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Abstract  

In this thesis are presented studies which are aimed at elucidating the effects, if 

any, that the hydrogel phase has in influence chemical processes of relevance 

to abiogenesis over the aqueous phase. The significance of this is set in the 

light of the hydrogel hypothesis which suggests that the most primitive 

organisms would have emerged within a hydrogel environment rather than 

purely an aqueous one. 

Chapter 1 provides an introduction to the fundamental principles of interest to 

this work, discusses hydrogels, their synthesis, properties, applications and 

especially their potential role in abiogenesis. Also discussed are the concepts of 

amphiphilic self-assembly and molecular diffusions which are two molecular 

behaviours that have been looked at in most detail here. This chapter then 

concludes with some discussion of the analytical techniques used within the 

project. 

Chapter 2 describes the preparation of silica hydrogels (the main hydrogel used 

in this work) along with methods for isolating the silica matrix and surface 

analyses using electron microscopy and associated techniques (BET, EDX). 

This section also includes the results of dynamic light scattering and 

thermogravimetric studies on silica hydrogels.   

Chapter 3 outlines how amphiphilic self-assembly of a probe molecule, sodium 

dodecylsulphate (SDS), behaviour differs between the aqueous and silica 

hydrogel phases. This is achieved through measurements of critical micelle 

concentrations in both phases using UV-VIS spectrophotometry and 

colorimetric reporter dyes (merocyanine 540 and pinacyanol chloride). The key 

outcome being that CMC’s are definitively reduced in the salt-containing silica 

hydrogel over the pure aqueous phase. 

Chapter 4 describes investigations into a decolourisation phenomenon 

observed with the merocyanine 540 dye which says it complete colour bleach at 

high silicate concentrations of the hydrogel. Whilst the investigations did not 

produce a definitive answer to this issue it did highlight a protective role for 

amphiphiles in the decolourisation and also led, indirectly, to observations 

allowing us to probe gelation times using simple light scattering.  

Chapter 5 discusses the use of diffusion order spectroscopy (DOSY) as a 

technique for measuring and comparing molecular diffusion coefficients in both 

aqueous and silica hydrogel phases. Molecules of prebiotic significance such as 

the adenosine phosphates and condensed phosphates, AMP, ADP, ATP as 

well as the sugar d-ribose. Results suggest that direct measurements of 
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diffusion coefficients in the silica hydrogel phase is effective and offers a 

potentially useful tool for probing more complex diffusional behaviours. 

Chapter 6 contains the experimental details from Chapters 2-5 and Chapter 7 

offers a summary, conclusions and future work perspective. 
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Chapter 1 Introduction and Background 

The aim of this chapter is to explain the structural concept of silica hydrogel 

along with its importance in abiogenesis studies as a reaction environment in 

which most likely to be present in Hadean period. The next part of this chapter 

mainly focus on techniques and instrumentations which used during my study 

and the theory principles behind it. 

1.1 Hydrogels 

A hydrogel is a three-dimensional network composed of a (macro)molecule that 

is dispersed in water, forming a structure that contains large amounts of water. 

This ability is due to cross-linkage of the hydrophilic chains of the gelator1. The 

following definition of a hydrogel by P. W. Atkins has widely acknowledged: “it 

is a semi-rigid mass of a lyophilic sol in which all the dispersion medium has 

been absorbed by the sol particles”2.  

The term ‘hydrogel’ should fulfil the following criteria and phenomenological 

characteristics to be considered as a gel system: (a) it consists of at least two 

different components one of which is an aqueous phase, and (b) the formation 

of matrices which are solid, soft or solid-like components 3. 

 

1.1.1 Applications of silica hydrogels(SHGs) 

In the work described in this report, commercially available sodium silicate 

solutions (water glass) have been to prepare silica hydrogels. The repeat unit 

of the hydrogel chain is shown in Figure 1-1 

 

Figure 1-1 Structure for commercially available aqueous sodium silicate 
solution 

 

The polymer chains of silica hydrogels (SHG’s) usually exist in a random 

orientation coiled around each other 1. Several recent applications of silica 

hydrogels have appeared, of which the following are highlights: 
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1- The hydrogels can be used as the basis for drug delivery systems 4-6 

2- Silica hydrogel hybrid beads have been developed as an array chip used 

in the medical field as cancerous tumour markers 7. 

3- Used in producing a hydrophilic and gel-like biological interface coating 

material by using a method called Low-Pressure Plasma without any 

reaction of a functional group in the aqueous phase 8. 

4- Biodegradable systems for wound healing 9. 

5- Sugar-based hydrogels have been developed as food additives 10.  

6- Scaffolds in tissue engineering 11 

7- According to Wang ‘hydrogel composites may be used as a growth 

factor and cell carriers for cardiovascular tissue engineering’ 12. 

8- Hydrogels have been developed as biosensors in a neural control 

system 13. 

9- Hydrogels have been proposed as a plausible environment for the first, 

primitive proto-cells within the field of cellularity emergence. 14. 

10- Hydrogels have been used as control systems to regulate fluid flow 

within microfluidic channels 15 

11- Hydrogels are routinely used in the field of cell engineering and 

regenerative medicine as culture models due to their viscoelastic 

nature16.  

12- Recent biomedical applications for hydrogels have seen them used as 

enzyme-responsive systems inside cells 17. 

13- Hybrid organic-inorganic films, prepared by the sol-gel method, have 

been used as a coating material to reduce corrosion in aluminium 

pipes18. 
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1.1.2 Importance of Hydrogels in Abiogenesis 

The origin of life problem continues to challenge scientists, philosophers and 

the general public alike.  From the scientific perspective, scientists are trying to 

understand how the first, primitive cellular life forms could have emerged on the 

early, Hadean earth. This involves consideration of which physical and 

chemical conditions would have been required, which environments are 

suitable for the growth and division of the first such cellular organisms and 

whether mineral surfaces or deep oceanic vents, among others are implicated 
14, 19-25. To answer these questions, an implicit presumption is made that a 

biological cell, is essentially an aqueous suspension of solutes. Thus, it is 

usually considered that pre-cellular environments would also most likely 

conform to an aqueous suspension either by itself or in close proximity to a 

mineral surface with the potential to act as a catalyst/partitioning material 26. 

Consequently, all essentially prebiotic chemical studies have been conducted 

within environments that resemble: (i) fresh water aqueous, (ii) salt water 

aqueous, (iii) wetting-drying cycles, (iv) the aqueous-mineral interface. it has 

been proposed that another environment may be as important if not more 

important that these others, and that is a hydrogel. Why? If we are trying to 

understand the emergence of the most primitive life on earth, then this life is 

most probably viewed as a unicellular organism. Unicellular organisms exist 

today of course and It has been shown that their basic environment is one of  

cytoplasm, and this is best described as being a hydrogel rather than an 

aqueous suspension 26.   

Despite this connection, to date there have been remarkably few experimental 

studies published, to the best of our knowledge, that explore abiogenesis 

experiments within hydrogel environments27. The idea was recognised and 

promoted as a theoretical hypothesis in the mid-2000’s. Trevors and Pollack in 

2005 proposed that ‘a primitive hydrogel was a more suitable environment for 

the assembly of pre-cells, and ultimately cells capable of growth and division’. 

Gels, for example, retain their integrity even in the absence of a membrane as 

they have a definitive separation mechanism from its immediate aqueous 

environment that is due to differences in natural density or viscosity. The 

hydrogel environment has the ability to retain a large amount of water, gas 

bubbles and oily hydrocarbons due to the cross-linked molecular structure 14. 

The first, most primitive geological gel environment may have been composed 

of an oily water mixture interfaced with each other 28. Such a prebiotic gel may 

then have transitioned into something akin to a biofilm, by capturing essential 

nutrients (from the surrounded environment) until a sufficient level of required 
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concentration of reactant molecules was achieved to enable the first integrated 

chemical machines from which life ultimately emerged 14. Williamson et al 

reported inclusions of crystallised silica colloid, based on textural and chemical 

characterisation within a Topaz granite and the colloidal origin of inclusions of 

Varlamoffite in the Topaz 29. Silica colloid crystal was probably trapped in a 

form of hydrogel during greisenisation process1 30. These observations are 

considered amongst the first evidence of formation of silica colloids in high 

temperature thermal fluid systems 29. 

 

1.1.3 Formation and Structural Analysis of Silica Hydrogels 

(SHG’s) 

A variety of techniques can be used to provide information concerning the 

structures of SHGs, for a better understanding of the mechanisms of formation 

and how the silica hydrogels have the ability to retain large amounts of water. 

The use of X-ray scattering and dielectric spectroscopy techniques to illustrate 

water confined within the 3D structure of optically transparent SHGs is 

especially powerful 31. 

Sol-gel preparation methods have been used to prepare SHG and 

measurements have been conducted on samples after having experienced 

various ageing times, the results were then compared with previous results 

obtained using near infrared (NIR) absorption spectroscopy. The results of X-

ray scattering techniques provide an estimation of the size and structure of the 

pores present within the matrix and the irregular distribution of water molecules 

around the SHGs. For example, the average pore size of 0.5 M SHG was found 

to be 162 nm. This contribution 32 presents structural (Wide Angle X-ray 

Scattering, WAXS), and Small Angle X-ray Scattering, SAXS) and dynamic 

(dielectric relaxation spectroscopy) studies on water molecules trapped in the 

cross-linked structure of SHGs and compare the result data with prior data from 

NIR spectroscopy.    

The dielectric spectroscopy technique which operates at higher temperatures of 

ca. 130-280 K provides information on water dynamics within the 3D structure. 

The results show that the structure of SHGs can best be described as 

disordered and depends on the age of the gel samples. It also shows that the 

distribution of water molecules inside the pores of the matrix is irregular, the 

disorder of water molecules increasing with an increase in ageing time of the 

                                            
1 a post magmatic process associated with the origin of high silica granites 
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sample used. Suggestions have been made that the constraints forced by the 

gel matrix on trapped water molecules increase with increasing sample age31. 

Another technique, proposed by Ferri, used elastic light scattering to study 

different formations of a hydrogel, including aerogels and colloidal SHG. These 

types of gels show mass fractal behaviour (a mass fractal is a structure 

containing branching and crosslinking to form a 3D network33) at length scale 

under a crossover length and the fractal dimension depends on silica volume 

and gelation conditions 32. 

The surface structures of SHGs have been studied by using the reaction of 

aluminium chloride (AlCl3) and silicon chloride (SiCl4) with a hydroxyl group on 

the surface of the gel 34. Results showed that even on highly dried surfaces, a 

higher degree of hydroxyl group residuals is paired with each other.  

 

 

 

Scheme 1-1: Possible reactions of SiCl4 with surface hydroxyl groups 
with to yield apparent stoichiometry of 1:2 or 1:3 (X=Na) 
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Scheme 1-2: Possible reactions of SiCl4 with surface hydroxyl groups each 
SiCl4 molecule was allowed to react with only one hydroxyl group but one 
H2O molecule was also formed by condensation. 

 

Greater than 95% of hydroxyl groups were found to have undergone chemical 

transformation at a temperature of 400 ºC after drying while higher than 85% of 

the hydroxyl groups were found to have reacted at 600 ºC after drying. The 

result also showed that if a pair of hydroxyl groups exists, the surface has the 

ability to reassemble around 111 faces of cristobalite, while when the surfaces 

are fully hydrated, the surface has the capacity to assemble around 100 

cristabolite faces. The cristabolite faces contain two hydroxyl groups attached 

to one surface silicon atom 34. 

 

  

Figure 1-2: Left: Surface hydroxyl group (white) are attached randomly 
rather than in regular alternation, to surface silicon atoms (not shown), 
held in interstices between oxide ion (grey). Right: Two hydroxyl groups 
(white) are held by silicon atoms in interstices beneath the (+ sign). Other 
silicon atoms are held in interstices beneath the small circles34 
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Sukhayy et al studied the silica gel - sodium sulfate composite system by 

examining their sorbent properties by using wide-angle X-ray scattering and IR-

spectroscopy. Results showed that the sorption properties tend to be a non-

linear combination of the medium and salt properties which is evidence of 

expected structure formation, increasing in the crystal hydration and water 

evaporation rate in a SiO2 medium35.  

 

1.1.4 Critical Point  Drying (CPD) Technique 

Critical Point Drying (CPD) is employed in the biological and medical sciences 

to dehydrate fragile biological tissue prior to examination of samples by 

scanning electron microscopy (SEM) or other microscopy techniques 

(Figure 1-3). It allows preservation of the surface morphology that may be 

damaged if exposed to evaporative air drying 36. A similar destructive fate can 

occur using freeze-drying methods also. Such damage is caused by the 

surface tension of liquid present in the specimens (mainly water), which upon 

evaporation from the cell boundary causes increased cell tensile strength and 

ultimate collapse of the cell structure 37. A comparison of the surface properties 

of liquids other than water (e.g acetone) shows that replacing water with a 

liquid that has lower surface tension can help preserve the internal gel matrix 

structure. The critical point drying technique involves a substitution of water 

with another liquid having a lower surface tension to maintain the basic 

structure of examined specimen in the absence of an aqueous fluid phase. 

When the surface tension of a liquid became insignificant or reduced to zero, 

the liquid surface becomes unstable and finally disappears. At this pressure-

temperature intersection, liquid and vapour phases co-exist as a new phase, 

the critical phase (Figure 1-3). When the critical point is reached, it is possible 

to shift from liquid to gas phase without any sudden change in the gel matrix, 

and the specimen will transition from wet to dry environment, avoiding contact 

with the surface and avoiding much of the damage caused by the surface 

tension 38, 39. 
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Figure 1-3: Left: Block diagram of critical point of drying CPD instrument. 

Right: Phase diagram of Critical Point Drying technique 36.  

 

 

1.1.5 Scanning Electron Microscopy (SEM)

SEM is a form of microscopy that uses high-energy electron beams, focused on 

the sample to generate different signals from the surface of a solid specimen, 

allowing the generation of high magnification images, and less than 0.1 µm of 

the sample morphology. When coupled to an energy dispersive X-ray 

instrument (EDX), chemical composition information can also be gained as a 

result of element-specific X-ray emission 40. The images generated by SEM 

reveal information about the crystalline structure, surface texture, chemical 

composition and orientation of materials which forms the sample 41. A beam of 

high voltage electrons (~ 5-100 KeV) formed from an electron source which is 

usually heated tungsten wire is accelerated within a vacuum tube and attracted 

towards the sample with positive electrical potential as shown in Figure 1-4. 

The electron beam is then focused on the sample using a set of magnetic 

lenses. Scanning electron microscopy techniques have the ability to analyse 

macromolecular compounds, mixtures within their 3D structures or within a 

biological  or cellular environment. Figure 1-4 shows the effect of high voltage 

electrons incident from the source towards the sample which leads to 

producing low-energy (< 50 eV) secondary electrons, required sample depth, 

light emission, back scattered electrons, characteristic X-ray emission, high 

voltage primary electron path and transmitted electrons 42. 
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Figure 1-4: Left: Block diagram of scanning electron microscope and 
indicating parts of the instrument. Right: Effect of bombarding electrons 
on a solid sample41 
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1.2 Amphiphile self-Assembly 

1.1.1 Micelle Formation 

Surfactant molecules are amphiphilic molecules which are made up of 

hydrophilic, polar head groups (ionic or non-ionic) and hydrophobic, apolar tail 

groups 43.  

 

Figure 1-5: Classification of surfactant according to the polarity of the head 
group: non-ionic, anionic, cationic, amphoteric surfactants  

 

Surfactants are surface-active compounds which reduce the surface tension of 

water when used in a small concentration and have a wide range of applications 

in pharmaceuticals, motor oils, detergents, soap industry and as a membrane 

for mimicking investigations on cellular systems 44.  

The importance of amphiphilic surfactants is due to their ability to self-assemble 

in solution and form a regular dynamic, nanoscale or larger structures. The 

nanoscale structure determines many features of amphiphiles, related to their 

specific applications in biomedicine, materials and pharmaceuticals. The self-

assembly behaviour of surfactants has been studied widely as a result of this 

broad-based applicability. The overall shape of these aggregates has a direct 

effect on the properties of surfactant systems, for example, viscosity, 

viscoelastic properties and solubility 45.  

To choose molecules that have preferred structural properties such as micelles 

which are globular, spherical or rod-like, or vesicles which are composed of a 

spherical bilayer, it is essential to understand how amphiphile structure controls 

the formation shape and size of resulting aggregates 45.  
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Figure 1-6: Structures formation of surfactant in solution representing 
various aggregates of micelle and vesicle structur shape  

As pointed out by Tanford 46, the driving force behind the self-assembly 

behaviour of surfactants, may be represented mathematically by the balance of 

free energies  on aggregation , which is equal to ‘the difference in the standard 

state free energy between singly dispersed surfactant molecules present in 

solution and surfactant molecules present in an isolated aggregate of any shape 

in solution’. By using the free energy expression below, the driving force of 

surfactant aggregation in an aqueous phase and the limited growing process 

can be viewed as being one of balancing several forces 46. 

(
∆𝝁𝒈

𝝄

𝒌𝑻
)  =  (

∆𝝁𝒈
𝝄

𝒌𝑻
)

𝑻𝒓𝒂𝒏𝒔𝒇𝒆𝒓
+  (

∆𝝁𝒈
𝝄

𝒌𝑻
)

𝑰𝒏𝒕𝒆𝒓𝒇𝒂𝒄𝒆
+  (

∆𝝁𝒈
𝝄

𝒌𝑻
)

𝑯𝒆𝒂𝒅
           Equation 1-1 

The term (∆µo
g/kT)Transfer in the above equation represents a negatively charged 

free energy transfer of the hydrophobic amphiphile tail from a specific point in 

solution to the hydrocarbon-like phase in the centre of the aggregate. The 

following term, (∆µo
g/kT)Interface is a positively charged limit due to the fact that 

not the entire surface area of the tail is physically in the aggregate centre, there 
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is still contact between the tail and the aqueous environment. The third term, 

(∆µo
g/kT)Head is a positive limit representing the repulsive interaction between 

the head groups that gather at the surface of the aggregated structure directed 

towards the solvent phase 46. One factor that affects significantly the self-

assembly behaviour molecules in aqueous systems and aggregation behaviour 

is the ratio of the size between hydrocarbon head group and tail. This ratio 

dictates the energies of the interaction of both head and tail groups and thus, 

the morphology of the self-assembled structure observed in practice47. 

A self-assembled micelle structure (Figure 1-7) has been defined by Hine and 

Martin as ‘An aggregate of molecules in a colloid. Small clusters of molecules in 

which the nonpolar hydrocarbon groups are in the centre and the hydrophilic 

polar groups are on the outside’ 48. 

 

 

 

Figure 1-7: The reversible monomer-micelle thermodynamic equilibrium. 
Indicating the surfactant heads groups (hydrophilic) and the surfactant tails 
groups (hydrophobic). 

 

Arguably, the most important property of the surfactant is an ability to engage in 

self-assembly which allows energy-balanced phase separation between 

hydrophobic and hydrophilic regions43. This then permits the more effective 

dispersion of moderately soluble molecules in water by incorporating them into 

the hydrophobic interior of the structure 43. In aqueous solution micelle 

formation will only take place above a certain minimum concentration called the 

critical micelle concentration (CMC). Critical micelle concentration is defined as 

the minimum concentration of molecules at which the vesicle, micelle, hydrogen 

bonding and aggregates start forming in a solution at a given temperature and 

pH 49. The critical micelle concentration is one example of critical assembly 
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concentration number which also includes; critical vesicle concentration (CVC), 

critical micelle concentration (CMC), critical hydrogen-bonding concentration 

(CHC) and critical aggregation concentration (CAC). The critical concentration 

of an analyte which is distributed in a solvent is a significant factor and known 

as CMC is a key concept for surfactants, while CHC and CAC are a vital 

concept for biological peptide and portions 49. 

 

1.2.1 Vesicle Formation  

Vesicles are hollow aggregates 50, built from bilayers of amphiphilic molecules, 

distributed into and filled within a solvent.  

These aggregates can be described as (below, above and at) equilibrium meta-

stable structures and they exhibit a rich variety of different morphologies 50. Due 

to their physical and chemical properties, vesicles are used in a wide range of 

industrial 51-53, and biological 54-59 applications.  

Vesicle structures are bounded and soft aggregates which contains a flexible 

bilayer of amphiphile molecules to form a spherical unilamellar, multilamellar or 

oligovesicular overall shape, while the size may vary from few nanometres to 

micro meters 50. 

 

Figure 1-8: Different vesicle bilayer morphologies, the small circles 
represent the hydrophobic head group and squiggly lines are the 
hydrophilic tail group 50. 

 

The study of the self–assembly behaviour of mono-hydrocarbon chain 

amphiphiles has thus focused on phosphate ester (amphiphile) and derivatives 

because of their aggregation feature and containing mainly on hydrophobic 

moiety between head and tail group 60.  
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The investigation of the formation of bilayer by phosphate ester was found to be 

sensitive to factors that directly affected the shape and vesicle formation rate, 

these factors are: 

1- The pH of the medium 61 

2- The ionic strength of phosphate ester in solution 62 

3- The temperature of the solution were the bilayer formation take place 63 

4- The number of methyl groups in the hydrocarbon chain 60 

 

1.1.2 Measurements of critical micelle concentrations  

Different techniques have been used to measure the CMC of a surfactant such 

as the surface tension of the surfactant-water mixture, solution conductivity 

changes and spectroscopic methods, fluorimetry and UV-vis spectroscopy, 

among others. Below is a brief summary of how these different methods work 

and a discussion of which methods have been selected for use in this project. 

 

1.1.2.1 Surface Tension & Conductivity methods 

Surface tension methods for estimating the CMC for a surfactant are based on 

the fact that the surface tension of a system decreases with increase in the 

concentration of surfactant in solution 64. At concentrations below the CMC, the 

surfactant molecules exist as separated monomers in solution and aggregate at 

the surface where aqueous and atmospheric phases interface. The surfactant 

molecules are in dynamic equilibrium between these states. At equilibrium, at a 

given set concentration, pressure and temperature parameters,  the number of 

monomeric amphiphilic molecules and monomers adsorbed at the surface is 

constant 65.  
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Figure 1-9 Schematic representation of the three states in which surfactant 
molecules reside in water, i.e. monomers adsorbed at the air/water 
interface, monomers in the bulk solution and micelles. 

 

Micellisation is essentially a process driven by the entropy change of surfactant 

molecules interacting with a solvent environment 46. The process of solvating a  

surfactant in an aqueous phase leads to a disturbance of the structure of the 

water molecules within that phase and ultimately decreases the free energy of 

the solution. The surfactant molecules have a tendency to congregate at the 

surface where, at the air/water interface, the hydrophobic head group of the 

surfactant is arranged in a conformation where it can be directed away from the 

water surface which consequently reduces the free energy of the solution to a 

minimum. The surfactant molecules distribution caused by water molecules 

structure can be minimized by the accumulation of surface active molecules into 

micelles in which the head groups are collectively arranged towards the 

aqueous phase and the hydrophobic tails phase separate within the micelle and 

away from the aqueous phase. 

However, the surfactant molecules may also have some of their molecular 

freedom constrained by being restricted within a micellar structure. Besides this 

effect, in the case of an ionic charged surfactant, these amphiphilic molecules 

experience electrostatic repulsion effects from the charged head-groups. These 

forces lead the free energy of the system to increase and hence micelle 

formation becomes less favourable energetically. Hence, the micellisation 

process depends on the equilibrium of forces between Van der-Waals and 

hydrophobic forces and those opposing the formation such as electrostatic 

repulsion and kinetic energy 66. 

The conductivity method for estimating the CMC of a surfactant, which is used 

only for ionic surfactants, depends on the nature and concentration of mobile 

ions in ion exchange solution or polymers. The addition of electrolytes to the 
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solution is generally observed to result in a decrease of the CMC value, while 

this parameter tends to increase with decreasing the charge density of the 

mobile ions in an ion exchange polymer 67. The change in the conductivity of a 

surfactant solution at the CMC point is due to the difference between the degree 

of ionization of the surfactant below and above the CMC point. Below the CMC 

point where the aqueous solution of surfactant is free from micelle formation, 

then the specific conductivity of the solution is due to charges of the surfactants 

itself.  

Above the CMC, the conductivity of the ionic surfactants solution increases. 

This is explained by, the micelle formation is capturing the charged monomers 

within the solution 67.  Figure 1-10 shows the formation of the spherical micelle 

of the negatively charged surfactant SDS in an aqueous solution.  

 

 

 

Figure 1-10: The spherical micelle formation of the anionic surfactant SDS 
in aqueous solution 67  

 

Colloidal electrolytes show a rather unexpected discontinuity in some physical 

properties over the short concentration range characterized by the CMC value. 

Above this point, it is well recognized that the amphipathic ions aggregate while, 

below the CMC it has been assumed that despite less concentration of 

electrolytes in the system, ion aggregation still occurs 68.  
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1.1.2.2 Fluorimetery and UV-Vis spectroscopy methods 

Spectroscopic methods are also important tools in the determination of CMC 

concentrations. The use of spectroscopic methods to determine CMC values of 

amphiphiles depends on the use of probe molecules which easily partition into 

micelles and with a specific spectroscopic characteristic change within that 

micelle structure 69. The fluorimetric method is based on the dependence of the 

solvent vibrational band intensities in pyrene solution monomer fluorescence.  

Pyrene (Figure 1-11) is a polycyclic aromatic hydrocarbon PAH containing of 

four benzene rings, resulting in a flat aromatic system and has the chemical 

formula C16H10, and considered to be one of the few condensed aromatic 

hydrocarbons that show clear vibrational bands in their monomer fluorescence 

spectra in solution (Figure 1-11). The intensities of the different vibrational 

bands of pyrene display a strong dependence on the solvent environment due 

to chemical and physical interactions 70.  

The fluorescence method exploits the use of a hydrophobic fluorescent dye 

which has different fluorescent properties depending upon the physical 

properties of the system in which it is soluble 71.  

The fluorescence probe method shows the importance of solvent dipole 

moment and dielectric constant on the sensitivity of the method and eventually 

the value of CMC point 70. To achieve higher fluorescence quantum yields and 

clearer spectra, the probe molecules need to be consist of an amphiphilic group 

with a specific excited state and large electric dipole moments 69. 

 

                  

Figure 1-11: Left: Peaks from Flourolog instrument of 1.0 mM of surfactant 
SDS and pyrene in aqueous phase. Right: Structure of PAH pyrene 
indicating the flat aromatic ring system. 
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The spectroscopic features of pyrene change dramatically from a polar to a 

non-polar environment; making its use in fluorimetric method of CMC 

determination valuable. This method consist of plotting the peak’s intensity 

against the concentration and the intersection between the lines indicates the 

CMC estimated value, this method explained in details in Chapter 3. 

However, one of the practical issues with pyrene is its rather low water-solubility 

(0.135 mg/L) which can limit florescent applications in this solvent thus leading 

to the tendency to form spectrum-clouding microcrystals 69, 72. 

However, such issues can frequently be managed by moving from fluorescence 

techniques to other spectrophotometric methods involving absorption 

measurements in the UV or visible range of the electromagnetic spectrum.  For 

example, merocyanine 540 and other merocyanine derivatives are among those 

widely used in spectrophotometric investigations of CMC measurements73.  

Most CMC measurements rely on identifying the marked changes in the specific 

properties of solutions containing the amphiphile, as their concentration of the 

latter is increased around the critical micelle concentration or the marked 

changes in electronic spectra of the probe indicator molecules due to change in 

excitation-relaxation states 73.  

Merocyanine 540 dyes are considered as the most thoroughly characterized of 

the different dye compounds used as indicators of solvent polarity and in CMC 

measurements. The change in solvent polarity leads to very large shifts in their 

electronic spectra. The latter shift the absorption maxima in UV-Visible 

absorption towards higher wavelength as the polarity of the solvent decreases 
73-76.  

 

 

                            Figure 1-12: Structure of Merocyanine 540  

 

Studies using this technique with Merocyanine  540 as an indication probe show 

ascending wavelength shifting maxima in its absorption spectrum in solutions 
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containing different detergents over various concentration ranges increasing 

from below to above the critical micelle concentration. The hydrophobic dye 

probe based on merocyanine 540 is preferentially solubilized by micelle 

formation so that the hydrocarbon tail of the molecule breaches the core of 

hydrophobic micelle while the hydrophilic head group is located in the same 

microenvironment as the head group of a surfactant forming the micelle73, 77. To 

estimate CMC with the help of merocyanine 540 dye, a method introduced by A. 

Wicken et al73 involving plot the absorption peaks at two different wavelengths 

against the concentration of the amphiphile may be used. This method is 

described in detail in Chapter 3. 

 

 

1.3 Dynamic Light Scattering (DLS) 

In solution, macromolecules are buffeted or being struck by solvent molecules, 

resulting in a system based on the random motion of macromolecules in the 

solution. This motion is called Brownian motion (see Figure 1-13), each 

macromolecule is constantly moving independently of another unless they 

undergo a collision; their movements are therefore stochastic 78. 

 

 

Figure 1-13: Schematic representation of the Brownian motion, random 
motion of molecules in solutions78. 

 

When a monochromatic light source undergoes scattering from a system of 

small, moving particles, this movement can be calculated. Therefore, the 

geometrical structure, size range and state of motion of macromolecules can 

also be calculated therefrom. This technique, which is commonly used to 



20 
 

measure the diffusivity of macromolecules undergoing Brownian motion, is 

called photon correlation spectroscopy or dynamic light scattering (DLS)79. 

DLS is one of the most common techniques used to determine the size of 

particles dispersed in solution. A high energy monochromatic light beam is 

directed towards a solution within which the molecules are assumed (see 

Figure 1-14) to behave as though they were spherically symmetrical particles 

and in random (Brownian) motion. Such random motion causes a Doppler 

Shift80 in the light when that light interacts with spherical particles leading to a 

change in the wavelength of the incident light. This change is related to the size 

of the molecules and it is possible to calculate the size distribution of the 

particles along with facets of their motion in solution from an analysis of the 

scattered light 81. Figure 1-15 shows the differences in the behaviour of 

bombarding small molecules which will have higher energy absorbed and lead 

to an increase the Brownian motion as compared with larger molecules. 

 

Figure 1-14: Block diagram indicating the parts of dynamic light scattering 
instrument78 

 

 

Dynamic light scattering techniques have been deployed to address numerous 

applications in the investigation of dynamic and structural problems in 

chemistry, biology, and physics. Some of the key advantages and applications 

of the technique include:  

1- The duration of the experiment is short (up to 2 minutes in range). 

2- Extensive experience is not required for routine measurements because 

it is almost all automated  
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3- This technique has moderated (or relatively low) development costs 

because most particle sizing commercial systems operate only single 

angle (90°) and used only a single wavelength (675 nm) monochromatic 

red light. 
4- In principle, the DLS technique is capable of differentiating the state of 

protein assembly; eg: whether a protein is present in monomer dimeric 

form 81, 82. 

5- DLS is considered as an advanced and high - performance tool for 

examining the dynamical behaviour of fluids around the critical 

concentration. 

6- Dynamic light scattering can be used in studying laminar or turbulent 

flows of fluid systems 79. 

 

 

 

Figure 1-15: DLS result graph of two samples: Larger particles on the top 
and smaller particles on the bottom83 

 

 

Studies of fluid flow behaviour are easier to perform compared to gelation point 

determinations which shows a sudden instrument error which is explained in the 

results chapter. Different techniques are used to study gelation points such as 

ball-drop and tube-tilting methods84, 85. Those methods are based on the 

difference in flow velocity between two layers (sol and gel layers) of different 

viscosity. However, for more viscous samples, measurements become less 
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precise and determination of gelation threshold becomes inaccurate. Therefore, 

Winter et al, suggested a new method to determine the gelation threshold using 

the oscillatory shear method as follows:  

The storage, G′(ω), and loss moduli, G″(ω), becomes equal to  ωu ,at the 

gelation point where: 

 

G′(ω) = G″(ω) ≈ ωu                                                                          Equation 1-2 

 

Where ω is angular frequency and u is viscoelastic exponent 86. The validity of 

the above equation was studied and confirmed87. 

The technique of light scattering is considered as a standard method for the 

description and estimation of shape and size of polymer molecules in solutions. 

The measurements of the scattering vector or momentum transfer can be 

calculated by  

 

q = |q| = (
𝟒𝝅 𝒏𝟎

𝝀
) 𝐬𝐢𝐧(

𝜽

𝟐
)                                                                  Equation 1-3 

 

where λ = wavelength of light in vacuumed tube, n0 = the refractive index of the 

solvent, 𝜃 = scattering angle. By calculating the scattering intensity as a function 

of q, the size and shape of sample molecules can subsequently be calculated 

88,89. 

 

1.4 Thermal Analysis  

The International Confederation for Thermal Analysis and Calorimetry (ICTAC) 

have defined the concept of thermal analysis (TA) as follows: ‘(TA) refers to a 

group of techniques in which a property of a sample is monitored against time 

or temperature while the temperature of the sample, in a specified atmosphere, 

is programmed’90 but this definition has been changed subsequently as a result 

of certain issues which have been raised and such issues are: i) they 

distinguish between the meaning of analysis and monitoring in terms of thermal 

experiments; the change in the property and not the property itself which been 

changed in most of the experiments; the temperature of the surrounding of the 

sample which been programmed and not the sample itself. 



23 
 

Therefore, the most recent definition suggested and proposed by Hemminger 

and Sarge 91 as: ‘(TA) means the analysis of a change in a property of a 

sample, which is related to an imposed temperature alteration’ 92. 

 

1.4.1 Thermogravimetry Analysis (TGA) 

Calculations of mass differences in the sample as a function of a change in the 

temperature of the sample which is made using a thermo-balance are capable 

of revealing information about composition; specifically what proportions of 

material comprise volatile materials1. A thermo-balance (or thermogravimetric 

analyser) is a mixture of an electronic microbalance with a heat source, a 

temperature controller and computer for control, which allows the sample to be 

heated, weighed and/or cooled simultaneously under controlled conditions.  

The balance environment needs to be under a controlled system so that it can 

regulate the pressure according to the experiment’s requirement either below, 

equal to or above the atmospheric pressure and an inert gas atmosphere. 

Figure 1-16 shows the parts of the TGA instrument and the weighing technique 

used. 

 

 

Figure 1-16: Schematic representation of the thermogravimetric 
instrument used to analysis the SHG samples93.  

                                            
1 The mass is the amount of the matter in a sample, whereas weight is the effect of the 

gravitational force on a mass.  
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There are different types of balances which can be used in TG analysis 

depending on the sensitivity required such as the typical electro-balance with a 

maximum load of 1 g and may be as sensitivity as 1µg92, 94 and quartz crystal 

microbalance95-97 with a sensitivity of up to 0.001 µg98. TGA plot shows the flow 

chart of weight lost percentage against increase the samples temperature and 

the weight of residue remaining. 

 

1.4.2 Differential Scanning Calorimetry (DSC) 

Differential scanning calorimetry (DSC) is a technique used to determine the 

energetic transitions within the sample and shed light upon the mechanisms of 

those transformations. Differential scanning calorimetry measures the molar 

heat capacity of a sample with respect to temperature99.  

A complete thermodynamic characterization of a transition of a sample can be 

calculated by a sequence of heat gradients with different yields. There are three 

main features of the information that DSC experiment may provide: 

(i) The heat capacity of molecules of the sample. 

(ii) The overall thermodynamic parameters (enthalpy change [△H], entropy 

change [△S], and heat capacity change [△C p] and; 

(iii) The number of intermediate states, the partition function and their 

thermodynamic parameters99. 

 

1.5 Diffusion-ordered spectroscopy (DOSY) 

Standard nuclear magnetic resonance (NMR) experiments utilise NMR active 

nuclei and place them in the presence of an external magnetic field, which 

causes alignment of the nuclear magnetic moment with the external field. When 

the external magnetic field is constant and homogeneous, the populations of the 

energy levels of the nuclei at thermal equilibrium have specific values. When an 

oscillating magnetic radio frequency (RF) field is applied in the transverse plane 

to the external magnetic field, this causes a change in the population of the 

energy levels of the nuclei exposed to the transverse field, and the generation 

of a new magnetic moment along the plane of the RF field, whose amplitude is 

proportional to the number of nuclear spins present in the sample, which is 

dependent on the type of nuclei present100. As soon as the RF field is removed, 

the system (nuclear spins) realigns with the external magnetic field and the rate 

at which this realignment occurs is characterised by the longitudinal (T1) and 
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transverse (T2) relaxation times. The relaxation times represent a loss of 

coherence in the plane which the RF field was applied. The decaying signal 

(realignment) of nuclear spins is used in the production of conventional one 

dimensional NMR spectra, by applying a Fourier-transform operation to the 

acquired free induction decay time signal, a frequency domain spectrum is 

acquired100. 

One dimension that is constant for all nuclei in a molecule is the diffusion 

constant100, and its connection to the molecular structure is based on the ideas 

developed by the Stokes-Einstein relation in the way that the diffusion constant 

depends inversely on the frictional resistance of the molecule100 (19).  

The implementation of diffusion ordered NMR spectroscopy (DOSY) is possible 

as pulse magnetic field gradient NMR experiments can provide information 

about translational motion100, 101. The principle of obtaining the DOSY spectrum 

is similar to that of conventional two dimensional NMR, in that a variable is 

selected which modulates the signal which is detected, and then this variable is 

incremented to produce a spectrum related to the translation (diffusion) of the 

investigated molecule. The variable selected in the case of DOSY experiments 

is the areas of magnetic field gradient pulses100.  

In order to give a more detailed description of a typical DOSY experiment, it is 

important to first understand all of the parameters which must be controlled in 

order to attain the diffusion coefficient of a molecule in an NMR sample. Using 

pulsed field gradients, molecules in a sample can be spatially labelled based on 

their position in the tube. The Stimulated echo (STE) sequence allows for the 

calculation of the diffusion coefficient of a molecule in an NMR sample. The 

STE sequence begins with a 90º radiofrequency pulse. After a delay of time τ, 

the first gradient pulse δ is applied, the purpose of which is to encode the 

positions of the molecules. After the first gradient pulse, the molecules in the 

sample are allowed to diffuse for time Δ before a second gradient pulse δ is 

applied and the diffusion coefficient can be calculated. 
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Figure 1-17: The Stimulated Echo Sequence (STE). Top: shows the 

sequence of pulses and the time differences 𝝉 and T between the first and 
second, and second and third pulses respectively. Middle: demonstrating 
the refocusing of the magnetisation after the particles are allowed to 
diffuse for time Δ. Bottom: depiction of the magnetisation helix as a result 
of the gradient pulse100. 

 

DOSY spectroscopy is able to separate the NMR signals from the different 

components within an NMR sample, based on the hydrodynamic radius of the 

species resulting from its diffusion coefficient. The typical DOSY experiment 

consists of recording a series of spectra, with incremented pulsed field gradient 

(PFG) amplitude in a stimulated echo (STE) experiment. The one dimensional 

NMR spectrum is then transformed into a two dimensional spectrum by 

performing an exponential fit on the decaying NMR signal amplitude as a 

function of increasing PFG amplitude and extracting the diffusion constant from 

the equation used to produce the fit. In an ideal PFG-STE experiment, the 

decay of the signal amplitude with respect to increasing PFG amplitude is 

described by the Stejskal-Tanner equation102. 

 

  𝑺 = 𝑺°𝒆
−𝐃𝜸𝟐𝜹𝟐𝒈𝟐∆′                                              Equation 1-4 

 

Where S = signal amplitude, S0 = echo amplitude in absence of diffusion, D = 

diffusion coefficient, 𝛿 = gradient pulse width, 𝛾 = magnetogyric ratio and Δ′ is 

the diffusion time corrected for the effects of finite gradient pulse width102. 

After applying all the data processing controls, the diffusion coefficient will be 

generated as spots on a graph related to the NMR peaks, the mothed of 

checking for the quality of the plot and the accuracy of the diffusion coefficient is 

the residuals plot. Further details explained in chapter 5 of this project. 
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1.6 Aims and Objectives 

The overarching aim of this project is to study how molecular interactions, of 

potential relevance to abiogenesis (origins of life studies), could be influenced 

by geologically plausible hydrogel environments. Specifically, the geologically 

plausible environment we selected to study was that of the silica hydrogel. Silica 

being chosen as a result of its gelation behaviour in silification, a key process in 

rock formation103. This involved an examination of: 

1- The self-assembly of amphiphiles, both bench-marking systems such as 

sodium dodecylsulphate (SDS) and study the self-assembly of putatively 

prebiotic amphiphiles such as long chain phosphates, in silica hydrogel 

media.  

2- Exploring the use of diffusion order spectroscopy as a method of probing 

molecular diffusivity in the hydrogel medium 

This project was built from a number of specific work packages (WP’s)  : 

 

(i) An analytical analysis of the surface matrix properties and gelation 

behaviour of silica hydrogels. 

(ii) A comparative study of the self-assembly behaviour (micellation) of the 

representative amphiphiles, SDS (sodium dodecylsulfate) in both the 

aqueous and silica hydrogel phase. 

(iii) An analysis of the behaviour (decolourisation) of amphiphilic dyes used 

in the measurement of critical micelle concentrations (CMC) via 

spectrophotometric methods. 

(iv) An examination of the molecular diffusivity of both small molecules and 

amphiphiles of relevance to abiogenesis, in the silica hydrogel phase, 

using diffusion order spectroscopy methods (DOSY)
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Chapter 2 Surface Analysis of Silica Matrices from Hydrogels 

(SHGs) 

Presented here are results on the development of a standard operating protocol 

for the preparation of silica hydrogels which has been used throughout this 

thesis. This is then followed by a study of the surface morphologies of SHG 

matrices suitably prepared by Critical Point Drying (CPD) and examined by 

Scanning Electron Microscopy (SEM), surface area porosity measurements 

(BET) and Energy Dispersive X-ray spectroscopy (EDX). Subsequently, studies 

on the process of gelation using Dynamic Light Scattering (DLS) techniques 

and finally thermal analysis studies on SHG’s are reported and discussed. 

 

2.1 Standard Operating Protocol (SOP) for Silica Hydrogels 

In order to achieve the project objectives, it was first necessary to be able to 

prepare SHGs reproducibly using a standard operating protocol. The method 

that was ultimately decided to exploit in subsequent studies was developed 

from an earlier, less effective procedure as outlined below: 

Method 1: An aliquot (1500 µL) of a concentrated aqueous solution of sodium 

silicate (≤ 27% SiO2 and ≤ 10% NaOH) was diluted to  6500 µL in ultra-pure 

deionised water in a 10 mL volume test tube. Subsequently, concentrated (36.5 

– 38 %) hydrochloric acid (250 µL) was added to the silicate solution, and the 

vessel (normally a test tube) was inverted slowly three times to ensure a 

homogeneous mixture formed was left undisturbed at ambient temperature to 

gel. By using this method it was possible to prepare silica hydrogels of 0.5 M 

overall SiO2 concentration (see section 2.2 for a discussion of the concentration 

labels that are used in this thesis) which stabilised and gelled within ca 10 min 

and which passed a fluctuation test (inverting the tube of hydrogel content 

without any change of the gel structure see (Figure 2-2). However, it was found 

that the use of strong mineral acid, HCl as the pH modulating agent of the 

silicate solution was not able to prepare optically clear hydrogels containing 

higher concentrations of SiO2 (above 1 M). Higher concentrations of silicate 

resulted in both silica precipitation and what appeared to be phase separation 

within the gel and separated for different layers and appears as precipitate at 
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the bottom of the preparation tube. Figure 2-1 shows inhomogeneous hydrogel 

formation. 

 

 

Figure 2-1: Failed sample prepared for higher concentration (1.0M) of SHG 
indicate the separation of the samples for two different layers 

 

Method 2: A second preparation method was subsequently explored based on 

one reported by Barge et al104. The method involves using glacial acetic acid 

instead of mineral HCl and is summarised in Table 2-1, where Solution A is added 

to solution B in a test tube before the combined mixture is inverted slowly several  

times (3 – 4) in order to ensure effective mixture without being shaken or 

disturbed too much; the latter leading to significant air bubble formation within the 

resulting gel. The sample was left un-disturbed for up to 24 hrs, after which time 

gelation was complete104. It was found that this method, which we name as the 

Barge Method, affords what appears to be homogeneous, optically clear gels in 

a reproducible fashion with minimal precipitation, certainly when using silicate 

concentrations of 0.5 – 1.5 M, , as shown in Figure 2-2. The chemical reaction 

involves two stages, hydrolysis and condensation. Hydrolysis (Scheme 2-1a) 

involves the protonation of sodium silicate mediated by the glacial acetic acid to 

form a silanol. The subsequent condensation stage (Scheme 2-1b) consists of a 

reaction between two silanol groups to form a siloxane bridge, extruding water at 

the same time.  
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Table 2-1: composition solutions used in the preparation process of 0.5M 
SGH using Barge method 104 

Solution A Solution B 

Sodium silicate solution (1.25 mL) 

which contains (≥ 27% of silicate) and 

(≥10 sodium hydroxide) mixed with 

deionised water (6.75 mL) 

Glacial acetic acid (360 µL) in 

deionised water (7.6 mL). 

 

 

 

Scheme 2-1: The two primary reaction stages (a) protonation and (b) 
condensation in the formation of SHGs from aqueous sodium silicate 
solution. 

 

The effect of using strong acid (HCl) on the formation of SHG changes the 

protonation step. Strong acids has lower pH than weak acid and as the pH 

decreases, the H+ increases and forward reaction forced to the right which 

leads to form inhomogeneous SHG formation and the precipitates will form from 

non-reactant silicate or smaller chain of SHG. 
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2.2 Silica hydrogel nomenclature and calculations 

We have selected to categories our standard gel formulations as 0.5 M with 

respect to SiO2 on the basis of the following calculations which were used to 

prepare silica hydrogel in tubes (see Figure 2-2). 

It is an arbitrary nomenclature system but one we used for our purposes.  

The silicate solution that we use is graded at ≤ 27% SiO2. Thus, this translates 

to ≤ 27 g in 100 g of solution and the density of sodium silicate solution =1.39 

g/ml (written on the container).  

% of silicate = 27 g in 100 ml 

                      = 270 g in 1 litre ( total volume of the container ) 

To calculate the weight of silicate used, we used the equation: 

Weight of silicate = density x percentage  

                                 270 g x 1.39 = 375.3 g 

After calculating the total weight of silicate presented, then molarity of the 

silicate can be calculated from the equation: 

Molarity of silicate = weight/ molecular weight 

                              = 375.3 / 60.1 = 6.24 M Conc. of silicate in sodium silicate 

solution. 

In 'Barge Method' the concentration used: 1.25 ml of sodium silicate solution 

diluted to a total volume of 16 ml, by applying the dilution equation to calculate 

the concentration of silicate used as follow: 

M1 x V1=M2 x V2 

6.24 x 1.25= M2 x 16 

M2 = 0.48 M the standard SHG concentration and we have rounded this figure 

to the first significant decimal point in the nomenclature to 0.5 M. All other 

concentrations that have been used in this thesis are calculated based on the 

above calculations. 
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Figure 2-2: Silica hydrogel samples prepared in the lab using the Barge 
Method. All three identical samples are derived from of 0.5 M silicate.  

 

Comparison between the non-homogenises SHGs samples from Figure 2-1 and 

the silicate precipitate seen with the one in Figure 2-2, can easily be made. The 

latter appears optically clear, homogeneous sample and reproduced without 

visual sings of clouts or precipitates in the bulk of SHG even with higher 

concentration ( 1.5 M) of silicate. 

Visual clarity is a mandatory features for some of the tests conducted on SHG 

samples such as DLS. 

 

2.3 Sample preparation for Critical Point Drying (CPD) 

It was necessary to first develop a method of sample introduction within the 

CPD instrument which would allow the fluid to flow both in and out of the 

sample. To conduct CPD upon the sample, the sample volume required was 

also rather constrained, needing to occupy a volume smaller than ca. 1 mL. 

This had a significant impact on the methods developed. Three separate 

samples of SHG, prepared according to the Barge method104 with initial silicate 

concentrations of  0.5, 1.0 and 1.5 M were established. Whilst still remaining 

liquid, each sample was poured carefully into a plastic cuvette tube within which 

each of the caps had earlier been perforated by a narrow-gauge exit needle to 

allow water egress and acetone ingress during the CPD process. Each sample 
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was inverted (as shown in Figure 2-3 below) and left to gel over a period of 24 

hrs. 

 

 

Figure 2-3: Identical samples of 0.5M SHG after 24 hrs in plastic tubes 
perforated earlier from the cap prepared in research lab for the CPD 

 

2.3.1  CPD process  

Each set of samples (the instrument can handle three samples concurrently) 

required ca 3 hrs to complete the drying cycle which includes the insertion of 

acetone to replace water from the silica matrix followed by pumping liquid 

carbon dioxide through the system and heating to 37.4 ºC  to allow acetone and 

water vapour to be removed. Finally carbon dioxide was allowed to evaporate 

from the system (instrument shown in Figure 2-4). The size of silica gel shrank 

and the result is a dried, white stone-like and solid sample with small cracks on 

the surface. The structural integrity of the silica matrix within the gel form is 

largely retained (Figure 2-4). 

 

   

Figure 2-4: Critical point drying instrument within School of Biology, UoL 
(left). Dried SHG sample of 0.5 M concentration in a petri dish and the 
weight is 0.0156 g marked with black arrow (right). 
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2.4 Scanning Electron Microscopy (SEM) Results  

2.4.1 0.5 M SHG images  

The first set of images (Figure 2-5 & Figure 2-6) focus on pores present on the 

hydrogel mineral matrix surface which give some indication of the size and 

shape of pores. The pore size and shape of silica gel has a direct effect on the 

energy of adsorption and desorption activation energy of molecules interacting 

with the surface105. Figure 2-5, shows a low magnification image (100 µm scale 

bar) of the fractured silica matrix. The two ringed regions within Figure 2-5 have 

been examined under slightly greater magnification (1 µm scale bar), the results 

are illustrated in Figure 2-6. As can be seen from this image, within the 

undulating terrain of the silica, there are specific larger pores of ca 500 nm 

diameter (ringed). 

 

 

Figure 2-5: Pores present on the surface of CPD-prepared silica hydrogel 
sample (0.5 M silicate). 
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 Figure 2-6: Increased magnification of the ringed regions in Figure 3.5 
The size of pores present on the surface of silica hydrogel is about 0.5 µm 
in width. 

 

A second set of images (Figure 2-7 & Figure 2-8) from a different region of the 

same sample, provide evidence of the cross-linking network formation within the 

molecular structure of the silica hydrogel. Gel structures possess the ability to 

absorb large quantities of water without dissolving or collapsing in that 

medium31. Figure 2-8 reveals a silica region which appears rather feathery at 

this level of magnification. However, under higher magnification, the formation 

more closely resembles “thorns” overlapping randomly with each other. Each of 

the thorns (primary thorns) shown in Figure 2-7 is ca 5 – 8 µm in length and 

these shapes appear to have rather unsymmetrical (random) distribution. Under 

higher magnification (Figure 2-8) the secondary branching growing on the stem 

of the primary thorn structure and are of the order 0.2 – 0.8 µm in length can be 

seen. The effect is reminiscent of dendritic growth (cross linkage)106.  

 

 



36 
 

   

Figure 2-7: Dendritic silica growth on silica (0.5 M silicate) hydrogel matrix 
of the image on the left and the one to the right is a magnified field of the 
same view107.  

 

 

Figure 2-8 Higher magnification image of Figure 2-7 emphasising the 
dendritic nature of the morphology. 

 

 

2.4.2 1.0 M SHG images  

The above images (Figure 2-5, Figure 2-6, Figure 2-7 and Figure 2-8) were of 

0.5 M SHG conducted in Leeds electron microscopy and spectroscopy centre 

(LEMAS). Below are shown results conducted in collaboration with Dr Angela 

Bejarano-Villafuerte and Dr Alex Kulak from the Meldrum group at SoC, these 

performed a surface porosity measurements using the BET method, along with 

Energy Dispersive X-ray (EDX) and SEM images. The first sample analysed 

was a 1.0 M SHG prepared and dried through CPD. The resultant images are 

shown in Figure 2-9: 
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 Figure 2-9: Pore blocking by spherical silica particles at two levels of 
magnification (top), different size of the spherical-shaped of silica. 

 

 

The first set of images (Figure 2-9) indicates the presence of multiple spherical-

shaped silica structures. Figure 2-9 (top) shows a cluster of spherical-shaped 

silicate structure blocking the pores present on the surface of the sample, those 

spherical-shaped structures have different diameter ca 0.2 – 1.0 µm and are not 

distributed homogeneously over the surface. Figure 2-9 (bottom) shows higher 

magnification images of the hydrogel matrix featured in. The BET determined 

surface area of the sample was found to be 161 m2/g, with a correlation 

coefficient equal to 0.99980. This surface area value  was lower than 

expected108, and is likely to be due to the matrix pores being blocked by the 

spherical-shaped silicate structure. In addition to the spherical silica 

morphologies, dendritic growth was also observed as shown in Figure 2-10.  
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Figure 2-10: Dendritic growth on the surface of a dried 1.0 M SHG sample. 

 

EDX results (Figure 2-12) indicate a difference in level of oxygen, sodium and 

silicone in the sample and is likely to be due to the high gelation rate of 1.0 M 

SHG. As outlined above, it became clear that the CPD-produced silica matrices 

were contaminated with significant amounts of sodium salts (likely to be silicate, 

acetates and oxides-hydroxides). To overcome the issue of blocked pores and 

difference in levels of the element’s concentration around different spots within 

the same sample, which obscured the overall open structure of the silica 

hydrogel matrix. These salts were removed by dialysis of the CPD-prepared 

pellets over a period of 4 days in distilled deionised water ( see Figure 2-11). 

The consequence of this was that the salts were removed to reveal a 

significantly more open and porous silica matrix.  
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Figure 2-11: Dialysis tube contain SHG sample dissolved in water, tighten 
from ends and dipped in conical flask containing distilled water 

 

   

    

Figure 2-12: EXD results of 1.0M SHG. EDX image(top left); elemental result 
of Selected Area1 (top right); elemental result of EDS Spot1 (bottom left) 
and elemental result of EDS Spot2 (bottom right). 
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After dialysis, the sample was freeze dried and further SEM images were 

obtained, along with EDX analysis. The images revealed a more open structure, 

with clear and wide pores present on the surface (Figure 2-13), and significantly 

equal levels of oxygen and silicon elements were found on the gel matrix, 

without any traces of sodium. Duplicate BET analyses on post-dialysed samples 

returned a significantly higher surface area of 410 m2/g. 

 

      

Figure 2-13: The open – structure of the pores present on the surface of 
1.0 M of SHG post – dialysis. 

 

    

Figure 2-14: EDX results after conducting dialysis and freeze dry show 
similar distribution of oxygen and silicon elements without sodium.  
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2.4.3 Sample preparation for SEM-EDX analysis of SHG-

pyrophosphate mixtures. 

This part of the study has been conducted with the help of Mr George Hodgin 

as part of his MCHEM research project. This small side-project leads off from 

the surface studies reported above with the view to pursue an investigation into 

how charged molecules of potential interest to abiogenesis interact with the 

surface of the silica matrix of SHG’s. In the first instance, a study of how a 

condensed phosphorus chemical, pyrophosphate (Figure 2-15), might interact 

with the silica surface was conducted. Pyrophosphate has been considered for 

some time to have a potential role to play in phosphorylation reactions in 

prebiotic systems109 and to explore retention of pyrophosphate under different 

conditions. 

The binding nature of phosphorous containing compounds (namely sodium 

pyrophosphate, Figure 2-15) to the silica hydrogel polymer matrix was 

determined through SEM-EDX analysis.  

Silica hydrogel samples were prepared with differing sodium silicate 

concentrations, and for the purpose of this investigation, solution A (which used 

in Barge method) was saturated with sodium pyrophosphate (170 mg/mL in 

water).  

 

 

Figure 2-15: Structure of Sodium pyrophosphate dibasic with a chemical 
Formula: H2Na2O7P2 

 

Table 2-2: Solution A used in Barge Method  

SHG’s 

sample  
[SSS] / M  

Vol. Glacial 

acetic acid / µL  
V of water / µL  

Mass of 

pyrophosphate

/g  

1  0.5  226  4765  0.4515  

2  0.6  226  4765  0.4550  

3  0.7  226  4765  0.4560  
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4  0.8  226  4765  0.4512  

5  0.9  226  4765  0.4534  

6  1.0  226  4765  0.4515  

 

Table 2-3: Solution B used in Barge Method  

SHG Sample  [SSS] / M  V of Water / µL  Vol. SSS / µL  

1  0.5  4232  784  

2  0.6  3919  1097  

3  0.7  3605  1411  

4  0.8  3292  1724  

5  0.9  2978  2038  

6  1.0  2665  2351  

 
 
 

After mixing the samples as described in Barge method, the samples were left 

for 24 hrs so that gelation could occur. Lyophilisation was performed after gel 

formation was successful in all samples to remove all water from the samples, 

leaving a white uniform powder after 2 days of freeze drying under reduced 

pressure. After freeze drying, dialysis was performed on each sample to remove 

dissolvable salts. In each case, the sample was placed into dialysis tubing 

(washing into the tubing from the container with distilled water) and the sealed 

tubing was placed into a water bath which was replenished daily. The dialysis 

was carried out for 4 days and after this time the remaining solid in the dialysis 

tubing was subjected to freeze drying. The resulting white uniform powder was 

then analysed via SEM-EDX. After initial investigations discovered the presence 

of phosphorus on the surface of the remaining silica, acid dialysis was carried 

out next on the same samples. 

The EDX results of the dialysed SHG samples containing pyrophosphate show 

that there is a small amount of phosphorus retained within the silica polymer 

matrix. Figure 2-16 presents EDX data taken for one of the six SHG samples. 
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Figure 2-16: SHG sample showing the presence of phosphorus on the 
surface of the silica sample after the first dialysis, indicating the presence 
of bound phosphorus to the silica. 

 

The presence of the phosphorus peak indicates that post-dialysis, some 

phosphorus is present on the surface of the dialysed samples (Figure 2-17). This 

raises questions about the nature of the binding of the phosphorus containing 

species to the silica dialysed product. To begin further investigations into this, the 

EDX map for samples 4 (0.8 M SHG) and 5 (0.9 MSHG) were analysed. The 

results showed that there was 4% (Figure 2-18) and 6% (Figure 2-17) respective 

contribution by phosphorus to the total sample mass. The map for phosphorus 

alone which excludes the silicon and oxygen contributions appears to reveal 

localised phosphorous neighbourhoods which appear to follow those same 

locations of silicon and oxygen enrichment. Thus, it appears as though much of 

the phosphorus may be associated closely with the silica matrix.  
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Figure 2-17: EDX map indicating the presence of 6% phosphorus on the 
surface of the freeze dried dialysis product (sample 5, 0.9 M SHG). Top left 
image shows all elemental components of the sample. Oxygen elemental 
traces are in yellow, silicon are in pink and phosphorus are in green. 
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Figure 2-18: EDX map indicating the presence of 4% phosphorus on the 
surface of the freeze dried dialysis product (sample 4 0.8 M SHG). Top left 
image shows all elemental components of the sample. Oxygen elemental 
traces are in yellow, silicon are in pink and phosphorus are in green. 

 

In order to determine if the silica–phosphorus binding could be interrupted by 

acid, an acid dialysis was performed. The procedure was identical to that 

described for water dialysis, but in this case, the water bath was adjusted to pH 

2 by addition of 37% in water conc. HCl solution.  

The EDX results after the acid dialysis showed that all phosphorus traces had 

disappeared (or below a detection limit) from the EDX map, indicating that the 

addition of acid had the effect of removing phosphorus from the surface of the 

silica. The results of this investigation do not imply specifically that 

pyrophosphate interacts with the silica through either physical or chemical 

mechanisms, physical binding between the freeze-dried silica sample and the 

phosphorus containing material may be the more logical explanation.  
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The EDX techniques has its own reading and accuracy limitation and these 

limitations are: the sensitivity is limited to 0.1 % of the element’s concentration; 

detector beam length is 1 µM which is not suitable for small details; and the 

EDX probe needs to be calibrated with a standard solutions of the element 

under investigation to get optimum results. 

This result is important for the argument that life originated in a gel environment 

as the ability to store essential elements, such as phosphorus, is a key to 

providing the building blocks for life. Figure 2-19 shows the SEM-EDX analysis 

for the post-acid dialysis product. 

 

 

 

Figure 2-19: Demonstrating the absence of phosphorus on the surface of 
the silica sample after acid dialysis. Top image shows the initial selected 
area of study and the bottom image shows that when the area under study 
is increased, phosphorus is still absent. 
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2.5 Dynamic Light Scattering (DLS) study of silica gelation  

Following analysis of the surface morphology of the CPD-prepared silica matrix 

of hydrogels, it was decided to explore the process of gelation in slightly more 

detail via particle size analysis using DLS. The mutual influences of (i) the self-

assembly of amphiphiles and how they are influenced by hydrogel 

environments and (ii) how the presence of self-assembled structures (micelles 

or most importantly vesicles) influences the silica gelation process and matrix 

morphology that results, were explored. As a prelude to these studies,  the 

process of gelation of the silica systems was examined. Subsequently, will be 

able to modifying with prebiotic amphiphiles, and examine whether and in what 

way the gelation behaviour is influenced by the presence of SDS as a probe 

amphiphile (one with little prebiotic provenance). 

 

2.5.1  Experiment 1.    Silica hydrogel sample prepared in an open 

system  

A SHG sample was prepared using the Barge Method described in section  2.1. 

This gel was based on a 0.5 M sodium silicate solution and was prepared in an 

open 1 cm disposable cuvette prior to introduction to the instrument.  As the 

study was a time-evolution investigation, the instrument was programmed to 

collect readings every 10 minutes for a total of 6 hours. The results (displayed in 

Figure 2-20 and for tabulated data see Table 2-4) show a steady particle size 

increase in solution up to a maximum of 336 nm after 100 mins. Thereafter, 

there is a general drop-off to less than 100 nm after 190 mins. Upon monitoring 

the sample for a longer period, it was noticed that the sample appeared to be 

drying out and cracked. This was accompanied by a sharp discontinuity in the 

average particle size around the 440 min mark. It may be suggested that this is 

a reflection of the drying process and so all subsequent experiments were 

performed within closed systems which resulted in the elimination of these 

problems (Figure 2-21 and Figure 2-23). The increase in size average 

corresponds to light scattering that is a result of the onset of hydrogel formation. 

Following hydrogel formation, the light scattering is reduced until solvent 

evaporation occurs at  ca. 440 minutes. This secondary increase in light 

scattering is absent when the hydrogels were assessed in a closed system due 

to the prevention of solvent evaporation.  
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Table 2-4: Data results of Figure 2-20 

Time /min 
Z-average/ 

nm 
Time/min 

Z-average/ 
nm 

Time/min 
Z-average/ 

nm 

0 338.7 170 209 340 31.65 

10 16.94 180 228.6 350 29.95 

20 21.45 190 106 360 27.42 

30 28.15 200 81.64 370 25.97 

40 37.67 210 81.99 380 24.67 

50 49.44 220 69.56 390 25.25 

60 66.79 230 64.44 400 25.64 

70 86.93 240 61.31 410 29.88 

80 118.2 250 58.1 420 29.87 

90 159.2 260 54.42 430 29.18 

100 336.2 270 40.06 440 221.7 

110 278.8 280 43.3 450 557 

120 308 290 36.15 460 286.1 

130 315 300 34.37 470 184.3 

140 202 310 36.47 480 40.84 

150 184.5 320 32.36 490 216.8 

160 197.2 330 31.75   

 

 

Figure 2-20: DLS result of first experiment indicating gelation process of 
pre-diluted 0.5 M SHG sample and evaporation effect in an open system.  
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Figure 2-20 and Figure 2-21 both reveal the gelation of 0.5 M SHG within open 

and closed systems respectively, the analytical runs were conducted using the 

same instrumental settings and experimental conditions. We note that the 

maximum Z-average values (340 nm and 520 nm, respectively), and the time 

required to reach those peak values (100 min and 48 min, respectively) are 

different. The most likely reason for  such a difference in readings is that for 

preparing the sample used in Figure 2-20, the evaporation of water molecules 

from the sample surface was faster in the open system and increased due to 

continues incidence of the light beam on the sample. Figure 2-21, the sodium 

silicate solution was pre-diluted for 5 days before using it for preparation, while 

for the sample used to produce Figure 2-23, silicate solution were prepared just 

before it was used. The data shown in Figure 2-22 for polydispersity index (PdI) 

against time collected from the same experiment run in Figure 2-21. The PdI 

results (Figure 2-22) showed inhomogeneous (polydisperse) distribution of 

particles population and while it’s difficult to ascertain the size distribution due to 

technical issues110, and the size average method more common to use. 

 

 

 

Figure 2-21: DLS result indicating gelation process of pre-diluted 0.5 M SHG 
sample and evaporation effect in a closed system. 
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Figure 2-22: Polydispersity index against time of the DLS data of 0.5 M of 
SHG sample within closed environment. The same experiment in 
Figure 2-21. 

 

 

Figure 2-23: The DLS results for freshly prepared 0.5 M of Silica hydrogel 
in a closed system indicating the Z-average against gelation time. 
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2.5.2 Experiment 2.    Silica hydrogel in the presence of  surfactant 

(SDS) 

A silica hydrogel sample was prepared using 0.5 M silicate solution and along 

with the acid phase (Barge Method), SDS was included at a concentration of 10 

mM  which is above the CMC point measured in SHG phase (vide infra). The 

particle size distribution was again monitored using DLS in a closed system. 

The overall shape of the trace is similar to that of Figure 2-21 and Figure 2-23, 

here the Z-average value increases in the early phase of gelation, reaching a 

peak Z-average of 750 nm after 144 minutes (Figure 2-24). A subsequent drop 

off in Z-average, after this point is also observed. 

 

 

Figure 2-24: First run of the DLS experiment within 0.5 M SHG contain of 10 
mM of SDS in the closed system indicating the Z-average against time of 
gelation 

 

 

This result suggest that the amphiphile is stabilising, to some degree, the 

particles of silica in solution resulting in both larger average particle sizes and 

longer gelation times. To probe this system further a similar experiment to that 

of Figure 2-24 with SDS at a lower concentration of 1 mM (below the CMC of 

SDS in water at ambient temperature) was performed. The results are shown in 
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Figure 2-25 and reveal, consistent with the above hypothesis, lower maximum 

particle sizes at the 520 nm mark.  

 

Figure 2-25:  DLS results of 1 mM of SDS in 0.5 M of silica gel in a close 
system indicating the Z-average against time of gelation 

 

The DLS techniques has operations limit of detection (LOD) and these 

limitations are: 

If large particles even in small quantities are present within the sample, still 

accounted; if the solution is more dense than aqueous, there is a sedimentation 

possibility and lead to error in data like what happened with the SHG samples; 

the instrument resolution leads to the instrument will not be able to distinguish 

between particles located close to each other; if the sample is highly 

concentrated leads to cause multiple scattering of the light caused by the light 

which scattered by a particle will scattered by another particle before it could be 

detected111. 
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2.6 UV-Visible Spectrophotometry on Silica Hydrogels. 

Baseline Shifting and Light Scattering    

We noticed during our studies on MC 540 decolourisation (described in details 

in chapter 4) in SHG’s that the baseline displayed significant deviations from 

those expected and observed in the aqueous phase. These deviations are not 

due to instrument correction errors as they are not seen at all in any of the 

aqueous systems that have analysed and also, they display a time-dependency. 

Moreover, these baseline devastations are present irrespective of the presence 

of an absorbing molecule such as merocyanine. In other words, they appear to 

be a feature of the silica hydrogel formulation itself. An example of this is 

displayed in Figure 2-26 where one can see the baseline drifting effect when the 

SHG formulation at 0.9 M is examined between 400 – 650 nm, in the absence 

of any additives. The samples themselves are optically clear but there is a clear 

“absorbance” displayed in the spectra. However, an increase in effective 

absorbance is perhaps best translated as a decrease in effective transmittance. 

Thus, light can fail to be transmitted through a sample as a result of molecular 

absorbance as in the presence of MC 540 or it could result from light scattering 

due to particles present in the system, an observation that has been made. 

 

 

Figure 2-26: Baseline shifting within 0.9 M SHG in the absence of any 
absorbing molecules, illustrating the scattering effect  
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Particles within SHGs intercede with UV absorbance investigations112. Given 

that particulates in systems are known to induce scattering effects112, it was of 

interest to confirm that aqueous solutions of silicate do not display the same 

baseline behaviour as those presented by the gel formulations themselves. By 

‘particulates’ this refers to air bubbles, colloidal-wisps, precipitates and silicate 

particles in a gel phase and we suspect that it is silicate particles (the physical 

SHG) that are likely to have had the greatest impact on UV light scattering on 

the basis of the time-dependence.  

Consider again Figure 2-26, over time, the baseline shifted in the kinetic scans 

(as shown in Figure 2-26). This happened for each kinetics scan. Hence, 

scattering had the potential to distort raw data.  

Absorbance (A) and transmittance (T) are related by a derivative of Beer-

Lambert law: 

𝑨 = 𝟐 −  𝐥𝐨𝐠𝟏𝟎(%𝑻)                                                    Equation 2-1 

 

 

SHGs with high silicate concentration have high absorbance. This correlates 

with low light transmittance (Figure 2-27). The higher concentration of SHG, the 

greater the number of polymer chains in the polymer network, so the more 

compact the system is. Thus, the greater the number (or effective pores size) of 

silicate particles. In addition, there are smaller pores for photons to travel 

through. Therefore, the SHG blocks incident light rays to a greater extent and 

hence limits transmittance (and vice versa). 
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Figure 2-27: Effect of pores on the transmittance of SHG, a higher 
concentration of SHG leads to small pores and hence low transmittance  

 

We envisage therefore that the baseline migration is following the light 

scattering behaviour of a changing, gelling system and that once the baseline 

has converged to a steady state, this corresponds to a scenario in which the gel 

formation, at least in terms of light scattering, has reached an equilibrium point. 

In Figure 2-28, Figure 2-29 and Figure 2-30 reveals this convergent behaviour 

in the baseline behaviour of silica hydrogel formulations of 0.7, 0.9 and 1.0 M 

SHG. One can clearly see in each of these samples that the light scattering 

effect is consistently stronger at the lower wavelength range and increases (in 

terms of transmittance lowering) as the silicate concentration increases.  
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Figure 2-28: Baseline shift of 0.7 M SHG of 12 hrs time with a gradual 
decrease in increment size with time leading to baseline convergence 

 

 

Figure 2-29: Baseline shift of 0.9 M SHG of 12 hrs time with a gradual 
decrease in increment size with time leading to baseline convergence 
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Figure 2-30: Baseline shift of 1.0 M SHG of 12 hrs time with a gradual 
decrease in increment size with time leading to baseline convergence  

 

While Figure 2-28, Figure 2-29 and Figure 2-30 are useful, it is difficult to extract 

increment-size convergence information (gelation timescale) in this format. 

Therefore, by plotting absorbance as a function of time at fixed wavelength 410 

nm, 510 nm and 610 nm (low, intermediate and high wavelengths) from the 

data above illuminated the baseline shift phenomenon more clearly and 

Figure 2-31, Figure 2-32 and Figure 2-33 shown these data. 
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Figure 2-31: The variation of light scattering with respect to SHG 
concertation at a fixed wavelength of 610 nm over time  

 

 

Figure 2-32: The variation of light scattering with respect to SHG 
concertation at a fixed wavelength of 510 nm over time  

 

 

 

Figure 2-33: The variation of light scattering with respect to SHG 
concertation at fixed wavelength of 410 nm over time  
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Figure 2-31, Figure 2-32 and Figure 2-33 show increased absorbance with time 

until the data plateau and a stable baseline is reached. We envisage that this 

may allow us a mechanism to measure gelation times based on equilibration or 

steady state light scattering. Calcabrini, M. and Onna, D. studied the gelation 

time of a silica gel sample by calculation the increasing in scatting intensity with 

a pre-designed 3D-printed spectrophotometer113.    

A plot of the derivative of absorbance with respect to time versus time (first 

differential plot) was constructed for each SHG at each pre-selected 

wavelength, Figure 2-34 shows plots of three SHG concentrations which are 

0.7, 0.9 and 1.0 M at 610 nm. The first differential plot shows the point at which 

the graph plateaus more clearly than Figure 2-31. The first data point at which 

dA/dt is equal to zero corresponds to the plateau points in Figure 2-31. Thus, 

this is the point at which the scattering effect that we are observing appears to 

reach an equilibrium point for each SHG.  

 

 

 

 

Figure 2-34: First differential graph of (I) 0.7 M, (II) 0.9 M, (III) 1.0 M and (IV) 
0.7 M (expanded) SHG at 610 nm. 

(I) (II) 

(III) (IV) 
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The plateau times are very similar for the same SHG irrespective of which 

wavelength of light is probed (Table 2-5). This consistency shows evidence to 

support that the initial plateau point corresponds to gelation completion, as 

gelation is a single and unified process that happens throughout the structure at 

the same time. As SHG concentration increased the plateau time increased. 

Thus, the longer the gelation time. This was unexpected as, by eye, 0.7 M SHG 

took longer to gel than 1.0 M SHGs. However, on a molecular level, gelation 

was still underway at the higher SHG silicate concentration as the observation 

suggests. This is plausible as there are a greater number of polymeric chains 

which need to network together to form crosslinked structure as shown in 

Chapter 2. The process entails a ‘disorder-order’ transition, so is entropically 

unfavourable112. The ordering, via networking, would be more 

thermodynamically and energetically unfavourable for the 1.0 M SHG as there 

is movement from a high entropy state to a low entropy state. This 

unfavourability results in longer gelation (‘disorder-order’ transition) times. 

Hence, 1.0 M SHG have longer gelation times than 0.7 M SHG. The DLS 

results (section 2.5) indicates an approximate gelation time for 0.5 M SHG at 

144 minutes which seems to agree with the overall trends shown in Table 2-5. 

 

Table 2-5: Gelation completion time according to the plateau time  

 [SHG] / M 

Wavelength (nm) 0.7 0.9 1.0 

610 170 min 245 min 260 min 

510 165 min 240 min 258 min 

410 167 min 240 min 255 min 

 

2.7 Thermal analysis of silica hydrogels 

The analysis of the thermal behaviour of SHGs were  examined by various 

techniques that produce complementary information. In the first instance, 

analysis of several SHG’s (nominally 0.5 M – 1.0 M) using the 

thermogravimetric analysis (TGA) reveals the loss of volatile components and 

mass decrease through heating. Use of TGA analysis also reveals information 

about the on-set of mass loss and the total volatile mass lost throughout the 

heating procedure. 
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In the cases of the 0.5 M – 1.0 M SHG’s (Figure 2-35 a-f) we can see that mass 

loss begins at ca 25 ˚C in each case and that the weight loss in each SHG 

sample amounts to 94.6, 93.6, 92.2, 91.6, 90.5, 89.3% respectively. This means 

that for the 0.5 M SHG for example, the solid silica matrix accounts for 5.4% of 

the total mass, illustrating clearly how such a small mass matrix is capable of 

entraining more than 17 times its own mass in water. In each case, volatile loss 

has ceased between 150-175 ˚C 

 

 

 

Scheme 2-2: Formation reaction and mechanism of forming three 
dimensional structure of the silica hydrogel.  
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Figure 2-35: Thermal gravimetric analysis of 0.5 M (a); 0.6 M (b); 0.7 M (c); 
0.8 M (d); 0.9 M(e) and 1.0 M (f) silica hydrogel sample 

 

 

2.7.1 TGA derivative curves 

Whilst the overall mass loss can be seen clearly in the images Figure 2-35, the 

second derivative of the TGA trace affords slightly different information. This 

derivative plot is called differential thermogravimetry (DTG) and affords 

information on the different stages of mass lose, rather in the same way as 

differential scanning calorimetry (DSC). Examination of the DTG trace in 

Figure 2-36, shows that there are three weight-loss events; at 126.08 ˚C, 

137.03oC and then at 144.42 ˚C. First expectation that these events are 

representative of different stages of water loss but, section 2.7.2 showed 

practically it’s not the case. For each of these three processes, the percentage 

weight loss per degree temperature is ca 0.02, 0.05 and 0.06 demonstrating 

a b 

c d 

e f 
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that as temperature increases but not sufficient to do the weight loss. It is not 

entirely obvious what the individual processes involved might be but it may be 

envisaged that the lowest temperature step may equate to removal of the least 

tightly bound water, the free water.  

 

 

Figure 2-36: Second derivatives of the TGA curve of SHG with 0.5 M  

 

The weight percentage/C2 of the second derivative plotted against temperature 

increases instead of weight percentage in the Figure 2-35.  

The plot of the second derivative of 0.6 M SHG shows one thermal event at 

150.95 ˚C and the inflection point at 160.20 ˚C as appears in Figure 2-37. At a 

slightly higher concentration of SHG, the number of thermal events increased to 

five below the inflection point which indicates water molecules are not easy to 

evaporate from the matrix material. Thermal events happened at ˚C 102.85, 

112.52, 129.18,151.09 and 162.17 with an inflection point at 168.49 as shown in 

Figure 2-38 The inflection point refers to the end of major events and the 

sample removed all volatile molecules from the bulk.  
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Figure 2-37: Second derivatives of the TGA curve of SHG with 0.6 M with a 
single peak thermal shoulder.  

 

Figure 2-38: Second derivatives of the TGA curve of SHG with 0.7 M with a 
five peaks thermal shoulder.  
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At 0.8 M shown in Figure 2-39 of SHG a wide hump-like peak appears in the 

plot when heating from 25 ≈100 ˚C and then the thermal shoulders appears at 

˚C 123.38, 135.86, 148.53 and finally the inflection point at 153.38 ˚C.  

With 0.9 M of SHG, a similar observation of a broad, hump-like peak is can be 

seen from 35 ˚C to about 139 ˚C (Figure 2-40) where the first thermal shoulder 

event happens while the next shoulder appears at 155 ˚C prior to the inflection 

point at 172 ˚C. 

 

 

Figure 2-39: Second derivatives of the TGA curve of SHG with 0.8 M with a 
three major peaks thermal shoulder.  

 

 

The highest concentration of the SHG sample which is 1.0 M has the a similar 

hump starts from beginning of heating to 109 ˚C then a sharp dropdown with 

two thermal shoulders at around 130 ˚C and 138 ˚C and the inflection point at 

154.46 ˚C as it appears in Figure 2-41. 
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Figure 2-40: Second derivatives of the TGA curve of SHG with 0.9 M with a 
three major peaks thermal shoulder.  

 

 

 

Figure 2-41:  Second derivatives of the TGA curve of SHG with 1.0 M with 
a three major peaks thermal shoulder.  
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2.7.2 Fixed Temperature TGA Experiments  

The plot in Figure 2-36, which is related to the thermal events of the Second 

derivative of TGA curve, shows that three such events appears in 0.5 M SHG 

gel sample at 126.06, 137.03 and the inflection point at 144.42 ˚C. These 

thermal events seems to give an indication about water lost stages from the 

sample and decided to examine these stages. 

The 0.5 M SHG sample have been introduced to fixed temperature TGA 

analysis at 126, 137 and 144 ˚C and see whether any change in the water 

(weight) lost and results are explained below:  

Three samples with identical concentration at 0.5 M of SHG delivered to the 

TGA analysis and run the experiment but with a constant temperature for the 

whole duration of the experiment.  At 126 ˚C run, the majority of water loss 

happened below 20 minutes and the weight lost curve appears to show a 

constant decreasing over heating as shown in Figure 2-42 with a residue of 5.9 

% of the total sample’s weight. 

 

 

Figure 2-42: Plot of first run of TGA within 0.5 M SHG at 126 ˚C indicating 
percentage of weight lost per minute  

 

At 137 ˚C run, the overall shape of the plot is similar to the one of 126 ˚C run in 

which the majority of the weight lose happened below 20 min and the residue 

percentage is equals to 5.8 % as shown in Figure 2-43. 
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Figure 2-43: Plot of first run of TGA within 0.5 M SHG at 137 ˚C indicating 
percentage of weight lost per minute 

  

At the final experiment of 144 ˚C run, again the same overall shape and time 

required to losing most of the water with a residue percentage 6.4 % as shown 

in Figure 2-44. 

 

 

 

Figure 2-44: Plot of first run of TGA within 0.5 M SHG at 144 ˚C indicating 
percentage of weight lost per minute 
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It’s difficult to distinguish between these three temperature events as they 

appear to have very similar envelopes. This is not unsurprising as the 

temperature differences are small between each curve (T = 11 and 7 oC 

respectively). The respective gradients for the weight loss curves are shown in 

Figure 2-45 where it can be seen there is some variation of percentage weight 

loss across time window. In order to say something more conclusive on whether 

such changes are linked to fundamental differences of thermodynamics of may 

be reflective of statistical differences within samples, one would need to perform 

multiple repetitions at each temperature to ascertain standard deviations. In the 

absence of such experiments here, we can only tentatively conclude that the 

overall profiles of water removal at these three temperatures appears broadly 

similar.  

 

 

Figure 2-45: Overlay plot of the three chosen temperature degrees. Time 
range selected from 0 – 25 min to easy distinguish between lines. 
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2.8 Conclusion 

Overall, the content and main conclusions from this chapter may be 

summarised as follows: 

 

1. A standard operating protocol (SOP) for preparing silica gels has been 

identified as effective and reproducible 

2. Surface analysis of hydrogel matrix silica (SEM, EDX, BET) obtained 

following critical point drying and dialysis reveals a porous and open 

morphology with surface area of ca. 400 

3. Dynamic light scattering experiments suggest that the presence of an 

amphiphile such as sodium dodecylsulfate (SDS) influences the particle 

size distribution in the sol phase. Particle size increasing in the presence 

of SDS 

4. Thermal analyses demonstrate the large weight percentage of water in 

the standard gel formulations we use here (ca. 95% water content in the 

0.5 M SHG)
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Chapter 3 Measurements of Critical Micelle Concentrations in 

the Silica Hydrogel Phase 

 

3.1 Aims of the work Described in this Chapter 

The main objective of this section of the work was to examine whether a 

representative amphiphile, sodium dodecylsulfate (SDS)  might undergo 

different self-assembly processes in the SHG phase compared to the aqueous 

phase. Therefore, this chapter reports measurements of the  critical micelle 

concentration (CMC) of SDS within a range of SHG environments and 

comparison to the aqueous phase  

Grzybowski defined the term of self-assembly as follows: ‘Self-assembly is the 

autonomous organization of components into patterns or structures without 

human intervention,’  behaviour which has been used widely both in natural and 

in modern technology114. The reasons behind the importance of the concept of 

self-assembly are many115, 116 but the one which is most related to the work 

described in this thesis is the how self-assembly processes may or may not be 

influenced by moving from an aqueous phase to a hydrogel phase. 

To place that in context, biological cell membranes consist of self-assembly 

structures which are essential for developing the biological activities of living 

cells and functional organs117 and these in turn emerge from a cellular cytosol 

material which is hydrogel in nature. 

What is  explored in this chapter is how the process of amphiphile self-assembly 

changes when being transferred from the aqueous phase to the hydrogel 

phase. In doing this, a selection has made to work with SDS as a representative 

amphiphile. We do not intend at any time to argue that SDS had any prebiotic 

provenance. In addition, selected to work with SHGs because of their prebiotic 

provenance (refer back to Chapter 1). 

The amphiphile SDS is a negatively charged surfactant and consists of a 12-

carbon tail attached to a sulphate head group with a chemical formula 

CH3(CH2)11SO4Na. it is used in many cleaning and hygiene products75  

 

https://en.wikipedia.org/wiki/Sulfate
https://en.wikipedia.org/wiki/Sulfate
https://en.wikipedia.org/wiki/Sodium
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Figure 3-1: Chemical structure of sodium dodecylsulfate (SDS) indicating 
the 12-carbon tail and sulphate head group  

 

However, before conducting specific experiments within SHG’s, it was 

necessary to address two key issues: (i) do the various different measurement 

techniques of CMC give convergent answers in aqueous media or, if not, why 

not? and (ii) which of the various analytical methods for CMC determination 

would be best translated to the SHG environment?  

Therefore, benchmark experiments were performed to determine critical micelle 

concentrations of SDS in the aqueous phase using the following analytical 

techniques: 

1- Surface tension measurements 

2- Solution conductivity 

3- Spectrophotometry 

4- Fluorimetry 

 

3.2 Measurements of SDS CMC in Aqueous Environments 

3.2.1 Surface Tensiometry 

The first benchmark experiment was performed using the capillary rise method 
64 to calculate the surface tension of aqueous solutions containing different 

concentrations of the surfactant SDS. The surface tension values for different 

capillary can be calculated according to the relation with capillary rise and 

radius of capillary as follows:  

 

Surface tension () =  xr x g x h/2                              Equation 3-1 

  

Where is the density of water at 20 °C, r; is radius of capillary, h is the 

capillary rise and g is the acceleration due to gravity (9.80665 m s-2). 

The surface tension, of the surfactant solution decreases with an increase in 

concentration of surfactant molecules in the solution. For concentrations below 

the CMC, surfactant molecules are distributed between the bulk of the solution 
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and the surface, both concentration (in bulk and surface) increases until the 

CMC is reached. At the CMC , the bulk concentration of the individual surfactant 

molecules is constant. Above the CMC, the saturation level of bulk 

concentration of surfactant is reached 64.  

In Table 3-1 results of this experiment where it can clearly be seen that the 

surface tension of the surfactant solution decreasing with increasing surfactant 

concentration. The dependence of surface tension on the log e value of 

surfactant concentration is called the surface tension isotherm and is used to 

estimate the CMC graphically 64. 

 

Table 3-1: Results for the surface tension method for calculating the CMC 
of the surfactant SDS 

[ SDS] mM 
Height in 

capillary/m 

surface tension/ 

N.m-1 
-Ln [SDS] mM 

1.25 0.022 0.0646 6.68 

2.5 0.015 0.044 5.99 

5 0.012 0.0352 5.29 

7.5 0.011 0.0323 4.89 

10 0.01 0.0293 4.60 

15 0.008 0.0234 4.19 

 

Figure 3-2 shows a plotted graph of the result of surface tension isotherm which 

is used to estimate the CMC of SDS. From the graph and the data collected, it is 

possible to estimate the CMC from the inflection point to be 6.1 mM. This 

experiment was performed only once hence there are no error bars on the graph. 

This is because it is not likely that we could use this method for our gel systems 

because SHGs are very viscus to raise up in capillary tube.   
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Figure 3-2: Plotted graph between the surface tension against (-Ln[SDS]) 
in mM and the inflection point  used to estimate the CMC point of the 
surfactant. 

 

 

3.2.2 Solution Conductivity 

The second benchmark experiment involved using the method of solution 

conductivity  to calculate the CMC value of SDS. The experimental procedure is 

described in the Experimental chapter and the experiment was performed in 

triplicate (see Table 3-2 for readings). Figure 3-3 shows a plotted graph for 

average conductivity of all three runs, in which different concentrations of SDS 

are plotted against the average conductivity values measured. From the graphs, 

a discontinuity in the value of conductivity of micellar solution is observed due to 

micelle formation although the exact estimation for the point is always subject to 

an element of subjectivism. The combined average results of each individual 

reading issued to calculate the CMC value for the surfactant SDS, is equal to 

7.8 mM.  
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Table 3-2: The results for the conductivity method for calculating the CMC 
of surfactant SDS. Experiments were performed in triplicate 

[SDS] mM Run 1st mS Run 2nd mS Run 3rd   mS Average 

0.000 0.020 0.300 0.100 0.140 

0.498 48.500 38.200 35.700 40.800 

0.990 92.700 74.700 72.600 80.000 

1.478 137.100 108.900 106.800 117.600 

1.961 148.100 144.400 143.300 145.267 

2.439 217.000 177.400 176.000 190.133 

2.913 257.000 210.000 209.000 225.333 

3.382 292.000 240.000 239.000 257.000 

3.846 326.000 270.000 269.000 288.333 

4.306 356.000 299.000 298.000 317.667 

4.762 383.000 324.000 324.000 343.667 

5.213 411.000 348.000 348.000 369.000 

5.660 436.000 370.000 370.000 392.000 

6.103 460.000 390.000 390.000 413.333 

6.542 483.000 411.000 411.000 435.000 

6.977 503.000 431.000 430.000 454.667 

7.407 525.000 451.000 450.000 475.333 

7.834 544.000 467.000 469.000 493.333 

8.257 563.000 485.000 487.000 511.667 

8.676 583.000 502.000 503.000 529.333 

9.091 601.000 518.000 518.000 545.667 

9.502 618.000 534.000 534.000 562.000 

9.910 635.000 550.000 550.000 578.333 

10.314 652.000 563.000 565.000 593.333 

10.714 669.000 578.000 579.000 608.667 

11.111 685.000 592.000 594.000 623.667 

11.504 700.000 606.000 608.000 638.000 

11.894 715.000 619.000 620.000 651.333 

12.281 730.000 632.000 634.000 665.333 

12.664 745.000 646.000 647.000 679.333 

13.043 760.000 656.000 660.000 692.000 

13.420 773.000 669.000 672.000 704.667 
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13.793 786.000 681.000 684.000 717.000 

14.163 799.000 693.000 696.000 729.333 

14.530 812.000 705.000 708.000 741.667 

14.894 823.000 716.000 720.000 753.000 

15.254 835.000 728.000 732.000 765.000 

15.612 846.000 739.000 743.000 776.000 

15.966 857.000 751.000 754.000 787.333 

16.318 868.000 762.000 764.000 798.000 

16.667 879.000 763.000 775.000 805.667 

17.012 889.000 773.000 785.000 815.667 

17.355 899.000 783.000 797.000 826.333 

17.695 909.000 794.000 807.000 836.667 

18.033 919.000 804.000 817.000 846.667 

18.367 930.000 814.000 828.000 857.333 

18.699 939.000 824.000 839.000 867.333 

19.028 949.000 835.000 849.000 877.667 

19.355 959.000 845.000 858.000 887.333 

19.679 969.000 855.000 869.000 897.667 

20.000 979.000 865.000 879.000 907.667 

 

 

Figure 3-3: Result of average runs of the conductivity experiment to 
calculate the CMC point of the surfactant SDS. 



77 
 

3.2.3 Fluorescence Spectroscopy 

The fluorescence spectrum of pyrene in the aqueous phase exhibits four 

predominant peaks (Figure 3-5). Pyrene is a polycyclic aromatic hydrocarbon 

(PAH) containing four benzene rings, resulting in a flat aromatic system and has 

the chemical formula C16H10. The irradiation peaks appear at 302, 366, 377 and 

broad peak at 420 nm. 

 

Figure 3-4: Structure of PAH pyrene indicating the flat aromatic ring 
system. 

 

 

Figure 3-5: Peaks from Flourolog instrument of 12 mM of surfactant SDS 
and pyrene in aqueous phase 

 

It has been shown by Kalyanasundaram and Thomas that the ratio of the first 

and third peak intensities are sensitive parameters to estimate the CMC point of 

surfactants 118. Another fluorescence method used to calculate CMC points has 

been described by Wong et al, which is based on an assumption that any 
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shifting of the fluorescence maximum wavelength arises from dye molecules 

experiencing changes in their environment. These changes are envisaged to be 

the result of micelle formation119. This method (i.e Wong method) involves 

measurement of only the first maximum fluorescence peak at 305 nm which is 

used to estimate the CMC within aqueous media as follow: 

  

A series of 15 different concentrations of the surfactant SDS were prepared in 

disposable cuvettes, each one containing an ethanolic solution of pyrene. The 

final concentration of pyrene in each cuvette was 1x10-5 M. Table 3-3 collects 

the intensity (I) of three fluorescence peaks of pyrene as a function of the 

concentration of SDS. The fourth peak of pyrene is a broader peak and the 

exact intensity is not accurate (see Figure 3-5). This experiment is a one-off run. 

 

Table 3-3: The florescence intensities of a series of different 
concentrations of surfactant SDS solutions at three predominant peaks  in 
an aqueous phase 

[SDS] mM I 305 I 365 I 377 

1 3637160 3699160 2626900 

2 3608820 3624240 3464300 

3 3744720 3693400 3773710 

4 3737590 3753840 3755670 

5 3672370 3781620 3752140 

6 2027740 3723130 3564650 

7 581840 3781860 2710650 

8 595730 3781170 3001760 

9 624970 3796990 3625840 

10 225970 3800170 3433720 

11 801620 3760530 2290870 

12 687760 3749440 2023270 

13 676790 3790140 3211710 

14 662360 3752440 2203720 

15 789960 3802710 1311050 

 

A graph can be plotted between the intensity of the first fluorescence maximum 

centre against the surfactant concentration (Figure 3-6; the Wong method). The 
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initial peak intensities at lower amphiphile concentration (below CMC point) 

seem to be rather stable with comparable peak intensities; however these 

values decrease sharply around the CMC point and finally the system is 

stabilised again by similar peak intensities above the CMC point. From the 

graph below, an estimation of the CMC point of the surfactant SDS in aqueous 

phase from the inflection points where the rate of decrease accelerates which is 

6.9 (± 0.4) mM. The ESD value calculated from the data shown in the graph 

based on the best fit of the data selected points. The red shadow is generated 

automatically by the OrigenPro software.   

 

 

Figure 3-6: Plotted graph of the SDS concentration in millimoles per litre 
against the intensities of the first fluorescence band centre values in the 
aqueous phase by pyrene 

 

 

This experiment was a prospective choice to be used to estimate the CMC 

within SHG environments due it’s compatibility in principle with different media, 

i.e. the SHG prepared directly in a disposable cuvette and the cuvette could be 

loaded to the instrument without any further addition or mobility of SHG. 

However,  initial results of the use of this fluorescent method in the SHG phase 

suggested that there was some behaviour in that phase which did not really 
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allow us to obtain good quality usable data (Figure 3-7). Therefore, we decided 

against further investigation of fluorescence as a method for use in the SHG 

phase.  

 

Figure 3-7: Peaks from Flourolog instrument of 0.9 mM of surfactant SDS 
and pyrene in SHG phase 

 
 

3.2.4 Visible Spectrophotometry 

To estimate the CMC of surfactant SDS in the aqueous phase using 

spectrophotometry, two different methods were used which involve using two 

different dyes, merocyanine 540 (MC 540) and pinacyanol chloride (PC). In 

using the first of these dye probes, the ratio of absorbance at two key maxima, 

558 and 524 nm are plotted against the concentration of SDS whilst the use of 

pinacaynol chloride dye system involves plotting absorbance at 608 nm against 

SDS concentration. concentration of SDS and absorption at 605 nm plotted 

against concentration of SDS pinacyanol chloride.  

 

3.2.4.1 Merocyanine 540 method  

A procedure was used based on a study described by A. Wicken et al.73 as 

follows. A series of different concentrations of SDS were prepared in a test 

tubes and mixed with an ethanolic solution of a red dye MC 540, resulting the 

dye concentration in each tube being 1x10-5 M.  
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Figure 3-8 showed a steady increase of the absorbance of merocyanine 540 

dye with increasing in the concertation within aqueous solution, two maxima 

wavelengths used and both would fit perfectly with a linear fit ( see Table 7-1 

and Table 7-2 for the fitting equations).    

 

  

Figure 3-8: Absorption-Concentration plot for the dye MC 540 indicating a 
linear increasing of the absorption with increasing the dye’s 
concentration of two different wavelengths  

 

Analysis of the visible spectrum via UV-Vis absorption spectrophotometry, 

revealed a double peak pattern with maxima at 524 nm and 558 nm with the 

former diminishing in size and the latter growing in size as the concentration of 

SDS increased (see Figure 3-9). 

The final concentration of surfactant, the absorbance of each maxima and the 

ratio of both maxima are shown in Table 3-4. For each concentration of 

surfactant, the maximum absorbance of MC 540 dimer (II) was noted and the 

maximum absorbance of the monomeric form (I) noted also and a graph plotted 

between the surfactant SDS concentration in millimoles per litre (mM) against 

the ratio of these absorbance values. Figure 3-10 reveals the absorption 

spectra of each SDS concentration in the range 1-17 mM. 
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Figure 3-9: The absorption of each concentration of the surfactant SDS 
from 1 – 17 mM in aqueous phase using the MC540 spectrophotometric 
method .
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Table 3-4 The absorption values of a series of different concentrations of surfactant SDS solutions  at two λmax in the aqueous 
phase. Three repetitive have been used and the average between them used in the plot. 

 

 First run  Second run  Third run    

[SDS] 
mM 

Abs 524 
Abs. 
558 

524/558 Abs 524 
Abs. 
558 

524/558 Abs 524 
Abs. 
558 

524/558 Average ST. Dev 

1.0 0.387 0.408 0.948 0.445 0.468 0.950 0.391 0.411 0.952 0.950 0.002 

2.0 0.485 0.510 0.951 0.417 0.437 0.954 0.496 0.520 0.954 0.953 0.002 

3.0 0.439 0.462 0.951 0.489 0.512 0.955 0.430 0.451 0.953 0.953 0.002 

4.0 0.483 0.506 0.955 0.412 0.431 0.955 0.477 0.498 0.958 0.956 0.002 

5.0 0.444 0.462 0.962 0.498 0.518 0.963 0.444 0.462 0.961 0.962 0.001 

6.0 0.524 0.546 0.960 0.455 0.472 0.964 0.501 0.518 0.966 0.963 0.003 

7.0 0.448 0.457 0.980 0.513 0.523 0.981 0.437 0.445 0.980 0.981 0.001 

8.0 0.561 0.518 1.083 0.476 0.444 1.072 0.554 0.512 1.081 1.079 0.006 

9.0 0.574 0.475 1.208 0.649 0.520 1.248 0.518 0.406 1.275 1.243 0.034 

10.0 0.790 0.560 1.412 0.633 0.468 1.354 0.559 0.379 1.478 1.415 0.062 

11.0 0.700 0.473 1.480 0.823 0.516 1.594 0.658 0.436 1.509 1.528 0.059 

12.0 0.846 0.519 1.632 0.687 0.448 1.534 0.807 0.490 1.646 1.604 0.061 

13.0 0.712 0.454 1.567 0.872 0.514 1.696 0.687 0.440 1.561 1.608 0.076 

14.0 0.974 0.583 1.671 0.696 0.439 1.585 0.856 0.501 1.707 1.654 0.062 

15.0 0.742 0.473 1.568 0.950 0.551 1.726 0.674 0.417 1.615 1.637 0.081 

16.0 0.944 0.544 1.736 0.749 0.471 1.593 0.895 0.508 1.761 1.696 0.091 

17.0 0.709 0.440 1.610 0.957 0.544 1.759 0.735 0.457 1.609 1.659 0.086 
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The absorbance ratio of monomer to dimer absorbance values increase with 

increasing the surfactant concentration due to the solvatochromic120 and the 

CMC point is estimated to be at the inflection point shown in Figure 3-10.  

The rate of increasing of peak ratio accelerated around the inflection point and 

the CMC value of the surfactant SDS is estimated from the graph at 10.8 ±0.6 

mM.  

 

 

Figure 3-10: Plotted graph between the SDS concentration (mM) and the 
ratio between the absorbance of monomeric to dimeric values in aqueous 
phase by using MC 540 as UV-Vis dye detector 

 

3.2.4.2 Pinacyanol chloride method  

Pinacyanol chloride (1,1′-diethyl-2,2′-carbocyanine chloride, 2,2′-

trimethinequinocyanine chloride, Quinaldine blue), abbreviated as PC is a 

cationic dye which is part of conjugated cyanine dyes. It has the formula  

C25H25ClN2. and Figure 3-11 shows it’s structure. 

 

 

Figure 3-11: The chemical structure of pinacyanol chloride 
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The amphipathic nature of PC confers solubility in a wide range of solvents, 

including water, ethanol and chloroform. Due to a high polarization of the 

chromophoric chain, PC has the ability to self-aggregate and this is a common 

phenomenon in the aqueous solution of cyanine dyes121. Water has a high 

dielectric constant which facilitates the formation of aggregates by decreasing 

the electrostatic repulsion between the cationic dye molecules121. 

Cyanine dyes of the type which PC belongs to, have deep colours and are 

frequently used as reporter dyes in a range of spectroscopic methods121. 

To estimate the CMC value of the surfactant SDS, a method has been 

suggested by T. Namani and P. Walde122  in which a series of different 

concentrations of SDS were prepared in  test tubes and mixed with an ethanolic 

solution of a blue dye PC, resulting the dye concentration in each tube being 

1x10-5 M. Figure 3-12 shows the absorption in the visible region of PC in the 

presence of SDS at a range of concentrations of series of SDS concentrations. 

Experiments were performed in triplicate.   

 

 

 

Figure 3-12: The absorption of each concentration of the surfactant SDS 
from 1 – 16 mM in aqueous phase using the PC spectrophotometric 
method.  
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This method consists of plotting the concentration of SDS in mM against the 

absorption maximum at 608 nm. The final concentration of surfactant, the 

absorbance of 608 nm maxima, the average of the three repeat runs and the 

error (standard deviation of sample) are shown in Table 3-5. For each 

concentration of surfactant, the maximum absorbance of PC was noted and a 

graph plotted between the surfactant SDS concentration in millimoles per litre 

(mM) against the absorbance values. Figure 3-13 reveals the absorption 

spectra of each SDS concentration in the range 1-16 mM. The rate of 

increasing of peaks absorbance accelerated around the inflection point and the 

CMC value of the surfactant SDS is estimated from the graph at 7.8 ± 0.4 mM 

and the value which have been reported in previous study equals to 8.0 mM121. 

 

Table 3-5: The absorption values of a series of different concentrations of 
surfactant SDS solutions  at 605 nm in the aqueous phase. Three 
repetitive have been used and the average between them used in the plot. 

[SDS]mM 1st run 2nd run 3rd run Average St. Dev. 

0 0.430 0.002 - 0.216 0.303 

1 0.236 0.220 0.250 0.235 0.015 

2 0.256 0.232 0.260 0.250 0.015 

3 0.244 0.218 0.265 0.242 0.023 

4 0.247 0.239 0.255 0.247 0.008 

5 0.228 0.214 0.263 0.235 0.025 

6 0.244 0.239 0.178 0.221 0.037 

7 0.594 0.584 0.587 0.588 0.005 

8 0.771 0.954 0.850 0.858 0.092 

9 0.934 0.916 1.052 0.967 0.074 

10 1.105 0.962 1.105 1.058 0.083 

11 0.974 1.006 0.953 0.977 0.026 

12 1.033 0.993 1.078 1.035 0.043 

13 1.096 1.079 1.052 1.076 0.022 

14 1.060 1.126 1.121 1.102 0.036 

15 1.005 1.144 1.150 1.100 0.082 

16 1.022 1.054 1.175 1.084 0.081 

 



87 
 

 

Figure 3-13: Plotted graph between the SDS concentration (mM) and the 
absorbance at 506 nm in aqueous phase by using PC as UV-Vis dye 
detector 

 

In summary, the measurement of CMC values for SDS has been examined in 

the aqueous phase using several different methods. The results obtained 

indicate that CMC measurements are dependent to some extent on the 

measurement method used as shown in Table 3-6 which shows these 

differences. Of the techniques used in aqueous solution, we have selected to 

use visible spectrophotometry in the SHG phase. 

 

Table 3-6: Summery of CMC values of SDS depending on the method and 
probe used. 

Method  Probe CMC (mM) 

UV-vis Merocyanine 540 7.3 ±0.1 

UV-vis Pinacyanol Chloride 7.8 ± 0.4 

Florescence Pyrene 6.0 

Conductivity NaOH 7.9 

Tensiometry -- 6.1 
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3.3 Measurements of Critical Micelle Concentrations (CMC) of 

SDS in Silica Hydrogel (SHG)  Environments  

From the possible analytical tools for CMC measurement in an aqueous 

environment, we have selected spectrophotometry as the most likely to be 

compatible and applicable with a SHG media. The conductivity method involves 

continuous addition of sodium hydroxide which is not applicable when exploring  

the gel phase as it results in the gel environment being changed. The similar  

issue arises with tensiometry as explained in 3.2.1 where the flow of a gel 

phase being so different to that of an aqueous solution would likely influence the 

results of such experiments. Fluorescence spectroscopy using pyrene returns 

only poor data so we have not pursued this any further. Thus we embarked on a 

series of  UV-Vis spectroscopic experiments to measure the CMC of sodium 

dodecylsulfate in the silica hydrogel phase . 

 

3.3.1 Merocyanine 540 as reporter dye 

In order to measure  the CMC of the surfactant SDS in a silica hydrogel phase 

created from a sodium silicate solution, the same procedure was employed as 

that used in the aqueous phase. Once again, the novelty of these experiments 

is that the CMC of an amphiphile within a silica hydrogel, related to an early 

earth geological environment, has not previously been examined. However, the 

hydrogel phase has such potential significance within the context of life 

emergence that we have engaged with that here7. 

 

3.3.1.1 Measurement of SDS CMC within a 0.5 M SHG 

A series of concentrations of the surfactant SDS was prepared directly in 

disposable cuvettes with the final concentration of SDS shown in Table 3-7. To 

each cuvette was also added a mixture of 0.5 M of sodium silicate solution, acid 

solution (i.e: Barge method of production of SHG) and an ethanolic solution of 

red dye MC540 to afford a final concentration of merocyanine of  

1x10-5 M. The systems were allowed to gel for 24 hrs prior to analyses so that 

we could ensure we were operating under the SHG environment. 

The samples show a similar overall peak shape to that  in an aqueous 

environment with a slight change in the dimer peak maximum from 558 (±2) nm 

to 560 (±2) nm (Figure 3-14)
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Table 3-7: The absorption values of a series of different concentrations of surfactant SDS solutions  at two λmax (524, 560 nm) in 
0.5M silica hydrogel phase. 

 First run  second run Third run  

[SDS] 
mM 

524 nm 560 nm 560/524 524 nm 560 nm 560/524 524 nm 560 nm 560/524 Average St. Div.s 

0.5 0.271 0.231 0.850 0.244 0.218 0.894 0.278 0.273 0.981 0.908 0.067 

0.75 0.292 0.420 1.440 0.297 0.383 1.292 0.362 0.586 1.620 1.451 0.164 

1 0.353 0.705 1.997 0.365 0.747 2.048 0.372 0.772 2.077 2.041 0.040 

1.5 0.382 0.923 2.417 0.389 0.942 2.420 0.447 0.961 2.147 2.328 0.156 

2 0.301 0.887 2.949 0.383 0.992 2.590 0.402 0.953 2.371 2.637 0.292 

3 0.398 1.055 2.650 0.391 1.048 2.682 0.412 1.002 2.433 2.589 0.135 

5 0.378 1.056 2.795 0.399 1.095 2.747 0.423 1.018 2.408 2.650 0.211 

7 0.407 1.107 2.720 0.387 1.094 2.825 0.403 1.025 2.544 2.696 0.142 

8 0.409 1.114 2.726 0.391 1.110 2.839 0.401 1.008 2.515 2.693 0.164 

9 0.444 1.161 2.614 0.401 1.111 2.769 0.387 0.987 2.551 2.645 0.112 

10 0.409 1.115 2.729 0.321 1.064 3.313 0.400 1.019 2.545 2.862 0.401 

12 0.388 1.088 2.804 0.393 1.118 2.847 0.393 1.007 2.561 2.738 0.154 

15 0.403 1.124 2.789 0.384 1.101 2.871 0.385 0.993 2.579 2.746 0.151 

18 0.408 1.133 2.775 0.382 1.105 2.890 0.840 1.317 1.568 2.411 0.732 

21 0.394 1.123 2.849 0.419 1.155 2.757 0.399 1.021 2.559 2.722 0.148 
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Figure 3-14: The absorption of each concentration of the surfactant SDS 
from 0.5 – 21 mM within 0.5M SHG phase using the MC540 
spectrophotometric method for the first measurements. The reaming two 
are listed in the appendix as (Figure 7-5 and Figure 7-6) 

 

The absorbance ratio of monomer to dimer values decrease with increasing 

surfactant concentration due to the solvatochromic shift and the CMC point is 

estimated to be at the inflection point shown in Figure 3-15. The rate of increase  

accelerated at the inflection point and the CMC value of the surfactant SDS is 

estimated to be 1.3 ± 0.7 mM 
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Figure 3-15: Graph of SDS concentration (mM) and absorbance ratio 
between monomeric and dimeric merocyanine 540 in 0.5 M silica hydrogel 
phase. The inflection point indicates the CMC point of the surfactant in 
SHG. 

 

Regarding the graph represented in Figure 3-15, there are a few points which 

need to be clarified and discussed. In the aqueous phase, there are three 

regions in the CMC curve: (i) below the CMC, (ii) between the on-set and (iii) 

equilibrium point and everything after that point. It is important to emphasise 

that the data we are reporting is absorbance data on the reporter dye which tells 

us about its self-assembly state. Essentially, PC exists principally as a 

monomer when it becomes incorporated into a micelle structure and so the 608 

nm band associated with that form becomes dominant. This in turn is sensitive 

to the degree of micellation. 

 

Below the CMC region represents that environment whereby the surfactant 

molecules are at low concentration, associated mainly at the air-water boundary 

(see Figure 1-9) in the solution and do not engage in self-assembly. As the 

surfactant concentration increases  the molecules start to aggregate and micelle 

formation begins; this is effectively the onset point of micelle formation. The last 

region represents the phase where micelle formation is essentially complete 

and what we are observing here is a plateau or equilibrium point for the 

concentration of monomeric form of pinacyanol chloride  
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These three regions are clearly visible in the aqueous environment graph as 

shown in Figure 3-10 (or lower and upper inflection points), but within the SHG’s 

media, we visualize two of them only, the onset point is not clearly defined. Now 

this could of course be due to the fact that onset is taking place at such low 

concentrations, lower than we have examined here. This means that what we 

have done in our investigations is to explore the change in the equilibrium 

transition point (iii) and compare that between aqueous and SHG phases.  

It is probable that this change in transition behaviour is linked to the salt content 

of the SHG’s as in related experiments performed in aqueous salt solution by 

another member of the Kee group, as similar observation is made that the onset 

transition point apparently vanishes at higher salt concentrations (see 

section 3.4.2) 

 

3.3.1.2 CMC of SDS in 0.6 M SHG 

When a higher concentration of silicate solution is used to prepare the SHG (0.6 

M silicate), the corresponding measurements lead to an even more reduced 

CMC value. Table 3-8 show the data used to plot Figure 3-16). The overall 

shape of the MC540 peaks within 0.6 M SHG have a similar peak maxima. 

Figure 3-17, shows the raw absorption data which have been used in Table 3-8 

to estimate the CMC point at 1.1 ± 0.2 mM. 
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Figure 3-16: Graph of SDS concentration (mM) and absorbance ratio 
between monomeric and dimeric merocyanine 540 in 0.6 M silica hydrogel 
phase. The inflection point indicates the CMC point of the surfactant in 
SHG. 

 

 

Figure 3-17: The absorption of each concentration of the surfactant SDS 
from 0.5 – 10 mM within 0.6M SHG phase using the MC540 
spectrophotometric method. 
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Table 3-8:  The absorption values of a series of different concentrations of surfactant SDS solutions  at two λmax (524, 560 nm) in 
0.6 M silica hydrogel phase. 

 First run second run Third run  

[SDS] 

mM 
524 nm 560 nm 560/524 524 nm 560 nm 560/524 524 nm 560 nm 560/524 Average St. Div 

0.5 0.233 0.236 0.990 0.216 0.230 0.937 0.351 0.387 0.905 0.944 0.043 

0.7 0.513 0.343 1.496 0.517 0.342 1.513 0.724 0.542 1.336 1.448 0.098 

0.9 0.751 0.429 1.752 0.724 0.414 1.749 0.789 0.498 1.585 1.695 0.096 

1.0 0.833 0.468 1.781 0.881 0.495 1.780 0.810 0.470 1.725 1.762 0.032 

1.2 0.799 0.440 1.818 0.873 0.489 1.785 0.958 0.568 1.686 1.763 0.069 

1.4 0.801 0.398 2.013 0.875 0.433 2.020 1.017 0.621 1.639 1.891 0.218 

1.6 0.694 0.336 2.062 0.733 0.355 2.066 0.935 0.525 1.780 1.969 0.164 

1.8 0.743 0.368 2.018 1.007 0.531 1.896 1.127 0.644 1.750 1.888 0.134 

2.0 0.972 0.471 2.063 0.961 0.522 1.843 1.076 0.540 1.993 1.966 0.112 

2.2 0.914 0.409 2.235 0.906 0.432 2.098 1.090 0.615 1.772 2.035 0.238 

2.4 0.850 0.434 1.958 0.856 0.409 2.092 0.895 0.468 1.913 1.988 0.093 

2.8 1.006 0.505 1.992 0.746 0.330 2.262 1.097 0.613 1.790 2.015 0.237 

3.0 1.033 0.539 1.918 0.863 0.416 2.075 0.948 0.520 1.821 1.938 0.128 

5.0 0.910 0.451 2.017 0.963 0.551 1.748 0.985 0.457 2.153 1.973 0.206 

8.0 1.042 0.508 2.052 0.816 0.353 2.314 1.095 0.566 1.933 2.100 0.194 

10.0 1.067 0.532 2.005 - - - 1.089 0.658 1.654 1.829 0.249 
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3.3.1.3 CMC of SDS in 0.7 M SHG  

Moving to a higher initial silicate concentration of 0.7 M produced a more erratic 

data set (Table 3-9 and Figure 3-18). It was observed that this system appeared 

to gel very quickly (within a six hours at ambient temperature for a 0.5 M silicate 

solution to less than ten minutes for (0.6 and 0.7) M to less than 30 seconds 1.0 

M silicate respectively (vide infra); however see Chapters 2 & 4 for a more 

detailed discussion of gelation times. Moreover, an unexpected observation was 

made at these higher concentration silicate systems. It was noticed that the 

cuvettes which contains SDS, SHG and merocyanine began to decolourise once 

the system had gelled, so that with the 1.0 M silicate system, all colour of the 

merocyanine was lost within a few hours of sample preparation. This intriguing 

observation has been the subject of a more detailed investigation (sees Chapter 

5 of this report). 

Again the overall shape of (Figure 3-18) of the peaks look similar to absorption 

within the aqueous and lower concentrations of SHG with two clearly observable  

maxima at  560 and 524 nm (the latter of which changes to become more of a 

shoulder on the side of the 560 nm band) and the ratio between these two value 

are plotted against concentration of SDS to estimate the CMC value as 1.1 ± 0.4 

mM (Figure 3-19). 
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Table 3-9:  The absorption values of a series of different concentrations of surfactant SDS solutions  at two λmax (524, 560 nm) 
in 0.7 M silica hydrogel phase 

 

 
First run  Second run Third run  

[SDS] 
mM 

560 nm 524 nm 560/524 560 nm 524 nm 560/524 560 nm 524 nm 560/524 Average St. Div.s 

0.5 0.29572

606 

0.17041

08 

1.73537

162 

0.27340

734 

0.18988

076 

1.43988

966 

0.27434

054 

0.15064

082 

1.82115

6765 

1.66547

268 

0.20001

3871 0.7 0.81344

044 

0.39921

406 

2.03760

47 

0.68859

738 

0.29728

794 

2.31626

409 

0.70398

486 

0.31023

219 

2.26921

923 

2.20769

6005 

0.14916

9683 0.9 0.89448

082 

0.35749

215 

2.50209

921 

0.94982

666 

0.43046

778 

2.20649

882 

0.90235

233 

0.38666

57 

2.33367

565 

2.34742

4561 

0.14827

9037 1.2 0.97066

391 

0.39892

846 

2.43317

786 

0.84954

202 

0.27874

693 

3.04771

792 

1.00004

304 

0.39223

424 

2.54960

6697 

2.67683

4159 

0.32642

7621 1.4 1.25983

489 

0.74072

927 

1.70080

343 

0.75258

38 

0.13438

363 

5.60026

382 

1.11414

766 

0.46959

034 

2.37259

4956 

3.22455

4068 

2.08466

3901 1.6 0.86772

984 

0.22761

013 

3.81235

166 

0.92371

213 

0.29690

653 

3.11112

097 

1.16675

627 

0.48442

99 

2.40851

4177 

3.11066

227 

0.70191

8855 1.8 1.02321

458 

0.37858

772 

2.70271

463 

1.09575

057 

0.41026

792 

2.67081

709 

1.28848

195 

0.59640

306 

2.16042

142 

2.51131

7715 

0.30430

3336 2 0.91128

904 

0.35907

403 

2.53788

626 

0.52850

366 

0.11866

931 

4.45358

334 

1.06086

6 

0.39150

22 

2.70973

1883 

3.23373

3827 

1.05990

9128 2.4 1.01555

514 

0.29772

872 

3.41100

836 

1.11475

599 

0.39808

857 

2.80027

125 

1.04806

173 

0.38713

214 

2.70724

5473 

2.97284

1692 

0.38230

3503 2.8 1.06420

112 

0.32963

306 

3.22844

173 

1.13405

514 

0.45576

414 

2.48825

001 

1.01109

695 

0.32010

943 

3.15859

7869 

2.95842

987 

0.40868

2476 3 1.09696

209 

0.37766

317 

2.90460

441 

1.16687

667 

0.47126

576 

2.47604

805 

1.08438

516 

0.36287

272 

2.98833

4746 

2.78966

2401 

0.27480

5682 5 1.15678

406 

0.34964

433 

3.30845

934 

1.15295

72 

0.42997

482 

2.68145

281 

1.08698

237 

0.34278

396 

3.17104

2123 

3.05365

1423 

0.32957

5072 7 1.32231

355 

0.54159

749 

2.44150

607 

1.02272

379 

0.37392

95 

2.73507

116 

1.21245

587 

0.49901

351 

2.42970

5482 

2.53542

7571 

0.17299

707 10 1.05636

847 

0.33527

103 

3.15078

958 

1.13443

887 

0.37778

53 

3.00286

667 

1.13050

592 

0.39336

631 

2.87392

6666 

3.00919

4306 

0.13853

9877  
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Figure 3-18: The absorption of each concentration of the surfactant SDS 
from 0.5 – 10 mM within 0.7 M SHG phase using the MC540 
spectrophotometric method. 

 

 

Figure 3-19: Graph of SDS concentration (mM) and absorbance ratio 
between monomeric and dimeric merocyanine 540 in 0.7 M silica hydrogel 
phase. The inflection point indicates the CMC point of the surfactant in 
SHG. 
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3.3.2 Pinacyanol Chloride as reporter dye  

Whilst the decolourisation of merocyanine in our higher concentration silicate 

hydrogel systems will be discussed later (Chapter 4), we decided to explore a 

different reporter dye in the anticipation that such colour changes would not 

occur. PC was selected as a new reporter dye. As outlined in section 3.2.4.2, 

PC has self-assembly behaviour that allows us to monitor dimer vs monomer 

formation on the basis of their differential visible absorption behaviour. Thus, 

PC has been used as a reporter dye to measure CMCs on the basis that 

monomer formation and concomitant absorption near 608 nm is favoured when 

pinacyanol becomes incorporated within a micellar structure.  

 

3.3.2.1 At 0.5 M SHG  

A concentration series of the surfactant SDS was prepared directly in 

disposable cuvettes with the final concentration of SDS shown in Table 3-10. To 

each cuvette was also added a mixture of 0.5 M of sodium silicate solution, acid 

solution (i.e: Barge method of production of SHG) and an ethanolic solution of 

blue dye PC to afford a final concentration of PC of 1 x 10-5 M. The systems 

were allowed to gel for 24 hrs prior to any analysis being performed so that we 

could ensure we were operating under the SHG environment. 

Results from Table 3-10 shows an absorption values above one absorption unit 

which indicated as a high PC concentration, to solve this issue, the 

concentration of PC was decreased from 1 x 10-5 M to 5 x 10-6 M (Table 3-11).  

 

Table 3-10: The absorption values of a series of different concentrations 
of surfactant SDS solutions  at  608 in 0.5 M silica hydrogel phase with 
1x10-5 M PC. 

[SDS] 
mM 

1st 608nm 2nd 608nm 3rd 608nm Average St.Div 

0.5 0.155385 0.366891 0.336397 0.286224 0.093351 

0.8 0.381156 0.492453 0.517931 0.463846 0.059389 

1 0.642463 0.828256 0.820785 0.763835 0.085877 

1.5 0.808543 1.046614 0.96275 0.939303 0.098596 

2 0.762091 1.067113 1.034832 0.954678 0.136816 

2.5 0.893455 1.035747 1.114704 1.014635 0.09155 

3 0.777867 1.07359 1.143368 0.998275 0.158434 
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5 0.72482 1.011192 0.958364 0.898125 0.124429 

8 0.670271 1.11692 1.086958 0.958049 0.203858 

12 0.704511 1.432726 1.280639 1.139292 0.313644 

15 0.798569 1.11014 1.203836 1.037515 0.173236 

18 0.729607 1.487926 1.216276 1.144603 0.313703 

 

Table 3-11: The absorption values of a series of different concentrations 
of surfactant SDS solutions  at 608 in 0.5 M silica hydrogel phase with 
5x10-6 M PC. 

[SDS] 
mM 

1st 608nm 2nd 608nm 3rd 608nm Average St.Div 

0.5 0.254059 0.19549 0.259404 0.236317 0.035459 

0.8 0.331069 0.491465 0.420377 0.414304 0.08037 

1 0.598571 0.628803 0.674203 0.633859 0.038069 

1.5 0.747151 0.802123 0.717368 0.755547 0.042997 

2 0.809138 0.816909 0.808896 0.811647 0.004558 

3 0.928428 0.880902 0.855889 0.888406 0.036847 

4 0.869745 0.827258 0.839076 0.84536 0.02193 

5 0.821839 0.850902 0.84614 0.839627 0.015588 

6 0.932139 0.879259 0.968829 0.926742 0.045028 

7 0.937482 0.978935 0.96519 0.960536 0.021115 

8 1.01833 0.973491 0.975634 0.989152 0.025292 

10 0.910873 1.020088 1.063559 0.998173 0.078667 

13 0.898319 1.028298 1.007781 0.978133 0.069878 

17 0.916971 1.06484 1.050973 1.010928 0.081664 

 

The samples show a similar overall peaks shape as compared with the one in 

aqueous environment with slightly change from the aqueous phase of the 

interested peak from 605 nm to 608 nm see Figure 3-20 for one representative 

run of the absorption of each concentration of the surfactant SDS from 0.5 – 17 

mM in SHG phase using PC spectrophotometric method. Figure 3-20 is the raw 

data acquired from the instrument and one can see the required to re-plot after 

applying background correction to ascertain the results as shown in 

Figure 3-21. 
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Figure 3-20:  The absorption of each concentration of the surfactant SDS 
from 0.5 – 17 mM within SHG phase using 5x10-6 of PC 
spectrophotometric method for the first measurements. 

 

 

Figure 3-21:  The absorption data plot from Figure 3-20 after applying 
background correction by OriginPro software. Note the start point and the 
end point of each scan. 
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To estimate the CMC value of the surfactant SDS, a method have been 

suggested by T. Namani and P. Walde122  in which a series of different 

concentrations of SDS were prepared in disposable cuvettes and mixed with an 

ethanolic solution of a blue dye PC, resulting the dye concentration in each 

cuvette is equal to 5x10-6 M. Figure 3-23 shows the absorption in the visible 

region of a series of SDS concentration  of three repeats, CMC value estimated 

as 1.4 ± 0.4 mM  

 

 

 

Figure 3-22: Plotted graphs between the SDS concentration (mM) and the 
absorbance at 608 nm values in 0.5 M silica hydrogel phase using 1x10-5 M 
PC dye indicator. The inflection point refers to the CMC point of the 
surfactant in SHG. 
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Figure 3-23: Plotted graphs between the SDS concentration (mM) and the 
absorbance at 608 nm values in 0.5 M silica hydrogel phase using 5x10-6 M 
PC dye indicator. The inflection point refers to the CMC point of the 
surfactant in SHG. 

 

As noted above, the position of the maxima wavelength shifted from 605 ± 2 nm 

within aqueous phase to 608 ±2 nm within the SHG phase and as the original 

method used the wavelength at 605 ± 2 nm, a decision made to plot the data 

from absorption sheet for absorption at 605 nm to make sure that the CMC was 

not affected. 

Table 3-12 shows the data collected of Figure 3-20 in which the absorption at 

506 nm used to plot Figure 3-24 of the CMC estimation point. 

From Figure 3-24 one can estimate the CMC at the upper inflection point at 1.4 

± 0.5 mM which is similar to what we find earlier and that’s why we used the 

absorption at 608 ± 2 nm in the coming data. 

 

Table 3-12: The absorption values of a series of different concentrations 
of surfactant SDS solutions  at 605 in 0.5 M silica hydrogel phase with 
5x10-6 M PC. 

[SDS] 
mM 

1st 2nd 3rd Average  St.Div 

0.5 0.254683 0.196272 0.259702 0.236886 0.035262 

0.8 0.32236 0.482384 0.412486 0.405743 0.080225 

1 0.590636 0.614077 0.660004 0.621572 0.035286 

1.5 0.727564 0.781391 0.695669 0.734875 0.043326 

2 0.790088 0.793553 0.78301 0.788884 0.005373 
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3 0.905509 0.855389 0.829145 0.863348 0.038799 

4 0.846114 0.801538 0.814149 0.8206 0.022977 

5 0.79957 0.822952 0.821177 0.814566 0.013018 

6 0.905707 0.851094 0.938072 0.898291 0.04396 

7 0.911303 0.947305 0.934032 0.93088 0.018207 

8 1.000481 0.939852 0.942758 0.96103 0.034196 

10 0.887416 0.988447 1.031103 0.968989 0.073793 

13 0.870658 0.99147 0.977899 0.946676 0.066182 

17 0.893984 1.032275 1.017275 0.981178 0.075884 

 

 

Figure 3-24: Plotted graphs between the SDS concentration (mM) and the 
absorbance at 605 nm values in 0.5 M silica hydrogel phase by using PC 
dye indicator. The inflection point refers to the CMC point of the 
surfactant in SHG. 

 

Subsequently, we elected to operate at a PC concentration of 5 x 10-5 M and to 

examine the self-assembly of SDS in SHG’s containing greater quantities of 

silicate. Thus, we have used the same experimental method as that described 

above in 3.3.2.1 with SHG’s at 0.6 – 1.0 M silica. With SDS, the same method 

have been used as follows: a concentration’s series of the surfactant SDS was 

prepared directly in disposable cuvettes with the final concentration of SDS 

shown in Table 3-13; Table 3-14; Table 3-15; Table 3-16 and Table 3-17 for 

concentrations of 0.6; 0.7; 0.8; 0.9 and 1.0 M respectively. To each cuvette was 
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also added a mixture of sodium silicate solution, acid solution (i.e: Barge 

method of production of SHG) and an ethanolic solution of blue dye PC to afford 

a final concentration of PC of 5x10-6 M  for 0.6 and 0.7 M SHG while using 

1x10-5 M for the other SHG concentrations. The systems were allowed to gel for 

24 hrs prior to any analyses being performed so that we could ensure we were 

operating under the SHG environment. 

The overall shape of the absorption peaks of PC within SHG environment 

remain the same as comparing with aqueous environment with only peak’s 

maxima has shifted from 605nm(±2) to 608nm(±2) as shown in Figure 3-25; 

Figure 3-27; Figure 3-29; Figure 3-31 and Figure 3-33 for concentrations of 0.6; 

0.7; 0.8; 0.9 and 1.0 M respectively of SHG. 

 

3.3.2.2 At 0.6 M SHG 

To estimate the CMC value of the surfactant SDS in more the concentrated 

SHG’s, the T. Namani and P. Walde122  method was again used although care 

needed to be taken this time over both the rapidity of component addition in that 

the more silicate-rich gels gelled faster and over precipitation and associated 

lack of optical clarity in the resultant gels. Data were collected in the same 

manner, in triplicate, as those described above for the 0.5 M gels 

(section 3.3.2.1). For these studies, the dye PC was used in cases of SHG’s 

concentration (0.6 and 0.7) M at a concentration of  5x10-6 M, and the reaming 

measurements at a concentration of 5x10-5 M due to low absorption values and 

optical clarity issue. The acquired data are reproduced in Table 3-13, 

Table 3-14, Table 3-15, Table 3-16 and Table 3-17 and the plotted graphs of 

absorbance vs [SDS] are found in Figure 3-26, Figure 3-28, Figure 3-30, 

Figure 3-32 and Figure 3-34. 

 

Table 3-13: The absorption values of a series of different concentrations 
of surfactant SDS solutions  at λmax 608 in 0.6 M silica hydrogel phase with 
5x10-6 M PC. 

[SDS] 
mM 

1st  608nm 2nd 608nm 3rd 608nm Average  St.Div  

0.5 0.567156 0.398585 0.478456 0.481399 0.084324 

0.7 0.606217 0.67918 0.722572 0.669323 0.0588 

0.9 0.535743 0.800298 0.74631 0.694117 0.139787 

1.3 0.817356 0.860506 0.888911 0.855591 0.036029 
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1.7 0.93498 0.902961 0.860112 0.899351 0.037564 

2 0.911556 0.942909 0.898956 0.917807 0.022633 

2.5 0.818297 0.956759 0.954482 0.909846 0.079292 

3 0.877668 0.934305 1.050518 0.954164 0.088119 

5 0.975795 1.002952 0.970912 0.98322 0.017262 

7 0.989758 1.04382 1.061894 1.031824 0.037534 

9 0.970418 0.982087 1.027082 0.993196 0.029921 

11 1.006605 0.870455 1.013925 0.963662 0.080802 

14 1.053535 1.084062 1.032792 1.056796 0.02579 

17 1.017195 1.028714 1.012656 1.019522 0.008278 

 

 

 

Figure 3-25: The absorption of each concentration of the surfactant SDS 
from 0.5 – 17 mM within 0.6 M SHG phase using 5x10-6 of PC 
spectrophotometric method after applying background correction. 
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Figure 3-26: Plotted graphs between the SDS concentration (mM) and the 
absorbance at 608 nm values in 0.6 M silica hydrogel phase by using PC 
dye indicator. The inflection point refers to the CMC point of the surfactant 
in SHG. 

 

 

3.3.2.3 At 0.7 M SHG 

Table 3-14: The absorption values of a series of different concentrations 
of surfactant SDS solutions  at λmax 608 in 0.7 M silica hydrogel phase with 
5x10-6 M PC. 

[SDS] 

mM 
1st 608nm 2nd 608nm 3rd 608nm Average St.Div 

0.3 0.270694 0.319218 0.440723 0.343545 0.087586 

0.5 0.226138 0.534706 0.629129 0.463324 0.210765 

0.7 0.582861 0.879747 0.957831 0.806813 0.197838 

0.9 0.870827 0.951881 0.898596 0.907101 0.041191 

1.2 0.905993 1.024122 0.978981 0.969699 0.059609 

1.5 0.941658 0.976992 0.957395 0.958681 0.017702 

1.8 0.923578 0.999131 1.074846 0.999185 0.075634 

2.2 0.44002 1.032464 1.143363 0.871949 0.378149 

2.5 0.818368 1.083444 1.170328 1.024047 0.183344 
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3 1.00213 1.053384 1.093458 1.049657 0.045778 

3.5 1.062823 0.964451 0.990123 1.005799 0.051025 

4 1.14922 0.938557 1.062945 1.050241 0.105904 

6 1.21972 1.129988 1.142384 1.16403 0.048625 

10 1.251293 1.004189 1.049477 1.101653 0.131556 

 

 

 

Figure 3-27: The absorption of each concentration of the surfactant SDS 
from 0.3 – 10 mM within 0.7 M SHG phase using 5x10-6 M of PC 
spectrophotometric method after applying background correction. 
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Figure 3-28: Plotted graphs between the SDS concentration (mM) and the 
absorbance at 608 nm values in 0.7 M silica hydrogel phase by using PC 
dye indicator. The inflection point refers to the CMC point of the surfactant 
in SHG. 

 

 

3.3.2.4 At 0.8 M SHG 

Table 3-15: The absorption values of a series of different concentrations 
of surfactant SDS solutions  at λmax 608 in 0.8 M silica hydrogel phase with 
1x10-5 M PC. 

[SDS] 

mM 
1st 608nm 2nd 608nm 3rd 608nm Average St.Div 

0.2 0.230064 0.344914 0.252043 0.275674 0.060963 

0.4 0.238768 0.273937 0.21698 0.243228 0.028739 

0.6 0.513058 0.539539 0.460597 0.504398 0.040177 

0.8 0.629495 0.571276 0.486246 0.562339 0.072042 

1 0.501993 0.603038 0.593161 0.566064 0.055707 

1.3 0.691382 0.611253 0.632965 0.6452 0.041442 

1.6 0.556492 0.596901 0.639181 0.597525 0.041348 

1.9 0.594131 0.615934 0.626285 0.612117 0.016413 

2.2 0.603777 0.595565 0.63199 0.610444 0.019106 
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2.5 0.62051 0.659309 0.597368 0.625729 0.031299 

3 0.560226 0.5764 0.543985 0.560203 0.016207 

5 0.564167 0.620825 0.604427 0.596473 0.029155 

7 0.624768 0.736736 0.730187 0.69723 0.06284 

10 0.782552 0.722577 0.721867 0.742332 0.034833 

 

 

Figure 3-29: The absorption of each concentration of the surfactant SDS 
from 0.3 – 10 mM within 0.8 M SHG phase using 1x10-5 M of PC 
spectrophotometric method after applying background correction. 
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Figure 3-30: Plotted graphs between the SDS concentration (mM) and the 
absorbance at 608 nm values in 0.8 M silica hydrogel phase by using PC 
dye indicator. The inflection point refers to the CMC point of the surfactant 
in SHG. 

 

 

3.3.2.5 At 0.9 M SHG 

 

Table 3-16: The absorption values of a series of different concentrations 
of surfactant SDS solutions  at λmax 608 in 0.9 M silica hydrogel phase with 
1x10-5 M PC. 

[SDS] 
mM 

1st 608nm 2nd 608nm 3rd 608nm Average  St.Div  

0.2 0.070802 0.090308 0.067863 0.076324 0.012199 

0.4 0.094512 0.072349 0.114643 0.093835 0.021155 

0.6 0.356659 0.360851 0.344042 0.353851 0.008749 

0.8 0.371272 0.347939 0.355339 0.358183 0.011923 

1 0.486799 0.362868 0.392865 0.414177 0.064656 

1.3 0.393243 0.42678 0.401845 0.407289 0.017419 

1.6 0.460567 0.382669 0.411032 0.41809 0.039426 

1.9 0.409313 0.394357 0.396328 0.399999 0.008126 

2.4 0.422361 0.494421 0.444988 0.453923 0.036852 

3 0.363247 0.369409 0.284842 0.339166 0.047147 



111 
 

4 0.362838 0.57562 0.385352 0.44127 0.116894 

6 0.427179 0.507094 0.44182 0.458698 0.042547 

8 0.496066 0.475774 0.457224 0.476355 0.019428 

11 0.471958 0.507601 0.478293 0.48595 0.019015 

  

 

 

 

Figure 3-31: The absorption of each concentration of the surfactant SDS 
from 0.2 – 11 mM within 0.9 M SHG phase using 1x10-5 M of PC 
spectrophotometric method applying background correction. 
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Figure 3-32: Plotted graphs between the SDS concentration (mM) and the 
absorbance at 608 nm values in 0.9 M silica hydrogel phase by using PC 
dye indicator. The inflection point refers to the CMC point of the surfactant 
in SHG. 

 

 

3.3.2.6 At 1.0 M SHG 

 

Table 3-17: The absorption values of a series of different concentrations 
of surfactant SDS solutions  at λmax 608 in 1.0 M silica hydrogel phase with 
1x10-5 M PC. 

[SDS] 
mM 

1st 608nm 2nd 608nm 3rd 608nm Average  St.Div  

0.2 0.158719 0.187734 0.08705 0.144501 0.051826 

0.4 0.34473 0.165838 0.161991 0.224186 0.104412 

0.6 0.437375 0.348036 0.317999 0.367803 0.062095 

0.8 0.441242 0.333276 0.328644 0.367721 0.063714 

1 0.401928 0.363316 0.467488 0.410911 0.052664 

1.2 0.494026 0.365352 0.355907 0.405095 0.077161 

1.5 0.384447 0.366294 0.526786 0.425842 0.087889 

1.8 0.502322 0.397757 0.436835 0.445638 0.052835 

2.2 0.45989 0.403463 0.561982 0.475112 0.080348 
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2.7 0.485578 0.375196 0.372157 0.410977 0.064624 

3.5 0.484689 0.344717 0.365824 0.39841 0.075461 

5 0.615555 0.478945 0.458616 0.517705 0.085348 

7 0.559874 0.449755 0.483229 0.497619 0.056452 

10 0.584621 0.605653 0.617711 0.602661 0.016746 

 

 

 

 

Figure 3-33: The absorption of each concentration of the surfactant SDS 
after applying background correction from 0.2 – 10 mM within 1.0 M SHG 
phase using 1x10-5 M of PC spectrophotometric method. 
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Figure 3-34: Plotted graphs between the SDS concentration (mM) and the 
absorbance at 608 nm values in 1.0 M silica hydrogel phase by using PC 
dye indicator. The inflection point refers to the CMC point of the surfactant 
in SHG. 

 

To summarize the above results, CMC values of SDS with the help of PC dye 

estimated according to the same method used in aqueous phase by plotting 

average absorbance of three repeats against the SDS concentration. The 

shape of the plotted graph shows a steadily increase in the absorbance at 

608nm with increases in the concentration of SDS, after a certain concentration, 

no more absorption peak maxima increase and goes almost flat which indicate 

passing the critical point (CMC). By plotting two selective line between the first 

pattern below CMC which is  steadily absorbance increase and the second 

pattern which indicates the flat pattern above the CMC point and the 

intersection between these two lines used to estimate the CMC point as shown 

in Figure 3-26; Figure 3-28; Figure 3-30; Figure 3-32 and Figure 3-34. 

Plotted results shows decreases with increases in the SHG concentration as 

follow: (1.4 ± 0.4 mM); (1.5 ± 0.2); (0.8 ± 0.3); (1.0 ± 0.2); (0.7 ± 0.4) and (0.6 ± 

0.2) millimolar for the 0.5; 0.6; 0.7; 0.8; 0.9 and 1.0 molar of SHG 
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3.4 Discussion and Analysis of Results 

 

3.4.1 Merocyanine vs Pinacyanol Chloride 

It is clear from the results outlined above that both MC 540 and PC return CMC 

values for SDS in the 0.5 M silica hydrogel sample that are comparable: 1.3 ± 

0.7 mM (merocyanine) and 1.4 ± 0.4 mM (pinacyanol chloride). Given the far 

more rapid decolourisation of merocyanine (order of hours to days) over PC 

(where indeed we also see some decolourisation on the timescale of weeks), 

we have elected to proceed with measurements using the latter reporter dye. 

An initial investigation of the decolourisation phenomenon of MC540 is 

described in Chapter 4. 

 

3.4.2 CMC Values as function of Silicate Concentration 

For quick comparison of the CMC values for 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 M SHGs, 

Table 3-18 shows decreasing of the CMC values with increasing SHG 

concentrations. 

 

Table 3-18: CMC values of SDS according to SHG’s concentration 
increasing  

SHG concentration / M CMC value  Error margin  

0.5 1.4 0.4 

0.6 1.5 0.2 

0.7 0.8 0.3 

0.8 1.0 0.2 

0.9 0.7 0.4 

1.0 0.6 0.2 

 

 

Whilst the CMC values do not appear to change significantly across the series 

of SHG’s, there is perhaps a slight trend towards decreasing CMC with values 

of 1.4 ± 0.4 mM (0.5 M SHG) descending to 0.6 ± 0.2 mM (1.0 M SHG). The 
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differential between these two is not especially large but may be statistically 

significant. 

When one begins to consider the factors which may be influencing the decrease 

in CMC between aqueous and SHG phase itself, there are several questions 

which logically arise: 

1. What is the role (if any) of the gel phase itself? 

2. What is the role (if any) of the silica matrix within the gel? 

3. What is the role (if any) of the presence of salts within the hydrogel 

phase? 

4. What is the role (if any) of the ionic strength within the hydrogel phase? 

 

Examining this collection of questions, it may be difficult to ascertain definitively 

if the gel phase itself is having an effect, but independent studies by another 

member of our research group has confirmed that there does indeed appear to 

be a strong salt and possibly also ionic strength effect on CMC values in 

aqueous solution, as has been found by others123.  

 

For example, the data outlined in Figure 3-35 below have been collected by a 

PhD research colleague in our laboratory, Mrs Seham Alanazi, who is 

examining this salt effect in more details123. This image shows how the CMC of 

SDS decreases with increasing concentrations of added salts, all sodium salts. 

It is clear that increasing salt concentration, up to a certain level, between 0.2-

0.3 M leads to significant reduction of the CMC, essentially bringing it into the 

region that we are observing in the SHG phase as outlined in this chapter. 

Beyond this threshold salt concentration, the CMC appears to show little further 

change. We can make an approximate calculation of what the salt concentration 

is likely to be in our 0.5-1.0 M SHG formulations as follows: 
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Figure 3-35: CMC values of SDS as a function of electrolytes 
concentration123 

 

One further issue which arose in comparing the experimental measurements of 

CMC in aqueous and the SHG phases was that the shape of the absorbance vs 

[SDS] curves was different (Figure 3-36).  

 

 

   

Figure 3-36: Plotted graphs between the SDS concentration (mM) and the 
absorbance at 605 nm in aqueous phase (left) and 0.5 M SHG (right) by 
using PC as reporter dye. 

 

As can be clearly seen from the left hand side image of Figure 3-36, which is 

the aqueous phase CMC measurement, there are two clear transition points in 

the behaviour of the PC reporter dye. The first at ca. 6 mM show the point at 

which a significant intensity of signal is observed at 608 nm, this being 

associated with absorbance of PC in the monomeric phase. This in turn is what 
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would be expected as the dye molecule beings to penetrate an amphiphilic 

micelle. Thus, this point represents the on-set of micellation. The second 

transition occurs in the aqueous phase at ca. 9 mM [SDS] and represents the 

point at which monomer formation and hence co-assembly of amphiphile and 

pinacyanol dye has reached an equilibrium point.  

What can clearly be seen from comparison of the two images in Figure 3-36 is 

that in the SHG phase, the lower, onset, transition is not clearly defined. This 

may indeed be a result of such a transition being shifted to increasingly smaller 

concentrations. Therefore, in the absence of more detailed studies designed to 

probe this in more detail, we are not in a position to compare on-set micellation 

points between aqueous and gel phases. However, we are able to make that 

comparison for the second transition point, the equilibrium point and this is what 

has been done here. Interestingly, this same effect, of a clear diminution of the 

first onset transition point is also found in CMC measurements that we have 

made on SDS in the aqueous phase in the presence of salts (see Figure 3-37 

for an example123). 

To what extent such effects translate to the silica hydrogel phase, we do not as 

yet know and are beyond the scope of this thesis. However, it is certainly the 

case that the silica hydrogels produced here are commensurate with both 

reducing the CMC of a representative amphiphile whilst also providing a barrier 

to material loss through the physical nature of the gel phase itself.  
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Figure 3-37: Estimation of the CMC values by plotting specific absorbance 
of SDS versus concentration at the wavelength of 608 nm in carbonate 
solution: a) 0.015 M , b) 0.025 M , c) 0.04 M , d) 0.05 M , e) 0.1 M, f) 0.15 M , 
g) 0.2 M , h) 0.25 M , i) 0.35 M , j) 0.5 M , k) 0.7 M  and l) 0.9 M123. 
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3.5 Conclusion  

Overall, the content and main conclusions from this chapter may be 

summarised as follows: 

 

1. The critical micelle concentrations (CMC)  of the surfactant SDS have 

been measured using UV-VIS spectrophotometry in the silica hydrogel 

phase (SHG) and compared to the aqueous phase 

2. Overall, the CMC of SDS is noted to be lower in the SHG phase than in 

water. There is evidence that this may be due to the salt components 

within the gel 

3. One of the colourimetry dyes that we were using in these studies, 

MC540, was observed to undergo decolourization in the more 

concentrated SHG’s; this effect has been studies more in Chapter 4 
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Chapter 4 Effects of the Hydrogel Phase on Molecular 

Aggregation of Amphiphilic Dyes 

4.1 Merocyanine 540 Decolourisation. Introduction  

During experiments to measure the CMC of SDS in SHG media (described in 

Chapter 3) using spectrophotometric measurements with the red dye 

merocyanine 540 (MC 540) shown in Figure 4-1, an observation was made 

that, in certain SHG preparations, the initial red colour of the dye would of 

disappeared, becoming yellow and then subsequently colourless after a certain 

time. Amphiphiles have complementary hydrophilic and hydrophobic regions. In 

polar solvents for instance, water, spontaneous self-assembly occurs to 

generate micelles124. This is due to head hydrophilicity and tail hydrophobicity 

and their preferred orientation with respect to water. A micelle structure 

contains outward-facing hydrophilic heads (towards water) and inward-facing 

hydrophobic tails (away from water). In studies described in Chapter 3, a 

description of how the critical micelle concentration of the model amphiphile 

sodium dodecylsulfate (SDS) was influenced by self-assembly within the 

hydrogel phase. In order to make such measurements spectrophotometrically, 

we exploited the difference in self-assembly behaviour of MC 540 when the 

latter partitions between aqueous and micellar phases73. However, the dye 

decolourisation behaviour made it challenging to get effective, reproducible 

results which necessitated switching to another dye reporter, pinacyanol 

chloride (Chapter 3). In this Chapter, a description in a little more details some 

of the work that been performed to try to probe this decolourisation behaviour.   

 

 

Figure 4-1: Molecular structure of merocyanine 540 
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4.2 Aims & Objectives  

In examining the decolourisation behaviour of MC 540, we wanted to try to 

probe the following questions: 

(i) What might be the mechanism(s) of decolourisation & what 

environmental factors might be implicated? 

(ii) Is decolourisation linked in any fundamental way to the hydrogel phase 

itself? 

(iii) Does the presence of an amphiphile such as SDS have any effect upon 

the decolourisation? 

 

 

4.3 Experiments to Probe the Mechanism of Decolourisation 

 

4.3.1 The Role of Singlet Molecular Oxygen 

First instincts when looking at the structure of MC 540 (Figure 4-1) is that the 

colour loss is related to the loss of conjugation of the molecule. The extended 

conjugation of double bonds (Figure 4-2) and electron rich atoms results in a 

delocalised system, which results in lower excitation energies (in the visible 

spectral region) to promote electrons to higher energy orbitals such as the π* 

orbital. Disruption of this conjugation will result in higher excitation energies and 

no absorption in the visible region125.  

 

 

Figure 4-2: MC 540 highlighted to show extended conjugation 

 

Initial investigations into the mechanism for decolourisation lead to a well-

established, documented and patented photo-oxidation reaction. This reaction 

involved a photooxidation process of MC 540 (MCs*) by a mechanism such as 
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the one shown in Scheme 4-1. In this case, the singlet oxygen is generated by 

the triplet excited state of the dye itself interacting with the triplet oxygen126, 127. 

 

Scheme 4-1: Reaction of MCs* with SMO to produce photo-oxidation 
products 

 

The dye would become excited by the absorption of either visible or UV 

spectrum light to its singlet state. The singlet oxygen, that is oxygen also in its 

singlet excited state, would then have the ability to interact with the dye 

molecule, and this interaction would quench the excitation of both molecules. 

The attack is most likely to occur at the Spiro-carbon as shown in Scheme 4-1, 

as this is the most δ+ point of attack, but attack at the other end of the butane 

chain is also likely due to the stabilisation of anions from the diketone at this 

position. This was confirmed by Toutchkine et al who demonstrated the 

improved photo-stability and retardation of photo-bleaching of similar 

merocyanine dyes by substitution at this point 128. This reaction would 

theoretically be facilitated in the hydrogel environment due to the reduced 

dissociation ability of the singlet oxygen in gel media. This is both due to 

increased likelihood of adsorption and the increased viscosity.  

Viscosity provides a physical barrier to the transport of the molecule through its 

environment. It is also likely that the ‘product’ molecules would be isolatable 

intermediates to more stable products shown in Scheme 4-2 as detailed and 

patented by Franck and Schneider 129, 130.   
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Scheme 4-2: Breakdown of MCN through photo-oxidation to produce key 
identified intermediates and products, namely; Meroxazole, Merocil, and 
Merodantoin 129, 130 

 

An investigation has begun with no SDS system to determine the effects of 

atmospheric oxygen (or there lack of) on the rate of decolourisation of MC540. 

Additionally, Argon and septum’s were chosen over nitrogen and a glove bag / 

para-film combination as argon is a heavier gas and would more easily displace 

the oxygen, as well as being purer than the mains nitrogen. Septum’s and 

needles provided a better seal from the atmosphere than the use or para-film 

and a glove bag as well as being considerably easier for the operator to handle.  

Contrary to expectations, samples freed from atmospheric oxygen still 

decoloured over time in all cases. It was thought at first that this was due to 

samples not being fully evacuated of oxygen, hence the development of the 

degassing methodology, however it was decided this was not the case due to 

two key observations: 

1. In many but not all cases, samples decolourise from the bottom of the 

cuvette first, then the decolourisation continues upwards (Figure 4-3).  

2. During the degassing of a solution of water, acetic acid and dye 

decolourisation started to occur without gel formation (Figure 4-4).  

If decolourisation was directly related to atmospheric oxygen it would be logical 

for samples to decolour fastest where the concentration of oxygen would be 

highest, i.e. at the surface of the sample, in contact with the air as one can see 

in Figure 4-3. However, what is observed shows the opposite, implying the 

occurrence of a different effect.  
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Figure 4-3: Photograph of a 1.0 M silica gel sample decolourising 
primarily from the bottom of the disposable cuvette to the top. 

 

The decolourisation of the dye in aqueous solution was unexpected 

phenomenon which noticed as well, as decolourisation has previously only 

been observed in the gel media. The stock solution of MC 540 in ethanol is 

very stable and retained its full colour throughout this investigation. The only 

difference between normal dye solution and this aqueous decolourised sample 

was the bubbling of argon. It was possible that this could be directly related to 

an interaction with the gas, although Argon is an inert. Three gas types; argon, 

nitrogen and compressed air, were bubbled through three samples of the same 

solution for 30 minutes to determine if this effect was exclusive to argon. 

 

 

Figure 4-4: Absorbance at 510 nm of four un-gelled samples i) as soon as 
they were prepared and (blue columns) ii) after bubbling of the respective 
gas or sonication for 30 minutes (red columns) 
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It is clearly shown by Figure 4-4 that this effect is universal to bubbling of all 

gas types tested. The hypothesis was that the agitation of the mixture by the 

bubbles and subsequent influx of kinetic energy may be causing the 

phenomenon. Logically, sonicating the solutions in a water bath would have a 

similar effect131. However, no decolourisation was observed after 2 hours of 

sonication, the main effective reason for using sonication is to remove 

entrapped gases but, the decolourization issue is not related to presence or 

absence of oxygen gas.  

 

4.3.2 The Effect of pH on MC 540 decolourization  

After reaching a somewhat inconclusive scenario with respect to the effects of 

oxidation, it was decided to probe whether or not pH might have an effect. 

Increasing the pH of the solution promotes the formation of aggregates as the 

repulsive forces between similarly negatively charged moieties in the dye 

molecules are decreased by the presence of salt cations. 

Firstly, conduct an examination of the visible absorption characteristics of MC 

540 at buffered pH values of 4 and 7 which revealed (Figure 4-5) a negligible 

differential in terms of absorption. Subsequently, a time-logged pH 

measurement of the natural, un-buffered, pH of MC 540 in water at 10 µM 

concentration at 20ºC returns a stable pH window of between 5.9-6.0 pH units 

after ca 3000 secs (Figure 4-6).  
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Figure 4-5 UV-Vis spectra of MC 540 (10 M) in two buffered solutions (pH 
4 and 7). 

 

 

Figure 4-6: Time-logged pH values of MC 540 (10 µM) in the aqueous phase  

 

 

However, the decolourisation behaviour that we are observing is not strictly an 

aqueous environment but one based upon a hydrogel. Therefore, it is 

necessary to consider the pH of MC 540 in the SHG environment both as a 

function of silicate concentration and of added SDS. The pH value of SHG (1.0 

M silicate) stabilised at pH 9.8 after 45 mins (Figure 4-7) at ambient 

temperature. When the same measurement is made of a SHG (1.0 M silicate) 

containing MC 540 (1 x 10-5 M) the pH reading ( see Figure 4-8) stabilises at 

10.28 after 30 min; the sample had completely decolourized after 17 mins 

under these conditions. Comparing these observations to those made on 

aqueous solutions of MC 540 (1 x 10-5 M), we note that at a pH of 12.4, the 

colour changes to a light yellow after several minutes but that at a pH of 10.3 

there is no effective change of colour over a period of at least one hour.  

 



128 
 

 

Figure 4-7: Time-logged pH values of 1.0 M SHG. 

 

 

 

    Figure 4-8: Time-logged pH values of 1.0 M SHG with 1x10-5 M of the dye 
MC 540 
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Therefore, as MC 540 is definitively decolourized when encapsulated within a 

silica hydrogel (SHG) environment at a pH regime which, in aqueous 

conditions, does not lead to decolourisation, we cannot make any claim for a 

strong pH effect on the bleaching.  

 

 

4.3.3 Experiments to Probe Effects of the Presence of Amphiphiles 

and Gel Phase on the Decolourisation of Merocyanine 

Building on the discussions above on MC 540 aggregation behaviour. Just as 

pH is found to influence the self-assembly behaviour of the dye, so too might 

the presence of a second amphiphile, above the critical micelle concentration, 

be capable of influencing of MC 540 self-assembly. This encouraged us asking 

the question: is the rate of this decolourisation process dependent upon the 

concertation of surfactant SDS and the concentration of silicate used in the 

hydrogel preparation? As can be seen in Figure 4-9, the decolourisation of MC   

happens far more rapidly in SHG formulations that have higher quantities of 

silicate.  The series of images on the left-hand side show MC 540 

photographed after 3 h in SHG formulations containing 1.0 M silicate whereas 

the right-hand column has parallel samples in 0.5 M silicate formulations 

photographed after 28 h. It can clearly be seen that decolourisation is more 

advanced in the 1.0 M formulation of SHG. Moreover, the images reveal also 

an effect of the presence of the amphiphile SDS on MC 540 decolourisation. 

The cuvette containing SHG at 1.0 M silicate level of preparation but without 

any SDS in it, decolorized after about 1 hour. Subsequent additions of SDS at 

3, 10 and 18 mM levels, result in longer decolourisation times at 1.0 M silicate 

level SHG; for example with the SDS concentration at 18 mM (1.0 M silicate) 

decolourisation required about 9.5 hours for complete loss of colour. 
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Figure 4-9: Decolourisation of MC 540 in SHG formulations in the 
presence of SDS at 3, 10 & 18 mM. The left-hand column contains 1.0 M 
formulation SHG and have been photographed after 3 h. The right-hand 
column has 0.5 M formulation SHG and is photographed after 28 h. The 
concentration of merocyanine is 0.01 mM in all cases.  

 

 

The effect of the presence of amphiphile SDS on MC 540 decolourisation has 

also been probed spectrophometrically In Figure 4-10 are displayed the time 

evolution of the decolourisation of MC 540, measured spectrophotometrically at 

559 nm. As one can see clearly from the data, decolourisation is rapid in the 

absence of added amphiphile SDS, essentially reaching a plateau within 1h at 

ambient temperature. The subsequent introduction of SDS at modest levels (3 

& 5 mM) but levels above the CMC in the SHG media (see Chapter 3)results in 

a marked attenuation of the decolourisation such that the absorbance at 559 

nm has been reduced to half its initial value by ca. 2.5 h. Interestingly the rates 

of decolourisation appear to be attenuated even more at concentrations at and 

above the CMC for SDS in water (see above for 10 and 18 mM entries). We 

note also that even though the MC 540 was deployed at the same 

concentration (10 µM) in each experiment in Figure 4-10, the initial absorbance 

values of each run are somewhat different. This could be due to random time 

fluctuations in introducing the samples into the spectrometer post-preparation.  
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Figure 4-10: Different concretions of surfactant SDS in 1.0 M silica 
hydrogel environment plotted graph between the absorbance values at 
525 nm against time. For data see Figure 7-11 to Figure 7-16 

 

4.4 Mathematical expression of the decolourization plot  

However, in the absence of these modified experiments, it is perhaps of value 

to re-express the data in Figure 4-10 in terms of a mathematical equation and 

see which will fit better to the proposed equation. Here will express two kinetic 

equations which are first-order kinetic equation and Gaussian equation:  

 

4.4.1 first-order kinetic equation 

If one attempts to model the decolourisation of MC 540 in terms of first order-

kinetics, one may express this as follows: 

− 𝒅[𝑴𝑪𝒄]

𝒅𝒕
= 𝑲. [𝑴𝑪𝒄]                                                          Equation 4-1 

 

𝐥𝐧[𝑴𝑪𝒄] = 𝑲.  𝒕 +  𝐥𝐧[𝑴𝑪𝒄]𝟎                                                   Equation 4-2  
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Where [MC c] represents the concentration of colourized merocyanine at a 

given time t, [MCc]0  is that concentration at the specific point time point t = 0 

and k represent the observed first-order rate constant for this model. Standard 

integration of  Equation 4-1 affords Equation 4-2 which is what may be plotted 

to confirm first order behaviour132. Making the connection through the Beer-

Lambert equation that spectrophotometric absorbance is directly proportional to 

solution concentration; we have re-plotted parts of the data in Figure 4-11 

according to Equation 4-2. The data show far-from-ideal first order-kinetics. If 

one takes the data range over the first 3 h however (Figure 4-12), one could 

almost make a case for linearity in this window, but it is tenuous at best.  

 

 

Figure 4-11: Data from Figure 4-10 plotted to first order behaviour 
according to Equation 4-2 
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Figure 4-12: Selected data from Figure 4-10 plotted to first order 
behaviour according to Equation 4-2 (top) 3 mM SDS, (middle right) 5 mM 
SDS, (middle left) 10 mM SDS, (bottom right) 15 mM SDS, (bottom left) 18 
mM SDS 
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4.4.2 Gaussian Fit  

Whilst a linear kinetic relationship for the MC 540 decolourisation is not 

supported by the data over the length of the decolourisation process, 

mathematical fitting of the data in Figure 4-11 demonstrates that a Gaussian 

distribution is a better fit, according to Equation 4-2 (Figure 4-13).    

 

𝐥𝐧[𝑴𝑪𝒄] =  𝐥𝐧[𝑴𝑪]𝟎 + [
𝑨

𝒘.(
𝝅

𝟐
)

𝟏
𝟐

]−𝟐(
𝑿−𝑿𝒄

𝑾
)𝟐

                                         Equation 4-3 

 

Where the following terms are: 

[MCc]o = Concentration of coloured form of MC 540 at the asymptote point 

A is a constant 

W = is the Gaussian width at half-height 

Xc = the maximum height point of the x value 

 

Figure 4-13: Data from Figure 4-11 showing an analytical fit to a Gaussian 
function in Equation 4-2 
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The data in Figure 4-13 have, at present, only a single series of repetitions at 

each SDS concentration so if any firm conclusions are to be drawn from a 

mathematical analysis it is envisaged that each will need to be repeated in 

triplicate to afford some level of error field.  

 

Table 4-1: Absorbance at 559 nm MC 540 (10 µM) of SHG’s prepared from 
0.5 M (black squares), 0.75 M (red circles) and 1.0 M (blue triangles) 
silicate solutions in the presence of SDS (18 mM). 

Time/ hrs 0.5 M silicate SHG 0.75 M silicate SHG 1 M silicate SHG 

0 1.113841 1.304666 1.1336 

0.5 1.149 1.335 1.128 

1 1.164 1.340 1.053 

1.5 1.166 1.345 0.946 

2 1.163 1.339 0.827 

2.5 1.154 1.335 0.718 

3 1.131 1.335 0.621 

3.5 1.109 1.329 0.536 

4 1.098 1.334 0.466 

4.5 1.098 1.336 0.499 

5 1.093 1.330 0.365 

5.5 1.093 1.326 0.336 

6 1.092 1.322 0.301 

6.5 1.091 1.319 0.276 

7 1.089 1.313 0.256 

7.5 1.087 1.310 0.240 

8 1.088 1.309 0.227 

8.5 1.085 1.300 0.217 

9 1.062 1.298 0.209 

9.5 1.056 1.292 0.201 

10 1.052 1.290 0.196 

10.5 1.052 1.286 0.193 

11 1.051 1.277 0.189 

11.5 1.049 1.273 0.186 

12 1.048 1.270 0.184 

12.5 1.048 1.265 0.183 

13 1.047 1.264   

13.5 1.045 1.269   
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14 1.049 1.261   

14.5 1.045 1.252   

15 1.045 1.230   

15.5 1.044 1.221   

16 1.046 1.228   

16.5 1.050 1.218   

17 1.049 1.217   

17.5 1.054 1.207   

18 1.056 1.202   

18.5 1.058 1.194   

19 1.058 1.188   

19.5 1.058 1.183   

20 1.062 1.180 
 

 

 

The data used to plot Figure 4-14 are collected in Table 4-1. It can be seen 

from Figure 4-14 (a) that the process of decolourisation in the SHG 

environment prepared from 0.5 M silicate was slower overall than those 

performed in 0.75 M and 1.0 M silicate SHG’s. Despite the differences in 

starting absorbance in each case, it is clear that the most shallow curve, 

representing the slowest decolourisation, can be attributed to the 0.5 M silicate 

SHG. As shown in Figure 4-14 (b), the same data in Figure 4-13 can be fitted to 

the same Gaussian expression as in Figure 4-13, demonstrating that the 

underlying principles of the phenomenon on probably connected in both cases. 

 



137 
 

 

 

Figure 4-14: (a) Time evolution of the SHG-SDS MC 540 system involving 
18 mM of surfactant SDS in different concentrations of silica hydrogel 
environment (0.5, 0.75, 1.0M silicate). (b) Gaussian fit to data in (a).  

 

 

 

 

 

(b) 

 (a) 



138 
 

4.5 Conclusion  

Overall, the content and main conclusions from this chapter may be 

summarised as follows: 

1. A number of potential factors have been explored as possible factors in 

the decolourization of MC 540 including the photooxidation, pH effects, 

and the presence of amphiphilic surfactants 

2. Whilst overall, a definitive mechanism for the decolourisation proved 

elusive, neither singlet oxygen nor pH are major factors 

3. It appeared also that the presence of increasing concentrations of 

amphiphile SDS resulted in a diminution of decolourization 

4. As part of this study, a simple spectrophotometric method for following 

gelation times on the basis of light scattering emerged. This method is 

currently being explored in more detail within the group as a broad-

based approach to examining gelation times. 
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Chapter 5 Diffusional characteristic of small and large  

molecules in the SHG 

In order to give a more detailed description of a typical diffusion ordered 

spectroscopy (DOSY) experiment, it is important to first understand all of the 

parameters which must be controlled in order to attain the diffusion coefficient of 

a molecule in an NMR sample. To understand how the diffusion coefficient has 

been calculated, need at the beginning to explain it in more details about the 

mathematical expression and the theory behind it. 

 

5.1 Molecular Diffusivity in Water and the Gel Phase. The 

Stokes-Einstein Model  

The underlying core scientific theory for the DOSY concept is centred on the 

relationships developed by Stokes and Einstein, in which expression for the 

diffusion constant for a molecule in solution is expressed by the following 

equation: 

 

𝑫 =
𝑹𝑻

𝑵
.

𝟏

𝟔𝝅.𝒁.𝒓
                                                                Equation 5-1       

 

In which: D represents the diffusion constant of the molecule under 

investigation, R the gas constant, T the absolute temperature, Z the viscosity of 

the diffusion medium, N Avogadro’s number and r the hydrodynamic radius of 

the molecule. Equation 5-1 represents the Stokes-Einstein equation133. 

 

5.1.1 Derivation of the Stokes-Einstein Equation133 

The relationship between molecular movement and diffusion in a liquid medium 

was first expressed by Einstein, under the condition that the particles move 

independently from each other: 

 

𝑫 =  
∆̅𝟐

𝟐𝒕
                                                                            Equation 5-2 
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The relation contains within it an expression of the diffusion constant 𝐷 in terms 

of Δ̅2
 which represents the mean square of the deviation of the molecule in a 

given direction over time 𝑡. If the assumption is made that the molecules 

possess the same kinetic energy as they would as gas molecules at the same 

temperature, then the following equation is satisfied: 

 

𝚫̅𝟐 =  
𝟐.𝑻.𝑹

𝑵
.

𝒕

𝑪
                                                            Equation 5-3 

 

Where assumptions are centred on the ideal gas law, with R representing the 

gas constant, N Avogadro’s number, T the absolute temperature and finally, C, 

which is a constant representing the frictional resistance of the molecule, which 

defines the liquid phase (as molecules of an ideal gas have no intermolecular 

interactions). Substitution of Equation 5-2 into Equation 5-3 yields: 

 

𝑫 =  
𝑹.𝑻

𝑵
 .

𝟏

𝑪
                                                         Equation 5-4 

 

Stokes’ relation involves the demonstration that a hydrodynamic relation holds 

for particles of a spherical nature, which move in a medium consisting of small 

molecules relative to the diffusing molecule: 

 

𝑪 = 𝟔𝝅 . 𝒁 . 𝒓                                                        Equation 5-5 

 

Where r is equal to the hydrodynamic radius of the particle and Z represents the 

viscosity of the medium of diffusion. Finally, by substituting Equation 5-5 in Equation 

5-4, we get Equation 5-1 

 

5.1.2 The Validity of the Stokes-Einstein Equation  

Before any further investigation is made on the basis of this theory, it would be 

sensible to ascertain the validity of the results of the equation in comparison to 

experimental data. Studies conducted by Thovert into the diffusion constants of 

130 organic substances concluded that the diffusion constant tends to vary 

inversely as the viscosity of the solvent, which is in coherence with the Stokes-

Einstein equation133.  
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Further investigations conducted by Cheng et al. using polystyrene latex 

particles (which are similar in size to virus particles) demonstrated values for 

intrinsic viscosity which were in agreement to the Einstein theory, furthermore, it 

was confirmed that the diameter of the latex particles showed conformity to the 

Stokes-Einstein law134. Based on the evidence from this literature, it is clear that 

the Stokes-Einstein equation forms a good theoretical basis for the foundations 

of this chapter. 

It is clear that molecular diffusion behaviour will not be consistent when 

transferring between aqueous solution and gel phase media. The reason for the 

difference between the two is the viscosity of each phase, which we have seen 

has an inverse effect on the diffusion constant for a given molecule. It is obvious 

that the gel phase will have a higher viscosity than the aqueous phase due to 

the presence of the particulate aggregate polymer network that makes up the 

gel phase, and this will be one of the main contributing factors in the difference 

between the diffusion constants of the same molecule in each phase.  

 

5.2 The Use of Diffusion Ordered Spectroscopy (DOSY) to 

Measure Molecular Diffusion 

Standard nuclear magnetic resonance (NMR) experiments utilise NMR active 

nuclei and place them in the presence of an external magnetic field, which 

causes alignment of the nuclear magnetic moment with the external field. When 

the external magnetic field is constant and homogeneous, the populations of the 

energy levels of the nuclei at thermal equilibrium have specific values. When an 

oscillating magnetic radio frequency (RF) field is applied in the transverse plane 

to the external magnetic field, this causes a change in the population of the 

energy levels of the nuclei exposed to the transverse field, and the generation 

of a new magnetic moment along the plane of the RF field, whose amplitude is 

proportional to the number of nuclear spins present in the sample, which is 

dependent on the type of nuclei present98. As soon as the RF field is removed, 

the system (nuclear spins) realigns with the external magnetic field and the rate 

at which this realignment occurs is characterised by the longitudinal (T1) and 

transverse (T2) relaxation times. The relaxation times represent a loss of 

coherence in the plane which the RF field was applied. The decaying signal 

(realignment) of nuclear spins is used in the production of conventional one 

dimensional NMR spectra, by applying a Fourier-transform operation to the 

acquired free induction decay time signal, a frequency domain spectrum is 

acquired100. 
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One dimension that is constant for all nuclei in a molecule is the diffusion 

constant100, and its connection to the molecular structure is based on the ideas 

developed by the Stokes-Einstein relation (vide supra) in the way that the 

diffusion constant depends inversely on the frictional resistance of the 

molecule100.  

The implementation of diffusion ordered NMR spectroscopy (DOSY) is possible 

as pulse magnetic field gradient NMR experiments can provide information 

about translational motion100, 101. The principle of obtaining the DOSY spectrum 

is similar to that of conventional two dimensional NMR, in that a variable is 

selected which modulates the signal which is detected, and then this variable is 

incremented to produce a spectrum related to the translation (diffusion) of the 

investigated molecule. The variable selected in the case of DOSY experiments 

is the areas of magnetic field gradient pulses100.  

In order to give a more detailed description of a typical DOSY experiment, it is 

important to first understand all of the parameters which must be controlled in 

order to attain the diffusion coefficient of a molecule in an NMR sample. Using 

pulsed field gradients, molecules in a sample can be spatially labelled based on 

their position in the tube. The Stimulated echo (STE) sequence allows for the 

calculation of the diffusion coefficient of a molecule in an NMR sample. The 

STE sequence begins with a 90º radiofrequency pulse. After a delay of time τ, 

the first gradient pulse δ is applied, the purpose of which is to encode the 

positions of the molecules. After the first gradient pulse, the molecules in the 

sample are allowed to diffuse for time Δ before a second gradient pulse δ is 

applied and the diffusion coefficient can be calculated. 

 

The best way to imagine a PFG NMR experiment which uses a stimulated echo 

(STE) sequence with pulse field gradients (PFG’s) is to imagine layers of the 

sample scattered along, and lying perpendicular to the z axis135. These layers 

experience a uniform magnetic field B0 (Figure 5-1) creating a magnetisation 

ribbon in the co-ordinate frame as shown in the bottom left of Figure 4135. The 

pulse field gradient has the effect of twisting this ribbon into a helix135. The 

layers also contain a large number of nuclear spins and have an associated 

magnetisation vector which is assigned to the positions of the layers on the z-

axis 135. The STE experiment starts with a 90˚ radio frequency pulse in respect 

to the z-axis, which rotates all the magnetisation vectors to the y-direction, and 

the signal detected along the y-axis decays in amplitude over time due to NMR 

dephasing which results from magnetic inhomogeneity’s which are amplified by 

the PFG135. In order to detect a signal, the magnetisation vectors must be 
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refocused, which requires a sequence with two gradient pulses of equal 

magnitude δ135 (The STE sequence). The first pulse utilises position dependent 

phase angles to encode nuclear positions and sensitizes the sample to 

diffusion135. The second pulse reverses the encoding of the first pulse and 

brings the magnetisation vectors back into the yz plane, forming an echo, and 

the amplitude of the echo is used to calculate the diffusion constant135. 

 

 

 

 

Figure 5-1: The Stimulated Echo Sequence (STE). Top: shows the 

sequence of pulses and the time differences 𝝉 and T between the first and 
second, and second and third pulses respectively. Middle: image 
demonstrating the refocusing of the magnetisation after the particles are 
allowed to diffuse for time Δ. Bottom: depiction of the magnetisation helix 
as a result of the gradient pulse. 

 

 

The software used to interpret the data acquired from the DOSY experiments in 

this chapter will be the GNAT software. This software is freely available and is 

capable of comparing data from 3 different major manufacturers (Bruker, JEOL 

and Varian). It must be noted that DOSY is actually the name for a processing 

method for pulse-field-gradient NMR data but the technique has adopted the 

name DOSY and so this paper will refer to the technique as DOSY to follow 

suit136 
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DOSY spectroscopy is able to separate the NMR signals from the different 

components within an NMR sample, based on the hydrodynamic radius of the 

species resulting from its diffusion coefficient. The typical DOSY experiment 

consists of recording a series of spectra, with incremented pulsed field gradient 

(PFG) amplitude in a stimulated echo (STE) experiment. The one dimensional 

NMR spectrum is then transformed into a two dimensional spectrum by 

performing an exponential fit on the decaying NMR signal amplitude as a 

function of increasing PFG amplitude and extracting the diffusion constant from 

the equation used to produce the fit. In an ideal PFG-STE experiment, the 

decay of the signal amplitude with respect to increasing PFG amplitude is 

described by the Stejskal-Tanner equation102. 

 

     𝑺 = 𝑺°𝒆
−𝐃𝜸𝟐𝜹𝟐𝒈𝟐∆̅                                            Equation 5-6 

 

Where S = signal amplitude, S0 = echo amplitude in absence of diffusion, D = 

diffusion coefficient, 𝛿 = gradient pulse width, 𝛾 = magnetogyric ratio and ∆̅ is the 

diffusion time corrected for the effects of finite gradient pulse width102. 

In practice, there may be significant deviations from an exponential decay 

profile and these deviations arise from the variation of the magnitude of the 

applied PFG over the entire area of the NMR sample. In other words, if all of the 

diffusing components in the NMR sample do not feel the same strength of 

gradient pulse, they will have different diffusional attenuation with respect to 

increasing gradient strength102. 

The standard DOSY Processing tool built into the GNAT software is high 

resolution (HR) DOSY. In this method, the experimental data for the NMR signal 

amplitude decay is fitted to the Stejskal-Tanner equation. This processing 

method should only be used when there are only one diffusing species in the 

sample, as the fitting assumes that all NMR signals arise from a single 

component i.e. one exponential decay profile. This technique, if used 

appropriately results in standard errors (arising from the fitting process) in the 

diffusion coefficient of 0.2 %. The best use of HR DOSY is when experimental 

NMR signals are well resolved throughout the series of spectra. However this is 

rarely the case, and there is usually some signal overlap which results in 

inaccurate values for the diffusion coefficient of the overlapping signals102. 

When there is more than one component under investigation, standard HR 

DOSY should be replaced with multi-exponential fitting to the experimental data. 

The multi-exponential approach to the fitting of the experimental data accounts 
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for overlapping signals by separating signals which differ greatly in their 

diffusion coefficient. If the two overlapping signals are assumed to be the sum 

of two exponentials i.e 102: 

 

  𝑺 = 𝑺°𝑨𝒆−𝐃𝜸𝟐𝜹𝟐𝒈𝟐∆̅ +    𝑺 = 𝑺°𝑩𝒆−𝐃𝜸𝟐𝜹𝟐𝒈𝟐∆̅            Equation 5-7 

 

Where components A and B add together to form the overall signal. The 

differing diffusion coefficients of each component allows the signals to be 

separated. This approach works well for signals which have significantly 

different diffusion coefficients. 

Fundamentally, the quality of the experimental data is key to a successful 

DOSY experiment. The GNAT software allows for careful editing of the raw data 

to optimise it for DOSY processing, and these methods will be explored herein. 

 

5.3 Optimisation of DOSY Data Using the GNAT Software  

Once the files have been converted using JEOL Delta software, it is possible to 

import the files into the GNAT software. An introductory manual137 to the GNAT 

software has recently been produced and details the processing tools available 

on the software. This section is dedicated to describing the procedure for 

optimising the imported data to produce the most accurate and clean DOSY 

spectra using the GNAT software. All the data used in this report is processed 

in a manner which produces the best DOSY spectrum for that dataset (see the 

experimental section for full processing details), below is a detailed example 

using the AMP.2Na sample within SHG media.  

 

5.3.1 Fourier Transformation using Lorentzian Window Function 

Multiplication 

The first step in the process is the  Fourier Transformation of the imported FID. 

Figure 11 A) shows the imported raw FID with no processing performed on it. 

The first step is converting this time domain FID spectrum into a frequency 

domain spectrum and this is done through the mathematical operation known 

as Fourier Transform, the intricacies of which can be found elsewhere138. 

Without utilising the window function tool, the raw FID can be Fourier 

Transformed to give a frequency domain spectrum. It would be unwise to 
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continue with this spectrum in the case of DOSY processing as there are some 

issues with truncation artefacts such as sinc-wiggles which arise from 

acquisition times which are too short, and truncation of the FID which occurs 

during data collection. It is important to remove these errors as DOSY 

processing methods rely heavily on clean, well resolved peaks. To resolve 

these issues using the GNAT, a window function can be applied to the FID. The 

window function multiplies the FID using Lorentzian (lw) and Gaussian (Gw) 

parameters by the function below (where t is time)137 

𝒆
− 𝒕 𝝅 𝒍𝒘−(

𝝅 𝒈𝒘 𝒕 

𝟐√𝐥𝐧(𝟐)
)

𝟐

                                                                 Equation 5-8 

The user can enter values for lw and gw and doing so alters the linewidth of the 

resulting spectrum. In the case of this example, values of lw = 1 and gw = 0 

were used so that the signal decays in an exponential fashion (see green decay 

curve in Figure 5-2). Doing so removes sinc-wiggles which can be seen in the 

resultant spectrum.  

 

                             

                                  

 

Figure 5-2: Fourier transformation of FID for AMP.2Na sample data. 
Showing the frequency domain spectrum before and after a window 
function is applied.  

 

5.3.2 Phase Correction 

The next step in appropriately processing DOSY Data is correcting for phase 

errors in the resulting frequency domain spectrum. The phase of a signal in an 

FT 

FT 
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NMR spectrum is the degree to which NMR resonances are above or below the 

baseline (the amount of absorption/dispersion character in the specific signal). 

The sign of the phase (positive/negative or real/complex) is determined in the 

FID (periodic time domain function) by the value of the function at time = 0 139 

and which axis the magnetisation vector lies on after the refocusing pulse, 

relative to the receiver139. The phase of an NMR spectrum should be corrected 

so that the peak in the real spectrum is in entirely absorption mode as this 

allows for the exclusion of complex data points in the resulting DOSY spectrum 

which, if not removed, give rise to positive and negative signals which ultimately 

cancel each other out. 

The GNAT Software offers both manual and automatic phase correction, the 

latter utilises a Hilbert Transformation to correct the phase of the frequency 

spectrum, details of this transformation can be found elsewhere140. In the case 

of this example, automatic phase correction was applied. Figure 5-3 depicts 

pre- and post- automatic phase correction of the frequency domain spectra for 

the AMP.2Na data set. 
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Figure 5-3: Top: Frequency domain spectrum before phase correction, 
note the dispersion peaks are most pronounced for the broad water and 
acetic acid signals. The bottom: frequency domain spectrum after 
automatic phase correction, all peaks are in absorption mode. 

 

 

5.3.3 Baseline Correction  

After phase correction, the next important step in the processing of the raw 

DOSY data is to correct the baseline of the frequency domain spectrum. 

Distorted baselines are a result of the corruption of the first few data points in 

the FID. The errors in these data points lead to low frequency modulations in 

the Fourier-transformed frequency domain spectrum which create a distorted 

baseline. It is necessary to correct such errors before DOSY processing as they 

offset intensity values which lead to inaccuracy when assigning peaks141. The 

GNAT software offers both manual and automatic baseline correction and the 

latter will be used in this example. In automatic baseline correction, the regions 

of the spectrum that contains signal are selected automatically, after all signal 

regions have been selected the remaining baseline region is fitted to a user 

selected polynomial order and this is then subtracted from the spectrum. In the 

case of this example the polynomial order was chosen to be 5 so that the fitted 
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curve would fit 5 constraints, and have a higher maximum number of inflection 

points included into the fitting, to account for regions of the spectrum where 

some dispersion line-shape peaks still remain after phase correction.  

 

 

 

Figure 5-4: Images of the frequency domain spectrum for the AMP.2Na 

SHG data set. Automatic baseline correction was used and the polynomial 

order was set to 5. Top image before baseline correction and the baseline 

on -40 x-axis and after applying base line correction brought to 0.  

 

 

5.3.4 Reference Deconvolution  

Reference deconvolution has been proven to correct systematic errors in NMR 

spectra142. Errors such as line shape distortions, phase errors and frequency 

shifts can be corrected by correcting a resolved experimental reference signal 

against an ideal reference signal137. Reference deconvolution is particularly 

important in DOSY analysis because the processing methods rely heavily on 

the linearity of the data i.e. the shapes of the signals of individual resonances 

should remain the same throughout the array of spectra137. Figure 5-5 showed 

the frequency domain spectrum before reference deconvolution. Top right 

showing overlapping signals from water and AMP.2Na molecule. Middle left and 

right highlighting the left (red) right (green) and centre (black) lines for the 
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selected reference signal (signal 2 ) this peak was selected as there was poor 

shimming which could be corrected by adding some Gaussian fitting 

parameters to the peak. The bottom right show the resulting spectrum after 

reference deconvolution of peak 2. 

With lw=-0.1 and gw=10 line shape parameters to broaden the peaks to 

account for errors throughout the array of spectra. 

 

  

  

  

Figure 5-5: Reference deconvolution of AMP.2Na aqueous data. 
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5.4 Selection of Molecular Systems for DOSY Investigation 

Our original plan was to investigate the difference in the diffusional behaviour of 

four molecules between an SHG phase and an aqueous phase: 

(i) Adenosine phosphates (AMP, ADP and ATP) as exemplars of 

charged species 

(ii) Ribose as an exemplar of a small prebiotically relevant molecule 

 

Most of our work has focused on (i) and (ii) as there were several technical 

problems with SDS which we are yet to fully overcome. Nevertheless, each 

system will be described in turn. 

 

5.4.1 Adenosine Phosphate Systems 

Adenosine monophosphate disodium salt (AMP.2Na), adenosine diphosphate 

disodium salt (ADP.2Na), and adenosine triphosphate disodium salt (ATP.2Na). 

The latter two compounds are commercially available and were purchased from 

Sigma. The former was synthesised from 0.1 g, 2.88 x10-4
 mol adenosine 3’ 

monophosphate (from Sigma-Aldrich) via dissolution into a minimum amount of 

D2O (ca. 3mL), and then addition of 0.0230g, 5.75x10-4 mol NaOH(s) (ground 

from pellets) and evaporating this mixture to yield a white solid powder, which 

was dried in an oven at 60°C for 24 hrs to yield the disodium salt of adenosine 

monophosphate, AMP.2Na (0.0943 g, 85%). The disodium salts of each 

molecule were selected for use as they are suitably soluble in the media used in 

these investigations and have the same ionic strength.  

 

5.4.2 1D NMR analysis 

Initial 1D NMR experiments were conducted on the samples were to be 

subjected to DOSY investigations, so that reference chemical shift values could 

be determined for later use in DOSY analysis to assess the diffusional 

behaviour of the molecule. The NMR solvent used throughout all experiments is 

D2O, the significance of this is that all 1H NMR signals originate from the 

adenosine unit of each molecule (AMP,ADP and ATP) see Figure 5-6 below. 
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Figure 5-6:  Diagram of adenosine subunit that detectable by 1H NMR 
signals for the compounds AMP, ADP, and ATP under DOSY investigation. 
numbers indicate 1H environments which will be generated NMR signal 
and can be identified in the DOSY analysis. 

 

 

 

 

Figure 5-7: Schematic of the three compounds under investigation. 
Adenosine core unit is common amongst all three molecules under 
investigation. R1 = Monophosphate subunit (AMP), R2 =Diphosphate 
subunit (ADP), R3 = Triphosphate subunit (ATP). 

 

The 1H NMR Spectra for AMP, ADP and ATP are summarised in Table 5-1 

(See appendix for full 1H NMR spectra). The first set of data analysed are for 

samples at neutral pH, and the molecules under investigation in this first 

instance are in their respective disodium salt forms. In the second set of data, 

the pH of the hydrogel solution was adjusted to pH 12 via NaOH addition, as a 

result, all of the hydroxyl groups on the phosphate side-chains are deprotonated 

(high charge state). The reason for testing at a high pH regime is to see 

whether or not the charge state of the molecule affects the diffusional 

behaviour, be it through interactions with the silica hydrogel particulate polymer 

network or through variations to molecular size due to the presence of counter-

ions which may alter the hydrodynamic radius of the diffusing molecule. For 

each data set the NMR signals are referenced in relation to  

Figure 5-6 and Figure 5-7 
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Figure 5-8: 1H NMR spectra AMP.2Na aq D2O, 1H NMR (400 MHz, D2O) δ 
8.27 (s, 1H), 8.14 (s, 1H), 6.02 (d, 1H), 4.72 (t, 1H), 4.62 (t, 1H), 4.39 – 4.31 
(m, 1H), 3.81 (d, 1H). 

 

 

Figure 5-9: ADP.2Na aq D2O  1H NMR (400 MHz, D2O) δ 8.44 (s, 1H), 8.21 (s, 
1H), 6.07 (d, J = 5.6 Hz, 1H), 4.67 (t, J = 5.4 Hz, 1H), 4.45 (t, 1H), 4.38 – 4.29 
(m, 2H), 4.07 (d, 1H). 
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Figure 5-10: ATP.2Na aq D2O 1H NMR (400 MHz, D2O) δ 8.53 (s, 1H), 8.34 (s, 
1H), 6.06 (d, J = 5.4 Hz, 1H), 4.67 (t, 3H), 4.50 (t, J = 4.4 Hz, 1H), 4.38 – 4.30 
(m, 1H), 4.25 (d, J = 3.7 Hz, 2H). 

 

 

Table 5-1: Summarised NMR data collected for each molecule in both 
aqueous and SHG media. 1H NMR Environment chemical shift (δ) / ppm 

 

Medium Molecule 1 2 3 4 5 6 7 

D2O AMP.2Na 8.27 8.14 6.02 4.62 4.72 4.39-4.31 3.81 

D2O ADP.2Na 8.44 8.21 6.07 4.45 4.67 4.38-4.29 4.07 

D2O ATP.2Na 8.53 8.34 6.06 4.50 4.67 4.38-4.30 4.25 

SHG AMP.2Na 8.35 8.12 5.99 4.24 - 4.39-4.32 4.00 

SHG ADP.2Na 8.35 8.10 5.98 4.23 - 4.42-4.32 4.01 

SHG ATP.2Na 8.40 8.13 5.97 4.29 - 4.51-4.42 4.14 

pH 12 SHG AMP 8.35 8.23 6.01 4.68 - 4.34 3.80 

pH 12 SHG ADP 8.37 8.12 6.02 4.39 - 4.28 4.03 

pH 12 SHG ATP 8.36 8.10 5.98 4.41 - 4.25 4.10 

pH 12 D2O AMP 8.30 8.16 6.06 4.45 4.72 3.89 3.85 
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pH 12 D2O ATP 8.44 8.17 6.06 4.33 4.50 4.19 4.16 

pH 12 D2O ADP 8.34 8.03 5.95 4.33 - 4.20 3.91 

pH 12 D2O ATP 8.44 8.17 6.06 4.33 4.50 4.19 4.16 

 

 

From this initial investigation, it is clear that the 1H spectrum for each molecule 

is similar, and that the peaks selected will be easily comparable through DOSY 

analysis. It should be noted that the SHG 1H NMR spectra have two solvent 

signals, one occurring at ~4.68 ppm from water (present in the sodium silicate 

solution) and one at ~1.86 ppm from acetic acid (necessary to form SHG 

phase). The signal from the acetic acid methyl group does not impede the 

peaks for the molecules under investigation and will not affect the DOSY 

analysis. However, the water peak can overlap with reference peaks 4 and 5, 

this is problematic when carrying out DOSY analysis as the diffusion peaks may 

merge together and the average diffusion coefficient of the two peaks will be 

presented on the DOSY spectrum. Where this is the case and the results for 

each signal differs greatly, the data from these reference peaks will be ignored, 

and only the well resolved peaks which remain unaffected by overlapping 

chemical shift will be used.  

 

5.4.3 Analysis of DOSY Spectra produced by JEOL Software  

The data for DOSY processing using the GNAT software was collected on a 

JEOL spectrometer. JEOL has its own DOSY processing software and using 

this it is possible to obtain a DOSY Spectrum which demonstrates the reference 

peaks which will be identified using the GNAT program, without going into 

details of the processing methods. The JEOL software automatically applies 

some processing to the raw data (Fourier Transform, phase and baseline 

correction), this processing can be altered in the JEOL Delta program. This 

modification is necessary for processing DOSY data with GNAT.  

If imported without removal of all processing steps, the data imports as a 

processed spectrum rather than a raw FID. The problem with this is that the 

processing methods which are so useful on the GNAT program cannot process 

an already processed spectrum. The data should be saved in JEOL Generic 

format. Once the file conversion (using the JEOL Delta program) has 

successfully completed the data saves as 2 files, one file containing the FID 
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(.Bin) and one containing the processing methods (.hdr). Both files should be 

present in the same directory for the file import into the GNAT to be successful. 

 

Figure 5-11: DOSY Spectrum produced through the JEOL software, 
showing the reference peaks for the AMP disodium salt molecule in the 
SHG diffusion medium (highlighted with a horizontal line).  

 

 

5.5 Analysis of the Plot Residuals for each Dataset  

The quality of the experimental data is assessed through the quality of the fitting 

to the residual plot of the signal amplitude vs the squared gradient amplitude. 

This plot shows the effect of increasing the squared gradient amplitude on the 

amplitude of each individual 1H NMR signal. In an ideal case, the signal 

amplitude should decay in an exponential manner with respect to increasing 

squared gradient amplitude, any deviations from this ideal case lead to 

inaccuracies in the resulting diffusion constant for that NMR signal. This is a 

good way of assessing the quality of the data and the choice of processing 

methods. As the outcome of the data is unexpected by the rules of the Stokes-

Einstein equation, it is necessary to analyse the quality of the data so that 

confidence in the conclusions of the results can be made.  
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5.5.1 DOSY Processing 

After all adjustments are made to the frequency domain spectrum, DOSY 

processing can be performed on the data. HR-DOSY is the default processing 

method in the GNAT. This method assumes that each peak originates from one 

single species and uses a mono-exponential fit of the Stejskal-Tanner equation 

to produce the DOSY spectrum, this fitting will be used for the aqueous 

samples. In the case of the SHG phase samples there are multiple components 

in the sample, namely: water, acetic acid, sodium silicate, D2O and the 

molecule under investigation (AMP/ADP/ATP). As a result a multi-exponential fit 

of the Stejskal-Tanner equation must be performed. Using this method, the 

number of components is reduced until statistically significant results have been 

obtained. The number of peaks to be fitted in the DOSY spectrum is determined 

by the number of integrated peaks in the frequency domain spectrum. 

Figure 5-12 shows the DOSY spectrum attained for the AMP.2Na SHG sample.  

 

 

Figure 5-12: The DOSY Spectrum for the AMP.2Na SHG sample data. Here 
the difference between the diffusion constants of the 3 components which 
can be detected by 1H NMR in the sample can be seen clearly.  

 

The diffusion coefficients for each individual signal are stored in a data folder 

automatically. The diffusion coefficient of the molecule is given in units of D/10-

10 m2 s-1 The error associated with the approximations of the exponential fit is 

also saved. Table 5-2 shows the diffusion coefficient for each signal for the 

AMP.2Na SHG sample, relative to the signals in Figure 5-7. 
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Table 5-2: DOSY results for chemical shift signals relative to Figure 5-12 

NMR Signal  
Chemical Shift / 

ppm  

Diffusion 

coefficient /  

10-10 m2 s-1 

Error / 10-10 m2 s-1 

Acetic Acid  1.96  6.36  0.008  

7  4.00  2.30  0.066  

6  4.36  2.46  0.053  

Water  4.83  12.35  0.019  

Water  5.13  12.13  0.190  

3  5.99  2.64  0.044  

2  8.12  2.55  0.02  

1  8.35  2.61  0.031  

 

 

The accuracy of the results for DOSY processing can be assessed through the 

plot residuals. For each peak, it is possible to assess how the increase in the 

gradient increment affects the decay of the amplitude of the signal. In a perfect 

DOSY experiment, the amplitude of the signal should decay exponentially with 

respect to increasing gradient amplitude, following the Stejskal-Tanner line 

equation. The DOSY processing routine fits a line to the experimental data and 

using the GNAT it is possible to check the accuracy of this fitting, and thus the 

accuracy of the diffusion coefficient for that signal. Figure 5-13 shows the plot 

residuals for each peak in the resulting DOSY Spectrum. 
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Figure 5-13: Plot of signal amplitude vs squared gradient amplitude for the 
observed signals in the frequency domain spectrum. The red fitted curve 
matches well with the experimental data points. The bottom right image 
shows the decay in signal amplitude over the array of spectra.  

 

 

The data in this case, fits well with the exponential approximation of the DOSY 

processing routine and we can be confident in the results for the diffusion 

coefficients of each signal, however it is necessary to look at how the plots for 

each signal compare with one another in order to accurately predict the 

diffusion coefficient of the whole molecule. Should there be any deviation from 

the exponential fitting, the GNAT software can be used to remove any 

anomalous data using the ‘Prune’ tool, where any data point in an array of 

spectra can be selected and missed out when it comes to the final DOSY 

processing. The ‘Prune’ tool allows the user to make the data better fit to the 

approximations of the processing routine, and by doing so, it also allows them 

to reduce the error in the final diffusion coefficient. 
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5.5.2 DOSY Processing results  

The most appropriate manner in which to process DOSY data using the GNAT 

software has now been demonstrated and can be applied to all the 

experimental data collected for this research. Hydrogel samples containing 

ATP, ADP and AMP at both neutral pH (where the molecules under 

investigation are in their disodium salt forms), and at high pH regime (pH 12) 

(where all hydroxyl groups are deprotonated) were made for comparison with 

the same molecules but with only D2O as the NMR solvent (the aqueous 

environment). The tables 12 -15 below show the summarised diffusion 

coefficients of each NMR signal referenced to Figure 5-6 for each sample.  

 

5.5.3 AMP DOSY Results  

Summarised below are the results obtained for the DOSY analysis of AMP in 

the various media (D2O, pH 12 D2O, SHG and pH 12 SHG). For details of the 

NMR processing see Figure 5-8. 

 

 

Table 5-3: AMP SHG DOSY Results 

NMR Signal  
Chemical Shift / 

ppm  

Diffusion 

coefficient /  

10-10 m2 s-1 

Error/ 10-10 m2 s-1 

Acetic Acid  1.96  6.36  0.008  

7  4.00  2.30  0.067  

6  4.36  2.46  0.053  

Water  4.43  12.35  0.019  

Water  5.13  12.13  0.190  

3  5.99  2.64  0.044  

2  8.12  2.55 0.021  

1  8.35  2.61  0.032  
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Table 5-4: AMP pH 12 D2O Results 

NMR Signal  
Chemical Shift / 

ppm  

Diffusion 

coefficient /  

10-10 m2 s-1 

Error/ 10-10 m2 s-1 

7  3.85  3.54  0.031  

6  3.89  3.56  0.038  

4  4.72  3.67  0.056  

5  4.45  3.02  0.217  

Water  4.83  15.57  0.158  

3  6.06  3.31  0.042  

2  8.16  3.39  0.018  

1  8.3  3.45  0.031  

 

The tables above detail the diffusion constants for each NMR reference signal 

(Figure 5-12). At first glance it is clear that in the case of the SHG samples, the 

water signal interferes with signals 4 and 5. For example, signal 4 in the SHG 

pH 12 sample has a diffusion coefficient of 4.02 x10-10m2S-1
  which is 

significantly higher than the rest of the reference signals. The higher diffusion 

constant in this case is due to the overlap between the water signal and the 

reference signal, this results in an averaged diffusion constant of the two 

signals. Where this is the case, such peaks should be ignored. In the case of 

the D2O samples, the water peak is much less broad, and therefore there is little 

to no overlap between the water peak and peaks 4 and 5. This means that the 

value of the diffusion constant for these signals is that of the reference signal 

only. A more clear comparison of the effect of changing the diffusing media can 

be seen in Figure 5-5 below.  
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Figure 5-14: A graph to show the diffusion constants of each reference 
NMR signal for AMP, in each of the 4 different media. 

 

From Figure 5-5 we can see that there is a clear difference in the diffusion 

constants of the reference NMR Signals of AMP when moving from an aqueous 

(D2O) media to an SHG media. This phenomenon is to be expected, as the 

Stokes-Einstein equation predicts that diffusional behaviour varies inversely 

with viscosity. If reference signal 4 is removed from the pH 12 SHG dataset 

(due to water interference) a linear fit can be performed on the data so as to 

achieve a value for the diffusion constant of the AMP molecule in the various 

media. Figure 5-15 shows the data with linear fitting and the diffusion constants 

for the AMP molecule represented by the y-intercept of the linear fit. 

 

 

Figure 5-15: Linear fit of the AMP dataset, pH 12 SHG signal 4 is excluded 
from the linear fit due to inaccurate diffusion constant due to overlap with 
water signal. 
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5.5.4 AMP Plot Residuals Analysis  

Starting with the AMP dataset, which showed abnormally low diffusion 

constants for every diffusion medium. Figure 5-16 shows the residual plots for 

each diffusing medium. Note that the GNAT software only permits the viewing 

of the residual plots of 5 signals at a time, so the signals selected show the 

most deviation from the ideal (e.g. signal 4 in the AMP SHG sample) as these 

signals give the most information about the quality of the experiment. 

 

 

 

 

 

Figure 5-16: The Residual plots of signal amplitude vs squared gradient 
amplitude for each diffusion medium of AMP (relative to  

Figure 5-6). 

 

At first glance the fitting seems to correlate well with the data suggesting that 

the results are valid. The number of gradient steps in each case is 32, except 

from the D2O medium where the number of steps is 16. The significance of this 

is that with more gradient steps, the truer the fitting is to the experimental data. 

This is important in cases such as the SHG diffusion medium where there are 
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frequent irregularities in the data points, as the decay in the signal is much 

smoother. The abnormal peak 4 (referenced to  

Figure 5-6) in the pH 12 SHG sample clearly has a much poorer fitting for this 

signal than for the rest, this is due to the signal overlap with the water signal. 

The water signal, in general, has a much sharper decay than any of the other 

signals. The blue signal represents the decay in amplitude of the water 1H NMR 

signal with respect to increasing gradient amplitude, note how peak 4 in pH 12 

SHG plot seems to be the average of a signal from the diffusing molecule and 

the water signal ( the decay for signal 4 is much sharper due to overlap with the 

water peak). This merging of signals is the cause of anomalous diffusion 

coefficients. The same effect can be seen for signal 6 in the SHG plot, in this 

case the overall quality of the fittings of each peak is poorer than for the pH 12 

SHG sample (see residual line in the SHG plot of Figure 5-16), this can be seen 

by the larger range of diffusion constants for each signal in Table 5-3 (AMP 

SHG sample), compared to Table 5-4 (AMP pH 12 SHG sample). The best 

place to look for deviations from the fitted curve is the residual line at the bottom 

of each plot, for the red and green signals in the SHG and pH 12 SHG plots 

respectively, it is clear that the majority of the deviation from the fitted curve 

occurs at the start of the data acquisition, this is why it is especially important in 

the case of SHG samples to have a high number of gradient steps, so that any 

anomalous data can be removed through the ‘Prune tool’ in the GNAT software 

see 5.3.3.  

It appears that, although there are some abnormalities resulting from 

overlapping signals, the dataset for the AMP molecule is accurate based on 

analysis of the plot residuals. To further validate the results, repeat readings 

should be taken and then cross referenced to ensure that the data is consistent. 

 

5.5.5 ADP DOSY Results  

Summarised below are the results obtained for the DOSY analysis of ADP in 

the various media (D2O, pH 12 D2O, SHG and pH 12 SHG). For details of the 

exact processing regime see appendix. Also see appendix for individual DOSY 

spectra produced using the GNAT software.  
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Table 5-5: ADP SHG Results 

NMR Signal  
Chemical Shift / 

ppm  

Diffusion 

coefficient /  

10-10 m2 s-1 

Error/ 10-10 m2 s-1 

AcOH  1.87  6.56  0.081  

7  4.01  7.36  2.309  

6  4.39  9.85  3.338  

4  4.23  11.31  3.983  

Water  4.68  14.32  0.249  

3  5.98  1.68  0.607  

2  8.10  3.31  0.319  

1  8.35  3.37  0.317  

 

 

Table 5-6: ADP SHG pH12 Results  

NMR Signal  
Chemical Shift / 

ppm  

Diffusion 

coefficient / 

10-10 m2 s-1 

Error /10-10 m2 s-1 

AcOH  1.87  6.46  0.027  

7  4.03  2.14  0.232  

6  4.28  2.36  0.243  

4  4.39  2.65  0.538  

Water  4.68  14.17  0.027  

3  6.02  3.02  0.379  

2  8.12  2.57  0.097  

1  8.37  2.52  0.119  
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Table 5-7: ADP D2O results  

NMR Signal  
Chemical Shift / 

ppm  

Diffusion 

coefficient /  

10-10 m2 s-1 

Error / 10-10 m2 s-1 

7  4.07  3.51  0.023  

6  4.29  3.61  0.031  

4  4.45  3.55  0.020  

5  4.67  3.68  0.062  

Water  4.72  15.51  0.105  

3  6.07  3.61  0.028  

2  8.21  3.56  0.019  

1  8.44  3.53  0.029  

 

 

Table 5-8: ADP pH12 D2O  

NMR Signal  
Chemical Shift / 

ppm  

Diffusion 

coefficient /  

10-10 m2 s-1 

Error / 10-10 m2 s-1 

7  3.91  3.41  0.024  

6  4.20  3.55  0.056  

4  4.33  3.74  0.090  

Water  4.59  15.41  0.074  

3  5.95  3.34  0.032  

2  8.03  3.33  0.020  

1  8.34  3.35  0.017  

 

 

This dataset shows similar trends to the AMP dataset. However the data 

obtained for the SHG sample is abnormal and does not behave in the same 

manner as the AMP SHG sample. Figure 5-17 shows the dataset without linear 

fitting so that the reference peaks can be considered individually 
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Figure 5-17: A graph to show the diffusion constants of each reference 
NMR signal for ADP, in each of the 4 different media. 

 

 

The abnormality of the results for the SHG sample can be seen clearly here. 

The value for the diffusion constant of reference signal number 4 can be easily 

believed due to overlapping with the water signal. However, the reasons for the 

abnormally high values for reference signals 3, 6 and 7 are less obvious. The 

rest of the results appear to follow the same trend as the AMP dataset. To see 

the trend more clearly, reference signals 3, 4, 6 and 7 are removed in  

Figure 5-18.  
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Figure 5-18: graph to show the diffusion constants of each reference NMR 
signal for ADP, in each of the 4 different media. Anomalous signals 3, 4, 6 
and 7 from the SHG sample are removed. 

 

To make a comparison between this dataset and the AMP dataset, the linear fit 

of each set of sample data was taken in the same manner as for the AMP 

dataset. See Figure 5-19 

 

 

Figure 5-19: Linear fit of the ADP dataset, showing the diffusion constant 
of AMP in each media. The anomalous results for the SHG sample mean 
that a linear fit cannot be performed as there are only 2 data points.  

 
 

In the case of the AMP dataset, the average diffusion coefficient was highest in 

the pH 12 D2O sample, closely followed by the D2O sample. Here, in the case of 

the ADP dataset, the opposite is true and there is a significant difference 
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between the molecular diffusion constant of the molecule in D2O and in pH 12 

D2O (error bars do not overlap). It is difficult to suggest reasons which concern 

experimental technique for this difference as repeat readings were not 

conducted, however it is possible to assess the quality of the residual fitting as 

discussed in section 5.3.4. Analysis of the fitting will provide an insight into the 

quality of the data and will give scope for improvements to future 

measurements. 

 

5.5.6 ADP Plot Residuals Analysis  

The next question in proving the validity of the results is analysing the plot 

residuals for the ADP dataset. This is the most important dataset to analyse, as 

it is this data that is in disagreement with the Stokes-Einstein equation. 

Figure 5-20 shows the residual plots for each diffusing medium. Note that the 

GNAT software only permits the viewing of the residual plots of 5 signals at a 

time, so the signals selected show the most deviation from the ideal. 
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Figure 5-20: The Residual plots of signal amplitude vs squared gradient 
amplitude for each diffusion medium of ADP. The legend on the right of 
each plot shows the original experimental data points (represented by 
crosses), the fitted curve (filled line) and the residual (dotted line).  

 

From the data, it’s clear that the data does not fit well with the fitted curve in the 

cases of the SHG and pH 12 SHG samples, although both D2O based sample 

data fit very well with their fitted curves. The highly anomalous results for the 

diffusion coefficient of the SHG sample which were discovered in section 5.5.4 

can be explained here. The data consists of 16 gradient steps in the case of the 

SHG sample, this means that there is less of a buffer to anomalous results. If 

we compare the SHG data to the pH 12 data we can see that in the pH 12 SHG 

data, there are many anomalies, much like those in the SHG dataset, however 

in the case of the pH 12 SHG data, there are 32 gradient steps, i.e. more room 

for error with respect to decaying signal amplitude. This is why the pH 12 SHG 

data has a much better fitting than the SHG data and thus gives more accurate 

results for the diffusion constant of each NMR signal. It can be clearly seen that 

in the SHG sample, the fitting to the water and acetic acid peaks are near 

perfect, the reason for this is that the signals for both water and acetic acid are 

much more intense than for the signals for the ADP molecule. The significance 
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of this is that the decrease in the amplitude of the signal due to increasing 

gradient steps is much less pronounced for the water and therefore there is 

more room for error per gradient step. In the case of the ADP NMR signals, the 

decrease in the signal amplitude is much more pronounced and the signals 

decay more rapidly than the water or acetic acid signals.  

The large discrepancies in the individual signal diffusion constants for the SHG 

can be seen in Figure 5-20. For the diffusion constant of each individual signal 

to be equal, the fitted curves should lie on top of one another. In the case of the 

SHG data, the curves are spread out, which results in a large range of diffusion 

constants for the individual NMR signals. It is possible to visualise the 

magnitude of the difference by referring to Figure 5-21. The same effect can be 

seen in the pH 12 SHG data, where signals 3 and 4 are separate from the rest 

of the plotted curves, the effect of this can be seen in Table 5-6. The fitting of 

curves 3 and 4 is not particularly brilliant and this results in diffusion coefficients 

which are larger than the rest of the signals for the ADP molecule.  

The data for the ADP SHG sample showed no clear correlation and the range of 

diffusion coefficients for each NMR signal was too large to be able to confidently 

state the diffusion coefficient of the molecule. For future research, more 

gradient steps should be used in the data acquisition to ensure a smoother 

decay profile of the signal amplitude with respect to increasing squared gradient 

amplitude. 

 

 

5.5.7 ATP DOSY Results  

Summarised below are the results obtained for the DOSY analysis of ATP in the 

various media (D2O, pH 12 D2O, SHG and pH 12 SHG). For details of the NMR 

processing regime see Figure 5-10. Also see appendix for individual DOSY 

spectra produced using the GNAT software.  
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Table 5-9: ATP SHG results  

NMR Signal  
Chemical Shift / 

ppm  

Diffusion 

coefficient /  

10-10 m2 s-1  

Error /10-10 m2 s-1 

AcOH  1.86  7.36  0.222  

7  4.14  2.54  0.205  

4  4.29  3.17  0.312  

6  4.46  3.06  0.699  

Water  4.67  15.43  0.322  

3  5.97  2.56  0.245  

2  8.13  2.39  0.065  

1  8.40  2.47  0.090  

 

 

Table 5-10: ATP SHG pH12 results 

NMR Signal  
Chemical Shift / 

ppm  

Diffusion 

coefficient /  

10-10 m2 s-1 

Error /10-10 m2 s-1 

AcOH  1.82  6.51  0.013  

7  4.10  2.37  0.232  

6  4.25  2.73  0.272  

4  4.42  4.16 0.383  

Water  4.63  9.58  0.927  

3  5.98  2.33  0.132  

2  8.10  2.21  0.040  

1  8.36  2.21  0.051  
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Table 5-11: ATP D2O results 

NMR Signal  
Chemical Shift / 

ppm  

Diffusion 

coefficient /  

10-10 m2 s-1 

Error /10-10 m2 s-1 

7  4.25  2.69  0.022  

6  4.34  2.70  0.019  

4  4.50  2.68  0.035  

5  4.67  2.90  0.117  

Water  4.61  15.72  0.059  

3  6.06  2.76  0.015  

2  8.34  2.75  0.015  

1  8.53  2.68  0.014  

 

 

Table 5-12: ATP pH12 D2O 

NMR Signal  
Chemical Shift / 

ppm  

Diffusion 

coefficient / 

 10-10 m2 s-1 

Error /10-10 m2 s-1 

7  4.16  3.06  0.052  

6  4.19  2.87  0.040  

4  4.33  2.97  0.044  

5  4.50  3.12  0.051  

Water  4.68  15.16  0.088  

3  6.06  2.92  0.033  

2  8.17  2.92  0.031  

1  8.44  2.92  0.031  
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The data in Table 5-9 Table 5-10 Table 5-11 Table 5-12 are summarised in 

Figure 5-21, again here it is visible that there is overlap between peak 4 and the 

water peak, with peak 5 being totally consumed by the water peak and thus 

does not show up on the DOSY spectrum. 

 

 

 

Figure 5-21: A graph to show the diffusion constants of each reference 
NMR signal for ATP, in each of the 4 different media. 

 

 

 

Figure 5-22: Linear fitting of each sample data for ATP in the various 
media. Anomalous signals 4 and 6 from the SHG, and signal 4 from the pH 
12 SHG samples are removed. 



175 
 

5.5.8 ATP Plot Residuals Analysis  

Finally, the plot residuals of signal amplitude vs squared gradient amplitude for 

the 1H NMR signals of the ATP molecule in the various diffusion media will be 

analysed. The diffusion data obtained for ATP seemed to be the most accurate 

in terms of its agreement with the Stokes-Einstein equation. With the largest 

hydrodynamic radius, the ATP molecule should have the lowest diffusion 

constant from a purely theoretical perspective. This results obtained through 

DOSY spectroscopy are in agreement with this theoretical estimation. For 

further confirmation of the validity of the results, let us analyse the quality of the 

fitting of the plot of signal amplitude vs squared gradient amplitude, in order to 

reduce the quality of the experimental data points which are used in the 

calculation of the diffusion constant of a specific NMR signal (see  

Figure 5-6). Figure 5-23 shows the plot residuals for each diffusion media. 

 

  

 

  

Figure 5-23: the plot residuals of signal amplitude vs squared gradient 
amplitude for the ATP molecule in each diffusion medium.  
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Again, the data for the D2O and pH 12 D2O samples shows a good agreement 

with the fitted curve and this allows for confidence in the final result for the 

diffusion constant of the molecule in these diffusion media. As for the SHG 

samples, the fitted curves do not lie on top of each other as they do in the D2O 

samples, this difference is noticeable by the differing values for the diffusion 

coefficients of each signal in Table 5-9 (SHG sample) and Table 5-10 (pH 12 

SHG sample). The signals with the most deviation (signal 4 from the pH 12 

SHG sample, and signals 4 and 6 in the SHG sample (signal 6 is absent from 

this residual plot)) are excluded from the linear fit which produced the value for 

the diffusion constant of the ATP molecule. Excluding these signals gives data 

which has, on the whole, much better fittings and therefore we can be confident 

in the final value for the diffusion constant of the ATP molecule in these media. 

 

5.6 Ribose Systems 

                   

 

Figure 5-24: Left: open chain D-Ribose structure. Right: four cyclic 
versions of ribose143. 

 

Ribose has been examined with the help of BRUKER instrument, most 

manufacture instruments has their own built-in processing method but, will not 

be able to change the parameters of calculating the diffusion coefficient and 

found to be 6.4 / 10-10 m2 s-1. The DOSY processing software (GNAT) will 

provide some freedom of changing the parameters and eventually for better 

results. 
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5.6.1.1 GNAT results of Ribose in deuterium water  

After applying the suitable parameters for GNAT software, the diffusion 

coefficient has been calculated as 5.72 ± 0.689 / 10-10 m2 s-1. The plot shown in 

Figure 5-25 shows three integrals peaks has been chosen in the GNAT 

software and the residuals plot in Figure 5-26 shows the fitting of squared 

gradient amplitude. 

 

 

Figure 5-25: 2D DOSY results of ribose in deuterium water produced 
through the GNAT software, showing the reference peaks for the diffusion 
medium. The diffusion constant of the molecule is given by the Y 
coordinate value. 
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Figure 5-26: The Residual plots of signal amplitude vs squared gradient 
amplitude for each diffusion medium of ribose (relative to Figure 5-25) of 
peaks numbers 1, 10, 15, 21, 25 and 30. 

 

5.6.2 GNAT results of Ribose in Hadean water 

The diffusion coefficient have been collected from Bruker instrument as  

5.6 / 10-10 m2 s-1 while calculated with the help of GNAT processing software by 

applying the appropriate parameters and found to be  

5.46 ± 0.142 / 10-10 m2 s-1 
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Figure 5-27: Ribose in Hadean water solution as calculated from GNAT 
processing software. 

 

 

  

   

Figure 5-28: The Residual plots of signal amplitude vs squared gradient 
amplitude for each diffusion medium of ribose (relative to Figure 5-27) of 
peaks numbers 2, 4, 6 and 8. 
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5.7 Discussion of DOSY Results  

After all processing methods have been performed the final results for the 

diffusion coefficients of the AMP, ADP and ATP molecules (represented by the 

y-intercept of a linear fit of the diffusion coefficient for each reference NMR 

signal) are shown in Table 5-13, Table 5-14 and Table 5-15 below. The error 

arises from the errors in the exponential decay fit to the signal amplitude vs 

squared gradient amplitude residual plot, and the error in the linear fit performed 

using the Origin software. 

 

Table 5-13: AMP Diffusion Constants in the Various Media 

Diffusion Media  Diffusion constant /10-10 m2 s-1 

D2O  3.35 ± 0.069  

pH 12 D2O  3.35 ± 0.059  

SHG  2.65 ± 0.046  

pH 12 SHG  2.54 ± 0.081  

 

Table 5-14: ADP Diffusion Constants in the Various Media 

Diffusion Media  Diffusion constant/10-10 m2 s-1 

D2O  3.57 ± 0.036  

pH 12 D2O  3.33 ± 0.042  

SHG  -  

pH 12 SHG  2.65 ± 0.096  

 

Table 5-15: ATP Diffusion Constants in the Various Media 

Diffusion Media  Diffusion constant/10-10 m2 s-1 

D2O  2.73 ± 0.031  

pH 12 D2O  2.91 ± 0.057  

SHG  2.40 ± 0.066  

pH 12 SHG  2.14 ± 0.056  
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To see if there is a clear trend in the data, the diffusion coefficients in the 

various diffusion media for each molecule are plotted in Figure 5-29. 

 

 

Figure 5-29: The diffusion coefficients of each molecule in each diffusion 
medium with associated errors. 

 

 

The data shows an unexpected result in the fact that the larger ADP molecule 

has a larger diffusion constant than the smaller AMP molecule in the D2O and 

pH 12 SHG media (pH 12 D2O values for AMP and ADP have a negligible 

difference). The order of the magnitude of the molecular diffusion coefficients 

(ADP > AMP > ATP) is in contradiction to the Stokes-Einstein equation as ADP 

has a larger hydrodynamic radius 𝑟 than AMP, and therefore the expected 

diffusion constant for AMP should be higher than for ADP. ATP has the lowest 

diffusion coefficient in each case and this result is in agreement with the Stokes-

Einstein equation. This brings into question the validity of the results. To assess 

the quality of the data, the next section will be dedicated to analysing the 

residual plot of the signal amplitude vs the squared gradient amplitude. By 

doing so it is possible to check whether the fitted curve represents the data well, 

and thus validates the processing regime. Analysis of residual plots also gives 

an insight into the quality of the experimental data, if the data points do not 

show a general trend, then it is likely that the experiment should be repeated in 

order to achieve better results. 
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5.8 Comparison of results from GNAT to results produced 

from JEOL software.  

In order to further assess the quality of the data, a comparison can be made 

between a leading DOSY processing software, produced by JEOL. The details 

of the processing regime for the production of the DOSY spectrum using the 

JEOL software will not be outlined here. Table 5-16 and shows a comparison 

between the values of the diffusion coefficients obtained through each 

processing software. 

 

 

Table 5-16: GNAT data results compared with JEOL data results  

  GNAT JEOL 

Sample 
Diffusion 

medium 

Diffusion 

constant /  

10-10 m2 s-1 

Diffusion 

constant /  

10-10 m2 s-1 

AMP  D2O  3.35 ± 0.069  3.42  

 pH 12 D2O 3.35 ± 0.059 3.41  

 SHG 2.65 ± 0.046  2.85  

ADP D2O 3.57 ± 0.036 3.70 

 pH 12 D2O 3.33 ± 0.042 3.61 

 SHG - 3.04 

 pH 12 SHG  2.65 ± 0.096 3.61 

ATP D2O 2.73 ± 0.031 2.96 

 pH 12 D2O 2.91 ± 0.057 3.68 

 SHG  2.40 ± 0.066 4.34 

 pH 12 SHG 2.14 ± 0.056 3.68  
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This comparison shows that there is a clear difference in the manner in which 

the data is processed on the JEOL and GNAT software, and this clearly leads to 

different values for the diffusion constant of the molecule. The data produced by 

the GNAT software produces a clear trend that can be seen in each of the 3 

molecules, in that the values for the diffusion constant of the D2O and pH 12 

D2O samples are similar, there is then a clear decrease in the diffusion constant 

in each case as the medium changes from an aqueous to a hydrogel 

environment (as predicted by the Stokes-Einstein equation) and the SHG and 

pH 12 SHG samples have similar values for their respective diffusion constants. 

The same cannot be said for the JEOL processing results. The AMP dataset 

most closely follows the trend set by the results of the GNAT, with both the D2O 

and pH 12 D2O samples having diffusion constants that are within the error 

range of the value for the GNAT software. The most surprising dataset for the 

JEOL software is that of ATP, there is no trend to the data at all and the results 

do not adhere to the rules of the Stokes-Einstein equation. This comparison 

shows how powerful the GNAT software is, utilising all of the available 

processing tools allows for a much more accurate result for the diffusion 

constant of a molecule. 

 

5.9 Conclusion  

Overall, the content and main conclusions from this chapter may be 

summarised as follows: 

 

1. Molecular diffusion coefficients have been measured for a range of 

molecule types with a prebiotic provenance (AMP, ADP, ATP, ribose and 

an amphiphile, SDS) in the silica hydrogel (SHG) phase and compared to 

the aqueous phase. 

2. Molecular diffusion was found to be retarded in the SHG phase compared 

to the aqueous 
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Chapter 6 Experimental  

6.1 General considerations  

In this section are collected a description of the laboratory materials, chemicals 

and methods that have been used in this research 

The water used in all experimental preparations was ultra-pure deionized water 

prepared using the Purite Select Analyst deionization system. Sodium silicate 

solution was commercial (from Sigma-Aldrich) and contains (≤ 27% SiO2 and ≤ 

10% NaOH). Hydrochloric acid, glacial acetic acid, sodium dodecylsulphate, 

merocyanine 540, pyrene and pinacaynol chloride were purchased from Sigma-

Aldrich and were used as received. All experiments were conducted under 

ambient temperature conditions unless otherwise stated. All data, graphs and 

images within this report were prepared using MS Excel, ChemDraw Prime and 

OriginPro software as appropriate.   

 

6.2 Analytical preparations and calculations   

This section contains a description on all the different pieces of analytical 

equipment that used to accomplish this work: including CPD, SEM, DLS, 

solution conductivity, surface tension, UV-Vis spectrophotometry and 

fluorimetry. 

 

6.2.1 Standard Operating Protocol (SOP) for Preparation of silica 

hydrogels (SHG’s)  

SHGs were prepared by combining two solutions: (A) a solution of 360 μL glacial 

acetic acid diluted by addition of 7600 µL of ultra-pure deionized water, and (B) 

1250, 2500 and 3750 µL respectively of a sodium silicate solution (≤ 27% SiO2 

and ≤ 10% NaOH),  diluted to 8000 µL with ultra-pure deionized water to prepare 

0.5, 0.75 and 1.0 M formulation respectively. The sodium silicate solution was 

poured into the acid solution in a test tube. The tube was sealed and then 

inverted slowly (shaking the tube must be avoided) several (ca 3-5) times to mix 

the components thoroughly and allowed to stand overnight or until gelation had 

been observed to take place. The gelation process that took place in the tube 



185 
 

and confirmed by two methods (i) visual cloudy appearance took place instead 

of clear solution before gelation and (ii) the viscosity of the hydrogel seems to be 

higher than the reactants solution. This method was one that was modified 

slightly (order of mixing of solutions and nature of silicate solution used) from that 

reported by Barge et al 104. We have herein used the named Barge Method to 

refer to this SOP. 

 

6.2.2 Critical Point Drying (CPD), BET surface area & Scanning 

Electron Microscopy (SEM)  

Initial sodium silicate solution concentrations of 0.5 M prepared as detailed in 

(SOP) section above. Whilst still remaining liquid, each samples (1 mL) was 

poured carefully into a plastic cuvette tube within which each of the caps had 

been earlier perforated by a narrow-gauge exit needle to allow water egress 

and acetone ingress during the CPD process. Each sample was inverted and 

left to gel over a period of 24 hrs before being subsequently submitted for CPD 

preparation. 

A Polaron E3100 system was used to perform the CPD, under the guidance of 

Mr Martin Fuller within the Faculty of Biological Sciences, University of Leeds 

(Figure 6-1). The resulted samples (ca 11 – 12 mg) as  dry samples were then 

used in SEM and porosity measurements.  

 

 

Figure 6-1: Critical Point  Drying instrumentation; Faculty of Biological 
Science, University of Leeds 
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Sample imaging was conducted using two different SEM instruments. The first 

one was a model of Carl Zeiss EVO MA15: variable pressure W SEM with 

Oxford Instruments AZtecEnergy EDX system with 80mm X-Max SDD 

detector- secondary and backscattered imaging, EDX elemental mapping and 

linescans plus CZ STEM detector 144. All pictures was taken with magnification 

between 200 X to 2.0 KX and at 20.00 KV. Images were observed in secondary 

electron or backscattered mode. The sample imaging was conducted either in 

the Leeds Electron Microscopy and Spectroscopy Centre (LEMAS) by Mr 

Stuart Micklethwaite, School of Chemical and Process Engineering, University 

of Leeds. The second SEM instrument used was a model of FEI Nova 

NanoSEM 450 operating at 3 kV or 18 kV for EDX; samples were Ir coated, 

prior to viewing. Element analysis (EDX) - EDAX from AMETEK software 

TEME V 3.4 within the School of Chemistry in collaboration with Dr’s Alex 

Kulak and Angela Bejarano-Villafuerte from Meldrum group. BET instrument 

used of model ASAP2020 form Micromeritics, samples was degassing 3 hrs at 

120 ºC before measurements. All BET measurements were performed by Dr 

Alex Kulak (School of Chemistry, University of Leeds) 

The samples collected from the CPD lab were dry and contained silica from the 

0.5, 1.0 and 1.5 M silicate hydrogel preparations along with samples that had 

been aged and those which also contained additives including SDS and 

merocyanine. They were inserted into the sample chamber under high vacuum 

(6.3 x 10-6 Torr). The image magnification varied from 100 – 1 µm with high 

resolution and the resulting secondary electron mode images are reproduced in 

the appropriate sections of this report. 

 

6.2.3 Sample preparation for Average Particle Size Measurements 

(DLS) 

Samples of SHG’s (4 mL) were prepared directly in a disposable cuvette as 

stated earlier by using the Barge method and sealed directly after being 

prepared and inserted in a Malvern Zetasizer Nano ZSP model used for 

average particle size measurements using the technique of dynamic light 

scattering. The setup of the instrument was made to collect the result and 

calibrated for 120 seconds with water refractive index and the measurement 

angle equals to 173o back scatter at ambient temperature and set to collect 

readings every 600 seconds. 

For those SHG samples which were analysed in the presence of SDS, freshly 

prepared stock solutions of  SDS (2.5 x 10-2 M) were prepared and introduced 
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into the acid phase of the Barge Method preparation (solution B) in an 

appropriate degree of dilution to achieve the necessary overall amphiphile 

concentration.  

6.3 Critical Micelle Concentration Measurements in aqueous  

6.3.1  Surface Tension Method in Water  

An aqueous solution (250 mL) of SDS (0.02 M) was prepared as a stock 

solution in a volumetric flask. By dilution of this stock solution, a set of 6 further 

solutions were prepared of concentrations 0.00125, 0.0025, 0.005, 0.0075, 

0.01 and 0.015 M each in 100 mL volumetric flasks.  

Starting with pure water, the capillary rise was measured within capillaries of 

diameter 1.2 mm. The capillary tube was banded with a metal scale by a plastic 

rubber and both ends were connected fit together. Aliquots (15 mL) of each of 

the above prepared solutions was poured into 25 mL beakers and the capillary 

was inserted (with scale attached) and held horizontally with the end of the 

capillary immersed in the solution. The sample rise (cm) within the capillary 

was measured and used to calculate the surface tension through the 

mathematical equation. Both capillary and the 25 mL beakers were 

subsequently cleaned thoroughly and used to repeated the same procedure for 

the next sample. The value of surface tension of each SDS concentration are 

calculated and plotted to indicate the CMC point. 

 

6.3.2  Solution Conductivity Method in Water 

An aqueous solution of sodium dodcecylsulphate (0.1 M) was prepared in a 

250 mL volumetric flask. Using a calibrated pipette, 200 mL of freshly deionized 

water was added into a beaker of total volume 400 mL. A magnetic stirrer was 

inserted and was maintained stirring throughout the experiment. A fixed  

burette (50 mL) and conductance cell (JENWAY 4520 conductivity meter; 

Porter laboratory, SoC). were then introduced to the system. The burette was 

charged with the SDS solution and aliquots (1 mL) were introduced into the 

flask to a total of 50 mL. After each aliquot addition, a reading of solution 

conductance was taken under ambient temperature conditions. The same 

procedure repeated three time to calculate the average readings and estimate 

the error percent and construct error bars. 

 

 



188 
 

6.3.3 Fluorescence Method in Water  

To perform this experiment, the following stock solutions were freshly prepared:  

(i) Pyrene (25.2 mg) dissolved in ethanol (25 mL) was sonicated for 10 

minutes to dissolve the suspension to a final concentration of  5 mM. 

The final concentration of pyrene in each cuvette is 0.01 mM. 

(ii) A stock solution of SDS (0.721 g) in 100 mL of ultra-pure deionized 

water was compiled to achieve a concentration of 25 mM. During the 

dissolution process, bubble formation must be avoided by ensuring slow 

addition of water to the volumetric flask. In Table 6-1 are collected the 

volumes each stock solution used in each cuvette and the concentration 

of SDS in each cuvette.  

 

Table 6-1: The content of each cuvette in the fluorescence experiment in 
aqueous phase  

[SDS] mM SDS µL pyrene µL water µL 

1 160 8 3832 

2 320 8 3672 

3 480 8 3512 

4 640 8 3352 

5 800 8 3192 

6 960 8 3032 

7 1120 8 2872 

8 1280 8 2712 

9 1440 8 2552 

10 1600 8 2392 

11 1760 8 2232 

12 1920 8 2072 

13 2080 8 1912 

14 2240 8 1752 

15 2400 8 1592 

 

Data were collected using a HORIBA Fluorolog Triax 320 fluorimeter (School of 

Chemistry, University of Leeds) calibration (run with air and deionised water) 

process was conducted prior to any data collection.   
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6.3.4 Spectrophotometric Method in Water  

To perform this experiment, the following stock solutions were freshly prepared:  

Merocyanine 540 (0.0138 g) was dissolved in ethanol (25 mL) with sonication 

(10 mins) to afford a solution with concentration of 1 mM. The final 

concentration of merocyanine 540 in each cuvette is 0.01 mM. The cuvette 

path-length was 1 cm. In a similar fashion, SDS (0.72 g) was dissolved in ultra-

pure deionized water (100 mL) to obtain a solution concentration of 25 mM. It 

was observed that during dissolution, air bubbles had a tendency to form. This 

proved to be somewhat problematic in the subsequent optical analysis so, in 

order to prevent bubble formation, water was added to the volumetric flask in 

as slow a manner as possible. The subsequent spectrophotometric analyses 

were performed using a Cary 100 UV-Vis spectrophotometer from Agilent 

Technology (School of Chemistry, University of Leeds), using Scan Software 

Version: 4.20(468), Double Beam Mode and scan range of 200.00 – 800.00 nm 

at ambient temperature. The instrument needs an internal reference cell for 

base-line correction so a reference cuvette containing water is used in all 

aqueous experiments and SHG in the gel-phase experiments. 

 

Table 6-2: The content of each 4mL cuvette in the UV-Vis spectroscopy 
experiment in aqueous phase 

[SDS] mM SDS µL 
Merocyanine 

µL 
water µL 

1 160 40 3800 

2 320 40 3640 

3 480 40 3480 

4 640 40 3320 

5 800 40 3160 

6 960 40 3000 

7 1120 40 2840 

8 1280 40 2680 

9 1440 40 2520 

10 1600 40 2360 

11 1760 40 2200 

12 1920 40 2040 

13 2080 40 1880 

14 2240 40 1720 
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15 2400 40 1560 

16 2560 40 1400 

17 2720 40 1240 

Ref. 0 40 3960 

 

6.3.5 Fluorescence Method in Hydrogel Phase 

To calculate the CMC point in the gel phase, the same stock solutions of 

pyrene and SDS were prepared as used under aqueous conditions 

(section 6.3.3 above). In addition, the sodium silicate solution was prepared by 

diluting an aliquot of the stock silicate solution described above (16 mL) to 25 

mL using ultra-pure deionized water, the final concentration of silicate used in 

the SHG was then 0.5 M. Again, the gels were prepared using the Barge 

method104.  

 

Table 6-3: The content of each cuvette in the fluoresce experiment in silica 
hydrogel phase 

[SDS] 
mM 

SDS µL 
Sodium Silicate 
diluted solution 

µL 

Glacial 
acetic acid 

µL 

pyrene 
µL 

water 
µL 

1 160 375 60 8 2397 

2 320 375 60 8 2237 

3 480 375 60 8 2077 

4 640 375 60 8 1917 

5 800 375 60 8 1757 

6 960 375 60 8 1597 

7 1120 375 60 8 1437 

8 1280 375 60 8 1277 

9 1440 375 60 8 1117 

10 1600 375 60 8 957 

11 1760 375 60 8 797 

12 1920 375 60 8 637 

13 2080 375 60 8 477 

14 2240 375 60 8 317 

15 2400 375 60 8 157 
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6.4 Critical Micelle Concentration Measurements in SHG 

 

6.4.1 Spectrophotometric Method in Hydrogel Phase    

To calculate the CMC point in the gel phase, the same set of stock solutions for 

both merocyanine and SDS were prepared. In addition, more dilute sodium 

silicate solutions were prepared by  diluting silicate solution (16 mL of sodium 

silicate solution) to 25 mL in ultra-pure deionized water, the final concentration 

of SHG were 0.5, 0.75 and 1.0 M – each of these solution concentrations could 

only have come from different volumes of the original stock solution. The 

calculations of sodium silicate solution and the preparation process based on 

Barge method as described previously. Table 6-4 indicates the preparation 

solutions for a representative experiment in a 0.5 M SGH environment. 

However, to prepare appropriate solutions in order to achieve SHG silicate 

concentrations of 0.75 and 1.0M respectively, sodium silicate solutions were 

diluted from 375 µL to 500 µL  (to achieve 0.75 M silicate) and 750 µL (to 

achieve 1.0 M silicate) respectively.  

 

Table 6-4: The content of each 3mL cuvette in the UV-Vis spectroscopy 
experiment in 0.5 M silica hydrogel phase 

[SDS] 
mM 

SDS 
µL 

Sodium 
Silicate diluted 

solution µL 

Glacial acetic 
acid µL 

Merocyanine 
µL 

water 
µL 

0.5 60 375 60 30 2475 

0.75 90 375 60 30 2445 

1 120 375 60 30 2415 

1.5 180 375 60 30 2355 

2 240 375 60 30 2295 

3 360 375 60 30 2175 

5 600 375 60 30 1935 

7 840 375 60 30 1695 

8 960 375 60 30 1575 

8.5 1020 375 60 30 1515 

9 1080 375 60 30 1455 

10 1200 375 60 30 1335 

12 1440 375 60 30 1095 
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15 1800 375 60 30 735 

18 2160 375 60 30 375 

21 2520 375 60 30 15 

Ref. 0 375 60 30 2535 

 

 

Table 6-5: The content of each 3mL cuvette in the UV-Vis spectroscopy 
experiment in 0.75 M silica hydrogel phase 

[SDS] 
mM 

SDS 
µL 

Sodium Silicate 
diluted solution 

µL 

Glacial 
acetic acid 

µL 

Merocyanine 
µL 

water 
µL 

0.2 24 565 60 30 2321 

0.4 48 565 60 30 2297 

0.6 72 565 60 30 2273 

0.8 96 565 60 30 2249 

1 120 565 60 30 2225 

1.5 180 565 60 30 2165 

2 240 565 60 30 2105 

3 360 565 60 30 1985 

5 600 565 60 30 1745 

7 840 565 60 30 1505 

8 960 565 60 30 1385 

9 1080 565 60 30 1265 

11 1320 565 60 30 1025 

14 1680 565 60 30 665 

16 1920 565 60 30 425 

18 2160 565 60 30 185 

Ref. 0 565 60 30 2345 
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Table 6-6: The content of each 3mL cuvette in the UV-Vis spectroscopy 
experiment in 1.0 M silica hydrogel phase 

[SDS] mM SDS µL 
Sodium Silicate 
diluted solution 

µL 

Glacial 
acetic acid 

µL 

Merocyanine 
µL 

water µL 

0.5 60 750 60 30 2100 

0.75 90 750 60 30 2070 

1 120 750 60 30 2040 

1.5 180 750 60 30 1980 

2 240 750 60 30 1920 

3 360 750 60 30 1800 

5 600 750 60 30 1560 

7 840 750 60 30 1320 

8 960 750 60 30 1200 

8.5 1020 750 60 30 1140 

9 1080 750 60 30 1080 

10 1200 750 60 30 960 

12 1440 750 60 30 720 

15 1800 750 60 30 360 

18 2160 750 60 30 0 

Ref. 0 750 60 30 2160 

 

 

6.5 Merocyanine 540 decolourisation experiments 

The stock solutions prepared previously are used considering the following 

concentration. In a similar fashion, SDS (0.7209 g) was dissolved in ultra-pure 

deionized water (100 mL) to obtain a solution concentration of 25 mM. 

merocyanine 540 (0.01 g) was dissolved in ethanol (25 mL) with sonication (10 

mins) to afford a solution with concentration 1mM.The final concentration of 

merocyanine 540 in each cuvette is 0.01 mM. SHG prepared directly in the 

cuvette as described using Barge method. Table 6-7 indicates the preparation 

solutions for a representative experiment in a 1.0 M SGH environment. 

However, to prepare appropriate solutions in order to achieve SHG silicate 

concentrations of 0.75 and 0.5 M respectively, sodium silicate solutions were 
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diluted from 750 µL to 500 µL  (to achieve 0.75 M silicate) and 375 µL (to 

achieve 0.5 M silicate) respectively. 

 

 

Table 6-7: The content of each 3mL cuvette in the merocyanine  540 
decolourisation  experiment in 1.0M silica hydrogel phase 

[SDS] 
mM 

SDS 
µL 

Sodium 
Silicate diluted 

solution µL 

Glacial acetic 
acid µL 

Merocyanine 
540 µL 

water 
µL 

0 0 750 60 30 2160 

3 360 750 60 30 1800 

5 600 750 60 30 1560 

10 1200 750 60 30 960 

15 1800 750 60 30 360 

18 2160 750 60 30 0 

Ref. 0 750 60 30 2160 

 

 The experiments were conducted in the Porter Laboratory, School of 

Chemistry, University of Leeds using a Cary 100 UV-Vis spectrophotometer 

from Agilent technologies. Calibration and baseline correction was conducted 

after 15 min of initiating the instrument (to allow to stabilize the lamp). The 

instrument set to collect readings each 10 minutes continuously for 18 hrs with 

a full scan wavelength range between 200 – 800 nm using: Scan Software 

Version: 4.20(468), Double Beam Mode and at ambient temperature 

 

6.5.1 pH Studies on Merocyanine 540  

For the pH measurements, two pH-meter instruments were used. The first 

meter, a SCHOCHEM SN 2024 pH-meter, was connected to a PC upon which 

pH-logging software had previously been installed, allowing automated pH 

measurements to be made every 60 seconds. The second instrument was a 

JENWAY 350 pH meter unit and was connected to a microprobe from SIGMA-

ALDRICH. Calibration of the pH-meters was carried out using buffer solutions 

of pH 7 & pH 4 before experiments were run. Gel solutions (10 mL) for analysis 

were prepared according to the Barge method described earlier to prepare 

SHG samples. The colour disappearance was monitored visually and the 

microprobe used to maintain the physical structure of SHG sample. 
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6.6 Sample preparation for SEM-EDX analysis of SHG-

pyrophosphate binding nature  

The binding nature of phosphorous containing compounds (namely sodium 

pyrophosphate) to the silica hydrogel polymer matrix was determined through 

SEM-EDX analysis.  

SHG samples were prepared with differing sodium silicate concentrations, and 

for the purpose of this investigation, solution A was saturated with sodium 

pyrophosphate (solubility = 170 mg/mL in water –SCBT). 

 

Table 6-8: Solution A 

Hydrogel 

sample  
[SSS] / M  

Vol Glacial 

acetic acid / 

µL  

Vol. 

Distilled 

water / µL  

Mass of 

pyrophosphate 

/ g  

1  0.5  226  4765  0.4515  

2  0.6  226  4765  0.4550  

3  0.7  226  4765  0.4560  

4  0.8  226  4765  0.4512  

5  0.9  226  4765  0.4534  

6  1.0  226  4765  0.4515  

 

Table 6-9: Solution B 

Hydrogel 

Sample  
[SSS] / M  

Vol. Distilled 

Water / uL  
Vol. SSS / uL  

1  0.5  4232  784  

2  0.6  3919  1097  

3  0.7  3605  1411  

4  0.8  3292  1724  

5  0.9  2978  2038  

6  1.0  2665  2351  
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The samples were left for 2 days so that gelation could occur. Freeze drying 

was performed after gelation was successful in all samples to remove all water 

from the samples, leaving a white uniform powder after 2 days for freeze drying 

under reduced pressure. After freeze drying, dialysis was performed on each 

sample. In each case, the sample was placed into dialysis tubing (washing into 

the tubing from the container with distilled water) and the sealed tubing was 

placed into a water bath which was replenished daily. The dialysis was carried 

out for 4 days and after this time the remaining solid in the dialysis tubing was 

subjected to freeze drying. The resulting white uniform powder was then 

analysed using an SEM-EDX instrument. After initial investigations discovered 

the presence of phosphorous on the surface of the remaining silica, acid 

dialysis was carried out on the same samples, in order to determine if the  

silica – phosphorus binding is chemical or physical in nature. In the case of acid 

dialysis, the procedure was identical to that of the first dialysis experiment, but 

in this case, the water bath was adjusted to pH 2 via addition of 37% of 

concentrated HCl solution in water 

 

6.7 Diffusion coefficient experiments  

6.7.1 Materials  

Sodium silicate solution was commercial (from Merck KGaA, Damstadt, 

Germany) and contained (≤27% SiO2 and ≤10% NaOH), Density = 1.296-1.396 

g / mL. Adenosine 5’ triphosphate disodium salt hydrate: Sigma Aldrich. 

Adenosine 5’ Diphosphate disodium salt: Alfa Aesar. Adenosine 5’ 

monophosphate from yeast: Sigma Aldrich. D2O: 99.9% atom D, MW = 20.03 g 

/ mol, Boiling point 101.4 °C, Sigma Aldrich. Glacial Acetic Acid: Sigma Aldrich. 

Sodium Pyrophosphate: Sigma Aldrich. D-(--)-Ribose; M.W. = 150.13 Assay = 

98% from FisherBiotech 

 

6.7.2 Analytical Methods and Settings  

A two-channel Jeol ECA600ii NMR Spectrometer operating with a 14.1 T 

magnetic field, equipped with a 5 mm ROYAL probe with z-axis field gradients 

and Bruker Avance Neo 500 MHz spectrometer with a 5 mm BBO smartprobe 

equipped with a z-gradient coil with a maximum nominal gradient strength of 53 

G cm-1 for DOSY measurements. A two-channel Bruker AV3 300 NMR 
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spectrometer operating with a 7.05 T magnetic field, equipped with a 5 mm 

BBF-H-D probe with z-axis field gradients for (1H analysis). Analysis of resulting 

spectra was achieved through use of MestreNova Research lab software. 

Abbreviations used in NMR analysis: s= singlet, d= doublet, t= triplet, q= 

quartet, m= multiplet. 

Table 6-10 describes the processing parameters used for each sample in the 

GNAT software, for an explanation of each parameter consult chapter 5.
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Table 6-10: DOSY processing parameters for each sample. fn = Fourier number, the number of data points used in the Fourier 
transform. Lw & Gw = Lorentzian and Gaussian linewidth parameters. No. of gradient steps = the number of data points used in 
the calculation of the diffusion coefficient. Baseline correct polynomial order. Reference Deconvolution. No. of exponentials 
and Prune Regions. 

 

  FT Window function      

Diffusion 
Medium  

Sample  fn  Lw  Gw  
No. of 

gradient 
steps  

Baseline 
correct 

polynomial 
order  

Reference 
Deconvolutio

n  

No of 
exponentials  

Prune 
Regions  

SHG  AMP  32768  1  0  32  5  no  5  -  

SHG  ADP  8192  3  3  16  5  no  5  1-7  

SHG  ATP  8192  1  0  16  5  no  mono  -  

D2O AMP  16384  1  0  16  5  no  mono  -  

D2O ADP  32768  1  0  16  5  yes  mono  -  

D2O  ATP  32768  1  0  16  5  no  mono  -  

SHG AMP pH 12  8192  2  1  32  2  no  5  31  

SHG ADP pH 12  8192  2  1  32  2  no  5  31  

SHG ATP pH 12  8192  2  1  32  2  no  5  31, 32  

D2O  AMP pH 12  32768  1  0  32  4  no  mono  1-10  

D2O ADP pH 12  32786  1  0  32  2  no  mono  -  

D2O  ATP pH 12  32768  1  0  32  2  no  mono  31  
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6.7.3 Sample Preparation for DOSY Experiments  

6.7.3.1 Protocol for the preparation of Silica Hydrogels:  

Initial investigations into the preparation of SHG utilised the recipe used from 

Barge Method104 . A range of different hydrogels were prepared in test tubes, 

which varied in sodium silicate solution concentration ([SSS]). 

 

Table 6-11: Solution A 

Hydrogel  
Vol. glacial acetic acid 

/ µL  

Vol. Distilled water / 

µL  

1  360  7600  

2  360  7600  

3  360  7600  

4  360  7600  

5  360  7600  

6  360  7600  

 

Table 6-12: Solution B 

Hydrogel  
Molarity [SSS] / 

M  
Vol. SSS / µL  

Vol. Dist. water / 

µL  

1  0.5  1250  6750  

2  0.6  1750  6250  

3  0.7  2250  5750  

4  0.8  2750  5250  

5  0.9  3250  4750  

6  1.0  3750  4250  

 

 

Solution A was added to solution B and the combined solution was left 

overnight to gel. All hydrogels formed successfully, this initial test yielded a 

foundation recipe on which further preparations could be centred. 
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6.7.4 Preparation of the Molecules under DOSY Investigation:  

Adenosine monophosphate disodium salt, adenosine diphosphate disodium 

salt, and adenosine triphosphate disodium salt were used in this study of which 

the latter two compounds are commercially available and were purchased from 

Sigma. The former was synthesised from 0.1 g, 2.88 x10-4 mol adenosine 3’ 

monophosphate (from Sigma-Aldrich) via dissolution into a minimum amount of 

D2O (ca 3 mL) followed by the addition of 0.0230 g, 5.75 x 10-4 mol NaOH(s) 

(ground from pellets) and evaporating this mixture to yield a white solid powder, 

which was dried in an oven at 60°C for 24 hrs to yield the disodium salt of 

Adenosine monophosphate, AMP.2Na (0.0943 g, 85%). The disodium salts of 

each molecule were selected for use as they are suitably soluble in the media 

used in these investigations and can be used for comparison with the same 

species but in a high charge state  

 

6.7.5 Preparation of Silica Hydrogels in NMR Tubes:  

For all future investigations regarding DOSY experiments, the sodium silicate 

concentration of the hydrogel environment is chosen to be 0.5 M, as at this 

concentration hydrogels are optically pure and the uniformity of the hydrogel 

can be easily seen.  

To achieve a precise concentration in each sample, the protocol used by Barge 

method is scaled down from a volume of 15960 µL to 3000 µL (scale factor of 

5.32). A 3000 µL total volume was chosen as this was the lowest volume in 

which it is feasible to form a hydrogel using the method above (sufficient acetic 

acid is required for gelation to occur). Solution A (containing the solid sample 

under investigation) and solution B are mixed with slow inversion of the 

container, and from the mixed solution 500 µL is pipetted into an NMR tube. 

Note that in the case of NMR samples, D2O is used in place of distilled water. 

 

Table 6-13: Solution A 

Vol. glacial acetic acid 
/ µL  

Vol. D2O / µL  
Mass ATP-2Na/ADP-
2Na/AMP-2Na / mg 

68  1429  30  
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Table 6-14: Solution B 

Vol. SSS / µL  Vol. D2O / µL  

235  1269  

  

After 24hrs, gelation had occurred. The hydrogels that formed were optically 

pure, uniform and of equal volume as a result of the precision of the protocol 

used. As a result, measurements of the diffusional behaviour of molecules can 

be conducted with confidence in the validity of the results. 

 

 

Figure 6-2: Image demonstrating the successful preparation of SHG’s at 
0.5 M [SSS] using the protocol described in 6.7.5.  

 

 

6.7.6 Preparation of SHG’s at High pH Regime:  

To assess how the charge state affects the diffusional behaviour of molecules in 

both an SHG phase and an aqueous phase, it was first necessary to prepare a 

stock D2O solution with a pH of ~12. To do this, sodium hydroxide pellets were 

crushed into a fine powder and this was added to a beaker of D2O until the pH 

was adjusted to pH 12. The pH was of the stock solution was measured via 

electronic pH meter, to be 12.40 and this value was confirmed through pH 

paper tests.  
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Using the pH 12 D2O stock solution, SHG’s were prepared in much the same 

manner as in6.7.5, however the D2O is replaced with the high pH stock solution. 

Initial attempts using this method failed, the issue was resolved by addition of 

75 µL Glacial acetic acid rather than the 68 µL used previously. It is thought that 

there is a neutralisation effect from the high pH stock solution which prevents 

the acid catalysis of the gelation reaction. 

 

Table 6-15: Solution A 

Vol. glacial acetic 
acid / µL  

Vol. High pH stock 
solution / µL  

Mass ATP-2Na/ADP-
2Na/AMP-2Na / mg 

75 1429 30 

 

Table 6-16: Solution B 

Vol. SSS / µL  Vol. High pH stock solution / µL  

235  1269  

 

  

 

Figure 6-3: Image demonstrating the successful preparation of SHG’s at 
0.5 M [SSS] in high pH regime, using the protocol described in6.7.5 
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Chapter 7 Summary, Conclusion and Future Work  

 

Below is a chapter-by-chapter summary of the key findings from the work 

presented here. To summarize the work which has been done during my study 

as following ordered according to the relevant chapters: 

7.1 Chapter 2:  

To prepare SHG in a practical method, there are two different acidic reagent 

can be used with the same procedure. First acidic reagent used was a strong 

mineral acid hydrochloric acid, the standard 0.5 M SHG prepared successfully 

but with higher concentrations of SHG the issue of the precipitation arises. The 

second acidific reagent used was the weak acid glacial acetic acid. 

Formulations made using the latter are named Barge method104. Barge method 

appears to be the most suitable and most durable method of preparing SHG 

(SOP) used in the lab without any chemical issues even with up to 1.5 M SHG. 

Silica hydrogels produced by the Barge method appears optically clear and 

homogeneously formed without any precipitate formation. 

Critical point  drying has been used prior to surface examinations to maintain 

the integrity of the structure, visualize the cross-linked network and the dendritic 

growth of silica matrix structure. This method is also used for preparing delicate 

biological samples for electron microscopy  

The dried SHG samples have been examined by scanning electron microscopy 

to visualize the surface morphologies of the samples along with surface 

porosity.  Energy dispersive X-ray studies identify salts present in the matrix 

structure which can be removed with the help of dialysis which involves 

immersing a SHG sample contained within a dialysis tube (semipermeable 

membrane) in water, dialysis tube to allow removal of water-soluble salts. After 

four days of dialysis, the sample is dried using lyophilisation (freeze-drying). 

After freeze drying, the sample is visualised again with SEM and the results 

showed increased porosity in the silica matrix which is supported by BET 

studies where surface area is almost triple the pre-dialysed  values and all 

water soluble molecules have been removed as determined by EDX. 

Dynamic light scattering experiments showed that the best cuvette environment 

to be used in the DLS instrument is a closed SHG system to prevent water 

evaporation. The particle size distribution (Z-average) provides an 
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approximation of gelation; this process took ca 120 min in an open system and 

ca 200 min in the closed system. The presence of amphiphile SDS surfactant in 

the gelling SHG leads to an increase in the average particle size distribution. 

Thermogravimetric analysis, on five different concentrations of SHG within 0.5-

1.0 M have been examined, which resulted in the following water-volatile 

content measurements: 0.5 M (94.6%), 0.6 M (93.6%), 0.7 M (92.2%, 0.8 M 

(91.6 M), 0.9 M (90.5%) and 1.0 M (89.3%). 

The first derivative graphs which are known also as differential 

thermogravimetry (DTG) give information about different thermal events in the 

mass loss which, in the case of the SHG’s studies here, appear as shoulders on 

the graphs. These may indicate different degrees of bound vs free water. 

 

As a conclusion of this chapter: 

 Optically clear SHG’s form well using the Barge method even with a 

higher concentration of SHG. 

 CPD followed by dialysis is a good mechanism to prepare salt-free silica 

matrices. 

 Different forms of silica have been detected by SEM.  

 The presence of amphiphiles in the gel systems appears to increase the 

average particle size. 

 Thermogravimetric analysis and the first derivative of thermal analysis of 

gel samples used to examine water content within SHG’s. 

 

 

7.2 Chapter 3  

This chapter focuses on measurements of the critical micelle concentration of a 

representative surfactant within an aqueous and silica hydrogel (SHG) media, 

the first such study of its kind to the best of our knowledge  

The surfactant, sodium dodecyl sulphate (SDS) has been examined and the 

CMC measured in the aqueous phase with the help of four different techniques 

and the results appear to illustrate slightly different values depending on the 

method used. 

Surface tensiometry using the capillary rise concept gives a CMC value of 6.1 

mM, solution conductivity experiments using NaOH titration gives a CMC value 

of 7.9 mM. Fluorescence spectroscopy has also been used in which the 



205 
 

fluorescence of pyrene probe provides a, CMC of 6.0 mM. In addition to these, 

UV-Vis spectrophotometry based on the absorption of dye molecules 

(merocyanine 540 and pinacynol chloride) which partition within micelles. Using 

merocyanine 540 the CMC of SDS was found to be  7.3 mM which is slightly 

lower than its value when estimated with pinacynol chloride dye which is 7.8 

mM  

Changing from an aqueous environment to SHG environment provides some 

experimental problems: both tensiometry and conductivity methods involves 

dynamic and continuous solution movements neither of which are suitable for a 

gel-phase  medium. Moreover, fluorescence spectroscopy proves of little 

effective use in the SHG medium as broad featureless signals were obtained. 

The most applicable method found to provide reasonable CMC results   within 

SHG phases was the UV-Vis spectroscopic technique. The overall shape of the 

Abs vs [SDS] plot in the SHG phase was slightly different to those observed in 

the aqueous phase, in that the onset-transition point was barely if at all visible. 

However, the second, equilibrium, transition was and it was this set of values 

that were compared between both phases.  

Using merocyanine 540 , starting with 0.5 M SHG, the CMC values for SDS 

were found to be 1.3 ± 0.7 mM, at 0.6 M SHG the CMC changed slightly to 1.1 

± 0.2 mM. When increasing the concentration of SHG to a higher concentration 

of 0.7 M, two observations noted: 1) the system gelled quicker and 2) the red 

merocyanine colour vanished and the CMC recorded at ca. 1.0 ± 0.5 mM.  

With the second probe pinacynol chloride, decolourisation over the 

measurement period was not a problem and CMC values could be measured at 

higher silicate SHGs. For 0.5 M SHG the CMC  measured was 1.4 ± 0.4 mM; 

0.6 M SHG the CMC = 1.5 ± 0.2 mM, with 0.7 M SHG CMC = 0.8 ± 0.3 mM; 0.8 

M of SHG = 1.0 ± 0.2 mM; with the help of 0.9 M of SHG the CMC points 

estimation = 0.7 ± 0.4 mM and the highest concentration used was 1.0 M of 

SHG and the CMC point estimated at 0.6 ± 0.2 mM. These values are all very 

close but the difference between 0.5 M and 1.0 M SHGs suggests that CMC 

values fall slightly. 

 

As a conclusion of this chapter: 

 Colorimetric indicator and UV-VIS spectrophotometry allow 

measurements of CMC on amphiphiles within the SHG phase. 

 Generally speaking, as the salt content of the SHG increases so the 

CMC values decrease. 
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7.3 Chapter 4: 

 During experiments to measure the CMC of SDS in SHG media (described in 

Chapter 3) using spectrophotometric measurements with the red dye 

merocyanine 540, an observation was made that, in higher silicate 

concentrations  of  SHG preparations, the initial red colour of the dye would of 

disappear, turning to pale yellow and then subsequently colourless after a 

certain time. The rate of this decolourisation process appeared to depend upon 

the concentration of the surfactant SDS and the concentration of silicate used in 

the hydrogel preparation method. 

The study extended to examine the effect of  surfactant on the decolourisation 

in which three different concentrations of SHG (0.5, 0.75 and 1.0) M. The 

results demonstrated that decolourisation was accelerated at the higher silicate 

formulations. Experiments were then performed on 0.5 M SHG’s containing 

various concentrations of SDS, which demonstrated that the amphiphile 

protected the dye molecule from decolourisation to some degree. 

Further investigations into the behaviour within SHGs media showed that all 

spectra of gelling SHG formulations suffered from baseline  shifting in which the 

absorbance across a range of wavelengths increases with time. The base line 

shift is presumably due to scattering effects of the particulates that arise as the 

gelation process continues. This effect has been explored briefely as a possible 

simple method for determining gelation times in SHG’s. 

In order to probe this decolourisation phenomenon, a few scenarios have been 

proposed and studied, the first proposal was the effect of pH of the SHG. 

The pH value of SHG (1.0 M silicate) stabilised at pH 9.8 after 45 mins at 

ambient temperature. While the same measurement is made of a SHG (1.0 M 

silicate) containing merocyanine at a concentration of 1 x 10-5 M, the pH 

stabilises at 10.3 after 30 min. from aqueous solutions of merocyanine readings, 

we note that at a pH of 12.4, the colour changes to a light yellow after several 

minutes but that at a pH of 10.3 there is no effective change of colour over a 

period of at least one hour. Therefore, the fact that decolourisation is observed 

in SHG formulations at pH 10.3 suggests that the reason behind the 

decolourisation is neither likely to be pH solely nor the singlet oxygen effect. 

Another reason was proposed that decolourisation is primarily the shift of 

equilibrium between different dye states to two key colourless states; the H-

aggregate and water adducts. Similar observations have been made by many 

groups 145, 146. As of yet, no viable alternative mechanism has been suggested, 
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however, more evidence is required before this can be stated as the ‘definitive’ 

explanation. 

 

As a conclusion of this chapter: 

 

 Decolourisation appears to be more facile in SHG’s with higher salt 

concentrations 

 Decolourisation appears to be retarded in the presence of added 

amphiphile  

 The definitive cause for  the decolourisation is not yet known but neither 

singlet oxygen nor pH appear to be involved.  

 Results suggest that incorporation of merocyanine within micellar 

structures leads to stabilisation of the dye towards decolourisation  

 Our studies indicated that a base-line drift effect was occurring as the gel 

phase was forming. This is most probably due to light scattering and 

could potentially offer a simple mechanism for quantifying gelation times 

 

7.4 Chapter 5  

The molecular diffusivity of small neutral and charged molecules of potential 

importance to prebiotic chemistry which have been studied in this chapter, 

comparing their behaviours in the aqueous and SHG phases. Data has been 

collected on two different instrument manufacturers (Jeol and Bruker)  from 

three different research groups (SoC, Mathias Nilsson group from University of 

Manchester and Georgelin group in Paris, France). 

Each instrument has its own processing built-in software in which all parameters 

are fixed, therefore we elected to use the unified processing software called 

General NMR Analysis Toolkit (GNAT) in which the processing parameters can 

be entered and manipulated  manually on datasets that had been collected on 

any instrument  

Charged molecules adenosine monophosphate, adenosine diphosphate and 

adenosine triphosphate have been examined using  on a Jeol instrument within 

SoC.  

Diffusion constants differ with media used as follow: adenosine monophosphate 

AMP in deuterium water 3.4 ± 0.069, within basic environment of pH 12  3.4 ± 
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0.059, within 0.5 M SHG 2.7 ± 0.046 and within modified pH 12 of SHG 

environment 2.5 ± 0.081. 

For adenosine diphosphate ADP: within deuterium water environment; 3.5 ± 

0.036, within modified pH 12 deuterium water; 3.3 ± 0.042 and within 0.5 M 

SHG and pH 12 media; 2.7 ± 0.096. 

Adenosine triphosphate ATP: within deuterium water; 2.7 ± 0.031, within pH 12 

modified deuterium water; 2.9 ± 0.057 ,when shift to 0.5 M of SHG; 2.4 ± 0.066 , 

and within pH 12 modified SHG environment; 2.1 ± 0.056. The unit of the 

diffusion constants in all cases is 10-10 m2 s-1.  

The quality of the above experimental data was assessed through the quality of 

the fitting to the residual plot of the signal amplitude vs the squared gradient 

amplitude. 

The diffusion constant of ribose has been studied as well using Bruker 

instrumentation (Paris, France) and GNAT software as follows: with the help of 

Bruker manufacturer software the diffusion constant with deuterium water 

environment were found to be 6.4 10-10 m2 s-1 while with the help of the GANT 

software was found to be 5.7 ± 0.68 x 10-10 m2 s-1. 

In stimulated Hedean water, the Bruker result was 5.6 10-10 m2 s-1 while the 

GNAT reading at 5.5 ± 0.14 x10-10 m2 s-1. The validity and reliability of the 

results have been subjected the residual plots. 

 

As a conclusion of this chapter: 

 

 Diffusion appears to be slowed in the SHG phase compared to the water 

environment. 

 The quality of some of the data is called into question as a result of the 

residual analysis 
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7.5 Future plans and recommendations  

 

As stated in the Aims and Objectives section, the overarching aim of my project 

is to study how molecular interactions, of potential relevance to abiogenesis, 

could be influenced by geologically plausible hydrogel environments. The work 

reported in this thesis set the groundwork for this and has established, at this 

stage, that differences are to be expected and could turn out to be significant in 

the context of an origin. There are several lines of enquiry that have been 

opened up in this thesis which could logically be pursued in greater detail or 

initiated as a “next-phase” project. Some of these are collected below: 

 

(i) How do the CMC’s of long chain carboxylic acids and simple 

orthophosphate esters (putative prebiotic amphiphiles) change when 

measured in a silica hydrogel phase? 

We have used sodium dodecylsulfate in this thesis but of course, this does not 

have an especially strong prebiotic provenance. More reasonable materials 

could include long-chain carboxylate and phosphate species, both of which 

have been demonstrated to be components of meteoritic inventories147 or to 

have been potentially available to be prepared under plausible prebiotic 

conditions148. One could specifically examine here both micelle formation within 

the SHG phase and also the potential for vesicle formation when the above 

mentioned amphiphiles are combined with co-aggregating molecular such as 

long-chain alcohols60  

 

(ii) Is it possible to visualize vesicle formation within the SHG 

environment?  

In addition to fluorescent microscopy, an examination of vesicle formation, SHG 

formation and ultimately vesicle formation within SHG environments using the 

technique of small angle X-ray scattering (SAXS) would be most valuable 

 

(iii) Explore the merocyanine decolourization phenomenon in more detail 

We have uncovered an unusual process which could be examined more 

closely. Certainly, there is a need to perform a more statistically relevant 

mathematic analysis of the observations collected here along with analytical 

studies as the mechanism of the process. 
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(iv) Expand the scope of using DOSY to measure molecular diffusion in 

the gel phase 

There is considerable scope to do this from the preliminary studies described in 

Chapter 5. There are some considerable instrumentation limitations perhaps the 

most significant of these being the use of a suitable NMR probe that is capable 

of collecting good data in aqueous electrolyte gels. However, there are some 

very interesting questions to ask, such as how molecular diffusion in the gel 

phase changes as one creates self-assembled aggregate



211 
 

7.6 Appendix  

Chapter 3 appendix  

 

Figure 7-1: The absorption of each concentration of the surfactant SDS 
from 1 – 17 mM in aqueous phase using the MC540 spectrophotometric 
method for the second measurements. 

 

 

Figure 7-2: The absorption of each concentration of the surfactant SDS 
from 1 – 17 mM in aqueous phase using the MC540 spectrophotometric 
method for the third measurements. 
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Table 7-1: Linear fitting equation of the first maxima of absorption-
concentration curve of MC 540 

Equation y = a + b*x 

Weight No Weighting 

Residual Sum of 

Squares 
0.00352 

Pearson's r 0.99971 

Adj. R-Square 0.99937 

  Value Standard Error 

1st maxima Intercept -0.02183 0.00978 

1st maxima Slope 22.8201 0.17237 

 

Table 7-2: Linear fitting equation of the second maxima of absorption-
concentration curve of MC 540 

Equation y = a + b*x 

Weight No Weighting 

Residual Sum of 

Squares 
0.01013 

Pearson's r 0.99922 

Adj. R-Square 0.99828 

  Value Standard Error 

2nd maxima Intercept -0.05247 0.01659 

2nd maxima Slope 23.35603 0.29227 
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Figure 7-3: The absorption of each concentration of the surfactant SDS 
from 1 – 16 mM in aqueous phase using the PC spectrophotometric 
method for the second measurements. 

 

 

 

Figure 7-4: The absorption of each concentration of the surfactant SDS 
from 1 – 16 mM in aqueous phase using the PC spectrophotometric 
method for the third measurements. 
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Figure 7-5: The absorption of each concentration of the surfactant SDS 
from 0.5 – 21 mM within 0.5M SHG phase using the MC540 
spectrophotometric method for second measurements. 

 

 

Figure 7-6: The absorption of each concentration of the surfactant SDS 
from 0.5 – 21 mM within 0.5M SHG phase using the MC540 
spectrophotometric method for the third measurements. 
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Figure 7-7: The absorption of each concentration of the surfactant SDS 
from 0.5 – 10 mM within 0.6M SHG phase using the MC540 
spectrophotometric method for the second measurements 

 

 

 

Figure 7-8: The absorption of each concentration of the surfactant SDS 
from 0.5 – 10 mM within 0.6M SHG phase using the MC540 
spectrophotometric method for the third measurements 
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Figure 7-9: The absorption of each concentration of the surfactant SDS 
from 0.5 – 10 mM within 0.7 M SHG phase using the MC540 
spectrophotometric method for the second measurement. 

 

 

Figure 7-10: The absorption of each concentration of the surfactant SDS 
from 0.5 – 10 mM within 0.7 M SHG phase using the MC540 
spectrophotometric method for the third measurement . 
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Table 7-3: Vertical fitting of CMC measurements of pyrene in aqueous 
phase  

Equation y = a + b*x 

Weight No Weighting 

Residual Sum of Squares 6.58E+09 

Pearson's r -0.99931 

Adj. R-Square 0.99725 

  Value Standard Error 

B Intercept 1.14E+07 347383 

B Slope -1.55E+06 57368.41 

 

Table 7-4: Horizontal fitting of CMC measurements of MC540 in aqueous 
phase  

Equation y = a + b*x 

Weight No Weighting 

Residual Sum of Squares 2.43E+10 

Pearson's r 0.57899 

Adj. R-Square 0.20228 

  Value Standard Error 

B Intercept 484956.4 132596.3 

B Slope 17615.8 11093.8 

 

Table 7-5: Vertical fitting of CMC measurements of MC540 in aqueous 
phase  

Equation y = a + b*x 

Weight Instrumental 

Residual Sum of 

Squares 
85.58126 

Pearson's r 0.94621 

Adj. R-Square 0.87438 
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  Value Standard Error 

B Intercept 0.93436 0.00578  

B Slope 0.00636 9.72E-04  

 

Table 7-6: Horizontal fitting of CMC measurements of MC540 in aqueous 
phase 

Equation y = a + b*x 

Weight Instrumental 

Residual Sum of Squares 0.31382 

Pearson's r 0.99853 

Adj. R-Square 0.99558 

  Value Standard Error 

B Intercept -0.17359 0.04866 

B Slope 0.1566 0.00602 

 

Table 7-7: Vertical fitting of CMC measurements of PC in aqueous phase 

Weight Instrumental 

Residual Sum of Squares 0.94117 

Pearson's r 0.99635 

Adj. R-Square 0.98541  

  Value Standard Error 

B Intercept -1.90154 0.21192 

B Slope 0.3545 0.03039 

 

Table 7-8: Horizontal fitting of CMC measurements of PC in aqueous 
phase 

Equation y = a + b*x 

Weight Instrumental 

Residual Sum of Squares 0.73712 
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Pearson's r 0.39747 

Adj. R-Square -0.05252 

  Value Standard Error 

B Intercept 0.22154 0.00678 

B Slope 0.0017 0.00196 

 

Table 7-9: Vertical fitting of CMC measurements of MC in 0.5 M SHG phase 

Equation y = a + b*x 

Weight Instrumental 

Residual Sum of Squares 0.0055 

Pearson's r 0.99995 

Adj. R-Square 0.99978 
  

Value Standard Error 

B Intercept -0.25219 0.0139 

B Slope 0.16639 0.00173 

 

Table 7-10: Horizontal fitting of CMC measurements of MC in 0.5 M SHG 
phase 

Equation y = a + b*x 

Weight Instrumental 

Residual Sum of Squares 0.87667 

Pearson's r 0.87604 

Adj. R-Square 0.72093 
  

Value Standard Error 

B Intercept 1.29989 0.07836 

B Slope 0.02343 0.00577 

 

Table 7-11: Vertical fitting of CMC measurements of MC in 0.6 M SHG 
phase 
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Equation y = a + b*x 

Weight Instrumental 

Residual Sum of Squares 3.81062 

Pearson's r 0.99204 

Adj. R-Square 0.97623 

  Value Standard Error 

B Intercept 0.15437 0.12337 

B Slope 1.62162 0.14551 

 

 

Table 7-12: Horizontal fitting of CMC measurements of MC in 0.6 M SHG 
phase 

Equation y = a + b*x 

Weight Instrumental 

Residual Sum of Squares 1.32971 

Pearson's r 0.09765 

Adj. R-Square -0.11427 

  Value Standard Error 

B Intercept 1.95846 0.03454 

B Slope 0.00264 0.00952 

Table 7-13: Vertical fitting of CMC measurements of MC in 0.7 M SHG 
phase 

Equation y = a + b*x 

Weight Instrumental 

Residual Sum of 

Squares 

1.28662 

Pearson's r 0.93507 

Adj. R-Square 0.81153 
  

Value Standard Error 

Ave Intercept 1.10412 0.29857 Ave 
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Ave Slope 1.40334 0.37617 Ave 

 

Table 7-14: Horizontal fitting of CMC measurements of MC in 0.7 M SHG 
phase 

Equation y = a + b*x 

Weight Instrumental 

Residual Sum of Squares 5.10142 

Pearson's r 0.21871 

Adj. R-Square -0.1426 
  

Value Standard Error 

Ave Intercept 2.73964 0.24898 

Ave Slope 0.01613 0.03217 

 

Table 7-15: Horizontal fitting of CMC measurements of SDS with 1 x 10-5 M 
of PC in 0.5 M SHG phase 

Equation y = a + b*x 

Weight Instrumental 

Residual Sum of Squares 0.6594 

Pearson's r 0.40615 

Adj. R-Square -0.00205 
  

Value Standard Error 

Average Abs Intercept 0.96248 0.04085 

Average Abs Slope 0.00549 0.00552 

 

Table 7-16: Vertical fitting of CMC measurements of SDS with 1 x 10-5 M of 
PC in 0.5 M SHG phase 

Equation y = a + b*x 

Weight Instrumental 

Residual Sum of Squares 1.8091 

Pearson's r 0.95604 
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Adj. R-Square 0.87101 
  

Value Standard Error 

Average Abs Intercept -0.05477 0.14368 

Average Abs Slope 0.69575 0.1509 

 

Table 7-17: Horizontal fitting of CMC measurements of SDS with 1 x 10-6 M 
of PC in 0.5 M SHG phase 

Equation y = a + b*x 

Weight Instrumental 

Residual Sum of Squares 8.72242 

Pearson's r 0.95798 

Adj. R-Square 0.87659 

  Value Standard Error 

B Intercept -0.00319 0.1158 

B Slope 0.54399 0.11517 

 

Table 7-18: Vertical fitting of CMC measurements of SDS with 1 x 10-6 M of 
PC in 0.5 M SHG phase 

Equation y = a + b*x 

Weight Instrumental 

Residual Sum of Squares 15.17783 

Pearson's r 0.80137 

Adj. R-Square 0.59108 

  Value Standard Error 

B Intercept 0.77064 0.0384 

B Slope 0.02164 0.00611 

Table 7-19: Vertical fitting of CMC measurements of PC in 0.5 M SHG 
phase with 605 nm 

Equation y = a + b*x 

Weight Instrumental 
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Residual Sum of Squares 9.20864 

Pearson's r 0.95201 

Adj. R-Square 0.8595 

  Value Standard Error 

Average Intercept 0.0154 0.1186 

Average Slope 0.52094 0.11842 

 

 

 

Table 7-20: Horizontal fitting of CMC measurements of PC in 0.5 M SHG 
phase with 605 nm 

Equation y = a + b*x 

Weight Instrumental 

Residual Sum of Squares 20.03558 

Pearson's r 0.75191 

Adj. R-Square 0.50327 

  Value Standard Error 

Average Intercept 0.74265 0.04247 

Average Slope 0.02076 0.00688 

 

Table 7-21: Vertical fitting of CMC measurements of SDS with PC in 0.6 M 
SHG phase 

Equation y = a + b*x 

Weight Instrumental 

Residual Sum of Squares 1.1862 

Pearson's r 0.97069 

Adj. R-Square 0.91336 

  Value Standard Error 

Average Abs. Intercept 0.35244 0.07525 
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Average Abs. Slope 0.38997 0.06827 

 

Table 7-22 Horizontal fitting of CMC measurements of SDS with PC in 0.6 
M SHG phase 

Equation y = a + b*x 

Weight Instrumental 

Residual Sum of Squares 9.56684 

Pearson's r 0.79696 

Adj. R-Square 0.58302 

  Value Standard Error 

Average Abs. Intercept 0.94528 0.01899 

Average Abs. Slope 0.00468 0.00134 

 

Table 7-23: Vertical fitting of CMC measurements of SDS with PC in 0.7 M 
SHG phase 

Equation y = a + b*x 

Weight Instrumental 

Residual Sum of Squares 0.22292 

Pearson's r 0.97559 

Adj. R-Square 0.90355 

  Value Standard Error 

B Intercept 0.01197 0.09946 

B Slope 1.07977 0.24305 

 

Table 7-24: Horizontal fitting of CMC measurements of SDS with PC in 0.7 
M SHG phase 

Equation y = a + b*x 

Weight Instrumental 

Residual Sum of Squares 3.35319 

Pearson's r 0.9069 
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Adj. R-Square 0.7971 

  Value Standard Error 

B Intercept 0.91275 0.01714 

B Slope 0.03499 0.00614 

 

Table 7-25: Vertical fitting of CMC measurements of SDS with PC in 0.8 M 
SHG phase 

Equation y = a + b*x 

Weight Instrumental 

Residual Sum of Squares 16.02827 

Pearson's r 0.90453 

Adj. R-Square 0.77272 

  Value Standard Error 

B Intercept 0.1438 0.07443 

B Slope 0.4143 0.09765 

Table 7-26: Horizontal fitting of CMC measurements of SDS with PC in 0.8 
M SHG phase 

Equation y = a + b*x 

Weight Instrumental 

Residual Sum of Squares 14.31255 

Pearson's r 0.6728 

Adj. R-Square 0.36144 

  Value Standard Error 

B Intercept 0.56105 0.024 

B Slope 0.01446 0.00649 

 

Table 7-27: Vertical fitting of CMC measurements of SDS with PC in 0.9 M 
SHG phase 

Equation y = a + b*x 

Weight Instrumental 
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Residual Sum of 

Squares 
79.52808 

Pearson's r 0.91203 

Adj. R-Square 0.77573 

  Value Standard Error 

B Intercept -0.0173 0.08088  

B Slope 0.53131 0.13794  

     

 

Table 7-28: Horizontal fitting of CMC measurements of SDS with PC in 0.9 
M SHG phase 

Equation y = a + b*x 

Weight Instrumental 

Residual Sum of Squares 5.47061 

Pearson's r 0.90958 

Adj. R-Square 0.80267 

  Value Standard Error 

B Intercept 0.38533 0.00808 

B Slope 0.00984 0.0017 

 

Table 7-29: Vertical fitting of CMC measurements of SDS with PC in 0.1 M  
SHG phase 

Equation y = a + b*x 

Weight Instrumental 

Residual Sum of Squares 0.0815 

Pearson's r 0.99465 

Adj. R-Square 0.97865 

  Value Standard Error 

B Intercept 0.03017 0.02375 

B Slope 0.55453 0.05761 
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Table 7-30: Horizontal fitting of CMC measurements of SDS with PC in 0.1 
M SHG phase 

Equation y = a + b*x 

Weight Instrumental 

Residual Sum of Squares 1.9423 

Pearson's r 0.96685 

Adj. R-Square 0.92549 

  Value Standard Error 

B Intercept 0.38152 0.01863 

B Slope 0.02187 0.00218 

 

Chapter 4 appendix  

 

Figure 7-11: The actual absorption spectra for MC 540 under 1.0 M SHG 
conditions (without any SDS). 
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Figure 7-12: The actual absorption spectra for MC 540 under 1.0 M SHG 
conditions (3 mM SDS) 

 

Figure 7-13: The actual absorption spectra for MC 540 under 1.0 M SHG 
conditions (5 mM SDS) 
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Figure 7-14: The actual absorption spectra for MC 540 under 1.0 M SHG 
conditions (10 mM SDS) 

 

Figure 7-15: The actual absorption spectra for MC 540 under 1.0 M SHG 
conditions (15 mM SDS) 
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Figure 7-16: The actual absorption spectra for MC 540 under 1.0 M SHG 
conditions (18 mM SDS) 

Chapter 5 appendix  

 

Figure 7-17: AMP SHG 1H NMR (400 MHz, D2O) δ 8.35 (s, 1H), 8.10 (s, 1H), 
5.98 (d, J = 15.3 Hz, 1H), 4.69 (s, 222H), 4.42 – 4.32 (m, J = 17.3 Hz, 1H), 4.23 
(t, J = 28.6 Hz, 1H), 4.01 (d, 1H), 1.85 (s, 26H).  
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Figure 7-18: ATP SHG 1H NMR (400 MHz, D2O) δ 8.40 (s, 1H), 8.13 (s, 1H), 
5.97 (d, 1H), 4.69 (s, 266H), 4.51 – 4.42 (m, J = 13.2 Hz, 1H), 4.29 (d, 1H), 
4.14 (t, 1H), 1.86 (s, 32H). 

 

 

Figure 7-19: AMP in D2O 
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Figure 7-20: ADP in D2O medium  

 

 

Figure 7-21: ATP in D2O medium  
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Figure 7-22: AMP in SHG environment  

 

 

Figure 7-23: ADP in SHG environment  
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Figure 7-24: ATP in SHG environment  

 

 

Figure 7-25: AMP pH12 in D2O medium  
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Figure 7-26: ADP pH12 in D2O medium  

 

 

Figure 7-27: ATP pH12 in D2O medium  
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Figure 7-28: AMP at pH12 within SHG environment  

 

 

Figure 7-29: ADP at pH12 within SHG environment 
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Figure 7-30: ATP at pH12 within SHG environment 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



258 
 

7.7 References  

1. Ahmed, E.M., Hydrogel: Preparation, characterization, and 
applications: A review. Journal of Advanced Research 2015, 6(2), 
105-121. 
2. Atkins, P.W., De Paula, J., Atkins' Physical chemistry. Oxford 
University Press. Oxford, 2014. 
3. Almdal, K., Dyre, J., Hvidt, S., Kramer, O., Towards a 
phenomenological definition of the term ‘gel’. Polymer Gels and 
Networks 1993, 1(1), 5-17. 
4. Singh, A., Sharma, P.K., Garg, V.K., Garg, G., Hydrogels: A 
review. International Journal of Pharmaceutical Sciences Review 
and Research 2010, 4(2), 97-105. 
5. Hamidi, M., Azadi, A., Rafiei, P., Hydrogel nanoparticles in 
drug delivery. Advanced Drug Delivery Reviews 2008, 60(15), 1638-
1649. 
6. Lu, C., Zahedi, P., Forman, A., Allen, C., Multi-arm PEG/Silica 
Hydrogel for Sustained Ocular Drug Delivery. Journal of 
Pharmaceutical Sciences 2014, 103(1), 216-226. 
7. Yang, Z.-X., Chen, B.-A., Wang, H., Xia, G.-H., Cheng, J., Pei, 
X.-P., Wang, F., Bao, W., Handy, rapid and multiplex detection of 
tumor markers based on encoded silica–hydrogel hybrid beads 
array chip. Biosensors and Bioelectronics 2013, 48, 153-157. 
8. Siow, K.S., Kumar, S., Griesser, H.J., Low-Pressure Plasma 
Methods for Generating Non-Reactive Hydrophilic and Hydrogel-
Like Bio-Interface Coatings – A Review. Plasma Processes and 
Polymers 2015, 12(1), 8-24. 
9. Saxena, A.K., Synthetic biodegradable hydrogel (PleuraSeal) 
sealant for sealing of lung tissue after thoracoscopic resection. The 
Journal of Thoracic and Cardiovascular Surgery 2010, 139(2), 496-
497. 
10. Chen, X., Martin, B.D., Neubauer, T.K., Linhardt, R.J., Dordick, 
J.S., Rethwisch, D.G., Enzymatic and chemoenzymatic approaches 
to synthesis of sugar-based polymer and hydrogels. Carbohydrate 
Polymers 1995, 28(1), 15-21. 
11. Zhang, L., Zhang, X., Li, K., Xiao, W., Xiao, Y., Zheng, L., Fan, 
H., Preparation of collagen–chondroitin sulfate–hyaluronic acid 
hybrid hydrogel scaffolds and cell compatibility in vitro. 
Carbohydrate Polymers 2011, 84(1), 118-125. 
12. Wang, F., Li, Z., Khan, M., Tamama, K., Kuppusamy, P., 
Wagner, W.R., Sen, C.K., Guan, J., Injectable, rapid gelling and 
highly flexible hydrogel composites as growth factor and cell 
carriers. Acta Biomaterialia 2010, 6(6), 1978-1991. 



259 
 

13. Krsko, P., McCann, T.E., Thach, T.-T., Laabs, T.L., Geller, 
H.M., Libera, M.R., Length-scale mediated adhesion and directed 
growth of neural cells by surface-patterned poly(ethylene glycol) 
hydrogels. Biomaterials 2009, 30(5), 721-729. 
14. Trevors, J.T., Pollack, G.H., Hypothesis: the origin of life in a 
hydrogel environment. Progress in Biophysics and Molecular 
Biology 2005, 89(1), 1-8. 
15. Beebe, D.J., Moore, J.S., Bauer, J.M., Yu, Q., Liu, R.H., 
Devadoss, C., Jo, B.-H., Functional hydrogel structures for 
autonomous flow control inside microfluidic channels. Nature 2000, 
404(6778), 588-590. 
16. Wilson, S.L., Ahearne, M., El Haj, A.J., Yang, Y., Chapter 8 
Mechanical Characterization of Hydrogels and its Implications for 
Cellular Activities. Hydrogels in Cell-Based Therapies,  The Royal 
Society of Chemistry: 2014; pp 171-190. 
17. Abul-Haija, Y.M., Ulijn, R.V., Chapter 6 Enzyme-Responsive 
Hydrogels for Biomedical Applications. Hydrogels in Cell-Based 
Therapies,  The Royal Society of Chemistry: 2014; pp 112-134. 
18. Jena, K.K., Rout, T.K., Narayan, R., Raju, K.V.S.N., Novel 
organic–inorganic hybrid coatings prepared by the sol–gel process: 
corrosion and mechanical properties. Polymer International 2012, 
61(7), 1101-1106. 
19. Cairns-Smith, A., The origin of life: clays. Frontiers of Life 
2001, 1, 169-192. 
20. Trevors, J.T., Abel, D.L., Chance and necessity do not explain 
the origin of life. Cell Biology International 2004, 28(11), 729-739. 
21. Bashkin, V.N., Howarth, R.W., Modern biogeochemistry. 
Springer Science & Business Media. 2002. 
22. Bebié, J., Schoonen, M.A.A., Pyrite and phosphate in anoxia 
and an origin-of-life hypothesis. Earth and Planetary Science Letters 
1999, 171(1), 1-5. 
23. Segré, D., Ben-Eli, D., Deamer, D.W., Lancet, D., The lipid 
world. Origins of Life and Evolution of the Biosphere 2001, 31(1-2), 
119-145. 
24. Ingber, D.E., The origin of cellular life. BioEssays 2000, 
22(12), 1160-1170. 
25. Trevors, J., The subsurface origin of microbial life on the 
Earth. Research in microbiology 2002, 153(8), 487-491. 
26. Pollack, G.H., Cells, gels and the engines of life: a new, 
unifying approach to cell function. Ebner & Sons. Seattle, WA, 2001. 
27. Yang, D.Y., Peng, S.M., Hartman, M.R., Gupton-Campolongo, 
T., Rice, E.J., Chang, A.K., Gu, Z., Lu, G.Q., Luo, D., Enhanced 
transcription and translation in clay hydrogel and implications for 
early life evolution. Scientific Reprts 2013, 3(Journal Article), 3165. 



260 
 

28. Trevors, J.T., Hypothesized origin of microbial life in a 
prebiotic gel and the transition to a living biofilm and microbial mats. 
Comptes rendus - Biologies 2011, 334(4), 269-272. 
29. Williamson, B., Stanley, C., Wilkinson, J., Implications from 
inclusions in topaz for greisenisation and mineralisation in the 
Hensbarrow topaz granite, Cornwall, England. Contributions to 
Mineralogy and Petrology 1997, 127(1-2), 119-128. 
30. Štemprok, M., Greisenization (a review). Geologische 
Rundschau 1987, 76, 169-175. 
31. Cammarata, M., Levantino, M., Cupane, A., Longo, A., 
Martorana, A., Bruni, F., Structure and dynamics of water confined 
in silica hydrogels: X-ray scattering and dielectric spectroscopy 
studies. The European Physical Journal E 2003, 12(S1), 63-66. 
32. Ferri, F., Frisken, B.J., Cannell, D.S., Structure of silica gels. 
Physical Review Letters 1991, 67(25), 3626-3629. 
33. Bale, H.D., Schmidt, P.W., Small-angle X-ray-scattering 
investigation of submicroscopic porosity with fractal properties. 
Physical Review Letters 1984, 53(6), 596. 
34. Peri, J., Hensley Jr, A., The surface structure of silica gel. The 
Journal of Physical Chemistry 1968, 72(8), 2926-2933. 
35. Sukhyy, K.M., Belyanovskaya, E.A., Kozlov, Y.N., Kolomiyets, 
E.V., Sukhyy, M.P., Structure and adsorption properties of the 
composites ‘silica gel–sodium sulphate’, obtained by sol–gel 
method. Applied Thermal Engineering 2014, 64(1–2), 408-412. 
36. Bray, D., Critical point drying of biological specimens for 
scanning electron microscopy. Supercritical Fluid Methods and 
Protocols 2000, 235-243. 
37. Catlouge, Criticel Point Drying.  2015. 
38. Ruwin Pandithage, D., Brief Introduction to Critical Point 
Drying.  Leica Microsystems: December 11, 2012; Vol. 2011. 
39. Technologies, Q., Critical Point Drying Procedure. 
TECHNICAL BRIEF Critical Point Drying,  2009. 
40. Reimer, L., Scanning electron microscopy: physics of image 
formation and microanalysis. Springer. Berlin, 1998. 
41. Reimer, L., Scanning Electron Microscopy: Physics of Image 
Formation and Microanalysis, Second Edition. Measurement 
Science and Technology 2000, 11(12), 1826. 
42. Schatten, H., Scanning Electron Microscopy for the Life 
Sciences. Cambridge University Press. 2012. 
43. Rangel-Yagui, C.d.O., Pessoa Jr, A., Tavares, L.C., Micellar 
solubilization of drugs. Journal of Pharmacy and Pharmaceutical 
Sciences 2005, 8(2), 147-163. 



261 
 

44. Ritacco, H., Kovensky, J., Fernández-Cirelli, A., Castro, M.J., 
A simplified method for the determination of critical micelle 
concentration. Journal of Chemical Education 2001, 78(3), 347. 
45. Nagarajan, R., Amphiphilic surfactants and amphiphilic 
polymers: principles of molecular assembly. Amphiphiles: molecular 
assembly and applications, ACS symposium series. American 
Chemical Society, Washington, DC,  2011; pp 1-22. 
46. Tanford, C., The hydrophobic effect: formation of micelles and 
biological membranes. Wiley. New York, 1973. 
47. Tanford, C., Theory of micelle formation in aqueous solutions. 
The Journal of Physical Chemistry 1974, 78(24), 2469-2479. 
48. Hine, R., Martin, E., ed.^eds., A Dictionary of Biology. 7 
edn., Oxford University Press, 2015. 
49. Yu, D., Huang, F., Xu, H., Determination of critical 
concentrations by synchronous fluorescence spectrometry. 
Analytical Methods 2012, 4(1), 47-49. 
50. Guida, V., Thermodynamics and kinetics of vesicles formation 
processes. Advances in colloid and interface science 2010, 161(1), 
77-88. 
51. Smith, J.A., Ng, K.S., Mead, B.E., Dopson, S., Reeve, B., 
Edwards, J., Wood, M.J., Carr, A.J., Bure, K., Karp, J.M., 
Extracellular vesicles commercial potential as byproducts of cell 
manufacturing for research and therapeutic use. Bioprocess Int 
2015, 13, 20-28. 
52. Wagner, A., Vorauer-Uhl, K., Liposome Technology for 
Industrial Purposes. Journal of Drug Delivery 2011, 2011. 
53. Philippot, J.R., Schuber, F., Liposomes as tools in basic 
research and industry. CRC press. 1994. 
54. Palivan, C.G., Goers, R., Najer, A., Zhang, X., Car, A., Meier, 
W., Bioinspired polymer vesicles and membranes for biological and 
medical applications. Chemical Society Reviews 2016, 45(2), 377-
411. 
55. Cheung, K.-H., Keerthikumar, S., Roncaglia, P., Subramanian, 
S.L., Roth, M.E., Samuel, M., Anand, S., Gangoda, L., Gould, S., 
Alexander, R., Extending gene ontology in the context of 
extracellular RNA and vesicle communication. Journal of biomedical 
semantics 2016, 7(1), 19. 
56. Adams, R., DOSY – Practicalities and Pitfalls. 2015. 
57. Iraci, N., Leonardi, T., Gessler, F., Vega, B., Pluchino, S., 
Focus on extracellular vesicles: Physiological role and signalling 
properties of extracellular membrane vesicles. International journal 
of molecular sciences 2016, 17(2), 171. 
58. Kavanagh, K., Fungi: biology and applications. John Wiley & 
Sons. 2011. 



262 
 

59. Goodson, H.V., Molecular evolution of the myosin superfamily: 
application of phylogenetic techniques to cell biological questions. 
Soc. Gen. Physiol. Ser 1994, 49, 141-157. 
60. Albertsen, A.N., Duffy, C., Sutherland, J.D., Monnard, P.-A., 
Self-assembly of phosphate amphiphiles in mixtures of prebiotically 
plausible surfactants. Astrobiology 2014, 14(6), 462-472. 
61. Apel, C.L., Deamer, D.W., Mautner, M.N., Self-assembled 
vesicles of monocarboxylic acids and alcohols: conditions for 
stability and for the encapsulation of biopolymers. Biochimica et 
Biophysica Acta (BBA)-Biomembranes 2002, 1559(1), 1-9. 

62. Monnard, P.A., Deamer, D.W., Membrane self‐assembly 

processes: Steps toward the first cellular life. The Anatomical 
Record 2002, 268(3), 196-207. 
63. Mansy, S.S., Szostak, J.W., Thermostability of model protocell 
membranes. Proceedings of the National Academy of Sciences 
2008, 105(36), 13351-13355. 
64. Burlatsky, S.F., Atrazhev, V.V., Dmitriev, D.V., Sultanov, V.I., 
Timokhina, E.N., Ugolkova, E.A., Tulyani, S., Vincitore, A., Surface 
tension model for surfactant solutions at the critical micelle 
concentration. Journal of Colloid and Interface Science 2013, 
393(1), 151-160. 
65. Gruen, D., The hydrophobic effect: Formation of micelles and 
biological membranes By , Wiley, New York, 1979, 2nd ed., $18.50. 
Journal of Colloid and Interface Science 1980, 77(2), 588. 
66. Tanford, C., The hydrophobic effect: formation of micelles and 
biological membranes 2d ed. J. Wiley. Newyork Chichester, 1980. 
67. Dominguez, A., Fernandez, A., Gonzalez, N., Iglesias, E., 
Montenegro, L., Determination of Critical Micelle Concentration of 
Some Surfactants by Three Techniques. Journal of Chemical 
Education 1997, 74(10), 1227. 
68. Parfitt, G., Smith, A., Conductivity of sodium dodecyl sulfate 
solutions below the critical micelle concentration. The Journal of 
Physical Chemistry 1962, 66(5), 942-943. 
69. Wong, J.E., Duchscherer, T.M., Pietraru, G., Cramb, D.T., 
Novel fluorescence spectral deconvolution method for determination 
of critical micelle concentrations using the fluorescence probe 
PRODAN. Langmuir 1999, 15(19), 6181-6186. 
70. Ramamurthy, V., Photochemistry in organized and constrained 
media. VCH Publishers. 1991. 
71. Ananthapadmanabhan, K.P., Goddard, E.D., Turro, N.J., Kuo, 
P.L., Fluorescence probes for critical micelle concentration 
determination 

Langmuir 1985, 1(3), 352-355. 



263 
 

72. Rager, T., Meyer, W.H., Wegner, G., Winnik, M.A., Influence 
of chain length and salt concentration on block copolymer 
micellization. Macromolecules 1997, 30(17), 4911-4919. 
73. Wicken, A., Evans, J., Knox, K., Critical micelle concentrations 
of lipoteichoic acids. Journal of Bacteriology 1986, 166(1), 72-77. 
74. Fisher, L., Oakenfull, D., Environment of solubilized molecules 
in bile salt micelles. Australian Journal of Chemistry 1979, 32(1), 31-
39. 
75. Mukerjee, P., The nature of the association equilibria and 
hydrophobic bonding in aqueous solutions of association colloids. 
Advances in Colloid and Interface Science 1967, 1(3), 242-275. 
76. Mukerjee, P., Mysels, K.J., Critical micelle concentrations of 
aqueous surfactant systems.  DTIC Document: 1971. 
77. Donchi, K.F., Robert, G.P., Ternai, B., Derrick, P.J., A surface-
active merocyanine dye as a probe of micellar environments. 
Australian Journal of Chemistry 1980, 33(10), 2199-2206. 
78. Weeks, E.R., Understanding Dynamic Light Scattering.  Wyatt 
Technology: Emory University, 2008. 
79. Goldburg, W., Dynamic light scattering. American Journal of 
Physics 1999, 67(12), 1152-1160. 
80. Pecora, R., Doppler Shifts in Light Scattering from Pure 
Liquids and Polymer Solutions. The Journal of Chemical Physics 
1964, 40(6), 1604. 
81. Sartor, M., Dynamic light scattering. University of California, 
San Diego 2003, 2-21. 
82. Berne, B.J., Pecora, R., Dynamic Light Scattering: With 
Applications to Chemistry, Biology, and Physics. Dover Publications. 
2013. 
83. McNeil, S.E., Nanotechnology for the biologist. Journal of 
Leukocyte Biology 2005, 78(3), 585-594. 
84. Guenet, J.-M., Thermoreversible gelation of polymers and 
biopolymers. Academic Press. London, 1992. 
85. Krevelen, D.W.v., Nijenhuis, K.t., Properties of polymers: their 
correlation with chemical structure ; their numerical estimation and 
prediction from additive group contributions. Elsevier. 
Amsterdam;Boston;, 2009. 
86. Chambon, F., Winter, H.H., Stopping of crosslinking reaction in 
a PDMS polymer at the gel point. Polymer Bulletin 1985, 13(6), 499-
503. 
87. Winter, H.H., Chambon, F., Analysis of linear viscoelasticity of 
a crosslinking polymer at the gel point. Journal of Rheology (1978-
present) 1986, 30(2), 367-382. 



264 
 

88. Tanaka, T., Experimental methods in polymer science: modern 
methods in polymer research and technology. Academic. 
London;San Diego, Calif;, 1999. 
89. Shibayama, M., Norisuye, T., Gel Formation Analyses by 
Dynamic Light Scattering. Bulletin of the Chemical Society of Japan 
2002, 75(4), 641-659. 
90. Hill, J.O., For better thermal analysis and calorimetry. 
International Confederation for Thermal Analysis. 1991. 
91. Gallagher, P.K., Brown, M.E., Kemp, R., Handbook of thermal 
analysis and calorimetry. Elsevier. 1998. 
92. Brown, M., Introduction to thermal analysis: Techniques and 
applications (hot topics in thermal analysis and calorimetry).  Kluwer 
Academic Publishers, Dordrecht: 2002. 
93. Raju, P.M., Infiltration Growth processing of YBCO nano-
composites: shape forming, microstructural and magnetic studies. 
PhD dissertation Shodhganga : a reservoir of Indian theses. 
Hayderabad University, 2013. 
94. Chandran, K., Kamruddin, M., Anthonysamy, S., Ganesan, V., 
Thermal Decomposition Behavior of Sodium Alkoxides of Relevance 
to Fast Reactor Technology. Reactions and Mechanisms in Thermal 
Analysis of Advanced Materials,  John Wiley & Sons, Inc.: 2015; pp 
333-392. 
95. Benes, E., Improved quartz crystal microbalance technique. 
Journal of Applied Physics 1984, 56(3), 608-626. 
96. Thomas, J.M., Williams, B.R., Theory and applications of 
vacuum microbalance techniques. Quarterly Reviews, Chemical 
Society 1965, 19(3), 231-253. 
97. Peschel, A., Langhoff, A., Uhl, E., Dathathreyan, A., Haindl, S., 
Johannsmann, D., Reviakine, I., Lipid phase behavior studied with a 
quartz crystal microbalance: A technique for biophysical studies with 
applications in screening. The Journal of chemical physics 2016, 
145(20), 204904. 
98. Chartoff, R., Turi, E., Thermal characterization of polymeric 
materials. Academic Press: New York 1997, 1, 513. 
99. Freire, E., Differential scanning calorimetry. Protein stability 
and folding,  Springer: 1995; pp 191-218. 
100. Sørland, G.H., Pulsed Field Gradient—NMR Sequences. 
Dynamic Pulsed-Field-Gradient NMR,  Springer: Springer Series in 
Chemical Physics, 2014; Vol. 110, pp 1-35. 
101. Stejskal, E.O., Tanner, J.E., Spin diffusion measurements: 

spin echoes in the presence of a time‐dependent field gradient. 

The journal of chemical physics 1965, 42(1), 288-292. 



265 
 

102. Nilsson, M., Connell, M.A., Davis, A.L., Morris, G.A., 
Biexponential fitting of diffusion-ordered NMR data: practicalities and 
limitations. Analytical chemistry 2006, 78(9), 3040-3045. 
103. Zhao, X., Jin, F., Zhou, L., Wang, Q., Pu, X., Chapter 5 - 
Reconstruction of Sag-Wide Reservoir Characteristics. In Zhao, X., 
Jin, F., Zhou, L., Wang, Q., Pu, X., eds.Re-exploration Programs for 
Petroleum-Rich Sags in Rift Basins,  Gulf Professional Publishing: 
2018; pp 185-269. 
104. Barge, L., Hammond, D., Chan, M., Potter, S., Petruska, J., 

Nealson, K., Precipitation patterns formed by self‐organizing 

processes in porous media. Geofluids 2011, 11(2), 124-133. 
105. Li, Z., Li, X., Xia, Q., Xi, H., Effects of pore sizes of porous 
silica gels on desorption activation energy of water vapour. Applied 
Thermal Engineering 2007, 27(5), 869-876. 
106. Hu, X., Wang, X., Liu, J., Zhang, S., Jiang, C., He, X., 
Fabrication of mesoporous dendritic silica nanofibers by using 
dendritic polyaniline templates. Materials Chemistry and Physics 
2012, 137(1), 17-21. 
107. Gorrell, I.B., Henderson, T.W., Albdeery, K., Savage, P.M., 
Kee, T.P., Chemical Transformations in Proto-Cytoplasmic Media. 
Phosphorus Coupling in the Silica Hydrogel Phase. Life 2017, 7(4), 
45. 
108. Christy, A.A., Quantitative determination of surface area of 
silica gel particles by near infrared spectroscopy and chemometrics. 
Colloids and Surfaces A: Physicochemical and Engineering Aspects 
2008, 322(1), 248-252. 
109. Gull, M.J.C., Prebiotic phosphorylation reactions on the early 
Earth. 2014, 5(2), 193-212. 
110. Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh 
Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S., Mozafari, 
M.J.P., Impact of particle size and polydispersity index on the clinical 
applications of lipidic nanocarrier systems. 2018, 10(2), 57. 
111. Panalytical, M., Dynamic Light Scattering (DLS) - 
Understanding the Basics. Azo Nano 2013. 
112. Mamane, H., Ducoste, J.J., Linden, K.G.J.A.o., Effect of 
particles on ultraviolet light penetration in natural and engineered 
systems. 2006, 45(8), 1844-1856. 
113. Calcabrini, M., Onna, D.J.J.o.C.E., Exploring the Gel State: 
Optical Determination of Gelation Times and Transport Properties of 
Gels with an Inexpensive 3D-Printed Spectrophotometer. 2018, 
96(1), 116-123. 
114. Whitesides, G.M., Grzybowski, B., Self-assembly at all scales. 
Science 2002, 295(5564), 2418-2421. 



266 
 

115. Philp, D., Stoddart, J.F., Self‐assembly in natural and 

unnatural systems. Angewandte Chemie International Edition in 
English 1996, 35(11), 1154-1196. 
116. Ball, P., Borley, N.R., The self-made tapestry: pattern 
formation in nature. Oxford University Press Oxford. 1999. 
117. Jakab, K., Norotte, C., Damon, B., Marga, F., Neagu, A., 
Besch-Williford, C.L., Kachurin, A., Church, K.H., Park, H., Mironov, 
V., Tissue engineering by self-assembly of cells printed into 
topologically defined structures. Tissue Engineering Part A 2008, 
14(3), 413-421. 
118. Kalyanasundaram, K., Thomas, J., Environmental effects on 
vibronic band intensities in pyrene monomer fluorescence and their 
application in studies of micellar systems. Journal of the American 
Chemical Society 1977, 99(7), 2039-2044. 
119. Wong, J., Duchscherer, T., Pietraru, G., Cramb, D., Novel 
fluorescence spectral deconvolution method for determination of 
critical micelle concentrations using the fluorescence probe 
PRODAN. Langmuir 1999, 15(19), 6181-6186. 
120. Albertsen, A.N., Duffy, C.D., Sutherland, J.D., Monnard, P.A., 
Self-Assembly of Phosphate Amphiphiles in Mixtures of Prebiotically 
Plausible Surfactants. Astrobiology 2014, 14(6), 462-472. 
121. Ganguly, B., Nath, R., Spectral studies of pinacyanol chloride 
in sodium alkyl sulfate. Chemcal and  Maters Resreach 2012, 2, 13-
23. 
122. Namani, T., Walde, P.J.L., From decanoate micelles to 
decanoic acid/dodecylbenzenesulfonate vesicles. Langmuir 2005, 
21(14), 6210-6219. 
123. Alanzi, S., A multi-analytical investigation of the hydrogel 
phase. Unpublished Results 2019. 
124. Lombardo, D., Kiselev, M.A., Magaz, #xf9, , S., Calandra, P., 
Amphiphiles Self-Assembly: Basic Concepts and Future 
Perspectives of Supramolecular Approaches %J Advances in 
Condensed Matter Physics. 2015, 2015, 22. 
125. Clark, J., UV-visible Absorption Spectra. Chemguide: Helping 
You To Understand Chemistry 2011, 30. 
126. Baillet, G., Campredon, M., Guglielmetti, R., Giusti, G., Aubert, 
C., Dealkylation of N-substituted indolinospironaphthoxazine 
photochromic compounds under UV irradiation. Journal of 
Photochemistry and Photobiology A: Chemistry 1994, 83(2), 147-
151. 
127. Baillet, G., Giusti, G., Guglielmetti, R., Comparative 
photodegradation study between spiro[indoline—oxazine] and 
spiro[indoline—pyran] derivatives in solution. Journal of 



267 
 

Photochemistry and Photobiology A: Chemistry 1993, 70(2), 157-
161. 
128. Toutchkine, A., Nguyen, D.V., Hahn, K.M., Merocyanine Dyes 
with Improved Photostability. 2007, 9(15). 
129. Gulliya, K.S., Franck, B., Matthews, J.L., Schneider, U., 
Photooxidation products and derivatives thereof of merocyanine-
540, their preparation and uses.  Google Patents: 1994. 
130. Franck, B., and Schneider, U., Photooxidation Products of 
Merocyanine 540 formed under Preactivation Conditions  for 
Tumour Therapy. Photochemistry and Photobiology 1992, 56(2), 
271-276. 
131. Ge, J., Qu, J., Degradation of azo dye acid red B on 
manganese dioxide in the absence and presence of ultrasonic 
irradiation. Journal of Hazardous Materials 2003, 100(1–3), 197-207. 
132. Scholz, G., Scholz, F.J.C., First-order differential equations in 
chemistry. 2014, 1(1), 1. 
133. Miller, C.C., The Stokes-Einstein law for diffusion in solution. 
Proceedings of the Royal Society of London. Series A, Containing 
Papers of a Mathematical and Physical Character 1924, 106(740), 
724-749. 
134. Cheng, P., Schachman, H., Studies on the validity of the 
Einstein viscosity law and Stokes' law of sedimentation. Journal of 
polymer science 1955, 16(81), 19-30. 
135. Johnson Jr, C.S.J.P.i.n.m.r.s., Diffusion ordered nuclear 
magnetic resonance spectroscopy: principles and applications. 
1999, 34(3-4), 203-256. 
136. Nilsson, M.J.J.o.M.R., The DOSY Toolbox: A new tool for 
processing PFG NMR diffusion data. 2009, 200(2), 296-302. 
137. Castañar, L., Poggetto, G.D., Colbourne, A.A., Morris, G.A., 
Nilsson, M.J.M.R.i.C., The GNAT: A new tool for processing NMR 
data. 2018, 56(6), 546-558. 
138. Keeler, J., Chapter 4: Fourier Transformation and Data 
Processing. 2004. web 2004. 
139. Facey, G., The Phase of an NMR Spectrum. online 2010. 
140. Ernst, R.R.J.J.o.M.R., Numerical Hilbert transform and 
automatic phase correction in magnetic resonance spectroscopy. 
1969, 1(1), 7-26. 
141. Xi, Y., Rocke, D.M.J.B.b., Baseline correction for NMR 
spectroscopic metabolomics data analysis. 2008, 9(1), 324. 
142. Morris, G.A., Barjat, H., Home, T.J.J.P.i.n.m.r.s., Reference 
deconvolution methods. 1997, 31(2-3), 197-257. 
143. Ashenhurst, J., The Haworth Projection. Online 2019. 
144. Harrington, J., Leeds Electron Microscopy and Spectroscopy 
Centre. LEMAS facilities,  University of Leeds. 



268 
 

145. Bayraktutan, T., Onganer, Y., Meral, K., Polyelectrolyte-
induced H-aggregation of Merocyanine 540 and its application in 
metal ions detection as a colorimetric sensor. Sensors and 
Actuators B: Chemical 2016, 226, 52-61. 
146. Liu, C., Lu, Y., He, S., Wang, Q., Zhao, L., Zeng, 
X.J.J.o.M.C.C., The nature of the styrylindolium dye: transformations 
among its monomer, aggregates and water adducts. 2013, 1(31), 
4770-4778. 
147. Lai, J.C.-Y., Pearce, B.K., Pudritz, R.E., Lee, D.J.I., Meteoritic 
abundances of fatty acids and potential reaction pathways in 
planetesimals. 2019, 319, 685-700. 
148. Deamer, D.J.L., The role of lipid membranes in life’s origin. 
2017, 7(1), 5. 

 


