 1.426 1.424 1.423 1.421	-0.0611 -0.0814 -0.1015 -0.1216 -0.1414 -0.1612	0.2 0.3 0.4 0.5 0.6 0.7 0.8	0.204 0.306 0.407 0.508 0.608 0.707 0.806

TABLE II.3. continued

У _m	u _{m/s}	Curv. m ⁻¹	N	Prop Curv
	1.759			
0.010	1.758	-0.0310	0.1	0.103
0.020		-0.0618	0.2	0.206
0.030	1.757	-0.0925	0.3	0.308
	1.756		-	-
0.040	1.753	-0.1231	0.4	0.410
0.050		-0.1535	0.5	0.512
0.060	1.751	-0.1835	0.6	0.612
0.070	1.747	-0.2133	0.7	0.711
	1.744		-	
0.080	1.740	-0.2426	0.8	0.809
0.090		-0.2715	0.9	0.905
0.100	1.735	-0.3000	1.0	1.000

MEAN VELOCITY = 1.750 m/s

У _m	u _{m/s}	Curv. m-1	N	Prop Curv
0.010	2.041	-0.0416	0.1	0.104
0.020	2.040	-0.0832	0.2	0.208
0.030	2.039	-0.1245	0.3	0.311
0.040	2.037	-0.1656	0.4	0.414
0. 050	2.033	-0.2062	0.5	0.515
0.060	2.024	-0.2463	0.6	0.616
0.070	2.018	-0.2859	0.7	0.715
0.080	2.012	-0.3247	0.8	0.812
0.090	2.004	-0.3628	0.9	0.907
0.100	<u></u>	-0.4000	1.0	1.000

TABLE II.3

У m	u _{m/s}	Curv. m-l	N	Prop Curv
0.010	2.294 2.293	-0.0526	0.1	0.105
0.020	2.291	-0.1050	0.2	0.210
0.030	2.287	-0.1572	0.3	0.314
0.040	2.282	-0.2088	0.4	0.418
0.050		-0.2597	0.5	0.519
0.060	2.276	-0.3099	0.6	0.620
0.070	2.269	-0.3592	0.7	0.718
0.080	2.261	-0.4073	0.8	0.815
0.090	2.252	-0.4543	0.9	0.909
0.100	2.242	-0.5000	1.0	1.000
MEAN VELOCITY = 2.275 m/s				
У _m	u m/s	Curv. m-l	N	Prop Curv
y m 0.010	2.526	Curv. m-1 -0.0638	N 0.1	Prop Curv 0.106
	2.526 2.525			
0,010	2.526 2.525 2.522	-0.0638	0.1	0.106
0,010 0,020	2.526 2.525 2.522 2.522 2.517	-0.0638 -0.1273	0.1 0.2	0.106 0.212
0.010 0.020 0.030	2.526 2.525 2.522 2.517 2.510	-0.0638 -0.1273 -0.1904	0.1 0.2 0.3	0.106 0.212 0.317
0.010 0.020 0.030 0.040	2.526 2.525 2.522 2.517 2.510 2.503	-0.0638 -0.1273 -0.1904 -0.2 <i>5</i> 27	0.1 0.2 0.3 0.4	0.106 0.212 0.317 0.421
0.010 0.020 0.030 0.040 0.050	2.526 2.525 2.522 2.517 2.510 2.503 2.493	-0.0638 -0.1273 -0.1904 -0.2527 -0.3141	0.1 0.2 0.3 0.4 0.5	0.106 0.212 0.317 0.421 0.524
0.010 0.020 0.030 0.040 0.050 0.060	2.526 2.525 2.522 2.517 2.510 2.503 2.493 2.483	-0.0638 -0.1273 -0.1904 -0.2527 -0.3141 -0.3744	0.1 0.2 0.3 0.4 0.5 0.6	0.106 0.212 0.317 0.421 0.524 0.624
0,010 0.020 0.030 0.040 0.050 0.060 0.060 0.070 0.080	2.526 2.525 2.522 2.517 2.510 2.503 2.493	-0.0638 -0.1273 -0.1904 -0.2527 -0.3141 -0.3744 -0.4333	0.1 0.2 0.3 0.4 0.5 0.6 0.7	0.106 0.212 0.317 0.421 0.524 0.624 0.722 0.818
0.010 0.020 0.030 0.040 0.050 0.050 0.060 0.070	2.526 2.525 2.522 2.517 2.510 2.503 2.493 2.483	-0.0638 -0.1273 -0.1904 -0.2527 -0.3141 -0.3744 -0.4333 -0.4906	0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8	0.106 0.212 0.317 0.421 0.524 0.624 0.722

TABLE II.3

			• É
CO	۱t.i	nue	đ
	10-	****	~

У _т	u _{m/s}	Curv. _m -1	N	Prop Curv		
0.010	2.743 2.741	-0.0752	0.1	0.107		
0.020	2.738	-0.1501	0.2	0.214		
0,030	2.731	-0.2243	0.3	0.320		
0.040	2.723	-0.2975	0.4	0.425		
0.050	2.713	-0.3694	0.5	0 . <i>5</i> 28		
0.060	2.701	-0.4397	0.6	0.628		
0.070	2.688	-0.5081	0.7	0.726		
0.080	2.673	-0.5745	0.8	0.821		
0.090	2.656	-0. 6385	0.9	0.912		
0.100	2.000	-0.7000	1.0	1.000		
MEAN VELC	MEAN VELOCITY = 2.711 m/s					
		•				
У _т	u _{m/s}	Curv. _{m-l}	N	Prop Curv		
	u _{m/s} 2.948	<u></u>	N 0.1	Prop Curv 0.109		
У _т	^u m/s 2.948 2.946	Curv. _{m-l}				
у _т 0.010	u _{m/s} 2.948 2.946 2.942	Curv. _m -1 -0.0869	0.1	0.109		
y m 0.010 0.020	^u m/s 2.948 2.946 2.942 2.933	Curv. _m -1 -0.0869 -0.1733	0.1 0.2	0.109 0.217		
y m 0.010 0.020 0.030	^u m/s 2.948 2.946 2.942 2.933 2.923	Curv. _m -1 -0.0869 -0.1733 -0.2588	0.1 0.2 0.3	0.109 0.217 0.324		
y m 0.010 0.020 0.030 0.040	^u m/s 2.948 2.946 2.942 2.933 2.923 2.911	Curv. _m -1 -0.0869 -0.1733 -0.2588 -0.3431	0.1 0.2 0.3 0.4	0.109 0.217 0.324 0.429		
y m 0.010 0.020 0.030 0.040 0.050	^u m/s 2.948 2.946 2.942 2.933 2.923 2.911 2.896	Curv. _m -1 -0.0869 -0.1733 -0.2588 -0.3431 -0.4255	0.1 0.2 0.3 0.4 0.5	0.109 0.217 0.324 0.429 0.532		
y m 0.010 0.020 0.030 0.040 0.050 0.060	^u m/s 2.948 2.946 2.942 2.933 2.923 2.923 2.911 2.896 2.880	Curv. _m -1 -0.0869 -0.1733 -0.2588 -0.3431 -0.4255 -0.5059	0.1 0.2 0.3 0.4 0.5 0.6	0.109 0.217 0.324 0.429 0.532 0.632		
y m 0.010 0.020 0.030 0.040 0.050 0.060 0.070	^u m/s 2.948 2.946 2.942 2.933 2.923 2.911 2.896 2.880 2.861	Curv. _m -1 -0.0869 -0.1733 -0.2588 -0.3431 -0.4255 -0.5059 -0.5838	0.1 0.2 0.3 0.4 0.5 0.6 0.7	0.109 0.217 0.324 0.429 0.532 0.632 0.730		
y m 0.010 0.020 0.030 0.040 0.050 0.060 0.060 0.070 0.080	^u m/s 2.948 2.946 2.942 2.933 2.923 2.923 2.911 2.896 2.880	Curv. _m -1 -0.0869 -0.1733 -0.2588 -0.3431 -0.4255 -0.5059 -0.5838 -0.6590	0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8	0.109 0.217 0.324 0.429 0.532 0.632 0.730 0.824		

TABLE II.3 continued

У _т	u m/s	Curv. m-1	N	Prop Curv
	3.144			
0.010	3.142	-0.0988	0.1	0.110
0.020	3.136	-0.1970	0.2	0.219
0.030	3.126	-0.2941	0.3	0.327
0.040		-0.3894	0.4	0.433
0.050	3.114	-0.4826	0.5	0.536
0.060	3.099	-0.5730	0.6	0.637
0.070	3.082	-0.6603	0.7	0.734
0.080	3.062 .	-0.7441	0.8	0.827
0.090	3.039	-0.8241	0.9	0.916
	3.013	-0.9000	1.0	
0.100		-0.9000	1.0	1.000
MEAN VELCO	LTY = 3.096 m	n/s		
У _т	u _{m/s}	Curv. m-1	N	Prop Curv
0.030	3.333	-0.1110	0.3	0.111
0.010	3.329	-0.1110	0.1	0.111
0.020		-0.2212	0.2	0.221
0,030	3.322	-0.3300	0.3	0.330
	3.311	1		

11					
0.010	3.333	-0.1110	0.1	0.111	
0.020	3.329	-0.2212	0.2	0.221	
0,030	3.322 3.311	-0,3300	0.3	0.330	
0,040	3.297	-0.4367	0.4	0.437	
0. 050	3.280	-0. <i>5</i> 405	0.5	0.541	
0.060	- 3 . 258	-0.6410	0.6	0.641	
0.070	3.235	-0.7376	0.7	0.738	
0.080	3.208	-0.8299 -0.9174	0.8	0.830	
0.090 0.100	3.178	-1.0000	0.9	0.917 1.000	
$\frac{1.000}{\text{MEAN VELOCITY}} = 3.275 \text{ m/s}$					

APPENDIX III

Details of the Computer Program used to calculate Surface Slope and Curvature from the Measured Longitudinal Surface Profiles. The computer program, SLP1, makes use of a standard scientific subroutine, DET5, available on the program library file. This subroutine computes values of dy/dx at each point along a curve specified by co-ordinate values of x and y. Measured values of y in metres at equal intervals of x of 0.0508m are read from data cards by the main program, SLP1, and stored as a one-dimensional array. The subroutine DET5 is then called and values of dy/dx are computed at each co-ordinate point and stored in a second one-dimensional array. Subroutine DET5 is called a second time, but now the array in y is replaced by the array in dy/dx so that second derivative values d^2y/dx^2 are computed. A third array is used to store these values. The main program then prints a table of x, y, dy/dx and d^2y/dx^2 values.

III.2

III.l

The subroutine DET5 uses a standard five point finite difference method for computing derivative values. Values of d^2y/dx^2 are particularly sensitive to variations in y and occasional large values of curvature were computed due to local disturbances of the water surface.

A flow chart for the main program is shown in Fig. III.1 followed by a listing of the program and a specimen printout.

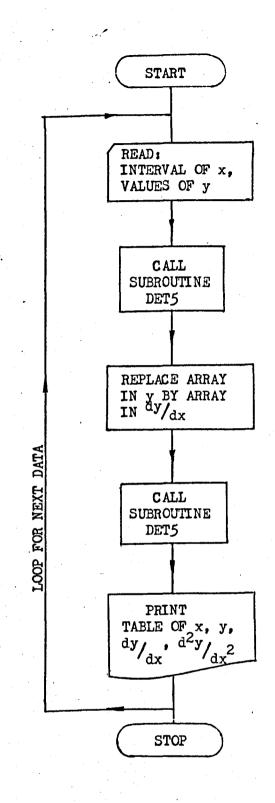


FIG. III.1.

FLOW CHART FOR PROGRAM SLP1.

HON MATOI

IST MUSIC JOB

FCATHAN IV GI A	ELCASE 2.0	MAIN	DATE . MON	MAR 06. 1978	PAGE DOOL
0001	DIMENSION	(133) . Y(32) . DYDX	321.02708(32)		
0002	PEAD(5.91)		SETTOETORISET		
0003	9 FCRMAT(F10				in the second second second second
0004	8 READ(5,11	And the second			
0005					
		.016010100			
0006	WRITE(6,1				
0007)(Y(J),J=1,32)	a all the second		
0008	10 FURMAT(7F				
0009	11 FCRMAT(I3				
0010	12 FORMAT(5X	, "READING NC.", I	4//)		
0011	CALL DETS	(H,Y, DYDX, 32, E1)			
0012	CALL DETS	(H, DYDX, C2YCX, 32	.E2)		
0013	WRITE(6,6				
0014	X(1)=0.0	051241477			
0015	DC50K=1.3	12			
0016	X(K+1)=X				
0017					
		10)X(K),Y(K),DYD	ALL TOLEVALKI		
0018	50 CONTINUE				
0019	WRITE(6,				
0020	hRITE(6,				
0021			3X, 'DYDX', 11X, 'C2YD)		
0022			,5X,F11.9,5X,F11.9/		
0023			COMPUTATION = • . 13/1		
0024		X, FRROR IN D2YD	X2 COMPUTATION = ,13	3///)	신생은 동안을 가지 않는 것이 같아.
0025	GUTO8				
0026	100 CONTINUE				
0027	END				
N +STATISTICS*	FFFCT* NAME = M Source Statem No diagnostics	ENTS = 27,	= 56 PROGRAM SIZE = 0005/		
/DATA			•	3.15	
OC3CD8 BYIES USED					5
EXECUTION BEGINS	4.85				
READING NO. 1	32				
x	Y	CYDX	D2YCX2		
	A 47340090				
0.0	0.136200011	289205849	*****		
0.0					
0 050700000	0.129700005	027066220	1.53410339		
0.050799999	0.129100005		1.)))		
0 101500001	0 120100025	021817867	550852656		
0.101599991	0.129100025	021817867			
		03/3/5/10	070034057		
0.152399957	0.126699984	036745418	078834057	•	
		020220(2)	1/7112/70		
C.203199923	0.125500023	030839421	167112470		
	•				
0-253999889	0.123300016	051191350	063518107		
0.304799855	0.120700002	035433453	0.277710915		
0.355599821	0.119499981	034776982	364886105		

•••

.

) ...

• •

1.

1.1

(Mer	0.400.1401	14 p. 1100000	**	*******	
	0.457199782	0.112900012	096496468	694910212	
	0.507999718	0.106700003	140256166	913053036	
(0.558799684	0.098299980	182086766	605730534	
1	0.609599650	0.088595980	197342058	0.001087471	
	0.660399616	0.078700006	183890343	0.423285663	
	0.711199582	0.070200026	155347705	0.851414561	
	0.761999547	0.063195997	104166746	0.817789912	
	0.812799513	0.059300002	078575969	0.287397265	
	0.863599479	0.055000000	068241477	0.352516174	
	0.914399445	0.052499998	043143008	0.353056669	
	0.965199411	0.050400000	035597082	0.072655976	
	1.01599884	0.048799999	032644339	0.048975755	
	1.06679821	0.047100000	028543279	0.165764153	
	1.11759758	0.04600000	016568217	0.196709931	
	1.16839695	0.045400001	008038059	0.298159540	
~	1.21919632	0.045299999	0.011482913	0.191328049	
263	1.26999569	0.046399999	0.014107589	0.342830241	
	1.32079506	0.046999998	0.043963231	0.441589475	
	1.37159443	0.050400000	0.042814974	862187326	
	1.42239380	0.050500002	028051142	960139811	
	1.47319317	0.048300002	036417324	0.414138615	
	1.52399254	0.047300000	004593346	0.545457840	
	1.57479191	0.046999998	021981742	******	
	FOR OR TH DERY	CONDUTATION -			

ERROR IN DYDX COMPUTATION = 0

FRPOR IN D2YDX2 CCMPUTATION = 0

STCP

END OF JOB D.J.BALMFORT 12 CARDS READ

C

AT 10H07M MON MAR 06, 1978 EXECUTE TIME 0.09 MINS. 116 LINES PRINTED 0 CARDS PUNCHED 0 TAPE MOUNTS 0 DISK MOUNTS

......

11 12 14

10

11

· 14

....

5.1

. 1

APPENDIX IV

Listing of the Computer Programs for the Mathematical Model and Specimen Printouts.

	FORTAA	N IN 61	REL	ense 1.0	MAIN	DATE - MON MAR 06, 1978	PAGE 0001
			c	SIDE WEIR	S IN PRISMATIC RECT	ANGULAR CHANNELS	
			000	THIS PROG	RAM USES S.I. UNLTS	ONLY	
			č	L IS THE	OVERALL LENGTH OF C	HANNEL	
			C			CCCUPIES THE SECTION	
			C	BETWEEN 2	KCONI ANDXCON2.		
	0001		с	REAL L			
	0002				NX(3000),Y(3000),V(3	0001	
	0003			10 READ(5,5	OINUM,I		
	0004				1.0)G010100 2)B,SO,EN	The state of the second of	
	0006				21C2, XCON1, XCON2		
	0007				4) XST, XFN		
	0008				2)Y1,C1,H	"articles tonic mexico and incompany	
	0003			50 FORMAT(2 52 FORMAT(3			
	0011			54 FORMATIZ			
	3560		C				
			C C	THE NEXT	SECTION PRINTS DATA	A AND HEADINGS	
	0012		U	KRITE(6,	60)		
	0013				X, SURFACE PROFILES	FOR RECTANGULAR PRISMATIC OPEN CHANNEL	
	0014	085 (0. 7		CS'/) WRITE(6,	6111	and a state of the provident of the part of the	
	0015				X, "TEST RUN ", 16/)		
N	0016				.LT.XCCN2IWRITE(6.6		
S	0017	11.44			6318, SO, EN	<pre>N *,F11.4,*M, AND *,F11.4,*M*//)</pre>	
	0019					F11.6, "M, SLOPE = ", F11.8, " VISCOCIT	
					.9, 'KG/MS'/)	HERSTEXT, HILEN, SCORE, SCORE, ACCORT, STATE CONTRACT	
	0020			WRITE(6,	64)C2 X, CREST HEIGHT = , I		
	0022			WRITEI6,	and the second	-11.0, m-71	
	0023			65 FORMATIS	X, INITIAL DISCHARGE	E = ', F11.6, ' CUBIC METRES PER SEC., ST	
	0024				H = +, F11.8, *M*//)		
	0025				66)XST,Y1 X, INITIAL STATION	•,F11.6, *M, INITIAL DEPTH = •,F11.6, *M*/	
				C)			
	0026			WRITE(6,			
	0027			C)	3X4.Y ACIKE2.413X4.1	Y METRES', 13X, 'V M/S', 14X, 'FROUDE NO.'/	
	0028			V1=Q1/8/	Y1	No NY DEC N	
	9500			L=ABS(XF			
	0030		с	N=ABS(L/	H]+0.5		
	0031		·	CALL PRO	FL (C2, 8, 50, EN, H, XST,	Y1, V1, N, YCON1, XCON2, X, Y, V, DN1, DN2)	
			C				
			C	THE NEXT	SECTION PRINTS PROP	TLE CO-URDINATES	
	0032		L	M=N+1			
	0033			DO87K=1,	*,2		

HEAR PANED

MAIN

PAGE 0002

...

23

..

• 1

0011	WITTERS, TOTKINT, VINT, V	
0011	TO FORMATTIOX, F9. 4, 10X, F11. 6, 10X, F11. 6, 10X, F11. 6/1	
0034	ST=x1x1+2.4H	
0030	IF(H.LT.O.)GOTO77	
0040	IF(X(K).GE.XCON1)GOTO75	
0041	IFIST-GE-XCON1)WRITE(6,72)DN1	
0042	72 FORMAT(10X, START OF SIDE WEIR, DEPTH = ',F11.6, M'/)	
0043	75 IFLXLK)-GE-XCON2JGOT077	
0044	IF(ST-GE-XCON2)WRITE(6,76)DN2	
0045	76 FORMAT(10X, 'END OF SIDE WEIR, DEPTH = ',F11.6, 'M'/)	
0046	77 1F(H.GT.0.)GDTC87	
0047	IF(X(K).LE.XCCN2)GDT085	
0048	IF(ST.LE.XCON2)WRITE(6,82)DN2	
0049	82 FORMAT(10X, FND OF SIDE WEIR, DEPTH = ',F11.6, M'/)	
0050	85 IF(X(K)+LE+XCON1)GOT087	
0051	IF(ST.LE.XCON1)WRITE(6,86)DN1	
0052	86 FORMAT(10X, START OF SIDE WEIR, DEPTH = ',F11.6, M'/)	
0053	87 CONTINUE	
0054	Q2=V(M)*Y(M)*B	
0055	WRITE(6,95)02	
0056	95 FORMAT(5X, 'FINAL DISCHARGE = ', F11.6, ' CUBIC METRES PER SECOND'/)	
0057	WRITE(6,96)Y(M)	
0058	96 FORMAT(5X, 'FINAL DEPTH = ', F11.6, 'M'//)	
0059		
0060	100 CONTINUE Call Exit	
0062	END	•
STATIST	IN EFFECT NAME = MAIN , LINECNT = 56 ICS* SCURCE STATEMENTS = 62, PROGRAM SIZE = 00960A ICS* NO DIAGNOSTICS GENERATED	
N FORTRAN IV	G1 RELEASE 2.0 PROFL DATE = MON MAR 06, 1978	PAGE 0001
0001	SUBROUTINE PROFLIC2, B, SO, FN, H, XST, Y1, V1, N, XCON1, XCON2, X, Y, V, DN1, DN C2)	
2000	REAL K0,M0,K1,M1,K2,M2,K3,M3	
0003	DIMENSIONX(3000),Y(3000),W(3000)	
	C THE FRILIER FACTOR COMPANY BY THE FLASTIC FORMULA.	
	C STARTING VALUES FEC INTO ARRAY C	
0004	x(1)=xst at an endor 1 endor 1	
0005	Y(1)=Y1	
0006	v(1)=v1	
C007	• h(1)=V(1)*Y(1)	
	C CALCULATES NEXT VALUES OF X, Y, V, AND W	
	C Cnàol=1-N	
0008		
0000		
0009	XL 1=XCON 1-ABS(H/2.) XL2=XCON 1+ABS(H/2.)	
0010	IF(X(J)-XL2)15+20+20	
0012	$15 \text{ IF}(X(J) \cdot \text{GE} \cdot XL1)DN1=Y(J)$	
0012	20 CONTINUE	
0014	$xL_3=xCON2-ABS(H/2.)$	
0015	xL4=xCCN2+ABS(H/2.)	
0016	IF(X(J)-XL4)30,35,35	
0017	30 IF(X(J).GE.XL3)DN2=Y(J)	

14. ..

. .

. .

0010	0814-1, 0577-0, 0995-W(J1/V(J)	
0021	IFINFTA.LT.1.0010ETA=1.00	
0022	IFIXIJI.LT.XCONIICI=0.	
0021	(F(K(J), GT, XCMA)(CI=0.	
0024	K0=H*FUNI(C1,C2,B,S0,EN,BETA,Y(J),W(J))	
0025	M0=H*FUN2(C1,C2,B,Y(J))	· · · · · · · · · · · · · · · · · · ·
0025	YY=Y(J)+K0/2.	
0027	hh=h(J)+M0/2.	
0028	K1=H*FUN1(C1,C2,B,S0,EN,BETA,YY,WW)	
0029	M1=H*FUN2(C1,C2,B,YY)	
0030	YY = Y(J) + K 1/2.	
0031	WW=H(J)+M1/2.	
0032	K2=H*FUN1(C1,C2,B,S0,EN,BETA,YY,WW)	
0033	M2=H*FUN2(C1,C2,B,YY)	
0034	YY=Y(J)+K2	
0035	WW=W(J)+M2	
0036	K3=H*FUN1(C1,C2,B,S0,EN,BETA,YY,WW)	
0037	M3=H*FUN2(C1,C2,B,YY)	
0038	Y(J+1)=Y(J)+(K0+2.*K1+2.*K2+K3)/6.	
0039	W(J+1) = W(J) + (M0+2, *M1+2, *M2+M3)/6.	
0040	V(J+1) = W(J+1)/Y(J+1)	
0041	X(J+1) = X(J) + H	
0042	40 CONTINUE	
0043	RETURN	
0044	END	
OPTIONS IN EFFEC	T NOTERM, ID, EBCCIC, SOURCE, NOLIST, NODECK, LOAD, NOMAP, NOTEST	
FORTRAN IV G1 PELE	ASE 2.0 PROFL DATE = MON MAR 06, 1978	PAGE 0002
STATISTICS S *STATISTICS* NO	T* NAME = PROFL , LINECNT = 56 OURCE STATEMENTS = 44,PROGRAM SIZE = 003634 DIAGNOSTICS GENERATED	
✓ FORTRAN IV G1 RELE	ASE 2.0 FUN1 DATE = MON MAR 06, 1978	PAGE 0001
0001 C	FUNCTION FUNI(C1,C2,B,S0,EN,BETA,Y,W)	
C C C	THE VALUE OF SF IS COMPUTED FROM THE DARCY EQUATION WITH THE THE FRICTION FACTOR GOVERNED BY THE BLASIUS FORMULA. THIS IS A LITTLE MORE ACCURATE THAN MANNING FOR SMOOTH CHANNELS.	
C		
0002	IF(C1.LE.0.000001)G0T01	
0003	R=B*Y/(B+Y+C2)	
0004	GDTO2	
0005	1 R=B*Y/(H+2.*Y)	
0006	2 RE=4.+W+R/(EN+T)	
0007	SF=W*W*0.3164/(RE**0.25*Y*Y*R*78.48) N=2.95296*C1*(Y-C2)**1.5	김 같은 모양 것이 같은 것이 같은 것이 같은 것이 같을 것이다.
0008 .		
0009	FUN1=(S0-SF+(2.*BETA-1.)*Q*W/(9.81*B*Y*Y))/(COS(ATAN(SO))-BETA*W*W C/(9.81*Y*Y*Y))	
0010	RETURN	
0011	END	
*OPTIONS IN EFFEC *STATISTICS* S	T* NOTERM,ID,EBCDIC,SOURCF,NCLIST,NOCECK,LOAD,NOMAP,NOTEST T* NAME = FUN1 , LINECNT = 56 OURCE STATEMENTS = 11,PROGRAM SIZE = 000382 DIAGNOSTICS GENERATED	
FORTRAN IV G1 RELE	ASE 2.0 . FUN2 DATE = MON MAR 06, 1978	PAGE 0001

12 11 13

. .

••

• •

	0004		IND			
•0	PTICNS	IN EFFECT*	ADTERM, 10, EBU NAME = FUN2 RCE STATEMENTS	. LINECNT	= 56	OAC. NOMAP. NOTEST
*5	TATIST		GNOSTICS GENER		0.20110	
5	TATIST	ICS NO DI	AGNOSTICS THIS	STEP		15.45
	BYTES	the second s				0.2141.31
		GINS 16. PROFILES FO	75 R RECTANGULAR P	RISMATIC OP	N CHANNELS	
			I HEOTAHOOLAN I	argumente ort	in onanices	
TE	ST RUN	19				
S	ICE WEI	R BETWEEN	0.0500P, AN	C 0.65	96M	1.201011
C	HANNEL	WIDTH =	. 101600M, SLOP	E = 0.0	VISCOCIT	Y =0.000000951KG/MS
- C	REST H	EIGHT = 0.	4000080			
T	NITIAL	DISCHARGE =	= 0.002060 CU	BIC METRES P	ER SEC., STEP	LENGTH =- 0.01000000
I	NITIAL	STATION	1.088000M, INI	TIAL DEPTH =	0.098100M	
		X METRES	Y ME	TRES	V M/S	FROUDE NO.

, • 1

1. 1

14

. 1

X METRES	Y METRES	V M/S	FROUDE NO.
1.0880	0.098100	0.206683	0.210686
1.0680	0.098108	0.206666	0.210659
1.0480	0.098116	0.206648	0.210633
1.0280	0.098125	0.206631	0.210606
1.0080	0.098133	0.206614	0.210580
0.9880	0.098141	0.206596	0.210553
0.9680	0.098149	0.206579	0.210527
C.9480	0.098158	0.206562	0.210500
0.9280	0.098166	0.206544	0.210474
C.9080	0.098174	0.206527	0.210449
0.8880	0.098182	0.206510	0.210421
0.8680	0.098190	0.206492	0.210395
0.8480	0.098199	0.206475	0.210368
C.8280	0.098207	0.206459	0.210342
0.9080	0.098215	0.206441	0.210315

0.1000	0.040232	0.200400	0.110163			
0. 1480	0.098240	0.206389	0.210236		1	
0.7280	0.098248	0.206371	0.210210			
0.7080	0.098256	0.206354	0.210183	*	r.	
0.6880	0.098265	0.206337	0.210157		•	
0.6680	0.098273	0.206320	0.210131		42	
END OF SIDE WEIR,	DEPTH = 0.098277M				11	
0.6480	0.098161	0.211528	0.215557	•	•	
0.6280	0.097925	0.221873	0.226373		1°.	
0.6080	0.097680	0.232099	0.237102			
C.5880	0.097429	0.242199	0.247739			
C.5680	0.097172	0.252171	0.258280		•	
0.5480	0.096908	0.262011	0.268723			
0.5280	0.096640	0.271715	0.279061			
0.5080	0.096367	0.281279	0.289294		``	
0.4880	0.096090	0.290701	0.299415			
0.4680	0.095809	0.299978	0.309423		21	
0.4480	0.095525	0.309108	0.319313			
0.4280	0.095239	0.318088	0.329082		• 11	
0.4080	0.094951	0.326915	0.338728			
0.3880	0.094661	0.335590	0.348247			
0.3680	0.094371	0.344108	0.357636			
0.3480	0.094080	0.352470	0.366893			
0.3280	0.093789	0.360674	0.376015			
0.3080	0.093498	0.368719	0.385000			
0.2880	0.093208	0.376605	0.393845			
0.2680	0.092919	0.384331	0.402548			
0.2480	0.092632	0.391897	0.411108	•		
0.2280	0.092347	0.399303	C.419523			
0.2080	0.092065	0.406549	0.427792			

0.1000	0.091301	0. 420464	0.443883		
0.1480	0.091234	0.427333	0.451704		
0.1280	0.090964	0.433946	0.459374		
0.1080	0.090697	0.440402	0.466894	•	
0.0890.0	0.090435	0.446704	0.474261		
0.0680.	0.090177	0.452853	0.481477		
START OF SIDE W	EIR. DEPTH = 0.08992	23M			
0.0480	0.089923	0.458850	0.488541		
0.0280	0.089966	0.458628	0.488186		
0.0080	0.090010	0.458407	0.487833		
FINAL DISCHARGE =	0.004192 CUBIC METRES	PER SECOND			
FINAL DEPTH = 0.	090032M				•

11. ...

1.2

+ 1

1

.

270

END OF JCB BALMFORTH D 10 CARDS READ The state of the state of the

#100 # P 1 1 1

AT 10H09M MON MAR 06, 1978 EXECUTE TIME 0.35 MINS. 327 LINES PRINTED 0 CARDS PUNCHED 0 TAPE MOUNTS 0 DISK MOUNTS The state of the state of the state

FORTRAN IV GI	APLEAST 2.0	MAIN	DATE - MON HAR OB. 1978	PAGE 0001
	c			
	C PROGRAM NAME CH	ECK2	Tent Personal and a second second	
	C S.I.UNITS ONLY			•
	C Selecter C			
0001		RMT(5), Y(3), DERY	31. 4119/14. 31	
0002	COMMON/COM	1/8.50. FN. CI . D3YD	(3.C2.AJ.AK.SF.Q.BETA.FAC.TRY.AJ1	
0003	EXTERNAL FI	CT, OUTP, XCT, XUTP	STOLING ANTOLING CINERACTINI AJI	
0004	10 READ(5,50)			
. 0005	AJ=0.0			
0000	IF (NUM.LT.	0)6070100		
0007	REAC(5,52)			
9000	READ(5,52)	C2+XST+XFN		
0009	READ(5,52)		Rais (102) - nonres	
0010	DYD1=-0.12			
0011 0012	50 FORMAT(215			
0012	52 FORMAT(3F1		0475 H 458 Y/A. 56. 1975	
	54 FORMAT(2F1 C	0.01		
	C THE NEXT SECTI	ON DOTHES WEADING	C 440 0474	
a substanting the second	C C	UN PRINTS HEADING	S ANU UATA	동생의 실험을 한 것을 것 같아. 것은 것이 같아. 것이 같아.
0014	WRITE16.60	11	Carda, Marshad, Bethan Me. Thready	
0015		PRUGRAM CHECK2.	TEST RUN 1. 16//1	
0016	WRITE(6,61)		
0017			EC IN BASIC S.I. UNITS'//)	
0018	WRITE(6,62)		
0019	CREPTH1 DI	SCHARGE STEP	*,4X, *VISCOCITY*,3X, *XST*,7X, *XFN*,6X C2*/)	•
N 0020	WRITE(6,63	JB, SO, EN, XST, XFN,	Y1,Q1,H,C2	
271 0021	63 FORMAT(9F1	0.6//)	날 사람이 많은 것이 같아요. 아이는 것은 것이 많이 많이 많이 했다.	
	WRITE(6,6			그는 물건에 걸 때 모두 걸렸는 것을 가지 않는 것 같아요.
0023	CFROUDE NO.	•,3X, 'FACTOR'/)	YDX',5X,'D2YCX2',4X,'D3YDX3 VELOCITY	
0024	PRMT(1) = XS		THE REPORT OF ALL AND A DECK	
0025 0026	V1=01/8/Y1			
0027	Y(1)=Y1		날 같은 것이 같은 것을 가지 않는 것이 없는 것이 없는 것이 없는 것이 없다.	
0029	Y(2) = Q1/B	(9.81*Y1).GE.1.5)	COT045	
0029	PRMT(2)=XF		601003	
0030	PRMT(3)=H	N = SC = T = SA 2 = P = 4 AC		
0031	Y(2)=DYD1			
0032	Y(3)=Q1/B	a and a second sec		승규는 사람은 가지 않는 것은 것은 것을 가지 않는 것을 때 것을 하는 것을 수 있다.
0033	CERY(1)=0.	17		
0034	DERY(2)=C.			
0035	CERY(3)=0.	33		동생님 방법은 영향 정말 집에 걸려 가 많다.
0036	NDIM=3			
0037		*(Q1/B)/9.81)**O.	333333	
0038	C3YDX3=0.0			
0039	PRMT(4)=0.	05*DC		
0040	C CALL UPCCI	DONT Y DERY NETH		
0040	C	PRFI, T, UERT, NUIM,	IHLF,FCT, OUTP, AUX)	
0041	PRMT(1)=AJ	114144123-54-54-64-64		
0042	Y(2)=Y(3)			
FORTRAN IV G1	RELEASE 2.0	MAIN	DATE = MON MAR 06, 1978	PAGE 0002

under Ot

•••

1

:

44

.

.....

unoreno		and the second			an a succession of the second seco
	0,000		141=0.01	· · · · · · · · · · · · · · · · · · ·	
	0016		11=0.14		
	0041	CERYI21	*0.66		
	0044	NOLM#2			
	0040	C			
	0049	CALL HPCC	CPRMT . Y . DERY . NDIM. IHLF	XCT, XUTP, AUX)	
	0050	C			
		WRITEL6,			
1	0051			" M. FINAL DISCHARGE =",	A DATE OF A
			CU.M. PER SEC. 1//)		
	0052	GOTOLO	Stratest stratest and parts		
	0053	100 CONTINUE			
	0054	CALL EXI	HERE BUILD AND THE BUILD WANTER STATE		
	0055	END			
	*0011000				
	+OPTIONS I	N EFFECT# NUTERMI	U, EBLUIL, SUURCE, NULISI,	NODECK . LOAD . NOMAP . NOTEST	
		N EFFECT* NAME = M		56	
	*STATISTIC		ENIS = 55, PRUGRAM	SIZE = 00072E	
	STATISTI	S NO DIAGNOSTICS	GENERATED		· · ·
	CODTRAN IN	SI RELEASE 2.0			B105 4444
	FURIEAR IV	SI RELEASE 2.0	FCT	DATE = MON MAR 06, 1978	PAGE 0001
	0001	SUBROUT	NE FCT(X,Y,DERY)		
	0002		N Y(3), DERY(3)		
	0003			2, AJ, AK, SF, Q, BETA, FAC, TRY, AJ1	
	0074	FAC=0.0			
	0005		/(B+Y(1)+C2)		
	0006	V=Y(3)/Y			
	0007	RE=4.*R4			
	0008	SF=0.316	4*V*V/(78.48*R*RE**0.25	•)	
	0009	C1=(0.60	2+0.083*(Y(1)-C2)/C2)*1	1.+0.0012/(Y(1)-C2))**1.5	
	0010	IF(ABS(A	J).LT.0.011G0T068		
N	0011	EH=Y(1)-	·C2		
72	0012	AK1=COS	ATAN(SO))+V*V/9.81*AJ		승규가 가지 아픈 다른 것은 것을 물었다. 영국에서 있는 것
	0013	. IF(AJ.GT	.0.01G0T067	1	
	0014		5*V*V/Y(1)/9.81*AJ		
	0015			/2./AK2)*SQRT(EH*EH+AK1*EH	
			K1/2./AK2)**2.*ALOG((2.		
			AK1*SQPT(EH*EH+AK1*EH/	K2)))	
	0016	FAC=1.0			
	0017	GOTO68			
	0018		V*V/Y(1)/9.81*AJ		
	0019		2*C1*SORT(AK2)*((AK1/2.		
			+ ARSIN(2. + AK2+EH/AK1-1.	11+(EH=AK1/2./AK2)*	
	0020		*EH/AK2-EH*EH))		
	0020	FAC=1.0 68 CONTINUE	SENDER ETER		
	0022		T.0.9)0=2.95296*C1*(Y()	1-021441.5	
	0023		.95296+C1+(Y(1)-C2)**1		
	0024		577-0.0995*V	31	
	0025		LT.1.0)BETA=1.0		
	0026	AK=1./3.			
	0027		TAN(SO))		
	0028	CERY(1)=			
	0029		V*Y(1)*B/2./Q*D3YDX3+4.	905*B/Q/AK/V*(CE-BETA	
			1/Y(1))*Y(2)+0.5/AK/Y(1		
			10/AK/V*(SO-SF)	A AN ANTIPATING IN CANADAN A	
	0030	DERY(3)=			
	0031		.5*(DERY(2)-AJ1)		
	0032	IF(AJ.LI	-1.01 A J=-1.0		

. .

1.1

8 10	0010		CLATINDO	a the second	a la fai la la contrata de servicio de la contrata	and a contract of a state of the		The second s
	0039		RETURN					
	0031		IND					
	OPTIONS IN	EFFECT	NOTERM. ID. FRCDIC. SO	URCE.NOT IST.N	DECK . LOAD . NOMAP . NOTES			
	OPTIONS IN	EFFECT 1	NAME = FCT . LI	NECNT #	56			
	STATISTICS		F STATEMENTS =					
			NOSTICS GENERATED					
	stationes		addited benchared					
	FORTRAN IV GI	RELEASE	2.0 001	P	DATE = MON MAR 06, 1	978	PAGE 0001	
-	0001		SUBROUTINE OUTPIX.	.CERY, IHLF, ND	IM. PRMT)			
	0002		DIMENSION Y(3), DER					
	0003				AJ.AK.SF.Q.BETA.FAC.T	PV . A 11		
	0004		V=Y(3)/Y(1)		TROTALTS: TETOLIATI ACTI	RITADI		
	0005							
			F=V/SQRT(9.81*Y(1)					
	0006		WRITE(6,70)X,Y(1),	UERY(I),UERY(2	I+U3YUX3+V+F+FAC			
	0007	70	FORMAT(8F10.6/)					
	0008		AJ1=DERY(2)					
	0009		IF(AJ1.LT1.0)AJ1	=-1.0				
	0010		IF(AJ1.GT.1.0)AJ1=	1.0				
	0011		AJ=AJ1					
-	0012		IF(F.GE.1.2)G0T019	9				
	0013		GCT0210					
	0014	199	IF(DERY(2).GT.0.0)	6010200				
	0015		G0T0210	0010200	+			
	0016	200	CE=COS(ATAN(SO))					
	0017	200		111-021/021+1	L.+0.0012/(Y(1)-C2))**	1 6		
	0018		Q=2.95296*C1*(Y(1)			1		
					2 +0574114			
	0019		SLOPE=(SO-SF-Q*V/9	2	-2.*BEIAJI/			
	0000		C(CE-BETA*V*V/9.81/					
	0020		CIFF=ABS(CERY(1)-S					
	0021		TEST=0.1*ABS(DERY)				2월 28일 - 19일 - 19g - 19	
	N 0022		IF(DIFF.LE.TEST)GC	10203				
1	3 0023		GCT0210					
	0024	203	IF (DERY(2).LT.TRY)	G010205	1			
	0025		G0T0210			• 7 3 1 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5		
	0026	205	PRMT(5)=1.0					
	0027		AJ=X					
	0028	210	TRY=DERY(2)					
	0029		RETURN					
	0030		END		a harrow and a second			
	0070		eno		en l'and a character d'anna a state a			
	TODITIONS IN		NOTEDN TO ERCOTE S	OURCE NOL TET	NCDECK . LOAD . NOMAP . NCTE	CT		
				INFCNT =		31		
					56			
	*STATISTICS		CE STATEMENTS =	30, PRIIGRAM	SIZE = 0004A6			
	*STATISTICS	* NO DIA	GNOSTICS GENERATED					
	FORTPAN IV GI	RELEASE	2.0 XC	100000 0.2740	DATE = MON MAR 06,	1978	PAGE 0001	
	0001		SUBROUTINE XCTIX,Y	,DEPY)				
	0002		DIMENSION Y(2), DEP	Y(2)				
	0003		COMMON/COM1/8, SO, E	N, Q1, D3YDX3, C	2, AJ, AK, SF, Q, BETA, FAC.	TRY,AJ1		
	0004		R=B*Y(1)/(B+Y(1)+0	21				
	0005		V=Y(2)/Y(1)		15 1.78% 562 BLONEY BL			
	0006		RE=4. * R * V/EN					
	0007		SF=0.3164*V*V/(78.	48*R*RE**0.25	in			
	0008				.+0.0012/(Y(1)-C2))**	1.5		
	0009		Q=2.95296*C1*(Y(1)					
	0010		BETA=1.0577-0.0995					
	0011		IFIBETA-LT-1.0)PET					
	UUIL							

1.1 1.1 1.1 1.1 1.1

> 24 24

> > ..

-	· ·	CARTINIST ST.							and a survey of the second second second
		CE-HETAAVAV10.	Care for the four of the factor of the factor of the factor	*********	***				
0014		121+-6/1							
0015 .	RETUR	V							
0016	END								
OPTION	S IN EFFECT NOTERM	. 10. FRCDIC . SOL	IRCE. NOL IST. NO		AD NOTECT				
	S IN EFFECT* NAME =		NECNT =	56	AFTIGIESI	•			
*STATIS		EMENTS =		SIZE = 00035A					•.
STATIS	TICS NO DIAGNOSTIC	S GENERATED							
									1.:
FORTRAN I	V G1 RELEASE 2.0	XUT	P	DATE = MON	MAR 06. 197	18	PAGE 0001		
0001	CUARA								
1000		JTINE XUTPIX,Y SICN Y(2),DERY		IM+PRMI)					1.1
0003		V/COM1/R, SO, EN		.A.I. AK . SF. 0. F	FTA . FAC. TRY				
0004)/Y(1)				THUI .			
0005		QRT(9.81*Y(1))	COSTAN I. NAM						
0006	CN=0.						· · · · · · · · · · · · · · · · · · ·		
0007		(6,270)X,Y(1)	DERY(1), CN, CM	I,V,F					
0009		T(7F10.6/)							
0009	$\Delta X = Y ($	1)*B*V							
0011	RETUR								
0012	END								• *
EDNT CAR	A								
	NS IN EFFECT* NOTER				MAP , NOTEST				
· · · · · · · · · · · · · · · · · · ·	NS IN EFFECT* NAME STICS* SOURCE STA	= XUTP + L		56 SIZE = 00024	1.				1
	STICS* NO DIAGNOSTI		12. PRUGRAM	5125 = 00024					
	stres ne brachosti	US DEMERATED							
STATI	STICS NO DIAGNOSTI	CS THIS STEP							
/DATA					19.05				
NOCTISE BYT	ES USED								
PERECUTION PROGRA	BEGINS 22.3S M CHECK2, TEST RUN	132		1		· · · · ·			
1.1.50.1.1	CHECKEY TEST NON	1.52							•••
ALL VA	LUES PRINTED IN BASI	C S.I. UNITS							
									• ••
WIDTH	SLOPE VISCOCITY	XST	XEN DEPTI	1 DISCHARGE	STEP	CZ			
	115000111	A31 .			5121				•
0.101600	0.003760 0.000001	0.0 0.0	609600 0.106	0.013820	0.020000	0.036000			
Red Contract	CULT I				E ACTOR				1.
×	Y DYDX	D2YDX2	D3YDX3 VELOC	ITY FRUUDE N	. FACTOR				
0.0	0.106700 -0.120000-	11.447030 4.	690338 1.274	322 1.246043	1.000000				• •
and the second	A ANALY IN THE PARTY								
0.010000	0.104962 -0.225565	-9.707077 4.	690338 1.257	509 1.239254	0.933023				
0.170000		-			0 033103	•			- 1
0.020000	0.102247 -0.313863	-1.886063 4.	09033H 1.254	1.252153	0.933102			1996.00	
0.030000	0.098755 -0.380967	-5.368194 4.	690339 1.264	156 1.284362	0.931721				••
n sanne									
0.040000	0.094733 -0.414258	-1.966059 4.	690338 1.285	18 1.333186	0.928918		•		
	ALTER STOLES CARES								
0.050000	0.090518 -0.418882	0.063381 4.	090338 1.314	121 1.395185	1.029774				
	0.089965 -0.416795	-0.130373 4	690338 1. 310	06 1.404024	1.070313				•.?
0.051750	0.009903 -0.410193								

	the second of the second second second	Contraction of the second s	And a state of the second second second second		All a design of the other states and		Children and the second se		All and a start and a start of the start of
1	. 0.052	\$00 0.000	+14 -0.4150	99 0.0071	11 4.69093	1 1. 12204	1 1.41220	7 1.050354	
	0.051125	0.009176	-0.415587	0.775846	4.690334	1. 324693	1.416307	1.057883	
O	.053750	0.088917	-0.415085	0.917010	4.690338	1.326560	1.420363	1.063608	
0	.054375	0.088658	-0.414469	1.021968	4.690338	1.328453	1.424467	1.071425	
. 0	.055000	0.088399	-0.413768	1.253573	4.690338	1.330358	1.428596	1.071662	
. (0.056250	0.087983	-0.411945	1.711826	4.690338	1.334225	1.436952	1.072124	
	0.057500	0.087369	-0.409504	2.158341	4.690338	1.338167	1.445428	1.072594	
	0.058750	0.086859	-0.406534	2.593065	4.690338	1.342160	1.453993	1.073072	
	0.0600000	0.086353	-0.403026	3.012239	4.690338	1.346199	1.462636	1.073565	
	0.062500	0.085356	-0.394521	3.795437	4.690338	1.354358	1.480069	1.074550	
	0.065000	0.084382	2 -0.384157	4.487689	4.690338	1.362570	1.497608	1.075564	
	0.067500	0.083437	7 -0.372184	5.072849	4.690338	1.370749	1.515112	1.076555	
	0.070000	0.082523	3 -0.358893	5.537325	4.690338	1.378808	1.532438	1.077559	
	0.075000	0.080801	1 -0.329661	6.083292	4.690338	1.394277	1.566054	1.079496	
	0.080000	0.079229	9 -0.298915	6.132408	4.690338	1.408537	1.597687	1.081318	
	0.085000	0.077810	0 -0.268995	5.779958	4.690338	1.421296	1.626794	1.082981	
N	0.090000	0.07653	5 -0.241562	5.166968	4.690338	1.432470	1.653185	1.084453	
3	0.100000	0.07436	0 -0.197987	3.784552	4.690338	1.450297	1.698053	1.086897	· · · · · ·
	0.110000	0.07256	0 -0.168554	2.749703	4.690338	1.463513	1.734656	1.088778	
	0.120000	0.07099	8 -0.146899	1.928212	4.690338	1.474011	1.766212	1.090350	
	0.120000	0.070998	8 -0.132591	0.0	0.0	1.474011	1.766212		
	C.130000	0.065724	4 -0.122538	0.0	0.0	1.481918	1.791842		
	C.140000	0.06854	3 -0.113741	0.0	0.0	1.489145	1.816019		
	0.150000	0.06744	5 -0.105979	0.0	0.0	1.495778	1.838894		
	0.160000	0.066421	1 -0.099079	C.O	0.0	1.501885	1.860590		
	0.170000	0.065461	L -0.092905	0.0	0.0	1.507527	1.881215		
	0-180000	0.064560	0 -0.087349	0.0	0.0	1.512753	1.900962		
	0.200000	0.062912	2 -0.077760	0.0	0.0	1.522115	1.937514		
	0.220000	0.06143	9 -0.069782	0.0	0.0	1.530241	1.071069		
	0.240000	0.06011	3 -0.063048	0.0	0.0	1.537336	2.001937		

14 • •

۰.

12

. .

· • •

...

...

. .

. . . .

.

.

· · · ·

.

.

0.280	000 0.057816 -0.09292	1 0.0	0.0	1. 54903	1 2.056354	
0. 300000	0.056814 -0.048002	0.0	0.0	1.553868	2.081389	
C. 320000	0.055892 -0.044207 0	0.0	0.0	1.558134	2.104235	•
0.340000	0.055042 -0.040852	0.0	0.0	1.561902	2.125546	
C.360000	0.054256 -0.037871	0.0	0.0	1.565228	2.145459	
0.380000	0.053525 -0.035206	0.0	0.0	1.568162	2.164094	
0.400000	0.052846 -0.032813	0.0	0.0	1.570744	2.181554	
0.420000	0.052211 -0.030654	0.0	0.0	1.573008	2.197929	
0.440000	0.051618 -0.028698	0.0	0.0	1.574984	2.213300	
0.460000	0.051062 -0.026921	0.0	0.0	1.576699	2.227739	
0.480000	0.050540 -0.025299	0.0	0.0	1.578176	2.241310	
0.500000	0.050049 -0.023816	0.0	0.0	1.579434	2.254073	
0.520000	0.049587 -0.022455	0.0	0.0	1.580494	2.266080	
0.539939	0.049150 -0.021203	0.0	0.0	1.581369	2.277379	
0.559999	0.048738 -0.020049	0.0	0.0	1.582074	2.288013	
0.579999	0.048348 -0.018981	0.0	0.0	1.582623	2.298023	
N0.599999	0.047978 -0.017993	0.0	0.0	1.583024	2.307444	
0.619999	0.047629 -0.017075	c.c	0.0	1.583290	2.316309	
FINAL	DEPTH = 0.047628 M,	FINAL	CISCHARGE =	0.007661	CU.M. PER S	EC.

END OF JOB D.J.BALMFORT 9 CARDS READ

AT 10H08M MON MAR 06, 1578 EXECUTE TIME 0.42 MINS. 341 LINES PRINTED 0 CARDS PUNCHED 0 TAPE MOUNTS 0 DISK MOUNTS

11

...

.

APPENDIX V

Results	of the Preliminary Experimental Investigation.
(a)	Head, Discharge and Coefficient of Discharge Values.
(b)	Velocity Traverse Readings.
(c)	Details of the Method of Computing α and β Values.

Head, Discharge and Coefficient of Discharge Values.

(a)

Test No. 1.

Dahl tube manometer readi	ng:	1.05	Q ₁ =	0.02612m ³ /s
Side spill stage	:	6.62cm	Q _w =	0.007866m ³ /s
Weir length L	:	110.72cm	Q ₂ =	0.01824m ³ /s
Crest height C	:	35.75cm	۷٦ =	0.093m/s
B ₁	:	73.50cm	V ₂ =	0.103m/s
^B 2	:	46.32cm	V _{mean} ≠	0.098m/s
Mean head above crest h*	:	2.387cm	C _D (measured)=	0.652
Mean depth*	:	38.137cm	C _D (Rehbock) =	0.654
,				•

Surface Profiles

X-Section		HEAD ABOVE CREST mm											
(Distance from start of weir)	L	LONG SECTION (DISTANCE BEHIND WEIR) mm											
mm	0	50	100	200	300	400	500	605	700				
0 (50)-	-19.6	23.1	23.7	23.7	23.7	23.6	23.6	23.3	23.4				
100	19.6	23.1	23.7	23.7	23.7	23.6	23.5	23.3					
200	19.6	23.3	23.8	23.8	23.8	23.7	23.6	23.1					
300	19.7	23.5	23.8	23.9	23.8	23.7	23.6	23.2					
400	19.8	23.5	23.8	24.1	23.8	23.7	23.6						
500	19.7	23.5	23.8	24.1	23.8	23.8	23.6						
600	19.8	23.6	23.9	24.1	23.9	23.8	23.4						
700	19.9	23.8	24.1	24.2	23.8	23.7	23.4	· .					
800	20.0	23.8	24.1	24.3	23.9	23.8	23.4						
900	20.0	23.9	24.2	24.2	23.9	23.8							
1000	20.3	24.1	24.4	24.3	23.9	23.8							
1050	20.5	24.4	24.5	24.4	23.9	23.6							

Averaged over 200mm, 300m and 400mm, long sections.

Test No. 2.

Dahl tube manometer reading	g:	1.30	Q ₁ =	0.02894m ³ /s
Side spill stage	:	8.02cm	Q _w =	0.01072m ³ /s
Weir length L	:	110.72cm	Q ₂ =	0.01824m ³ /s
Crest height C	:	35.75cm	۷1 =	0.102m/s
Bl	:	73.50cm	v ₂ =	0.102m/s
B ₂	:	46.32cm	V _{mean} =	0.102m/s
Mean head above crest h*	:	2.919cm	C _D (measured)=	0.658
Mean depth*	:	38.664cm	C _D (Rehbock) =	0.647

Surface Profiles

*

X-Section		HEAD ABOVE CREST mm											
(Distance from start of weir)	L	LONG SECTION (DISTANCE BEHIND WEIR) mm											
mm	0	50	100	200	300	400	500	605	700				
0 (50)-	-23.8	28.1	28.6	28.8	28.9	28.9	29.0	28.5	28.7				
100	23.9	28.1	28.7	28.9	29.0	29.0	28.9	28.7					
200	23.8	28.2	28.8	29.0	29.0	29.0	28.9	28.5					
300	23.9	28.4	28.8	29.1	29.0	29.0	28.8	28.5					
400	23.9	28.5	28.9	29.2	29.0	29.0	28.9	28.5					
500 [°]	24.1	28.5	29.1	29.2	29.1	29.1	28.9						
600	23.9	28.7	29.2	29.3	29.2	29.1	29.0						
700	24.0	28.7	29.3	29.4	29.3	29.2	28.9						
. 800	24.1	28.8	29.4	29.5	29.3	29.2	28.9						
900	24.3	28.9	29.5	29.6	29.4	29.2							
1000	24.5	29.3	29.8	29.6	29.5	29.2							
1050	24.9	29.6	29.9	29.8	29.6	29.1							

Averaged over 200mm, 300m and 400mm, long sections.

Test No. 3.

			•		
Dahl tube manometer reading	;:	1.785	Q ₁ =	•	0.03389m ³ /s
Side spill stage	:	8.99cm	Q _w =	=	0.01288m ³ /s
Weir length L	:	110.72cm	Q ₂ =	:	0.02101m ³ /s
Crest height C	•	35.75cm	۷. =		0.118m/s
^B 1	:	73.50cm	V ₂ =	=	0.116m/s
B ₂	:	46.32cm	V _{mean} =	:	0.117m/s
Mean head above crest h*	:	3.355cm	C _D (measured) =	=	0.641
Mean depth*	:	39.105cm	C _D (Rehbock) =		0.643

Surface Profiles

X-Section		HEAD ABOVE CREST mm											
(Distance from start of weir)	L	LONG SECTION (DISTANCE BEHIND WEIR) mm											
mm	0 50		100	200	200 300		500	605	700				
0 (50 <u>)</u> -	27.0	32.2	33.0	33.4	33.4	33.3	33.2	32.8	32.8				
100	27.3	32.2	33.0	33.4	33.4	33.4	33.1	32.6					
200	27.4	32.4	33.1	33.4	33.5	33.4	33.3	32.6					
300	27.5	32.5	33.2	33.5	33.4	33.4	33.2	32.7					
400	27.5	32.6	33.3	33.5	33.5	33.3	33.2	32.7					
500 [`]	27.5	32.6	3 3.4	33.6	33.6	33.3	33.2						
600	27.6	32.8	33.4	33.7	33.6	33.3	33.2		•				
700	27.7	32.8	33.4	33.8	33.6	33.3	33.1						
800	27.8	32.9	33.5	33.9	33.6	33.6	33.2						
900	27.9	32.9	33.5	33.9	33.7	33.4							
1000	28.1	33.1	33.9	34.0	33.8	33.5							
1050	28.3	33.7	34.1	34.1	33.7	33.6							

Averaged over 200mm, 300m and 400mm, long sections.

Test No. 4.

Dahl tube manometer reading	:	2.22	Q ₁ =	0.03774m ³ /s
Side spill stage	:	9.14cm	Q _w =	0.01323m ³ /s
Weir length L	:	110.72cm	Q ₂ =	0.02451m ³ /s
Crest height C	:	35.75cm	۷. =	0.131m/s
B	:	73.50cm	V ₂ =	0.135m/s
B ₂	:	46.32cm	V _{mean} =	0.133m/s
Mean head above crest h*	:	3.413cm	C _D (measured) =	0.642
Mean depth*	:	39.163cm	C_{D} (Rehbock) =	0.642

Surface Profiles

X-Section		HEAD ABOVE CREST mm										
(Distance from start	LONG SECTION .(DISTANCE BEHIND WEIR) mm											
of weir) mm	0	50	100	200	300	400	500	605	700			
0 (50)-	-27.0		33.5	34.0	34.2	34.0	34.0	33.8	33.9			
100	27.8		33.5	33.9	34.2	34.1	34.1	33.7				
200	28.1		33.5	34.0	34.0	33.9	33.9	33.5				
300	28.2		33.7	34.0	34.0	34.0	33.9	33.4				
400	28.2		33.8	34.1	34.1	34.1	33.9	33.5				
500	28.2		33.9	34.3	34.1	34.1	33.8					
600	28.2		34.0	34.3	34.1	34.1	33.8					
700	28.2		34.1	34.3	34.2	34.0	33.9					
800	28.4		34.2	34.3	34.1	34.0	33.7					
900	28.5		34.2	34.5	34.1	34.2						
1000	28.9		34.5	34.6	34.2	33.8						
1050	29.9		34.8	34.6	34.1	33.9						

Averaged over 200mm, 300m and 400mm, long sections.

Test No. 5.

				• ·
Dahl tube manometer readir	ng:	2.89	Q ₁ =	0.04294m ³ /s
Side spill stage	:	10.21cm	Q _w =	0.01581m ³ /s
Weir length L	•	110.72cm	Q ₂ =	0.02713m ³ /s
Crest height C	:	35.75cm	۷ ₁ =	0.148m/s
B ₁	:	73.50cm	V ₂ =	0.148m/s
B ₂	:	46.32cm	V _{mean} =	0.148m/s
_ Mean head above crest h*	:	3.884cm	C _D (measured) =	0.632
Mean depth*		39.634cm	C_{D} (Rehbock) =	0.640
			· -	

Surface Profiles

X-Section (Distance	HEAD ABOVE CREST mm										
from start of weir)		LONG SECTION (DISTANCE BEHIND WEIR) mm									
mm	0	50	100	200	300	400	500	605	700		
0 (50)-	29.5		38.2	38.5	38.8	38.6	38.9	38.3	38.3		
100	31.3		38.2	38.5	.38.8	38.5	38.7	38.3			
200	31.5		38.3	38.6	38.9	38.5	38.5	38.3			
300	31.8		38.3	38.7	38.8	38.6	38.7	38.1			
400	31.8		38.3	38.8	38.8	38.7	38.7	38.2			
500	32.2		38.5	38.8	38.9	38.8	38.6				
600	32.3		38.5	38.8	38.9	38.8	38.6				
700	32.5		38.5	38.9	38.9	38.9	38.5				
800	32.6		38.8	39.0	38.9	38.9	38.5				
900	32.5		38.9	39.2	28.9	38.8					
1000	32.4		39.1	39.3	39.0	38.9		· ·			
1050	33.8		39.4	39.4	39.1	38.9					

Averaged over 200mm, 300m and 400mm, long sections.

Test No. 6.

Dahl tube manometer readin	g:	3.355	Q ₁ =	0.04618m ³ /s
Side spill stage	•	10.73cm	Q _w =	0.01713m ³ /s
Weir length L	:	110.72cm	Q ₂ =	0.2905m ³ /s
Crest height C	:	35.75cm	V ₁ =	0.158m/s
B	:	73.50cm	V ₂ =	0.157m/s
B ₂	:	46.32cm	V _{mean} =	0.158m/s
Mean head above crest h*	:	4.072cm	C _n (measured) =	0.638
Mean depth*	:	39.822cm	C_{D} (Rehbock) =	0.639

Surface Profiles

X-Section		HEAD ABOVE CREST mm									
(Distance from start of weir)	L	LONG SECTION (DISTANCE BEHIND WEIR) mm									
mm	0	50	100	200	300	400	500	605	700		
0 (50).	.31.2		39.9	40.6	40.7	40.8	40.7	40.7	40.5		
100	32.9		40.0	40.5	40.6	40.6	40.6	40.5			
200	32.2		40.0	40.7	40.5	40.6	40.5	40.3			
300	33.2		40.1	40.7	40.6	40.6	40.5	40.3			
400	33.5		40.1	40.7	40.5	40.7	40.3	40.2			
500	33.7		40.3	40.6	40.7	40.6	40.5				
600	33.8		40.4	40.7	40.8	40.6	40.4				
700	33.8		40.4	40.9	40.8	40.7	40.4				
800	33.9		40.5	41.0	40.8	40.6	40.4				
900	34.0		40.8	41.0	40.9	40.5					
1000	34.5	a,	41.0	41.2	40.9	40.4					
1050	35.0		41.4	41.4	40.9	40.4					

* Averaged over 200mm, 300m and 400mm, long sections.

Test No. 7.

Dahl tube manometer readin	g:	2.47	Q ₁ =	0.03975m ³ /s
Side spill stage	:	9.90cm	Q _w =	0.01505m ³ /s
Weir length L	:	110.72cm	Q ₂ =	0.02470m ³ /s
Crest height C	:	35.75cm	v ₁ =	0.137m/s
^B 1	:	73.50cm	V ₂ =	0.135m/s
B ₂	:	46.32cm	V _{mean} =	0.136m/s
Mean head above crest h*	:	3.728cm	C _D (measured)=	0.640
Mean depth*	:	39.478cm	C_{D} (Rehbock) =	0.640

Surface Profiles

X-Section	HEAD ABOVE CREST mm										
(Distance from start of weir)	. L	LONG SECTION (DISTANCE BEHIND WEIR) mm									
'mm	0	50	100	200	300	400	500	605	700		
0 (50)-	₽ 28.5		36.5	36.9	37.2	37.2	37.2	37.0	37.0		
100	29.8	۰.	36.5	36.9	37.2	37.2	37.2	36.9			
200	30.5		36.8	37.1	37.3	37.2	37.1	36.9			
300	30,9		36.8	37.2	37.3	37.2	37.1	36.8			
400	30.8		36.9	37.2	37.3	37.2	37.2	36.7			
500	30.8	•	36.9	37.3	37.3	37.3	37.1				
600	30.8		37.0	37.4	37.3	37.2	37.2				
700	30.8		37.1	37.5	37.3	37.2	37.1				
800	30.9		37.2	37.6	37.3	37.2	37.1				
900	31.1		37.4	37.7	37.3	37.1	36.9				
1000	31.3		37.6	37.8	37.4	37.1					
1050	31.7		37.8	37.8	37.4	37.0					

Averaged over 200mm, 300m and 400mm, long sections.

Test No. 8.

Dahl tube manometer reading:	0.74	Q ₁ =	0.02200m ³ /s
Side spill stage :	7.00cm	Q _w =	0.00861m ³ /s
Weir length L :	110.72cm	Q ₂ =	0.01339m ³ /s
Crest height C :	35.75cm	v ₁ =	0.078m/s
^B 1 :	73.50cm	۷ ₂ =	0.076m/s
B ₂ :	46.32cm	V _{mean} =	°0.077m/s
Mean head above crest h* :	2.524cm	C _D (measured) =	0.656
Mean depth* :	38.274cm	C_{D} (Rehbock) =	0.652

Surface Profiles

X-Section		HEAD ABOVE CREST mm										
(Distance from start of weir)	L	LONG SECTION (DISTANCE BEHIND WEIR) mm										
mm	0	50	100	200	300	400	500	605	700			
0 (50)-	20.4		24.9	25.0	25.0	25.0	25.0	24.9	24.9			
100	20.5		24.9	25.1	25.0	25.0	24.9	24.8				
200	20.5		25.0	25.1	25.1	24.9	25.0	24.8				
300	20.5		25.1	25.2	25.2	25.0	24.9	24.6				
400	20.6		25.1	25.2	25.3	24.9`	24.9	24.7				
500	20.7		⁻ 25 . 2	25.3	25.3	25.0	24.9					
600	20.6		25.3	25.4	25.3	25.1	25.0	-				
700	20.7		25.3	25.5	25.4	25.1	25.0					
800	20.7		25.4	25.5	25.4	25.2	25.2					
900	20.9		25.5	25.5	25.5	25.3						
1000	21.1		25.7	25.6	25.5	25.3						
1050	21.2		25.8	25.7	25.5	25.1						

Averaged over 200mm, 300m and 400mm, long sections.

Test No. 9.

Dahl tube manometer readin	g:	0.40	Q	=	0.01627m ³ /s
Side spill stage	:	5.90cm	Qw	=	0.00653m ³ /s
Weir length L	:	110.72cm	Q ₂	2	0.00974m ³ /s
Crest height C	:	35.75cm	٧ ₁	=	0.058m/s
B ₁	:	73,50cm	٧ ₂	=	0.056m/s
B ₂	:	46.32cm	V _{mean}	=	0.057m/s
Mean head above crest h*	:	2.101cm	C _D (measured)) =	0.656
Mean depth*	:	37.851cm	C _D (Rehbock)	=	0.660
		* · · · · · · · · · · · · · · · · · · ·			

· Surface Profiles

X-Section		HEAD ABOVE CREST mm										
(Distance from start	LONG SECTION (DISTANCE BEHIND WEIR) mm											
of weir) mm	0	50	100	200	300	400	500	605	700			
0 (50)-	16.8		20.5	20.9	20.9	20.9	20.9	20.5	20.3			
100	16.7		20.6	20.9	20.8	20.9	20.7	20.4				
200	16.8	-	20.7	20.9	20.8	21.0	20.7	20.4				
300	16.9		20.8	21.0	20.9	20.9	20.8	20.4				
400 _	16.9		20.9	21.0	20.9	20.9	20.8	20.3				
500 ·	17.0		21.0	21.1	21.0	20.9	20.7					
600	17.0		21.1	21.2	21.1	20.9	20.7					
700	17.0	•	21.1	21.3	21.0	20.9	20.6					
800	17.2		21.3	21.3	21.1	20.8	20.5					
900	17.1		21.3	21.4	21.1	20.9						
1000	17.2		21.4	21.5	21.1	20.8						
1050	17.5		21.7	21.6	21.2	20.7						

Averaged over 200mm, 300m and 400mm, long sections.

Dahl tube manometer readir	ng: 0.530	Q ₁ =	0.01868m ³ /s
Side spill stage	: 6.97cm	Q _w =	0.00855m ³ /s
Weir length L	: 110.72cm		0.01013m ³ /s
Crest height C	: 35.75cm	У ₁ . =	0.066m/s
B ₁	. 73.50cm	V ₂ =	0.064m/s
B ₂	41.20 cm	V _{mean} =	0.065m/s
- Mean head above crest h*	: 2.515cm	C _D (measured)=	0.655
Mean depth*	: 38.265cm	C _D (Rehbock) =	0.652

Surface Profiles

X-Section		HEAD ABOVE CREST mm										
(Distance from start of weir)	L	LONG SECTION (DISTANCE BEHIND WEIR) mm										
mm	0	50	100	200	300	400	500	605	700			
0 (50)-	-20.0	24.5	25.0	25.2	25.2	25.2	24.9	24.7	24.2			
100	20.0	24.6	25.0	25.2	25.2	25.2	24.8	24.7				
200	20.3	24.6	25.0	25.2	25.2	25.2	24.8	24.6				
300	20.3	24.6	25.0	25.2	25.2	25.1	24.8	24.6				
400	20.4	24.7	25.0	25.2	25.2	25.1	24.8					
500	20.5	24.8	25.0	25.3	25.2	25.0	24.8					
600	20.5	24.7	25.1	25.3	25.2	25.0	24.7					
700	20.7	24.8	25.2	25.3	25.2	25.0	24.7	· · ·				
800	20.8	24.8	25.2	25.3	25.2	25.0						
900	20.8	24.9	25.2	25.3	25.2	24.9	2 X					
1000	20.8	25.0	25.3	25.3	25.0	24.8						
1050	20.8	25.0	25.3	25.4	25.0	24.8						

* Averaged over 200mm, 300m and 400mm, long sections.

{

Test No. 11.

Dahl tube manometer reading	ng:	0.720	Q ₁ =	• 0.02170m ³ /s
Side spill stage	:	7.51cm	Q _w =	• 0.00964m ³ /s
Weir length L	:	110.72cm	Q ₂	• 0.01206m ³ /s
Crest height C	:	35.75cm	۷.	.0.077m/s
B ₁	:	73.50cm	۷ ₂ =	.0.076m/s
B ₂	:	41.20cm	V _{mean} =	.0.076m/s
Mean head above crest h*	:	2.752cm	C _D (measured) =	0.646
Mean depth*	:	38.502cm	C _D (Rehbock) =	0.649

Surface Profiles

X-Section		H	IEAD A	BOVE	CREST	mm							
(Distance from start	L	LONG SECTION (DISTANCE BEHIND WEIR) mm											
of weir) mm	0	50	100	200	300	400	500	605	700				
0 (50)-	-22.2	27.0	27.3	27.6	27.6	27.5	27.3	27.2	27.0				
100	22.3	26.9	27.3	27.5	27.6	27.5	27.3	27.1					
200	22.5	26.9	27.3	27.5	27.6	27.5	27.3	27.1					
300	22.5	26.9	27.3	27.6	27.6	27.5	27.3	27.0					
400	22.5	26.9	27.4	27.6	27.6	27.5	27.3	•					
500	22.5	27.0	27.5	27.6	27.6	27.5	27.2						
600	22.5	27.0	27.5	27.6	27.5	27.4	27.2						
700	22.6	27.0	27.5	27.6	27.5	27.4	27.2						
800	22.7	27.1	27.5	27.7	27.5	27.3							
900	22.8	27.1	27.5	27.7	27.4	27.3							
1000	22.9	27.3	27.6	27.7	27.4	27.3							
1050	23.1	27.4	27.7	27.7	27.4	27.2							

Averaged over 200mm, 300m and 400mm, long sections.

Test No. 12.

Dahl tube manometer reading	g: 0.94	Q ₁ =	0.02474m ³ /s
Side spill stage	: 8.09cm ,	Q _w =	0.01087m ³ /s
Weir length L	: 110.72cm	Q ₂ =	0.01387m ³ /s
Crest height C	: 35.75cm	۷, =	0.087m/s
B ₁	: 73.50cm	V ₂ =	0.087m/s
B ₂	: 41.20cm	V _{mean} =	0.087m/s
Mean head above crest h*	2.993	C _D (measured) =	0.642
Mean depth*	: 38.743	C_{D} (Rehbock) =	0.646

Surface Profiles

X-Section		ŀ	IEAD A	BOVE	CREST	mm						
(Distance from start of weir)	L	LONG SECTION (DISTANCE BEHIND WEIR) mm										
mm	0	50	100	200	300	400	500	605	700			
0 (50)-	-23.9	29.2	29.6	30.0	29.9	30.0	29.9	29.7	29:4			
100	24.2	29.1	29.6	30.0	29.9	30.0	29.8	29.5				
200	24.4	29.1	29.7	30.0	30.0	30.0	29.7	29.5				
300	24.3	29.2	29.7	30.0	30.0	30.0	29.8	29.5				
400	24.4	29.2	29.8	30.0	29.9	30.0	29.7					
500	24.5	29.2	29.9	30.0	29.9	29.9	29.6					
600	24.5	29.2	29.9	30.0	30.0	29.8	29.6					
700	24.5	29.3	29.9	30.0	30.0	29.7	29.5					
800	.24.6	29.4	29.9	30.0	30.0	29.7						
900	24.6	29.4	30.0	30.0	30.0	29.6						
1000	24.7	29.5	30.1	30.1	29.9	29.6			1 m.			
1050	24.8	29.8	30:2	30.2	29.9	29.5						

Averaged over 200mm, 300m and 400mm, long sections.

Test No. 13.

Dahl tube manometer reading]:	1.20	Q ₁ =	0.02788m ³ /s
Side spill stage	:	8.77cm	Q _w =	0.01238m ³ /s
Weir length L	•	110.72cm	Q ₂ =	0.01558m ³ /s
Crest height C	:	35.75cm	۷ ₁ . =	0.097m/s
B ₁	:	73.50cm	۷2 =	0.097m/s
B ₂	:	41. 20cm	V _{mean} =	0.097m/s
Mean head above crest h*	:	3.238cm	C _D (measured) =	0.649
Mean depth*	:	38.988cm	C_{D} (Rehbock) =	

Surface Profiles

X-Section		н	EAD A	BOVE	CREST	mm		-				
(Distance from start of weir)	L	LONG SECTION (DISTANCE BEHIND WEIR) mm										
mm	0	50	100	200	300	400	500	605	700			
0 (50)+	26.2	31.8	32.3	32.5	32.5	32.3	32.3	32.1	31.9			
100	26.8	31.7	32.2	32.5	32.4	32.3	32.3	32.1				
200	26.9	31.8	32.2	32.5	32.4	32.3	32.3	32.0				
300	26.9	31.7	32.2	32.4	32.4	32.3	32.3	31 . 9				
400	26.9	31.7	32.3	32.5	32.5	32.2	32.3					
500	27.0	31.7	32.3	32.5	32.5	32.2	32.2					
600	27.1	31.7	32.3	32.5	32.5	32.2	32.0					
700	27.1	31.7	32.4	32.5	32.5	32.2						
800	27.1	31.7	32.4	32.5	32.5	32.2						
900	27.1	31.8	32.5	32.5	32.4	32.1						
1000	27.2	31.9	32.5	32.5	32.4	32.0						
1050	27.4	32.1	32.6	32.6	32.3	32.0						

Averaged over 200mm, 300m and 400mm, long sections.

Test No. 14.

Dahl tube manometer reading	ıg:	1.51	Q ₁	=	0.03122m ³ /s
Side spill stage	:	9.33cm	Qw	=	0.01367m ³ /s
Weir length L	:	110.72cm	Q ₂	-	0.01755m ³ /s
Crest height C	:	35.75cm	V ₁	=	0.108m/s
^B 1	:	73.50cm	V ₂	=	0.109m/s
B ₂	•	41.20cm	V _{mean}	2	0.108m/s
Mean head above crest h*	:	3.496cm	C _D (measured) =	0.640
Mean depth*	:	39.246cm	C _D (Rehbock)	=	0.642

Surface Profiles

X-Section		HEAD ABOVE CREST mm											
(Distance from start of weir)	L	LONG SECTION (DISTANCE BEHIND WEIR) mm											
mm	0	50	100	200	300	400	500	605	700				
0 (50)-	-28.2	33.9	34.6	35.0	35.0	35.0	35.0	34.6	34.5				
100	28.5	33.7	34.5	35.0	35.0	35.0	34.9	34.6	с.				
200	28.7	33.9	34.6	35.0	35.0	35.0	34.9	34.6					
300	28.9	33.9	34.6	35.1	35.0	35.0	34.8	34.5					
400	28.9	34.0	34.7	35.1	35.0	35.0	34.7						
500	28.9	34.0	34.8	35.1	35.0	34.9	34.6						
600	28.8	34.1	34.9	35.1	35.0	34.9	34.6						
700	29.0	34.1	34.8	35.1	35.0	34.8	34.5						
800	29.0	34.1	34.9	35.1	35.0	34.8							
900	29.1	34.2	35.0	35.1	35.0	34.6							
1000	29.1	34.5	35.0	35.1	34.9	34.4							
1050	29.3	34.9	35.3	35.1	34.9	34.4							

Averaged over 200mm, 300m and 400mm, long sections.

Dahl tube manometer reading:	2.27	Q ₁ =	0.03815m ³ /s
Side spill stage :	10.63cm	Q _w =	0.01687m ³ /s
Weir length L :	110.72cm	Q ₂ =	0.02128m ³ /s
Crest height C :	35.75cm	¥	0.131m/s
B ₁ :	73.50cm	V ₂ =	0.130m/s
B ₂ :	41.20 cm	V _{mean} =	0.130m/s
Mean head above crest h* :	3.995cm	C _D (measured) =	0.646
Mean depth* :	39.745cm	C_{D} (Rehbock) =	0.639

Surface Profiles

X-Section		Н	EAD A	BOVE	CREST	mm		······································				
(Distance from start	LONG SECTION (DISTANCE BEHIND WEIR) mm											
of weir) mm	0	50	100	200	300	400 .	500	605	700			
0 (50)	-31.5	38.7	39.5	39.9	40.0	40.1	40.1	39.9	39.8			
100	32.3	38.7	39.5	39.9	40.0	40.0	39.9	39.7				
200	32.8	38.8	39.6	39.9	40.0	40.0	39.9	39.6				
300	32.9	38.8	39.6	39.9	40.0	40.0	39.9	39.6				
400	33.0	38.8	39.7	40.0	40.0	40.0	39.8					
500	33.0	38.8	39.7	40.0	40.0	39.9	39.8					
600	33.1	38.8	39.8	40.0	40.0	39.9	39.6					
700	33.2	38.9	39.8	40.0	39.9	39.7	39.5					
800	33.2	38.9	39.8	40.0	39.9	39.6						
900	33.3	39.0	39 . 8	40.0	39.8	39.5						
1000	33.3	39.2	39.9	40.1	39.8	39.3						
1050	33.9	39.9	40.1	40.1	39.7	39.1						

Averaged over 200mm, 300m and 400mm, long sections.

Test No. 16.

Dahl tube manometer reading:	1.87	Q ₁ =	0.03468m ³ /s
Side spill stage :	9.93cm	Q _w =	0.01512m ³ /s
Weir length L :	110.72cm	Q ₂ =	0.01956m ³ /s
Crest height C :	35.75cm	v ₁ . =	0.119m/s
B ₁ :	73.50cm	V ₂ =	0.120m/s
B	41.20cm	V _{mean} =	0.120m/s
Mean head above crest h* :	3.746cm	C _D (measured) =	0.638
Mean depth* :	39.496cm	C _D (Rehbock) =	0.640

Surface Profiles

X-Section		HEAD ABOVE CREST mm											
(Distance from start	Ľ	LONG SECTION (DISTANCE BEHIND WEIR) mm											
of weir) mm	0	50	100	200	300	400	500	605	700				
0 (50)-	-29.9	36.3	37.2	37.5	37.5	37.6	37.6	37.3	37.3				
100	29.7	36.3	37.2	37.5	37.5	37.6	37.5	37.2					
200	29.8	36.4	37.2	37.5	37.5	37.7	37.5	37.0					
300	29.9	36.4	37.2	37.5	37.5	37.6	37.4	37.0					
400	30.0	36.4	37.2	37.5	37.5	37.5	37.3						
500	30.0	36.5	37.2	37.5	37.5	37.5	37.1						
600	30.0	36.5	37.2	37.5	37.5	37.4	37.0						
700	30.0	36.5	37.2	37.6	37.5	37.3	37.0						
800	30.1	36.5	37.3	37.6	37.5	37.3							
900	30.1	36.6	37.4	37.6	37.5	37.1							
1000	30.2	36.8	37.4	37.6	37.3	37.0							
1050	30.8	37.3	37.8	37.6	37.2	36.9							

Averaged over 200mm, 300m and 400mm, long sections.

Test No. 17.

Dahl tube manometer readin	g:	2.74	Q ₁ =	0.04185m ³ /s
Side spill stage	:	11.15cm	Q _w =	0.01822m ³ /s
Weir length L	:	110.72cm	Q ₂ =	0.02363m ³ /s
Crest height C	:	35.75cm	۷1. =	0.142m/s
B	:	73.50cm	۷2 =	0.143m/s
^B 2	:	41.2 0cm	V _{mean} =	0.143m/s
Mean head above crest h*	:	4.251cm	C _D (measured)=	0.636
Mean depth*	:	40.001cm	C _D (Rehbock) =	0.638

Surface Profiles

X-Section		ł	IEAD A	BOVE	CREST	mm							
(Distance from start of weir)	L	LONG SECTION (DISTANCE BEHIND WEIR) mm											
mm	0	50	100	200	300	400	500	605	700				
0 (50)-	-33.1	41.0	42.1	42.5	42.7	42.7	42.6	42.3	42.3				
100	34.3	41.0	42.1	42.5	42.7	42.7	42.6	42.1					
. 200	34.7	41.2	42.1	42.5	42.6	42.6	42.6	42.1					
300	34.9	41.3	42.2	42.5	42.6	42.6	42.4	42.0					
400	34.9	41.3	42.3	42.6	42.6	42.5	42.2						
500	35.0	41.3	42.3	42.6	42.6	42.4	42.2						
600	35.0	41.3	42.3	42.6	42.6	42.4	42.1						
7 00 ·	35.1	41.3	42.3	42.7	42.6	42.4	42.0						
800	35.3	41.4	42.3	42.7	42.5	42.3							
900	35.4	41.4	42.4	42.7	42.4	42.1							
1000	35.4	41.7	42.5	42.8	42.3	42.0							
1050	36.0	42.2	42.6	42.7	42.3	41.9]	х.					

Averaged over 200mm, 300m and 400mm, long sections.

Test No. 18.

Dahl tube manometer reading: 3.25 Q_{1} = 0.04549m	
Side spill stage : 11.88cm $Q_{W} = 0.02018m$	³ /s
Weir length L : 110.72 cm Q_2 = 0.02533 m	³ /s
Crest height C : 35.75 cm V_1 = 0.154m/s	
B_1 : 73.50 cm V_2 = 0.153 m/s	
B_2 : 41.20cm V_{mean} = 0.153m/s	
Mean head above crest h^* : 4.514cm C_D (measured) = 0.644	
Mean depth* : 40.264 cm CD (Rehbock) = 0.637	,

Surface Profiles

X-Section		HEAD ABOVE CREST mm										
(Distance from start	LONG SECTION (DISTANCE BEHIND WEIR) mm											
of weir) · mm	0	50	100	200	300	400	500	605	700			
0 (50)-	- 35.9	43.2	44.4	45.2	45.2	45.3	45.3	45.1	45.2			
100	37.6	43.1	44.4	45.2	45.2	45.2	45.2	45.1				
200	37.9	43.3	44.5	45.2	45.2	45.2	45.1	45.0				
300	37.9	43.4	44.6	45.2	45.2	45.2	45.0	45.0				
400	37.8	43.5	44.6	45.2	45.2	45.2	44.9					
500	37.8	43.5	44.7	45.2	45.2	45.2	44.8					
600	37.8	43.5	44.7	45.2	45.2	45.2	44.8					
700	37.8	43.6	44.7	45.2	45.2	45.1	44.8					
800	37.8	43.6	44.8	45.2	45.2	45.0						
900	38.1	43.7	44.9	45.2	45.2	44.9						
1000	38.1	44.2	45.3	45.2	45.1	44.6		•				
1050	38.1	44.8	45.4	45.3	44.9	44.5						

Averaged over 200mm, 300m and 400mm, long sections.

Test No. 19.

Dahl tube manometer readin	ıg:	0.80	Q ₁ =	0.022851m ³ /s
Side spill stage	:	6.28cm	Q _w =	0.007225m ³ /s
Weir length L	:	110.72cm	Q ₂ =	0.01562m ³ /s
Crest height C	:	35.75cm	۷ ₁ . =	0.082m/s
B ₁	:	73.50cm	V ₂ =	0.081m/s
B ₂	:	50.92cm	V _{mean} =	0.081m/s
Mean head above crest h*	:	2.242cm	C _D (measured)=	0.658
Mean depth*	:	37. 992cm	C_{D} (Rehbock) =	0.657

Surface Profiles

X-Section		HEAD ABOVE CREST mm											
(Distance from start	L	LONG SECTION (DISTANCE BEHIND WEIR) mm											
of weir) mm	0	50	100	200	300	400	500	605	700				
0 (50)-	-18.3	21.7	22.3	22.3	22.3	22.3	22.4	22.1	22.0				
100	18.3	21.9	22.3	22.3	22.3	22.3	22.3	22.0					
200	18.2	22.0	22.3	22.3	22.4	22.3	22.3	21.9					
300	18.2	22.0	22.3	22.4	22.5	22.3	22.3	21.9					
400	18.3	22.1	22.4	22.4	22.5	22.3	22.3	21.9					
500	18.2	22.1	22.5	22.4	22.5	22.3	22.2						
600	18.2	22.1	22.5	22.4	22.5	22.3	22.2						
700	18.2	22.1	22.5	22.5	22.5	22.3	22.1						
800	18.4	22.3	22.6	22.6	22.5	22.3	22.1						
900	<u>1</u> 8.3	22.3	22.6	22.6	22.6	22.3	22.0						
1000	18.3	22.3	22.7	22.7	22.6	22.3							
1050	18.5	22.5	22.8	22.8	22.6	22.3							

Ł

Averaged over 200mm, 300m and 400mm, long sections.

Test No. 20.

Dahl tube manometer readin	ıg:	1.04	Q ₁ =	0.02600m ³ /s
Side spill stage	:	6.89cm	Q _w =	0.008390m ³ /s
Weir length L	:	110.72cm	Q ₂ =	0.01761m ³ /s
Crest height C	:	35.75cm	۷_ =	0.093m/s
B ₁	•	73.50cm	۷ ₂ =	0.090m/s
B ₂	:	50.92cm	V _{mean} =	0.092m/s
 Mean head above crest h*	:	2.498cm	C _D (measured) =	0.650
Mean depth*	:	38.248cm	C _D (Rehbock) =	0.652
•				

Surface Profiles

X-Section		ŀ	IEAD A	BOVE	CREST	mm							
(Distance from start of weir)	L	LONG SECTION (DISTANCE BEHIND WEIR) mm											
mm	0	50	100	200	300	400	500	605	700				
0 (50)-	+20.1	24.4	24.9	25.0	25.0	25.0	24.8	24.6	24.3				
100	20.4	24.5	24.9	24.9	24.9	24.9	24.9	24.5					
200	20.5	24.5	24.9	24.9	24.9	24.9	24.8	24.5					
300	20.5	24.6	25.0	25.0	25.0	24.9	24.8	24.4					
400	20.5	24.6	25.0	25.0	25.0	24.9	24.7	24.4					
500	20.6	24.7	25.0	25.0	25.0	24.9	24.7						
600	20.6	24.7	25.0	25.1	25.0	24.9	24.6						
700	20.7	24.7	25.1	25.1	25.0	24.9	24.6						
800	20.7	24.8	25.1	25.1	25.0	24.9	24.5						
900	20.9	24.9	25.1	25.2	25.0	24.9	24.5						
1000	21.0	25.0	25.2	25.2	25.0	24.8							
1050	21.1	25.1	25.3	25.2	25.0	24.7							

Averaged over 200mm, 300m and 400mm, long sections.

298.

Dahl tube manometer readi	ng:	1.32	Q ₁ =	0.02923m ³ /s
Side spill stage	:	7.27cm	Q _w =	0.009147m ³ /s
Weir length L	· :	110.72cm	Q ₂ =	0.02008m ³ /s
Crest height C	:	35.75cm	Υ ₁ =	0.104m/s
B ₁	. :	73.50cm	V ₂ =	0.103m/s
^B 2	:	50.92cm	V _{mean} =	0.103m/s
Mean head above crest h*	:	2.648cm	C_{D} (measured) =	0.649
Mean depth*	:	38.398cm	C _D (Rehbock) =	0.650

Surface Profiles

X-Section		Н	EAD A	BOVE	CREST	mm						
(Distance from start of weir)	LONG SECTION (DISTANCE BEHIND WEIR) mm											
mm	0	50	100	200	300	400	500	605	700			
0 (50)-	-21.4	25.9	26.4	26.5	26.5	26.6	26.5	26.3	26.3			
100	21.5	25.8	26.4	26.5	26.5	26.5	26.4	26.2				
200	21.6	25.9	26.4	26.5	26.5	26.5	26.4	26.2				
, 300	21.7	26.0	26.5	26.5	26.5	26.5	26.4	26.1				
400	21.8	26.0	26.5	26.5	26.5	26.5	26.4	26.1				
500	21.8	26.0	26.5	26.5	26.5	26.5	26.3					
600	21.9	26.0	26.5	26.5	26.5	26.4	26.3					
700	21.9	26.1	26.5	26.6	26.5	26.4	26.2					
800	22.0	26.2	26.5	26.6	26.4	26.3	26.0					
900	22.1	26.3	26.6	26.7	26.4	26.2	25.9					
1000	22.1	26.4	26.6	26.7	26.4	26.2						
1050	22.3	26.6	26.8	26.7	26.4	26.1						

Averaged over 200mm, 300m and 400mm, long sections.

Dahl tube manometer readin	ig:	1.64	Q ₁ =	0.03252m ³ /s
Side spill stage	:	7.80cm	Q _w =	0.010246m ³ /s
Weir length L	:	110.72cm	Q ₂ =	0.02227m ³ /s
Crest height C	:	35.75cm	ν ₁ =	0.115m/s
B ₁		73.50cm	۷ ₂ =	0.113m/s
B ₂	:	50.92cm	V _{mean} =	0.114m/s
Mean head above crest h*	:	2.867cm	C _D (measured) =	0.646
Mean depth*	:	38.617cm	C _D (Rehbock) =	0.647

Surface Profiles

X-Section		Н	iead a	BOVE	CREST	mm							
(Distance from start of weir)	LONG SECTION (DISTANCE BEHIND WEIR) mm												
mm	0	50	100	200	300	400	500	605	700				
0 (50)-	-23.4	27.8	28.4	28.6	28.7	28.6	28.6	28.5	28.5				
100	23.6	27.9	28.4	28.5	28.7	28.7	28.5	28.4					
200	23.6	27.9	28.5	28.5	28.8	28.7	28.5	28.4					
300	23.6	28.0	28.5	28.5	28.8	28.7	28.5	28.3					
400	23.7	28.1	28.5	28.5	28.8	28.6	28.5	28.3					
500	23.7	28.1	28.5	28.6	28.8	28.6	28.5						
600	23.7	28.2	28.6	28.7	28.8	28.6	28.4						
700	23.7	28.2	28.6	28.8	28.7	28.6	28.3						
800	23.7	28.2	28.7	28.9	28.7	28.5	28.3						
900	23.7	28.2	28.8	28.9	28.7	28.5	28.2						
1000	23.8	28.4	28.9	29.0	28.7	28.4							
1050	24.0	28.6	28.9	29.0	28.7	28.3							

Averaged over 200mm, 300m and 400mm, long sections.

g:	2.03	Q	= 0.03611m ³ /s
•	8.28cm	Q _w	= 0.01128 m ³ /s
:	110.72cm	Q ₂	$= 0.02483 m^3/s$
:	35•75cm	v ₁ .	= 0.127m/s
:	73.50cm	٧ ₂	= 0.126m/s
:	50.92cm	V _{mean}	= 0.126m/s
:	3.056cm	C _D (measured	d) = 0.646
:	38.806cm	C _D (Rehbock)	= 0.645
	•	: 8.28cm : 110.72cm : 35.75cm : 73.50cm : 50.92cm	: 8.28cm Q_W : 110.72cm Q_2 : 35.75cm V_1 : 73.50cm V_2 : 50.92cm V_{mean} : 3.056cm C_D (measured)

Surface Profiles

X-Section		· F	iead a	BOVE	CREST	mm		· · · · · · · · · · · · · · · · · · ·						
(Distance from start of weir)	L	LONG SECTION (DISTANCE BEHIND WEIR) mm												
mm	0	50	100	200	300	400	500	605	700					
0 (50)	24.4	29.6	30.3	30.5	30.5	30.6	30.6	30.5	30.5					
100	24.9	29.7	30.2	30.5	30.5	30.6	30.5	30.4						
200	25.1	29.8	30.3	30.6	30.5	30.5	30.5	30.3						
• 300	25.3	29.9	30.3	30.6	30.5	30.5	30.4	30.2						
400	25.3	29.9	30.4	30.7	30.6	30.5	30.3	30.2						
500	25.4	29.9	30.4	30.7	30.6	30.5	30.3							
600	25.5	29.9	30.5	30.6	30.6	30.5	30.3							
700	25.5	30.0	30.5	30.7	30.6	30.5	30.3							
800	25.6	30.0	30.5	30.6	30.6	30.5	30.2	1 -						
900	25.6	30.0	30.6	30.7	30.6	30.4	30.1							
1000	25.7	30.1	30.8	30.8	30.6	30.3								
1050	25.9	30.3	30.9	30.9	30.5	30.2								

* Averaged over 200mm, 300m and 400mm, long sections.

Dahl tube manometer readin	g:	2.58	Q ₁ =	0.04062m ³ /s
Side spill stage	:	8.92cm	Q _w =	0.01272 m ³ /s
Weir length L	:	110.72cm	Q ₂ =	0.02790m ³ /s
Crest height C	:	35.75cm	۷ ₁ . =	0.141m/s
B ₁	:	73,50cm	V ₂ =	0.140m/s
B ₂	:	50.92cm	v _{mean} =	0.141m/s
Mean head above crest h*	:	3.329cm	C _D (measured) =	0.641
Mean depth*	:	39.079cm	C _D (Rehbock) =	0.643

Surface Profiles

X-Section	1	ļ	iead a	BOVE	CREST	mm							
(Distance from start of weir)	LONG SECTION (DISTANCE BEHIND WEIR) mm												
mm	0	50	100	200	300	400	500	605	700				
0 (50)	-26.2	32.1	32.9	33.2	33.3	33.3	33.3	33.0	33.0				
100	26.9	32.1	32.9	33.2	33.2	33.2	33.2	33.0					
200	27.2	32.2	32.9	33.2	33.2	33.3	33.3	33.0					
300	27.3	32.3	33.0	33.2	33.2	33.2	33.3	33.0					
400	27.3	32.4	33.1	33.3	33.2	33.2	33.2	33.0					
500	27.3	32.4	33.2	33.4	33.2	33.2	33.2						
600	27.4	32.4	33.3	33.3	33.2	33.2	33.0						
700	27.4	32.5	33.3	33.4	33.2	33.2	33.0						
800	27.5	32.7.	33.4	33.5	33.3	33.2	32.9						
900	27.8	32.9	33.4	33.5	33.4	33.1	32.9						
1000	27.8	33.0	33.6	33.7	33.4	33.1							
1050	28.2	33.3	33.7	33.8	33.5	33.1							

* Averaged over 200mm, 300m and 400mm, long sections.

Dahl tube manometer readir	ng:	3.36	Q ₁ =	0.04621m ³ /s
Side spill stage	:	9.56cm	Q _w =	0.01422 m ³ /s
Weir length L	:	110.72cm	Q ₂ =	0.03199m ³ /s
Crest height C	:	35.75cm	V ₁ =	0.160m/s
B ₁	:	73.50cm	V ₂ =	0.160m/s
B ₂	:	50.92cm	V _{mean} =	0.160m/s
-	:	3.597cm	C _D (measured) =	0.638
Mean depth*	:	39.347cm	C _D (Rehbock) =	0.641

Surface Profiles

X-Section		ŀ	HEAD A	BOVE	CREST	mm						
(Distance from start of weir)	LONG SECTION (DISTANCE BEHIND WEIR) mm											
mm	0.	50	100	200	300	400	500	605	700			
0 (50)-	27.8	34.6	35.9	36.1	35.9	36.0	35.9	35.8	35.9			
100	29.1	34.8	35.4	35.9	35.9	36.0	35.8	35.7				
200	29.7	34.9	35.5	36.0	35.9	36.0	35.8	35.6				
300	29.8	34.9	35.6	36.0	35.9	36.0	35.9	35.6				
400	29.8	34.9	35.6	36.1	35.9	35.9	35.9	35.6				
500	29.8	35.0	35.6	36.0	36.0	35.9	35.9					
600	29.8	35.0	35.7	36.0	36.0	35.9	35.9					
700	29.9	35.1	35.7	36.0	36.0	35.9	35.7					
800	29.9	35.0	35.8	36.1	36.0	35.9	35.5	•				
900	30.0	35.1	36.0	36.1	36.0	35.8	35.4					
1000	30.3	35.5	36.1	36.2	36.0	35.6						
1050	30.9	35.8	36.4	36.4	36.1	35.5						

* Averaged over 200mm, 300m and 400mm, long sections.

303.

Dahl tube manometer reading	ng:		Q ₁ =	· •
Side spill stage	:	9.99cm	Q _w =	0.015268m ³ /s
Weir length L	:	110.72cm	Q ₂ =	•
Crest height C	:	35.75cm	۷ ₁ =	
B1	:	73.50cm	V ₂ =	
B ₂	:	50.92 cm	V _{mean} =	
Mean head above crest h*	:	3.790cm	C _D (measured) =	0.633
Mean depth*	. :	39.540cm	C _D (Rehbock) =	0.640

Surface Profiles

X-Section		ŀ	iead A	BOVE	CREST	mm -								
(Distance from start of weir)	L	LONG SECTION (DISTANCE BEHIND WEIR) mm												
mm	0	50	100	200	300	400	500	605	700					
0 (50)-	-29.3	36.4	37.4	37.9	37.8	38.3	37.9	37.9	37.9					
100	30.3	36.3	37.3	38.0	37.8	38.0	37.8	37.8						
200	30.8	36.4	37.3	37.9	37.8	38.0	37.8	37.6						
300	30.8	36.5	37.4	38.0	37.8	37.9	37.8	37.5						
400	30.8	36.5	37.5	38.0	37.8	37.9	37.7	37.3						
500	30.9	36.6	37.5	38.0	37.9	37.9	37.7	a an						
600	31.0	36.6	37.5	37.9	37.9	37.8	37.6							
700	31.1	36.6	37.5	38.0	37.9	37.8	37.5							
800	31.2	36.7	37.6	37.9	37.9	37.7	37.5							
900	31.3	36.8	37.7	38.0	37.9	37.6	37.3							
1000	31.5	37.0	38.1	38.2	38.0	37.5								
1050	32.0	37.9	38.1	38.2	38.1	37.5								

Averaged over 200mm, 300m and 400mm, long sections.

Dahl tube manometer reading:	4.30	Q ₁ =	0.05212m ³ /s
Side spill stage :	10.28cm	Q _w =	0.01599 m ³ /s
Weir length L :	110.72cm	Q ₂ =	0.03613m ³ /s
Crest height C :	35.75 cm	V ₁ . =	0.179m/s
B ₁ :	73.50cm	V ₂ =	0.179m/s
B ₂ :	50.92cm	V _{mean} =	0.179m/s
Mean head above crest h* :	3.909cm	C _D (measured) =	0.633
Mean depth* :	39.659 cm	C _D (Rehbock) =	0.639

Surface Profiles

X-Section		н	iead a	BOVE	CREST	mm			·	
(Distance from start of weir) mm	LONG SECTION (DISTANCE BEHIND WEIR) mm									
	0	50	100	200	300	400	500	605	700	
0 (50)-	- 30.7	37•5	38.6	39.0	39.0	39.1	39.2	39.0	39.1	
100	31.8	37.8	38.4	38.9	39.0	39.2	39.1	38.9		
200	32.1	37.8	38.5	39.1	39.1	39.1	38.9	38.9		
300	32.2	37.8	38.6	39.1	39.1	39.0	38.9	38.7		
400	32.2	37.8	38.7	39.1	39.1	39.0	38.9	38.7		
500	32.3	37.9	38.8	39.2	39.1	38.9	38.9			
600	32.4	37.9	38.8	39.3	39.2	38.9	38.9			
700	32.5	37.9	38.9	39.3	39.2	38.8	38.8			
800	32.6	38.0	39.0	39.3	39.2	38.8	38.7			
900	32.6	38.1	39.2	39.2	39.1	38.9	38.5			
1000	32.9	38.5	39.5	39.4	39.3	38.8				
1050	33.4	39.2	39.8	39.7	39.2	38.7				

Averaged over 200mm, 300m and 400mm, long sections.

Dahl tube manometer reading	:	5.17	Q ₁ =	0.05712m ³ /s
Side spill stage	:	10.79cm	Q _w =	0.017286m ³ /s
Weir length L	:	110.72cm		0.03983m ³ /s
Crest height C	:	35•75cm	V ₁ =	0.195m/s
B ₁	:	73.50cm	V ₂ =	0.196m/s
B ₂	:	50.92cm	V _{mean} =	0.196m/s
Mean head above crest h*	:	4.131cm	C _D (measured) =	0.630
Mean depth*	:	39.881cm	C _D (Rehbock) =	
·			0	•

Surface Profiles

X-Section		H	iead a	BOVE	CREST	mm	•			
(Distance from start of weir)	L	LONG SECTION (DISTANCE BEHIND WEIR) mm								
mm	0	50	100	200	300	400	500	605	700	
0 (50)+	31.5	39.1	40.7	41.1	41.5	41.3	41.4	41.4	41.3	
100	32.7	39.3	40.8	41.2	41.4	41.4	41.4	41.3		
200	33.4	39.5	40.9	41.2	41.4	41.4	41.4	41.2		
300	33.7	39.6	40.9	41.3	41.4	41.4	41.4	41.1		
400	33.8	39.8	41.0	41.3	41.3	41.3	41.3	41.0		
500	34.0	39.8	41.1	41.4	41.4	41.3	41.2			
600	34.0	39.9	41.0	41.4	41.4	41.2	41.0			
7 00 .	34.2	40.0	41.1	41.3	41.3	41.2	40.9			
800	34.3	40.1	41.1	41.3	41.3	41.1	40.9			
900	34.4	40.2	41.3	41.4	41.2	41.1	40.9			
1000	34.8	40.7	41.4	41.8	41.2	41.0				
1050	34.8	41.4	42.0	41.8	41.4	40.8				

Averaged over 200mm, 300m and 400mm, long sections.

(ъ)

Velocity Traverse Readings.

Test No. 2.

LOI	NG SECTIO	N 100	mm BEHIN	D WEIR :	VELOCITY	mm/s
DISTANCE	X S	ECTION,	mm FROM	START OF	WEIR	
BELOW CREST	0	200	400	600	800	1000
30	91.5	95.4	82.1	71.3	72.0	52.3
80	109.8	89.7	70.7	54.0	58.3	57.9
130	103.0	87.6	64.9	48.6	58.6	70.6
180	96.5	80.1	65.4	43.9	60.3	66.9
230	88.1	83.4	61.1	39.9	65.8	71.1
280	59.3	72.1	56.3	38.3	63.0	68.9

L	LONG SECTION 200 mm BEHIND WEIR : VELOCITY mm/s							
DISTANCE BELOW CREST	X SI	ECTION,	mm FROM S	START OF W	EIR			
	0	200	400	600	800	1000		
30	104.7	98.7	88.1	95.3	102.6	92.8		
80	103.8	85.1	92.4	91.9	88.9	97.0		
130	92.8	68.5	79.2	86.0	93.2	91.5		
180	83.4	85.1	77.5	88.9	76.6	91.9		
230	71.5	81.3	79.2	95.3	74.9	94.5		
280	68.1	57.9	80.9	86.0	74.0	92.8		

Test No. 2.

LO	NG SECTIO	N 300	mm BEHIN	D WEIR :	VELOCITY	mm/s
DISTANCE	X S	ECTION,	mm FROM	START OF	WEIR	
BELOW CREST	0	200	400	600	800	1000
30	104.3	107.3	100.4	91.1	97.9	103.0
80	98.7	103.4	94.1	83.4	87.2	98.7
130	92.8	94.1	77 . 9	75.8	89.4	96.6
180	86.4	97.5	66.8	86.0	87.2	93.2
230	91.5	89.8	72.3	93.2	92.8	91.5
280	91.5	83.8	79.2	93.6	89.4	89.4

LONG SECTION 400 mm BEHIND WEIR : VELOCITY mm/s								
DISTANCE	X SI	ECTION,	mm FROM S	START OF V	NEIR			
BELOW CREST	0	200	400	600	800	1000		
30	104.7	97.0	95.3	104.3	109.0	114.9		
80	92.8	91.9	94.1	103.0	103.8	115.3		
.130	95.8	90.7	90.2	97.0	106.8	110.2		
180 .	86.8	85.5	86.4	97.5	107.7	113.6		
230	83.8	94.1	94.9	96.6	108.1	112.8		
280	91.9	95.8	89.8	97.9	104.7	109.8		

309 .

Test No. 2.

LO	NG SECTIO	N 500	mm BEHIN	D WEIR :	VELOCITY	mm/s
DISTANCE	X S	ECTION,	mm FROM	START OF	WEIR	
BELOW CREST	0	200	400	600	800	1000
30	79.6	101.7	105.6	110.2	103.8	
80	76.6	101.7	107.3	109.0	106.0	
130	73.2	98.3	106.0	109.4	108.1	
180	76.2	100.0	104.3	110.2	106.0	
230	73.6	97.9	104.7	105.6	100.9	
280	78.3	100.9	100.4	103.0	88.1	•
]		

L	ONG SECTI	ON 635	mm BEHINI	D WEIR :	VELOCITY	mm/s
DISTANCE	X S	ECTION,	mm FROM S	START OF W	VEIR	
BELOW CREST	0	200	400	600	800	1000
30	89.8	93.6				
80	91.1	89.7		•		
130	94.5	95.8				
180	91.1	98.8		• •		
230	86.4	87.2	No. Ale			,
280	83.0	73.2			, ,	

Test No. 3.

LOI	NG SECTIO	N 100	mm BEHIN	D WEIR :	VELOCITY	mm/s
DISTANCE	X S	ECTION,	mm FROM	START OF	WEIR	•
BELOW CREST	0	200	400	600	800	1000
30	146.9	114.1	117.5	110.2	107.7	101.7
80	134.5	110.2	110.7	103.4	91.9	88.5
130	128.5	111.9	107.7	91.9	88.9	88.5
180	117.5	110.7	95.8	89.8	87.7	94.5
230	114.5	101.7	88.9	83.4	86.4	95.3
280	101.7	91.5	84.3	75.8	96.2	94.5
		l <u></u>		l		[

	LOI	NG SECTIO	ON 200	mm BEHIND	OWEIR :	VELOCITY	′mm/s
DISTANCE	Τ	X SE	ECTION,	mm FROM S	START OF W	EIR	
BELOW CREST		0	200	400	600	800	1000
30		138.3	133.2	126.8	129.0	123.9	121.3
80		133.2	126.8	119.2	124.3 ·	120.0	122.6
130		128.1	116.6	114.1	111.9	120.9	123.9
180		117.0	111.1	109.4	114.5	115.3	118.3
230		107.3	113.6	109.4	113.2	113.6	118.3
280		103.4	97.9	113.2	116.2	111.5	118.3

Test No. 3.

LONG SECTION 300 mm BEHIND WEIR : VELOCITY mm/s								
DISTANCE	X S	ECTION,	mm FROM	I START OF	WEIR			
BELOW CREST	0	200	400	600	800	1000		
30	132.8	131.1	135.8	136.2	135.8	133.2		
80	129.4	127.7	133.6	131.1	137.5	141.3		
130	122.2	123.0	130.2	124.3	130.2	133.2		
180	117.9	121.3	121.3	124.3	128.5	132.4		
230	112.4	116.6	120.5	124.7	123.9	130.7		
280	115.8	120.5	109.4	119.2	116.6	126.0		
				-		L		

LONG SECTION 400 mm BEHIND WEIR : VELOCITY mm/s									
DISTANCE BELOW CREST	X S	ECTION,	mm FROM	START OF N	VEIR				
	0	200	400	600	800	1000			
30	132.8	130.2	134.1	135.8	137.1	142.2			
80	124.7	132.8	132.8	137.5	135.8	142.2			
130	126.4	126.4	131.5	133.6	135.4	140.9			
180	123.0	125.6	130.7	129.4	131.9	137.5			
230	121.7	118.3	130.2	123.9	134.5	137.1			
280	118.3	117.0	121.3	118.7	123.0	126.4			
	1	1	l ·]		[

Test No. 3.

LONG SECTION 500 mm BEHIND WEIR : VELOCITY mm/s								
DISTANCE BELOW CREST mm.	X S	ECTION,	mm FROM	I START OF	WEIR			
	0	· 200	400	600	800	1000		
30	129.8	129.4	132.4	129.0	125.1			
80	125.1	131.1	131.9	135.8	132.4			
e 13 0	129.0	128.5	131.9	130.7	135.8	•		
180	123.9	127.3	131.5	132.4	127.7			
230	122.2	122.6	126.0	132.8	125.6			
280	118.3	111.9	125.6	119.6	121.3			

×

L	ONG S	SECTIO	DN 635	mm BEHINI	O WEIR :	VELOCITY	mm/s
DISTANCE		X SE	ECTION,	mm FROM S	START OF I	WEIR	
BELOW CREST	()	200	400	600	800	1000
30	114	.9	120.9				
80	117	.9	121.7				
130	114	.1	120.5				
180	116	.2	115.8				
230	105	.1	109.4				
280	95	.8	101.7				
				L	l	l	l

Test No. 6.

LONG SECTION 100 mm BEHIND WEIR : VELOCITY mm/s								
DISTANCE	X S	ECTION,	mm FROM	I START OF	WEIR			
BELOW CREST	0	200	400	600	800	1000		
30	197.0	166.1	153.0	149.9	138.8	131.9		
80	181.9	171.1	158.8	138.3	133.6	117.5		
130	168.4	162.7	148.4	139.2	126.8	120.9		
180	170.0	163.1	158.8	131.9	117.5	128.5		
230	158.8	152.3	143.4	122.2	123.4	125.1		
280	151.5	160.0	143.0	118.3	122.6	136.6		

	LONG	SECTI	ON 200	mm BEHIND WEIR : VELOCITY mm/s			
DISTANCE		X SE	ECTION,	mm FROM S	START OF V	NEIR	,
BELOW CREST		0	200	400	600	800	1000
30	1	.181	173.1	165.4	163.8	165.7	160.7
80	1	64.2	163.8	152.6	156.5	149.9	156.5
130	1	160.7	154.2	147.2	148.0	149.6	160.7
180	1	45.7	142.2	141.3	143.0 ·	154.2	163.8
230	1	32.4	135.8	147.2	139.2	155.0	156.1
280	1	29.8	127.7	137.1	146.9	157.3	157.7
1	1						

Test No. 6.

LONG SECTION 300 mm BEHIND WEIR : VELOCITY mm/s								
DISTANCE	X S	ECTION,	mm FROM	START OF	WEIR			
BELOW CREST	0	. 200	400	600	800	1000		
30	168.4	175.0	174.6	175,4	179.6	185.8		
80	161.9	171.5	162.3	166.5	176.5	185.0		
130	155.3	164.2	160.4	158.8	167.7	181.6		
180	146.9	162.7 ·	160.7	161.9 :	167.7	181.6		
230	149.2	153.0	158.0	162.7	167.7	180.8		
280	142.2	149.6	165.4	163.1	163.8	178.1		

LONG SECTION 400 mm BEHIND WEIR : VELOCITY mm/s						
DISTANCE	X SI	ECTION,	mm FROM S	START OF V	VEIR	•
BELOW CREST	0	200	400	600	800	1000
30	171.5	173.1	173.8	177.7	187.0	193.5
80	162.7	168.8	171.1	172.7	176.9	190.8
130	156.9	162.7	167.7	167.3	173.8	191.6
180	149.6	158.0	165.7	166.1	176.2	191.6
230	147.2	155.0	162.3	165.0	171.5	187.3
280	158.8	161.9	161.9	166.9	165.7	178.1

<u>Test No</u>. 6.

LOI	NG SECTIO	N 500	mm BEHIN	D WEIR :	VELOCITY	mm/s
DISTANCE	X S	ECTION,	mm FROM	START OF	WEIR	
BELOW CREST	0	200	400	600	800	1000
30	164.2	172.3	169.2	173.1	176.9	
80	167.3	164.6	165.0	167.7	171.5	
130	158.4	158.8	163.1	164.2	165.4	
180	152.3	157.3	167.7	161.5	162.3	
230	156.5	159.2	166.1	154.2	137.9	
280	155.3	150.3	154.2	140.0	140.0	1
		·	·	~		

LONG SECTION 635 mm BEHIND WEIR : VELOCITY mm/s								
DISTANCE	X SI	ECTION,	mm FROM S	START OF V	VEIR			
BELOW CREST	0	200	400	600	800	1000		
30	155.3	162.7						
80	155.0	161.5						
130	149.9	156.9						
180	147.6	145.7						
230	147.2	144.5				-		
280	115.8	116.2				ана селото •		
1			(ſ	ł	ł		

Test No. 8.

LO	NG SECTIO	N 100	mm BEHIN	D WEIR :	VELOCITY	mm/s
DISTANCE	X S	ECTION,	mm FROM	I START OF	WEIR	<u>.</u>
BELOW CREST	0	200	400	600	800	1000
30	88.5	72.3	68.5	70.2	68.9	58.3
.80	81.3	74.0	66.0	53.2	60.4	54.5
130	80.0	70.6	58.7	52.3	56.6	55.7
180	80.0	61.7	62.1	49.4	54.0	62.6
230	75.8	56.6	50.6	48.1	59.1	60.4
280	66.4	57.0	46.4	47.7	58.3	63.4

	LON	G SECTI	ON 200	mm BEHIND	O WEIR :	VELOCITY	′mm/s
DISTANCE		X SI	ECTION,	mm FROM S	START OF W	IEIR	
BELOW CREST		0	200	400	600	800	1000
30		85.5	84.3	76.6	76.1	74.9	74.5
80		81.3	79.2	71.5	72.8	70.2	70.2
130		80.9	75.3	68.9	74.0	69.8	72.8
180		74.0	67.7	68.5	68 . 5 [·]	66.8	72.8
230		68.9	68.1	69.8	69.4	72.3	73.2
280		62.1	67.2	64.7	68.5	70.6	71.9

Test No. 8.

LOI	NG SECTIO	N 300	mm BEHIN	D WEIR :	VELOCITY	mm/s
DISTANCE	X S	ECTION,	mm FROM	START OF	WEIR	
BELOW CREST	0	200	400	600	800	1000
30	85.1	81.3	80.4	80.9	80.9	86.4
80	80.0	81.3	77.9	77.9	77.9	82.6
130	78.3	73.6	75.3	79.6	77.0	85.5
180	73.6	68.5	73.2	72.8	76.6	82.6
230	69.4	74.0	73.2	74.0	75.3	78.3
280	74.0	76.2	73.6	74.5	74.9	77.0

L.	ONG SECTI	ON 400	mm BEHIND	DWEIR :	VELOCITY	mm/s
DISTANCE	X SI	ECTION,	mm FROM S	START OF W	IEIR	
BELOW CREST	0	200	400	600	800	1000
30	80.0	83.0	83.0	83.8	83.0	86.8
80	78.3	80.4	81.3	83.0	86.8	86.4
130	79.2	79.6	79.6	79.6	83.8	86.0
180	73.6	72.3	76.6	83.0	78.7	86.0
230	73.2	73.6	78.3	77.5	79.6	85.1
280	71.1	76.6	74.0	80.4	77.9	83.8

Test No. 8.

LO	NG SECTIO	N 500	mm BEHIN	D WEIR :	VELOCITY	mm/s
DISTANCE	X S	ECTION,	mm FROM	I START OF	WEIR	
BELOW CREST	0	200	400	600	800	1000
30	79.9 .	79.9	83.0	80.4	79.9	
80	81.3	79.6	78.7	83.0	82.1	•
130	73.2	77.0	79.2	81.7	81.3	
180	71.9	74.0	77.5	82.6	77.0	
230	69.8	75.3	77.9	79.9	76.2	
280	75.8	75.8	77.0	81.3	72.8	

	LONG	SECTI	ON 635	mm BEHIND	OWEIR :	VELOCITY	/ mm/s
DISTANCE		X SE	ECTION,	mm FROM S	START OF W	NEIR	
BELOW CREST		0	200	400	600	800	1000
30		72.3	73.6			_	
80		71.5	74.0				
130		70.2	74.9				
180		71.9	75.8				
230		75.3	65.5				
280		67.7	62.1		•		

Test No. 12.

LOI	NG SECTIO	N 100	mm BEHIN	D WEIR :	VELOCITY	mm/s
DISTANCE	X S	ECTION,	mm FROM	START OF	WEIR	
BELOW CREST	0	200	400	600	800	1000
30	99.6	85.1	80.9	84.2	81.7	71.1
80	98.7	85.5	74.5	74.5	70.6	63.0
130	93.6	85.1	74.5	63.0	61.7	63.4
180	90.2	80.9	63.8	58.2	61.7	64.7
230	86.8	70.2	66.0	59.6	62.6	71.5
280	75.8	61.3	58.7	47.0	68 .9	58.2
				-		

LC	NG SECTI	ON 200	mm BEHIN	DWEIR :	VELOCITY	′mm/s
DISTANCE	X SI	ECTION,	mm FROM S	START OF V	NEIR	
BELOW CREST	0	200	400	600	800	1000
30	94.9	86.8	86.4	, 86 . 8	86.8	90.2
80	94.1	88.1	86.0	84.7	88.9	90.2
130	88.9	83.8	83.0	85.1	84.3	86.4
180	84.7	84.7	82.6	81.3	83.8	86.0
230	80.0	74 . 9	79.2	77.5	80.0	83.4
280	74.5	63.4	68.9	71.5	80.0	80.0
4						

Test No. 12.

NG SECTIO	N 300	mm BEHIN	D WEIR :	VELOCITY	mm/s
X S	ECTION,	mm FROM	START OF	WEIR	
0	200	400	600	800	1000
94.1	90.2	89.0	88.1	90.2	94.5
92:8	93.2	89.4	86.8	89.4	93.6
91.1	90.7	89.4	87.3	89.4	94.9
91.1	86.0	83.0	81.7	85.5	96.2
85.5	81.3	79.6	83.0	86.0	91.5
79.6	80.9	75.3	78.7	83.4	85.5
	X S 0 94.1 92.8 91.1 91.1 85.5	XSECTION,020094.190.292.893.291.190.791.186.085.581.3	X SECTION, mm FROM 0 200 400 94.1 90.2 89.0 92.8 93.2 89.4 91.1 90.7 89.4 91.1 86.0 83.0 85.5 81.3 79.6	X SECTION, mm FROM START OF 0 200 400 600 94.1 90.2 89.0 88.1 92.8 93.2 89.4 86.8 91.1 90.7 89.4 87.3 91.1 86.0 83.0 81.7 85.5 81.3 79.6 83.0	X SECTION, mm FROM START OF WEIR 0 200 400 600 800 94.1 90.2 89.0 88.1 90.2 92.8 93.2 89.4 86.8 89.4 91.1 90.7 89.4 87.3 89.4 91.1 86.0 83.0 81.7 85.5 85.5 81.3 79.6 83.0 86.0

L	LONG SECTION 400 mm BEHIND WEIR : VELOCITY mm/s					
DISTANCE	X SI	ECTION,	mm FROM S	START OF W	VEIR	
BELOW CREST	0	200	400	600	800	1000
, 30	90.7	91.5	89.8	89.8	91.5	94.9
80	90.7	89.8	88.5	90.7	90.7	96.2
130 .	89.4	90.2	87.7	88.5	91.9	99.2
180	89.4	89.0	86.8	88.1	91.5	98.7
230	86.0	86.0	86.8	86.8	88.1	97.9
280	79.2	79. 6	82.6	83.4	83.0	86.0

Test No. 12.

LOI	NG SECTIO	N 500	mm BEHIN	D WEIR :	VELOCITY	mm/s
DISTANCE	X S	SECTION,	mm FROM	START OF	WEIR	
BELOW CREST	0	200	400	600	800	1000
30	87.3	86.0	86.8	89.0		
80	88.1	88.5	86.8	89.0		
130	88.1	87.7	88.1	90.2		
180	85.5	86.4	86.4	89.4		
230	81.7	83.0	84.7	86.8		
280	78.7	80.4	81.3	82.1		

LC	NG SECTI	ON 600	mm BEHIND	D WEIR :	VELOCITY	′mm/s	
DISTANCE	X SI	ECTION,	mm FROM S	mm FROM START OF WEIR			
BELOW CREST	0	200	400	600	800	1000	
30	85.1	85.5					
80	85.1	85.5					
130	86.4	82.1					
180	85.1	82.1					
230	80 .9	81.3					
280	77.5	78.7					
			· ·				

Test No. 12.

LONG SECTION 700 mm BEHIND WEIR : VELOCITY mm/s								
DISTANCE	XS	ECTION,	mm FROM	I START OF	WEIR			
BELOW CREST	. 0	200	400	600	800	1000		
30	68.1							
80	68.9							
130	65.5							
180	59.1		•					
230	59.6							
280	37.6				х. 1			
			l)				

L	ONG SECTI	ON	mm BEHIN	D WEIR :	VELOCITY	′mm/s
DISTANCE	X S	ECTION,	mm FROM S	START OF N	VEIR	
BELOW CREST	0	200	400	600	800	1000
30						
80						
130						•
180						
230					·	
280						
	1					

<u>Test No.</u> 13.

LO	NG SECTIO	N 100	mm BEHIN	D WEIR :	VELOCITY	mm/s
DISTANCE	X S	ECTION,	mm FROM	START OF	WEIR	· · · · · · · · · · · · · · · · · · ·
BELOW CREST	0	200	400	600	800	1000
30	117.5	100.0	93.6	85.5	92.4	84.7
80	110.7	94.5	86.8	80.9	86.4	84.3
130	103.0	88.1	79 . 2	79.2	86.4	83.4
180	100.4	80.9	76.2	77.9	79.6	81.7
.230	92.8	76.6	66.8	72.4	70.6	80.4
280	81.3	73.2	63.0	65.1	71.9	78.7
				-		

LO	NG SECTI	ON 200	mm BEHIND	DWEIR :	VELOCITY	′mm/s
DISTANCE	X SI	X SECTION, mm FROM START OF WEIR				
BELOW CREST	0	200	400	600	800	1000
30	109.0	103.0	103.4	101.3	103.4	101.3
· 80	109.4	102.2	98.3	100.0	98.7	98.7
130	101.7	97.5	94.9	97.0	99.6	98.3
180	98.3	95.8	91.9	96.2	97.5	101.3
230	95.3	92.8	91.1	95.3	92.4	97.9
280	86.8	84.3	88.1	92.4	89.4	93.2

<u>Test No</u>. 13.

LONG SECTION 300 mm BEHIND WEIR : VELOCITY mm/s							
DISTANCE	X S	ECTION,	mm FROM	START OF	WEIR		
BELOW CREST mm.	0	200	400	600	800	1000	
30	107.7	103.4	103.4	101.3	103.0	107.3	
80	109.0	103.9	102.6	102.6	103.9	106.0	
130	103.9	103.9	103.0	103.9	102.2	106.4	
180	100.9	98.7	98.3	98.7	100.4	107.7	
230	98.7	97.9	95.8	98.3	96.6	101.7	
280	92.8	90.2	94.5	93.2	92.4	98.7	
				-			

LO	LONG SECTION 400 mm BEHIND WEIR : VELOCITY mm/s						
DISTANCE	X SI	ECTION,	mm FROM S	START OF W	IEIR	2	
BELOW CREST	0	200	400	600	800	1000	
30	103.4	100.4	101 . 7	104.3	104.3	106.0	
80	103.4	100.0	99.2	102.6	104.7	110.2	
130	103.9	101.7	98.7	102.6	103.0	109.4	
180	102.2	97.9	97.9	103.0	102.6	107.7	
230	97.0	95 . 8	94.9	99.6	100.9	107.3	
280	89.4	93.2	91.1	90.2	89.4	101.3	

<u>Test No</u>. 13.

LOI	NG SECTIO	N 500	mm BEHIN	ID WEIR :	VELOCITY	mm/s
DISTANCE	X S	ECTION,	mm FROM	1 START OF	WEIR	
BELOW CREST	0	200	400	600	800	1000
30	98.7	99.6	99.6	100.0		
80	97.0	99.6	98.3	100.9		
130	98.3	99.6	98.3	99:2		
180	97.5	98.3	97.0	100.4		
230	92.4	94.1	93.2	99.2	۰.	
280	89.8	93.4	88.1	88.5		-
]		

	LONG	SECTI	000 NC	mm BEHIND	O WEIR :	VELOCITY	mm/s
DISTANCE		X SI	ECTION,	mm FROM S	START OF V	NEIR	
BELOW CREST		0	200	400	600	800	1000
30		94.5	94.1				
80		92.8	92.4				
130		93.6	92.4				
180		90.2	92.4				
230		86.8	91.1				
280		80.0	71.9				
		-					

Test No. 13.

LONG SECTION 700 mm BEHIND WEIR : VELOCITY mm/s								
DISTANCE	X S	ECTION,	mm FROM	START OF	WEIR			
BELOW CREST	0	200	400	600	800	1000		
30	76.6							
80	74:5	•						
130	76.6							
180	72.4		•	1				
230	60.0				•			
280	45.2		•					

L	ONG SECTI	ON	mm BEHIND	O WEIR :	VELOCITY	/ mm/s
DISTANCE	X SI	ECTION,	mm FROM S	START OF V	VEIR	ې
BELOW CREST	0	200	400	600	800	1000
30						
80						
1 30		· .				
180						
230						
280						
I		1				3

<u>Test No.</u> 16.

LONG SECTION 100 mm BEHIND WEIR : VELOCITY mm/s							
DISTANCE	X S	SECTION,	mm FROM	START OF	WEIR		
BELOW CREST	0	200	400	600	800	1000	
30	147.2	126.4	120.0	114.5	111.5	107.3	
80	135.4	122.2	108.5	106.0	103.4	101.3	
130	124.7	114.9	106.0	97.0	103.0	109.4	
180	119.6	111.9	103.4	91.9	94.1	108.2	
230	114.1	100.0	95.3	86.0	92.8	104.7	
280	101.3	97.0	76.6	77.9	89 .4	92.8	

LONG SECTION 200 mm BEHIND WEIR : VELOCITY mm/s							
DISTANCE	X SI	ECTION,	mm FROM S	START OF V	VEIR		
BELOW CREST	0	200	400	600	800	1000	
30	139.6	134.1	128.1	128.1	131.1	124.3	
80	132.8	130.7	125.1	126.8	125.6	123.9	
130	129.8	129.4	120.9	124.3	123.9	123.9	
180	126.8	120.9	122.2	120.0	117.9	116.2	
230	117.5	110.7	117.0	112.8	111.9	114.5	
280	99.2	99.2	108.5	110.7	114.9	114.5	
1	1					5	

Test No. 16.

F WEIR 800 130.2 130.7	1000 136.6 136.2
130.2	136.6
120 7	126.2
130.7	130.2
126.8	131.9
124.3	130.2
117.9	126.0
109.4	117.5
	124.3 117.9

400 SECTION mm BEHIND WEIR LONG VELOCITY mm/s : X SECTION, mm FROM START OF WEIR DISTANCE BELOW CREST 0 200 400 600 800 1000 m 131.5 126.8 129.4 130.2 131.5 134.5 30 127.7 129.0 127.3 129.0 132.4 141.7 80 129.0 123.4 128.5 129.4 141.3 127.3 130 123.9 123.4 116.6 125.1 123.0 138.3 180 115.8 117.0 115.3 117.0 119.6 129.4 230 104.7 105.1 113.2 112.4 108.5 126.0 280

<u>Test No.</u> 16.

LONG SECTION 500 mm BEHIND WEIR : VELOCITY mm/s									
DISTANCE	X S	ECTION,	mm FROM	I START OF	WEIR				
BELOW CREST	0	200	400	600	800	1000			
30	125.1	126.8	125.6	126.0					
80	122.2	123.0	126.0	126.4					
130	120.9	119.2	123.9	127.7					
180	117.5	116.6	118.7	120.0					
230	110.7	109.8	114.9	114.1	۰.				
280	104.7	102.6	97.9	106.8					
		l							

	LO	NG SECTI	ON 600	mm BEHINI	D WEIR :	VELOCITY	mm/s	
DISTANCE		X SI	ECTION,	mm FROM S	mm FROM START OF WEIR			
BELOW CREST		0	200	400	600	800	1000	
30		115.8	119.6					
. 80		113.2	120.5					
130		113.6	117.0					
180		108.1	109.8					
230		97.9	100.9					
280		95.8	100.4					

Test No. 16.

LO	NG SECTIO	N 700	mm BEHIN	D WEIR :	VELOCITY	mm/s
DISTANCE	X S	ECTION,	mm FROM	I START OF	WEIR	······
BELOW CREST	0	200	400	600	800	1000
30	86.4			•		
80	88:1					
130	81.3					
180	71.5					
230	62.6				•	
280	50.6					
			<u> </u>			_

	LON	NG SECTION		mm BEHIND WEIR : VELOCITY mm/s			′mm/s
DISTANCE BELOW CREST		X SI	ECTION,	mm FROM S	START OF V	VEIR	
		0	200	400	600	800	1000
30							
80		. 1					
130							
180							
230							
280							•

•

Test No. 17.

LONG SECTION 100 mm BEHIND WEIR : VELOCITY mm/s									
DISTAŅCE	X S	ECTION,	mm FROM	START OF	WEIR				
BELOW CREST	0	200	400	600	800	1000			
30	178.9	147.6	· 139 . 2	134.5	137.5	129.4			
80	165.0	143.8	124.7	118.3	123.4	125.6			
130	156.5	139.2	121.3	114.5	122.6	131.6			
180	143.8	129.4	117.0	105.1	119.6	133.6			
230	135.4	125.6	105.6	104.7	123.4	134.9			
280	131.9	117.0	100.9	99.2	119.6	133.2			
	<u> </u>				-				

	LON	NG SECTIO	ON 200	mm BEHIND	WEIR :	VELOCITY	′mm/s
DISTANCE		X SE	ECTION,	mm FROM S	START OF W	IEIR	
BELOW CREST		0	200	400	600	800	1000
30		166.9	158.4	151.1	153.8	154.2	151.9
80		158.0	154.6	149.9	151.1	153.0	151.9
130		145.3	143.8	148.0	150.3	150.3	149.6
180		141.3	138.8	144.9	149.6	149.6	152.3
230		126.8	138 . 8 [.]	137.9	146.9	143.8	150.3
280		129.8	128.1	134.9	143.4	144.5	148.4

Test No. 17.

LO	NG SECTIO	N 300	mm BEHIN	D WEIR :	VELOCITY	mm/s
DISTANCE	X S	ECTION,	mm FROM	START OF	WEIR	
BELOW CREST	0	200	400	600	800	1000
30	158.8	156.9	152.3	152.6	154.6	163.1
80	156.5	156.9	153.0	150.7	153.0	162.3
130	153.4	151.5	152.6	149.9	152.3	158.8
180	146.9	151.1	150.3	149.9	151.1	154.2
230	140.5	145.3	148.4	146.9	148.8	152.3
280	137.9	137.1	148.4	144.5	138.8	151.1

					-	•		
	L	ONG SI	CTIO	N 400	mm BEHIND	WEIR :	VELOCITY	mm/s
	DISTANCE		X SE	CTION,	mm FROM START OF WEIR			
	BELOW CREST	0		200	400	600	800	1000
	30	153.	4	152.3	150.7	149.6	156.5	165.4
	80	153.	8	151.5	149.6	149.6	154.2	158.4
	130	147.	6	148.4	143.4	146.9	150.7	155.7
	180	145.	7	147.6	144.5	140.0	148.5	153.0
	230	147.	2	148.8	141.7	136.6	146.5	146.1
	280	144.	2	140.0	140.9	133.2	133.2	131.1
		1	1					

<u>Test No. 17.</u>

LONG SECTION 500 mm BEHIND WEIR : VELOCITY mm/s								
DISTANCE	X S	ECTION,	mm FROM	START OF	WEIR			
BELOW CREST	0	200	400	600	800	1000		
30	148.8	146.5	144.9	152.6				
80	146.5	143.8	146.1	149.2				
130	144.9	146.5	144.5	144.5				
, 180	144.5	142.2	140.5	138.8				
230	140.5	133.6	134.5	139.2				
280	140.9	133.6	126.0	124.3				
			l			l		

	L0	NG SECTI	ON 600	mm BEHIND	WEIR :	VELOCITY	′mm/s
DISTANCE	4	X SE	ECTION,	mm FROM S	START OF W	IEIR	
BELOW CREST		0	200	400	600	800	1000
30		139.2	142.2				
80		134.5	138.8				
130		134.5	135.8				•
180		134.1	134.9		1		
230		134.1	123.4			• .	
280		123.4	124.7				

<u>Test No. 17,</u>

LONG SECTION 700 mm BEHIND WEIR : VELOCITY mm/s									
DISTANCE	X S	ECTION,	mm FROM	I START OF	WEIR				
BELOW CREST	0	200	400	600	800	1000			
30	101.7		-						
. 80	101.7					•			
130	89.4		1 . .						
180	80.0		. ¹						
230	76.6		:	1					
280	46.1								
	<u> </u>	<u> </u>	[1		<u> </u>			

LC	NG SECTIO	NC	mm BEHIND WEIR : VELOCITY mm/s				
DISTANCE	X SE	ECTION,	mm FROM S	START OF W	NEIR		
BELOW CREST	- 0	200	400	600	800	1000	
30							
80							
130	-			,			
180			•				
230						-	
280				• .			
1	1			}	}		

Test No. 21.

LOI	NG SECTIO	N 100	mm BEHIN	D WEIR :	VELOCITY	mm/s
DISTANCE	X S	ECTION,	mm FROM	I START OF	WEIR	
BELOW CREST	0	200	400	600	800	1000
30	137.89	113.63	105.54	102.14	97.88	90.22
80	129.38	113.63	102.99	93.20	86.39	73.62
130	125.97	113.20	97.45	91.49	79.58	68.93
180	125.55	109.80	94.90	80.85	79.15	76.17
230	118.31	97.03	91.49	68.51	72.34	68.08
280	103.84	95.33	80.43	69.36	64.25	73.62

	LO	NG SECTIO	ON 200	mm BEHIND WEIR : VELOCITY mm/s			
DISTANCE		X SE	X SECTION, mm FROM START OF WEIR				
BELOW CREST		0	200	400	600	800	1000
30		117.89	111.50	110.22	111 <i>.5</i> 0	110.65	106.39
80		117.46	110.22	108.10	105.12	105.12	102.99
130		111.08	108.95	102.14	104.69	97.03	95•75
180		102.99	99 . 58	100.86	88.94	98.73	100.01
230		94.47	85.96	80.85	88.51	93.20	99.16
280		84.26	78.30	71.49	90.64	97.03	93.20

Test No. 21.

LO	LONG SECTION 300 mm BEHIND WEIR : VELOCITY mm/s									
DISTANCE	X S	SECTION,	mm FROM	I START OF	WEIR					
BELOW CREST	0	200	400	600	800	1000				
30	114.91	114.48	111.93	116.18	114.05	114.48				
80	111:93	113.20	110.22	108.95	113.20	114.91				
130	107.67	109.37	109.37	109.37	109.37	114.48				
180	103.84	100.86	101.71	104.69	108.52	110.22				
230	97.88	102.14	103.41	106.39	105.12	106.39				
280	89.79	88 . 51	95•75	96.18	106.82	106.39				

	L0	NG SECTI	ON 400	mm BEHIND WEIR : VELOCITY mm/s			
DISTANCE		X SI	ECTION,	mm FROM S	START OF W	VEIR	
BELOW CREST		0	200	400	600	800	1000
30		116.61	112.78	116.18	114.05	114.48	120.87
80		109.37	110.22	112.35	109.37	117.46	121.29
130		105.97	109.80	110.22	111.50	114.91	120.87
180		105.97	102.99	105.97	111.50	110.65	117.89
230		102.99	98.31	105.12	104.69	105.12	114.91
280		97.45	97.03	103.41	104.69	106.39	114.05

Test No. 21.

LONG SECTION 500 mm BEHIND WEIR : VELOCITY mm/s								
DISTANCE	X S	ECTION,	mm FROM	START OF	WEIR			
BELOW CREST	0	200	400	600	800	1000		
30	109.37	111.93	104.69	112.35	108.10	114.91		
80	111.08	109.80	113.63	111.93	114.91	117.46		
130	104.69	108.52	110.65	112.78	112.78	121.29		
180	103.41	108.95	109.37	111.93	114.05	120.87		
230	100.86	104.26	105.54	111.50	114.05	119.16		
280	96.18	104.69	103.41	108.10	107.24	108 .5 2		

LO	LONG SECTION 600 mm BEHIND WEIR : VELOCITY mm/s							
DISTANCE	X SI	ECTION,	mm FROM S	START OF V	IEIR			
BELOW CREST	0	200	400	600	800	1000		
30	103.84	107.67	105.12			•		
80	106.82	108.52	109.37					
130	103.41	108.95	106.82					
180	100.86	107.67	106.39					
230	102.99	105.54	104.69					
280	99.58	105.12	98.31		i and and a			

338 .

Test No. 21.

LOI	NG SECTIO	N 700	mm BEHIN	D WEIR :	VELOCITY	mm/s
DISTANCE	X S	ECTION,	mm FROM	I START OF	WEIR	
BELOW CREST	0	200	400	600	800	1000
30	90.64	х				•
80	91.92					
130	92.35				•	
180	80.43					
230	78.72			, The second sec		
280	67.66					

mm BEHIND WEIR SECTION VELOCITY mm/s LONG : mm FROM START OF WEIR X SECTION, DISTANCE BELOW CREST 0 400 200 600 800 1000 m 30 80 130 180 230 280

Test No. 23.

LOI	LONG SECTION 100 mm BEHIND WEIR : VELOCITY mm/s							
DISTANCE	X S	SECTION,	mm FROM	START OF	WEIR			
BELOW CREST	0	200	400	600	800	1000		
30	148.40	132.36	122.99	127.25	118.31	113.63		
80	145:31	125.55	123.85	117.03	103.41	96.18		
130	137.47	124.70	120.44	114.48	100.43	99 . 58		
180	132.36	120.44	111.08	108.10	97.45	91.49		
230	119.16	111.93	109.37	98.73	84.26	99.16		
280	105.12	101.28	102.14	85.11	85.11	94.90		

200 SECTION mm BEHIND WEIR LONG VELOCITY mm/s : X SECTION, mm FROM START OF WEIR DISTANCE BELOW CREST 200 0 400 600 800 1000 m 133.64 146.86 141.72 137.47 140.45 136.19 30 144.16 140.87 136.19 130.66 126.40 137.04 80 124.27 127.68 138.32 128.53 131.51 137.89 130 124.27 118.74 123.85 127.25 128.10 132.78 180 122.14 110.65 121.72 119.59 122.99 127.25 230 126.82 116.61 103.84 116.18 107.24 121.72 280

Test No. 23.

LO	LONG SECTION 300 mm BEHIND WEIR : VELOCITY mm/s									
DISTANCE	X S	ECTION,	mm FROM	START OF	WEIR	······································				
BELOW CREST	0	200	400	600	800	1000				
30	145.31	144.54	143.00	146.47	144.16	145.70				
80	143.39	141.30	139.59	139.17	143.77	144.93				
130	134.06	139.17	134.91	138.74	139.17	142.57				
180	127.68	128.95	135.34	135.76	134.06	141.72				
230	125.97	122.99	131.93	135.76	137.47	137.89				
280	122.14	131.08	124.70	129.80	132.36	i31.93				

l	-01	IG SECTIO	DN 400	mm BEHIND	O WEIR :	VELOCITY	′mm/s
DISTANCE	T	X SE	CTION,	mm FROM S	START OF V	VEIR	
BELOW CREST	ſ	0	200	400	600	800	1000
30		142.57	139.17	141.30	140.02	142.15	148.79
80		140.87	140.45	137.89	140.45	143.39	146.86
130		- 137.47	137.47	138.32	142.15	142.15	146.86
180		135.76	135.76	137.04	134.06	140.45	145.70
230		134.91	134.49	135.34	135.76	132.78	136.19
280		134.91	133.64	131.51	133.21	130.23	139.59

Test No. 23.

LOP	LONG SECTION 500 mm BEHIND WEIR : VELOCITY mm/s									
DISTANCE	X S	ECTION,	mm FROM	START OF	WEIR	•				
BELOW CREST	0	200	400	600	800	1000				
30	137.04	137.04	140.02	141.72	143.39	143.39				
80	134.49	136.62	132.78	140.87	144.16	148.40				
130	130.66	136.19	133.21	137.89	138.32	143.77				
180	131.93	132.78	132.78	137.89	135.76	136.62				
230	131.08	131.51	128.95	130.23	128.10	133.64				
280	127.68	125.55	123.85	119.16	120.01	124.70				

	LO	NG SECTI	ON 600	mm BEHIND	O WEIR :	VELOCITY	′mm/s
DISTANCE		X SI	ECTION,	mm FROM S	START OF W	IEIR	
BELOW CREST		0	200	400	600	800	1000
30		130.66	129.80	137.04			
80		126.82	134 .49	135.34			•
130		126.82	133.64	135.34			
180		125.55	128.10	132.36			
230		123.85	122.99	119.59			
280		111.08	115.76	102.99			

Test No. 23.

LOI	NG SECTIO	N 700	mm BEHIN	D WEIR :	VELOCITY	mm/s
DISTANCE	X S	ECTION,	mm FROM	I START OF	WEIR	
BELOW CREST	0	200	400	600	800	1000
30	96.60					
80	97.03					
130	97.03					
180	85.96					
230	67.66				•	
280	62.55					

LC	LONG SECTION mm BEHIND WEIR : VELOCITY mm/s						
DISTANCE	X SI	ECTION,	mm FROM S	START OF W	IEIR		
BELOW CREST	0	200	400	600	800	1000	
30							
80							
130							
180							
230							
280						-	

Test No. 25.

LONG SECTION 100 mm BEHIND WEIR : VELOCITY mm/s								
DISTANCE	X S	SECTION,	mm FROM	START OF	WEIR			
BELOW CREST	0	200	400	600	800	1000		
30	188.89	168.45	159.58	150.33	146.47	122.14		
80	177:32	162.67	153.80	136.62	139.59	111.50		
130	172.31	164.60	159.58	151.48	147.63	127.68		
180	165.75	167.68	160.74	145.31	144.54	119.16		
230	161.13	167.30	165.75	158.04	137.89	120.87		
280	157.27	156.11	150.71	137 . 89 -	114.05	110.65		

· 1	. LONG SECTION 200					VELOCITY	mm/s
DISTANCE	Τ	X SE	ECTION,	mm FROM S	START OF V	VEIR	
BELOW CREST		0	200	400	600	800	1000
30	1	81.95	173.85	165.37	162.67	162.28	160.74
80	11	69.61	167.68	158.04	155.73	149.56	151.87
130	1	62.28	168.07	152.26	144.93	147.24	147.63
180	1	58.43	155.73	143.00	142.15	140.87	146.09
230	1	51.10	143.77	133.64	134.49	144.93	161.13
280	1	36.19	127.68	128.95	118.31	151.87	164.21

Test No. 25.

LO	LONG SECTION 300 mm BEHIND WEIR : VELOCITY mm/s							
DISTANCE	X S	ECTION,	mm FROM	I START OF	WEIR	·····		
BELOW CREST	0	200	400	600	800	1000		
30	178.10	172.70	174.24	172.70	176.17	180.02		
80	170.38	170.00	168.45	168.07	167.68	180.41		
130	153.80	154.96	155.34	156.88	161.13	171.15		
180	153.41	151.10	156.88	163.83	167.30	168.07		
230	151.48	161.51	162.28	161.13	165.75	178.10		
280	147.63	144.16	156.88	158.43	166.91	177.71		

L	LONG SECTION 400 mm BEHIND WEIR : VELOCITY mm/s						
DISTANCE	X SI	ECTION,	mm FROM S	START OF V	VEIR		
BELOW CREST	0	200	400	600	800	1000	
30	172.70	173.47	171.93	178.10	182.72	187.74	
80	168.45	171.54	171.93	174.24	175.01	184.27	
130	163.05	168.07	172.70	173.85	175.40	183.11	
180	156.50	167.30	168.07	172.70	177.71	180.80	
230	156.11	163.83	165.75	166.53	176.94	187.74	
280	163.05	163.44	166.91	170.38	169.61	180.80	

345.

Test No. 25.

LONG SECTION 500 mm BEHIND WEIR : VELOCITY mm/s							
DISTANCE	X S	ECTION,	mm FROM	I START OF	WEIR	<u> </u>	
BELOW CREST	0	200	400	600	800	1000	
30	171.15	175.01	178.48	181.95	184.65	185.81	
80	174.62	174.62	178.10	181.95	181.95	189.67	
130	166.91	174.24	171.93	178.87	182.34	190.44	
180	164.98	170.00	174.62	173.85	181.18	180.80	
230	158.81	170.00	178.10	171.93	174.62	185.04	
280	157.66	164.21	173.47	163.44	164.60	161.13	

	LO	NG SECTIO	000 NC	mm BEHIND	D WEIR :	VELOCITY	mm/s
DISTANCE		X SE	ECTION,	mm FROM S	START OF W	IEIR	
BELOW CREST		0	200	400	600	800	1000
30		171.15	175.40	174.24			
80	•	174.62	174.62	176.94			
130		169.23	175.40	170.00			
180		164.60	177.32	171.15			
230		165.74	175.78	159.20		•	
280		155.34	151.87	146.47			

Test No. 25.

LONG SECTION 700 mm BEHIND WEIR : VELOCITY mm/s							
DISTANCE	X S	ECTION,	mm FROM	START OF	WEIR		
BELOW CREST	0	200	400	600	800	1000	
30	132.78						
80	137.04					•	
130	129.38						
180	120.44						
230	103.41						
280	85.11						
			1		l		

LO	LONG SECTION				mm BEHIND WEIR : VELOCITY mm/s			
DISTANCE	X SE	ECTION,	mm FROM S	START OF I	VEIR			
BELOW CREST	0	200	400	600	800	1000		
30								
80								
130								
180		an taon ang sang sang sang sang sang sang sang			•			
230		. '						
280				· ·				
		l	<u> </u>	1				

Test No. 27.

LO	NG SECTIO	N 100	mm BEHIN	D WEIR :	VELOCITY	mm/s
DISTANCE	X S	ECTION,	mm FROM	START OF	WEIR	
BELOW CREST	0	200	400	600	800	1000
30	215.89	199.31	185.04	179.64	172.31	145.31
80	210.49	196.99	182.72	168.45	165.37	149.56
130	196.61	194.29	180.41	163.05	161.13	140.02
180	195.07	191.21	180.80	166.14	150.33	137.89
230	186.97	180.02	175.01	157.66	142.57	135.76
280	181.18	178.48	173.08	151.87	133.64	139.17

	LO	NG SECTIO	002 N	mm BEHINI	OWEIR :	VELOCITY	′mm/s
DISTANCE		X SECTION,		mm FROM START OF WEIR			
BELOW CREST	÷	0	200	400	600	800	1000
30		208.18	198.92	192.37	190.82	193.52	197.38
80.	r i	190.05	192.37	185.81	183.11	182.72	188.89
130		184.65	173.47	158.43	185.81	181.57	176.55
180		170.77	174.24	170.77	174.62	169.23	177.71
230		168.84	1 <i>5</i> 1.87	163.44	166.14	171.15	175.40
280		145.70	150.33	160.74	170.00	169.23	174.62

.

Test No. 27.

LO	NG SECTIO	N 300	mm BEHIN	D WEIR :	VELOCITY	mm/s
DISTANCE	X S	ECTION,	mm FROM START OF WEIR			
BELOW CREST mm.	0	200	400	600	800	1000
30	198.92	196.99	196.22	191.21	189.67	200.85
80	195.07	187.35	178.87	182.72	189.28	194.29
130	176.55	175.78	178.87	186.19	186.19	188.89
180	175.78	168.07	178.48	173.85	180.02	189.28
230	170.77	163.83	166.91	168.07	175.40	182.72
280	158.43	162.28	165.37	168.07	181.18	182.34

	LOI	NG SECTIO	DN 400	mm BEHIND	WEIR :	VELOCITY	/ mm/s	
DISTANCE		X SECTION, mm FROM START OF WEIR						
BELOW CREST		0	200	400	600	800	1000	
30		194.29	191.21	193.52	193.14	196.22	208.95	
80		190.05	189.67	189.28	196.22	196.61	204.32	
130		183.50	186.19	186.97	191.98	182.72	205.86	
180		173.08	179.25	186.58	181.18	185.81	199.31	
230		173.08	173.08	171.54	179.64	188.12	197.38	
280		172.31	169.61	170.38	179.64	187.74	189.28	
		172.31	169.61	170.38	179.64	187.74	189.28	

Test No. 27.

LONG SECTION 500 mm BEHIND WEIR : VELOCITY mm/s								
DISTANCE	X SECTION,		mm FROM START OF WEIR					
BELOW CREST	0	200	400	600	800	1000		
30	190.82	192.37	196.61	191.98	196.99	200.08		
80	184.65	195.07	186.97	196.22	196.22	209.72		
130	175.78	178.48	180.02	193.52	195.84	201.62		
180	170.38	179.64	176.17	191.21	190.05	194.29		
230	161.90	170.38	179.64	181.57	188.89	181.18		
280	168.45	174.62	178.48	177.32	175.40	169.61		

LONG SECTION 600 mm BEHIND WEIR : VELOCITY mm/s						
DISTANCE	X SE	CTION,	mm FROM START OF WEIR			
BELOW CREST	0	200	400	600	800	1000
30	185.81	192.75	190.05			
80	178.10	186.19	189.28			
130	170.00	180,80	183.88			
180	169.61	182.72	178.48	-		
230	170.00	177.71	180.41			
280	172.31	161.90	144.93		an a	

. 350

Test No. 27.

LO	NG SECTIO	N 700	mm BEHIN	D WEIR :	VELOCITY	mm/s
DISTANCE	X S	ECTION,	mm FROM	START OF	WEIR	
BELOW CREST mm	0	200	400	600	800	1000
30	161.90					
80	150:33					
130	141.72					
180	128.95					
230	115.76					
280	97.45					
			· ·	-		

mm BEHIND WEIR LONG SECTION VELOCITY mm/s : X SECTION, mm FROM START OF WEIR DISTANCE BELOW CREST 0 200 400 600 800 1000 mm 30 80 130 180 230 280

(c) Details of the Method of Computing \varkappa and β Values. 352

Velocity energy coefficients \ll and momentum flux correction factors β are used to allow for the effects of nonuniform velocity distribution when computing values of velocity energy and momentum flux. They are defined by the following equations,

$$\propto \cdot \frac{1}{2} \rho Q v^{2} = \int_{A} \frac{1}{2} \rho u^{3} \cdot dA$$

$$\propto = \int_{A} \frac{\int u^{3} \cdot dA}{Q v^{2}}$$

$$Q = \int_{A} u \cdot dA$$

Q/A

and

2 1	$A^2 \int_A u^3 \cdot dA$
	$(\int_{A} u \cdot dA)^3$

.....(v.1)

Similarly
$$\beta \cdot \rho AV^2 = \int_A \rho u^2 dA$$

$$\beta = \frac{A \int_A u^2 \cdot dA}{(\int_A u \cdot dA)^2} \qquad \dots \dots (V.2)$$

V.2 Calculation of B.

Values of β were initially computed using a graphical method, as described below, for each cross-section at which velocity traverses were made.

For each vertical section values of u were plotted against y (Figs. 6.2 to 6.6 are examples). The area contained by the distribution curve of u was denoted Area 1 (Fig. V.1).

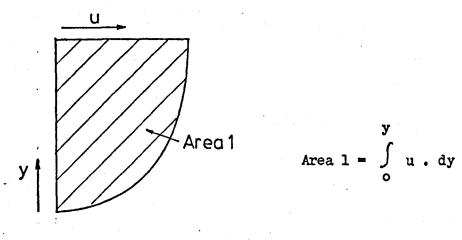
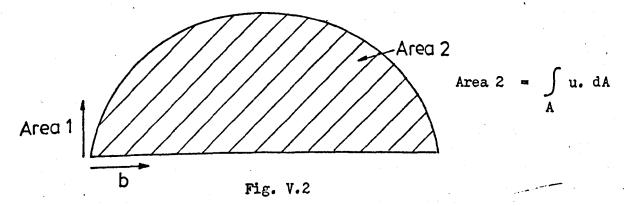



Fig. V.1

Vertical Distribution of u.

Velocity distributions were plotted and Area 1 values measured at each vertical section along a cross-section. The cross-sectional distribution of Area 1 values was then plotted (Fig. V.2).

Cross-sectional Distribution of Area 1.

The area under this curve was denoted Area 2 and is equal to $\int_A u \cdot dA$. Values of u^2 were then computed and a similar exercise undertaken with distributions of u^2 with y, the two areas now being denoted Area 3 and Area 4. By a similar argument Area 4 = $\int_A u^2 \cdot dA$.

The cross-sectional area of flow, A, was obtained by plotting the head measurements across the section, and β was calculated from

$$\beta = \frac{A \cdot Area 4}{(Area 2)^2} \qquad \dots \dots \dots \dots \dots (V.3)$$

An example of the method is given in Table V.1 below.

TABLE V.1 Computed Values of Momentum Flux Correction Factor β							
Reading No. 2 Cross-section 0 mm							
Distance be- hind weir mm	Area 1 Graph m ² /s C		al ^{uted} m ² /s	Area 2 Graph m ³ /s ² x10 ⁻³	Area 2 Computed m ³ /s ² x10 ⁻³		
100	0.03184	0	.03304	2.9318	3.0448		
200	0.03212	0.03267		2.8612	2.9216		
300	0.03573	0	.03571	3.3260	3.3986		
400	0.03544	0	.03527	3.2932	3.3203		
500	0.02909	0	.02892	2.2102	2.2230		
600	0.03325	0	•03 <i>3</i> /+0	2.9296	2.9653		
Cross-section Area m ²	Area 2 Graph m ³ /s	Area 2 Computed _m 3/s		Area 4 m ⁴ /s Graph _{x10} -3	Area 4 m ⁴ /s ² Computed m ² /s ²		
0.02839	0.02419	0.02439		2.1530	2.1916		
$\beta_{\text{Graph}} = 1.045$ $\beta_{\text{Computed}} = 1.046$							

x.

It was found, however, that this method became tedious when applied to all the velocity traverse readings. A numerical method was therefore developed by approximating the velocity distribution and the other graphs to stepped distributions. An example is shown below for a typical velocity distribution.

Fig. V3

Stepped Approximation to

Velocity Distribution Curve

Thus,

Area 1 = (h + 0.055)
$$u_1$$
 + 0.05 (u_2 + u_3 + u_4 + u_5)
+ 0.031 u_6 (V.5)

Similar approximations were made for Areas 2 to 6. Values of β and α were then calculated using equations (V.3) and (V.4) respectively, using the computed values of the Areas. Since the method only involves the use of simple numerical expressions it can be readily programmed for computation by a digital computer. A Hewlett Packard desk top computer was used to perform the computations, and Table V.1 also contains the computed values of Areas 1, 2, 3 and 4, and β , for comparison with the graphical values. There is clearly very little difference between the two sets of results, the values of β being virtually identical.

The computed values of α and β are given in Table 6.2 and plotted in Figure 6.7.

APPENDIX VI

Error Analysis for the Coefficient of Discharge.

Analysis of the Possible Error in Measured C_D values due VI.1 to the Possible Errors in Scale Readings.

· For a typical reading in the centre of the range,

Head above crest, h	723	0.03496	± 0.0001 m
Side spill stage, H	=	9•33	± 0.01 cm
Length of Weir, L	=	1.1072	± 0.001 m

$$c_{\rm D} = \frac{Q_{\rm W}}{2/3 \sqrt{2g} \, {\rm L} \, {\rm h}^{3/2}}$$

 \therefore Proportional error in C_D =

or

$$\frac{\mathrm{dC}_{\mathrm{D}}}{\mathrm{C}_{\mathrm{D}}} = \left\{ \frac{\mathrm{dL}_{\mathrm{QW}}}{\mathrm{QW}} \right\}^{2} + \left(\frac{\mathrm{dL}}{\mathrm{L}} \right)^{2} + \left(\frac{3}{2} \frac{\mathrm{dh}}{\mathrm{h}} \right)^{2} \right\}^{\frac{1}{2}}$$

Now, from the calibration data for the side spill channel,

$$\omega_{W} = 0.000374 \text{ H}^{1.6116}$$

 $\frac{dQW}{QW} = 1.6116 \frac{dH}{H}$

APPENDIX VII

Results of the Main Experimental Investigation.

(a)	Depth and Dishcarge Measurements
(b)	Longitudinal Surface Profiles.
(c)	Transverse Surface Profiles.

Depth and Discharge Measurements.

(a)

SUBCRITICAL FLOW PROFILES EXCEPT WHERE STATED.

TEST No.	UPSTREAM DISCHARGE O ₁ I/s	SIDE SPILL DISCHARGE O _w I/s	DOWNSTREAM DISCHARGE Q ₂ 1/s	DEPTH AT UPSTREAM END OF WEIR Y ₁ mm	DEPTH AT 428 mm DOWNSTREAM OF WEIR Y3 mm	VISCOCITY ¥ 10 ^{−6} kg/ms	BED SLOPE	REMARKS		
15	6.59	4.31	2.28	95.4	112.0	0.963	Horizontal	Downstream 25.4mm	sluice	open
16	5.94	3.74	2.20	94.9	108.7	0.957	Horizontal		10	
17	5.34	3.18	2.16	93.8	105.1	0.955	Horizontal	- 11	••	n
18	4.63	2.53	2.10	92.4	100.9	0.953	Horizontal		••	H
19	4.19	2.13	2.06	91.1	98.1	0.951	Horizontal	•		H
20	3•53	1.90	1.63	91.1	95.6	0.967	Horizontal	Downstream 19.1mm	sluice	open
21	4.27	2.62	1.65	93•3	100.3	0.964	Horizontal	n	11	11
22	4.56	2.90	1.66	94.1	101.8	0.962	Horizontal	18	**	"
23	5.40	3.69	1.71	95.9	106.6	0.962	Horizontal		•	••
24	5.94	4.21	1.73	97.1	109.9	0.960	Horizontal		•	
25	6.43	4.68	1.75	97.2	112.7	0.951	Horizontal			•
26	7.02	5.24	1.78	97•9	115.8	0.951	Horizontal	•	••	**
27	7.46	5.67	1.79	99•5	119.2	0.951	Horizontal		•	**
28	6.66	5.43	1.23	100.2	114.9	1.012	Horizontal	Downstream 12.7mm	sluice	open

Weir No. 1. Channel Width=0.1016 m Crest Height=80.0 mm

Weir Length = 0.6096 m

SUBCRITICAL FLOW PROFILES EXCEPT WHERE STATED

TEST No.	UPSTREAM DISCHARGE O ₁ I/s	SIDE SPILL DISCHARGE O _w I/s	DOWNSTREAM DISCHARGE Q ₂ 1/s	DEPTH AT UPSTREAM END OFWEIR Y	DEPTH AT 428 mm DOWNSTREAM OF WEIR Y ₃ mm	viscocity v 10 ⁻⁶ kg/ms	BED SLOPE	REMARKS
29	5.99	4.81	1.18	99.1	111.4	1.007	Horizontal	Downstream sluice open 12.7mm
30	5.34	4.20	1.14	97.8	108.0	0.997	Horizontal	11 11 12 13 13
31	4.70	3.60	1.10	96.8	103.6	0.997	Horizontal	•• •• ••
32	3.88	2.79	1.09	94.5	99.9	0.992	Horizontal	10 10 10 10 1
33	3.02	1.92	1.10	91.6	94.9	0.988	Horizontal	
34	2.19	1.82	0.37	91.7	93.3	1.022	Horizontal	Downstream weir
35	2.93	2.44	0.49	93.9	96.9	1.017	Horizontal	
36	3.69	3.08	0.61	95.9	100.6	1.009	Horizontal	
37	4.38	3.64	0.74	97.2	104.0	1.009	Horizontal	10 10
38	5.54	4.49	1.05	98.7	109.3	1.007	Horizontal	10 10
39	6.49	5.11	1.38	99.4	113.7	0.995	Horizontal	• • •
40	7.61	5.95	1.66	99.9	119.6	0.997	Horizontal	* *
41	3.46	1.84	1.62	88.7	101.3	0.921	0.00753	Downstream sluice open 19.1mm
42	4.33	2.70	1.63	91.5	106.6	0.915	0.00758	10 10 11

Weir No. 1. Channel Width = 0.1016 m Crest Height = 80.0 mm

Weir Length = 0.6096 m

പ്പ

SUBCRITICAL FLOW PROFILES EXCEPT WHERE STATED

TEST No.	UPSTREAM DISCHARGE O ₁ I/s	SIDE SPILL DISCHARGE Q _W 1/s	DOWNSTREAM DISCHARGE Q ₂ 1/s	DEPTH AT UPSTREAM END OFWEIR Y ₁ mm	DEPTH AT 428 mm DOWNSTREAM OF WEIR Y ₃ mm	viscocity v 10 kg/ms	BED SLOPE	REMARKS
43	5.33	.3.67	1.66	93.9	112.5	0.913	0.00758	Downstream sluice open 19.1mm
44	6.21	4.47	1.74	95.4	117.7	0.909	0.00758	en 10 11
45	6.50	4.71	1.79	95.6	119.4	0.889	0.00753	11 11 11
46	7.50	5.67	1.83	95.7	125.7	0.881	0.00758	tt 10 17
48	5.86	4.75	1.11	97.2	117.4	0.870	0.00758	Downstream weir
49	5.20	4.32	0.88	96.6	114.0	0.868	0.00758	14 17
50	4.56	3.85	0.71	95•9	111.3	0.868	0.00758	10 11
51	3.77	3.24	0.53	94.6	107.7	0.866	0.00758	50 50 F
52	3.06	2.62	0.44	92.8	104.1	0.866	0.00758	11 11
53	2.60	2.23	0.37	91.6	101.7	0.864	0.00758	n n '
54	13.42	2.39	11.03	111.9	85.3+	0.862	0.00758	Supercritical flow
55	7.58	5.82	1.76	98.8	122.6	0.909	0.00379	Downstream sluice open 19.1mm
56	6.56	4.83	1.73	97.2	116.8	0.901	0.00379	** ** **
57	5.77	4.14	1.63	96.2	112.2	0.895	0.00379	11 10 10

Weir No. 1. Channel Width = 0.1016 m

Crest Height = 80.0 mm

Weir Length=0.6096 m

+ Depth at downstream end of weir, y₂, mm.

SUBCRITICAL FLOW PROFILES EXCEPT WHERE STATED

TEST No.	UPSTREAM DISCHARGE Q ₁ 1/s	SIDE SPILL DISCHARGE Q _w 1/s	DOWNSTREAM DISCHARGE Q ₂ 1/6	DEPTH AT UPSTREAM END OF WEIR Y ₁ mm	DEPTH AT 428 mm DOWNSTREAM OF WEIR Y3 mm	viscocity v10 ⁻⁶ /ms	BED SLOPE	REMARKS
58	4.83	· 3.17	1.66	94.5	106.7	0.893	0.00379	Downstream sluice open 19.1mm
59	4.07	2.46	1.61	92.5	102.2	0.889	0.00379	
60	3.33	1.80	1.53	89.7	97.5	0.885	0.00379	•• •• ••
61	14.25	2.59	11.66	115.0	85.4+	1.084	0.00379	Supercritical flow
				н 1. М				
			1997 - 19		•	•		
					I			
				•				
:								
			· ·					
			; ;			_		
						-		
	i i							

Weir No. 1. Channel Width = 0.1016 m

Crest Height = 80.0 mm

Weir Length = 0.609m

+ Depth at downstream end of weir, y_2 , mm.

TEST No.	UPSTREAM DISCHARGE Q ₁ I/s	SIDE SPILL DISCHARGE O _W I/s	DOWNSTREAM DISCHARGE O ₂ I/s	DEPTH AT UPSTREAM END OF WEIR ^y 1 mm	DEPTH AT 428 mm DOWNSTREAM OF WEIR Y ₃ mm	viscocity v 10 kg/ms	BED SLOPE	REMARKS	
62	3.68	. 1.85	1.83	129.0	134.5	1.054	0.00379	Downstream sl 19.1mm	uice open
63	3.95	2.07	1.88	129.9	135.9	1.087	0.00379	".	n n
64	4.95	3.05	1.90	133.6	141.2	1.071	0.00379		48 8 9
65	6.02	4.07	1.95	136.9	146.3	1.065	0.00379	•	18 17
66	6.79	4.80	1.99	138.9	149.9	1.060	0.00379	•	n n
67	7.31	5.32	1.99	140.4	152.3	1.050	0.00379	••	•• ••
68	7.74	5.71	2.03	141.5	154.4	1.004	0.00379	**	17 17
69	9.83	7.79	2.04	145.8	163.2	1.002	0.00379		et
70	8.44	6.42	2.02	143.2	157.8	1.044	0.00379		** **
	•				· ·		•		
i									

Weir No. 2. Channel Width = 0.1016 m Crest Height = 118.0 mm

Weir Length = 0.6096_{m}

TEST No.	UPSTREAM DISCHARGE O ₁ I/s	SIDE SPILL DISCHARGE Q _W I/s	DOWNSTREAM DISCHARGE O ₂ I/s	DEPTH AT UPSTREAM END OFWEIR Y ₁ mm	DEPTH AT DOWNSTREAM END OF WEIR ^Y 2 ^{mm}	viscocity v10 ⁻⁶ kg/ms	BED SLOPE	REMARKS
71	13.20	. 6.20	7.00	105.0	46.2	1.123	Horizontal	Upstream flow subcritical
72	11.69	5.24	6.45	98.0	44.7	1.129	Horizontal	10 10 10
73	10.03	4.15	5.88	90.5	42.7	1.121	Horizontal	10 09 10
74	8.03	2.91	5.12	79.2	41.6	1.112	Horizontal	83 44 57
75	9.37	· 3.74	5.63	86.6	42.6	1.098	Horizontal	FB 09 90
76	10.86	4.77	6.09	94.7	43.6	1.092	Horizontal	10 00 00
77	12.64	5.63	7.01	96.2	47.0	1.135	Horizontal	Upstream flow supercritica sluice open ll6mm
78	12.59	4.64	7.95 -	80.7	48.1	1.117	Horizontal	Upstream flow supercritica sluice open 98mm
79	12.53	3.69	8.84	69.9	49.0	1.109	Horizontal	Upstream flow supercritica sluice open 84.5mm
132	13.82	6.37	7.45	106.7	46.0	1.004	0.00376 ·	Upstream flow subcritical
133	13.11	5.98	7.13	102.8	46.0	1.035	0.00376	•••••
134	12.25	5.43	6.82	99.4	45.2	1.017	0.00376	• • •
135	11.42	4.86	6.56	95•7	44.0	0.960	0.00376	89 80 PD
136	10.41	4.21	6.20	90.5	43.1	1.076	0.00376	19 99 99

No.	UPSTREAM DISCHARGE O ₁ I/s	SIDE SPILL DISCHARGE O _W I/s	DOWNSTREAM DISCHARGE Q ₂ 1/1	DEPTH AT UPSTREAM END OF WEIR Y ₁ mm	DEPTH AT DOWNSTREAM END OF WEIR Y ₂ mm	viscocity v10 ⁻⁶ kg/ms	BED SLOPE	REMARKS
137	9.47	.3.63	5.84	85.5	42.5	1.055	0.00376	Upstream flow subcritical
138	12.63	5.14	7.49	89 .0	46.6	1.032	0.00376	Upstream flow supercritica sluice open ll6mm.
139	12.52	4.24	8.28	76.2	47.7	1.022	0.00376	Upstream flow supercritica sluice open 98mm.
140	12.60	3:32	9.28	68.0	48.0	1.017	0.00376	Upstream flow supercritica sluice open 84.5mm.
141	14.01	6.23	7.78	105.5	47.2	1.063	0.00694	Upstream flow subcritical
142	13.27	5.81	7.46	103.0	46.7	1.042	0.00694	• • •
143	12.16	5.14	7.02	97.4	45.8	1.045	0.00694	11 ta 11
144	11.32	4.66	6.66	93.1	44.9	1.027	0.00694	10 10 · · · · · · · · ·
145	10.33	4.03	6.30	88.4	43.9	1.007	0.00694	••••••
146	9.29	3.40	5.89	83.5	42.4	0.997	0.00694 .	10 10 II
147	12.50	4.75	7.75	85.2	47.4	1.014	0.00694	Upstream flow supercritica sluice open 116mm.
148	12.50	3.82	8.68	73.5	48.1	1.019	0.00694	Upstream flow supercritica sluice open 98mm.

Weir No. 3. Channel Width = 0.1016 m

Crest Height = 36.0 mm

Weir Length = 0.6096m

EST No.	UPSTREAM DISCHARGE O ₁ I/s	SIDE SPILL DISCHARGE Q _W I/s	DOWNSTREAM DISCHARGE O ₂ 1/1	DEPTH AT UPSTREAM END OFWEIR Y ₁ mm	DEPTH AT DOWNSTREAM END OF WEIR ^Y 2 ^{mm}	viscocity v10 ^{–6} kg/me	BED SLOPE	REMARKS
149	12.47	3.05	9.42	66.2	48.4	1.002	0.00694	Upstream flow supercritica sluice open 84.5mm.
	-							
	•							
	•	•						
	•							
							•	
			r.					
						•		· · · ·

IEST No.	UPSTREAM DISCHARGE Q ₁ I/s	SIDE SPILL DISCHARGE Q _w I/s	DOWNSTREAM DISCHARGE O ₂ 1/s	DEPTH AT UPSTREAM END OFWEIR Y ₁ mm	DEPTH AT 505 mm DOWNSTREAM OF WEIR 93 mm	viscocity v10 ⁻⁶ kg/ms	BED SLOPE	REMARKS
80	3.09	1.49	1.60	92.4	97.9	1.087	0.00366	Downstream sluice open 19.1mm.
81	4.44	2.82	1.62	98.4	107.4	1.079	0.00366	11 19 19
82	5.24	3.60	1.64	101.6	112.9	1.076	0.00366	10 10 H
83	5.86	4.15	1.71	103.6	117.1	1.073	0.00366	10 10 11
84	6.22	4.47	1.75	104.8	119.1	1.068	0.00366	10 11 11
85	6.69	4.93	1.76	106.4	122.3	1.060	0.00366	11 11 01
86	7.27	5.49	1.78	108.0	125.7	1.055	0.00366	H H
87	7.74	5.93	1.81	109.6	128.7	1.050	0.00366	17 17 18
88	8.10	6.91	1.19	113.6	132.5	1.057	0.00366	Downstream sluice open 12.7mm.
89	5.30	4.15	1.15	104.2	115.5	1.055	0.00366	n 11 11
90	4.29	3.16	1.13	100.4	109.0	1.052	0.00366	10 10 17
91	3.52	2.39	1.13	97.2	103.5	1.050	0.00366	11 71 97
92	2.62	1.50	1.12	92.8	97.4	1.047	0.00366	
93	5.88	4.72	1.16	· 95•9	119.0	1.045	0.00366	

TEST No.	UPSTREAM DISCHARGE Q ₁ I/s	SIDE SPILL DISCHARGE Q _W !/s	DOWNSTREAM DISCHARGE Q ₂ 1/s	DEPTH AT UPSTREAM END OF WEIR ^Y 1 mm	DEPTH AT 505 mm DOWNSTREAM OF WEIR Y ₃ mm	viscocity v 10 kg/me	BED SLOPE	REMARKS
94	7.47	6.29	1.18	111.2	128.4	1.019	0.00366	Downstream sluice open 12.7mm.
95	8.23	5.91	2.32	107.8	130.3	1.012	0.00366	Downstream sluice open 25.4mm.
96	7.45	5.14	2.31	105.8	125.3	1.009	0.00366	10 20 71
97	6.35	4.07	2.28	102.6	118.2	1.007	0.00366	98 19 17
98	5.24	3.07	2.17	98.8	110.4	1.007	0.00366	99 99 99
99	4.37	2.27	2.10	95.6	104.4	1.004	0.00366	10 03 18
100	3.55	1.48	2.07	91.9	98.5	1.004	0.00366	90 97 97
101	2.87	1.31	1. <i>5</i> 6	90.9	93.6	1.076	Horizontal	Downstream sluice open 19.1mm.
102	4.29	2.72	1.57	97.7	104.1	1.071	Horizontal	10 10 10 10 10 10 10 10 10 10 10 10 10 1
103	4.83	3.24	1.59	99.8	107.8	1.057	Horizontal	10 10 11
104	6.14	4.45	1.69	104.2	115.8	1.052	Horizontal	** ** **
105	7.20	5.47	1.73	107.6	122.1	1.050	Horizontal	10 ti II
106	8.03	6.28	1.75	110.8	127.8	1.045	Horizontal	10 10 10

Weir No. 4 Channel Width = 0.1016 m Crest Height = 79.5 mm Weir Length = 0.4572 m

EST No.	UPSTREAM DISCHARGE Q ₁ I/s	SIDE SPILL DISCHARGE Q _w 1/s	DOWNSTREAM DISCHARGE Q ₂ ^{1/s}	DEPTH AT UPSTREAM END OF WEIR Y ₁ mm	DEPTH AT 505 mm DOWNSTREAM OF WEIR Y ₃ mm	viscocity v10 ⁻⁶ kg/ma	BED SLOPE	REMARKS	
107	3.22	.1.56	1.66	90.5	102.0	1.029	0.00713	Downstream sluice 19.1mm.	open
108	4.35	2.69	1.66	95.6	110.0	1.027	0.00713	17 17	
109	5.20	3.52	1.68	98.7	116.0	1.024	0.00713	11 11	**
110	6.16	4.37	1.79	101.7	121.8	1.014	0.00713	11 11	98
111	7.00	5.17	1.83	104.0	127.3	1.009	0.00713	1 . 11	Ħ
112	7.53	5.66	1.87	106.4	130.6	0.999	0.00713		••
									÷ .
								ана сталина Формония С	•

Weir No. 4. Channel Width=0.1016 m Crest He

Crest Height = 79.5 mm

Weir Length = 0.4572 m

WEIR NO. 4.

SUPPLEMENTARY RESULTS : TEST NOS. 101 TO 112.

Reading No.	Depth 76.2 mm Downstream of Weir. mm
101	94.1
102	104.1
103	107.6
104	115.2
105	121.1
106	125.8
107	99.1
108	106.8
109	112.1
110	117.7
111	122.6
112	125.8

rest No.	UPSTREAM DISCHARGE Q ₁ I/s	SIDE SPILL DISCHARGE O _w 1/3	DOWNSTREAM DISCHARGE O ₂ I/s	DEPTH AT UPSTREAM END OF WEIR Y ₁ mm	DEPTH AT 352 mm DOWNSTREAM OF WEIR Y ₃ mm	VISCOCITY v 10 kg/ms	BED SLOPE	REMARKS		
113	4.25	2.59	1.66	90.0	104.8	0.976	0.00713	Downstream 19.1mm.	sluice	open
114	5.20	3.51	1.69	91.3	110.4	0.976	0.00713		**	
115	5.96	4.17	1.79	91.5	114.3	0.976	0.00713	**	**	••
116	7.09	5.19	1.90	90.9	121.2	0.976	0.00713		11	**
117	7.54	5.63	1.91	90.7	123.5	0.974	0.00713		**	
119	3.74	2.15	1.59	90.1	99.4	0.988	0.00356		79	
120	4.58	2.94	1.64	91.4	104.1	0.988	0.00356			**
121	5.40	3.70	1.70	93.1	108.3	0.985	0.00356		**	n
122	6.08	4.35	1.73	93.2	112.0	0,983	0.00356		**	**
123	6.69	4.89	1.80	93.6	115.3	0.983	0.00356	73	••	**
124	7.29	5.43	1.86	92.9	119.2	0.979	0.00356.		**	**
125	7.73	5.85	1.88	92.9	121.8	0.976	0.00356	- 11	**	99
126	3.02	1.46	1.56	89.5	92.4	0.993	Horizontal	n	**	**
127	4.36	2.78	1.58	92.6	99.9	0.993	Horizontal		**	•
128	5.34	3.72	1.62	94.3	105.2	0.990	Horizontal		· •	. 11 -

375

TEST No.	UPSTREAM DISCHARGE O ₁ I/s	SIDE SPILL DISCHARGE Q _w 1/s	DOWNSTREAM DISCHARGE O ₂ I/s	DEPTH AT UPSTREAM END OF WEIR Y ₁ mm	DEPTH AT 352 mm DOWNSTREAM OF WEIR y ₃ mm	viscocity v10 ⁻⁶ kg/ms	BED SLOPE	REMARKS		
129	6.13	. 4.43	1.70	94.6	109.1	0.988	Horizontal	Downstream 19.1mm.	sluice	open
130	6.81	5.04	1.77	94.6	113.1	0.981	Horizontal	**		
131	7.49	5.70	1.79	94.5	117.1	0.972	Horizontal			PQ -
		-								
۰.										
	· · ·									
	• · ·								•	
			•							
	4 A									

Weir No. 5. Channel Width = 0.1016m Crest Height = 80.5 mm Weir Length = 0.7620m

Longitudinal Surface Profiles.

LONGITUDINAL PROFILE CO-ORDINATES

	Chainage,ins	76	78	80	82	84	86	88	90	92	94	96 +	98	100	102	104	106
Reading No.	Depth,mm	•	-	-	-	-	-	•	-	•	95-5	94.7	94.7	94.3	97.3	1@.5	100.3
16	Chainage,ins	108	110	112	114	116	118	120+	122	124	126	128	130	132	134	136	138
10	Depth,mm	100.6	104.0	104.1	105.1	105.3	105.6	107.3	107.7	-	-	•	•	• .	•	-	-
	Chainage,ins	76	78	80	82	84	86	88	90	92	94	96 +	98	100	102	104	106
Reading	Depth,mm	-	-	-	-	-	-	-	- 1	-	91.3	91.1	90.7	92.5	92.9	93.0	94.6
No. 19	Chainage,ins	108	110	112	114	116	118	120+	122	124	126	128	130	132	134	136	138
19	Depth,mm	94.5	95.5	95.7	96.8	96.9	97.0	97.7	93.2	• .	•	• •	•	-	•	•	-
	Chainage,ins	76	78	80	82	84	86	88	90	92	94 .	96 +	98	100	102	104	106
Reading	Depth,mm	•	-	-	-	-	-	-	-	· · • ·	93.7	93.0	93.5	94.1	95.8	95.2	95.9
No. 21	Chainage,ins	108	110	112	114	116	118	120	122	124	126	128	130	132	134	136	138
~*	Depth,mm	96.9	97.8	93.1	99.0	99.2	99.8	100.0	100.0	100.6	100.5	100.3	100.7	100.8	101.0	101.0	1007

+ Start of Weir

f End of Veir

LONGITUDINAL PROFILE CO-ORDINATES

									_					·			
	Chainage,ins	76	78	80	82	84	86	88	90	92	94	96 +	98	100	102	104	106
Reading No.	Depth,mm		-	-	-	•	-	-	•.	-	97.1	96.8	96.3	95.6	100.1	103.9	102.6
	Chainage,ins	108	110	112	114	116	118	120 🗲	122	124	126	128	130	132	134	136	138
24	Depth,mm	103.9	105.5	105.6	106.7	107.8	108.6	109.0	109.4	109.4	109.9	110.0	110.0	110.1	110.0	110.2	110.0
	Chainage,ins	76	78	80	82	84	86	88	90	92	94	96 +	98	100	102	104	106
Reading	Depth,mm	-	-	-	-	-	-	-	-	-	99.1	93.6	97.3	99.4	104.0	106.0	104.0
No. 29	Chainage,ins	108	110	112	114	116	118	120+	122	124	126	128	130	132	134	136	138
29	Depth,mm	106.6	107.7	108.1	108.9	109.8	109.4	111.1	110.9	111.3	110.9	111.1	111.4	111.5	111.5	111.5	111.4
	Chainage,ins	76	78	80	82	84	86	88	90	92	94	96 +	98	100	102	104	106
Reading	Depth,mm	-	-	•	-	-	-	-	•	-	94.4	94.3	94.0	95.5	96.2	97.0	97.4
No.	Chainage,ins	108	110	112	114	116	118	120	122	124	126	128	130	132	134	136	138
32	Depth,mm	97.4	98.0	98.6	99.4	99.5	99.9	100.0	99.8	99.8	100.3	100.1	100.3	100.0	100.1	100.1	100.3
														1			

. . :

+ Start of Weir

/ End of Weir

· WEIR NO. 1

379

LONGITUDINAL PROFILE CO-ORDINATES

Chainage, ins	76	78	80	82	84	86	88	90	92	94	96 +	98	100	102	104	106
Depth,mm	-	-	-	-			• .		•	94.2	93.9	94.3	94.9	95.2	95.6	95.8
Chainage, ins	108	110	112	114	116	118	120 +	122	124	126	128	130	132	134	136	138
Depth,mm	95.9	96.5	96.6	96.9	97.2	97.3	97•3	97.6	97.5	97.4	97.6	97.6	97.8	97.5	97.4	97.5
Chainage,ins	76	78	80	82	84	86	88	90	92	94	96 +	98	100	102	104	106
Depth,mm		•	-		•	-	-	-	•	98.9	93.5	97.6	98.9	101.7	102.6	102.6
Chainage,ins	108	110	112	114	116	118	120 +	122	124	126	128	130	132	134	136	138
Depth,mm	105.3	105.9	105.8	107.3	108.0	108.6	108.8	109.1	108.9	109.5	109.1	109.1	109.7	109.1	109.2	109.5
Chainage,ins	76	78	80	82	84	86	88	90	92	94	96+	98	100	102	104	106
Depth,mm	-	-	•	-	•		•	-	• **	91.3	91.1	91.5	93.5	94.1	95.3	97.0
Chainage,ins	108	110	112	114	116	118	120 +	122	124	126	128	130	132	134	136	138
Depth,mm	97.8	99.0	99.4	100.2	101.8	102.2	103.1	103.5	103.8	104.5	104.2	104.7	104.7	105.1	105.5	105.2
	Depth,mm Chainage,ins Depth,mm Chainage,ins Depth,mm Chainage,ins Depth,mm Chainage,ins Depth,mm Chainage,ins	Depth,mm-Chainage,ins108Depth,mm95.9Chainage,ins76Depth,mm-Chainage,ins108Depth,mm105.3Chainage,ins76Depth,mm-Chainage,ins76Depth,mm-Chainage,ins108Chainage,ins108Chainage,ins108	Depth,mm - - Chainage,ins 108 110 Depth,mm 95.9 96.5 Chainage,ins 76 78 Depth,mm - - Chainage,ins 108 110 Depth,mm - - Chainage,ins 108 110 Depth,mm 105.3 105.9 Chainage,ins 76 78 Depth,mm 105.3 105.9 Chainage,ins 76 78 Depth,mm - - Chainage,ins 108 110 Chainage,ins 108 110	Depth,mm - - Chainage,ins 108 110 112 Depth,mm 95.9 96.5 96.6 Chainage,ins 76 78 80 Depth,mm - - - Chainage,ins 108 110 112 Depth,mm - - - Chainage,ins 108 110 112 Depth,mm 105.3 105.9 106.8 Chainage,ins 76 78 80 Depth,mm 105.3 105.9 106.8 Chainage,ins 76 78 80 Depth,mm - - - Chainage,ins 108 110 112	Depth,mm - - - - Chainage,ins 108 110 112 114 Depth,mm 95.9 96.5 96.6 96.9 Chainage,ins 76 78 80 82 Depth,mm - - - - Chainage,ins 76 78 80 82 Depth,mm - - - - Chainage,ins 108 110 112 114 Depth,mm 105.3 105.9 106.8 107.3 Chainage,ins 76 78 80 82 Depth,mm 105.3 105.9 106.8 107.3 Chainage,ins 76 78 80 82 Depth,mm - - - - Chainage,ins 108 110 112 114	Depth,mm - - - - - Chainage,ins 108 110 112 114 116 Depth,mm 95.9 96.5 96.6 96.9 97.2 Chainage,ins 76 78 80 82 84 Depth,mm - - - - Chainage,ins 76 78 80 82 84 Depth,mm - - - - - Chainage,ins 108 110 112 114 116 Depth,mm - - - - - - Chainage,ins 108 110 112 114 116 Depth,mm - - - - - - Chainage,ins 76 78 80 82 84 Depth,mm - - - - - Chainage,ins 108 110 112 114 116	Depth,mm -<	Depth,mm -<	Depth,mm -<	Depth,mm -<	Depth,mm - - - - - - - - 94.2 Chainage,ins 108 110 112 114 116 118 120 122 124 126 Depth,mm 95.9 96.5 96.6 96.9 97.2 97.3 97.3 97.6 97.5 97.4 Chainage,ins 76 78 80 82 84 86 88 90 92 94 Depth,mm - - - - - - 98.9 Chainage,ins 108 110 112 114 116 118 120 122 124 126 Depth,mm - - - - - - 98.9 Chainage,ins 108 110 112 114 116 118 120 122 124 126 Depth,mm 105.3 105.9 105.8 107.3 108.0 108.8 109.1 108.9 109.5 Chainage,ins 76 78 80	Lnainage,ins 76 78 80 82 84 86 88 90 92 94 96 Depth,mm - - - - - - - 93.9 Chainage,ins 108 110 112 114 116 118 122 124 126 128 Depth,mm 95.9 96.5 96.6 96.9 97.2 97.3 97.6 97.5 97.4 97.6 Chainage,ins 76 78 80 82 84 86 88 90 92 94 96 ⁺ Depth,mm - - - - - - 97.3 97.6 97.5 97.4 97.6 Chainage,ins 76 78 80 82 84 86 88 90 92 94 96 ⁺ Depth,mm - - - - - - - 98.9 93.5 Chainage,ins 108 110 112 114 116 118 109.1 10	Lnainage,ins 76 78 80 82 84 86 88 90 92 94 96 98 Depth,mm - - - - - - - 94.2 93.9 94.3 Chainage,ins 108 110 112 114 116 118 122 124 126 128 130 Depth,mm 95.9 96.5 96.6 96.9 97.2 97.3 97.6 97.5 97.4 97.6 97.6 Chainage,ins 76 78 80 82 84 86 88 90 92 94 96 ⁺ 98 Depth,mm - - - - - - - 97.6 97.6 97.6 Chainage,ins 108 110 112 114 116 118 120 ⁺ 122 124 126 128 130 Depth,mm 105.3 105.9 106.8 107.3 108.0 108.8 109.1 108.9 109.5 109.1 109.1	Lhainage,ins 76 78 80 82 84 86 88 90 92 94 96 98 100 Depth,mm - - - - - - - 94.2 93.9 94.3 94.9 Chainage,ins 108 110 112 114 116 118 120 122 124 126 128 130 132 Depth,mm 95.9 96.5 96.6 96.9 97.2 97.3 97.6 97.5 97.4 97.6 98.9 100 100 100 100 100 112 114 116 118 120 122 124 126 128 130 <td>Chainage,ins 76 78 80 82 84 86 88 90 92 94 96 98 100 102 Depth,mm - - - - - - - - 94.2 93.9 94.3 94.9 95.2 Chainage,ins 108 110 112 114 116 118 120 122 124 126 128 130 132 134 Depth,mm 95.9 96.5 96.6 96.9 97.2 97.3 97.3 97.6 97.5 97.4 97.6 98.9 100.102 Depth,mm - -</td> <td>Chainage,ins 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 Depth,mm - - - - - - - 94.2 93.9 94.3 94.9 95.2 95.6 Chainage,ins 108 110 112 114 116 118 120⁺ 122 124 126 128 130 132 134 136 Depth,mm 95.9 96.5 96.6 96.9 97.2 97.3 97.3 97.6 97.4 97.6 97.6 97.6 97.6 97.6 97.6 97.6 97.6 97.7 97.4 97.6 97.6 97.6 97.6 97.8 97.5 97.4 Chainage,ins 76 78 80 82 84 86 88 90 92 94 96⁺ 98 100 102 104 Depth,mm - - - - - - 98.9 99.5 97.6 98.9<!--</td--></td>	Chainage,ins 76 78 80 82 84 86 88 90 92 94 96 98 100 102 Depth,mm - - - - - - - - 94.2 93.9 94.3 94.9 95.2 Chainage,ins 108 110 112 114 116 118 120 122 124 126 128 130 132 134 Depth,mm 95.9 96.5 96.6 96.9 97.2 97.3 97.3 97.6 97.5 97.4 97.6 98.9 100.102 Depth,mm - -	Chainage,ins 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 Depth,mm - - - - - - - 94.2 93.9 94.3 94.9 95.2 95.6 Chainage,ins 108 110 112 114 116 118 120 ⁺ 122 124 126 128 130 132 134 136 Depth,mm 95.9 96.5 96.6 96.9 97.2 97.3 97.3 97.6 97.4 97.6 97.6 97.6 97.6 97.6 97.6 97.6 97.6 97.7 97.4 97.6 97.6 97.6 97.6 97.8 97.5 97.4 Chainage,ins 76 78 80 82 84 86 88 90 92 94 96 ⁺ 98 100 102 104 Depth,mm - - - - - - 98.9 99.5 97.6 98.9 </td

-

+ Start of Weir

End of Weir

VEIR NO. 1

LONGITUDINAL PROFILE CO-ORDINATES

	Chainage,ins	76	78	80	82	84	86	88	90	92	94	96 +	98	100	102	104	106
Reading No.	Depth,mm	-	-	-	-	•	• .	•	• .	. - (*)	94.1	93.9	94.5	97.1	99.8	105.0	104.9
45	Chainage,ins	108	110	112	114	116	118	120*	122	124	126	128	130	132	134	136	138
	Depth,mm	105.3	108.9	108.8	110.4	111.8	113.9	115.2	115.5	116.3	116.6	116.6	116.2	116.4	117.2	117.8	117.8
	Chainage,ins	76	78	80	82	84	86	88	90	92	94	96 +	98	100	102	104	106
Reading	Depth,mm	132.9	130.4	129.5	129.1	128.7	127.9	126.9	125.0	123.8	121.2	117.9	113.3	107.8	101.7	97.5	93.9
No. 54	Chainage,ins	108	110	112	114	116	118	120	122	124	126	128	130	132	134	136	138
7	Depth,mm	91.0	83.7	87.2	86.4	85.2	84.7	83.7	84.7	84.9	86.	85.3	87.8	87.4	86.5	87.0	85.6
	Chainage,ins	76	78	80	82	84	86	88	90	92	94	96 +	98	100	102	104	106
Reading	Depth,mm	-	•	-	-	• .	-	-		-	95.5	95.9	95.3	97.1	100.2	106.1	105.3
No.	Chainage, ins	108	110	112	114	116	118	120+	122	124	126	128	130	132	134	136	138
56	Depth,mm	105.0	108.5	109.8	110.1	111.2	112.8	113.4	114.7	114.9	115.3	115.1	115.5	115.8	115.4	115.4	1162
{	/	1	1	1		1	1	1			1	1	1	1	1	1	

. . .

+ Start of Weir

/ End of Weir

LONGITUDINAL PROFILE CO-ORDINATES

				1 A.													
	Chainage,ins	76	78	80	82	84	86	88	90	92	94	96 +	98	100	102	104	106
Reading No.	Depth,mm	-	-	-	-	-	-	-	-	-	92.1	91.4	92.1	93.5	95.1	95.5	96.2
59	Chainage,ins	108	110	112	114	116	118	120 +	122	124	126	128	130	132	134	136	138
29	Depth,mm	96.7	97.5	97.9	98.8	99.3	100.1	100.6	100.7	101.1	100.8	101.1	101.7	101.7	101.8	101.8	101.7
	Chainage,ins	76	78	80	82	84	86	88	90	92	94	96 +	98	100	102	104	106
Reading	Depth,mm	142.4	139.1	136.3	134.0	132.5	131.1	129.0	127.5	125.7	122.7	119.8	114.3	103.0	102.4	97.2	92.9
No.	Chainage, ins	108	110	112	114	116	118	120	122	124	126	128	130	132	134	136	138
61	Depth,mm	90.1	83.2	86.6	85.6	83.7	83.7	83.5	83.9	85.3	85.3	83.2	88.2	83.1	87.0	87.6	89.6
	Chainage,ins	76	78	80	82	84	86	88	90	92	94	96 +	98	100	102	104	106
Reading	Depth,mm	- <u> </u>								[1			
No.	Chainage, ins	108	110	112	114	116	118	120 +	122	124	126	128	130	132	134	136	138
	Depth,mm																
	_	1	1	1	i		1	1	1	1	1	1	1	1	1	1	

. . :

+ Start of Weir

f End of Weir

LONGITUDINAL PROFILE CO-ORDINATES

	Chainage, ins	· 76	78	80	82	84	86	88	90	92	94	96	98	100	102	104	106
Reading No.	Depth,mm	-	•		-	-	•	-	-	-	129.2	129.4	129.6	130.2	131.0	131.2	131.8
	Chainage,ins	108	110	112	114	116	118	120 +	122	124	126	128	130	132	134	136	138
63	Depth,mm	132.1	132.6	133.0	133.2	133.7	134.4	134.6	134.3	134.6	134.9	135.4	135.4	135.4	135.5	135.6	135.7
	Chainage,ins	76	78	80	82	84	86	88	90	92	94	96	98	100	102	104	106
Reading	Depth,mm	-	-	-	•	-	•	-	-	-	137.8	137.5	137.3	139.6	141.5	141.7	142.8
No.	Chainage,ins	108	110	112	114	116	118	120 +	122	124	126	128	130	132	134	136	138
66	Depth,mm	143.8	145.2	145.3	146.1	146.2	146.8	147.9	148.4	148.9	148.8	149.3	149.2	149.4	149.3	149.8	149.4
	Chainage,ins	76	78	80	82	84	86	88	90	92	94	96	98	100	102	104	106
Reading	Depth,mm								i						1		
No.	Chainage,ins	108	110	112	114	116	118	120 7	122	124	126	128	130	132	134	136	138
	Depth,mm								-								1

+ Start of Weir

f End of Weir

LONGITUDINAL PROFILE CO-ORDINATES

	Chainage, ins	76	78	80	82	84	86	88	90	92	94	96 +	98	100	102	104	106
Reading No.	Depth,mm	135.0	132.7	132.3	131.6	129.8	127.5	124.4	121.7	117.4	112.2	105.0	96.3	87.7	78.4	71.0	64.4
71	Chainage,ins	108	110	112	114	116	118	120	122	124	126	128	130	132	134	136	138
/*	Depth,mm	59.4	55.1	52.7	49.8	47.9	45.7	45.2	45.6	45.7	45.8	46.7	48.2	50.8	50.0	48.3	47.4
	Chainage,ins	76	78	80	82	84	86	88	90	92	94	96 +	98	100	102	104	106
Reading No.	Depth,nm	128.3	126.0	123.3	121.9	118.9	17.3	114.9	112.3	103.6	103.9	93.0	90.0	81.7	73.2	64.8	59.8
	Chainage,ins	108	110	112	114	116	118	120 +	122	124	126	128	130	132	134	136	138
72	Depth,mm	56.1	52.1	50.0	49.1	47.0	45.8	44.7	44.0	44.2	44.6	46.0	47.4	48.9	43.1	45.1	46.0
	Chainage,ins	76	78	80	82	84	86	88	90	92	94 .	96 +	98	100	102	104	106
Reading	Depth,mm	113.5	111.7	111.0	110.5	109.2	108.3	106.3	104.3	100.7	95.6	90.5	82.7	74.8	66.1	60.1	55.3
No.	Chainage, ins	108	110	112	114	116	118	120#	122	124	126	128	130	132	134	136	138
73	Depth,mm	52.1	49.4	47.4	46.2	44.1	43.6	42.7	42.5	42.9	44.1	45.5	47.0	45.8	44.5	44.1	45.9

• . :

+ Start of Weir

f End of Weir

LONGITUDINAL PROFILE CO-ORDINATES

	Chainage,ins	76	78	80	82	84	86	88	90	92	94	96 +	98	100	102	104	106
Reading No.	Depth,mm	101.1	99.0	98.4	97.8	95.9	96.3	93.8	91.2	87.7	84.3	79.2	73.7	66.5	59.5	54.4	51.0
	Chainage,ins	108	110	112	114	116	118	120	122	124	126	128	130	132	134	136	138
74	Depth,mm	48.1	46.2	44.6	43.6	42.3	42.0	41.6	41.5	43.1	43.3	44.0	44.1	44.2	44.0	44.6	46.0
	Chainage,ins	76	78	80	82	84	86	88	90	92.	94	96 +	98	100	102	104	106
Reading No.	Depth,nm	110.7	109.9	109.8	103.2	107.3	105.7	102.7	99.9	95.2	91.8	85.6	79.4	71.4	64.2	58.1	54.2
NO. 75	Chainagé,ins	108	110	112	114	116	118	120 +	122	124	126	128	130	132	134	136	138
	Depth,mm	50.6	48.6	46.6	45.3	43.8	43.0	42.6	42.7	43.3	44.4	45.4	46.1	45.0	44.3	44.5	45.9
	Chainage, ins	76	78	80	82	84	86	88	90	92	94	96 +	98	100	102	104	106
Reading	Depth,mm	121.0	118.8	116.1	114.7	113.1	111.2	109.4	107.4	104.4	99.9	94.7	87.2	78.9	71.3	64.1	57.7
No. 76	Chainage,ins	108	110	112	114	116	118	120 +	122	124	126	128	130	132	134	136	138
70	Depth,mm	53.7	50.7	48.7	46.8	45.9	44.1	43.6	43.1	43.4	44.4	46.0	47.1	46.5	45.7	45.1	45.3

. . :

+ Start of Weir

/ End of Weir

LONGITUDINAL PROFILE CO-ORDINATES

Chainago inc	76	70	00	02	0/	96	00	00	02.	04	06+	00	100	102	104	106
una maye, ms	70											90		102	104	
Depth,mm	97.6	97.4	99.0	100.8	101.6	101.8	101.8	102.0	102.0	100.0	96.2	91.7	84.8	77.5	71.2	64.7
Chainage,ins	108	110	112	114	116	118	120	122	124	126	128	130	132	134	136	138
Depth,mm	59.7	55•5	53.3	50.3	48.8	47.4	47.0	45.3	46.0	45.1	46.9	48.5	49.6	50.7	49.6	47.9
Chainage,ins	76	78	80	82	84	86	88	90	92	94	96 +	98	100	102	104	106
Depth,mm	79.0	79.1	79.3	79.3	79.5	79.4	79.6	80.6	80.7	80.7	80.7	78.7	75.6	71.8	68.1	65.1
Chainage,ins	108	110	112	114	116	118	120	122	124	126	128	130	.132	134	136	138
Depth,mm	61.1	58.2	55.4	52.6	50.6	49.3	48.1	47.1	47.2	47.3	48.1	49.2	50.6	52.7	52.0	50.2
Chainage,ins	76	78	80	82	84	86	88	90	92	94	96 +	98	100	102	104	106
Depth,mm	67.4	67.5	67.8	63.0	67.8	67.7	67.9	69.0	70.4	70.3	69.9	68.3	66.8	65.0	63.5	60.0
Chainage,ins	108	110	112	114	116	118	120#	122	124	126	128	130	132	134	136	138
Depth,mm	58.1	56.9	54.8	52.9	51.1	50.0	49.0	43.8	48.9	49.0	49.1	49.2	51.4	53.9	53.3	51.8
	Chainage,ins Depth,mm Chainage,ins Depth,mm Chainage,ins Depth,mm Chainage,ins Depth,mm Chainage,ins	Depth,mm97.6Chainage,ins108Depth,mm59.7Chainage,ins76Depth,mm79.0Chainage,ins108Depth,mm61.1Chainage,ins76Depth,mm61.1Chainage,ins76Depth,mm61.1Chainage,ins108Depth,mm108	Depth,mm 97.6 97.4 Chainage,ins 108 110 Depth,mm 59.7 55.5 Chainage,ins 76 78 Depth,mm 79.0 79.1 Chainage,ins 108 110 Depth,mm 61.1 53.2 Chainage,ins 76 78 Depth,mm 61.1 53.2 Chainage,ins 76 78 Depth,mm 61.1 53.2 Chainage,ins 76 78 Depth,mm 108 110 Chainage,ins 108 110	Depth,mm 97.6 97.4 99.0 Chainage,ins 108 110 112 Depth,mm 59.7 55.5 53.3 Chainage,ins 76 78 80 Depth,mm 79.0 79.1 79.3 Chainage,ins 108 110 112 Depth,mm 79.0 79.1 79.3 Chainage,ins 108 110 112 Depth,mm 61.1 53.2 55.4 Chainage,ins 76 78 80 Depth,mm 61.1 53.2 55.4 Chainage,ins 76 78 80 Depth,mm 67.4 67.5 67.8 Chainage,ins 108 110 112	Depth,mm97.697.499.0100.8Chainage,ins108110112114Depth,mm59.755.553.350.3Chainage,ins76788082Depth,mm79.079.179.379.3Chainage,ins108110112114Depth,mm61.153.255.452.6Chainage,ins76788082Depth,mm61.153.255.452.6Chainage,ins76788082Depth,mm67.467.567.868.0Chainage,ins108110112114	Depth,mm97.697.499.0100.8101.6Chainage,ins108110112114116Depth,mm59.755.553.350.348.8Chainage,ins7678808284Depth,mm79.079.179.379.379.5Chainage,ins108110112114116Depth,mm61.158.255.452.650.6Chainage,ins7678808284Depth,mm61.158.255.452.650.6Chainage,ins7678808284Depth,mm67.467.567.868.067.8Chainage,ins108110112114116Depth,mm67.467.567.868.067.8Chainage,ins108110112114116	Depth,mm97.697.499.0100.8101.6101.8Chainage,ins108110112114116118Depth,mm59.755.553.350.348.847.4Chainage,ins767880828486Depth,mm79.079.179.379.379.579.4Chainage,ins108110112114116118Depth,mm61.153.255.452.650.649.3Chainage,ins767880828486Depth,mm61.153.255.452.650.649.3Chainage,ins767880828486Depth,mm67.467.567.868.067.867.7Chainage,ins108110112114116118	Depth,mm97.697.499.0100.8101.6101.8101.8Chainage,ins108110112114116118120*Depth,mm59.755.553.350.348.847.447.0Chainage,ins76788082848688Depth,mm79.079.179.379.379.579.479.6Chainage,ins108110112114116118120*Depth,mm61.158.255.452.650.649.348.1Chainage,ins76788082848688Depth,mm61.158.255.452.650.649.348.1Chainage,ins76788082848688Depth,mm67.467.567.868.067.867.767.9Chainage,ins108110112114116118120*	Depth,mm97.697.499.0100.8101.6101.8101.8102.0Chainage,ins108110112114116118120*122Depth,mm59.755.553.350.348.847.447.046.3Chainage,ins7678808284868890Depth,mm79.079.179.379.379.579.479.680.6Chainage,ins108110112114116118120*122Depth,mm61.153.255.452.650.649.348.147.1Chainage,ins7678808284868890Depth,mm61.153.255.452.650.649.348.147.1Chainage,ins7678808284868890Depth,mm61.153.255.452.650.649.348.147.1Chainage,ins7678808284868890Depth,mm67.467.567.868.067.867.767.969.0Chainage,ins108110112114116118120*122	Depth,mm97.697.499.0100.8101.6101.8101.8102.0102.0Chainage,ins108110112114116118120*122124Depth,mm59.755.553.350.348.847.447.046.346.0Chainage,ins767880828486889092Depth,mm79.079.179.379.379.579.479.680.680.7Chainage,ins108110112114116118120*122124Depth,mm61.158.255.452.650.649.348.147.147.2Chainage,ins767880828486889092Depth,mm61.158.255.452.650.649.348.147.147.2Chainage,ins767880828486889092Depth,mm61.158.255.452.650.649.348.147.147.2Chainage,ins767880828486889092Depth,mm67.467.567.868.067.767.969.070.4Chainage,ins108110112114116118122*124	Depth ,mm97.697.499.0100.8101.6101.8101.8102.0102.0100.0Chainage,ins108110112114116118120*122124126Depth ,mm59.755.553.350.348.847.447.046.346.045.1Chainage,ins76788082848688909294Depth ,mm79.079.179.379.379.579.479.680.680.780.7Chainage,ins108110112114116118120*122124126Depth ,mm61.153.255.452.650.649.348.147.147.247.3Chainage,ins76788082848688909294Depth ,mm61.153.255.452.650.649.348.147.147.247.3Chainage,ins76788082848688909294Depth ,mm67.467.567.868.067.867.767.969.070.470.3Chainage,ins108110112114116118120*122124126Chainage,ins108110112114116118120*122124126	Depth,mm97.697.499.0100.8101.6101.8101.8102.0102.0100.096.2Chainage,ins108110112114116118120*122124126128Depth,mm59.755.553.350.348.847.447.046.346.046.146.9Chainage,ins7678808284868890929496*Depth,mm79.079.179.379.379.579.479.680.680.780.780.7Chainage,ins108110112114116118120*122124126128Depth,mm61.158.255.452.650.649.348.147.147.247.348.1Chainage,ins7678808284868890929496*Depth,mm61.158.255.452.650.649.348.147.147.247.348.1Chainage,ins7678808284868890929496*Depth,mm61.467.567.868.067.767.969.070.470.369.9Chainage,ins108110112114116118120*122124126128Depth,mm67.467.567.868.067.7 <td>Depth,mm 97.6 97.4 99.0 100.8 101.6 101.8 102.0 102.0 100.0 95.2 91.7 Chainage,ins 108 110 112 114 116 118 120⁺ 122 124 126 128 130 Depth,mm 59.7 55.5 53.3 50.3 48.8 47.4 47.0 46.3 46.0 45.1 46.9 48.5 Chainage,ins 76 78 80 82 84 86 88 90 92 94 96⁺ 98 Depth,mm 79.0 79.1 79.3 79.5 79.4 79.6 80.6 80.7 80.7 80.7 73.7 Chainage,ins 108 110 112 114 116 118 120⁺ 122 124 126 128 130 Depth,mm 61.1 53.2 55.4 52.6 50.6 49.3 48.1 47.1 47.2 47.3 48.1 49.2 Chainage,ins 76 78 80 82</td> <td>Depth,mm 97.6 97.4 99.0 100.8 101.6 101.8 102.0 102.0 100.0 95.2 91.7 54.8 Chainage,ins 108 110 112 114 116 118 120⁺ 122 124 126 128 130 132 Depth,mm 59.7 55.5 53.3 50.3 48.8 47.4 47.0 46.3 46.0 46.1 46.9 48.5 49.6 Chainage,ins 76 78 80 82 84 86 88 90 92 94 96⁺ 98 100 Depth,mm 79.0 79.1 79.3 79.5 79.4 79.6 80.6 80.7 80.7 80.7 78.7 75.6 Chainage,ins 108 110 112 114 116 118 120⁺ 122 124 126 128 130 132 Depth,mm 61.1 59.2 55.4 52.6 50.6 49.3 48.1 47.1 47.2 47.3 48.1 49.2 <</td> <td>Depth,mm 97.6 97.4 99.0 100.8 101.6 101.8 102.0 102.0 100.0 95.2 91.7 54.8 77.5 Chainage,ins 108 110 112 114 116 118 120⁺ 122 124 126 128 130 132 134 Depth,mm 59.7 55.5 53.3 50.3 48.8 47.4 47.0 46.3 46.0 45.1 46.9 48.5 49.6 50.7 Chainage,ins 76 78 80 82 84 86 88 90 92 94 96⁺ 98 100 102 Depth,mm 79.0 79.1 79.3 79.5 79.4 79.6 80.6 80.7 80.7 80.7 78.7 75.6 71.8 Chainage,ins 108 110 112 114 116 118 120⁺ 122 124 126 128 130 132 134 Depth,mm 61.1 58.2 55.4 52.6 50.6 49.3</td> <td>Depth,mm 97.6 97.4 99.0 100.8 101.6 101.8 102.0 102.0 100.0 96.2 91.7 54.8 77.5 71.2 Chainage,ins 108 110 112 114 116 118 120⁺ 122 124 126 128 130 132 134 136 Depth,mm 59.7 55.5 53.3 50.3 48.8 47.4 47.0 46.3 46.0 46.1 46.9 48.5 49.6 50.7 49.6 Chainage,ins 76 78 80 82 84 86 88 90 92 94 96⁺⁺ 98 100 102 104 Depth,mm 79.0 79.1 79.3 79.3 79.5 79.4 79.6 80.6 80.7 80.7 80.7 78.7 75.6 71.8 63.1 Chainage,ins 108 110 112 114 116 118 120⁺⁺ 122 124 126 128 130 132 134 136 Dept</td>	Depth,mm 97.6 97.4 99.0 100.8 101.6 101.8 102.0 102.0 100.0 95.2 91.7 Chainage,ins 108 110 112 114 116 118 120 ⁺ 122 124 126 128 130 Depth,mm 59.7 55.5 53.3 50.3 48.8 47.4 47.0 46.3 46.0 45.1 46.9 48.5 Chainage,ins 76 78 80 82 84 86 88 90 92 94 96 ⁺ 98 Depth,mm 79.0 79.1 79.3 79.5 79.4 79.6 80.6 80.7 80.7 80.7 73.7 Chainage,ins 108 110 112 114 116 118 120 ⁺ 122 124 126 128 130 Depth,mm 61.1 53.2 55.4 52.6 50.6 49.3 48.1 47.1 47.2 47.3 48.1 49.2 Chainage,ins 76 78 80 82	Depth,mm 97.6 97.4 99.0 100.8 101.6 101.8 102.0 102.0 100.0 95.2 91.7 54.8 Chainage,ins 108 110 112 114 116 118 120 ⁺ 122 124 126 128 130 132 Depth,mm 59.7 55.5 53.3 50.3 48.8 47.4 47.0 46.3 46.0 46.1 46.9 48.5 49.6 Chainage,ins 76 78 80 82 84 86 88 90 92 94 96 ⁺ 98 100 Depth,mm 79.0 79.1 79.3 79.5 79.4 79.6 80.6 80.7 80.7 80.7 78.7 75.6 Chainage,ins 108 110 112 114 116 118 120 ⁺ 122 124 126 128 130 132 Depth,mm 61.1 59.2 55.4 52.6 50.6 49.3 48.1 47.1 47.2 47.3 48.1 49.2 <	Depth,mm 97.6 97.4 99.0 100.8 101.6 101.8 102.0 102.0 100.0 95.2 91.7 54.8 77.5 Chainage,ins 108 110 112 114 116 118 120 ⁺ 122 124 126 128 130 132 134 Depth,mm 59.7 55.5 53.3 50.3 48.8 47.4 47.0 46.3 46.0 45.1 46.9 48.5 49.6 50.7 Chainage,ins 76 78 80 82 84 86 88 90 92 94 96 ⁺ 98 100 102 Depth,mm 79.0 79.1 79.3 79.5 79.4 79.6 80.6 80.7 80.7 80.7 78.7 75.6 71.8 Chainage,ins 108 110 112 114 116 118 120 ⁺ 122 124 126 128 130 132 134 Depth,mm 61.1 58.2 55.4 52.6 50.6 49.3	Depth,mm 97.6 97.4 99.0 100.8 101.6 101.8 102.0 102.0 100.0 96.2 91.7 54.8 77.5 71.2 Chainage,ins 108 110 112 114 116 118 120 ⁺ 122 124 126 128 130 132 134 136 Depth,mm 59.7 55.5 53.3 50.3 48.8 47.4 47.0 46.3 46.0 46.1 46.9 48.5 49.6 50.7 49.6 Chainage,ins 76 78 80 82 84 86 88 90 92 94 96 ⁺⁺ 98 100 102 104 Depth,mm 79.0 79.1 79.3 79.3 79.5 79.4 79.6 80.6 80.7 80.7 80.7 78.7 75.6 71.8 63.1 Chainage,ins 108 110 112 114 116 118 120 ⁺⁺ 122 124 126 128 130 132 134 136 Dept

.

+ Start of Weir

/ End of Weir

LONGITUDINAL PROFILE CO-ORDINATES

	Chainage, ins	76	78	80	82	84	86	88	90	92	94	96 +	98	100	102	104	106
Reading No.	Depth,mm	136.2	129.7	129.1	126.7	125.5	123.3	120.7	119.5	116.7	112.5	106.7	98.3	88.6	78.7	70.2	63.2
132	Chainage,ins	108	110	112	114	116	118	120+	122	124	126	128	130	132	134	136	138
	Depth,mm	59.3	55.0	52.5	50.4	43.8	47.1	46.0	45.4	45.3	46.4	47.0	50.4	50.5	48.3	47.3	47.0
	Chainage,ins	76	78	80	82	84	86	88	90	92	94	96 +	98	100	102	104	106
Reading No.	Depth,mm	130.7	127.0	124.0	122.8	120.4	119.5	117.1	115.3	112.1	108.0	102.8	94.7	85.4	78.2	70.7	64.1
133	Chainage,ins	108	110	112	114	116	118	120+	122	124	126	128	130	132	134	136	138
	Depth,mm	58.8	54.9	42.0	49.9	48.3	46.9	46.0	45.4	45.2	45.4	45.5	47.9	49.6	49.1	47.8	46.6
	Chainage,ins	76	78	80	82	84	86	88	90	92	94	96 +	98	100	102	104	106
Reading No.	Depth,mm	122.2	120.4	118.8	118.3	117.0	116.2	114.2	112.4	109.1	105.1	99.4	91.6	83.2	75.4	68.1	62.2
134	Chainage,ins	108	110	112	114	116	118	120+	122	124	126	128	130	132	134	136	138
* <i>J</i> T	Depth,mm	57.3	53.7	51.1	48.9	47.3	46.2	45.2	44.6	44.7	44.9	45.9	47.1	48.8	48.8	46.1	45.9

+ Start of Weir

f End of Weir

387

LONGITUDINAL PROFILE CO-ORDINATES

							•								•		
	Chainage,ins	76	78	80	82	84	86	88	90	92	94	96 +	98	100	102	104	106
Reading No.	Depth,mm	118.0	115.7	115.1	114.3	113.1	112.0	110.4	103.2	105.2	101.1	95.7	88.1	79.9	71.6	64.5	59.2
	Chainage,ins	108	110	112	114	116	118	120 +	122	124	126	128	130	132	134	136	138
135	Depth,mm	55.3	51.8	49.6	47.8	46.6	45.0	44.0	43.8	43.5	44.4	45.5	47.2	48.1	46.8	45.2	45.1
	Chainage,ins	76	78	80	82	84	86	88	90	92	94	96 +	98	100	102	104	106
Reading	Depth,mm	115.2	113.7	113.2	111.8	109.7	103.2	105.0	103.4	100.5	95.9	90.5	83.3	75.6	68.5	61.6	56.5
No. 136	Chainage, ins	108	110	112	114	116	118	120 7	122	124	126	128	130	132	134	136	138
	Depth,mm	53.2	50.3	48.4	46.8	45.2	44.1	43.1	42.9	43.1	43.8	45.6	46.9	46.5	44.4	44.1	44.9
	Chainage,ins	76	78	80	82	84	86	88	90	92	94	96 +	98	100	102	104	105
Reading	Depth,mm	108.7	106.8	105.4	103.5	101.8	100.5	98.4	96.2	93.7	90.4	85.5	79.2	72.2	64.8	59.1	54.4
No.	Chainage,ins	108	110	112	114	116	118	120 +	122	124	126	128	130	132	134	136	138
137	Depth,mm	51.2	48.8	47.1	45.6	44.3	42.9	42.5	42.2	42.6	43.6	44.6	45.7	45.4	43.5	43.4	44.2
<u> </u>		1	1	1						1	1	1	1	1	ł	1	1

. . :

+ Start of Weir

f End of Weir

LONGITUDINAL PROFILE CO-ORDINATES

	Chainage,ins	76	78	80	82	84	86	88	90	92	94	96 +	98	100	102	104	106
Reading No.	Depth,mm	89.9	90.3	90.2	91.2	92.2	93.1	93.0	92.9	92.3	90.9	89.0	85.7	81.0	75.3	69.7	64.5
138	Chainage,ins	108	110	112	114	116	118	120+	122	124	126	128	130	132	134	136	138
	Depth,mm	60.3	56.0	53.1	51.0	49.0	47.4	46.6	45.9	46.0	45.8	46.5	47.9	49.6	50.2	48.5	47.3
	Chainage,ins	76	78	80	82	84	86	88	90	92	94	96 +	98	100	102	104	106
Reading	Depth,mm	74.6	75.3	75.8	75.8	75.6	75.5	75.6	75.7	76.3	76.6	76.2	75.0	72.4	69.4	65.3	62.6
No.	Chainage,ins	108	110	112	114	116	118	120+	122	124	126	128	130	132	134	136	138
1)7	Depth,mm	59.3	56.5	54.4	52.3	50.2	48.8	47.7	47.3	47.4	47.4	47.9	49.0	50.2	51.7	50.7	49.4
	Chainage,ins	76	78	80	82	84	86	88	90	92	94	96 +	98	100	102	104	106
Reading	Depth,mm	66.0	65.9	65.8	65.3	65.1	64.5	64.9	66.2	67.5	63.0	68.0	65.6	64.4	62.8	60.2	58.1
No. 140	Chainage,ins	108	110	112	114	116	118	120+	122	124	126	128	130	132	134	136	138
140	Depth,mm	55.4	54.5	53.2	51.6	50.3	43.7	48.0	47.5	47.3	47.5	47.9	48.6	50.0	51.8	52.1	50.7

+ Start of Weir

f End of Weir

LONGITUDINAL PROFILE CO-ORDINATES

	Chainage,ins	76	78	80	82	84	86	88	90	92	94	96+	98	100	102	104	106
Reading No.	Depth,mm	128.2	125.1	123.3	122.7	122.8	121.1	120.6	117.7	114.5	111.0	105.5	98.3	89.3	79.2	71.1	64.2
141	Chainage,ins	108	110	112	114	116	118	120 +	122	124	126	128	130	132	134	136	138
TAT	Depth,mm	59.5	55•7	53.2	51.0	49.5	48.4	47.2	45.7	45.6	46.1	47.9	49.3	50.8	49.2	47.6	47.3
	Chainage,ins	76	78	80	82	84	86	88	90	92	94	96 +	98	100	102	104	106
Reading	Depth,mm	126.1	124.9	124.9	124.6	123.7	121.6	119.6	116.4	112.9	103.4	103.0	95.1	85.5	78.1	71.1	65.0
No. 142	Chainage,ins	108	110	112	114	116	118	120 +	122	124	126	128	130	132	134	136	138
172	Depth,mm	59.6	56.0	52.6	50.4	49.0	47.7	46.7	45.9	45.5	45.7	45.6	47.8	49.7	49.8	47.9	45.7
	Chainage,ins	76	78	80	82	84	86	88	90	92	94	96 +	98	100	102	104	106
Reading	Depth,mm	124.3	121.5	120.4	118.5	116.3	114.3	112.4	109.8	106.6	102.3	97.4	90.2	82.3	74.6	63.0	62.1
No. 143	Chainage,ins	108	110	112	114	116	118	120 ≠	122	124	126	128	130	132	134	136	138
	Depth,mm	57.5	53.9	51.3	49.2	47.9	46.8	45.8	45.1	44.8	45.1	45.8	47.1	48.6	43.8	46.9	45.8

- + Start of Weir
- f End of Weir

LONGITUDINAL PROFILE CO-ORDINATES

																	
	Chainage, ins	76	78	80	82	84	86	88	90	92	94	96 +	98	100	102	104	106
Reading No.	Depth,mm	118.1	116.0	114.2	112.0	110.2	108.1	105.7	104.3	101.6	97.8	93.1	86.5	78.9	71.6	64.9	59.6
144	Chainage,ins	108	110	112	114	116	118	120 +	122	124	126	128	130	132	134	136	138
TAA	Depth,mm	55.6	52.2	50.1	48.2	46.9	45.9	44.9	44.4	44.1	44.3	45.1	46.7	48.2	47.8	45.8	44.9
	Chainage,ins	76	78	80	82	84	86	88	90	92	94	96 +	98	100	102	. 104	106
Reading	Depth,mm	109.4	106.6	105.0	104.2	102.7	101.8	100.4	98.7	96.2	93.2	88.4	82.5	75.6	68.3	62.3	57.7
No. 145	Chainage,ins	108	110	112	114	116	118	120 +	122	124	126	128	130	132	134	136	138
145	Depth,mm	53.6	50.5	48.7	47.1	46.1	44.9	43.9	42.8	43.3	43.5	43.8	46.2	46.9	46.4	4.7	44.1
	Chainage,ins	76	78	80	82	84	86	88	90	92	94	96 +	98	100	102	104	106
Reading	Depth,mm	99.9	98.5	97.9	97.3	96.6	95.3	94.5	93.4	90.9	87.8	83.5	77.8	71.4	64.3	58.4	54.5
No.	Chainage,ins	108	110	112	114	116	118	120 +	122	124	126	128	130	132	134	136	138
146	Depth,mm	50.9	48.9	47.4	45.8	44.4	43.5	42.4	42.2	42.6	43.2	44.0	45.3	45.3	43.9	43.4	43.8
		1	1	1		1			1			1	1	1	1	1	1

. :

+ Start of Weir

/ End of Weir

LONGITUDINAL PROFILE CO-ORDINATES

Chainage,ins	76	78	80	82	84	86	88	90	92	94	96 +	98	100	102	104	106
Depth,mm	86.4	86.2	86.1	86.1	87.0	89.2	88.5	83.6	87.6	85.7	85.2	82.1	78.2	74.1	68.7	64.5
Chainage,ins	108	110	112	114	116	118	120 +	122	124	126	128	130	132	134	136	138
Depth,mm	60.3	56.8	53.7	51.2	49.4	48.2	47.4	46.4	45.4	46.7	47.1	48.2	49.7	50.8	49.4	47.8
Chainage,ins	76	78	80	82	84	86	88	90	92	94	96 +	98	100	102	104	106
Depth,mm	72.3	72.6	73.0	72.9	72.8	72.9	73.1	73.1	73.3	73.5	73.5	72.3	70.5	67.5	64.7	60.9
Chainage,ins	108	110	112	114	116	118	120 +	122	124	126	128	130	132	134	136	138
Depth,mm	58.6	55.6	53.9	52.0	50.6	49.1	48.1	48.1	47.4	47.7	48.2	49.2	50.1	51.7	50.8	49.5
Chainage,ins	76	78	80	82	84	86	88	90	92	94	96 +	98	100	102	104	106
Depth,mm	64.6	64.4	64.4	64.3	63.6	63.4	63.9	63.6	65.7	65.7	66.2	64.7	63.7	61.4	60.0	57.7
Chainage,ins	108	110	112	114	116	118	120 +	122	124	126	128	130	132	134	136	138
Depth,mm	55.5	54.3	52.5	51.5	50.3	49.0	48.4	47.7	47.5	47.7	48.2	48.6	49.7	51.2	52.1	51.5
	Depth,mm Chainage,ins Depth,mm Chainage,ins Depth,mm Chainage,ins Depth,mm Chainage,ins Depth,mm Chainage,ins	Depth,mm86.4Chainage,ins108Depth,mm60.3Chainage,ins76Depth,mm72.3Chainage,ins108Depth,mm58.6Chainage,ins76Depth,mm64.6Chainage,ins108	Depth,mm 86.4 86.2 Chainage,ins 108 110 Depth,mm 60.3 56.8 Chainage,ins 76 78 Depth,mm 72.3 72.6 Chainage,ins 108 110 Depth,mm 58.6 55.6 Chainage,ins 76 78 Depth,mm 58.6 55.6 Chainage,ins 108 110	Depth,mm86.486.286.1Chainage,ins108110112Depth,mm60.356.853.7Chainage,ins767880Depth,mm72.372.673.0Chainage,ins108110112Depth,mm58.655.653.9Chainage,ins767880Depth,mm58.655.653.9Chainage,ins767880Depth,mm64.664.464.4Chainage,ins108110112	Depth,mm85.486.286.1Chainage,ins108110112114Depth,mm60.356.853.751.2Chainage,ins76788082Depth,mm72.372.673.072.9Chainage,ins108110112114Depth,mm58.655.653.952.0Chainage,ins76788082Depth,mm58.655.653.952.0Chainage,ins76788082Depth,mm64.664.464.3Chainage,ins108110112114	Depth,mm86.486.286.186.187.0Chainage,ins108110112114116Depth,mm60.356.853.751.249.4Chainage,ins7678808284Depth,mm72.372.673.072.972.8Chainage,ins108110112114116Depth,mm58.655.653.952.050.6Chainage,ins7678808284Depth,mm58.655.653.952.050.6Chainage,ins7678808284Depth,mm64.664.464.363.6Chainage,ins108110112114116	Depth,mm86.486.286.186.187.083.2Chainage,ins108110112114116118Depth,mm60.356.853.751.249.448.2Chainage,ins767880828486Depth,mm72.372.673.072.972.872.9Chainage,ins108110112114116118Depth,mm58.655.653.952.050.649.1Chainage,ins767880828486Depth,mm58.655.653.952.050.649.1Chainage,ins767880828486Depth,mm64.664.464.464.363.663.4Chainage,ins108110112114116118	Depth,mm86.486.286.186.187.083.288.5Chainage,ins108110112114116118120 *Depth,mm60.356.853.751.249.448.247.4Chainage,ins76788082848688Depth,mm72.372.673.072.972.872.973.1Chainage,ins108110112114116118120 *Depth,mm58.655.653.952.050.649.148.1Chainage,ins76788082848688Depth,mm58.655.653.952.050.649.148.1Chainage,ins76788082848688Depth,mm64.664.464.363.663.463.9Chainage,ins108110112114116118120 *	Depth,mm 86.4 86.2 86.1 86.1 87.0 83.2 83.5 83.6 Chainage,ins 108 110 112 114 116 118 120 ⁺ 122 Depth,mm 60.3 56.8 53.7 51.2 49.4 48.2 47.4 46.4 Chainage,ins 76 78 80 82 84 86 88 90 Depth,mm 72.3 72.6 73.0 72.9 72.8 72.9 73.1 73.1 Chainage,ins 108 110 112 114 116 118 120 ⁺ 122 Depth,mm 72.3 72.6 73.0 72.9 72.8 72.9 73.1 73.1 Chainage,ins 108 110 112 114 116 118 120 ⁺ 122 Depth,mm 58.6 55.6 53.9 52.0 50.6 49.1 48.1 48.1 Chainage,ins 76 78 80 82 84 86 88 90 Depth,mm <td>Depth,mm86.486.286.186.187.083.288.583.687.6Chainage,ins108110112114116118$120^{\cancel{1}}$122124Depth,mm60.356.853.751.249.448.247.446.446.4Chainage,ins767880828486889092Depth,mm72.372.673.072.972.872.973.173.173.3Chainage,ins108110112114116118120^{$\cancel{1}$}122124Depth,mm58.655.653.952.050.649.148.148.147.4Chainage,ins767880828486889092Depth,mm58.655.653.952.050.649.148.148.147.4Chainage,ins767880828486889092Depth,mm58.655.653.952.050.649.148.148.147.4Chainage,ins767880828486889092Depth,mm64.664.464.363.663.463.963.665.7Chainage,ins108110112114116118120^{$\cancel{1}$122124}</td> <td>Depth,mm86.486.286.186.187.089.288.588.687.685.7Chainage,ins108110112114116118$120^{\neq}$122124126Depth,mm60.356.853.751.249.448.247.446.446.446.7Chainage,ins76788082848688909294Depth,mm72.372.673.072.972.872.973.173.173.373.5Chainage,ins108110112114116118120^{\neq}122124126Depth,mm58.655.653.952.050.649.148.148.147.447.7Chainage,ins76788082848688909294Depth,mm58.655.653.952.050.649.148.148.147.447.7Chainage,ins76788082848688909294Depth,mm64.664.464.363.663.463.963.665.765.7Chainage,ins108110112114116118120 $^{\neq}$122124126</td> <td>Depth,mm86.486.286.186.187.083.283.583.687.686.785.2Chainage,ins108110112114116118$120^{+}$122124126128Depth,mm60.356.853.751.249.448.247.446.446.446.747.1Chainage,ins7678808284868890929496^+Depth,mm72.372.673.072.972.872.973.173.173.373.573.5Chainage,ins108110112114116118120^+122124126128Depth,mm58.655.653.952.050.649.148.148.147.447.748.2Chainage,ins108110112114116118120^+122124126128Depth,mm58.655.653.952.050.649.148.148.147.447.748.2Chainage,ins7678808284868890929496^+Depth,mm64.664.464.363.663.463.963.665.765.766.2Chainage,ins108110112114116118120^+122124126128</td> <td>Depth,mm 86.4 86.2 86.1 86.1 87.0 83.2 83.5 83.6 87.6 86.7 85.2 82.1 Chainage,ins 108 110 112 114 116 118 120 * 122 124 126 128 130 Depth,mm 60.3 56.8 53.7 51.2 49.4 48.2 47.4 46.4 46.7 47.1 48.2 Chainage,ins 76 78 80 82 84 86 88 90 92 94 96 * 98 Depth,mm 72.3 72.6 73.0 72.9 72.8 72.9 73.1 73.1 73.3 73.5 73.5 72.3 Chainage,ins 108 110 112 114 116 118 120 * 122 124 126 128 130 Depth,mm 58.6 55.6 53.9 52.0 50.6 49.1 48.1 47.4 47.7 48.2 49.2 Chainage,ins 76 78 80 82 84<!--</td--><td>Depth,mm86.486.286.166.187.083.288.583.687.686.785.282.178.2Chainage,ins108110112114116118$120^{+}$122124126128130132Depth,mm60.356.853.751.249.448.247.446.446.446.747.148.249.7Chainage,ins7678808284868890929496^+98100Depth,mm72.372.673.072.972.872.973.173.173.373.573.572.370.5Chainage,ins108110112114116118$120^{+}$122124126128130132Depth,mm58.655.653.952.050.649.148.147.446.747.548.249.250.1Chainage,ins108110112114116118$120^{+}$122124126128130132Depth,mm58.655.653.952.050.649.148.148.147.447.748.249.250.1Chainage,ins7678808284868890929496^+98100Depth,mm64.664.464.363.663.463.963.665.765.7<</td><td>Depth,mm86.486.286.186.187.083.288.583.687.686.785.282.178.274.1Chainage,ins108110112114116118$120^{\neq}$122124126128130132134Depth,mm60.356.853.751.249.448.247.446.446.446.747.148.249.750.8Chainage,ins7678808284868890929496⁺98100102Depth,mm72.372.673.072.972.872.973.173.173.373.573.572.370.567.5Chainage,ins108110112114116118120⁺122124126128130132134Depth,mm58.655.653.952.050.649.148.147.447.748.249.250.151.7Chainage,ins108110112114116118120⁺122124126128130132134Depth,mm58.655.653.952.050.649.148.147.447.748.249.250.151.7Chainage,ins7678808284868890929496⁺98100102Depth,mm64.66</td><td>Depth,mm86.486.286.186.187.083.283.583.687.686.785.282.178.274.168.7Chainage,ins108110112114116118$120^{\neq}$122124126128130132134136Depth,mm60.356.853.751.249.448.247.446.446.446.747.148.249.750.849.4Chainage,ins7678808284868890929496⁺98100102104Depth,mm72.372.673.072.972.872.973.173.173.373.573.572.370.567.564.7Chainage,ins108110112114116118120⁺122124126128130132134136Depth,mm58.655.653.952.050.649.148.147.447.748.249.250.151.750.8Chainage,ins7678808284868890929496⁺98100102104Depth,mm58.655.653.952.050.649.148.147.447.743.249.250.151.750.8Depth,mm64.664.464.363.663.463.963.665.7<t< td=""></t<></td></td>	Depth,mm86.486.286.186.187.083.288.583.687.6Chainage,ins108110112114116118 $120^{\cancel{1}}$ 122124Depth,mm60.356.853.751.249.448.247.446.446.4Chainage,ins767880828486889092Depth,mm72.372.673.072.972.872.973.173.173.3Chainage,ins108110112114116118120 ^{$\cancel{1}$} 122124Depth,mm58.655.653.952.050.649.148.148.147.4Chainage,ins767880828486889092Depth,mm58.655.653.952.050.649.148.148.147.4Chainage,ins767880828486889092Depth,mm58.655.653.952.050.649.148.148.147.4Chainage,ins767880828486889092Depth,mm64.664.464.363.663.463.963.665.7Chainage,ins108110112114116118120 ^{$\cancel{1}$122124}	Depth,mm86.486.286.186.187.089.288.588.687.685.7Chainage,ins108110112114116118 120^{\neq} 122124126Depth,mm60.356.853.751.249.448.247.446.446.446.7Chainage,ins76788082848688909294Depth,mm72.372.673.072.972.872.973.173.173.373.5Chainage,ins108110112114116118120^{\neq}122124126Depth,mm58.655.653.952.050.649.148.148.147.447.7Chainage,ins76788082848688909294Depth,mm58.655.653.952.050.649.148.148.147.447.7Chainage,ins76788082848688909294Depth,mm64.664.464.363.663.463.963.665.765.7Chainage,ins108110112114116118120 $^{\neq}$ 122124126	Depth,mm86.486.286.186.187.083.283.583.687.686.785.2Chainage,ins108110112114116118 120^{+} 122124126128Depth,mm60.356.853.751.249.448.247.446.446.446.747.1Chainage,ins7678808284868890929496^+Depth,mm72.372.673.072.972.872.973.173.173.373.573.5Chainage,ins108110112114116118120^+122124126128Depth,mm58.655.653.952.050.649.148.148.147.447.748.2Chainage,ins108110112114116118120^+122124126128Depth,mm58.655.653.952.050.649.148.148.147.447.748.2Chainage,ins7678808284868890929496^+Depth,mm64.664.464.363.663.463.963.665.765.766.2Chainage,ins108110112114116118120^+122124126128	Depth,mm 86.4 86.2 86.1 86.1 87.0 83.2 83.5 83.6 87.6 86.7 85.2 82.1 Chainage,ins 108 110 112 114 116 118 120 * 122 124 126 128 130 Depth,mm 60.3 56.8 53.7 51.2 49.4 48.2 47.4 46.4 46.7 47.1 48.2 Chainage,ins 76 78 80 82 84 86 88 90 92 94 96 * 98 Depth,mm 72.3 72.6 73.0 72.9 72.8 72.9 73.1 73.1 73.3 73.5 73.5 72.3 Chainage,ins 108 110 112 114 116 118 120 * 122 124 126 128 130 Depth,mm 58.6 55.6 53.9 52.0 50.6 49.1 48.1 47.4 47.7 48.2 49.2 Chainage,ins 76 78 80 82 84 </td <td>Depth,mm86.486.286.166.187.083.288.583.687.686.785.282.178.2Chainage,ins108110112114116118$120^{+}$122124126128130132Depth,mm60.356.853.751.249.448.247.446.446.446.747.148.249.7Chainage,ins7678808284868890929496^+98100Depth,mm72.372.673.072.972.872.973.173.173.373.573.572.370.5Chainage,ins108110112114116118$120^{+}$122124126128130132Depth,mm58.655.653.952.050.649.148.147.446.747.548.249.250.1Chainage,ins108110112114116118$120^{+}$122124126128130132Depth,mm58.655.653.952.050.649.148.148.147.447.748.249.250.1Chainage,ins7678808284868890929496^+98100Depth,mm64.664.464.363.663.463.963.665.765.7<</td> <td>Depth,mm86.486.286.186.187.083.288.583.687.686.785.282.178.274.1Chainage,ins108110112114116118$120^{\neq}$122124126128130132134Depth,mm60.356.853.751.249.448.247.446.446.446.747.148.249.750.8Chainage,ins7678808284868890929496⁺98100102Depth,mm72.372.673.072.972.872.973.173.173.373.573.572.370.567.5Chainage,ins108110112114116118120⁺122124126128130132134Depth,mm58.655.653.952.050.649.148.147.447.748.249.250.151.7Chainage,ins108110112114116118120⁺122124126128130132134Depth,mm58.655.653.952.050.649.148.147.447.748.249.250.151.7Chainage,ins7678808284868890929496⁺98100102Depth,mm64.66</td> <td>Depth,mm86.486.286.186.187.083.283.583.687.686.785.282.178.274.168.7Chainage,ins108110112114116118$120^{\neq}$122124126128130132134136Depth,mm60.356.853.751.249.448.247.446.446.446.747.148.249.750.849.4Chainage,ins7678808284868890929496⁺98100102104Depth,mm72.372.673.072.972.872.973.173.173.373.573.572.370.567.564.7Chainage,ins108110112114116118120⁺122124126128130132134136Depth,mm58.655.653.952.050.649.148.147.447.748.249.250.151.750.8Chainage,ins7678808284868890929496⁺98100102104Depth,mm58.655.653.952.050.649.148.147.447.743.249.250.151.750.8Depth,mm64.664.464.363.663.463.963.665.7<t< td=""></t<></td>	Depth,mm86.486.286.166.187.083.288.583.687.686.785.282.178.2Chainage,ins108110112114116118 120^{+} 122124126128130132Depth,mm60.356.853.751.249.448.247.446.446.446.747.148.249.7Chainage,ins7678808284868890929496^+98100Depth,mm72.372.673.072.972.872.973.173.173.373.573.572.370.5Chainage,ins108110112114116118 120^{+} 122124126128130132Depth,mm58.655.653.952.050.649.148.147.446.747.548.249.250.1Chainage,ins108110112114116118 120^{+} 122124126128130132Depth,mm58.655.653.952.050.649.148.148.147.447.748.249.250.1Chainage,ins7678808284868890929496^+98100Depth,mm64.664.464.363.663.463.963.665.765.7<	Depth,mm86.486.286.186.187.083.288.583.687.686.785.282.178.274.1Chainage,ins108110112114116118 120^{\neq} 122124126128130132134Depth,mm60.356.853.751.249.448.247.446.446.446.747.148.249.750.8Chainage,ins7678808284868890929496 ⁺ 98100102Depth,mm72.372.673.072.972.872.973.173.173.373.573.572.370.567.5Chainage,ins108110112114116118120 ⁺ 122124126128130132134Depth,mm58.655.653.952.050.649.148.147.447.748.249.250.151.7Chainage,ins108110112114116118120 ⁺ 122124126128130132134Depth,mm58.655.653.952.050.649.148.147.447.748.249.250.151.7Chainage,ins7678808284868890929496 ⁺ 98100102Depth,mm64.66	Depth,mm86.486.286.186.187.083.283.583.687.686.785.282.178.274.168.7Chainage,ins108110112114116118 120^{\neq} 122124126128130132134136Depth,mm60.356.853.751.249.448.247.446.446.446.747.148.249.750.849.4Chainage,ins7678808284868890929496 ⁺ 98100102104Depth,mm72.372.673.072.972.872.973.173.173.373.573.572.370.567.564.7Chainage,ins108110112114116118120 ⁺ 122124126128130132134136Depth,mm58.655.653.952.050.649.148.147.447.748.249.250.151.750.8Chainage,ins7678808284868890929496 ⁺ 98100102104Depth,mm58.655.653.952.050.649.148.147.447.743.249.250.151.750.8Depth,mm64.664.464.363.663.463.963.665.7 <t< td=""></t<>

. . :

+ Start of Weir

/ End of Weir

Transverse Surface Profiles.

(c)

Transverse Surface Profile Coordinates

Subcritical Profile : Case II

Re	ading No.	. 24.		Depth	in mm.	
	tion	Di	stance from	a back face	of Weir, mm	l.
	inage 15.	0	25	50	75	100
+	96	95.4	95.8	96.8	97.7	99.1
	100	93.0	95.0	96.6	99.0	99.9
	104	97.3	101.6	103.9	104.6	104.6
	108	99.2	102.5	103.9	- 106.0	107.3
	112	100.7	104.6	105.6	106.8	108.2
	116	102.9	106.5	107.8	109.2	109.6
+	120	110.6	109.0	109.0	109.5	109.5

+ Start of Weir

End of Weir

Transverse Surface Profile Coordinates

Supercritical Profile : Case I

Reading No	. 143.		Depth in	nn.	•
Station	Die	stance from	a back face	of Weir, m	l.
Chainage ins.	0	25	50	75	100
+ 96	94.3	95.9	97.4	98.4	99.0
100	65.6	77.2	82.3	84.9	86.3
104	59.2	64.0	68.0	70.7	71.2
108	55.3	56.6	57+5	58.6	60.0
112	52.4	52.4	51.3	50.5	52.4
116	49.1	49.7	47.9	47.5	48.1
f 120	45.7	45.9	45.8	45.2	45.7

+ Start of Weir

End of Weir

APPENDIX VIII

Performance of the Mathematical Model.

f

Neir No.	1
----------	---

PERFORMANCE OF THE MATHEMATICAL MODEL: SUBCRITICAL FLOW, CASE II.

TEST	UPSTREAM	A DISCHARG	= 0 ₁ 1/s	SIDE SPIL	L DISCHARG	E Q _w I/s	UPSTREAM DEPTH y ₁ mm		
No.	measured	computed	% error	measured	computed	% error	measured	computed	% error
15	6.590	6.307	-4.29	4.310	4.027	-6.57	95.40	90.96	-4.65
16	5.940	5.796	-2.42	3.740	3.596	-3.85	94.90	91.41	-3.68
17	5.340	5.251	-1.67	3.180	3.091	-2.80	93.80	91.31	-2.65
18	4.630	4.601	-0.63	2.530	2.501	-1.15	92.40	90.72	-1.82
19	4.190	4.170	-0.48	2.130	2.110	-0.94	91.10	90.05	-1.15
20	3.530	3.467	-1.78	1.900	1.837	-3.32	91.10	89.89	-1.33
21	4.270	4.184	-2.01	2.620	2.534	-3.28	93.30	91.49	-1.94
22	4.560	4.420	-3.07	2.900	2.760	-4.83	94.10	91.86	-2.38
23	5.400	5.193	-3.83	3.690	3.483	-5.61	95.90	92.58	-3.46
24	5.940	5.711	-3.86	4.210	3.981	-5.44	97.10	92.69	-4.54
25	6.430	6.145	-4.43	4.680	4.395	-6.09	97.20	92.48	-4.86
26	7.020	6.616	-5.75	5.240	4.836	-7.71	97.90	91.83	-6.20
27	7.460	7.098	-4.85	5.670	5.308	-6.38	99.50	90.61	-8.93
28	6.660	6.247	-6.20	5.430	5.017	-7.61	100.20	93.80	-6.39
29	5.990	5.663	-5.46	4.810	4.483	-6.80	99.10	94.24	-4.90
30	5.340	5.084	-4.79	4.200	3.944	-6.10	97.80	94.20	-3.68

Vel	r	No.
-----	---	-----

o. 1. PERFORMANCE OF THE MATHEMATICAL MODEL: SUBCRITICAL FLOW, CASE II.

TEST	UPSTREAN	DISCHARG	e 0 ₁ 1/s	SIDE SPIL	L DISCHARGI	0 v 1/s	UPSTREAM DEPTH y ₁ mm		
No.	measured	computed	% error	measured	computed	% error	measured	computed	% error
31	4.700	4.330	-7.87	3.600	3.230	-10.28	96.80	93.56	-3.35
32	· 3.880	3.714	-4.28	2.790	2.624	- 5.95	94.50	92.52	-2.10
33	3.020	2.927	-3.08	1.920	1.827	- 4.84	91.60	90.42	-1.29
34	.2.190	2.072	-5.39	1.820	1.702	- 6.48	91.70	90.73	-1.06
35	2.930	2.769	-5.49	2.440	2.279	- 6.60	93.90	92.49	-1.50
36	3.690	3.494	-5.31	3.080	2.884	- 6.36	95.90	93.80	-2.19
37	4.380	4.169	-4.82	3.640	3.429	- 5.80	97.20	94.53	-2.75
38	5.540	5.251	-5.22	4.490	4.201	- 6.44	98.70	94.55	-4.20
39	6.490	6.125	-5.62	5.110	4.745	- 7.14	99.40	93.49	-5.95
40	7.610	7.109	-6.58	5.950	5.449	- 8.42	99.90	90.93	-8.98
41	3.460	3.416	-1.27	1.840	1.796	- 2.39	83.70	87.32	-1.56
42	4.330	4.207	-2.84	2.700	2.577	- 4.56	91.50	89.03	-2.70
43	5.330	5.123	-3.88	3.670	3.463	- 5.64	93.90	89.91	-4.25
44	6.210	5.944	-4.28	4.470	4.204	- 5.95	95.40	89.53	-6.15
45	6.500	6.214	-4.40	4.710	4.424	- 6.07	95.60	89.05	-6.85
46	7.500	7.087	-5.51	5.670	5.257	- 7.28	95.70	86.10	- 10.03

Wei	r	No.
-----	---	-----

1.

PERFORMANCE OF THE MATHEMATICAL MODEL: SUBCRITICAL FLOW, CASE II.

TEST	UPSTREAM	A DISCHARGI	E 0, 1/s	SIDE SPILL DISCHARGE O _w 1/s			UPSTREAM DEPTH y ₁ mm		
No.	measured	computed	% •***	measured	computed	% error	measured	computed	% error
48	5.860	5.608	-4.30	4.750	4.498	-5.31	97.20	91.55	<u>-</u> 5.81
49	5.200	4.939	-5.02	4.320	4.059	-6.04	96.60	92.21	-4.54
50	4.560	4.391	-3.71	3.850	3.681	-4.39	95.90	92.35	-3.70
51	3.770	3.662	-2.86	3.240	3.132	-3.33	94.60	91.96	-2.79
52.	3.060	2.980	-2.61	2.620	2.540	-3.05	92.80	90.87	-2.08
53	2.600	2.520	-3.08	2.230	2.150	-3.59	91.60	89.89	-1.87
55	7.580	7.098	-6.36	5.820	5.338	-8.28	98.80	88.62	-10.30
56	6.560	6.272	-4.39	4.830	4.542	-5.96	97.20	90.81	-6.57
57	5.770	5.531	-4.14	4.140	3.901	-5.77	96.20	91.53	-4.85
58	4.830	4.703	-2.63	3.170	3.043	-4.01	94.50	90.94	-3.77
59	4.070	3.982	-2.16	2.460	2.372	-3.58	92.50	89.97	-2.74
60	3.330	3.225	-3.15	1.800	1.695	-5.83	89.70	88.36	-1.49
1		:							
		1							
					ì				
Mean -3.99 Standard Deviation 1.63			<u></u>	L	-5.41 1.90		<u> </u>	-4.05 2.42	

Ν	ei	r 1	M	ο.
	CI.		I N	U .

2.

PERFORMANCE OF THE MATHEMATICAL MODEL: SUBCRITICAL FLOW, CASE II.

TEST	UPSTREAM DISCHARGE O ₁ I/s			SIDE SPILL DISCHARGE Q _W 1/s			UPSTREAM DEPTH y ₁ mm		
No.	measured	computed	% error	measured	computed	% error	measured	computed	% error
62	3.680	3.543	-3.72	1.850	1.713	-7.41	129.00	127.76	-0.96
63	3.950	3.820	-3.29	2.070	1.940	-6.28	129.90	128.63	-0.98
64	4.950	4.768	-3.68	3.050	2.868	-5.97	133.60	131.72	-1.41
65	6.020	5.767	-4.20	4.070	3.817	-6.22	136.90	134.11	-2.04
66	6.790	6.499	-4.29	4.800	4.509	-6.06	138.90	135.48	-2.45
67	7.310	6.974	-4.60	5.320	4.984	-6.32	140.40	136.28	-2.93
68	7.740	7.420	-4.13	5.710	5.390	-5.60	141.50	136.82	-3.31
69	9.830	9.199	-6.42	7.790	7.159	-8.10	145.80	138.38	-5.09
70	8.440	8.098	-4.05	6.420	6.078	-5.33	143.20	137.65	-3.88
						-			
								•	
								a de la	
				<u> </u>		<u> </u>			
S	Mean tandard De	eviation	-4.26 0.90			-6.37 0.87			-2.56 1.39

TEST	UPSTREAM	UPSTREAM DISCHARGE O ₁ 1/6			SIDE SPILL DISCHARGE O _w I/s			UPSTREAM DEPTH y ₁ mm		
No.	measured	computed	% • * * * *	measured	computed	% error	measured	computed	% ++++++	
80	3.090	3.105	0.49	1.490	1.505	1.01	92.40	90.15	-2.44	
81	4.440	4.401	-0.88	2.820	2.781	-1.38	98 . 40	94.73	-3.73	
82	5.240	5.213	-0.52	3.600	3.573	-0.75	101.60	95.72	-5.79	
83	5.860	5.876	0.27	4.150	4.166	0.39	103.60	97.20	-6. 18	
84	6.220	6.194	-0.42	4.470	4.444	-0.58	104.80	97.33	-7.13	
85	6.690	6.669	-0.31	4.930	4.909	-0.43	106.40	97.43	-8.43	
86	7.270	7.170	-1.38	5.490	5.390	-1.82	108.00	97.07	-10.12	
87	7.740	7.603	-1.77	5.930	5.793	-2.31	109.60	96.18	-12.24	
88	8.100	7.920	-2.22	6.910	6.730	-2.60	113.60	97.85	-13.86	
89	5.300	5.299	-0.02	4.150	4.149	-0.02	104.20	98.61	-5.36	
90	4.290	4.283	-0.16	3.160	3.153	-0.22	100.40	96.56	-3.82	
91	3.520	3.469	-1.45	2.390	2.339	-2.13	97.20	94.05	-3.24	
92	2.620	2.623	0.11	1.500	1.503	0.20	92.80	90.55	-2.42	
93	5.880	5.853	-0.46	4.720	4.693	-0.57	95.90	99.29	3.53	
94	7.470	7.315	-2.07	6.290	6.135	-2.46	111.20	99.21	-10.78	
95	8.230	7.989	-2.93	5.910	5.669	-4.08	107.80	92.28	-14.40	

Weir No. 4. PERFORMANCE OF THE MATHEMATICAL MODEL: SUBCRITICAL FLOW, CASE II.

Weir	No.
------	-----

No. 4. PERFORM

PERFORMANCE OF THE MATHEMATICAL MODEL: SUBCRITICAL FLOW, CASE II.

TEST	UPSTREAM DISCHARGE O ₁ 1/s			SIDE SPILL DISCHARGE Q _W 1/s			UPSTREAM DEPTH y ₁ mm		
No.	measured	computed	% error	measured	computed	% error	measured	computed	% error
96	7.450	7.346	-1.40	5.140	5.036	-2.02	105.80	94.72	-10.47
97	6.350	6.361	0,17	4.070	4.081	0.27	102.60	95.39	-7.03
98	5.240	5.212	-0.53	3.070	3.042	-0.91	98.80	94.34	-4.51
99	4.370	4.354	-0.37	2.270	2.254	-0.70	95.60	92.44	-3.31
100	3.550	3.586	1.01	1.480	1.516	2.43	91.90	89.75	-2.34
101	2.870	2.896	0.91	1.310	1.336	1.98	90.90	90.19	-0.78
102	4.290	4.307	0.40	2.720	2.737	0.63	97.70	95.57	-2.18
103	4.830	4.858	0.58	-3.240	3.268	0.86	99.80	96.91	-2.90
104	6.140	6.111	-0.47	4.450	4.421	-0.65	104.20	98.53	-5.44
105	7.200	7.064	-1.89	5.470	5.334	-2.49	107.60	98 . 58	-8.38
106	8.030	7.883	-1.83	6.280	6.133	-2.34	110.80	97.16	-12.31
107	3.220	3.328	3.35	1.560	1.668	6.92	90.50	90.01	-0.54
108	4.350	4.408	1.33	2.690	2.748	2.16	95.60	93.71	-1.98
109	5.200	5.285	1.63	3.520	3.605	2.41	98.70	95•55	-3.19
110	6.160	6.198	0.62	4.370	4.408	0.87	101.70	96.15	-5.46
111	7.000	7.010	0.14	5.170	5.180	0.19	104.00	95.82	-7.87

Weir No.	L	
----------	---	--

PERFORMANCE OF THE MATHEMATICAL MODEL: SUBCRITICAL FLOW, CASE II.

TEST	UPSTREAM	DISCHARG	E 0, 1/s	SIDE SPIL	L DISCHARGE	E 0 _w 1/s	UPSTREAM	DEPTH y ₁	ហាក
No.	measured	computed	% error	measured	computed	% error	measured	computed	% error
112	7.530	7.485	-0.60	5.660	5.615	-0.80	106.40	94.80	-10,90
	a .								
									-
								-	
							a ser a Esta de la ser a		
						i i i i i i i i i i i i i i i i i i i			
		:							
									•
	ean ndard Devi	iation	-0.32 1.27	L	1	-0.27 2.04			- 5.94 4.24

TEST	UPSTREAM	DISCHARG	E 0, 1/s	SIDE SPIL	L DISCHARG	E 0, 1/s	UPSTREAM	DEPTH Y	mm
No.	measured	computed	% error	measured	computed	% error	measured	computed	% ++++++
113	4.250	4.257	0.16	2.590	2.597	0.27	90.00	86.50	-3.89
114	5.200	5.153	-0.90	3.510	3.463	-1.34	91.30	86.70	-5.04
115	5.960	5.785	-2.94	4.170	3.995	-4.20	91.50	85.97	-6.04
116	7.090	6.751	-4.78	5.190	4.851	-6.53	90.90	82.98	-8.71
117	7.540	7.020	-6.90	5.630	5.110	-9.24	90.70	80.59	-11.15
119	3.740	3.810	1.87	2.150	2.220	3.26	90.10	87.67	-2.70
- 120	4.580	4.601	0.46	2.940	2.961	0.71	91.40	88.36	-3.33
121	5.400	5.299	-1.87	3.700	3.599	-2.73	93.10	88.33	-5.12
122	6.080	5.877	-3.34	4.350	4.147	-4.67	93.20	87.82	-5.77
123	6.690	6.378	-4.66	4.890	4.578	-6.38	93.60	86.79	-7.28
124	7.290	6.908	-5.24	5.430	5.048	-7.03	92.90	84.95	-8.56
125	7.730	7.217	-6.64	5.850	5.337	-8.77	92.90	83.20	-10.44
126	3.020	3.170	4.97	1.460	1.610	10.27	89.50	88.17	-1.49
127	4.360	4.412	1.19	2.780	2.832	1.87	92.60	90.30	-2.48
128	5.340	5.311	-0.54	3.720	3.691	-0.78	94.30	90.71	-3.81
129	6.130	5.973	-2.56	4.430	4.273	-3.54	94.60	90.33	-4.51

Weir No. 5.

PERFORMANCE OF THE MATHEMATICAL MODEL: SUBCRITICAL FLOW, CASE II.

£04

Ne	ir.	No.	

PERFORMANCE OF THE MATHEMATICAL MODEL: SUBCRITICAL FLOW, CASE II. 5.

TEST	UPSTREA	W DISCHARG	e 0 ₁ 1/s	SIDE SPIL	L DISCHARG	E Q _w 1/s	UPSTREAM	DEPTH y	mm
No.	measured	computed	% error	measured	compute d	% error	measured	computed	% error
130	6.810	6.600	-3.08	5.040	4.830	-4.17	94.60	89.42	-5.48
131	7.490	7.155	-4.47	5.700	5.365	-5.88	94.50	88.06	-6.81
•									
	- -								
								1	
							<i>.</i>		
		:							
								- - -	
	lean		-2.18		<u> </u>	-2.71 4.82	L	I	-5.70 2.71

Weir No. 3.

NO ALLOWANCE FOR CURVATURE.

PERFORMANCE OF THE MATHEMATICAL MODEL: SUPERCRITICAL FLOW, CASE I:

TEST	DOWNSTREAN	DISCHARGE	: 0 ₂ 1/s	SIDE SPIL	L DISCHARGI	E 0 _w 1/s	DOWNSTREAM	DEPTH y ₂	mm
No.	measured	computed	% • * * * *	measured	computed	% orror	measured	computed	% error
71	7.000	7.622	8.89	6.200	5.578	-10.03	46.20	48.09	4.09
72	6.450	7.025	8.91	5.240	4.665	-10.97	44.70	46.77	4.63
73	5.880	6.337	7.77	4.150	3.693	-11.01	42.70	45.23	5.93
74	5.120	5.471	6.86	2.910	2.559	-12.06	41.60	43.26	3.99
75	5.630	6.061	7.66	3.740	3.309	-11.52	42.60	44.59	4.67
76	6.090	6.682	[.] 9.72	4.770	4.178	-12.41	43.60	45.99	5.48
132	7.450	7.925	6.38	6.370	5.895	- 7.46	46.00	48.44	5.30
133	7.130	7.661 .	7.45	5.980	5.449	- 8.88	46.00	47.85	4.02
134	6.820	7.313	7.23	5.430	4.937	- 9.08	45.20	47.07	4.14
135	6.560	6.978	6.37	4.860	4.442	8.60	44.00	46.29	5.20
136	6.200	6.561	5.82	4.210	3.849	- 8.57	43.10	45.37	5.27
137	5.840	6.165	5.57	3.630	3.305	- 8.95	42.50	44.45	4.59
141	7.780	8.069	3.71	6.230	5.941	- 4.64	47.20	48.52	2.80
142	7.460	7.767	4.12	5.810	5.503	- 5.28	46.70	47.85	2.46
143	7.020	7.338	4.53	5.140	4.822	- 6.19	45.80	46.87	2.34
144	6.660	7.004	5.17	4.660	4.316	- 7.38	44.90	46.09	2.65

PERFORMANCE OF THE MATHEMATICAL MODEL: SUPERCRITICAL FLOW, CASE I:

Weir No. 3.

NO ALLOWANCE FOR CURVATURE.

TEST	DOWNSTREA	MDISCHARG	e 0 ₂ 1/s	SIDE SPIL	L DISCHARG	E 0 _w 1/s	DOWNSTREAM	DEPTH Y	mm
No.	measured	computed	% • • • • • •	measured	computed	% error	measured	computed	% error
145	6.300	6.591	4.62	4.030	3.739	- 7.22	43.90	45.12	2.78
146	5.890	6.140	4.24	3.400	3.150	- 7.35	42.40	44.06	3.92
					· ·		. •		
								· ·	
ļ						-			
		•							
		· ·							
						•			
			· .						
						-			
	Mean andard De		6.39 1.80	1,	i	- 8.76 2.27	<u></u>	• • • • • • • • • • • • • • • • • • • •	4.13 1.12

PERFORMANCE OF THE MATHEMATICAL MODEL: SUPERCHITICAL FLOW, CASE IV:

Weir No. 3.

NO ALLOWANCE FOR CURVATURE.

TEST	DOWNSTREAM	A DISCHARG	E 0 ₂ 1/s	SIDE SPIL	L DISCHARG	E 0 <mark>., 1/s</mark>	DOWNSTREAM	DEPTH y ₂	mm
No.	measured	computed	% •1101	measured	computed	% error	measured	computed	%
77	7.010	7.527	7.38	5.630	5.113	- 9.18	47.00	47.77	1.64
78	7.950	8.119	2.13	4.640	4.471	- 3.64	48.10	48.23	0.27
79	8.840	8.826	-0.16	3.690	3.704	0.38	49.00	48.26	-1.51
138	7.490	7.794	4.06	5.140	4.836	- 5.91	46.60	47.79	2.55
139	8.280	8.385	1.27	4.240	4.135	- 2.48	47.70	48.06	0.75
140	9.280	9.076	-2.20	3.320	3.524	.6.14	48.00	48.08	0.17
147	7.750	7.908	2.04	4.750	4.592	- 3.33	47.40	47.63	0.49
148	8.680	8.586	-1.08	3.820	3.914	2.46	48.10	47.92	-0.37
149	9.420	9.157	-2.79	3.050	3.313	8.62	48.40	47.74	-1.36
						•			
	· ·								
			•						
		•							
	ean ndard Devi	ation	1.18 3.21		<u> </u>	- 0.77 5.73			0.29 1.30

PERFORMANCE OF THE MATHEMATICAL MODEL: SUPERCRITICAL FLOW, CASE I: Weir No. 3.

WITH ALLOWANCE FOR CURVATURE.

TEST	DOWNSTREAN	DISCHARG	E 0 ₂ 1/s	SIDE SPIL	L DISCHARG	E Q _w 1/s	DOWNSTREAM	DEPTH y ₂	mm .
No.	measured	computed	% • * * * *	measured	computed	% • * * *	measured	computed	%
71	7.000	7.366	5.23	6.200	5.834	- 5.90	46.20	47.31	2.40
72	6.450	6.822	5.76	5.240	4.868	- 7.10	44.70	46.14	3.22
73	5.880	6.165	4.85	4.150	3.865	- 6.87	42.70	44.65	4.57
74	5.120	5.350	4.49	2.910	2.680	- 7.90	41.60	42.97	3.29
75	5.630	5.931	5.34	3.740	3.439	- 8.05	42.60	44.20	3.76
76	6.090	6.508	6.86	4.770	4.352	- 8.76	43.60	45.50	4.36
132	7.450	7.661	- 2.83	6.370	6.159	- 3.31	46.00	47.63	3.54
<u>þ</u> 33	7.130	7.432	- 4.24	5.980	5.678	- 5.05	46.00	47.12	2.43
134	6.820	7.133	4.59	5.430	5.117	- 5.76	45.20	46.59	3.03
135	6.560	6.796	3.60	4.860	4.624	4.86	44.00	45.71	3.89
136	6.200	6.401	3.24	4.210	4.009	- 4.77	43.10	44.80	3.94
137	5.840	6.049	3.58	3.630	3.421	- 5.76	42.50	44.08	3.71
141	7.780	7.827	- 0.60	6.230	6.183	- 0.75	47.20	47.75	1.17
142	7.460	7.540	- 1.07	5.810	5.730	- 1.38	46.70	47.12	0.90
143	7.020	7.096	- 1.08	5.140	5.064	- 1.48	45.80	46.19	0.85
144	6.660	6.867	3.11	4.660	4.453	- 4.44	44.90	45.70	1.78

PERFORMANCE OF THE MATHEMATICAL MODEL: SUPERCRITICAL FLOW, CASE I: Weir No. 3.

WITH ALLOWANCE FOR CURVATURE.

TEST	DOWNSTREAM	A DISCHARGI	E 0 ₂ 1/s	SIDE SPIL	L DISCHARG	E Q _w I/s	DOWNSTREAM	DEPTH Y2	mm
No.	measured	computed	% • • • • •	measured	computed	% • * * * *	measured	computed	%
145	6.300	6.458	2.51	4.030	3.872	- 3.92	43.90	44.66	1.73
146	5.890	6.044	2.61	3.400	3.246	- 4.53	42.40	43.79	3.28
			·						
		4	•						
		•							
				· · ·		•			
M Sta	ean ndard Devi	ation	3.64 1.71	·	<u>.</u>	- 5.03 2.30			2.88 1.18

Weir No. 3.

WITH ALLOWANCE FOR CURVATURE.

PERFORMANCE OF THE MATHEMATICAL MODEL: SUPERCRITICAL FLOW, CASE IV:

	TEST	DOWNSTREAM	A DISCHARG	E 0 ₂ 1/s	SIDE SPIL	L DISCHARG	E 0 _w 1/s	DOWNSTREAM DEPTH y mm			
	No.	measured	computed	%	measured	computed	% • • • • •	measured	computed	% error	
	77	7.010	7.347	4.81	5.630	5.293	- 5.98	47.00	47.13	0.28	
+	78	7.950 ⁻	8.119	2.13	4.640	4.471	- 3.64	48.10	47.92	- 0.37	
+	79	8.840	8.825	- 0.17	3.690	3.705	0.41	49.00	47.98	- 2.08	
	138	7.490	7.671	2.41	5.140	4.959	- 3.52	46.60	47.31	1.52	
+	139	8.280	8.385	1.27	4.240	4.135	- 2.48	47.70	47.75	0.10	
+	140	9.280	9.075	- 2.21	3.320	3.525	6.17	48.00	48.08	0.17	
	147	7.750	7.908	2.04	4.750	4.592	- 3.33	47.40	47.30	- 0.21	
+	148	8.680	8.585	- 1.09	3.820	3.915	2.49	48.10	47.62	- 1.00	
+	149	9.420	9.156	- 2.80	3.050	3.314	8.66	48.40	47.47	- 1.92	
						l	•				
•											
				•							
							•		· .		
						!					
					<u> </u>						
		ean ndard Devi	ation	0.71 2.47	· · ·		- 0.14 4.97			- 0.39 1.13	

+ Curvature not significant - no allowance made in computation.

APPENDIX IX

(a)

(c)

Effect of Changing the Position of the Starting Station.

(b) Effect of Fixing the Value of the Surface Slope at the Upstream End of the Weir.

> Effect of Using the Manning Equation for Computing the Friction Gradient.

Effect of Changing the Position of the Starting Station.

(a)

WEIR NO. 4. PERFORMANCE OF THE MATHEMATICAL MODEL : CHANGE IN STARTING STATION POSITION.

Test No.	Measured Q ₁			nputed Vo rting 505		f wei r		mputed \ rting 76.2	/alues = 2mm d/s o	f weir
	Vs	y ₁ mm	Q ₁ 1	%error	y ₁ mm	% error	0 ₁ 1/s	%error	у ₁ mm	% еггог
101 102	2.870 4.290	90.90 97.70	2.896 4.307	0.91 0.40	90.19 95.57	-0.78 -2.18	2.942 4.293	2.51 0.07	90.23 95.08	-2.68
103 104	4.830 6.140 7.200	99.80 104.20 107.60	4.858 6.111 7.064	0.58 -0.47 -1.89	96.91 93.53 98.58	-2.90 -5.44 -8.38	4.815 6.008 6.906	-0.31 -2.15 -4.08	96.23 97. <i>5</i> 2 97.37	-6.41
105 106	7.200 8.030	110.80	7.883	-1.83	97 . 16	-12.31	7. <i>5</i> 93	-5.44	95.14	-
					1					
						-				
						-				
Me	an			-0.38		-5.33		-1.57		-6.03
	anderd De	viation	-	1.23		4.35		2.92		4.68

£14

د

Effect of Fixing the Value of the Surface

Slope at the Upstream End of the Weir.

1

(b)

PERFORMANCE OF THE MATHEMATICAL MODEL: EFFECT OF FIXING THE SURFACE

Weir No. 3. SLOPE AT THE UPSTREAM END OF THE WEIR.

TEST	DOWNSTREA	A DISCHARG	e 0 ₂ 1/1	SIDE SPIL	L DISCHARG	E Q _w I/s	DOWNSTREAM	DEPTH y ₂	mm]
No.	measured	computed	% error	measured	computed	% ++ + + + + + + + + + + + + + + + + +	measured	computed	% error	Ţ
71	7.000	7.366	5.23	6.200	5.834	- 5.90	46.20	47.31	2.40	1
72	6.450	6.822	5.76	5.240	4.868	- 7.10	44.70	46.14	3.22	}
73	5.880	6.165	4.85	4.150	3.865	- 6.87	42.70	44.65	4.57	
74	5.120	5.350	4.49	2.910	2.680	- 7.90	41.60	42.97	3.29	
75	5.630	5.931	5.34	3.740	3.439	- 8.05	42.60	44.20	3.76	-0.12
76	6.090	6.508	6.86	4.770	4.352	- 8.76	43.60	45.50	4.36	9
77	7.010	7.347	4.81	5.630	5.293	- 5.98	47.00	47.13	0.28	1
78	7.950	8.119	2.13	4.640	4.471	- 3.64	48.10	47.92	- 0.37	slope
79	8.840	8.825	- 0.17	3.690	3.705	0.41	49.00	47.98	- 2.08	
										i.a.
	•									initial
1										
										With
		t								
L			l	l		L	l		l	1
	ean ndard Devi	ation	4.37 2.12			- 5.98 2.83	-		2.16 2.33	

PERFORMANCE OF THE MATHEMATICAL MODEL: EFFECT OF FIXING THE SURFACE

Weir No. 3. SLOPE AT THE UPSTREAM END OF THE WEIR.

	TEST	DOWNSTREAM DISCHARGE 02 1/s			SIDE SPIL	L DISCHARG	E 0 _w 1/s	DOWNSTREAM DEPTH y ₂ mm] .
	No.	measured	computed	% error	measured	computed	% error	measured	computed	% error	J
	71	7.000	7.409	5.84	6.200	5.791	- 6.60	46.20	47.37	2.53].
	72	6.450	6.829	5.88	5.240	4.861	- 7.23	44.70	46.03	3.09	
·	73	5.880	6.179	5.09	4.150	3.851	- 7.20	42.70	44.67	4.61	pes
	74	5.120	5.344	4.38	2.910	2.686	- 7.70	41.60	42.97	3.29	slopes,
	75	5.630	5.932	5.36	3.740	3.438	- 8.07	42.60	44.20	3.76	
	76	6.090	6.512	6.93	4.770	4.348	- 8.85	43.60	45.51	4.38	initial
	77	7.010	7.289	3.98	5.680	5.351	- 4.96	47.00	47.13	0.28	1. H
	78	7.950	8.119	2.13	4.640	4.471	- 3.64	48.10	47.92	- 0.37	red
	79	8.840	8.825	- 0.17	3.690	3.705 .	0.41	49.00	47.98	- 2.08	measured
	· ·						•				1
]				· ·						With
											3
							•				
ļ	Me	ean	L	4.38	L		- 5.98	l]		2.17	I
		ndard Devi	ation	2.19	•		2.83			2.33	

Effect of Using the Manning Equation for Computing the Friction Gradient.

(c)

Neir No.

1.

PERFORMANCE OF THE MATHEMATICAL MODEL, Sf COMPUTED FROM MANNING.

TEST	UPSTREAN	UPSTREAM DISCHARGE 0 ₁ 1/s			L DISCHARG	E Q _w 1/s	UPSTREAM DEPTH y ₁ mm		
No.	measured	computed	% error	measured	computed	% error	measured	computed	% error
15	6.590	6.323	- 4.05	4.310	4.043	- 6.19	95.40	91.60	- 3.98
16	5.940	5.808	- 2.22	3.740	3.608	- 3.53	94.90	91.88	- 3.18
17	5.340	5.260	- 1.50	3.180	3.100	- 2.52	93.80	91.65	- 2.29
18	4.630	4.607	- 0.50	2.530	2.507	- 0.91	92.40	90.96	- 1.56
19	4.190	4.175	- 0.36	2.130	2.115	- 0.70	91.10	90.24	- 0.94
20	3.530	3.468	- 1.76	1.900	1.838	- 3.26	91.10	89.99	- 1.22
21	4.270	4.186	- 1.97	2.620	2.536	- 3.21	93.30	91.65	- 1.77
22	4.560	4.423	- 3.00	2.900	2.763	- 4.72	94.10	92.05	- 2.18
23	5.400	5.199	- 3.72	3.690	3.489	- 5.45	95.90	92.88	- 3.15
24	5.940	5.720	- 3.70	4.210	3.990	- 5.23	97.10	93.10	- 4.12
25	6.430	6.157	- 4.25	4.680	4.407	- 5.83	97.20	93.00	- 4.32
26	7.020	6.631	- 5.54	5.240	4.851	- 7.42	97.90	92.55	- 5.46
27	7.460	7.118	- 4.58	5.670	5.328	- 6.03	99.50	91.68	- 7.86
28	6.660	6.255	- 6.08	5.430	5.025	- 7.46	100.20	94.29	- 5.90
29	5.990	5.669	- 5.36	4.810	4.489	- 6.67	99.10	94.58	- 4.56
30	5.340	5.087	- 4.74	4.200	3.947	- 6.02	97.80	94.44	- 3.44

1. PERFORMANCE OF THE MATHEMATICAL MODEL, sf COMPUTED FROM MANNING.

TEST	UPSTREAN	DISCHARG	e 0 ₁ 1/s	SIDE SPIL	L DISCHARG	E Q _w 1/s	UPSTREAM DEPTH y ₁ mm		
No.	measured	computed	% error	measured	computed	% error	measured	computed	% error
31	4.700	4.331	- 7.85	3.600	3.231	-10.25	96.80	93.72	- 3.18
32	3.880	3.714	- 4.28	2.790	2.624	- 5.95	94.50	92.62	- 1.99
33	3.020	2.925	- 3.15	1.920	1.825	- 4.95	91.60	90.47	- 1.23
34	2.190	2.070	- 6.71	1.820	1.700	- 6.59	91.70	90.74	- 1.05
35	2.930 .	2.768	- 5.53	2.440	2.278	- 6.64	93.90	92.52	- 1.47
36	3.690	3.493	- 5.34	3.080	2.883	- 6.40	95.90	93.88	- 2.11
37	4.380	4.169	- 4.82	3.640	3.429	- 5.80	97.20	94.66	- 2.61
38	5.540	5.254	- 5.16	4.490	4.204	- 6.37	98.70	94.81	- 3.94
39	6.490	6.134	- 5.49	5.110	4.754	- 6.97	99.40	93.97	- 5.46
40	7.610	7.127	- 6.35	5.950	5.467	- 8.12	99.90	91.96	- 7.95
						j.			
					1			<u> </u>	
	ean ndard Devi	ation	- 4.15 1.91		· · ·	- 5.51 2.14			- 3.34 1.97

APPENDIX X

Performance of the Mathematical Model using the Data of Engels and Gentilini. Weir No.

PERFORMANCE OF THE MATHEMATICAL MODEL, DATA BY ENGELS (SUBCRITICAL FLOW, CASE II)

TEST	UPSTREAM DISCHARGE 01 1/3			SIDE SPIL	SIDE SPILL DISCHARGE Q 1/1			UPSTREAM DEPTH y ₁ mm		
No.	measured	computed	% error	measured	computed	% error	measured	computed	% error	
E 4	14.700	14.198	- 3.41	3.500	2.998	- 14.34	110.00	110.59	0.54	
E 5	14.700	13.908	- 5.39	4.400	3.608	- 18.00	101.00	100.35	-0.64	
E 7	125.500	146.980	17.12	23.400	44.880	91.79	180.00	177.33	-1.48	
E 9	180.000	180.548	0.30	10.000	10.548	5.48	283.00	299.84	5.95	
ElO	180.000	182.375	1.32	14.000	16.375	16.96	285.00	389.36	1.53	
E12	153.500	155.936	1.59	31.300	33.736	7.78	356.00	355.64	-0.10	
E13	153.500	152.317	- 0.77	50.600	49.417	- 2.34	297.00	298.34	0.45	
E14	153.500	152.198	- 0.85	56.300	54.998	- 2.31	278.00	278.44	0.16	
E15	153.500	156.003	1.63	58.400	60.903	4.29	271.00	270.40	-0.22	
E16	153.500	156.995	2.28	60.100	63.595	5.82	276.00	266.10	-3.59	
E17	153.500	156.114	1.70	60.500	63.114	4.32	266.00	264.69	-0.49	
E18	153.500	150.440	- 1.99	62.600	59.540	- 4.89	262.00	263.67	0.64	
E19	103.700	105.243	1.49	8.200	9.743	18.82	300.00	299.62	-0.13	
E20	103.700	108.308	4.44	10.700	15.308	43.07	290.00	291.40	0.48	
E21	103.700	103.101	4.24	14.800	19.201	29.74	278.00	279.60	0.58	
E22	103.700	111.297	7.33	17.400	24.997	43.66	271.00	270.93	-0.03	

W	ei	r	No.
---	----	---	-----

PERFORMANCE OF THE MATHEMATICAL MODEL, DATA BY ENGELS (SUBCRITICAL FLOW, CASE II)

TEST	UPSTREAM DISCHARGE O ₁ 1/s			SIDE SPIL	L DISCHARG	E 0, 1/s	UPSTREAM DEPTH y ₁ mm		
No.	measured	computed	% error	measured	computed	% errot	measured	computed	% error
E23	103.700	111.541	7.56	18.900	26.741	41.49	266.00	266.20	0.08
E24	103.700	114.074	10.00	19.700	30.074	52.66	262.00	263.86	0.71
E25	103.700	115.790	11.66	20.000	32.090	60.45	262.00	262.20	0.08
					ŀ	1			
				· ·					
1		- F							
						·			
	ean dard Devia	ntion	3.17 5.53		лана и продакция и продакци Ук.	20.23 28.68			0.24 1.74

N	e	l r	No	
Y	e	I F	- NO	

PERFORMANCE OF THE MATHEMATICAL MODEL, DATA BY GENTILINI (SUBCRITICAL FLOW)

TEST	UPSTREAM	A DISCHARG	E 0, 1/s	SIDE SPIL	L DISCHARG	E Q _w I/s	UPSTREAM DEPTH y ₁ mm		
No.	measured	computed	% +++++	measured	computed	% error	measured	computed	% error
Gl	21.650	21.071	- 2.67	21.650	21.071	- 2.67	298.40	296.39	- 0.67
G 2	18.850	18.579	- 1.44	14.280	14.009	- 1.90	287.10	285.99	- 0.39
G 3	16.050	15.490	- 3.49	13.050	12.490	- 4.29	285.30	283.95	- 0.47
G 4	21.650	21.588	- 0.29	7.680	7.618	- 1.09	274.20	274.18	- 0.01
G 5	17.720	17.515	- 1.16	3.820	3.615	- 5.37	265.80	265.61	- 0.07
G 6	12.450	12.007	- 3.56	10.850	10.407	- 4.08	118.50	114.72	- 3.19
G 7	18.250	18.278	0.15	4.950	4.978	0.57	158.90	157.62	- 0.81
G 8	14.650	14.841	1.30	7.000	7.191	2.73	168.30	166.13	- 1.29
				ļ					
		t							
	}						-		
							· · · ·		
	ean ndard Devi	L	- 1.40 1.76	I	L	- 2.01 2.70	L	L	- 0.86 1.03

PERFORMANCE OF THE MATHEMATICAL MODEL, DATA BY GENTILINI (SUPERCRITICAL FLOW,

Weir No.

UPSTREAM DEPTHS OBTAINED FROM FIG. 6.56)

TEST	DOWNSTREAN	DISCHARGE	= 0 ₂ 1/s	SIDE SPIL	L DISCHARG	E Q _w 1/s	DOWNSTREAM DEPTH y mm		
No.	measured	computed	%	measured	computed	% orror	measured	computed	% error
G 9	18.670	19.297	3.36	7.750	7.123	- 8.09	66.10	64.45	- 2.50
G10	17.650	17.956	1.73	6.050	5.744	- 5.06	65.50	68.41	4.44
G11	20.650	21.106	2.21	6.200	5.744	- 7.35	73.00	70.01	- 4.10
G12	18.150	18.624	2.61	4.800	4.326	- 9.88	69.00	66.45	- 3.70
								1	
			•						
		•							
						Sec. 1			
						.			
									ъ.
				ŀ					
			l						
					١				
Mea Stand	l an lard Devia	L	2.48 0.69	I	<u> </u>	- 7.60 2.00		A	- 1.41 3.99

Weir	No.	(SUPERCRI	TICAL FLOW	, MEASUREI	D UPSTREAM	DEPTHS)				
TEST	DOWNSTREAM	DOWNSTREAM DISCHARGE O ₂ 1/s			SIDE SPILL DISCHARGE Q _w 1/s			DOWNSTREAM DEPTH y mm		
No.	measured	computed	% error	measured	computed	% •**•*	measured	computed	%	
G 9	18.670	19.456	4.21	7.750	6.964	-10.14	66.10	64.63	- 2.22	
G10	17.650	18.114	2.63	6.050	5.586	- 7.67	65.50	63.32	- 3.33	
G11	20.650	21.130	2.32	-6.200	5.720	- 7.74	73.00	69.76	- 4.44	
G12	18.150	18.632	2.66	4.800	4.318	-10.04	69.00	66.41	- 3.75	
							•			
						•				
		•			•					
				i i		· • .				
1						•				
									÷	
			· · · ·		· · ·					
		· · ·								
	<u> </u>						I	l		
	ean dard Devia	tion	2.96 0.85			- 8.90 1.38			- 3.44 0.93	

PERFORMANCE OF THE MATHEMATICAL MODEL, DATA BY GENTILINI

APPENDIX XI

Performance of De Marchi's Method and Chow's Numerical Integration Method.

TEST	UPSTREAM DISCHARGE O ₁ 1/s			SIDE SPIL	L DISCHARG	e o _w I/s	UPSTREAM DEPTH y _t mm		
No.	measured	computed	% +1101	measured	computed	% error	measured	computed	% error
15	6.590	6.270	- 4.86	4.310	3.990	- 7.42	95.40	90.18	- 5.47
16	5.940	5.764	- 2.96	3.740	3.564	- 4.71	94.90	90.85	- 4.27
17	5.340	5.217	- 2.30	3.180	3.057	- 3.87	93.80	90.93	- 3.06
18	4.630	4.563	- 1.45	2.530	2.463	- 2.65	92.40	90.48	- 2.08
19	4.190	4.128	- 1.48	2.130	2.068	- 2.91	91.10	89.86	- 1.36
20	3.530	3.441	- 2.52	1.900	1.811	- 4.68	91.10	89.78	- 1.45
21	4.270	4.169	- 2.37	2.620	2.519	- 3.85	93.30	91.35	- 2.09
22	4.560	4.409	- 3.31	2.900	2.749	- 5.21	94.10	91.70	- 2.55
23	5.400	5.189	- 3.91	3.690	3.479	- 5.72	95.90	92.25	- 3.81
24	5.940	5.709	- 3.89	4.210	3.979	- 5.49	97.10	92.18	- 5.07
25	6.430	6.142	- 4.48	4.680	4.392	- 6.15	97.20	91.77	- 5.59
26	7.020	6.607	- 5.88	5.240	4.827	- 7.88	97.90	90.85	- 7.20
27	7.460	7.079	- 5.11	5.670	5.289	- 6.72	99.50	89.26	-10.29
28	6.660	6.272	- 5.83	5.430	5.042	- 7.15	100.20	93.02	- 7.17
29	5.990	5.692	- 4.97	4.810	4.512	- 6.20	99.10	93.75	- 5.40
30	5.340	5.111	- 4.29	4.200	3.971	- 5.45	97.80	93.93	- 3.96

Weir No. 1. PERFORMANCE OF DE MARCHI'S METHOD: SUBCRITICAL FLOW, CASE II.

TEST	UPSTREAM	UPSTREAM DISCHARGE O _S I/s SIDE SPILL DISCHARGE O _W I				E Q _w 1/s	UPSTREAM DEPTH y ₁ mm			
No.	measured	computed	% errot	measured	computed	% error	measured	computed	% error	
31	4.700	4.350	- 7.45	3.600	3.250	- 9.72	96.80	93.46	- 3.45	
32	3.880	3.725	- 3.99	2.790	2.635	- 5.56	94.50	92.48	- 2.14	
33	3.020	2.904	- 3.84	1.920	1.804	- 6.04	91.60	90.48	- 1.22	
34	2.190	2.090	- 4.57	1.820	1.720	- 5.49	91.70	90.76	- 1.03	
35	2.930	2.786	- 4.91	2.440	2.296	- 5.90	93.90	92.55	- 1.44	
36	3.690	3.508	- 4.93	3.080	2.898	- 5.91	95.90	93.89	- 2.10	
37	4.380	4.205	- 4.00	3.640	3.465	- 4.81	97.20	94.47	- 2.81	
38	5.540	5.284	- 4.62	4.490	4.234	- 5.70	98.70	94.23	- 4.53	
39	6.490	6.143	- 5.35	5.110	4.763	- 6.79	99.40	92.79	- 6.65	
40	7.610	7.097	- 6.74	5.950	.5.437	- 8.62	99.90	89.53	-10.38	
41	3.460	4.304	24.39	1.840	2.684	45.87	83.70	91.68	3.36	
42	4.330	5.145	18.82	2.700	3.515	30.19	91.50	92.47	1.06	
43	5.330	6.074	13.96	3.670	4.414	20.27	93.90	92.10	- 1.92	
44	6.210	6.857	10.42	4.470	5.117	14.47	95.40	90.32	- 5.32	
45	6.500	7.106	9.32	4.710	5.316	12.87	95.60	89.12	- 6.78	
46	7.500	N/C	N/C	5.670	м/с	N/C	95.70	` N∕C	N/C	

Weir No. 1. PERFORMANCE OF DE MARCHI'S METHOD: SUBCRITICAL FLOW, CASE II.

W	ei	r	No.	,

1. PERF

PERFORMANCE OF DE MARCHI'S METHOD: SUBCRITICAL FLOW, CASE II.

0

TEST	UPSTREAM	A DISCHARG	E 0 ₁ 1/s	SIDE SPIL	L DISCHARG	E Q _w 1/s	UPSTREAM	UPSTREAM DEPTH y ₁ mm		
No.	measured	computed	% •1107	measured	computed	% errot	measured	computed	% error	
48	5.860	6.618	12.94	4.750	5.508	15.96	97.20	92.65	- 4.68	
49	5.200	5.995	15.29	4.320	5.115	18.40	96.60	94.37	- 2.31	
50	4.560	5.469	19.93	3.850	4.759	23.61	95.90	95.21	- 0.72	
51	3.770	4.749	25.97	3.240	4.219	30.23	94.60	95.65	1.11	
52	3.060	4.031	31.73	2.620	3.591	37.06	92.80	95.37	2.77	
53	2.600	3.556	36.77	2.230	3.186	42.87	91.60	94.82	3.52	
55	7.580	7.500	- 1.06	5.820	5.740	- 1.37	98.80	86.45	-12.50	
56	6.560	6.732	2.62	4.830	5.002	3.56	97.20	90.65	- 6.74	
57	5.770	6.016	4.26	4.140	4.386	5.94	96.20	92.24	- 4.12	
58	4.830	5.177	7.18	3.170	3.517	10.95	94.50	92.40	- 2.22	
59	4.070	4.439	9.07	2.460	2.829	15.00	92.50	91.91	- 0.64	
60	3.330	3652	9.67	1.800	2.122	17.89	89.70	90.71	1.13	
	Mean 3.29 Standard Deviation 11.42			•		4.49 15.32	· · ·		- 3.29 3.47	

٩.	lei	i 🕶	No.	2
Y		16	INO.	- 64

2. PERFORMANCE OF DE MARCHI'S METHOD

THOD : SUBCRITICAL FLOW, CASE II.

TEST	UPSTREAM	A DISCHARG	= 0 ₁ 1/s	SIDE SPIL	L DISCHARGE	0 _w 1/s	UPSTREAM	DEPTH y ₁	ກາເຫ
No.	measured	computed	% •****	measured	computed	% error	measured	computed	% +++++
62	3.680	4.007	8.89	1.850	2.177	17.68	129.00	130.78	1.38
63	3.950	4.295	8.73	2.070	2.415	16.67	129.90	131.59	1.30
64	4.950	5.331	7.70	3.050	3.431	12.49	133.60	134.32	0.54
65	6.020	6.374	5.88	4.070	4.424	8.70	136.90	136.40	-0.37
66	6.790	7.129	4.99	4.800	5.139	7.06	138.90	137.50	-1.01
67	7.310	7.619	4.23	5.320	5.629	5.81	140.40	138.12	-1.62
68	7.740	8.074	4.32	5.710	6.044	5.85	141.50	138.46	-2.15
69	9.830	9.875	0.46	7.790	7.835	0.58	145.80	139.08	-4.61
70	8.440	8.766	3.86	6.420	6.746	5.03	143.20	138.96	-2.96
					с. С				
									•
					·	i i			
			•.		-				
								۱	- -
			•	l		L		L	
Mea	n.		5.45			8.88		. •	-1.06
Sta	ndard Devi	lation	2.70			5.66			2.01

Weir	No.
------	-----

4.

PERFORMANCE OF DE MARCHI'S METHOD : SUBCRITICAL FLOW, CASE II.

TEST	UPSTREAM	DISCHARGE	E 0 ₁ 1/s	SIDE SPIL	L DISCHARG	E Q _w 1/s	UPSTREAM	DEPTH y ₁	mm
No.	measured	computed	% •1101	measured	computed	% error	measured	computed	% error
80	3.090	3.422	10.74	1.490	1.822	22.28	92.40	92.46	0.06
81	4.440	4.800	8.11	2.820	3.180	12.77	98.40	96.24	- 2.20
82	5.240	5.627	7.39	3.600	3.937	10.75	101.60	97.50	- 4.04
83	5.860	6.307	7.63	4.150	4.597	10.77	103.60	97.49	- 5.90
84	6.220	6.637	6.70	4.470	4.887	9.33	104.80	97.10	- 7.35
85	6.690	7.105	6.20	4.930	5.345	8.42	105.40	96.63	- 9.18
86	7.270	7.601	4.55	5.490	5.821	6.03	108.00	95.24	-11.81
87	7.740	8.019	3.60	5.930	6.209	4.70	109.60	92.85	-15.28
88	8.100	8.362	3.23	6.910	7.172	3.79	113.60	92.84	-18.27
89	5.300	5.760	8.68	4.150	4.610	. 11.03	104.20	99.42	- 4.59
90	4.290	4.710	9.79	3.160	3.580	13.29	100.40	98.17	- 2.22
91	3.520	3.862	9.72	2.390	2.732	14.31	97.20	96.12	- 1.11
92	2.620	2.973	13.47	1.500	1.853	23.53	92.80	93.01	0.23
93	5.880	6.326	7.59	4.720	5.166	9.45	95.90	99.52	3.77
94	7.470	7.785	4.22	6.290	6.605	5.01	111.20	97.04	12.73
95	8.230	N/C	N/C	5.910	N/C	N/C	107.80	N/C	N/C

()							1		
TEST	UPSTREAM	A DISCHARG	E 0, 1/s	SIDE SPIL	L DISCHARG	E Q _w 1/s	UPSTREAM	DEPTH Y	mm
No.	measured	computed	% •1101	measured	computed	% ====	measured	computed	%
95	7.450	7.733	3.80	5.140	5.423	5.51	105.80	92.37	-12.69
97	6.350	6.755	6.38	4.070	4.475	9.95	102.60	95.15	- 7.26
98	5.240	5.591	6.70	3.070	3.421	11.43	98.80	95.32	- 3.52
99	4.370	4.706	7.69	2.270	2.606	14.80	95.60	94.03	- 1.64
100	3.550	3.899	9.83	1.480	1.829	23.58	91.90	91.76	- 0.15
101	2.870	2.841	- 1.01	1.310	1.281	- 2.21	90.90	90.06	- 0.92
102	4.290	4.282	- 0.19	2.720	2.712	- 0.29	97.70	95.25	- 2.51
103	4.830	4.839	0.19	3.240	3.249	0.28	99.80	96.44	- 3.37
104	6.140	6.098	- 0.68	4.450	4.408	- 0.94	104.20	97.56	- 6.37
105	7.200	7.063	- 1.90	5.470	5.333	- 2.50	107.60	96.81	-10.03
105	8.030	7.881	- 1.85	6.280	6.131	- 2.37	110.80	94.08	-15.09
107	3.220	4.049	25.75	1.560	2.389	53.14	90.50	94.18	4.07
108	4.350	5.213	19.84	2.690	3.553	32.08	95.60	96.81	1.27
109	5.200	6.124	17.77	3.520	4.444	26.25	98.70	97.60	1.11
110	6.160	7.045	14.37	4.370	5.255	20.25	101.70	96.62	- 5.00
			•	1					

Weir No. 4. PERFORMANCE OF DE MARCHI'S METHOD : SUBCRITICAL FLOW, CASE II.

Weir	No.
------	-----

No. 4. PERFORMANCE OF DE MARCHI'S METHOD : SUBCRITICAL FLOW, CASE II.

TEST	UPSTREA	W DISCHARG	e 0, 1/s	SIDESPIL	L DISCHARG	E Q _w 1/s	UPSTREAM	DEPTH Y ₁	സ ന
No.	measured	computed	%	measured	computed	% error	measured	computed	% error
111 112	7.000 7.530	7.837 N/C	11.96 N/C	5.170 5.660	6.007 N/C	16.19 N/C	104.00 106.40	93.98 N/C	- 9.63 N/C
•									
•									
					•				
					•				
÷		ţ							
	N N					11.06			- 4.42
Mea	n ndard Dev	iation	7.43 6.38			11.96 11.73			 6.46

433

.

Veir No.	٧	ei	Г	No.
----------	---	----	---	-----

454

5.

PERFORMANCE OF DE MARCHI'S METHOD : SUBCRITICAL FLOW, CASE II.

TEST	UPSTREAM	DISCHARGI	: 0 ₁ 1/s	SIDE SPIL	L DISCHARG	E Q _w I/s	UPSTREAM	DEPTH Y ₁	mm
No.	measured	computed	% • • • • •	measured	computed	% error	measured	computed	% *****
113	4.250	5.148	21.13	2.590	3.488	34.67	90.00	89.81	- 0,21
114	5.200	6.024	15.85	3.510	4.334	23.48	91.30	83.86	- 2.67
115	5.960	6.603	10.79	4.170	4.813	15.42	91.50	87.19	- 4.71
116	7.090	N/C	N/C	5.190	N/C	N/C	90.90	N/C	N/C
117	7.540	N/C	N/C	5.630	N/C	N/C	90.70	N/C	N/C
119	3.740	4.229	13.07	2.150	2.639	22.74	90.10	89.68	- 0.47
120	4.580	5.026	9.74	2.940	3.386	15.17	91.40	89.89	- 1.65
121	5.400	5.713	5.80	3.700	4.013	8.46	93.10	89.31	- 4.07
122	6.080	6.269	3.11	4.350	4.539	4.34	93.20	88.27	- 5.29
123	6.690	6.737	0.70	4.890	4.937	0.96	93.60	86.68	- 7.39
124	7.290	7.214	- 1.04	5.430	5.354	- 1.40	92.90	83.90	- 9.69
125	7.730	N/C	N/C	5.850	N/C	N/C	92.90	N/C	N/C
126	3.020	3.071	1.69	1.460	1.511	3.49	89.50	87.76	- 1.94
127	4.360	4.306	- 1.24	2.780	2.726	- 1.94	92.60	89.78	- 3.05
128		5.193	- 2.75	3.720	3.573	- 3.95	94.30	89.89	- 4.68
129	6.130	5.834	- 4.83	4.430	4.134	- 6.68	94.60	89.15	- 5.76

W	ei	r	No.	- 5

PERFORMANCE OF DE MARCHI'S METHOD : SUBCRITICAL FLOW, CASE II. 5.

TEST	UPSTREA/	M DISCHARG	E 0 ₁ . 1/s	SIDE SPIL	L DISCHARG	e Q _w 1/s	UPSTREAM	DEPTH y1	നന
No.	measured	computed	% ++++++	measurad	computed	% error	measured	computed	%
130 131	6.810 7.490	6.435 6.959	- 5.51 - 7.09	5.040 5.700	4.665 5.169	- 7.44 - 9.32	94.60 94.50	87.76 85.63	- 7.23 - 9.33
						•			
•	•		÷.						
		- f							
	1					C Eli			
Mea Sta	n Indard Dev	iation	3.96 8.47	•		6 .5 4 13 . 12			- 4. <i>5</i> 4 2.97

Ν	e	i r	No.	3

0.3. PEF

PERFORMANCE OF DE MARCHI'S METHOD: SUPERCRITICAL FLOW, CASE I.

TEST	DOWNSTREAM	DISCHARGI	: 0 ₂ 1/.	SIDE SPIL	L DISCHARG	: 0 _w 1/s	DOWNSTREAM	DEPTH 92	mm
No.	measured	computed	% •***	measured	computed	% = = = = = =	measured	computed	%
71	7.000	7.691	9.87	6.200	5.509	-11.15	46.20	46.20	0.00
72	6.450	7.124	10.45	5.240	4.566	-12.86	44.70	45.11	0.92
73	5.880	6.502	10.58	4.150	3.528	-14.99	42.70	44.17	3.44
74	5.120	5.613	9.63	2.910	2.417	-16.94	41.60	42.08	1.15
75	5.630	6.215	10.39	3.740	3.155	-15.64	42.60	43.47	2.04
76	6.090	6.790	11.49	4.770	4.070	-14.68	43.60	44.46	1.97
132	7.450	7.938	6.55	6.370	5.882	- 7.66	46.00	46.66	1.43
133	7.130	7.693 ·	7.90	5.980	5.417	- 9.41	46.00	46.20	0.43
134	6.820	7.360	7.92	5.430	4.890	- 9.94	45.20	45.57	0.82
135	6.560	7.088	8.05	4.860	4.332	-10.86	44.00	45.34	3.05
136	6.200	6.666	7.52	4.210	3.744	-11.07	43.10	44.36	2.92
137	5.840	6.261	7.21	3.630	3.209	-11.60	42.50	43.43	2.19
141	7.780	8.052	3.50	6.230	5.958	- 4.37	47.20	46.87	-0.70
142	7.460	7.763	4.06	5.810	5.507	- 5.22	46.70	46.33	-0.79
143	7.020	7.395	5.34	5.140	4.765	- 7.30	45.80	45.84	0.09
144	6.660	7.053	5.90	4.660	4.267	- 8.43	44.90	45.04	0.31

We	ir I	No.
----	------	-----

3. PERFORMA

NCE OF DE MARCHI'S METHOD: SUPERCRITICAL FLOW, CASE I.

TEST	DOWNSTREA	M DISCHARG	e 0 ₂ 1/s	SIDE SPIL	SIDE SPILL DISCHARGE Q _W 1/s			DOWNSTREAM DEPTH y mm		
No.	measured	computed	%	measured	computed	% •***	measured	computed	% • * * * *	
145	6.300	6.637	5.35	4.030	3.693	- 8.36	43.90	44.13	0.52	
146	5.890	6.208	5.40	3.400	3.082	- 9.35	42.40	43.35	2.24	
			• • •	· .						
					-					
						•				
							-			
		۲						•		
	an ard Devia	I	7.62 2.40	I	L	-10.55 3.50	<u>ا</u>		1.22 1.26	

EST	DOWNSTREAM	DISCHARG	e 0 ₂ 1/s	SIDE SPIL	L DISCHARG	E Q _w I/s	DOWNSTREAM	DEPTH y ₂	mm
No.	measured	computed	% • * * * *	measured	computed	% +++++	measured	computed	% error
77	7.010	7.635	8.92	5.630	5.005	-11.10	47.00	46.12	- 1.8
78	7.950	8.271	4.04	4.640	4.319	- 6.92	48.10	46.83	- 2.6
79	8.840	9.015	1.98	3.690	3.515	- 4.74	49.00	47.01	- 4.0
138	7.490	7.882	5.23	5.140	4.748	- 7.63	46.60	46.49	- 0.2
139	8.280	8.516	2.85	4.240	4.004	- 5.57	47.70	46.93	- 1.6
140	9.280	9.260	- 0.22	3.320	3.340	0.60	43.00	47.16	- 1.7
147	7.750	7.984	3.02	4.750	4.516	- 4.93	47.40	46.61	- 1.6
148	8.680	8.700	0.23	3.820	3.800	- 0.52	48.10	46.93	- 2.3
149	9.420	9.317	-1.09	3.050	3.153	3.38	48.40	46.95	- 3.0
•									
		e de la companya de l	•						
									· .
			•						-1
4									
		÷.							
				<u> </u>	I	<u> </u>	<u></u>	l	
	ean dard Devia	tion	2.77 3.09	•	• •	- 4.16 4.52		•	- 2.13

Weir No. 3. PERFORMANCE OF DE MARCHI'S METHOD: SUPERCRITICAL FLOW, CASE IV.

TEST	UPSTREAN	DISCHARG	E 0 ₁ 1/s	SIDE SPIL	L DISCHARGE	Q _w 1/s	UPSTREAM DEPTH y ₁ mm		
No.	measured	computed	% •1101	measured	computed	% error	measured	computed	% error
15	6.590	6.346	- 3.70	4.310	4.066	- 5.66	95.40	91.26	- 4.34
16	5.940	5.824	- 1.95	3.740	3.624	- 3.10	94.90	91.70	- 3.37
17	5.340	5.269	- 1.33	3.180	3.109	- 2.23	93.80	91.60	- 2.34
18	4.630	4.600	- 0.65	2.530	2.500	- 1.19	92.40	90.91	- 1.61
19	4.190	4.166	- 0.57	2.130	2.106	- 1.13	91.10	90.19	- 1.00
20	3.530	3.464	- 1.87	1.900	1.834	- 3.47	91.10	89.99	- 1.22
21	4.270	4.194	- 1.78	2.620	2.544	- 2.90	93.30	91.66	- 1.76
22	4.560	4.433	- 2.79	2.900	2.773	- 4.38	94.10	92.07	- 2.16
23	5.400	5.218	- 3.37	3.690	3.508	- 4.93	95.90	92.87	- 3.16
24	5.940	5.750	- 3.20	4.210	4.020	- 4.51	97.10	93.01	- 4.21
25	6.430	6.195	- 3.65	4.680	4.445	- 5.02	97.20	92.80	- 4.53
26	7.020	6.676	- 4.90	5.240	4.895	- 6.56	97.90	92.12	- 5.90
27	7.460	7.171	- 3.87	5.670	5.381	- 5.10	99.50	90.87	- 8.67
28	6.660	6.314	- 5.20	5.430	5.084	- 6.37	100.20	94.13	- 6.06
29	5.990	5.717	- 4.55	4.810	4.537	- 5.68	99.10	94.59	- 4.55
30	5.340	5.127	- 3.99	4.200	3.987	- 5.07	97.80	94.53	- 3.34

Weir No. 1. PERFORMANCE OF CHOW'S NUMERICAL INTEGRATION METHOD

SUBCRITICAL FLOW, CASE II.

TEST	UPSTREAM	A DISCHARG	E 0 ₁ 1/s	SIDE SPIL	L DISCHARG	E Q _w I/s	UPSTREAM	DEPTH y ₁	1711 1 9
No.	measured	computed	% • * * * *	measured	computed	% error	meosured	computed	%
31	4.700	4.355	- 7.34	3.600	3.255	- 9.58	96.80	93.80	- 3.10
32	3.880	3.729	- 3.89	2.790	2.639	- 5.41	94.50	92.70	- 1.90
33	3.020	2.933	- 2.88	1.920	1.833	- 4.53	91.60	90.53	- 1.17
34	2.190	2.086	- 4.75	1.820	1.716	- 5.71	91.70	90.85	- 0.93
35	2.930	2.787	- 4.83	2.440	2.297	- 5.86	93.90	92.64	- 1.34
36	3.690	3.515	- 4.74	3.080	2.905	- 5.68	95.90	94.00	- 1.98
37	4.380	4.197	- 4.18	3.640	3.457	- 5.03	97.20	94.77	- 2.50
38	5.540	5.293	- 4.46	4.490	4.243	- 5.50	98.70	94.87	- 3.89
.39	6.490	6.185	- 4.70	5.110	4.805	- 5.97	99.40	93.83	- 5.58
40	7.610	7.191	- 5.51	5.950	5.531	- 7.04	99.90	91.18	- 8.73
41	3.460	3.922	13.35	1.840	2.302	25.11	83.70	83.63	- 0.02
42	4.330	4.747	9.63	2.700	3.117	15.44	91.50	89.99	- 1.65
43	5.330	5.635	6.65	3.670	4.025	9.67	93.90	90.27	- 3.87
44	6.210	6.495	4.59	4.470	4.755	6.38	95.40	89.06	- 6.65
45	6.500	6.758	3.97	4.710	4.963	5.48	95.60	88.24	- 7.70
46	7.500	6.758	- 9.89	5.670	4.928	-13.09	95.70	88.24	- 7.80

Weir No. 1. PERFORMANCE OF CHON'S NUMERICAL INTEGRATION METHOD : SUBCRITICAL FLOW, CASE II.

TEST	UPSTREAM	M DISCHARG	E 0 ₁ 1/s	SIDE SPIL	L DISCHARG	E Q _w 1/s	UPSTREAM	DEPTH Y ₁	I TVI II	
No.	measured	computed	% error	measured	computed	% ====	measured	computed	% error	
48	5.860	6.209	5.96	4.750	5.099	7.35	97.20	91.37	- 6.00	
49	5.200	5.555	6.83	4.320	4.675	8.22	96.60	92.60	- 4.14	
50	4.560	5.012	9.91	3.850	4.302	11.74	95.90	93.08	- 2.94	
ন	3.770	4.282	13.58	3.240	3.752	15.80	94.60	93.03	- 1.65	
52	3.060	3.587	17.22	2.620	3.147	20.11	92.80	92.29	- 0.55	
53	2.600	3.118	19.92	2.230	2.748	23.23	91.60	91.58	- 0.02	
55	7.580	7.401	- 2.36	5.820	5.512	- 5.29	93.80	87.61	-11.33	
55	6.560	6.579	0.29	4.830	4.849	0.39	97.20	90.68	- 6.71	
57	5.770	5.836	1.14	4.140	4.206	1.59	96.20	91.80	- 4.57	
53	4.830	4.989	3.29	3.170	3.329	5.02	94.50	91.48	- 3.20	
59	4.070	4.252	4.47	2.460	2.642	7.40	92.50	90.64	- 2.01	
60	3.330	3.478	4.44	1.800	1.948	8.22	89.70	89.21	- 0.55	
					l l					
		1	•	1			1	<u></u>		
Me	Mean 0.42					0.57			- 3.65	
	tendent Doutetten 676					0.06		2 61		

Weir No. 1. PERFORMANCE OF CHOW'S NUMERICAL INTEGRATION METHOD : SUBCRITICAL FLOW, CASE II.

14

Standard Deviation

6.76

9.06

2.61

TEST	UPSTREA/	W DISCHARG	e 0, 1/s	SIDE SPIL	L DISCHARG	E Q _w 1/s	UPSTREAM	DEPTH Y	mm
No.	measured	computed	% +1105	measured	computed	% *****	measured	computed	% =1101
62	3.680	3.827	3.99	1.850	1.997	7.95	129.00	128.96	- 0.03
63	3.950	4.111	4.08	2.070	2.231	7.78	129.90	129.80	- 0.08
64	4.950	5.089	2.81	3.050	3.189	4.56	133.60	132.73	- 0.65
65	6.020	6.114	1.56	4.070	4.164	2.31	136.90	135.02	- 1.37
66	6.790	6.858	1.00	4.800	4.868	. 1.42	138.90	136.31	- 1.86
67	7.310	7.346	0.49	5.320	5.356	0.68	140.40	137.09	- 2.36
68	7.740	7.805	0.84	5.710	5.775	1.14	141.50	137.59	- 2.76
69	9.830	9.619	- 2.15	7.790	7.579	- 2.71	145.80	138.86	- 4.76
70	8.440	8.500	0.71	6.420	6.480	0.93	143.20	138.35	- 3.39
•						1.19			
						100 - 100 - 1 00		•	
	•								
	•								
	\		•						
Mea	Mean 1.48				2.67				- 1.92
Sta	ndard Dev	iation	1.94			3.49		· · ·	1.58

Weir No. 2. PERFORMANCE OF CHOW'S NUMERICAL INTEGRATION METHOD : SUBCRITICAL FLOW, CASE II.

TEST	UPSTREAM	A DISCHARG	e 0, 1/s	SIDE SPILL DISCHARGE Q _W 1/s			UPSTREAM DEPTH y ₁ mm		
No.	measured	computed	% error	measured	computed	%	measured	computed	% +1101
80	3.090	3.350	8.41	1.490	1.750	17.45	92.40	91.00	- 1.52
81	4.440	4.694	5.72	2.820	3.074	9.01	98.40	95.10	- 3.35
82	5.240	5.529	5.52	3.600	3.889	8.03	101.60	96.51	- 5.01
83	5.860	6.209	5.96	4.150	4.499	8.41	103.60	96.82	- 6.54
84	6.220	6.532	5.02	4.470	4.782	6.98	104.80	96.70	- 7.73
85	6.690	7.018	4.90	4.930	5.258	6.65	106.40	96.37	- 9.43
86	7.270	7.526	3.52	5.490	5.746	4.66	108.00	95.35	-11.71
87	7.740	7.962	2.87	5.930	6.152	3.74	109.60	93.48	-14.71
88	8.100	8.312	2.62	6.910	7.122	[^] 3.07	113.60	94.07	-17.19
89	5.300	5.646	6.53	4.150	4.496	8.34	104.20	98.52	- 5.45
90	4.290	4.600	7.23	3.160	3.470	9.81	100.40	96.92	- 3.47
91	3.520	3.761	6.85	2.390	2.631	10.08	97.20	94.73	- 2.54
92	2.620	2.831	9.96	1.500	1.761	17.40	92.80	91.55	- 1.35
93	5.880	6.214	5.68	4.720	5.054	7.08	95.90	98.86	3.09
94	7.470	7.705	3.15	6.290	6.525	3.74	111.20	97.24	-12.55
95	8.230	N/C		5.910	N/C		107.80	N/C ·	

Weir No. 4. PERFORMANCE OF CHOW'S NUMERICAL INTEGRATION METHOD

: SUBCRITICAL FLOW, CASE II.

TEST	UPSTREAM	A DISCHARG	E 0 ₁ 1/s	SIDE SPI	L DISCHARG	E Q _w 1/s	UPSTREAM	DEPTH y ₁	mis
No.	measured	computed	% +1101	measured	computed	% error	measured	computed	% error
96	7.450	7.674	3.01	5.140	5.364	4.36	105.80	92.65	-12.43
97	6.350	6.676	5.13	4.070	4.396	8.01	102.60	94.69	- 7.71
98	5.240	5.500	4.95	3.070	3.330	8.47	98.80	94.43	- 4.42
99	4.370	4.614	5.58	2.270	2.614	15.15	95.60	92.87	- 2.86
100	3.550	3.818	7.55	1.480	1.748	18.11	91.90	90.47	- 1.56
101	2.870	2.887	0.59	1.310	1.327	1.30	90.90	90.03	- 0.96
102	4.290	4.313	0.54	2.720	2.743	0.85	97.70	95.31	- 2.45
103	4.830	4.873	0.89	3.240	3.283	1.33	99.80	96.58	- 3.23
104	6.140	6.158	0.29	4.450	4.468	0.40	104.20	97.99	- 5.96
105	7.200	7.134	- 0.92	5.470	5.404	1.21	107.60	97.67	- 9.23
105	8.030	7.978	- 0.65	6.280	6.228	- 0.83	110.80	95.53	-13.78
107	3.220	3.827	18.85	1.550	2.167	38.91	90.50	91.59	1.20
108	4.350	4.967	14.18	2.690	3.307	22.94	95.60	94.55	- 1.10
109	5.200	5.879	13.05	3.520	4.199	19.29	98.70	95.68	- 3.06
110	6.160	6.807	10.50	4.370	5.027	15.03	·101.70	95.23	- 6.36
111	7.000	7.619	8.84	5.170	5.789	11.97	104.00	93.26	-10.33
112	7.530	8.076	· 7.25	5.650	6.206	9.65	106.40	89.71	-15.69
Me	Mean 5.74		9•39					- 6.25	
St	Standard Deviation 4			8.16			5.19		

Weir No. 4. PERFORMANCE OF CHOW'S NUMERICAL INTEGRATION METHOD : SUBCRITICAL FLOW, CASE II.

ŧ

TEST	UPSTREAN	DISCHARG	E 0 ₁ 1/s	SIDE SPIL	L DISCHARGE	E Q _w 1/s	UPSTREAM	DEPTH y ₁	mm
No.	measured	computed	% error	measured	computed	% error	measured	computed	% +1107
113	4.250	4.700	10.59	2.590	3.040	17.37	90.00	87.00	- 3.33
114	5.200	5.603	7.75	3.510	3.913	11.48	91.30	85.72	- 5.02
115	5.960	6.218	4.33	4.170	4.428	6.19	91.50	85.50	- 6.56
116	7.090	7.124	0.43	5.190	5.224	. 0.66	90.90	79.95	-12.05
117	7.540	7.124	- 5.52	5.630	5.214	- 7.39	90.70	79.95	-11.85
119	3.740	4.036	7.91	2.150	2.446	13.77	90.10	88.15	- 2.16
120	4.580	4.844	5.76	2.940	3.204	8.98	91.40	83.73	- 2.92
121	5.400	5.542	2.63	3.700	3.842	3.84	93.10	88.49	- 4.95
122	6.080	6.125	0.74	4.350	4.396	1.06	93.20	87.80	- 5.79
123	6.690	6.623	- 1.00	4.890	4.823	- 1.37	93.60	86.51	- 7.57
124	7.290	7.139	- 2.07	5.430	5.279	- 2.78	92.90	84.24	- 9.32
125	7.730	7.430	- 3.88	5.850	5.550	- 5.13	92.90	80.80	-13.02
126	3.020	3.164	4.77	1.460	1.604	9.86	89.50	83.30	- 1.34
127	4.360	4.421	1.40	2.780	2.841	2.19	92.60	90.51	- 2.26
128	5.340	5.336	- 0.07	3.720	3.716	- 0.11	94.30	90.97	- 3.53
129	6.130	6.013	- 1.91	4.430	4.313	- 2.64	94.60	90.60	- 4.23

Weir No. 5. PERFORMANCE OF CHOW'S NUMERICAL INTEGRATION METHOD : SUBCRITICAL FLOW, CASE II.

E S

TEST	UPSTREA/	M DISCHARG	e o _t i/s	SIDE SPIL	L DISCHARG	E Q _w 1/s	UPSTREAN	DEPTH 91	mm
No.	measured	computed	% • • • • •	measured	compute d	% error	measured	computed	% error
130 131	6.810 7.490	6.657 7.226	- 2.25 - 3.52	5.040 5.700	4.837 5.436	- 3.04 - 4.63	94.60 94.50	89.67 88.24	- 5.21 - 6.62
							•		
•									
н. -									
						J .			•
			•) 				
	an andard De	no \$te tr	1.45 4.56			2.63 7.11			- 5.99 3.54

Weir No. 5. PERFORMANCE OF CHOW'S NUMERICAL INTEGRATION METHOD : SUBCRITICAL FLOW, CASE II.

				-
VA1	^ :	-		
W			No.	3

3. PERFORMANCE OF CHOW'S NUMERICAL INTEGRATION METHOD: SUPERCRITICAL FLOW, CASE I.

TEST No.	DOWNSTREAM DISCHARGE 02 1/s			SIDE SPILL DISCHARGE Q _w 1/s			DOWNSTREAM DEPTH y mm		
	measured	computed	% error	measured	computed	% =====	measured	computed	% +++++
71	7.000	7.641	9.16	6.200	5.559	-10.34	46.20	48.07	4.05
72	6.450	7.041	9.16	5.240	4.649	-11.28	44.70	46.75	4.59
73	5.880	6.343	7.87	4.150	3.687	-11.16	42.70	45.20	5.85
74	5.120	5.471	6.86	2.910	2.559	-12.06	41.60	43.24	3.94
75	5.630	6.067	7.76	3.740	3.303	-11.68	42.60	44.57	4.62
76	6.090	6.690	9.85	4.770	4.170	-12.58	43.60	45.97	5.44
132	7.450	7.949	6.70	6.370	5.871	- 7.83	46.00	48.42	5.26
133	7.130	7.686	7.80	5.980	5.424	- 9.30	46.00	47.83	3.98
134	6.820	7.332	7.51	5.430	4.918	- 9.43	45.20	47.05	4.09
135	6.560	6.993	6.60	4.860	4.427	- 8.91	44.00	46.28	5.18
136	6.200	6.574	6.03	4.210	3.836	- 8.88	43.10	45.36	5.24
137	5.840	6.178	5.79	3.630	3.292	- 9.31	42.50	44.44	4.56
141	7.780	8.098	4.09	6.230	5.912	- 5.10	47.20	48.50	2.75
142	7.460	7.792	4.45	5.810	5.478	- 5.71	46.70	47.84	2.44
143	7.020	7.360	4.84	5.140	4.800	- 6.61	45.80	46.86	2.31
144	6.660	7.024	5.47	4.660	4.296	- 7.81	44.90	46.08	2.63

Weir No. 3. PERFORMANCE OF CHOW'S NUMERICAL INTEGRATION METHOD:

SUPERCRITICAL FLOW, CASE I.

TEST No.	DOWNSTREAM DISCHARGE 02 1/4			SIDE SPILL DISCHARGE Q _W I/s			DOWNSTREAM DEPTH y mm		
	measured	computed	% +1101	measured	computed	% error	measured	computed	% error
145 146	6.300 5.890	6.607 6.153	4.87 4.47	4.030 3.400	3.723 3.137	- 7.62 - 7.74	43.90 42.40	45.12 44.05	2.78 3.89
	- X -								
				ł		•			
Mean 6.63 Standard Deviation 1.76					- 8.91 2.38	•		4.09 1.12	

TEST No.	DOWNSTREAM DISCHARGE 0, 1/s			SIDE SPILL DISCHARGE O _w I/s			DOWNSTREAM DEPTH y ₂ mm		
	measured	computed	% •1705	measured	computed	% ++++++	measured	computed	% error
77	7.010	7.559	7.83	5.630	5.081	- 9.75	47.00	47.77	1.64
78	7.950	8.166	2.72	4.640	4.424	- 4.66	48.10	48.24	0.29
79	8.840	8.879	0.44	3.690	3.651	- 1.06	49.00	48.27	- 1.49
138	7.490	7.834	4.59	5.140	4.796	- 6.69	46.60	47.80	2.58
139	8.280	8.435	1.87	4.240	4.085	- 3.66	47.70	48.07	0.21
140	9.280	9.128	- 1.64	3.320	3.472	4.58	48.00	48.09	0.19
147	7.750	7.950	2.58	4.750	4.550	- 4.21	47.40	47.63	0.49
148	8.680	8.635	- 0.52	3.820	3.865	1.18	48.10	47.93	0.35
149	9.420	9.207	- 2.26	3.050	3.263	6.98	48.40	47.75	1.34
						ł			
	ean ndard Devi	ation	1.73 3.18	<u> </u>	}	- 1.92 5.38			0.25

Weir No. 3. PERFORMANCE OF CHOW'S NUMERICAL INTEGRATION METHOD: SUPERCRITICAL FLOW, CASE IV.