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Abstract

The connected and automated vehicle (CAV) is a promising technology that will
reshape the transport. It has potentials in reducing fuel consumption as well as
improving capacity and safety. The traffic control of CAVs on urban roads is
investigated in the thesis, which consists of two aspects: intersection control and
trajectory planning.

For the intersection control with CAVs, a bilevel programming model inte-
grating intersection control with trajectory planning is proposed to improve the
efficiency of the intersection when all vehicles are CAVs. The feedback structure
adapts a wide range of conditions and improves capacity. The cooperation be-
tween the two levels and their linear properties ensure reasonable solving time.
A platoon-based method is also proposed to improve the calculation speed.

For the trajectory planning with CAVs, a platoon-based eco-driving model is
proposed using model predictive control. The model is used in mixed autonomy
traffic and considers traffic efficiency, fuel consumption, and driving comfort.
The cooperation between automated vehicles and human-driven vehicles reduces
the negative impact of eco-driving on the following vehicles and reduces fuel
consumption even further. The performance under different platoon sizes and
penetrations of automated vehicles are also tested in the simulation.

At an intersection controlled by the adaptive traffic control system, the vehicle
may not be able to get accurate information on the future signal timing. A multi-
phase model predictive control model is proposed to reduce fuel consumption by
considering the stochastic signal information. Two driving regimes are considered
based on the state of the traffic signal at each time step: accelerating to pass the
intersection when the light is green or keeping waiting for the possible green light
in the next time step. This model is further extended to the case that the vehicle
can receive the information on the future signal timing some seconds in advance.
An additional eco-driving strategy is considered in this case.
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1.1 Background and motivation

1.1 Background and motivation

The connected and automated vehicle (CAV) is the most critical technology in
the automotive industry since Ford produced the Model T. It is believed to be the
revolution of mobility by relieving the driving burden for people who do not want
to or cannot drive. When fully automated vehicles (AVs) are available, people can
even read, work or sleep in the car. Besides improving driving comfort, the CAV
is also safer and more efficient. It can receive or detect accurate information on
the traffic and the road via Vehicle to Vehicle (V2V) and Vehicle to Infrastructure
(V2I) communication technology, or vehicle-borne sensors. The advanced decision
system in the CAV acts better than an experienced driver, as it eliminates human
errors, reduces response time and increases efficiency. In short, the CAV releases
people from tedious driving tasks, and thus the passengers can better enjoy the
mobility service.

1.1.1 Background of the CAV

The first AV is dated back to 1925 shortly after the birth of the motor car. It is a
radio-controlled driverless car which was shown travelling through a heavy traffic
street of Manhattan (Engelking, 2017). Since then, many universities and compa-
nies have pioneered in the development of developing AVs, such as Stanford Cart
by the Stanford University in the US during the 1960s and 1970s (Vanderbilt,
2012), a driverless Citroen DS by the Transport and Road Research Labora-
tory in the UK during the 1960s (Reynolds, 2001) and VaMoRs and VaMP by
the Bundeswehr University Munich in Germany in the 1980s. In 2004, Defense
Advanced Research Projects Agency (DARPA) announced the first Grand Chal-
lenge, offering the winner a million-dollar prize whose AV was the fastest driving
through California’s Mojave Desert. No team has finished the race, but it is
the first big push toward a fully autonomous vehicle. In 2005, five teams out of
twenty-three finished the race in the second Grand Challenge. In 2007, DARPA
organised the Urban Challenge to drive through an urban environment (Urmson
and Whittaker, 2008).

After 2008, more companies joined the AV development. Google launched
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the driverless vehicle project (now called Waymo) in 2009 by hiring a winner of
the second Grand Challenge. By October 2018, it had finished 10 million miles
of self-driving test on public roads and over 7 billion simulation miles (Krafcik,
2018). Uber built its driverless vehicle research team by hiring dozens of scientists
from Carnegie Mellon University in 2015. Major automakers like Ford, General
Motors, Nissan, Tesla and Mercedes have also started to invest the research and
test on AVs.

A widely accepted definition of levels of vehicle automation is proposed by the
SAE International in the J3016 standard (SAE International, 2018). There are
six levels of autonomy from level 0 to level 5. Level 0 (No automation), level 1
(Driver assistance) and level 2 (Partial automation) require drivers’ attention at
all times. Level 1 is the basic cruise control involved in controlling acceleration
and deceleration, for example, Jaguar Land Rover’s off-road cruise control. Level
2 further introduces steering control, for example, Cadillac Super Cruise, Nissan
ProPilot Assist, and Tesla Autopilot, which are already available for vehicles.
Level 3 and above are considered as “automated driving systems”. The critical
difference is that the vehicle can monitor the surrounding environment and make
decisions, for example, BMW’s iNext which will be launched in 2021. The driver
is allowed to look away from the road for an extended period but required to
take over the control within seconds in some situations. The transition period is
proven to be dangerous, which is also why many companies choose to skip Level
3 and go straight to Level 4. Level 4 has the same capability as level 3 but allows
the longer time for the driver to take back control, for example, Waymo’s self-
driving cars. Level 5 is the truly full automation that the car can drive themselves
under all road conditions.

More and more countries have introduced legislation to regulate the testing
of the AV on public roads, such as US (US Department of Transportation and
US. National Highway Traffic Safety Administration and, 2016), UK (Centre for
Connected and Autonomous Vehicles, 2015), and China (Ministry of Industry and
Information Technology et al., 2018). Numerous trials are carried out around the
world. While true level 5 autonomy is still a long way off, major car manufacturers
are planning to build cars with level 4 in the near future (Walker, 2019). Toyota
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1.1 Background and motivation

Figure 1.1: Levels of vehicle automation defined by the SAE (Figure source:
Brooke, 2016)

and Hyundai are targeting AVs on a highway in 2020. Ford and Volvo plan to have
level 4 vehicles in 2021. In December 2018, Waymo launched the first commercial
autonomous ridesharing service in Phoenix (LeBeau, 2018). The fact that it is
limited to a part of test users of the Waymo self-driving vehicle does not diminish
its importance as the first public autonomous taxi.

1.1.2 Motivation of the CAV research on urban roads

People living in many cities, especially in the metropolis, are suffering from severe
traffic problems on urban roads. According to the data of INRIX (Cookson, 2018)
in 2017, traffic congestion costs the UK £37.7 billion or £1,168 per driver because
of the lost production, wasted time and fuel. The UK is ranked 10th congested
in the world in 2017 and third in the developed countries with drivers spending
31 hours stuck in rush hour traffic. London remains the most congested city
in the UK and the second congested city in Europe and seventh in the world.
London drivers lost 74 hours in the peak hours, which cost each driver £2,430 or
£9.5 billion across the city as a whole. The congestion cost in London has kept
increasing in recent years, which is £5.5 billion in 2014 – 2015 (Franks, 2016) and
£6.2 billion in 2016 (Cookson, 2018).

Apart from the severe congestion, the emission from transport has been a big
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threat to health which increases the risk of heart disease and stroke. In 2016, the
greenhouse gas (GHG) emission from transport increased by 26% in 28 European
countries compared with 1990 while the total greenhouse gas emission reduced
by 24% (European Environment Agency, 2018) (see Fig. 1.2). In result, the
percentage of GHG from transport increased from 15% in 1990 to 25% in 2016.
More than 70% of GHG from transport comes from road transport. Therefore,
there is an increasing urgency to take actions to meet the target of 60% reduction
by 2050 compared with 1990 level as set out in the 2011 Transport White Paper
(Commissie, 2011). A similar problem happens in the UK as transport has been
the main source of greenhouse gas in the UK since 2016, accounting for 26%
of the total greenhouse gas emission (Vanlint, 2018) (see Fig. 1.3). While the
emission from energy supply has reduced by 57% from 1990, the emission from
transport returns the similar level as 1990. Road transport is a major source in
it, especially personal cars. The rise of emission from road transport since 2013 is
because of an increase in vehicle kilometres travelled (Department for Transport,
2017).
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Figure 1.2: Greenhouse gas emissions from transport in the EU between 1990
and 2017 (Data source: European Environment Agency, 2018)

The research by the National Highway Traffic Safety Administration (NHTSA)
in the US showed that the human error is the critical reason for 94% of the
crashes (Singh, 2015) based on a national survey of 2,189,000 crashes. Merely
2% of crashes are caused by the environment and another 2% by the vehicle. A
similar result has also been found in the UK which identified the human error is
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Figure 1.3: Annual greenhouse gas emissions in the UK between 1990 and 2017
(Data source: Department for Transport, 2017)

responsible for 95% accidents (The Royal Society for the Prevention of Accidents,
2017). The possible reasons for the accident contributed to the drivers may be
inexperience, distraction, or fault reaction.

Lots of possible solutions have been used in practice to solve traffic prob-
lems, but each has its limitations. In order to reduce the emission in transport,
many countries are promoting the transition from petrol and diesel vehicles to
electric vehicles. The sale of new petrol and diesel cars will be banned in Den-
mark, Ireland, Sweden in 2030 (Nielson, 2018) and in the UK and France in 2040
(Asthana and Taylor, 2017). More than 200 cities in Europe launched the Low
Emission Zone (LEZ) to reduce exposures to air pollution. Vehicles with higher
emission are banned from entering this area. Otherwise, the driver has to pay
penalty fines. An increasing number of cities are planning for Zero Emission
Zones, which only allows electric vehicles, and bans all diesel vehicles and hybrid
vehicles. These solutions reduce the emission in transport, but cannot solve the
congestion problem. Transportation Demand Management, such as congestion
charge, dedicated bus lanes, and high-occupancy vehicle (HOV) lanes promotes
the use of public transport, ridesharing and cycling and reduce the traffic demand
for single-occupant vehicles. However, the shift in travel mode is a long process.
The intelligent transportation system, such as variable message signs, passenger
information system makes more efficient use of existing transport infrastructure
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by improving capacity, safety and reliability of the transport system. However,
the performance depends on the compliance of drivers or passengers.

The AV has the potential of transforming the transport system. If equipped
with communication devices, it becomes the connected vehicle (CV) and can
receive the information from the intersection controller or roadside unit via DSRC
or 5G. The information may include the signal phase and timing (SPaT) of one
or multiple preceding intersections, queue length estimated using loop detectors
data, accident events and congested region. Then, it can be used to plan the
route and trajectory that reduce travel time or fuel consumption. One of the
applications widely researched is Green Light Optimal Speed Advisory (GLOSA),
which provides the drivers with speed advice to pass the intersection on a green
light. It reduces the waiting time by about 17% (Eckhoff et al., 2013), and
fuel consumption by about 11 % (Eckhoff et al., 2013; Stevanovic et al., 2014).
More sophisticated eco-driving methods are proposed for AVs, such as considering
driving comfort and queue length.

When multiple AVs run together, they can form a platoon and run with small
headway. Lots of research has been done to analyse the capacity improvement
with Adaptive Cruise Control (ACC) or Cooperative Adaptive Cruise Control
(CACC) (Van Arem et al., 2006) vehicles on the motorway segment or merging
area. Less is found on the urban roads because it is more complex involving stop-
and-go behaviour of human-driven vehicles (HVs) and switching right-of-way at
the intersection. The CAV brings more flexibilities in the traffic operation on
urban roads. The platoon increases the queue discharging rate (Le Vine et al.,
2016) and intersection capacity (Lioris et al., 2017) with the performance of im-
provement varying from 25% to two times due to different parameters assumed
in the vehicle dynamics. The platoon also improves the traffic flow stability
(Davis, 2004). When 20% vehicles are ACC vehicles, all congestions are elimi-
nated (Treiber and Helbing, 2001). The platoon of trucks can also reduce fuel
consumption because of the reduction of aerodynamic drag (Tsugawa, 2013).
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1.2 Literature review

Traffic control of CAVs has been studied extensively in the literature, mainly
on intersection control and trajectory planning. These two directions will be
reviewed in detail below.

1.2.1 Intersection control

The intersection contributes the major traffic accidents and traffic delays, and
intersection control is one of the core parts of urban traffic management. It
is expected that the AV could change the way an intersection operates. The
literature is described in three parts: (1) part or all vehicles are AVs; (2) part or
all vehicles are CVs; (3) the intersection operates on itself.

1.2.1.1 Intersection control with AVs

Lots of research developed new intersection control methods with different pene-
tration rates of AVs, and they are summarised in Table 1.1. There are two com-
mon points in all papers mentioned in this section. The first is that they assumed
the AV is also a CV. The second is that they belong to centralised intersection
control that the intersection controller collects the information from approaching
vehicles and performs the optimisation. The decentralised intersection control
will be discussed in Section 1.2.1.3.

Two main approaches are applied to deal with the integration of intersection
control and trajectory planning. One is solving the intersection control problem
first and then the trajectory planning (Li and Wang, 2006; Dresner and Stone,
2008; Müller et al., 2016; Xu et al., 2017; Yu et al., 2018). For the part of inter-
section control, the controller collects information on AVs and determines their
passing orders (Li and Wang, 2006) or arrival time (Yu et al., 2018). Then,
trajectories of approaching vehicles are obtained by the optimisation or predeter-
mined driving rules. The other is solving the intersection control and trajectory
planning problem at the same time (Li et al., 2014; Kamal et al., 2015). The
trajectories are integrated as decision variables in the intersection control opti-
misation, which often leads to complex nonlinear programming (NLP) problems
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and is also why Li et al. (2014) applied an enumeration method to find the best
signal plan. Kamal et al. (2015) used model predictive control (MPC) to optimise
the trajectories of vehicles approaching the intersection to reduce conflicts. MPC
is widely used in the control of CAVs because it can well adapt to the real-time
changing inputs. A brief introduction of MPC is included in Appendix 1.A.

Two different ideas are employed in intersection control to deal with the con-
flicts in the intersection. The first is to apply conventional phase-based signal
timing (Li and Zhou, 2017; Xu et al., 2017; Yu et al., 2018). The second is to
eliminate the traffic light and optimise the passing order dynamically (Li and
Wang, 2006; Dresner and Stone, 2008; Kamal et al., 2015; Müller et al., 2016).
Applying conventional phase-based signal timing has much fewer integer variables
in the optimisation than using arbitrary passing orders but also has less flexibil-
ity. Dresner and Stone (2008)’s approach is a special case as it uses well-defined
rules to assign the passing order, and there is no need to use integer variables.

Most of the literature focuses on the case that all the vehicles are AVs, which
is also called autonomous intersection control. As there is no need to consider the
complex and uncertain behaviour of HVs, they can focus on how to achieve the
best efficiency. The methods developed by Dresner and Stone (2008) and Li and
Zhou (2017) can also be applied in mixed traffic with AVs and HVs. In both of
their methods, a conventional phase-based signal setting is applied, and AVs send
requests with arrival time information to the intersection controller, but Dresner
and Stone (2008) allows AVs to enter into the intersection when the signal is red
and there are no conflicts.

1.2.1.2 Intersection control with CVs

Research on intersection control with CVs is summarised in Table 1.2. “standard
single” denotes a typical four-armed intersection with turning movements, and
“simplified single” denotes a simplified single intersection with only two roads and
through movements. There are two ways of controlling the intersection: phase-
based signal (He et al., 2012; Feng et al., 2015) and optimised passing sequence
(Guler et al., 2014; Zhu and Ukkusuri, 2015; Yang et al., 2016). Though they
did not stated explicitly, vehicles in the second approach need to cooperate in
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Table 1.1: Summary of the literature on intersection control with AVs

Paper Penetration Signal phase Passing order Longitudinal control

Li and Wang (2006) 100% No Decision tree to remove conflicts Trajectory planning and mapping

Dresner and Stone
(2008)

0%-100% No Reservation method based on
first-in-first-out policy

Simplified driving rules

Lee and Park (2012) 100% No Minimise the overlap of trajectory Constant acceleration from the
optimisation

Zohdy and Rakha
(2012)

100% No Minimise conflicts and delay Dynamic acceleration at every
time step

Li et al. (2014) 100% Yes Enumeration to find the
minimum average travel time or
delay

Predefined speed pattern with
one or two constant acceleration

Kamal et al. (2015) 100% No Model predictive control to
reduce the conflict risk and
deviation from the desire speed

Dynamic acceleration at every
time step

Continued on next page
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Paper Penetration Signal phase Passing order Longitudinal control

Müller et al. (2016) 100% No Minimise the total arrival time Maximise the time travelling with
constant speed

Li and Zhou (2017) 0%-100% Yes Optimise phase-based signal
timing to minimise delay

Not considered

Sun et al. (2017) 100% Yes Optimise number of lanes and
duration for every movement to
maximise the capacity

Collective average behaviour

Xu et al. (2017) 100% Yes Optimise phase-based signal
timing to minimise delay

Optimal control to minimise fuel
consumption

Yu et al. (2018) 100% Yes Optimise phase-based signal
timing to minimise delay by
considering lane changing

Optimal control to minimise fuel
consumption
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following the optimised passing sequence, which is more suitable for AVs.

The controller can access the trajectory data of CVs within the communication
range. There are many ways to use the trajectory data, for example estimating
queue length (Feng et al., 2015; Yang et al., 2016; Beak et al., 2017), estimating
number of vehicles (Feng et al., 2015), getting the stopping time (Beak et al.,
2017), delay (Gradinescu et al., 2007), and identifying platoons (He et al., 2012;
Liang et al., 2018). Most of the methods that work when the penetration rate
is less than 100% also require the data from loop detectors to get the number
of vehicles between CVs (Priemer and Friedrich, 2009; Guler et al., 2014; Yang
et al., 2016).

The arrival time of all approaching vehicles needs to be figured out in all
methods. It is readily available if all vehicles are CVs. Otherwise, the arrival
time of conventional vehicles needs to be estimated. Guler et al. (2014) applied
a uniform distribution to the arrival time of unequipped vehicles between two
CVs. Feng et al. (2015) divided the road segment before the stop line into three
regions and applied different methods to estimate the vehicle’s status. In the
queued region, the shockwave theory is applied to estimate the queue length.
In the slow-down region, vehicles’ movements modelled by the Wiedemann’s car
following model are analysed to estimate the position and speed of unequipped
vehicles. In the free flow region, the number of vehicles is estimated by the
penetration rate of CVs and the position is assumed uniformly distributed among
the lanes and randomly distributed on the lane. The same strategy is used in
Beak et al. (2017). He et al. (2012) used linear regression models to estimate the
number of vehicles and arrival time. Priemer and Friedrich (2009) estimated the
queue length by assuming that the number of arriving vehicles follows a Poisson
distribution. Priemer and Friedrich (2009) and Goodall et al. (2013) tested their
method for a single intersection in a small traffic network or an arterial road, and
it was found that both of their methods work worse than conventional methods
by TRANSYT-7F or Synchro at low penetration rates of CVs, but they showed
improvement in average speed and delay at higher penetration rates.
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Table 1.2: Summary of the literature on intersection control with CVs

Paper Penetration Control range Information from the CV data Methods

Gradinescu et al.
(2007)

100% Standard
single

Delay and queue length Phase skipping, extension or
interruption

Priemer and Friedrich
(2009)

10%–100% Standard
single

Number of queued vehicles and
approaching vehicles

Dynamic programming and
enumeration to minimise the total
queue length

He et al. (2012) 10%–100% Corridor Speed, position, headway Minimise the delay for platoons

Goodall et al. (2013) 10%–100% Standard
single

Speed, position Use future simulation to select the
phase with minimum delay or a
combined objective function

Guler et al. (2014) 0%–100% Simplified
single

Time to enter the range and
position when it stops

Minimise delay to determine the
passing order

Feng et al. (2015) 25%–100% Standard
single

Speed and position; estimate the
speed and position of unequipped
vehicles

Two-level optimisation to minimise
delay or queue length

Continued on next page
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Paper Penetration Control range Information from the CV data Methods

Zhu and Ukkusuri
(2015)

100% Network Speed, position, destination Linear model based on CTM to
reduce the total travel time

Yang et al. (2016) 0%–100% Simplified
single

Trajectory data, position Branch and bound method to
optimise the departure sequence

Beak et al. (2017) 25%–100% Corridor Trajectory data, stopping time,
queue length

Minimise delay considering the
stopping time

Liang et al. (2018) 0%–100% Standard
single

Time headway and space headway Use the same methods in Guler
et al. (2014) and Yang et al. (2016)
to optimise the departure order of
platoons
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1.2.1.3 Self-adaptive intersection control

A few self-adaptive and distributed intersection control methods for CAVs are
also proposed in the literature. The passing order is usually determined by some
predefined rules that are agreed by all CAVs rather than optimisation and can
operate without the central intersection controller. Alonso et al. (2011) proposed
two methods to determine the priority for CVs approaching an intersection. The
first is to provide a priority table that contains all possible situations. The second
is to determine the priority level for each vehicle independently by itself and
compare it with other vehicles. Wu et al. (2015) developed a model that the
priority of passing is determined by the arrival time. A vehicle with a high
priority sends messages to prevent others from passing. In a similar approach,
Yang and Monterola (2016) proposed a model to control only the deceleration of
CAVs before the stop line. The vehicle that will arrive at the stop line first gets
a higher priority to pass the intersection. They also extended the model to the
case of mixed traffic with CAVs and HVs.

1.2.2 Trajectory planning

1.2.2.1 Trajectory planning for an AV

Providing signal and phase information to vehicles can optimise traffic flow ap-
proaching an intersection. The research on trajectory planning for an AV is
summarised in Table 1.3. The typical constraints, such as speed and acceleration
constraints, are not listed there.

Various methods are proposed in the trajectory planning for an AV for differ-
ent purposes, such as reducing the number of stops (Treiber and Kesting, 2014;
Ubiergo and Jin, 2016), travel time (Yao et al., 2018), delay (Stebbins et al.,
2017), fuel consumption (Kamal et al., 2010, 2013; He et al., 2015; Altan et al.,
2017; Yang et al., 2017) and emissions (Van Katwijk and Gabriel, 2015). There
are two methods to optimise the trajectory: optimisation based on some pre-
defined speed patterns (Treiber and Kesting, 2014) or MPC (Asadi and Vahidi,
2011). The predefined speed patterns are the preferred driving behaviour to pass
the intersection in different signal status. Treiber and Kesting (2014) proposed
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Table 1.3: Summary of the literature on trajectory planning for an AV

Paper Control variables Constraints Method Objective

Kamal et al. (2010) Acceleration None MPC Minimise fuel consumption and
the penalty cost of safety

Asadi and Vahidi
(2011)

Tracking force and
braking force

Traffic signal MPC Tracking a target speed to
reduce idle time

Kamal et al. (2013) Driving or braking
torque

None MPC Minimise fuel consumption and
the penalty cost of safety by
predicting the preceding traffic

Treiber and Kesting
(2014)

Parameters in a car
following model

Traffic signal Three rule-based strategies Minimise travel time and the
number of stops

He et al. (2015) Acceleration Traffic signal,
queue, safety

MPC Minimise fuel consumption

Van Katwijk and
Gabriel (2015)

Time of decelerating Traffic signal Optimisation Minimise emissions

Continued on next page
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Paper Control variables Constraints Method Objective

Jin et al. (2016) Acceleration Traffic signal,
grade, safety

Mixed Integer Linear
Programming

Minimise fuel consumption

Ubiergo and Jin
(2016)

Advisory speed limit Traffic signal Change parameters in the
car following model
dynamically

Minimise idle time

Altan et al. (2017) Speed Traffic signal Optimise parameters in the
predefined speed patterns

Minimise fuel consumption

Jiang et al. (2017) Jerk Traffic signal,
safety, jerk

MPC Minimise fuel consumption

Yang et al. (2017) Acceleration, but
advisory speed limit
is provided to
vehicles

Traffic signal,
queue

Optimise the acceleration
based on predefined speed
pattern

Minimise the number of stops
and fuel consumption

Yao et al. (2018) Locations and time
of two speed limits

Traffic signal DIRECT method
integrating with
simulations

Minimise travel time and fuel
consumption
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three strategies by modifying the parameters in the car following model such as
reaction time, maximum deceleration, and desired time headway. Ubiergo and
Jin (2016), Yang et al. (2017) and Yao et al. (2018) controlled the speed limit
of the vehicle to avoid stopping on red. Yang et al. (2017) extended Ubiergo
and Jin (2016) by considering the queue effect in front of the intersection. Yao
et al. (2018) extended the work of Ubiergo and Jin (2016) and Yang et al. (2017)
by imposing two speed limits and optimising the location and time of the speed
limit. In the MPC method, acceleration, jerk or engine force are controlled to
optimise the trajectory dynamically and achieve the driving goal. The optimisa-
tion is updated multiple times every second to adapt to the signal and preceding
traffic condition. Two types of prediction horizon were used in the MPC, which
are rolling horizon (Kamal et al., 2010; Asadi and Vahidi, 2011; Kamal et al.,
2013) and receding horizon (He et al., 2015; Jiang et al., 2017).

1.2.2.2 Trajectory planning for a group of AVs

The summary of trajectory planning for a group of AVs is shown in Table 1.4.
All the papers mentioned in this part focus on the case that all vehicles are AVs.
The cooperation among AVs helps to achieve larger capacity in the intersection,
and reduce the overall delay or fuel consumption. Liu and Kamel (2016), Steb-
bins et al. (2017), Wei et al. (2017) and Zhou et al. (2017) proposed trajectory
planning methods for platoons, where a platoon is a stream of vehicles that pass
the intersection in the same green phase (Stebbins et al., 2017; Zhou et al., 2017).
However, they used different methods to identify the platoon. Liu and Kamel
(2016) used the current speed to predict the last vehicle that can pass on the
green light. Stebbins et al. (2017) used a simulation method to identify platoon.
After that, they applied trajectory planning for the first vehicle in the platoon
and used it to control the behaviour of all the following vehicles. They also com-
pared the performance with and without providing speed advice to the following
vehicles. Liu and Kamel (2016) developed a platoon control model to reduce the
error between the current trajectory and desired trajectory. HomChaudhuri et al.
(2017) did not consider the platoon explicitly but considered the cooperation with
the following vehicle, which helps the following vehicle achieve the desired speed.
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Table 1.4: Summary of the literature on trajectory planning for a group of AVs

Paper Penetration Control variable Method Objective

Liu and
Kamel (2016)

100% Acceleration Platoon control algorithm based on
particular swarm optimisation, and
trajectory planning algorithm to
the leading vehicle

Increase throughput of the
intersection

HomChaudhuri
et al. (2017)

100% Acceleration MPC Reduce fuel consumption and help the
following vehicle to achieve its target
velocity

Stebbins
et al. (2017)

100% Acceleration of
the leading
vehicle

Rule-based strategy to arrive at the
desired position with the desired
speed

Reduce the delay for all vehicles

Wei et al.
(2017)

100% Speed and
reaction time

Dynamic programming Increase throughput of the
intersection

Zhou et al.
(2017)

100% Acceleration Shooting heuristic algorithm Smooth trajectory and increase
throughput of the intersection
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Both Wei et al. (2017) and Zhou et al. (2017) used Newell’s car following model
to ensure the safety of following vehicles. Wei et al. (2017) developed a dynamic
programming model for a group of vehicles by building time-space-reaction time
network. Autonomous vehicles can choose short reaction time at the intersection
to increase throughput. Zhou et al. (2017) constructed the smooth trajectory
using forward and backward shooting heuristic algorithms by controlling the ac-
celeration and deceleration.

1.2.3 Summary of research gaps

Firstly, the CAV is capable of communicating and making decisions on accelerat-
ing, braking and steering, which brings many possibilities to intersection control.
In order to avoid conflicts at the intersection, the passing rules for vehicles com-
ing from different approaches must be decided. After that, the vehicle needs to
modify its behaviour to follow the passing rule. It is expected that the integration
of intersection control and trajectory planning increases the intersection opera-
tion and performance. Though lots of methods have been proposed for AVs and
CVs, the connection between intersection control and trajectory planning is still
not tight. Some papers on intersection control did not consider the longitudinal
control (Li and Zhou, 2017) or only used simple acceleration and deceleration
rules (Dresner and Stone, 2008). More work applied a two-step procedure which
optimises the signal or passing sequence first and then optimised the trajectory
(Li and Wang, 2006; Müller et al., 2016; Xu et al., 2017; Yu et al., 2018). Some
assumed that the vehicle could reach the maximum speed at the stop line (Müller
et al., 2016; Yu et al., 2018), which is not realistic as some vehicles that are close to
the stop line or have a low initial speed cannot accelerate to the maximum speed
at the stop line. Some did not consider the time required to pass the intersection
(Li et al., 2014), which may have conflicts in the intersection area though the
time headway of entering the intersection is satisfied. Moreover, the objective of
intersection control is only to remove conflicts, and the resulting passing sequence
may not be optimal in terms of delay. Therefore, more research is required on
how to integrate intersection control and trajectory planning.
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Secondly, trajectory planning has the potential to reduce fuel consumption
(Ubiergo and Jin, 2016) and travel time (Stebbins et al., 2017) significantly. Many
methods have been developed for a single vehicle, though they also benefit the
following vehicles (Ala et al., 2016). The intelligence in the AV also facilitates
cooperative driving behaviour. Current research on trajectory planning for a
group of vehicles only considers the case when all vehicles are AVs (Liu and
Kamel, 2016; Wei et al., 2017). As the transition period from HV to AV will create
a mixed autonomy environment, it is also essential and practical to design the
trajectory planning methods for AVs in mixed autonomy traffic and investigate
the benefit of cooperation between AVs and HVs.

Thirdly, most of trajectory planning methods on urban roads require the
information on the future signal phase and timing (Stevanovic et al., 2013). It
is easy to obtain in the fixed time traffic control system but quite tricky in the
adaptive traffic control system, where the signal phase sequence and duration
are frequently optimised in response to the dynamic traffic state. In this case,
the future signal timing information is uncertain and cannot be provided to the
approaching vehicles (Mahler and Vahidi, 2014). As the actuated controller and
adaptive controller are widely used in the big cities and operate well for dense
traffic. It is quite valuable and can accelerate the adaptation of the AV to develop
trajectory planning methods for the AV in this case.

1.3 Research questions and objectives

Based on the literature review and identified research gaps above, three main
research questions and the corresponding objectives are proposed in this thesis
as follows.

1.3.1 Research question 1

Research question 1: What is the benefit of integrating intersection

control with trajectory planning?

Three objectives are planned to be worked out to answer this question.
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1.3 Research questions and objectives

• Objective 1.1: Identify the necessity of considering trajectory planning in
intersection control.

• Objective 1.2: Develop a method of integrating intersection control with
trajectory planning for AVs on the urban road to reduce the total travel
time.

• Objective 1.3: Conduct simulations to test the developed method.

1.3.2 Research question 2

Research question 2: What is the benefit of cooperation between au-

tomated vehicles and human-driven vehicles?

This will be answered by the following objectives.

• Objective 2.1: Develop a trajectory planning method by considering coop-
eration between AVs and HVs.

• Objective 2.2: Analyse the benefit of cooperation in a mixed autonomy
traffic condition.

• Objective 2.3: Analyse the performance of the developed method under
different penetration rates of AVs.

1.3.3 Research question 3

Research question 3: How to optimise the trajectory at an intersection

controlled by the adaptive traffic control system?

The work on this question is achieved by the following objectives.

• Objective 3.1: Develop a trajectory planning method when the future signal
is uncertain.

• Objective 3.2: Develop a trajectory planning method when the future signal
is uncertain but available for a limited time in advance.

• Objective 3.3: Analyse the impact of model and system parameters on the
performance of the developed methods.
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1.4 Outline and contribution

This thesis is composed of five chapters, and the remaining chapters are outlined
as follows.

1.4.1 Chapter 2

The research question 1 will be addressed in Chapter 2. It is published online in

Zhao, W., Liu, R., Ngoduy, D. 2019. A bilevel programming model
for autonomous intersection control and trajectory planning. Trans-

portmetrica A: Transport Science. (In press) https://doi.org/10.1080/
23249935.2018.1563921.

A vehicle-based intersection control method is proposed to replace the conven-
tional flow-based intersection control. After analysing the relationship between
intersection control and trajectory planning, a bilevel model is applied to inte-
grate both into a coupled optimisation model. The core objective is to improve
the efficiency of the intersection. The upper level optimises the passing order of
approaching AVs to reduce the total travel time, and the lower level optimises
the terminal speed of each vehicle to reduce the time required to pass the in-
tersection. The two levels have a cooperative relationship, and both levels have
a linear structure. These two properties make it solvable in a reasonable time.
A platoon-based method is also proposed for certain conditions to reduce the
complexity of the problem without sacrificing the quality of the solution.

1.4.2 Chapter 3

The research question 2 will be addressed in Chapter 3. It is published in

Zhao, W., Ngoduy, D., Shepherd, S., Liu, R., Papageorgiou, M. 2018.
A platoon based cooperative eco-driving model for mixed automated
and human-driven vehicles at a signalised intersection. Transportation
Research Part C: Emerging Technologies. 95, pp. 802–821. https:
//doi.org/10.1016/j.trc.2018.05.025.
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1.4 Outline and contribution

A general trajectory planning model is proposed for AVs on urban roads.
It uses the receding horizon model predictive control and reduces the fuel con-
sumption for a group of vehicles approaching an intersection. The model allows
heterogeneous platoons consisting of any number of AVs and HVs. The dynamic
platoon splitting and merging strategies are also proposed to change the platoon
setting according to the vehicle state and signal state. Extensive simulations are
performed to test the cooperation between AVs and HVs. Different penetration
rates of AVs are also tested to show the performance of the proposed method.

1.4.3 Chapter 4

The research question 3 will be addressed in Chapter 4. It is prepared for sub-
mission to a journal.

Zhao, W., Ye, H., Ngoduy, D., Shepherd S., Liu R. 2019. A stochas-
tic model predictive control approach to eco-driving for automated
vehicles under uncertain signal information. (To be submitted)

A simple method of estimating the distribution of phase duration from the
historical signal data is proposed at first. Then, under the uncertain signal infor-
mation, the vehicle has two driving regimes: accelerates to pass the intersection
when the signal turns green or keeps waiting for the change of the signal from red
to green. A multi-phase optimal control model is proposed to minimise fuel con-
sumption by considering the two driving strategies and the estimated distribution
of future signal timing. Vehicle’s behaviour in every time step only depends on
the signal state at that moment. This model is then extended to a more general
case that the vehicle can receive the future signal information a certain amount
of time in advance. Both models are transformed into nonlinear programming
models by analytically calculating fuel consumption.

1.4.4 Chapter 5

The conclusions and future research directions will be discussed in Chapter 5.
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Appendix 1.A A brief introduction to model pre-

dictive control

The principal idea of model predictive control (MPC) (see Fig. 1.4) is solving an
optimal control problem online to compute the next control action. At each sam-
pling time, an open-loop optimal control problem is solved over a finite horizon
[t, t+ Tp] based on the predicted system state over the horizon Tp. The com-
puted optimal control variable is applied to the process only during the following
sampling interval [t, t+ τ ]. At the next time step t + τ , a new optimal control
problem based on new measurements of the state is solved over a shifted horizon
[t+ τ, t+ Tp + τ̃ ]. If τ̃ > 0, typically τ̃ = τ , this is called rolling horizon MPC. If
τ̃ = 0, this is called receding horizon MPC.

past future

reference predicted outputs 

t t+τ t+2τ t+Tp

past future

reference
predicted outputs 

t t+τ t+2τ t+Tp t+Tp+τ

u(t)

u(t)

(a) MPC method at time step t

past future

reference predicted outputs 

t t+τ t+2τ t+Tp

past future

reference
predicted outputs 

t t+τ t+2τ t+Tp t+Tp+τ

u(t)

u(t)

(b) MPC method at time step t+ τ

Figure 1.4: The principal idea of the MPC method

If the system state is defined as x = (x, v)′ where x and v denote the position
and speed of the vehicle respectively, then the corresponding system dynamic
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function is

dx(t)
dt = v(t) (1.1)

dv(t)
dt = u(t) (1.2)

where u denotes the acceleration, which is also the control variable.
The cost function for model predictive control is formulated as

min J(x,u) = ϕ(x(Tp)) +
∫ Tp

0
L (x(τ),u(τ)) dτ (1.3)

where J denotes the cost function to be minimised, Tp denotes the prediction
horizon, τ denotes the simulation time step, ϕ denotes the so-called terminal cost
which means the costs remaining at the end of the prediction horizon. L denotes
the so-called running cost.

An example of the terminal cost is

ϕ(x(Tp)) = (x(Tp)− xf )2 (1.4)

where xf denotes the planned destination at the terminal time Tp. This terminal
cost ensures that the difference between the position at the terminal time Tp and
the planned position is minimised.

A simple running cost function is

L = 1
2u

2 (1.5)

which minimises the control effort.
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2.1 Introduction

Abstract

Advances in automated and connected vehicles bring new opportunities for in-
telligent intersection control. In this paper, we propose a centralised method to
integrate intersection control with trajectory planning for vehicles. It is formu-
lated as a bilevel optimisation problem in which the upper level is to minimise
the total travel time by a mixed integer linear programming (MILP) model. In
contrast, the lower level is a linear programming (LP) model with the objective
function to maximise the total speed entering the intersection. The two levels are
coupled by the arrival time and terminal speed. Based on the relationship be-
tween the safe time headway and the process time, a novel platoon based method
is developed to reduce the computational burden. Finally, simulation tests are
carried out to investigate the control performance under different demands, in-
tersection lengths, communication ranges, and traffic compositions.

Keywords: Automated vehicle, intersection control, trajectory planning,
bilevel programming

2.1 Introduction

Traffic control is one of the most important methods to organise vehicle move-
ments in urban networks. The purposes of traffic control may vary according to
the traffic demand and vehicle composition. Nevertheless, they still share a com-
mon goal of creating safe and efficient traffic operations at urban intersections.
Various traffic control methods are proposed, for example, for a local intersec-
tion or a network, using a fixed, actuated or adapted control strategy. The more
advanced the traffic control method is, the more precise traffic information it re-
quires. This usually indicates that more traffic detectors, such as loop detectors,
Bluetooth, Electronic Vehicle Identification, need to be installed.

It is a common vision that many vehicles will be equipped with some kinds
of Vehicle Automation and Communication Systems (VACS) in the near future
(Diakaki et al., 2015). The automated vehicle (AV) is considered not only a
sensor but also an actuator. From the aspect of a sensor, it can access much more
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detailed data about vehicles and traffic flow than conventional traffic detectors.
For example, such data include the acceleration ability of each vehicle and the
driver’s desired speed and value of time (Isukapati and Smith, 2017). From the
aspect of an actuator, the vehicle can be controlled to follow a specific trajectory
along the link for a pre-designed purpose such as eco-driving (Ma et al., 2017;
Zhao et al., 2018). These distinct properties of the AV help to create a vehicle-
based traffic control method rather than the conventional flow-based method.

In the urban road environment, the AV can receive and send system dynamic
information to the intersection controller or road-side infrastructure and react pre-
cisely according to the control strategy. These abilities provide the intersection
controller with more capabilities to optimise traffic flow at the intersection, which
is the so-called autonomous intersection control strategy. In the autonomous in-
tersection control, the signal timing problem can be seen as a machine scheduling
problem. The conflict area in the intersection acts as a “server” or “machine”,
and every approaching vehicle around the intersection is a “job”. The vehicles
negotiate with either each other or the intersection controller to allocate the pri-
ority of passing or the time window, which avoids collisions and achieves better
efficiency at the intersection. Collision avoidance can be obtained by either a pure
signal timing method or a pure trajectory planning method. However, efficiency
is an issue that is much more difficult to achieve at the same time. To this end,
our main motivation in this paper is to consider simultaneously traffic control
and trajectory planning in the autonomous intersection control method.

In the literature, limited research considers the vehicle dynamics in the cen-
tralised signal control. In the scheduling method, it is usually assumed that
the time required for a vehicle to pass the intersection (i.e. process time) is a
constant. However, in reality, the process time strongly depends on the speed
crossing the stop line and the travel time from the current position to the stop
line. In this paper, a novel bilevel programming method is proposed to opti-
mise the passing sequence and vehicle trajectory. In our bilevel optimisation
model, the upper level determines the passing sequence, which is seen as a job
shop scheduling problem and modelled as a mixed integer linear programming
(MILP) problem, whereas the lower level determines the corresponding process
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time, which is modelled as a linear programming (LP) problem. Though the
model introduces many variables, due to the linear structure in both levels, it
can be solved very efficiently using existing commercial solvers, such as CPLEX
(IBM, 2017) and Gurobi (Gurobi Optimization, 2017).

In summary, the main contributions of this paper are:

1. To combine the intersection control optimisation and trajectory optimisa-
tion, which makes sure that the result of intersection control optimisation
is achievable and optimal.

2. To consider the vehicle’s dynamics explicitly in the model and there is no
need to make an assumption on the vehicle’s speed entering the intersection.

3. To achieve a quick convergence in the optimisation problem via a linear
programming structure in each level of the proposed bilevel programming
model.

4. To propose a new platoon-based method to dynamically reduce the compu-
tation burden and increase the efficiency of the intersection control method.

We briefly review the state-of-the-art intersection control with AVs in Sec-
tion 2.2. Section 2.3 describes the notations used throughout this paper and the
structure of the proposed model. Furthermore, the formulation of the model and
a novel platoon identification approach are proposed. Section 2.4 illustrates sim-
ulation tests in various scenarios. Finally, we conclude the paper in Section 2.5.

2.2 Literature review

The traffic control method can be classified into two types: centralised (Diakaki
et al., 2002) and distributed (Bazzan, 2005). As a centralised approach, Diakaki
et al. (2002) developed a traffic-responsive network-wide signal control model us-
ing store-and-forward modelling and linear-quadratic regulator theory. As a dis-
tributed approach, Bazzan (2005) developed a decentralised coordinated traffic
control model for an arterial using evolutionary game theory. Every intersection
is modelled as an intelligent agent and considers both the local and global goal.
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In the ensuing paper, we will discuss three main approaches in the autonomous
intersection control: 1) centralised control method; 2) vehicle trajectory-based
signal control; and 3) combined intersection control and vehicle trajectory opti-
misation.

The first approach is the centralised control method which usually needs to
collect every vehicle’s information within a certain range before the optimisation
is executed. Xie et al. (2012) developed a scheduling-based intersection control
method in which the vehicles are first aggregated into clusters, and then the inter-
section control problem is formulated as a scheduling model. A forward recursive
algorithm was proposed to solve this model efficiently with some state elimination
criteria. Sun et al. (2017) proposed an intersection operation method to max-
imise the intersection capacity by changing the lane management for through
and turning movements dynamically. The green duration and lane management
are optimised together by a multi-objective mixed-integer nonlinear programming
model. Zhu and Ukkusuri (2015) proposed a linear programming model to opti-
mise traffic flows in the network accounting for the dynamic departure time and
dynamic route choice. Li and Zhou (2017) proposed a novel phase-time-traffic
hyper-network model to represent the heterogeneous traffic of AVs and conven-
tional vehicles and used a mixed integer programming model to minimise the
total delay at an intersection. Guler et al. (2014) added a penalty term of the
departure time and took into account the different passing time for connected
vehicles because of the different passing sequences. However, this model still did
not consider the speed passing the intersection. In a similar line, some other re-
search also considered intersection control with fully connected vehicles (Goodall
et al., 2013) or partially connected vehicles (Feng et al., 2015).

Dresner and Stone (2004, 2005, 2006, 2008) studied extensively the reservation-
based autonomous intersection management method. In this approach, every ve-
hicle is an autonomous agent, and there is another intersection manager agent at
each intersection. The vehicle agent sends a request to reserve a specific space
and time in the intersection, and the intersection agent will accept or reject the
reservation based on the intersection control policy. The most widely used policy
in the reservation-based model is first come first serve (FCFS). Different levels
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of priority in the reservation method were considered by Zhang et al. (2015b).
Therefore, in this method, the control policy is a black box to the vehicle agent,
and the vehicle agent cannot know when and what reservation will be accepted.
The main drawback of the reservation-based rule is that it only accepts or re-
jects the request of the vehicle, but does not provide the exact time of passing.
So it cannot be employed to optimise the vehicle trajectory. Levin et al. (2016)
showed that such reservation-based intersection control methods might increase
congestion or vehicle delay in some situations.

The second approach is to coordinate the trajectories of vehicles around the
intersection to avoid conflicts. Li and Wang (2006) developed a cooperative driv-
ing model at blind crossings. The grouped vehicles used a decision tree generation
model to get a safe and efficient driving pattern. Then, a virtual vehicle mapping
technique was used to get a safe vehicle trajectory. Lee and Park (2012) devel-
oped an optimisation model to minimise the overlapping trajectory of vehicles
from conflicting roads, thus to ensure a safe manoeuvre for every vehicle. The
main drawback of this method is that the complex nonlinear constrained model
makes it challenging to find a feasible solution. In that exception case, it will
fallback to a rule-based control method. Even though the method can reduce the
average delay, the primary purpose of the model is to generate a safe trajectory,
while efficiency is not considered. Kamal et al. (2015) proposed a risk function to
quantify the risk of collision around the intersection and then used a model pre-
dictive control method to avoid collisions by considering all the vehicles’ states.
Yang and Monterola (2016) developed a decentralised intersection traffic control
with no traffic lights where some vehicles are equipped with a simple driver assis-
tance system. The method only controls vehicles to brake in a specific condition,
so it is suitable for level 1 or above AVs. This simple method can be adapted to
mixed traffic with both conventional vehicles and AVs.

Besides the two approaches, some work has been conducted to combine inter-
section control and trajectory planning. Li et al. (2014) discussed the vehicle’s
trajectory under different travel times. However, they assumed that all vehi-
cles except the first vehicle on the road could achieve the maximum speed when
they enter the intersection and the model is strongly nonlinear. An enumeration
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method is used to obtain best signal timing instead of an optimisation model.
Müller et al. (2016), Yang et al. (2016), Xu et al. (2017) and Yu et al. (2018)
formulated the problem as a two-stage problem: solve intersection optimisation
first, and then optimise the trajectory. Müller et al. (2016) and Yu et al. (2018)
assumed that every vehicle could achieve the maximum speed or desire speed
while entering the intersection, which may not be possible for the vehicle close
to the intersection, or in high demand situation. Yang et al. (2016) assumed a
piece-wise linear trajectory in the trajectory optimisation model which may not
be realistic, but unconnected vehicles are also considered in their model. Xu
et al. (2017) and Yu et al. (2018) combined the traffic signal optimisation and
an optimal control model for vehicle trajectory optimisation. However, they still
use the conventional duel ring signal structure for the case of AVs, and there
is no feedback between signal optimisation and vehicle trajectory optimisation.
Besides, Yu et al. (2018) also optimised the lane changing behaviour for AVs.

2.3 Methodology

2.3.1 Problem formation

To simplify the problem, a simple intersection with two approaches as shown
in Fig. 2.1 is considered in which only one conflict zone exists (red shadowed
area). This simple intersection is widely used in the development of autonomous
intersection control methods, such as in Li et al. (2014), Guler et al. (2014),
Yang et al. (2016) and Yang and Monterola (2016). It is a good start of de-
veloping complex vehicle-based intersection control methods. All vehicles in the
system are AVs that are able to communicate with the intersection controller via
Vehicle-to-Infrastructure (V2I) technology. No communication delay or package
loss is considered in this paper. Another assumption is that the conflict zone
can only be used by the vehicles coming from the same direction simultaneously.
This means that if the intersection is already occupied by a vehicle from one
approach, the vehicles coming from another approach cannot enter the intersec-
tion any more no matter how large the intersection is. Consequently, they have
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to decelerate towards the stop line. However, multiple vehicles coming from the
same approach may appear in the conflict area simultaneously if they can keep a
safe time headway.

The intersection control problem is formulated in a centralised way, which is
described as follows:

1. When a vehicle enters a specific control range, it will send some necessary
information to the intersection controller to request a proper time to pass
the intersection. The information includes its current position, speed and
other characteristics such as the desired speed and acceleration limits.

2. The intersection controller collects all the information from vehicles and
then attempts to optimise both intersection operations and vehicle trajec-
tories.

3. The vehicles receive the arrival time and trajectories from the intersection
controller and behave accordingly.

All the settings and assumptions are ideal in our proof of concept study.
Nevertheless, it is still beneficial to see how AVs can improve the performance of
an urban traffic control strategy.

Intersection 

controller

Conflict 

zone

Figure 2.1: A simple intersection with two approaches
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2.3.2 Notations

All the major notations used throughout this paper are described in Table 2.1.

Table 2.1: Notations

Symbol Description

i Index for roads, in this paper i = 1, 2

j Index for vehicles

fu, fl Objective function for the upper-level (or lower-level)
optimisation

ni Number of vehicles within the communication range on road i

Ti,j Arrival time to the stop line for vehicle j on road i

Tmini,j , Tmaxi,j Minimum (or maximum) travel time to the stop line for vehicle
j on road i

vki,j Speed for vehicle j on road i at time step k

vri,j Terminal speed to enter the intersection for vehicle j on road i

v0
i,j Initial speed at the beginning of an optimisation for vehicle j on

road i

ski,j, s
0
i,j Distance to the stop line for vehicle j on road i at time step k

(or at the initial time step)

li,j Length of vehicle j on road i

h Safe time headway

pi,j Process time, which is the travel time from passing the stop line
to exiting the intersection

cj,j′ Interchange time, which is the time difference of vehicle j
entering the intersection before vehicle j′ from a conflict road

θ Redundant time for safety in the interchange time

ĥi,j Time headway for vehicle j on road i entering the intersection
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Symbol Description

oj,j′ Binary variable to denote the passing order for conflicting
vehicle j and j′

Ski,j Safe distance headway for vehicles j on road i with the
preceding vehicle

s0 Minimum safe distance at the jam density including the vehicle
length

Ls Intersection length

Lc Communication range

amax, amin Maximum acceleration (or deceleration)

vmax, vmin Maximum (or minimum) speed

xi,j Distance away from the entrance of the road for vehicle j on
road i

2.3.3 Model development

Before formulating the model, a major issue that needs to be addressed is why
the intersection control method should consider the trajectories of AVs and what
benefits it can bring to the system.

1. Vehicles’ arrival information is vital for intersection control from both local
and global points of view. If there are no traffic detectors on the roads,
the intersection can only be operated in a fixed time strategy. If there are
loop detectors located before the stop line, the arrival time of vehicles can
be estimated, and the intersection will be operated in an actuated or even
adaptive control strategy. If the vehicle position and speed information are
available in real-time, a better green phase can be allocated and the wasted
green time can be reduced.

2. Usually, in a conventional intersection signal control plan, there is a yel-
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low light or even all-red light between conflicting green phases to clear the
remaining vehicles in the intersection. For a large intersection, the yellow
time and all-red time are usually lengthy to enable the slowest vehicle to
pass the intersection safely. For example, a stationary vehicle with a length
of 5 m needs 3.87 s to cross a 10 m wide intersection using a constant ac-
celeration of 2 m/s2, but a vehicle running with 55 km/h only needs 0.98 s.
This does not even count the start-up loss time for human-driven vehicles.
In the environment of AVs, every vehicle’s clearance time and the inter-
section clearance time can be obtained accurately, which can be used to
reduce inter-green time greatly. Unfortunately, this issue has been ignored
in previous research.

3. Another reason for yellow light in the conventional signal timing plan is
to reduce rear-end crashes in the dilemma zone. In most cases, the yellow
time is set to 4.2 s on a 72 km/h road (Rakha et al., 2008). The time is even
longer for higher-speed roads. With V2X communication capability, the
intersection controller can detect whether there are vehicles in the dilemma
zone and provide more time for those vehicles. So, there is no need to set
the yellow time any more.

In fact, points (2) and (3) are also the main reasons why phases in the con-
ventional signal timing plan cannot be switched frequently. When all vehicles are
AVs, the yellow light is not required any more. Then, the autonomous intersection
control problem is modelled as a bilevel programming problem.

min
Ti,j

F (Ti,j) (2.1a)

subject to: K(Ti,j, si,j, v0
i,j, pi,j) ≤ 0 (2.1b)

pi,j = arg min
pi,j

f(pi,j) (2.1c)

subject to: k(Ti,j, si,j, v0
i,j, pi,j) ≤ 0 (2.1d)

The model can be seen as a master-slave scheme (Sharon et al., 2015; Lamorgese
et al., 2016). The master problem is for intersection control, which minimises the
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total travel time for all vehicles. The slave problem is for trajectory optimisation,
which minimises the process time for every vehicle in the intersection.

The time required to pass the intersection, which is called process time in
the ensuing paper, is one of the keys for the problem. The constraint (2.1d) is
nonlinear and not intuitive to formulate. Notice that as the intersection length
and time to enter the intersection are known for the lower-level problem, the only
factor that affects the process time is the speed crossing the stop line, which is
also named as terminal speed. The process time monotonically decreases with
increasing terminal speed. Thus, instead of minimising the process time for every
vehicle, we will try to maximise the terminal speed for each. As it is tedious to
run tens of optimisation separately, the summed terminal speed is chosen as the
new objective function for the lower-level optimisation.

In summary, the connections between intersection control and trajectory plan-
ning are the vehicle’s state at the stop line including arrival time Ti,j and terminal
speed vri,j. The structure of the proposed bilevel model is shown in Fig. 2.2. The
master problem is formulated as a mixed integer linear programming (MILP)
problem in this paper, while the slave problem is formulated as a linear program-
ming (LP) problem. The proposed bilevel programming model has a cooperative
relationship between the two levels rather than a competitive relationship in the
Stackelberg model. Optimised terminal speed in the lower level tends to reduce
the travel time in the upper level. Thus, the optimal value in the upper level keeps
decreasing in every iteration and finally converges. The cooperative relationship
helps our heuristic algorithm to get a reliable result with few iterations. Please
note that in this framework, the lower-level optimisation is not just following de-
cisions from the upper level. In addition, the optimised terminal speed vri,j which
is the output of the lower-level optimisation will be the input for the upper-level
optimisation in the next iteration. To this end, the feedback structure and in-
teraction between the two levels describe the relationship between intersection
control and trajectory planning more accurately.
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Upper level optimisation

min
𝑇𝑖,𝑗, 𝑜𝑗,𝑗′

𝑓𝑢 = 

𝑖=1

2

 

𝑗=1

𝑛𝑖

𝑇𝑖,𝑗

Lower level optimisation

max
𝑣𝑖,𝑗
𝑡
𝑓𝑙 = 

𝑖=1

2

 

𝑗=1

𝑛𝑖

𝑣𝑖,𝑗
𝑟

𝑇𝑖,𝑗𝑣𝑖,𝑗
𝑟

Inputs: 𝑠𝑖,𝑗, 𝑣𝑖,𝑗
0

and some limits on the 

speed and acceleration 

Outputs: 𝑇𝑖,𝑗, 𝑜𝑗,𝑗′, 𝑣𝑖,𝑗
𝑡

Figure 2.2: Schematic of the bilevel programming structure

2.3.4 Upper-level optimisation

The objective function for the upper-level optimisation is minimising the total
travel time for all vehicles in the communication range at the intersection. As
the minimum travel time can be pre-calculated, minimising the total travel time
is equivalent to minimising the average delay. That is:

min
Ti,j , oj,j′

fu =
2∑
i=1

ni∑
j=1

Ti,j (2.2)

where every vehicle’s arrival time is bounded by the minimum travel time Tmini,j

and the maximum travel time Tmaxi,j , i.e.

Tmini,j ≤ Ti,j ≤ Tmaxi,j (2.3)

The purpose of minimum travel time constraint is to ensure the feasibility of
the solution. However, there are two purposes for the maximum travel time
constraint. One is to ensure the safety of vehicles in the dilemma zone and the
other is to ensure the fairness among all vehicles and avoid unacceptable long
delay.

To achieve the earliest arrival time, the vehicle has to accelerate to the max-
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imum speed as early as possible. The acceleration is updated every 0.5 s in the
upper level in order to be consistent with the lower-level optimisation. Although
the obtained minimum travel time under such 0.5s-update-interval is higher than
the theoretical minimum travel time without such an assumption, the difference
is usually less than 0.01 s and can be ignored. The minimum travel time Tmini,j is
calculated at the beginning of the optimisation as follows:

1. If the vehicle cannot achieve the maximum speed at the stop line because
of the distance restriction, i.e.

s0
i,j ≤

(vmax)2 − (v0
i,j)2

2amax
(2.4)

where s0
i,j denotes the initial distance to the stop line in the optimisation,

then Tmini,j is calculated as

Tmini,j =

√
(v0
i,j)2 + 2amaxs0

i,j − v0
i,j

amax
(2.5)

2. If it can achieve the maximum speed at the stop line, the calculation of the
minimum travel time Tmini,j includes three parts as shown in Fig. 2.3, and
they are computed by:

t1 =
⌊

2(vmax − v0
i,j)

amax

⌋
(2.6)

s1 = v0
i,jt1 + 1

2amaxt
2
1 (2.7)

s2 = 1
2 × 0.5×

(
v0
i,j + amaxt1 + vmax

)
(2.8)

t3 =
s0
i,j − s1 − s2

vmax
(2.9)

Tmini,j = t1 + 0.5 + t3 (2.10)

where bxc denotes the largest integer less than or equal to x.

There are two situations in the calculation of the maximum travel time.

1. If the vehicle cannot stop before the stop line, then the maximum travel
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t

s1 s2 s3

vmax

v0
t1 0.5s t3

v

Figure 2.3: Calculation of the minimum travel time Tmini,j

time is calculated by applying the maximum deceleration.

Tmaxi,j =

√
(v0
i,j)2 + 2amins0

i,j − v0
i,j

amin
(2.11)

2. If the vehicle can stop before the stop line, then the maximum travel time is
calculated by setting a maximum delay tdelay. The maximum allowed delay
can be specific to each vehicle, but a constant is used for every vehicle for
simplicity.

Tmaxi,j = Tmini,j + tdelay (2.12)

For vehicles running on the same road, the safe time headway should be
maintained not only at the time of entering the intersection but also at the time
of exiting the intersection due to the difference in process time. Constraint (2.13a)
below indicates the safety constraint at the entering time, while constraint (2.13b)
is at the exiting time.

Ti,j + h ≤ Ti,j+1 i = 1, 2; j = 1, 2, . . . , ni − 1 (2.13a)

Ti,j + pi,j + h ≤ Ti,j+1 + pi,j+1 i = 1, 2; j = 1, 2, . . . , ni − 1 (2.13b)

where the safety headway h is set to 1.5 s. Various safety headways for AVs are
used in the literature around 1 ∼ 2 s (Jia and Ngoduy, 2016a; Yang et al., 2016;
Ghiasi et al., 2017).

In many studies, the process time for every vehicle is usually set to a constant
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value by assuming that the vehicle passes the intersection with the maximum
speed or desired speed (Müller et al., 2016; Yu et al., 2018), but this may not be
possible if the vehicle is too close to the intersection or the traffic volume is high.
So process time is defined as a function of the entering speed which can be easily
calculated by replacing v0

i,j to vri,j and s0
i,j to Ls + li,j in Eq. (2.4) – (2.10).

For vehicles running on the conflicting roads, the safety constraints are more
difficult to obtain due to the unknown passing sequence. A binary variable oj,j′ ∈
{0, 1} is introduced to indicate the passing sequence: oj,j′ = 1 if vehicle j from
approach 1 crosses the conflict area before vehicle j′ from approach 2, otherwise
oj,j′ = 0. Then the safety constrains are

Ti,j + cj,j′ ≤ Ti′,j′ +M(1− oj,j′) (2.14a)

Ti′,j′ + cj′,j ≤ Ti,j +Moj,j′ (2.14b)

whereM is an arbitrary large enough constant, and 10000 was used in this paper.
The interchange time is calculated by

cj,j′ = pi,j + θ (2.15)

where θ denotes the redundant safe time because of sensor delay. θ = 0.2 s is
used in the following simulations, as it likely ranges from 0.1 s to 0.3 s (Xiao and
Gao, 2011; Wang et al., 2018).

2.3.5 Lower-level optimisation

After an iteration of the upper-level optimisation, every vehicle has an allocated
arrival time. However, the assumed process time in the upper level may be
overestimated or underestimated, which makes the intersection control method
less efficient or infeasible. One of the purposes of lower-level optimisation is to
update the process time for the upper level in the next iteration. So, the feedback
structure is one of the key contributions of this paper. The objective for the lower-
level optimisation is to optimise every vehicle’s trajectory to follow the allocated
arrival time and maximise the total speed of vehicles entering the intersection.
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max
vk

i,j

fl =
2∑
i=1

ni∑
j=1

vri,j k = 1, 2, · · · , r (2.16)

where vri,j denotes the speed of vehicle j on road i at the stop line.
To reduce the complexity in the trajectory planning, it is assumed that the

vehicle updates its acceleration at an interval of 0.5 s. So there are r = dTi,j/0.5e
speed variables before arriving at the intersection where dxe indicates the smallest
integer value which is larger than or equal to x. r = 0 is not considered as it
indicates the vehicle already arrives at the stop line and there are no decision
variables in this case. The duration of the last time step is tri,j = mod(Ti,j, 0.5),
where mod(x, y) denotes the remainder of x divided by y. Then, the total travel
distance constraints is formulated easily as:

s0
i,j =



tri,j
2
(
v0
i,j + vri,j

)
if r = 1

0.5
2
(
v0
i,j + vr−1

i,j

)
+
tri,j
2
(
vr−1
i,j + vri,j

)
if r = 2

0.5
2

(
v0
i,j + 2

r−2∑
t=1

vti,j + vr−1
i,j

)
+
tri,j
2
(
vr−1
i,j + vri,j

)
if r > 2

(2.17)

At every time step, the change of speed is bounded by the acceleration limits,
which is:

− 0.5amin ≤ vk+1
i,j − vki,j ≤ 0.5amax k = 0, 1, . . . , r − 1 (2.18)

At every time step, the vehicle should keep a safe distance from the preceding
vehicle as expressed in Eq. (2.19). These constraints are often ignored in the
intersection signal optimisation, even though they affect both the speed profile
and the intersection access time.

ski,j − ski,j−1 ≥ Ski,j k = 1, 2, . . . , r (2.19)

where Ski,j denotes the safe distance at time step k which is calculated as:

Ski,j = max(s0, v
k
i,jh) (2.20)
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where s0 denotes the minimum space headway between adjacent vehicles, which
is set to 7 m.

The distance to the stop line ski,j at time step k is calculated by

ski,j =



s0
i,j if k = 0

s0
i,j −

0.5
2
(
v0
i,j + v1

i,j

)
if k = 1

s0
i,j −

0.5
2

(
v0
i,j + 2

k−1∑
t=1

vti,j + vki,j

)
if 1 < k < r

0 if k = r

(2.21)

2.3.6 Heuristic algorithm

Bilevel optimisation problems are NP–Hard problems, and even the simplest
bilevel linear problems are nonconvex and nondifferentiable optimisation prob-
lems (Dempe, 2002, 2003). For the proposed method, as the travel time is dis-
cretised in the lower-level optimisation and it is also the decision variable of the
upper-level optimisation, the number of decision variables and constraints in the
lower-level optimisation are determined by the upper-level optimisation. This
also causes difficulties in applying KKT (Karush–Kuhn–Tucker) conditions on
the lower-level optimisation, which is the most popular and efficient method for
solving bilevel problems (Bard, 1998; Lu et al., 2016).

In the proposed method, the bilevel problem has a cooperative relationship
that the decision variables in the lower level help the upper level to achieve
optimal goals (Zhang et al., 2015a). A heuristic pseudo code below is proposed
to solve the proposed master-slave problem:

• Step 1: In the first iteration of the upper-level optimisation, the speed
entering the intersection vri,j is assumed to be the same as the initial speed
v0
i,j
†.

• Step 2: Fix the terminal speed vri,j and solve the upper-level optimisation.
The optimised travel time to the stop line Tij from the upper-level optimi-

†The impact of initial values on the optimisation results is investigated in Appendix 2.A.
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sation is passed to the constraints in the lower-level optimisation.

• Step 3: Fix the travel time Tij and solve the lower-level optimisation. The
optimised speed entering the intersection vri,j from the lower-level optimi-
sation then becomes the constraints of the upper-level optimisation in the
next iteration.

• Step 4: When the difference of the total travel time between two iterations
becomes less than a threshold value, which is set to 0.5 s, the algorithm will
stop. Otherwise, it will continue the iterations between step 2 and 3.

2.3.7 Platoon-based scheduling

This section presents a novel platoon-based method to reduce the computation
burden of the proposed bilevel optimisation model. Research on the platoon-
based traffic operations has been conducted widely in the literature (see Ngoduy,
2013; Jia and Ngoduy, 2016b; Zhao et al., 2018 and references therein). Al-
lowing platoon-based operations under the connected environment may increase
the roadway capacity (Jia and Ngoduy, 2016b). Nevertheless, this is not always
the case for the intersection. It depends on the relationship between the time
headway ĥi,j for the vehicles on the same road and the process time pi,j.

Figure 2.4: The relationships among headway, process time and interchange time

Considering the following example in Fig. 2.4, the earliest time for the vehicle
B to enter the intersection is the time headway hB, while the earliest time for
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the vehicle C to enter the intersection is the interchange time cC,A which is a
function of the process time of vehicle A pA according to Eq. (2.15), denoted
as cC,A = g(pA). Whether vehicle B or vehicle C goes first depends on the
relationship between hB and cC,A, which can also be seen as the relationship
between hB and pA because θ is a constant in Eq. (2.15). In other words, only
hi,j and pi,j for the vehicles on the same road need to be calculated in order to
determine the passing sequence. Then we have the following scenarios as shown
in Fig. 2.4:

• If hB < g(pA), there is no doubt that vehicle B enters the intersection before
vehicle C.

• If hB > g(pA), then vehicle C enters the intersection earlier than vehicle B
to reduce the total delay.

• If hB = g(pA), then either vehicle B or C can go first as both cases have
the same total arrival time.

More generally,

• If hB < g(pA), the intersection control strategy should provide a priority to
the platoon on the same road to reduce the overall travel time.

• If hB > g(pA), vehicles close to the intersection have a high priority to pass
the intersection, which is similar to the first in first out (FIFO) principle.

• If hB = g(pA), which vehicle goes first depends on who gets closer to the
stop line. It is also the same as the FIFO principle.

The platoon will only be beneficial to the entire traffic flow when hB < g(pA).
Please note that both hB and pA are closely related to vehicles’ state at the stop
line. When the vehicles are away from the stop line, it is essential to determine
the relationship between hB and pA in advance.

Proposition 2.3.1. When the difference of the minimum travel time to the stop

line between two adjacent vehicles is less than or equal to the minimum time

headway, these two vehicles will also keep the minimum time headway at the
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stop line no matter what the passing sequence is. In a mathematical form: if

Tmini,j − Tmini,j−1 ≤ h, then ĥi,j = h.

Proof. If the difference of the minimum travel time between two adjacent vehicles
is less than or equal to the minimum time headway, there always exists a time
instant that the following vehicle has a minimum time headway to the preceding
vehicle. In order to reduce the delay, the vehicle always attempts to keep a
minimum time headway, so it will keep the minimum time headway until it reaches
the stop line.

Proposition 2.3.2. If s0
i,j ≥ s̃i,j where s̃i,j = (v0

i,j)2/(2amin) + (vmax)2/(2amax),
then no matter what the passing sequence is, the vehicle can always achieve the

maximum speed at the stop line.

Proof. When the distance to stop line s0
i,j equals to s̃i,j, then

• If Ti,j = v0
i,j/amin + vmax/amax, the vehicle can reach the maximum speed

as shown in Fig. 2.5;

• If Ti,j > v0
i,j/amin + vmax/amax, the vehicle can stop for a period after de-

celerating to zero and then start to accelerate to the maximum speed;

• If Ti,j < v0
i,j/amin + vmax/amax, the vehicle can decelerate for a shorter

time than v0
i,j/amin or even do not decelerate and start to accelerate to the

maximum speed.

When the distance to the stop line s0
i,j is larger than s̃i,j, it can keep a similar

speed pattern as shown in Fig. 2.5, but may use a different deceleration and
acceleration, and run with vmax finally.

Proposition 2.3.3. If the intersection length Ls > (h− θ)vmax − l, then for the

vehicles satisfying the condition in Proposition 2.3.1, no matter what the passing

sequence is, the platoon-based operations are always preferred to the vehicle-based

operations in terms of reducing delay.
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Figure 2.5: The speed pattern when s0
i,j = s̃i,j and Ti,j = v0

i,j/amin + vmax/amax

Proof. According to Proposition 2.3.1, ĥi,j = h. When Ls > (h− θ)vmax− l, then
pi,j ≥ Ls+l

vmax
> h − θ and cj,j′ = pi,j + θ, so cj,j′ > h. According to the previous

discussions about headway and interchange time in this section, the platoon-based
operations are preferred. Using the parameters in Table 2.2, (h − θ)vmax − l ≈
14.9m.

Based on Propositions 2.3.1, 2.3.2 and 2.3.3, the vehicle’s time headway ĥi,j
and process time pi,j at the stop line can be obtained before the upper-level
optimisation is executed. Thus, they can also be used as the criteria to split
traffic flow. When the following vehicle’s headway is less than the process time of
the preceding vehicle plus a small non-negative safety tolerance, they will form a
platoon. A platoon will be seen as one “big vehicle” as all vehicles in the platoon
pass the intersection continuously without the disturbances from other roads.
Traffic flow is now considered to consist of many platoons moving together rather
than many vehicles (or particles) moving together (Ngoduy, 2013). Therefore, the
number of binary variables and the total calculation time can be greatly reduced.

2.4 Numerical studies

A simulation environment is developed using Matlab to test the performance of
the proposed method and compare it with other intersection control strategies.
All simulations are carried out in a simple intersection as shown in Fig. 2.1. The
algorithm is solved using Gurobi 7.5.1 in Matlab. Typically, if there are 9 vehicles
on one road and 15 vehicles on another, every run of the upper-level optimisation
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usually takes 0.2 s and every run of the lower-level optimisation takes 0.08 s. The
whole algorithm converges after two iterations, taking less than 0.5 s.

Table 2.2: The basic parameters used in simulations

Parameter Description Value Unit

Lr Simulation road length 600 m

Lc Communication range 500 m

Ls Intersection length 10 m

l Vehicle length 5 m

h Saturation headway 1.5 s

hg safety time gap 0.8 s

θ Safety headway tolerance 0.2 s

s0 Minimum space headway at standstill 7 m

amax Maximum acceleration 2 m/s2

amin Maximum deceleration 5 m/s2

b Comfortable braking deceleration 3 m/s2

vmax Maximum speed 55 km/h

vmin Minimum speed 0 km/h

tdelay Maximum allowed delay for each vehicle 30 s

The basic simulation parameters are shown in Table 2.2, and some of them
may be changed in the simulations later when studying the impact of particular
parameters on the system performance. Meanwhile, a scenario is defined as a
particular set of parameters. In every scenario, the simulation is run five times,
and the simulation period is 20 min in every run. The time headway of vehi-
cles entering the studied road follows a truncated exponential distribution with
minimum headway 1.5 s. Four control methods are considered in the following
simulation tests.

• Bilevel model (Bilevel): It is the method proposed in Section 2.3.
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• Conservative scheduling model (Conservative): It is a two-stage model that
is similar to the bilevel model, but there is no feedback between the upper
level and the lower level, and the process time is calculated conservatively by
assuming that every vehicle may stop at the stop line. This is to ensure that
every vehicle has sufficient time to pass the intersection without conflicts
when the intersection controller does not know the entering speed.

• First in First out (FIFO): When a vehicle enters a predefined range from
the stop line earlier than the others, it will also have a higher priority to
pass the intersection. A trajectory mapping method, which is the same as
Li and Wang (2006), is also used.

• Actuated control (Actuated): Conventional actuated control method is con-
sidered in the simulation. In this method, a loop detector is located at 40 m
before the stop line on every road. The green time extension interval is 3 s
and the minimum and maximum green time is chosen by running multiple
simulations and selecting the best with the minimum average delay.

For simplicity, in the bilevel and conservative scheduling models, the Intelli-
gent Driver Model (IDM)‡ (Treiber et al., 2000) is used to update the vehicles’
speed and location before they enter the communication range. This model is cho-
sen as it is widely used to model the longitudinal behaviour of vehicles equipped
with the Adaptive Cruise Control (ACC) system by applying a constant time
headway policy (Kesting et al., 2007). Nevertheless, the proposed framework
should work with other more advanced models for the connected environment,
i.e. the model of Jia and Ngoduy (2016a,b). The IDM is also used in the FIFO
and actuated control method. Briefly, the IDM describes the acceleration of the
follower via the following equations:

ai,j = amax

1−
(
vi,j
vmax

)4
−
(
s∗(vi,j,∆vi,j)

∆si,j

)2
 (2.22)

s∗(vi,j,∆vi,j) = g0
i,j + vi,jhg + vi,j∆vi,j

2
√
amaxb

(2.23)

‡Remarks about the IDM can be found in Appendix 2.B.
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where the distance gap between vehicles is calculated as ∆si,j = xi,j−1−xi,j−li,j−1,
the speed difference ∆vi,j = vi,j − vi,j−1 and the minimum gap g0

i,j = s0 − li,j−1.
After vehicles enter the communication range, the optimisation is performed in a
constant frequency which is once every 10 s if there is no special instruction, and
then every vehicle updates its trajectory according to the optimisation results.
every vehicle is assumed to be an AV and can follow the optimisation results
precisely.

The most important performance index in the simulation is the average delay.
It is defined as the difference between the actual travel time from entering the
studied road to exiting the intersection area and the minimum travel time Tmini,j

calculated by Equation (2.4) - (2.10) §. So the conflicting distance for every vehicle
is the sum of the intersection length and the vehicle length. The intersection
length is defined as the length of road in the intersection conflict area along the
driving direction which is from the stop line to exit of the intersection. Another
performance index used is the percentage of platoons. It is defined as the ratio of
the number of vehicles passing the intersection in platoons to the total number
of vehicles which pass the intersection during the simulation period. Here, the
platoon is defined as two or more vehicles passing the intersection successively
without the disturbance from the conflict roads. So the percentage of platoons
indicates the frequency of changes in the right of way. The number of vehicles
passing the intersection in the simulation period, which is named as throughput,
is also recorded to show the difference in capacity.

2.4.1 Different demands

Demand is one of the most important factors affecting the performance of the
control strategy. The aforementioned four control methods under different de-
mand levels varying from 400 to 1000 veh/h are tested. The results are shown in
Fig. 2.6 and the simulated trajectories are shown in Fig. 2.7.
§The additional delay after the intersection because of the reduced speed at the intersection
and additional time to reach the desired speed afterwards are not considered in this chapter.
This also implies that the improvement in delay is underestimated as vehicles in the proposed
bilevel model have much higher terminal speed than that in the other methods because of the
explicit lower-level optimisation.
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The bilevel model has the best performance in terms of the average delay com-
pared with all the other control schemes under all demand levels. The proposed
bilevel model maintains a very low average delay and high throughput in all sim-
ulated demands. It is mainly because the time headway of vehicles from both the
same approach and conflict approaches are minimised by the model. The lower-
level optimisation minimises the time for vehicles passing the intersection from
the same approach and the upper level optimises the passing sequence to min-
imise the overall delay. The main drawback of the conservative scheduling model
is that it overestimates the time required by a vehicle to pass the intersection be-
cause it does not estimate the maximum possible speed arriving at the stop line.
As a result, the conservative scheduling model has more than five times average
delay compared with the proposed bilevel method, but it still works quite well in
high demands compared with the FIFO and actuated control methods. In par-
ticular, the FIFO works well only in low demands, which is also found by Li and
Zhou (2017). When the demand increases, the control performance deteriorates
quickly in both average delay and throughput. This is because when the priority
of passing is determined by the FIFO, the trajectory is not optimised according
to such a priority. By applying the trajectory mapping technique, the vehicle
avoids a complete stop at the stop line in most situations. However, it sometimes
has a low speed at the stop line because it needs to wait for other vehicles in
higher priorities from the other approach. Such low speed has a negative impact
on the capacity and defers all the vehicles in lower priorities. This can be seen
in Fig. 2.7c. The actuated control is the worst in the demand levels of 400 veh/h
and 600 veh/h, but it works better than the FIFO method in higher demands.
The reason is that although some vehicles have to stop in front of the stop line in
high demands, the following vehicles can still accelerate and have higher speeds
when crossing the intersection area. This implies that when there is no trajectory
optimisation, the platoon can increase the capacity in high demands.

The four control methods show different throughputs in Fig. 2.6b because of
different capacities. The throughput of the intersection in FIFO does not change
when the demand keeps increasing from 600 veh/h. This indicates that it already
reaches its capacity in the demand of 600 veh/h from each approach. However,
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the intersection in all the other three methods is unsaturated in all the simulated
traffic demand levels. The throughput in the actuated control method is about 7%
less than that in the other two optimisation-based methods in the high demand
of 1000 veh/h because of the loss time of stop-and-go behaviour. Though the two
optimisation-based methods have similar throughput, vehicles have quite different
passing behaviour patterns. In the conservative scheduling model, vehicles tend
to pass in platoons, and the percentage of platoons is much higher than that
in the bilevel programming model which is mainly because of the longer process
time in the conservative scheduling model. However, the percentage of platoons
has the same trend of increasing in both models when the demand increases.

0.6
71

0.8
47

1.0
7

1.4
74.7
6

5.9
7 8.2
7 13.
3

3.1
9 8.1
1

125

209

8.0
3 12.
7 20.

4

59.
5

4 0 0 6 0 0 8 0 0 1 0 0 0
0

2 0
4 0
6 0
8 0

1 2 0
1 6 0
2 0 0
2 4 0

Av
era

ge 
del

ay 
(s/v

eh)

D e m a n d  ( v e h / h )

 B i l e v e l
 C o n s e r v a t i v e
 F I F O
 A c t u a t e d

(a) Average delay

4 0 0 6 0 0 8 0 0 1 0 0 0
0

2 0 0

4 0 0

6 0 0

8 0 0

Th
rou

ghp
ut 

(ve
h)

D e m a n d  ( v e h / h )

 B i l e v e l
 C o n s e r v a t i v e
 F I F O
 A c t u a t e d

(b) Throughput

4 0 0 6 0 0 8 0 0 1 0 0 0
0 %

2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %

Per
cen

tag
e o

f p
lato

ons
 (%

)

D e m a n d  ( v e h / h )

 B i l e v e l
 C o n s e r v a t i v e

(c) Percentage of platoons

Figure 2.6: Simulation results under different demands
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Figure 2.7: Simulated trajectories under different control methods
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2.4.2 Different intersection lengths

Another important factor that is often ignored is the relationship between the
minimum headway on the same road and the minimum process time in the con-
flict approach. Usually, the maximum allowed speed in the intersection area is
the same, so the factor that needs to be investigated is the intersection length.
Simulation results of intersection lengths varying from 10 m to 30 m are shown in
Fig. 2.8. In these simulations, the demand is kept to 600 veh/h on each road.

It is shown that the longer the intersection is, the larger the average delay be-
comes in all the four studied methods. Nevertheless, the sensitivity varies greatly.
Fig. 2.8b shows the rates of change in the average delay for the four methods with
different intersection lengths. In this case, rate of change in the average delay is
derived by taking the difference in the average delay when the intersection length
is larger than 10 m and that when the intersection length is 10 m and divided
by the average delay when the intersection length is 10 m. It appears that the
FIFO method is the most sensitive to the intersection length. A possible reason
is that the demand is already close to the intersection capacity and the additional
process time due to the longer intersection causes severe congestion on the road
and increases the average delay rapidly. The actuated control does not show vis-
ible sensitivity to the intersection length since the intersection length does not
affect the signal timing in the actuated control. Some vehicles in the actuated
control method can achieve a much higher speed entering the intersection com-
pared with that in the FIFO method. The bilevel model is more sensitive to
the intersection length than the conservative scheduling method because of their
different ways in calculating the process time. However, the delay in the bilevel
model is significantly lower than that in the the conservative scheduling method,
which is because the bilevel method makes better use of the intersection conflict
area through the feedback between signal optimisation and trajectory optimisa-
tion. It is worth noticing that a longer intersection also prompts the vehicles
to pass in platoons in both bilevel method and conservative scheduling method.
We can also observe a considerable increase in the percentage of platoons when
the intersection length increases from 10 m to 15 m, which can be explained by
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Figure 2.8: Simulation results under different intersection lengths
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Proposition 2.3.3. When the intersection length is greater than a value (which is
14.9 m using the data in this paper), more vehicles tend to pass the intersection
in platoons.

2.4.3 Different communication ranges

Different communication ranges varying from 100 m to 500 m are tested for the
proposed model. The optimisation frequency increases from every 10 s to 5 s to
avoid unoptimised vehicles being too close to the stop line and cannot find a
feasible solution. The demand is kept to 600 veh/h in every simulation. The
simulation results are shown in Fig. 2.9.
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Figure 2.9: Simulation results under different communication ranges

We can see that the average delay keeps decreasing with the increasing com-
munication range when the communication range is greater than 200 m. The
average delay when the communication range is 500 m is over 36% less than that
when the communication range is 100 m. Nevertheless, the average delay is still
quite small in every scenario. When the communication range is 100 m, vehicles
are too close to the intersection and have little room to be optimised. The per-
centage of platoons is hugely higher than that in a longer communication range.
When the communication range is 200 m, it becomes another extreme case that
the priority of passing keeps changing between two approaches. There are few
vehicles available to be optimised and the proposed method degenerates to a
control scheme that is similar to the FIFO method. The throughput keeps the
same among all scenarios. So the suggested communication range should be at
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least 300 m to ensure traffic flow operates stably, and the communication range
of 500 m is preferred in terms of improving the control performance.

2.4.4 Different traffic compositions

To model the performance of the proposed method under heterogeneous traffic
compositions, we assume the traffic consists of different shares of buses ¶. More
stochastic vehicle characteristics are modelled in both cars and buses. As the
drivers still have some personal preferences for the ACC or AVs, characteristics
of those vehicles may not be the same (Butakov and Ioannou, 2016; Ghiasi et al.,
2017). Instead of using a identical maximum speed as the desired speed for every
vehicle, the desired speed of cars follows a truncated normal distributionN(50, 22)
within the interval [40, 55], while the desired speed of buses follows a truncated
normal distribution N(45, 22) within the interval [40, 55]. The same bounds are
applied to the desired speed of cars and buses to ensure that they are not too
low, which are unrealistic, or too high, which exceed the maximum allowed speed.
Other properties of buses are length (10 m), maximum acceleration (1.5 m/s2),
minimum deceleration (3 m/s2). When a car or a bus following another bus, the
safety time headway is 2 s. Otherwise, it is still 1.5 s. The total demand is kept
to 600 veh/h on each road. Every vehicle’s distinct characteristics are considered
in the vehicle-based intersection control method rather than to be assumed the
same in the conventional flow-based intersection control method.

The simulation results are shown in Fig. 2.10. It reveals a positive relationship
between the average delay and the percentage of buses. That is rather obvious due
to the lower desired speed and more restrict acceleration and deceleration abilities
of the bus. Compared with the simulation results in Section 2.4.1 at the same
demand level, the average delay with 0% bus increases by 71.8% from 0.85 s/veh
to 1.46 s/veh, which implies that the traffic heterogeneity has a negative impact
on the performance. In another aspect, even with 20% of buses, the average
delay is still quite small and is much lower than that given by the other methods
in Fig. 2.6 at the same total demand level. On the other hand, vehicles are less
¶There is no bus stop near the intersection in our study in this proof of concept case study.
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likely to pass in platoons as the percentage of buses increases because of the higher
time headway of buses. Moreover, all the percentages of platoons under different
percentages of buses are higher than 20%, which implies that the platoon-based
operation helps reduce delay in heterogeneous traffic flow. No evident throughput
changes are observed when the percentage of buses increases.
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Figure 2.10: Simulation results under different traffic compositions

2.5 Concluding remarks

This paper developed a novel way to optimise intersection control and the tra-
jectory jointly. In order to relax the commonly used assumption of the constant
process time for vehicles to pass an intersection, the detailed trajectories of ve-
hicles were considered in intersection control. This approach can fully utilise
the available information from the intersection controller and vehicles to increase
intersection efficiency. The problem was formulated as a bilevel programming
model, in which the upper-level optimisation is a mixed integer linear program-
ming model to minimise the total travel time. In contrast, the lower-level opti-
misation is a linear programming model to maximise the total speed entering the
intersection. The coupled structure between the two levels is a major contribu-
tion of this paper. Moreover, platoon is not always beneficial to the intersection.
After a discussion on the relationship between the safe time headway and the
process time, a novel platoon identification method has been developed to reduce
the number of binary variables and improve the performance of the model. The

70



2.5 Concluding remarks

simulation results show that it significantly improves intersection control perfor-
mance to integrate trajectory planning into signal optimisation, and the results
are safe and feasible for every vehicle.

The models and findings established in this paper can be extended in the
following aspects in future. Firstly, although the number of binary variables is
greatly reduced due to the dynamic platoon formation, a more efficient heuristic
method is still needed to enable a real-time application in the future. One possible
way is to apply signal phases to reduce the number of binary variables (Xu et al.,
2017; Yu et al., 2018), but this also reduces the flexibility of intersection control.
Secondly, all vehicles were assumed to be AVs in this paper, so the obtained results
provide the upper bounds of the benefit of the AVs to the urban intersection
operation. However, this assumption is not practical in the near future. A more
realistic situation would be mixed traffic consisting of vehicles with different levels
of automation and connectivity. In this case, how to develop a robust and efficient
intersection control method will be an interesting research question (Yang et al.,
2016; Li and Zhou, 2017), which should be left in our future research. At last,
we only applied the bilevel model to a simplified intersection. If the intersection
is complex, more conflict zones exist and it requires more binary variables. Note
that the solver time also increases because of the increased number of binary
variables. Some simplified ways may be applied to reduce the complexity of the
problem, such as the aforementioned platoon-based approach or reducing the
communication range.
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Appendix 2.A Investigate the impact of initial

values on the optimisation results

In Section 2.3.6, it was described that “in the first iteration of the upper-level
optimisation, the speed entering the intersection vri,j is assumed to be the same as
the initial speed v0

i,j.” The impact of initial values of terminal speed is investigated
in this appendix.

Table 2.3: Position and speed of every vehicle at the start of the optimisation

Vehicle No.
Road 1 Road 2

Position (m) Speed (m/s) Position (m) Speed (m/s)

1 445.90 10.28 555.07 5.14
2 375.44 11.07 313.89 11.28
3 291.61 6.61 170.88 15.23
4 262.62 11.43 139.55 11.46
5 190.03 12.12 101.19 8.49
6 158.89 14.40

Table 2.4: Optimisation results with different initial terminal speed

Initial Guess Optimal
Solution (s)

Number of
Iterations

Solver Time (s)

0 m/s 241.945 3 1.36

1 m/s 241.945 3 1.08

5 m/s 241.945 3 1.10

v0 241.945 3 0.94

vmax 241.945 2 0.58

A typical case is set up where there are 6 and 5 vehicles within the commu-
nication range on each approaching road. Their position and speed at the start
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of optimisation are shown in Table 2.3. The optimisation results are presented
in Table 2.4. No matter what is the initial terminal speed, the obtained results
are the same. In this case, every vehicle can reach the maximum speed when they
arrive at the stop line. So when the initial terminal speed is set to the maximum
speed, it converges quickly with few iterations and solver time. When the initial
guesses deviate too much from the optimal value, the number of iterations and
solving time may increase. From this simple test, we can find that the heuristic
algorithm is not sensitive to the initial guess in terms of the final solution, but
may have different solver time. It is also possible to use the maximum speed as
the initial guess for the terminal speed instead of the speed at the start of the
optimisation used in this chapter.

Appendix 2.B Remarks about the IDM

IDM is a widely used car following model, which depicts traffic flow on both
motorway and urban roads well. It is also used to model the ACC.

By assuming ai,j = 0, we obtained the relationship between steady-state gap
and speed

se(v) =
g0
i,j + vi,jhg√
1−

(
vi,j

vmax

)4
(2.24)

When the speed vi,j is close to the desire speed vmax, the equilibrium gap se(v)
is much higher than s∗ = g0

i,j + vi,jhg. This makes the desire time gap hg loses
its meaning. Not all vehicles in a platoon can reach the desire speed because of
the non-zero braking term − s∗

∆si,j
. However, this does not harm the methods and

conclusions in this chapter.
The authors of IDM developed an Improved Intelligent Driver Model (IIDM)
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(Treiber and Kesting, 2013) to address this issue.

ai,j =


(1− z2)amax z = s∗(vi,j,∆vi,j)

∆si,j
≥ 1

(
1− z

2amax
afree

)
afree otherwise

(2.25)

s∗(vi,j,∆vi,j) = g0
i,j + vi,jhg + vi,j∆vi,j

2
√
amaxb

(2.26)

afree = amax

[
1−

(
vi,j
vmax

)4
]

(2.27)
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3.1 Introduction

Abstract

The advancements in communication and sensing technologies can be exploited
to assist the drivers in making better decisions. In this paper, we consider the
design of a real-time cooperative eco-driving strategy for a group of vehicles with
mixed automated vehicles (AVs) and human-driven vehicles (HVs). The leading
vehicles in the platoon can receive information on the signal phase and timing
via vehicle-to-infrastructure (V2I) communication and the state of the preceding
vehicle and the current platoon via vehicle-to-vehicle (V2V) communication. A
receding horizon model predictive control (MPC) method is proposed to minimise
fuel consumption for platoons and drive the platoons to pass the intersection
at a green phase. The method is then extended to dynamic platoon splitting
and merging rules for cooperation among AVs and HVs in response to the high
variation in urban traffic flow. Extensive simulation tests are also conducted to
demonstrate the performance of the model in various conditions in mixed traffic
flow and different penetration rates of AVs. Our model shows that the cooperation
between AVs and HVs can further smooth out the trajectory of the latter and
reduce the fuel consumption of the entire traffic system, especially in the low
penetration rate of AVs. It is noteworthy that the proposed model does not
compromise traffic efficiency and driving comfort while achieving the eco-driving
strategy.

Keywords: Cooperative driving, platoon based operations, Eco-driving, au-
tomated vehicles, heterogeneous flow, car following model

3.1 Introduction

Transportation is one of the main sources of energy consumption and greenhouse
gas emission. In the EU, transportation is responsible for 33% of energy consump-
tion and 23% of total emissions (European Commission, 2016). Road transport
represents most of it, 72.8% in total greenhouse gas emissions and 73.4% in trans-
port energy demand. A lot of work has been done to mitigate these effects from
different aspects, for example, optimised engine design, better road surface con-
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dition and more training for drivers. Due to the continually increasing number of
vehicles, however, the total vehicle fuel consumption is still rising. The concept
of “eco-driving” has drawn increasing attention from both academic researchers
and government regulators (Carsten et al., 2016). The core of eco-driving tech-
nologies is to provide drivers with a variety of feedback and advice to minimise
fuel consumption and emissions while driving.

Unlike continuous traffic flow on freeways, traffic flow on urban roads is reg-
ularly interrupted by traffic signals and conflicting traffic flow at intersections.
As such, vehicles travel with substantial variations in velocity and consume more
fuel. Eco-driving strategies are designed to reduce idling time at the red light
and the subsequent strong acceleration by advising the drivers to approach in-
tersections using a moderate acceleration and deceleration. The development
of sensing and communication technologies make Vehicle-to-Infrastructure (V2I)
and Vehicle-to-Vehicle (V2V) communication possible in the near future. These
technologies offer potential applications for eco-driving patterns at intersections
as the connected vehicles (CVs) can receive the Signal Phase and Timing (SPaT)
information from the intersection controller by V2I and also receive the position
and velocity information from surrounding vehicles by V2V communication. Bet-
ter speed advice can be generated using these information, and thus vehicles may
adjust their speed in advance, in order to avoid stopping at the stop line and
subsequent strong acceleration and consequently reduce fuel consumption.

Both field experiments (Schall and Mohnen, 2017) and simulator experiments
(Van der Voort et al., 2001; Staubach et al., 2014) show that eco-driving reduces
fuel consumption between 5% and 18%, and drivers exhibit a high acceptance
towards an eco-driving support system. It has no negative effects on safety, but
many eco-driving methods lead to low travel speed and may have a negative im-
pact on the following vehicles (Staubach et al., 2014; Wu et al., 2015). Moreover,
they may even increase the travel time of the host vehicles and following vehicles.

This paper proposes a real-time cooperative eco-driving strategy for a platoon
including mixed automated vehicles (AVs) and human-driven vehicles (HVs) ap-
proaching a signalised intersection. It adopts a model predictive control (MPC)
method to control the trajectories of AVs. Here the AVs are considered the lead-
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ers of the platoon with the aim of minimising the total fuel consumption of the
whole platoon without sacrificing the travel time of the leaders. It also reduces
the travel time for the following vehicles to a certain extent. The rest of the paper
is organised as follows: the literature review of the eco-driving modelling is pre-
sented in Section 3.2. Then, the proposed model structure, optimisation method,
and platoon control scheme are described in Section 3.3. In Section 3.4, the prop-
erties of the proposed model are extensively studied, and the performance of the
proposed method in different penetration rates of AVs is also examined. A final
Section 3.5 summarises the paper’s findings.

3.2 Literature Review

One of the applications of speed advisory systems is Intelligent Speed Adaptation
(ISA), which is widely used in several EU countries (Almqvist et al., 1991; Liu and
Tate, 2004). ISA devices are primarily aimed at safer driving by advising drivers
a desired speed and speed limits on specific road sections (Ngoduy et al., 2009).
Experiments showed that ISA strategies could potentially mitigate congestion and
reduce fuel consumption and pollutant emissions due to smoother speed variations
(Oei and Polak, 2002; Panis et al., 2006). In conventional ISA systems, vehicles
are still driven by humans, and traffic information is usually obtained from loop
detectors.

There are two main methods proposed in the literature which utilise the traffic
signal information to reduce idle time and fuel consumption. The first approach
suggests a constant speed or constant acceleration to an individual driver in or-
der to reduce idle time or fuel consumption, which is commonly named Green
Light Optimised Speed Advisory (GLOSA) system. It is usually implemented as
an optimisation model by assuming a simple speed pattern in front of the inter-
section. Rakha and Kamalanathsharma (2011) used a fuel consumption model
as the objective function and showed that simplified objective functions such as
minimising the deceleration or idle time might not get the optimal result in terms
of fuel consumption. This work is further extended to control the variable speed
limit for each vehicle to minimise fuel consumption (Kamalanathsharma et al.,
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2015) and integrate with queue estimation (Yang et al., 2017). Mandava et al.
(2009) developed an arterial velocity planning algorithm which provided speed
advice to the drivers regarding the most fuel optimal path by using upcoming
signal information. The objective function was minimising the deceleration and
acceleration rates, and 12–14% energy/emission savings were achieved. Tielert
et al. (2010) conducted a large-scale simulation to identify the impact of gear
choice and distance to the intersection. They found that sub-optimal gear choices
reduce the positive performance of the speed adaptation. Another finding was
that the benefit of providing information to the vehicles located further than
600m is negligible. Treiber and Kesting (2014) implemented three strategies of
speed adaptation: early break, early start, and avoiding queue in the Improved
Intelligent-Driver Model. The travel time decreases linearly with the penetration
rate of equipped vehicles. They also found that increasing the maximum speed
from 50km/h to 70km/h doubles the performance index. Katwijk and Gabriel
(2015) considered the impact of different trajectories on fuel consumption. The
vehicle was advised to use a smaller deceleration, even combined with a period of
constant speed, instead of a hard deceleration in front of the red light. Stebbins
et al. (2017) developed a method to suggest an acceleration to the leading vehicle
only in a platoon to reduce delay. It was assumed that every vehicle that is the
first to pass the intersection at a green light could be selected as a leading vehi-
cle. Instead of controlling the speed directly, Ubiergo and Jin (2016) proposed
a green driving strategy to control the individual advisory speed limit of CVs
while following their leaders at signalised intersections. It can be applied to any
level of market penetration. Although no fuel consumption model was explicitly
used in this modelling method, it still saved 15% in travel delays and 8% in fuel
consumption and emission.

The second approach uses an optimal control or an MPC method to provide
dynamic or real-time speed advice to an individual vehicle considering the lo-
cal and predictive traffic states. This approach is thus more suitable for AVs
because of real-time detecting and speed adjustment. Asadi and Vahidi (2011)
calculated the optimal speed that reduced idling at red lights using the given fu-
ture state of traffic lights and developed a multiple objectives optimisation-based
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MPC model. Kamal et al. (2013) predicted the dynamics of the preceding vehicle
based on the information from inter-vehicle communication and considered the
traffic signal status of the upcoming intersections to compute the optimal vehicle
control input for fuel economy by an MPC method. He et al. (2015) developed
a multi-stage optimal control model considering the spatial and temporal con-
straints induced by vehicle queue in front of the intersection. They also added
the constraints to reduce the negative impact on the following vehicles, but it
was only active at the terminal time step at each stage. Wan et al. (2016) used
optimal control theory to solve the minimum fuel control problem and found that
the minimal fuel driving strategy is a bang-singular-bang control, which means
either maximum acceleration or engine shut down is used. By employing a sub-
optimal method, the speed advisory equipped vehicle also benefits the following
conventional vehicles. De Nunzio et al. (2016) used a combination of a pruning
algorithm and shortest path method to find the minimum energy consumption
path in multi-intersections. The non-convex optimal control problem was then
reduced to a convex problem which can be solved efficiently.

To the best of our knowledge, most current work focuses on developing fuel-
efficient control strategies for a single vehicle without considering the impact
on the other vehicles. HomChaudhuri et al. (2017) considered neighbourhood
information exchange and designed a decentralised control model emulating the
selfish behaviour of human drivers, but their model still considers one vehicle and
does not describe the interactions between platoons. Zhou et al. (2017) and Ma
et al. (2017) proposed a parsimonious shooting heuristic algorithm to optimise
the trajectories of a stream of vehicles and considered multiple objective functions
such as fuel consumption and travel time, but all vehicles are required to be AVs
in their method. Jiang et al. (2017) proposed an eco-driving model in partially
connected and automated vehicles environment; however, they did not consider
the cooperation between AVs and HVs, even though the behaviour of the AV
still affects the following vehicles. This indicates that there are no platoon-based
dynamics in their approach. Our model will fill in this gap by showing that
the cooperation between AVs and HVs can further smooth the trajectory of the
latter and consequently reduce the fuel consumption of the whole platoon. The
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proposed method optimises fuel consumption for platoons and drive the platoons
to pass the intersection at a green phase. It is flexible that allows multiple AVs and
HVs in the platoon. Both the impact of cooperation between AVs and cooperation
between AVs and HVs will be studied in detail. Most current work uses the rolling
horizon MPC method, and the optimised vehicle sometimes travels with a low
speed to achieve better fuel economy. In this paper, a distinctive receding horizon
MPC method is proposed to ensure that eco-driving strategies do not have an
adverse impact on traffic efficiency. On the contrary, the proposed model can
increase the speed passing the intersection and thus increase traffic efficiency. In
addition, driving comfort is considered by using jerk as the control variable.

Notation

The notation in Table 3.1 is used throughout this paper.

Table 3.1: Notations of major variables used in this paper

Symbol Description

t Time instant

xai (t), vai (t), aai (t) The position, speed, acceleration of an AV i at time t, where
the superscript a denotes AV

xhj (t), vhj (t), ahj (t) The position, speed, acceleration of an HV j at time t, where
the superscript h denotes HV

x̂tf , v̂tf , âtf The desired position, speed, acceleration at terminal time,
respectively where subscript tf denotes terminal time

u(t) The jerk of an AV which is the control variable at time t

J Total cost in the MPC objective function

F a
i (t), F h

j (t) Instantaneous fuel consumption rate for AV i, and HV j,
respectively, at time t

tfi Terminal time for the vehicle i and also the time to pass the
stop line

T gk , T
r
k The start time of green light, red light respectively, in cycle

k
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3.3 Problem formulation

This paper focuses on the design of an eco-driving strategy for a group of vehicles
with mixed AVs and HVs. The movement of HVs is modelled by a car-following
model, while the dynamics of AVs are optimised by an MPC method. For the sake
of simplicity, in this paper, Optimal Velocity Model (OVM) is applied to describe
the behaviour of HVs (Bando et al., 1995). Nevertheless, the proposed modelling
methodology holds for any other car-following model. Our method allows several
closely running vehicles to form a platoon and pass the intersection at the green
light without stopping. A basic schematic representation is shown in Fig. 3.1.

Automated 

vehicles

Conventional 

vehicles

Free driving 

area

Controlled area

Platoon

Automated 

vehicles

Human-driven

vehicles

Free driving 

area

Controlled area

Platoon

Figure 3.1: Schematic of the eco-driving problem at a signalised intersection

3.3.1 Assumptions

To facilitate our model development, some necessary assumptions are made as
follows.

1. In order to set up the cooperative behaviour between AVs and the following
HVs, AVs have to know the positions and speeds of some following vehicles
and the direct preceding vehicle in real-time. This information is assumed to
be available through either CVs or a roadside unit (RSU) (Jia and Ngoduy,
2016a). This assumption will be relaxed in Section 3.4.3 where the AVs
obtain this information about the direct following vehicle via its detectors.

2. All AVs can receive SPaT information about the downstream intersection
via V2I.
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3. No communication delay or detection error is considered in the paper. For
cooperative driving behaviour in a platoon with realistic communication,
we refer to Jia and Ngoduy (2016b). This assumption will be relaxed in our
future work.

4. AVs in different platoons can share the information about the vehicles’
arrival time via either V2V or RSU. Hence, they can predict better arrival
time.

5. This work only focuses on the longitudinal movement on the urban road.

It is worth noticing that AVs interact with the downstream intersection and
decide their dynamics to get the whole platoon through the intersection at the
green time.

3.3.2 Optimal velocity model

The OVM is formulated based on the presumption that a vehicle is driven to
reach an optimal velocity, which depends on the headway with respect to the
preceding vehicle in a continuous time step. The acceleration of vehicles in the
OVM is calculated by

ahj (t) = κ
[
Vop(∆xj(t))− vhj (t)

]
(3.1)

where ∆xj(t) = xj−1(t) − xhj (t) is the distance headway between vehicles j and
its preceding vehicle j − 1. Vop(∆xj(t)) defines the optimal velocity, which is a
function of the distance headway. κ is the sensitivity, which is the inverse of delay
time that is required to reach the optimal velocity. In this paper, the following
velocity function proposed by Helbing and Tilch (1998) is chosen:

Vop (∆xj) = V1 + V2 tanh [C1(∆xj − lc)− C2] (3.2)

where V1, V2, C1, C2 are the parameters and lc denotes the vehicle length. The
parameters calibrated by the empirical follow-the-leader data for city traffic in
Helbing and Tilch (1998) are used in this paper: κ = 0.85 s−1, V1 = 6.75 m/s, V2 =

90



3.3 Problem formulation

7.91 m/s, C1 = 0.13 m−1, C2 = 1.57 and lc = 5 m. Because the OVMmay generate
unrealistic high acceleration (Helbing and Tilch, 1998), the acceleration limits
shown in Table 3.2 are applied.

3.3.3 Model predictive control

Each AV is able to receive real-time information from the preceding vehicle and
following vehicles via V2V, such as position and velocity. In the MPC method,
a common assumption is that the preceding vehicle is travelling at a constant
velocity. So the time for the AV to arrive at the intersection at a green light can
also be estimated. Then a receding horizon MPC method is used. For the safety
and comfort purposes, a further assumption is made that the AV travels across
the intersection with a constant velocity, which implies that the acceleration of
the AV at the stop line should be 0. Accordingly, in our model, the control
variable is the derivative of the acceleration of the AV, which is also called “jerk”
and denoted as u(t).

3.3.3.1 State variables

In order to minimise fuel consumption for all vehicles in the platoon, the state
variables of those vehicles are included in the system state. For a general platoon
including m AVs and n HVs, its state is designed as

X(t) = [xai (t), vai (t), aai (t), · · · , xam(t), vam(t), aam(t)︸ ︷︷ ︸
AVs

, xhj (t), vhj (t), · · · , xhn(t), vhn(t)︸ ︷︷ ︸
HVs

]T

i = 1, · · · ,m; j = 1, · · · , n (3.3)

The corresponding system dynamic function is

Ẋ(t) = [vai (t), aai (t), uai (t), · · · , vam(t), aam(t), uam(t)︸ ︷︷ ︸
AVs

, vhj (t), ahj (t), · · · , vhn(t), ahn(t)︸ ︷︷ ︸
HVs

]T

(3.4)
where the acceleration of the HV ahj (t) is calculated by Eq. (3.1).
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3.3.3.2 Objective function

The cost function for the platoon only has the running cost term, and the terminal
cost is implemented as terminal boundary conditions. The running cost, which
is the driving cost at every time step, is defines as the total fuel consumption for
all vehicles in the platoon.

min
u
J =

m∑
i

∫ tfi

t0i

F a
i (t) +

n∑
j

∫ tfm

t0m

F h
j (t) dt (3.5)

An instantaneous fuel consumption model developed by Akcelik (1989) is
adopted in this work. It uses the instantaneous acceleration and velocity to
estimate the fuel consumption rate:

F = α + β1PT + (β2ma
2v)a>0 (3.6)

where PT is the total power (kW) required to drive the vehicle, which is the sum
of coast-down drag power, inertia power and extra engine power. PT is non-
negative. The third term means extra engine drag power during accelerations,
which only exists when the acceleration is larger than zero.

PT = max{d1v + d2v
2 + d3v

3 +mav, 0} (3.7)

The value of parameters α, β1, β2, d1, d2, d3, m in Eq. (3.6) and Eq. (3.7) are
taken from Akcelik (1989), which are α = 0.666 mL/s, β1 = 0.072 mL/kJ, β2 =
0.0344 mL/(kJ ·m/s2), d1 = 0.269 kN, d2 = 0.0171 kN/(m/s), d3 =
0.000 672 kN/(m/s)2, m = 1680 kg.

The terminal time tfi is set to the earliest time that allows the AV i to pass
the intersection at a green phase. It is calculated by

tfi = max(tf
′

i , t
g
i ) (3.8)

where tf
′

i denotes the earliest possible arrival time, and is calculated by

tf
′

i = max(tmini , tfi−1 + h) (3.9)
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where tmini denotes the minimum travel time by using the highest jerk, tfi−1 denotes
the travel time of the preceding vehicle i − 1. If the vehicle i − 1 is an AV, its
estimated travel time information can be available via V2V. If it is an HV that
belongs to the preceding platoon, the AV (or AVs) in the preceding platoon must
have the travel time information and transfer it to vehicle i. Otherwise, it can be
estimated by using loop detectors (Guler et al., 2014; Treiber and Kesting, 2014;
He et al., 2015) or CVs (Yang et al., 2017; Zheng and Liu, 2017). tgi denotes the
start of the green light which is closest to tf

′

i . It is calculated by

tgi =


T gk tf

′

i ∈ [T gk , T rk )

T gk+1 tf
′

i ∈
[
T rk , T

g
k+1

] (3.10)

where T gk (T rk ) denotes the start time of green (red) light in the signal cycle k.
Please note that when there are multiple AVs in a platoon, they have different

t0i and tfi , and the proposed optimal control problem is a multi-stage optimal
control problem which can be solved by GPOPS. Only an isolated intersection
is considered in this paper, but the proposed model can be extended to multi-
intersections without much trouble by taking each intersection as a stage (He
et al., 2015).

3.3.3.3 Constraints

One of the control goals is to drive AVs from the current position to the stop line
with the desired velocity and acceleration. Therefore, the boundary conditions
are:

Initial boundary conditions: Xi(t0i ) = [xai (t0i ), vai (t0i ), aai (t0i )] (3.11a)

Terminal boundary conditions:Xi(tfi ) = [x̂tf , v̂tf , âtf ] (3.11b)

In the paper, the desired terminal position x̂tf is the downstream stop line, and
the desired terminal speed v̂tf is the maximum allowed velocity which is 14.66 m/s.
Note that the maximum speed of the AVs is the same as that of HVs using the
described parameters. We will show that maximising the speed entering the
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intersection can increase the capacity of the intersection. The desired terminal
acceleration âtf is 0 m/s2 and allows the vehicle to pass the intersection with a
constant speed which is the maximum speed resulting from the terminal speed.
This mainly concerns the safety when crossing the intersection. If without this
term, the acceleration of vehicle would drop to zero suddenly due to the speed
limit after the terminal time (Ntousakis et al., 2016).

Speed constraints: vmin ≤ vai (t) ≤ vmax (3.12a)

Acceleration constraints: amin ≤ aai (t) ≤ amax (3.12b)

Jerk constraints: umin ≤ uai (t) ≤ umax (3.12c)

Safety constraints: aai (t) ≤ aOVMi (t) (3.12d)

where vmin, vmax, amin, amax, umin, umax denote the lower and upper bounds of
the velocity, acceleration and jerk, respectively. The same speed and acceleration
limits in Table 3.2 are used for both MPC and OVM. aOVMi (t) is calculated
by Eq. (3.1) using the speed and the gap of AV. This implies that the car-
following model (i.e. OVM) is used as the upper bound of the acceleration for
an AV. It prevents the MPC algorithm from acting too aggressively to achieve
the final goal. So basically, the upper bound of the acceleration reads: aai (t) ≤
min(amax, aOVMi (t)). It also provides the possibility of handing over to human
driving more smoothly if required. The safety constraints are implemented as a
penalty term in the cost function.

min
u
J =

m∑
i

∫ tfi

t0i

[
F a
i (t) + p

(
max(aai (t)− aOVMi (t), 0)

)2
]

+
n∑
j

∫ tfm

t0m

F h
j (t) dt

(3.13)

3.3.4 Interactions between AVs and HVs

In order to develop an eco-driving strategy for the benefits of both AVs and HVs
in the platoon, several types of cooperation are considered in the model. The
overall interactions are shown in Fig. 3.2. Note that in the platoon, HVs are
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modelled by the OVM and AVs are controlled by the MPC method.

Automated	vehiclesConventional	vehicles Preceding	vehicles

Transfer	the		current	
states	of	vehicles

Get	the	optimized	trajectories

OVM

Efficiency

Vehicles	within	the	platoon

within	a	platoon?

Predict	the	arrival	time
and	trajectory

NoTransfer
the

trajectory

Safety

MPC

Fuel	consumption

Yes

Get	the	trajectories

Cooperation Cooperation

Figure 3.2: Interactions between AVs and HVs

In Fig. 3.2, there are basically two types of cooperative behaviour for AVs:
(1) interacting with preceding vehicles between platoons; (2) interacting with the
AVs or HVs within the platoon. If the preceding vehicle belongs to the preceding
platoon, then the leading (automated) vehicle of the preceding platoon knows the
passing time of its members and can transfer the information to the AVs in the
considered platoon. Otherwise, the AVs have to predict the arrival time of the
preceding vehicles based on the data acquired by their built-in detectors or other
sources of communication such as RSU or CV technologies. For the vehicles in
a platoon, the cooperation is designed for safety and fuel efficiency. The AVs in
the platoon consider the dynamics of all vehicles in the platoon and attempt to
find a solution that minimises fuel consumption for all vehicles in the platoon.

3.3.5 The control framework for platoons

The proposed method is applied to a platoon instead of a single vehicle, so how
to define the platoon and how to manage the platoon dynamically are the key
challenges in this paper. The platoon is usually defined as a group of vehicles that
are adjacent to each other and have similar traffic state (see Ngoduy, 2013; Jia
and Ngoduy, 2016a,b and references therein). On an urban road, some vehicles
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can pass through the intersection at a green light and travel with the speed that
depends on the traffic conditions. Other vehicles have to stop at the stop line
when the traffic signal turns red. So it is natural to define the platoon as the
group of vehicles that can pass at the same green phase.

There are two criteria for a platoon:

1. All the vehicles in a platoon must pass the intersection at the same green
phase.

2. The leading vehicle in a platoon must be an AV, and all AVs can only be
located in front of the HVs in each platoon.

Criterion 2 is essential for the proposed eco-driving method. This is because
only when the AV is in front of the HV, it can affect the following vehicles’
movements by controlling its jerk. The platoon in this paper is different from
the conventional one. It is heterogeneous that may include AVs and HVs. The
purpose of a platoon is to allow cooperation between AVs and HVs, which pass the
intersection at the same green phase, to reduce the total fuel consumption. The
platoon dynamics including splitting and merging are to determine which vehicle
should be considered in the cooperation loop. The setting of a platoon is not to
ensure all the vehicles in the platoon can pass the intersection at the same green
phase. In contrast, the vehicles can pass the intersection at the same green phase
is the necessary condition to form a platoon, rather than the result. Different
platoon settings in mixed traffic flow will be discussed in detail in Section 3.4.2.

The control framework for platoon dynamics is shown in Fig. 3.3 and the main
processes are described as follows:

1. Split all the vehicles on the road into several groups according to the maxi-
mum allowed number of vehicles in a platoon, and the leading AV (or AVs)
in a platoon becomes the host vehicle.

2. Run the MPC algorithm for every platoon, the optimised control variables
are only applied to the host vehicles in the next time step, while the be-
haviour of HVs is governed by the OVM.
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Figure 3.3: The overall control framework

3. Apply the platoon splitting and merging rules every T1 time steps which
are z times of the control update time step T (i.e. T1 = zT ).

The platoon splitting and merging rules mainly consider the planned vehicle
arrival time, signal timing information, and the defined minimum and maximum
number of vehicles in a platoon. The rules are described in the following.

1. Splitting rule (see Fig. 3.4a): After the MPC is executed, some vehicles in
the platoon may not pass the intersection at the same green phase. Then,
the platoon splitting rule applies. If the first vehicle that cannot pass at
the same green light is an AV, then it is split from the original platoon and
becomes the leading vehicle for the new platoon. Otherwise, all those that
cannot pass at the same green light are discarded by the current platoon.

2. Merging rule (see Fig. 3.4b): Merging rule is more complicated than the
splitting rule as it may operate in two directions: merge with the preceding
vehicles or the following vehicles. Please note that merging with the preced-
ing vehicles has higher priority than merging with the following vehicles as
the operations of the preceding vehicles can affect all the following vehicles,
and merging with the preceding vehicles may get better performance. In
both cases, it needs to check whether the two key criteria are still satisfied
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after merging. The exceptional case in Fig. 3.4b is an AV follows an HV.
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Figure 3.4: Platoon splitting and merging framework

The splitting rule is always applied before the merging rule. The discarded
vehicles by the splitting rule will try to find a chance to form another platoon by
the merging rule where every AV can be seen as a separate platoon with size 1.
This does not mean that every HV must belong to a platoon. If an HV does not
belong to any platoon, it may have to stop in front of the stop line.

3.3.6 Gauss pseudospectral method

A Matlab software package GPOPS (Rao et al., 2010) is used to solve the pro-
posed optimal control problem. It mainly uses a numerical method, namely Gauss
pseudospectral method, and is widely used in trajectory planning problems for
vehicles (He et al., 2015; Wu et al., 2015) and trains (Ye and Liu, 2016). The
method belongs to a direct approach (Stryk and Bulirsch, 1992) whose main
idea is transforming the optimal control problem into a nonlinear programming
(NLP) problem, which can then be solved by a variety of well-known solvers
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such as SNOPT (Gill et al., 2005) used in GPOPS. The performance of GPOPS
strongly depends on the parameter settings (Ye and Liu, 2016). Usually, the user
needs to try several combinations of parameter settings to find the best suitable
ones. The key parameters used in GPOPS and the model are listed in Table 3.2†.

3.4 Numerical studies

3.4.1 Properties of boundary conditions

In this study, three scenarios are presented to illustrate the benefits of the pro-
posed terminal boundary conditions. The simulation scenario considered in this
paper is a single lane road with a traffic signal light at 250 m ahead. There are
10 vehicles driving on the road and attempting to cross the intersection. At the
beginning of the simulation, all vehicles have the same velocity of 10 m/s and ac-
celeration of 0 m/s2. The other parameters used in the MPC method are shown
in Table 3.2.

• Scenario T1: No speed advice is given to the drivers, and all vehicles’
acceleration is only calculated by the OVM. This case is named as OVM
for simplicity.

• Scenario T2: The first vehicle is an AV, and only the terminal position
constraints in 3.11b is considered while the running cost remains the same
as Eq. (3.5).

• Scenario T3: The first vehicle is an AV, and the boundary conditions and
running cost are the same as Eq. (3.11b) and Eq. (3.5) respectively.

When all vehicles have crossed the stop line, the total fuel consumption is
shown in Fig. 3.5a. As expected, the fuel consumption of vehicles in the MPC is
much less than that in the OVM. More specifically, scenario T2 reduces by 9.7%
and scenario T3 reduces by 5.2% compared with scenario T1. Due to stopping in
front of the intersection at a red light, it also takes much more time to discharge
the ten vehicles in the scenario T1.
†The process of choosing the parameters for GPOPS is shown in Appendix 3.A.
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Table 3.2: The parameters in the proposed eco-driving method

Parameter settings in the GPOPS

Parameter Description Value

setup.autoscale Whether the optimal control problem
is scaled automatically

“on”

setup.derivatives Method to compute the derivatives of
the objective function (gradient) and
the constraints for NLP solver

“complex”

setup.tolerances Optimality and feasibility tolerances
for the NLP solver

[1e−3, 2e−3]

limits.meshPoints Locations of mesh points in the
initial run

[−1, 1]

limits.nodesPerInterval Number of allowable collocation
points in a mesh interval

2 ∗ (tf − t0)

setup.mesh.tolerance Mesh refinement tolerance 1e−4

setup.mesh.iteration Mesh refinement iterations to
perform

8

Parameter settings in the model

Parameter Description Value Unit

TM Sample time in the MPC method 0.5 s

TO Sample time in the OVM 0.1 s

h Safety time headway for an AV 2 s

p Penalty weight for the safety constraint 0.1 mL · s3/m2

vmax Maximum speed 14.66 m/s

vmin Minimum speed 0 m/s

amax Maximum acceleration 3 m/s2

amin Minimum acceleration −6 m/s2

umax Maximum jerk (limit for the control variable) 4 m/s3

umin Minimum jerk (limit for the control variable) −4 m/s3
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In the two scenarios using the MPC, the model having the terminal speed and
acceleration boundary conditions consumes 1.7 % more fuel, as the vehicles need
to accelerate more. Moreover, it needs less green time to discharge the vehicles.
The detailed data can be seen in Table 3.3 ‡. It takes 20.2 s and 18 s in the
green phase to pass in scenario T2 and scenario T3, respectively. This means
that scenario T3 can let one more vehicle pass in the same signal settings. Thus,
scenario T3 increases the capacity by 11.1 % compared with scenario T2 and by
44.4 % compared with scenario T1.
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Figure 3.5: Accumulative fuel consumption (a) when all the vehicles arrive at the
stop line; (b) when all the vehicles arrive at the extended distance.

Fig. 3.6 shows the detailed position and speed trajectory for every vehicle in
the three scenarios. It can be seen that vehicles in both scenarios T2 and T3 can
‡An analysis of the boundary conditions and penalty function can be found in Appendix 3.B.
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Table 3.3: Simulation results with different boundary conditions

Scenario Terminal
position

Total fuel
consumption (mL)

Used green
time (s)

Total travel
time (s)

scenario T1
stop line 767.1 25.8 527.7

extended 1136.4 716.05

scenario T2
stop line 693.0 (−9.7 %) 20.2 (−21.7 %) 507.0 (−3.9 %)

extended 996.8 (−12.3 %) 688.9 (−3.8 %)

scenario T3
stop line 726.9 (−5.2 %) 18.0 (−30.2 %) 491.2 (-6.9%)

extended 973.2 (−14.4 %) 670.1 (−6.4 %)

pass the intersection without stopping due to the guidance of the first vehicle.
They also have a much higher final speed than vehicles in scenario T1, in which
vehicles have to accelerate from a complete stop. The speed of the first vehicle
in scenario T2 is always decreasing while that in scenario T3 decreases first and
then increases to the maximum speed, which is the desired final speed. This also
explains why scenario T3 uses more fuel than scenario T2. It is consistent with
Fig. 3.5a. The total fuel consumption of scenario T2 and T3 are almost identical
in the first 35 s. Because of the high terminal speed cost in the scenario T3, the
vehicles consume much more fuel to accelerate.

The terminal speed of vehicles in scenario T3 is much higher than that in
scenario T1 and T2 which is the main reason why it consumes more fuel than
scenario T2. This also indicates that the vehicles in scenario T3 will consume less
fuel in future. To better understand the impact of different terminal boundary
conditions, the vehicles continue to run for another 250 m after the stop line
and achieve similar terminal speed. The vehicles in scenario T1 accelerate to
maximum speed quickly, but only the first vehicle in scenario T2 and T3 can
achieve the maximum speed, the following vehicles have slightly slower speeds.
The scenario T3 consumes the least fuel and has the least total travel time as
shown in Fig. 3.5b, which mainly benefit from the high terminal speed at the stop
line. Thus, the proposed terminal cost function is a good choice for eco-driving

102



3.4 Numerical studies

0 20 40 60 80

Time (s)

-200

0

200

400

600
P

o
si

ti
o

n
 (

m
)

0 20 40 60 80

Time (s)

0

5

10

15

S
p

ee
d

 (
m

/s
)

(a) Vehicle trajectories and speed profiles in scenario T1
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(b) Vehicle trajectories and speed profiles in scenario T2
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(c) Vehicle trajectories and speed profiles in scenario T3

Figure 3.6: State trajectories of all vehicles with different boundary conditions
under three scenarios

in terms of the local benefit and future benefit.

3.4.2 Properties of the running cost

A major feature in the proposed model is that the leading AVs consider the
benefits of both themselves and the following vehicles, but the impact of this co-
operative behaviour is still not clear. Three typical cases in mixed traffic flow are
presented in the following simulation studies. Only 4 vehicles will be considered
in the simulations, and the platoon settings in each case are shown in Fig. 3.7.
To facilitate the following discussion, two major time points are defined. Let t1
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3. Platoon based cooperative eco-driving model

denotes the time when the first vehicle arrives at the stop line, and t2 denotes
the time when the 4th vehicle arrives at the stop line. In this section, t1 is the
start time of green light and also the time when the first AV passes the stop line,
which is 40 s. Two measurements are considered here: (i) The accumulated fuel
consumption during 0 s and t1; (ii) The accumulated fuel consumption during
0 s and t2 on the studied link. Let M1 and M2 denote these two measurements,
respectively.

Scenario R1

Scenario R2

Scenario R3

Scenario R4

Scenario R5

Scenario R6

Scenario R7

Scenario R8

Scenario R9

Scenario R10

Scenario R11

Scenario R12

Case 1 Case 2

Case 3

Vehicle using MPC

Vehicle using OVM

Platoon setting

Figure 3.7: Platoon settings for running cost simulations

3.4.2.1 Case 1: an AV is followed by HVs

When an AV is followed by several HVs, the research question is whether the
AV should consider the movements of the following vehicles, and what benefits
this cooperation can bring. To this end, four scenarios are presented in this case,
where the first vehicle is an AV, and the following three vehicles are HVs.

• Scenario R1: The running cost of the host vehicle is its fuel consumption.

• Scenario R2: The running cost of the host vehicle is the total fuel consump-
tion of itself and first following vehicle.

• Scenario R3: The running cost of the host vehicle is the total fuel consump-
tion of itself and the first two following vehicles.
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3.4 Numerical studies

• Scenario R4: The running cost of the host vehicle is the total fuel consump-
tion of itself and all the three following vehicles.

Table 3.4: Fuel consumption (mL) of different scenarios in case 1

Scenario 1st vehicle 2nd vehicle 3rd vehicle 4th vehicle Total

scenario R1 48.9 / 48.9 53.1 / 57.4 54.8 / 62.6 55.9 / 66.9 212.6 / 235.7

scenario R2 49.8 / 49.8 49.9 / 55.3 51.4 / 60.3 52.7 / 64.3 203.8 / 229.7

scenario R3 51.9 / 51.9 48.9 / 55.9 48.3 / 59.8 49.6 / 63.6 198.7 / 231.1

scenario R4 55.2 / 55.2 48.8 / 56.9 46.1 / 60.2 46.5 / 63.6 196.6 / 235.9

Fuel consumption for each scenario is shown in Table 3.4, and the state tra-
jectories are shown in Fig. 3.8. In Table 3.4, the data are organised in the form
of “M1/M2” in each cell. The bold items mean they come from AVs, and the
same style will be applied in the ensuing paper. Please note that in this case, the
optimisation is only performed during 0 s and 40 s, and in the remaining period
vehicles are driven by the OVM. When more HVs are included in the platoon,
the total fuel consumption decreases with M1 results. The reduction in scenario
R4, where there are three following vehicles in the platoon, is as high as 7.5 %
compared with that in scenario R1. At the same time, the first vehicle consumes
more fuel than in the scenarios where there are fewer vehicles in the platoon. This
is due to the fact that the AV has to modify its trajectory to change the following
vehicles’ behaviour. This can also be seen in Fig. 3.8. As the leading vehicle
sacrifices some of its energy in order to “control” the following vehicles, some
kinds of rewards may need to be introduced to incentivise the energy-efficient
behaviour, for example, providing them vouchers for cinema, social events and
restaurant visits (Schall and Mohnen, 2017).

In the movement after 40 s, when the AV cooperates with the following ve-
hicles, the following vehicles consume more fuel after 40 s until all of them have
passed the stop line, than the scenario without cooperation. This is mainly be-
cause of the higher acceleration calculated by the OVM after 40 s. With more
vehicles joining the platoon, the saving of fuel during 0 s and 40 s is not sufficient to
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(a) Vehicle trajectories and speed profiles in scenario R1
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(b) Vehicle trajectories and speed profiles in scenario R2
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(c) Vehicle trajectories and speed profiles in scenario R3
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(d) Vehicle trajectories and speed profiles in scenario R4

Figure 3.8: State trajectories of all vehicles under four scenarios in case 1
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offset the increase of fuel consumption after 40 s. Actually, in a multi-intersection
environment, the movement after 40 s will be optimised in the next intersection.
This can be seen by simply assuming that the stop line of the upstream inter-
section is located at 0 m and the green light starts at 0 s. The presented results
apply only to one case with the specified simulation setting. More general sim-
ulations with various travel times are needed. Furthermore, when more vehicles
are considered in the platoon, the speed oscillations of the following vehicles are
suppressed significantly. This will contribute to better driving comfort for the
following vehicles. Even though some following vehicles are not considered in the
platoon, their behaviour is also influenced by the preceding vehicle, and their fuel
consumption is reduced significantly. For example, the fuel consumption of the
4th vehicle in scenario R3 is 11.3% less than that in scenario R1 with M1. This
was also found by Treiber and Kesting (2014) and Wan et al. (2016).

3.4.2.2 Case 2: an AV is followed by mixed AVs and HVs

When an AV is followed by mixed AVs and HVs, the research question is whether
the subsequent AVs need to activate the eco-driving function or just follow the
preceding vehicle. In the simulations, the first vehicle is an AV in all scenarios.
One of the three following vehicles is another AV in scenario R6, R7, and R8. All
other vehicles are HVs, and their movements are according to the OVM. The last
three vehicles in scenario R5 can either be automated or not, as their eco-driving
functions are not activated and hence they behave the same as HVs.

• Scenario R5: There is only one platoon. The running cost is the total fuel
consumption of four vehicles.

• Scenario R6: There are two platoons: the first vehicle and the last three
vehicles. The running cost for the first platoon is the fuel consumption of
the first vehicle, while the running cost for the second platoon is the total
fuel consumption of the last three vehicles.

• Scenario R7: There are two platoons: the first two vehicles and the last two
vehicles. The running cost for the first platoon is the total fuel consumption
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3. Platoon based cooperative eco-driving model

of the first two vehicles. The running cost for the second platoon is the toal
fuel consumption of the last two vehicles.

• Scenario R8: There are two platoons: the first three vehicles and the last
vehicle. The running cost for the first platoon is the total fuel consumption
of the first three vehicles. The running cost for the second platoon is the
fuel consumption of the last vehicle.

Table 3.5: Fuel consumption (mL) of different scenarios in case 2

Scenario 1st vehicle 2nd vehicle 3rd vehicle 4th vehicle Total

scenario R5 55.2 / 55.2 48.8 / 56.9 46.1 / 60.2 46.5 / 63.6 196.6 / 235.9

scenario R6 48.9 / 48.9 42.2 / 50.5 47.9 / 57.6 50.3 / 62.2 189.3 / 219.1

scenario R7 49.8 / 49.8 49.9 / 55.3 37.1 / 51.9 44.9 / 58.7 181.7 / 215.7

scenario R8 51.9 / 51.9 48.9 / 55.9 48.3 / 59.8 36.0 / 52.5 185.1 / 220.0

Fuel consumption for every scenario in the simulations is shown in Table 3.5,
and the state trajectories are shown in Fig. 3.9. Comparing scenarios R6, R7, R8
to scenario R5, the activation of the eco-driving function in the following vehicles
helps to reduce the total fuel consumption with both M1 and M2. This is mainly
due to the reduction of their own fuel consumption, which ranges from 13.5% to
22.6% with M1 and from 11.2% to 17.5% with M2. It also helps reduce the fuel
consumption of the first AV due to fewer vehicles in its platoon as discussed pre-
viously. Eventually, with another AV, the reduction of fuel consumption ranges
from 3.7% to 7.6% with M1 and from 6.7% to 8.6% with M2. This is different
from the result of Stebbins et al. (2017) where giving speed advice to the fol-
lowing vehicles rarely makes a difference. This difference is mainly because in
their approach only the leading vehicle can achieve the target position and speed.
However, in the proposed method, the following AVs can also achieve the desired
state, which reduces the fuel consumption and travel time of the whole traffic.
In Fig. 3.9, the trajectories of the following AVs by the MPC show an obvious
fallback behaviour and keep a larger gap than that in the OVM. In the OVM, the
vehicle attempts to accelerate as soon as possible to achieve the optimal speed.
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(a) Vehicle trajectories and speed profiles in scenario R5
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(b) Vehicle trajectories and speed profiles in scenario R6
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(c) Vehicle trajectories and speed profiles in scenario R7
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(d) Vehicle trajectories and speed profiles in scenario R8

Figure 3.9: State trajectories of all vehicles under four scenarios in case 2
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In contrast, in the MPC method, the vehicle acts more rationally by considering
the information of signal timing and state of the preceding vehicles and following
vehicles. So, it reduces fuel consumption even further to provide speed advice to
the following AVs in the mixed AVs and HVs environment.

3.4.2.3 Case 3: an AV is followed by other AVs

When an AV is followed by other AVs, the research question is whether the
leading AV needs to consider the movements of the following AVs. If it does,
what benefits arise from this cooperation? In the simulations, all the vehicles are
AVs and arrive at the stop line with the maximum speed and zero acceleration
with a fixed time headway 2 s.

• Scenario R9: Each AV optimises its trajectory separately and minimises its
own fuel consumption.

• Scenario R10: The four AVs are split into two platoons. The running cost
for the first platoon is the total fuel consumption of the first two vehicles,
and the running cost for the second platoon is the total fuel consumption
of the last two vehicles.

• Scenario R11: The four AVs are split into two platoons. The running cost
for the first platoon is the total fuel consumption of the first three vehicles,
and the running cost for the second platoon is the fuel consumption of the
last vehicle.

• Scenario R12: The four AVs form one platoon. They minimise the total of
their fuel consumption.

The fuel consumption of every scenario in the simulation is shown in Table 3.6
and the state trajectories are shown in Fig. 3.10. In the four scenarios, the results
change very slightly and fall within 2 % for every vehicle and 1 % for the total in
most cases §. Nevertheless, the resulting trajectories may differ. This outcome
implies that cooperation among AVs does not make any obvious difference in
fuel consumption and travel time. This conclusion is only valid for the current
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(a) Vehicle trajectories and speed profiles in scenario R9
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(b) Vehicle trajectories and speed profiles in scenario R10
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(c) Vehicle trajectories and speed profiles in scenario R11
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(d) Vehicle trajectories and speed profiles in scenario R12

Figure 3.10: State trajectories of all vehicles under four scenarios in case 3
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Table 3.6: Fuel consumption (mL) of different scenarios in case 3

Scenario 1st vehicle 2nd vehicle 3rd vehicle 4th vehicle Total

scenario R9 48.9 / 48.9 43.3 / 50.0 39.4 / 51.3 36.7 / 52.6 168.2 / 202.7

scenario R10 48.9 / 48.9 43.7 / 50.0 39.2 / 51.2 36.5 / 52.5 168.2 / 202.6

scenario R11 48.9 / 48.9 43.5 / 50.0 39.5 / 51.2 36.2 / 52.5 168.1 / 202.6

scenario R12 48.9 / 48.9 43.4 / 50.0 39.4 / 51.2 36.6 / 52.5 168.2 / 202.6

simulation setting and more simulation scenarios with different travel time and
speed are needed, which will be shown in the following section.

The main reason for fuel consumption differences of AVs in the cooperative
platoon scenarios is the safety constraint. If there is no safety constraint in the
proposed model, the optimisation of multiple AVs is fully decoupled and reduced
to the optimisation of each AV separately. Thus, the fuel consumption of AVs in
any of the cooperative platoon is the same as that in the individual optimisation
of AV when safety constraint does not take effect. In the simulations of case 3,
as the initial headway is relatively large, the safety constraint does not make
many differences between the optimal trajectory of each AV in the individual
optimisation. That is the main reason why the results in Table 3.6 are so close
to each other. The cooperation among AVs is more likely to make a difference
in fuel consumption in dense traffic or small headway in another way and long
travel time because of the red light. This is because the behaviour of preceding
AVs is more likely to disturb or even block the following AVs taking the optimal
trajectory in those cases. Nevertheless, the improvement is much less than that
in the mixed traffic condition.

3.4.3 Simulations with different penetration rates of AVs

In this part, a simulation investigation is presented to show the performance
of the proposed method in different penetration rates of AVs. Please note that
the cooperation between vehicles in a platoon relies on the sharing of real-time
§Please note that there is no the same value in Table 3.6. Some look the same is just because
of the rounding error.
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information about vehicles. This can be achieved in the CV environment. If the
vehicles are not fully connected, it is assumed that the AV can still detect the
state of the first direct following vehicle via its built-in detectors. So the platoon
size is limited to 2 in that condition. Another scenario without cooperation is
also included for comparison.

• Scenario P1: All AVs optimise the fuel consumption of themselves only. It
can also be seen as setting the maximum platoon size to 1;

• Scenario P2: All AVs optimise the total fuel consumption of themselves
and the first directly following vehicle. This can also be seen as setting the
maximum platoon size to 2;

• Scenario P5: All AVs optimise the total fuel consumption of themselves
and all the following HVs within the limit of maximum platoon size. The
maximum platoon size is set to 5.

When determining the maximum platoon size, we should trade off the cal-
culation burden and communication reliability in practice. Large platoon size
also implies that the AVs need to sacrifice more and have a higher probability of
stopping in order to “control” the vehicles far away. The stopping behaviour will
also be discussed later.

In all simulations, the cycle time is 60 s with green time 30 s and red time 30 s.
The simulation of every scenario in every penetration rate lasts for 600 s and is
repeated twice. Traffic demand is 850 veh/h. The type of vehicle is determined
by comparing the penetration rate p and a newly generated random number
between 0 and 1 when it enters the road. The time headway follows a truncated
exponential distribution to ensure that no time-headway is less than 2 s. The
initial speed follows a normal distribution N(10, 1) bounded by the speed limits
and ensures that no collision happens at the entrance of the road (Ubiergo and
Jin, 2016).

The average fuel consumption and average travel time produced by the simu-
lations are shown in Table 3.7 and Fig. 3.11. Overall, both fuel consumption and
travel time decrease as the penetration rate of AVs increases under all scenarios.
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In any penetration rate studied, the scenario with cooperation outperforms or at
least equals the scenario without cooperation. In general, as more vehicles join
cooperation, more benefits are gained in terms of fuel consumption and travel
time. The benefits of cooperation are most evident for lower penetration rates,
and a platoon size of 5 (P5) can reduce fuel consumption by 22% with only a 60%
penetration rate, which is better than the scenario of P1 with 100% penetration.
However, as more AVs are brought into the system, the additional benefit from
cooperation then decreases, as there is not much room for further improvement.
This is in line with the previous results from case 3 in Section 3.4.2.3, where the
benefit of cooperation in all four AVs was trivial.

Table 3.7: Simulation results and differences in various penetration rates of AVs

Penetration
rate Scenario

Average fuel consumption Average travel time

Mean (mL) Diff Mean (s) Diff

0.2
P1 55.3 – 37.4 –

P2 52.7 −4.7% 37.5 0.2%

P5 48.4 −12.6% 37.3 −0.3%

0.4
P1 50.0 −9.6% 34.1 −8.7%

P2 47.9 −13.5% 32.6 −12.8%

P5 46.6 −15.9% 31.7 −15.2%

0.6
P1 47.6 −13.9% 34.1 −8.8%

P2 45.6 −17.6% 33.0 −11.8%

P5 43.1 −22.1% 31.6 −15.5%

0.8
P1 46.1 −16.8% 33.1 −11.6%

P2 44.7 −19.2% 31.1 −16.8%

P5 43.2 −21.9% 31.2 −16.5%

1
P1 43.5 −21.3% 31.1 −16.8%

P2 43.6 −21.1% 31.2 −16.5%

P5 42.5 −23.2% 31.2 −16.5%

114



3.4 Numerical studies

The travel time benefits are less significant than fuel consumption benefits and
are not present with 20% and 100% penetration of AVs. The resulte of travel time
show a similar pattern to fuel consumption during 40% and 80% penetration rate
of AVs, and the effects of cooperation are similar. The reduction of travel time
is mainly caused by the reduction of start-up lost time and queue discharge time
as more vehicles pass at the green light and fewer vehicles stop at the red light
thanks to the cooperation. However, when the penetration rate is 20%, the AVs
are frequently interrupted by the preceding HVs. When the penetration becomes
100%, there is no more room to reduce travel time. Fig. 3.11 shows that with the
increasing penetration rate of AVs, the number of outliers in fuel consumption
is greatly reduced. Scenarios P2 and P5 also have much fewer outliers than
scenario P1. This demonstrates that cooperation can stabilise traffic flow, which
is also shown in Fig. 3.12. No outliers are detected in the travel time. When the
initial state is fixed, travel time can only imply the terminal state, but all the
intermediate states affect fuel consumption. That is why fuel consumption shows
more information about the vehicle movements.

The vehicle trajectories with 20%, 60% and 100% penetration rate of AVs
in three scenarios are shown in Fig. 3.12. We can see that only optimising AVs
themselves is not enough to achieve a system optimum. Sometimes, the selfish
behaviour of an AV may even worsen the traffic, which is more obvious in the
low penetration rate of AVs. When the leading AV attempts to slow down to
save fuel, some following HVs have to stop on the road, which causes a shock-
wave along the link. Even when the penetration rate of the AVs becomes 100%,
sometimes this selfish deceleration still occurs. In the cooperation scenarios (i.e.,
P2 and P5), the vehicle trajectories are largely smoothed. The negative impact
of eco-driving by the AVs on the following vehicles is also reduced. This is mainly
because the fuel consumption of the following vehicles is directly included in the
objective function of the AVs. The leading vehicles in each platoon also help the
following vehicles to reach a high speed crossing the stop line and avoid idling at
the red light.

We also notice that there is a low probability that the AV may stop in the
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Figure 3.11: Simulation results in different penetration rates of AVs. (a) fuel
consumption, (b) travel time

middle of the road segment even in the cooperative scenarios. There are two main
reasons, (1) the planned travel time is too long and (2) the following vehicles in
the same platoon are widely dispersed. However, please note that the stopping
behaviour of the AV in cooperation scenarios does not harm the system. It does
not increase travel time or fuel consumption for the platoon. The AV never stops
close to the stop line and does not block the following vehicles from passing the
stop line. If stopping behaviour is not acceptable, one may add a minimum speed
constraint on the AVs (Yang et al., 2017), but this may lead to infeasible result
when the planned travel time is larger than the maximum travel time by applying
the minimum speed limit. If that happens, the speed advisory system fall into
failure, and the AV has to stop around the stop line. It results in high fuel
consumption and travel time for all the following vehicles. Thus, no minimum
speed limit is added in the model, and the seldom stop behaviour is allowed.
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Figure 3.12: Some examples of trajectories in different penetration rates of AVs

3.5 Conclusions

Providing signal information to the vehicles on signalised urban roads is demon-
strated to be an effective way to reduce idle time and fuel consumption. However,
many eco-driving strategies have a negative impact on the efficiency of the inter-
section, and even cause a shock-wave in the middle of the road section. In this
paper, a distributed and cooperative eco-driving method has been proposed for
platoons to address these issues. The proposed eco-driving method has been de-
signed for mixed traffic flow on an urban road, which consists of HVs and various
penetration rates of AVs. AVs attempt to pass the intersection on the earliest pos-
sible green time with a maximum desired speed and zero acceleration. All these
settings are to maximise traffic efficiency. The jerk has been set as the control
variable in order to increase driving comfort. In the proposed control method,
the fuel consumption of AVs and some following HVs is minimised over the hori-
zon to achieve an eco-driving benefit to more vehicles. This cooperation largely
smooths out the trajectory and suppresses any shock-wave. Then a platoon for-
mation method has been proposed to apply the eco-driving strategy to achieve
better performance for the overall traffic. Three typical cases in mixed traffic
have been studied with different platoon settings. Moreover, different penetra-
tion rates of AVs have been studied in the simulation to show that the proposed
method can adapt to various mixed traffic conditions.

From the analysis above, we can draw the following conclusions:

1. AVs can reduce their own fuel consumption and travel times when approach-
ing a signalised intersection if the signal timing information is given.
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2. When the penetration level is from low to moderate, the cooperation be-
tween AVs and HVs is seen to be beneficial in both fuel consumption and
travel time.

3. However, this system level of cooperation requires a sacrifice from the lead-
ing AV which may be controversial to accept.

4. The level of sacrifice increases with the platoon size. As more vehicles are
added to the platoon of one AV, then the leading vehicle has to overcom-
pensate to affect the third and subsequent vehicle trajectories.

5. Even when the HVs are not included in the platoon, they still benefit from
the preceding AVs.

6. The cooperative behaviour may reduce the possible adverse impacts of AVs
on the following HVs, such as speed fluctuation or even shockwave.

7. It reduces fuel consumption even further to provide speed advice to the
following AVs in mixed AVs and HVs compared with only controlling the
leading vehicle at a green phase.

8. Larger platoon size helps to achieve a stronger reduction in fuel consumption
and stabilise traffic flow.

9. The benefits of cooperation mean that the system can reach the same levels
of benefit with 60% penetration rate as for 100% penetration without coop-
eration, which has implications for the transition towards a full penetration.

10. As the penetration rate reaches 100%, the performance improvement re-
sulting from cooperation is trivial and the sacrifice problem disappears.

These last two points taken together suggest that implementation the driving
cooperation should vary over the implementation phase and that some higher
levels of cooperation whilst desirable should be regulated or compensated with a
promise to remove this obligation as the penetration rates increase.

This paper assumed that the future signal timing information is available
to the AVs. This is possible for fixed-time traffic control and adaptive traffic
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control strategies that update signals every cycle (e.g. TUC in Diakaki et al.,
2002, 2003), but may not be true for other adaptive traffic control systems, like
SCOOT, where there is only very limited time for the AVs to response and may
reduce the performance of the proposed method. There are two solutions: (1) Use
the previous signal timing as the estimation when it is not available. When the
signal timing is available at some time steps ahead, the method may use the latest
instead. As the change of signal duration between two cycles is unlikely to be too
strong, e.g. it is limited to +/- 4 seconds in SCOOT, the performance impact
may be suppressed, but would not vanish. (2) Develop a new algorithm in the
SCOOT and SCATS to consider the AVs. In the current adaptive control schemes,
the information is still mainly obtained from detectors like loop detectors. The
information from AVs or CVs is not considered. So, it is an interesting topic to
develop new intersection control algorithms to take advantage of new information
from AVs and CVs. This is also our ongoing research work.

In the current work, the signal timing is assumed to be given. In the next
step, it will achieve better performance gain to optimise the signal timing and
trajectory simultaneously either for the local intersection or traffic network.
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Appendix 3.A The process of choosing the pa-

rameters for GPOPS

Three scenarios are considered in the process of choosing the parameters for
GPOPS.
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• Scenario G1: One AV attempts to arrive at the stop line at 40 s.

• Scenario G2: One AV attempts to arrive at the stop line at 40 s, and it is
followed by one HV. The trajectories are optimised between 0 s and 40 s.

• Scenario G3: Two AVs attempt to arrive at the stop line at 40 s and 42 s
respectively. The trajectories are optimised between 0 s and 42 s until both
arrive at the stop line.

The initial position and speed of the first vehicle are 0 m and 10 m/s, respec-
tively. If there is another vehicle, its initial position and speed are -30 m and 10
m/s, respectively.

3.A.1 setup.autoscale

The optimisation results of different “setup.autoscale” settings in three scenarios
are shown in Table 3.8. When “setup.autoscale” is set to “off”, the running time
increases dramatically while the optimal value keeps almost the same. Thus,
“setup.autoscale” is set to “on”.

Table 3.8: The impact of “setup.autoscale” in different scenarios

Scenario
Optimal Value Running time (s)

“on” “off” “on” “off”

scenario G1 48.9 48.9 7.0 67.1

scenario G2 99.7 99.6 29.2 769.0

scenario G3 99.0 99.0 31.0 858.8

3.A.2 setup.derivatives

The optimisation results of different “setup.derivatives” settings in in three sce-
narios are shown in Table 3.9. When “setup.derivatives” is set to “finite-difference”,
the running time increases a lot in scenario G2 and G3, and the optimal value in
scenario G2 is also much worse. Thus, “setup.derivatives” is set to “complex”.
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Table 3.9: The impact of “setup.derivatives” in different scenarios

Scenario
Optimal Value Running time (s)

“complex” “finite-difference” “complex” “finite-difference”

scenario G1 48.9 48.9 7.0 5.7

scenario G2 99.7 115.5 29.2 217.5

scenario G3 99.0 99.0 31.0 115.4

3.A.3 setup.tolerances

“setup.tolerances” is a two-element array specifying the NLP solver Optimality
and Feasibility Tolerances respectively. The following two settings are tested.

“setup.tolerances” setting 1: [1e−3, 2e−3]
“setup.tolerances” setting 2: [1e−4, 2e−4]

Table 3.10: The impact of “setup.tolerances” in different scenarios

Scenario
Optimal Value Running time (s)

“setting 1” “setting 2” “setting 1” “setting 2”

scenario G1 48.9 48.9 7.0 6.7

scenario G2 99.7 99.7 29.2 29.4

scenario G3 99.0 99.0 31.0 30.3

The optimisation results of different “setup.tolerances” settings in in three
scenarios are shown in Table 3.10. In all three scenarios, the results and running
time using either setting 1 or setting 2 are the same. That is because the feasibility
tolerance is always easy to satisfy. However, It is also observed that the optimality
tolerance is not satisfied, which means the results are suboptimal. Given the
nonlinear and nondifferentiable cost function, these results are good enough and
acceptable.

A possible way to deal with this is to apply a smooth function (Typaldos
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et al., 2018).

F =


1
αs

[
log

(
eαsα + eαs(α+β1PT +β2ma2v)

)]
if a > 0

1
αs

[
log

(
eαsα + eαs(α+β1PT )

)]
if a ≤ 0

(3.14)

where αs > 0 is a constant.

3.A.4 limits.meshPoints

The “limits.meshPoints” is usually set to [-1, 1] according to the manual of
GPOPS.

3.A.5 limits.nodesPerInterval

The optimisation results of different “setup.tolerances” settings in in three sce-
narios are shown in Table 3.11. Increasing the “nodesPerInterval” at the initial
iteration does not improve the optimisation result in scenario G2 and G3, and
needs much more running time in all the tested scenarios. Thus, “nodesPerInter-
val” is set to “2 ∗ (tf − t0)”.

Table 3.11: The impact of “limits.nodesPerInterval” in different scenarios

Scenario
Optimal Value Running time (s)

“2 ∗ (tf − t0)” “4 ∗ (tf − t0)” “2 ∗ (tf − t0)” “4 ∗ (tf − t0)”

scenario G1 48.9 48.9 7.0 48.60

scenario G2 99.7 100.0 29.2 333.57

scenario G3 99.0 99.5 31.0 322.26

3.A.6 mesh.tolerance

The optimisation results of different “mesh.tolerance” settings in in three scenar-
ios are shown in Table 3.12. Setting “mesh.tolerance” to either “1e−4” or “1e−5”
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gets almost the same optimisation results and very similar running time in the
tested scenarios. Both “1e−4” and “1e−5” are acceptable.

Table 3.12: The impact of “setup.mesh.tolerance” in different scenarios

Scenario
Optimal Value Running time (s)

“1e−4” “1e−5” “1e−4” “1e−5”

scenario G1 48.9 48.9 7.0 6.7

scenario G2 99.7 99.7 29.2 31.2

scenario G3 99.0 99.0 31.0 30.9

3.A.7 mesh.iteration

In all scenarios, the optimisation stopped without reaching the maximum number
of iterations which is 8. Increasing the maximum number of iterations does not
affect the results in these scenarios.

Appendix 3.B Analyse the boundary conditions

and the penalty function

In this chapter, the terminal conditions are implemented as boundary conditions
which should have minimal violations in the optimal solution. The safety con-
straint is implemented as a penalty term in the objective function. The safety
penalty term does not take effect when the following vehicles are HVs as the
safety constraints are always satisfied in this case. It only prevents the following
AVs from driving too close.

We use a simple testing scenario with two AVs which is the same as scenario
G3. The optimal value is 99.01 while the term of total fuel consumption is
98.87, and the penalty term is 0.14. All boundary conditions are satisfied with
zero violations. The reason for the positive penalty term is the fixed minimum
time headway and the terminal speed constraint. If the minimum time headway
increases a little, the safety penalty term could be zero.
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4.1 Introduction

Abstract

Most eco-driving methods require to know the future signal and phase informa-
tion to reduce fuel consumption or idle time. For intersections in the adaptive
traffic control systems, it becomes challenging or even not possible to satisfy this
requirement, because the signal timing is adaptively optimised based on real-time
dynamic demands from all approaches. The distribution of phase duration is es-
timated from the historical data first, and a multi-phase optimal control model is
proposed to optimise the trajectory aiming to reduce fuel consumption. When the
future signal information is not available, the driving behaviour has two regimes:
accelerates with maximum acceleration to pass the intersection when the signal
turns green at that time step or keeps waiting for the green light in the next time
step. When the future signal information is available in advance for a limited
time, the vehicle may take actions in advance. An additional driving strategy is
considered in the passing regime that it tries to arrive at the stop line just at the
moment when the signal turns green using optimised acceleration instead of the
maximum acceleration. The impacts of parameters in the model such as termi-
nal condition and time step, parameters in the signal duration distribution such
as the mean, variance and range and parameters in the advance time are tested
in the simulations. It reduces fuel consumption and travel time considerably to
obtain the future signal information with enough time in advance.

Keywords: Eco-driving, vehicle-to-infrastructure, trajectory planning, opti-
mal control

4.1 Introduction

Vehicle emissions are harmful to both the environment and human health, par-
ticularly in urban areas, which suffer from heavy traffic and severe congestion. A
potential solution to reducing fuel consumption and road emission is optimising
the vehicle trajectory, which is referred to as eco-driving, driving advisory sys-
tem or trajectory planning. Any eco-driving method relies on information about
the preceding traffic conditions. In the urban environment, the most widely ap-
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plied eco-driving method is the Green Light Optimal Speed Advisory (GLOSA)
system which receives the signal phase and timing information via Vehicle-to-
Infrastructure (V2I) communication and provides speed advice to the approach-
ing vehicles to help them pass the intersection at a green light. It is the first
application of cooperative intelligent transport system (C-ITS) based on V2I
communication (Trayford et al., 1984; Stahlmann et al., 2018).

4.1.1 Literature review

Various eco-driving methods have been proposed in the literature. Different meth-
ods may have different primary objectives, such as reducing fuel consumption (He
et al., 2015; Jiang et al., 2017; Yang et al., 2017; Zhao et al., 2018), emissions
(Van Katwijk and Gabriel, 2015), stopping time (Asadi and Vahidi, 2011; Ubiergo
and Jin, 2016), delays (Stebbins et al., 2017), and increasing the intersection ca-
pacity (Liu and Kamel, 2016); however, their benefits are not limited to the
primary objectives. Most of the existing eco-driving methods control the acceler-
ation directly, while some recent research proposed to use the jerk (Jiang et al.,
2017; Zhao et al., 2018) as the control variable, which helps increase the comfort
of drivers. Some methods pass the advisory speed limit to drivers dynamically
and are thus more suitable for the lower level of the automated vehicle control
(Ala et al., 2016; Ubiergo and Jin, 2016; Yang et al., 2017).

The control of individual vehicles has always been important for eco-driving.
Asadi and Vahidi (2011) controlled the vehicle to follow a target speed to avoid
stopping at the red signal. The constant target speed is calculated at every time
step so that the vehicle can reach the intersection at the green light. Instead of a
target speed, Altan et al. (2017) generated a smooth reference speed trajectory for
the vehicle. Treiber and Kesting (2014) developed three strategies in an Improved
Intelligent Driver Model (IIDM), by changing the model parameters. Van Katwijk
and Gabriel (2015) optimised the trajectory based on two trajectory patterns
using a constant acceleration. Ubiergo and Jin (2016) calculated the dynamic
advisory speed limit for the vehicle. Yao et al. (2018) proposed to use two different
speed limits on the road to smooth the trajectory and optimised the location of
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the speed limits. He et al. (2015) and Yang et al. (2017) considered a queue length
constraint in the trajectory optimisation model. Kamal et al. (2010) developed a
model predictive control (MPC) method to generate the fuel-efficient trajectory
and ensure the safety, and later Kamal et al. (2013) estimated the trajectory of
preceding vehicles approaching a traffic signal using experimental driving data
and included it in the MPC algorithm. Jiang et al. (2017) dynamically estimated
the terminal time for the AV reaching the stop line considering the preceding
vehicle and signal control in the mixed AV and HV environment. Jin et al. (2016)
considered the vehicle powertrain and the external road grade in the optimisation.

Besides the control of individual vehicles, some eco-driving methods are also
proposed for the operation of platoons in a connected traffic system. Liu and
Kamel (2016) applied a platoon split and merge rule to make full use of the avail-
able green time. Stebbins et al. (2017) controlled the first vehicle approaching
the stop line at the red time and offset the green time for the following vehi-
cles. Zhou et al. (2017a) divided the trajectory into two segments and applied a
constant acceleration rate in each segment. Wei et al. (2017) proposed a binary
integer programming model for controlling the trajectories of the platoon by dis-
cretising the space-time network and transformed it into a dynamic programming
problem for efficient online application. They also introduced platoon reaction
time to balance the capacity and risk. Both Wei et al. (2017) and Zhou et al.
(2017a) used Newell’s car following model as a safety bound to the vehicles in
a platoon. HomChaudhuri et al. (2017) extended the model proposed in Asadi
and Vahidi (2011) by helping the following vehicle to achieve the target speed as
well. The fuel consumption model is not directly used in the MPC algorithm,
but the optimal cruising speed of the best fuel-efficient pattern is considered in
the calculation of the target speed. While all the above-mentioned work of the
platoon control either requires all AVs or CVs in the platoon, Zhao et al. (2018)
developed a cooperative platoon control method for a mixed platoon with AVs
and HVs. They extensively studied the benefit of the cooperation between AVs
and HVs, including better fuel efficiency and smoother trajectories.

By now, the reviewed literature is for one individual intersection. There were
also some papers dedicated to the optimisation of fuel consumption over mul-
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tiple intersections. Wu et al. (2015) added the arrival time constraint at every
intersection, under the assumption that the green time at each intersection is
pre-determined. De Nunzio et al. (2016) used the shortest path algorithm to
select the optimal time of passing each intersection. Butakov and Ioannou (2016)
added the driver’s preferences about fuel consumption and travel time to deter-
mine which green cycle should be chosen. Tajalli and Hajbabaie (2018) developed
a dynamic speed harmonisation method for the traffic network. Zeng and Wang
(2018) used a dynamic programming model to get the globally optimal trajectory.
It is not suitable for real-time application due to the calculation time but can be
used to compare the performance of other sub-optimal algorithms.

As the signal timing places a hard constraint for the trajectory planning,
integrating trajectory planning and signal controls allow further improvement
on the overall performance of the system. Yu et al. (2018) developed a mixed
integer linear programming (MILP) model for the signal optimisation of a multi-
lane intersection. The vehicle arrival time and lane choice are first optimised by
the MILP model, and then passed to trajectory planning for each vehicle. Similar
work has been done in rail transport as well to jointly optimise the scheduling
and trajectories of trains travelling in the same direction (Ye and Liu, 2016) and
or in different directions (Wang and Goverde, 2017; Zhou et al., 2017b). Both
Ye and Liu (2016) and Wang and Goverde (2017) modelled the problem as a
multi-phase optimal control problem (MPOC). The MPOC can be solved highly
efficiently by converting it into a nonlinear programming problem (Ye and Liu,
2017).

4.1.2 Research gaps and contributions

All papers mentioned above are based on an explicit or implicit assumption that
the vehicle has access to accurate signal and phase information in the near future
while they are planning the trajectory. The accurate signal information has a
significant impact on the performance of eco-driving methods (Stevanovic et al.,
2013). This assumption may be valid for the fixed time traffic control system
equipped with V2I technology, where the intersection controller knows exactly the
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future signal information. However, this assumption may be difficult to satisfy
in the actuated and adaptive traffic control system as the signal timing keeps
being optimised and thus changing by the system according to the time-varying
traffic demand coming from different approaches; as a result, even the intersection
controller does not know the future signal timing and thus cannot broadcast it
to AVs. Ideally, it may be possible to know the future signal timing plan if
all future traffic demand information is available in the fully connected vehicle
environment, but this will not be the case in the near future. To this end, an
eco-driving model for the case when the future signal timing information is not

fully available is necessitated for the implementation of eco-driving systems in
broader applications.

To the best of our knowledge, only a handful of papers have considered the
stochastic signal information in the eco-driving model. Mahler and Vahidi (2014)
added a penalty term of the probability of the green signal in the objective func-
tion. The cost in the objective function is negatively related to the probability
of green light. This approach has several drawbacks: 1) the probability of the
signal state may be inaccurate. Thus, the vehicle may pass the intersection on
red which is not acceptable; 2) even if such probability is accurate, the vehi-
cle may still run on red as it is close to the stop line and cannot stop in time.
Therefore, this approach cannot guarantee safety. Sun et al. (2018) proposed
a chance-constrained model to deal with the uncertain signal information. The
chance constraint converts the stochastic optimisation problem into a static op-
timisation problem. However, this constraint implies that the vehicle can only
pass the intersection when the probability of green light is high enough, which is
close to the upper bound of the uncertain range. They did not consider the fact
that the traffic light can turn green earlier than the time predicted with a certain
chance.

To fill the research gap, this paper aims to develop a stochastic model pre-
dictive control method for eco-driving under uncertain signal timing information.
Instead of using only the probability of the signal state when the vehicle arrives at
the stop line as in the existing research, the proposed model attempts to optimise
the vehicle movement based on the probability of the signal state at each time
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step and minimise the expected fuel consumption. The model allows the vehicle
to either pass the intersection freely when the traffic light turns green or keep
waiting when the traffic light remains red in the planning time horizon. More
specifically, the probability of the traffic light turning green at each time step is
directly considered in the proposed model, which can work for any distribution
of the stochastic signal timing. The performances of the proposed model with re-
spect to the model parameters and distribution of the signal timing are analysed
in the simulations. The proposed model is also extended to the case when the
vehicle can know in advance when the signal will turn green. The impact of such
advanced signal timing information on trajectory planning is also investigated.

The remainder of the paper is organised as follows: Section 4.2 describes the
main framework of an eco-driving method under uncertain signal information.
Section 4.3 introduces a way to estimate the distribution of future signal timing.
Section 4.4 formulates trajectory planning as a multi-phase optimal control model.
Section 4.5 extends the proposed model to a more general case when the vehicle
can receive the signal information a short time in advance. Section 4.6 illustrates
the simulation results with various model parameters and distributions. Finally,
we conclude the paper in Section 4.7.

4.2 Main modelling framework

The main modelling framework of the proposed method is described as follows.

1. Collect the historical signal timing data;

2. Predict the future signal timing from the historical data;

3. Broadcast the predicted distribution from the traffic controller or the road-
side unit (RSU) to approaching vehicles;

4. Optimise the trajectory by considering the stochastic signal timing.

This framework is intuitive and straightforward. To avoid large data transmis-
sion, the first two steps are more suitable to be operated in the local intersection
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controller or traffic management centre, which can then transfer the predicted
signal information to the approaching vehicles. The proposed method is capable
of dealing with both the uncertain green light and red light. This paper focuses
on trajectory planning when the duration of red light is uncertain.

The method described in Section 4.4 is suitable for the case when the vehi-
cle can obtain only the current signal state and have no accurate future signal
information. Another interesting case when the vehicle can receive the future
signal information in advance for a limited time will be discussed later. Both
are suitable for a mixed traffic situation with AVs and HVs. For simplicity, this
paper only focuses on trajectory planning for one AV. It is assumed that the AV
can communicate with the intersection controller via V2I communication. Our
proposed methods can also be extended to platoon control easily by combining
them with the method developed in our previous work (Zhao et al., 2018).

Notation

The notations in Table 4.1 are used throughout this paper.

Table 4.1: Notations

Symbol Description

c Signal cycle index

i Vehicle index
k Time step index

τ Time step size

T rc Duration of red light in the cycle c

εc Duration of uncertain red signal in the cycle c

εic Duration of uncertain time for vehicle i passing the stop line
in the cycle c

α, β, ra, rb Parameters in the scaled Beta distribution

h Saturation time headway on the urban road

139



4. Eco-driving under uncertain signal information

Symbol Description

xk(vk, ak) Position (speed, acceleration) of the vehicle in the waiting
phase at time step k

tfk(v
f
k ) Time (speed) of the vehicle at the stop line in the passing

phase which starts at time step k

xek,A(vek,A) Terminal position (speed) of the vehicle after the advance
time in the passing route which starts using the eco-driving
strategy at time step k

xf Position of the stop line at the upcoming intersection

M Number of time steps in the certain range of signal

N Number of time steps in the uncertain range of signal

A Number of time steps in the advance time

θ Advance time to receive the future signal timing information

f Fuel consumption rate

F pass
k (Fwait

k ) Fuel consumption in the pass phase (waiting phase) at time
step k

Lpassk (Lwaitk ) Expected fuel consumption in the pass phase (waiting phase)
at time step k

Lk Expected fuel consumption at time step k

Joc Cost function using an optimal control model

Jop Expected fuel consumption (and also the objective function)
using an optimisation model

4.3 Estimation of the future signal timing

As the critical information in our trajectory planning model, the probability dis-
tribution of the future signal timing needs to be estimated and transferred to the
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upcoming vehicles. Different from the fixed signal timing plan, the signal timing
in an adaptive traffic control system depends on the real-time traffic demand.
As the traffic demand changes gradually and the signal control system needs to
operate in a relatively stable way, the signal timings between two cycles are likely
to be bounded in a limited range and share the changing trend.

T rc = T rc−1 + εc (4.1)

where εc denotes the difference of red time duration between cycle c and the
previous cycle, on the particular approach of interest. A scaled Beta distribution
sBeta(α, β, ra, rb) is used to capture the uncertainty of εc as follows.

sBeta(α, β, ra, rb) = (rb − ra)× Beta(α, β) + ra (4.2)

where Beta(α, β) denotes a standard Beta distribution with the parameter α and
β.

If x ∼ Beta(α, β), then x ∈ [0, 1]. So, when εc ∼ sBeta(α, β, ra, rb), we have
εc ∈ [ra, rb]. The mean of εc is

E(εc) = (rb − ra)
α

α + β
+ ra (4.3)

and the variance is

V ar(εc) = (rb − ra)2 αβ

(α + β)2(α + β + 1) . (4.4)

When the historical signal timing data is available, the parameters in the distri-
bution of future signal timing can be estimated by either a point estimation or a
Bayesian approach.

The stochasticity of the available green time also comes from the preceding
vehicles (Treiber and Kesting, 2017). The time for vehicle i to pass the stop line
is

ti = T rc−1 + i× h+ εic (4.5)

As i vehicles are unlikely taking more than i× h+ i seconds to pass the stop
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line, εic follows a Beta distribution εic ∼ (rb − ra) · Beta(α, β) + ra + i within the
range [ra + i, rb + i].

When the data of time to pass the stop line is collected by detectors, for
example loop detectors, εic (i = 0, 1, · · · , n) can be estimated separately. Note
that when i = 0, then t0 = T rc and ε0c = εc.

4.4 Stochastic trajectory planning model

4.4.1 Fuel consumption model

An instantaneous fuel consumption model developed by Akcelik (1989) is adopted
in this paper. It uses the instantaneous acceleration and speed to estimate the
fuel consumption rate as follows:

f = α1 + β1PT + (β2ma
2v)a>0 (4.6)

where PT is the total power (kW) required to drive the vehicle, which is the
sum of coast-down drag power, inertia power and extra engine power. m is the
mass of the vehicle, and v and a are the instantaneous speed and acceleration
respectively. The third term means extra engine drag power during accelerations,
and the subscript means the term exists only when the acceleration is larger than
zero. PT is calculated by

PT = max{d1v + d3v
3 +mav, 0} (4.7)

where α1, β1, β2, d1, d2, d3 and m in Eq. (4.6) and Eq. (4.7) are parameters with
values taken from Akcelik (1989). Substituting Eq. (4.7) to Eq. (4.6), we have

f =



α1 if a ≤ −d1 − d3v
2

m

α1 + β1(d1v + d3v
3 +mav) if −d1 − d3v

2

m
< a ≤ 0

α1 + β1(d1v + d3v
3 +mav) + β2ma

2v if a > 0

(4.8)
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The instantaneous fuel consumption rate is a function of speed and accelera-
tion. If the acceleration maintains constant during a certain time interval, the fuel
consumption during the time interval is a function of the speed and acceleration
at the beginning of the interval. F (vk, ak) is used to denote the fuel consumption
between the time tk and tk+1.

4.4.2 Multi-phase optimal control method

4.4.2.1 Objective function

As discussed earlier, when the vehicle does not have the accurate future signal
information, it cannot take aggressive actions based on entirely the distribution
of the future signal timing, which may lead to dangerous situations. What the
vehicle knows for sure is the current signal state. So, it is more reasonable and
safer to make decisions based on the trade-off of the current signal state and future
signal state. Based on this concept, a new multi-phase trajectory planning model
is proposed to balance fuel consumption and travel time in the stochastic signal
timing environment. At the beginning of each discrete time step, the vehicle
observes the current state of the signal and has two options to act during the
time step based on the observed state of the signal:

1. Passing: accelerates to pass the intersection when the traffic signal turns
green;

2. Waiting: uses appropriate speed to approach the stop line when the signal
is still red and waits for the possible green light in the next time step.

The vehicle states resulting from the passing and waiting actions during the time
step are called “passing phase” and “waiting phase”, respectively. In the passing
phase, the vehicle mainly cares about the travel time and tends to pass the
intersection as soon as possible, and thus it applies the maximum acceleration.
In the waiting phase, the vehicle waits for the green light and tries to save fuel
based on the provided distribution of the red signal duration. The general control
framework is shown in Fig. 4.1, where the green lines represent the trajectories
of passing phases and the blue lines represent trajectories of waiting phases. The
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passing phase is possible only when the probability of the end of red light is larger
than zero.

The predictive horizon includes M + N steps of waiting phases and N − 1
steps of passing phases. In the previous M + 1 time steps, the trajectory only
has waiting phases, however, both waiting phases and passing phases exist in
the later N − 1 time steps. If the vehicle finds the traffic light turns green be-
tween [tM , tM+1], it chooses the route (t0, x0) → (tM+1, xM+1) → (tfM+1, xf ). If
the traffic light turns green between [tM+1, tM+2], it chooses the route (t0, x0)→
(tM+1, xM+1)→ (tM+2, xM+2)→ (tfM+2, xf ). If the traffic light turns green in the
last time step [tM+N−1, tM+N ], it chooses the route (t0, x0) → (tM+1, xM+1) →
· · · → (tM+N−1, xM+N−1) → (tM+N , xf ). So there are N possible routes in
Fig. 4.1.

Time

Position

x1

t1t0

a0

tM tM+NtM+1tM-1

		uncertain				certain		
		red	light		

trajectory	in	the
waiting	phase

trajectory	in	the
passing	phase

�
�

�+1
�
�

�+2
�
�

�+�

Figure 4.1: Two driving strategies when the future signal timing information is
uncertain

The objective function of the general trajectory planning is

Joc = (x(M +N)− xf )2 +
M+N−1∑
k=0

Lk (4.9)

The objective function in the optimal control model is converted to another
objective function in the nonlinear optimisation model.

Jop =
M+N−1∑
k=0

Lk (4.10)
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At each time step, the driving cost which is fuel consumption is

Lk =


Lwaitk if k ∈ [0,M ]

Lpassk + Lwaitk if k ∈ [M + 1,M +N − 1]
(4.11)

Lpassk = p(tk−1 < t ≤ tk)F pass
k (4.12)

Lwaitk = p(t > tk)Fwait
k (4.13)

where Fwait
k and F pass

k are the fuel consumption in the waiting phase and passing
phase, respectively. Lwaitk and Lpassk are the expected fuel consumption in the
waiting phase and passing phase, respectively. p(tk−1 < t ≤ tk) is the probability
of red signal duration between time tk−1 and time tk, which is also the probability
of green light between time tk−1 and time tk.

In the phase of free passing, the vehicle accelerates to pass the intersection to
save time. It is assumed that the acceleration in the stage of free passing is the
maximum acceleration. The fuel consumption of a passing phase at each time
step is

F pass
k = F (vk, amax) (4.14)

In the phase of waiting to pass, the acceleration of the vehicle may vary
between the limits of acceleration which is the control variable. The fuel con-
sumption of a waiting phase at each time step is

Fwait
k = F (vk, ak) (4.15)

4.4.2.2 Vehicle dynamic constraints

For every vehicle, the position and speed in the waiting phase are the system
state variables, since the trajectories of passing phases depend on the trajectories
of waiting phases. The system dynamic functions are

xk+1 = xk + vkτ + 1
2akτ

2 (4.16)

vk+1 = vk + akτ (4.17)
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where the accelerate ak in the waiting phase is the control variable. The con-
straints on speed and position are

vmin ≤ vk ≤ vmax (4.18)

xmin ≤ xk ≤ xf (4.19)

The system state can be written as functions of the initial state and acceler-
ations, which are

vk = v0 +
k−1∑
t=0

atτ (4.20)

xk = x0 + kv0τ +
k−1∑
t=0

−2t+ 2k − 1
2 atτ

2 (4.21)

The constraints on the control variable are

amin ≤ ak ≤ amax (4.22)

4.4.2.3 Terminal state constraints

The terminal cost of the objective function in the optimal control approach is
converted to a constraint in the nonlinear optimisation approach. It ensures that
even if the traffic signal does not turn green in all previous time steps, the vehicle
arrives at the stop line at the end of the uncertain range of the red light.

xM+N = xf (4.23)

As discussed in our previous paper (Zhao et al., 2018), the terminal speed is
limited to the maximum speed, thus to increase the capacity of the intersection
and avoid blocking the following vehicle. Due to the structure of the model, we
only need to add a constraint on the terminal speed in the last waiting phase.
The terminal speed in all the other passing phases must be the maximum speed
as well.

vM+N = vmax (4.24)
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Proposition 4.4.1. If the speed in the waiting phase at the last time step can

reach the maximum speed, then the terminal speed of every other route can reach

the maximum speed too.

Proof. See the simple routes in Fig. 4.2 where route AC is a passing phase and
route AB includes multiple waiting phases.

A

C B

A passing phase

Multiple waiting phases

Figure 4.2: Schematic of the route in the passing phase and waiting phase starting
from a point

If vB = vmax and vC < vmax, as vA ≤ vC , so vA < vmax. As vC < vmax,
the acceleration in the passing phase must be the maximum acceleration which
is larger than or equal to the acceleration of waiting phase, i.e. aAC ≥ aAB.
As vC =

√
v2
A + 2aAC(xf − xA) ≥

√
v2
A + 2aAB(xf − xA) = vB = vmax. This is

inconsistent with the assumption that vC < vmax. So vC = vmax.
If vA = vmax, it is no doubt that vC = vmax as the acceleration of passing phase

in this case equal to zeros and the vehicle will maintain the maximum speed to
pass the intersection. The proof is thus completed.

4.4.3 Cost in the passing phase

In the passing phase, the vehicle knows that the signal has turned green. It
accelerates using the maximum acceleration till reaching the maximum speed.

The distance to the stop line at the start of an interval is

sk = xf − xk (4.25)

The driving cost is defined as:

F pass
k = F (vk, amax) =

∫ tf
k

tk

f(v, amax|vk) dt (4.26)
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where tfk denotes the time arriving at the stop line in the passing phase which
starts at time tk. This function can be computed in different situations as follows.

4.4.3.1 Case 1

If the vehicle can accelerate to the maximum speed before reaching the stop line,
i.e. v2

max − v2
k ≤ 2amax(xf − xk), the time required to reach the maximum speed

is:
tak = tk + vmax − vk

amax
(4.27)

and the time arriving at the stop line becomes:

tfk = tak + xf − xk
vmax

− v2
max − v2

k

2amaxvmax
(4.28)

The driving cost of this case is determined below:

∫ tf
k

tk

f(v, amax|vk) dt

=
∫ tak

tk

f(vk, amax) dt+
∫ tf

k

ta
k

f(vmax, 0) dt

=α1(vmax − vk)
amax

+ β1 (v2
max − v2

k) (2d1 + 2mamax + d3(v2
max + v2

k))
4amax

+ β2mamax(v2
max − v2

k)
2

+
(
xf − xk −

v2
max − v2

k

2amax

)(
α1

vmax
+ β1

(
d1 + d3v

2
max

))

(4.29)

4.4.3.2 Case 2

If the vehicle cannot accelerate to the maximum speed before reaching the stop
line, i.e. v2

max− v2
k > 2amax(xf −xk), the speed and time arriving at the stop line

are:
vfk =

√
v2
k + 2amax(xf − xk) (4.30)

and

tfk = tk +

√
v2
k + 2amax(xf − xk)− vk

amax
(4.31)
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The driving cost of this case is determined as below:

∫ tf
k

tk

f(v, amax|vk) dt =
∫ tf

k

tk

f(vk, amax) dt

= α1

amax

(√
v2
k + 2amax(xf − xk)− vk

)

+ β1(xf − xk)
[
d1 +mamax + d3(v2

k + amax(xf − xk))
]

+ β2ma
2
max(xf − xk)

(4.32)

4.4.4 Cost in the waiting phase

For simplicity, we denote [z]+ := max(z, 0). The equation of fuel consumption
rate (Eq. (4.8)) can be written as

f(v, a) = α1 + β1
[
d1v + d3v

3 +mav
]

+
+ β2mav[a]+ (4.33)

The fuel consumption is calculated as

∫ tk+1

tk

f(v, a) dt

=
∫ tk+1

tk

{α1 + β1
[
d1v + d3v

3 +mav
]

+
+ β2mav[a]+} dt

=
∫ tk+1

tk

α1 dt+ β1

∫ tk+1

tk

[
d1v + d3v

3 +mav
]

+
dt+ β2ma[a]+

∫ tk+1

tk

v dt

=α1τ + β1

∫ tk+1

tk

[
d1v + d3v

3 +mav
]

+
dt+ β2ma[a]+(vkτ + 1

2akτ
2)

(4.34)
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As v(t) = vk + a(t− tk), then

∫ tk+1

tk

[
d1v + d3v

3 +mav
]

+
dt

=
∫ vk+1

vk

v
[
d1 +ma+ d3v

2
]
+

d
(
v − vk
ak

+ tk

)

=1
a

∫ vk+1

vk

v
[
d1 +ma+ d3v

2
]
+

dv

= 1
4ad3

∫ vk+1

vk

d
[
d1 +ma+ d3v

2
]2

+

= 1
4ad3

([
d1 +ma+ d3v

2
k+1

]2
+
−
[
d1 +ma+ d3v

2
k

]2
+

)

= 1
4ad3

([
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(4.35)

Substituting Eq. (4.35) into Eq. (4.34), we get the fuel consumption in a waiting
phase at time step k.

4.5 The vehicle receives the signal information

in advance

When the vehicle can get access to the future signal information θ seconds in
advance, the vehicle may take actions in advance and has the potential of reducing
fuel consumption further. Fig. 4.3 shows the possible trajectory. There are two
main differences from the previous model:

1. The possibility of the passing and waiting phase at each time step is calcu-
lated by the possibility of green and red light in θ seconds later.

2. There are two strategies in the passing phase.

(a) Accelerating strategy: If the vehicle cannot arrive at the stop line in
the θ seconds, then it accelerates to the maximum speed using the
maximum acceleration to save time. This is shown as the green route
in Fig. 4.3.
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4.5 The vehicle receives the signal information in advance

(b) Eco-driving strategy: If the vehicle can arrive at the stop line in the
θ seconds, then it uses the eco-driving strategy to arrive at the stop
line in θ seconds later with the maximum speed. This is shown as the
purple route in Fig. 4.3.

Time

Position

x1

t1t0

a0

tM tM+NtM+1tM-1

		uncertain				certain		
		red	light		

trajectory	in	the
waiting	phase

trajectory	in	the
passing	phase	with
accelerating	strategy

trajectory	in	the
passing	phase	with
eco-driving	strategy

Figure 4.3: Three driving strategies when the vehicle receives the signal informa-
tion in advance

4.5.1 Objective function

At each time step, the driving cost which is the fuel consumption is calculated by

Lk =



Lwaitk if k ∈ [0,M − A]

Lpassk + Lwaitk if k ∈ [M − A+ 1,M +N − A− 1]

Lwaitk if k ∈ [M +N − A,M +N − 1]

(4.36)

Lpassk = p(tk−1 + θ < t ≤ tk + θ)F pass
k (4.37)

Lwaitk = p(t > tk + θ)Fwait
k (4.38)

4.5.2 Constraints

As discussed in Proposition 4.4.1, the constraint (4.24) ensures that the terminal
speed of every passing phase in the accelerating strategy is the maximum speed.
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4. Eco-driving under uncertain signal information

Extra constraints are still required to ensure that the terminal speed and travel
time in the eco-driving strategy meet the requirements.

For every passing route using eco-driving strategy, there are A additional
decision variables. So there are A · (N − 1) additional decision variables in total
in this case. For the passing route with eco-driving strategy starting at time step
k, the terminal position and terminal speed are

vek,A = vk +
A−1∑
t=0

aetτ (4.39)

xek,A = xk + Avkτ +
A−1∑
t=0

−2t+ 2A+ 1
2 aetτ

2 (4.40)

For the passing phase at time tk, the eco-driving strategy is activated when
the minimum travel time from xk to the stop line is longer than the advance
time. The minimum travel time is calculated in the same way used our previous
paper (Zhao et al., 2019).

If v2
max − v2

k ≥ 2amax(xf − xk), the minimum travel time tt is calculated by

tt =
−vk +

√
v2
k + 2amax(xf − xk)
amax

(4.41)

Otherwise, tt is calculated by

ta =
⌊
vmax − vk
amaxτ

⌋
τ (4.42)

sa1 = 1
2(2vk + amaxta)ta (4.43)

sa2 = 1
2(vk + amaxta + vmax)τ (4.44)

tb = xf − xk − sa1 − sa2

vmax
(4.45)

tt = ta + τ + tb (4.46)

where bxc denotes the greatest integer less than or equal to x.
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Thus, the constraints on the eco-driving strategy are

(tt− tadvance)(xek,A − xf ) ≤ 0 (4.47)

(tt− tadvance)(vek,A − vmax) ≤ 0 (4.48)

In constraint (4.47), if tt − tadvance ≥ 0 which implies the vehicle is unable
to arrive at the stop line within the advance time, accelerating strategy is used.
As xek,A − xf ≤ 0 is automatically satisfied by the constraint (4.19), thus con-
straint (4.47) is satisfied. If tt− tadvance < 0 which implies the vehicle can arrive
at the stop line within the advance time, eco-driving strategy is used. Then,
xek,A−xf ≥ 0. Because of constraint (4.19), we have xek,A−xf ≤ 0, so xek,A−xf = 0
must be satisfied and is also the requirement of eco-driving strategy. The same
logic can also be applied to analyse constraint (4.48).

4.6 Simulation tests

Many simulation tests are taken in this section to test the performance of the
proposed methods. After comparing the performances of Interior point, SQP
and pattern search, the interior point algorithm is used in the following simula-
tions due to its stable and good results. These simulation tests can be grouped
as three aspects: test the impact of different parameters in the model; test the
impact of various distributions of the uncertain signal information; test the pro-
posed method when the vehicle receives the signal information in advance. In
the part of testing the impact of the parameters in the model, we are interested
to know whether the terminal speed constraint is required and which time step
is appropriate. In the part of testing the impact of various distributions, we will
test different means, variances, and ranges. Finally, we will test the impact of
different advance time in the extended model. The simulation parameters are
shown in Table 4.2.
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4. Eco-driving under uncertain signal information

Table 4.2: Parameters in the model

Symbol Description Value

Parameters in the trajectory planning model

amin Minimum acceleration −4 m/s2

amax Maximum acceleration 3 m/s2

vmin Minimum speed 0 m/s

vmax Maximum speed 15.5 m/s

xmin Minimum position 0 m

xf Position of the stop line 300 m

Parameters in the fuel consumption model

α1 Idle fuel consumption rate 0.666 mL/s

β1 Efficiency parameter 0.072 mL/kJ

β2 Energy-acceleration efficiency parameter 0.0344 mL/(kJ m/s2)

d1 Vehicle parameter mainly related to the
rolling resistance

0.269 kN

d3 Vehicle parameter mainly related to the
aerodynamic drag

0.000 672 kN/(m/s)2

m Mass of the vehicle 1680 kg

4.6.1 Impact of the terminal speed constraint

In Section 4.4, a constraint Eq. (4.24) is applied on the terminal speed in the
last waiting phase. This also ensures that the terminal speed in all the other
routes is the maximum speed. The impact of the terminal speed constraint on
the trajectory is analysed in this section. Two scenarios are presented, and they
are described in the following.

• Scenario s1: There is no terminal speed constraint;

• Scenario s2: The terminal speed is the maximum speed.

The resulting waiting phase trajectories are shown in Fig. 4.4, and the ex-
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4.6 Simulation tests

Table 4.3: Expected fuel consumption and expected travel time in different ter-
minal speed constraints

Scenario
Expected fuel consumption (mL) Expected travel time (s)

Stop line Extended distance Stop line Extended distance

Scenario s1 31.13 65.89 28.54 33.10
Scenario s2 49.16 52.12 33.43 36.01
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Figure 4.4: State trajectories in different terminal speed constraints

pected fuel consumption and travel time are shown in Table 4.3. The small
subfigure in Fig. 4.4a denotes the distribution of the stochastic red light dura-
tion. In scenario s1, the vehicle arrives at the stop line in the early period of
stochastic red light time. Whereas in scenario s2, the vehicle decelerates in the
first half period and then starts to accelerate to the maximum speed. The tra-
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4. Eco-driving under uncertain signal information

jectories in Fig. 4.4 only show the trajectories in the waiting phase, and the full
trajectories of scenario s2 are shown in Fig. 4.5. We can see that all the passing
routes are located in the last two seconds of the uncertain red signal period. The
vehicle accelerates in both waiting phases and passing phases, and the accelera-
tions in the waiting phases are much smaller. This is also why the passing routes
are closely adjacent and fuel consumption decreases with increasing travel time,
which can also be seen in Fig. 4.4c.

The fuel consumption of each route in scenario s1 is much lower than that in
scenario s2 in Fig. 4.4c. This results in a 37% reduction of fuel consumption in
scenario s1 compared to the result in scenario s2. Most of the reduction comes
from fuel consumption in the passing phases. The vehicle in scenario s1 is so
close to the stop line, and it does not need to accelerate in the passing phases at
all. This is also the reason for 15% reduction in the expected travel time. Except
for the last route, the travel time of all the other routes in scenario s1 is shorter
than that in scenario s2.

Though being close to the stop line reduces fuel consumption in the passing
phase and hence reduces the expected fuel consumption, this also has side effects
that the vehicle may have long stopped time and need to consume more fuel on
the following road. Another case is also tested that the vehicle in both scenarios
runs the same extended distance and reaches the same maximum speed. The
results are shown in Table 4.3. The vehicle in scenario s1 consumes 25% more
fuel but has 8% less travel time. We tend to choose the scenario s2, which adds
the terminal speed constraint in the model because reducing the stopping time
and fuel consumption are the primary goals of trajectory planning in this paper.

4.6.2 Impact of the time step size

In the proposed model, the vehicle reacts to the signal at discrete time steps.
How does the time step size affect on the trajectories and performance? Four
different time step sizes are used in the simulation tests. The distribution of
the red signal is the same for all simulation scenarios. The state trajectories of
waiting phases and fuel consumption and travel time of every route are shown in
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Figure 4.5: Full trajectories under stochastic signal information

Fig. 4.6. Table 4.4 shows the expected fuel consumption and travel time in each
scenario.

Table 4.4: Trade-off between fuel consumption and travel time

Distribution Time step
size (s)

Expected fuel
consumption (mL)

Expected travel
time (s)

sBeta(1, 1, 22, 34) 2 48.54 33.56

sBeta(1, 1, 22, 34) 1 48.94 33.51

sBeta(1, 1, 22, 34) 0.5 49.16 33.43

sBeta(1, 1, 22, 34) 0.25 49.60 32.98

Except for the scenario of 0.25 s time step, the trajectory did not change
much in the other three scenarios. When the time step decreases, the expected
fuel consumption increases slightly and expected travel time decreases slightly.
The increase in fuel consumption mainly comes from the first time step. In
Fig. 4.6c, when the time step size decreases, the vehicle reacts to the red signal
more responsively. It accelerates in an earlier time and consumes more fuel due to
the long distance to accelerate. This also explains that the vehicle has a shorter
travel time when the time step is shorter. Although the expected travel time
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Figure 4.6: State trajectories with different time step size

did not decrease much, it offers the vehicle more possibilities of travel time when
the time step size is smaller, since the vehicle make decisions more frequently.
Under the same travel time, the vehicle consumes less fuel when the time step
is shorter. This is very obvious when the time step is 0.25 s. Considering the
performance and calculation burden, 0.5 s will be used as the time step in the
following simulations.

4.6.3 Impact of the mean of the distribution

The distribution of the uncertain signal information is directly considered in the
model. The vehicle may have a different responding trajectory in different distri-
butions. The impact of different means of distribution on the trajectory is tested
in the following three scenarios. The variances of the distribution are kept the
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same in all the simulations.

• Scenario m1: The distribution of red signal duration is sBeta(2, 8, 22, 34);

• Scenario m2: The distribution of red signal duration is sBeta(8.09, 8.09, 22, 34);

• Scenario m3: The distribution of red signal duration is sBeta(8, 2, 22, 34).

Table 4.5: Expected fuel consumption and expected travel time in different means
of the distribution

Distribution Mean
(s)

Expected fuel
consumption (mL)

Expected travel
time (s)

sBeta(2, 8, 22, 34) 24.4 47.08 30.22

sBeta(8.09, 8.09, 22, 34) 28.0 47.64 33.31

sBeta(8, 2, 22, 34) 31.6 45.29 33.96

The obtained trajectories of waiting phases are shown in Fig. 4.7 and the per-
formance indicators are shown in Table 4.5. We can observe apparent differences
in the trajectories of waiting phases in three simulation scenarios. In scenario m1,
trajectories of waiting phases include two stages of decelerating and accelerating.
When the mean of the distribution in the uncertain red signal increases, the dura-
tion of the second decelerating and accelerating stage decreases and finally there
is only one stage of decelerating and accelerating in scenario m3. The behaviour
is the trade-off between the objective function and constraints. The vehicle tries
to be close to the stop line so as to minimise fuel consumption in the passing
phase when the probability of turning green is high. However, because of the
terminal position and speed constraints, it cannot keep the high speed and has
to decelerate first and then accelerate to the desired terminal speed.

The mean of the distribution also affects the distribution of fuel consumption
and travel time in each route. When the probability of turning green is high, there
are more routes during that period and the fuel consumption of those routes is
smaller than that in other periods. This is why the travel time of the first few
routes in scenario m1 is much shorter than that in the other scenarios. This can
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Figure 4.7: State trajectories in different means of the distribution

also explain why the expected travel time increases as the mean of the distribution
increases. The expected travel time in scenario m3 is 12.4% longer than that in
scenario m1. However, fuel consumption does not share the same trend. As
shown in Table 4.5, when the mean increases, the expected fuel consumption
may increase or decrease. It seems that the mean of 28s, which is located in the
middle of the uncertain red light is a turning point in the performance. When the
mean is less than 28 s, the expected fuel consumption increases slightly, and the
expected travel time increases considerably. When the mean is greater than 28 s,
the expected fuel consumption decreases more significantly than the increase in
the expected travel time.
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4.6.4 Impact of the variance of the distribution

In this section, the impact of the variance of distribution on the trajectory is
analysed. In the simulation scenarios, the mean of the distribution is kept the
same as the median of the uncertain signal range. Thus, the parameters α and
β should be the same according to Eq. (4.3), and the corresponding mean of the
Beta distribution is 0.5.

• Scenario v1: The distribution of red signal duration is sBeta(1, 1, 22, 34);

• Scenario v2: The distribution of red signal duration is sBeta(4, 4, 22, 34);

• Scenario v3: The distribution of red signal duration is sBeta(8, 8, 22, 34).

Table 4.6: Expected fuel consumption and expect travel time in different variances
of the distribution

Distribution Variance Expected fuel
consumption (mL)

Expected travel time
(s)

sBeta(1, 1, 22, 34) 12 49.16 33.43

sBeta(4, 4, 22, 34) 7.2 48.48 33.65

sBeta(8, 8, 22, 34) 4 47.66 33.34

The obtained trajectories of waiting phases are shown in Fig. 4.8 and the
performance indicators are shown in Table 4.6. The trajectories of waiting phases
change slightly in different variances of the distribution. The vehicle in scenario
v1 runs closer to the stop line than in the other scenarios in the early period of the
stochastic range and consumes less fuel. When the variance of the distribution
becomes smaller, the variance of the fuel consumption in each route becomes
larger. This is because the vehicle puts more efforts to minimise fuel consumption
when the probability is high. Though the fuel consumption of the routes in the
first few routes and the last few routes in both scenario v2 and v3 are higher than
that in scenario v1, the expected fuel consumption are smaller. This is because
of the less possibility of passing in the early and late period of the uncertain
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Figure 4.8: State trajectories in different variances of the distribution

range. Finally, when the variance of distribution decreases, the expected fuel
consumption decreases slightly as well, but the expected travel time does not
show a distinct pattern.

4.6.5 Impact of the range of the distribution

In this subsection, the impact of the range of the uncertain signal on the trajectory
is analysed. In the simulation scenarios, the corresponding Beta distribution is
kept the same to be the uniform distribution where both parameter α and β equal
to 1.

• Scenario r1: The distribution of red signal duration is sBeta(1, 1, 22, 34);

• Scenario r2: The distribution of red signal duration is sBeta(1, 1, 12, 34);
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• Scenario r3: The distribution of red signal duration is sBeta(1, 1, 22, 44);

• Scenario r4: The distribution of red signal duration is sBeta(1, 1, 28, 34).

Table 4.7: Expected fuel consumption and expected travel time in different ranges
of the distribution

Distribution Expected fuel consumption (mL) Expected travel time (s)

sBeta(1, 1, 22, 34) 49.15 33.49

sBeta(1, 1, 12, 34) 50.44 30.40

sBeta(1, 1, 22, 44) 59.76 38.82

sBeta(1, 1, 28, 34) 46.00 33.94

The optimised trajectories of waiting phases are shown in Fig. 4.9, and the
results are shown in Table 4.7. In scenario r1, r2 and r4, the end time of the
uncertain signal are the same. Scenario r1 and r4 can be considered as scenarios
that have the same uncertain range as scenario r2, but the probability of the
corresponding duration in scenario r1 and r4 are zero. So, the red light in scenario
r4 has less uncertainty than that in scenario r1, and the red light in scenario r1 has
less uncertainty than that in scenario r2. The fuel consumption in scenario r4 is
8.8% less than that in scenario r2. When there is less uncertainty, the vehicle has
more room to optimise the trajectory and achieve less fuel consumption. Though
the range of the uncertain signal in scenario r4 is only half of that in scenario
r1, the trajectories are almost the same. As indicated in Fig. 4.5, all the passing
trajectories are located in the latter half duration. The change of start time in the
uncertain signal does not change the trajectories very much. The trajectories are
more sensitive to the end time of the uncertain signal than the start time. This
is resulting from the terminal state constraints. When the end time of the signal
changes, the trajectories in waiting phases must modify to satisfy the terminal
state constraints. So more attention should be paid on the estimation of the
end time of the uncertain range. In addition, conclusions on the impact of the
distribution mean in Section 4.6.3 can be applied here. When the range of the
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Figure 4.9: State trajectories in different ranges of the distribution

distribution increases, the expected travel time also increases due to the increase
in the mean of the distribution.

4.6.6 Impact of the advance time

The impact of different advance time in the method developed in Section 4.5
is analysed. Three scenarios are presented where the vehicle receives the future
signal information 1 second, 5 seconds and 10 seconds in advance separately. The
results are shown in Table 4.8 and the state trajectories are shown in Fig. 4.10.

• Scenario a1: The vehicle receives the signal information 1 s in advance;

• Scenario a2: The vehicle receives the signal information 5 s in advance;

• Scenario a3: The vehicle receives the signal information 10 s in advance.
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Table 4.8: Expected fuel consumption and expected travel time in different ad-
vance time

Advance time Expected fuel consumption (mL) Expected travel time (s)

0 s 49.16 33.43
1 s 49.96 33.24
5 s 48.74 29.99
10 s 43.68 28.35

When the advance time is only 1 second, the vehicle still chooses the acceler-
ating strategy using the maximum acceleration in the passing phase as it is not
possible for it to arrive at the stop line in 1 second. The expected fuel consump-
tion increases by 1.6% and the expected travel time decreases by 0.6% compared
to the results when there is no advance time. The increase in fuel consumption
is because the vehicle starts to accelerate from a further position in the first few
passing phases and consumes more fuel. As the vehicle starts to accelerate 1
second in advance, this helps to reduce the travel time in the first few passing
phases. When the vehicle can receive the signal information 5 seconds in ad-
vance, the expected fuel consumption reduces by less than 1% while the expected
travel time reduces by more than 10%. The vehicle can arrive at the stop line
in 5 seconds in the later seven passing routes and an eco-driving strategy with
fixed terminal time is applied. When the vehicle receives the signal information
in 10 seconds, it can arrive at the stop line in most passing phases and apply
the eco-driving strategy. The expected fuel consumption reduces by more than
11% and the expected travel time reduces by 15% compared to the base scenario
without advance time. The expected travel time is close to the minimum possible
expected travel time 28.25 s when the time step is 0.5 s. We conclude that short
advance time does not help much in reducing fuel consumption, but can reduce
the travel time. Larger advance time reduces fuel consumption and travel time
substantially.
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Figure 4.10: State trajectories in different advance time

4.7 Conclusions

Accurate future signal and phase information is highly important to trajectory
planning for automated vehicles on the urban road. However, because of the
adaptive signal control system or the stochastic behaviour of human-driven ve-
hicles, the vehicle may not get the exact signal information or earliest available
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green time for it to pass the intersection. A multi-phase optimal control model
was proposed to optimise the trajectory when the future signal information is
uncertain. It was modelled as a hybrid system including two types of phases:
passing phase and waiting phase. The vehicle chose the corresponding phase by
observing the signal state at that moment. Thus, it can balance the objectives
of minimising travel time and fuel consumption. To simplify the calculation, it
was modelled as a discrete multi-phase optimal control model. The expected
fuel consumption over all possible routes was the objective function. It was then
transformed into a nonlinear optimisation model which can be solved more ef-
ficiently. The proposed model was also extended to a more general case that
the vehicle can get the future signal timing information in advance for a limited
time. Extensive numerical studies were taken to analyse the impact of internal
parameters, external signal distribution and advance time.

We conclude by the study that

1. If there is no terminal speed constraint, the optimal driving pattern of
minimising fuel consumption on the current link is to arrive at the stop line
in the early period of the uncertain red light time;

2. Adding the terminal speed constraint reduces the total fuel consumption if
the fuel consumption in recovering to maximum speed is considered;

3. Reducing the duration of a time step helps to reduce the expected travel
time slightly but also increases the expected fuel consumption slightly;

4. If the mean of distribution increases, the expected travel time increases as
well;

5. When the variance of the distribution decreases, the expected fuel consump-
tion decreases as well, but the variance of the fuel consumption in each route
increases;

6. The expected fuel consumption decreases when there is less uncertainty in
the uncertain range;

168



References

7. The optimised trajectory is more sensitive to the upper range than the lower
range;

8. If the vehicle can get the future signal information, the expected travel time
will decrease significantly;

9. If the vehicle only gets the future signal information in a very short time,
it may cause an increase in fuel consumption. However, if the vehicle gets
the future signal information in advance for 10 seconds, the expected fuel
consumption decreases by more than 11%.

Regarding future research, if the adaptive traffic control system updates the
signal timing every cycle, such as TUC (Diakaki et al., 2002), the automated
vehicle has enough time to plan its trajectory. However, many adaptive traffic
control system tend to update the signal timing frequently to get better control
performance, which adds difficulties in the trajectory planning for vehicles to re-
duce fuel consumption. In this case, a problem is how to balance the performance
of intersection control and eco-driving method.
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5.1 Summary

5.1 Summary

The thesis focuses on intersection control and trajectory planning for AVs on ur-
ban roads. Chapter 1 presented the literature review, research questions, and the
outline of the thesis. Three main chapters are included in the thesis. Chapter 2
dealt with intersection control of AVs and investigated how to integrate intersec-
tion control with trajectory planning. Chapter 3 and Chapter 4 dealt with the
trajectory planning for AVs in different conditions. Chapter 3 optimised the tra-
jectories of a heterogeneous platoon including AVs and HVs. Chapter 4 optimised
the trajectories of an AV when the future signal information at the intersection
is not available or only available in advance for a limited time. Finally, the thesis
ends with some concluding remarks in Chapter 5.

5.2 Progress made in answering the research ques-

tions

Three research questions were described in Chapter 1 and investigated in the
following three chapters. This section revisits the research questions and corre-
sponding objectives, and summarises what we have done to answer the questions
and achieve the objectives.

5.2.1 Research question 1

Research question 1: What is the benefit of integrating intersection

control with trajectory planning?

• Objective 1.1: Identify the necessity of considering trajectory planning in
intersection control.

In the conventional phase-based intersection control method, the trajectories
of vehicles are only considered for signal coordination of multiple intersections
and setting the yellow light duration. Because there is no way to directly control
the movement of a conventional vehicle, adjusting the offset is an effective way
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of reducing the number of stops. In intersection control with AVs, it becomes
possible to control trajectories of AVs and avoid most unnecessary stops. Apart
from that, what is the value of considering the trajectory in intersection control?

It further reduces delay to integrate trajectory planning with intersection con-
trol. Firstly, yellow light is not required any more for AVs because the vehicle
in the dilemma zone are given a high priority to pass the intersection. Secondly,
the right of way can be switched more frequently as the vehicle makes decisions
quickly without human errors and complies with any planned rule. Thirdly, it
reduces the average delay to arrange vehicles’ arrival time to the stop line in a
cooperative way. Fourthly, the vehicle can adjust its behaviour in advance to
achieve high speed passing the intersection. This reduces the occupancy time in
the conflict area and hence improves the efficiency of the intersection.

The critical purpose of intersection control is allowing vehicles to pass the
intersection safely and efficiently. As it is not reasonable to decelerate in the
intersection area when the vehicle gets the right of way, it can accelerate freely
after the stop line, and the trajectory in the intersection is only determined by
the time and speed at the stop line. Thus, the connections between trajectory
planning and intersection control are the time arriving at the stop line and the
speed entering the intersection.

• Objective 1.2: Develop a method of integrating intersection control with
trajectory planning for AVs on the urban road to reduce the total travel
time.

A bilevel programming model was developed to integrate intersection control
with trajectory planning. The upper level optimises the passing sequences of
AVs to minimise the total travel time, and the lower level maximises the speed
entering the intersection conflict area. The connections between the two levels are
the arrival time and terminal speed. The arrival time is the output of the upper
level and also the input of the lower level. The terminal speed is the output of
the lower level and the input of the upper level. This feedback structure implies
that trajectory planning not only follows the decision of intersection control but
also determines the result of intersection control. Moreover, the two levels have
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a cooperative relationship. High speed of vehicles increases the efficiency of the
intersection and reduces the total travel time. As intersection control reduces
the total travel time, vehicles are less likely to decelerate and can achieve a high
terminal speed. The cooperative relationship makes it possible to solve the bilevel
problem with a few iterations. In addition, both levels are linear models which
also reduce the calculation complexity.

• Objective 1.3: Conduct simulations to test the developed method.

A simulation platform including a simple two-way intersection was developed
using Matlab. The developed bilevel model was solved by an iterative heuristic
algorithm based on Gurobi. In order to improve the calculation efficiency, a
platoon model was also proposed without sacrificing the control performance. It
was based on the analysis of the relationship between safety time headway for
vehicles on the same road and the inter-change time for vehicles on the conflicting
roads. When certain conditions are satisfied, vehicles in platoons are preferred
to passing together in terms of reducing the total travel time.

Three other intersection control methods were also tested and compared to
the proposed bilevel method. One was a two-level optimisation model without
the feedback connections which was used to show the advance of the feedback
structure in the proposed bilevel model. Another was a First-in-first-out (FIFO)
method which determined the right of way by the time entering a specific range.
The last was a conventional actuated control method where vehicles passed the
intersection in platoons, but their trajectories were not optimised. The proposed
bilevel model outperformed the other three methods in various traffic demands
and intersection lengths. The impact of communication ranges and traffic com-
positions on the proposed method are also analysed.

5.2.2 Research question 2

Research question 2: What is the benefit of cooperation between au-

tomated vehicles and human-driven vehicles?

• Objective 2.1: Develop a trajectory planning method by considering coop-
eration between AVs and HVs.
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A general trajectory planning model was proposed to reduce fuel consump-
tion for platoons approaching the intersection using a receding horizon model
predictive control method. Heterogeneous platoons including AVs and HVs were
considered in this model to enable the application in any penetration rate of AVs.
The terminal time was set to the earliest green time that allows the AV to pass
the intersection in order to reduce the travel time. The HV was modelled by
the OVM. The trajectories of AVs were optimised by the proposed model which
considered the impact of the behaviour of AVs on the following HVs. This was
achieved by including the OVM into system dynamic functions of the platoon
and using the total fuel consumption of the platoon as the objective function. In
addition, the jerk of the AV, which is the derivative of the acceleration, was the
control variable to increase driving comfort. In summary, the proposed model
considered fuel efficiency, intersection capacity, and driving comfort.

The platoon dynamics were included in the model to adapt to the traffic state
in a mixed traffic condition. At each time step, the leading AVs applied the
splitting rule or merging rule to change the platoon setting. Thus, more vehicles
benefit from the cooperative behaviour of AVs.

• Objective 2.2: Analyse the benefit of cooperation in a mixed autonomy
traffic condition.

The boundary conditions and running cost in the model were tested in some
simple scenarios to show the benefits of cooperative behaviour. The boundary
conditions were to force AVs to arrive at the stop line with the maximum speed
and zero acceleration at the terminal time. The high terminal speed of the leading
vehicle helps the following vehicles to get high speed too. This increases the
capacity of the intersection by more than 11% in the tested scenario.

The running cost was the total fuel consumption of the platoon. Three co-
operative cases in the mixed autonomy traffic were investigated. The first was
the cooperation between AVs and the following HVs. The total fuel consump-
tion in the optimisation range decreases when more HVs join the platoon, but
the total fuel consumption until they arrive at the stop line may arise. The sec-
ond was the cooperation between AVs in the current platoon with AVs in the
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preceding platoon. When more vehicles apply the eco-driving method, the to-
tal fuel consumption decreases significantly no matter where it is located in the
mixed traffic. The third was the cooperation among AVs. Fuel consumption only
changes slightly in the different settings of platoons.

• Objective 2.3: Analyse the performance of the developed method under
different penetration rates of AVs.

More realistic simulations were used to analyse the performance of the pro-
posed method in different penetration rates of AVs. The case that the AV is
not connected with the following HVs was also considered. The AV still tried
to form a platoon of two vehicles with the direct following vehicle by detecting
its real-time state via its built-in detectors. In the simulation results, when the
proposed method was applied in the penetration rate of 60% AVs, it achieved the
same level of fuel consumption reduction when no cooperation was applied with
100% penetration. Even when the maximum platoon size was limited to two be-
cause of no communication between vehicles, the cooperative eco-driving model
reduced 4.7% more fuel than the model without cooperation. Similar results also
were found in the reduction of travel time. Moreover, vehicles in the coopera-
tion scenario also had less chances to stop on the road segment because of the
decelerating of preceding AVs. The trajectory was smoothed by the cooperative
behaviour, and the speed oscillation was also reduced.

5.2.3 Research question 3

Research question 3: How to optimise the trajectory at an intersection

controlled by the adaptive traffic control system?

• Objective 3.1: Develop a trajectory planning method when the future signal
is uncertain.

The uncertain signal duration, when the intersection is controlled by an adap-
tive traffic control system, was modelled as a scaled Beta distribution. The pa-
rameters in the distribution were estimated from the historical signal timing data

181



5. Conclusions

and updated with the newly available signal data. A good property of the Beta
distribution is that it can model many probabilistic distributions within the range
of 0 to 1 using two parameters such as uniform distribution and truncated normal
distribution.

Though the distribution of future signal was obtained, it may not be accurate,
and the change of signal state has a probability of not happening. Two strategies
which were chosen based on the signal state at that moment were proposed. At
each time step, the vehicle observes the current signal state. If it is green, then
it is safe to accelerate to pass the intersection. Otherwise, it needs to adjust its
speed to wait for the possible green light in the next time step. The probability of
each strategy was determined by the mentioned scaled Beta distribution. Thus,
the distribution of the signal was included in the model without sacrificing safety.
The objective function was the expected fuel consumption from the current time
to the end of the uncertain range. A constraint on the terminal speed was also
added to avoid blocking the following vehicles.

• Objective 3.2: Develop a trajectory planning method when the future signal
is uncertain but available for a limited time in advance.

In the adaptive traffic control system, the optimisation operates in some fre-
quencies. So the system knows the signal state over the future limited duration.
A more general trajectory planning model was proposed to reduce fuel consump-
tion by considering the limited available information on the future signal. The
main difference is that when the vehicle knows the signal will turn green several
seconds later, it may be possible to apply an appropriate speed pattern to arrive
at the stop line when the signal just turns green instead of using the maximum
acceleration. Whether the vehicle chooses the maximum acceleration strategy or
the eco-driving strategy in the passing phase depends on whether it is possible
to arrive at the stop line in the advance time. If it can, then the eco-driving
strategy is chosen to reduce fuel consumption in the passing phase. Otherwise,
the maximum acceleration strategy is chosen to reduce travel time in the passing
phase. So, in this case, the vehicle had three possible strategies. The probability
of each strategy depended on the probability of the signal state in the advance
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time later.

• Objective 3.3: Analyse the impact of model and system parameters on the
performance of the developed methods.

Parameters in the model setting, such as the terminal speed constraint, time
step size, advance time, and parameters in the scaled Beta distribution, such as
the mean, variance, range, were tested. We found that when a terminal speed
constraint is added, the expected fuel consumption is 20.9% less than that without
the terminal speed constraint if the extended distance required to recover the
maximum speed is considered, but the travel time is 8.8% higher. When the
time step is smaller, the resulting expected fuel consumption increases and the
expected travel time decreases. As the mean of the distribution increases, the
expected travel time increases, while the expected fuel consumption increases
before decreases. As the variance of the distribution increases, the expected fuel
consumption increases, while the expected travel time fluctuates slightly. What is
more, the optimised trajectory is more sensitive to the end time of uncertain signal
compared to the start time. Different advance time was also tested in a more
general trajectory planning model. We found that the impacts of advance time
on fuel consumption and travel time are different. The expected fuel consumption
increases slightly when the vehicle receives the signal information in advance for
a short time but decreases significantly when the advance time is large. On the
other hand, the travel time shows a negative relationship with advance time.

5.3 Contributions to knowledge and practice

Based on the work mentioned above, the main conclusions and contributions are
described below.

5.3.1 Intersection control

• Trajectory planning and intersection control are interconnected and interact
with each other.
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Trajectory planning needs to get the allocated green time from intersection
control. Intersection control can attain better performance if it knows when the
vehicle will pass the intersection conflict area. The AV makes it more likely
to have a cooperative relationship between trajectory planning and intersection
control.

• Platoon is not always beneficial for intersection control.

When the safety time headway in the platoon is larger than the minimum gap
time for two conflicting vehicles, it is better to assign the vehicle that is closer to
the stop line a higher priority to pass regardless the platoon. Three propositions
are proposed to identify the platoon which improves the calculation speed and
does not sacrifice the performance.

5.3.2 Trajectory planning

• Cooperation between automated vehicles and human-driven vehicles can
smooth the trajectory and reduce fuel consumption in mixed autonomy
traffic.

In the proposed eco-driving model, the dynamics of following HVs are included
in the system dynamic function, and the total fuel consumption of the platoon
is the objective function. By adjusting the movement of the leading AVs, unnec-
essary acceleration and speed oscillation are suppressed for both AVs and HVs.
As the AV has information about the next green time, it will not stop on red,
and the following vehicles also benefit from that. The terminal speed constraint
makes the AV accelerate in advance, and the following vehicles also have a much
higher speed crossing the stop line, which reduces the travel time of the following
vehicles and increases intersection efficiency.

• The benefit of cooperation increases with the platoon size and becomes
trivial in the 100% penetration.

When more vehicles join the platoon, fuel consumption and travel time are
reduced more. However, the leading AVs consume more fuel in changing its be-
haviour to control movements of the following vehicles. The reduction of fuel
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consumption and travel time resulting from cooperation decreases when the pen-
etration rate of AVs is higher than 80% and becomes trivial in the 100% AVs.

• A multi-phase trajectory planning model is proposed to reduce fuel con-
sumption when the future signal timing is uncertain.

A trajectory planning model, including two driving strategies, was proposed
to adapt to the uncertain future signal information. At each time step, the
vehicle chooses to pass or keep waiting based on the predicted signal state at
that moment. The distribution of future signal timing is included in the decision
of driving strategy. The advance of the model is that there is no risk of passing
the intersection at the red light due to the hybrid model structure. Various
parameters in the model setting and distribution of the signal timing are analysed.

• When the future signal timing information is available in advance, fuel
consumption and travel time may be reduced quite significantly. However,
too short advance time may not help reduce fuel consumption.

A more general trajectory planning was proposed when the future signal tim-
ing information is available in advance for a limited time. If this advance time
is too short, this will not help to reduce fuel consumption, but the travel time
can be reduced slightly. When advance time becomes larger, the vehicle may
apply the eco-driving strategy in the passing phase, which reduces fuel consump-
tion slightly but reduces travel time quite a lot. When the advance time is even
larger, both fuel consumption and travel time reduce significantly.

5.4 Future research directions

The research on AVs gains a lot of attention. It is developing very fast and far
from mature. Future research directions on intersection control and trajectory
planning are discussed below.

In the thesis, a relatively strong assumption that all vehicles are CAVs was
made in Chapter 2. A more realistic situation is mixed traffic with CVs, AVs,
and HVs. In mixed traffic with CVs, how to estimate the traffic demand (Zheng
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and Liu, 2017; Rostami Shahrbabaki et al., 2018), queue length (Comert, 2016; Li
et al., 2017)? How to develop a intersection control method without loop detectors
(Liang et al., 2018)? The research on intersection control in mixed traffic with
AVs is quite limited. There are two possible ways: distributed control without
signal (Yang and Monterola, 2016) and central control with signal phases (Li and
Zhou, 2017). No study compares the performance of these two approaches.

In this thesis, trajectory planning problems when the future signal timing
information is fully available, available in advance for a limited time or not avail-
able were investigated. There are several directions to extend current research.
Only longitudinal control is considered in the current work. How to plan the
longitudinal trajectory and lateral trajectory together (Yu et al., 2018)? Per-
haps, the cooperation on the lateral trajectory improves the traffic too. Only an
isolated intersection is currently considered. There are some studies on the trajec-
tory planning over multiple intersections (Butakov and Ioannou, 2016; De Nunzio
et al., 2016), but they either need heavy calculation or are oversimplified. None
of them tested the performance in the simulations with vehicles coming from
all approaches. Optimising the trajectory can reduce fuel consumption, but the
intersection signal timing is not optimised for that. How to optimise fuel con-
sumption in intersection control? (Zu et al., 2018)

5.5 Concluding remarks

This thesis focuses on intersection control and trajectory planning for AVs on
urban roads. It includes three parts of work: the first is an intersection control
method for AVs, the second is a trajectory planning method for AVs in a mixed
traffic environment and the third is a trajectory planning method when the future
signal information is uncertain.

A bilevel programming model was proposed to integrate intersection control
with trajectory planning for AVs. The interconnection relationship between inter-
section control and trajectory planning was considered in the feedback structure
in the bilevel programming model. The linear model and cooperative relation-
ship in both levels make it solved by existing solvers efficiently. A platoon-based
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approach was also proposed to reduce the calculation time without sacrificing the
performance. The simulation tests showed significant improvement in reducing
average delay under various traffic demands, intersection lengths, communication
ranges, and traffic compositions.

A general eco-driving method was proposed for platoons in a mixed traffic
situation with AVs and HVs, when AVs could receive the future signal and phase
information from the intersection controller. It considered fuel consumption,
travel time and driving comfort in the receding horizon model predictive control
method. The platoon dynamics, including platoon splitting and merging rules,
were also proposed to improve the performance. The properties of the boundary
conditions and running cost were analysed in the simulation. What is more, the
performances under different penetration rates of AVs and platoon sizes were also
investigated.

Another eco-driving model was proposed to deal with the situation when the
future signal information is not available or only available for a limited time
ahead because of the adaptive traffic control system. When it is not available,
a multi-phase optimal control model including two driving strategies, which are
accelerating to pass and waiting to pass, was proposed. When it is available for a
limited time in advance, a model including three driving strategies was proposed
including a additional eco-driving strategy.

Some possible future research directions were discussed. Given the revolu-
tionary mobility system by the AV technology, more research is still required to
make better use of the infrastructure and information, such as shared mobility.
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