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ABSTRACT

In this thesis, we are concerned with developing asset allocation strategies
that will allow investors to optimally choose their investment portfolio. In
particular, we focus on tactical asset allocation strategies. This refers to the
process whereby investors regularly revise the composition of their portfolios
in response to changes in the wider economic environment. Such strategies
have become increasingly popular in the aftermath of the 1987 stock market
crash when investors who adopted this method of asset allocation were found
to have fared much better than investors who held more conventional buy
and hold portfolios.

We apply recently developed econometric techniques to help us build these
asset allocation models. We work with Generalised Autoregressive Condi-
tional Heteroscedasticity (GARCH) models which allow us to capture the
time-varying risk inherent in financial markets. We develop a new parame-
terisation for the multivariate GARCH model which allows us to distinguish
between long-run and short-run sources of financial market risk.

We begin the analysis in chapter 4 from the perspective of a UK in-
vestor wishing to hold only domestic assets. Using the portfolio theory of
Markowitz(1952), we solve for the asset proportions in the optimal portfolio

period by period.



In the following chapter, we extend the analysis to allow for international
diversification. We address the problem from the viewpoint of both investors
in the UK and US where each investor is allowed to hold domestic assets
and the equity of the other country. We look at the importance of investor
location and the degree of home country bias.

We subsequently extend the analysis in chapter 6 to allow the UK in-
vestor to hold an even greater number of non-domestic assets and investigate
the importance of such assets in the portfolio and how they affect portfolio
performance.

In chapters 7 and 8, we allow macroeconomic factors to influence the asset
allocation decision for both the domestic portfolio and the internationally
diversified portfolio. The model developed in chapter 3 provides a neat way
of conducting this analysis as we can jointly model the financial asset returns

and macroeconomic factors.
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Chapter 1

Introduction

The main focus of this thesis is on the world of financial economics and the
building of models incorporating recently developed econometric techniques.
It is anticipated that our studies and results will appeal to both academics
and financial market participants. We address questions that interest in-
dividual investors and large pension fund managers alike and demonstrate
how developments in econometric tools can be married with advances in
computing power to provide more realistic and insightful models which can
be used to implement modern financial theory as it was originally intended.

The majority of the thesis is concerned with the problem of optimal
asset allocation and the development of textbook theories of portfolio man-
agement to incorporate realistic market features. The best known of the

traditional approaches are the mean-variance analysis of Markowitz (1952)
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and the capital asset pricing model (CAPM) of Sharpe(1964) and Lint-
ner(1965). Markowitz assumes that investors wish to minimise the riskiness
of the portfolio return subject to achieving a target rate of return while in
the CAPM the optimal portfolio trades-off expected return and variance to
maximise a - typically quadratic - welfare function in mean and variance.
In implementing these models much of the early work assumed that risk,
measured by the covariance matrix of asset excess returns, was constant or
sufficiently slowly changing that it could be estimated by the unconditional
matrix of past returns and then treated as though it would be constant
for a fixed period in the future; see for example, Grubel(1968) and Levy &
Sarnat(1970). Now it is a widely accepted fact that the conditional second
order moments violate this assumption and indeed vary from period to pe-
riod. Our main innovation is that we allow the conditional covariance matrix
to be time varying and estimate it in a comprehensive multivariate frame-
work. This is a major advancement in that it recognises the importance of
the second order moments and shows that in the presence of time-varying
risk, the optimal portfolio needs to be re-balanced from period to period.
The original economic contributions made in this work fall into two
categories. The first contribution of this thesis is in the development of
econometric techniques. Many issues in finance and macroeconomics re-

quire modelling with a time-varying variance-covariance matrix and in a
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comprehensive multivariate framework. However, until Engle(1982) and
Bollerslev(1986) introduced the family of (G)ARCH models, the economet-
ric techniques capable of dealing with this problem were not available. Even
then many interesting issues, such as asset allocation, which cry out for mul-
tivariate (G)ARCH models were still outside the realms of possibility due
to the vast computational burden required to implement them empirically.
However with increased computing power and more parsimonious parame-
terisations of the M-GARCH model, it is now possible to apply this econo-
metric technique to many issues in financial markets. Our contribution is
that we develop a new variant of a more parsimonious representation. By
writing the second order moments in error correction format, we can distin-
guish between long-run and short-run sources of volatility. This also allows
considerable flexibility in the conditional covariance matrix but remains
economical in the number of parameters it uses.

The second contribution of this work appeals to financial economics.
In chapters 4-8, we develop models that strive to optimally allocate an in-
vestor's funds among major classes of assets. The spirit of these asset alloca-
tion models is consistent with the pioneering work of Markowitz/1952.1959
who was the first to formulate and solve the mean-variance rule of portfolio
selection. Like Markowitz, we pay particular attention to minimising the

variance of the returns on our portfolio of assets subject to constraints such



that the portfolio delivers a pre-specified target rate of return. These models
are best described as tactical asset allocation models in that it is assumed
that the investor has a short investment horizon. Tactical asset allocation
strategies have been afforded an increased amount of attention in the af-
termath of the October 1987 Stock Market crash, since investors who had
adopted such strategies had smaller equity holdings in their portfolios and
were relatively unharmed by the crash. Given the amazing advancements
in computer technology during the 1990’s, it is now feasible to construct
myopic investment strategies based on risk management criteria.

In our studies we find compelling evidence for the uncorrelatedness of
asset excess returns. On the other hand, we show that the second order
moments of financial asset excess returns are much more forecastable and
persistent than the level of the price movement. Taking both these findings
into account, it makes more sense to construct portfolios based on risk
minimisation subject to the portfolio delivering a target level of return over
the risk-free rate, rather than attempting to maximise portfolio return.

The rest of the introduction comprises a brief preview of each subse-
quent chapter, outlining its main aims and original contributions. Each
chapter contains a review of the pertinent associated literature and thus,
this introduction avoids a major literature review.

Chapter 2 reviews the basic concepts of portfolio theory which are impor-
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tant for the original work undertaken later in the thesis. Section 2.1 presents
the path breaking work of Markowitz(1952) in formulating a mean-variance
rule for the selection of portfolios of assets. We deviate from Markowitz’s
original problem in two ways. Firstly we allow for unlimited short sales and
secondly, we add a time dimension to the problem. Deriving this rule al-
lows us to find a mathematical expression for the vector of asset weights in a
given portfolio and for the variance (or standard deviation) of the portfolio
returns solely in terms of asset expected returns, variances and covariances.
Armed with these expressions, we are able to generate the portfolio frontier
of risky assets. This is the locus of all points which for a given level of ex-
pected return minimises the variance of an asset or portfolio of assets. We
then show how to identify and locate the optimal portfolio of risky assets.
Section 2.2 recalls the two fund separation theorem of Tobin and shows how
invoking the theorem in this context allows us to identify the two port-
folios between which each investor, regardless of preferences, will allocate
their total investable funds. Finally, section 2.3 discusses the conditions
under which this mean-variance framework is consistent with expected util-
ity maximisation. There are two occasions when this desirable result will
hold and we look at the merits of each. We conclude the section by citing
some empirical findings which support the stance that is adopted later in

the original work.

22



Chapter 3 looks at the econometric techniques employed in this thesis.
We begin by looking at univariate ARCH and GARCH models and high-
lighting the major contribution that they have made to empirical work in
financial economics. In the second sub-section, we look at their multivariate
counterparts and stress the problems in implementing these models. The
main problem arises from the vast number of potential parameters required
for simultaneous estimation. We present the most general formulation of
the model and then review some of the other more parsimonious represen-
tations that have been put forward in the literature to make the estimation
of these models more feasible. Finally in section 3.3, we introduce a new
parameterisation of the Multivariate GARCH model which is used exten-
sively in the remainder of the thesis. The main innovation is that we write
the conditional second order moments in error correction format, thereby
enabling us to distinguish between long-run and short-run sources of asset
volatility.

Chapter 4 is the first original chapter of the thesis. Using the concepts of
portfolio theory outlined in chapter 2 and the M-GARCH model of chapter
3, we build a tactical asset allocation model from the perspective of a UK
tnvestor who is interested in holding a portfolio of domestic assets. We
estimate our model and generate the portfolio frontiers facing this investor in

each period of the analysis. Period by period, we locate the optimal portfolio
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of risky assets and identify the proportions in which each asset should be
held in order for the investor to hold this portfolio. By identifying the
composition of the risky portfolio and assuming that a riskless asset exists,
we have identified two portfolios. By invoking the two fund separation
theorem, we believe that each investor irrespective of preferences will hold
a combination of these. This allocation of funds among the risky assets is
calculated under two different investment strategies. Firstly, the allocation
is unrestricted so that the investor is free to hold unlimited short positions in
any of the assets. This often leads to an excessively volatile allocation. Qur
second strategy overcomes this problem by restricting each asset holding to
be non-negative. This is consistent with the real world as UK mutual fund
managers have this constraint imposed upon them by legislation.

Chapter 5 extends the analysis of the previous study to include the pos-
sibility of investing in a foreign asset. This allows us to address issues of
benefits accruing from international diversification and highlight the home
asset bias puzzle. This study begins with a review of the home bias litera-
ture which stresses the stylised fact that domestic investors tend to hold the
majority of their portfolios in domestic assets despite many studies show-
ing that there are unexploited gains to be reaped from diversifying across
international markets. This study again utilises the M-GARCH model of

chapter 3 and is conducted from the perspective of both UK and US in-
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vestors. We find that US investors enjoy a risk-return advantage over their
UK counterparts in that the same expected return is associated with lower
risk in the US than in the UK given the investment opportunity set. There
is also significant evidence of contagion effects between markets, both do-
mestically and internationally. Having identified the optimal portfolio of
risky assets for each period of the analysis, we conclude that the home bias
problem exists for both investors but is more acute in the US.

In chapter 6, we present a global asset allocation strategy from the per-
spective of a UK investor. One of the potential shortcomings of using M-
GARCH models to build tactical asset allocation models is that we have
to limit the number of assets in the investment opportunity set due to the
sheer dimensionality of the model. We overcome this problem by adopting
a multi-stage allocation process. At the initial stage, we form an optimal
global bond portfolio and an optimal portfolio of European equity for each
period of the analysis. Using the optimal proportions suggested by our
model, each of these portfolios enter the final allocation decision as a single
asset. This allows us to extend the investment opportunity set to ten as-
sets. We find that extending the number of assets offers superior risk-return
combinations to the UK investor as opposed to the study of the previous
chapter with the optimal portfolios having much better performance levels.

Furthermore, there is strong evidence of volatility spillovers between mar-
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kets, though these are most pronounced between international stockmar-
kets. We find that stockmarkets and government bond markets are largely
segmented from each other in that there is little evidence that volatility is
transmitted from equity to bond markets. This is a reason for holding both
asset classes in the portfolio. The holding of assets in the optimal portfolios
suggest that there are large benefits available to the UK investor who is
willing to hold non-UK assets. On average, the optimal portfolio contains
eight risky assets, six of which are foreign assets. Consequently, the home
bias problem is larger that previously thought.

We demonstrate another advantage of our proposed M-GARCH model
in chapter 7 by allowing macroeconomic variables to exert an influence on
the asset allocation strategy through their covariances with the financial
assets under consideration. This is achieved by jointly modelling the asset
returns and the macroeconomic factors. We demonstrate that the way in
which we define the parameter matrices in the second order moments of
the model has an important bearing on the time lag with which the macro
factors influence the allocation process. We .illustrate this joint modelling
technique from the perspective of a UK investor who again is only interested
in holding domestic assets (as in chapter 4). The chapter begins with a
review of the literature pertaining to the ability (and use) of macroeconomic

factors to predict future financial asset price movements. At the end of this
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section, we pay particular attention to the puzzling empirical findings on
the relationship between stock returns and inflation. This is important as
our illustration uses domestic inflation as the macro variable. Our results
suggest that taking the inflation effect into account yields more attractive
risk-return combinations, especially for an investor who may be interested
in holding the minimum variance portfolio. Furthermore, the proportions
in which individual assets are held in the optimal portfolio change following
the inclusion of macroeconomic factors in the analysis.

Chapter 8 extends the analysis of chapter 5 by allowing macroeconomic
factors to influence the portfolio selection decision of the UK investor who
has the opportunity to invest in US equity as well as home assets. We use a
standard mean-variance framework to provide a rationale for the macroeco-
nomic variables included in the analysis. These variables are domestic and
foreign inflation and the foreign exchange rate. In contrast to the portfolio
of domestic assets, we find that inflation variables play no role in determin-
ing the variances and covariances of the financial asset excess returns in this
context. This is interpreted as evidence that holding foreign assets in the
portfolio provides the UK investor with an adequate hedge against inflation.
Consequently, when building an internationally diversified tactical asset al-
location strategy, we should not be concerned about inflation effects. It is

sufficient to model only the financial asset excess returns as in chapter 5.
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Finally, chapter 9 concludes. We briefly attempt to summarise our main
findings and set out future avenues of research that have been signposted

by the material produced for this thesis.
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Chapter 2

Portfolio Theory

This section aims to give a brief outline of modern portfolio theory. It is
not intended to be a comprehensive treatment of the subject but rather a
presentation of the concepts and equations that are important for the work
which follows.!

Markowitz (1952) is generally credited with being the first proponent of
modern portfolio theory. In formulating and solving the risk versus return
rule, Markowitz had first to disprove the theories that were in existence
and in common use at the time. The widely accepted principle of the day
was that an investor should choose a portfolio of assets by maximising the
discounted expected returns. This is not to suggest that these economists

totally ignored the concept of risk. Typically, risk was accounted for, e.g.

For a detailed treatment of Portfolio Theory, the reader is referred to Huang and
Litzenberger (1988) or Ingersoll (1987).
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Keynes(1936) or Hicks(1939), by including a risk premium in the expected
future asset returns. Markowitz argues that if this were the correct way
to allocate assets, then the optimal portfolio should only contain one asset,
i.e. the asset with the highest discounted flow of expected future returns.
Of course, this is inconsistent with the observed phenomenon of diversified
portfolios. Therefore, such a simple rule has to be rejected.

Markowitz(1952) develops a rule that is entirely consistent with diver-
sification. This rule is known as the "mean-variance” rule. It shows that
in trying to reduce the variance of a portfolio, one must not alone diver-
sify but importantly diversify over securites with low return covariance.
Later in 1959, Markowitz shows that this type of portfolio selection is firmly
grounded as rational choice under uncertainty.

The standard textbook treatment of portfolio selection theory is pre-
sented in a static framework. However, for reasons that will become obvious

in the remainder of this thesis, we add a time dimension to the problem and

its solution.

2.1 Mean-Variance Portfolio Analysis

Primarily as a way of introducing notation, we state how we obtain the
asset allocation. Since forecasts of equity and bond returns are highly in-

accurate due to their near serial independence compared with forecasts of
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their covariance structure which are highly serially correlated, we focus on
choosing a minimum variance portfolio of excess returns over the risk-free
rate. In effect this givegus the tangency portfolio of risky assets.

Thus the optimal portfolio is obtained using mean-variance analysis as
follows?. We assume that investors are forming their portfolios for one
period only, period ¢, using information up to and including period t — 1.
Let w; be an nxl vector whose components wy;.....w,; denote the proportion
of an individual’s wealth allocated to the ith asset in the portfolio to be
held in period ¢, where ¢ = 1,2,....n. Since it is assumed that all funds
are invested, the sum of the weights must equal one, " w;, = 1. i is an nzl
vector of ones and superscript / denotes the transpose of a vector or a matrix.
r; denotes an nxl vector of returns ry,....r,; Where it is assumed that not
all elements of r, are equal. It is assumed that the conditional mean of r; is
H, 1 and the conditional variance is €2;_; is the nzn covariance matrix with
entries 0, {i,7 = 1,2,...n}. It is assumed that €2, is non-singular, i.e. no
individual asset return is perfectly correlated with the return on a portfolio
made up of the remaining assets and that none of the assets or portfolios of
assets are riskless. Of course, we know that the covariance matrix must be

positive definite since the variances of risky portfolios are strictly positive.

In formulating mean-variance portfolios, the key assumption is that an

>This formulation follows Constantinides and Malliaris (1995) which in turn relies
heavily on Roll (1977). It is does not claim to be original.
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investor’s preferences can be represented by a utility function defined over
the mean and variance of the return to a portfolio, V/(R,, 0;2,). Using stan-
dard notation, we know that the expected return and variance of a portfolio

are given by:

Ry = Wity = ) wars (2.1)

Uzzn = w,Qw; = zzwitwjtaij,t- (2.2)

The standard assumption is that investors prefer higher returns and
smaller variances. Therefore, we are interested in finding the asset allocation
that produces the portfolio with the minimum level of risk for a given level
of expected return. This set of portfolios is termed mean-variance efficient.
Following in the spirit of Markowitz’(1952) formulation, we first find the
minimum variance portfolios in the absence of a riskless asset. This problem

can be stated as:

Minimise WJtQtWt

subject to:

(2.3)

Unlike Markowitz(1952) we have not imposed any constraint on the sign
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of the asset weights so short sales are allowed in the analysis. It is also
worth noting that the investor’s preferences do not enter into the problem
explicitly and unlike Tobin(1959) there is no cash (or other riskless asset)
considered here. To mathematically derive the solution to this portfolio

selection problem, we begin by forming the Lagrangian function

Lt = w;Qtwt—)\lt(wért - Rpt) - /\Qt(W;i - 1) (24)

The first order conditions are

OL,

_— = 2Qtwt—A1trt — )\Qti = 0, (25)
6'(1)3
5L ,
5)\11 - }?’Pt —w,ry =0, (26)
0L, .
=1- =0. 2.7
5o 1—wi ( )

From equation (2.5) we get

o x| L e

N~

1 .
Wy = Eﬂt I(Altrc + /\ztl) =

From equations (2.6) and (2.7),

33



. l _ &t
[rt l]wt— 1 29)

Premultiply both sides of equation (2.8) to get,

! ! A1t t
lrti]wt=%lrti]ﬂt'1lrti] _ Ry . (2.10)

For convenience denote

R=[niyﬂﬁ[ni] (2.11)

the 222 symmetric matrix with entries

a; b rQ; r, rQ,
| R (2.12)
bt Ct rItQt li ith—li

The next step is to establish that I’ is positive definite. For any y1, ¥

such that at least one of the elements %;, ¥ is non-zero, it is clear that

n .
r, i = [y11; + Y2i] (2.13)
Yo

is a non-zero n-vector because, by assumption, the elements of r; are not
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all equal.

Then I is positive definite because

( " hn
TEALY |l Y r, i | 2% |, i

Y2 Y2

= [y1re + v2i] 2, ! [y1ry + 12i])0

(2.14)
by the positive definiteness of €2, !.
Substituting T’ into equation (2.10) yields
1 A1t Ry

Aot 1
This allows us to solve for the multipliers since I' is non-singular and its

inverse exists. Therefore

3 =T, : (2.16)

Combining these results, we are now in a position to solve for the n-
vector of portfolio weights that minimise the variance of a portfolio with a

given mean return.
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(2.17)
Ryt

We can now compute the variance of any minimum variance portfolio

with a given mean return, R;,.

!
ot = w2 W,

= Rpt 1 Ftl Ir; i]ntlﬂlntl[rt i]rtl

- 1 Rrpt
= Rpt 1 Pt !

Cc -b Rpt

=| Ry 1|2
= Alt(at — 2bRpt + ¢, RY,),
(2.18)
where A = a,c; —b2. It should be noted that A, is strictly positive by the
Cauchy-Schwarz inequality since we have assumed that €2; is non-singular
and all assets do not have the same mean.

The relationship between the variance of the minimum variance portfolio
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and the expected mean return given by equation (2.18) is expressed as a
parabola and is called the minimum variance portfolio frontier. In mean-
standard deviation space, the relation is expressed as a hyperbola.

Having drawn the portfolio frontier in mean-standard deviation space,
we can find the optimal risky portfolio as the point of tangency between the
frontier and a line drawn from the risk free rate, called the Capital Market
Line, see figure 2-1. We can then proceed to invoke the Two Fund Separation
Theorem to infer that an investor will only invest in a combination of these

two mutual funds i.e. the optimal risky portfolio and the risk free asset.

2.2 Two Fund Separation Theorem

This section is devoted to the two-fund separation theorem. This is a very
important result for asset allocation models. While the mathematics are
relatively simple, its economic implication and applications are far reach-
ing. Its most significant contribution is that it establishes that the entire
minimum variance portfolio frontier can be generated by any two distinct
frontier portfolios.

Let P, and P, be two minimum variance portfolios with mean returns
of R, and R, respectively, such that R, # R,.

(1) Then every minimum variance portfolio, F,, is a linear combination

of P, and P;

37



Portfolio Frontier

14

I I T I I

Coplo Market Line

10

pima R ky P rtf -

Exp Ex e s Rtn

- i ! 1 | !

o 3 40 50 60

tandard Dev'at'on

Figure 2-1: Identification of the optimal portfolio of risky assets
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(2) Conversely, every portfolio which is a linear combination of P, and
P, 1s a minimum variance portfolio;

(3) In particular, if P, and P, are minimum variance efficient frontiers,
then aP,+(1—a)F, is a minimum variance efficient portfolio for0 < a < 1.3

This theorem was discovered by Tobin (1958) who demonstrated the
usefulness of the result using only two assets - cash and a risky asset - but
argued that no major alterations are necessary even if there are many risky
assets since these can be viewed as a single composite asset.

This provides a strong foundation for this work where risky assets will be
viewed as a single mutual fund and the representative investor will choose
to allocate funds between the riskless asset and the optimal portfolio of
all risky assets. This neat result shows that an investor choosing a mean-
variance efficient portfolio needs only to hold a linear combination of any
two portfolios that are themselves mean-variance efficient. In this way, the
investor has only to hold two assets to achieve the optimal combination of

risk and return and not the n original assets.

$Mathematical proofs of each of these three points are provided in Constantinides and
Malliaris (1995)
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2.3 Utility

Up to now we have said very little about the consistency of the mean-
variance analysis and expected utility maximisation. There are two condi-
tions when this desirable result will hold. Firstly, for arbitrary distributions,
we can assume quadratic utility. If an investor has a quadratic utility func-
tion defined solely over end-of-period wealth, then expected utility depends
solely on the mean and variance of return. Furthermore, it can be shown
that for risk averse utility functions and outcomes confined to the increas-
ing utility range, then only the mean-variance efficient portfolios can be
optimal.

Assuming quadratic utility has two drawbacks, namely the properties
of satiation and increasing absolute risk aversion. The satiation property
means that after a certain point, increased wealth leads to reduced utility
which is not consistent with either theory or observed behaviour. Likewise
the property of increasing absolute risk aversion is also inconsistent with
economic theory in that it implies that risky assets are inferior goods.

The alternative approach is to assume that asset returns are multivari-
ate normally distributed. Fama has cautiously accepted this as a working
hypothesis for asset returns measured at monthly horizons. When this con-
dition holds, then for any arbitrary set of preferences, the mean-variance

analysis will be consistent with expected utility maximisation. This is the

40



more common approach taken in the literature and is the approach used
in the empirical investigation which follows*. While this is a more com-
mon justification for adopting the mean-variance framework, there is little
evidence to suggest that this assumption holds true (Pulley(1981)).

The adoption of the mean-variance framework has been defended by
Levy and Markowitz(1979), Pulley(1981), Kroll, Levy and Markowitz(1984)
among others. Levy and Markowitz(1979) showed that the mean-variance
rule yielded almost identical results to those found by maximising expected
utility for various utility functions and historical distributions of returns.
Later work by Pulley(1981) and Kroll, Levy and Markowitz(1984) confirm
these findings, i.e. the optimal mean-variance portfolio was most often the
portfolio which maximised expected utility regardless of the utility function

employed. Taking these results into account, we can confidently proceed to

utilise the mean-variance analysis to undertake our asset allocation studies.

“Ingersoll (1987) provides a concise, yet useful treatment of this topic.
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Chapter 3

ARCH and GARCH Models

3.1 Background

Until the beginning of the early 1980’s, most empirical models concentrated
on the conditional first moments of the model with any time variation in
higher order moments conveniently ignored. However, as economic theory
attributed an increasingly important role for uncertainty and risk premia in
the world of macroeconomics and finance, it became necessary for empiri-
cists to develop new econometric time series techniques capable of dealing
with time variation in the second order moments of models. One such
model was developed by Engle(1982). This is universally known as the
Autoregressive Conditional Heteroskedasticity (ARCH) model. The major

advancement of this model is in its ability to distinguish between conditional
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and unconditional second order moments e.g. while in many economic appli-
cations the unconditional variance-covariance matrix may be time invariant,
the conditional variances and covariances quite often exhibit significant rela-
tionships with past states of nature. The ability of the model to capture this
temporal dependence is a major step forward in helping us to understand
many vitally important issues in financial economics.

Taking a simple ARCH(g) model as an example - where ¢q determines
the length of time for which the shock persists in conditioning the variance

of subsequent errors - we write it as follows:

yt = xlﬂl+€t) t= 17"'7T
€ | ‘I’g 17 N(O, ht) (31)
he = ao+ai€s ;4 ...+ aqef_q

a > 0,20 1i=1,.,q.

The first order moment equation is a standard regression model where
X; is an mzx1 vector of exogenous variables, 3 is an mz1 vector of regression
parameters while €; i1s the error term. The key feature of this model is that
the errors are distributed with zero mean but have a non-constant variance.

The time-varying variance is a function of the information set available at
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time t-1, ¥, ;, and has a particular functional form that relates the current
value of the variance to past squared errors. This functional form allows
for the phenomenon of volatility clustering i.e. the observation that large
errors are followed by large errors while small errors are followed by small
errors. This behaviour is commonly observed in financial data especially in
stock markets where we observe periods of sustained turbulence and other
periods of relative tranquility. The restrictions on the signs of the o’s ensure
that the conditional variances are strictly positive.

However, in many applications of this model, it was discovered that
a large value of ¢ was required to model the conditional second order
moments. This required the estimation of a large number of parameters
subject to lots of inequality restrictions. In an attempt to overcome this
perceived shortcoming of the model, Bollerslev(1986) proposed an alterna-
tive but closely related model called the Generalized Autoregressive Con-
ditional Heteroskedasticity GARCH model. This has proven itself to be
a very useful extension to the original ARCH model in empirical work. A
GARCH(p.q model can be specified as follows with p determining the au-
toregressive order of the model and ¢ determining the number of lagged

dependent variables to include when modelling the conditional variance.
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Yt

€t

Qo

x3 +e, t=1,.,T
U, 1, ~ N(0,hy) (3.2)
oo+ vihe 1+ .+ "fph¢ pt+ alef 1+ aqef_q

0;7;,205=1,..p;0, 20 2=1,...,q.

Again, the conditional mean equation can be interpreted as before. In

this model, however, the conditional variance is not only a function of past

squared errors but also of past values of the conditional variance itself. Once

more, the restrictions on the a and <y parameters ensure that the variance

1s strictly positive.

The main benefit of the GARCH model is the fact that in empirical

applications quite low orders of p and ¢ have been found to be sufficient

in modelling most financial time series e.g. French, Schwert and Stam-

baugh(1987 , Day and Lewis 1992) and Engle and Mustafa(1992). In fact,

Bera and Higgins 1993 observe that;

"In applied work, it has been frequently demonstrated that

the GARCH 1,1 process is able to represent the majority of

financial time series. A data set which requires a model of order

greater than GARCH 1,2 or GARCH 2,1 is very rare’
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3.2 Multivariate GARCH Models

Of course, both of these models are univariate in nature. However, there are
several issues in financial economics that require modelling in a multivari-
ate structure. The motivation for multivariate (G)ARCH stems from the
fact that many economic variables react to the same information set and
hence tend to have non-zero covariances conditional on the information set.
Therefore, there are gains in efficiency to be exploited by modelling such

issues as a multivariate system. Bollerslev, Engle and Nelson(1994) observe

that;

”Financial market volatility moves together over time across as-
sets and markets. Recognising this commonality through a mul-
tivariate framework leads to obvious gains in efficiency. Several
interesting issues....also call for an explicit multivariate ARCH
approach in order to capture the temporal dependencies in the

conditional variances and covariances” (pp 3002).

3.2.1 Vector ARCH

However, the computational burden involved in estimating multivariate
(G)ARCH models is quite considerable and is often sufficiently cumber-
some to prevent its empirical application. This is due to the vast num-

ber of potential parameters requiring simultaneous estimation in the most
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general formulation of the GARCH(p,q) structure. Bearing in mind the
earlier quotation taken from Bera and Higgins(1993), we begin by look-
ing at GARCH(1,1) models. The most general form of this model can be

represented by;

re = a+$g
& | ¥ 1~ N(0,H,) (3.3)

vech(H;) = W + ZSvech(H;-1) + STvech(&:-1€i-1),

where vech(.) is the vector half operator which stacks the lower triangle
of a square matrix into a column vector. H; is the time-varying conditional
covariance matrix of asset excess returns. Since H, is symmetric, vech{¥,)
contains all the unique elements of the matrix. r; is an nzl vector of asset
excess returns over the risk free rate; a is a vector of ones; &, is a nxl
vector of error terms. Concentrating on the second moment equation of
3.3, we begin to get a feel for the dimensionality of the problem. W is
a [n(n+ 1)/2z1] vector while both § and T are {n{r + 1}/2zn{r + 1}{/2]
matrices and n is the number of financial assets in the problem. It is clear
that the potential number of parameters for estimation in this formulation

is overwhelming. Even when there are only three assets, this specification
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of the conditional second moments requires the simultaneous estimation of
78 parameters, while for n=5 the number of parameters in this formulation
grows to 465.

This is clearly not a feasible working model and consequently empiricists
have been forced to seek out alternative parameterisations of the conditional

variance-covariance matrix in order to restrict the number of parameters

required for estimation.

3.2.2 Diagonal ARCH

The first of these restricted models was proposed by Bollerslev, Engle and
Wooldridge(1988 and is often referred to as Diagonal ARCH. This name
has been adopted as because the S and T matrices in equation (3.3) are

taken to be diagonal. It is easiest to write this model in terms of Hadamard

products.

rr = a+f
& | ¥ .~N(OH) (34)
H = V+AOH, 1+B0o& &, (3.5)
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where ® denotes the Hadamard product!. This restriction only allows
the (i, j)th element in {£, &, ;} and {H, 1} to influence the corresponding
(¢,7)th element in H, and can be interpreted as providing a filtered estimate
of the variances and covariances.. The restriction is quite plausible and has
the desired effect of reducing the number of parameters to be estimated.
Compared to the most general formulation, the V, A and B matrices each
have in(n + 1) parameters for estimation. For models with n=3 and n=>5
now have only 18 and 45 parameters respectively.

Another parameterisation termed the Baba, Engle, Kraft and Kroner,
BEKK, representation involves the equivalent number of parameters for esti-
mation in the GARCH(1,1) model but has the advantage that it guarantees
that the estimated time-varying variance-covariance matrices are positive
definite. This model was first used in Engle and Kroner(1993) and may be

expressed as follows:

r, = a+é

!The Hadamard product of two NzN matrices X and Y is defined as;

T21 T22 Y21 Y22

— Tu¥yn  Ti2Yi2
I21Y21 T22Y22

XoY = [1711 112]6[3/11 3112]
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& | Y 1~N(0O,Hy) (3.6)

H, = VV+AH, 1A +B¢,_,¢,_,B.

3.2.3 Constant Conditional Correlations

Bollerslev(1990) proposed an even more parsimonious parameterisation of
the multivariate (G)ARCH structure. He suggested a model where the time
varying conditional variances and covariances are proportional to the prod-
uct of the corresponding conditional standard deviations. As the name sug-
gests, the conditional correlation matrix is assumed to be constant, giving

rise to the following model:

rn = at§,
& | Y1~ N(0OH,) (3.7)

H, = D,’rD,”

In particular, the D matrix is a diagonal matrix with the conditional
variances along the main diagonal and zeros elsewhere. T' denotes the con-
ditional correlation matrix and is time invariant. Consequently, all the time
variation in the conditional variance-covariance matrix results from varia-

tion in the conditional variances, further reducing the number of parameters
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to estimate and the computational burden. Furthermore, it is easy to im-
pose symmetry and once again the resulting matrices are guaranteed to be
positive definite.

The validity of the assumption of constant conditional correlations is
an empirical issue. However, a number of studies have shown it to be a
reasonable working hypothesis e.g. Baillie and Bollerslev(1990), Schwert
and Seguin(1990), McCurdy and Morgan(1991) and Ng(1991). This view
is contested by Bera and Roh(1991) who suggest a test of the constant
correlation hypothesis and find this assumption is rejected for many financial

time series.

3.2.4 Factor ARCH Models

In an attempt to exploit the fact that the variances and covariances of
financial variables may be potentially driven by a small number of common
factors, Engle(1987) proposed a Factor ARCH model. One obvious appeal
of this model is that it is immediately recognisable as an APT model in
the conditional mean equation, where the nzl vector of asset returns, r;
is determined by a krl vector of economic factors and a nzk matrix of
factor loadings. If the factors and the error term are uncorrelated (or have

constant correlations), then we can write the model as follows:
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rr. = Lfi+e

T, ; ~ N(0,Hy,) (3.8)

€

Ht == Q + BA.tB,,

where the idiosyncratic shocks, €;, have constant conditional covariances
® and the factors, f; have time varying conditional covariance matrices,
A,. Furthermore, if the off-diagonal elements of A; are zero (or constant so
that they can be combined into ®) and the main diagonal contains typical
elements Ay, the second order moments of the model may be written as

follows:

H =@+ ) Bibidu (3.9)

k LK
Based on this formulation, the time variation of the conditional variances
and covariances results in total from the K factors. This model has been
implemented empirically by Engle, Ng and Rothschild(1990) and Ng, Engle
and Rothschild(1992) for US Treasury Bills and stocks respectively.
Diebold and Nerlove(1989) proposed a very similar latent variable model
using factor variances not conditioned on the past information set to gener-

ate the time varying conditional second order moments. In particular, the
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variance-covariance matrix was generated by

H =%+ Z ﬂkﬂ;(ﬁzt, (3-10)

k 1,K

2 .
where ¢}, represent the factor variances.

3.3 A New Representation

Despite the wealth of parameterisations for the multivariate GARCH struc-
ture, we developed another representation of the problem. This formulation
seeks to retain the parsimony of the other representations while simultane-
ously offering the user additional potentially important information that is
ignored by the other models. We write the conditional second order mo-
ments in error correction format thereby decomposing them into the sum
of their long-run and short-run components. This allows us to assess the
importance of the short run effects and determine whether or not they exert
a significant influence on the overall process. In particular, we model the
conditional variances and covariances as the sum of their long run values
and their short run deviations about these values. This is combined with
the BEKK representation in order to ensure that the resulting time varying
covariance matrices are symmetric and positive definite. Our parameterisa-

tion can be written as follows:
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rr = a+§,
& | T, 1 ~N(0,H;) (3.11)

H = VV+AMH, ,-VV)A+B(& 1§~ VV)B

This parameterisation has a number of advantages over the more general
formulation. Firstly, it offers a significant reduction in the number of para-
meters to be estimated. Now V, A and B are all nzn symmetric matrices
requiring the estimation of 3z [n(n + 1)/2] parameters in total. Therefore
in the applications of the model which follow in subsequent chapters where
n =3, n = 4 and n = 5 the number of parameters to be estimated is
reduced from 78 to 18, 210 to 30 and 465 to 45 respectively.

Secondly, by formulating the conditional variance-covariance structure
in this way, we get an estimate of both the long-run conditionad covariance
matrix together with its short-run dynamics. This is important as it allows
us to decide if the short-run dynamics have a contribution to make and if
they are worthy of the time and effort required to estimate them. It also
allows us to isolate and identify the sources of the short-run action, 1.e.
which parameters are most significant in determining the deviations from

the long-run value. This could be an important source of information in
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problems of a larger dimension in which the author may want to restrict
the number of parameters to estimate.

Thirdly, by combining this parameterisation with a variant of the BEKK
representation, we have guaranteed that the conditional variance-covariance

matrix of asset excess returns is positive definite.
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Chapter 4

Optimal Allocation of

Domestic Assets for the UK

Investor

4.1 Introduction

The aim of this chapter is to analyse the subject of optimal allocation among
major classes of UK financial assets. In particular, the question is addressed
from the viewpoint of a UK investor who wishes to identify the optimal mix
of risky assets in which to invest a proportion of his wealth. The investor is
interested in allocating funds among four assets - three risky financial assets

and one riskless asset. This analysis strives to identify the proportions
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in which the risky assets must be held in order for the investor to hold
the optimal risky portfolio period by period and leaves each investor to
allocate their funds between this risky portfolio and the riskless asset based
on their subjective preferences. The risky assets under consideration are
UK equities, UK government bonds with more than 15 years to maturity
and UK government bonds with less than 5 years to maturity. In this paper,
it is assumed that the investor is only interested in domestic assets and is
not concerned with the opportunities presented by international portfolio
diversification.

The textbook theories of portfolio management focus on the individ-
ual assets at the outset. The best known of these are the mean-variance
analysis of Markowitz 1952 and the Sharpe-Lintner capital asset pricing
model (CAPM). In the former, investors are assumed to minimise the risk-
iness of the total return on the portfolio subject to achieving a target rate
of return. For example, a typical requirement of a fund manager is that
the portfolio achieve, say, 1% above the market return. In the CAPM the
optimal portfolio trades-off expected return and variance to maximise a -
typically quadratic - welfare function in mean and variance. In practice,
because returns - especially equity returns - are not forecastable (they are
virtually serially independent), the emphasis is on minimising the variance

of the portfolio’s return generally by choosing appropriately the propor-
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tions in which each asset is held in the portfolio. In making this calcula-
tion it is usually assumed that the variance-covariance matrix of returns
is contant over time e.g. Grubel(1968) and Levy & Sarnat(1970). It has
been shown, however, that this matrix is not constant but time-varying, see
Poterba & Summers(1987), Bollerslev, Engle and Wooldridge(1988), Gio-
vannini & Jorion(1990), Thomas & Wickens(1993), Engle, Frankel, Froot
& Rodrigues(1989) etc. In the absence of transaction costs, this implies
that the optimal portfolio will need to be re-balanced each period. Unlike
returns, 1t is possible to forecast how the covariance matrix changes through
time. This suggests that the aim of tactical asset allocation should be to
exploit the regularities in the covariance structure of returns with the aim
of reducing risk.

The main innovation of this work is that we use a multivariate GARCH
model of returns to forecast their covariances. We then use these forecasts
to generate the portfolio frontier period by period and identify the optimal
portfolio of risky assets by finding the point of tangency between the port-
folio frontier and a line drawn from the risk free rate (the Capital Market
Line). Given a target rate of return for the portfolio, the optimal pro-
portions in which each asset should be held can be calculated. Typically
this results in going short in at least one asset. Since some investors may

be constrained from doing this, we also calculate the optimal proportions
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when they are constrained to be non-negative. Constrained tactical asset
allocation is especially relevant for UK pension funds who are forbidden by
law from going short. Cumby, Figlewski & Hasbrouck(1994) also allow the
elements of the covariance matrix to vary through time but they model each
element individually rather than as one multivarite system. Though com-
putationally burdensome, we hope to exploit efficiency gains by estimating
the model as a comprehensive multivariate system.

Adopting the two-fund separation theorem, we believe that all investors,
regardless of preferences, will hold a combination of only two mutual funds
namely the riskless asset and the optimal portfolio of risky assets. Therefore,
our aim is not to identify the final investment position of an investor but
rather to identify the proportions in which the risky assets should be held.
Each investor may then choose their preferred combination of these funds
based on subjective preference.

The plan of the chapter is as follows. Section 4.2, recalls the empirical
model presented in Chapter 3 while section 4.3 describes the data used in
the implementation of the model. In section 4.4, we present the results of

the analysis while section 4.5 contains our concluding remarks.
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4.2 Empirical Model

The aim of this work is to allow the variance-covariance matrix of asset
excess returns to vary over time. In order to achieve this goal, we decided
to employ a multivariate GARCH model. Such models are ideally suited to
this analysis as not only are they capable of modelling the time variation,
but it also captures many of the stylised facts of asset returns such as thick
tails and volatility clustering. The problems of implementing multivariate
GARCH models are already documented in chapter 3 so we briefly recall

the new parameterisation of the model (equation (3.11)) presented earlier:

re = a+£n
& | 9.1 ~N(0,Hy) (4.1)

H, = VV+A'(H, ;- V'V)A+B'(& & .~ V'V)B,

where r; in this application represents a vector of asset excess returns.
Until now we have concentrated our attention on the conditional second
moments of the problem and have largely ignored the conditional mean
equation. When we estimate the model, we include the first lag of each
variable as an explanatory variable. Furthermore, we found that it was

necessary to include a dummy variable for the October ’87 stock market
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crash as an extra right hand side variable in the conditional mean equation

for UK equities. Therefore the model which we estimate is as follows:

rn = « + ﬁrt 1 + 'ydum87 + £t
€t | ‘I/t 1 N(O, Ht) (42)

H,

]

VV+A(H, 1 -VV)A+B(§, & , - VV)B,

where the vector of excess returns r = (uke, Ibd, sbd)’, uke is the excess
return of UK equities, lbd is the excess return of UK government bonds
with more than 15 years to maturity and sbd is the excess return of UK
govt bonds with less than 5 years to maturity respectively and dum87 is a
dummy variable for the October 1987 stock market crash. 3 is a 3z3 matrix

of regression parameters and -y is a 3z1 vector of parameters.

4.3 Data

This chapter uses time series data on broad classes of UK financial assets.
In particular, we focus on three risky assets and one riskless asset. The risky
assets used in the analysis are equities, represented by the Financial Times
All Share Index; long UK government bonds represented by the FT British

government stock over 15 years index; and short government bonds repre-
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sented by the F'T British government stock under 5 years index. The data
used in this chapter is annualised monthly total returns for each asset!. The
total return data is calculated so as to take account of dividend payments in
the case of equities and coupon payments in the case of government bonds.
Both dividends and coupon payments are treated as if they were received
in equal amounts throughout each working day of the year rather than as a
lump sum at one or two distinct points in time. The rate of return on the
UK government 30 day Treasury bill is taken as the risk free rate of interest
available to the investor. It is true to say that this asset is riskless at least
in the nominal sense. All data was sourced from DATASTREAM.

The data covers a sample period in excess of 20 years beginning in
January, 1976 and finishing in February, 1997. This sample yields a total
of 251 usuable observations. We have chosen to work exclusively with rates
of return in excess of the risk free rate. This approach has been adopted
to prevent volatility in the risk free rate from incorrectly contributing to
the risk of the optimal risky portfolio. Since the risk free rate is perfectly
predictable at the start of each period and therefore part of the investor’s
information set when the allocation decision is made, its inclusion would

tend to over-estimate the total risk of the portfolio.

LAll returns are nominal values. We use nominal returns to be consistent with other
studies and using the results of Engle(1984) and Cumby(1988) where it is argued that
both the behaviour of both nominal and real returns are substantially the same.
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From an econometric point of view, there is a further benefit from work-
ing with excess returns, namely that all series are stationary and do not

require differencing?.

4.4 Estimating the Model

4.4.1 Convergence of the Log Likelihood Function

The model outlined earlier in 4.2 was estimated by recursively maximising
the following log likelihood function using the Berndt, Hall, Hall & Haus-

mann (BHHII) algorithm

1

LogL = —g log(27) 5

(log | Q0 | —u19, Lur), (4.3)

where n is the number of assets.

As with all multivariate GARCH models, one of the most important
questions to address is the convergence procedure. Meeting the convergence
criteria under the BHHH algorithm requires both stabilised parameter val-
ues as well as a stabilised function value. Choosing starting values near the
optimum is vital as otherwise the models often fail to converge. The error

correction structure of 4.2 is useful in this respect as it enables us to use

2 A number of formal tests confirm that the series are stationary namely, Dickey Fuller,
Augmented Dickey Fuller, Phillips Peron and Stock-Watson Tests.
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the unconditional error covariance matrix to obtain a consistent estimate of
V. Initial values of the explanatory variables and error terms in the condi-
tional mean equations can be conveniently generated by a prior Ordinary
Least Squares estimation of these mean equations. These residuals are then
used to estimate the unconditional variance-covariance matrix and we then
obtain an initial estimate of V using a choleski factorisation of the resulting
estimate. The A and B matrices are initialised with an arbitrary small
number along the diagonal and zeros elsewhere. This procedure is crucial
to the successful implementation of the model as bad starting values can
often mean that the algorithm fails to meet the convergence criteria or may
lead the algorithm into an area where the variance-covariance matrix is no

longer positive definite, thus causing the model to fail.

4.4.2 Results

When the model as specified in equation (4.2) was estimated and conver-
gence achieved, it yielded the following results. The results for each matrix

are presented with the corresponding t-statistics in brackets underneath.
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Conditional Mean

13.39 W 0.006 0.096 0.267 W r 7
—-392.25

(3.75) (0.09) (0.95) (0.83)
(—4.98)

4.07 0.042 —-0.016 0.318

o = ’ﬂ = ”'Y = 0

(1.35) (0.71)  (—0.13) (1.26)

0.93 —0.027 0.038 0.015
0

| (087) | (-1.20) (1.60)  (0179) :

Conditional Covariances

V, A and B are all symmetric matrices.

57.37

(22.58)

23.15  30.72
(6.94)  (1.99)

8.72 6.81 9.06

(7.02) (1.77) (7.33)
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i : ) 1
0.82 0.06
(3.44) (1.02)
0.09  0.90 0.03 0.08

A= B =
(0.12) (7.40) (0.60) (1.20)
0.29 022 031 011 002 0.16
(1.37) (1.11) (1.5) | (462) (0.40) (1.10)

L J A

4.4.3 Estimates of the Conditional Mean

The lack of significance in the estimates of B3 are consistent with the usual
finding of the virtual serial uncorrelatedness of total stock and bond re-
turns. Consequently, while we retain the mean specification for estimation
purposes, we use the vector of historical asset means to generate the port-
folio frontiers. It has the added advantage that all of the variation in the
estimated frontiers, and hence the portfolio shares, can be attributed to
variation in the conditional covariance matrix of excess returns.

This is also the assumption made by Cumby, Figlewski and Hasbrouck(1994)
who also use the historical mean of each asset as its expected value. Jobson
& Korkie(1981) advocate the use of global shrinkage based on Stein esti-
mators whereby all assets of the same class have the same expected excess

return. This 1s an extreme case of Stein estimation with the individual as-
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set being assigned a weight of zero and the global mean having a weight of
one. Jobson & Korkie show that this approach significantly improved the
practical application of the Mean-Variance framework. Since we are work-
ing with financial asset indices as opposed to individual securities, both of
these appoaches reduce to the same thing.

Another reason for making this assumption is that the sensitivity of the
portfolio shares to small variations in the mean is far greater than that to
variations in the covariance matrix, Kallberg and Ziemba(1984). Best and
Grauer(1991) show that even small changes in the mean vector can result
in dramatic variation in the composition of the estimated optimal portfolio
of risky assets.

Continuous re-balancing of the portfolio to changes in the predicted ex-
cess return would not only be expensive due to transaction costs, it would
also be counter-productive because of the lack of persistence of the devia-
tions of excess returns from their unconditional means. This is not true of
the re-balancing due to changes in the conditional variance because of their

much higher degree of persistence and their lower volatility.

4.4.4 Estimates of the Conditional Covariance Matrix

The estimates of the elements of V are all significant at the 10% level and all

but one are significant at the 5% level. Although, many of the elements of A
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and B are not significant, even at the 10% level, sufficient are significant to
show that there are deviations of the short-run from the long-run covariance
matrix. In the main, these are due to autocorrelation in the conditional
variances, but there is also a significant effect arising from the interaction
between the excess returns on equity and short-term government bonds.
Roughly speaking and ignoring the other elements, the greater the el-
ements on the leading diagonals of A and B, the more the conditional
covariance matrix deviates from the long-run value. The more significant
these elements the more predictable are these deviations. The estimates
suggest that the deviations are both persistent and predictable. Figure
4-1 plots the conditional and unconditional variances from the three ex-
cess returns. The deviations from the long run are most persistent for the
long government bond. It is also clear that equities have predictable and
persistent deviations, most notably in 1983-4 and since 1993. These are
precisely the conditions in which there is greatest benefit to taking account

of a time-varying covariance matrix of excess returns in determining asset

allocation.

4.4.5 TFrontier Movements

Apart from changes to the target rate of return, variations in the optimal

portfolio weights are due entirely to movements in the portfolio frontier
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brought about by new information on next period’s conditional covariance
matrix. This new information is the cause of the time variation in the
conditional covariance matrix. Some idea of the extent of the movements
in the frontier within the sample period can be obtained from Figures 4-2-
4-6. The position of the frontiers reflect the minimum portfolio standard
deviation for a given portfolio return, hence this is just another way of
comparing portfolio standard deviations. Figure 4-2 shows how the frontier
has moved over time by displaying the frontier in September at four year
intervals from 1976-96. Figure 4-3 provides information on the distribution
of the frontiers since it displays the minimum, maximum, mean and median
frontiers for the whole sample. The global minimum variance portfolio of the
frontier was calculated for each monthly period of the analysis and these
portfolios were used to compute the frontiers depicted in this figure. It
reveals that the distribution is highly positively skewed with a long tail to
the right. The standard deviations of the minimum variance portfolios range
from a minimum of approximately 8% in February 1996 to a maximum of
28% in September 1981. The skewness obviously has major implications
for the choice of optimal portfolio. Assuming the same frontier for each
period by taking the mean or the median frontier would have seriously
underestimated the riskiness of the assets in September 1981. Figure 4-4

examines the last six months of 1981 in more detail. It shows how volatile
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the frontier can be over a short time horizon.

A very revealing comparison is between the frontiers based on constant
covariance matrices computed from both a simple OLS estimate of the un-
conditional covariance matrix and the long-run matrix (V'V) of our model
and the frontiers obtained from using a time-varying conditional covariance
matrix. In Figure 4-5 we include the frontiers generated by the OLS es-
timate, the long-run unconditional covariance matrix and the mean and
median of the conditional covariance matrices. Both the frontiers associ-
ated with the unconditional covariance matrices lie further from the origin
than their time-varying counterparts. This shows the considerable reduction
in riskiness of the portfolio that can be achieved by using the conditional
covariance matrix instead of a constant, unconditional, covariance matrix.
The frontier generated by the OLS estimate is to the right of the others,
demonstrating that such a simple estimate tends to overestimate the risk-
iness of the assets and that even in using our model only to estimate the
unconditional covariance matrix, there are risk reduction gains to be ex-
ploited over using the more simple OLS approach.

Finally, we examine the consequences of allowing the conditional mean to
be time varying by failing to omit the insignificant terms in the conditional
mean in the above calculations. The means and medians of the frontiers

computed from including and excluding the lagged dependent variable from
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the model (and then re-estimating the model) are shown in Figure 4-6. We
find that distribution of the frontiers for the model that includes the lagged
excess returns in the model lies to the left of the distribution of the frontiers
that restricts the model by excluding these lags. Thus, even if the dynamics
in the conditional mean are imprecisely estimated, including them in the

model results in a substantial reduction in portfolio risk.

4.4.6 Optimal Portfolios

Unrestricted Weights

Having generated the portfolio frontiers, we now proceed to identify the
optimal portfolio in each period. This is achieved by finding the point of
tangency between the portfolio frontier and a line drawn from the rate of
return on the riskless asset. Since we are working exclusively with excess
returns, this line will now go through the origin. It can be shown that for

every period, the tangential line will have a slope, m, given by (see Appendix

1):

CtRpt — b,
\/(az — 2b Ry, + ¢, R2;) (asce — b7)

m =

(4.4)

The point of intersection identifies the optimal portfolio of risky assets
which will have an excess return = a;/b; (Appendix 1). All of these variables
are defined as in section 2.2. Figure 4-7 shows how both the expected excess
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return and the standard deviation of the optimal risky portfolio changed
over time. As we would expect, there is a clear direct relationship between
the excess return and the standard deviation. Also the standard deviation

is much more volatile than the excess return. Table 4.1 summarises the key

features of the optimal portfolios.

Mean | Max. | Min.
Excess Return 7.41 16.1 | 4.34
Standard Deviation | 46.0 102.3 | 26.8

Table 4.1: Key features of optimal domestic portfolio

We begin the analysis by computing the optimal asset proportions for
a buy and hold portfolio generated by both our estimates of a constant

unconditional covariance matrix. The asset holdings are shown in table 4.2.

Equity | Long Bond | Short Bond
OLS estimate 71.3% 18.2% 10.5%
Long-run Matrix | 69.6% 26.2% 4.2%

Table 4.2: Optimal buy and hold portfolios

The two portfolios differ greatly, especially in the importance attached
to the government bonds. The portfolio based on the OLS estimate has a
large equity holding which is consistent with it producing the most risky
portfolio frontier in figure 4-5.
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With the optimal portfolios located and identified for each period, we
calculate the proportions in which each of the risky assets must be held in
order for the investor to hold this portfolio. We calculate the weight vector
according to equation 2.17. This calculation places no restriction on the
sign of the weights and it is therefore possible for the investor to take a
short position in an asset, thus allowing the investor to invest more than
100% of investable funds in the other assets. Figure 4-8 shows the weights
given to each asset over the sample. It is clear from this picture that the
optimal portfolio often involves taking a short position in the shorter UK
government bond, especially in the earlier part of the sample, allowing a
stronger position in the relatively higher return assets. As expected, equities
are the dominant asset, accounting for 70% of the portfolio on average. The
weight given to equity is consistently positive and indeed never falls below
38%, while on a number of occasions more than 100% of funds are invested
in equities. The government bonds, on the other hand, enjoy varying degrees
of popularity. On average, the longer bond and the shorter bond account
for 20% and 10% of the portfolio respectively. The longer bond is only held
short in one period out of the 251 period sample while the holdings of the
shorter UK government bond is the most volatile of all assets. Its weight in
the optimal portfolio undergoes large changes from period to period. Table

4.3 captures the main statistics of the weights given to each asset in the
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portfolio.

Mean Weight | Maximum | Minimum.
Equities 69.7% 160% 38.1%
Long Bond 19.8% 84% -3.6%
Short Bond 10.5% 65% -144%

Table 4.3: Summary statistics for optimal unrestricted domestic portfolio

Two practical considerations suggest that this may not always be an at-
tractive or viable asset allocation strategy. Firstly, these calculations ignore
the transactions costs of continuously rebalancing the portfolio. Given the
volatility of the shares, this could be considerable and may act as a deterent
to implementing this investment strategy. Secondly, many investors are pre-
cluded from going short either by choice or by law. Mutual fund managers
in the UK are prohibited by law from holding short positions. We therefore

examine optimal asset allocation subject to a non-negativity constraint on

asset shares.

Restricted weights

Although it is not possible to provide a closed-form expression for the portfo-
lio shares when a non-negativity constraint is imposed, they can be obtained

for each period using Quadratic Programming.® Instead of solving for the

3See Fletcher(1981) for a discussion of Quadratic Programming techniques.
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mean return for the optimal portfolio as above, it is now necessary to spec-
ify a target rate of return. We choose the target return to be the average
return on the unrestricted optimal portfolio. This implies that, in terrns
of the mean portfolio return, investors are not penalised by the restriction,
and it aids comparisons with the unrestricted case.

The restricted shares as well as the long-run asset proportions are dis-
played in Figure 4-9, and summary statistics are reported in Table 4.4. The
main change compared with the unrestricted shares is the much lower vari-
ation in the shares. Their mean values are hardly altered. For equities the
share now ranges between 62% and 72% of the portfolio compared with 38%
to 160% previously. The shares of the two types of government bonds are
almost a mirror image of each other, and their range of variation is dra-
matically reduced. This indicates that most of the portfolio rebalancing is

between longer-dated and shorter-dated government bonds.

Mean Weight | Maximum | Minimum
Equities 69.4% 72.8% 62.7%
Long Bond 20.3% 37.3% 11.5%
Short Bond 10.3% 15.6% 0%

Table 4.4: Summary statistics for optimal restricted domestic portfolio

A quick, yet informative, check on the validity of this approach is to

compare the actual performances of the constrained time-varying portfolio
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with a more traditional buy and hold portfolio. The asset proportions of
the latter being determined by the unconditional covariance matrix. Since
our goal is to minimise risk, we would expect that the variance of the con-
tinuously re-balanced portfolio should not be greater than the variance of
the other. We would also hope that the returns would not be significantly
different. Figure 4-10 supports our hypothesis. The top panel of the graph
shows the ratio of the return on the time-varying portfolio to the return
on the buy and hold portfolio. The ratio is usually very close to unity and
shows that neither portfolio consistently outperforms the other. The lower
panel plots the ratio of the variances. Now we see that our tactical asset
allocation strategy systematically delivers lower risk than the more conven-
tional portfolio. The risk reduction is of the order of 5% - in the world of
investment where even the slightest advantage can mean massive financial
rewards, this reduction is very substantial and highly significant.

Of course, we must remind ourselves at this stage that the portfolios
identified thus far contain only risky assets and are not meant to define the
total investment position of the individual. Each individual should hold
a combination of the risky portfolio and the riskless asset. This decision
depends on the individual preferences of each investor. If an individual’s
preference is to bear less risk than that associated with the risky portfolio,

then they should allocate total investable funds between the riskless asset
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and the risky mutual fund, holding a positive amount of both funds. Like-
wise, if an investor is willing to bear more risk than the risky portfolio, they
should take a short position in the riskless asset and invest all their own
funds plus the extra money generated by this short position in the risky
portfolio. Whatever the preferences of the individual, total funds can be
allocated between these two mutual funds. This analysis does not indicate
the final investment position of any investor but it identifies the two mutual
funds between which resources should be allocated so as to maximise the

return to the investor.

4.5 Conclusion

The aim of this chapter was to identify the time-varying optimal portfo-
lio of risky assets in which a UK investor should invest. We focus on an
investor who decides to invest in three domestic assets. The chapter uses
the portfolio theory of Markowitz(1952) as its foundation and then tries to
incorporate a more realistic specification of the risk associated with asset
allocation. The main innovation of the chapter is that the covariance ma-
trix of asset excess returns, and therefore the portfolio frontier, is allowed to
vary in each period of the analysis. This time variation in the conditional
second order moments is captured by a multivariate GARCH(1,1) model.

We specified a model that has a first order VAR structure in the con-
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ditional mean equation, with the conditional second moments following a
GARCH(1,1) process. This enables the elements of the conditional covari-
ance matrix to vary over time. The chapter applies the new parameteri-
sation of the multivariate GARCH structure outlined in chapter 3. This
parsimonious representation writes the conditional second order moments
in error correction format thus enabling us to distinguish between long-run
and short-run sources of financial asset volatility. Combining this with the
BEKK representation, we ensure that the time-varying conditional covari-
ance matrices generated by the model will be positive definite. It also allows
for easy assessment of the importance of the short-run dynamics.

The key results of the model are that the elements of the conditional
covariance matrix of asset returns are highly variable over time. Conse-
quently, the portfolio frontiers also exhibit a great deal of time variation. It
can be seen that the portfolio frontier changes in both shape and location
throughout the 20 year sample. The results also emphasise the importance
of the short-run dynamics of the model with a great deal of persistence in
evidence in the second order moments of the process. We provide graphical
evidence that the UK investor can reduce portfolio risk by using conditonal
second order moments as opposed to more traditional static estimates.

Having located and identified the portfolio frontier in each period, we

found the proportions in which the three risky assets should be held in order
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for the investor to hold this optimal portfolio of risky assets. UK equities
were found to be the dominant asset throughout the sample, accounting for
70% of the portfolio on average. The long UK government bond was also
held consistently in the portfolio with an average weighting of 20%. The
shorter UK government bond holding was more volatile and was actually
held short on many occasions with the extra funds generated by this posi-
tion invested in equities. Its mean weighting in the portfolio was 10%. This
led to often dramatic alterations in the composition of the optimal portfo-
lio. A more practical strategy was then adopted with the weights given to
each asset restricted to be non-negative. This is equivalent to prohibiting
short sales, a restriction enforced on UK fund managers by law. With this
restriction in place, the proportion of funds allocated to each asset is much
less volatile. The mean positions are unaltered but the range of their move-
ments is much smaller. This is a very pleasing feature for an investment
manager operating in a world with transaction costs. Therefore, enforcing
the non-negativity restriction on the portfolio asset weights yields a much
more practical investment strategy.

Crucially, our approach delivered its aim of portfolio risk reduction. We
found that the re-balanced portfolio systematically outperformed its buy
and hold counterpart in terms of lower risk - 5% on average - while achiev-

ing excess returns that were predominantly the same. The evidence sug-
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gests that significant risk reduction benefits can be reaped from utilising
conditional second order moments as opposed to the more traditional un-

conditional estimates.
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Movement of Portfolio Frontier: July — Dec 1981
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Figure 4.7

Excess Return on Optimal Portfolio
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Figure 4.9

Restricted Portfolio
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Figure 4.10
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Chapter 5

Optimal Asset Allocation with
an International Perspective.
Is Investor Location

Important?

5.1 Introduction

This chapter is concerned with the potential benefits of holding an interna-
tionally diversified portfolio that is re-balanced each period to take account
of time-variation in the covariance matrix of returns. This question is ad-

dressed from both the perspective of UK and US investors and we also inves-
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tigate the importance of location in the optimal asset allocation decision. In
particular, we contrast the optimal portfolio of risky assets that should be
held by an investor in the UK and the US when both are presented with the
opportunity of investing in UK and US equity and a domestic government
bond. Empirical research suggests that diversification across international
markets is more important than diversification across industries, see Hes-
ton and Geert Rouwenhorst(1995). This analysis allows us to address the
question of home bias and quantify if this remains a puzzle.

From the very early literature, there has been much evidence that large
benefits are available to investors who diversify their portfolio to hold for-
eign assets. Grubel(1968) and Levy and Sarnat(1970) were among the first
studies to reach such a conclusion. More recent studies are equally support-
ive of diversification, especially Grauer and Hakansson(1987) whose results
confirm that US investors can reap "remarkably large” gains from includ-
ing non-US assets in their portfolio of risky assets. Based on the paired
t-test, these internationally diversified portfolios realised returns that were
significantly higher than those generated by a portfolio consisting entirely
of domestic stocks. Furthermore, the gains increased as the investor became
more risk averse. De Santis and Gerard(1997) provide evidence that even
though equity market declines are contagious across countries, US investors

may still earn expected gains of 2.1% on average from holding foreign stocks
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and despite increased financial market intergration, these ex-ante gains have
not fallen. Eun and Resnick(1988) and Jorion(1985) both show that hedging
foreign exchange risk can potentially increase the gains from international
diversification. While many of these studies concentrated on equity mar-
kets, Levy and Lerman(1988) find that a US investor who diversified across
world bond markets could have realised returns more than twice the mean
rate of return on a domestic US bond portfolio at the same risk level. There-
fore, it seems that investors should seize the opportunity to diversify across
markets. By including both equity and bonds and taking account of the
time-variation in returns we expect to find that gains from international
diversification are even greater than previously found.

This chapter is based on the portfolio selection theory of Markowitz(1959)
but differs from earlier work in that the variance-covariance matrix of as-
set excess returns is allowed to vary through time. The study locates the
optimal portfolio for each monthly period of the analysis and identifies the
optimal mix of risky assets for both the UK and US investor. Therefore, the
solution offers the investor a strategy for tactically allocating his portfolio
over time. We find that the domestic equity dominates the optimal portfolio
in each period but the foreign asset is also an important constituent of the
portfolio and dominates the domestic bond on average. We also observe that

when we compare our results to the available surveys of asset holdings, the
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home bias puzzle is much more acute in the US. The surveys suggest that
US investors hold at least 94% of their wealth in domestic assets, whereas
our analysis suggests that the US investor should, on average, hold 20% of
funds for investment in risky assets in UK equity. The equivalent holding of
US equity for the UK investor is 25%, but the survey material shows that
the UK investor holds only 18% of the risky portfolio in all foreign assets.
The remainder of this chapter is structured as follows. Section 5.2
presents a survey of the literature pertaining to the home bias puzzle and
reviews some of the explanations that have been put forward in an effort
to reconcile the theory and the observed behaviour of investors. Section
5.3 reviews the econometric techniques employed to address the question,
contains the model for estimation and discusses the data. The results of
the analysis are presented in section 5.4, while section 5.5 presents the re-
sults of our tactical allocation strategies. Section 5.6 offers a summary and

concluding remarks.

5.2 Home Bias

The home bias or international diversification puzzle refers to the widely

accepted fact that investors hold too little of their financial wealth in foreign
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assets!. In the past, many commentators explained this phenomenon as a
consequence of national barriers to capital flows and the very low levels of
financial market integration across the world. However, this is no longer a
valid explanation in the late 1990’s with limits to foreign exchange trans-
actions and impediments to inward investment almost totally eliminated in
all of the major developed markets and technological advancements help-
ing financial markets to become increasingly integrated. Yet French and
Poterba(1991) report that US investors hold 94% of their financial wealth
in domestic securities, with Japanese and UK investors holding 98% and
82% of their respective portfolios in domestic assets. Likewise Cooper and
Kaplanis(1994) estimate that the percentage of domestic equities in the to-
tal equity portfolio in US, UK and Japan is 98%, 79% and 87% respectively.

A vast literature has been produced in an effort to explain this puzzle
but no concensus has emerged. Uppal(1992) conducted a survey of the
potential explanations and divides them into three main categories.

(1). Home bias is a result of the investors desire to hedge domestic in-
flation. This potential explanation received a great deal of attention in
the early 1980’s. Sercu(1980), Adler and Dumas(1983) and Branson and
Henderson(1985) all developed models where the desire to hedge inflation

resulted from deviations in the law of one price in consumption goods.?

lsee French and Poterba(1991), Cooper and Kaplanis(1994) and Tesar and
Werner(1995)
2Eldor, Pines and Schwartz(1988) and Stockman and Dellas(1989) also generated sim-
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They found that as the proportion of domestic goods in total consumption
increased, or as the degree of risk aversion increased, the demand for home
assets also increased. In these models, the usual response to an increase in
the relative risk aversion is a greater demand for domestic bonds, partic-
ularly the riskless asset. However, a common feature of these models was
that the processes governing prices, the exchange rate and the riskless rate
of interest were all specified exogenously. Uppal(1993) discovered that when
the process for the exchange rate and the riskless rate of interest were en-
dogenised, this potential explanation of the home bias puzzle was no longer
valid. In particular, he found that the model only predicted a bias towards
the assets of the home country if the investor had a relative risk aversion
less than one. Given that virtually all asset pricing models find a degree
of relative risk aversion greater than one?, the findings of Uppal(1993) sug-
gest that this hedging motive is unlikely to be the main determinant of the
puzzle. Furthermore, Uppal shows that when the degree of relative risk
aversion is assigned a more plausible value greater than unity, then the do-
mestic investor actually prefers the foreign stock due to the fact that the
exchange rate is negatively correlated with the return on the foreign stock

and secondly, the share of the foreign good in total domestic consumption

ilar results by assuming that it was price uncertainty in nontraded goods that prompted
investors to hedge against domestic inflation.
3see Singleton(1991).
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increases with risk aversion. Therefore the return on the foreign asset is less
risky in real terms than the home asset as the investor becomes more risk
averse. These findings are supported by Cooper and Kaplanis(1994) who
also report that the inflation hedging motive is only valid when the relative
risk aversion is very low (less than one).

(2). Home bias occurs due to Institutional Constraints on Foreign In-
vestment. This explanation focuses on direct controls on foreign investment
which may restrict inward investment or alternatively restrict domestic in-
vestors from investing in foreign securities. Bonser-Neal, Brauer, Neal and
Wheatley(1990) tested if such restrictions were binding and found evidence
that the French, Japenese, Korean and Mexican markets were partially seg-
mented from the US market. Also Hietala(1989) found evidence that these
restrictions may have been a source of bias in the Finnish market. These
constraints may be important in certain countries but with financial mar-
kets becoming increasingly intergrated this explanation seems unlikely or
otherwise we should observe an increasing rate of foreign investment. Halli-
day(1989) reports that there are no constraints on investing in foreign stock
markets in most developed countries. Gultekin, Gultekin and Penati(1989)
found evidence of market segmentation between the US and Japanese stock
markets prior to the Foreign Exchange and Foreign Trade Control law in

1980 but found no significant evidence of this segmentation in the aftermath
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of this agreement. Furthermore, Fairlamb(1989) investigated if constraints
on domestic investors were binding but found that most often, they were
not, e.g. in 1988 only 8% of Spanish funds were invested in foreign assets
even though the law allowed for 30%.

(3). Home bias is caused by Discriminatory Tazes and Transaction
Costs. Many studies analyse the effects on portfolio choice of discrimi-
natory taxes such as withholding taxes, stamp duties and turnover taxes
and transaction costs. A consensus seems to have developed in this area
with a number of studies such as, Cooper and Kaplanis(1994), French and
Poterba(1991), Kemp(1987), Uppal(1993), Tesar and Werner(1995), agree-
ing that the level of taxes and transaction costs required to explain such
a degree of home bias is much higher than those observed in practice. In
particular, Tesar and Werner observe that while international diversifica-
tion is small, the volume of transactions in international markets is large
and increasing. In contrast to what proponents of the high transaction
costs detering international diversification argument might believe, Tesar
and Werner note that the turnover rate on financial securities held by non-
residents is higher than those held by domestic investors.

Asymmetric information between domestic and foreign investors has
been suggested as another possible explanation. For example, domestic

investors may have cheaper and more easy access to information about do-
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mestic assets than foreign assets, or alternatively, domestic investors may
process the same information differently due to cognitive biases. In an in-
teresting study of the Mexican crisis of 1994, Frankel and Schmukler (1996)
conclude that domestic investors may have had better information, and con-
sequently formed more accurate expectations, about local economic events
immediately before the crisis than foreign market participants. Frankel and
Schmukler find evidence of heterogeneous expectations and show how, just
before the devaluation, the Mexican fund Net Asset Values (NAV) (driven
by local investors) suffered much faster price falls than Mexican country
fund prices (driven by foreign investors). It was found that Mexican NAV’s
tended to Granger-cause the country fund prices, suggesting that causality
flowed from local market participants to Wall Street investors. As a result,
local investors were the ’front-runners’ in selling Mexican assets in Decem-
ber 1994, and not ’fickle foreign investors’ as had been suggested at the time.
This provides some, albeit limited, evidence to support the suggestion that
asymmetric information may be a significant determinant of home country
bias.

Merton (1987) argues that investors are most likely to purchase securities
that they are familiar with. This argument is supported by Kang and Stulz
(1996) who note that inward foreign investment in Japanese stocks is pri-

marily concentrated in the large domestic companies which have a higher
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international profile. This argument receives support from Tversky and
Heath (1991) who present evidence that households perceive an unfamiliar
gamble to have greater risk than a familiar one, even when both gambles
have identical probability distributions. French and Poterba (1991) argue
that home bias could result from investors’ feeling safer with, and more op-
timistic about the prospects of, domestic securities than foreign investors.
Schiller, Kon-ya and Tsutsui (1990) present survey evidence consistent with
investors often being more optimistic about the domestic market than for-
eign markets.

Baxter and Jermann(1997) attempt to explain the puzzle by introducing
human capital as another asset in the portfolio choice but discover that
the puzzle is exacerbated by this extension. This study suggests that the
optimal portfolio involves a substantial short position in domestic assets
combined with a long position in foreign securities.

In a recent paper, Griffin(1997) attempts to explain some of the ob-
served home bias by showing that pension funds and insurance portfolios
(who together dominate the financial markets) will rationally hold a large
proportion of domestic assets when the risk associated with asset alloca-
tion is measured relative to liabilities. However, this result depends on the
length of the liability, with longer liabilities leadi-ng to a higher domestic

concentration. This is therefore an unlikely explanation of any home bias
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found in this study as we are dealing with monthly portfolio revisions.
Other explanations that have been put forward claim that the problem
is not so acute with many domestic investors holding stocks in large multi-
national companies (Agmon and Lessard(1977)) and with many more large
stocks being cross-listed in two or more exchanges. Another simple argu-
ment is that we have simply overestimated the benefits of acquiring foreign
assets e.g. Bailey and Stulz(1990). However, despite the wealth of literature
that has been afforded to the home bias puzzle, there is still no convincing
explanation. Only, the asymmetric information argument remains as a po-

tential solution, yet it is difficult to imagine that this argument is capable

of resolving such a deep puzzle.

5.3 Econometric Methodology and Data

5.3.1 The Model

The aim of this chapter is to identify the optimal portfolio of risky as-
sets available to both UK and US investors. To achieve this we require
a model capable of estimating time-varying second moments. We employ
a multivariate GARCH model, first presented in chapter 3 and applied in
chapter 4. Consistent with the analysis of the previous chapter, we include

a dummy variable for the October '87 stock market crash as an extra right
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hand side variable in the conditional mean equation for UK and US equities.

Therefore the model which we estimate is as follows:

rr = a+fr,; +vdum87 +§&,
ft | Ui~ N(O;Ht) (5-1)

Ht = V,V + A,(Ht—l - VIV)A + B'({t__lf’;_l - V[V)B,

where r = (ukeq,useq,gubd)’ and ukeq, useq and gvbd refer to UK
equities, US equities and a domestic government bond. A3 is a 323 matrix of
regression parameters and 4 is a 3z1 vector of parameters. Once more, this
parsimonious representation ensures that the resulting matrices are positive
definite while allowing the user to disentangle long- and short-run effects in

the conditional second order moments.

5.3.2 The Data

This chapter uses time series data on broad classes of UK and US financial
assets. The analysis is conducted, firstly from the perspective of a UK in-
vestor and secondly with respect to a US investor. In each case, we focus
on four assets, three risky assets and a riskless one. Both sets of investors

have the opportunity to invest in two domestic risky assets, a domestic risk-
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less asset and one foreign risky asset. The risky assets used in the analysis
are UK equities, represented by the Financial Times All Share Index; US
Equities represented by the S&P Composite Index, UK government bonds
represented by the FT British government stock index; US bonds repre-
sented by an all government bond index. In each case, the return on the
foreign asset is converted into the domestic currency using end of month
exchange rates. The data used in this chapter is annualised monthly total
returns for each asset and is calculated so as to take account of dividend
payments in the case of equities and coupon payments in the case of govern-
ment bonds. For the UK investor, the rate of return on the UK government
30 day Treasury bill is taken as the risk free rate of interest while for the US
investor, the riskless interest rate is proxied by the Eurodollar rate, i.e. the
rate available on one month US deposits in London. It is true to say that
these assets are riskless at least in the nominal sense. All data was sourced
from DATASTREAM.

The data covers a sample period beginning in January, 1980 and finishing
in September, 1996. Again we have chosen to work exclusively with rates
of return in excess of the risk free rate in order to avoid over-estimating
the total risk of the portfolio. As noted previously, this also avoids unit
root problems in the data since a unit root is rejected for all of the excess

returns.
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5.4 Estimation Results

The model as specified in equation (5.1) was maximised subject to the
Berndt, Hall, Hall and Hausmann (BHHH) algorithm. The results of the
model for both the UK and US investor are reported below with t-statistics

in parentheses.

5.4.1 UK Investor

Mean Matrices

[ 7.23 —0.06 007 0.20 - -
—403.51

(2.2) (-0.74) (1.07) (1.32)
(—1.49)

5.20 -0.09 011 0.07
a= B = Y = | —334.39

(1.23) (-1.05) (1.39) (0.43)
(-2.01)

—0.61 001 -006 0.10

0

(—0.33) (0.27) (—1.95) (1.35) - -
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Covariance Matrices

57.21
(8.99)
26.59 56.98
V =
(4.51) (11.94)
15.50 —4.94 24.06
(7.17) (-2.17) (11.4)
0.27 —0.80 W
(3.10) (—7.45)
—-0.13 0.28 -0.19 -0.73
B= ,A=
(—2.43) (3.86) (—2.01) (—5.5)
015 0.02 043 -0.15 -0.01 0.39
| (428) (0.51) (4.08) | (-097) (-0.07) (3.05)

Discussion of the Results

In the conditional mean the elements of 3 are generally not significant. This
is consistent with the usual finding that total stock and bond returns are
serially uncorrelated. The most significant element is (5, implying that the

lagged excess return on the US equity has some explanatory power for the
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excess return on UK bonds, but it is difficult to think of a good reason why
this should be.

In contrast, the conditional second order moments are much more readily
explained by the GARCH structure adopted in the model. All the elements
of the V matrix, which determines the unconditional or long-run matrix,
are statistically significant. This observation is supportive of the hypothesis
that financial data exhibit volatility clustering even at monthly horizons.
Furthermore, the statistical significance of the off-diagonal elements of the
long-run matrix suggests that there are volatility spillovers from market
to market. Also, the short-run matrices, A and B, are characterised by
many statistically significant parameters. The significance of the diagonal
elements of A and B indicates that the conditional variances differ consider-
ably from the unconditional variances. The results show that not alone are
own lagged volatility measures important in determining the current level
but again there is evidence of contagion effects between markets, especially
between the UK and US stockmarkets with both Ay, and Bj; being statisti-
cally significant parameters. Short-run volatility in the UK bond market is
influenced by the UK equity market, see Bs3; but appears to be segmented
from the US stockmarket, evidenced by the non-significance of both Ass
and Bss. The significance of {3,1} elements suggests that the allocation

between UK equity and UK bonds will need to be re-balanced in the short
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run to achieve optimality.

The significance of the {2,1} elements of A and B together with the
{2,1} element of the long-run covariance matrix, is the reason why investors

may want to hold an internationally diversified portfolio in order to reduce

risk. For example, the long-run covariance matrix is

V'V

implying a correlation between the excess returns over the UK risk-free rate
of UK and US equity returns of 0.42. They also imply that to achieve an

optimal portfolio there will need to be a re-balancing between UK and US

equity.
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[ 1 [ 1
—0.38 —0.32
(~0.95) (—1.78)
—0.05 0.24 0.10 —0.26
A.= ,B=
(-0.15)  (0.60) (0.09) (—2.08)
0.39 —-0.41 047 -0.02 —-0.21 0.22
| (161) (-199) (2.10) (~0.35) (—3.46) (2.65)

The results are similar to those for the UK. Again, 3 is almost insignifi-
cant, though here there does seem to be some significant persistence in the
excess return on US bonds. As in the case of the UK, the GARCH(1,1)
structure is very successful in explaining the conditional volatility. All the
elements of the long-run unconditional matrix, V, are statistically signif-
icant. Once more this is supportive of volatility spillovers between the
markets in the long run. Volatility is transmitted between international
markets and shows that there i1s a high level of intergration between the
UK and US financial markets. Also the A and B matrices are strongly
supportive of important variances and covariances in the short run, espe-
cially the covariance between the two US assets. There is strong support for
contagion effects between US stock and bond markets with both Aszy and

Bsy having {-statistics greater than 1.96. The significance of these elements
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indicates that the optimal asset allocation can only be attained by short-run
re-balancing between US equity and US bonds. Once more the domestic
bond market appears to be segmented from volatility spillovers originating
in the foreign equity market with the parameters linking UK equity and US
bonds being indistinguishable from zero.

The main difference is that there are no significant contagion effects be-
tween the US and UK stockmarkets. Taken together, the UK and US results
seem to indicate that causality runs from the US to the UK stockmarket.
It would also suggest that the gains to the US investor from re-balancing
the portfolio in the short run between US and UK assets are likely to be
small. This is not to suggest that there aren’t likely to be gains to the US

investor to holding UK equity. The long-run covariance matrix is

s q

4173

V'V =1 1453 2034 ,

355 389 419

giving a correlation between the excess returns over the US risk-free rate on

US and UK equity of 0.50.
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5.5 Optimal Asset Allocation

5.5.1 Frontier Movements

Figures 5-1 and 5-2 show the conditional variances for each of the risky assets
denominated in UK pounds and US dollars respectively. These graphs show
the long-run value of the variance and also the total variance containing the
short-run deviations. It is clear that short-run deviations can be quite large,
and are therefore likely to have a significant impact on the portfolio frontiers
and hence on asset allocation in the short run. For each country fluctuations
in the exchange rate make foreign equity the asset with the most volatile
excess returns. Nonetheless, since 1993, there has been a noticeable decline
in volatility for all assets, and especially for equity returns expressed in
sterling. This reflects the relative stability of the £/$ exchange rate over
this period.

Next we generate the portfolio frontiers for both sets of investors. The
position of the frontiers reflect the minimum portfolio standard deviation
for a given portfolio return, hence this is just another way of comparing
portfolio standard deviations. Interestingly, we find that the US investor
enjoys a risk-return’ advantage over his UK counterpart. Figures 5-3 and
5-4 show this. In figure 5-3, we plot the mean frontier for each investor and

see that the US frontier lies inside the UK frontier at all points. This means
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that the US investor has to bear less risk than a UK investor to achieve the
same return. Figure 5-4 provides more information on the distribution of
frontier movements. It displays the maximum, minimum and mean frontiers
for each country and we find that each US frontier (light line) is consistently
located nearer to the origin than the corresponding UK frontier (thick line).
This result would suggest that the optimal portfolio of risky assets available
to the US investor should deliver a higher Sharpe Performance Index than
the equivalent portfolio in the UK. This graph also shows that although the
conditional distribution of frontiers for the US investor is shifted to the left
of that for the UK investor, there is considerable overlap in the distributions
and it indicates that the conditional distributions are positively skewed, with

a few periods when portfolio risk is much higher than the mean.

5.5.2 Optimal Portfolios

Once more the aim of the study is not to determine the final investment
position but rather to identify the time-varying constituents of the optimal
portfolio of risky assets for each investor. The location of the optimal port-
folio when there are no restrictions on short sales is obtained from the point
of tangency between the portfolio frontier and the Capital Market line which
goes through the origin. Figures 5-5 and 5-6 show the behaviour of both

the excess return and the standard deviation for the UK and US optimal
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portfolios respectively. Consistent with the location of the frontiers, we find
that the US portfolio delivers a higher mean excess return, 9.1% versus 8%.

Figure 5-7 shows the Sharpe Performance Index (SPI, = e

Zea) for each

portfolio. On average, the US portfolio achieves a higher SPI, 0.24 versus
0.18 and is much more stable than for the UK portfolio. However, the most
noteworthy feature of the figure is the remarkable improvement in the UK
SPI since 1992 due to a combination of the strong and persistent growth of
equity prices, and the relative tranquility of the stockmarkets, see figures

5-1 and 5-2. As a result the SPI for the UK has exceeded that for the US

since the end of 1994.

UK Investor

Next we seek to identify the proportions in which each asset must be held
in order for the investor to hold the optimal portfolio of risky assets. Ini-
tially, the allocation of funds for investment in risky assets was unrestricted,
allowing the investor to take unlimited short positions. Firstly, looking at
the UK investor, figure 5-8 shows the relative importance of each asset class
over the entire sample. We see that the UK equity dominates the portfo-
lio, accounting on average for 77% of the investment. However, the asset
holding fluctuates a great deal but is never held short. In fact, in many

cases more than 100% of the investor’s wealth is held in the domestic eq-
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uity. On the other hand, the UK bond is often held short to allow the extra
investment in equity. On average, the UK bond accounts for -4% of the
investment. The investment in bonds is very volatile and varies between a
maximum of 55% to a minimum of -166%. Throughout the sample period,
the investment in US equity is relatively stable and has a mean holding of
27%. It is held short in only one period during the entire 200 period sample.
It is also clear from figure 5-8 that the improved SPI is due entirely to the
increased investment in domestic equity with a corresponding decline in the
holding of the domestic bond. Obviously the combination of rising return
and declining conditional volatility increased the attractiveness of domes-
tic equity in the post-1993 sample. Table 5.1 contains a summary of the

unrestricted allocation over the entire sample.

Mean | Minimum | Maximum
UK Equity | 77% 24% 210%
US Equity | 27% -2% 60%
UK Bond -4% -166% 55%

Table 5.1: Summary statistics for optimal unrestricted UK portfolio

Of course such an investment strategy may be deemed too costly and
time consuming to implement as the frequent revisions in the position of
the individual assets are likely to incur transaction costs although the use

of indexed trackers or futures would help make it more feasible. A more
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realistic strategy would be to form portfolios that prohibit short sales. This
is a worthwhile exercise since UK mutual fund managers are restricted by
law to holding only non-negative quantities of an asset. These portfolios
are constructed to deliver the average excess return on the unrestricted
portfolio.

Figure 5-9 shows how the constituents of the optimal portfolio have
varied over the sample. UK equity still dominates the portfolio with a mean
of 71%, but its range of variation is reduced by a factor of about 9, having a
maximum of 8% and a minimum of 62%. The mean share of US equity is
similar and its range of variation is halved. The mean share of UK bonds is
4%, and its range of variation is reduced by a factor of about 20. Now that
borrowing by selling domestic bonds is prohibited, portfolio re-balancing
takes place mainly between domestic and foreign equity. This results in a
considerable reduction in the degree of re-balancing. Table 5.2 contains the

summary of the restricted holdings of each asset over the period.

Mean | Minimum | Maximum )
UK Equity | 71% 62% 89%
US Equity | 25% 0% 38%
UK Bond 4% 0% 11%

Table 5.2: Summary statistics for UK restricted portfolio
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Survey evidence shows that UK investors hold up to 18% of their wealth
in foreign assets. Our estimate is that a UK investor faced with the op-
portunity to form an optimal portfolio from these three risky assets should
hold about 25% of wealth in US equity. The difference between the two is

a measure of the extent of home bias by UK investors.

US Investor

A similar analysis was conducted for the US investor. Figure 5-10 shows
how the holdings of the individual assets behaved over the sample. Again,
the domestic equity dominates the portfolio. On average the investment in
domestic equity accounted for 64% of the funds invested in risky assets. We
observe that the holding of this asset fluctuates wildly, moving between a
range of 30% to 332%. Whenever in excess of 100% of wealth is invested in
US equity, it is always funded by adopting a short position in the domestic
bond. This asset is consequently very volatile but in the mean has a long
investment position of 16%. The UK equity contributes a very substantial
amount to the optimal portfolio with a mean position of 20% and is never
held short. Therefore, it makes a positive contribution to the portfolio in

each of the 200 months in the sample. Table 5.3 summarises this investment

strategy,

116



Mean | Minimum | Maximum
UK Equity | 20% 2% 109%
US Equity | 64% 30% 332%
US Bond 16% -342% 57%

Table 5.3: Summary statistics for US unrestricted portfolio

Again, this investment strategy looks excessively volatile and we restrict
the investor so that only non-negative positions can be assumed. Figure 5-11
shows the constituents of this portfolio over time and table 5.4 summarises

the restricted investment strategy for the US investor.

Mean | Minimum | Maximum
UK Equity | 20% 0% 43%
US Equity | 63% 38% 86%
US Bond 17% 14% 20%

Table 5.4: Summary statistic for optimal restricted US portfolio

The mean shares are hardly altered but the variation in the shares is
greatly reduced compared with the unrestricted portfolio. Again, US equity
dominates, having a mean investment position of 63% and a considerably
smaller range of 38% to 8%. The investment in the domestic bond is
remarkably stable moving only between 14% and 20% of the portfolio and
on average accounting for 17%. As in the UK model, the restricted portfolio
gives rise to a negative relationship between the domestic and foreign equity.
An increased investment in one is offset with a reduced position in the

other, leaving the domestic bond relatively unchanged. Despite this, the
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UK equity again contributes 20% of the average investment and is very
important relative to what observed behaviour might suggest.

Survey evidence shows that US investors hold as little as 6% of their
wealth in foreign assets. This compares with our estimate that 20% should
be allocated to UK equity. The home bias problem therefore seems to be

much more a feature of US than UK investment.

5.6 Conclusion

The aim of this chapter has been to re-examine the issue of the optimal
tactical asset allocation of an internationally diversified portfolio. These
results are then used to provide new ways of determining whether the lo-
cation of an investor ought to affect portfolio selection, and of addressing
the home-bias puzzle. The example used in the analysis is the optimal mix
of domestic and foreign equity, and domestic bonds that should be held by
UK and US investors, two countries that have not had significant barri-
ers to investing abroad for some time. Two tactical investment strategies
are compared. Both are versions of Markowitz’s mean-variance portfolio
theory in which investors use the joint conditional distribution of excess
returns, which is time varying, to re-balance their portfolios each period.
One allows investors to hold unlimited short positions; the other assumes

that investors are constrained from going short, the situation faced by most
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fund managers. The conditional covariance matrix is estimated using a
multivariate GARCH model.

We find that for both UK and US investors, although domestic equity is
the dominant asset, it is optimal to hold between 20% and 27% of wealth in
foreign equity. This compares with survey evidence which indicates that in
practice UK investors hold around 18% in foreign assets, while US investors
hold only about 6%. The home-bias puzzle seems therefore to be more
acute for US than UK investors. Put another way, there seems to be more
potential gains from increased international diversification for the US than
the UK investor.

We also find that the location of the investor is important in determining
the investment performance of the portfolio. The portfolio frontiers facing
the US investor lie nearer the origin than for the UK investor, implying that
US investors can achieve the same return while bearing less risk. This 'risk-
return’ advantage is also shown in the higher average Sharpe Performance
Index for the US - even though since 1993 the SPI for the UK has steadily
improved and now lies above that for the US.

Furthermore, our results provide evidence of contagion effects across
markets. We note that in the long run, regardless of the location of the
investor, there are volatility spillovers between all markets. Volatility is

transmitted between both domestic and international markets. In the short
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run we find that volatility in the UK equity market is influenced by the
US stockmarket but volatility is not transmitted in the opposite direction.
Also, stockmarket volatility spills over to the domestic bond market, but
in the short run bond markets appear to be segmented from foreign equity
markets.

In summary, we can say that the potential gains from international diver-
sification are not being fully exploited by either the UK or the US investor.
Hence, the home-bias puzzle still remains. Secondly, the US investor ap-
pears to have a ’risk-return’ advantage over his UK counterpart, resulting

in a better average performance from the US portfolio.
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Figure 5.1
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Figure 5.2

Conditional Volatility of UK Equity
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Figure 5.5

Excess Return on Optimal Portfolio

of UK Investor
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of US Investor

Figure 5.6
Return on Optimal Portfolio
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Figure 5.11

Restricted Portfolio of US Assets
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Chapter 6

Global Asset Allocation

6.1 Introduction

In this chapter we analyse the effects of increasing the number of assets in
which a financial market participant may invest. In particular, we address
the question from the perspective of a UK investor who is willing to in-
ternationally diversify his portfolio of risky financial assets. In preceeding
chapters, we employ a multivariate GARCH madel to generate time-varying
covariance matrices of asset excess returns and use these estimated variances
and covariances as inputs into the portfolio selection problem. One potential
criticism of these optimal allocation models is that, due to the well docu-
mented problems of dimensionality in estimating M-GARCH models, the

number of potential assets that an investor was allowed to hold was small -
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three in each of the aforementioned chapters. Here, we seek to address this
shortcoming by allowing the investor to form a global bond portfolio and a
European equity portfolio and then use these portfolios as one asset in the
final allocation procedure.

The first step in our analysis forms an optimal portfolio of global bonds.
Levy and Lerman(1988) find that a US investor who diversified across world
bond markets could have realised returns more than twice the mean rate
of return on a domestic US bond portfolio at the same risk level. In this
chapter, we allow the UK investor to form an optimal portfolio of inter-
national government bonds. Having found the optimal time-varying asset
proportions that form these portfolios in each period of the analysis, we
calculate the realised returns on this optimal portfolio and use this series
of returns as the returns on a single asset in the final allocation decision.
A similar process is followed to form the optimal time-varying portfolio of
European equities. Therefore the final portfolio selection decision focuses
on five assets, namely UK equity, US equity, Japanese equity, Furopean
equity and a global bond.

We find that the optimal portfolio of bonds is dominated by the home
bond with the Japanese bond also playing a significant role in its composi-
tion. There is also evidence that the excess returns on national government

bonds may be more predictable than equity returns. The conditional second
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order moments are well characterised by a M-GARCH(1,1) process. Mean-
while the most important component of the European equity portfolio is
the French equity, followed by German equity with the Italian asset making
a very limited contribution. Finally, we solve for the time-varying optimal
global portfolios and discover that UK equity dominates the portfolio, with
US and French equity being other substantial components. Both German
equity and the UK bond also play a major role in forming these portfolios.

Our results also suggest that in the long run, volatility is transmitted
between stock markets with the exception of Japanese and European mar-
kets but there is no evidence of any spillover effects between stock and bond
markets. These markets appear to be segmented in the long run. In the
short run, volatility spillovers again occur between the stock markets with
Japan-Europe remaining the exception. We find limited evidence of volatil-
ity spillovers from the UK and Japan stock markets to bond markets but
this is probably due to the fact that the bond portfolio is dominated by the
government bonds of these countries.

Expanding our investment opportunity set is seen to offer the investor a
significant risk-return advantage and substantially improve the performance
of the optimal portfolio. However, the home bias problem discussed in the
previous chapter is further accentuated by the introduction of more assets.

Our results show that on average, 57% of investable funds should be held
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in home assets with the remaining 43% invested in foreign assets. However,
actual survey results presented in French and Poterba(1991) claim that UK
investors hold portfolios comprised of 82% home assets. This suggests that
the problem is more acute than previously thought.

The remainder of the chapter is structured as follows. Section 6.2
presents the M-GARCH model that is used and discusses the data. In sec-
tion 6.3, we present the results of the analysis. Finally, section 6.4 contains

our concluding remarks.

6.2 The Model and Data

6.2.1 The Model

The time-varying variances and covariances of the financial asset excess re-
turns are generated using the parsimonious representation of the M-GARCH(1,1)
model proposed earlier. This model has a VAR(1) structure in the condi-
tional mean equations with the conditional second order moments following
a GARCH(1,1) process. When we deal with national stock market indices,
we allow for the possibility of including a dummy variable to capture the
influence of the October 1987 Stock market crash. Therefore the model

which we estimate is as follows:
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rr = a+fr,_;+ydum87 +§,
& | Vi~N(OH,) (6.1)

H, = V'V+A(H_, - VV)A+B(¢, ¢ - VV)B,

where r; represents a kxl vector of financial asset excess returns to be
defined for each of the applications undertaken in this chapter. 3 is a kzk
matrix of regression parameters and 4 is a kxl vector of parameters. V,
A and B are full kzk symmetric matrices, with V'V denoting the long-run
unconditional covariance matrix of asset excess returns. The parameters
of the A and B matrices signify the importance of the short-run dynamics

and identify the sources of these short-run deviations from the computed

long-run value.

6.2.2 The Data

This chapter uses total return time series data on national stock market
indices for the UK, the US, Japan, Germany, France and Italy and on
government bond indices for the UK, the US, Japan and Germany. The
UK equity market is represented by the Financial Times All share index,

US equity by the Standard and Poors Composite index, while the new
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Tokyo stock exchange is used to represent Japanese equity. On the other
hand, each of the European national indices is represented by a Datastream
calculated index. We use these for European equities so that the sample
period covered is as long as possible. Each of the national government bonds
is represented by a Datastream calculated all government bond index. As
the analysis is conducted from the perspective of a UK investor each of the
national indices is converted to sterling using end of month exchange rates.

As in the previous chapters, the data used in this chapter is annualised
monthly total returns for each asset including both capital gains and divi-
dend payments in the case of equities and coupon payments for government
bonds. The rate of return on the UK government 30 day Treasury bill is
taken as the risk free rate of interest. All data was sourced from DATAS-
TREAM.

The data covers a sample period beginning in January, 1982 and finishing
in May, 1998. Again, we have chosen to work exclusively with rates of return
in excess of the risk free rate to prevent volatility in the risk free rate from
incorrectly contributing to the risk of the optimal risky portfolio. Once

more, each of the excess return series were found to be stationary.
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6.3 Results and Analysis

6.3.1 Global Bond Portfolio

The model specified in equation (6.1) was maximised subject to the BHHH
algorithm. In this application of the model, the vector of asset excess re-
turns was defined as r = (ukb,usb, grb, jpb)’ with ukb denoting the UK
government bond and usb, grb and jpb representing the bonds of the US,
Germany and Japan respectively. The dummy variable for the stock market
crash was omitted from this model.

This maximisation routine produced the following results with the cor-
responding ¢-statistics reported underneath in brackets. Since V, A and B

are symmetric, we report only the lower triangle.
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Mean Matrices

2.94
(1.73)
0.30
(0.10)
—0.54
(0.22)

—0.001

(0.04)
Covariance Matrices

r

23.73
(4.79)

7.51

[ 001
(0.15)
~0.17
(1.19)
—0.09
(0.75)

-0.13

| (0.76)

41.35

(1.06) (15.03)

5.04
(1.16)

8.75

12.26
(3.79)

20.56

| (256) (6.33)
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0.02
(0.36)
—0.04
(0.42)
—0.04
(0.53)
—0.16

(1.62)

26.54
(10.43)

16.13

(3.15) (10.67) |

—0.20 0.14 -
2.71) (2.22)
0.37 0.04
(2.86) (0.38)
0.32  0.02
(2.83) (0.24)
048 0.15

(3.75) (1.69) |

30.57




0.37
(1.35)

—0.23  0.50

(1.13) (1.48)
—0.56 0.07 0.29
(3.33) (0.24) (0.77)

-0.63 —-0.47 —-0.43 0.09

(4.14) (2.18) (1.80) (0.35)

Discussion of Results

0.18
(2.45)
0.21
(4.52)
—0.03
(0.50)
—0.01

(0.12)

0.12

(1.27)

0.65 0.02
(4.06) (0.23)

0.13 —-0.12 0.12

(1.99) (1.63) (0.13)

The results of the estimation process are very interesting. Firstly, it would

seem that the level of the excess returns for bonds are more predictable

than for equity when compared to our other studies. In particular, the first

lag of the excess return of the German bond has significant explanatory

power over the current value of each government bond (looking at the third

column of the @ matrix). It has a positive relationship with each of the

other bonds except with that of the UK. While the UK, US and German

bonds have one statistically significant determinant, the excess return on

the Japanese bond can also be predicted using its own lag and the lag of

the US bond.
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Turning our attention to the second order moments, we notice that the
elements of the long run matrix, V, are predominantly statistically signifi-
cant. Each of the own variance elements is significant as are the covariance
terms with the exception of those relating the UK bond to both the US
and German bonds. However, when we focus on the short-run deviations
about the long run, we find that most of these dynamics are coming from
the off-diagonal elements. Each (i, j)th element of H, has a correspond-
ing statistically significant (7, j)th element in either the A or B matrices.
The relationships between each of the other bonds and the Japanese bond
seem to be particularly important sources of short-run volatility with all
the parameters in the fourth rows of A and B playing a crucial role in the
transmission of volatility between international bond markets. The large
number of significant covariance terms in the short run would suggest that
the optimal portfolio will require frequent re-balancing.

The long-run covariance matrix (V'V) of government bond excess re-

turns is

562.93
178.16 1795.94

119.77 544.96 879.99

207.68 915.83 724.21 1694-03_
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giving correlation coefficients between the excess returns over the risk-
free rate on the UK bond and US bonds of 0.18, UK and German bonds
of 0.17 and UK and Japanese bonds of 0.21. These correlations are quite
low compared to the correlations between the foreign bonds and, recalling
Markowitz’s argument that we should diversify across assets with low return
correlations, suggests that the UK bond should form a large part of the
portfolio. The exchange rate component may partially explain the higher

correlations between the non-domestic bonds.

Optimal Portfolios

The importance of short-run deviations from long-run volatility is captured
for each of the bonds in figure 6-1. Here we plot the total conditional
variance of each bond with its long-run value, depicted as a heavy horizontal
line. For each bond, we observe that there is considerable short-run activity
which is likely to influence our selection of the optimal bond portfolio in each
period. Both the US and Japanese bonds are highly volatile though Japan
has more short-run action. The returns on the German bond are surprisingly
stable when we realise that this series also contains exchange rate risk. In
fact, its range of movement is less than that of the UK bond, which is
the home asset and is free from the effects of exchange rate movements.

However, long-run volatility is smallest in the UK.
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Having computed the time-varying conditional variance-covariance ma-
trices, we can now generate the portfolio frontiers and find the location and
composition of the optimal bond portfolio for each period of the analysis.
We first compute the optimal bond mix when there is no constraint on the
sign of the assets in the portfolio, i.e. the investor is allowed to hold un-
limited short positions in each of the assets. Under this allocation strategy,
we find that the UK investor should hold the individual bonds as specified
in figure 6-2. The UK bond is the dominant asset in the portfolio in each
period, with a mean holding of 84%. This is not surprising as it is free
of exchange rate risk and is consistent with its relatively low correlation
with the other assets. The next most popular bond is the Japanese bond,
accounting for 17% of the portfolio on average. It contributed greatly to
the composition of the portfolio in the early period of the sample but af-
ter 1996, its importance is diminished and is often held short. The US
bond is the third most important and in the vast majority of periods has
a small but positive holding, it has a mean position of 10%. In contrast,
the German bond is usually held short with the proceeds from this position
allowing greater investment in the other bonds. On average its held short
to the tune of 11% of investable funds. The main features of this allocation

strategy are summarised in table 6.1.
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Mean | Minimum | Maximum
UK Bond 84 56 106
US Bond 10 -30 31
German Bond -11 -62 28
Japanese Bond | 17 -14 81

Table 6.1: Summary statistics for the unrestricted global bond portfolio

As before, we find that this tactical asset allocation strategy produces
asset holdings which are excessively volatile and require large revisions to
the portfolio from period to period. In order to overcome the problem, we
introduce an added restriction that the holdings of each asset have to be non-
negative. This constraint rules out the possibility of taking short positions
in an asset which is consistent with the requirements of UK legislation.
Figure 6-3 shows the composition of the optimal constrained global bond

portfolio over the entire sample while table 6.2 summarises its key features.

Mean | Minimum | Maximum
UK Bond 80 69 94
US Bond 6.5 0 13
German Bond 0.5 0 5
Japanese Bond | 13 0 31

Table 6.2: Summary statistics for the restricted global bond portfolio

Under this strategy, the UK bond continues to dominate the portfolio.
On averagg, it accounts for 80% of the portfolio and its range of movement,
69% to 94%, is substantially dampened. The relative importance of each
of the other assets remains unaltered, with the Japanese bond having a
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mean holding of 13%, followed by the US bond with 6.5% and the German
bond contributing only 0.5% on average. Each of the foreign assets have a
minimum holding of 0%, proving that this added constraint is binding.

We now use these computed restricted weight vectors for each period of
the analysis to compute the optimal portfolio of international government
bonds. Once formed, this portfolio will constitute one asset in the final
allocation procedure. Having found the optimal proportion of wealth to
invest in national government bonds, we can then return to solve for the
optimal amount of investment in each individual government bond when

the opportunity to invest in equity also exists. This analysis is conducted

in section 6.3.3.

6.3.2 European Equity Portfolio

We now build another asset based on a portfolio of European equities.
All returns have been converted to sterling since we are addressing the
problem from the perspective of a UK investor. Again we use the model
as specified in equation (6.1) with the vector of excess returns defined as
r =(greq, freq,iteq)’ where greq, freq and iteq denote total returns on Ger-
man, French and Italian equity market indices respectively. Surprisingly,
the dummy variable for the 1987 stock market crash proved to be insignif-

icantly different from zero and its omission helped the convergence proce-
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dure. Therefore, we omit this dummy variable from the model.

When this model achieved convergence under the BHHH algorithm, it
yielded the following results. The results for each matrix defined in the
model are presented below with the corresponding ¢-statistics in brackets

underneath.

Mean Matrices

9.66 —0.10 0.08 0.11

(2.01) (1.08) (0.86) (1.65)

12.56 —0.07 0.003 0.07
a= B=

(2.30) (0.58) (0.03) (1.04)

10.97 -0.09 0.11 0.03

(1.62) (0.74) (0.85) (0.35)

Conditional Covariance Matrices

V, A and B are all symmetric matrices.
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59.24

(9.76)
54.82 39.46
V =
(3.66) (1.38)
41.14 26.31 62.11
(6.62) (1.66) (4.12)
[ ] [
0.02 0.11
(0.03) (1.13)
0.06 0.46 032 0.11
.A.= ,B=
(0.23) (1.51) (3.64) (1.11)
0.74 -0.55 0.04 0.14 0.01 0.08
(6.30) (2.39) (0.11) | (183) (012) (121)

Discussion of Results

The results of this procedure confirm that its extremely difficult to predict
the excess return on equity. It is clear from the 3 matrix that none of the
lagged returns on the German, French and Italian stockmarkets have any

statistically significant predictive power over their contemporaneous values.
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The exception might be the use of the first lag of the Italian return to
forecast the German market but this is still only marginally different from
Z€ro.

Consistent with our other studies, we find that the conditional second
order moments are much more forecastable. Looking at the V matrix, we
see that all the long-run parameters are significantly different from zero, and
very strongly so in most cases. This evidence alone is strongly supportive
of the hypothesis that European equities exhibit (G)ARCH behaviour even
at monthly horizons.

The long-run conditional covariance matrix of asset excess returns is
given by:

3509.65

3247.90 4562.95

2437.30 3293.59 6242.76

giving rise to large correlation coefficients between each pair of markets.
As in the global bond portfolio selection (see section 6.3.1), our results
suggest that in the short run, most of the actions stems from the asset co-
variance terms, i.e. the off-diagonal elements. From the A matrix, we find
evidence that the relationships between Italian-German (A31) and Italian-

French (Asz) markets contribute significantly to the sources of short-run
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volatility in the system. Specifically, these parameters capture the persis-
tence in this source of variability. Likewise, the B matrix has statistically
significant elements in By; and Bs; which capture short-run relationships
between the German-French markets and German-Italian markets respec-
tively. Once more this indicates that re-balancing between these assets will
be required in forming our optimal tactical asset allocations.

Our results are consistent with volatility transmissions across the major
European markets in both the long run and the short run. This strong sup-
port of the importance of the covariance terms in computing both the total
and long-run conditional variances and covariances is strongly supportive of
our modelling approach. Many other studies assume such matrices to be di-
agonal (e.g. Engle et al.(1990) or adopt the restrictive constant correlations
approach of Bollerslev(1990)) and we demonstrate that these studies lose a
great deal of important information. Exploiting this information allows us

to form better performing portfolios of risky assets.

Optimal Portfolios

Figure 6-4 shows the conditional variances of each asset together with their
long-run unconditional values. Each asset exhibits a large degree of vari-
ability, though the French equity is distorted by one spike which coincides

with the US stock market crash. Both the German and Italian markets were
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effected to a lesser degree but have other periods of turbulence also. When
we focus on the long-run variances, we see that German market is the least
volatile of the European markets while the Italian market is highly volatile.

As before, we begin with an unrestricted allocation of funds among the
three asset classes. The optimal mix of assets for each period of the analysis
is captured in figure 6-5. Clearly from this picture, we see that the French
equity dominates the portfolio. It has a mean holding of 66.5% of investable
funds. The French equity is always held in positive quantities. The German
equity, on the other hand, has an average long position of 34.5% but its
holding is quite volatile and in fact, its held short in at least 10 periods.
The Italian equity holding is most often quite small in magnitude and on
average is held short, composing -1% of the portfolio. Table 6.3 summarises

this asset allocation strategy.

Mean | Minimum | Maximum
France 66.5 15 191
Germany | 34.5 -71 90
Italy -1 -19 29

Table 6.3: Summary statistics for unrestricted European equity portfolio

Once more, this asset allocation is deemed to be excessively volatile, so
we adopt the alternative approach where short sales are prohibited. Under

this strategy, we find an allocation that is very stable over time. Figure
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6-6 depicts the constituents of this portfolio over the entire sample. The
portfolio consists mainly of French equity in each period and on average
contains 66% of this asset. It is quite consistent and always contributes
between 65% and 75% of the portfolio. The German equity comprises most
of the remainder of the portfolio, having a mean holding of 31.5%. There
are a number of occasions when the added restriction is binding and the
German equity is not held. Its holding never exceeds 34% of investment
funds. Finally, the Italian equity is not a very popular asset from the
perspective of a UK investor. It is very often omitted from the optimal
portfolio of European equities and has a mean holding of 2.5%. The returns
on Italian stock are obviously not sufficient to compensate the investor for
holding this highly volatile asset. This problem is compounded by the fact
that the Italian lira is also a volatile currency and the exchange rate risk

is likely to be larger than that for the sterling-mark or sterling-franc rate.

Table 6.4 presents a summary of this restricted allocation strategy.

Mean | Minimum | Maximum
France 66 65 75
Germany | 31.5 0 34
Italy 2.5 0 25
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Table 6.4: Summary statistics for restricted European equity portfolio

We use these restricted time-varying weights to form the optimal port-




folio of European equity which will constitute a single asset in the global

asset allocation presented in the following sub-section.

6.3.3 Global Asset Allocation

Having formed optimal portfolios of bonds and European equities, we can
now address the question of global asset allocation. As before, we estimate
the time-varying covariances using our M-GARCH model of equation (6.1).
Here the vector of asset excess returns is given by r =(ukeq, useq, jpeq, eueq, gblb)’
where ukeq, useq and jpeq refer to the national stock market returns for
the UK, US and Japan respectively; eueq denotes the portfolio of European
equities formed using the time-varying vector of asset weights generated
by the results of section 6.3.2; while gblb refers to the global bond portfo-
lio formed on the basis of our results from section 6.3.1. Once more, the
model was maximised subject to the BHHH algorithm and the parameter

estimates are reported here with corresponding ¢-statistics in parentheses.
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Mean Matrices

11.74

(2.78)
11.77
(1.96)
4.98

(0.61)
14.25
(2.44)

2.88

(1.12)

0.03
(0.31)
0.03
(0.19)
—0.002
(0.02)
~0.11
(0.88)

0.03

(0.41)

0.07
(0.64)
0.04
(0.30)
0.01
(0.05)
0.13
(1.02)
—0.01

(0.30)
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0.07
(1.11)
0.03
(0.41)
0.11
(1.11)
0.05
(0.67)
0.03

(0.91)

—0.18
(2.12)
—0.12
(1.04)
~0.10
(0.65)
—0.06
(0.57)
—0.09

(2.00)

0.22
(0.96)
0.05
(0.17)
0.31
(0.80)
0.17
(0.56)

0.10

(0.95)

Y =

—278.12

(1.67)
—160.54

(1.85)




Covariance Matrices

51.72
(7.36)
31.78
(2.81)
24.66
(1.95)
30.37
(4.37)
13.51

(0.94)

53.46
(9.54)
25.54
(1.93)
13.12
(1.68)
3.88

(0.16)

74.83
(5.66)
11.99
(0.80)
4.84

(0.09)
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46.96
(4.17)

—2.31 0.07

(0.03) (1.50) |



— —0.06
(0.17)
—0.45
(1.77)
—0.03
(0.07)
~0.41
(1.90)

0.04

| (0.09)

—0.53
(2.17)

~0.16 —0.17
(1.63) (0.25)

~0.15 0.13  0.59
(0.52) (0.33) (2.39)

—0.01 043 -0.25 —-0.70

(0.02) (1.16) (1.04) (L77)
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[ 0.8 -
(1.96)
—0.09 0.14
(0.84) (1.08)
n _ | 018 005 o
(2.42) (0.63) (1.12)
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Discussion of Results

The coefficients of the VAR(1) conditional mean equation confirm the dif-
ficulty of predicting future financial asset excess returns. The majority of
these coefficients are not statistically different from zero. The exception
is that the first lag of the excess return on European equity seems to have
some predictive power over both UK equity returns and returns on the global
bond. Interestingly, the relationship between the European equity and each
of the other assets is negative, though only in the case of UK equity and
the global bond (which is dominated by the UK bond) is the relationship

statistically significant at the 5% confidence level. It was found to aid the
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convergence procedure to include a dummy variable for the October 1987
stock market crash in the equations for both UK and US equities.

Focusing on the long-run covariance matrix, we find that V has statisti-
cally significant elements along the main diagonal and among the covariance
terms between the individual equity markets. Focusing on the covariance
terms in rows 1 to 4 of this matrix strongly supports the hypothesis that
volatility is transmitted from one equity market to another. This volatil-
ity spillover is evidenced between all pairs of markets with the exception
of Japan-Europe whose markets appear to be segmented from each other.
However, the off-diagonal elements of the final row are not statistically dif-
ferent from zero, suggesting that in terms of the transmission mechanism
for long-run volatility, bond markets are segmented from equity markets.
This suggests that there is no spillover of stockmarket volatility to national
government bond markets in the long run.

Turning our attention to sources of short-run volatility, we find that there
is evidence of contagion effects between most of the stockmarkets across the
world. Evidence of short-run volatility spillovers between UK and US is
supplied by the statistical significance of parameter Ay;, UK and European
spillovers by A41, UK and Japanese by Bs;, US and Japanese by Asy and
US and European by Byy. Only European and Japanese markets seem to

be segmented (as in the long-run situation) with neither A3 nor Bys being
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significantly different from zero. There is also evidence of the importance of
short-run deviations from long-run volatility by virtue of the significance of
the diagonal elements for the UK (Bi1), the US (As;) and European equity
markets (A4 and By).

Finally in the short-run, we find some evidence that stock and bond
market volatility may be linked. There is a statistically significant rela-
tionship between our global bond portfolio and both the UK and Japanese
equity markets. This may be due to the fact that our global bond portfolio
is dominated by UK and Japanese bonds (on average these two bonds com-
prise 93% of the portfolio). Short-run deviations in bond market volatility
seem to be caused by its own variance effect and the aforementioned rela-
tionships with UK and Japanese equity markets. Consequently we would
expect much of the portfolio re-balancing to occur between the individual
equities.

The long-run variance-covariance matrix of asset excess returns is given

by:

2674.76
1643.51 3867.95
1275.12 2148.83 6859.04

1570.81 1666.50 1981.23 3443.66

699.15 636.92 794.73 411.08 226.58
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and shows that when all returns are denominated in sterling, the Japanese
equity market is the most volatile with the UK market being the most
tranquil. The global bond is by far the least volatile asset available to the
potential investor. Figure 6-7 plots the unconditional variance of each asset
together with short-run deviations about this value. Clearly, the short-run
action is going to be important in determining the optimal mix of assets in

our time-varying portfolios.

Portfolio Frontiers

Having computed the conditional covariance matrices for each period of the
analysis, we use these variances and covariances as inputs into the mean-
variance portfolio selection process. We then generate the portfolio frontiers
for each period of the analysis. Figure 6-8 contains information on the dis-
tribution of the frontiers by plotting the time-varying mean, minimum and
maximum frontiers for the entire sample. Firstly, we observe that there
has been considerable variation in both the shape and location of the fron-
tier. This alone suggests that we have gained vital information by adopting
our modelling approach as opposed to assuming a static unconditional co-
variance matrix. Again, we observe positive skewness in the distribution

suggesting that there are some periods in which risk is far higher than the

mean.
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Secondly, we plot the mean frontier generated by our two studies on
international diversification. In the previous chapter, we allow the UK in-
vestor only one opportunity to diversify internationally. The only foreign
asset in the investment opportunity set is US equity. Here we extend the
number of foreign assets to include equity and government bonds from the
US, Japan, and Germany as well as French and Italian equity. This allows
the UK investor to select the optimal portfolio from among 10 risky finan-
cial assets including 8 foreign assets. Figure 6-9 plots the mean frontier
generated by these two investment opportunity sets. We see that the UK
investor can reap substantial risk-return gains from considering a broader
range of potential investment vehicles. This is clear from the fact that the
frontier generated by the "global” investment set is closer to the origin at
all points, thereby delivering equal return for the burden of less risk. It
is therefore possible for investors to reduce their portfolio risk by holding
a broader range of non-domestic assets. Figure 6-10 confirms this fact by
plotting not only the mean frontiers but also the minimum and maximum
frontiers. The global frontiers (shown by the heavy lines) always lie inside

their counterparts generated by the more restricted investment set.
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Optimal Portfolio Performance

With the portfolio frontier computed for each period, we can identify the
optimal portfolio of risky assets as the point of tangency between the capital
market line and the frontier. Figure 6-11 shows the behaviour of both the
excess return and the standard deviation of the optimal portfolio over time.
As expected they move together, showing that the burden of more risk must
be compensated by a higher return.

Calculating the Sharpe Performance Index ( SPI = 7%27Bt) for each
portfolio, gives the greatest confirmation that the extended investment set
offers an improved portfolio to the investor. Figure 6-12 shows the SPI over
the whole sample. On average, the optimal portfolio has a SPI value of
0.30. This represents a massive increase of 67% over the average SPI value
achieved when the only foreign asset was US equity and an even bigger
increase of 87.5% when the investment set was limited to domestic assets.
Therefore, the message is clear. International diversification leads to better

performing portfolios and the greater the number of assets considered, the

larger the potential gains in performance terms.

Optimal Portfolio Composition

We begin our asset allocation problem by looking at the unrestricted allo-

cation strategy. There are no constraints on the sign of the asset holdings.
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Using this approach, we get a highly volatile series of asset weights for each
of the five assets in the analysis. Figure 6-13 shows their behaviour over
time. As usual, the home equity dominates the portfolio with an average
holding of 52%. However, there is a period when this asset is held short. In
fact each of the assets in the analysis is sold short at some stage, leading
to large and frequent changes in the composition of the portfolio. The US
equity is the next most important asset, accounting on average foc 28% of -
vestable funds. Both the European equity and the global bond have positive
mean holdings with 20% and 11% of the portfolio respectively. However,
the Japanese equity is frequently held short and on average has a position
of -11%. However, the allocation strategy yields extremely volatile holdings

and these are summarised in table 6.5.

Mean | Minimum | Maximum
UK Equity 52 -11 305
US Equity 28 -21 216
Japanese Equity | -11 -45 5
European Equity | 20 -47 142
Global Bond 11 -3563 62

Table 6.5: Summary statistics for unrestricted global asset portfolio

This strategy is clearly not implementable in a world where there are
transaction costs incurred when changing your portfolio, both monetary

and time costs. Therefore, it seems more necessary than ever to adopt our
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constrained allocation procedure which prohibits the short sale of assets.
Figure 6-14 shows the composition of this optimal portfolio over the entire
sample. The UK equity again dominates with a mean holding of 52% and
even though its volatility 1s reduced, it still moves between a range of 0 and
90%. With the investor no longer able to generate extra funds through the
short sale of Japanese equity, the European equity replaces the US equity as
the second most important asset, with 21% of the portfolio as against 20%.
However, when we break the European equity down into its component
parts, the US equity regains its status as the most attractive foreign asset.
The Japanese equity is almost always omitted from the optimal portfolio and
has a mean position of zero. Even when it makes a fleeting appearance, it
never accounts for more than 4% of the portfolio. The global bond holding
is the most smooth in the portfolio. This is confirmed by the relatively
small range of movement throughout the 16 year sample, from 5% to 8%.
The investor seems to be keeping, on average, 7% of investable funds in
the safest asset and rarely alters its position. This is consistent with the
non-significance of the covariance terms linking government bonds to equity

markets. Table 6.6 summarises the asset holdings.

We now proceed to decompose the European equity and the global bond
into their constituent parts (see figures 6-3 and 6-6). Since the French equity
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Mean | Minimum | Maximum
UK Equity 51.8 0 90
US Equity 20 0 56
Japanese Equity 0 0 4
European Equity | 21.2 0 142
Global Bond 7 5 8

Table 6.6: Summary statistics for restricted global asset portfolio

dominated the European portfolio, it becomes a very important component
of the global asset portfolio and contributes 14% on average. German equity
also plays an important role in the portfolio, with an average holding of
almost 7%. The Italian equity, on the other hand, does not hold much
appeal to the UK investor and has a mean holding of only 0.5%.

Looking at the bond portfolio, we found that it is mainly composed of
UK and Japanese bonds. In the global asset portfolio, these assets account
for almost 6% and 1% of the portfolio respectively. Interestingly, the smooth
allocation to bonds, results in the UK bond being the only asset that is
always held in the portfolio. Neither US nor German Honds contribute
significantly to the portfolio with mean holdings of 0.5% and 0%. In table
6.7, we combine all the parts of this study and show the mean and range of
asset holdings that constitute the optimal portfolio of assets available to a

UK investor.
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Mean | Minimum | Maximum
UK Equity 51.7 0 90.3
US Equity 20.0 0 56.5
Japanese Equity | 0.0 0 4.1
French Equity 14.0 0 47.3
German Equity 6.7 0 25.3
Italian Equity 0.5 0 14