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ABSTRACT 

The use of electric machines can be found in many applications such as household appliance, 

machine tools, vehicles and railways, due to their indispensable role in converting energy. Most 

recently, permanent magnet synchronous machines have been increasingly employed in 

electrical/hybrid electrical vehicles, industrial servo drives and wind power generators for their 

high power density and good efficiency. There is a growing trend towards the inclusion of 

thermal management in permanent magnet synchronous motors by monitoring their internal 

temperatures during real-time operation, because high temperatures can significantly shorten 

the lifetime of the motor components. Whilst temperature sensors are suitable for measuring 

stator temperatures, fixing them on rotating permanent magnets is difficult in practice. As a 

result, model-based temperature estimation methods are preferable. 

A practical and computationally efficient system for the estimation of the critical temperatures 

in permanent magnet synchronous machines is introduced, based on a low-order lumped 

parameter thermal network which represents stator iron, stator winding and permanent magnet. 

The parameterization of the network requires an accurate rotor temperature measurement, 

which is provided by a PWM-based estimation algorithm predicting rotor temperature via 

permanent magnet flux linkage.  

The proposed temperature estimation system is validated in simulation, including offline 

simulation in Matlab/Simulink, and online simulation utilizing the Hardware-in-the-Loop 

technique, which performs the emulation of motor and control in two real-time platforms. 

Comprehensive experimental validation is also conducted on a three-phase surface-mounted 

permanent magnet servo motor, with motor temperature estimation error less than 6℃. 

The main contributions of the research work include: a) A three-node thermal network for 

motor temperature estimation, which is simple to implement — detailed knowledge of motor 

dimensions, material properties is not needed, as the thermal parameters are derived from a 

measurement-based recursive parameter identification procedure, based on the recursive 

Kalman Filter, b) A simplified and accurate PWM-based rotor temperature estimation method 

without using signal injection, which is a commonly-employed approach for temperature 

estimation and disturbs motor operation. It is also insensitive to practical implementation 

errors, such as inverter nonlinearity, c) The integration of the rotor temperature estimation 

method and the thermal network. As a result direct rotor temperature measurement which can 

be expensive and troublesome is avoided. 
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Nomenclature 

𝑎 The Steinmetz constant 

𝑎𝑒 The eddy-current component of open-circuit iron loss 

𝑎𝑒𝑥𝑐 The excess component of open-circuit iron loss 

𝑎ℎ The hysteresis component of open-circuit iron loss 

𝐴 The state matrix of state-space model 

𝐴𝑇 One tooth section area 

𝑏𝑒 The eddy-current component of short-circuit iron loss 

𝑏𝑒𝑥𝑐 The excess component of short-circuit iron loss 

𝑏ℎ The hysteresis component of short-circuit iron loss 

𝐵 The input matrix of state-space model 

𝐵𝑒 Flux density 

𝐵𝑖 The 𝑖𝑡ℎ harmonic component of flux density 𝐵𝑒 

𝐵𝑚 The peak of flux density 

𝐶 The output matrix of state-space model 

𝐶𝐹𝑒𝑠 Stator iron thermal capacitance 

𝐶𝑃𝑀 Permanent magnet thermal capacitance 

𝐶𝑊 Stator winding thermal capacitance 

𝑑 The measured output of the Adaline estimator 

𝐷 The feedthrough matrix of state-space model 

𝑒(𝑡𝑜𝑜𝑡ℎ) The Back-EMF per tooth 

𝑒𝑥 The state variable estimation error 

𝑓𝑟 Electrical frequency 

𝑓𝑟𝑎𝑡𝑒𝑑 Rated electrical frequency 

𝑓𝑠𝑤 PWM switching frequency 

𝑓𝑠𝑦𝑠𝑡𝑒𝑚 System frequency 

𝐹𝑘 The state-transition Jacobian of state-space model 

𝐺𝑃𝑀−𝐹𝑒𝑠 The thermal conductance between permanent magnet and stator iron 

𝐺𝑊−𝐹𝑒𝑠 The thermal conductance between stator winding and stator iron 
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𝐻𝑘 The observation Jacobian of state-space model 

𝑖 Motor phase 

𝑖𝑑 d-axis current 

𝑖𝑑𝑎 The d-axis current associated with armature reaction 

𝑖𝑑𝐹𝑒 The equivalent current incurring loss in the equivalent resistor across d-

axis induced voltage 

𝑖𝑑𝑁 The d-axis current with negative pulse injection 

𝑖𝑑𝑞𝑠 𝑐
𝑠  The high-frequency current 

𝑖𝑞 q-axis current 

𝑖𝑞𝑎 The q-axis current associated with armature reaction 

𝑖𝑞𝐹𝑒 The equivalent current incurring loss in the equivalent resistor across q-

axis induced voltage 

𝑖𝑞𝑁 The q-axis current with negative pulse injection 

𝐼 Stator current 

𝐼𝑎𝑏𝑐_𝑝𝑒𝑎𝑘 The peak of phase current 

𝐼𝑏𝑎𝑠𝑒 Stator base current 

𝐼𝑟𝑎𝑡𝑒𝑑 Rated stator current 

𝐼𝑅𝑀𝑆 RMS current 

𝑘 Sampling index 

𝑘𝑐ℎ The correction term considering minor hysteresis loop effect 

𝑘𝑐𝑒 The correction term considering harmonics effect 

𝑘𝑒 Eddy-current constant 

𝑘𝑒𝑥𝑐 Excess loss constant 

𝑘ℎ Hysteresis constant 

𝐾𝑘 The optimal Kalman gain 

𝐾𝑁 The conversion ratio for current sensor 

𝐿∗ Differential inductance 

∑𝐿 The high-frequency inductance 

𝐿𝑑 d-axis inductance 

𝐿𝑑𝑑 d-axis self-inductance 



Page 15 of 166 

  

𝐿𝑑𝑞 Mutual inductance 

𝐿𝑞 q-axis inductance 

𝐿𝑞𝑑 Mutual inductance 

𝐿𝑞𝑞 q-axis self-inductance 

𝑚 The ratio of the peak of the harmonic component to that of the fundamental 

component 

𝑀𝑜 The observability matrix of state-space model 

𝑛 The number of sampling points in one PWM switching period  

𝑛𝑠𝑜 The order of state-space model 

𝑁 The number of minor loops 

𝑁𝑇 The number of turns for the wire wrapped around current sensor 

𝑂(𝑊𝑖, 𝑋𝑖) The activation function of Adaline neural network output 

𝑝 Pole pairs 

𝑝𝑐 The iron loss per unit weight 

𝑝𝑒 The eddy-current loss per unit weight 

𝑝𝑒𝑥𝑐 The excess loss per unit weight 

𝑝ℎ The hysteresis loss per unit weight 

𝑃𝐶𝑃 On-load iron loss associated with the main magnetizing flux path 

𝑃𝐶𝑇 On-load iron loss associated with the field weakening flux path 

𝑃𝐶𝑢 Resistive (copper) loss 

𝑃𝑓𝑒_𝑑 d-axis iron loss 

𝑃𝑓𝑒_𝑞 q-axis iron loss 

𝑃𝐹𝑒 Iron loss 

𝑃𝐹𝑒𝑠 The loss generated by the stator iron node in LPTN 

𝑃𝑘|𝑘(𝑃𝑘−1|𝑘−1) The ‘a posterior’ state estimate error covariance matrix 

𝑃𝑘|𝑘−1 The ‘a priori’ state estimate error covariance matrix 

𝑃𝑂𝐶 The iron loss for open-circuit condition 

𝑃𝑃𝑀 The loss generated by the permanent magnet node in LPTN 

𝑃𝑟𝑒𝑠𝑖𝑑 Residual (excess) loss 
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𝑃𝑆𝐶  The iron loss for short-circuit condition 

𝑃𝑆𝑇 The loss generated by the stator teeth node in LPTN 

𝑃𝑇𝑜𝑡𝑎𝑙 The total heat losses generated in a motor 

𝑃𝑊 The loss generated by the winding node in LPTN 

𝑄𝑘 The covariance of the process noise 

𝑅𝐹𝑒_𝑑 The equivalent resistor across d-axis induced voltage 

𝑅𝐹𝑒_𝑞 The equivalent resistor across q-axis induced voltage 

𝑅𝐹𝑒𝑠−𝐶 The thermal resistance between stator iron and cooling system 

𝑅𝑘 The covariance of the measurement noise 

𝑅𝑃𝑀−𝐴 The thermal resistance between permanent magnet and ambient 

𝑅𝑃𝑀−𝐹𝑒𝑠 The thermal resistance between permanent magnet and stator iron 

𝑅𝑃𝑀−𝑆𝑇 The thermal resistance between permanent magnet and stator teeth 

𝑅𝑃𝑀−𝑊 The thermal resistance between permanent magnet and stator winding 

𝑅𝑟𝑐 The high-frequency rotor resistance 

𝑅𝑟𝑒𝑠𝑖𝑠𝑡𝑜𝑟 The resistance of the resistor connected to current sensor 

𝑅𝑠 Stator resistance 

𝑅𝑠𝑐 The high-frequency stator resistance 

𝑅𝑆𝑇−𝐹𝑒𝑠 The thermal resistance between stator teeth and stator iron 

𝑅𝑆𝑇−𝑊 The thermal resistance between stator teeth and stator winding 

𝑅𝑊−𝐹𝑒𝑠 The thermal resistance between stator winding and stator iron 

𝑆 The sum of the squares of the deviations between the model curve 𝑦𝛽 and 

the observations 

𝑆𝑘 The measurement residual covariance matrix  

𝑡𝑎, 𝑡𝑏 The intervals the two adjacent active state vectors are applied 

𝑡𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 PWM switching period 

𝑡0 The interval zero-voltage vector is applied 

𝑇 Motor temperature 

𝑇𝑒 Estimated temperature 

𝑇𝑚 Measured temperature 

𝑇𝐴 Ambient temperature 
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𝑇𝑐𝑜𝑢𝑛𝑡 The sampling time in FPGA clock ticks 

𝑇𝐶 Cooling system temperature 

𝑇𝑑𝑒𝑎𝑑_𝑐𝑜𝑢𝑛𝑡 The dead-time in system count 

𝑇𝑑𝑒𝑎𝑑_𝑐𝑜𝑢𝑛𝑡 The dead-time in second 

𝑇𝑒𝑚 Electromagnetic torque 

𝑇𝐹𝑒𝑠 Stator iron temperature 

𝑇𝑘 The sampling rate for discrete-time thermal model 

𝑇𝐿 Load torque 

𝑇𝑃𝑀 Permanent magnet temperature 

𝑇𝑠 The sampling rate for the PWM-based method 

𝑇𝑠𝑒𝑐𝑜𝑛𝑑 The sampling time in second 

𝑇𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 Set-point temperature 

𝑇𝑆𝑇 Stator teeth temperature 

𝑇𝑤 Stator winding temperature 

𝑇0 Reference temperature 

𝑢(𝑢𝑘) The input vector of state-space model 

𝑣(𝑡𝑜𝑜𝑡ℎ) The imaginary voltage induced in a single-turn stator winding coil wound 

around a stator tooth 

𝑣𝑎𝑏𝑐 Three-phase voltages 

𝑣𝑎𝑣𝑔 The average PWM output voltage 

𝑣𝑑 d-axis voltage 

𝑣𝑑𝑞𝑠 𝑐
𝑠  The high-frequency voltage 

𝑣𝑘 The measurement noise of state-space model 

𝑣𝑙𝑜𝑎𝑑(𝑡𝑜𝑜𝑡ℎ) The current-induced-EMF per tooth 

𝑣𝑞 q-axis voltage 

𝑣𝛼 𝛼-axis voltage 

𝑣𝛽 𝛽-axis voltage 

�̅�∗ The reference voltage vector 

�̅�𝑎, �̅�𝑏 The components of �̅�∗aligned in the directions of the two adjacent active 

state vectors on the hexagon diagram 
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𝑉𝑑
∗ The demagnetization field equivalent voltage 

𝑉𝑑𝑐 The DC link voltage for the inverter 

𝑉𝑒𝑚𝑓 Back-EMF 

𝑉𝑚 The terminal voltage without the voltage drop across stator resistance 

𝑉𝑜 The voltage signal representing temperature measurement 

𝑉𝑟𝑒𝑠𝑖𝑠𝑡𝑜𝑟 The voltage across the resistor connected to current sensor 

𝑉0⋯7 The active and zero state vectors on the hexagon diagram 

𝑤𝑘 The process noise of state-space model 

𝑊𝑖 The net weight of the Adaline NN mathematical model 

𝑥, 𝑥𝑘 , 𝑥𝑘−1 The state vector of state-space model 

𝑥𝑘|𝑘(𝑥𝑘−1|𝑘−1) The ‘a posterior’ state estimate  

𝑥𝑘|𝑘−1 The ‘a priori’ state estimate  

𝑋𝐴, 𝑋𝐵 Quadrature encoder output channels producing relative rotor angular 

position 

𝑋𝑖 The input of the Adaline NN mathematical model 

𝑋𝑍 Quadrature encoder index channel 

𝑦 The output vector of state-space model 

𝑦𝑘 The measurement residual 

𝑦𝛽 Nonlinear model curve  

𝑧𝑘 The measurement of the state variable in state-space model 

𝑍𝑑𝑞𝑠
𝑠  The high-frequency impedance 

𝛼 The location of the reference voltage vector on the hexagon diagram 

𝛼𝑐𝑢 The temperature coefficient for stator winding 

𝛼𝐹𝑒𝑠 The temperature coefficient for stator iron 

𝛼𝐹𝑒𝑠−𝐶 The coefficient for the convection effect between stator and cooling system 

𝛼𝑚𝑎𝑔 The magnet resistive temperature coefficient 

𝛼𝛽𝑟 The temperature coefficient for PM magnetic field 

𝛽 The parameters of the nonlinear model curve 𝑦𝛽 

𝛽𝐶𝑢 The skin and proximity effect coefficient 
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∆𝐵𝑖 The small flux density variation around a hysteresis minor loop 

Δ𝑣 The voltage error due to inverter dead-time effect 

Δ𝜓𝑑𝑞 The dq-axis flux linkage estimation error  

𝜂 The convergence factor adjusting the convergence of 𝑊𝑖 

𝜃 Rotor angular position 

𝜃𝑜𝑓𝑓𝑠𝑒𝑡 A constant value added to the relative rotor angular position 

𝜃𝑟 Relative rotor angular position 

𝜆𝑑 Damping factor controlling the minimization of the cost function 𝑆 

𝜆𝑒𝑚𝑓 EMF constant 

𝜓𝑑 d-axis flux linkage 

𝜓𝑑
∗  Demagnetization field 

𝜓𝑚 Permanent magnet flux linkage 

�̂�𝑚 Permanent magnet flux linkage estimation 

𝜓𝑚_𝑝ℎ Three-phase flux linkage 

𝜓𝑞 q-axis flux linkage 

𝜔𝑏𝑎𝑠𝑒 Rotor base speed 

𝜔𝑐 The high-frequency carrier frequency 

𝜔𝑟 Rotor speed 

𝜔1,2,3⋯ The electrical speed of the first/second/third-order ⋯ harmonic 
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Abbreviations 

AC Alternating current 

ADC Analogue-to-digital converter 

BLAC Brushless AC machine/drive 

DC Direct current 

EKF Extended Kalman Filter 

EMF Electromotive force 

FE Finite element 

FEA Finite element analysis 

FEM Finite element method 

FOC Field-oriented control 

FPGA Field-programmable gate array 

GaAs Gallium Arsenide 

HIL Hardware-in-the-Loop  

IM Induction machine 

I/O Input/output 

IPMSM Interior permanent magnet synchronous machine 

IrDA Infrared Data Association 

LED Light-emitted diode 

LMS Least mean square 

LPTN Lumped parameter thermal network 

LUT Look-up table 

MOSFET Metal-oxide-semiconductor field-effect transistor 

NdFeB Neodymium iron boron magnet 

NI National Instrument 

NN Neural network 

OC Open-circuit 

PC Personal computer 

PI Proportional-integral 
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PM Permanent magnet 

PMSM Permanent magnet synchronous machine 

PSO Particle swarm algorithm 

PWM Pulse width modulation 

RAM Random-access memory 

Ref Reference 

RK1 Explicit Euler method 

RL Resistor-inductor 

RLS Recursive least square 

RMS Root mean square 

RTD Resistance temperature detector 

SC Short-circuit 

SiFe Silicon-Iron material 

SIR Serial Infrared scheme 

SPMSM Surface-mounted permanent magnet synchronous machine 

SQP Sequential quadratic programming 

SV-PWM Space-vector pulse width modulation 

3-D Three-dimensional 

TI Texas Instruments 

UART Universal Asynchronous Receiver Transmitter 

WLTP Worldwide harmonized light-duty vehicles test procedure 
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Chapter 1: Introduction and Literature Review  

1.1 Introduction 

Permanent magnet synchronous machines (PMSMs) are widely popular in servo and traction 

applications due to their high torque and power density. Their use in applications where high 

reliability must be guaranteed requires careful online condition monitoring of the motor [1]-

[5]. The performance of a PMSM is strongly affected by its internal temperatures, due to the 

dependence of the stator winding and permanent magnet remanence on temperature [6], [93]. 

More importantly, temperature is typically the main environmental stressor which may cause 

motor state-of-health degradation and ultimately failure. With regard to the motor stator, the   

temperature limit normally occurs in stator winding insulation, which is classified according to 

maximum allowable stator winding operating temperature. Thermal overload can significantly 

shorten stator insulation lifetime [7]. In addition, excessive thermal stress increases the risk of 

partial, or even total irreversible demagnetization of rotor magnet, especially with the motor 

operated in flux weakening mode [8]. Besides, high temperature may lead to a shortened device 

lifespan [60]. Therefore, thermal monitoring of PMSMs is particularly significant. 

Several direct and indirect temperature monitoring techniques are well established. 

Temperature sensors such as thermocouples and thermistors can be relatively easily embedded 

into machine stators during the manufacturing process. However, the requirement for 

additional sensors may increase costs. Rotor temperatures are difficult to measure in practice, 

as the motor rotating shaft can only be accessed through slip rings [9]-[10], infrared [11]-[12], 

or other wireless sensors [13]-[14], making direct measurement unrealistic in most 

applications. In addition, rotor temperature measurement technique is limited to laboratory use, 

because specific instruments are selected for a particular motor [15]. Hence model-based 

methods, have been investigated in the past decades. 

It is possible to determine motor temperatures via temperature dependent electrical parameters 

[16]-[38]. In [16]-[21], rotor temperature is estimated by measuring the response to the 

injection of a pulsating high-frequency current signal to the d-axis of the PMSM noting that 

the resulting high-frequency resistance varies with the rotor temperature. Ref. [22]-[25] 

propose the detection of variations in the slope of the d-current response to a voltage pulse 

applied in the d-axis of the motor, which is an indicator of the magnetization level variation of 

the PM. Rotor temperature can also be potentially acquired indirectly from the estimation of 
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rotor magnet flux linkage, using the fact that (NdFeB) PM loses 0.11% to 0.12% remanence 

per one degree Celsius temperature rise. An online method [26] to estimate stator resistance 

and rotor PM flux linkage under constant load torque with two sets of dq-axis voltage equations 

corresponding to 𝑖𝑑 = 0 and the injection of a 𝑖𝑑 ≠ 0 test signal [27], is proposed. Likewise, 

by utilizing a zero-voltage injection scheme, flux linkage is directly determined with the 

measurement of the average value of the voltage commands which are the outputs of current 

loop PI controllers of the standard field-oriented control (FOC) at different rotor speeds [28]. 

In both methods, the dq-axis inductance terms are cancelled during the derivations of the 

methods, resulting in a parameter-independent estimation. However, these signal injection-

related methods are not desirable because the additional signal disturbs the motor performance 

by producing additional current and thus additional torque ripples and additional losses. The 

use of a rotor flux linkage model-based observer is proposed in [8], [29]-[31], where the 

variation in the flux linkage due to the temperature change is retrieved from the difference in 

the dq-axis currents between the measurement and an accurate PMSM model considering 

saturation effect. Nevertheless, this method is difficult to apply practically, because of the 

necessity of a precise modelling for motor and inverter — the model-related errors otherwise 

will be misinterpreted as temperature changes. 

Another most commonly used approach uses thermal models usually based on a lumped 

parameter equivalent thermal network (LPTN). It can be the basis for a thermal ‘observer’ 

which, combined with loss models, is capable of providing accurate temperature estimation 

during real-time operation. A handful of multi-node thermal models for induction motors (IMs) 

and PMSMs are presented in [39]-[49]. They are able to predict the temperatures in a number 

of locations within the machine. However, the models require information on the internal 

topology, materials, and interfaces between them which might not be directly available in 

practical applications. Additionally, accurate estimation of losses and characterization of 

boundary conditions, e.g. heat transfer coefficients are not straightforward and empirical 

functions [50]-[53] need to be used. One such high-fidelity electro-thermally coupled model 

for interior PMSM (IPMSM) was introduced in [6], [54]. The motor temperatures can be 

predicted by an appropriate thermal network represented by a set of state-space equations, with 

the losses provided by a robust IPMSM model, which takes into account saturation, harmonics, 

iron loss and temperature effects. Low-order LPTNs [7], [31], [55]-[60] lump large regions of 

the machine in few nodes and detailed knowledge of the motor internal topology, materials and 

dimensions might not be required if measurement-based parameter identification procedures, 
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which determine the values of the thermal parameters based on the minimization of a specified 

cost function, are used. 

Considering the significance of temperature monitoring from the perspective of prolonging the 

life spans of PMSMs and the challenges facing temperature measurement, this thesis aims for 

presenting a simple, accurate and robust three-node LPTN suitable for the online estimations 

of the critical temperatures in PMSMs. The primary objectives of the thesis are: a) to study the 

indirect temperature monitoring techniques, particularly the use of LPTNs with low model 

orders, b) to establish a three-node LPTN and conduct validation in offline simulation, c) to 

investigate the rotor temperature estimation methods using the thermal properties of motor 

electrical parameters, due to the difficulty in acquiring a rotor temperature measurement for 

the modelling of the LPTN, d) to develop a PWM-based method for predicting the PM flux 

linkage and rotor temperature and examine its validity through a series of simulation and 

experimental tests, e) to evaluate the performance of the LPTN integrated with the rotor 

temperature estimation method, f) to conclude, and outline the direction for future research — 

combining the system with a stator temperature estimation approach.  

The thesis is structured as follows: an in-depth literature review of motor temperature 

measurement and estimation approaches is presented in the following section. Chapter 2 

proposes a three-node thermal model for the prediction of the critical temperatures in PMSMs, 

and chapter 3 introduces a PWM-based estimation method serving as a rotor temperature 

measurement for the thermal model. Finally, the estimated temperatures of the experimentally-

tested motor combining the methodologies introduced in the previous chapters are shown in 

chapter 4. 

Two major factors motivate the research work undertaken in this PhD project. First, compared 

to the conventional electromagnetic design, there is a dearth of study on the thermal 

management of an electrical machine. Second, motor temperature affects motor 

electromagnetic performance and relates to motor safe operation. This thesis will be of good 

value for motor designers, as the knowledge of motor critical temperatures provides the 

designers with the opportunities to significantly improve motor output and efficiency. In 

addition, the methods allow users to monitor the temperatures of a PMSM online, which 

prevents unexpected motor shutdowns and extends the motor lifespan. 
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1.2 Literature Review 

1.2.1 A Review of Temperature Measurement Techniques 

Knowledge of motor temperatures is significant particularly from the perspective of safe motor 

operation. The most accurate approach to access temperature information is through 

measurement techniques. Also, despite the fact that model-based temperature estimation 

method has been at the centre of research interest, validation of the obtained results still requires 

temperature measurements. Stator temperature can be acquired by means of temperature 

sensors, such as thermocouples and thermistors, which can be installed directly into stator slot 

or winding and are commonly used in commercial PMSMs, particularly in applications where 

the reliability of temperature data is crucial. The measurement of rotor temperature remains a 

challenge as a result of rotation. In general, rotor temperature monitoring can be achieved by 

adopting contact or non-contact measuring techniques.  

 

 

 

 

 

 

 

 

 

 

 

Non-contact measurement techniques are relatively simple to apply, because temperature 

information can be obtained directly from the temperature-sensing device employed and thus 

the data transmission from motor rotating part is avoided. The use of an infrared camera is 

presented in [18], in which the temperature of the side surface of the PM is captured, as 

illustrated in Fig. 1-1. However, the temperature towards the centre of the machine is 

unmeasurable. Furthermore, a circular slot is cut on the motor end frame in order for the camera 

Fig. 1-1:  (a) circular window on the tested motor (b) Thermal image 
through the window and (c) Schematic of the image (b) [18] 
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to access the PM, which inevitably affects the motor operation and robustness. Ref. [11] 

introduces a similar setup. Instead of an infrared camera, a thermometer is placed into the slot 

for the rotor temperature measurement. The same limitation applies, in spite of the cost being 

reduced. 

Other non-contact techniques include the use of the fibre-optic conveyed, laser-induced 

fluorescence of a thermographic phosphor [61], and Gallium Arsenide (GaAs) chip [62] which 

is a temperature-sensitive detector able to be fixed onto rotor surface. Both methods however 

are flawed as only average rotor temperature can be obtained. Besides, this type of approach 

suits only large-sized motors rotating at lower speeds. 

On the other hand, contact measurement techniques involve the use of a rotating 

instrumentation collecting temperature data from the sensors and a transmission strategy 

allowing the data to be communicated to a stationary receiver, and therefore to a certain degree 

resolves the issue regarding non-contact techniques, because it allows multiple measurement 

points along the axial and radial directions of the PM which guarantees a better precision.  

Contact measurement techniques can be categorized based on sensor type and data 

transmission procedure. The thermocouple, as one of the most common types of temperature 

sensing device, is employed in a variety of monitoring systems [63]-[66]. Compared with 

resistance temperature detector (RTD) [9], [67]-[68], which operates on the principle that the 

electrical resistance of a material is temperature-dependent, thermocouple is more desirable as 

current or voltage supply is not required. In addition, they have relatively good linearity and 

are not limited by size.  

The data collected by sensors is transmitted from rotor to a stationery platform. Several 

methods are available, including slip rings, light transmission, and radio telemetry. With regard 

to slip rings, ref. [10] presents a system reading and processing the temperature data through 

eleven shaft-mounted brush slip-rings. This method discloses several issues such as limited 

number of rings, electrical noise and suitable motor operating speed range. Nevertheless, it is 

among the most effective methods from the point of view of the requirement of motor 

disassembly [9]. Ref. [63]-[65], [67] demonstrate a few applications in which the temperature 

data transmission is achieved by light, and the results are highly reliable and immune to noise. 

However, the location where the light emitter has to be situated determines that only a hollow 

shaft encoder can be used. In [13] and [68], an approach using radio telemetry is introduced, 

where a wireless module which operates at a high carrier frequency is adopted. The main 
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drawback of this particular strategy is electromagnetic interference, as up to 10% packet loss 

is possible during data transmission due to strong magnetic field. Although amplifying wireless 

transmission power can eliminate electromagnetic interference, it increases the level of the 

power consumption. 

A state-of-the-art rotor temperature monitoring system taking into consideration the defects of 

the proposed methods is introduced in [15]. The instruments comprise a dozen thermocouples 

for the rotor temperature measurement, a microcontroller for the data processing, and optical 

link transmitting the data between the rotor and a host PC. The schematic diagram of the system 

is demonstrated in Fig. 1-2. 

 

 

 

 

 

 

 

 

 

 

 

 

Twelve K-type thermocouples are placed at various positions on the rotor surface in order to 

obtain the temperature distribution in axial and radial directions. Each thermocouple connects 

with a single integrated circuit AD597, where the amplification and cold junction compensation 

of the thermocouple output voltage is implemented. The analogue voltage output is then 

digitized by the analogue-to-digital converter (ADC) of a PIC24FJ-family microcontroller. The 

data collected from all twelve sensors is packed and transferred to a Universal Asynchronous 

Receiver Transmitter (UART) on-chip module. It receives data bytes and transmits the 

individual bit sequentially. The transmitted data is used to control the switching state of a LED. 

Fig. 1-2:  Schematic of the temperature monitoring system [15] 
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Ref. [15] selects the Infrared Data Association (IrDA) for the data transmission protocol 

because a) it is UART-supported, and b) it significantly reduces the power consumption.   

The mechanical assembly of the system is shown in Fig. 1-3. Two printed circuit boards (PCB) 

for the thermal conditioners AD597 and the microcontroller integrated with the power 

electronic are adopted, in order to minimize the diameter of the board. The PCBs are then fitted 

into two aluminium frames which are separated by a plastic battery container. Also, a no less 

than 5𝑚𝑚 slot into the motor shaft is required leading the thermocouples through to the 

instruments from the rotor.  

In conclusion, the rotor temperature estimation system in [15] is capable of measuring the 

temperatures at various locations on the rotor surface, and withstanding tangential and 

centrifugal forces at 6000𝑟𝑝𝑚 rotating speed thanks to the slim circuit design. It presents 

relatively high immunity to electromagnetic interference, as the aluminium frame can provide 

the circuits with an electrostatic shield. In addition, a low-pass filter is applied to each ADC 

channel to acquire a smooth and stable temperature signal. With the power saving protocol 

IrDA SIR, long-hour operation can be warranted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1-3:  Rotor temperature monitoring system: a) mechanical assembly 
diagram and b) demonstration of the physical instruments [15] 
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Ref. [14] presents a wireless PM temperature measurement system for PMSMs with high 

spatial resolution and low sampling rate. The magnetic field is monitored synchronously with 

the PM temperature, which provides a platform to evaluate the risks of partial or global 

demagnetization of the PM, and the relationship between the field and magnet, and to validate 

the already-existing estimation methods. Similarly to [15], the temperature and field 

measurements are performed using sensors, and the microcontrollers undertake data collection 

and manipulation processes. The temperature and field measurements are transmitted to a 

central PC via 𝑊𝑖𝐹𝑖 link and are later assessed. 

Fifteen temperature sensors and fifteen field sensors are installed on the rotor surface. TMP100 

digital temperature sensors are employed and connected with a PIC24FJ64GA004 

microcontroller denoted as ‘Slave 𝜇𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟’ through an 𝐼2𝐶 bus. The magnetic field is 

measured by GaAs sensors, which output analogue voltages. They are converted into digital 

signals in the Slave 𝜇𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 following a suitable modification. The Slave 𝜇𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟s 

interact via 𝑆𝑃𝐼 with a Master 𝜇𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟, which collects the temperature measurements 

from the Slave 𝜇𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟s and transmits them to a central PC using 𝑊𝑖𝐹𝑖, and  a 𝑆𝑃𝐼 𝑆𝑅𝐴𝑀 

memory with a faster data transmission rate is used for the collection and transmission of the 

field measurement data. 

The practical implementation of the measurement system is illustrated in Fig. 1-4. The 

temperature and field sensors are distributed in a 3 × 5 style as shown in Fig. 1-4(a), and are 

attached onto a flexible PCB (Fig. 1-4(b)). The flexible PCBs’ are installed in the motor during 

the rotor assembly (Fig. 1-4(c)) and then mounted on a connection PCB shown in Fig. 1-4(d), 

which is fixed onto the shaft (Fig. 1-4(e)). As can be seen from Fig. 1-4(f)-(h), the 𝐼2𝐶 buses 

connect with the Slave 𝜇𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟s, which are assembled along with the filtering and 

conditioning devices, Master 𝜇𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟s, 𝑆𝑃𝐼 𝑆𝑅𝐴𝑀 memories, and 𝑊𝑖𝐹𝑖 module into an 

aluminium box through a hollow shaft. The box is then fitted onto the motor shaft.  

The wireless temperature-field measurement system is advantageous because it overcomes the 

limitation of the positioning of the large number of sensors and meets the requirement of high 

data acquisition and transmission rates. Also, it is able to measure magnetic field 

simultaneously with rotor temperatures using field sensors, which are not included in the other 

systems. 
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Fig. 1-4:  Mechanical assembly of the presented measurement system 
[14] 
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1.2.2 Temperature Estimation Methods Based on Electrical 

Parameters 

Regardless of higher accuracy and reliability, the hindrances to the use of temperature 

measurement systems are evident, considering costs and some practical difficulties facing rotor 

temperature measurement. As a result, immense effort has been put into developing the 

methodologies in which rotor temperature can be derived from most-common motor 

parameters, such as voltage and current in recent years.  

1.2.2.1 Stator Temperature 

While stator temperature monitoring techniques are well established, the search for the 

estimation methods without the involvement of sensors continues. Stator winding temperature 

can be predicted based on its linear relationship with stator resistance. In [69]-[71], the methods 

suitable for stator resistance estimation are presented. By superposing intermittently a DC 

voltage offset in one or more motor phases, winding resistance estimation is dependent on the 

variations in rotor flux linkage and inductances. Nevertheless the disturbance of the DC voltage 

injection to the system stability is not taken into consideration. Signal injection technique is 

also applied in [72], where stator resistance is estimated at low motor speed based on the 

combination of a speed-adaptive observer and a high-frequency voltage injection. Ref. [26] 

proposes an online method to estimate stator resistance under constant load torque condition, 

with two sets of dq-axis voltage equations obtained at 𝑖𝑑 = 0 and  𝑖𝑑 ≠ 0. Compared to [32], 

[35], [73]-[75], it does not require the knowledge of parameter nominal values, and its accuracy 

is not affected by the variation in motor parameters due to 𝑖𝑑 ≠ 0. In addition, ref. [76] 

introduces a new estimation scheme involving the use of the recursive least square (RLS) 

algorithm. The value of stator resistance as a result can be updated continuously in real-time. 

1.2.2.2 Rotor Temperature 

The research into rotor temperature estimation is of greater value, because high temperature 

could lead to local or even global rotor magnet demagnetization. Besides, measuring rotor 

temperature is not practically applicable in most applications due to rotor spin, and it may 

interfere with motor operation. In general, two approaches based on signal injection and flux 

observer are frequently employed, both of which predict rotor temperature using the thermal 

properties of electrical parameters such as winding resistance, and PM flux linkage. However, 

this type of method requires particularly accurate modelling for high-power and high-efficiency 
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motors, as their PMs are not temperature-sensitive, and their resistive voltage drops compared 

to the terminal voltages are rather small. Also, the signal injected generates ripples and losses, 

which could affect motor performance. PM flux linkage can also be estimated with assistance 

from some measuring instruments [18], [77]-[79], such as a digital power meter, which 

measures motor armature current and voltage. However such instruments are expensive. 

Ref. [18] proposes an estimation method using a high-frequency injection signal, as the 

resulting resistance changes with PM temperature. A simplified high-frequency model can be 

obtained, following the injection of a high-frequency carrier rotating voltage vector to the stator 

windings: 

𝑣𝑑𝑞𝑠 𝑐
𝑠 = 𝑉𝑐𝑒

𝑗(𝜔𝑐𝑡) (1-1) 

𝑣𝑑𝑞𝑠 𝑐
𝑠 = 𝑍𝑑𝑞𝑠

𝑠 𝑖𝑑𝑞𝑠 𝑐
𝑠  (1-2) 

𝑍𝑑𝑞𝑠
𝑠 = ∑𝑅 + 𝑗𝜔𝑐∑𝐿 (1-3) 

∑𝑅 = 𝑅𝑠𝑐 + 𝑅𝑟𝑐 (1-4) 

The variations in the motor temperatures lead to the variations in the stator resistance and rotor 

resistance, which represents the eddy-current magnet loss as a result of the high-order 

harmonics of the stator current [80]. Additionally, the d-axis and q-axis inductances of the 

motor also vary with the rotor temperature, as a result of the change in the magnet field which 

is nonlinearly related to the overall saturation level of the motor. In spite of the fact that the 

rotor temperature could be predicted potentially by either the inductance or resistance, the use 

of resistance is preferable due to the linear relationship between resistance and temperature. 

Therefore, the PM temperature can be estimated based on the following equations: 

∑𝑍 = ∑𝑅 + 𝑗𝜔𝑐∑𝐿 =
𝑣𝑑𝑞𝑠 𝑐

𝑠

𝑖𝑑𝑞𝑠 𝑐
𝑠  

(1-5) 

∑𝑅(𝑇𝑊,𝑇𝑃𝑀) = |∑𝑍(𝑇𝑊,𝑇𝑃𝑀)| cos(𝜑∑𝑍) (1-6) 

∑𝑅(𝑇𝑊,𝑇𝑃𝑀) = 𝑅𝑠𝑐(𝑇0)[1 + 𝛼𝑐𝑢(𝑇𝑊 − 𝑇0)] + 𝑅𝑟𝑐(𝑇0)[1 + 𝛼𝑚𝑎𝑔(𝑇𝑃𝑀 − 𝑇0)] (1-7) 

𝑇𝑃𝑀 = 𝑇0 +
∑𝑅(𝑇𝑊,𝑇𝑃𝑀) − 𝑅𝑟𝑐(𝑇0) − 𝑅𝑠𝑐(𝑇0)[1 + 𝛼𝑐𝑢(𝑇𝑊 − 𝑇0)]

𝑅𝑟𝑐(𝑇0)𝛼𝑚𝑎𝑔
 

(1-8) 

and: 
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𝜑∑𝑍 = tan−1 (
𝜔𝑐∑𝐿

∑𝑅
) 

(1-9) 

The implementation of the PM temperature estimation method is shown in Fig. 1-5. The carrier 

signal is injected intermittently in order to avoid undesired interference to normal motor 

operation. The voltage injection process takes place during a period of 𝑡1, while a short blank 

interval is applied prior to the measurement of the motor current, allowing the initial transient 

respond to disappear. Fig. 1-6 presents the block diagram of the estimation process. Two state 

filters are employed to eliminate the negative sequence components in the voltage and current 

signals.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In [25], a novel technique is presented, which estimates PM temperature through the detection 

of the changes in the d-axis saturation level of a PMSM (SPMSM/IPMSM) due to the variations 

Fig. 1-6:  Estimation progress block diagram [18] 

Fig. 1-5:  Method implementation schematic [18] 
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in the PM magnetization level. The changes can be observed in the slope of the d-axis current 

responding to a voltage pulse injected into the d-axis of the motor.  

The q-axis current is set to be zero such that the d-axis current response 𝑑𝑖𝑑 𝑑𝑡⁄  is dependent 

predominantly on the excitation signal and the PM flux linkage. It can be achieved with a three-

phase two-level bridge inverter, for which the switching combination generates a d-axis voltage 

pulse, with the angle between stator and rotor reference frames being one of the six space vector 

angles (0°, 60°, 120°, 180°, 240°, 300°). Zero angle is used for simplicity — the voltage 

injection therefore can be applied in phase A of the motor as the rotor moves past zero electrical 

position. The implementation of this injection-based scheme is demonstrated in Fig. 1-7. 

 

 

 

 

 

 

 

In the rotor reference frame, the dq-axis voltage equations of the motor are given as: 

𝑣𝑑 = 𝑅𝑠𝑖𝑑 + 𝐿𝑑𝑑
∗

𝑑𝑖𝑑
𝑑𝑡

+ 𝐿𝑑𝑞
∗

𝑑𝑖𝑞

𝑑𝑡
− 𝜔𝑟𝐿𝑞𝑞𝑖𝑞 − 𝜔𝑟𝐿𝑞𝑑𝑖𝑑 

(1-10) 

𝑣𝑞 = 𝑅𝑠𝑖𝑞 + 𝐿𝑞𝑞
∗

𝑑𝑖𝑞

𝑑𝑡
+ 𝐿𝑞𝑑

∗
𝑑𝑖𝑑
𝑑𝑡

+ 𝜔𝑟𝐿𝑑𝑑𝑖𝑑 + 𝜔𝑟𝐿𝑑𝑞𝑖𝑞 + 𝜔𝑟𝜓𝑚 
(1-11) 

𝐿∗ represents the differential inductance with respect to the motor currents: 

𝐿𝑑𝑑
∗ = 𝐿𝑑𝑑 +

𝑑𝐿𝑑𝑑

𝑑𝑖𝑑
𝑖𝑑 

(1-12) 

𝐿𝑑𝑞
∗ = 𝐿𝑑𝑞 +

𝑑𝐿𝑑𝑞

𝑑𝑖𝑞
𝑖𝑞 

(1-13) 

𝐿𝑞𝑞
∗ = 𝐿𝑞𝑞 +

𝑑𝐿𝑞𝑞

𝑑𝑖𝑞
𝑖𝑞 

(1-14) 

𝐿𝑞𝑑
∗ = 𝐿𝑞𝑑 +

𝑑𝐿𝑞𝑑

𝑑𝑖𝑑
𝑖𝑑 

(1-15) 

Fig. 1-7:  Voltage-injection scheme based on three-phase inverter 
switching pattern [25] 
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Assuming the motor is connected in star connection, the dq-axis voltages 𝑣𝑑 and 𝑣𝑞 after the 

injection of the voltage pulse are: 

𝑣𝑑 ≈ 𝑣𝛼 =
2

3
𝑉𝑑𝑐 

(1-16) 

𝑣𝑞 ≈ 𝑣𝛽 = 0 (1-17) 

Therefore rearranging (1-10) yields: 

𝐿𝑑𝑑
∗

𝑑𝑖𝑑
𝑑𝑡

=
2

3
𝑉𝑑𝑐 − 𝑅𝑠𝑖𝑑 − 𝐿𝑑𝑞

∗
𝑑𝑖𝑞

𝑑𝑡
+ 𝜔𝑟𝐿𝑞𝑞𝑖𝑞 + 𝜔𝑟𝐿𝑞𝑑𝑖𝑑 

(1-18) 

The differential inductance 𝐿𝑑𝑑
∗  has a strong dependency on the d-axis saturation level. Thus 

the value of 𝑑𝑖𝑑 𝑑𝑡⁄  can be used as an indicator of the PM magnetization level which is linearly 

dependent on the rotor temperature. Nonetheless, at high motor speed the q-axis current 𝑖𝑞 

varies during the voltage injection process, in order to cancel out the back-EMF term 𝜔𝑟𝜓𝑚 in 

(1-11) as the q-axis voltage 𝑣𝑞 is set to zero. This unfortunately affects the d-axis current 

response 𝑑𝑖𝑑 𝑑𝑡⁄  in (1-18), introducing an error in the estimated rotor temperature.  

A negative voltage pulse is injected into the d-axis, which leads to: 

𝐿𝑑𝑑
∗

𝑑𝑖𝑑𝑁

𝑑𝑡
= −

2

3
𝑉𝑑𝑐 − 𝑅𝑠𝑖𝑑𝑁 − 𝐿𝑑𝑞

∗
𝑑𝑖𝑞𝑁

𝑑𝑡
+ 𝜔𝑟𝐿𝑞𝑞𝑖𝑞𝑁 + 𝜔𝑟𝐿𝑞𝑑𝑖𝑑𝑁 

(1-19) 

By subtracting (1-19) from (1-18), the effect of 𝑖𝑞 can be eliminated from the d-axis current 

response, under the conditions that the inductances are independent on the voltage pulses and 

𝑖𝑞 = 𝑖𝑞𝑁. 

𝐿𝑑𝑑
∗ (

𝑑𝑖𝑑
𝑑𝑡

−
𝑑𝑖𝑑𝑁

𝑑𝑡
) =

4

3
𝑉𝑑𝑐 − 𝑅𝑠(𝑖𝑑 − 𝑖𝑑𝑁) + 𝜔𝑟𝐿𝑞𝑑((𝑖𝑑 − 𝑖𝑑𝑁)) 

(1-20) 

The voltage terms relating to stator resistance and rotor speed in (1-20) are not taken into 

account to simplify the estimation. 

The information of rotor temperature can also be extracted from PM flux linkage, as PM 

remanence decreases with rotor temperature. A parameter estimation method is proposed in 

[26], which is capable of predicting stator winding resistance and PM flux linkage 

simultaneously. At steady state, the dq-axis voltage equations of a PMSM are expressed as: 

𝑣𝑑(𝑘) = 𝑅𝑠𝑖𝑑(𝑘) − 𝐿𝑞𝜔𝑟(𝑘)𝑖𝑞(𝑘) (1-21) 

𝑣𝑞(𝑘) = 𝑅𝑠𝑖𝑞(𝑘) + 𝐿𝑑𝜔𝑟(𝑘)𝑖𝑑(𝑘) + 𝜓𝑚𝜔𝑟(𝑘) (1-22) 



Page 36 of 166 

  

in which 𝑘 represents the 𝑘𝑡ℎ sampling instant,. It is obvious that the parameters 𝑅𝑠, 𝐿𝑑, 𝐿𝑞, 

and 𝜓𝑚 are unsolvable as the rank of the equations is less than the number of the variables. As 

a result, a current pulse is injected into the d-axis of the motor which provides a different set 

of voltage equations. The schematic of the data acquisition processes is presented in Fig. 1-8. 

 

 

 

 

 

 

 

The d-axis current is controlled to be zero before and after the pulse injection. A short time 

delay is applied to avoid the sampling of the step transient resulting from the injection. Two 

sets of data correspond to two sets of equations, which can be written as: 

𝑣𝑑0(𝑘0) = −𝐿𝑞0𝜔𝑟(𝑘0)𝑖𝑞0(𝑘0) (1-23) 

𝑣𝑞0(𝑘0) = 𝑅𝑠𝑖𝑞0(𝑘0) + 𝜓𝑚0𝜔𝑟(𝑘0) (1-24) 

𝑣𝑑(𝑘1) = 𝑅𝑠𝑖𝑑(𝑘1) − 𝐿𝑞𝜔𝑟(𝑘1)𝑖𝑞(𝑘1) (1-25) 

𝑣𝑞(𝑘1) = 𝑅𝑠𝑖𝑞(𝑘1) + 𝐿𝑑𝜔𝑟(𝑘1)𝑖𝑑(𝑘1) + 𝜓𝑚𝜔𝑟(𝑘1) (1-26) 

where the subscript 0 and 1 denote 𝑖𝑑 = 0 and 𝑖𝑑 ≠ 0 operating conditions, respectively. Due 

to the electrical time constant of a PMSM being significantly smaller than its mechanical and 

temperature constants, it is assumed that the stator resistance and motor rotating speed remain 

unaffected during the signal injection period, which is kept short to reduce its influence on the 

motor performance. With the motor under constant load torque, and speed being constant, the 

electromagnetic torques at 𝑖𝑑 = 0 and 𝑖𝑑 ≠ 0 are identical: 

𝑇𝑒𝑚(𝑘0) =
3

2
𝑝𝜓𝑚0𝑖𝑞0(𝑘0) 

(1-27) 

𝑇𝑒𝑚(𝑘1) =
3

2
𝑝[𝜓𝑚𝑖𝑞(𝑘1) + (𝐿𝑑 − 𝐿𝑞)𝑖𝑑(𝑘1)𝑖𝑞(𝑘1)] 

(1-28) 

𝑇𝑒𝑚(𝑘0) = 𝑇𝑒𝑚(𝑘1) (1-29) 

Fig. 1-8:  Practical implementation of the presented method [26] 
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From (1-27) to (1-29), the rotor flux linkage can be derived as: 

𝜓𝑚 = 𝜓𝑚0

𝑖𝑞0(𝑘0)

𝑖𝑞(𝑘1)
+ (𝐿𝑞 − 𝐿𝑑)𝑖𝑑(𝑘1) 

(1-30) 

Substituting (1-30) into (1-26) gives: 

𝑣𝑞(𝑘1) = 𝑅𝑠𝑖𝑞(𝑘1) + (𝜓𝑚0

𝑖𝑞0(𝑘0)

𝑖𝑞(𝑘1)
+ 𝐿𝑞𝑖𝑑(𝑘1))𝜔𝑟(𝑘1) 

(1-31) 

Multiplied by 𝑖𝑞(𝑘1), equation (1-31) becomes: 

𝑣𝑞(𝑘1)𝑖𝑞(𝑘1) =  𝑅𝑠𝑖𝑞
2(𝑘1) + (𝜓𝑚0𝑖𝑞0(𝑘0) + 𝐿𝑞𝑖𝑑(𝑘1)𝑖𝑞(𝑘1))𝜔𝑟(𝑘1) (1-32) 

Multiplying (1-25) by 𝑖𝑑(𝑘1) produces: 

𝑣𝑑(𝑘1)𝑖𝑑(𝑘1) = 𝑅𝑠𝑖𝑑
2(𝑘1) − 𝐿𝑞𝜔𝑟(𝑘1)𝑖𝑞(𝑘1)𝑖𝑑(𝑘1) (1-33) 

Adding (1-33) to (1-32): 

𝑣𝑞(𝑘1)𝑖𝑞(𝑘1) + 𝑣𝑑(𝑘1)𝑖𝑑(𝑘1) = 𝑅𝑠 (𝑖𝑞
2(𝑘1) + 𝑖𝑑

2(𝑘1)) + 𝜓𝑚0𝑖𝑞0(𝑘0)𝜔𝑟(𝑘1) (1-34) 

Therefore, the stator resistance and PM flux linkage can be estimated using (1-34) and (1-24), 

in which only two parameters are unknown due to the elimination of the inductance terms 𝐿𝑑, 

𝐿𝑑0, 𝐿𝑞, and 𝐿𝑞0.  

The parameter estimation procedure is performed adopting the Adaline NN algorithm. Its 

mathematical model can be represented by the following equation: 

𝑂(𝑊𝑖, 𝑋𝑖) = ∑𝑊𝑖𝑋𝑖

𝑛

𝑖=0

 
(1-35) 

The structure of the algorithm is shown in Fig. 1-9.  

 

 

 

 

 

 Fig. 1-9:  Adaline NN algorithm structure [26] 
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Assuming the measured system output to be 𝑑(𝑘), the update of 𝑊𝑖 can be obtained through 

the LMS algorithm [81]: 

𝑊𝑖(𝑘 + 1) = 𝑊𝑖(𝑘) + 2𝜂𝑋𝑖(𝑑(𝑘) − 𝑂(𝑘)) (1-36) 

Multiplying (1-24) by 𝑖𝑞0(𝑘0) yields: 

𝑣𝑞0(𝑘0)𝑖𝑞0(𝑘0) = 𝑅𝑠𝑖𝑞0
2 (𝑘0) + 𝜓𝑚0𝜔𝑟(𝑘0)𝑖𝑞0(𝑘0) (1-37) 

With 𝜔𝑟(𝑘0) equal to 𝜔𝑟(𝑘1), subtracting (1-37) from (1-34) gives: 

𝑣𝑞(𝑘1)𝑖𝑞(𝑘1) + 𝑣𝑑(𝑘1)𝑖𝑑(𝑘1) − 𝑣𝑞0(𝑘0)𝑖𝑞0(𝑘0)

=  𝑅𝑠 (𝑖𝑞
2(𝑘1) + 𝑖𝑑

2(𝑘1) − 𝑖𝑞0
2 (𝑘0)) 

(1-38) 

The same structure as shown in Fig. 1-9 can be depicted for the winding resistance estimator 

under the following assumptions: 

𝑊𝑖(𝑘) = �̂�𝑠(𝑘) (1-39) 

𝑑(𝑘) = 𝑣𝑞(𝑘1)𝑖𝑞(𝑘1) + 𝑣𝑑(𝑘1)𝑖𝑑(𝑘1) − 𝑣𝑞0(𝑘0)𝑖𝑞0(𝑘0) (1-40) 

𝑂(𝑘) =  �̂�𝑠(𝑘) (𝑖𝑞
2(𝑘1) + 𝑖𝑑

2(𝑘1) − 𝑖𝑞0
2 (𝑘0)) (1-41) 

𝑋𝑖 = 𝑖𝑞
2(𝑘1) + 𝑖𝑑

2(𝑘1) − 𝑖𝑞0
2 (𝑘0) (1-42) 

in which �̂�𝑠(𝑘) is the predicted stator resistance. Therefore, the stator resistance Adaline 

estimator can be described as: 

�̂�𝑠(𝑘 + 1) = �̂�𝑠(𝑘)

+ 2𝜂 (𝑖𝑞
2(𝑘1) + 𝑖𝑑

2(𝑘1) − 𝑖𝑞0
2 (𝑘0)) (𝑣𝑞(𝑘1)𝑖𝑞(𝑘1) + 𝑣𝑑(𝑘1)𝑖𝑑(𝑘1)

− 𝑣𝑞0(𝑘0)𝑖𝑞0(𝑘0) − �̂�𝑠(𝑘) (𝑖𝑞
2(𝑘1) + 𝑖𝑑

2(𝑘1) − 𝑖𝑞0
2 (𝑘0))) 

 

(1-43) 

Likewise, the subnet of the PM linkage estimator derived from (1-24) can be expressed as in 

Fig. 1-9 by assuming: 

𝑊𝑖(𝑘) = �̂�𝑚0(𝑘) (1-44) 

𝑑(𝑘) = 𝑣𝑞0(𝑘0) − �̂�𝑠(𝑘)𝑖𝑞0(𝑘0) (1-45) 

𝑂(𝑘) = 𝑣𝑞0(𝑘) − �̂�𝑠(𝑘)𝑖𝑞0(𝑘0) = �̂�𝑚0(𝑘)𝜔𝑟(𝑘0) (1-46) 

𝑋𝑖 = 𝜔𝑟(𝑘0) (1-47) 
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where �̂�𝑚0(𝑘) is the predicted PM flux linkage. The PM flux linkage estimator thus is written 

as: 

�̂�𝑚0(𝑘 + 1) = �̂�𝑚0(𝑘) + 2𝜂𝜔𝑟(𝑘0) (𝑣𝑞0(𝑘0) − 𝑣𝑞0(𝑘)) (1-48) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The estimation process is plotted in a flow chart shown in Fig. 1-11. The data acquisition takes 

place before the estimation, and a RAM is employed to collect two sets of data corresponding 

to 𝑖𝑑 = 0 and 𝑖𝑑 ≠ 0. The synchronization of 𝑘0 and 𝑘1 can be achieved by setting the initial 

time step to be zero, and ensuring the data sets being transmitted simultaneously to the 

estimation method for the iterative computation.  

Fig. 1-10:  (a) stator resistance estimator subnet and (b) PM 
flux linkage estimator subnet [26] 

Fig. 1-11:  Estimation process flow chart [26] 
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According to [28], PM flux linkage can also be estimated with a zero-voltage vector injection 

scheme, where an additional zero-voltage vector switching period is imposed between the 

PWM periods controlled by PI controllers, as demonstrated in Fig. 1-12. 

 

 

 

 

 

 

 

 

The q-axis voltage equations of a PMSM during the ‘FOC period’ and ‘zero-injection period’ 

shown in Fig. 1-12 are expressed as: 

𝑣𝑞
(𝐹𝑂𝐶)

= 𝑅𝑠𝑖𝑞0
(𝐹𝑂𝐶)

+ 𝐿𝑞

𝑑

𝑑𝑡
𝑖𝑞
(𝐹𝑂𝐶)

+ 𝜔𝑟𝐿𝑑𝑖𝑑0
(𝐹𝑂𝐶)

+ 𝜔𝑟𝜓𝑚 
(1-49) 

0 = 𝑅𝑠𝑖𝑞0
(𝐼𝑛𝑗)

+ 𝐿𝑞

𝑑

𝑑𝑡
𝑖𝑞
(𝐼𝑛𝑗)

+ 𝜔𝑟𝐿𝑑𝑖𝑑0
(𝐼𝑛𝑗)

+ 𝜔𝑟𝜓𝑚 
(1-50) 

With the motor operating at steady-state, the speed loop PI controller ensures the q-axis current 

command is constant. In response, the current loop PI controller regulates the q-axis current 

feedback (𝑖𝑞0
(𝐹𝑂𝐶)

) at the beginning of each PWM switching period such that they remain 

unchanged. This means the current variation during the FOC period is opposite to that during 

the adjacent zero-voltage injection period, as is seen in Fig. 1-13. In other words: 

𝑑

𝑑𝑡
𝑖𝑞
(𝐹𝑂𝐶)

= −
𝑑

𝑑𝑡
𝑖𝑞
(𝐼𝑛𝑗)

 
(1-51) 

Adding (1-49) to (1-50), and taking account of 𝑖𝑑 = 0 gives: 

𝑣𝑞
(𝐹𝑂𝐶)

= 𝑣𝑞
∗ + Δ𝑣 = 𝑅𝑠 (𝑖𝑞0

(𝐹𝑂𝐶)
+ 𝑖𝑞0

(𝐼𝑛𝑗)
) + 2𝜔𝑟𝜓𝑚 (1-52) 

the voltage error Δ𝑣 due to inverter dead-time effect can be minimized by applying (1-52) to 

two different speed conditions: 

Fig. 1-12:  Schematic of the zero-voltage vector injection method 
[28] 
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𝑣𝑞1
∗ + Δ𝑣 = 𝑅𝑠 (𝑖𝑞01

(𝐹𝑂𝐶)
+ 𝑖𝑞01

(𝐼𝑛𝑗)
) + 2𝜔𝑟1𝜓𝑚 (1-53) 

𝑣𝑞2
∗ + Δ𝑣 = 𝑅𝑠 (𝑖𝑞02

(𝐹𝑂𝐶)
+ 𝑖𝑞02

(𝐼𝑛𝑗)
) + 2𝜔𝑟2𝜓𝑚 (1-54) 

Assuming the q-axis current is independent of rotor speed at constant (no) load motor 

operation: 

𝑖𝑞01
(𝐹𝑂𝐶)

= 𝑖𝑞02
(𝐹𝑂𝐶)

 (1-55) 

𝑖𝑞01
(𝐼𝑛𝑗)

= 𝑖𝑞02
(𝐼𝑛𝑗)

 (1-56) 

Subtracting (1-53) from (1-54) leads to: 

𝑣𝑞2
∗ − 𝑣𝑞1

∗ = 2(𝜔𝑟2 − 𝜔𝑟1)𝜓𝑚 (1-57) 

Hence the PM flux linkage can be predicted with the measurements of the voltage command 

𝑣𝑞
∗ and rotor speed 𝜔𝑟. The knowledge of the motor inductance and the compensation of the 

inverter-induced voltage errors are not required.  

 

 

 

 

 

 

 

 

 

Alternatively, PM flux linkage observer [8] can be used for the retrieval of rotor temperature. 

It does not require signal injection which could be invasive to a normally operated motor. The 

model of a PMSM expressed in dq-reference frame is given as: 

𝑣𝑑𝑞 = 𝑅𝑠(𝑇𝑊)𝑖𝑑𝑞 + �̇�𝑑𝑞 + 𝐽𝜔𝑟𝜓𝑑𝑞(𝑇𝑃𝑀) (1-58) 

and: 

Fig. 1-13:  q-axis current variation under the zero-voltage vector 
injection scheme [28] 
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𝜓𝑑𝑞 = (
𝜓𝑚(𝑇𝑃𝑀) + 𝐿𝑑𝑖𝑑

𝐿𝑞𝑖𝑞
) 

(1-59) 

𝐽 = (
0 −1
1 0

) (1-60) 

The nonlinear relationship between the stator current and flux linkage as a result of the 

saturation effect is considered and represented by the function 𝑓, which is formulated with 

look-up tables (LUT) where the data is measured at the motor reference temperature. The 

estimated stator currents therefore can be written as: 

𝑖̂𝑑𝑞 = 𝑓 (∫𝑣𝑑𝑞 − 𝑅𝑠(𝑇𝑊)𝑖�̂�𝑞 − 𝐽𝜔𝑟(𝜓𝑑𝑞(𝑇𝑃𝑀) + Δ𝜓𝑑𝑞)) 
(1-61) 

The estimation error Δ𝜓𝑑𝑞 tunes the observer: 

Δ𝜓𝑑𝑞 = 𝑘𝑣 ∫Δ𝑖𝑑𝑞 
(1-62) 

Assuming the rotor temperature variation only reflects on Δ𝜓𝑑: 

𝑇𝑃𝑀 = 𝑇0,𝑃𝑀 +
Δ𝜓𝑑

𝜓𝑚(𝑇0,𝑃𝑀)𝛼𝐵𝑟
 

(1-63) 

The schematic of the flux linkage observer is shown in Fig. 1-14. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1-14:  Flux linkage observer structure [8] 
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Due to the small temperature-dependent coefficient, a discretization approach with high 

precision is required. Ref. [29] and [30] discover that discretizing the motor model in stationary 

𝛼𝛽-reference frame prior to the 𝛼𝛽-𝑑𝑞 transformation leads to considerably improved 

estimation results, compared to discretizing the model in 𝑑𝑞-reference frame directly. The 

observer in Fig. 1-14 has two inputs: stator current and PWM voltage. Stator current can be 

accurately measured by current sensor. However the measurement of stator terminal voltage is 

uncommon in most industrial applications. Even though the information of voltage command 

is available, the estimation may still be subject to inverter nonlinearity, for instance. In [30], an 

inverter model is proposed which takes into consideration the main sources of the deviation 

between PWM voltage and voltage command, such as dead-time effect. The temperature 

estimation results after replacing the voltage measurement with this advanced voltage model 

are relatively accurate. 

This section introduces five methods for the estimations of motor temperature and temperature-

dependent electrical parameters. In [18], rotor temperature is predicted using the fact that the 

resistance resulting from a pulsating high-frequency signal injected into the d-axis of a PMSM 

varies with the rotor temperature. Ref. [25] retrieves rotor temperature information from the 

slope of the d-axis current response to a voltage pulse injection into the d-axis of a motor, 

which reflects the magnetization level of the PM. An online method is proposed in [26], where 

the PM flux linkage and stator resistance are estimated using a full-rank motor model 

corresponding to 𝑖𝑑 = 0 and an injected 𝑖𝑑 ≠ 0 test signal. According to [28], PM flux linkage 

can be determined with only the voltage commands of the standard FOC at two rotor speeds 

after the injection of a zero-voltage vector between the two adjacent active vectors. Signal-

injection-based approaches are in general more accurate and robust and do not require 

additional sensors or cabling. However they produce undesired ripples and losses disturbing 

motor operation. Observer-based method [8] is a desirable alternative. Nevertheless, the 

machine and inverter parameters need to be accurately identified in order to avoid flux linkage 

observation errors. These references offer a promising method for the prediction of rotor 

temperature using the thermal properties of motor parameters, such as PM flux linkage, which 

will be further developed in chapter 3.  
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1.2.3 Temperature Estimation Methods Based on Thermal 

Modelling 

As mentioned earlier, despite being able to produce reliable estimation result, the methods for 

retrieving motor temperatures from temperature-dependent electrical variables are imperfect 

due to the requirement of high modelling precision. Besides, the use of signal injection 

technique, which has an interfering character, increases the risk of machine malfunction. A 

more preferable alternative is a lumped parameter thermal network, in which the heat exchange 

in a motor is abstracted and can be described by a circuit diagram similar to an electric circuit. 

Table I encapsulates the analogy between them: 

 

 

 

 

In general, LPTNs can be classified according to their complexity [59]. The thermal networks 

with a high number of temperature nodes are modelled solely, or mainly based on the material 

and geometrical information of the machine, which is not directly accessible in practice. 

Furthermore, an accurate prediction of motor losses, and the analytical derivations of thermal 

parameters, which may require the knowledge of the heat transfer coefficients obtained from 

empirical equations, are rather complicated. On the other hand, reduced-order LPTNs only 

consider the most significant heat paths in the motor, and therefore can be modelled with less 

physical knowledge of the motor. In this case, most thermal parameters are computed in a 

measurement-based identification process, and accurate estimations of the critical temperatures 

in the motor can be obtained, as the results shown in [56], [59]-[60] suggest. 

The accuracy of the loss model for a LPTN determines that of the temperature estimation. A 

loss model includes loss coefficients, which cannot be derived correctly without precise 

information of the overall losses of the motor. Therefore, a review of the most commonly 

employed methods for the calculation of motor losses will be presented first in the following 

section, followed by a comprehensive evaluation of the existing thermal models with different 

modelling depth. 

Table I:  Analogy between electric circuit and LPTN 

Electrical Quantities Thermal Quantities 

Voltage (𝑉) Temperature Difference (℃) 

Current (𝐴) Heat Dissipation (𝑊) 

Electrical Resistance (Ω) Thermal Resistance (℃/𝑊) 

Electrical Capacitance (𝐹) Thermal Capacitance (𝐽/℃) 
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1.2.3.1 Loss Prediction 

The heat losses generated in an electric motor can be defined as: 

𝑃𝑇𝑜𝑡𝑎𝑙 = 𝑃𝐶𝑢 + 𝑃𝐹𝑒 + 𝑃𝑟𝑒𝑠𝑖𝑑 (1-64) 

The resistive loss is produced by the motor winding (end-winding) and can be calculated as: 

𝑃𝐶𝑢 = ∑𝑅𝑠𝑖(𝑇𝑊)𝐼𝑖
2 (1-65) 

where 𝑖 = 1, 2, 3. The temperature dependence of the winding temperature 𝑇𝑊 must be 

considered in order to prevent the winding loss being underestimated.  

Iron loss occurs in armature iron core, due to the current induced by a sinusoidally varying 

magnetic field [82]-[91]. The total core power loss per unit weight 𝑝𝑐 is commonly expressed 

by the empirical Steinmetz’s equation: 

𝑝𝑐 = 𝑝ℎ + 𝑝𝑒 = 𝑘ℎ𝜔𝑟𝐵𝑚
𝑎 + 𝑘𝑒𝜔𝑟

2𝐵𝑚
2  (1-66) 

All the parameters are dependent on motor lamination material and can be determined by 

manufacturers’ loss curves. 

However, the iron loss expression (1-66) assumes perfect sinusoidal variation of magnetic 

field, which is not realistic for most PM motors. In [82], two correction terms 𝑘𝑐ℎ and 𝑘𝑐𝑒 

taking into account the effects of minor hysteresis loop and harmonics on hysteresis and eddy-

current losses are introduced: 

𝑘𝑐ℎ = 1 +
𝑐

𝐵𝑒
∑Δ𝐵𝑖

𝑁

𝑖=1

 

(1-67) 

𝑘𝑐𝑒 = (
𝐵1

𝐵𝑒
)
2

∑(
𝑖𝐵𝑖

𝐵1
)
2𝑁

𝑖=1

 

(1-68) 

in which 𝑐 is a constant with the value between 0.6 and 0.7. 𝐵𝑖 is the 𝑖𝑡ℎ harmonic component 

of flux density 𝐵𝑒, whose fundamental component is donated as 𝐵1. Therefore, equation (1-66) 

after the modification becomes: 

𝑝𝑐 = 𝑘𝑐ℎ𝑘ℎ𝜔𝑟𝐵𝑚
𝑛 + 𝑘𝑐𝑒𝑘𝑒𝜔𝑟

2𝐵𝑚
2  (1-69) 

Calculating hysteresis loss is relatively simple as 𝑝ℎ only depends on the peak of the 

fundamental component of flux density, as long as minor hysteresis loops are not considered, 

which is acceptable in some applications. However, the accuracy of eddy-current loss may be 
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affected significantly by the disregard of the harmonic components of magnetic field. Ref. [83]-

[84] presents an alternative formula, in which eddy-current loss density is calculated using the 

derivative term 𝑑𝐵𝑒 𝑑𝑡⁄ . Assuming: 

𝐵𝑒 = 𝐵𝑚 sin(𝜔𝑟𝑡) (1-70) 

therefore:  

𝑑𝐵𝑒

𝑑𝑡
= 𝜔𝑟𝐵𝑚 cos(𝜔𝑟𝑡) 

(1-71) 

(
𝑑𝐵𝑒

𝑑𝑡
)
𝑎𝑣𝑔

2

= (
𝜔𝑟𝐵𝑚

√2
)
2

=
(𝜔𝑟𝐵𝑚)2

2
 

(1-72) 

Substituting (1-72) into (1-66): 

𝑝𝑒 = 2𝑘𝑒 (
𝑑𝐵𝑒

𝑑𝑡
)
𝑎𝑣𝑔

2

 
(1-73) 

Due to the use of this particular expression, the harmonic effect on eddy-current loss is 

inherently included. Nevertheless, as (1-72) indicates, this method only provides reasonably 

accurate average loss predictions over one electrical cycle, suggesting errors may occur in the 

calculation of instantaneous loss.  

Based on (1-73), an analytical model for iron loss estimation is proposed in [85], in which 

motor flux is decomposed into a radial and a circumferential components. Eddy-current loss as 

a result relies on the variations in these two orthogonal flux densities. The effect of motor 

geometry is also taken into consideration, by introducing a correction factor which is the 

difference between the losses estimated using the approximation model and Finite Element 

method (FEM). This method is of good value particularly because of its simplicity. 

According to [86], eddy-current loss can be related to a fictitious voltage signal. The eddy-

current loss per weight unit of one stator tooth considering fundamental and harmonic magnetic 

flux excitations is given as: 

𝑝𝑐(𝑡𝑜𝑜𝑡ℎ) = 𝑘𝑒(𝜔1
2𝐵𝑚1

2 + 𝜔2
2𝐵𝑚2

2 + 𝜔3
2𝐵𝑚3

2 + ⋯) (1-74) 

in which 𝐵𝑚1, 𝐵𝑚2, ⋯  are the peaks of flux density harmonics per tooth. Multiplied and 

divided by the square of one tooth section area 𝐴𝑇, equation (1-74) becomes: 

𝑝𝑐(𝑡𝑜𝑜𝑡ℎ) = 𝑘𝑒[(𝜔1𝜓𝑚1)
2 + (𝜔2𝜓𝑚2)

2 + ⋯ ]/𝐴𝑇
2  (1-75) 
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where 𝜓𝑚1, 𝜓𝑚2, ⋯ are the amplitudes of magnetic flux linkage harmonics per tooth. 

Therefore (𝜔1𝜓𝑚1), (𝜔2𝜓𝑚2), ⋯ can be interpreted as the amplitudes of the harmonic 

components of an imaginary voltage 𝑣(𝑡𝑜𝑜𝑡ℎ) induced in a single-turn stator winding coil 

wound around a stator tooth, and the sum [(𝜔1𝜓𝑚1)
2 + (𝜔2𝜓𝑚2)

2 + ⋯ ] equals to twice the 

square of the RMS value of the voltage 𝑉(𝑡𝑜𝑜𝑡ℎ)𝑅𝑀𝑆. The analysis shown in [87]-[88] verifies 

that the eddy-current loss induced in stator yoke can also be evaluated via 𝑣(𝑡𝑜𝑜𝑡ℎ) — the 

overall stator eddy-current loss therefore can be determined. Furthermore, this approach is 

suitable under no-load condition, where the voltage 𝑣(𝑡𝑜𝑜𝑡ℎ) is the back-EMF per tooth 

𝑒(𝑡𝑜𝑜𝑡ℎ), whereas under loaded condition, the voltage component 𝑣𝑙𝑜𝑎𝑑(𝑡𝑜𝑜𝑡ℎ) generated 

from current-induced flux should also be considered: 

𝑣(𝑡𝑜𝑜𝑡ℎ) = 𝑒(𝑡𝑜𝑜𝑡ℎ) + 𝑣𝑙𝑜𝑎𝑑(𝑡𝑜𝑜𝑡ℎ) (1-76) 

An extended version of the Steinmetz’s equation including an additional term of excess loss is 

proposed most recently by Bertotti [89]: 

𝑝𝑐 = 𝑝ℎ + 𝑝𝑒 + 𝑝𝑒𝑥𝑐 = 𝑘ℎ𝜔𝑟𝐵𝑚
𝑛 + 𝑘𝑒𝜔𝑟

2𝐵𝑚
2 + 𝑘𝑒𝑥𝑐𝜔𝑟

1.5𝐵𝑚
1.5 (1-77) 

The excess loss constant 𝑘𝑒𝑥𝑐 can be retrieved from an experimentally-verified iron loss 

measured at a particular frequency and sinusoidal flux density amplitude. To be specific: 

𝑘𝑒𝑥𝑐 =
𝑝𝑐 − 𝑝ℎ − 𝑝𝑒

𝜔𝑟
1.5𝐵𝑚

1.5  
(1-78) 

Ref. [82] modifies (1-77) to a practical form given as: 

𝑝𝑐 = 𝑘𝑐ℎ𝑘ℎ𝜔𝑟𝐵𝑚
𝑛 + 2𝑘𝑒 (

𝑑𝐵𝑒

𝑑𝑡
)
𝑎𝑣𝑔 

2

+ 20.75𝑘𝑒𝑥𝑐 (
𝑑𝐵𝑒

𝑑𝑡
)
𝑎𝑣𝑔 

1.5

 
(1-79) 

It is clear that the hysteresis minor loop effect is accounted for by the introduction of the 

correction factor 𝑘𝑐ℎ. Eddy-current and excess losses are computed using the average loss 

density in an electrical revolution (i.e. 𝑡 = 2𝜋), which compensates the losses of the harmonic 

components of motor magnetic flux.  

Using (1-77), the core loss of a motor can be correctly estimated with the precisely calculated 

parameters 𝑘ℎ, 𝑘𝑒, 𝑘𝑒𝑥𝑐, and 𝑎. A model-fitting procedure is described in [90], where these 

coefficients can be identified based on the minimization of the error between loss 

measurements and losses predicted by the proposed model over a wide scale of frequencies 

and flux densities. The results show that the hysteresis loss coefficients 𝑘ℎ and 𝑎 vary with 

both frequency and flux density, whilst the eddy-current and excess loss coefficients 𝑘𝑒 and 
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𝑘𝑒𝑥𝑐 are only dependent on flux density. This results in lower error in loss estimation, compared 

to adopting the conventional models in which these parameters are assumed to be constant. 

In [91], the calculation of iron loss is based on the assumption that the total loss is the 

superposition of two motor operating modes associated with two distinct flux paths — the main 

magnetizing flux path flowing through stator back iron and stator teeth and coupling stator 

winding coils, and the field weakening path in which PM flux flows across the tooth tip region. 

The iron losses corresponding to these two flux paths are linked to the terminal voltage 𝑉𝑚 after 

the subtraction of the voltage drop across the stator resistance, and the equivalent voltage 𝑉𝑑
∗ 

of demagnetization field and are described as: 

𝑃1 = 𝑔1(𝑉𝑚) (1-80) 

𝑃2 = 𝑔2(𝑉𝑑
∗) (1-81) 

The two functions are determined using the Finite Element Analysis (FEA) with motor 

operating at open-circuit (deriving 𝑔1) and short-circuit (deriving 𝑔2) conditions. As a result, 

stator iron loss is obtained as: 

𝑃𝑂𝐶 = 𝑃ℎ
𝑂𝐶 + 𝑃𝑒

𝑂𝐶 + 𝑃𝑒𝑥𝑐
𝑂𝐶 = 𝑎ℎ𝑓𝑟 + 𝑎𝑒𝑓𝑟

2 + 𝑎𝑒𝑥𝑐𝑓𝑟
1.5 (1-82) 

𝑃𝑆𝐶 = 𝑃ℎ
𝑆𝐶 + 𝑃𝑒

𝑆𝐶 + 𝑃𝑒𝑥𝑐
𝑆𝐶 = 𝑏ℎ𝑓𝑟 + 𝑏𝑒𝑓𝑟

2 + 𝑏𝑒𝑥𝑐𝑓𝑟
1.5 (1-83) 

In (1-82) and (1-83), the iron losses are separated into the hysteresis, eddy-current and excess 

components. It is noted that friction and windage losses are not considered. The parameters can 

be calculated at a constant frequency 𝑓𝑟 which is randomly chosen: 

𝑎ℎ =
𝑃ℎ

𝑂𝐶

𝑓𝑟
 

(1-84) 

𝑏ℎ =
𝑃ℎ

𝑆𝐶

𝑓𝑟
 

(1-85) 

𝑎𝑒 =
𝑃𝑒

𝑂𝐶

𝑓𝑟2
 

(1-86) 

𝑏𝑒 =
𝑃𝑒

𝑆𝐶

𝑓𝑟2
 

(1-87) 

𝑎𝑒𝑥𝑐 =
𝑃𝑒𝑥𝑐

𝑂𝐶

𝑓𝑟
1.5 

(1-88) 
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𝑏𝑒𝑥𝑐 =
𝑃𝑒𝑥𝑐

𝑆𝐶

𝑓𝑟
1.5 

(1-89) 

The frequency term in (1-82) and (1-83) can be used to retrieve the motor EMF constant: 

𝜆𝑒𝑚𝑓 =
𝑉𝑒𝑚𝑓

𝑓𝑟
 

(1-90) 

where 𝑉𝑒𝑚𝑓 is calculated by performing open-circuit FEA. Now replacing 𝑓𝑟 in (1-82) and (1-

83) with 𝜆𝑒𝑚𝑓, the loss functions (1-80) and (1-81) become: 

𝑃1 = 𝑔1(𝑉𝑚) =
𝑎ℎ

𝜆𝑒𝑚𝑓
𝑉𝑚 +

𝑎𝑒

𝜆𝑒𝑚𝑓
2 𝑉𝑚

2 +
𝑎𝑒𝑥𝑐

𝜆𝑒𝑚𝑓
1.5 𝑉𝑚

1.5 
(1-91) 

𝑃2 = 𝑔2(𝑉𝑑
∗) =

𝑏ℎ

𝜆𝑒𝑚𝑓
𝑉𝑑

∗ +
𝑏𝑒

𝜆𝑒𝑚𝑓
2 𝑉𝑑

∗2
+

𝑏𝑒𝑥𝑐

𝜆𝑒𝑚𝑓
1.5 𝑉𝑑

∗1.5
 

(1-92) 

1.2.3.2 High-Order Thermal Model 

A plethora of the publications in regard to the thermal modelling of electric motors exists in 

literature. Most of the proposed LPTNs are analytically modelled based on heat transfer theory 

and require detailed dimensional and material information of motors. However, a thermal 

network with high complexity ensures a high resolution of temperature distribution, which is 

vitally important in applications where the motors have particularly complex construction and 

cooling [45].  

A high-fidelity, computationally-efficient electro-thermally coupled model is introduced in [6], 

which integrates a temperature-dependent electromagnetic model taking into account the 

magnetic saturation, spatial harmonics and iron loss effects, with a LPTN derived from the FE 

software containing numerous temperature nodes. A flux-linkage-based model for a PMSM is 

adopted, in which the stator current nonlinearly relates to the flux linkage: 

𝑣𝑑 =
𝑑𝜓𝑑

𝑑𝑡
+ 𝑅𝑠𝑖𝑑 − 𝜔𝑟𝜓𝑞 

(1-93) 

𝑣𝑞 =
𝑑𝜓𝑞

𝑑𝑡
+ 𝑅𝑠𝑖𝑞 + 𝜔𝑟𝜓𝑑 

(1-94) 

𝜓𝑑 = 𝑓(𝑖𝑑, 𝑖𝑞 , 𝜃) (1-95) 

𝜓𝑞 = 𝑔(𝑖𝑑, 𝑖𝑞 , 𝜃) (1-96) 
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𝑇𝑒𝑚 =
3

2
(
𝑝

2
) (𝜓𝑑𝑖𝑞 − 𝜓𝑞𝑖𝑑) 

(1-97) 

in which two nonlinear functions 𝑓 and 𝑔 extracted from the FEA describe the relationship 

between the flux linkage and stator current. Therefore, the saturation and harmonic effects can 

be intrinsically included in the model. Also, instead of performing the derivative calculations 

in (1-93) and (1-94), 𝜓𝑑 and 𝜓𝑞 are obtained by the following integrations: 

𝜓𝑑 = ∫(𝑉𝑑 − 𝑅𝑠𝑖𝑑 + 𝜔𝑟𝜓𝑞) 𝑑𝑡 
(1-98) 

𝜓𝑞 = ∫(𝑉𝑞 − 𝑅𝑠𝑖𝑞 − 𝜔𝑟𝜓𝑑) 𝑑𝑡 
(1-99) 

The inverse of (1-95) and (1-96) leads to: 

𝑖𝑑 = 𝑓−1(𝜓𝑑 , 𝜓𝑞 , 𝜃) (1-100) 

𝑖𝑞 = 𝑔−1(𝜓𝑑, 𝜓𝑞 , 𝜃) (1-101) 

It is noted that (1-97) does not account for the cogging torque, which is non-zero even with 

zero current. Thus the electromagnetic torque is assumed to be a function of the current and 

angle: 

𝑇𝑒𝑚 = 𝑇(𝑖𝑑, 𝑖𝑞 , 𝜃) (1-102) 

The iron loss in a machine operating as a motor decreases its active power, and therefore 

changes the effective stator current with a constant voltage supply. The iron loss is computed 

in a computationally-efficient manner by (1-91) and (1-92) and is split into the d-axis and q-

axis components expressed as: 

𝑃𝑓𝑒_𝑑 =
𝜓𝑞

2

𝜓𝑑
2 + 𝜓𝑞

2
𝑃1 + 𝑃2 

(1-103) 

𝑃𝑓𝑒_𝑞 =
𝜓𝑑

2

𝜓𝑑
2 + 𝜓𝑞

2
𝑃1 

(1-104) 

The iron loss effect can be viewed as the equivalent currents 𝑖𝑑𝐹𝑒 and 𝑖𝑞𝐹𝑒 which result in the 

equivalent resistors 𝑅𝐹𝑒_𝑑 and 𝑅𝐹𝑒_𝑞 across the d-axis and q-axis induced voltages generating 

losses, as illustrated in Fig. 1-15. Hence the impact of the iron loss on the stator current is given 

in the form: 
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𝑖𝑑 = 𝑖𝑑𝑎 + 𝑖𝑑𝐹𝑒 = 𝑖𝑑𝑎 +
𝑃𝑓𝑒_𝑑

𝑣𝑑 − 𝑅𝑠𝑖𝑑
 

(1-105) 

𝑖𝑞 = 𝑖𝑞𝑎 + 𝑖𝑞𝐹𝑒 = 𝑖𝑞𝑎 +
𝑃𝑓𝑒_𝑞

𝑣𝑞 − 𝑅𝑠𝑖𝑞
 

(1-106) 

Fig. 1-16 shows the diagram of the machine model considering the aforementioned effects. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1-15:  dq-axis circuits considering the iron loss effect [54] 

Fig. 1-16:  Schematic of the proposed computationally efficient motor model [54] 
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The change in the winding temperature affects the stator resistance, which can be described by 

a linear function. The PM temperature influences the magnet remanence, which reflects on the 

variations in both d-axis and q-axis flux linkages as a result of the saturation-induced cross-

coupling, and this influence is dependent on current and rotor position, according to [6]. 

Therefore, the temperature effect on the motor model proposed in the previous section is 

considered, and accordingly, the three 4-D functions 𝑖𝑑(𝜓𝑑 , 𝜓𝑞 , 𝜃, 𝑇𝑃𝑀), 𝑖𝑞(𝜓𝑑, 𝜓𝑞 , 𝜃, 𝑇𝑃𝑀) 

and 𝑇𝑒𝑚(𝑖𝑑 , 𝑖𝑞 , 𝜃, 𝑇𝑃𝑀) should be substituted for the 3-D functions (1-97), (1-98) and (1-99). 

However, a simplified method based on the Taylor’s expansion is adopted in order to reduce 

the model order, and 𝑖𝑑, 𝑖𝑞 and 𝑇𝑒𝑚 can be estimated by: 

𝑖𝑑(𝜓𝑑 , 𝜓𝑞 , 𝜃, 𝑇𝑃𝑀) = 𝑖𝑑(𝜓𝑑 , 𝜓𝑞 , 𝜃, 𝑇0) + Δ𝑖𝑑(𝜓𝑑 , 𝜓𝑞 , 𝜃)(𝑇𝑃𝑀 − 𝑇0) (1-107) 

𝑖𝑞(𝜓𝑑 , 𝜓𝑞 , 𝜃, 𝑇𝑃𝑀) = 𝑖𝑞(𝜓𝑑, 𝜓𝑞 , 𝜃, 𝑇0) + Δ𝑖𝑞(𝜓𝑑 , 𝜓𝑞 , 𝜃)(𝑇𝑃𝑀 − 𝑇0) (1-108) 

𝑇𝑒𝑚(𝑖𝑑, 𝑖𝑞 , 𝜃, 𝑇𝑃𝑀) = 𝑖𝑑(𝜓𝑑 , 𝜓𝑞 , 𝜃, 𝑇0) + Δ𝑇𝑒𝑚(𝑖𝑑, 𝑖𝑞 , 𝜃)(𝑇𝑃𝑀 − 𝑇0) (1-109) 

The terms Δ𝑖𝑑(𝜓𝑑 , 𝜓𝑞 , 𝜃), Δ𝑖𝑞(𝜓𝑑, 𝜓𝑞 , 𝜃), and Δ𝑇𝑒𝑚(𝑖𝑑, 𝑖𝑞 , 𝜃) are the first-order slopes of 𝑖𝑑, 

𝑖𝑞 and 𝑇𝑒𝑚, respectively and can be derived from calculating the deviations in 𝑖𝑑(𝜓𝑑 , 𝜓𝑞 , 𝜃), 

𝑖𝑞(𝜓𝑑, 𝜓𝑞 , 𝜃), and 𝑇𝑒𝑚(𝑖𝑑, 𝑖𝑞 , 𝜃) at two arbitrary rotor temperatures. The iron loss model also 

varies with the rotor temperature, because the equivalence resistors in Fig. 1-15 are 

temperature-dependent due to their relations to flux linkage. The proposed model including the 

temperature effect is shown in Fig. 1-17. 

Fig. 1-17:  Schematic of the proposed machine model taking into account the temperature effect [6] 
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As can be seen in Fig. 1-18, the motor model is paired with a thermal model to establish an 

electro-thermal system able to monitor the motor temperatures with high fidelity. The copper 

loss and iron loss are computed by the electromagnetic model shown in Fig. 1-17, and passed 

on to the thermal model represented by state-space equations. The estimated winding and rotor 

temperatures are then communicated to the machine model where the temperature effect is 

taken into consideration. 

 

 

 

 

 

 

 

 

The thermal model is based on the detailed LPTN developed in the FE software Motor-CAD 

and contains 48 nodes including the housing, stator tooth, stator back iron, winding, magnet, 

rotor back iron, shaft, bearing, and etc. As a result, the overall losses consist of 48 components 

forming a loss vector. The copper loss is allocated into the winding and end-winding nodes 

depending on their physical lengths, whereas the iron loss is distributed into the stator back 

iron, stator tooth, magnet pole and rotor back iron nodes. The magnet loss is also included. The 

state-space thermal model calculates and outputs the temperature variations of the 48 nodes, 

which are added to the ambient temperature in order to acquire the node temperatures. In 

addition, the cooling effect is considered by assuming a varying thermal resistance between the 

housing and ambient. Fig. 1-19 shows the structure of the LPTN. 

 

 

 

 

 

Fig. 1-18:  Schematic of the electro-thermal system [6] 

Fig. 1-19:  Structure of the proposed LPTN [6] 
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1.2.3.3 Low-order Thermal Model 

In contrast, the critical temperatures in a motor can be predicted with high precision using 

thermal models with lower orders. Despite only considering the averaged motor region 

temperatures due to the strongly abstracted network, this type of thermal model simplifies the 

motor parameterization, which can be performed based on the use of a set of experimental 

training data. It can be applied in different motor operating conditions and its utilization is not 

limited to certain PMSM designs, showing a great level of robustness. 

One such example is introduced in [59]-[60], where the critical temperatures of an automotive 

traction PMSM are estimated through a four-node LPTN representing the stator back iron 

(𝑇𝐹𝑒𝑠), stator winding (𝑇𝑊), stator teeth (𝑇𝑆𝑇), and PM (𝑇𝑃𝑀). Fig. 1-20 shows the circuit 

diagram of the presented LPTN.  

Each temperature node is connected to a thermal ground through a thermal capacitance which 

models the thermal dynamics. The cooling liquid and ambient temperatures 𝑇𝐶 and 𝑇𝐴 are the 

temperature sources measured with sensors. Seven thermal resistances taking into account 

thermal conduction and convection effects are denoted as 𝑅𝑖−𝑗 meaning the heat flows from 

node 𝑖 into node 𝑗. The losses produced by different temperature regions 𝑃 are also included 

as heat sources. 

A measurement-based approach for the loss modelling replaces the conventional FEA 

simulation which requires enormous effort in loss calculation mainly due to the consideration 

of the switching inverter characteristics and current control behaviour [92]. The total losses 

𝑃(𝜔𝑟 , 𝐼) of the motor are measured at a reference temperature and data saved in a LUT. 

Assuming the stator winding loss equals to the copper loss calculated with the stator current 

and resistance: 

Fig. 1-20:  Structure of the four-node LPTN [60] 
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𝑃𝐶𝑢 = 𝑃𝑊 = 3𝐼2𝑅𝑠(𝑇𝑊, 𝜔𝑟) (1-110) 

𝑅𝑠(𝑇𝑊, 𝜔𝑟) = 𝑅𝑠(𝑇0,𝑊)𝑓1(𝑇𝑊)𝑓2(𝜔𝑟) (1-111) 

𝑓1(𝑇𝑊) = 1 + 𝛼𝐶𝑢(𝑇𝑊 − 𝑇0,𝑊) (1-112) 

𝑓2(𝜔𝑟) = 1 + 𝛽𝐶𝑢,1 (
𝜔𝑟

𝜔𝑟,𝑚𝑎𝑥
) + 𝛽𝐶𝑢,2 (

𝜔𝑟

𝜔𝑟,𝑚𝑎𝑥
)

2

 
(1-113) 

The stator resistance 𝑅𝑠 is considered temperature-dependent and speed-dependent due to the 

skin effect and proximity effect. In order to reduce the amount of unknown parameters, only 

𝛽𝐶𝑢,1 and 𝛽𝐶𝑢,2 are estimated in the parameter identification process, whilst 𝑅𝑠(𝑇0) is obtained 

from the manufacture datasheet and 𝛼𝐶𝑢 assumed to be 0.39%/℃. 

The iron loss is regarded as the difference between the copper loss and total losses: 

𝑃𝐹𝑒 = 𝑃(𝜔𝑟 , 𝐼) − 𝑃𝐶𝑢(𝜔𝑟 , 𝐼, 𝑇0,𝑊) (1-114) 

The loss 𝑃𝐹𝑒 is then separated into the rest of the nodes via: 

𝑃𝑠𝑡𝑎𝑡𝑜𝑟 = 𝑘1(𝜔𝑟 , 𝐼)𝑃𝐹𝑒 (1-115) 

𝑃𝑟𝑜𝑡𝑜𝑟 = 𝑃𝑃𝑀 = [1 − 𝑘1(𝜔𝑟 , 𝐼)]𝑃𝐹𝑒 (1-116) 

𝑃𝐹𝑒𝑠 = 𝑘2(𝜔𝑟, 𝐼)𝑃𝑠𝑡𝑎𝑡𝑜𝑟 (1-117) 

𝑃𝑆𝑇 = [1 − 𝑘2(𝜔𝑟, 𝐼)]𝑃𝑠𝑡𝑎𝑡𝑜𝑟 (1-118) 

𝑃𝐹𝑒 is split into a rotor and a stator portions using a first-order polynomial function 𝑘1(𝜔𝑟, 𝐼) 

written as: 

𝑘1(𝜔𝑟, 𝐼) = 𝑘1,0 + 𝑘1,1𝜔𝑟 + 𝑘1,2𝐼 + 𝑘1,3𝜔𝑟𝐼 (1-119) 

where 0 ≤ 𝑘1 ≤ 1. This assumption is based on the fact that iron loss is dependent on motor 

frequency and flux density associated with current amplitude and its harmonics. The stator iron 

loss is assigned into the stator iron and stator teeth nodes through 𝑘2(𝜔𝑟 , 𝐼), which is similarly 

formulated: 

𝑘2(𝜔𝑟 , 𝐼) = 𝑘2,0 + 𝑘2,1𝜔𝑟 + 𝑘2,2𝐼 + 𝑘2,3𝜔𝑟𝐼 (1-120) 

with 0 ≤ 𝑘2 ≤ 1. The coefficients 𝑘1,𝑗 and 𝑘2,𝑗 (𝑗 = 0,1,2) need to be identified. 

The temperature effect on the iron loss is also included and expressed as: 

𝑃𝑃𝑀(𝑇𝑃𝑀) = 𝑃𝑃𝑀[1 + 𝛼𝐹𝑒𝑠(𝑇𝑃𝑀 − 𝑇0,𝑃𝑀)] (1-121) 
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𝑃𝐹𝑒𝑠(𝑇𝐹𝑒𝑠) = 𝑃𝐹𝑒𝑠[1 + 𝛼𝐹𝑒𝑠(𝑇𝐹𝑒𝑠 − 𝑇0,𝐹𝑒𝑠)] (1-122) 

𝑃𝑆𝑇(𝑇𝑆𝑇) = 𝑃𝑆𝑇[1 + 𝛼𝐹𝑒𝑠(𝑇𝑆𝑇 − 𝑇0,𝑆𝑇)] (1-123) 

The temperature coefficient 𝛼𝐹𝑒𝑠 has a negative value because the increase in temperature leads 

to the decrease in iron loss. Due to its dependency on material and motor design, 𝛼𝐹𝑒𝑠 is 

difficult to calculate. Instead, it is predicted during the parameter identification.   

In addition, the identification of the thermal capacitances and resistances are required as a result 

of the lack of information regarding the motor dimensions. However they are roughly pre-

computed using the empirical formulas in order to limit the search room. With respect to the 

thermal resistances, it is assumed that 𝑅𝑊−𝐹𝑒𝑠, 𝑅𝑆𝑇−𝑊, and 𝑅𝑆𝑇−𝐹𝑒𝑠 which describe the heat 

transmission due to conduction, are constant. The resistance 𝑅𝐹𝑒𝑠−𝐶 represents the heat 

convection from the stator back iron to the cooling system, as well as the heat conduction 

between the stator iron and housing. Therefore, it is defined as the sum of a constant and 

temperature-varying resistances: 

𝑅𝐹𝑒𝑠−𝐶(𝑇𝐶) = 𝑅𝐹𝑒𝑠−𝐶(𝑇0,𝐶)[1 + 𝛼𝐹𝑒𝑠−𝐶(𝑇𝐶 − 𝑇0,𝐶)] (1-124) 

in which 𝛼𝐹𝑒𝑠−𝐶 is determined in the identification procedure. The convection effect is 

influenced by the kinematic viscosity of the water, which decreases with the rising cooling 

system temperature. This means 𝛼𝐹𝑒𝑠−𝐶 is negative.  The resistances 𝑅𝑃𝑀−𝑊, 𝑅𝑃𝑀−𝑆𝑇 model 

the heat flow through the air gap, whereas 𝑅𝑃𝑀−𝐴 takes into account the thermal connection 

between the rotor shaft and the ambient. A speed-dependent expression is derived for these 

three parameters based on the analytical formulas presented in [51] and [93]: 

𝑅𝑖−𝑗(𝜔𝑟) = 𝑅𝑖−𝑗(𝑇0)𝑒
−

𝜔𝑟
𝜔𝑟,𝑚𝑎𝑥

 
1

𝑏𝑖−𝑗 + 𝑎𝑖−𝑗 
(1-125) 

with: 

0 ≤ 𝑅𝑖−𝑗(𝑇0) ≤ 𝑅𝑖−𝑗,𝑚𝑎𝑥(𝑇0) (1-126) 

0 ≤ 𝑎𝑖−𝑗 ≤ 𝑎𝑖−𝑗,𝑚𝑎𝑥 (1-127) 

0 ≤ 𝑏𝑖−𝑗 ≤ 𝑏𝑖−𝑗,𝑚𝑎𝑥 (1-128) 

Where 𝑅𝑖−𝑗,𝑚𝑎𝑥(𝑇0), 𝑎𝑖−𝑗,𝑚𝑎𝑥, and 𝑏𝑖−𝑗,𝑚𝑎𝑥 are calculated using the analytical equations, and 

𝑅𝑖−𝑗(𝑇0), 𝑎𝑖−𝑗, and 𝑏𝑖−𝑗 are identified along with the other unknown parameters/coefficients. 

The LPTN is described in the state-space form: 
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�̇� = 𝐴(𝜔𝑟)𝑥 + 𝐵(𝑇, 𝜔𝑟 , 𝐼)𝑢(𝜔𝑟, 𝐼) (1-129) 

𝑦 = 𝐶𝑥 + 𝐷𝑢 (1-130) 

with: 

𝑥 = [𝑇𝐹𝑒𝑠 𝑇𝑊 𝑇𝑆𝑇 𝑇𝑃𝑀] (1-131) 

𝑢 = [𝑃𝐶𝑢 𝑃𝐹𝑒 𝑇𝐶 𝑇𝐴] (1-132) 

𝐴 = ℝ4×4, 𝐵 = ℝ4×4, 𝐶 = 𝐼4×4, 𝐷 = 0 (1-133) 

where the node temperatures are assumed to be the state variables, and the system inputs are 

the loss components and measurements of the cooling liquid and ambient temperatures. The 

system (state-transition) and control-input models 𝐴 and 𝐵 are two matrices with four rows and 

four columns, which are dependent on motor speed, stator current and state estimate 

(temperature). 𝐶 and 𝐷 are identity and zero matrices, such that 𝑦 outputs the predicted states. 

For the forthcoming parameter identification and validation, the thermal model is discretized 

using the explicit Euler method (RK1), which is less computationally demanding compared to 

the standard discretization method. The discrete-time model is thereby given as: 

1

𝑇𝑘

(𝑥[𝑘 + 1] − 𝑥[𝑘]) = 𝐴[𝑘]𝑥[𝑘] + 𝐵[𝑘]𝑢[𝑘] 
(1-134) 

The identification problem can be interpreted as the search for the parameters that minimise 

the output error 𝑒 = 𝜗 − �̃�. A cost function normally is required which leads to a highly 

accurate model. Regarding the presented thermal network with multiple inputs and outputs, the 

function that meets this requirement is the covariance of the output error. Therefore the 

optimization task can be summarized as: 

�̂� = min
𝑝

𝑐𝑜𝑣(𝑒) ,          𝑠. 𝑡.  𝑔(𝑝) ≤ 0, ℎ(𝑝) = 0 (1-135) 

where 𝑔 and ℎ are the boundary conditions. 

A global optimization algorithm is innovatively applied to identify the parameters, combining 

a particle swarm algorithm (PSO) with the sequential quadratic programming (SQP). The first 

step is for the PSO to identify several potential parameter sets. In the second step, the ‘inertia 

weight’ method conducts an additional exploration within the entire search room, and a reduced 

number of parameter sets is then passed to the SQP algorithm for an accurate local 

identification. Nonetheless, it is impossible to confirm the identified parameters are the global 

optimums. 
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An even more simplified thermal network proposed in [56] is also capable of predicting motor 

winding and PM temperatures. The schematic of the thermal model is shown in Fig. 1-21. 

 

    

 

 

 

 

 

 

 

This LPTN consists of two temperature nodes corresponding to stator winding 𝑇𝑊 and rotor 

PM 𝑇𝑃𝑀. Stator core temperature 𝑇𝐹𝑒𝑠 is an input quantity measured by a temperature sensor, 

which ensures that cooling system is immanently taken into account in the model. Stator core 

is connected to stator winding via a conductance 𝐺𝑊−𝐹𝑒𝑠 representing the thermal conduction 

through copper and iron core, and to PM by means of a conductance 𝐺𝑃𝑀−𝐹𝑒𝑠 which considers 

the heat conduction through solid motor components and the heat convection from stator to 

rotor. 

Stator loss 𝑃𝑊 is determined by RMS current 𝐼𝑅𝑀𝑆 and temperature-dependent stator resistance 

𝑅𝑠: 

𝑃𝑊 = 3𝑅𝑠(𝑇𝑊)𝐼𝑅𝑀𝑆
2  (1-136) 

The heat flowing between rotor to stator due to heat conduction and convection effects changes 

with current and frequency and is modelled in the following form: 

𝑃𝑃𝑀

𝑃𝑟𝑎𝑡𝑒𝑑
= (

𝑓𝑟
𝑓𝑟𝑎𝑡𝑒𝑑

)
𝑏1

(
𝐼

𝐼𝑟𝑎𝑡𝑒𝑑
)
𝑏2

 
(1-137) 

In which 𝑓𝑟𝑎𝑡𝑒𝑑, 𝐼𝑟𝑎𝑡𝑒𝑑 and 𝑃𝑟𝑎𝑡𝑒𝑑 are pre-defined constants. The parameters 𝑏1 and 𝑏2 are 

calculated in a data-fitting process, with rotor losses 𝑃𝑃𝑀 obtained from the 2-D FEA at various 

speed and load conditions. 

Fig. 1-21:  Thermal model with two temperature nodes [56] 
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Similarly to the previously introduced thermal model, the parameters 𝐶𝑃𝑀, 𝐶𝑊, 𝐺𝑊−𝐹𝑒𝑠, and 

𝐺𝑃𝑀−𝐹𝑒𝑠 are estimated in an identification procedure aiming to minimize the sum of the squared 

temperature deviations: 

∆𝑇2 =
1

𝑡𝑚𝑎𝑥
∫ ((𝑇𝑃𝑀

𝑒 − 𝑇𝑃𝑀
𝑚 )2 + (𝑇𝑊

𝑒 − 𝑇𝑊
𝑚)2)

𝑡𝑚𝑎𝑥

0

𝑑𝑡 
(1-138) 

using an optimization software. In (1-138), 𝑇𝑒 and 𝑇𝑚 denote estimated and 

reference/measured temperatures, respectively, and 𝑡𝑚𝑎𝑥 is the time period of testing. 

The thermal conductance 𝐺𝑃𝑀−𝐹𝑒𝑠 is assumed to be linearly dependent on frequency due to 

convection effect: 

𝐺𝑃𝑀−𝐹𝑒𝑠 = 𝐺𝑃𝑀−𝐹𝑒𝑠,0 + ∆𝐺𝑃𝑀−𝐹𝑒𝑠

𝑓𝑟
𝑓𝑟𝑎𝑡𝑒𝑑

 
(1-139) 

in which two parameters 𝐺𝑃𝑀−𝐹𝑒𝑠,0 and ∆𝐺𝑃𝑀−𝐹𝑒𝑠 are to be determined. By performing the 

identification at two different rotor speeds: 

𝐺𝑃𝑀−𝐹𝑒𝑠.𝑓𝑟1
= 𝐺𝑃𝑀−𝐹𝑒𝑠,0 + ∆𝐺𝑃𝑀−𝐹𝑒𝑠

𝑓𝑟1

𝑓𝑟𝑎𝑡𝑒𝑑
 

(1-140) 

𝐺𝑃𝑀−𝐹𝑒𝑠.𝑓𝑟2
= 𝐺𝑃𝑀−𝐹𝑒𝑠,0 + ∆𝐺𝑃𝑀−𝐹𝑒𝑠

𝑓𝑟2

𝑓𝑟𝑎𝑡𝑒𝑑
 

(1-141) 

the two parameters can be derived from the two independent equations.  

This section focuses on the temperature estimation methods based on the use of a lumped 

parameter thermal network. A summary of the analytical models for iron loss calculation is 

presented at the beginning, due to its significant contribution to motor overall losses. Iron loss 

can be estimated using the empirical Steinmetz’s equation or its extended version Bertotti 

equation. Ref. [82]-[89] present the modified iron loss expressions which take into account the 

minor hysteresis loop and harmonic effects, whereas a curve-fitting procedure is performed to 

identify the iron loss coefficients in [90]. A simplified voltage-based loss model catering for 

constant torque and constant power operations is proposed in [91] and two finite element 

solutions corresponding to open-circuit and short-circuit operations are required for the 

derivation of the coefficients in the model. Motor temperatures can be predicted by a 48-node 

LPTN coupled with a loss model with high fidelity and considering temperature effect, 

according to [6]. Nevertheless, high-order LPTNs require detailed motor geometrical and 

material information, which might not be available. Two low-order LPTNs presented in [56], 

[59]-[60] summarise only the most significant heat exchange processes in a motor. Detailed 
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motor physical knowledge is not needed because the thermal parameters can be identified with 

the curve-fitting algorithms. However, the practical implementation of the reduced-order 

LPTN is challenging as a result of the difficulty in obtaining rotor temperature measurement 

directly from temperature sensors for the identification of the unknown parameters. Chapter 4 

provides a solution to this issue by demonstrating a temperature monitoring ‘system’, which 

combines a three-node LPTN with a simple and accurate model-based method replacing rotor 

temperature measurement. 

1.3 Conclusion 

A research into the commonly-adopted temperature monitoring techniques is conducted. In 

spite of its reliability and accuracy, temperature measurement is not favoured in most 

applications because installing temperature sensors on the motor rotating part is particularly 

difficult. Besides, carrying out such measurements can be expensive. An alternative to 

measuring motor temperatures is estimating them via the electrical parameters changing with 

temperatures, such as flux linkage. However this approach requires the parameters of the 

machine and inverter to be precisely determined, and the use of signal injection in some 

methods may be disruptive to motor operation. A detailed LPTN provides important insights 

into the heat transfer processes in a motor and therefore is able to predict motor temperatures 

accurately. Nevertheless, it is modelled solely based on the knowledge of motor geometry and 

material properties, and the derivation of thermal parameters remains a difficult task. The use 

of a low-order LPTN in recent years has arisen, which does not demand high design effort, as 

only the major heat paths of a motor are considered, and therefore is the main focus of this PhD 

project.  
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Chapter 2: Temperature Estimation for Permanent 

Magnet Synchronous Motors Based on a Low-order 

Thermal Network 

2.1 Introduction 

It is concluded in the previous chapter that, from the temperature estimation point of view, a 

low-order LPTN may be able to achieve accurate temperature estimations with the least 

modelling effort and without detailed knowledge of the dimension and material of an electric 

motor. This chapter presents a simplified three-node thermal model predicting the critical 

temperatures in PMSMs. A set of state-space equations is used to describe the heat transfer 

processes between the motor components. The motor losses are calculated via the Finite 

Element software Motor-CAD, and are distributed into different temperature nodes according 

to their sources. The thermal capacitances are assumed to be constant and can also be derived 

from the Finite Element software. The thermal resistances are estimated in a recursive 

parameter identification procedure to avoid the rather complicated analytical derivation 

process.  

After an introduction of the basic concept, the proposed method is verified using the Nissan 

LEAF motor. The identification of the thermal resistances is carried out at different motor 

operating conditions in order to take into account the dependency of the resistances on rotor 

speed and current due to the model-fitting nature of the algorithm. The performance of the 

temperature estimation method is cross-validated with two independent motor driving cycles, 

demonstrating a small estimation error. In practice, inevitable errors in the modelling of losses 

may lead to the reduction of the model accuracy. This effect is evaluated in depth subsequently. 

2.2 Fundamental Theory 

A low-order LPTN will be presented in the following section, which consists of three 

temperature nodes including stator iron, stator winding and PM. This particular LPTN requires 

minimum knowledge of motor dimension and material, and takes into consideration the most 

important heat transfer paths in a PMSM. Due to the highly simplified thermal structure, the 

modelling process can be reduced to the identification of only the five unknown thermal 

resistances, making this thermal network suitable to implement online in an embedded system. 
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2.2.1 Model Structure 

A reduced-order LPTN with three nodes and considering only the most dominant heat-flow 

mechanisms in the motors is introduced for real-time temperature estimation for PMSM. As 

illustrated in Fig. 2-1, the nodes correspond to stator iron, stator winding, and rotor permanent 

magnets. The thermal resistance between stator iron and stator winding 𝑅𝑊−𝐹𝑒𝑠 represents the 

heat conduction through the solid regions of a motor. The heat convections through ambient, 

air gap, and cooling system are described by 𝑅𝑃𝑀−𝐴, 𝑅𝑃𝑀−𝐹𝑒𝑠, 𝑅𝑃𝑀−𝑊 and  𝑅𝐹𝑒𝑠−𝐶, 

respectively. Each node is also connected to a heat source representing the heat losses of the 

respective region of the motor, as well as a thermal capacitance, which is the product of the 

specific heat capacity and the mass of the respective motor component and therefore is assumed 

to be constant. 

 

 

 

 

 

 

It is important that the thermal resistance 𝑅𝑃𝑀−𝐴 is considered. This physically represents the 

heat flow from rotor to ambient through the shaft. The rotor temperature otherwise may be 

overestimated in cases where both the stator iron and stator winding temperatures are higher 

than the rotor temperature, because there is no power outlet for the PM node. 

2.2.2 Loss Modelling 

An accurate modelling of motor losses is of great significance because it describes the heat 

generation in the motor and thus affects the motor thermal behaviour. In the following, motor 

losses are calculated with analytical and Finite Element software-based tools. The total losses 

mainly consist of DC stator copper loss, iron loss and windage loss. Copper loss calculation is 

based on 𝑃𝑤 = 𝐼2𝑅, where resistance 𝑅 varies with stator winding temperature, whereas iron 

loss is determined by either Steinmetz’s or Bertotti’s equation. Windage loss is optional and 

can be easily added.  

Fig. 2-1:  Schematic graph of the three-node LPTN 
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For the presented LPTN shown in Fig. 2-1, the winding loss 𝑃𝑤 is assumed to be the 

temperature-dependent copper loss which is split into the winding and end-winding 

components based on their relative effective conductor lengths. The stator iron loss 𝑃𝐹𝑒𝑠 

contains the stator back iron and stator teeth losses. With respect to the rotor loss 𝑃𝑃𝑀, it is 

considered to be the sum of the rotor back iron loss and the magnet loss. Windage loss due to 

air turbulence as stator and rotor move past each other appears in the form of stator surface and 

rotor surface losses, and can be allocated evenly into the stator and rotor nodes. However it 

sometimes is not taken into consideration.  

2.2.3 Thermal Capacitance and Resistance 

The thermal capacitance of each motor component is defined by its specific heat capacity and 

mass, and can be calculated with a knowledge of the motor topology. The precise calculation 

of the value of the thermal capacitance for each node in Fig. 2-1 is difficult because some 

uncertainties exist, for instance, the information regarding stator slot such as epoxy 

configuration and insulation thickness is normally unknown. 

As a result, the node capacitance is roughly estimated on the basis that the capacitance of each 

node is the sum of the capacitances of all the motor components this node represents. 

Specifically, the stator iron node capacitance consists of stator housing, stator back iron, stator 

tooth, and flange mounted plate capacitances, etc. The winding node capacitance contains 

stator winding and end-winding capacitances. Due to the lumped modelling of rotor, the PM 

node should be viewed as the ‘rotor node’ and therefore the capacitance of each component 

located in rotor should be lumped together. 

The proposed structure only takes into account the major heat transfer processes in a motor, 

which are summarized in five thermal resistances. Instead of deriving the analytical formulas 

for the thermal resistances, which require the detailed knowledge of the motor geometry and 

the thermal properties of the materials, the thermal resistances are estimated in the parameter 

identification process introduced in the following section, along with the node temperatures.  

2.2.4 State-space Representation 

As with the voltage node equations for electrical circuit, the temperature node equations for 

the presented ‘thermal circuit’ can be described as: 

𝑃𝐹𝑒𝑠 − 𝐶𝐹𝑒𝑠

𝑑

𝑑𝑡
𝑇𝐹𝑒𝑠 =

𝑇𝐹𝑒𝑠 − 𝑇𝐶

𝑅𝐹𝑒𝑠−𝐶
+

𝑇𝐹𝑒𝑠 − 𝑇𝑊

𝑅𝑊−𝐹𝑒𝑠
+

𝑇𝐹𝑒𝑠 − 𝑇𝑃𝑀

𝑅𝑃𝑀−𝐹𝑒𝑠
 

(2-1) 
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𝑃𝑊 − 𝐶𝑊

𝑑

𝑑𝑡
𝑇𝑤 =

𝑇𝑊 − 𝑇𝐹𝑒𝑠

𝑅𝑊−𝐹𝑒𝑠
+

𝑇𝑊 − 𝑇𝑃𝑀

𝑅𝑃𝑀−𝑊
 

(2-2) 

𝑃𝑃𝑀 − 𝐶𝑃𝑀

𝑑

𝑑𝑡
𝑇𝑃𝑀 =

𝑇𝑃𝑀 − 𝑇𝐹𝑒𝑠

𝑅𝑃𝑀−𝐹𝑒𝑠
+

𝑇𝑃𝑀 − 𝑇𝑊

𝑅𝑃𝑀−𝑊
+

𝑇𝑃𝑀 − 𝑇𝐴

𝑅𝑃𝑀−𝐴
 

(2-3) 

The thermal behaviour of the LPTN based on the above description therefore can be expressed 

in the form of a set of state-space equations: 

�̇� = 𝐴𝑥 + 𝐵𝑢 (2-4) 

𝑦 = 𝐶𝑥 + 𝐷𝑢 (2-5) 

in which: 

𝑥 = [𝑇𝐹𝑒𝑠, 𝑇𝑊, 𝑇𝑃𝑀]𝑇 (2-6) 

𝑢 = [𝑃𝐹𝑒𝑠, 𝑃𝑊, 𝑃𝑃𝑀, 𝑇𝐶 , 𝑇𝐴]𝑇 (2-7) 

𝐴 = ℝ3×3 (2-8) 

𝐴11 = −
1

𝐶𝐹𝑒𝑠
(

1

𝑅𝐹𝑒𝑠−𝐶
+

1

𝑅𝑊−𝐹𝑒𝑠
+

1

𝑅𝑃𝑀−𝐹𝑒𝑠
) 

(2-9) 

𝐴12 =
1

𝐶𝐹𝑒𝑠𝑅𝑊−𝐹𝑒𝑠
 

(2-10) 

𝐴13 =
1

𝐶𝐹𝑒𝑠𝑅𝑃𝑀−𝐹𝑒𝑠
 

(2-11) 

𝐴21 =
1

𝐶𝑊𝑅𝑊−𝐹𝑒𝑠
 

(2-12) 

𝐴22 = −
1

𝐶𝑊
(

1

𝑅𝑊−𝐹𝑒𝑠
+

1

𝑅𝑃𝑀−𝑊
) 

(2-13) 

𝐴23 =
1

𝐶𝑊𝑅𝑃𝑀−𝑊
 

(2-14) 

𝐴31 =
1

𝐶𝑃𝑀𝑅𝑃𝑀−𝐹𝑒𝑠
 

(2-15) 

𝐴32 =
1

𝐶𝑃𝑀𝑅𝑃𝑀−𝑊
 

(2-16) 

𝐴33 = −
1

𝐶𝑃𝑀
(

1

𝑅𝑃𝑀−𝐹𝑒𝑠
+

1

𝑅𝑃𝑀−𝑊
+

1

𝑅𝑃𝑀−𝐴
) 

(2-17) 
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𝐵 =

[
 
 
 
 
 
 

1

𝐶𝐹𝑒𝑠
0 0

1

𝐶𝐹𝑒𝑠𝑅𝐹𝑒𝑠−𝐶
0

0
1

𝐶𝑊
0 0 0

0 0
1

𝐶𝑃𝑀
0

1

𝐶𝑃𝑀𝑅𝑃𝑀−𝐴]
 
 
 
 
 
 

 

 

(2-18) 

𝐶 = [
1 0 0
0 1 0
0 0 1

] 
(2-19) 

𝐷 = [
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

] 
(2-20) 

As can be seen from (2-6) to (2-20), the state vector 𝑥 contains the node temperatures, whilst 

the input vector 𝑢 represents the power loss of each node and the motor cooling system and 

ambient temperatures 𝑇𝐶 and 𝑇𝐴. The state and input matrices 𝐴 and 𝐵 are 3 × 3 and 3 × 5 

vectors, respectively, and they are the functions of the thermal resistances and capacitances. 

With regard to 𝐶 and 𝐷, they are identity and zero matrices, because 𝑦 is the observation of the 

states. It is worth mentioning that, the matrices 𝐴, 𝐵, 𝐶 and 𝐷 at this stage are independent of 

sampling time. 

2.2.5 Model Discretization 

For the purpose of real-time system identification, the discretization of the continuous-time 

model is required. The approach applied in discretizing the presented thermal model is the RK1 

method. As a result, equation (2-4) now becomes (1-134) and hence the state transition and 

observation models are given by: 

𝑥(𝑘 + 1) = (𝑇𝑘𝐴(𝑘) + 𝐼)𝑥(𝑘) + 𝑇𝑘𝐵(𝑘)𝑢(𝑘) (2-21) 

𝑦(𝑘) = 𝐶(𝑘)𝑥(𝑘) + 𝐷(𝑘)𝑢(𝑘) (2-22) 

with: 

𝑥(𝑘) = [𝑇𝐹𝑒𝑠(𝑘), 𝑇𝑊(𝑘), 𝑇𝑃𝑀(𝑘)]𝑇 (2-23) 

𝑢(𝑘) = [𝑃𝐹𝑒𝑠(𝑘), 𝑃𝑊(𝑘), 𝑃𝑃𝑀(𝑘), 𝑇𝐶(𝑘), 𝑇𝐴(𝑘)]𝑇 (2-24) 

Assuming 𝜗 = 𝑇𝑘𝐴(𝑘) + 𝐼, and 𝜀 = 𝑇𝑘𝐵(𝑘): 
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𝜗 =

[
 
 
 
 
 
 1 −

𝑇𝑘

𝐶𝐹𝑒𝑠
(
1

𝜃1
+

1

𝜃2
+

1

𝜃3
)

𝑇𝑘

𝐶𝐹𝑒𝑠𝜃2

𝑇𝑘

𝐶𝐹𝑒𝑠𝜃3

𝑇𝑘

𝐶𝑊𝜃2
1 −

𝑇𝑘

𝐶𝑊
(

1

𝜃2
+

1

𝜃4
)

𝑇𝑘

𝐶𝑊𝜃4

𝑇𝑘

𝐶𝑃𝑀𝜃3

𝑇𝑘

𝐶𝑃𝑀𝜃4
1 −

𝑇𝑘

𝐶𝑃𝑀
(
1

𝜃3
+

1

𝜃4
+

1

𝜃5
)
]
 
 
 
 
 
 

 

 

(2-25) 

𝜀 =

[
 
 
 
 
 
 

𝑇𝑘

𝐶𝐹𝑒𝑠
0 0

𝑇𝑘

𝐶𝐹𝑒𝑠𝜃1
0

0
𝑇𝑘

𝐶𝑊
0 0 0

0 0
𝑇𝑘

𝐶𝑃𝑀
0

𝑇𝑘

𝐶𝑃𝑀𝜃5]
 
 
 
 
 
 

 

 

(2-26) 

where: 

𝜃1 = 𝑅𝐹𝑒𝑠−𝐶 (2-27) 

𝜃2 = 𝑅𝑊−𝐹𝑒𝑠 (2-28) 

𝜃3 = 𝑅𝑃𝑀−𝐹𝑒𝑠 (2-29) 

𝜃4 = 𝑅𝑃𝑀−𝑊 (2-30) 

𝜃5 = 𝑅𝑃𝑀−𝐴 (2-31) 

2.2.6 Parameter Identification 

The thermal resistances in the LPTN are estimated using a measurement-informed parameter 

estimation procedure, based on the recursive Kalman Filter algorithm which is able to update 

continuously the values of the unknown state variables according to the minimization of the 

cost function 𝐽(𝑥): 

𝑚𝑖𝑛𝑥𝐽(𝑥) (2-32) 

where: 

𝐽(𝑥) = 𝑐𝑜𝑣(𝑒𝑥(𝑘)) (2-33) 

𝑐𝑜𝑣(𝑒𝑥(𝑘)) = ∑ 𝑒𝑥(𝑘)𝑒𝑥(𝑘)𝑇

𝑁

𝑘=1

 

(2-34) 

𝑒𝑥(𝑘) = �̃�(𝑘) − 𝑥(𝑘) (2-35) 



Page 67 of 166 

  

The function 𝑐𝑜𝑣(𝑒𝑥(𝑘)) is the determinant of the covariance matrix of the state variable 

estimation errors 𝑒𝑥(𝑘). It is assumed that the system for which the states are to be estimated 

contains process noise and the observation noise is included in the measurements. 

The Kalman Filter algorithm has numerous applications, such as navigation, target tracking, 

and has been widely used as the state observer in high performance PM motor drives in recent 

years. In [32], two low-order Kalman Filter models are proposed for the estimations of the 

winding resistance and PM flux linkage of a surface-mounted permanent magnet brushless AC 

(BLAC) motor under sensorless and sensored operations for rotor speed and position. The 

identification of the parameters only requires motor current and voltage measurements, and 

good estimation accuracy can be achieved. Furthermore, the models are of low computational 

demand and therefore can be relatively easily implemented in real-time. 

The algorithm performs a two-step process: a) prediction step: the Kalman Filter calculates the 

state estimates at current time step, also known as ‘a priori’ estimates, using the estimates from 

the previous time step. The measurements are not used at this stage. b) Update step: the ‘a 

priori’ estimates are refined by taking account of the current measurement information. These 

improved estimates (‘a posterior’ state estimates) are then used for producing the new ‘a priori’ 

estimates at the next time step. From the description above, it is clear that the algorithm works 

with only the present input measurement(s) and the previously updated state(s) — no additional 

past information is required.  

The identification problem can be formulated as a state observer with eight states. Other than 

the node temperatures, five additional states are included representing the unknown thermal 

resistances in the LPTN. The system has a nonlinear character due to the formulation where 

both temperatures and parameters are to be estimated. As a result, the extended Kalman Filter 

(EKF) which uses a continuously updated linearization is adopted to deal with the nonlinearity 

of the model. 

The state-space models of a nonlinear system can be expressed as: 

𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝑢𝑘) + 𝑤𝑘 (2-36) 

𝑧𝑘 = ℎ(𝑥𝑘) + 𝑣𝑘 (2-37) 

The process and measurement/observation noises 𝑤𝑘 and 𝑣𝑘 are assumed to be zero-mean 

white noises with covariances 𝑄𝑘 and 𝑅𝑘 respectively. A standard assumption is that: 

𝑄𝑘 = 𝑤𝑘𝑤𝑘
𝑇 (2-38) 
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𝑅𝑘 = 𝑣𝑘𝑣𝑘
𝑇 (2-39) 

The functions 𝑓 and ℎ are nonlinear and cannot be applied to the covariance estimations as the 

linear state-transition and observation models. Hence the Jacobian matrices are computed to 

linearize the nonlinear functions around the current state. The following equations describe the 

two-phase estimation process at each sampling time for the EKF algorithm: 

 Predict 

�̂�𝑘|𝑘−1 = 𝑓(�̂�𝑘−1|𝑘−1, 𝑢𝑘) (2-40) 

𝑃𝑘|𝑘−1 = 𝐹𝑘𝑃𝑘−1|𝑘−1𝐹𝑘
𝑇 + 𝑄𝑘 (2-41) 

 Update 

�̂�𝑘 = 𝑧𝑘 − ℎ(�̂�𝑘|𝑘−1) (2-42) 

𝑆𝑘 = 𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘
𝑇 + 𝑅𝑘 (2-43) 

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻𝑘
𝑇𝑆𝑘

−1 (2-44) 

�̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 + 𝐾𝑘�̂�𝑘 (2-45) 

𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘|𝑘−1 (2-46) 

where the Jacobians are defined as: 

𝐹𝑘 = 𝑓′(𝑥)|�̂�𝑘−1|𝑘−1,𝑢𝑘
 (2-47) 

𝐻𝑘 = ℎ′(𝑥)|�̂�𝑘|𝑘−1
 (2-48) 

In the prediction step, the EKF computes the current state estimates �̂�𝑘|𝑘−1 based on the state 

function 𝑓, and the covariance matrix  𝑃𝑘|𝑘−1, using the state-transition Jacobian 𝐹𝑘 — a matrix 

of partial derivatives linearizing the system function. The update phase provides the improved 

estimates �̂�𝑘|𝑘 by adding a corrective term 𝐾𝑘�̂�𝑘 to the ‘a priori’ estimates in order to take into 

account the current measurement information. The Kalman gain matrix 𝐾𝑘 is derived from the 

minimization of the trace of the ‘a posteriori’ estimate covariance matrix 𝑃𝑘|𝑘. The block 

diagram representing the two-step estimation process is shown in Fig. 2-2. 
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Concerning the aforementioned thermal network with eight states of the node temperatures and 

thermal resistances, the nonlinear functions 𝑓 and ℎ can be written as: 

𝑓 =

[
 
 
 
 
 
 
 
 
 
 
 𝑥1 −

𝑇𝑘𝑥1

𝐶𝐹𝑒𝑠
(
1

𝑥4
+

1

𝑥5
+

1

𝑥6
) +

𝑇𝑘𝑥2

𝐶𝐹𝑒𝑠𝑥5
+

𝑇𝑘𝑥3

𝐶𝐹𝑒𝑠𝑥6
+

𝑇𝑘𝑢1

𝐶𝐹𝑒𝑠
+

𝑇𝑘𝑢4

𝐶𝐹𝑒𝑠𝑥4

𝑇𝑘𝑥1

𝐶𝑊𝑥5
+ 𝑥2 −

𝑇𝑘𝑥2

𝐶𝑊
(

1

𝑥5
+

1

𝑥7
) +

𝑇𝑘𝑥3

𝐶𝑊𝑥7
+

𝑇𝑘𝑢2

𝐶𝑊

𝑇𝑘𝑥1

𝐶𝑃𝑀𝑥6
+

𝑇𝑘𝑥2

𝐶𝑃𝑀𝑥7
+ 𝑥3 −

𝑇𝑘𝑥3

𝐶𝑃𝑀
(

1

𝑥6
+

1

𝑥7
+

1

𝑥8
) +

𝑇𝑘𝑢3

𝐶𝑃𝑀
+

𝑇𝑘𝑢5

𝐶𝑃𝑀𝑥8
𝑥4

𝑥5

𝑥6

𝑥7

𝑥8 ]
 
 
 
 
 
 
 
 
 
 
 

 

 

 

(2-49) 

ℎ =

[
 
 
 
 
 
 
 
𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑥7

𝑥8]
 
 
 
 
 
 
 

 

 

(2-50) 

where: 

[𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8]
𝑇 = [𝑇𝐹𝑒𝑠, 𝑇𝑊, 𝑇𝑃𝑀, 𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5]

𝑇 (2-51) 

[𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5]
𝑇 = [𝑃𝐹𝑒𝑠, 𝑃𝑊, 𝑃𝑃𝑀, 𝑇𝐶 , 𝑇𝐴]𝑇 (2-52) 

 Thus the state-transition and observation Jacobian matrices are: 

Fig. 2-2:  Extended Kalman Filter algorithm block diagram 
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F =

[
 
 
 
 
 
 
 
 
 
 
 1 −

𝑇𝑘

𝐶𝐹𝑒𝑠
(

1

𝑥4
+

1

𝑥5
+

1

𝑥6
)

𝑇𝑘

𝐶𝐹𝑒𝑠𝑥5

𝑇𝑘

𝐶𝐹𝑒𝑠𝑥6

𝑇𝑘

𝐶𝑊𝑥5
1 −

𝑇𝑘

𝐶𝑊
(

1

𝑥5
+

1

𝑥7
)

𝑇𝑘

𝐶𝑊𝑥7

𝑇𝑘

𝐶𝑃𝑀𝑥6

𝑇𝑘

𝐶𝑃𝑀𝑥7
1 −

𝑇𝑘

𝐶𝑃𝑀
(

1

𝑥6
+

1

𝑥7
+

1

𝑥8
)

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

⋯  

⋯

𝑇𝑘(𝑥1 − 𝑢4)

𝐶𝐹𝑒𝑠𝑥4
2

𝑇𝑘(𝑥1 − 𝑥2)

𝐶𝐹𝑒𝑠𝑥5
2

𝑇𝑘(𝑥1 − 𝑥3)

𝐶𝐹𝑒𝑠𝑥6
2 0 0

0
𝑇𝑘(𝑥2 − 𝑥1)

𝐶𝑊𝑥5
2 0

𝑇𝑘(𝑥2 − 𝑥3)

𝐶𝑊𝑥7
2 0

0 0
𝑇𝑘(𝑥3 − 𝑥1)

𝐶𝑃𝑀𝑥6
2

𝑇𝑘(𝑥3 − 𝑥2)

𝐶𝑃𝑀𝑥7
2

𝑇𝑘(𝑥3 − 𝑢5)

𝐶𝑃𝑀𝑥8
2

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1 ]

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

(2-53) 

𝐻 =

[
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1]

 
 
 
 
 
 
 

 

 

(2-54) 

Also, a relatively small sampling time 𝑇𝑘 = 1𝑠 is selected to avoid significant prediction errors.  

The process noise covariance 𝑄 and the observation noise covariance 𝑅 are commonly used 

for tuning the EKF. Normally only 𝑄 is adjusted because 𝑅 can be easily calculated from a 

series of measurements. It is obvious that the use of large 𝑄 results in a stronger weighting of 

the measurements, indicating that the variations in the actual states are large. The Kalman Filter 

gain 𝐾 as a result is large in order to achieve that. However this results in more measurement 

noise, as the measurement residual �̂�𝑘 includes the measurement noise 𝑣𝑘, which is amplified 

with a larger 𝐾. In conclusion, the general rule for the selection of  𝑄 is that, select the largest 

value without the estimates being overly noisy [94]. 
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It is necessary to check whether the proposed thermal network is observable prior to the 

validation of the method. A state-space system is completely observable, only if the rank of the 

observability matrix 𝑀𝑜, defined as [94]: 

𝑀𝑜 =

[
 
 
 
 

𝐶
𝐶𝐴
𝐶𝐴2

⋮
𝐶𝐴𝑛−1]

 
 
 
 

 

 

(2-55) 

is equal to the system order 𝑛𝑠𝑜. In (2-55), 𝐴 and 𝐶 are the state transition and observation 

matrices, which for nonlinear systems are the state and output Jacobians, respectively. 

The observability matrix of the thermal network is computed using (2-53) and (2-54). 𝑀𝑜 is a 

64 × 8 vector. It is confirmed that the rank of 𝑀𝑜 is eight, the same as the order of the system 

model, and the number of the state variables.  

2.3 Offline Validation 

The model of the Motor-CAD existing traction IPMSM used in 2012 Nissan LEAF is employed 

for validation purpose, instead of the experimentally-tested SPMSM, which will be introduced 

in the following chapter, in order to evaluate the applicability of the presented method to 

different types of PMSMs. The motor schematic is shown in Fig. 2-3 (design parameters 

specified in Table II), and the simulation of the identification algorithm and the temperature 

estimation is performed in MATLAB/Simulink (see Appendix B the MATLAB function).  

 

 

 

 

 

 

 

 

Fig. 2-3:  Schematic of the PMSM used for offline 
validation 
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2.3.1 Validation at Single Speed and Current 

The validity of the proposed method is investigated under the conditions where the motor 

operates at the maximum rotor speed 𝜔𝑟 = 6000𝑟𝑝𝑚 and stator current 𝐼 = 189𝐴. The motor 

losses are computed along with the temperatures of a detailed thermal network consisting of 

48 nodes in Motor-CAD. For the presented low-order LPTN, the stator iron loss consists of the 

stator back iron and stator teeth losses, as well as a small amount of loss generated by the end-

cap. The winding loss is the sum of the active winding and end-winding losses. Due to the V-

shaped interior PM being used, as illustrated in Fig. 2-3, the main contributor of loss in the 

rotor is the embedded magnet poles. The windage and bearing friction losses are also taken 

into account. The windage loss generated by the fluid movement in the air-gap is evenly 

distributed into the stator iron and PM nodes. The bearing loss is also separated equally into a 

stator iron and a rotor components, considering the friction between the bearing and the endcap 

and the shaft. The stator iron node temperature is assumed to be the average of the housing, 

endcap, stator back iron, and stator teeth temperatures, and the winding node temperature is 

considered the average temperature of the hot and cold winding spots. In respect of the rotor 

node temperature, it is regarded as the mean temperature of the rotor back iron, magnet and 

shaft. Fig. 2-4 and Fig. 2-5 show the thermal resistances and node temperatures estimated by 

the EKF. Fig. 2-6 shows the errors in the temperature estimations. 

It can be seen from Fig. 2-5 and Fig. 2-6 that, the estimations by the EKF track the references 

rather well, suggesting that the estimated thermal model can offer a good degree of accuracy. 

Table II:  Parameters of the IPMSM 

Quantity Unit Value 

Max Speed 

Peak Power 

rpm 

kW 

10,390 

80 

DC Link Voltage 

Peak Torque 

V 

Nm 

400 

280 

No. of Pole-pairs 

No. of Slots 

-- 

-- 

4 

48 

Stator Resistance Ω 0.0112 

d-axis Inductance mH 0.2194 

q-axis Inductance mH 0.5371 

PM Flux Linkage Wb 0.088 

 

 

TABLE II 
PARAMETERS OF THE IPMSM 

Quantity Unit Value 

Max Speed 

Peak Power 

r/min 

kW 

6000 

6.3 

DC Link Voltage 

Peak Current 

V 

A 

400 

189 

No. of Pole-pairs 

No. of Slots 

-- 

-- 

4 

48 

Stator Resistance Ω 0.0112 

d-axis Inductance mH 0.2194 

q-axis Inductance mH 0.5371 

PM Flux Linkage Wb 0.088 

 

 

TABLE II 
PARAMETERS OF THE IPMSM 

Quantity Unit Value 

Max Speed 

Peak Power 

r/min 

kW 

6000 

6.3 

DC Link Voltage 

Peak Current 

V 

A 

400 

189 

No. of Pole-pairs 

No. of Slots 

-- 

-- 

4 

48 

Stator Resistance Ω 0.0112 

d-axis Inductance mH 0.2194 

q-axis Inductance mH 0.5371 

PM Flux Linkage Wb 0.088 

 

 

TABLE II 
PARAMETERS OF THE IPMSM 

Quantity Unit Value 

Max Speed 

Peak Power 

r/min 

kW 

6000 

6.3 

DC Link Voltage 

Peak Current 

V 

A 

400 

189 

No. of Pole-pairs 

No. of Slots 

-- 

-- 

4 

48 

Stator Resistance Ω 0.0112 

d-axis Inductance mH 0.2194 
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Fig. 2-4:  Thermal resistances estimated by the EKF 

Fig. 2-5:  Node temperatures estimated by the EKF 

Fig. 2-6:  Temperature estimation errors in Fig. 2-5 
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The estimation results of the thermal resistances are verified by performing an open-loop test, 

in which the node temperatures are calculated using (2-21)-(2-31), assuming that 𝜃1 to 𝜃5 are 

the values identified and shown in Fig. 2-4. Fig. 2-7 plots the estimated temperatures compared 

with the references and the corresponding errors are shown in Fig. 2-8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Less than 5.1℃ errors in all three temperatures are shown, which may be due to the averaging 

of the Motor-CAD temperatures not being accurate. The proposed thermal network is highly 

simplified, meaning that each node represents a region within the motor and therefore the 

accuracy of the reference relies on the temperature of each motor component in the region, 

unless the temperatures are evenly distributed. In this case, the reference is approximated by 

Fig. 2-7:  Three-node temperature estimations using the identified 
thermal resistances 

Fig. 2-8:  Temperature estimation errors for the open-loop test 



Page 75 of 166 

  

the average of the highest and lowest temperatures in the region for simplicity. It might not be 

particularly precise because the tested motor has an uneven temperature distribution. Also, the 

three-node, five-parameter structure is considered a reasonable abstraction of the major heat 

transfer processes in the most commonly used PMSMs. However it might be oversimplified 

for the IPMSM under test. Furthermore, the thermal resistances are identified only after the 

thermal equilibrium is reached, as shown in Fig. 2-4 and Fig. 2-5. This means the temperatures 

will be better estimated at steady-state unless the resistances during transient period are 

identical to those at steady-state, which might not be the case for the tested motor. 

As an alternative to the use of the Kalman Filter, the identification of the thermal resistances is 

also performed using the nonlinear least squared optimization method based on the Levenberg-

Marquardt algorithm [7] using the MATLAB estimation toolbox. This method locates the 

parameters 𝛽 = (𝛽1, 𝛽2 ⋯𝛽𝑛) of a nonlinear model curve 𝑦𝛽 = 𝑓(𝑥, 𝛽), such that the sum 𝑆 of 

the squares of the deviations between a set of observations and the model curve is minimized. 

Similarly to the EKF, the function 𝑓(𝑥, 𝛽) is approximated by its linearization for the update 

of 𝑆. The algorithm is an iterative procedure. In each iteration, the parameters are refined by 

adjusting the damping factor 𝜆𝑑, which controls the pace of the minimization of 𝑆. The iteration 

stops when 𝑆 from the latest parameter estimations 𝛽𝑘 is within the pre-defined limits, and 𝛽𝑘 

is considered the solution to the curve-fitting problem. With regard to the presented thermal 

network, the state variables 𝑥 are assumed to be the node temperatures, whilst the unknown 

parameters correspond to the thermal resistances.  

Fig. 2-9 shows the estimated temperatures alongside their corresponding references, and the 

power losses allocated into the temperature nodes. The ambient and cooling system 

temperatures are also included as they are the inputs of the thermal network. Only the steady-

state temperatures are considered for the identification for the purpose of verifying the 

resistances shown in Fig. 2-4. Fig. 2-10 shows the value of the function 𝑆 at each iteration 

before the optimization completed.   

Fig. 2-11 shows the estimated thermal resistances. The resistances 𝑅𝐹𝑒𝑠−𝐶 and 𝑅𝑊−𝐹𝑒𝑠, donated 

as 𝜃1 and 𝜃2, show approximately 0.04% and 2.22% difference respectively, compared to the  

results in Fig. 2-4. However the rotor-related resistances 𝑅𝑃𝑀−𝐹𝑒𝑠, 𝑅𝑃𝑀−𝑊, and 𝑅𝑃𝑀−𝐴 differ 

significantly from those estimated by the EKF. This is because these resistances have multiple 

solutions under the power loss profiles. With different algorithms, different ‘local optimal’ 
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solutions around the initial guesses can be found which guarantee the minimum of the sum of 

the squared errors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The open-loop test is conducted estimating the node temperatures with the results displayed in 

Fig. 2-11. In spite of the nearly perfect estimation at the thermal steady-state, which affirms 

these resistances are indeed one of the many solutions that ensure the estimated temperatures 

approximately fit the references, over 6℃ error in winding temperature and −5℃ error in rotor 

temperature can be observed in Fig. 2-12 and Fig. 2-13 during transient period, suggesting the 

results are not the best local optimal solutions for this particular application. 

Fig. 2-9:  Node temperatures estimated by the Levenberg-Marquardt algorithm, the 
power losses, the cooling system and ambient temperatures 

Fig. 2-10:  Values of the cost function 𝑆 before the iteration stops 

Iteration Cost Function 

0 290.8621 

1 6.6824 

2 2.6395 

3 0.3409 

4 0.0048 

5 3.7584𝑒−5 

6 1.0249𝑒−6 

7 9.9462𝑒−7 

Fig. 2-11:  Thermal resistances estimated by the Levenberg-Marquardt and extended 
Kalman filter algorithms 

Parameters Levenberg-Marquardt  Extended Kalman Filter  

𝑅𝐹𝑒𝑠−𝐶  0.021989 0.02198 

𝑅𝑊−𝐹𝑒𝑠 0.02746 0.02685 

𝑅𝑃𝑀−𝐹𝑒𝑠 0.19172 0.2473 

𝑅𝑃𝑀−𝑊 0.17554 0.3073 

𝑅𝑃𝑀−𝐴 3.0761 3.199 
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Fig. 2-14 demonstrates another local optimal solution estimated with a different set of initial 

guesses. Similarly to Fig. 2-11, the difference in the resistances connecting the rotor to the 

stator and ambient between using these two algorithms is evident. However the predicted node 

temperatures shown in Fig. 2-15 and Fig. 2-16 still match the temperature references rather 

well at steady-state. The maximum of 5℃ error is shown in stator temperature estimations. 

Nonetheless, the rotor temperature is less accurately predicted compared to adopting the EKF 

algorithm. 

Fig. 2-12:  Open-loop temperature estimations with the results in Fig. 
2-11 

Fig. 2-13:  Temperature estimation errors in Fig. 2-12 
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2.3.2 Validation at Multiple Speeds and Currents 

The resistances related to rotor 𝑅𝑃𝑀−𝐹𝑒𝑠, 𝑅𝑃𝑀−𝑊, and 𝑅𝑃𝑀−𝐴 are assumed to be speed-

dependent due to convection effects. Fig. 2-17 depicts the resistance estimations at multiple 

rotor speeds ranging from 1000𝑟𝑝𝑚 to 6000𝑟𝑝𝑚, whilst the stator current is set to be its 

maximum. 

Fig. 2-15:  Estimated node temperatures with the results in Fig. 2-14 

Fig. 2-16:  Temperature estimation errors in Fig. 2-15 

Fig. 2-14:  Thermal resistances estimated by the Levenberg-Marquardt algorithm 
with different initial conditions and the extended Kalman filter algorithm  

Parameters Levenberg-Marquardt Extended Kalman Filter 

𝑅𝐹𝑒𝑠−𝐶  0.021948 0.02198 

𝑅𝑊−𝐹𝑒𝑠 0.026645 0.02685 

𝑅𝑃𝑀−𝐹𝑒𝑠 0.25994 0.2473 

𝑅𝑃𝑀−𝑊 0.42082 0.3073 

𝑅𝑃𝑀−𝐴 3.8181 3.199 
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It is clear that the thermal resistances between stator and rotor vary with rotor speed. However, 

the resistances 𝑅𝑊−𝐹𝑒𝑠 and 𝑅𝐹𝑒𝑠−𝐶 are expected to be constant, because a) rotor speed in theory 

does not affect heat conduction, b) the cooling system (housing water jacket) has a constant 

volume flow rate. The dependency on rotor speed can be simply explained by the fact that the 

resistances are estimated based upon the temperature predictions matching the temperature 

references and therefore have less physical meanings. The irregular variations in the values of 

𝑅𝑃𝑀−𝐴 may also be the result of it.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2-17:  Thermal resistances estimated at 𝜔𝑟 = 1000𝑟𝑝𝑚, 

2000𝑟𝑝𝑚, 3000𝑟𝑝𝑚, 4000𝑟𝑝𝑚, 5000𝑟𝑝𝑚, and 6000𝑟𝑝𝑚 and 
maximum current 

Fig. 2-18:  Thermal resistance estimated at 𝐼 = 40𝐴, 70𝐴, 100𝐴, 

130𝐴, 160𝐴, and 189𝐴 and maximum speed 
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The identification procedure is also performed at different stator currents. Fig. 2-18 shows the 

predicted resistances when 𝐼 = 40𝐴, 70𝐴, 100𝐴, 130𝐴, 160𝐴, and 189𝐴 are applied. The 

rotor speed remains constant at 𝜔𝑟 = 6000𝑟𝑝𝑚. The fact that the parameters still show some 

dependence on current supports the assumption that searching for the best fit to the temperature 

measurement points outweighs the physical meaning of the parameters for the EKF algorithm. 

Fig. 2-19 to Fig. 2-23 demonstrate the resistances identified at several speed and current 

combinations. The data is written into five two-dimensional look-up tables (2-D LUT), with 

speed and current being the inputs, and the interpolated resistances being the outputs, for the 

purpose of temperature estimation. The non-uniform variation in the values of the resistances 

in a wide range of operating conditions confirms the aforementioned conclusions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2-19:  𝑅𝐹𝑒𝑠−𝐶 estimated at various speeds and currents 

Fig. 2-20:  𝑅𝑊−𝐹𝑒𝑠 estimated at various speeds and currents 
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Fig. 2-21:  𝑅𝑃𝑀−𝐹𝑒𝑠 estimated at various speeds and currents 

Fig. 2-22:  𝑅𝑃𝑀−𝑊 estimated at various speeds and currents 

Fig. 2-23:  𝑅𝑃𝑀−𝐴 estimated at various speeds and currents 
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A simplified driving cycle in which the motor speed and current vary in steps, as illustrated in 

Fig. 2-24, is used to generate a dynamic thermal transient. The node temperatures are estimated 

in the open-loop test. The thermal resistances are assumed to be dependent on both speed and 

current, and are interpolated using the 2-D LUTs.  Fig. 2-25 shows the step-based resistances 

in response to the driving cycle, whereas Fig. 2-26 and Fig. 2-27 depict the estimated 

temperatures, and their deviations from the corresponding references, respectively. The errors 

are within 5.8℃ for all predicted temperatures.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2-24:  Speed and current profiles of the transient test 

Fig. 2-25:  Thermal resistances in response to the driving cycle 
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In Fig. 2-28, a load profile based on the standard WLTP Class 3 driving cycle for Nissan LEAF 

is considered. The thermal resistances used for temperature predictions are plotted in Fig. 2-

29. The estimated three-node temperatures are shown in Fig. 2-30, together with the 

temperature references generated as a result of the employed duty cycle. Fig. 2-31 plots the 

estimation errors, where no more than ±3℃ difference between the references and estimations 

can be observed, showing the robustness of the system and accuracy of the identification 

results. 

Fig. 2-26:  Temperature estimation results according to the driving 
cycle 

Fig. 2-27:  Temperature estimation errors for the transient test 
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Fig. 2-28:  Load profile based on the WLTP Class 3 driving cycle 

Fig. 2-29:  Thermal resistances for temperature estimations 

Fig. 2-30:  Temperature estimations and the corresponding 
measurements 
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2.3.3 Loss Error Analysis 

Practically, the accuracy of the presented method can be affected by motor losses. The effect 

of the errors in copper loss, iron loss and magnet loss on the identification algorithm, and the 

resulting temperature estimations is analysed in detail in the following section. The motor is 

assumed to operate at steady-state with 𝜔𝑟 = 6000𝑟𝑝𝑚 and 𝐼 = 189𝐴. 

2.3.3.1 Copper Loss 

The errors generated by current sensors and the estimation of the stator resistance are the 

sources of copper loss errors. This section provides a sensitivity analysis of the estimated 

thermal model parameters to loss uncertainties. The copper loss is changed between 50% and 

250% of the Motor-CAD value. As can be seen from the result shown in Fig. 2-32, the 

resistance 𝑅𝑊−𝐹𝑒𝑠 becomes smaller with larger copper loss. It is because due to the 

temperatures remaining unchanged, according to Ohm’s law, the resistance decreases as a 

result of the increased copper loss flowing into the stator iron node through heat conduction. 

The resistance 𝑅𝐹𝑒𝑠−𝐶 also decreases as the increased copper loss from the winding enhances 

the convection between the stator iron and cooling system. However the resistances 

𝑅𝑃𝑀−𝐹𝑒𝑠, 𝑅𝑃𝑀−𝑊, and 𝑅𝑃𝑀−𝐴 are not sensitive to the change in copper loss. It could be because 

the convection between stator and rotor is not as dominant as the conduction in stator. Also, as 

mentioned earlier, the proposed method prioritises the temperature predictions best matching 

the references. Therefore the identified parameters do not necessarily represent the actual 

thermal resistances for this motor. 

Fig. 2-31:  Temperature estimation errors under the transient 
profiles 
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2.3.3.2 Iron Loss 

Iron loss error originates from the inaccurate iron loss modelling. Fig. 2-33 shows the estimated 

resistances with iron losses changed between 50% and 250%. It can be seen from Fig. 2-5 that 

the iron temperature at steady-state is lower than the winding and rotor temperatures, meaning 

that the increased iron loss only flows from the stator iron node through to the cooling system, 

resulting in the decrease in the estimated resistance 𝑅𝐹𝑒𝑠−𝐶. 

 

 

 

 

 

 

 

 

 

 

Fig. 2-32:  Thermal resistances estimated with different copper 
losses 𝑃𝑊 applied 

Fig. 2-33:  Thermal resistances estimated with different iron losses 
𝑃𝐹𝑒𝑠 applied 
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2.3.3.3 Magnet Loss 

The error in magnet loss estimation is also taken into consideration. The thermal resistances 

due to uncertainties in magnet losses are depicted in Fig. 2-34. The result suggests that the 

increased magnet losses intensify the heat transfer between rotor and ambient, while weakening 

the convection through air gap. It could be the reflection that the convection with ambient is 

predominant for rotor. It is also possible that the results are meaningful from the perspective 

of mathematics more than physics.  

 

 

 

 

 

 

 

 

 

 

2.3.3.4 Loss Effect on Temperature Estimation 

It is expected that the node temperatures are better predicted towards the thermal steady-state 

where the resistances are identified. However the temperature estimations during the transient 

period may be affected as a result of the errors in losses. Fig. 2-35 to Fig. 2-37 show the 

maximum temperature errors under the influence of the winding, iron and magnet losses, 

respectively. In order to quantify the temperature errors produced only by the losses, it is 

assumed that the temperatures are perfectly estimated without the loss errors.  

As can be seen from the figures below, the temperature estimation errors are generally 

proportional to the loss errors. At this particular motor operating condition, the stator iron 

contributes nearly 65% of the overall losses, and the maximum temperature error, as illustrated 

in Fig. 2-36, is close to −12℃. On the other hand, the magnet loss is less than 5% of the iron 

loss, and no more than −4.5℃ errors in the temperature estimations are shown. 

Fig. 2-34:  Thermal resistances estimated with different magnet 
losses 𝑃𝑃𝑀 applied 
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Fig. 2-35:  Maximum node temperature errors with different 𝑃𝑊 
applied 

Fig. 2-36:  Maximum node temperature errors with different 𝑃𝐹𝑒𝑠 
applied 

Fig. 2-37:  Maximum node temperature errors with different 𝑃𝑃𝑀 
applied 
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2.4 Conclusion 

An empirical approach for monitoring the critical temperatures in PMSMs, based on a three-

node LPTN representing stator iron, stator winding and PM, is introduced. The simplified 

thermal network can be described by state-space equations in which the losses and thermal 

capacitances can be obtained via Finite Element software, whereas the thermal resistances are 

predicted adopting a measurement-based parameter identification procedure. This method is 

computationally efficient due to the relatively simple thermal structure. Additionally, the 

detailed information such as the motor geometry and the thermal properties of the materials is 

not required. Extensive offline validation of the presented method under two driving cycles 

with different complexity is performed. The estimation results show relatively good match with 

the actual values in a broad region of speeds and currents.  

Nevertheless, due to the difficulty in obtaining rotor temperature from temperature sensor in 

practice, an accurate estimation method which determines rotor temperature via PM flux 

linkage is desirable to provide the thermal network with a rotor temperature measurement. In 

chapter 3, an online flux linkage estimation method involving only simple electrical 

measurements is proposed, which is capable of estimating rotor temperature reliably and 

precisely. Chapter 4 demonstrates the critical temperatures in the tested motor predicted by the 

two methods combined, and the accuracy is satisfactory. 
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Chapter 3: PWM-based Flux Linkage and Rotor 

Temperature Estimations for Permanent Magnet 

Synchronous Machines 

3.1 Introduction 

As stated in Chapter 2, direct rotor temperature measurement is particularly difficult in practice, 

since it is difficult to access temperature sensors on a rotating shaft. Nevertheless, rotor 

temperature can be obtained indirectly with the information of rotor magnet flux linkage, as 

permanent magnet remanence decreases with rotor temperature. The flux linkage is assumed 

to be dependent on temperature as: 

𝜓𝑚(𝑇𝑃𝑀) = 𝜓𝑚(𝑇0,𝑃𝑀)[1 + 𝛼𝛽𝑟(𝑇𝑃𝑀 − 𝑇0,𝑃𝑀)] (3-1) 

The temperature-dependent coefficient 𝛼𝛽𝑟 for the most widely used NdFeB magnet is 

approximately −0.1%/°𝐶 [95]. The rotor temperature can then be calculated as: 

𝑇𝑃𝑀 = 𝑇0,𝑃𝑀 +
1

𝛼𝛽𝑟
[
𝜓𝑚(𝑇𝑃𝑀)

𝜓𝑚(𝑇0,𝑃𝑀)
− 1] 

(3-2) 

 

 

 

 

 

 

 

 

 

 

It is clear that the accuracy of the flux linkage estimation strongly influences the rotor 

temperature estimation due to the small temperature coefficient 𝛼𝛽𝑟 at the denominator in (3-

Fig. 3-1:  The values of αβr at each temperature region for the 

tested motor 



Page 91 of 166 

  

2). Fig. 3-1 shows the magnet flux linkage as function of the temperature for the experimentally 

tested surface-mounted permanent magnet synchronous machines (SPMSM) in this chapter. 

The flux linkages are calculated via the back-EMFs measured at open-circuit condition at 

different rotor temperatures. It is clear that the temperature coefficient has a small nonlinearity 

with temperature which will need to be taken into account for accurate temperature prediction.  

Assuming a relatively small value of  𝛼𝛽𝑟 = −0.076%/℃, an 1% error in flux linkage could 

result in a 13°𝐶 error in rotor temperature estimation. 

This chapter introduces a relatively simple and accurate method for online flux linkage 

estimation for PMSM, which only involves the uses of motor voltages and currents in response 

to the standard space-vector pulse width modulation (SV-PWM). Similarly to [26], [28], 

knowledge of machine parameters, such as inductances, which may not be available, is not 

required for the estimation. In addition, this method does not need signal injection which 

creates undesirable disturbance to the system, as the excitation signal is intrinsic in the already-

existing PWM voltage. The proposed methodology is applied to rotor temperature estimation 

using (3-2). 

The basis of the method is presented in section 3.2, followed by the preliminary validation in 

offline simulation using an interior PMSM (IPMSM) model. A comprehensive real-time 

validation conducted using the Hardware-in-the-Loop (HIL) technique [96]-[104] is introduced 

in the following section. The most common issues with the practical implementation of this 

method, for instance, inverter non-linear effect, data acquisition sampling time, are analysed in 

detail as they may affect the precision of the rotor temperature estimation. Finally, the method 

is verified experimentally on a three-phase SPMSM. Relatively good results in a wide range of 

motor operating conditions are demonstrated, where the errors in the estimation of the rotor 

temperature are less than 2℃. 

3.2 Fundamental Theory 

The voltage equations of a PMSM represented in the rotating dq-reference frame are expressed 

as: 

𝑣𝑑 = 𝑅𝑠𝑖𝑑 + 𝐿𝑑

𝑑

𝑑𝑡
𝑖𝑑 − 𝜔𝑟𝐿𝑞𝑖𝑞 

(3-3) 

𝑣𝑞 = 𝑅𝑠𝑖𝑞 + 𝐿𝑞

𝑑

𝑑𝑡
𝑖𝑞 + 𝜔𝑟(𝐿𝑑𝑖𝑑 + 𝜓𝑚) 

(3-4) 



Page 92 of 166 

  

It is obvious that, rearranging the q-axis equation (3-4) it is possible to calculate the rotor flux 

𝜓𝑚. This would require the measurement of voltages, currents as well as the knowledge of 

machine parameters 𝑅𝑠, 𝐿𝑑 , 𝐿𝑞. However, with SV-PWM technique, voltage information can 

be obtained via the voltage reference vector, the location of which in relation to the active 

voltage vectors on the state vector diagram determines the generation of the PWM switching 

period [105], as shown in Fig. 3-2: 

 

 

 

 

 

 

 

 

 

 

 

The modulating voltage command is represented by the rotating space vector �̅�∗. The active 

state vectors 𝑉1 ⋯𝑉6 occupy the space with six 60° sectors denoted as 1⋯6, and 𝑉0 and 𝑉7 are 

zero vectors. The voltage vector �̅�∗ has two components �̅�𝑎 and �̅�𝑏 lying along each of the 

adjacent vectors, and the magnitudes of these two components reflect the amount of time the 

vectors are applied. Due to the voltage command being equal to the average PWM output, the 

following relationship can be obtained: 

�̅�∗ = �̅�𝑎 + �̅�𝑏 =
�̅�1𝑡𝑎 + �̅�2𝑡𝑏 + (𝑒𝑖𝑡ℎ𝑒𝑟 �̅�0 𝑜𝑟 �̅�7)𝑡0

𝑡𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔
 

(3-5) 

The voltage terms �̅�𝑎, �̅�𝑏 are phase quantities. The remaining interval 𝑡0 in a switching period 

𝑡𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 is filled with zero-voltage vector. Therefore: 

𝑡𝑎 =
|�̅�𝑎|

|�̅�1|
𝑡𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 

(3-6) 

𝑡𝑏 =
|�̅�𝑏|

|�̅�2|
𝑡𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 

(3-7) 

Fig. 3-2:  Hexagon state vector diagram 
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𝑡0 = 𝑡𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 − 𝑡𝑎 − 𝑡𝑏 (3-8) 

Compared to [28] in which the injection of a zero-voltage vector is required, the use of the 

inherent SV-PWM zero-voltage period 𝑡0 for the estimation of the PM flux linkage is the novel 

contribution of the thesis. The voltage components |�̅�𝑎| and |�̅�𝑏| can be retrieved from the 

vector diagram. For the location of the reference vector �̅�∗ shown in Fig. 3-2: 

|�̅�𝑎| sin
𝜋

3
= |�̅�∗| sin (

𝜋

3
− 𝛼) (3-9) 

|�̅�𝑏| sin
𝜋

3
= |�̅�∗| sin 𝛼 (3-10) 

which lead to: 

|�̅�𝑎| =
2

√3
|�̅�∗| sin (

𝜋

3
− 𝛼) 

(3-11) 

|�̅�𝑏| =
2

√3
|�̅�∗| sin 𝛼 

(3-12) 

 

 

 

 

 

 

 

 

 

 

Fig. 3-3 shows an example of a single PWM switching period with a duration of 𝑡𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 =

1/𝑓𝑠𝑤, PWM1, PWM3, PWM5 being the logic signals controlling the turn-on of the top three 

devices in a standard two-level voltage-source inverter. 𝑡1⋯ 𝑡8 are the time instants at which 

a different voltage vector is applied. The q-axis equation (3-4) can be discretized with a 

Fig. 3-3:  Gate signals PWM1, PWM3, PWM5, and the 
corresponding current variation in a single switching period 
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sampling time 𝑇𝑠 ≪ 𝑡𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔. The resultant relationships between two adjacent sampling 

points, assuming the d-axis current to be controlled to zero, are given as: 

 𝑣𝑞(𝑡1~(𝑡1+𝑇𝑠)) = 𝑅𝑠𝑖𝑞(𝑡1~(𝑡1+𝑇𝑠)) + 𝐿𝑞

𝑑

𝑑𝑡
𝑖𝑞(𝑡1~(𝑡1+𝑇𝑠)) + 𝜔𝑟𝜓𝑚 

(3-13) 

 𝑣𝑞((𝑡1+𝑇𝑠)~(𝑡1+2𝑇𝑠)) = 𝑅𝑠𝑖𝑞((𝑡1+𝑇𝑠)~(𝑡1+2𝑇𝑠)) + 𝐿𝑞

𝑑

𝑑𝑡
𝑖𝑞((𝑡1+𝑇𝑠)~(𝑡1+2𝑇𝑠)) + 𝜔𝑟𝜓𝑚 

(3-14) 

⋮  

 𝑣𝑞((𝑡1+(𝑛−2)𝑇𝑠)~𝑡8) = 𝑅𝑠𝑖𝑞((𝑡1+(𝑛−2)𝑇𝑠)~𝑡8) + 𝐿𝑞

𝑑

𝑑𝑡
𝑖𝑞((𝑡1+(𝑛−2)𝑇𝑠)~𝑡8) + 𝜔𝑟𝜓𝑚 

(3-15) 

 

Where 𝑡1 is the starting point of the PWM period in Fig. 3-3. It is worth noticing that, the total 

number of the sampling points 𝑛 in the period must be an integer to guarantee an integer number 

of equations. The speed 𝜔𝑟 is assumed to be constant during the switching period. The 

derivative term can be approximated by:  

𝑑𝑖𝑞 𝑑𝑡⁄ ≈
𝑖𝑞(𝑡1+(𝑘+1)𝑇𝑠) − 𝑖𝑞(𝑡1+𝑘𝑇𝑠)

𝑇𝑠
 

 

(3-16) 

with 𝑘 = 0,1⋯𝑛 − 2. It is noted that the last sampling point in the period is 𝑡8 = 𝑡1 +

(𝑛 − 1)𝑇𝑠.  

When the motor operates at steady-state, the current loop controller only responds to the 

currents measured at the beginning of the non-zero active voltage vectors, which are  𝑖𝑞(𝑡2) and 

𝑖𝑞(𝑡5) and ensures that on average they remain constant in steady-state condition. This means 

𝑖𝑞(𝑡2) = 𝑖𝑞(𝑡5), 𝑖𝑞(𝑡4) = 𝑖𝑞(𝑡7) and also 𝑖𝑞(𝑡1) = 𝑖𝑞(𝑡8). 

Multiplying the 𝑛 − 1 equations by the sampling time 𝑇𝑠 gives: 

 𝑇𝑠𝑣𝑞(𝑡1~(𝑡1+𝑇𝑠)) = 𝑇𝑠𝑅𝑠𝑖𝑞(𝑡1~(𝑡1+𝑇𝑠)) + 𝐿𝑞(𝑖𝑞(𝑡1+𝑇𝑠) − 𝑖𝑞(𝑡1)) +  𝑇𝑠𝜔𝑟𝜓𝑚 (3-17) 

 𝑇𝑠𝑣𝑞((𝑡1+𝑇𝑠)~(𝑡1+2𝑇𝑠))

= 𝑇𝑠𝑅𝑠𝑖𝑞((𝑡1+𝑇𝑠)~(𝑡1+2𝑇𝑠)) + 𝐿𝑞(𝑖𝑞(𝑡1+2𝑇𝑠) − 𝑖𝑞(𝑡1+𝑇𝑠)) + 𝑇𝑠𝜔𝑟𝜓𝑚 

 

(3-18) 

⋮  

 𝑇𝑠𝑣𝑞((𝑡1+(𝑛−2)𝑇𝑠)~𝑡8)

= 𝑇𝑠𝑅𝑠𝑖𝑞((𝑡1+(𝑛−2)𝑇𝑠)~𝑡8) + 𝐿𝑞(𝑖𝑞(𝑡8) − 𝑖𝑞(𝑡1+(𝑛−2)𝑇𝑠)) + 𝑇𝑠𝜔𝑟𝜓𝑚 

(3-19) 

 

Now adding each equation to the next, it yields: 

𝑇𝑠 ∑ 𝑣𝑞(𝑗)

𝑛−1

1

= 𝑇𝑠𝑅𝑠 ∑ 𝑖𝑞(𝑗)

𝑛−1

1

+ 𝑡𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔𝜔𝑟𝜓𝑚 

(3-20) 
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where 𝑗 is the 𝑗th equation. It can be noticed that the inductance-related terms are eliminated. 

With regard to the voltage terms, it is evident that the voltage sum 𝑇𝑠 ∑ 𝑣𝑞(𝑗)
𝑛−1
1  is always 

equivalent to the average PWM output voltage: 

𝑇𝑠 ∑ 𝑣𝑞(𝑗)

𝑛−1

1

= (𝑡3 − 𝑡2)𝑣𝑞(𝑡3−𝑡2) + (𝑡4 − 𝑡3)𝑣𝑞(𝑡4−𝑡3) + (𝑡6 − 𝑡5)𝑣𝑞(𝑡6−𝑡5)

+ (𝑡7 − 𝑡6)𝑣𝑞(𝑡7−𝑡6) 
 

 

(3-21) 

It can be easily verified that: 

(𝑡3 − 𝑡2)𝑣𝑞(𝑡3−𝑡2) = (𝑡7 − 𝑡6)𝑣𝑞(𝑡7−𝑡6) (3-22) 

(𝑡4 − 𝑡3)𝑣𝑞(𝑡4−𝑡3) = (𝑡6 − 𝑡5)𝑣𝑞(𝑡6−𝑡5) 
 

(3-23) 

as the switching period consists of two symmetrical switching combinations. Therefore, 

equation (3-20) now becomes: 

2[(𝑡3 − 𝑡2)𝑣𝑞(𝑡3−𝑡2) + (𝑡4 − 𝑡3)𝑣𝑞(𝑡4−𝑡3)] = 𝑇𝑠𝑅𝑠 ∑ 𝑖𝑞(𝑗)

𝑛−1

1

+ 𝑡𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔𝜔𝑟𝜓𝑚 

(3-24) 

Also, the time differences (𝑡3 − 𝑡2) and (𝑡4 − 𝑡3) can be pre-calculated at the beginning of 

the SV-PWM based on the location of the rotating voltage reference vector on the space vector 

diagram, and 𝑣𝑞(𝑡3−𝑡2) and 𝑣𝑞(𝑡4−𝑡3) are the results of the switching vectors being transformed 

from 𝛼𝛽-reference frame to dq-reference frame. The MATLAB code of the derivation of the 

voltage term in (3-24) is shown in Appendix C. In conclusion, the rotor flux can be calculated 

as: 

𝜓𝑚 =
𝑓𝑠𝑤
𝜔𝑟

2[(𝑡3 − 𝑡2)𝑣𝑞(𝑡3−𝑡2) + (𝑡4 − 𝑡3)𝑣𝑞(𝑡4−𝑡3)] −     
𝑓𝑠𝑤
𝜔𝑟

 𝑇𝑠𝑅𝑠 ∑ 𝑖𝑞(𝑗)

𝑛−1

1

 

(3-25) 

However, it is clear that this method is not able to estimate the flux linkage correctly under 

zero-speed condition, because the back-EMF term in (3-4) equals to zero.  In addition, due to 

the fact that the derivation of (3-25) is based on the assumption of steady-state motor operation 

during one PWM switching period, the estimation would be incorrect with a high-dynamic load 

applied. 

3.3 Offline Validation 

The presented method is tested offline in MATLAB/Simulink, in which an IPMSM simulation 

model is controlled with a FOC, along with SV-PWM. The model parameters are listed in 



Page 96 of 166 

  

Table III. The rotor position is derived from the motor electrical speed, which is the product of 

the motor mechanical speed and pole pairs. 

 

 

 

 

 

 

 

 

 

Fig. 3-4 and Fig. 3-5 demonstrate the estimated flux linkages when the machine operates in a 

wide range of rotor speeds and stator currents. The results show a good agreement between the 

estimations and the nominal value. The small deviation (𝐸𝑟𝑟𝑜𝑟% = (
�̂�𝑚−𝜓𝑚

𝜓𝑚
) × 100) exists 

because the small voltage drops across the power switches (0.001𝛺 in resistance) and shunt 

resistors (0.01𝛺) are taken into consideration in the inverter model, resulting in a slight 

mismatch between the command and PWM voltages.  

 

 

 

 

 

 

 

 

 

 

Fig. 3-4:  Flux linkage estimations (top) and the corresponding 
errors (bottom) at 400𝑟𝑝𝑚, 800𝑟𝑝𝑚, 1000𝑟𝑝𝑚, and 1200𝑟𝑝𝑚 
rotor speeds 

Table III:  Parameters of the IPMSM 

Quantity Unit Value 

Peak Torque 

Rated Torque 

Nm 

Nm 

70 

35.5 

Base Speed r/min 1350 

Max Speed 

Peak Power 

r/min 

kW 

4500 

9.9 

Rated Power 

DC Link Voltage 

Peak Current 

kW 

V 

A 

5 

120 

125 

No. of Pole-pairs -- 3 

No. of Slots 

Active Stack Length 

Stator Outer Diameter 

Rotor Outer Diameter 

-- 

mm 

mm 

mm 

36 

118 

150 

80 

Stator Resistance Ω 0.0545 

d-axis Inductance mH 0.8258 

q-axis Inductance mH 1.8711 

PM Flux Linkage Wb 0.1121 
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Fig. 3-6 and Fig. 3-7 compare the voltage commands with the PWM voltages at the same 

operating conditions as in Fig. 3-4 and Fig. 3-5. It is confirmed that the small error in voltage 

command, is the main contributor to the error in flux linkage estimation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3-5:  Flux linkage estimations (top) and the corresponding 
errors (bottom) at 𝑖𝑞 = 10𝐴, 30𝐴, 40𝐴, and 50𝐴 

Fig. 3-6:  Command and PWM voltages (top) and their differences 
(bottom) at 400𝑟𝑝𝑚, 800𝑟𝑝𝑚, 1000𝑟𝑝𝑚, and 1200𝑟𝑝𝑚 rotor 
speeds 
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Fig. 3-8 shows the results of the flux linkage and rotor temperature estimations after a step-

based profile is applied to the rotor temperature, which generates the step variations in the flux 

linkage according to (3-2). A 4th order Butterworth low-pass filter with the passband edge 

frequency of 1𝐻𝑧 is employed after the flux linkage estimation in order to extract its average 

value. This is found adequate in practice because the temperature varies only very slowly. It 

can be seen from Fig. 3-8 that, the estimation keeps good track of the nominal values, and the 

error in the flux linkage due to some inverter non-ideal effects is modest, leading to no more 

than 8℃ error in the rotor temperature. 

 

Fig. 3-7:  Command and PWM voltages (top) and their differences 
(bottom) at 𝑖𝑞 = 10𝐴, 30𝐴, 40𝐴, and 50𝐴 

Fig. 3-8:  Flux linkage (top) and rotor temperature (bottom) 
estimations according to the step-based profile 
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3.4 Real-time simulation 

3.4.1 Experimental Setup 

The proposed methodology is validated in real-time simulation on the IPMSM model. The HIL 

technique is adopted, which is able to precisely replicate the dynamics of the physical 

equipment with computer models running on real-time platforms and therefore is an excellent 

replacement to the expensive conventional testing. Fig. 3-9 describes the HIL implementation, 

in which machine and power converter are simulated on the FPGA-based National Instrument 

(NI) myRIO-1900 data acquisition and control platform. It is programmed with LabVIEW, 

which is an engineering software using graphical notations to create programs. The real-time 

modelling has been validated in [104]. A standard FOC along with SV-PWM and the proposed 

flux linkage estimation are implemented in the OPAL-RT 5600 platform, where the code is 

programmed through RT-LAB — a real-time simulation software fully integrated with 

MATLAB/Simulink. 

 

 

 

 

 

 

 

 

 

 

The sampling time for myRIO-1900 is set to 1𝜇𝑠, which is calculated by: 

𝑇𝑠𝑒𝑐𝑜𝑛𝑑 =
𝑇𝑐𝑜𝑢𝑛𝑡

𝑓𝑠𝑦𝑠𝑡𝑒𝑚
 

(3-26) 

where 𝑇𝑠𝑒𝑐𝑜𝑛𝑑 and 𝑇𝑐𝑜𝑢𝑛𝑡 are the sampling time expressed in second and in FPGA clock ticks, 

which is determined by the system frequency 𝑓𝑠𝑦𝑠𝑡𝑒𝑚. With regard to OPAL-RT, 10𝜇𝑠 is used 

due to the requirement of completing relatively complex calculations (3-25) and the standard 

FOC algorithm within one sampling step. 

Fig. 3-9:  HIL implementation scheme 
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The current is transferred from myRIO through the FPGA I/O Node. The data is represented 

in binary, and converted into the analog output in a range of [−10𝑉, 10𝑉]. On the other side, 

OPAL-RT receives the current signals via a 16-channel analog I/O module with the 

programmable range up to ±16𝑉. Fig. 3-10 demonstrates the phase currents employed for the 

flux linkage estimation at 𝑖𝑞_𝑐𝑜𝑚𝑚𝑎𝑛𝑑 = 2.9𝐴. 

 

 

 

 

 

 

 

 

The rotor angle can be derived from the rotor speed, simply adopting: 

𝜃 = ∫𝜔𝑟𝑑𝑡 
(3-27) 

in which 𝑑𝑡 is the sampling time 1𝜇𝑠. The calculated angle is rescaled from [−𝜋,𝜋] to 

[−127,127], which following the conversion into a 7-bit signed binary number, is transferred 

into OPAL-RT with a 16-channel digital I/O module. Fig. 3-11 shows the rotor angle depicted 

in OPAL-RT. 

 

 

 

 

 

 

 

Fig. 3-10:  Phase current at 𝑖𝑞_𝑐𝑜𝑚𝑚𝑎𝑛𝑑 = 2.9𝐴 

Fig. 3-11:  Rotor angle in OPAL-RT 
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The Hardware-in-the-loop arrangement introduces a short delay between the two devices, 

resulting in errors in flux linkage estimation. In order to quantify this delay time, a simple test 

of the current of a first-order RL circuit responding to a pulse voltage signal, is carried out, 

emulating OPAL-RT generating three-phase PWM and acquiring current. The voltage is 

simulated in OPAL-RT and the data transferred into myRIO where the RL circuit is. An 

oscilloscope displays the voltage and the resulting current, which are shown in Fig. 3-12. It can 

be seen from Fig. 3-12 that, the responding time of the current to the voltage is approximately 

12𝜇𝑠, which is the delay time produced by myRIO. The current is transferred into OPAL-RT 

and plotted along with the pulse voltage in Fig. 3-13. The voltage and current are rescaled for 

a clear illustration of the time difference between them due to the delay from both myRIO and 

OPAL-RT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3-13:  Delay times due to myRIO and OPAL-RT 

Fig. 3-12:  Delay between the voltage (green) and current (yellow) in the 
first-order RL circuit test due to myRIO 
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3.4.2 Steady-state Test 

The theory upon which the proposed method is based, is tested in real-time simulation. Fig. 3-

14 shows the q-axis current variation as well as the three PWM signals from SV-PWM. It can 

be seen that at steady-state conditions, the currents at the beginning of the non-zero voltage 

periods are always identical, as a result of PI controller regulating the average q-axis current. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3-14:  PWM1, PWM3, PWM5 and the corresponding q-axis 
current variation within one switching period in real-time 
simulation 

Fig. 3-15:  Flux linkage estimation at 1000𝑟𝑝𝑚 rotor speed and 

rated torque (𝐼 = 54𝐴) 
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Fig. 3-15 depicts the flux linkage estimation when the motor operates at the rated torque and a 

relatively high speed (1000𝑟𝑝𝑚) at room temperature. It shows that the estimated flux linkage 

is approximately 0.1096𝑊𝑏, corresponding to −2.23% estimation error with respect to the 

nominal value.  

 

 

 

 

 

 

 

 

 

 

Fig. 3-16 shows the estimated flux linkages under the operating conditions that  torque (current) 

and room temperature remain unchanged while 1000𝑟𝑝𝑚, 800𝑟𝑝𝑚 and 400𝑟𝑝𝑚 speeds are 

applied at 𝑡 = 0𝑠, 𝑡 = 20𝑠 and 𝑡 = 40𝑠, respectively. In comparison to the nominal value, the 

flux linkage errors are −1.52% at 800𝑟𝑝𝑚 and 0.27% at 400𝑟𝑝𝑚.  

 

 

 

 

 

 

 

 

 

Fig. 3-16:  Flux linkage estimations at 1000𝑟𝑝𝑚, 800𝑟𝑝𝑚, and 

400𝑟𝑝𝑚 rotor speeds 

Fig. 3-17:  Flux linkage estimations at 35.5𝑁𝑚, 20𝑁𝑚, and 10𝑁𝑚 
electromechanical torques 
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Fig. 3-17 illustrates the results with three different values of torques (rated, 20𝑁𝑚 and 10𝑁𝑚) 

being imposed at 𝑡 = 0𝑠, 𝑡 = 20𝑠 and 𝑡 = 40𝑠, in which −1.34% and −0.62% deviations are 

observed at 20𝑁𝑚 and 10𝑁𝑚. 

The slight differences in the flux linkage estimations at different conditions are mainly due to 

the fact that the calculation uses command voltages which are slightly different from the 

voltages applied to the motor due to small inaccuracy in the real-time emulations.  

Furthermore, the current signals used for the flux linkage calculation are acquired by the control 

unit with a sampling time of 10𝜇𝑠, which is relatively large. A practical switching frequency 

of 5 𝑘𝐻𝑧 for SV-PWM is employed. The usage of 10𝜇𝑠 ensures the number of the sampling 

points, and thus the number of the equations, in a switching period is integer. With the relatively 

slow 10𝜇𝑠 sampling time, some errors in the ability to correctly capture variable voltages and 

currents are inevitable. However the effect on the precision of the method is relatively modest. 

 

3.4.3 Transient Test 

A simplified case is considered where the machine is controlled at the rated torque and a 

constant speed of 500𝑟𝑝𝑚, whereas a test cycle is used to generate a thermal transient which 

affects the rotor temperature and flux linkage. Excellent estimation results using the proposed 

method and the corresponding rotor temperature variations are shown in Fig. 3-18.  

 

 

 

 

 

 

 

 

 

 Fig. 3-18:  Flux linkage (top) and rotor temperature (bottom) 
estimations at the rated torque and 500𝑟𝑝𝑚 rotor speed, 
according to the transient test cycle 
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The errors of approximately 0.3% in flux linkage and -3°𝐶 in rotor temperature are 

demonstrated in Fig. 3-19. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A three-node LPTN consisting of the stator iron, stator winding and PM nodes, as illustrated 

in Fig. 2-1 is also used for the thermal evaluation in the real-time simulations. 𝑃𝑊 is the copper 

loss and simply calculated by 𝑃𝑊 = 𝐼2𝑅𝑠. The speed-dependent iron loss can be approximated 

by the sum of the losses for open-circuit and short-circuit conditions described by (1-82) and 

(1-83), and is allocated into the stator iron and PM nodes according to the proportion of the 

Fig. 3-19:  Flux linkage (top) and rotor temperature (bottom) 
estimation errors for the test in Fig. 3-18 

Fig. 3-20:  Load profile 
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iron utilized in stator and rotor [91]. In order to validate the proposed method in non-stationary 

conditions, a driving cycle with simple step variations in speed and torque as plotted in Fig. 3-

20 is considered.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It can be seen from Fig. 3-21 and Fig. 3-22 that, less than ±2% errors in flux linkage estimation 

are obtained, and all estimated rotor temperatures lie within an approximately ±10°𝐶 band 

around their corresponding nominal values. Unfortunately, a very small error in the flux linkage 

estimation is amplified in the estimation of temperature due to the very small temperature 

Fig. 3-21:  Flux linkage (top) and rotor temperature (bottom) 
estimations, according to the test duty cycle used on the 
simplified three-node thermal network 

Fig. 3-22:  Flux linkage (top) and rotor temperature (bottom) 
estimation errors in Fig. 3-21 
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coefficient 𝛼𝛽𝑟. Nevertheless, the error in the temperature estimation is contained within 

±9%. Some dependency of the estimation on the operating conditions (speed, current) is 

apparent. This is due to the relatively slow acquisition of 10𝜇𝑠 which creates small errors in 

the timing and current/voltage measurement that change with a variable modulation index. It 

is expected that these effects can be minimised with a faster acquisition unit.  

3.5 Practical Implementation Error Analysis 

In practice, flux linkage estimation could be inaccurate due to a number of sources of error. 

The effect of these errors on the proposed methodology can be potentially significant and 

therefore is evaluated in this section using a simulation model of the experimentally tested 

SPMSM controlled using a standard field-oriented motor control with SV-PWM. The motor 

parameters are specified in Table IV. 

 

 

 

 

 

 

 

The voltage used for the calculation can be the command voltages generated by the controller 

in the standard FOC. However, due to the command voltages being affected by some motor 

control issues, such as inverter dead-times and voltage drops on the power switches, which will 

significantly affect the accuracy of the estimation, phase voltages are directly measured and 

the actual voltage command calculated from 𝑣𝑎𝑏𝑐 after suitable filtering with a 4th order 

Butterworth low-pass filter with the passband edge frequency of 10𝐻𝑧 in order to obtain the 

average 𝑣𝑑𝑞.  

In steady-state conditions and assuming 𝑖𝑑 = 0, rearranging the q-axis equation (3-4) it is  

possible to calculate the rotor flux 𝜓𝑚 as: 

𝜓𝑚 =
𝑣𝑞 − 𝑅𝑠𝑖𝑞

𝜔𝑟
 

(3-28) 

Table IV:  Parameters of the SPMSM 

Quantity Unit Value 

Continuous Torque Nm 0.2754 

Max Speed r/min 6000 

DC Link Voltage V 24 

Peak Current A 7.1 

No. of Pole-pairs -- 4 

No. of Slots -- 18 

Stator Resistance Ω 0.36 

d-axis Inductance mH 0.1569 

q-axis Inductance mH 0.1569 

PM Flux Linkage V/Hz 0.0409 

 

 

TABLE IV 
PARAMETERS OF THE SPMSM 

Quantity Unit Value 

Continuous Torque Nm 0.2754 

Max Speed r/min 6000 

DC Link Voltage V 24 

Peak Current A 7.1 

No. of Pole-pairs -- 4 

No. of Slots -- 18 

Stator Resistance Ω 0.36 

d-axis Inductance mH 0.1569 

q-axis Inductance mH 0.1569 

PM Flux Linkage V/Hz 0.0409 
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This simple method, denoted as ‘averaged model’ in the following, requires the measurements 

of voltage, current as well as the knowledge of machine parameter 𝑅𝑠. It is evident that the 

precision of rotor flux estimation relies on the precise knowledge of 𝑅𝑠 and the stator voltage.  

The following analysis compares the accuracy of rotor flux estimation based on (3-28) with the 

more accurate estimation based on the averaging of phase-voltage measurement during a PWM 

period, introduced in section 3.2. 

3.5.1 Sampling Time 

The estimation error in relation to limited sampling speed will be analysed in this section. The 

simulation is performed assuming the machine and control models are sampled every 1𝜇𝑠, 

whereas the sampling rate for the estimation is set to 1𝜇𝑠, 2𝜇𝑠, 5𝜇𝑠, 10𝜇𝑠, and 20𝜇𝑠, 

respectively. The flux linkage results shown in Fig. 3-23 indicate that the error increases with 

larger sampling time. The switching frequency is assumed to be 10 𝑘𝐻𝑧. The error is also 

dependent on the operating conditions (speed, current). This is because different modulation 

indices result in different duration of the active vectors in the PWM period, i.e. the periods 

(𝑡3 − 𝑡2), (𝑡4 − 𝑡3).  

 

 

 

 

 

 

 

 

 

 

Fig. 3-24 shows the PWM voltages as a result of the three phase voltages being sampled at 

1𝜇𝑠, 2𝜇𝑠, 5𝜇𝑠, 10𝜇𝑠, and 20𝜇𝑠, respectively, and the command voltages at these sampling 

times. It can be concluded that, the error in voltage measurements, which reflect on (𝑡3 − 𝑡2) 

and (𝑡4 − 𝑡3), largely contribute to the error in the flux linkage estimation. The voltage 

Fig. 3-23:  Flux linkage estimations (top) and the corresponding 
errors (bottom) at 1𝜇𝑠, 2𝜇𝑠, 5𝜇𝑠, 10𝜇𝑠, and 20𝜇𝑠 sampling times 
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command on the other hand is not influenced by sampling time, because it is calculated by the 

control per se. The current errors however are very small and only have minor effect on the 

estimation results as the average q-axis currents at different sampling rates remain the same. 

3.5.2 Inverter Dead-time Effect 

Inverter dead-time effect is the direct result of a delay time between the opening of the upper 

switch and the closing of the lower switch, altering the effective output voltage. Increased dead-

time results in increased difference between the command voltage and the actual voltage. 

Several dead-times ranging from 0.5𝜇𝑠 to 10𝜇𝑠, are applied manually between the three phase 

PWM and their corresponding complementary signals for the purpose of simulating this 

particular phenomenon. Fig. 3-25 plots the flux linkage estimations along with the errors in 

comparison to the nominal value. 

As can be seen in the figure above, the accuracy of the estimation adopting the simplified 

method (3-28) is worsened as dead-time increases, which is the reflection of the increasing 

difference between the command voltage and the resulting PWM voltages. On the contrary, no 

more than ±0.01% error results from the PWM-based method, for the reason that the voltage 

and current are measured and the ones used for motor operations. 

 

 

 

Fig. 3-24:  Command and PWM voltages (top) and their 
corresponding errors (bottom) at 1𝜇𝑠, 2𝜇𝑠, 5𝜇𝑠, 10𝜇𝑠, and 20𝜇𝑠 
sampling times 
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3.5.3 PM Flux Linkage Harmonics 

In reality, rotor flux linkage contains some high-order harmonics because of slotting effects 

and additional harmonics in the air gap magnetic field. This effect is investigated by adding a 

third-order harmonic to the PM flux linkage nominal value in three-phase quantity, such that: 

𝜓𝑚_𝑝ℎ = 𝜓𝑚 sin 𝜃 + 𝑚𝜓𝑚 sin 3𝜃 (3-29) 

where: 0 ≤ 𝑚 ≤ 1.  

 

 

 

 

 

 

 

 

 

Fig. 3-26:  Flux linkage estimations (top) and the corresponding 
errors (bottom) when 𝑚 = 0.01, 0.02, 0.05, 0.08, and 0.1 

Fig. 3-25:  Flux linkage estimations (top) and the corresponding errors 
(bottom) with 0.5𝜇𝑠, 1𝜇𝑠, 2𝜇𝑠, 5𝜇𝑠, and 10𝜇𝑠 dead-times applied 
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The estimation results employing 𝑚 = 0.01, 0.02, 0.05, 0.08, and 0.1 are depicted in Fig. 3-

26, suggesting the injected harmonics only have small impact on the estimations with both 

methods. This is due to the use of the low-pass filter (4th order Butterworth with 1𝐻𝑧 passband 

edge frequency) which eliminates the high-order component originating from the voltage and 

current. The result using (3-30) shows higher level of error, because the voltage command is 

different from the output voltage as the phase currents flow through the power switches and 

shunt resistors, resulting in voltage distortion. 

3.5.4 Inductance Saturation 

Practically, the main inductances 𝐿𝑑 and 𝐿𝑞 of PMSMs could be subject to saturation at high 

current level. The existence of saturation means that the estimation is less precise as the q-axis 

inductance terms in the voltage equations can no longer be eliminated. The constant 

inductances in the machine model are replaced with two LUTs, which are obtained from the 

calculations using Finite Element software. The saturated inductances are shown in Fig. 3-27.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3-27:  Values of 𝐿𝑑 and 𝐿𝑞 in a wide range of currents 

Fig. 3-28:  Values of 𝐿𝑑 and 𝐿𝑞 after the modification 
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As Fig. 3-27 suggests, the inductances of the tested motor in applications in which the current 

is smaller than 10𝐴 do not change dramatically. However the data in the LUTs is modified 

such that the inductance at high current (5𝐴) is less than 20% that at low current (0.5𝐴) for the 

purpose of demonstration. Fig. 3-28 shows the inductances 𝐿𝑑 and 𝐿𝑞 after the modification. 

 

 

 

 

 

 

 

 

 

 

Fig. 3-29 illustrates the estimation results at 𝑖𝑞_𝑐𝑜𝑚𝑚𝑎𝑛𝑑 = 0.5𝐴, 1𝐴, 2𝐴, 3𝐴, and 3.8𝐴,  

respectively, showing slightly over 1% error with the PWM-based method and nearly 2% with 

the simplified method. Equations (3-30) and (3-31) compensate the voltage errors in (3-25) and 

(3-28), and are used for re-estimating the flux linkage: 

𝜓𝑚 =
𝑓𝑠𝑤
𝜔𝑟

2[(𝑡3 − 𝑡2)𝑣𝑞(𝑡3−𝑡2) + (𝑡4 − 𝑡3)𝑣𝑞(𝑡4−𝑡3)] −     
𝑓𝑠𝑤
𝜔𝑟

 𝑇𝑠𝑅𝑠 ∑ 𝑖𝑞(𝑗)

𝑛−1

1

− 
𝑓𝑠𝑤
𝜔𝑟

∑ 𝐿𝑞(𝑗)(𝑖𝑞(𝑘+1) − 𝑖𝑞(𝑘))

𝑛−1

1

 

 

(3-30) 

𝜓𝑚 =
𝑣𝑞 − 𝑅𝑠𝑖𝑞 − ∑𝐿𝑞

𝑖𝑞(𝑚) − 𝑖𝑞(𝑚−1)

𝑇𝑠

𝜔𝑟
 

(3-31) 

In which: 𝑘 is the 𝑘𝑡ℎ sampling point in one PWM switching period and 𝑗 = 𝑘 = 1, 2,⋯ ,𝑛 −

1, whereas 𝑚 is the ‘current’ sampling point in real-time and 𝑚 = 2, 3, ⋯∞.  𝐿𝑞(𝑗) can be 

acquired from the LUT. The results are shown in Fig. 3-30, where the improvement on the 

estimation for both methods is evident. 

Fig. 3-29:  Flux linkage estimations (top) and the corresponding 
errors (bottom) at 𝑖𝑞_𝑐𝑜𝑚𝑚𝑎𝑛𝑑 = 0.5𝐴, 1𝐴, 2𝐴, 3𝐴, and 3.8𝐴 
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Additionally, assuming the inductance cross-coupling is included in the motor model, as shown 

in (1-10) to (1-15), the flux linkage estimation using (3-25) and (3-28) will be erroneous 

because the voltage contributions (i.e. 𝐿𝑞𝑞
∗ 𝑑𝑖𝑞

𝑑𝑡
 and 𝜔𝑟𝐿𝑑𝑞𝑖𝑞 in (1-11)) as a result of this effect 

are not taken into account. 

 

3.5.5 Non-zero d-axis Current 

At 𝑖𝑑 ≠ 0, the precision of the estimation is also affected due to the cancellation of the voltage 

term 𝜔𝑟𝐿𝑑𝑖𝑑 in (3-4). The simulation results depicted in Fig. 3-31 after 𝑖𝑑_𝑐𝑜𝑚𝑚𝑎𝑛𝑑 = −0.5𝐴, 

−1𝐴, −1.5𝐴, −2𝐴 and −3𝐴 are imposed respectively, show more than −7% error in flux 

linkage being introduced, using either method. It is assumed that 𝐿𝑑 and 𝐿𝑞 are their nominal 

values and remain constant. The estimation error can be compensated by adding the voltage 

term 𝜔𝑟𝐿𝑑𝑖𝑑 into (3-25) and (3-28): 

𝜓𝑚 =
𝑓𝑠𝑤
𝜔𝑟

2[(𝑡3 − 𝑡2)𝑣𝑞(𝑡3−𝑡2) + (𝑡4 − 𝑡3)𝑣𝑞(𝑡4−𝑡3)] −     
𝑓𝑠𝑤
𝜔𝑟

 𝑇𝑠𝑅𝑠 ∑ 𝑖𝑞(𝑗)

𝑛−1

1

− 𝑓𝑠𝑤𝑇𝑠𝐿𝑑 ∑ 𝑖𝑑(𝑗)

𝑛−1

1

 

 

(3-32) 

𝜓𝑚 =
𝑣𝑞 − 𝑅𝑠𝑖𝑞

𝜔𝑟
− 𝐿𝑑𝑖𝑑 

(3-33) 

Fig. 3-30:  Flux linkage estimations (top) and the corresponding 
errors (bottom) using (3-32) and (3-33) 
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Fig. 3-32 shows the estimated flux linkages post-compensation, with less than ±0.01% and 

0.6% errors demonstrated adopting (3-32) and (3-33), respectively.  

In conclusion, the PWM-based method utilizing phase-voltage measurement, with a proper 

sampling rate selected, is more desirable from the perspective of rotor temperature estimation, 

because with suitable compensation (i.e. saturation effect and non-zero d-axis current), the 

estimated flux linkage is not sensitive to the most common practical implementation errors. 

Fig. 3-31:  Flux linkage estimations (top) and the corresponding errors 
(bottom) at 𝑖𝑑_𝑐𝑜𝑚𝑚𝑎𝑛𝑑 = −0.5𝐴, −1𝐴, −1.5𝐴, −2𝐴, and −3𝐴 

Fig. 3-32:  Flux linkage estimations (top) and the corresponding 
errors (bottom) post-compensation 
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3.6 Experimental Validation 

3.6.1 Experimental Setup 

Extensive experimental validations are performed on a two motor dynamometer test rig built 

with a pair of three-phase PM servo-motors (Teknic M-2310P-LN-04K), with one connected 

to a three-phase MOSFET inverter and the second serving as a load and working as generator 

connected with a three-phase resistive load. A quadrature encoder with 4000 counts/rev 

resolution is used for position measurement. The motor is controlled using a Texas Instruments 

(TI) C2000 series FOC-enabled microcontroller LAUNCHXL-F28069M LaunchPad. The rig 

is shown in Fig. 3-33(a), alongside the diagram describing in detail the motor control scheme, 

which is illustrated in Fig. 3-33(b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

Fig. 3-33:  (a) Tested motor, microcontroller and three-phase inverter and 
(b) motor control schematic diagram 

(a) 
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The presented flux linkage estimation algorithm is performed on the FPGA-based data 

acquisition and control platform OPAL-RT 5600, as is seen in Fig. 3-34. The implementation 

of the estimation method is presented in Fig. 3-35. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Current sensors are used for current measurement. The sensors are wrapped with wires and are 

connected to three resistors in star connection. The phase current is calculated by the 

measurement of the voltage across the resistor, which is described as: 

𝐼 =
𝑉𝑟𝑒𝑠𝑖𝑠𝑡𝑜𝑟 × 𝐾𝑁

𝑁𝑇 × 𝑅𝑟𝑒𝑠𝑖𝑠𝑡𝑜𝑟
 

(3-34) 

When 𝐾𝑁 (𝑁𝑇 ×⁄ 𝑅𝑟𝑒𝑠𝑖𝑠𝑡𝑜𝑟) = 1, the measured voltage equals to the current. For the current 

sensor (LEM LA 25-P) performing the current measurement, 𝐾𝑁 = 1000, 𝑁𝑇 = 6 and 

𝑅𝑟𝑒𝑠𝑖𝑠𝑡𝑜𝑟 = 100Ω. This leads to 𝐾𝑁 (𝑁𝑇 ×⁄ 𝑅𝑟𝑒𝑠𝑖𝑠𝑡𝑜𝑟) > 1 and compensation being made to the 

measured current. 

Also, the sensors are calibrated by conducting a simple test, in which the sensors are connected 

in series with a 6𝛺 resistor and DC power supply, and the currents measured with the sensors 

Fig. 3-35:  Method implementation block diagram 

Fig. 3-34:  Data acquisition unit OPAL-RT 5600 
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are recorded in OPAL-RT 5600 and compared to the actual 𝐼 = 𝑉 𝑅⁄  in order to determine their 

difference. Multiple voltage points in a range of [3𝑉, 30𝑉] are selected ensuring different 

current regions are taken into account. It is suggested from the result that the current is 14% 

higher measured by the sensors, regardless of current level. This error is considered by dividing 

the current measurement by 114%. Fig. 3-36 shows the phase current signal(s) displayed on 

oscilloscope and plotted in OPAL-RT 5600, at 𝑖𝑑 = 0 and 𝑖𝑞 = 4𝐴 operating conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

Fig. 3-36:  Phase current signal(s) (a) on oscilloscope and (b) in the data 
acquisition unit at 𝑖𝑑 = 0 and 𝑖𝑞 = 4𝐴 

(a) 
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The q-axis current 𝑖𝑞 measured for the estimation at the ‘current’ sampling time, is added to 

the sum of the currents at the ‘previous’ sampling times until the last sampling point of the 

switching period where the sum is triggered by an additional PWM signal and reset. 

Voltage calibration is also carried out measuring the errors generated by the differential probes. 

The q-axis voltage error as a result of this effect is approximately 0.1𝑉, which leads to up to a 

10% error in the flux linkage estimation at high speed and current. Phase voltage is not directly 

available as the three-phase load neutral cannot be accessed. Instead, line-to-line voltage is 

measured, from which phase voltage can be derived. Fig. 3-37 depicts at 𝜔𝑟 = 3500𝑟𝑝𝑚 rotor 

speed the phase voltage. The value of it is shifted between ±
2𝑉𝐷𝐶

3
(±16𝑉), according to the 

inverter switching states which are determined by the location of the reference voltage space 

vector rotating on the space vector diagram. 

 

 

 

 

 

 

 

 

 

 

 

The phase voltages are transformed from the three-phase quantity 𝑣𝑎𝑏𝑐 into the rotating 

reference frame quantity 𝑣𝑑𝑞, which after the low-pass filtering (i.e. 4th order Butterworth filter 

with the passband edge frequency of 10𝐻𝑧), can be used as the voltage command. The 

averaged PWM output 𝑣𝑎𝑣𝑔 is computed with the knowledge of the time intervals (𝑡3 − 𝑡2) 

and (𝑡4 − 𝑡3) in Fig. 3-3, which can be retrieved from the voltage command in the form of a 

rotating space vector (�̅�∗ = |�̅�∗|∠𝛼), and the sector where the space vector lands. The voltage 

calculation only takes place on one switching period basis. 

Fig. 3-37:  Phase voltage at 𝜔𝑟 = 3500𝑟𝑝𝑚 
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The quadrature encoder uses three output channels, 𝑋𝐴, 𝑋𝐵 and 𝑋𝑍 (index) to sense position. 

The data acquisition device receives signals from the encoder via a 5-pin interface embedded 

on the microcontroller. The decoder only outputs the relative angular position 𝜃𝑟 using 𝑋𝐴 and 

𝑋𝐵, due to the unavailability of the input signal 𝑋𝑍 for the decoder function. However, the 

absolute position of the rotor can be located by simply adding an constant value 𝜃𝑜𝑓𝑓𝑠𝑒𝑡 to the 

relative position, such that 𝑖𝑑 = 0. The rotor speed is estimated, based on the fact that the motor 

fundamental frequency 𝑓𝑟 equals to the reciprocal of the time the rotor travels 360°𝐸 in 

position, as Fig. 3-38 illustrates. Therefore, the rotor speed can be calculated by: 

𝜔𝑟 =
60𝑓𝑟
𝑃

 
(3-35) 

 

 

 

 

 

 

 

 

 

 

 

It is necessary to point out that, the stator resistance 𝑅𝑠 for the tested motor is not necessarily 

identical to the value provided by the manufacture datasheet. 𝑅𝑠 can be estimated by connecting 

two of the three phase windings in series with the DC power supply. The voltage 𝑉 across the 

resistors is measured with multi-meter or differential probe, whilst the current 𝐼 can be the 

reading displayed on the power supply, provided that the current level is relatively high. As a 

result, the phase resistance 𝑅𝑠 is expressed as: 

𝑅𝑠 =
𝑉

2𝐼
 

(3-36) 

Fig. 3-38:  Rotor angle and its relationship with motor fundamental 
frequency 
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Also, the resistance of the wire from the inverter to the motor must be considered, which is 

approximately 7% the phase winding resistance of this motor and contributes a non-negligible 

proportion to the voltage measurement. It can be roughly calculated by subtracting the phase 

winding resistance from the overall resistance of the phase winding and wire in series 

connection. 

3.6.2 Validation at Room Temperature 

As with offline simulation, Fig. 3-39 exhibits the measured q-axis current variation and the 

three-phase PWM signals from PWM. It can be noticed that at steady-state conditions, the 

currents at the beginning of the non-zero voltage periods remain identical because the PI 

controller regulates the average q-axis current.  

The steps shown in the q-axis current in Fig. 3-39 are the result of the fact that only ten current 

sampling points are acquired in one PWM switching period. Voltages and currents are acquired 

at 100 𝑘𝑆/𝑠. From the point of view of reducing current ripples, a large switching frequency, 

is preferable for this particular motor with small inductances. However 10 𝑘𝐻𝑧 is employed 

which ensures that enough current points are sampled covering the entire switching period. 

 

 

 

 

 

 

 

 

 

A set of dead-times 0.5𝜇𝑠, 1𝜇𝑠, 2𝜇𝑠, 5𝜇𝑠, and 10𝜇𝑠, are implemented in the inverter to verify 

the dead-time effect on the presented estimation method. The amount of dead-time is set in 

number of clock cycles, which is defined as: 

𝑇𝑑𝑒𝑎𝑑_𝑐𝑜𝑢𝑛𝑡 = 𝑇𝑑𝑒𝑎𝑑_𝑠𝑒𝑐𝑜𝑛𝑑 × 𝑓𝑠𝑦𝑠𝑡𝑒𝑚 (3-37) 

Fig. 3-39:  Three-phase PWM signals and the corresponding q-axis 
current variation in one switching period in experimental testing 
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Fig. 3-40:  PWM and its complementary signals implementing 1𝜇𝑠 dead-time 

(a) 

(b) 
Fig. 3-41:  Phase current applying (a) 1𝜇𝑠 and (b) 10𝜇𝑠 dead-times 
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Fig. 3-40 presents the PWM and the corresponding complementary signals following the 

implementation of 1𝜇𝑠 dead-time. The dead-times also impact on the motor current, as is 

shown in Fig. 3-41, where the distinction between applying 1𝜇𝑠 and 10𝜇𝑠 dead-times to the 

motor operating at 𝐼 = 1.5𝐴 and 𝜔𝑟 = 1020𝑟𝑝𝑚, for instance, is visible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As can be seen in Fig. 3-42, dead-time does not affect the accuracy of the estimation using the 

PWM-based method. The flux linkage can also be estimated using (3-28). The controller 

Fig. 3-42:  Flux linkage estimations (top) and the corresponding 
errors (bottom) with 0.5𝜇𝑠, 1𝜇𝑠, 2𝜇𝑠, 5𝜇𝑠, and 10𝜇𝑠 dead-times 

implemented experimentally at 𝑖𝑞 = 3.6𝐴 and 𝜔𝑟 = 3000𝑟𝑝𝑚 

Fig. 3-43:  Voltage commands with 0.5𝜇𝑠, 1𝜇𝑠, 2𝜇𝑠, 5𝜇𝑠, and 10𝜇𝑠 
dead-times implemented experimentally at 𝑖𝑞 = 3.6𝐴 and 𝜔𝑟 =

3000𝑟𝑝𝑚 
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graphic user interface roughly calculates the voltage and current commands, whereas in OPAL-

RT 5600 the rotor speed and stator resistance, which with the motor rotating, slightly changes 

in value due to the inevitable loss-induced winding temperature change, are recorded. The 

results are consistent with Fig. 3-25, as the estimation deteriorates with larger dead-time.  

Fig. 3-43 plots the voltage commands imposing these dead-times. The increase in voltage 

command at the same motor operating conditions (i.e. 𝑖𝑞 = 3.6𝐴 and 𝜔𝑟 = 3000𝑟𝑝𝑚) explains 

the increase in the flux linkage in Fig. 3-42. 

3.6.3 Validation at Constant Temperatures 

In order to perform tests at various temperatures, the motor is placed in a metal enclosure and 

wrapped around with two 150 𝑚𝑚 ×  50 𝑚𝑚 silicone resistive heater mats powered by 30𝑉 

DC voltage. The mats are connected with a power supply via a temperature controller in which 

the desired temperatures are set for approximately 30 minutes until the internal thermal 

equilibrium of the motor is reached.  A K-type thermocouple with the sensing tip located at the 

motor winding is fitted into the controller input module to provide temperature measurement 

feedback. A simple hysteresis temperature controlled is implemented to reach and maintain the 

desired winding temperature set-point. This is achieved by using an electromechanical relay 

which is mounted within the controller and connected to the output pins.  

The motor is then covered with a calcium-magnesium silicate thermal insulation sheet in order 

to keep the motor at elevated temperatures and emulate adiabatic thermal conditions. In this 

way, once thermal equilibrium is reached, it can be assumed that rotor temperature, which is 

not directly accessible, is very close to the winding temperature which can be directly 

measured. The setup is shown in Fig. 3-44. 

It is important that temperature dependence of stator winding resistance is taken into account 

in the estimation. Up to 3% error in flux linkage is detected otherwise at high motor 

temperatures. It is assumed that the temperature effect on winding resistance can be described 

as the following linear function: 

𝑅𝑠(𝑇𝑊) = 𝑅𝑠(𝑇0,𝑊)[1 + 𝛼𝑐𝑢(𝑇𝑊 − 𝑇0,𝑊)] (3-38) 

The temperature coefficient 𝛼𝑐𝑢 for copper has the value of 0.393%/°𝐶. 

Temperature also affects the B-H curve and permeability of stator core [106], [107], potentially 

affecting the accuracy of this method. However, as demonstrated in [106] and [107], the 

temperature effect on the magnetic properties of Silicon-Iron (SiFe) material, used for the 
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tested motor, is small in the typical operating temperatures range for electrical machines (i.e. 

20℃ to 120℃) and therefore neglected in the work presented here. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The estimated flux linkage is compared with its real value derived from the back-EMF 

measurements, which are the phase voltages at no-load condition for the tested motor acting as 

generator, expressed as: 

𝑣𝑞 = 𝑣𝑎𝑏𝑐 = 𝜔𝑟𝜓𝑚 (3-39) 

Thus, 

(a) 

(b) 

Fig. 3-44:  (a) Motor wrapped with heater mat and (b) kit wrapped with 
insulation material 
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𝜓𝑚 = 𝑣𝑎𝑏𝑐 𝜔𝑟⁄  (3-40) 

 

Fig. 3-45 shows the estimated flux linkage at 4000𝑟𝑝𝑚 rotor speed and 25°𝐶 motor 

temperature, alongside the corresponding back-EMF measurements. The estimation error is 

less than −0.5%, showing a relatively good match with the measured value.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The estimation results at 4000𝑟𝑝𝑚 and constant-step elevated motor temperatures starting 

from 25°𝐶 are plotted in Fig. 3-46, where the flux linkage variations are consistent with the 

Fig. 3-46:  Flux linkage estimations at 4000𝑟𝑝𝑚 and rising 
temperatures 

Fig. 3-45:  Flux linkage estimation (top) and back-EMF 
measurements (bottom) at 4000𝑟𝑝𝑚 and 25°𝐶 motor temperature 
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inverse relationship between flux linkage and rotor temperature. As shown in Fig. 3-47, the 

accuracy of the estimation shows some dependence on the motor operating condition (speed) 

and motor temperature, with the maximum error of −1.3% detected at 1000𝑟𝑝𝑚 and 125℃. 

Admittedly, the precision of the back-EMFs is limited by the resolution of the differential 

probes and the relatively slow acquisition of 10𝜇𝑠, which creates some errors in the timing. 

Additional error and noise is also generated by current sensors. 

 

 

 

 

 

 

 

 

 

3.6.4 Rotor Temperature Estimation 

A calibration procedure is adopted to evaluate the coefficient 𝛼𝛽𝑟 (see Fig. 3-1) by measuring 

the open-circuit back-EMF at different rotor temperatures as: 

𝛼𝛽𝑟 =
1

𝜓𝑚(𝑇0,𝑃𝑀)
[
𝜓𝑚(𝑇𝑃𝑀) − 𝜓𝑚(𝑇0,𝑃𝑀)

𝑇𝑃𝑀 − 𝑇0,𝑃𝑀
] 

(3-41) 

 

Fig. 3-1 depicts the flux linkage measurements at 25°𝐶, 50°𝐶, 75°𝐶, 100°𝐶, and 125°𝐶, 

respectively, along with 𝛼𝛽𝑟 calculated using two adjacent temperature points. These values 

are selected for the estimation at each temperature region. The difference in 𝛼𝛽𝑟  may be 

associated with the attribute of the material for the magnets. 

A simple thermal steady-state test is conducted. The heater mats heat up the motor for a certain 

period of time during which the motor temperature climbs, reaches the set-point and the 

adiabatic state is maintained. The flux linkage and rotor temperature are then estimated using 

(3-25) and (3-2) with the motor operating at an arbitrary condition. Fig. 3-48 shows the 

Fig. 3-47:  Flux linkage errors at 1000𝑟𝑝𝑚, 2000𝑟𝑝𝑚, 3000𝑟𝑝𝑚, 

4000𝑟𝑝𝑚, and rising temperatures 
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estimated rotor temperature along with the winding temperature controlled at 60°𝐶. The 

winding temperature is a few degrees higher than expected due to the losses during the motor 

operation.  

 

 

 

 

 

 

 

 

 

 

Fig. 3-49 shows the rotor temperatures estimated at several set-point temperatures. The 

accuracy for the proposed method is demonstrated by the fact that no more than 2°𝐶 error is 

achieved for the rotor temperatures. 

 

 

 

 

 

 

 

 

 

 

Fig. 3-48:  Rotor temperature estimation and winding temperature 
measurement at 𝑇𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 = 60°𝐶 

Fig. 3-49:  Rotor temperature estimations (top) and the 
corresponding errors (bottom) at 𝑇𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 = 60°𝐶, 90°𝐶, and 120°𝐶 
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A transient test over four hours is performed in which the motor temperature increases and 

decreases in steps generated by the temperature controller, as Fig. 3-50 illustrates. In order to 

validate the presented method in non-stationary conditions, a simplified duty cycle applied on 

speed (𝜔𝑏𝑎𝑠𝑒 = 4500𝑟𝑝𝑚) and stator current (𝐼𝑏𝑎𝑠𝑒 = 5𝐴) is considered and shown in Fig. 3-

51. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Less than 1.7°𝐶 differences in the steady-state temperatures between winding and rotor can be 

observed in Fig. 3-52. Unfortunately, it is difficult to provide measured temperatures for the 

estimations at the transient periods due to the challenge of obtaining the estimated flux linkage 

results and back-EMF measurements synchronously. 

Also, the heater mat is slightly shorter in length than the motor circumference. Therefore, the 

heating distribution in the motor might not be uniform. Additionally, rotor temperature is 

Fig. 3-50:  Motor stator temperature profile during transient testing 

Fig. 3-51:  Motor speed and current profiles of the transient testing 
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indirectly measured using stator windings temperature and assuming adiabatic and steady-state 

conditions, assuming that in these conditions stator and rotor have reached a thermal 

equilibrium. These ideal conditions might not be perfectly verified in practice. 

3.7 Conclusion 

This chapter presents a relatively simple and accurate method for online flux linkage and rotor 

temperature estimations of PMSMs, based on the current response to the standard SV-PWM 

which is commonly employed in most state-of-the-art power converter drive applications. This 

method is simple to implement and does not create additional disturbance to the machine as no 

additional signal injection is required. The method is also independent of machine inductances. 

A series of offline and real-time simulations, and experimental testing are presented to validate 

the proposed methodology. The results demonstrate good accuracy in rotor flux linkage and 

temperature estimations in a wide range of machine operating conditions. Extensive 

simulations and experimental validations are provided to evaluate the sensitivity of the method 

and evaluate its robustness to a number of parameters including sampling rate, dead-time, 

additional harmonics in the PM flux and saturation.  

 

 

 

 

Fig. 3-52:  Flux linkage (top) and rotor temperature (bottom) estimations 
under the transient profiles 
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Chapter 4: A PWM-based Low-order Thermal 

Network for Critical Temperatures Estimations for 

Permanent Magnet Synchronous Motors 

4.1 Introduction 

In chapter 2, a reduced-order LPTN is presented to monitor the critical temperatures in 

PMSMs, and good model performance is shown under ideal simulation conditions. However, 

this method requires rotor temperature measurement which is extremely difficult, in some 

applications even unrealistic, due to the challenge of placing temperature sensors on a rotating 

shaft. As a result, the relatively simple PWM-based estimation method proposed in chapter 3 

is employed, which retrieves accurate rotor temperature information indirectly from motor PM 

flux linkage, and can be implemented in real-time.  

The temperature estimation system integrating the two approaches is experimentally tested on 

the three-phase PM servo machine introduced in chapter 3. A thorough validation is conducted 

and the estimation errors are relatively small. 

4.2 Experimental Validation 

4.2.1 Loss Modelling 

The losses of the tested motor are calculated based on motor speed and electric currents, which 

are commonly available in the motor controller. The three-phase copper loss generated by the 

active winding and end-winding of the motor can be calculated by (1-65). The stator resistance 

𝑅𝑠 is assumed to be linearly dependent on the winding temperature 𝑇𝑊 as stated by (3-38). 

Therefore, the loss 𝑃𝑊 for the winding node in the LPTN presented in chapter 2 is expressed 

as: 

𝑃𝑊 = 1.5𝐼𝑞
2𝑅𝑠(𝑇𝑊) (4-1) 

where 𝑇𝑊 is the average winding temperature obtained from temperature sensors and used as 

the temperature measurement for the winding node. 

The on-load iron loss is assumed to be the superposition of the two modes of motor operations 

corresponding to two distinct flux paths — the main magnetizing flux path associated with the 
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PM and stator current, and the field weakening path relating to the demagnetizing current [91]. 

The iron loss models (1-82) and (1-83) are adopted, which after taking into consideration the 

dependence of the flux linkage on the load condition, the demagnetizing field and the magnet 

temperature 𝑇𝑃𝑀 (𝑇0,𝑃𝑀 = 25℃), can be described as:  

𝑃𝐶𝑇 = 𝑎ℎ𝑓𝑟

(

 
√𝜓𝑑

2(𝑇𝑃𝑀) + 𝜓𝑞
2(𝑇𝑃𝑀)

𝜓𝑚(𝑇0,𝑃𝑀)
)

 + 𝑎𝑒𝑓𝑟
2

(

 
√𝜓𝑑

2(𝑇𝑃𝑀) + 𝜓𝑞
2(𝑇𝑃𝑀)

𝜓𝑚(𝑇0,𝑃𝑀)
)

 

2

 

 

(4-2) 

𝑃𝐶𝑃 = 𝑏ℎ𝑓𝑟 (
|𝜓𝑑(𝑇𝑃𝑀) − 𝜓𝑚(𝑇𝑃𝑀)|

𝜓𝑚(𝑇0,𝑃𝑀)
) + 𝑏𝑒𝑓𝑟

2 (
|𝜓𝑑(𝑇𝑃𝑀) − 𝜓𝑚(𝑇𝑃𝑀)|

𝜓𝑚(𝑇0,𝑃𝑀)
)

2

 
 

(4-3) 

The total iron loss at a given operating condition is the sum of 𝑃𝐶𝑇 and 𝑃𝐶𝑃. In this application, 

the motor is only controlled at the rated flux region, which means 𝑃𝐶𝑃 = 0. The constants (𝑎ℎ, 

𝑎𝑒) and (𝑏ℎ, 𝑏𝑒) can be found using the FE analysis at open-circuit and short-circuit operations, 

respectively, and room temperature 𝑇0,𝑃𝑀. 𝜓𝑑 and 𝜓𝑞 are the dq-axis flux linkages considering 

the demagnetizing field 𝜓𝑑
∗ , assuming 𝑖𝑑 = 0: 

𝜓𝑑 = 𝜓𝑚 + 𝜓𝑑
∗  (4-4) 

𝜓𝑞 = 𝐿𝑞𝑖𝑞 (4-5) 

The specifications of the motor are shown in Table IV. The PMSM is modelled in the motor 

design software Motor-CAD, due to its: a) efficiency, as accurate modelling of the 

electromagnetic and thermal behaviours of the motor can be performed rather quickly, b) 

simplicity. Motor-CAD provides a template-based setup which simplifies the design process. 

As a result, only the most significant machine geometry and material information is required. 

Adobe Photoshop CC 2018 is used to obtain the radial and axial dimensions of the motor in an 

image, whereas the material information is available on the manufacture datasheet. In this 

application, the constants are obtained by performing the 2-D FEA at an arbitrary rotor speed 

in Motor-CAD Lab. These parameters for the servo-motor are summarized in Table V.  

 

 

 

 

Table V:  Parameters calculated by FEA 

Quantity Unit Value 

𝑎ℎ 𝑊/𝐻𝑧 0.009311 

𝑎𝐽 𝑊/(𝐻𝑧)2 3.082𝑒−5 

𝑏ℎ 𝑊/𝐻𝑧 0.001021 

𝑏𝐽 𝑊/(𝐻𝑧)2 5.508𝑒−6 

 

 

TABLE V 
PARAMETERS CALCULATED BY FEA 

Quantity Unit Value 
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The loss 𝑃𝑃𝑀 for the PM node is neglected. According to the FEA simulation result, the rotor 

core iron and magnet, which are the main sources of the rotor loss for the tested machine, only 

produce very small amount of heat losses. Windage loss and friction loss are also assumed to 

be zero to simplify the modelling process. 

4.2.2 Experimental Setup 

The estimation method is experimentally validated on the motor shown in chapter 3. The motor 

under test is positioned in an enclosure and only cooled by natural convection. The resistances 

𝑅𝐹𝑒𝑠−𝐶 and 𝑅𝑃𝑀−𝐴 represent natural convection between the motor and ambient and their 

values are finite. The test rig is shown in Fig. 4-1(a).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 
Fig. 4-1:  (a) test rig and (b) thermocouple 
locations 
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The generator is connected to a three-phase resistive load, with each phase consisting of 

multiple 10Ω resistors in parallel connection, in order to raise the level of the motor current, 

and therefore raise the levels of the copper loss and motor temperature. Due to the temperatures 

being relatively evenly distributed in the motor, only one K-type thermocouple is installed in 

the gap between the housing and stator yoke, and another inside the end-winding to obtain the 

temperature measurements for the stator iron and winding nodes, respectively. Fig. 4-1(b) 

demonstrates the locations of the thermocouples in the motor. The parameter estimation 

procedure introduced in chapter 2 is executed on the real-time platform OPAL-RT 5600, along 

with the PWM-based method presented in chapter 3, which provides an accurate rotor 

temperature measurement for the prediction of the thermal parameters. Fig. 4-2 shows the 

implementation of the EKF algorithm in a block diagram. A relatively small sampling time 

10𝜇𝑠 is adopted for the rotor temperature estimation, whilst the acquisition of the measured 

temperatures and power losses for the computation of the thermal resistances takes place every 

60𝑠, because the temperature variation is rather slow. However it can be reduced to 1𝑠, for 

instance, such that sudden changes in the operating conditions (speed/current) between two 

sampling points are able to be detected. The temperature measurements from the 

thermocouples are converted into voltage signals by two temperature amplifiers powered by 

10𝑉 DC voltage, before being received by OPAL-RT where the following linear function is 

used to acquire temperature information: 

𝑇𝑚 = (𝑉𝑜 − 1.25)/5𝑚𝑉 (4-6) 

in which 𝑇𝑚 and 𝑉𝑜 are in Celsius and Volts. The open-loop temperature estimation is 

performed offline, after the identification process is completed.  

 

Fig. 4-2:  EKF algorithm implementation block diagram 
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4.2.3 Validation at Single Speed and Current 

The presented method is validated at 𝜔𝑟 = 3200𝑟𝑝𝑚 and 𝐼 = 3.4𝐴. The test identifying the 

unknown thermal resistances of the motor is carried out for more than three hours, until after 

the thermal equilibrium is reached. The two thermocouples fixed into the motor are used to 

monitor the temperature change, and the data is accessed and displayed via a Pico TC-08 

thermocouple data logger. The estimated resistances and temperatures using the EKF algorithm 

are shown in Fig. 4-3 and Fig. 4-4, and the corresponding temperature errors are plotted in Fig. 

4-5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4-3:  Estimated thermal resistances at 𝜔𝑟 = 3200𝑟𝑝𝑚 and 𝐼 =
3.4𝐴 

Fig. 4-4:  Estimated three node temperatures at 𝜔𝑟 = 3200𝑟𝑝𝑚 and 

𝐼 = 3.4𝐴   
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In Fig. 4-4 and Fig. 4-5, the estimated temperatures show good agreement with the 

corresponding measurements at the thermal steady-state. However, more than 5℃ error 

appears in the rotor temperature estimation during transient period, because the rotor 

temperature measurement, which is predicted by the PWM-based approach, is less precise at 

lower temperature. This means the estimation will not be able to keep track of the real value 

unless a large process noise covariance 𝑄 is chosen which results in a stronger weight given to 

the measurement in the updating of the estimate. In this case, only a small 𝑄 = 0.05 is used in 

order to reduce the measurement noise. 

 

 

 

 

 

 

 

 

 

 
Fig. 4-6:  Estimated node temperatures using the results in Fig. 4-3 

Fig. 4-5:  Temperature estimation errors in Fig. 4-4 
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The open-loop test is conducted to validate the identified thermal resistances. Fig. 4-6 shows 

the temperature estimations alongside the temperature measurements, and the differences 

between them are shown in Fig. 4-7. The deviations are mainly due to the fact that the thermal 

parameters identified at steady-state do not take into account the error in rotor temperature 

estimation using the PWM-based method during the transient period. Also, the power losses 

might not be perfectly modelled, as the copper loss can be affected by the imprecision of the 

current measurement and stator resistance, and the ‘𝑂𝐶 + 𝑆𝐶 model’ only provides reasonably 

accurate iron loss estimation. In addition, small errors might exist in the stator iron and winding 

temperature measurements as a result of only one measurement point being used for each node.  

 

 

 

 

 

Fig. 4-7:  Temperature estimation errors in Fig. 4-6 

Fig. 4-8:  Three-node temperatures predicted by the Levenberg-Marquardt algorithm, the 
power losses, the cooling system (natural convection) and ambient temperatures 
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The Levenberg-Marquardt least-squares algorithm is employed once again to estimate the 

thermal resistances which will be compared with the results based on the EKF method. The 

identification problem can be viewed as searching iteratively within the search domain for the 

set of resistances that ensures the temperature measurements best fit the nonlinear thermal 

model in the least square sense. The algorithm may converge to local minimum as more than 

one solution to the rotor-related resistances can be calculated depending on the initial guesses. 

Fig. 4-8 depicts the node temperature measurements and the temperature estimations as a result 

of using the identified resistances shown in Fig. 4-10. The power losses and ambient 

temperature, which in this case is also the temperature of the ‘cooling system’ due to the use 

of natural convection for the motor, are shown as well. Fig. 4-9 shows the minimization of the 

cost function during which the local optimum of the unknowns can be detected. The test is 

intended for validating the results presented in Fig. 4-3 and therefore only considers the steady-

state condition. 

The estimated temperatures show a good match with the measurements, suggesting the 

resistances are correctly identified and are one of the many solutions to the identification 

problem. The fact that the cost function after four iterations reduces to a relatively low level of 

10−4 confirms that the local minimum may have been reached. Parameter-wise, the values of 

𝜃1, 𝜃2 and 𝜃5 corresponding to 𝑅𝐹𝑒𝑠−𝐶, 𝑅𝑊−𝐹𝑒𝑠 and 𝑅𝑃𝑀−𝐴, respectively, are similar to those 

in Fig. 4-3. Nevertheless, the deviations in 𝜃3(𝑅𝑃𝑀−𝐹𝑒𝑠) and 𝜃4(𝑅𝑃𝑀−𝑊) adopting these two 

methods are noticeable, which may be related to the difference in the optimization process of 

the algorithm.  

Fig. 4-10:  Identified thermal resistances using the Levenberg-Marquardt and extended 
Kalman filter algorithm 

Parameters Levenberg-Marquardt Extended Kalman Filter 

𝑅𝐹𝑒𝑠−𝐶 6.367 6.26 

𝑅𝑊−𝐹𝑒𝑠 1.4309 0.994 

𝑅𝑃𝑀−𝐹𝑒𝑠 2.7496 0.524 

𝑅𝑃𝑀−𝑊 3.0006 11.5 

𝑅𝑃𝑀−𝐴 16.361 16.547 

Fig. 4-9:  Cost function values during the estimation process 

Iteration Cost Function 

0 9.7830 

1 0.0716 

2 4.5533𝑒−4 

3 4.5485𝑒−4 

4 4.5483𝑒−4 
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Fig. 4-11 and Fig. 4-12 demonstrate the node temperatures which are predicted in the open-

loop test with the parameters estimated by the Levenberg-Marquardt algorithm. Less than −7℃ 

error in rotor temperature and 3.5℃ in the stator iron and winding temperatures can be 

observed, showing resemblance to Fig. 4-6 and Fig. 4-7, where the results are based on the 

EKF method. This further proves the identification problem has multiple local optima and that 

the solutions illustrated in Fig. 4-3 and Fig. 4-10 are equally correct.  

Fig. 4-11: Node temperatures estimated with the results in Fig. 4-10 

Fig. 4-12:  Temperature errors in Fig. 4-11 
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4.2.4 Validation at Multiple Speeds and Currents 

As mentioned in chapter 2, the thermal resistances may vary with motor operating conditions. 

Physically, the heat transfer coefficients between stator and rotor will be dependent on rotor 

speed. Additionally, the nonlinear least squared algorithms such as the EKF adopted here for 

parameter identification only search for parameters that guarantee the best fit between the 

mathematical function and the measurements. The identification of the thermal resistances is 

performed at 𝜔𝑟 = 2000𝑟𝑝𝑚, 2400𝑟𝑝𝑚, 3200𝑟𝑝𝑚, and 3800𝑟𝑝𝑚. As a result of the rotor 

speed and stator current not being decoupled in this particular application, speed is not 

independent from current. The motor accelerates as more current is required. 

The decrease in the thermal resistances connected with the rotor node may be linked with the 

speed-dependent convection effects. However the variation in the stator-related resistances, 

which in principle have no direct dependence on either the motor speed, or the stator current, 

are the result of the algorithm only considering the minimization of the cost function. Also, 

additional error is generated by the iron loss model, which has better accuracy at the speed 

where the constant parameters in (4-2) and (4-3) are calculated. The thermal resistances 

estimated with different current and speed conditions are shown in Fig. 4-14 to Fig. 4-18. The 

generator is connected to resistive loads, and the current level is dependent on the number of 

loads used. Therefore, the y-axis is set to be load condition instead of current. 

Fig. 4-13:  Thermal resistance estimations under the conditions of 
𝜔𝑟 = 2000𝑟𝑝𝑚, 2400𝑟𝑝𝑚, 3200𝑟𝑝𝑚, and 3800𝑟𝑝𝑚 and their 
corresponding currents 
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Fig. 4-14:  Estimated thermal resistance 𝑅𝐹𝑒𝑠−𝐶 at different speeds 
and load conditions 

Fig. 4-15:  Estimated thermal resistance 𝑅𝑊−𝐹𝑒𝑠 at different speeds 
and load conditions 

Fig. 4-16:  Estimated thermal resistance 𝑅𝑃𝑀−𝐹𝑒𝑠 at different 
speeds and load conditions 
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Fig. 4-17:  Estimated thermal resistance 𝑅𝑃𝑀−𝑊 at different speeds 
and load conditions 

Fig. 4-18:  Estimated thermal resistance 𝑅𝑃𝑀−𝐴 at different speeds 
and load conditions 

Fig. 4-19:  Rotor speed and stator current profiles of the transient 
testing 
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2-D LUTs with the identified parameters as the function of motor speed and number of loads 

are applied to estimate the node temperatures. A thermal transient test of slightly less than five 

hours is conducted, using a step-based duty cycle illustrated in Fig. 4-19. Fig. 4-20 depicts the 

dynamics of the thermal resistances. The maximum estimation error of no more than 6℃ in all 

node temperatures is achieved, as can be seen in Fig. 4-21 and Fig. 4-22.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4-20:  Estimated thermal resistances according to the driving cycle 

Fig. 4-21:  Open-loop temperature estimations based on the 
transient driving cycle 
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4.3 Conclusion 

This chapter proposes a practical and relatively simple model-based methodology for the 

predictions of the stator iron, stator winding and PM temperatures in PMSMs, using a three-

node thermal model featuring a PWM-based estimation algorithm as a replacement for rotor 

temperature measurement. The implementation of this method is rather simple as only the 

commonly measurable quantities, such as motor current, speed and stator temperatures, are 

required. The use of the PWM-based estimation avoids direct rotor temperature measurement, 

which is costly and practically difficult. Furthermore, the estimated temperatures contain low 

level of noise due to the filtering effect of the EKF algorithm. The experimental testing 

validates the presented method comprehensively on a typical SPMSM, and the result shows 

good precision in a variety of motor operating conditions. 

 

 

 

 

 

 

 

Fig. 4-22:  Temperature estimation errors in Fig. 4-21 
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Chapter 5: Conclusion and Future Work 

5.1 Conclusion 

Temperature monitoring of PMSMs is of great importance because thermal stress is one of the 

main factors affecting their lifetimes. Whilst the implementation of direct temperature 

monitoring techniques on motor stator is relatively simple, rotor temperature measurement 

requires significant effort as it is difficult to place sensors on a rotating shaft. Alternatively, 

motor temperatures can be determined through temperature-dependent electrical parameters. 

However this method usually involves the use of an injected signal to the motor, which 

produces undesired ripples and losses disturbing motor operation. Besides, the accuracy of this 

method largely depends on that of the modelling of machine and inverter. Model-based 

approach based on lumped parameters equivalent thermal circuit can inform a thermal 

observer, which integrated with a robust loss model can also provide temperature estimation 

during real-time operation. Although a complex thermal network leads to more accurate 

temperature prediction, the information of motor dimension and material properties is required 

and the derivation of thermal parameters and coefficients using analytical formulas is hardly 

an easy task. The modelling depth of a reduced-order thermal model on the other hand is 

relatively low, as large regions of a motor can be lumped in several temperature nodes, and the 

thermal parameters can be computed in a measurement-informed identification procedure. 

A simplified LPTN representing motor stator iron, stator winding, and permanent magnet is 

presented for the estimation of the critical temperatures in PMSMs. The heat conduction and 

convection in the motor are described in a compact style with a set of state-space equations. 

The losses and thermal capacitances of the motor are calculated via the Finite Element 

software, whereas an identification procedure based on the extended Kalman Filter algorithm 

is employed to estimate the unknown thermal resistances. As a result the analytical derivation 

is not necessary. This method is computationally efficient due to the simple three-node thermal 

structure. In addition, only little motor physical knowledge is required. However, the method 

is almost impossible to implement in practice due to the difficulty in accessing rotor 

temperature directly from temperature sensors. An approach able to estimate rotor temperature 

with high precision via PM flux linkage is one of the preferable solutions. 

A relatively simple and accurate method for online flux linkage and rotor temperature 

estimations is then introduced, which is based on the response of motor current to the standard 
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space-vector pulse width modulation. It uses the already-existing PWM voltage as the 

excitation signal in order to avoid the need for additional signal injection, and knowledge of 

machine inductances which may vary as a result of saturation, is not required. A comprehensive 

validation is conducted in online simulation using the advanced Hardware-in-the-Loop 

technique which emulates the motor, power converter, field oriented control and proposed 

estimation algorithm in two separated FPGA-based data acquisition units. Also, extensive 

simulations and experimental validations are provided to evaluate the robustness of the method 

to a number of potential practical implementation errors, followed by the experimental testing 

in a wide range of motor temperatures. The results demonstrate no more than 2℃ error in the 

predicted rotor temperatures, affirming that this method is suitable to provide the thermal 

model with a rotor temperature measurement. 

The motor temperature estimation system integrating the three-node LPTN with the PWM-

based rotor temperature estimation algorithm is experimentally validated and the maximum 

error in the estimated temperatures is approximately 6℃. In conclusion, this temperature 

estimation system is advantageous because: a) it is not computational-demanding as only the 

most dominant motor heat transfer processes are taken into consideration for the LPTN, b) its 

implementation is relatively simple, with only motor current, voltage, and stator temperature 

measurements required, c) direct rotor temperature measurement is avoided due to the use of 

the rotor temperature estimation method, d) the predicted motor temperatures are of low noise 

level because of the EKF’s filtering effect. 

5.2 Future Work 

The main focus of the research in the future is to incorporate indirect stator temperature 

monitoring methods in the presented temperature estimation system in order to further reduce 

the number of temperature sensors required. Stator winding temperature can be predicted via 

temperature-dependent stator resistance. Online method based on signal injection technique, 

such as [26], where the stator resistance is relatively accurately determined using a full-rank 

motor model corresponding to 𝑖𝑑 = 0 and a 𝑖𝑑 ≠ 0 signal injected into the motor, is one of the 

available options. Alternatively, parameter identification algorithm, such as the EKF algorithm 

proposed in [32], which updates the value of stator resistance continuously without involving 

the injection of an additional signal, can also be considered. 

From the perspective of improving the estimation accuracy, future work should also be focused 

on the modification of the structure of the proposed LPTN, and the modelling of motor losses. 
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As mentioned in chapter 2, the oversimplification of the thermal network may be one of the 

major issues resulting in the temperature estimation errors, because the thermal resistance 

𝑅𝑃𝑀−𝐴 only considers the heat convection from the rotor to ambient through the rotor shaft. In 

fact, the rotor is also thermally connected to the end-cap, for instance, and to the generator via 

the metal frame mount. These heat paths should be modelled separately. Also, considering the 

temperature effect on the eddy-current iron loss may reduce the estimation errors. In addition, 

the rotor losses are rather small and therefore considered negligible in the experimental test in 

chapter 4. However, this assumption might lead to some errors in the rotor temperature 

estimation, because the cooling of the rotor can be difficult.  

In chapter 3, the estimation of the rotor temperature requires the measurement of the stator 

terminal voltages, as the output voltage due to some inverter non-ideal effects such as dead-

time is not solely determined by the voltage command. However standard commercial drives 

normally do not include voltage sensors, making the practical implementation of the method 

particularly difficult. In light of this issue, an inverter model compensating the difference 

between voltage command and PWM voltage should be used.  
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Appendix B: Parameter identification of three-node 

thermal network 

The following Matlab function performs the identification of the unknown parameters in the 

three-node thermal network. The function contains 17 inputs, including: 

 Losses generated by each temperature node, denoted as 𝑢(1), 𝑢(2) and 𝑢(3) 

 Cooling and ambient temperatures, denoted as 𝑢(4) and 𝑢(5) 

 Three node temperature measurements 𝑢(6), 𝑢(7) and 𝑢(8) 

 Three node temperatures predicted at the previous time step 𝑢(9), 𝑢(10) and 𝑢(11) 

 Thermal resistances estimated at the previous time step, used as the measurements for the 

estimation of the resistances at the current step and represented as 𝑢(12), 𝑢(13), 𝑢(14), 

𝑢(15) and 𝑢(16) 

 Covariance matrix estimation 𝑃 at the previous time step  

The outputs are the present temperature, resistance and covariance predictions. 

function [out,P_next] = fcn(u,P) 

% system inputs: power, cooling and ambient temperatures 

input = [u(1);u(2);u(3);u(4);u(5)]; 

% Temperature and resistance measurements 

z_measured = [u(6);u(7);u(8);u(12);u(13);u(14);u(15);u(16)]; 

% System states: node temperatures and thermal resistances 

x = [u(9);u(10);u(11);u(12);u(13);u(14);u(15);u(16)]; 

% Number of states 

n = 8; 

% Definition of process noise covariance 

q = 0.1; 

Q = q^2*eye(n); 

% Definition of observation noise covariance 

r = 0.1; 

R = r^2*eye(n); 

% Step 1/2: predict 

x_next = f(x,input);                         

F = StateJacobian(x,input); 

P_next = F*P*F'+Q; 
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% Step 2/2: update 

H = OutputJacobian(x); 

S = H*P_next*H' + R; 

K = P_next*H'*inv(S); 

z_predicted = h(x_next); 

residual = z_measured - z_predicted; 

P_next = (eye(n)-K*H)*P_next; 

out = x_next + K*residual; 

% Definition of nonlinear system 

function funct = f(x,u) 

% stator iron node capacitance calculated using Finite Element software 

C_fe = 17694.48; 

% stator winding node capacitance 

C_w = 3667.72;     

% permanent magnet node capacitance                

C_pm = 6034.32;    

% sampling time                  

Ts = 1;  

funct = [(1-(Ts/C_fe)*((1/x(4))+(1/x(5))+(1/x(6))))*x(1)+(Ts/C_fe)*(1/x(5))*x(2) 

+(Ts/C_fe)*(1/x(6))*x(3)+(Ts/C_fe)*u(1)+(Ts/C_fe)*(1/x(4))*u(4); 

(Ts/C_w)*(1/x(5))*x(1)+(1-(Ts/C_w)*((1/x(5))+(1/x(7))))*x(2) 
+(Ts/C_w)*(1/x(7))*x(3)+(Ts/C_w)*u(2);(Ts/C_pm)*(1/x(6))*x(1) 

+(Ts/C_pm)*(1/x(7))*x(2)+(1-(Ts/C_pm)*((1/x(6))+(1/x(7))+(1/x(8))))*x(3) 

+(Ts/C_pm)*u(3)+(Ts/C_pm)*(1/x(8))*u(5);x(4);x(5);x(6);x(7);x(8)]; 

% Definition of observation 

function HH = h(x) 

HH = [x(1);x(2);x(3);x(4);x(5);x(6);x(7);x(8)]; 

% Definition of state-transition Jacobian 

function J=StateJacobian(x,u) 

C_fe = 17694.48;                    

C_w = 3667.72;                      

C_pm = 6034.32;                     

Ts = 1; 

J = zeros(8); 

J(1,1) = 1-(Ts/C_fe)*((1/x(4))+(1/x(5))+(1/x(6))); 
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J(1,2) = (Ts/C_fe)*(1/x(5)); 

J(1,3) = (Ts/C_fe)*(1/x(6)); 

J(1,4) = (Ts/C_fe)*((x(1)-u(4))/(x(4)^2)); 

J(1,5) = (Ts/C_fe)*((x(1)-x(2))/(x(5)^2)); 

J(1,6) = (Ts/C_fe)*((x(1)-x(3))/(x(6)^2)); 

J(1,7) = 0; 

J(1,8) = 0; 

J(2,1) = (Ts/C_w)*(1/x(5)); 

J(2,2) = 1-(Ts/C_w)*((1/x(5))+(1/x(7))); 

J(2,3) = (Ts/C_w)*(1/x(7)); 

J(2,4) = 0; 

J(2,5) = (Ts/C_w)*((x(2)-x(1))/(x(5)^2)); 

J(2,6) = 0; 

J(2,7) = (Ts/C_w)*((x(2)-x(3))/(x(7)^2)); 

J(2,8) = 0; 

J(3,1) = (Ts/C_pm)*(1/x(6)); 

J(3,2) = (Ts/C_pm)*(1/x(7)); 

J(3,3) = 1-(Ts/C_pm)*((1/x(6))+(1/x(7))+(1/x(8))); 

J(3,4) = 0; 

J(3,5) = 0; 

J(3,6) = (Ts/C_pm)*((x(3)-x(1))/(x(6)^2)); 

J(3,7) = (Ts/C_pm)*((x(3)-x(2))/(x(7)^2)); 

J(3,8) = (Ts/C_pm)*((x(3)-u(5))/(x(8)^2)); 

J(4,1) = 0; 

J(4,2) = 0; 

J(4,3) = 0; 

J(4,4) = 1; 

J(4,5) = 0; 

J(4,6) = 0; 

J(4,7) = 0; 

J(4,8) = 0; 

J(5,1) = 0; 

J(5,2) = 0; 

J(5,3) = 0; 

J(5,4) = 0; 
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J(5,5) = 1; 

J(5,6) = 0; 

J(5,7) = 0; 

J(5,8) = 0; 

J(6,1) = 0; 

J(6,2) = 0; 

J(6,3) = 0; 

J(6,4) = 0; 

J(6,5) = 0; 

J(6,6) = 1; 

J(6,7) = 0; 

J(6,8) = 0; 

J(7,1) = 0; 

J(7,2) = 0; 

J(7,3) = 0; 

J(7,4) = 0; 

J(7,5) = 0; 

J(7,6) = 0; 

J(7,7) = 1; 

J(7,8) = 0; 

J(8,1) = 0; 

J(8,2) = 0; 

J(8,3) = 0; 

J(8,4) = 0; 

J(8,5) = 0; 

J(8,6) = 0; 

J(8,7) = 0; 

J(8,8) = 1; 

% Definition of observation Jacobian 

function Ja = OutputJacobian(x) 

Ja = eye(8); 
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Appendix C: Voltage calculation of the PWM-based flux 

linkage and rotor temperature estimations 

The MATLAB functions carrying out voltage calculation in (3-25) are shown. Voltage input 

is assumed to be in the form of a rotating space vector expressed as �̅�∗ = |�̅�∗|∠𝛼. Rotor angle 

is also required to calculate the q-axis voltage components of active state vectors. The voltage 

calculation only takes place at the beginning of a PWM switching period, where the values of 

|�̅�∗|, 𝛼 and rotor angle are triggered by an additional digital signal.  

% V_ref_mag is reference voltage magnitude, V_ref_ang is the location of the 
reference vector in relation to the active voltage vectors on state vector diagram 

function Vq = fcn(V_ref_mag, V_ref_ang, theta) 

% Tc is half switching frequency, Vdc is inverter DC-link voltage, and mag is a constant 
for the calculation of the time intervals active state vectors are applied 

Tc = (1/10000)/2; 

Vdc = 24; 

gain = Vdc/sqrt(3); 

mag = (V_ref_mag/gain)* Tc; 

% Sector 1 

if (V_ref_ang >= 0 && V_ref_ang < pi/3) 

T1 = mag * sin(pi/3 - V_ref_ang); 

T2 = mag * sin(V_ref_ang); 

Sector = 1; 

else 

% Sector 2 

if (V_ref_ang >= pi/3 && V_ref_ang < 2*pi/3) 

adv = V_ref_ang - pi/3; 

T2 = mag * sin(pi/3 - adv); 

T1 = mag * sin(adv); 

Sector = 2; 

else 

% Sector 3 

if (V_ref_ang >= 2*pi/3 && V_ref_ang < pi) 

adv = V_ref_ang - 2*pi/3; 

T1 = mag * sin(pi/3 - adv); 

T2 = mag * sin(adv); 
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Sector = 3; 

else 

% Sector 4 

if (V_ref_ang >= -pi && V_ref_ang < -2*pi/3) 

adv = V_ref_ang + pi; 

T2 = mag * sin(pi/3 - adv); 

T1 = mag * sin(adv); 

Sector = 4; 

else 

% Sector 5 

if (V_ref_ang >= -2*pi/3 && V_ref_ang < -pi/3) 

adv = V_ref_ang + 2*pi/3; 

T1 = mag * sin(pi/3 - adv); 

T2 = mag * sin(adv); 

Sector = 5; 

else 

% Sector 6 

if (V_ref_ang >= -pi/3 && V_ref_ang < 0) 

adv = V_ref_ang + pi/3; 

T2 = mag * sin(pi/3 - adv); 

T1 = mag * sin(adv); 

Sector = 6; 

else 

T1 = 0; 

T2 = 0; 

end 

end 

end 

end 

end 

end 

% Calculation of q-axis voltage components of six active state vectors, theta is rotor 
angle 

% V1 

V1_alpha = 2*Vdc/3; 
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V1_beta = 0; 

V1_q = -sin(theta)*V1_alpha + cos(theta)*V1_beta; 

% V2 

V2_alpha = 1*Vdc/3; 

V2_beta = 1*Vdc/sqrt(3); 

V2_q = -sin(theta)*V2_alpha + cos(theta)*V2_beta; 

% V3 

V3_alpha = -1*Vdc/3; 

V3_beta = 1*Vdc/sqrt(3); 

V3_q = -sin(theta)*V3_alpha + cos(theta)*V3_beta; 

% V4 

V4_alpha = -2*Vdc/3; 

V4_beta = 0; 

V4_q = -sin(theta)*V4_alpha + cos(theta)*V4_beta; 

% V5 

V5_alpha = -1*Vdc/3; 

V5_beta = -1*Vdc/sqrt(3); 

V5_q = -sin(theta)*V5_alpha + cos(theta)*V5_beta; 

% V6 

V6_alpha = 1*Vdc/3; 

V6_beta = -1*Vdc/sqrt(3); 

V6_q = -sin(theta)*V6_alpha + cos(theta)*V6_beta; 

% Calculation of the voltage term in (3-25) and considering two symmetrical switching 
combinations in one PWM switching period 

if (Sector == 1) 

Vq = 2*T1*V1_q + 2*T2*V2_q; 

else 

if (Sector == 2) 

Vq = 2*T1*V3_q + 2*T2*V2_q; 

else 

if (Sector == 3) 

Vq = 2*T1*V3_q + 2*T2*V4_q; 

else 

if (Sector == 4) 

Vq = 2*T1*V5_q + 2*T2*V4_q; 
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else 

if (Sector == 5) 

Vq = 2*T1*V5_q + 2*T2*V6_q; 

else 

if (Sector == 6) 

Vq = 2*T1*V1_q + 2*T2*V6_q; 

else 

Vq = 0; 

end 

end 

end 

end 

end 

end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page 156 of 166 

  

Reference 

[1] S. B. Lee, J. Yang, J. Hong, J.-Y. Yoo, B. Kim, K. Lee, J. Yun, M. Kim, K,-W. Lee, E. 

J. Wiedenbrug, and S. Nandi, “A new strategy for condition monitoring of adjustable 

speed induction machine drive systems,” IEEE Trans. Power Electron., vol. 26, no. 2, 

pp. 389-398, Feb. 2011. 

[2] R. R. Errabelli and P. Mutschler, “Fault-tolerant voltage source inverter for permanent 

magnet drives,” IEEE Trans. Power Electron., vol. 27, no. 2, pp. 500-508, Feb. 2012. 

[3] J. Hong, S. B. Lee, C. Karl, and A. Haumer, “Detection of airgap eccentricity for 

permanent magnet synchronous motors based on the d-axis inductance,” IEEE Trans. 

Power Electron., vol. 27, no. 1, pp. 2605-2612, May 2012. 

[4] S. Cheng, Y. Du, J. A. Restrepo, P. Zhang, and T. G. Habetler, “A nonintrusive thermal 

monitoring method for induction motors fed by closed-loop inverter drives,” IEEE 

Trans. Power Electron., vol. 27, no. 9, pp. 4122-4131, Sep. 2012. 

[5] Y. Da, X. Shi, and M. Krishnamurthy, “A new approach to fault diagnostics for 

permanent magnet synchronous machines using electromagnetic signature analysis,” 

IEEE Trans. Power Electron., vol. 28, no. 8, pp. 4104-4112, Aug. 2013. 

[6] X. Chen, J. Wang, and A. Griffo, “A high-fidelity and computationally efficient elctro-

thermally coupled model for interior permanent-magnet machines in electric vehicle 

traction applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 4, pp. 336-347, 

Dec. 2015. 

[7] T. Huber, W. Peters, and J. Bocker, “A low-order thermal model for monitoring critical 

temperatures in permanent magnet synchronous motors,” in Proc. 7th IET Conf. Power 

Eletron. Mach. Drives, Oct. 2014, pp. 1-6. 

[8] A. Specht and J. Bocker, “Observer for the rotor temperature of IPMSM,” in Proc. 14th 

Int. Power Electron. Motion Control Conf., Sep. 2010, pp. T4-12 – T4-15. 

[9] J. Dymond, R. Ong, and N. Stranges, “Instrumentation, testing and analysis of electric 

machine rotor steady-state heating,” Petro. Chem. Ind. Conf., IEEE Ind. Appl. Soc. 48th 

Annu., Sep. 2001, pp. 297-303. 



Page 157 of 166 

  

[10] C. Mejuto, M. Mueller, M. Shanel, A. Mebarki, M. Reekie, D. Staton, “Improved 

synchronous machine thermal modelling,” in Proc. Int. Conf. Electrical Mach., Sep. 

2008, pp. 1-6. 

[11] D. Reigosa, F. Briz, M. W. Degner, P. Garcia, and J. M. Guerrero, “Magnet temperature 

estimation in surface PM machines during six-step operation,” IEEE Trans. Ind. Appl., 

vol. 48, no. 6, pp. 2353-2361, Nov.-Dec. 2012. 

[12] C. Kral, A. Haumer, M. Haigis, H. Lang,  H. Kapeller, “Comparison of a CFD analysis 

and a thermal equivalent circuit model of a TEFC induction machine with 

measurements,” IEEE Trans. Energy Convers., vol. 24, no. 4, pp. 809-818, Dec. 2009. 

[13]  Z. Hou and G. Gu, “Wireless rotor temperature measurement system based on MSP430 

and nRF401,” in Proc. Int. Conf. Electrical Mach. Systems, Oct. 2008, pp. 858-861. 

[14] D. Fernandez, D. Reigosa, T. Tanimoto, T. Kato, and F. Briz, “Wireless permanent 

magnet temperature and field distribution measurement system for IPMSMs,” in Proc. 

IEEE Energy Convers. Cong. Expo., Sep. 2015, pp. 3996-4003. 

[15] M. Ganchev, H. Umschaden, and H. J. Kapeller, “Rotor temperature distribution 

measuring system,” in Proc. 37th Annu. Conf. IEEE Ind. Electron. Soc., Nov. 2011, pp. 

2006-2011. 

[16] F. Briz, M. W. Degner, J. M. Guerrero, and A. B. Diez, “Temperature estimation in 

inverter-fed machines using high-frequency carrier signal injection,” IEEE Trans. Ind. 

Appl., vol. 44, no. 2, pp. 799-808, May-Jun. 2008. 

[17] D. Reigosa, P. Garcia, F. Briz, D. Raca, and R. D. Lorenz, “Modelling and adaptive 

decoupling of transient resistance and temperature effects in carrier-based sensorless 

control of PM synchronous machines,” in IEEE Ind. Appl. Soc. Annu. Meet., Oct. 2008, 

pp. 1-8. 

[18] D. Reigosa, F. Briz, P. Garcia, J. M. Guerrero, and M. W. Degner, “Magnet temperature 

estimation in surface PM machines using high-frequency signal injection,” IEEE Trans. 

Ind. Appl., vol. 46, no. 4, pp. 1468-1475, Jul.-Aug. 2010. 

[19] D. Reigosa, D. Fernandez, H. Yoshida, T. Kato, and F. Briz, “Permanent magnet 

temperature estimation in PMSMs using pulsating high frequency current injection,” 

IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3159-3168, Jul.-Aug. 2015. 



Page 158 of 166 

  

[20] D. Reigosa, D. Fernandez, T. Tanimoto, T. Kato, and F. Briz, “Permanent magnet 

temperature distribution estimation in PMSMs using BEMF harmonics,” in Proc. IEEE 

Energy Convers. Cong. Expo., Sep. 2015, pp. 768-775. 

[21] D. Reigosa, D. Fernandez, T. Tanimoto, T. kato, and F. Briz, “Sensitivity analysis of 

high frequency signal injection based temperature estimation methods to machine 

assembling tolerances,” in Proc. IEEE Energy Convers. Cong. Expo., Sep. 2015, pp. 

6122-6129. 

[22] M. Ganchev, C. Kral, H. Oberguggenberger, and T. Wolbank, “Sensorless rotor 

temperature estimation of permanent magnet synchronous motor,” in Proc. 37th Annu. 

Conf. IEEE Ind. Electron. Soc., Nov. 2011, pp. 2018-2023. 

[23] M. Ganchev, C. Karl, and T. Wolbank, “Identification of sensorless rotor temperature 

estimation technique for permanent magnet synchronous motor,” in Proc. Int. Symp. 

Power Electron. Electrical Drives Autom. Motion, Jun. 2012, pp. 38-43. 

[24] M. Ganchev, C. Karl, and T. Wolbank, “Hardware and software implementation of 

sensorless rotor temperature estimation technique for permanent magnet synchronous 

motor,” in Proc. IEEE Int. Conf. ESARS, Oct. 2012, pp. 1-6. 

[25] M. Ganchev, C. Karl, and T. Wolbank, “Compensation of speed dependence in 

sensorless rotor temperature estimation for permanent magnet synchronous motor,” 

IEEE Trans. Ind. Appl., vol. 49, no. 6, pp. 2487-2495, Nov.-Dec. 2013. 

[26] K. Liu, Z. Zhu, and D. Stone, “Parameter estimation for condition monitoring of PMSM 

stator winding and rotor permanent magnets,” IEEE Trans. Ind. Electron., vol. 60, no. 

12, pp. 5902-5913, Dec. 2013. 

[27] K. Liu, Q. Zhang, J. Chen, Z. Zhu, and J. Zhang, “Online multiparameter estimation of 

nonsalient-pole PM synchronous machines with temperature variation tracking,” IEEE 

Trans. Ind. Electron., vol. 58, no. 5, pp. 1776-1788, May 2011. 

[28] G. Xie, K. Lu, S. K. Dwivedi, R. J. Riber, and W. Wu, “Permanent magnet flux online 

estimation based on zero-voltage vector injection method,” IEEE Trans. Power 

Electron., vol. 30, no. 12, pp. 6506-6509, Dec. 2015. 

[29] A. Specht, O. Wallscheid, and J. Bocker, “Determination of rotor temperature for an 

interior permanent magnet synchronous machine using a precise flux observer,” in proc. 

Int. Power Electron. Conf., May 2014, pp. 1501-1507. 



Page 159 of 166 

  

[30] O. Wallscheid, A. Specht, and J. Bocker, “Observing the permanent magnet temperature 

of synchronous motors based on electrical fundamental wave model quantities,” IEEE 

Trans. Ind. Electron., vol. 64, no. 5, pp. 3921-3929, May 2017. 

[31] O. Wallscheid and J. Bocker, “Fusion of direct and indirect temperature estimation 

techniques for permanent magnet synchronous motors,” in Proc. IEEE Int. Electric 

Mach. Drives Conf., Aug. 2017, pp. 1-8. 

[32] Z. Zhu, X. Zhu, P. Sun, and D. Howe, “Estimation of winding resistance and PM flux-

linkage in brushless AC machines by reduced-order extended Kalman Filter,” in Proc. 

IEEE Int. Conf. Netw. Sens. Control, Apr. 2007, pp. 740-745. 

[33] A. Piippo, M. Hinkkanen, and J. Luomi, “Adaptation of motor parameters in sensorless 

PMSM drives,” in Proc. 7th Int. Conf. Power Electron. Drive Syst., Nov. 2007, pp. 175-

182. 

[34] X. Xiao, C. Chen, and M. Zhang, “Dynamic permanent magnet flux estimation of 

permanent magnet synchronous machines,” IEEE Trans. Appl. Supercond., vol. 20, no. 

3, pp. 1085-1088, Jun. 2010. 

[35] S. J. Underwood and I. Husain, “Online parameter estimation and adaptive control of 

permanent magnet synchronous machines,” IEEE Trans. Ind. Electron., vol. 57, no. 7, 

pp. 2435-2443, Jul. 2010. 

[36] K. Liu, Z. Zhu, Q. Zhang, and J. Zhang, “Influence of nonideal voltage measurement on 

parameter estimation in permanent magnet synchronous machines,” IEEE Trans. Ind. 

Electron., vol. 59, no. 6, pp. 2438-2447, Jun. 2012. 

[37] K. Liu and Z. Zhu, “Online estimation of the rotor flux linkage and voltage-source 

inverter nonlinearity in permanent magnet synchronous machine drives,” IEEE Trans. 

Power Electron., vol. 29, no. 1, pp. 418-427, Jan. 2014. 

[38] K. Liu and Z. Zhu, “Mechanical parameter estimation of permanent magnet synchronous 

machines with aiding from estimation of rotor PM flux linkage,” IEEE Trans. Ind. Appl., 

vol. 51, no. 4, pp. 3115-3125, Jul.-Aug. 2015. 

[39] P. H. Mellor, D. Roberts, and T. R. Turner, “Lumped parameter thermal model for 

electrical machines of TEFC design,” in Proc. IEE Electric Power Appl., vol. 138, no. 

5, Sep. 1991, pp. 205-218. 



Page 160 of 166 

  

[40] G. Kylander, “Thermal modelling of small cage induction motors,” Ph.D. dissertation, 

School Electrical Comput. Eng., Chalmers Univ. Technol., Goteborg, Sweden, Tech. 

Rep. 265, Feb. 1995. 

[41] A. Boglietti, A. Cavagnino, M. Lazzari, and M. Pastorelli, “A simplified thermal model 

for variable-speed self-cooled industrial induction motor,” IEEE Trans. Ind. Appl., vol. 

39, no. 4, pp. 945-952, Jul.-Aug. 2003. 

[42] A. M. El-Refaie, N.C. Harris, T. M. Jahns, and K. M. Rahman, “Thermal analysis of 

multibarrier interior PM synchronous machine using lumped parameter model,” IEEE 

Trans. Energy Convers., vol. 19, no. 2, pp. 303-309, Jun. 2004. 

[43] E. Andersson, Real Time Thermal Model for Servomotor Applications, ABB AB 

Corporate Research, Vasteras, Sweden, Feb. 2006. 

[44] J. Nerg, M. Rilla, and J. Pyrhonen, “Thermal analysis of radial-flux electrical machines 

with a high power density,” IEEE Trans. Ind. Electron., vol. 55, no. 10, pp. 3543-3554, 

Oct. 2008. 

[45] G. D. Demetriades, H. Z. de la Parra, E. Andersson, and H. Olsson, “A real-time thermal 

model of a permanent-magnet synchronous motor,” IEEE Trans. Power Electron., vol. 

25, no. 2, pp. 463-474, Feb. 2010. 

[46] J. Fan, C. Zhang, Z. Wang, Y. Dong, C. E. Nino, A. R. Tariq, and E. G. Strangas, 

“Thermal analysis of permanent magnet motor for the electric vehicle application 

considering driving duty cycle,” IEEE Trans. Magn., vol. 46, no. 6, pp. 2493-2496, Jun. 

2010. 

[47] T. Bauml, C. Jungreuthmayer, and C. Karl, “An innovative parametrization method for 

a thermal equivalent circuit model of an interior permanent magnet synchronous 

machine,” in Proc. 37th Annu. Conf. IEEE Ind. Electron. Soc., Nov. 2011, pp. 1746-

1781. 

[48] F. Qi, M. Schenk, and R. D. Doncker, “Discussing details of lumped parameter thermal 

modelling in electrical machines,” in Proc. 7th Int. Conf. Power Electron. Mach. Drives, 

Apr. 2014, pp. 1-6. 

[49] O. Wallscheid and J. Bocker, “Design and identification of a lumped parameter thermal 

network for permanent magnet synchronous motors based on heat transfer theory and 



Page 161 of 166 

  

particle swarm optimization,” in Proc. 17th Eur. Conf. Power Electron. Appl., Sep. 2015, 

pp. 1-10. 

[50] A. Boglietti, A. Cavagnino, and D. Staton, “Determination of critical parameters in 

electrical machine thermal models,” IEEE Trans. Ind. Appl., vol. 44, no. 4, pp. 1150-

1159, Jul. 2008. 

[51] D. Staton and A. Cavagnino, “Convection heat transfer and flow calculations suitable 

for electric machines thermal models,” IEEE Trans. Ind. Electron., vol. 55, no. 10, pp. 

3509-3516, Oct. 2008. 

[52] D. A. Howey, A. S. Holmes, and K. R. Pullen, “Measurement of stator heat transfer in 

air-cooled axial flux permanent magnet machines,” in Proc. 35th Annu. Conf. IEEE Ind. 

Electron., Nov. 2009, pp. 1197-1202. 

[53] D. A. Howey, A. S. Holmes, and K. R. Pullen, “Measurement and CFD prediction of 

heat transfer in air-cooled disc-type electrical machines,” IEEE Trans. Ind. Appl., vol. 

47, no. 4, pp. 1716-1723, Jul.-Aug. 2011. 

[54] X. Chen, J. Wang, B. Sen, P. Lazari, and T. Sun, “A high-fidelity, computationally 

efficient model for interior permanent magnet machines considering the magnetic 

saturation, spatial harmonics and iron loss effect,” IEEE Trans. Ind. Electron., vol. 62, 

no. 7, pp. 4044-4055, Jul. 2015. 

[55] C. Karl, A. Haumer, and S. B. Lee, “Robust thermal model for the estimation of rotor 

cage and stator winding temperatures of induction machines,” in Proc. 20th Int. Conf. 

Electrical Mach., Sep. 2012, pp. 1810-1816. 

[56]  C. Karl, A. Haumer, and S. B. Lee, “A practical thermal model for the estimation of 

permanent magnet and stator winding temperatures,” IEEE Trans. Power Electron., vol. 

29, no. 1, pp. 455-464, Jan. 2014. 

[57] T. Huber, W. Peters, and J. Bocker, “Monitoring critical temperatures in permanent 

magnet synchronous motors using low-order thermal models,” in Proc. Int. Power 

Electron. Conf., May 2014, pp. 1508-1515. 

[58] A. Boglietti, E. Carpaneto, M. Cossale, A. L. Borlera, D. Staton, and M. Popescu, 

“Electrical machine first order short-time thermal transients model: measurements and 

parameters evaluation,” in Proc. 40th Annu. Conf. IEEE Ind. Electron. Soc., Oct.-Nov. 

2014, pp. 555-561. 



Page 162 of 166 

  

[59] O. Wallscheid and J. Bocker, “Design and empirical identification of a lumped 

parameter thermal network for permanent magnet synchronous motors with physically 

motivated constraints,” in Proc. IEEE Int. Electric Mach. Drives Conf., May 2015, pp. 

1380-1386. 

[60] O. Wallscheid and J. Bocker, “Global identification of a low-order lumped-parameter 

thermal network for permanent magnet synchronous motors,” IEEE Trans. Energy 

Convers., vol. 31, no. 1, pp. 354-365, Mar. 2016. 

[61] S. W. Allison, M. R. Cates, B. W. Noel, and G. T. Gillies, “Monitoring permanent-

magnet motor heating with phosphor thermometry,” IEEE Trans. Instrum. Measurem., 

vol. 37, no. 4, pp. 637-641, Dec. 1988. 

[62] P. Zheng, S. Pan, and Y. Li, “The research on the network optical fibre sensor of the 

surface temperature measurement for a large rotor based on IEEE1451.2,” in Proc. Int. 

Conf. Electrical Mach. Syst., Sep. 2005, pp. 2434-2436. 

[63] D. J. Tilak Siyambalapitiya, P. G. McLaren, and P. P. Acarnley, “A rotor condition 

monitor for squirrel-cage induction machines,” IEEE Trans. Ind. Appl., vol. IA-23, no. 

2, pp. 334-340, Mar. 1987. 

[64] H. Yahoui, and G. Grellet, “Measurement of physical signals in rotating part of electrical 

machine by means of optical fibre transmission,” in Proc. IEEE Instrum. Measurem. 

Technol. Conf., Jun. 1996, pp. 591-596. 

[65] Z. Lazarevic, R. Radosavljevic, and P. Osmokrovic, “A new thermal observer for 

squirrel-cage induction motor,” in Proc. IEEE Instrum. Measurem. Technol. Conf., Jun. 

1996, pp. 610-613. 

[66] X. Xue, V. Sundararajan, and W. P. Brithinee, “The application of wireless sensor 

networks for condition monitoring in three-phase induction motors,” in Proc. Electrical 

Insul. Conf. Electrical Manuf. Expo, Oct. 2007, pp. 445-448. 

[67] H. Hafezi, and A. Jalilian, “Design and construction of induction motor thermal 

monitoring system,” in Proc. 41st Int. Univ. Power Eng. Conf., Sep. 2006, pp. 674-678. 

[68] J. Guo, H. Guo, and Z. Hou, “Rotor temperature monitoring technology of direct-drive 

permanent magnet wind turbine,” in Proc. Int. Conf. Electrical Mach. Syst., Nov. 2009, 

pp. 1-4. 



Page 163 of 166 

  

[69] S. B. Lee and T. G. Habetler, “An online stator winding resistance estimation technique 

for temperature monitoring of line-connected induction machines,” IEEE Trans. Ind. 

Appl., vol. 39, no. 3, pp. 685-694, May-Jun. 2003. 

[70] P. Zhang, B. Lu, and T. G. Habetler, “A remote and sensorless stator winding resistance 

estimation method for thermal protection of soft-starter-connected induction machines,” 

IEEE Trans. Ind. Electron., vol. 55, no. 10, pp. 3611-3618, Oct. 2008. 

[71] S. D. Wilson, P. Stewart, and B. P. Taylor, “Methods of resistance estimation in 

permanent magnet synchronous motors for real-time thermal management,” IEEE 

Trans. Energy Convers., vol. 25, no. 3, pp. 698-707, Sep. 2010. 

[72] A. Piippo, M. Hinkkanen, and J. Luomi, “Adaption of motor parameters in sensorless 

PMSM drives,” IEEE Trans. Ind. Appl., vol. 45, no. 1, pp. 203-212, Jan.-Feb. 2009. 

[73] R. Krishnan and P. Vijayraghavan, “Fast estimation and compensation of rotor flux 

linkage in permanent magnet synchronous machines,” in Proc. IEEE Int. Symp. Ind. 

Electron., Jul. 1999, pp. 661-666. 

[74] K. W. Lee, D. H. Jung, and I. J. Ha, “An online identification method for both stator 

resistance and back-EMF coefficient of PMSMs without rotational transducers,” IEEE 

Trans. Ind. Electron., vol. 51, no. 2, pp. 507-510, Apr. 2004. 

[75] S. Morimoto, M. Sanada, and Y. Takeda, “Mechanical sensorless drives of IPMSM with 

online parameter identification,” IEEE Trans. Ind. Appl., vol. 42, no. 5, pp. 1241-1248, 

Sep.-Oct. 2006. 

[76] R. Ramakrishnan, R. Islam, M. Islam, and T. Sebastian, “Real time estimation of 

parameters for controlling and monitoring permanent magnet synchronous motors,” in 

Proc. IEEE Int. Electric Mach. Drives Conf., May 2009, pp. 1194-1199. 

[77] U. Schaible and B. Szabados, “Dynamic motor parameter identification for high speed 

flux weakening operation of brushless permanent magnet synchronous machines,” IEEE 

Trans. Energy Convers., vol. 14, no. 3. pp. 486-492, Sep. 1999. 

[78] T. Senjyu, Y. Kuwae, N. Urasaki, and K. Uezato, “Accurate parameter measurement for 

high speed permanent magnet,” in Proc. 32nd Annu. Power Electron. Spec. Conf., Jun. 

2001, pp. 772-777. 



Page 164 of 166 

  

[79] M. A. Jabbar, J. Dong, and Z. Liu, “Determination of machine parameters for internal 

permanent magnet synchronous motors,” in Proc. 2nd Int. Conf. Power Electron. Mach. 

Drives, Mar.-Apr. 2004, pp. 805-810. 

[80] H. Polinder and M. J. Hoeijmakers, “Eddy-current losses in permanent magnet of a PM 

machine,” in Proc. 8th Int. Conf. Electrical Mach. Drives, Sep. 1997, pp. 138-142. 

[81] B. Widrow and M. A. Lehr, “30 years of adaptive neural networks: Perceptron, 

madaline, and backpropagation,” Proc. IEEE, vol. 78, no. 9, pp. 1415-1442, Sep. 1990. 

[82] F. Deng, “An improved iron loss estimation for permanent magnet brushless machines,” 

IEEE Trans. Energy Convers., vol. 14, no. 4, pp. 1391-1395, Dec. 1999. 

[83] G. R. Slemon and X. Liu, “Core losses in permanent magnet motors,” IEEE Trans. 

Magn., vol. 26, no. 5, pp. 1653-1655, Sep. 1990. 

[84] K. J. Tseng and S. B. Wee, “Analysis of flux distribution and core losses in interior 

permanent magnet motor,” IEEE Trans. Energy Convers., vol. 14, no. 4, pp. 969-975, 

Dec. 1999. 

[85] C. Mi, G. R. Slemon, and R. Bonert, “Modelling of iron losses of permanent-magnet 

synchronous motors,” IEEE Trans. Ind. Appl., vol. 39, no. 3, pp. 734-742, May-Jun. 

2003. 

[86] R. Rabinovici and T. J. E. Miller, “Eddy-current losses of surface-mounted permanent 

magnet motors,” Proc. Electric Power Appl., vol. 144, no. 1, pp. 61-64, Jan. 1997. 

[87] R. Rabinovici, “Eddy current losses of permanent magnet motors,” Proc. Electric Power 

Appl., vol. 141, no. 1, pp. 7-11, Jan. 1994. 

[88] T. J. E. Miller and R. Rabinovici, “Back-EMF waveforms and core losses in brushless 

DC motors,” Proc. Electric Power Appl., vol. 141, no. 3, pp. 144-154, May 1994. 

[89] G. Bertotti, “General properties of power losses in soft ferromagnetic materials,” IEEE 

Trans. Magn., vol. 24, no. 1, pp. 621-630, Jan. 1988. 

[90] D. M. Ionel, M. Popescu, S. J. Dellinger, T. J. E. Miller, R. J. Heideman, and M. I. 

McGilp, “On the variation with flux and frequency of the core loss coefficients in 

electrical machines,” IEEE Trans. Ind. Appl., vol. 42, no. 3, pp. 658-667, May-Jun. 2006. 



Page 165 of 166 

  

[91] P. H. Mellor, R. Wrobel, and D. Holliday, “A computationally efficient iron loss model 

for brushless AC machines that caters for rated flux and field weakened operation,” in 

Proc. IEEE Int. Electric Mach. Drives Conf., May 2009, pp. 490-494. 

[92] C. Schulte and J. Bocker, “Co-simulation of an electric traction drive,” in Proc. Int. 

Electric Mach. Drives Conf., May 2013, pp. 974-978. 

[93] D. A. Howey, P. R. N. Childs, and A. S. Holmes, “Air-gap convection in rotating 

electrical machines,” IEEE Trans. Ind. Electron., vol. 59, no. 3, pp. 1367-1375, Mar. 

2012. 

[94] F. Haugen, Kompendium for Kyb. 2, ved Høgskolen i Oslo, Telemark Univ. Coll., Dept. 

Electrical Eng., Inform. Technol. Cybernetics, Porsgrunn, Norway, 2016. 

[95] M. –D. Calin and E. Helerea, “Temperature influence on magnetic characteristics of 

NdFeB permanent magnets,” in Proc. 7th Int. Symp. Adv. Topics Electrical Eng., May 

2011, pp. 1-6. 

[96] C. Dufour, J. Belanger, S. Abourida, and V. Lapointe, “FPGA-based real-time 

simulation of finite-element analysis permanent magnet synchronous machine drives,” 

in Proc. IEEE Power Electron. Spec. Conf., Jun. 2007, pp. 909-915. 

[97] C. Dufour, S. Cense, T. Yamada, R. Imamura, and J. Belanger, “FPGA permanent 

magnet synchronous motor floating-point models with variable-DQ and spatial 

harmonic Finite-Element Analysis solvers,” in Proc. 15th Int. Power Electron. Motion 

Control Conf., Sep. 2012, pp. LS6b.2-2 – LS6b.2-10. 

[98] A. Griffo, D. Salt, R. Wrobel, and D. Drury, “Computationally efficient modelling of 

permanent magnet synchronous motor drives for real-time Hardware-in-the-Loop 

simulation,” in Proc. 39th Annu. Conf. IEEE Ind. Electron. Soc., Nov. 2013, pp. 5368-

5373. 

[99] A. Hasanzadeh, C. S. Edrington, N. Stroupe, and T. Bevis, “Real-time emulation of a 

high-speed microturbine permanent-magnet synchronous generator using multiplatform 

hardware-in-the-loop realization,” IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 3109-

3118, Jun. 2014. 

[100] A. Schmitt, J. Richter, U. Jurkewitz, and M. Braun, “FPGA-based real-time simulation 

of nonlinear permanent magnet synchronous machines for power hardware-in-the-loop 



Page 166 of 166 

  

emulation systems,” in Proc. 40th Annu. Conf. IEEE Ind. Electron. Soc., Oct.-Nov. 2014, 

pp. 3763-3769. 

[101] N. R. Tavana and V. Dinavahi, “A general framework for FPGA-based real-time 

emulation of electrical machines for HIL applications,” IEEE Trans. Ind. Electron., vol. 

62, no. 4, pp. 2041-2053, Apr. 2015. 

[102] N. R. Tavana and V. Dinavahi, “Real-time FPGA-based analytical space harmonic 

model of permanent magnet machines for hardware-in-the-loop simulation,” IEEE 

Trans. Magn., vol. 51, no. 8, pp. 1-9, Aug. 2015. 

[103] F. Alvarez-Gonzalez and A. Griffo, “High-fidelity modelling of permanent magnet 

synchronous motors for real-time Hardware-in-the-Loop simulation,” in Proc. 8th IET 

Int. Conf. Power Electron. Mach. Drives, Apr. 2016, pp. 1-6. 

[104] F. Alvarez-Gonzalez, A. Griffo, B. Sen, and J. Wang, “Real-time hardware-in-the-loop 

simulation of permanent-magnet synchronous motor drives under stator faults,” IEEE 

Trans. Ind. Electron. vol. 64, no. 9, pp. 6960-6969, Sep. 2017. 

[105] B. K. Bose, Modern power electronics and AC drives, 1st ed., ser. 1. Upper Saddle River: 

Prentice Hall PTR, ch. 5, pp. 224-229, 2002. 

[106] N. Takahashi, M. Morishita, D. Miyagi and M. Nakano, “Examination of magnetic 

properties of magnetic materials at high temperature using a ring specimen,” IEEE 

Trans. Magn., vol. 46, no. 2, pp. 548-551, Feb. 2010. 

[107] M. Morishita, N. Takahashi, D. Miyagi and M. Nakano, “Examination of magnetic 

properties of several magnetic materials at high temperature,” Przeglad 

Elektrotechniczny (Electrical Review), vol. 87, no. 9b/2011, pp. 106-110, 2011. 

 


